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Abstract

Extreme snowfall and extreme snow depths are among the most dangerous hazards
in the mountainous regions. Max-stable processes, which connect extreme value statistics
and geostatistics by modeling the spatial dependence of extremes, offer a suitable frame-
work to deal with. Two challenging issues concerning spatial dependence of extremes are
broached in this thesis through the examples of snowfall and snow depths in the French
Alps: model selection and temporal nonstationarity. We process two winter maxima data
sets of 3-day snowfall (90 stations from 1958 to 2013) and snow depths (82 stations from
1970 to 2013). First, we introduce a leave-two-out cross-validation procedure appropriate
for evaluating the predictive ability of max-stable processes to model the dependence
structure of spatial extremes. We compare five of the most commonly used max-stable
processes, using as a case study the snowfall maxima data set. This approach allows us
to show that the extremal-t, geometric Gaussian and Brown-Resnick processes are able
to represent as well the structure of dependence of the data, regardless of the number
of stations or years. Then, we show, using a data-based approach allowing to make
minimal modeling assumptions, that snowfall extremes tended to become less spatially
dependent over time, with the dependence range reduced roughly by half during the
study period. We demonstrate that this is attributable at first to the increase in tempera-
ture and its major control on the snow/rain partitioning. A magnitude effect, with less
dependent extremes due to a decrease in winter cumulated snowfall, also exists. Finally,
we tackle the first-ever use of max-stable processes with temporal trends in the spatial
dependence structure. This approach is applied to snow depth winter maxima modeled
by a Brown-Resnick process. We show that the spatial dependence of extreme snow
depths is impacted by climate change in a similar way to that has been observed for
extreme snowfall.

Keywords: snowfall, snow depths, spatial extremes, max-stable processes, climate
change, French Alps
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Résumé étendu

Ce résumé étendu a été préparé sous la forme d’un article de synthèse pour La Houille
Blanche.
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 11 

La gestion des risques dans les régions montagneuses nécessite une caractérisation des extrêmes neigeux. 12 

Nous utilisons le cadre des processus max-stables, qui relient statistique des valeurs extrêmes et 13 

géostatistique, pour étudier la dépendance spatiale des maxima hivernaux de cumuls de chutes de neige sur 3 14 

jours et de hauteurs de neige dans les Alpes françaises. Deux questions sont abordées : la sélection de 15 

modèle et la non-stationnarité temporelle. Nous commençons par introduire une procédure de validation-16 

croisée que nous utilisons pour évaluer les capacités de plusieurs processus max-stables à capturer la 17 

structure de dépendance spatiale des maxima de chutes de neige. Ensuite, nous mettons en évidence une 18 

baisse de la dépendance spatiale des chutes de neige extrêmes durant ces dernières décennies. Enfin, nous 19 

montrons comment modéliser des tendances temporelles dans une structure de dépendance spatiale des 20 

extrêmes à travers l’exemple des maxima de hauteurs de neige. Pour les extrêmes de chutes comme de 21 

hauteurs de neige, la dépendance spatiale est fortement impactée par le changement climatique, 22 

premièrement par l’effet de la hausse de la température sur la phase (neige ou pluie) de la précipitation, et 23 

ensuite par la baisse du cumul hivernal des chutes de neige. 24 

MOTS CLEFS : extrêmes neigeux, dépendance spatiale, processus max-stables, changement climatique, 25 

Alpes françaises. 26 

Inferring and modeling spatial dependence of snow extremes in the 27 

French Alps using max-stable processes 28 

Risk management in mountainous regions requires a precise assessment of snow extremes. We adopt the 29 

framework of max-stable processes, which connect extreme value statistics and geostatistics, to investigate 30 

the spatial dependence of winter maxima of 3-day snowfall and snow depths in the French Alps. Two 31 

important issues are broached: model selection and temporal non-stationarity. First, we introduce a cross-32 

validation procedure which is used to assess the predictive ability of several max-stable processes to capture 33 

the spatial dependence structure of snowfall maxima. Then, we highlight a decrease in spatial dependence of 34 

extreme snowfall during the last decades. Lastly, we show a way to model temporal trends in a spatial 35 

dependence of extremes through the example of snow depth maxima. For both extreme snowfall and 36 

extreme snow depths, we find that the spatial dependence is strongly impacted by climate change, at first by 37 

the effect of the increase in temperature on the snow rain partitioning, also by the decrease in winter 38 

cumulated snowfall. 39 

KEY WORDS : snow extremes, spatial dependence, max-stable processes, climate change, French Alps. 40 

I INTRODUCTION 41 

Les chutes de neige extrêmes et les hauteurs de neige extrêmes sont importantes pour la gestion 42 

des risques dans les régions montagneuses, à cause des forts dégâts humains et économiques 43 

qu’elles sont susceptibles d’occasionner. Elles peuvent provoquer la surcharge et l’effondrement 44 

de bâtiments, l’interruption du trafic routier, ferroviaire, ou aérien, occasionner des avalanches et 45 



contribuer aux inondations. Elles ont également un fort impact sur le cycle de l’eau, l’industrie 46 

touristique et les écosystèmes montagnards.  47 

La théorie des valeurs extrêmes [Coles, 2001], qui permet d'interpoler au-delà des plus fortes 48 

observations mesurées, offre un cadre approprié pour étudier les extrêmes neigeux. Par exemple, 49 

l'approche dite des « maxima par blocs » [Gumbel, 1958] consiste à modéliser les maxima de 50 

blocs d’une certaine longueur (par exemple annuels) par la loi GEV (Generalized Extreme 51 

Value). Cependant, les extrêmes de chutes de neige et de hauteurs de neige apparaissent non pas 52 

isolés, mais regroupés spatialement. En effet, plus les positions considérées sont proches et plus 53 

les extrêmes ont tendance à apparaitre simultanément. En généralisant la théorie des valeurs 54 

extrêmes au cas spatial, les processus max-stables [de Haan, 1984] offrent un cadre approprié 55 

pour la modélisation spatiale des hauteurs de neige extrêmes [Blanchet et Davison, 2011] et des 56 

chutes de neige extrêmes [Gaume et al., 2013]. Les maxima hivernaux sont modélisés par la loi 57 

GEV tandis que leur structure de dépendance spatiale est modélisée par le processus max-stable. 58 

Dans cette contribution, nous abordons deux aspects de la modélisation statistique de la 59 

dépendance spatiale des extrêmes neigeux à travers le cadre des processus max-stables. 60 

Premièrement, la sélection de modèles qui est une question importante du fait de nombreux 61 

modèles de processus max-stables disponibles dans la littérature. Ensuite, la non-stationnarité 62 

temporelle de la dépendance spatiale qui, malgré le contexte actuel désormais bien établi de 63 

changement climatique, n'a jamais été étudiée jusqu’ici. Nous commençons par introduire les 64 

processus max-stables. Puis nous présentons les deux jeux de données utilisés. Ensuite, nous 65 

proposons une procédure de validation croisée adaptée à l’évaluation de la capacité des 66 

processus max-stables à prédire la structure de dépendance spatiale des extrêmes. Nous 67 

continuons en exposant une approche pour mettre en évidence les tendances temporelles dans la 68 

dépendance spatiale des maxima de chutes de neige. Enfin, nous montrons comment modéliser 69 

les tendances temporelles dans une structure de dépendance spatiale avec une application aux 70 

maxima de hauteurs de neige. 71 

II THEORIE DES VALEURS EXTREMES DANS LE CAS SPATIAL 72 

II.1 Loi GEV 73 

On s’intéresse à la variable ( )Y x  du maximum hivernal de neige (chutes ou hauteurs) en une 74 

localisation x  des Alpes françaises. Grâce à la théorie des valeurs extrêmes [Coles, 2001] nous 75 

savons que nous pouvons modéliser ( )Y x par une loi GEV( ( ), ( ), ( )x x x   ), dont la fonction de 76 

répartition est  77 
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Pour plus de commodité, il est possible de standardiser ( )Y x  en distribution Fréchet 82 

unitaire (c’est-à-dire GEV(1,1,1)) en utilisant la transformation 83 



                                           
 ( ), ( ), ( )

1
( )

log ( ( ))x x x

Z x
F Y x  


       (2) 84 

ce que nous ferons systématiquement dans cet article. 85 

II.2 Processus max-stables 86 

Le processus { ( )}xZ x   des maxima standardisés en Fréchet unitaire peut être modélisé par un 87 

processus max-stable [de Haan, 1984].  Les processus max-stables généralisent la théorie des 88 

valeurs extrêmes au cas spatial en modélisant la structure de dépendance entre les maxima ( )Z x . 89 

Il existe plusieurs modèles de processus max-stables, chaque modèle représentant une manière 90 

spécifique de modéliser la dépendance spatiale. Par exemple, pour le processus de Brown-91 

Resnick [Kabluchlo et al., 2009], l’expression de la loi bivariée pour 1( )Z x  et 2( )Z x  (où 1x  et 92 

2x  sont deux positions) est donnée par 93 

                       2 1
1 1 2 2

1 1 2 2

1 1 1 1
( ( ) , ( ) ) exp log log

2 2

z za a
P Z x z Z x z

z a z z a z

     
            

     
       (3) 94 

où   désigne la fonction de répartition de la loi normale standard et  2 ( )a h avec   le 95 

semi-variogramme du processus. Le semi-variogramme puissance ( ) ( / )h h   avec  et  ses 96 

paramètres d’amplitude et de forme, est souvent utilisé. Nous nous intéressons aussi dans cet 97 

article aux processus de Smith [Smith, 1990], de Schlather [Schlather, 2002], gaussien 98 

géométrique [Davison et al., 2012] et extrémal-t [Opitz, 2013] pour lesquels nous avons des 99 

expressions analogues à celle indiquée en (3) pour les lois bivariées.  100 

 L’anisotropie est prise en compte à travers une transformation spatiale. Par exemple, en 101 

dimension 3, nous remplaçons les coordonnées de x  par 'x Vx  avec 102 
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       (4) 103 

avec  0,   l’angle d’anisotropie (qui correspond à l’angle de plus forte dépendance), 1 1w   104 

le ratio d’anisotropie et 2 0w   le poids pour l’altitude. La distance euclidienne calculée après 105 

une telle transformation est appelée distance 2-D modifiée ou distance 3-D modifiée, selon que 106 

la dimension verticale soit considérée ou non. 107 

II.3 Coefficient extrémal, fonction extrémale et portée de la dépendance extrémale 108 

La dépendance extrémale entre les deux variables aléatoires 1( )Z x  et 2( )Z x de loi Fréchet 109 

unitaire peut être mesurée avec le coefficient extrémal   [Schlather et Tawn, 2003 ; Naveau et 110 

al., 2009] défini par 111 

                           1 2 1( ( ) , ( ) ) exp { ( ) }P Z x z Z x z P Z x z
z

 
     

 
,    0z  .      (5) 112 

Le coefficient extrémal est compris entre 1 (dépendance complète) et 2 (indépendance). Ainsi, 113 

plus le coefficient extrémal est proche de 1, plus la dépendance extrémale en 1x  et 2x est 114 

importante, c’est-à-dire que les maxima les plus forts ont tendance à avoir lieu durant le même 115 

hiver en 1x  et 2x . 116 



Pour chacun des processus max-stables indiqués précédemment, nous avons une expression du 117 

coefficient extrémal ( )h  en fonction de la distance h entre 1x  et 2x . ( )h  représente ainsi la 118 

force de la dépendance extrémale en fonction de la distance et est appelée fonction extrémale. 119 

Nous avons par exemple pour le processus de Brown-Resnick ( ) 2 ( / 2)h a  . 120 

Nous définissons la portée de la dépendance extrémale comme la distance 0h telle que 121 

0( ) 1.9h  . La portée désigne la distance à partir de laquelle les extrêmes sont quasi 122 

indépendants. 123 

III JEUX DE DONNEES 124 

III.1 Maxima hivernaux de chutes et de hauteurs de neige dans les Alpes françaises 125 

Le premier jeu de données que nous utilisons est composé de cumuls de chutes de neige sur 3 126 

jours (durée la plus usuelle des tempêtes hivernales dans les Alpes françaises [Bocchiola et al., 127 

2006 ; Eckert et al., 2010, 2011 ; Gaume et al., 2012]) mesurés sur 90 stations de 1958 à 2013 128 

(Figure 1 (a)). Le second est un jeu de données de hauteurs de neige mesurées sur 82 stations de 129 

1970 à 2013 (Figure 1 (b)). On considère les maxima hivernaux avec une période hivernale 130 

définie du 15 novembre au 15 mai. Afin de ne considérer que la structure de dépendance spatiale, 131 

la loi GEV est ajustée ponctuellement à ces maxima par maximum de vraisemblance. Chaque 132 

distribution locale est ensuite transformée en Fréchet unité via la transformation (2). 133 

 134 

Figure 1 : Zone d’étude dans le sud-est de la France avec les 23 massifs des Alpes françaises et les stations concernant les chutes 135 

de neige (à gauche) et les hauteurs de neige (à droite). Les lignes délimitent les massifs et les points indiquent les stations. Dans 136 

le jeu de données concernant les hauteurs de neige, les stations avec au moins 30 maxima sont indiquées en rouge. 137 

III.2 Variables locales et synoptiques 138 

Afin d’étudier l’influence du climat sur la dépendance spatiale des extrêmes de neige, nous 139 

considérons plusieurs variables représentant plusieurs aspects du climat hivernal des Alpes 140 

françaises. Les variables locales considérées sont le cumul hivernal de chutes de neige, la 141 

moyenne de l’équivalent en eau de neige (masse totale de neige par unité de surface), le ratio 142 

neige/précipitation (cumul de précipitation neigeuse divisé par le cumul de précipitation totale) 143 

et la température (minimum, moyenne et maximum quotidiens). Ces variables sont disponibles à 144 

travers des réanalyses nivo-météorologiques SAFRAN - Crocus [Durand et al., 2009a, 2009b] 145 

pour chacun des massifs. Afin d’avoir une valeur globale pour les Alpes et nonobstant leur 146 



variabilité inter-massifs, nous considérons leurs moyennes sur les massifs à 2 altitudes : 1800 m 147 

et 2400 m. 148 

Puisque le climat hivernal des Alpes françaises est surtout influencé par des flux venant de 149 

l’Atlantique nord, nous considérons aussi les indices NAO (Oscillation Nord Atlantique [Jones et 150 

al., 1997 ; Osborn, 2006]) et AMO (Oscillation Atlantique Multidécennale [Kaplan et al., 1998 ; 151 

Enfield et al., 2001]). Nous utilisons la version non stationnarisée de l’AMO qui inclut le récent 152 

réchauffement climatique [Kaplan et al., 1998]. 153 

Nous considérons les moyennes hivernales de chacune de ces variables locales et synoptiques. 154 

IV SELECTION DE PROCESSUS MAX-STABLES POUR CHUTES DE NEIGE PAR 155 

VALIDATION-CROISEE 156 

Comme il existe plusieurs modèles paramétriques max-stables, la question se pose de savoir 157 

lequel a la meilleure capacité d’ajustement aux données, ce qui veut dire dans notre cas lequel 158 

permet de mieux modéliser la dépendance extrémale d’un jeu de données. Nous proposons un 159 

cadre pratique pour discriminer les processus max-stables en évaluant leur capacité à prédire la 160 

structure de dépendance spatiale des extrêmes [Nicolet et al., 2017a]. Les processus de Smith, de 161 

Schlather, de Brown-Resnick, gaussien géométrique et extrémal-t ont été ainsi mis en 162 

compétition dans le but de déterminer le meilleur pour prédire la dépendance spatiale des 163 

maxima de chutes de neige précédemment introduits. L’ajustement de ces processus max-stables 164 

se fait par maximisation de la vraisemblance composite [Padoan et al., 2010]. Les 165 

paramétrisations de chacun de ces modèles (par exemple le choix du semi-variogramme dans le 166 

processus de Brown-Resnick) ont été préalablement sélectionnées par CLIC (Composite 167 

Likelihood Information Criterion [Padoan et al., 2010]), qui est un critère de vraisemblance 168 

pénalisée analogue à l’AIC dans le cas des vraisemblances composites. La Figure 2 montre les 169 

fonctions extrémales issues des modèles considérés. Nous pouvons observer que les fonctions 170 

extrémales des modèles extrémal-t, gaussien géométrique et de Brown-Resnick sont proches des 171 

moyennes par classes de distances des estimations empiriques du coefficient extrémal, montrant 172 

ainsi la qualité de leurs ajustements. En revanche, les fonctions extrémales de Smith et de 173 

Schlather sont loin des moyennes par classes de distances. 174 

La sélection de modèle proposée se base sur une procédure de validation-croisée dite leave-175 

two-out : pour chaque paire de stations ( , )i jx x , on mesure la qualité de l’estimation de la 176 

distribution bivariée de ( ( ), ( ))i jZ x Z x  estimée sur les 88 stations restantes. Pour cela, un large 177 

panel de critères est introduit. Certains critères se basent sur  l’estimation de la probabilité 178 

d’excès joints 179 

                                                    ( , , ) ( ( ) , ( ) )i j T i T j Tx x z P Z x z Z x z               (6) 180 

où ( , )i jx x est une paire de stations et Tz  le niveau de retour sur T années. L’écart entre les 181 

estimations issues des modèles mod ( , , )i j Tx x z  et les estimations empiriques ( , , )emp i j Tx x z  est 182 

mesuré à travers la racine carrée de l’erreur quadratique moyenne (critère RMSE), l’erreur 183 

absolue moyenne (MAE), la racine carrée de l’erreur normalisée quadratique moyenne 184 

(RMSNE), l’erreur normalisée absolue moyenne (MANE) et le coefficient de détermination (R²). 185 

D’autres critères sont utilisés : les critères FF et NT, utilisés par Garavaglia et al. [2011], Renard 186 

et al. [2013] et Blanchet et al. [2015] pour mesurer la fiabilité de l’estimation des distributions 187 

univariées, ont été adaptés au cas bivarié en les appliquant au minimum en deux stations 188 

( , ) min( ( ), ( ))i jM i j Z x Z x . Le critère FF mesure la qualité de l’estimation de la distribution du 189 

maximum de ( , )M i j  sur l’ensemble des hivers. Le critère NT se focalise sur le nombre de 190 

dépassements du niveau de retour sur T années qui doit suivre une distribution binomiale. 191 



Excepté pour le R² (plus on est proche de 1, meilleur est le modèle), pour tous ces critères le 192 

meilleur modèle est celui qui prend la plus petite valeur. 193 

 194 

Figure 2 : Chutes de neige. Fonctions extrémales issues des processus de Smith, de Schlather, extrémal-t, gaussien géométrique 195 

et de Brown-Resnick estimés. Les points gris représentent les estimations empiriques du coefficient extrémal pour toutes les 196 

paires de stations. Les points noirs indiquent les moyennes des estimations empiriques par classes de distances.  197 

 198 

Famille RMSE MAE RMSNE MANE R² N10 N20 FF 

E-t 0.0242 0.0159 0.559 0.403 0.918 0.200 0.195 0.193 

GG 0.0243 0.0158 0.551 0.404 0.918 0.202 0.195 0.199 

BR 0.0243 0.0158 0.550 0.404 0.918 0.201 0.195 0.199 

Sm 0.0283 0.0172 0.600 0.484 0.889 0.269 0.279 0.281 

Sc 0.0308 0.0212 0.797 0.511 0.868 0.293 0.290 0.285 

 199 

Tableau 1 : Chutes de neige. Validation croisée : critères RMSE, MAE, RMSNE, MANE, R², NT avec T=10 et T=20 et FF pour 200 

les processus de Schlather (Sc), gaussien géométrique (GG) et extrémal-t (E-t) avec la fonction de corrélation de Gneiting-201 

Matérn pour le processus sous-jacent W, le processus de Brown-Resnick (BR) avec le semi-variogramme puissance et le 202 

processus de Smith (Sm). Les valeurs en gras indiquent le meilleur modèle pour chaque critère (parfois seulement distinguable au 203 

4ème ou 5ème chiffre significatif). 204 

 205 

Les processus de Smith et de Schlather sont surpassés par les autres processus max-stables 206 

selon tous les critères (Tableau 1), dû à leur manque de flexibilité. Le processus de Schlather est 207 

le moins performant selon tous les critères. Selon les critères RMSE, MANE, R², N10 et FF le  208 

processus extrémal-t est légèrement meilleur que les processus Brown-Resnick et gaussien 209 

géométrique. Cependant, le processus gaussien géométrique a le meilleur MAE et le processus 210 

de Brown-Resnick les meilleurs RMSNE et N20. Néanmoins, dans tous les cas, les processus 211 

extrémal-t, gaussien géométrique et Brown-Resnick fournissent des résultats extrêmement 212 

proches. Les performances de ces trois processus max-stables sont similaires quel que soit le 213 

nombre de stations et quel que soit le nombre d’années d’observations [Nicolet et al., 2017a]. 214 



Les bonnes performances des processus extrémal-t, gaussien géométrique et Brown-Resnick 215 

montrent qu’ils sont tous les trois appropriés pour modéliser la dépendance spatiale de nos 216 

maxima de chutes de neige. On peut toutefois préférer utiliser le processus de Brown-Resnick 217 

qui nécessite l’estimation de moins de paramètres que les deux autres processus. 218 

V BAISSE DE LA DEPENDENCE SPATIALE DES CHUTES DE NEIGE EXTREMES SUR LES 219 

DERNIERES DECENNIES 220 

L’évolution temporelle de la dépendance spatiale des maxima de chutes de neige est quantifiée 221 

à travers une approche dite data-based, c’est-à-dire en se basant autant que possible sur les 222 

données tout en faisant très peu d’hypothèses de modélisation [Nicolet et al, 2016]. Ceci a 223 

l’avantage de s’assurer que les éventuelles tendances temporelles mises en évidence ne sont pas 224 

des conséquences des hypothèses de modélisation. Les seuls choix de modélisation nécessaires 225 

sont le modèle de la fonction extrémale, la manière de calculer la distance entre les stations et la 226 

stationnarité temporelle des distributions marginales. Nous évoquons ici uniquement les résultats 227 

obtenus avec la fonction extrémale de Brown-Resnick, la distance 2-D modifiée et la 228 

stationnarité temporelle des distributions marginales, mais d’autres hypothèses ne modifient pas 229 

les conclusions. 230 

L’évolution temporelle de la structure de dépendance est mesurée à travers des fenêtres 231 

glissantes sur 20 ans (la Figure 3(a) illustre cette approche pour la première fenêtre d’estimation). 232 

Pour chacune des fenêtres, le coefficient extrémal est estimé pour chaque paire de stations (en 233 

gris sur la Figure 3(a)). La fonction extrémale de Brown-Resnick est ensuite ajustée à ces 234 

estimations par moindres carrés (courbe rouge sur la figure). La proximité entre la courbe de la 235 

fonction extrémale et les points noirs des moyennes par classes de distance des estimations du 236 

coefficient extrémal montre la justesse de l’estimation. On en déduit la portée de la dépendance 237 

extrémale qui peut ainsi être calculée pour chaque fenêtre. Par exemple, pour la première fenêtre, 238 

nous avons 0 200h  km. 239 

L’anisotropie est préalablement estimée en utilisant toute les données, puis fixée pour chaque 240 

fenêtre d’estimation. L’anisotropie estimée ( 35.84


   et 1 2.78w


 ) montre un angle 241 

d’anisotropie qui correspond à l’orientation des principaux massifs et des principales vallées 242 

dans les Alpes françaises. Ce phénomène s’explique par l’effet de l’orographie sur les flux 243 

atmosphériques générant les précipitations extrêmes. 244 

Nous observons une tendance positive du coefficient extrémal pour les larges distances (au-245 

delà de 100 km) et, par conséquent, une tendance temporelle négative dans la dépendance 246 

extrémale (Figure 3(b)).  La portée de la dépendance extrémale présente une forte tendance 247 

négative avec une division par 2 durant la période (Figure 3(c)). La significativité de cette 248 

tendance est montrée par les intervalles de confiance à 95% estimés par la méthode delta 249 

(propagation de la variance d’estimation). Cependant, la majeure partie de cette baisse est 250 

concentrée durant la période 1978-1997 suivie par une relative stabilisation dans les dernières 251 

années. 252 

Les corrélations entre la portée de la dépendance extrémale et les moyennes glissantes sur 20 253 

ans (par souci de consistance avec la fenêtre glissante sur 20 ans) des variables locales et 254 

synoptiques précédemment introduites permettent d’établir le lien entre l’évolution de la 255 

dépendance extrémale des chutes de neige et l’évolution du climat. Une forte corrélation positive 256 

existe avec le cumul hivernal de chutes de neige (0.86 à 1800 m et 0.78 à 2400 m), la moyenne 257 

en équivalant en eau (0.90 et 0.84) et le ratio neige/précipitation (0.91 et 0.76). La portée de la 258 

dépendance extrémale est corrélée négativement avec la température moyenne (-0.90 à 1800 m 259 

et -0.92 à 2400 m), l’AMO (-0.86), la NAO (-0.68) et le temps (-0.84). Même si l’importance de 260 



ces corrélations doit être relativisée par le fait que de considérer des moyennes glissantes les 261 

augmente, leur forte amplitude reste notable.  262 

 263 

Figure 3 : Chutes de neige. (a) Fonction extrémale pour la première fenêtre d’estimation (1958-1977) : estimations du coefficient 264 

extrémal pour chaque paires de stations (points gris), moyennes par classes de distance (points noirs) et fonction extrémale de 265 

Brown-Resnick ajustée sur les estimations par paires (courbe rouge). La portée de la dépendance extrémale h0 est égale à 200 km. 266 

(b) Evolution temporelle de la fonction extrémale de Brown-Resnick, des fenêtres d’estimation les plus anciennes (en bleu) 267 

jusqu’aux plus récentes (en rouge). (c) Evolution temporelle de la portée de la dépendance extrémale. L’axe des abscisses indique 268 

le centre de la fenêtre d’estimation. L’intervalle de confiance à 95% est calculé par la méthode delta. 269 

 270 

Les corrélations négatives entre la portée de la dépendance extrémale et les variables liées à la 271 

température (température moyenne à l’échelle des Alpes françaises et AMO qui se réfère à la 272 

température de la surface de la mer dans le nord de l’Océan Atlantique) montrent que la 273 

dépendance des extrêmes de chutes de neige est plus faible lorsque les températures hivernales 274 

sont plus hautes. De plus, la période de plus forte baisse de la portée de la dépendance extrémale 275 

est concomitante non seulement avec celle de plus forte croissante de température moyenne, 276 

mais aussi avec celle de plus forte décroissance du ratio neige/précipitation [Nicolet et al., 2016]. 277 

Ceci nous indique que la baisse de la dépendance spatiale des maxima de chutes de neige serait 278 

due en premier lieu à la baisse du ratio neige/pluie provoquée par l’augmentation de la 279 

température, en particulier dans le contexte de changement de régime climatique des années 280 

1980 [Reid et al., 2015]. Cette baisse du ratio neige/pluie rend les chutes de neige extrêmes plus 281 

isolées spatialement avec l’augmentation d’événements avec des chutes de neige pour les 282 

stations les plus hautes et de la pluie pour les stations de basse altitude. 283 

Il semble également y avoir un effet d’intensité avec une dépendance extrémale plus forte 284 

durant les hivers les plus neigeux. En effet, la portée de la dépendance extrémale reste très 285 

corrélée avec les variables de neige (cumul de chutes de neige et neige en équivalent en eau) à 286 

2400 m, alors que le ratio neige/précipitation est proche de 1 durant toute la période d’étude. 287 

Cela est cohérent avec la corrélation négative avec la NAO car une NAO négative dans les Alpes 288 

de l’ouest est associée avec des hivers plus froids mais aussi avec des chutes de neige plus 289 

intenses. 290 

VI MODELISATION DE TENDANCES TEMPORELLES DANS LA DEPENDANCE SPATIALE 291 

DES HAUTEURS DE NEIGE EXTREMES  292 

Nous montrons dans cette partie comment modéliser d’éventuelles tendances temporelles dans 293 

une dépendance spatiale avec une application aux hauteurs de neige [Nicolet et al, 2017b]. Le 294 

principe de cette méthode consiste à modéliser des tendances dans la structure de dépendance 295 

d’un processus de Brown-Resnick avec des covariables appropriées. Les covariables utilisées 296 



sont le temps, l’AMO, la NAO, la température (minimum, moyenne et maximum quotidiens), le 297 

cumul hivernal de chutes de neige et le ratio neige précipitation, toutes considérées à travers 298 

leurs moyennes mobiles sur 17 ans. Les tendances sont linéaires pour les deux paramètres  et 299 

  du semi-variogramme. Nous considérons tous les modèles possibles avec une ou deux 300 

covariables, excepté ceux associant des paires de covariables montrant une corrélation supérieure 301 

à 0.8. 302 

Le processus de Brown-Resnick est préalablement ajusté avec une hypothèse stationnaire afin 303 

d’estimer les paramètres d’anisotropie. Comme dans le cas des chutes de neige, l’angle 304 

d’anisotropie estimé 51.52


    correspond à l’orientation des principaux massifs et des 305 

principales vallées dans les Alpes françaises. La dépendance spatiale de ces deux variables est 306 

donc impactée de manière assez similaire par l’orographie. Par contre, l’anisotropie est un peu 307 

moins marquée dans le cas des hauteurs de neige ( 1 1.79w


 ) et l’effet de l’altitude est plus faible 308 

( 2 36.66w


 ). On constate aussi que  la dépendance spatiale des hauteurs de neige est plus forte 309 

(Figure 4(a)). Cela est dû aux effets cumulatifs impliqués dans la formation du manteau neigeux 310 

qui rendent plus lisse l’évolution spatiale des hauteurs de neige. 311 

Les modèles non-stationnaires sont ajustés par vraisemblance composite et sélectionnés par 312 

CLIC. Le meilleur modèle avec une covariable est celui utilisant le cumul de chutes de neige à 313 

1800 m (Figure 4(b)). La deuxième covariable la plus efficace est le ratio neige précipitation à 314 

1800 m et la troisème est le cumul de chutes de neige à 2400 m. Les quatre autres modèles qui 315 

surpassent le modèle stationnaire sont ceux utilisant les températures moyenne et maximum (à 316 

1800 m et à 2400 m). L’inefficacité du ratio neige précipitation à 2400 m peut être expliquée par 317 

le fait qu’à cette altitude, le ratio est proche de 1 durant toute la période d’étude. Aucun modèle 318 

avec deux covariables ne surpasse le modèle utilisant le cumul de chutes de neige à 1800 m 319 

comme seule covariable et qui est donc le meilleur modèle [Nicolet et al., 2017b]. 320 

