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Résumé détaillé

Cette thèse porte sur la modélisation de mouvement de foules. Il existe une grande variété

de modèles de mouvement de foules, qui peuvent être classifiés selon différents critères. La

classification la plus connue des modèles est basée sur la représentation de la foule: micro-

scopique pour les modèles où les individus sont représentés par des disques ou des ellipses et

leur comportement est décrit par une Equation Différentielle Ordinaire, et macroscopique où

la foule est représentée par une densité qui évolue selon une Equation aux Dérivées Partielles.

Les modèles de mouvement de foules peuvent aussi être classifiés selon le type de dynamique:

déterministe si deux individus se comportent exactement de la même manière quand ils sont

dans la même situation, et stochastique sinon. La prise en compte de la congestion peut

s’effectuer de deux manières différentes, soit l’approche soft qui consiste à appliquer des forces

d’interaction à courte portée, soit l’approche hard où chaque individu ne réagit à la présence

d’un autre que quand ils sont en contact. Il existe aussi deux types d’interactions entre les

individus: les interactions basées sur un processus de décision où chaque individu est con-

sidéré capable d’optimiser sa trajectoire en fonction d’observation locale ou globale, et les

interactions basées sur un processus mécanique où la foule est représentée par un système de

particules physiques réagisssant entre elle par des forces mécaniques.

Le modèle

Dans cette thèse, nous développons un modèle microscopique basé sur la théorie des jeux où

les individus sont considérés civilizés et aptes à percevoir leur environnement et à optimiser

leurs trajectoires selon certaines préférences et contraintes. Nous suivons l’approche hard

pour la prise en compte de la congestion et nous présentons un modèle déterministe. Les

individus sont représentés par des disques et chaque individu est influencé par certains voisins

(pas nécessairement tous, en pratique ceux qui sont dans son cône de vision). Les relations

d’influence entre les individus sont représentés par un graphe: les individus sont les noeuds du

graphe et une arrête orientée va d’un individu vers un autre s’il est influencé par lui. Chaque

individu a une certaine vitesse souhaitée, c’est la vitesse qu’il souhaite avoir s’il était tout

seul, et il est assujetti à respecter une contrainte de non-chevauchement avec les individus qui

l’influencent. Nous supposons que chaque individu adapte sa vitesse souhaitée en fonction de

l’environnement en suivant un processus de décision personelle. Chaque individu choisit une

vitesse qui soit la (parmi les) plus proche(s) possible(s), au sens des moindres carrées, de sa

vitesse souhaitée en tenant compte des positions et des vitesses choisis par les individus qui

l’influencent pour éviter les collisions. En d’autres termes, les vitesses choisis par les individus

doivent former un équilibre de Nash instantané: chaque individu fait son mieux par rapport à

1



Résumé détaillé

un objectif personnel (vitesse souhaitée), tenant compte des positions et des comportements

choisis par les individus qui l’influencent. Nous appelons champs de vitesses équilibrées tout

champs de vitesses qui réalise un équilibre de Nash.

L’étape de décision est suivie par une étape de correction qui consiste à projeter le champs

de vitesses équilibrées choisi sur l’ensemble de champs de vitesses globalement admissibles (qui

n’autorisent pas un chevauchement des disques représentant les individus). En fait, dans le

cas où le graphe d’influence n’est pas complet (un individu peut ne pas être influencé par un

de ses voisins), les vitesses équilibrées peuvent ne pas être globalement admissibles. Cette

manière de traiter les contacts physiques est basée sur un principe mécanique, et est inspirée

du modèle de mouvement de foule purement granulaire de Maury et Venel [90, 89].

Le modèle est décrit en détail au deuxième chapitre où nous considèrons le problème de

trouver un champs de vitesses équilibrées compatibles avec les exigences mentionnées ci-dessus

(l’étape de projection a été étudié dans [90, 89]). Nous abordons la question d’existence et

d’unicité de champs de vitesses équilibrées dans deux situations différentes aux Chapitres 2 et

3. Particulièrement, nous montrons l’existence de solution dans le cas où le graphe d’influence

est complet au deuxième chapitre, sans unicité de solutions en général, et décrivons l’ensemble

de solutions possibles. Nous considèrons le cas d’un graphe d’influence dirigé acyclique au

troisième chapitre où nous montrons l’existence et l’unicité de solution au problème. Ce cas

particulier du modèle est appelé le modèle hiérarchique en référence à la structure hiérarchique

du graphe d’influence. Nous terminons le troisième chapitre par la description d’un schéma

numérique permettant d’approcher l’unique solution du modèle hiérarchique. Le Chapitre 4

est dédié à la confrontation des résultats numériques du modèle hiérarchique avec des expéri-

ences réelles d’évacuation. Le modèle se compare favorablement à ces expériences et nous

montrons sa capacité à reproduire certains effets observés en réalité. Nous introduisons au

cinquième chapitre une première tentative pour écrire une version macroscopique du modèle

hiérarchique. Nous décrivons le modèle, présentons des résultats préliminaires en une dimen-

sion et décrivons les difficultés posées par la généralisation des résultats à la dimension deux.

Indépendamment de la modélisation de mouvement de foule, nous cherchons au Chapitre 6

à établir un lien entre un schéma de type Volumes Finis pour l’équation de Fokker-Planck

et un cadre flot gradient par rapport à une distance de type Wasserstein discrète récemment

introduite dans [36, 85]. Finalement, une conclusion et quelques perspectives sont décrites au

Chapitre 8.

Formulation mathématique du modèle

Nous considèrons N individus et nous notons par qi ∈ Rd, d = 1, 2, la position de l’individu i

et par Ui(qi), noté Ui pour des raisons de simplicité, sa vitesse souhaitée. La configuration de

tous les individus est notée par q = (q1, . . . , qN ) ∈ RdN . Les individus sont représentés par des

disques de centres q1, . . . , qN et de rayons r1, . . . , rN respectivement, contraints à respecter

une contrainte de non-chevauchement. En d’autres termes, la configuration des individus doit

2
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appartenir à l’ensemble de configurations admissibles suivant:

K =
{

q ∈ R
dN , Dij(q) ≥ 0, ∀i ̸= j

}

où Dij(q) = |qi − qj|− ri − rj est la distance entre les individus i et j.

qi

qj
Dij

eij

−eij

ri

rj

Figure 1: Notation

L’ensemble d’individus qui influencent un individu i est noté par Ii. Nous représentons

les relations d’influence par un graphe dirigé construit comme suit: les noeuds du graphe sont

les individus et une arrête orientée lie un individu i à un autre individu j si et seulement si

j ∈ Ii. Considèrons une configuration admissible q ∈ K, nous appelons un champs de vitesses

équilibrées, qu’on note u(q) = (u1, . . . , uN ), tout champs de vitesses qui réalise un équilibre de

Nash instantané: la vitesse de chaque individu doit être la plus proche possible de sa vitesse

souhaitée parmi toutes les vitesses qu’il considère comme possible, tenant compte des positions

et vitesses des individus qui l’influencent. Le fait que les contraintes sur la vitesse d’un individu

dépendent des vitesses des autres ne définit pas proprement un champs de vitesses, mais définit

plutôt un ensemble (possiblement vide) de champs de vitesses compatibles avec ces exigences.

Nous notons par Λ l’ensemble des champs de vitesses u = (u1, . . . , uN ) tels que:

ui = argmin
w∈Rd

1
2

|w − Ui|2 + ICi(q,u
−i)(w), ∀i = 1, . . . , N (1)

où

Ci(q, u−i) =
{

w ∈ R
d, ∀j ∈ Ii, Dij(q) = 0⇒ eij(q) · (w − uj) ≤ 0

}
, (2)

ICi(q,u
−i) est la fonction indicatrice de l’ensemble Ci(q, u−i), avec la notation usuelle u−i =

(u1, . . . , ui−1, ui+1, . . . , uN ) et eij(q) = (qj − qi)/|qj − qi|.
L’ensemble de champs de vitesses globalement admissibles est défini par:

C(q) =
{

v = (v1, . . . , vN ) ∈ R
dN , ∀j ̸= i, Dij(q) = 0⇒ eij(q) · (vi − vj) ≤ 0

}
. (3)

Dans le cas où un champs de vitesses équilibrées existe, nous définissons le champs de vitesses

réelles comme la projection euclidienne du champs de vitesses équilibrées sur C(q).

Commençons par quelques remarques sur l’approche Nash utilisée pour définir le champs

de vitesses équilibrées:

• Dans la définition formelle d’un équilibre de Nash général, la fonctionnelle coût n’a pas

de valeurs infinies. Pour le cas du problème qu’on considère, nous supposons qu’une

vitesse ui non admissible (n’appartenant pas à Ci(q, u−i)) est possible mais infiniment

3
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insatisfaisante. En d’autres termes, un individu peut choisir une vitesse non admissible

si et seulement si c’est le seul choix possible pour lui.

• Nous allons voir que les équilibres de Nash ne sont pas uniques en général, même

l’existence n’est pas tourjours guarantie, ce qui nous empêche pour l’instant de parler

de problème d’évolution.

Étude théorique du modèle

Nous considèrons deux cas particuliers de graphe d’influence: le cas d’un graph complet

(chaque individu peut être influencé par tous ses voisins), et le cas d’un graph dirigé acyclique

où les relations d’influence entre les individus sont structurés d’une manière hiérarchique.

Cas d’un graphe complet

Figure 2: Exemple d’un graphe d’influence complet

Dans le cas d’un graphe d’influence complet, nous montrons l’existence de solutions qui

ne sont pas nécessairement uniques, et décrivons l’ensemble des solutions possibles.

Proposotion 2.10 page 43. Supposons que le graphe d’influence est complet. Considèrons

une collection de masses strictement positives m1, . . . , mN , et notons par M ∈ MdN la ma-

trice diagonale associée M = (m1, m1, . . . , mN , mN ) (ou simplement M = (m1, . . . , mN ) en

dimension un). Alors, le problème:

min
v∈C(q)

1
2

(v − U) · M(v − U), (4)

où C(q) est défini par (3), a une unique solution qui est une solution particulière du Prob-

lème (1).

Ce procédé constructif de détermination de solutions au Problème 1 permet d’obtenir

plusieurs solutions. En plus, ce procédé est basé sur des principes mécaniques (en fait ce n’est

que le modèle granulaire introduit dans [90, 89]), et donc la loi d’action et de réaction est

automatiquement satisfaite: cette démarche est exclusive au cas complet.

Nous montrons à la Proposition 2.3.2 page 44 que l’ensemble des équilibres de Nash

solutions du Problème (1)(2) est un ensemble fermé. Si nous notons par Λm l’ensemble de

4
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tous les équilibres de Nash obtenus comme solutions du Problème(4), où M est une matrice

diagonale associée à des masses m1, . . . , mN > 0, alors nous avons Λm ⊂ Λ. La proposition

précédente permet de conclure l’inclusion suivante: Λm ⊂ Λ. Une question naturelle se

pose donc: est-ce que Λm = Λ ? La réponse est oui en dimension un comme le montre la

Proposition 2.3.3 page 45. Par contre, nous montrons à la Proposition 2.3.4 page 46 que

l’inclusion est stricte en dimension deux, ce qui veut dire que certains équilibres de Nash sont

véritablement de type théorie des jeux et ne peuvent être construits par un procédé mécanique.

Cas d’un graphe hiérarchique

Figure 3: Exemple d’un graphe d’influence dirigé acyclique

Pour ce cas particulier de graphe d’influence, il existe une unique solution au Problème 1

qui peut être déterminer explicitement en résolvant de façon frontales des problèmes de min-

imisation standards.

Proposition 3.2.2 page 54. Supposons que le graphe d’influence est dirigé et acyclique,

alors Problème (1)(2) a une unique solution.

Idée de la preuve: Nous utilisons le tri topologique qui permet de numéroter les noeuds

d’un graphe dirigé acyclique de la façon suivante: j > i si et seulement si une arrête orientée

va de i vers j. Pour des raisons de simplicité, nous supposons que les individus sont numérotés

selon le tri topologique. L’individu qui porte le numéro N ira à sa vitesse souhaitée, ensuite

pour chaque individu i, pour i = N − 1, . . . , 1, la vitesse équilibrée de i est la solution d’un

problème de minimisation qui dépend des vitesses équilibrées de N, . . . , i− 1 qui ont déjà été

calculées.

Remarquons que cette manière de calculer une solution unique au problème n’est possible

que si les ensembles Ci(q, u−i) sont non vides pour tout i (les u−i étant déjà calculés grâce à

la structure hiérarchique).

En pratique, nous considèrons les situations d’évacuation où les ensembles d’influence des

individus sont leurs cônes de vision définis par:

V (qi, Ui,α, l) =
{

x ∈ R
2,

(x− qi) · Ui

||x− qi|| ||Ui||
≥ cosα and ||x− qi|| ≤ l

}
.

5



Résumé détaillé

où α est l’angle de vision et l est la longueur du cône de vision. Dans ce cas, le graphe

d’influence est hiérarchique si la condition suivante est satisfaite:

||∇U ||2 <
cos α

max
i

ri
,

et les ensembles Ci(q, u−i) sont automatiquement non vides. Sous cette condition, le problème

admet donc une unique solution (application directe de la Proposition 3.2.2).

Nous appelons modèle hiérarchique ce cas particulier du modèle de Nash instantané qui

sort du cadre de la théorie des jeux. Dans le cas où le graphe d’influence est basé sur les cônes

de vision des individus, le modèle hiérarchique décrit bien les situation d’évacuation où les

individus souhaitent se diriger vers la même cible.

Cas général

Dans le cas d’un graphe d’influence qui contient des cycles, l’approche représente des diffi-

cultés en terme de détermination de champs de vitesses réelles. En fait, la théorie classique

d’existence d’équilibres de Nash généraux ne s’applique pas à ce problème à cause de la forme

particulière de la fonctionnelle coût. Les résultats d’existence exigent par exemple la continu-

ité des fonctionnelles coût comme dans [31, 52, 44], leurs majorations et minorations [30], ou

la semi-continuité de la dépendence des ensembles de stratégies admissibles pour un individu

sur les stratégies des autres [6]. Même dans les cas où un équilibre de Nash existe, quand le

graphe d’influence contient des cycles on n’a pas a priori d’unicité de solutions au Problème (1)

et des outils doivent être développés afin de choisir un équilibre de Nash parmi les équilibres

existants. Ceci demande une description psychologique fine des interactions entre les individus

(politesse, agressivité, capacité à élaborer des stratégies basées sur des prédictions,. . . )

Simulations numériques du modèle hiérarchique

Nous proposons un schéma numérique pour approcher l’unique solution du modèle hiérar-

chique, basé sur un développement à l’ordre un des contraintes sur les vitesses comme proposé

dans [87].

Pour un temps t0 = 0 donné, notons par τ > 0 le pas de temps et tn = nτ une subdivision

d’un intervalle [0, T ] où T est fixé. À chaque instant tn, nous calculons le champs de vitesses

réelles un des individus en deux étapes (décision et correction), toutes les deux basées sur un

développement à l’ordre un des contraintes sur les vitesses.

Considérons un individu i, pour tout j ∈ Ii, si i prend la vitesse w pendant un temps τ ,

le développement à l’ordre 1 de Dij(qn + τv) est

Dij(qn + τv) = Dij(qn) + τ∇Dij(qn) · v + o(τ),

= Dij(qn) + τeij(qn) · (ũn
j − w)

qui est une expression affine qui dépend des vitesses un
j déjà calculées grâce à la numérotation
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hiérarchique. Nous imposons simplement à cette expression d’être positive.

L’approximation de la solution se fait en deux étapes:

Première étape

Nous déterminons la solution de chacun des problèmes de minimisation suivants en suivant

l’ordre du tri topologique i = N, N − 1, . . . , 1:

ũn+1
i = argmin

w∈Cτ
i (qn,ũn

−i)

1
2

|w − Ui(qn
i )|2

où

Cτ
i (qn, ũn

−i) =
{

w ∈ R
d, ∀j ∈ Ii(qn), Dij(qn) + τeij(qn) · (ũn

j − w) ≥ 0
}

.

Notons que, grâce à la structure hiérarchique, tous les indices j correspondent à des individus

qui ont déjà choisis leurs vitesses équilibrées ũn
j .
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Figure 4: Comparaison entre le modèle granulaire et le modèle hiérarchique.

Deuxième étape

Le vecteur de vitesses équilibrées ũn+1 est projeté sur l’ensemble des vitesses globalement

admissibles:

un+1 = argmin
v∈Cτ (qn)

1
2

|v − ũn|2
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Cτ (qn) =
{

v ∈ R
dN , ∀j ̸= i, Dij(qn) + τeij(qn) · (vj − vi) ≥ 0

}
.

où l’expression Dij(qn) + τeij(qn) · (vj − vi) est de nouveau un développement à l’ordre 1 de

Dij(qn + τv).

Confrontation des résultats numériques avec des ex-

périences réelles d’évacuation

Nous proposons de comparer les résultats numériques pour le modèle hiérarchique avec des

expériences d’évacuation réelles décrites dans [49, 101]. Pour faire cela, nous lançons des

simulations numériques en situation d’évacuation en périodique (un individu qui sort de la

pièce est réinjecter à une position aléatoire à l’entrée de la pièce, voir Figure 4.1 page 67) et

d’autres non périodiques. Pour chaque simulation, nous extrayons les instants de sortie des

individus et mémorisons la longueur des intervalles de temps entre deux sorties consécutives.

Nous montrons la capacité du modèle à reproduire certains effets de mouvement de foule

observés en réalité:

• Alternation entre intervalles de temps entre deux sorties court et long: Comme proposé

dans [101], nous calculons la corrélation entre les temps écoulés entre deux sorties et

trouvons une corrélation négative pour les temps entre deux sorties consécutives. Cet

effet a été observé pour les expériences décrites dans [101] et le modèle hiérarchique est

prouvé apte à reproduire cet effet avec une valeur de corrélation assez proche de celle

des expériences (voir Figure 4.5 page 69).

• Loi de puissance des temps entre deux sorties consécutives: Comme proposé dans [49],

nous traçons le complémentaire de la fonction de répartition des intervalles de temps

entre deux sorties (qui est 1 moins la fonction de répartition) en échelle log-log. Nous

remarquons l’apparition d’une loi de puissance pour les temps longs. Cette loi de

puissance a été observée pour les expériences décrites dans [49] avec des exposants assez

proches pour les expériences et les simulations numériques du modèle hiérarchique(voir

Figure 4.7 page 70).

• Faster is Slower: Nous comparons le modèle hiérarchique au modèle granulaire décrit

dans [90, 89]. Nous prouvons à la fin du Chapitre 3 que les vitesses équilibrées du modèle

hiérarchique sont plus petites que les vitesses souhaitées dans la direction souhaitée des

individus, ce qui veut dire que les individus ont une tendance à aller moins vite pour

le modèle hiérarchique comparé au modèle granulaire. Les simulations numériques

montrent que les individus vont en fait plus vite pour le modèle hiérarchique comparé

au modèle granulaire (flux moyen plus important pour le modèle hiérarchique), ce qui

prouve la capacité du modèle à reproduire l’effet Faster is Slower, ou de façon équivalente

Slower is Faster (voir Tableau 4.1 page 76).
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• Effet de la présence d’un obstacle: Nous étudions l’effet de la présence d’un obtacle sur

la fluidité de l’évacuation. Pour faire cela, nous comparons le flux moyen de sortie pour

des simulations numériques avec et sans obstacle en testant plusieurs formes d’obstacles

(une colonne, deux colonnes, un triangle et un obstacle en forme de V inversé). Nous

remarquons un flux moyen d’évacuation plus grand dans le cas où un obstacle est placé

en amont de la sortie comparé au cas sans obstacle, avec un flux maximal pour le cas

d’un obstacle en forme de V inversé (voir Tableau 4.2 page 76).

• Capacity drop: Nous suivons l’évolution du flux moyen d’évacuation en fonction du

nombre d’individus présents dans la salle. Nous remarquons que le flux moyen augmente

avec l’augmentation du nombre d’individus pour atteindre un maximum global, ensuite

décroît légèrement avant d’atteindre un maximum local et décroître légèrement vers un

état stable (voir Figure 4.18 page 80). Cette fluctuation du flux moyen en fonction du

nombre d’individus est connue sous le nom de capacity drop.

Vers une version macroscopique du modèle hiérar-

chique

Nous proposons au cinquième chapitre d’écrire un modèle macroscopique en traduisant les

principes du modèle hiérarchique au niveau macroscopique, comme pour la version macro-

scopique du modèle granulaire décrite dans [88, 91]. Le modèle prend la forme d’un problème

de minimisation sous deux constraintes. Nous montrons que le modèle instantané est bien

posé et proposons un schéma numérique pour approcher la solution. Un exemple de simu-

lation numérique pour ce modèle est aussi présenté. Une approximation du modèle par une

famille de problèmes de minimisation est introduite en relaxant une des deux contraintes sur

la vitesse. Nous montrons que la suite de minimisants converge vers la solution du problème

macroscopique initial en dimension un. Le cas de la dimension deux est un travail en cours.

Lien entre schéma Volume finis de l’équation de Fokker-

Planck et flot gradient par rapport à une distance de

type Wasserstein discrète

Nous représentons quelques développements pour établir un lien entre le cadre flot gradient

pour la distance de Wasserstein continue et un cadre flot gradient pour une distance de type

Wasserstein discrète récemment introduite. Au niveau continu, il est connu que l’équation

de Fokker-Planck peut être interprétée dans l’espace de Wasserstein continue comme flot

gradient pour l’entropie relative par rapport à une mesure stationnaire (provenant du potentiel

dans l’équation de Fokker-Planck). Au niveau discret, un cadre similaire a été introduit où

le domaine euclidien est remplacé par un graphe. Une équation de la chaleur discrète est
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Résumé détaillé

définie sur le graphe en utilisant une chaîne de Markov, et est interprétée dans un espace de

Wasserstein discret comme un flot gradient pour l’entropie relative discrète par rapport à la

mesure stationnaire de la chaîne de Markov.

Nous montrons dans cette thèse qu’une discrétization spatiale de type Volumes Finis de

l’équation de Fokker-Planck sur des cellules de Voronoï nous ramène à une équation différen-

tielle ordinaire pouvant s’interpréter comme une équation de la chaleur discrète pour une

certaine chaîne de Markov sur le réseaux sous-jacent. L’équation de la chaleur discrète est

consistente avec la structure flot gradient dans l’espace de Wasserstein discret.
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General introduction

Pedestrian crowds have been studied empirically over more than five decades by many re-

searchers. Some of these empirical studies are devoted to develop a level-of-service con-

cept [48], others to design pedestrian facilities [106] or to write guidelines [86]. Many re-

searchers have also been interested in describing the relation between the speed of pedestrians

and their density [55, 123, 45]. These empirical data permitted researchers to deduce some

properties of the behavior of pedestrians and describe some effects commonly observed in

crowd motion. A complete review about characteristics of pedestrians can be found in [123,

18] and a survey about empirical observations is presented in [64].

An important tool to evaluate the safety of pedestrian facilities and predict pedestrian

behavior is crowd motion modeling. The first model was originated in the ’70s and the

subject began to attract the attention of many researchers. Nowadays, there exists a wide

variety of crowd motion models describing different situations from everyday life, emergency

situations, special events, etc... These models can be classified according to many criteria,

here are some examples of classifications:

• Representation of individuals: microscopic or macroscopic

– Microscopic models represent each pedestrian as an agent occupying a certain

space at a certain time. The movement of each pedestrian is described by an

Ordinary Differential Equation using its position and velocity. In this approach,

each individual tries to reach his destination while taking into consideration the

movement of other pedestrians and the presence of obstacles. One of the main ad-

vantages of this class of models is the possibility to take differentiated interactions

between individuals into consideration, and this is what makes microscopic mod-

els more flexible. But this advantage does not come without cost, implementing

microscopic models for large crowd is computationally expensive.

– For macroscopic models, the crowd is represented by a density in pers/m2 that

evolves through a Partial Differential Equation. These models are convenient

when dealing with a large crowd since the number of involved pedestrians has

no influence on computational times, but they are less flexible than microscopic

models in general.

• Dynamics of the equations: deterministic or stochastic
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– For models with deterministic dynamics, the behavior of individuals depends on

the current or the past situations, and two pedestrians behave exactly in the same

way when they are in the same situation.

– For models with stochastic dynamics, the behavior of the crowd is based on some

probabilities that make it possible for two pedestrians in the same situation to

behave differently. Among stochastic models, some of them are made by adding

noise to the variables like the position or the velocity, and others are intrinsically

stochastic like the cellular automata models where the movement of pedestrians

is based on probabilities (cf. Chapter 1).

• Congestion handling: soft approach or hard approach

– The soft approach consists in applying short range interaction forces between

individuals. Most of the existing models are of the soft approach type, individuals

anticipate collision and slow down or deviate from their course before the occurring

of contact.

– The hard approach treats contacts as non-smooth events. It models individuals

in a hurry wishing to go at their desired velocity as long as possible and so they

only adapt their movement when contact (or quasi-contact) occurs.

• Accounting for interactions: mechanical setting or decision process

– The mechanical class contains models based on a representation of the crowd as

a system of physical particles, interacting through forces of the mechanical type.

These models are mostly inspired from physical principles as interaction forces,

kinetic theory and thermodynamics.

– The decision making class is for all those approaches that are based on a repre-

sentation of agents as active entities in the sense that the effective action of each

one of them results from a decision process based on local or global observations.

