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Abstract 

 

This thesis aims at exploring the question of temporal scaling in lumped conceptual 

hydrological modelling. The main objectives of the thesis are to: (i) study the effects of 

varying the modelling time step on the performance, parameters and structure of hydrological 

models; (ii) develop a hydrological model operating at different time steps, from daily to sub-

hourly, through a unified, robust and coherent modelling framework at different time scales. 

Our starting point is the chain of conceptual rainfall-runoff models called ‘GR’, developed at 

Irstea, and in particular the daily ‘GR4J’ lumped model. The GR4J model will be the baseline 

model to be effectively downscaled up to sub-hourly time steps following a top-down 

approach. An hourly adaptation of this model had already been proposed in previous research 

studies, but some questions on the optimality of the structure at sub-daily time steps were still 

open. This thesis builds on these previous studies on the hourly model and responds to the 

operational expectations of improving and adapting the model at multiple sub-daily and sub-

hourly time steps, which is particularly interesting for flood forecasting applications. For our 

modelling tests, we built a database of 240 unregulated catchments in metropolitan France, at 

multiple time steps, from 6-minute to 1 day, using fine time step hydro-climatic datasets 

available: (i) 6-min rain gauges and higher spatial-density daily reanalysis data for 

precipitation; (ii) daily temperature data for potential evapotranspiration (making assumptions 

on sub-daily patterns); (iii) sub-hourly variable time step streamflow data. We investigated 

the impact of the inputs temporal distribution on model outputs and performance in a flood 

simulation perspective based on 2400 selected flood events. Then our model evaluation 

focused on the consistency of model internal fluxes at different time steps, in order to ensure 

obtaining a satisfactory model performance by a coherent model functioning at multiple time 

steps. Our model diagnosis led us to identify and test a significant improvement of the model 

structure at sub-daily time steps based on the complexification of the interception component 

of the model. Thus, we propose a new version of the model at multiple sub-daily time steps, 

with the addition of an interception store without extra free parameters. Our tests also confirm 

the suitability at multiple time steps of a modified groundwater exchange function proposed 

earlier, leading to overall improved model accuracy and coherence. 
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Résumé 

Cette thèse vise à explorer la question du changement d’échelle temporelle en modélisation 

hydrologique conceptuelle globale. Les principaux objectifs de la thèse sont : (i) étudier les 

effets du changement du pas de temps sur les performances, les paramètres et la structure des 

modèles hydrologiques ; (ii) mettre au point un modèle pluie-débit applicable à différents pas 

de temps, allant du journalier à l’infra-horaire, au travers d’un cadre de modélisation unifié, 

robuste et cohérent à différents pas de temps. Notre point de départ est la chaîne de modèles 

‘GR’, développée à Irstea, et plus particulièrement le modèle global journalier GR4J. Ce 

modèle a été choisi comme le modèle de référence à adapter à d’autres résolutions plus fines, 

jusqu'à des pas de temps infra-horaires, en suivant une approche descendante. Une adaptation 

horaire de ce modèle avait déjà été proposée dans des travaux antérieurs, mais certaines 

questions sur l’optimalité de la structure à des pas de temps infra-journaliers restent ouvertes. 

Cette thèse s’appuie sur ces études antérieures sur le modèle horaire et est une réponse aux 

attentes opérationnelles d’améliorer et d’adapter le modèle à des pas de temps infra-journalier 

et infra-horaires, ce qui est particulièrement intéressant pour la prévision des crues. Pour nos 

tests de modélisation, nous avons construit une base de données de 240 bassins versants non 

influencés en France métropolitaine, à différents pas de temps allant de 6 minutes à 1 jour, en 

utilisant des jeux de données disponibles à pas de temps fin : (i) les données pluviométriques 

à 6 minutes et la réanalyse des lames d’eau journalières à plus haute résolution spatiale ; (ii) 

les données de température journalière pour le calcul de l’évapotranspiration potentielle ; (iii) 

les données hydrométriques à pas de temps variable. Nous avons étudié l'impact de la 

distribution temporelle des entrées sur les sorties et les performances du modèle en se 

focalisant sur la simulation de crue, sur la base de 2400 événements. Ensuite, notre évaluation 

du modèle a porté sur l’analyse de la cohérence des flux internes du modèle à différents pas 

de temps, afin d'assurer une performance satisfaisante à travers un fonctionnement du modèle 

cohérent. Notre diagnostic du modèle nous a permis d’identifier et de tester une amélioration 

de la structure du modèle à différents pas de temps infra-journaliers basée sur la 

complexification de la composante d’interception du modèle. Ainsi, nous proposons une 

nouvelle version du modèle, fonctionnant à différents pas de temps infra-journaliers, avec 

l’ajout d’un réservoir d’interception sans paramètre libre additionnel. Nos tests confirment 

aussi l’adéquation à pas de temps multiples d’une fonction d’échanges souterrains proposée 

précédemment, conduisant à une meilleure qualité et cohérence globale du modèle.  
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Context 

Hydrological models are used for several practical and essential purposes, such as flood 

forecasting, droughts anticipation and decision making for water planning and management. 

These varied objectives require hydrological estimates (river flows) at a wide range of spatial 

and temporal scales (Blöschl and Sivapalan, 1995). For this reason, the possibility of using a 

model with different spatial and temporal resolutions corresponds to an important operational 

demand. 

Until now, the question of refining the spatial resolution of hydrological models has drawn 

more attention than the temporal resolution. For instance, a recent review by Melsen et al. 

(2016a) has shown the systematic lack of attention payed to the temporal resolution in 

hydrological modelling. While many model developers continuously increased the spatial 

resolution of hydrological models, the temporal resolution did not keep pace with this and 

with the characteristic velocity (Blöschl et al., 1995) of hydrological processes. Presently, it is 

frequent to find semi-distributed and distributed hydrological models with a refined spatial 

mesh (e.g. 100-km
2
), similar to the typical space scale of hydro-meteorological processes, but 

with a daily time step, which is not sufficiently fine for describing many processes (Blöschl 

and Sivapalan, 1995). This asymmetry of attention is surprising, given the strong inter-play 

between space and time, a long-lasting debate in hydrology and all physical sciences. It seems 

urgent to rebalance this asymmetry, spending more resources (especially time) on temporal 

issues in hydrology! 

Nowadays, most hydrological models are designed at a fixed time step and most operational 

systems choose the model to be used in function of their objectives and of the data sampling 

rates (typically daily or hourly). Given the increasing data availability from different sources 

(e.g. automatic rain gauges, radar, satellite) and higher sampling rates (up to 5 min), new 

techniques to get hydrological models able to work at different scales are needed.  

In the flood forecasting context, the ability of running a model at different time steps 

corresponds to an actual operational demand. Flood forecasting services wish to have models 

able to run at different time steps, ranging from a few minutes (e.g. for flash floods 

anticipation) to daily (e.g. for floods warning in large river basins), for example to adapt to 

different data sources. Also, it is useful for a same basin to change the model time step when 

needed, as for example refining it in extreme conditions. For example, in France, some of the 

flood forecasting centres, especially those located in the Mediterranean regions, would need a 

model able to run at (up to) sub-hourly time steps, to predict intense fast-response events 

(flash floods). Improved predictions are needed to effectively alert populations and improve 

preparedness to these extreme events, which frequently cause fatalities (almost every year) 

and billions of euros in losses in the Mediterranean part of France (see, for instance, Antoine 

et al., 2001; Delrieu et al., 2005; Vinet, 2007; Boudou et al., 2016). 

Currently, most of the French flood forecasting services routinely use an hourly rainfall-

runoff model (called GRP) to forecast river flows (Furusho et al., 2016). This model has been 
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adapted to the hourly time step (Berthet, 2010), and to the forecasting mode, from the daily 

GR4J simulation model (Perrin et al., 2003), but it seems necessary to further explore the 

temporal adaptability of this model to shorter time steps (Furusho et al., 2016). It is also 

expected that some essential model improvements of the accuracy of flood peaks and volumes 

estimations could be achieved by considering the temporal variability of model inputs at 

shorter time scales. 

The relevance of this research is evident: the GRP model is currently used as part of an early 

warning system which informs decision makers and citizens of the upcoming flood risks in 

France. The model outputs are used to update a real-time information system and publish 

flood watch maps. These maps are currently published twice a day on the web-site 

www.vigicrues.gouv.fr and concern 22,000 kilometers of watercourses in France (Escudier et 

al., 2016), covering 75% of the population living in flood zones
1
.  

State-of-the-art and scientific questions 

The question of temporal scaling in hydrological modelling implies multiple scientific and 

technical questions, such as:  

- the relationship between processes, observation and modelling scale, as discussed, for 

instance, by Blöschl and Sivapalan (1995) and Obled et al. (2009); 

- the dependency of model parameters on time step (e.g. Littlewood and Croke, 2008; 

Wang et al., 2009; Kavetski et al., 2011); 

- the dependency of model structures on time step (e.g. Atkinson et al., 2002; Mouelhi 

et al., 2006b) and the linked problem of the coherence of the internal model 

functioning at different time steps (Haddeland et al., 2006). 

These issues are highly inter-connected, and their comprehensive analysis is a complex task. 

