
HAL Id: tel-01617963
https://theses.hal.science/tel-01617963

Submitted on 17 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Smart management of renewable energy in clouds : from
infrastructure to application

Md Sabbir Hasan

To cite this version:
Md Sabbir Hasan. Smart management of renewable energy in clouds : from infrastructure to applica-
tion. Distributed, Parallel, and Cluster Computing [cs.DC]. INSA de Rennes, 2017. English. �NNT :
2017ISAR0010�. �tel-01617963�

https://theses.hal.science/tel-01617963
https://hal.archives-ouvertes.fr

THESE INSA Rennes
sous le sceau de l’Université Bretagne Loire

pour obtenir le titre de
DOCTEUR DE L’INSA RENNES

Spécialité : Informatique

présentée par

MD Sabbir Hasan
ECOLE DOCTORALE : MATISSE
LABORATOIRE : IRISA

Smart Management
of Renewable Energy

in Clouds: from
Infrastructure to

Application

Thèse soutenue le 03.05.2017
devant le jury composé de :

Christine MORIN
DR, INRIA Rennes-Bretagne Atlantique / Présidente
Jean-Marc PIERSON
PU, Université Paul-Sabatier, Toulouse / Rapporteur
Pascal BOUVRY
PU, Université du Luxembourg, Luxembourg / Rapporteur
Eric RUTTEN
CR, INRIA Grenoble Rhône-Alpes / Examinateur
Romain ROUVOY
PU, Université de Lille, Lille / Examinateur
Thomas LEDOUX
MA, IMT Atlantique, Nantes / Co-encadrant de thèse
Jean-Louis PAZAT
PU, INSA Rennes / Directeur de thèse

Smart Management of Renewable Energy in
Clouds : from Infrastructure to Application

MD Sabbir Hasan

En partenariat avec

Document protégé par les droits d’auteur

Acknowledgment

This is the last portion of writing that is going to be attached in the manuscript which
didn’t go through either a peer reviewed process or any major/minor revision! Therefore,
empathy might overpower the lucidity of my mind.

Firstly, I would like to extend my profound gratitude to both of my PhD advisors,
Prof. Jean-Louis Pazat and Thomas Ledoux for their continuous guidance, advice, patience
throughout my PhD duration. Without their support and direction, this thesis would have
not been possible. I would like to give Thomas a special thanks for tolerating my somewhat
impatient mind and stubbornness at times and giving me flexible working hours and
freedom to explore.

I would like to thank Prof. Jean-Marc Pierson and Prof. Pascal Bouvry for accepting
the request to be reviewer of this thesis and for their valuable insights and suggestions to
improve the quality of the manuscript. Additionally, I would like to express my sincere
gratitude to the Jury members Christine Morin, Eric Rutten and Romain Rouvoy for their
valuable suggestions, challenging questions and admiration during the thesis defense to
make the occasion much memorable and unfathomable.

Looking back, It’s all started in the summer of 2013 in August, when i came back to
Bangladesh after spending 2 years at South Korea for my masters degree. I received an
email followed by a skype interview and boom! I was selected for doing a PhD at INSA,
Rennes. Amidst that period, i was planning to move to Canada to start my PhD. But i felt
the temptation to experience better weather, food, diverse culture etc. hence my heart lean
towards to Western Europe.

My journey became a lot easier for having some amazing colleagues like Simon, Yousri
and Frederico with whom i had scientific discussion, written articles, passed sleepless
nights over email and Slack in the eve of some conference deadline. I would also like
to thank other members of ASCOLA and MYRIADS team members for their help and
presence throughout my PhD journey.

To my friends at Ecole des Mines de Nantes for always having weird, hodgepodge and
heated discussions on food, weather, movies, songs, travel, politics, sports etc. during long
post-lunch-coffee-breaks. Sometimes these discussion were extended to weekend parties.
Thank you all of my friends for being fun, nerdy, inspiring and sometimes irritating! I
would also like to thank my friends back in home and abroad and to them who stayed

1

briefly in my life but encouraged me to do better things.
I want to remember my parents, brother and other family members for their immense

contribution from day 1 at school to the end of my academic degree career and thank them
wholeheartedly.

Finally, I would like to give a big thank to my wife, Tama for always being there in my
ups and downs and sometimes enduring my irrational minds at times and late working
hours at night.

MD Sabbir Hasan, June 2, 2017

2

Contents

1 Introduction 11
1.1 Problem Statement . 12
1.2 Contribution . 13
1.3 Outline . 15

I State of the art 19

2 Background 21
2.1 Cloud Computing . 21

2.1.1 Cloud service delivery model . 22
2.1.2 Cloud deployment model . 24

2.2 Service Level Agreement . 25
2.3 Cloud Application . 26
2.4 Energy management problems and opportunities 27
2.5 Summary . 30

3 Related work 31
3.1 Greening the Cloud computing backend environment 31

3.1.1 Green cloud through SLA specification 32
3.1.2 Greening data center through energy management 34

3.2 Discussion . 36
3.3 Energy and Performance aware cloud application 38

3.3.1 Opportunistic scheduling of Batch jobs 38
3.3.2 Cost-aware approaches in geo-distributed cloud 43
3.3.3 Self-adaptiveness for Interactive Cloud application 45

3.3.3.1 Performance aware approach 45
3.4 Discussion . 52

3

CONTENTS

II Contribution 57

4 Cloud energy broker: Green energy planning for data center 59
4.1 Context and Motivation . 60
4.2 Energy procurement and Integration . 61
4.3 SLAs in different layers . 63

4.3.1 Actors . 63
4.3.2 SLAs . 63

4.4 Components of Cloud energy Broker . 64
4.5 Planning phase and life cycle . 66
4.6 Evaluation . 68

4.6.1 Experimental Testbed . 68
4.6.2 Forecaster Evaluation . 69
4.6.3 Optimizer Evaluation . 69

4.7 Discussion . 71

5 Virtualization of green energy: Better managing the energy in datacenter 73
5.1 Context and Motivation . 73
5.2 Proposed solution . 75

5.2.1 Virtualization of green energy . 75
5.2.2 Extension of CSLA to support virtualization of green energy 76

5.3 Real-time Green Energy Management . 78
5.3.1 Supply side characteristics . 78
5.3.2 Virtual energy model . 78
5.3.3 Cost Minimization Problem of Spot Green Energy 79
5.3.4 Lyapunov Optimization . 81
5.3.5 Dynamic Algorithm . 83

5.3.5.1 Algorithmic solution . 84
5.4 Evaluation . 86

5.4.1 Experimental Testbed . 86
5.4.2 Cost function and algorithms for comparison 87

5.5 Results . 91
5.5.1 Cost analysis . 91
5.5.2 SLA validation . 91
5.5.3 Impact of control parameter V . 93
5.5.4 Impact of penalty . 95
5.5.5 Robustness analysis . 96
5.5.6 Remarks . 96

5.6 Discussion . 96

4

CONTENTS

6 Creating green-energy adaptivity awareness in SaaS application 101
6.1 Context and Motivation . 101

6.1.1 Why SaaS application should participate in energy reduction? 102
6.1.2 What makes energy reduction and adaptivity decision challenging? 103

6.2 How to make interactive SaaS application adaptive to green energy 104
6.3 Auto-scaler architecture . 105
6.4 Single metric application controllers . 106

6.4.1 Green energy aware controller . 108
6.4.2 Response time controller . 109
6.4.3 QoE based controller . 110

6.5 Evaluation . 111
6.5.1 Infrastructure configuration . 112
6.5.2 Application configuration . 112
6.5.3 Auto-Scaler . 113
6.5.4 Workload traces . 115
6.5.5 Results . 115

6.5.5.1 Response time . 116
6.5.5.2 Quality of experience . 118
6.5.5.3 Energy consumption . 120

6.6 Multi-criteria controller design . 121
6.6.1 Green Energy aware hybrid controller (Hybrid-green) 121
6.6.2 QoE aware hybrid controller (Hybrid-qoe) 123
6.6.3 Results . 124

6.6.3.1 Algorithm Implementation 126
6.6.3.2 Response time . 127
6.6.3.3 Quality of experience . 128
6.6.3.4 Energy Consumption . 130
6.6.3.5 Cost analysis . 131
6.6.3.6 Scaled experiment . 132

6.6.4 Discussion . 133
6.7 Conclusion . 134

7 Towards Green energy awareness in Cloud Platform 135
7.1 Motivation . 135
7.2 GPaaScaler architecture . 136
7.3 SaaS controllers . 137
7.4 IaaS controller . 138
7.5 Discussion . 142

8 Conclusion 143

5

CONTENTS

Conclusion 143
8.1 Problem Statement Revisited . 143
8.2 Summary of Contributions . 144
8.3 Perspective . 145

8.3.1 Selection of VM types based on fine-grained resource demand 145
8.3.2 Containerized approach . 145
8.3.3 Leveraging Microservice architecture for application adaptation . . . 146
8.3.4 From Cloud to Fog/Edge computing 146

Appendices 149

Appendix 153

Bibliography 165

6

List of Figures

1.1 Overview of proposed solution . 16

2.1 Service layers of Cloud computing . 24
2.2 SLA initialization lifecycle [Sta14] . 26
2.3 Various energy integration option in data center [RWUS12] 30

3.1 Traditional SLA vs GreenSLA [BKT12] . 33
3.2 Data center powered by multiple energy component [KL16] 36
3.3 Scheduling 3 jobs using GreenHadoop [GLN+12] 40
3.4 System architecture of capacity planning [LCB+12] 41
3.5 Adapting applications for a better usage of renewable energies [DSFH15] . 42
3.6 Placement for batch and web job [LOM15] . 43
3.7 Middleware for distributed cloud-scale data center [ZWW11] 44
3.8 Component based representation of an Application [PDPBG10] 46
3.9 Input-Output model for a multi-tier application [PSZ+07] 50
3.10 Integrative adaptation engine architecture [MHL+11] 51

4.1 Cross-layers SLA . 62
4.2 Top level view of the framework . 65
4.3 Planning life-cycle . 67
4.4 From CPU utilization to Green Power Prediction 70
4.5 Energy production by different GEaaS providers 71
4.6 Our approach vs Cost aware vs Availability aware 72

5.1 Green energy virtualization concept . 76
5.2 SLO evaluation in CSLA . 77
5.3 Supply side characteristics . 79
5.4 Experimental Testbed . 88
5.5 Cost Analysis . 90
5.6 SLA Validation and Energy Cost . 92
5.7 Impact of parameter V . 94

7

LIST OF FIGURES

5.8 Impact of different energy prices and penalty to total cost 95
5.9 Limitation of Virtualization of green energy 98
5.10 Green energy adaptive Cloud applications 99

6.1 Power consumption analysis . 104
6.2 Auto-scaler architecture . 106
6.3 Application modes under different service level 107
6.4 Green energy aware controller . 109
6.5 Response time aware controller . 109
6.6 QoE aware controller . 111
6.7 Experimental Testbed . 114
6.8 Monitoring . 114
6.9 Workload trace . 115
6.10 Single metric controller’s performance (wikipedia workload) 117
6.11 Single metric controller’s performance (fifa workload) 118
6.12 Response time in percentiles. 119
6.13 SLA validation . 120
6.14 Resource consumption by Green controller 121
6.15 Green energy aware Hybrid controller . 123
6.16 QoE aware Hybrid controller . 126
6.17 Algorithm implementation in detail . 127
6.18 Hybrid controller’s performance (wikipedia workload) 128
6.19 Hybrid controller’s performance (fifa workload) 129
6.20 Hybrid controller’s response time in percentiles 130
6.21 SLA validation for hybrid controller’s . 130
6.22 Revenue analysis incurred by all controllers 132
6.23 Scalability result for Hybrid-green controller 133

7.1 GPaaScaler architecture . 137

8.1 Overview of proposed solution . 158
8.2 Cross-layers SLA . 159
8.3 Green energy virtualization concept . 160
8.4 Application modes under different service level 162

8

List of Tables

2.1 Cloud Application types . 28

3.1 Energy management and GreenSLA . 39
3.2 Cloud Application . 55

4.1 Power consumption by the selected servers at different load levels in Watt . 68

5.1 Power consumption by the selected servers at different load levels in Watt . 87
5.2 Workload characteristics . 89
5.3 SLA between IaaS provider and its consumers 90

6.1 Energy consumption results (Wh) . 122
6.2 Summary of applications controller’s characteristics 134

9

Chapter 1

Introduction

As a direct consequence of the increasing popularity of Internet and Cloud Computing
services, small-scale to large-scale data centers are rapidly growing. In 2007, data centers
in Western Europe consumed a whopping 56 terawatt-hours (TWh) of power per year.
According to the EU, this figure is likely to almost double to 104TWh by 20201. In the
same year, Gartner reported, ICT industry accounts for 2% of global carbon emissions.
This high carbon emissions is the result of producing electricity from fossil fuels or coals.
Although, France generates 75% of the electricity by nuclear plants which emits relatively
lower carbon, the amount of carbon footprint is nowhere near to zero. Apart from that, the
energy costs due to power draw and distribution of a data center accounts to 15% of total
cost of ownership (TCO).

One of the main reason of the energy consumption growth is that more and more
service providers are shifting their application as well as their IT workloads to the Cloud.
In 2016, Rightscale2 reported, the adoption of Cloud services have increased by 13-14%
compared to 2015. The foremost reason for moving to the Cloud is to decrease the IT-related
costs, complexities and being operational without investing heavily on or maintaining
their own computing infrastructure. Additionally, Software-as-a-Service (SaaS) providers
or application owners seek to guarantee certain level of performance and availability of
their services a.k.a interactive Cloud applications without any disruption to the end users.
To guarantee the QoS terms, Cloud applications should be always running and responsive
irrespective to user traffic suggesting, Infrastruture-as-a-Service (IaaS) providers need to
over-provision the resources but SaaS providers are willing to pay only what they consume.
In contrast, IaaS providers aim at running lesser physical machines not only to reduce TCO
but also to reduce energy consumption and their associated footprint. While TCO can be
decreased via under-provisioning of resources, may degrade QoS properties of the hosted

1European Commission, Code of Conduct on Data centers Energy Efficiency- Version 1.0, October 30, 2008
2http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2016-

state-cloud-survey

11

http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2016-state-cloud-survey
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2016-state-cloud-survey

1.1. Problem Statement

application. Therefore, the conflicting goals in different service layers are managed by
Service Level Agreement (SLA), that is a formal description of temporal, performance and
economical constraints between SaaS and IaaS Provider.

1.1 Problem Statement

While the proliferation of Cloud services which reside in data centers is greatly impacting
our society, the greenness of their nature remains questionable. Greenness can be derived
from energy efficient techniques and quality of energy consumed in those data centers.
In response, existing researches have focused more on reducing energy consumption
by designing/implementing server consolidation [BAB12] [HH13], hardware with better
power and performance trade-offs [VAN08], workload migration [BJT+09] and software
techniques for energy aware scheduling [KMAHR14], etc. Although these efforts are
necessary, the goal of alleviating carbon footprint is far form the expectation. According to
a recent report3, data center electricity consumption increased by about 4% from 2010-2014,
a large shift from the 24% increase estimated from 2005-2010. However, energy usage is
expected to increase continuously with the same rate of 4% for 2014-2020 like past five years.
Therefore, aforementioned data indicates that, energy efficiency alone is not going to reduce
the carbon footprint since energy consumption will continue to grow. Rather, explicit or
implicit integration of renewable energy to the data center can be a complementary/integral
measure along with state-of-the-art energy efficiency technique to reduce further carbon
footprint.

Problem 1. Most of today’s data center is only connected to electrical grid where electricity
is produced through burning coal and natural gas, which are carbon-intensive approaches
to energy production. Therefore, if the electrical grid is not environmental friendly in terms
of offsetting and neutralizing net-zero carbon emission or brown energy, large consumers
like data centers need to look towards alternative green measures i.e., on-site and off-site
green plants, green products etc. The considerable research challenge using green energy sources
in data center are that, they are intermittent by nature, thus always not available. Apart from
that, most of the research articles are unaware of the cost analysis of the variant nature of
green energy prices, hence consider green energy incurs $0 [WZL14][APKSG14]. Therefore,
exploring different renewable energy integration options and prices can lead to an efficient
energy management policy in data center to tackle the intermittent nature of green energy.
Once the problem is resolved, IaaS providers can propose green computing services to the
SaaS consumers or to end clients.

Problem 2. Applications which are hosted in data center can be roughly classified as
Batch and Interactive applications. While former can be characterized as delay-tolerant,

3https://eta.lbl.gov/publications/united-states-data-center-energy

12

https://eta.lbl.gov/publications/united-states-data-center-energy

Chapter 1. Introduction

the latter can be very sensitive to delays, otherwise QoS can be heavily impacted. Like
any management technique, an efficient energy management can subject to be constrained
of not having enough green energy, be it from onsite plant or from wholesale energy
market i.e., in case of natural disaster, cloudy days, high energy price, technical plant
problem, competitors with better purchasing power and needs etc. To this, several work
has been proposed and practiced on how to schedule or run Batch jobs when green energy
is available so to consume more green energy and not waste any of it. This results in
reducing brown energies in data center, which impact positively to the carbon footprint
reduction goal. On the other hand, Interactive applications workload/traffic response can
not be delayed and that rules out scheduling of any tasks. Therefore, the research question
is: how to make Interactive SaaS application adaptive to green energy availability while traditional
QoS properties can be at satisfactory level so to lower carbon footprint?. Moreover, green energy
adaptivity in interactive cloud applications has not yet been addressed in existing research.
Since societal and environmental concerns have been prompting green energy initiatives,
it’s high time to consider greenness of energy metric as an essential attribute along with
traditional QoS.

Problem 3. While IaaS layer allows to dynamically adjusting the provision of physical
resources according to Platform-as-a-Service (PaaS) needs for optimizing energy efficiency
of the data center, reducing carbon footprint is still underachieved. Integrating different
renewable energy options at data center level and adoption of Autonomic Computing
(AC) at SaaS layer for greenness, responsiveness and autonomy in front of environmental
changes could be a feasible solution for bettering the Cloud eco-system. Additionally, at
the SaaS layer, AC can enable applications to react to a highly variable workload and
presence of renewable energy by dynamically adjusting the amount of resources in order
to keep the QoS for the end users. However, problems may occur since those self-managed
systems are related in some way (e.g., applications depend on services provided by a
cloud infrastructure). Dynamic adaptation of an application can lead to more/less resource
requirements that can be provisioned or de-provisioned on the fly. Therefore, decisions
taken in isolation at given layer may mismatch the resource requirements by the application,
that can negatively impact QoS and energy consumption reduction goal.

Therefore, by creating green energy awareness in the interactive application and smartly
adapting in a self-adaptive manner to the changing condition can be the only way to reduce
further carbon footprint.

1.2 Contribution

Therefore, in this thesis, to tackle the problems discussed at Section 1.1, we follow a bottom
to top (e.g., Infrastructure to application) approach. Our contribution in this thesis are as

13

1.2. Contribution

follows:

• We first seek to investigate the options and challenges to integrate different renewable
energy sources in a realistic way due to it’s intermittent nature to better manage
energy in the data center. To tackle the problem, we first propose a Cloud energy
broker, which can adjust the availability and price combination to buy Green energy
dynamically from the energy market in advance to make a data center partially green.
Data center operator can decide until what percentage they want to consume green
energy and plan in advance. Later we introduce the concept of Virtualization of Green
Energy, that suggests, energy can be virtually green for a specific period of time if the
abundance of green energy is available aperiodically in shorter time intervals along
with the deficit of green energy in rest of the time frame. Therefore, the virtualization
concept can increase greenness of energy, rather increasing the actual amount of
green energy. Traditionally, abundant energy is stored in energy storage to use
opportunistically when production of green energy is scarce. But for a small scale
data center (10-50 servers), using energy storage might not be an efficient solution.
With the help of virtualization of green energy, we propose a virtual battery which
can store and discharge energy virtually having a maximum capacity. Furthermore,
we propose GreenSLA (One of the first of it’s kind based on green energy) by the
taking advantage of Virtualization of Green Energy concept. Figure 1.1 illustrates the
overview of proposed solution and 1 indicates the position of the aforementioned
contribution.

Even with the virtualization of green energy, which is a coarse-grained concept, three
events can occur named as insufficient, ideal, surplus. Insufficient event indicates, lack
of green energy in data center even though the virtualization concept was adopted.
Whereas, surplus event depicts of having more green energy in data center than the
requirement, which exceeds the virtual battery capacity.

• We then investigate how we manage Interactive Cloud applications corresponding to
the events that is discussed in previous section. Since interactive applications cannot
be scheduled in advance, green energy adaptivity can only be realized if the application
inherits the capability to smartly use the available green energy or to adapt to the
three events we mentioned in previous contribution. Firstly, we accomplish this
task by finding optional, loosely-coupled and compute intensive components of any
application that is not related to core functionality of the service but can provide some
extra features. For example, product recommendations at e-commerce application
can be seen as extra functionality of a service which is not varily required, but if
provided, user experience can be enhanced. Since, these components are resource
intensive, secondly we rely on devising and formulating strategies where these
components can be activated/deactivated via API calls facing to changing conditions
(e.g., workload surge, QoS degradation, shortage/abundance of green energy etc.) in

14

Chapter 1. Introduction

an autonomic manner at run-time. By reducing resource requirement, not only the
energy consumption can be reduced but also targeted QoS can be met and improved
if the resource requirement is higher. 2 and 3 at Figure 1.1 illustrates our second
contribution. This part of contribution aims at providing insights and strategies
needed to make interactive SaaS application green energy aware adaptive.

• While second contribution focuses more on adapting application to changing envi-
ronment for keeping the targeted QoS with reduced energy consumption, it lacks
the capability to utilize the underlying elastic infrastructure. Therefore, our ongoing
investigation includes on how to efficiently utilize the elasticity nature of the infras-
tructure resources when overall resource requirement of an application is higher
than the existing underlying infrastructure can handle. Actions like adding/remov-
ing resource can be done independently at the infrastructure layer based on their
utilization level i.e., cpu usage, memory usage etc. But, every application performs
differently from one to another at same cpu utilization level, specially when the
resource utilization is medium to high. Therefore, coordinating the decision based on
applications resource requirement or performance is the better way to devise scaling
strategies. To this, firstly we propose to listen events from application, which is
marked by 4 at Figure 1.1 to understand when to trigger scaling decision based on
reactive scaling rules. Secondly, we use traditional API such as scale-in and scale-out
to trigger decision based on the strategy we have devised, which is illustrated as 5
at Figure 1.1.

1.3 Outline

This thesis is divided in two parts, which is constructed as follows:

State-of-the-art. This part is consist of Chapter 2 and Chapter 3. Specially in Chapter 2,
we present main concepts and definitions of the cloud computing paradigm as well as
different classification of Cloud applications based on metrics of interest. Next at Chapter
3, we review the related work around the addressed problem domain and highlights about
what is missing in the literature.

Contribution. The second part is comprised of Chapter 4, 5, 6. Chapter 4 investigates
the opportunity to exploit the energy market to plan, forecast and purchase energy in
advance. Since, any planning or forecasting method are prone to error statistics, Chapter 5
introduces Virtualization of green energy concept to tackle both the forecasting error and
intermittency of green energy to propose and revise the notion of GreenSLA. The idea is to
propose new class of explicit SLO mentioning the percentage of green energy provided
along side with computing services by managing the underlying energy infrastructure

15

1.3. Outline

IaaS

SaaS

PaaS
Solution

Brown and Green Energy Manage Energy

Monitor Energy

 Monitor QoS Re-configure App

 Resource Request (Add/Remove)

 Turn On/Off Resource

1

3

4

2

2

5

 BrokerAction
Event

Figure 1.1: Overview of proposed solution

and multi-source energy market. GreenSLA gives the possibility to application owners to
host their application in an explicitly expressed green cloud environment having formal
contracts. Furthermore, Chapter 6 presents a self-adaptive autoscaler architecture (thanks
to autonomic computing) to enable smart usage of energy in an interactive application.
The autoscaler inherits the capability of sensing information as events from multiple layer
while actions are performed only in application level. Thus, the proposed approach can
make an application adaptive by automatically adjusting to changing conditions, while
respecting QoS properties.

Chapter 7 presents an ongoing investigation which proposes Green PaaS solution
that inherits the capability to adapt both at application and infrastructure level facing
to changing conditions. It provides the platform architecture along with some extended
application controllers which are able to request of adding/releasing resources to an

16

Chapter 1. Introduction

proposed infrastructure controller.

Conclusion. Chapter 8 concludes this thesis by revisiting the problem statement, summa-
rizing the contributions, discussing advantages, insights and limitations of our proposed
solutions. Later, we discuss some of the possible directions and ideas that could create new
future challenges based on the contribution of this thesis.

17

Part I

State of the art

19

Chapter 2

Background

This chapter presents very thorough yet concise definitions and explanations of various
terms used in the entire thesis. Although Cloud computing domain is widely adopted and
well known to the community already, we start the chapter by explaining Cloud computing
definitions and its delivery and deployment model. Afterwards, we provide description
and some examples of how Service Level Agreement works in the Cloud computing
domain. Later, we classify the Cloud application into different categories with their metrics
of interest. Lastly, we discuss about energy management problems and opportunities in
the context of Cloud computing environment.

2.1 Cloud Computing

What do vast majorities of people think about Cloud? A condensed watery vapour floating
in the atmosphere or iCloud1, Dropbox2, Google Drive 3 etc. or both of them but from a
different perspective? While, the first connotation is true, the latter view represents an
unsophisticated way to speculate what Cloud really is in modern computing world. Cloud,
which refers to Cloud computing, according to Buyya [BSYV+09]

"A Cloud is a type of parallel and distributed system consisting of a collection of inter-
connected and virtualized computers that are dynamically provisioned and presented
as one or more unified computing resource(s) based on service-level agreements
established through negotiation between the service provider and consumers."

Therefore, the above definition is market-oriented computing where Cloud resources
are provisoned depending on service level agreement and users are charged based on
their usage, just like any other utility e.g., electricity. When the definition arrived, Cloud

1https://www.icloud.com/
2https://www.dropbox.com/
3https://www.google.com/drive/

21

https://www.icloud.com/
https://www.dropbox.com/
https://www.google.com/drive/

2.1. Cloud Computing

computing was still its infancy, confusing and just a new hype. Later in 2009, Vaquero et al.
[VRMCL09] put scrutiny on more than 20 definitions of cloud computing which were in
the air and proposed their own definition:

"(1) Clouds are a large pool of easily usable and accessible virtualized resources
(such as hardware, development platforms and/or services); (2) These resources can
be dynamically reconfigured to adjust to a variable load (scale), allowing also for an
optimum resource utilization; (3) This pool of resources is typically exploited by a
pay-per-use model in which guarantees are offered by the Infrastructure Provider by
means of customized SLAs."

Therefore, the definition suggests that, Clouds are enabled by virtualization having
intrinsic capability of scalability and utility model like pay-per-use. If we further dive into
the ocean to explore a standardized interpretation, National Institute of Standards and
Technology (NIST) [MG11] has given a widely adopted and proper definition:

"Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction."

That being said, former popular products are just Cloud based storage services, which
are enabled by hardware and software virtualization techniques, multicore processors,
network virtualization, network overlay, virtual firewall and so on; not the whole paradigm
of Cloud Computing. Although, all the definition provide a vague abstraction, we can
break down the whole concept into pieces for better understanding and readership in the
following subsections.

2.1.1 Cloud service delivery model

Traditionally Cloud computing is composed of three service layers namely: Software-
as-a-Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS),
through which the cloud services are offered. Figure 2.1 shows the service layers of Cloud
computing briefly.

SaaS : Principally, SaaS is a software distribution model in which application is deployed
and delivered over the internet. It means, the software application is hosted in
cloud infrastructure and the consumers have no control over the application and
the underlying platform and/or infrastructure. Moreover, software is licensed on
a subscription basis and is hosted centrally. While this is a broad generalization, a
typical SaaS application needs to have basic characteristics of on-demand self-service,
resource pooling and rapid elasticity capabilities and ability to measure the service.

22

Chapter 2. Background

The popular example of SaaS application could be Salesforce.com4 and LinkedIn5,
where users subscribe themselves and pay a subscription fees for their usage. Google
Apps is a perfect example of a SaaS application, where Service Level Agreement
(Subscription fees against measured service quality) is available and users have
limited degrees of freedom in customization of their apps.

PaaS : PaaS is analogous to SaaS except that, rather than being software delivered over
the web, it is a platform for the creation of software, delivered over the web. This
platform is a dream for developers since it provides independent runtime and
language environment. Besides some of the daunting tasks like deploying, testing
and debugging of codes have been made less worrisome, resulting developers only
need to think about their codes. In other word, PaaS eliminates the expense and
complexity of evaluating, buying, configuring, and managing all the hardware
and software needed for custom-built applications. The interesting feature of this
layer could be the possibility to monitor both the application and the underlying
infrastructure that enables two core characteristics of Cloud computing; scalability
and elasticity. Now, what are these terms? Well, when the traffic to a application
increases suddenly, what does exactly happen? Either it cannot admit the user
requests or it does not have sufficient resources to serve the request or could be
both in general. With the increase of traffic or workload, the ability to increase the
resource capacity to the service is termed as scalability, whereas the capability of
taking actions dynamically in regards to both increasing and decreasing traffic or
workload is elasticity. Some of the popular PaaS service providers are Google App
Engine6, Heroku 7, Mendix8 etc. Usually PaaS services communicate with SaaS
application or services via programmable interface (API).

IaaS : Lastly, IaaS is a way of delivering Cloud computing infrastructure such as servers,
storage, network and operating systems in a virtualized manner to build the platform
for the creation of software that is delivered over the web. Therefore, virtualization
technology is the key enabler of Cloud computing that has revolutionized the whole
way of looking at computing in today’s world. In simple words, virtualization
means to create a virtual version of a device or a resource, be it server, storage
device, network or even operating system. Hence, consumers of this layer do not
control the physical infrastructure, rather control virtualized resources and deployed
application. Unlike SaaS and PaaS, IaaS offers their service in pay-per-use model
meaning customer has access to potentially unlimited resources but only pays for
what they actually use. The biggest player in the IaaS providing field is Amazon

4https://www.salesforce.com/
5https://www.linkedin.com/
6https://cloud.google.com/appengine/
7https://www.heroku.com/
8https://www.mendix.com/

23

https://www.salesforce.com/
https://www.linkedin.com/
https://cloud.google.com/appengine/
https://www.heroku.com/
https://www.mendix.com/

2.1. Cloud Computing

AWS9, which provides Linux based EC2 compute clouds for hourly rates, while other
providers like Microsoft Azure10 and Google compute engine11 offer 2-3 different
operating systems along with their infrastructure. PaaS providers like Heroku and
Google App engines are hosted on Amazon EC2 and Google Compute Engines
respectively. So, when developers use respective PaaS services, they are restricted to
particular IaaS provider’s infrastructure.

Application Data

PaaS
Runtime Application

Development
Decision
Support Middleware

IaaS

SaaS

End
Users

Servers Storage Network

Operating System

Virtualized Environment (Hypervisor)

Figure 2.1: Service layers of Cloud computing

2.1.2 Cloud deployment model

Cloud deployment model can be very critical for large to small organizations based on
their needs. According to NIST definition of deployment models:

• Private cloud: The cloud infrastructure is provisioned for exclusive use by a single
organization comprising multiple consumers (e.g., business units). It may be owned,
managed, and operated by the organization, a third party, or some combination of
them, and it may exist on or off premises.

9https://aws.amazon.com/
10https://azure.microsoft.com/
11https://cloud.google.com/compute/

24

https://aws.amazon.com/
https://azure.microsoft.com/
https://cloud.google.com/compute/

Chapter 2. Background

• Community cloud: The cloud infrastructure is provisioned for exclusive use by a
specific community of consumers from organizations that have shared concerns (e.g.,
mission, security requirements, policy, and compliance considerations). It may be
owned, managed, and operated by one or more of the organizations in the community,
a third party, or some combinations of them, and it may exist on or off premises.

• Public cloud: The cloud infrastructure is provisioned for open use by the general
public. It may be owned, managed, and operated by a business, academic, or
government organization, or some combination of them. It exists on the premises of
the cloud provider.

• Hybrid cloud: The cloud infrastructure is a composition of two or more distinct cloud
infrastructures (private, community, or public) that remain unique entities, but are
bound together by standardized or proprietary technology that enables data and
application portability (e.g., cloud bursting for load balancing between clouds).

2.2 Service Level Agreement

An explicit agreement of rights and obligation between service consumer and provider
involved in service purchase can be formalized as a Service Level Agreement (SLA).
Therefore, the obligation and specification changes from one service layer to another
depending on the metrics. For example, at the IaaS level, the SLA12 established by Amazon
EC2 and their consumer states that, Amazon provides a monthly uptime percentage of at
least 99.95%. In case Amazon can not meet the obligation, the consumer receives service
credits based on the agreement. At the PaaS level, Google App Engine provides SLA13

based on different metrics i.e., Downtime period, Downtime percentage, Error rate for
accessing services, etc. In contrast, at the SaaS level, availability of the service is most
important and common ground for any service provider. For example, Google Apps
provide services mentioning the monthly uptime percentage14 to 99.9%. Any violation of
the contract is penalized, hence service credit is transferred to consumers from the service
provider.

According to [Sta14], there are basic steps of initializing and completing a SLA contract,
which can be seen at Figure 2.2. Although the concept of SLA composition depends on
both service provider and consumer, in cloud computing environment it is mostly dictated
from service provider side. For example, consumer can not ask for 100% uptime of services.
Therefore, the SLA templates are most predefined from the service provider side rather
based on the negotiation from the consumers side.

12https://aws.amazon.com/ec2/sla/
13https://cloud.google.com/appengine/sla
14https://gsuite.google.com/terms/sla.html

25

https://aws.amazon.com/ec2/sla/
https://cloud.google.com/appengine/sla
https://gsuite.google.com/terms/sla.html

2.3. Cloud Application

Figure 2.2: SLA initialization lifecycle [Sta14]

2.3 Cloud Application

Generally, cloud applications are hosted as SaaS fashion where stakeholders are: users,
application owners and cloud infrastructure providers. Broadly, we can classify cloud
applications in two categories. Firstly, the user facing applications which are highly delay
sensitive and whose downtime or low performance can reduce productivity and revenue
for application owner are regarded as Interactive applications. In contrast, the applications
whose workloads are computationally bounded bag of tasks (BOT) and delay insensitive
having a deadline, can be coined as Batch applications. Nonetheless, each category of
application has several sub-category types and different metrics of interest. According
to [IZM+16], there are basically 9 sub categories of applications which fall under above
classification. Table 2.1 summarizes the metrics of interest for all the application types.
Multi-tier web applications and business critical applications are the classical example
of interactive applications where low-latency, reliability and availability are the most
important and desired metrics to satisfy users need. For example, e-commerce shopping
services like Amazon15, e-bay16 etc. are the popular multi-tier web facing application,
whereas Monte Carlo simulations, financial and other types of modeling applications can
be seen as business critical application. Due to the adoption of cloud technology, some
applications such as online gaming, partial processing, and cyber-physical applications are
emerging as new class of interactive application in cloud. These days, web applications
and social networks generate enormous amount of data and there is a compelling need

15https://www.amazon.com/
16http://www.ebay.com/

26

https://www.amazon.com/
http://www.ebay.com/

Chapter 2. Background

to process such data in real-time. With the advent of cloud technologies like Apache
Storm17 and Apache Samza18, several companies like twitter and LinkedIn using user
data and web logs to provide near to optimum real-time analysis which enhances user
experience and acts like an interactive, responsive and expressive application. On the
contrary, compute intensive batch processing workload consumes lot of cpu resources e.g.,
parallel implementations of scientific and engineering applications. Apart from that, there
are plethora of applications using MapReduce paradigm of Map and Reduce tasks for big
data processing, image processing and machine learning.

2.4 Energy management problems and opportunities

Data center is a warehouse facility composed of IT equipments (networked computers,
storage etc) to host Cloud applications. With the adoption of cloud computing, the energy
consumption of data centers have increased higher in magnitude. Since, it became a serious
issue, researchers across the world have put much concern in last decades. These concerns
can be classified in two categories: (1) How to reduce energy consumption to increase
resource efficiency? (2) How to govern underlying power infrastructure for better energy
management?

(1) How to reduce energy consumption to increase resource efficiency? Since energy
consumption in data center is upsurging, using energy efficient hardware and software
systems leave no choice. While virtualization technique enabled the adoption of cloud, it
also facilitates to indulge energy efficient and reduction policies. Virtual machine (VM)
migration [WJSVSY07] is one of the popular techniques to reduce number of used server via
server consolidation, not only helps to reduce cost but also to reduce unnecessary energy
usage. Also, when a server is under utilized, the energy effciency reduces significantly
since it consumes more power, proportional to the task it is associated with. Therefore,
by increasing server utilization also helps to increase resource efficiency [HAB07]. While
switching off servers can conserve some energy it can have negative effects on servers
overall energy consumption as well. Rebooting and turning off a server shows a large
spike of power consumption. Therefore, research is also going on to find solution of when
and what servers can be turned off and utill what time a turned off server should not be
turned on to lower overall energy consumption [CASS15]. Since most modern servers
have different power/sleep states, it is also an option by passing through these different
states, rather than turning off servers completely. At low power state, a running server
do not provide their full capacity, but changing from one power state to its next is much
faster than switching turned off server to active mode [GHBAK12]. Some researchers
applied dynamic voltage and frequency (DVFS) technique [HKBB09] which is an efficient

17http://storm.apache.org/
18http://samza.apache.org/

27

http://storm.apache.org/
http://samza.apache.org/

2.4. Energy management problems and opportunities

Table
2.1:C

loud
A

pplication
types

C
ategory

A
pplication

types
M

etrics
of

Interest
M

ulti-tier
W

eb
availability,reliability,throughput,response

tim
e

Business
C

ritical
latency,throughput,system

load,risk
score

D
ata

Stream
Processing

latency,throughput
Interactive

O
nline

G
am

ing
response

tim
e,costofoperation,variability,reliability

Vehicular
A

pplication
com

m
unication

autonom
y,shared

info,system
health

Partialand
delayed

processing
response

tim
e,cost,reliability

C
om

pute
intensive

Batch
Processing

throughput,bounded
slow

dow
n
/m

akespan
Batch

D
ata

intensive
Batch

Processing
jobs

per
m

inute,IO
PS,cost,success/failure

W
orkload

generated
by

data
center

availability,cost,checkpoint,recovery
tim

e

28

Chapter 2. Background

technology to control the processors power consumption, hence building scheduling
algorithms [VLWYH09] based on DVFS allows to reduce further energy consumption by
increasing resources efficiency.