Individuals are no longer treated as passive particles submitted to general laws,

but rather as entities able to take decisions at their very own level.

A state of the art about crowd motion modeling is presented in the first chapter of this thesis.

We also propose some crowd motion models in Chapters 2, 3 and 5.

Description of the proposed models

We propose in this thesis crowd motion models based on hard congestion handling. We

consider civilized pedestrians able to perceive their environment and take decisions to optimize

their trajectories according to some preferences and constraints. The proposed models belong

to the following classes according to the aforementioned classification: deterministic dynamics,

hard congestion handling, based on a decision making process.
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First, we propose a microscopic model based on game theoretic principles. Individuals are

represented by disks and each one of them has a desired velocity, it is the one he would like to

have in the absence of others. An individual is not necessarily influenced by all his neighbors,

notably in real-life situations we are mainly influenced by the ones we see. We represent

the influence relations between individuals by a directed graph: each individual is a node of

the graph, and a directed edge goes from an individual to another one if he is influenced by

him. The determination of the actual velocity of the crowd, that is the adaptation of the

desired velocity according to the environment (individuals, obstacles,. . . ), is done through

an individual decision process. Individuals are considered as thinking entities, each one of

them chooses an actual velocity that approaches best, in the least squares sense, his desired

one taking into consideration the positions and the chosen velocities of other individuals that

influence him to avoid collisions.

The problem is formulated in a generalized Nash game framework and some theoretical

questions are addressed. Two particular cases of influence graph are investigated: the case

of a complete influence graph (each individual is influenced by all the others), and the case

of a directed acyclic graph (hierarchical interactions between individuals). For the first case,

we give a constructive proof of existence of Nash equilibria. We also show that, in some

cases, there is no uniqueness of solutions and we describe the set of Nash equilibria. Indeed,

the approach shall not lead in general to an evolution model in a strict sense. For the

case of a directed acyclic influence graph, we show existence and uniqueness of solutions,

which makes it possible to talk about an evolution model. The Nash equilibrium model with

hierarchical influence graph will be called the hierarchical model since, as we shall see, in this

particular case the game theoretical aspects disappears. We pay a particular attention to

evacuation situations where the influence graph of individuals based on their cones of vision

(each individual is influenced by others he sees) is natively hierarchical.

We propose a numerical strategy to solve the hierarchical model and perform some nu-

merical simulations. The numerical results are confronted with real evacuation experiments.

Precisely, some comparison tests are done in order to investigate whether the hierarchical

model based on the cones of vision is able to reproduce some crowd effects observed in evac-

uation experiments.

We also propose in this thesis to write a macroscopic counterpart of the hierarchical model

based on the cones of vision. The whole crowd is represented by a density and is supposed

to have a desired velocity field that corresponds to individuals’ preferred motion. At every

point of the domain, we associate to the desired velocity a cone of vision centered in the same

direction. Two approaches are proposed. The first one is obtained by roughly translating the

modeling principles of the hierarchical model to the macroscopic level. The actual velocity

field is defined as the closest to the desired one among velocity fields that do not increase

the density in the already saturated zones and the velocity correction (difference between the

actual velocity and the desired one) should belong to the opposite of the cones of vision. The

second approach consists in relaxing the directional condition related to the cones of vision

by considering a family of minimization problems whose solution is expected to converge to
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a macroscopic counterpart of the hierarchical solution. We lay out some questions related to

these approaches and make the first steps towards writing such models.

Independently of the crowd motion modeling, we present some developments in establish-

ing a link between the continuous gradient flow framework in continuous Wasserstein spaces

and a recently introduced discrete gradient flow framework in discrete Wasserstein spaces. At

the continuous level, it is known that the Fokker-Planck equation can be interpreted in the

Wasserstein space as the gradient flow for the relative entropy functional with respect to a

specific stationary measure (coming from the potential in the Fokker-Planck equation). At the

discrete level, a similar framework has been proposed where the euclidean domain is replaced

by a network. A discrete heat equation on the network is defined using a Markov kernel, and

is interpreted in a discrete Wasserstein space as a gradient flow for a discrete relative entropy

with respect to the stationary measure of the Markov kernel. Our goal is to investigate the

link between the continuous framework and the discrete one. We show in this thesis that a

space discretization of the Fokker-Planck equation using a Finite Volume scheme leads to an

Ordinary Differential Equation that can be interpreted as a discrete Heat equation on the

underlying network for a Markov kernel. The resulting discrete Heat equation is consistent

with the gradient flow structure in the discrete Wasserstein space.

Structure of the thesis

The first chapter is devoted to the description of the state of the art. We start by recalling

some existing crowd motion models: the social force model, models based on anticipating

behavior, the granular model, network models, fluid dynamics models, hyperbolic conservation

law models, models based on game theoretic principles, the macroscopic model based on hard

congestion constraint and cellular automata models. Then, we recall some known data (body

dimensions and walking speed) and empirical results on the flow rate of placid pedestrians.

We end this chapter by a review on some crowd motion effects, notably: the Faster is Slower

effect, the zipper effect, the capacity drop, the effect of the presence of an obstacle on the

fluidity of evacuations, the stop-and-go waves and the formation of lanes in multidirectional

flows.

In Chapter 2, we introduce the principles of the instantaneous Nash equilibrium model.

We write its mathematical formulation and pay particular attention to the case of complete

influence for which we prove existence of solutions that are not unique in general. We also

describe the set of solutions and give a constructive procedure to build solutions. Some

remarks are given for the case of a general influence graph.

We consider in Chapter 3 the particular case of the Nash equilibrium model where the

influence graph is directed and acyclic, that we call hierarchical model. We prove existence

and uniqueness of solutions and describe the procedure used to build the solution. We also

consider the case where the influence graph is based on the cones of vision of individuals and

provide a sufficient condition in evacuation cases so that the influence graph is directed and

acyclic. We end this chapter by describing a numerical scheme to solve the model and we give
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a comparison between the hierarchical model and the granular model recalled in Chapter 1.

Chapter 4 is devoted to the confrontation of the numerical results of the hierarchical

model with empirical data. We describe in the first section of this chapter the evacuation

experiments involved in the comparison and the performed numerical simulations. For the

comparison between numerical simulations and controlled evacuation experiments, we are es-

pecially interested in two effects observed when looking to the time lapses between consecutive

egresses: the alternation between short and long time lapses and their power-law distribution.

Then, we show the ability of the hierarchical model to reproduce some crowd motion effects

known in the literature that are: the Faster is Slower effect, the beneficial effect of an obstacle

upon evacuation fluidity and the capacity drop phenomenon.

In Chapter 5, we describe first the transition from the granular model to its macroscopic

counterpart (both described in Chapter 1) by considering the same modeling principles. Then,

we introduce a macroscopic counterpart of the hierarchical model in the spirit of the transition

from the granular model to its macroscopic counterpart. We prove the well-posedness of the

instantaneous model and propose a numerical strategy to solve the problem. An example of

numerical simulation for this model is also displayed. A second approach is also discussed in

this chapter. A family of minimization problems depending on a parameter are introduced

by relaxing one of the conditions of the previous approach. The sequence of minimizers is

shown to converge to a macroscopic counterpart of the microscopic hierarchical solution in

dimension one, and the case of dimension two is still under current investigation.

Finally, we start Chapter 6 by reviewing the gradient flow framework of the Fokker-Planck

equation with respect to the continuous Wasserstein distance. We recall the discrete Wasser-

stein distance on graphs and a convergence result of this discrete metric to its continuous

counterpart. We introduce then a Finite Volume discretization of the Fokker-Planck equation

in space. The resulting Ordinary Differential Equation is shown to be the gradient flow of the

discrete relative entropy functional with respect to the discrete Wasserstein distance.
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1.1. Existing models

1.1 Existing models

In this section, we recall some existing crowd motion models that have been studied over

the last five decades. It is actually difficult to propose a structured classification since many

criteria can be used (microscopic or macroscopic, deterministic or stochastic,... see the Intro-

duction for more details). The list is for sure non-exhaustive but we try to give at least one

example for each criterion of the classifications mentioned in the Introduction.

The social force model

The social force model is a microscopic model introduced by Helbing and Molnár in [60], based

on a system of inertial particles interacting through so-called social forces. Each individual is

represented by a disk of center qi and radius ri and his velocity ui evolves according to the

Ordinary Differential Equation:
dui(t)

dt
= Fi(t)

where Fi(t) is the sum of all forces exerted on the individual i at time t. The term Fi(t) is

composed of different physical forces that describe interactions between individuals (repulsion

force), an individual and a wall or an obstacle (repulsion force) and his own will to move in

his desired direction and at his desired speed (acceleration force). The acceleration force term

is of the following form:
Uiei(t)− ui(t)

τi

where Ui is the desired velocity, ei(t) is the desired direction of motion and τi is a relaxation

time. The repulsive force between two individuals i and j reads:

f⃗ij(q) = −∇qij Vij(b(qij))

where qij = qi − qj, b(qij) = (1/2)
√

(|qij | + |qij − sjej |)2 − (sj)2 and sj = vj∆t is the order

of the step width of pedestrian j. After this seminal work, this model has been developed

in many directions. For example, an element of asymmetry has been included to account

for cones of vision, but the very philosophy remains based on mutual interaction forces which

mimic mechanical interactions. This model has also been generalized in [24] where individuals

are no longer represented by discs but rather by ellipses and the reaction field of the forces

is reduced to the cone of vision. The macroscopic limit of the social force model is computed

in [79] in dimension one.

Models based on anticipating behavior

The Follow-the-Leader model [5] is a one dimensional microscopic model of the decision mak-

ing type, based on a speed that decreases with the inter-individual distance. Consider N

individuals and denote by xi(t) the position of individual i at time t, we suppose that:

x1(t) < x2(t) < · · · < xN (t)
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The velocity of individual i depends on the distance to the individual in front of him, i.e. on

xi+1 − xi, and the positions evolve according to:

ẋi = φi(xi+1 − xi), i = 1, . . . , N

where φi(d) is a increasing function. An example of φ is:

φi(d) = Ui

[
1− exp

(
−d− dm

ds

)]
(1.1)

where Ui is the desired velocity of i, ds is a characteristic security distance and dm is the

length of the interval representing an individual. An example of function φ is displayed

in Figure 1.1. The leader of the file is individual N who goes at his desired velocity and

Figure 1.1: Example of function φ for the Follow-the-Leader model with ds = 1m and
dm = 0.5m

the others adapt their speeds according to him, hence the name of the model. This effect

reflects a simple and quite common anticipating behavior (valid for pedestrians or drivers):

each agent reduces its speed in order to prevent collision in case the person in front of him

suddenly stops. An extension of this model is described in [47] where the authors introduced

a time delay in the Follow-The-Leader model. This modification is done after performing

some controlled experiments of pedestrians walking in a circular domain without passing each

other, where the authors observed a delay in the response of an individual when the behavior

of his predecessor changes.

More sophisticated anticipation processes have also been proposed. For example, a cogni-

tive model was proposed by Moussaid et al. [95] based on behavioral heuristics where individ-

uals try to avoid collision with others by adapting the direction of their velocity and keeping

a safety distance to others. In [34], each individual is supposed to choose a cruising direction

such that, after a fixed time interval, his estimated point reached in this direction is the closest

to his target point, among all directions belonging to his cone of vision. A similar approach

has also been proposed in [103], where individuals choose a velocity direction belonging to
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their cone of vision to avoid collision until a certain threshold of distance-to-interaction, and

then decelerate.

Granular model

The granular model has been introduced by Maury and Venel in [90, 89] and is based on hard

congestion handling. Each individual i is represented by a rigid disk of center qi and radius

ri, and the configuration of individuals is denoted by q = (q1, . . . , qN ). The model is based on

two principles:

• Each individual i has a desired velocity denoted by Ui(q), it is the one he would like to

have in the absence of others,

• Disks representing individuals should satisfy a non-overlapping constraint. More pre-

cisely, the configuration of individuals is constrained to belong to a set of admissible

configurations defined by:

K =
{

q ∈ R
2N , Dij(q) ≥ 0, ∀i ̸= j

}

where Dij(q) = d(qi, qj)− ri − rj is the distance between individuals i and j.

The actual velocity field u(q) is defined as the closest, in the least square sense, to U(q) among

all admissible velocities which do not allow an overlapping of disks representing individuals.

Admissible velocities are described by the set:

C(q) =
{

v ∈ R
2N , ∀i ̸= j, Dij(q) = 0⇒ eij(q) · (vi − vj) ≤ 0

}

where eij(q) = (qj − qi)/|qj − qi| and the problem reads:

u(q) = PC(q)U(q)

where PC(q) is the euclidean projection operator on C(q). Although this equation seems quite

simple, the proof of well posedness of the evolution problem shows some difficulties since the

set of admissible velocities C(q) does not depend smoothly on the configuration q. The proof

calls on some tools from Convex Analysis. First, the problem is reformulated as a differential

inclusion using sweeping processes introduced by Moreau [94] and then the theory in [38, 37]

is used to prove existence and uniqueness of solutions. Further details on the theoretic study

of the problem can be found in [89, 120].

The granular model is based on mechanical interactions: individuals are considered as

grains interacting through physical forces. The interactions between individuals are symmetric

in that case and the law of action and reaction holds. That means pedestrians are allowed to

push each other when their desired velocities lead them to overlap. The behavior of individuals

in the granular model is justified in the case of highly congested crowds where mechanical

forces are exerted at the level of physical contact between individuals.
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Network models

In these models the space is represented by a network and each individual occupies a node of

it. Individuals can move from a node to another one when the nodes are linked by an oriented

edge going from the first node to the second one. For some of them, called Route choice

models, the way pedestrians chooses to move is calculated deterministically, for example, the

chosen paths are the shortest ones among all paths that link the sources and the destinations

as in [16, 15, 17]. Traffic congestion and other conditions could be taken into consideration by

attributing different weights to the oriented edges as it has been done in [54]. Queuing models

[83, 124] are also based on graphs, where the arrival of an individual at a node is managed

using a probability law. Then the pedestrian spends a certain amount of time at the node

before continuing on his next destination, leaving the queue.

Fluid dynamics models

The crowd movement was compared to fluid dynamics for the first time by Henderson [63,

62]. The author noticed that, for large crowds, one can describe the crowd movement using

equations obtained from the Maxwell-Boltzmann theory. The proposed model is inspired

by classical mechanics and thermodynamics: the crowd is considered as a compressible gas,

governed by laws like momentum conservation, first and second laws of thermodynamics.

This description of the crowd as a continuum of particles of gas or fluid type has been further

investigated in [56, 65, 10].

Hyperbolic conservation laws models

The Lighthill-Whitham-Richards model [82, 110] is a macroscopic counterpart of the Follow-

The-Leader model: each individual reduces its speed function of the density (decreasingly).

The general form of equation for this model is:

∂tρ+ ∂x(ρv(ρ)) = 0

where ρ is the density of the crowd and v(ρ) is the velocity that depends on the density. One

of the simplest examples of v is v(ρ) = 1 − ρ. Another example was given by Weidmann

in [123]:

v(ρ) = U
[
1− exp

(
−ρs

(
1
ρ
− 1
ρmax

))]

where ρs = 1.913 and ρmax is the maximum density (see Figure 1.4 for the plot of the velocity

in terms of the density according to Weidmann [123]). This example of relation between the

velocity and the density is the macroscopic counterpart of the relation between the velocity

and the distance between individuals for the Follow the Leader model described by (1.1).

In [13], the density is transported by a velocity that depends on a density average in

dimension one. Some models inspired from the traffic flow theory and using conservation laws

can be found in [27, 26, 3, 53, 13]. The celebrated macroscopic Hughes’ model [68, 69] is based
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on a sophisticated decision making process, it relies on a non-trivial optimization process: each

agent optimizes its way (according to some prescribed goal) according to the current density

distribution of the crowd, attempting to avoid overcrowded areas. This approach has been

implemented at the local level in [21] where the optimization process is based on the density

of the crowd within his cone of vision.

Models based on Game theoretic principles

In [33], a macroscopic counterpart of the Heuristic-Based model in [95] is proposed with

three different closures: a monokinetic distribution function, a von Mises-Ficher distribution

function and a hydrodynamic limit associated to a Local Thermodynamical Equilibrium. The

equilibrium in the third closure is compared to Nash equilibria in a game theoretic framework.

Another case where a macroscopic model is deduced from its microscopic counterpart can be

found in [20]. A Wardrop equilibrium, that is a particular case of Nash equilibrium, is used

to define a solution for congested traffic on networks and then the theory is extended to the

continuous setting replacing the network by a domain in R2. The optimization process can

even be delocalized in time, i.e. each agent designs its strategy with respect to the behavior

of other agents in the future, see e.g. [80, 112, 32], where a Nash equilibrium-like macroscopic

model is proposed, based on Mean Field Games.

Macroscopic model based on hard congestion handling

This model was introduced by Maury, Roudneff-Chupin and Santambrogio in [88, 91] and

is based on a strong expression of the congestion constraint, as the aforementioned granular

model. Pedestrians are represented by a density that is subject to remain below a certain

maximal value. At every point x in the domain Ω, we denote by U(x) the desired velocity of

an individual at x. The pedestrian’s density is transported by an admissible velocity field that

is the closest to the desired velocity field of the crowd respecting the congestion constraint.

More precisely, the density evolves according to the following system:

⎧
⎨

⎩
∂tρ+∇ · ρu = 0

u = PCρU
(1.2)

where PCρ is the L2-projection operator, Cρ is the set of admissible velocity fields that do not

concentrate the crowd in the already saturated zones:

Cρ = {v ∈ L2(Ω)2,
∫

Ω
v ·∇q ≤ 0 ∀q ∈ H1

ρ(Ω)}

and H1
ρ (Ω) = {q ∈ H1(Ω), q ≥ 0 a.e. in Ω, q = 0 a.e. in [ρ < ρmax ]}. It has been

shown in [88] that in the case where the desired velocity has a gradient structure, for example

U = −∇D where D is the distance to the exit door, Equation 1.2 corresponds to the gradient
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flow of the functional Φ defined below, in the Wasserstein spaces of probability measures:

Φ(ρ) =

⎧
⎨

⎩

∫

Ω
D(x)dρ(x), if ρ ∈ K,

+∞, otherwise.

Cellular automata

It is a particular class of models that was first described by Nagel in [98]. Many other re-

searchers developed this first model and made it among the most studied microscopic models.

Cellular automata models are neither microscopic nor macroscopic models and they are in-

trinsically discrete in space and time. The space is discretized into relatively big grid cells

and each cell can accomodate at most one individual. Obstacles are handled by making some

cells unreachable by individuals.

Figure 1.2: Example of space discretization for the cellular automata model

At each time step, there are two possible ways to move individuals. The first method is the

Random Sequential Update (RSU) that is moving individuals one by one in a random chosen

order to highlight the individual will to express himself [73, 77]. The second one is the Parallel

Update (PU) which consists on updating the positions of all the individuals simultaneously. If

many pedestrians want to access the same cell, one is chosen randomly to occupy it and the

positions of the others are kept unchanged [76, 114, 74, 75]. For both methods, individuals

are allowed to move either in four directions or in eight directions depending on the model,

and the direction is chosen according to some probabilities based on individuals’ goals and

possibly accounting for the environment. A floor field is introduced to cellular automata

models in [115, 19, 114] to modify the transition rates to neighbouring cells. Each agent is

supposed to leave a virtual trace which influences the motion of other pedestrians and a static

component is used to memorize preferred areas, walls and obstacles. The floor field transforms

the long-range interactions between pedestrians into local interactions with “memory”.

1.2 Characteristics of pedestrians

Modeling crowd dynamics requires a good knowledge about the characteristics of pedestri-

ans, especially for microscopic modeling where pedestrians are usually represented by disks
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or ellipses. Here we represent three of these characteristics that are investigated in [123, 18]:

the body dimensions of human beings, their walking speed and the flow rate of placid pedes-

trians. For emergency evacuations, the flow rate of panicked pedestrians is quite different

from the case of placid ones, panicked individuals are willing to behave selfishly and aggres-

sively. Empirical data for massive evacuation experiments are missing for obvious reasons:

the dangerous nature of such situations makes it impossible to reproduce them by controlled

experiments. However, some evacuation experiments are done with some restrictions on the

behavior of pedestrians to ensure safety. Two of them are described in Annex A and used in

Chapter 4 to validate the hierarchical model described in Chapter 3.

Dimensions and walking speed

The dimensions of the human body vary according to many factors as: gender, descent and

age. The average human body dimensions has a width of 45.6cm and a depth of 28.2cm,

which gives an average diameter of about 37cm when representing individuals with a circular

shape. The height of individuals also vary widely between populations, for example the world’s

tallest country is The Netherlands with an average height of 1.838m for men while the world’s

shortest country is Peru with a height average of 1.64m, and the situation is almost the same

for women. Since it is sufficient to study the motion of pedestrians represented in dimension

2, the height dimension is not of central importance for the work presented in this thesis.

According to [123], the walking speed of free pedestrians follows a normal distribution

with an estimated mean of 1.34m/s and a standard deviation of 0.37m/s. This result is

deduced from the mean speed and the standard deviation observed by researchers from many

countries (The Netherlands, UK, USA, Australia, Austria, Saudi-Arabia, Hong Kong, Sri

Lanka, Canada, India, Singapore and Thailand). The variation of walking speed is due to

many influencing factors:

• Conditions of pedestrians: lifestyle, cultural and religious differences, age, gender, legs

height, health status, selfish behavior,...

• Place: outdoor (parc, street, mountain,...), indoor (home, work, shopping mall, stairs...)

• Environmental conditions: temperature, weather, daytime,...

Flow rates of placid pedestrians

The flow rate is the number of persons who pass per unit of time and it is expressed in

general in pers/s. Its value depends on the available space for pedestrians. For example, it is

known that the flow rate decreases through bottlenecks (doors or narrow corridors), but the

dependence of the flow rate on the bottleneck width is different according to researchers. On

one hand, the authors in [66] affirm that the flow rate varies in a step wise manner with the

bottleneck width because the flow is supposed to depend on the integer number of pedestrian

lanes allowed to pass at a time through the bottleneck. On other hand, the flow rate is found
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Figure 1.3: Example of pedestrians passing through a narrow corridor: on the left,
a situation that supports the step wise increasing of the flow rate with the density
increase; and on the right, a situation that supports the continuous dependence of the
flow rate on the density. Figure from http://physicsworld.com

to continuously depend on the bottleneck width in [97, 117]. We display in Figure 1.3 for

two examples supporting the two possible relations between the flow rate and the density.

For each example, three different corridor widths are considered corresponding to: almost the

diameter of pedestrians, between the diameter of pedestrians and two times the diameter of

pedestrians and almost two time the diameter of pedestrians. For the first and the last cases

of corridor width, we observe respectively one and two lanes (side by side) of pedestrians for

both examples. The difference appear for the second case which correspond to a corridor

width between the diameter of pedestrians and two time the diameter of pedestrians, only

one lane of pedestrians is formed for the first example while two intercalated lanes can be

observed for the second one.

Empirical values of flow rate

The results of empirical studies show close values of maximum flow rate for American and

European pedestrians (between 1.4 and 1.53 pers/sm) and smaller values for Asians (between 1

and 1.29 pers/sm) according to [123]. The difference between those values is caused by smaller

Asian body buffer zone and safety distances, and also by the cultural difference between these

populations. Other researchers found different values for the flow rate: 1.3pers/s in [35], 1.6

pers/s in [108], 1.85pers/m in [78] and 1.9pers/s in [117]. These differences are actually due

to different measurement situations (locations, pedestrian attributes, trip purpose).

Flow rate and placid pedestrian speed

The flow rate is correlated to the speed and density of pedestrians. For low densities, pedes-

trians are free to walk at their desired velocity or free-flow speed. When the density increases,

placid pedestrians decrease their walking speed to avoid contact with others or to keep a

safety distance from them. But when the pedestrian density reaches its maximum (consid-

ered around 5 pers/m2) individuals can hardly move.

The relation between velocity and density, called fundamental diagram, has been investi-

gated by many researchers over the last five decades. Some of these relations are illustrated

in Figure 1.4, and here are some details about their locations (measurements are performed
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in everyday situations):

• [48] Fruin (1971): peak-hour flows at commuter bus terminal.

• [102] Older (1968): shopping streets.

• [118] Tanariboon et al. (1986): different measurements in Singapore.

• [122] Virkler and Elayadath (1994): pedestrian tunnel after University of Missouri foot-

ball games.

• [123] Weidmann (1993): 25 sets of data from controlled laboratory experiments where

measurements are performed on multidirectional flows.

Figure 1.4: Velocity/Flow-Density relation according to some researchers [29, 122, 123]

The relation between the flow rate and the density of walking pedestrians is easily deduced

from the fundamental diagram (by representing the density × speed in terms of the density)

and is illustrated in Figure 1.4. The pedestrian flow is zero for zero density, then it increases

with the density until reaching its maximum at a prescribed density, and then decreases to

attain zero again at the maximum density. The increasing phase of this curve is called the

free flow phase while the decreasing phase is known as the congested flow phase. The values

of maximum flow rate and its corresponding density as well as the maximum density differ

from an experiment to another due to different circumstances. So this variety of values do not

come in contradiction with each other, but rather complete each other to have a panorama of

empirical data for different situations.