An ideal link exists between the processes and observation scale, as pointed out by Blöschl 

and Sivapalan (1995), reminding the well-known filtering effects of sampling, formalized in 

the signal processing field by the Nyquist-Shannon sampling theorem (Shannon, 1949). Obled 

et al. (2009) highlight the implications of sampling for hydrological modelling, suggesting 

that a “maximum acceptable time step” should be defined for each model application in 

function of the catchment response time. This analysis should be considered an essential first 

step for hydrological modelling, but instead it is generally ignored in the literature. 

An increasing number of papers investigate the impact of calibration data time step on model 

parameters. As discussed by Littlewood et al. (2011), the results of different research groups 

share some conclusions, while presenting also intriguing differences in the messages 

                                                 
1
 Source: Ministère de l'Environnement, de l'Énergie et de la Mer 

(http://www.developpement-durable.gouv.fr/) 

 

http://www.vigicrues.gouv.fr/
http://www.developpement-durable.gouv.fr/
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delivered. The use of different models and calibration methods, on a small number of 

catchments, seems to be the actual limitation for seeking general conclusions. For example, 

some previous studies (e.g. Littlewood and Croke, 2008; Wang et al., 2009; Kavetski et al., 

2011) showed varying parameters-dependencies on time step (from daily to sub-hourly) 

depending on which models, parameters, and catchments are considered. While some 

parameters (in specific models and catchments) are time-step dependent and seem to reach 

stable values as the time step decreases, other parameters reveal either a low sensitivity or 

unclear trends. 

The dependency of model structure on time steps stems from the commonly recognized fact 

that the formulation of hydrological processes at one scale is not immediately transferable at 

the adjoining levels of scale (Klemeš, 1983). Nevertheless, in hydrological modelling, it is a 

common practice to use a same model structure for different time steps. The construction of a 

time-step adaptive structure has so far been neglected in the literature of conceptual and 

empirical hydrological models. Still, some authors showed that the structure of conceptual 

hydrological models requires additional complexity at shorter time steps (see, for instance, 

Atkinson et al., 2002; Mouelhi et al., 2006b; Kavetski et al., 2011). However, there is not yet 

a systematic knowledge on the level of complexity and on which model components are 

needed at different time steps, especially at sub-daily time scales. 

There is a lack in detailed evaluations of model functioning at multiple time steps, for 

example for assessing the internal coherence of a model. To our knowledge, only one 

example of analysis of the coherence of the simulated moisture fluxes in a hydrological model 

run at different time steps can be found in the work by Haddeland et al. (2006) on the 

Variable Infiltration Capacity model. This kind of evaluation seems to be necessary for the 

identification of a multi-time step hydrological model. 

Objectives 

The main objective of this research work will be the development of a coherent multi-time 

step model that could be run over a continuous range of time steps, at least from daily to sub-

hourly, by simple adaptation of its parameters and structural components, while maintaining 

an internal coherence of its functioning. Also, we will try to improve the performance of the 

rainfall-runoff models developed at different time steps with special focus on flood 

simulation. The results of this work should be transferred in the operational flood forecasting 

model (GRP) developed at Irstea and used in the flood forecasting centres in France. 

The starting point of this work is the GR (Génie Rural) models chain, a set of rainfall-runoff 

models empirically developed since the 1980s for different fixed time steps (at Irstea, UR 

HBAN, France). In particular, we will start on the basis of the daily GR4J rainfall-runoff 

model (Perrin et al., 2003), which concentrated most of the efforts in the development 

process. Previous attempts were made by Mouelhi (2003) to find consistent model structures 

from the daily to the yearly time steps. Mouelhi (2003) searched for the optimal model 

structures at these larger time steps, finding some similarities in the structures identified at the 



Introduction 

6 

 

monthly and daily time step. Our work will be in the continuation of this harmonization of 

model structures across different time steps, but we will move in the other direction of the 

temporal axis, from daily to sub-hourly time steps. There were previous works done at Irstea 

to adapt the simulation model to sub-daily time steps: Mathevet (2005) and Le Moine (2008) 

successively proposed improved versions at the hourly time-step, partly based on explicit 

relationships of model parameters with time step. Their attempts made to make modifications 

or include additional complexity in the hourly model structure brought some improvements, 

but some questions on the optimality of the structure at sub-daily time steps are still open. 

Here we will build on these works by focusing on a wider range of time steps. 

The first step will be to propose an original unified modelling protocol at different time steps 

to evaluate model performance in a consistent way as the time step changes. In this context, 

one research question is whether modelling at shorter time steps could improve model 

performance at larger time scales. This will allow understanding the benefits of refining the 

data and modelling time steps for model accuracy also when the interest is on water volumes 

simulations (and not only on actual peaks or timing of short-duration events). By working on 

a large catchment set, we will be able to investigate the links between the optimal model time 

step and catchment and flood events characteristics. 

Then, the adaptability of the GR simulation models across different time steps will be 

evaluated in terms of coherence of parameters and structural components. We will consider 

the temporal coherence (of model parameters, fluxes and states) as an essential principle for 

building a multi-time step consistent model. This coherence could also help to better 

understand the interactions between representation of hydrological processes and time scale. 

Structure of the thesis 

This thesis consists of five main chapters. Some complements are provided in the 

Appendixes. 

Chapter 1 introduces the context of our work, providing a review of scale issues in hydrology, 

with particular emphasis on modelling. In particular, we summarize several previous works 

that investigated the impact of time step on model performance, parameters and structure. 

This review outlines the current limits for the transferability of hydrological models across 

time steps. Also, we introduce our choice of a lumped modelling approach and we present the 

GR4 rainfall-runoff model that we will use and try to improve at different time steps.  

Chapter 2 sets the methodological basis of our study. It presents the source data used (for 

precipitation, potential evapotranspiration and streamflow), and the treatments done to build a 

large catchment data base at multiple time steps. The characteristics of the 240 catchments 

and 2400 flood events selected are presented. Also, the model used is further presented as 

well as the calibration and evaluation framework. 

Chapter 3 is an article published in Journal of Hydrology, where we propose our model 

testing approach to analyse the impact of time step on the simulation model performance. It 
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shows that the impact of the modelling and data time steps is significant also when 

performance is evaluated at larger time scales. We detected different behaviours of model 

performance as the time step changes, which are found to be dependent on flood 

characteristics. The analysis of this chapter highlights one specific limit of the current 

adaptation of the GR4 model at sub-daily time steps in the capacity of controlling the water 

balance over floods. 

Chapter 4 presents a thorough diagnosis of the GR4 model at different time steps, mainly 

based on the analysis of the internal behaviour of the model as the time step changes, in terms 

of model parameters, fluxes and states. This analysis allows detecting some clear structural 

inadequacies of the model that emerge by analysing the temporal consistency of the internal 

fluxes of the model. In particular, a defect in the conceptualization of the interception 

component in the model is shown to impact all the water balance model components and to 

jeopardize model performance (on flood events) at sub-daily time steps. 

Chapter 5 presents our process of model improvement at sub-daily time steps based on the 

performance and the internal coherence of the model. We show the need of a refinement of 

the production part of the model at sub-daily time steps by taking into account what can be 

considered the interception process. Other structural modifications are also tested, especially 

for the exchange function. These tests lead to validate and retain a new improved structure of 

the model at sub-daily time steps. 

The last chapter (Conclusions) provides a global synthesis of the work, highlighting the main 

contributions and the implications of the results for flood forecasting applications. Finally, 

some ideas for future studies are suggested. 
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In order to contextualize this research work, the first part of this chapter (Sections 1.1 and 1.2) 

introduces rainfall-runoff modelling in the context of the hydrological science. We introduce 

the object of study, i.e. the catchment and its water balance, and we briefly explain what a 

rainfall-runoff model is. An overview of the general framework of development of 

hydrological models is provided, highlighting the underlying time concepts. We briefly 

illustrate some limitations of rainfall-runoff modelling, particularly with respect to temporal 

discretization and data-averaging effects. Then we provide a critical review of the traditional 

classification of existing models, focusing more on the combination of spatial and temporal 

scales than on model conceptualization or development. Furthermore, we discuss the 

properties that a rainfall-runoff model should possess, and, finally, we support our choice of a 

spatially lumped approach and a fixed model structure paradigm at different time steps. 

In the second part of this chapter (Section 1.3 and 1.4), we provide a literature review on scale 

issues in hydrology, and particularly on temporal scaling in rainfall-runoff modelling. After 

presenting some general concepts on scaling and the typical scales in hydrology, we highlight 

the multiple inter-related aspects of this research work. The state of the art of the time scale 

issues in rainfall-runoff modelling is presented in details with particular emphasis devoted to:  

(i) the relation between processes, observations and model scales;  

(ii) the dependency of hydrological model parameters and performance on the time step;  

(iii) the relation between model structures and time step. 

 

Some other questions, as the numerical time stepping schemes and the multi-time scale 

assessment of modelling, are also briefly outlined along our review. Since the discussion on 

the time stepping schemes requires more details, but is not essential to understand and 

develop this research work, it will be further presented in Appendix A. At the end of this 

chapter, following the perspectives enlightened by our overview, the objectives of this 

research work will be presented and formulated in some detailed research directions. 