(2) How to govern underlying power infrastructure for better energy management?
Primarily, data center gets their power from the power grid. Apart from that, Diesel
Generator unit (DG) is used as secondary backup and UPS units are used as intermediary
upon a utility failure. In the wholesale electricity market, generally three types of electricity
plans are offered through various provider [EML+12]: fixed pricing, time of use pricing
and dynamic pricing. Like any large power consumer, data centers tend to adopt dynamic
pricing. Recent data centers also employ energy storages to store energy when the electricity
price is cheaper (because of dynamic pricing) or extra green energy if there is an on-site
renewable plant integrated to data center. The integration of on-site renewable sources
are becoming extremely popular, even though the initial cost is very high. However, any
kind of renewable sources are intermittent, hence data center can not solely rely on them as
a primary source of energy. Therefore, another option is to transport green energy from
off-site renewable plants. Since the societal consciousness and sustainability practices
are increasing, data center owner also looks for reducing carbon footprint by using these
renewable sources by integration. Government and non-profit organization also put
pressures the data center owner to achieve carbon neutrality or net-zero carbon emission.
Carbon neutrality, refers to achieving net zero carbon emissions by balancing a measured
amount of carbon released with an equivalent amount of renewable energy directly (on-site)
or indirectly (offsite) usage or buying enough carbon credits to make up the difference.
Carbon credits can be purchased through Renewable Energy Certificate (REC) and with
the engagement of Power Purchase Agreement (PPA)[RWUS12]. The latter is a contract
between a consumer and a renewable energy producer which allows the consumer to
purchase a portion or all of electricity generated by the producer at a negotiated price for
which it accumulates some form of credits such as REC. Big internet company like Google
is offsetting their carbon footprint through REC and PPA19. Net-metering is also an option
for data center, in which the excessive and unused green energy can be feeded back to grid
to trade with brown energy. However, net-metering is only possible if the abundant green
energy is stored in the energy storage, hence losses incures due to the voltage transformation
involved in feeding the energy back to the grid [GLN+12]. Figure 2.3 shows different
direct and indirect energy integration options in a data center. Additionally, countries like
UK, Australia and USA have already developed and regulated carbon capping policy by
introducing cap-and-trade and carbon-tax [GS13]. A cap-and-trade system sets a maximum
level of pollution, a cap, and distributes emission permits among companies that produce
emissions. Any large power consumer or data center can obtain this permits either through
an initial allocation or auction or through trading with other company. On the other hand,

19https://www.google.com/about/datacenters/renewable/

29

https://www.google.com/about/datacenters/renewable/

2.5. Summary

a carbon tax scheme imposes tax on each unit of greenhouse gas emmissions and provides
incentives if the emmissions is less therefore, lesser taxes. Although carbon tax scheme is
yet to be regulated at France 20.

Figure 2.3: Various energy integration option in data center [RWUS12]

2.5 Summary

This chapter discusses SLA in different layers of Cloud computing and the heterogeneity
in the Cloud applications. While metrics of interest in Cloud application depends on their
characteristics, one SLA fits all can not be enough. On the other hand, it is difficult for
Cloud providers to propose differentiated SLA for specific application. Therefore, looking
for the interest and common ground for both parties (Cloud providers and consumers) can
be a pragmatic solution while offering new class of Service Level Objective (SLO). Later,
we highlight the technologies and techniques behind the reduction of energy consumption
and energy management poilicy for further reduction and bettering the eco-system. All
the notions used in this chapter will ease the reader to better understand next chapters.

20http://www.reuters.com/article/us-france-carbon-idUSKCN12K2OG

30

http://www.reuters.com/article/us-france-carbon-idUSKCN12K2OG

Chapter 3

Related work

The objective of this thesis is to smartly manage renewable energy in Cloud computing
environment from infrastructure to application to reduce carbon footprint. Firstly, this
chapter provides some literature review on greening the cloud computing infrastructure
through SLA specification and efficient energy management. This leads to discussion
on identifying the new possibilities and techniques to be considered for proper energy
management at data center. Later, we sketch out some relevant and selected work on how
different kind of Cloud application can be energy aware but still can perform at a targeted
level so as to adapt with green energy profile. Furthermore, we discuss the opportunities
and challenges to adapt Interactive Cloud application based on different level of adaptation
techniques.

3.1 Greening the Cloud computing backend environment

The back end platform of Cloud computing is comprised of servers, storages, cloud based
delivery and network models, which are hosted on data center. Cloud service providers
are charged with ensuring the performance, availability, hence they require mechanisms to
agree on quality of service provision which is usually established through SLA. In today’s
terms, energy dependent SLA can emerge as a key concept to ensure the energy efficiency
of the data center as an on going activity, rather as a one-time event. The first subsection
3.1.1 highlights the recent works related to energy aware SLA.

What’s more, todays large-scale data centers consume tremendous amount of power
and impact high carbon emission. Therefore, to limit the carbon footprint, greening
the data center leaves no choice. Over the past decades, academicians and industrial
research ventured more on bettering energy-proportional computing technologies, efficient
power delivery and cooling systems to reduce energy consumption and associated costs.
However, energy efficiency alone will slow down the process of reducing carbon footprint
in data center. Therefore, recent efforts have concentrated on powering the data center

31

3.1. Greening the Cloud computing backend environment

with renewable sources and exploiting the greenness nature of these sources to reduce
further carbon footprint. To be concise, a green data center should have two elements:
energy efficient capabilities and presence of green energy [DLJ+14]. On the other hand,
data centers humongous power cost is the primary concern for cloud service providers.
Hence, dynamic and economical energy management in data center becomes a key concern
which can eliminate energy incurred costs and carbon footprint by lowering the power
consumption and/or utilizing green energy. The second subsection 3.1.2 provides recent
efforts made in this area.

3.1.1 Green cloud through SLA specification

Laszewski et al. [vLW10] investigated different green IT metrics that considered environ-
mental impacts as part of the SLA for building GreenIT-as-a-Service (GaaS) which can
be reused as part of a SaaS and IaaS framework. The framework provides how green
metrics (i.e., DCiE, PUE, DCeP, SWaP) can be taken into consideration to reduce energy
consumption in different layer of Cloud computing to provide greener services. The metrics
can help service providers decreasing environmental impact without the knowledge of
users. However, it is important to explicitly develop contracts by specifying these metrics.

Klingert et al. [KSB11] [BKT12], first introduced and defined the notion of GreenSLA,
focusing more on optimizing energy per job based on known hardware and software
techniques. While performance aware SLAs have higher priority and importance for service
providers, GreenSLA can provide new degrees of freedom to re-organize their service
provision in an energy efficient way in a data center. Thus, the authors propose GreenSLA
alongside regular SLAs, using eco-efficiency as a differentiating factor. Figure 3.1 shows
the difference between traditional SLA and GreenSLA, where the latter tries to optimize all
elements of the triangle objectives. Furthermore, their research work is part of FIT4Green1,
which aims at combining several energy saving software and infrastructure strategies on
top of data centre management system. For software optimization, a Job Subscription
Definition Language (JSDL) is used to explain the scheduling of batch jobs based on
GreenSLA. For example, Energy EfficiencyClass A accepts higher error tolerance (.05%
instead of .01%) and longer makespan of running jobs compared to Energy EfficiencyClass
C. Therefore, customers can have 10% price rebate compared to regular SLA and further
percentage of reduction can be offered if they accept delaying of the deadline. For data
center level optimization, if service providers have several data centres, authors proposed
to schedule jobs in priority basis to lower PUE valued data center.

Later Atkinson et al. [ASK14] provided green specification by including services exact
functionality in GreenSLA. The specification is consist of three view of service, namely:
structural, functional and behavioral views based on Graphical UML models. Structural
view defines service properties including each data classes annotated with eco-constraint
with stereotype «env». Whereas, Functional view enhances the specification with QoS

1A project funded by European Union. http://www.fit4green.eu/

32

http://www.fit4green.eu/

Chapter 3. Related work

Figure 3.1: Traditional SLA vs GreenSLA [BKT12]

constraints. For example of a online DVD store, it specifies that the execution of play must
take no more than 0.005 percent of the available bandwidth with cost and availability
constraint. On the other hand, behavioral view adds the information about probabilities
of the various state transitions taking place. While the novelty of the GreenSLA is well
understood, the research work ignores how to capitalize green energy information in the
SLA specification.

To this point, Haque et al. [HLG+13] considered an SLA that specifies the proportion of
green energy that the IaaS provider should use to run the job (e.g., x% of the job should run
on green energy). Therefore, they introduced a new class of SLA along with traditional
SLA based on green energy. Each client can indicate the percentage of green energy they
need to run their job, which authors have described as Green SLA. On the other hand,
provider can earn extra monetory unit (e.g., premium) for meeting Green SLA but penalized
if they violate the contract. To justify the SLA, they created two separate server cluster
with two different power buses, one with green energy and another with mix of energy.
Based on the green energy requirement per job, the proposal formulate a scheduling plan
by constraining which job should spend how much time in the green cluster. However,
their proposed Green SLA approach is per application/job specific, where every job can
have different green energy requirement. Additionally, providers reject job admission if
there is lack of green energy. Nonetheless, giving the freedom to user to specify random
green energy requirement can complicates the SLA specification and enormous amount of
template generation is required to negotiate between consumers and providers. Moreover,
lack of formalized SLA affects the set up of the enforcement process to be automated and
validated, hence hindrance consumers with burden.

33

3.1. Greening the Cloud computing backend environment

Wang et al. [WLDW10] proposed green SLA based on energy aware scheduling of
resources by exploiting dynamic voltage and frequency scaling (DVFS) technique. The idea
is to extend the job execution time for non-critical jobs and reduce the energy consumption
without increasing the task’s execution time as a whole. Their green SLA contract definition
phase creates some green SLA templates where user might accept some performance or
QoS degradation in order to reduce power consumption for their task completion. The
templates are based on response time, CO2 emission and power consumption. The results
shows that, if service provider can negotiate with user to have larger job execution time,
larger amount of energy can be saved. Therefore, these specifications are ought to build
green services.

Likewise, Ahmed et al. [AFZZ+14] [ALFZ+15] addressed Green SLAs where service
providers (application owner) specifies carbon emission constraints along with traditional
resource requirements to cloud infrastructure provider in Virtual Data Centers (VDCs), i.e.,
a set of VMs and virtual links with guaranteed bandwidth. Authors proposed two metrics:
(1) carbon emission per unit of bandwidth (tonCO2/Mbps) and (2) carbon emission per
core (tonCO2/Core). To enforce Green SLA, cloud provider monitors and computes the
carbon footprint of each VDC request. After each monitoring period, SLA is enforced. In
case of violation of specification (i.e., the carbon footprint for the VDC is higher than the
limit specified in the SLA), cloud provider pays penalty to service providers. Again the
work ignores the formal SLA specification and enforcement model and lacks real use case
in any business model.

3.1.2 Greening data center through energy management

As different kind of renewable sources are intermittent in their own way, it is important
to formulate a capacity planning to maximize their usage in a data center. Apart from
that, the price of electricity varies from region to region that gives opportunity to the
data centers owner to exploit the price depending on location diversity. To this, [RLXL10]
proposed to exploit the price diversity in Internet Data centers to minimize electricity cost.
Afterwards they formulate the minimization problem having delay guarantee for workload
as a constraint. Similar to the approach, [FYH+15] proposed a stochastic optimization
based approach to reduce power cost for delay tolerant workloads. Their approach showed,
with the increase of service delays, power cost could be reduced largely.

Later, authors at [BR11], proposed ReRack, a power simulation framework for data
centers considering multi-source energy environment. The idea is to reduce the cost related
to power by carefully analyzing the power demand and power supply from different
sources. In summary, the simulator follows like: "Calculate power supply from renewable
sources and calculate demand, if power is surplus, store it to batteries, if not, draw the remaining
power from the grid, measure how much workload was satisfied and determine how to power up
machines for next period". Traditionally, wholesale electricity market can have different
energy prices at same location. For example, in California, electricty price fluctuates in

34

Chapter 3. Related work

every 15 minutes. To take the opportunity of the price fluctuation, authors at [UUJNS11]
proposed cost reduction in data center by using uninterrupted power supply (UPS). The
basic idea is to charge the storage when the energy price is cheaper and opportunistically
recharge them to the computing servers during high price period or for peak shaving.

Unlike the above contribution, authors at [DLJW13], [DLJ+13] investigated two time
scale energy market (e.g., long term and real time) to reduce energy cost. The proposal is
to buy energy in advance from long term ahead market where prices are cheaper and if
the demand of energy increases in real time, consume the energy from the grid or from
the on-site renewable sources. Usually energy prices are higher in real time market. The
authors considered that the delay tolerant workload can be moved to next time slot if the
current energy price is higher or stored energy in the ESD is not sufficient. To do that, they
provide an optimal online algorithm called SmartDPSS, which activates in each 15 minutes
to compute the difference between supply and demand and to determine cost-effective
solution of selecting appropriate energy sources while minimizing the cost in the long term.
Their solution claim to not require any priori knowledge in system dynamics. However,
without the demand forecast, it is not possible to do energy procurement from the long
term market.

While the above works consider efficiently managing grid-tied brown and on-site
renewable energy sources to do cost reduction, other implicit options exist in energy
market. Authors at [RWUS12], discussed on how explicit and implicit integration option
in a data center can affect on the cost reduction. Implicit integration consists of (1) off-site
renewable energy which should be transported across the grid to data center; (2) buying
REC certificates or investing nearby renewable energy plant. Given all these choices,
authors formulate an optimization plan to reduce carbon footprint while lowering the
energy cost. Interestingly they provide some key insights. Firstly, by smartly using on-site
renewable energy for peak-shaving can reduce cost significantly and also can replace or
reduce the need of ESDs. Therefore, by reducing the peak shaving cost, the OPEX cost
for on-site plant can be recovered. One research analysis [GBL+11] indicates that, by
peak-shaving via on-site renewable source can recover plant cost in 8-9 years. Secondly,
on-site renewable sources becomes less cost-effective if the plants capacity factor is below
24-25%. Thirdly, to reduce large amount of carbon footprint (e.g., beyond 30%), off-site
renewable energy usage becomes more cost-effective. Therefore, hybrid use of the two
options is the most cost-effective across the spectrum.

Apart from this work, authors at [LWL+14] proposed GreenWorks, a power management
framework for green high-performance computing datacenters powered by renewable
energy mix. GreenWorks provides a framework for managing datacenter power across
several layers from datacenter server to onsite renewable energy mix. It comprises of
two elements; green workers and green manager. Green workers are power optimization
modules that uses supply/load control strategies for different types of renewable energy
systems, wherease green manager manages the hierarchical coordination between these
workers. They propose three types of green workers; (1) base load laborer responsible for

35

3.2. Discussion

tracking the difference between power supply and demand, (2) energy keeper regulates
the use of stored energy in an efficient manner to satisfy workload performance and (3)
load broker opportunistically increases the servers processing speed to consume surplus
energy from the renewable sources. Their result shows that, by efficiently using energy
storages, battery lifetime can be extended to 23-24%.

Recently, authors at [KL16] introduced a framework that optimally selects energy
sources and determines their capacity, which aptly balances energy sources, grid power and
energy storage devices in terms of cost, emission, and service availability. Their envisioned
energy components in data center is shown at Figure 3.2. Compared to all the work we
discussed before, this framework considers net metering, cap-and-trade and carbon tax
(popular economic incentives to control carbon emission) along with traditional constraints
(e.g., cost reduction, service delay etc.) in their formulation. Their key insights suggests that,
energy storage give very little help on cutting lifetime total cost or emission. Additionally,
they realized that, using multiple energy sources can significantly reduce data centers
lifetime cost and dependency to the grid. Additionally, power cost can be further reduced
if the net metering program increase the capping limit.

Figure 3.2: Data center powered by multiple energy component [KL16]

3.2 Discussion

The section 3.1 presented a selection of relevant work about greening the cloud environment
and data center in terms of SLA specification and energy management. We refrain ourselves
from discussing and sketching out energy efficient enabling technologies (e.g., DVFS and
various sleep states for servers) and techniques (e.g., VM migration, server consolidation),

36

Chapter 3. Related work

since these methodogies are widely adopted, matured and practiced for several years
now. Our goal is to look further ahead to reduce carbon footprint by efficiently managing
different energy sources that can be imposed from user side to the grid authority. In order
to evaluate the works described earlier, we summarize the research efforts by defining
some qualitative comparison attributes:

• GreenSLA: As demand for green products are ever increasing, users are more
conscious about the greenness of the product, be it in the supermarket or in software
and hardware system. Therefore, specification of SLA is required. Usually in the
literature, Green SLA notion is used to relax some performance requirements to
reduce energy consumption.

• Energy management: Generally, cloud providers does energy management to reduce
the energy cost that accounts to approximately 20% of the total cost [GHMP08]. By
reducing costs, the target is to mitigate emissions in the operating phase. However,
choosing the price and location diversity (proposed at [RLXL10], [FYH+15]) can not
guarantee lower carbon emission because, grid’s emission factor may be high at that
time or at that place. Therefore, we categorize the energy management based on the
presence of brown energy and mix energy (brown and green energy).

Table 3.1 summarizes the Section 3.1 with regards to aforementioned attributes. To
propose GreenSLA, some authors in [vLW10], [KSB11], [BKT12], [ASK14] provides the
SLA specification and requirements needed to establish Green SLA. The idea is to increase
the job execution time or to schedule the jobs outside of the peak power time. On the
other hand, few others [WLDW10], [AFZZ+14], [ALFZ+15] used the notion to increase the
energy efficiency inside the data center which is not explicitely specified to the user. The
only work that relates GreenSLA to the presence of green energy is [HLG+13]. However,
the authors ignored the SLA specification phase, associated validation and penalty model
that is necessary in any service based platform. On the other hand, from the Table 3.1 we can
see that most of the works, [DLJ+13], [DLJW13], [LWL+14], [KL16] proposed multi-source
energy manangement without taking into account the renewable energy prices and ignores
the impacts of using energy storages in their problem formulation. Thus it hampers
the infrastructure providers to envision a green data center where they can offer green
computing resources to application owner having a formal contract with partially or fully
powered by underlying clean energy sources.

After rigorously analyzing two very different doamins of work, we realize that energy
management and SLA can be linked together. Therefore, in this thesis, Chapter 4 and 5
investigates the opportunity to exploit the energy market while propose and revise the
notion of GreenSLA. Our idea is to propose new class of explicit SLO mentioning the
percentage of green energy provided along side with computing service by managing
the underlying energy infrastructure and multi-source energy market. By doing so, users

37

3.3. Energy and Performance aware cloud application

and application owners can have the possibility to host their application in an explicitly
expressed green cloud environment having formal contracts.

3.3 Energy and Performance aware cloud application

The increasing enthusiasm and consciousness of reducing energy consumption leads
to smarter ways to consume energy in cloud data centers. While an efficient energy
management technique in data center can reduce unnecessary use of brown energy and
better utilize green energy without going to waste, smarter ways of consuming energy by
an application can further reduce carbon footprint. This section provides insight on how
two major category of applications (i.e., batch and interactive jobs) can opportunistically
and smartly adapts themselves based on green energy and performance requirements.

3.3.1 Opportunistic scheduling of Batch jobs

As the interests and trends have been growing to implicit or explicit integration of green
energy to the data center, many industry and academia people putting more efforts in
developing green energy aware algorithms and systems. Energy consumption reduction
can impact on joule efficieny [NHL16], that is, the work done using per joule. On the other
hand, energy efficiency may hinder the opportunity to consume green energy when it is
available [SS09]. Therefore, energy efficiency as well as green energy awareness are both
equally important. To this, we highlight some recent work in this area in the following
paragraph.

Green Energy-aware approaches. The authors proposed GreenSlot [GBL+11], a parallel
batch job scheduler for a datacenter powered by an on-site solar panel and the electrical
grid. Based on the historical data and weather forecast, GreenSlot predicts the amount of
solar energy that will likely be available in the future. Subject to its predictions and the
information provided by users, it schedules the workload by the order of least slack time
first (LSTF), to maximize the green energy consumption while meeting the job’s deadlines
by creating resource reservations into the future. If the job can not be scheduled in green
energy availability period, GreenSlot schedules jobs for times when brown electricity is
cheap. Therefore, the proposal seeks to maximize the usage of green energy in the data
center while cost of brown energy usage can be minimized largely.

Later their work evolved into data processing framework by proposing GreenHadoop
[GLN+12]. The idea relies on deffering background computations e.g., data and log analysis,
long simulations etc. that can be delayed by a bounded amount of time in a data center to
take advantage of green energy availability while minimizing brown electricity cost. For
instance, many jobs (e.g., data and log analysis, long simulations etc.) in data center have
loose performance requirements. On the other hand, datacenters are often underutilized
due to low activity. As example, Hadoop keeps all servers active even if they are idle,

38

Chapter 3. Related work

Ta
bl

e
3.

1:
En

er
gy

m
an

ag
em

en
ta

nd
G

re
en

SL
A

A
pp

ro
ac

he
s

En
er

gy
m

an
ag

em
en

t
G

re
en

SL
A

(N
o

G
re

en
En

er
gy

)

G
re

en
SL

A
(G

re
en

En
er

gy
)

Br
ow

n
en

er
gy

G
re

en
en

er
gy

Sp
ec

ifi
ca

ti
on

Im
pl

ic
it

N
ot

io
n

[v
LW

10
],

[K
SB

11
],[

BK
T1

2]
,

[A
SK

14
]

7
7

3
7

7

[A
FZ

Z
+

14
],

[A
LF

Z
+

15
],[

W
LD

W
10

]
7

7
7

3
7

[H
LG

+
13

]
7

7
7

3
3

[R
LX

L1
0]

,
[F

Y
H

+
15

],
[U

U
JN

S1
1]

3
7

7
7

7

[B
R

11
],

[D
LJ

+
13

],[
D

LJ
W

13
],

[R
W

U
S1

2]
,

[L
W

L+
14

],
[K

L1
6]

3
3

7
7

7

39

3.3. Energy and Performance aware cloud application

Figure 3.3: Scheduling 3 jobs using GreenHadoop [GLN+12]

which is illustrated at the top of Figure 3.3 for three MapReduce jobs. Following are the
behavior of an energy-aware version of Hadoop (middle) and GreenHadoop (bottom).
In contrast to conventional Hadoop, GreenHadoop used as many servers to match with
green energy supply and delayed jobs J1 and J2 to maximize the green energy consumption.
As the Figure 3.3 shows, it executed part of J3 with green energy, and delayed the other
part until the brown energy became cheaper. Therefore the idea is to run fewer servers
when brown energy is cheap, and even fewer (if at all necessary) when brown energy is
expensive. In conclusion, their proposal leads to operating few hadoop clusters when
green energy is scarce.

Similar to this work, authors [HGRN15] proposed GreenPar, a scheduler for parallel
high-performance applications to maximize using green energy in a partially powered data
center and reduce brown energy consumption, while respecting performance aware SLA.
When green energy is available, GreenPar increases the resource allocations to active jobs
to reduce runtimes by speeding up the processes while slow down the jobs to a maximum
runtime slowdown percentage that is defined in SLA during the scarcity of the green energy.
Interestingly, GreenPar avoids using energy storage by increasing resource utilization
during the high availabity period of green energy. To conclude, GreenSlot, GrennHadoop and
GreenPar can be an important software component in green data centers that run HPC and
defferable workloads, to improve the sustainability in cloud computing paradigm.

The work [LCB+12] proposed a holistic approach that integrated management of IT
workload e.g., batch and interactive workloads, cooling e.g., chiller and outside air cooling,
and power sub-systems e.g., renewable supply and dynamic pricing, to provide energy-

40

Chapter 3. Related work

efficiency accomplishment in a data center. The solution relies on rigorous analytical
modeling of each components mentioned earlier to formalize a generic yet useful solution.
Renewable energy production, workload and electricty price is predicted in advance to
create capacity planning (see Figure 3.4) at midnight for next 24 hours where total IT
demand ratio between the interactive workload and batch jobs is considered as 1:1.5.
Interestingly, interactive workload is simplified by considering only normalized CPU
utilization from a trace without going to any intensive detailing.

Figure 3.4: System architecture of capacity planning [LCB+12]

The authors [DSFH15] presented an Energy Adaptive Software Controller (EASC) to
make task and service oriented application adaptive to renewable energy availability. The
work was part of by DC4Cities project 2, which aimed at gathering renewable energy
related information from energy providers and energy constraint directives from Energy
monitoring authority (in context of Smart city) through an interface. Following the
information, the PaaS layer is responsible to adapt the application by satisfying energy
related constraints to consume more green energy, therefore building more eco-efficient
policies for data center. Figure 3.5, better illustrates the objective.

Therefore, the authors proposed to forward the energy related information to PaaS
level via an API, so that an optimization plan can be invoked which involves desired
working modes of an application considering energy and SLA constraints. For cloud
application adaptation, the authors have provided two different algorithms for task and
service oriented applications respectively. For task oriented application, aggressiveness and
eagerness factor are proposed in the algorithm, while former factor controls the possibility

2An European project on environmentally sustainable data centers for samart cities. Ended on 2016.
http://www.dc4cities.eu

41

http://www.dc4cities.eu

3.3. Energy and Performance aware cloud application

Figure 3.5: Adapting applications for a better usage of renewable energies [DSFH15]

of consuming more or less green energy, latter controls how much early or late the task
could be finished. On the other hand, for service oriented application, their proposed
algorithm first predicted the time slots corresponding to high green energy availability and
then scheduled the higher working modes of the application allowing better performance
than SLA. During the low availability of green energy period, lower working modes are
applied which is below targeted SLA. However, service oriented application is defined as
running web, database and mail servers and higher mode depicts multiple data center site
is active with full capacity while lowest mode indicates running a single site with minimum
capacity. For the experimental purpose, authors proposed 6 different working modes.

Unlike for big data centers, in [LOM15], the authors proposed a opportunistic broker
framework named PIKA, to save energy in small mono-site data centers. Similar to other
articles mentioned above, this work also considers scheduling batch jobs in the period
of green energy availability. However, the notion of interactive job was provided by
indicating that fixed number of web servers run all the time to process web requests.
Apart from that, the work proposed resource overcommitment approach to increase ON
servers utilization so that some servers can be turned off where VM’s are under loaded.
The authors introduced slack period to distinguish between web job (slack < 1slot) and
deferrable batch jobs (slack > 1slot) to prioritize the web jobs. However batch jobs can
not turn ON a server until unless their slack is strictly inferior to 1. At that point, any
batch job is treated as web job, which is illustrated at Figure 3.6. Additionally, potential
ON servers can be turned on when green energy availability is more than the current
energy consumption. In conclusion, analysis of results showed that, PIKA can increase
green energy consumption largely in contrast to any baseline approach, although over all
consumption can be more than the baseline.

42

Chapter 3. Related work

Figure 3.6: Placement for batch and web job [LOM15]

3.3.2 Cost-aware approaches in geo-distributed cloud

Due to the intermittent nature of renewable energy sources i.e., wind and sun, they tend
to be more expensive than brown energy. For example, the industrial electricity price for
solar energy can be 16.14 cents per KWh in a sunny climate and 35.51 cents per KWh in
a cloudy climate 3. Unfortunately, Most of the research articles are unware of the cost
analysis due to this hidden and variant nature of prices. Hence, most work considers green
energy incurs $0 [WZL14][APKSG14]. Authors in [TB15], described a fuzzy logic-based
load balancing method to dispatch user requests to most suitable data center where least
cost incurs. While most of the research considers workload and green energy prediction
[APKSG13] to modelize the problem, the authors used fuzzy logic which requires no priori
future knowledge. Similar to previous works, they also ignored the renewable energy
cost in their problem formulation. Apart from that, some works [APKSG14], [GDXHJ14],
[GZG+16] explored the dynamic pricing of energy market in geo-distributed cloud to
reduce electricity costs incurred by service provider.

Nevertheless, utilizing renewable energy in data center can impose huge pressure to
data centers owner due to the stringent budget constraints. For instance, energy bill incurs
around 20% of total data center operations bill [GHMP08]. Therefore, how far efficiently
consume green energy that does not incur higher than traditional cost, is an important
research issue. To this, in [ZWW11], the authors proposed GreenWare, a middleware system
that maximize the usage of green energy in geo-distributed cloud scale data centers by
dynamically dispatching workload requests by following renewable, subject to energy
budget constraint. The middleware performs three steps: computes the hourly energy

3Solar Electricity Prices. http://solarbuzz.com/

43

3.3. Energy and Performance aware cloud application

budget and historical behavior of workload, runs an optimization algorithm based on
constrained optimization technique, lastly dispatch requests according to optimization plan,
which is illustrated at Figure 3.7. The workload was modeled using queuing theory, which
only captures arrival rate, waiting and service time of a request. Moreover, traditional cloud
application possess higher complexity in practice. While comparing their approach with a
greedy green approach, which tries to consume as green energy as possible, GreenWare
can decrease around 29% electricty bill while green energy usage can be at acceptable level.
Therefore, they address the criticial issue by justifying a trade-off between maximizing green
energy usage and energy budget. Similar to this, [GCWK12] proposed a flow optimization
based framework for request-routing considering the trade-off between access latency,
carbon footprint and electricity costs to upgrade the plan of choosing data center in specific
intervals. Results show that, 10% carbon emission can be reduced without increasing mean
latency or electricity costs.

Figure 3.7: Middleware for distributed cloud-scale data center [ZWW11]

Similar to this, authors at [CJX14], [LLW+11] provided capacity planning method for
geo-distributed cloud to minimize system energy cost. Unlike the previous works, authors
at [CHT12] proposed a scheduling algorithm called MinBrown which considered the cooling
dynamics. Usually, when the solar energy is available, the outside temperature is higher
and cooling requires more effort to cool the data center. By adding this new constraint,
the algorithm made schedule plans for batch jobs with slacks to choose best data center
in each time frame based on constrained optimization. Results showed that, the ratio of
brown energy can be reduced compared to green energy. In conclusion, all the works
mentioned above tries to consume green energy without incurring additional costs or
satisfying predefined budget constraints.

44

Chapter 3. Related work

3.3.3 Self-adaptiveness for Interactive Cloud application

Performance and availability are the foremost criteria for web facing interactive cloud
application. Nonetheless, poor performance (e.g., low throughput and high response time)
can lead to service saturation, which might results disruption of availability of service.
On the other hand, by maximizing availability with high performance can incur higher
revenue for service provider. Since, primarily performance metrics dictates the availability
and higher revenue term, we discuss some of the relevant and well known research work
in following sub-section.

3.3.3.1 Performance aware approach

Performance of an application can be guaranteed in several ways which also involves
several layers of cloud computing paradigm. To provide better performance, functional
and non-functional adaptation is required. Functional adaptation can be seen as the
capability of an application to self-adapt by re-organizing their architectural change on
run-time environment or by activating/deactivating loosely couple components to the
changing condition. Whereas, non-functional adaptation is more concerned about efficient
online resource management plans and techniques mostly dealing with infrastructure to
prevent transient behavior of hosted applications to changing conditions i.e., workload
surge, hardware failure, intereference between colocated application [MTS+12] etc.

Functional adaptation The authors at [AB99], introduced the notion of degradation in
online services for the very first time to improve server overload performance. Server
overload may occur either due to saturation of CPU, bandwidth or due to saturation of
the communication link capacity connecting the server to the network. Their contribution
lies on preventing both types of overload via content adaptation. During the overload
condition for an e-shopping site, the approach switches to provide JPG image instead of
GIF image to prevent service outage, where latter image is of high quality with larger
sizes in kilobytes. Later, same authors [ASB02] proposed a promising analytic foundation
based on classical feedback control theory to achieve overload protection and performance
guarantees by service differentiation. Keeping CPU utilization of the server under a certain
threshold i.e., 58% (can be varied depending on application) was the primary objective to
keep the response time of a web application under a desired limit. While the utilization
is higher than the set point, the quality of content is degraded to prevent high service
delays to the customers. In summary, the degradation was realized by data filtering and
compression of images in online services by following resource utilization. However, to
achieve degraded level of services, the contents must be pre-processed a priori and stored
in multiple copies that differ in quality and size.

Later Philippe et al.[PDPBG10] proposed component based representation of resources
for building distributed systems capable of autonomously deciding when and how to

45

3.3. Energy and Performance aware cloud application

adapt the service level. Their solution can find the most resource-intensive component/-
components in the system at any given time and characterizes these list of components
based on their path in the system’s structure. Therefore, it allows to identify promising
adaptations by targeting the hot paths. In case of overload, to keep the service level intact,
their approach consists in choosing most inexpensive computational components e.g., based
on cpu intensiveness in the architectural path in priority to the components that actually
cause the overload. Furthermore, this inquisitive nature of architectural self-adaptation
was applied in a component based e-library application which is shown at Figure 3.8 to
validate the authencity and reliability of their approach. To further validate their approach,
authors used a real-world web application i.e., RUBiS with emulated workload to find
computationally expensive architectural path. Based on the performance profile, their
proposal was to disable sorting options in the SearchByCategory and SearchByRegion
components, which is usually a cpu-intensive operation. Similar to [AB99] and [ASB02],
these approaches require prior knowledge of the platform, offline performance modeling
and building cloud applications from scratch.

Figure 3.8: Component based representation of an Application [PDPBG10]

Likewise, authors in [CFF+11] proposed E-BP, an energy and QoS aware business process
which is an extension of regular BP model considering different strategies consisting of
execution model of business tasks. Traditionally BP applications are hosted in a virtualized
infrastructure and can be monitored and measured at fine-grained way, be it response time,
task completion, energy consumption etc. Based on the measurements, authors provided

46

Chapter 3. Related work

Green Performance Indicators (GPIs) and QoS metrics with possible set of constraints, that
has to be satisfied by functional requirements. Depending on the metrics, a set of adaptation
strategies are proposed to maximize the objective function. For example, less functionality
strategy refers to a computational or data degradation e.g., skip a task or task functionality;
less quality corresponds to QoS degradation by turning off a service of a task if there is
more than one service available for same task. Moreover, aforementioned adaptation can
be enacted along with the other adaptations at multiple layers (application, middleware
and infrastructure). However, if the number of application increases, the number of
dependencies and constraints among different metrics can increase proportionally, which
may lead to over-constrained rule definitions.

Harmony [CIAP12] framework was proposed to reduce probability of stale reads in
cloud storage by tuning the consistency level at runtime in a self-adaptive manner. Popular
cloud storage systems allow modern web facing real-time applications to scale up their
systems for maintaining performance with very high availability. Scaling up the data
storages can leads to data inconsistency across the replicated instances which can limit
availability and increase the latency to retrieve the data. In contrast, providing strong
consistency all the time by means of synchronous replication can result bad performance.
To this, the proposal gradually and dynamically scales the consistency level to best suit
the application requirements, while taking into account the system state. For a running
workload, the authors tried to estimate stale reads rate in a storage system by probabilistic
computations. This approach is the opposite of strong consistency in data storage system
e.g., cassandra, where read operation must wait for all the replicas to reply with consistent
data in order to return the data to the client. Therefore, the motivation to introduce the
adaptation mechanism is to reduce the cost for strong consistency model which can lead to
unavailability and high latency to the user side. Towards this goal, authors find adequate
tradeoffs between consistency and both performance and availability while cost reduction
is eminent.

Klein et al. [KMAHR14] first proposed Brownout in software application to allow
applications to avoid saturation in a robust manner in case of unexpected events occur.
They borrowed the Brownout term from electrical grids, where voltage can be dropped
intentionally to prevent blackouts through load reduction. Web facing application provider
and their underlying infrastructure provider can face several challenges i.e., hardware
failure, budget constraint, unplanned workload surge, etc. Given the scenario, overloaded
application may trigger performance degradation and lead the applications to saturate,
in which some clients can face high latency to no services at all. To solve the challenge,
the authors examine adaptive adjustment of controller parameters which decide upon
the execution of optional application parts dynamically in varying load and resource
contention situations. The primary target of their solution is to keep response time to
certain or given threshold while minimizing the tracking error to the setpoint. Unlike
[PSZ+07], [KCH09], their model does not require offline performance modeling to build
an input-output relationship. Rather, the impact of input is measured in each control

47

3.3. Energy and Performance aware cloud application

period to build a bare estimation on how the system is performing and how much additive
correction is required to keep the system in a targeted state. Their model also describes
pole placement which determines how fast or slow the controller reacts to the error in the
system. Later, same authors [KPD+14] proposed intelligent load balancing techniques for
brownout-aware cloud services with multiple replica for improving the resilience of the
services. Content reconfiguration takes into account only the system response time so that
to prevent system instability in sudden workload burstiness. While the novelty of the
approach is well understood, how the controller should be designed and implemented in
massively virtualized cloud environment, has not been addressed. In n-tier applications,
bottleneck for system performance could be different in each tier that could affect overall
service time for different workload profile.

The work at [DLAdOJT15] proposed multi-level elasticity (e.g., both in Software
and Infrastructure) framework based on autonomic computing to improve the system
performance by providing tactics associated to each layer and coordinating them by a local
controller. While elasticity at the infrastruture level is very well understood by dynamically
removing or adding resources, later requires a significant initiation time, for instance, VM
start up time takes 150 seconds on average [MH12] and the dynamics of a cloud application
can change faster than the resource activation time. Apart from that, resources are limited
and can not be provisioned infinitely. Therefore, to tackle the problem, authors proposed
horizontal and vertical scaling in application, while former refers to add/remove software
components on the fly, latter refers to change the offering of existing software component.
By doing this, systems resource requirement can be reduced for shorter period of time
when activation of new resource is required but yet not ready to serve. Nonetheless, more
client request can be accepted and served although the service may operate at a degraded
level. An example of degraded solution could be: calculating and fetching 1 itinerary from
google maps to clients instead of 3 or more itineraries. Although, the later work tackled
adaptation of SaaS application under various criterion to improve availability and revenue,
how modern cloud application can adapt with the proposal is yet to be validated with real
life applications.

While, most of the work mentioned above discussed about self-adaptation techniques in
SaaS layer for cloud application, they lack the anticipation of subsequesnt adaptation needs
and effects to the system. Due to the reactiveness of the adaptation techniques, system
can be triggered to perform a series of suboptimal adaptation, resulting inefficiencies. For
example, when adaptations have latencies and requires some time to produce the effect on
the system, using a proactive approach is necessary so that they have initiated before to
impact effective immediately when it is needed. To this, authors at [AMCGRS15] proposed
a latency aware proactive adaptation to deal with the uncertainties by using probabilistic
model checking for adaptation decision. The approach uses a look-ahead horizon that
predicts the near future states of environment to find the adaptation that maximizes the
expected utility accumulated over the horizon in the context of the uncertainty of the
environment. The utility is a function of both system and environmental state. To estimate

48

Chapter 3. Related work

the environment, authors proposed markovian decision process (MDP) to capture the
prediction constructing probability tree. Root of the tree represents the current state of the
environment, each node presents a possible realization of environment and each children
corresponds to realizations conditioned on parents. Moreover, their stated model can
capture near future change in the system, thus it made easy to choose better adaptation
tactics depending on the needs. Later, same authors [AMCGRS16] proposed how different
non-conflicting tactics (e.g., remove one software component and add one server) can
be triggered simultaneosly so that system can transition from current to desired state.
The challenge is to estimate how two types of tactics when applied together reacts to
the system. For instance, removing software component can have immediate transition,
whereas adding one server can make a delayed transition. Therefore, each of the tactics
are associated with cost. Depending on the goal, the utility function can be maximized by
choosing proper adaptation tactics.

Non-functional adaptation Most of the non-functional adaptation techniques relies
on rule based reactive, pro-active and analytical model based approach. Usually, rule
based reactive approaches[Ser14] [Mic14] are widely adopted in the public cloud and
users typically specify upper and lower bounds of monitored metrics and based on the
specification, resources scales in both ways. In contrast, pro-active approaches [YF13]
[MBL+13] [KKJ11] are mostly predictive and try to formulate a plan before any occurance
appears. Furthermore, analytical models [MHL+11] [PWAJ15] are build [PSZ+07] through
dynamic measurement, evaluating correlation between parameters and correcting them on
online.

