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Spectral analysis of random graphs with application to clustering
and sampling

Abstract:
In this thesis, we study random graphs using tools from Random Matrix Theory and

probability to tackle key problems in complex networks and Big Data. First we study graph

anomaly detection. Consider an Erdős-Rényi (ER) graph with edge probability q and size

n containing a planted subgraph of size m and probability p. We derive a statistical test

based on the eigenvalue and eigenvector properties of a suitably defined matrix to detect the

planted subgraph. We analyze the distribution of the derived test statistic using Random

Matrix Theoretic techniques. Next, we consider subgraph recovery in this model in the

presence of side-information. We analyse the effect of side-information on the detectability

threshold of Belief Propagation (BP) applied to the above problem. We show that BP

correctly recovers the subgraph even with noisy side-information for any positive value of an

effective SNR parameter. This is in contrast to BP without side-information which requires

the SNR to be above a certain threshold. Finally, we study the asymptotic behaviour

of PageRank on a class of undirected random graphs called fast expanders, using Random

Matrix Theoretic techniques. We show that PageRank can be approximated for large graph

sizes as a convex combination of the normalized degree vector and the personalization vector

of the PageRank, when the personalization vector is sufficiently delocalized. Subsequently,

we characterize asymptotic PageRank on Stochastic Block Model (SBM) graphs, and show

that it contains a correction term that is a function of the community structure.

Keywords: Random Matrix Analysis, Spectral Graph Theory, Random Graphs,

Sampling, Community Detection
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Chapter 1

Introduction and Thesis

Organisation

The spread of internet and the ubiquity of mass accessible computational power have led,

in recent years, to an explosion of data, often branded Big Data, which test the limits

of traditional data processing methods. At the same time, the unprecedented growth of

social networks like FacebookTMand other online communities like NetFlixTMhas given rise

to network sizes orders of magnitude larger than before. Such networks with several key

defining characteristics are called complex networks [Newman 2003].

Graphs provide a parsimonious representation of interacting heterogenous entities, and

hence are versatile and flexible as a tool for developing data processing algorithms. The

advent of complex networks and Big Data has therefore renewed and galvanized an interest

in graph processing and learning algorithms in disciplines ranging from Signal Process-

ing [Shuman et al. 2013], Computational Biology [Kitano 2002, Hou et al. 2016] to The-

oretical Physics and Information Theory [Mezard & Montanari 2009]. Graph based data

processing has been highly successful and many important problems in machine learning

can be formulated and solved efficiently in this framework, for e.g. [Koutra et al. 2011]. The

analysis of graph algorithms is therefore of great importance.

However, complex networks owing to their large sizes and heterogeniety can often be

extremely difficult to study. A remedy to this problem is to model networks using random

graphs that capture key network properties of interest. Random graphs are probabilistic

models where links are added between nodes according to some probabilistic rule [Bol-

lobás 1998]. Random graph theory was set in motion by the work of Erdős and Rényi, who

found out that limiting properties of graphs can be studied by analysing a suitably con-

structed random graph model [Erdős & Wilson 1977,Erdős & Rényi 1959]. In the following

years, several random graph models have been proposed to model important defining char-

acteristics of complex networks such as clustering, small-world property, power law degree

distributions and the presence of tighly linked groups of nodes, called communities [New-

man 2003,Hofstad 2016].

In this thesis we focus especially on the problem of hidden community detection. Com-

munity structure has important implications and significance in different domains. For

example, in graphs made from datasets of genes or stocks, communities represent corre-

lated datapoints [Firouzi et al. 2013], whereas in online communities such as NetFlix or

Amazon, communities correspond to users with similar interests in movies, or similar buy-

ing habits. Hence, community detection in complex networks has righly garnered significant

research attention in recent years [Fortunato 2010, Newman 2006]. However, the hetero-

geneity of real-world networks and the absence of a universal definition of a community

make the design and analysis of community detection algorithms difficult. Random graphs

with community structure present a tractable means to compare the performance and de-

tection limits of various community detection algorithms that have been proposed in the

literature e.g. [Rohe et al. 2011].

A effect graph analysis technique is by way of their matrix representations. Many graph
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algorithms can be rephrased in terms of matrices and operations on matrices [Kepner &

Gilbert 2011]. The theory of eigenvalues and eigenvectors of these matrices and their

relationship to key graph properties, known as Spectral Graph Theory, has been a

subject of deep research [Chung 1997, Spielman 2007]. In the analysis of random graphs,

the matrices encountered are random, and thus the asymptotic spectral theory of random

matrices, known as Random Matrix Theory, is central to the study of random graphs.

In this thesis, we use techniques from Random Matrix Theory and Random Graph

Theory to tackle key problems in complex networks and machine learning. We consider

anomaly detection and hidden community detection on random graphs, both important

problems in machine learning on graphs. The anomaly detection algorithm, which we de-

scribe in detail in Chapter 4, is unsupervised and global and is based on interesting spectral

properties of a shifted adjacency matrix of the graph considered. To solve the problem of

hidden community detection, we propose and analyze a message passing algorithm based

on Belief Propagation (BP) that uses prior information about the target community, and

is semi-supervised. Furthermor, we analyse the behaviour of PageRank, an important al-

gorithm for local community detection [Andersen & Chung 2007] as well as web search

and link prediction [Gleich 2015], on a class of large random graphs using Random Matrix

Theory. Finally, we propose new local algorithms based on random walks for the problem

of estimating the average of an arbitrary function defined on the nodes of a graph.

In this chapter, we describe different matrix representations of graphs and review per-

tinent results from Spectral Graph Theory. Furthermore, we briefly describe some relevant

random graph models. In the following section, we discuss in detail the problem of hidden

community detection and the motivation behind studying it. Later, we provide a brief

description of the well-known PageRank algorithm, widely used for web ranking as well as

for solving important graph problems such as community detection and link prediction. We

conclude this chapter by describing in detail the major contributions and the structure of

this thesis.

1.1 Graph Matrices and Spectral Graph Theory

The study of matrix representations of graphs has a long history [Mohar & Woess 1989,

Lovász & Pelikán 1973,Cvetković et al. 1980]. Matrices provide a parsimonious represen-

tation for graphs, but at the same time the algebraic properties of these matrices can be

related to important graph properties. This is the subject of study in Spectral Graph

Theory [Chung 1997, Spielman 2007]. Spectral analysis of graphs is a mature field with

many applications in varied domains such as Markov chain analysis, Cryptography, and

also Quantum Mechanics and other areas of theoretical physics. In the following section,

we provide an overview of the role of matrices in the study of graphs.

1.1.1 Matrix Graph Representations

Consider a graph G = (V,E), where V = {1, 2, . . . , n} is the set of vertices and E ⊂ V × V

is the set of edges. A simple matrix representation of this graph is in the form of the

adjacencies of the nodes. Let us denote the adjacency matrix by A. For a graph with n

nodes, A ∈ R
n×n has rows and columns corresponding to the nodes and for any two nodes

i, j ∈ V,

Aij =

{
1 if i ∼ j,

0 otherwise.
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Here i ∼ j denotes the relation that there is an edge between i and j. If the graph is

directed, i.e., the edges have a source and a destination, then, in general, A 6= AT , i.e., A

is asymmetric. For undirected graphs, A is symmetric, and in our work, we limit ourselves

to undirected graphs.

The degree di of vertex i is the cardinality of the set {j : j ∼ i} :

di =
∑

j

Aji.

We denote by D ∈ R
n×n, the diagonal matrix such that Dii = di.

A matrix related to the adjacency matrix is the modularity matrix denoted by B [New-

man 2006], given as

B = A− ddT

dT1
, (1.1)

where d = [d1, d2, . . . , dn].

The modularity matrix has been used to assess the goodness of a community paritioning

[Newman 2006, Fortunato & Barthélemy 2007]. Consider the problem of partitioning a

graph with degrees di into two communities. Let s = {s1, s2, . . . sn} denote a partitioning

of the graph such that si = 1 if node i is mapped to community 1 and si = −1 otherwise.

Then the modularity Q is defined as [Newman 2006]

Q :=
∑

ij

siBijsj = sTBs. (1.2)

A good community assignment s is then proposed as the one that maximizes Q. However,

this problem is NP-hard, but a convex relaxation of the problem can be solved exactly and

the solution is related to the principal eigenvectors of B as shown in [Newman 2013].

The combinatorial Laplacian L is defined as

L = D−A,

i.e.,

Lij =

{
−Aij if i 6= j

Dii if i = j

It can be verified that L is positive semidefinite. It is the generator matrix for a continuous

time Markov chain defined on the graph vertices [Brémaud 2013].

A related matrix is the normalized Laplacian L, which is defined as [Chung 1997]

L = D−1/2LD−1/2 (1.3)

= I−D−1/2AD−1/2. (1.4)

Markov matrix P is key in the analysis of random walks on graphs. For an undirected

graph G, P is defined as a column-stochastic matrix 1 such that

Pij =

{
1
dj

if i ∼ j,

0 otherwise.
(1.5)

A simple Random Walk (RW) process on a graph is a discrete time process that starts by

choosing an initial vertex from V under some distribution at time t = 0. At t = 1, the

process jumps to one of the neighbours of this initial vertex chosen uniformly at random.

1The sum across each column is 1
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At t = 2, the process jumps to a random neighbour of this new vertex, and so on. The

transition probability from node i to j is therefore given by Pji.

In the next subsection, we review some important results from Spectral Graph Theory

that are closely related to the topics studied in this thesis.

1.1.2 Spectral Graph Theory

Spectral Graph Theory is the study of the spectra, i.e., the eigenvalues and eigenvectors,

of graph matrices and their relationship to important graph properties. Graph properties

such as connectivity, bipartitedness, graph diameter, and the evolution of various random

processes defined on the graph are closely related to the eigenvalues of a suitable graph

matrix [Lovász 1993,Chung 1997,Aldous & Fill 2002, Spielman 2007]. In this section, we

provide a brief review of some of key results.

For a square matrix A ∈ R
n×n the eigenvalues λi(A) are defined as numbers such that

there exist vectors vi ∈ R
n×1,vi 6= 0 such that

Avi = λivi.

The pair (λi,vi) is known as the eigenvalue-eigenvector pair [Bhatia 2013]. In general the

numbers λi can be complex, but for symmetric matrices, the eigenvalues are always real

and can therefore be ordered [Bhatia 2013].

Let us consider the normalized Laplacian L. Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues

of L. The eigenvalue properties of L have been well studied. It can be shown that λn = 0

and that 0 = λn ≤ λ1 ≤ 2 [Chung 1997]. The second smallest eigenvalue λn−1 contains

important information about the connectivity of the graph. If the graph is connected, this

eigenvalue is strictly positive [Chung 1997]. In addition, the multiplicity of zero eigenvalue

is equal to the number of connected components of the graph [Chung 1997,Spielman 2007].

Furthermore, the magnitude of λn−1, sometimes referred to as the spectral gap is a key

property of the graph, related to the dynamics of many processes on the graph such as

random walks [Levin et al. 2009] and average consensus algorithms [Olshevsky & Tsitsik-

lis 2009]. It can also related to some intrinsic graph properties. For e.g. the diameter

D of the graph, defined as the shortest distance between any two vertices of the graph,

maximized over all pairs, is related to λn−1 by the following lemma from [Chung 1997]. We

have

D = max
x,y

d(x, y),

where d(x, y) is the length of the shortest path between two vertices x and y.

Lemma 1.1. [Chung 1997, Lemma 1.9] For a connected graph G with diameter D, we

have

D ≥ 1

λn−1vol(G)
,

where vol(G) :=
∑

i∈V di.

Intuitively, the above lemma states that the less connected the graph, i.e., the smaller

the spectral gap, the larger is the graph diameter.

The eigenvalues of graph matrices also play a crucial role in the time to stationarity of

a simple RW defined on the graph.

An interesting property of the simple RW on graphs is that when the graph is connected

and non-bipartite, the distribution of the RW after t steps, given by Ptµ, where µ is the

initial distribution, gets closer and closer to a fixed distribution π as t increases [Levin
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et al. 2009]. The unique distribution π, known as the stationary distribution, satisfies [Levin

et al. 2009]

π = Pπ.

On an undirected random graph, π is given as

π(x) =
d(x)

vol(G)

for a vertex x. This property, also known as mixing, is important in many applications to

obtain samples from a desired distribution, or to find averages with respect to the stationary

distribution. See [Brémaud 2013,Levin et al. 2009] and references therein.

In applications, the time it takes for a RW to reach stationarity, called the mixing time

tmix of the RW, is crucial. It is defined in terms of the total variation distance between

the t-step distribution and the stationary distribution as below [Levin et al. 2009]. Let us

define the distance d(t) as below

d(t) = sup
f
‖Ptf − π‖TV,

where the supremum is taken over all distributions f on V and

‖µ− ν‖TV=
1

2

∑

i∈V

|µi − νi|,

for any two distributions µ, ν is the the total variation distance. Then tmix is defined

as [Levin et al. 2009]

tmix(ε) := min {t : d(t) ≤ ε} .
Oftentimes tmix is taken to be tmix(1/4). It can be related to the eigenvalues of P as follows.

Let β1 ≥ β2 ≥ . . . ≥ βn be the eigenvalues of P. Denote by β∗ the second largest

eigenvalue of P in absolute value. The largest eigenvalue β1 of P is 1, since it is a stochastic

matrix. Then the absolute spectral gap of the RW is defined as [Levin et al. 2009]

γ∗ = 1− β∗.

We then have the following important result that bounds the mixing time in terms of the

γ∗ from [Levin et al. 2009].

Theorem 1.1. [Levin et al. 2009, Theorem 12.3] Let P be the transition matrix of a

simple RW on a graph G = (V,E) with degrees di, ∀i ∈ V. Then

tmix(ε) ≤ log

( ∑
i di

εmini di

)
1

γ∗
.

The above theorem says that the smaller the eigenvalue β∗, the faster the chain mixes.

To conclude, we look at another important graph property, the conductance, and the

associated Cheeger inequality. The conductance of a graph is related to the concept of

a cut and is a key metric to study the community structure of a graph [Andersen &

Chung 2007]. An (edge) cut is a set of edges whose removal separates the graph into

two parts [Chung 1997]. The conductance of a graph cut, which divides the graph vertices

into two sets S, Sc is defined as [Chung 1997]

hG(S) =
|E(S, Sc)|

min(vol(S), vol(Sc))
,
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where S is a set of vertices, and Sc is its compliment;

E(S, Sc) = {(x, y) ∈ E : x ∈ S, y ∈ Sc}

and for any C ⊂ V, vol(C) =
∑

i∈C di. Then, the Cheeger constant or the conductance of

the graph is defined as

hG = min
S
hG(S). (1.6)

A small value of hG indicates that the graph has weakly connected components or commu-

nities, and a set with a small hG(S) is a good candidate for a community because it has very

few outgoing links compared to its volume. The Cheeger constant is bounded on both sides

by functions of the spectral gap λn−1 as stated in the following result from [Chung 1997],

called the Cheeger inequality.

Theorem 1.2. [Chung 1997, Theorem 2.2, Lemma 2.1] For any connected graph G,

2hG ≥ λn−1 ≥ h2G
2
.

A large spectral gap implies a large value of conductance and vice versa, and a small

value of λn−1 signals the presence of a densely connected community, weakly connected to

the rest of the graph [Andersen & Chung 2007].

1.2 Random Graph Models

Thus far we dealt with deterministic graphs and their properties. In this section, we give a

brief overview of different random graphs. A random graph is a probabilistic object where

edges are added between groups of nodes according to some probabilistic rule. Different

random graph models have been proposed to model various network properties. One of the

earliest random graph models to be studied is the Erdős-Rényi (ER) graph model in [Erdős

& Rényi 1959].

An ER graph, denoted by G(n, p), consists of n nodes such that a link exists between

any pair of nodes with probability p, which can be a function of n [Bollobás 1998]. A

related model is Gn,m, where links are added randomly between nodes such that the total

number of edges is m [Bollobás 1998]. In G(n, p), the number of edges is a binomial random

variable, and henceforth only this model is considered. This graph model, though simple,

has many interesting asymptotic properties. The case when pn goes to zero as n grows to

infinity is an interesting regime to consider, and it has been shown that in this case G(n, p)

manifests many important phase transition phenomena.

When p ≥ log(n)
n , G(n, p) is connected, but otherwise it has many connected components

[Hofstad 2016]. If p > 1/n, then G(n, p) has several connected components with one

giant component. Otherwise, the graph has no connected components of size larger than

Θ(log(n)). For a comprehensive treatment of asymptotic properties of ER graphs the

reader is referred to [Hofstad 2016, Chapter 4,5]. We present a survey of important spectral

properties of Erdős-Rényi graphs in Section 2.2.

In G(n, p) all nodes have the same average degree and the degree distribution is asymp-

totically Poisson, which is a light-tailed distribution. This poses a serious limitation to

modeling real-world networks, since most networks have heavy-tailed degree distribution,

meaning the tail probability P(di > τ) for any node i decays slowly as a function of τ [Hof-

stad 2016]. Real-world networks also have heterogenous degrees.

A generalization of Erdős-Rényi (ER) graphs that mitigates these drawbacks is the

Chung-Lu graph [Chung & Lu 2002b]. In a Chung-Lu graph G(w), the vector w is such
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that wi is the average degree of node i. From the average degrees, the graph is constructed

such that for any two nodes i, j, an edge appears with probability

pij = min

(
wiwj∑
k wk

, 1

)
.

The Chung-Lu graph is more versatile, in the sense that it can be used to model graphs

with different degree distributions, by chosing the vector w appropriately. We discuss some

important spectral properties of Chung-Lu graphs in Chapter 6.

An important feature of many real-world networks is the presence of communities. The

Stochastic Block Model (SBM), also known as the Planted Partition Model, is a class of

random graphs proposed to model communities [Holland et al. 1983]. Consider a SBM

with M communities. It is specified by a symmetric matrix B ∈ R
M×M with Bij < 1. The

entries Bij , i 6= j is the probability that there is an edge between a node in community i

and a node in community j. Similarly Bii is the edge probability between any two nodes

in community i. There have been various research efforts to develop and test community

detection algorithms on SBM [Rohe et al. 2011,Massoulié 2014,Saade et al. 2015,Abbe &

Sandon 2015a].

A drawback of the standard SBM as described above is that the mean degree of all

nodes in a given community is the same. The degree-corrected SBM (DC-SBM) [Karrer

& Newman 2011] mitigates this defect, where each node in a given community is allowed

to have a different expected degree. In addition, several other important random graph

models exist such as the Preferential Attachment model [Albert et al. 1999], exchangeable

random graphs [Diaconis & Janson 2007] and random geometric graphs [Penrose 2003].

1.3 Hidden Community Detection Problem

In Chapter 5 of this thesis, we deal in detail with the hidden community detection problem.

The hidden community detection problem is concerned with identifying a subset of graph

nodes that are highly connected to one another, but weakly connected to the rest of the

graph, i.e., a subset of nodes with a small conductance. This problem is also referred to as

dense subgraph detection or dense subgraph discovery.

The interest in studying this problem is twofold. From a practical point of view, many

problems in machine learning on Big Data can be mapped to a problem of detecting a dense

subgraph embedded in a sparse graph. For example, detecting a set of highly correlated

images in an image dataset [Firouzi et al. 2013], detecting fraudulent activity in an auction

network [Chau et al. 2006], finding a group of friends in a social network, and finding users

with similar interests in a website such as NetflixTMare all instances of the dense subgraph

detection problem.

Secondly, it can be seen as a relaxation of the clique detection problem, where the goal

is to detect the largest subset of nodes where every node is connected to all other nodes of

the set, and this latter problem is NP-hard [Karp 1972]. Therefore, it is interesting from

a computational point of view, since this problem displays a phase transition as the sub-

graph parameters are changed between an easy regime, where computationally inexpensive

algorithms can detect the subgraph and a hard regime, where global exhaustive search has

to be employed.

In a general graph, the problem of detecting the nodes of a dense subgraph can be

solved by choosing an objective function and relating it to a max-flow instance on the

graph [Goldberg 1984]. A commonly used objective function is the edge density defined as
E(S)
|S| , for any set S, where E(S) is the number of edges among nodes in S and |S| is its
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cardinality. A survey of other algorithms related to dense subgraph detection can be found

in [Lee et al. 2010].

In this thesis we look at an instance of this problem on random graphs. We consider

G(n, q), an Erdős-Rényi graph of edge probability q and n vertices. A subset of nodes of

size K is picked and the edges are inserted in this subset with probability p with p > q.

Clearly when n and K are large enough, the densest community in this graph corresponds

to the planted dense subgraph. One is interested in the minimum detectable subgraph size

and further, the minimum detectable subgraph that can be detectable in polynomial time.

By the following result from [Mifflin et al. 2004], this problem is characterized by a

phase transition.

Theorem 1.3. Let F denote any subgraph on the vertices V of an ER graph G(n, q). Then,

lim
n→∞

P(F ⊆ G(n, q)) =

{
0 if q ≪ n

− 1
mF

1 if q ≫ n
− 1

mF ,

where mF := max
{

|E(H)|
|V (H)| : H ⊂ F, |V (H)|> 0

}
.

Consequently, a planted subgraph in an ER graph is only distinguishable when mF ≫
log(n)

log(1/q) .

In the study of planted clique detection in ER graphs, there exist phase transitions

between easy, hard and impossible regimes. Consider a G(n, 1/2) with a planted clique of

size K. If K ≤ 2(1 − ε) log2(n), the clique is impossible to detect; however, an exhaustive

search detects the clique nodes whenK ≥ 2(1+ε) log(n). In contrast, the smallest detectable

clique size by known polynomial time algorithms is only Ω(
√
n) [Alon et al. 1998,Deshpande

& Montanari 2015]. The hidden subgraph detection problem also displays a phase transition

phenomenon discussed in detail in Chapter 5.

Many approaches have been proposed in the literature to solve the hidden subgraph

problem and the clique detection problem, both global and local. In [Alon et al. 1998],

the authors use a spectral algorithm to detect the largest clique, i.e., the case when p = 1.

Similar techniques have been adopted in [Martinsson 2013]. Similarly, there are approaches

based on relaxations of Maximum Likelihood detection e.g. [Hajek et al. 2016a].

In Chapter 5, we consider a local Belief Propagation based approach. Our approach

is semi-supervised, i.e., we assume that some side-information about the community of

interest is known to the detector. Semi-supervised learning represents an important class

of problems [Avrachenkov et al. 2012], but it is so far not well explored in the context of

subgraph detection limits on random graphs. Our contribution is to study the impact of

side-information on the detectability threshold of local algorithms in hidden community

detection.

1.4 Personalized PageRank

In Chapter 6, we present an analysis of PageRank on random graphs. PageRank, since its

introduction in [Page et al. 1997] in the context of web ranking, has found application in

many different areas of graph processing such as recommendation systems, link prediction

and community partitioning [Gleich 2015,Andersen & Chung 2007].

The Personalized PageRank vector π with preference vector v is defined as the stationary

distribution of a modified Markov chain with transition matrix

P̃ = αP+ (1− α)v1T ,
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where α ∈ (0, 1) is called the damping factor and v, the personalization vector, is any

probability distribution on V [Haveliwala 2002].

In other words, π satisfies [Langville & Meyer 2004]

π = P̃π,

or,

π = (1− α)[I− αP]−1v

when α < 1.

In [Andersen & Chung 2007,Andersen et al. 2006] the authors proposed local paritioning

algorithms based on computing the PageRank scores starting from a seed node. The seed

node is a node known to belong to the community of interest. If i is a seed node then

PageRank is computed by taking vi = 1. In practice, only an approximate computation

of PageRank is sufficient, and this is done by means of the power iteration [Langville &

Meyer 2004]

πk+1 = P̃πk.

There have been many other works in this field analyzing the performance of PageRank-

based diffusion algorithms for community detection in graphs, e.g. [Gleich & Kloster 2016].

Other diffusion-based algorithms such as the Heat-Kernel have also been proposed

[Chung 2009].

The first work in the direction of analyzing PageRank in random graphs for community

detection is [Kloumann et al. 2016]. They analyze seeded PageRank on a Stochastic Block

Model, and show that PageRank arises as a natural weight vector for jump k probabilities

as n → ∞. In [Chen et al. 2016], the asymptotic distribution of PageRank was derived

on heavy-tailed directed configuration models. In Chapter 6, we consider the behaviour

of PageRank on undirected random graphs, including the Chung-Lu random graph and

the Stochastic Block Model graph and show that as n → ∞, PageRank on these graphs

have simple expressions. This constitutes a first step towards comparing PageRank-based

community detection with other methods in terms of detection limits, which is absent

in [Kloumann et al. 2016].

1.5 Thesis Organization and Contributions

1.5.1 Chapter 2

In the first chapter of this thesis, we provide a survey of fundamental results in Random

Matrix Theory. We also review the application of these results to the study of Erdős-

Rényi graphs and its matrix representations. In addition, we give a brief background on

Belief Propagation and message passing algorithms, and their application to distributed

algorithms on graphs.

1.5.2 Chapter 3

In this chapter, we derive the limiting form of the empirical spectral distribution of the ad-

jacency and normalized Laplacian matrices of the standard Stochastic Block Model (SBM)

with a fixed number of communities. We make use of Girko’s stochastic fixed point equa-

tions and degree concentration results of SBM to derive the limiting empricial spectral

distribution. We also derive a sharp bound for the spectral norm of the centered SBM

adjacency matrix using the moment method for bounding the largest eigenvalue of ran-

dom symmetric matrices. In addition we analyze the limiting eigenvector distribution of
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the SBM adjacency matrix by characterizing the asymptotic limit of a modified spectral

function that incorporates the eigenvectors. For the Stochastic Block Model with identical

communities, we show that this modified empirical distribution also has the same limit as

the empirical spectral distribution under certain assumptions.

Related Publications

[1] A. Kadavakandy, L. Cottatellucci, and K. Avrachenkov. “Characterization of Random

Matrix Eigenvectors for Stochastic Block Model,” Asilomar Conference on Signals,

Systems, and Computer 2015. IEEE, 2015.

[2] K. Avrachenkov, L. Cottatellucci and A. Kadavankandy. “Spectral properties of ran-

dom matrices for Stochastic Block Model.”, International Symposium on Modeling

and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt) 2015.

1.5.3 Chapter 4

In Chapter 4, we study an important problem in machine learning called Anomaly Detec-

tion. We consider a specific anomaly model where the anomaly is a ER subgraph of size K

and edge probabiliy p embedded in an ER graph of size n > K and edge probability q < p.

We analyze an algorithm based on thresholding the L1-norm of the dominant eigenvector

of a shifted adjacency matrix defined as A = A− q11T , where A is the adjacency matrix.

The main contribution of this thesis is to derive a Central Limit Thorem (CLT) for the

suitably scaled dominant eigenvector components under certain assumptions on K, p and q.

Specifically we consider q > C log4(n)
n , limn→∞

p
q = C, a constant and K(p−q) = ω((nq)2/3).

Under these assumptions, we show that when the first K nodes correspond to the anomaly
√

Kδp
p(1− p)

(
xi −

√
p− q

) D−→ N (0, 1),

for 1 ≤ i ≤ K, and √
Kδp

q(1− q)
xi

D−→ N (0, 1),

for 1 + K ≤ i ≤ n, with x =
√
λu where (λ,u) is the dominant eigenvalue-eigenvector

pair of A. In addition, using this fact, we devise an algorithm that recovers the subgraph

nodes given a graph instance containing the subgraph and we delineate the parameter range

where the algorithm succeeds such that a suitably defined error probability goes to zero

as n → ∞. Our algorithm works for dense to moderately sparse graphs. We also use the

above distribution to derive an approximate distribution of the L1-norm of u and derive a

statistical test to detect the presence of such a subgraph, which only needs the knowledge

of q and n and not p or K. An algorithm for subgraph detection was proposed in [Hajek

et al. 2015b] which thresholding the total number of edges; however, this algorithm requires

the knowledge of K and p.

Related Publications

[1] A. Kadavankandy, L. Cottatellucci and K. Avrachenkov. “Characterization of L1-

norm Statistic for Anomaly Detection in Erdős Rényi Graphs”, IEEE Conference on

Decision and Control (CDC), 2016.

1.5.4 Chapter 5

In this chapter we consider recovery of planted dense subgraph in a sparse ER graph in

the presence of side-information. In recent works [Montanari 2015,Hajek et al. 2015a], it

http://www.eurecom.fr/fr/publication/4780/download/cm-publi-4780.pdf
http://www.eurecom.fr/fr/publication/4780/download/cm-publi-4780.pdf
http://www.eurecom.fr/fr/publication/4780/download/cm-publi-4780.pdf
http://ieeexplore.ieee.org/iel7/7132529/7151020/07151116.pdf
http://ieeexplore.ieee.org/iel7/7132529/7151020/07151116.pdf
http://ieeexplore.ieee.org/iel7/7132529/7151020/07151116.pdf
https://www.dropbox.com/s/hqo0rgwlonv8vj9/RR_16_315.pdf?dl=0
https://www.dropbox.com/s/hqo0rgwlonv8vj9/RR_16_315.pdf?dl=0
https://www.dropbox.com/s/hqo0rgwlonv8vj9/RR_16_315.pdf?dl=0
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was shown that a local BP is sub-optimal for this problem in that there is a well-defined

threshold of the subgraph parameters below which correct recovery of subgraph nodes is

not possible. This phase transition is characterized by an effective Signal-to-Noise ratio

parameter λ defined below:

λ =
K2(p− q)2

(n−K)q
.

In [Montanari 2015, Hajek et al. 2015a], the authors show, under certain assumptions on

the subgraph parameters that λ > 1/exp(1) is required for BP to achieve weak recovery of a

subgraph with sub-linear size in sparse graphs, i.e., limn→∞
E|S∆S|

K = 0 iff λ > 1
exp(1) , where

S is the hidden subgraph and S is the BP output. In this chapter, we study the influence of

side-information on this BP threshold. We consider two types of side-information: perfect

and imperfect. In the case of perfect side-information, a fraction α of the subgraph nodes

are known. In the case of imperfect side-information the cues may be incorrect and the

correctness of cues is characterized by a parameter β. We design a BP-based algorithm that

takes advantage of both kinds of side-information. We derive the asymptotic distribution

of BP messages and analyse its error performance. We show that BP succeeds in weak-

recovery when K = o(n) for any λ, α, β > 0.

Related Publications

[1] A. Kadavankandy, K. Avrachenkov, L. Cottatellucci and R. Sundaresan. “Belief Prop-

agation for Subgraph Detection with Imperfect Side-information”, to appear in IEEE

International Symposium on Information Theory (ISIT) 2017.

[2] A. Kadavankandy, K. Avrachenkov, L. Cottatellucci and R. Sundaresan. “The Power

of Side-information in Subgraph Detection”, IEEE Transactions on Signal Processing

(submitted).

1.5.5 Chapter 6

In this chapter, we turn our attenton to the analysis of PageRank on random graphs. Not

many analytic studies are available for PageRank in undirected random graph models. We

mention the work [Avrachenkov & Lebedev 2006] where PageRank was analysed in prefer-

ential attachment models and the more recent works [Chen et al. 2014,Chen et al. 2016],

where PageRank was analysed in directed configuration models.

In our work, we focus on class of graphs with two properties: fast mixing, i.e., the second

eigenvalue λ2(P) of Markov matrix P is such that λ2(P) = o(1) with high probability (whp)

as n→ ∞, and restricted degrees, i.e., dmax

dmin
≤ K w.h.p. for some K > 0. We show that on

this class of random graphs ‖π − π‖1= o(1) whp, where

πi = α
di∑
k dk

+ (1− α)vi,

with di being the degree of node i. This result substantiates the observation that PageRank

is correlated with node degrees on some graph models [Pandurangan et al. 2002,Fortunato

et al. 2006]. The above result is proven thanks to the limiting spectral properties of Markov

matrix of undirected random graphs. Next, we show a stronger result that

max
i

|πi − πi|
πi

= o(1)

for Chung-Lu graphs with mean degrees wi such that maxi wi/mini wi ≤ K for some K > 0.

http://www.eurecom.fr/fr/publication/5129/download/comsys-publi-5129_1.pdf
http://www.eurecom.fr/fr/publication/5129/download/comsys-publi-5129_1.pdf
http://www.eurecom.fr/fr/publication/5129/download/comsys-publi-5129_1.pdf
https://www.dropbox.com/s/ucpku2sf0uv2bka/journalv11.pdf?dl=0
https://www.dropbox.com/s/ucpku2sf0uv2bka/journalv11.pdf?dl=0
https://www.dropbox.com/s/ucpku2sf0uv2bka/journalv11.pdf?dl=0
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We then consider the Stochastic Block Model (SBM) graphs with two or more commu-

nities. On such a graph, we show that under certain conditions, the PageRank satisfies a

concentration similar to the above formulations. In particular, we show that for SBM with

equi-sized communities, with inter-community edge probability q and intra-community edge

probability p, the asymptotic PageRank πSBM on a SBM is given as follows:

πSBM = α
1

n
1+ (1− α)

(
v +

αβ

1− αβ
(vTu)u

)
,

where β := p−q
p+q , and u ∈ R

n is the community partitioning vector such that ui =
1√
n
, for

i ∈ C1 and ui = − 1√
n

for i ∈ C2, where C1, C2 represent the set of nodes in community 1

and community 2, respectively. Thus we can see that PageRank on SBM incorporates com-

munity partioning information. This preliminary analysis can be used to analyze PageRank

performance for community detection. It would be interesting to derive the limits of de-

tectability for PageRank community detection algorithm.

Related Publications

[1] K. Avrachenkov, A. Kadavankandy et al “PageRank in Undirected Random Graphs,”

Workshop on Algorithms and Models for the Web Graph (WAW), 2015.

[2] K. Avrachenkov, A. Kadavankandy et al “PageRank in Undirected Random Graphs,”

Internet Mathematics, 2016.

1.5.6 Chapter 7

In the framework of network sampling, random walk (RW) based estimation techniques

provide many pragmatic solutions while uncovering the unknown network as little as pos-

sible. Despite several theoretical advances in this area, RW based sampling techniques

usually make a strong assumption that the samples are in the stationary regime, and drop

the samples collected before the burn-in period. This work proposes two sampling schemes

without the burn-in constraint to estimate the average of an arbitrary function defined on

the network nodes, for e.g. the average age of users in a social network.

The central idea of the algorithms lies in exploiting regeneration of RWs at revisits to

an aggregated super-node or to a set of nodes and in strategies to enhance the frequency

of such regenerations either by contracting the graph or by making the hitting set larger.

Our first algorithm, which is based on Reinforcement Learning (RL), takes advantage of

the regeneration of RWs, and it uses stochastic approximation to derive an estimator. This

method can be seen as intermediate between purely stochastic Markov Chain Monte Carlo

iterations and deterministic relative value iterations.

We study this method via simulations on real networks and observe that its trajectories

are much more stable than those of standard random walk based estimation procedures, and

its error performance is comparable to that of respondent driven sampling (RDS) which

has a smaller asymptotic variance than many other estimators. The second algorithm,

which we call the RT estimator, is a modified form of RDS that accommodates the idea of

regeneration. Simulation studies show that the mean squared error of RT estimator decays

much faster than that of RDS with time.

Related Publications

[1] K. Avrachenkov, V.S. Borkar, A. Kadavankandy and J. K. Sreedharan. Comparison

of Random- walk Based Techniques for Estimating Network Averages, International

Conference on Computa- tional Social Networks (CSoNet) 2016.

http://link.springer.com/chapter/10.1007/978-3-319-26784-5_12
http://link.springer.com/chapter/10.1007/978-3-319-26784-5_12
http://www.internetmathematicsjournal.com/article/1346-pagerank-in-undirected-random-graphs
http://www.internetmathematicsjournal.com/article/1346-pagerank-in-undirected-random-graphs
http://link.springer.com/chapter/10.1007/978-3-319-26784-5_12
http://link.springer.com/chapter/10.1007/978-3-319-26784-5_12
http://link.springer.com/chapter/10.1007/978-3-319-26784-5_12
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[2] K. Avrachenkov, V. Borkar, A. Kadavankandy, J. K. Sreedharan Revisiting Random

Walk based Sampling in Networks: Evasion of Burn-in Period and Frequent Regener-

ations Computational Social Networks Journal (submitted).

http://www.internetmathematicsjournal.com/article/1346-pagerank-in-undirected-random-graphs
http://www.internetmathematicsjournal.com/article/1346-pagerank-in-undirected-random-graphs
http://www.internetmathematicsjournal.com/article/1346-pagerank-in-undirected-random-graphs




Chapter 2

Introduction to Random Matrix

Theory and Message Passing

Algorithms

In this chapter, we provide a short introduction to Random Matrix Theory and its ap-

plication to the study of random graphs. In addition, we introduce the concept of Belief

Propagation (BP) on graphs, and its application to the solution of hidden community de-

tection problem.

2.1 Survey of Random Matrix Theoretic Results

Traditional treatments in statistics and data processing have focused on finite matrices.

The analysis of random matrices when their sizes grow to infinity requires new tools. This

is the topic under consideration in the field of Random Matrices.

2.1.1 Empirical Spectral Distribution and Stieltjes Transform

One of the pioneering results in Random Matrix Theory is Wigner’s Semicircle Law. While

studying the energy levels of a nuclei, Wigner modeled the Hamiltonian as a symmetric

matrix with independent entries that are ±1 with equal probability. He found out that as the

matrix size is increased, the histogram of the eigenvalues of the above matrix, when suitably

scaled, settles down to a deterministic function that resembles a semicircle [Wigner 1955].

In a later paper, this result was shown to hold for symmetric matrices with independent

entries drawn from a general distribution with zero odd order moments and finite even-

order moments [Wigner 1958]. For a review of these early connections between physics and

Random Matrix Theory, refer to [Wigner 1967]. It later turned out that this property is

universal and extends to a larger class of symmetric random matrices with looser conditions

on the distribution [Bai 1999]. This property that the spectral properties of a matrix are not

too sensitive to the specific entry distribution is called universality [Anderson et al. 2009].

A Wigner matrix can be a real symmetric 1 or a complex Hermitian2 matrix with

independent upper triangular entries. In this thesis, we define a Wigner matrix as a class

of random matrices with zero mean entries, unit variance, and the entries are in addition

required to satisfy a higher moment condition. We therefore provide the following definition.

Definition 1. [Anderson et al. 2009, Tao 2012] A Wigner matrix X is a symmetric

matrix such that Xij , 1 ≤ i < j ≤ n are i.i.d. random variables such that E(Xij) = 0 and

E(X2
ij) = 1 and Xii, 1 ≤ i ≤ n are i.i.d. with E(Xii) = 0 and E(X2

ii) <∞.

1A ∈ Rn×n is symmetric if A = AT

2A ∈ Cn×n is Hermitian symmetric or Hermitian if A = AH
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Commonly known examples of Wigner matrices are the Gaussian Unitary Ensemble

(GUE) and Gaussian Orthogonal Ensemble (GOE), which are made up of gaussian entries.

Definition 2. [Anderson et al. 2009] A symmetric random matrix X ∈ R
n×n is said to be

drawn from a Gaussian Orthogonal Ensemble if its upper diagonal entries are independently

drawn from gaussian N (0, 1) and diagonal entries are independently drawn from N (0, 2).

A Hermitian random matrix X ∈ C
n×n is said to be drawn from a Gaussian Unitary

Ensemble if its upper diagonal entries are indepedently drawn from NC(0, 1) and diagonal

entries are independently drawn from N (0, 1), where NC(0, 1) represents a circular sym-

metric gaussian random variable with unit variance.

Explicit expressions for the distribution of eigenvalues of GOEs and GUEs can be de-

rived. For e.g. for a GOE matrix, the joint distribution pn(λ1, λ2, . . . , λn) of ordered

eigenvalues is given as follows [Anderson et al. 2009].

pn(λ1, λ2, . . . , λn) :=

{
1
Z

∏
1≤i<j≤n|λi − λj |

∏n
i=1 e

− λ2
i

4 , if λ1 ≥ λ2 . . . ≥ λn,

0, otherwise,
(2.1)

where Z is a normalization factor.

The importance of gaussian ensembles is that various interesting properties such as

separation of eigenvalues, delocalization of eigenvectors etc are easier to study than for a

general distribution [Anderson et al. 2009]. It is then possible to extend these results to

general random matrices by moment matching methods [Tao & Vu 2011,Tao & Vu 2012].

When the entries have a general distribution, it is more tractable to study their distri-

bution by means of what is called the empirical spectral distribution (e.s.d.). Since X is

symmetric its eigenvalues are real, let λ1 ≥ λ2 ≥ λ3 . . . ≥ λn be the ordered eigenvalues of

X. The e.s.d. of X is defined as follows.

Definition 3. [Anderson et al. 2009] The empirical distribution function FX(x) is defined

as

FX(x) =
1

n

n∑

i=1

χ(λi ≤ x),

where χ(·) is the indicator function, i.e., it is one if the condition in its argument is satisfied

and zero otherwise.

In future, we will drop the superscript in the notation of the e.s.d.

Similarly, one can define the derivative of the e.s.d.

dFX(x) =
1

n

n∑

i=1

δ(λi − x),

where δ(x) is Dirac’s delta function at 0. The e.s.d F (x) can also be defined in terms of the

integral of a continuous or measurable function g(x) as

∫
g(x)dF (x) =

1

n

n∑

i=1

g(λi). (2.2)

From (2.2),
∫
xkdF (x) = 1

n

∑n
i=1 λ

k
i = 1

n tr(Xk). In particular we have,

∫
xdF (x) =

1

n
tr(X)

∫
x2dF (x) =

1

n
tr(X2). (2.3)
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Therefore, a straightforward way to study the limiting properties of the e.s.d. is to look at

the average moments of the eigenvalues. This is known as the moment method, and it was

used by Wigner in the proof of the semicircle law [Tao 2012].

A useful functional that is important in the study of random matrices is the Stieltjes

transform of a probability distribution, defined as

s(z) =

∫
1

x− z
dF (x), (2.4)

for z ∈ C, Im(z) > 0, where F (x) is any probability distribution.

When F (x) is taken to be the e.s.d. we get

s(z) =
1

n

n∑

i=1

1

λi − z
=

1

n
trace(X− zI)−1.

The matrix (X− zI)−1 is called the resolvent of X.

We provide here some important properties of the Stieltjes transform.

Properties of the Stieltjes Transform [Anderson et al. 2009,Tao 2012]

• Analytic: The function s(z) is analytic from C+ → C+.

• Boundedness: Since |x − z|=
√

(ℜ(x)−ℜ(z))2 + ℑ(z)2 ≥ |ℑ(z)|, for x ∈ R, |s(z)|≤
|Im(z)|−1, by the ordered property of expectation.

• Invertibility : Stieltjes transform s(z) can be inverted to get the empirical spectral

distribution.

dF (x) = lim
yց0

1

π
ℑ(s(x+ iy)). (2.5)

Since matrix X is Hermitian, its eigenvalue distribution is stable, i.e., a small Hermitian

perturbation of the entries of X does not perturb the eigenvalues of X by much. This is in

marked contrast to non-Hermitian matrices, which displays what is called Pseudospectrum,

i.e., there exist small perturbations that can drastically change the spectrum of a non-

Hermitian matrix [Rump 2006]. We denote the class of Hermitian matrices of size n by Hn.

The continuity of the eigenvalues means that the e.s.d. and also the Stieltjes transform are

continuous functions of matrix entries. These results are important in the derivation of the

limiting spectral distribution of Wigner matrices.

Lemma 2.1. (Interlacing inequalities) [Horn & Johnson 2012] If two Hermitian matrices

A,B ∈ Hn are such that rank(A−B) ≤ r, then,

λk−r(A) ≥ λk(B) ≥ λk+r(A),

for 1 ≤ k ≤ n.

From Lemma 2.1, using counting arguments, one can get the following bound on the

change in e.s.d. due to a finite rank perturbation.

Lemma 2.2. (E.s.d. of finite rank perturbation) [Bai & Silverstein 2009] If rank(A−B) ≤
r, then

|FA(x)− FB(x)|≤ r

n
,

where A,B ∈ Hn.
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Thus, Lemma 2.2 implies that as long as the change in rank r = o(n), both A and B

have the same asymptotic e.s.d. This result is useful, for e.g., when analysing the limiting

spectra of random Hermitian matrices with non-zero mean.

Another important perturbation is finite norm perturbation. Recall that the Frobenius

norm of a matrix A, denoted as ‖A‖F is given as

‖A‖F=
√∑

i,j

|Aij |2 =
√

trace(AAH).