1.1 Catchment hydrology 

Hydrology is the science that studies the water cycle, i.e. the movement of masses of water in 

the hydrosphere, i.e. the part of the Earth system where water is (from about 15 km up into 

the atmosphere to about 1 km down into the lithosphere). A schematic representation of the 

water cycle is given in Figure 1.1, from Chow et al. (1988). We can observe that, at a global 

scale, hydrology focuses on the exchanges of water between the atmosphere, the land surface, 

the watercourses, the subsurface and the ocean. However, in order to contextualise our work, 

this classic definition of hydrology is too large as it encompasses all the branches and 

characterizations of the discipline that can focus on one or more compartments of the 

hydrosphere, across a wide range of spatial and temporal scales. Continental hydrology is 

usually further defined as the study of the continental part of the water cycle (excluding ocean 

and seas) from a quantitative point of view. The major physical processes considered in 

continental hydrology include: precipitation, interception, evaporation (from intercepted water 
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and soil), transpiration, infiltration, percolation, runoff (from overland, sub-surface and 

groundwater flow) and open-channel flow (in watercourses).  

 

FIGURE 1.1 – The water cycle, with the main hydrologic processes, and a general indication of the 

annual average water fluxes given in units relative to a value of 100 for the rate of precipitation on 

land (from Chow et al., 1988). 

In the field of continental hydrology, we can further specify the catchment hydrology that 

deals with the integration of hydrological processes at the catchment scale (Singh and 

Woolhiser, 2002). The catchment, also called drainage basin (or watershed in US English), is 

defined at any point or cross-section of a river, as the entire topographical and geological area 

drained by the river and its tributaries upstream of this section. It may be as small as an 

agricultural parcel, smaller than 1 km
2 

(e.g. for a small mountain creek), or as large as 

hundreds of thousands or a few millions of km
2
 (for the largest river basins in the world, e.g. 

those of Amazon, Congo, Nile, Mississippi, Ob and Paranà Rivers).  

Despite the definition given above, a catchment is usually defined only on a topographical 

basis, by the so-called drainage divide line that lies along the topographical ridges, as 

represented in Figure 1.2 (from Le Moine, 2008). This allows including in the definition the 

entire area that contributes to the streamflow by surface runoff (also called overland flow), 

and by infiltration in those aquifers that are drained by the river. This area contributes to the 

streamflow also with flow components from subsurface or groundwater. However, the area 

defined by the drainage divide line is not always perfectly superposing with the whole 

geological contributing area that could be identified following the sub-surface modes of 

supply of the watercourse streamflow, as discussed by Le Moine (2008). This difference can 
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be taken into account by enlarging/reducing the system, considering the hydrogeological 

basin, or by considering the topographical catchment as an open system exchanging with the 

groundwater body, in the case where it exists, so keeping a general approach and a unique 

definition of catchment. The latter way is the choice followed in the present research work. 

 

FIGURE 1.2 – Definition of the catchment (from Le Moine, 2008) at the outlet A. The streamflow Q at 

the river section in A is “forced” by the areal precipitation P, and the evapotranspiration E, occurring 

during a time interval (day, hour, etc.). The main forcing variable is the areal precipitation P (ratio 

between total volume of rainfall fallen over the catchment in a time interval and basin surface) that is 

estimated by interpolating some point measurements P1, P2, …, Pn and hence is subject to sampling 

and measurement uncertainties. The catchment response, i.e. the functional relationship f( ), depends 

on the catchment characteristics and conditions, i.e. the parameters . 

Like in other environmental sciences, the object of catchment hydrology is a complex system 

with highly interrelated, spatially distributed and time varying phenomena involved. To deal 

with this complexity, there is a variety of approaches that can be summarized in two general 

complementary strategies:  

(1) the reductionist approach (also called mechanistic): it is based on the reduction of 

the system studied into a number of interconnected elementary units of smaller spatial 

dimensions. In catchment hydrology this corresponds to the a-priori prescription of 

splitting a catchment area into sufficiently small grid elements where some elementary 

physical laws can be applied. 

(2) the lumped approach (also called systemic or holistic): it analyses the system at the 

catchment scale. Given this large spatial scale, the functional relationship describing 

the rainfall-runoff transformation must be defined with some conceptual or empirical 

relationships, still with the possibility of representing the hydrological processes 

integrated in space. This second approach is the one followed in our work.  
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1.2 Rainfall-runoff modelling 

Rainfall-runoff (RR) models are mathematical models that aim at transforming the 

precipitation fallen in a certain time interval on a certain area, here the catchment, into the 

streamflow at the outlet during the same time interval. As input forcing of the system, in 

addition to rainfall, other variables can be used to reproduce the output flows, such as 

temperature or evapotranspiration. A mathematical model, as defined by Eykhoff (1974), is a 

representation of the essential aspects of an existing system (or one to be constructed) which 

presents knowledge of that system in usable form. This is a good definition also for rainfall-

runoff models which describe the behaviour of hydrological systems in a simplified form that 

can be used for practical purposes by generating streamflow time series. 

The ‘utilitarian’ view of hydrological models has clearly driven their historical development 

that “has been largely pioneered by practitioners who needed solutions to real problems” as 

noted by Linsley (1982). From the 19
th

 century and the beginning of the 20
th

, hydrologists 

(often engineers) proposed a variety of empirical formulae, starting from the so-called 

“rational formula” by Mulvaney who proposed the first known hydrological model in 1850. 

This simple first model, linking the peak flow to rainfall intensity on a catchment, has been 

largely used for a variety of engineering tasks, as sewer design. Only in the second part of the 

20
th

 century, models have been developed for describing the mechanisms of flow in greater 

details, as for hydrologic research on the flow processes (as cited by Linsley, 1982).  

Today, many different hydrological models exist (maybe a few hundred or more) with a wide 

variety of levels of sophistication. Many of them are currently used and continue to be 

improved for research and operational purposes, in a long-term development process. A 

review of the existing hydrological models and their historical advances goes beyond our 

scope. For this, one can refer for example to Todini (1988) and Singh and Woolhiser (2002). 

1.2.1 Hydrological modelling framework 

The development of hydrological models has traditionally followed a framework 

methodology involving the following steps, as highlighted by Blöschl and Sivapalan (1995) 

and frequently recalled in the literature like in Refsgaard and Henriksen (2004):  

(a) collecting and analysing data; 

(b) “developing a conceptual model (in the researcher’s mind) which describes the 

important hydrological characteristics of a catchment”; for a sake of clarity, we prefer 

calling it a ‘meta-model’ or ‘perceptual model’ (since the adjective ‘conceptual’ is 

often used for indicating a type of model structures, as reported in Section 1.2.4); 

(c) translating the meta-model into a mathematical model, generally using difference or 

differential equations (solved analytically or by numerical schemes); 
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(d) “calibrating the mathematical model to fit a part of the historical data by adjusting 

various coefficients”, i.e. determining the values of the model free parameters by 

fitting the model outputs with the observed time series; 

(e) “validating the model against the remaining historical data set”. 

Variants and reiterations of this general scheme are sometimes followed. For example, the 

development of the so called ‘empirical’ models can rely on a trial-and-error modelling 

approach as acknowledged by some authors (e.g. Bergström, 1991; Perrin et al., 2003). 

 

 

FIGURE 1.3 – (a) The rainfall-runoff modelling process with the phases of model development and 

their interplay. Note that the conceptualization phase has a dashed connection with the upstream 

phase of data collection since the degree of this interplay depends on the type of model. (b) Scheme 

of functioning of a spatially lumped rainfall-runoff model with (from top to bottom): (i) input 

trajectories of catchment daily rainfall (observed data from the French catchment of the Hérault river 

at Laroque, 916 km2) and estimated potential evapotranspiration (calculated using temperature 

data), (ii) essential mathematical representation of a lumped hydrological model (in the equations 

𝒈(∙) are input-output fluxes, S are the model state variables and 𝜽 are the model parameters), and 

(iii) output trajectory of simulated streamflow at daily time step (by using the GR4J model, see Perrin 

et al., 2003). 

Figure 1.3(a) gives a schematic representation of the rainfall-runoff modelling process, with 

the phases of model development. Figure 1.3(b) shows a basic representation of the 

transformation operated by a rainfall-runoff model on the main variables, i.e. precipitation 
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(P), potential evapotranspiration (E), and streamflow (Q). Note that Figure 1.3(b) is more 

representative for the lumped (systemic) approach than the reductionist one, because for the 

latter several input trajectories should be used (one for each grid element of the spatial 

discretization) and the fluxes equations should be based on partial differential equations. 

1.2.1.1 Time concepts in modelling and linkages across scales 

Along the different phases of the modelling process, the choice of a spatial and temporal 

discretization must be made several times. This choice should take into account the dominant 

hydrological processes (those considered important for a specified application), the data 

available, the model developed/used and the objectives of modelling. Some linkages across 

scales may be necessary along the modelling process and they should be explicit. For 

example, for the temporal domain, we agree with Melsen et al. (2016a) in identifying several 

different “time concepts which in practice are often mixed up and misinterpreted”. We 

distinguish eight different time concepts, extending the six proposed by Melsen et al. 

(2016a):  

(i) the process time scale;  

(ii) the source data time interval (spacing between data samples, also called 

sampling interval);  

(iii) the model input resolution;  

(iv) the numerical resolution (model time step);  

(v) the model output resolution;  

(vi) the calibration time interval;  

(vii) the validation time interval;  

(viii) the interpretation time interval.  