Padala et al [PSZ+07] first addressed the problem of dynamically controlling resource
allocations to individual components of multi-tier enterprise applications in a shared
hosting environment. The authors proposed an adaptive integral controller based on
resource utilization to keep the relative utilization under a threshold to maximize the
resource utilization where application level QoS can be guaranteed. The controller
algorithms were designed based on input-output models inferred from empirical data
using a black-box approach. In concrete terms, system was modeled by varying the input
in the operating region and by observing the corresponding output (see Figure 3.9) by
building an analytical model. In contrast to queueing theory, which is widely used in
computing system to aggregate statistical measure of a system, classical control theory
can provide better run-time control over short time scales by piggy-backing fine-grained
resource consumption, for example, CPU utilization and latency. Later, they designed
arbiter controller that control dynamic resource allocation across multiple application
tiers sharing the same infrastructure to keep throughput and response time under control.
Therefore high resource utilization and performance was guaranteed. However, this work
only considers CPU allocation and requires offline training for model building and clearly
ignored how to manage other resource types and is categorized as reactive. Moreover, not
all open source cloud management platform supports cpu entitlement techniques.

49

3.3. Energy and Performance aware cloud application

Figure 3.9: Input-Output model for a multi-tier application [PSZ+07]

In [KKJ11], authors introduced an online resource provisioning mechanism to improve
performance management for session based enterprise application using limited lookahead
control (LLC). This method is a pro-active model predictive control which try to maximize
performance objective in a optimization problem over a predicted horizon, and periodically
moves the horizon forward. Usually server uses remote procedure calls for client/server
interaction and each client request results in the creation of a certain number of these calls.
Authors used PID controllers to keep a setpoint which indicates the maximum number of
clients the system can admit. By taking feedback from the system about number clients
and closely tracking to the set point can be a realization point of triggering scaling decision
on the infrastructure. Similar to this, [KCH09] [GDK+14] proposed pro-active approach
by Kalman filtering to automatically learn the system parameters for each application,
allowing it to proactively scale the infrastructure to meet performance guarantees.

Unlike using control theory, authors in [MHL+11] proposed a multi-modal controller
that integrates adaptation decision from several models to determine best adaptation action
e.g., in terms of lowest adaptation cost while abiding performance level SLA. Their solution
is based on empirical model based on measurement data from previous application runs
so that, this model can suffice to be a starting point for a new application and by the time
passes, knowledge based continous improvement can be done. The proposed controller
can determine the number of instances required for each tier, when it is required. The
solution is called integrative adaptation engine (IAE), which is consists of three main
components; elastic application system, multi-modal controller and operational data store
(ODS) as showed in Figure 3.10. During the run-time operation, the application can be
monitored and operational data like resource utilization, number of instances per tier,
throughput etc. are stored at ODS. In contrast, multi-modal controller sense SLO data via

50

Chapter 3. Related work

sensor and matches the condition with ODS data, determines if system can be optimized
or not, if yes, triggers proper adaptation decision via actuator. If a proper match is not
found, horizontal scale model is used to determine the over or under utilized tier and
then adaptation decision is performed. Similar to the goal, authors in [HGG+14], [KC14]
proposed cost and QoS aware adaptation techniques in VM level for n-tier application.

Figure 3.10: Integrative adaptation engine architecture [MHL+11]

While most of the non-functional adaptation techniques used in literature are mostly
rule based [Ser14] [Mic14] using infrastructure and system level metrics, authors at [SN15]
studied how effective autoscaling techniques could be using data generated by application
itself. For instance, data streaming application like IBM Streams [CdCGdM+15] evaluates
tweet sentiment in real-time. Their analysis shows that there exist a correlation between
average sentiment of tweets and average volume of tweets. Therefore, by analysing
intensity of the sentiment, upcoming tweeter burst can be alerted beforehand. To find a
better solution depending on the application data, authors proposed two algorithm, namely
load algorithm and appdata algorithm. The former technique is based on the expected
time to process all current tweets versus the given SLA. For instance, each tweet must be
processed withing 5 minutes. If the expected delay is above the SLA, more resources are
allocated, otherwise resources are released and if the expected delay is below half the SLA.
In contrast, the appdata algorithm analyzes the average sentiment score of the last minutes
and compares it to the average sentiment of the previous minutes. If the sentiment score
increases by a specified threshold, a predefined quantity of new CPUs is allocated. Results
show that, resource requirements can be reduced upto 33%, while number of SLA violation
can be also reduced by 95%. However, the approach is very fitted for data streaming

51

3.4. Discussion

application.
The author [PWAJ15] proposed an efficient resource management of shared resources

in virtualized environment based on nonlinear relationship between input and output
parameters. Moreover, service provider can propose differentiated services in terms of
performance e.g., response time, quality of contents, etc. based on a defined business
model i.e., gold, silver and bronze. Depending on the business model, number of clients
or workload can vary from one instance of application (granular to the VM level) to
another. Therefore, hosting different class of applications of VM’s in same physical machine
makes it complex to gurantee different level of performance. Primarily, performance of
a VM are non-linear related to the shared resources [PWCH11, WZS05]. Allocating more
resources e.g., cpu and memory to a particular VM can degrade the performance of rest
of the VM’s. Therefore, a predefined linear model can be inadequate when system has
to operate in a wide range of operating conditions with unpredictable workloads. Their
solution successfully tackles the problem by designing a pre-input and post-input nonlinear
compensator which takes feedback from the system to compensate these nonlinearities in
the system.

Apart from these works, some of the research article tried to investigate power-
performance trade-off. Rather, adapting the application, these works proposed to minimize
the number of underlying resources used by application while acceptable performance can
be provided. The authors in [HWY+10] introduced an online self-reconfiguration approach
based on genetic algorithm to optimally reallocating VMs. Their approach conserve energy
by effectively switching off unnecessary PMs. However, these approaches do not address
how switching of PM’s and migrating VM’s can impact on modern interactive Cloud
applications while targeted performance can be met. Additionally, authors in [CGS+14],
presented StressCloud, which profiles the impact of system resource allocation strategies
for different types of cloud tasks (i.e., data and communication intensive tasks) to minimize
energy consumption while performance requirement can be met without degradation.

3.4 Discussion

The section 3.3 presented a selection of relevant and popular work around the self-awareness
of cloud application depending on green energy and performance. Furthermore, we define
some attributes that classify the above mentioned works for better understanding the
problem that we want to address:

• Green energy awareness: By the term, we mean that an application is aware of the
variability of green energy and change it’s execution time or makespan accordingly.

• Cost optimization: Most of the data center research are concentrated on how to reduce
electricity related cost. Grid-tied energy cost can be reduced by opportunistically

52

Chapter 3. Related work

using available green energy, whereas some efforts have been made to exploit location
and price diversity for further reduction.

• Performance guarantee via adaptation: Performance is the foremost criteria for any
cloud application but it can be varied depending of the nature of application. For
example, abiding the deadline is a primary requirement for batch application. On the
other hand, latency and availability is the key concern for interactive application.

From the work that takes into consideration of green energy awareness for batch kind
of jobs, all of them [HGRN15], [DSFH15],[LOM15] use non-functional adaptation (e.g.,
addition of VM, PM and VM migration etc.) The primary focus of these works are to
meet the deadline while green energy usage can be maximized. However, the approach
[LOM15] shows that, while proportion of green energy usage was maximized, total energy
consumption was also increased. Therefore, not only the green energy needs to be con-
sumed more, but also the total energy consumption should not exceed the acceptable level.
Apart from that, [GBL+11], [GLN+12] not only tried to maximize the usage of green energy,
but also to reduce the grid-tied brown energy cost. Furthermore, for the cost minimization
metrics, two types of works are found in literature. One of the branch [WZL14], [TB15],
[APKSG14], [GDXHJ14], [GZG+16] tried to route web requests across the data center to
reduce electricty cost by exploiting the different prices in location diversity. Whereas, the
other branch of works [CJX14], [LLW+11], [CHT12], [APKSG13] follows the renewable
energy across the data center to take the advantage of available green energy on those
location to reduce brown energy cost. Therefore, most of this works are based on traffic
routing or require some form of non-functional adaptation for performance guarantees.
In a way, these approaches tried to make an application to green energy adaptive by
following the renewables. In literature, works related to interactive cloud application
mostly emphasize to guarantee performance by doing architectural change in run-time to
admit more requests to defend shortage of resources (functional adaptation), or by adding
more resources to satisfy demand spikes (non-functional adaptation) or by formulating
both of them. These adaptation policies actually opens the door for creating the green
energy adaptivity to the interactive cloud application. However, the literature still lacks the
strategy of how the interactive application can take advantage of available green energy
to re-configure itself to the changing condition to reduce brown energy while traditional
performance requirement can be met. Table 3.2 summarizes all the works we have discussed
at Section 3.3.

In order to overcome the problem of creating green energy awareness in an interactive
cloud application, our second part of the thesis in Chapter 6 presents a self-adaptive
autoscaler architecture (thanks to autonomic computing) to enable smart usage of energy in
an interactive application. Our idea is to transport the energy information to the application
so that it can adapt itself based on the energy events to reduce brown energy consumption.
We propose several application controllers that make trade-off between QoS, QoE, brown

53

3.4. Discussion

and green energy consumption to acknowledge the idea of smartly adapting the application
is possible with the energy information.

54

Chapter 3. Related work

Ta
bl

e
3.

2:
C

lo
ud

A
pp

lic
at

io
n

A
pp

lic
at

io
n

ty
pe

A
pp

ro
ac

he
s

G
re

en
en

er
gy

aw
ar

en
es

s

C
os

t
Pe

rf
or

m
an

ce
th

ro
ug

h
ad

ap
ta

ti
on

Fu
nc

ti
on

al
N

on
-f

un
ct

io
na

l
[H

G
R

N
15

],
[D

SF
H

15
],[

LO
M

15
]

X
7

7
X

[Z
W

W
11

],
[G

LN
+

12
],[

LC
B+

12
],

[C
H

T1
2]

X
X

7
X

Ba
tc

h
[G

BL
+

11
],

[C
JX

14
],[

LL
W

+
11

],
[A

PK
SG

13
]

X
X

7
7

[W
Z

L1
4]

,[
TB

15
],[

G
D

X
H

J1
4]

7
X

7
7

[A
PK

SG
14

],
[G

Z
G

+
16

]
7

X
7

X

[A
B9

9]
,[

A
SB

02
],[

PD
PB

G
10

],
[C

FF
+

11
],

[K
PD

+
14

]
7

7
X

7
[C

IA
P1

2]
,[

K
M

A
H

R
14

]
7

X
X

7
[D

LA
dO

JT
15

],
[A

M
C

G
R

S1
5]

7
X

X
X

In
te

ra
ct

iv
e

[A
M

C
G

R
S1

6]
7

7
X

X
[P

SZ
+

07
],

[K
K

J1
1]

,[G
D

K
+

14
],

[P
W

A
J1

5]
7

7
7

X
[M

H
L+

11
],

[H
G

G
+

14
],

[K
C

14
],

[S
N

15
],

[H
W

Y
+

10
],

[C
G

S+
14

]
7

X
7

X

55

Part II

Contribution

57

Chapter 4

Cloud energy broker: Green energy
planning for data center

Demand for Green services is increasing considerably as people are getting more environ-
mental conscious to build a sustainable society. Therefore, enterprise and clients want
to host their services or applications towards Greener Cloud Environment that offered by
the Infrastructure-as-a-Service (IaaS) provider. To build a greener cloud environment
around data center, maximum energy efficiency and minimum environmental impact
(i.e., lower carbon footprint) are the foremost criteria. To this, several energy efficient
techniques for hardware and software systems have been proposed in the literature that
are widely adopted and practiced. In contrast, data center’s energy management in the
presence of implicit and explicit sources of green energy that can facilitate to reduce carbon
footprint is still in its infancy, but gaining a lot of attention lately. The main challenge for
an IaaS provider is to determine the best trade-off between its profit while using green
energy with a budget constraint and contracted Service Level Agreement (SLA) with
Service-as-a-Service (SaaS) and Energy provider. On the other hand, for providing Green
computing services to the SaaS provider or client, strong SLA needs to be addressed.
Therefore, in this chapter we explain different level of Service Level Objective (SLO) in each
Cloud layers to realize how cross-layer SLA can be contracted in the presence of green
energy in Cloud computing environment. Furthermore, we propose a Cloud energy broker,
which can adjust the availability and price combination to buy Green energy dynamically
from the energy market in advance to make a data center green based on contracted SLA.
Later, validation of the energy broker is provided to show it can successfully keeps the
best trade-off between energy availability and budget constraint. Moreover, this chapter
presents the planning phase of green energy management for data center.

59

4.1. Context and Motivation

4.1 Context and Motivation

In response to the growing demand for Internet and Cloud computing services, large
companies such as Amazon, IBM, Google, Yahoo!, Microsoft etc. responded greatly by
making their own Cloud platforms and datacenters. It is obvious that data centers consume
enormous power that can lead to negative environmental implications (e.g., emission
of several million tons of CO2 and global warming) in its life span, which is a serious
concern for society and academia researchers in recent years [HH13]. Similar to other
large consumers of power, data centers find themselves increasingly pressured either by
legislation or by public opinion to find options to reduce their carbon footprint. Therefore,
demands for green products and services are ever increasing. In response, using green
energy in the data center is one of the best ways to address this issue even though green
energy sources are very intermittent in nature and generally incurs higher cost to produce
energy.

Green energy driven SLA. Due to the dynamic nature of the Cloud, SLA between
consumers and providers emerge as a key aspect and SLA enforcement becomes an
important challenge. Today’s research is more concentrated on Workload-driven SLA
rather than Power-driven SLA and Green power-driven SLA. Usually, Workload-driven
SLA depends on end-users criteria such as availability, response time, throughput, etc. In
contrast, Power-driven approach implies, shifting or scheduling the deferrable workloads
to the time period when the price of electricity is lower or migrating workloads to the
different region (data center) where the electricity price is cheaper than the origin while
respecting the deadline. On the contrary, Green power-driven SLA can be realized as:
end-users or SaaS providers shift their workloads in a renewable/green energy powered
data center having an agreement with IaaS provider that some portion of their workload
should run in a greener environment. To do that, we should re-visit and re-design existing
SLA framework to propose a new class of SLA based on green energy.

Underlying energy sources for data center. Existing literature does not provide a
clear idea about the advantages and disadvantages of different integration option of green
energy sources in data centers. While on-site and off-site renewable generation models are
explicitly involved with data center to offset their carbon footprint reduction goal, some
implicit model e.g., Renewable Energy Certificate (REC) and Power purchasing agreement
(PPA), have created lots of attention to the data center owners or Cloud providers. In REC
market, there exists several green energy providers who will produce energy and feed to
the grid. As green energy sources are very intermittent in nature, the green energy-feeding
price would be very different from one to another provider depending on the location
of site, availability of sources (Wind speed, solar irradiation etc.) and capacity factor of
the plant. Committing to a single energy provider might result unavailability of required
green energy requirement for certain time frame thus ensuring certain percentage of green
energy availability in data center can not be met. On the other hand, when the generation
of green energy is lowest due to weather or maintenance work in the plant, the price

60

Chapter 4. Cloud energy broker: Green energy planning for data center

of energy also might go beyond the acceptable limit. Thus, providing contracted Green
computing services to SaaS providers or end-users become extremely difficult for a IaaS
provider. Therefore, an efficient solution is necessary that can ensure maximum green
energy availability by exploiting different energy integration option while budget constraint
is respected.

4.2 Energy procurement and Integration

To propose green computing services powered by renewable/green energy, first we have
to investigate the different green energy integration options and their advantages as well
as disadvantages and procurement strategies. From Figure 4.1, it can be shown that, the
energy layer of the IaaS consists of a single Grid where several Green Energy-as-a-Service
(GEaaS) providers from REC market and green energy provider from spot market are
connected. Additionally, on-site green energy plant can be associated to the data center
internally or externally through the same Grid. Following are the different green energy
integration opportunities for a data center.

• On-site green energy: Due to the growing demand of green services, most of today’s
green data centers adopted on-site green energy plant e.g., wind turbine, solar panel
to meet the green energy demand. Nevertheless, the perfect place for constructing a
green energy plant might not have the true potential to build a data center due the
intermittent nature of the renewable sources. But having a small-scale renewable
plant always gives the advantage to incorporate green energy to the data center to
fulfill at least the partial green energy demand if there is not sufficient amount of
energy in the REC or Spot green energy market.

• Off-site green energy: Incorporating off-site green energy to data center is an alternative
option, as the best location for producing green energy does not always have the
best potential to build a data center. Transporting the off-site energy is arduous as
wheeling charge imposed by the Grid might be more than the expectation and power
losses through transmission lines are inevitable. Thus it is not suitable or preferable
option for small-scale data center.

• REC market: While on-site and off-site renewable generation models are explicitly
involved with data center to offset their carbon footprint reduction goal, some implicit
model e.g., Renewable Energy Certificate (REC) and Power purchasing agreement
(PPA), have created lots of attention to the data center owners or Cloud providers.
REC, known as green certificate in Europe, is a tradable commodity proving that
electricity generated using renewable sources. 1 Therefore, purchasing of a green

1http://www.recmarket.eu/

61

http://www.recmarket.eu/

4.2. Energy procurement and Integration

certificate equals to purchasing a claim that the certificate owner consumed energy
from the renewable portion of the whole energy grid.

• Spot green energy market: Usually spot market posses lesser amount of energy than
regular energy or electricity market and price tends to be higher than traditional
or different non-flat tariffs. Spot market is very important for consumers like IaaS
provider, if the real-time energy/power demand is excessive than the forecasted
demand. Moreover, the actual demand cannot be known accurately in advance and
any forecasting technique provides at least some error statistics. So, for fulfillment of
SLA based on green energy, IaaS provider needs to purchase green energy from spot
market if it is required.

 IaaS

 30%

 SaaS

G1

G2

G3 EDF

EaaS

 Green Energy Provider

Brown and mixed Energy Provider
On-site Renewable source

Service level Objective

1. Availability of service
 2. Response time
 3. Ration of GReen
Content

1. Availability of
physical resource
2. Availability of
Green resource

1. Availability of
Brown energy

2. Availability of
Green energy

 25% 20%SLAR

End
User

SaaS

IaaS

EaaS

SPOT

 Spot green market

1. SLA flexibility due to
fuzziness value.
2. Unavailability of Green
energy.

SLAE

SLAS

Figure 4.1: Cross-layers SLA

62

Chapter 4. Cloud energy broker: Green energy planning for data center

4.3 SLAs in different layers

To establish green energy dependent cross-layer SLA, it is imperative to define different
actors in different cloud layers. Therefore, the objective of this section is to present the SLA
dependencies in a Cloud cross-layers architecture. First, we present the actors involved in
different layers. Later, we describe Service Level Objectives (SLO’s) associated with each
layer.

4.3.1 Actors

The Cloud architecture is usually composed of several XaaS layers and SLAs are character-
ized at various levels in this stack to ensure the expected QoS for different stakeholders. As
shown in Figure 4.1, an End-User is a client of the SaaS provider, which is itself a client of
the IaaS provider and as well as for Energy-as-a-Service (EaaS) provider.

In the REC market, GEaaS providers produce green energy and feed to the Power/-
Electrical grid but sell their green energy or green energy credits in a wholesale market to
consumers (i.e., IaaS provider) for direct purchase. Even though IaaS provider consumes
energy from the Power/Electrical Grid, they have to pay directly to GEaaS providers for
their consumption of certain portion of the green energy which has been contracted with
respective GEaaS provider. In a smart grid and smart city environment, Grid monitoring
organization2 is responsible for monitoring the energy production added to the grid
and consumption of different small to large power consumers. Since the SLA has to be
contracted between IaaS provider and GEaaS providers, the Grid monitoring infrastructure
mentioned in Figure 4.2 is considered as supporting part (or third actor) to monitor/validate
SLA between IaaS and GEaaS providers. Except for the End-User, any Cloud layer plays a
provider-consumer role: it is a provider for the upper layers and a consumer for the lower
layers. Its main challenge is to maintain consumer’s satisfaction facing to the demand
variations while minimizing the service costs due to resources fees and SLA penalties (in
case of violation).

4.3.2 SLAs

The Figure 4.1 presents examples of Service Level Objectives (SLO’s) that apply at three
different Cloud levels; between the End-User and the SaaS, the SaaS and the IaaS, or the
IaaS and the EaaS:

• SLAS (End-user − SaaS provider): Service Response Time, Service Availability.

• SLAR (SaaS provider − IaaS provider): Resource Availability, Green Resource (per-
centage of used green resource).

2For example in France - http://www.enedis.fr/

63

http://www.enedis.fr/

4.4. Components of Cloud energy Broker

• SLAE (IaaS provider − EaaS Provider): Brown energy Availability, Green energy
Availability.

The Listing 4.1 presents an example of code in CSLA[KADOJDL14], a SLA language
to finely express SLA and address SLA violations in the context of Cloud services. CSLA
allows defining SLA in any language (e.g., XML, Java); we use XML as a representation
format for the sake of simplicity. This code describes the guarantee terms and penalties for
SLA between a IaaS provider and its customer (SaaS provider).

In this example, we focus only on one SLO about the percentage of green resource
(lines 1-5). The SLO states that at least 30% of green resource should be guaranteed,
with confidence, fuzziness and percentage fuzziness of 83.33%, 5 and 30%, respectively.
These CSLA features (confidence, fuzziness) have been introduced to deal with QoS
uncertainty in unpredictable Cloud environment [KL12]. In concrete terms, it means that
the percentage of green resource measured within an observation period may be i) lower
than 25% in 16.67% of the observation periods, ii) between 25% and 30% in 24.99% (83.33%
of 30%) of the observation periods and iii) greater or equal to 30% in 58.33%. A violation
of the GreenResource SLO implies a penalty that depends on the green percentage not
respected (lines 6-13). For each penalty, a procedure (line 9) indicates the actor in charge
of the violation notification (e.g., provider), the notification method (e.g., email) and the
notification period (e.g., 7 days).

Listing 4.1: CSLA example.
1 <csla:terms>
2 <csla:objective id="GreenResourceSLO" actor="provider">
3 <csla:expression metric="Gr" comparator="gt" threshold="30" unit="\%" monitoring="Mon−1" Confidence="83,33"

fuzziness−value="5" fuzziness−percentage="30"/>
4 </csla:objective>
5 </csla:terms>
6 <csla:penalties>
7 <csla:Penalty id="p−Gr" objective="GreenResourceSLO" condition="violation" obligation="provider">
8 <csla:Function ratio="0,5" variable="GreenPercentage" unit="\%">
9 <csla:Procedure actor="provider" notificationMethod="e−mail" notificationPeriod="7 days">
10 <csla:violationDescription/>
11 </csla:Procedure>
12 </csla:Penalty>
13 </csla:penalties>

4.4 Components of Cloud energy Broker

As mentioned earlier, IaaS provider needs to determine the best trade-offs between costs
associated with different GEaaS providers with the available amount of green energy
needed to satisfy contracted SLA. In order to address this issue, we provide a Cloud
energy broker, which can adjust the availability and price combination to buy Green energy
dynamically from the market in advance to make a data center partially green. We also have
taken a realistic consideration that Green energy providers can publish a day ahead green

64

Chapter 4. Cloud energy broker: Green energy planning for data center

energy generation and price per hour (see the left side of Figure 4.2), which is a common
practice at European electricity and energy market along with smart-grid environment.
For the sake of simplicity, we have shown only one GEaaS provider in Figure 4.2. The
proposed cloud energy broker is composed of several components that interacts with each
other. Figure 4.2 provides the main components of our broker framework.

Energy Generation
every hour :: 0 hrs to
24 hrs

Price per hour :: 0 hrs
to 24 hrs

Energy availability a%
(99%)

G1

Information
Repository

Optimizer

SLA
Negotiator

 Forecaster

1.Required
Green energy
2.Max budget

 Green Energy Provider

Hou
r

Green
Energy
Required

Max
Budget
(€)

1 P1 kwh CP1

2 P2 kwh CP2

:
:

:
:

:
:

24 Pn kwh CPn

DAP for G1

SLAI-G1

SLAI-PSLAP-G1

Grid
Monitoring
Infrastructure

Energy broker at IaaS side

Forecasting Value

EDF

 REC Market Energy demand

DAP for Gn

Figure 4.2: Top level view of the framework

• Information repository: this component stores Day Ahead Pricing (DAP) information
published by different GEaaS providers. The information is updated instantaneously
if any change has been made at DAP information of GEaaS providers, otherwise the
information is updated periodically in a given time frame.

• Forecaster: the amount of Green energy required for IaaS can be forecasted for the next
few minutes (short time forecasting) or the next few hours (long time forecasting)

65

4.5. Planning phase and life cycle

based on k days of energy usage. Once the requirement of Green energy is forecasted,
the component can calculate the maximum Green power budget from the history or
from IaaS provider’s power budget information.

• Optimizer: both Information repository and Forecaster forward their information to
the Optimizer component. Therefore, the Optimizer provides pareto optimal solution
for dynamically selecting GEaaS provider based on respective information for each
time interval, for example 1 hour.

• SLA Negotiator: after selecting desired GEaaS provider/providers for each time frame
(1 hour), this component establishes a SLA contract between IaaS and GEaaS provider.
In addition, the SLA negotiator also makes a SLA contract, denoted by SLAI−P with
the Grid infrastructure for monitoring the violation of contract in the case where
Green energy is not delivered to the Grid. On the other hand, Grid monitoring
infrastructure establishes SLA denoted by SLAP−G1, to monitor if the energy providers
have fulfilled their commitment of adding desired/contracted amount of green energy
or not. Therefore, to validate the SLAI−G1 between IaaS provider and green energy
provider, two supporting agreement or SLA, named SLAI−P and SLAP−G1 are required.

4.5 Planning phase and life cycle

The selection of a GEaaS Providers can be abstracted as a succession of operations in a
planning phase (see Figure 4.3). The complete lifecycle includes both IaaS and GEaaS
providers information: forecasting power demand of IaaS, day ahead pricing (DAP) data
of GEaaS providers, selection of best GEaaS provider or providers, buying dynamically
Green energy from GEaaS providers. Moreover, planning framework is divided into
two time frames: hourly and daily (e.g., ’m’ hours,’k’ days). The first phase ends with
step 4, where buying Green energy is dynamically done hourly. Once GEaaS providers
update DAP information, a new schedule is initiated, thus concludes the process for ’m’
hours. In addition, the second phase resolves the process by step 5 for ’k’ days. Therefore,
forecasting power demand and selecting energy providers are the key concerns while
designing an energy broker where latter part requires optimization based on forecasted
data and published pricing information from energy providers.

Monitoring and Forecasting: Predicting power demand in Cloud computing environ-
ment is very arduous as ratio of power consumption at different infrastructure (e.g. servers,
cooling, lighting etc.) level are very divergent. Therefore, using Power Usage Effectiveness
(PUE) helps to get better understanding about power demand of a data center. For a
data center, PUE is defined as the ratio of the data center’s total power consumption to
the data center’s power consumption at the computer servers, databases and networks
[GMR13]. Hence, if we can measure the power consumption at server level, it becomes easy

66

Chapter 4. Cloud energy broker: Green energy planning for data center

Figure 4.3: Planning life-cycle

to calculate the total power consumption of a data center for certain time frame. As CPU
consumes majority of the power compared to memory in server level, in our investigation
we ignore the power consumption by memory in the power model. Furthermore, future
demand of power consumption can be generated by using efficient forecasting method.
The output of the forecasting phase is E, where E represents the requirement of green
energy for next ’m’ hours.

Optimizing: The goal of our optimization framework is to the find optimal amount of
energy from GEaaS provider or composition of best GEaaS providers while respecting
the budget. We address our optimization problem as Constraint programming (CP)
[RBW06], since CP accepts any type of relations to formulate constraints consisting of
linear inequalities. So, variable Xi represents the amount of Green energy required by IaaS
provider for each time interval from Gi (where, i ∈ [1,,n]) provider, whereas Domain
D(Xi) demonstrates the DAP information published by GEaaS providers.

• Variable: X = {Xi | i ∈ [1,,n]}

• Domain: D(Xi) = {1,, ei},∀i ∈ [1,,n]

Therefore, we introduce our objective function which tries to maximize both the amount
and the availability of Green energy to meet the exact Green energy requirement.

Maximize : (
n∑

i=1

Xi.
n∏

i=1

Avi) (4.1)

67

4.6. Evaluation

where, Avi symbolizes the availability of Xi.

Subject to
n∑

i=1

Ci ≤ Bmax, Bmax
∈ <+ (4.2)

IaaS provider requires to have upper bound of budget for each interval to buy Green energy
which is stated at constraint (4.2) as Bmax, where Bmax is computed by (E)*(St.Price) and Ci
represents the cost for buying green Energy from provider Gi. The term (E) and (St.Price)
represent the required Green energy and average green energy price from historical window
respectively.

4.6 Evaluation

This section presents the results obtained from an experimental scenario used to evaluate
the proposed broker. The objective is to show a real utilization case of the forecaster and
the optimizer.

Table 4.1: Power consumption by the selected servers at different load levels in Watt

Servers 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Dell Inc PowerEdge M620 688 1151 1322 1494 1671 1848 2061 2289 2499 2765 3239
IBM NeXtScale nx360 M4 550 873 999 1123 1251 1380 1525 1673 1887 2116 2404

4.6.1 Experimental Testbed

We consider a data center which has an average PUE of 1.77. Although some of the
state-of-the-art techniques claim to have reduced this value closer to 1.20, still most of
today’s data center have higher PUE values than 1.7 [YM13]. Therefore, for transforming
CPU utilization to power consumption, we traced CPU utilization for 7 days of 30 blade
servers from PLANETLAB [PP06] where CPU Utilization has been traced for 500 different
servers from across the world. As, building precise analytical models for modeling power
consumption by modern multi-core CPUs makes a complex research problem, instead
of using an analytical model of power consumption by a server, we utilize real data on
power consumption provided by the results of the SPECpower benchmark 3. Theoretically,
researchers assume the increment of power consumption is linear to the increment of CPU
load, whereas practically the power consumption in a server is not linear and increase
significantly beyond 80% CPU utilization.

3http://www.spec.org/power_ssj2008/

68

Chapter 4. Cloud energy broker: Green energy planning for data center

4.6.2 Forecaster Evaluation

We have selected two blade servers configuration with multi-core CPUs published in
November 2013: Dell Inc. PowerEdge M620 (Intel Xeon E5-2660,8coresX2.2 GHz,64 GB),
and IBM NeXtScale nx360 M4, (2 Intel Xeon E5-2600,10 coresX2.2 GHz,256 GB). The
configuration and power consumption characteristics of the selected servers are shown in
Table 4.1. In addition, we use OpenForecast 4 to forecast power demand for next 24 hours
based on traced last 7 days power consumption. Single variable polynomial regression,
Simple exponential smoothing and Double exponential smoothing method are used as
forecasting method. Figure 4.4(a) and 4.4(b) present 7 days traced CPU utilization and
transformed power consumption from CPU utilization for 7 days respectively. On the
other hand, Figure 4.4(c) shows power consumption prediction for next 24 hours.

In smart city environment, the regulation authority could enforce large power consumers
like data centers to have certain percentage of green energy in their data center. On the
other hand, IaaS providers can set their own sustainability goal to keep certain percentage
of green energy in data center to propose green services. For the evaluation purpose,
we consider that IaaS provider’s goal is to make the data center implicitly 30% green.
Therefore, we scale down the power requirement demand to 30% which is shown in Figure
4.4(d).

4.6.3 Optimizer Evaluation

We consider 4 GEaaS providers exist in REC market for the purpose of our evaluation
but it can be extended to more providers. As demonstrated in Figure 4.2, every GEaas
provider has different level of availability of energy in kwh over time which is published at
DAP information. The level of availability differs for various reasons including different
wind speed over time, unavailability of cut-in wind speed, different solar irradiation over
time and the capacity factor of the plants. Furthermore, some providers might use more
than one or different sources to produce green energy, which also results different level of
energy generation. Figure 4.5 shows the energy distribution by 4 GEaaS provider which is
synthetacally created to validate the result. Using Riemann sum, we calculate the green
energy consumption demand from Figure 4.4(d), as the billing or cost for consumption is
always calculated over energy consumption in kwh rather than power consumption in kw.
Furhtermore, for the ease of readability green energy demand is placed at Figure 4.5.

Finding market prices of each kwh produced by green sources are extremely difficult
as most of the today’s wind or solar power infrastructure or plants receive enormous
incentives either from government or from different policy making organizations. Hence,
to model a realistic price for energy of different GEaaS providers and energy purchasing
budget for IaaS providers, we investigate information of CAPEX-OPEX, levelized cost,
fixed O&M cost, variable O&M cost of different sources of energy (e.g.; Nuclear, Wind,

4http://www.stevengould.org/software/openforecast/index.shtml

69

4.6. Evaluation

(a) CPU Utilization (b) Power Consumption

(c) Predicted Power (d) Green Power Prediction

Figure 4.4: From CPU utilization to Green Power Prediction

70

Chapter 4. Cloud energy broker: Green energy planning for data center

Solar, Hydro etc) 5 and find that the ratio of energy consumption cost between nuclear and
green energy is 1:1.68 approximately. Therefore, we consider, the price of green energy
sold by GEaaS providers will be around .19 - .25 cents/kwh while the price of Nuclear or
mixed energy provided by EDF 6 is .13 cents/kwh.

In our experiment, we compare our optimization framework with two greedy ap-
proaches based on availability and cost. The first one tries to find the GEaaS providers
such a way that it can satisfy the near optimal green energy demand whereas second ones
seeks to select certain GEaaS providers which offer lower cost for selling their energy.

 0

 5

 10

 15

 20

 25

 30

 35

 0 4 8 12 16 20 24

E
n

e
rg

y
 a

v
a
ila

b
ili

ty
 (

k
w

h
)

Time (Hours)

GEaaS-1
GEaaS-2
GEaaS-3
GEaaS-4

Green energy demand

Figure 4.5: Energy production by different GEaaS providers

Results: Figure 4.6(a) shows the comparison between a cost aware greedy approach and
our optimization approach to meet the forecasted green energy demand. While cost aware
greedy approach fails to meet the energy demand by 14%, our optimization framework
performs better by providing 98% of the total demanded green energy within the green
energy budget of IaaS provider. Furthermore, availability aware greedy approach incurs 5%
more cost than the green energy budget of IaaS provider, while our approach follows the
budget strictly and fails to provide only 2% of demanded Green energy, which is showed
in Figure 4.6(b).

4.7 Discussion

This chapter presented some insights into how green energy can be procured and added
to a data center in the presence of different implicit and explicit green energy integration

5http://www.eia.gov/forecasts/aeo/pdf/electricity_generation.pdf
6http://entreprises.edf.com/entreprises-45638.html

71

4.7. Discussion

 0

 6

 12

 18

 24

 4 8 12 16 20 24

E
n

e
r
g

y
 a

v
a

il
a

b
il
it
y
 (

k
w

h
)

Time (Hours)

Our-approach
Cost-aware

Green energy demand

(a) Cost aware

 2

 3

 4

 5

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

C
o

s
t

o
f

E
n

e
r
g

y
 (

E
u

r
o

)

Time (Hours)

Our-approach
Availability-aware

(b) Availability aware

Figure 4.6: Our approach vs Cost aware vs Availability aware

options. Later, how cross-layer SLA can be established in the existence of green energy is
also discussed. Furthermore, a Cloud Energy Broker was proposed to tackle the problem of
ensuring green energy availability under a fixed budget constraint to meet enforced green
energy percentage by smart city authority or contracted green energy aware SLA between
IaaS and SaaS provider, if there is any. We envision that, any green energy management
strategy for data center requires a planning phase and a real-time execution phase. Since
the actual energy demand can not be known accurately in advance and any forecasting
technique provides at least some error statistics, real-time execution phase becomes very
critical. In today’s internet data centers, demand may vary rapidly e.g., workload surge,
which can not be anticipated precedent to the event. Thus shortage of green energy may
occur. On the other hand, the periodic or "on and off" workload is characterized by periods
of relatively high activity distributed with periods of little or no activity 7. Due to the
periods having less to zero activity, demand for green energy can decrease. Hence, green
energy which is purchased beforehand can goes to waste. Considering the aforementioned
occurrences, an efficient strategy needs to be devised for real-time execution phase. The
latter chapter investigates and aims at solving the phenomena by introducing Virtualization
of Green Energy for the data center.

7http://support.rackspace.com/white-paper/cloud-economics/

72

Chapter 5

Virtualization of green energy: Better
managing the energy in datacenter

Defining and establishing Green SLA between IaaS and SaaS provider based on green
energy is missing from the literature. Therefore, the main challenge for IaaS provider is to
manage Green SLAs with their customers while satisfying their business objectives, such
as maximizing profits by lowering expenditure for green energy. Aside from incentives
from government and private organizations, cost for producing green energy and prices in
the market tends to be higher than brown energy. Since, Green SLA needs to be proposed
based on the presence of green energy, the intermittent nature of renewable sources makes
it difficult to be achieved. In response, this chapter presents a scheme for real-time green
energy management in the presence of explicit and implicit integration of green energy in
data center. More specifically we propose three contributions: i) we introduce the concept
of virtualization of green energy to address the uncertainty of green energy availability, ii)
we extend the Cloud Service Level Agreement (CSLA) language to support Green SLA
by introducing two new threshold parameters and iii) we introduce greenSLA algorithm
which leverages the concept of virtualization of green energy to provide per interval specific
Green SLA. Experiments were conducted with real workload profile from PlanetLab and
server power model from SPECpower to demonstrate that, Green SLA can be successfully
established and satisfied without incurring higher cost. Later we conclude the chapter by
analyzing the limitations of our approach and what is the potential step to overcome the
limitations.

5.1 Context and Motivation

While the proliferation of Cloud services have greatly impacted our society, how green are
these services is yet to be answered. Although, demand escalation for green services has
grown due to societal awareness, the approaches to provide green services and establish

73

5.1. Context and Motivation

Green SLAs remain oblivious for cloud or infrastructure providers. To provide green
computing services, efficient green energy management technique in the presence of
implicit and explicit integration of green energy sources is necessary. Following are our
further arguments, which are the state-of-the-art problem to achieve an efficient strategy to
manage green energy in the data center.

Drawbacks of energy storage. As renewable power sources are very intermittent in
nature, hence predicting the amount of green energy production ahead of real time might
demonstrate greater error statistics in data center. Nonetheless, excessive production of
green energy can go to waste and sometimes might imbalance the Grid if the production
becomes greater than the capacity. The later case does not apply if the data center has a
small-scale renewable source e.g., wind turbine, solar plant. One way to overcome the
challenge is to use energy storage or battery to store this superfluous green energy which
can be discharged later for peak shaving of data center power demand or for fulfillment
of Green energy based SLA between IaaS and SaaS providers when green energy is needed
but not available. Energy storage incurs additional costs to data centers cap-ex and op-ex,
hence it is not an attractive solution for small-scale data centers. Moreover, storages
have finite capacities to recharge energy and their lifetime is a decreasing function of
depth-of-discharge (DoD) and charge/discharge cycles [DLJ+13]. Usually DoD refers, how
much energy the battery has delivered.1 Therefore, if the production of green energy
is above the capacity of storage, remaining energy goes to waste. Even the state of the
art batteries have 80-85% [UUJNS11] efficiency on charging and discharging capabilities,
which implies 28-36% loss of energy.