The following lemma gives a bound on the change in the eigenvalues when the matrix X is

subjected to a finite norm perturbation.

Lemma 2.3. (Hoffman Wieldland inequality) [Anderson et al. 2009, Lemma 2.1.19] Let

A,B be two Hermitian random matrices with eigenvalues λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A)

and λ1(B) ≥ λ2(B) . . . ≥ λn(B). Then

n∑

i=1

|λi(A)− λi(B)|2≤ ‖A−B‖2F .

Lemma 2.3 is important, because it leads to the important result that any Lipshitz

function g(x) defined on the eigenvalues of the matrix gives a Lisphitz continuous function

on the matrix entries. Let g(x) : R → R be a Lipshitz continuous function with constant

‖g‖L. From Lemma 2.3 and (2.2) we have

∣∣∣∣
∫
g(x)dFA(x)−

∫
g(x)dFB(x)

∣∣∣∣ =
1

n

∣∣∣∣∣

n∑

i=1

(g (λi(A))− g (λi(B)))

∣∣∣∣∣

≤ 1

n
‖g‖L

n∑

i=1

|λi(A)− λi(B)|

≤ 1√
n
‖g‖L‖A−B‖F ,

where in the first inequality, we used Lipshitz continuity of g(x) and in the last inequality we

used Cauchy-Schwartz inequality and Lemma 2.3. Thus, the functional
∫
g(x)dF (x) is also

Lipshitz continuous with constant 1√
n
‖g‖L. Also see [Anderson et al. 2009, Lemma 2.3.1].

When g(x) = 1
x−z , we get the Stieltjes transform with ‖g‖L= 1

|ℑ(z)| , and hence the

latter is also Lipshitz continuous with constant 1√
n

1
|ℑ(z)| .

Lemma 2.4. (Lipshitz continuity of Stieltjes transform) The Stieltjes transform s(z) of a

matrix X is Lipshitz continuous with respect to the matrix entries Xij , 1 ≤ i, j ≤ n, and the

Frobenius norm with constant 1√
n

1
|ℑ(z)| .

Now we describe weak convergence of measures. Consider a sequence of probability

measures µn on R. In addition, let Cb be the class of continuous functions with bounded

support defined on R. Then, µn is said to converge weakly to a probability measure µ if for

any f ∈ Cb,
lim
n→∞

∣∣∣∣
∫
f(x)dµn(x)−

∫
f(x)dµ(x)

∣∣∣∣ = 0.

An important property of the Stieltjes transform is that if the Stieltjes transform of a

sequence of probability distributions converges, then the sequence converges weakly. This

is the weak convergence property of the Stieltjes transform.
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Lemma 2.5. [Anderson et al. 2009, Theorem 2.4.4] Let µ and (µn)n≥1 be a sequence of

probability measures. Then as n→ ∞ µn converges to µ weakly if and only if sµn(z) → sµ(z)

for all z ∈ C+.

Using the above result on the limit of probability distribution, one can prove the cele-

brated Wigner’s semicircle law. A key role in the convergence of the e.s.d. of large random

Hermitian matrices is played by the following assumption.

Assumption 2.1. [Girko 2001, Girko 1990] The Hermitian matrix X with zero mean

independent upper diagonal entries Xij of variance σ2 satisfies the Lindeberg’s condition,

i.e. for any δ > 0,

lim
n→∞

E
(
χ(|Xij |>

√
nδ)X2

ij

)
= 0. (2.6)

This assumption essentially implies that the tails of the distributions characterizing the

random variables Xij diminish as n → ∞. Under this assumption, it is known that the

sequence of the e.s.d. converges weakly to a limiting eigenvalue distribution in the almost

sure sense as stated by the following theorem known as Wigner’s Semicircle Law.

Theorem 2.1. [Girko 2001,Girko 1990, Chapter 1] Let the Wigner matrix X with zero

mean independent random entries Xij satisfy Assumption (2.1) and additionally, all the

equal variances satisfy σ2
i,j = σ2 with 0 < σ2 < +∞. Then, the sequence of the e.s.d. of

X/
√
n converges weakly to a the Wigner semicircle law in the almost sure sense, i.e. for

any bounded continuous function f
∫
f(x)FXn(x)dx

a.s.−−→
∫
f(x)µsc(x, σ

2)dx

where FXn(x) denotes an e.s.d. of the Wigner matrix of size n and µsc(x, σ
2) is the Wigner

semicircular distribution with parameter σ2 given by

µsc(x, σ
2) =

1

2πσ2

√
(4σ2 − x2)+,

where (x)+ := max(x, 0).

2.1.2 Spectral Norm and Largest Eigenvalues

As noted in Lemma 2.2, the asymptotic e.s.d. is unchanged when a finite number of

eigenvalues are changed. This means that, even though as stated by Theorem 2.1, the e.s.d.

converges to a function supported on [−2
√
nσ, 2

√
nσ], there might possibly be eigenvalues

that fall outside this spectrum.

By definition, the maximum eigenvalue of X in absolute value is ‖X‖2 [Bhatia 2013].

By Theorem 2.1 we know

‖X‖2≥ 2
√
nσ a.s.

It turns out that the above lower bound is sharp as n → ∞. The first result on an upper-

bound on the spectral norm of X was given by Furedi and Komlos [Füredi & Komlós 1981].

Their approach is based on the observation that

E|X|2k ≤ E

n∑

i=1

|λi|2k

= Etrace(X2k).

The above expected trace can be expanded as a sum of products of the matrix elements,

where due to independence and zero mean property, many of the terms are trivially zero.
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The proof then proceeds by combinatorially bounding the total number of non-zero terms

that contribute to the above expected expected trace.

A sharper version of this result was derived in [Vu 2007], which we state below.

Theorem 2.2. [Vu 2007] Let X be a Wigner matrix with independent random elements

Xij , i, j = 1, . . . n having zero mean and variance at most σ2(n). If the entries are bounded

by K(n) and there exist a constant C ′ such that σ(n) ≥ C ′n−1/2K(n) log2(n), then there

exists a constant C such that almost surely

‖X‖2≤ 2σ(n)
√
n+ C(K(n)σ(n))1/2n1/4 log(n). (2.7)

Similar results are known for other matrix models such as Wishart matrices [Bai & Sil-

verstein 1998]. The combinatorial method used in the proof can become quite tedious,

especially with more complicated matrix models. There are alternative ways to bound the

spectral norm of a random matrix, especially when it can be represented as the sum of many

simpler independent random matrices. This methodology extends many known concentra-

tion bounds of sums of independent random variables to the norm of sums of independent

random matrices. We provide a brief overview of these methods in the literature in the

subsection.

2.1.2.1 Matrix Concentration Inequalities

There have been significant research in the direction of obtaining concentration results

for the norm of matrix sums similar to the concentration results for sums of scalar ran-

dom variables. These results extend well known scalar concentration inequalities such as

the Bernstein’s, Azuma-Hoeffding and others to sums of independent random matrices.

These results are based on bounds on the trace of the MGF (moment generating func-

tion) MX(θ) or the CGF ( Cumulant Generating Function) ΞX(θ) defined for any X as

follows [Tropp 2012a]

MX(θ) = E(eθX),

ΞX(θ) = logEeθX.

Unlike in the case of random variables, the matrix exponential cannot be factored, i.e.,

the exponential of the sum of two matrices is not generally equal to the product of the

exponentials of the two matrices. This is the major impediment in the analysis of the

concentration phenomenon in random matrices. However this problem can be mitigated to

an extend by using the Golden Thomson inequality [Bhatia 2013, Sec. IX.3]:

trace(eA+B) ≤ trace(eAeB).

This inequality was used by Ahlswede and Winter [Ahlswede & Winter 2002] to obtain the

following bound for the CGF

E

(
trace(exp(

∑

k

Xk))

)
≤ n exp(

∑

k

λmax(logE(e
Xk))),

where Xk ∈ R
n×n.

In [Tropp 2012a], the authors use Lieb’s Theorem [Lieb 1973, Theorem 6] which states

that the function trace(eH+log(A)) is concave in A to show that

E

(
trace(exp(

∑

k

Xk))

)
≤ trace(exp(

∑

k

logEeθXk)).
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We state here an example of Matrix Chernoff bound derived in [Tropp 2012a], using the

above method.

Theorem 2.3. [Tropp 2012a, Theorem 5.1.1] Consider a finite sequence {Xk} of inde-

pendent, random Hermitian matrices that satisfy

Xk � 0 and λmax(Xk) ≤ R.

Define the matrix Y =
∑

k Xk. Define µmax = λmax(E(Y)). Then

P (λmax(Y) ≥ (1 + δ)µmax) ≤ n

[
eδ

(1 + δ)1+δ

]µmax/R

for δ ≥ 0.

For a more detailed treatment of Matrix Concentration Inequalities, refer to [Tropp 2012b].

2.1.3 Other results

The results we described in this chapter only represent a small fraction of the available

results in Random Matrix Theory. A few other avenues and research directions in Random

Matrix Theory are the following

• Local eigenvalue distributions [Erdős 2011,Tao & Vu 2011]

• Distribution of extremal eigenvalues and rate of convergence of e.s.d. [Alon et al. 2002,

Bai 1999]

• Eigenvalues of heavy-tailed random matrices [Bordenave & Guionnet 2013]

• Non-asymptotic results for Random Matrix Theory [Vershynin 2011]

• Free probability [Nica & Speicher 2006]

2.1.4 Distribution of Eigenvectors

In this section, we summarize some results on the eigenvectors of the centered adjacency ma-

trix of SBM. To the best of our knowledge, this area is, so far, little explored in comparison

to results on eigenvalues.

Let us take the case of real gaussian Wigner Matrices, namely the Gaussian Orthogonal

ensemble (Definition 2). Since orthogonal projections of gaussian random vectors are also

gaussian, for a GOE matrix X, UTXU is also a GOE matrix [Anderson et al. 2009]. By

(2.1), the eigenvalue distribution does not change when a unitary transformation is applied.

It is argued in [Anderson et al. 2009] that the eigenvectors of X are uniformly distributed

on the sphere Sn−1 = {x ∈ R
n : ‖x‖2= 1}. This distribution is called the Haar distribution.

Similar to the work on eigenvalues, it can be investigated whether this property is

universal, i.e., whether the fact that a random eigenvector is Haar distributed extends to

general entry distributions other than gaussian.

Most works in this direction fall into one of the two following categories: works on

delocalization properties of eigenvectors, and works on gaussianity properties of functionals

of eigenvectors, based on properties of Haar vectors. For a Haar distributed unit vector v,

two properties hold:

• It is delocalized, i.e., the vector mass is not concentrated on any particular component.

This property can be expressed in terms of bounds on the moments of vector such as

the max moment (i.e., maxi|vi|) or the p-moment; i.e., ‖v‖p= (
∑n

i=1|vi|p)
1
p . We give

an example of this in Theorem 2.4.
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• Additionally, a Haar distributed vector can be modeled as z

‖z‖2
, where z ∼ N (0, I).

Thus for large n, individual components of v when normalized appropriately starts

to resemble a gaussian random variable. This is exemplified by Theorem 2.7.

Theorem 2.4. [O’Rourke et al. 2016, Theorem 2.1] Let v be a Haar distributed random

vector on Sn−1. Then, for any C > 1 with probability at least 1− 2n1−C − exp(− (C−1)2

4C2 n),

max
i

|vi|≤
√

2C3 log(n)

n
,

and ∃cp s.t.

‖v‖p= n1−p/2cp + o(n1−p/2),

almost surely.

The above theorem makes sense intuitively because, if a unit vector is completely delocal-

ized, then all its components are approximately O(1/
√
n) and no component can have a

huge contribution to the total mass.

As for eigenvectors of Wigner matrices with subgaussian entries, a similar property was

shown to be true, thus establishing that the eigenvectors satisfy some of the properties of

Haar vectors.

Theorem 2.5. [O’Rourke et al. 2016, Corollary 5.4] Let X be a Wigner matrix with sub-

gaussian random entries with zero mean and let the non-diagonal entries have unit variance.

Then for any 1 ≤ p ≤ 2, there exist constants C, c, C0, c0 such that

c0n
1/p−1/2 ≤ min

1≤j≤n
‖vj‖p≤ max

1≤j≤n
‖vj‖p≤ C0n

1/p−1/2,

where vj is an eigenvector of X.

Similarly, there are bounds on the max-norm of an eigenvector to establish delocalization

property of a typical eigenvector of a Wigner matrix.

Theorem 2.6. [O’Rourke et al. 2016, Theorem 6.1] Let X be a Wigner matrix with

subgaussian entries with zero mean and unit variance. Then for any C1 > 0 and any

0 < ε < 1, there exists a constant C2 > 0 such that the following holds:

• For any εn ≤ i ≤ (1− ε)n,

max
i

|vi|≤ C2

√
log(n)

n

with probability at least 1− n−C1 .

• For 1 ≤ i ≤ εn or (1− ε)n ≤ i ≤ n,

max
i

|vi|≤ C2
log(n)√

n

with probability at least 1− n−C1 .

Next, we look at gaussianity properties of v. The following result is on a random or-

thogonal matrix V = (v1,v2, . . . ,vn) ∈ R
n×n composed of independent Haar-distributed

columns.
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Theorem 2.7. [Jiang et al. 2006] [Tao & Vu 2012] Let V be as defined above. Let

ψi,p := N (0, 1) for 1 ≤ i, p ≤ k be independent normal random variables. Then k = o(
√
n),

then (
√
nVip)1≤i,p≤k and (ψi,p)1≤i,p≤k are close in total variation norm.

In other words, if F : Rk2 → R is a bounded measurable function, then

|EF
(
(
√
nVi,p)1≤i,p≤k

)
− EF ((ψ1≤i,p≤k))|≤ o(1),

because the above is bounded by the TV distance between the two distributions.

In [Tao & Vu 2012], the above result is shown for k = nδ for some δ > 0.

Theorem 2.8. [Tao & Vu 2012] Given C, δ, C0 > 0 and consider X with off-diagonal

elements are independent and distributed as ξ and diagonal elements are independently

distributed as ζ, which satisfy

• ξ, ζ are sub-exponential random variables

• E(ξ) = E(ζ) = E(ξ3) = 0, and

• E(ξ2) = 1,E(ξ4) = 3,E(ζ2) = 2.

For 1 ≤ i, j ≤ n, let Zij be independent random variables with Zij ∼ N (0, 1) for j > 1 and

Zi,1 ∼ |N (0, 1)|. Let 1 ≤ k ≤ nδ, and let 1 ≤ i1 < . . . < ik ≤ n and 1 ≤ j1 < . . . < jk ≤ n

be indices. Then

|E(F
(
(
√
nvi1(jb))1≤a,b≤k

)
− E(F ((Zia,jb)1≤a,b≤k))|≤ C0n

−δ

whenever F : Rk2 → R is a smooth function obeying the bounds

|F (x)|≤ C

and

|∇jF (x)|≤ Cnδ

for all x ∈ R
k2

and 0 ≤ j ≤ 5.

In [Bai et al. 2007], the authors took another approach to characterizing the distribution

of Wigner eigenvectors. They defined a function Qn(t) as follows [Bai et al. 2007]

Qn(t) =

√
n

2

[nt]∑

i=1

(
|ui|2−

1

n

)
.

When u is Haar-distributed, then Qn(t) converges to a Brownian-bridge. For a general

Wigner matrix X, they take u = Uy, where U is a unitary matrix whose columns are

the eigenvectors of X and y is a unit vector. They consider a rescaled form of the above

function Qn(F
Xn(x)), where FXn(x) is the e.s.d. of X, which is given as follows

Qn(F
Xn(x)) =

√
n

2

(
n∑

i=1

|ui|2χ(λi ≤ x)− FXn(x)

)
. (2.8)

Let us denote

FXn
1 (x) =

n∑

i=1

|ui|2χ(λi ≤ x).

We know FXn(x) converges by the semicircle law to a continuous function by Theorem 2.1,

thus the convergence of Qn(F
Xn(x)) implies the convergence of Qn(t).
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Consider g(x) and

Xn(g) =
√
n

∫
g(x)d(FXn

1 (x)− F (x)).

We state the following result from [Bai et al. 2007].

Theorem 2.9. [Bai et al. 2007, Theorem 1.1, Theorem 1.2] Assume that {Xij , i > j =

1, 2, . . . , n} are i.i.d. real random variables with E(X12) = 0,E(|X12|2) = 1 and E(|X12|4) <
∞, that {Xii, i = 1, . . . , n} are i.i.d. real random variables with E(X11) = 0 and E(|X11|2) =
1. Let x ∈ C

n, ‖xn‖= 1. Then,

Qn(F
Xn)(x) → 0, a.s.

where F (x) is the distribution function of the semicircular law. In addition if

max1≤k≤n|xk|→ 0 and E(X3
12) = 0

Xn(g) → N (0, σ2),

where σ2 = 2(
∫
g2(x)dF (x)− (

∫
g(x)dF (x))2).

It is indeed shown in [Bai et al. 2007, Theorem 1.2] that the vector

(Xn(g1), Xn(g2), . . . , Xn(gk)) for k functions gi,i=1,...,k converges to a jointly gaussian ran-

dom variable in distribution, hence showing that the process Qn(t) has the properties of a

Brownian bridge.

2.2 Spectral Properties of Erdős-Rényi Graphs

As defined in Chapter 1, an ER graph is a random graph with n nodes where all the

pairs of nodes have equal probability pn of being connected by an edge, independently of

all other pairs. Various interesting properties of ER graphs have been discovered since

its introduction in 1959 [Erdős & Rényi 1959]. In this section, we review some spectral

properties of the ER graph obtained using tools from Random Matrix Theory.

Properties of Eigenvalues

Consider the ER graph adjacency matrix AER. It is Hermitian with independent and iden-

tically distributed (i.i.d.) upper diagonal elements distributed as B(pn), a Bernoulli dis-

tribution with parameter pn. Consider the normalized form of the matrix ÂER, defined

as

ÂER = γ(n)AER,

with

γ(n) =
1√

npn(1− pn)
.

The latter is not a Wigner matrix since the entries have non-zero mean. We therefore

consider its centered version denoted as ÃER. We have,

ÂER = A
ER

+ ÃER,

where A
ER

:= E(ÂER) = γ(n)pnJn, where Jn = 1n1
T
n − In.
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The average degree of each graph node is given by

dav = E


∑

j

Ai,j


 = npn, (2.9)

for any i. Based on the average node degree dav, the ER graphs are classified as dense if

dav = Θ(n), sparse if dav = o(n) and dav → ∞, and diluted if dav = O(1) [Bordenave &

Lelarge 2010].

2.2.1 Limiting Spectral Distribution

The result in Theorem 2.1 can be immediately specialized to normalized centered ER ad-

jacency matrices ÃER. Since for the matrix ÃER it holds σ2
ij = n−1, for i, j = 1, . . . n, the

conditions of Theorem 2.1 are satisfied if the limit (2.6) holds, i.e. for any τ > 0

lim
n→+∞

(1− p)χ
(
1− p ≥ τ

√
np(1− p)

)
+ pχ

(
p ≥ τ

√
np(1− p)

)
= 0. (2.10)

It is straightforward to verify that this condition is equivalent to the condition p ≥ (τ2n+

1)−1 for any τ > 0, i.e. if p = ω(1/n). Then, we can state the following corollary.

Corollary 2.1. Let us consider the normalized centered ER adjacency matrix ÃER with

pn ∈ ω(n−1) as n→ ∞. Then, the sequence of the e.s.d. converges weakly to a the Wigner

semicircle law in the almost sure sense, i.e. for any bounded continuous function f

∫
f(x)F Ã

ER

(x)dx
a.s.−−→

∫
f(x)µsc(x, 1)dx.

The above result can also be found in [Ding et al. 2010].

According to this result, whether the e.s.d. of a centered ER adjacency matrix converges

to a semicircle distribution depends on how fast pn decays to zero as n→ +∞. Theorem 2.1

does not apply, for e.g., when pn = c
n because, for this probability, Assumption 2.1 does

not hold. For diluted graphs, it is known that there exists a limiting spectral distribution,

for which an explicit expression is not known [Bordenave & Lelarge 2010]. For this reason,

in the following, we limit our attention to probabilities pn ≥ log(n)
n .

2.2.2 Spectral Norm of the Centered Adjacency Matrix

If the multiplicity of an eigenvalue does not scale with n, the definition of the e.s.d. implies

that, in the limit for n → +∞, the e.s.d. is not able to capture the existence of this

eigenvalue in the spectrum matrix. Then, Corollary 2.1 can only provide a lower bound

of the spectral norm of the normalized centered ER adjacency matrix ÃER. Hence, it is

important to find an upper bound on the spectral norm of ÃER to better understand its

spectral properties.

By applying Theorem 2.2 to the normalized centered adjacency matrix ÃER we obtain

the following concentration result.

Lemma 2.6. Let us consider the normalized centered adjacency matrix ÃER. If the prob-

ability pn satisfies the inequality pn ≥ C ′ log4(n)n−1 for some constant C ′ > 0, then there

exists a constant C > 0 such that almost surely

‖ÃER‖2≤ 2 + C 4

√
1− pn
npn

log n. (2.11)
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Proof. From the definition of ÃER it results σ = n−1/2. Then, condition σ ≥
C∗n−1/2K log2(n) implies K ≤ (C∗ log2 n)−1. Additionally, the bound on the elements

ÃER
ij implies

1− p√
n(1− p)p

≤ K. Thus,

√
1− p

np
≤ K ≤ (C∗ log2 n)−1. (2.12)

Then, K exists if

√
1− p

np
≤ (C∗ log2 n)−1 or if p satisfies the more stringent constraint

p ≥ C ′n−1 log4 n,

where C ′ is a constant depending on C∗. The inequality in (2.11) is obtained from (2.7) by

setting K =

√
1− p

np
.

Spectrum of the Non-centered Adjacency Matrix

In Sections 2.2.1 and 2.2.2, we focused on the spectral properties of the normalized centered

ER adjacency matrix ÃER. In this section, we analyze the spectral properties of the nor-

malized ER adjacency matrix ÂER and the effect of the mean component A
ER

on it. The

following Lemma plays a key role to establish a fundamental relation between the eigenvalue

e.d.f. F Ã
ER

studied in the previous sections and F Â
ER

.

We recall that A
ER

= ÂER − ÃER has unit rank for any n. Then, by Lemma 2.2,

asymptotically for n→ ∞, the limiting eigenvalue distribution of the matrix ÂER converges

to the semicircular law, just like the limiting eigenvalue distribution of the matrix ÃER.

Thus the asymptotic spectrum of the adjacency matrix is the same as that of the centered

adjacency matrix. However, the spectral norm is different because the largest eigenvalue

changes when a unit rank matrix is added to a Hermitian matrix. From Weyl’s identities

for Hermitian matrices [Saad 1992], we have:

|λi(ÂER)− λi(A
ER

)|≤ ‖ÃER‖2 (2.13)

for 1 ≤ i ≤ n.

However, we have, λ1(A
ER

) = nγ(n)pn and λi(A
ER

) = 0 for i ≥ 2. Also, from above,

we have asymptotically ‖ÃER‖2= 2 a.s. Thus we get the following concentration result for

the largest eigenvalue of the full adjacency matrix ÂER:

|λ1(ÂER)− nγ(n)pn|≤ 2 (2.14)

We notice that nγ(n)pn =
√

npn

1−pn
>> 2. Hence the above result implies that λ1(Â

ER) →
nγ(n)pn, or in terms of the adjacency matrix A, for npn → ∞, the above implies that

λ1(A
ER) → npn. Thus we have the following lemma [Ding et al. 2010]:

Lemma 2.7. For the adjacency matrix of the ER graph as described above, the largest

eigenvalue λ1(A) satisfies the following limit theorem:

lim
n→∞

λn1 (A
ER) = npn a.s.

I.e., the largest eigenvalue of A tends to the largest eigenvalue of the mean matrix A
ER

as

n→ ∞.
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Properties of Eigenvectors

In this section we discuss some relevant results on the eigenvectors of the adjacency matrix

of the ER graph available in the literature. We discussed some properties of eigenvectors of

classical Wigner matrices in Section 2.1.4. However, these results only hold for matrices with

zero mean entries, and thus do not apply to the adjacency matrix of the ER graph [O’Rourke

et al. 2016]. In addition, most of these results require matrix entries with unit variance that

are either bounded or have well-behaved tails (i.e., they satisfy some form of Lindeberg

condition), and thus cannot be directly applied to ER graphs, when the edge probability

pn = o(1). In this section, we discuss some results in the literature that handle this scenario.

We discuss two results that provide a bound on the variation of the norm of the eigenvectors,

i.e., show the delocalization property of eigenvectors. Next, we also discuss a result on the

gaussianity of the principal eigenvector of the ER graph, which is relevant to our work on

anomaly detection (Chapter 4).

In [Mitra 2009], the author derived, by means of random matrix theoretic and graph

theoretic arguments, entry-wise bounds on the principal eigenvector of the adjacency matrix

of an ER graph. It shows that, as expected, the principal eigenvector is close to the all one

vector. We state their result in the following theorem.

Theorem 2.10. [Mitra 2009, Theorem 1] Consider an ER graph G(n, p) with p ≥
log6(n)/n with adjacency matrix A. Let v be its principal eigenvector corresponding to

the largest eigenvalue. Then,

max
i

|vi −
1√
n
|≤ c

log(n)

log(np)

1√
n

√
log(n)

np
,

with high probability.

In [Erdős et al. 2013], the authors make use of results on the number of eigenvalues over

small intervals, known as local semicircle law to prove closer bounds on the variation of the

principal eigenvector around the all one vector, as well as bounds on maximum component

of all other eigenvectors. We state the following theorem proven in [Erdős et al. 2013].

Theorem 2.11. [Erdős et al. 2013, Theorem 2.16] [O’Rourke et al. 2016, Theorem 6.2]

For G(n, p), when p ≥ (log(n))6α/n then there exist constants such that

max
1≤i≤n−1

‖vi‖∞≤ (log(n))4α√
n

and

‖vn − 1√
n
1n‖∞≤ C

log(n)α√
n

1√
n

with probability at least 1− C exp(−c logα(n)).

Finally, we would like to state an important result on the gaussianity of the fluctuations

of the dominant eigenvector of the adjacency matrix of ER graph around the all one vector.

In [Athreya et al. 2013], the authors derive a central limit theorem for the dominant eigen-

vectors of a random graph model called the Random Dot Product graphs. The random

graph product graph is a generalization of the Stochastic Block Model, of which the ER

graph is a special case. We state the result below for the ER graph.

Let λ,v be the largest eigenvalue and largest eigenvector respectively of the adjacency

matrix A. Define x :=
√
λv. Then the following central limit theorem holds for x.
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Proposition 2.1. [Athreya et al. 2013, Corollary 3.4] For an Erdős-Rényi graph, the

following central limit theorem holds

√
n(xi −

√
p)

D−→ N (0, 1− p),

when p is a constant.

In Chapter 4 we show a similar result for sparse graphs, i.e., when p = o(1).

2.3 Introduction to Message Passing and Belief Propa-

gation on Graphs

In this thesis, we develop a message passing algorithm to perform subgraph detection in

the presence of side-information in Chapter 5. On the random graph model considered in

that chapter, the subgraph detection problem can be solved via a bit-wise MAP detection

problem on a pair-wise Ising model, which can be solved by an iterative and local algorithm

called Belief Propagation (BP). In this section, we give a general introduction to BP and

general message passing algorithms. The case where BP is applied to the specific problem

of subgraph detection on graphs is discussed in Chapter 5.

2.3.1 Belief Propagation Fundamentals

Consider a graph G = (V,E) with vertex set V and edge set E. The graph is random

and the edges are probabilistic functions of some variable associated with the vertices. Let

x = (x1, x2, . . . xn) be a vector such that xi ∈ M, M being a finite size alphabet, is a

realization of the random variable associated with node i. The graph can be considered

to encode the dependence structure of the random vector x. A typical estimation problem

on graphs is to find an estimate of x based on an observation of the graph. To solve this

problem, one can estimate the marginal probabilites of each xi and perform a component-

wise MAP decoding at each vertex [Mezard & Montanari 2009].

However, a naive algorithm to compute the marginal probabilities would involve sum-

ming over all M |V | configurations, and hence is not practical on large graphs. Nevertheless,

in most practical graphs, the joint distribution has a definite structure, which can be ex-

ploited to simplify the computations. In particular, in most graphs the joint distribution

of the variables can be factored into simpler terms containing a subset of the nodes. This

means that instead of summing over all the variables at once, one can sum over small sub-

sets of variables and then combine these terms in a suitable way. We demonstrate this

methodology with a simple example.

Figure 2.1: Factor graph for the three variable problem

a
f1(x1, x2)

b
f2(x2, x3)

x1 x2 x3
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Consider a distribution function f(x1, x2, x3) on three variables x1, x2 and x3. Say we

want to compute the marginal distribution of the variable x2, i.e., we want to integrate over

the variables x1 and x3. Normally, this would take |M |2 computations for each value of x2.

However, assume that f(x1, x2, x3) factors as f(x1, x2, x3) = f1(x1, x2)f2(x2, x3). Then by

the distributive property of sum and product we have

∑

x1,x3

f(x1, x2, x3) =
∑

x1

f1(x1, x2)
∑

x3

f1(x2, x3), (2.15)

i.e., we can perform the same computation in 2|M | operations.

This dependence structure can be represented in terms of a factor graph as given in

Figure 2.1. A factor graph consists of two kinds of nodes: the circles represent hidden

variables and the squares represent function nodes. A function node determines the rela-

tionship between two variable nodes. In Figure 2.1, the two function nodes represent the

two factors containing x1, x2 and x2, x3.

In our example, factor a sends to node x2 the value
∑

x1
f1(x1, x2) for each value of x2,

and similarly, factor b sends the value
∑

x3
f1(x2, x3). At node x2 these two quantities are

multiplied. On the other hand, if we are interested in the marginal distribution at x1, the

node x2 sends to node a, the message it received from node x3, which is
∑

x3
f1(x2, x3).

The factor graph is thus a graphical way of performing the distributed summation shown

in (2.15).

This procedure can be extended to a general number of variables using factor graphs and

the resulting algorithm is called Belief Propagation. It can be shown that BP is exact on tree

graphs, i.e., graphs with no cycles [Mezard & Montanari 2009]. In this way, a computation

that normally takes exponential time can be performed in linear time on trees [Mezard &

Montanari 2009]. This basic idea, can in general be used, in addition to marginilization,

to sample from a multi-variate distribution, to perform optimization, and to determine

free-energy [Mezard & Montanari 2009]. Similarly, one can extend this procedure to other

operations admitting the distributive property (2.15), such as max-product or min-sum.

We now present the general Belief Propagation iterations for computing the marginals

of graphical models. Consider a general graphical model where the joint distribution p(x)

can be decomposed as follows

p(x) ∼=
N∏

a=1

ψa(x∂a), (2.16)

where ∼= represents equality up to a normalization factor, and a denotes a factor with ψa

denoting the function associated with the factor and x∂a denotes the variables involved in

the factor.

As in the previous example, we can represent the above equation in terms of a factor

graph, and BP iterations can be written to compute the marginals on this graph [Mezard &

Montanari 2009]. BP iterations consists of two types of messages: νtj→a, the message sent

by variable node j to factor node a at time t and ν̂ta→j , the message sent to variable node j

by factor node a. They are defined by the following iterations [Mezard & Montanari 2009]:

νt+1
j→a(xj)

∼=
∏

b∈δj\a
ν̂tb→j(xj) (2.17)

ν̂ta→j(xj)
∼=
∑

x∂a\j

ψa(x∂a)
∏

k∈δa\j
ν
(t)
k→a(xk), (2.18)

where ν0i→a(xi) and ν̂0a→j(xj) are initialized to uniform distributions.
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After t steps, one can find an estimate of the marginal distribution at xi as

p̂t(xi) ∼=
∏

a∈δi

ν̂ta→i(xi).

We provide an illustration of these messages in Figure 2.2. In this figure, we show

a part of a factor graph with two factors a and b involving three variables each, namely

ψa(xk, xj , xi) and ψb(xi, xl, xn) respectively. The messages transmitted to node i by factor

a denoted as ν̂a→i(xi) along with its computation from the messages transmitted to a by

the other two nodes k and j is displayed. Similarly, factor node b sends its message to i

and finally the likelihood estimate at node i is computed as p̂(xi) shown in the figure.

k j i l n

a b

p̂(xi) ∼= ν̂a→i(xi)ν̂b→i(xi)

=
∑

xk,xj
ψa(xk, xj , xi)νk→a(xk)νj→a(xj)

ψa(xk, xj , xi) ψb(xi, xl, xn)

νj→a(xj)

ν̂a→i(xi)

ν̂b→i(xi)

νl→b(xl)

νk→a(xk)

νn→b(xn)

Figure 2.2: BP messages on a factor graph

A pair-wise Ising model is a specialization of (2.16) where each factor node a consists

of only two variables, i.e., it corresponds to a graph edge. Subgraph detection considered

in this thesis has this form. In that case, BP updates can be expressed in terms of a single

kind of message, for e.g. function to variable message ν̂ta→j(xj). We can write [Mezard &

Montanari 2009]

ν̂ti→j(xj)
∼=
∑

xi

ψa(xi, xj)
∏

k∈δi\j
ν̂
(t)
k→i(xi),

where we used ν̂ti→j(xj) := ν̂t(i,j)→j(xj).

Two questions arise:

• Do the BP equations (2.17,2.18) converge on a general graph?

• If yes, are the final converged messages equal to the true marginals?

It is known that when the factor graph is a tree, the updates in (2.17, 2.18) converge to the

true marginal in number of steps equal to the depth of the tree [Mezard & Montanari 2009].

However, on a general graph, these questions are still unanswered, but some heuristics are

known. In general, for the messages to converge to the correct marginals, the following two

graph properties must be satisfied. The details are in [Mezard & Montanari 2009].

1. Locally tree-like property : If a graph is locally tree-like, then the neighbourhood of a

certain size t of any vertex has no cycles. This implies that the messages transmitted

by the neighbours of the node will be independent up to depth t.

2. Small long-range correlations: Since BP messages are functions on a local neighbour-

hood of a node up to depth t, for BP to be able to give approximately the correct

marginals, it must be true that the local marginals are not affected by variables far

away from the node, i.e., the correlations between variables should die down fast

enough.



Chapter 3

Spectral Functions of the

Stochastic Block Model

3.1 Introduction

One of first random graph models to be deeply explored is the Erdős-Rényi graph [Erdős

& Rényi 1959] where edges between nodes appear with equal probabilities. As described

in the past chapters, this model has many appealing analytical properties, but it does not

model important features of many real complex networks. In particular, the Erdős-Rényi

graph fails to describe clustering and the presence of communities in complex networks. To

mitigate this shortcoming, the more refined Stochastic Block Model (SBM) was introduced

in [Holland et al. 1983]. In SBM, the nodes are classified into subsets which model commu-

nities. Two nodes that belong to the same community are connected to each other with a

higher probability than two nodes belonging to different communities.

SBM has been used to show consistency of community detection algorithms such as

spectral clustering [Rohe et al. 2011,Sussman et al. 2012]. To detect the communities in a

graph with, say M communities, spectral clustering works in two steps. First it computes

M eigenvectors corresponding to the M largest eigenvalues of some appropriate graph

matrix, usually the adjacency matrix or its normalized form. The nodes of the graph are

then embedded on R
M , by taking the coordinate of each vertex to be the corresponding

elements of the K eigenvectors computed in the previous step. On this space, the algorithm

then performs k-means clustering or Expectation Maximization (EM) to determine the

clusters [Filippone et al. 2008].

The success of spectral clustering is hinged on the presence of a few eigenvalues consid-

erably larger than all others. Thus it is important to study the spectral properties of an

SBM graph, more importantly, the dominant eigenvalues and corresponding eigenvectors of

the adjacency matrix [Nadakuditi & Newman 2012]. Spectral properties of a graph has also

been applied to the study of epidemic processes on a graph; for e.g., the cost of epidemic

spread is characterized by the spectral properties of the adjacency matrix [Bose et al. 2013].

In this chapter, using well known tools in Random Matrix Theory, we analyze the

limiting empirical distribution of the eigenvalues of the adjacency matrix of SBM. We

derive a fixed point equation for the Stieltjes transform of the limiting eigenvalue empirical

distribution function (e.d.f.) and provide an explicit expression of the asymptotic eigenvalue

distribution in the case of symmetric communities. Further, we obtain concentration bounds

on the extreme eigenvalues. Additionally, we derive parallel results for the normalized

Laplacian Matrix and discuss potential applications of the general results in epidemics and

random walks. Furthermore, we analyze a modified spectral function that takes into account

the eigenvectors of the adjacency matrix of SBM.

SBM in a symmetric setting (i.e., probability of interconnections within communities are

identical) has been studied in the context of community detection for two-community graphs

in [Heimlicher et al. 2012, Decelle et al. 2011, Nadakuditi & Newman 2012]. In [Decelle

et al. 2011], the authors investigate the detectability of communities in a two-community
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SBM graph by analysing the phase transition in the spectrum of the adjacency matrix

using methods from statistical physics. In [Heimlicher et al. 2012], the authors analyze

a similar problem in the context of labelled Stochastic Matrices and provide theoretical

evidence for detectability thresholds in [Decelle et al. 2011]. Here the nodes are randomly

categorized into communities and the goal is to find the correct community to which a node

belongs. In [Nadakuditi & Newman 2012] the authors derive the spectrum of the adjacency

matrix of two community SBM when the probabilities of connection within a community

is the same for all communities(symmetric scenario), and show the existence of a threshold

beyond which community detection is impossible. Stieltjes transforms of spectral measures

of various random graphs was also studied in [Bordenave & Lelarge 2010].

3.2 Stochastic Block Model and its Representations

We consider a SBM with n nodes and M communities Cm, for m = 1, . . . ,M, of equal sizes

K. Each node belongs to one of the M communities such that n = MK. If two nodes

belong to two different communities, then there is an edge between them with probability

p0(n), which, in general, is a function of the size of the network n. Given two nodes

belonging to the same community Cm, there exists an edge between them with probability

pm(n), 1 ≤ m ≤ M . Throughout this chapter, for the sake of conciseness, we adopt the

short notation pm for the probabilities pm(n) where the dependence on n is implicit. For a

random graph as defined above, we can define a number of related random matrices whose

spectral characteristics are relevant to capture related properties of the network. In this

work we focus on the spectra of two types of random matrices: the adjacency matrix and

the normalized Laplacian matrix.

SBM adjacency matrix A

Without loss of generality, we assume that nodes belonging to the same community are

clustered together and ordered from community 1 to community M, i.e. node i belongs to

community Cm if

⌈
i

K

⌉
= m. Natually, A is symmetric matrix and its component Aij is

a Bernoulli random variable (rv) with parameter pm, m = 1, . . .M, if the corresponding

nodes i and j belong to the community Cm, i.e.

⌈
i

K

⌉
=

⌈
j

K

⌉
= m, and with parameter

p0 otherwise. Let us denote by B(pm) a Bernoulli probability distribution with parameter

pm. Then,




Aij = Aji ∼ B(pm), if i, j ∈ Cm

Aij = Aji ∼ B(p0), if i ∈ Cℓ and j ∈ Cm with ℓ 6= m.
(3.1)

In our definition of A we allow it to have non-zero diagonal elements, i.e., self-loops are

permitted. It is worth noting that the results on asymptotic spectrum of adjacency matrices

in this contribution hold independent of the assumption on the diagonal elements, since their

contribution is O(1).

Henceforth, it is convenient to normalize A by a scaling factor1 γ(n), depending on

n, such that the support of the limiting eigenvalue distribution function stay finite and

positive. Then, we consider the normalized SBM adjacency matrix Â = γ(n)A and we

express it as the sum of a deterministic matrix A = E(A) a random matrix with zero mean

random entries denoted as Ã, i.e.

Â = A+ Ã. (3.2)

1We use the short notation γ when it is not necessary to emphasize the dependency on n.
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In accordance with the definitions in (3.1) and (3.2), A is a finite rank matrix of the

following form:

A = B⊗ JK ,

where B is an M ×M matrix given as

B = γ(n)




p1 p0 . . . p0

p0 p2
. . . p0

. . .
. . . . . .

p0 . . . . . . pM



.

In general, since pm 6= p0 for m = 1, . . . ,M, matrix B has rank M, and so does A.

The random centered SBM adjacency matrix is also a symmetric matrix whose elements

follow the distributions

C(pm, γ) =

{
γ(1− pm), w.p. pm;

−γpm, w.p. 1− pm;
m = 0, 1, . . . ,M, (3.3)

with zero mean and variance σ2
m = γ2(1−pm)pm. Consistently, with the definitions in (3.1)

and (3.2),




Ãij = Ãji ∼ C(pm, γ) if i, j ∈ Cm

Ãij = Ãji ∼ C(p0, γ) if i ∈ Cℓ and m ∈ Cm with ℓ 6= m.
(3.4)

Normalized Laplacian matrix L

Let define the degree of node i as

Di =

n∑

j=1

Aij (3.5)

Then, the symmetric random SBM normalized Laplacian matrix L is defined as

Lij = Lji =





1− Aii

Di
, if i = j;

− Aij√
DiDj

, otherwise.
(3.6)

3.3 Empirical Spectral Distribution: Distribution of

Eigenvalues

In this section we analyze the empirical spectral distribution (e.s.d.) of A, as defined in

(3.1). In the following subsection we deal with the adjacency matrix, and later with the

normalized Laplacian matrix.

3.3.1 Results for Adjacency Matrix of M community Model

As done for ER graphs, we do this in two stages. First, we characterize the centralized

adjacency matrix and then the full adjacency matrix.
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3.3.1.1 Finding the spectrum of centered Adjacency Matrix

We apply the following theorem to the centered Adjacency matrix.

Theorem 3.1. [Girko 2001, Girko 1990, Chapter 1] For a symmetric random matrix

W, with EWij = 0 and E|Wij |2= σij, where Wij are independent random variables for

1 ≤ i ≤ j ≤ n, satisfying : supn maxi=1,2,..n

∑
j σ

2
ij < ∞ and nσij = c > 0, and Lindeberg

condition: for any τ > 0

lim
n→∞

max
i=1,2,3..n

n∑

j=1

E|Wij |2χ|Wij |≥τ = 0 (3.7)

then, the e.s.d. is the inverse Stieltjes transform of s(z) given by:

s(z) =
1

n

n∑

i=1

ci(z)

where ci(z) satisfies:

ci(z) =






−zI −

(
δpl

n∑

s=1

cs(z)σsl

)n

p,l=1



−1




ii

,

i = 1, 2, ..n

Note: The matrix W in our example has mean 0, unlike the matrix in Girko’s theorem.

Then we have the following corollary.

Lemma 3.1. Let Ã be the normalized centered SBM adjacency matrix with γ(n) = (np1(1−
p1))

−1. If pm(n) ∈ ω(n−1) and pm(n) = O(p0(n)) for all m = 1, . . .M, then, almost surely,

the eigenvalue e.d.f. converge weakly to a distribution function whose Stieltjes transform is

given by

s(z) = c1(z) + c2(z) (3.8)

c1(z), c2(z) being the unique solutions to the system of equations:

ci(z) =
−1/2

z + ςici(z) + ς0cj(z)
, (3.9)

with i, j = 1, 2 and i, j = 2, 1, and where ςi = lim
n→+∞

pi(1− pi)

p1(1− p1)
, i = 1, 2 that satisfies the

condition that for each i = 1, 2,

ℑ(ci(z))ℑ(z) > 0 for ℑz > 0. (3.10)

Proof. For the matrix under consideration, if all variances of the SBM, σ2
i = pi(1 − pi)

satisfy, nσ2
i → ∞, and if we choose γ(n) = 1/

√
np∗(1− p∗), where p∗ is such that σ∗2 =

p∗(1− p∗) > σ2
i for all i = 0, 1, 2..M , then the conditions in the above theorem are satisfied

and we have s(z), the Stieltjes transform of limiting e.s.d. of centralized adjacency matrix

Ã (after undoing the scaling by σ∗ ) 2, given as

s(z) =

M∑

i=1

ci(z) (3.11)

2If we do not undo the scaling the variances below would be scaled by σ∗
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where the following relation exists between ci(z)’s.

ci(z) =
−1/M

z + σ2
i ci(z) + σ2

0

∑
j 6=i cj(z)

(3.12)

The valid solution must satisfy [Girko 2001]:

ℑci(z)z > 0 for ℑz > 0 (3.13)

Solving these equations would yield the Stieltjes transform of the limiting e.s.d. of the

Adjacency matrix. Note: We need that each probability pi grows at the same rate: i.e.,
pi

pj
= O(1) for any i, j.

