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RESUME iii

Résume

Dans le cadre du contréle quantique bilinéaire, cette theése étudie la pos-
sibilité de retrouver 'Hamiltonien et/ou le moment dipolaire a l'aide
de mesures d’observables pour un ensemble grand de controles. Si
I'implémentation du contréle fait intervenir des bruits alors les mesures
prennent la forme de distributions de probabilité. Nous montrons qu’il
y a toujours unicité (a des phases pres) des Hamiltoniens de du moment
dipolaire retrouvés. Plusieurs modeles de bruit sont étudiés: bruit dis-
crete constant additif et multiplicatif ainsi qu'un modele de bruit dans
les phases sous forme de processus Gaussien. Les résultats théoriques

sont illustrés par des implémentations numériques.

Mots-clé:

équation Schrodinger, systéme bilinéaire, controle quantique, identifica-

tion Hamiltonien
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ABSTRACT v

Abstract

The problem of recovering the Hamiltonian and dipole moment, termed
inversion, is considered in a bilinear quantum control framework. The
process uses as inputs some measurable quantities (observables) for each
admissible control. If the implementation of the control is noisy the data
available is only in the form of probability laws of the measured observ-
able. Nevertheless it is proved that the inversion process still has unique
solutions (up to phase factors). Several models of noise are considered
including the discrete noise model, the multiplicative amplitude noise
model and a Gaussian process phase model. Both theoretical and nu-

merical results are established.

Keywords:

Schrodinger equation, bi-linear system, quantum control, inversion Hamil-

tonian
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Introduction

In this thesis, the bi-linear system we study is the Schrodinger equa-
tion. Quantum system inversion concerns learning the characteristics of
the underlying Hamiltonian by measuring suitable observables from the
responses of the system’s interaction with members of a set of applied
fields. Various aspects of inversion have been confirmed in theoretical,
numerical and experimental works. The theoretical part of the thesis
addresses the uniqueness, and the numerical part consists in the inver-
sion and recovery problem. Various noise models are considered. The
plan of the thesis is the following.

The first chapter of the thesis introduces the mathematical formulation
of the problem. We start with some examples of applications of quantum
mechanics. Then we introduce the basic elements of quantum theory:
the state vectors, the observables, and the density operators. Once these
notations are defined, we can write the Schrodinger equation. We con-
tinue by giving the noise model appearing in the interaction between
the electromagnetic field and a quantum system. We go on with a brief
introduction of the Lie group and Lie algebra, which are essential in the
study of controllability of the Schrodinger equation. The last part of this
chapter concerns the distances between the probability distributions and

Gaussian process theory which is crucial in numerical simulations.

The second chapter reproduces the content of the accepted paper [18].

In this section, the noise is modeled as a discrete random variable. We
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first improve the hypotheses of uniqueness result in [29]. Then we prove
that in presence of a discrete noise, the Hamiltonian H and the dipole
moment u of the system are unique within some phases. Numerical sim-
ulations in the case of additive noise shows that the we can recovery the

H and p from experimental data.

The third chapter reproduces the content of the accepted paper [19]. In
this chapter, we consider the amplitude noise model. The noise is sup-
posed to be multiplicative and identical for all frequencies. In contrast
to the previous chapter, the noise is supposed to be unknown. Theo-
retical results and numerical simulations show that not only the dipole
moment but also the noise distribution are unique within some factors

and phases and can be recovered.

The fourth chapter discuss the phase noise model. The noises related to
different frequencies are correlated and are modeled by Gaussian process
in the frequency space. Numerical tests are implemented for the square
exponential covariance model, the Ornstein-Uhlenbeck process and the

Brownian motion.



Résumé de la these

Ce chapitre est un résumé en francais de cette these. Le plan et
les principaux résultats de cette theése sont présentés dans ce ré-
sumé. Chapitre 1 introduit les ingrédients pour la formulation
mathématique du probleme étudié. Chapitre 2, 3 et 4 présen-
tent les résultats théoriques et numériques avec les modéles de
bruit dans les trois cas: variable aléatoire discrete, multiplica-
tive de loi inconnue sur les amplitudes et processus Gaussian

sur les phases respectivement.
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Nous présentons par la suite les principaux résultats de cette these.

0.1 Chapitre 1: formulation mathématique du prob-

leme

Le chapitre 1 consiste en une introduction aux formulations mathéma-
tiques des problemes étudiés dans cette these. On commence par donner
des exemples d’applications en mécanique quantique. Ensuite on intro-
duit les ingrédients essentiels de la mécanique quantique: les états, les
observables et les matrices de densité. On continue avec 1’équation de
Schrodinger et modélisations du bruit apparaissant lors de I'intéraction
entre un champ électromagnétique et un systeme quantique. La présen-
tation se poursuit avec une breve introduction aux algebres et groupes
de Lie qui seront invoqués lors de 1’étude des résultats de controlabilité
de I’équation de Schrodinger. A la fin on donne quelques outils concer-
nant les distances entre des lois de probabilité, ainsi que des rudiments
de la théorie des processus gaussiens, qui seront nécessaires pour la for-

mulation de nos simulations numériques.



0.2 NOTATIONS 5

0.2 Notations

Les notations suivantes sont utilsées dans les Chapitres 2, 3 et 4:

o L a0, estl'algebre de Lie généréé par les matrices My, My, - - -, Myy;

 pour tout matrice ou vecteur X, on note par X son conjugué et X*

la matrice adjointe;

e § est 'ensemble de matrices Hermitiennes. ) = {X € CNxN | X* =
X}

« Sy est la sphére unitaire de CV : Sy = {v € CV|||v|| = 1};

o W(t,H, u(-),n, V) est la solution de la équation (3), pour simplifier
la notation, on la note W(t);

e M(X), k=1,...,N sont les valeurs propres de X € $) dans l'ordre
croissant; on introduit aussi ¢ (X) les vecteurs propres de X pour
k=1,...,N (qui forment une base orthonormée de CV ) correspon-

dent aux valeurs propres A\;(X); le choix n’est pas unique;

o SU(N) est le group special unitaire de degré N, qui est I’ensemble
de matrices unitaires de tailles N x N avec determinant 1;

o su(N) est l'algebre de Lie du SU(N);
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0.3 Résultats de controlabilité

Dans la suite on introduit quelques résultats de contrélabilité.

Soit L € N* et L groupes de Lie Gy, - - - , G, de dimension finie, connexes
et compacts avec élément neutre Id. Soient Ay, B, € g, pour tout £ =

1,---, L avec g, L’algebre de Lie associée a Gy.

Definition 0.1 Soient L systémes bilinéaires:

D — (Ag+u(t)Bo) Xult), X € Gy (1)

Les systemes sont dites simultanément controlables s’il existe

Ta,.. A,By B, > 0 tel que pour tout T' > Ty, .. A, B, B, €t pour
tout Vy € Gy, £ =1,--- , L arbitairement choisis, il existe un controle
u e LY([0,T],R) avec Xo(T) =Vy, ¥4 =1,---, L.

Soient A=A @ - DAL € B gret B=B®---®Br €D, g

Theorem 0.1 La collection (1) de L systémes bilinéaires est simultané-
ment controlable si et seulement si Lag = ®F, g¢r (ou dimpLap =

SF dimggy.

Lemma 0.1 On suppose que L4, p, = g¢ pour tout { =1,--- , L. Alors
Lag # ®L, g0 si et seulement si il existent £,0' € {1,--- L}, £ # ('
et un isormorphisme f : g, — gp tels que f(Ay) = Ap et f(By) = By.

Theorem 0.2 Soit G un groupe de Lie de dimension finie, connexe,
compact et simple et g lalgébre de Lie associée. Soient A, B € g tels
que Lap = g et ai,...,ar € R sont les réels, a; # a; Vi # j. On

considere la collection de systemes en G':
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Xill) — (A + (u(t) + ar) BYXo(t),
Xy(0) = 1d.

(2)

Alors la collection du systémes (2) est simultanément controlable.
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0.4 Un exemple de systéme a nombre fini de niveaux

Pour les simulations numériques intervenant dans cette these nous allons

utiliser 1’équation de Schrodinger:

iqj@? H, u<)7 Hs lIJO) - (H + u(t>:u>\11(tv H, u(>7 K, \IIO)
\IJ(O, H, u()a Hs \IJO) = Wy,

(3)

Le choix d’opérateurs H et p suivra I'exemple introduit dans [14]:

H réel —

0

o}
—1

0

Hréel =

o -1
0 6
6 0
—-15 7

0.0083
0.0036
—0.0076  0.0357

0
—1.5
7
0

0.0833 —0.0038 —0.0087 0.0041
—0.0038 0.0647
—0.0087 0.0083
0.0041  0.0038

0.0038
—0.0076

(5)

Pour rappel, sur un tel systeme il est généralement possible de mesurer

des observables du type:

<OJ>(t) - <\Ij(07 H? u()? M, \IJO)|OJ|\IJ(07 H7 u()n M \IJO)>7 (6)

pour certains opérateurs O; € 9, j =1,---



0.5 FORMULATION D’UN PROBLEME D’IDENTIFICATION 9

0.5 Formulation d’un probleme d’identification

Lorsque dans I’équation (3) nous connaissons H, p et Wy, nous pouvons
calculer les observables (O;)(t), O; € $, j = 1,---. Le but de cette
these est la formulation et I’étude de faisabilité théorique et numérique
du probleme, dit inverse, suivant: connaissant quelques (O;)(t) pour
certains O; € § et t > 0, trouver les opérateurs p et/ou H ( et occas-
sionement Wy). Le cas sans bruit a été traité dans [29], nous allons ainsi

nous focaliser sur le cas avec bruit.
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0.6 Chapitre 2: controle perturbé par une variable aléa-

toire discrete

Dans ce chapitre, le controle est supposé perturbé par une variable aléa-
toire discrete, notée Y. On suppose que Y est indépendante du temps.

Le controle est sous la forme de u(t, e(+),Y).

Le probleme d’identification se pose dans deux cas:

o Cas (S1): 'Hamiltonien H est connu et on veut identifier le moment

dipolaire .

o Cas (S2): ni 'Hamiltonien H ni le moment dipolaire p ne sont

Cconnus.

On commence par rappeler la définition d’ensemble complet d’observables
qui commutent (ECOC).

Un ensemble d’observables O = {Oy, ..., Ox } est dit ensemble d’observables
qui commutent (EOC) si [Oy, Of] =0, Vk, £ € {1, ..., K}.

Toutes les observables dans un EOC O sont co-diagonalisables. C’est-
a~dire, il existe au moins une base orthonormée ® = {¢1,...,¢on} de
CY telle que tout O € O est diagonale dans la base ®. Un EOC est
dit ensemble complet d’observables qui commutent (ECOC) si la base
orthonormée qui diagonalise le EOC est unique a des phases et permu-

tation pres.
Le lemme suivant donne une propriété importante de ECOC.

Lemme 1 Soit O = {0y, ...,Ox} un EOC. Alors O est un ECOC si et
seulement si il existent 7y, ..., 7k € R tels que tous les valeurs propres

de Zle viOr soient de multiplicité 1.
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0.6.1 Inversion sans perturbation

Le probleme est d’abord traité dans le cas sans perturbation, c¢’est-a-dire

Y = 0. Nous améliorons ainsi les résultat dans [29].

Théoréme 1 (Cas (S1)) Soient H, p1, po € $, H diagonales, U}, W2 €
Sy. Poura=1,2 ete € L. (R, R), onnote U, (t,e) = U(t, H,e(:), tg, ¥2).
Soit O un EOC non trivial. On suppose que N > 3 et

e (H1): Lipip, = Limip, = su(N).

e (H2): tr(H) = tr(pi) = tr(u2) = 0.

o les valeurs propres de H sont de multiplicité 1.

Alors il existe T' > 0 tel que si

<O\D1(T7 6)7 lel(T7 €)> - <O\112(T7 6)7 ‘IIQ(Tv E)> (7)
Ve € L}([0,T];R), VYO € O,

alors il existent des phases (a;)Y, € RN telles que:

()i = €7 () i, V3 b < N. (8)

L’hypothese (H1) est nécessaire pour la contrdlabilité simultanée. Par
contre on peut poser 'hypotheése (H2) sans perte de généralité.
L’Hamiltonian H et le moment dipolaire i ne sont identifiables qu’aux

phases pres. Pour contre-exemple, voir Remarque 2.3, page 79.

Quand les valeurs propres de H sont non dégénérées mais O est un

ECOC, c’est un cas particulier du théoreme suivant:

Théoréme 2 (Cas (S2)) Soient i, 2, Hi, Ho € $, ¥}, V3 € Sy. Pour
a=1,2cteec L. (R, R), on note U,(t, e) = V(t, Hy, e(-), pra, ¥8). Soit
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O ={0,...,0k} un ECOC et ® = {¢1,..., 0N} une base orthonormée
qui diagonalise O. On suppose que N > 3 et que les hypothéses suivants

sont vraies:
(H.l ’).’ LiHhim = Lng,iug = 5u(N);
(H2’): tr(Hy) = tr(Hy) = tr(py) = tr(u) = 0;

Alors il existe T' > 0 tel que si

(ORU(T,€), U (T, €)) = (O Us(T, €), Uy (T, €)) (9)
Ve € L}([0,T];:R), Vk=1,--- K,

alors il existent des phases (a;)Y, € RY et 6§ € R telles que pour tout
7,k < N, soit

(L), o) = ei(o‘j_o"“)<uz¢j, Ok)
(H1¢j, dr) = €' (Hygp;, py.) (10)
<\IJ(%7 ¢]> - 62.(6_6%4)(\1!(2)7 ¢j>7

soit

(10, ) = —€" ™) (1267, )
(H1¢j, 1) = ="~ (Ha;, 61) (11)
<\Ij(1)7 ¢j> = ez (0=0y) <\II(2)7 ¢j>

Quand O n’est pas un ECOC, la preuve permet d’obtenir 'existence

d’un isomorphisme d’algebres de Lie qui envoie ¢H; en tHy et iy en

i/,LQ.
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0.6.2 Inversion en présence de perturbation de loi connue

Soit (€2, F,P) un espace de probabilité discret, V = {y, € RY{ € T C N}
un ensemble inclus dans R? (qui peut étre infini). La perturbation est

modélisée par une variable aléatoire discrete Y :  — V.

On peut supposer que pour tout y, € V, P(Y = yy) > 0 et Z = N* ou
Z=A{1,---,Lo} avec Ly € N*. On note & = P(Y = y;), Vk € Z. On
suppose que (&)¢>1 est une suite décroissante en permutant les indices.
En particulier la loi de Y est completement donnée par la connaissance

de V et des (&)¢>1 qui sont supposées connues.

Un lemme essentiel pour la démonstration du résultat d’identification

dans ce cas est le suivant:

Lemme 2 Soit J, : CN*N 5 R, a=1,2 et h: R™! — R des fonctions
analytiques réelles avec J, bornée. Soit Ay, B, € su(N), T > 0, € €
LY([0,T],R) et on note X,(t,ys,€) la solution de

% = (Ay + h(e(t), ye) Ba) Xo(t, ye, €) 12)
XCL(()) yf: 6) — Id,

pour a = 1,2 et tout £ € T.

On suppose avoir I’égalité en loi suivante:

Ly (L(Xi(T,Y,€)) = Ly (L(X2(T,Y,€)) Vee L'([0,TLR). (13)

Alors pour tout £ € T, il existent ng(¢, &1, -+ ,&n, - -+ ) et un indice k({) €
I; /i(f) < ’I”L()(E, gl) U :€n7 o ) tels que

JUX1(T,ye,€)) = Jo(Xo(T, yuiry,€)) Ve € L'([0,T],R). (14)
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Dans la suite, on suppose que la perturbation est additive. C’est-a-dire
u(t) =¢€(t) +Y.

Les résultats principaux de ce chapitre sont les théoremes suivants:

Théoréeme 3 On considere la méme situation et on suppose les mémes
hypotheéses que dans le théoréme 2 sauf la relation (9). Alors il existe

T > 0 tel que si:

ﬁy(Ok\Pl(T, €+ Y), \Ifl(T, €+ Y)> = £y<0k\If2(T, €+ Y), \IJQ(T, €+ Y)>
(15)

Ve € LY([0,T);R), Vk=1,--- K,

alors les conclusions (10) et (11) du théoréme 2 restent vraies.

Ici, le temps T doit étre assez grand. La preuve est adaptée pour tout

temps T™ supérieur au temps 7.

De méme, pour le cas (S1), on a:

Corollaire 1 On considére la méme situation et on suppose les mémes
hypotheéses que dans le théoréme 1 sauf la relation (21). Alors il existe

T > 0 tel que si:

Ey<O\Ifl(T, €+ Y), \Ifl(T, €+ Y>> = Ey<O\IJQ(T, €+ Y), \IJQ(T, €+ Y)>
(16)

Ve € L*([0,T];R), VO € O,

alors la conclusion (8) du théoréme 1 reste vraie.

Maintenant on suppose que la perturbation est multiplicative. Le con-
trole est sous la forme de u(t) = Y - €(t). On suppose en plus que la

perturbation est positive: ¥V C RT.
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Corollaire 2 On considére la méme situation et on suppose les mémes

hypotheses que dans le théoréme 2 sauf la relation (9). Alors il existe

T > 0 tel que si:

Ly Oy (T, €Y ), U1 (T,€Y)) = Ly (OpUs(T, €Y ), Us(T,eY)) (17)
Vee L'([0,T;R), Vk=1,--- K,

alors les conclusions (10) et (11) du théoreme 2 restent vraies.

0.6.3 Application numérique: perturbation additive

La simulation numérique est faite dans le cas (C2) pour le systéme défini

par les matrices (4) et (5) (voir section 0.4).

On diagonalise la matrice H¢; avec Hygo = eFréct De=Preet,

0 0 0 0 0o 1 -1 1

0 0.0365 0 0 -1 0 1 1
D = s Preal =

0 0 0.0651 0 1 -1 0 -1

0 0 0 0.0857 -1 -1 1 0

En réalité les valeurs propres de I’'Hamiltonien sont connues avec grande
précisions. Donc on peut supposer que la matrice D est connue. Alors
I'identification de H,4, revient a l'identification de la matrice de rota-

tion antihermitienne Pp4.;.

La distribution de la perturbation Y est donnée dans le tableau 2.1. On
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utilise plusieurs controéles sous la forme

E(t) = exp (—40 (t _5/2) ) Z AZ] sin[()\j(Hréel)—)\i(Hréel))t+9ij].
1<i<j<N
(18)

Ici A;(Hyeer) sont les valeurs propres de Hypge, @ < N et A;j, 6;; des
parametres de notre choix. Le temps total de simulation est T" = 3200

qui correspond a 10 périodes de la plus petite transition Ag(Heq) —
>\3(Hreal)-

Les observables choisies sont les populations O = {exe;, k < N} asso-
ciées a la base canonique {ex;k < N}. On choisit N, = 36 controles
€1(t),....en.(t) avec 6;; arbitairement dans [0,27] et A;; arbitairement

dans [0,0.0012] et la fonction & minimiser est:

N, N
j(Pv :u) - Z dW1 (‘CY(|<\I](T7 epDe_Pv € + Y7 122 qj?)? €j>‘27
i=17=1

£Y(|<\Ij(T> HTéel? € + Y, Hreal s \Ijgéel)v 6j> |2) (19)

La distance qu’on utilise ici est la 1-distance de Wasserstein.

