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Résumé

Dans cette thèse de doctorat, nous abordons trois défis auxquels sont confrontés les
solveurs d’algèbre linéaire dans la perspective des futurs systèmes exascale: accélérer
la convergence en utilisant des techniques innovantes au niveau algorithmique, tirer
profit des accélérateurs GPU (Graphics Processing Units) pour améliorer la per-
formance des calculs sur les systèmes hybrides CPU/GPU, évaluer l’impact des
erreurs plus fréquentes du fait de l’augmentation du parallélisme dans les super-
calculateurs. Nous nous intéressons à l’étude des méthodes permettant d’accélérer
la convergence et le temps d’exécution des solveurs itératifs pour les grands systèmes
linéaires creux. Le solveur plus spécifiquement considéré dans ce travail est le “par-
allel Algebraic Recursive Multilevel Solver” (pARMS) qui est un solveur parallèle à
mémoire distribuée basé sur les méthodes de Krylov.

Tout d’abord, nous proposons d’intégrer une technique de randomisation ap-
pelée “Random Butterfly Transformations (RBT)” qui a été appliquée avec succès
pour éliminer le coût du pivotage dans la résolution des systèmes linéaires denses.
Notre objectif est d’appliquer cette méthode dans le préconditionneur ARMS de
pARMS pour résoudre plus efficacement le dernier système de complément de Schur
dans l’application du processus récursif multi-niveaux. Les résultats expérimen-
taux montrent une amélioration de la convergence et de la précision par rapport
aux implémentations existantes. En raison de possibles problèmes d’occupation
mémoire pour certains problèmes tests, nous proposons également d’utiliser une
variante “creuse” du RBT suivie d’un solveur direct creux (SuperLU), ce qui a pour
effet d’améliorer le temps d’exécution.

Ensuite, nous expliquons comment une approche non intrusive peut être ap-
pliquée pour implémenter des calculs GPU dans le solveur pARMS, plus parti-
culièrement dans la phase de préconditionnement locale qui représente une partie
importante du temps de résolution. Puis nous comparons les versions purement CPU
et hybrides CPU/GPU du solveur sur plusieurs problèmes tests issus d’applications
physiques. Les expériences portant sur notre solveur hybride CPU/GPU utilisant le
préconditionnement ARMS combiné avec le RBT, ou le préconditionnement ILU(0),
montrent un gain de performance allant jusqu’à 30% sur les problèmes considérés
dans nos expériences.

Enfin, nous étudions l’effet des fautes logicielles sur la convergence de la méth-
ode itérative GMRES flexible (FGMRES) qui est utilisée pour résoudre le système
préconditionné dans pARMS. Le problème ciblé dans nos expériences est un prob-
lème elliptique d’EDP sur une grille régulière. Nous considérons deux types de
préconditionneurs: une factorisation LU incomplète à double seuil (ILUT) et le pré-
conditionneur ARMS combiné avec la randomisation RBT. Nous considérons deux
modèles de fautes logicielles différentes où nous perturbons la multiplication matrice-
vecteur et l’application du préconditionneur, et nous comparons leur impact sur la
convergence du solveur.

Mots-clés : Calcul haute performance, solveurs linéaires itératifs parallèles,
solveur pARMS, preconditionnement, algorithmes randomisés, calculs sur GPU,
GMRES Flexible, tolérance aux fautes, modèles de fautes logicielles.





Abstract

In this PhD thesis, we address three challenges faced by linear algebra solvers in
the perspective of future exascale systems: accelerating convergence using innova-
tive techniques at the algorithm level, taking advantage of GPU (Graphics Pro-
cessing Units) accelerators to enhance the performance of computations on hybrid
CPU/GPU systems, evaluating the impact of errors in the context of an increasing
level of parallelism in supercomputers. We are interested in studying methods that
enable us to accelerate convergence and execution time of iterative solvers for large
sparse linear systems. The solver specifically considered in this work is the paral-
lel Algebraic Recursive Multilevel Solver (pARMS), which is a distributed-memory
parallel solver based on Krylov subspace methods.

First we integrate a randomization technique referred to as Random Butterfly
Transformations (RBT) that has been successfully applied to remove the cost of piv-
oting in the solution of dense linear systems. Our objective is to apply this method
in the ARMS preconditioner to solve more efficiently the last Schur complement
system in the application of the recursive multilevel process in pARMS. The exper-
imental results show an improvement of the convergence and the accuracy. Due to
memory concerns for some test problems, we also propose to use a sparse variant of
RBT followed by a sparse direct solver (SuperLU), resulting in an improvement of
the execution time.

Then we explain how a non intrusive approach can be applied to implement GPU
computing into the pARMS solver, more especially for the local preconditioning
phase that represents a significant part of the time to compute the solution. We
compare the CPU-only and hybrid CPU/GPU variant of the solver on several test
problems coming from physical applications. The performance results of the hybrid
CPU/GPU solver using the ARMS preconditioning combined with RBT, or the
ILU(0) preconditioning, show a performance gain of up to 30% on the test problems
considered in our experiments.

Finally we study the effect of soft fault errors on the convergence of the com-
monly used flexible GMRES (FGMRES) algorithm which is also used to solve the
preconditioned system in pARMS. The test problem in our experiments is an el-
liptical PDE problem on a regular grid. We consider two types of preconditioners:
an incomplete LU factorization with dual threshold (ILUT), and the ARMS pre-
conditioner combined with RBT randomization. We consider two soft fault error
modeling approaches where we perturb the matrix-vector multiplication and the
application of the preconditioner, and we compare their potential impact on the
convergence of the solver.

Keywords: High performance computing, parallel iterative linear solvers, pARMS
solver, preconditioning, randomized algorithms, GPU computing, Flexible GMRES,
fault tolerance, soft fault models.
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Introduction

The recent trends in High-Performance Computing (HPC), as shown for instance
in the Top 500 list1, confirm the ever increasing development of systems combining
multicore processors with accelerators (like GPUs or Intel Xeon Phi). This requires
the adaptation or the redesign of many of the numerical linear algebra algorithms
which are at the heart of scientific applications. In the perspective of the coming
exascale systems in the years 2020s [1], we are interested in investigating innovative
methods that take advantage of current highly parallel architectures and apply them
to solvers used in major scientific applications.

In this PhD thesis, we focus on preconditioned iterative solvers for large sparse
linear systems, and more specifically on solvers based on Krylov subspace meth-
ods. We are interested in preconditioning techniques, which improve the spectral
properties of the coefficient matrix in order to solve the linear system more easily.
The targeted solver for our work is the parallel Algebraic Recursive Multilevel Solver
(pARMS), which is a distributed-memory parallel iterative solver and uses the Flex-
ible Generalized Minimal Residual method (FGMRES) to solve the preconditioned
system.

The randomized algorithms are now gaining ground in HPC applications and
are more and more used to enhance linear algebra solvers since they can outperform
deterministic methods while providing accurate results. We will use a randomized
algorithm called Random Butterfly Transformations (RBT), to improve the conver-
gence and the accuracy of pARMS.

We also propose a version of pARMS that can exploit the high level of paral-
lelism provided by Graphics Processing Units (GPU). In this work, we integrate
GPU functions into pARMS on top of the widespread MAGMA library2 that has
been recently extended to sparse matrix computations. The GPU implementation
of pARMS will mainly concern the preconditioning phase that is dominant in the
global computational time (preconditioners based on RBT or Incomplete LU fac-
torization).

Another major trend in HPC is the increase of parallelism since a supercomputer
may consist of several millions of computing units, with the drawback of increasing
also the probability of occurence of hardware or software faults during the compu-
tation. It is then necessary to study the impact of these errors on a parallel solver
such as pARMS.

1http://www.top500.org/
2Matrix Algebra on GPU and Multicore Architectures, http://icl.cs.utk.edu/magma/
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Introduction

This manuscript is organized as follows:

In Chapter 1, we introduce the main methods (direct and iterative) for solving
linear systems with a specific focus on the Krylov subspace methods. We introduce
the solver pARMS that will be the solver of choice for this PhD thesis. We also
present the main existing parallel software libraries, the parallel architectures and
programming paradigms that we will use in our work and experiments.

In Chapter 2, we use a randomized algorithm based on RBT randomization tech-
nique to enhance the preconditioning phase in the pARMS solver. Our experiments
on test matrices from the Davis’ collection showed an improvement in the number
of iterations and accuracy. We also developed a sparse variant of RBT that enables
us to improve the execution time by taking into account the potential sparsity of
the last Schur complement system.

In Chapter 3, we present a hybrid CPU/GPU version of the pARMS solver
where the preconditioning phase is performed on the GPU. This hybrid version of
pARMS is implemented on top of the MAGMA library and concerns the ARMS pre-
conditioner using Random Butterfly Transformations (RBT), and the Incomplete
LU factorization preconditioning. Each preconditioning method provides a good
performance for a given set of matrices.

In Chapter 4, we focus on the soft fault errors, and we present two types of
fault models. We study the impact of these two soft fault models in the framework
of the pARMS solver, where we evaluate the resilience of two preconditioners in
the pARMS solver. Additionally, we present the experimental work and give the
corresponding explanations.

The last chapter is a conclusion of this PhD thesis, which also proposes possible
directions of research.
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1.1. Introduction

1.1 Introduction

Applications with intensive computations, intensive memory usage and intensive
data movement require the use of High Performance Computing (HPC). “HPC gen-
erally refers to the practice of aggregating computing power in a way that delivers
much higher performance than one could get out of a typical desktop computer or
workstation in order to solve large problems in science, engineering, or business” [2].
The traditional mono CPU computers can not deal with such a high computing
demand. However, HPC allocates a high intensive work for a single problem by us-
ing multiple CPUs to decrease the execution time. Parallelism in todays computer
architectures is ubiquitous whether in supercomputers or small portable devices
such as smartphones or watches. The increasing complexity in CPU design has lead
manufacturers to develop more sophisticated architectures. These new architectures
that allow to increase the computational power vary from CPU multicores to accel-
erators such as graphics processing units (GPUs). Exploiting the full performance
of such architectures for numerical problems has become very challenging.

In order to take fully advantage of these new architectures, software libraries
are developed to give users access to efficient linear algebra computations. The first
major numerical libraries to appear include the Basic Linear Algebra Subprograms
(BLAS [3]) and the Linear Algebra Package (LINPACK [4]) in 1979. Since then,
architecture specific libraries for dense or sparse linear algebra have been developed
such as LAPACK [5] for cache-based CPUs, ScaLAPACK [6] for distributed archi-
tectures, PLASMA [7] for multicore architectures, and more recently MAGMA [8]
for hybrid architectures using GPUs or XeonPhi.

In this thesis, we are interested in solving systems of linear equations, Ax = b,
where the matrix A is sparse. Such systems may arise from the discretization of par-
tial differential equations. There are several libraries that implement direct methods
for solving sparse systems such as MUMPS [9], PARADISO [10], and SuperLU [11].
However, when the matrix A is sparse, the factors obtained from the matrix decom-
position when using direct methods are denser than the input matrix. Moreover,
direct methods are prohibitive in terms of memory and floating point operations
when solving very large systems. These direct methods are also not easily paral-
lelized on modern architectures. Thus, iterative methods, computing a sequence of
approximate solutions for the system Ax = b starting from an initial guess, are a
good alternative. The Krylov subspace methods are among the most practical and
popular iterative methods. The solvers we are considering in this thesis, ARMS [12]
and pARMS [13] are based on some Krylov subspace methods. Our work aims at
improving the performance of these two solvers on modern architectures.

This chapter presents an overview of the different linear algebra methods, the
software libraries and the parallel architectures that we used in this thesis. The chap-
ter is organized as follows. Section 1.2 introduces the main methods used to solve a
given linear system Ax = b including direct and iterative methods. Section 1.3 gives
an overview on the Krylov subspace methods in particular the generalized minimal
residual (GMRES) method. Section 1.4 presents some preconditioning techniques
used in this thesis including preconditioners based on classical iterative methods as
well as preconditioners based on matrix factorization such as incomplete LU factor-
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ization. Section 1.5 describes the algebraic recursive multilevel solver (ARMS) [12]
and its parallel version pARMS [13]. Section 1.6 describes the main linear alge-
bra libraries that we have been using in this thesis. Section 1.7 recalls the main
parallel architectures as well as the programming models of interest for this work.
Section 1.8 briefly concludes this chapter.

1.2 Methods to solve general linear systems

In this thesis, we are interested in the solution of linear systems. A linear system,
or a system of linear equations, is a set of m equations and n variables. Linear
solvers are various: depending on the structure of the coefficient matrix, we use
symmetric or non-symmetric solvers, depending on the number of non-zero entries,
we use sparse or dense solvers, and depending on the properties of the solver, we
can have direct or iterative solvers. According to our own needs, we choose the most
suitable solver to solve the specific linear system, Ax = b, that we are considering,
where A is m × n matrix, x is a column vector with n unknowns, b is a column
vector with m entries.

Direct methods generally involve the decomposition of matrices followed by suc-
cessive resolutions of triangular systems. Different methods of decomposition exist
such as QR factorization, Cholesky, LDLT or LU [14].

LU: is used to solve general systems and decomposes a matrix A into the product
of a unit lower triangular matrix L and an upper triangular matrix U . It
requires about 2n3/3 floating point operations (flops) for a square matrix of
size n× n.

LDLT: is used for symmetric matrices. A symmetric matrix A is decomposed as
follows, A = LDLT where L is a unit lower triangular matrix and D is a
diagonal (or block-diagonal) matrix. It requires about n3/3 flops for a square
matrix of size n× n.

Cholesky: for symmetric positive definite matrices. The coefficient matrix A is
factored as A = LLT , where L is a lower triangular matrix with positive di-
agonal entries. It requires about n3/3 flops for a square matrix of size n× n.

QR: to solve full rank least squares problems in the case of overdetermined systems
(the system has more equations than unknowns). A matrix A of size m × n
is factored as A = QR, where Q is an m by m orthogonal matrix and R is an
m by n upper triangular matrix. It requires about 2n2(m− n/3) flops.

Direct methods can become impractical if the matrix A is large and sparse, since
the factorization step can lead to dense factors. Thus, there are two approaches to
solve a sparse problem, Ax = b. The first one is to use a direct method and
adapt it to exploit the matrix sparsity pattern in order to minimize the fill-in.
The second approach is the use of iterative methods. These methods generate a
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sequence of approximate solutions xk and essentially involve the matrix A through
matrix-vector multiplication. Classical examples of iterative methods are the Jacobi
method [15, Chapter 4], the Gauss-Seidel method [15, Chapter 4], the successive
over-relaxation (SOR) method [15, Chapter 4], the generalized minimal residual
method [15, Chapter 6], the conjugate gradient method [15, Chapter 6], etc. Among
the reasons for the great interest in sparse solvers is that they allow to obtain
numerical solutions to partial differential equations (PDE).

In the remainder, we give an overview of the methods that we use throughout
this thesis, that is the LU factorization and some iterative methods including mainly
Krylov subspace methods.

1.2.1 LU factorization

The LU factorization [14, Chapter 3]is very common in dense linear algebra. It
decomposes the input matrix A into the product L×U , where L is a lower triangular
matrix with diagonal elements equal to one and U is an upper triangular matrix.
As stated above, computing the LU decomposition of a square matrix of size n× n
requires 2n3

3 floating point operations.
Algorithm 1 shows how the LU factorization can be performed in place which

means that the input matrix A is overwritten by the output factors L and U .

Algorithm 1 In place LU factorization without pivoting
1: for k ← 1 to n− 1 do
2: for i← k + 1 to n do
3: A(i, k)← A(i, k)/A(k, k)
4: end for
5: for i← k + 1 to n do
6: for j ← k + 1 to n do
7: A(i, j)← A(i, j)−A(i, k) ∗A(k, j)
8: end for
9: end for

10: end for

With the method described previously, if a 0 is found on the diagonal of the
matrix, a division by zero will occur and the factorization will fail. Also if elements
of small magnitude are on the diagonal, entries on the triangular factors will grow
significantly. Moreover, rounding errors are unavoidable since the numerical preci-
sion is limited on a computer when finite precision arithmetic is used. These errors
due to limited precision will be propagated and amplified by the division by very
small values. Thus, the larger systems are more prone to rounding errors.

The stability of the LU factorization can be measured by the growth factor which
indicates how large the entries of the matrix become during the elimination steps
comparing to the largest entries of the initial input matrix. The growth factor of a
matrix A of size n× n is defined as,
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gn(A) =
maxi,j,k |a(k)ij |
maxi,j |ai,j |

,

where a(k)ij is the element of index (i, j) after the step number k of the elimina-
tion [16]. For this reason we need to move the largest element of the column on the
diagonal position by swapping rows. This pivoting method is called partial pivoting.
It is also possible to swap rows and columns, using the largest element of the matrix
(complete pivoting).