Then, how to manage unavailability of green energy at run-time if the storage approach
has several drawbacks and the on-site green energy or spot market productions are
insufficient?

Green SLA based on Green energy. While in the literature, reducing energy consumption
per job (e.g., at IaaS layer) is a primary concern to propose Green SLA [BKT12], we envisage
that, Green SLA can only be proposed and established if the service is hosted in a green
energy powered data center. To establish Green SLA, we should follow the bottom-to-top
approach in cloud computing layer e.g., EaaS→ IaaS→ SaaS. So that, each of the layer
can contribute their effort to reduce carbon footprint globally. Apart from that, any
service providers are yet to propose Service Level Agreement (SLA) based on green energy
availability with their infrastructure. Haque et al. [HLG+13] first proposed Green SLA based
on green energy availability from on-site renewable plant where environmental conscious
clients can ask for differentiated green services with varied green energy requirement.
However, providing green service can be impossible or no additional green service request

1It is not recommended to fully discharge batteries to 100%, otherwise it would shorten the life-cycle of
batteries.

74

Chapter 5. Virtualization of green energy: Better managing the energy in datacenter

will be entertained when green energy is not available, which quantifies that, it is not
possible to have any formal contracts between SaaS providers/clients and IaaS providers.
Hence, real-time energy management becomes very important not only to ensure the
availability of green energy in the data center but also to validate Green SLA.

5.2 Proposed solution

Due to two time-scale green energy market (REC and Spot) and aperiodic spikes of
workload we have divided our solution in two phase named planning and run-time phase.
In previous chapter (Chapter 4 : Section 4.4), we proposed a Cloud energy broker, which can
adjust the availability and price combination to buy green energy dynamically 24 hours
ahead from the REC market to make data center green for a specific (as a example 30%)
portion. To address the priorly mentioned green energy management problem in run-time
phase, we introduce the concept of Virtualization of green energy and Green SLA based on
the availability of green energy.

5.2.1 Virtualization of green energy

The energy can be virtually green for a specific period of time if abundance of green energy
is available aperiodically in shorter time interval along with the deficit of green energy
in rest of the time frame. Concretely, when the availability of green energy is more than
demand, we use the whole portion of available green energy but characterize the interval
as surplus interval. When green energy is insufficient to meet the demand, we nullify the
degraded interval with the surplus interval. We use the term virtualization because we
nullify a degraded interval (lack of green energy) with a surplus interval (excessive green
energy than demand), but from the client’s or SaaS provider’s perspective, they realize both
the intervals as ideal interval (when supply meet the demand), though the green energy
was not present instantaneously rather present virtually. Figure 5.1 shows the visualization
of our approach.

Therefore, our proposal is to smooth out the differences between deficit and surplus
of green energy production during a certain time window with the objective to obtain an
summation narrowly superior to a certain threshold, which we refer as Virtualization of
green energy. This way we ensure that each watt of green energy is used in the data center.
Interestingly, this concept does not increase the total energy consumption rather increases
the greenness of energy used in data center. In this way real energy storage is not needed and
neither of the portion of green energy is wasted. Furthermore, total expenditure for energy
purchasing can be reduced as no energy goes to waste and additional cost for using storage
is not needed. Obviously, Green SLA between IaaS and SaaS providers can be fulfilled if the
time-slot length is adapted. For example, if IaaS provider has established a SLA to SaaS
provider to have some portion of green energy available for each time slot e.g., T=30/60

75

5.2. Proposed solution

Green energy
demand

Available green energy

Virtually available green energy
Green energy
demand

(b) Using the concept of Virtualization of Green energy

(a) Usual Scenario without energy Virtualization concept

Time

Time

(a) Effect of green energy virtualization

Surplus Degraded

Ideal Ideal

SaaS Provider

IaaS Provider

t

Energy
(kwh)

Total energy
demand

Green energy
demand

Energy is virtually green

(b) Validation of virtualization of energy

Figure 5.1: Green energy virtualization concept

minutes, it is possible to satisfy the contract by using virtualization concept of green energy,
which is elaborately explained in the next subsection.

5.2.2 Extension of CSLA to support virtualization of green energy

We extend CSLA language to support the Green SLA by taking the advantage of the concept
of virtualization of green energy. In order to evaluate an objective (SLO), an initial evaluation
enables to classify the interval as ideal (i.e., threshold is respected), degraded (i.e., threshold
is respected using fuzziness margin) or inadequate (i.e., threshold is not respected even
with fuzziness margin). We distinguish two concepts: (i) per-interval evaluation, in which
the evaluation is performed at the end of each interval; (ii) per-request evaluation, in which
the objective is evaluated for each request. For the sake of virtualization of green energy (
e.g., since this concept is based on a certain time frame), we consider per-interval evaluation.
A final evaluation, at the end of the time window, allows one to verify an objective (SLO)
by applying the fuzziness and confidence percentages to the initial evaluation. The final
evaluation enables the identification of non-accepted/accepted degradation and inadequate
cases, that is, that will/will not result penalties. In other words, the final evaluation absorbs
or notifies the violations.

To propose and establish Green SLA, first, we define an SLO by using two thresholds
thresholdmin and thresholdmax (see Figure 5.2). Secondly, beyond the thresholdmax, we consider
the intervals as surplus meaning that, excessive green energy was present in that interval.

76

Chapter 5. Virtualization of green energy: Better managing the energy in datacenter

Figure 5.2: SLO evaluation in CSLA

Finally, we add an intermediate step in the evaluation process. This step consists to update
the intervals classes using the nullification of degraded intervals by surplus intervals i.e.,
for each surplus interval we translate a degraded interval to ideal interval.

Listing 5.1: CSLA example.
1 <csla:terms>
2 <csla:objective id="GreenResourceSLO" actor="IaasProvider">
3 <csla:expression metric="Gr" comparator="in" threshold−min="25" threshold−max="30" unit="\%" monitoring="

Mon−1" Confidence="91,66" fuzziness−value="5" fuzziness−percentage="18,18"/>
4 </csla:objective>
5 </csla:terms>
6 <csla:penalties>
7 <csla:Penalty id="p−Gr" objective="GreenResourceSLO" condition="violation" obligation="provider">
8 ...
9 </csla:Penalty>
10 </csla:penalties>

For the simplicity, we provide an example at Listing 5.1. Here we focus on only one
SLO about the percentage of green resources (lines 1-4). The SLO states that the percentage
of green resources should be guaranteed between 25 and 30, with confidence of 91.66%,
fuzziness of 5% and fuzziness percentage of 18, 18%. In concrete terms, it means that the
percentage of green resource measured within an observation period may be i) lower than
20% in 8.34% (100% - confidence% = 8.34%) of the observation periods, ii) between 20%
and 25% in 16.66% (91.66% of 18.18%) of the observation periods and iii) greater or equal
to 25% in 75%. A violation of the GreenResourceSLO implies a penalty that depends on the
green percentage not respected (lines 7-9).

Using this objective for an evaluation window of 24 intervals, we accept 22 adequate

77

5.3. Real-time Green Energy Management

intervals (18 ideal and surplus, 4 degraded) and 2 inadequate interval.

5.3 Real-time Green Energy Management

In this section, we describe the model parameters and investigate the goal for cost reduction
of spot green market as well as total energy expenditure by proposed algorithmic solution
based on Green SLA.

5.3.1 Supply side characteristics

We consider our system operates in discrete time model. From day ahead REC market,
IaaS provider purchase green energy for next suitable time period e.g., 12 hours or 24
hours. Furthermore, for evaluation and validation of SLA by CSLA language we divide
before mentioned time frame in t (t = 12 or 24 hours time period). Moreover, the total time
is divided into J(J ∈ N+) coarse-grained time slots of each length of T, accordance with
the length of the day-ahead REC market, e.g., minutes, hours in Figure 5.3. In addition,
each fine-grained time slots τ, (τ = 30 minutes) are treated as monitoring window and t
where, t = jT(j = 1, 2,, J), can be defined as evaluation window for SLA validation in
our model. IaaS provider purchase green energy from single or multiple REC providers
(discussed in the previous chapter) in day ahead REC market for next 12 to 24 hours. So,
for each fine-grained time slot, we define d(τ) where,τ ∈ (t, t + T − 1) is purchased with
Pmax upper bound price. As we integrate on-site renewable power source in our model, we
consider r(τ) amount of green energy is produced and added to each fine-grained time slot.
As green energy sources are very intermittent in nature, we suggest r(τ) to be r(τ) ≥ 0 for
each fine-grained slot meaning, green energy will not be available in some slots due to the
sporadic nature of the source. Hence, the supply side consists of two independent parts,
i.e., U(τ) = d(τ) + r(τ). As we consider, two time scale green energy market, if the demand
of green energy is greater than the supply, IaaS provider has to buy additional energy in
real-time from REC market which tends to have higher price on average than day-ahead or
long-term ahead market similar to real-time electricity market. This additional energy is
regarded as spot energy. We define s(τ) amount of green energy needs to be purchased from
real-time spot green energy REC market at price β(τ)(O < β(τ) ≤ βmax) in each fine-grained
time slot if required.

5.3.2 Virtual energy model

At each fine-grained time slot, workload arrives with the requirement of green energy
percentage e.g., 30%, that needs to be served and we define the request process as e(τ).
We assume, non green energy can be drawn anytime from Grid if there is deficit of green
energy in spot green energy market. Considering the demand and supply side, the ideal
condition would be meeting exact demand from the supply side : U(τ) + s(τ) = e(τ) or

78

Chapter 5. Virtualization of green energy: Better managing the energy in datacenter

Cl
as

s

Cl
as

s

Cl
as

s

s

d

r

t(jT)

T

Power
supply at
time slot
to meet
demand

 = T/2 =30 mn
T = 60 mn
j = (1,2,3,.....,J)

Figure 5.3: Supply side characteristics

U(τ) + s(τ) ≥ e(τ) suggesting, supply might exceed the actual green energy demand in
some slots. In our model, this superfluous energy will neither be stored in a storage nor be
wasted, rather will be used as virtual energy in the data center. This additional energy will
increase the percentage of green energy to the total energy. Hence, we characterize b(τ)
as the summation of all available green energy present in the slot, which we can write as
b(τ) = U(τ) + s(τ) = d(τ) + r(τ) + s(τ). and define superfluous or virtual energy v(τ) as:

v(τ) =

 v if b(τ) ≥ thresholdmax

0 otherwise
(5.1)

5.3.3 Cost Minimization Problem of Spot Green Energy

As described in previous sub section, we consider, green energy demand, available green
energy purchased from day-ahead green energy market and on-site plant, market price of
spot green energy from a vector (e(τ),U(τ), β(τ)) and e(τ),β(τ) is i.i.d over slots with some
unknown probability distribution. Furthermore, U(τ), e(τ) and β(τ) are deterministically
bounded by finite constraints Umax, emax and βmax, so that: 0 ≤ U(τ) < Umax, 0 ≤ e(τ) ≤ emax,
and 0 < β(τ) ≤ βmax,∀τ

Now letting Q(τ) represent the total green energy request in the queue on slot t, we will
have following update equation,

Q(τ + 1) = max[Q(τ) −U(τ) − s(τ), 0] + e(τ) (5.2)

Here s(τ) is a decision variable (Amount of energy needed to buy from real-time spot
energy market), which chosen in every slot τ to stabilize the Q(τ) depending on the current

79

5.3. Real-time Green Energy Management

state of the queue and vector(e(τ),U(τ), β(τ)). We define a upper bound smax for s(τ) as
0 ≤ s(τ) ≤ smax. Hence, our objective is to design a flexible and robust control policy for
time varying systems to formalize the stochastic cost optimization problem for spot green
energy is mentioned below:

minimize Costav = lim
t→∞

1
τ

t−1∑
τ=0

E{β(τ)s(τ)} (5.3)

subject to Q < ∞, (5.4)
0 ≤ s(τ) ≤ smax, ∀τ (5.5)

where, Q is the time average expected queue backlog, defined as:

Q = lim sup
t→∞

1
τ

t−1∑
τ=0

E{Q(τ)}

Since the virtual energy can not be present in every slot, the current control decision is
coupled with the future decisions. As example, the deficit of green energy in some slots
may be larger and hence IaaS provider has to pay penalty to SaaS provider or to the end
client. We preferred Lyapunov optimization over dynamic programming to solve this
optimization problem since dynamic programming requires significant statistics of demand
and supply probabilities [FYH+15]. Furthermore, Lyapunov framework has been proven
to be efficient to design control algorithms for aforementioned constrained optimization
problem without requiring a priori knowledge of demand and cost statistics.

We propose two threshold parameter thrmin and thrmax, where thrmin < e(τ) and e(τ) <
thrmax. For instance, in our framework, thrmin and thrmax are 25% and 30% respectively.
Since, energy demand can not be measured with actual number, we consider energy
demand in every τ slot e(τ) to be in range of 5%, which is a fuzziness value that can be
negotiated in the SLA phase (discussed at Section 5.2.2). Furthermore, the idea behind
introducing the threshold parameters is to analyze whether any of the two events have
occurred or not in the slot. When the supply side has lesser amount of energy than thrmin
value to meet green energy demand in a slot, the slot is considered as a energy deficit
slot. Hence, we characterize b(τ) such a way that, it can be either in between the value of
thrmin and thrmin − f uzzinessValue or lower than thrmin − f uzzinessValue or above the value
of thrmin and thrmax . Furthermore, in case of energy inadequacy aware virtual queue, the
maximum allowable slots when the value of b(τ) lies on b(τ) < (thrmin − f uzzinessValue),
can be defined as Nmax. Therefore, the functionality of b(τ) will depend on thrmin, thrmax
and fuzziness value which is constructed as:

80

Chapter 5. Virtualization of green energy: Better managing the energy in datacenter

f (b(τ)) =

surplus(v(τ)) when b(τ) ≥ thrmax

ideal when thrmin ≤ b(τ) ≤ thrmax

degraded if (thrmin − f uzziness Value) ≤ b(τ) ≤ thrmin

inadequate otherwise

(5.6)

So, the functionality of b(τ) indicates that when there is excessive green energy available
in a slot than demanded energy, we characterize those superfluous energy slot as surplus
energy slot. We define a energy degraded aware virtual queue X(τ) and energy inadequacy
aware virtual queue Y(τ) to measure the backlog of energy deficits in the queue by tracking
the number of slots when energy deficiency and virtual energy is present. Moreover, for
X(τ), having energy deficiency and presence of virtual energy can not occur simultaneously
in a slot. For Y(τ), maximum allowable slots that can have energy deficiency in evaluation
time window t is defined as Nmax. Furthermore, the update equation for energy degradation
and energy adequacy aware virtual queue will be:

X(τ + 1) = max[X(τ) − γv(τ), 0] + γb(τ) (5.7)

Y(τ + 1) = max[Y(τ) −Nmax, 0] + γb(τ) (5.8)

where, γ is a counter, which adds values to corresponding parameter e.g., v(τ), b(τ)
whenever it is present in the queue. So, γ can be represent as γ{0, 1}. That means,
value of γ is either 0 or 1. In other sense, when an interval is degraded, queue X(τ)
will update 1 degraded interval, hence γb(τ + 1) = [γb(τ) + (b(τ) > 0)]. We also update
γv(τ + 1) = [γv(τ) + (v(τ) > 0)] to track of how many surplus interval (meaning v(τ + 1)) is
required to nullify degraded intervals. Similarly, when an interval is inadequate, queue
Y(τ) will update 1 inadequate interval by setting γb(τ + 1) = [γb(τ) + (b(τ) > 0)]. Therefore,
this explains broadly the construction of equation (5.7) and equation (5.8).

5.3.4 Lyapunov Optimization

We define, Θ(τ) = [Q(τ),X(τ),Y(τ)] as the concatenated vector of actual and virtual queues.
Moreover, the quadratic Lyapunov function is L(Θ(τ)) = 1

2 [Q2(τ) + X2(τ) + Y2(τ)]. So, the t
slot conditional Lyapunov drift is interpreted as:

∆(Θ(t)) = E[L(Θ(τ + t)) − L(Θ(τ))|Θ(t)] (5.9)

Following the Lyapunov framework of drift-plus-penalty algorithm [GJNT06], our
algorithm designed to observe the current queue states Q(τ), X(τ), Y(τ) and the current
vector (e(τ),U(τ), β(τ)) and to make a decision on s(τ) where 0 ≤ s(τ) ≤ smax, to minimize an
upper bound on the following expression in every τ slots:

∆(Θ(τ)) + VE{
∑t+T−1

τ=t
β(τ)s(τ)}

81

5.3. Real-time Green Energy Management

where, V is defined as a control variable as V > 0 which is chosen accordingly to IaaS
providers goal to give different weights that affect operational cost and energy deficiency
trade-off. A large deficit of energy can reduce the operational cost, but can have negative
effects on green energy requirement in data center resulting high percentage of SLA violation
contracted between IaaS and SaaS provider. So, our approach consider to minimize a
weighted sum of drift and penalty.

Theorem 1 (drift-plus-penalty bound) Let V > 0, T ≥ 1 and t = jT, τ ∈ [t, t + T − 1]. For
any control policy that satisfies 0 ≤ s(τ) ≤ smax for all τ and the demand backlog for t slots are
Q(t) < Qmax, the drift-plus-penalty satisfies:

∆(Θ(t)) + VE{
∑t+T−1

τ=t
β(τ)s(τ)|Θ(t)}

≤ BT + VE{
∑t+T−1

τ=t
β(τ)s(τ)|Θ(t)}

+E{
∑t+T−1

τ=t
Q(τ)[e(τ) −U(τ) − s(τ)]|Θ(t)}

+E{
∑t+T−1

τ=t
X(τ)[γb(τ) − γv(τ)]|Θ(t)}

+E{
∑t+T−1

τ=t
Y(τ)[γb(τ) −Nmax]|Θ(t)}

(5.10)

where, B is a finite constant and compute the bound on above drift-plus-penalty
expression which is defined as:

B =
1
2

max[(bmax − Vmax)2 + (bmax −Nmax)2 + (Umax − smax)2 + e2
max]

Proof: From the X(t) update rule (5.7) we have,

X(t + 1) ≤ max[X(t) − γv(t), 0] + γb(t)

hence,

X(t + 1)2
≤ (X(t) − γV(t) + γb(t))2

Therefore,

X(t+1)2
−X(t)2

2 ≤ X(t)(γb(t)−γV(t))+ 1
2 [γb(t)−γV(t)]2

≤
1
2 max[(bmax−Vmax)2]+X(t)(γb(t)−γV(t))

Similarly by squaring equation (5.2) and using inequality,

(max[Q − α, 0] + e)2
≤ Q2 + α2 + e2 + 2Q(e − α)

which holds for any Q ≥ 0, α ≥ 0, e ≥ 0, we get:

82

Chapter 5. Virtualization of green energy: Better managing the energy in datacenter

Q(t+1)2
−Q(t)2

2 ≤ Q(t)(e(t) −U(t) − s(t)) + 1
2 [(Umax − smax)2 + e2

max]

Likewise, by squaring equation (5.8) and using inequality,

Y(t+1)2
−Y(t)2

2 ≤ Y(t)(γb(t) −Nmax) + 1
2 [(bmax −Nmax)]2

Combining above yields, we get t-slot conditional Lyapunov drift ∆(Θ(t)) as,

∆(Θ(t)) < B + Q(t)[e(t) −U(t) − s(t)] + X(t)[γb(t) − γv(t)] + Y(t)[γb(t) −Nmax]

then, taking conditional expectation and summing the above inequality over τ ∈ [t, t +
1+,, t + T − 1], we obtain:

∆(Θ(t)) < B + E{
∑t+T−1

τ=t
Q(τ)[e(τ) −U(τ) − s(τ)]

+E{
∑t+T−1

τ=t
X(τ)[γb(τ) − γv(τ)]

+E{
∑t+T−1

τ=t
Y(τ)[γb(τ) −Nmax]

adding the operational spot green energy cost VE{
∑t+T−1
τ=t β(τ)s(τ)|Θ(t)} on the both sides,

given Θ(t), we prove the theorem.

5.3.5 Dynamic Algorithm

We minimize the right hand side of drift-plus-penalty at each fine-grained time slot
τ ∈ [t, t + T − 1] by observing queue statistics Q(τ), X(τ), Y(τ), green energy demand e(τ),
green energy production r(τ), spot green energy price β(τ) and choosing s(τ) according to
the following optimization:

minimize
t+T−1∑
τ=t

s(τ)[Vβ(τ) −Q(τ)]

+

t+T−1∑
τ=t

[(X(τ) + Y(τ))(γb(τ) − γv(τ))]

subject to 0 ≤ s(τ) ≤ smax, ∀τ
t+T−1∑
τ=t

γb(τ) ≤ Nmax

83

5.3. Real-time Green Energy Management

5.3.5.1 Algorithmic solution

The proposed Lyapunov framework runs Algorithm 1 in the background in a repetitive
manner to ensure Green SLA according to the runtime context, namely the demand, the
budget, the spot green energy market and SLA. The Algorithm 1 triggers the purchasing
method. More importantly, it indicates the real situation to purchase energy from spot
green energy market. It gives an edge over only choosing V parameter by procuring energy
only when it is necessary to fulfill the contracted SLA.

Algorithme 1 : greenSla
Input : interval.class, β(τ),Pspot,Avspot,Nmax, inacurr, degcurr, idlcurr, surcurr

Output : s(τ), inacurr, degcurr, idlcurr, surcurr

1 s(τ) = 0;
2 if interval.class == inadequate then
3 if inacurr < Nmax then
4 inacurr + +;

5 else
6 s(τ) = buy(β(τ),Pspot,Avspot);
7 interval.class = updateClass(s(τ));
8 (inacurr, degcurr, idlcurr, surcurr) = update(interval.class)

9 else if interval.class == degraded then
10 if surcurr > 0 then
11 idlcurr+ = 2 ;
12 surcurr − −;

13 else
14 if degcurr < degmax then
15 degcurr + +;

16 else
17 s(τ) = buy(β(τ),Pspot,Avspot);
18 interval.class = updateClass(s(τ));
19 (inacurr, degcurr, idlcurr, surcurr) = update(interval.class)

20 else if interval.class == ideal then
21 if degcurr > degmax then
22 s(τ) = buy(β(τ),Pspot,Avspot);
23 interval.class = updateClass(s(τ));
24 (inacurr, degcurr, idlcurr, surcurr) = update(interval.class)

25 else
26 idlcurr + +;

27 else if interval.class == surplus then
28 surcurr + +;

29 return s(τ), inacurr, degcurr, idlcurr, surcurr

• interval class==inadequate: Line 2 of Algorithm 1 describes the interval.class for being
at ((thrmin − b(t)) > f uzziness value) and if (γb(t) < Nmax), we update the slot as

84

Chapter 5. Virtualization of green energy: Better managing the energy in datacenter

Algorithme 2 : buySpotMinCost
Input : interval.class, interval.val, β(τ),Pspot,Avspot, penaltyModel
Output : class, cost

1 if interval.class == inadequate then
2 if degcurr < degmax then
3 b = buySpot(Degraded, penaltyModel);

4 else if degcurr > degmax then
5 b = buySpot(Surplus, penaltyModel);

6 else
7 b = buySpot(Ideal, penaltyModel);

8 else if interval.class == degraded then
9 if degcurr > degmax then

10 b = buySpot(Surplus, penaltyModel);

11 else
12 b = buySpot(Ideal, penaltyModel);

13 else if interval.class == ideal then
14 b = buySpot(Surplus, penaltyModel);

15 class, cost=update(b);
16 return class, cost

Algorithme 3 : buySpot
Input : class, penaltyModel
Output : buy

1 buy = f alse;
2 if penaltyModel == static then
3 if demandedClass(class).isPossible() then
4 if cost(class) < Penalty(class) then
5 buy = true;

6 return buy

85

5.4. Evaluation

green energy inadequate slot. Otherwise, we purchase energy referring to line 6 by
triggering Algorithm 2.

• interval class==degraded: Line 9 of Algorithm 1 indicates interval.class for being at
((thrmin − b(t)) ≤ f uzziness value) and if any previous slot posses virtual energy
v(t), we nullify one degraded slot. Contrarily, line 17 triggers to Algorithm 2 for
purchasing green energy if it is feasible.

• interval class==ideal: The interval.class in the line 20 indicates, if the value of b(t) lies
between thrmin and thrmax, no procurement is needed. But if previous degraded slots
exceeded the threshold number (degmax), we need to move to Algorithm 2 to purchase
green energy. The number of degraded slots might be greater than the targeted degmax,
only if there is unavailability of green energy in the spot green energy market.

At the end, the algorithm updates the current intervals/slots status to either inade-
quate/degraded/ideal or surplus. We propose one method to purchase green energy from
the spot green energy market named buySpotMinCost (see Algorithm 2). As the label
suggests, the buySpotMinCost insists to minimize the cost by purchasing green energy to
switch from one class to the next in the order (inadequate, degraded, ideal, surplus). In
addition, the purchasing decision is based on the penalty model, cost and available quantity
of energy in the spot green energy market. It can be observed from Algorithm 3 that, we
support only static penalty model in this work. We buy only if the available green energy
in the sport market is able to switch to the demanded class.

5.4 Evaluation

This section presents the results obtained from some experiments. In order to evaluate the
proposed approach, we first describe our experimental environment. Then, we present
cost analysis, SLA validation and how penalty model can influence the purchase decision
and reduction of total expenditure in results section. Furthermore, insights and critical
analysis are presented in discussion section.

5.4.1 Experimental Testbed

For a datacenter, Power usage effectiveness (PUE) is defined as the ratio of the data center’s
total power consumption to the data center’s power consumption at the computer servers
[GMR13]. Therefore, we consider a data center which has an average PUE of 1.77. Though
some of the state-of-the-art techniques claim to have reduced this value closer to 1.20, still
most of today’s data center have higher PUE values than 1.7 [YM13]. Therefore, in the
planning phase at Chapter 4 : Section 4.6.3, for transforming CPU utilization to power
consumption, we traced CPU utilization for 7 days of 30 servers from PlanetLab [PP06]
where CPU utilization has been traced for 500 different servers from across the world.

86

Chapter 5. Virtualization of green energy: Better managing the energy in datacenter

We have selected two server configurations with multi-core CPUs. The configuration
and power consumption characteristics of the selected servers are shown in Table 5.1. So,
we model total data center power(t) = Server power consumption(t) × PUE value. In addition,
we use OpenForecast2 to forecast power demand for next 24 hours based on last 7 days
power consumption which was traced. As our goal is to make data center 30% green, we
scale down the power requirement demand to 30% and dynamically buy the required
green energy from day-ahead REC market from multiple providers. Furthermore, power
requirements were transformed to energy requirement (power integrated over time), as
energy is purchasable in Grid and REC market but not the power (at which rate, energy is
transmitted).

Table 5.1: Power consumption by the selected servers at different load levels in Watt

Servers 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Dell Inc PowerEdge M620 688 1151 1322 1494 1671 1848 2061 2289 2499 2765 3239
IBM NeXtScale nx360 M4 550 873 999 1123 1251 1380 1525 1673 1887 2116 2404

We have presented 3 kinds of workload in Figure 5.4(a). The first workload is a real
workload traced from Planetlab for 30 servers, which can be seen as interactive jobs (e.g.,
airline booking, e-commerce site), the second workload is more characterized as an on/off
pattern (e.g., scientific application or batch jobs for same modeled server). However, the
third workload is created with greater forecasting error statistics compared to our predicted
power workload in the planning phase by OpenForecast to evaluate how we can still
propose a solution to fulfill green energy requirement based on Green SLA. The predicted
green workload and above mentioned workload’s characteristics is presented in Table 5.2.
The first column represents the mean cpu utilization of the predicted and experimental
workload. The third column indicates the average degree to which the data points differ
from the mean. From the table 5.2 we can see that, third workload has higher variance
indicating that the actual data points are quite spread in the data set while compared
to predicted workload. Therefore, higher forecasting error exits in third experimental
workload. Furthermore, we take advantage of the local solar irradiation data to calculate
the amount of on-site green energy presented in the Figure 5.4(b). As the spot green
energy market data is not available, we produce synthetic data to validate our experiment
presented in Figure 5.4(c). There could be multiple energy consumers who might need
green energy from the spot market, hence all the energy present in the spot green energy
market will not be available for a single consumer, which makes a realistic assumption.

5.4.2 Cost function and algorithms for comparison

Finding market prices of each kWh produced by green sources are extremely difficult
as most of the today’s wind or solar power infrastructure or plants receive enormous

2http://www.stevengould.org/software/openforecast/index.shtml

87

5.4. Evaluation

0 180 360 540 720 900 1080 1260 14401440

0

20

40

60

80

100

Time (minutes)

C
P

U
 U

ti
li

z
a

ti
o

n
 (

%
)

Workload 1

Workload 2

Workload 3

(a) Workload

0 180 360 540 720 900 1080 1260 14401440
0

10

20

30

40

4545

Time (minutes)

P
o

w
e

r
(K

W
)

REC Market

Workload 1

Workload 2

Workload 3

Onsite green

12 hours 24 hours

(b) Power Workload

 0

 5

 10

 15

 20

 25

 30

 0 180
 360

 540
 720

 900
 1080

 1260
 1440

 0.28

 0.29

 0.3

 0.31

 0.32

 0.33

 0.34

 0.35

E
ne

rg
y

(k
w

h)

P
ric

e
(€

/k
w

h)

time (minutes)

Spot market
Availability

Price

(c) Spot market characteristics

Figure 5.4: Experimental Testbed

88

Chapter 5. Virtualization of green energy: Better managing the energy in datacenter

Table 5.2: Workload characteristics

Workload Mean Standard deviation Variance
Predicted Green workload 17.75 0.93 0.86
Experimental workload 1 20.26 2.98 8.89
Experimental workload 2 19.15 3.47 12.05
Experimental workload 3 23.95 4.24 18.01

incentives either from government or different policy making organizations. Hence, to
model a realistic price for energy in the day-ahead REC market, we investigate information
of cap-ex, op-ex, levelized cost, fixed O&M cost, variable O&M cost of different sources of
energy (e.g., Nuclear, Wind, Solar, Hydro etc)3 and find that the ratio of energy consumption
cost between nuclear/brown and green energy is 1:1.68 approximately. Since renewable
sources are intermittent in nature, we consider the price of green energy sold at REC
market will be in the range of 0.19 - 0.25 cents/kWh, which is 31.57% in price variation,
while the price of Nuclear or mixed energy provided by EDF4 is 0.14 cents/kWh. As prices
tend to be higher in the spot green energy market, we have made an assumption that
green spot market price can be 30-35% higher than the normal or day-ahead REC market.
We compare our greenSLA algorithm with purchase at deadline approach and an energy
storage approach that stores excessive on-site green and other abundant energy. Recent
empirical studies shows that, the charging/discharging efficiency of a storage is η = 80%
and cost per cycle is approximately 0.1 euro [UUJNS11]. In addition, we use fixed penalty
value 1.5 euro/interval for IaaS provider if Green SLA is violated. We will analyze why do
we choose this value and how it affects to the total energy cost in the result section. So, we
define total energy cost as Cg,Cp,Cs respectively for greenSLA, "purchase at deadline" and
"using energy storage" as follows:

1. Cg = grid energy cost + REC energy cost + spot green energy cost + penalty if violated
SLA.

2. Cp = grid energy cost + REC energy cost + spot green energy cost

3. Cs = grid energy cost + REC energy cost + spot green energy cost + storage charging
and discharging cost.

3http://www.eia.gov/forecasts/aeo/pdf/electricity_generation.pdf
4http://entreprises.edf.com/entreprises-45638.html

89

http://www.eia.gov/forecasts/aeo/pdf/electricity_generation.pdf
http://entreprises.edf.com/entreprises-45638.html

5.4. Evaluation

 8

 10

 12

 14

 16

 0 180 360 540 720 900 1080 1260 1440

C
o

s
t

(E
u

ro
s
)

Time (Minutes)

greenSLA
Purchase-at-deadline

Using Storage

(a) Cost analysis for workload 1

 8

 10

 12

 14

 16

 0 180 360 540 720 900 1080 1260 1440

C
o

s
t

(E
u

ro
s
)

Time (Minutes)

greenSLA
Purchase-at-deadline

Using Storage

(b) Cost analysis for workload 2

 8

 10

 12

 14

 16

 0 180 360 540 720 900 1080 1260 1440

C
o

s
t

(E
u

ro
s
)

Time (Minutes)

greenSLA
Purchase-at-deadline

Using Storage

(c) Cost analysis for workload 3

Figure 5.5: Cost Analysis

Table 5.3: SLA between IaaS provider and its consumers

service metric oper. thrmin(%) thrmax(%) fuzz. % of fuzz. conf. penalty (euro/interval)
energy green (Gr) ≥ 25 30 5 91.66 18.18 1.5

90

Chapter 5. Virtualization of green energy: Better managing the energy in datacenter

5.5 Results

In this section we describe cost analysis, SLA evaluation based on our proposed greenSLA
algorithm, impact of control parameter V (see section 5.3.4), impact of penalty to the total
energy expenditure and robustness of our approach in detail.

5.5.1 Cost analysis

In Figure 5.5, we compare the cost for 24 hours between our proposed greenSLA algorithm
and other two approaches namely "purchase at deadline" and "using energy storage". It
is rationale that, purchasing green energy in every slot when it is needed incurs higher
cost for purchase at deadline approach. Furthermore, the storage incurs additional costs
due to charging the excessive energy and discharging the remaining energy in some slots.
Besides, the storage does not discharge the exact amount of energy that has been charged
earlier. From Figure 5.5(a) and 5.5(b), we calculate that, greenSLA achieves 4.47% and 4.17%
cost reduction for workload 1 and 3.29% and 2.1% for workload 2 comparing to other two
approaches. For workload 3, it has been noticed that (shown in Figure 5.5(c)), some time
slots experience greater green energy inadequacy, hence greenSLA algorithm was forced to
choose penalty for few slots. In some other slots, greenSLA chooses penalty over buying
green energy from spot market, as the cost for buying green energy was slightly higher in
terms of total expenditure. Since purchasing green energy option is limited in spot market
for a single consumer, other two approaches cannot meet the exact demand. Nevertheless,
greenSLA performs better by reducing 5.9% and 3.54% cost comparing to other approaches
for workload 3. In terms of buying spot energy, Figure 5.6(c) shows, purchase at deadline
approach incurs 8.17%, 6.26%, 15.62% expenditure of total energy cost for workload 1,2
and 3, the storage performs better by incurring 7.48%, 4.35% and 12.45% for respective
workloads. In contrast, greenSLA significantly reduces the expenditure for spot green
energy by only incurring .65%, .71% and 4.75% of total expenditure for above mentioned
workloads. In our understanding, the concept of virtualizing the green energy leverages
the process of reduction the total green energy expenditure by our algorithm than other
two approaches.

5.5.2 SLA validation

Figure 5.6(a) and 5.6(b) show the comparison of targeted and achieved SLA based on
greenSLA algorithm, which is evaluated and validated through CSLA. For our experiment,
we fix observation window τ = 30 minutes and evaluate every 12 hours as evaluation
window suggesting, we evaluate 24 intervals at a time. We present a example of CSLA
at Section 5.2.2 having a SLA contract to provide 18 ideal intervals, 4 degraded intervals
and 2 inadequate intervals out of 24 intervals or slots of green energy. The Table 5.3
summarizes the SLA between the IaaS provider and its consumers (SaaS providers). When

91

5.5. Results

target w1−before w1−after w2−before w2−after w3−before w3−after
0

20

40

60

80

100

S
L

A
 (

%
)

inadequate degraded ideal surplus penalty

(a) SLA validation for first 12 hours

target w1−before w1−after w2−before w2−after w3−before w3−after
0

20

40

60

80

100

S
L

A
 (

%
)

inadequate degraded ideal surplus penalty

(b) SLA validation next 12 hours

workload 1 workload 2 workload 3
300

450

600

750

T
o

ta
l

c
o

s
t

(e
u

ro
)

Spot cost

Grid+REC cost

At deadline

Using storage

greenSLA

(c) Energy Cost

Figure 5.6: SLA Validation and Energy Cost

92

Chapter 5. Virtualization of green energy: Better managing the energy in datacenter

SaaS provider establishes a SLA with IaaS provider for having 30% green energy to run
their workload, the Ideal intervals ranges from 25% to 30% for green energy in CSLA
framework. We argue on the fact that, it is not possible to provide or measure exactly 30%
green energy in each timeframe. Besides, running same workload over and over again in
a server shows slightly different power consumption profile. Both the Figure 5.6(a) and
5.6(b) present the SLA target in the first column of the chart. Then we provide the actual
interval status and evaluated results through CSLA. For example, w1-before represents the
actual intervals without applying virtual green energy concept and w1-after indicates the
evaluated interval results presented in percentage. For workload 1, greenSLA achieves
exactly the target for first 12 hours, but shows better performance attaining 91.67% of ideal
and 0% of degraded interval comparing to the goal of providing 75% and 16.66% of ideal
and degraded interval respectively. The algorithm performs even better for batch jobs
type workload 2, by providing 91.67% and 100% of ideal interval for first 12 hours and
later 12 hours. Although the mean green energy demand for workload 1 and workload 2
deviates by 14.14% and 7.88% comparing to our predicted demand, greenSLA still managed
to fulfill SLA by greater percentage, thus our algorithm is robust to inaccurate prediction
information in terms of SLA validation. Due to the insufficient amount of green energy
in the green spot market, greenSLA fails by 4.17% and 8.33% to meet SLA for workload 3
in two timeframe but still managed to incur lower cost than other two approaches, even
though the algorithm choose to provide penalties in 6 intervals.

5.5.3 Impact of control parameter V

As shown in Figure 5.7, to simulate 3 kinds of workload, we fix t to be 24 hours and each fine
grained timeslot as τ=30 minutes. We conduct experiments with different V values ranging
from 1 to 5 and realized that, as the V value increases, it reduces the total energy cost.
However, fixing larger value of V can violate contracted SLA. We see that, for workload
1, when V = 4.2, the control parameter performs well by reducing cost close to greenSLA
and can satisfy the targeted SLA shown in 5.7(a). Nevertheless, if the value is increased by
fraction, reduction of cost becomes larger but violates SLA. So this quantitatively indicates
that, our proposed Lyapunov framework can approach very close to greenSLA within a
diminishing gap of O(1/V). Moreover we perceive that, the value of V can not be fixed
ahead since it depends on the characteristics of the workload and SLA parameters. Figure
8.3(a) and 5.7(c) shows that, the same value of V can incur different level of costs. So,
choosing the appropriate value is essential to make a trade-off between cost reduction and
maintaining Green SLA. From our experiment, we find that the value of V = 2 and V = 1.9
can incur costs near to greenSLA for workload 2 and workload 3.