3.3.1.2 Spectrum of the full Adjacency Matrix

The result above gives the spectrum of matrix Ã. Recall that

A = Ã+A

where A is the normalized mean matrix. Using Lemma 2.2 on the finite rank perturba-

tion of a matrix, we deduce that the asymptotic spectrum of A is the same as that of Ã.

The difference however lies in the extreme eigenvalues.

3.3.1.3 Extreme Eigenvalue of Adjacency Matrix

For matrices A, A and A, we have:

|λi(A)− λi(A)|≤ ‖Ã‖2,

by Weyl’s identities. This is useful in getting an asymptotic characterization for the top M

eigenvalues of A. Since A has exactly M non-zero eigenvalues, this result says that the M

largest eigenvalues of A are concentrated around these eigenvalues, within an error of the

spectral norm of Ã. The rest of the eigenvalues are confined to the bulk of the spectrum of

Ã. To use this result, we need a bound on the spectral norm of Ã, the zero mean part of

A. We use the methodology in [Vu 2007, Theorem 1.4] to derive a bound on the spectral

norm of this matrix. The result is in the following lemma.

Lemma 3.2. There are constants C and C
′

such that the following holds. Let Ã

be the centered and scaled adjacency matrix of a graph with M communities such that

σ2 =M−1(maxi{σ2
i }+ (M − 1)σ2

o). Then if σ2 ≥ C
′
n−1K log4(n)

‖Ã‖2≤ (2σ
√
n+ C(Kσ)1/2n1/4 log(n))γ(n)

Where γ(n) = (
√
np∗(1− p∗))−1. This gives a direct relationship between the individual

variances and the value of the edge in a way analogous to the result for the standard Wigner

Matrix.

Proof. We follow the ideas in [Vu 2007, Theorem 1.3]. We make use of the moment method

to bound the spectral norm of Ã
′
= Ã/γ(n). We use the idea that spectral norm, which

is the largest dominating eigenvalue in absolute value, can be bounded by the trace of the

matrix raised to an even exponent, and that the larger the exponent, the sharper the bound:

‖Ã′‖2k2 = max
1≤i≤n

|λi(Ã
′
)|2k≤ (

n∑

i=1

|λi(Ã
′
)|2k) = (tr(Ã

′
)2k)
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Once we obtain a bound on the expected spectral norm, we can use Markov inequality,

to bound the tail probabilities.

P

(
‖Ã′‖2≥ λ

)
≤ E‖Ã′‖2k2

λ2k
≤ Etr(Ã

′
)2k

λ2k
(3.14)

If A is a standard Wigner matrix, for fixed k, the right hand side of the above equation is

n times the 2kth moment of the empirical spectral distribution, which by the semicircle law

tends to Ck. Therefore, for such matrices, if k were chosen to be a fixed number independent

of n, the right hand side tends to infinity for large n, making it useless. Therefore we choose

k to be a function of n [Vu 2007]. The idea is that when k is a slowly increasing function

of n, the semicircle law still holds, and since Ck ≤ 4k, the upper bound tends to 0, for any

λ ≥ 2. Here, we extend this idea to a Wigner matrix displaying community structure.

We need to find a bound on the quantity Etr(Ã
′
)2k. To do this we expand the trace as

a summation of expectation over cycles of length 2k of vertices in the set {1, 2, 3, ...n}

Etr(Ã
′
)2k = E

∑

i1,i2,i3,....i2k

Ã
′

i1,i2Ã
′

i2,i3 . . . Ã
′

i2k,i1

where {i1, i2...i2k, i1} form a cycle over edges such that ij ∈ {1, 2, 3, ...n}, for each 1 ≤ j ≤
2k. Each edge {ij−1, ij} corresponds to a random variable Ã

′
ij−1,ij

.

We can partition the graphs based on the number of unique vertices that appear in the

graph, called the weight of the graph, denoted by t, 1 ≤ t ≤ 2k. We can then represent the

original graph on 2k edges and 2k vertices equivalently by using a condensed undirected

connected graph on t vertices and the specific order of edges traversed can be represented as

a walk on these t vertices. An edge exists in this walk if and only if it exists in the original

graph and if it exists more than once in the walk, then this edge has a weight equal to the

number of times this edge is traversed by the walk. Since each such random variable Aij

is zero mean and by independence, if an undirected edge {ij−1, ij} has a weight equal to 1,

i.e., it appears only once in the walk, then the corresponding term is trivially zero. So we

need only consider the contribution of those walks that have every edge appearing at least

twice.

By virtue of independence and zero mean property, if t is greater than k+1, and because

the number of edges required for connectivity is greater than or equal to t+ 1, there must

at least be k+1 edges in the graph. Since the total number of edges is 2k in the walk, this

means there exists an edge that appears only once, making the contribution of such a term

zero. Hence we must have 1 ≤ t ≤ k + 1. Thus we can bound the quantity of interest as

below:

Etr(Ã
′
)2k ≤

k+1∑

t=1

∑

G∈Gt,n,2k

EÃ
′

G

where Gt,n represents a set of graphs on t vertices drawn from {1, 2, ..n} with 2k edges.

Similar to [Vu 2007], an edge e = {ij−1, ij} such as described above, is called an innova-

tion edge, if the vertex ij is such that ij 6∈ {i1, i2, ...ij−1}, i.e., it appears for the first time

in e. The other edges in the graph either overlap the innovation edges or are interconnec-

tions between two vertices that already exist in the graph. Since in our case the random

variables are bounded in absolute value by 1 (since they are Bernoulli), the contribution

over all the edges other than the innovation edges can be bounded by 1. For any graph on

t vertices, there must be exactly t − 1 innovation edges and each edge must have at least

weight 2. The contribution to the expectation of each such edge would have a weight of at-

most σ2
i , 0 ≤ i ≤M depending on whether the edge is between two communities or within
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some community i. This bound is exact if each such edge has a weight two; if it has weight

more than two, then this is an upper bound. Then, by independence, the contribution of

the group of edges can be bounded by the product. Therefore, the following is true:

|EÃ′

i1,i2Ã
′

i2,i3 . . . Ã
′

i2k,i1
|≤ ( max

1≤i≤M
σ2
i )

(t−1−i)(σ2
0)

(i)

where i are integers such that 0 ≤ i ≤ t− 1.

For every term such as the above, there are
(
t−1
i

)
ways in which the edges can be chosen

to be mapped to σ2
0 or maxi σ

2
i . This corresponds to choosing out of t edges, i edges such

that the vertices of those edges belong to two different communities. Once we choose such

i edges we need to choose the communities from which the corresponding vertices emerge.

For convenience, we can assume the vertices have a preferred ordering. The first such vertex

can then be chosen from any of the M communities. Once such a community is chosen,

if the next edge is upper bounded by maxi σ
2
i , the next vertex of the edge can be chosen

only in 1 way, because this corresponds to an edge belonging to the same community. If

the edge is bounded by σ2
o , then the community to which the next vertex belongs can be

chosen in atmost M −1 ways, since this edge corresponds to an edge between communities.

Corresponding to each selection of a community to which the edge can belong, the vertices

can be chosen in (n/M)(t) ways.

Therefore, we can finally bound the full term as follows:

EtrA2k ≤
k+1∑

t=1

M(n/M)t
t−1∑

i=0

(
t− 1

i

)
(M − 1)(t−1−i)(σ2

0)
(t−1−i)( max

1≤j≤m
σ2
j )

iW (k, t).

The inner summation on the variable i turns out to be the Binomial expansion. W (k, t)

is the number of equivalent graphs of t fixed vertices with 2k edges and is related to the

number of the Catalan number Ct. We use a bound on this quantity from [Vu 2007]:

W (k, t) ≤
(

2k

2p− 2

)
pN2k+N+1(N + 2)N

where N = 2k − 2(t− 1). Finally we get:

EtrA2k ≤
k+1∑

t=0

nt(σ2n)t−1W (k, t)

where σ2 = 1
M (maxi σ

2
i + (M − 1)σ2

o). As in [Vu 2007] it can be shown that when 2k =

aσ1/2n1/4, for some a, the term within the summation is bounded by a geometric series

with growth factor 1/2. Using this fact we finally get:

Etr(Ã)2k ≤ 2n(2σ
√
n)2k

Substituting in equation (3.14), and using

λ = 2σ
√
n+ C(σ)1/2n1/4 log(n) we have:
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(3.15)

P

(
‖Ã‖2 ≥ 2σ

√
n+ C(σ)1/2n1/4 log(n)

)

≤ 2n

(
2σ

√
n

2σ
√
n+ C(Kσ)1/2n1/4 log(n)

)2k

= 2n(1− Cσ1/2n1/4 log(n)

2σ
√
n+ Cσ1/2n1/4 log(n)

)2k

≤ 2n(1− Cσ1/2n1/4 log(n)

3σ
√
n

)2k

≤ 2n exp(−c log(n)k
3
√
σn1/4

)

= 2n exp(−ca log(n)/3),

where the second inequality above follows from the assumption that σ ≥
C

′
n−1/2 log2(n), the third inequality because e−x ≥ 1 − x, and the last equality by the

form of k. Now since the right hand side is summable in n for appropriate constants c and

a, by Borel-Cantelli Lemma [Billingsley 2008], we have:

‖Ã‖≤ 2σ
√
n+ C(σ)1/2n1/4 log(n) a.s.

for σ ≥ C
′
n−1/2K log2(n).

This means that for the above σ:

‖Ã‖≤ 2σ
√
n(1 + δ) (3.16)

where δ is a vanishing error, for large n, whenever σ >> C
′
n

−1
2 log2(n), or p >>

C
′
n−1 log4(n). Thus it follows that the spectral norm of the zero mean matrix Ã

′
is

bounded by 2σ
√
n asymptotically analogously to the Wigner case.

3.3.1.4 Eigenvalues of the mean matrix

By the above result on the spectral norm of the zero mean matrix, we know that the largest

eigenvalue of the matrix is somewhere close to the edge of the spectrum. But when the

mean matrix is added to this matrix, the largest eigenvalue escapes the bounded spectrum.

Namely, since the mean matrix has rank M , by interlacing inequalities on the sum of two

Hermitian matrices, we can see that there are exactly M eigenvalues outside the bounded

spectrum.

A = Ã
′
+A/γ(n)

By Weyl’s identities we have

|λi(A)− λi(A)/γ(n)|≤ ‖Ã′‖ (3.17)

We have that ||Ã′ ||≤ 2σ
√
n(1 + δ) asymptotically a.s. as shown above. For i > M ,

λi(A) = 0. Therefore, we see that λi(A) for i > M lies within the continuous band.

3.3.1.5 Eigenvalues of A

The mean matrix can be written as a Kronecker product between a matrix that is a

perturbed diagonal matrix, and an all one matrix of size n/M (JK).

A = γ(n)B⊗ JK ,
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where Dp is defined as : B = D+ p0I, where Dij = (pi − p0)δij .

Let the eigenvalues of B be µi, 1 ≤ i ≤ M . They depend on the probabilities pi, 0 ≤
i ≤M . Then the eigenvalues of A are given as:

λi(A) =
nµi

M
γ(n)

So we have the following relationship on the eigenvalues of A:

Lemma 3.3. The M eigenvalues of A, outside the continuous spectrum of A are given as:

|λi(A)− n

M
µi|≤ 2σ

√
n(1 + δ) (3.18)

for 1 ≤ i ≤M

To complete this argument, we need approximate locations of µi’s. By Gershgorin disc

theorem [Saad 1992], the µi’s should satisfy:

|µi − pi|≤ p0(M − 1) (3.19)

In addition, if p0 is small enough so that the individual discs do not overlap, then we must

have by Gershgorin theorem, that there is a single eigenvalue in each of the discs [Saad 1992].

Additionally, the variation of the eigenvalues around the diagonal entries, can be further

controlled by using Kato-Temple’s theorem [Saad 1992]. Hence we have:

Lemma 3.4. Approximate Eigenvalues of B When p0 is such that p0 <
mini|pi−p0|
2(M−1) , then

the following is true about the eigenvalues of Dp, µi:

|µi − pi|≤ p0 (3.20)

3.3.2 Spectral Distribution of Normalized Laplacian Matrix

The normalized Laplacian Matrix as defined in (1.3) is

L = I−D−1/2AD−1/2 (3.21)

For the sake of simplicity, we consider the case of two blocks, i.e., M = 2, and probabilities

pi, 0 ≤ i ≤ 2 that are not dependent on the matrix size n.

Let P
′
:= D−1/2AD−1/2.

We show that asymptotically, the e.s.d. of matrix 1
2

√
nP

′
converges to that of matrix

1√
n
A

′′
, which is derived from the adjacency matrix by scaling its elements by appropriate

constants in each block.

A
′′

ij =





Aij/(p1 + p0), if i, j ∈ C1

Aij/(p2 + p0), if i, j ∈ C2

Aij/
√
(p1 + p0)(p2 + p0) otherwise

Matrix A
′
is similar to A, i.e., it is a symmetric matrix with independent upper triangular

entries, and is a 2×2 block matrix with each block containing elements of the same variance.

Consequently, the following holds:

Lemma 3.5. The distribution of matrix 1
2

√
nP

′
is given by:

ci =
−1/2

z + σ
′
ici + σ

′
0cj

(3.22)



40 Chapter 3. Spectral Functions of the Stochastic Block Model

for i, j = 1, 2 and i, j = 2, 1 respectively. where σ
′
1 =

σ2
1

(p1+p0)2
, σ

′
2 =

σ2
2

(p2+p0)2
, σ

′
0 =

σ2
0

(p0+p1)(p0+p2)
and the limiting distribution has a spectrum whose Stieltjes transform is given

by c(z) = c1(z) + c2(z).

Since
√
n
2 L =

√
n
2 −

√
n
2 P

′
, its distribution has a bulk component that lies around

√
n/2,

with an approximate width of 2
√
max(σ

′
1, σ

′
2) + σ

′
0. This matrix also has an eigenvalue at

0, by the property of Laplacian.

Proof. We follow the steps in the proof of Theorem 1.1 in [Bordenave et al. 2010]. The first

step is a form of uniform strong law of large numbers called Kolomogorov-Marcinkiewicz-

Zygmund strong law of large numbers. Since the elements of the matrix A are independent

and have finite fourth moments from Lemma 2.3 in [Bordenave et al. 2010] we have the

following as true:

n∑

j=1

Aij =
n

2
(p1 + p0 + δ

(1)
i ) (3.23)

where maxi|δ1i |= o(1) for 1 ≤ i ≤ n/2 and

n∑

j=1

Aij =
n

2
(p2 + p0 + δ

(2)
i ) (3.24)

where maxi|δ2i |= o(1) for 1 + n/2 ≤ i ≤ n.

From equations (3.23) and (3.24) we have uniform convergence for 1 ≤ i ≤ n, with the

error, maxi(δ
(1)
i , δ

(2)
i ) = o(1):

di =

n∑

j=1

Aij =
n

2
(pk + p0) + εi (3.25)

where pk = p1 if i ∈ C1 and pk = p2 if i ∈ C2, and maxi|εi|= ε = o(1) uniformly.

Next step is to use Hoffman-Wielandt inequality [Anderson et al. 2009] to bound the

error between the e.s.d. of A
′′

√
n

and
√
n
2 P

′
.

We have, using Hoffman-Wielandt inequality and the bound on Stieltjes transforms

found in [Bai 1999],

|s
F

1√
n

A
′′ (z)− s

F

√
n
2

P
′ (z)|≤ c

nℑz
∑

ij

|
√
n

2
P

′

ij −
1√
n
A

′′

ij |2

where z ∈ C
+.

For any i, j, we have:
√
n

2
P

′

ij =

√
n

2

Aij√
didj

=

√
n

2

Aij√
n/2(pk + p0 + εi)n/2(pl + p0 + εj)

=
Aij√

n(pk + p0)(pl + p0)
(1 +O(εi))(1 +O(εj))

=
A

′′
ij√
n
(1 +O(ε)),
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where i ∈ Cm and j ∈ Cn and ε is infinitesimally small. The last equality follows

because εi and εj tend to 0 uniformly for large n. Thus by Hoffman Wielandt inequality

we have:

|s
F

1√
n

A
′′ (z)− s

F

√
n
2

P
′ (z)|≤ c

n2ℑz
∑

ij

|A′′

ij |2O(ε2) → 0 a.s.

The last relation follows from the strong law of large numbers on variables A
′′
ij and since

ε = o(1). Hence we have the result.

3.4 Modified Empirical Spectral Distribution: Eigenvec-

tor Distribution

In this section, our contribution is to study the properties analyzed in [Bai & Pan 2012] for

the eigenvectors of the centered SBM adjacency matrix. Although properties of extremal

eigenvectors of the SBM adjacency matrix are well studied, not much attention has been

given to the eigenvectors of the centered matrix, which represent the bulk eigenvectors. We

consider, as in [Bai & Pan 2012], Q(x,y), a modified empirical spectral density function of

the eigenvalues, where the contribution of each eigenvalue is weighted by the magnitude of

the projection of the corresponding eigenvector to an arbitrary, deterministic unit vector y.

First we show that when the link probabilities within communities are different, i.e., the

case of asymmetric SBM, the weighted spectral function Q(x,y) has different limits depend-

ing on the unit vector y, and we determine the asymptotic limits. From this we conclude

that the eigenvectors of the asymmetric SBM are not Haar distributed. In contrast, when

the link probabilities within all the communities are the same, i.e., in the case of symmetric

SBM, the modified empirical spectral distribution Q(x,y) has the same asymptotic limit

as the empirical spectral distribution (e.s.d.) of eigenvalues, ∀y with ‖y‖2= 1. This is a

necessary condition for Haar distribution of eigenvectors. In contrast, we show that, the

variation around this mean cannot shown to be a Brownian Bridge. This is because the

atom distribution is not symmetric, i.e., its third moment is not zero and thus the bulk

eigenvectors of the symmetric SBM are not Haar distributed.

3.4.1 Asymptotic Results on Eigenvectors of SBM

In this section we analyze the asymptotic properties of the eigenvectors of Ã. To recall,

matrix Ã is obtained from the adjacency matrix A by subtracting the mean and dividing

by
√
n. The variances of the components of Ã are then

EÃ2
ij =





σ2
1

n if 1 ≤ i, j ≤ n/2
σ2
2

n if 1 + n/2 ≤ i, j ≤ n
σ2
0

n otherwise,

where σ2
1 = p1(1− p1), σ2

2 = p2(1− p2) and σ2
0 = p0(1− p0). We consider dense graphs, i.e.,

the probabilities p1, p2 and p0 are constants independent of n.

Following the ideas in [Silverstein 1990] we consider the following spectral function

Q(x,y) =

n∑

i=1

|uT
i y|2χ{λi≤x}, x ∈ (−∞,∞), (3.26)

where y ∈ R
n is an arbitrary deterministic unit vector. Notice that Q(x,y) ≥ 0, ∀x,

limx→−∞Q(x,y) = 0, limx→∞Q(x,y) = 1 and Q(x,y) is right continuous in x. There-

fore Q(x,y) satisfies all properties of a cumulative distribution function (cdf). In [Bai
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et al. 2007], the authors study the above function and observe that if the eigenvectors are

Haar-distributed Q(x,y) satisfies the following two properties:

• Property I

lim
n→∞

|Q(x,y)− F Ã(x)|= 0,

where F Ã(x) is the e.s.d. of Ã. This property has to be satisfied if ui are uniformly

distributed on the unit sphere in R
n.

• Property II√
n
2 (Q(x,y)− F Ã(x)) converges to a Brownian Bridge.

Indeed, a vector uniformly distributed on the unit sphere in R
n is equivalent in distri-

bution to a vector z ∈ R
n with independent standard gaussian components normalized

such that ‖z‖2= 1.

Instead of analyzing Q(x,y) directly we can analyze its Stieltjes transform given as [Bai

et al. 2007]

sQ(z,y) = yT (Ã− zI)−1y. (3.27)

By the Stieltjes inversion formula, the convergence of the Stieltjes transform of a se-

quence of functions, implies the convergence of the original sequence [Anderson et al. 2009].

3.4.2 Asymptotic Limit of Q(x,y) for general SBM

In this section we present a result about Q(x,y) for the special case when y = ei. The

analysis adopts the same method as the one followed in [Girko et al. 1994]. In this case

sQ(z,y) =
[
(Ã− zI)−1

]
ii
, the diagonal component of the resolvent matrix of Ã.

Let us define Ψ := (Ã− zI)−1 and denote the diagonal component as Ψii.

We have for Ã, if σ2
ij is the variance of the entry Ãij ,

∀i ∃c such that
∑

j

σ2
ij ≤ c. (3.28)

In addition, for 1 ≤ i, j ≤ n/2,

∑

k

σ2
jk =

∑

k

σ2
ik, (3.29)

and similarly for n/2 + 1 ≤ i, j ≤ n.

We have the following result.

Proposition 3.1. For a centered adjacency matrix Ã of SBM with constant probabilities

p0, p1, p2, independent of n, and y = ei, sQ(z, ei), the Stieltjes transform of the spectral

function Q(x,y), converges in probability as follows.

lim
n→∞

sQ(z, ei) =

{
d1, if i ≤ n

2

d2, if n
2 + 1 ≤ n,

(3.30)

where d1, d2 are unique solutions to the following set of fixed point equations

d1 =
1

−z − d1

2 σ
2
1 − d2

2 σ
2
0

,

d2 =
1

−z − d1

2 σ
2
0 − d2

2 σ
2
2

.
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Proof. From [Girko et al. 1994], under conditions (3.28) and (3.29), we have:

[Ψii −
1

−z −∑n
k=1 Ψkkσ2

ki

] → 0,

in probability, ∀i, i.e.,

Ψii =
−1

z +
∑n

k=1 Ψkkσ2
ki

+ op(1),

where op(1) is a quantity that tends to zero in probability, as n→ ∞.

Consider i 6= j such that 1 ≤ i, j ≤ n/2. Then,

Ψii −Ψjj =
−1

z +
∑n

k=1 Ψkkσ2
ki

+
1

z +
∑n

k=1 Ψkkσ2
kj

+ op(1)

=

∑n
k=1 Ψkk(σ

2
ki − σ2

kj)

(z +
∑n

k=1 Ψkkσ2
ki)(z +

∑n
k=1 Ψkkσ2

kj)
+ op(1)

= op(1).

The last equality follows because σ2
ki = σ2

kj , ∀k, if 1 ≤ i, j ≤ n/2, and from the boundedness

of the denominator.

Hence we have

max
1≤i,j≤n/2

|Ψii −Ψjj |→ 0 in probability, (3.31)

and similarly,

max
n/2+1≤i,j≤n

|Ψii −Ψjj |→ 0, in probability. (3.32)

Now, consider the following difference:

∣∣∣∣∣
−1

z +
∑n

k=1 Ψkkσ2
ki

+
1

z +
∑n/2

k=1 Ψ11σ2
ki +

∑n
k=1+n/2 Ψn/2+1,n/2+1σ

2
ki

∣∣∣∣∣

=

∣∣∣∣∣

∑n/2
k=1(Ψkk −Ψ11)σ

2
ki +

∑n
k=1+n/2(Ψkk −Ψn/2+1,n/2+1)σ

2
ki

(z +
∑n

k=1 Ψkkσ2
ki)(z +

∑n/2
k=1 Ψ11σ2

ki +
∑n

k=1+n/2 Ψn/2+1,n/2+1σ
2
ki)

∣∣∣∣∣

≤ K max
1≤k≤n/2

|Ψkk −Ψ11|
n/2∑

k=1

σ2
ki + max

1+n/2≤k≤n
|Ψkk −Ψn/2+1,n/2+1|

n∑

k=1+n/2

σ2
ki

= op(1),

by (3.31) and (3.31) since,

n/2∑

k=1

σ2
ki =

1

2
σ2
1 , i ≤ n/2

n/2∑

k=1

σ2
kj =

1

2
σ2
0 , j ≥ n/2

n∑

k=1+n/2

σ2
ki =

1

2
σ2
0 , i ≤ n/2

n∑

k=1+n/2

σ2
kj =

1

2
σ2
2 , j ≥ n

and each of the above is a constant.

So we finally have:

Ψii → d1 =
−1

z + d1

2 σ
2
1 +

d2

2 σ
2
0

for i ≤ n/2
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and

Ψii → d2 =
−1

z + d1

2 σ
2
0 +

d2

2 σ
2
2

for i > n/2.

From the above result, we see that the eigenvectors of a general SBM are not Haar

distributed, because the asymptotic limit is a function of the vector y. In fact, y = ei, the

asymptotic limit of the spectral function is different when i ≤ n/2 and i > n/2.

We make the following observation as a corollary to Proposition 3.1.

Corollary 3.1. For an asymmetric SBM with p1 6= p2,

lim
n→∞

1

2
(sQ(z, ek1

) + sQ(x, ek2
)) = sσ(z),

in probability with sσ(z) is the Stieltjes transform of the semicircle distribution with variance

parameter σ2.

In Proposition 3.2, we present a result for symmetric SBM, i.e., p1 = p2, that holds

for any unit vector y (sometime denoted yn to emphasize the dependance on n). More

specifically, we show the convergence of the Stieltjes transform sQ(z,y) to sσ(z), the Stieltjes

transform of the semicircle distribution with variance parameter σ2.

Following [Bai & Pan 2012] we define R̃ = Ã − zI and R̃k = Ãk − zI, where Ãk is

obtained by removing the kth row and column of Ã and the kth column is ãk. In addition,

we use the following notation from [Bai & Pan 2012]

η
(′)
k = ãTk R̃

−1
k ynyn

T R̃−1
k ãk,

ηk = η
(′)
k − Eãk

η
(′)
k ,

ωk =
1

1 + 1
nz

(
σ2
1

∑n/2
i=1 Ψ

k
ii + σ2

0

∑n
i=1+n/2 Ψ

k
ii

) , 1 ≤ k ≤ n

2
,

ωk =
1

1 + 1
nz

(
σ2
0

∑n/2
i=1 Ψ

k
ii + σ2

1

∑n
i=1+n/2 Ψ

k
ii

) , 1 +
n

2
≤ k ≤ n, (3.33)

where Eãk
denotes expectation w.r.t. ãk and Ψk

ii =
[
R̃−1

k

]
ii
. Additionally, we define

ζk = ãTk R̃
−1
k ãk − 1

n


σ2

1

n/2∑

i=1

Ψk
ii + σ2

0

n∑

i=n/2+1

Ψk
ii


 , 1 ≤ k ≤ n/2,

ζk = ãTk R̃
−1
k ãk − 1

n


σ2

0

n/2∑

i=1

Ψk
ii + σ2

1

n∑

i=n/2+1

Ψk
ii


 , 1 + n/2 ≤ k ≤ n.

Ancillary to Proposition 3.2 is the following lemma.

Lemma 3.6. For the centered SBM adjacency matrix Ã, with probabilities p0, p1, p2,

max
1≤k≤n/2

E|αk + 2zc1(z)|4→ 0,

max
n/2+1≤k≤n

E|αk + 2zc2(z)|4→ 0;



3.4. Modified Empirical Spectral Distribution: Eigenvector Distribution 45

where

αk =
1

1 + z−1ãTk R̃
−1
k ãk

, (3.34)

and c1(z), c2(z) are analytic functions that satisfy the fixed point equations in (3.9):

c1(z) =
−0.5

z + σ2
1c1(z) + σ2

0c2(z)

c2(z) =
−0.5

z + σ2
2c2(z) + σ2

0c1(z)

For the symmetric case, we recall that c1(z) = c2(z) = sσ(z)/2. Also when p1 = p2,

max
1≤k≤n

|ωk + zsσ(z)|→ 0

in probability.

Proof. This lemma follows along the same lines as the proof of Lemma 8.1 in [Bai &

Pan 2012] without significant modifications because the random variables are bounded.

By invoking the above lemma, we can prove the following proposition.

Proposition 3.2. (Symmetric SBM) Let us consider the centered adjacency matrix Ã of

SBM, with p1 = p2. For any unit vector y, the spectral function Q(x,y) converges to the

semicircle law.

Proof. The proof consists of two steps:

• Showing yT R̃−1y → yT
ER̃−1y. Since we consider the case where probabilities p1 and

p0 are constants independent of n, the random variables are bounded, and therefore

this results follows directly from the proof of the first part of Theorem 1.1 in [Bai &

Pan 2012], without significant modifications.

• Showing yT
ER̃−1y → sσ(z), where sσ(z) is the Stieltjes transform of the semicircle

distribution. This is shown below.

We introduce the following notation and results.

Following [Bai & Pan 2012], we have the following bounds: |αk|≤ |z|
v , |ωk|≤ |z|

v . Using

concentration bounds for quadratic forms [Bai & Pan 2012] we also have for p ≥ 2

E|ηk|p = O(n−p/2−1), (3.35)

E|ζk|p = O(n−p/2), (3.36)

(3.37)

From the definition of αk, one can see αk = ωk − z−1αkωkςk.

Similar to the procedure followed in [Bai & Pan 2012], we can decompose the above

term as

zyT
ER̃−1y + 1 := L1 + L2,

where

L1 = −
n∑

k=1

z−1ykEy
T
n ãkαk, L2 =

n∑

k=1

z−1
EyT

n ãkã
T
k R̃

−1
k ynαk

and and we analyze them one by one. First we look at L2.
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Using the result on αk from Lemma 3.6 along with the fact that

E|yT
n ãk|= O(

1√
n
) E|ãTkR−1

k yn|= O(
1√
n
)

and Holder’s inequality 3 we can show,

L2 = −sσ(z)
n∑

k=1

EyT ãkã
T
k R̃

−1
k y + o(1),

where o(1) is a term that goes to zero in probability. Notice that since ãk, R̃k form an

independent pair, we can take the expectation inside and use the fact that Eãkã
T
k = W1/n,

for 1 ≤ k ≤ n/2, and W2/n, for n/2 + 1 ≤ k ≤ n, where W1 ∈ R
n×n is a diagonal matrix

such that

(W1)ii =

{
σ2
1 for 1 ≤ i ≤ n/2,

σ2
0 , for 1 + n/2 ≤ i ≤ n

and similarly, W2 ∈ R
n×n is diagonal with

(W2)ii =

{
σ2
0 for 1 ≤ i ≤ n/2

σ2
1 , for 1 + n/2 ≤ i ≤ n.

Therefore 1
2 (W1 +W2) = σ2I, where σ2 = (σ2

0 + σ2
1)/2.

Now we use the fact that R̃−1
k = R̃−1 + R̃−1

k (ãkek
T + ekã

T
k )R̃

−1, to get

L2 = −sσ(z)
1

n




n/2∑

k=1

EyTW1(R̃
−1 + R̃−1

k (ãkek
T + ekã

T
k )R̃

−1)y

+

n∑

k=1+n/2

EyTW2(R̃
−1 + R̃−1

k (ãkek
T + ekã

T
k )R̃

−1)y


+ o(1).

Since ‖R̃−1
k y‖2 is bounded, we have 1

n

∑n
k=1|eTk R̃−1

k y|= O( 1√
n
). We also use the fact that

E|xT R̃−1
k y|< C for some C for any unit x,y. Also, we have yTW1R̃

−1
k ek = −cyk/z and

1
n

∑n
k=1|yk|= O( 1√

n
), we get

L2 = −sσ(z)
1

n




n/2∑

k=1

EyTW1R̃
−1y +

n∑

k=1+n/2

EyTW2R̃
−1y


+ o(1).

Then using the fact that 1
2 (W1 +W2) = σ2I we finally get

L2 = −sσ(z)σ2yT
ER̃−1y + o(1).

Now we move on to show L1 → 0.

L1 = −
n∑

k=1

z−1ykEy
T ãkαk

using αk = ωk − z−1αkωkςk [Bai & Pan 2012]

L1 = −
n∑

k=1

z−1ykEy
T ãkωk +

n∑

k=1

z−2ykEy
T ãkαkωkζk.

3E(|XY |) ≤ (E(|X|p))
1
p (E(|X|q))

1
q , if 1

p
+ 1

q
= 1.
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Figure 3.1: Asymptotic spec-
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Figure 3.3: Asymptotic spec-

tral function for asymmetric

SBM, y = e1.

The first term is zero, because ãk, ωk are independent, and Eãk = 0. Then we use the

bounds on αk, ωk, and that Eζ2k = O(n−1) and E|yT ãk|2= O(n−1) to show L1 = O(1/
√
n).

Thus we have zyT
ER̃−1y + 1 = −sσ(z)σ2yT

ER̃−1y + o(1),

Since sσ(z) satisfies

sσ(z) =
−1

z + σ2sσ(z)

we have yT
ER̃−1y = sσ(z) + o(1).

3.4.3 Gaussianity of the fluctuations

In this section we focus on the symmetric SBM and verify whether and if not, to what

extent Property II is satisfied. The convergence of the process
√
n
(
yT R̃−1y − sσ(z)

)
to a

Brownian Bridge in distribution is shown in two steps:

• The process Yn(z) =
√
n
(
yT R̃−1y − yT

E(R̃)−1y
)

is shown to converge to a gaussian

process of mean zero in distribution;

• √
n
(
yT

E(R̃)−1y − sσ(z)
)
→ 0.

In the following proposition we show that for SBM matrices the second part does not

converge to zero but instead, there is a bias term which is a function of z. This shows that

the process does not converge to a Brownian Bridge, and consequently the eigenvectors of

the adjacency matrix of the symmetric SBM are not Haar distributed, even though they

display some of the required properties as shown above. This is due to the fact that the

entries of the matrix Ã does not have vanishing third moment, as required by [Bai &

Pan 2012, Theorem 1.2]. In the following proposition we bound this bias term.

Proposition 3.3. For the centered adjacency matrix Ã of a symmetric SBM with proba-

bilities p0, p1, the fluctuation of the mean,
√
n
(
yT

ER̃−1y − sσ(z)
)

when y = 1√
n
1 does not

converge to 0, but it is bounded as follows

∣∣∣
√
n
(
yT

ER̃−1y − sσ(z)
)∣∣∣ ≤ C|sσ(z)|+o(1),

where C is a constant that depends on the third moment of the elements of Ã.
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Proof. In [Bai & Pan 2012], it is shown that this term goes to zero whenever the matrix

entries have zero third moment. However in our case, since the matrix entries are binomial

random variables, this is not true unless all probabiities are equal to half. However, we can

show the above upper bound.

As in [Bai & Pan 2012], we decompose the above term as

yT
E(Ã− zI)−1y − sσ(z) = L1 + L2 (3.38)

Ideally, we would like both L1 and L2 to be o(1/
√
n). However, L2 can be shown to obey

this, but not L1. We skip the proof for L2, because it is follows the same steps as the last

part of section 5 in [Bai & Pan 2012]. We deal with L1 below. In the setting treated

in [Bai & Pan 2012] L1 tends to zero because the matrix entries in his case are symmetric.

However, in our case, since we are dealing with binary random variables, this is not true.

We have L1 =
∑n

k=1 z
−1ykEy

T ãkζkαkωk. From this we get: |L1|=
|∑k ykEy

T ãkζkγ
2
k|+O(1/n). Observe that ωk only depends on R̃k, is independent of

ãk, and is bounded. We have

ζk = ãTk R̃
−1
k ãk − Eãk

(ãTk R̃
−1
k ãk).

Then EyT ãk is zero, and R̃−1
k is independent of ãk, and so the contribution due to the

second part in the definition of ζk is zero. Therefore we are left with EyT ãkã
T
k R̃

−1
k ãk =

E
1

n3/2

∑
l,m,n6=k ylA

′

lkA
′

mk(R̃k)
−1A

′

nk, where A
′
ij = Ãij

√
n. Because of zero mean condition

(EÃij = 0,), the only terms that survive are such that l = m = n(l 6= k,m 6= k, n 6= k). So

we get |L1|≤ | 1
n3/2

∑
m ym(R̃−1

k )
nn

E(A
′

nk)
3|.

For binomial random variables with probability of 1 < 1/2, the third moment is always

positive. Therefore we have:

|L1|≤ |C/n3/2
∑

k

yk
∑

l

yl(R̃
−1
k )ll|

We consider the special case where yi =
1√
n
, ∀i. We get

1

n3/2

∑

k

∑

l

ykyl(R̃
−1
k )llE(A

′

lk

3
) =

1

nn3/2

∑

l

(R̃−1
k )ll

∑

k

EA
′3

lk

Note that 1
n

∑
k EA

′3

lk = Kp, some constant that depends on p1, p0 and 1
n

∑
l(R̃

−1
k )ll →

1
n trace(A−1) → sσ(z) (Using Lemma 3.1). Therefore, |L1|≤ C 1√

n
sσ(z), for some C.

3.5 Example Application: Epidemic Spreading

In this section, we discuss an application of the result we derived above for adjacency

matrices of SBM, in the topic of epidemic spreading. In [Bose et al. 2013], the authors study

an epidemic process over a random network of nodes. The spread of the epidemic from one

node to another is governed by the random graph, i.e., a node can only infect another if

there exists an edge between the two nodes. We have the following result delineating the

relationship between the expected cost of the epidemic per node denoted by CD(n) (disease

cost) and the largest eigenvalue of the graph adjacency matrix A [Bose et al. 2013],

CD(n) ≤ αcd
1− λ1(M)

(3.39)
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where M = (1 − δ)I + βA is the matrix which governs the dynamics of the system [Bose

et al. 2013], with β being the probability of infection, δ is the probability of recovery of any

node, and cd is the cost parameter. We direct the reader to the original paper for more

details.

We examine the epidemic spread on an SBM graph with M communities. We know

that in this case λ1(A) → n
M µ1 as n→ ∞ a.s. under certain conditions. Also by (3.19) we

have that µ1 ≤ p1 + (M − 1)p0, therefore we have:

λ1(M) = (1− δ) + βλ1(A) ≤ 1− δ + β(n/Mµ1)

Thus we have:

CD(n) ≤ αcd
δ − βn/M(p1 + (M − 1)p0)

(3.40)

If p1 >> pi, for i ≥ 2, then we can venture to say that this bound is tight, and that the

community with the largest edge probability governs the disease cost.

3.6 Numerical Results

3.6.1 Asymptotic Eigenvalue Distribution

In this section we provide simulation results to demonstrate the results obtained earlier in

this chapter. More specifically, we corroborate our results on the spectrum of adjacency

matrix by comparing the spectrum obtained by simulating a 2-community SBM with the

distribution obtained by inverting the Stieltjes transform, which is an explicit solution of

the simultaneous equations (3.12). In the simulations, we use a matrix of size n = 104.

For a 2-community system, the solution amounts to solving explicity the resulting quartic

equation and choosing the solution branch that satisfies the conditions (3.13). The inverse

relationship between the limiting e.s.d. and the Stieltjes transform thus obtained, is given

by the well known Stieltjes inversion formula:

f(x) = lim
y→0

ℑsF (x+
√
−1y)/π (3.41)

where f(x) is the p.d.f. corresponding to the c.d.f. F (x), whenever the limit exists.

Figure 3.4 shows the histogram of normalized adjacency matrix 1√
n
A and compares it to the

theoretical spectrum obtained as above for n = 104, and several values of edge probabilities.

In the second part of this section we turn our attention to the extremal eigenvalues of the

adjacency matrix for a 3-community SBM of size n = 999. Over several independent runs,

we get values of the top 4 eigenvalues of the matrix A, for 0.3 ≤ p1 ≤ 0.48, 0.15 ≤ p2 ≤ 0.33,

0.08 ≤ p3 ≤ 0.26 and 0.03 ≤ p0 ≤ 0.031. We note that in Figure 3.5, as expected , there

are three eigenvalues outside the bulk, which agree very well with the expected values, i.e.,

the non-zero eigenvalues of the mean matrix A. In addition, it can also be seen that the

upperbound in (3.16) is remarkably tight for the simulated probabilities.

Next, we consider the spectrum of the normalized Laplacian matrix. In fact, we consider

the spectrum of the shifted normalized Laplacian matrix, which we denote L̃, defined as

L̃ :=
√
n/2−√

n/2L. By Lemma 3.5, its spectrum is given by the solution of the equation

(3.22). We explicitly solve this equation for SBM with two-communities, and compare it

the result obtained by simulations for a graphs with n = 999 for various values of the

probabilities p1, p2 and p0. The comparison is shown in Fig.3.6.
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Figure 3.4: Comparison plot between empirically obtained spectrum(bar graph), and ex-

plicit solution(line plot) of 2-community SBM adjacency matrix

Figure 3.5: Extremal eigenvalues of 3-community SBM normalized matrix compared to

expected values.
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Figure 3.6: Histogram of 2-community L̃ for various edge probabilities compared to theo-

retical spectrum

3.6.2 Asymptotic Eigenvector Distribution

In this section, we perform simulations to corroborate our theoretical results. First, we

consider a realization of a random symmetric SBM of size n = 103, with p0 = 10−2 and

p1 = p2 = 10−1. For the results in Figure 3.1, we set y = e1 and we plot two histograms of

the eigenvalues: the first one denoted by dF
Ã
(x) is obtained giving a unit weight to each

eigenvalue falling in a histogram bin [x, x + ∆); the second one, denoted by dQ(x,y) is

obtained by giving the weight |uT
i y|2 to an eigenvalue λi ∈ [x, x +∆). In other words, let

λi, λi+1, . . . λj be the j− i+1 eigenvalues in the bin [x, x+∆). Then dF
Ã
(x) = j−i+1

n , and

dQ(x,y) =
∑j

k=i|uT
k y|2. From Figure 3.1, it can be seen that both dF

Ã
(x) and dQ(x,y)

approximate the semicircle law very well, consistent with Lemma 3.1 and Proposition 3.2,

respectively. In Figure 3.2 we repeat the same experiment as in Figure 3.1, but for a slightly

different setting. In this case n = 104, and y = 1√
n
1. Although the size of the matrix is

an order of magnitude higher, the histogram dQ(x,y) approximate the semicircle law quite

roughly, suggesting a much slower convergence of dQ(x,y) compared to the case where

y = ei.

Next, we consider an asymmetric SBM with n = 103, p0 = 10−2, p1 = 0.1, and p2 = 0.05.

In Figure 3.3, we plot dF
Ã
(x) and 1

2 (dQ(x, e1) + dQ(x, en
2 +1)). They match very well,

consistently with Corollary 3.1.

Finally, we aim at validating our theoretical results on the gaussianity of the eigenvec-

tor fluctuations. To this end, we generate 4000 independent realizations of a symmetric

SBM centered adjacency matrix Ã with p0 = 0.01, and p1 = p2 = 0.1. Using these realiza-

tions, we calculate the empirical cdf of
√
ndQ(x, 1√

n
1), for x1 = −1.0538 and x2 = 1.0489.

In both Figure 3.7 and Figure 3.8, the solid red line show the cdf of the centered vari-

ables,
√
n(dQ(xi,

1√
n
1) − EdQ(x, 1√

n
1)), i = 1, 2. We compare them to the cdfs of a zero

mean gaussian variable with variance properly adapted to the empirical variance of our

processes. These are plotted with solid line with crosses as marker. The perfect match

between the solid line and the solid lines with markers confirms the gaussianity of the

perturbations of Q(x, 1√
n
1). The dashed lines in Figures 3.7 and 3.8, correspond to the
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Figure 3.7: gaussianity of the fluctuations of Q(x,y)

function
√
n(dQ(x, 1√

n
1) − dF

Ã
(x)). The shift of these lines w.r.t the solid lines confirms

the presence of the bias pointed out in Proposition 3.3.

3.7 Conclusions and Perspectives

In this chapter, we studied in detail the spectrum of adjacency matrix of a SBM with

M communities and derived the limiting form of the bulk spectrum of the normalized

Laplacian matrix. We observed that these results can be potentially of application in varying

fields such as community detection, in addition to presenting one application in the field of

epidemic spreading. We obtained simulation results to substantiate the theoretical results

obtained. As future work, we need to consider SBM models where sizes of communities are

not equal. More general models of edge probabilities also can be studied.

We also analyzed the bulk eigenvectors of the centered adjacency matrix of SBM graphs.