 321 
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 339 

Figure 4 : Hauteurs de neige. (a) Comparaison entre les estimations du coefficient extrémal pour les hauteurs de neige et pour les 340 

chutes de neige. Ces estimations sont calculées pour toutes les paires de stations du jeu de données sur les hauteurs de neige. (b) 341 

CLIC pour les modèles non-stationnaires avec une covariable. Les covariables sont le temps, la NAO, l’AMO, les températures 342 

minimale, moyenne et maximale quotidiennes (Tmin, Tmoy et Tmax, respectivement), le cumul hivernal de chutes de neige et le 343 

ratio neige/précipitation. Les températures, le cumul de chutes de neige et le ratio neige/ précipitation sont considérées à deux 344 

altitudes : à 1800 m (en rouge) et à 2400 m (en bleu). 345 



La fonction extrémale issue du meilleur modèle montre une tendance temporelle positive du 346 

coefficient extrémal pour les distances supérieures à 50 km (Figure 5(a)), et donc une baisse de 347 

la dépendance extrémale. L’évolution temporelle de la portée de la dépendance extrémale montre 348 

une très forte baisse dans les années 1980, puis une stabilisation après 1990 (Figure 5(b)). Les 349 

estimations très larges de la portée de la dépendance extrémale au début de la période d’étude 350 

doivent être interprétées avec précaution du fait du manque d’observation avant 1983. 351 

Néanmoins l’évolution temporelle de la portée de la dépendance extrémale des maxima de 352 

hauteurs de neige apparait donc extrêmement similaire à celle concernant les maxima de chutes 353 

de neige. Les meilleures covariables (cumuls de chutes de neige, ratio neige précipitation à 1800 354 

m, températures moyenne et maximum) suggèrent des causes identiques. La baisse de la 355 

dépendance des hauteurs de neige extrêmes est due tout d’abord à l’effet de l’augmentation de la 356 

température sur la phase (neige ou pluie) de la précipitation. Il y a ensuite un effet d’intensité, 357 

avec moins de dépendance spatiale lorsque le cumul de chutes de neige décroit, que l’on peut 358 

observer quand la fonction extrémale est représentée en fonction du cumul de neige à 1800 m 359 

(Figure 5(c)). 360 

 361 

 362 

Figure 5 : Hauteurs de neige. Modèle sélectionné par CLIC avec le cumul de chutes de neige à 1800 m comme covariable. (a) 363 

Evolution temporelle de la fonction extrémale issue du modèle. (b) Evolution temporelle de la portée de la dépendance extrémale 364 

calculée sur des fenêtres glissantes de 17 ans. La ligne pleine représente la médiane glissante sur 17 ans de la portée. (c) 365 

Evolution de la fonction extrémale en fonction du cumul hivernal de chutes de neige à 1800 m. 366 

VII  CONCLUSION 367 

Cet article a abordé deux problématiques concernant la modélisation statistique de la 368 

dépendance spatiale des extrêmes de neige dans les Alpes françaises à travers le cadre des 369 

processus max-stables : la sélection de modèles et la non-stationnarité temporelle. Nous avons 370 

présenté une vue d’ensemble des méthodes et des conclusions issues des articles Nicolet et al. 371 

[2016, 2017a, 2017b] produits dans le cadre d’une thèse de doctorat. Cet article porte ainsi à la 372 

connaissance de la communauté hydrologique d’une manière unifiée et synthétique des résultats 373 

et un formalisme présentant un fort intérêt pour elle. 374 

Nous avons introduit une procédure de validation croisée qui a permis de montrer que les 375 

processus gaussien géométrique, de Brown-Resnick et extrémal-t sont tous trois capables de 376 

prédire la dépendance spatiale des chutes de neige extrêmes. En revanche, les processus de 377 

Smith et de Schlather montrent de moins bons résultats à cause de leur manque de flexibilité.  378 

A travers une approche dite data-based, nous avons mis en évidence une baisse de la 379 

dépendance spatiale des chutes de neige extrêmes dans les années 1980. Puis, nous avons montré 380 

comment des tendances temporelles dans une dépendance spatiale peuvent être modélisées en 381 

appliquant cette approche aux hauteurs de neige extrêmes. Cela a montré une baisse de la 382 



dépendance spatiale similaire à celle concernant les chutes de neige extrêmes. Ces deux baisses 383 

sont causées par l’impact de la hausse de la température sur la phase (pluie ou neige) de la 384 

précipitation ainsi que par la baisse du cumul hivernal de neige.  385 

Nous avons montré en outre que la dépendance spatiale de ces deux variables est fortement 386 

influencée par l’orographie avec une plus forte dépendance dans la direction des principaux 387 

massifs et vallées. Par contre, la dépendance spatiale est plus forte pour les hauteurs de neige 388 

extrêmes que pour les chutes de neige extrêmes à cause des effets cumulatifs impliqués dans la 389 

formation du manteau neigeux. 390 

L’approche adoptée dans cette étude est nouvelle, et notamment concernant la mise en évidence 391 

et la modélisation de tendances temporelles dans la dépendance spatiale des extrêmes neigeux. 392 

Cette problématique peut concerner les extrêmes de toutes les variables potentiellement 393 

impactées par le changement climatique. Des approches similaires appliquées dans d’autres 394 

contextes pourraient être intéressantes pour anticiper l’évolution de certains risques naturels sous 395 

l’effet du changement climatique. Elles permettront peut-être de généraliser les conclusions 396 

obtenues, tant du point de vue de la capacité prédictive respective des modèles max-stables 397 

considérés que de l’évolution temporelle de la dépendance spatiale des extrêmes climatiques. 398 
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3

Motivation

Extreme value theory

Extreme events have been attracting a growing interest during these last years, espe-
cially as far as financial crashes, floods, heat waves or storms are concerned. Although
these events are very rare, their catastrophic consequences make it necessary to have
tools which are able to properly measure their probability of occurrence. The main
difficulty of this task is the length of the observation records associated to the risk that
we want to measure. Indeed, we classically need to assess some events which have never
been explicitly measured, typically a 100 year return level with less than 50 years of
data. This issue can be addressed by using extreme value theory (Coles, 2001; Beirlant
et al., 2004; de Haan and Ferreira, 2006) which offers a suitable framework to extrapo-
late beyond the highest recorded observations. The two main approaches of extreme
value theory are the so-called "block maxima" (Gumbel, 1958) and "peak over threshold"
(Pickands, 1975; Davison and Smith, 1990). The first one suggests to model maxima
(for instance annual maxima) through the generalized extreme value (GEV) distribution.
The second one models the excesses beyond a high threshold by a generalized Pareto
distribution (GPD), with the advantage to potentially use more observations than in
the "block maxima" approach, but with the drawback of having to deal with temporal
effects like seasonality or temporal dependence. Extreme value theory is widely used in
hydrology, finance/insurance and climatology to assess the probability of occurrence
of extreme events (Finkenstadt and Rootzén, 2003; Reiss and Thomas, 2007; Embrechts
et al., 2013).

Snow extremes

One of the most dangerous hazards in mountainous regions is extreme snow events.
Specifically, heavy snowfall and heavy snow depths are crucial for risk management
because of their potential economic and human damages. They can cause overloading
and collapse of buildings. They can produce subsequent flooding because of snowmelt.
When they are combined to unstable snowpack, extreme snow cover and extreme snow
precipitation contribute to avalanches, and are thus very relevant for avalanche pre-
vention (Schneebeli and Laternser, 2004; Gaume et al., 2012). Extreme snowfall is often
associated to snow storms which can stop road, railway and air traffic. Snow cover is
very important for water storage and for the tourism industry, and has a strong impact
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on mountain ecosystems (Keller et al., 2005; Wipf et al., 2009). Extreme value statistics
have been applied to extreme snow events, for instance to 3-day snowfall in Italian and
Swiss Alps (Bocchiola et al., 2006, 2008), to extreme snowfall and extreme snow depth in
Switzerland (Blanchet et al., 2009; Blanchet and Lehning, 2010), and to extreme snowfall
and avalanche slab depths in the French Alps (Gaume et al., 2012, 2013b).

Figure 1 represents 3-day snowfall during the heavy snow episode from 24 to 26
March 2017 and snow water equivalent (on the ground) on 29 March 2017 in France.
There is a strong spatial dependence for the extreme values of snowfall (in green in
Figure 1(left)) which do not appear isolated but in cluster. We can observe the same
phenomenon for the extreme values of snow winter equivalent (in pink in Figure 1(right))
with a smoother spatial evolution. Extreme snow events do not occur in a unique location
only, but in an area where all the locations are impacted. Thus, if an extreme value is
observed in a location, it is likely to observe extreme values in neighboring locations.
This spatial dependence for extreme values does not concern only snow variables but
more generally almost all climate variables, for instance rainfall, temperature or wind.
The dependence in extremes (or extremal dependence) is different from the statistical
dependence which can be addressed through correlation or semivariogram analyses.
The extremal dependence means the tendency of two variables or more to experience
extreme values simultaneously. There exist random variables which are dependent
strictly speaking but not dependent in extremes and it is even always the case with
Gaussian variables. A suitable modeling of climate extremes should take into account
this spatial dependence in extremes which can represent a useful part of the information
for the evaluation of the risk.

Max-stable processes

Geostatistics (Cressie, 1993; Diggle and Ribeiro Jr., 2007) is the field of statistics which
focuses on spatial data. However, classic geostatistics, usually based on the Gaussian
distribution (e.g., Gaussian processes) under which extremes are independent, is not
able to model suitably the spatial dependence of extremes.

Max-stable processes (de Haan and Ferreira, 2006) are the generalization of multivari-
ate extreme value theory to the infinite dimension and are mostly used to model spatial
extremes. All the margins of max-stable processes (i.e., the random vectors defined
by the values taken by the process at a finite number of specific locations) hold the
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Figure 1: (Left) 3-day cumulated snowfall during the heavy snow episode from 24 to 26 March
2017 in France calculated by the ARPEGE numerical weather prediction model from
Météo-France. (Right) Snow water equivalent (on the ground) on 29 March 2017 in
France calculated by the AROME numerical weather prediction model from Météo-
France.

max-stability property. A random vector is called "max-stable" when any maximum of
independent copies can be rescaled so as to follow the same distribution of this vector. In
the univariate random variable case, to be max-stable and non degenerate is equivalent
to follow the GEV distribution.

Figure 2 shows a realization of a Gaussian process and a realization of a max-stable
process. In comparison with Gaussian processes, max-stable processes provide realiza-
tions which are less smooth and with values far beyond the mean of the spatial field. In a
way, max-stable processes connect extreme value statistics and geostatistics by providing
models which are able to deal with heavy tailed spatial phenomena.

There exist many advantages of using max-stable processes for a better comprehen-
sion of the spatial evolution of the studied variable at extreme level and for a finer
assessment of the related risk. Max-stable processes allow to make estimates of joint ex-
ceedance probabilities, that is to say the probability of exceeding given very large values
in several locations simultaneously. They also allow to estimate conditional exceedance
probabilities, for instance the probability of exceeding a large value in a certain location
knowing that a large value was exceeded in a second location. These estimations can be
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(a) (b)

Figure 2: Realizations of (a) a Gaussian process and (b) a max-stable process on the square
[0, 10]2. The Gaussian process is a isotropic Gaussian process with zero mean and
Whittle-Matérn correlation function with λ = 1 and κ = 1. The max-stable process is
a isotropic geometric Gaussian process with Whittle-Matérn correlation function with
σ2 = 5, λ = 4 and κ = 1.

done in the locations where there is no observation and can lead to the construction of
return levels maps. Conditional simulations of max-stable processes can be used to make
predictions throughout the study area. In addition, there exist a suitable framework for
drawing inference using max-stable processes (Padoan et al., 2010).

Max-stable processes have been applied within the fields of geophysical and climate
science by Blanchet and Davison (2011) to extreme snow depths in Switzerland, and
by Gaume et al. (2012, 2013b) to extreme snowfall and to avalanche slab thicknesses
in the French Alps. Furthermore, they were used for extreme temperatures in Korea
(Lee et al., 2013), for extreme wind gusts in the Netherlands (Ribatet, 2013), for extreme
wave heights in the North Atlantic Ocean (Raillard et al., 2014) and in the Gulf of Lions
(Chailan et al., 2014), for extreme precipitation in the South of France (Bechler et al., 2015)
and for extreme river discharges in the upper Danube basin (Asadi et al., 2015).
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Models of max-stable processes

Max-stable processes model two features of the studied spatial phenomenon. First,
the marginal distributions of extremes, which belongs to the GEV family following the
univariate extreme value theory. Second, the structure of spatial dependence which
models the behavior of extremes toward each other, and particularly the tendency to
occur simultaneously. Marginal distributions and dependence structure can be estimated
simultaneously (Gaume et al., 2013b) or in two steps (Blanchet and Davison, 2011).

There is no unique way to model the spatial dependence structure. There exist
several models of max-stable process, each one being a specific manner to model this
dependence structure. The first two max-stable processes which were introduced are
the Smith (Smith, 1990) and Schlather (Schlather, 2002) processes. However, these two
models have some major drawbacks. The Smith process provides realizations which are
too smooth and as a consequence, usually not realistic for climate variables (Reich and
Shaby, 2012; Wadsworth and Tawn, 2012). The Schlather process assumes dependence in
extremes at two locations regardless of the distance between them, which is questionable
in many cases (Blanchet and Davison, 2011; Davison et al., 2012).

Several new max-stable models were introduced recently to solve these drawbacks.
The geometric Gaussian process (Davison et al., 2012) has a similar expression of the
bivariate marginal distribution (that is to say the bivariate distribution at two specific
locations) than the Smith process, but providing more realistic realizations. The Brown-
Resnick process (Kabluchko et al., 2009) is a generalization of the geometric Gaussian
process with the possibility to impose extremal dependence between locations which
are far apart, which could be a very appealing assumption for the modeling of climate
extremes. The extremal-t process (Opitz, 2013) is a generalization of the Schlather process
with an additional parameter which controls the strength of the extremal dependence
between the most distant locations.

Figure 3 shows realizations of the Smith, Schlather, geometric Gaussian, Brown-
Resnick and extremal-t processes. The realization of the Smith process (Figure 3(a))
does not seem realistic for climate variables with the largest values forming perfect
ellipses (in yellow and orange). The realization of the Schlather process (Figure 3(b)) is
potentially more realistic, but the yellow and orange areas of the largest values extend
much, which does not correspond to to highly variable data such as rainfall and snow.
The realizations of the geometric Gaussian (Figure 3(c)), Brown-Resnick (Figure 3(d))
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and extremal-t (Figure 3(e)) processes avoid these two drawbacks, potentially coping
for climate variable data better than in the Smith process case, and allowing areas for
the largest values which are more concentrated and less extended than in the Schlather
process case.

Padoan et al. (2010) showed how max-stable processes could be fitted using pairwise
composite likelihood maximization techniques with an illustration on extreme rainfall in
the United States. Castruccio et al. (2016) investigated composite likelihood inference
of higher order. The selection between models of max-stable process is usually done
through the Composite Likelihood Information Criterion (CLIC) (Padoan et al., 2010)
which is the analogous to Akaike Information Criterion (AIC) (Akaike, 1974) in the case
of composite likelihood. This way, the Schlather process was found to be more suitable
than the Smith process for extreme snow depths in Switzerland (Blanchet and Davison,
2011), the geometric Gaussian and Brown-Resnick processes outperformed the Smith
and Schlather processes for extreme rainfall in Switzerland (Davison et al., 2012) and
the Brown-Resnick process outperformed the Smith and Schlather processes for extreme
snowfall in the French Alps (Gaume et al., 2013b). But even if the CLIC is able to classify
several models of max-stable processes, it does not evaluate the predictive ability of
a max-stable process. Still, the predictive quality of models of max-stable processes is
crucial because their main applications are for risk assessment.

Temporal nonstationarity in max-stable processes

One of the most crucial issues for snow variables modeling is temporal nonstationarity,
especially in the current context of climate change (Stocker et al., 2013). In the Swiss Alps,
decreasing trends have been found for snow depth, duration of continuous snow cover
and number of snowfall days (Laternser and Schneebeli, 2003). Mean snow depth and
snow cover duration have also negative trends in the French Alps (Durand et al., 2009a).
Negative trends of snow duration and snowfall were also observed in the Italian Alps
(Valt and Cianfarra, 2010). These trends may have strong consequences, for instance for
the Alpine ecosystem (Keller et al., 2005; Wipf et al., 2009).

The variables which are strongly impacted by climate change like temperature and,
to a lesser extent, precipitation can be impacted non only in their averages, but also in
their extreme values (Easterling et al., 2000; Klein Tank and Können, 2003). Temporal
nonstationary is thus an challenging issue for the study of climate extremes (Cooley,
2009; Katz, 2010). Figure 4 shows the temporal evolution of the winter maximum snow
depth for the 23 massifs of the French Alps (five year moving averages computed from
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(a) (b)

(c) (d)

(e)

Figure 3: Realizations of the (a) Smith, (b) Schlather, (c) geometric Gaussian, (d) Brown-Resnick,
and (e) extremal-t processes on the square [0, 1]2. The covariance matrix of the Smith
process is 0.51 + Id. The Schlather, geometric Gaussian and extremal-t processes use
the Whittle-Matérn correlation function with λ = 1 and κ = 1. We have ν = 2
and σ2 = 2 for the extremal-t and geometric Gaussian processes, respectively. The
Brown-Resnick process uses the power semivariogram with λ = 1 and κ = 1.5.
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SAFRAN-Crocus reanalyses (Durand et al., 2009a) at 1800 m). These maxima show
a strong temporal nonstationarity. Specifically, they exhibit a strong decrease from
1979 to 1990 more or less visible in all massifs. This decrease is related to the 1980s
regime shift (Reid et al., 2015) and particularly to the recent strong warming now almost
surely attributed to human activities (Stocker et al., 2013). A possibility to take into
account nonstationarity in extreme value statistics is to use time as a covariate (and/or
time-dependent covariates) for the parameters of the extreme value distribution to be
estimated. This way, Marty and Blanchet (2012) found negative temporal trends in
extreme snow depths and extreme snowfall in Switzerland. However, they did not
model the spatial dependence of extremes.

Most of the studies using max-stable processes assume temporal stationarity, both in
the marginal GEV distributions and in the spatial dependence structure of extremes. The
ones in which nonstationarity is modeled use time-dependent covariates for the GEV
parameters of the marginal distributions. This way, Westra and Sisson (2011) highlighted
the influence of global sea surface temperature and South Oscillation Index on extreme
precipitations in Australia, whereas Shang et al. (2011) and Zhang et al. (2014) showed a
relation between El Ninõ Southern Oscillation and extreme precipitation in California
and in China. However, they all assumed temporal stationarity in the spatial dependence
structure.

Few studies model temporal aspects in the spatial dependence structure of max-stable
processes. Raillard (2011) applied a space-time Smith process to extreme wave heights.
Using space-time correlation functions, Steinkohl (2013) extended the Brown-Resnick
process to the space-time case and used it for extreme rainfall in Florida. Huser and
Davison (2014) introduced a space-time troncated Schlather process which explicitly
represents the movement of a heavy rainfall event through time and applied it to extreme
precipitation in Switzerland. The aim of these three works is to model the temporal
dependence in extremes using observations recorded at short time lag. They do not
consider a possible temporal nonstationarity in the spatial dependence structure of
extremes over longer, climatic, time scales.
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Figure 4: Five year moving averages of winter maximum snow depth for each massif of French
Alps from 1960 to 2010 (SAFRAN-Crocus reanalyses at 1800 m on a flat aspect from
Durand et al. (2009a)).
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Outline of this thesis

Main objectives

Two challenging issues concerning spatial extreme value analysis were chosen for
investigation in this thesis. The first one concerns procedures of model selection able to
evaluate the predictive ability of max-stable processes. The second one relates to possible
temporal nonstationarity in the spatial dependence structure of climate extremes. These
two questions are broached through the example of snowfall and snow depth in the
French Alps. However, the interest of the approaches developed to broached these two
questions goes beyond snow variables only.

The issue of model selection procedure well-suited for max-stable processes is relevant
for all the variables which can be modeled by these processes, even if the results may be
different according to the variable of interest. Indeed, the best choice to model extreme
snowfall may not be the same as the one concerning extreme temperatures or extreme
wave heights (for example). However, a selection procedure for max-stable processes
applied to a specific variable does not need to be modified to be usable for other variables.

In the current context of climate change, temporal nonstationarity in the spatial depen-
dence structure concerns potentially almost all climate extremes: extreme precipitations,
extreme temperatures, extreme winds, etc. Snowfall and snow depths, severely impacted
by climate change and linked with two major climate variables –namely precipitation
and temperature– are very relevant choices to investigate this issue.

The comparison between snowfall and snow depths is interesting because these two
snow-related variables differ from the fact that the first one is instantaneous while the
other one is cumulative. The studies of Blanchet and Davison (2011) concerning extreme
snow depths in Switzerland and of Gaume et al. (2013b) regarding extreme snowfall
in the French Alps show that the extremes of these variables have the common point
of being both anisotropic with more spatial dependence in the direction of the main
massifs and valleys. This is due to the influence of orography on the atmospheric fluxes
generating extreme precipitation. However, these studies also suggest that extreme
snow depths would be more spatially dependent than extreme snowfall, because of the
cumulative effects involved in the formation of snow cover. However, these phenomena
have never been addressed by comparing extreme snowfall and extreme snow depths in
the same area, what is done in the thesis.

Two very suitable data sets from Météo-France were used for these investigations:



13

• a large data set of 3-day cumulated snowfall with a very good spatial and temporal
coverage (90 stations from 1958 to 2012) (used in Chapters 2 and 3);

• a snow depth data set less extended spatially and temporally (81 stations from 1970
to 2012), but showing an excellent altitude coverage with many stations above 2000
m (Chapter 4).

Figure 5 shows the study area with the station locations for the two data sets. The lists of
the stations with their coordinates are given in Appendixes I and II.

This thesis focuses on the spatial dependence structure of extremes and does not
consider the issue of estimating the marginal distributions. This is why the marginal
distributions are standardized into unit Fréchet at each station. This work combines
empirical (Chapter 3) and model-based (Chapters 2 and 4) approaches. Chapter 2 is
dedicated to a procedure of model selection for max-stable processes by focusing on
their spatial dependence structure. The issue of temporal nonstationarity is broached in
Chapters 3 and 4.

The body of the thesis is made of one state-of-the-art chapter, three chapters in the
form of journal articles and a final chapter for the general conclusions and the outlooks.
The first article was submitted to Spatial Statistics, the second one was published in
Journal of Geophysical Research: Atmospheres, and the third one was submitted to Water
Resources Research.

Detailed overview

Chapter 1 is a state of the art of the mathematical tools used in this thesis. Max-stable
processes rely on two fields of statistics, extreme value theory and geostatistics, which
are approached in the first two sections. Then, max-stable processes are defined in the
last section. The models of max-stable processes considered in this thesis are introduced
and the issues of inference and model selection are broached. This chapter does not deal
with the applications of max-stable processes. The state of the art of their applications in
several fields (snow studies, climatology, hydrology, risk managements, etc.) is done in
the next chapters.

Chapter 2 deals with the issue of model selection in the case of max-stable processes.
We introduce a leave-two-out cross-validation procedure appropriate to evaluate their
predictive ability concerning the spatial dependence structure. This procedure is applied
to five of the most famous max-stable processes: Smith, Schlather, Brown-Resnick,
geometric Gaussian and extremal-t processes. To this aim, a large panel of statistical
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Figure 5: Study area in the southeast of France, where the 23 massifs of the French Alps are
located. Lines denote massif limits. Squares and circles represent snow depth stations
and snowfall stations, respectively.
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criteria is presented and applied. The snowfall data set is used as a case study. The Smith
and Schlather processes are found less suitable than the others. Thanks to this procedure,
we show that Brown-Resnick, geometric Gaussian and extremal-t processes are able to
capture the spatial dependence structure of snowfall maxima almost as well as each
other. Finally, these criteria are used to assess the sensibility of these processes to the
number of stations and to the number of years of observations.

Chapter 3 investigates the temporal changes in the spatial dependence structure in
extreme snowfall in the French Alps. To this end, the data set of 3 day snowfall maxima
is used. The temporal evolution of the extremal dependence is estimated over a 20 year
moving estimation window. The range of extremal dependence which represents the
distance above which extremes are almost independent, is derived for each window.
We find that this range has reduced roughly by half during the study period, showing
that snowfall extremes have exhibited a tendency of being less spatially dependent
over time. We show that this decreasing trend is attributable at first to the increase in
temperature and its control over the snow/rain discrimination. A magnitude effect, with
less dependent extremes due to a decrease in intensity of precipitation, also exists.

Chapter 4 addresses the temporal nonstationarity in the spatial dependence structure
of spatial extremes by using a Brown-Resnick process with temporal trends in its spatial
dependence structure. This approach is applied to the snow depth winter maxima data
set in order to study the temporal evolution of the spatial dependence in extreme snow
depths. Several climatic covariates are used to model climate control on the spatial
dependence of extreme snow depths and to investigate the variables which impact this
spatial dependence. We find a marked negative temporal trend in the spatial dependence
of extreme snow depths with a strong decrease in the range of extremal dependence
during the 1980s. We show that, as for extreme snowfall in Chapter 3, this decrease in
extremal dependence is mainly due to the effect of the increase of temperature on the
snow precipitation ratio and to a decrease in intensity of precipitation.

Finally, the last chapter is dedicated to the conclusions and perspectives of this thesis.



16 INTRODUCTION



Chapter 1
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1.1 Introduction

This chapter introduces the mathematical tools used in this thesis. Max-stable pro-
cesses link two fields of statistics, extreme value theory and geostatistics, so that both
shall be introduced.

Extreme value theory (Coles, 2001; Beirlant et al., 2004; de Haan and Ferreira, 2006)
is a suitable framework for estimating high quantiles, mostly for risk management
purpose. In particular, section 1.2 deals with the block maxima approach which consists
in modeling block maxima of the variable of interest with the aim to extrapolate beyond
the highest recorded observations. Only univariate and bivariate cases are broached but
the approach can be extended to higher dimensions.

Geostatistics (Cressie, 1993; Diggle and Ribeiro Jr., 2007) is the field of statistics which
focuses on the modeling of spatial phenomena, especially for interpolation purpose.
Geostatistics widely uses Gaussian processes, correlation functions and semivariograms
which are introduced in section 1.3. However, Gaussian processes are too smooth to be
able to capture the behavior of extreme values of spatial phenomena.

Max-stable processes (Davison et al., 2012; Cooley et al., 2012; Ribatet and Sedki,
2012; Ribatet, 2013; Davison and Huser, 2015) generalize univariate extreme value theory
to the infinite dimension. This framework can be seen as a "geostatistics of extremes"
capable of modeling extremes in space. Section 1.4 introduces max-stable processes and
broaches some practical difficulties such as inference and model selection.

1.2 Extreme value theory

1.2.1 Univariate case

Extreme value theory can be addressed by different approaches. The one used here is
the so-called block maxima approach.

Let Mn = max{X1, . . . , Xn}, with {Xn} a sequence of independent identically dis-
tributed random variables. The Fisher-Tippett-Gnedenko theorem (Fisher and Tippett,
1928; Gnedenko, 1943) shows that if there are sequences {an} > 0 and {bn} such as
Mn − bn

an
converge in distribution to a non degenerate distribution G, then G is the GEV

(Generalized Extreme Value) distribution (Coles, 2001) whose cumulative distribution
function is

G(x) = exp

{
−
[

1 + ξ

(
x− µ

σ

)]−1/ξ
}

(1.1)
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Figure 1.1: Plot of the GEV density function with (a) µ ∈ {10, 30, 50}, σ = 10, ξ = 0.5, (b)
µ = 30, σ ∈ {10, 30, 50}, ξ = 0.5 and (c) µ = 30, σ = 10, ξ ∈ {−0.5, 0, 0.5}.

with x such that 1 + ξ

(
x− µ

σ

)
> 0. The function G is equal to 0 when ξ > 0 and

x ≤ µ− σ
ξ , and equal to 1 when ξ < 0 and x ≥ µ− σ

ξ .

This result means that for a large enough n, one can approximate the distribution of
Mn by the GEV distribution. The block maxima method consists in grouping a sample
into blocks of equal length in order to determine the maxima for each block (e.g., annual
maxima), and then a GEV distribution is fitted to the sample of maxima.

The conclusion of Fisher-Tippett-Gnedenko theorem holds with dependent random
variables {Xn}without long-range temporal dependence at extreme levels (this condition
is called D(un) condition in Leadbetter (1983)) which is not a restricting condition in
practice.

The GEV distribution has three parameters (Figure 1.1). The location parameter
µ indicates the center of the distribution. The scale parameter σ specifies the size of
deviation around µ. The shape parameter ξ is the most important in extreme value
theory: it determines the tail behaviour of the distribution. There are three cases:

• ξ > 0 : Fréchet distribution (heavy tailed),

• ξ < 0 : reversed Weibull (or simply Weibull) distribution (bounded),

• ξ → 0 : Gumbel distribution (not bounded, light tailed).
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Regardless of value of GEV parameters, the GEV distribution is a max-stable dis-
tribution. This means that any maximum of independent random variables following
the same GEV distribution can be rescaled so as to follow this distribution. Precisely, if
{Zi} are independent copies of a GEV distributed random variable Z, there exist two
sequences {cn} > 0 and {dn} such as

maxn
i=1 Zi − dn

cn

d
= Z(x) ∀n ∈N. (1.2)

The GEV distribution is the unique non-degenerate univariate max-stable distribution.

The transformation
x → −1

log(G(x))
(1.3)

can be used to transform a GEV distribution into a unit Fréchet distribution, whose
cumulative distribution function is G(x) = e−1/x (that is to say the specific case of a GEV
distribution with parameters µ = 1, σ = 1 and ξ = 1).

1.2.2 Bivariate case

Let {Xn,1} and {Xn,2} be two sequences of independent identically distributed ran-
dom variables. If, in an analogous way than in section 1.2.1, there exist normalizing
sequences {an,i} and {bn,i} (i ∈ {1, 2}) such as the vector{

maxn
i=1 Xi,1 − bn,1

an,1
,

maxn
i=1 Xi,2 − bn,2

an,2

}
converges in distribution to a non degenerate bivariate distribution G, then G is a
bivariate extreme value distribution. As in the univariate case, the distribution G is
max-stable and the temporal independance hypothesis can be relaxed (D(un) condition
in Leadbetter (1983)). In the bivariate case, max-stability means that if {Z1, Z2} follows
the max-stable distribution G, thus for all series {Zn,1, Zn,2} of independent copies of
{Z1, Z2} there exists sequences {c1,n, c2,n} > 0 and {d1,n, d2,n} such as{

maxn
i=1 Z1,i − d1,n

c1,n
,

maxn
i=1 Z2,i − d2,n

c2,n

}
d
= {Z1, Z2} ∀n ∈N. (1.4)
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The marginal distributions of the limiting vector (Z1, Z2) (i.e., the random variables Z1

and Z2 defined by its components) follow a GEV distribution. Using the transformation
(1.3), one can assume without restriction that the distributions of Z1 and Z2 are unit
Fréchet.