1.3 Crowd motion effects

Since the main goal of crowd motion modeling is to help designing walking facilities and

predicting crowd behavior, it is very important for the models to be able to reproduce the

effects observed in empirical data.
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Faster is Slower

The Faster is Slower effect was described by Helbing et al. [57] as one of the characteristic

features of escape panic. When pedestrians are in a rush, they tend to increase their velocity

and show maladaptive pushing behavior that leads to a reduction of the flow through the exit.

From the psychological standpoint, this is due to panic in critical situations where pedestrians

adopt a selfish attitude. This clumsy behavior of pedestrians leads to serious consequences:

pressure arches tend to form upstream the exit, inducing a drastic reduction of the flux by

granular clogging.

The Faster is Slower effect has been investigated from the experimental point of view

in [49, 50] where some experiments of evacuation drills are analyzed in order to reveal the

features of such phenomena and test the evidence of the Faster is Slower effect. Two types of

experiments are performed: low competitiveness and high competitiveness. The difference in

the behavior of the participants in the two experiments induce clearly different consequences,

in particular individuals are close to be injured in the competitive case, with some jams

upstream the exit door. The evacuation is shown to be smoother and faster for the low

competitiveness case. The recorded videos of the two evacuations can be found on the following

link: https://www.youtube.com/watch?v=q-k4fCiiMlk.

The Social-Force model introduced by Helbing and Molnar in [60] is shown to be able

to produce this effect in the non-stationary case [104] as well as in the stationary case [105].

This was proven by simulating evacuations with different desired velocities and showing that

the curve representing the evacuation time for the non-stationary simulations (resp. the flow

rate for the stationary simulations) versus the desired velocity displays a minimum (resp. a

maximum).

Zipper effect

The zipper effect is a self organization phenomenon leading to an optimization of the available

space and velocity inside a bottleneck. This effect has been observed in the experiment of

unidirectional flow through bottlenecks described in [66]. The zipper effect is characterized

by the formation of intercalated lanes of pedestrians as shown in Figure 1.5 (in the middle).

This effect supports the hypothesis reported in Section 1.2 the flow rate through a bottlenecks

increases in a step wise manner with the width of the bottleneck.

Another effect that has been ascribed to a generalized zipper effect in [101], is the alter-

nation between short and long time lapses. This effect occurs especially when the width of

the bottleneck is about two times the diameter of pedestrians. In this case, pedestrian lanes

are formed upstream the exit door. Individuals from the same lane try to maintain a minimal

distance between them, while individuals standing shoulder to shoulder from different lanes

may come close to contact. As a result, pedestrians exits the room by packs of two individuals

(see [101] for more details about this effect).
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Figure 1.5: Zipper effect in a corridor with different width values [116]

Capacity drop

The capacity drop phenomenon is specific to crowd movement passing through a bottleneck.

When the inflow increases gradually, the outflow increases as well until a certain threshold

where the capacity of the door drops down leading to a decrease in the outflow. The outflow

then remains at a lower level until the inflow falls down. Empirical studies of this effect

are done in [22] where the inflow and outflow of a crowd passing through a bottleneck in a

underground station are plotted against time (see Figure 1.6). The inflow reaches its maximum

Figure 1.6: Pedestrian inflow and outflow patterns observed at a width restriction in a
London underground station where capacity drop occurs during a period of decrease in
inflow (flow expressed in pedestrians per 5 second period). Figure taken from [22].

after 30s and 15s later the outflow decreases dramatically to a lower level, then it increases

slightly and remain stable until the inflow reaches zero.

Effect of an obstacle

The effect of placing an obstacle upstream the exit door is becoming widely investigated

nowadays. It is sometimes referred to as a Braess’ paradox since an obstacle is supposed to

reduce the available space near the exit which should decrease the outward flow. However,
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the experiments show that placing an obstacle upstream the exit door boosts the evacuation

fluidity increasing the outward flow rate. This effect is observed experimentally in [70] where

the authors show that placing an obstacle in front of the door maximizes the escape efficiency.

In [125], a similar experiment to prove the efficiency of placing an obstacle is done for the flow

of sheep in a narrow door.

Analyzing the effects on placing obstacles, Helbing et al. [61] interpreted the presence of

an obstacle as a pressure absorber that fluidizes the evacuation increasing the efficiency of

the escape. Also, Zuriguel et al. [126] suggested that the clogging reduction is caused by the

pressure decrease in the region of arches formation. Different shapes of obstacles are tested

using the social force model in [41] to find the most efficient shape and placing two pillars or

two walls forming a reversed V are shown to have bigger influence on the exit flow compared

to the other tested obstacle shapes.

Stop-and-go waves

Stop-and-go waves are observed in unidirectional pedestrian flow and are characterized by a

periodic variation of the density of pedestrians in space and time. These walking disturbances

are in general observed when pedestrians walk in a corridor or queue. It has been observed in

the experiments described in [81, 107], where a group of pedestrians are asked to walk in a cir-

cle without overtaking each other. The authors considered different number of pedestrians in

the circle and many trials were performed. It has been observed that the speed of pedestrians

fluctuate periodically during a trial. In Figure 1.7, the authors plotted the evolution of the

pedestrians’ positions in time colored by their speed. Stop-and-go waves are easily observed

in the plot.

Figure 1.7: Evolution of the positions of individuals in time colored by the speed (figure
from [81])
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Figure 1.8: Snapshot of lane formation in an experiment done by the research project
HERMES of the German Federal Ministry of Education and Research and published
online in 2010 at the website PhysicsWorld.com

Lane formation

Another effect in pedestrian dynamics is the formation of lanes when two groups of individuals

are walking in opposite directions. It is a self-organization effect that occurs spontaneously

and is considered as a pattern reflecting “collective intelligence” [59]. This effect leads to a

reduction in the internal friction and reduce the delays in oppositely moving crowds. More-

over, these lanes are known to have an increasing width when the movement continues over

long distances [59]. They occur specially in underground metro lines connections and shop-

ping streets. An experiment showing the formation of lanes is done by the research project

HERMES of the German Federal Ministry of Education and Research, and is available here

https://www.youtube.com/watch?v=J4J__lOOV2E. A deeper study about the formation of

lanes in done in [96] where the authors describe some performed controlled experiments of two

groups of pedestrians walking in opposite directions in a circular domain. The flow of pedes-

trians is observed to segregate into lanes of uniform walking directions. The authors studied

the stability of the formed lanes and observed that the flow segregation vanishes when the

walking velocities of pedestrians fluctuate.

In [14, 19, 73, 75, 114], it is shown that the cellular automata model reproduces this

effect. The social force model is also shown in [60] to be able to reproduce this effect and

it has been shown that the number of formed lanes increases linearly with the width of the

corridor. For example, for a wide corridor of width 10m, 4 to 5 lanes are formed for a density

of 0.3pers/m2. In [58], a stochastic term is added to the social force model to distort the

velocity of pedestrians. Unless this term is significant, the model still shows lane formation

but when the term becomes important, lanes disappear and individuals are blocked forming

a crystal lattice.
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2.1. Description of the Nash equilibrium model

2.1 Description of the Nash equilibrium model

We propose in this chapter a new microscopic model, based on a decision making process, in

the hard congestion setting. We aim at describing highly crowded situations (quasi-contact),

yet restricted to civilized interactions between agents. Neighboring agents may then be in

quasi physical contact, but not to the point of creating physical interaction forces. Individuals

are supposed to have a desired velocity field, and the actual velocity field will be defined as

an instantaneous Nash equilibrium. Each individual is represented by a disc, and tends to

reach a personal objective encoded in a desired velocity. The model is based on the following

ingredients:

• Influence network on the set of individuals: we suppose that each individual is influenced

by some of its neighbors, and we shall represent the influence relations by a directed

graph (see Figure 2.1 for an example). Each agent, i.e. each vertex of the graph, points

to the agents that influence him (typically the set of persons which he sees, in practical

applications).

• Game theoretic principles: we consider that the velocities that may be globally chosen by

the crowd are equilibrium velocities, i.e. they realize an instantaneous Nash equilibrium.

Figure 2.1: Example of influence graph on individuals. The edges of the graph are
represented by blue dotted vectors and desired velocities in plain black vectors.

Let us start by recalling Nash equilibria for non-cooperative games. A game is constituted

of three elements: a set of players, a set of actions (or strategies) available to each player and

a utility function that presents each player’s satisfaction over actions. A game is said to be

non-cooperative when each individual search for his own satisfaction without caring about

the satisfaction of others, like a racing game for example. This is translated by a utility

function for each individual that do not account for the utility functions of the others, but

on their strategies only. In game theory, a list of actions (an action for each player) is called

a Nash equilibrium if the chosen action by each player maximizes his utility function taking

into consideration the equilibrium strategies of other players. In other words, no player can

benefit from changing his action assuming other players’ actions fixed (see [99] for the formal

definition of Nash equilibria).

Example 1
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Consider a game of two pedestrians/players A and B situated on a grid, in the spirit of cellular

automata, where players cannot overtake each other. The configuration of players is displayed

in Figure 2.2. At each time step, a player can either move to a neighboring cell or stay at his

previous position. Each player has three possible strategies: −1 (goes to the left), 0 (does not

move) or 1 (goes to the right). We assume that player A wants to go to the right and player

B wants to go to the left and they both influence each other. The configuration of players is

constrained then to satisfy a non-overlapping condition: both players cannot occupy the same

cell at the same time. We translate this unaccepted situation by a utility function that takes

the value −∞ when an overlapping occur, in other words, we suppose that both players are

infinitely unsatisfied in that case. Table 2.1 shows the satisfaction of each player according

A B

Figure 2.2: Example of configuration of two players on a grid

to his chosen strategy and the strategy chosen by the other player. A Nash equilibrium is a

couple of strategies such that each player could only do worse by unilaterally changing his

strategy. In that case, three Nash equilibria exists: (−1,−1), (0, 0) and (1, 1), which means

that both players choose the same strategy. Actually, if the players choose another couple of

strategies at least one of them could do better by changing his strategy. For example, when

players choose strategies that lead to an overlapping, their satisfaction is −∞ and they can

obviously do better by choosing a couple of strategies that do not violate the constraint. Also,

take for example the case where player A chooses −1 and player B chooses 0, player A could

do better by choosing 0 and then (−1, 0) could not be a Nash equilibrium for this game.

A
B −1 0 1

−1 (−10, 10) (−10, 0) (−10,−10)

0 (−∞,−∞) (0, 0) (0,−10)

1 (−∞,−∞) (−∞,−∞) (10,−10)

Table 2.1: Player’s satisfaction over couples of possible strategies.

It is common in Nash equilibrium problems to consider that each player tries to maximize

a utility function. However, for the case of the game we are going to introduce, we shall see

that it is more appropriate to consider minimization problems instead of maximization ones.

From now on, we consider that each player has a cost function (that is just the opposite of the

utility function) measuring the cost he pays for choosing a strategy according to the chosen

strategies of the others.
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For our model, we define a game for which the players are the pedestrians and their

available strategies are the velocities they are able to have. We suppose that the cost function

of a player is finite if his chosen velocity is admissible, in the sense that it preserves the non-

overlapping constraints with his influential neighbors. It is equal in that case to the euclidean

norm of his desired velocity mines his chosen one. Otherwise, his cost function is considered

equal to +∞. A Nash equilibrium is then a list of velocities such that the velocity of each

individual approaches best his desired one among all velocities that he considers as feasible,

given the positions and velocities of neighbors who influence him.

Remark 2.1.1. In the formal definition of generalized Nash equilibrium problems [43], the

utility function is not supposed to have infinite values. Actually, in the case where the feasible

strategy set of an individual depends on the strategies chosen by others (like the case of the

game we consider here), we just search for a Nash equilibrium such that the action of each

player belongs to his feasible strategy set depending on others’ choices. However, in our case

we consider that the unfeasible strategies of a player are possible but infinitely unsatisfying. A

player can then choose an unfeasible strategy if and only if it is the only possible option for

him. We shall see that the violation of the non-overlapping constraints will be recovered in

this case by an extra step in the determination of the actual velocities of individuals.

The following example illustrates Remark 2.1.1.

Example 2

We consider a game of three pedestrians/players A, B and C, in the same context of Example 1.

The configuration of players is displayed in Figure 2.3. We suppose that player A wants to go

to the left and is not influenced by the other players, player B does not want to move and is

influenced by players A and C, and player C wants to go to the right and is not influenced by

the others. The utility function of each player is 10 if his chosen strategy is his desired one,

−∞ if his chosen strategy leads to an overlapping with at least one of his influential neighbors,

and −10 if his chosen velocity is not his desired one but does not lead to an overlapping with

his influential neighbors. Since player A is not influenced by the others, his desired strategy

is admissible for him and then he chooses the strategy 1. The case is similar for player C

who chooses the strategy −1. For player B, whatever strategy he chooses, his utility function

is −∞. The list of strategies (1,0,−1) is a Nash equilibrium because each player does his

best considering the strategies chosen by the others, even if it leads to a non-admissible

configuration.

A B C

Figure 2.3: Example of configuration of three players on a grid.
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2.2 Mathematical formulation

We consider N individuals. The position of an individual i is denoted by qi and the configu-

ration of all individuals is denoted by q = (q1, . . . , qN ) ∈ RdN , d = 1, 2. We denote by Ui(qi)

the desired velocity of individual i, i.e. the velocity he would like to have in the absence

of others. In the case where individuals are interchangeable, we can write it U(qi), but we

shall keep the possibility to handle people with different objectives. In the following Ui will

stand for Ui(qi), where qi corresponds to the current configuration. We identify individuals

with discs centered at q1, . . . , qN , with respective radii r1, . . . , rN , constrained to satisfy a

non-overlapping condition. In other words, the configuration of individuals should belong to

the set of feasible configurations defined by:

K =
{

q ∈ R
dN , Dij(q) ≥ 0, ∀i ̸= j

}

where Dij(q) = |qi − qj|− ri − rj is the distance between individuals i and j.

We suppose that each individual is influenced by some others (not necessarily all of them)

and we denote by Ii the set of pedestrians that influence i. In practical cases, this set

corresponds to the cone of vision of the individual. We consider that each individual accounts

for all others belonging to his set of influence. We represent the influences between individuals

by a directed graph associated to the configuration q. This graph is built as follows:

• Each individual represents a node of the graph

• An oriented edge links the node i to the node j if and only if i accounts for j, i.e. j ∈ Ii.

Considering a feasible configuration q ∈ K, we shall call equilibrated a velocity field u(q) =

(u1, . . . , uN ) that is a Nash equilibrium to the game defined on the crowd. The fact that the

constraints on an individual’s velocity depend on others’ velocities does not properly define a

velocity field, but rather leads to define a (possibly empty) set of velocities that are compatible

with those requirements.

More precisely, we shall denote by Λ the set of all those velocity fields u = (u1, . . . , uN )

such that

ui = argmin
w∈Ci(q,u

−i)

1
2

|w − Ui|2, ∀i = 1, . . . , N (2.1)

where

Ci(q, u−i) =
{

w ∈ R
d, ∀j ∈ Ii, Dij(q) = 0⇒ eij(q) · (w − uj) ≤ 0

}
, (2.2)

with the usual notation u−i = (u1, . . . , ui−1, ui+1, . . . , uN ) and eij(q) = (qj − qi)/|qj − qi|. In

the case where Ci(q, u−i) is empty1, we consider that the minimizing functional is +∞ and

thus any ui ∈ Rd is admissible.

Let us start with some preliminary remarks on Nash equilibria.

1In other words, we consider the minimization problems: ui = argmin
w∈Rd

1
2

|w−Ui|2 + ICi(q,u
−i)(w) for

all i = 1, . . . , N where ICi(q,u
−i)(w) is the characteristic function of Ci(q, u−i).
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qi

qj
Dij

eij

−eij

ri

rj

Figure 2.4: Notation

1. As we shall see, Nash equilibria are not unique in general. We claim that this native

indeterminacy of velocities makes sense in many situations, in particular when there is

a direct conflict between individuals. A conflict between civilized agents is likely to lead

to a fuzzy phase during which each actor hesitates to step forward as far as he does

not know what its opponent is up to. We shall not address in details this very phase

of indecision, but rather describe a general framework able (together with additional

ingredients to model conflicts) to describe such situations. Besides, we shall see that the

deterministic character will be recovered in some particular situations, e.g. emergency

evacuation of a room, or more general situations where the influence graph is acyclic,

which rules out local or collective conflicts, and makes it possible to determine actual

velocities in a hierarchical way. This particular type of influence graph is the subject of

Chapter 3.

2. In the case where some individuals have neighbors that do not influence them, equili-

brated velocities may not be feasible in the sense that they would lead to overlapping

of discs. More precisely, they may not belong to the set

C(q) =
{

v = (v1, . . . , vN ) ∈ R
dN , ∀j ̸= i, Dij(q) = 0⇒ eij(q) · (vi − vj) ≤ 0

}
. (2.3)

We focus now on the study of the general Nash equilibrium model. We start by investi-

gating some simple examples to illustrate the previous remarks.

Some illustrative examples

Example 1: Non uniqueness

Consider two individuals in contact in dimension one (see Figure 2.5). We suppose that

individuals 1 and 2 have the following desired velocities and influence sets: U1 = 1, U2 = −1,

I1 = {2} and I2 = {1}. In this case, there exists a continuum of Nash equilibria: any

couple (u, u) such that u ∈ [−1, 1] is a solution. It corresponds to the situation of two face-

to-face individuals heading to opposite directions. This conflict sometimes leads to phase

of hesitation, possibly with slight back and forth moves. This example is the continuous

counterpart of Example 1 in Section 2.1.
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1 2
U1 U2

Figure 2.5: Example 1

Example 2: Actual collisions

Consider two individuals with crossing directions of their desired velocities such that I1 =

I2 = ∅ (see Figure 2.6). The desired velocities of individuals 1 and 2 are equilibrium velocities

(solution to Problem (2.1)(2.2)) but they are not admissible, in the sense that they would

lead to physical collision. This corresponds to the situation of two persons with converging

trajectories, focusing on their very desired direction of motion (tight angle of vision) and thus

not seeing each other and leading to an unwanted collision.

1 2

U1 U2

Figure 2.6: Example 2

Example 3: Inadmissibility

Consider the case presented in Figure 2.7 of three individuals in contact in one dimension.

The desired velocities are: U1 = 1, U2 = 0, U3 = −1 and we suppose that I1 = I3 = ∅
and I2 = {1, 3}. According to (2.1)(2.2), equilibrium velocities for individuals 1 and 3 are

necessarily u1 = U1 and u3 = U3, so that the set of feasible velocities for individual 2 is empty.

It corresponds to the situation in Example 2 with a person standing between the two groups.

He can see the two persons belonging to distinct groups moving backward, while they do not

see him, and he will find himself squashed in the middle. This example is the continuous

counterpart of Example 2 in Section 2.1.

1 2 3
U1 U2 U3

Figure 2.7: Example 3

The possibility that some collisions may occur (as for Examples 2 and 3) will make it

necessary to perform an extra step in actual computations, that is projecting the equilibrated

velocity field on the set of globally admissible velocities. Therefore, in the case where some

neighbors do not influence each other, the Nash equilibrium model will be used to define a
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new desired velocity field which accounts for the tendency of pedestrians to avoid contacts

(decision process), and it will be followed by a global projection step to handle the physical

contacts that have not been anticipated by individuals. The problem in that case reads:

• Decision step: ũi = argmin
w∈Ci(q,ũ

−i)

1
2

|w − Ui|2, ∀i = 1, . . . , N where Ci(q, ũ−i) is defined

by (2.2),

• Correction step: u = argmin
v∈C(q)

1
2

|v − ũ|2 where C(q) is defined by (2.3).

The second step of the model comes actually from the granular model in [90, 89]. For this

model, individuals are also supposed to have desired velocities as if they are alone, and their

actual velocity field is defined as the projection of the desired velocity field on the set of

globally admissible velocity fields C(q):

ug = argmin
v∈C(q)

1
2

|v − U |2. (2.4)

Let us give now some considerations on modeling behavior. The granular model considers

individuals as active and nonsocial: each individual tends to behave as if he were alone, and

interactions do not correspond to individual decision, they are rather of mechanical nature

(actual contact between grains). The Nash equilibrium model (2.1)(2.2) considers individuals

as thinking entities able to perceive their close neighborhood (in terms of positions and veloci-

ties), and to make decisions to optimize their behavior according to an instantaneous objective

(desired velocity) within a set of possibilities conditionned by the neighbors’ behavior. The

game theoretic aspect comes from the fact that the constrained set for an individual depends

on the strategy of other players.

The difference between the two models appears clearly when looking to their saddle point

formulations.

Proposition 2.2.1. The collection of minimization problems (2.1)(2.2) is equivalent to the

collection of saddle-point formulations: for each i = 1, . . . , N , there exists nonnegative La-

grange multipliers (λi
ij)j∈Ic

i
such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ũi +
∑

j∈Ic
i

λi
ijeij = Ui,

eij · (ũi − ũj) ≤ 0, ∀j ∈ Ic
i ,

∑

j∈Ic
i

λi
ij eij · (ũi − ũj) = 0,

(2.5)

where Ic
i ⊂ Ii is the set of individuals j that influence i, and that are in contact with i, i.e.

such that Dij = 0.

Proof. The functional is quadratic and the constraints are affine thus automatically qualified.

Therefore ũi is a solution of Problem (2.1)(2.2) if and only if there exists Lagrange multipliers
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(λi
ij)j∈Ic

i
such that (ũi,λi) is a solution of the saddle point formulation (2.5) (by Kuhn-Tucker

theorem, see [2] for more details).

Proposition 2.2.2. The minimization problem (2.4)(2.3) is equivalent to its saddle point

formulation: there exists nonnegative Lagrange multipliers (λg
ij)j ̸=i such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ug
i +

∑

j ̸=i

λg
ijeij = Ui,

eij · (ug
i − ug

j ) ≤ 0, ∀j ̸= i,

∑

j ̸=i

λg
ij eij · (ug

i − ug
j ) = 0,

(2.6)

Proof. The same arguments as for the proof of Proposition 2.2.1 hold to show this equivalence.

Since interactions are symmetric between individuals for the granular model (two neigh-

boring individuals influence each other in the same way), the Lagrange multipliers (λg
ij)j ̸=i

that quantify the interaction forces are also symmetric, i.e. it holds that λg
ij = λg

ji, ∀i ̸= j.

However, the situation is different for the Nash equilibrium model, it could happen that

λi
ij ̸= λj

ij . Take for example the case where an individual i is influenced by another individual

j whereas j is not influenced by i. For such situations, if the desired velocity of i is not feasible

and leads to an overlapping between i and j, we have λi
ij > 0 and λj

ji = 0. In that case, λi
ij

quantifies the correction that i makes on his desired velocity to avoid collision with j. Even in

the case where i and j influence each other mutually, the action of i over j is not necessarily

the same as the action of j on i, as we shall see in the case of complete influence graph in

Section 2.3.

2.3 Theoretical issues

We discuss in this section the existence and uniqueness questions for the Nash equilibrium

model. We mainly focus on the case of complete influence graph and give some remarks at

the end of the section on the general case on influence graph.

Complete influence graph

We address now the existence and uniqueness questions for Problem (2.1)(2.2) in the case

where all interactions are accounted for, i.e. the case where each individual is influenced by

all his neighbors and all the edges of the graph are directed in two ways (i → j and j → i

for all i ̸= j). Two examples of complete influence graphs in dimensions one and two are

displayed in Figures 2.8 and 2.9. The Nash equilibrium problem reads in this case:

ui = argmin
w∈Ci(q,u

−i)

1
2

|w − Ui|2, ∀i = 1, . . . , N (2.7)
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where Ci(q, u−i) is now:

Ci(q, u−i) =
{

w ∈ R
d, ∀j ̸= i, Dij(q) = 0⇒ eij(q) · (w − uj) ≤ 0

}
. (2.8)

In the one dimensional case, the problem can be simply written for each cluster of N individ-

uals as follows:

ui = argmin
ui−1≤w≤ui+1

1
2

|w − Ui|2, ∀i = 1, . . . , N (2.9)

Figure 2.8: Example of complete influence graph in dimension one

Figure 2.9: Example of complete influence graph in dimension two

We state the existence result in the following proposition, which gives a constructive pro-

cess to build an infinite number of equilibria. This process is based on mechanical principles,

so that the law of action and reaction automatically holds: it restricts this approach to the

complete case. Note also (see Proposition 2.3.4 below) that, in dimension two, this process

will not make it possible to build all Nash equilibria.

Proposition 2.3.1. We assume that the influence graph is complete, i.e. each individual can

be influenced by all the others. We consider a collection of strictly positive masses m1, . . . , mN ,

and denote by M ∈ MdN the associated diagonal matrix M = (m1, m1, . . . , mN , mN ) (or

simply M = (m1, . . . , mN ) in the one-dimensional setting). Then, the problem:

min
v∈C(q)

1
2

(v − U) · M(v − U), (2.10)

where C(q) is defined by (2.3), has a unique solution that is a particular solution of Prob-

lem (2.7)(2.8).

Proof. We proceed using the saddle point formulations of both Problems (2.7)(2.8) and

(2.10)(2.3). Problem (2.10)(2.3) is equivalent to its saddle point formulation, we denote by
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(uM ,λM ), λM ≥ 0, its saddle-point, so we have for all i = 1, . . . , N ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

miu
M
i +

∑

j ̸=i,Dij=0

λM
ij eij = miUi,

eij · (uM
i − uM

j ) ≤ 0, ∀j ̸= i, Dij = 0,

∑

j ̸=i,Dij=0

λM
ij eij · (uM

i − uM
j ) = 0.