In these concepts, as stated by Melsen et al. (2016a), one may note the distinction between the 

term ‘scale’, that is a continuous variable, while ‘resolution’ and ‘time interval’ indicate 

discrete variables. The resolution refers to a model property, while the time interval is 

independent of the used model. In the following of this work we will use the term ‘scale’ in a 

more general and common sense and also the term ‘time step’ will refer to model resolution 

and data time intervals. These different concepts are summarized in Figure 1.4(a), while 

examples of linkages across these time concepts are given in Figure 1.4(b) and 1.4(c). The 

first causal link between process time scale and source data time interval can be considered as 

ideal, because observing processes at the scale they occur “is not always feasible” (Blöschl 

and Sivapalan, 1995). However, a deterministic link exists between the time scale of 

processes and the data resolution needed for their perfect reconstruction. This link is 

explained by the well-known fundamental criterion of signal processing and sampling, the 

Nyquist-Shannon sampling theorem (Shannon, 1949), also called the Nyquist criterion. For 

further details on the transposition of the Nyquist criterion to hydrology, we refer the reader to 

Section 1.4.1, while here we remind it in the two examples in Figure 1.4. First (Figure 1.4(b)), 

a thunderstorm event with steady spatial location, short time duration (e.g. < 30 min) and high 

temporal variability (approximated highest frequency of 10 min
-1

) should be observed at short 

source data time intervals (< 5 min) to detect the highest frequency and intensity of the 
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rainfall peaks. This may be important also given that such intense events are likely to generate 

an infiltration-excess response, depending on rainfall intensity, with characteristic time scales 

smaller than half an hour (see also Section 1.3). Conversely, a steady frontal rain event is 

characterized by longer duration (> 1 day) and much less temporal variability, and it is likely 

to activate slower mechanisms of runoff response as saturation-excess (Figure 1.4(c)). In this 

case, daily rainfall measurements may be sufficient to properly observe the event and model 

the catchment response. Note that for non-stationary spatial phenomena, as rainfall showers 

(i.e. intermittent events, both in time, space or intensity) one should design the necessary 

source data time interval by analyzing not only their temporal variability but also their 

characteristic velocity in space (see Section 1.2.4.3). 

Following the review on scale issues by Blöschl and Sivapalan (1995), Figure 1.4(a) suggests 

that the linkages across scales can be performed either in a deterministic or stochastic way. A 

deterministic approach for scaling can be followed when information on the actual spatial or 

temporal pattern is available; otherwise a stochastic approach is often chosen by means of 

distribution functions. Moreover, linkages across scales can go in both directions through the 

hierarchies of scales. The term upscaling denotes transferring information from a given scale 

to a larger scale (e.g. from 5 min to 1 hour, Figure 1.4(b)), while downscaling refers to 

transferring information to a smaller scale (e.g. from daily to hourly, Figure 1.4(c)). For 

scaling from source data to input data, upscaling is usually trivial and based on simple 

aggregation (Blöschl and Sivapalan, 1995). Conversely, downscaling involves disaggregating 

and singling out from average values (source data at larger scale) to “point” values (model 

input data at smaller scale). In this case, “the stochastic approach has a particular appeal as 

the detailed pattern is rarely known and distribution functions can be derived more readily” 

(Blöschl and Sivapalan, 1995). For further details and examples of linkages across scales 

from a modelling perspective we remind to the review by Blöschl and Sivapalan (1995). 
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FIGURE 1.4 – (a) Scheme of the eight time concepts of the modelling process. (b) and (c) Examples of 

linkages across process time scale, source data time interval and model input resolution. 

1.2.1.2 Time issues in the calibration-validation procedure 

We think that the commonly used validation framework, in which the validation time interval 

is considered always as equal as the calibration time interval, should be extended to try 

corroborating models also on the basis of their ‘scaling’ capability. For example, one may 

calibrate a model at hourly time intervals while validating at daily time intervals after 

aggregation of model outputs. This would extend the methods discussed by Klemeš (1986b) 

who proposed a systematic framework to validate hydrological models (i.e. test their 

“operational adequacy”). This framework includes the commonly used ‘split-sample test’ and 

four other levels of test: simple and differential split-sample tests and simple and differential 

proxy-catchment tests. Andréassian et al. (2009) discussed the use of this validation 

framework, highlighting its utility, although they observe that only the first level, i.e. the split-

sample test, is in standard use in evaluating hydrological models today. They suggest that a 

possible reason for the limited use of the full Klemeš testing scheme could be that it is 

excessively demanding (see  Le Moine, 2008). However, we agree with Andréassian et al. 

(2009) that modellers should not fear demanding validation tests for at least three reasons: 

(i) finding model limits by advanced tests helps finding ways for model 

improvement;  

(ii) as some authors suggested, models can only be corroborated or refuted (Popper, 

1959) or just evaluated in relative terms (e.g. Oreskes et al., 1994);  



1. State-of-the-art of rainfall-runoff modelling and scale issues in hydrology: A critical overview 

19 

 

(iii) analysing model failures will make it possible to define its real limits of 

application and lead to a safer use of models, as crash-tests for automobiles 

(Andréassian et al., 2009), typically for applications on catchments with changing 

conditions (see Thirel et al., 2015). 

1.2.2 Hydrological modelling limitations and temporal averaging 

effects 

When the system of interest is complex, as it is the case of hydrological systems, the 

conceptualization phase needs to start from a simplification of the real system. This 

simplification is inevitable and justified because the modelling process is affected at different 

levels by some limitations that concern for example:  

- the scientific understanding of complex phenomena (as the groundwater processes); 

- the measurement techniques, that have their measurement errors and their spatial and 

temporal sampling scale;  

- the spatial and temporal model resolutions that smooth out an excessive detail in 

description of physical laws (Morel-Seytoux, 1988);  

- the computers calculation capabilities that limit the choice of a too fine spatial and 

temporal discretization.  

Here we want to focus on the impact of the temporal averaging of data that is a key constraint 

of rainfall-runoff modelling addressed by this research work. As represented in Figure 1.3, the 

source data, usually collected at a fixed discrete time interval, are used along the different 

phases of model development. In the conceptualization phase, data are used to different extent 

according to the type of model, e.g. they should not be used for fully-distributed physically-

based models (at least in principle), but they are generally used for empirical models (see 

Section 1.2.4). Rainfall can be measured continuously (e.g. by weighing-type rain gauges) or 

more generally at variable time steps (e.g. by tipping bucket rain gauges). Then rainfall data 

are usually aggregated over a certain time interval of accumulation (usually daily, hourly or 

sometimes some minutes). Similarly streamflow is usually first sampled at variable time steps 

and then averaged over fixed time steps. Evapotranspiration is usually calculated from 

averaged temperature data. For this reason, all models are affected by data-averaging and -

sampling time scale effects, which smooth or smear the processes that rainfall-runoff models 

must reproduce, as it can be seen in Figure 1.5.  
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FIGURE 1.5 – Data-averaging effects on streamflow and precipitation data: example for the French 

experimental catchment of the Orgeval River at Boissy-le-Châtel (105 km2) studied by Irstea. The 

source data at sub-hourly time interval (variable sub-hourly step for streamflow and 6-min step for 

precipitation) are averaged at hourly (top panel), daily (middle) and monthly time intervals 

(bottom). 

Figure 1.5 shows the progressive information loss about temporal dynamics and extreme 

values of precipitation and streamflows 1-year series as the time step increases. For the 

catchment considered here, located in the Parisian basin under temperate oceanic climate, it 

seems that there is less difference in the streamflow dynamics between daily and hourly time 

steps, rather than between daily and monthly time steps, although the time steps ratio is 

almost the same in the two cases. The ratios of the maximum streamflow peaks averaged at 

different time steps appear to be of about 62% and 17% respectively for daily/hourly and 

monthly/daily time steps. For precipitation data the ratios between maximum values over the 

year are similar for daily/hourly and monthly/daily scaling (note that the peak of monthly 

average is 0.15 mm/h). However, this observation cannot be generalized since the temporal 

variability of streamflows is obviously catchment-dependent. The difference in extreme 

values of streamflow at daily and hourly time step should be larger for smaller catchments 

and for regions subject to higher rainfall intensities. For example, Ostrowski et al. (2010) 

analysed the relationship between the time step and the extreme values of rainfall and 
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streamflow on two Austrian catchments of about 20 km
2
 and showed ratios of about 33% for 

average maximum flow at daily and hourly time steps (see Figure 9 in Ostrowski et al., 2010). 

As discussed by Kavetski et al. (2011), the “act of averaging the rainfall forcing over a time 

step ∆𝒕 introduces ‘smearing’ errors into the forcing data, which necessarily translates into 

∆𝒕-dependent errors in the model predictions and calibrated parameters”. The ‘smearing 

effects’ affect also the observed runoff data that is to be fitted in the calibration and validation 

procedure. These effects will strongly impact the identification of fast and non-linear 

processes and the calibration of their associated model parameters. Moreover, they showed 

that these effects have interplay with the effects of numerical schemes used to translate 

continuous differential equations into discrete-time equations (see Appendix A). 

1.2.3 Objectives of modelling: simulation and forecast over a wide 

range of time scales 

The knowledge and anticipation of the spatial and temporal distribution of the water in a 

catchment is essential for various human activities. Hydrological models are routinely used as 

a basis to find solutions for different problems like floods and droughts, erosion and sediment 

transports, water pollution, or to provide information for the management of water resources. 

For all these purposes, rainfall-runoff models are required to produce hydrological estimates 

at a range of time coverages (extents), typically from hours to hundreds of years, and with a 

wide range of time resolutions (time steps), from minutes to years. Note the distinction 

between these two concepts: the temporal horizon covered by the model outputs (coverage or 

extent) and the spacing between data in the time series (resolution, time step or time interval). 