Following a classical approach, we studied the spectral function Q(x,y), which depends on

the eigenvectors and its fluctuations around the e.s.d. F
Ã
(x). We show that for the centered

adjacency matrix Ã of symmetric SBM, Q(x,y) converges almost surely to F
Ã
(x) for any

y. This suggests that |uT
i y|≈ 1√

n
, for any y. Additionally we show that the fluctuations√

n
(
Q(x,y)− F

Ã
(x)
)

converge in distribution to a gaussian process. However, this process

has non-zero mean, and hence is not a Brownian bridge. Therefore, the eigenvectors of

the centered SBM adjacency matrix violates a property required for them to be Haar

distributed.

We also consider the eigenvectors of the centered adjacency matrix of the asymmetric

SBM, and show that the asymptotic limit of the spectral function Q(x,y) depends on y,

as opposed to a matrix with Haar distributed eigenvectors.
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Figure 3.8: gaussianity of the fluctuations of Q(x,y)





Chapter 4

Anomaly Detection in

Erdős-Rényi Graphs

4.1 Introduction

Anomaly detection represents a class of important problems in Machine Learning and Data

Mining. In data-driven problems, an anomaly represents a rare artifact in the data un-

der consideration. The specific traits of what constitutes rare depends on the data being

analyzed. Unsurprisingly, this problem area has significance in important fields such as

security, forensics, network maintenance and others [Heard et al. 2010,Chen et al. 2012].

A subfield of anomaly detection is graph-based anomaly detection, which is concerned

with detecting rare occurences in data instances modelled as graphs. Graphs can efficiently

capture long-range correlations among data-objects in many fields such as physics, social

sciences, biology, and information systems. Example problems in graph anomaly detections

are detecting edge deletions or additions and/or node deletions or additions from or to an

expected baseline configuration.

A survey of graph-based anomaly detection methods can be found in [Akoglu et al. 2015]

for a wide range of real-world applications in telecommunications, auction, account, opinion,

social and computer networks.

In this chapter we take a random graph based approach to anomaly detection. Consider

a network modeled as a random graph, where nodes represent computers or people. A link

is present between two nodes when there is an exchange between them, which happens at

some expected rate. However, if there is anomaly in the network, this edge probability

changes. In general, the anomaly could be a breakdown in communication, in which case

the edge probability in the affected node subset is smaller than the background. On the

other hand, when the anomaly corresponds to spurious elements in the network, such as

terrorist transactions, the edge probability will be higher than the background. Our goal

is to detect the presence of such a sub-network of spurious users. This problem was first

studied in [Mifflin et al. 2004], where an ER graph with a planted subgraph was proposed

to model the anomalous network.

Consider an Erdos-Renyi graph with n nodes with edge probability q. When an anomaly

is present, the edge probability between a random subset of nodes of size K is changed to

p. In this work, we assume that p > q, but the treatment of the other case is similar. The

problem we address is to decide whether there exists a subset of graph vertices with an edge

probability greater than q, given one realization of the graph.

In [Mifflin et al. 2004] the authors used likelihood ratio based techniques to detect

the presence of the anomalous subgraph, assuming knowledge of p, q and K. In [Miller

et al. 2010], the authors proposed the use of L1-norm of eigenvectors to detect the presence of

anomalies in a graph. They validated this method on several real-world networks. However,

the question of theoretical guarantees was left open. In this work, we address this question.

In our analysis, we make use of a shifted adjacency matrix of the graph defined as follows.

It is the difference between the adjacency matrix of the graph and the edge probability when
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there is no subgraph. A crucial observation is that in the absence of an anomaly this matrix

is a symmetric matrix with independent upper triangular entries with zero mean. The

eigenvectors of such a matrix have been shown to be approximately Haar distributed [Tao

& Vu 2012,Bai & Pan 2012], under certain conditions on the moments of the entries. This

means that a typical eigenvector of the shifted adjacency matrix is delocalized, meaning its

L1-norm is large.

Note that the L1-norm of a unit vector v satisfies 1 ≤ ‖v‖1≤
√
n, where the upper bound

corresponds to the case of complete delocalization, i.e., all the entries of the vector are of the

same order of magnitude, and the lower bound corresponds to the completely localized case,

i.e., only one entry is non-zero. On the other hand, when there is a subgraph embedded onto

the random graph, we hypothesize that there will exist an eigenvector that is “localized”,

i.e., a fraction of components possess most of the mass of the eigenvector. This principle

is similar to that of community detection algorithms that use the dominant eigenvectors of

the graph matrices to perform clustering [Newman & Girvan 2004], [Von Luxburg 2007].

Delocalization properties of eigenvectors of random matrices under a variety of distribu-

tions have been studied recently in a series of works [Bordenave & Guionnet 2013, Erdős

et al. 2009,Rudelson & Vershynin 2015], by studying the Lp-norms of graph eigenvectors

for p > 2.

Anomaly detection based on norms has been studied empirically in [Miller et al. 2010,

Miller et al. 2015a]. In [Miller et al. 2015a], the authors look for the presence of an eigen-

vector whose L1-norm deviates from the mean of L1-norms of all the eigenvectors of the

modulariy matrix, by more than a factor of the standard deviation. The subgraph is de-

clared to be present if there exists such an eigenvector. In our work, we provide theoretical

validation on a random graph model for anomaly detection based on the L1-norm of only

the dominant eigenvector, and show that it is possible to detect the anomaly in this way, un-

der certain conditions on the subgraph size. Through our analysis, we find the approximate

distributions of the test statistic with and without the embedded subgraph.

Our contribution in this chapter is as follows. We derive the distribution of the domi-

nant eigenvector components of the shifted adjacency matrix when there is an embedded

subgraph. We use this result to derive the asymptotic distribution of the L1-norm of this

eigenvector. We also look at the case where there is no subgraph embedded and use the

properties of the eigenvectors of Wigner matrices as explored in [Tao & Vu 2012,Benaych-

Georges 2011], to derive the L1-norm of the eigenvectors when there is no subgraph em-

bedded. Using these distributions we then devise a statistical test to detect the presence of

the extraneous subgraph.

In Section 4.2 we formulate the detection problem, first in general terms, and then in

the more specific case studied in this chapter. In Section 4.3, we present our anomaly

detection algorithm, which is formulated as the solution to a hypothesis test problem with

fixed false alarm probability. In Section 4.3.1, we describe the spectral properties of the

shifted adjacency matrix A under H0, and characterize the distribution of the L1-norm of its

eigenvectors. Proposition 4.1 gives the main result on the asymptotic distribution of χ under

H0. In Section 4.3.2 we analyze the spectral properties under H1, and in Theorem 4.1, derive

a Central Limit Theorem (CLT) for the individual components of the dominant eigenvector

of A. Using this distribution, we compute the approximate asymptotic distribution of the

L1-norm statistic under H1 in Section 4.3.2.2. Finally in Section 4.5 we describe our

conclusions and directions for future research.
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4.2 Anomaly detection problem and statement

In this section, we formulate the general problem of anomaly detection and later, we describe

the specific problem we want to analyze. Let G = (V,E) denote the observed graph, where

V is the set of vertices, with cardinality |V |= n, and E ⊂ V × V is the set of edges. When

there is no anomalous subgraph, G = Gb, where Gb = (V,Eb) is the background graph with

Eb used to denote the edge set of the background graph. Let us denote the subgraph by

Gs = (Vs, Es) with Vs ⊂ V, and |Vs|= K. When there is an embedded subgraph we have

E = Eb∪Es. We desire to perform the following detection problem based on an observation

of the graph G,

H0 : E = Eb (4.1)

H1 : E = Eb ∪ Es. (4.2)

In other words, Null Hypothesis H0 corresponds to the case when there is no embedded

subgraph and all the edges of the observed graph belong to the background graph, and

Hypothesis H1 corresponds to the case where the edges of the observed graph belong to

either the background graph or the subgraph.

In this work, we focus on a specific case of the above problem where both the background

graph and the embedded subgraph are independently drawn from an ER graph ensemble.

For simplicity of the analysis, we allow self-loops, but this does not impact the asymptotic

results. We assume Gb = G(n, q), and Gs = G(K, ps), where G(l, q) denotes the class of

ER random graphs of size l and edge probability q. Under H1, the probability of two nodes

within Vs being connected is therefore p = 1− (1− q)(1− ps) = q+ ps − qps and elsewhere

the edge probability is q. Under H0, the edge probability is uniformly q. Without loss of

generality, we assume that Vs = {1, 2, . . .K}.
It can be observed that under H1 the graph is an instance of the Stochastic Block Model

(SBM) with two communities of size K and n − K, within community link probabilities

p1 = q + ps − qps and p2 = q; and outlink probability p0 = q. Properties of SBM have

been studied extensively in several works in the literature under the assumption of linearly

increasing block sizes; see e.g. [Decelle et al. 2011,Avrachenkov et al. 2015].

The problem of subgraph detection that we consider has also been studied in [Hajek

et al. 2015b]. In this work the authors study in detail the fundamental information theoretic

limits in subgraph detection and subgraph recovery and identify easy, hard and impossible

regimes with respect to the subgraph size and probability parameters under the hypothesis

that a clique of size k = o(
√
n) cannot be detected by any polynomial time solvers. We note

that the model of sublinear subgraph size was also studied in [Chen & Xu 2016,Arias-Castro

et al. 2014].

The adjacency matrix A of G is given as below

Aij = Aji ∼
{
B(pa) if i, j ≤ K

B(q) otherwise
(4.3)

where if a random variable (rv) X ∼ B(p), then X is a Bernouli random variable such that

X =

{
1 with probability p

0 with probability 1− p.

We have, pa = p under H1 and pa = q under H0. Notice that q, ps and K scale with the

graph size n; the constraints on the actual scaling with respect to n will be made explicit

when the results are given. We also define A = A−qJn. Since we are considering undirected
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graphs, A is symmetric with independent upper diagonal entries and the same holds for

A. Being a symmetric matrix it admits a spectral decomposition such that A = UΛUT,

where U =
[
u1 u2 . . . un

]
, is an orthonormal matrix whose columns are made of the

normalized eigenvectors with respective eigenvalues Λii = λi, in decreasing order without

loss of generality, λ1 ≥ λ2 ≥ . . . ≥ λn.

4.3 Algorithm Description and Mathematical Analysis

In what follows, we present our anomaly detection algorithm. It is similar to the algorithm

introduced in [Miller et al. 2010] based on finding the eigenvector of A with the least L1

norm.

Algorithm 1 Anomaly Detection in a Random Graph

1: Inputs: Adjacency matrix A, background probability q. Fix probability of false alarm

pFA.

2: Construct the matrix A = A− qJ.

3: Compute the eigenvector u1 corresponding to eigenvalue λ1, and find χ = ‖u1‖1.
4: Find τ, such that (s.t.) PH0

(χ < τ) = pFA, i.e., τ = µ(0) + σ(0)Φ
−1(pFA)

5: If χ < τ, declare H1, otherwise H0, where Φ is the Cumulative Density Function (CDF)

of N (0, 1).

4.3.1 Statistic Distribution under H0

Under H0, A is a symmetric matrix with independent zero mean upper triangular entries

as given below

Aij = Aji =

{
1− q w.p. q

−q w.p. 1− q

i.e., the components of A are independent on and above the diagonal, with zero mean,

and variance q(1 − q). Thus the matrix A under H0 is a standard Wigner matrix. Its

spectral properties such as the empirical spectral distribution and the spectral radius are

well-studied in the literature under different scaling laws on q, see e.g., [Ding et al. 2010], and

also Chapter 3. The eigenvectors of Wigner matrices are approximately Haar-distributed

on the space of unitary matrices in R
n×n as suggested by partial results on universality of

eigenvector statistics in [Tao & Vu 2012,Bai & Pan 2012]. In other words, a typical eigen-

vector ui is approximately uniformly distributed on the hypersphere, Sn−1 = {s : ‖s‖2= 1}.
A random unit vector on the hypersphere can be modelled as a gaussian eigenvector nor-

malized to have unit L2 norm, i.e., x

‖x‖ , with x being a R
n gaussian vector with covariance

matrix I, i.e., x ∼ N (0, I). We assume the following fact, which is a widely held conjecture

about the asymptotic distribution of the eigenvectors of a Wigner matrix. This holds exacly

for Wigner matrices with gaussian entries such as the Gaussian Unitary ensemble and the

Gaussian Orthogonal Ensemble [Anderson et al. 2009].

Approximation 4.1. (Haar distribution of Eigenvectors of a Wigner matrix) A typical

eigenvector ui of A under hypothesis H0 is distributed uniformly on the hypersphere on

S(n−1). The distribution of a typical eigenvector ui is identical to the distribution of x/‖x‖,
where x ∼ N (0, In).

Let us define g(x) = ‖x‖1

‖x‖ . Below we derive a central limit theorem for g(x), when

x ∼ N (µ,Σ), where Σ is a diagonal matrix in R
n×n such that Σii = Ex2i = σ2

i .



4.3. Algorithm Description and Mathematical Analysis 59

Lemma 4.1. (Central Limit Theorem for ‖x‖1/‖x‖) Let x be a gaussian random vector

with i.i.d. components, then g(x) satisfies a central limit theorem with the limit distribution

being gaussian with mean µ0 =
√

n
α2
α1 and variance σ2

0 = 1
α2

(
C11 + ( α1

2α2
)2C22 − α1

α2
C12

)
,

where α1 = E(|x1|), α2 = E(|x1|2), C11 = Var(|x1|), C22 = Var(|x1|2), C12 =

E((|x1|−E(|x1|))(|x1|2−E(|x1|2))), i.e., g(x)
D−→ N (µ0, σ

2
0)).

Proof. Consider the two dimensional vector zi =

(
|xi|
|xi|2

)
, and z(n) =

∑n
i=1 zi. Note that

zi are i.i.d. random vectors in R
2, with mean m = Ezi =

(
α1

α2

)
, and covariance matrix

C =

[
E|xi|2−(E|xi|)2 E|xi|3−E|xi|2E|xi|

E|xi|3−E|xi|2E|xi| E|xi|4−(E|xi|2)2
]
.

Hence, by applying the multidimensional CLT , see [Billingsley 2008], we conclude that

the distribution of r(n) = 1√
n

(
z(n) − nm

)
converges to N (0,C). Now the function g(x)

can be represented as a function of the vector z(n), which we denote as g for brevity. By

the Skorohod representation theorem see [Billingsley 2008] there exists a probability space

(Ω
′
,F ′

,P
′
) where we can construct a sequence of random vectors r(n) that converges in the

almost sure sense to the random vector r with distribution N (0,C). Therefore,

g =
z
(n)
1√
z
(n)
2

= (
√
nr1 + nα1)(

√
nr2 + nα2)

−1/2

=
1

α
1/2
2

(r1 +
√
nα1)(1−

1

2

r2
α2

√
n
+ op(n

−1/2))

=
1

α
1/2
2

(
√
nα1 −

r2
2α2

α1 + r1 − Op(n
−1/2) + op(n

−1/2))

=
√
n
α1√
α2

+
1√
α2

(r1 −
r2
2

α1

α2
) + op(1),

Therefore we obtain

g −√
n
α1√
α2

=
1√
α2

(r1 −
α1

2α2
r2) + op(1). (4.4)

Since the vector r(n) almost surely converges to the vector r, any continuous function f(r(n))

converges to f(r)) almost surely by the Continuous Mapping Theorem, where in our case

f(r) = 1√
α2

(r1 − α1

2α2
r2). But this is a linear combination of two jointly gaussian random

variables, and hence is also a gaussian rv with mean 0, and variance β1 + β2
α2

1

4 − α1β12.

Also, by the fact that if xn, yn are two random variable sequences such that xn → x a.s.

and yn → y in probability, then xn + yn → x+ y in probability, the right hand side of (4.4)

is a random variable that converges in probability to a gaussian random variable with mean

0, and variance σ2
(0) =

1
α2

(
C11 + ( α1

2α2
)2C22 − α1

α2
C12

)
= 1− 3/π, and hence g converges to

a gaussian random variable with mean µ(0) =
√
n α1√

α2
=
√

2n
π and variance σ2

(0). Now g(x)

has the same distribution as g. Therefore g(x) converges in distribution to N (µ0, σ
2
0).

Proposition 4.1. Under H0, χ ∼ N (µ0, σ
2
0), asymptotically in distribution, where µ0 =√

2n
π , and σ2

0 = 1− 3
π .
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Proof. The proof uses Approximation 4.1 and follows from Lemma 4.1, where α1 =

E(|x1|) =
√

2
π , α2 = E(|x1|2) = 1, C11 = Var(|x1|) = 1− 2/π,C22 = Var(|x1|2) = 2, C12 =

E((|x1|−E(|x1|))(|x1|2−E(|x1|2))) =
√

2
π .

4.3.2 Statistic Distribution under H1

Under hypothesis H1, Matrix A is given as below

Aij =





{
1− q w.p. p

−q w.p. 1− p
, if 1 ≤ i, j ≤ K,

{
1− q w.p. q

−q w.p. 1− q
if i > K or j > K,

Thus under H1, Matrix A has a non-zero mean A = EH1(A) given by

A =

[
(p− q)JK 0K×n−K

0n−K×K 0n−K×n−K

]
. (4.5)

This matrix has rank 1, and with a single non-zero eigenvalue Kδp, with eigenvector

1√
K

[
1K

0n−K×1

]
.

Also, note that the components Aij such that 1 ≤ i, j ≤ K have a variance of p(1− p),

while the other components have a variance of q(1− q). Let δp := p− q.

Intuitively, A is the subgraph component, and when the subgraph component is large

enough, we can conceivably detect the subgraph from the observed graph. Specifically, if

the eigenvalue of A is large to be separate enough from the spectrum of A−A, we expect

to be able to detect the embedded subgraph. We have the following proposition on the

asymptotic bound on ‖A−A‖.

Proposition 4.2. Under the condition that max(q(1 − q), p(1 − p)) > C log4(n)
n for some

C, ∃c such that

‖A−A‖≤ c
√
max(q(1− q), p(1− p))n almost surely (a.s.).

If q does not scale with n, the condition in the proposition is immediately satisfied.

Let us consider the case where the embedded subgraph is a clique, i.e., ps = p = 1. Then

σ2 = σ2
0n = q(1 − q)n, and the condition is satisfied when nq ≫ log(n); similarly when

both p, q are decreasing functions of n, the condition is easily verified to be satisfied when

nq ≫ log(n). From now on, we assume that q ≤ p ≤ 0.5 and hence the bound in the above

proposition becomes c
√
np.

Proof. The result is an application of Theorem 2.2. In this theorem, by taking σ2 =

max(p(1− p), q(1− q)), we have the required result.

Definition 4. (Spectral gap G) We define the spectral gap ∆ as the difference between the

maximum eigenvalue of the mean matrix and edge of the spectrum

G = Kδp − ‖A−A‖
≥ Kδp − c

√
np a.s.

= G0.
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Let

∆ := c

√
np

Kδp
. (4.6)

In Lemma 4.2, we will show that a.s.,

Kδp(1−∆) ≤ λ ≤ Kδp(1 + ∆), (4.7)

and in Proposition 4.2, we will prove that a.s.

|λi|≤ c
√
np = Kδp∆, a.s. (4.8)

for i ≥ 2.

4.3.2.1 Eigenvector distribution under H1

We are interested in the dominant eigenvector of A, the eigenvector corresponding to the

largest eigenvalue of A. We develop a CLT for the components of this eigenvector. We use

the ideas in [Athreya et al. 2013], where the authors derived a CLT for the components

of the eigenvector of a single dimensional Random Dot Product Graph(RDPG). However,

while the result in [Athreya et al. 2013] only holds for dense graphs (i.e., nq = Θ(n)), our

result holds more generally for sparse graphs, i.e., nq = no(1). Similarly, our result also

contains an extension to the case K = o(n), which does not follow directly from the results

in [Athreya et al. 2013], which are limited to the case K = cn, for some constant c > 0.

Throughout this section the distributions of the random variables correspond to those under

H1, and this fact is not explicitly noted from here onwards.

Let u := u1(A), be the normalized dominant eigenvector corresponding to the eigen-

value λ := λ1(A). Observe that the mean matrix A can be written as xxT , where

x =
√
δp
[
1T
K 0T

n−K

]T
, with a single non-zero eigenvalue λ = Kδp and its eigenvector

as u = x

‖x‖ .

Let us define x as x = λ1/2u, and so u = x/‖x‖2. As we will soon show, when there

is a non-diminishing spectral gap G, λ ≈ λ = Kδp, for large n, and in addition, a random

realization of x would be close to x. Therefore the ith component of x would have a limiting

distribution with mean xi. We can then derive the limiting distribution of the L1-norm

statistic from the distribution of x. We state below the conditions under which our results

hold.

Assumption 4.1.

q > C
log4(n)

n

Assumption 4.2.
p

q
= O(1)

Assumption 4.3.

Kδp = ω((nq)2/3)

Discussion of the Conditions:

Assumption 4.1 is needed to ensure that the graph is dense enough to apply the concen-

tration results we use in the proofs. Assumption 4.2 implies that p and q are of the same

order, and thus we are in the hard regime of detection. The next assumption, Assumption

4.3 is required so that the spectral gap G is large enough to prove the results on the CLT of

the eigenvector components presented in this chapter. Notice that Assumption 4.3 implies

Kq = ω(1). (4.9)
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We need the following concentration lemma for the eigenvalue λ, based on the Bauer-

Fike lemma ( [Saad 1992]).

Lemma 4.2. Under Condition 4.3, λ→ Kδp a.s. as n→ ∞.

Proof. By Weyl’s identities ( [Saad 1992]) and Proposition 4.2,

|λ−Kδp| ≤ c
√
np,

a.s. Therefore,

∣∣∣∣
λ

Kδp
− 1

∣∣∣∣ ≤ c

√
np

Kδp
(4.10)

which implies λ → Kδp, a.s., by Condition 4.3, where in (4.10) we used the fact that

Kδp < nq, which follows from Condition 4.2.

We present below our main theorem on the CLT of the components of the dominant

eigenvectors.

Theorem 4.1. Under Assumptions 4.2 and 4.3, the following CLT holds true for the entries

of the unnormalized eigenvector x = λ1/2u.

√
Kδp

p(1− p)

(
xi −

√
δp

) D−→ N (0, 1), (4.11)

for 1 ≤ i ≤ K, and √
Kδp

q(1− q)
xi

D−→ N (0, 1), (4.12)

for 1 +K ≤ i ≤ n.

Note on Subgraph recovery

Using Theorem 4.1 we can design a detector that approximately detects the dense subgraph

vertices by thresholding the components of xi. Define a threshold τ :=

√
δp
2 . Let the detector

be Ti, i ∈ V such that Ti = 1 implies i ∈ S for a subgraph estimate S and zero otherwise,

where

Ti = χ{xi>τ}.

We can show that this detector approximately recovers the subgraph nodes in the fol-

lowing sense:

lim
n→∞

P(Ti = 1|i 6∈ S) + P(Ti = 0|i ∈ S) = 0,

i.e., the sum of false detection and missed detection probabilities tends to zero as n → ∞.

We first consider the first term in the above sum, i.e., the probability of false alarm. We

get

lim
n→∞

P(Ti = 1|i 6∈ S) = lim
n→∞

P(xi > τ |i 6∈ S)

= lim
n→∞

P(

√
Kδp

q(1− q)
xi >

√
Kδp

q(1− q)
τ)

= Q( lim
n→∞

1

2

√
Kδp) = 0,
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since by assumption Kδp = ω(1), where Q(x) is the c.c.d.f. of a standard gaussian rv.

Similarly

lim
n→∞

P(Ti = 1|i 6∈ S) = lim
n→∞

P(xi < τ |i ∈ S)

= lim
n→∞

P

(√
Kδp

p(1− p)

(
xi −

√
δp

)
< −

√
δp

2

√
Kδp

p(1− p)

)

= Φ( lim
n→∞

−1

2

√
Kδp) = 0,

where Φ(·) is the c.d.f. of a standard gaussian r.v. Therefore under Assumptions 4.1 to 4.3,

a thresholding of the scaled eigenvector can approximately recover the subgraph nodes.

We compare the recovery threshold of this algorithm with the limits given in Figure 2

of [Hajek et al. 2015b]. Under the scaling used in [Hajek et al. 2015b] we take q = n−α and

K = nβ . Then under Assumptions 4.1 to 4.3 we must have α ∈ [0, 1) and β > 2
3 +

α
3 , which

is in the easy regime for subgraph recovery given in [Hajek et al. 2015b]. We recognize that

this is suboptimal in view of the regime of recovery achievable by known polynomial-time

algorithms [Ames 2013,Chen & Xu 2016]; we leave it to future work to investigate if it is

possible to improve the performance of this simple algorithm.

Proof. Define γi =
√

Kδp
p(1−p) for 1 ≤ i ≤ K and γi =

√
Kδp

q(1−q) for K+1 ≤ i ≤ n. Notice that

xi =
1

λ1/2 [Au]i and xi =
1

λ
1/2

[
Au
]
i
=
√
δp for 1 ≤ i ≤ K and xi = 0 for K + 1 ≤ i ≤ n.

In the following, [z]i denotes the ith component of vector z. We can write

γi(xi − xi) = γi

(
1

λ1/2
[A(u− u)]i

)
+ γi

(
1

λ1/2
[Au−Au]i

)
+

γi

((
1

λ1/2
− 1

λ
1/2

)
[Au]i

)

:= T1 + T2 + T3.

We treat each of the above three terms separately as below.

• We show that T1 = γi
(

1
λ1/2 [A(u− u)]i

)
→ 0 in probability, in Lemma 4.5.

• We show T2 = γi
(

1
λ1/2 [Au−Au]i

)
satisfies a CLT and is asymptotically distributed

as N (0, 1), in Lemma 4.3.

• Finally we show that T3 = γi

(
( 1
λ1/2 − 1

λ
1/2 )[Au]i

)
→ 0, for 1 ≤ i ≤ K in probability

in Lemma 4.2, by showing a concentration result for the dominant eigenvalue λ. Notice

that T3 = 0 for i > K.

The result then follows by an application of Slutsky’s thereom [Billingsley 2008].

Let us define y ∈ R
n as follows

y =
1

λ1/2
Au.

In the following Lemma, we prove a CLT for the components of y.
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Lemma 4.3. Under Assumptions 4.2 and 4.3 we have

√
Kδp

p(1− p)

(
yi −

‖x‖xi
λ1/2

)
D−→ N (0, 1), (4.13)

for 1 ≤ i ≤ K, and √
Kδp

q(1− q)
yi

D−→ N (0, 1), (4.14)

for 1 +K ≤ i ≤ n.

Proof:

We prove (4.13) and the proof for (4.14) follows along the same lines. Observe that

yi −
‖x‖xi
λ1/2

=
1

λ1/2

n∑

j=1

Aijuj −
‖x‖xi
λ1/2

=
1

λ1/2




n∑

j=1

Aijxj/‖x‖−xi‖x‖




=
1

λ1/2‖x‖




K∑

j=1

Aijxj − xi‖x‖2

 (4.15)

=
1

λ1/2‖x‖




K∑

j=1

(Aij − xixj)xj


 ,

where in (4.15) we used the fact that xi = 0, for i > K.

Notice ‖x‖=
√
x21 + x22 + x23 + . . . x2n =

√
Kδp deterministically. Thus we obtain

√
Kδp

p(1− p)
(yi −

‖x‖xi
λ1/2

) =

√
Kδp

λ1/2
√
Kδp(p(1− p))




K∑

j=1

(Aij − xixj)xj




=

√
Kδp√

Kp(1− p)λ1/2




K∑

j=1

(Aij − δp)


 ,

since xi =
√
δp for 1 ≤ i ≤ K. We invoke the Lindeberg Central Limit Theorem [Billings-

ley 2008] to determine the asymptotic distribution of the above.

Theorem 4.2. (Lindeberg Central Limit Theorem) Suppose that for each n,

Xn1, Xn2, . . . Xnrn

are independent, with EXnk = 0, σ2
nk = EX2

nk, and define s2n =
∑rn

k=1 σ
2
nk. Define Sn =

∑rn
k=1Xnk. Then Sn/sn

D−→ N (0, 1), if

lim
n→∞

rn∑

k=1

1

s2n
EX2

nkI{|Xnk|≥ εsn} = 0, (4.16)

∀ε > 0.



4.3. Algorithm Description and Mathematical Analysis 65

Now take Sn =
∑K

j=1(Aij − δp)
√
δp, then Xnk := (Aij − δp)

√
δp, and EXnk = 0, and

σ2
nk = EX2

nk = δpp(1 − p), giving sn = Kδpp(1 − p). Then the left hand side of condition

(4.16) becomes

lim
n→∞

K

Kδpp(1− p)
EX2

nkI{|Xnk|/
√
Kδpp(1− p) ≥ ε},

because Xnk are i.i.d. random variables. The above is equivalent to

lim
n→∞

E

(
Xnk√

δpp(1− p)

)2

I

{
|Xnk|√
δpp(1− p)

≥ ε
√
K

}

:= lim
n→∞

EX̃2
nkI

{
|X̃nk|≥ ε

√
K
}
, (4.17)

where X̃nk = Xnk/
√
δpp(1− p) is given as

X̃nk =





1−p√
p(1−p)

w.p. p

−p√
p(1−p)

w.p. 1− p.

Therefore we can write (4.17) as

1− p

p
χ

(√
1− p

pK
≥ ε

)
+

p

1− p
χ

(√
p

Kp
≥ ε

)
.

Clearly, if Kp = ω(1), ∃N, s.t. the above is zero ∀n > N, and ε > 0. Hence Lindeberg

condition is satisfied, and we obtain that

lim
n→∞

1√
Kδpp(1− p)

K∑

j=1

(Aij − δp)
√
δp

D−→ N (0, 1),

or equivalently,

lim
n→∞

1√
Kp(1− p)

K∑

j=1

(Aij − δp)
D−→ N (0, 1). (4.18)

Thus by applying Slutsky’s theorem with Lemma 4.2 and (4.18) we obtain the result for

1 ≤ i ≤ K.

Similarly, for K + 1 ≤ i ≤ n,

√
Kδp

q(1− q)
yi =

√
Kδp

q(1− q)
λ−1/2

K∑

j=1

Aijuj ,

=

√
Kδp
λ

1√
Kq(1− q)

K∑

j=1

Aij

D−→ N (0, 1),

where the proof follows from another application of Theorem 4.2, Lemma 4.2 and Slutsky’s

Theorem, provided that Kq → ∞, which follows from (4.9). To complete the proof of

Theorem 4.1, we need to first derive an entry-wise error bound between the eigenvector u

of A and the dominant eigenvector u, of A which we present in the following lemma.
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Armed with the results we have thus far, we are now prepared to prove the main

central limit theorem, a CLT for each individual component of the non-normalized dominant

eigenvector x of A.

In order to prove Theorem 4.1, we need an error bound between u and ū. To derive this

we use the traditional Davis-Kahan theorem from [Bhatia 2013], which we quote below.

Theorem 4.3. (Davis-Kahan Theorem [Bhatia 2013]) Let C and D be two Hermitian

operators, and let S1, S2 be any two subsets of R such that the distance between the two

subsets, d(S1, S2) = δ > 0. Let E = PC(S1), the projection matrix on to the space spanned

by the eigenvectors of C whose eigenvalues fall in S1, and similarly, F = PD(S2). Then,

for every unitarily invariant matrix norm 1 ||||||,

|||EF||| ≤ c

δ
|||C−D|||

where c is a fixed constant. In fact, c = π/2.

Using the above, we derive the following result.

Lemma 4.4. Let ∆ be as defined in (4.6). Then a.s.,

‖u− ū‖2≤
c∆

1− 2∆
,

where c is a constant independent of n.

Proof:

In the notation of Theorem 4.3, choose C := A, and D := A. Let us take S1 = [−an, an],
where an = Kδp∆. Then S1 does not contain the non-zero eigenvalue λ of C, and hence

E = PC(S1) is the projection matrix on to the orthogonal space of ū, and therefore,

E = I − ūūT . Let S2 = [Kδp(1−∆),−∞) , such that, for a sufficiently large n, it only

contains the dominant eigenvalue of A. Therefore, F = PD(S2) = uuT . Demonstrably, δ in

Theorem 4.3 satisfies δ > Kδp(1−∆)−Kδp∆ = Kδp(1− 2∆). Also, we choose |||||| := ‖‖2,
the induced L2-norm on matrices, which is unitarily invariant. From Proposition 4.2 it

holds that ‖A−A‖2≤ Kδp∆. Also,

‖EF‖2 = ‖(I− ūūT )uuT ‖2
= ‖uuT − ū(ūTu)uT ‖2
= ‖(u− αū)uT ‖2 (4.19)

= ‖u− αū‖2 (4.20)

= (1− α2)1/2,

where in (4.19) we used the notation α := ūTu. In obtaining (4.20) we used the fact that

‖xyT ‖2= ‖x‖2‖y‖2, for any two vectors x,y ∈ R
n, and in the last line we used the fact

that ‖u‖2= ‖ū‖2= 1. Therefore by Theorem 4.3

(1− α2)1/2 ≤
√
2c∆Kδp

Kδp(1− 2∆)

= c
∆

1− 2∆
(4.21)

1A unitarily invariant matrix norm is such that |||UAV||| = |||A|||, for any matrix A, where U,V are two
unitary matrices
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Thus we obtain

‖u− ū‖2 =
√
2(1− α)1/2

<
√
2(1− α2)1/2 (4.22)

≤ c
∆

1− 2∆
, (4.23)

where in (4.22) we used the fact that u is only fixed up to a scale factor of ±1, and so α

can be chosen to be non-negative, and in (4.23) we used (4.21). �

We finally need the following lemma and the subsequent observations.

Lemma 4.5. ∃ a constant C s.t. ‖y − 1
λ1/2Au‖≤ C

√
Kδp∆

2 = C np
(Kδp)3/2

, a.s.

Proof : Observe that can write A =
∑

i≥2 λiuiu
T
i + λuuT = Ã+ λuuT , where ‖Ã‖2=

maxi>2|λi|≤ Kδp∆, a.s. Hence we have

‖y − 1

λ1/2
Au‖ =

1

λ1/2
‖A(u− u)‖2

=
1

λ1/2
‖
(
Ã+ λuuT

)
(u− u)‖2

≤ ‖Ã(u− u)‖2
λ1/2

+ λ1/2‖u− u‖2

≤ c

√
Kδp∆

2

(1−∆)1/2(1− 2∆)
+
C
√
Kδp∆

2(1 + ∆)1/2

(1− 2∆)2
(4.24)

≤ C
√
Kδp∆

2,

a.s., where in (4.24), we used the bound in Lemma 4.4.

Notice that the eigenvector components ui, are exchangeable for 1 ≤ i ≤ K, and simi-

larly for ui, 1 +K ≤ i ≤ n. (This is clear since we have Au = λu, and the distribution of

Aij being the same for 1 ≤ i ≤ K, and for i > K.)

Lemma 4.6. For 1 ≤ i ≤ K, we have
√

Kδp
p(1−p)

∣∣∣yi − (Au)i
λ1/2

∣∣∣ → 0, and for K + 1 ≤ i ≤ n,

we have
√

Kδp
q(1−q)

∣∣∣yi − (Au)i
λ1/2

∣∣∣→ 0, in probability.

Proof:

For 1 ≤ i ≤ K, using Markov inequality,

P{
√

Kδp
p(1− p)

∣∣∣∣yi −
(Au)i
λ1/2

∣∣∣∣ > ε} ≤ C
EK

δp
p |yi − (Au)i

λ1/2 |2
ε2

= C

∑K
i=1 E|yi −

(Au)i
λ1/2 |2

ε2
(4.25)

≤ C
E‖y − 1

λ1/2Au‖2
ε2

≤ C

(
np

(Kδp)3/2

)2

→ 0, (4.26)

where (4.25) follows from
δp
p = p−q

p ≤ C, for some C,N , n > N, and exchangeability, and
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the last step follows from Lemma 4.5. Similarly for 1 +K ≤ i ≤ n,

P{
√

Kδp
q(1− q)

|yi −
(Au)i
λ1/2

|> ε} ≤
EK|yi − (Au)i

λ1/2 |2
ε2

δp
q(1− q)

≤ C
E(n−K)|yi − (Au)i

λ1/2 |2
ε2

(4.27)

= C

∑n
i=1+K E|yi − (Au)i

λ1/2 |2
ε2

(4.28)

≤ C
E‖y − 1

λ1/2Au‖2
ε2

≤ C

(
np

(Kδp)3/2

)2

→ 0,

where in (4.27), we use Condition 4.2, and in 4.28, we used exchangeability of ui,K + 1 ≤
i ≤ n.

Finally, in the following Lemma we show that T3 → 0 in probability.

Lemma 4.7. Under Condition 4.3,
√

Kδp
p(1−p)

(
1

λ
1/2 − 1

λ1/2

)
[Au]i → 0.

Proof. Since [Au]i = 0 for i > K, we only need to consider 1 ≤ i ≤ K. We have [Au]i =√
δp. Thus the result amounts to

√
Kδp

(
1

λ1/2
− 1

λ
1/2

)
→ 0

in probability. We have

∣∣∣∣
1

λ1/2
− 1

λ
1/2

∣∣∣∣ =
|λ1/2 − λ1/2|
λ1/2λ

1/2
. (4.29)

Since λ = Kδp, to prove the result we need to show that

|λ1/2 − λ1/2|
λ1/2

→ 0.

We have

|λ1/2 − λ1/2|= |λ− λ|
λ
1/2

+ λ1/2
.

By Lemma 4.2, we have |λ − λ|≤ c
√
np asymptotically almost surely (a.a.s) and we have

λ > cmδp with high probability (whp). Therefore

|λ1/2 − λ1/2|≤ c

√
np√
Kδp

,

whp. Therefore

|λ1/2 − λ1/2|
λ1/2

≤ c

√
np

Kδp
→ 0,

by Assumption 4.3.
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4.3.2.2 Distribution of χ under H1

We use the CLT derived in Thereom 4.1 to derive an approximate CLT for our test statistic

χ = ‖u‖1 under H1. The distribution is approximate since we make the assumption that the

components of x are independently distributed and have the gaussian distribution derived

in thereom 4.1 for finite n as opposed to the asymptotic regime in which Theorem 4.1 holds.

Proposition 4.3. Under the assumption that the components of x are independent and

gaussian with the distribution derived in theorem 4.1,
χ−µ(1)

σ(1)
is asymptotically distributed as

N (0, 1).

To simplify the presentation of the formulae we introduce the following notation. Let r =
Kδ2p

2p(1−p) , s =
Kδ2p

2q(1−q) . Also, β1 =
√

δp
πr e

−r+
√
δp
(
1− 2Q(

√
2r)
)
, and β2 =

√
δp
πs . In addition

we also define

E1 =
1√
π

(
δp
r

)3/2

M(−3

2
,
1

2
,−r)

E2 =
3

4

(
δp
r

)2

M(−2, 1/2,−r)

where M(a, b, z) is the confluent hypergeometric gamma function [Abramowitz & Ste-

gun 1964]. Then

µ(1) =
Nα1√
Nα2

and

σ2
(1) =

1

Nα2

(
C11 +

(
Nα1

2Nα2

)2

C22 −
Nα1

Nα2

C12

)
,

where Nα1
= Kβ1 + (n−K)β2, and Nα2

= K
(
δp(1 +

1
2r )
)
+ (1− 2

π )
δp(n−K)

2s . Finally,

C11 = K

(
δp(1 +

1

2r
)− β2

1

)
+ (1− 2

π
)
δp(n−K)

2s

C12 = K

(
E1 − β1δp(1 +

1

2r
)

)
+
n−K√

4π

(
δp
s

)3/2

C22 = K

(
E2 − δ2p(1 +

1

2r
)2
)
+

3(n−K)

4

(
δp
s

)2

The CLT result stated in Proposition 4.3 is approximate, since in deriving the result

we assumed that the components of the scaled dominant eigenvector are gaussian for finite

n, whereas in truth the distribution is only gaussian in the asymptotic limit. On the

other hand, from simulations we see that the distribution indeed matches our prediction.

We provide approximate expressions of µ(1) and σ2
(1) derived above, using the fact that

r = ω(1), and s = ω(1). For the parameter values we choose under the Conditions 4.1 and

4.3, and using asymptotic approximations for the Q-function and M(a, b, x), [Abramowitz

& Stegun 1964] we can show that for large n,

µ(1) ≈
√
K

(
1− 1

4r
− ρ

4s

)(
1 +

ρ√
πs

)
,

where ρ := n−K
K . For large n, the fractions in the braces are o(1) implying that the expected

value of χ is close to
√
K ≪ µ(0). This agrees with our intuition that asymptotically the
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Figure 4.1: CDF of χ under H0
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Figure 4.2: CDF of χ under H1.

eigenvector u is localized to the nodes belonging to the subgraph. Similarly using the

asymptotic approximation for M(a, b, x) for large x [Abramowitz & Stegun 1964], one can

show that for large n, and K, δp satisfying Condition 4.3,

σ2
(1) ≈

1

2
(1− 2

π
)
ρ

s
(1− 1

2r
− ρ

2s
)

Thus we see that σ2
(1) ∼ ρ

s = 2(n−K)q(1−q)
(Kδp)2

∼ (n−K)q
(Kδp)2

. This is interesting because it says that

the variance of χ under H1 is inversely proportional to the strength of the signal Kδp and

in addition it is inversely proportional to ∆, the spectral gap ratio, indicating that smaller

the spectral gap, the harder it is to detect the presence of the subgraph. In addition σ2
(1) is

several orders of magnitude less than µ(1) and so the concentration is quite sharp.

4.4 Numerical Results

We present simulations to validate the distributions of the statistic under H0 and H1. We

choose values of K,n, δp and q so that the Conditions 4.1, 4.2, and 4.3 are satisfied. First

we generate an ER graph of size n = 1500 and edge probability q = 0.15, and calculate the

dominant eigenvector of the shifted adjacency matrix. We compute its L1-norm and repeat

the experiment 104 times and compute the empirical CDF Fχ(χ), which is the solid blue

line with “x” marker in figure 4.1. In the same figure we plot the CDF of a gaussian rv with

mean µ(0) and variance σ2
(0) (red solid line with “o” marker). This verifies that χ indeed has

a distribution close to a gaussian with the predicted mean and variance. Next we embed a

subgraph in this ER graph with K = 450 and δp = 0.25, and compute the L1-norm of the

dominant eigenvector and repeat the experiment 104 times to obtain the empirical CDF.

The results are plotted in figure 4.2. We indeed can observe that the empirical CDF (blue

solid line with “x” marker), matches quite well with the gaussian CDF (red solid line with

“o” marker whose mean and variance are µ(1) and σ2
(1) respectively, thus corroborating our

theoretical findings. Notice that because the distributions are far apart in the parameter

regime under consideration, we obtain practically error free detection.

In addition, we also compare the probability of subgraph detection of our algorithm

with the edge thresholding algorithm in [Hajek et al. 2015b]. We consider n = 103, 5× 103

and K = ⌈c√n⌉ with p = 0.2, q = 0.1. We observe from Tables 4.1 and 4.2 that the two

algorithms have similar error performance for the parameter values considered. However

our algorithm requires fewer parameters than the algorithm in [Hajek et al. 2015b].
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n = 103,K = ⌈c√n⌉ L1-norm algorithm Edge thresholding algo

c = 5

c= 4

c= 3.5

1 0.9960

1 0.9820

0.9940 0.98

Table 4.1: Probability of Subgraph Detection for n = 103

n = 5× 103,K = ⌈c√n⌉ L1-norm algorithm Edge thresholding algo

c = 5

c= 4.5

c= 4

1 1

1 1

1 1

Table 4.2: Probability of Subgraph Detection for n = 5× 103

4.5 Conclusions and Future Work

In this work we studied an algorithm for detecting the presence of a denser subgraph in

an ER background graph based on thresholding L1-norm of the leading eigenvector of a

shifted adjacency matrix. This algorithm was also considered in a general form in [Miller

et al. 2010], however in our work we define the threshold in terms of the graph parameters.

Our detection algorithm only requires the knowledge of n, the graph size and q, the edge

probability of the background graph, and does not require the knowledge of K and p unlike

the algorithms analyzed in [Hajek et al. 2015b]. We compare our algorithm with the latter

numerically and conclude that they are similar in performance. In addition to the above

detection algorithm we also develop a subgraph recovery algorithm for a graph containing

a hidden subgraph and we show that it approximately recovers the subgraph under certain

assumptions on the subgraph parameters. The regime of recovery for this algorithm is

however suboptimal with respect to available works such as in [Chen & Xu 2016] and we

would like to investigate this algoithm further to make it competitive with the literature or

to modify its analysis to improve this detectability threshold.