1.2.2.1 Exponent measure

Assume that Z1 and Z2 follow a unit Fréchet distribution. Then, there exists a function
V, called exponent measure (Coles, 2001, Chap. 8), such that the bivariate distribution
can be written

P (Z1 < z1, Z2 < z2) = exp {−V(z1, z2)} z1, z2 > 0. (1.5)

The function V holds the properties

V(z1, ∞) =
1
z1

and V(∞, z2) =
1
z2

z1, z2 > 0 (1.6)

and
V(tz1, tz2) = t−1V(z1, z2) z1, z2, t > 0 (1.7)

due to the max-stability property.

The variables Z1 and Z2 are independent when

V(z1, z2) =
1
z1

+
1
z2

z1, z2 > 0, (1.8)

and completely dependent when

V(z1, z2) =
1

min(z1, z2)
z1, z2 > 0. (1.9)

The exponent measure has the spectral representation

V(z1, z2) =
∫
S2

max
{

w1

z1
,

w2

z2

}
dM(w1, w2) (1.10)

with M a measure on the 2-dimensional simplex S2.
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1.2.2.2 Extremal coefficient

To assess the extremal dependence between two unit Fréchet random variables Z1

and Z2, one can use the extremal coefficient θ (Schlather and Tawn, 2003) defined by

P (Z1 < z, Z2 < z) = exp
{
−V(1, 1)

z

}
= exp

{
−θ

z

}
= P {Z1 < z}θ , z > 0.

(1.11)
Extremal coefficient ranges between 1 (complete dependence) and 2 (independence). The
property

lim
z→∞

P (Z2 > z|Z1 > z) = 2− θ (1.12)

holds and means that if θ is near 1, Z1 and Z2 have a tendency to take their extreme
values together. Conversely, θ near 2 means that the probability of seeing Z1 and Z2

having extremes simultaneously is close to zero.

1.2.2.3 Madogram

Another tool to assess dependence between Z1 and Z2 is the F-madogram (Cooley
et al., 2006; Naveau et al., 2009) defined by

µF =
1
2

E [|F1(Z1)− F2(Z2) |] (1.13)

where Fi is the cumulative distribution function of the random variable Zi. When Z1

and Z2 are unit Fréchet, Fi(z) = exp(−1/z) , the F-madogram is linked to the extremal
coefficient through the formula:

θ =
1 + 2µF

1− 2µF
(1.14)

which provides a convenient way to evaluate θ by estimating µF through

µ̂F =
1

2N

N

∑
i=1
|F̂(z1,i)− F̂(z2,i)| (1.15)

with {z1,i, z2,i} N observations of {Z1, Z2}.
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1.3 Geostatistics

1.3.1 Gaussian process

A process {W(x)}x∈χ defined on a spatial domain χ (for instance a subset of R2)
is called Gaussian process if for all x1, . . . xn, the distribution of (W(x1), . . . , W(xn))

is multivariate Gaussian. This process is completely defined by its mean function
µ(x) = E [W(x)] and its covariance function C(x1, x2) = Cov (W(x1), W(x2)) (Diggle
and Ribeiro Jr., 2007, Chap. 3).

The Gaussian process is stationary if the function µ is constant and C(x1, x2) depends
on the vector difference x2 − x1 only, that is to say µ(x) = µ and C(x1, x2) = C(x2 − x1).
The variance C(0) = σ2 of a stationary Gaussian process is constant.

If C(x1, x2) depends on the distance h = ‖x2 − x1‖ only and not on the orientation of
the vector x2 − x1, the Gaussian process is isotropic.

1.3.2 Correlation function

The correlation function of a stationary Gaussian process is defined by

ρ(x2 − x1) =
C (x2 − x1)

σ2 (1.16)

A stationary Gaussian process is isotropic when ρ depends on the distance h =

‖x2 − x1‖ only. For isotropic stationary Gaussian processes, several usual families of
correlation function constitute suitable models (see Table 1.1 and Figure 1.2).

One can modify the correlation function ρ with a nugget effect:

ρ∗(h) =

 1 h = 0
σ2

σ2 + τ2 ρ(h) h > 0

with the aim of representing, with the τ parameter, measurement errors and/or mi-
croscale variation.

Figure 1.3 shows an example of a realization of a stationary isotropic Gaussian process
with exponential correlation function and λ = 1.
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Family Correlation function

Circular ρ(h) = 1− 2
π

 h
λ

√
1−

(
h
λ

)2

+ arcsin
(

h
λ

)
Cubic ρ(h) = 1− 7

(
h
λ

)2

+
35
4

(
h
λ

)3

− 7
2

(
h
λ

)5

+
3
4

(
h
λ

)7

Exponential ρ(h) = exp
{
−
(

h
λ

)}
Gaussian ρ(h) = exp

{
−
(

h
λ

)2
}

Gneiting ρ(h) =

[
1 + 8

(
sh
λ

)
+ 25

(
sh
λ

)2

+ 32
(

sh
λ

)3
](

1− sh
λ

)8

Spherical ρ(h) = 1− 3
2

(
h
λ

)
+

1
2

(
h
λ

)3

Wave ρ(h) =
sin(h/λ)

h/λ

Bessel ρ(h) =
(

2λ

h

)κ

Γ (κ + 1) Jκ

(
h
λ

)
Cauchy ρ(h) =

[
1 +

(
h
λ

)2
]−κ

Gamma ρ(h) =
1

(1 + h/λ)κ

Powered exponential ρ(h) = exp
{
−
(

h
λ

)κ}
Whittle-Matérn ρ(h) =

21−κ

Γ(κ))

(
h
λ

)κ

Kκ

(
h
λ

)
Generalized Cauchy ρ(h) =

[
1 +

(
h
λ

)κ2
]−κ/κ2

Gneiting-Matérn ρ(h) = ρ
gneiting
λ (h/κ2) ρmatern

λ,κ (h)

Table 1.1: Usual correlation functions. The parameter λ > 0 is the range parameter. The
parameter κ > 0 is the smoothness parameter (for the Bessel family κ ≥ d−2

2 with
d the dimension of the space and for the powered exponential family 0 < κ ≤ 2).
In the expression of the Gneiting correlation function, s = 0.301187465825. For
the circular, cubic, Gneiting and spherical families h < λ, and ρ(h) = 0 when
h ≥ λ. The functions Γ, Jκ and Kκ are respectively the Gamma function, the Bessel
function of the first kind of order κ and the modified Bessel function of order κ. The
correlation functions of the generalized Cauchy and Gneiting-Matérn families own a
second smoothness parameter κ2 > 0 (for the Generalized Cauchy correlation function
0 < κ2 ≤ 2). In the expression of the Gneiting-Matérn correlation function, ρ

gneiting
λ

and ρmatern
λ,κ denote Gneiting and Whittle-Matérn correlation functions respectively.
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Figure 1.2: Plot of the correlation functions of Table 1.3.2 with λ = 1, κ = 0.8 and κ2 = 1.2.
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Figure 1.3: Realization of a stationary isotropic Gaussian process on the square [0, 10]2 with zero
mean and exponential correlation function with λ = 1
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Family Semivariogram

Linear γ(h) =
h
λ

Power γ(h) =
(

h
λ

)κ

Correlation function-based γ(h) = σ2 (1− ρ(h))

Table 1.2: Usual semivariograms. For linear and Power families, λ > 0 is the scale parapeter
and κ > 0 is the shape parameter. It is possible to define a semivariogram with
every correlation functions ρ and a variance parameter σ2 which defines the sill of the
semivariogram.

1.3.3 Semivariogram

The semivariogram γ of a stationary Gaussian process is defined by

γ(x2 − x1) =
1
2

Var (W(x2)−W(x1)) =
1
2

E
[
|W(x2)−W(x1)|2

]
. (1.17)

If γ depends on the length h = ‖x2 − x1‖ only, then the process is isotropic. In this
case, usual semivariograms are linear and power semivariograms, or semivariograms
based on an usual correlation function (Table 1.2 and Figure 1.4). Instead of correlation
function-based semivariograms, linear and power semivariograms are not bounded.

1.4 Max-stable processes

1.4.1 Definition

Max-stable processes generalize extreme value theory to infinite dimension and are
mostly used in a spatial framework. Let χ be a space (generally a subset of R2 or R3).
Let {X(x)}x∈χ be a process on χ and {Xi(x)}x∈χ be independent copies of this process.
If there exist two sequences of continuous functions {an(x)} and {bn(x)} such as{

maxn
i=1 Xi(x)− bn(x)

an(x)

}
x∈χ

d−→ {Z(x)}x∈χ (1.18)
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Figure 1.4: Plot of the semivariograms defined in Table 1.2 with σ2 = 10, λ = 1, κ = 0.8 and
κ2 = 1.2.
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then the limiting process {Z(x)}x∈χ is a max-stable process in the sense that all the
marginal distributions (i.e., the random vectors {Z(xi)}i=1,...,n defined by the values of Z
at several specific locations x1, . . . , xn ∈ χ) are max-stable. That is to say there exist two
sequences of continuous functions {cn(x)} and {dn(x)} such as{

maxn
i=1 Zi(x)− dn(x)

cn(x)

}
x∈χ

d
= {Z(x)}x∈χ (1.19)

with Zi independent copies of Z.

In particular, every univariate margins Z(x) are GEV distributions. Through the
transformation (1.3), we can suppose that every univariate distribution is unit Fréchet.
The process {Z(x)}x∈χ is a max-stable process with unit Fréchet margins if and only if
(1.19) holds with cn(x) = n and dn(x) = 0. In the following, we will consider max-stable
processes with unit Fréchet margins only.

1.4.2 De Haan’s spectral representation

Every max-stable process with unit Fréchet margins holds the spectral representation

Z(x) = sup
i≥1

ηiWi(x). (1.20)

with {ηi}i≥1 the points of a Poisson process on R+ with intensity η−2dη and {Wi}i≥1

independent copies of a positive process W(x) with mean 1 (de Haan, 1984). Different
choices for W lead to different models of max-stable processes (Davison et al., 2012;
Ribatet, 2013).

Every multivariate margin is given for any positions {x1, . . . , xk} by the formula

P (Z(x1) < z1, . . . , Z(xk) < zk) = exp

[
−E

{
max

j=1,...,k

W(xj)

zj

}]
zj > 0 ∀j. (1.21)

1.4.3 Extremal function

For each pair of locations x1 and x2, we can consider the extremal coefficient θ(x1, x2)

of the two unit Fréchet variables Z(x1) and Z(x2). We have from equations (1.21) and
(1.11):

θ(x1, x2) = E [max {W(x1), W(x2)}] . (1.22)
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θ(x1, x2) is usually modeled as a function θ(h) of the distance h = ‖x2 − x1‖ between
x1 and x2. θ(h) represents the strength of extremal dependence as a function of distance
and is therefore termed the extremal function.

1.4.4 Max-stable models

Here, we introduce the five models of max-stable processes considered in this thesis.

1.4.4.1 Smith process

The easiest way to use de Haan’s spectral representation is to take Wi(x) = f (x− Xi)

in (1.20) with f a density function and {Xi} a homogeneous Poisson process on χ.
Smith (1990) proposes to take f as the density function of a multivariate normal

distribution. The Smith process (also called Gaussian extreme value process) is defined
by

Z(x) = max
i≥1

ηi f (x− Xi). (1.23)

Here, f is the density function of a multivariate normal distribution with mean 0 and
covariance matrix Σ, {ηi, Xi}i≥1 is the points of a Poisson process on (0, ∞)× χ with
intensity η−2dη × dµ (µ is the Lebesgue measure on χ).

Smith gave a rainfall-storm interpretation: Xi is the center of a storm, f the shape of
the storm and ηi its magnitude. In this way, the process is a rainfall-storm which is the
maximum of several independent rainfall events.

The exponent measure for Z(x1) and Z(x2) (with x1 and x2 two locations) is given by

V (z1, z2) =
1
z1

Φ
(

a
2
+

1
a

log
z2

z1

)
+

1
z2

Φ
(

a
2
+

1
a

log
z1

z2

)
, (1.24)

with Φ the distribution function of the standard normal distribution and a the Maha-
lanobis distance which is defined as a =

√
(x2 − x1)TΣ−1(x2 − x1).

The extremal function is
θ(x1, x2) = 2Φ

( a
2

)
. (1.25)

When the distance between x1 and x2 increases infinitely, then θ(x1, x2) converges to 2,
that is to say extremal independence (Figure 1.5(a)).

The major drawback of the Smith process is its lack of flexibility owing to the fact that
the shape f of the storms is deterministic (Blanchet and Davison, 2011). This leads to
models unrealistic for natural phenomena (Figure 1.5(b)).
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(a) (b)

Figure 1.5: (a) Extremal function for the Smith process with a covariance matrix a Id with a = 1
(red), a = 1.5 (blue) and a = 2 (green).(b) One realization of the Smith process on
the square [0, 10]2 with covariance matrix 1.5 Id (in blue in (a)).

1.4.4.2 Schlather process

A more flexible max-stable model is introduced in Schlather (2002) by considering
the shape of the storm as random (compare Figures 1.5(b) and 1.6(b)).

Schlather process (or extremal Gaussian process) is defined by

Z(x) = max
i≥1

ηi max {0, Yi(x)} , (1.26)

with {ηi}i≥1 the points of a Poisson process on R+ with intensity
√

2πη−2dη and {Yi(x)}
is independent copies of a stationary Gaussian process with correlation function ρ.

The exponent measure is given by

V (z1, z2) =
1
2

(
1
z1

+
1
z2

)(
1 +

√
1− 2(ρ(h) + 1)

z1z2

(z1 + z2)2

)
(1.27)

with h = ‖x2 − x1‖ the Euclidean distance between the two locations.
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(a) (b)

Figure 1.6: (a) Extremal function for the Schlather process with the Whittle-Matérn covariance
function for {κ = 9.6, λ = 0.4} (red), {κ = 1, λ = 1.6} (blue) and {κ = 0.4, λ =
3.6} (green). (b) One realization of the Schlather process on the square [0, 10]2 with
the Whittle-Matérn correlation function with κ = 1 and λ = 1.6 (in blue in (a)).

The flaw of the Schlather process is that the extremal function given by

θ(x1, x2) = 1 +

√
1− ρ(h)

2
(1.28)

is such as θ(x1, x2) ≤ 1.838 in R2 and θ(x1, x2) ≤ 1.780 in R3 (Blanchet and Davison,
2011), that is to say, extremes between two locations are never independent, regardless
of the distance between the locations. In particular, there is always dependence when
the distance between two locations increases infinitely which is often not realistic. For
h = ‖x2 − x1‖ → ∞, we have θ(x1, x2)→ 1 + 1/

√
2 ' 1.707 (Figure 1.6(a)). Even if this

drawback is less visible graphically than the one of the Smith process, we can observe on
the right of the Figure 1.6(b) a large cluster of very large values in yellow, orange and
white.



34 1. STATE OF THE ART

1.4.4.3 Geometric Gaussian process

The geometric Gaussian process (Davison et al., 2012) is the process defined by

Z(x) = max
i≥1

ηi exp
(

σYi(x)− σ2

2

)
. (1.29)

Note {ηi}i≥1 points of a Poisson process on R+ with intensity η−2dη and {Yi(x)} inde-
pendent copies of a Gaussian process with mean 0, variance σ2 and correlation function
ρ.

The exponent measure is by (1.24) as in Smith process but with a =
√

2σ2(1− ρ(h)).
The use of a correlation function instead of Mahalanobis distance produces more realistic
realisations than with the Smith process (Figure 1.7(b)).

In the same way that with the Schlather process, the extremal function

θ(x1, x2) = 2Φ
( a

2

)
(1.30)

does not converge to 2 (extremal independence) when h→ ∞ (Figure 1.7(a)):

θ(x1, x2) −→
h→∞

2Φ

√σ2

2

 . (1.31)

But unlike the Schlather process that imposes a limit of 1.707, the limit is not fixed and is
controlled by the variance parameter σ2. The extremal function converges to extremal
independence (that is to say converges to 2) when σ2 −→ ∞.

1.4.4.4 Brown-Resnick process

A process previously defined in Brown and Resnick (1977) was generalized in
Kabluchko et al. (2009). Brown-Resnick process is defined by

Z(x) = max
i≥1

ηi exp {Wi(x)− γ(x)} . (1.32)

Note {ηi}i≥1 points of a Poisson process on R+ with intensity η−2dη and {Yi(x)} inde-
pendent copies of a Gaussian process with stationary increment and such that Yi(0) = 0
almost surely and note γ its semivariogram.

The expression of exponent measure is again given by (1.24) as in Smith and geometric
Gaussian models but with a =

√
2γ(h).



1.4 Max-stable processes 35

(a) (b)

Figure 1.7: (a) Extremal function for the geometric Gaussian process with σ2 = 5 the Whittle-
Matérn covariance function for {κ = 2.4, λ = 1.8} (red), {κ = 1, λ = 3.8} (blue)
and {κ = 0.5, λ = 10} (green).(b) One realisation of the geometric Gaussian process
on the square [0, 10]2 with σ2 = 5 and the Whittle-Matérn correlation function with
κ = 1, λ = 3.8 (in blue in (a)).
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(a) (b)

Figure 1.8: (a) Extremal function of Brown-Resnick process with the semivariogram γ(h) =
(h/λ)κ for {κ = 2, λ = 2.1} (red), {κ = 1.5, λ = 2.15} (blue) and {κ = 1, λ =
2.2} (green). (b) One realization of the Brown-Resnick process on the square [0, 10]2

with the semivariogram γ(h) = (h/2.15)1.5 (in blue in (a)).

If the semivariogram γ is based on a correlation function ρ as described in subsection
1.3.3, that is to say γ(h) = σ2(1− ρ(h)), then the Brown-Resnick process with semivar-
iogram γ is equivalent to the Geometric Gaussian process with correlation function ρ.
Thus, the Brown-Resnick process is a generalization of the Geometric Gaussian process.

The main interest of using the Brown-Resnick process instead of the geometric Gaus-
sian one is if the semivariogram γ is not bounded, for instance a linear or a power
semivariogram (Table 1.2). In this case, the extremal coefficient

θ(x1, x2) = 2Φ
( a

2

)
(1.33)

converges to 2 when the distance h between x1 and x2 increases infinitly (Figure 1.8(a)).
In this way, Brown-Resnick process provides realistic realization (Figure 1.8(b)) imposing
extremal independence for large distances.
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1.4.4.5 Extremal-t process

The extremal-t process generalizes the Schlather process. The spectral representation
of the extremal-t process is given in Opitz (2013) :

Z(x) = max
i≥1

ηi max {0, Yi(x)}ν . (1.34)

Here {ηi}i≥1 are the points of a Poisson process on R+ with intensity cνη−2dη, with

a coefficient cν equals to
√

π2−
ν−2

2 Γ
(

ν + 1
2

)−1

(ν ≥ 1), Γ is the Gamma function and

{Yi(x)} are independent copies of a stationary Gaussian process. If ν = 1 the process is
the Schlather model.

The exponent measure is given by

V (z1, z2) =
1
z1

Tν+1

(
−ρ(h)

b
+

1
b

(
z2

z1

)1/ν
)
+

1
z2

Tν+1

(
−ρ(h)

b
+

1
b

(
z1

z2

)1/ν
)

(1.35)

with b =

√
1− ρ2(h)

ν + 1
and Tν is the the Student distribution with ν degrees of freedom.

As for the Schlather process, the extremal function

θ(x1, x2) = 2Tν+1

(√
ν + 1

1− ρ2(h)
−
√

ν + 1
1− ρ2(h)

ρ(h)

)
(1.36)

does not converge to 2 (extremal independence) when h increases infinitely (Figure
1.9(a)):

θ(x1, x2) −→
h→∞

2Tν+1(
√

ν + 1). (1.37)

But contrary to the Schlather process that imposes 1.707 as limit, the limit of the extremal-
t extremal function 2Tν+1(

√
ν + 1) is controlled by the sill parameter ν. The two extreme

cases are the Schlather process (ν = 1) and extremal independence (ν → ∞). In the
same way as the geometric Gaussian process, the extremal-t process produces realistic
realizations (Figure 1.9(b)) by being able to be model extremal independence for large
distances contrary to the Schlather process.
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(a) (b)

Figure 1.9: (a) Extremal function for the extremal-t process on the square [0, 10]2 with ν = 2 and
the Whittle-Matérn covariance function for {κ = 2.5, λ = 1.2} (red), {κ = 1, λ =
2.4} (blue) and {κ = 0.5, λ = 5.1} (green). (b) One realization of the extremal-t
process with ν = 2 and the Whittle-Matérn correlation function with κ = 1 and
λ = 2.4 (in blue in (a)).



1.4 Max-stable processes 39

1.4.4.6 Other max-stable process models

Other max-stable process models can be found in the literature. For instance, Smith
and Stephenson (2009) and Reich and Shaby (2012) introduced two max-stable processes
connected to the Smith process but more flexible. Wadsworth and Tawn (2012) introduced
the Gaussian-Gaussian process which is a superposition of the Smith and Schlather
processes. Davison and Gholamrezaee (2012) suggested to use a troncated Schlather
process. Recently, Xu and Genton (2016) and Beranger et al. (2016) extended respectively
the geometric Gaussian and extremal-t processes to the more flexible Tukey and extremal-
skew-t processes. However, these max-stable process models are not considered in this
work.

1.4.5 Anisotropy

Anisotropy can be directly modeled by Smith process with a non spherical covariance
matrix Σ. To account for anisotropy in the others processes, it is possible to use a
spatial transformation (Diggle and Ribeiro Jr., 2007, p. 58): for instance in 2-dimensions,
coordinates of x in R2 are replaced with x′ = Vx with

V =

(
cos α − sin α

r−1 sin α r−1 cos α

)
. (1.38)

The parameter r > 1 is called anisotropy ratio and the parameter α ∈ [0, π) is the
anisotropy angle.

In 3-dimensions we take

V =

 cos α − sin α 0
r−1 sin α r−1 cos α 0

0 0 w

 (1.39)

with r > 1 the anisotropy ratio, α ∈ [0, π) the anisotropy angle, and w > 0 the weight
parameter for altitude. Spatial transformations of this kind are used in Blanchet and
Davison (2011) and in Gaume et al. (2013b).
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1.4.6 Max-stable models inference and selection

Due to computational issues, the full log-likelihood of max-stable processes is usually
intractable. To estimate parameters of a max-stable process, we can maximize the
pairwise composite log-likelihood (Padoan et al., 2010)

l(β) =
N

∑
n=1

K−1

∑
i=1

K

∑
j=i+1

log f (zn,i, zn,j; β) (1.40)

with K the number of stations, N the number of maxima for each location, zn,i the maxima
at location i for year n, f the bivariate distribution of the max-stable process and β the
vector of parameters of the bivariate distribution.

The use of alternatives to pairwise composite log-likelihood have been investigated
through triplewise composite log-likelihood (Genton et al., 2011; Huser and Davison,
2013), partition-composite log-likelihood (Bienvenüe and Robert, 2014) or composite
log-likelihood of higher order (Castruccio et al., 2016). Bayesian inference is also possible
(Thibaud et al., 2017).

The maximum pairwise composite likelihood estimator β̂ is consistent and satisfies
(Padoan et al., 2010; Ribatet, 2013)

√
n
(

β̂− β0
)
−→ N (0, H−1(β0)J(β0)H−1(β0)) n→ ∞ (1.41)

with β0 the true vector of parameters, and H(β) and J(β) the Hessian and Jacobian
information matrices defined by

H(β) = −
N

∑
n=1

K−1

∑
i=1

K

∑
j=i+1

∂2 log f (zn,i, zn,j; β)

∂β∂βt (1.42)

and

J(β) =
N

∑
n=1

{
K−1

∑
i=1

K

∑
j=i+1

∂ log f (zn,i, zn,j; β)

∂β

}{
K−1

∑
i=1

K

∑
j=i+1

∂ log f (zn,i, zn,j; β)

∂β

}′
. (1.43)

The related classical inference criterion to discriminate max-stable models is the CLIC
(Composite Likelihood Information Criterion) (Padoan et al., 2010)

CLIC = −2
{

l(β̂)− tr( Ĵ(β̂)Ĥ−1(β̂))
}

(1.44)
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The lower the CLIC, the better the model. An alternative to CLIC, less usual and not
considered in this thesis, is the CLBIC (Composite Bayesian Likelihood Information
Criterion) (Gao and Song, 2010).
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Chapter 2

A multi-criteria leave-two-out
cross-validation procedure for
max-stable process selection

The content of this chapter is submitted to Spatial Statistics. The authors are Gilles
Nicolet, Nicolas Eckert, Samuel Morin and Juliette Blanchet.
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Abstract

Max-stable processes are the extension of the univariate extreme value theory to the
spatial case. Contrary to the univariate case, there is no unique parametric form for the
limiting distribution in the spatial case, and several max-stable processes can be found
in the literature. Selecting the best of them for the data under study is still an open
question. This paper proposes a procedure for discriminating max-stable processes by
focusing on their spatial dependence structure. Specifically, it combines a leave-two-out
cross-validation scheme and a large panel of adapted criteria. We compare five of the
most commonly used max-stable processes, using as a case study a large data set of
winter maxima of 3-day precipitation amounts in the French Alps (90 stations from 1958
to 2012). All the introduced criteria show that the extremal-t, geometric Gaussian and
Brown-Resnick processes are equally able to represent the structure of dependence of the
data, regardless of the number of stations or years. Although these results have to be
confirmed by replicating the study in other contexts, they may be valid for a wide range
of environmental applications.
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2.1 Introduction

Model selection is a classical issue in statistics, whether to make a choice between
several families of parametric models or to make a selection between several explanatory
variables. A proper model selection should be done through the use of statistical criteria,
which should be able to measure the ability of a model to predict or explain data, or
to compare and rank models. The well-known coefficient of determination R2 (Barrett,
1974) and the adjusted coefficient of determination R̂2 (Srivastava et al., 1995) consider
the proportion of total variability explained by the model. Likelihood-ratio tests (Vuong,
1989) can be used to compare nested models. Non-nested models can be compared using
Bayes factor (Kass and Raftery, 1995) or likelihood based criteria such as the Akaike
Information Criterion (AIC, Akaike (1974)) or the Bayesian Information Criterion (BIC,
Schwarz et al. (1978)). However, although these criteria are able to compare models, they
do not measure the suitability of a given model for prediction. A classical method for
assessing the predictive efficiency of a model is cross-validation (Arlot et al., 2010) which
consists in splitting data, once or several times, into two parts: the first one is used to fit
the model and the second one for validation (Pujol et al., 2007; Blanchet and Lehning,
2010; Westra et al., 2013).

In extreme value statistics (Coles, 2001), one generally extrapolates far beyond the
highest recorded observation, mostly for risk mitigation purpose. That is why the
predictive ability of the models is particularly crucial. A proper model selection in
extreme value statistics should therefore particularly consider the predictive qualities
of the models in competition. In the "block maxima" approach of univariate extreme
value theory, the Fisher-Tippett-Gnedenko theorem (Fisher and Tippett, 1928; Gnedenko,
1943) ensures that the limiting distribution for maxima of random variables is the GEV
(Generalized Extreme Value) distribution. Therefore, in this case, model selection does
not rely on the choice of the distribution, but rather on the choice of covariates for GEV
parameters or, ultimately, on the sign of the shape parameter which determines the type
of distribution (Fréchet, Gumbel or reversed Weibull). However, in the multivariate
case, there is no unique parametric form for the limiting distribution and it is necessary
to find a parametric extreme value copula flexible enough to capture the structure of
dependence (Ribatet and Sedki, 2012; Davison et al., 2012), or to work in a nonparametric
framework (Capéraà et al., 1997; Zhang et al., 2008). Max-stable processes (de Haan,
1984) are the extension of the multivariate GEV distribution to the infinite dimension
and are mostly used in a spatial context (Davison et al., 2012; Ribatet, 2013). Max-stable
processes are usually considered with unit Fréchet margins, and in this case they all may
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be expressed through the de Haan’s spectral representation (de Haan, 1984). However,
several parametric distributions resulting from this representation exist, each proposal of
the literature representing a specific way of modeling the spatial dependence structure
of extreme values. Model selection is thus an important issue.

The first two max-stable processes to be introduced are the Smith (Smith, 1990) and
Schlather (Schlather, 2002) processes. However, they have some major drawbacks. The
Smith process provides too smooth realizations which are usually not realistic (Reich
and Shaby, 2012; Wadsworth and Tawn, 2012). The Schlather process assumes rather
strong dependence in extremes (extremal dependence) at two locations regardless of
the distance apart, which is questionable for many data (Blanchet and Davison, 2011;
Davison et al., 2012). One way to solve this difficulty is to divide the studied area into
several sub-regions in which the non-independence assumption of the Schlather process
may hold (Blanchet and Davison, 2011; Lee et al., 2013). However, the choice of these
sub-regions may be an issue in itself. Several new max-stable processes were introduced
recently to solve these drawbacks. Smith and Stephenson (2009) suggested an extended
Smith process. The Brown-Resnick (Kabluchko et al., 2009) and geometric Gaussian
(Davison et al., 2012) processes have similar expression of the joint distribution as the
Smith process but with more realistic realizations. Reich and Shaby (2012) proposed
a max-stable process connected to the Smith process but including a nugget term and
thus producing also more realistic realizations. Wadsworth and Tawn (2012) introduced
the Gaussian-Gaussian process which is a superposition of the Smith and Schlather
processes in order to keep the advantages of both families without their drawbacks.
Davison and Gholamrezaee (2012) suggested to use a truncated Schlather process instead
of the classical Schlather process with the aim of reaching independence in extremes far
apart. The extremal-t process (Opitz, 2013) is a generalization of the Schlather process
with an additional parameter controlling the extremal dependence between locations far
apart. Recently, the geometric Gaussian process was extended to the even more flexible
Tukey process (Xu and Genton, 2016).