To indicate these two time concepts the unique term ‘time scale’ is generally used in the 

literature (e.g. Blöschl and Sivapalan, 1995). 

Figure 1.6 shows some examples of application of hydrological models and their typically 

required time coverages (horizontal axis in the Figure) and model time steps (vertical axis). 

This scheme has been adapted from Blöschl and Sivapalan (1995) (cf. their Figure 1) where 

the model time steps were not represented and focus was only on the time coverage. 
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FIGURE 1.6 – Typical time coverage and time step of hydrological models required for different 

purposes (original figure inspired from Blöschl and Sivapalan (1995)). Model applications are 

classified in simulation or forecasting modes and in distinct categories of problems. Typical time 

coverages range from hourly to 100-years periods, while typical corresponding time steps range 

from 5-minutes to 1 year. 

To meet these different objectives, a rainfall-runoff model can be used in two different modes:  

(1) In the simulation mode, given the initial state of the system and the trajectory of the 

input variables over a period Ts, called the simulation horizon, the model simulates the 

trajectory of states and output variables over the same period Ts. In simulation, models 

are typically run over long horizons, i.e. from one month to several years, and with a 

range of time steps going from hourly to yearly intervals. 

(2) In the forecasting mode, given the records of input, state and output variables up to the 

instant of forecast, tf (when the forecast is issued), the model predicts the states and 

output values for a time horizon h following tf, where h is called lead time. In 

forecasting, the model is generally run over shorter periods (lead times), i.e. from one 

hour to some months (or years), and with a range of time steps going from sub-hourly 

to monthly intervals. 

1.2.4 Types of models: towards a scale-dependent process-based 

classification  

In order to respond to the various objectives presented above, different types of hydrological 

models have been developed in the last century. The choice of a particular type of model is 
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dependent on the objective of modelling, on data availability and on the modeller’s 

understanding and conceptualization of the system. A classification of the types of models 

available is needed, for better orientation in the wide variety of hydrological modelling 

options, and to specify our modelling approach. At least five significant levels of 

classifications of models may be distinguished, according to the different hypotheses made 

by the modeller on the spatial and temporal scales (both resolution and coverage) and the 

processes conceptualization. These five levels have been already recognized by many authors 

but often the focus is put on each level individually. Here we propose an original 

comprehensive synthesis of this classification. Moreover we criticize the traditional 

classification based on processes conceptualization, going towards a new scale-dependent 

classification that gives more importance to the assumptions on spatial and temporal scales, 

especially the temporal one. The latter has long been disregarded in the hydrological and land 

surface modelling literature, where more importance has been given to the spatial dimension, 

as already noted by some authors (e.g. Archfield et al., 2015; Melsen et al., 2016a). 

1.2.4.1 A four-level scale-dependent classification 

1) A first level of model classification can be done on the basis of the spatial resolution, i.e. 

the assumption to represent the continuous spatial domain of the real system into the 

discrete one of the model. In this way, models can be denoted as:  

 Spatially lumped, treating the catchment as a single unit, by a systemic approach, that 

implicitly accounts for only the mean variability; 

 Semi-distributed, subdividing the catchment into sub-catchments, each one treated as 

a whole single unit (systemic approach); 

 Distributed, subdividing the catchment into grid elements (i.e. reductionist approach); 

the degree of refinement of the discretization may be very different within this class. 

We would further distinguish the fully-distributed models, for which grid elements are 

so small as to be consistent with the point-scale measurements (see Section 1.2.4.3). 

2) A second level of classification relies on the spatial coverage (or extent). This is less 

common in the literature, though different model denominations according to coverage 

can be found as:  

 Macroscale or large-scale, for applications of modelling either on large basins (as 

hundreds of thousands of km
2
) or regional (continental) scale or global scale 

(Kauffeldt et al., 2016); 

 Mesoscale (upper and lower) for applications on small catchments or medium-size 

river basins, from 1 km
2
 to 100’000 km

2 
(Schultz, 1994);  

 Microscale or plot-scale, for spatial coverages smaller than 1 km
2 

(Schultz, 1994). 

3) A classification is based on the model time step, i.e. the numerical time resolution used to 

represent the continuous temporal domain of the system into the discrete one of the 



1. State-of-the-art of rainfall-runoff modelling and scale issues in hydrology: A critical overview 

24 

 

model. Thus models are denoted as inter-annual, annual, seasonal, monthly, weekly, 

daily, hourly or sub-hourly models. These mentioned resolutions are the most used, but 

also any other time resolution can be used. 

4) As for the temporal coverage (and the initialization mode), one can find:  

 Continuous time models, considering a long ‘continuous’ temporal span (generally at 

least one year); they are suitable for simulations on long time coverages thus allowing 

to by-pass the initial condition determination problem thanks to a warm-up period (see 

Kitanidis and Bras, 1980); these models may use a wide range of time resolutions. 

 Event-based models that are used for single storm events and require the initial 

condition to be specified by the modeller, assuming that it can be guessed easily from 

a short past period (less than one year); in event-based models, only short temporal 

resolutions are used.  

1.2.4.2 The traditional conceptualization-based classification 

According to the assumptions made by the modeller in the processes conceptualization phase, 

a commonly used model classification consists of three classes (see for example Wheater et 

al., 1993): 

(i) Purely empirical or black-box models, also called metric or data-based models: they 

are based on inference from the data used in the modelling process and limited to 

providing accurate output predictions. The model parameters do not correspond to 

measurable physical variables, so they are usually derived by automatic calibration. 

Some of the most popular examples are: the linear ARMAX models (Auto-Regressive 

Moving Average with eXogenous inputs) initially developed by Box and Jenkins 

(1976); the Artificial Neural Networks (Dawson and Wilby, 2001); Transfer Functions 

(e.g. Young, 2011); and Data-Based Mechanistic (DBM) models (e.g. Young and 

Beven, 1994). 

(ii) Conceptual or bucket-style models, also called soil-moisture accounting models: they 

attempt at describing the main hydrological processes occurring in the system following 

a systemic approach. These models are often written in state-space form where state 

variables S(t) are used to describe the evolution of the catchment system conditions, by 

a set of ordinary differential equations as: 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝑔𝑠[𝑆(𝑡), 𝑃(𝑡), 𝐸(𝑡) |𝜃] (1.1) 

𝑄(𝑡) = 𝑔𝑄[𝑆(𝑡), 𝑃(𝑡), 𝐸(𝑡) |𝜃] (1.2) 

where 𝑔𝑠  and 𝑔𝑄 are functions describing the internal fluxes and input-output 

relationships and are derived by a simplified representation of the hydrological 

processes using components as reservoirs (e.g. for soil moisture accounting) and unit 

hydrographs (for routing); 𝑃(𝑡) and 𝐸(𝑡) are the time-dependent input forcing, 
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respectively precipitation and evapotranspiration; 𝑄(𝑡) is the system output, i.e. the 

streamflow; θ are the parameters, which are not directly measurable and are generally 

derived by calibration (automatic or manual). The discrete equations of conceptual 

models are usually derived by integration of the differential equations (Eqs. (1.1) and 

(1.2)) or sometimes directly formulated by difference equations. The integration may be 

analytical or approximated numerically, and in the latter case numerical artefacts may 

be introduced in the model (see Appendix A). Some examples of popular conceptual 

models are: Sacramento (SAC-SMA, Burnash et al., 1973), TOPMODEL (Beven and 

Kirkby, 1979), Xinanjiang (Zhao et al., 1980), PDM (Moore and Clarke, 1981), ARNO 

(Todini, 1996), SMAR (Tan and Oconnor, 1996), HBV (Lindstrom et al., 1997), 

TOPKAPI (Ciarapica and Todini, 2002), and GR4J (Perrin et al., 2003). Despite the 

number of conceptual models, many of them share the same concepts and are very 

similar (Moore et al., 2005).  

(iii) Physically-based models: they attempt at describing all the processes occurring in the 

catchments by applying physical laws at a distributed scale (reductionist approach). 

These models are based on partial differential equations, as the Saint-Venant equations 

for river flows and the Boussinesq or Richards equations for flows in saturated and 

unsaturated soils. These equations are applied on a fine discretization grid to take into 

account the spatial variability of the basin. Each grid cell is characterized by a set of 

parameters having a physical principle and theoretically derivable by field 

measurements (Beven, 1989). However, many difficulties arise in the measurement of 

parameters, because of the technical and economic difficulties of measuring such a 

number of parameters at the required small scale. So the parameters cannot be all 

derived by measurements and calibration is still required. The discrete time equations of 

these models derive from the integration of partial differential equations, so they are 

often impacted by the effects of numerical schemes (see Appendix A). The time step of 

model functioning is generally fine, whatever the data time step is, because numerical 

errors are larger as the model time step increases. The frequent use of larger resolutions 

of source data limits the appropriate physical representation of the hydrological 

processes (see Section 1.3.2). A good way of scaling up in time a physically-based 

model does not exist, thus aggregation of models results is necessary (Singh and Frevert 

(2005), page 524). Some examples of physically based models are: SHE (Abbott et al., 

1986), IHDM (Beven et al., 1987) and SWAT (Arnold et al., 1998). 