93

5.5. Results

 8

 10

 12

 14

 16

 0 180 360 540 720 900 1080 1260 1440

C
o

s
t

(E
u

ro
s
)

Time (Minutes)

greenSLA
V=1

V=1.5
V=2

(a) V-values for Workload 1

 8

 10

 12

 14

 16

 0 180 360 540 720 900 1080 1260 1440

C
o

s
t

(E
u

ro
s
)

Time (Minutes)

greenSLA
V=1

V=1.5
V=2

(b) V-values for Workload 2

 8

 10

 12

 14

 16

 18

 0 180 360 540 720 900 1080 1260 1440

C
o

s
t

(E
u

ro
s
)

Time (Minutes)

greenSLA
V=1

V=1.5
V=1.9

(c) V-values for Workload 3

Figure 5.7: Impact of parameter V

94

Chapter 5. Virtualization of green energy: Better managing the energy in datacenter

5.5.4 Impact of penalty

For our experiment, we choose static penalty per interval meaning, if IaaS provider fails
to meet the demand of providing green energy beyond the SLA, the provider pay a fixed
amount per interval. It is well understandable that, choosing a penalty value is extremely
difficult and it depends on the business model of IaaS provider. Though we fixed the
value of penalty as 1.5 euro/interval, Figure 5.8(c) shows that how the other penalty value
affects the total expenditure for workload 3. In case of workload 1 and 2, greenSLA does not
incur any penalty as it achieves the targeted SLA. We consider penalty value ranges from
1 euro/interval to 1.75 euro/interval by a factor of 0.25. We realize that, even increasing
the penalty value by 0.25 euro/interval, the total expenditure increases only by 0.48%,
0.93%, 1.05% for 1.25, 1.50, 1.75 euro/interval. Hence, we choose 1.5 euro/interval penalty
value which affects below 1% to the total green energy expenditure and certainly gives the
flexibility to the IaaS provider.

2.98 (w1)

3.47 (w2)

4.24 (w3)

0.19
0.2

0.21
0.22

0.23
0.24

0.25

450

500

550

600

650

Standard deviation of workloadREC market price (euro)

T
o

ta
l
c
o

s
t

(e
u

ro
)

(a) Total cost at various level of REC market price
and energy demand variation

2.98 (w1)

3.47 (w2)

4.24 (w3)

0.28
0.29

0.3
0.31

0.32
0.33

0.34
0.35

500

550

600

650

Standard deviation of workloadSpot market price (euro)

T
o

ta
l

c
o

s
t

(e
u

ro
)

(b) Total cost at various level of spot green energy
market price and energy demand variation

0

360

720

1080

1440

1

1.25

1.5

1.75

5

8

11

14

17

Time (minutes)
Penalty (euro)

C
o

s
t

(e
u

ro
)

(c) Penalty vs cost over time

Figure 5.8: Impact of different energy prices and penalty to total cost

95

5.6. Discussion

5.5.5 Robustness analysis

Due to the intermittent nature of green sources and price diversity in electricity market, we
consider that, the REC and Spot green energy market energy price variation fluctuates in a
range in Section 5.4.2. We observe that, with 31.57% (.19-.25 cents/kwh) price variation in
REC market; the maximum cost difference fluctuates within [-4.13%, 6.63%] for 3 kinds
of workload, whose mean and standard deviation (see Table 5.2) varies significantly than
the predicted workload. Figure 5.8(a) shows the total cost curve in respect to different
REC market energy price and energy demand variation. So, with the increase of energy
price in REC market, the total expenditure increases slightly but expenditure can be
increased significantly if the energy demand variation is large. The rationale is that, the
cost reduction through greenSLA depends on the application workload. If the workload is
more predictable, the cost reduction could be larger. Furthermore, Figure 5.8(b) indicates,
the maximum cost difference fluctuates within [-1.43%, 1.30%] in respect to our proposed
solution, while spot green energy market has 25% (.28-.35 cents/kwh) price variation.
Section 5.5.2 shows that, greenSLA managed to fulfill SLA with greater percentage, even
workload 1 and 2 has significant deviation of mean in terms of green energy demand.
Therefore, greenSLA is robust and reliable to the energy prices in two time-scale market
and energy demand, even though they have certain turbulence in variation.

5.5.6 Remarks

Furthermore, in this chapter, we only present one method to buy green energy from the
green spot market based on proposed Green SLA. Our idea can be easily extendable to other
methods required by IaaS provider to meet different goals and establishment for different
SLA based on availability of green energy. Moreover, we propose only static penalty in
case of SLA violation, but dynamic penalty can be integrated into the model as CSLA
supports dynamic penalty modelling. Moreover, we do not propose an optimal solution
as optimal solution for reducing cost of green energy can be varied depending on the
workload pattern, on-site green energy generation and green spot market characteristics.
From our experiments we observe that, it is possible to validate Green SLA with proposed
spot green energy market characteristics. Nonetheless, providing penalty in most of the
intervals/slots when green energy is not available seems a little unrealistic. In case of low
availability of green energy, IaaS provider can apply energy efficient techniques to reduce
energy consumption as well as green energy requirement in data center.

5.6 Discussion

This chapter proposes a brand new concept, namely Virtualization of green energy to tackle
two state-of-the-art problems. They are : i) managing green energy in data center; ii) how
to introduce Green SLA based on the presence and absence of green energy in data center.

96

Chapter 5. Virtualization of green energy: Better managing the energy in datacenter

Although in literature, the notion of "Green SLA" exists, none of the work are explicitly
coupled with green energy. Furthermore, we extended SLA language namely CSLA to
support the virtualization concept and to validate Green SLA. Likewise data center, any
large consumer of power can adapt our proposed approach to make their infrastructure
partially green.

Limitation of Virtualization of green energy While the virtualization concept has been
shown to be effective, it has certain limitations in three extreme cases. Those are as follows:

1. By revisiting the equation 5.1, we understand that, if there are superfluous green
energy (e.g., green energy production/availability is more than the green energy
demand) in the data center, we consume the portion as virtual green energy. Even
though, this concept overcomes the limitations of using energy storage or batteries,
the amount of abundant green energy used in data center can be seen as stored
in a virtual battery. Unlike any physical energy storage, virtual battery does not
have energy losses for charging and discharging. But from theoretical point of view,
alike any energy storage, virtual battery also has an upper bound of storing energy.
If we characterize virtual battery as v(τ) in τ slot, then maximum energy that can
be stored in virtual energy at τ slot will be vmax(τ) ≤ (totalGreenEnergyAvailable −
GreenEnergyDemand). But in case of excessive green energy production/availability
that surpass the total energy demand, we can not use that portion of green energy at
all. We characterize this excess energy as ∆G, indicated in Figure 5.9(b). Therefore,
∆G exists if totalGreenEnergyAvailable > totalEnergyDemand. In this kind of extreme
case, our proposed Virtualization of Green energy concept fails.

2. Based on the definition of Virtualization of Green energy, our proposal is to smooth out
the differences between deficit and surplus of green energy production/availability
during a certain time window with the objective to obtain an summation narrowly
superior to or exact to a certain threshold, which has shown at Figure 5.9(a). Hence, at
the end of the evaluation of contracted GreenSLA via CSLA, our goal is to be borderline
to the SLA. Our proposed concept helps to nullify the green energy degraded interval
by the surplus green energy interval to achieve the contracted SLA goal. But, what
happens if we find after evaluation that, number of surplus green energy intervals
appeared more than the defined number of intervals in SLA? That suggests, lots of
surplus intervals existed even after nullifying some degraded intervals. This is the
indication of having more green energy than the green energy demand (i.e., workload
is very low than the predicted workload) for majority of the time (see Figure 5.9(c)).
Therefore, the question arise that, what do we do with these surplus intervals?

3. In case of natural disaster, when possibility of having green energy from on-site,
off-site or spot green energy market is very low, our proposed virtualization concept
can not facilitate to abide the contracted SLA (see Figure 5.9(d)). If adequate and

97

5.6. Discussion

surplus green energy interval does not exist, it is not possible to validate GreenSLA.
So what would we do in this extreme case?

Time

Total energy demand

Green energy demand

Available Green energy

Virtualization
concept

(a) Virtualization concept works.

Time

Total energy demand

Green energy demand

Available Green energy

Virtualization
concept

G = Excess green energy

(b) Case 1: Virtualization concept fails

Time

Total energy demand

Green energy demand

Available Green energy

Virtualization
concept

(c) Case 2: Virtualization concept fails

Time

Total energy demand

Green energy demand

Available Green energy

Virtualization
concept

(d) Case 3: Virtualization concept fails

Figure 5.9: Limitation of Virtualization of green energy

Therefore, with the virtualization of green energy concept, which is a coarse-grained
approach, three events can occur named as "insufficient", "ideal", "overabundance". "In-
sufficient" indicates, lack of green energy in data center even though the virtualization
was adapted. Whereas, "overabundance" event depicts of having more green energy
in data center than which exceeds the virtual battery capacity. To succeed in reducing
carbon footprint, all the cloud computing layers should participate in the process. Already,
the state-of-the-art energy-efficient techniques at IaaS level are proposed and applied in
academic and production environment. Therefore, very small room for improvement exists
in IaaS level.

98

Chapter 5. Virtualization of green energy: Better managing the energy in datacenter

On the other hand, participating a SaaS application in energy saving or taking advantage
of abundant energy, are missing from the literature. Traditionally, data centers host
heterogeneous applications, such as batch and interactive application/jobs. Batch jobs
arrive to the data center with deadlines, hence has the possibility to be scheduled to different
times of the day by respecting the deadline when green energy is available. Thus, batch
jobs have the capability to be paused and resumed by following green energy availability,
which is shown in Figure 5.10(a) [LOM15]. On the contrary, interactive applications possess
different constraints and challenges compared to batch jobs. Since interactive applications
cannot be scheduled in advance, reconfiguration capability of interactive cloud application
in run-time context can play a significant role. Hence, if we can trigger these events to
interactive SaaS application and if the application inherits the capability to reconfigure itself
based on the events, there can be an positive impact on energy consumption profile. Figure
5.10(b) expresses our goal to adapt an interactive application based on the aforementioned
events. Therefore, our next chapter aims at providing insights and strategies needed to
make interactive SaaS application green energy aware adaptive to consume less energy in
case of insufficient green energy as well as to take advantage of abundant green energy for
bettering quality of service or experience.

(a) Green energy adaptive batch application
[LOM15]

Time

Total energy demand

Green energy demand

Available Green energy

G

Reduce energy
consumption

Increase energy
consumption

(b) Proposal for Green energy adaptive interactive SaaS
application

Figure 5.10: Green energy adaptive Cloud applications

99

Chapter 6

Creating green-energy adaptivity
awareness in SaaS application

With the proliferation of Cloud computing, data centers have to urgently face energy
consumption issues. Although recent efforts such as the integration of renewable energy
to data centers or energy efficient techniques in (virtual) machines contribute to the
reduction of carbon footprint, the smart usage of green energy in Cloud applications has
not been yet addressed. By smart usage, we mean the awareness of a Software-as-a-Service
application to increase energy consumption during the availability of green energy and
to reduce energy consumption while green energy is scarce or absent. In this chapter, we
propose a self adaptive auto-scaler architecture based on autonomic computing, which
inherits the capability of sensing information as events from multiple layer while actions
are performed only in application level. Thus, our approach can make an application
adaptive by automatically adjusting to changing conditions. Furthermore, we investigate
several application controllers based on different metrics (e.g., availability of green energy,
response time, user experience level). Through extensive experiments and analysis with
real application in real Cloud environment, smart usage of green energy is validated.
We provide two hybrid controllers, that can provide formal guarantees of keeping the
managed systems 95th percentile response time nearby the target, while brown energy
consumption can be reduced as high as 13%. Moreover, our approach also adjusts the
capacity requirement dynamically by releasing virtual resources to allow 29% more users
to access the SaaS application. While these mentioned numbers can vary depending on
workload and energy profile, it ensures the trend of the results.

6.1 Context and Motivation

According to Nature climate change [RMOR13], by the year of 2020, 15-30% decrease in
carbon emission is required to keep the global temperature increase below 2 degree

101

6.1. Context and Motivation

Celsius. Therefore, aforementioned data are the indicator to build sustainable ecosystem
around cloud services which involves different sub-systems of data center to heterogeneous
hardware and software systems. Twofold ways to reduce carbon footprint of data centers
at an acceptable level have been proposed in the literature. They are as following:

1. Firstly, explicit or implicit integration of renewable energy to the data center to
increase the ratio and amount of green energy to the total energy to offset carbon
footprint.

2. Secondly, a variety of research work have focused on environmental sustainability
for Cloud Computing paradigm through energy consumption reduction by devis-
ing efficient strategies such as improving air cooling and humidification systems,
using virtualization capability to increase server utilization and server consolidation
[BAB12][HH13], workload migration [BJT+09], adopting DVFS [CWC14] [HASX07]
etc. While all the work surface around data center power management and IaaS level,
issues related to energy consumption in cloud applications have not been studied
with requisite effort.

6.1.1 Why SaaS application should participate in energy reduction?

We argue that, a data center is only sustainable when each of the component of data center
participates in the holistic process and push efforts for carbon emission reduction. Apart
from that, there are several reasons to emphasis on energy reduction in SaaS layer are as
follows:

Refactoring an application is difficult. One stream of work proposes conceptual reference
models for building green and sustainable software applications that may lead to lower
carbon emissions in the software life cycle stages [NDKJ11] [KDNH15] [LFF12]. While the
proposed models are necessary for better sustainability requirements and practices, most
of the modern cloud applications have complex codebase due to the tremendous rate of
development activities. In 2013, Facebook reported that, the codebase for their front-end
possess 10.5 million lines of actual code [FFB13]. Refactoring an existing cloud application
based on these reference models is time-consuming and can have detrimental effects to the
non-functional properties of a service. Therefore, the focus has shifted for readily designed,
deployable and scalable cloud applications that can take leverage of underlying elastic
infrastructures to prevent the service from saturation while unexpected event occurs i.e.,
workload surge, hardware failures, etc.

Limitation of infrastructure elasticity. Resource elasticity comes with a greater cost and
data center owner cannot augment infrastructure over night. Running more servers impact
on energy density which results excessive heat that need to take out. With the increased

102

Chapter 6. Creating green-energy adaptivity awareness in SaaS application

temperature in the data center, the reliability of servers and disks decreases, which in turn
limits scalability [RSRK07]. Furthermore, cooling equipments have higher upfront and
maintenance cost that can outstrip hardware costs when new servers and disks are added
[Bar05]. Nonetheless, SaaS providers may find her/himself constrained with respect to the
amount of resources to be used due to a predefined budget or design constraints. Thus, the
question arises for cloud applications being sustainable enough to limit the need of adding
more resources while existing infrastructure can handle the surged workload by respecting
traditional Quality of Service (QoS) parameters. Preceding the cases, that leaves no choice
but to dynamically adapt at service/application level during high intensity of workload or
hardware failure to lower the needs of additional underlying resources, which can limit or
cap energy consumption to a certain extent. Therefore, revealing and studying the impacts
of cloud applications on energy consumption are required and finding solutions to reduce
energy consumption are necessary for bettering the ecosystem’s sustainability.

6.1.2 What makes energy reduction and adaptivity decision challenging?

With the increasing pressure on data center to achieve net zero carbon footprint or carbon
neutrality, only reducing energy consumption is insufficient to reach the goal. Major
tech companies like Google, Microsoft, Apple etc. are building data centers closer to
renewable sources and buying carbon credits to offset carbon emission. Furthermore,
research community prompted initiatives to optimize the usage of renewable energy
[GKL+13] [LOM15] by scheduling batch type cloud applications i.e., scientific workloads,
delay tolerant map-reduce jobs etc. when abundance of green energy is present. On the
contrary, most of the popular cloud applications are interactive applications which need
instant responses i.e., it should react with little to no latency, otherwise QoS can be seriously
impacted. Since, interactive cloud applications can not be scheduled in advance, the only
way to ensure the green energy awareness is to smartly adapt the applications internal
with the presence and absence of the green energy.

However, there remains several challenges that antagonize the adaptivity decision to be
strategized. Renewable sources are known to be very intermittent in nature, thus invoking
an adaptation plan in advance can create discrepancy between the planned action and the
run-time context of the application. Furthermore, from services point of view, response
time and availability are the key metrics of interest for quantifying the performance and
dependability of interactive cloud application. In contrast, making adaptation decision
based on green energy availability without knowing the internals and current behavior of
a application can lead to service saturation, hence providers can loss profit by preventing
users from accessing the application. Therefore, formulating strategies in the presence of
green energy while respecting traditional QoS parameters and pushing dynamic efforts to
reduce energy consumption in the absence of green energy are complementary measures
to improve the energy efficiency as well as to reduce carbon offsets.

103

6.2. How to make interactive SaaS application adaptive to green energy

 80

 160

 240

 0 25 50 75 100

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

w
a
tt
s
)

Load (%)

(a) Dynamic range in Power consumption

Dynamic Power
Static Power

 100

 150

 200

 4 8 12 16 20

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

w
a
tt
s
)

Time (hours)

(b) Different UX level power consumption

Low UX
High UX

Figure 6.1: Power consumption analysis

6.2 How to make interactive SaaS application adaptive to green
energy

Most of the popular cloud applications are well tailored to serve their clients with some
extra features e.g., several product recommendation in an e-commerce application, which
enhances user’s Quality of Experience (QoE) but is not the core functionality of the service.
For example, technology provider companies like amazon, ebay, spotify, netflix etc. provide
several recommedations of similar or popular products to customers when they access
the service. By identifying the independent but resource hungry software/application
component which can be isolated to be activated/deactivated, could not only prevent
transient behavior of an application in unpredictable runtime variations but also could
reduce energy consumption when green energy is scarce.

To justify our statement, we followed two steps. First, we used stress benchmark to vary
CPU utilization to measure the power consumption in Taurus cluster at the Lyon site of
Grid’50001. Figure 6.1(a) shows the static power consumption of an idle server and dynamic
power consumption when load is increased. The difference of power consumption between
an idle and a full loaded server is around 125 watts which implies an idle server consumes
around 43.18% of total power while running at full load. Therefore, by manipulating
resource hungry components in an application, the power savings could be minimal for
shorter period of time. In contrast to the first step, we tested an extended version of RUBiS
application in an aforementioned experimental setup providing low (no recommendation)
and high user experience (multiple recommendations) and measured power consumption
over time, as shown in Figure 6.1(b). The difference in energy consumption was on average
514.23 watts/hour after 24 hours, which corresponds to virtually turning off 6 idle servers

1A large-scale and versatile test bed for experiment-driven research.
http://www.grid5000.fr

104

http://www.grid5000.fr

Chapter 6. Creating green-energy adaptivity awareness in SaaS application

for an hour approximately. Therefore, in spite of the little amount energy that can be
punctually saved while providing low user experience, satisfactory amount of energy can
be saved for a long running service by applying dynamic adaptation in an application.

Therefore, by gradually increasing or decreasing user experience depending on the
presence of green energy while attaining respectable performance is the only way to make
interactive SaaS application adaptive to the presence of green energy.

6.3 Auto-scaler architecture

Autonomic computing has exhibited sheer promise for the ability to evolve a system to be
self-adaptive by constantly sensing the system properties and tuning their performance
and/or configurable parameters. We use the most popular self-adaptive design framework:
Monitor-Analyze-Plan-Execute-Knowledge (MAPE-K) loop [KC03] for our auto-scaler.
Our auto-scaler, continuously listens the instances of events i.e., response time, green energy
availability, working modes etc., pushed by SaaS and IaaS in a changing environment
through different sensors, as shown at Figure 6.2 indicated by 1 . Based on the received
monitoring data of events which can be preprocessed or need post-processing, we decouple
multiple events to extract pertinent information of the system behavior. Depending on the
listened events pushed by the monitoring block, we analyze different events and if necessary,
auto-scaler plans adaptation decision accordingly based on predefined configuration plan.
We design several application controllers in the following sections which consist of analyzing
and planning blocks (see Figure 6.2) of the MAPE-K autonomic loop by devising mostly
reactive auto-scaling rules. Once the output of the configuration plan is ready, SaaS actuator
executes actions to SaaS application via API calls in response to the deviation from the
target system state e.g., response time set point, consume less energy, quality of experience
etc. which is showed at Figure 6.2 by 2 . Additionally the knowledge block contains SLA
parameters and the running state of the application.

Along with different performance (e.g., QoS, QoE etc.) and resource aware metrics (e.g.,
quality of energy), we propose three user experience levels. Mode High refers to high user
experience while Mode Medium and Mode Low indicate to medium and low user experience
respectively (see Figure 8.4(a)). When current application behavior deviates from target
system state in terms of objective metrics, the auto-scaler gracefully downgrades the user
experience from higher mode to lower mode and vice-versa through proper actuator value.

For example, usually popular e-commerce applications provide recommendation of the
products to the users when they arrive or navigate to the site. In our case that is referred
as Mode 1 (see Figure 8.4(b)). During the low variability of workload or the presence of
abundant green energy, we switch the application to higher mode, which we consider as
Mode 2. In contrast, during the high variability of workload or scarcity of green energy
availability or resource capacity, we switch the application to zero recommendation (Mode
0).

105

6.4. Single metric application controllers

IaaS

SaaS

PaaS

Monitor Energy

 Monitor QoS

1

1

Application Controllers

 Analyze Configuration
Plan

Monitoring Knowledge

Action
Event

Auto-scaler

R
e-configure A

pp via A
PI

2

E SaaS
Actuator

Figure 6.2: Auto-scaler architecture

6.4 Single metric application controllers

Static threshold based policies are one of the most popular model among the biggest Cloud
providers like Amazon and third party tools such as RightScale for designing auto-scaling
techniques. To design our auto-scaler, we consider Event-Condition-Action which is a
rule based approach instead of robust control formulas since ECA rules are convenient
to understand and can be implemented by administrators very easily. Furthermore, our
auto-scaler is in charge of making decisions based on a single metric, and taking actions
in SaaS layer, without human intervention. We discuss our controller’s behavior in the
presence of different goals in the following sub-sections.

106

Chapter 6. Creating green-energy adaptivity awareness in SaaS application

SaaS
Application

Component 1

Component N

High Low

Mode

SaaS
Application

Component 1

SaaS
Application

Medium

ModeMode

 Actuator

LowHigh

Medium

(a) Example of different application modes

 E-commerce site

Recommendation 1

 Recommendation 2

2 0

Decision
Metrics:

Green energy
Response time
Content ratio

Mode

E-commerce site

Recommendation 1

E-commerce site

1
ModeMode

 API Call

(b) Realistic example of application modes

Figure 6.3: Application modes under different service level

107

6.4. Single metric application controllers

6.4.1 Green energy aware controller

We intend to build a controller which can make adaptive decision based on the availability
and the quality of energy. Recalling from the Chapter 5 - Section 5.6, three events can occur
while the concept of virtualization of green energy is adopted, namely, "insufficient", "ideal"
and "overabundance". When ideal event is triggered from the infrastructure, the controller
chooses an actuator value that prompts the medium user experience mode (mode 1), and
in case of insufficient event, mode 0 is activated. In contrast, Mode 2 is activated when
overabundance event is passed to the controller, which is showed in Algorithm 4. The idea
behind is to consume more energy in the period of abundant green energy by following
the green energy event.

Algorithme 4 : Green energy aware controller
Input : Thrmax = Threshold for green energy, event = <"insufficient","ideal", "overabundance">, CurrGE

= Current green energy production
Output : Currmode = Current application mode.

1 if (handleEvent == greenEnergy) then
2 if event == ”insu f f icient” or CurrGE == 0 then
3 app.mode← mode 0

4 else if event == ”overabundance” or CurrGE > Thrmax then
5 app.mode← mode 2

6 else
7 app.mode← mode 1

8 Currmode = app.mode

9 return Currmode

Apart from virtualization of green energy concept, our controller can be adaptable if a
provider has an on-site renewable power sources. On-site energy sources are only available
during certain times. For instance, solar energy is available during the day and the amount
produced depends on the weather and the season [GLN+12]. Due to the intermittency, we
can divide the total green energy production to three different regions to treat as events as
mentioned before, i.e., no green energy at night (insufficient), few to adequate energy at
early morning to the late afternoon (ideal) and substantial amount of energy at mid-day
(overabundance). To distinguish between the regions we can choose a static threshold Thrmax,
above which the controller activates high user experience mode (mode 2). When green
energy production e.g., CurrGE falls between 0 and Thrmax, the controller chooses an actuator
value that triggers the medium user experience mode (mode 1), and in case of current
green energy amount is null, mode 0 is activated.

Therefore, system must be adaptive to exploit the presence and absence of green energy
to offer differentiated user experience to the end-clients. Since this approach does not
consider any feedback from the internals of the application or make any adjustment due

108

Chapter 6. Creating green-energy adaptivity awareness in SaaS application

Controller
Software
System

actuator
λ(t)Energy

Availability

Figure 6.4: Green energy aware controller

to the disturbance to the system (e.g., number of request that is denoted by λ(t)) while
decision making, the controller works as an open loop controller (see Figure 6.4).

6.4.2 Response time controller

Response time is an essential metric to guarantee cloud based service performance. Our
goal is to keep response time under certain threshold dynamically to maximize availability
of the service in unpredictable and variable workload condition. Therefore, we closed the
managed software system by a feedback loop, where in each control period, the output is
forwarded as a Map of response time and workload arrival rate to compare with the target
set-point, which is shown at Figure 6.5.

Controller
Software
System

Sensor
< RT95(t − 1), λ(t − 1) >

actuator output

r(t)

λ(t)RTsetpoint

Figure 6.5: Response time aware controller

We measure the 95th percentile response time since it provides better approximation
of entire distribution than the average response time. Afterwards, the information is
forwarded to compute a function;

Err(t) = 1 − λ̃(t) ∗ r̃(t) (6.1)

Where λ̃(t) =
λ(t − 1)
λmedian

; r̃(t) =
RT95(t − 1)
RTsetpoint

109

6.4. Single metric application controllers

In cloud environment, unpredictability and burstiness of user requests is common
phenomena. Should it be not realized by the system or predicted in advance, can
dramatically degrade application performance. Therefore, workload arrival rate acts as
a disturbance, λ(t) to the system. For capturing the change in the arrival rate, current
arrival rate in the system is divided by median of previous arrival rates. A median filter
is used with window size of four, that provides better estimation about variability of the
workload arrival rate. λ̃(t) provides the indication of acceleration and decelaration of user
requests and when it is multiplied with r̃(t), it helps to realize the increment or decrement
of the systems’s near future response time. Therefore, the idea is to keep Err(t) function
greater than zero to stabilize the system to operate under target response time. Therefore, in
variable load condition, actuator’s value must be controlled in a way to satisfy λ̃(t) ∗ r̃(t) < 1.
When few users accessing the application, Err(t) function can be closer to one, hence we
define a threshold value (0 < Thrrt < 1) above which the system can provide high user
experience, that is mode 2 (see line 6 of Algorithm 5). Between zero and threshold value, the
controller selects medium user experience mode. When the function becomes less than
zero, all the recommendation is disabled to reduce the current response time to the targeted
value, which corresponds to low user experience in the client side.

Algorithme 5 : Response time aware controller
Input : Thrrt, λ = [0 0 0 0], setPoint, app
Output : updated λ, Currmode = Current application mode.

1 if (handleEvent == responseTime) then
2 λ(t − 1)← servedRequest
3 enqueue(λ)
4 f unction← 1 − (λ(t − 1)/λmedian) ∗ (RT95/setPoint)
5 if (f unction > 0) ∧ (f unction < Thrrt) then
6 app.mode← mode 1

7 else if f unction ≤ 0 then
8 app.mode← mode 0

9 else
10 app.mode← mode 2

11 dequeue(λ)
12 Currmode = app.mode

13 return λ, Currmode

6.4.3 QoE based controller

SaaS provider can have different quantifiable non-functional goals in web based interactive
applications i.e., quality of the contents, tracking user’s navigational activity report or
personalized recommendation, etc. These goals can be quantitatively expressed by
SaaS provider by defining and implementing the possible strategy in an application

110

Chapter 6. Creating green-energy adaptivity awareness in SaaS application

controller. Moreover, by increasing users experience, SaaS provider can generate higher
revenue [FHB10]. From SaaS provider’s viewpoint, it becomes critical requirement
in modern services and can introduce new class of Service level objective (SLO). For
example, an e-commerce service could have a goal - "Serve Recommendation" stating
"SingleRecommendation(x%)" and "MultipleRecommendation(y% of x%)" of total requests
in a SLA.

Controller
Software
System

Sensor
{(mode0 : N0), (mode1 : N1), (mode2 : N2)}

actuator output

qoe(t)

λ(t)
QoEtarget

Figure 6.6: QoE aware controller

To satisfy the goal, we close the feedback loop with sensing the information as a map of
how many requests were served with different modes in last control period, which is shown
at Figure 6.6. Based on the information, the controller computes the current percentage
of recommendations provided by the system and choose actuator value accordingly
(see Algorithm 6). If the targeted percentage of recommendation is met, for example,
"SingleRecommendation(x%)" is achieved, then actuator value is chosen accordingly to
satisfy "MultipleRecommendation(y% of x%)". Theoretically, all the requests that were
served in between two control period should have same mode i.e., actuator value; for
instance, if the actuator value was 1, then all the requests were entitled to mode 1. However,
if the control time is small and two consecutive control period’s actuator value is different,
some requests which have arrived just before the ending of a control period can still wait
in the queue to receive information from another tier of the application. That implies, few
requests can have different associated modes in same control period.

6.5 Evaluation

In this section, we present the evaluation results of single metric controllers and their
impact on cloud based application in terms of response time, quality of user experience and
energy consumption. The goal is to advocate the benefits and limitations of each controller
while experimenting with real cloud application and real workload traces.

111

6.5. Evaluation

Algorithme 6 : QoE aware controller
Input : Map M, Thr1 = Target percentage for recommendation 1, Thr2 = Target percentage for

recommendation 2, Dist1 ← 0 = Difference between target and current recommendation1
percentage, Dist2 ← 0 = Difference between target and current recommendation2 percentage.

Output : Currmode = Current application mode.

1 if (handleEvent == QoE) then
2 TotalPer1 = TotalReqmode1/Totalreq

3 TotalPer2 = TotalReqmode2/Totalreq // Number of requests in each mode is stored in a
file in each iteration to update and compute TotalPer1 and TotalPer2

4 update(Dist1,Dist2)
5 if (TotalPer1 > Thr1) ∧ (TotalPer2 < Thr2) then
6 app.mode← mode 2

7 else if (TotalPer1 < Thr1) ∧ (TotalPer2 > Thr2) then
8 app.mode← mode 1

9 else if (TotalPer1 < Thr1) ∧ (TotalPer2 < Thr2) then
10 if Dist1 < Dist2 then
11 app.mode← mode 2

12 else
13 app.mode← mode 1

14 else
15 app.mode← mode 0

16 Currmode = app.mode

17 return Currmode

6.5.1 Infrastructure configuration

The experiments were conducted in Grid’5000 Lyon site, with 2 physical machines linked
by a 10 Gbit/s Ethernet switch and connected to wattmeter. Each machine has two 2.3GHz
Xeon processors (6 cores per CPU) and 16GB of RAM, running Linux 2.6. Openstack
Grizzly 1.0.0 was used as platform, which requires one dedicated physical machine for the
cloud controller management system. Consequently, the second physical machine was
used as compute node to host VMs, which in turn, are pre-configured to run Ubuntu 12.04.

6.5.2 Application configuration

In Brownout [KMAHR14], authors provided a user-to-user recommendation engine which
can enhance user experience. Along with that, we implemented a fairly simple item-to-item
recommendation, to offer better user experience, which is showed at Listing 6.1.

Listing 6.1: SQL statement for the recommender system.
1 SELECT
2 items1.id
3 FROM

112

Chapter 6. Creating green-energy adaptivity awareness in SaaS application

4 items AS items1.id
5 JOIN comments AS c ON items1.id = c.item_id
6 JOIN items AS i2 ON items1.category = i2.category
7 WHERE
8 i2.id = :current_item_id AND
9 items1.nb_of_bids >= i2.item_id AND
10 items1.id != :current_item_id
11 ORDER BY rating DESC
12 LIMIT 10;

The simple recommendation engine provided at Listing 6.1 can be summarized as
"Retrieve 10 products from same seller and same product category which has higher or same user
bid count with high customer rating". Although both the recommendation engines lack the
sophistication and worldly complexities, they do serve as a reasonable example of providing
user experience that a cloud application can isolate from core functionality of the service
to activate or deactivate at runtime. Since aforementioned recommendation is added in
the ViewItem.php page of RUBiS application, we focused on enabling or disabling these
recommendation components by adding a function called getMode(). The function reads
a file, where actuator value is updated in each control period and execute the associated
modes for each user request. We also have added a html parser function in PHPprinter.php
page to extract information of which request were served with which mode. For instance,
Mode 1 activates the code of recommendation one, mode 2 activates both recommendations
and mode 0 provides no recommendation. Furthermore, the extended RUBiS application
was deployed in SaaS fashion and architecturally organized in 3 tiers: load balancer, web
and database (db) tier. The compute node consists of one VM having Nginx load balancer,
which distributes the request across three VM’s of Nginx application server (see Figure
6.7), each having 1 cpu core and 2GB of memory and a single VM of MySQL db server of 8
cpu core and 16GB memory.

6.5.3 Auto-Scaler

Our auto-scaling solution is hosted inside the cloud controller machine. As shown at Figure
6.8, logstash agent is running at the Load balancer to collect separate field of metrics from
access log (i.e., response time, working modes of requests) and ships to a message broker
(redis server) for data ingestion and storage at the controller node. Furthermore, indexer
retrieves the data from the message broker, apply configured filtering to process 95th
percentile response time, how many requests were served in last interval and associated
mode of requests. Interval varies from 20 to 60 seconds in our experiments. In contrast,
green energy information is pushed by the infrastructure through an API. The knowledge
part contains the target response time and SLA parameters. Finally, based on all the
aggregated data and decision metrics, the auto-scaler updates the appropriate actuator
value via an API, which overwrites the file that resides in each VM of the web tier.

113

6.5. Evaluation

 Openstack Openstack

Controller node

http GET request

Resource
monitoring

API
call

mysql
(db)

NGINX
(lb)

NGINX
(App)

NGINX
(App)

 PM 1 PM 2

Green QoE QoS

Hybrid-Green Hybrid-QoE

Autonomic
Controllers

 Gatling VM
 Load injector

Figure 6.7: Experimental Testbed

Updates the
mode and write

in the file.

VM_App

Indexer
Logstash

Broker
Redis

 Auto-scaler

 Shipper_rt
Logstash

Shipper_modes
Logstash

 Access_log

VM_LB Controller Node

Figure 6.8: Monitoring

114

Chapter 6. Creating green-energy adaptivity awareness in SaaS application

6.5.4 Workload traces

We took the real trace of wikipedia german page of one day and 1998 fifa world cup
website traffic over one and half months [FJLB15] and scaled the data set to fit with our
experiment, which is showed in Figure 6.9. While the wikipedia trace has a steady and
incremental pattern of requests over time, fifa trace possesses some heavy temporal spikes.
We relied on Gatling2 as a load injector to generate our desired workload. To generate
the workload, we choose an open system model, where user request is issued without
waiting for other users response from the system. Furthermore, we emulated read-only
workload where each user arrives to the homepage, browse any item category from a
vast catalog, click on a product to extract its information, view seller rating and his/her
reputation related to the product. We have kept request timeout to 32s. We traced the
solar energy production that was added to the grid for one day (12th April,2016) from EDF,
France3 and scaled the values suited for our experiment. As discussed at Section 6.4.1,
both the virtualization of green energy concept and on-site green energy can be treated
as the same way if event-condition-action is adopted. Furthermore, the duration of each
experiment was 96min and each was run several times. We considered 96min as 24 hours,
i.e., each 4min in our experiments correspond to 1 hour.

 0

 250

 500

 750

 1000

96

N
u
m

b
e
r

o
f
re

q
u
e
s
ts

Time (minutes)

wikipedia

 0

 250

 500

 750

 1000

96

N
u
m

b
e
r

o
f
re

q
u
e
s
ts

Time (minutes)

fifa

 0

 55

 110

 165

 220

 0 96

g
re

e
n
 e

n
e
rg

y
 (

w
a
tt

s
)

Time (minutes)

green energy

Figure 6.9: Workload trace

6.5.5 Results

In this section, we show and analyze through our experiments how single metric controllers
can respect their goals and can outperform a non-adaptive approach. Non-adaptive
approach always provides multiple recommendations irrespective to the workload changes,
user request failure, SLA violation etc. Since, most of the popular cloud based applications
lack reconfiguration capabilities at run-time, we realized this state of the application as
non-adaptive.

2http://gatling.io/
3http://www.rte-france.com/fr/eco2mix/eco2mix

115

http://gatling.io/

6.5. Evaluation

6.5.5.1 Response time

In Figure 6.10, we grouped response time by taking average over minutes. For wikipedia
workload, as the workload increases around 40th minute, the response from the system
grows big thus the system became unresponsive for non-adaptive approach. Even though
the workload decreased at the very end of the experiment, the response time was never
recovered to a steady state. The reason being that, the issued request would still run in the
database server and waste the computing resources, although the transaction may timeout
soon, or that may have already been timed out [KPD+14]. Figure 6.12(a) illustrates that, the
95th percentile response time of this approach is around 30.2 seconds4. Figure 6.10 shows,
very high number of requests were failed. Out of 1.7 millions of requests which were
injected, approximately 490k requests were failed, which accounts to 29% of requests and
half of rest of the successful requests faced very high response time, i.e., beyond 2 seconds.
As a result, the service provider will not only lose money, but also unhappy customers can
join to their competitors, incurring long-term revenue loss and lowering their reputation.
Similarly, this approach increases the response time to 6 seconds on average while the
temporal workload peaks appeared in fifa workload. Figure 6.12 shows the 95th percentile
response time incurred by this approach is around 6.8 seconds, which is out of the plot.

Since the tolerable response time has been considered to 2 seconds [NH07], we set 1
second as target set point to allow a safety distance from being overloading the system and
the threshold value to .5 for the response time controller5. We choose the intermediary value to
be unbiased to provide single to multiple recommendations. We fixed control period as 20
seconds, which means that the controller collects 95th percentile response time periodically
from the managed system and take actions if necessary. While Figure 6.10 shows that the
controller keeps the average response time around 500 milliseconds (ms) in high number
of requests period for both the workload profile, the 95th percentile response time is
750ms and 350ms for wikipedia and fifa workload respectively, as shown in Figure 6.12.
Furthermore, several experiments were run and we found only 40-100 requests failed on
average, which ensures 99.99% availability of service. Thus, availability of the service can
be improved by 29% compared to non-adaptive approach.

On the contrary, the Green controller reaches to high response time region at 56th minute
in for wikipedia workload (see Figure 6.10). We choose 60 seconds as control time in our
experiment, since the green energy availability does not change abruptly in temporal times,
which corresponds to 15 minutes in real world scenario. When green energy is abundant, it
acts like a non-adaptive approach by activating mode 2 in this region, resulting high amount
of request failure for both workloads. As the availability of the green energy decreases,
the system regain responsiveness around 86th minute (see Figure 6.10). However, the
controller performs poorly having 95th percentile response time of 19.79 seconds and 3.95
seconds and failed request percentage of 15% and 2% for wikipedia and fifa workload

4We have kept request timeout to 32 seconds
5The threshold value could be chosen any value between 0 and 1

116

Chapter 6. Creating green-energy adaptivity awareness in SaaS application

 0

 0.5

 1

 1.5

 2

0 16 32 48 64 86 96A
v
g
.
re

s
p
o
n
s
e
 t
im

e
 (

s
e
c
)

Time (minutes)

Green
Rt

QoE
NA

4k

8k

12k

 0
 0 16 32 48 64 80 96

T
o
ta

l
fa

ile
d
 r

e
q
u
e
s
t

Time (minutes)

Green
Rt

QoE
NA

Figure 6.10: Single metric controller’s performance (wikipedia workload)

respectively.