Several applications of max-stable processes (Shang et al., 2011; Westra and Sisson,
2011; Lee et al., 2013; Raillard et al., 2014; Zhang et al., 2014) make the choice of consider-
ing only one max-stable process to model the data. Others studies use the Composite
Likelihood Information Criterion (CLIC (Padoan et al., 2010)) to compare different fami-
lies of max-stable processes or to compare different choices in the parametrization of a
given max-stable process (e.g., the choice of the correlation function in Schlather process
(Blanchet and Davison, 2011)). On this basis, the Schlather process was found to be more
suitable than the Smith process for extreme snow depth in Switzerland (Blanchet and
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Davison, 2011). The geometric Gaussian and Brown-Resnick processes outperformed
the Smith and Schlather processes for extreme rainfall in Switzerland (Davison et al.,
2012). The Brown-Resnick process outperformed the Smith and Schlather processes for
extreme snowfall in the French Alps (Gaume et al., 2013b). Yet, none of these studies con-
sidered selection criteria able to compare the predictive ability of the different processes.
Indeed, in the same way as AIC criteria for example, CLIC is based on the value of the
composite likelihood with a penalization on the complexity of the model. Also, most
of these papers consider together the question of model selection regarding marginal
distributions in term of covariates for the GEV parameters and regarding the spatial
dependence structure.

This paper proposes a practical framework for discriminating between max-stable
processes by evaluating their predictive ability. We introduce a panel of statistical cri-
teria well suited to compare several max-stable processes by considering their spatial
dependence in extremes. We evaluate this in a systematic leave-two-out cross-validation
scheme. The proposed framework is not data-specific and may be used in many appli-
cations. For sake of illustration, we consider in this paper a case study consisting in
a large data set of 3 days cumulated snowfall maxima in the French Alps (90 stations
from 1958 to 2012), which have already been investigated in Nicolet et al. (2016). We
consider the Brown-Resnick, geometric Gaussian and extremal-t processes, which have
previously been found to be suitable for hydrological applications (Davison et al., 2012;
Gaume et al., 2013b; Bechler et al., 2015), as well as the first two max-stable processes
to be introduced, the Smith and Schlather processes. We also consider a large set of
correlation functions for the Schlather, geometric Gaussian and extremal-t processes. The
models are estimated by maximum composite likelihood (Padoan et al., 2010), and for
each process, one paramerization (corresponding to the choice of a family of correlation
functions or semivariograms) is selected by CLIC. The five resulting models are com-
pared by assessing, for each pair of stations, goodness-of-fit of the bivariate distribution
derived from the model fitted on the remaining 88 other stations. We use the root mean
square error (RMSE), mean average error (MAE), root mean square normalized error
(RMSNE), mean average normalized error (MANE) and coefficient of determination (R2)
to measure the deviation between empirical and max-stable-based estimations of the
probability of jointly exceeding a given quantile at two locations. We also consider the FF
and NT criteria which are usually used to assess the reliability of univariate distribution
estimation (Garavaglia et al., 2011; Renard et al., 2013; Blanchet et al., 2015). The FF
criterion is based on the maxima over all the study period whereas the NT criterion
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focuses on the distribution of the number of exceedances of the T-year return level. Here,
these criteria are tailored to the bivariate case by being applied to the minima at two
locations. Last but not least, the sensitivity of the models to the number of stations and
to the number of years of observations is investigated.

2.2 Data

Our data set is composed of winter maxima of 3 days cumulated snowfalls with
a winter period defined from 15 November to 15 May. We choose a period of 3 days
because this is the most usual time scale of winter storms and hence is often considered
in avalanche forecasting (Bocchiola et al., 2006; Eckert et al., 2010, 2011; Gaume et al.,
2012). Daily data are available from 15 November 1958 to 15 May 2013 in the French Alps
through observations of precipitation done mostly manually (climatological and dedi-
cated snow observing networks). We use all the observations whose type of precipitation
(rain or snow) was registered as snow. If the indication about the phase of precipitation
is missing, we retain precipitations measured when minimal daily temperature is lower
than 2◦C. Since several locations of measurement were slightly modified during the
study period, we pooled together the stations with less than 100 m difference in elevation
and less than 2 km in distance in the 2-D plane. Finally, we retain the 90 stations which
have at least 40 winter maximum values (computed from a moving window of 3 days)
during the study period (Figure 2.1). Their elevation ranges from 291 m to 2012 m. Hence,
the station set is a good compromise between spatial and altitudinal coverage and length
of records.

2.3 Method

2.3.1 Max-stable processes

2.3.1.1 Definition and spectral representation

Let χ be a space and {Xi(x)}x∈χ a process with i denoting the number of the day
in the block (1 ≤ i ≤ n0 with n0 the length of the block). Spatial extreme value theory
(Davison et al., 2012; Cooley et al., 2012) ensures that the process of block maxima

{Z(x)}x∈χ =

{
max

1≤i≤n0
Xi(x)

}
x∈χ

, (2.1)



50 2. A MULTI-CRITERIA LEAVE-TWO-OUT CROSS-VALIDATION

Figure 2.1: (a) Study area in the southeast of France, where the 23 massifs of the French Alps
are located. Lines denote massif limits, and dots denote the positions of the stations.
The color code represents elevation. (b) Data availability for each station. Each line
represents one station, and each point means that the winter maximum is available
for that station.

with n0 sufficiently large, should be modeled as a max-stable process (de Haan, 1984).
Every univariate margins Z(x) of a max-stable process Z are GEV(µ(x),σ(x),ξ(x)) dis-
tributed, i.e., with cumulative distribution function

Fµ(x),σ(x),ξ(x)(z) = exp

{
−
[

1 + ξ(x)
(

z− µ(x)
σ(x)

)]−1/ξ(x)
}

(2.2)

with µ(x), σ(x) and ξ(x) denoting respectively the location, scale and shape parameters
at position x, and z is such that 1 + ξ(x)

(
z−µ(x)

σ(x)

)
> 0. The function F is equal to 0 in the

case of ξ(x) > 0 and z ≤ µ(x)− σ(x)
ξ(x) , and equal to 1 if ξ(x) < 0 and z ≥ µ(x)− σ(x)

ξ(x) .

Since here only the dependence of {Z(x)}x∈χ is of interest we normalize, without loss
of generality, the margins into unit Fréchet (i.e., GEV(1,1,1)) by using the transformation

Z(x)→ −1

log
{

Fµ(x),σ(x),ξ(x)(Z(x))
} . (2.3)
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In this case, de Haan (1984) ensures that the process {Z(x)}x∈χ can be written as

Z(x) = sup
i≥1

ηiWi(x), x ∈ χ (2.4)

with {ηi}i≥1 the points of a Poisson process on R+ with intensity η−2dη and {Wi(x)}i≥1

independent copies of a nonnegative process {W(x)} with mean 1. Different choices for
{Wi(x)} in (2.4) lead to different families of max-stable processes.

2.3.1.2 Parametric max-stable families

Here we describe the five parametric families considered in this study for modeling
spatial dependence in extremes.

The Smith process (Smith, 1990) is obtained by taking Wi(x) = g(x − Xi) in (2.4)
with g the density function of a multivariate Gaussian distribution with mean 0 and
covariance matrix Σ and {ηi, Xi} the points of a Poisson process on R+× χ with intensity
η−2dη dx. The bivariate distribution of this process for Z(x1) and Z(x2) (with x1 and x2

two locations) is

P (Z(x1) < z1, Z(x2) < z2) =

exp
{
− 1

z1
Φ
(

a
2
+

1
a

log
z2

z1

)
− 1

z2
Φ
(

a
2
+

1
a

log
z1

z2

)}
(2.5)

with Φ the distribution function of the standard normal distribution and a the Maha-
lanobis distance which is defined as a =

√
(x2 − x1)TΣ−1(x2 − x1).

The Schlather process (Schlather, 2002) uses Wi(x) =
√

2π max{0, Yi(x)}with {Yi(x)}
independent copies of a stationary Gaussian process with correlation function ρ. The
bivariate distribution is given by

P (Z(x1) < z1, Z(x2) < z2) =

exp
{
−1

2

(
1
z1

+
1
z2

)(
1 +

√
1− 2(ρ(h) + 1)

z1z2

(z1 + z2)2

)}
(2.6)

with h the Euclidean distance between the two locations x1 and x2.
The geometric Gaussian process (Davison et al., 2012)) takes Wi(x) = exp

(
σYi(x)− σ2

2

)
with {Yi(x)} independent copies of a stationary Gaussian process with mean 0, variance
σ2 and correlation function ρ. The bivariate distribution function is the same as for the
Smith process with a =

√
2σ2(1− ρ(h)) in (2.5).
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The Brown-Resnick process (Kabluchko et al., 2009) generalizes the geometric Gaus-
sian process with Wi(x) = exp {Yi(x)− γ(x)}, where {Yi(x)} are independent copies of
a Gaussian process with stationary increments and such that Wi(0) = 0 almost surely.
The process uses a semivariogram γ. Expression for the bivariate distribution is the same
as for the Smith process with a =

√
2γ(h) in (2.5).

The extremal-t process (Opitz, 2013) uses Wi(x) = cν max {0, Yi(x)}ν with cν equals

to
√

π2−
ν−2

2 Γ
(

ν+1
2

)−1
(ν ≥ 1), Γ the Gamma function and {Yi(x)} independent copies

of a stationary Gaussian process. If ν = 1 we recover the Schlather process. The bivariate
distribution is given by

P (Z(x1) < z1, Z(x2) < z2) =

exp

{
− 1

z1
Tν+1

(
1
b

(
z2

z1

)1/ν

− ρ(h)
b

)
− 1

z2
Tν+1

(
1
b

(
z1

z2

)1/ν

− ρ(h)
b

)}
(2.7)

with b =
√

1−ρ2(h)
ν+1 and Tν is the distribution function of the Student distribution with ν

degrees of freedom.

2.3.1.3 Inference

Due to computational issues, the full log-likelihood of max-stable processes is usu-
ally intractable. Parameter estimation is often performed by maximizing the pairwise
composite log-likelihood (Padoan et al., 2010)

l(β) =
N

∑
n=1

K−1

∑
i=1

K

∑
j=i+1

log f (zn,i, zn,j; β) (2.8)

with K the number of stations, N the number of years, zn,i the maxima at location i for
year n, f the max-stable bivariate density associated to equations (2.5)–(2.7) and β the
vector of parameters.
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2.3.2 Model comparison criteria

2.3.2.1 Composite Likelihood Information Criterion

The classical inference criterion to discriminate max-stable models is the CLIC (Com-
posite Likelihood Information Criterion) (Padoan et al., 2010)

CLIC = −2
{

l(β̂)− tr( Ĵ Ĥ−1)
}

(2.9)

with β̂ the vector which maximizes the composite likelihood l in (2.8), Ĥ and Ĵ the
Hessian and Jacobian information matrices defined by

H = −
N

∑
n=1

K−1

∑
i=1

K

∑
j=i+1

∂2 log f (zn,i, zn,j; β̂)

∂β∂βt (2.10)

and

J =
N

∑
n=1

{
K−1

∑
i=1

K

∑
j=i+1

∂ log f (zn,i, zn,j; β̂)

∂β

}{
K−1

∑
i=1

K

∑
j=i+1

∂ log f (zn,i, zn,j; β̂)

∂β

}′
. (2.11)

It is considered that the lower the CLIC, the better the model. As in Blanchet and Davison
(2011), we rescaled the CLIC by dividing by K-1.

2.3.2.2 RMSE, MAE, RMSNE, MANE and R2 criteria

In extreme value statistics, one deals with very low exceedance probabilities which
are usually defined through return periods or large quantiles. For each pair of stations
(xi, xj) and each return period T, we define the probability of joint exceedance by

λ(xi, xj, zT) = P
{

Z(xi) > zT, Z(xj) > zT
}

(2.12)

with zT = −1
log(1−1/T) the T-year return level of unit Fréchet variables, and λ(xi, xj, zT)

denotes the probability of exceeding zT at the two locations xi and xj during the same
block period. The probability of joint exceedance is assessed using the decomposition:

λ(xi, xj, zT) = 1−P {Z(xi) < zT} −P
{

Z(xj) < zT
}

+P
{

Z(xi) < zT, Z(xj) < zT
}

= 1− 2
(

1− 1
T

)
+ P

{
Z(xi) < zT, Z(xj) < zT

}
(2.13)
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In (2.13), P
{

Z(xi) < zT, Z(xj) < zT
}

is given by the bivariate distribution in (2.5), (2.6)
or (2.7), depending on the family of max-stable processes.

The deviation between max-stable-based estimations λmod and empirical estimations
λemp are assessed through

i) root mean square error

RMSE =

{
2

card(τ)K(K− 1)
K−1

∑
i=1

K

∑
j=i+1

∑
T∈τ

[
λmod(xi, xj, zT)− λemp(xi, xj, zT)

]2}1/2

, (2.14)

ii) mean absolute error

MAE =
2

card(τ)K(K− 1)
K−1

∑
i=1

K

∑
j=i+1

∑
T∈τ

|λmod(xi, xj, zT)− λemp(xi, xj, zT)|, (2.15)

iii) root mean square normalized error

RMSNE =

{
2

card(τ)K(K− 1)
K−1

∑
i=1

K

∑
j=i+1

∑
T∈τ

[
λmod(xi, xj, zT)− λemp(xi, xj, zT)

λemp(xi, xj, zT)

]2

1λemp(xi,xj,zT) 6=0

}1/2
, (2.16)

iv) mean absolute normalized error

MANE =
2

card(τ)K(K− 1)
K−1

∑
i=1

K

∑
j=i+1

∑
T∈τ

∣∣∣∣∣λmod(xi, xj, zT)− λemp(xi, xj, zT)

λemp(xi, xj, zT)

∣∣∣∣∣
1λemp(xi,xj,zT) 6=0, (2.17)
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v) and coefficient of determination

R2 = 1−
∑K−1

i=1 ∑K
j=i+1 ∑T∈τ

[
λmod(xi, xj, zT)− λemp(xi, xj, zT)

]2
∑K−1

i=1 ∑K
j=i+1 ∑T∈τ

[
λemp(xi, xj, zT)− λemp

]2 (2.18)

with K the number of stations, τ the set of the considered return periods, λemp

the mean of empirical estimations over all xi, yj and zT, and 1 the indicator function.
According to these criteria, the lower the values of RMSE, MAE, RMSNE and MANE, the
better the model, and the larger the coefficient of determination R2, the better the model.

2.3.2.3 NT and FF criteria

The NT and FF indexes are used in Garavaglia et al. (2011), Renard et al. (2013) and
Blanchet et al. (2015) to assess the reliability of univariate distribution estimation. In order
to use them for bivariate distributions, we apply them here to M(i, j) = min(Z(xi), Z(xj))

which is the minimum at two locations (xi, xj) of the max-stable process Z. In this
case, the NT and FF criteria assess the reliability of F̂M(i,j), the estimated cumulative
distribution function of M(i, j). Specifically, F̂M(i,j) is given by

F̂M(i,j)(z) = P
{

Z(xi) < z or Z(xj) < z
}

(2.19)

= P {Z(xi) < z}+ P
{

Z(xj) < z
}
−P

{
Z(xi) < z, Z(xj) < z

}
= 2F1,1,1(z)− F̂xi,xj(z, z) (2.20)

with F1,1,1(z) = exp (−1/z) the unit Fréchet cumulative distribution function, and F̂xi,xj

the estimated bivariate cumulative distribution function stemming from the fitted max-
stable process for the locations xi and xj and defined by (2.5), (2.6) or (2.7), depending on
the family of max-stable processes. The expression of the criteria in our bivariate case are
detailed in Appendix A.
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2.3.3 Workflow

2.3.3.1 Transformation to unit Fréchet margins

The GEV distribution is fitted for each station independently by maximum likelihood.
Pointwise estimates of parameters are used to transform marginal distributions into unit
Fréchet through the transformation (2.3). We consider this unit Fréchet data set only
and do not consider the margins in order to keep the same unit Fréchet data set for all
the max-stable processes and to focus on the dependence structure only. Thus, we are
interested in a process {Z(x)}with unit Fréchet margins for which we have observations
{zn,i}n=1...N,i=1...K.

2.3.3.2 Model preselection with CLIC

The Smith, Schlather, Brown-Resnick, geometric Gaussian and extremal-t processes
are fitted to the unit Fréchet data set by maximizing the composite log-likelihood (2.8).
We use 14 correlation functions for the Schlather, extremal-t and geometric Gaussian
processes, and we use the linear and power semivariograms for the Brown-Resnick
process (the formulae of the used semivariograms and correlation functions are given in
Appendix B).

Anisotropy is directly modeled in the Smith process with a non spherical covariance
matrix Σ in (2.5). In order to account for anisotropy in the other processes, a spatial
transformation is used. In the same way as Blanchet and Davison (2011) and Nicolet
et al. (2016), coordinates of x in R3 are replaced with x′ = Vx such as

V =

 cos ψ − sin ψ 0
w−1

1 sin ψ w−1
1 cos ψ 0

0 0 w2

 (2.21)

with ψ the anisotropy angle, w1 > 1 the anisotropy ratio and w2 > 0 the weight parameter
for altitude. Then, CLIC is computed for each estimated model and among each family
of max-stable processes, we only keep one model.
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2.3.3.3 Cross-validation

After preselection by CLIC of one parameterization for each family, the Smith,
Schlather, Brown-Resnick, geometric Gaussian and extremal-t processes are further
compared using a leave-two-out cross-validation. For each pair of stations (xi, xj) and
for several return periods T, the distribution of M(i, j) = min(Z(xi), Z(xj)) is inferred
from the max-stable process estimated by composite likelihood maximization on the
remaining 88 stations.

The deviation between max-stable-based estimations λmod and empirical estimations
λemp of the probability of joint exceedance are assessed through RMSE, MAE, RMSNE,
MANE and coefficient of determination R2 with T ∈ τ = {2, 3, 5, 7, 10, 15, 20, 25, 33, 50, 100}
years, the set of chosen return periods. We consider values of joint exceedance with full
dependence hypothesis between two locations

λ1(xi, xj, zT) = P {Z(xi) > zT} =
1
T

(2.22)

and with independence hypothesis between two locations

λ2(xi, xj, zT) = P {Z(xi) > zT}P
{

Z(xj) > zT
}
=

1
T2 (2.23)

in order to check that max-stable process based estimations outperform them. Next, a
finer comparison is done by assessing RMSE, MAE, RMSNE, MANE for each return
period separately (T ∈ τ = {2}, {3}, {5}, {7}, {10}, {15}, {20}, {25}, {33}, {50} and
{100} years).

Also, for each pair of stations (xi, xj), we consider F̂M(i,j), the cumulative distribution
function of M(i, j), estimated from the model fitted on the remaining 88 stations. The
reliability of these estimates are assessed using N10, N20 and FF criteria. In order to
reduce the dependence among the samples of pairs of stations, N10, N20 and FF criteria
are calculated for samples D of 45 disjoint pairs of stations, that is to say each station
appears in exactly one pair. N10, N20 and FF are assessed for 1000 samples of disjoint
pairs of stations and the considered values for model evaluation are the averages of these
1000 values.
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2.3.3.4 Sensitivity testing to the number of stations and years

We use a bootstrap method to assess the prediction ability of the max-stable processes
when less stations or less observations are available. The five selected max-stable models
are fitted on a sample of n stations (and keeping all the 55 years of observations) with n a
multiple of 5. For each n, 100 samples of n stations are randomly built. Goodness-of-fit
for each of these samples is evaluated using the criteria introduced above. On the 100
values, we compute the average and a 95%-confidence interval using empirical quantiles.
Then, we adopt a similar procedure by reducing the number m of considered years (and
keeping all the 90 stations).

Note that whatever n (respectively, m), the reliability criteria are computed using
all the stations (resp., years), i.e. both the stations (resp., years) used and not used to
estimate the max-stable models. Of course, the lower n (resp., m), the lower the number
of pairs (resp., years) which are for used in the model estimation. This explains why for
this specific sensitivity study an additional cross-validation step was not found necessary.

2.4 Results

2.4.1 Model preselection with CLIC

In accordance with the results of the CLIC selection, whose details are given in
Appendix C, we use the power semivariogram for the Brown-Resnick process and the
Gneiting-Matérn function for the extremal-t, geometric Gaussian and Schlather processes.
The parameterization of these five retained models is given in Appendix D.

2.4.2 Cross-validation

The values of the criteria introduced in 2.3.2.2 and 2.3.2.3 (Table 2.1) show that the
Smith and Schlather models are systematically outperformed by the other ones. The
Schlather model is the worst according to all criteria. RMSE, MANE, R2, N10 and FF
confirm the conclusion drawn from CLIC using all data with the extremal-t model slightly
better than the Brown-Resnick and geometric Gaussian ones. The geometric Gaussian
model shows the best MAE while, according to RMSNE and N20 the Brown-Resnick
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Family RMSE MAE RMSNE MANE R2 N10 N20 FF

E-t 0.0242 0.0159 0.559 0.403 0.918 0.200 0.195 0.193

GG 0.0243 0.0158 0.551 0.404 0.918 0.202 0.195 0.199

B-R 0.0243 0.0158 0.550 0.404 0.918 0.201 0.195 0.199

Sm 0.0283 0.0172 0.600 0.484 0.889 0.269 0.279 0.281

Sc 0.0308 0.0212 0.797 0.511 0.868 0.293 0.290 0.285

Table 2.1: Cross-validation. RMSE, MAE, RMSNE, MANE, R2, N10, N20 and FF criteria for
the extremal-t, geometric Gaussian and Schlather processes with the Gneiting-Matérn
correlation function, the Brown-Resnick process with the power semivariogram and
the Smith process. Bold values indicate the best value for each criterion (sometimes
distinguishable with the 4th or 5th significant digit only).

model performs best. However, results remain very close, confirming that the selection
between these three models is complicated. In addition, the comparison between Table
2.4 and Table 2.1 show that the results are extremely similar whether using the full data
set or in cross-validation.

Figure 2.2 represents the empirical and max-stable-based estimations of the prob-
abilities of joint exceedance for four pairs of stations, lying at different distances and
orientations. These pairs of stations are chosen so as to have a good balance between
close and distant stations as well as between northeastern and northwestern orientations.
Thus we illustrate different strengths of dependence since the stations are more depen-
dent in extremes when they lie in a short distance and when they are oriented toward
the northeast (Nicolet et al., 2016). Figure 2.2 shows that regardless of the strength of
dependence, the extremal-t, geometric Gaussian and Brown-Resnick models give very
similar estimations of the probabilities of joint exceedance, while the Smith model gives
the lowest probabilities with very similar values to the independent case. On the contrary,
the Schlather model gives higher probabilities of joint exceedance with the closest values
to the complete dependent case.

A finer comparison between the models is done in Appendix E by focusing on their
performances for different return period separately.

2.4.3 Sensitivity to the number of stations and to the number of years

The extremal-t, geometric Gaussian and Brown-Resnick models turn out to be rel-
atively little sensitive to the number of stations when the 55 years of observations are
used (Figure 2.3), with similar performances:
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Figure 2.2: Cross-validation. Joint exceedance probability as function of return period for four
pair of stations. Location of each pair of stations is displayed within the map of the 23
massifs of the French Alps.
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• almost no increase of performance when more than 40 stations are used;

• a slight decrease in performance down to 20 stations;

• a more pronounced decrease in performance with less than 20 stations.

Similarly, the three models are little sensitive to the number of observed years when the
90 stations are used (Figure 2.4):

• almost no increase in performance when more than 25 years are observed;

• a slight decrease in performance down to 10 years;

• a more pronounced decrease in performance with less than 10 years.

As expected, the confidence intervals derived from our bootstrap procedure get wider
when the number of stations or the number of years decreases. N10, N20 and FF have the
peculiarity that the confidence intervals get wider in both directions (i.e., both smaller
and larger errors) due to the additional random selection of 1000 samples D of 45 pairs of
stations (see section 2.3.2.3). All in all, the Brown-Resnick model is slightly less sensitive
than the geometric Gaussian and extremal-t models because fewer parameters have to
be estimated (however it is more sensitive in the extreme cases of only 5 stations or 5
years of observations).

Under the Smith model, the values of the criteria are quite constant when at least 35
stations or at least 10 years of observations are used (not shown). The Schlather model
is almost insensitive to the number of stations and to the number of years (not shown).
Indeed, it models the same extremal dependence (which corresponds to the minimal
dependence it allows) for almost all the pairs of stations.

2.5 Discussion and conclusion

In this paper, we compare five of the most common parametric families of max-
stable processes: Smith, Schlather, Brown-Resnick, geometric Gaussian and extremal-t
processes, focusing on their predictive ability concerning the spatial dependence structure
of extreme values. Each family represents a given way to model extremal dependence
in space, and within each of them, several parameterizations exist due to the choice of
the correlation function (in the case of the Schlather, geometric Gaussian and extremal-t
processes) or of the semivariogram (in the case of the Brown-Resnick process) of the
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Figure 2.3: RMSE, MAE, R2, RMSNE, MANE, N10, N20 and FF criteria according to the
number of stations, each of them having 55 years of observations. Plain lines represent
means. The dotted lines represent the empirical 95%-confidence interval.
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Figure 2.4: RMSE, MAE, R2, RMSNE, MANE, N10, N20 and FF criteria according to the
number of years with 90 stations. Plain lines represent means. The dotted lines
represent the empirical 95%-confidence interval.
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underlying spatial process. We use as a case study a large data set of 3-day snowfall
annual maxima in the French Alps. First, a preselection driven by comparing the CLIC
values is done, using a large set of correlation functions for the Schlather, geometric
Gaussian and extremal-t processes. Then, the best parameterization of each family
are compared through a leave-two-out cross-validation procedure. Their reliability is
assessed focusing on the structure of the spatial dependence by deriving the bivariate
distributions from the fitted models. To this aim, a large panel of criteria is introduced
to discriminate the models. We compute the RMSE, MAE, RMSNE, MANE and the
coefficient of determination for the probabilities of jointly exceeding a given quantile
at two locations. In addition NT and FF criteria, usually used for goodness-of-fit of
univariate distributions, are tailored for dealing with bivariate distributions. Finally
these criteria are used to investigate the sensitivity of the families of max-stable processes
to the number of stations and to the number of years of observations. The cross-validation
and the sensitivity investigation needed each one a computational effort of several days.

All in all, we find that the Smith and Schlather models, due to their lack of flexibility,
are clearly outperformed by the other tested max-stable models. The Schlather model
overestimates the joint exceedance probabilities because very weak dependence is never
reached with this process, regardless of the distance apart (Blanchet and Davison, 2011;
Davison et al., 2012). This is not appropriate for snowfall (Gaume et al., 2013a,b). The
Smith process, which is able to model very low extremal dependence, outperforms
the Schlather process, which is consistent with Gaume et al. (2013b). However, in the
literature, the Schlather process can be found to be better than the Smith process when
the variable of interest is more spatially dependent (Blanchet and Davison, 2011). In our
case, the Smith process tends to underestimate the probabilities of joint exceedance and
this is why it is less suitable than the extremal-t, geometric Gaussian and Brown-Resnick
processes. Thus, none of Schlather or Smith processes is recommended for our data set.

According to CLIC, the extremal-t model is slightly better than the geometric Gaus-
sian and Brown-Resnick models which is also confirmed by RMSE, MANE, R2, N10 and
FF in cross-validation. Nevertheless, the Brown-Resnick and geometric Gaussian models
show better MAE, RMSNE and N20. These differences can be explained by the fact that
the extremal-t model provides slightly larger probabilities of joint exceedance than the
geometric Gaussian and Brown-Resnick models. For instance, the geometric Gaussian
and Brown-Resnick models show better MAE with larger T because this criterion penal-
izes less large errors (here the large underestimations made by these families) than RMSE
(Chai and Draxler, 2014). These two models have also better RMSNE and MANE for
lower T thanks to the normalization of the errors which penalizes less underestimations
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of large quantities than over-estimations of low quantities. On the contrary, the extremal-t
model shows better RMSNE and MANE with larger T because these criteria take into
account the non zero empirical estimations only, and these estimations are closer to the
estimations made by the extremal-t model than those made by the geometric Gaussian
and the Brown-Resnick models. However in all cases, the results are very similar for
these three models, even when less stations or years are used, or when one focuses on
specific return periods.

The low values of RMSE, MAE, RMSNE and MANE prove the quality of the extremal-
t, Brown-Resnick and geometric Gaussian models in prediction and make them all
suitable for our data. Although the similarity of the results when using the full data set
and in cross-validation (Tables 2.4 and 2.1) may suggest that the use of cross-validation
is useless, this also shows the robustness of the considered max-stable processes. In
addition, the large set of criteria considered proves that well-chosen Brown-Resnick and
geometric Gaussian processes are able to capture the structure of dependence of extreme
snowfall in the French Alps almost as well as the extremal-t process. So, one could very
well use the Brown-Resnick process with a power semivariogram rather than a suitable
extremal-t process with the aim to be close to extremal independence for very large
distances or to estimate less parameters. Particularly, we find that the Brown-Resnick
model is slightly less sensitive to the number of stations or years of observations than the
extremal-t and geometric Gaussian models, because less parameters have to be estimated.

Hence, the main practical conclusion of this paper is that the extremal-t, geometric
Gaussian and Brown-Resnick processes are almost equally suitable while the Smith
and Schlather processes are not flexible enough. It is likely that this result could apply
to other data sets or to other families of max-stable processes as flexible as extremal-t,
geometric Gaussian and Brown-Resnick processes, and for instance be valid for a wild
range of environmental applications. This may be confirmed in the future by replicating
the study in other contexts.

From a methodological point of view, in this study, RMSE, MAE, RMSNE, MANE
and R2 were computed on probabilities of joint exceedance of return levels. These
probabilities of joint exceedance are concrete quantities which are useful for protective
measures and make sense for risk management. The set of return periods can be adapted
to the considered situation. However, if one prefers not to be dependent on the choice
of return periods, it is possible to compute these criteria for the estimated extremal
coefficients (Schlather and Tawn, 2003).
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More generally, the set of criteria and the leave-two-out cross-validation method
introduced in this paper provide a relevant framework for a deep model selection for
max-stable processes independently on the data in study. Indeed, these criteria assess
the predictive ability of max-stable processes whereas CLIC is a penalized composite
likelihood criteria. Also the leave-two-out cross-validation procedure allows assessing
the ability of the process to model extremal dependence. Hence, this approach can
suitably be used for many other studies dealing with extremes in space.

Specifically, in this work, we considered five families of max-stable processes only: the
first max-stable processes to be introduced (Smith and Schlather processes) and three max-
stable processes which have previously been found suitable for hydrological applications
(Brown-Resnick, geometric Gaussian and extremal-t processes). However, the multi-
critera leave-two-out cross-validation procedure we proposed could be straightforwardly
applied to other max-stable processes, for instance those mentioned in the introduction
(Reich-Shaby, Gaussian-Gaussian, truncated Schlather, Tukey, etc.). Other kinds of spatial
models such as asymptotically independent processes (Wadsworth and Tawn, 2012;
Davison et al., 2013) could also be considered. This was not done because the asymptotic
dependence hypothesis seemed more appropriate in our case. Indeed, asymptotical
independence for extreme snowfall would mean that extreme snow events reduce to
one infinite snow flake at infinite levels, which is questionable. In addition, from a risk
management point of view it is better to overestimate the probabilities of joint exceedance,
as in the case of assuming asymptotic dependence when asymptotic independence holds,
rather than underestimating them, as in the opposite case. Other studies could be used
in the future to compare, within our framework, different classes of asymptotically
dependent and independent models.
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Appendix A NT and FF criteria

A.1 NT and FF criteria in the univariate case

The NT and FF criteria are used in Garavaglia et al. (2011); Renard et al. (2013);
Blanchet et al. (2015) to assess the reliability of estimation of univariate distributions in
several locations.