(2.11)

Hence, setting λi
ij = λM

ij /mi, the couple (uM
i , (λi

ij)j ̸=i,Dij=0) satisfies the saddle point formu-

lation (2.5) of Problem (2.7)(2.8).

We shall see that some Nash equilibria cannot be recovered as limits of such mechanical

equilibria. Let us first establish the closed character of Λ.

Proposition 2.3.2. For the case of a complete influence graph, the set Λ of all Nash equilibria

is closed in RdN .

Proof. Let (un)n ⊂ Λ be a convergent sequence and let u be its limit. We denote by

(λi,n
ij )j ̸=i,Dij=0 the nonnegative Lagrange multipliers associated to un

i , for all i = 1, . . . , N

and n ∈ N: ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un
i +

∑

j ̸=i,Dij=0

λi,n
ij eij = Ui

eij · (un
i − un

j ) ≤ 0, ∀j ̸= i, Dij = 0,

∑

j ̸=i,Dij=0

λi,n
ij eij · (un

i − un
j ) = 0

(2.12)

Let Ji be the set:

Ji =
{

j ̸= i, (λi,n
ij ) has an infinite number of non-zero terms

}

After some rank, the sequence
∑

j∈Ji

λi,n
ij eij is equal to

∑

j ̸=i,Dij=0

λi,n
ij eij = Ui − un

i and is then

convergent. Since the set of nonnegative linear combinations of (eij)j∈Ji is closed, the limit

can be written in the form
∑

j∈Ji

λi
ijeij for some λi

ij ≥ 0, for all j ∈ Ji. We set λi
ij = 0 for all

j /∈ Ji, so we can write:

ui +
∑

j ̸=i,Dij=0

λi
ijeij = Ui.

We pass to the limit in the second equation of (2.12) to get:

eij · (ui − uj) ≤ 0

for all j ̸= i. So it remains to be proved that the complementary condition

∑

j ̸=i,Dij=0

λi
ij eij · (ui − uj) = 0
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holds. For j ∈ Ji, there exists a sub-sequence still denoted by (λi,n
ij )j ̸=i,Dij=0 such that λi,n

ij is

strictly positive starting a given rank. The complementary condition

λi,n
ij eij · (un

i − un
j ) = 0

is satisfied for all n ∈ N, so eij · (un
i − un

j ) = 0 for n sufficiently large. Passing to the limit in

the last equality we get

eij · (ui − uj) = 0

for all j ∈ Ji. Then, the following holds for all i = 1, . . . , N :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui +
∑

j ̸=i,Dij=0

λi
ijeij = Ui

eij · (ui − uj) ≤ 0, ∀j ̸= i, Dij = 0,

∑

j ̸=i,Dij=0

λi
ij eij · (ui − uj) = 0,

which means that (u, (λi
ij)j ̸=i,Dij=0 is a solution of the saddle point formulation of Prob-

lem (2.7)(2.8), and thus u belongs to Λ.

We denote by Λm the set of all those velocity fields which can be obtained as a solution

of (2.10), where M is a diagonal matrix associated to masses m1, . . . , mN > 0. We have

already shown that Λm ⊂ Λ, and the previous proposition extends the inclusion to the closure:

Λm ⊂ Λ. A natural question arises: does it hold that Λm = Λ ? The answer is yes in dimension

one and it is proved in Proposition 2.3.3. However, we show in Proposition 2.3.4 that it is not

true in dimension two, which means that some equilibria are genuinely of the game-theoretic

type and cannot be recovered by mechanical principles.

Proposition 2.3.3. In the one dimensional setting, it holds that Λm = Λ.

Proof. We have already proved that Λm ⊂ Λ, it remains to be demonstrated that Λ ⊂ Λm.

Let U be a desired velocity field for a cluster of N individuals in contact, and u ∈ Λ be an

equilibrated velocity field solution to Problem (2.9). The equilibrated velocity of an individual

is either equal to his desired one if this latter is admissible, or equal to the equilibrated velocity

of one of its neighbors (or both if ui−1 = ui+1) if his desired velocity is not admissible. We

can then assort the individuals in two groups: the first one for individuals who have their

desired velocity as their equilibrated one, and the second one for the rest of individuals. We

assign an infinite mass for the individuals of the first group. Consider now a sub-cluster of

all individuals of the second group having the same equilibrated velocity. Since no individual

could benefit from having a velocity greater than the maximum desired velocity of the sub-

cluster and its closest neighbors (the two individuals on the left and right of the sub-cluster, if

they exist) or less than its minimum, the equilibrated velocity of the sub-cluster lies between

these two values. Thus the equilibrated velocity could be written as a weighted average of the

desired velocities of the individuals in the sub-cluster and possibly their closest neighbors.
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Proposition 2.3.4. In the two dimensional setting, the inclusion Λm ⊂ Λ is strict.

Proof. Consider the configuration of individuals represented in Figure (2.10) where the de-

sired velocities of individuals are: U1 = (1, 0), U2 = (0,−1), U3 = (−1, 0) and U4 = (0, 1).

We denote by u1 = (u1,x, u1,y), u2 = (u2,x, u2,y), u3 = (u3,x, u3,y) and u4 = (u4,x, u4,y) an

equilibrated velocity field solution of Problem (2.7)(2.8). Expanding the constraints on the

equilibrated velocities of individuals in contact 1↔ 2, 2↔ 3, 3↔ 4 and 4↔ 1, we obtain re-

spectively: u1,x ≤ u2,x, u2,y ≤ u3,y, u3,x ≤ u4,x and u4,y ≤ u1,y, so the individual minimization

problems reads:

u1 = argmin
u1,x≤u2,x,u1,y≥u4,y

1
2

[(1− u1,x)2 + u2
1,y], u2 = argmin

u2,x≥u1,x,u2,y≥u3,y

1
2

[u2
2,x + (1 + u2,y)2]

u3 = argmin
u3,x≥u4,x,u3,y≤u2,y

1
2

[(1 + u3,x)2 + u2
3,y], u4 = argmin

u4,x≤u3,x,u4,y≤u1,y

1
2

[u2
4,x + (1− u4,y)2].

Taking for example the following velocities u1 = U1 + U4 = (1, 1), u2 = U1 + U2 = (1,−1),

u3 = U2 + U3 = (−1,−1) and u4 = U3 + U4 = (−1, 1), we can easily verify that they solve the

above minimization problems and form then a Nash equilibrium of Problem (2.7)(2.8).

1
2

3
4

: Desired velocities

: Equilibrated velocities
(Nash equilibrium)

Figure 2.10: Four individuals forming a cycle

We represent in Figure 2.10 the desired velocities of the individuals as well as their equi-

librated ones. For this particular Nash equilibrium, each individual has been influenced by

the person on his right only. This could also be deduced when looking at the directions of

these velocities for each individual. Consider for instance the interaction between 1 and 2.

Consider the velocities that would result from a projection of the desired velocity field on the

set of feasible velocities, for some non degenerated mass matrix M (see Eq. (2.10)). Since m1

and m2 are finite and positive, the horizontal velocity of individual 1 is necessarily reduced,

which is not the case here (individual 1 fully imposes his horizontal velocity to individual 2).

Focusing on 1↔ 2 interaction, the considered equilibrated velocity field can be obtained only

by having m1/m2 going to infinity. Similarly, considering the remaining interactions 2 ↔ 3,

3 ↔ 4, and 4 ↔ 1, we obtain that m2/m3 → +∞, m3/m4 → +∞ and m4/m1 → +∞. This

is impossible since, by cyclicity, the product of these four ratios is 1.
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Concluding remarks

In this section, we give some remarks on the existence of solutions in the case of a non-

symmetric graph with cycles and on the uniqueness of solutions in the case of a cyclic influence

graph. The case of a directed acyclic influence graph (hierarchical situation) is the subject of

Chapter 3, where we prove existence and uniqueness of solutions for this special case.

Theoretical issues (existence)

Apart from the case of a complete influence graph and a directed acyclic one, the general

theory on the existence of Nash equilibria does not apply due to the particular form of the

cost functions considered for the game. Actually, the classic existence results require either

continuity of the cost functions as in [31, 52, 44], its boundedness [30], or semi-continuous

dependency of the admissible set of strategies for an individual upon the strategies of other

players [6]. Some weaker conditions on the cost functions have been recently proposed to prove

existence of Nash equilibria for discontinuous games [9, 109, 100, 8], but are not satisfied by

the cost functions considered in this chapter. The existence issue in general is still an open

question.

Modeling issues (uniqueness)

In the case of an influence graph which contains cycles, solutions are not unique in general

and one needs to make choices in order to obtain a proper evolution model. This indetermi-

nacy is inherent to some situations, and reflects conflicts that are not meant to be resolved in

a systematic way. For example, it corresponds to the situation of two face-to-face individuals

in a corridor heading to opposite directions where a conflict may arise and lead to a phase

of hesitation, possibly with slight back and forth moves. In the case of a complete influence

graph, an actual computation of a Nash equilibrium can be made by affecting different masses

to individuals (those masses may vary in time), which quantify their respective willingness, to-

gether with their impoliteness. Nevertheless, in the general (non symmetric) case with cycles,

the issue is much more delicate and calls for a finer psychological description of interactions

between individuals, including politeness, aggressive behavior, capacity to instantaneously

elaborate strategies based on what is expected from neighbors,. . . With this goal in mind, we

started investigating some controlled experiments to study interactions between individuals

whose anticipating trajectories intersect (cf. Appendix A). This work is still under current

investigation.
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3.1. Description of the hierarchical model

3.1 Description of the hierarchical model

We propose in this chapter a crowd motion model for evacuation situations where individuals

are considered civilized and respectful. The model is a particular case of the Nash equilibrium

model described in Chapter 2 and is also based on a decision process in a hard congestion

setting. Individuals are supposed to have desired velocities, it is the ones they would like to

have if they were alone. We consider that each individual is influenced by some others and

a directed graph is associated to the influence relations (each individual points to his influ-

encers). In practice, the influence set of an individual would be his cone of vision. We consider

the case where the influence graph is directed and acyclic (hierarchical), hence the name of

the model. This particular case of influence graphs is characterized by extreme asymmetrical

interactions between individuals: two individuals cannot influence each other neither directly

nor indirectly, i.e. no cycles between individuals can occur. Hierarchic influence relations

based on the cones of vision are appropriate for evacuation scenarios where the influence of

an agent becomes increasingly significant when he get closer to the door. Individuals in front

of the exit door are the most influential ones and the influence of their behavior propagates

in an upstream way throughout the crowd. For example, consider a single file of pedestrians

in a narrow corridor and suppose they all want to go to the right. Since we consider civilized

agents, each one of them respects the individual in front of him and adapt his desired velocity

according to his motion. If the leader of the crowd decides to stop suddenly, all pedestrians

behind him cannot do better than stopping too.

The actual velocities of individuals are computed in two steps. First, a decision step where

each individual tries to approach his desired velocity taking into consideration the velocities of

his influential neighbors. This step models the tendency of individuals to avoid contact with

the others that influence them. Second, a correction step to avoid collisions that have not been

anticipated by individuals in the first step. In terms of modeling, this would correspond to the

situation of two persons walking without seeing each other (see Figure 3.1 for an example). As

soon as a physical contact occurs between them, the interaction no longer relies on a decision

process: they start interacting in a mechanical (and thus symmetric) way.

1 2

U1 U2

Figure 3.1: Example of situation where two individuals do not see each other and are
close to overlap.
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Mathematical formulation of the problem

We use the same notation as in Chapter 2. Let Ω ⊂ Rd, d = 1, 2, be a domain and consider

N individuals whose positions are denoted by q = (q1, . . . , qN ) ∈ RdN . We suppose that

each individual has a desired velocity Ui(qi) that we write Ui for simplicity. Individuals

are represented by discs centered at q1, . . . , qN , with respective radii r1, . . . , rN , and they

are constrained to satisfy a non-overlapping condition. In other words, the configuration of

individuals q should belong to the set of feasible configurations defined by:

K =
{

q ∈ R
dN , Dij(q) ≥ 0, ∀i ̸= j

}

where Dij(q) = |qi− qj|− ri− rj is the distance between individuals i and j. We suppose that

each individual is influenced by some neighbors (not all of them) and we denote by Ii the set

of pedestrians that influence i.

qi

qj
Dij

eij

−eij

ri

rj

Figure 3.2: Some notation

We represent the influences between individuals by a directed graph associated to the

configuration q that is built as follows:

• Each individual represents a node of the graph

• An oriented edge links the node i to the node j if and only if i accounts for j, or

equivalently, j ∈ Ii

We are interested in the case where the influence graph between individuals is directed and

acyclic (hierarchic). According to [28], it means that there exists an indexing of the individuals

such that

i < j ⇐⇒ j ∈ Ii.

We suppose that individuals are indexed according to this order. In practice, this model will

be used in situations where all individuals point toward the same direction (e.g. evacuation

of a room), so that the influence graph based on cones of vision will be natively hierarchical.

The first step of the model, that is the decision step, consists in computing an equilibrated

velocity field ũ = (ũ1, . . . , ũN ) solution to a collection of personal minimization problems

where each individual tries to approach best his desired velocity, taking into consideration

non-overlapping constraints with his influential neighbors. The minimization problems read:

ũi = argmin
w∈Ci(q,ũ

−i)

1
2

|w − Ui|2, ∀i = N, . . . , 1 (3.1)
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where

Ci(q, ũ−i) =
{

w ∈ R
d, ∀j ∈ Ii, Dij(q) = 0⇒ eij(q) · (w − ũj) ≤ 0

}
, (3.2)

with the usual notation u−i = (u1, . . . , ui−1, ui+1, . . . , uN ) and eij(q) = (qj − qi)/|qj − qi|. The

set Ci(q, ũ−i) is the personal set of admissible velocities for i that takes into consideration

the decided velocities of his influential neighbors. Browsing the individuals from the largest

index to the smallest one allows us to compute the equilibrated velocities of individuals in a

frontal manner through the minimization problems (3.1)(3.2). The existence and uniqueness

of solutions to Problem (3.1)(3.2) are proved in Theorem 3.2.2.

The second step of the model is a collision handling to solve conflicts that have not been

handled in the first step. The equilibrated velocity field ũ is projected on the set of globally

admissible velocity fields as for the granular model in [90, 89]:

u = argmin
v∈C(q)

1
2

|v − ũ|2 (3.3)

where

C(q) =
{

v = (v1, . . . , vN ) ∈ R
dN , ∀j ̸= i, Dij(q) = 0⇒ eij(q) · (vi − vj) ≤ 0

}
. (3.4)

Existence and uniqueness of solutions comes from the fact that the set C(q) is closed and

convex and the minimization functional is strictly convexe and l.s.c.

3.2 Theoretical issues

We address now the existence and uniqueness questions for Problem (3.1)(3.2). We start by

proving that the minimization problems characterizing the equilibrated velocities of individ-

uals can be formulated in a saddle point manner.

Proposition 3.2.1. The collection of minimization problems (3.1)(3.2) is equivalent to the

collection of saddle-point formulations: for each i = 1, . . . , N , there exist nonnegative La-

grange multipliers (λi
ij)j∈Ic

i
such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui +
∑

j∈Ic
i

λi
ijeij = Ui,

eij · (ui − uj) ≤ 0, ∀j ∈ Ic
i ,

∑

j∈Ic
i

λi
ij eij · (ui − uj) = 0,

(3.5)

where Ic
i ⊂ Ii is the set of individuals j that influence i, and that are in contact with i, i.e.

such that Dij = 0.

Proof. The functional is quadratic and the constraints are affine thus automatically qualified.

Therefore ui is a solution of Problem (3.1)(3.2) if and only if there exists Lagrange multipliers
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(λi
ij)j∈Ic

i
such that (ui,λi) is a solution of the saddle point formulation (3.5) (by Kuhn-Tucker

theorem, see [2] for more details).

We consider now the case of an arbitrary hierarchical influence graph and end up this

section with a concrete example of influence graph based on the cones of vision.

Directed acyclic influence graph

Two examples of directed acyclic graphs in dimension one and two are displayed in Figures 3.3

and 3.4.

Figure 3.3: Example of directed acyclic graph in dimension one

Figure 3.4: Example of directed acyclic graph in dimension two

We prove in the following theorem the existence and uniqueness of solutions to this prob-

lem. Particularly, we show that all velocities can be uniquely determined in a frontal way,

starting from the most influential individuals (who do what they want) to the less influential

ones (who do what they can).

Proposition 3.2.2. We suppose that the influence graph of individuals is directed and acyclic,

then Problem (3.1)(3.2) has a unique solution.

Proof. The proof is based on a construction procedure that enables us to explicitly determine

a solution of Problem (3.1)(3.2), and then we prove that this solution is unique.

We start by enumerating the nodes of the directed acyclic graph using the inverse ordering

of the so-called topological sorting algorithm [28]. This algorithm gives a linear ordering of the

nodes of a directed acyclic graph such that: j > i if and only if there is a directed edge from

i to j. The ordering of the nodes using the topological sorting algorithm is not necessarily

unique, but we will see that this is not problematic. We suppose that individuals are indexed

according to the topological sorting algorithm, and solve the problem as follows:
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• Individual N has no leader, so no constraints are imposed on his velocity and we have

ũN = UN .

• Individual N − 1 has at most individual N in his influence set. Since ũN has already

been determined, the actual velocity ũN−1 is the unique solution of the minimization

problem (3.1)(3.2) for i = N − 1.

• The actual velocities ũN , . . . , ũj+1 being determined, ũj is the unique solution of the

minimization problem (3.1)(3.2) for i = j.

Suppose now that there exist two possible orderings for a given configuration using the

topological sorting algorithm, a solution of Problem (3.1)(3.2) can be determined using a more

general procedure. We consider the following partition of nodes and proceed as follows:

• E0 is the subset of individuals that have no leaders. For any j ∈ E0, we have ũj(q) = Uj .

• E1 is the subset of individuals whose leaders are all in E0. For any j ∈ E1, ũj(q) is

uniquely computed by the minimization problem (3.1)(3.2) for i = j since the velocities

of individuals in E0 have already been determined.

• Ek, for k = 2, . . . , N , is the subset of individuals whose leaders are in E0∪E1∪· · ·∪Ek−1,

with at least one leader in Ek−1. For any j ∈ Ek, ũj(q) is uniquely computed by

the minimization problem (3.1)(3.2) for i = j since the velocities of individuals in

E0 ∪E1 ∪ · · · ∪ Ek−1 have already been determined.

Hence, Problem (3.1)(3.2) has a unique solution.

Remark 3.2.3. In the case where Ci(q, ũ−i) is empty for an individual i (as for Example 3

in Chapter 2), the functional is equal to +∞ and then any velocity in Rd is a minimizer of the

problem1 and leads to an overlapping with others. In this case, we consider that the individual

chooses his desired velocity as an equilibrated velocity, to keep in consideration his personal

objective, and the collision in handled by the second step of the model.

Case where Ii is the cone of vision of i

We consider now the practical case where each individual is influenced by others he can see,

i.e. the ones that are in his cone of vision. This cone ranges to the left and to the right by

an angle α < π/2 with respect to the line of sight of an individual (considered colinear with

the direction of his desired velocity) and has a fixed length that we denote by l. The cone of

vision of an individual i is then defined by:

V (qi, Ui,α, l) =
{

x ∈ R
2,

(x− qi) · Ui

||x− qi|| ||Ui||
≥ cosα and ||x− qi|| ≤ l

}
. (3.6)

1Remark that Problem (3.1)(3.2) can be written as: ui = argmin
w∈Rd

1
2

|w − Ui|2 + ICi(q,u
−i)(w)
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In the one-dimensional case, the cone of vision is simply a segment of length l:

V (qi, Ui, l) = {x ∈ R, x is between qi and qi + sgn (Ui)l } . (3.7)

qi

V (qi, Ui, α, l)

α

Ui

Figure 3.5: An example of cone of vision and its corresponding influence graph in
dimension two.

The influence set of i is now defined by:

Ii = {j ∈ P \ {i}, qj ∈ V (qi, Ui,α, l)}

and the problem reads:

ũi = argmin
w∈Ci(q,ũ

−i)

1
2

|w − Ui|2, ∀i = 1, . . . , N (3.8)

where

Ci(q, ũ−i) =
{

w ∈ R
d, ∀j ∈ Ii, Dij(q) = 0⇒ eij(q) · (w − ũj) ≤ 0

}
. (3.9)

We aim now to prove the existence and uniqueness of solutions to Problem (3.8)(3.9)

for the case of an evacuation (all individuals want to reach a target at the boundary of the

domain). This result is obtained by proving that, under some conditions, the influence graph

based on the cones of vision is acyclic. The problem fits then the frame of the hierarchical

model (3.1)(3.2) and Theorem 3.2.2 could be applied.

Proposition 3.2.4. Let Ω be a convex domain with exits located on its boundary. We consider

that all individuals have desired velocities pointing either to the closest point of an exit door

or to its center. We suppose that each individual is influenced by others in his cone of vision

centered about the direction of his desired velocity, and that the following condition is satisfied:

||∇U ||2 <
cos α

max
i

ri
. (3.10)

Then the influence graph of individuals is acyclic and Problem (3.8)(3.9) has a unique solution

by Theorem 3.2.2.
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α

Desired velocity

Cone of vision

Figure 3.6: Acyclicity condition (3.10)

Ui

Ui Uj

−Uj

θi θj

(θi + θj )/2

ri rj

Figure 3.7: Notation used in the proof of Theorem 3.2.4

Proof. Without loss of generality, we suppose that the desired velocity field U is normalized.

For every couple of individuals (i, j), let θi = ̂(Ui, eij) and θj = ̂(Uj , eji). We ensure that

individuals i and j do not see each other mutually when max(θi, θj) > α. To satisfy this

constraint, it is sufficient to have

cos
(
θi + θj

2

)
≤ cosα.

We have (see Figure 3.7):

cos
(
θi + θj

2

)
=

||Ui −Uj||
2

≤ (ri + rj)
||∇U||2

2
≤ max

i
ri ||∇U||2.

By prescribing the last term to be less than cosα, we obtain exactly condition (3.10). There-

fore, the influence graph based on the cone of vision is hierarchical under this condition and

Problem (3.8)(3.9) has a unique solution.

The decision taken by each individual reduces2 his desired velocity in the direction where

he wants to go. In other words, his decision based velocity is smaller than his desired velocity

in the direction of his desired movement, as stated in the following proposition.

2Individuals go slower in their desired direction of motion for the hierarchical model based on cones
of vision compared with the granular one where the desired velocity is directly projected on the set of
globally admissible velocity fields.
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Proposition 3.2.5. Let U be a desired velocity field and ũ be the equilibrated desired velocity

field resulting from the decision process of each individual (Problem (3.1)(3.2)). Then the

following holds:

Ui · ũi ≤ ||Ui||2, ∀i = 1, . . . , N.

Proof. Using the saddle point formulation (3.5) of the hierarchical model where Ic
i is the set

of individuals that are in the cone of vision of i and are in contact with him, we have:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ũi +
∑

j∈Ic
i

λi
ijeij = Ui,

eij · (ũi − ũj) ≤ 0, ∀j ∈ Ic
i ,

∑

j∈Ic
i

λi
ij eij · (ũi − ũj) = 0,

(3.11)

The first line implies that:

ũi · Ui +
∑

j∈Ic
i

λi
ijeij · Ui = ||Ui||2.

Since individual i could only be influenced by others in his cone of vision whose angle is

strictly less than π/2, we have λi
ijeij · Ui ≥ 0 for all j ∈ Ic

i , which ends the proof.

3.3 Numerical solution for the hierarchical model

We propose in this section a numerical scheme to approximate the unique solution of the

hierarchical model, based on a first order expansion of the constraints on the velocity.

Time discretization

Let t0 = 0 be the initial time, τ > 0 a time step and tn = nτ the computational times.

We suppose that condition (3.10) is satisfied for all time t ∈ [0, T ], with T fixed. Consider

a given initial configuration q0 = q(t0) ∈ K. At each time step we start by re-indexing the

individuals according to the topological sorting algorithm, so that any individual i is influenced

by individuals with an index j > i. We keep the same notation for readability reasons. We

update the individuals’ positions as follows: qn+1 = qn + τun+1 where un+1 is the actual

velocity computed in two steps, both based on a first order expansion of the non-overlapping

constraints as proposed in [87].

The first step corresponds to individual adaptation (decision taking phase). Starting from

i = N , N − 1, . . . , each individual i picks the velocity ũn
i that approaches best his desired

one Ui, subject to constraints with neighbors that influence him. When i’s turn comes, all

velocities ũn
i+1,. . . , ũn

N have already been computed. For all j ∈ Ii, if i takes the velocity w
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during τ , the first order expansion of Dij(qn + τv) is

Dij(qn + τv) = Dij(qn) + τ∇Dij(qn) · v + o(τ),

= Dij(qn) + τeij(qn) · (ũn
j − w)

that is an affine expression which depends on velocities that have already been computing,

thanks to the hierarchical ordering. We simply prescribe that the previous expression is

non-negative.

The second step (global preservation of non-overlapping constraints) consists in projecting

the equilibrated velocity ũn on the set of admissible velocities that ensure the non-overlapping

of individuals at each time step. These velocities should satisfy, for all i ̸= j,

Dij(qn) + τeij(qn) · (un
j − un

i ) ≥ 0,

that is again the first order expansion of Dij(qn+τun) ≥ 0. It has been shown in Proposition 2,

Section 4 in [87] that it is sufficient for the velocity field v to satisfy this condition to be feasible,

thanks to the convexity of the distance Dij .