Even though pivoting improves the numerical stability and requires no additional
floating point operations, it involves irregular data movements due to the compar-
isons performed in the process of finding the pivot. If n is the size of the matrix,
complete pivoting requires O(n3) comparisons and partial pivoting O(n2) compar-
isons. Therefore, even if complete pivoting has the best stability with a growth
factor bound of cn1/2n1/4 logn [17] comparing to partial pivoting (2n−1) [17], it is
time-consuming, due to the comparisons and data movements. The choice of the
pivoting strategy is then the result of a compromise between the numerical stability
and the performance. One pivoting strategy that aims at meeting this compromise
for large problems is the tournament pivoting that was first used in the communi-
cation avoiding LU factorization [18, 19]. Some other techniques aim at avoiding
pivoting by performing a preprocessing step on the input matrix A such as the ran-
domization of the matrix A [20]. More details about this technique will be given in
Chapter 2.

Case of sparse LU factorization

As described in the previous paragraph, the numerical stability is a primary issue
in the context of the LU factorization. Moreover, when the matrix A is sparse then
the fill-in in the L and U factors becomes a concern as well. The challenge is to find
out a trade-off such that the obtained LU decomposition is reasonably stable and
the triangular factors L and U are close to being optimally sparse [21, Chapter 6].
Similar to other sparse direct methods, the sparse LU usually performs three steps in
order to find the solution of a sparse linear system Ax = b. The first step consists in
analyzing the sparse matrix A and defining a graph that represents the dependencies
between computations on smaller dense blocks. This step aims at estimating and
limiting the amount of computations and resources required for the factorization. In
general, a preprocessing (reordering [21, Chapter 7] the rows and columns) is applied
to the matrix in order to improve its numerical characteristics and reduce the fill-in.
The second step is the factorization of the matrix, which consists in applying the
corresponding computations to the graph that was produced in the first step. The
third step is applying forward elimination then backward substitution to obtain the
vector solution.

1.2.2 Iterative methods

The main principle of an iterative method is to generate a sequence of iterates xk,
which after a certain number of iterations converge to the solution of the linear
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system, Ax = b. These methods essentially involve matrix-vector products, but are
often combined with preconditioning techniques, where we consider for example,
the linear system M−1Ax = M−1b, where M−1A has better convergence properties
than A and where the system M−1y = z, with y = Ax and z = M−1b is easier to
solve than the original system Ax = b. More details about various preconditioners
and preconditioning techniques will be presented in Section 1.4. Stationary itera-
tive methods define xk+1 as a linear function of xk, that is, they can be written as
xk+1 = Gxk + f for some iteration matrix G such as the Jacobi method [15, Chap-
ter 4] and the Gauss-Seidel method [15, Chapter 4]. More advanced methods like
Krylov subspace methods (e.g., conjugate gradient [15, Chapter 6], generalized min-
imal residual (GMRES) [15, Chapter 6]) build a subspace of increasing size at each
iteration, in which the next approximate vector is found. We note that iterative
methods can be combined with direct methods, either to build a preconditioner
(e.g. incomplete LU factorizations), or to design hybrid methods such as the do-
main decomposition methods where a direct solver is used within each domain [22].

An iterative procedure should keep going until the convergence. This is impracti-
cal and usually unnecessary. Therefore, in general a stopping criteria is used to stop
the iterative procedure when a pre-specified condition is met. One of the most used
stopping criteria is based on the evolution of the residual vector rk = Axk− b along
the iterations. Specifically, given a small ε > 0, the iterative procedure is stopped
after the kth iteration when ||xk+1 − xk|| ≤ ε, ||rk+1 − rk|| ≤ ε, or ||rk|| ≤ ε. A
maximum number of iterations is also usually specified. If an iterative method does
not meet the stopping criteria before reaching the maximum iteration number, it is
considered to be inefficient. In this case, alternative methods should be considered
or a preconditioner should be applied.

In the next section, we focus on the Krylov subspace methods.

1.3 Krylov subspace methods

Krylov subspace methods are general methods to solve sparse linear systems. They
are named after the Russian mathematician and engineer Alexei Krylov who first in-
troduced these methods in 1931. In this work, we focus on one variant of the Krylov
subspace methods which is the generalized minimal residual (GMRES) method.

1.3.1 The Krylov subspace methods

A Krylov subspace of order-j Kj generated by a matrix A of size n×n and a vector
y of size n is the linear subspace spanned by the images of the vector y under the
first j powers of the matrix A. Thus, Kj(A, y) = span{y,Ay,A2y, . . . , Aj−1y}. The
Krylov subspace verifies the following properties:

K1(A, y) ⊆ K2(A, y) ⊆ K3(A, y) ⊆ · · · ⊆ Kn(A, y) ⊆ . . . ,
AKj(A, y) ⊆ Kj+1(A, y).

The Krylov subspace methods are polynomial iterative methods that aim at
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solving a given linear system Ax = b by finding a sequence of iterates xj for j =
1, . . . k minimizing some error measure over the corresponding spaces,

x0 +Kj(A, r0), for j = 1, . . . k,

where x0 is the initial iterate or guess, r0 = b − Ax0 is the initial residual and
Kj(A, r0) is the Krylov subspace of order j generated by the matrix A and the
residual vector r0. Among the Krylov Subspace methods, we can cite the con-
jugate gradient (CG) [23], the generalized minimum residual (GMRES) [24], the
bi-conjugate gradient (Bi-CG) [25].

The Krylov projection methods compute a sequence of approximate solutions
xk ∈ x0 +Kk, k = 1, 2, . . . to the linear system Ax = b, such that the kth residual,
rk = b−Axk verifies the Petrov-Galerkin constraint,

rk ⊥ Lk,
where Lk ⊆ Rn (or Lk ⊆ Cn) is a well-defined subspace of dimension k. We note that
Lk can be the same as the Krylov subspace Kk or different. The different choices
for the subspace Lk results in different Krylov projection methods [15, Chapter 6].
For instance, GMRES is a Krylov projection method where Lk = AKk. Thus, the
different Krylov projection methods are defined by the subspace Lk and the two
following conditions:

• the subspace condition: xk ∈ x0 +Kk
• the Petrov-Galerkin condition: rk ⊥ Lk.

1.3.2 Generalized minimal residual (GMRES) method

The generalized minimal residual method (GMRES), introduced by Saad and Schultz [24],
is a Krylov projection method for solving general linear systems, Ax = b. It com-
putes approximate solutions xk ∈ x0 +Kk, where x0 is an initial guess such that,

‖rk‖2 = ‖b−Axk‖2 = min{‖b−Ax‖2, ∀x ∈ x0 +Kk}
We note that the residual vectors in GMRES do not form an orthonormal basis

for the subspace Kk. To build an orthonormal basis for Kk, the Arnoldi process,
as described in Algorithm 2, is used. At each Arnoldi iteration, a new basis vector
is computed and orthonormalized against the previous vectors. Starting from a
general, nonsymmetric matrix A of size n × n, the Arnoldi process reduces A into
an upper Hessenberg form by the similarity transformation

A = VmHmV
T
m or AVm = VmHm,

where Hm is an upper Hessenberg matrix of size m ×m obtained by deleting the
last row of H̄m, the Hessenberg matrix of size (m+ 1)×m produced by the Arnoldi
process and Vm is a matrix of size n×m with V T

mVm = I. We note that m ≤ n is the
largest index such that υm 6= 0. Since Vm satisfies V T

mVm = I, then {υ1, υ2, . . . , υk}
form an orthonormal basis for Kk. For 1 ≤ k ≤ m, we have:

AVk = Vk+1H̄k,
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where Vk is a matrix with orthonormal columns of size n× k and H̄k−1 is an upper
Hessenberg matrix of size (k + 1) × k. At the kth iteration of the Arnoldi process,
the vector υk = Aυk−1 is computed and orthonormalized against {υ1, υ2, . . . , υk−1}.
Thus, the last column of the matrix H̄k−1 is produced.

Algorithm 2 Arnoldi [15, Section 6.4]

1: Choose a vector υ1 such that ||υ1||2 = 1
2: for k = 1, 2, ..., m do,
3: for i = 1, 2, ..., k do,
4: Compute hik := (Aυk, υi)
5: end for
6: Compute ωk := Aυk −

∑k
i=1 hikυi

7: hk+1,k = ‖ωk‖2
8: if hk+1,k = 0 then Stop
9: end if

10: υk+1 = ωk
hk+1,k

11: end for

After building the orthonormal basis {υ1, υ2, . . . , υk} for the subspace Kk us-
ing the Arnoldi process, the least squares problem minx∈x0+Kk

‖b − Ax‖2 becomes
miny∈Rk ‖β0e1 − H̄ky‖2, where xk = x0 + Vky, Vk is a matrix with orthonormal
columns of size n×k, H̄k is an upper Hessenberg matrix of size (k+1)×k, β0 = ‖r0‖2
and e1 = [1 0 0 . . . 0]t is a vector of size k + 1. Finding the optimal y ∈ Rk that
minimizes ‖β0e1− H̄ky‖2 is equivalent to solving the linear system H̄ky = β0e1.

Algorithm 3 presents the main process for the GMRES algorithm.

Algorithm 3 GMRES Algorithm [15]

1: Compute r0 = b−Ax0, β := ‖r0‖2, and υ1 := r0
β

2: for k = 1, 2, ..., m do,
3: Compute ωk := Aυk
4: for i = 1, 2, ..., k do,
5: hik := (ωk, υi)
6: ωk := ωk − hikυi
7: end for
8: hk+1,k = ‖ωk‖2.
9: if hk+1,k = 0 then set m := k and goto line 13,

10: end if
11: υk+1 = ωk

hk+1,k

12: end for
13: Define the (m+ 1)×m Hessenberg matrix H̄m = {hik}1≤i≤m+1,1≤k≤m
14: Compute ym, the minimizer of ‖βe1 − H̄my‖2, and xm = x0 + Vmym

At each iteration a new basis vector is computed and orthonomalized against all
the previous vectors. Thus, the memory requirements and the number of floating
point operations increase at each iteration. The GMRES method is known for its
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superlinear convergence behavior, where the rate of convergence improves as the
iterations proceed [26].

1.4 Preconditioners

Given a linear system Ax = b, where A is a matrix of size n × n, preconditioning
transforms the original linear system into a new system with the same solution by
applying a preconditioner M . There are three types of preconditioning:

• Right preconditioner : AM−1y = b, where y = Mx
• Left preconditioner : M−1Ax = M−1b
• Split preconditioning with M = M1M2: M−11 AM−12 y = M−11 b, where y =
M2x

A given preconditioner M is efficient if the preconditioned system has a faster
rate of convergence than the original system, when solved using iterative methods.
For that, M should be chosen such that the condition number of the preconditioned
system is almost equal to 1. Moreover, the construction of the preconditioner M
should not be expensive neither in terms of floating point operations nor in terms
of communication. We note that the preconditioners could be operators on vectors
so it is not necessary to compute the full matrices M and M−1 but their action on
a vector. Thus, the preconditioner should be chosen such that its application to a
vector is not expensive.

Finding a suitable preconditioner for a given sparse linear system, that satisfies
the above conditions is not always an easy task. For systems obtained from the
discretization of PDE’s, it is possible to build preconditioners based on the geometry
of the original problem. However, here, we will only discuss algebraic preconditioners
that are defined based on the matrix A only.

The simplest algebraic preconditioners in terms of both construction and appli-
cation are those based on the classical iterative methods like Jacobi, Gauss-Seidel
and successive over relaxation (SOR). These preconditioners are based on splitting
the initial matrix A as follows,

�
� −F

D
−E �

�


.

Here are some of those preconditioners:
• Jacobi preconditioner: M = D
• Forward Gauss Seidel preconditioner: M = D − E
• Backward Gauss Seidel preconditioner: M = D − F
• Successive over relaxation (SOR) preconditioner: M = 1

ωD − E.

A second type of preconditioners is based on an approximate factorization of the
matrix A such as incomplete LU preconditioner and incomplete Cholesky precon-
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ditioner. Incomplete LU preconditioners are based on incomplete LU factorizations
where A = LU + R and M = LU . In general, the complete LU factorization of a
given sparse matrix A is a Gaussian elimination that results in a lower triangular
factor L and an upper traingular factor U having more nonzero entries than A. In
order to obtain sparse factors L and U and drop some entries, there are several in-
complete LU factorizations. Based on different dropping strategies that satisfy some
conditions such as the sparsity pattern or some drop tolerance, we have different
ILU factorizations: zero fill-in referred to as ILU(0), level of fill-in referred to as
ILU(k), threshold referred to as ILUT and other variants.

ILU(0) consists in taking the zero pattern of the preconditioner M to be pre-
cisely the zero pattern of the input matrix A. It means that ILU(0) produces L
and U factors that have the same sparsity pattern as the lower and upper triangular
part of A. The ILU(0) factorization of A is obtained by performing an LU factor-
ization, where only the nonzero entries of A are modified. Details about ILU(k)
and ILUT will be presented in Section 2.2.2. For a full description of the different
ILU factorizations refer to [15, Sections 10.3 and 10.4].

A third type of preconditioners is based on domain decomposition of the un-
knowns. The subdomains can be overlapping, which is the case for restricted addi-
tive Schwarz preconditioner (RAS) or non-overlapping, which is the case for block
Jacobi preconditioner (BJ). Then, the preconditioner is equal to the blocks of A
restricted to the subdomains. Again, more details about these two preconditioners
are presented in Section 2.2.2.

There are different other types of preconditioners that we do not address in
this thesis such as algebraic multigrid preconditioners [27]. A detailed survey on
preconditioning techniques is presented in [28].

For all the iterative methods presented in the previous sections, in particular
the GMRES method, preconditioned versions are slightly different from the original
methods. The matrix A is replaced byM−1A, AM−1 orM−11 AM−12 and b byM−1b
or bM−1 depending on the type of the preconditioner used. For the Krylov subspace
methods discussed in the previous section, the matrix A is multiplied by a vector.
Thus, there is no need to explicitly multiply the matrices A and M−1, we should
only apply the preconditioner to a vector. We note that some variants of iterative
methods allow the preconditioner to vary from one step to another. Such methods
are called flexible. Among these methods, we cite the flexible GMRES (FGMRES)
method that we will be using throughout this thesis.

1.5 Parallel algebraic recursive multilevel solver

In this section, we first present the algebraic recursive multilevel solver (ARMS) [12],
then its parallel version (pARMS) [13], the two main solvers that we consider
throughout this PhD work.

1.5.1 Algebraic recursive multilevel solver (ARMS)

ARMS is an algebraic recursive multilevel solver for general sparse linear systems
where preconditioning is based on a multilevel partial elimination approach. Gen-
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erally, to precondition a linear system in ARMS, we use a method named block
incomplete LU factorization, which consists of an approximate Gaussian elimina-
tion process based on separating the original unknowns into a “coarse” and a “fine”
set. The idea of independent or “group independent” sets is exploited to define this
separation. The preconditioner ARMS is based on a block incomplete LU factor-
ization with different dropping strategies. Block independent set orderings permute
the original linear system Ax = b into a 2× 2 block structure as follows,

(
Bl Fl
El Cl

)(
ul
yl

)
=

(
fl
gl

)
, (1.1)

where the submatrixB comes from a group-independent set reordering (see, e.g., [15]),
thereby generating a block-diagonal matrix Bl.

At the first level, the reordered coefficient matrix is factorized approximately as
follows, (

Bl Fl
El Cl

)
≈
(

Ll 0

ElU
−1
l I

)
×
(
Ul L

−1
l Fl

0 Al+1

)
(1.2)

where l is the level ranking, Ll and Ul forms the ILU factors of Bl, and Al+1 is an
approximation to the Schur complement with respect to Cl,

Al+1 ≈ Cl − (ElU
−1
l )(L−1l Fl), (1.3)

where the system Al+1 is computed by eliminating the unknowns ul associated with
the block Bl. Then we obtain the following system,

Al+1 × yl = bl+1, (1.4)

where bl+1 = gl − ElU−1l L−1l Fl is computed first, then the system is solved by a
forward solver and a backward solver. We note that the unknown vector is yl =(
ul+1
yl+1

)
.

The coefficient matrix for the resulting “reduced system” is the approximate
Schur complement Al+1 [29]. A recursion can now be exploited, such that dropping
is applied to Al+1 to limit the fill-in followed by the reordering of the resulting
reduced system into the form (1.1) using the group-independent set ordering again.
This process is repeated for several recursion levels until the approximate Schur
complement system is small enough or until a maximum number of recursion levels
is reached. Then, the last Schur complement may be solved by a direct or an iterative
solver. Note that the sparsification of the Schur complement may be undertaken at
each recursion level to keep down the preconditioning costs. Algorithm 4 describes
the ARMS solver as detailed in [12].
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Algorithm 4 ARMS-solve(Al, bl) – Recursive Multi-Level Solution

1: Solve Ll f ′l = fl
2: Descend, i.e., compute bl+1 := gl − ElU−1l f ′l
3: if l = last_lev then
4: Solve Al+1yl = bl+1 using GMRES + ILUT factors
5: else
6: yl = ARMS-solve(Al+1, bl+1)
7: end if
8: Ascend, i.e., compute f ′′l = f ′l − L−1l Fl yl
9: Back-Substitute ul = U−1l f ′′l

1.5.2 Parallel implementation of ARMS (pARMS)

The parallel Algebraic Recursive Multilevel Solver (pARMS) is a memory distributed
parallel solver. The parallel implementation of ARMS is based on the domain decom-
position method [30]. In pARMS, each process reads the whole matrix. The matrix
graph is then partitioned using distributed site expansion (DSE) [31]. A simple
partitioning routine splits the vertices into two part, then splits the one with more
vertices into another two part and so on. After applying the partitioning method,
the master process assigns a local submatrix to each of the slave processes. Once
these submatrices are received, the global system is preconditioned using a global
preconditioner such as the restrictive additive Schwarz preconditioner (RAS), the
Schur complement based preconditioner (SCHUR) and the block-Jacobi precondi-
tioner (BJ). Then the global system is solved using the flexible generalized minimal
residual (FGMRES) method [15].