On commence par une erreur relative de 10% sur pu et P. Apres 277

itérations, on obtient:

0 0.999 —-0.999 1.002
—0.999 0 1 0.999
Porr = :
0.999 —1 0 —1.002

—1.002 —-0.999 1.002 0
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0 4.999
4999 0
P 0008 6
—0.003 —1.5

—0.998 —0.003
6 —1.5
0 7
7 0

Ces résultats correspondent aux erreurs relatives de 0.003% sur p et

0.001% sur P. Les figures Figure 1 et Figure 2 montrent que l’algorithme

converge bien vers le systeme réel.

Figure 1:

ocourrUINUTW

o = N W

4 2 5
13.3 B 2l |
4772 1 1F I ]
41.5 - 20 7
11 Ho.5 1 i
TR R B 0'8 R Y H B [ B OI
0 0.20.40.60.8 1 0 0.20.40.60.8 1 0 0.20.40.60.8 1 0 0.20.40.60.8 1
5 5 3 3
4 B 4+ 42.5 12.5 —
3 41 3t 1. 210 1. 21 ]
2 1 5L J1.5 H d1.5 -
1 I 4 1F 103 Jo. 1
0 “I II\ | | 0 | I 8 ||\ | | | 70'8“" | | L
0 0.20.40.60.8 1 0 0.20.40.60.8 1 0 0.20.40.60.8 1 0 0.20.40.60.8 1
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4 412.5 —12.5 133 a
2 E 2 i 3
3 b 2.5 |
1.5 41.5 b 2 -
2t I - 1k _ 1 71.% - | I -
1 - — [ | B = —
0 I | | | | 0'8 | | | | 8 0'8 L | | L
0 0.20.40.60.8 1 0 0.20.40.60.8 1 1 0 0.20.40.60.8 1
4 T T T T 4 T T T 3 4 :
5 13.5 F 1, 3 3.5 ]
3 13 F 12 3 B
5 H42.5 F 4.2 2.5 -
2 - 2 41.5 2 -
5 J1.5F 473 1.5 n
i 1°01F 108 i B
8 | | | | 70'8 C 1779 0'8 il
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1 41 4 1f 8
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0 0.20.40.60.8 1 0 0.20.40.60.8 1 0 0.20.40.60.8 1 0 0.20.40.60.8 1
On figure Thistogramme des lois Ly ([(U(T,ePrest De=Preat ¢; +

Y, tireat, U3), ;) |* pour choix différents de i = 1,...,5 et j = 1,2,3,4.
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Figure 2: On figure Thistogramme des lois Ly ([(U(T, e De 17 ¢; +

Y, parr, U9), e;)|* pour choix différents de i = 1,...,5 et j = 1,2,3,4.
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0.7 Chapitre 3: perturbation multiplicative de loi in-

connue sur les amplitudes

Dans ce chapitre, les perturbations sont dans les amplitudes. On sait
que dans le laboratoire, le contréle est une superposition de plusieurs

fréquences:

u(t) = o(t) >, Aupsin(wast + 0ap), (20)

a#p
avec J(t) est une fonction Gaussian en temps et w,3 = Eg — E, les
transitions liées aux valeurs propres de H £, et Ez . Les amplitudes

Aup et les phases 6,5 sont des parametres a controler.

En réalité, quand on repete la méme expérience plusieurs fois, il y aura
des perturbations dans les amplitudes. C’est-a-dire pour chaque expéri-
ence, il y a un facteur multiplicatif sur le contrdle. La perturbation
est modélisée par une variable aléatoire Y, le controéle est sous la forme
multiplicative Y - u(t). On fait hypothese que les perturbations sur
toutes les amplitudes sont identiques. En plus on ne consideére pas de

perturbations sur les phases 0,3.

Le support de la perturbation Y est un ensemble fini V = {y,, ¢ < L} C
R. Ainsi la distribution de Y est completement définie par les probabil-
ités & = P(Y = yg).

A la différence du chapitre précédant, la distribution (&)%_; fait partie
des inconnues du probléme. IL’ensemble V est supposé donné (ce qui
n’enléve en pratique rien a la généralité du probleme, car on peut pren-

dre V aussi grand que nécessaire).
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Le théoreme suivant montre que sous certaines hypothéses, si on obtient
les méme distributions pour tous les observables dans un EOC O et tous
les controles, alors le moment dipolaire p et les probabilités (£,)&; sont

identifiables a des phases multiplicatives pres.

Théoréeme 4 Soient H, 1, o € 9, H diagonale, 11 # 0, pe # 0, Y1, Yo
deuz variables aléatoires avec le méme support V qui contient au moins
un élement non nul, W}, U3 € Sy des états initiauz et pour a = 1,2 et
u € L (Ry,R), on note: W, (t,u) = U(t, H,u(-), e, ¥2). Soit O un
EOC non trivial.

On suppose que N > 3 et les hypothéses suivants:
1. Limip, = Limip, = su(N);
2. tr(H) =tr(uy) = tr(uz) = 0;
3. les valeurs propres de H sont tous de multiplicité 1.

4. 1) ke

2= |(u2)kel* # 0 pour un couple (k,£) fizé. .

Le temps final d’observation est noté T et est supposé assez grand. Si

on a l’égalité de distributions suivante:

LUOY (T, uY?), ¥ (T,uY1))) = LUOU(T,uYs), ¥o(T,uYs))) (21)
vu e LY([0,T];R), VO € O,

alors il existent des phases (a;)Y; € RN telles que

(Ml)]k = :Izei(ajiak)(/’w)jk’u \V/], k S N7

(22)
]P(Yl = yg) = ]P)(YVQ = :Eyg) A4 S L.

On remarque que si le couple (Y, ) est une solution, alors toutes les
couples (Y/A, A\i) sont des solutions.
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Plusieurs simulations numériques sont faites avec le systéme défini par
les matrices (4) et (5).

On suppose que I'Hamiltonien H est connu, donc les observables O =
{01, ...,Ok} sont les projections {|e1){e1], ... , |en){en|} sur une base
propre de H. Ici |e;) est le j¢ vecteur propre de H.

Les expériences sont répétés pour plusieurs controles uj,...,uy, et on
minimise le critéere défini par

u

-

N L
T (1, (&) izy; (wi)il) = log { > LZ &0 (W (T H syt 1) ;)2
] 1

i=1j=1 =

} . (23)

On commence par un choix initial ¥ et une distribution initiale £ qui

=

I—|:

L
Z érealé 0
k=1 k ‘(lI'(TvHvui'ykaﬂrealvlpl)’eﬁ|2

est la loi uniforme. L’itération n > 1 consiste en plusieurs étapes:

1. On choisit arbitairement N, controles u, i =1,..., N, ;

2. on minimise & — J ("1, &; (u;)Y4) et on note par £ le minimiseur;

3. on minimise g — J (1, €% (u;)) and on note par x” un min-
Imiseur.

Pour les illustrations numériques on prend N, = 36; les amplitudes
(Anp) sont uniformément prises dans [0,0.0012] et les phases 6,3 dans
[0, 27].

Les valeurs intiales de p sont:
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0 3.6 —-131 0

376 0 351 —178
0
_ 24
Yo lis 351 00 672 | (24
0 —178 672 0
0 10 1 1
10 0 10 1
0
- , 25
o711 10 0 10 (25)
1110 0
0 748 —051 0
748 0 883 —0.87
py = - (26)
—0.51 883 0 587

0 —0.87 5.87 0

Les observables sont des projections {|e1)(e1], |e2)(eal, |es){es]|, |es){es|}
sur les vecteurs propres:

le1) = (0.0845 —0.1313 0.9651 02101) :

le2) = (—0.1305 —0.0856 —0.2103 09651)T,
les) = (0.2118 0.9647 0.0838 01325) :

les) = (0.9649 —0.2118 —0.1314 00830) . (27)

On pose le temps final T' = 3200 et on suppose que |(firea)12]* = 25 est
connu.

Le support de la distribution Y est connu et on le note [y,,,yas]. On
prend y,, = 0.5 et ypr = 1.5. On discrétise le support avec L = 51 points
equidistants y, = y,, +({—1)- =4 (=1, ..., L. Plusieurs distributions
sont testées:
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o Y7l — V9 ]a distribution Gaussienne centrée en 1 avec la variance
0.0025 (voir équation (3.17) dans section 3.3.2);

o Yreal — Y€ ]a distribution exponentielle déplacée (voir équation

(3.18) dans section 3.3.2);

o Y7eal = Y? ]a distribution bi-modale qui est la somme des deux

distributions Gaussiennes: la premiere est centrée en 0.8 avec la

variance 0.0025 et la seconde est centrée en 1.2 avec la variance
0.0049 (voir équation (3.19) dans section 3.3.2).

Apres 10 itérations, on obtient:

1120 — freatll oo = 5107, k0 =

HU;O - :urealHoo = 10_4: :uéo =

HM%O - ,urealHoo =6- 10_57 MI%O =

0 5! -1 0
5 0 5.99995 —1.5
—1 5.99995 0 6.99999 |
0 —1.5 6.99999 0
(28)
0 5 -1 0
5 0 6 —1.5
o (29)
-1 6 0 6.9999
0 —1.5 6.9999 0
0 5! -1 0
5 0 0.99999 —1.5
—1 5.99999 0 6.99994
0 =15 6.99994 0

(30)
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Les figures 3.1,3.2, 3.3 et les tableaux 3.1 et 3.2 présentent la conver-
gence de l'algorithme.

La simulation est aussi faite dans le cas ot on utilise juste une observable
qui est la projection |es)(es|. Le choix initial est

0 10 1 1
10 0 10 1
0
- , 31
Fo=11 10 0 10 (31)
1 1 10 0

La distribution Y7¢* testée est la distribution bimodale. Apres 5,10 et
15 itérations, le moment dipolaire obtenu ont respectivement les erreurs
L? de 0.17246, 0.03736 et 4.5652 - 10~*. La vitesse de convergence est
moins rapide que dans le cas précédent.
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0.8 Chapitre 4: perturbation sur les phases

Dans ce chapitre nous considérons un modele de bruit de loi paramétrique
(avec parametre connu). Le bruit est cette fois-ci une fonction dépen-

dante de la fréquence (en particulier donc pas constant).

On commence par écrire le contréle comme une intégrale sur les fréquences:

u(t) = S(t) [ _ A(w)cos(wt + 0(w))dw. (32)

weD

Ici D est une partie bornée de R qui répresente I’ensemble des fréquences
possibles. S(t) est une enveloppe Gaussienne dans le temps. Les am-
plitudes A(w) : D — Ry et les phases 6(w) : D — [0,27] sont les
parametres nominaux du contrdle. Les amplitudes A doivent étre inté-

grable sur D.

Dans ce chapitre, on considere des perturbations dans les phases qui sont
modélisées comme un processus Gaussien indexé par les frequences. On

introduit le modele suivant:

u(t) = S(t)/ A(w)cos(wt + 0(w) + 66,,). (33)

weD

Les perturbations dans les phases sont (66,,)uep-

En pratique, les physiciens utilisent un nombre fini de frequences pour
construire le controle. Notons par N, ce nombre. Alors une discrétisa-
tion de I’équation (33) est:

u(t) = S(t) %Alcos(wlt + 6, + d6;), (34)

avec A; = A(wy), 0; = 0(w;) et §6; est la variable aléatoire 66,
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L’espérance de u(t) est E(u(t)) = aug(t) avec ug(t) = S(t) S Ajcos(wit+

0;) le controle sans perturbation et o = 35 ,(—1)" (22,2; 2k,

Les observables qu’on utilise dans ce chapitre sont les projections sur
une base propre de H: O = {0Oq,...,On} = {l|e1){e1], ... , |len){en|}
avec |e;) le i€ vecteur propre de H.

Les fréquences (w;)1<;<n, sont choisies comme les transitions des valeurs

propres de H: |\, — Aj|, avec (\i)1<i<n les valeurs propres de H. En
N(N<1)

particulier, N, = ==

Le processus Gaussien (00,,),ep est simulé par N, réalisations aléatoires.

La distribution du controéle simulé u(t) est donc

N 1

z_: ﬁ Zl “ Ajcos(wit+60,400; 1)° (35)
ot (60;x)1<1<n, 1<k<n, € RN sont N, réalisations.

On minimise un critére construit avec des controles (u/)1<;j<n, et (@/)1<j<n,
defini par N, couples d’amplitudes différentes (A7 )1<J< N,.1<I<N, et phases
différentes (Hl )1§j§Nu,1§l§Nw .

Chaque u/ est simulé avec N, réalisations (66, )1<i<n,1<k<n, € RNoVr:

N, 1
ﬁ“j(t) - ];::1 FT(SS(t) 1 Al cos(wit+0]+56] ) (36)

Les @ (t) sont définis par:
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: No . .
@ (t) = S(t) Y. Alcos(wit + 6] + 56;). (37)
1=0

La critére a minimiser est:

‘ . N .
j(uja 1y ﬂju ,uTeal) = Z W1(|<\IJ(T7 H7 u]7 22 \IJO)a €i>‘27
=1

|<\IJ(T7 Ha ajaﬂrealuw0)aei>|2); (38)
Sa moyenne est:
~ . . 1 Nu ) _
j((u])lﬁjﬁNun Hs (ﬂ])lgjgNw Hreal) = N j(uj, L, "&j, /«Lreal)- (39)

Plusieurs simulations numériques sont faites avec le systeme défini par
les matrices (4) et (5).

On choisit N, = 36. Les amplitudes sont prises uniformément dans
[0,0.0012] et les phases dans [0, 27r]. On commence par

0 51295 —0.9762 0.0962
.| 51295 0 55100 —1.6434
po= , (40)
—0.9762  5.5100 0 7.6117

0.0962 —1.6434 7.6117 0

qui correspond & une erreur relative de 8.7%.

On choisit la covariance de double exponentiel (voir exemple 1.3) pour

les perturbations:
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("-’l*wl/)Q

El,l' = 0'26_ B (41)

avec J un parametre réel. On pose o = 0.1.

La valeur [ doit étre bien calibrée pour que les perturbations soient
corrélées mais pas trop corrélées. Les figures Figure 4.1, Figure 4.2 et

Figure 4.3 montrent que 5 = 0.1 est un bon choix.

On pose N, = 1000. Apres 50 itérations, on obtient:

0 49781 —0.9307 —0.0063
o | 49781 0 59568 —1.5189
—0.9307 59568 0 T.0682
—0.0063 —1.5189 7.0682 0

qui correspond & une erreur relative de 1%.

Maintenant on utilise le modele de matrice de covariance exponentielle
(voir exemple 1.4):

“’Jl*wll‘

21’1/20'26_ L (42)

Un bon candidat de " est 5/ = 2 (voir Figure 4.8). Cette fois IV, = 100.
Apres 60 itérations, on obtient

0 50641 —1.0585 0.0068
o | 5:0641 0 59642 —1.5139
~1.0585 59642 0 7.0294
0.0068 —1.5139 7.0294 0
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qui corresponds a une erreur relative de 0.91%.

Finalement on suppose que la perturbation est un mouvement Brownien

dans I'espace des fréquences avec

Yoy = o min(wy, wy). (43)

On choisit N, = 100. Apres 60 itérations, on obtient

0 50043 —1.0138 0

o | 50043 0 60078 —1.5015

~1.0138 6.0078 0  6.9834
0  —15015 69834 0

qui corresponds & une erreur relative de 0.24%.
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Chapter 1

Mathematical formulation of quantum

mechanics

The quantum theory is widely used in various domains, in-
cluding the laser and NMR technology. To give a mathematical
formulation of the quantum theory, we introduce the notions of
states, observables and density matrices. The main equation
we consider in this thesis is the Schrodinger equation. To study
the controllability of a Schriodinger equation, the theory of Lie
group and Lie algebra is necessary. Some tools concerning the
distance between the probability distributions and several basic
elements in the Gaussian process theory which are useful in the

numerical simulation are also introduced.
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1.1 Physical backgrounds

Today, classical physics is still used in much of modern science and tech-
nology. However classical physics can only explains energy and matter
on a scale familiar to human experience. In the end of 19th century sci-
entists discovered phenomena in both macro (the large) and micro (the
small) worlds that classical physics could not explain. These limitations
led to the development of quantum mechanics.

In contrast to the classical physics, quantum theory is invoked to de-
scribe all phenomena from the very small to the very large, covering
about sixty orders of magnitude in dimensions. Between these extremes,

we find all the objects of the world around us.

In the following, we give some examples of the applications of quantum
theory. We cite the presentation in [23] and [33].

1.1.1 Applications of quantum mechanics

Quantum theory as a unifying description of Nature As a proof of
the success of quantum theory stands, the unification of three out of the
four fundamental interactions — the electromagnetic, strong and weak
forces — in the Standard Model, which reveals the deep symmetries of
Nature. These are also the promising attempts to include gravitation in
a unified theory of strings. And all physicists will certainly emphasize
the universality of physics, a remarkable consequence of quantum laws.
It is the quantum theory which explains the radiation spectrum of hydro-
gen in our laboratory lamps, but also in intergalactic space. Quantum
chemistry applies to the reactions in laboratory test tubes, but also to
the processes in the interstellar dust where molecules are formed and
destroyed, producing radiation detected by our telescopes after traveling
billions of years through space. Let us finally evoke cosmology and the

remarkable link between the infinitely small and large scales, underlined
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by the quantum theory. It emphasizes the similarity between the phe-
nomena which occurred at the origin of the Universe, in a medium of
inconcetvably large temperature and density, and those which happen in
the violent collisions between particles studied by large accelerators on
Earth.

The laser and the optical revolution The laser is an example of an-
other invention based on a quantum idea. Light had been forever made
of random waves, difficult to direct, to focus or to force to oscillate at
a well-defined frequency. The laser has changed this state of affairs and
has allowed us to tame radiation by exploiting the properties of atomic
stimulated emission, discovered by Finstein at the dawn of the quantum
era. Lasers now have a huge variety of uses, from the very mundane to
the most sophisticated. Laser light traveling through fibers can transport
huge amounts of information over very long distances. Laser beams are
used to print and read out information on compact disks, with applica-

tions for the reproduction of sounds, pictures and mouvies.

In scientific research, the flexible properties of laser beams have countless
applications, some of which are essential to realize the manipulations of
single particles which will be our main topic here. Experiments exploit
their high intensity to study non-linear optical processes. The extreme
monochromaticity of lasers and their time coherence is used for high-
resolution spectroscopy of atoms and molecules. Combining monochro-
maticity and high intensity has proved essential to trap and cool atoms to
extremely low temperatures. Laser pulses of femtosecond duration probe
very fast processes in molecules and solids and study chemical reactions

in real time.

Nuclear magnetic resonance and medical diagnosis Nuclear Magnetic
Resonance (NMR) is another technology based on quantum science which

nowadays plays a major role in scientific research and in medical diagno-
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sis. The nuclei of a variety of atoms carry magnetic moments attached to
their intrinsic angular momentum or spin. The origin of this magnetism
1s fundamentally quantum. The quantization of the spin orientation in
space, the fact that its projection on any direction can take only discrete
values, has been one of the smoking guns of the quantum theory, forcing
physicists to renounce their classical views. The evolution of spins in
magnetic fields, both static and time-modulated, requires a quantum ap-
proach to be understood in depth. In a solid or liqguid sample, the spins
are affected by their magnetic environment and their evolution bears wit-

ness of their surroundings.