Similar to the former controller, the QoE controller is not aware of the response time in
reconfiguration plan. As a result, the 95th percentile response time is around 11.11 seconds
for wikipedia workload. But it shows better performance in terms of availability by serving
95% of total request, although Figure 6.10 indicates that the response time was beyond 2
seconds for same period of time compared to the Green controller. The reason being that the
control time is small for the QoE controller; 20 seconds compared to 60 seconds. Irrespective
to the load in the system, if the controller meets its target, as example: 2 recommendations
for 30% of total request, the controller switches the next interval mode from mode 2 to mode
1 or to mode 0. Therefore, less number of requests wait in the web servers queue during the
lower modes, since db server has to process lesser cpu intensive queries per request. Thus,
the web servers receive the synchronous responses more rapidly from db tier, resulting
lesser timeouts. Same behavior was observed while experimenting with fifa workload,

117

6.5. Evaluation

 0

 0.5

 1

 1.5

 2

 0 16 32 48 64 80 96A
v
g
.
re

s
p
o
n
s
e
 t
im

e
 (

s
e
c
)

Time (minutes)

Green
Rt

QoE
NA

2k

4k

 0
 0 16 32 48 64 80 96

T
o
ta

l
fa

ile
d
 r

e
q
u
e
s
t

Time (minutes)

Green
Rt

QoE
NA

Figure 6.11: Single metric controller’s performance (fifa workload)

which is showed in Figure 6.11 and 95th percentile response time is 1.36 seconds that is
calculated from Figure 6.12.

6.5.5.2 Quality of experience

Figure 6.13 plots the result of SLA validation. To validate our result, we set a goal of
providing recommendation to 80% requests among all the user arrives in the system
and multiple recommendations at least 30% of the time, out of the 80% of the requests.
Since non-adaptive approach is always activated with multiple recommendations, all
the successful requests were provided with multiple recommendations, for instance, 71%
of the requests. Nevertheless, serving a request with multiple recommendations and
having a response time of 16 seconds, is not going to enhance a user’s experience with
the service. On the other hand, the Response time controller keeps highest user experience
mode, until the system’s 95th percentile response time grows beyond the set point. Figure

118

Chapter 6. Creating green-energy adaptivity awareness in SaaS application

0.95

 0.25

 0.75

.75 0 0.5 1 1.5 2

C
u
m

u
la

ti
v
e
 f

ra
c
ti
o

n

Response Time (seconds)

(a) For wikipedia workload

NA
Green

QoE
Rt

0.95

 0.25

 0.75

0 .35 .7 1 1.5 2

C
u
m

u
la

ti
v
e
 f

ra
c
ti
o

n

Response Time (seconds)

(b) For fifa workload

NA
Green

QoE
Rt

Figure 6.12: Response time in percentiles.

6.13 (a) shows that, with the increase of the workload, the controller starts disabling the
recommendation around the 48th minute. Since the workload remains steadily very high
for next 32 minutes, the controller detects the workload change and activates medium
to low user experience mode to keep the service being saturated. As a result, 67% of the
requests received recommendation on average in the whole experiment. As the number of
requests increased after 20th minute in fifa workload (see Figure 6.13 (b)), the controller
lower down the user experiences in the presence of workload burst and were able to
provide recommendation to 76.55% of the requests.

In contrast, the QoE controller was designed to provide steady state percentage of
recommendation in every control period. After several runs of the experiments, we found
that the controller keeps the percentage of the recommendation very close to the set
point (80%) by attaining 79.84% and 79.74%, and failing 5% and 1% of the requests for
wikipedia and fifa workload respectively. We observed that, for fifa workload profile, all
the controllers perform very closely, since the peaks are very short to destabilize the system.

Since the Green controller only provides recommendation when green energy is available,
it can not satisfy the goal of providing 80% recommendation if the user requests is low
in the green energy availability period. For wikipedia workload, relatively higher user
request region belongs to the green energy period which is mid-day to late afternoon. In
contrast, fifa workload has several high spikes of user requests when green energy is not
available. Results show that the green controller provides 77.5% and 59% recommendation
on average, which justifies our aforementioned statement.

119

6.5. Evaluation

 0

 20

 40

 60

 80

 100

 16 32 48 64 80 96

Recommendation reduced due

to high user request

R
e
c
o
m

m
e
n
d
a
ti
o
n
 (

%
)

Time (minutes)

(a) For wikipedia workload

Green
Rt

QoE
 0

 20

 40

 60

 80

 100

 16 32 48 64 80 96

Recommendation reduced due

to high user request

R
e
c
o
m

m
e
n
d
a
ti
o
n
 (

%
)

Time (minutes)

(b) For fifa workload

Green
Rt

QoE

Figure 6.13: SLA validation

6.5.5.3 Energy consumption

In our experiment, each 4 minutes were considered as an hour, thus we calculated the energy
consumption of 24 hours, impacted by each controller, which is presented in Table 6.1.
Each experiment was run several times and we found the energy consumption difference
between each run was 1∼2 watts. Table 6.1 illustrates that the Green and QoE controllers were
able to reduce brown energy consumption by 7.44% and 4.75% respectively for wikipedia
workload. Since the green controller has never activated recommendation components at
the period of no green energy, energy consumption was reduced in brown energy period.
In addition, multiple recommendations were disabled when target SLA was met for QoE
controller. As a result, reduction of brown energy was possible. Because the response time
controller accepted and processed more requests than non-adaptive approach, it consumed
2.09% more brown energy. On the contrary, if we look at the green energy consumption by
different controllers, the increment of the consumption is not very significant, which seems
counter-intuitive. For instance, we investigated this phenomena for green controller and
noticed oscillation of cpu consumption during 54th to 86th minute (see Figure 6.14). At
the beginning of 54th minute, all the requests went from web server to db server having
multiple recommendation queries. As these queries are cpu intensive and with the high
number of requests, the db server quickly reached to its resource capacity even the max
connection was not reached. In the mean time, the worker process of web server cannot do
anything else and the queue of waiting requests grows big, even if there are more system
resources available and some requests in the queue could utilize those resources. Therefore,
more connections wait to connect and to receive responses from db server, causing timeout
of large amount of existing requests. During these occurrences, the cpu consumption

120

Chapter 6. Creating green-energy adaptivity awareness in SaaS application

oscillates periodically from high to low and vice-versa6 in web server, causing domino
effect in db server as well. Consequently, the aperiodic system resource consumption affects
the power consumption over time, resulting in low energy consumption. Additionally, the
same phenomenon was observed for the QoE controller.

For fifa workload, green, response time and QoE controllerS reduced the usage of brown
energy by 13.35%, 5.59% and 6.14% respectively.

 0

 25

 50

 75

 100

0 24 54 86 96

C
p
u
 u

ti
liz

a
ti
o
n
 (

%
)

Time (minutes)

Web server’s cpu

 0

 25

 50

 75

 100

0 24 54 86 96
C

p
u
 u

ti
liz

a
ti
o
n
 (

%
)

Time (minutes)

Database server’s cpu

Figure 6.14: Resource consumption by Green controller

6.6 Multi-criteria controller design

In Sections 6.4 and 6.5, we elaborately explained and validated three different single metric
controllers to pursue different functional and non-functional goals. It is well understood
that, none of the controller can validate multiple goals i.e., performance, smart usage of
green energy, SLA etc. To this, we design two hybrid controllers using nested control loop
architecture. The following subsections describe the characteristics, working principles,
analysis and validation of two hybrid controllers.

6.6.1 Green Energy aware hybrid controller (Hybrid-green)

While response time controller can avoid performance degradation by keeping response
time to a target set point, we can not guarantee of reducing energy consumption when green
energy production is scarce or taking advantage of abundant green energy production. On
the other hand, green energy controller can not satisfy reasonable QoS while workload
arrival is high because the controller is unaware of application’s internal. To this, we design
a controller for considering both performance (response time) and resource aware metrics

6High number of requests waiting in the queue which causes timeout, that leaves the queue empty and
then again filled up with new requests

121

6.6. Multi-criteria controller design

Table
6.1:Energy

consum
ption

results
(W

h)

C
ontroller’s

nam
e

W
ikipedia

w
orkload

Fifa
w

orkload
G

reen
E.C

.
Brow

n
E.C

TotalE.C
.

B.E.R
eduction

G
reen

E.C
.

Brow
n

E.C
TotalE.C

.
B.E.R

eduction
N

on-adaptive
1484.54

1934.66
3424.20

–
1446.01

1941.32
3387.33

–
G

reen
1538.78

1790.69
3329.47

7.44%
1415.92

1682
3097.92

13.35%
R

t
1518.75

1975.18
3493.93

-2.09%
1405.22

1832.62
3237.84

5.59%
Q

oE
1498.12

1842.72
3340.84

4.75%
1387.58

1821.99
3209.57

6.14%
H

ybrid-green
1510.11

1760.09
3270.20

9.02%
1400.34

1679.53
3079.87

13.48%
H

ybrid-qoe
1497.64

1909.75
3407.39

1.28%
1380.36

1797.14
3177.50

7.42%

122

Chapter 6. Creating green-energy adaptivity awareness in SaaS application

(green energy usage) that envisages applications internal and green energy production/green
energy event shown in Figure 6.15.

Controller
Software
System

Sensor
RT95(t − 1), λ(t − 1)

actuator output

r(t)
RTsetpoint

λ(t)
Green Energy

Figure 6.15: Green energy aware Hybrid controller

We distinguish between two control periods: long and short. Since green energy
production does not abruptly changes so as the events that is interlinked to the presence
or absence of the green energy in the data center in shorter period of time, the controller
activates higher or lower user experience mode based on the event/energy information
pushed by IaaS in the longer control periods i.e., 15 minutes. In contrast, the controller
checks the response time periodically in shorter control interval i.e., 5 minutes to identify
overloaded condition in the system. If occurred, the controller downgrades the user
experience by subtracting 1 from previous control period’s decision value (see lines 13-21
of Algorithm 22); as a result it ensures responsiveness of the application. To outline, we
have merged the green and the response time controllers into a hybrid controller which has
2 different control periods or monitoring windows. Furthermore, the green part of the
controller is responsible to choose the suitable modes based on the green energy availability
and response time part only takes decision if the 95th percentile response time of the last
control period was above the set point.

6.6.2 QoE aware hybrid controller (Hybrid-qoe)

Without considering the systems’ performance, quality of experience can not be augmented
since the foremost criteria of a cloud based interactive applications is to be functional and
responsive even at extreme conditions e.g., unexpected workload peaks, heavy workload
in big duration, etc. That being said, the response time can play a critical role to keep
the application responsive, while the QoE controller can try to maximize user experience
by providing the optional contents i.e., recommendations. To achieve this goal, we close
the system in a nested loop manner, as showed in Figure 6.16. The outer loop provides
feedback of number of request served in different modes in last control period. Whereas,
the inner loop checks the 95th percentile response time and workload changes in a control
period. Moreover, the inner loop is activated in shorter control period than the outer

123

6.6. Multi-criteria controller design

Algorithme 7 : Green energy aware hybrid controller
Input : Thrmax = Threshold for green energy, λ = [0 0 0 0] = Queue to store workload arrival rate,

setPoint = Target set point for response time, event = <"insufficient","ideal", "overabundance">,
CurrGE = Current green energy production.

Output : updated λ, Currmode = Current application mode.

1 /*Initiates in longer control period */
2 if (handleEvent == greenEnergy) then
3 if event == ”insu f f icient” or CurrGE == 0 then
4 app.mode← mode 0

5 else if event == ”overabundance” or CurrGE > Thrmax then
6 app.mode← mode 2

7 else
8 app.mode← mode 1

9 Currmode = app.mode

10 return Currmode

11 /* Initiates in shorter control period */
12 if (handleEvent == responseTime) then
13 λ(t − 1)← servedRequest
14 enqueue(λ)
15 f unction← 1 − (λ(t − 1)/λmedian) ∗ (RT95/setPoint)
16 if (f unction ≤ 0) ∧ (Currmode , 0) then
17 app.mode← Currmode − 1

18 else
19 app.mode← Currmode

20 Currmode = app.mode
21 dequeue(λ)

22 return λ, Currmode

loop is, because the former loop can provide faster system dynamics in terms of avoiding
overloaded condition. Therefore, in every big control interval, decision is taken based
on the current recommendation/optional content percentage to the target SLA, as shown
in Algorithm 8 (line 3-19). If it is lower than the target, higher user experience mode is
activated, otherwise not. Similar to the controller mentioned in previous subsection, the
inner loop downgrades user experience to the lower mode if the response time arise above
the set point, if not, it periodically checks the response time without taking any decision.

6.6.3 Results

In this section, we show and analyze through our experiments how multiple metric
controllers can respect their goals and if they can out perform single metric controllers or
not. Furthermore, we provide a thorough discussion on cost analysis and the impact on
results when the experiments are scaled in terms of using more number of servers.

124

Chapter 6. Creating green-energy adaptivity awareness in SaaS application

Algorithme 8 : QoE aware controller
Input : Map M, Thr1 = Target percentage for recommendation 1, Thr2 = Target percentage for

recommendation 2, setPoint = Target set point for response time, Dist1 ← 0 = Difference
between target and current recommendation1 percentage, Dist2 ← 0 = Difference between
target and current recommendation2 percentage, λ = [0 0 0 0] = Queue to store workload
arrival rate.

Output : updated λ, Currmode = Current application mode.

1 /*Initiates in longer control period */
2 if (handleEvent == QoE) then
3 TotalPer1 = TotalReqmode1/Totalreq

4 TotalPer2 = TotalReqmode2/Totalreq // Number of requests in each mode is stored in a file
in each iteration to update and compute TotalPer1 and TotalPer2

5 update(Dist1,Dist2)
6 if (TotalPer1 > Thr1) ∧ (TotalPer2 < Thr2) then
7 app.mode← mode 2

8 else if (TotalPer1 < Thr1) ∧ (TotalPer2 > Thr2) then
9 app.mode← mode 1

10 else if (TotalPer1 < Thr1) ∧ (TotalPer2 < Thr2) then
11 if Dist1 < Dist2 then
12 app.mode← mode 2

13 else
14 app.mode← mode 1

15 else
16 app.mode← mode 0

17 Currmode = app.mode

18 return Currmode

19 /*Initiates in shorter control period */
20 if (handleEvent == responseTime) then
21 λ(t − 1)← servedRequest
22 enqueue(λ)
23 f unction← 1 − (λ(t − 1)/λmedian) ∗ (RT95/setPoint)
24 if (f unction ≤ 0) ∧ (Currmode , 0) then
25 app.mode← Currmode − 1

26 else
27 app.mode← Currmode

28 Currmode = app.mode
29 dequeue(λ)

30 return λ, Currmode

125

6.6. Multi-criteria controller design

Controller
Software
System

Monitoring
< RT95(t − 1), λ(t − 1) >

Sensor
{(mode0 : N0), (mode1 : N1), (mode2 : N2)}

actuator output

qoe(t)
r(t)

λ(t)QoEtarget

Figure 6.16: QoE aware Hybrid controller

6.6.3.1 Algorithm Implementation

From Section 6.6.1 and 6.6.2, we see that, both the controllers have inner and outer loops
which are activated in different time-scales and push events to the controller to make
decision. In our experiments, outer and inner loops are activated in each 60 seconds
and 20 seconds respectively, which is showed in Figure 6.17. Ideally, if both kind of
events arrive without any delay, two different events will overlap each other. As our
motivation is to maximize of green energy usage for Hybrid-green controller, we always
make primary decision based on the green energy event pushed by IaaS by ignoring the
response time event which is activated as inner loop, if both the event arrives concurrently.
Same phenomena applies for Hybrid-qoe controller. Concretely, it suggests that, between
two big decision events in 60 seconds, we consider only two inner loop events and take
actions if it is necessary indicated in Figure 6.17(a).

But in case of delaying of any event, specially for Hybrid-qoe controller where both qoe
and response time metrics are pushed in a serialized manner from logstash, the scenario
will not follow Figure 6.17(a). As discussed before, the original decision always depends
on green energy event (Hybrid-green) and quality of experience (Hybrid-qoe) event. Even
though we receive response time event, no action is taken unless the system’s response
is high. Therefore, in case of delaying of response time event by micro to milli seconds,
effects to the system remain almost unchangeable. In contrast, if the event delays by couple
of seconds, for instance, inner loop event arrives just before or after the primary decision
is made, it might affect the system dynamics to achieve the goal. To tackle the problem,
we define a safety distance, denoted by δt to ensure that the controller does not take any
action if response time event arrives in between "PrimaryDecision - δt" and "PrimaryDecision
+ δt". Figure 6.17(b) illustrates the phenomena by an example. For our case, we choose
safety distance as, δt = Time frequency of inner loop / 2, which is equal to 10 seconds in our
experiments.

126

Chapter 6. Creating green-energy adaptivity awareness in SaaS application

60 Seconds

Event to be
considered

Event to be
discarded

Longer control
period
Shorter control
period

Green energy
/QoE event

Response time event

+ - +-

(a) Ideal case without delay in events

Event to be
considered

Event to be
discarded

(b) Practical case with delay in events

20s 20s20s

Figure 6.17: Algorithm implementation in detail

6.6.3.2 Response time

Figure 6.18 shows the average response time and number of failed request grouped
by minute, caused by hybrid-green and hybrid-qoe controller. While the green controller
(see Section 6.4.1) performed poorly by allowing response time to go beyond 2 seconds
continuously between 56 to 84 minutes for wikipedia workload profile, hybrid-green
controller provided better stability to the system by keeping the 95th percentile response
time around 1.76 seconds (see Figure 6.20), that is 11 fold reduction of response time.
However, around 60-62 minutes in the experiment, response time stayed around 2.5 seconds
on average. Moreover, out of 1.7 million requests which were injected, only 6000 requests
failed on average.

Additionally, the hybrid-qoe controller performs similarly by keeping 95th percentile

127

6.6. Multi-criteria controller design

 0

 0.5

 1

 1.5

 2

 0 16 32 48 64 80 96

A
v
g
.
re

s
.
ti
m

e
 (

s
e
c
)

Time (minutes)

Hyb-green
Hyb-qoe

 0

 1000

 2000

 3000

 0 16 32 48 64 80 96

T
o
ta

l
fa

ile
d
 r

e
q
u
e
s
t

Time (minutes)

Hyb-green
Hyb-qoe

Figure 6.18: Hybrid controller’s performance (wikipedia workload)

response time to around 1.93 seconds. The top curve of Figure 6.18 shows that, response
time was above 2 seconds (on average 5-7 seconds) at the time of 73rd and 74th minute,
causing more requests failed by hybrid-green controller in that region. Overall, 7530 requests
failed, which again ensures 99% availability of the service. For fifa workload, both the
controller foster better performance by keeping 95th percentile response time in the range
of .76-1.04 seconds. During 73rd and 74th minute, average response time for hybrid-green
controller arose to 6 seconds, causing failure of 5000 requests on average due to very
high peak. Compared to former controller, 1700 requests failed on average for hybrid-qoe
controller, which is showed in Figure 6.19.

6.6.3.3 Quality of experience

Although the QoE-based controller was able to abide the SLA, we realized that the
controller was able to provide the targeted SLA i.e., 79.84% for wikipedia workload only

128

Chapter 6. Creating green-energy adaptivity awareness in SaaS application

 0

 0.5

 1

 1.5

 2

 0 16 32 48 64 80 96

A
v
g
.
re

s
.
ti
m

e
 (

s
e
c
)

Time (minutes)

Hyb-green
Hyb-qoe

 0

 1000

 2000

 3000

 0 16 32 48 64 80 96

T
o
ta

l
fa

ile
d
 r

e
q
u
e
s
t

Time (minutes)

Hyb-green
Hyb-qoe

Figure 6.19: Hybrid controller’s performance (fifa workload)

for successful requests. Since 5% requests failed, the provided SLA percentage might
not be true oftentimes. Figure 6.21(a) shows that the hybrid-qoe controller can attain
around 76.18% SLA while keeping number of failed requests below 1%. Although the
target is missed by 3-4%, the system can accept more requests with reduced response
time, providing better performance and increasing the profit for service provider. Since
hybrid-green controller is not designed to achieve the targeted SLA, we wanted to validate
how far this controller can attain the SLA. Figure 6.21(a) indicates that, on average, it can
reach to 68.82% irrespective to any goal. For the like of fifa workload, where temporal
peaks appears in regular intervals, hybrid-qoe controller performs even better by providing
79.27% recommendations on average. Adding the response time controller as an inner
loop in the auto-scaler helped to detect the workload peaks. As a result, the gradient of
accepted and successful request went higher than its counter-part controllers. In contrast,
hybrid-green controller can maximize of providing recommendations only if the workload

129

6.6. Multi-criteria controller design

25%

50%

75%

95%

 0 0.5 1 1.5 2

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n

Response Time (seconds)

For wikipedia workload

Hyb-green
Hyb-qoe

25%

50%

75%

95%

 0 0.5 1 1.5 2

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n

Response Time (seconds)

For fifa workload

Hyb-green
Hyb-qoe

Figure 6.20: Hybrid controller’s response time in percentiles

is moderate to high in the available green energy period. Since the fifa workload is not
constantly high in that region, hybrid-green controller was able to provide only 53.21% of
recommendations, as indicated by Figure 6.21 (b).

 0

 20

 40

 60

 80

 100

 16 32 48 64 80 96

R
e

c
o
m

m
e
n

d
a

ti
o
n

 (
%

)

Time (minutes)

(a) For wikipedia workload

Hyb-green Hyb-qoe

 0

 20

 40

 60

 80

 100

 16 32 48 64 80 96

R
e

c
o
m

m
e
n

d
a

ti
o
n

 (
%

)

Time (minutes)

(b) For fifa workload

Hyb-green Hyb-qoe

Figure 6.21: SLA validation for hybrid controller’s

6.6.3.4 Energy Consumption

Hybrid-green controller reduces brown energy consumption by 9.02% and 13.48% for
wikipedia and fifa workload respectively compared to non-adaptive approach, which is
presented in Table 6.1. Although the hybrid-qoe controller lacks the capability to exploit

130

Chapter 6. Creating green-energy adaptivity awareness in SaaS application

energy information for decision making, for wikipedia and fifa workload, it reduced
fewer percentages of brown energy consumption i.e., 1.28% and 7.42% accordingly. On
the other hand, Table 6.1 shows that the green energy consumption was lower for both
controllers. Because, system resources were not wasted for rotten requests as it happened
with all the single metric controller, except for response time controller. We believe that, by
reducing brown energy consumption, the carboon footprint can also be reduced. To further
investigate, we propose an energy consumption metric called Average Energy Consumption
per Request (AECpR), which is defined as the ratio of total energy consumption over total
successful requests been served. Following are the summarized result:

• For wikipedia workload, hybrid-green and hybrid-qoe controllers reduce 32.63% and
29.37% of energy consumption per request compared to non-adaptive approach.

• For fifa workload, hybrid-green and hybrid-qoe controller reduce 10.60% and 6.12% of
energy consumption per request compared to non-adaptive approach.

6.6.3.5 Cost analysis

As discussed before, the requests which have been served with recommendations but have
failed to keep response time under 2s might not satisfy customers, e.g., customers may
leave before getting the response from the system. Thus, we followed a similar approach
to the one presented in [FHB10] and breakdown the monetary units to calculate provider’s
revenue. Each served request without recommendation corresponds to 1 monetary unit,
with 1 recommendation to .25 unit, with 2 recommendations to .5 unit only if those requests
were served below 2s response time and deducted 1 unit for failed requests. Figure 6.22(a)
shows that, response time controller increases revenue by a big margin of 82.63% for
wikipedia workload compared to non-adaptive approach and outperforms all the other
controllers as well. In contrast, hybrid-green and hybrid-qoe controller decline revenue by
10.17% and 8.98% respectively compared to the response time controller. Although the
revenue have decreased for two hybrid controllers, they still surpass the revenue by 64.04%
and 66.21% compared to non-adaptive approach, whereas the number of requests that
failed to make an impact in the revenue decreased by 53.09% and 41.44%.

Likewise, the response time controller increases the revenue by 7.70% in comparison with
the non-adaptive approach for fifa workload. On the contrary, the non-adaptive approach
can generate more revenue by 7.47% and 1.7% for fifa like workload (see Figure 6.22(b)),
but hybrid-green and hybrid-qoe controllers can reduce revenue less requests by 89.5% and
88.16%. Although the non-adaptive approach can provoke to believe of having higher
revenue the requests which were dropped and faced very high response time may degrade
the reputation of the service provider. As a result, the gradient of revenue will decline for
saturating the application in the high workload period.

131

6.6. Multi-criteria controller design

10k

20k

30k

40k

 0
NA Green Rt QoE Hyb-g Hyb-q

200k

400k

600k

700k

 0

N
u
m

b
e
r

o
f
re

q
u
e
s
ts

M
o
n
e
to

ry
 u

n
it

(a) For wikipedia workload

Req-without-revenue
Av.Revenue

10k

20k

30k

40k

 0
NA Green Rt QoE Hyb-g Hyb-q

200k

400k

500K

 0

N
u
m

b
e
r

o
f
re

q
u
e
s
ts

M
o
n
e

to
ry

 u
n
it

(b) For fifa workload

Req-wihtout-revenue
Av.Revenue

Figure 6.22: Revenue analysis incurred by all controllers

6.6.3.6 Scaled experiment

Since all the experiments were performed using a single compute node, we wanted to
validate whether the energy consumption results scale as we scale the experiments or
not. To do that, we performed experiment with hybrid-green controller by deploying three
RUBiS application having wikipedia workload as a traffic pattern in three compute nodes.
Theoretically, three nodes should consume around three times more compared to a single
node. After doing extensive experiments, we found that, brown energy consumption
deviated by as little as .02% in comparison with theoretical consumption which reflects
in Figure 6.23. Furthermore, highest deviation for total energy consumption we found
was .07%. With the same testbed, we performed experiment with non-adaptive approach.
On average, hybrid-green controller could save 553.47 watts/hour of energy consumption
compared to non-adaptive approach. Although the controller was not designed to provide
targeted recommendation, we wanted to validate how much deviation occurs in terms of
providing recommendation when we scale the experiment. The experiment validated that,

132

Chapter 6. Creating green-energy adaptivity awareness in SaaS application

on average, the recommendation percentage deviated by 2%. To conclude, we verify that,
as we scale our approach, the energy consumption increases linearly with the number of
compute nodes used.

 1000

 2000

 3000

 4000

 5000

 6000

 1 2 3

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

W
h
)

Number of Machines

Real Brown Energy
Real Green Energy

Theoretical Brown Energy
Theoretical Green Energy

Figure 6.23: Scalability result for Hybrid-green controller

6.6.4 Discussion

After extensively analyzing all the application controllers that we have designed, it’s
evident that the hybrid controllers can outperform the single metric controllers in terms
of energy reduction and performance gains. Table 6.2 summarizes the characteristics of
different controllers to better understand the differences and impacts they can impose on
the application. Nevertheless, to build efficient application controller, investigating single
metric controllers is necessary to understand the relationship between different metrics.
Unlike batch kind of cloud application, interactive application cannot be scheduled in
advance with the presence or absence of green energy. Therefore, to create green energy
awareness around cloud application, smartly using energy in the presence of green energy
is the efficient way to go. Moreover, the hybrid-green controller can improve availability
up to 15% and 29% compared to only following green energy curve and the non-adaptive
approach, while the 95th percentile response time can be improved by 11% and 17%
respectively for wikipedia and 4% and 6.8% for fifa workload. Hence, SaaS providers can
take advantage of this controller to propose new class of SLA to eco-friendly customer who
are willing to involve in reducing energy consumption. On the other hand, service providers
can adopt the hybrid-qoe controller that can enhance user experience in higher percentage
while keeping energy consumption at lower level than traditional non-adaptive approaches.
In contrast, the Response time controller fosters highest quality of service guarantees with
big margin of revenue by 82.63% when compared to non-adaptive approach. Given these
trade-offs, service providers can choose any controller or switch among them based on

133

6.7. Conclusion

their goals, needs or even running conditions.

Controller’s name QoS
(Response

time)

QoE
(Recommen-

dation)

Green
Energy

(awareness)

Brown
Energy

(reduction)
Non-adaptive 7 7 7 7

Green 7 7 XX X
Rt XX X 7 7

QoE 7 X 7 X*
Hybrid-qoe XX 7* XX XX
Hybrid-qoe XX XX 7 X*

(XX) Respect and guarantee.
(X) Respect and guarantee to some extent.
(7) Not at all.
(X*) If target of recommendation percentage is very high, energy reduction is not
possible.
(7*) If majority of the workload appear at green energy period, QoE can be
enhanced.

Table 6.2: Summary of applications controller’s characteristics

6.7 Conclusion

This chapter investigated trade-off between energy consumption and performance by
designing an auto-scaler whose objective is to adapt SaaS application’s internals according to
different single and multiple criteria. Our auto-scaler implements several single and nested
feedback control loops intended to keep one or many of those criteria under control. We
validated the controllers with an extended version of RUBiS, an eBay-like web application
benchmark, under real world workload traces; and OpenStack, as Cloud Infrastructure
Management tool on top of the Grid’5000 infrastructure testbed. Furthermore, our study,
the first of its kind, offers a comprehensive analysis of energy consumption directly linked
with cloud application. Results have shown that, by carefully tuning the application the
energy consumption can be reduced while performance and revenue can be maximized.

While this approach is tested with static infrastructure i.e., no resources were added
of removed in run-time, we want to extend the capability of our auto-scaler to adapt at
the infrastructure side as well. The next chapter investigates the issue of adapting at both
Cloud layers depending on the metrics we have discussed in this chapter to see the impact
on total energy consumption.

134

Chapter 7

Towards Green energy awareness in
Cloud Platform

This chapter is an ongoing investigation on how to efficiently utilize the elasticity nature of
the infrastructure resources when overall resource requirement of an application is higher
than the existing underlying infrastructure can handle. Actions like adding/removing
resource can be done independently at the infrastructure layer based on their utilization
level i.e., cpu usage, memory usage etc. But, every application performs differently from
one another at same cpu utilization level, specially when the resource utilization is medium
to high. Therefore, coordinating the decision based on applications resource requirement
or performance is the better way to devise scaling strategies. To this, firstly we propose
to listen events from application to understand when to trigger scaling decision based on
reactive scaling rules. Secondly, we use traditional API such as scale-in and scale-out to
trigger decision based on the strategy we have devised. Later we want to validate our
approach by extensive experiments and results obtained over Grid’5000 test bed.

7.1 Motivation

Chapter 6 provides insights on how to create green energy awareness around a cloud
application and results based on extensive experiments which were done using static
amount of resources i.e., provisioning of fixed amount of resources. But in a realistic cloud
environment, resource requirement might exceed currently provisioned resources. In
contrast, when lesser resources are required, de-provisioning resources can help to reduce
unnecessary energy consumption. Therefore, the capability to detect when resources are
required/dispensable and react to it so as to keep performance at a targeted level while
energy consumption can be minimized is required. Taking application reconfiguration
decision in isolation with resource scaling policies may lead to performance degradation
and inconsistency to the system. Hence, coordination between two different types of action

135

7.2. GPaaScaler architecture

is necessary.
Most of the work in the literature proposes: (i) multiple autonomic loops in a coordinated

manner to control cluster level resources (i.e., one loop for controlling DVFS, another
loop for deciding scaling actions)[WW11], [SDMD+16]; (ii) two autonomic loops one at
application level, another at infrastructure level to adapt at both layer in a coordinated
manner by formulating constraint programming model to solve resource requirement
problem. [dOJL12]; (iii) per-application local manager which requests to a central autonomic
manager to tune the number of cpu core, memory and to change the number of VM’s
[CPMK11], [CKMP17]; (iv) adaptive framework to coordinate between system level (DVFS)
and application level (degrading quality) adaption to improve performance and power
efficiency [HKCH16]. (v) A Domain Specific Language (DSL) called ElaScript, providing
high-level support for Cloud administrators to simply and safely express reconfiguration
plans orchestrating the different levels of elasticity actions [DBADOL17].

In response to the existing works, we propose a PaaS solution that inherits the capability
to adapt both at application and infrastructure level in facing to changing condition.
Application adaptation is realized by dynamically reconfiguring application on the fly,
whereas infrastructure adaptation takes care of addition/removal of resources based
on resource demand. We want to study the impact of application adaption (based on
the presence/absence of renewable energy) on infrastructure to have a global view of
energy consumption. Furthermore, both adaption technique is built in separate modules
and coordinated in a sequential manner. For example, when application’s performance
decreases due to heavy load, the PaaS solution first triggers adaptation to application by
downgrading the functionality and invokes resource requests to infrastructure module.
Followed by the invocation requests, infrastructure adaptation module analyzes and
decides whether resources are going to be added or the request is to be ignored. Following
sections detail the PaaS solution along with different controllers.

7.2 GPaaScaler architecture

Chapter 6 (Section 6.3) presented our auto-scaler architecture. Compared to that, we
propose an upgraded auto-scaler, named GPaaScaler, which inherits the capability to
actuate both at application and at infrastructure level. Our contribution lies on the analyze
and plan (A-P) block. Monitoring block pushes listened events to Analyze block from SaaS
layer (i.e., response time, workload, application’s working mode, etc.) and IaaS layer (i.e.,
quality of energy). We then analyze and decouple events to extract the information and
feed appropriate event to the event handler at the SaaS controller. Once the configuration
plan is ready, SaaS controller triggers action through SaaS actuator and passes request for
addition/removal of resources event as « RequestEvent » to IaaS controller if the former
controller decides that application needs more/less resources, which is shown at Figure 7.1.
Following the event, IaaS controller decides to take action via traditional infrastructure

136

Chapter 7. Towards Green energy awareness in Cloud Platform

API that is scale-in and scale-out or wait/discard the request issued by the SaaS controller.
Therefore, the execution block is composed of two types of actuators, which can be seen at
Figure 7.1. The sequential flow of the event in an ordered way (from 1.a to 1.e) is shown
at the Figure 7.1 as well to understand at ease. In summary, IaaS controller only gets
activated if SaaS controller issues any « RequestEvent ». However, our proposed IaaS
controller are unware of resource allocation strategy, for instance, what types of VM is to
be added/removed or in which server VM is to be located etc.

IaaS

SaaS

PaaS

Monitor Energy

 Monitor QoS

1

1

Controllers

M K

Action Event

GPaaScaler

R
e-configure A

pp

2

SaaS
Controller

IaaS
Controller

RequestEvent

R
e-configure

 Infra

3IaaS Actuator

SaaS Actuator

Analyze

P

E

1.a

1.b

1.c
1.d

1.e

Figure 7.1: GPaaScaler architecture

7.3 SaaS controllers

We have designed and validated several single and mutiple metric application controllers
which have the capability to re-configure SaaS application to keep it accessible and

137

7.4. IaaS controller

performant even at changing conditions at Chapter 6. In this section, we extend the Green
Energy aware hybrid controller (quality of resource aware) and Response time controller
(performance aware) with increased capability to request of addition/removal of resources
to the infrastructure layer.

Extended Green-hybrid controller (EGH-C). In this extended version of the controller,
we try to investigate when performance indicator of an Application can trigger add/remove
VM request. Since this controller have two feedback loops activating at two different control
period: long and short, and longer control period’s decision depends only on the energy
information, hence we rather investigate the shorter control period loop which is based on
response time event. The shorter control loop periodically checks if the performance of
the application is degraded or not (i.e., violating targeted response time) by computing a
function at line 15 at Algorithm 26. If the computed function becomes negative (function
≤ 0) meaning, if the current response time is beyond or borderline to set point and/or the
tendency of the workload is increasing, the controller downgrades the user experience
by subtracting 1 from previous control period’s decision value and notify a vmAdd event
request to the infrastructure controller (see line 18, Algorithm 26). While the function is
greater than 0, which suggests that the application is performing well by keeping current
95th percentile response time to the set point, application keeps the user experience as
before but notify a vmRemove event request to the infrastructure controller (see line 21,
Algorithm 26). In both cases, « RequestEvent » notifies the specific event along with
application’s current 95th percentile response time and workload increment ratio to the
IaaS controller.

Extended Response Time controller (ERT-C). At Chapter 6 : Section 6.4.2, we have
presented a response time controller and validated as a most performant controller in
terms of respecting QoS properties compared to other application controllers at Section
6.5.5. Therefore, we decided to extend this controller so that it can take advantage of
underlying elastic infrastructure. To do that, we compute a function to analyze how far
the multiplication ratio of workload and response time increment/decrement is from 1.
If the function is positive and above a desired/predefined threshold, the controller keeps
the highest user experience mode i.e., mode 2. Since the controller is not aware of how
much amount of underlying resources are used, it notifies the vmRemove event to the IaaS
controller (see line 7, Algorithm 10). In case, the condition block falls to function ≤ 0, a «
RequestEvent » of vmAdd is notified to IaaS controller (see line 10, Algorithm 10).

7.4 IaaS controller

While under-provisioning of resources can significantly hamper QoS properties by sat-
urating application, over-provisioning of resources can increase energy consumption

138

Chapter 7. Towards Green energy awareness in Cloud Platform

Algorithme 9 : Extended Green-hybrid controller
Input : Thrmax = Threshold for green energy, λ = [0 0 0 0] = Queue to store workload arrival rate,

setPoint = Target set point for response time, event = <"insufficient","ideal", "overabundance">,
CurrGE = Current green energy production.

Output : updated λ, Currmode = Current application mode.

1 /* Initiates in longer control period */
2 if (handleEvent == greenEnergy) then
3 if event == ”insu f f icient” or CurrGE == 0 then
4 app.mode← mode 0

5 else if event == ”overabundance” or CurrGE > Thrmax then
6 app.mode← mode 2

7 else
8 app.mode← mode 1

9 Currmode = app.mode

10 return Currmode

11 /* Initiates in shorter control period */
12 if (handleEvent == responseTime) then
13 λ(t − 1)← servedRequest
14 enqueue(λ)
15 f unction← 1 − (λ(t − 1)/λmedian) ∗ (RT95/setPoint)
16 if (f unction ≤ 0) and (Currmode , 0) then
17 app.mode← Currmode − 1
18 RequestEvent→ vmAdd /* VM Addition request event sent to IaaS controller along

with RT95 and workload-increment = (λ(t − 1)/λmedian) */

19 else if (f unction > 0) then
20 app.mode← Currmode

21 RequestEvent→ vmRemove /* VM Removal request event sent to IaaS controller
along with RT95 and workload-increment = (λ(t − 1)/λmedian) */

22 else
23 app.mode← Currmode

24 Currmode = app.mode
25 dequeue(λ)

26 return λ, Currmode

significantly. Therefore, the scaling decision, for instance, add resources (scale-out) or
remove resources (scale-in) should be taken carefully to match with the applications
resource demand. To meet scale-out condition, a reactive policy can be easily designed
and implemented based on the monitored performance metrics or listening to predefined
appropriate events. A reactive policy is referred to a run-time decision based on current
demand and system state - to add resources on the fly. On the contrary, reactive policies
can not absorb the non-negligible resource/instance initiation time. In our case, when
applications starts to face high response time, the SaaS controllers have the capability to

139

7.4. IaaS controller

Algorithme 10 : Extended Response time aware controller
Input : Thrrt, λ = [0 0 0 0], setPoint, app
Output : updated λ, Currmode = Current application mode.