Chapter 5

Hidden Community Recovery

with Side-information

5.1 Introduction

5.1.1 Problem Motivation

We consider the problem of hidden community recovery in graphs in the presence of side-

information. In various disciplines graphs have been used to model, in a parsimonious fash-

ion, relationships between heterogenous data. The presence of a dense hidden community

in such graphs is usually indicative of interesting phenomena in the associated real-world

network.

An example application of dense subgraph recovery in Signal Processing is the prob-

lem of Correlation Mining [Firouzi et al. 2013]. Given a network of correlated signals, a

graph is formed with nodes representing signals, and weighted links representing pairwise

correlations. The problem of detecting a group of closely correlated signals is then a dense

subgraph recovery problem on the constructed graph [Firouzi et al. 2013]. Dense subgraph

recovery also finds application in real-world computer and social networks; for e.g., in de-

tecting fraudulent activity [Chau et al. 2006,Beutel et al. 2013, Smith et al. 2014]. It can,

in addition, be viewed as a signal recovery problem on graphs [Chen et al. 2015, Wang

et al. 2015].

A majority of subgraph recovery algorithms try to find a subset of nodes that maximizes

some objective such as the average link density within the subset [Lee et al. 2010]. A good

way to benchmark the performance of various community recovery algorithms is to validate

them on generative graph models with inherent community structure. In this work, we

model the hidden community as a small but well-connected Erdős-Rényi graph embedded

within a larger but sparser Erdős-Renyi graph. This model was used in [Mifflin et al. 2004] to

capture terrorist transactions in a computer network. It is a special case of the Stochastic

Block Model (SBM), which has been widely used to assess the performance of different

community recovery algorithms [Rohe et al. 2011].

The study of subgraph recovery on generative models is interesting in itself from an

algorithmic perspective. Recent works on hidden community recovery and related prob-

lems demonstrate the presence of sharp phase transitions in the range of parameter val-

ues between three regimes: easy (recovery achievable with relatively small computational

costs), hard (computationally taxing, but detectable), and impossible to detect [Hajek

et al. 2015a, Montanari 2015, Caltagirone et al. 2016]. We provide more details on these

phenomena while reviewing prior works in the next subsection. The novel aspect of our

work is a theoretical study of the impact of side-information on this computational bar-

rier. The form of side-information we consider is the identity of special nodes called cues

that are known to belong to the subgraph, either deterministically or with some level of cer-

tainty. One often has access to such prior knowledge in real-world applications [Avrachenkov

et al. 2012,Zhou et al. 2004,Zhu et al. 2003].
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By developing and analyzing the asymptotic performance of a local algorithm based

on Belief Propagation (BP), we show that even a small amount of side-information can

lead to the disappearance of the computational barrier. BP is an efficient way to perform

approximate ML recovery on certain types of graphs using distributed and local message

passing [Mezard & Montanari 2009]. It belongs to the class of guilt-by-association schemes

[Koutra et al. 2011] and has been successfully applied to many practical problems in graphs

such as fraud recovery [Chau et al. 2006] and data mining [Kang et al. 2011].

5.1.2 Review of Existing Works

Consider a graph with n nodes that contains a hidden community of size K. The edge

probability between any two nodes within the community is p and it is q otherwise, such that

p > q. The parameters p, q and K can in general be functions of n. This model, denoted by

G(K,n, p, q), was already considered in [Mifflin et al. 2004,Miller et al. 2010,Kadavankandy

et al. 2016,Hajek et al. 2015b] and references therein in the context of anomaly detection.

A special case of the above model is the hidden clique model with p = 1 and q = 1/2.

The study of clique detection algorithms demonstrate the presence of phase transitions in

the subgraph size K between impossible, hard and easy regimes. If K ≤ 2(1 − ε) log2(n),

the clique is impossible to detect; however, an exhaustive search detects the clique nodes

when K ≥ 2(1 + ε) log2(n). In contrast, the smallest clique size that can be detected in

polynomial time is believed to be c
√
n [Alon et al. 1998] for some c > 0, and the minimum

clique-size that can be detected in nearly-linear time is believed to be
√
n/e [Deshpande &

Montanari 2015].

The computational barriers for subgraph recovery in a sparse graph without cues were

studied in [Montanari 2015, Hajek et al. 2015a, Hajek et al. 2016b]. In [Montanari 2015]

the author investigated the performance of Maximum Likelihood (ML) detection and BP,

and analyzed the phase transition with respect to an effective signal-to-noise ratio (SNR)

parameter λ defined as

λ =
K2(p− q)2

(n−K)q
. (5.1)

The larger the λ, the easier it is to detect the subgraph. Subgraph recovery was considered

under a parameter setting where K = κn, p = a/n and q = b/n, where κ, a and b are con-

stants independent of n. It was shown under this setting that, for any λ > 0, an exhaustive

search can detect the subgraph with success probability approaching one as κ → 0. How-

ever BP, which has quasi-linear time complexity, achieves non-trivial success probability

only when λ > 1/e in the same regime. Further, for λ < 1/e, the success probability of the

algorithm is bounded away from one. This demonstrates the existence of a computational

barrier for local algorithms.

In [Hajek et al. 2016b] the authors show that when K = o(n), i.e., when κ → 0,

and p, q are such that a = np = no(1) and p/q = O(1), ML detection succeeds when

λ = Ω(Kn log( n
K )), i.e., detection is possible even when the SNR parameter goes to zero so

long as it does not go to zero too fast. Under the same parameter setting, it was shown that

BP succeeds in detecting the subgraph with the fraction of misdetected nodes going to zero,

only when λ > 1/e [Hajek et al. 2015a]. Therefore, λ = 1/e represents a computational

barrier for BP in the subgraph detection problem without side-information.

In the present work, we examine the impact of side-information on the above compu-

tational barrier. To the best of our knowlege, ours is the first theoretical study of the

performance of local algorithms for subgraph detection in the presence of side-information

in G(K,n, p, q). In [Miller et al. 2015b], the authors compared, but only empirically, several

guilt-by-association schemes for subgraph detection with cues.
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There exist many works on the effect of side-information in the context of identifying

multiple communities [Allahverdyan et al. 2010, Caltagirone et al. 2016, Cai et al. 2016,

Mossel & Xu 2016]. These works considered a different variant of the SBM where nodes

are partitioned into two or more communities, with dense links inside communities and

sparse links across communities. The authors of [Cai et al. 2016] and [Mossel & Xu 2016]

consider a BP algorithm to detect two equal-sized communities. In [Mossel & Xu 2016], the

side-information is such that all nodes indicate their community information after passing it

through a binary symmetric channel with error rate α. They show that when α < 1/2, i.e.,

when there is non-trivial side-information, there is no computational barrier and BP works

all the way down to the detectability threshold called the Kesten-Stigum threshold [Abbe

& Sandon 2015b]. In [Cai et al. 2016], a vanishing fraction n−o(1) of nodes reveal their true

communities. Again, there is no computational barrier and BP works all the way down

to the detectability threshold. A fuller picture is available in [Caltagirone et al. 2016],

which considers asymmetric communities and asymmetric connection probabilities within

communities. In this setting, the authors of [Caltagirone et al. 2016] demonstrate the

presence of all three regimes (easy to detect, hard to detect but possible via exhaustive

search, and impossible to detect) as a function of the size of the smallest community.

In contrast, [Mossel & Xu 2016] and [Cai et al. 2016] consider equal-sized communities

with the same edge probability within each community. In [Caltagirone et al. 2016, Cai

et al. 2016,Mossel & Xu 2016], the parameters are chosen such that node degrees alone are

not informative. Our work is different from the above settings, in that we deal with a single

community, and the degrees can be informative in revealing node identities, i.e., the average

degree of a node within the subgraph Kp+(n−K)q is greater than nq, the average degree

of a node outside the subgraph. In this setting we show that the computational barrier

disappears when side-information is available. We emphasize that our results cannot be

obtained as a special case of the results in [Allahverdyan et al. 2010,Caltagirone et al. 2016,

Cai et al. 2016,Mossel & Xu 2016].

5.1.3 Summary of Results

We consider subgraph detection in G(K,n, p, q) with two types of side-information:

1. A fraction α of subgraph nodes are revealed to the detector, which we call reliable

cues. This represents the case of perfect side-information.

2. A similar number of nodes are marked as cues, but they are unreliable, i.e., imperfect

side-information.

These two types of side-information are typical in semi-supervised clustering applications

[Avrachenkov et al. 2012,Zhou et al. 2004,Zhu et al. 2003].

We use BP for subgraph detection to handle these two kinds of side-information. Our

computations are local and distributed and require only neighbourhood information for

each node in addition to the graph parameters p, q and K.

We analyze the detection performance of our algorithm when p = a/n, q = b/n with a, b

fixed and K = κn with κ fixed, as in the regime of [Montanari 2015]. Under this setting,

we derive recursive equations for the distributions of BP messages in the limit as the graph

size n tends to infinity. These recursions allow for numerical computation of the error rates

for finite values of a, b and κ.

Based on these recursions, we obtain closed form expressions for the distributions when

a, b → ∞. We then show that when there is non-trivial side-information, the expected

fraction of misclassified nodes goes to zero as κ→ 0, for any positive value of the respective
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SNR parameter λα or λ, for perfect or imperfect side-information, made explicit later.

Thus the computational barrier of λ = 1/e for BP without side-information disappears

when there is side-information.

We validate our theoretical findings by simulations. To demonstrate the practical use-

fulness of our algorithm we also apply it to subgraph detection on real-world datasets.

5.2 Model and Problem Definition

Let G(K,n, p, q) be a random undirected graph with n nodes and a hidden community

S such that |S| = K. Let G = (V,E) be a realization of G(K,n, p, q). An edge between

two nodes appears independently of other edges such that P((i, j) ∈ E|i, j ∈ S) = p and

P((i, j) ∈ E|i ∈ S, j 6∈ S) = P((i, j) ∈ E|i, j 6∈ S) = q. We assume that S is chosen

uniformly from V among all sets of size K. Additionally let p = a/n and q = b/n, where

a and b are constants independent of n. Such graphs, with average degree O(1), are called

diluted graphs. We use a function σ : V → {0, 1}n to denote community membership such

that σi = 1 if i ∈ S and 0 otherwise. Next we describe the model for selecting C, the set

of cues. To indicate which nodes are cues, we introduce a function c : V → {0, 1}n s.t.

ci = 1 if i is a cued vertex and ci = 0 otherwise. The model for cues depends on the type

of side-information: perfect or imperfect.

The side-information models are as follows:

1. Perfect side-information: In this case the cues are reliable, i.e., they all belong to

the subgraph. To construct C we sample nodes as follows

P(ci = 1|σi = x) =

{
α if x = 1

0 if x = 0,

for some α ∈ (0, 1). Under this model we have

nP(ci = 1) =
∑

i∈V

P(ci = 1|σi = 1)P(σi = 1)

= αK. (5.2)

2. Imperfect side-information: Under imperfect side-information, the cues are unre-

liable. We generate C by sampling nodes from V as follows using a fixed β ∈ (0, 1].

For any i ∈ V :

P (ci = 1|σi = x) =

{
αβ if x = 1,
αK(1−β)
(n−K) if x = 0.

(5.3)

Under this model we have for any i ∈ V,

P(ci = 1) = P(σi = 1)P(ci = 1|σi = 1)

+ P(σi = 0)P(ci = 1|σi = 0)

=
K

n
αβ +

(n−K)

n

αK(1− β)

(n−K)

= αK/n;

hence it matches with (5.2) of the perfect side-information case. It is easy to verify

that under the above sampling

P (σi = 1|ci = 1) = β, (5.4)
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which provides us with the interpretation of |log(β/(1−β))| as a reliability parameter

for cue information.

Given G,C our objective is to infer the labels {σi, i ∈ V \C}. The optimal detector that

minimizes the expected number of misclassified nodes is the per-node MAP detector given

as [Hajek et al. 2016b]:

σ̂i = χ

(
Ri > log

P(σi = 0)

P(σi = 1)

)
,

where

Ri = log

(
P(G,C|σi = 1)

P(G,C|σi = 0)

)

is a log-likelihood ratio of the detection problem. Observe that this detector requires the

observation of the whole graph. Our objective then is to compute Ri for each i using a

local Belief Propagation (BP) algorithm and identify some parameter ranges for which it is

useful. Specifically, we want to show that a certain barrier that exists for BP when α = 0

disappears when αβ > 0.

5.3 Subgraph Detection with Perfect Side-information

In this section we present the BP algorithm, Algorithm 2, which performs detection in the

presence of perfect side-information. We provide here a brief overview of the algorithm. At

step t of Algorithm 2, each node u ∈ V \C updates its own log-likelihood ratio based on its

t-hop neighbourhood:

Rt
u := log

(
P(Gt

u, C
t
u|σu = 1)

P(Gt
u, C

t
u|σu = 0)

)
, (5.5)

where Gt
u is the set of t-hop neighbours of u and Ct

u is the set of cues in Gt
u, i.e., C

t
u = Gt

u∩C.
The beliefs are updated according to (5.8). The messages transmitted to u by the nodes

i ∈ δu, the immediate neighbourhood of u, are given by

Rt
i→u := log

(
P(Gt

i\u,Ct
i\u|σi = 1)

P(Gt
i\u,Ct

i\u|σi = 0)

)
, (5.6)

where Gt
i\u and Ct

i\u are defined as above, but excluding the contribution from node u.

Node i updates Rt
i→u by acquiring messages from its neighbours, except u, and aggregating

them according to (5.7). If node u is isolated, i.e., δu = ∅, there are no updates for this

node. It can be checked that the total computation time for tf steps of BP is O(tf |E|).
The detailed derivation of the algorithm can be found in Appendix A.1. The derivation

consists of two steps. First we establish a coupling between Gt
u, the t-hop neighbourhood of

a node u of the graph and a specially constructed Galton-Watson (G-W) tree1 T t
u of depth t

rooted on u. This coupling ensures that for a carefully chosen t = tf the neighbourhood G
tf
u

of the node is a tree with probability tending to one as n→ ∞ (i.e., with high probability

(w.h.p)). The second step of the derivation involves deriving the recursions (5.7) and (5.8)

to compute (5.6) and (5.5) respectively, using the tree coupling.

The output of the algorithm is C along with the set of K − |C| nodes with the largest

value of log-likelihoods R
tf
i . In the following section we derive the asymptotic distributions

of the BP messages as the graph size tends to infinity, so as to quantify the error performance

of the algorithm.

1Detailed in Appendix A.1
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Algorithm 2 BP with perfect side-information

1: Initialize: Set R0
i→j to 0, for all (i, j) ∈ E with i, j 6∈ C. Let tf <

log(n)
log(np) + 1. Set t = 0.

2: For all directed pairs (i, u) ∈ E, such that i, u /∈ C:

Rt+1
i →u = −K(p− q) +

∑

l∈C1
i ,l 6=u

log

(
p

q

)
+

∑

l∈δi\C1
i ,l 6=u

log

(
exp(Rt

l→i − υ)(p/q) + 1

exp(Rt
l→i − υ) + 1

)
,

(5.7)

where υ = log( n−K
K(1−α) ).

3: Increment t, if t < tf − 1 go back to 3, else go to 3

4: Compute R
tf
u for every u ∈ V \C as follows:

(5.8)Rt+1
u =−K(p−q)+

∑

l∈C1
u

log

(
p

q

)
+

∑

l∈δu\C1
u

log

(
exp(Rt

l→u − υ)(p/q) + 1

exp(Rt
l→u − υ) + 1

)

5: The output set is the union of C and the K − |C| set of nodes in V \C with the largest

values of R
tf
u .

5.4 Asymptotic Error Analysis

In this section we analyze the distributions of BP messages Rt
i→u given {σi = 1} and given

{σi = 0} for i ∈ V \C. First, we derive a pair of recursive equations for the asymptotic

distributions of the messages Rt
i→u given {σi = 0, ci = 0} and given {σi = 1, ci = 0} in the

limit as n→ ∞ in Lemma 5.1. In Proposition 5.1 we present the asymptotic distributions

of the messages in the large degree regime where a, b → ∞. This result will enable us to

derive the error rates for detecting the subgraph in the large degree regime (Theorem 5.1).

Finally, we contrast this result with Proposition 5.2 from [Montanari 2015], which details

the limitation of local algorithms.

Instead of studying Rt
i→u directly, we look at the log-likelihood ratios of the posterior

probabilities of σi given as

R̃t
i = log

(
P(σi = 1|Gt

i, C
t
i , ci = 0)

P(σi = 0|Gt
i, C

t
i , ci = 0)

)

and the associated messages R̃t
i→u. By Bayes rule, R̃t

i→u = Rt
i→u − υ, where

υ = log

(
P(σi = 0|ci = 0)

P(σi = 1|ci = 0)

)
= log

(
n−K

K(1− α)

)
.

Let ξt0, ξ
t
1 be rvs with the same distribution as the messages R̃t

i→u given {σi = 0, ci =

0} and given {σi = 1, ci = 0}, respectively in the limit as n → ∞. Based on the tree

coupling in Lemma A.1 of Appendix A.1, it can be shown that these rvs satisfy the recursive

distributional evolutionary equations given in the following lemma.

Lemma 5.1. The random variables ξt0 and ξt1 satisfy the following recursive distributional

equations with initial conditions ξ00 = ξ01 = log (κ(1− α)/(1− κ)) .

ξ
(t+1)
0

D
= h+

L0c∑

i=1

log(ρ) +

L00∑

i=1

f(ξ
(t)
0,i) +

L01∑

i=1

f(ξ
(t)
1,i) (5.9)

ξ
(t+1)
1

D
= h+

L1c∑

i=1

log(ρ) +

L10∑

i=1

f(ξ
(t)
0,i) +

L11∑

i=1

f(ξ
(t)
1,i), (5.10)
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where
D
= denotes equality in distribution, h = −κ(a − b) − υ, ρ := p/q = a/b, and the

function f is defined as

f(x) := log

(
exp(x)ρ+ 1

exp(x) + 1

)
. (5.11)

The rvs ξt0,i, i = 1, 2, . . . are independent and identically distributed (i.i.d.) with the same

distribution as ξt0. Similarly ξt1,i, i = 1, 2, . . . are i.i.d. with the same distribution as ξt1.

Furthermore, L00 ∼ Poi((1 − κ)b), L01 ∼ Poi(κb(1 − α)), L10 ∼ Poi((1 − κ)b), L11 ∼
Poi(κa(1− α)), L0c ∼ Poi(κbα) and L1c ∼ Poi(κpα).

Proof. This follows from (5.7) and the tree coupling in Lemma A.1 of Appendix A.1.

We define the effective SNR for the detection problem in the presence of perfect side-

information as:

λα =
K2(p− q)2(1− α)2

(n−K)q
=
κ2(a− b)2(1− α)2

(1− κ)b
, (5.12)

where the factor (1 − α)2 arises from the fact that we are now trying to detect a smaller

subgraph of size K(1− α).

We now present one of our main results, on the distribution of BP messages in the limit

of large degrees as a, b→ ∞ such that λα is kept fixed.

Proposition 5.1. In the regime where λα and κ are held fixed and a, b→ ∞, we have

ξt+1
0

D−→ N
(
− log

1− κ

κ(1− α)
− 1

2
µ(t+1), µ(t+1)

)

ξt+1
1

D−→ N
(
− log

1− κ

κ(1− α)
+

1

2
µ(t+1), µ(t+1)

)
.

The variance µ(t) satisfies the following recursion with initial condition µ(0) = 0 :

(5.13 )µ(t+1) = λαα
1− κ

(1− α)2κ
+ λαE

(
(1− κ)

κ(1− α) + (1− κ) exp(−µ(t)/2−
√
µ(t)Z)

)
,

where the expectation is taken w.r.t. Z ∼ N (0, 1).

Before providing a short sketch of the proof of the above proposition, we state a Lemma

from [Hajek et al. 2015a], which we need for our derivations.

Lemma 5.2. [Hajek et al. 2015a, Lemma 11] Let Sγ = X1 +X2 + . . .+XNγ
, where Xi,

for i = 1, 2, . . . Nγ , are independent, identically distributed rv with mean µ, variance σ2 and

E(|X3
i |) ≤ g3, and for some γ > 0, Nγ is a Poi(γ) rv independent of Xi : i = 1, 2, . . . , Nγ .

Then

supx

∣∣∣∣∣P
(

Sγ − γµ√
γ(µ2 + σ2)

)
− Φ(x)

∣∣∣∣∣ ≤
CBEg

3

√
γ(µ2 + σ2)3

,

where CBE = 0.3041.

We now provide a sketch of the proof of Proposition 5.1; the details can be found in

Appendix A.2.



80 Chapter 5. Hidden Community Recovery with Side-information

Sketch of Proof of Proposition 5.1. The proof proceeds primarily by applying the expecta-

tion and variance operators to both sides of (5.9) and (5.10) and applying various reductions.

First notice that when a, b→ ∞ and λ and κ are held constant, we have ρ→ 1 as follows:

ρ = a/b = 1 +

√
λα(1− κ)

(1− α)2κ2b
. (5.14)

Then using Taylor’s expansion of log(1 + x) we can expand the function f(x) in (5.11) up

to second order as follows:

(5.15)f(x) = (ρ− 1)
ex

1 + ex
− 1

2
(ρ− 1)2(

ex

1 + ex
)2 +O(b−3/2).

We use these expansions to simplify the expressions for the means and variances of (5.9)

and (5.10). Then, by a change of measure, we express them in terms of functionals of a

single rv, ξt1. We then use induction to show that the variance µ(t+1) satisfies the recursion

(5.13) and use Lemma 5.2 to prove gaussianity.

In the following subsection, we use Proposition 5.1 to derive the asymptotic error rates

of the detector in Algorithm 1.

5.4.1 Detection Performance

Let us use the symbol S to denote the subgraph nodes with the cued nodes removed, i.e.,

S = S\C. This is the set that we aim to detect. The output of Algorithm 2, Ŝ is the set of

nodes with the top K − |C| beliefs. We are interested in bounding the expected number of

misclassified nodes E(|S∆Ŝ|). Let Ŝ be the output set of the algorithm excluding cues since

the cues are always correctly detected. Note that |S|= |Ŝ|= K − |C|. To characterize the

performance of the detector, we need to choose a performance measure. In [Montanari 2015],

a rescaled probability of success was used to study the performance of a subgraph detector

without cues, defined as

Psucc(σ̂) = P(i ∈ Ŝ|i ∈ S) + P(i 6∈ Ŝ|i 6∈ S)− 1, (5.16)

where σ̂i = χ(i ∈ Ŝ), and the dependence of Psucc(σ̂) on n is implicit. In our work, we

study the following error measure, which is the average fraction of misclassified nodes, also

considered in [Hajek et al. 2015a], which for the uncued case is defined as

E :=
E(|S∆Ŝ|)

K
.

Observe that 0 ≤ E ≤ 2. In particular E = 2 if the algorithm misclassifies all the subgraph

nodes. We now show that these two measures are roughly equivalent. For simplicity we

consider the case where there are no cues, but the extension to the cued case is straight-

forward. Since our algorithm always outputs K nodes as the subgraph, i.e., |Ŝ|= K, the

following is true for any estimate σ̂ of σ :

rn :=

n∑

i=1

χ(σ̂i = 0, i ∈ S) =

n∑

i=1

χ(σ̂i = 1, i 6∈ S), (5.17)

i.e., the number of misclassified subgraph nodes is equal to the number of misclassified

nodes outside the subgraph. We can rewrite the error measure E in terms of rn, since

|S∆Ŝ|
K

=
2rn
K

. (5.18)
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Next notice that we can rewrite Psucc(σ̂) as follows.

Psucc(σ̂) = 1− 1

n

n∑

i=1

(P(σ̂i = 0|i ∈ S) + P(σ̂i = 1|i 6∈ S))

(a)
= 1−

n∑

i=1

(
P(σ̂i = 0, i ∈ S)

K
+

P(σ̂i = 1, i 6∈ S)

n−K

)

(b)
= 1−

(
E(rn)

K
+

E(rn)

n−K

)
= 1− nE(rn)

K(n−K)
, (5.19)

where in step (a) we used Bayes rule with P(i ∈ S) = K
n . Since 1 ≤ n

n−K ≤ 2, we get

1− 2E(rn)/K ≤ Psucc(σ̂) ≤ 1− E(rn)/(K). (5.20)

Hence from (5.18) and (5.20), Psucc(σ̂) → 1 if and only if E(|S∆Ŝ|)
K → 0.

In the following proposition, we state and prove the main result concerning the asymp-

totic error performance of Algorithm 2.

Theorem 5.1. For any λα > 0, α > 0,

lim
b→∞

lim
n→∞

E(|S∆Ŝ|)
K(1− α)

≤ 2

√
1− κ

κ(1− α)
e
− 1

8
αλα(1−κ)

κ(1−α)2 . (5.21)

Consequently,

lim
κ→0

lim
b→∞

lim
n→∞

E(|S∆Ŝ|)
K(1− α)

= 0.

Proof. Let Ŝ0 be the MAP estimator given by

Ŝ0 =

{
i : Rt

i > log
1− κ

κ(1− α)

}
.

Since Ŝ is the set of nodes with the top K − |C| beliefs, we have either Ŝ ⊂ Ŝ0 or Ŝ0 ⊂ Ŝ.

Therefore,

|S∆Ŝ| ≤ |S∆Ŝ0|+|Ŝ∆Ŝ0|
= |S∆Ŝ0|+|K − |C|−|Ŝ0||
= |S∆Ŝ0|+||S|−|Ŝ0||
≤ 2|S∆Ŝ0|, (5.22)

where the last step follows because the set difference between two sets is lower bounded by

the difference of their sizes. If we can bound E(|S∆Ŝ0|)
K(1−α) by one-half the expression in (5.21)

the result of the Proposition follows. The proof of this upper bound uses Proposition 5.1

and is given in Appendix A.3.

Theorem 5.1 states that the detectability threshold does not exist for Belief Propagation

with cues.

This is in stark contrast to the performance of BP when there is no side-information.

In that case, as stated in the following theorem from [Montanari 2015], the performance of

any local algorithm suffers when the SNR parameter λ < 1/e. In the following LOC denotes

the class of all local algorithms, i.e., algorithms that take as input the local neighbourhood

of a node.
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Proposition 5.2. [Montanari 2015, Theorem 1] If λ < 1/e, then all local algorithms have

success probability uniformly bounded away from one; in particular,

sup
T∈LOC

lim
n→∞

Psucc(T ) ≤
e− 1

4
,

and therefore

sup
T∈LOC

lim
n→∞

E(T ) ≥ 5− e

4
> 1/2.

5.5 Subgraph Detection with Imperfect Side Informa-

tion

In this section, we develop a BP algorithm under the more realistic assumption of imperfect

side information, where the available cue information is not completely reliable. This is true

of humanly classfied data available for many semi-supervised learning problems.

Our BP algorithm can easily take into account imperfection in side information. Suppose

we know the parameters α and β defined in (5.2) and (5.4) respectively, or their estimates

thereof. We remark that unlike Algorithm 2, which only has to detect the uncued subgraph

nodes, our algorithm needs to explore the whole graph, since we do not know a priori which

cues are correct. As before, for a node u, we wish to compute the following log-likelihood

ratio in a distributed manner:

Rt
u = log

(
P(Gt

u, cu, C
t
u|σu = 1)

P(Gt
u, cu, C

t
u|σu = 0)

)
,

where cu is the indicator variable of whether u is a cued node, and Ct
u is the cued information

of the t-hop neighbourhood of u, excluding u. Note that we can expand Rt
u as follows

Rt
u = log

(
P(Gt

u, C
t
u|σu = 1, cu)

P(Gt
u, C

t
u|σu = 0, cu)

)
+ log

(
P(cu|σu = 1)

P(cu|σu = 0)

)

= log

(
P(Gt

u, C
t
u|σu = 1)

P(Gt
u, C

t
u|σu = 0)

)
+ log

(
P(cu|σu = 1)

P(cu|σu = 0)

)
, (5.23)

where in the second step we dropped the conditioning w.r.t. cu because (Gt
u, C

t
u) is inde-

pendent of the cue information of node u given σu. Let hu = log
(

P(cu|σu=1)
P(cu|σu=0)

)
. Then it is

easy to see from (5.3) that

hu =




log
(

β(1−κ)
(1−β)κ

)
, if u ∈ C,

log
(

(1−αβ)(1−κ)
(1−κ−ακ+ακβ)

)
, otherwise.

(5.24)

The recursion for the first term in (B.11) can be derived along the same lines as the deriva-

tion of Algorithm 2 and is skipped. The final BP recursions are given in Algorithm 3.

In order to analyze the error performance of this algorithm we derive the asymptotic

distributions of the messages Rt
u→i, for {σu = 0} and {σu = 1}. Note that, since we now

assume that we do not know the exact classification of any of the subgraph nodes, we need

to detect K nodes, and hence the effective SNR parameter is defined as

λ =
K2(p− q)2

(n−K)q
. (5.27)

The following proposition presents the asymptotic distribution of the messages Rt
u→i in the

limit of n→ ∞ and in the large degree regime where a, b→ ∞.
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Algorithm 3 BP with imperfect cues

1: Initialize: Set R0
i→j to 0, for all (i, j) ∈ E. Let tf <

log(n)
log(np) + 1. Set t = 0.

2: For all directed pairs (i, u) ∈ E:

(5.25)Rt+1
i →u = −K(p− q) + hi +

∑

l∈δi,l 6=u

log

(
exp(Rt

l→i − ν)(p/q) + 1

exp(Rt
l→i − ν) + 1

)
,

where ν = log(n−K
K ).

3: Increment t; if t < tf − 1 go back to 3, else go to 3

4: Compute R
tf
u for every u ∈ V as follows:

(5.26)Rt+1
u = −K(p− q) + hu +

∑

l∈δu

log

(
exp(Rt

l→u − ν)(p/q) + 1

exp(Rt
l→u − ν) + 1

)

5: Output Ŝ as K set of nodes in V with the largest values of R
tf
u .

Proposition 5.3. Let n → ∞. In the regime where λ and κ are held fixed and a, b → ∞,

the message Rt
u→i given {σu = j}, where j = {0, 1} converges in distribution to Γt

j + hu
where hu is defined in (5.24). The rvs Γt

j have the following distribution:

Γt
0 ∼ N (−µ(t)/2, µ(t)), and

Γt
1 ∼ N (µ(t)/2, µ(t)),

where µ(t) satisfies the following recursion with µ(0) = 0,

(5.28 )

µ(t+1) = αβ2λE

(
(1− κ)/κ

β + (1− β)e(−µ(t)/2−
√

µ(t)Z)

)
+ (1− αβ)2λ

E

(
(1− κ)

κ(1− αβ) + (1− κ− ακ+ ακβ)e(−µ(t)/2−
√

µ(t)Z)

)
,

and the expectation is with respect to (w.r.t.) Z ∼ N (0, 1).

Proof. The proof proceeds by deriving the recursive distributional equations that the mes-

sage distributions satisfy in the limit n → ∞, and then applying the large degree limit of

a, b→ ∞ to these recursions.The details are in the supplementary material.

The above proposition immediately leads to the following result on the asymptotic error

rate of Algorithm 3.

Theorem 5.2. For any λ > 0, α > 0, β > 0,

lim
b→∞

lim
n→∞

E(|Ŝ∆S|)
K

≤ 2

(
α
√
β(1− β) +

√
(1− αβ)(

1− κ

κ
− α(1− β))

)
e−

λαβ2(1−κ)
8κ .

Consequently,

lim
κ→0

lim
b→∞

lim
n→∞

E(|S∆Ŝ|)
K

= 0.
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Proof. The proof essentially analyzes the properties of the recursion (5.28) and is similar

to the proof of Theorem 5.1. See supplementary material for details.

5.6 Numerical Experiments

In this section we provide numerical results to validate our theoretical findings on the

synthetic model as well as on two real-world datasets. We compare the performance of BP

to another seed-based community detection algorithm, the personalized PageRank, which

is widely used for local community detection [Andersen & Chung 2007].

5.6.1 Synthetic dataset

First we show that the limitation of local algorithms described in Proposition 5.2 is overcome

by BP when there is non-trivial side-information. Proposition 5.2 says that when λ < 1/e,

E(T ) > 1/2 for any local algorithm T. We run our Algorithm 2, on a graph generated with

α = 0.1, κ = 5× 10−4, b = 100 and n = 106. For λ = 1/4 < 1/e, we get an average value of

E = 0.228 < 1/2. Thus it is clear that our algorithm overcomes the computational threshold

of λ = 1/e.

Next, we study the performance of Algorithm 3 when there is noisy side-information

with β = 0.8. For λ = 1/3 < 1/e, we get an average error rate of 0.3916 < 1/2 clearly

beating the threshold of λ = 1/e. Thus we have demonstrated that both with perfect and

imperfect side-information, our algorithm overcomes the λ = 1/e barrier of local algorithms.

Next, we verify that increasing α improves the performance of our algorithm as expected.

In Figure 5.1, we plot the variation of E of Algorithm 2 as a function of α. Our parameter

setting is κ = 0.01, b = 100, and λ = 1/2 with n = 104. In the figure, we also plot the error

rate E obtained by personalized PageRank under the same setting, with damping factor

αpr = 0.9 [Andersen & Chung 2007]. The figure demonstrates that BP benefits more as

the amount of side-information is increased than PageRank does.

Next, we compare the performance of BP algorithm without side-information given

in [Montanari 2015] to our algorithm with varying amounts of side-information. We choose

the setting where n = 104, b = 140 and κ = 0.033 for different values of λ by varying p. In

Figure 5.2 we plot the metric E against λ for different values of β, with α = 0.1. For β = 1

we use Algorithm 2. We can see that even BP with noisy side-information performs better

than standard BP with no side-information. In addition, as expected increasing β improves

the error performance.

5.6.2 Real-world datasets

We consider two real-world networks: The USPS dataset and the Reuters-911 dataset. For

these two datasets we compare the performance of BP with personalized PageRank in terms

of recall rate R defined as

R =
|S ∩ Ŝ|
|S| ,

where S is the true community and Ŝ is its estimate. This is a commonly used metric

for community detection applications [Yang & Leskovec 2015]. We use αpr = 0.9 as the

damping factor of PageRank. We describe the datasets and the results obtained by our

algorithms below.
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5.6.2.1 USPS dataset

The USPS dataset contains 9296 scanned images of size 16 × 16, which can represented

by a feature vector of size 256 × 1 with values from -1 to +1 [Zhou et al. 2004]. First, we

construct a graph from this dataset, where nodes represent scanned images, by adding a

link between a node and its three nearest neighbours, where the distance is defined as the

euclidean distance between the images represented as feature vectors. The resulting graph

is undirected with a minimum degree of at least 3. This is an instance of the k nearest

neighbour graph, with k = 3. On this graph we run BP and PageRank separately for each

of the 10 communities for α = 0.01 and α = 0.05 (Figure 5.3). It can be seen from Figure

5.3, that the performance of BP is strictly worse than that of PageRank. This result points

to the importance of having the correct initialization for the BP parameters. Indeed, in our

underlying model for BP, we assumed that there is only one dense community in a sparse

network, in which case, as demonstrated in Figure5.1, BP outperforms PageRank by a big

margin. However in the USPS graph, there are ten dense communities, and therefore it

deviates significantly from our underlying model.

5.6.2.2 Reuters911 Dataset

In this subsection we consider a graph that is closer to our assumed model. We consider the

Reuters911 dataset also used in [Chen & Saad 2012]. It is made up of words from all news

released by Reuters for 66 days since September 11, 2001. Table 5 in [Chen & Saad 2012]

shows a group of 99 collocated words in this dataset. This subset represents the largest

dense community to be detected in this dataset. A graph of size n = 13332 is generated

from this dataset by adding a link between two words if they appear together in a sentence.

The resulting graph is undirected and unweighted. We compare BP and Pagerank on this
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Class 0 #of cues = 1 #of cues = 2

BP 0.7143 0.7216

PageRank 0.6327 0.6392

Table 5.1: Reuters911 recall results

dataset for one and two cues. The cues we use are the words pentagon and 11. In Table

5.1 we show the recall values R of PageRank and BP, excluding cues. Clearly, BP performs

better.

5.6.3 Comparison with simpler algorithms

We note that under the parameter setting we discussed there are simpler algorithms that can

recover the community nodes when there is side-information. We disuss one such algorithm

in what follows. As above let C be the set of cues, and let us define di(C) as the number

of neighbours of any node i in the set C, i.e.,

di(C) = |{j ∈ C : j ∼ i}|.

Consider an estimator Ts that declares nodes with the K largest values of di(C) as the

subgraph. We can show that as n→ ∞ di(C) has the following distribution:

di(C) ∼
{

Poi(καb(1 + (ρ− 1)β) if i ∈ S

Poi(καb) otherwise.

Using the above distribution we can show that this estimator achieves zero asymptotic

error for any λ, α, β > 0 as n → ∞ and b → ∞. However, in terms of the performance

on a finite sized graph, it performs worse than Belief Propagation as shown in Figure 5.4.

Here we simulated G(K,n, p, q) with n = 104,K = 200, p = 0.05, and q = 0.0046. We

fix α = 0.1 and compute the error metric
∑

i∈S χ{σ̂i=0}/K, i.e., the fraction of wrongly

classified subgraph nodes. In Figure 5.4 we plot this metric against β. We can observe that

Algorithm 2 outperforms the other two algorithms and in addition Belief Propagation far

outperforms the simple algorithm described above. In closing we would like to note that the

first step of BP in both Algorithm 2 and Algorithm 3 are similar to the simple algorithm

discussed above and our results on the error performance of BP, Theorems 5.1, 5.2 apply

to the first step of BP as well.

5.7 Conclusions and Future Extensions

In this work we developed a local distributed BP algorithm that takes advantage of side-

information to detect a dense subgraph embedded in a sparse graph. We obtained theo-

retical results based on density evolution on trees to show that it achieves zero asymptotic

error regardless of the SNR parameter λ, unlike BP without cues, where there is a non-zero

detectability threshold. We then validated our theoretical results by simulating our algo-

rithm on a synthetic dataset and showing that, in the presence of both noise-less and noisy

side-information, our BP algorithm overcomes the error bound of local algorithms when

λ < 1/e. We then applied our algorithm to two real-world datasets: USPS and Reuters911

and compared its performance with personalized PageRank. Our results indicate that the

relative improvement in BP depends on the closeness of the dataset to the underlying graph

model used to derive BP. In the future, we would like to do non-asymptotic analysis when
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a, b and κ are functions of n. Extension to dense graphs would also be interesting, where

traditional BP and tree coupling-based analysis will not work owing to the presence of

loops.



Chapter 6

PageRank Analysis on Undirected

Random Graphs

6.1 Introduction

PageRank has numerous applications in information retrieval [Haveliwala 2002, Page

et al. 1999,Yeh et al. 2009], reputation systems [Gkorou et al. 2013,Kamvar et al. 2003],

machine learning [Avrachenkov et al. 2008,Avrachenkov et al. 2012], and graph partition-

ing [Andersen et al. 2006, Chung 2009]. It is surprising that not many analytic studies

are available for PageRank in random graph models. We mention the work [Avrachenkov

& Lebedev 2006] where PageRank was analysed in preferential attachment models and

the more recent works [Chen et al. 2014,Chen et al. 2016], where PageRank was analysed

in directed configuration models. According to several studies [Ding et al. 2003,Fortunato

et al. 2006,Litvak et al. 2007,Volkovich & Litvak 2010], PageRank and in-degree are strongly

correlated in directed networks such as the Web graph.

Apart from some empirical studies [Boudin 2013, Page et al. 1999], to the best of our

knowledge, there is no rigorous analysis of PageRank on basic undirected random graph

models such as the Erdős-Rényi graph [Erdős & Rényi 1959] or the Chung-Lu graph [Chung

& Lu 2002a]. In this chapter, we attempt to fill this gap and show that under certain

conditions on the preference vector and the spectrum of the graphs, PageRank in these

models can be approximated by a mixture of the preference vector and the vertex degree

distribution when the size of the graph goes to infinity. First, we show the convergence in

total variation norm for a general family of random graphs with expansion property. Then,

we specialize the results for the Chung-Lu random graph model proving the element-wise

convergence. We also analyse the asymptotics of PageRank on Stochastic Block Model

(SBM) graphs, which are random graph models used to benchmark community detection

algorithms. In these graphs the asymptotic expression for PageRank contains an additional

correction term that depends on the community partitioning. This demonstrates that

PageRank captures properties of the graph not visible in the stationary distribution of a

simple random walk. We conclude the chapter with numerical experiments and several

future research directions.

6.2 Definitions

Let G(n) = (V (n), E(n)) denote a family of random graphs, where V (n) is a vertex set,

|V (n)|= n, and E(n) is an edge set, |E(n)|= m. Matrices and vectors related to the graph

are denoted by bold letters, while their components are denoted by non-bold letters. We

denote by A(n) the associated adjacency matrix. In the interest of compactness of notation,

the superscript n is dropped when it is not likely to cause confusion. In this work, since we

analyze PageRank on undirected graphs, we have AT = A. The personalized PageRank is

denoted by π. We consider unweighted graphs; however our analysis easily extends to some

families of weighted undirected graphs. Let 1 be a column vector of n ones and let d = A1
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be the vector of degrees. It is helpful to define D = diag(d), a diagonal matrix with the

degree sequence on its diagonal.

Let P = AD−1 be column-stochastic Markov transition matrix corresponding to the

standard random walk on the graph and let Q = D−1/2AD−1/2 be the symmetrized transi-

tion matrix, whose eigenvalues are the same as those of P. Note that the symmetrized tran-

sition matrix is closely related to the normalized Laplacian L = I−D−1/2AD−1/2 = I−Q

[Chung 1997], where I is the identity matrix. Further we will also use the resolvent matrix

R = [I− αP]−1 and the symmetrized resolvent matrix S = [I− αQ]−1.

Note that since Q is a symmetric matrix, its eigenvalues λi, i = 1, ..., n are real and can

be arranged in decreasing order, i.e., λ1 ≥ λ2 ≥ ... . In particular, we have λ1 = 1. The

value δ = 1−max{|λ2|, |λn|} is called the spectral gap.

In what follows, let K,C be arbitrary constants independent of graph size n, which may

change from one line to the next (of course, not causing any inconsistencies).

For two functions f(n), g(n), g(n) = O(f(n)) if ∃C,N such that
∣∣∣ g(n)f(n)

∣∣∣ ≤ C, ∀n > N

and g(n) = o(f(n)) if lim supn→∞

∣∣∣ g(n)f(n)

∣∣∣ = 0. Also f(n) = ω(g(n)) or f(n) ≫ g(n) if

g(n) = o(f(n)).

We use P,E to denote probability and expectation respectively. An event E is said to

hold with high probability (w.h.p.) if ∃N such that (s.t.) P(E) ≥ 1 − O(n−c) for some

c > 0, ∀n > N. Recall that if a finite number of events hold true w.h.p., then so does their

intersection. Furthermore, we say that a sequence of random variables Xn = o(1) w.h.p. if

there exists a function ψ(n) = o(1) such that the event {Xn ≤ ψ(n)} holds w.h.p.

In the first part of this chapter, we study the asymptotics of PageRank for a family of

random graphs with the following two properties:

Property 1. For some K w.h.p., d
(n)
max/d

(n)
min ≤ K, where d

(n)
max and d

(n)
min are the maximum

and minimum degrees, respectively.

Property 2. W.h.p., max{|λ(n)2 |, |λ(n)n |} = o(1).

The above two properties can be regarded as a variation of the expansion property. In

the standard case of an expander family, one requires the graphs to be regular and the

spectral gap δ = 1 − max{|λ2|, |λn|} to be bounded away from zero (see, e.g., [Vadhan

et al. 2012]). Property 1 is a relaxation of the regularity condition, whereas Property 2 is

stronger than the requirement for the spectral gap to be bounded away from zero. These

two properties allow us to consider several standard families of random graphs such as ER

graphs, regular random graphs with increasing average degrees, and Chung-Lu graphs. For

Chung-Lu graphs Property 1 imposes some restriction on the degree spread of the graph.

Remark: Property 2 implies that the graph is connected w.h.p., since the spectral gap is

strictly greater than zero.

Later, we study the asymptotics of PageRank for specific classes of random graphs

namely the Chung-Lu graphs, and the Stochastic Block Model. Recall that the Personalized

PageRank vector with preference vector v is defined as the stationary distribution of a

modified Markov chain with transition matrix

P̃ = αP+ (1− α)v1T , (6.1)

where α is the so-called damping factor [Haveliwala 2002]. In other words, π satisfies

π = P̃π, (6.2)
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or,

π = (1− α)[I− αP]−1v = (1− α)Rv, (6.3)

where (6.3) holds when α < 1.