In a typical NMR experiment, one immerses the sample in a large mag-
netic field which superimposes its effects on the local microscopic field.
One furthermore applies to the sample sequences of tailored radio-frequency
pulses. These pulses set the nuclei in gyration around the magnetic field
and the dance of the spins is detected through the magnetic flux they
induce in pick-up coils surrounding the sample. A huge amount of in-
formation is gained on the medium, on the local density of spins and on

their environment.

This stimple idea has been carried further in quantum information physics.
By performing complex NMR experiments on liquid samples made of or-
ganic molecules, simple quantum computing operations have been achieved.
The spins of these molecules are manipulated by complex pulse sequences,
according to techniques originally developed by chemists, biologists and
medical doctors in NMR and MRI. In these experiments, a huge number
of molecules contribute to the signal. The situation is thus very different
from the manipulation of the simple quantum systems we will be consid-
ering. Some of these methods do however apply. We will see that the
atoms and ions which are individually manipulated in the modern real-
izations of thought experiments are also two-level spin-like systems and

that one applies to them sequences of pulses similar to those invented
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for NMR physics.
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1.2 Basic elements of quantum theory

In this section we present the basic elements of quantum theory for

finite-dimensional systems. This section is adapted from [3] and [§].

A quantum system Q can be modeled by a complex Hilbert space H
whose dimension is decided by the amount of variables of the system we

try to describe which is in general infinite.

However, in order to avoid technical complications, infinite dimensional
quantum systems are often approached by finite dimensional quantum
systems H = HY ~ CV. The advantage of finite dimensional systems is
that many results of Lie algebra are established in this case, which are
essential for the theory of controllability.

1.2.1 State vectors

In quantum mechanics, we describe the state in a closed quantum sys-
tem by a state vector (also called wave function) ¢ in a Hilbert space
‘H, in which the Hermitian inner product between two vectors ¢ and v
is defined as (¢[1). Sometimes we use also the notation |¢) to represent
the state vector in order to distinguish with its dual vector (¥|. The
norm of a vector ¢ is now given by ||| = \/(¥|). The state vector
should have norm 1.

Given an orthonormal basis of H: {|e1),...,|en)}, the state vector |¢) of
the system with respect to this basis can be written as [¢) = ¥, ¢jle;),
where c1,-- -, cy are complex numbers, then
e
W) =2 lgl” =1, (1.1)

Jj=1
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and |c;|? is called the population of the j-th eigenstate.

Geometrically, equation (1.1) means that the state vector ¢ is living on
the unit sphere Sy of dimension N of the Hilbert space H of dimension
N: ¢y eSSy CH.

1.2.2 Observables

The measurable quantities (energy, position, spin,... ), or observables of
the closed physical system are formulated mathematically by Hermitian

operators on the Hilbert space H.

Let aq,--- ,any € R be the eigenvalues of an observable O: O = Zévzl o115,
where {II;} are the corresponding orthogonal projectors. The eigenval-
ues {o;} are real numbers as O is self-adjoint. They represent the possi-
ble outcomes of a measurement of O. The projections I11;, which play the
role of quantum events, form a resolution of the identity, which means
Hkﬂj = 5ijj and > Hj =1.

1.2.3 Density operators

Density operator is introduced to describe the state of statistical ensem-
bles. With a single matrix, all possible states of a quantum system are

summarized.

For a statistical set of states [y;) € H, i = 1,2,--- ,m with probabili-
ties p; respectively, the associated quantum density operator (also called

density matriz) is defined by
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N _ ¥l
p=m PP Po =y 1-2)

where Py, is the orthogonal projector on the state |1;).

In the particular case of a single state |¢)), p = Py, is a projector, and

the quantum system is called in a pure state.

By definition of the density operator, it is a self-adjoint and positive-
definite matrix. Thus the eigenvalues are positive which is coherent with
the fact that p; are some probabilities. The conservation of the total
probability takes the form

tr (p) = épjtl“ (Pj) = épj =1 (1.3)

One of the most important property of density operators is the following

inequality

tr (p°) < tr(p) = 1. (1.4)

The quantity tr (p?) is called the purity of p. The equality sign holds if
and only if the system is in a pure state. In this case the density matrix
p does not change when we replace |¢0) by e?|y)) with 6 € [0,27] an
arbitrary phase. As a result, we can therefore say that the set of pure
states is isomorphic to the projective Hilbert space, which is the set of

rays in H.

Alternatively, let us denote the set of all density matrices by S(#). This
set is convex which means that for any two density matrices p; and po,
the convex linear combination p = Ap; + (1 — X)p2 with X € [0, 1] is also
a density matrix. More precisely, if p is a pure state, then p; = py = p.
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When tr (p) < 1, the ensemble is called in a mized state.

While every statistical set of states together with the associated prob-
abilities corresponds a unique p, the same density operator can be ob-
tained from different sets. For example, p = %I can be obtained by any

orthonormal basis of H with probabilities p; = %, j=1---,m.

1.2.4 Probabilities and expectations

Recall that the state of a system is described by a state vector |¢).
For some observable O = 7', a;ll;, the probability of observing the

eigenvalue o as an outcome of the observable is computed as

plag) = (P|I;]4). (1.5)

Thus p(«;) is real and positive, and such that

f: plag) = (| X IL) = ($ly) = 1. (1.6)

In the case of density operators, given a pure state p, the probability of

obtaining «; as an outcome of O is:

p(ay) = tr(plly); (1.7)

In quantum theory, a state vector is changed after a measurement. It

becomes

)
W)= eI (18)
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where [¢))o—q, denotes the transformed state vector on recording the

outcome ¢ in a measurement of the observable O.

For some density operators p in a pure state, the conditional density

operator after the outcome «; has been recorded becomes

1;pll;
ploca, = 2255 (1.9)
tr(plL;)
On mixed states (1.7) still holds by linearity of the trace function, and
the validity of (1.9) is extended to this generic case.
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1.3 The Schrodinger equation

The time evolution of the state vector i of a closed system can be

described by the autonomous linear ordinary differential equation:

Wy =—iHyp, €Sy
Y»(0) = 1o,

(1.10)

called the Schrodinger equation for the state vector, where Hj is the
Hamiltonian of the system. To simplify, fix the Plank constant A to 1.

An equivalent description is the von Neumann equation, which gives the

time evolution of the density matrix rho:

hp = —1|Hy,
p [Ho, p] (1.11)
p(0) = po,
The real eigenvalues e;, 7 = 1,..., N of Hy are called the energy levels

of the quantum system

When the quantum system is coupled with one or more electromagnetic
fields, it can be described by:

Y =—i(Ho+uH)p, €Sy
¢(O) — ¢07

(1.12)

where the self-adjoint Hamiltonian operators H; contain the couplings
between the energy levels of the free Hamiltonian Hy, and u;, the am-

plitude of the interactions, represent our control parameters, u; C R.

Such a model is called "bi-linear" because both the control and the state

enter linearly but the control multiplies the state. Further nonlinearities
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in the control can also be proposed, see for instance [12].

We shall see that one control function is generically sufficient to ensure

controllability. Hence, we consider from now on the simple case:

Y = —i(Hoy + up) (1.13)

The operator p is called the dipole moment of the system.

1.3.1 Unitary propagator

The complex sphere Sy, representing pure states, is a homogeneous
space of the Lie group U(N) = {U € GL(N,C) | UUT = U'U = I}
as well as of its proper subgroup SU(N) = U(N)/U(1), in which the
global phase factor has been eliminated.

The Schrodinger equation can therefore be lifted to the Lie group SU(N),
obtaining in correspondence of (1.13) the right invariant matrix ODE:

U = —i(Hy +up)U, U € SU(N) 114)

called the Schrodinger equation for the unitary propagator.

For the system (1.14), the total Hamiltonian H(t,u) = Hy + u(t)H; is
in general time-varying. The solution of (1.14) is therefore given by a

formal, time-ordered exponential

U(t) = Texp <—z’ /OtH(s,u)ds> : (1.15)
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Consequently, for (1.13) we have: ¢(t) = U(t)g = Texp (—i JEH (s, u)ds) Yp.

The Lie algebras of U(N) and SU(N) are, respectively, u(N) = {A €
CNVN | A* = — A} and su(N) = {A € u(N) | tr(A) = 0}.

Recall that su(N) are semi-simple compact Lie algebras, meaning that

the corresponding Killing forms are negative definite (see Section 1.5).
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1.4 Noise models

Noise in the laser pulse originates from different sources. A general form

of the laser pulse in the presence of noise can be expressed as:

0000 (1) = S(¢) /DA(w)-(1+(5A(w))cos(w(1+(5w)(t—T/2)+9(w)+59(w))dw.
(1.16)

where D is the set of possible frequencies.

A discretization of equation (1.16) is given by

N
040001y — () S A+ (14 8A;))cos(wi(1 + 0w (t — T/2) + 6, + 66,).
=1
(1.17)
Here S(t) is a global overall time envelope (for instance of Gaussian
form); A; is the nominal amplitude and §A; is the relative shift in the
pulse amplitude at a given frequency; w; is the nominal pulse frequency

and dw; is the relative shift in pulse frequency; 6; is the nominal pulse
phase and 06; is the absolute shift in pulse phase induced by noise.

For experimental results, please refer to [40)].
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1.5 Lie Algebras

In this section we introduce briefly the basic properties of the Lie alge-
bras. More details are given in [22], Chapter 3.

Definition 1.1 A finite-dimensional differentiable manifold G which is
also a group is said to be a Lie group if the group operations of mul-
tiplication and inversion are smooth maps, which s equivalent to the
requirement that the mapping from G x G to G given by (z,y) — z ™'y

1S a smooth mapping.

Definition 1.2 A finite-dimensional real or complex Lie algebra is a
finite-dimensional real or complex vector space g, together with a bi-
nary operation |-,-] from g x g into g, called the Lie bracket satisfying
the following properties:

1. [-,] is bilinear.

2. [X,Y]=—-1Y,X] forall X,Y € g.

3. X, Y, Z)|+ Y, [Z, X]]+ [Z,[X,Y]] =0 for all XY, Z € g.
Although the two definitions seem at first unrelated, in fact to any Lie

group one can associate a Lie algebra which is isomorphic to the tangent

space of the manifold isomorphism.

Proposition 1.1 The Lie algebra g of a matriz Lie group G is a real

Lie algebra.

Definition 1.3 Let g be a Lie algebra.Then the linear mapping ad :
g — End(g) given by X — adX with

adX (Y) = [X,Y].
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s a representation of a Lie algebra and is called the adjoint represen-

tation of the algebra.

The Killing form of a Lie algebra is

K(X,Y) = tr(ad(X)ad(Y)). (1.18)

It allows to give a simple characterization of compact Lie groups: a

compact Lie group corresponds to a negative definite Killing form.



1.6 CONTROLLABILITY 47

1.6 Controllability

Recall that a quantum system can be described by a finite-dimensional
bilinear ODE

Y = (A + Bu(t)), (1.19)

where 1) represents the state vector varying on the unit sphere Sy. The
matrices A, B are in the Lie algebra of skew-Hermitian matrices of

dimension n.
The solution of (1.19) at time ¢, ¢(¢), with initial condition vy, is given
by:

»(t) = X(t)to, (1.20)

where X (¢) is the solution at time ¢ of the equation
X(t) = (A + Bu(t)) X (1), (1.21)

with initial condition X (0) = I,. The matrix X (¢) varies on the Lie
group of special unitary matrices SU(n) or the Lie group of unitary
matrices U(n) according to whether or not the matrices A and B have

all zero trace.

The following three types of controllability are introduced in [2].

Definition 1.4 (Operator-Controllability)

The system (1.21) is operator-controllable if every desired unitary (or
special unitary) operation on the state can be performed using an ap-
propriate control field. This means that for any X; € U(n) (or SU(n))
there exists an admissible control to drive the state X in (1.21) from
the Identity to Xy.

Definition 1.5 (Pure-State-Controllability)

The system is pure-state-controllable if for every pair of initial and
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final states, 1o and vy in SE there exists control function u and

a time t > 0 such that the solution of (1.19) at time t, with initial
condition 1y, is ¥ (t) = 1.

Definition 1.6 (Density-Matrix-Controllability)
The system is density matrixz controllable if, for each pair of unitarily
equivalent density matrices py and py (there exists a matriz U € U(n)

such that UpU* = ps), there exists a control uy, us, ..., Uy, and a time
t > 0, such that the solution of (1.21) at time t, X(t), satisfies

X ()p1 X" (t) = po. (1.22)

The controllability can be investigated with tools coming from the theory

of Lie groupsm, we refer to Chapter 2 and Chpter 3 for details.
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1.7 Distance between two distributions

Definition 1.7 A Polish space X is a topological space which is sepa-

rable and completely metrizable.

Definition 1.8 Let (X, u) and (Y, v) be two probability spaces. Cou-
pling p and v means constructing two random variables X and Y on
some probability space (2,P), such that law(X) = p, law(Y) = v. The
couple (X,Y') is called a coupling of (u,v).

In the formulation of measure theory, coupling ¢ and v means construct-
ing a measure m on X x ) such that m admits 1 and v as marginals on
X and Y respectively. We denote by II(u,v) the set of all couplings 7

between p and v.

In the following, we will introduce several usual distances used in the

measure theory.

Definition 1.9 (Wasserstein distances)

Let (x,d) be a Polish metric space, and let p € [1,00). Let p and v
two probability measures on x. The Wasserstein distance of order p
between p and v is defined by

= ' p 1/p
Wy (i, v) (wehl%fb,m | d(z,y)dn (@, y)) (1.23)

= inf{[E(d(X, Y7, law(X) = p, law(Y) = v}.

Remark 1.1 (Kantorovich - Rubinstein distance)
The Wasserstein distance of order 1 is also called the Kantorovich -

Rubinstein distance.
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Definition 1.10 (Kolmogorov distance)
Let the sample space 2 = R. Let ', G be two distribution functions.
The Kolmogorov distance between F and G is defined by

di(F,G) = sup |F(x) — G(z)| (1.24)

z€R
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1.8 Gaussian process

In probability theory and statistics, a Gaussian process is a statistical
model where observations occur in a continuous domain, for example,
time or space. In a Gaussian process, every point in some continu-
ous input space is associated with a Gaussian distributed random vari-
able. Moreover, every finite collection of those random variables has a
multivariate normal distribution. We introduce here only some notions
relative to Gaussian processes and some examples of Gaussian process

mentioned in [32].

Definition 1.11 (Multivariate Gaussian distribution)

Let X = (X1, -+, Xn) be a random vector defined on the probability
space (2, F,P). X is said to have the multivariate Gaussian distri-
bution if and only if every linear combination of its components is
normally distributed. That is, for any constant vector a € RY, the
random variable Y = (a, X) = >N, a1 X}, has a Gaussian distribu-

tion.

An equivalent definition using the characteristic function is:

Proposition 1.2 If a random vector X = (X1, -+, Xy) has the mul-
tivariate Gausstan distribution, then the characteristic function of X

18:

by : € € RY 5 (HEEXD—3(EKxE) (1.25)

where Kx is the covariance matriz of X, which is a symmetric, non-

negative definite N x N matriz.
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Theorem 1.1 Let X = (X, -+, Xy) be a multivariate Gaussian ran-
dom wvariable. Its components are independent if and only if they are

not correlated.

Definition 1.12 (Gaussian process)

Let (Xt)ter be a family of random variables defined on the same prob-
ability space indexed by a set T'. The process X is said to be Gaussian
if for any finite subset F C T, the random vector Xp = (Xi)ier has a

multivariate Gaussian distribution.

If X is a Gaussian process, then according to the Proposition 1.2, its law
is completely characterized by its mean value function ey : t — E[X{]
and its covariance operator Kx : (s,t) — cov(Xs, Xy).

1.8.1 Regularity of random process

The continuity and differentiability of random process is very important
in practical applications. The continuity of a random process is related
to the convergence of sequences (X; )i er of random variables. In the

following, we will introduce three types of continuity.

Definition 1.13 (Sample path continuity)

The random process (X¢)ier indezed by a set T has continuous sample
paths if

P(X, — X, "3 0,vteT)=1.
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Definition 1.14 (Almost sure continuity)

The random process (Xi)ier indezed by a set T is called almost surely
continuous at the point t € T if for every sequence (t,)nen for which

|t, —t| = 0 asn—0,

n—-+00

The random process (Xy)ier is called almost surely continuous on T if

it is almost surely continuous at allt € T.

Definition 1.15 (Mean square continuity)

The random process (Xy)ier indexed by a set T is called continuous in
mean square (m.s. continuous) at the pointt € T if for every sequence

(tn)nen for which |t, —t| — 0 as n — 0,

E(|X, — X% "25°0.

The random process (Xi)ier is called continuous in mean square (m.s.

continuous) on T if it is mean square continuous at allt € T.

Sample path continuity means there are no discontinuities within the
whole domain T, while almost sure continuity allows discontinuities.
Obviously, sample path continuity is stronger than almost sure continu-
ity. Generally, m.s. continuity does not imply sample path continuity.
Nor does sample path continuity imply m.s. continuity. Mean square
continuity implies the continuity in probability. Let us recall the defini-

tion.
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Definition 1.16 (Continuity in probability)

The random process (Xi)ier indexed by a set T is called continuous
in probability if for every sequence (t,)nen for which |t, —t| — 0 as
n — 0 and for all e > 0,

n—-+00

In fact, a random process (X;)ier is continuous in mean square at ¢ if

and only if its covariance function Kx is continuous at the point (¢,t).

Mean square differentiability is defined in the similar way as the follow-

ing.

Definition 1.17 (Mean square differentiability)

The random process (X¢)ier indexed by a set T is called differentiable
at the point t € T if there exists

. Xy — X
X, = lim 25— 21

r—0 r

The random process (Xi)ier 1s called differentiable in the mean square
sense (m.s. differentiable) if

Xior — X
lim B[ =24

r—0

— X;I>=o0. (1.26)

The m.s. differentiability of a random process is also related to the dif-
ferentiability of its covariance function. This definition can be extended
to higher orders.
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Further details including the demonstrations and examples are discussed
in Chapter 2 of [1].

1.8.2 Covariance Functions

A covariance function (s,t) — Kx(s,t) is said to be stationary if it
depends only on t — s. Thus it is invariant to transitions. If in addi-
tion the covariance functions is a function depends only on r = |t — 5],
then it is called isotropic. Some usual isotropic covariance functions are
introduced in Chapter 4 of [32].

Example 1.1 (The Matérn class covariance function)

The Matérn class covariance function is defined by

2= \/2ur 2ur
Ktatern () = 02 Yk , 1.27
Matern( ) F(V)( / ) I/( / ) ( )
where k, is a modified Bessel function and o, v, ¢ are positive param-
eters.
When v = %, we obtain the exponential covariance function; when

v — 400, we obtain the squared exponential covariance function. The

process associated is n-times m.s. differentiable if and only if v > k.

Figure 1.1 and Figure 1.2 show the Matérn covariance function and

the process associated with different parameter v.