1 if (handleEvent == responseTime) then
2 λ(t − 1)← servedRequest
3 enqueue(λ)
4 f unction← 1 − (λ(t − 1)/λmedian) ∗ (RT95/setPoint)
5 if (f unction > 0) ∧ (f unction < Thrrt) then
6 app.mode← mode 1
7 RequestEvent→ vmAdd /* VM Addition request event sent to IaaS controller along

with RT95 and workload-increment = (λ(t − 1)/λmedian) */

8 else if f unction ≤ 0 then
9 app.mode← mode 0

10 RequestEvent→ vmAdd /* VM Addition request event sent to IaaS controller along
with RT95 and workload-increment = (λ(t − 1)/λmedian) */

11 else
12 app.mode← mode 2
13 RequestEvent→ vmRemove /* VM Removal request event sent to IaaS controller

along with RT95 and workload-increment = (λ(t − 1)/λmedian) */

14 dequeue(λ)
15 Currmode = app.mode

16 return λ, Currmode

degrade the user experience level and to invoke an implicit event (vmAdd) request to IaaS
controller. Therefore, the sequential operation can trigger the application to run at lower
mode until the instance is launched and activated. Afterwards, the application revert back
to higher mode if it meets the condition after operation.

In contrast, when scale-in event (i.e., fewer resources are required by application)
is invoked by SaaS controllers, terminating instance based on reactive policy can have
detrimental impact on the system. For example, when application performs better by
staying just below or borderline to set point, triggering scale-in action can make an
application suffering from high response time to saturation. One way to overcome the
problem is to reduce the number of cpu cores1 on the fly by doing fine-grained analysis of
resource requirement rather than terminating an entire instance, but popular hypervisors
like KVM, VMware, Hyper-V does not allow removing cpu cores of guest VMs at run-time
[TL14]. Additionally, instance termination can cause a sharp rise in response time reaching
beyond the set point if workload’s behavior or tendency is not taken into consideration.
Therefore, devising a plan when to execute scale-in event is critical. On the other hand, if
the consecutive scaling actions are carried out too quickly without being able to observe
the impact of scaling action to the application, undesirable effects such as over and under-

1In case, CPU is the bottleneck in the application

140

Chapter 7. Towards Green energy awareness in Cloud Platform

provisioning of resources can occur which can leads to performance degradation and/or
wastage of energy consumption.

Algorithme 11 : Infrastructure controller
Input : [minVm,maxVm] = Minimum and maximum number of VM’s.
[RT95,workloadinc] = Response time and workload increment sent by SaaS controller.
[rtthr, decWorkPerc] = Two tunable parameters.
Output : vmNumber, coolingPeriod

1 if (handleEvent == vmAdd) then
2 if (currentTime < coolingPeriod) ∧ (vmNumber < maxVm) then
3 triggerAction→ ”scale − out” /* Passing API call through cloud infrastructure

manager */
4 vmNumber+ = 1
5 coolingPeriod+ = coolingLength

6 else
7 vmNumber = this.vmNumber
8 coolingPeriod = this.coolingPeriod

9 vmNumber = update(vmNumber)
10 coolingPeriod = update(coolingPeriod)

11 return vmNumber, coolingPeriod

12 if (handleEvent == vmRemove) then
13 if (currentTime < coolingPeriod) ∧ (rtthr > RT95) ∧ (vmNumber > minVm) ∧
14 [(workloadinc < decWorkPerc ∨ Currmode = 0)] then

15 triggerAction→ ”scale − in” /* Passing API call through cloud infrastructure manager
*/

16 vmNumber− = 1
17 coolingPeriod+ = coolingLength
18 else
19 vmNumber = this.vmNumber
20 coolingPeriod = this.coolingPeriod

21 vmNumber = update(vmNumber)
22 coolingPeriod = update(coolingPeriod)

23 return vmNumber, coolingPeriod

Hence, the idea is to built a generic IaaS controller which is characteristically agnostic
to SaaS controllers behavior. Whenever, an implicit event invocation (vmAdd, vmRemove)
arrives to the controller, it activates the proper module matching to the event. Since, two
nonconcurrent events can be invoked by SaaS controllers, our proposed IaaS controller
contains two modules to handle each of them. We define a length of period called
coolingLength, which is composed of instance activation time and the time it requires to
impact on the application. Therefore, after triggering any scaling decision, this time period
is updated to prevent any scaling decision to be made in between. Hence, when vmAdd
event arrives to the controller, the handleEvent == vmAdd module matches the condition of

141

7.5. Discussion

not being at coolingPeriod with an and operator to maximum number of VM a provider can
be assigned to2. If it adheres the condition, scale-out decision is triggered via IaaS actuator
and current number of VM and next coolingPeriod is updated (see line 3-5 of Algorithm
11). Otherwise, the module ignores the notification. On the other hand, when vmRemove
event invokes by SaaS controller, if the handleEvent == vmRemove module is not carefully
designed, cloud application can face unstable phases i.e., sharp rises of response time to
saturate application. Therefore, only looking at coolingPeriod and minimum number of
VM3 could be unwise and skeptical. Therefore, we introduce two key parameters which
are tunable to identify when is the good time to release resources i.e., perform scale-in
action. The parameters are i) how far the current system’s response time should be from
set point? For example, x% less than target response time set point, which is denoted by
rtthr at Algorithm 11. ii) how much workload should decrease from the current trend? For
instance, y% decrease in user request than previous intervals, denoted by decWorkPerc.
Hence, when handleEvent == vmRemove arrives to the IaaS controller, the module checks
the cooling period, minimum number of VM, current response time condition with an AND
operator. Additionally we put an OR operator between workload decrease parameter and
current mode of the application. The rationale behind that, in the absence of green energy,
EHG-C keeps the application at minimum level. Although, workload may be consistent
or increasing, if the hybrid controller satisfies being outside of coolingPeriod, greater than
minimum number of VM and reduced response time that the threshold, it will meet the
scale-in condition and IaaS controller will trigger the action to release resources. On the
other hand, ERT-C will keep application at the highest mode when resources are slightly
to abundantly over-provisioned. Thus, application being at mode = 0 and decreasing
workload by y% percentage can not happen concurrently if response time is x% less than
response time set point for this type of SaaS controller. Apart from EHG-C, any SaaS
controller which invokes vmRemove event and satisfies all the conditions mentioned above
other than application mode being at lowest, will trigger scale-in action by IaaS controller.

7.5 Discussion

This chapter provides insights on how to adapt at infrastructure layer depending on
application performance and presence/absence of green energy in data center. In very near
future, we would like to validate the algorithms that we have designed. Currently we are
experimenting at Grid’5000 test bed and are analyzing the results. Our interest relies on
investigating energy consumption incurred by each controller when they are coupled with
an generic infrastructure controller, while targeted QoS properties can be met.

2Amazon EC2 permits maximum 20 on-demand instances per user.
3For a 3-tier application, at least one VM per tier should always run.

142

Chapter 8

Conclusion

This chapter concludes this thesis by revisiting the problem statement which has been
stated throughout the document and summarizing the main contribution to highlight the
effectiveness of the solution. Finally, we discuss some perspectives based on this research
to point out future directions.

8.1 Problem Statement Revisited

Due to the proliferation and adoption of Cloud services which reside in data centers,
enormous energy consumption became a critical issue. In response, existing researches are
focused more on reducing energy consumption, but the goal for alleviating carbon footprint
is far form the expectation. Furthermore, greenness of Cloud services and data centers
remain questionable. One way to overcome this problem is to introduce renewable energy
usage opportunities to data center by incorporating them. By nature, green energy sources
are intermittent. Therefore, how to manage green energy sources at data center level to
greenify the cloud infrastructure is a considerable research challenge. Hence, exploring
different renewable energy integration options and different pricing is required to find an
efficient energy management policy in data center to tackle the intermittent nature of green
energy. On the other hand, if Cloud application can take advantage of the presence or
absence of green energy to change its energy state, further energy consumption reduction
is possible along with other traditional approaches. Unlike batch kind of applications,
interactive Cloud applications can not be scheduled in advance depending on green energy
profile. Scheduling plans can mismatch with run-time variations of an application caused
by workload surge, resource limitations, etc. Therefore the problem can be defined as:
how to make Cloud application, specially interactive application, adaptive to green energy
availability while traditional QoS properties can be at satisfactory level so to lower carbon
footprint? While creating green energy awareness can be a fruitful solution, how to manage
the addition/removal of resources while application reacts to green energy events is also

143

8.2. Summary of Contributions

a key issue to be addressed. Because, decisions taken in isolation at given layer may
mismatch the resource requirements by the application, that can negatively impact QoS
and energy consumption reduction goal.

8.2 Summary of Contributions

To overcome the stated problem, this thesis provides four contribution as follows:

Cloud Energy Broker. To propose green computing services powered by renewable/green
energy, first we have to investigate the different green energy integration options and their
advantages as well as disadvantages and procurement strategies. Therefore, Chapter 4
investigates the opportunity to exploit the energy market to plan, forecast and purchase
energy in advance through a Cloud Energy Broker to greenify the data center in advance.

Virtualization of Green energy. Chapter 5 introduces Virtualization of green energy
concept to tackle both the forecasting error of Chapter 4 and intermittency of green energy
to propose and revise the notion of GreenSLA. The idea is to propose new class of explicit
SLO mentioning the percentage of green energy provided along side with computing
service by managing the underlying energy infrastructure and multi-source energy market.
GreenSLA gives the possibility to application owners to host their application in an explicitly
expressed green cloud environment having formal contracts. Moreover, virtualization
concept has leverage over energy storages in terms of energy loss or wastage. Therefore,
we provided an efficient energy management plan which can maximize the usage of green
energy in data center by disallowing any energy wastage.

Green energy awareness in application. Chapter 6 presents a self-adaptive autoscaler
architecture to enable smart usage of energy in an interactive application. The autoscaler
inherits the capability of sensing information as events from multiple layers while actions
are performed only in application level. Based on the autoscaler architecture, we devised
several application controller to satisfy different metrics of interest and validated through
extensive experiments at Grid’5000. Thus, the proposed contribution can make an
application adaptive by automatically adjusting to changing conditions, while respecting
QoS properties.

Towards Green energy awareness in platform. Chapter 7 investigates how to efficiently
utilize the elasticity nature of the infrastructure resources while reconfiguration capabil-
ity at application level can be coordinated for better performance and reduced energy
consumption. Towards the goal, we propose GPaaScaler architecture which can both
actuate at application and at infrastructure level depending on the application behavior

144

Chapter 8. Conclusion

and energy availability. Therefore, the platform become aware of green energy availabili-
ty/unavailability. Later, we design a generic infrastructure controller which can be used
with any application controller by invoking additional/removal resource requests. The
results indicate that, when the coordination between application and infrastructure are
done efficiently, energy reduction is possible with targeted performance.

8.3 Perspective

This thesis work have investigated trade-off between energy management, energy con-
sumption and performance while proposed solution to tackle those problems. Some of
the proposal presented as contribution can lead to interesting and promising research
perspectives. We provide some discussion on following subsection.

8.3.1 Selection of VM types based on fine-grained resource demand

In this thesis, we analyze when an application requires additional/lesser resources and
take actions accordingly by taking the advantage of underlying infrastructure. While
our proposed solution can help to decrease performance degradation, more fine grained
analysis and estimation of resource demand can leads to select proper VM types. When
resource demand slightly increases to cause performance degradation of an application, a
large VM can help to stabilize the system but may cause over-provisioning of resources if
demand remains steady. On the other hand, when resource demand increases abruptly,
adding a tiny VM will not suffice and performance degradation can prompt to create several
tiny VMs sequentially. In contrast, during the decrement of resource demand, releasing
a proper VM type would be necessary from preventing a chain reaction of adding and
releasing VMs. Apart from performance constraint, application owner also have budget
constraints to reduce service cost. When application owners rent VM’s from infrastructure
provider, they are charged by instances/hour. Therefore, during the termination of instances,
finding a set of proper VM type along with which VM’s are closer to their instance hour can
be a noteworthy investigation. Thus an application will be able to guarantee performance
with lesser energy consumption while service cost can remain under control.

8.3.2 Containerized approach

In this thesis, we have applied our solution on virtual machine environment which is enabled
by hardware level virtualization. In recent years, Operating System (OS) level virtualization
that virtualizes resources at OS level is rapidly increasing, hence container technology
has gained much attraction. Due to the low-overhead at virtualization level, containers
can provide better throughput and lesser latency for I/O intensive interactive application
[SCJSC16]. Additionally, containers resume quite faster typically in the range of seconds,
while VM takes couple of minutes to be accessible. Due to the hardware virtualization,

145

8.3. Perspective

each VM is runs in top of a guest operating system. Hence, this virtualization overhead
may increase the energy consumption while running same workload on containers. By
default, a container has no resource constraints (soft resource limits) like VM’s (During VM
boot up, its hard limit is initialized), thus it can use as much resources as the host kernel
allows. This may prevent the system to take less coordinated action between application
and infrastructure compared to VM approach. Therefore, we think it will be an interesting
track of investigation to analyze how much energy efficient containers are against VMs.

8.3.3 Leveraging Microservice architecture for application adaptation

In recent years, modern cloud application has moved from monolithic approach to a
distributed approach, where application is refactored to small units, each providing a
single functionality. All small units communicate with each other in a synchronous or
asynchronous manner. In this thesis, for the use case, we dynamically adapted application
by adding/removing recommendation component on the fly. By using microservice
architecture, recommendation components can be composed and deployed as a separate
unit. By doing that, when system load increases, they can be either replicated or scaled
in an autonomic way on different computation nodes. Apart from the example of
recommendation component, any resource hungry application component can be seen as
a separate entity and be deployed in similar fashion. Since, containers can be scaled in
matter of few seconds, it would be interesting to deploy small and decoupled elements
throughout different containers so that, each of the application component if required,
can be scaled to guarantee better performance, self healing capabilities. Apart from
that, resource can be assigned to specific components where it is required, thus over-
provisioning of resource phenomena can be avoided resulting lesser energy consumption.
Additionally, this investigation can leads to a decentralized autonomic behavior in modern
application. Today’s popular application like Netflix1, Groupon2, etc. have moved to
adopt microservices architecture recently. Therefore, we believe that, this area of research
investigation can open the door of automating fully decentralized cloud application.

8.3.4 From Cloud to Fog/Edge computing

With the advent of Fog/Edge computing, data computation and fetching can be done
near to the users. It is done through deploying small mono-site data centers consisting of
50-100 servers in multiple sites so to leverage on data computation in a faster way locally
rather than forwarding to core data center and fetching the results, which can be time
sensitive. Furthermore, each mono-site data center can be powered by different renewable
sources causing different renewable energy profile in these data centers. While in this
thesis, we only consider single data center where an application can be adaptive to green

1https://www.netflix.com/
2https://www.groupon.com/

146

https://www.netflix.com/
https://www.groupon.com/

Chapter 8. Conclusion

energy production. This idea can be easily extended to multiple mono-site data centers.
One idea could be, putting an global autonomic agent to gather information from local
autonomic managers at data center level i.e., green energy production and at application
level i.e., response time, user experience level, etc. Afterwards, we can formulate a plan to
route requests in a way to consume more available energy across the data centers, while
performance and user experience can be guaranteed and enhanced. Furthermore, it will
be also interesting to investigate a trade-off of how much processing needs to be done
between Edge cloud and Core Cloud in terms of performance and energy consumption.

147

Appendices

149

Scientific Production

1. Journal Article

(a) Md Sabbir Hasan, Frederico Alvares de Oliveira, Thomas Ledoux, and Jean
Louis Pazat. "Investigating Energy consumption and Performance trade-off
for Interactive Cloud Application", IEEE Transactions on Sustainable Computing
(T-SUSC)

(b) Nicolas Beldiceanu, Barbara Dumas Feris, Philippe Gravey, Md Sabbir Hasan,
Claude Jard, Thomas Ledoux, Yunbo Li, Didier Lime, Gilles Madi-Wamba, Jean-
Marc Menaud, Pascal Morel, Michel Morvan, Marie-Laure Moulinard, Anne-
Cécile Orgerie, Jean-Louis Pazat, Olivier Roux, Ammar Sharaiha. "Towards
energy-proportional Clouds partially powered by renewable energy". Computing,
Springer, vol. 99, pp 3-22, January 2017.

(c) Md Sabbir Hasan, Yousri Kouki, Thomas Ledoux, and Jean Louis Pazat. "Ex-
ploiting Renewable sources: when Green SLA becomes a possible reality in
Cloud computing", IEEE Transactions on Cloud Computing (TCC), vol. PP, Issue
99, July, 2015.

2. Conference Article

(a) Md Sabbir Hasan, Frederico Alvares de Oliveira, Thomas Ledoux, and Jean
Louis Pazat. "Enabling Green Energy awareness in Interactive Cloud Applica-
tion", In Proceedings of the 8th IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), December 12-15, Luxembourg, 2016.

(b) Nicolas Beldiceanu, Barbara Dumas Feris, Philippe Gravey, Md Sabbir Hasan,
Claude Jard, Thomas Ledoux, Yunbo Li, Didier Lime, Gilles Madi-Wamba,
Jean-Marc Menaud, Pascal Morel, Michel Morvan, Marie-Laure Moulinard,
Anne-Cécile Orgerie, Jean-Louis Pazat, Olivier Roux and Ammar Sharaiha. "The
EPOC project: Energy Proportional and Opportunistic Computing system." In
Proceedings of the 4th International Conference on Smart Cities and Green ICT Systems
(SMARTGREENS), Lisbon, Portugal, May 20-22, 2015.

151

(c) Yousri Kouki, Md Sabbir Hasan and Thomas Ledoux. "Delta Scaling: How
Resources Scalability/Termination Can Be Taken Place Economically?" In Pro-
ceedings of the IEEE World Congress on Services (SERVICES), June 27 - July 2, New
york, 2015.

(d) Md Sabbir Hasan, Yousri Kouki, Thomas Ledoux, and Jean Louis Pazat. "Cloud
Energy Broker: Towards SLA-driven Green Energy Planning for IaaS Providers",
In Proceedings of the 16th IEEE International Conference on High Performance
Computing and Communications (HPCC), August 20-22, Paris, 2014.

152

Résumé en Français

Conséquence directe de la popularité croissante d’Internet et du Cloud, les centres de
données de petite à grande taille sont en plein essor. En 2007, les centres de données en
Europe de l’Ouest ont consommé 56 terawatt-heures (TWh) de puissance par an. Selon
l’UE, ce chiffre devrait presque doubler pour atteindre 104 TWh d’ici à 2020. La même
année, selon le Gartner group, l’industrie des ICT a représenté 2% des émissions mondiales
de carbone. Ces émissions de carbone élevées sont le résultat de la production d’électricité à
partir de combustibles fossiles ou de charbon. Bien que la France génère 75% de l’électricité
par les centrales nucléaires qui émettent relativement moins de carbone, la quantité
d’empreinte carbone n’est nulle part proche de zéro. En outre, les coûts énergétiques liés à
la puissance opérationnelle d’un centre de données représentent 15% du coût global de
possession (TCO).

L’une des principales raisons de la croissance de la consommation d’énergie est que de
plus en plus de fournisseurs de services transfèrent leur application ainsi que leur charge de
travail informatique vers le Cloud. En 2016, Rightscale a signalé que l’adoption des services
en nuage a augmenté de 13-14% par rapport à 2015. La première raison de cette migration
vers le Cloud est de diminuer les coûts liés aux technologies de l’information et d’être
opérationnel sans investir lourdement ou maintenir leur propre infrastructure informatique.
De plus, les fournisseurs de logiciels en tant que service (SaaS) ou les propriétaires
d’applications cherchent à garantir un certain niveau de performance et la disponibilité de
leurs services, a.k.a des applications interactives Cloud sans aucune perturbation pour les
utilisateurs finaux. Pour garantir les conditions de qualité de service (QoS), les applications
Cloud doivent toujours fonctionner et être réactives indépendamment de la suggestion du
trafic utilisateur aussi, les fournisseurs d’infrastructure en tant que service (IaaS) doivent
sur-provisionner les ressources, mais les fournisseurs SaaS sont prêts à payer uniquement
ce qu’ils consomment. En revanche, les fournisseurs d’IaaS visent à faire tourner des
machines physiques de moindre envergure non seulement pour réduire le TCO, mais aussi
pour réduire la consommation d’énergie et leur empreinte associée. Bien que le TCO puisse
être diminué par le biais d’un sous-provisionnement de ressources, il peut dégrader les
propriétés QoS de l’application hébergée. Par conséquent, les objectifs contradictoires dans
différentes couches de service sont gérés par Service Level Agreement (SLA), c’est-à-dire
une description formelle des contraintes temporelles, de performance et économiques entre

153

SaaS et fournisseurs IaaS.

Énoncé du problème

Alors que la prolifération des services Cloud qui résident dans les centres de données a
un impact important sur notre société, la greenitude de leur nature reste discutable. Cette
greenitude peut être basée sur des techniques d’efficacité énergétique et sur la qualité de
l’énergie consommée dans ces centres de données. En réponse, les recherches existantes se
concentrent plus sur la réduction de la consommation d’énergie en concevant/implémentant
la consolidation de serveurs [BAB12] [HH13], du matériel avec de meilleurs compromis
puissance vs performance [VAN08] et des techniques logicielles pour l’ordonnancement
conscient de l’énergie [KMAHR14], etc. Bien que ces efforts soient nécessaires, l’objectif
d’atténuer l’empreinte carbone est loin d’être atteinte. Selon un rapport récent, la consom-
mation d’électricité a augmenté d’environ 4% par rapport à 2010-2014, ce qui représente un
changement important par rapport à l’augmentation de 24% estimée à partir de 2005-2010.
Cependant, on s’attend à ce que la consommation d’énergie augmente continuellement
avec le même taux de 4% pour 2014-2020 comme les cinq années passées. Par conséquent,
les données susmentionnées indiquent que l’efficacité énergétique seule ne va pas réduire
l’empreinte carbone car la consommation d’énergie continuera de croître. Au contraire,
l’intégration explicite ou implicite des énergies renouvelables au centre de données peut
être une mesure complémentaire pour accompagner les techniques d’efficacité énergétique
et ainsi réduire l’empreinte carbone.

Problème 1. La plupart des centres de données d’aujourd’hui ne sont connectés qu’au
réseau électrique où l’électricité est produite par la combustion du charbon et du gaz
naturel, qui sont des approches de production d’énergie à forte intensité de carbone. Par
conséquent, si le réseau électrique n’est pas respectueux de l’environnement en termes de
compensation et de neutralisation de l’émission nette de carbone zéro ou de l’énergie «
brune », les grands consommateurs comme les centres de données doivent se tourner vers
d’autres alternatives « vertes », c’est à dire des sources d’énergies renouvelables sur site
ou hors site. Le défi considérable de la recherche de l’intégration des sources d’énergie
verte dans le centre de données est qu’elles sont intermittentes par nature, donc toujours
pas disponibles. En dehors de cela, la plupart des publications de recherche ne sont pas
conscients des analyses de coût de la nature variable des prix de l’énergie verte, jusqu’à
considérer l’énergie verte pour un coût de $0. Par conséquent, explorer les différentes
options d’intégration des énergies renouvelables et les prix peut conduire à une politique
efficace de gestion de l’énergie dans les centres de données pour faire face à l’intermittence
de l’énergie verte. Une fois le problème résolu, les fournisseurs IaaS peuvent proposer des
services d’informatique orientés green aux consommateurs SaaS ou aux clients finaux.

154

Problème 2. Les applications, qui sont hébergées dans le centre de données, peuvent
être sommairement classées en tant qu’applications Batch ou Interactive. Alors que les
premières peuvent être considérées comme tolérants aux délais, les dernières peuvent
être très sensibles aux retards, sinon la QoS peut être fortement touchée. Comme toute
technique de gestion, une gestion efficace de l’énergie peut être contrainte de ne pas avoir
assez d’énergie verte, qu’il s’agisse d’une installation sur place ou d’un marché de gros, en
cas de catastrophe naturelle, de jours nuageux, de prix élevés de l’énergie, etc. Pour cela,
plusieurs travaux ont été proposés et expérimentés sur la façon de planifier ou exécuter des
applications Batch lorsque l’énergie verte est disponible afin de consommer plus d’énergie
verte et ne pas en gaspiller. Il en résulte une réduction des énergies brunes dans le centre de
données, ce qui a un impact positif sur l’objectif de réduction de l’empreinte carbone. Par
contre, la charge de travail des applications interactives / la réponse au trafic ne peut pas être
retardée et cela exclut toute planification des tâches. La question de recherche est donc de
savoir comment rendre l’application SaaS interactive adaptée à la disponibilité de l’énergie
verte, alors que les propriétés traditionnelles de QoS doivent rester satisfaisantes, pour
réduire l’empreinte carbone. De plus, l’adaptabilité de l’énergie verte dans les applications
interactives en nuage n’a pas encore été abordée dans les recherches existantes. Étant donné
que les préoccupations sociétales et environnementales ont suscité des initiatives en matière
d’énergie verte, il est grand temps de considérer la valeur verte de la métrique énergétique
comme un attribut essentiel, parallèlement à la qualité de service traditionnelle.

Problème 3. Alors que la couche IaaS permet d’ajuster dynamiquement la fourniture de
ressources physiques en fonction des besoins de la plate-forme en tant que service (PaaS)
pour optimiser l’efficacité énergétique du centre de données, la réduction de l’empreinte
carbone est encore insuffisante. L’intégration des différentes énergies renouvelables
au niveau des centres de données et l’adoption de l’Autonomic Computing (AC) à la
couche SaaS pour gérer greenitude, la réactivité et l’autonomie face aux changements
environnementaux pourraient être une solution réalisable pour améliorer l’écosystème
Cloud. De plus, dans la couche SaaS, AC peut permettre aux applications de réagir à
une charge de travail très variable et à la présence d’énergie renouvelable en ajustant
dynamiquement la quantité de ressources afin de maintenir la QoS pour les utilisateurs
finaux. Cependant, des problèmes peuvent survenir car ces systèmes autogérés sont liés
d’une certaine manière (par exemple, les applications dépendent des services fournis par
une infrastructure Cloud): les décisions prises isolément à une couche donnée peuvent ne
pas correspondre aux exigences de ressources de l’application, ce qui peut avoir un impact
négatif sur la QoS et l’objectif de réduction de la consommation d’énergie.

Par conséquent, créer une conscience d’énergie verte dans l’application interactive et
adapter intelligemment de manière auto-adaptative au contexte changeant, va être la seule
façon de réduire l’empreinte carbone.

155

L’état de l’art

Écologisation de l’infrastructure Cloud computing Dans le chapitre 3, nous présentons
une sélection de travaux pertinents sur l’écologisation de l’environnement en nuage et des
centres de données en termes de spécification SLA et la gestion de l’énergie. Nous nous
abstenons de discuter et d’esquisser des technologies permettant l’efficacité énergétique
(par exemple DVFS et divers états de sommeil pour les serveurs) et des techniques comme,
par exemple, la migration de VM ou la consolidation de serveurs, ces méthodes étant
largement adoptées et pratiquées depuis plusieurs années. Notre objectif est de chercher
plus loin pour réduire l’empreinte carbone en gérant efficacement différentes sources
d’énergie qui peuvent être imposées de l’utilisateur final à l’autorité de réseau. Afin
d’évaluer les travaux décrits précédemment, nous résumons les efforts de recherche en
définissant certains attributs qualitatifs de comparaison:

• GreenSLA: Comme la demande pour les produits verts est de plus en plus impor-
tantes, les utilisateurs sont plus conscients de la greenitude du produit, que ce soit dans
le supermarché ou dans le logiciel et le matériel. Par conséquent, la spécification de
SLA est nécessaire. Habituellement dans la littérature, la notion de GreenSLA est util-
isée pour assouplir certaines exigences de performance pour réduire la consommation
d’énergie.

• Energy management: En général, les fournisseurs de services Cloud effectuent la
gestion de l’énergie pour réduire le coût énergétique qui représente environ 20% du
coût total [GHMP08]. En réduisant les coûts, l’objectif est d’atténuer les émissions de
carbone dans la phase d’exploitation. Cependant, le choix du prix et de la diversité
de l’emplacement ([RLXL10], [FYH+15]) ne peut garantir une émission de carbone
plus faible car le facteur d’émission du réseau peut être élevé à ce moment-là ou à
cet endroit. Par conséquent, nous classons la gestion de l’énergie en fonction de la
présence d’énergie brune et d’énergie mélangé (énergie brune et verte).

Après avoir analysé rigoureusement deux domaines de travail très différents, nous
nous rendons compte que la gestion de l’énergie et le SLA peuvent être liés ensemble.
Par conséquent, dans cette thèse, le chapitre 4 et 5 étudie la possibilité d’exploiter le
marché de l’énergie tout en proposant et révisant la notion de GreenSLA. Notre idée est de
proposer une nouvelle classe de SLO explicite mentionnant le pourcentage d’énergie verte
fournie en même temps que le service informatique, grâce à une gestion de l’infrastructure
énergétique sous-jacente et du marché de l’énergie multi-sources. Ainsi, les utilisateurs
et les fournisseurs d’applications peuvent avoir la possibilité d’héberger leur application
dans un environnement de nuage vert possédant des contrats formels sur l’énergie verte.

Application Cloud consciente de l’énergie et des performances La section 3.3 du
chapitre 3 présente une sélection de travaux pertinents et populaires autour des applications

156

Cloud conscientes de l’énergie verte et de la performance. En outre, nous définissons
certains attributs qui classifient les travaux susmentionnés pour mieux comprendre le
problème que nous voulons aborder:

• Conscience de l’énergie verte: Par ce terme, nous voulons dire qu’une application
est consciente de la variabilité de l’énergie verte et change la durée ou le moment
d’exécution des applications en conséquence.

• Optimisation des coûts: La plupart des recherches sur les centres de données se
concentrent sur la façon de réduire les coûts liés à l’électricité. Le coût énergétique lié
au réseau électrique peut être réduit par l’utilisation opportuniste de l’énergie verte
disponible, alors que certains efforts ont été faits pour exploiter l’emplacement et la
diversité des prix pour une réduction supplémentaire.

• Garantie de performance via l’adaptation: La performance est le premier critère
de QoS pour toute application en nuage, mais ceci peut varier en fonction de la
nature de l’application. Par exemple, respecter l’échéance est une exigence principale
pour l’application de type Batch. D’autre part, la latence et la disponibilité est la
préoccupation principale pour l’application interactive.

Afin de surmonter le problème de la création d’une conscience d’énergie verte dans une
application interactive en nuage, notre deuxième partie de la thèse du chapitre 6 présente
une architecture auto-adaptative (grâce à l’informatique autonome) pour permettre une
utilisation intelligente de l’énergie verte dans une application interactive. Notre idée est
de transporter l’information énergétique à l’application afin qu’elle puisse s’adapter en
fonction des événements énergétiques afin de réduire la consommation d’énergie « brune
». Nous proposons plusieurs contrôleurs d’application qui font le compromis entre la
QoS, la QoE, la consommation d’énergie brune et verte, pour mettre en lumière que l’idée
d’adapter intelligemment l’application avec l’information sur l’énergie est possible.

Contribution

Par conséquent, dans cette thèse, pour aborder les problèmes discutés dans la section
8.3.4, nous suivons une approche de bas en haut, de l’infrastructure à l’application. Nos
contributions dans cette thèse sont les suivantes:

• Chapitre 4. La demande de services verts augmente considérablement au fur et à
mesure que les gens prennent de plus en plus conscience de l’environnement pour
bâtir une société durable. Par conséquent, les entreprises et les clients souhaitent
héberger leurs services ou leurs applications dans un environnement de nuages plus
vert offert par le fournisseur Infrastructure-as-a-Service (IaaS). Pour construire un
environnement Cloud plus vert autour du centre de données, l’efficacité énergétique

157

IaaS

SaaS

PaaS
Solution

Brown and Green Energy Manage Energy

Monitor Energy

 Monitor QoS Re-configure App

 Resource Request (Add/Remove)

 Turn On/Off Resource

1

3

4

2

2

5

 BrokerAction
Event

Figure 8.1: Overview of proposed solution

maximale et l’impact environnemental minimum, (c’est-à-dire une empreinte carbone
inférieure) sont les critères les plus importants. Pour cela, plusieurs techniques
d’efficacité énergétique pour les systèmes matériels et logiciels ont été proposées
dans la littérature qui sont largement adoptées et exploités. En revanche, la gestion
de l’énergie des centres de données en présence de sources implicites et explicites
d’énergie verte qui peuvent faciliter la réduction de l’empreinte carbone est encore
à ses balbutiements, mais elle a suscité beaucoup d’intérêt ces derniers temps. Le
principal défi pour un fournisseur IaaS est de déterminer le meilleur compromis
entre ses bénéfices tout en utilisant l’énergie verte avec une contrainte budgétaire
et contrat de niveau de service (SLA) avec le Software-as-a-Service (SaaS) et le
fournisseur d’énergie. D’autre part, pour fournir des services informatiques verts au
fournisseur ou au client SaaS, une SLA robuste doit être traitée. Par conséquent, dans

158

ce chapitre, nous expliquons différents niveaux d’objectifs de niveau de service (SLO)
entre chaque couche de nuages afin de réaliser comment la SLA à plusieurs couches
peut être contractée en présence d’énergie verte dans l’environnement de Cloud
computing (voir Figure 8.2). En outre, nous proposons un Cloud energy broker, qui
peut ajuster la disponibilité et la combinaison de prix pour acheter de l’énergie verte
dynamiquement à partir du marché de l’énergie à l’avance pour rendre un centre de
données vert basé sur un contrat SLA. Plus tard, la validation du courtier en énergie
est fournie pour montrer qu’il peut maintenir avec succès le meilleur compromis
entre la disponibilité de l’énergie et la contrainte budgétaire. En outre, ce chapitre
présente la phase de planification de la gestion de l’énergie verte pour les centres de
données.

 IaaS

 30%

 SaaS

G1

G2

G3 EDF

EaaS

 Green Energy Provider

Brown and mixed Energy Provider
On-site Renewable source

Service level Objective

1. Availability of service
 2. Response time
 3. Ration of GReen
Content

1. Availability of
physical resource
2. Availability of
Green resource

1. Availability of
Brown energy

2. Availability of
Green energy

 25% 20%SLAR

End
User

SaaS

IaaS

EaaS

SPOT

 Spot green market

1. SLA flexibility due to
fuzziness value.
2. Unavailability of Green
energy.

SLAE

SLAS

Figure 8.2: Cross-layers SLA

• Chapitre 5. La définition et l’établissement de GreenSLA entre le IaaS et le fournisseur

159

SaaS basé sur l’énergie verte est absent de la littérature. Par conséquent, le principal
défi pour le fournisseur IaaS est de gérer les SLA verts avec leurs clients tout en
satisfaisant ses objectifs métiers, tels que la maximisation des profits tout en réduisant
les dépenses pour l’énergie verte. Mis à part les incitations des organismes publics
et privés, le coût de production d’énergie verte et les prix sur le marché tendent
à être plus élevé que l’énergie « brune ». Puisque les Green SLA doivent être
proposés en fonction de la présence d’énergie verte, la nature intermittente des
sources renouvelables rend la validité du contrat SLA difficile à atteindre. En réponse,
ce chapitre présente un schéma de gestion de l’énergie verte en temps réel en présence
d’une intégration explicite et implicite de l’énergie verte dans le centre de données.
Plus précisément, nous proposons trois contributions: i) nous introduisons le concept
de virtualisation de l’énergie verte (voir Figure 8.3) pour répondre à l’incertitude
de la disponibilité de l’énergie verte ; ii) nous étendons le langage CSLA (Cloud
Service Level Agreement) pour permettre un SLA vert en introduisant deux nouveaux
paramètres de seuil et iii) nous introduisons l’algorithme de greenSLA qui exploite le
concept de la virtualisation de l’énergie verte pour fournir par intervalle un SLA vert
spécifique. Des expériences ont été menées avec le profil réel de charge de travail de
PlanetLab et le modèle de puissance de serveur de SPECpower pour démontrer qu’un
Green SLA peut être établi avec succès et sans coût supplémentaire. La Figure 8.1
illustre l’aperçu de la solution proposée et 1 indique la position de la contribution
susmentionnée.

Green energy
demand

Available green energy

Virtually available green energy
Green energy
demand

(b) Using the concept of Virtualization of Green energy

(a) Usual Scenario without energy Virtualization concept

Time

Time

(a) Effect of green energy virtualization

Surplus Degraded

Ideal Ideal

SaaS Provider

IaaS Provider

t

Energy
(kwh)

Total energy
demand

Green energy
demand

Energy is virtually green

(b) Validation of virtualization of energy

Figure 8.3: Green energy virtualization concept

160

• Chapitre 6. Avec la prolifération de l’informatique en nuage, les centres de données
doivent d’urgence faire face à des problèmes de consommation d’énergie. Bien
que les efforts récents tels que l’intégration des énergies renouvelables dans les
centres de données ou les techniques d’efficacité énergétique dans les machines
(virtuelles) contribuent à la réduction de l’empreinte carbone, l’utilisation intelligente
de l’énergie verte dans les applications Cloud n’a pas encore été abordée. Par
utilisation intelligente, nous entendons la prise de conscience d’une application
Software-as-a-Service (SaaS) d’augmenter la consommation d’énergie pendant la
disponibilité de l’énergie verte et réduire la consommation d’énergie quand l’énergie
verte est rare ou absente. Dans ce chapitre, nous proposons une architecture auto-
adaptative basée sur l’Autonomic Computing, qui hérite de la capacité de capter
des informations en tant qu’événements à partir de couches multiples alors que
les actions ne sont réalisées qu’au niveau application. Ainsi, notre approche peut
rendre une application adaptative en s’adaptant automatiquement aux conditions
changeantes d’exécution. Dans notre approche, l’application peut fonctionner sur
différents modes en fonction du niveau de service, ce qui est montré à la Figure 8.4.
En outre, nous étudions plusieurs contrôleurs d’application basés sur différentes
métriques (par exemple, disponibilité d’énergie verte, temps de réponse, niveau
d’expérience utilisateur). Grâce à des expériences approfondies et l’analyse sur
une application réelle dans l’environnement Cloud réel, l’utilisation intelligente de
l’énergie verte est validée. Nous fournissons deux contrôleurs hybrides, qui peuvent
fournir des garanties formelles de certification du temps de réponse du 95e percentile
des systèmes gérés à proximité de la cible, tandis que la consommation d’énergie brune
peut être réduite jusqu’à 13%. En outre, notre approche ajuste également l’exigence
de capacité dynamiquement en libérant des ressources virtuelles pour permettre à
29% d’utilisateurs de plus d’accéder à l’application SaaS. 2 et 3 à la Figure 8.1
illustre notre contribution dans ce chapitre. Cette partie de la contribution vise à
fournir des idées et des stratégies nécessaires pour rendre l’application interactive
SaaS consciente de et adaptative à l’énergie verte.