Note that, at each FGMRES iteration, each process exchanges interface variables
with neighboring processes. Furthermore, in FGMRES solver, each process has the
possibility to choose a local preconditioner such as ILU(0), ILU(K), ILUT and
ARMS. More details about the pARMS solver as well as the local preconditioners
will be presented in Chapter 2.

1.6 Linear algebra libraries and sparse matrix storage

Since it is important to “get it right” and “get it right fast”, it is always suggested to
use numerical libraries of proven code to handle classical linear algebra operations.
Here we present the libraries that we used in this work: LAPACK [5], MAGMA [32]
and SuperLU [11].

1.6.1 LAPACK

The linear algebra package (LAPACK) [5] is a successor to both LINPACK [4]
and EISPACK [33], and achieves better performance. LAPACK provides solvers
for systems of linear equations, linear least squares problems, eigenvalue problems
and singular value problems. To implement these solvers, it also provides the ba-
sic associated computation such as matrix factorizations (LU, QR, Cholesky etc)
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or the estimation of condition numbers. To perform all the matrix, vector and
scalar computations, LAPACK uses the Basic Linear Algebra Subprograms (BLAS)
routines [3]. Therefore the performance of the LAPACK library depends on the
implementation of the BLAS used [34]. Most of the numerical linear algebra li-
braries developed afterwards are based on BLAS and LAPACK, offering different
implementations of the same routines and operations.

1.6.2 MAGMA

Matrix algebra on GPU and multicore architectures (MAGMA) [32] is an accelerator-
focused linear algebra library developed at the University of Tennessee. It pro-
vides back-ends for NVIDIA GPUs, Intel’s Xeon Phi manycore accelerators (MIC)
and any OpenCL-compatible system such as AMD GPUs. Similarly to LAPACK,
MAGMA [35,36] is being build as a community effort, incorporating the newest de-
velopments in hybrid algorithms and scheduling techniques. It aims at redesigning
the dense linear algebra algorithms in LAPACK to fully exploit the power of cur-
rent heterogeneous systems of multi/manycore CPUs and accelerators. MAGMA
provides also a large variety of solvers, preconditioners, and eigensolvers for sparse
linear systems. More details about the MAGMA sparse library will be given in
Chapter 3, where we used some MAGMA routines to improve the performance of
the pARMS solver.

1.6.3 SuperLU

SuperLU [11, 37] is a general purpose library for the direct solution of large, sparse
and nonsymmetric systems of linear equations. The library uses MPI, OpenMP and
CUDA to support various forms of parallelism. SuperLU routines perform an LU
decomposition and triangular system solves through forward and backward substitu-
tions. The matrix columns may be preordered (before factorization) either through
library or user supplied routines. This preordering for sparsity is completely sepa-
rate from the factorization. Working precision iterative refinement subroutines are
provided for improved backward stability. Routines are also provided to equilibrate
the system, estimate the condition number, calculate the relative backward error
and estimate error bounds for the refined solutions. We mainly used routines from
SuperLU in Chapter 2.

1.6.4 Sparse matrix storage formats

According to existing research works [38,39], the sparse matrix storage formats can
significantly affect the performance of iterative methods for solving sparse linear
systems. All formats aim at decreasing the memory footprint of the matrices by
reducing the number of explicitly stored zeros. This strategy is taken to extremes
in the compressed sparse row storage (CSR) [40], where only nonzeros are stored.
However, the CSR storage format does not necessarily provide a good performance
on streaming architectures like GPUs. This has motivated a number of new for-
mats, and in particular, the one standing out is ELLPACK [41], where padding
of the different rows with zeros is applied to get a uniform row-length suitable for
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coalesced memory accesses of the matrix and instruction parallelism. However, the
ELLPACK (or ELL) format incurs a storage overhead, which is determined by the
maximum number of nonzeros aggregated in one row. Depending on the particular
problem, the overheads in using ELLPACK may result in poor performance, de-
spite the coalesced memory access that is highly favorable for streaming processors.
One workaround is given by the sliced ELLPACK format [42]. It splits the original
matrix into row blocks, each stored using the ELL format. This format is usually
referred to as SELL, or SELLP in case of the matrix with additional zeros to match
the GPU thread block dimensions [43]. We note that the MAGMA library supports
all the three formats: CSR, ELL, and SELL/SELLP. However, in this thesis we only
used the CSR format since it is the format supported by the ARMS and pARMS
solvers. Figure 1.1 illustrates the CSR format for a sparse matrix A with 9 rows, 9
columns, and 20 non-zero entries.

0

0     1     2     3     4     5     6     7     8     9

1

2
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9

column index

row index

1     2     3     0     0     0     0     0     4     5

6     7     8     0     0     0     0     0     0     0

0     0     9     0     0     0     0     0     0    10

0     0     0     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0     0     0

10    0     0     0     0     0     0     9     0     0

0     0     0     0     0     0     0     8     7     6

5     4     0     0     0     0     0     3     2     1

values

colind

rowptr

1  2  3  4  5  6  7  8  9  10 10  9  8  7  6  5  4  3  2  1

0  1  2  8  9  0  1  2  2   9   0   7  7  8  9  0  1  7  8  9

0  5  8  10 10 10 10 12 15 20

Figure 1.1: CSR Format

1.7 Parallel architectures and programming models in
HPC

In the domain of modern high performance computing (HPC), parallelism is a crit-
ical issue. Different types of parallel architectures exist. In this Section, we present
the architectural components and programming paradigms that we used during this
PhD work.
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1.7.1 Distributed memory systems

Many of the current supercomputers are based on distributed memory systems. A
distributed memory system consists of multiple independent nodes connected by
a given network. Each node has its own private memory and autonomous com-
putational capabilities. The nodes connected together form a cluster. The nodes
exchange data by passing messages between processors using the network. Each
node can be composed of multiple CPUs and may contain accelerators. Figure 1.2 1

illustrates an example of a distributed memory cluster.

Figure 1.2: Distributed Memory Cluster

1.7.2 Multi-core processors

A multi-core processor [44] is a computing component with two or more indepen-
dent processing units. Multi-cores compute instructions simultaneously, so they
can accelerate the whole computation time. The processor manufacturers faced a
technology limitation to their traditional approach of boosting clock speeds and in-
creasing throughput due to power dissipation problems. This limitation leads to the
development of multi-core architectures and hyper-threading as a solution which is a
turning point in terms of software development. While constructors might increase
the frequency in processors freely, the performance of a program would naturally
increase at each new generation of processor. This went on until the end of the Intel
Pentium 4 processors in 2006 with frequencies around 3.6 GHz.

The common concept behind a multi-core processor is to let each core have an
L1 independent cache memory and put a shared L2 cache on the die which is the
interface to the main memory. Figure 1.3 illustrates a multi-core system with two
levels of cache. Modern CPUs generally have two levels of cache in each core and
a shared L3 cache. Having multiple CPU cores on the same die allows for a highly
efficient cache coherent system at a much higher clock rate. Parallel programming
models take advantage of multi-cores. For instance, the application programming
interface Open multi-processing (OpenMP) [45] can be used on multi-core platforms.

1.7.3 Graphics Processing Units (GPUs)

Applications are becoming more demanding in workload and complexity as archi-
tectures become more powerful. CPUs have shown their limits in terms of compu-
tational power as they tend to be more general. This technological gap has led to

1https://wiki.hpc.tulane.edu/trac/wiki/cypress /Programming/Mpi
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Processor

Core 1 Core 2

L1 Cache

RAM

L1 Cache

L2 Cache

Figure 1.3: Different levels of cache in multi-core processors

the development of new architectures that are more specialized and can therefore
provide more computational power for specific applications. The graphics process-
ing units (GPUs) are an example of these new type of architectures that has been
emerging during the last decade.

The GPUs are specialized for compute-intensive, highly parallel computation -
exactly what graphics rendering is about - and therefore designed such that more
transistors are devoted to data processing rather than data caching and flow control,
as schematically illustrated by Figure 1.4.

CPU GPU

Control

Cache

DRAM DRAM

ALU ALU

ALU ALU

Figure 1.4: The GPU devotes more transistors to data processing
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Before the 2000’s, GPUs were only used to perform or accelerate graphical com-
putation for 2D and 3D pictures. In 2001, Larsen developed one of the first example
of non-graphical computation on a GPU with a matrix-matrix product [46] using
the 8-bits integer texture maps. In 2003, the introduction of 32-bits floating-point
values allowed a real progress in matrix computations on GPUs [47]. In 2007,
NVIDIA released the Compute Unified Device Architecture (CUDA) programming
platform [48] providing a virtual instruction set, allowing the development of general
purpose applications.

GPU has become a common occurrence in HPC and is often used in supercom-
puter architectures. Thus, out of the ten most powerful supercomputers in the latest
TOP500 [49] ranking (June 2017), two use GPU accelerators (the second and the
third machine).

A graphic card has a certain number of Streaming Multiprocessors (SMX). For
instance, K20Xm has 14, K40Xm has 15 and P100 has 56.

Figure 1.5 shows a block diagram of NVIDIA’s Pascal GPU and Figure 1.6 shows
a block diagram of the Pascal GPU’s streaming multiprocessor 2.

Figure 1.5: A block diagram of Nvidia’s Pascal GPU

We note that GPUs do not operate on the computer main memory. Often a
GPU is connected to its own off-chip memory (the GPU global memory) which is
used to store data. The size of this graphics memory varies but it is currently about
3 to 12 Gigabytes for high-end GPUs. Before the GPU starts to work on a given
data, that data needs first to be moved to the GPU main memory. The speed of that
operation depends on the connection between the main memory and the graphics
board via the PCI Express bus.

When used in HPC, GPUs can have over an order of magnitude higher mem-
ory bandwidth and higher computation power (in terms of GFflop/s) than CPUs.
However, programming efficiently on GPU-based architectures remains a critical
challenge. In this thesis, we showed some solutions to efficiently improve the per-
formance of the iterative pARMS solver using GPUs as accelerators.

2Figures 1.5, 1.6 are from: https://devblogs.nvidia.com/parallelforall/inside-pascal/
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Figure 1.6: A block diagram of the Pascal GPU’s streaming multiprocessors

1.7.4 Programming models for parallel architectures

In this thesis, we are mainly interested in the pARMS solver which is a distributed
memory sparse iterative solver based on the message passing interface (MPI) li-
brary. We improve the performance of pARMS using MAGMA routines written
with CUDA, an application programming interface model created by NVIDIA. In
the following subsections, we give some details about these two programming mod-
els, MPI and CUDA.

Message Passing Interface (MPI)

Message passing interface (MPI) [50] is a standardized and portable communica-
tion protocol based on the agreements of the MPI Forum. MPI is a library for
distributed memory environments. The objective of the MPI implementation is to
establish a portable, efficient and flexible standard for distributed programs. The
standard includes point-to-point message-passing, collective communications, group
communicator concepts and process topologies etc.

Even if the MPI programming interface has been standardized, practical library
implementations will differ in which version and characteristics of the standard they
support. The way of MPI programs are compiled and executed on different platforms
may be different. There are two main MPI implementations: MPICH and Open
MPI [51].

Compute Unified Device Architecture (CUDA)

When it comes to hardware accelerators, programming a parallel chip that is not
a CPU can be difficult and challenging. This applies to any kind of accelerator,
such as GPUs or FPGAs. Compute Unified Device Architecture (CUDA) [52] is an
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application programming interface for NVIDIA graphics processing units. It can be
described as an extension to high level languages (C, C++). Moreover, CUDA allows
users to adapt complex scientific applications to GPU architectures by rewriting
codes with respect to the single program multiple data (SPMD) programming model.
One major limitation of CUDA is that it only targets NVIDIA GPUs while OpenCL
is heterogeneous and can be ran on various GPUs, CPUs and other processors.

Figure 1.73 presents an example of CUDA processing flow. This process consists
of four steps. First, data is copied from the CPU main memory to the GPU memory.
Then the CPU instructs the process to the GPU by calling the GPU kernel. At the
third step, each thread executes the program in parallel. Finally, the result is copied
from the GPU memory to the main memory.

Figure 1.7: CUDA processing flow

1.8 Conclusion

In this chapter, we discussed the different methods for solving general linear systems
of equations including both direct and iterative methods. For the direct method, we
mainly detailed the LU factorization. For the iterative methods, we focused on the
Krylov subspace methods, in particular the generalized minimal residual (GMRES)
method. We also discussed the main preconditioning techniques used in iterative
solvers.

Then, we briefly introduced the algebraic recursive multilevel solver (ARMS),
which is a sparse iterative solver and its parallel version pARMS. Our primary
objective throughout this thesis is to improve the performance of these two solvers.

3https://en.wikipedia.org/wiki/CUDA
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1.8. Conclusion

We also described the numerical libraries used in the framework of this thesis
depending on the targeted architectures. This included LAPACK, MAGMA and
SuperLU.

Finally, we presented the parallel architectures relative to the machines used to
run the experiments performed in this PhD work, as well as the main programming
models. We mainly gave an overview of the challenges faced by the programmer
because of the different types of parallelism and programming paradigms.
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2.1. Introduction to randomized algorithms

2.1 Introduction to randomized algorithms

A randomized algorithm is an algorithm that makes a random decision rather than
a deterministic decision, and its behavior can vary even with a fixed input. The
advantage of a random algorithm is that no input can reliably produce worst-case
results since it produces a different solution for each execution of the algorithm. This
type of algorithm is often used in situations where there is no available deterministic
or fast enough algorithm. Randomized algorithms are widely used in numerical
linear algebra since they can outperform deterministic methods while providing
accurate results [53]. Below are some examples of randomized algorithms that have
been implemented in recent years.

The first example is related to the random sampling. Computationally expensive
or NP hard problems can sometimes be solved by using randomization and sampling
techniques which help us to obtain provably accurate algorithms. For instance,
Drineas et al. [54] focus on approximating a matrix multiplication A×B based on
an appropriate random sampling of the columns of A and of the rows of B, each
of them scaled properly. For this randomized matrix multiplication, the authors
provide an estimate of the error (in Frobenius norm) and the resulting algorithm
can be implemented without storing the matrices in RAM.

Another example concerns the approximation of the Gram product AAT by a
small number of outer products of columns of A (see [55]). The authors also present
probabilistic bounds for the two-norm relative error due to randomization for the
Monte Carlo matrix multiplication algorithm [54] that samples outer products. The
bounds depend on the rank of the matrix but not on the matrix dimensions.

We can also find examples of randomized algorithms in [53], with applications
to low-rank matrix approximation, or the solution of linear least-squares problems,
and can possibly work on Terabyte (TB) data. Regarding the solution of linear
least-squares, we mention the randomized approach given in [56] which provides an
implementation that is faster than LAPACK. Finally, other examples of randomized
algorithms can be found in [57] which describes fast sparse matrix algorithms for
over-constrained least-squares regression, low-rank approximation, approximation
of leverage scores, and lp-regression. In general these algorithms run in O(nnz(A))
operations.

In this chapter, we propose to use a randomized algorithm based on Random But-
terfly Transformations (RBT) in the Algebraic Recursive Multilevel Solver (ARMS)
to improve the preconditioning phase in the iterative solution of sparse linear sys-
tems. We propose more specifically to integrate the RBT technique in the parallel
distributed version of ARMS (pARMS). The RBT approach was initially described
by Parker [58] and then revisited in [20] for general dense systems and [59] for
symmetric indefinite systems. It has also been applied recently to a sparse direct
solver in a preliminary paper [60]. The main interest of this technique is to avoid
the data communication cost due to partial pivoting (swap of rows) in the Gaussian
elimination. Our objective is here to apply this technique to solve more efficiently
the last Schur complement system in the recursive multilevel process of pARMS. We
will present experimental results on some matrices from the Davis’ collection that
show an improvement in the convergence and accuracy of the results when compared
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with existing implementations of the pARMS preconditioner.
This chapter is organized as follows. In Section 2.2, we present the parallel dis-

tributed implementation of ARMS. In Section 2.3, we describe the Random Butterfly
Transformations as used for the solution of dense linear systems. In Section 2.4, we
explain how RBT can be used for solving the last Schur complement system in the
recursive process of pARMS. In Section 2.5, we present some experiments where we
use “sparse” RBT to solve the last Schur complement system considered as sparse.
Section 2.6 is a brief conclusion of this chapter.