Example 1.2 (v-Exponential Covariance Function)
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Figure 1.1: Matérn covariance functions for £ = 1, 0> = 1 and different

v: blue for v = %, red for v = %, cyan for v = g and green
for v — +o0.

e
=2

Figure 1.2: Realizations of the Gaussian process with Matérn covari-

ance functions for £ = 1, 0> = 1 and different v: blue
for v = %, red for v = %, cyan for v = 2 and green for

2
VvV — +00.
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The v-exponential family covariance function is given by

L(r)y =% D" for ~y€]0,2] (1.28)

where ¢ and o are positive parameters.

Although it is similar to the Matérn class, it is less flexible. The cor-

responding process is not m.s. differentiable except when ~v = 2.

Figure 1.5 and Figure 1.4 show the y-exponential covariance function

and the process associated with different parameter .

1=
\
\

0 0.5 1 1.5 2 2.5 3

0

Figure 1.3: y-exponential covariance functions for £ = 1, 0> = 1 and
different ~: blue for v = 1, red for v = % and green for
v = 2.

Example 1.3 (Squared exponential covariance function)

The squared exponential covariance function is defined by
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4 2 0 2 s
Figure 1.4: Realizations of the Gaussian process for y-exponential co-

variance functions with ¢ = 1, 0> = 1 and different ~: blue
for v =1, red for v = % and green for v = 2.

7'2
Ksp(r) = o%e 22 (1.29)
with parameter ¢ > 0 defining the characteristic length-scale, and o?

a positive parameter.

It is a particular case of the y-exponential covariance function with
~v = 2. It is also the limit for v — 400 of the Matérn class covariance
function. The corresponding process is infinitely mean square differ-
entiable, which means that the Gaussian process with this covariance
function has mean square derivatives of all orders and is thus very

smooth. This is a model widely used in the kernel machines field.

Figure 1.5, Figure 1.6, Figure 1.7 and Figure 1.8 show the squared-

exponential covariance function and the process associated with differ-
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ent parameter (.

1 =<

0 0.5 1 1.5 2 2.5 3

Figure 1.5: Squared exponential covariance functions with o = 1 and
different ¢: blue for ¢ = 1, red for ¢ = 0.5 and green for
¢=0.1.

Example 1.4 (Exponential covariance function)

The exponential covariance function is defined by

Kp(r) = 0% ¢ (1.30)

with parameter ¢ and o® positive.

It is a particular case of the y-exponential covariance function with

~v = 1. It is also in the Matérn class covariance family with parameter

— 1
vV =3.

The corresponding process is mean square continuous but not mean
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4 -2 0 2 s
Figure 1.6: 5 realizations of the Gaussian process for squared expo-
nential covariance functions with / = 1 and 0% = 1.

Figure 1.7: 5 realizations of the Gaussian process for squared expo-
nential covariance functions with ¢ = 0.5 and ¢? = 1.
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Figure 1.8: 5 realizations of the Gaussian process for squared expo-
nential covariance functions with ¢ = 0.1 and o2 = 1.

square differentiable.

Figure 1.9, Figure 1.10, Figure 1.11 and Figure 1.12 show the expo-
nential covariance function and the process associated with different

parameter L.

Example 1.5 (Rational Quadratic Covariance Function)

The rational quadratic (RQ) covariance function is given by

702

20002

Kpo(r) = o*(1+ )@ (1.31)

with a, £ > 0 and o a positive parameter.

It can be seen as a scale mixture (an infinite sum) of squared exponen-
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ol
0 5 10 15 20 25 30

Figure 1.9: Exponential covariance functions with 02 = 1 and different
¢: blue for £ = 10, red for £ = 5 and green for ¢ = 1.

WA
M 1N \/ Mv\*vﬂ"\w
[VAIVY W
AV T Wi\
MW I

-2 W

Figure 1.10: 5 realizations of the Gaussian process for exponential co-
variance functions with ¢ = 10 and 0% = 1.
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Figure 1.11: 5 realizations of the Gaussian process for exponential co-
variance functions with ¢ = 5 and o2 = 1.

Figure 1.12: 5 realizations of the Gaussian process for exponential co-
variance functions with ¢ =1 and 0% = 1.
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tial covariance function with different characteristic length-scales. The
limit of the rational quadratic covariance for a — oo s the squared

exponential covariance function with characteristic length-scale £.

The Gaussian process defined by this kind of covariance function is in-
finitely mean square differentiable for every a in contrast to the Matérn

covariance function.

1.8.3 Examples of Gaussian process

In the following, we will present some widely used Gaussian process.

Example 1.6 (Real value Brownian motion)

The Brownian motion, also called the Wiener process, is a stochastic
process B = (By)i>o defined on the probability space (2, F,P) having
the natural filtration F = (F;)i>0 associated to the process B such that:

e B has continuous paths: with probability 1, B; is continuous;

e B has independent increments: V0 < s < t, the random variable
By — By is independent of Fy;

o V0 < s <'t, the random variable By — By 1s normally distributed

with mean 0 and variance t — s.

We say that B is a standard Brownian motion if in addition By = 0.

The standard Brownian motion B has the mean function E[B] = 0

and the covariance function Kp(s,t) = min(s,t).
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Figure 1.13 shows some realizations of the Brownian motion.

Figure 1.13: 30 realizations of the Brownian motion.

The Brownian motion plays an important role in many scientific do-
mains. In pure mathematics, it is a key process in terms of which
more complicated stochastic processes can be described. As such, it
plays a crucial role in stochastic calculus, diffusion processes and even
potential theory. In applied mathematics, the Brownian motion is used
to represent the integral of a white noise Gaussian process, and used
as a model of noise in electronics engineering, instrument errors in
filtering theory and unknown forces in control theory. In physics, it is
used to study the diffusion of particles suspended in fluid, and other
types of diffusion via the Fokker—Planck and Langevin equations. It
also forms the basis for the rigorous path integral formulation of quan-
tum mechanics. In finance, it is also widely used, in particular in the

Black-Scholes option pricing model.

Example 1.7 (Brownian bridge)
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Let B = (By)i>0 be a standard Brownian motion and T>0. Then
(Il; = B, — %BT)tzo is a Brownian bridge fort € [0,T]. The Brownian
bridge (Ili)ci0,1) s a continuous-time Gaussian process having mean

function E[I;] = 0 and covariance function Ki(s,t) = min(s,t) — st.
It is independent of Br, in fact, the process is pinned both att = 0 and
t =T. The increments in a Brownian bridge are not independent.
Example 1.8 (Ornstein-Uhlenbeck process)

There are several different representations of the Ornstein - Uhlenbeck
process. A primary definition of an Ornstein - Uhlenbeck process is
a stochastic process X; satisfying the following stochastic differential
equation:

where 0 > 0, p and o > 0 are parameters and (By)i>o denotes the

Brownian motion.

Another possible and more convenient representation of the Ornstein-

Uhlenbeck process is as a scaled time-transformed Brownian motion:

o
Uy =p+ ——e "B 1.33
t =M m 20 ( )
where B 1s a Brownian motion.
For simplicity, let us choose . = 0, 0 = 1 and 0 = % It is simple

to prove that U; = e 2By = N(0,1), so the process is stationary. Its
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covariance function is the exponential covariance function K(s,t) =
e~1t=51/2 (See Example 1.]).

The Ornstein-Uhlenbeck process was introduced as a mathematical model

of the velocity of a particle undergoing Brownian motion.

1.8.4 Gaussian process generator

Gaussian process can be thought of as generalizations of Gaussian ran-
dom vectors. To generate a realization of a Gaussian process at t1,--- ,ty
is to generate a Gaussian random vector with expectation function and

covariance function at t1,--- ,ty.

As such, the fundamental generation method is the same as for a mul-
tivariate normal random vector. We can sample a multivariate normal

random vector X = (Xi,---, Xy)T as follows:

Algorithm 1.1 (Gaussian process generator)

1. Construct the mean vector m = (E;,,--- ,E; )T and covariance

matrix > = (Eij)lgi,jg]\f with Ez’j = COU(tZ',tj),'

2. Calculate the square root of the covariance matrix by Cholesky

decomposition ¥ = AAT ;

3. Generate n i.i.d normal distributions Y1,---,Y, ~ N(0,1). Let
Y = (}/17 7Yn)T-

4. X is obtained by X = m + AY.
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Chapter 2

Discrete time independent noise model

with application to additive noise

The problem of recovering the Hamiltonian and dipole mo-
ment is considered in a bilinear quantum control framework.
The process uses as inputs some measurable quantities (ob-
servables) for each admissible control. If the implementation
of the control is noisy the data available is only in the form
of probability laws of the measured observable. Nevertheless it
is proved that the inversion process still has unique solutions
(up to phase factors). Both additive and multiplicative noises
are considered. Numerical illustrations support the theoretical

results. This chapter reproduces the content of the accepted
paper [18].
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2.1 Introduction and motivation

Successful manipulation of quantum dynamics (see [9] and references
therein for a recent review) leads to interesting perspectives among
which is the possibility to identify the system through measurements of
control-dependent observations. This technique, called quantum iden-
tification or quantum inversion, was documented both theoretically [4,
7,29, 39] and numerically [14, 20, 31]. However although the numerical
implementations show interesting robustness of the identification pro-
cess with respect to noise, there is less theoretical guidance to explain
this fact. Two fundamental questions concerning the well-posedness of
this problem arise: the existence and the uniqueness of the Hamiltonian,
and/or the dipole moment, compatible with the given measurements. In

this work we only study the uniqueness.

More specifically we start from the setting in [29] which treats the case
without noise. After some technical preliminaries in section 2.3 we ad-
dress the noise-free case in section 2.4 and relax many of the assumptions
used in the previous work. Then in section 2.5 we introduce the possibil-
ity that the control is subject at each time to unknown perturbations.
We consider both additive and multiplicative noise. Since the actual
control that acts on the system is unknown, only the probability laws
of the observations are available. We explain which are the properties
of the set of measurements required to determine uniquely (up to phase
factors) the free Hamiltonian and dipole moment.

Then a numerical implementation is presented in section 2.6. Some

closing remarks are the object of section 2.7.

2.1.1 Notations

We introduce the following notations
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e Lap a0, is the Lie algebra spanned by the matrices My, My, - -+, Myy;

o for any matrix or vector X we denote by X its conjugate (the
matrix whose entries are the complex conjugates of the entries of
X) and by X* its adjoint (the transpose conjugate);

o $ is the set of all Hermitian matrices $ = {X € CV*V|X* = X};
o Sy is the unit sphere of CV : Sy = {v € CV||jv|| = 1};

o W(t,H,u(),pn, ¥o) is the solution of the equation (2.1) below; to
simplify the notation, when there is no ambiguity, we denote it
W(t);

o M(X), k=1,...,N are the eigenvalues of X € § taken in increasing
order; we also introduce ¢y (X) k = 1,..., N to be eigenvectors of X
(forming an orthonormal basis of CV) corresponding to eigenvalues
Ak(X); note that Span{¢r(X)} may not be unique;

o SU(N) is the special unitary group of degree N, which is the group

of N x N unitary matrices with determinant 1;

o su(N) is the Lie Algebra of skew-Hermitian matrices (the Lie alge-
bra of SU(N));
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2.2 The model

We present the mathematical framework following closely the notations

of the previous work [29].

Consider a controlled quantum system with time-dependent wave-function
U (t) satisfying the Schrodinger equation:

i\ij(ta H, u()a 2 lIIO) - (H + u(t)ﬂ)\ll(tv H, u(): K, \IJO)
\Il<07 H, u(): My \IIO) = Wy,

(2.1)

where H is the internal ("free') Hamiltonian and p the coupling oper-
ator between the control u(t) € L}, .(R,;R) and the system. We work
in a finite dimensional framework, therefore H, ;1 € $ for some N € N*.
The goal is to determine the matrix entries of H and p from laboratory
measurements of some observables depending on W(¢). The control u(t)

can be changed in order to gather enough information on the system.

However, contrary to [29], we allow in this work some time independent
perturbations to appear in the control u(¢). That is, when the con-
trol is implemented in practice the nominal control intensity required
by the experimentalist, denoted €(t), is perturbed by Y which means
that u = u(t,€(+),Y); here Y is a discrete random variable with possi-
ble outcomes ¥, ¥, .... We assume that the law of the random variable
Y is time independent. A first example is the additive perturbation
u(t) = €(t) + Y. Such perturbation models have already been used in
the quantum computing literature under the name of "fixed systematic
errors', see section VI.A. equation (40) of [27] or "systematic control
error'; see [28]. In [34] the authors use a noise model called "low fre-

quency noise"( see section IV. C. of [24]): it is defined as the portion of
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the (control) amplitude noise that has a correlation time that is long (up
to 10 times) compared to the timescale of the dynamics therefore it can
be considered as constant in time. Additional noise models (additive or

multiplicative) are presented in [40].

The perturbation Y is unknown and thus W(¢) is a random variable, as
are all measurements depending on W(t). Repeating the control exper-
iment several times the experimentalist will only learn the law of the
measurements. From now on we will denote by Ly Z the law of the ran-
dom variable Z (that is measurable with respect to the sigma-algebra

generated by Y).

Two different settings are considered depending on which parameters

are to be identified and the nature of the information available:

e Setting (S1): The Hamiltonian H is known and the goal is to iden-
tify the dipole moment pu.

« Setting (S2): Both the Hamiltonian H and the dipole moment pu

are unknown.

The measurements are of the form (OV(T, H, u, u, Vo), W(T, H, u, i, ¥y))
with O € $) a member of a list of possible measurements. Often, the
experimentalist only measures one observable in a list (but can repeat
the experiment many times). This means that for general O, €
$ no information is available on the joint distribution of the values
(O1V(T, Hyu, pu, o), W(T, H,u, u, ¥y)) and

(OY(T, H,u, pu, Vo), ¥(T, H,u, u, Uy)) of these two observables.
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2.3 Some technical preliminaries

2.3.1 Complete sets of commuting observables

We recall in this section several facts about complete sets of commuting
observables (hereafter abbreviated CSCO). We refer the reader to [10,
page 146] for details.

First, recall that an observable is a self-adjoint operator on C¥. Once

a basis of C" is chosen the observable can be represented as a matrix

Oes9n.

A set of observables O = {Oy, ..., Ok } is called set of commuting observ-
ables (named SCO hereafter) if [O, O] =0, Vk, 0 € {1, ..., K}.

When all observables in the SCO are multiples of the identity operator
the SCO is said to be trivial; unless specified otherwise, we only work
with non-trivial SCO.

All observables in the SCO O can be diagonalized simultaneously i.e.,
there exists at least an orthonormal basis ® = {¢1, ..., ¢x} of CV such
that any O € O is diagonal in the basis ®. This means that in partic-
ular any ¢, is an eigenvector of any observable O € . In general the
basis ® is not unique because of possible degeneracies in the spectrum
of the observables in O. By definition a SCO is called a complete set
of commuting observables (CSCO) if the orthonormal basis that diago-
nalizes the SCO is unique up to phase factors and permutations, i.e., if
{¢1, ..., o} is another orthonormal basis rendering all O € O diagonal
then there exists a permutation o of {1, ..., N} and phases 1, ..., Sy € R
such that ¢, = eiﬁ’@a(k) forallk=1,....,N.
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Examples:

1. Let H be a Hamiltonian with all eigenvalues \¢(H) of multiplicity
1. Then O = {H} is a CSCO.

2. Let {v1,...,ux} be an orthonormal basis of CV. Then defining P
to be the projection on vy, (that is P, = vv;) the set O = { P, 1 <
k < N} is a CSCO. In this case P are called populations of the
states vy.

3. Consider N = 3 and O = {0y} with:

-1 0 0
O4s=1|0 1/2 0 |. (2.2)
0 0 1/2

Because the eigenspace corresponding to the eigenvalue 1/2 is of
dimension 2 O is not a CSCO. In this case both the canonical base
of C3 {(1,0,0)T,(0,1,0)T,(0,0,1)T} and the orthonormal basis
{(1,0,0)T,(0,1/2,—/3/2)T,(0,v/3/2,1/2)T} render O, diagonal.

4. Consider the truncated spin-less Hydrogen atom whose eigenstates
can be labeled by a set of three indexes ¢y, ;,, with n = 1,2, ..., IV,
[=01,..,n—1, m=—-l,—-l+1,...,1 —1,l. Here N; € Nis a
fixed truncation threshold. A CSCO is given by the operators H
(Hamiltonian), L? (square of the angular momentum operator), L.
(the z component of the angular momentum operator) which act

on the eigenstate ¢y, as:

C
Hgbn,l’m - nglgbn,l,ma LZan,l,m — l(l_‘_l)h%bn,l,m; Lz¢n,l7m — mh¢n,l,ma
(2.3)
with C'y an universal constant and A the Plank constant. Here

n is called principal quantum number, [ the angular momentum
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quantum number and m the magnetic quantum number. Note that
in this case {H, L*} is a SCO but not a CSCO.

Measuring simultaneously all observables in a CSCO is in principle pos-
sible as it is compatible with the Heisenberg uncertainty principle since
all observables in a CSCO commute two by two; therefore the values of
those observables may be simultaneously computed with infinite preci-

sion.

The following characterization of a CSCO will be used in the following

sections:

Lemma 2.1 Let O = {Oy,...,Ox} be a SCO. Then O is a CSCO iff
there exist y1, ...,k € R such that all eigenvalues of Z,If:l VO have

multiplicity one.

Proof. We prove first the direct implication. Consider a basis & =
{&1,...,6n } of CV that renders all O, diagonal and denote (Oy); the j-th
eigenvalue of Oy, that is Or¢; = (Of);¢;. Suppose now by contradiction
that for any v = (71,...,7x) € R¥ there exists i(y) # j(y) < N,
such that =11 7(Or)i(y) = Sty % (Or)j(y). Define the functions g2 :
R — R by ¢ (1, ., 7x) = ZiL m[(Or)e, — (Op)e] and let A2 =
{y € RE; g52(5) = 0}. We obtain that U<y, << yA™ = RE. By the
Baire’s theorem at least a couple (¢, ¢}) exists such that A“*2 has non
),

empty interior. Therefore the analytic function ¢i**2 is null on a non

empty open set hence it is null everywhere.

But this means that (Oy)e: = (Oy)g; for all k = 1,..., K. Therefore for
all Oy € O the (;-th eigenvalue is of multiplicity 2 (the ¢;-th eigenvector
and the £5-th eigenvector are associated to the same eigenvalue) which
contradicts the uniqueness of the basis that diagonalizes O, and hence
we obtain a contradiction with the definition of a CSCO.

The reverse implication is more straightforward. Any basis ® = {¢1, ..., on'}



2.3 SOME TECHNICAL PRELIMINARIES 7

that renders all O, € O diagonal will also render Zszl 7O diagonal.
But by hypothesis all eigenvalues of >1 | 7,0, are distinct and therefore
the basis ® is unique (up to permutation and phases) and hence O is a

CSCO.

2.3.2 Background on controllability results

Let L € N*and G, --- , Gy, be L finite dimensional, connected, compact
and simple Lie groups with the identity element Id. Let Ay, By € g, for
all { =1,---, L where gy is the Lie algebra of Gy.