To sum-up, the algorithm reads as follows:

First step

We solve the following minimization problems in the following order i = N, N − 1, . . . , 1:

ũn+1
i = argmin

w∈Cτ
i (qn,ũn

−i)

1
2

|w − Ui(qn
i )|2

where

Cτ
i (qn, ũn

−i) =
{

w ∈ R
d, ∀j ∈ Ii(qn), Dij(qn) + τeij(qn) · (ũn

j − w) ≥ 0
}

.

Note that, because of the hierarchical indexing, all indices j correspond to individuals that

have already decided their velocity ũn
j .

Second step

The vector of equilibrated velocities ũn+1 is projected on the set of globally admissible veloc-

ities (with respect to the non-overlapping constraint):

un+1 = argmin
v∈Cτ (qn)

1
2

|v − ũn|2

where

Cτ (qn) =
{

v ∈ R
dN , ∀j ̸= i, Dij(qn) + τeij(qn) · (vj − vi) ≥ 0

}
.

The minimization problems in the first step are local, they involve a very few degrees of

freedom. The problem in the second step is global, thus possibly more expensive, but it is a

simple quadratic minimization problem with affine constraints, we propose to solve it by the

Uzawa algorithm. The numerical scheme of the hierarchical model will be implemented and
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confronted with experiments in the next chapter.

Example
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Figure 3.8: Desired velocities on top-left, velocities resulting from the decision process
on top-right, projection of the desired velocities according to the granular model on
bottom-left and projection of the decision based velocities according to the granular
model on bottom-right.

We propose to illustrate the difference between the hierarchical model based on cones of

vision and the granular model by an example.

Figure 3.8 presents an example of individuals with desired velocities on top-left, velocities

resulting from the decision process on top-right, projection of the desired velocities according

to the granular model on bottom-left and projection of the decision based velocities according

to the granular model on bottom-right. The hierarchical influence graph based on the cones

of vision is represented in Figure 3.4. When applying the granular model directly to the

desired velocity field, individuals get clogged and a jam is created upstream the door. For the

hierarchical model, the first step that is the decision process reduces the velocity of individuals

who risk a collision with their successors. The second step consisting on applying the global

projection of the granular model to the decision based velocities comes then to handle possibly

remaining collisions. The result of the second projection gives the priority to the individuals

in front of the door to pass first and no jams then occur. This example illustrates the so-called
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Faster is Slower effect (or its equivalent Slower is Faster reversed version), as shall be detailed

in Chapter 4.
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Chapter 4

Comparison between simulation

results in different situations and

confrontation with empirical data
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4.1. Description of the real experiments and the numerical simulations

4.1 Description of the real experiments and the nu-

merical simulations

We propose to compare the numerical results for the hierarchical model based on the cones

of vision defined in Chapter 3 and the granular model [90, 89] recalled in Chapter 1, and

confront the results with real evacuation experiments described in [49, 101]. We describe in

this section the real experiments used in this chapter to validate the hierarchical model, as

well as the parameters used to perform the numerical simulations.

Real experiments

The first set of experiments involved in the comparison are evacuation drills done by Garci-

martín et al. [49]. During these experiments, a total of 85 participants were asked to exit

a room through a door of length 75cm. These experiments were performed two times with

different competitiveness level. In the first run, individuals were asked to exit the room as

fast as they could while trying to avoid physical contact with others and pushing is banned

(low competitiveness). In the second run, individuals were asked to do the same but they

were allowed to push each other while evacuating (high competitiveness), excluding violent

shoving. Other controlled experiments have been described in [101] involving 80 participants

asked to exit a room through a door of length 72cm and for each run a fixed percentage of

pedestrians were asked to behave selfishly, while the rest of individuals were asked to be-

have politely. The experiments were performed imposing some kind of “periodic boundary

conditions” which means that evacuated pedestrians are re-injected in the room again after

a while. More details about these experiments are given in Appendix A, and the reader is

referred to [49, 101] for the complete description of the experimental procedures.

Numerical simulations

In order to compare the hierarchical model to the aforementioned experiments, we run some

numerical simulations with the same conditions as for the experiments. We consider a room

Ω of size 7m × 7m with one exit of width 75cm situated on the center of a wall. We represent

individuals by disks of radii ranging between 17.5cm and 20cm considered as averages between

the width and depth of a human body (see Chapter 1 for more details and [123, 18] for a

complete description of the parameters of pedestrians). We fix the angle1 of the cone of vision

to α = π/3 and its length to 5m, but we only represent the edges of the influence graph

when the distance between two individuals is less or equal to 0.5m. We consider an initial

configuration q0 ∈ K of N individuals randomly distributed on Ω and we fix the time step to

τ = 0.1s. The desired velocities at each time step point toward the exit door. In particular,

1According to Proposition 3.10, a condition on the angle of vision and the desired velocity should
be satisfied to ensure the acyclicity of the influence graph. One can prove that it is sufficient to have
an angle of vision equal to π/3.
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we consider the case where the desired velocity field is the opposite of the gradient of the

distance to the exit door: U(q) = −∇D(q).

We run numerical simulations in the following three cases: the granular model, the hierar-

chical model based on the cones of vision without obstacles, and the hierarchical model based

on the cones of vision with an obstacle placed upstream the exit. For each case, we run two

types of numerical simulations. The first type corresponds to periodic evacuation simulations

(evacuated individuals are re-injected at a random position at the back of the room) for the

same initial configuration of N = 80 individuals performed during 3000s. The second type

corresponds to non-periodic evacuation simulations (the simulation gets to its end when all

individuals are out of the domain) for the same initial configuration of N = 150 individuals.

A snapshot of a periodic evacuation simulation is represented in Figure (4.1) and another one

for non-periodic evacuation is displayed in Figure (4.2). We extract the time lapses between

consecutive egresses for all simulations and base our analysis on it. These simulations are

used to validate the capability of the hierarchical model to reproduce the following crowd

phenomena:

• The alternation between short and long time lapses for the hierarchical model, a quan-

titative comparison is done with the experiments,

• Power-law distribution of time lapses for the hierarchical model and the granular one,

with a quantitative comparison between the exponent value for the hierarchical model

with the experiments,

• The Faster is Slower effect, or equivalently the Slower is Faster effect, by showing that

when pedestrians decide to go slower they actually go globally faster,

• The effect of the presence of an obstacle on the outward flow rate for the hierarchical

model, several obstacle shapes are tested,

• The drop in the door capacity when the number of individual involved in the evacuation

simulation increases.

For the capacity drop phenomenon, we run periodic evacuation simulations for N = 15, 20, 25,

30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150 and 160 individuals, and we follow the

evolution of the flow rate in terms of the number of pedestrians in the evacuation simulation.

The disks representing individuals have colors that corresponds to their instantaneous

frustration defined in [46] by: fi = 1−(ui ·Ui)/|Ui|2 for each individual i. It is a dimensionless

quantity, that measures the farness of the actual velocity from the desired one. It equal to 0

when the individual achieves his desired velocity and equal to 1 when the individual is not

moving or has an actual velocity orthogonal to his desired one. As it has been mentioned

in [46], for the case of a desired velocity written as the gradient of a dissatisfaction functional,

we have:
d
dt

D(qi) = ∇D · dqi

dt
= −ui · Ui = fi − 1, ∀i = 1, . . . , N
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Figure 4.1: Snapshot of a periodic evacuation simulation for the hierarchical model.

which means that fi is larger or equal to 1 when individual i is not reducing his dissatisfaction.

The color of the disks ranges between white and red, white being for individuals going at their

desired velocity (low frustration level) and red for individuals not satisfied at all with their

actual velocities (high frustration level).

4.2 Comparison between modeling results and em-

pirical data

In this section, we confront the numerical results of the hierarchical model based on the cones

of vision with the low competitiveness experiment by Garcimartín et al. [49] and the second

set of experiments by Nicolas et al. [101] (purposeful walkers) with 100% selfish individuals.

Particularly we are interested in investigating the alternation between short and long time

lapses and the power-law distribution of time lapses.

4.2.1 Alternation between short and long time lapses

This effect has been reported in [67, 66, 117, 101] and was ascribed to a generalized zipper

effect in [101]. A first comparison test is done to investigate whether the hierarchical model

based on cones of vision is able to produce the effect of alternation between short and long

time lapses. For this purpose, we compare the correlation function for numerical results with

those of real data from the experiments described in [101] and [49].

The correlation function between time lapses (∆tj)j ordered by the rank of exit is defined

by:

C(k) =
⟨(∆tj − ⟨∆t⟩)(∆tj+k − ⟨∆t⟩)⟩

⟨(∆tj − ⟨∆t⟩)2⟩
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Figure 4.2: Snapshot of a non-periodic evacuation simulation for the hierarchical model.

where the brackets denote an average over all pedestrians j in the experiment. If the time

lapses are uncorrelated, C(k) is zero. If correlation (resp. anti-correlation) exists between

consecutive time lapses, the correlation function will be positive (resp. negative) for k = 1.

We plot in Figures (4.3)(4.4)(4.5)(4.6) the correlation functions for respectively: the peri-

odic evacuation experiment by Nicolas et al. [101] (reproduced), the non-periodic experiment

with low competitiveness by Garcimartín et al. [49], and the numerical simulation of the hier-

archical model and the granular model with periodic boundary condition. The first three plots

show a negative dip for k = 1 which means that statistically anti-correlation exists between

successive time lapses, which asserts the effect for the real experiments, and the ability of the

hierarchical model to produce it. Moreover, the value of the correlation function for k = 1

is −0.233 ± 0.06 (95% confidence level, see Appendix B) for the numerical simulation which

is consistent with the ones obtained for the low competitiveness experiment by Garcimartín

et al. (0.23) and the experiment by Nicolas at al. (0.29). The effect is not apparent for the

numerical simulations of the granular model. The correlation between time lapses is almost

zero for all k = 1, . . . , 7 which means that no correlation exists for the case of the granular

model.

4.2.2 Power-law distribution of large time lapses

We are also interested in comparing the probability of occurrence of large time lapses between

consecutive egresses for numerical simulations and real experiments. This probability gives

us an idea about the frequency of clogging in evacuation processes. For this purpose, we

follow the procedure done in [49] where the authors plotted the complementary cumulative

distribution function (CCDF) for the two runs (low and high competitiveness), which is one

minus the cumulative distribution function of time lapses. This probability distribution is

computed as follows: we order the time lapses from smaller to larger, and for every time lapse
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Figure 4.3: Correlation between time lapses for a periodic evacuation experiment by
Nicolas et al. [101].

Figure 4.4: Correlation between time lapses for an evacuation experiment by Garci-
martín et al [49] with low competitiveness.

Figure 4.5: Correlation between time lapses for a periodic evacuation simulation for the
hierarchical model.

Figure 4.6: Correlation between time lapses for a periodic evacuation simulation for the
granular model.
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Figure 4.7: CCDF for the numerical results of the granular model and the hierarchical
model.

Figure 4.8: CCDF for the controlled experiments by Garcimartín et al. [49].
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∆ti we empirically estimate the probability of finding a time lapse that is larger or equal to

∆ti.

The CCDF for the periodic simulations are displayed in Figure 4.7, and those of the real

experiments are reproduced in Figure 4.8. The plots are represented in a log-log scale. One

can notice that the CCDFs follow a power-law for both models and both simulations (linear

tail of the cumulative distribution functions in log-log scale). The fact that these distributions

have such heavy tails means that large events have a significant weight in the distribution, and

this weight becomes increasingly important when the exponent of the power-law decreases.

We are especially interested in this subsection in comparing the hierarchical model based on

cones of vision to the low competitiveness case of the real experiments. Using a standard linear

fitting, we find that the values of the exponents are 5.67 for the hierarchical model based on

cones of vision and 5.76 for the experiment with low competitiveness. The hierarchical model

based on the cones of vision compares thus favorably with experiments in terms of rare events

distribution. Note that the fact that the exponents of the power-law are greater than 3 is

highly significant. Actually, when it is not the case, i.e. when the exponent is strictly less

that 3, the average time lapse between consecutive egresses (first moment of the probability

distribution) may not converge, inducing undefined average flow rate and mean evacuation

time.

Discussion

The hierarchical model compares favorably to the experiments by Garcimartín et al. [49] with

low competitiveness level. Actually, it has already been shown in Proposition 3.2.5, Chapter 3,

that the decision step of the hierarchical model reduces the desired velocity of an individual

in his desired direction of motion. If an individual sees his neighbor, he shall respect him

and chose an equilibrated velocity that do not violate the non-overlapping constraint with

him. Now when the anticipating trajectories of two individuals intersects (usually the case

in evacuation situations) and they do not influence each other, the collision is handled by

the granular projection (projection of the equilibrated velocity field on the set of globally

admissible velocity fields). So the decision step reduces the competitiveness level compared

to the granular model (direct projection of the desired velocity field on the set of globally

admissible velocity fields) where the competitiveness between individuals can reach high levels

due to the mechanical nature of the interactions.

Regarding the experiments by Nicolas et al. [101], the hierarchical model compares favor-

ably to the experiment of purposeful crowd with 100% selfish pedestrians. This result may

seem paradoxical, but it has been reported in [101] that the highest attained level of compet-

itiveness in the experiments is low compared to the competitiveness level of the experiments

by Garcimartín et al. [49]. Particularly, the Faster is Slower effect is not observed, but on

the contrary, a Faster is Faster effect is reported. The authors claim that this result is not

contradictory to the one obtained in other experiments, but is simply due to the low compet-

itiveness level even for the most selfish participants in the experiment. The competitiveness
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threshold is not attained to observe such effect.

4.3 Comparison between different modeling results

We propose in this section to compare three situations of simulations described in Section 4.1:

the granular model, the hierarchical model without obstacles and the hierarchical model with

an obstacle upstream the exit. The comparison is based on a study of the distribution of

time lapses and the time dependent flow rate for periodic simulations and the evacuation time

for non-periodic simulations. The time dependent flow rate is a moving average of the flow

through the exit door, computed over a time window δt. It is computed as follows:

jδt(t) =
1
δt

∑

j

H(tj − t)H(t + δt − tj) (4.1)

where H is the Heaviside function:

H(tj − t)H(t + δt − tj) =

⎧
⎨

⎩
1, if t ≤ tj ≤ t + δt

0, otherwise

and (tj)j are the exit times ordered by the rank of egress. We compare the granular model

to the hierarchical model based on the cones of vision in order to show the Faster is Slower

effect, or equivalently the Slower is Faster effect. The effect of an obstacle is also investigated

in section. We compare different shapes of obstacles (one pillar, two pillars, triangular shape

and reversed V shape) and show that the reversed V obstacle is more efficient than the others.

We compare the average flow for evacuation simulations with and without an obstacle and

show that the presence of an obstacle fluidifies the evacuation.

4.3.1 Faster is Slower

First, we compare two non-periodic evacuation simulations for the hierarchical model based

on the cones on vision and the granular model and find out whether these models are able

to reproduce this effect. In fact, individuals in the hierarchical model are considered civilized

and respectful, while for the granular model, individuals are rather aggressive and selfish,

considered as in competition to exit the room the fastest possible up to pushing people in

front of them. It has been already proved in Proposition 3.2.5 that the decision process based

on the visual information of each pedestrian reduces his desired velocity in his desired direction

of motion. As a consequence, individuals have a tendency to go slower in the direction where

they want to go for the hierarchical model based on cones of vision, compared to the granular

model. The effect we seek to recover here is rather a “Slower is Faster” effect, which is

equivalent to the classical Faster is Slower effect.

Some snapshots of the evacuation simulations are represented in Figure 4.17 to illustrate

a first difference point between the two models. For example, the second snapshot of the

granular evacuation shows a jam occurring upstream the exit door while for the hierarchical
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Figure 4.9: Distribution of time lapses for the granular model.

Figure 4.10: Distribution of time lapses for the hierarchical model without obstacles.

Figure 4.11: Distribution of time lapses for the hierarchical model with a reversed V
obstacle upstream the exit.
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Figure 4.12: Time dependent flow rate for the granular model for δt = 1s (thin lines)
and δt = 7s (thick lines).

Figure 4.13: Time dependent flow rate for the hierarchical model without obstacles for
δt = 1s (thin lines) and δt = 7s (thick lines).

Figure 4.14: Time dependent flow rate for the hierarchical model with a reversed V
obstacle upstream the exit for δt = 1s (thin lines) and δt = 7s (thick lines).

74



4.3. Comparison between different modeling results

Figure 4.15: Cumulated number of evacuated pedestrians in time for evacuation simu-
lations for the granular model and the hierarchical model.

model the evacuation is still smooth. To highlight the global difference, we represent in

Figure 4.15 the cumulated number of evacuated individuals versus time that gives an overview

of the evacuation process. The difference between the behavior of individuals is clear: the

curve for the hierarchical model based on cones of vision is linear, while for the granular

model there are some discontinuities caused by jams and the evacuation ends faster for the

hierarchical model. Besides, the slope of each segment is smaller than the one associated to

the hierarchical model. A study on the probability of jams’ creation for the granular model

is done in [46] and the authors showed that the duration of jams is related to the width

of the door. If the latter is smaller that 2 times the diameter of pedestrians, a stable jam

systematically develops, while if it is greater than 2.7 times the diameter of individuals, the

evacuation always gets to its end.

The periodic evacuation simulations also emphasizes this effect. We empirically compute

the mean of time lapses between consecutive egresses and the flow mean for the granular

model and the hierarchical model. The result is displayed in Table 4.1. The mean flow is

computed as the inverse of the time lapses mean and the errors represent a 95% confidence

interval (see Appendix B for details about the computation of the confidence intervals). The

time lapses mean is smaller for the hierarchical model compared with the granular one, and

the flow undergoes an increase of 31.4% which highlights the fact that individuals go globally

faster for the hierarchical model. The time dependent flow rates defined by (4.1) for δt = 1s

and δt = 7s are displayed in Figures (4.12) and (4.13) for 130s of the periodic evacuation

simulations. The flow rate of the granular model is subject to high fluctuations compared

to the flow rate of the hierarchical model. This is due to the creation of jams apparent in

the sudden fall of the flow rate many times during the evacuation. However, the flow rate

of the hierarchical model seems to be more stable in general with higher values of flow rate.

Also, the exponent of the power-law distribution of large time lapses for the granular model

is 2.64 which is very low compared to the one obtained for the hierarchical model based on

cones of vision (5.67) which means that long time lapses are more likely to occur in this case.

Although the exponent for the granular model is not close to the one obtained for the high
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competitiveness case of the experiments (4.83), the variation of the exponents goes in the

right direction (the exponent decreases with the increasing competitiveness level).

Model Time lapses (mean) Flow rate
Granular 0.41 ± 0.02 s 2.42 ± 0.1 pers/s

Hierarchical 0.31 ± 0.004 s 3.18 ± 0.04 pers/s
Hierarchical with obstacle 0.28 ± 0.002 s 3.6 ± 0.027 pers/s

Table 4.1: Different evacuation situations with their respective mean of time lapses and
flow rate.

4.3.2 Effect of an obstacle

It is known for evacuation situations that placing an obstacle upstream the exit door boosts

the outward flow. In order to explore whether the hierarchical model is able to reproduce

this effect, we start by searching for the obstacle shape that increases most the outward

flow. For this purpose, we consider four different shapes of obstacles: one pillar, two pillars,

triangular shape and reversed V shape, and run periodic evacuation simulations for each

shape. Snapshots of the simulations are displayed in Figure (4.16) and the resulting average

flows are shown in Table (4.2).

Obstacle shape Time lapses (mean) Flow rate
No obstacle 0.31 ± 0.004 s 3.18 ± 0.04 pers/s
One pillar 0.3 ± 0.003 s 3.26 ± 0.032 pers/s
Two pillars 0.29 ± 0.003 s 3.44 ± 0.032 pers/s

Triangle 0.29 ± 0.003 s 3.45 ± 0.032 pers/s
Reversed V 0.28 ± 0.002 s 3.6 ± 0.027 pers/s

Table 4.2: Different obstacle shapes with their respective flow rates and confidence
intervals.

The highest average flow is observed for the case of a reversed V obstacle. The average

flow of pedestrians is 3.18 ± 0.04 pers/s for the simulation of the hierarchical model without

obstacle, whereas it is 3.6 ± 0.027 pers/s with a reversed V obstacle upstream the door, so

the average flow of pedestrians increases by 13.2%, which proves the ability of the model to

reproduce this effect. We also run some non-periodic evacuation simulations and compare

the evacuation time in the absence and the presence of an obstacle. An example is shown in

Figure (4.17) showing that the evacuation gets to its end faster in the case of the obstacle.

4.3.3 Capacity drop

The capacity drop is a phenomenon known to occur in evacuation situations. When the density

upstream the door increases, the outward flow increases as well until a certain critical value

of the density, then decreases slightly and attain a stable level afterwards. To test the ability
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Figure 4.16: Periodic evacuation simulation for the hierarchical model with different
obstacle shapes.
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Figure 4.17: Evacuation of 150 pedestrians: Granular model (left), Hierarchical model
(middle), and Hierarchical model with a reversed V obstacle (right).
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of the hierarchical model to reproduce this effect, we run periodic evacuation simulations for

different number of individuals and follow the evolution of the average flow through the exit.

The result is displayed in Figure 4.18.

Figure 4.18: Evolution of the outward flow rate in terms of number of pedestrians in
the simulation.

We start with 15 individuals evacuating periodically in the domain, the flow rate in this

case is 1.75 ± 0.02 pers/s. It then increases to attain its maximum 3.56 ± 0.02 pers/s for 40

pedestrians, before decreasing moderately to attain a local minimum of 3.18 ± 0.04 for 80

pedestrians. For 90 pedestrians, the flow rate attains a local maximum of 3.29 ± 0.02 pers/s,

then decreases slightly to achieve a more or less stable flow rate afterwards.
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Chapter 5

Towards a macroscopic counterpart

of the hierarchical model
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5.1. Motivations

5.1 Motivations

This chapter addresses the possibility to write a macroscopic counterpart of the hierarchical

model described in Chapter 3 in the spirit of the transition made to write the macroscopic

counterpart [88, 91] of the granular model [90, 89], both recalled in Chapter 1.

In the microscopic granular model, individuals are represented by disks subject to non-

overlapping constraints. It is based on the following two principles: each individual has

a desired velocity, it is the one he would like to have in the absence of others, and the

actual velocity field of the crowd is defined as the projection of the desired velocity field on

the set of admissible velocity fields that do not allow an overlapping of disks representing

individuals. The macroscopic counterpart of the granular model is written by considering the

same modeling principles at the macroscopic level. The crowd is represented by a density

ranging between zero and a prescribed maximum density. The model is also based on two

principles: the crowd has a desired velocity field that represents individuals’ tendencies if they

were alone, and the actual velocity field is defined as the projection of the desired velocity

field on the set of admissible velocity fields that do not increase the density in the already

saturated zones. The mathematical formulation of both models is recalled in Section 5.2.

The hierarchical model described in Chapter 3 is based on the same representation of

individuals as for the granular model. We consider that an individual is not necessarily influ-

enced by all the others and suppose that the interactions between individuals are hierarchical,

i.e. no cycles of individuals influencing each other exist. We consider here the case where

each individual is influenced by others in his cone of vision, which natively gives hierarchical

relations in evacuation cases. The actual velocity field is computed in two steps. First, a

decision step where each individual chooses an equilibrated velocity that approaches best his

desired one among all velocities that do not violate the non-overlapping constraints with his

leaders. Second, a correction step to handle collisions that have not been anticipated by indi-

viduals, i.e. collisions between individuals that do not see each other. This step is performed

by projecting the equilibrated velocity field on the set of globally admissible velocity fields

that do not allow an overlapping of disks representing individuals. Note that for the granular

model, the desired velocity field is directly projected on the set of admissible velocity fields,

while for the hierarchical model, we compute first the equilibrated velocity field that takes

into consideration the willing of each individual to respect others in his cone of vision, and

then project the equilibrated velocity field on the set of admissible velocity fields.

Looking to the transition between the granular model and its macroscopic counterpart, a

natural question arises: is it possible to write a macroscopic counterpart of the hierarchical

model based on the cones of vision by translating its modeling principles to the macroscopic

level as for the granular model? This question raises many issues, some of which are discussed

along the chapter. We also make the first steps towards writing such model.
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5.2 The granular model and its macroscopic coun-

terpart

In this section, we briefly recall the mathematical framework of the granular model and its

macroscopic counterpart and describe the difference between them. We refer the reader to [90,

89, 88, 91] for more details.

We start by describing the granular model. Consider N individuals represented by rigid

disks of centers q1, . . . , qN ∈ Rd, for d = 1, 2, and respective radii r1, . . . , rN . The configuration

of all individuals is denoted by q = (q1, . . . , qN ) ∈ RdN . Each individual i has a desired velocity

Ui(qi) and we denote by U(q) the desired velocity field of all individuals. The set of admissible

configurations is defined by:

Q =
{

q ∈ R
dN , Dij(q) ≥ 0, ∀i ̸= j

}

where Dij(q) = |qi−qj|−ri−rj is the distance between individuals i and j. For an admissible

configuration of individuals q, the actual velocity u(q) = (u1, . . . , uN ) is the unique solution

of the minimization problem:

u(q) = argmin
v∈C(q)

1
2

|v − U(q)|2 (5.1)

where

C(q) =
{

v ∈ R
dN , ∀i ̸= j, Dij(q) = 0⇒ eij(q) · (vi − vj) ≤ 0

}
(5.2)

and eij(q) = (qj − qi)/|qj − qi|. This is equivalent to say that the actual velocity field u is

the euclidean projection of the desired velocity field U on the set of admissible velocity fields

C(q): u = PC(q)U . The evolution problem is shown to be well posed in [89, 120] and the

proof is based on a reformulation of the problem as a differential inclusion using sweeping

processes [94], and the theory in [38, 37] is used to prove the existence and uniqueness of

solutions.