The NT index is based on the number of exceedance Ni
T of the estimated T-year return

level q̂i
T in location xi

Ni
T =

N(i)

∑
n=1

1zn,i>q̂i
T
. (2.24)

with N(i) the number of maxima. If q̂i
T is a perfect estimation (i.e., q̂i

T = qi
T), thus Ni

T is a
realization from the binomial distribution B(N(i), 1

T ) (Renard et al., 2013).

The FF index measures the goodness-of-fit of the estimation of the cumulative distri-
bution function F̂i in location xi. We consider

FFi = F̂i(zmax,i) (2.25)

with zmax,i = maxN(i)
i=1 zn,i. If F̂i is a perfect estimation (i.e., F̂i = Fi, then FFi is a realization

from a Kumaraswamy distribution K(N(i), 1) (Renard et al., 2013) whose cumulative
distribution function is FK(N(i),1)(z) = zN(i).

These criteria are tailored to the bivariate case by being applied to M(i, j) = min(Z(xi), Z(xj))

the minimum at two locations (xi, xj) taken from a sample D of disjoint pairs of stations.

A.2 NT criterion in the bivariate case

For each pair of stations (i, j) of D, we note n(i,j)
T the number of exceedances of the

T-year return level mi,j
T of M(i, j):

n(i,j)
T =

N(i,j)

∑
n=1

1
mn

i,j>mi,j
T

(2.26)
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with mn
i,j = min(zn,i, zn,j) the minimum at locations (xi, xj) during the winter n, and

N(i, j) the number of observations of M(i, j) (i.e., the number of common observations
for zn,i and zn,j). The T-year return level mi,j

T depends on the model through the formula

F̂M(i,j)(mi,j
T ) = 1− 1/T. If F̂M(i,j) is a perfect estimation, i.e., F̂M(i,j) = FM(i,j), then n(i,j)

T
is a realization from the binomial distribution B(N(i, j), 1

T ) (Renard et al., 2013).

The sample {n(i,j)
T }(i,j)∈D is transformed using the binomial cumulative distribution

function in order to have a sample of realizations of uniform U ([0, 1]) under the hy-
pothesis F̂M(i,j) = FM(i,j). As the binomial distribution is discrete, we use a randomized
binomial cumulative distribution function (Renard et al., 2013).

We assess the deviation from the uniform distribution through the area between the
empirical histogram (using 10 equal bins between 0 and 1) and the uniform distribution
(Blanchet et al., 2015):

NT =
1

18

10

∑
k=1

∣∣∣∣∣10
#{n(i,j)

T ∈ bin(k), (i, j) ∈ D}
#D − 1

∣∣∣∣∣ . (2.27)

The division by 18 allows us to keep NT between 0 and 1 with 0 corresponding to the
perfect uniform case when all the bins have the same number of realizations and 1
corresponding to the worst case when all the realizations are in the same bin.

A.3 FF criterion in the bivariate case

For each pair of stations (i, j) in the sample D, we define ff (i,j) by

ff (i,j) = F̂M(i,j)(mi,j) (2.28)

with mi,j = maxN(i,j)
n=1 mn

i,j. If F̂M(i,j) is a perfect estimation, i.e., F̂M(i,j) = FM(i,j), then

ff (i,j) is a realization from a Kumaraswamy distribution K(N(i, j), 1) (Renard et al., 2013).
The sample {ff (i,j)}(i,j)∈D is transformed using the Kumaraswamy empirical cumulative
distribution function FK(N(i,j),1)(z) = zN(i,j) (0 ≤ z ≤ 1). Thus we have under the
hypothesis F̂M(i,j) = FM(i,j) a sample of realizations of uniform U ([0, 1]). In the same
way as in the NT case, we assess the deviation from the uniform distribution by

FF =
1

18

10

∑
k=1

∣∣∣∣∣10
#{ff (i,j) ∈ bin(k), (i, j) ∈ D}

#D − 1

∣∣∣∣∣ . (2.29)
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Appendix B Semivariograms and correlation functions used
in this work

Family Correlation function
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)2

+ 32
(
sh̃
)3
] (

1− sh̃
)8

Spherical ρ(h) = 1− 3
2
(
h̃
)
+

1
2
(
h̃
)3

Wave ρ(h) = sin(h̃)/h̃

Bessel ρ(h) =
(

2
h̃

)κ

Γ (κ + 1) Jκ

(
h̃
)

Cauchy ρ(h) =
[
1 +

(
h̃
)2
]−κ

Gamma ρ(h) = 1/
(
1 + h̃

)κ

Powered exponential ρ(h) = exp
{
−
(
h̃
)κ
}

Whittle-Matérn ρ(h) =
21−κ

Γ(κ))
(
h̃
)κ Kκ

(
h̃
)

Generalized Cauchy ρ(h) =
[
1 +

(
h̃
)κ2
]−κ/κ2

Gneiting-Matérn ρ(h) = ρ
gneiting
λ (h/κ2) ρmatern

λ,κ (h)

Table 2.2: Correlation functions. We note h̃ = h/λ with λ > 0 the range parameter. The
parameter κ > 0 is the smoothness parameter (for the Bessel family κ ≥ d−2

2 with
d the dimension of the space and for the powered exponential family 0 < κ ≤ 2).
In the expression of the Gneiting correlation function, s = 0.301187465825. For
the circular, cubic, Gneiting and spherical families h < λ, and ρ(h) = 0 when
h ≥ λ. The functions Γ, Jκ and Kκ are respectively the Gamma function, the Bessel
function of the first kind of order κ and the modified Bessel function of order κ. The
correlation functions of the generalized Cauchy and Gneiting-Matérn families own a
second smoothness parameter κ2 > 0 (for the Generalized Cauchy correlation function
0 < κ2 ≤ 2). In the expression of the Gneiting-Matérn correlation function, ρ

gneiting
λ

and ρmatern
λ,κ denote Gneiting and Whittle-Matérn correlation functions respectively,

with a range parameter λ and a smoothness parameter κ.
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Family Semivariogram

Linear γ(h) =
h
λ

Power γ(h) =
(

h
λ

)κ

Table 2.3: Semivariograms. The parameter λ > 0 is the range parameter and κ > 0 is the
smoothness parameter.

Appendix C Model preselection with CLIC

Results are shown in Figure 2.5. According to CLIC, the best model is the extremal-t
process with the Gneiting-Matérn correlation function (rescaled CLIC = 19,442). The
extremal-t model with the Gneiting-Matérn, Matérn, powered exponential, exponential,
Gamma and generalized Cauchy correlation functions outperforms the best Brown-
Resnick (rescaled CLIC = 19,450 with the power semivariogram) and the best geometric
Gaussian (rescaled CLIC = 19,452 with the powered exponential correlation function)
processes. All extremal-t, geometric Gaussian and Brown-Resnick processes clearly
outperform the Smith (rescaled CLIC = 19,537) and all Schlather (rescaled CLIC around
19,556 regardless of the correlation function) processes.

The best correlation functions for the extremal-t process are also the best for the geo-
metric Gaussian process: Gneiting-Matérn, Matérn, powered exponential, generalized
Cauchy, Gamma and exponential. Regardless of the correlation function, the extremal-t
process outperforms the geometric Gaussian process. For the Schlather process, the
values of the rescaled CLIC are almost constant with the 14 correlation functions (from
19,555.68 to 19,556.11).

Hence, we select the power semivariogram for the Brown-Resnick process and the
Gneiting-Matérn function for the extremal-t process. As can be seen in Figure 2.5, the
Gneiting-Matérn function is also one of the best correlation function for the geometric
Gaussian process and there is very little influence of the choice of the correlation function
for the Schlather process. In order to keep the same correlation function for the extremal-t,
geometric Gaussian and Schlather models, we also select the Gneiting-Matérn function
for the geometric Gaussian and Schlather processes.
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resents the correlation functions for the Schlather, geometric Gaussian and extremal-t
processes. For the Brown-Resnick process, the dashed line represents the linear
variogram and the solid line the power variogram.
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Family CLIC RMSE MAE RMSNE MANE R2 N10 N20 FF

E-t 19,442 0.0241 0.0158 0.556 0.400 0.919 0.203 0.196 0.194

GG 19,452 0.0242 0.0158 0.548 0.402 0.919 0.203 0.195 0.199

B-R 19,450 0.0242 0.0158 0.548 0.401 0.919 0.203 0.196 0.200

Sm 19,537 0.0281 0.0171 0.597 0.481 0.890 0.269 0.279 0.282

Sc 19,556 0.0308 0.0212 0.796 0.510 0.868 0.292 0.291 0.285

Table 2.4: Rescaled CLIC, RMSE, MAE, RMSNE, MANE, R2, N10, N20 and FF using the
full data set for the extremal-t, geometric Gaussian and Schlather processes with the
Gneiting-Matérn correlation function, the Brown-Resnick process with the power
semivariogram and the Smith process. Bold values indicate the best value for each
criterion (sometimes distinguishable with the 4th or 5th significant digit only).

Table 2.4 shows the values of the criteria introduced in 2.3.2.2 and 2.3.2.3 using all the
data for the extremal-t, geometric Gaussian and Schlather processes with the Gneiting-
Matérn correlation function, the Brown-Resnick process with power semivariogram and
the Smith process. RMSE, MANE, R2 and FF confirm what CLIC suggests, with a better
performance of the extremal-t model. However, the Brown-Resnick model performs
best according to MAE and RMSNE and the geometric Gaussian model shows the best
N10 and N20. All in all, the performances of the extremal-t, geometric Gaussian and
Brown-Resnick models are very close for all the criteria, and they clearly outperform
the Smith and Schlather models (the Schlather model is the worst according to all the
criteria).
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Appendix D The parameters of the five retained models
for cross-validation

Family Number Anisotropy Dependence Sill

Smith 6 -

Σ1,1 Σ1,2 Σ1,3
Σ1,2 Σ2,2 Σ2,3
Σ1,3 Σ2,3 Σ3,3

 -

Schlather 6 ψ, w1 and w2 λ, κ and κ2 -
Brown-Resnick 5 ψ, w1 and w2 λ and κ -
Geometric Gaussian 7 ψ, w1 and w2 λ, κ and κ2 σ2

Extremal-t 7 ψ, w1 and w2 λ, κ and κ2 ν

Table 2.5: Parameterization of the five studied models. Anisotropy parameters denote the pa-
rameters of the matrix V in (2.21). Dependence parameters are the elements of the
symmetric matrix Σ used in the calculation of the Mahalanobis distance a in (2.5)
in the case of Smith process, the parameters of the Gneiting-Matérn correlation func-
tion in the case of Schlather, geometric Gaussian and extremal-t processes, and the
parameters of the power semivariogram in the case of Brown-Resnick process.

Appendix E Comparison of the models for specific return
periods

We compute for each pair of stations the estimated probability of exceeding jointly
the return level zT for T = 2, 3, 5, 7, 10, 15, 20, 25, 33, 50 and 100 years. Figure 2.6
confirms that in mean the Schlather model gives the highest probabilities while the Smith
model gives the lowest. The extremal-t model gives slightly higher probabilities of joint
exceedance than the Brown-Resnick model which himself gives very slightly higher
values than the geometric Gaussian model. Although the number of non-zero empirical
estimates decreases with T, the average of the empirical estimates are always close to
those of the extremal-t, Brown-Resnick and geometric Gaussian estimates. The variability
of the estimates provided by the extremal-t, Brown-Resnick and geometric Gaussian
models are very similar with a slightly larger interquartile range and a slightly shorter
statistical dispersion for the extremal-t model. The estimates of Smith and Schlather
models concentrate far from the averages of the empirical estimates and their dispersion
is large, which confirms that these models lack flexibility. Error-based criteria computed
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specifically for each return period (Figure 2.7) show that the extremal-t, Brown-Resnick
and geometric Gaussian models are very similar regardless of T. The models providing
the lowest probabilities of joint exceedance (first, Smith, second, geometric Gaussian and
Brown-Resnick) show better MAE with larger T and better RMSNE and MANE with
lower T than those providing the largest probabilities (first, Schlather, second, extremal-t).
On the contrary, the models providing the largest probabilities of joint exceedance show
better RMSNE and MANE with larger T. The decreases in RMSE and MAE with T do
not mean an increase in performance. They are due to a decrease in magnitude of the
considered probabilities of joint exceedance with T. This is not the case of RMSNE and
MANE because of the normalization of the errors and to the fact that only the non-zero
empirical estimates are taken into account.
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Figure 2.6: Cross-validation. Boxplots of estimates of the probability of exceeding jointly the
T-year return level (T = 5, 10, 20, 33 years) for all pairs of stations. "Emp", "Sc",
"E-t", "B-R", "GG" and "Sm" denote respectively the empirical, Schlather, extremal-
t, Brown-Resnick, geometric Gaussian and Smith estimations. The red crosses show
the averages.
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Figure 2.7: Cross-validation. RMSE, MAE, RMSNE and MANE as function of return period.
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Abstract

Whereas changes in magnitude of geophysical extremes under climate change have
received significant attention, potential concomitant changes in spatial dependence struc-
tures have remained unexplored so far. Here, we provide first evidence of such an effect,
highlighting a significant trend in the spatial dependence structure of snowfall extremes
in the French Alps at decadal time scale. Specifically, we process a comprehensive data
set of winter maximum snowfall from all over the French Alps collected in 90 stations
from 1958 to 2012. We estimate extremal dependence over 20-year moving estimation
windows taking into account possible anisotropy potentially related to orographic effects
and/or patterns in atmospheric flows. For each window, we derive a range representing
the distance above which extremes are almost independent. We show that snowfall
extremes tended to become less spatially dependent over time, with the dependence
range reduced roughly by half during the study period. We demonstrate the connection
between this trend and local and synoptic climatic variables associated with the current
climate change context. In details, the decreasing pattern in extremal dependence is
concomitant with a trend towards less harsh winter conditions. It is attributable at first
to the increase in temperature and its major control on the snow/rain partitioning. Yet a
magnitude effect, with less dependent extremes due to a decrease in intensity of precipi-
tation, also exists. Finally, we show that our results are largely insensitive to the minimal
modeling assumptions necessary to our data-based approach. This robustness makes it
potentially suitable for various other studies in the field of geophysical extremes.
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3.1 Introduction

Extreme snow events are among the most important hazards in mountainous regions.
Snowstorms can stop road, railway and air traffic. Extreme snowfalls can cause overload-
ing and collapse of buildings and flooding because of snowmelt. As for other geophysical
variables such as rainfall or river discharge for which high percentiles of the distribution
are key quantities, extreme value theory (EVT) (Coles, 2001) is a suitable framework to
work with. Specifically, it is now well known that block maxima (e.g., annual) should be
modeled by the so-called generalized extreme value (GEV) distribution (Blanchet and
Lehning, 2010; Sadovskỳ et al., 2012), allowing sound extrapolation beyond the highest
observed value.

However, for better mitigating risk and/or improving scientific knowledge about
the processes at play, one may be interested not only in pointwise estimates, but also in
assessing and using dependence between extremes (extremal dependence) of different
measurement stations. For instance, a proper inference of extremal dependence may
help in understanding the spatial variation of extremes. This also permits to evaluate
joint exceedance probabilities at different positions in space. More recent and refined
statistics from the field of multivariate EVT such as extremal dependence measures are
useful to this end (Coles et al., 1999; Schlather and Tawn, 2003; Naveau et al., 2009), and
some of them have already been used to evaluate dependence in extreme snowfall in
Switzerland (Blanchet et al., 2009).

Yet, to fully cope with extremes in space, max-stable processes (de Haan, 1984) (which
are the formal extension of multivariate EVT to infinite dimension) are even more suitable.
After initial developments [Smith, 1990; Schlather, 2002], Padoan et al. (2010) showed
how different max-stable processes could be fitted to extreme rainfall in the U.S. using
composite likelihood maximization techniques. This framework was applied by Blanchet
and Davison (2011) to extreme snow depths in Switzerland and by Gaume et al. (2012,
2013b) to extreme snowfall and subsequently to avalanche slab depths in the French
Alps. Furthermore, it was used for extreme temperature in Korea (Lee et al., 2013), for
extreme wind gusts in the Netherlands (Ribatet, 2013), for extreme wave heights in the
North Atlantic Ocean (Raillard et al., 2014) and in the Gulf of Lions (Chailan et al., 2014)
and for extreme river discharges in the upper Danube basin (Asadi et al., 2015).

However, all the previous studies assume more or less explicitly temporal stationarity,
both in the GEV distributions fitted at any location of observations and, when it is
modeled, in the spatial dependence structure of extremes. This is clearly questionable
in the current climate change context (Stocker et al., 2013). For instance, due to the
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influence of temperature on the rain/snow partitioning of precipitation, snow-related
variables are particularly sensitive to the recent warming (Falarz, 2004; Durand et al.,
2009a; Valt and Cianfarra, 2010). It is therefore not surprising that potential trends
in extreme precipitation assessed within a proper extreme value framework (van den
Besselaar et al., 2013; Westra et al., 2013) become all the more clear when one focuses
on the sole snow phase. Significant decreasing trends were highlighted in extreme
snowfall and snow depths in Switzerland by Marty and Blanchet (2012). In a similar
spirit, using time-dependent covariates in marginal GEV distributions and a stationary
spatial dependence structure within a max-stable process model, Shang et al. (2011)
showed a relation between extreme precipitation in California and El Niño-Southern
Oscillation, whereas Westra and Sisson (2011) highlighted the influence of global sea
surface temperature and South Oscillation Index on extreme precipitations in Australia.

To the best of our knowledge, only Huser and Davison (2014) tried to cope for possible
temporal changes in the spatial dependence structure between extreme precipitation
with a time dependent max-stable process. To this end, they developed, in a "model-
based" approach, a statistical model which explicitly represents the movement of a heavy
rainfall event through time, fed by observations acquired at short time steps. The scope
of the current paper is to highlight potential temporal changes at longer time scales
(decades) in the spatial dependence structure of snowfall extremes using a "data-based"
approach, which means that we try to make as few modeling assumptions as possible
in order to give more weight to the data. In addition, we carefully test sensitivity of the
few hypotheses we make. By this, we aim at making sure that the revealed change in the
extremal spatial dependence structure is with no doubt of geophysical origin rather than
a more or less direct consequence of modeling choices.

Specifically, we process a 56 year long data set of winter maximum snowfall from all
over the French Alps focusing on the spatial dependence structure only. We estimate ex-
tremal dependence over 20-year moving estimation windows and, for each window, we
derive a range representing the distance above which extremes are almost independent.
We highlight a strong decrease in this range over the study period and we investigate the
connection between this trend and local and synoptic climatic variables associated with
the current climate change context. Finally, we demonstrate that this decrease does not
depend on the choice of the parametric model nor the way the marginal distributions
(i.e., the GEV distributions computed for each station) and/or the distance between
stations are evaluated.
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3.2 Data

3.2.1 Winter maximum snowfall in the French Alps

Our data set is composed of winter maxima of 3 days cumulated snowfalls with
a winter period defined from 15 November to 15 May. We choose a period of 3 days
because this is the most usual time scale of winter storms in the studied region and
hence is often considered in avalanche forecasting (Bocchiola et al., 2006; Eckert et al.,
2010, 2011; Gaume et al., 2012). Daily data are available from 15 November 1958 to 15
May 2013 in the French Alps (Figure 3.1) through observations of precipitation done
mostly manually (climatological and dedicated snow observing networks). We use all
the observations whose type of precipitation (rain or snow) was registered as snow.
If the indication about the phase of precipitation is missing, we retain precipitations
measured when minimal daily temperature is lower than 2◦. Since several locations of
measurement were slightly modified during the study period, we pooled together the
stations with less than 100 m difference in elevation and less than 2 km in distance in
the 2-D plane. Finally, we retain the 90 stations which have at least 40 winter maximum
values (computed from a moving window of 3 days) during the study period (Figure
3.2(a)). Their elevation ranges from 291 m to 2012 m (Figure 3.2(b)). Hence, the station
set is a good compromise between spatial and altitudinal coverage and length of records.

3.2.2 Local and synoptic variables

In order to better understand the potential changes in extremal dependence in winter
maximum snowfall, we introduce several variables that summarize the winter climate of
the French Alps over the study period.

The French Alps are divided into 23 massifs (see Figure 3.1), which are generally
assumed to be homogeneous in terms of meteorological conditions for a given elevation.
In each massif, the daily snow amount and the meteorological conditions are available
all over the study period as a function of elevation through reanalyses (Durand et al.,
2009a,b). From these reanalyses, the cumulated snowfall, mean snow water equivalent
(total mass of snow per unit horizontal surface area), snow precipitation ratio (cumu-
lated snow precipitation divided by total – snow and rain – precipitation), and mean
temperature are calculated for two elevation levels (1800 m and 2400 m) for each winter
and for each massif. Then, the mean of all the massif values (23 massifs for 1800 m and
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Figure 3.1: Study area in the southeast of France, where the 23 massifs of the French Alps are
located. Lines denote massif limits, and dots denote the positions of the stations. The
color code represents elevation.
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Figure 3.2: (a) Data availability for each station. Each line represents one station, and each point
means that the winter maximum is available for that station. (b) Histogram of station
elevation.
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21 massifs for 2400 m because the highest peaks of two massifs are below this elevation)
is computed for each winter in order to have, for each variable and each winter, a single
value for the entire French Alps notwithstanding the large variability of mean annual
conditions (Durand et al., 2009a,b).

The main drivers of winter climate in the French Alps are mostly westerly fluxes
coming from the North Atlantic. Thus, we also consider NAO (North Atlantic Oscil-
lation) (Jones et al., 1997; Osborn, 2006) and AMO (Atlantic Multidecadal Oscillation)
(Kaplan et al., 1998; Enfield et al., 2001) indices through winter anomalies evaluated from
November to April over the study period. NAO and AMO variables summarize the
predominant oscillating patterns in the winter climate of the French Alps, in terms of
pressure/precipitation and temperature, respectively. Rather than the commonly used
detrended version of AMO (Enfield et al., 2001), we use here the nondetrended version
which includes the recent climate warming signal in addition to oscillating patterns
(Kaplan et al., 1998).

For consistency with the moving time windows approach of section 3.3.5, for each of
these variables, 20-year moving averages are derived all over the study period, starting
with the 1958-1977 time window and ending with the 1993-2012 time window.

3.3 Methods

3.3.1 Extreme value statistics in the univariate case and standardiza-
tion of snowfall maxima

Following EVT, we assume that winter maximum snowfall at a given station is
GEV distributed. The cumulative distribution function F(y; µ(x), σ(x), ξ(x)) of the GEV
distribution is of the form:

F(y; µ(x), σ(x), ξ(x)) = exp

{
−
[

1 + ξ(x)
(

y− µ(x)
σ(x)

)]−1/ξ(x)
}

(3.1)

with µ(x), σ(x) and ξ(x) denoting, respectively, the location, scale, and shape parameters
at position x, and y is such that 1 + ξ(x)

(
y−µ(x)

σ(x)

)
> 0. The function F is equal to 0 in the

case of ξ(x) > 0 and y ≤ µ(x), and equal to 1 if ξ(x) < 0 and y ≥ µ(x).
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A GEV distribution is estimated for each station by likelihood maximization, giving
estimates of the GEV parameters (µ(x), σ(x), ξ(x)) at each station location x. Finally, the
pointwise estimates (µ̂(x), σ̂(x), ξ̂(x)) are used to transform at each position x the GEV
distributed snowfall maxima SF(x) into a unit Fréchet distributed (i.e., GEV distributed
with µ(x) = 1, σ(x) = 1 and ξ(x) = 1) variable Z(x) using the transformation

SF(x) 7→ Z(x) =
−1

log[F{SF(x); µ̂(x), σ̂(x), ξ̂(x)}]
, (3.2)

where SF(x) is the snowfall maxima at location x and F{.; µ̂(x), σ̂(x), ξ̂(x)} is the GEV
distribution defined in (3.1). By doing this, we obtain a new data set of standardized
winter maximum snowfall, Z(x). The extremal dependence in this new data set is
addressed in the current study, which is equivalent to but computationally easier than
studying the extremal dependence in the original data set SF(x). Indeed, with the
standardized dataset we focus on the spatial dependence structure only and remove the
effects of having different distributions for the marginal distributions, for example due
to different elevations.

In order to use the same transformation (3.2) for all the 20-year moving windows (see
section 3.2.2), we first assume that the marginal distributions do not change with time.
This may lead to an artificial temporal trend in the spatial dependence structure since
a temporal trend in the marginal distributions may be transferred in the dependence
structure. To exclude this possibility, we also assess the temporal evolution of the spatial
dependence using a specific transformation (3.2) for each estimation window. To this
end, the GEV parameters µ̂(x), σ̂(x), and ξ̂(x) are reevaluated for each window.

3.3.2 Extreme value statistics in the spatial case

Let S be a space, e.g., the French Alps. Let Z(x), x ∈ S be the spatial field of
standardized winter maximum snowfall in the French Alps, i.e., with every margin Z(x)
unit Fréchet distributed. According to spatial extreme value theory, it is appropriate
to model Z(x) as a max-stable process (de Haan, 1984; Davison et al., 2012). Every
max-stable process with unit Fréchet margins holds the de Haan’s spectral representation
(de Haan, 1984):

Z(x) = sup
i≥1

ηiWi(x). (3.3)
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with {ηi}i≥1 the points of a Poisson process on R+ with intensity η−2dη and {Wi}i≥1

independent copies of a nonnegative process W with mean 1. Different choices for W
lead to different models of max-stable processes (Davison et al., 2012; Cooley et al., 2012).
Every multivariate margin is given for any positions {x1, . . . , xk} by the formula

P (Z(x1) < z1, . . . , Z(xk) < zk) = exp

[
−E

{
max

j=1,...,k

W(xj)

zj

}]
zj > 0 ∀j. (3.4)

3.3.3 Extremal coefficient and extremal function

To assess the extremal dependence between two unit Fréchet random variables Z1

and Z2, one can use the extremal coefficient θ (Schlather and Tawn, 2003; Naveau et al.,
2009) defined by

P (Z1 < z, Z2 < z) = exp
{
−θ

z

}
= P {Z1 < z}θ , z > 0. (3.5)

The extremal coefficient ranges between 1 (complete dependence) and 2 (independence).
The property

lim
z→∞

P (Z2 > z|Z1 > z) = 2− θ (3.6)

holds and means that the probability of observing extreme values of Z2 when Z1 takes
extreme values is close to 0 when θ is near 2 and close to 1 when θ is near 1.

If Z1 = Z(x1) and Z2 = Z(x2) with Z a max-stable process defined by (3.3) and x1

and x2 two positions, we have from equations (3.4) and (3.5):

θ(x1, x2) = E [max {W(x1), W(x2)}] . (3.7)

Theorical expressions for θ in (3.7) are available for all classical max-stable processes
(Ribatet, 2013), as functions θ(h) of the distance h = |x2 − x1| between two positions.
θ(h) represents the strength of the dependence as a function of distance and is therefore
termed the extremal function.
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We tried most of the currently available extremal functions. Among these, the popular
Smith (Smith, 1990) and Schlather (Schlather, 2002) extremal functions are by far not
flexible enough to be suitable for our case study and were discarded. In this work we
consider the main other possible choice, namely, the theoretical extremal functions of the
Brown-Resnick max-stable process (Kabluchko et al., 2009) with a power semivariogram
along with extremal-t (Opitz, 2013) and geometric Gaussian (Davison et al., 2012) max-
stable processes with powered exponential correlation function.

Corresponding Brown-Resnick, geometric Gaussian and extremal-t extremal func-
tions are respectively given by

θ(h) = 2Φ

(√
2(h/λ)κ

2

)
, (3.8)

θ(h) = 2Φ

(√
2σ2[1− exp{−(h/λ)κ}]

2

)
(3.9)

and

θ(h) = 2Tν+1

(√
ν + 1

1− (exp{−(h/λ)κ})2 (1− exp{−(h/λ)κ})
)

(3.10)

with Φ and Tν+1, respectively, the cumulative distribution functions of the standard
normal distribution and Student distribution with ν + 1 degrees of freedom, λ > 0
the scale parameter, and κ > 0 the smoothness parameter. In order to keep the same
degree of freedom for the three models, we fix the sill parameters σ2 = 7.7 and ν = 5
of geometric Gaussian and extremal-t extremal functions. These values impose a limit
close to 1.95 to θ(h) when h tends to infinity. By doing this, we assume that extremes
are still weakly dependent at two very distant locations which is a realistic hypothesis
for snowfall. Therefore, each model of extremal function has two parameters: a range
parameter λ and a smoothness parameter κ to be fitted on the data.

3.3.4 Anisotropy and distances

In order to take into account spatial anisotropy in (3.8)–(3.10), we use three appropri-
ate distances.
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3.3.4.1 Modified 2-D distance

First, we consider a modified distance in dimension 2 by using a geometric trans-
formation of space; instead of (x1, x2), we compute distances using the transformed
coordinates (x′1, x′2) with[

x′1
x′2

]
=

[
cos(α) − sin(α)

r−1 sin(α) r−1 cos(α)

] [
x1

x2

]
r > 1 and α ∈ [0, π) (3.11)

where r and α denote the anisotropy ratio and angle, respectively. The angle α can be
interpreted as the direction of strongest extremal dependence for pairs of stations. The
parameter r controls the ratio between the direction of strongest dependence and the
orthogonal direction. The 2-D Euclidean distance computed after this transformation is
referred as the modified 2-D distance.

3.3.4.2 Modified 3-D distance

In (3.11), the elevation of the standardized snowfall maxima is not taken into account.
This may lead to some loss of information. Thus, we also considered the 3-D Euclidean
distance with the three-dimensional transformed space defined as x′1

x′2
x′3

 =

 cos(α) − sin(α) 0
r−1 sin(α) r−1 cos(α) 0

0 0 w


 x1

x2

x3

 r > 1, w > 0 and α ∈ [0, π).

(3.12)
This modified 3-D distance is analogous to the modified 2-D distance but weighting
elevation through the parameter w. This additional parameter is estimated together with
r and α.