Definition 2.1 Consider L bilinear systems on the Lie groups Gy:

P = (Ay + u(t) By X(t), (2.4)

X,(0) = Id.

The systems are called simultaneously controllable (or ensemble con-
trollable) if there exists Ta, ... A, B,..B, > 0 such that for all T >
Ty, ... A,.By B, and for all V, € Gy, £ = 1,---,L arbitrary, there
exists a control u € LY([0,T],R) with X,(T) =V,, V¢ =1,---, L.

Let A=A --- DAL € @é::lgg and B=B® ---@ By € @ﬁzlgg. The
following simultaneous controllability results are proved in [36, Theo-

rems 1 & 2| and [6, Lemma 3 page 29].

Theorem 2.1 The collection (2.4) of L bilinear systems is simultane-
ously controllable if and only if Lys = ®F_, g/ or equivalently

dimRLA,B = 21%21 dimrgy.

Lemma 2.2 We suppose that La, B, = g¢, for all ¢ = 1,--- L. Then
Lag # ®L, g0 if and only if there exist £,0' € {1,--- | L}, { # ¢ and
an isomorphism f : g — g¢ such that f(Ay) = Ap and f(By) = By.
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Theorem 2.2 Let G be a finite dimensional, connected, compact and
simple Lie group and g be its Lie algebra. Let A, B € g such that
Lap =9 and aq,...,ar € R be real constants, o; # o Vi # j. Con-

sider the collection of control systems on G:

M) — LA+ (u(t) + ar) BYX(t),
X(0) = Id.

(2.5)

Then the collection of systems (2.5) is simultaneously controllable.

Remark 2.1 Although the Theorems 2.1 and 2.2 are formulated on
a Lie group, this is enough to obtain controllability for the wave-
function; recall that if X(t, H,u(-),u) : R x § x L} (Ry;R) x $ —
SU(N) satisfies the following equation:

iX(t7H7u<')vu) - (H + u<t)M)X(t7 H?“(')::u)a
X(OvHvu(')nu) = Id,

(2.6)

then V(t, H,u(-), u, Vo) = X(t, H,u(-), n)¥q is the solution of (2.1).
Since SU(N) is transitive on the sphere Sy (see [13, page 88]), if the
control system is controllable on the Lie group SU(N) then it will also

be controllable in the wave-function formulation.
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2.4 Inversion without noise

Theorem 2.3 (Setting (S1)) Let H, uy, po € 9, H diagonal, U}, U2 €
Sy and denote for a =1,2 and € € L}, (R, R):

U, (t,e) = W(t,H, e(-), ta, V). Let O be a (non-trivial) SCO. We
suppose that N > 3 and:

o (Al).’ LiH,zpl = LiH,iug = 5u(N).
e (A2): tr(H) =tr(u) = tr(uz) =0.
e the eigenvalues of H are all of multiplicity one.

Then there exists T' > 0 such that if:

(OU (T, €), U (T, €)) = (OUy(T,€), ¥s(T,€)) Ve c L'([0,T];R),VO € O,
(2.7)
then for some (a;)Y, € RN:

() = €7 (ua) i, Vi, k < N (2.8)

Remark 2.2 1. Assumption (A1) is required for the simultaneous

controllability, see theorem 2.1 and lemma 2.2.

2. The assumption (A2) can be made without loss of generality ac-
cording to [29]. In fact, changing the Hamiltonian H and/ or
dipole moment 1 by adding a multiple of the identity operator Id,
does not change the observations. In this case, the state V(t) is
replaced by eV (t) with the phase o € R depending on tr(H),

tr(u) and on the control u.

Remark 2.3 The proof also shows that the values of any additional ob-
servable commuting with H are identical for both systems, in particular

all populations are always identical.
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Moreover, when puy and ps are matrices of dipole operators (i.e., have
the form of real potentials) truncated to dimension N, then puy and po
are real symmetric matrices; the Theorem implies (p1)x = £(12)jk
for all 3, k. In general this is not enough to conclude that iy = s as

it can be seen from the counter-example 1 from [29, page 381] where
N =3, ¥}=02=(1,0,0)":

Er 0 0
H = 0 E2 0 ;
0 Fo
0 —uo O
pr=|—pa 0 pugl,
0 Ha 0
0 po O
M2 = | Ha 0 Ha | s
0 Hp 0

Ey, By, to, pg € R (arbitrary).

In this case all control fields give rise to identical populations for both
systems. This under-determination can be mitigated under additional

hypothesis as in Remark 2.7.

Remark 2.4 When eigenvalues of H are degenerate but O is a CSCO
the theorem 2./ below should be used instead.

Proof. Consider the collection of two systems (H, p1) and (H, u2) seen as
a control system on SU(N) @ SU(N) with operators i H @iH, ijg @i €
su(N)@su(N). This collection can either be controllable or not. De-
note Ry = {(V1(t,¢€), Ua(t,€))le € LY([0,1];R)}, Reo = UoRy. Tt is
known (see [26, Theorem 6.5 item (ii) page 322]) that there exists T'
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such that Ry = R.

Since O is a non-trivial SCO it contains at least an observable, de-
noted O, that is not multiple of the identity. For this observable there
exist ¥,, U, € Sy such that (OV,, V,) # (OV,,¥,). But the condi-
tion (2.7) shows that no control ¢ exists that drives ¥} to ¥, and W3
to W,; therefore the joint system iH @iH, i/ @ipo is not controllable
simultaneously. Then it exists an automorphism of su(/N') that sends i H
to iH and iy to ipg. But the automorphisms of su(N) are of the form
X esu(N)—= WXW esu(N)or X € su(N) — WXWL € su(N)
for some W € SU(N). Recall that the matrix H is real (because it is
diagonal and in ). Consider first that one can find W € SU(N) such
that H = WHW ! and pus = Wu W1, The first identity shows that
[H,W] = 0 and therefore W is diagonal with the diagonal containing
entries of the form e, ¢ < N; the conclusion follows from the sec-
ond identity. Consider now that there exists W € SU(N) such that
iH = WiHW™1; then [H? W] = 0, thus W diagonal and therefore
H = —H, impossible.

Remark 2.5 The result is stronger than the Theorem 1 in [29, page
380] which requires:

e a stronger condition on the spectrum of H (the non-degenerate
transition condition); recall that the transitions of H are called
non-degenerate if the eigenvalues A\ (H) of H satisfy \i(H) —
Ni(H) # XN(H) — MN(H) for all (a,b) # (i,7). Here we only ask

that the eigenvalues have multiplicity one.

e that observables in O are the populations (thus in particular O is

a CSCO). Here a single non-trivial observable is enough.

e that the equality (2.7) take place at all times T > 0. Here only

one time (large enough) is required.
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Theorem 2.4 (Setting (S2)) Let u1, po, Hi, Hy € $, U}, U3 € Sy and
denote fora = 1,2 ande € L} (R, R): W, (t,€) = U(t, Hy, €(-), pta, TL).
We suppose that N > 3 and the following assumptions hold true:
(Al).‘ ]LZ'HN'M1 = Lng,iug = 5u(N);

(A2): tr(Hy) =tr(Hy) = tr(uy) = tr(ug) = 0;

Let O = {0y, ...,Ok} be a CSCO and ® = {¢y, ..., on} an orthonormal

basis that diagonalizes O.

Then there exists T > 0 such that if:

(OU(T,€), U (T, €)) = (O Us(T, €), Uy (T, €)) (2.9)
Ve € L}([0,T];R),Vk=1,--- , K,

then there exist ()Y, € RY and 6 € R such that for all j,k < N

either

(110;, o) = €7 (Lo, i),
(H1¢;j, pr) = "~ (Hy;, ), (2.10)
(U5, ¢5) = €0 )(UF, ¢5),

or

(1o, o) = —€' =) (s, ),
(H1dy, 1) = —ci0=0) (Hodyy ). (2.11)
<\I’(1)’¢J> 0= Oé]< 07¢j>-

Remark 2.6 When O is not a CSCO, the same proof allows only to
obtain that an isomorphism of Lie algebras exists that sends iHy to

1Hy and ipy to ips. In general it is not possible to obtain more than a
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general isomorphism as shown by the following counter-example:

1 0 0
H =0 -1/2 0 [,
0 0 —1/2

1 0 0

0 1/2 3/2{,

0 —V3/2 1/2
012

,u1:100,
200

44

Hy=WHW'=H,
0 V3+1/2 1—-+/3/2

pe =WuW=1|y3+1/2 0 0 ,
1—+/3/2 0 0
Uy = Wy,
O = {04}

It is immediate to see that (Og,v) = 1/2 — 3/2|(x, (1,0,0)T)|* and

that W (1,0,0)T = (1,0,0)T. When the control € on the first system re-

alizes the transformation X the observable is 1/2—3/2|(X ¥}, (1,0,0)7)*;

at the same time the control realizes the transformation WXW =1 on

the second system giving the observable 1/2—3/2{W XW 1W W, (1,0,0)T)|2.
But (WXW ='W (1,0,0)T) = (XU, W=1(1,0,0)T) = (X W], (1,0,0)T).
Therefore it is not possible to distinguish between the couple (Hy, 1)

and (Ha, j12) (at least for this initial data).

Remark 2.7 If, for physical reasons, we know the initial state of the
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system, then W = W2: when this initial state has non-zero components
along every element of the basis, i.e. (U} ¢p) # 0, for all k > 1 the
equation (2.10) implies ' = e for all j = 1,--- , N which means
Hy, = Hy and p1 = ps. When some coefficients (U}, ¢r) are zero,
further symmetries may occur and one can have, for instance, py # pis:

see counter-example 1 from [29, page 381] presented in Remark 2.5.

On the other hand, in this case, the conclusion (2.11) can be writ-

ten more conveniently in the adapted basis {vy = e~ /2¢ .. yy =
eion/2g, Y

(pvj, vg) = —m,

(Hivj,vp) = —(Havj, vp), (2.12)

Ul =0 =e"25N qu, ¢ €R.

Proof. Denote by T the time at which the couple of systems (Hq, p1),
(Ha, p2), seen as a control system on SU(N)@ SU(N) with operators
iH@iH, i @ipg € su(N) @ su(N) reaches all attainable states. Since
a CSCO is a non-trivial SCO it follows as in the theorem 2.3 that there
exists an isomorphism of f : su(N) — su(N) such that iHy = f(iH;),
ipy = f(ipn).

All isomorphisms of su(N) are of the form X € su(N) — WXW™! ¢
su(N) or X € su(N) — WXW~! € su(N) for some W € SU(N).
We only treat here the ’exotic’ case f(X) = WXW ™! as the second
alternative is similar. Thus Ho = —WH,W ™! and py = —WmW 1

With the notations in the equation (2.6) we write:

X (t, Hy,u(-), po) =X (t, -WHW 1 u(-), =WmgWw 1) (2.13)
= WX(t, Hy,u(-), p) W™,

As the first system is controllable then every state X € SU(N) can be
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reached by some control u(-) thus

(Op XV, XU = (O WXW I3 WXW U3 VX € SU(N),Vk < K.
(2.14)

Note that (2.14) also holds for any linear combination of observables in

O. We invoke the lemma 2.1 and obtain the existence of an observable

O, diagonal in the basis ® and with all eigenvalues distinct, such that
(OX V), XU = (OWXW 12 WXW13), VX € SU(N). (2.15)

The vectors ¢y, are eigenvectors of O and denote as \;(O) the correspond-
ing eigenvalues. In particular O = Y8 ; A\ (O)drg;. We can suppose
that A\1(O) < X2(0) < ... < An(O) (otherwise re-index the vectors).
Let us write W-103 = 20} 4+ yv with =,y € C, |z|> + |y|*> = 1, v € Sy,
v 1L U}

Suppose y # 0; then there exists X € SU(N) such that XU} = ¢y
and Xv € Span{WLl¢n,oxtt. Then (OX T}, XUl) = A\y(0) =
(OWXW12 WXW-1¥3). Since Ay(O) is the maximum possible
value for O and all eigenspaces of O are of dimension 1 it follows that
WXW 12 € Span{¢py} hence XW 102 € Span{W 1¢y}. Then:

L= [(XWI05, WTon)| = (X (2T + yo), W Ty))]

= [{(xzodn, Wlon)| = |z][{(dn, W 1on)]. (2.16)

It follows y = 0, |x| = 1; therefore W—1W3 € Span{¥}} which means
that there exists § € R such that U2 = W Wi, after trivial simplifica-
tions the equality (2.15) can be written

(OX W), XU) = (OWXU, WXU), VX € SU(N). (2.17)

But X € SU(N) means that XU} can be chosen arbitrary in Sy; we
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have therefore:

Vw € Sy : (Ow,w) = (OWw, Ww) = (W OWw,w) = (W*OWw,w).

(2.18)
But this implies O = W*OW and thus:
N N
> M(0)dpdy = O = WOW = W+ (Z ¢k¢k> (2.19)
k=1 k=1

% YW or) (W gy)".

Since all eigenvalues of O are non-degenerate the representation O
>N M(O)éret is unique up to phases. Therefore there exist ap € R
such that W ¢ = e ¢y, or, equivalently, W*¢ = €' gy

The conclusion follows from the relationships Hy = —WHW*, s =
—WmW* and U2 = WU},
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2.5 Inversion in presence of noise

Let (Q, F,P) be a discrete probability space, V = {y, € RY¢ € Z C N}
a set of values in RY (possibly infinite) and let Y : Q — V be a random
variable. We can suppose that for all y, € V, P(Y = y¢) > 0 ( otherwise
we eliminate all yy such that P(Y = y,) = 0). Moreover after re-indexing
7 we can suppose that Z = N* or Z = {1,--- , Ly} for some L, € N*.
Denote &, = P(Y = y,), Vk € T.

We can suppose that (&),>1 is a decreasing sequence (re-indexing if

necessary).

2.5.1 Technical preliminaries: a correspondence lemma

Let J, : CMN 5 R, ¢ = 1,2 and h : R™! — R be real analytic

functions with J, bounded.

Lemma 2.3 Let A,, B, € su(N), T > 0, ¢ € L}([0,T],R) and denote
by Xu(t, ye, €) the solution of

M:Aa—khet B,)X,(t €
at ( ( ( )7y€) ) ( » Yu, ) (220)

Xa(()? yé; 6) = Ida

fora=1,2 and any ¢ € L. Suppose that the following equality in law
holds

Ly (J(X(T,Y,€)) = Ly (Jo(X2(T, Yy €))) Ve e LY([0,T],R).
(2.21)
Then for any ¢ € I, there exists ng(l,&1, -+ ,&ny--+) and k(f) € I,
k() <ng(l, &, &, -+ ) such that

JUX1(T,ye€)) = Jo(Xo(T, yuiry,€)) Ve € L'([0,T],R).  (2.22)
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Proof. Let ¢ € Z. The proof is divided in several steps.
Step 1:

Fix a control e. We introduce the notation:

vf = T (Xo(T, yr, €)), a=1,2 and kel

a

According to the assumption (2.21) we know that J;(X(7,Y,€)) and
Jo(Xo(T,Y, €)) follow the same law. Thus P(J;(X(T,Y,¢€)) = vf) =
P(Jo(Xo(T,Y, €)) = v{). Then

> w= X &=2&>0 (2:23)
ke /vl =vt kET /vF=v
Therefore {k' € T/v§ = v{} # (). In addition, there exists a ng(¢) €
such that Ypspn0)kez Sk < §¢ and Xpsno@)—1,kez &k = & (by convention
a sum over an empty set of indexes is zero). So we have {k' € Z/k' <
no(0),vs" = v{} # 0. The index ny(¢) depends only on the law of Y and
the index .

Letting e vary in L*([0,T]; R) we obtain a function 1 : L*([0, T]; R) —
{k e,k <ny)} such that

S (X1 (T, ye, €)) = Jo(Xo(T, ym(ﬁ)?e))' (2.24)

Note: when the index x1(e) with the property (2.24) is not unique, any
compatible value in the set {k € Z,k < ny(f)} can be chosen.

Step 2:

Let n € N*. We consider the space P, of piecewise constant controls
P, ={f:[0,T] - Rl f= il r) + aplyr or) 4 -+ O‘nl]@T,T]’
ap, - ,a, € R}. Denote a = (o, ,ay). Therefore for any k € Z,

we can define the functions g from R" to R by

gi(@) = Jo(Xo(T, yr, €a)) — 1 (X2 (T, ye, €a)),
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with €, = 0411[07%] + 0621}%’2T] + -+ anl}@ﬂﬂ. We know that

n

r
n

XG(T, Yk ea) — e(Aa+h(an,yk)Ba)%e(Aa—i-h(an,l,yk)Ba)TTL o e(Aa+h(a17yk)Ba)

(2.25)
for a = 1, 2. Therefore the functions X, are analytic in « (recall that the
function A is analytic in «), and since J, are analytic, the functions gy
are analytic. We denote A, = {a € R"/gr(a) = 0}. Each Ay, is closed

because g; is continuous. In Step 1, it is proved that

7 R" = {k € I,k <ny(¢)} such that Va €R" g.r((a)=0.
(2.26)

S0 Uket k<no(e) Ax = R". By the Baire’s theorem, it exists a & such that

Aj has an interior point. This means that g; is analytic and identically

zero on a not empty open set. Therefore, g = 0. So Vn, Jka(n) € {k €
T,k < ngy(¢)} such that g,,)(e) = 0, for any control € € P,.

Step 3:

Take ¢ € N and denote B, ={k € Z,k < ny({)}/gr(e) =0, Ve € Pa}.
In Step 2 it is proved that for any ¢ € N the set B, is not empty.
Obviously (By)4en is a decreasing sequence and B, becomes constant
from a certain term, thus Be, = Ng>0 By # 0. This means that there
exists ({) € {k € I,k < ng(£)} such that g, )(e) = 0, Ve € Py for all
q. Yet, U2, Pas is dense in L'([0,T];R). So we have g, (e) = 0, for
any control € in L*([0, T]; R).

2.5.2 Main results

We set d = 1.

Theorem 2.5 Consider the same setting and assumptions as in the

theorem 2./ with the exception of the relation (2.9). Then there exists



CHAPTER 2: DISCRETE TIME INDEPENDENT NOISE MODEL WITH
90 APPLICATION TO ADDITIVE NOISE

T > 0 such that if:

Ly {0y (T, e + V), Wi(T, e +Y)) = Ly (O Wo(T, e + Y), Us(T, € + Y))
(2.27)

Ve € L'([0,T|;R), Vk=1,--- K,

then either the conclusion (2.10) or the conclusion (2.11) of the theo-
rem 2.4 holds (see also Remark 2.7).

Remark 2.8 When O is not a CSCO, the same proof allows only to
obtain that an isomorphism of Lie algebras exists that sends iHy to

1Hy and ipy to ips.

Remark 2.9 Relation (2.27) does not imply that for any vy, € R:

Ve € LY([0,T);R) :
Ly <(§: %Ok) U (T, e+Y), U (T, e+ Y)>

k=1

s <(:1 %ok) Uo(T. e+ Y), Un(T, € + Y)> (2.28)

because the probability laws are not additive. This is in contrast with
the situation in the theorem 2.J (see the equations (2.14) and (2.15)).
But the relation remains true for any operator of the form aQOy + bld,
a,b € R.