Table 1.1 summarizes the characteristics of the model classes of this traditional classification, 

highlighting the main differences, with particular emphasis to the time scale issue. 
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Modelling 

approach 

Mathematical 

form 

Spatial 

resolution 

Temporal 

coverage 

Time-steps 

(numerical and 

data 

resolution) 

Effects of data-

averaging in… 

Purely 

empirical 

(Black-box) 

Input-output form 

(0 state variables) 
Lumped 

Continuous 

and single-

event 

models 

From sub-

hourly to annual 

and multi-

annual 

Model forcing; 

Conceptualization; 

Calibration and 

validation. 

Conceptual 

and hybrid 

empirical-

conceptual 

State-space form 

(dozen state 

variables) 

Lumped or 

semi-

distributed or 

distributed 

Continuous 

and single-

event 

models 

From sub-

hourly to annual 

Model forcing; 

Conceptualization; 

Calibration and 

validation. 

Physically 

based 

State-space form 

(hundreds or 

thousands of 

variables) 

Distributed 

and fully 

distributed 

Continuous 

and single-

event 

models 

From sub-

hourly to daily 

Model forcing; 

Calibration and 

validation. 

TABLE 1.1 – Summary of the characteristics of the models classes of the traditional classification 

based on the processes conceptualization. The classes in italic font are the ones considered in this 

work. 

Limits of the traditional conceptualization-based classification 

In the last three decades, more and more authors rejected this conceptualization-based 

classification, especially questioning the realism of the physically-based concept (e.g. 

Grayson et al., 1992; Beven, 2002; Kirchner, 2006; Beven and Cloke, 2012; Montanari and 

Koutsoyiannis, 2012), but also the overlapping and uncertain contours between the three 

classes (Andréassian, 2005). The classes of empirical and conceptual models may overlap 

leading to combinations of conceptual and empirical models called hybrid metric-conceptual 

(or empirical-conceptual) models (Wheater et al., 1993). In our opinion this is more frequent 

than it is recognized, because observations are generally used to corroborate a hypothesized 

conceptual model structure and improve it by iterative experiments in an empirical paradigm 

(a sort of trial-and-error procedure). A classic example of this hybrid type of model is the 

IHACRES model, acronym of Identification of unit Hydrographs And Component flows from 

Rainfall, Evaporation and Streamflow data (Ye et al., 1997). Another emblematic case is the 

GR models chain developed at Irstea (see also Section 1.4.3.2 for details). At the daily and 

monthly time steps, the GR models GR4J (Perrin et al., 2003) and GR2M (Mouelhi et al., 

2006b) are hybrid models, as their building elements belong to the conceptual models class 

(e.g. soil moisture reservoir, unit hydrographs) but were selected and assembled by using 

observations. At the annual and inter-annual time steps, the GR model is a simple input-

output equation with a basic memory function (Mouelhi et al., 2006a), which may be 

classified more easily as purely empirical.  

Also the classes of physically-based and conceptual models may often overlap (Andréassian, 

2005). This is due to the difficulty of pursuing a fully-distributed representation of physical 

processes in space and time, as already mentioned. Without a fully-distributed approach a so-

called physically based model is reduced to an excessively detailed and sophisticated 

conceptual model, with a semblance of physics (see also next Section 1.2.4.3). Moreover, all 
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the types of models are impacted by the effects of data temporal averaging, as discussed by 

Kavetski et al. (2011): the time scale effects of data-averaging and sparse sampling are 

inherent to any model forced with (and/or calibrated to) averaged data, whether the model is 

based on conceptual or physical principles (e.g. Clark et al., 2008) or transfer functions (e.g. 

Young and Garnier, 2006). These effects undermine the physical basis of any model. 

1.2.4.3 The need of a scale-dependent process-based classification 

In our view, the main limitation of the long-established classification based on processes 

conceptualization is that it is assumed to be scale independent and in general the three classes 

(empirical, conceptual, and physically-based) overlap for the commonly used temporal and 

spatial scales. In particular, the concept of physically-based model is not realistic at all scales, 

because at coarser spatial and temporal resolutions it overlaps with the conceptual model 

category (Andréassian, 2005). Recently some authors stated that there are no purely 

physically-based models for mesoscale or large-scale catchments (see, for instance, Beven 

and Cloke, 2012; Montanari and Koutsoyiannis, 2012). Nowadays, it is not feasible to model 

these large systems at resolutions consistent with the point measurements, which would be 

necessary to apply small-scale physics. This limitation is due to the lack of data for these 

large extents, particularly at fine spatio-temporal resolutions, and the inadequacy of 

computational capabilities for high-resolution, long-term continuous simulations at large 

spatial coverages (e.g. Singh and Woolhiser, 2002). Today, the concept of physically-based 

models could be ‘realistic’ only for micro-scale spatial coverages (< 1 km
2
), where a 

combination of fine spatio-temporal modelling scales could be possible (i.e. spatial resolution 

< 1 m and temporal resolution < 5 min).  

Outside this set of fine spatio-temporal scales, models can be defined more accurately as 

‘process-based’, a term that is gaining increasing popularity in the literature (e.g. Montanari 

and Koutsoyiannis, 2012). As a matter of fact, hydrological processes may be represented by 

deterministic or stochastic equations even at large spatial and temporal resolutions, depending 

on the inherent velocity and frequency of the processes considered. This is easy to understand 

for slow processes as groundwater and base flow. Also, the integration of a process over 

space could be straightforward in cases where the inputs and catchment spatial variability is 

small. In these cases, it is likely that the distribution over time of inputs and catchment 

response could be more important than subdividing the catchment into fine spatial grid 

elements. Along similar lines, Singh and Woolhiser (2002) highlighted the great dependency 

of spatial variability on a range of scales and on location-dependent properties, by resuming 

the field examples examined by Seyfried and Wilcox (1995), as for example the spatial 

variability of shrub canopy affecting infiltration and surface runoff. Singh and Woolhiser 

(2002) well resumed this concept:  

“Depending on the scale, the sources of variability can be stochastic or deterministic or both. 

It is not possible to describe watersheds in terms of a single deterministic length scale, 

independent of scale and watershed characteristics.” 
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In other words, models should describe the relevant spatial and temporal variability of inputs 

and catchment characteristics that is appropriate for the coverages considered and the relevant 

processes. In this sense, we think that the integration of smaller-scale variabilities to larger 

modelling scales could lead to a process-based model even for spatially lumped 

representations on mesoscale catchments. Also, we think that refining the temporal resolution 

(not only the numerical but also the input data one) should be considered at least as important 

as refining the spatial resolution, and this could lead to more appropriate process-based 

representations of the catchment functioning. Some processes could be well modelled at some 

large time intervals as the year and the day which are ‘physically based’ (Klemeš, 1983), for 

example the evaporation from soil. Conversely, other processes could need higher temporal 

resolutions to account for the threshold behaviors depending on rainfall intensities, as the 

infiltration-excess runoff. 

These observations lead us towards a new classification of models that we would term a 

‘scale-dependent process-based classification’. It is schematically represented in Figure 1.7, 

which is inspired from Melsen et al. (2016a) (see their Figure 1, resumed also by our modified 

Figure 1.9). Melsen et al. (2016a) resumed a long-established inventory of the time and space 

scales of hydrological processes (following Blöschl and Sivapalan, 1995). Therein, the 

concept of ‘characteristic velocity’ of hydro-meteorological processes was represented. It is 

defined as the ratio of characteristic length and time scales of processes and is called also 

‘process scale’ (Blöschl and Sivapalan, 1995; Melsen et al., 2016a). Blöschl and Sivapalan 

(1995) suggested that the characteristic velocity is roughly constant across a range of scales 

and stated that “for atmospheric processes this characteristic velocity is of the order of 10 

m/s, for channel flow it is 1 m/s and for subsurface stormflow it is less than, say, 0.1 m/s.”  

In our opinion, an efficient process-based model must follow the direction of the 

characteristic velocities (Figure 1.7) by using a pair of spatial and temporal resolutions (for 

inputs and model functioning) whose ratio should be equal to and not greater than a maximum 

velocity. We name this ratio the ‘Efficient Process-based Model Speed’ (EPMS). By 

analyzing Figure 1.7, one may intuitively note that this model speed should not be greater 

than the velocity of the most rapid process playing a role within the catchment; otherwise the 

process evolution over space cannot be tracked by the model for a lack of spatial information. 

On the other hand, the use of a lower ‘model speed’ may be associated either to a lack of 

temporal information to describe the temporal evolution of the process or to a redundant 

spatial representation of the process in the model (i.e. not efficient model speed). The EPMS 

is dependent on the inputs and catchment characteristics and conditions. For example, for a 

small catchment (e.g. 1-km
2
) subject to a convective storm event with a maximum 

characteristic velocity in the order of 1 m/s (as that of the channel flow), a process-based 

model should have temporal and spatial resolutions with such a ratio (see corresponding line 

in Figure 1.7). In this case, the choice of a spatially lumped approach would be 

deterministically linked by the EPMS concept to a necessary temporal resolution 

(approximately 17 min for the 1-km
2
 catchment). 
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FIGURE 1.7 – Scheme of the fundamental basis of a ‘scale-dependent process-based’ model 

classification, with a rough indication of the fully-distributed and process-based modelling domains in 

the time-space resolutions plan (on a log-log scale). The grey dashed lines represent the 

characteristic velocities of some hydrological processes. Original figure adapted from the scheme of 

characteristic process-scales lately presented by Melsen et al. (2016a) (which in turn was adapted 

from Blöschl and Sivapalan, 1995). 