In [88, 91], a macroscopic counterpart of the granular model is introduced. The crowd is

represented by a nonnegative density ρ constrained to remain below a prescribed maximum

density supposed equal to 1 without loss of generality. The crowd has a desired velocity field

U such that U(x) would be the desired velocity of an individual standing at x. For simplicity

reasons, we represent here the case of a domain Ω without exits and refer the reader to [88]

for the full description of the model. The actual velocity field u is defined as the closest, in

the least squares sense, to the desired velocity field U among all velocity fields that do not

concentrate the density of the crowd in the already saturated zones (congestion constraint),

i.e. those whose (weak) divergence is nonnegative on saturated zones. We denote by K the

set of admissible densities defined by:

K = {ρ ∈ P(Ω), ρ ≤ 1 a.e. in Ω} . (5.3)
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The actual velocity field is the unique solution of the problem:

min
v∈C(ρ)

1
2

∫

Ω
|U − v|2 (5.4)

where

C(ρ) =
{

v ∈ L2(Ω),
∫

Ω
v ·∇q ≤ 0 ∀q ∈ H1

ρ(Ω)
}

(5.5)

and

H1
ρ(Ω) =

{
q ∈ H1(Ω), q ≥ 0, q(1− ρ) = 0 a.e. in Ω

}
. (5.6)

The solution of this minimization problem is then the projection of the desired velocity field

U on the set of admissible velocity fields C(ρ): u = PC(ρ)U . In the case where the desired

velocity field has a gradient structure, e.g. U = −∇D where D is the distance to the target,

the problem is shown in [88] to correspond to the gradient flow of the functional Φ defined

below, in the Wasserstein spaces of probability measures:

Φ(ρ) =

⎧
⎨

⎩

∫

Ω
D(x)dρ(x), if ρ ∈ K,

+∞, otherwise.

An example of evacuation simulation for this model is displayed in Figure 5.1, and Figure 5.2

shows two evacuation simulations for the same initial condition using the granular model and

its macroscopic counterpart.

These models describe highly congested crowds with selfish and aggressive agents. The

individuals are allowed to push each other when they are in contact for the granular model, or

when the density is saturated for its macroscopic counterpart. The defect of this macroscopic

Figure 5.1: Example of evacuation simulation computed according to the macroscopic
model in [88, 91] (figure from [111])

model is that evacuation is always smooth, notably jams never occur and neither Faster is

Slower effect nor capacity drop could be observed. On the contrary, a “Faster is Faster”

effect is observed (the quickier individuals want to go, the quickier they really go). Actually, a
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Figure 5.2: Example of evacuation simulation computed according to the granular
model and its macroscopic counterpart (figure from [111])
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macroscopic density is moldable so it could not be clogged upstream an exit door, whereas the

disks representing individuals in the granular model are rigid and undeformable which makes

the interaction between individuals considerable. The fact that the macroscopic counterpart

of the granular model does not reproduce crowd effects related to the reduction of the capacity

of a bottleneck enlightens the high dependence of jams upon geometrical representation.

5.3 First approach

The aim of this section is to propose a macroscopic counterpart of the hierarchical model

by roughly translating the velocity constraints from the microscopic level to the macroscopic

one. The crowd is represented by a density ranging between zero and a prescribed maximum

density. We consider a desired velocity field that corresponds to the preferred motion of an

individual if he is alone in the domain. We associate a field of cones of vision to the desired

velocity field: at every point of the domain, we consider the cone of vision centered in the

direction of the desired velocity at that point with a fixed angle.

The admissible velocity fields should satisfy the congestion constraint, that is not increas-

ing the density in the already saturated zones. The directional character of the interactions

between individuals for the hierarchical model is translated by a condition on the velocity

correction, that is the actual velocity minus the desired one. We impose to the velocity cor-

rection to belong to the opposite of the cone of vision at every point of the domain, which

means that the actual velocity could only be smaller or equal to the desired velocity in the

directions of the cone of vision. We define then the actual velocity field as the closest, in

the least squares sense, to the desired velocity field among all admissible velocities satisfying

the congestion constraint and the directional condition. For the case of an evacuation, the

desired velocity field points to the exit and then the associated field of cones of vision induce

a natural hierarchy on the crowd. Individuals who are the closer to the door are the most

influential ones, and the farther they get, the lesser influence they have.

5.3.1 Mathematical formulation

Consider a domain Ω ⊂ Rd, whose boundary Γ is composed of the exit Γout and the walls Γw.

The maximum density is supposed equal to 1 in the interior of Ω, without loss of generality.

We suppose that the density can be concatenated on Γout, notably, the mass that exits the

domain will be stocked at Γout. The set of admissible densities is

K =
{
ρ ∈ P(Ω̄), ρ = ρΓout + ρΩ, ρΩ ≤ 1 a.e. , supp ρΓout ⊂ Γout

}
. (5.7)

We consider a desired velocity field U sufficiently smooth. In evacuation situations, a

natural example of desired velocity field is U = −∇D where D is the distance to the exit

door. We suppose that the cones of vision V (., U) have a fixed angle < π/2 to the left and
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right of the line of sight. For every x ∈ Ω, the cone of vision at x is defined by:

V (x, U) =
{

w ∈ R
2, w · ni(x, U) ≤ 0, i = 1, 2

}
.

where n1(x, U) and n2(x, U) are the outward normal vectors to the half-planes forming the

cone (see Figure 5.3 for an example). We omit the dependence of n1 and n2 on the space

variable and U for simplicity reasons. Admissible velocity fields are constrained to have a

n1
n2

Ui

qi

Figure 5.3: Example of desired velocity, its associated cone of vision and the outward
normal vectors to the cone.

nonnegative (weak) divergence on saturated zones, formalized in a dual manner, and the

correction made on the desired velocity field U , that is u−U should belong to the opposite of

the field of cones of vision V (., U). We denote by C(ρ, U) the set of admissible velocity fields:

C(ρ, U) =
{

v ∈ (L2(Ω))2,
∫

Ω
v ·∇q ≤ 0, ∀q ∈ H1

ρ(Ω), v − U ∈ −V (., U) a.e.
}

(5.8)

where

H1
ρ(Ω) =

{
q ∈ H1(Ω), q ≥ 0 a.e. in Ω, q = 0 a.e. in [ρ < 1], qΓout = 0

}
. (5.9)

The actual velocity field is then solution to the minimization problem:

u = argmin
v∈C(ρ,U)

J(v) = argmin
v∈C(ρ,U)

1
2

∫

Ω
|U − v|2 (5.10)

which is equivalent to say that u = PC(ρ,U)U .

Proposition 5.3.1. Problem (5.10) has a unique solution.

Proof. The functional J is strictly convex and l.s.c., and the set C(ρ, U) is closed and convex,

thus Problem (5.10) has a unique solution.

One dimensional case

In this case, the solution of Problem (5.11) can be computed explicitly on each interval where

the density is saturated. Problem (5.10) reads:

u = argmin
v∈C(ρ,U)

J(v) = argmin
v∈C(ρ,U)

1
2

∫

Ω
|U − v|2 (5.11)
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where

C(ρ, U) =
{

v ∈ L2(Ω),
∫

Ω
v q′ ≤ 0 ∀q ∈ H1

ρ(Ω), v ≤ U a.e.
}

Proposition 5.3.2. Let Ω =]0, 1[ be a domain where the density ρ is saturated. Then, the

unique minimizer of Problem (5.11) is: u(x) = min
y∈[x,1]

U(y), for almost every x ∈ Ω.

Proof. Let ū(x) = min
y∈[x,1]

U(y). Suppose by contradiction that there exists a non-zero measure

set A ⊂ Ω where the minimizer u is different from ū a.e. on A, and u = ū a.e. on Ac. Then

u(x) is necessarily greater or equal to ū(x) for a.e. x ∈ A, since otherwise one can do better.

If ū(x) = U(x), then u(x) is necessarily equal to ū(x). Now if ū(x) = min
y∈[x,1]

U(y) < U(x), then

min
y∈[x,1]

U(y) ≤ u(x) < U(x) which contradicts the fact that u is increasing and bounded from

above by U , then we necessarily have u = ū.

Example

We show in Figure 5.4 an example of desired velocity and its corresponding actual velocity

according to Problems (5.4) and (5.11). We suppose that the density is saturated on ]0, 1[. For

the case of Problem (5.4), some individuals have actual velocities greater than their desired

one, they are actually pushed by individuals behind them who want to go faster, while for the

actual velocity according to Problem (5.11), all individuals do their best by having the closer

possible velocity to their desired one, respecting individuals in front of them.

Figure 5.4: Desired velocity and its corresponding actual velocity in two cases: the
granular model (left) and hierarchical model (right).

This setting resembles to the one represented in Section 4.1 in [12], where the authors

consider two sticky blocks (clusters) transported in the same direction with different velocities

(the block on the left has a velocity greater than the one on the right). When collision occurs,

the two blocks form a new one evolving according to the velocity of the block on the right.

5.3.2 Twofold saddle point formulation and numerical solution

We propose in this section to solve numerically Problem (5.10) using its twofold saddle point

formulation and applying the Uzawa algorithm. For this purpose, we start by introducing two

linear operators B1 and B2 defined below as well as their adjoints:
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B1 : (L2(Ω))2 −→ (H1
ρ (Ω))′

v −→ −∇ · v

B∗
1 : H1

ρ(Ω) −→ (L2(Ω))2

q −→ ∇q

B2 : (L2(Ω))2 −→ L2(Ω)× L2(Ω)

v −→ (−v · n1,−v · n2)

B∗
2 : L2(Ω)× L2(Ω) −→ (L2(Ω))2

(δ1, δ2) −→ −δ1n1 − δ2n2

It can be easily shown that the linear operators B1 and B2 are continuous (note that the

vectors n1 and n2 are sufficiently smooth because they only depend on the space variable and

U which is sufficiently smooth). The set of admissible velocity fields can be written using

these operators as:

C(ρ, U) =
{

v ∈ (L2(Ω))2, ⟨B1v, q⟩ ≤ 0, ∀q ∈ H1
ρ(Ω), B2(v − U) ≤ 0 a.e.

}

and the Lagrangian of Problem (5.10) reads:

L(v, q, δ) =
1
2

||U − v||2L2 + ⟨B1v, q⟩+ ⟨B2(v − U), δ⟩.

for (v, q, δ) ∈ L2(Ω) × H1
ρ(Ω) × (L2

+(Ω))2 where L2
+(Ω) is the set of L2 functions that are

nonnegative a.e. in Ω. Problem (5.10) can be formulated in a saddle point manner, as stated

by the following proposition.

Proposition 5.3.3. The minimization problem (5.10) is equivalent to the twofold saddle point

formulation: there exists nonnegative Lagrange multipliers (p,λ) ∈ H1
ρ(Ω)×(L2

+(Ω))2 such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u− U + B∗
1p + B∗

2λ = 0,

⟨B1u, q⟩ ≤ 0, ∀q ∈ H1
ρ (Ω),

⟨B2(U − u), δ⟩ ≤ 0, ∀δ ∈ (L2
+(Ω))2,

⟨B1u, p⟩ = 0,

⟨B2(U − u),λ⟩ = 0.

(5.12)

Proof. The proof is a straightforward application of Proposition 2.4, page 176 of [39]. The

Lagrangian is actually concave, u.s.c. in its primal variable, and convex, l.s.c. in its dual

variables.

The twofold saddle-point formulation (5.12) can be solved numerically using the Uzawa

algorithm. We present the numerical scheme in the following paragraph and show a first

example of computation of actual velocity field for Problem (5.10).

Uzawa Algorithm

The Uzawa algorithm is commonly used to solve saddle-point problems. The algorithm con-

sists in constructing a sequence of multipliers (pk,λk)k such that the associated sequence in

the primal space (uk)k converges to the unique solution of the primal problem (5.10). It is

actually a way to replace a constrained minimization problem by a sequence of unconstrained
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minimization problems. The Uzawa algorithm is built as follows:

⎧
⎪⎪⎨

⎪⎪⎩

uk+1 = U −B∗
1pk −B∗

2λ
k,

pk+1 = [pk + r B1uk+1]+,

λk+1 = [λk + r B2(U − uk+1)]+

(5.13)

where r is a fixed parameter.

Remark that B1uk+1 belongs to (H1
ρ (Ω))′, while pk and pk+1 belong to H1

ρ (Ω) which makes

it necessary to identify the Hilbert space H1
ρ(Ω) with its dual (H1

ρ (Ω))′. On one hand, we

have:

⟨B1uk+1, v⟩ =
∫

Ω
uk+1 ·∇v, ∀v ∈ H1

ρ(Ω)

by definition of the duality brackets in L2(Ω), and on the other hand, we have:

⟨B1uk+1, v⟩ =
∫

Ω
ξk+1 · v +

∫

Ω
∇ξk+1 ·∇v, ∀v ∈ H1

ρ (Ω)

using the scalar product of H1(Ω) where ξk+1 is the representative of B1uk+1 in H1
ρ(Ω). So

by identification, ξk+1 is the solution of the following variational problem:

⎧
⎨

⎩

∫

Ω
ξk+1 · v +

∫

Ω
∇ξk+1 ·∇v =

∫

Ω
uk+1∇v, ∀v ∈ H1

ρ(Ω)

ξ = 0, on Γout

(5.14)

According to Lax-Milgram Theorem, the variational problem (5.14) has a unique solution

ξk+1 in H1
ρ (Ω). At each time step, we compute ξk+1 the representative of B1uk+1 in H1

ρ (Ω)

by solving the variational problem (5.14) and then we update the Lagrange multipliers pk and

λk. The algorithm then reads:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

uk+1 = U −B∗
1pk −B∗

2λ
k,

ξk+1 solution of Problem (5.14)

pk+1 = [pk + r ξk+1]+,

λk+1 = [λk + r B2(U − uk+1)]+

(5.15)

The convergence of the algorithm is ensured provided that the parameter r satisfies:

0 < r <
2c

||B1B∗
1 || + ||B2B∗

2 ||

where c is the coercivity constant of the bilinear form associated to J (see [25] for more details

about the convergence of the Uzawa algorithm).

We aim now to compare the macroscopic counterpart of the hierarchical model described

by Problem (5.10) to the macroscopic counterpart of the granular model described by Prob-
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lem (5.4). We start by writing the saddle-point formulation for Problem (5.4):

⎧
⎪⎪⎨

⎪⎪⎩

u− U + B∗
1p = 0,

⟨B1u, q⟩ ≤ 0, ∀q ∈ H1
ρ(Ω),

⟨B1u, p⟩ = 0,

(5.16)

where B1 has been defined earlier in this section by:

B1 : (L2(Ω))2 −→ (H1
ρ (Ω))′

v −→ −∇ · v

We also use the Uzawa algorithm to compute a numerical solution of Problem (5.16):

⎧
⎪⎪⎨

⎪⎪⎩

uk+1 = U −B∗
1pk

ξk+1 solution of Problem (5.14)

pk+1 = [pk − r′ ξk+1]+.

(5.17)

where r′ satisfies 0 < r′ < 2c/||B1B∗
1 || to ensure the convergence of the algorithm.

Example:

We show in Figure 5.5 an example of computation of the actual velocity for Problems (5.4)

and (5.10). We consider a convergent corridor where the density of the crowd is saturated. We

suppose that all individuals want to exit the domain through its narrowest part with a velocity

of modulus 1. The actual velocity fields according to Problems (5.4) and (5.10) are computed

using the Uzawa algorithms (5.17) and (5.15) respectively, implemented with Freefem++.

The result is displayed in Figure 5.5 where we represent: on top, the desired velocity field, on

the middle the actual velocity fields for Problem (5.4) (left) and Problem (5.10) (right), and

on bottom the module of the actual velocity field for Problem (5.4) (left) and Problem (5.10)

(right).

For the solution of Problem (5.4), the individuals in the narrowest part of the domain are

pushed by the ones who are behind them and go at a velocity of module ≃ 2. The module of

the actual velocity then decreases when the corridor gets wider. The situation is not the same

for the solution of Problem (5.10) where the individuals in the narrowest part of the domain

go at their desired velocity of module 1, i.e. they are not pushed by the others. The module

of the actual velocity then decreases when the corridor gets wider with a minimum module of

actual velocity less than the one for Problem (5.4).

5.4 Second approach

We propose in this section another perspective to define a macroscopic counterpart of the

hierarchical model. Instead of minimizing the L2-norm of the desired velocity field minus

the actual one under congestion and directional constraints as for the first approach, we

propose to minimize a weighted L2-norm of their difference under congestion constraint only.

The constraint on the correction of the desired velocity field is relaxed by considering weight
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5.4. Second approach

Figure 5.5: The desired velocity field (top), the actual velocity field and its norm
according to the hierarchical model (left), and the granular model (right).
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functions on the domain depending on the distance to the exit door and a parameter ϵ. We

consider that the weight of a point is always greater than the weight of another one situated

farther from the exit, and their ratio tends to +∞ when ϵ tends to 0. These weight functions

quantifies how much an individual takes on himself and respects others that are closer than

him to the exit door, and at the limit, the interaction between them becomes completely

asymmetric. The hierarchy on the crowd follows then automatically by the choice of the

weight functions.

We aim to prove that the sequence of minimizers converges to a macroscopic counterpart

of the hierarchical solution. The proof is restricted here to dimension one. A similar result

can be expected in higher dimensions, but raises additional issues which are under current

investigation.

5.4.1 Mathematical formulation

We use the same notation of Section 5.3. For ϵ > 0, we consider the following minimization

problem:

min
v∈C(ρ)

Jϵ(u) = min
v∈C(ρ)

1
2

∫

Ω
aϵ|U − v|2 (5.18)

where

C(ρ) =
{

v ∈ (L2(Ω))2,
∫

Ω
v ·∇q ≤ 0 ∀q ∈ H1

ρ(Ω)
}

and aϵ is smooth and reflects the distance to the door in the following way:

• For every x, y ∈ Ω such that D(x) < D(y), we have: aϵ(x)/aϵ(y)→ +∞ when ϵ −→ 0.

• aϵ is positive and attain its maximum only on Γout.

For example, one can consider: aϵ(x) = e
1

(D(x)+1)ϵ , ∀x ∈ Ω. Note that the approach presented

in Section 5.3 and the one presented in this section are equivalent in dimension one. Notably,

we prove in Proposition 5.4.5 below that the sequence of minimizers for Problems (5.18)

converges to the unique solution of Problem (5.11) in dimension one.

Remark 5.4.1. The microscopic version of this family of minimization problems reads for

N individuals:

min
v∈C(q)

1
2

N∑

i=1

mϵ,i(qi)|vi − Ui(qi)|2 (5.19)

where C(q) is defined by (5.2) and mϵ,i(qi) = aϵ(qi) is the weight attributed to individual i.

We proved in Chapter 2, Proposition 2.3.1, that the solution of Problem (5.19) is a particular

solution of the Nash equilibrium model described in the same chapter. Passing to the limit, the

solution of Problem (5.19) is also a Nash equilibrium. Moreover, if no couples of neighboring

individuals have the same distance to the exit door, then the limit solution is the unique

solution of the hierarchical model where each individual is influenced by all the others that are

closer than him to the exit door.
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One dimensional setting

Let Ω =]0, 1[ be a domain where the density of the crowd is saturated. We assume that all

individuals want to reach the exit door located on the right (U = 1). Problem (5.18) reads in

dimension one:

min
v∈C(ρ)

Jϵ(u) = min
v∈C(ρ)

1
2

∫

Ω
aϵ|U − v|2 (5.20)

where

C(ρ) =
{

v ∈ L2(Ω),
∫

Ω
v q′ ≤ 0 ∀q ∈ H1

ρ(Ω)
}

.

or in other words, v ∈ L2(Ω) is increasing.

Proposition 5.4.2. For every ϵ > 0, Problem (5.20) has a unique solution that we denote by

uϵ.

Proof. The functional Jϵ is strictly convex and l.s.c., and the set C(ρ) is closed and convex,

thus Problem (5.20) has a unique solution.

We aim to prove that the sequence of minimizers of Problem (5.20) converges to the unique

solution of Problem (5.11). We start by proving some lemmas.

Lemma 5.4.3. There exists a subsequence of minimizers (uϵ)ϵ ⊂ L2(Ω) converging a.e. to a

function u ∈ L2(Ω) that is increasing and bounded.

Proof. We can easily show that for every ϵ > 0, we have: min U ≤ uϵ(x) ≤ max U for

a.e. x ∈ Ω. Actually, suppose that there exists a non zero measure set A ⊂ Ω such that

uϵ(x) < min U for a.e. x ∈ A, then by setting uϵ equal to min U on this set, one does better.

We follow the same reasoning to show that uϵ(x) ≤ max U . Taking into consideration the

fact that uϵ is an increasing function, bounded on ]0, 1[, the sequence (uϵ)ϵ is bounded in

BV(Ω). Since BV(Ω) is compactly injected in L1(Ω) (Sobolev embedding theorem) and Ω has

a finite measure, there exists a subsequence of uϵ, that we still denote by uϵ, such that uϵ

converges a.e. to u ∈ L1(Ω) and u is particularly in BV(Ω). Since min U ≤ uϵ(x) ≤ max U

for a.e. x ∈ Ω and uϵ is increasing, then we have: min U ≤ u(x) ≤ max U for a.e. x ∈ Ω

and u is also increasing.

Lemma 5.4.4. The limit u of the sequence of minimizers (uϵ)ϵ satisfies u(x) ≤ U(x) for a.e.

x ∈ Ω.

Proof. The sequence of minimizers (uϵ)ϵ and their limit u belong to BV(Ω), thus the right

and left limits exist at every point in Ω. We aim to show first that lim
x→1−

u(x) = lim
x→1−

U(x). For

simplicity, we write: u(1−) = lim
x→1−

u(x) and U(1−) = lim
x→1−

U(x). By contradiction, suppose

that u(1−) ̸= U(1−):

• If u(1−) < U(1−), then there exists ϵ0 > 0 such that ∀ϵ < ϵ0, we have uϵ(1−) < U(1−).

By the definition of the left limit, ∀e > 0, there exists δ > 0 such that
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|uϵ(x)− uϵ(1−)| < e whenever 1− δ < x < 1.

For e sufficiently small, we have uϵ(x) < U(1−), ∀x ∈]1 − δ, 1[. By letting uϵ(x) =

min
y∈[x,1[

U(y), ∀x ∈]1− δ, 1[, one does better which contradicts the fact that uϵ is a mini-

mizer of Problem (5.20).

• If u(1−) > U(1−), then there exists ϵ0 > 0 such that ∀ϵ < ϵ0, we have uϵ(1−) > U(1−).

By the definition of the left limit, ∀e > 0, there exists δ > 0 such that

|uϵ(x)− uϵ(1−)| < e whenever 1− δ < x < 1

So for e sufficiently small, we have uϵ(x) > U(1−), ∀x ∈]1− δ, 1[. When ϵ gets smaller,

aϵ becomes extremely large on ]1 − δ, 1[ so the gap between uϵ and U on this interval

becomes very expensive compared with any possible gap elsewhere. Hence by letting

uϵ(x) closer to U(x) when ϵ approaches 0, such that at the limit u(1−) becomes equal

to U(1−), one does better.

To prove that u(x) ≤ U(x), we suppose by contradiction that there exists a non-zero measure

set A ⊂ Ω such that u(x) > U(x) a.e. in A. We follow the same reasoning as for u(1−) > U(1−)

to come to a contradiction.

We prove in the following proposition that the limit of the sequence of minimizers is the

unique solution of Problem (5.11).

Proposition 5.4.5. The sequence of minimizers (uϵ)ϵ converges to u defined by: u(x) =

min
y∈[x,1]

U(y).

Proof. Let ū(x) = min
y∈[x,1]

U(y) and suppose that u ̸= ū, i.e. there exits a non-zero measure set

A ⊂ Ω such that u(x) ̸= ū(x) for a.e. x ∈ A. Since ū is the unique minimizer of Problem (5.11),

we have: u(x) ≤ ū(x) ≤ U(x) for a.e. x ∈ Ω and u(x) < ū(x) ≤ U(x) for a.e. x ∈ A, which

implies that |ū(x) − U(x)|2 < |u(x) − U(x)|2 for a.e. x ∈ A. Since uϵ converges pointwise to

u, then there exist ϵ0 > 0 such that ∀ϵ ≤ ϵ0 we have: |ū(x)−U(x)|2 < |uϵ(x)−U(x)|2 for a.e.

x ∈ A. Thus: ∫

Ω
aϵ|ū− U |2 <

∫

Ω
aϵ|uϵ − U |2

which contradicts the fact that uϵ is a minimizer of Problem (5.20).
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discretization schemes for the

Fokker Planck equation as gradient

flows for the discrete Wasserstein
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6.1. Introduction

This chapter corresponds to the paper [1] by Fatima Al Reda and Bertrand Maury,

to appear in “Topological Optimization and Optimal Transport in the Applied Sciences”(De

Gruyter) in July 2017.