Proof. Choose my € N such that my&; > 1. Then there exists some
n > 0 small enough with ¥%(&1 —mn) > 1 and & — men > 1. As
Yrer &k = 1, there exists ny € Z such that Ypezpon, &6 < 7 (by con-
vention a sum over an empty set of indexes is zero). According to
Definition 2.1, for all ¢, ¢ € {1,--- ny}, if the collection of 2 systems
(2.4) for Ay = —itH; + y(—ipm) € su(N), By = —ipy € su(N) and
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Ay = —iHsy + yp(—ipg) € su(N), By = —ius € su(N) is simultaneously
controllable, then there exists Ty, m, u; jioyey, > 0 such that the col-
lection is simultaneously controllable at all times T' > Ty, #y 1y 0,50y, -
If the collection is not controllable, we take Ty, H, .00y, 10 be the
time required to control one system (to any target). According to the-
orem 2.2, we know that the collection of nf systems (2.5) with A =
—iHy, B = —ipy and (a1, -+, ) = (Y1, ,Yp,) is simultaneously
controllable therefore there exists 7| Ha o such that the collec-
tion is simultaneously controllable at any time 7' > THZaMQ»yla'“ayn()' Let
T = mamlﬁf,flﬁnf)(TH27M2791,“'ayn67THlaH27M1’M2,yé7yz/)' Suppose that the ob-
servations follow the same law at time 7. Recall that V,(T, e + y;) =
Xo(T, e 4+ yo)V§ with X, (¢, € + y¢) solutions of (2.20) where A, = —iH,,
B, = —iug, for a = 1,2 respectively and h(e(t),ye) = e(t) + .

The second part of the remark 2.9 implies that we can suppose, without
loss of generality, that any O € O has the smallest eigenvalue equal
to 0 and the largest one equal to 1. Fix now O € ©. We apply the
lemma 2.3 to X — (OXW¢ X W), ¢ = 1,2 which are obviously analytic
with respect to X. Then for all ¢ € Z, Jx(¢) such that

(OW (T, e+ ye), Ui(T, e +yp)) = (OVT, € 4+ Yp(e)), Yo (T, € + Yu(e)))-
(2.29)

Recall equation (2.23) in the lemma 2.3 (we use the same notations):

> &= > &
ke /vl =vt k€T vk =vt
for any control €(t) € L}([0,T],R). Now let us take £ = 1. In the lemma
2.3 we proved that k(1) < ng(1) with Zpopo)-1&e = &1 > & — men >
1N > Yk Sk Thus ng > ng(1) > k(1). By simultaneous controllability,
there exists a control e such that (OUs(T, e + 1)), Yo (T, e+ yun))) =1
and (OWy(T, e +y;), Uo(T, e +y;)) = 0 for all j < nj and j # k(1). In
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addition, lemma 2.3 proves that for any control €, v{ = vy W'~ 1. So for
this e,

&1 < Y &= > v <&yt D &k < &yt (2.30)

keT juk=vf® kel ok =pf) k>ng

We deduce that &, ;) > & —n. With the same reasoning and by recur-
rence we demonstrate that {.my > & — mn for any m € {1,--- ,mg}
thanks to the relationship Y~ (xm(1))=1 &k = ema) = & —mn > & —
mon > 0 > Yo & I 1, k(1), -+ £™0(1) are all distinct, then 1 =
Skez &k = Xmlo {em(1y > 1, which leads to a contradiction. So at least
two among the 1,x(1),--- ,k™°(1) are equal.

On the other hand equation (2.29) implies that the collection of the two

systems
dXiligf’e) = [—i(Hy + Yumypi1) + €(t)(—ip1)] X1 (2, €) (2.31)
X1 (O, 6) =1d
and
P — [—i(Hy + yomor (1)) + €(0) (—ip2)] Xa(t, €) 232
XQ(O, 6) =1Id

is not ensemble controllable for all m € {0,--- ,mg — 1}. Applying the
theorem 2.1 and the lemma 2.2 to G = SU(N), Ay = —i(Hy + Yuem(1)111),
Ay = —i(Hy + ypmiraypi2), B1 = —ipy and By = —ipy there exist f,
automorphisms of su(N) such that fy,(=i(Hy + yumayp1)) = —i(Hz +
Yumtryp) and fo,(—=ipy) = —ipg. By linearity of fi and f,, we ob-
tain (f,,' o fi)(=iH1) = —iHy + [(Yu() — Y1) = Wemt1(2) = Yoem(n))) (—ip01)
and (f," o fi)(—im) = —ipn. Denote f = f.' o fi and 8 = (ye) —
Y1) — (Yemtra) — Yum(1)), then we have —iHy = f(—iH) + i =
f(f(=iHy)+iBp1)+iBur = f2(—iH;)+2iBu; and by recurrence —iHy =
fP(—iHy) + ipBuse for all p € N. All automorphisms of su(/N) belong
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to a compact set hence the set {fP(—iH;) € su(N),p > 0} is bounded
for all m. Therefore the sequence (ipBp2),>0 is bounded which implies
Bus = 0. According to assumption (A1), uy # 0. Thus § = 0. Denote
C = Yeq) — Y1, then yomiiqy = ypemay +C Vm € {0,--- ,my — 1}. As
1, k(1), -+ ,k™(1) are not all different, C' = 0.

Since O € O was arbitrary we proved so far that the systems without
noise (Hy + y1p41, 1) and (Ha + y1p2, p2) give the same observations for
the CSCO Q; the conclusion follows from the theorem 2.4.

Remark 2.10 Here and in all similar results, the time T should be
understood as if the time is large enough’: the proof can be trivially
adapted to treat the situation when the equality in law holds at some
other final time T provided that T™ is larger than the time T given by

the theorem.

A similar reasoning allows to prove for the setting (S1) the following:

Corollary 2.1 Consider the same setting and assumptions as in the
theorem 2.3 with the exception of the relation (2.7). Then there exists
T > 0 such that if:

ﬁy(O‘Ifl(T, €+ Y), \Ifl(T, €+ Y)> = £y<O\If2(T, €+ Y), \IJQ(T, €+ Y)>
(2.33)

Ve € LY([0,T];R), YO € O,

then the conclusion (2.8) of the theorem 2.3 holds.

2.5.3 The multiplicative perturbation case

In this section we consider the multiplicative perturbation, which means
the control is in the form of u =Y - €. We suppose moreover that this

perturbation is positive: ¥V C R*.
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Corollary 2.2 Consider the same setting and assumptions as in the
theorem 2./ with the exception of the relation (2.9). Then there exists
T > 0 such that if:

Ly (OU(T,eY), U (T, eY)) = Ly (OpVs(T, €Y ), Uy(T,eY)) (2.34)
Ve € L*([0,T|;R), Vk=1,--- K,

then either the conclusion (2.10) or the conclusion (2.11) of the theo-
rem 2.4 holds (see also Remark 2.7).

Proof. The proof is similar with the exception that the simultaneous

controllability result to be used is the corollary 5 page 25 in [6].

Remark 2.11 When V also contains negative values, a similar result

can be stated. The only difference is that one obtains:

(1, dr) = £ (s, by,
<Hl¢j7 ¢k> = iel(aj_ak <H2¢j7 ¢k>7 (235)
(U5, ) = £/ =0 (TF, ),

and a similar relation for the conjugate case. Furthermore, the polyno-
mial situation V C R with d > 1, u(t) = 29_, Yae(t) can be studied.
But although this case s also tractable with the controllability result
in [35], the conclusion is very cumbersome to formulate and we leave

it as an exercise for the reader.
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2.6 Numerical application

Numerical tests are presented for the setting of the theorem 2.5.
consider the 4-level system (N = 4) in [14] and want to recover the

Hamiltonian matrix H,., and the dipole moment matrix fi,eq;:

0.0833 —0.0038 —0.0087 0.0041
H.. - —0.0038 0.0647  0.0083  0.0038
—0.0087 0.0083 0.0036 —0.0076
0.0041  0.0038 —0.0076 0.0357
0 5 —1 0
o 0 6 —1.5
Hreal = 1 6 0 -
0 —15 7 0
Note that:
H,ou = ePreal De_Preal7
0 0 0 0
D_ 0 0.0365 0 0 |
0 0 0.0651 0
0 0 0 0.0857
o 1 -1 1
Preat = b0
1 -1 0 -1
-1 -1 1 0

In practice the eigenvalues of the free Hamiltonian are measured by
spectrometry and hence known with high precision, see also the discus-
sion in [29, page 379 and Remark 7 page 384]. Accordingly, we suppose
that the eigenvalues of H,., are known i.e., the matrix D is known. So



CHAPTER 2: DISCRETE TIME INDEPENDENT NOISE MODEL WITH
96 APPLICATION TO ADDITIVE NOISE

14 1 2 3 1 5
ye | 0.000400 0.000066 0.001025 0.000224 0.000816
& | 0.181810 0.163630 0.145450 0.127270 0.109090
14 6 7 8 9 10
ye | 0.000679 0.000740 0.000975 0.000211 0.000156
& 1 0.090900 0.072720 0.054540 0.036360 0.018180

Table 2.1: Law of Y for the numerical example in section ??. Here
Ly = 10; the second row presents the values y,, £ < Ly
which have been chosen randomly (uniformly) in [0,0.1 %

% = 0.0012]. The third row displays the probabilities

&, ¢ < Ly which have been chosen at random, uniformly
in [0, 1], the sum rescaled to 1 and then ordered such that
(&0)e>1 is a decreasing sequence.

identifying H,.q is equivalent to identifying the anti-Hermitian rotation

matrix Ppreal.

The law of the perturbation Y is given in table 2.1. We consider a finite

set of test control fields of the form:

e(t) = exp (—40(t — T/2)*/T?) | -ZXV:-—1 A, jsin[(Nj(Hreat) —Ni(Hrear) ) t40; 5]
e (2.36)

Here \;(Hyeqr) are eigenvalues of H,eq, @ < N and A, ;, 6; ; are param-
eters to be chosen later. The total simulation time is 7" = 3200 which

means about 10 periods of the smallest transition frequency Ay(Hyeqr) —

)\S(Hreal)-

Let {ex;k < N} be the canonical basis of C and O = {ege}, k < N}
(populations).

We choose N, = 36 controls €;(t),...,en.(t) drawing 6;; uniformly in
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0, 27r] and A;; uniformly in [0,0.0012] and we define the functional to
be minimized:

N, N
j(Pa :u) = Z dWl (‘CY(‘<\IJ(T7 GPDG_Pa € + }/7 1y \11(1))7 €j>|27
i—=1 =1

’CY(| <\Ij(T7 HT@(LZ; ei + Y; Mreal, \Ijgeal), 63>|2) (237)

Here we use the 1-Wasserstein distance (see page 34-35 in [37]) dyy, be-
tween two laws Ly Z; and Ly Zs defined as dyy, (Ly Z1, Ly Zs) = [} ]Fgll(x)—
F,!(z)|dz with F, (respectively Fyz,) the cumulative distribution func-
tion of Z;(respectively Zs)(see page 73-75 in [37] for details). We start
with 10% relative error on p and P and we use a classical unconstrained
nonlinear optimization algorithm to minimize J (P, i) (we used the Gnu

Octave [16, 17] procedure "fminunc"). After 277 iterations, we find:

0 0999 —0.999 1.002
0999 0 1 0.999
Porr = :
0.999  —1 0 —1.002
~1.002 —0.999 1.002 0
0 4999 —0.998 —0.003
4999 0 6 —15
P 0008 6 0 7
—0.003 —15 7 0

This corresponds to 0.003% relative error on p and 0.001% relative error
on P. We note that the histograms for (Pyear, frear) and (Pagz, par7) are
nearly the same. See figures 2.1, 2.2, 2.3 and 2.4 for details.

The optimization algorithm iterates starting from the initial guess (Py, j10)
and constructs a sequence of estimations (P, px)-
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0 100 200 300
iteration

0 100 200 300
iteration
-1 T
)
©2 ]
?-3 -
34 -
_5 ] ]
0 100 200 300
iteration

Figure 2.1: The (base 10) logarithm of J (upper plot), the (base 10) logarithm of
the relative error on P (middle plot) and the (base 10) logarithm of the
relative error on p (lower plot) as a function of the iteration index.
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Figure 2.2: We plot the histograms of the laws Ly (|(¥(T, e reat De=Preat ¢; +

Y, ttrear, ¥9), €;)|? for various choices of i = 1,...,5 and j = 1,2, 3,4.
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Figure 2.3: We plot the histograms of the laws Ly ([(¥(T,e™De ™ ¢ +

Y, po, UY), e;)|? for various choices of i = 1,...,5 and j = 1,2, 3, 4.
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Figure 2.4: We plot the histograms of the laws Ly (|[(¥(T, ™7 De P27 ¢, +

Y, porr, U9), e;)|? for various choices of i = 1,...,5 and j = 1,2, 3,4.
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The optimization works well as there is an obvious match between the
Figure 2.2 and the Figure 2.4 which represents the histograms for the

real law and the final iteration respectively.
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2.7 Perspectives and concluding remarks

Among the limitations of the present work is the requirement to consider
only time-independent perturbations; it would be interesting to consider
time-dependent perturbations and more elaborate noise models (beyond
polynomial) and, of course, perturbations that can take values in an
uncountable set (in the same spirit as in [5, 30]). Extension to infinite
dimensional quantum systems can also be interesting; in all these cases
one technical limitation is the absence of simultaneous controllability
results analogue to theorems 2.1 and 2.2, still missing in general even

for finite dimensional models as soon as the dimension is larger than 4.

A distinct extension, which seems attainable with the tools presented
here, is to consider a framework that involves density matrices instead

of wave-functions.
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Chapter 3

Multiplicative amplitude noise model

of unknown statistics

Quantum system inversion concerns learning the characteris-
tics of the underlying Hamiltonian by measuring suitable ob-
servables from the responses of the system’s interaction with
members of a set of applied fields. Various aspects of inversion
have been confirmed in theoretical, numerical and experimental
works. Nevertheless, the presence of noise arising from the ap-
plied fields may contaminate the quality of the results. In this
circumstance, the observables satisfy probability distributions,
but often the noise statistics are unknown. Based on a pro-
posed theoretical framework, we present a procedure to recover
both the unknown parts of the Hamiltonian and the unknown
noise distribution. The procedure is implemented numerically
and seen to perform well for illustrative Gaussian, exponential
and bi-modal noise distributions. This chapter reproduces the
content of the accepted paper [19].
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3.1 Introduction

The interaction between a quantum system and an applied field can be
used to gather information about the system by measuring suitable ob-
servables for various incarnations of the field (see [4, 7, 9, 20, 31, 38, 39]
for some related works). Such an inversion endeavor, seeking information
about the system, has to take into account the possibility that the mea-
surements are contaminated by noise, possibly from multiple sources, or
that the model does not adequately describe all relevant characteristics

of the system. Many considerations arise, including the following list:

S-1 The number of levels is unknown. Except for spins, the number
of levels can generally take on any value, including the prospect of
there being a continuum. The nature of the field bandwidth and
intensity plays into which aspects of the system dynamics are ac-
cessible due to the field. In addition, unless the molecule is aligned
(which is also possible) with the control field there will be vibration-
rotation transitions. The circumstance does not change the key al-
gorithmic principles set out in this work, but it can make the actual

number of levels and dipole elements more involved.

S-2 Intense fields can be important in some problems where excited
electronic states play a role, which can bring in non-resonant pro-
cesses (i.e., virtual states, requiring adequate models). Moreover
intense fields may lead to models including the nonlinear field cou-

pling coefficients in the Hamiltonian.

S-3 If the system is in a thermal initial state, then the initial state will
be a Boltzmann distribution instead of a single cold molecule in the
ground or a pure state. The inversion will then need to deal with

the distribution of molecules.

The performance of inversion needs to acknowledge the issues above. In

addition, there will always be noise in the observations, but assuming
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that it is random and symmetric (e.g. Gaussian) then signal averaging
may reduce its influence. However, noise may accompany the control

field with the following circumstances:

F-1 Different molecules (even if they are oriented) will see different
fields as the field generally has a spatial (e.g., a Gaussian) lateral

spread.

F-2 A so-called spatio-temporal "chirp" may occur, where there is some
unknown complex spatio-temporal pattern (possibly fluctuating) in
the field. When the pattern is not uniform it has to be factored

into the model with, possibly nonlinear, additional terms, see [21].

F-3 Although the field may be known before entering the sample, op-
tical distortion during propagation can lead to additional field un-
certainty in the domain where the data is taken.

F-4 The variations in field are stochastic from shot-to-shot with respect
to the frequency dependence of the amplitudes and phases. The
origin of this behavior is mainly due to the laser source and possibly
jitter in the optics. The implications for the control data due to

this occurrence is likely more significant at higher intensities.

Collecting all of these items pose a daunting, but not an impossible
challenge to treat. In this work we limit the focus on the randomness
coming from the last item F-4 above. These are related to so-called
"fixed systematic errors', see [27, section VI.A. equations (38) and (40)]
or "systematic control error', see [28] in the quantum computing litera-
ture. In [34] "low frequency noise" is used (cf. also [24, section IV. C.]): it
is the portion of the (control) amplitude noise that has a correlation time
up to 10% times longer than the timescale of the dynamics therefore it
can be considered as constant in time. The understanding of laser noise

and various associated models is an active area of research [15, 25, 40].
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We present the theoretical background and analysis in Section 3.2. The
numerical algorithm and simulation results are given in Section 3.3. Fi-

nal remarks are made in Section 3.4.
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3.2 Theoretical framework

3.2.1 The model

We introduce the following notation:

e L a0, is the Lie algebra spanned by the matrices
M17M27 o 7Mm7

« For any matrix or vector X we denote by X* its adjoint (the trans-

pose, complex conjugate);
e $ is the set of all Hermitian matrices ) = {X € CV*VN|X* = X};

o W(t,H, u(:),u,Vy) is the solution of the equation (4.1) below; to
simplify the notation, when there is no ambiguity, we denote it as
W(t);

e SU(N) is the special unitary group of degree N, which is the group
of N x N unitary matrices with determinant 1;

o su(N) is the Lie Algebra of skew-Hermitian matrices (the Lie alge-
bra of SU(N));

e A set of commuting observables O = {Oy,...,Ok} (named SCO
hereafter) satisfies [Ox, O¢] =0, Vk, £ € {1,..., K};

o L(X) is the distribution of the random variable X.

Let us consider the following controlled quantum system with time-
dependent wave-function V(t) satisfying the Schrodinger equation:

Z'\ij(tv H, u(): 22 \IJO) - (H - u(t),u)\I!(t, H, u()? K \PO)
l11(07 H?“(')?NJ: lIJO) = Uy,

(3.1)
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where H is the internal ("free") Hamiltonian and p the coupling operator
between the control u(t) € L},.(R;R) and the system.

We work in a finite dimensional framework, therefore H, u € § for some
N € N*. The free Hamiltonian H is taken as known and the goal is to
recover the matrix entries of p from laboratory measurements of some
observables depending on W(t). The control u(t) can be changed in the
laboratory to gather sufficient information on the system for the inver-

sion to extract p.