This scheme in mind, we agree with Beven and Cloke (2012) in saying that changing scales is 

just a necessary but not sufficient step for representing hydrological processes, as they well 

stated: “Changing the scale of implementation of hydrological models does not, in itself, 

resolve the issues arising from fundamental lack of knowledge.”  

Thus the scheme that we have proposed here could just help to determine the combination of 

spatial and temporal resolutions that a model should have to accurately and efficiently 

represent the involved processes (EPMS) and to aspire to be called ‘process-based’. Then, a 

model with such a combination of resolutions needs also a proper representation of the 

hydrological processes that can be either conceptual (bucket-style) or physical (if the 

resolution is sufficiently fine). Any other model with neither a proper ratio of resolutions nor 

a sound representation of processes cannot be called process-based, making no significant 

difference between a self-styled ‘physically-based’ model or a conceptual/empirical (or 

metric-conceptual) model, given the overlaps already discussed. 

As for the fully-distributed modelling paradigm, we confined it in the bottom-left corner of 

the time-space plan in Figure 1.7, for the necessity of the simultaneous refinement of the 

temporal and spatial resolutions, as already discussed above. A spatially distributed model, 

say at 1-m resolution and at daily time step, applied in a 1-km
2 

catchment with a maximum 

characteristic velocity of 1 m/s (EPMS), has no chance of being called process-based, since 
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its model speed is 1 m/d (far slower than the EPMS). The physically-based notion applied to 

this model would be even more groundless. On the other hand, a spatially lumped model 

applied to the same 1-km
2 

catchment could be process-based if the temporal resolution is 

chosen so as to obtain the EPMS ratio (around 17 min) and the processes are described with 

realism (for some notions of realism see Section 1.2.5). 

1.2.4.4 Our approach: spatially lumped, mesoscale, continuous, multi time-step 

By following the levels of classifications detailed above, we may now categorize our 

modelling approach that will focus on spatially lumped, mesoscale and continuous time 

models at different temporal resolutions from daily to sub-hourly. Our choice of a spatially 

lumped approach is motivated by the three reasons listed by Perrin et al. (2003):  

(i) the importance of trying “to determine how a catchment works as a whole”, given 

the actual limitations of knowledge on processes;  

(ii) the fact that lumped models are usually used as “building blocks” of distributed 

models, and so their development must precede their gathering in interconnected 

distributed systems;  

(iii) the fact that “the practical superiority of distributed or semi-distributed 

approaches over lumped ones for streamflow simulation has not been clearly 

demonstrated yet”.  

These reasons are also supported by our concept of Efficient Process-based Model Speed 

(explained in the previous Section), according to which the spatial distribution, in itself, is not 

sufficient to develop a process-based representation of the rainfall-runoff relationship, but 

processes should be modelled at a suitable combination of spatio-temporal resolutions 

consistently with the catchment characteristics.  

If one wants to still categorize our approach by the traditional classification on model 

conceptualization, we may say to follow a hybrid combination of the so-called empirical and 

conceptual paradigms, by combining the use of model structures and components typical of 

the conceptual models with an empirical approach for model development based on data (see 

Michel et al., 2006).  

1.2.5 Desirable properties of rainfall-runoff models 

Some relevant properties are generally required for rainfall-runoff models including: 

reliability, robustness, realism (the 3 R’s) and transposability (across space and time scales), 

as resumed by Gupta et al. (2014). These properties are interdependent concepts. The 

reliability is probably the most general concept, hooked on all the other mentioned properties, 

and also others. To be reliable, a model should be robust, realistic and transposable, but also 

accurate, general and consistent. So all these properties should be verified by an extensive 

model diagnostics based on a large-sample approach, in which traditional aggregate 

performance indices are not sufficient. As cited by Gupta et al. (2014), to be demonstrably 
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robust, models must pass effective crash testing procedures proposed for instance by Klemeš 

(1986b) and Andréassian et al. (2009).  

As for realism, it is important to note here that even if proving (and even defining) the 

“realism” of a rainfall-runoff model is a very difficult task, especially for an empirical or 

conceptual model, it is still possible to find out proofs of hydrological likelihood (i.e. a 

possible definition of realism) of a model structure (e.g. Le Moine et al., 2007). We think that 

this attitude vis-à-vis of models must be used to corroborate their conceptualization, because 

it is important that models “work well for the right reasons” (Klemeš, 1986a; Kirchner, 

2006). To ensure at least a minimum level of model credibility, we remind the importance of 

standard calibration-validation schemes (Klemeš, 1986b). Finally, we refer the reader to 

Section 1.3 for further discussion on the question of transposability across space and time 

scales, which is central to this work.  

 

Model 

property 
Definition Modes of evaluation Comments 

Accuracy 

“Ability to closely 

reproduce the historic 

hydrograph throughout 

the range of flows” 

(Linsley, 1982) 

- Statistical measures of 

similarity between observed 

and simulated hydrographs as 

the Nash-Sutcliffe efficiency 

(NSE) (Nash and Sutcliffe, 

1970a)  

- Hydrological “signatures” 

(e.g. Yilmaz et al., 2008) 

It is the first and best basis for model 

selection and improvement. 

Applicability 

Good matching 

between model 

requirements and 

actual available data 

and computing 

capabilities 

- Comparison of required data 

and calculation time of the 

model with the resources 

available 

The initial choice of models complexity 

should take into account the available 

resources right from the phase of 

conceptualization (Bergström, 1991). 

Ease-of-use 

Ease of a proper use of 

the model for the final 

end-users purposes 

- End-users understanding 

and efficiency of use of the 

model 

Ease-of-use should not be placed before 

accuracy, as stated by Linsley (1982). 

Generality 

Ability of the model to 

provide accurate 

results on many 

catchments and over 

long time coverages 

-Extensive testing on large-

samples of catchments 

(Andréassian et al., 2009) 

Nowadays, the application of models 

on large data-sets is possible, thanks to 

the continuous developments of 

computing capabilities and increasing 

data availability (Gupta et al., 2014). 

TABLE 1.2 – Summary and comments on the four essential desirable properties of rainfall-runoff 

models promoted by Linsley (1982). 

Table 1.2 provides an overview of the other four fundamental characteristics promoted by 

Linsley (1982): accuracy, applicability, ease of use and generality. The choice to prioritize 

one feature or the other may be justified in light of the modelling objectives. In this research 

work, we will not explicitly prioritize one feature on the others, but we will extensively 

consider model accuracy, measured by statistical metrics of similarity between observed and 
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simulated hydrographs, and also generality, by conducting the tests and evaluations over a 

large sample of catchments. 

1.2.6 The fixed and flexible modelling paradigms and our model 

choice 

The approach of applying a single model on many catchments is necessary to seek generality, 

as discussed above, and corresponds to the so-called ‘fixed modelling’ paradigm. This 

approach is opposed to the ‘flexible modelling’ paradigm (e.g. Fenicia et al., 2011; Van Esse 

et al., 2013). Here it is interesting to briefly present and discuss the contrast of these two 

paradigms and introduce the approach followed in this work. In our view, both approaches are 

valuable and important and present different advantages.  

The ‘fixed modelling’ paradigm is based on the choice of building a general model with a 

fixed structure that is validated on many different catchments and over long time series, as 

promoted by some authors (e.g. Perrin et al., 2001; Le Moine et al., 2007). We agree with 

Linsley (1982) in saying that in general “the fundamental processes of hydrology are the same 

in all catchments”, even if the dominant processes may change . Some processes may vary 

and become more dominant with the local characteristics of climate (e.g. presence of snow), 

landscape (e.g. vegetation) and soil (e.g. lithology). Anyway, we believe that a general 

rainfall-runoff model may have a fixed structure but enhance (or deactivate) a process thanks 

to the pre-setting or calibration of some of its parameters. Despite the difficulties that may 

emerge in the calibration to well represent the uniqueness of individual catchments (Beven, 

2000), we think that building a general fixed model structure has many merits, as increasing 

the credibility of the model, and so the confidence of the end-users and “lead to meaningful 

generalizations” (Klemeš, 1986b). On the other hand, the flexible approach is based on 

searching the model structure that best ‘fits’ each specific catchment of interest, among a set 

of multiple working hypotheses (Clark et al., 2011). It is a promising approach because it 

should reduce more easily structural uncertainty (Van Esse et al., 2013), and this is to be 

verified, because of its great interest in research applications. However, further work is 

needed for improving its applicability and ease-of-use, above all for applications out of the 

research community. The necessity of customizing a model structure for each specific case of 

application is time consuming and less practical for operational purposes.  

For our research work, we have chosen to base it on the long-established, fixed modelling 

paradigm that seems to us a more direct approach for answering our research questions and 

operational expectations. In particular, we have decided to start from a suite of parsimonious 

models widely used in the hydrological community, choosing the GR models chain at 

different time steps, including the GR4J and GR4H models (Perrin et al., 2003; Mathevet, 

2005; Le Moine, 2008). This choice is motivated by the need of continuing investigating the 

transferability of these models (structure and parameters) across temporal resolutions, which 

stems from a specific operational demand from the ‘SCHAPI’ (the French national service 

for flood forecasting). At the same time, this is a current general challenge in hydrological 

modelling (e.g. Singh and Woolhiser, 2002). The GR models have been widely used for 
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research purposes on large sets of catchments around the world with generally reliable results 

(e.g. Perrin et al., 2001; Perrin et al., 2003; Le Moine et al., 2007; Van Esse et al., 2013) and 

their modified version called GRP is currently used for flood forecasting in France (Berthet et 

al., 2009). Thus the choice of these models is a good starting point for such a specific research 

work on the time scale issue and reveals a dual interest (both of research and operational). 