2.2 Parallel implementation of ARMS

2.2.1 Data distribution

The parallel Algebraic Recursive Multilevel Solver (pARMS) is a memory-distributed
parallel solver. Each MPI process reads the whole matrix at the same time, then
uses the Distributed Site Expansion (DSE) method [31] to distribute the initial ma-
trix. Each processor uses a local preconditioner to factorize the local matrix, or
a local solver to solve the local system. To solve the interface variables, adjacent
processes need to exchange some data. Then, the preconditioned system is solved
using the Flexible Generalized Minimal Residual method (FGMRES) [15].

Figure 2.1 outlines distributed linear system solution using pARMS [13]. First,
the initial matrix A is distributed among the processors, using a graph partitioning
method. In Figure 2.1, each column of blocks depicts one processor, hence there
are five processors shown. Second, each processor solves its part of the system in
parallel to construct its portion of the global preconditioner. Then FGMRES solves
the preconditioned system with a given accuracy.

Figure 2.1: Sketch of the distributed linear system solution using pARMS on five
processors.

When considering the parallel implementation, it is important to specify how the
matrix is distributed and handled in parallel. In particular, our pARMS implemen-
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tation partitions the whole matrix on a single processor using the DSE technique,
which is rather simple yet effective in constructing well-balanced subdomains with
small interfaces [31]. Although partitioning the entire matrix by a single processor
lacks scalability, we note here that this is done by the driver routine, which may
be adapted to an application matrix size and format at hand. Given a distributed
matrix, Figure 2.2 shows the per-subdomain division of variables into internal, in-
terdomain interface, and external (residing on the neighboring processors) sets.

Figure 2.2: Per-subdomain view of equation variables-points.

2.2.2 Preconditioners in the pARMS environment

In pARMS, the “local” preconditioners mentioned in Section 2.2 can be: three local
preconditioners based on Incomplete LU (ILU) factorization, and one multilevel
preconditioner called Algebraic Recursive Multilevel Solver (ARMS).

An ILU preconditioner is constructed by performing an approximate Gaussian
Elimination (GE) [61] on a sparse matrix A and dropping certain nonzero entries
of the factorization according to different dropping strategies. A dropping strategy
that relies on levels of the matrix fill-in results in a factorization called ILU(K).

The preconditioner ILU(0) is obtained by performing the LU factorization of
A and dropping all fill-in elements generated during the process. Conversely, if
the nonzeros are dropped according to their numerical value magnitudes, then the
resulting factorization is called ILU with the threshold or—if combined with the
dropping strategy based on the number of remaining nonzero—with dual threshold
(ILUT ) and is performed as follows. In the algorithm ILUT (k, τ), there are two
important rules. (1) If an element is less than relative tolerance τi (τ × the norm
of the ith row), it is dropped. (2) Keep only the k largest elements in the L and U
parts of the row along with the diagonal element.

The other preconditioner available is the ARMS preconditioner [12], which is
based on a block incomplete LU factorization with different dropping strategies.
This block factorization consists of an approximate GE process separating the un-
knowns into two sets; and an idea of independent or “group independent” set is
exploited to define the separation. Hence, the original linear system Ax = b is
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permuted into the form: (
B F

E C

)
×
(
u

y

)
=

(
f

g

)
, (2.1)

where the submatrix B corresponds to group-independent set reorderings, thereby
generating a block-diagonal matrix B. Thus, it is convenient to eliminate the u
variable to obtain a system with only y variable. The coefficient matrix for the
resulting “reduced system” is the Schur complement S = C − EB−1F [29]. A
recursion can now be exploited, such that dropping is applied to S to limit the fill-
ins followed by the reordering of the resulting reduced system into the form (2.1)
by using the group-independent set reordering again. This process is repeated for
several levels of recursion until the Schur complement system is small enough or until
a maximum number of recursion levels is reached. Then, the last Schur complement
may be solved by a direct or an iterative solver. Note that the sparsification of the
Schur complement may be undertaken at each level of recursion, to keep down the
preconditioning costs.

Figure 2.3 depicts a representation using Matlab of the recursive process in
ARMS where an initial matrix A (top left) is first reordered to give the matrix on
the top right. At the first level of decomposition, we obtain the matrices B, F , E and
C, as denoted in Equation (2.1). Note that the number of nonzero entries of each
matrix of this figure is indicated is the x-legend. Then the matrix on the bottom left
of Figure 2.3 corresponds to the level-1 Schur complement of C (after reordering)
and the matrix on bottom right corresponds to the last Schur complement (if we
have 2 levels) which is possibly dense enough and can be factored using a dense
LU factorization. Our objective in this chapter is to apply ARMS, enhanced with
Random Butterfly Transformations (RBT) to alleviate the extra work associated
with pivoting that may be required in the Schur complement matrix S due to its
poor conditioning.

We outline now three global preconditioners types available in pARMS: Block-
Jacobi preconditioner (BJ), Schur complement preconditioner (SCHUR), and Schur
complement based Restrictive Additive Schwartz preconditioner (SchurRAS). BJ is
the simplest global preconditioner because it does not take into account the inter-
face information between neighboring subdomains [30]. SCHUR relates equations
associated with the local and interdomain interface points [62]. SchurRAS is con-
structed from the local ARMS preconditioners in each subdomain using an overlap
similar to a standard RAS preconditioner [63] and acting on the Schur complement
system as shown in [64]. Specifically, for each of the three preconditioner types, the
following algorithms may be implemented in each subdomain.

Block-Jacobi preconditioner:
1. Update local residual: ri = (b−Ax)i,
2. Solve: Aiδi = ri,
3. Update local solution: xi = xi + δi.

34



2.2. Parallel implementation of ARMS

0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 14700

0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 14700

0 100 200 300 400

0

50

100

150

200

250

300

350

400

nz = 11648

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 5602

last schur complement

Figure 2.3: Application of the ARMS preconditioner : Initial matrix A (top left),
re-ordered matrix (top right), level-1 Schur complement (bottom left), level-2 Schur
complement (bottom right)

SCHUR preconditioner:
1. From Equation (2.1) compute: g′i = gi − EiB−1i fi,
2. Solve: Siyi +

∑
j∈Ni

Eijyj = g′i, where Si = Ci − EiB−1i Fi and Ni is a set of
neighboring subdomains,
3. Back substitute: ui with Biui = fi − Eiyi.

SchurRAS preconditioner:
1. Compute local right-hand side g′i.
2. Solve local Schur complement system extended with rows for all external vari-
ables yi,ext.
3. Back substitute: ui with Biui = fi − Eiyi.

Note that the local solves in step 2 of BJ, SCHUR, and SchurRAS may be
accomplished using the incomplete LU or ARMS procedures, described above.
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2.3 Random Butterfly Transformations (RBT)

2.3.1 Context

With the evolution of recent computer architectures, the growing gap between com-
munication and computation efficiency makes communication very expensive (at a
cost of one communication, we can generally perform thousands of arithmetical op-
erations). This has required the rethinking of most of numerical libraries in order to
take advantage of current parallel architectures which are commonly based on mul-
ticore processors [65], possibly with accelerators [36], such as Graphics Processing
Units (GPU) or Intel Xeon Phi.

When solving square linear systems Ax = b using Gaussian elimination (e.g.,
via LU factorization), we commonly use partial pivoting to avoid having zero or
too-small numbers on the diagonal. This technique is implemented in current lin-
ear algebra libraries and ensures stability [66]. However, partial pivoting requires
communication (search for pivots, swapping of rows). For example, on a hybrid
CPU/GPU system, the LU algorithm in the MAGMA library [36] spends more
than 20% of the factorization time in pivoting for a random dense matrix of size
10, 000× 10, 000 [20].

As an alternative to pivoting, an approach based on randomization called Ran-
dom Butterfly Transformation (RBT) [58] was recently revisited. Following the
RBT method, A is transformed into a matrix that would be sufficiently random
to avoid pivoting (with a probability close to 1). Then the transformed matrix is
factorized with Gaussian elimination with no pivoting, which can significantly re-
duce the amount of communication [67]. We can obtain satisfying accuracy with an
additional computational cost of O(n2) operations, which is negligible compared to
the cost of the factorization (O(n3) operations). This method has been successfully
applied to dense linear systems for either general [20] or symmetric indefinite [59,68]
systems, in the context of direct methods based on matrix factorizations.

2.3.2 Preliminary definitions

In this section, we present the main notions used in the definition of a Random
Butterfly Transformation.

A butterfly matrix is an n× n matrix of the form:

B =
1√
2

(
R0 R1

R0 −R1

)
(2.2)

where n ≥ 2 andR0 andR1 are random diagonal and nonsingular n/2×n/2 matrices.
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A recursive butterfly n× n matrix of depth d is a product of the form [20]:

W<n,d> =


B
<n/2d−1>
1 · · · 0

...
. . .

...
0 · · · B

n/2d−1

2d−1

×· · ·×

B
<n/4>
1 0 0 0

0 B
<n/4>
2 0 0

0 0 B
<n/4>
3

0 0 0 B
<n/4>
4


×
(
B
<n/2>
1 0

0 B
<n/2>
2

)
×Bn

1 , (2.3)

where B<n/2k−1>
i are butterflies of size n/2k−1 × n/2k−1, k = 2, ..., d and B<n> is

butterfly of size n× n.
Note that this definition requires that n is a multiple of 2d which can be always

obtained by “augmenting” the matrix A with additional 1’s on the diagonal. Note
also that it differs from the definition of a recursive butterfly given in [58] where
d = log2n and the first term of W<n,d> is a diagonal matrix of size n (and thus
we have log2n+ 1 terms). Here, we give an example of a recursive butterfly matrix
W<4,2> of size n×n and depth d = 2. It is obtained by the product of two butterfly
matrices

(B<2>
1 0

0 B<2>
2

)
of size n× n and depth d = 1 and B<4> of size n× n and depth
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 (2.4)

A Random Butterfly Transformation (RBT) of depth d of an n × n ma-
trix A corresponds to the calculation of the product Ar = UTAV . It consists of a
“multiplicative preconditioning” UTAV where the matrices U and V are recursive
butterfly matrices.

The random values in U and V are er/10 where r is randomly chosen in [−1
2 ,

1
2 ]

from a uniform distribution. This guarantees a small condition number for U and
V [20].

2.3.3 Solving linear systems using RBT

We solve the general linear system Ax = b as follows:
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1. Compute the randomized matrix Ar = UTAV , with U and V recursive but-
terfly matrices

2. Factorize Ar with Gaussian Elimination with No Pivoting (GENP)

3. Solve Ary = UT b

4. Compute the solution x = V y

We summarize in Algorithm 5 the procedure to solve Ax = b, where A is a
general dense matrix, using Random Butterfly Transformation with d recursions
and the LU factorization with no pivoting.

Algorithm 5 Dense Random Butterfly Transformation Algorithm (d recursions)

Transform the original matrix to a dense matrix whose size is multiple of 2d (with
possibly additional 1’s on the diagonal)
Generate recursive butterfly matrices U and V
Perform randomization to update the matrix A and obtain the matrix Ar =
UTAV
Factorize the randomized matrix with GENP
Compute UT b to solve Ary = UT b, then x = V y
Restore original size of vector

2.3.4 Main results

In the original work by Parker [58], d = log2 n and it is proved that, given two recur-
sive butterfly matrices U and V , the matrix UTAV can be factored into LU without
pivoting with probability 1 in exact arithmetic, or with probability 1−O(2−t) using
t-bit floating point numbers.

RBT was extensively studied for dense matrices. In particular it has been shown
in [20] that:

• In practice, d = 1 or d = 2 is enough to obtain a satisfactory accuracy (in most
cases a few steps of iterative refinement [66, p. 232] can recover the digits that
have been lost).

• Each recursive butterfly matrix can be stored compactly into an n×d matrix.

• The RBT transformation UTAV is cheap to compute (O(dn2) operations) and
can be implemented very efficiently on current parallel architectures (multicore
processors, GPUs).

• The condition number of the matrix A is almost unchanged by the application
of RBT.

Implementations of RBT are proposed for multicore architectures in the dense
linear algebra library PLASMA [7] and for hybrid CPU/GPU or CPU/Intel Xeon
Phi architectures [69] in the MAGMA [36] library.
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2.4 Integration of dense RBT in pARMS

2.4.1 Method

We describe in this section how Random Butterfly Transformations can be inte-
grated into pARMS. Our goal is to find the last level of preconditioning and then
replace the original LU factorization by the RBT pre-processing. Note that RBT
usually concerns dense linear systems, while ARMS addresses sparse matrices. So
we have to convert the last Schur complement which is a sparse matrix into a dense
format, before using RBT. Then after randomizing the last Schur complement A
with recursive butterfly matrices U and V , the dense matrix is factorized using a
LAPACK-like [5] routine that performs Gaussian elimination without pivoting, fol-
lowed by two triangular solves. The pARMS solver manages the parallel part by
using global preconditioning with MPI instructions, while the local part of the code,
more precisely the local preconditioning phase does not use MPI instructions. In
particular, the application of RBT and the no-pivoting factorization that follows are
sequential operations at the node/core level, that could be achieved by LAPACK-like
routines. The parallelism is entirely managed by pARMS. The local precondition-
ing can be based on ilu0, iluk, ilut or arms. The essential part resides in the last
Schur complement, where we implemented RBT and the preconditioned matrix is
then used in FGMRES in order to solve the linear system. In the remainder of
this manuscript, the resulting local preconditioner will be called arms_rbt. In our
implementation, we will consider a value of d = 1 for the number of recursions in
the implementation of RBT and we will not use iterative refinement.

2.4.2 Numerical experiments

This section presents the results obtained by integrating RBT into the pARMS
solver. The experiments have been carried out using one node (2 twelve-core AMD
MagnyCours Opteron 6172 processors running at 2.10GHz) of the Hopper machine
located at NERSC1.

In these experiments, we used matrices from the Davis’ collection [70,71] to test
the performance of different preconditioners. The first matrix (Sherman5) is a real
non-symmetric matrix of size 3, 312 (nnz = 20,793). Sherman5 arises from a three
dimensional simulation model on a nx × ny × nz grid using a seven-point finite-
difference approximation with nc equations and unknowns per grid block, where nx
is 16, ny is 23, nz is 3, nc is 3. The second matrix (Raefsky3) is a real non-symmetric
matrix of size 21, 200 (nnz =1,488,768), which arises from a fluid structure interac-
tion turbulence problem. The third matrix (Cant) is a real symmetric matrix that
comes from a 2D/3D FEM problem, of size 62,451 (nnz = 2,034,917). For these
three matrices, we study the results obtained when using a global Schur complement-
based preconditioner with the following local preconditioners: ilu0, iluk, ilut, arms,
or arms_rbt.

The pARMS parameters are chosen for these matrices following the guidance for
the local ARMS preconditioner, as explained in [12], for example. Certain parame-

1http://www.nersc.gov (note that Hopper has retired since December 2016)
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ters influence considerably the size and density of the last Schur Complement, which,
in turn, affects greatly the performance of RBT. Since the RBT for dense matrices is
used in this work, it is desirable that the last Schur complement remains dense while
being relatively small. Hence, parameter values for the number of ARMS levels and
the ARMS independent block size were chosen such that a small Schur complement
is obtained. In particular, the former parameter was small (equals two) while the
latter was large (allowing to form the blocks up to the entire local matrix size). At
the same time, the drop tolerance for the last Schur complement was kept quite low
(0.001) as well as all the other intermediate-level drop tolerances, so that there is
close to none sparsification of the Schur complement.

The experiments are performed using 4 to 12 cores, and we use one MPI process
per core and no multi-threading. In fig. 2.4, we compare the number of itera-
tions required for convergence. We observe that, for matrices Sherman5 (fig. 2.4a),
Raefsky3 (fig. 2.4b), arms_rbt performs better than the other local preconditioners.
For Cant, arms_rbt converges in fewer iterations than the other preconditioners do
so when using up to eight cores. This observation suggests that arms_rbt may be a
more versatile preconditioner to use for obtaining superior convergence. Note that,
for different numbers of subdomains (one per MPI process) in a given matrix, the
obtained parallel preconditioning varies leading to the differences in the number of
iterations to converge.

Note that for these tests, arms_rbt requires more time to solve the system since
a dense matrix solver was used to solve the last Schur complement system in pARMS.
However, as it will be illustrated in the next section, this solution remains faster
than using a “sparse” variant of RBT based on SuperLU [37]. Figure 2.5 represents
the residual obtained with the five local preconditioners. We observe that these
preconditioners provide us with a similar accuracy, arms_rbt being more accurate
for the matrix Raefsky3.

Figure 2.6 shows the execution time in solving the three test problems. In every
case, arms_rbt requires more time to solve the system since, in our preliminary
implementation, a dense-matrix solver was used to solve the last Schur complement
system in pARMS. In the next section we study the use of a “sparse” variant of RBT
based on the sparse direct solver SuperLU [37] in order to decrease the execution
time. Note that the execution time does not decrease significantly with the number
of cores due to a larger amount of communication when increasing the number of
subdomains and MPI processes.