6.3 Convergence in total variation on Fast Expander

Graphs

We recall that for two discrete probability distributions u and v, the total variation distance

dTV(u, v) is defined as dTV(u, v) =
1
2

∑
i|ui−vi|. This can also be thought of as the L1-norm

distance measure in the space of probability vectors, wherein for x ∈ R
n, the L1-norm is

defined as ‖x‖1 =
∑

i|xi|. Since for any probability vector π, ‖π‖1 = 1 ∀n, it makes sense

to talk about convergence in 1-norm or TV-distance. Also recall that for a vector x ∈ R
n,

‖x‖2 =
√∑

i|xi|2 is the L2-norm. Now we are in a position to formulate our first result.

Theorem 6.1. Let a family of graphs G(n) satisfy Properties 1 and 2. If, in addition,

‖v‖2 = O(1/
√
n), PageRank can be asymptotically approximated in total variation norm by

a mixture of the restart distribution v and the vertex degree distribution. Namely, w.h.p.,

dTV (π
(n),π(n)) = o(1) as n→ ∞,

where

π(n) =
αd(n)

vol(G(n))
+ (1− α)v, (6.4)

with vol(G(n)) =
∑

i d
(n)
i .

Observations:

1. This result says that PageRank vector asymptotically behaves like a convex combi-

nation of the preference vector and the stationary vector of a standard random walk

with transition matrix P; with the weight being α, and that it starts to resemble the

random walk stationary vector as α gets close to 1.

2. One of the possible intuitive explanations of the result of Theorem 6.1 is based on

the observation that when Properties 1 & 2 hold, as n→ ∞, the random walk mixes

approximately in one step and so for any probability vector x Px is roughly equal

to d/vol(G), the stationary distribution of the simple random walk. The proposed

asymptotic approximation for PageRank can then be seen to follow from the series

representation of PageRank if we replace Pv by d/vol(G). Note that since d/vol(G)

is the stationary vector of the simple random walk, if Pv = d/vol(G), it also holds

that Pkv = d/vol(G), ∀k ≥ 2. Making these substitutions in the series representation

of PageRank, namely

π = (1− α)
(
I+ αP+ α2P2 + . . .

)
v, (6.5)

we obtain

π = (1− α)v + (1− α)α(1 + α+ α2 + . . .)
d

vol(G)

= (1− α)v + α
d

vol(G)
.

3. The condition on the 2-norm of the preference vector v can be viewed as a constraint

on its allowed localization.
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Proof of Theorem 6.4. First observe from (6.1) that when α = 0, we have P̃ = v1T , hence

from (6.2) we obtain π = v, since 1Tπ = 1. Similarly for the case α = 1, P̃ = P and

so π in this case is just the stationary distribution of the original random walk, which

is well-defined and equals d

vol(G) since by Property 2 the graph is connected. Examining

(6.4) for these two cases we can see that the statement of the theorem holds trivially for

both α = 0 and α = 1. In what follows, we consider the case 0 < α < 1. We first note

that the matrix Q = D−1/2AD−1/2 can be written as follows by Spectral Decomposition

Theorem [Bhatia 2013]:

Q = u1u
T
1 +

n∑

i=2

λiuiu
T
i , (6.6)

where 1 = λ1 ≥ λ2 ≥ . . . ≥ λn are the eigenvalues and {u1,u2, . . .un} with ui ∈ Rn

and ‖ui‖2 = 1 are the corresponding orthogonal eigenvectors of Q. Recall that u1 =

D1/21/
√
1TD1 is the Perron–Frobenius eigenvector. Next, we rewrite (6.3) in terms of the

matrix Q as follows

π = (1− α)D1/2[I− αQ]−1D−1/2v. (6.7)

Substituting (6.6) into (6.7), we obtain

π = (1− α)D1/2

(
1

1− α
u1u

T
1 +

n∑

i=2

1

1− αλi
uiu

T
i

)
D−1/2v

= D1/2u1u
T
1 D

−1/2v + (1− α)D1/2


∑

i 6=1

1

1− αλi
uiu

T
i


D−1/2v.

Let us denote the error vector by ε = π − π. Note that since u1 = D
1/2

1√
vol(G)

, we can

write π as

π = α
d

vol(G)
+ (1− α)v

(a)
= α

D11Tv

vol(G)
+ (1− α)D1/2D−1/2v

= αD1/2 D1/21√
vol(G)

1TD1/2

√
vol(G)

D−1/2v + (1− α)D1/2D−1/2v

= αD1/2u1u
T
1 D

−1/2v + (1− α)D1/2D−1/2v,

where in (a) above we used the fact that 1Tv = 1, since v is a probability vector. Then,

we can write ε as

ε = π − αD1/2u1u
T
1 D

−1/2v − (1− α)D1/2ID−1/2v

= (1− α)D1/2


∑

i 6=1

uiu
T
i

1− αλi
− (I− u1u

T
1 )


D−1/2v

= (1− α)D1/2


∑

i 6=1

uiu
T
i

αλi
1− αλi


D−1/2v. (6.8)
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Now let us bound the L1-norm ‖ε‖1 of the error:

‖ε‖1 /(1− α)
(a)
≤ √

n‖ε‖2/(1− α)

(b)
≤ √

n‖D1/2‖2

∥∥∥∥∥∥

∑

i 6=1

uiu
T
i

αλi
1− αλi

∥∥∥∥∥∥
2

‖D−1/2‖2‖v‖2

(c)
≤
√
dmax/dmin

√
nmax

i>1

∣∣∣∣
αλi

1− αλi

∣∣∣∣ ‖v‖2

≤ C
√
dmax/dmin max(|λ2|, |λn|) (6.9)

where in (a) we used the fact that for any vector x ∈ R
n, ‖x‖1≤

√
n‖x‖2 by Cauchy-

Schwartz inequality. In (b) we used the submultiplicative property of matrix norms, i.e.,

‖AB‖2 ≤ ‖A‖2 ‖B‖2. We obtain (c) by noting that the norm of a diagonal matrix is the

leading diagonal value and the fact that for a symmetric matrix the 2-norm is the largest

eigenvalue in magnitude. The last inequality is obtained by noting that the assumption

λi = o(1) w.h.p. ∀i > 1 implies that ∃N s.t. ∀n > N, |1 − αλi|> C for some constant C

and the fact that ‖v‖2 = O(1/
√
n).

Observing that dmax/dmin is bounded w.h.p. by Property 1 and max(|λ2|, |λn|) = o(1)

w.h.p. by Property 2 we obtain our result.

Note that in the case of standard PageRank, vi = 1/n, 1 ≤ i ≤ n, and hence ‖v‖2 =

O(1/
√
n), but Theorem 6.1 also admits more general preference vectors than the uniform

one.

Corollary 6.1. The statement of Theorem 6.1 also holds with respect to the weak conver-

gence, i.e., for any function f on V such that maxx∈V |f(x)|≤ 1,

sup

{
∑

v

f(v)πv −
∑

v

f(v)πv

}
= o(1) w.h.p.

Proof. This follows from Theorem 6.1 and the fact that the left-hand side of the above

equation is upper bounded by 2 dTV(πn,πn) [Levin et al. 2009].

6.4 Chung-Lu random graphs

In this section, we study the PageRank for the Chung-Lu model [Chung & Lu 2002a] of

random graphs. These results naturally hold for w.h.p. graphs also. The spectral properties

of Chung-Lu graphs have been studied extensively in a series of papers by Fan Chung et

al [Chung et al. 2003,Chung & Radcliffe 2011].

6.4.1 Chung-Lu Random Graph Model

Let us first provide a definition of the Chung-Lu random graph model.

Definition 5. Chung-Lu Random Graph Model A Chung-Lu graph G(w) with an

expected degree vector w = (w1, w2, . . . wn), where wi are positive real numbers, is generated

by drawing an edge between any two vertices vi and vj independently of all other pairs,

with probability pij =
wiwj∑

k wk
. To ensure that the probabilities pij are well-defined, we need

maxi w
2
i ≤∑k wk.
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In the following, let wmax = maxi wi and wmin = mini wi. Below we specify a corollary

of Theorem 6.1 as applied to these graphs. But before that we need the following lemmas

about Chung-Lu graphs mainly taken from [Chung et al. 2003,Chung & Radcliffe 2011].

Lemma 6.1. If the expected degrees w1, w2, . . . wn satisfy wmin ≫ log(n), then in G(w) we

have, w.h.p., maxi| di

wi
− 1|= o(1).

In the proof we use Bernstein Concentration Lemma [Billingsley 2008]:

Lemma 6.2. (Bernstein Concentration Lemma [Billingsley 2008]) If Yn = X1+X2+. . . Xn,

where Xi are independent random variables such that |Xi|≤ b and if B2
n = E(Yn − E(Yn))

2

then

P{|Yn − E(Yn)|≥ ε} ≤ 2 exp
−ε2

2(B2
n + bε/3)

,

for any ε > 0.

Proof of Lemma 6.1: This result is shown in the sense of convergence in probability

in the proof of [Chung & Radcliffe 2011, Theorem 2]; using Lemma 6.2 we show the result

holds w.h.p. By a straight forward application of Lemma 6.2 to the degrees di of the

Chung-Lu graph we obtain

P

(
max
1≤i≤n

∣∣∣∣
di
wi

− 1

∣∣∣∣ ≥ β

)
≤ 2

nc/4−1
, if β ≥

√
c log(n)

wmin
= o(1)

if wmin ≫ log(n). We present below a perturbation result for the eigenvalues of

Hermitian matrices, called Weyl’s inequalities, which we will need for our proofs.

Lemma 6.3. [Horn & Johnson 2012, Theorem 4.3.1] Let A,B ∈ R
n×n be Hermitian and

let the eigenvalues λi(A), λi(B) and λi(A+B) be arranged in decreasing order. For each

k = 1, 2, . . . n we have

|λk(A+B)− λk(A)|≤ ‖B‖2,

where ‖B‖2 is the induced 2-norm or the spectral norm of B.

The following lemma is an application of Theorem 5 in [Chung et al. 2003].

Lemma 6.4. If wmax ≤ Kwmin, for some K > 0 and w =
∑

k wk/n ≫ log6(n), then for

G(w) we have almost surely (a.s.)

‖C‖2 =
2√
w
(1 + o(1)),

where C = W−1/2AW−1/2 − χTχ, W = diag(w), and Øi =
√
wi/
∑

k wk is a row vector.

Proof: It can be verified that when wmax ≤ Kwmin and w ≫ log6(n), the condition

in [Chung et al. 2003, Theorem 5], namely, wmin ≫
√
w log3(n), is satisfied and hence the

result follows.

Lemma 6.5. For G(w) with wmax ≤ Kwmin, and w ≫ log6(n),

max(λ2(P),−λn(P)) = o(1) w.h.p.,

where P is Markov matrix.
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Proof: Recall that Q = D−1/2AD−1/2 is the normalized adjacency matrix. We want

to be able to bound the eigenvalues λi, i ≥ 2 of Q. We do this in two steps. Using Lemmas

6.1 and 6.3 we first show that if we replace the degree matrix D in the expression for Q

by the expected degree matrix W = E(D), the eigenvalues of the resulting matrix are close

to those of Q. Then, using Lemma 6.4 we show that the eigenvalues of W−1/2AW−1/2

roughly coincide with those of χTχ, which is a unit rank matrix and hence only has a

single non-zero eigenvalue. Thus we arrive at the result of Lemma 6.5. Now we give the

detailed proof.

The first step, ‖Q − W−1/2AW−1/2‖2= o(1) w.h.p. follows from Lemma 6.1 and the

same argument as in the last part of the proof of Theorem 2 in [Chung & Radcliffe 2011].

We present the steps in the derivation here for the sake of completeness.

Since the 2-norm of a diagonal matrix is the maximum diagonal in absolute value, we

have

‖W−1/2D1/2 − I‖2= max
{i=1,2,...}

∣∣∣∣∣

√
di
wi

− 1

∣∣∣∣∣ ≤ max
{i=1,2,...}

∣∣∣∣
di
wi

− 1

∣∣∣∣ = o(1), (6.10)

by Lemma 6.1. Also observe that

‖Q‖2= max
{i=1,2,...n}

|λi(Q)|= max
{i=1,2,...n}

|λi(P)|= 1. (6.11)

We now proceed to bound the norm of the difference ‖Q−W−1/2AW−1/2‖ as follows

‖Q−W−1/2AW−1/2‖2
= ‖Q−W−1/2D1/2D−1/2AD−1/2D1/2W−1/2‖2
= ‖Q−W−1/2D1/2QD1/2W−1/2‖2
= ‖Q−W−1/2D1/2Q+W−1/2D1/2Q−W−1/2D1/2QD1/2W−1/2‖2
(a)
= ‖(I−W−1/2D1/2)Q‖2+‖W−1/2D1/2Q(I−D1/2W−1/2)‖2
(b)
≤ ‖(I−W−1/2D1/2)‖2‖Q‖2+‖W−1/2D1/2‖2‖Q‖2‖I−D1/2W−1/2‖2
(c)
= o(1) + (1 + o(1))o(1) = o(1) w.h.p., (6.12)

where (a) follows from triangular inequality of norms, in (b) we used submultiplicativity

of matrix norms, and (c) follows from (6.10), (6.11) and the fact that ‖W−1/2D1/2‖2≤
‖I‖2+‖W−1/2D1/2 − I‖2= (1 + o(1)).

By Lemma 6.3 we have for any i,

|λi(Q)− λi(W
−1/2AW−1/2)|≤ ‖Q−W−1/2AW−1/2‖2= o(1), (6.13)

by (6.12). Furthermore, using Lemma 6.3 and the fact that λi(χ
Tχ) = 0 for i > 1, we have

for i ≥ 2,

|λi(W−1/2AW−1/2)|
= |λi(W−1/2AW−1/2)− λi(χ

Tχ)|≤ ‖W−1/2AW−1/2 − χTχ‖2
= o(1), (6.14)

where the last inequality follows from Lemma 6.4.

Now recall that max(λ2(P),−λn(P)) = max{i≥2}|λi(Q)|. We have for any i,

|λi(Q)|≤ |λi(Q)− λi(W
−1/2AW−1/2)|+||λi(W−1/2AW−1/2)|, (6.15)
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which implies from (6.13) and (6.14):

max
{i≥2}

|λi(Q)|= o(1).

Armed with these lemmas we now present the following corollary of Theorem 6.1 in

the case of Chung-Lu graphs.

Corollary 6.2. Let ‖v‖2 = O(1/
√
n), and α ∈ (0, 1). Then PageRank π of the Chung-Lu

graph G(w) can asymptotically be approximated in TV distance by π, defined in Theorem

6.1, if w ≫ log6(n) and wmax ≤ Kwmin for some K that does not depend on n.

Proof: Using Lemma 6.1 and the condition that wmax ≤ Kwmin, one can show that

∃K ′
s.t. dmax

dmin
≤ K

′
w.h.p. Then the result is a direct consequence of Lemma 6.5 and the

inequality from (6.9).

We further note that this result also holds for ER graphs G(n, pn) with n nodes

and edge probability pn such that npn ≫ log6(n), where we have (w1, w2, . . . wn) =

(npn, npn, . . . npn).

6.4.2 Element-wise Convergence of PageRank

In Corollary 6.2 we proved the convergence of PageRank in TV distance for Chung-Lu

random graphs. Note that since each component of PageRank could decay to zero as the

graph size grows to infinity, this does not necessarily guarantee convergence in an element-

wise sense. In this section, we provide a proof for our convergence conjecture to include

the element-wise convergence of the PageRank vector. Here we deviate slightly from the

spectral decomposition technique and eigenvalue bounds used hitherto, and instead rely on

well-known concentration bounds to bound the error in convergence.

Let Π = diag{π1, π2, . . . πn} be a diagonal matrix whose diagonal elements are made

of the components of the approximated PageRank vector and δ̃ = Π
−1

(π − π), i.e., δ̃i =

(πi − πi)/πi = εi/πi, where ε is the unnormalized error defined in Section 6.3. Then using

(6.8) we obtain

δ̃i =

(
(1− α)vi + α

di
vol(G)

)−1

D1/2

∑

j 6=1

αλj
1− αλj

uju
T
j D

−1/2v



i

.

Therefore, using v′ to denote nD−1/2v we can bound
∥∥∥δ̃
∥∥∥
∞

= maxi|δ̃i| as follows

∥∥∥δ̃
∥∥∥
∞

≤ 1

mini

(
(1− α)vi + α di

vol(G)

)

∥∥∥∥∥∥
D1/2

∑

j 6=1

αλj
1− αλj

uju
T
j D

−1/2v

∥∥∥∥∥∥
∞

(6.16)

≤
∑

i di/n

αdmin

√
dmax

∥∥∥∥∥∥

∑

j 6=1

αλj
1− αλj

uju
T
j v

′

∥∥∥∥∥∥
∞

. (6.17)

Here dmin denotes mini di. To obtain (6.17) we used the submultiplicativity property of

matrix norms, the fact that ‖D1/2‖∞=
√
maxi di =

√
dmax and the fact that vi ≥ 0, ∀i ∈ V.

Define Q̃ = Q−u1u
T
1 , the restriction of the matrix Q to the orthogonal subspace of u1.

Lemma 6.6. For a Chung-Lu random graph G(w) with expected degrees w1, . . . wn, where

wmax ≤ Kwmin and wmin ≫ log(n), we have w.h.p.,
∥∥∥Q̃v′

∥∥∥
∞

= o(1/
√
wmin),

when vi = O(1/n) ∀i.
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This lemma can be proven by a few applications of Lemma 6.1 and Bernstein’s concen-

tration inequality. To keep the train of thought intact, please refer to Appendix B.1 for a

detailed proof of this lemma.

In the next lemma we prove an upper bound on the infinity norm of the matrix S =

(I− αQ)−1.

Lemma 6.7. Under the conditions of Lemma 6.6, ‖S‖∞ ≤ C w.h.p., where C is a number

independent of n that depends only on α and K.

Proof: Note that S = (I − αQ)−1 = D−1/2(I − αP)−1D1/2. Therefore, ‖S‖∞ ≤√
dmax

dmin

∥∥(I− αP)−1
∥∥
∞ and the result follows since

∥∥(I− αP)−1
∥∥
∞ ≤ 1

1−α [Langville &

Meyer 2004] and using Lemma 6.1. Now we are in a position to present our main result

in this section.

Theorem 6.2. Let vi = O(1/n) ∀i, and α < 1. PageRank π converges element-wise to

π = (1 − α)v + αd/vol(G), in the sense that maxi (πi − πi)/πi = o(1) w.h.p., on the

Chung-Lu graph G(w) with expected degrees {w1, w2, . . . wn} such that wmin > logc(n) for

some c > 1 and wmax ≤ Kwmin, for some K, a constant independent of n.

Proof: Define Z =
∑

i 6=1
αλi

1−αλi
uiu

T
i . We then have:

Z =

n∑

i=1

αλi
1− αλi

uiu
T
i − α

1− α
u1u

T
1

= (I− αQ)−1αQ− α

1− α
u1u

T
1

= S

[
αQ− α

1− α
(I− αQ)u1u

T
1

]

= αSQ̃ (6.18)

Now from (6.17) we have

∥∥∥δ̃
∥∥∥
∞

≤ C

∑
i di/n

dmin

√
dmax‖SQ̃v

′‖∞
(a)
≤ C

∑
i di/n

dmin

√
dmaxo(1/

√
wmin)

≤ C
dmax

dmin

√
wmax(1 + o(1))

1√
wmin

o(1)

= C
wmax

wmin

√
wmax

wmin
(1 + o(1))o(1)

= C

(
wmax

wmin

) 3
2

o(1)

≤ Co(1) w.h.p.,

where in (a) we used (6.18) and Lemmas 6.6 and 6.7. The rest of the inequalities are

obtained by repeatedly using the fact that dmax = wmax(1+o(1)) and dmin = wmin(1+o(1)),

from Lemma 6.1. The last step follows from the assumption that wmax ≤ Kwmin for some

constant K.

Corollary 6.1 (ER Graphs). For an ER graph G(n, pn) such that npn ≫ log(n), we have

that asymptotically the personalized PageRank π converges pointwise to π for v such that

vi = O(1/n).
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6.5 Asymptotic PageRank for the Stochastic Block

Model

In this section, we extend the analysis of PageRank to Stochastic Block Models (SBM)

with constraints on average degrees. The SBM is a random graph model that reflects the

community structure prevalent in many online social networks. It was first introduced in

[Holland et al. 1983] and has been analyzed subsequently in several works, specifically in the

community detection literature, including [Condon & Karp 1999], [Karrer & Newman 2011],

[Rohe et al. 2011] and several extensions thereof as in [Heimlicher et al. 2012] and [Zhao

et al. 2012], and the references therein.

For the sake of simplicity we focus on an SBM graph with two communities, but the

idea of the proof extends easily to generalizations of this simple model.

Definition 6. [Stochastic Block Model (SBM) with two communities]: An SBM graph

G(m,n−m, p, q) with two communities is an undirected graph on a set of disjoint vertices

C1, C2 such that C1∪C2 = V, and let |C1|= m and |C2|= n−m. Furthermore, if two vertices

i, j ∈ Ck, k = 1, 2, then P((i, j) ∈ E) = p, if i ∈ C1 and j ∈ C2, then P((i, j) ∈ E) = q.

The probabilities p, q may scale with n and we assume that m > n/2 and p > q; this last

assumption is necessary for modeling the community structure of a network.

Remark: For the sake of simplicity, we assume that the edge probabilities within both

communities are equal to p, but this is a minor assumption and can be generalised so that

community 1 has a different edge probability to community 2.

For an SBM graph we use wmax and wmin to denote the maximum and the minimum

expected degrees of the nodes respectively. From Definition 6, by our assumption on m, p

and q, we have wmax = mp + (n −m)q and wmin = (n −m)p +mq. Note that our results

only depend on these two parameters. We present our main result on SBM graphs in the

following theorem.

Theorem 6.3. For a Stochastic Block Model with wmin = ω(log3(n)) and wmax

wmin
≤ C,

PageRank with preference vector v such that ‖v‖2= O( 1√
n
) satisfies

‖π − πSBM‖TV= o(1)

w.h.p., where

πSBM = (1− α)
(
I− αP

)−1
v. (6.19)

Here P represents the “average” Markov matrix given as P = AW−1 where W = E(D)

and A = E(A).

Discussion: Let us look at the permissible values of m, p, q under the assumptions in the

above theorem. Recall that we have wmin = (n−m)p+mq > nq. Therefore the condition

on the growth of minimum expected degree is met, for example, if q = ω(log3(n)/n). On

the other hand we have

wmax

wmin
=
mp+ (n−m)q

(n−m)p+mq
=

m
n−m

p
q + 1

m
n−m + p

q

,

which remains bounded if either m/(n−m) or p/q tends to infinity, but not both.

The following corollary of Theorem 6.3 gives an interesting expression for PageRank for

an SBM graph with two equal-sized communities.
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Corollary 6.2. For an SBM graph as in Definition 6, with m = n/2, (n assumed to be

even) such that p + q ≫ log3(n)/n the PageRank vector π with preference vector v such

that ‖v‖2= O( 1√
n
) satisfies

‖π − πSBM‖TV → 0

w.h.p as n→ ∞ where

πSBM = α
1

n
1+ (1− α)

(
v +

αβ

1− αβ
(vTu)u

)
, (6.20)

where β := p−q
p+q , and u ∈ R

n is a unit vector such that ui =
1√
n
, for i ∈ C1 and ui = − 1√

n

for i ∈ C2.

Proof: With equal-sized communities, i.e., m = n/2, we have wmax = wmin = n
2 (p+ q).

Therefore the conditions of Theorem 6.3 are satisfied if p+q ≫ log3(n)/n. Observe that the

expected adjacency matrix can be written as A = p+q
2 11T + n

2 (p − q)uuT . Furthermore,

W = n
2 (p + q)I. Therefore P = AW−1 = 1

n11
T + p−q

p+quu
T . From (6.19), the asymptotic

PageRank πsbm is therefore given as

πsbm = αPπsbm + (1− α)v.

Consequently, πsbm = α
n1+αβuu

Tπsbm+(1−α)v, or
[
I− αβuuT

]
πsbm = α

n1+(1−α)v.
By Woodbury Matrix Inversion Lemma in [Horn & Johnson 2012],

[
I− αβuuT

]−1
= I +

αβ
1−αβuu

T . Hence we obtain πsbm = α
n1 + (1 − α)

(
v + αβ

1−αβ (u
Tv)u

)
, using the fact that

u and 1 are orthogonal vectors. The above corollary asserts

that on an SBM matrix the PageRank is well approximated in the asymptotic regime of

large graph size by the convex combination of the uniform probability vector 1
n1, which is

the asymptotic stationary distribution of a simple random walk on the SBM graph, and a

linear combination of the preference vector v and the projection of the preference vector

onto the community partitioning vector u. Thus in this simple scenario of SBM graphs

with equally sized communities, we observe that PageRank incorporates information about

the community structure, in the form of a term correlated with the partition vector u, as

opposed to the usual random walk, which misses this information. It can also be inferred

from (6.20) that if the correlation between the preference vector v and u is large, e.g., when

the seed set of PageRank is chosen to be in one of the communities, the resulting PageRank

will display a clear delineation of the communities. This provides a mathematical rationale

for why PageRank works for semi-supervised graph partitioning [Avrachenkov et al. 2012],

at least in the asymptotic regime.

To prove Theorem 6.3 we need the following Lemmas, whose proofs are given in Ap-

pendix B.2.

Lemma 6.8. For an SBM graph G(m,n−m, p, q), when wmin = ω(log3(n)) it can be shown

that for some C,

max
1≤i≤n

∣∣∣∣
Di

E(Di)
− 1

∣∣∣∣ ≤ C

√
log(n)

wmin
w.h.p.

The proof of this lemma follows from applying Bernstein’s concentration lemma to the

degrees of SBM graph. The proof is given in Appendix B.2.1.

For ease of notation, let Q = W−1/2
E(A)W−1/2, where W = E(D). As before Q =

D1/2AD1/2. We need the following concentration result on Q.
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Lemma 6.9. For an SBM graph for which wmin = ω(log3(n)), and wmax

wmin
≤ C for some C,

it can be shown that

‖Q−Q‖2= C

√
log(n)wmax

wmin
= o(1)

w.h.p.

We prove this lemma in Appendix B.2.2.

Proof of Theorem 6.3: We write the error between π and π as follows

δ = π − π

= (1− α)
[
D1/2(I− αQ)−1D−1/2 −W1/2(I− αQ)−1W−1/2

]
v

= (1− α)

[
W1/2

(
(I− αQ)−1 − (I− αQ)−1

)
W−1/2

]
v+

(1− α)

[
D1/2(I− αQ)−1D−1/2 −W1/2(I− αQ)−1W−1/2

]
v, (6.21)

where in the last equality we added and subtracted W1/2(I−αQ)−1W−1/2 and reordered

terms. Now we analyse the two terms in square brackets in the last equality in (6.21), which

we denote T1 and T2, respectively. Notice that we have ‖δ‖1≤ ‖T1‖1+‖T2‖1. Next we show

that as n→ ∞, ‖T1‖1 and ‖T2‖1 are o(1) separately and consequently we obtain the result

of the theorem.

Let us first consider T1. We have

T1 = (1− α)

[
W1/2

(
(I− αQ)−1 − (I− αQ)−1

)
W−1/2

]
v

= (1− α)W1/2(I− αQ)−1
(
Q−Q

)
(I− αQ)−1W−1/2v,

which we obtained by factoring out (I− αQ)−1 and (I− αQ)−1 on the left and right sides

of the square brackets. Next we focus on the 2-norm of T1.

‖T1‖2
(a)
≤ (1− α)

√
wmax‖(I− αQ)−1‖2‖Q−Q‖2‖(I− αQ)−1‖2

1√
wmin

‖v‖2

(b)
≤ 1

1− α

√
wmax

wmin
‖Q−Q‖2‖v‖2

(c)
≤ C

√
log(n)wmax

wmin
√
n

= C

√
log(n)

nwmax

wmax

wmin
.

This proves ‖T1‖1≤
√
n‖T1‖21 ≤ C

√
log(n)
wmax

wmax

wmin
= o(1), from the assumptions of the the-

orem. Here in (a) we used the submultiplicative property of matrix norms and the fact

that 2-norm of diagonal matrices is the maximum diagonal element in magnitude. The

inequality (b) follows because ‖(I−αQ)−1‖2≤ 1
1−α and ‖(I−αQ)−1‖2≤ 1

1−α and step (c)

follows from Lemma 6.9 and the assumption that ‖v‖2= O(1/
√
n).

1By Cauchy Schwartz inequality on norms.
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Next we analyse the second term T2. For ease of notation we denote R̃ =

W1/2 (I− αQ)
−1

W−1/2. Then by simple algebraic manipulations

T2 = (1− α)
[
D1/2 (I− αQ)

−1
D−1/2 −W1/2 (I− αQ)

−1
W−1/2

]
v

= (1− α)
(
D1/2W−1/2R̃W1/2D−1/2 − R̃

)
v

= (1− α)
(
D1/2W−1/2R̃

(
W1/2D−1/2 − I

)
+
(
D1/2W−1/2 − I

)
R̃
)
v,

where the last step is obtained by adding and subtracting D1/2W−1/2R̃.

Now we have ‖D1/2W−1/2 − I‖2= maxi

∣∣∣
√

di

wi
− 1
∣∣∣ ≤ maxi

∣∣∣ di

wi
− 1
∣∣∣ ≤ C

√
log(n)
wmin

w.h.p.

by Lemma 6.8 and similarly ‖D1/2W−1/2‖2≤ ‖D1/2W−1/2 − I‖2+‖I‖2≤ C
√

log(n)
wmin

+ 1.

In addition ‖W1/2D−1/2 − I‖2= maxi

∣∣∣
√

wi

di
− 1
∣∣∣ ≤ maxi

∣∣∣wi

di
− 1
∣∣∣ . It can be shown that

since maxi

∣∣∣ di

wi
− 1
∣∣∣ ≤ C

√
log(n)
wmin

w.h.p. (by Lemma 6.8), then maxi

∣∣∣wi

di
− 1
∣∣∣ ≤ C

√
log(n)
wmin

w.h.p.2 Therefore ‖W1/2D−1/2‖2≤ ‖W1/2D−1/2 − I‖2+‖I‖2≤ C
√

log(n)
wmin

+1 w.h.p. Using

the above facts and denoting δ = C
√

log(n)
wmin

we obtain

‖T2‖2 ≤
(
‖D 1

2W− 1
2 ‖2‖R̃‖2‖W

1
2D− 1

2 − I‖2+‖D 1
2W− 1

2 − I‖2‖R̃‖2
)
‖v‖2

≤ C(δ(δ + 1)
1

1− α
+ δ)

1

1− α

√
wmax

nwmin
(6.22)

≤ Cδ

√
wmax

nwmin
w.h.p. (6.23)

Hence we have ‖T2‖1≤
√
n‖T2‖2≤ Cδ

√
wmax

wmin
w.h.p., which from our assumptions is o(1).

Here in (6.22) we used the fact that

‖R̃‖2= ‖W1/2 (I− αQ)
−1

W−1/2‖2≤
√
wmax

wmin
‖I− αQ‖2≤

1

1− α

√
wmax

wmin
≤ C,

and that ‖v‖2≤ C/
√
n, for some C. Remark: This method of proof can

be extended to similar models like the Stochastic Block Model with multiple communities

and their generalizations, e.g., Random Dot Product Graphs [Athreya et al. 2013].

6.6 Experimental Results

In this section, we provide experimental evidence to further illustrate the analytic results

obtained in the previous sections. In particular, we simulated ER graphs with pn = C log7(n)
n

and Chung-Lu graphs with the degree vector w sampled from a geometric distribution so

that the average degree w = cn1/3, clipped such that wmax = 7wmin, for various values of

graph size, and plotted the maximum of normalized error δ̃ and TV distance error ‖δ‖1,
respectively, in Figures 6.1 and 6.2. As expected, both these errors decay as functions of n,

which illustrates that the PageRank vector does converge to the asymptotic value.

2This follows since we can write di
wi

= 1 + ηi, with maxi|ηi|= O

(

√

log(n)
wmin

)

= o(1) w.h.p., then

wi
di

= 1
1+ηi

= 1− ηi +O(η2i ), hence maxi|wi
di

− 1|= O(maxi|ηi|) = O

(

√

log(n)
wmin

)

= o(1) w.h.p.
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Figure 6.1: Log-log plot of maximum normalized error for ER and Chung-Lu graphs
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Figure 6.2: Log-log plot of TV distance error for ER and Chung-Lu graphs
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Figure 6.3: Log-log plot of TV distance and maximum error for power-law graphs

In the spirit of further exploration, we have also conducted simulations on power-law

graphs with exponent β = 4 using the Chung-Lu graph model with wi = ci−1/(β−1), for

i0 ≤ i ≤ n+ i0 with

c =
β − 2

β − 1
dn1/(β−1),

i0 = n

[
d(β − 1

m(β − 2)

]

Please refer to [Chung et al. 2003] for details. We set max degree m = n1/3 and average

degree d = n1/6. In Figure 6.3 we observe that for this graph the max-norm of the relative

error does not converge to zero. On the other hand the TV-norm seems to converge to

zero with graph size, albeit very slowly. Note that these graphs satisfy Property 2 [Chung

et al. 2003], but they do not satisfy Property 1. Therefore at this point, it is not possible

to conclude whether the assumption of bounded variation of degrees is necessary for the

convergence to hold. It might be interesting to investigate in detail the asymptotic behavior

of PageRank in undirected power-law graphs.

Furthermore, we also see that in the case v = ei, the standard unit vector, for some i

we do not have the conjectured convergence, as can be seen on Figure 6.4 in the case of

ER graphs. It can also be seen from our analysis that if vk = 1 for some k, the quantity∥∥∥Q̃D−1/2v
∥∥∥
∞
, becomes:

max
i

∣∣∣∣∣∣

∑

j

(
Aij√
didj

−
√
didj∑
l dl

)
vj/
√
dj

∣∣∣∣∣∣
= max

i

1√
didk

∣∣∣∣Aik − didk∑
l dl

∣∣∣∣ ,

which is O
(

1√
wminwk

)
and does not fall sufficiently fast. We simulated an SBM matrix

with two communities of equal size, with p = 0.1 and q = 0.01. In Figure 6.5 we plot the

maximum normalized error and the TV-distance error against graph size on a log-log plot.

As expected both errors go to zero for large graph sizes.
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Figure 6.5: Log-log plot of maximum normalized error and TV-distance error for an SBM
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6.7 Conclusions

In this work, we have shown that when the size of a graph tends to infinity, the PageRank

vector lends itself to be approximated by a mixture of the preference vector and the degree

distribution, for a class of undirected random graphs including the Chung-Lu graph. We

expect that these findings will shed more light on the behaviour of PageRank on undirected

graphs, and possibly help to optimize the PageRank operation, or suggest further modifica-

tions to better capture local graph properties. We also obtain an asymptotic expression for

the PageRank on SBM graphs. It is seen that this asymptotic expression contains informa-

tion about community partitioning in the simple case of SBM with equal-sized communities.

It would be interesting to study the implications of our results for community detection al-

gorithms.





Chapter 7

Random-walk based methods for

network average function

estimation

7.1 Introduction

The prohibitive sizes of most practical networks make graph-processing that requires com-

plete knowledge of the graph impractical. For instance, social networks like FacebookTMand

TwitterTMhave billions of edges and nodes. We address the problem of estimating global

properties of such a large network. Some examples of potentially interesting properties

include the size of the support base of a certain political party, the average age of users in

an Online Social Network (OSN), the proportion of male-female connections with respect

to the number of female-female connections in an OSN, and many others. Naturally, since

graphs can be used to represent data in myriad disciplines and scenarios, finding a good

estimate of graph function averages is of utmost importance.

Graph sampling can be used to solve the above problem. To collect information from an

OSN, the sampler issues an Application Programming Interface (API) query for a particular

user, which returns its one-hop neighborhood and the content published by that user.

Though some OSNs, for instance Twitter, allow access to the complete database at an

additional expense, we focus here on the typical case where a sampler can get information

only about the neighbors of a particular user by means of API queries. There are several

ways to collect representative samples in a network. One straightforward approach is to

collect independent samples via uniform node or edge sampling. However, uniform sampling

is not efficient because we do not know the user ID space beforehand. Consequently, the

sampler may waste samples issuing invalid IDs, resulting in an inefficient and costly data

collection method. Moreover, OSNs typically impose rate limitations on API queries, for

e.g., Twitter with 313 million active users enforces a limit of a maximum of 15 requests in

a 15-minute time window, for most of APIs.1 We therefore resort to other, mostly random

walk-based, techniques.

Important Notation and Problem Formulation

Let G = (V,E) be an undirected labeled network, with node set V and edge set E ⊆ V ×V.
Although the graph is undirected, in later use it would be more convenient to represent

edges by ordered pairs (u, v). Of course, if (u, v) ∈ E, it holds that (v, u) ∈ E, since G is

undirected. With a slight abuse of notation, |E| denotes the total number of undirected

edges.

Both edges and nodes can have function values defined on them. For instance, in an

OSN, nodes are people, and the node function can be the age or number of friends and the

1https://dev.twitter.com/rest/public/rate-limits

https://dev.twitter.com/rest/public/rate-limits
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edge function can be an indicator function when the end points of the edge are of same

gender, if we are interesting in studying these properties.

Let us denote by g : V → R, where R is the real number space, a function on the vertices

of the graph. We aim to estimate the following network function average:

ν(G) =
1

|V |
∑

u∈V

g(u). (7.1)

The constraint on the estimator is that it does not know the whole graph, and can only

traverse the graph locally in steps. It does this by issuing API requests, where each API

request furnishes the function value g(·) at the queried node and the list of its neighbors.

Let ν̂
(n)
XY(G) be our estimate of ν(G) formed from n samples using the scheme XY. We will

occasionally drop the sub and superscripts whenever these are clear from the context.

A simple RW on a graph offers a viable solution to this problem that respects the above

constraints. From an initial node, a simple RW proceeds by choosing one of the neighbors

uniformly randomly. In general, a RW need not sample the neighbors uniformly and can

take any transition probability compliant with the underlying graph, an example being

the Metropolis-Hastings (MH) schemes [Robert & Casella 2013]. Random walk techniques

are well-known (see, for instance, [Cooper et al. 2013, Massoulié et al. 2006, Avrachenkov

et al. 2016, Nazi et al. 2015, Goel & Salganik 2009, Salganik & Heckathorn 2004, Volz &

Heckathorn 2008, Gjoka et al. 2010, Dasgupta et al. 2014, Ribeiro & Towsley 2010] and

references therein).

A drawback of random walk techniques is that they all suffer from the problem of

initial burn-in, i.e., a number of initial samples roughly equivalent to the mixing time or

burn-in time of the RW need to be discarded to get samples from the desired probability

distribution. This poses serious limitations, especially in view of the stringent constraints

on the number of samples imposed by API query rates. In addition, near-by samples of a

RW are obviously not independent. To get independent samples, it is customary to take

only samples apart by the mixing time and drop others [Levin et al. 2009]. In this work,

we focus on RW-based algorithms that bypass this burn-in time barrier. We focus on two

methods: Reinforcement learning and tour-based Ratio-estimator.

Related Work and Contributions

The literature on RW-based sampling techniques is rich and diverse. The estimation

techniques in [Cooper et al. 2013, Massoulié et al. 2006, Avrachenkov et al. 2016, Nazi

et al. 2015] also propose methods to avoid the burn-in time drawback of random walks.

The works [Cooper et al. 2013, Massoulié et al. 2006, Avrachenkov et al. 2016] are based

on the idea of a random walk tour, which is a sample path of a random walk starting

and ending at a fixed node. In [Massoulié et al. 2006], the authors estimate the size of

a network based on the return times of RW tours. In [Cooper et al. 2013], the authors

estimate the number of triangles, network size, and subgraph counts from weighted random

walk tours using the results of Aldous and Fill [Aldous & Fill 2002, Chapters 2-3]. The

work [Avrachenkov et al. 2016] extends these results to edge functions, provides real-time

Bayesian guarantees for the performance of the estimator, and introduced some hypothesis

tests using the estimator.

Instead of the estimators for the sum function of the form
∑

u∈V g(u) proposed in these

previous works, here we study the average function (7.1). Walk-Estimate proposed in [Nazi

et al. 2015] aimed to reduce the overhead of burn-in period by considering short random

walks and then using acceptance-rejection sampling to adjust the sampling probability

of a node with respect to its stationary distribution. This work requires an estimate of
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probability of hitting a node at time t, which introduces a computational overhead. It also

needs an estimate of the graph diameter to work correctly. Our algorithms are completely

local and do not require these global inputs.

There are also specific random walk methods tailored for certain forms of function

g(v) or criterion, for e.g., in [Dasgupta et al. 2014] the authors developed an efficient

estimation technique for estimating the average degree, and Frontier sampling in [Ribeiro

& Towsley 2010] introduced dependent multiple random walks in order to reduce estimation

error.

Two well-known techniques for estimating network averages ν(G) are the Metropolis-

Hastings MCMC (MH-MCMC) scheme [Brémaud 2013,Gjoka et al. 2010,Nummelin 2002,

Robert & Casella 2013] and Respondent-Driven Sampling (RDS) [Goel & Salganik 2009,Sal-

ganik & Heckathorn 2004,Volz & Heckathorn 2008]. In our work, we present a theoretical

comparison of the mean-squared error of these two estimators. It has been observed that

RDS outperforms MH-MCMC in terms of asymptotic error in many practical cases. We con-

firm this observation by deriving theoretical expressions for the asymptotic mean-squared

errors of the two estimators. We introduce a novel estimator for the network average based

on reinforcement learning (RL). Using simulations on real networks, we demonstrate that,

with a good choice of cooling schedule, RL can achieve similar asymptotic error perfor-

mance to RDS but its trajectories have smaller fluctuations. Finally, we extend RDS to

accommodate the idea of regeneration during revisits to a node or to a ‘super-node’, formed

by aggregating several nodes, and propose the Ratio with Tours Estimator (RT) estimator,

which does not suffer from burn-in period constraints and significantly outperforms the

RDS estimator.

Notational Conventions

Expectation w.r.t. to the MC given initial distribution η is denoted by Eη, and if this

distribution degenerates at a particular node j, the expectation is Ej . By L(X) we mean

the law or the probability distribution of a random variable. The stationary distribution

is denoted by the row vector π. In this chapter, P represents the row-symmetric Markov

matrix. Let us define the fundamental matrix of a Markov chain as Z := (I−P+ 1~π⊺)−1

[Brémaud 2013]. For two functions f, g : V → R, we define σ2
ff := 2〈f ,Zf〉π − 〈f , f〉π −

〈f ,1~π⊺f〉π, and σ2
fg := 〈f ,Zg〉π+〈g,Zf〉π−〈f ,g〉π−〈f ,1~π⊺g〉π, where 〈x,y〉π :=

∑
i xiyiπi,

for any two vectors x,y ∈ R
|V|×1, where we used f to denote the function f as a vector

indexed by the graph vertices.

7.2 MH-MCMC and RDS estimators

The utility of RW based methods comes from the fact that for any initial distribution ν,

as time progresses, the sample distribution of the RW at time t starts to resemble a fixed

distribution, which we call the stationary distribution of the RW, denoted by π.

We will study mean squared error and asymptotic variance of random walks based

estimators in this chapter. For this purpose, following extension of the central limit theorem

for Markov chains plays a significant role:

Theorem 7.1 ( [Roberts & Rosenthal 2004]). Let f be a real-valued function f : V 7→ R

with Eπ[f
2(X0)] < ∞. For a finite irreducible Markov chain {Xn, n ≥ 0} with stationary

distribution π,

√
n

(
1

n

n−1∑

k=0

f(Xk)− Eπ[f(X0)]

)
D−→ N (0, σ2

f ),
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irrespective of the initial distribution, where

σ2
f = lim

n→∞
n× E



{
1

n

n−1∑

k=0

f(Xk)− Eπ[f(X0)]

}2



:= lim
n→∞

1

n
Var

[
n−1∑

k=0

f(Xk)

]
. (7.2)

Note that both the above theorems hold for finite periodic chains also (with the existence

of unique solution to ~π⊺P = ~π⊺).