3.3.4.3 Crossing distance

There exist alternatives to the space transformations (3.11) and (3.12) to take into
account spatial anisotropy. Instead of considering closer the pairs of stations located
along the direction of strongest extremal dependence α as done in (3.11) and in (3.12), it
is also possible to compute the distances by taking into account the geographical aspects
of the study area. For instance the "hydrological distance", used for river discharges,
associates for each pair of locations the shortest distance in a river network (Asadi et al.,
2015). Another distance, referred as the "crossing distance" in Gottardi et al. (2012) and
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Figure 3.3: Example of the calculation of the crossing distance between the blue (A) pixel and the
green (B) pixel. The pixels crossed by the red line linking the centers of the blue and
green pixels are in grey. The crossing distance between the blue pixel and the green
pixel is defined by the sum of the lengths of the black segments showed in the cross
section.

more appropriate in our context, is based on the relief variations between each pair of
stations. In addition to the modified 2-D distance and to the modified 3-D distance, we
also consider this crossing distance. To compute it, the French Alps are divided into
pixels of dimension 1× 1 km, and the elevation of each pixel is given by a 1 km digital
elevation model. Figure 3.3 shows an example of the calculation of the crossing distance
between two pixels. A line linking the centers of these two pixels is drawn (red line in
Figure 3.3), and all the pixels crossing this line are considered (in grey in Figure 3.3). The
crossing distance is then the sum of the 3-D Euclidean distances between the pixels along
this red line (represented by the black segments in the cross section of Figure 3.3). The

Euclidean distance is applied using a weight Ω for elevation:
√

∑ ∆x2
1 + ∆x2

2 + (Ω.∆x3)2.
For instance, a weight Ω = 20 is used for precipitation in Gottardi et al. (2008, 2012).

3.3.5 Estimation of the extremal dependence over moving time win-
dows

First, we estimate the parameters (e.g., r, α , λ and κ for the modified 2-D distance)
by least squares, making use of all the data together over the whole temporal period
(1958-2013). Then, we hold fixed the estimations of the anisotropy parameters (e.g., r and
α in the 2-D case), while the parameters λ and κ of the extremal function are reestimated
on 20-year moving time windows under this anisotropic transformation.
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For each estimation window (from 1958-1977 to 1993-2012) and each pair of stations,
the extremal coefficient θ is estimated as follows:

θ =
1 + 2νF

1− 2νF
(3.13)

where νF is the F-madogram (Cooley et al., 2006; Naveau et al., 2009) defined by

νF =
1
2

E [|F(Z1)− F(Z2) |] (3.14)

with F(z) = exp(−1/z) the unit Fréchet cumulative distribution function. These pair-
wise estimations provide estimations θ̂h for all distances h between two stations (grey
points in Figure 3.4). Then, the theoretical extremal functions (3.8)–(3.10) are fitted by
least squares on the pairwise estimations θ̂h, leading to β̂ = [λ̂, κ̂]T the vector of param-

eter estimates, Σ =

[
var(λ) cov(λ, κ)

cov(λ, κ) var(κ)

]
the variance-covariance matrix for these

estimates, and θ(h), the estimated extremal function (red curve in Figure 3.4).

3.3.6 Range of extremal dependence

We define the range of extremal dependence as the distance h0 such as θ(h0) = 1.9
(Figure 3.4). The range denotes the distance above which snowfall maxima become
weakly dependent in extremes, i.e., close to independence in practice. The stronger the
extremal dependence at large distances, the larger the range. Inverting (3.8)–(3.10) gives
the following expressions of the range: for the Brown-Resnick extremal function

h0(β) = h0(λ, κ) = λ

[
2
{

Φ−1
(

1.9
2

)}2
]1/κ

, (3.15)

for extremal-t extremal function

h0(β) = λ

− log

1− 1
ν+1

{
T−1

ν+1

(
1.9
2

)}2

1 + 1
ν+1

{
T−1

ν+1

(
1.9
2

)}2




1/κ

, (3.16)
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Figure 3.4: Extremal coefficient function for the first (1958-1977) and the last (1993-2012)
estimation windows using the modified 2-D distance: madogram-based pairwise
estimations of the extremal coefficient for every pairs of stations (grey dots), by
distance class means (black dots), and Brown-Resnick extremal function fitted to all
pairwise estimations by least squares (red curve). The range h0 of extremal dependence
(equation (3.15)) for the two considered time windows is h0 = 200 km (1958-1977)
and h0 = 121 km (1993-2012), respectively.
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and for geometric Gaussian extremal function

h0(β) = λ

− log

1−
2
{

Φ−1
(

1.9
2

)}2

σ2




1/κ

. (3.17)

We estimate a 95% confidence interval for each estimation window by the delta method
(Cox, 1998), propagating the standard error on β̂ in equation 3.18. Hence, the 95%
confidence interval for h0(β) is given by[

h0(β̂)− Φ−1(0.975)
n

∇h0(β̂)TΣ∇h0(β̂), h0(β̂) +
Φ−1(0.975)

n
∇h0(β̂)TΣ∇h0(β̂)

]
(3.18)

with ∇h0 the gradient of h0 with respect to β, Σ the variance-covariance matrix for the
estimates and n the number of pairwise estimates of the extremal coefficient (number of
pairs of stations).

3.4 Results and discussion

3.4.1 Local and synoptic variables

Figure 3.5 shows the 20-year moving averages of the variables introduced in section
3.2.2. In the considered period, we observe decreases of cumulated snowfall, mean snow
water equivalent, and snow precipitation ratio and increases of mean temperature, NAO
and AMO. The period of strongest decrease for cumulated snowfall and mean snow
water equivalent (at 1800 m and 2400 m) is from 1985 to 1997. For snow precipitation
ratio, the period of strongest decrease is from 1981 to 1997 at 1800 m and from 1983 to
1993 at 2400 m. At 2400 m, the snow precipitation ratio is close to 1 during the entire
study period, which means that at this elevation most of the precipitation falls as snow.
Mean temperature mainly increases from 1978 to 1997 both at 1800 m and 2400 m. NAO
index strongly increases from 1978 to 1985, and AMO index increases from 1978 to the
end of the period of study. All of these trends come within the scope of the 1980s regime
shift (Reid et al., 2015).
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Figure 3.5: 20-year moving averages of the considered variables: cumulated snowfall, mean snow
water equivalent, snow precipitation ratio, and mean temperature at 1800 m (blue
lines) and 2400 m (red lines) elevation levels, NAO and AMO indexes. The X axis
represents the center of the 20-year time window.
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Figure 3.6: Estimated Brown-Resnick, geometric Gaussian and extremal-t extremal functions in
the case of the 2-D modified distance. Here models are fitted on the whole temporal
period. RMSE and MAE represent, respectively, root mean square errors and the
mean average errors between the fitted extremal functions and the class averages.

3.4.2 Results using the entire study period

3.4.2.1 Goodness-of-fit of the models

Figure 3.6 shows the fitted Brown-Resnick, geometric Gaussian and extremal-t ex-
tremal functions using the entire study period in the case of the modified 2-D distance.
The goodness-of-fit of the models can be assessed comparing the estimated extremal
functions to the class averages: a suitable extremal function should be as close as possible
to the class averages. We can observe graphically or with the computation of the root
mean square errors and the mean average errors that the three extremal functions fit well
the class averages. However, the Brown-Resnick extremal function seems to be slightly
better, and from now we will mainly consider this extremal function.

3.4.2.2 Anisotropy

For the Brown-Resnick extremal function with the modified 2-D distance, we find
α̂ = 35.84◦ (with 0◦ for the east and 90◦ for the north) and r̂ = 2.78. This anisotropy
corresponds to the orientation of the main mountains and valleys in the French Alps
and means that the pairs of stations located along this direction are more dependent at
extreme levels. Similar observations were made in Gaume et al. (2013b) for the French
Alps with fewer observations (40 stations from 1966 to 2009), in Blanchet and Davison
(2011) for the Swiss Alps, and in Padoan et al. (2010) for the Appalachians. This robust
pattern may be interpreted as the effect of orography on atmospheric fluxes generating
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extreme precipitations. Similar estimations are found using the other extremal functions
(α̂ = 36.57◦ and r̂ = 2.78 with geometric Gaussian extremal function and α̂ = 36.45◦

and r̂ = 2.78 with extremal-t extremal function) and in the 3-D distance (α̂ = 37.86◦ ,
r̂ = 2.76 and ŵ = 42.27 with Brown-Resnick extremal function). The estimate of the
weight parameter ŵ = 42.27 motivates the use of a weight parameter Ω = 40 for the
crossing distance defined in section 3.3.4.3.

3.4.3 Results using moving time windows

3.4.3.1 Temporal trend

With the Brown-Resnick extremal function and the 2-D distance, we find a positive
temporal trend in the extremal coefficient for distances exceeding 100 modified kilometers
(Figure 3.7(a)) and, therefore, a tendency toward less dependence in extremes at large
distance in recent years. At short distances (values of the extremal function for small h),
this decrease in strength of dependence is less visible.

There is a clear negative temporal trend in the range of extremal dependence. The
correlation with time is strong (Table 3.1), and a linear fit of the range estimates on the
center of the considered estimation window provides a determination coefficient as high
as R2 = 0.71 (Figure 3.7(b)). The range of extremal dependence decreased by about 3
km/yr. It reduced by almost half over the 56 year study period, from a maximum of
237 km in 1978 to around 100 km over the most recent time windows. Yet most of the
decrease has been concentrated over the 1978-1997 period during which the 1980s regime
shift happened (Reid et al., 2015).

The corresponding 95% confidence intervals computed with the delta method (Figure
3.7(b)) show that these variations are significant. The widest confidence interval is in
1978 with a width of 79 km (95% confidence interval [198 km, 277 km]), while the width
of the confidence interval is between 15 km and 25 km for the recent period.

3.4.3.2 Correlation with local and synoptic variables

Table 3.1 shows that the range of extremal dependence is strongly positively correlated
with the cumulated snowfall, mean snow water equivalent and snow precipitation ratio
and is strongly negatively correlated with the mean temperature, AMO and NAO indexes.
These correlations are overall slightly higher at 1800 m than at 2400 m, which is consistent
with the elevation of the stations of the data set. Yet correlations remain high at 2400 m
and correlation with the mean temperature is even slightly higher at 2400 m than at 1800
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Figure 3.7: (a) Temporal evolution of the fitted Brown-Resnick extremal functions under the 2-D
modified distance, from oldest time windows (blue curves) to the most recent ones
(red curves). (b) Temporal evolution of the range of extremal dependence. The range
(equation (3.15)) is expressed as a function of the 2-D modified distance (equation
(3.11)). It is plotted (black dots) as a function of the center of the considered estimation
window. The associated 95% confidence interval is evaluated by the delta method
using equation (3.18). The linear fit (straight blue regression line) is made on the
winter estimates (black dots).
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Table 3.1: Correlation table between the range of dependance in extreme snowfall evaluated over
20-year estimation windows and 20-year moving averages of the considered winter
climate variables (section 3.2.2)a

SF 1800 SWE 1800 T 1800 SPR 1800 SF 2400 SWE 2400 T 2400 SPR 2400 AMO NAO Time

Range 0.86 0.90 -0.90 0.91 0.78 0.84 -0.92 0.76 -0.86 -0.68 -0.84

SF 1800 - 0.95 -0.83 0.92 0.98 0.97 -0.97 0.88 -0.92 -0.44 -0.79

SWE 1800 - - -0.94 0.97 0.88 0.96 -0.98 0.83 -0.95 -0.62 -0.92

T 1800 - - - -0.93 -0.72 -0.86 0.90 -0.65 0.86 0.83 0.96

SPR 1800 - - - - 0.82 0.91 -0.96 0.84 -0.95 -0.60 -0.91

SF 2400 - - - - - 0.94 -0.91 0.86 -0.86 -0.30 -0.68

SWE 2400 - - - - - - -0.95 0.86 -0.91 -0.48 -0.83

T 2400 - - - - - - - -0.88 0.96 0.56 0.86

SPR 2400 - - - - - - - - -0.87 -0.20 -0.63

AMO - - - - - - - - - 0.45 0.88

NAO - - - - - - - - - - 0.73
aCumulated snowfall (SF), mean snow water equivalent (SWE), mean temperature (T) and snow
precipitation ratio (SPR), AMO and NAO indexes. Evaluation is made with 36 values for each
variable, corresponding to the 36 estimation windows from 1958-1977 to 1993-2012. The 1800
and 2400 indicate the elevation level for SF, SWE, T and SPR. Time denotes the center of each
estimation window.

m. Remember that for coherence, these correlations are based on the moving averages of
the local and synoptic variables. This makes the correlations stronger than with "raw"
annual values but more difficult to interpret in terms of significance level. Yet their high
values and physical consistency (see hereafter) is striking.

3.4.3.3 Potential climate control on spatial dependence of extreme snowfall

The negative correlation between the range of extremal dependence and the local and
synoptic temperature variables (mean temperature at the French Alps scale and AMO
which refers to the temperature of the North Atlantic Ocean sea surface) shows that the
dependence in extreme snowfall in the French Alps is weaker when winter temperatures
are higher. Somewhat similar results were obtained very recently for extreme storms
in Australia, with a reduction of their spatial extent as temperatures increases (Wasko
et al., 2016). In our case of extreme snowfall, especially convincing is the concomitance
between the strongest decrease in extremal dependence range (see Figure 3.7(b)) and
the period of the strongest winter warming (section 3.4.1). Specifically, the concomitant
period of strongest decrease of snow precipitation ratio from 1981 to 1997 (section 3.4.1)
suggests that the decrease in spatial dependence of snowfall extremes could be due to



3.4 Results and discussion 99

a decrease of the snow precipitation ratio caused by the increase of temperature in the
context of the 1980s regime shift (Reid et al., 2015). Marty and Blanchet (2012) suggested
the same explanation for the negative temporal trends in extreme snowfalls in the Swiss
Alps. However, it is important to note that we show here something different, since
our results relate to the spatial dependence of extremes, and not to their magnitude.
To the best of our knowledge, this has never been shown for any geophysical variable.
Hence, the main explanation for the decrease in spatial dependence of extreme snowfall
may be that the temperature increase makes these more isolated in space, at least for
heavy snowfall events occurring when temperatures are not too low. In such a case, only
the highest stations experience snow, while rain falls at low elevations, leading to less
spatially coherent patterns in winter maxima.

Yet we cannot exclude a magnitude effect with stronger dependence in extreme snow-
fall in the French Alps during snowier winters. Indeed, even if the effect of snow/rain
partitioning is very low at 2400 m with a snow precipitation ratio close to 1 during the
entire study period (section 3.4.1), there is a strong positive correlation between the
range and the snow variables (mean snowfall and mean snow water equivalent). This
is coherent with the negative correlation with NAO, since a negative NAO anomaly is
associated with harsher winter conditions widespread over the western Alps, including
colder temperatures but also more intense snowfall (López-Moreno et al., 2011). Conse-
quently, the decrease in intensity of snowfall could be an additional cause of the decrease
in dependence of extreme snowfall.

3.4.3.4 Robustness to modeling assumptions

Figure 3.8 shows that a decreasing temporal trend of the range is also found for
geometric Gaussian and extremal-t extremal functions (with the 2-D modified distance),
showing that this decrease is robust towards the choice of model. Figure 3.9 shows that
when transformation into unit Fréchet involves the marginal transformations obtained
on each temporal window (instead of the one obtained on the whole study period),
then a similar decrease in the range is found. Finally, this decreasing temporal trend
of extremal dependence is still observed under both the modified 3-D distance and the
crossing distance (Figure 3.10). The decrease is very similar to those either with the 2-D
and 3-D modified distances. Nevertheless, the decrease starts slightly later (around 1983)
with the crossing distance. Yet in any case we see in Figures 3.8–3.10 that the decrease by
half in the range of extremal dependence during the study period is clear, whatever the
chosen hypotheses to evaluate it.
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Figure 3.8: Same as Figure 3.7(b) with (a) geometric Gaussian extremal function and (b) extremal-
t extremal function.

Figure 3.9: Same as Figure 3.7(b) when the marginal distributions are estimated and transformed
into unit Fréchet on each estimation window.
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Figure 3.10: Same as Figure 3.7(b) with (a) modified 3-D distance and (b) crossing distance.

3.5 Conclusion and outlook

In this paper, we show how the spatial dependence structure in extreme snowfall
in the French Alps has evolved over the last decades, with a significant negative trend
in the strength of extremal dependence for large distances (more than 100 km taking
into account anisotropy). Specifically, we highlight a decrease of 3 km/yr of the range
of extremal dependence, although this trend seems to slow down over the last years.
The division by two of the range over the study period is robust with regard to how the
marginal distributions are estimated, to how the way the distance between the stations is
defined, and to the choice of the extremal function model, i.e., the few assumptions we
had to made to conduct the study.

The decrease in the range is strongly correlated with several climate variables, at
both local and synoptic scales. This suggests that climate change can have a significant
impact on the spatial dependence structure of extreme snowfall. This is, to the best of
our knowledge, the first evidence of such an effect.
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The very strong decreasing pattern that we observe is attributable at first to the
increase of temperature and to the major control exerted by temperature on the snow/rain
partitioning. Yet a magnitude effect, with less dependent extremes due to a decrease in
intensity of precipitation, also exists. Our result obtained on snow may therefore be of
wider hydrological interest because similar trends could also exist in other variables less
influenced by temperature such as rainfall.

From a statistical point of view, we did not try to fit a complete max stable model, and
we chose to use a data-oriented approach. Indeed, we used time-dependent windows
and took into account anisotropy, so as to highlight potential changes by fitting Brown-
Resnick extremal function to pairwise estimations of extremal coefficient. Hence, even if
our approach remains simpler than a model-based approach, it involves state-of-the-art
tools from multivariate EVT whose inferential power we demonstrate in geophysics.
This approach allows us to make minimal modeling assumptions in order to ensure
the geophysical origin of the displayed temporal trend rather than a consequence of
modeling choices. Our framework could therefore be useful for a variety of other studies
addressing geophysical extremes in the context of climate change.
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Abstract

Max-stable processes are the extension of the univariate extreme value theory to the
spatial case and are increasingly used to model climate extremes. In the current context of
climate change, several studies have considered max-stable processes with nonstationary
marginal distributions. However, this paper is the first attempt of modeling climatic time
trends within the spatial dependence structure of extremes. This approach is applied to a
data set of snow depth winter maxima in the French Alps (82 stations from 1970 to 2012).
Several local and synoptic covariates are used to investigate which ones impact the spatial
dependence. We observe a strong decrease in the range of extremal dependence during
the 1980s, due to the effect of the increase of temperature on the snow precipitation ratio
and to a decrease in the winter cumulated snowfall. Hence, we show that the spatial
dependence of extreme snow depths is impacted by climate change in a similar way to
that have been observed for extreme snowfall. As a collateral benefit, we show that snow
depths are more spatially dependent and a bit less anisotropic. The space-time approach
that we introduce may be very useful for assessing evolutions under ongoing climate
change in various hydrological or climatic quantities generating risk.
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4.1 Introduction

Due to their high impacts, natural hazards see a growing interest for risk management.
Among them, extreme snow events like snowstorms, extreme snow depths, extreme
snowfall and avalanches are particularly crucial in mountainous regions for their po-
tential economic and human damages. In addition, extreme snow depth values are also
relevant for water storage, tourism and their impact on ecosystems.

Extreme value theory (Coles, 2001) offers a suitable theoretical framework to extrapo-
late beyond the highest recorded observation and thus for modeling extreme events. It is
mostly used in hydrology (Katz et al., 2002), finance/insurance (Embrechts et al., 2013)
and climatology (Naveau et al., 2005). Specifically, univariate extreme value statistics
have been applied to three days snowfall in Italian and Swiss Alps (Bocchiola et al., 2006,
2008) and to extreme snowfall and extreme snow depths in Switzerland (Blanchet et al.,
2009; Blanchet and Lehning, 2010).

When the variable of interest is spatially dependent in extremes, that is to say when
close-enough locations are likely to experience concomitant extremes, it is advantageous
to model its spatial dependence structure. Indeed, this allows to estimate joint and
conditional probabilities of exceedances, to compute surface integrals, and to infer
values at ungauged sites (for instance by conditional simulation). Max-stable processes
(de Haan, 1984) are the spatial extension of univariate extreme value theory. They have
been applied to extreme snow depths in Switzerland (Blanchet and Davison, 2011),
to extreme snowfall and to avalanche slab depths in the French Alps (Gaume et al.,
2012, 2013b; Nicolet et al., 2016). Among other results, these studies reveal several
characteristics of extreme snow depths and extreme snowfall. For instance, extreme
snow depths and extreme snowfall are both anisotropic with more dependence between
the pairs of stations angled in the same direction as the main massifs and valleys. A
significant difference between the structures of spatial dependence of these two variables
is that the spatial dependence between extremes appears stronger for snow depths than
for snowfall, due to the cumulative effects involved in the formation of the snow pack.
However, this effect has never been highlighted so far for snowfall and snow depth data
from the same region.

Most of the studies using max-stable processes assume temporal stationarity both in
the distributions of extremes and in the spatial dependence structure of these extremes.
In a climate change context (Stocker et al., 2013), this hypothesis is clearly contestable due
to the exacerbated response of the cryosphere to warming (Beniston et al., 2017). In the
Swiss Alps, decreasing trends have been found for snow depths, duration of continuous
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snow cover, number of snowfall days and extreme snowfall (Laternser and Schneebeli,
2003). Mean snow depths and snow cover duration have also negative trends in the
French Alps (Durand et al., 2009a). Negative trends of snow duration and snowfall have
also been observed in the Italian Alps (Valt and Cianfarra, 2010). Using an extreme value
statistics framework but without modeling the structure of spatial dependence, Marty
and Blanchet (2012) found negative temporal trends in extreme snow depths and extreme
snowfall in Switzerland. In addition to the pointwise magnitude of extreme snowfall,
their spatial dependence structure may be also impacted. Thus, Nicolet et al. (2016)
recently highlighted a negative temporal trend in the spatial dependence of extreme
snowfall in the French Alps.

Some studies model nonstationarity within a spatial model for extremes by using
time-dependent covariates for the marginal distributions. By this way, Westra and Sisson
(2011) highlighted the influence of global sea surface temperature and South Oscillation
Index on extreme precipitations in Australia, whereas Shang et al. (2011) and Zhang
et al. (2014) showed a relationship between El Niño Southern Oscillation and extreme
precipitation in California and in China, respectively. However these studied all assumed
temporal stationarity in the spatial dependence structure of extremes.

Only few studies deal with max-stable process with spatio-temporal dependence
structure applied to case studies. Raillard (2011) applied a space-time Smith max-stable
process to extreme wave heights with observations recorded at irregular time steps (from
few minutes to 3 days). Steinkohl (2013) extended the Brown-Resnick max-stable process
to the space-time case using space-time correlation functions and used it for extreme
rainfall in Florida using 15-minute incremented observations. Huser and Davison (2014)
introduced a space-time troncated Schlather max-stable process and applied it to extreme
precipitation in Switzerland with hourly observations. All of these studies consider the
short-range temporal dependence of extremes using observations recorded at short time
steps. On the other hand, they do not consider possible temporal nonstationarity in the
spatial dependence structure at longer (e.g., decadal) time scale.

The issue of nonstationarity in spatial extreme value statistics is crucial. A modeling
as adequate as possible is required to provide consistent risk measures for phenomena
whose nonstationarity is recognized, such as snow, rain or temperature. Moreover, it is
required to realistically anticipate the evolution of risk under climate change. Hence, the
objective of this paper is to propose a first ever simple way to account for long range
climate nonstationarity in the spatial dependence structure of max-stable processes. The
adopted parametric approach can be viewed as a continuation of the data-based work
used in Nicolet et al. (2016) with a different data set (snow depths instead of snowfall), but
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with the major difference of relying on a explicit model instead of empirical estimates only.
We apply this approach for inferring the temporal evolution of the spatial dependence
in extreme snow depths under climate change. We process a data set consisting of
82 snow depth winter maxima series in the French Alps. Specifically, we fit different
Brown-Resnick processes with temporal trends in the spatial structure of dependence.
For each model, the temporal trend is conveyed by different local and synoptic covariates
and a rigorous procedure is used to highlight the most relevant ones. This allows us to
highlight the climate change impact on the spatial dependence structure of extreme snow
depths. As a collateral benefit, these results are compared to those concerning extreme
snowfall obtained by Nicolet et al. (2016) over the same area and time-scale.

4.2 Data set

4.2.1 Snow Depths

Our data set is composed of winter maxima of snow depths with a winter period
defined from 15 November to 15 May. These maxima are extracted from 3 databases
composed respectively of:

• twice-daily manual measurements (dedicated snow manual observing network)
from 1970 to 2013 (17 stations);

• daily automatic measurements (Nivôse stations) from 1980 to 2013 (7 stations);

• weekly manual measurements (dedicated snow manual observing network) from
1983 to 2013 (58 stations).

This provides a data set of 82 stations in the French Alps (Figure 4.1 (a)), from which
the annual winter maxima are extracted. Yet, there are many non available observations
before 1983 (Figure 4.1 (b)) but the 18 stations with more than 30 winter maxima (in red
in Figure 4.1 (a)) are correctly distributed in the study area. In addition, the coverage
of station elevation is very appropriate to address mountainous conditions, with many
stations above 2000 m (Figure 4.1 (c)).
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Figure 4.1: Snow depth data set (Section 4.2.1). (a) Study area in the southeast of France, where
the 23 massifs of the French Alps are located. Lines denote massif limits, and dots
denote the positions of the stations. The stations having more than 30 annual maxima
are indicated in red. (b) Data availability for each station. Each line represents one
station, and each point means that the winter maxima is available for that station. (c)
Histogram of station elevation.
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4.2.2 Covariates

In addition to time, we use several covariates that summarize the winter climate of
the French Alps over the study period. The French Alps are divided into 23 massifs (see
Figure 4.1 (a)), which are generally assumed to be homogeneous in terms of meteoro-
logical conditions for a given elevation. In each massif, the meteorological conditions
(temperature and precipitation) are available all over the study period as a function of
elevation through reanalyses (Durand et al., 2009b) provided by the SAFRAN (Système
d’Analyse Fournissant des Renseignements Atmosphérique à la Neige) model (Durand
et al., 1993, 1999). From these reanalyses, the cumulated snowfall, snow precipitation
ratio (cumulated snow precipitation divided by total –snow and rain– precipitation), and
the daily maximum, mean, and minimum temperature are calculated for two elevation
levels (1800 m and 2400 m) for each winter and for each massif. Then, the mean of the 23
massif values is computed for each winter in order to have, for each variable and each
winter, a single value for the entire French Alps notwithstanding the large variability of
mean annual conditions (Durand et al., 2009b).

We also consider NAO (North Atlantic Oscillation Jones et al. (1997); Osborn (2006))
and AMO (Atlantic Multidecadal Oscillation, (Kaplan et al., 1998; Enfield et al., 2001))
indices through winter anomalies evaluated from November to April over the study
period. NAO and AMO variables summarize the predominant oscillating patterns in the
winter climate of the French Alps, in terms of pressure/precipitation and temperature,
respectively. Rather than the more commonly used detrended version of AMO (Enfield
et al., 2001), we use here the non-detrended version which includes the recent climate
warming signal in addition to oscillating patterns (Kaplan et al., 1998).

We are interested in modeling climate effects in the spatial dependence structure of
extreme snow depths. Thus, we need to remove the annual variability in the covariates,
which is done by considering time moving averages. We consider 17-year moving
averages (Figure 4.2) because the performance of the nonstationary models is slightly
better, although very similar, using this value than when considering, e.g., 15 or 19-year
moving averages. The value Ck(n) of the covariate Ck for winter n is then the average of
the raw values of this covariate from the winter n− 8 to the winter n + 8.

In the considered period, we observe decreases of snow precipitation ratio at 1800 m
and cumulated snowfall and increases of maximum temperature, mean temperature and
AMO. The period of strongest decrease in cumulated snowfall coincide with that of snow
precipitation ratio at 1800 m and 2400 m, extending from 1982 to 1995. Temperature
and AMO mainly increase during this period. The period of strongest increase is larger
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Table 4.1: Covariates (Section 4.2.2). Correlation table for the 17-year moving averages of
covariatesa

NAO AMO T1800
min T1800

mean T1800
max T2400

min T2400
mean T2400

max SF1800 SF2400 SPR1800 SPR2400

Time 0.01 0.97 -0.32 0.84 0.94 0.46 0.80 0.89 -0.84 -0.82 -0.85 -0.69
NAO 1 -0.13 0.75 0.46 0.28 -0.01 0.21 0.25 -0.05 0.07 -0.26 -0.07
AMO - 1 -0.36 0.80 0.91 0.60 0.85 0.90 -0.90 -0.89 -0.87 -0.79
T1800

min - - 1 0.22 -0.01 0.25 0.14 0.05 0.04 0.14 -0.07 -0.05
T1800

moy - - - 1 0.97 0.62 0.92 0.97 -0.86 -0.78 -0.94 -0.78
T1800

max - - - - 1 0.59 0.92 0.98 -0.90 -0.84 -0.95 -0.79
T2400

min - - - - - 1 0.86 0.73 -0.80 -0.79 -0.73 -0.87
T2400

moy - - - - - - 1 0.98 -0.95 -0.91 -0.96 -0.93
T2400

max - - - - - - - 1 -0.94 -0.89 -0.97 -0.88
SF1800 - - - - - - - - 1 0.99 0.94 0.90
SF2400 - - - - - - - - - 1 0.88 0.87

SPR1800 - - - - - - - - - - 1 0.91
aTime, NAO and AMO indexes, minimum temperature at 1800 m (T1800

min ), mean temperature
at 1800 m (T1800

mean, maximum temperature at 1800 m (T1800
max ), minimum temperature at 2400 m

(T2400
min ), mean temperature at 2400 m (T2400

mean), maximum temperature at 2400 m (T2400
max ), cumulated

snowfall at 1800 m (SF1800), cumulated snowfall at 2400 m (SF2400), snow precipitation ratio at
1800 m (SPR1800), snow precipitation ratio at 2400 m (SPR2400). Correlations which are larger than
0.8 in absolute value are in bold.

for AMO (from 1978 to 2002) and starts earlier (around 1977) for maximum and mean
temperature. NAO increases before 1985 and decreases after 1994. At 2400 m, the snow
precipitation ratio is close to 1 during the entire study period, which means that, at this
elevation, most of the precipitation falls as snow from 15 November to 15 May regardless
of the year.

The correlation table (Table 4.1) shows that many of our covariates are strongly
correlated. Although considering moving averages makes these correlations higher than
when using "raw" annual values, the strength of these correlations is mainly due to
the strong physical connections between these variables. There are 37 pairs showing
a correlation lower than 0.8 in absolute value. Only these pairs are considered for
the nonstationary models with two covariates, to avoid inference problems related to
redundant information.