2.5 Some experiments using sparse RBT in pARMS

2.5.1 Motivation and issues in using sparse RBT

Depending on the test problems and parameters, the last Schur complement system
in ARMS can be considered as sparse and it is natural to investigate to use a sparse
direct solver to solve the corresponding linear system. However, for sparse direct
solvers, the issue of pivoting in sparse direct solvers using LU factorization is often
a serious bottleneck to achieve performance and scalability. A number of relaxed
pivoting algorithms have been proposed in the past but none of them have shown
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Figure 2.4: Iterations required for convergence with five choices of local precondi-
tioner.
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Figure 2.5: Residual for test problems with five choices of local preconditioner.

42



2.5. Some experiments using sparse RBT in pARMS

SHERMAN5 ilu0 iluk ilut arms arms_rbt

N = 4 1,00E-002 1,00E-002 2,00E-002 3,00E-002 2,80E-001

N = 6 1,00E-002 1,00E-002 1,00E-002 2,00E-002 3,00E-001

N = 8 1,00E-002 1,00E-002 1,00E-002 1,00E-002 7,00E-002

N = 10 1,00E-002 1,00E-002 1,00E-002 1,00E-002 7,00E-002

N = 12 1,00E-002 1,00E-002 1,00E-002 1,00E-002 8,00E-002

N = 4 N = 6 N = 8 N = 10 N = 12

0,00E+000

5,00E-002

1,00E-001

1,50E-001

2,00E-001

2,50E-001

3,00E-001

ilu0

iluk

ilut

arms

arms_rbt

Number of Cores

E
xe

c
u

ti
o

n
ti
m

e
(s

)

(a) Sherman5
Raefsky3 ilu0 iluk ilut arms arms_rbt

N = 4 1,30E-001 3,30E-001 1,47 2,88 4,62

N = 6 7,00E-002 2,50E-001 1,13 1,97 3,22

N = 8 5,00E-002 1,90E-001 0,69 1,21 2,13

N = 10 5,00E-002 1,70E-001 0,65 0,81 1,89

N = 12 4,00E-002 1,40E-001 0,43 0,47 0,71

N = 4 N = 6 N = 8 N = 10 N = 12

0,00

1,00

2,00

3,00

4,00

5,00

6,00

ilu0

iluk

ilut

arms

arms_rbt

Number of Cores

E
xe

c
u

ti
o

n
ti
m

e
(s

)

(b) Raefsky3
Cant ilu0 iluk ilut arms arms_rbt

N = 4 2,40E-001 4,00E-001 0,48 0,74 0,95

N = 6 1,80E-001 3,00E-001 0,35 0,73 0,91

N = 8 1,20E-001 2,10E-001 0,27 0,71 0,96

N = 10 1,20E-001 2,10E-001 0,28 0,73 1,08

N = 12 9,00E-002 1,50E-001 0,22 0,63 1

N = 4 N = 6 N = 8 N = 10 N = 12

0,00

0,20

0,40

0,60

0,80

1,00

ilu0

iluk

ilut

arms

arms_rbt

Number of Cores

P
e

rf
o

rm
a

n
c
e

in
ti
m

e
(s

)

(c) Cant

Figure 2.6: Execution time for test problems with five choices of local precondi-
tioner.
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promise of scalable implementation. In general dynamic pivoting causes dynamic
change of L & U structures and might have dramatic consequence on performance.
For example, if we consider the MUMPS factorization with 128 processes for the
nonlinear optimization problem NLPKKT80, it requires 639 seconds using the par-
tial threshold pivoting whereas it would require 87 seconds if we do not pivot (when
the matrix is modified to be diagonally dominant).

A possibility of using RBT as an alternative to pivoting in sparse solvers has
been explored in [60]. As mentioned in Section 2.3, for dense computations, the
additional cost of applying RBT is limited to storing and applying RBT prior to
the factorization but in the sparse case it modifies the nonzero structure of the
randomized matrix. Indeed, the number of nonzeros in the transformed matrix
UTAV can be up to 4d times the number of nonzeros in A in the worst case. This
increase in nonzeros may lead to an even larger increase in the size of the LU factors
and thus to prohibitive costs. To minimize this fill-in, we therefore limit our study
to d = 1 which corresponds to a practical setting commonly used in the dense case.

Regarding the sparsity ordering, two different strategies when applying RBT
have been studied in [60] :

• Strategy 1: First apply sparsity ordering, then apply RBT (i.e., A = UT

(QAQT )V , where Q is the fill-reducing permutation).
• Strategy 2: First apply RBT, then apply sparsity ordering (i.e., A = Q

(UTAV )QT ).
Strategy 2 reduces the fill-in but then the matrix A = Q(UTAV )QT is not any-

more guaranteed to be factorizable without pivoting (see counter-example in [60]).
It has been observed in practice that

• Strategy 2 is as stable as Strategy 1.
• Strategy 2 reduces fill-in substantially.
Algorithm 6 describes how a sparse variant of RBT that combines RBT with

the sparse direct solver SuperLU is applied to the last Schur complement system in
the ARMS preconditioner. We point out that, similarly to Section 2.4, since RBT is
applied locally, we use the sequential version of SuperLU (and not the MPI version
SuperLU_dist [72]).

The re-ordering option that we chose in SuperLU is Multiple Minimum Degree
(MMD) [73] applied to the structure of AT +A which gave the best results in terms
of runtime for our test matrices.

Algorithm 6 Sparse Random Butterfly Transformation Algorithm (d = 1)

Modify the sparse matrix (CSR format, see Section 1.6.4) to have a size that is a
multiple of 2
Generate recursive butterfly matrices U and V
Randomize A and obtain the matrix Ar = UTAV
Factorize the randomized matrix with SuperLU with no pivoting (note that Su-
perLU also performs the ordering of Ar)
Compute UT b to solve Ary = UT b, the solve x = V y by using SuperLU
Restore original size of vector

In the next section, we evaluate on several cores the performance of arms_rbt
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combined with SuperLU.

2.5.2 Numerical experiments

These experiments were carried on two Intel(R) Xeon(R) CPU E5645 processors at
2.40GHz, each CPU has 6 cores, and each CPU has 2M cache. We use one MPI
process per core, and there is no multi-threading. We consider the following matri-
ces from the Davis’ collection [70]:

• Raefsky3, real non-symmetric matrix of size 21, 200 (nnz = 1, 488, 768) de-
scribed in Section 2.4.2,

• Cop20k_A, real symmetric indefinite matrix of size 121, 192 (nnz = 2, 624, 331)
which comes from an FEM accelerator cavity problem.

In our experiments we compare the performance of the preconditioners arms_rbt
studied in Section 2.4.2 (dense RBT + LAPACK LU with no pivoting) with the
sparse variant (sparse RBT + SuperLU with no pivoting). We point out that we
obtained the same number of iterations for the two variants. Therefore we focus
here on the comparison of the execution time. In Figure 2.7, we compare the perfor-
mance of dense arms_rbt and sparse arms_rbt in terms of runtime for the matrices
Raefsky3 and Cop20k_A, respectively. We use 4-12 cores with one MPI process per
core. We observe that the sparse variant of arms_rbt is always faster than the
dense one. The difference is even more significant for Cop20k_A which is a bigger
matrix. This can be explained by the fact that for these test matrices, the sparse
variant takes into account the sparsity of the last Schur complement in the ARMS
preconditioning technique, resulting in less arithmetical operations.

2.6 Conclusion

In this chapter, we have illustrated how the parallel distributed solver pARMS can
benefit from the integration of the randomization technique based on the Random
Butterfly Transformation (RBT) in solving the last Schur complement system in
the recursive multilevel process of ARMS. The RBT preprocessing combined with
a LAPACK-style routine that performs Gaussian elimination with no pivoting en-
abled us to enhance the convergence. Our experiments on test matrices from the
Davis’ collection showed an improvement in the number of iterations and accuracy.
However, our integration of RBT in pARMS requires an implementation that may
adjust the sparsity of the last Schur complement matrix based on the available
memory and on the performance characteristics of its (direct) solver at hand. This
constraint motivated additional experiments using a sparse variant of RBT followed
by a factorization with no pivoting from a direct sparse solver (SuperLU). In our
experiments, this sparse variant of RBT provided similar performance in terms of
iteration count and accuracy while improving significantly the execution time. In
the next chapter, we study how runtime performance can be improved by using
GPU computing for the preconditioning phase of pARMS.
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3.1 Introduction

Graphic Processing Units (GPUs) are special-purpose architectures. Their highly
parallel structure makes them more efficient than general-purpose CPUs. GPUs
architectures are very different from multicore CPUs and provide more computa-
tional power by consuming less energy, which makes them suitable for improving
the performance of large problems [1].

For example, a K40 NVIDIA GPU has a double precision peak performance of
1, 689 Gflop/s for a thermal design power (TDP) of 235W. According to bench-
marks in the MAGMA library [36], optimized large dense matrix computations,
e.g., matrix-matrix multiplications, reach 1, 200Gflop/s for a power draw of about
200W, i.e., ≈ 6Gflop/W. In contrast, two Sandy Bridge E5-2670 CPUs have about
the same TDP (2× 115 = 230W) as the K40 but for a peak of 333 Gflop/s, which
translates to only 1.4Gflop/W for the Sandy Bridge CPU. However, to achieve high
performance, the algorithms must be designed for high parallelism and high “flops
to data” ratio, while maintaining a low number of flops and exploiting the hardware
features of the hybrid CPU/GPU architecture.

In recent years, several packages which include GPU implementations have been
developed for iterative methods to solve sparse linear systems. As examples, we can
mention the cuSPARSE library [74], which is a collection of routines for sparse
linear algebra computations on NVIDIA GPUs. It provides subroutines, such as the
sparse matrix-vector product kernel, matrix conversion routines, preconditioning
techniques and some basic iterative solvers. We can also mention ViennaCL [75],
which is a free open-source linear algebra library written in C++. ViennaCL is
built on the three programming models CUDA, OpenCL and OpenMP, and it allows
to obtain high performance for all three hardware architectures. It provides sub-
routines for dense or sparse linear systems, such as sparse matrix-vector and sparse
matrix-matrix products, pipelined iterative solvers and various preconditioners.

For the GPU kernels integrated into our implementation, we will use theMAGMA
library [8, 36], which is a public domain linear algebra library for heterogeneous ar-
chitectures. In addition to being well-known for the dense linear algebra (e.g.,
factorizations and solvers for linear systems, least squares and eigen problems),
MAGMA also provides a large variety of solvers, preconditioners, and eigen solvers
for sparse linear systems. Comprehensive support for NVIDIA GPUs is provided,
as well as some basic routines and functionalities in OpenCL and for Intel’s Xeon
Phi manycore accelerators (MIC).

In this chapter, we illustrate how the pARMS solver can be adapted for hetero-
geneous CPU/GPU architectures. We aim at improving the performance of pARMS
by using GPU computing. The tasks performed on the GPU are related to the pre-
conditioning of each part of the distributed matrix (“local preconditioning”) which is
handled in the distributed version by each MPI process. This preconditioning phase
represents the main computational part and we show in this chapter how it can take
advantage of GPU capabilities by using efficient kernels based on randomization or
incomplete LU factorization. Note that the solving phase remains on the CPU.

We will use MAGMA routines for integrating preconditioning based either on
ARMS and Random Butterfly Transformations (RBT) or Incomplete LU factoriza-
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tion into pARMS. We analyze the performance improvement obtained using each
method on some test matrices. Each preconditioning method ensures a good per-
formance for a given set of matrices.

This chapter is organized as follows. In Section 3.2, we present the parallel
implementation of ARMS. In Section 3.3, we evaluate the preconditioners available
in the MAGMA library in order to choose the most efficient one. In Section 3.4,
we detail the integration of GPU kernels into pARMS. Section 3.5 presents the
numerical experiments in order to show the advantage of using GPU computing
in the framework of the pARMS solver. Section 3.6 concludes the chapter with a
reminder of the main contributions as well as some future work.

3.2 Parallel implementation of ARMS

Algorithm 7 outlines the steps to go through to solve a given linear system Ax = b,
using the Schur complement (SC) preconditioning in the pARMS package. First,
each processor loads the input matrix and performs Distributed Site Expansion
(DSE) partitioning [31], which attributes to each process a set of equations corre-
sponding to the rows of the global linear system, as well as the associated unknown
variables. We note that when the number of processors is not a power of 2, the
load balance between the different MPI processes is not ensured. As depicted in
Figure 3.1, in the rows assigned to each processor, two parts may be distinguished:
a local submatrix Ai that acts only on the local variables (ui) and an external
interface matrix Xi that acts only on the external interface variables, which are
communicated from neighboring processors at each matrix-vector multiplication.

A b
Local precond

Global precond

L
U

L
U

L
U

L
U

u

=*

=*

=*

=*

FGMRES

Ai
Xi Xi

Ai
Xi Xi

Ai
Xi Xi

Ai
Xi Xi

ibi bi

Figure 3.1: Sketch of the distributed linear system solution using pARMS (example
using four processors).

To construct the global SC preconditioning, first the local LU factorization is
performed on the local matrix held by each processor (Step 4 in Algorithm 7) in
order to precondition the internal part of the local system and to obtain a factoriza-
tion of the local Schur complement matrices Si = Ci−EiB−1i Fi, where Ai =

(
Bi Fi
Ei Ci

)
.

More details about this step can be found in [62]. Then the different parts of the
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distributed SC are constructed and left to reside in each processor (Step 5). In
essence, the global SC system is never assembled or gathered in one processor and is
being solved using a preconditioned GMRES method. Its distributed implementa-
tion, employed to solve the global SC, may be viewed as an “inner” accelerator with
respect to the “outer” accelerator FGMRES used to solve the original linear system
with the input matrix A. The solution of the global SC system yields a different
preconditioning at each iteration, and hence the need for the outer flexible GMRES.

Algorithm 7 The linear system solution using a global Schur Complement precon-
ditioning in pARMS
1. Each processor loads the sparse matrix A.

2. Partition the input matrix A using DSE partitioner.

3. Each processor exchanges boundary variables with neighboring processors.

4. Each processor performs local LU factorization on its local submatrix Ai =
Li × Ui (see Fig. 3.1).

5. Each processor constructs its portion Si of the global Schur complement system
from the result of the local LU factorization and the external interface submatrix
Xi.

6. Solve the global Schur complement system iteratively by distributed GMRES
as “inner” solver.

7. Each processor back-substitutes its interface variables to recover the internal
variables.

8. Each processor calculates its local residual.

9. If the global residual norm is not small enough, repeat from Step 6.

3.3 Evaluation of MAGMA preconditioners for GPUs

MAGMA provides various preconditioners like the ILU [76, 77] factorization which
uses “exact” triangular solves based on level scheduling techniques [15], or the
approximate ILU (AILU) [78] which uses different numbers of Jacobi sweeps in
the approximate triangular solves. MAGMA also provides the Jacobi, Incomplete
Cholesky or approximate incomplete Cholesky preconditioners.

In this section, we compare the performance of different preconditioners available
in the MAGMA library in order to identify which preconditioner gives the best
performance and then will be a good candidate to be integrated into pARMS, in
addition to our new arms_rbt preconditioner defined in Chapter 2 and which we
also developed for GPU. We evaluate and compare their performance on a matrix
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coming from a EDF (Electricité de France) application and using the GMRES solver
or the preconditioned GMRES (PGMRES) solver from the MAGMA library. We
consider the two following metrics of performance:

• the number of iterations necessary to the convergence,
• the execution time to reach the convergence.

3.3.1 Experimental framework

In our experiments, we analyze convergence and performance of the GMRES using
different preconditioners when solving the real-world EDF problems. The corre-
sponding test matrix edf comes from a computational fluid dynamics (CFD) ap-
plication [79] and is generated using a regular hexahedral mesh. This matrix is
symmetric and of size 16,384. In particular, to preserve the properties of the origi-
nal matrices, we increase the size by simply duplicating the original matrix 128 times
on the diagonal then we obtain our test matrix edfx128.The following experimental
results pave the way for the later experiments in this chapter, in other words, they
help us decide which kind of preconditioners to use to accelerate pARMS solver. Fur-
thermore, the comparison results also contribute to the validation of some routines
in the MAGMA library.

Table 3.1: Solvers and parameters used in the experiments

Solver Preconditioner Matrix Format levels sweeps Max iterations Relative tolerance
GMRES No CSR – – 500 1.0e-10
PGMRES ILU CSR (0-2) – 500 1.0e-10
PGMRES AILU CSR (0-2) (1-10) 500 1.0e-10

These experiments were carried out in double precision arithmetic on a system
composed of one NVIDIA Kepler K40m GPUs and a dual Intel Xeon E5-2620 sys-
tem. The GPU implementations are based on CUDA version 7.5 [80] and MAGMA
version 2.0.0 [32]. We use one MPI process per core and no multi-threading. All the
MPI processes are sharing the same GPU. The parameters applied for the execution
of the evaluated solvers are summarized in Table 3.1.

Table 3.2: Test matrix

Matrix Dimension # non-zeros Structure
edfx128 2,097,152 14,155,776 symmetric

3.3.2 Results

Figures 3.2 and 3.3 represent the performance of the different solvers given in Ta-
ble 3.1 on the matrix edfx128 in terms of number of iterations for convergence
and execution time, respectively. The execution time is computed as the sum of
the transfer time between CPU and GPU, the preconditioning time and the solving
time.