By [Brémaud 2013, Theorem 6.5] σ2
f in Theorem 7.1 is the same as σ2

ff . We will also

need the following theorem.

Theorem 7.2 ( [Nummelin 2002, Theorem 3]). If f, g are two functions defined on the

states of a random walk, define the vector sequence ~Zk =

[
f(Xk)

g(Xk)

]
the following central

limit theorem holds

√
n

(
1

n

n∑

k=1

~Zk − Eπ(~Zk)

)
D−→ Normal(0, ~Σ),

where ~Σ is 2× 2 matrix such that ~Σ11 = σ2
ff ,

~Σ22 = σ2
gg and ~Σ12 = ~Σ21 = σ2

fg.

Function average from RWs

The simple RW is biased towards higher degree nodes and by Theorem 7.1, the sample

averages converge to the stationary average. Hence if the aim is to estimate an average

function (7.1), the RW needs to have uniform stationary distribution. Alternatively the RW

should be able to unbias it locally. In order to obtain the average, we modify the function g

by normalizing by the vertex degrees to get g′(u) = g(u)/~πu, where πu = du/(2|E|). Since

~π(u) contains |E| and the knowledge of |E| is not available to us initially, it also needs to

be estimated. To overcome this problem, we consider the following variation of simple RW.

7.2.1 Metropolis-Hastings random walk

We review here the Metropolis Hastings MCMC (MH-MCMC) algorithm. When the chain

is in state i, it chooses the next state j according to transition probability pij . It then

jumps to this state with probability qij or remains in the current state i with probability

1− qij , where qij is given as below

qij =

{
min

(
pji

pij
, 1
)

if pij > 0,

1 if pij = 0.
(7.3)

Therefore the effective jump probability from state i to state j is qijpij , when i 6= j. It

follows then that such a process represents a Markov chain with the following transition

matrix PMH

PMH
ij =





1
max(di,dj)

if (i, j) ∈ E

1−∑k 6=i
1

max(di,dk)
if i = j

0 if (i, j) /∈ E, i 6= j.
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This chain is reversible with stationary distribution π(i) = 1/n ∀i ∈ V . Therefore the

following estimate for ν(G) using MH-MCMC, where {Xn} are MH-MCMC samples, is

asymptotically consistent.

ν̂
(n)
MH(G) =

1

n

n∑

k=1

g(Xk).

By using Theorem 7.1, we can show the following central limit theorem for MH-MCMC.

Proposition 7.1 (Central Limit Theorem for MH-MCMC). For MCMC with uniform

target stationary distribution it holds that

√
n
(
ν̂
(n)
MH(G)− ν(G)

)
D−→ Normal(0, σ2

MH),

as n → ∞, where σ2
MH = σ2

gg = 2
|V |~g

⊺ZMH~g − 1
|V |~g

⊺~g −
(

1
|V |~g

⊺1
)2

, where ZMH = (I −
PMH + 1

|V |11
⊺)−1.

7.2.2 Respondent driven sampling technique (RDS-technique)

The estimator with respondent driven sampling uses the simple RW on graphs but applies

a correction to the estimator to compensate for the non-uniform stationary distribution.

ν̂
(n)
RDS(G) =

∑n
k=1 g(Xk)/d(Xk)∑n

k=1 1/d(Xk)
(7.4)

We define hnm(Xk) := g(Xk)/d(Xk), hdm(Xk) := 1/d(Xk).

The asymptotic unbiasedness derives from the Ergodic Theorem and also as a conse-

quence of the CLT given below.

Now we have the following CLT for the RDS Estimate.

Proposition 7.2. The RDS estimate ν̂
(n)
RDS(G) satisfies a central limit theorem given below

√
n
(
ν̂
(n)
RDS(G)− ν(G)

)
D−→ Normal(0, σ2

RDS),

where σ2
RDS is given by

σ2
RDS = d2av

(
σ2
1 + σ2

2ν
2(G)− 2ν(G)σ2

12

)
,

where σ2
1 = 1

|E|
∑

i,j∈V giZijgj/dj − 1
2|E|

∑
i∈V

gi
di

− ( 1
2|E|

∑
i∈V gi)

2, σ2
2 =

1
|E|
∑

i,j∈V Zij/dj − 1
2|E|

∑
i

1
di

− ( 1
dav

)2, σ2
12 = 1

2|E|
∑

i,j∈V giZij/dj +
1

2|E|
∑

i,j∈V Zij/di −
1

2|E|dav

∑
i gi

Proof. Define the vector zt =

[
hnm(xt)

hdm(xt)

]
, and let z̃n =

√
n
(
1
n

∑n
t=1 zt − Eπ(zt)

)
. Then by

Theorem 7.2, z̃n
D−→ Normal(0,Σ), where Σ is the correlation matrix, whose formula given

in Theorem 7.2. Let z̃n = (z̃1n, z̃
2
n). Then we have

∑n
t=1 hnm(xt)∑n
t=1 hdm(xt)

=

1√
n
z̃1n + µhnm

1√
n
z̃2n + µhdm

=
z̃1n +

√
nµhnm

z̃2n +
√
nµhdm

=
z̃1n +

√
nµhnm√

nµhdm
(1 +

z̃2
n√

nµhdm

)
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=
1√

nµhdm

(z̃1n − z̃1nz̃
2
n√

nµhdm

+
√
nµhnm

− z̃2nµhnm

µhdm

+Op(
1√
n
)),

where Op(
1√
n
) is a term that goes to zero in probability at least as fast as 1√

n
, and

µhnm
, µhdm

are respectively Eπ(hnm) and Eπ(hdm). Then

lim
n→∞

L
(
√
n

(∑n
t=1 f

′
(Xt)∑n

t=1 g(Xt)
−
µf ′

µg

))
= lim

n→∞
L
(

1

µg

(
z̃1n − z̃2n

µf ′

µg

))
, (7.5)

by Slutsky’s lemma [Billingsley 2008]. The result then follows since (z̃1n, z̃
2
n) converges to

jointly gaussian rv, and by continuous mapping theorem.

7.2.3 Comparing Random Walk Techniques

Two random walks can be compared in many ways. Two prominent techniques are in terms

of their mixing times tmix and the asymptotic variance σ2
f (7.2) of the average estimator.

Mixing time is relevant in the situations where the speed at which the RW approaches

the stationary distribution matter. But many MCMC algorithms discard some initial sam-

ples (called burn-in period) to mitigate the dependence on the initial distribution and this

amounts to the mixing time. After the burn-in period, the number of samples needed for

achieving a certain estimation accuracy can be determined from the gaussian approxima-

tion given by the central limit theorem (see Theorem 7.1). Hence another measure for

comparison of the random walks is the asymptotic variance in the gaussian approximation.

The lower the asymptotic variance, the smaller the number of samples needed for a certain

estimation accuracy. Many authors consider asymptotic unbiasedness as the principal pa-

rameter to compare RW based estimators. For instance, the authors in [Lee et al. 2012]

prove that non-backtracking random walks perform better than the simple RW and MH-

MCMC methods in terms of the asymptotic variance of the estimators. The asymptotic

variance can be related to the eigenvalues of P as follows,

σ2
f =

|V |∑

i=2

1 + λPi
1− λPi

|〈f,ui〉π|
2
,

where 〈x,y〉π =
∑

i∈V ~xi~yi~πi [Brémaud 2013, Chapter 6]. When the interest is in the speed

of convergence to equilibrium, then only the second-largest eigenvalue modulus matters.

However, if the aim is to compute Eπ[f(X0)] as the ergodic mean limn→∞ 1
n

∑n
k=1 f(Xk),

then all the eigenvalues become significant and this is captured when the quality of the

ergodic estimator is measured by the asymptotic variance.

7.3 Network Sampling with Reinforcement Learning

(RL-technique)

We will now introduce a reinforcement learning approach based on stochastic approxima-

tion to estimate ν(G). The underlying idea relies on the idea of tours and regeneration

introduced in [Avrachenkov et al. 2016,Cooper et al. 2013,Massoulié et al. 2006]. We will

compare the mean squared error of the new estimator with that of MH-MCMC and RDS,

and see how the stability of the sample paths can be controlled.
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7.3.1 Estimator

Let V0 ⊂ V with |V0|<< |V |. We assume that the nodes inside V0 is known beforehand.

Consider a simple random walk {Xn} on G with transition probabilities p(j|i) = 1/d(i)

if (i, j) ∈ E and zero otherwise. A random walk tour is defined as the sequence of nodes

visited by the random walk during successive return to the set V0. Let τn := successive

times to visit V0 and let ξk := τk − τk−1. We denote the nodes visited in the kth tour as

X
(k)
1 , X

(k)
2 , . . . , X

(k)
ξk

. Note that considering V0 helps to tackle a disconnected graph2 with

RW theory and makes tours shorter. Moreover the tours are independent to each other

and the implementation can be made massively parallel. The estimators derived below

and later in Section 7.4 exploit the independence of the tours and the result that expected

sum of functions of nodes visited in a tour is proportional to
∑

u∈V g(u) [Avrachenkov

et al. 2016, Lemma 3].

Define Yn := Xτn . Then {(Yn, τn)} is a semi-Markov process on V0 [Ross 2013, Chap-

ter 5]. In particular, {Yn} is a Markov chain on V0 with transition probability matrix, say

[pY (j|i)]. We have ξ1 := min{n > 0 : Xn ∈ V0}. For a prescribed g : V 7→ R, define

Ti := Ei[ξ1],

h(i) := Ei

[
ξ1∑

m=1

g(Xm)

]
, i ∈ V0.

Consider an average cost Markov decision problem (MDP), then the Poisson equation for

the semi-Markov process {(Yn, τn)} is [Ross 2013, Chapter 7]

V(i) = h(i)− βTi +
∑

j∈V0

pY (j|i)V(j), i ∈ V0, (7.6)

which is to be solved for the pair (V, β), where V : V0 7→ R and β ∈ R. Under mild

conditions, (7.6) has the solution (V ∗, β∗). The optimal β∗ is the average expected cost

stationary average of g, Eπ[g(X1)] [Ross 2013, Theorem 7.6].

In the following, we provide numerical ways to solve (7.6). This could be achieved

using the classical MDP methods like relative value iteration; instead we look for solutions

from reinforcement learning in which the knowledge of transition probability [pY (j|i)] is not

needed. Stochastic approximation provides a simple and easily tunable solution as follows.

The relative value iteration algorithm to solve (7.6) is

Vn+1(i) = h(i)− Vn(i0)Ti +
∑

j

pY (j|i)Vn(j). (7.7)

We can implement this using stochastic approximation as follows. Let {Zn, n ≥ 1} be i.i.d.

uniform on V0. Construct a tour for n ≥ 1 by starting a simple RW X
(n)
i , i ≥ 0, with

X
(n)
0 = Zn and observing its sample path until it returns to V0.

A learning algorithm for (7.6) along the lines of [Abounadi et al. 2001] then is, for i ∈ V0,

Vn+1(i) = Vn(i) + a(n)χ(z = i)×[(
ξn∑

m=1

g(X(n)
m )

)
− Vn(i0)ξn + Vn(X

(n)
ξn

)− Vn(i)

]
, (7.8)

2The underlying Markov chain of the RW requires to be irreducible in order to apply many results of
the RWs and this is satisfied when the graph is connected. In case of a disconnected graph, taking at least
one seed node from each of the components to form V0 helps to achieve this.



114
Chapter 7. Random-walk based methods for network average function

estimation

where a(n) > 0 are stepsizes satisfying
∑

n a(n) = ∞,
∑

n a(n)
2 < ∞. (One good choice

is a(n) = 1/⌈ n
N ⌉ for N = 50 or 100.) Also, i0 is a prescribed element of V0. One can use

other normalizations in place of Vn(i0), such as 1
|V0|

∑
j Vn(j) or mini Vn(i), see e.g., [Borkar

et al. 2014]. Then this normalizing term (Vn(i0) in (7.8)) converges to β∗, Eπ[g(X1)], as n

increases to ∞.

Taking expectations on both sides of (7.8), we obtain a deterministic iteration that can

be viewed as an incremental version of the relative value iteration (7.7) with suitably scaled

stepsize ã(n) := a(n)
|V | . This can be analyzed the same way as the stochastic approximation

scheme with the same o.d.e. limit and therefore the same (deterministic) asymptotic limit.

This establishes the asymptotic unbiasedness of the RL estimator.

The normalizing term used in (7.8) (Vn(i0),
1

|V0|
∑

j Vn(j) or mini Vn(i)), along with

the underlying random walk as the Metropolis-Hastings, forms our estimator ν̂RL(G) in RL

based approach. The iteration in (7.8) is the stochastic approximation analog of it which

replaces conditional expectation w.r.t. transition probabilities with an actual sample and

then makes an incremental correction based on it, with a slowly decreasing stepwise that

ensures averaging. The latter is a standard aspect of stochastic approximation theory. The

smaller the stepwise the less the fluctuations but slower the speed, thus there is a trade-off

between the two.

RL methods can be thought of as a cross between a pure deterministic iteration such as

the relative value iteration above and pure MCMC, trading off variance against per iterate

computation. The gain is significant if the number of neighbors of a node is much smaller

than the number of nodes, because we are essentially replacing averaging over the latter by

averaging over neighbors. The V-dependent terms can be thought of as control variates to

reduce variance.

7.3.2 Extension of RL-technique to uniform stationary average
case

The stochastic approximation iteration in (7.8) converges to β, which is Eπ[g(X1)], where π

is the stationary distribution of the underlying walk. To make it converge to ν(G), we can

use the Metropolis-Hastings random walk with uniform target distribution. However, we

can avoid the use of Metropolis-Hastings algorithm by the following modification, motivated

from importance sampling that achieves the convergence to ν(G) with the simple random

walk. We have

Vn+1(i) = Vn(i) + a(n)χ(z = i)× Γ
(n)
ξn

×
[(

ξn∑

m=1

g(X(n)
m )

)
− Vn(i0)ξn + Vn(X

(n)
ξn

)− Vn(i)

]
,

where

Γ(n)
m =

m∏

k=1

(
p(X

(n)
k |X(n)

k−1)

q(X
(n)
k |X(n)

k−1)

)
.

Here q(·|·) is the transition probability of the random walk with which we simulate the

algorithm and p(·|·) corresponds to the transition probability of the random walk with

respect to which we need the the stationary average. The transition probability p can

belong to any random walk having uniform stationary distribution such that q(·|·) > 0

whenever p(·|·) > 0. One example is to use p as the transition probability of Metroplis-

Hastings algorithm with target stationary distribution as uniform and q as the transition
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probability of a lazy version of simple random walk, i.e., with transition probability matrix

(I+Psimple RW)/2. In comparison with basic Metropolis-Hastings sampling, such importance

sampling avoids the API requests for probing the degree of all the neighboring nodes, instead

requires only one such, viz., that of the sampled node. Note that the self-loops wherein

the chain re-visits a node immediately are not wasted transitions, because it amounts to

re-application of a map to the earlier iterate which is distinct from its single application.

The reinforcement learning scheme introduced above is the semi-Markov version of the

scheme proposed in [Borkar 2009] and [Borkar et al. 2014].

7.3.3 Advantages

The RL-technique extends the use of regeneration, tours and super-node introduced in

[Avrachenkov et al. 2016] to the average function ν(G). Even though the RL-technique is

not non-asymptotically unbiased unlike the algorithm in [Avrachenkov et al. 2016], it has

the following advantages:

1. It does not need to wait until burn-in time to collect samples;

2. Comparison with [Avrachenkov et al. 2016]: The super-node in [Avrachenkov

et al. 2016] is a single node, an amalgamation of the node set V0. But such a di-

rection assumes that the contribution of all the edges inside the induced subgraph

of V0 to ν(G) completely known. It could have been avoided if we could make use

of the techniques for partitioning state space of a Markov chain (called lumpability

in [Kemeny & Snell 1983]). The conditions stated in [Kemeny & Snell 1983, Theo-

rem 6.3.2] are not satisfied here and hence we can not invoke such techniques. But

the RL-technique, without using the lumpability arguments, need not know the edge

functions of the subgraph induced by V0;

3. RL-technique along with the extension in Section 7.3.2 can further be extended to the

directed graph case provided the graph is strongly connected. On the other hand, for

estimators from other RW based sampling schemes, the estimator requires knowledge

of the stationary distribution to unbias and thus to form the estimator. But in many

cases including simple RW on directed graphs, the stationary distribution does not

have a closed form expression unlike in undirected case, and this poses a big challenge

for design of simple random walk based estimators;

4. As explained before, the main advantage of RL-estimator is its ability to control the

stability of sample paths and its position as a cross between deterministic and MCMC

iteration. We will see more about this in the numerical section.

7.4 Ratio with Tours Estimator (RT estimator)

In this section we use of the idea of regeneration and tours introduced in [Avrachenkov

et al. 2016] to estimate the average function ν(G). However, since the tour estimator only

gives an unbiased estimator for network sums namely
∑

i∈V g(i), to find an estimate for

ν(G) we use the same samples to get an estimate for |V |. Let In be the set of initial nodes

recruited for forming the super-node [Avrachenkov et al. 2016] and let Sn be the single

combined node corresponding to In. We emphasize that while in RL-technique, the set of

selected nodes In stays intact, in the RT estimator case, we shrink all these nodes in one

super-node Sn. The estimator will compensate for network modification. With a sampling
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budget B, the RT estimator is given by

ν̂(Dm(B)(Sn)) =

m(B)∑
k=1

ξk−1∑
t=1

f(X
(k)
t )

d
X

(k)
t

+

∑
i∈In

g(i)

dSn

m(B)∑
k=1

ξk−1∑
t=1

1

d
X

(k)
t

+
n

dSn

, (7.9)

where m(B) is the number of tours until the budget B,

m(B) := max{k :

k∑

j=1

ξj ≤ B}.

The function f(u) := g(u) if u /∈ In, otherwise f(u) = 0.

This estimator is very close to RDS sampling, explained in Section 7.2.2, except that we

missB−∑m(B)
k=1 ξk samples for the estimation purpose. An advantage of RT estimator is that

we could leverage all the advantages of super-node mentioned in [Avrachenkov et al. 2016,

Section 2] and we claim that this would highly improve the performance. We show this

via numerical simulations in the next section, and theoretical properties will be studied in

future.

Note that the formulation of super-node is different from V0 considered in the RL-

technique, where the RW tours can start from any uniformly selected node inside V0 and

the tours end when it hit the set V0. On the other hand, the super-node which is formed

from n nodes in V is considered as a single node (removing all the edges in between the

nodes in Sn) and this contract the original graph G. Both the formulations have advantages

of their own: Super-node and its estimator is easy to form and compute, but one needs to

know all the edges between the nodes in Sn, i.e., the induced subgraph from Sn should be

known a priori. The set V0 in RL-technique does not demand this.

7.5 Numerical results

The algorithms RL-technique, RT-estimator, RDS and MH-MCMC (see Sections 7.2.1 and

7.2.2) are compared in this section using simulations on two real-world networks. For the

figures given below, the x-axis represents the budget B which is the number of allowed

samples, and is the same for all the techniques. We use the normalized root mean squared

error (NRMSE) for comparison for a given B and is defined as

NRMSE :=
√

MSE/ν(G),

where

MSE = E

[(
ν̂(n)(G)− ν(G)

)2]
.

Recall that MSE = Var[ν̂(n)(G)]+
(
E[ν̂(n)(G)]− ν(G)

)2
. We also study the asymptotic

variance σ2
g (see (7.2)) of the random walk based estimators including RL-technique in

terms of n× MSE, since the bias |E[ν̂(n)(G)]− ν(G)| → 0 as n→ ∞.

Note that in the numerical results of RL-technique and MH-MCMC, we have not included

burn-in time for calculating their budget B, and if it is added, their performance will be much

worse than what we have shown below.
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7.5.1 Numerical Results for RL-technique

For the RL-technique we choose the initial or super-node V0 by uniformly sampling nodes

assuming the size of V0 is given a priori.

7.5.1.1 Les Misérables network

In Les Misérables network, nodes are the characters of the novel and edges are formed if

two characters appear in the same chapter in the novel. The number of nodes is 77 and

number of edges is 254. We have chosen this rather small network in order to compare

all the three methods in terms of theoretical limiting variance. Here we consider four

demonstrative functions: a) g(v) = χ(d(v) > 10) b) g(v) = χ(d(v) < 4) c) g(v) = d(v) and

d) for calculating ν(G) as the average clustering coefficient

C :=
1

|V |
∑

v∈V

c(v), where c(v) =

{
t(v)/

(
dv

2

)
if d(v) ≥ 2

0 otherwise,
(7.10)

with t(v) as the number of triangles that contain node v. Then g(v) is taken as c(v) itself.

The average in MSE is calculated from multiple runs of the simulations. The simulations

on Les Misérables network is shown in Figure 7.1 with a(n) = 1/⌈ n
10⌉ and the super-node

size as 25.
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(a) g(v) = χ(d(v) > 10)
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(b) g(v) = χ(d(v) < 4)
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(c) g(v) = d(v)
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(d) g(v) = c(v), c(v) defined in (7.10)

Figure 7.1: Les Misérables network: NRMSE comparisons

Study of asymptotic MSE:

In order to show the asymptotic MSE expressions derived in Propositions 7.1 and 7.2, we

plot the sample MSE as MSE×B in Figures 7.2a, 7.3b and 7.2c. These figures correspond
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to the three different functions we have considered. It can be seen that asymptotic MSE

expressions match well with the estimated ones.
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(a) g(v) = χ(d(v) > 10)
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Figure 7.2: Les Misérables network: asymptotic MSE comparisons (contd.)

7.5.1.2 Friendster network

We consider a larger graph here, a connected subgraph of an online social network called

Friendster with 64,600 nodes and 1,246,479 edges. The nodes in Friendster are individuals

and edges indicate friendship. We consider the functions a). g(v) = χ(d(v) > 50) and

b). g(v) = c(v) (see (7.10)) used to estimate the average clustering coefficient. The plot
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in Figure 7.3a shows the results for Friendster graph with super-node size 1000. Here the

sequence a(n) is taken as 1/⌈ n
25⌉.

Now we concentrate on single sample path properties of the algorithms. Hence the

numerator of NRMSE becomes absolute error. Figure 7.3c shows the effect of increasing

super-node size while fixing step size a(n) and Figure 7.3d shows the effect of changing a(n)

when super-node is fixed. In both the cases, the green curve of RL-technique shows much

stability compared to the other techniques.
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(a) g(v) = χ(d(v) > 50)
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(b) g(v) = c(v), c(v) defined in(7.10)

Figure 7.3: Friendster network: (a) & (b) NRMSE comparison

.

7.5.1.3 Observations

Some observations from the numerical experiments are as follows:

1. With respect to the limiting variance, RDS always outperforms the other two methods

tested. However, with a good choice of parameters the performance of RL is not far

from that of RDS;

2. In the RL-technique, we find that the normalizing term 1/|V0|
∑

j Vn(j) converges

much faster than the other two options, Vt(i0) and mini Vt(i);

3. When the size of the super-node decreases, the RL-technique requires smaller step

size a(n). For instance in case of Les Misérables network, if the super-node size is

less than 10, RL-technique does not converge with a(n) = 1/(⌈ n
50⌉ + 1) and requires

a(n) = 1/(⌈n
5 ⌉);

4. If step size a(n) decreases or the super node size increases, RL fluctuates less but with

slower convergence. In general, RL has less fluctuations than MH-MCMC or RDS.

7.5.2 Numerical results for RT-estimator

Here we compare RDS and RT estimator. The choice of RDS for comparison is motivated

by the results shown in the previous section that it outperforms other sampling schemes

considered here, in terms of asymptotic variance and mean squared error. Moreover, RT-

estimator can be regarded as a natural modification of RDS making use of the ideas of

tours and super-node.

Figure 7.4 shows the results in Friendster network (|V | = 64, 600, |E| = 1, 246, 479).

One can see that the performance is improved even for small super-node size.
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(c) Single sample path: Varying super-node size
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Figure 7.3: Friendster network (contd.): (c) & (d) Single sample path comparison with

g(v) = χ(d(v) > 50)

.

7.6 Conclusions

We addressed a critical issue in the study of random walks on graphs: the burn-in period.

Our ideas are based on exploiting the tours (regenerations) and on the best use of the

given seed nodes by making only short tours. These short tours or crawls, which start and

return to the seed node set, are independent and can be implemented in a massively parallel

way. The idea of regeneration allows us to construct estimators that are not marred by the

burn-in requirement. We proposed two estimators based on this idea of regeneration. The

first, the RL estimator, uses reinforcement learning and stochastic approximation to build a

stable estimator by observing random walks returning to the seed set. We then proposed the

RT estimator, which is a modification of the classical respondent driven sampling, making

use of the idea of short crawls and super-node. These two schemes have advantages of their

own: the reinforcement learning scheme offers more control on the stability of the sample

path with varying error performance, and the modified RDS scheme based on short crawls

is simple and has superior performance compared to the classical RDS.

In the future, our aim is to study deeply the theoretical performance of our algorithms.

We have also left open the selection process for the initial seed set or the super-node, and
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Figure 7.4: Friendster network: Comparison between RDS and RT estimators

.

this also suggests an interesting research topic to explore in the future.
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Conclusions and Future Research

8.1 Summary and Conclusions

Random Matrix Theory is a rich field with a wealth of landmark and deep results on the

eigenvalue and eigenvector properties of ensembles of large matrices with random entries.

These results have been successfully applied to the developement of algorithms and theory

in varied fields such as Telecommunications, Finance, Statistics and Compressive Sensing,

just to name a few. The explosion in processing power and a simultaneous spurt in interest

in algorithms on data modeled as graphs have, in recent times, made the theory of large

random matrices attractive in graph theory and random graph analysis as well. The theory

of random matrices applied to the study of graph algorithms and processes on graphs was

the principal focus of this thesis.

Arguably, one of the most widely studied random graph model in Random Matrix

Theory is the Stochastic Block Model due to its significance in the analysis and comparison

of community partitioning algorithms. In the related literature, there is an almost exclusive

focus on the properties of extremal eigenvalues and eigenvectors since the latter are key

to the performance of spectral clustering and related algorithms. The literature on the

properties of non-dominant eigenvectors and eigenvalues is hence lacking. In Chapter 3

we tried to mitigate this by studying the shape of the asymptotic e.s.d. of the adjacency

and Laplacian matrices of an M-community SBM using classical Random Matrix Theoretic

tools. We discovered that while in symmetric SBM, where the expected node degrees are

the same, the asymptotic e.s.d. is the semicircle law as for the ER graph, when the expected

node degrees are different, the spectral shape is different from the semicircle and can be

determined as a solution to a set of fixed point equations. In addition, we used a similar

approach to studying the asymptotic distribution of the bulk eigenvectors of the adjacency

matrix via a modified e.s.d. We established that these eigenvectors satisfy some of the

properties of the standard Wigner matrix eigenvectors, but not all. The properties of bulk

eigenvectors could be leveraged in feature detection problems in graphs, where the bulk

eigenvectors act as noise, and this remains to be explored.

In continuing the application of Random Matrix Theoretic tools to the study of pro-

cesses on random graphs, we analysed the asymptotic behaviour of PageRank on undirected

random graphs by leveraging asymptotic bounds on the eigenvalues of Markov matrix in

Chapter 6. We found out that PageRank has simple asymptotic expressions on a class of

random graphs with a large spectral gap called expanders. We also analyzed PageRank

on SBM and found out that its limiting expression has a term that incorporates commu-

nity partitioning. This fact could be leveraged to analyze the performance of community

partioning algorithms based on PageRank.

Related to community partioning on graphs is the problem of anomaly detection on

graphs, where the anomaly takes the form of a dense subgraph. In Chapter 4 we used

spectral tools to perform a hypothesis test in a random graph model where there is a

hidden community of nodes with a larger edge probability than the rest of the nodes. The

graph we considered is relatively dense with the average degree growing as Ω(polylog(n)).
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We characterized the asymptotic distribution of the dominant eigenvector components of

the modularity matrix of this problem and proved that for a certain minimum subgraph

size, they are asymptotically gaussian. Using the latter, we derived an approximate CLT

for the distribution of the test statistic based on the eigenvector L1-norm, which was then

used to devise a detection test.

While traditional Random Matrix Theoretic tools are quite efficient on relatively dense

graphs, when the average degree scales to infinity, dilute graphs with average degree O(1)

require more complex matrix models and different tools. In Chapter 5 we apply Belief

Propagation, a local algorithm that takes advantage of the locally-tree like property of

dilute graphs, to the problem of hidden community detection. As opposed to the previous

works, we tackled the problem of hidden community detection in a semi-supervised setting

and discovered that an important threshold phenomenon present in local algorithms on

graphs can be overcome in the presence of side-information under a certain scaling regime

of the subgraph parameters. In other words, while it has been shown that the local BP

algorithm for subgraph detection has a non-diminishing error rate whenever an effective

SNR falls below a certain threshold, we show that in the presence of side-information,

this computational threshold disappears. In the future, we would like to investigate this

phenomenon under more general scaling laws.

In the last chapter of this thesis we looked at RW-based sampling algorithms for esti-

mating averages of an arbitrary function defined on the nodes of the graph. We compare

two algorithms, MH-MCMC and RDS estimators with respect to their asymptotic variance.

We finally propose two algorithms based on re-inforcement learning and random walk tours

that overcome the burn-in time barrier that afflicts many random-walk based estimation al-

gorithms. In the future, it would be interesting to use Random Matrix Theoretic techniques

to compare the mean-squared error performance of these algorithms on some representative

random graph models.

In the course of this thesis we explored some topics that hitherto had not received

sufficient attention in applied Random Matrix Theory such as the asymptotic gaussianity

property of eigenvectors. Our work on PageRank is one of the first that analyzes PageRank

properties using tools from Random Matrix Theory, and it would be interesting to deepen

this research direction. The work on hidden community detection, although it uses known

tools in Statistical Physics and Information Theory, provides insight into the dramatic role

played by side-information in graph-based detection problems. In the next section, we

discuss possible ways in which the different research directions considered in this thesis can

be further explored and extended.

8.2 Future works and Perspectives

We discuss in this section some of the possible avenues for future work.

More General Graph Models

In the community detection and anomaly detection algorithmic analysis in this thesis,

we mainly focused on the basic Stochastic Block Model, which differs greatly from real-

world graphs. The major drawback of the plain SBM is that the expected degree of all

nodes are the same in a community. As discussed in Chapter 1, the degree corrected SBM

mitigated this drawback. Another extension is the case of overlapping Stochastic Block

Models [Latouche et al. 2009], where nodes do not belong to only one community, but can

be members of multiple communities. In such cases one can investigate if the results of

Chapters 4, 5 continue to hold, and if not, how they change.
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Different Kinds of Anomalies

In Chapter 4, we considered one kind of anomaly, i.e., the presence of a dense subgraph in

a sparse graph. One can consider other kinds of anomalies; for e.g., deletion or addition

of edges with some probability over all nodes, and not just a subset of nodes. One can

investigate the effect this would have on the eigenvalues and thanks to this, if we can

detect the anomaly. Anomaly detection, as we formulated in Chapter 4 is a hypothesis

test problem between two different graphical models and hence can be readily extended.

It can be investigated whether a graph spectrum-based framework can be developed to

differentiate between more general random graph models.

General Analysis of Belief Propagation

In Chapter 5, we analyzed the error performance of Belief Propagation for subgraph de-

tection and showed that any λ > 0 leads to zero asymptotic error when κ = K/n → 0.

However, under the parameter setting we considered, λ is a constant with respect to n.

It would be interesting to characterize the minimum possible λ as a function of n that

still ensures error-free detection when K = o(n). For example, in [Hajek et al. 2015b],

the authors showed that for ML detection, the detectability threshold for the subgraph is

λ = Ω(Kn log(n/K)). It can be asked if BP with side-information comes close to this thresh-

old. In addition, we considered the performance of BP when a = np scales to infinity. What

happens for a finite a? This scenario was for e.g. considered for community partitioning

in SBM in [Cai et al. 2016]. In this case, the graph becomes disconnected with a large

connected component, when a > 1.

Different kinds of Side-Information

In Chapter 5, we considered two kinds of side-information and found that the asymptotic

error can be bounded uniformly for any small amount of side-information and that the

minimum computational threshold disappears. It can be investigated if this generalizes

to other kinds of side-information. For e.g., one can consider clustering problems where

cued nodes are not revealed, instead for a fraction of node pairs it is revealed whether they

belong to the same community or different communities, known as must-link and cannot link

constraints in semi-supervised clustering literature. This case represents a more realistic

scenario because it reflects the type of side-information available in real-life cases, since

in user-assisted classification where the exact nature of clusters is not known beforehand,

only information such as whether two items are similar or dissimilar is available [Basu

et al. 2006]. The BP algorithm to handle this side-information would be different and also

its analysis.

BP without parameter knowledge

One drawback of the BP algorithm considered in this thesis is that it requires the knowl-

edge of the parameters p, q,K. One solution to this issue is to estimate these parameters

beforehand. Algorithms are available for this in [Kloumann et al. 2016,Mossel et al. 2012].

It may also be possible to develop message passing that do not require the knowledge of

these parameters. On the other hand, one can also investigate an algorithm that learns

these parameters online as in expectation maximisation algorithms.
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BP with heterogenous graphs

As noted during the simulations on real graphs in Section 5.6.2, heterogenous graphs with

more than a single community hidden in a sparse graph are challenging to our BP algo-

rithm. Is it possible to develop an algorithm that handles heterogeneity such as overlapping

communities, multiple communities in the same graph etc.?

Closing the gap between BP and linear methods

We developed BP for sparse graphs, thanks to locally tree like property. On the other

hand, spectral methods are close to optimal on dense graphs. Is it possible to construct an

algorithm that takes advantage of these properties and achieves the best of both worlds.

We can investigate if a clever linearization of BP can make it work for dense graphs also,

without sacrificing the detection performance of BP.

Pagerank analysis and Heat Kernel diffusion algorithms

We analyzed PageRank on SBM graphs in this thesis. PageRank is one of many existing

diffusion algorithms on graphs. For example, there are Heat Kernel and Katz diffusion

algorithms. There does not exist a comparitive analysis of these different algorithms on

random graphs. It can be asked if random matrices provides a viable way of comparing

these different techniques for community detection and other tasks on graphs.

Higher order graph structures

In this thesis, we dealt with node communities, i.e., a group of nodes with a larger edge

density than the rest of the graph. This is only one of the many possible conceptions of a

graph community. In the paradigm considered in this thesis, a community can be defined

as a set of nodes that has the smallest conductance defined in terms of the number of

edges cut. This concept can be extended to more complicated motifs on graphs such as

triangles and cycles. For example, one can ask how can a given graph be partitioned so

that a minimum number of triangles are cut. A PageRank-based approach to solving this

problem was undertaken in [Benson et al. 2015]. One can investigate the detection limits

in this setting and spectral approaches to solving this problem.

Hypergraphs

The graph concepts discussed here such as the graph Laplacian, modularity and others could

be extended to more complicated graph structures such as hypergraphs [Lu & Peng 2013].

Hypergraphs model multiway relationship between nodes that normal graphs cannot. Al-

though there have been many efforts to extend the ideas of spectral clustering to spectral

graphs [Zhou et al. 2007,Louis 2015,Ghoshal et al. 2009], a principled approach to extending

modularity and other concepts from graphs to hypergraphs is still missing. Applications

are in community detection and anomaly detection on hypergraphs [Silva & Willett 2009].
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Appendix: Chapter 5

A.1 Description of G-W tree and derivation of Algo-

rithm 2

We derive Algorithm 2 by establishing a coupling formulation between a t-hop neighbour-

hood Gt
u of node u and a Galton-Watson (G-W) tree rooted at u constructed as follows.

Let T t
u be a labelled Galton-Watson (G-W) tree of depth t rooted at node u constructed

as follows (as in [Hajek et al. 2015a]): The label τu at node u is chosen at random in the

following way:

P(τu = 1) =
K

n
, P(τu = 0) =

n−K

n
.

The number of childrenNu of the root u is Poisson-distributed with mean d1 = Kp+(n−K)q

if τu = 1 and mean d0 = nq if τu = 0. Each child is also assigned a label. The number

of children i with label τi = 1 is Poisson distributed with mean Kp if τu = 1 and mean

Kq if τi = 0. The number of children with label τi = 0 is Poisson distributed with mean

(n − K)q for both τu = 0 and τu = 1. By the independent splitting property of Poisson

random variables, this is equivalent to assigning the label τi = 1 to each child i by sampling

a Bernoulli random variable with probability (w.p.) Kp/d1 if τu = 1 and Kq/d0 if τu = 0.

Similarly τi = 0 w.p. (n−K)q/d1 and (n−K)q/d0 for τu = 0 and 1 respectively. Namely,

if i is a child of u,

P(τi = 1|τu = 1) =
Kp

d1
, P(τi = 1|τu = 0) =

Kq

d0
. (A.1)

We then assign the cue indicator function c̃ such that c̃i = 1 w.p. α if τi = 1 and c̃i = 0

if τi = 0. The process is repeated up to depth t giving us C̃t
u, the set of cued neighbours.

Now we have the following coupling result between (Gt
u, σ

t, Ct
u), the neighbourhood of u

and the node labels of that neighbourhood and (T t
u, τ

t, C̃t
u), the depth-t tree T t

u and its

labels due to [Hajek et al. 2015a].

Lemma A.1. [Hajek et al. 2015a, Lemma 15] For t such that (np)t = no(1), there exists

a coupling such that (Gt
u, σ

t, Ct
u) = (T t

u, τ
t, C̃t

u) with probability 1− n−1+o(1).

We now derive the recursions for the likelihood ratios on the tree T t
u. For large n with

high probability, by the coupling formulation, Rt
u also satisfy the same recursions. For

notational simplicity, from here onwards we represent the cue labels on the tree by c and

the set of cued neighbours by Ct
u, just as for the original graph. We use Λt

u to denote the

likelihood ratio of node u computed on a tree defined as below:

Λt+1
u = log

(
P(T t+1

u , Ct+1
u |τu = 1)

P(T t+1
u , Ct+1

u |τu = 0)

)
.

By virtue of tree construction, if the node u has Nu children, the Nu subtrees rooted on

these children are jointly independent given τu. We use this fact to split Λt+1
u in two parts.
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Λt+1
u = log

(
P(T t+1

u , Ct+1
u |τu = 1)

P(T t+1
u , Ct+1

u |τu = 0)

)

= log

(
P(Nu|τu = 1)

P(Nu|τu = 0)

)
+
∑

i∈δu

log

(
P(T t

i , ci, C
t
i |τu = 1)

P(T t
i , ci, C

t
i |τu = 0)

)
, (A.2)

by the independence property of subtress T t
i rooted on i ∈ δu. Since by Lemma A.1, the

degrees are Poisson,

P(Nu|τu = 1) = dNu
1 e−d1/Nu! ,

and similarly for P(Nu|τu = 0). Therefore we have

log

(
P(Nu|τu = 1)

P(Nu|τu = 0)

)
= Nu log

(
d1
d0

)
− (d1 − d0)

= Nu log

(
d1
d0

)
−K(p− q). (A.3)

Next we look at the second term in (A.2). We analyze separately the case of ci = 1 and

ci = 0 for i ∈ δu, i.e, the cued and uncued children are handled separately.

Case 1 ( ci = 1): We have

log

(
P(T t

i , ci, C
t
i |τu = 1)

P(T t
i , ci, C

t
i |τu = 0)

)
(a)
= log

(
P(T t

i , ci, C
t
i , τi = 1|τu = 1)

P(T t
i , ci, C

t
i , τi = 1|τu = 0)

)

= log

(
P(T t

i , ci, C
t
i |τi = 1)P(τi = 1|τu = 1)

P(T t
i , ci, C

t
i |τi = 1)P(τi = 1|τu = 0)

)

(b)
= log

(
Kp/d1
Kq/d0

)
, (A.4)

where in step (a) we applied the fact that ci = 1 implies τi = 1, and in (b) we used (A.1).

Case 2 (ci = 0): Observe that P(ci = 0|τi = 1) = 1− α and P(ci = 0|τi = 0) = 1. Note

that

P(T t
i , ci, C

t
i |τu = 1) = P(T t

i , C
t
i |τi = 1)P(ci|τi = 1)P(τi = 1|τu = 1)

+ P(T t
i , C

t
i |τi = 0)P(ci|τi = 0)P(τi = 0|τu = 1)

= P(T t
i , C

t
i |τi = 1)(1− α)

Kp

d1
+ P(T t

i , C
t
i |τi = 0)

(n−K)q

d1
. (A.5)

Similarly, we can show

P(T t
i , ci, C

t
i |τu = 0) = P(T t

i , C
t
i |τi = 1)

Kq

d0
(1− α) + P(T t

i , C
t
i |τi = 0)

(n−K)q

d0
. (A.6)

Let us define

Λt
i→u := log

(
P(T t

i , C
t
i |τi = 1)

P(T t
i , C

t
i |τi = 0)

)
,

the message that i sends to u at step t.
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Using the above definition, (A.5), and (A.6) we get

log

(
P(T t

i , ci, C
t
i |τu = 1)

P(T t
i , ci, C

t
i |τu = 0)

)

= log

(
eΛ

t
i→u

Kp
d1

(1− α) + (n−K)q
d1

eΛ
t
i→u

Kq
d0

(1− α) + (n−K)q
d0

)

= log

(
d0
d1

)
+ log

(
eΛ

t
i→u

Kp
(n−K)q (1− α) + 1

eΛ
t
i→u

K
(n−K) (1− α) + 1

)
. (A.7)

We then use the substitution ν := log((n−K)/K) in the above equation. Finally combining

(A.3), (A.4) and (A.7) and replacing Λt
u with Rt

u and Λt
i→u with Rt

i→u, we arrive at (5.8).

The recursive equation (5.7) can be derived in exactly the same way by looking at the

children of i ∈ δu.

A.2 Proof of Proposition 5.1

Since the statistical properties of Rt
u and Λt

u are the same in the n→ ∞ limit, we analyze

the distribution of Λt
u. Let us define the posterior likelihood for τu given by

Λ̃t
i = log

(
P(τi = 1|T t

i , C
t
i , ci = 0)

P(τi = 0|T t
i , C

t
i , ci = 0)

)
.

Note that P(τi = 1|ci = 0) = κ(1−α)/(1−κα) and P(τi = 0|ci = 0) = (1−κ)/(1−κα) are

the prior probabilities of the uncued vertices. For convenience we use an overline for the

symbols of expectation E and probability P to denote conditioning w.r.t {ci = 0}.
By a slight abuse of notation, let ξt0 and ξt1 denote the rvs whose distributions are the

same as the distributions of Λ̃t
i given {ci = 0, τi = 0} and {ci = 0, τi = 1} respectively in

the limit n → ∞. We need a relationship between P0 and P1, the probability measures of

ξt0 and ξt1 respectively, stated in the following lemma.

Lemma A.2.

dP0

dP1
(ξ) =

κ(1− α)

1− κ
exp(−ξ).

In other words for any integrable function g(·)

E[g(Λ̃t
u)|τu = 0] =

κ(1− α)

1− κ
E[g(Λ̃t

u)e
−Λ̃t

u |τu = 1].

Proof. Following the logic in [Montanari 2015], we show this result for g(Λ̃t
u) = 1(Λ̃u ∈ A), A

being some measurable set. The result for general g then follows because any integrable

function can be obtained as the limit of a sequence of such rvs [Billingsley 2008]. Let
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Y = (T t
u, C

t
u), the observed rv. Therefore

E

(
1
(
Λ̃t
u ∈ A

)
|τu = 0

)
= P

(
Λ̃t
u ∈ A|τu = 0

)

=
P(Λ̃t

u ∈ A, τu = 0)

P(τu = 0)

=
EY

(
P(Λ̃t

u ∈ A, τu = 0|Y )
)

P(τu = 0)

= EY

[
1(Λ̃t

u ∈ A)P(τu = 0|Y )

P(τu = 0)

]

(a)
= EY

(
1(Λ̃t

u ∈ A)e−Λ̃t
uP(τu = 1|Y )

P(τu = 0)

)

=
P(τu = 1)

P(τu = 0)
E1(1(Λ̃

t
u ∈ A)e−Λ̃t

u)

=
κ(1− α)

1− κ
E1(1(Λ̃

t
u ∈ A)e−Λ̃t

u),

where in (a) we used the fact that P(τu=0|Y )

P(τu=1|Y )
= exp(−Λ̃t

u), and E1 denotes expectation

conditioned on the event {τu = 1}.