For computation efficiency, each covariate Ck is zero-centered as follows:

C′k(n) =
Ck(n)− Ck

std(Ck)
(4.1)

with Ck and std(Ck) the mean and the standard deviation of (Ck(1), ..., Ck(N)), re-
spectively.
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Figure 4.2: Covariates (Section 4.2.2). The 17-year moving averages of the considered covariates:
winter cumulated snowfall, snow precipitation ratio and temperature (daily maxi-
mum, mean and minimum) in the French Alps, AMO and NAO. The altitude at
which the covariate (except AMO and NAO) is considered is indicated by red (1800
m) or blue (2400 m) lines.
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4.3 Method

4.3.1 Brown-Resnick Max-Stable Process

4.3.1.1 Definition of a Max-Stable Process

Let χ be the French Alps and Xi(x) the daily snow depths in x ∈ χ during the day i
of winter (1 ≤ i ≤ n0 with n0 the number of days in winter). Leadbetter (1983) allows us
to consider maxima of daily snow depths despite their temporal dependence, and spatial
extreme value theory (Davison et al., 2012; Cooley et al., 2012) insures that the process of
winter maximum snow depths

{Z(x)}x∈χ =

{
max

1≤i≤n0
Xi(x)

}
x∈χ

(4.2)

should be modeled as a max-stable process (de Haan, 1984). Every univariate margins
Z(x) of a max-stable process Z are GEV(µ(x),σ(x),ξ(x)) distributed, i.e., with cumulative
distribution function

F(z; µ(x), σ(x), ξ(x)) = exp

{
−
[

1 + ξ(x)
(

z− µ(x)
σ(x)

)]−1/ξ(x)
}

(4.3)

with µ(x), σ(x) and ξ(x) denoting respectively the location, scale and shape parame-
ters at position x, and z is such that 1 + ξ(x)

(
z−µ(x)

σ(x)

)
> 0. The function F is equal to 0 in

the case of ξ(x) > 0 and z ≤ µ(x)− σ(x)
ξ(x) , and equal to 1 if ξ(x) < 0 and z ≥ µ(x)− σ(x)

ξ(x) .
The margins can be transformed into unit Fréchet distribution (i.e., GEV(1,1,1)) through
the transformation

Z(x) 7→ −1
log[F{Z(x); µ(x), σ(x), ξ(x)}] . (4.4)

4.3.1.2 Spectral Representation of de Haan

If all the margins Z(x) of the process {Z(x)}x∈χ are unit Fréchet distributed (i.e. GEV
distributed with µ(x) = 1, σ(x) = 1 and ξ(x) = 1), then the process is called simple
max-stable process and de Haan (1984) insures that it can be written as

Z(x) = sup
i≥1

ηiWi(x), x ∈ χ (4.5)
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with {ηi}i≥1 the points of a Poisson process on R+ with intensity η−2dη and {Wi(x)}i≥1

independent copies of a nonnegative process {W(x)} with mean 1. Different choices for
{Wi(x)} in (4.5) lead to different models of max-stable processes (Davison et al., 2012;
Ribatet, 2013). Every multivariate margins are given for any positions {x1, . . . , xk} by the
formula

P (Z(x1) < z1, . . . , Z(xk) < zk) = exp

[
−E

{
max

j=1,...,k

W(xj)

zj

}]
zj > 0 ∀j. (4.6)

4.3.1.3 The Brown-Resnick Process

Kabluchko et al. (2009) generalized a process previously introduced in Brown and
Resnick (1977). The Brown-Resnick process arises by taking in (4.5) Wi(x) = exp {Yi(x)− γ(x)},
{Yi(x)} independent copies of a Gaussian process with stationary increments and such
that Wi(0) = 0 almost surely and γ its semivariogram. The bivariate distribution of this
process for Z(x1) and Z(x2) (with x1 and x2 two locations) is

P (Z(x1) < z1, Z(x2) < z2) = exp
{
− 1

z1
Φ
(

a
2
+

1
a

log
z2

z1

)
− 1

z2
Φ
(

a
2
+

1
a

log
z1

z2

)}
(4.7)

with Φ the distribution function of the standard normal distribution and a =
√

2γ(h).
In this paper, we use a power semivariogram γ(h) = (h/λ)κ with λ and κ its scale and
shape parameters, respectively.

4.3.1.4 Extremal Coefficient and Brown-Resnick Extremal Function

To assess the extremal dependence between two unit Fréchet random variables Z1

and Z2, one can use the extremal coefficient θ (Schlather and Tawn, 2003; Naveau et al.,
2009) defined by

P (Z1 < z, Z2 < z) = exp
{
−θ

z

}
= P {Z1 < z}θ , z > 0. (4.8)

The extremal coefficient ranges between 1 (complete dependence) and 2 (indepen-
dence). The property

lim
z→∞

P (Z2 > z|Z1 > z) = 2− θ (4.9)
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holds and means that the probability of observing extreme values of Z2 when Z1

takes extreme values is close to 0 when θ is near 2 and close to 1 when θ is near 1.
If Z1 = Z(x1) and Z2 = Z(x2) with Z a max-stable process defined by (4.5) and x1

and x2 two positions, we have from equations (4.6) and (4.8):

θ(x1, x2) = E [max {W(x1), W(x2)}] . (4.10)

Theorical expressions for θ in (4.10) are available for all classical max-stable processes
(Ribatet, 2013), as functions θ(h) of the distance h = |x2 − x1| between two positions.
θ(h) represents the strength of the dependence as a function of distance, and is therefore
termed the extremal function. Specifically, the Brown-Resnick extremal function is given
by

θ(h) = 2Φ

(√
2(h/λ)κ

2

)
. (4.11)

4.3.1.5 Range of Extremal Dependence

We define the range of extremal dependence as the distance h0 such as θ(h0) =

1.9. The range denotes the distance above which snow depth maxima become weakly
dependent in extremes, i.e. close to independence in practice. The stronger the extremal
dependence at large distances, the larger the range. Inverting (4.8) gives the following
expression of the range:

h0(λ, κ) = λ

[
2
{

Φ−1
(

1.9
2

)}2
]1/κ

. (4.12)

4.3.1.6 Modeling Anisotropy in the Spatial Dependence Structure

Extremal dependence is generally spatially anisotropic due to the impact of different
factors, such as the relief, atmospheric fluxes, etc. Thus, the modeling of extremal
dependence between two locations as function of the Euclidean distance only may be too
simplistic. In order to account for spatial anisotropy, we use a geometric transformation.
The vector of the coordinates x in R3 is replaced with x′ = Vx such as

V =

 cos ψ − sin ψ 0
R−1

1 sin ψ R−1
1 cos ψ 0

0 0 R2

 (4.13)
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with ψ the anisotropy angle, R1 > 1 the anisotropy ratio and R2 > 0 the weight
parameter for altitude. The angle ψ is the direction of strongest dependence. The
parameter R1 controls the ratio between the direction of strongest dependence and the
orthogonal direction in the 2-D plane. The parameter R2 is expected to be widely greater
than 1 as a consequence of the strong influence of altitude on snow quantities. The
distance computed after this transformation is referred to as the modified 3-D distance.

4.3.1.7 Modeling Trend in the Spatial Dependence Structure

We consider C′(n) = {Ck(n)}k∈{1,...,M} a set of M time-dependent standardized
variables (n indicates the winter). To model temporal trends related to changes in climate
drivers within the spatial dependence structure, we assume linear models for λ and κ:{

λ(n) = λ0 + ΣM
m=1C′m(n)λm

κ(n) = κ0 + ΣM
m=1C′m(n)κm.

(4.14)

4.3.2 Inference and Model Selection

4.3.2.1 Inference

Due to computational issues, the full log-likelihood of max-stable processes is usually
intractable. To estimate parameters of a Brown-Resnick max-stable process, we can
maximize the pairwise composite log-likelihood (Padoan et al., 2010)

l(β) =
N

∑
n=1

K−1

∑
i=1

K

∑
j=i+1

log f (zn,i, zn,j; C′(n), β) (4.15)

with K the number of stations, N the number of maxima for each location, zn,i the
maxima at location i for winter n, f the bivariate distribution of the Brown-Resnick
process, and C′(n) = {C′k(n)}k∈{1,...,M} a set of time-dependent standardized covariates,
if any, and β the vector of parameters of the bivariate distribution. The vector β consists
of the 2× (M + 1) parameters for λ(n) and κ(n), and the 3 parameters ψ, R1 and R2 for
anisotropy (which are supposed to be time-independent). Thus, a total of 2× (M+ 1) + 3
parameters have to be estimated (thus 5 in total when no covariates are considered, as in
the stationary and moving time window cases of Sections 4.4.2 and 4.4.3).
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4.3.2.2 Composite Likelihood Information Criterion

The classical inference criterion to discriminate max-stable models is the CLIC (Com-
posite Likelihood Information Criterion, Padoan et al. (2010))

CLIC = −2
{

l(β̂)− tr( Ĵ Ĥ−1)
}

(4.16)

with β̂ the vector which maximizes the composite likelihood l in (4.15), tr denoting
the matrix trace, Ĥ and Ĵ the Hessian and Jacobian information matrices defined by

H = −
N

∑
n=1

K−1

∑
i=1

K

∑
j=i+1

∂2 log f (zn,i, zn,j; C′(n), β̂)

∂β∂βt (4.17)

and

J =
N

∑
n=1

{
K−1

∑
i=1

K

∑
j=i+1

∂ log f (zn,i, zn,j; C′(n), β̂)

∂β

}{
K−1

∑
i=1

K

∑
j=i+1

∂ log f (zn,i, zn,j; C′(n), β̂)

∂β

}′
.

(4.18)
Among a set of competing models, the best one is the one with the lowest CLIC. As in

Blanchet and Davison (2011) and in Nicolet et al. (2017a), we rescaled CLIC by dividing
by K− 1.

4.3.2.3 Alternative Model Fitting

A disadvantage in the maximization of the composite log-likelihood l defined in
(4.15) is that the winter maxima are taken into account for each winter separately while
the covariates are considered through their 17-year moving averages. Thus, annual
variability remains in snow depth maxima while it is smoothed in the covariates. To solve
this issue, we propose to associate moving window-based and likelihood maximization-
based approaches.

Let wq (from w1 = 1962− 1978 to wN = 2004− 2020) the 17-year moving window
used in the computation of C(q). We note lq the composite log-likelihood using the
standardized covariates C′(q) computed on wq:

lq(β) = ∑
r∈wq

K−1

∑
i=1

K

∑
j=i+1

log f (zr,i, zr,j; C′(q), β). (4.19)

The quantity to maximize is the sum on all q of lq(β):
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l̃(β) =
N

∑
q=1

lq(β). (4.20)

The quantity l̃(β) is referred to as the alternative composite likelihood. The set of
parameters to estimate remains identical to that described in Section 4.3.2.1.

4.4 Workflow

4.4.1 Standardization into Unit Fréchet

In this study, our focus is in the spatial dependence of snow depth maxima and not
in the marginal distribution. In other words, we assume that the marginal distributions
are known, in which case studying the spatial distribution of maxima is equivalent to
studying that of normalized maxima with the same margins. For spatial extremes, it
turns out to be convenient to consider normalization to unit Fréchet. So the first step of
our analysis is to transform winter maxima at each location into unit Fréchet variables.

A GEV distribution is estimated for each station by likelihood maximization, giving
estimates (µ̂(x), σ̂(x), ξ̂(x)) of the GEV parameters at each station location x. Then, the
pointwise estimates are used to transform at each position x the GEV distributed snow
depth maxima into a unit Fréchet distributed variable using the transformation (4.4). By
doing this, we obtain a data set of unit Fréchet winter maximum snow depths, and from
now on, we consider this standardized data set only.

4.4.2 Stationary Case

With the later aim of comparing the stationary and nonstationary models, we first
fit the Brown-Resnick process to snow depth maxima under the hypothesis of temporal
stationarity. Then we compute the extremal function stemming from the fitted process.
In parallel, we estimate the pairwise extremal coefficients through the madogram-based
estimator (Naveau et al., 2009), and we compute the class averages of these estimation
with the aim to check the suitability of the fitted stationary Brown-Resnick process.
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In order to be allowed to compare the 3-D modified distances from one model to
another, we use the anisotropy parameters ψ̂, R̂1 and R̂2 estimated in the stationary case
for Sections 4.4.3, 4.4.4 and 4.4.5. Holding these parameters fixed rather than reestimating
them in the nonstationary case using each covariate barely affects the results. For instance,
the use of nonstationary models by reestimating the anisotropy parameters gives very
close values for their estimates (ψ̂ contained between 41.9◦ and 45.8◦, R̂1 between 1.67
and 1.87 and, R̂2 between 33.7 and 37.6).

4.4.3 Moving Time Window

A preliminary investigation of the temporal evolution of the extremal dependence
is done through a data-based approach similar to the one used in Nicolet et al. (2016).
In addition to providing results useful to show the consistency of the results obtained
by the nonstationary Brown-Resnick processes, this approach allows us to motivate the
interest in modeling trends in the parameters of the spatial dependence structure.

We assess the temporal evolution of the extremal dependence by fitting the stationary
Brown-Resnick process on a 17-year moving window from 1970-1986 to 2000-2016 (the
large number of maxima at the end of the study period allows us to go beyond 2012). We
keep the same anisotropy transformation for each estimation window: we apply for all
moving window the parameters ψ̂, R̂1 and R̂2 estimated in the stationary case using all
the data, and we reestimate the parameters λ̂(t) and κ̂(t) for each estimation window
centered on t. Then, for each estimation window, we obtain the Brown-Resnick extremal
function (4.11) and the range of extremal dependence (4.12).

For each estimation window, we estimate a 95% confidence interval for the range of
extremal dependence h0(λ, κ) by the delta method (Cox, 1998), propagating the standard
error on β̂ = (λ̂, κ̂) in (4.12). Hence, the 95% confidence interval for h0(β) is given by

[
h0(β̂)± Φ−1(0.975)√

n

√
∇h0(β̂)TΣ(β)∇h0(β̂)

]
(4.21)

with ∇h0 the gradient of h0 with respect to β, Σ(β) the variance-covariance matrix of
β and n the number of pairwise estimates of the extremal coefficient.
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4.4.4 Nonstationary Case

The Brown-Resnick process is fitted by maximizing the composite likelihood (4.15)
using time-dependent covariates C(n) = {Ck(n)}k∈{1,...,M} so as to estimate the func-
tions λ(n) = λ0 + ΣM

m=1Cm(n)λm and κ(n) = κ0 + ΣM
m=1Cm(n)κm. Again, we held the

anisotropy parameters ψ̂, R̂1 and R̂2 fixed to the values estimated in the stationary case
of Section 4.4.2. Models with one and two covariates are fitted, using the covariates of
Table 4.1 but excluding the pairs with a correlation larger than 0.8 in absolute value. The
selection is done through CLIC.

4.4.5 Alternative Composite Likelihood

Finally, the model selected by CLIC in Section 4.4.4 is fitted by maximizing the
alternative composite log-likelihood l̃ defined in (4.20), in order to compare the two
approaches and to assess the influence of the annual variability of maxima on the results.

4.5 Results

4.5.1 Stationary Case

The estimated anisotropy parameters are ψ̂ = 51.52◦, R̂1 = 1.79 and R̂2 = 36.66 and
the estimated scale and shape parameters are λ̂ = 10.0 and κ̂ = 0.71, respectively. The
extremal function stemming from this estimated process is close to the class averages of
the pairwise estimates (Figure 4.3) showing the quality of the estimated Brown-Resnick
process. The range of extremal dependence is ĥ0 = 108 km.

4.5.2 Time Moving Window

Figure 4.4(a) shows the temporal evolution of the extremal function with a 17-year
estimation window and holding the anisotropy parameters fixed to the values obtained
in Section 4.5.1. We observe a positive temporal trend for the extremal function at large
distance, and therefore a negative temporal trend for the extremal dependence. This
is confirmed by Figure 4.4(b) which highlights a strong negative temporal trend in the
range of extremal dependence. After the first estimates which have to be interpreted
carefully due to the low number of observations, we can observe from 1985 to 1992
a division by 2 for the range of extremal dependence (from 200 km to 100 km, which
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Figure 4.3: Stationary case (Section 4.5.1). Estimated extremal function under the hypothesis of
temporal stationarity (red curve). Grey dots represent the madogram-based pairwise
estimations (Naveau et al., 2009) of the extremal coefficient for every pairs of stations
and black dots represent the distance class averages.
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corresponds to the range estimated in the stationary case), and after 1992 until the end of
the study period a stabilization. Although the first confidence intervals are extremely
wide, one can see that this trend is significant because the estimates around the beginning
of the decrease (for instance more than 200 km in 1985) are outside the last confidence
intervals which extend from about 50 km to 150 km in 1992.

The temporal evolution of the corresponding estimates of λ and κ with positive trends
for both parameters (Figure 4.4 (c–d) confirms the interest in allowing for temporal trends
in these parameters.

4.5.3 Nonstationary Brown-Resnick Model

According to CLIC, the best model with one covariate uses cumulated snowfall at
1800 m as covariate (Figure 4.5). The second most efficient covariate is snow precipitation
ratio at 1800 m and the third one is cumulated snowfall at 2400 m. The four other models
outperforming the stationary model use mean temperature and maximum temperature
at both considered altitudes. Maximum temperature and cumulated snowfall show
better CLIC at 1800 m than at 2400, but the differences are very small.

In order to see if the covariates are positively or negatively correlated to the extremal
dependence of extreme snow depths, we assess from the estimated parameters the
sign of their contribution on θ(100), the extremal function measured at the modified
3-D distance 100 km, which is close to the range of extremal dependence estimated in
the stationary case. The contribution of a covariate to θ(100) is referred to as positive
(respectively, negative) when θ(100) increases (respectively, decreases) with respect to an
increase in the covariate. Since larger θ means less dependence at extreme level, a positive
contribution to θ(100) means a negative contribution of the covariate to the extremal
dependence at 100 km. This definition is consistent in practice because the function
θ(100) of the covariate is always monotonic in the observed range of this covariate (i.e.,
between the minimum and the maximum measured values). The covariates showing
a positive contribution to θ(100) are time, NAO, AMO, minimum daily temperature,
mean daily temperature and maximum daily temperature (Table 4.2). These covariates
have then a negative contribution to the extremal dependence of snow depths. On the
contrary, cumulated snowfall and snow precipitation ratio have a positive contribution
to the extremal dependence of snow depths.
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Figure 4.4: Time moving window (Section 4.5.2). (a) Temporal evolution of the fitted extremal
functions, from oldest time windows (blue curves) to the most recent ones (red curves).
(b) Temporal evolution of the range of extremal dependence. The range is expressed
as a function of the 3-D modified distance. It is plotted (black dots) as a function
of the center of the considered estimation window. The associated 95% confidence
interval is evaluated by the delta method (Eq. (4.21)). (c–d) Temporal evolution of
the estimates of (a) λ and (b) κ. The X axis represents the center of the 17-year time
window. The blue curves show for each parameter a second degree polynomial trend
fitted by least squares.
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Figure 4.5: Nonstationary Brown-Resnick model (Section 4.5.3): rescaled CLIC for the models
using one covariate. The covariates are time ("Year"), NAO, AMO, minimum
temperature, mean temperature, maximum temperature, cumulated snowfall and
snow precipitation ratio. The dashed line represents the CLIC for the stationary case.
Temperatures, cumulated snowfall and snow precipitation ratio are considered at two
elevations: 1800 m (in red) and 2400 m (in blue).
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Table 4.2: Nonstationary Brown-Resnick model (Section 4.5.3): models with one covariate.
Estimated parameters and sign of the contribution to the extremal coefficient θ(100)a

Covariates λ̂0 λ̂1 κ̂0 κ̂1 contribution
Time 8.6 2.8 0.63 0.19 positive
NAO 10.0 -0.3 0.69 0.03 positive
AMO 8.6 2.8 0.63 0.19 positive

Tmin (1800) 9.3 1.1 0.67 0.07 positive
Tmean (1800) 7.5 3.4 0.56 0.22 positive
Tmax (1800) 7.7 3.7 0.57 0.23 positive

Cumulated snowfall (1800) 7.7 -3.8 0.59 -0.22 negative
Snow precip. ratio (1800) 8.9 -1.7 0.59 -0.19 negative

Tmin (2400) 9.0 1.8 0.64 0.14 positive
Tmean (2400) 8.5 2.3 0.60 0.17 positive
Tmax (2400) 8.2 2.8 0.59 0.20 positive

Cumulated snowfall (2400) 7.4 -4.3 0.58 -0.24 negative
Snow precip. ratio (2400) 8.7 -2.3 0.63 -0.15 negative

aλ̂0, λ̂1, κ̂0 and κ̂1 denote the estimated parameters for each model. The column "contribution"
indicates if the extremal coefficient at the distance 100 km (i.e., θ(100)), arbitrarily chosen,
increases (positive) or decreases (negative) with respect to an increase in the covariate. Note that
a positive contribution to θ(100) means a decrease in the extremal dependence at the distance 100
km.
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Figure 4.6: Nonstationary Brown-Resnick model (Section 4.5.3): rescaled CLIC for the models
using two covariates. We only consider the pairs of covariates with a correlation lower
than 0.8 in absolute value (see Table 4.1). Their are chosen among time (Year), NAO,
AMO, and maximum temperature (Tmax), mean temperature (Tmean), minimum
temperature (Tmin), cumulated snowfall (SF) and snow precipitation ratio (SPR).
Temperatures, cumulated snowfall and snow precipitation ratio are considered at two
elevations (1800 m and 2400 m). The dotted line represents the rescaled CLIC of the
stationary model while the dashed line represents the rescaled CLIC of the best model
with one covariate (i.e., with snowfall at 1800 m).

None of the models using two covariates show a better rescaled CLIC that the best
model with one covariate (Figure 4.6). Only 5 models outperform the stationary model:
those using NAO with cumulated snowfall at either 1800 m or 2400 m, cumulated
snowfall at 2400 m with mean temperature at 1800 m, snow precipitation ratio at 1800 m
with minimum temperature at 2400 m, and NAO with snow precipitation ratio at 1800
m. The model using cumulated snowfall at 1800 m as unique covariate is thus the best
one according to CLIC.

With this model, consistently with Section 4.5.2, the extremal coefficient θ(h) increases
with time at large distances, which implies a negative trend in the extremal dependence
(Figure 4.7(a)). As in Section 4.5.2, the estimated range of extremal dependence shows
a strong decrease during the 1980s and then a stability after 1992 (Figure 4.7(b)). The
estimates of the range of extremal dependence is much larger during the first part of
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the study period (sometimes larger than 800 km). However, these estimates must be
considered with caution due to the lack of observations before 1983. The evolution of the
extremal function with respect to the cumulated snowfall (Figure 4.7(c)) confirms that the
extremal dependence tends to increase when snowfall increases (i.e., θ(100) decreases).

4.5.4 Alternative Composite Likelihood

The extremal function and the range of extremal dependence stemming from the
model fitted by maximizing the alternative composite likelihood l̃ defined in (4.20) and
the same covariate show similar temporal evolutions to the case of the classical composite
likelihood, even though they are much smoother (Figures 4.8(a,b)). The range of extremal
dependence spans a much narrower interval with values not bigger than 260 km (3-D
modified distance). The evolution of the extremal function as function of cumulated
snowfall shows as before an increase in extremal dependence (i.e., decrease in θ(100))
when snowfall increases but with much less variability over the same range of snowfall
events (Figure 4.8(c)).

4.6 Discussion

4.6.1 Anisotropy in the Spatial Dependence and Comparison with Ex-
treme Snowfall

The results obtained under the stationary hypothesis in Section 4.5.1 can be compared
to those provided by the stationary Brown-Resnick model with power semivariogram
fitted in Nicolet et al. (2017a). This allows us to compare the extremal dependence
of extreme snow depths and extreme snowfall in the French Alps. To the best of our
knowledge, this is the first time that the spatial dependence in extremes of these two
snow-related variables can be compared over the same region.

For both variables, the estimated anisotropy angle (ψ̂ = 51.52◦ for snow depths
and ψ̂ = 37.28◦ for snowfall) corresponds to the orientation of the main massifs and
valleys in the French Alps. This pattern has also been observed for extreme snow
depths in Switzerland (Blanchet and Davison, 2011) and for extreme precipitation in the
Appalachians (Padoan et al., 2010), which confirms its robustness. It may be interpreted
as the effect of orography on atmospheric fluxes generating extreme precipitations. One
can though note that anisotropy is less marked for extreme snow depths than for extreme
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Figure 4.7: Nonstationary Brown-Resnick model (Section 4.5.3). Model selected by CLIC with
cumulated snowfall at 1800 m as covariate. (a) Temporal evolution of the extremal
function stemming from the model. (b) Temporal evolution of range of extremal de-
pendence. The solid line represent the median range of extremal dependence computed
on a 17-year moving window. The associated 95% confidence interval is evaluated
by the delta method. (c) Evolution of the extremal function as function of cumulated
snowfall at 1800 (from 480 to 580 kg/m2).
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Figure 4.8: Alternative composite likelihood (Section 4.5.4). Model with cumulated snowfall
at 1800 m as covariate but maximizing the alternative composite likelihood l̃. (a)
Temporal evolution of the extremal function stemming from the model. (b) Temporal
evolution of the range of extremal dependence. (c) Evolution of the extremal function
as function of cumulated snowfall at 1800 m (from 480 to 580 kg/m2).



130 4. TREND IN THE SPATIAL DEPENDENCE OF EXTREME SNOW DEPTHS

●

●●

●
●●

●
●

●

●

●●

●●

●

●●
●
●

●

●●

●
●●

●

●
●

●

●

●

●

●

●

●
●●● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●●

●

●●●●
●●

●
●
●

●

●
●

●

●●

●●●
●●

●

●

●●
●●

●

●●
●
●

●

●●

●
●
●

●

●

●

●

●

●

●
●

●

●
●●● ●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

● ●●
●

●

●
●

●
●

●●

●

●●●●
●●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●● ●

●●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●●
● ●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

● ●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●●

●

●●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●
●
●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●
●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●●

●

●
●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●●

●

●

●
●

●

●

● ●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●
●
●

●

●

●
● ●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●
●

●

●
●

●

●

●

●

●●

●

●
●●●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●

● ●
●

●
●

●

●

●
●

●

●

●

●
●

●

●●● ●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●

● ●

●

●

●
●

● ●

●

●

●

●●

●

●

●●
●●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●
●●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●●●
●

●

●●●

●
●

●●

●

●●● ●●

●

●

●

●●

●
●

●

●●

●●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●
●

●
●

●

●

●●
●

●
●

●●

●

●●●
●●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

● ●
●

●●
●

●
●

●●●

●

●●●

●●

●●

●
●●●●●

●

●

●

●●

●
●

●

●●

●●

●

●

●

● ●

●

●
●●

●

●

●

● ● ●
●

●

●●

●

●

●
●●

●

●●

●

●

●

● ●
●

●●
●

●
●

●●
●

●

●●●

●●

●●

●
●●●●●

●

●

●

●●

●
●

●

●●

●●

●

●

●

● ●

●

●
●●

●

●

●

●
●

●●

●

●
●

●

●

●
●
●

●

●
●

●

●

● ●●●●●

●

●

●●●
●

●●●
●●

●●
●●●●●●

●

●
●

●●
●●●

●●
●●

●
●

●
●●

●●●●
●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●●

●

●

●

●

● ●
●

●
●

●

●

●
●

●

●●

●

●

●●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●
●

●

● ●
●

●●

●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

● ●

●●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●●
●

●

●●●

●●

●●

●●●●●●

●

●

●
●●

●
●

●

●●

●●

●
●

●

● ●

●
● ●

●

●

●

●

●

●
●

●

●

●●
●

●

●●

●

●

●

●

●

●

●
●●●

●

●●●

●●

●●

●●●●●●

●

●

●
●●

●
●

●

●●
●●

●
●

●
● ●

●
● ●

●
●

●●
●

●

●

●

●

●

●●●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●

●

●

●●

●

●
●

● ●

●

●●
●

●
●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●● ●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●●

●

●●●●
●●

●
●●

●
●

●

●

●

●
●

●
●

●
●●●● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●
●

●

●
●

●●
●●

●

●●●●
●●

●
●●●
●

●

●

●
●

●●

●

●
●● ●

●

●

●

●●●

●

●

●

●

●
●

●

● ●●

●

●

●●
●

●

●

●
●

●
●

●●

●

●●●●
●●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●

●

●

●

●

● ●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●●●● ●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●●

●

●
●●●

●●

●
●
●

●

●

●

●●
●●●● ●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●
●

●●

●

●
●●●

●●

●
●●

●
●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●
●

●

● ●
●

●●

●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●
●

●

●
●

●
●

●●

●

●●●●
●●

●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●●
●

●

●
●●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●
●

●●

●

●
●●●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●●

●

●●●●
●●

●
●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●
●
●●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●●

●

●●●●
●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

● ●

●
● ●●

●

●

●
●

●●

●

●
●●●

●●

●
●●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●●

●

●
●●●

●●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●
●

●●

●

●
●●●

●●

●

●
●

●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●●

●

●
●
●●

●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●
●●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●
●●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

1.0 1.2 1.4 1.6 1.8 2.0

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

θ (snow depth)

θ 
(s

no
w

fa
ll)

Figure 4.9: Comparison between snow depth and snowfall model-based estimates of extremal
coefficient for all the pairs of stations.

snowfall (with R̂1 = 1.79 against 3.22 for extreme snowfall) and the effect of altitude is
also slightly weaker (R̂2 = 36.66 against 39.95), which may arise from the fact that the
effect of interaction between atmospheric flows and orography on snow on the ground
is less direct than for precipitation amounts such as snowfall.

The comparison between snow depth and snowfall extremal coefficient for all the
pairs of stations highlights that snow depth maxima are more spatially dependent than
snowfall maxima for a large majority of pairs of stations (Figure 4.9). As interpreted in
Gaume et al. (2013b), this is probably due to cumulative effects involved in the formation
of snow cover which make smoother the spatial evolution of extreme snow depths.
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4.6.2 Temporal Changes

The decreasing trend in the extremal dependence of snow depths in the French Alps
is similar to that found in Nicolet et al. (2016) for snowfall in the same area. These two
variables show also a strong decrease in the range of extremal dependence concentrated
during the 1980s, and then a stability after 1990. This is the first time that such an effect is
inferred on extreme snow depths. The consistency with extreme snowfall over the same
area pleads for its robustness and its geophysical meaning. This decrease is concomitant
with the period of strongest decrease in snowfall and snow precipitation ratio, and with
the period of strongest increase in temperature and AMO (Figure 4.2).

One may wonder about a possible influence of the stationarity hypothesis in the
marginal distributions on the nonstationarity observed in the spatial dependence struc-
ture, with a potential transfer of a temporal trend in the margins to the dependence
structure. We checked this by reproducing the procedure of Section 4.4.3 but using the
margins estimated on each window (considering for each window only the stations with
a least 8 maxima in order to avoid misestimation of GEV parameters). We found very
similar results (not shown). Hence, the decreasing trend in the spatial dependence of
snow depth maxima is not artificially created by the stationary hypothesis in the margins.