6.1 Introduction

We aim here at identifying gradient flow structures in some space-discretization schemes of the

Fokker-Planck equation on general meshes, in the spirit of the approaches proposed recently

in [36, 85] for cartesian discretizations. Since the core of the paper consists in building

links between macroscopic notions / properties and their discrete counterparts, in a context

where two reference measures are present (uniform Lebesgue measure and stationary measure

associated to an attractive potential), let us start by fixing some principles in terms of notation.

Probability measures will be denoted by the letter p (we shall use the same letter to denote

their density with respect to the underlying Lebesgue measure, or its discrete counterpart),

stationary measures (with respect to some evolution process) by π, and relative densities with

respect to π by ρ. All discrete notions will be singled out by a tilda sign, e.g. p̃, π̃, etc ... The

space variable will be denoted by r, while x and y will be used to denote discrete vertices.

Since the seminal work of Jordan, Kinderlehrer and Otto [72] in 1998, it is known that

the Fokker-Planck (FP) equation in a domain Ω:

∂tp−∆p−∇ · (p∇Φ) = 0,

with appropriate no-flux boundary conditions, can be interpreted in the Wasserstein space as

the gradient flow for

H(p) =
∫

Ω
p log

(
p

π

)
dr

(
=
∫

Ω
ρ log (ρ) dπ with ρ = p/π

)
,

that is the relative entropy with respect to the stationary measure π = e−Φ, up to a nor-

malization constant. This property is schematized in the diagram below (see Fig. 6.1, blocks

A− B − C, on the top), and we refer the reader to [4, 113] for a thorough description of the

underlying theory.

At the discrete level, a similar framework has been proposed in [84, 92]. The euclidean

domain is replaced by a network N, defined by its (finite) set of vertices V and a Markovian

kernel

(K(x, y))x,y∈V , with K(x, y) ≥ 0 ,
∑

y∈V

K(x, y) = 1 ∀x ∈ V.

The stationary measure is denoted by π̃, it verifies π̃ =tKπ̃. It is unique as soon as K

is irreducible, i.e. ∀ x, y ∈ V there exists a path (x0 = x, x1, x2, . . . , xm = y) such that

K(x, x1)×K(x1, x2)× . . .×K(xm−1, y) > 0, and then π̃(x) > 0 for all x ∈ V . We say that K

is reversible if π̃(x)K(x, y) = K(y, x)π̃(y) for all x, y in V (detailed balance equation). The
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Fokker Planck equation

Gradient flow

Gradient flow

Wasserstein dist. in P(Ω)

W2(p0, p1)2 =

with ∂tpt +∇ · (pt∇ψt) = 0.

infpt,ψt

∫ 1
0

∫
Ω |∇ψt|2 dpt

Relative entropy

Relative entropy

with respect to

with respect to

the stationary measure

the stationary measure

dρ̃/dt + (I −K)ρ̃ = 0

dp̃/dt + (I −tK)p̃ = 0

∂tp−∆p−∇ · (p∇Φ) = 0

or ∂tρ− 1
π∇ · (π∇ρ) = 0

with tKπ̃ = π̃, ρ̃ = p̃/π̃.

with π = e−Φ, ρ = p/π.

H(p) =
∫

p log(p/π) dx

H̃(ρ̃) =
∑

x∈V

ρ̃(x) log(ρ̃(x))π̃(x).

Gromov Hausdorff

convergence convergenceconvergence

Space disc. quadrature

π = e−Φ.

A B C

Ã B̃ C̃

1 3

1′

2

3′

Heat flow on a network
K = (K(x, y))x,y∈V ×V

Wasserstein-like metric

on a network N :

discrete Benamou-Brenier

formula (see Def. 6.2.4).

in a domain Ω ⊂ Rd

Figure 6.1: Continuous setting versus discrete setting

discrete counterpart of the FP equation is the heat flow equation

∂tρ̃+ (I −K)ρ̃ = 0, (6.1)

where ρ̃ is the density of a probability measure p̃ on V with respect to π̃. Note that the

straight discrete counterpart of FP equation would be an equation of the measure p̃ itself,

with K replaced by tK, and
∑

p̃(x) = 1, but we shall follow [84] in favoring densities with

respect to π̃, i.e. densities ρ̃ verifying
∑
ρ̃(x)π̃(x) = 1. It has been established in [84]

that (6.1), for an appropriate metric W̃2 which is the discrete counterpart of the standard

Wasserstein distance, is a gradient flow of the discrete relative entropy

H̃(ρ̃) =
∑

x∈V

ρ̃(x) log(ρ̃(x)) π̃(x) (6.2)

with respect to the Wasserstein-like metric W̃2 (see Section 6.2 for detailed definitions).This

discrete setting is also schematized in Fig. 6.1 (blocks Ã− B̃ − C̃, on the bottom).

Although it was not the original purpose in [84], a connection can be made between the

two settings by means of discretization strategies. As detailed in the next section, an euclidean
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domain Ω can be partitionned into cells (e.g. Voronoï cells associated to a collection of points

in the domain, see Fig. 6.2). Now consider the network associated to those cells (one may

consider that the vertices are the centroids of the cells). To any measure µ on Ω one can

associate a discrete measure that is, for each vertex associated to cell K, the measure µ(K).

As detailed in [51], a link can be made between the Wasserstein distance on the euclidean

domain and the discrete Wasserstein distance on the network, at least in the case of a regular

decomposition (cartesian grid). This link will be described more precisely in the next section,

it is indicated by the arrow 2 in Fig. 6.1 that relates blocks B and B̃. Besides, integrating any

function of the density at the continuous level has a discrete counterpart (we are especially

interested in entropy-like functionals), it consists in summing up the corresponding values for

the discrete densities built as described above. This approach can be seen as a quadrature

formula to compute the approximation of an integral, for which convergence properties can

be expected as the cell decomposition is refined. It is indicated by the arrow 3 in Fig. 6.1 that

relates blocks C and C̃.

The core of the present article is an attempt toward closing the diagram by expliciting

the link between blocks A and Ã (arrow 1). More precisely, we aim at showing that, in the

context of Finite Volume methods, some space discretization strategies of the FP equation

lead to Ordinary Differential Equation that are consistent with the gradient flow structure on

the underlying network. Note that this interpretation of Finite Volume discretization schemes

as gradient flows has already been addressed in two recent papers. In [85], the authors use

this gradient flow structure to characterize the long time behavior of discrete solutions to a

fourth order equation. In [36], a finite volume scheme is studied in the discrete Wasserstein

setting, and a new type of convergence proof is proposed in this context. In both cited papers,

the space discretization is regular (i.e. 1-dimensional for the second one, and d-dimensional

with a cartesian grid for the first one). We aim here at showing that an extension to non

regular space-discretization is not out of reach. In particular, we show that Finite Volume

discretization strategies for very general meshes lead to problems that can be interpreted as

gradient flows for a discrete Wasserstein-like metric, with a functional that can be seen as an

approximation of its continuous counterpart. Let us make it clear, though, that no discrete-to-

continuous convergence result is known for the Wasserstein distance for non regular meshes.

The outline of the paper is as follows. In Section 6.2 we recall the main obtained result on

the FP equation and its gradient flow formulation, we define the Wasserstein-like distance of

Maas and state his first result in terms of gradient flows using this distance. Then we describe

the Gromov-Hausdorff convergence in the special case of the d-dimensional torus and show the

convergence of the discrete relative entropy H̃ to its continuous counterpart H. Section 6.3

proposes a Finite Volume discretization of the FP equation in space and the analysis of the

Markov chain deduced from this discretization and seen as an ODE in time. We show that

this ODE is the gradient flow of the discrete relative entropy H̃ and we finalize the paper

with some conclusive remarks and perspectives.
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N

Ω

Figure 6.2: From the Euclidean domain to the associated network

6.2 Preliminaries

We describe in this section with some details the constitutive blocks of the diagram presented

in Fig. 6.1.

Blocks A-B-C: Fokker Planck equation as a gradient flow, continuous setting.

Let us first recall some basic facts on the Wassertein space of measures and gradient flows

therein (we refer to [121, 113, 4] for a detailed presentation of these considerations). Let Ω

be a bounded domain. For any two measures p0 and p1 in P(Ω), the (quadratic) Wasserstein

distance between them is defined by

W2(p0, p1)2 = infγ∈Π

∫

Ω×Ω

∣∣r′ − r
∣∣2 dγ(r, r′),

where Π is the subset of P(Ω× Ω) for all those γ with marginals p0 and p1, respectively, i.e.
∫

Ω×Ω
ϕ(r) dγ(r, r′) =

∫

Ω
ϕ(r) dp0(r) ,

∫

Ω×Ω
ψ(r′) dγ(r, r′) =

∫

Ω
ψ(r′) dp0(r′)

for any continuous functions ϕ and ψ.

An alternative formulation has been proposed by Benamou-Brenier [11], it consists in

writing the squared Wasserstein distance as follows (we consider here a convex domain):

W2(p0, p1)2 = infpt,ψt

{∫ 1

0

∫

Ω
|∇ψt(r)|2 pt(r) dr dt

}
, (6.3)

where the infimum runs over curves (pt)t∈[0,1] in P(Ω) that join p0 and p1 in the following way

(transport of pt by ∇ψt):

∂tpt +∇ · (pt∇ψt) = 0. (6.4)

Now we aim at defining a notion of gradient for a functional H that is consistent with

the Wasserstein framework. The more appropriate notion is that of Fréchet subdifferential

in a Wasserstein sense, that can be defined for a wide class of functionals, with very weak

smoothness assumptions (see e.g. [4]). Since this notion does not have any natural counterpart
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at the discrete level, we shall focus here on a more restrictive definition of the gradient:

Definition 6.2.1. Let H : P(Ω)→ R be a functional. We shall say that H admits a gradient

w ∈ L2
p at p ∈ P(Ω), and then write

grad H(p) = w,

if, for every measure path t→ pt defined in a neighborhood of 0 and satisfying:

∂pt

∂t
+∇ · (ptvt) = 0 , p0 = p ,

where vt is a L2 vector field, it holds that

d
dt

H(pt)|t=0 = lim
t→0

H(pt)−H(p0)
t

=
∫

Ω
v0 · w dp.

We may now define the notion of gradient flow in this setting:

Definition 6.2.2. The probability measure path t 5→ pt is said to be a gradient flow for a

functional H if pt verifies (in the distributional sense)

∂tpt +∇ · (ptut) = 0 , ut = −grad H(pt) for a.e. t,

where the gradient is defined according to Def. 6.2.1.

Let us consider the case where H reads

H(p) =
∫

Ω
f(r) dp(r) +

∫

Ω
g(p(r)) dr,

where f and g are regular functions. Then the transport velocity ut can be identified as

ut = −∇f −∇
(
g′(pt)

)
. (6.5)

Now consider the Fokker-Planck equation on a domain Ω:

⎧
⎪⎪⎨

⎪⎪⎩

∂p

∂t
−∆p−∇.(p∇Φ) = 0, in Ω

∂p

∂n
− p

∂Φ
∂n

= 0, on ∂Ω.
(6.6)

and the relative entropy functional:

H(p) =
∫

Ω
p(r) log

(
p(r)
π(r)

)
dr

= −
∫

Ω
log(π(r)) dp(r) +

∫

Ω
p(r) log(p(r)) dr. (6.7)
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We obtain from (6.5)

ut = −∇f −∇
(
g′(pt)

)
=
∇π
π
−∇(1 + log(pt)) = −∇Φ− ∇pt

pt
,

which identifies the FP equation (6.6) as a gradient flow in the Wasserstein sense for the

relative entropy functional (6.7). We refer again to [4, 113] for a thorough presentation of

these facts.

Blocks Ã - B̃ - C̃: Discrete setting. Let V be a finite set.

Definition 6.2.3. We say that (K(x, y))x,y∈V is an irreducible and reversible Markov kernel

on V × V if K satisfies:

1. K(x, y) ≥ 0 ∀x, y ∈ V ,
∑

y∈V

K(x, y) = 1 ∀x ∈ V,

2. The irreducibility condition: ∀x, y ∈ V, ∃x1, . . . , xN ∈ V such that

K(x, x1)K(x1, x2) . . . K(xN , y) > 0,

3. The reversibility condition: π̃(x)K(x, y) = K(y, x)π̃(y) ∀x, y ∈ V.

Let (K(x, y))x,y∈V be as in the definition. We denote by π̃ the unique stationary measure

of K, such that

π̃(x) =
∑

y∈V

K(y, x)π̃(y)
(
i.e. π̃ =tKπ̃

)
, π̃(x) > 0 ∀x ∈ V ,

∑

x∈V

π̃(x) = 1.

We define the associated set of probability densities on V by

D(V ) =

{

ρ̃ ∈ (R+)V ,
∑

x∈V

ρ̃(x)π̃(x) = 1

}

.

Following [84], we define the discrete gradient, the discrete divergence and the two scalar

products with respect to a fixed ρ̃ ∈ D(V ) and π̃ resp., as follows:

• Discrete gradient: For a function ψ̃ : V → R, we define its discrete gradient ∇̃ψ̃ :

V × V → R by

∇̃ψ̃(x, y) = ψ̃(y)− ψ̃(x) ∀x, y ∈ V × V.

• Discrete divergence: For a discrete field ũ : V ×V → R, we define its discrete divergence

∇̃ · ũ : V → R by

(∇̃ · ũ)(x) =
1
2

∑

y∈V

(ũ(x, y)− ũ(y, x))K(x, y) ∀x ∈ V.
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Note that for an anti-symmetric field u, i.e. ũ(x, y) = −ũ(y, x), the discrete divergence

reads:

(∇̃ · ũ)(x) =
∑

y∈V

(ũ(x, y))K(x, y) ∀x ∈ V.

• Scalar product with respect to π̃: For ψ̃, φ̃ : V → R, we define their scalar product with

respect to π̃ by 〈〈
ψ̃, φ̃

〉〉

π̃
=
∑

x∈V

ψ̃(x)φ̃(x)π̃(x).

• Scalar product with respect to ρ̃: For ũ, ṽ : V × V → R, we define their scalar product

with respect to ρ̃ by

⟨ũ, ṽ⟩ρ̃ =
1
2

∑

x,y∈V

ũ(x, y)ṽ(x, y)K(x, y)θ(ρ̃(x), ρ̃(y))π̃(x),

where θ(·, ·) is defined by (6.9), and we denote by ∥ ũ ∥ρ̃ the associated norm:

∥ũ∥ρ̃ =
√
⟨ũ, ũ⟩ρ̃.

Note that the latter is a discrete counterpart of the norm of a velocity field in L2
p, with

p = ρπ.

We denote by ⟨., .⟩
1

the scalar product with respect to the density ρ̃ = 1 defined by:

ρ̃(x) = 1, ∀x ∈ V . We can easily check that the integration by parts formula holds in the

following sense: 〈
∇̃ψ̃, ũ

〉

1
= −

〈〈
ψ̃, ∇̃ · ũ

〉〉

π̃
.

The definition of the discrete transportation metric is inspired by the Benamou-Brenier

formulation, it translates Eq. (6.4) at the discrete level. It is defined as (see [84, 23, 92]):

Definition 6.2.4. For ρ̃0, ρ̃1 ∈ D(V ) we set:

W̃2(ρ̃0, ρ̃1)2 = inf
ρ̃t,ψ̃t

⎧
⎨

⎩
1
2

∫ 1

0

∑

x,y∈V

(
ψ̃t(y)− ψ̃t(x)

)2
K(x, y)θ(ρ̃t(x), ρ̃t(y))π̃(x) dt

⎫
⎬

⎭

where the infimum runs over all piecewise C1 curves ρ̃t : [0, 1] → D(V ) and all piecewise

continuous ψ̃t : [0, 1] → RV satisfying:

dρ̃t

dt
(x) +

∑

y∈V

(
ψ̃t(y)− ψ̃t(x)

)
K(x, y)θ(ρ̃t(x), ρ̃t(y)) = 0 ∀x ∈ V (6.8)

where:

θ(α,β) =
∫ 1

0
α1−tβtdt =

⎧
⎪⎨

⎪⎩

β − α
log(β)− log(α)

, if α ̸= β

α, if α = β

(6.9)

is the logarithmic mean of α and β.
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Using the definitions of the discrete gradient and the discrete divergence, W̃2 can also be

formulated as follows (see [84], Lemma 3.5):

W̃2(ρ̃0, ρ̃1)2 = inf
ρ̃t,ψ̃t

{∫ 1

0
∥∇̃ψ̃t∥2ρ̃t

dt
}

where the infimum runs over all piecewise C1 curves (ρ̃t)t∈[0,1] joining ρ̃0 and ρ̃1 in D(V )

according to
dρ̃t

dt
(x) + ∇̃ · (Θ(ρ̃t) • ∇̃ψ̃)(x) = 0, ∀x ∈ V (6.10)

where Θ(ρ̃t) : V × V → R is defined by: Θ(ρ̃t)(x, y) = θ(ρ̃t(x), ρ̃t(y)) and • denotes the

entrywise product of two matrices.

The Wasserstein gradient of a functional may now be defined following [84], Prop. 4.2.

Definition 6.2.5. Let H̃ : D(V ) → R be a functional. We shall say that H̃ admits a

gradient w̃ ∈ RV ×V at ρ̃ ∈ D(V ), and then write

g̃rad H̃(ρ̃) = w̃,

if, for any measure path t→ ρ̃t on D(V ) defined in a neighborhood of 0, with

dρ̃t

dt
+ ∇̃ · (Θ(ρ̃t) • ṽt) = 0 , ρ̃0 = ρ̃,

it holds that
d
dt

H̃(ρ̃t)|t=0 = ⟨w̃, ṽ0⟩ρ̃ .

After computing the gradient of a functional H̃, we can write its gradient flow equation

in D(V ).

Definition 6.2.6. Let H̃ : D(V ) → R be a functional and g̃rad H̃ be its gradient according

to Def (6.2.5). We define the discrete gradient flow equation of H̃ by:

dρ̃
dt

(x)− ∇̃ · (Θ(ρ̃) • g̃rad H̃(ρ̃))(x) = 0 ∀x ∈ V.

Like in the continuous setting, the gradient (in the previous sense) of a certain class of

functionals can be computed explicitly.

Proposition 6.2.7. Let H̃ be a generalized entropy functional :

H̃ : ρ̃ ∈ D(V ) 5−→ H̃(ρ̃) =
∑

x∈V

f(x)ρ̃(x)π̃(x) +
∑

x∈V

g(ρ̃(x))π̃(x) ∈ R

where f, g are differentiable functions, f, g : [0, 1] → R. Then

g̃rad H̃(ρ̃) = ∇̃f + ∇̃g′ ◦ ρ̃).
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Proof. It is a straightforward application of the definitions above

d
dt

H̃(ρ̃t)|t=0 =
∑

x∈V

(f(x) + g′(ρ̃t(x)))
dρ̃t

dt
(x)π̃(x)|t=0

= −
∑

x∈V

(f(x) + g′(ρ̃t(x)))∇̃ · (Θ(ρ̃t) • ṽt)(x)π̃(x)|t=0

= −
〈〈

f + g′ ◦ ρ̃, ∇̃ · (Θ(ρ̃) • ṽ0)
〉〉

π̃
=
〈
∇̃(f + g′ ◦ ρ̃), Θ(ρ̃) • ṽ0

〉

1

=
〈
∇̃f + ∇̃g′ ◦ ρ̃, ṽ0

〉

ρ̃

which concludes the proof.

Heat flow equation as gradient flow of the discrete entropy.

Note that the heat flow equation

dρ̃
dt

+ (I −K)ρ̃ = 0, (6.11)

where K = (K(x, y))x,y is the Markov matrix, can also be written

dρ̃
dt

(x)−∇ · (∇ρ̃)(x) = 0 ∀x ∈ V.

We may now identify the heat flow equation with the gradient flow for the relative entropy.

Theorem 6.2.8. The gradient flow in D(V ) (according to Def (6.2.6)) of the discrete relative

entropy

H̃(ρ̃) =
∑

x∈V

ρ̃(x) log(ρ̃(x))π̃(x)

is the heat flow equation (6.11).

Proof. For a detailed proof, we refer the reader to [84], Theorem 1.2. From Proposition 6.2.7,

we have that

g̃rad H̃(ρ̃) = ∇̃(1 + log(ρ̃)) = ∇̃(log(ρ̃))

for g(ρ̃) = ρ̃ log ρ̃ and f = 0, and the discrete gradient flow equation of H̃ is:

dρ̃
dt

(x)− ∇̃ · (Θ(ρ̃) • ∇̃(log(ρ̃)))(x) = 0 ∀x ∈ V.

Notice that: Θ(ρ̃) • ∇̃(log(ρ̃)) = ∇̃(ρ̃), which concludes the proof.

Link B - B̃ (arrow 2): Link between continuous and discrete Wasserstein metrics.

A first result of convergence of the discrete transportation metric was proven in [51]

(Theorem 3.15).

We consider the space P(Td) of all the probability measures on the d-dimensional torus

Td = Rd/Zd endowed with the L2-Wasserstein metric and the d-dimensional periodic lattice
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Td
n = (Z/nZ)d and endow the space of probability densities D(Td

n) with the renormalised

discrete transportation metric W̃2,n = W̃2/n
√

2d where the Markov kernel K is the one of a

simple random walk (uniform transition probabilities) and whose stationary measure δ̃ is the

uniform measure on Td
n.

In this special case of δ̃, we can identify probability measures on Td
n with their probability

densities with respect to δ̃. So we consider that P(Td
n) ≡ D(Td

n).

The convergence result is established in the sense of Gromov-Hausdorff that is defined by:

Definition 6.2.9. A sequence of compact metric spaces (Xn, dn) is said to converge in the

sense of Gromov-Hausdorff to a compact metric space (X, d), if there exists a sequence of

maps fn : X→ Xn which are:

• ϵn-isometric, i.e., for all x, y ∈ X,

|dn(fn(x), fn(y))− d(x, y)| ≤ ϵn

• ϵn-surjective, i.e., for all xn ∈ Xn there exists x ∈ X with

d(fn(x), xn) ≤ ϵn

for some sequence ϵn → 0.

Now we are ready to state the convergence theorem of the discrete metrics W̃2,n:

Theorem 6.2.10. The metric spaces (P(Td
n), W̃2,n) converge to (P(Td), W2) in the sense of

Gromov-Hausdorff as n→∞.

Remark 6.2.11. An informal convergence result can be done for a general stationary measure

by discretizing the continuous FP equation with the scheme described in Section 6.3 and writing

the corresponding discrete distance which looks almost like a discretization of the continuous

Wasserstein distance.

Link C̃ - C̃ (arrow 3): Quadrature for the entropy functionnal.

In order to strenghen the relation between the discrete setting and the continuous one, we

are going to show the convergence of the discrete relative entropy to its continuous counterpart

(C̃ −→ C in the Diagram of Fig. 6.1). We consider a collection of n points V in Ω, and

construct a partition (Kx)x of the domain which is relative to V , i.e. each cell Kx of the

partition contains one point of V (which is x) and:

Ω =
⋃

x∈V

Kx, Kx ∩Ky = ∅ ∀x ̸= y ∈ V.

Let h be the diameter of the partition Kx, i.e. h = maxx∈V diam(Kx). For any probability

measure p in P(Ω), we define its discrete counterpart by:

p̃(x) =
∫

Kx

p(r) dr, ∀x ∈ V, p̃ ∈P(V ) (6.12)
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and then we define its discrete density by:

ρ̃(x) =
p̃(x)
π̃(x)

, ∀x ∈ V, ρ̃ ∈ D(V ).

Proposition 6.2.12. Let p, π be two C1(Ω) densities with respect to the Lebesgue measure,

bounded from below and above, i.e. ∃ m, M > 0 such that 0 < m ≤ p,π ≤ M , and p̃h, π̃h be

their discrete counterpart defined according to (6.12). We denote by ρ̃h the discrete density of

p̃h with respect to π̃h. Then, the discrete relative entropy:

H̃h(ρ̃h) =
∑

x∈Vh

ρ̃h(x) log(ρ̃h(x))π̃h(x)

converges to the continuous relative entropy:

H(p) =
∫

Ω
p(r) log

(
p(r)
π(r)

)
dr

when h→ 0, at the first order in h.

Proof. We substract the continuous and the discrete quantities:

∣∣∣H(p)− H̃(ρ̃h)
∣∣∣ =

∣∣∣∣∣
∑

x∈V

(∫

Kx

p(r) log
(

p(r)
π(r)

)
dr − p̃h(x) log

(
p̃h(x)
π̃h(x)

))∣∣∣∣∣

=

∣∣∣∣∣
∑

x∈V

∫

Kx

p(r)
(

log
(

p(r)
π(r)

)
− log

(
p̃h(x)
π̃h(x)

))
dr

∣∣∣∣∣

≤
∑

x∈V

∫

Kx

p(r)C
∣∣∣∣
p(r)
π(r)

− p̃h(x)
π̃h(x)

∣∣∣∣ dr

where C is a Lipchitz constant for log on [ m
M , M

m ]. Then, by straightforward computations

using the boundedness from below and above of the measures we can bound the difference by

C ′ × h where C ′ is a constant depending on m, M and C.