Proof. Since λα and κ are fixed and b→ ∞, from (5.12) we have

ρ := a/b = 1 +

√
λα(1− κ)

(1− α)2κ2b
= 1 +O(b−1/2). (A.8)

Following [Montanari 2015], we prove the result by induction on t. First let us verify

the result holds when t = 0, for the initial condition that ξ00 = ξ01 = −υ. We only do this

for ξt0 since the steps are similar for ξt1. Observe that

f(−υ) = log




κ(1−α)ρ
(1−κ) + 1

κ(1−α)
(1−κ) + 1




= log

(
1 + (ρ− 1)

κ(1− α)

1− κα

)

(a)
= (ρ− 1)

κ(1− α)

1− κα
− (ρ− 1)2

2

κ2(1− α)2

(1− κα)2
+O(b−3/2), (A.9)

where (a) follows from (A.8), and Taylor’s expansion around ρ = 1. Similarly,

f2(−υ) = (ρ− 1)2
κ2(1− α)2

(1− κα)2
+O(b−3/2), (A.10)

log(ρ) = log(1 + (ρ− 1))

=

√
λα(1− κ)

(1− α)2κ2b
− λα(1− κ)

2(1− α)2κ2b
+O(b−3/2), (A.11)
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and

log2(ρ) =
λα(1− κ)

(1− α)2κ2b
+O(b−3/2). (A.12)

Let us verify the induction result for t = 0. Using the recursion (5.9) with ξ00 = log κ(1−α)
1−κ =

−υ, we can express Eξ10 as

Eξ10 = −κb(ρ− 1)− υ + κbα log(ρ) + b(1− κα)f(−υ).

Now using (A.9) and (A.11) we obtain

Eξ10 = −κ
√
λαb(1− κ)

(1− α)2κ2
− υ + κα

√
λα(1− κ)b

(1− α)2κ2
− λα(1− κ)α

2(1− α)2κ

+

√
λα(1− κ)b

(1− α)2κ2
κ(1− α)− λα(1− κ)

2(1− κα)
+O(b−1/2)

= −υ − λα(1− κ)

2(1− α)2κ
α− λα(1− κ)

2(1− κα)
+O(b−1/2). (A.13)

We also obtain, using the formula for the variance of a Poisson random variable

Varξ10 = log2(ρ)κbα+ f2(−υ)(1− κ)b+ f2(−υ)κb(1− α)

(a)
=
λαα(1− κ)

(1− α)2κ
+

(1− κ)λα
1− κα

+O(b−1/2), (A.14)

where in (a) we used (A.12) and (A.10). Comparing (A.13) and (A.14), after letting b→ ∞
with µ(1) in (5.13) using µ(0) = 0, we can verify the mean and variance recursions. Next we

use Lemma 5.2 to prove gaussianity. Note that we can express ξ10 − h as the Poisson sum

of i.i.d. mixture random variables as follows

ξ10 − h =

L0∑

i=1

Xi,

where L0 ∼ Poi(b), and L(Xi) = καL(log(ρ)) + (1 − κ)L(f(−υ)) + (κ(1 − α))L(f(−υ)),
keeping in mind the independent splitting property of Poissons, where L denotes the law

of a rv1. Next we calculate E(|Xi|3). It is easy to show using (A.9) and (A.11) that

(A.15)E(|Xi|3) = κα log3(b) + (1− κα)|f3(−υ)|= O(b−3/2).

Therefore the upper bound of Lemma 5.2 with λ = b becomes

CBEE(|Xi|3)√
γ(µ2 + σ2)3

=
O(b−3/2)√
bΩ(b−3)

= O(b−1/2).

By Lemma 5.2, taking b→ ∞ we obtain the convergence to gaussian.

Having shown the induction hypothesis for t = 0, we now assume it holds for some t > 0.

By using (5.11), (5.15) and Lebesgue’s dominated convergence theorem [Billingsley 2008,

Theorem 16.4] we obtain

(A.16)Ef(ξt1) = (ρ− 1)E

(
eξ

t
1

1 + eξ
t
1

)
− (ρ− 1)2

2
E

(
e2ξ

t
1

(1 + eξ
t
1)2

)
+O(b−3/2),

1Clearly Xi are i.i.d. with mean µ = κα log(ρ) + (1 − κα)f(−ν) = Ω(1/
√
b) and σ2 = Ω(1/b), both of

which are bounded (fixed b and as n → ∞). Also µ2 + σ2 = Ω(1/b).
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and by using Lemma A.2 in addition we obtain

Ef(ξt0) = (ρ− 1)
κ(1− α)

1− κ
E

(
1

1 + eξ
t
1

)
− (ρ− 1)2κ(1− α)

2(1− κ)
E

(
eξ

t
1

(1 + eξ
t
1)2

)
+O(b−3/2).

(A.17)

Now we take the expectation of both sides of (5.9) and (5.10). Using the fact that

E
∑L

i=1Xi = EXiEL if L ∼ Poi and Xi are independent and identically distributed (i.i.d.)

rv, we obtain

(A.18)E(ξt+1
0 ) = h+ log

(
p

q

)
κbα+ E

(
f(ξt0)

)
(1− κ)b+ E

(
f(ξt1)

)
κb(1− α)

and

(A.19)E(ξt+1
1 ) = h+ log

(
p

q

)
κaα+ E

(
f(ξt0)

)
(1− κ)b+ E

(
f(ξt1)

)
κa(1− α).

We now substitute (A.17) and (A.16) in (A.18) to get:

E(ξt+1
0 ) = h+ κbα log(ρ) + (1− κ)b

[
(ρ− 1)

κ(1− α)

1− κ
E

(
1

1 + eξ
t
1

)

− (ρ− 1)2κ(1− α)

2(1− κ)
E

(
eξ

t
1

(1 + eξ
t
1)2

)
+O(b−3/2)

]

+ κb(1− α)

[
(ρ− 1)E

(
eξ

t
1

1 + eξ
t
1

)
− (ρ− 1)2

2
E

(
e2ξ

t
1

(1 + eξ
t
1)2

)
+O(b−3/2)

]
,

which on simplifying and grouping like terms gives

E(ξt+1
0 ) = h+ κbα log(ρ) + κ(a− b)(1− α)− λα(1− κ)

2(1− α)κ
E

(
eξ

t
1

1 + eξ
t
1

)
+O(b−1/2).

Substituting h = −κ(a− b)− log
(

1−κ
κ(1−α)

)
, we get

E(ξt+1
0 ) = − log

(
1− κ

κ(1− α)

)
−ακ(a− b)+κbα log(ρ)− λα(1− κ)

2κ(1− α)
E

(
eξ

t
1

1 + eξ
t
1

)
+O(b−1/2).

Using (A.11) we get

−ακ(a− b) + κbα log(ρ) = κbα(log(ρ)− (ρ− 1))

= κbα

(
− λα(1− κ)

2κ2b(1− α)2
+O(b−3/2)

)

= −λαα(1− κ)

2(1− α)2κ
+O(b−1/2).

Finally we obtain

(A.20)E(ξt+1
0 ) =− log

(
1− κ

κ(1− α)

)
− λαα(1− κ)

2(1− α)2κ
−λα

(1− κ)

2(1− α)κ
E

(
eξ

t
1

1 + eξ
t
1

)
+O(b−1/2).

Using exactly the same simplifications we can get
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(A.21)E(ξt+1
1 ) = − log

(
1− κ

κ(1− α)

)
+
αλα(1− κ)

2κ(1− α)2
+
λα(1− κ)

2κ(1− α)
E

(
eξ

t
1

1 + eξ
t
1

)
+O(b−1/2).

Our next goals are to compute var(ξt+1
0 ) and var(ξt+1

1 ). Towards this, observe that f2(x) =

(ρ− 1)2
(

ex

1+ex

)2
+O(b−3/2). Therefore

E(f2(ξt0)) = (ρ− 1)2E

(
e2ξ

t
0

(1 + eξ
t
0)2

)
+O(b−3/2),

and using Lemma A.2 the above becomes

E(f2(ξt0)) = (ρ− 1)2
κ(1− α)

1− κ
E

(
eξ

t
1

(1 + eξ
t
1)2

)
+O(b−3/2). (A.22)

Similarly,

E
(
f2(ξt1)

)
= (ρ− 1)2E

(
e2ξ

t
1

(1 + eξ
t
1)2

)
+O(b−3/2). (A.23)

Now we use the formula for the variance of Poisson sums Var
∑L

i=1Xi = E(X2
i )E(L) to get

Var(ξt+1
0 ) = log2(ρ)κbα+ (1− κ)bE(f2(ξt0)) + κb(1− α)E(f2(ξt1))

Var(ξt+1
1 ) = log2(ρ)κaα+ (1− κ)bE(f2(ξt0)) + κa(1− α)E(f2(ξt1)).

Substituting (A.22) and (A.23) into the above equations and letting b→ ∞, we get

lim
b→∞

Var(ξt+1
1 ) = lim

b→∞
Var(ξt+1

0 ) = µ(t+1),

where

(A.24)µ(t+1) =
λαα(1− κ)

κ(1− α)2
+
λα(1− κ)

κ(1− α)
E

(
exp ξt1

1 + exp(ξt1)

)
.

Using µ(t+1) of (A.24) in (A.20) and (A.21) we get

E(ξt+1
0 ) = − log

(
(1− κ)

κ(1− α)

)
− 1

2
µ(t+1) +O(b−1/2)

E(ξt+1
1 ) = − log

(
(1− κ)

κ(1− α)

)
+

1

2
µ(t+1) +O(b−1/2). (A.25)

Now we use the fact the induction assumption that ξt1 → N (E(ξt1), µ
(t)). Since the function

eξ
t
1/(1 + eξ

t
1) is bounded, by Lebesgue’s dominated convergence theorem [Billingsley 2008,

Theorem 16.4] this means E(1/(1 + e−ξt1)) → E(1/(1 + e−N (E(ξt1),µ
(t)))) as b → ∞.We can

write N (E(ξt1), µ
(t)) =

√
µ(t)Z + E(ξt1), where Z ∼ N (0, 1). Therefore we obtain

E

(
1

1 + e−ξt1

)
= E


 1

1 + e−
√

µ(t)Z (1−κ)
κ(1−α)e

−µ(t)

2




= E

(
κ(1− α)

κ(1− α) + (1− κ)e(−
√

µtZ−µ(t)

2 )

)
.

Substituting the above into (A.24) gives us the recursion for µ(t+1) given in (5.13).
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Next we prove gaussianity. Consider

ξt+1
0 − E(ξt+1

0 ) = log

(
p

q

)
(L0c − E(L0c)) +

L00∑

i=1

(f(ξt0,i)− E(f(ξt0)))+

L01∑

i=1

(f(ξt1,i)− E(f(ξt1))) + (L00 − E(L00))E(f(ξ
t
0)) + (L01 − E(L01))E(f(ξ

t
1)).

(A.26)

Let us look at the second term. Let Xi = f(ξt0,i)− Ef(ξt0,i). Then it can be shown that

EX2
i = O(1/b). Let D :=

∑L00

i=1Xi −
∑EL00

i=1 Xi. In the second term the summation is taken

up to i ≤ EL00. Then E(D2) = |∑δ
i=1Xi|2, where δ ≤ |L00−EL00|+1, where the extra 1 is

because EL00 may not be an integer. Therefore ED2 = EδE|X1|2≤ (C/b)((1−κ)b+1)1/2 =

O(1/
√
b). Thus, we can replace the Poisson upper limits of the summations in the second

and third terms of (A.26) by their means, leading to

(A.27)

ξt+1
0 − E(ξt+1

0 ) = log

(
p

q

)
(L0c − E(L0c)) +

E(L00)∑

i=1

(f(ξt0,i)− E(f(ξt0)))

+

E(L01)∑

i=1

(f(ξt1,i)− E(f(ξt1))) + (L00 − E(L00))Ef(ξ
t
0)

+ (L01 − E(L01))E(f(ξ
t
1)) + op(1),

where op(1) indicates a rv that goes to zero in probability in the limit. The combined

variance of all other terms approaches µ(t+1), defined in (5.13), as b → ∞ and it is finite

for a fixed t. Now since we have an infinite sum of independent rvs as a, b→ ∞, with zero

mean and finite variance, from the standard CLT, we can conclude that the distribution

tends to N (0, µt+1). The argument for ξt+1
1 is identical.

A.3 Finishing the proof of Theorem 5.1

Proof. We bound E(|S∆Ŝ0|)/(K(1− α)) as follows:

lim
b→∞

lim
n→∞

E(|S∆Ŝ0|)
K(1− α)

= lim
b→∞

lim
n→∞

(
E (
∑n

i=1 1σi 6=σ̂i
)

K −Kα

)

≤ lim
b→∞

(
(1− κ)

κ(1− α)
P(ξt0 ≥ 0) + P(ξt1 ≤ 0)

)
, (A.28)

since

E

(
n∑

i=1

1σi 6=σ̂i

)
= n(P(ci = 0, σi = 0)P(Rt

i > υ|ci = 0, σi = 0)+

P(ci = 0, σi = 1)P(Rt
i < υ|ci = 0, σi = 1)), (A.29)

and since Rt
i − Rt

i→u = O(b−1/2). Indeed, given the b → ∞ limit in (A.28), the bound

O(b−1/2) allows us to replace Rt
i in (A.29) by the distribution limit when n→ ∞, which is

ξt0 or ξt1 when conditioned on {σi = 0} or {σi = 1} respectively, for an arbitrary i. We now

analyze each term in (A.28) separately. By Proposition 5.1 we have

lim
b→∞

P(ξt1 ≤ 0) = Q

(
1√
µ(t)

(
µ(t)

2
− log

(1− κ)

κ(1− α)

))
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where Q(·) denotes the standard Q function. Notice that by (5.13) we have that µ(t) ≥
λαα(1− κ)/(κ(1− α)2), since E

(
1−κ

κ(1−α)+(1−κ) exp(−µ/2−√
µZ)

)
≥ 0. In addition, by (A.24),

µ(t) ≤ λα(1−κ)
κ(1−α)2 . Note that the lower bound on µ(t) is not useful when α = 0. Therefore by

using the Chernoff bound for the Q function, Q(x) ≤ 1
2e

−x2/2, we get

lim
b→∞

P(ξt1 ≤ 0) ≤ 1

2
e
− 1

2µ(t)
(µ(t)

2 −log( 1−κ
κ(1−α) ))

2

=
1

2
e
−µ(t)

8 (1− 2

µ(t)
log( 1−κ

κ(1−α) ))
2

≤ 1

2
e−

µ(t)

8 e
1
2 log( 1−κ

κ(1−α)
)

=
1

2

√
1− κ

κ(1− α)
e−

µ(t)

8 , (A.30)

where we used the fact that (1−x)2 ≥ 1−2x for any x > 0. By employing similar reductions,

we can show

lim
b→∞

(
(1− κ)

κ(1− α)

)
P(ξt0 ≥ 0) ≤ 1

2

√
1− κ

κ(1− α)
e−

µ(t)

8 . (A.31)

Substituting (A.38) and (A.39) back in (A.28) and using the fact that µ(t) ≥ λαα(1 −
κ)/(κ(1− α)2), we get

lim
b→∞

lim
n→∞

E(|S∆Ŝ0|)
K(1− α)

≤
√

1− κ

κ(1− α)
e
−λαα(1−κ)

8κ(1−α)2

Then using (5.22) we get the desired result in (5.21) .

A.4 Proof of Proposition 5.3

Proof. We derive the conditional distributions of the messages Rt
u→i for a finite t given

{σu = 0} and given {σu = 1}. In this limit the tree coupling of Lemma A.1 holds with

a slightly modified construction of the tree to accomodate the difference in the generation

of cued nodes. It is similar to the tree coupling in Lemma A.1, with the only difference

being the generation of cues. At any level of the tree, a node u is labelled a cue such that

P(cu = 1|τu = 1) = αβ and P(cu = 1|τu = 0) = κα(1 − β)/(1 − κ), so that the equalities

in (5.2) and (5.4) hold, where cu denotes the cue membership of node u on the tree. Let

F t
u→i be such that Rt

u→i = F t
u→i + hu, for any two neighbouring nodes i and u. Then, it

can be seen from (5.25) that F t
u→i satisfies the following recursion

F t+1
u→i = −κ(a− b) +

∑

l∈δu,l 6=i

fisi(F
t
l + hl), (A.32)

where fisi(x) := log
(

e(x−ν)ρ+1
e(x−ν)+1

)
. Let Ψt

0,Ψ
t
1 be the rvs that have the conditional asymptotic

distribution of F t
u→i given {σu = 0} and {σu = 1} respectively in the limit n→ ∞. Then, by

studying the recursion (A.32) on the tree we can conclude that Ψt
0,Ψ

t
1 satisfy the following
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recursive distributional equations

Ψt+1
0

D
= −κ(a− b) +

L01c∑

i=0

fisi(Ψ
t
1i +Bc) +

L01n∑

i=0

fisi(Ψ
t
1i +Bn) +

L00c∑

i=0

fisi(Ψ
t
0i +Bc)+

L00n∑

i=0

fisi(Ψ
t
0i +Bn), (A.33)

Ψt+1
1

D
= −κ(a− b) +

L11c∑

i=0

fisi(Ψ
t
1i +Bc) +

L11n∑

i=0

fisi(Ψ
t
1i +Bn) +

L10c∑

i=0

fisi(Ψ
t
0i +Bc)+

L10n∑

i=0

fisi(Ψ
t
0i +Bn), (A.34)

where
D
= represents equality in distribution, and the random sums are such that L01c ∼

Poi(κbαβ), L01n ∼ Poi(κb(1 − αβ)), L00c ∼ Poi(κbα(1 − β)), L00n ∼ Poi(b(1 − κ −
κα(1 − β)), L11c ∼ Poi(κaαβ), L11n ∼ Poi(κa(1 − αβ)), L10c ∼ Poi(κbα(1 − β)), and

L10n ∼ Poi(b(1 − κ − κα(1 − β))), Bc = log
(

β(1−κ)
(1−β)κ

)
; Bn = log

(
(1−αβ)(1−κ)

(1−κ−ακ+ακβ)

)
; and

Ψt
0,i and Ψt

1,i are i.i.d. rvs with the same distribution as Ψt
0 and Ψt

1 respectively.

We now derive the asymptotic distributions Ψt+1
0 and Ψt+1

1 when a, b → ∞ such that

λ = κ2(a−b)2

(1−κ)b and κ are fixed. Observe that ρ = 1+
√

λ(1−κ)
κ2b = 1+

√
r
b , where r := λ(1−κ)

κ2 .

Notice that if P0 ∼ L(Ψt
0) and P1 = L(Ψt

1), we have, since Ψ = log
(

dP1

dP0

)
, that dP0

dP1
(Ψ) =

e−Ψ. Also

fisi(x) = log

(
1 + (ρ− 1)

ex−ν

1 + ex−ν

)
(A.35)

=

√
r

b

(
ex−ν

1 + ex−ν

)
− 1

2

r

b

(
ex−ν

1 + ex−ν

)2

+O(b−3/2), (A.36)

and

(A.37)f2isi(x) =
r

b

(
ex−ν

1 + ex−ν

)2

+O(b−3/2).

Now we can reformulate the recursions in (A.33) and (A.34) as a Poisson sum as follows:

Ψt+1
0

D
= −κ(a− b) +

L0∑

l=1

Xl (A.38)

Ψt+1
1

D
= −κ(a− b) +

L1∑

l=1

Yl, (A.39)

where L0 = Poi(b), L1 = Poi(κa+(1−κ)b) and Xl and Yl are mixture rvs with laws defined

as follows:

L(Xl) = ακ(1− β)L(fisi(Ψt
0 +Bc)) + (1− κ)(1− α(1− β)e−ν)L(fisi(Ψt

0 +Bn))

+ ακβL(fisi(Ψt
1 +Bc)) + κ(1− αβ)L(fisi(Ψt

1 +Bn)),

L(Yl) =
ακb(1− β)

κa+ (1− κ)b
L(fisi(Ψt

0 +Bc)) +
(1− κ)b(1− α(1− β)e−ν)

κa+ (1− κ)b
L(fisi(Ψt

0 +Bn))

+
κaαβ

κa+ (1− κ)b
L(fisi(Ψt

1 +Bc)) +
κa(1− αβ)

κa+ (1− κ)b
L(fisi(Ψt

1 +Bn)).
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Observe that we have Bc−ν = log( β
1−β ) and Bn−ν = log( κ(1−αβ)

(1−κ−ακ(1−β)) ). We can calculate

E(Xl) as

E(Xl) = ακβ

√
r

b
+ κ(1− αβ)

√
r

b
− ακβ

r

2b
E

(
eΨ

t
1+Bc−ν

1 + eΨ
t
1+Bc−ν

)

− κ(1− αβ)
r

2b
E

(
eΨ

t
1+Bn−ν

1 + eΨ
t
1+Bn−ν

)
+O(b−3/2),

which gives,

E(Xl) = κ

√
r

b
− ακβ

r

2b
E

(
eΨ

t
1+Bc−ν

1 + eΨ
t
1+Bc−ν

)
− κ(1− αβ)

r

2b
E

(
eΨ

t
1+Bn−ν

1 + eΨ
t
1+Bn−ν

)
+O(b−3/2).

Similarly

E(X2
l ) = ακβ

r

b
E

(
eΨ

t
1+Bc−ν

1 + eΨ
t
1+Bc−ν

)
+
rκ(1− αβ)

b
E

(
eΨ

t
1+Bn−ν

1 + eΨ
t
1+Bn−ν

)
+O(b−3/2),

and

E(|X3
l |) = ακβ(

r

b
)3/2E

(
e2(Ψ

t
1+Bc−ν)

(1 + eΨ
t
1+Bc−ν)2

)
+
κ(1− αβ)r3/2

b3/2
E

(
e2(Ψ

t
1+Bn−ν)

(1 + eΨ
t
1+Bn−ν)2

)

+O(b−2). (A.40)

Similarly we can calculate the moments of Yl as follows:

E(Yl) =
ακbβ

κa+ (1− κ)b

√
r

b
E

(
1 + ρeΨ

t
1+Bc−ν

1 + eΨ
t
1+Bc−ν

)

− rακβ

2(κa+ (1− κ)b)
E

(
eΨ

t
1+Bc−ν(1 + ρeΨ

t
1+Bc−ν)

(1 + eΨ
t
1+Bc−ν)2

)

+
κb(1− αβ)

κa+ (1− κ)b

√
r

b
E

(
1 + ρeΨ

t
1+Bn−ν

1 + eΨ
t
1+Bn−ν

)

− rκ(1− αβ)

2(κa+ (1− κb))
E

(
eΨ

t
1+Bn−ν(1 + ρeΨ

t
1+Bn−ν)

(1 + eΨ
t
1+Bn−ν)2

)
+O(b−3/2),

giving

E(Yl) = κ
√
rb

1

κa+ (1− κ)b
+

rαβκ

2(κa+ (1− κ)b)
E

(
eΨ

t
1+Bc−ν

1 + eΨ
t
1+Bc−ν

)

+
rκ(1− αβ)

2(κa+ (1− κ)b)
E

(
eΨ

t
1+Bn−ν

1 + eΨ
t
1+Bn−ν

)
+O(b−3/2).

In addition,

E(Y 2
l ) =

ακβr

κa+ (1− κ)b
E

(
eΨ

t
1+Bc−ν

1 + eΨ
t
1+Bc−ν

)
+

κr(1− αβ)

κa+ (1− κ)b
E

(
eΨ

t
1+Bn−ν

1 + eΨ
t
1+Bn−ν

)

+O(b−2)
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and

E(|Y 3
l |) =

ακβr3/2

(κa+ (1− κ)b)b1/2
E

(
e2Ψ

t
1+2Bc−2ν

(1 + eΨ
t
1+Bc−ν)2

)
(A.41)

+
κ(1− αβ)r3/2

(κa+ (1− κ)b)b1/2
E

(
e2Ψ

t
1+2Bn−2ν

(1 + eΨ
t
1+2Bn−ν)2

)

+O(b−2). (A.42)

Let us define µ(t) as

(A.43)µ(t+1) = αβκrE

(
1

1 + e−Ψt
1−Bc+ν

)
+ κr(1− αβ)E

(
1

1 + e−Ψt
1−Bn+ν

)
.

Finally we have

E(Ψt+1
0 ) = −κ(a− b) + bE(Xl)

= −ακβr
2

E

(
eΨ

t
1+Bc−ν

1 + eΨ
t
1+Bc−ν

)
− κ(1− αβ)r

2
E

(
eΨ

t
1+Bn−ν

1 + eΨ
t
1+Bn−ν

)
+O(b−1/2)

= −µ
t+1

2
+O(b−1/2),

and

E(Ψt+1
1 ) = −κ(a− b) + (κa+ (1− κ)b)E(Yl)

=
ακβr

2
E

(
eΨ

t
1+Bc−ν

1 + eΨ
t
1+Bc−ν

)
+
κ(1− αβ)r

2
E

(
eΨ

t
1+Bn−ν

1 + eΨ
t
1+Bn−ν

)
+O(b−1/2)

=
µ(t+1)

2
+O(b−1/2).

In addition, for the variances of Ψt+1
0 and Ψt+1

1 we have

Var(Ψt+1
0 ) = bE(X2

l )

= αβκrE

(
eΨ

t
1+Bc−ν

1 + eΨ
t
1+Bc−ν

)
+ κ(1− αβ)rE

(
eΨ

t
1+Bn−ν

1 + eΨ
t
i+Bn−ν

)
+O(b−1/2)

= µ(t+1) +O(b−1/2), (A.44)

and similarly

Var(Ψt+1
1 ) = (κa+ (1− κ)b)E(Y 2

l ) (A.45)

= µ(t+1) +O(b−1/2). (A.46)

Now we need to show the gaussianity of the messages Ψt
0 and Ψt

1, which we show using

Lemma 5.2. For (A.38) the upperbound in Lemma 5.2 becomes

CBEE(|Xi|3)√
γ(µ2 + σ2)3

=
CBEbE(|Xi|3)√
(b(µ2 + σ2))3

=
CBEbE(|Xi|3)
Var(Ψt+1

0 )3/2
(A.47)
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Similarly for (A.39) we get

CBEE(|Yi|3)√
γ(µ2 + σ2)3

=
CBE(κa+ (1− κ)b)E(|Yi|3)

Var(Ψt+1
1 )3/2

. (A.48)

In Lemma A.4 stated and proved below, we show that µ(t+1) ≥ αβ2λ 1−κ
κ . Therefore for

any κ < 1/2, we have

Var(Ψt+1
0 ) = Var(Ψt+1

1 ) ≥ αβ2λ

2
+O(b−1/2) = Θ(1),

under the assumptions of the proposition. In addition we have bE(|Xi|3) = O(b−1/2) and

(κa + (1 − κ)b)E(|Yi|3) = O(b−1/2) from (A.40) and (A.42). Thus the bounds given in

(A.47) and (A.48) both tend to zero as b→ ∞.

Hence by Lemma 5.2, we obtain that Ψt
1 → N (µ

(t)

2 , µ(t)) and Ψt
0 → N (−µ(t)

2 , µ(t))

as b → ∞, where from (A.43), µ(t) satisfies the following recursion with inital condition

µ(0) = 0 :

(A.49)

µ(t+1) = αβλE

(
(1− κ)

κ+ (1− κ)e−
√

µ(t)Z−µ(t)

2 −Bc

)

+ (1− αβ)λE

(
(1− κ)

κ+ (1− κ)e−
√

µ(t)Z−µ(t)

2 −Bn

)
.

Consequently, the distributions of the messages Rt
u→i in the limit of n → ∞ converge to

Γt
j + hu, given {σu = j}, where Γt

1 ∼ N (µ
(t)

2 , µ(t)) and Γt
0 ∼ N (−µ(t)

2 , µ(t)), in the large

degree limit where b→ ∞.

A.4.1 Proving the bound on µ(t)

Let F (µ) be defined as

F (µ) = αβ2λE

(
(1− κ)/κ

β + (1− β) exp(−µ/2−√
µZ)

)

+ (1− αβ)2λE

(
(1− κ)

κ(1− αβ) + (1− κ− ακ+ ακβ)e(−µ/2−√
µZ)

)
.

Then µ(t) satisfies the recursion µ(t+1) = F (µ(t)), by substituting for Bc and Bn in (A.49).

Below we show a lower bound on F (µ). For its proof we need the following Lemma from

[Alon & Spencer 2004].

Lemma A.3. [Alon & Spencer 2004, Theorem 6.2.1] If f, g : R → R are two non-

decreasing functions, then E(fg) ≥ E(f)E(g).

Now we state our result on F (µ).

Lemma A.4. For 0 < β < 1,

F (µ) ≥ αβ2λ
1− κ

κ
.

Proof. We show that

gβ = E

(
1

β + (1− β) exp(−µ/2−√
µZ)

)
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is nonincreasing for 0 ≤ β ≤ 1 as shown below. Let X = exp(−√
µZ). Then d

dβ (gβ) =

E

(
exp(−µ/2)X−1

(β+(1−β)e−µ/2X)2

)
. Now we show d

dβ (gβ) < 0 using Lemma A.3. In Lemma A.3, let f =

exp(−µ/2)X and g = −1
(β+(1−β)e−µ/2X)2

. Clearly these are non-decreasing in X. Therefore

E(fg) ≥ E(f)E(g) = E(g), since E(f) = Ee−µ/2e
√
µZ = 1. Therefore we have

E

( −e−µ/2X

(β + (1− β)e−µ/2X)2

)
≥ E

( −1

(β + (1− β)e−µ/2X)2

)
,

hence
dgβ
dβ < 0 for all β. Therefore 1 = gβ(1) ≤ gβ(β) for β < 1. The result then follows by

substituting this lower bound in the definition of F (µ) and observing that the second term

is strictly non-negative.

A.4.2 Proof of Theorem 5.2

Proof. Notice that when we set β = 1 the recursion (5.28) becomes the same as (5.13).

Also, when β = 0 we can retrieve the recursion for standard BP without side-information,

i.e., and from this it can be gleaned that the asymptotic error rate is zero only if λ > 1/e.

Let us now consider 0 < β < 1. By Lemma A.4, we have

αβ2λ
1− κ

κ
≤ µ(t) ≤ λ

(1− κ)

κ
.

Hence µ(t) = Θ
(
1−κ
κ

)
. The asymptotic distributions of the messages are as follows:

Γt
0,0 ∼ N (−µ(t)/2, µ(t)) + log

(
(1− αβ)(1− κ)

(1− κ− ακ+ ακβ)

)

Γt
0,1 ∼ N (−µ(t)/2, µ(t)) + log

(
β(1− κ)

κ(1− β)

)

Γt
1,0 ∼ N (µ(t)/2, µ(t)) + log

(
(1− αβ)(1− κ)

(1− κ− ακ+ ακβ)

)

Γt
1,1 ∼ N (µ(t)/2, µ(t)) + log

(
β(1− κ)

κ(1− β)

)
,

where Γt
j,k is the rv with the asymptotic distribution of the messages Rt

u→i in the limit of
n → ∞ and b → ∞, given {σu = j, cu = k}. We can now write the probability of error pβe
of the per-node MAP detector Ŝ0 as

pβe = pβe (i|σi = 0, ci = 0)P (σi = 0, ci = 0) + pβe (i|σi = 0, ci = 1)P (σi = 0, ci = 1)

+ pβe (i|σi = 1, ci = 0)P (σi = 1, ci = 0) + pβe (i|σi = 1, ci = 1)P (σi = 1, ci = 1)

= P0,0(R
t
i > ν)π0,0 + P0,1(R

t
i > ν)π0,1 + P1,0(R

t
i < ν)π1,0 + P1,1(R

t
i < ν)π1,1,

is the error rate of Algorithm 3, where pβe (i|σi = 0, ci = 0) denotes the probability that

node i is misclassified, given {σi = 0, ci = 0} and π0,1 = P(σi = 0, ci = 1) etc. Then the
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expected fraction of mislabelled nodes E(|Ŝ0∆S|)
K in the limit n→ ∞, b→ ∞ is

lim
b→∞

lim
n→∞

npβe
K

= Q




µ(t)

2 + log( β
(1−β) )√

µ(t)


αβ + (1− αβ)Q




µ(t)

2 − log

(
1−κ
κ

(
1−ακ(1−β)

1−κ

1−αβ

))

√
µ(t)




+ α(1− β)Q




µ(t)

2 − log( β
1−β )√

µ(t)




+ (
1− κ

κ
− α(1− β))Q




µ(t)

2 − log
(

(1−αβ)κ
(1−κ−ακ+ακβ)

)

√
µ(t)


 .

We can show, by a calculation similar to the one followed in the proof of Theorem 5.1, that

lim
b→∞

lim
n→∞

npβe
K

≤
(
α
√
β(1− β) +

√
(1− αβ)(

1− κ

κ
− α(1− β))

)
e−

λαβ2(1−κ)
8κ .

Finally by a similar calculation to (5.22),

lim
b→∞

lim
n→∞

E(|S∆Ŝ|)
K

≤ 2

(
α
√
β(1− β) +

√
(1− αβ)(

1− κ

κ
− α(1− β))

)
e−

λαβ2(1−κ)
8κ .
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Appendix: Chapter 6

B.1 Proof of Lemma 6.6

From Lemma 6.1, we have for Chung-Lu graphs that: di = wi(1+ εi), where η ≡ maxi εi =

o(1) with high probability. In the proof we assume explicitly that vi = 1/n, but the results

hold in the slightly more general case where vi = O(1/n) uniformly ∀i, i.e., ∃K such that

maxi nvi ≤ K. It can be verified easily that all the bounds that follow hold in this more

general setting. The event {η = o(1)}, holds w.h.p. asymptotically from Lemma 6.1. In

this case, we have

∑

j

(
Aij√
didj

−
√
didj∑
i di

)
vj√
dj

=
∑

j

(
Aij√
didj

−
√
didj∑
k dk

)
vj√
wj

(1 + εj)

where εj is the error of convergence, and we have maxj εj = O(η). Therefore,

∥∥∥Q̃v′
∥∥∥
∞

≤
∥∥∥Q̃q

∥∥∥
∞

+max
i
εi

∥∥∥Q̃q
∥∥∥
∞

≤
∥∥∥Q̃q

∥∥∥
∞

(1 + o(1)) w.h.p., (B.1)

where q is a vector such that qi =
nvi√
wi
. Furthermore, we have w.h.p.

Aij√
didj

−
√
didj∑
k dk

=
Aij√

wi(1 + εi)wj(1 + εj)
−
√
wi(1 + εi)wj(1 + εj)∑

k wk(1 + εk)

=
Aij√
wiwj

(1 +O(εi) +O(εj))−
√
wiwj∑
k wk

(
1 +O(εi) +O(εj)

1 +O(η)

)

=

(
Aij√
wiwj

−
√
wiwj∑
k wk

)
(1 + δij),

where δij is the error in the ijth term of the matrix and δij = O(η) uniformly, so that

maxij δij = o(1) w.h.p. Consequently, defining Q̃ij =
Aij√
wiwj

−
√
wiwj∑
k wk

we have:

∥∥∥Q̃q
∥∥∥
∞

≤
∥∥∥Q̃q

∥∥∥
∞

+max
i

|
∑

j

Q̃ijδijqj |

≤
∥∥∥Q̃q

∥∥∥
∞

+O(η)max
i

1√
wmin

∑

j

|Q̃ij |

≤
∥∥∥Q̃q

∥∥∥
∞

+ o(1)
1√
wmin

(
C

√
wmax

wmin
+
wmax

wmin

)
(B.2)

≤
∥∥∥Q̃q

∥∥∥
∞

+ o(1/
√
wmin) (B.3)
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where in (B.2) we used the fact the O(η) is a uniform bound on the error and it is o(1)

w.h.p. and maxj qj ≤ 1√
wmin

. In (B.2) we also used the fact that

max
i

∑

j

|Q̃ij | ≤ max
i

∑

j

Aij√
wiwj

+
∑

j

√
wiwj∑
k wk

≤ max
i

1√
wmin

di√
wi

+max
i

√
wiwmax

wmin

(a)
≤ C

√
wi

wmin
+
wmax

wmin

≤ C

√
wmax

wmin
+
wmax

wmin
,

where C is some constant. In (a) above we used the fact that w.h.p. di = wi(1 + o(1)), by

Lemma 6.1, hence ∃C such that ∀n large enough di ≤ Cwi.

Now we proceed to bound
∥∥∥Q̃q

∥∥∥
∞
. Substituting for qi =

1√
wi
, we get

∑

j

1
√
wj

(
Aij√
wiwj

−
√
wiwj∑
k wk

)
=
∑

j

1

wj
√
wi

(
Aij −

wiwj∑
i wi

)

≡ 1√
wi
Xi. (B.4)

We seek to bound maxi|Xi|:

Xi =
∑

j

1

wj

(
Aij −

wiwj∑
i wi

)
.

Furthermore, E(X2
i ) =

∑
j

1
w2

j
E(Aij−pij)2, with pij =

wiwj∑
wi
. So, E(X2

i ) =
∑

j
1
w2

j
pij(1−

pij) ≤ wi∑
i wi

∑
j

1
wj

≤ n pi

wmin
, where pi =

wi∑
i wi

, and
Aij

wj
≤ 1/wmin. Therefore using Bern-

stein Concentration Lemma for ε < nmaxi pi:

P


max

i
|
∑

j

(Aij − pij)/wj |≥ ε


 ≤ nmax

i
exp(− ε2

2(pin/wmin) + ε/wmin
)

≤ nmax
i

exp(− wminε
2

2(npi + ε)
)

≤ n exp(−ε2wmin/(4nmax
i
pi))

≤ n exp(
−ε2volwmin

4wmaxn
), (B.5)

where vol
n =

∑
i wi

n ≥ wmin. It can be verified that when ε = 1
(w)α , for some α > 0, the

RHS of (B.5) can be upper bounded by n−(γK−1), if w ≥ (γ log(n))
1

1−2α , for some large

enough γ, which can be easily satisfied if wmin ≫ O(logc(n)), for some c > 1, where

K is a constant such that wmax ≤ Kwmin. Thus, finally, from (B.4) and (B.3) we have∥∥∥Q̃q
∥∥∥
∞

= o(1/
√
wmin), w.h.p., and therefore from (B.1), we get

∥∥∥Q̃v′
∥∥∥
∞

= o(1/
√
wmin).
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B.2 Proof of Lemmas in Section 6.5

B.2.1 Proof of Lemma 6.8

The proof is an application of Bernstein’s Concentration Lemma. Note that for 1 ≤ i ≤ m,

Di =
∑

j Aij . Here the mean degree E(Di) = mp+ (n−m)q = t1, and the variance B2
n =

mp(1−p)+(n−m)q(1−q) ≤ t1 for i ≤ m. Similarly for i > m, E(Di) = mq+(n−m)p = t2
is and variance Var[Di] ≤ t2. Then, the minimum average degree wmin = min(t1, t2). By

Bernstein’s Lemma, for ε = C
√

log(n)
wmin

,

P

(
max

1≤i≤m
|Di − t1|≥ εt1

)
≤ 2m exp

( −ε2t21
2(t1ε/3 + t1)

)

= 2m exp

( −ε2t1
1 + ε/3

)

= O(n−c),

for some c. Hence max1≤i≤m

∣∣∣Di−t1
t1

∣∣∣ ≤ C
√

log(n)
wmin

w.h.p. Similarly

max
1+m≤i≤n/2

∣∣∣∣
Di − t2
t2

∣∣∣∣ ≤ C

√
log(n)

wmin
, w.h.p.

Combining the two bounds above we get,

max
1≤i≤n

∣∣∣∣
Di

E(Di)
− 1

∣∣∣∣ ≤ C

√
log(n)

wmin
, w.h.p. (B.6)

B.2.2 Proof of Lemma 6.9

To prove Lemma 6.9 we need the following lemma on the spectral norm of the difference

between the adjacency matrix and its mean.

Lemma B.1. For an SBM matrix G(m,n − m, p, q) with adjacency matrix A and A =

E(A), there exists a constant K s.t.

‖A−A‖2≤ K
√

log(n)wmax, w.h.p.,

where wmax = max(m,n−m)p+min(m,n−m)q is the maximum average degree, if wmax =

ω(log3(n)).

To prove this Lemma we need the Matrix Bernstein Concentration result, which we

state below for the sake of completeness:

Lemma B.2. [Tropp 2012a, Theorem 1.4]. Let S1,S2, . . .St be independent random

matrices with common dimension d1 × d2. Assume that each matrix has bounded deviation

from its mean, i.e.,

‖Sk − E(Sk)‖≤ R, for each k = 1, . . . n.

Let Z =
∑t

k=1 Sk and introduce a variance parameter

σ2
Z = max

{
‖E
(
(Z− E(Z))(Z− E(Z))H

)
‖, ‖E

(
(Z− E(Z))H(Z− E(Z))

)
‖
}
.
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Then

P{‖Z− E(Z)‖> t} ≤ (d1 + d2). exp

( −t2/2
σ2
Z
+Rt/3

)
, (B.7)

for all t ≥ 0.

Proof of Lemma B.1: With Z = A, in Lemma B.2, we can decompose Z as sums of

Hermitian matrices Si′ j′ , Z =
∑

1≤i′<j′≤n Si′ j′ such that:

(Si′ j′ )ij =





Ai′ j′ if i = i
′
, j = j

′
,

Ai′ j′ if i = j
′
, j = i

′
,

0 otherwise.

(B.8)

Notice that if x 6= 0, ‖(Si′ j′ − E(Si′ j′ ))x‖2= |2xi′xj′ (Ai′ j′ − E(Ai′ j′ ))|< |x2
i′
+ x2

j′
|. Con-

sequently ‖Si′ j′ − E(Si′ j′ )‖2< 1, giving R = 1 in the statement of Lemma B.7. Let

Y = E
(
(Z− EZ)H(Z− EZ)

)
, then

Yij =





v1 if i = j, i ≤ m,

v2 if i = j, i > m,

0 otherwise,

(B.9)

where v1 = mp(1 − p) + q(1 − q)(n − m), v2 = (n − m)p(1 − p) + mq(1 − q). Therefore

σ2
Z
= max(v1, v2) = max(n −m,m)p + min(n −m,m)q = σ2. By our assumptions on the

probabilities, σ2 = ω(log3(n)). Thus it follows that

P(‖A−A‖≥ tσ) ≤ 2n exp

( −t2σ2

2σ2 + tσ/3

)

≤ 2n exp(−t2/3),

if σ > t. The RHS is O(n−c) if t >
√
r log(n), for some r. Finally we are in a position

to prove Lemma 6.9

Proof of Lemma 6.9: We prove this result in two steps. First we show that

‖D−1/2AD−1/2 −W−1/2AW−1/2‖2= C

√
log(n)

wmin
= o(1). (B.10)

Observe that

‖D−1/2AD−1/2 −W−1/2AW−1/2‖2= ‖Q−W−1/2D1/2QD1/2W−1/2‖
= ‖Q−W−1/2D1/2Q+W−1/2D1/2Q−W−1/2D1/2QD1/2W−1/2‖2
= ‖(I−W−1/2D1/2)Q+W−1/2D1/2Q(I−D1/2W−1/2)‖2
≤ δ + (1 + δ)δ,

where δ = maxi

∣∣∣ di

wi
− 1
∣∣∣ . In the last line we used the fact that ‖Q‖2= 1, ‖I−W−1/2D1/2‖2=

maxi

∣∣∣
√

di

wi
− 1
∣∣∣ ≤ maxi

∣∣∣ di

wi
− 1
∣∣∣ and

‖W−1/2D1/2‖2≤ ‖W−1/2D1/2 − I‖2+‖I‖2≤ δ + 1.

By Lemma 6.8, δ ≤ C
√

log(n)
wmin

= o(1) w.h.p. Next we show that
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‖W−1/2AW−1/2 −W−1/2AW−1/2‖2≤
C
√
log(n)wmax

wmin
= o(1). (B.11)

Now using Lemma B.1 we have

‖W−1/2AW−1/2 −W−1/2AW−1/2‖ ≤ ‖A−A‖2
wmin

≤ c
√
log(n)wmax

wmin

= o(1), w.h.p.,

if wmin = ω(
√
log(n)wmax), which is satisfied when wmax ≤ Cwmin for some C, and wmax =

ω(log3(n)). The result of Lemma 6.9 then follows from (B.10) and (B.11) by applying the

triangular inequality.
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