4.6.3 Climate Control

The most relevant covariates to model trends in the spatial dependence structure
of extreme snow depths are those related to precipitation and temperature: mean tem-
perature, maximum temperature, cumulated snowfall and snow precipitation ratio at
1800 m. However, the use of minimum temperature or snow precipitation ratio at 2400
m leads to models less suitable than the stationary model. The inefficiency of snow
precipitation ratio at 2400 m can be explained by the fact that at this altitude level, the
snow precipitation ratio is always close to 1 during the entire study period (Figure 4.2)
making its explicative power very small.

The covariates time, NAO, AMO and temperature (minimum, mean and maximum)
have a negative contribution to the extremal dependence of snow depths in the French
Alps while cumulated snowfall and snow precipitation ratio have a positive contribution.
All of these signs of contribution are consistent to the correlations computed in Nicolet
et al. (2016) concerning extreme snowfall in the French Alps.
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Hence, for extreme snowfall (Nicolet et al., 2016), the decreasing temporal trend in
the spatial dependence of extreme snow depths seems to be due at first to a decrease
of the snow precipitation ratio caused by the increase of temperature over the study
period, and particularly in the context of the 1980s climate regime shift (Reid et al., 2015).
Specifically, temperature increase makes snowfall more isolated in space. Indeed, when
temperature is moderately cold, only the highest stations experience snow while rain
falls at low elevations (Nicolet et al., 2016). This leads to less spatially smooth snow
depth variations and less coherent patterns for snow depth maxima.

As in the case of snowfall maxima, we cannot exclude a magnitude effect with
stronger dependence in extreme snow depths during snowier winters. Indeed, even if
snow precipitation ratio at 2400 m is one of the less efficient covariate (due to a very
low effect of snow/rain partitioning at this elevation), cumulated snowfall at 2400 m is
the second most relevant covariate. Consequently, the decrease in cumulated snowfall
observable during the winter season since the 1980s (Figure 4.2) seems an additional
cause for the decrease in the spatial dependence of extreme snow depths.

4.6.4 Pros and Cons of the Proposed Modeling Approach

Theoretical and applied studies dealing with temporal aspects within the spatial
dependence structure of max-stable processes (Davis et al., 2013a,b; Raillard et al., 2014;
Huser and Davison, 2014; Embrechts et al., 2016) do it by modeling the short-range
temporal dependence of extremes and do not consider a possible long-range temporal
evolution of the dependence structure. This paper lays a first stone regarding the
modeling of temporal trends at climate time scale in the spatial dependence of extremes,
which is an important issue for managing the risks related to spatial extremes and
anticipating their evolution under climate change. Even if the approach introduced
in this paper is quite simple, with linear trends in the spatial dependence structure of
Brown-Resnick process, it obtains results consistent to those which have been obtained
by empirical estimation with snowfall maxima in Nicolet et al. (2016). In addition, the
robustness of our results is granted by the step-by-step approach we propose: from
empirical estimations on moving time windows to a full model taking into account long
range patterns in data and covariates coupled with a rigorous model selection procedure.

Hence, the main difference of the model-based approach introduced in this paper with
the empirical approach developed in Nicolet et al. (2016) is the explicit incorporation of
suitable covariates into the modeling. This is a flexible way to detect time trends because
it does not require hypothesis on the nature of the trend (e.g., linear or polynomial of
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order 2 (or more)). Furthermore, the use of covariates in the model-based approach has
the major advantage of potentially allowing anticipating the evolution of the extremal
dependence of snow extremes. Indeed the best fitted model could be easily coupled with
the various future climate change scenarios now increasingly available (e.g., Jacob et al.
(2014)).

A limitation of the used model is the difficulty to efficiently combine more than one
covariate. Indeed, none of the considered models with two covariates shows a better
CLIC than the best model with one covariate possibly because the penalization in the
CLIC is too strong (one additional covariate means two additional parameters, which is
strongly penalized in CLIC). However, we did not considered in this paper the models
involving two of the most relevant covariates (cumulated snowfall, mean temperature,
maximum temperature, and snow precipitation ratio at 1800 m) together because these
covariates are strongly correlated. The best models of this kind show a compensation
effect between the two covariates, showing the complication to use them.

Several continuations of this work could be considered. A first one would be to use
other selection criteria than the CLIC, for instance the CLBIC (Gao and Song, 2010) or
the large set of criteria introduced in Nicolet et al. (2017a). Furthermore, it could be
interesting to try nonlinear time trends in the spatial dependence structure with the aim
to see if the predictive ability of the model may be improved in this way.

4.7 Conclusion and Outlooks

In this paper we introduce a way to account for the temporal nonstationarity in
Brown-Resnick max-stable processes, which we apply to study the evolution of the
spatial dependence in extreme snow depths in the French Alps since 1970. Several
climate covariates are considered to model trends in the spatial structure of dependence
and the best model is selected by CLIC. We find a strong negative temporal trend in
the spatial dependence of extreme snow depths with a strong decrease in the range of
extremal dependence during the 1980s. To account and explain these strong temporal
patterns, the most relevant covariates are cumulated snowfall, snow precipitation ratio
(considered at elevation impacted enough by snow/rain partitioning) and temperature
(maximum and average). Hence, this observed decrease in extremal dependence seems
mainly due to the effect of the increase in temperature on the snow precipitation ratio at
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low elevation and to a decrease in the winter cumulated snowfall. These results resemble
those obtained for extreme snowfall in the same region in previous studies, showing that
the spatial dependence of these two snow variables are similarly impacted by climate
change.

The space-time approach introduced in this article, which permits to model the
spatial dependence of extremes as function of appropriate time-dependent covariates,
may be very useful for quantifying spatial extremes and managing the related risk and
its evolution under ongoing climate change. It may provide precious insights on their
climatic control and open the door to potential prognoses under climate change scenarios.
This approach is here applied to extreme snow depths but it may be fruitful for many
other geophysical variables.
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This thesis followed two main orientations concerning the modeling of the spatial
dependence structure of spatial extremes in the field of mountain climate. The first
achievement was to introduce a procedure of model selection able to assess the ability
of max-stable processes to predict the spatial dependence structure. The second one
concerned the investigation and the modeling of temporal nonstationarity in the spatial
dependence structure of climate extremes in a context of climate change. These two
questions were broached through the examples of extreme snowfall and extreme snow
depths in the French Alps.

Two very suitable data sets from Météo France were processed to investigate these
two guidelines: a 3-day cumulated snowfall data set (90 stations from 1958 to 2012) and a
daily snow depth data set (82 stations from 1970 to 2012). Winter maxima were extracted
from these two data sets, and then transformed pointwise into unit Fréchet in order to
focus on spatial dependence structure only.

Chapter 1 presented the mathematical tools used in this work. Chapter 2 introduced
a leave-two-out cross-validation procedure able to evaluate the predictive ability of max-
stable processes to model the dependence structure of spatial extremes. This procedure
was applied to compare the Smith, Schlather, Brown-Resnick, geometric Gaussian and
extremal-t max-stable processes using the snowfall data set as a case study. Chapter 3
presented a data-based approach to investigate potential temporal changes in the spatial
dependence structure of geophysical extremes. This method was used to investigate the
temporal evolution of the spatial dependence of extreme snowfall in the French Alps.
Chapter 4 introduced a way to account for nonstationarity in the spatial dependence
structure of max-stable processes. This approach was adopted to study the temporal
evolution of the spatial dependence of extreme snow depths in the French Alps.

Procedure of model selection for max-stable processes

A leave-two-out cross-validation and a panel of criteria for evaluating
max-stable processes

Chapter 2 introduced a leave-two-out cross-validation procedure for max-stable
processes able to evaluate their predictive ability to model the spatial dependence of
extremes. For each pair of stations, the bivariate distribution was derived from the model
fitted on the remaining stations.
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In order to assess the reliability of the models and discriminate them, a large panel of
criteria was introduced. Root mean square error (RMSE), mean average error (MAE), root
mean square normalized error (RMSNE), mean average normalized error (MANE) and
coefficient of determination (R2) were used to measure the deviation between empirical
and max-stable-based estimations of the probability of jointly exceeding a given quantile
at two locations. NT and FF criteria, usually used for goodness-of-fit of univariate
distributions, were tailored for dealing with bivariate distributions by apply them to
the minimum at two locations. The NT criterion is based on the number of exceedances
of high quantiles whose distribution should be close to a binomial distribution with a
suitable fitting. The FF criterion focus on the value taken by the estimated distribution in
overall maxima.

Even if we applied this procedure to snowfall maxima, it may be useful in the
modeling of other spatial extremes (extreme precipitation, extreme temperature, extreme
snow depths, extreme wave heights...). This cross-validation procedure could be used
in the case of a selection by Composite Likelihood Information Criterion (CLIC) does
not clearly determine the best model. Especially, it may demonstrate that a max-stable
model, having some advantages (fewer parameters to estimate, extremal independence
for large distances, etc.) over the model with the best CLIC, can be used instead of this
model in practice.

Application of the leave-two-out cross-validation to compare between
five max-stable processes on a case study of snowfall maxima in the
French Alps

The leave-two-out cross-validation procedure was used to compare five of the most
commonly used max-stable processes: Smith, Schlather, Brown-Resnick, geometric
Gaussian and extremal-t processes. We considered a large set of correlation functions for
the Schlather, geometric Gaussian and extremal-t processes. The 3-day snowfall winter
maxima data set was used as a case study.

This cross-validation approach allowed to reconsider the geometric Gaussian and
Brown-Resnick processes for which CLIC comparison only would lead to disregard them
for the benefit of the extremal-t process. The low values of RMSE, MAE, RMSNE and
MANE proved the predictive quality of the these three models in practice. The extremal-t,
geometric Gaussian and Brown-Resnick processes were able to represent suitably well
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the structure of dependence of the snowfall maxima. This showed that cross-validation
may be more relevant than the single use of CLIC for evaluating and selecting max-stable
processes. The Smith and Schlather processes, due to their lack of flexibility, were clearly
outperformed by the other max-stable processes in competition.

The proposed reliability criteria were also used to investigate the sensitivity of the
max-stable processes to the number of stations and to the number of years of observations.
Even if the Brown-Resnick process was slightly less sensitive due to less parameters,
the performance of the Brown-Resnick, geometric Gaussian and extremal-t processes
remained very similar regardless of the number of stations or years.

At this time, the fact that the extremal-t, geometric Gaussian and Brown-Resnick
processes are as suitable as each other in practice was also exhibited in our case con-
cerning snowfall maxima in the French Alps. To be generalized, these results have to
be confirmed by replicating the study in other contexts (other areas, other variables of
interest). Thus, they may be valid for a wide range of environmental applications. Other
max-stable processes from the literature (Smith and Stephenson, 2009; Reich and Shaby,
2012; Wadsworth and Tawn, 2012; Davison and Gholamrezaee, 2012; Xu and Genton,
2016; Beranger et al., 2016) may also be taken into consideration in order to see if some of
them may outperforming extremal-t, geometric Gaussian and Brown-Resnick processes
or at least having similar results .

Temporal evolution of the spatial dependence of extreme
snowfall and extreme snow depths

A data-based approach to investigate the temporal evolution of the spa-
tial dependence of geophysical extremes

Chapter 3 introduced a data-based approach suitable for highlighting potential tem-
poral changes in the spatial dependence structure of geophysical extremes at decadal
time scale. This approach was conducted on the 3-day snowfall data set.
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We proposed to assess the temporal evolution of the spatial dependence of extremes
by estimating it over 20-year moving estimation windows taking into account possible
anisotropy potentially related to orographic effects and/or patterns in atmospheric flows.
For each window, extremal dependence was estimated by fitting the Brown-Resnick
extremal function to pairwise estimations of extremal coefficient. A range representing
the distance above which extremes are almost independent was computed for each
window.

This data-based approach allowed us to make minimal modeling assumptions to
conduct the study: the temporal stationarity in the marginal distributions, the way to
assess the distance between stations, and the choice of the extremal function model.
These few modeling assumptions were checked in order to ensure the geophysical origin
of the measured temporal changes rather than a consequence of modeling choices.

This data-oriented framework could therefore be useful for a variety of other studies
addressing geophysical extremes in the context of climate change. For instance it could
be applied to investigate the temporal evolution of the spatial dependence of extreme
temperature, extreme precipitation or extreme wave heights.

Modeling temporal trends in the spatial dependence structure of max-
stable processes

Chapter 4 proposed a way to account for temporal nonstationarity in the dependence
structure of spatial extremes. This is the first ever modeling of this kind. We used a
Brown-Resnick process with temporal trends in the spatial dependence structure able to
model the temporal evolution of the spatial dependence of the extremes of the variable
of interest. These trends were modeled using time-dependent covariates, allowing to
reveal the variables which impact the spatial dependence by comparing the CLIC values
of several models.

This approach may be very useful concerning extremes whose spatial dependence
structure is not temporally stationary, especially those for which the nonstationarity was
highlighted by an data-based investigation similar to the one presented in Chapter 3.
Indeed, by modeling the spatial dependence of extremes as function of suitable covariates
this approach offers a framework to manage and to anticipate the evolution of related
risk under climate change.



141

Decreasing spatial dependence in extreme snowfall and extreme snow
depths in the French Alps under climate change

The temporal evolution of the spatial dependence of extreme snowfall and extreme
snow depths in the French Alps were investigated using two different approaches.

The data-based approach introduced in Chapter 3 was applied to the snowfall maxima
data set. Several local and synoptic climatic variables, associated with the current climate
change context, were considered. Correlations between these variables and the range
of extremal dependence were computed in order to assess their relationship with the
temporal evolution of spatial dependence of extreme snowfall in the French Alps.

The model-based method proposed in Chapter 4 was used to study the temporal
evolution of the spatial dependence in extreme snow depths in the French Alps. The
Brown-Resnick process with nonstationary spatial dependence structure was thus fitted
to the snow depth maxima data set. The used covariates were chosen among several
climatic variables and the models were selected by CLIC. This permitted to investigate
the variables which impact the spatial dependence of extreme snow depths.

By these two different approaches, we found for these two snow variables a strong
negative temporal trend in the spatial dependence. These two trends were very similar
with a strong decrease in the range of extremal dependence since 1980 and then a stability
after 1990. This consistence showed the robustness of these results.

The most relevant covariates to model the spatial dependence of extreme snow depths
were snowfall, snow precipitation ratio (considered at elevation impacted enough by
snow/rain partitioning) and temperature (daily maxima and averages). The periods
of strongest decrease in the range of extremal dependence was concomitant with the
periods of strongest decreases in winter cumulated snowfall and in snow/rain ratio, and
with the period of strongest increase in temperature. We highlighted that the decreases
in spatial dependence concerning these two snow variables were attributable at first
to the increase in temperature and its major control on the snow/rain partitioning. A
magnitude effect, with less dependent extremes due to a decrease in winter cumulated
snowfall was also found.

In addition, these studies gave an opportunity to compare the spatial dependence of
these two snow variables in the same region. We confirmed that the spatial dependence
of these two snow variables are similarly impacted by orography (due to its influence
on atmospheric fluxes generating extreme precipitations) with the direction of strongest
dependence between two locations corresponding to the orientation of the main moun-
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tains and valleys in the French Alps. However, anisotropy is less marked for extreme
snow depths, showing that this effect is less direct for snow on the ground than for snow
precipitation. We also found that the spatial dependence of extreme snow depths is
stronger, due to cumulative effects involved in the formation of snow cover.

Perspectives

Cross-validation procedure with other data sets and/or other models of
max-stable processes

It would be interesting to apply the leave-two-out cross-validation procedure in other
conditions.

First, this approach may be replicated using other data sets concerning variables
which can be modeled by max-stable processes. It could concern other climate variables
such as precipitation or temperature, other fields such as hydrology, or even extreme
snowfall in another study area than the French Alps. Indeed, the suitability of models of
max-stable process depends on the variables of interest. For instance, the Smith process
is better than the Schlather process to model extreme snowfall in the French Alps (Gaume
et al., 2013b; Nicolet et al., 2017a) whereas it is the opposite when modeling extreme
snow depths in Switzerland (Blanchet and Davison, 2011). This is due to the differences
between the spatial evolution of these two variables. It would be interesting to check
if the Brown-Resnick, geometric Gaussian and extremal-t processes, which have been
found as suitable as each other in our case, still provide very close results for other data
sets.

This motivates also to consider other models of max-stable process than the five
ones in competition in this work (Smith, Schlather, Brown-Resnick, geometric Gaussian
and extremal-t). One may wonder if some models, among those at our disposal in the
literature (Smith and Stephenson, 2009; Reich and Shaby, 2012; Wadsworth and Tawn,
2012; Davison and Gholamrezaee, 2012; Xu and Genton, 2016; Beranger et al., 2016), are
able to outperform the geometric Gaussian, Brown-Resnick and extremal-t processes, or
at least to perform as well for our data. Especially, it would be interesting to try the Tukey
(Xu and Genton, 2016) and extremal-skew-t (Beranger et al., 2016) processes, which are
more flexible than the geometric Gaussian and the extremal-t processes respectively,
and the version of extremal-t process with spatially nonstationary dependence structure
introduced in Huser and Genton (2016).
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The issue of model selection is to become certainly even more difficult due to probable
new models of max-stable processes in the future. In order to better discriminate max-
stable models when a framework based on goodness-of-fit on bivariate quantities seems
to be insufficient, procedures based on the estimation of high-order quantities (e.g.,
trivariate) may be proposed to discriminate them. However, such procedures would be
computationally challenging.

Use of threshold-based models

In this thesis, we have made the choice to work with winter maxima of snowfall and
snow depths. However, it is also possible to deal with threshold exceedances which
are classic in the univariate case but less in the spatial case. However, two threshold-
based models can be adopted. The first possibility is to use max-stable processes with
censored likelihood approach (Thibaud et al., 2013; Huser and Davison, 2014; Raillard
et al., 2014). The second one is to use Pareto processes which extend the generalized
Pareto distribution (GPD) to the spatial case (Ferreira et al., 2014; Thibaud and Opitz,
2015). These two approaches could be used in our case to enlarge the data sets (i.e., more
than one observation per year) and check the robustness of our results. Also, our cross-
validation approach could be tailored to this framework. However, the investigation of
the temporal evolution of the spatial dependence of extremes at climatic scale would be
more tricky because of additional temporal aspects, at shorter time-scale, to consider (for
instance temporal dependence).

Temporal evolution of the extremal dependence of other spatial phe-
nomena

This thesis was a first step in the assessment of temporal changes in extremal de-
pendence of spatial phenomena. To the best of our knowledge, this issue received very
little attention, despite its importance in practice. Indeed, due to the current context of
climate change, many geophysical extremes are potentially concerned. Thus, it would be
very interesting to investigate the temporal evolution of the spatial dependence of other
geophysical variables than extreme snowfall and extreme snow depths. For instance,
similar approaches to those that we have applied to these two snow-related variables
could be applied to extreme temperature or extreme wave height data.
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We highlighted two causes in the decreases in spatial dependence of extreme snowfall
in the French Alps. The first one was the effect of the increase in temperature on the
snow/rain partitioning. The second one was a magnitude effect, with less dependent
extremes due to a decrease in winter cumulated snowfall. The investigation of the
temporal evolution of the spatial dependence of extreme precipitation in the French Alps
could allow to better understand the contribution of each one of these causes. Indeed, it
would permit to go further into this question by considering the effects from precipitation
only without those concerning snow rain partitioning.

Marginal distributions and non stationary spatial dependence struc-
ture

Temporal nonstationarity is a crucial issue in extreme value analysis because of many
extremes potentially impacted by climate change (Cooley, 2009; Katz, 2010). All the risk
estimations related to geophysical extremes made under the hypothesis of temporal
stationarity are exposed to underestimation. Also, modeling temporal nonstationarity
in geophysical extremes is important for better understanding and anticipation of the
consequences of climate change. After several studies which have modeled temporal
trends in the univariate distribution of extremes, this thesis laid another stone for this
issue by modeling temporal nonstationarity within their spatial dependence. However,
the estimation of both marginal distributions and spatial dependence structure may
be needed for the assessment of risks related to spatial extremes. For instance, they
are required to built conditional return level maps (Padoan et al., 2010) and to assess
return levels of spatial quantities like minimum, maximum or integral over a specific
area (Huser and Genton, 2016). Huser and Genton (2016) showed that modeling spatial
nonstationary in the dependence structure may improve the estimation of return levels
of spatial quantities when the data are strongly spatially nonstationary. Thus, we may
wonder if modeling temporal trends in the spatial dependence structure may ameliorate
the estimation of conditional return levels and return levels of spatial quantities when
dealing with variables which are temporally nonstationary.

In the case of climate extremes which would have temporal trends both in the univari-
ate distributions and the spatial dependence structure, it would be crucial to investigate
the interaction between these two trends and their evolution. This would be all the
more important if, instead of considering what happens in a unique location only, the
associated risk is related to the occurrence of extremes in several locations or in an area.
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Indeed, the effects of these trends could compensate each over and attenuate the related
risk. Otherwise, their combination could aggravate the risk, and in this case, a proper
modeling of these two trends would be essential to avoid an underestimation of the risk
and its increase under climate change.
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160 I. SNOWFALL DATA SET

Name E (km) N (km) Alt (m)
Albertville 962 6513 333
Allemond 939 6460 1270
Allevard 940 6482 495
Ancelle 954 6397 1345
Arvieux 996 6416 1683
Aussois 994 6466 1478
Autrans 900 6457 1090
Avrieux 992 6464 1102
Barcelonnette 992 6373 1155
Beaufort 978 6516 1030
Bessans 1013 6477 1713
Besse 949 6446 1525
Bourg-Saint-Maurice 993 6508 865
Briançon 987 6429 1326
Ceillac 999 6404 1664
Challes-les-Eaux 932 6500 291
Chamonix-Mont-Blanc 1000 6544 1043
Champcella 983 6410 1100
Champoléon 958 6408 1275
Chantelouve 933 6434 1000
Chichilianne 903 6416 1010
Col de Porte 917 6470 1325
Corps 933 6418 935
Embrun 978 6391 872
Entraigues 933 6427 809
Epine 923 6504 311
Guillaumes 1008 6340 792
Hauteluce 983 6526 1215
Isola 1022 6353 870
La Chapelle 953 6417 1270
La Clusaz 966 6538 1164
La Ferrière 941 6469 1081
La Grave 959 6445 1785
La Motte-en-Champsaur 943 6408 1099
La Mure 920 6427 875
La Rochette 943 6488 350
Lanslebourg 1009 6466 2000
Lavaldens 927 6436 1070
Le Grand-Bornand 967 6547 1281
Le Monêtier 977 6437 1456
Les Contamines 989 6531 1180
Les Gets 983 6569 1172
Les Orres 982 6385 1445
Lescheraines 942 6517 590
Lus-la-Croix-Haute 915 6401 1059

Table 3: List of the stations of the snowfall data set (part 1)
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Name E (km) N (km) Alt (m)
Megève 980 6535 1086
Mens 918 6417 780
Monestier-de-Clermont 908 6428 800
Montgellafrey 960 6483 1050
Montgenèvre 994 6433 1850
Moûtiers 976 6493 480
Névache 986 6442 1603
Orcières 964 6405 1435
Peisey-Nancroix 993 6501 1350
Pellafol 930 6414 940
Pellafol 930 6417 800
Pelvoux 975 6425 1267
Péone 1015 6341 1661
Pralognan-la-Vanoise 991 6483 1419
Proveysieux 912 6468 600
Sallanches 983 6543 541
Samoëns 988 6561 749
St-Alban-des-Hurtières 955 6492 614
St-Baudille-et-Pipet 921 6415 1040
St-Bonnet-en-Champsaur 944 6403 1012
St-Christophe-en-Oisans 951 6433 1570
St-Dalmas-le-Selvage 1007 6361 1500
St-Etienne-en-Dévoluy 933 6404 1308
St-Etienne-de-Tinée 1014 6355 1607
St-Firmin 939 6414 950
St-Hilaire 926 6471 960
St-Laurent-du-Pont 914 6483 389
St-Martin-Vésubie 1041 6339 1018
St-Martin-de-Belleville 975 6481 1500
St-Michel-de-Maurienne 974 6465 1360
St-Paul 1005 6396 1905
St-Pierre-de-Chartreuse 919 6478 945
St-Pierre-d’Entremont 923 6483 644
St-Véran 1006 6408 2012
Tende 1067 6338 645
Termignon 999 6471 1284
Thônes 958 6536 629
Valdeblore 1034 6339 1009
Valjouffrey 938 6425 980
Valloire 969 6458 1451
Vallorcine 1004 6555 1300
Vaujany 939 6455 772
Verrens-Arvey 958 6512 530
Villar-Loubière 949 6419 1069
Villard-de-Lans 901 6445 1030

Table 4: List of the stations of the snowfall data set (part 2)
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Appendix II. List of the stations of the
snow depth data set
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Name E (km) N (km) Alt (m)
Bessans 1013 6477 1707
Ceillac NIVO 999 6404 1700
Col de Porte 917 6470 1325
Courchevel 984 6487 1775
Flaine 986 6551 1640
Isola 1032 6352 1915
L’Alpe d’Huez (SATA) 941 6448 1860
La Clusaz 966 6539 1500
La Plagne 987 6497 1970
Les Karellis 968 6465 1610
Les Menuires 977 6475 1800
Montgenèvre 994 6433 1860
Pralognan 991 6482 1416
Puy St-Vincent 975 6421 1600
Tignes 1005 6493 2080
Val d’Isère Joseray 1011 6490 1850
Vars 992 6398 1855
Bellecote 994 6495 3000
Bonneval sur Arc 1017 6480 2720
Col Agnel 1015 6407 2630
Le Chevril 1009 6497 2560
Les Ecrins 964 6432 2978
Les Rochilles 973 6449 2450
Restefond 1003 6367 2550
Abriès 1012 6417 2000
Auris en Oisans 947 6422 1860
Auron 1014 6358 1790
Avoriaz 991 6571 2100
Bellevaux 975 6573 1520
Ceillac 999 6404 2300
Cervières 995 6424 2160
Col de Porte 917 6471 1325
Courchevel 984 6484 2100
Flaine 986 6551 2250
L’Alpe d’Huez (SATA) 941 6448 2000
L’Alpe d’Huez 2350 944 6449 2450
L’Alpe du Grand Serre 925 6440 1800
La Clusaz 966 6539 2450
La Foux d’Allos 985 6360 2050
La Plagne 987 6496 2160
La Plagne Bellecote 994 6496 2970

Table 5: List of the stations of the snow depth data set (part 1)
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Name E (km) N (km) Alt (m)
La Plagne Champagny 990 6494 2300
La Plagne Montchavin 991 6499 2100
La Rosiere 1001 6512 2200
Larche 1006 6380 1700
Le Corbier 954 6465 2200
Le Grand Bornand 965 6542 1700
Le Molard 1014 6489 2560
Le Monêtier 976 6436 2200
Le Sauze 994 6376 2070
Le Tour 1007 6554 2190
Les 2 Alpes (Toura NE) 950 6437 2600
Les Arcs 998 6503 2250
Les Arcs 1600 998 6503 2070
Les Carroz d’Arâches 985 6554 1770
Les Contamines Montjoie 987 6527 2270
Les Gets 983 6570 1720
Les Karellis 967 6464 1950
Les Menuires 980 6474 2380
Les Orres 980 6386 2220
Lognan 1006 6549 2780
Maljasset 1004 6396 1900
Megève 981 6534 2000
Meribel Mottaret 980 6480 2000
Molines 1005 6411 2250
Orcières PNE 963 6403 2450
Plan de l’Aiguille 1000 6541 2300
Pra Loup 985 6368 2450
Pralognan 993 6484 1950
Prapoutel 938 6467 1900
Prarion 993 6538 1850
Puy St-Vincent 975 6421 2250
Réallon 964 6392 2010
Risoul 988 6398 2550
Serre Chevalier 980 6429 2100
Tignes 1004 6493 2400
Val d’Isère Joseray 1012 6489 2530
Val Fréjus 987 6458 2200
Valmeinier 975 6461 2200
Valmorel 969 6488 1850
Vars 992 6398 2270
Villeneuve la Salle 978 6432 2500

Table 6: List of the stations of the snow depth data set (part 2)



Abstract
Risk management in mountainous regions requires a precise assessment of snow ex-
tremes. We adopt the framework of max-stable processes, which connect extreme value
statistics and geostatistics, to investigate the spatial dependence of winter maxima of
3-day snowfall and snow depths in the French Alps. Two important issues are broached:
model selection and temporal non-stationarity. First, we introduce a cross-validation
procedure which is used to assess the predictive ability of several max-stable processes
to capture the spatial dependence structure of snowfall maxima. Then, we highlight a
decrease in spatial dependence of extreme snowfall during the last decades. Lastly, we
show a way to model temporal trends in a spatial dependence of extremes through the
example of snow depth maxima. For both extreme snowfall and extreme snow depths,
we find that the spatial dependence is strongly impacted by climate change, at first by the
effect of the increase in temperature on the snow rain partitioning, also by the decrease
in winter cumulated snowfall.

Keywords: snowfall, snow depths, spatial extremes, max-stable processes, climate
change, French Alps

Résumé
La gestion des risques dans les régions montagneuses nécessite une caractérisation des
extrêmes neigeux. Nous utilisons le cadre des processus max-stables, qui relient statis-
tique des valeurs extrêmes et géostatistique, pour étudier la dépendance spatiale des
maxima hivernaux de cumuls de chutes de neige sur 3 jours et de hauteurs de neige
dans les Alpes françaises. Deux questions sont abordées : la sélection de modèle et
la non-stationnarité temporelle. Nous commençons par introduire une procédure de
validation-croisée que nous utilisons pour évaluer les capacités de plusieurs processus
max-stables à capturer la structure de dépendance spatiale des maxima de chutes de
neige. Ensuite, nous mettons en évidence une baisse de la dépendance spatiale des
chutes de neige extrêmes durant ces dernières décennies. Enfin, nous montrons comment
modéliser des tendances temporelles dans une structure de dépendance spatiale des
extrêmes à travers l’exemple des maxima de hauteurs de neige. Pour les extrêmes de
chutes comme de hauteurs de neige, la dépendance spatiale est fortement impactée par
le changement climatique, premièrement par l’effet de la hausse de la température sur la
phase (neige ou pluie) de la précipitation, et ensuite par la baisse du cumul hivernal des
chutes de neige.

Mots clés: chutes de neige, hauteurs de neige, extrêmes spatiaux, processus max-stables,
changement climatique, Alpes françaises.
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