• Chapitre 7. Dans ce chapitre, nous étudions comment utiliser efficacement l’élasticité
des ressources d’infrastructure lorsque l’exigence de ressources globale d’une applica-
tion est plus élevée que l’infrastructure sous-jacente existante peut gérer. Des actions
comme l’ajout/suppression de ressources peuvent être effectuées indépendamment
au niveau de l’infrastructure en fonction de leur niveau d’utilisation i.e., utilisation du
CPU, utilisation de la mémoire, etc. Mais chaque application fonctionne différemment
l’une de l’autre au même niveau d’utilisation de CPU spécialement quand l’utilisation
des ressources est moyenne à élevée. Par conséquent, la meilleure façon de concevoir
des stratégies de mise à l’échelle est de coordonner la décision en fonction des besoins
en ressources ou de la performance des applications. Pour cela, nous proposons
d’abord d’écouter les événements de l’application, qui est marqué par 4 à la figure

161

SaaS
Application

Component 1

Component N

High Low

Mode

SaaS
Application

Component 1

SaaS
Application

Medium

ModeMode

 Actuator

LowHigh

Medium

(a) Example of different application modes

 E-commerce site

Recommendation 1

 Recommendation 2

2 0

Decision
Metrics:

Green energy
Response time
Content ratio

Mode

E-commerce site

Recommendation 1

E-commerce site

1
ModeMode

 API Call

(b) Realistic example of application modes

Figure 8.4: Application modes under different service level

1.1 pour comprendre quand déclencher la décision de passage à l’échelle basée sur
des règles réactives. Deuxièmement, nous utilisons une API traditionnelle telle que
scale-in et scale-out pour déclencher une décision basée sur la stratégie que nous avons
conçue, illustrée par 5 1.1.

162

Conclusion

Le chapitre 8 conclut cette thèse en revisitant l’énoncé du problème, en résumant les
contributions, en discutant des avantages, des idées et des limites de nos solutions
proposées. Par la suite, nous discutons quelques-unes des orientations possibles et des
idées qui pourraient créer de nouveaux défis à l’avenir sur la base de la contribution de
cette thèse.

163

Bibliography

[AB99] Tarek F. Abdelzaher and Nina Bhatti. Web content adaptation to improve
server overload behavior. Comput. Networks, 31(11-16):1563–1577, May
1999.

[AFZZ+14] Ahmed Amokrane, Mohamed Faten Zhani, Qi Zhang, Rami Langar, Raouf
Boutaba, and Guy Pujolle. On satisfying green slas in distributed clouds.
In 10th International Conference on Network and Service Management, CNSM
Rio de Janeiro, Brazil, November 17-21, pages 64–72, 2014.

[ALFZ+15] Ahmed Amokrane, Rami Langar, Mohamed Faten Zhani, Raouf Boutaba,
and Guy Pujolle. Greenslater: On satisfying green slas in distributed
clouds. IEEE Trans. Network and Service Management, 12(3):363–376, 2015.

[AMCGRS15] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley R. Schmerl.
Proactive self-adaptation under uncertainty: a probabilistic model checking
approach. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Softwarengineering, ESEC/FSE , Bergamo, Italy, pages 1–12, 2015.

[AMCGRS16] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley R. Schmerl.
Efficient decision-making under uncertainty for proactive self-adaptation.
In IEEE International Conference on Autonomic Computing, ICAC, pages
147–156, 2016.

[APKSG13] Zahra Abbasi, Madhurima Pore, and Sandeep K. S. Gupta. Impact of
workload and renewable prediction on the value of geographical workload
management. In Energy-Efficient Data Centers - Second International Workshop,
E2DC 2013, Berkeley, CA, USA, May 21, 2013., pages 1–15, 2013.

[APKSG14] Zahra Abbasi, Madhurima Pore, and Sandeep K. S. Gupta. Online server
and workload management for joint optimization of electricity, cost and
carbon footprint across data centers. In 2014 IEEE 28th International Parallel
and Distributed Processing Symposium, Phoenix, AZ, USA, May 19-23, 2014,
pages 317–326, 2014.

165

BIBLIOGRAPHY

[ASB02] Tarek F. Abdelzaher, Kang G. Shin, and Nina Bhatti. Performance guar-
antees for web server end-systems: A control-theoretical approach. IEEE
Trans. Parallel Distrib. Syst., 13(1), January 2002.

[ASK14] Colin Atkinson, Thomas Schulze, and Sonja Klingert. Facilitating greener
IT through green specifications. IEEE Software, 31(3):56–63, 2014.

[BAB12] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. Energy-aware
resource allocation heuristics for efficient management of data centers for
cloud computing. Future Gener. Comput. Syst., 28(5):14, May 2012.

[Bar05] L. Barroso. The price of performance. In ACM Queue, 2005.

[BJT+09] L. Bo, L. Jianxin, W. Tianyu, L. Qin, and Z. Liang. Enacloud: An energy-
saving application live placement approach for cloud computing environ-
ments. In Proc. of the IEEE Int. Conf. on Cloud Computing, page 8. IEEE,
2009.

[BKT12] Christian Bunse, Sonja Klingert, and Schulze Thomas. Greenslas: Support-
ing energy-efficiency through contracts. In Energy Efficient Data Centers -
First International Workshop, E2DC, pages 54–68, 2012.

[BR11] Michael Brown and Jose Renau. Rerack: power simulation for data centers
with renewable energy generation. SIGMETRICS Performance Evaluation
Review, 39(3):77–81, 2011.

[BSYV+09] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and
Ivona Brandic. Cloud computing and emerging IT platforms: Vision, hype,
and reality for delivering computing as the 5th utility. Future Generation
Comp. Syst., 25(6):599–616, 2009.

[CASS15] Mar Callau-Zori, Luciana Arantes, Julien Sopena, and Pierre Sens. Merci-
miss: Should I turn off my servers? In Distributed Applications and
Interoperable Systems - 15th IFIP International Conference, DAIS Grenoble,
France, June 2-4, pages 16–29, 2015.

[CdCGdM+15] Paulo Rodrigo Cavalin, Maíra A. de C. Gatti, Tiago Gomes Pessoa
de Moraes, Fabio Silva Oliveira, Claudio S. Pinhanez, Alexandre Rade-
maker, and Rogério Abreu de Paula. A scalable architecture for real-time
analysis of microblogging data. IBM Journal of Research and Development,
59(2/3), 2015.

[CFF+11] Cinzia Cappiello, Alexandre Mello Ferreira, Maria Grazia Fugini, Pierluigi
Plebani, and Monica Vitali. Business process co-design for energy-aware

166

BIBLIOGRAPHY

adaptation. In 7th IEEE International Conference on Intelligent Computer
Communication and Processing (ICCP), pages 463–470, 2011.

[CGS+14] F. Chen, J. Grundy, J.G. Schneider, Y. Yang, and Q. He. Automated
analysis of performance and energy consumption for cloud applications.
In ACM/SPEC Int Conf on Performance Engineering, pages 514–521. ACM,
2014.

[CHT12] Changbing Chen, Bingsheng He, and Xueyan Tang. Green-aware workload
scheduling in geographically distributed data centers. In CloudCom, pages
82–89. IEEE Computer Society, 2012.

[CIAP12] Houssem-Eddine Chihoub, Shadi Ibrahim, Gabriel Antoniu, and María
Pérez. Harmony: Towards automated self-adaptive consistency in cloud
storage. In IEEE Int. Conf. on Cluster Computing. IEEE, 2012.

[CJX14] Dazhao Cheng, Changjun Jiang, and Zhou Xiaobo. Heterogeneity-aware
workload placement and migration in distributed sustainable datacenters.
In 2014 IEEE 28th International Parallel and Distributed Processing Symposium,
Phoenix, AZ, USA, May 19-23, 2014, pages 307–316, 2014.

[CKMP17] Stefania Costache, Samuel Kortas, Christine Morin, and Nikos Parla-
vantzas. Market-based autonomous resource and application management
in private clouds. Journal of Parallel and Distribured Computing, 100:85–102,
2017.

[CPMK11] Stefania Costache, Nikos Parlavantzas, Christine Morin, and Samuel Kortas.
An economic approach for application qos management in clouds. In Euro-
Par 2011: Parallel Processing Workshops - CCPI, CGWS, HeteroPar, HiBB,
HPCVirt, HPPC, HPSS, MDGS, ProPer, Resilience, UCHPC, VHPC, Bordeaux,
France, August 29 - September 2, 2011, pages 426–435, 2011.

[CWC14] R.S. Chang C. Wu and H.Y. Chan. A green energy-efficient scheduling
algorithm using the dvfs technique for cloud datacenters. Future Generation
Computer Systems, 37:141–147, july 2014.

[DBADOL17] Simon Dupont, Salma Bouri, Frederico Alvares De Oliveira, and Thomas
Ledoux. ElaScript: a DSL for Coding Elasticity in Cloud Computing. In
32nd ACM Symposium on Applied Computing - Track on Cloud Computing,
Proceedings of the 32nd ACM Symposium on Applied Computing - Track
on Cloud Computing, Marrakesh, Morocco, 2017.

[DLAdOJT15] Simon Dupont, Jonathan Lejeune, Frederico Alvares de Oliveira Jr., and
Ledoux Thomas. Experimental analysis on autonomic strategies for cloud

167

BIBLIOGRAPHY

elasticity. In 2015 International Conference on Cloud and Autonomic Computing,
Boston, MA, USA, September 21-25, 2015, pages 81–92, 2015.

[DLJ+13] Wei Deng, Fangming Liu, Hai Jin, Chuan Wu, and Xue Liu. Multigreen:
cost-minimizing multi-source datacenter power supply with online control.
In The Fourth International Conference on Future Energy Systems, e-Energy,
Berkeley, CA, USA, May 22-24, pages 149–160, 2013.

[DLJ+14] Wei Deng, Fangming Liu, Hai Jin, Bo Li, and Dan Li. Harnessing renewable
energy in cloud datacenters: opportunities and challenges. IEEE Network,
28(1):48–55, 2014.

[DLJW13] Wei Deng, Fangming Liu, Hai Jin, and Chuan Wu. Smartdpss: Cost-
minimizing multi-source power supply for datacenters with arbitrary
demand. In ICDCS, pages 420–429. IEEE Computer Society, 2013.

[dOJL12] Frederico Alvares de Oliveira Jr. and Thomas Ledoux. Self-management
of cloud applications and infrastructure for energy optimization. SIGOPS
Operating Systems Review, 46(2):10–18, 2012.

[DSFH15] Corentin Dupont, Mehdi Sheikhalishahi, M. Facca Federico, and Fabien
Hermenier. An energy aware application controller for optimizing renew-
able energy consumption in data centres. In IEEE/ACM 8th International
Conference on Utility and Cloud Computing (UCC), pages 195–204, Los Alami-
tos, CA, USA, 2015. IEEE Computer Society.

[EML+12] Maja Etinski, Margaret Martonosi, Kien Le, Ricardo Bianchini, and Thu
D. Nguyen. Optimizing the use of request distribution and stored energy
for cost reduction in multi-site internet services. In Sustainable Internet and
ICT for Sustainability, SustainIT, 4-5 October, Pisa, Italy, pages 1–10, 2012.

[FFB13] D. Feitelson, E. Frachtenberg, and K. Beck. Development and deployment
at facebook,. IEEE Internet Computing, 17:8–17, april 2013.

[FHB10] Daniel Fleder, Kartik Hosanagar, and Andreas Buja. Recommender systems
and their effects on consumers: The fragmentation debate. In Proc. of the
11th ACM Conf. on Electronic Commerce, EC ’10, pages 229–230, New York,
NY, USA, 2010. ACM.

[FJLB15] Soodeh Farokhi, Pooyan Jamshidi, Drazen Lucanin, and Ivona Brandic.
Performance-based vertical memory elasticity. In IEEE Int. Conf. on Auto-
nomic Computing, pages 151–152, 2015.

168

BIBLIOGRAPHY

[FYH+15] Weiwei Fang, Yuan Yao, Longbo Huang, Abhishek B. Sharma, Leana
Golubchik, and Michael J. Neely. A comment on "power cost reduction
in distributed data centers: A two time scale approach for delay tolerant
workloads. IEEE Trans. Parallel Distrib. Syst., 26(5):1495–1496, 2015.

[GBL+11] Íñigo Goiri, Ryan Beauchea, Kien Le, Thu D. Nguyen, Md. E. Haque, Jordi
Guitart, Jordi Torres, and Ricardo Bianchini. Greenslot: Scheduling energy
consumption in green datacenters. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis,
2011.

[GCWK12] Peter Xiang Gao, Andrew R. Curtis, Bernard Wong, and Srinivasan Keshav.
It’s not easy being green. In Proceedings of the ACM SIGCOMM 2012
conference on Applications, technologies, architectures, and protocols for computer
communication, SIGCOMM ’12. ACM, 2012.

[GDK+14] Anshul Gandhi, Parijat Dube, Alexei Karve, Andrzej Kochut, and Li Zhang.
Adaptive, model-driven autoscaling for cloud applications. In 11th Interna-
tional Conference on Autonomic Computing, ICAC, Philadelphia, PA, USA, June
18-20, pages 57–64, 2014.

[GDXHJ14] Zehua Guo, Zhemin Duan, Yang Xu, and Chao H. Jonathan. Jet: Electricity
cost-aware dynamic workload management in geographically electricity
cost, electricity price, geographically distributed datacenters. Computer
Communications, 50:162–174, 2014.

[GHBAK12] Anshul Gandhi, Mor Harchol-Balter, and Michael A. Kozuch. Are sleep
states effective in data centers? 2012 International Green Computing Confer-
ence (IGCC), pages 1–10, 2012.

[GHMP08] Albert Greenberg, James Hamilton, David A. Maltz, and Parveen Patel.
The cost of a cloud: Research problems in data center networks. SIGCOMM
Computer Communication Review, (1):68–73, December 2008.

[GJNT06] Leonidas Georgiadis, Michael J. Neely, and Leandros Tassiulas. Resource
allocation and cross-layer control in wireless networks. Foundations and
Trends in Networking, 1(1), 2006.

[GKL+13] Íñigo Goiri, William Katsak, Kien Le, Thu D. Nguyen, and Ricardo Bianchini.
Parasol and greenswitch: Managing datacenters powered by renewable
energy. In Proc. of the 8th Int. Conf. on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’13, pages 51–64. ACM, march
2013.

169

BIBLIOGRAPHY

[GLN+12] Íñigo Goiri, K. Le, T. Nguyen, J. Guitart, J. Torres, and R. Bianchini.
Greenhadoop: leveraging green energy in data-processing frameworks. In
ACM European Conference on Computer Systems, EuroSys, pages 57–70, Apr
2012.

[GMR13] M. Ghamkhari and H. Mohsenian-Rad. Energy and performance man-
agement of green data centers: A profit maximization approach. IEEE
Transactions on Smart Grid, 4(2):1017–1025, June 2013.

[GS13] Lawrence H. Goulder and Andrew Schein. Carbon taxes vs. cap and trade:
A critical review. Climate Change Economics 19338, National Bureau of
Economic Research, August 2013.

[GZG+16] Lin Gu, Deze Zeng, Song Guo, Yong Xiang, and Jiankun Hu. A general
communication cost optimization framework for big data stream processing
in geo-distributed data centers. IEEE Trans. Computers, 65(1):19–29, 2016.

[HAB07] Urs Hölzle and Luiz André Barroso. The case for energy-proportional
computing. Computer, 40:33–37, 2007.

[HASX07] T. Horvath, T. Abdelzaher, K. Skadron, and Liu X. Dynamic voltage scaling
in multitier web servers with end-to-end delay control. IEEE Transactions
on Computers, 56:444–458, april 2007.

[HGG+14] Rui Han, Moustafa Ghanem, Li Guo, Yike Guo, and Michelle Osmond.
Enabling cost-aware and adaptive elasticity of multi-tier cloud applications.
Future Generation Comp. Syst., 32:82–98, 2014.

[HGRN15] Md. E. Haque, Íñigo Goiri, Bianchini R., and Thu D. Nguyen. Greenpar:
Scheduling parallel high performance applications in green datacenters.
In Proceedings of the 29th ACM on International Conference on Supercomputing,
ICS’15, Newport Beach/Irvine, CA, USA, June 08 - 11, 2015, pages 217–227,
2015.

[HH13] M. S. Hasan and E.N. Huh. Heuristic based energy-aware resource allo-
cation by dynamic consolidation of virtual machines in cloud data center.
KSII Transactions on Internet and Information Systems, 7(8), 2013.

[HKBB09] Kyong Hoon Kim, Anton Beloglazov, and Rajkumar Buyya. Power-aware
provisioning of cloud resources for real-time services. In Proceedings of
the 7th International Workshop on Middleware for Grids, Clouds and e-Science,
MCG, Champaign, IL, USA, November 30 - December 4, page 1, 2009.

170

BIBLIOGRAPHY

[HKCH16] Can Hankendi, Ayse Kivilcim Coskun, and Henry Hoffmann. Adapt&cap:
Coordinating system- and application-level adaptation for power-
constrained systems. IEEE Design & Test, 33(1):68–76, 2016.

[HLG+13] M. E. Haque, Kien Le, Iñigo Goiri, Ricardo Bianchini, and Thu D. Nguyen.
Providing green slas in high performance computing clouds. In International
Green Computing Conference, IGCC, Arlington, VA, USA, June 27-29, pages
1–11, 2013.

[HWY+10] Mi H, H. Wang, G. Yin, Y. Zhou, D. Shi, and L. Yuan. Online self-
reconfiguration with performance guarantee for energy-efficient large-scale
cloud computing data centers. In IEEE International Conference on Services
Computing, pages 514–521. IEEE, 2010.

[IZM+16] Alexandru Iosup, Xiaoyun Zhu, Arif Merchant, Eva Kalyvianaki, Martina
Maggio, Simon Spinner, Tarek F. Abdelzaher, Ole J. Mengshoel, and Sara
Bouchenak. Self-awareness of cloud applications. CoRR, abs/1611.00323,
2016.

[KADOJDL14] Yousri Kouki, Frederico Alvares De Oliveira Jr., Simon Dupont, and
Thomas Ledoux. A Language Support for Cloud Elasticity Management.
In IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
CCGrid, pages 1–8, May 2014.

[KC03] J. O. Kephart and D. M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, Jan 2003.

[KC14] Pankaj Deep Kaur and Inderveer Chana. A resource elasticity framework
for qos-aware execution of cloud applications. Future Generation Comp.
Syst., 37:14–25, 2014.

[KCH09] Evangelia Kalyvianaki, Themistoklis Charalambous, and Steven Hand.
Self-adaptive and self-configured cpu resource provisioning for virtualized
servers using kalman filters. In Proceedings of the 6th IEEE/ACM International
conference on Autonomic Computing, ICAC ’09, pages 117–126, New York,
NY, USA, 2009. ACM.

[KDNH15] E. Kern, M. Dick, S. Naumann, and T. Hiller. Impacts of software and its
engineering on the carboon footprint of ict. Environmental Impact Assessment
Review, 52:53–61, april 2015.

[KKJ11] Dara Kusic, Nagarajan Kandasamy, and Guofei Jiang. Combined power and
performance management of virtualized computing environments serving
session-based workloads. IEEE Trans. Network and Service Management,
8(3):245–258, 2011.

171

BIBLIOGRAPHY

[KL12] Yousri Kouki and Thomas Ledoux. Csla: A language for improving cloud
sla management. In CLOSER, pages 586–591. SciTePress, 2012.

[KL16] Fanxin Kong and Xue Liu. Greenplanning: Optimal energy source selection
and capacity planning for green datacenters. In 7th ACM/IEEE International
Conference on Cyber-Physical Systems, ICCPS, Vienna, Austria, April 11-14,,
pages 5:1–5:10, 2016.

[KMAHR14] Cristian Klein, Martina Maggio, Karl-Erik Årzén, and Francisco Hernández-
Rodriguez. Brownout: Building more robust cloud applications. In Proc. of
the 36th Int. Conf. on Software Engineering. ACM, 2014.

[KPD+14] Cristian Klein, A. V. Papadopoulos, M. Dellkrantz, Martina Maggio, Karl-
Erik Årzén, Francisco Hernández-Rodriguez, and E. Elmroth. Improving
cloud service resilience using brownout-aware load-balancing. In IEEE
33rd Int. Symposium on Reliable Distributed Systems, pages 31–40, Oct 2014.

[KSB11] Sonja Klingert, Thomas Schulze, and Christian Bunse. Greenslas for the
energy-efficient management of data centres. In 2nd International Conference
on Energy-Efficient Computing and Networking, pages 21–30, 2011.

[LCB+12] Zhenhua Liu, Yuan Chen, Cullen Bash, Adam Wierman, Daniel Gmach,
Zhikui Wang, Manish Marwah, and Chris Hyser. Renewable and cooling
aware workload management for sustainable data centers. In SIGMETRICS,
pages 175–186. ACM, 2012.

[LFF12] G. Lami, F. Fabbrini, and M. Fusani. Software sustainability from a process-
centric perspective. Systems, Software and Services Process Improvement,
52:97–108, april 2012.

[LLW+11] Zhenhua Liu, Minghong Lin, Adam Wierman, Steven H. Low, and Lachlan
L. H. Andrew. Geographical load balancing with renewables. SIGMETRICS
Performance Evaluation Review, 39(3):62–66, 2011.

[LOM15] Yunbo Li, Anne-Cécile Orgerie, and Jean-Marc Menaud. Opportunistic
scheduling in clouds partially powered by green energy. In IEEE Interna-
tional Conference on Data Science and Data Intensive Systems, DSDIS 2015,
Sydney, Australia, December 11-13, 2015, pages 448–455. IEEE Computer
Society, 2015.

[LWL+14] Chao Li, Rui Wang, Tao Li, Depei Qian, and Yuan Jingling. Managing
green datacenters powered by hybrid renewable energy systems. In 11th
International Conference on Autonomic Computing, ICAC ’14, Philadelphia, PA,
USA, June 18-20., pages 261–272, 2014.

172

BIBLIOGRAPHY

[MBL+13] Fabio Jorge Almeida Morais, Francisco Vilar Brasileiro, Raquel Vigolvino
Lopes, Ricardo Araújo Santos, Wade Satterfield, and Leandro Rosa. Aut-
oflex: Service agnostic auto-scaling framework for iaas deployment models.
In CCGRID, pages 42–49. IEEE Computer Society, 2013.

[MG11] Peter Mell and Timothy Grance. The nist definition of cloud computing.
Technical Report 800-145, National Institute of Standards and Technology
(NIST), September 2011.

[MH12] Ming Mao and Marty Humphrey. A performance study on the vm startup
time in the cloud. In IEEE CLOUD. IEEE, 2012.

[MHL+11] Simon Malkowski, Markus Hedwig, Jack Li, Calton Pu, and Dirk Neumann.
Automated control for elastic n-tier workloads based on empirical modeling.
In Proceedings of the 8th International Conference on Autonomic Computing,
ICAC, Karlsruhe, Germany, June 14-18, 2011, pages 131–140, 2011.

[Mic14] Microsoft. Azure auto-scaling service, 2014. Available online
at https://docs.microsoft.com/en-us/azure/cloud-services/cloud-services-
how-to-scale.

[MTS+12] Jason Mars, Lingjia Tang, Kevin Skadron, Mary Lou Soffa, and Robert
Hundt. Increasing utilization in modern warehouse-scale computers using
bubble-up. IEEE Micro, 32(3):88–99, 2012.

[NDKJ11] S. Naumann, M. Dick, E. Kern, and T. Johann. The greensoft model: A
reference model for green and sustainable software and its engineering.
Sustainable Computing: Informatics and Systems, 1:294–304, april 2011.

[NH07] F. Nah and F. Hoon. A study on tolerable waiting time: How long are web
users willing to wait? Behavior and Information Technology, 29(3):56–63, Feb
2007.

[NHL16] Zhaojie Niu, Bingsheng He, and Fangming Liu. Not all joules are equal:
Towards energy-efficient and green-aware data processing frameworks.
2016 IEEE International Conference on Cloud Engineering (IC2E), pages 2–11,
2016.

[PDPBG10] Jeremy Philippe, Noel De Palma, Fabienne Boyer, and Olivier Gruber.
Self-adaptation of service level in distributed systems. Software Practice and
Experience, 40(3):259–283, March 2010.

[PP06] KyoungSoo Park and Vivek S. Pai. Comon: a mostly-scalable monitoring
system for planetlab. In SIGOPS Operating Systems Review, volume 40,
pages 65–74. ACM, 2006.

173

BIBLIOGRAPHY

[PSZ+07] P. Padala, K.G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, and A. Mer-
chant. Adaptive control of virtualized resources in utility computing
environments. In Proc. of EuroSys, pages 289–302. ACM, 2007.

[PWAJ15] Tharindu Patikirikorala, Liuping Wang, Colman Alan, and Han Jun.
Differentiated performance management in virtualized environments using
nonlinear control. IEEE Trans. Network and Service Management, 12(1):101–
113, 2015.

[PWCH11] T. Patikirikorala, L. Wang, A. Colman, and J. Han. Hammerstein-wiener
nonlinear model based predictive control for relative qos performance and
resource management of software systems. In Control Engineering Practice,
pages 49–61, 2011.

[RBW06] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint
Programming (Foundations of Artificial Intelligence). Elsevier Science Inc.,
New York, NY, USA, 2006.

[RLXL10] Lei Rao, Xue Liu, Le Xie, and Wenyu Liu. Minimizing electricity cost:
Optimization of distributed internet data centers in a multi-electricity-
market environment. In INFOCOM, 29th IEEE International Conference on
Computer Communications, 15-19 March 2010, San Diego, CA, USA, pages
1145–1153, 2010.

[RMOR13] J. Rogelj, D. L. McCollum, B.C. O’Neill, and K. Riahi. 2020 emissions levels
required to limit warming to below 2 degree celcius. Nature Climate Change,
3(405–412), December 2013.

[RSRK07] S. Rivoire, M.A. Shah, P. Ranganathan, and C. Kozyrakis. Joulesort: A
balanced energy-efficiency benchmark. In ACM SIGMOD International
Conference on Management of Data,. ACM, 2007.

[RWUS12] Chuangang Ren, Di Wang, Bhuvan Urgaonkar, and Anand Sivasubra-
maniam. Carbon-aware energy capacity planning for datacenters. In
MASCOTS, pages 391–400. IEEE Computer Society, 2012.

[SCJSC16] Prateek Sharma, Lucas Chaufournier, Prashant J. Shenoy, and Tay Y.
C. Containers and virtual machines at scale: A comparative study. In
Proceedings of the 17th International Middleware Conference, Trento, Italy,
page 1, 2016.

[SDMD+16] Xiaoyu Shi, Jin Dong, Seddik M. Djouadi, Yong Feng, Xiao Ma, and Yefu
Wang. Papmsc: Power-aware performance management approach for
virtualized web servers via stochastic control. J. Grid Comput., 14(1):171–191,
2016.

174

BIBLIOGRAPHY

[Ser14] Amazon Web Service. Amazon cloudwatch, 2014. Available
online at http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-
cloudwatch.html.

[SN15] Andre Abrantes D. P. Souza and Marco A. S. Netto. Using application data
for sla-aware auto-scaling in cloud environments. CoRR, abs/1506.05443,
2015.

[SS09] Christopher Stewart and Kai Shen. Some joules are more precious than
others: Managing renewable energy in the datacenter. In In HotPower.
ACM/USENIX, 2009.

[Sta14] Aikaterini Stamou. Systematic service level agreement (sla) data manage-
ment, 10/03 2014. ID: unige:40738.

[TB15] Adel Nadjaran Toosi and Rajkumar Buyya. A fuzzy logic-based controller
for cost and energy efficient load balancing in geo-distributed data centers.
In UCC, pages 186–194. IEEE Computer Society, 2015.

[TL14] Marian Turowski and Alexander Lenk. Vertical scaling capability of
openstack - survey of guest operating systems, hypervisors, and the
cloud management platform. In Service-Oriented Computing - ICSOC 2014
Workshops - WESOA; SeMaPS, RMSOC, KASA, ISC, FOR-MOVES, CCSA
and Satellite Events, Paris, France, pages 351–362, 2014.

[UUJNS11] Rahul Urgaonkar, Bhuvan Urgaonkar, Michael J. Neely, and Anand Siva-
subramaniam. Optimal power cost management using stored energy in
data centers. In Proceedings of the ACM SIGMETRICS, International Confer-
ence on Measurement and Modeling of Computer Systems, San Jose,CA, USA,
07-11 June), pages 221–232, 2011.

[VAN08] Akshat Verma, Puneet Ahuja, and Anindya Neogi. pmapper: Power and
migration cost aware application placement in virtualized systems. In
Proc. of the 9th ACM/IFIP/USENIX Int. Conf. on Middleware, Middleware ’08,
pages 243–264, New York, NY, USA, 2008. Springer-Verlag.

[vLW10] Gregor von Laszewski and Lizhe Wang. GreenIT Service Level Agreements,
pages 77–88. Springer US, 2010.

[VLWYH09] Gregor Von Laszewski, Lizhe Wang, Andrew J. Younge, and Xi He. Power-
aware scheduling of virtual machines in dvfs-enabled clusters. In CLUSTER,
pages 1–10. IEEE Computer Society, 2009.

175

BIBLIOGRAPHY

[VRMCL09] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner.
A break in the clouds: towards a cloud definition. SIGCOMM Comput.
Commun. Rev., 39(1):50–55, 2009.

[WJSVSY07] Timothy Wood, Prashant J. Shenoy, Arun Venkataramani, and Mazin
S. Yousif. Black-box and gray-box strategies for virtual machine migration.
In 4th Symposium on Networked Systems Design and Implementation NSDI
April 11-13, Cambridge, Massachusetts, USA, 2007.

[WLDW10] Lizhe Wang, Gregor Von Laszewski, Jai Dayal, and Fugang Wang. Towards
energy aware scheduling for precedence constrained parallel tasks in a
cluster with DVFS. In 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, CCGrid, 17-20 May, Melbourne, Victoria, Australia,
pages 368–377, 2010.

[WW11] Xiaorui Wang and Yefu Wang. Coordinating power control and perfor-
mance management for virtualized server clusters. IEEE Trans. Parallel
Distrib. Syst., 22(2):245–259, 2011.

[WZL14] Huangxin Wang, Jean X. Zhang, and Fei Li. On time-sensitive revenue man-
agement and energy scheduling in green data centers. CoRR, abs/1404.4865,
2014.

[WZS05] Zhikui Wang, Xiaoyun Zhu, and Singhal Sharad. Utilization and slo-based
control for dynamic sizing of resource partitions. In Ambient Networks,
16th IFIP/IEEE International Workshop on Distributed Systems: Operations and
Management, DSOM 2005, Barcelona, Spain, pages 133–144, 2005.

[YF13] Lenar Yazdanov and Christof Fetzer. Vscaler: Autonomic virtual machine
scaling. In IEEE CLOUD, pages 212–219. IEEE, 2013.

[YM13] Jumie Yuventi and Roshan Mehdizadeh. A critical analysis of power usage
effectiveness and its use as data center energy sustainability metrics. Energy
and Buildings, 64(WP131):90 – 94, 2013.

[ZWW11] Yanwei Zhang, Yefu Wang, and Xiaorui Wang. Greenware: Greening
cloud-scale data centers to maximize the use of renewable energy. In
ACM/IFIP/USENIX 12th International Middleware Conference, Lecture Notes
in Computer Science, pages 143–164. Springer, 2011.

176

Résumé

Avec l'avènement des technologies de Cloud computing et son
adoption, les entreprises et les institutions académiques
transfèrent de plus en plus leurs calculs et leurs données vers
le Cloud. Alors que ce progrès et ce modèle simple d'accès ont
eu un impact considérable sur notre communauté scientifique et
industrielle en termes de réduction de la complexité et
augmentation des revenus, les centres de données
consomment énormément d'énergie, ce qui se traduit par des
émissions plus élevées de CO2. En réponse, de nombreux
travaux de recherche se sont focalisés sur les enjeux du
développement durable pour le Cloud à travers la réduction de
la consommation d'énergie en concevant des stratégies
d’efficacité énergétiques. Cependant, l'efficacité énergétique
dans l'infrastructure du Cloud ne suffira pas à stimuler la
réduction de l'empreinte carbone. Il est donc impératif
d'envisager une utilisation intelligente de l'énergie verte à la fois
au niveau de l'infrastructure et de l'application pour réduire
davantage l'empreinte carbone.

Depuis peu, certains fournisseurs de Cloud computing
alimentent leurs centres de données avec de l'énergie
renouvelable. Les sources d'énergie renouvelable sont très
intermittentes, ce qui crée plusieurs défis pour les gérer
efficacement. Pour surmonter ces défis, nous étudions les
options pour intégrer les différentes sources d'énergie
renouvelable de manière réaliste et proposer un Cloud energy
broker qui peut ajuster la disponibilité et la combinaison de prix
pour acheter de l'énergie verte dynamiquement sur le marché
de l'énergie et rendre les centres de données partiellement
verts. Puis, nous introduisons le concept de la virtualisation de
l'énergie verte, qui peut être vu comme une alternative au
stockage d'énergie utilisé dans les centres de données pour
éliminer le problème d'intermittence dans une certaine mesure.
Avec l'adoption du concept de virtualisation, nous maximisons
l'utilisation de l'énergie verte contrairement au stockage
d'énergie qui induit des pertes d'énergie, tout en introduisant
des Green SLA basé sur l'énergie verte pour le fournisseur de
services et les utilisateurs finaux. En utilisant des traces
réalistes et une simulation et une analyse approfondie, nous
montrons que la proposition peut fournir un système efficace,
robuste et rentable de gestion de l'énergie pour le centre de
données.

Si une gestion efficace de l'énergie en présence d'énergie verte
intermittente est nécessaire, la façon dont les applications
Cloud modernes peuvent tirer profit de la présence ou
l’absence d'énergie verte n'a pas été suffisamment étudiée.
Contrairement aux applications Batch, les applications
Interactive Cloud doivent toujours être accessibles et ne
peuvent pas être programmées à l'avance pour correspondre
au profil d'énergie verte. Par conséquent, cette thèse propose
une solution d’autoscaling adaptée à l'énergie pour exploiter les
caractéristiques internes des applications et créer une
conscience d'énergie verte dans l'application, tout en respectant
les propriétés traditionnelles de QoS. Pour cela, nous
concevons un contrôleur d'application green qui profite de la
disponibilité de l'énergie verte pour effectuer une adaptation
opportuniste dans une application gérée par un contrôleur
orienté performance. L'expérience est réalisée avec une
application réelle sur Grid5000 et les résultats montrent une
réduction significative de la consommation d'énergie par
rapport à l'approche orientée performance, tout en respectant

les attributs traditionnels de QoS.

N° d’ordre : 17ISAR 11 / D17 -11

Institut National des Sciences Appliquées de Rennes
20, Avenue des Buttes de Coësmes - CS 14315 - F-35043 Rennes Cedex
Tél : 02 23 23 82 00 – Fax : 02 23 23 83 96

Abstract

With the advent of cloud enabling technologies and adoption of
cloud computing, enterprise and academic institutions are
moving their IT workload to the cloud. Although this prolific
advancement and easy to access model have greatly impacted
our scientific and industrial community in terms of reducing
complexity and increasing revenue, data centers are consuming
enormous amount of energy, which translates into higher
carbon emission. In response, varieties of research work have
focused on environmental sustainability for Cloud Computing
paradigm through energy consumption reduction by devising
energy efficient strategies. However, energy efficiency in cloud
infrastructure alone is not going to be enough to boost carbon
footprint reduction. Therefore, it is imperative to envision of
smartly using green energy at infrastructure and application
level for further reduction of carbon footprint.

In recent years, some cloud providers are powering their data
centers with renewable energy. The characteristics of
renewable energy sources are highly intermittent which creates
several challenges to manage them efficiently. To overcome the
problem, we investigate the options and challenges to integrate
different renewable energy sources in a realistic way and
propose a Cloud energy broker, which can adjust the availability
and price combination to buy Green energy dynamically from
the energy market in advance to make a data center partially
green. Later, we introduce the concept of Virtualization of Green
Energy, which can be seen as an alternative to energy storage
used in data center to eliminate the intermittency problem to
some extent. With the adoption of virtualization concept, we
maximize the usage of green energy contrary to energy storage
which induces energy losses, while introduce Green Service
Level Agreement based on green energy for service provider
and end users. By using realistic traces and extensive
simulation and analysis, we show that, the proposal can provide
an efficient, robust and cost-effective energy management
scheme for data center.

While an efficient energy management in the presence of
intermittent green energy is necessary, how modern Cloud
applications can take advantage of the presence/absence of
green energy has not been studied with requisite effort. Unlike
Batch applications, Interactive Cloud applications have to be
always accessible and can not be scheduled in advance to
match with green energy profile. Therefore, this thesis proposes
an energy adaptive autoscaling solution to exploit applications
internal to create green energy awareness in the application,
while respecting traditional QoS properties. To elaborate, we
design green energy aware application controller that takes
advantage of green energy availability to perform opportunistic
adaptation in an application along with performance aware
application controller. Experiment is performed with real life
application at Grid5000 and results show significant reduction of
energy consumption while respecting traditional QoS attributes
compared to performance aware approach.

	Introduction
	Problem Statement
	Contribution
	Outline

	I State of the art
	Background
	Cloud Computing
	Cloud service delivery model
	Cloud deployment model

	Service Level Agreement
	Cloud Application
	Energy management problems and opportunities
	Summary

	Related work
	Greening the Cloud computing backend environment
	Green cloud through SLA specification
	Greening data center through energy management

	Discussion
	Energy and Performance aware cloud application
	Opportunistic scheduling of Batch jobs
	Cost-aware approaches in geo-distributed cloud
	Self-adaptiveness for Interactive Cloud application
	Performance aware approach

	Discussion (1)

	II Contribution
	Cloud energy broker: Green energy planning for data center
	Context and Motivation
	Energy procurement and Integration
	SLAs in different layers
	Actors
	SLAs

	Components of Cloud energy Broker
	Planning phase and life cycle
	Evaluation
	Experimental Testbed
	Forecaster Evaluation
	Optimizer Evaluation

	Discussion

	Virtualization of green energy: Better managing the energy in datacenter
	Context and Motivation
	Proposed solution
	Virtualization of green energy
	Extension of CSLA to support virtualization of green energy

	Real-time Green Energy Management
	Supply side characteristics
	Virtual energy model
	Cost Minimization Problem of Spot Green Energy
	Lyapunov Optimization
	Dynamic Algorithm
	Algorithmic solution

	Evaluation
	Experimental Testbed
	Cost function and algorithms for comparison

	Results
	Cost analysis
	SLA validation
	Impact of control parameter V
	Impact of penalty
	Robustness analysis
	Remarks

	Discussion

	Creating green-energy adaptivity awareness in SaaS application
	Context and Motivation
	Why SaaS application should participate in energy reduction?
	What makes energy reduction and adaptivity decision challenging?

	How to make interactive SaaS application adaptive to green energy
	Auto-scaler architecture
	Single metric application controllers
	Green energy aware controller
	Response time controller
	QoE based controller

	Evaluation
	Infrastructure configuration
	Application configuration
	Auto-Scaler
	Workload traces
	Results
	Response time
	Quality of experience
	Energy consumption

	Multi-criteria controller design
	Green Energy aware hybrid controller (Hybrid-green)
	QoE aware hybrid controller (Hybrid-qoe)
	Results
	Algorithm Implementation
	Response time
	Quality of experience
	Energy Consumption
	Cost analysis
	Scaled experiment

	Discussion

	Conclusion

	Towards Green energy awareness in Cloud Platform
	Motivation
	GPaaScaler architecture
	SaaS controllers
	IaaS controller
	Discussion

	Conclusion
	Conclusion
	Problem Statement Revisited
	Summary of Contributions
	Perspective
	Selection of VM types based on fine-grained resource demand
	Containerized approach
	Leveraging Microservice architecture for application adaptation
	From Cloud to Fog/Edge computing

	Appendices
	Appendix

	Bibliography