6.3 Discretization of the Fokker-Planck equation

We re-write the Fokker-Planck system by replacing ∇Φ by −∇π/π in the first equation, we

get:
∂p

∂t
−∇ ·

(
∇p− p

∇π
π

)
= 0, or equivalently:

∂p

∂t
−∇ · (π∇

(
p

π

)
) = 0 (6.13)

Finite volume discretization. Let V be a collection of points in Ω, and let (Kx)x be the

associated Voronoi tesselation. We denote by N the dual network of the space discretization

(two vertices are connected whenever the corresponding cells are adjacent). Then we discretize

in space the FP equation (in its form (6.13)) by a Finite Volume scheme (see e.g. [42]). By
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x

y

Kx

Ky

Γxy

Figure 6.3: Voronoi cells with the used notations

integrating the equation on Kx, we get:

dp̃

dt
(x)−

∫

∂Kx

π∇
(

p

π

)
nx dσ =

dp̃

dt
(x)−

∑

y∼x

∫

Γxy

π∇
(

p

π

)
nxy dσ = 0

where nx is the outward normal to Kx, Γxy = Kx ∩Ky, nxy = nx|Γxy and y ∼ x means that

y is a neighbor of x, y ̸= x.

We approximate

∫

Γxy

π∇
(

p

π

)
nxy dσ by

|Γxy|
|x− y|

θ(π̃(x), π̃(y))
(

p̃(y)
π̃(y)

− p̃(x)
π̃(x)

)

(this approximation is inspired from [93] and was used in [36] for the 1-dimensional case) and

we get the final form of the semi-discretized equation:

d
dt

p̃(x) =
∑

y∼x

|Γx,y|
|x− y|θ(π̃(x), π̃(y))

(
p̃(y)
π̃(y)

− p̃(x)
π̃(x)

)

Or equivalently:
d
dt

p̃(x) =
∑

y∼x

( |Γxy|
|x− y|θ(π̃(x), π̃(y))

p̃(y)
π̃(y)

)

−
(
∑

y∼x

|Γxy|
|x− y|

θ(π̃(x), π̃(y))

)
p̃(x)
π̃(x)

(6.14)

which can be seen as an evolution equation on the network N.

Semi-discretized equation written with probability densities:. An equivalent semi-discretized

equation of (6.14) is written with the probability densities ρ̃ with respect to π̃, i.e. p̃(x) =
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ρ̃(x)π̃(x):
d
dt
ρ̃(x) =

∑

y∼x

( |Γxy|
|x− y| π̃(x)

θ(π̃(x), π̃(y))ρ̃(y)
)

−
(
∑

y∼x

|Γxy|
|x− y| π̃(x)

θ(π̃(x), π̃(y))

)

ρ̃(x). (6.15)

Now, equation (6.15) can be written

d
dt
ρ̃ = Qρ̃, (6.16)

with

Q(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

|Γxy|θ(π̃(x), π̃(y))
|x− y| π̃(x)

, if x ∼ y

−
∑

y∼x

|Γxy|θ(π̃(x), π̃(y))
|x− y| π̃(x)

, if x = y

0 otherwise

on the network N.

Equation (6.16) is not exactly of the heat flow type (6.11), since Q is not of the form

K − I, where K would be a stochastic matrix. Yet, as pointed out in [40], a connection can

be made between the two settings: For a matrix Q as above, we set

qx =
∑

y∼x

Q(x, y) and qmax = maxxqx.

We then define the matrix K as follows:

K(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

Q(x, y)
qmax

, if x ̸= y

qmax − qx

qmax
, if x = y

Proposition 6.3.1. The matrix K resulting from the space discretization of the FP equa-

tion (6.13) as described above is an irreducible and reversible Markov Kernel that admits π̃ as

stationary measure.

Proof. The matrix K has the following properties:

(i) K(x, y) = Q(x, y)/qmax ≥ 0 for x ̸= y, K(x, x) = (qmax − qx)/qmax ≥ 0, and

∑

y∈V

K(x, y) =
∑

y∼x

Q(x, y)
qmax

+
qmax − qx

qmax

=
∑

y∼x

Q(x, y)
qmax

+ 1−
∑

y∼x

Q(x, y)
qmax

= 1.

(ii) K(x, y) ̸= 0 for x ∼ y and the network is strongly connected, we deduce that K is

irreducible and then has a unique stationary measure.
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(iii) π̃ satisfies the detailed balance equation for all x, y ∈ V :

π̃(x)K(x, y) = π̃(x)
Q(x, y)
qmax

=
π̃(x)
qmax

|Γxy|θ(π̃(x), π̃(y))
|x− y| π̃(x)

=
π̃(y)
qmax

|Γxy|θ(π̃(x), π̃(y))
|x− y| π̃(y)

= π̃(y)
Q(y, x)
qmax

= π̃(y)K(y, x)

so K is reversible, and we have:

∑

y∈V

π̃(y)K(y, x) =
∑

y∈V

π̃(x)K(x, y) = π̃(x)

which proves that π̃ is the unique stationary measure of K.

By definition of K, we have that

1
qmax

Q = (K − I),

so that the solution to (6.16), that is the space-discretized solution, is the solution to the heat

flow equation
d
dt
ρ̃+ (I −K)ρ̃ = 0,

up to an affine time renormalization.

Now recall that the continuous FP equation is the gradient flow in the Wasserstein

sense (see Def(6.2.1)) for the relative entropy (6.7). We have the following discrete coun-

terpart of this property for the Finite Volume discretization scheme (6.16), that is a direct

consequence of the previous developments:

Proposition 6.3.2. The space discretized scheme (6.16) is a gradient flow for the discrete rel-

ative entropy (6.2), up to an affine time renormalization, with respect to the discrete Wasser-

stein distance W̃2 (see Def 6.2.4).

6.4 Conclusive remarks, perspectives

We described in this paper how some space discretization Finite Volume schemes, possibly on

unstructured meshes, can be proved to be deeply respectfull of the underlying gradient flow

structure. Given a PDE that is the Wasserstein gradient flow of some functionnal, the ODE

resulting from space discretization can be identified as a gradient flow for a discrete functionnal

that is an approximation of the continuous one, in the Wasserstein space of measures defined

on the underlying network, the vertices of which are the finite volume cells. This overall

consistency with respect to Wasserstein metric, that is expressed by Fig. 6.1, can be used

to improve the numerical analysis of a scheme, e.g. by charaterizing its long-time behaviour

(as in [85] in the case of a cartesian mesh). Note that the approach is currently limited to

the semi-discretized scheme. Let us add that the considered scheme treats the advection in
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a diffusive manner, and as such it is intrinsically of the centered type, so that stability issues

can be expected. In particular, an Euler Explicit scheme is likely to lead to unconditionnal

unstability. Implicit time-stepping may, in the contrary, provide some stability. Note that

Implicit Euler time-stepping applied to (6.16) leads to a problem that is formally very similar

to the so-called JKO scheme applied at the discrete level to compute the gradient flow. Implicit

schemes are then likely to recover some properties of the JKO one .

Let us finally stress that the diagram of Fig. 6.1 is not fully realized. Indeed, the arrow 2

between blocks B and B′, which expresses a link between the Wasserstein distance in a domain,

and the discrete Wasserstein distance on the network obtained by space discretization, is not

covered by a full theory. The only known convergence results ([51]) concern cartesian grids,

in the case without potential. In the presence of a non-constant potential, the framework that

has been presented may appear puzzling, because the discrete Wasserstein distance involves

the stationnary measure (non uniform in general), which depends on the potential Φ, whereas

its continuous counterpart pertains to the flat domain, and therefore does not depend on Φ.

This apparent paradox is due to the fact that, at the discrete level, the distance W̃2 is defined

for densities with respect to the stationary measure π̃. Comparing both distances would

amount to consider two probabilties p0 and p1, compute their discrete counterparts p̃0 and p̃1,

together with π̃, then ρ̃0 = p̃0/π̃, ρ̃1 = p̃1/π̃, and finally estimate W̃2(ρ̃0, ρ̃1), and check that

the latter converges to W2(p0, p1) when the discretization is refined. Although not covered by

any theoretical result, and in spite of the fact that W̃2 “sees” the measure π, while W2 does

not, such a property can be expected, because π is involved twice in the discretization process

: firstly by computation of ρ̃ from p̃, and then, in a hidden way, through the definition of W̃2.

One can check in very simple situations that both effect tend to compensate each other, i.e.

the dependence of W̃2(ρ̃0, ρ̃1) upon π asymptotically vanishes. It can also be seen in the very

definition of the distance itself: each time π̃(x) is involved, it is multiplied by a quantity of

the type θ(ρ̃(x), ρ̃(y)), where x and y are connected. In the context of Finite Volume schemes,

when the discretization is refined, x and y get closer, so that this quantity is asymptotically

close to ρ̃(x), and finally the real dependence is upon p̃(x), which does no longer depend

on the stationnary measure. As for non cartesian meshes, the analogy that we established

advocate for a convergence of the discrete Wasserstein metric toward the continuous one, but

it remains to be rigorously proven.
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Chapter 7

Conclusion and perspectives

7.1 Conclusion

We proposed a new microscopic model based on Nash equilibria. Each individual is influenced

by some of its neighbors and has a certain desired velocity. The influence relations between

individuals are represented by a directed graph: the nodes are the individuals and the directed

edges links each person to his influencers. We define the equilibrated velocity field as a solution

of a Nash equilibria problem: each individual tries to do his best by approaching his desired

velocity, respecting non-overlapping constraints with his influential neighbors. The type of

the influence graph determines/constrains the existence and uniqueness of solutions. Two

particular cases are considered in this thesis: the case of a complete influence graph (each

individual is possibly influenced by all the others), and the case of a directed acyclic influence

graph where the relations between individuals are structured in a hierarchical way. For the first

case, we prove existence of solutions in Chapter 2 by showing that the solution of the granular

model (described in [90, 89] and recalled in Chapter 1) is a particular solution. Uniqueness is

not guaranteed for this case. We describe the set of possible solutions, and show that some

Nash equilibria cannot be built using the granular model. The second case, that we call the

hierarchical model, is characterized by the existence and uniqueness of solutions that can

be computed in a frontal manner as proved in Chapter 3. We also consider the case where

the influence graph is based on the cones of vision of individuals: each person is influenced

by others he sees. The influence graph based on cones of vision is natively hierarchical in

evacuation situations. This property is considered for numerical simulations.

In the case where the influence graph is not complete, some unwanted collisions may

occur between individuals not influencing each other. In this case an extra step is performed

in the model: the equilibrated velocity field is projected on the set of globally admissible

velocity fields. A numerical strategy is proposed to solve the hierarchical model and the

latter is compared to the granular model [90, 89] in Chapter 3. The numerical results are

confronted with real evacuation experiments and the hierarchical model is shown to be able to

produce some crowd effects: the alternation between short and long time lapses, the power-

law distribution of time lapses, the Faster is Slower effect, the beneficial effect of the presence

of an obstacle upon evacuation fluidity and the capacity drop phenomena.

The principles of the hierarchical model are translated to the macroscopic level. We

describe the macroscopic model in Chapter 5 and a preliminary study of the difficulties raised

by this approach is represented.
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Beside crowd motion modeling, we establish a link between some space discretization

strategies of the Finite Volume type for the Fokker-Planck equation in general meshes (Voronoï

tesselations) and gradient flows on the underlying networks of cells, in the framework of

discrete Wasserstein distances on graphs recently proposed in [87].

7.2 Perspectives

In this section, we propose some possible perspectives of the work presented in this thesis.

Some of them are under current investigation.

Existence of Nash equilibria in the general case

In Chapters 2 and 3, we proved existence of Nash equilibria in the case where the influence

graph is complete or acyclic. In the case of a general influence graph which contains cycles, the

existence of Nash equilibria is still under current investigation. Actually, as already mentioned

at the end of Chapter 2, the classical theory of existence of Nash equilibria does not apply

due to the particular form of the game considered. The cost functions are discontinuous

and not finitely valued, and the strategy sets of individuals may be empty, not necessarily

compact and do not depend continuously on the strategies of others. Some of these issues may

be overcome by making some additional assumptions on the cost functions and the strategy

sets (high values of cost functions instead of infinite ones, prescribed maximum module of

velocities,...), but this is still not sufficient to apply known existence theorems. For example,

continuity of cost functions is required for the first existence theorems in infinite games [31,

52, 44], some forms of weak continuity of the cost functions are introduced in [9, 109, 7, 119, 8,

100] but they are not verified by the functions we consider, and semi-continuous dependence

of admissible strategies on the strategies of others is required in [6].

Even in the case where a Nash equilibrium exists, this solution is in general not unique.

In the case of a complete influence graph, we can attribute a weight for each individual

(depending on his dimension, aggression level,...) and consider the weighted granular model

whose solution is a Nash equilibrium (see Proposition 2.3.1 in Chapter 2). In the general case,

the problem of specifying rules to select one of the infinitely many possibilities, in such a way

that the selection remains measurable in time, raises unresolved issues in terms of mathematics

and modeling. Let us make it straight that the underlying problem does not call for some

kind of entropy-like condition, but rather assumptions on the behavior of individuals facing

a conflicting situation. In the case of a direct conflict between two individuals, it is possible

to resolve the problem by attributing different weights to individuals as for the weighted

granular model or simply by making the interaction between them completely asymmetric

(turning the undirected edge of the influence graph to a directed one). When the topology

of the graph becomes more complicated, this possibility is ruled out due to the complexity of

the interactions.
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Evolution problem of the hierarchical model

In Chapter 3, we study the well posedness of the instantaneous hierarchical model and prove

existence and uniqueness of solutions, which makes it possible to talk about an evolution

problem for this case.

Even if the evolution problem seems to be simple, its theoretical study reveals some

difficulties. Actually the Cauchy-Lipschitz Theorem does not apply and the problem requires

more advanced tools to be solved. In [120], a theoretical study of the granular model is

done and the evolution problem is proved to be well posed, thanks to the theory of maximal

monotone operators and sweeping processes. A naive thought to prove the well posedness

of the hierarchical model would be to apply the result obtained for the granular model,

considering the equilibrated velocity field as a new desired velocity field. However, the result

obtained in [120] requires a desired velocity field that is Lipschitz and bounded, which is not

the case for the equilibrated velocity field (not continuous, thus not Lipschitz). Also, remark

that the evolution problem of the hierarchical model is outside the scope of maximal monotone

operators theory.

For the case of a cluster of individuals walking in the same direction in dimension one,

the sweeping process theory introduced in [94] can be used to prove the well posedness of

the problem. Actually, in this case the leader of the crowd walks at his desired velocity

for all times, and the one that succeeds him adapts his velocity to avoid overlapping: if

the two individuals are in contact, the one behind will have an actual velocity equal to the

minimum between his desired one and the desired velocity of the leader, and if not, he walks

at his desired velocity. The problem can then be formulated as an hierarchical succession of

sweeping processes and hence proved to be well posed.

The situation becomes more complicated in the two dimensional setting. The structure

of the influence graph between individuals changes over time at a frequency that is hard to

anticipate. This calls for a deeper investigation of the problem in order to establish well-

posedness of the evolution problem under general assumptions.

Macroscopic model

In the continuity of the work done in Chapter 5, one can tackle the question of well posedness

of the evolution problem associated to the macroscopic counterpart of the hierarchical model.

The classical theory for transport equation does not apply because of the lack of regularity of

the actual velocity field (in general just L2), which prompts a search for other tools to study

the problem.

A possible way to answer the question of well posedness of the macroscopic evolution

problem is by studying a catching-up algorithm. This approach is introduced by Moreau [94]

and is used in [120, 91] to prove the well posedness of the granular model and its macroscopic

counterpart. The catching-up algorithm is based on two steps: a prediction step consisting in

transporting the crowd with its desired velocity, and a correction step consisting in projecting

the new configuration (resp. density) of the crowd on the set of admissible configurations
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(resp. densities). For the case of the macroscopic granular model, the density of the crowd

is transported with the desired velocity field, and then the density is projected on the set of

admissible densities (remaining below a maximum value) according to the quadratic Wasser-

stein distance. We propose to study a similar catching-up scheme where the prediction step

is performed in the same way as for the macroscopic granular model, but the projection of

the correction step is changed. We suggest to project the density of the crowd on the set of

densities remaining below a maximum value, according to a modified Wasserstein distance

where the quadratic cost is finite if the displacement y−x belongs to the opposite of the cones

of vision. This approach fits in the framework of constrained transport introduced recently

by Jimenez and Santambrogio [71] where the authors prove existence of an optimal transport

map between two given probability measures, for a quadratic cost with convex constraints

on the transport map. In [71], the displacement is constrained to belong to a fixed convex

set. An extension of this work to the case where the convex set depends on the space vari-

able is necessary in order to study the suggested catching-up algorithm for the macroscopic

hierarchical model.
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Appendix A

Experimental data

A.1 Controlled evacuation experiments

The set of experiments involved in the comparison are evacuation drills done by Garcimartín et

al. [49]. During these experiments, a total of 85 participants are asked to exit a room through

a door of length 75cm. The participants were boys and girls of about 22 years old, and they

were students at the School of Architecture at the University of Navarra, Spain. Two sets of

runs are done. In the first set, individuals are asked to exit the room as fast as they could while

trying to avoid physical contact with others and pushing was banned (low competitiveness).

This set of runs is performed five times. In the second set, individuals are asked to do the same

but they were allowed to push each other while evacuating (high competitiveness), excluding

violent shoving. This set of runs is performed seven times. A snapshot of the evacuation

experiment is displayed in Figure A.1 for both cases of competitiveness level. One of the

main goals of these experiments is to experimentally assess the Faster is Slower effect. The

presence of this effect was proved by showing that the evacuation time increases with the

competitiveness level, and that the distribution of time lapses has a power-law tail, with an

exponent that is larger for the case of low competitiveness.

Figure A.1: Snapshot of the evacuation experiment by Garcimartín et al. [49]

Other controlled experiments are done in [101] involving 80 age-diverse participants asked

to exit a room through a door of length 72cm (the geometry is sketched in Figure A.2).

For each evacuation experiment a fixed proportion of pedestrians are asked to behave self-

ishly, while the rest of individuals are asked to behave politely. Two sets of experiments are
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performed. In the first one, participants are just instructed to “head for the door” (placid

walkers), while for the second one, they are told to “walk purposefully, but without running,

pushing or hitting others” (purposeful walkers). Placid walkers are quiet calm and relaxed,

whereas purposeful walkers are somewhat precipitous but not to the point to be in competition

to exit the fastest possible way. The experiments are performed imposing “periodic bound-

ary conditions” which means that evacuated pedestrians are re-injected in the room again by

following one of two possible circuits (sketched in Figure A.2). A study of the correlations

between time lapses is done in this paper for all the performed experiments, as well as an

analysis about their distribution, the dependence of the flow rate on the pedestrian density

and the dynamics in the exit zone. We refer the reader to [49, 50, 101] for more details about

the procedures used to carry out the evacuation experiments.

Figure A.2: A sketch of the experimental geometry (left) and a snapshot of the evacu-
ation experiment (right) by Nicolas et al. [101]

A.2 Controlled experiments for collision detection

The dependence of the actual velocity of an individual on the presence of other individuals

in his cone of vision occurs natively in real life situations. Some controlled experiments are

done in order to investigate pedestrian’s behavior when their anticipated trajectories intersect

with those of other ones. These experiments are performed in the framework of the project

PEDIGREE involving four french teams from: LPT Orsay (Cécile Appert-Rolland et al.), IMT

Toulouse (Pierre Degond et al.), INRIA Rennes (Julien Pettré et al.) and CRCA Toulouse

(Guy Theraulaz et al.). For each experiment, a group of pedestrians are asked to walk in

a circular domain that has six doors in total: three entry doors and three exit doors facing

them respectively. Pedestrians are asked to enter the domain from an entry door and exit

it from the facing door, without any additional instruction to let them behave freely. Many

pedestrians are asked to walk in the circular domain at the same time to study collisions

between several individuals.

We look for the influence relations based on the cones of vision between individuals. The

angle of vision of each individual is considered equal to π/3 on each side of the line of sight
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and the length of the cone is 2m. The line of sight of an individual, i.e. the symmetry axis of

the cone of vision, is considered colinear his velocity. Some examples of influence graphs on

the set of individuals are displayed in Figure A.3.
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Figure A.3: Example of influence graphs based on the cones of vision taken from a real
controlled experiment. The heads of the pedestrians are represented by the blue points
and their velocities are represented by the blue vectors. The influence graph based on
the cones of vision is drawn in black.
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Appendix B

Confidence intervals

A confidence interval for a mean consists of a range of values (interval) that act as good

estimates of the unknown population mean. The confidence level describes the uncertainty

associated with a sampling method. It is the probability that the confidence interval contains

the true value of the population mean. The confidence level then relates to the reliability

of the estimation procedure and is usually set to 90%, 95% or 99%. For the case of the

numerical simulations represented in Chapter 4, the time lapses mean and the flow rate are

calculated with a 95% confidence interval. To do so, for each numerical simulation we extract

all time lapses as a sample. We denote by n the sample size, M and S respectively the random

variables equal to the mean of the sample and its standard deviation, µ the time lapses mean

(population mean) and σ the standard deviation of time lapses. It is known that the random

variable

T =
M − µ

(S/
√

n)

follows a Student’s-t distribution with n− 1 degrees of freedom. The random variable T is a

pivotal quantity, i.e. it does not depend on the unknowns µ and σ. We compute the 97.5th

percentile of the above distribution and denote it by c, it satisfies:

P(−c ≤ T ≤ c) = 0.95.

Consequently,

P(M − cS√
n
≤ µ ≤M +

cS√
n

) = 0.95.

which gives a 95% confidence interval for the population mean µ. We compute the mean

of the sample m and its standard deviation s, and we deduce the confidence interval of the

population mean: [m− (cs)/
√

n, m + (cs)/
√

n].

Remark B.0.1. A 95% confidence level means that 95% of the intervals obtained from dif-

ferent samples of the population would include the population mean.
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Titre : Modélisation de mouvement de foules avec contraintes variées 

Mots clés : Modélisation de mouvement de foules, équilibre de Nash, optimisation hiérarchique, flots 
gradient. 

Résumé : Dans cette thèse, nous nous intéressons à la modélisation de mouvements de foules. Nous 
proposons un modèle microscopique basé sur la théorie des jeux. Chaque individu a une certaine 
vitesse souhaitée, celle qu'il adopterait en l'absence des autres. Une personne est influencée par 
certains de ses voisins, pratiquement ceux qu'elle voit devant elle. Une vitesse réelle est considérée 
comme possible si elle réalise un équilibre de Nash instantané: chaque individu fait son mieux par 
rapport à un objectif personnel (vitesse souhaitée), en tenant compte du comportement des voisins qui 
l'influencent. Nous abordons des questions relatives à la modélisation ainsi que les aspects théoriques 
du problème dans diverses situations, en particulier dans le cas où chaque individu est influencé par 
tous les autres, et le cas où les relations d'influence entre les individus présentent une structure 
hiérarchique. Un schéma numérique est développé pour résoudre le problème dans le second cas 
(modèle hiérarchique) et des simulations numériques sont proposées pour illustrer le comportement du 
modèle. Les résultats numériques sont confrontés avec des expériences réelles de mouvements de 
foules pour montrer la capacité du modèle à reproduire certains effets.  
Nous proposons une version macroscopique du modèle hiérarchique en utilisant les mêmes principes 
de modélisation au niveau macroscopique, et nous présentons une étude préliminaire des difficultés 
posées par cette approche.  
La dernière problématique qu'on aborde dans cette thèse est liée aux cadres flot gradient dans les 
espaces de Wasserstein aux niveaux continu et discret. Il est connu que l'équation de Fokker-Planck 
peut s'interpréter comme un flot gradient pour la distance de Wasserstein continue. Nous établissons 
un lien entre une discrétisation spatiale du type Volume Finis pour l'équation de Fokker-Planck sur une 
tesselation de Voronoï et les flots gradient sur le réseau sous-jacent, pour une distance de type 
Wasserstein récemment introduite sur l'espace de mesures portées par les sommets d'un réseaux.

Title : Crowd motion modeling under some constraints 

Keywords : Crowd motion modeling, Nash equilibrium, hierarchical optimization, gradient flows. 

Abstract : We are interested in the modeling of crowd motion. We propose a microscopic model 
based on game theoretic principles. Each individual is supposed to have a desired velocity, it is the 
one he would like to have in the absence of others. We consider that each individual is influenced by 
some of his neighbors, practically the ones that he sees. A possible actual velocity is an instantaneous 
Nash equilibrium: each individual does its best with respect to a personal objective (desired velocity), 
considering the behavior of the neighbors that influence him. We address theoretical and modeling 
issues in various situations, in particular when each individual is influenced by all the others, and in 
the case where the influence relations between individuals are hierarchical. We develop a numerical 
strategy to solve the problem in the second case (hierarchical model) and propose numerical 
simulations to illustrate the behavior of the model. We confront our numerical results with real 
experiments and prove the ability of the hierarchical model to reproduce some phenomena. 
We also propose to write a macroscopic counterpart of the hierarchical model by translating the same 
modeling principles to the macroscopic level and make the first steps  towards writing such model. 
The last problem tackled in this thesis is related to gradient flow frameworks in the continuous and 
discrete Wasserstein spaces. It is known that the Fokker-Planck equation can be interpreted as a 
gradient flow for the continuous Wasserstein distance. We establish a link between some space 
discretization strategies of the Finite Volume type for the Fokker- Planck equation in general meshes 
(Voronoï tesselations) and gradient flows on the underlying networks of cells, in the framework of 
discrete Wasserstein-like distance on graphs recently introduced.
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