These solvers include preconditioners such as the ILU with 0-2 levels and the
AILU with 0-2 levels & 1-10 sweeps. For the ILU preconditioner, the solid lines
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correspond to ILU(0), the dashed lines to ILU(1), and the dotted lines to ILU(2).
Exact ILU uses exact triangular solves based on level scheduling and approximate
ILU uses different numbers of Jacobi sweeps. Note that we obtained similar results
on other (smaller) non-symmetric matrices coming from EDF.
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Figure 3.2: Number of iterations for various preconditioners on the edfx128 matrix.
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Figure 3.3: Execution time for various preconditioners on the edfx128 matrix.

We observe in Figure 3.2 that using the ILU or AILU preconditioner decreases
the number of iterations of GMRES significantly. The exact ILU preconditioner
requires less iterations than the Approximate ILU preconditioner, with best per-
formance for ILU(2). Using AILU requires some additional iterations of the outer
GMRES solver, but depending on the fill-in level, 10 sweeps in the approximate
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triangular solves enables us to get closer to the exact ILU iteration count.
Regarding the execution time, we observe in Figure 3.3 that the approximate

triangular solves do not accelerate the ILU-preconditioned GMRES. Also, the lower
iteration count for higher fill-in levels (1-2) is not reflected in the execution time, and
despite a lower iteration count, the ILU(2) using exact triangular solves needs more
time than the ILU(0). This comes from the higher cost of the preconditioner setup
and data transfers and also by a higher fill-in that makes the sparse triangular solves
more expensive. Then, for using an incomplete LU factorization preconditioner, the
runtime winner for this test problem is the ILU(0) preconditioned solver. The metric
of execution time is more relevant in industrial applications. Therefore, despite a
slightly larger number of iterations (compared to ILU(2)), ILU(0) will be chosen in
the next section, together with our new preconditioner arms_rbt, to be integrated
in the hybrid CPU/GPU version of pARMS .

3.4 Integration of GPU kernels into pARMS

In our hybrid CPU/GPU approach, we use GPU computing in the preconditioning
step of the pARMS solver. We mainly focus on the two following functions. The
first function is related to the local preconditioner ARMS where we notice that the
last Schur complement system becomes denser compared to the previous levels, and
thus needs more time to be solved. Similarly to [81], we propose the use of Random
Butterfly Transformation to avoid pivoting when solving the last Schur complement
system.

The second function is related to the local preconditioner ILU(0) which repre-
sents, by profiling the pARMS solver execution time, a significant part of the global
time for a large set of test matrices. For instance, we analyze the time breakdown
for solving the test problem flame2p3d80x4 (described in Section 3.5.1) using one
MPI process, where we use block Jacobi as a global preconditioner, ILU0 as a local
preconditioner, and FGMRES to solve the global preconditioned system. We ob-
serve in Figure 3.4 that, for this test matrix, the preconditioning application (see
Steps 6 and 7 of Algorithm 7) represents about 27% of the total time needed to solve
the problem. We note that, for other test matrices, the preconditioning represents
between 20% and 50% of the time for solution. This observation motivated our
interest in accelerating the preconditioning phase using GPU computing.

Figure 3.5 presents the tree of functions calls, and analyzes the performance of
the pARMS solver. It is obtained using the Valgrind [82] tool. Such a figure helps
us to integrate various GPU kernels in different parts of the pARMS code. Note
that Valgrind was also used to obtain in Figure 3.4 the time spent in each function.

3.4.1 GPU implementation of Random Butterfly Transformations
in ARMS

In Chapter 2, we explained how the RBT technique can be applied to the ARMS
preconditioning where the LU factorization is replaced by the RBT preprocessing
in the solution of the last Schur complement. First, the last Schur complement
which is a sparse matrix is converted into a dense matrix. Then, RBT is applied
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Figure 3.4: Time breakdown for the pARMS solver (matrix flame2p3d80x4) and
corresponding task numbers in Algorithm 7.
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and the dense matrix is randomized using two recursive butterfly matrices. Finally,
the randomized dense matrix is factorized using a LAPACK-like [5] routine that
performs Gaussian elimination with no pivoting, followed by two triangular solves.

To apply RBT to the last Schur complement S, we generate two recursive but-
terfly matricesW1 andW2 of size n×n. We set d to 2 since, as explained in [20], two
recursions are in general sufficient to obtain satisfactory results. Instead of solving
the initial system, S x = b, using Gaussian elimination with partial pivoting, we first
solve the randomized system, W1

T S W2 z = W1
T b, using Gaussian elimination

with no pivoting, then the system W2 z = x.

In our GPU implementation, the RBT preprocessing is performed as follows:
using the MAGMA routines: dgerbt, dgetrf_nopiv_gpu and dgetrs_nopiv_gpu,
following the three steps below:

1. Randomize the last Schur complement in ARMS (converted to dense format)
using dgerbt.

2. Factorize the last Schur complement system with dgetrf_nopiv_gpu to obtain
the upper triangular matrix U and the lower triangular matrix L.

3. With L and U triangular matrices obtained in the second step, we solve the
triangular systems by using dgetrs_nopiv_gpu, Ly = b, Ux = y.

In Figure 3.6a, we describe the data movements (numbered chronologically)
between the CPU and the GPU in our implementation of the solution of the last
Schur complement using RBT (S denotes the last Schur complement, S′ is a dense
format of S, and S′r is the randomized matrix, rhs is the right-hand side of the
system).

We note that to get performance improvement using the GPU implementation,
the last Schur complement should not be too small, as it will be illustrated in the
numerical experiments section.

3.4.2 GPU implementation for ILU(0) in pARMS

In this implementation, we use MAGMA routines to perform the ILU(0) factor-
ization and the triangular solves. The routine magma_dcumilusetup prepares the
ILU preconditioner via the cuSPARSE library to factorize the local system of each
processor. Then the routines magma_dapplycumilu_l and magma_dapplycumilu_r
perform the left and right triangular solves, respectively, by using the ILU(0) pre-
conditioner.

In Figure 3.6b, we describe the data movements between the CPU and the GPU
for the ILU(0) preconditioning in pARMS, where A denotes the local matrix held
by a processor. In this figure, the data movements are numbered chronologically.
Note that the factorized LU system is sent back to the CPU host to perform the
separation between the L and U factors (steps 2 and 3).
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Figure 3.6: CPU-GPU communication for arms_rbt and magma_ilu0 in pARMS.

3.5 Numerical experiments

3.5.1 Experimental framework

The experiments were carried out in double precision arithmetic on the system
described in Section 3.3.1. We use one MPI process per core, no multi-threading
and all the MPI processes share the same GPU.

The first test matrix edf was already described in Section 3.3.1. The second
test matrix flame2p3d80 arizes from using a finite-difference scheme with local ap-
proximation (called FLAME) [83] to screened electrostatic interactions of spherical
colloidal particles governed by the Poisson-Boltzmann equation (PBE). Specifically,
this matrix corresponds to a two-particle simulation on an 803 grid and has a regular
sparsity structure but it is not symmetric and not diagonally-dominant due to the
characteristics of FLAME. This simulation has been studied in [84], where it has
been shown that parallel preconditioning is imperative for its solution and that even
modest levels of ILU fill-in already yield a good convergence. The third test matrix
epb3 is a matrix from the University of Florida Sparse Matrix Collection [71]. It
represents a large case of a plate-fin heat exchanger.

Here, we test these matrices on hybrid CPU/GPU architectures. As detailed in
the previous section, we use GPU computing to perform the local preconditioning.
We point out that for our experiments, we increase the size of the original matri-
ces edf, flame2p3d80, and epb3 in order to study the scalability. In particular,
to preserve the properties of the original matrices, we increase the size by simply
duplicating the original matrix several times on the diagonal. For example, to ob-
tain the matrix flame2p3d80x4, which is four times larger, we duplicate the original
flame2p3d80 three times along the diagonal. Table 3.3 contains the size and number
of nonzeros of the “scaled” test matrices.
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Table 3.3: The set of test matrices.

Matrix � Characteristics Dimension # non-zeros Structure
edfx128 2,097,152 14,155,776 symmetric

flame2p3d80x4 2,125,764 13,808,916 unsymmetric
epb3x64 5,415,488 29,672,000 unsymmetric

3.5.2 RBT combined with ARMS preconditioning

In this section, we compare the execution time of the original pARMS solver (CPU)
to that of the hybrid CPU/GPU version which uses RBT to solve the last Schur
complement system in the recursive process, as described in the previous section.

In Figure 3.7, we evaluate the weak scaling of the CPU and CPU/GPU solvers.
The tests are performed on the following matrices: edfx16, edfx32, edfx64 and
edfx128. Here the number of non-zeros of the sparse matrix increases with the
number of cores, that is with the number of MPI processes used. The performance
of arms_rbt is better than arms, except for 2 cores due to the small size of the
problem that does not enable us to take advantage of the GPU. Figure 3.7 shows
that using 12 MPI processes and one GPU, the execution time decreases by 30%.
We add that for this specific test, the size of the last Schur complement held by
each MPI process ranges from 2828 to 3724.
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Figure 3.7: Execution time for arms and arms_rbt on different edf matrices.

Figure 3.8 shows that arms_rbt performs better than arms on the epb3x64
matrix using different number of MPI processes varying from 6 to 12. In the best
case, using arms_rbt decreases the execution time by 25%. We note that we can
not use less than 6 MPI processes for this problem since the last Schur complement
is too large to fit into the GPU memory.
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Figure 3.8: Execution time for arms and arms_rbt on the epb3x64 matrix.

3.5.3 ILU(0) preconditioning

We compare the execution time for the two following solvers:
• pARMS with ILU(0) local preconditioning on the CPU, referred to as pARMS_ilu0.
• pARMS with ILU(0) local preconditioning on the GPU, referred to as magma_ilu0.
Figure 3.9 displays the execution time of the pARMS_ilu0 and the magma_ilu0

solvers for the edfx128 matrix. We note that for this matrix, using more than 6 MPI
processes does not bring any advantage. Indeed the processes are sharing the same
GPU, which increases the communication amount to perform between the CPU and
the GPU with respect to the problem size.
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Figure 3.9: The execution time for pARMS with ILU(0) on the edfx128 matrix.
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Figure 3.10: The execution time for pARMS with ILU(0) on the flame2p3d80x4
matrix.

Figure 3.10 shows the execution time of the pARMS_ilu0 and the magma_ilu0
solvers for the flame2p3d80x4 matrix. The best improvement is obtained using one
MPI process and it is about 30%. In this figure, we observe that when we use 6
MPI processes, the execution time of the pARMS_ilu0 solver increases with respect
to the use of 4 MPI processes. This is because of the DSE partitioning that does not
ensure a good load balance between the processes when using a number of processes
which is not a power of 2.

3.6 Conclusion

In this chapter, we have illustrated how a non intrusive approach can be applied
to integrate GPU computing into the pARMS solver, more specifically for the local
preconditioning phase that represents a significant part of the time to solve a given
sparse linear system. The CPU-only and the hybrid CPU/GPU solvers have been
compared on several test problems from physical applications. The performance
results of the hybrid CPU/GPU solver using the ARMS preconditioning combined
with RBT, or the ILU(0) preconditioning, show a performance gain up to 25% and
30%, respectively, on the test problems considered in this paper. In a future work,
extensive testing will be performed on other matrices and other local preconditioners
(e.g., ILUT ), also by using several nodes of a cluster of GPUs. Moreover, in the
case where the last Schur complement is too large and sparse, we will investigate
the use of RBT applied to the sparse matrix (without conversion to dense format)
and the factorization using a sparse direct solver on GPU.
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4.1. Introduction

4.1 Introduction

Fault tolerance is a major concern in high-performance computing. Indeed, the
prevalence of faults is expected to increase as the level of concurrency in HPC
platforms continue to become larger and larger [85–87]. As the typical HPC envi-
ronment is moving towards “Exascale”, the mean time between failures (MTBF) will
continue to decrease dramatically [87]. Faults are typically divided into two distinct
categories: hard faults and soft faults [88, 89].

Hard faults are usually due to negative effects on the physical hardware com-
ponents of the system which cause the loss of one or several processors. The key
characteristic of all hard faults is that they cause program interruption. Thus they
are difficult to deal with from an algorithmic standpoint. However, as hardware
components continue to grow both smaller and faster, they (generally) become more
prone to error, and the algorithms and software packages used in HPC environments
need to be able to respond to sudden and unexpected changes in both the quantity
and quality of the physical resources that may be available for use.

The other category of faults, soft faults, can cause wrong arithmetic or abnormal
storage. In general, soft faults do not immediately cause program interruption,
although program interruption may occur as a result of the damage caused by a soft
fault. Another key feature of soft faults, is that they can be detected (though the
cost of detection may be prohibitively high) during program execution. Most of the
time, soft faults refer to some data corruption.

While hard faults, resulting often in processor breakdowns, are in general easy to
detect, this is not the case for soft faults usually referred to as silent faults. Common
strategies to deal with soft fault are based on replication strategies of computing
resources or redundancy of computations, resulting in significant overheads. A clas-
sical technique for fault corrections is checkpoint/restart (see, e.g., [90]) which saves
data periodically on a storage device and when a fault occurs, restart from the most
recent checkpoint. Another classical approach called Algorithm-Based Fault Toler-
ance (ABFT) (see, e.g., [91] for iterative methods) focuses on introducing checksums
or other encoding schemes into the algorithm itself.

In this chapter, we consider only soft faults. They are typically divided into
various categories based on how long their effect is felt by the resident program. For
a long time, the impact of soft faults was measured by the injection of bit flips into
the data structures used by the algorithm in question. However, recent research
efforts (e.g., [87,88,92,93]) have focused on modeling the impact of soft faults with
a slightly more generalized numerical approach that quantifies the potential impact
of a bit flip – which is dependent on where the bit flip occurs – and generating an
appropriately sized fault using a more numerically-based scheme. The experiments
conducted in this chapter aim at adapting two existing, generalized, numerical soft
fault models to study a particular class of soft faults (“sticky” faults) that has not
been examined extensively in the past.

The remaining sections of this chapter are organized as follows: In Section 4.2,
we present the general motivations for our study of soft faults and a brief overview
of related studies. In Section 4.3, we recall the FGMRES algorithm and indicate
at which step of the algorithms are injected the perturbations. In Section 4.4, we
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detail the fault models used throughout this chapter. In Section 4.5, we evaluate
the PBSFM model on the arms_rbt preconditioner. In Section 4.6, we present the
experimental results for the two fault models. Finally, Section 4.7 concludes this
chapter and gives possible directions for future work.

4.2 Motivations and related work

The easiest instance of a soft fault to understand occurs in the form of a bit flip.
Then researchers have typically relied upon the direct injection of bit flips into their
routines in order to simulate the occurrence of a soft fault [94, 95]. On the other
hand, in the work by Elliot, Hoemmen, and Mueller [87, 88, 92], faults are modeled
in a more general sense. In this approach, during the injection of a fault into the
result of a specific important operation inside of the algorithm – in the case of an
iterative solver (i.e. FGMRES) this could be a sparse matrix-vector multiply or in
the application of the preconditioner – instead of flipping a bit inside of the resultant
data structure, a study ( [95]) was conducted to quantify the impact of a single bit
flip and this analysis was used in [87] in order to create a numerical soft fault model
that injects a fault in a more general sense. This fault injection methodology is
described in section 4.4.1.

In the classification of soft faults that is presented in [88, 89], soft faults are
divided into the following three categories based upon how they affect program
execution: transient, sticky, and persistent. Transient faults are defined as faults
that occur only once, sticky faults indicate a fault that recurs for some period of
time but where computation eventually returns to a fault-free state, and persistent
faults arise when the fault is permanent. Note that a fault in any of these three
classifications should be detectable during program execution, and as such, it should
be possible to ameliorate the negative impact caused by the fault.

Scenarios that could cause a persistent fault include a stuck bit in memory, or the
Intel Pentium FDIV bug [88, 96]. Traditional analysis of potential persistent type
errors has rested more in the hardware domain than in the algorithmic domain,
with analysis of both processor based faults [97, 98] and memory based faults [99].
An example of a situation that can create a sticky fault, that is provided in [89], is
the incorrect copy of data from one location to another. The incorrect bit pattern
present in the faulty copy of the data will remain incorrect for an indefinite amount
of time, but will be corrected if and when the data is copied over again – assuming
that the later copy routine executes correctly. It is also important to note that in
the case of a sticky fault, the fault can be corrected by means of a direct action.
Transient errors are typically caused by solitary bit flips, which may be caused by
different issues (e.g. radiation, hardware malfunction, data cache set incorrectly,
etc).

Whether research chooses to model faults using bit flips or adopt a more numer-
ical approach, much of the previous work on the impact of silent data corruption
(SDC) has to do with the modeling of transient errors. The goal of the study that is
detailed here is to adapt both a numerical soft fault model for transient soft faults
and a perturbation based soft fault model for persistent soft faults so that each of
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the two models is capable of modeling the potential impact of a sticky fault.