In the laboratory, the control field is produced by superposition of several
frequencies, each with a specific amplitude and phase:

u(t) = o(t) >, Aupsin(wast + 0ap), (3.2)
a#p

where o(t) is a Gaussian envelope in time and w,g = Eg — E, is the
transition frequency between the eigenvalues £, and Eg of H. The
amplitudes A, and the phases 6,43 are the control parameters. In prac-
tice, the control fields cannot be produced perfectly. When we repeat
nominally the same experiment, there can be a random shift in the
amplitudes, which means for each experiment, there is a multiplicative
noise factor on the amplitudes. Accordingly the perturbation is modeled
by a random multiplicative factor Y acting on the control i.e., u(t) is
replaced by Y - u(t). This model has the assumption that each A,p has
the same shift; in addition we do not treat here possible noise appearing

in the phases 0,3.

In principle, the same methodology may apply to noise appearing in the
phases; however at this time adapted ensemble controllability results
are not available and on the other hand this requires to work with a

high-dimensional probability distribution (one dimension for each inde-
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pendent noise in a phase).

The perturbation Y takes values in V = {y,,/ < L} C R. We de-
note & = P(Y = y,), where the column vector ¢ with entries &, -+ ,&f
is a probability distribution on V. The numerical values of the possi-
ble perturbations g, are known but their occurrence probabilities &, are
unknown and thus V¥ is a random variable, as are all measurements de-
pending on ¥. Repeating the control experiment several times will yield

the distribution of the measurements.

The measurements are of the form (OV(T, H, u, u, Vo), W(T, H, u, pu, ¥y))
with O € $ being a member of a list of possible measurable operators.
Often, only one observable operator is readily available, but the experi-
ment can be repeated many times, including with distinct chosen fields.
Generally for two observables O, Oy € $) no information is available on
the joint distribution of the values (O1W (T, H, u, uu, Vo), V(T, H, u, j1, ¥¢))
and (OU(T, H,u, p, Vo), V(T, H,u, 1, ¥p)).

3.2.2 Theoretical result

The following theorem proves that under certain assumptions on the
system and the SCO O, if we obtain the same distributions for all ob-
servables in O and for all controls, then the dipole moment p and the
probabilities (£,)%; can be identified up to some multiplicative phases.

Remark 3.1 As the noise (with unknown distribution) Y multiplies
the unknown dipole i, when the couple (Y, p) is a solution, any couple
(Y/X, M) is a solution too; thus it is only possible to obtain Y and p
up to a multiplicative factor (here \). If, for instance, some additional
information on'Y or u is known the constant A can be set accordingly.

As such, we will suppose from now on that for at least one transition
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an absorption intensity measurement can be performed which provides
the value of |uye* for some given k, € (see [11, Chapter XIII, Section
C.3.b Fermi’s Golden Rule, p. 1299]). This is recalled in assumption
Hyp-D below.

Theorem 3.1 Let H, uy, pe € 9, H diagonal, puy # 0, puo # 0, Y7,
Y5 two random wvariables with values in the same set V), at least one
of which is non-null, U} W2 € Sy some initial states and denote for
a=1,2andu e L} (R, R): U,(t,u) = U(t, H,u(), pta, ¥&). Let O
be a (non-trivial) SCO. We suppose that N > 3 and:

Hyp-A LiH,iul = LiH,i[LQ = 5u(N);

Hyp-B tr(H) = tr(m) = tr(p) = 0;

Hyp-C the eigenvalues of H are all of multiplicity one.

Hyp-D |(11)1e|> = |(112)re|> # O for some fived k. € .

The final observation time is denoted T (assumed large enough) and

we suppose the following equality of distributions:
LU{OV(T,uY1), V1 (T,uY1))) = L{OV(T,uY3), ¥o(T,uY3))) (3.3)
vu e LY([0,T];R), VO € O,

then for some (a;)¥, € RN:

()i = £ @) (o) s, Vj, k < N,

(3.4)
P(Y; =y) = P(Ys = +y,) V< L.
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Remark 3.2 The £ signs in equation (3.4) are due to the hypothesis
Hyp-D which leaves the sign undetermined; it may also appear when
the sign of the noise is ambigous i.e., when Y, and —Y7 have the same

distribution.

Remark 3.3 The SCO O may contain just one observable.

Proof. The proof requires the tools introduced in [18] where the addi-
tive noise u(-) + Y was considered. In order to keep it simple we only
give the main ideas and the modifications with respect to proof pre-
sented there. Using Lemma 5.1 in [18], for all / < L and O € O, there
exists ko(¢) < L such that

(OU (T, u-ye), Ui(T,u-ye)) = (OV2(T, 0 Yoy 0), Y2 (T, 1 - Yooy (0)))-
(3.5)
Reasoning as in the proof of theorem 4.1 of [18], this implies that there
exists W € SU(N) diagonal such that y,. 2 = Wy W1, Since
at least one of Y; or Y5 is non-null, we can suppose, without loss of

generality, that y, # 0; we deduce the existence of some A € R\ {0}
such that

(p) & = A" @7 () s, Vi, k < N,
]P)(Yi = yg) = ]P)(Yé = )\yg) W24 S L.

(3.6)

However, since p; and po are fixed for all O and ¢ we obtain that A is

independent of ¢, which, using assumption Hyp-D, gives the conclusion.

Remark 3.4 The hypothesis Hyp-A is required for identification while
Hyp-B is rather a convention. Hypothesis Hyp-C can be relazed (as
in [18]) if the O is a Complete Set of Commuting Observables (CSCO).
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3.3 Numerical results

3.3.1 The algorithm

Several numerical simulations were performed in order to illustrate the
theoretical result in Section 3.2. In all cases we simulate the "real
system with Hamiltonian H, dipole moment fi,¢q, noise Y7 with dis-
tribution £L(Y") = 2k | &7eal§, and observables O = {Oy, ..., Ok} that
correspond to the Hamiltonian H, specified by projections {|e1)(e1], ...
, len)(en|}. Here |ep) is the j-th eigenstate of H. Note that here we
take O = {0, ...,Ok} to be the entire set of projectors, but one would
be enough for the theoretical result to hold, see the Remark 3.3.

The measurements provide the distributions of the observables for each

control wu:

L
kz_:lg};ealé|<¢(T,H,u.yk’urwl’\p(l))’eﬁ|2). (37)

The Hamiltonian H is assumed known to high accuracy. In contrast, we
suppose that a priori we only know the order of magnitude of the dipole
moment. This information is useful as an initial guess for the inversion

procedure.

To find the dipole moment and the noise distribution of the control

amplitudes we minimize the difference between

(i) the observed distribution calculated, at some suitably large time 7',
with the current dipole candidate p and the current noise distribution
candidate S°F_ | &5, and

(ii) the real observable distribution calculated with the real dipole mo-

ment [ and the real distribution Zé:l fzealéyk
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The difference is summed over several controls u;,...,uy, and defined as:

Ny

Z\H

I—Ig

N L
> Wi szl £k5|<‘I’(T7H>Ui'yk>ﬂ7\1’(1))vej>|2’

=1

} . (3.8)

Here W represents the 1-Wasserstein (also known as Kantorovich-Rubinstein)

T (0 (6 (u)¥) = log {

=

’L:

Z grealé
2 |(W(T, H ui-ykspreat, ¥9) €5)]?

distance between two distributions (see page 34-35 in [37]); for two
probability distributions Z;, Zs having cumulative distribution func-

tions Fy, (respectively Fz,) the distance is:

Wi(Z1.22) = [ |} (@) — Fy) ()], (3.9)

Other distances could also be used, e.g. Wh.

We start the optimization with an initial guess u° (see (3.15)); the dis-
tribution &V is initialized to be uniform. The iteration n > 1 consists in

the following steps:

Algo 1 Randomly choose N, controls u!', i = 1,..., Ny ;

Algo 2 minimize & — J ("1, &; (u;)Y4) and set " to be a minimizer (in

practice a close approximation);

Algo 3 minimize p — J(p, &% (1)) and set u” to be a minimizer (in

practice a close approximation);

For the step Algo 2, denote azj = [(U(T, H,u? - yg, u", ¥Y),¢;)|* and
b = [(U(T, H,u - Yp, tireat, ¥9), €,)2. A part of the algorithm is to

minimize the error:

2

1

1
og N,

N L
> W1(k; &0, i Z fmalész) ) (3.10)

Jj=1

i
I
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The differential of the distance W) is not trivial to compute (see [37]
for a rigorous mathematical treatment); instead, in this step, we use
the L? distance between the smoothed densities: each Dirac mass is re-
placed by a Gaussian distribution with small variance (here v* = 107):
) ol is replaced by the normal distribution N (azj, v?) and 5sz is replaced
by N (b7, 1?)). The use of parameter v does not assume any partic-
ular distribution for £7¢* and does not bias towards one, it is only a
rapid way to obtain a computable gradient. We compute the L x L

1 _ 1042
1 7(ak‘ a/ )

matrix M" whose entries M}/, = ———e” " 2 account for the den-

sity of the distribution A (ay,?) at the point a} (and a similar matrix
g y b —b7)?
M with MZJK = y.lﬁe_ 5 for the real distribution). When v is

small the minimizer of the term in (3.10) is close to the minimizer of
SN SN IMPE — Mgreal||2 which is given by the formulas

gn,raw _ (% %(Mij)TMij)_ (% é(Mz])TM/Z]> greal. (311)

i=1j=1

The term £™"" is corrected to be a probability distribution and set to

e

B 1
S 16

£" (& - 1627 - (3.12)

For the step Algo 3 there is no explicit solution; a classical unconstrained
nonlinear optimization algorithm is employed (we used the Gnu Octave

procedure "fminunc").

Once the algorithm finished, the remaining overall multiplicative con-
stant A (see Remark 3.1)) is set consistent with the data (see below the
examples).

3.3.2 Numerical tests: /N observables

We consider the 4-level system (N = 4) in [14] having:
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0.0833 —0.0038 —0.0087 0.0041
g | 00038 00647 00083 00038 | (3.13)
—0.0087 0.0083 0.0036 —0.0076
0.0041  0.0038 —0.0076 0.0357
0 5 -1 0
P (3.14)
1 6 0 7
0 —15 7 0

We set N,, = 36; the controls are defined by formula (3.2) with ampli-
tudes (Anp) chosen at random, uniformly in [0,0.1 - [l — 0,0012]

H,U“real”lo<>

and the phases 6,3 in [0, 27]. For the values (3.13) and (3.14) the initial

guesses are:

0 376 —131 0
s |3 0 3m1 —178
Po=1_.131 351 0 672 |
0 —178 672 0
0 10 1 1
. |10 0 10 1
He= 11 10 0 10| (3.15)
1 1 10 0
0 748 —051 0
o | 748 0 883 —os7
=1 _051 883 0 587 |
0 —087 587 0

The average relative errors of these initial guesses are 42%, 70% and

50%. Guesses Mg and ) are obtained by multiplying element-wise fi,eq
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by uniform random variables in [0.4, 1.6] (i.e., up to 60% average relative
error); the term p? is obtained by taking roughly the order of magni-
tude of the entries of p,¢: the values smaller or about 1 are taken to
be 1 while the others are set to 10. The observables arising from the
Hamiltonian H are projections {|e1){e1|, |ea)(ea|, |es){es|, |es){es|} to
eigenstates:

leq 0.0845 —0.1313 0.9651 O2101> ,

T
|es 0.1305 —0.0856 —0.2103 09651) :

) = (
)= (-
les) = (0.2118 0.9647 0.0838 01325) :
) = (

ey 0.9649 —0.2118 —0.1314 0. 0830) : (3.16)
In the basis {eq, es, 3,64} the Hamiltonian H is diagonal with eigen-
values F; = 0, Fy, = 0.0365, E3 = 0.0651, £y = 0.0857. We set the
final time T" = 3200 which is about 10 periods of the smallest transition
frequency 27 /(Ey — E3) = 314 in H.

With respect to Remark 3.1 we suppose that the value |(prear)12|> = 25

is known.

The support for the distribution Y is known and denoted [y, ya]; in
the numerical tests we take y,, = 0.5 and yy; = 1.5. We discretize
the set of possible values of the perturbation with L = 51 equidistant
points yy = Yy, + (( — 1) - =4 £ = 1,..., L. The values y, are sup-
posed known but not the probablhtles freal that define the distribution
L(yrealy = sk greals, of the perturbation Y. Several distribu-
tions are tested; they are constructed by discretizing, truncating and

re-normalizing several classical distributions:

o Y7 = Y9 being a Gaussian distribution centered at 1 with vari-



3.3 NUMERICAL RESULTS 119

ance equal to 0.0025:

real,g: fé] {=1.---_.L (3 17)
! Sk fi -

with f{ = L e
b /0.002527

2
_ (y—1)
2-0.0025 ,

o Y = Y® being a shifted exponential distribution form:

real,e fée
e — =1, L (3.18)
! She ff

with ff =5 - e > Wyn),

o Y — Y being the bi-modal distribution which is the sum of
two Gaussian distributions. We choose the first one centered at 0.8
with variance equal to 0.0025 and the second one centered at 1.2

with variance equal to 0.0049:

b

real,b fé
b (=1,---.L 3.19
‘ St fy (319)

with fl? =

_ (p—0.8)° 1 (y—1.2)

2:0.0025 e 2-0.0049

1
e +
1/0.0025v/ 27 1/0.0049+/ 27

The dipole moments converge in 10 iterations. The numerical values are

rescaled in order to use that |(jireq)12|> = 25; same is done for the noise

10

10 10.
g He and Hp

distributions. We obtain pu

0 5 1 0
12— ol = 51075, 010 = 5 0 599995 —1.5
! e —1 599995 0  6.99999 |

0 =15 6.99999 0

(3:20)
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0 5% —1 0
5 0 6 —1.5
10 —4 10
e — Mreallloo = 1077, p” = , (3.21
it = Hreatl 10 6 0 6.999 (3.21)
0 —1.5 6.9999 0

0 o -1 0

5 0 5.99999 —1.5
—1 5.99999 0 6.99994

0 =15 6.99994 0

HNJZl;O — fhreat|loo = 6 - 10_57 :“l%o =

(3.22)

The error norm is || || is the largest, in absolute value, of the error com-
ponents. See figures 3.1,3.2, 3.3 for the results. The tables 3.1 and 3.2
present the match of the probability distributions of the observables.

0.2

Figure 3.1: Identification of the Gaussian distribution (3.17). The real distribu-
tion is in blue, the numerical result in red. Good agreement with the
unknown noise distribution £7°* is obtained; the error on the dipole
moment is 5 - 107°, see equation (3.20).
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0.4

Figure 3.2: Identification of the exponential distribution (3.18). The real distribu-
tion is in blue, the numerical result in red. Good agreement with the
unknown noise distribution £7°* is obtained; the error on the dipole
moment is 1074, see equation (3.21).

0.06 r

0.05 ¢

0.04 r

0.03 r

0.02 r

0.01 r

Figure 3.3: Identification of the bi-modal distribution (3.19). The real distribution is
in blue, the numerical result in red. Good agreement with the unknown
noise distribution £7°* is obtained; the error on the dipole moment is
61075, see equation (3.22).
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Iteration n =1
Real distribution Initial guess
O\u ui ul ui O\u ui ul ui
o, ||mnant) | [ i 0y | lmmaman | 0| || mumn |
02 02
Oz | |LENaln_] J_IL JL 03 | |mmmmmll] jll.k | il |
SRR
Table 3.1: The match of the observation distributions for the bi-modal distribution
(3.19). We plot the histograms at the start of the inversion algorithm
i.e., iteration step n = 1. In the left sub-table are the histograms of the
observations YF_, 5,26‘”5‘<\I,(T7H’u%,yk’“ml7\1,?)’ej>|2 with the real distribution;
in the right sub-table the histograms correspond to the initial guess which
is the uniform distribution. Each column corresponds to a control field,
here only the first 3 control fields u}, u} and u} are shown. Each line
corresponds to a specific observable in the SCO set O. The initial guess
is seen to be a poor approximation, as the histograms in left and right
sub-tables differ substantially.
Final iteration n = 10
Real distribution Numerical candidate
O\u ul® uld ui0 O\u ul® uld u30
O4 il O4 il
0, || allla_| l LI.L 0, || allla_| l LI.L
AT N P P T
Table 3.2: Converged result (iteration n = 10) from initial guess Table 3.1. The

identification works well as the left and right sub-tables match. As ex-
plained, the control fields are chosen randomly at each iteration and in
particular the controls chosen at iteration n = 1 and n = 10 are not the
same (otherwise the histograms corresponding to observations with the
real noise distribution would be the same as in Table 3.1 left sub-table).
Here the results for u{, ud® and ul® are displayed.
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3.3.3 A single measured observable

We use the same system as in the Section 3.3.2 except that here we con-
sider the extreme case when only one observable is available as function
of the control field. The observable is the projection |e3)(es| to the third
eigenstate.

The initial guess is:

0 10 1 1
10 0 10 1
0
_ | 3.93
Fo= 11 10 0 10 (3.23)
1 1 10 0

The coefficient o1 = p12 = 5 is fixed, as previously stated, but now it is
treated as a constraint by the algorithm (which will thus only optimize

the other coefficients). The algorithm minimizes the difference:

1 Ny, L
T (1, (&)f_y; (wi)y) = log {N > W Lzl &0 (W (T H s g1, 09) 3) 2

u =1
L l
Z Szea 5|<‘I’(T7H7Ui'yk7ﬂreal,‘p?)7€3>|2] } . (324)

The distribution Y tested is the bi-modal model. The algorithm con-
verges and after 5,10 and 15 iterations, the dipole moments we obtain
respectively have an L? error of 0.17246, 0.03736 and 4.5652 - 10~ re-
spectively. In order to test the robustness of the algorithm with respect
to other error norms, we use the L? error norm ||-||z2 (the square root of
the sum of squares of the components). The convergence is slower than

in Section 3.3.2 when we treat g2 = 112 = 5 as a constraint.
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Figure 3.4: Identification of the bi-modal distribution (3.19) after 5 iterations. The
real distribution is in blue, the numerical result in red. The noise distri-
bution starts to have the same qualitative features as £"°*; the L? error
on the dipole moment is 0.17246.
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Figure 3.5: Identification of the bi-modal distribution (3.19) after 10 iterations. The
real distribution is in blue, the numerical result in red. The noise distri-
bution starts to converge; the L? error on the dipole moment is 0.03736.
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Figure 3.6: Identification of the bi-modal distribution (3.19) after 15 iterations. The
real distribution is in blue, the numerical result in red. Good agreement
with the unknown noise distribution £ is obtained; the L? error on
the dipole moment is 4.5652 - 1074,
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Figure 3.7: The L? error ||u* — p®| ;2 for k = 1, ..., 15 iterations.
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Remark 3.5 A legitimate question is related to the scaling of the iden-
tification with respect to the number N of levels. Note first that the
computation in equation (3.24) only depends on the number of observ-
ables (and not on N, as equation (3.10) seemed to indicate). On the
other hand, the computation of the W, distance is independent on N

and, for one dimensional laws, straightforward.

Of course in order to compute the observables, numerical simulations
are performed, and these do depend on N. But such simulations allow
for trivial parallelization which could bring down the wall-clock time
per iteration to that of a single numerical resolution of the N -level
system. Such a time is a lower bound because one needs to check

whether a candidate solution is indeed a good solution.
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3.4 Conclusion

The inversion of the dipole moment has been considered in a model
where the noise coming from the laser source is non-negligible and of
unknown distribution. The model considered here has noise acting mul-
tiplicatively on the control intensity and is the same for all frequency

components.