4.3 Perturbation of the FGMRES algorithm

In this section, a brief background of both the GMRES algorithm with flexible pre-
conditioning (FGMRES) is given, and then an overview of the two preconditioners
that were focused on in this study is provided.

The FGMRES algorithm, as described in [15], is provided in Algorithm 8. FGM-
RES is similar in its nature to the standard GMRES with the notable exception of
allowing the preconditioner to change in each iteration by storing the result of each
preconditioning operation (cf. matrix Zm in line 13). FGMRES was selected in
this study because it is used in pARMS to solve the global system (see Sections 1.5
and 3.2). It is a robust, popular iterative solver which is proven to converge un-
der variable preconditioning - including converging in situations where the variable
preconditioning comes as a result of some sort of perturbation or anomaly in the
preconditioning operation. In this study specifically, such a perturbation is due to
injected faults via one of the two fault models that is used in the experiments.

Algorithm 8 FGMRES as given in [15]
1: . In: A Linear system Ax = b and an initial guess at the solution, x0
2: . Out: An approximate solution xn for some n ≥ 0
3: r0 := b−Ax0;
4: β := ||r0||2, v1 := r0/β;
5: for j = 1, 2, . . . ,m do
6: zj = M−1j vj ;
7: w = Azj ;
8: for i = 1, 2, . . . , j do
9: hi,j := (w, vi);

10: w := w − hi,jvi;
11: end for
12: hj+1,j := ||w||2, vj+1 := w/hj+1,j ;
13: Zm := [z1, . . . , zm], H̄m := hi,j1≤i≤j+1;1≤j≤m; ;
14: end for
15: ym := argminy||H̄my − βe1||2, xm := x0 + Zmym;
16: if Convergence was reached then
17: xm
18: else
19: set x0 = xm, go to Line 3
20: end if

In particular, faults were injected at two distinct points inside of the FGMRES
algorithm; line 3, termed here as the outer matrix-vector operation, and line 6, which
is the application of the preconditioner.

In our study, we will consider the three following preconditioners:
• ILUT, see Section 1.4,
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• arms, see Section 1.5.1,
• arms_rbt, see Section 2.4.

4.4 Fault models

We assume a fault model for Silent data corruption. Here we note that in practice,
the SDCs are rare, even at extreme scales of parallelism. However, it is worth to
study how a single SDC impacts an algorithm or a computing result. The ancient
SDC model considers a silent bit flip. In this work, our objective is to analyze the
effects of SDC in specific algorithms, then compare the resilience of different types
of preconditioners.

Injecting bit flips is not interesting, because it only needs setting the memory
location equal to any value. Besides, the bit flips errors produce numeric values,
non-numeric infinity and not a number values. In our work, we apply a different
approach, SDC impacts only the critical computations of an algorithm. We are
not interested in detecting binary errors, however we consider bit flips as numerical
errors and evaluate how these errors relate to the fundamentals.

In this section, a description of each of the fault models that are included in the
comparison is provided. Particular note is made to distinguish each of the models
from one another. As noted earlier, the two main sticky fault models that were
utilized in this study were an adapted version of the numerical soft model presented
in [87, 88, 92] - termed “Numerical Soft Fault Model” (NSFM) due to the origins of
this model in seeking a numerical estimation of a fault (rather than modeling faulty
behavior directly), and an adapted version of the model given in [93] - which will
be referred to as the “Perturbation Based Soft Fault Model” (PBSFM) due to its
modeling of faults as small random perturbations [88,89,96]. A fuller description of
each of the two soft fault models follows in the next two subsections. Note that in
the remainder of the chapter, the Euclidean norm is used.

4.4.1 Numerical Soft Fault Model (NSFM)

The approach given by detailed in [87,88,92] generalizes the simulation of soft faults
by disregarding the actual source of the fault and allowing the fault injector to create
as large or as small a fault as necessary for the experiment. In the experiments
conducted in [87,88,92] faults are typically defined as either:

• a scaling of the contribution of the result of the preconditioner application for
the Message Passing Interface (MPI) process in which a fault was injected,

• a permutation of the components of the vector result of the preconditioner
application for the MPI process in which a fault was injected,

or a combination of either of these two effects. Note that if α is the scaling factor
used, and if x is the original vector and if x̂ is the vector with a fault injected into
it than we have three scenarios:

1. α = 1: ||x||2 = ||x̂||2
2. 0 ≤ α < 1: ||x||2 > ||x̂||2
3. α > 1: ||x||2 < ||x̂||2
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The adaptation that was made to extend this model to be applicable in a “sticky”
sense was to inject a fault into a single MPI process in the exact same manner at
every iteration in which a fault is simulated. The analysis that was performed
in [87, 88, 92] details the impact of the NSFM in the case where it is modeling
transient soft faults with various scaling values. The impact of this fault model
relative to the impact of a single bit flip is given in [87] and shows that regardless
of where the bit flip occurs, the NSFM will perform comparably to the worst case
scenario induced by a traditional bit flip. Analysis to show the impact of a bit flip
based on where in the storage of a floating point number it occurs is given by [95].

4.4.2 Perturbation Based Soft Fault Model (PBSFM)

The approach proposed in [93] is similar in spirit to the NSFM proposed above.
It selects a single MPI process and injects a small random perturbation into each
element of the vector. Thus, if the vector to be perturbed is x and the size of the
perturbation factor is ε, then we first generate a random number rε ∈ (−ε, ε) then,
we set xi = xi + rε for all i. The resultant vector, call it x̂, is thus perturbed away
from the original vector x.

Since the FGMRES algorithm works at minimizing the norm of the residual, and
this can be directly affected by the norm of certain steps inside of the FGMRES
algorithm, there are three variants to the PBSFM:

1. The sign of xi is not taken into account. In this variant, ||x||2 ≈ ||x̂||2.
2. If xi ≥ 0 then rε ∈ (−ε, 0) and if xi < 0 then rε ∈ (0, ε). Here, ||x||2 ≥ ||x̂||2.
3. If xi ≤ 0 then rε ∈ (−ε, 0) and if xi > 0 then rε ∈ (0, ε). Here, ||x||2 ≤ ||x̂||2.
Using these three variants allows the PBSFM to possess some level over the

norm of the vector that it is injecting a fault into, and therefore an added level of
control on how a fault may affect the convergence of the FGMRES algorithm.

4.4.3 Comparison of soft fault models

In looking to see which of the two fault models induces a “larger” fault, then in
general it will be the case that the NSFM will create a larger difference between a
given data structure with a fault injected and the same data structure in a fault free
environment.

Examining this for the test problem (section 4.4.4) used in these experiments, the
result of the outer matrix-vector operation is a zero vector initially and as FGMRES
progresses closer to the solution, this vector will begin to approach the original right
hand side of the equation, b. In this problem, the entries in the final iterates of Axi
before convergence will have entries, bi, where−0.01 ≤ bi ≤ 0.01 forms a loose bound
on all entries of b = Axi. To show the potential difference in magnitude between a
given vector b and a vector b̂ representing the vector b with a fault injected, 10000
random vectors were generated in Matlab for vectors b of varying sizes (to represent
varying problem sizes) and the norm of |b − b̂| was calculated for each of the two
fault models. These results are shown in table 4.1.

Additionally, the NSFM allows slightly more exact statements to be made con-
cerning the effect of the injected fault on the norm, as the norm will be the exact
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Vector Size ||b− b̂||2 - NSFM ||b− b̂||2 - PBSFM
10 2.2223 9.0351e-04
100 5.1826 0.0029
1,000 17.1997 0.0091
10,000 53.8458 0.0289
100,000 172.3676 0.0913
1,000,000 543.9308 0.2887

Table 4.1: Difference in the effect of each of the fault models on random vectors
with values similar to those found in the result of the outer matrix-vector operation.
Note: The scaling factor in the NSFM was set to 1.0 and the fault size in the PBSFM
was set to 5×10−4. Columns 2 and 3 represent average differences over 10,000 runs.

same for all but the affected subdomains, where the norm of that section is con-
trolled explicitly. However, the size of the fault – measured as a difference from
a fault free run – is in general dependent only on the problem size in the case of
the NSFM. On the other hand, statements concerning the norm are inherently not
exact when the PBSFM is used, as the norm of the faulty subdomain is not precisely
controlled, but the difference from a fault free run - i.e. the “size” of the fault - is
easier to control by way of simply adjusting the bounds on the perturbation that is
used.

In general, one of a limited number of outcomes is most likely to occur when a
fault occurs during the execution of an iterative solver ( [87,94]).

• The solver will converge in approximately the same number of iterations, with
an error in the final solution.

• The solver will converge in approximately the same number of iterations, with
no error in the final solution.

• The solver will converge in more iterations than in a fault free run; with or
without an error in the final solution.

• The progress of the solver towards the solution will stagnate, and it will fail
to converge.

4.4.4 Test problems

In this section, we give a brief summary of the test problem that was used in the
experiments that follow in this chapter. The test problem comes directly from the
pARMS library [13], and represents the discretization of the following elliptic 2D
partial differential equation,

−∆u+ 100
∂

∂x
(exyu) + 100

∂

∂y
(e−xyu)− 10u = f

on a square region with Dirichlet boundary conditions, using a five-point centered
finite-difference scheme on an nx × ny grid, excluding boundary points. The mesh
is mapped to a virtual px × py grid of processors, such that a subrectangle of
xnmesh = nx/px points in the x direction and ynmesh = ny/py points in the y
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direction is mapped to a processor. The size of the problem can be monitored by
changing the size of the mesh that was used in the creation of the domain.

The mesh sizes that were considered corresponded to a “small” problem of
xnmesh = ynmesh = 200 and a “large” problem variant with xnmesh = ynmesh =
400. Both of these two problem sizes were run on a px = py = 20 grid of 400 total
processors. This leads to problem sizes of,

• Small: nx × ny = xnmesh× px × ynmesh× py = 16, 000, 000
• Large: nx × ny = xnmesh× px × ynmesh× py = 64, 000, 000

As pointed out in section 4.4.3 the NSFM creates larger faults in some sense for
larger problem sizes, whereas the size of the fault injected by the PBSFM scales
much more evenly with problem size.

4.5 Preliminary evaluation of the PBSFM fault model.

The resilience of arms along with ILUT has been already evaluated with PBSFM
in [100] but it is natural to study how our new arms_rbt preconditioner behaves
with the same error model. In this section, we present the experiments that were
conducted to evaluate the PBSFM model when using the arms_rbt preconditioner,
and compare it with arms.

4.5.1 Experiment description

We inject soft faults using the PBSFM model in the main FGMRES algorithm for
matrix-vector operation (residual vector r0 in Algorithm 8), or in the preconditioner
application (vector zj in Algorithm 8) or both of them. Then we evaluate the
effect of these errors in terms of number of iterations, when using the arms and
arms_rbt preconditioners, respectively. Similarly to [100], we inject errors for
several iterations, starting from the fifth iteration, then we compute the number
of additional iterations required to reach convergence. The test problem has been
described in Section 4.4.4, with the parameters given in Table 4.2. The value of the
perturbations are ε = 1e− 6, 5e− 6, 1e− 5, 5e− 5.

These experiments were carried out in double precision arithmetic on a system
composed of two dual Intel Xeon E5645 processors. In total, we have 12 physical
cores, and the hyper-threading is disabled. We use one single thread MPI process
per core.

4.5.2 Results

For each figure, the x-axis represents the percentage of iterations of FGMRES that
have been perturbed by errors, compared to the iterations required for a fault-
free execution. Then the y-axis corresponds to the number of additional iterations
required to obtain convergence.

In Figure 4.1, we have injected errors in the outer matrix-vector operation in the
FGMRES algorithm and we compare the effect of these errors when using arms and
arms_rbt.
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Table 4.2: The set of test parameters.

Parameters � Matrix 2D elliptic
Tolerance for inner iteration 0.01
Tolerance for outer iteration 1.0e-6

Number of levels for ARMS, ARMSRBT 2
Block size for block independent sets 1000
Tolerance used in independent set 0.1

Krylov subspace size for outer iteration 20
Outer fgmres iteration 500

Number of processors in the x direction for PDE problem 2
Number of processors in the y direction for PDE problem 2

xnmesh, nx = xnmesh× px for PDE problem 400
ynmesh, ny = ynmesh× py for PDE problem 400

In Figure 4.2, we have injected errors in the application of the preconditioner in
the FGMRES algorithm and we compare the effect of these errors when using arms
and arms_rbt.

In Figure 4.3, we have injected errors both in the outer matrix-vector operation
and the preconditioner application and we compare the effect of these errors when
using arms and arms_rbt.

We observe that, for each type of perturbation, the extra number of iterations
due to errors is more significant for arms than for arms_rbt. This illustrates that,
for the 2D elliptic test problem, arms_rbt is more resilient than arms to errors when
using the PBSFM. Thus in the next section, we will use the arms_rbt preconditioner
to compare the two models NSFM and PBSFM.
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Figure 4.1: Outer matrix-vector perturbations in FGMRES, using arms and
arms_rbt, on matrix 2D elliptic
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Figure 4.2: Preconditioner perturbations in FGMRES, using arms and arms_rbt,
on matrix 2D elliptic
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Figure 4.3: Combination of outer matrix-vector and preconditioner in FGMRES,
using arms and arms_rbt, on matrix 2D elliptic

4.6 Comparison of NSFM and PBSFM fault models

In this section, we present the experiments that were conducted to compare the two
fault models considered in our study. The results are presented as a comparison of
the effects of a sticky soft fault as modeled by both the PBSFM and the NSFM fault
models. Experiments are run on 400 cores of the computing platform Edison located
at NERSC, which is a Cray XC30. It has a peak performance of 2.57 Petaflop/sec,
with 134,064 cores and 5586 nodes. Each node has two sockets, with a 12-core
Intel “Ivy Bridge” processor at 2.4 GHz. It has 357 Terabytes of memory and 7.56
Petabytes of disk storage.
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4.6.1 Experiment description

For both the small and large problem, the performed tests included a fault-free
run, a series of runs using the NSFM model and a series of runs using the PBSFM
model. For the NSFM, the variable that will have the largest impact upon the
fault injected is the scaling factor α while for the PBSFM the largest contributor
to the impact of the fault is the size of the perturbation ε. For these experiments,
three values of both α and ε were used: α = 1/2, 1, 2, and ε = 1e−3, 5e−4, 1e−4.
The NSFM runs using α = 1/2, α = 1, and α = 2, were compared to the three
variants of PBSFM that decreases the norm, that leaves the norm approximately
the same (referred to as “neutral” in the remainder), and that increases the norm,
respectively (see Section 4.4). Sticky faults were conservatively defined to be present
during the first 1000 iterations of the iterative solver execution. For the fault-free
test, the small problem converged in roughly 1500 iterations, and the large problem
in approximately 3500 iterations. Note that all the runs of FGMRES were performed
multiple times and the average was taken.

4.6.2 Results

The plots are only presented for the neutral norm variants of the fault models in
Figures 4.4, 4.5, 4.6 and 4.7. To be specific, this involves the variants of the PBSFM
where the norm remains approximately the same, and the version of the NSFM
where the scaling factor α is set to 1 (but complete results for variants that decrease
or increase the norm will be given in Tables 4.3 and 4.4). Each figure shows the
number of iterations for five different fault methods: a nominal (fault-free) run,
a PBSFM run with a “small” fault (1e−4), a PBSFM run with a “medium” fault
(5e−4), a PBSFM with a “large” fault (1e−3), and a NSFM run with α = 1.

Figure 4.4 depicts the effects in terms of iteration count for the various soft faults
injected into the outer matrix-vector operation of the FGMRES algorithm, when
solving the small problem. In this figure, we observe that for the neutral variants,
for both the arms_rbt and ILUT preconditioners, the NSFM has a more negative
effect on the convergence of the FGMRES algorithm than the PBSFM. For instance,
compared to the fault-free runs, the NSFM runs needed more than 1000 additional
iterations to converge for both preconditioners while the additional number of itera-
tions is at most around 150 for the different PBSFM variants. Figure 4.5 shows, for
the small problem, the results when the faults are injected into the vector resulting
from the preconditioner application.

Figure 4.6 displays the number of iterations to convergence when injecting faults
into the outer matrix-vector operation for the large problem. As in Figure 4.4, the
results in Figure 4.6 show a steady increase in the delay in the convergence of
FGMRES from the nominal case to the PBSFM cases (ordered by the increasingly
sized faults), then to the faults simulated by the NSFM case. The plots in Figure 4.7
depict the injection of faults into the result of the preconditioning operation for the
large problem.

For a fault-free case, the FGMRES algorithm converged in fewer iterations when
using the arms_rbt preconditioner compared to the ILUT preconditioner. This re-
mained true when faults were injected into the application of the preconditioner,
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Figure 4.4: Number of iterations for the small problem for soft faults injected at the
outer matrix-vector operation using arms_rbt and ILUT preconditioners.
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Figure 4.5: Number of iterations for the small problem for soft faults injected, at
the application of the preconditioner using arms_rbt and ILUT preconditioners.