First, we proved theoretically that if one can measure repeatedly (at
least) one observable for many control fields, the set of probability dis-
tributions of this observable is enough to recover both the dipole and the
noise distribution. Then, a numerical algorithm based on the Wasser-
stein distance between the probability distributions was proposed and
seen to perform well for several different, non-perturbative, noise distri-
butions and initial guesses for the dipole. As subject for future study is
the question of how to treat noise of possibly distinct character reflected
in each of the amplitudes and phases or other different noise models
as discussed in the Introduction. In addition, there are several further
issues to consider in future work for creating a realistic algorithm for

quantum system data inversion.
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Chapter 4

Gaussian process phase noise model

In this section, we study the phase noise model. The noise in
the phase are supposed dependent and modeled by a Gaussian
process. The numerical tests are made in three cases: square
exponential covariance model, Ornstein - Unlenbeck process
and Brownian motion. In all cases, the recovery algorithm

works well.
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4.1 Introduction

Let us recall the controlled quantum system with time-dependent wave-
function W(t) satisfying the Schrodinger equation:

i\il(ta H, u()v 22 \IJO) - (H - u(t):u)qj(tv H, u()7 M \IIO)
\D(OvHvu(')nu: \PO) = Wy,

(4.1)

where H is the internal Hamiltonian and p the coupling operator be-
tween the control u(t) € L} (R, ;R) and the system.

The space under study is finite dimensional, thus H and u are N x N
Hermitian matrices for some N € N*. The free Hamiltonian H is sup-
posed to be known. The physicists change the control u(t) to gather as
much information as they need on the system to recover the operator

p from laboratory measurements of some observables depending on V().

The control is parameterized as the superposition of lasers beams with
different frequencies. Each has a specific amplitude and phase, a math-

ematical model of the control is:

u(t) = S(t) [ _ A(w)cos(wt + 0(w))dw. (4.2)

w€eD

D is a bounded part of R, which is the set of all possible frequencies.
S(t) is a Gaussian function in time. The amplitudes A(w) : D — Ry
and the phases 6(w) : D — [0, 27] are the control parameters which can
be adjusted during the experiments. The amplitude function A should
be integrable on D.

In practice, there are always some noises in the control. In this section,
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we only consider noises in the phases. Let us introduce the phase noise

model, which is

u(t) = S(t) [ _ Alw)cos(wt + 0(w) + 06,). (4.3)

weD

Denote by (€2, F,P) the space of probability. The phase noises (06,).ep
are approximated as a Gaussian process indexed by frequencies. For all
instants ¢, u(t), the control at instant ¢, is now a random variable. As a

result, the wave function W(¢) also becomes a random variable.

The measurements are of the form (OV(T, H, u, u, Vo), W(T, H, u, pt, ¥y))
with O some N x N matrix being a member in a list of possible mea-
surable operators. Unfortunately, often one experience can only provide
the measurement with one operator. Although the experiments can
be repeated as many times as we want, including with distinct chosen
fields, there is no information available on the joint distribution of the

measurements for two observables O, Oy in general.
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4.2 The noise model

A key fact of Gaussian processes is that they can be completely defined
by their mean value functions and covariance functions. It is natural to
assume that all Gaussian variables d6(w) follow the same normal distri-
bution N(0, 0?) centered in 0.

In reality, the physicists use only a finite amount of laser frequencies to
construct the control. Denote by N, the number of laser frequencies

superposed. Then a discretization of equation 4.3 is:

u(t) = S(t) %Alcos(wlt + 0, + 40;), (4.4)

where A; = A(w;), 0, = 0(w;) and §6; is the random variable §6,,,.

4.2.1 The expectation of u(t)

Denote by fsg, the density function of the random variable 06;. Let us
calculate the expectation of u(t):

E(u(t)) = /mR S(t) z]iz? Ajcos(wit + 0; + x) fso,(x)dx

N,
— S(t)l;Al[cos(wlt—l—Qz)/ cos(x) fs0,(x)dx)
— sin(wgt+91)/€ sin(x) fsp,(z)dx].

As the (06;)1<1<n, follow the identical centered normal distribution which

Is symmetric,

| sin(@) fs (x)dx = 0,
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and

/:ceR cos(x) foo (v)dz = /xeR cos(x) fs0,(x)dx

for all [ and !”. Thus

E(u(t)) = auo(t),

where ug(t) = S(t) o1 Ajcos(wit + ;) the control without noises and

o = [er c08(z) f56,(x)dx only depends on the variance o.

We should note that when o2 is small, which means the Gaussian dis-
tribution is sharp, the parameter « is close to 1. On the contrary, when
o2 is large, which corresponds to a uniform distribution, the parameter
a tends to 0. In fact,

o= S (1) [ o funlw)de = 3 (<1 E(6)

x (2k)!

k=0

4.2.2 Correlations between the noises

The next question is that what kind of covariance function is suitable to
model the correlation between the phase noises? First we remark that it
is reasonable to make the assumption that the phase noises are isotopic
processes, which means the covariance K(060,,d6,) depends only on
the Euclidean distance between the frequencies |w — w’|. When the
frequencies are close, the noises have more chance to be correlated, so
the covariance function should be a decreasing function. The Matérn

class of covariance functions (see Example 1.1) and the y-exponential
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covariance functions (see Example 1.2) seem to be good models.



4.3 NUMERICAL SIMULATIONS 135

4.3 Numerical simulations

The observables used here are the projections on the eigenstates of the
real Hamiltonian H: O = {Oy,...,On} = {|e1){e1], ... , |en){en|}. |ei)
is the i-th eigenstate of H.

In order to enable all the transformations, the frequencies (w;)1<;<n, are
often chosen as the transitions of the eigenvalues of H: |\; — \;|, with
N(N-1)

(Ai)1<i<n the eigenvalues of H. In particular, N, = —5—.

The Gaussian process (d6,)wep can be simulated by N, random real-
izations. This number N, should be large enough such that when we
change the N, realizations, the error occurred does not prevent the re-

covery of the dipole moment pu.
The simulation provide the distribution of the control u(t) by

N, 1
Luwy = kz:i ﬁfsu) SN Aycos(wit+6,+60; 1) (4.5)

where (00;.1)1<1<N,.1<k<N, € RN Nr are N, realizations of the correlated

random variables (66;)1<;<n, .

The Hamiltonian H is assumed known to high accuracy. In contrast, we
suppose that we only know f,., with an error about 10%. We would
like to know fi,.q; with more accuracy, for example, within 1% of error.

To find the dipole moment f,.,; we minimize the difference between:

(i) the virtual distribution simulated, at some suitably large time 7', with

the current dipole candidate p and the simulated control distributions
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u(t)
and

(ii) the real observable distribution measured in the laboratory at T" with

the real dipole moment g, and the real control distributions a(t).

The difference is summed over N, control distributions (u/);<j<y, and
(@)1<j<n, defined by the N, set of different amplitudes (A7)1<j<n, 1<1<N,,

and phases (07)1<j<n, 1<i<N,-

Each control distribution «’ is simulated by N, realizations of phase

noises (867,)1<i<n,,1<k<n, € RN

N, 1
Luiey = k; ﬁrdS(t) S A cos(wit+6]+06 ) (4.6)
And each control distribution @/(t) is defined as
@ (t) = S(t) Y. Alcos(wit + 0] + 66;). (4.7)
=0

Now we define the difference for each (u/,@):

) . N )
j(uj7 22 ﬂja /~L7”€al) = Z W1<|<\II(T7 H7 uja 22 \110)7 €i>‘27
=1

|<\IJ(T7 Ha ajaﬂreala\ll())yei>|2), (48)

where the [(U(T, H, @/, iyear, Wo), €;)|? are obtained directly by measure-

ments in the laboratory.

Then the average difference is obtained by:
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1N
ﬁ le(ujuu7u]7,ureal)- (49)

]:

j((u])lﬁjﬁNuu H, (aj)lﬁjSNua ,ureal) —

Here the distance we use is W, the 1-Wasserstein. Other distances

could also be used, for example W,.

4.3.1 Main algorithm

We start the optimization with an initial guess u'.

Algorithm 4.1 The iteration n > 1 consists in the following steps:
1. Randomly choose N, sets of amplitudes (A{)lnglengNw and
phases (6])1<j<n, 112N,

2. Use the Algorithm 1.1 to construct N, random realizations of

phase noises (00, )1<i<N,1<k<N,;
3. Calculate (w)1<j<n, via formula (4.0);

4. minimize [ — j(('u,j)lgjg]\fu, ty (W) 1<j<N, s Hrear) and set u™ to be

a minimizer (in practice a close approrimation);

We stop the algorithm when 7 is smaller than a target error.
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4.4 Numerical tests

The numerical test use the 4-level system (N = 4) in [14] having:

0.0833 —0.0038 —0.0087 0.0041
- —0.0038 0.0647 0.0083 0.0038
—0.0087 0.0083 0.0036 —0.0076
0.0041  0.0038 —0.0076 0.0357
and
0 5 —1 0
|5 0 6 —15
Hreal 1 6 0 -
0 —15 7 0

We set N, = 36. The amplitudes are chosen at random, uniformly in
[0,0.1- [ 0.0012] and the phases in [0, 27]. We set the Gaussian

||,u7‘eal||l°°

2
envelope in time S(t) = exp (—40 (t_gﬂ) )

The initial guess is:

0 5.1295 —0.9762 0.0962
0 5.1295 0 5.5100 —1.6434
pwo= (4.10)
—0.9762  5.5100 0 7.6117
0.0962 —1.6434 7.6117 0

The relative error of this initial guess is about 8.7%. The initial guess z°
is obtained by multiplying element-wise fi;cq; by uniform random vari-

ables in [0.9,1.1] (i.e., up to 10% average relative error).
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The observables arising from the Hamiltonian H are projections {|e1)(e1],

lea) (ea], |es){es|, |es){es|} to eigenstates:

leq 0.0845 —0.1313 0.9651 02101) ,

T
|ea 0.1305 —0.0856 —0.2103 09651) :

les 0.2118 0.9647 0.0838 0. 1325) ,

)
)
)
) =

(
(-
(
lea) = (

0.9649 —0.2118 —0.1314 00830) . (4.11)

In the basis {ey, €2, e3, €4} the Hamiltonian H is diagonal with eigenval-
nes By = 0, Fy = 0.0365, B3 = 0.0651, Ey = 0.0857. Thus N, = 6,
wp = 0.0365, wy = 0.0651, wg = 0.0856, wy = 0.0286, ws; = 0.0492 and
wg = 0.0206.

We set the final time T" = 3200 which is about 10 periods of the smallest
transition frequency 27/(E,; — E3) = 314 in H.

4.4.1 Choice of the correlation operator

We will use the square exponential covariance matrix (see Example 1.3

for the numerical tests). Then

2
(wp—wyr)

Zg’l/ = 0'26_ B (4.12)

with £ a length-scale parameter. We set ¢ = 0.1, so that the noises are
not negligible.

The value of 5 should be appropriate such that the noises are correlated
but not too correlated. Figure 4.1, Figure 4.2 and Figure 4.3 shows the
realizations for § =1, § = 0.1 and g = 0.01.
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Figure 4.1: 10 realizations of the phase noises with 5 = 1. The x-axis represents the
6 frequencies [wy, ws, w3, Wy, Wy, W]

We remark that when § = 1, it is too large that the noises are too cor-
related. The 460, take almost the same values.

The choice of B = 0.1 seems to be an adequate choice. The noises

influenced each other.

When g = 0.01, the noises are not enough correlated.

4.4.2 Choice of the number of realizations

The number of realization NV, should be large enough such that the error
due to the choice of realizations is negligible compared to the error due

to the dipole moment pu.
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Figure 4.2: 10 realizations of the phase noises with § = 0.1. The x-axis represents
the 6 frequencies [wy,ws, w3, Wy, ws, we)

For any amplitudes (A4;)1<;<n, and phases (0;)1<;<n, randomly chosen,
and for any dipole moment p such that the relative error between pu
and ft,¢q is about 1%, we simulate the distribution of the controls u;
and uy for two different groups of realizations (6} ;)1<i<n, 1<k<n, and
(6071 )1<i<N..1<k<N, respectively with the formula (4.5). The difference
between the two laws: J(uy, p, ug, ) should be negligible compared to
the difference between the simulation results with g and the real mea-
surements with g, for the same input of amplitudes and phases. This

second difference is around 0.02.

Let us test for N, = 1000. We construct 10 different p which have
relative errors about 1% with fi,..y. These are obtained by multiply-
ing element-wise [y by uniform random variables in [0.99,1.01]. For
each p, 10 couples of amplitudes (A4;)1<;<n, and phases (6;)1<;<n, are
randomly chosen in [0,0.0012] and [0,27]. And for each triple (dipole
moment p, amplitudes (A;)1<;<n, and phases (0)1<k<n,), We calcu-
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Figure 4.3: 10 realizations of the phase noises with 5 = 0.01. The x-axis represents
the 6 frequencies |[wy, we, w3, Wy, wWs, We|



4.4 NUMERICAL TESTS 143

late the difference J for 2 set of realizations (66}, )1<<n, 1<k<n, and
(6071 )1<i<N,.1<k<n, randomly created. The 100 differences are mainly
concentrated around 0.0017, which can be considered negligible com-
pared to 0.02.

The Figure 4.4 shows how the 100 differences are distributed.

Figure 4.4: The histograms of the (base 10) logarithm of 7.

One of the p chosen is

0 49861 —1.0022 0.0099
4.9861 0 5.9995 —1.4911
—1.0022  5.9995 0 6.9376
0.0099 —1.4911 6.9376 0

Hsample

The relative error between fisgmpre and fiyeqr is 0.89%. The Figure 4.5 and
Figure 4.6 shows the histograms of the distributions of measurements

simulated by different realizations. The two figures are very similar,
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which means the choice of realizations is not an important issue. The
average difference J is about 0.0017.
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Figure 4.5: The 5 x4 sized histograms of the simulated distribution of (OW, ¥). The
5 rows represents the 5 couples of amplitudes and phases chosen and the
4 columns represents the 4 observables.

We also test for other values. For N, = 100, N, = 500, and NN, = 10000
the average difference are 0.006, 0.0029 and 0.00061 respectively. This
means if we want to recover the dipole moment fi,., within 1% of rela-
tive error, the choice of N, should not be less than 500.

4.4.3 Numerical results

We set N, = 1000. After 50 iterations, we obtain
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Figure 4.6: The 5 x4 sized histograms of the simulated distribution of (OW, ¥). The

5 rows represents the 5 couples of amplitudes and phases chosen and the
4 columns represents the 4 observables. The amplitudes and the phases
are the same as in the previous figure while the realizations are different.
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0 49781 —0.9307 —0.0063
50 | 4.9781 0 5.9568 —1.5189
—0.9307  5.9568 0 7.0682
—0.0063 —1.5189 7.0682 0

which corresponds to about 1% of relative error.

The Figure 4.7 shows the relative error err = W for the 100 first

| Hreal || co

iterations.

10

10

3

10_ 1 1 1 1
0 20 40 60 80 100

Figure 4.7: The relative error for 100 iterations using the square exponential covari-
ance function.

In fact, after 80 iterations, we obtain
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0 4.9889 —1.0180 0.0068

g0 | 49889 0 6.0066 —1.5029

—1.0180  6.0066 0 7.0299
0.0068 —1.5029 7.0299 0

which corresponds to an relative error of 0.42%. And the average dif-
ference J is about 0.007. This explains why the optimization algorithm
is difficult to continue. Because the error from the choice of the distri-
butions is not negligible now. If we want to have more accurate results,

we should increase the number of realizations IV,.

4.4.4 Numerical results using the exponential covariance function

In this section we use the exponential covariance function, which corre-

sponds to the Ornstein-Uhlenbeck process (see Example 1.8). Now

|wl_wl/‘

Yy =0’ 7 (4.13)

with ' a parameter to be determinate and o = 0.1.

A suitable value of 8’ for that the noises are enough correlated is 5/ = 2.

Figure 4.8 shows the realizations in this case.

We start with the same p° (see equation 4.10) and N, = 100. After 60

iterations, we obtain
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Figure 4.8: 10 realizations of the phase noises with 8’ = 2 in the equation (4.13).
The x-axis represents the 6 frequencies [wy, ws, w3, Wy, Ws, W)

0 50641 —1.0585 0.0068
o | 5:0641 0 59642 —1.5139
~1.0585 59642 0 7.0294
0.0068 —15139 7.0294 0

which corresponds to an relative error of 0.91%. And the average dif-
ference J is about 0.014. The optimization algorithm can not continue
any more because the error from the choice of the distributions becomes

significant.

The Figure 4.9 shows the relative error err = W for the 100 first

iterations.
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Figure 4.9: The relative error for 100 iterations using the exponential covariance
function.

4.4.5 Numerical results using Brownian motion

In this section we use the Brownian motion (see Example 1.6). Now

ZU' = O'2 min(wl, wl/). (414)

with o = 0.1.
Figure 4.10 shows the realizations in this case.

We start with the same p° (see equation 4.10) and N, = 100. After 60

iterations, we obtain
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Figure 4.10: 10 realizations of the phase noises with Brownian motion (see equa-
tion 4.14, ¢ = 0.1). The x-axis represents the 6 frequencies

[U.)l,CUQ,Wg, Wy, Ws, WG].

0 5.0043 —1.0138 0
6o | 0-0043 0 6.0078 —1.5015
i —1.0138 6.0078 0 6.9834
0 —1.5015 6.9834 0
which corresponds to an relative error of 0.24%.
The Figure 4.11 shows the relative error err = W for the 100

first iterations.
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Figure 4.11: The relative error for 100 iterations using the Brownian motion.
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Résumé

Dans le cadre du contréle quantique bilinéaire,
cette thése étudie la possibilité de retrouver
I'Hamiltonien et/ou le moment dipolaire a I'aide
de mesures d'observables pour un ensemble
grand de contrdles. Si l'implémentation du
contréle fait intervenir des bruits alors les
mesures prennent la forme de distributions de
probabilité. Nous montrons qu'il y a toujours
unicité (a des phases prés) des Hamiltoniens de
du moment dipolaire retrouvés. Plusieurs
modeéles de bruit sont étudiés: bruit discrete
constant additif et multiplicatif ainsi qu'un modele
de bruit dans les phases sous forme de
processus Gaussien. Les résultats théoriques
sont illustrés par des implémentations
numériques.

Mots Clés

équation Schrédinger, systéme bilinéaire,
contréle quantique, identification Hamiltonien

Abstract

The problem of recovering the Hamiltonian and
dipole moment, termed inversion, is considered
in a bilinear quantum control framework. The
process uses as inputs some measurable
quantities (observables) for each admissible
control. If the implementation of the control is
noisy the data available is only in the form of
probability laws of the measured observable.
Nevertheless it is proved that the inversion
process still has unique solutions (up to phase
factors). Several models of noise are
considered including the discrete noise model,
the multiplicative amplitude noise model and a
Gaussian process phase model. Both
theoretical and numerical results are
established.

Keywords

Schrédinger equation, bi-linear system, quantum
control, inversion Hamiltonian
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