73



Chapter 4. Resilience of pARMS to soft errors
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Figure 4.6: Number of iterations for the large problem for soft faults injected at the
outer matrix-vector operation using arms_rbt and ILUT preconditioners.
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Figure 4.7: Number of iterations for the large problem for soft faults injected at the
application of the preconditioner using arms_rbt and ILUT preconditioners.
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|| ||2 Nominal PBSFM-Small PBSFM-Medium PBSFM-Large NSFM
SP LP SP LP SP LP SP LP SP LP

IL
U
T m
at
ve
c = 1542 3496 1380 3300 1477 3797 1624 3969 2590 4768

– 1542 3496 2236 3807 2318 4170 2352 4380 2565 4660
+ 1542 3496 2241 3603 2326 4140 2358 4386 2637 4788

pr
ec
on

d = 1542 3496 1487 3523 2243 6703 3811 11156 2355 4022
– 1542 3496 1499 3280 2155 5163 2782 7639 2324 4093
+ 1542 3496 1499 3518 2168 5162 2780 7735 † †

Table 4.3: Full results with ILUT preconditioner for the small (SP) and large (LP)
problems with the neutral, decrease, and increase norm variants.

|| ||2 Nominal PBSFM-Small PBSFM-Medium PBSFM-Large NSFM
SP LP SP LP SP LP SP LP SP LP

ar
ms

_r
bt

m
at
ve
c = 1359 3357 1538 3790 1585 4594 1764 4727 2698 5456

– 1359 3357 2323 4199 2426 4810 2459 7639 2697 5375
+ 1359 3357 2339 3825 2423 4655 2459 5059 2646 5426

pr
ec
on

d = 1359 3357 1700 4349 2336 8221 4125 13607 2518 4550
– 1359 3357 1706 4010 2201 6063 2925 9492 2570 4493
+ 1359 3357 1657 3989 2205 6061 2927 9005 † †

Table 4.4: Full results with arms_rbt preconditioner for the small (SP) and large
(LP) problems with the neutral, decrease, and increase norm variants.

however the injection of faults into the outer matrix-vector operation caused FGM-
RES to converge in roughly the same number of iterations whether it was precon-
ditioned with ILUT or with arms_rbt. This suggests that for faults occuring at the
outer matrix-vector operation, the advantage of the arms_rbt preconditioner is not
as present as it is elsewhere. Note that, for both ILUT and arms_rbt precondition-
ers, faults injected into the outer matrix-vector operation had a larger impact than
did identical faults injected into the resulting vector from the preconditioner appli-
cation. Similar results were obtained in [93]. In addition, the impact of the faults
injected using each of the two soft fault models with effects on the norm seems to be
more pronounced in the PBSFM case; although, this is clearly adjustable through
the use of the parameters available to both soft fault models. For instance, using
larger values for α in the NSFM may provide a better comparison.

Complete results, including PBSFM variants that decrease or increase the norm,
are provided in Tables 4.3 and 4.4 for all the experiments. Indeed, these tables give
the full results for the ILUT (Table 4.3) and arms_rbt (Table 4.4) preconditioners
for the small (SP) and large (LP) problems with the neutral, decrease, and increase
norm variants in rows represented by signs =, −, and +, respectively. The † symbol
indicates that the corresponding solver does not converge. We recall that in NSFM,
the cases =, −, and + correspond to α = 1, 1/2, and 2, respectively.

When comparing the two fault models presented here directly, it is evident that

75



Chapter 4. Resilience of pARMS to soft errors

the NSFM has a larger negative impact on the convergence of the iterative FGMRES
than the PBSFM in most scenarios. In every instance tested except for precondi-
tioner faults on the larger problem size, the comparable version of the NSFM delayed
convergence longer than the PBSFM did. This is in part due to the fact that the
NSFM moves the vector where a fault is injected much further from its original lo-
cation than the PBSFM does (see, e.g.,Table 4.1). In summary, for recurring faults
specifically, the PBSFM offers a greater level of fine-tuned control over the fault
impacts. However, the size of the fault in the PBSFM does not seem to have large
impact on the convergence of FGMRES in the runs that attempted to manipulate
the norm.

4.7 Conclusion

In this chapter, we have illustrated how soft errors can affect the performance of the
FGMRES algorithm, which is a key kernel of the pARMS solver. We used two types
of error models for sticky soft faults, and we applied them to the FGMRES algo-
rithm. First, we have evaluated the soft fault based called PBSFM on a 2D elliptic
problems where errors are injected at some steps of the FGMRES algorithm, namely
the outer matrix-vector operation and/or the preconditioner application using arms
and arms_rbt. For this problem, we have shown that the preconditioner arms_rbt
is more resilient than ILUT to such errors. In the future, it would be beneficial
to better quantify the potential impact of both sticky and persistent faults that
originate in a real-world environment. It may also be helpful to consider a wider
range of scaling factors for the NSFM, as well as a wider range of fault sizes for the
PBSFM in order to cover a larger spectrum of potential impacts due to the presence
of faults.
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Conclusion and future work

Conclusion

The first part of this thesis was devoted to a general presentation of concepts,
software and tools that have been used for this PhD work. More specifically, the
first chapter recalled the main principles in solving dense or sparse linear systems and
focused on (preconditioned) Krylov iterative methods, known for their robustness,
including the FGMRES and pARMS solvers which are considered in our study. We
also presented some existing software libraries, and the various storage formats for
sparse matrices. Moreover, we detailed the targeted parallel architectures and the
main paradigms to program these architectures.

Our main contributions are about the enhancement of the distributed memory
sparse iterative solver pARMS:

The first contribution is related to the use of Random Butterfly Transforma-
tions (RBT) to improve the performance of the pARMS solver. We used the RBT
method to solve the last Schur complement system in the application of the ARMS
preconditioner, resulting in a new arms_rbt preconditioner. The experimental re-
sults showed an improvement of the convergence and accuracy on test matrices from
the Davis collection. We also implemented a sparse variant of the RBT to address
the case where the last Schur complement is too large to be randomized as a dense
matrix, which resulted in faster execution time.

The second contribution concerns the use of GPU accelerators to improve the
performance of the pARMS solver on current hybrid CPU/GPU architectures. We
identified the functions of pARMS that can benefit from GPU computing on CPU/GPU
hybrid architectures. We implemented a GPU version of our new arms_rbt precon-
ditioner, and we integrated a MAGMA version of the ILUT preconditioner, which
provided an acceleration up to 30% on pARMS simulations on test problems coming
from real-world applications (EDF).

The third contribution is a study of the effects of soft errors in the FGMRES
algorithm which is used in pARMS to solve the preconditioned system. We consider
two types of soft models: the Perturbation Based Soft Fault Model (PBSFM) and
the Numerical Based Soft Fault Model (NBSFM). We first evaluated the resilience of
pARMS preconditioners using the PBSFM model on a test problem by quantifying
the increase of the number of iterations with the increase of the error magnitude and
we showed that arms_rbt is more resilient than arms. Then we applied the PBSFM
and NSFM models on arms_rbt and ILUT on bigger test matrices and showed that
FGMRES is more affected by NSFM than PBSFM model, and that arms_rbt is
more resilient than ILUT.
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Future work and perspectives

The sparse variant of RBT enabled us to enhance the arms_rbt preconditioning for
some test matrices. The fact that we use only one recursion in the randomization
process limits the increase of fill-in in the randomized matrix. However it would be
useful to combine RBT with fill-reducing techniques (e.g., reverse Cuthill-McKee
methods) in order to control the fill-in of the last Schur complement, and conse-
quently reduce the factorization time of this matrix.

The hybrid CPU-GPU version of pARMS is limited to the two precondition-
ers arms_rbt and ILU(0) and it is necessary in a future version to integrate other
preconditioners in order to address a wider range of test matrices. Additional opti-
mization can be obtained by using CUBLAS routines for some specific kernels since
we can handle the memory copies explicitly and then more efficiently than MAGMA
libraries. Also, a track to improve performance is the extended use of kernel fusion
techniques [101] that merge into a single kernel consecutive vector operations shar-
ing some of the input or output data, such that data, once loaded into the fast
multiprocessor memory, is reused. This would reduce memory traffic and then im-
prove the performance of our hybrid solver.

Tolerance to hard faults and recovery techniques were not considered in this PhD
work. Future work would for instance concern the use of Interpolation Restart (IR)
strategies, which recover from a node crash in parallel distributed systems. In the
pARMS solver, hard fault failures could also be managed by recent techniques spe-
cific to MPI (e.g., User Level Failure Mitigation (ULFM) [102]). To address the case
of damaged data, recovery techniques investigated in [103] could be implemented in
pARMS.
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Appendix A

Dense and sparse routines from
the MAGMA library

In this appendix, we describe the main routines of MAGMA, which are used in our
experiments. They concern the factorization and the triangular solves for dense
and sparse matrices. We also mention the different kernels involved in the Random
Butterfly Transformation (RBT) approach.

Randomization, factorization and solve routines for dense
linear systems

The routine magmablas_dprbt_q randomizes a square general matrix using RBT.
magmablas_dprbt_q (magma_int_t n, double ∗dA, magma_int_t ldda, double
∗du, double ∗dv, magma_queue_t queue)

n [in] The number of columns and rows of the matrix dA
dA [in, out] Double precision array, dimension (n, ldda), on entry, the

n-by-n matrix dA, on exit dA = duT ∗ dA ∗ d_V
ldda [in] The leading dimension of the array dA
du [in] Double precision array, dimension (n, 2), the 2 ∗ n vector

representing the random butterfly matrix U
dv [in] Double precision array, dimension (n, 2), the 2 ∗ n vector

representing the random butterfly matrix V
queue [in] Execution queue

The routine magma_dgetrf_nopiv_gpu computes an LU factorization of a gen-
eral m-by-n matrix A without any pivoting.
magma_dgetrf_nopiv_gpu (magma_int_tm, magma_int_t n, magmaDouble_ptr
dA, magma_int_t ldda, magma_int_t ∗info)

m [in] The number of rows of the matrix A
n [in] The number of columns of the matrix A
dA [in, out] Double precision array on the GPU, dimension (ldda, n), on

entry, the m-by-n matrix to be factored, on exit, the factors
L and U from the factorization A = L ∗ U

ldda [in] The leading dimension of the array A
info [out] Return code
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The routine magma_dgetrs_nopiv_gpu solves a system of linear equations A ∗
X = B, AT ∗X = B, or AH ∗X = B with a general n-by-n matrix A using the LU
factorization computed by dgetrf_nopiv_gpu.
magma_dgetrs_nopiv_gpu (magma_trans_t trans, magma_int_t n, magma_
int_t nrhs, magmaDouble_ptr dA, magma_int_t ldda, magmaDouble_ptr dB,
magma_int_t lddb, magma_int_t ∗info)

trans [in] MagmaNoTrans: A ∗X = B (No transpose)
MagmaTrans: AT ∗X = B (Transpose)
MagmaConjTrans: AH ∗X = B (Conjugate transpose)

n [in] The order of the matrix A
nrhs [in] The number of right hand sides
dA [in] Double precision array on the GPU, dimension (ldda, n).

The factors L and U from the factorization A = L ∗ U as
computed by dgetrf_nopiv_gpu

ldda [in] The leading dimension of the array A
dB [in, out] Double precision array on the GPU, dimension (lddb, nrhs),

on entry, the right hand side matrix B, on exit, the solution
matrix X

lddb [in] The leading dimension of the array B
info [out] Return code

Factorization and solve routines for sparse linear systems

Below are the MAGMA sparse routines that we used in our experiments.

The magma_dcumilusetup is a factorization routine that prepares the ILU pre-
conditioner using the cuSPARSE library.
magma_dcumilusetup (magma_d_matrixA, magma_ d_preconditioner ∗precond,
magma_queue_t queue)
A [in] Input matrix
precond [in, out] Preconditioner parameters
queue [in] Execution queue

The routine dapplycumilu_l performs the left triangular solves using the ILU
preconditioner.
magma_dapplycumilu_l (magma_d_matrix b, magma_d_matrix ∗x, magma_
d_preconditioner ∗precond, magma_queue_t queue)
b [in] RHS
x [in,out] Vector to precondition
precond [in,out] Preconditioner parameters
queue [in] Execution queue

81



Appendix A. Dense and sparse routines from the MAGMA library

The routine dapplycumilu_r performs the right triangular solves using the ILU
preconditioner.
magma_dapplycumilu_r (magma_d_matrix b, magma_d_matrix ∗x, magma_
d_preconditioner ∗precond, magma_queue_t queue)
b [in] RHS
x [in, out] Vector to precondition
precond [in, out] Preconditioner parameters
queque [in] Execution queue
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Synthèse en français

Dans cette thèse de doctorat, nous abordons trois défis auxquels sont confrontés les
solveurs itératifs d’algèbre linéaire dans la perspective des futurs systèmes exascale,
visant à effectuer 1018 opérations arithmétiques par seconde (flop/s) vers 2020 - 2022.
Le premier défi est d’accélérer la convergence vers la solution en utilisant des tech-
niques innovantes au niveau algorithmique. Le deuxième défi est de tirer profit des
accélérateurs (par exemple les GPU - Graphics Processing Units) pour améliorer la
performance des calculs sur les architectures parallèles hétérogènes. Le troisième défi
est d’étudier l’impact des erreurs plus fréquentes du fait de l’augmentation du par-
allélisme dans les super-calculateurs. Nous nous intéressons à l’étude des méthodes
permettant d’accélérer la convergence et le temps d’exécution des solveurs itératifs
pour les grands systèmes linéaires creux. Le solveur plus spécifiquement considéré
dans ce travail est le “parallel Algebraic Recursive Multilevel Solver” (pARMS) qui
est un solveur parallèle à mémoire distribuée basé sur les méthodes de Krylov et pro-
pose plusieurs types de préconditionneurs standards parmi lesquels Schwarz additif
restreint (RAS), Jacobi parallèle par blocs (BJ), et un préconditionnement basé sur
le complément de Schur (SCHUR).

Tout d’abord, nous proposons d’intégrer une technique de randomisation ap-
pelée “Random Butterfly Transformations (RBT)” qui a été appliquée avec succès
pour éliminer le coût du pivotage dans la résolution des systèmes linéaires denses
(généraux et symétriques indéfinis). Notre objectif est d’appliquer cette méthode
dans le préconditionneur ARMS de pARMS pour résoudre plus efficacement le
dernier système de complément de Schur dans l’application du processus récursif
multi-niveaux. Les résultats expérimentaux montrent une amélioration de la con-
vergence et de la précision par rapport aux implémentations existantes. En raison de
possibles problèmes d’occupation mémoire pour certains problèmes tests, nous pro-
posons également d’utiliser une variante “creuse” du RBT à laquelle est associée un
solveur direct creux (SuperLU) pour la résolution du dernier système de complément
de Schur, ce qui a pour effet d’améliorer le temps de calcul de la solution.

Ensuite, nous expliquons comment une approche non intrusive peut être ap-
pliquée pour implémenter des calculs GPU dans le solveur pARMS, plus partic-
ulièrement dans la phase de préconditionnement locale (ARMS ou factorisation LU
incomplète) qui représente une partie importante du temps de résolution. Pour inté-
grer des noyaux GPU dans pARMS, nous utilisons la bibliothèque d’algèbre linéaire
MAGMA développée pour les architectures hybrides comprenant des processeurs
classiques et des accélérateurs de type GPU ou Xeon Phi. Puis nous comparons les
versions purement CPU et hybrides CPU/GPU du solveur sur plusieurs problèmes
tests issus d’applications physiques. Les expériences portant sur notre solveur hy-
bride CPU/GPU qui utilise le préconditionnement ARMS combiné avec le RBT, ou
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le préconditionnement ILU(0), montrent un gain de performance allant jusqu’à 30%
sur les problèmes considérés dans nos expériences.

Enfin, nous étudions l’effet des fautes logicielles sur la convergence de la méth-
ode itérative GMRES flexible (FGMRES) qui est utilisée pour résoudre le système
préconditionné dans pARMS. Le problème ciblé dans nos expériences est un prob-
lème elliptique d’équation aux dérivées partielles sur une grille régulière à deux
dimensions. Nous considérons deux types de préconditionneurs: une factorisation
LU incomplète à double seuil (ILUT) et le préconditionneur ARMS combiné avec
la randomisation basée sur le RBT. Nous considérons deux modèles de fautes logi-
cielles différentes (modèle de faute logicielle numérique - NFSM - et modèle de
faute logicielle basée sur les perturbations - PBSFM), pour lesquels nous pertur-
bons la multiplication matrice-vecteur et l’application du préconditionneur dans
l’algorithme FGMRES. Pour chacun de ces modèles, nous comparons l’impact des
fautes logicielles sur la convergence du solveur. L’effet négatif des modèles d’erreurs
NSFM et PBSFM dépend de la position d’injection des erreurs dans le solveur
FGMRES. L’injection d’erreurs répétitives sur un nombre donné d’itérations pen-
dant l’application du préconditionneur a un effet plus négatif sur la convergence que
la multiplication matrice-vecteur.
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