From an epistemological point of view, a parallel can be drawn between our research on 

model structures across different temporal resolutions and the flexible framework for 

hydrological modelling promoted by Fenicia et al. (2011). In fact, in both cases the objective 

is to “generalize and systematize the currently fragmented field of conceptual models” (in our 

case, at different time steps; in the flexible framework, at different locations). 

1.3 The space and time scale issues in hydrology 

The spatial and temporal scaling issue in hydrological modelling has been recognized as one 

of the most rewarding challenges for models development and advance in hydrological 

science by many authors, as, for instance: Klemeš (1983), Blöschl and Sivapalan (1995), 

Singh and Woolhiser (2002), Blöschl (2006) and Merz et al. (2009). As highlighted by 

Blöschl (2006), hydrological synthesis is needed across scales, to find out the general 

characteristics of processes as a function of space and time scales for the same site or an 

ensemble of sites.  

1.3.1 General concepts and typical scales of hydrological processes 

The term ‘scale’ is normally defined as the sampling interval size at which hydrologic 

observations are made (observation scale) or as the grid size used for numerical computations 

(model scale) or as the characteristic time or length of a process (process scale). Thus, the 

scale (grid size) will correspond to the length in the spatial domain and to the duration in the 

time domain (Singh and Woolhiser, 2002).  

Many authors explored different aspects of the spatial and temporal scaling issues of 

hydrological processes. Here we summarize some of the main contributions with a deeper 

focus on the temporal scale issue that is the central theme of our work. However, the problem 

of taking into account the temporal variability in hydrological modelling presents some 

analogies and is linked with the problem of the spatial variability (as we have highlighted in 

Section 1.2.4.3). So we report also some findings of studies investigating the spatial 

representation that could be transferred also to time. 

 Klemeš (1983) discusses some basic features of space and time scale to bear in mind 

when dealing with scaling issue in hydrology. He argues that scale should be viewed as a 

quality and not just a purely quantitative size. “In nature, scales of things are not 

arbitrary” and meaningful conceptualization of physical processes is possible only at 

some discrete scales. In nature we can find preferred nodes on the spectrum of scales, as 

in physics we have different discrete entities from the quanta and subatomic particles to 
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the macroscopic bodies. A qualitative feature of scales is that different forces tend to 

dominate at different levels of scale and this limits a mechanical extrapolation of the 

mathematical relationships expressing physical laws from one level of scale to another. 

Another important feature, often disregarded in scientific research, is the intrinsic relation 

between the time and space scales. An indifferent attitude to this interconnection of space 

and time scales makes the understanding and conceptualization of natural processes more 

difficult. This is in line with the scheme we have proposed in Section 1.2.4.3 for defining 

process-based modelling. Klemeš (1983) highlights that “given the time scale, the choice 

of the spatial scale determines the kind of relationships that one can hope to identify” and 

vice versa. It is necessary to identify the time lags between rainfall and runoff of the given 

spatial scale and compare with the time interval selected to understand whether “the 

dynamic effects of the spatial unit will be swallowed by integration over a single time 

interval”. This is particularly important when defining the scientific expectations of 

hydrological modelling at the “basin scale”. However, he argued that “the arbitrary use of 

spatial and temporal scales is not, per se, the most disturbing aspect of our approaches to 

conceptualization of hydrologic processes.” This is well explained by his metaphor: 

“Nobody can be blamed for not immediately knowing the correct way through a complex 

labyrinth. What he can be blamed for is an insistence on a preconceived idea of the 

correct route and unwillingness to check it out.” 

 Morel-Seytoux (1988) suggests that “the passage from a smaller to a larger scale 

requires: enlightened simplification, integration in many senses that is: (1) in time; (2) in 

space; (3) in an expectation sense; and (4) in a process sense, and finally enlightened 

coupling.” The author focuses on a simplified but physical description of hydrological 

processes and suggests that temporal patterns of rainfall, temporal fluctuations in river 

stage and other spatial and temporal variability features of the hydrological processes 

significantly affect the catchment response. For example, an illustration of the importance 

of temporal patterns of rainfall is given (see paragraph below). 

 Blöschl and Sivapalan (1995) provide a review for scale issues in hydrology and a 

framework for scaling hydrological models. They analyse the operation of ‘scaling’ that is 

defined as transferring information across scales. In a model-oriented approach, the 

information to be scaled consists of state variables, model parameters and inputs, as well 

as the model conceptualization itself (i.e. the model structure). Upscaling typically 

consists of two steps, distributing and aggregating, while downscaling involves 

disaggregation and singling out. Blöschl and Sivapalan (1995) give some examples of 

deterministic and stochastic approaches used for scaling in hydrology. For example, to 

link model conceptualizations across spatial scales, a common useful way is the use of 

sub-grid parameterizations to represent the effects of smaller scale processes than the 

modelling spatial scale, i.e. an example of top-down approach (as discussed also in Beven 

(2009), p. 9). In a more holistic (hydrologic) approach, scaling may be based on the 

concept of similarity, i.e. determining scale factors to link systems across scales. To this 
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end, similarity analysis, dimensional analysis and functional normalization can be used to 

determine empirical relationships between different variables at different scales. 

Following Blöschl and Sivapalan (1995) and Melsen et al. (2016a) we report a classification 

of hydro-meteorological processes according to their characteristic scale (time and length) by 

a diagram of typical process scales based both on data and heuristic considerations (Figure 

1.8).  

 

FIGURE 1.8 – Typical scales of several hydro-climatic processes in the spatio-temporal domain 

(seconds – meters, log-log scale). Figure modified from Melsen et al. (2016a), which in turn is based 

on Blöschl and Sivapalan (1995). 

This diagram was based on previous ones used in the atmospheric sciences and has been 

lately resumed by Melsen et al. (2016a). Figure 1.8 reports our adaptation of this latter 

version. With respect to the original figure, our main change is the separation of the 

interception process from the evapotranspiration one, based on knowledge gained from other 

previous works (see Calder, 1990; Savenije, 2004; Gerrits et al., 2010). Indeed, these two 

processes are distinct and, even though they are bound and driven by common variables 

(mainly solar radiation) they are generally active on different scales. Following a well-

established terminology, interception as a process refers to the storage of part of the rainfall 

above the ground surface, mostly in vegetation (canopy and forest floor) in a natural 

environment, and the evaporation from this storage that generally occurs during the rainfall 

event and shortly after the end of the event (e.g. Gerrits, 2010). From our analysis of the 

literature cited above, we have placed the interception process at higher spatio-temporal 

resolutions than evapotranspiration. One should note that defining the scale of hydro-
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meteorological processes is a hard task because these processes are ‘active’ (variable) at a 

wide range of scales and interact among them by stochastic linkages. For example, one may 

think at the time variability of the interception: this process is highly seasonal (because of 

seasonality of potential evaporation, precipitation and storage capacity of vegetation), but 

presents also sub-daily and sub-hourly patterns (due respectively to daily temperature pattern, 

and sub-hourly variabilities of precipitation and wind-speed). In general, Figure 1.8 shows 

approximately the highest frequency of each process (in time and space), as we have done for 

interception. The shaded grey region shows the approximate whole domain of activity of 

hydrological process, while the straight lines crossing this region represent the characteristic 

velocities of processes, suggesting a positive correlation between spatial and temporal scales 

(see also Section 1.2.4.3).  

1.3.2 The importance of spatial and temporal rainfall distribution 

Some authors have shown the importance of rainfall variability in space and time for runoff 

simulations. For spatial variability the literature is abundant, but there is no consensus on the 

impact of spatial resolution of rainfall on the performance of hydrological models (see for 

instance Lobligeois, 2014, and references therein). On the contrary for the impact of temporal 

variability, hydrological literature is more limited, although it is in rapid development. 

However, it seems that there is more consensus on the significant impact of temporal 

resolution of rainfall on runoff simulations. It has been recognized by many authors that 

runoff generation is highly affected by sub-hourly dynamics of precipitation, as for example 

by Morel-Seytoux (1988), Woolhiser and Goodrich (1988), Krajewski et al. (1991), Kandel et 

al. (2005), and Paschalis et al. (2014). Precipitation controls the high-frequency catchment 

response despite the catchment low-pass behavior (Oudin et al., 2004), which smoothes out 

high frequencies.  

This importance of rainfall for the high-frequency response may be explained by the sub-

hourly characteristic time scales of infiltration and its highly nonlinear nature (Kandel et al., 

2005). Some studies have shown that (infiltration-excess) surface runoff is modelled better by 

using fine time step rather than daily time step models and, particularly, peak rates of rainfall 

are recognized as the most important controls for rainfall-runoff modelling (e.g. Yu et al., 

1998; Socolofsky et al., 2001; Kandel et al., 2004; Kandel et al., 2005). All these studies 

indicate that sub-daily variability of rainfall intensity is important and quite short time scales 

should be represented in models to capture this variation. This may be explained by the rate-

limited behaviour of infiltration-excess mechanism. Here we briefly summarize some main 

findings about this widely investigated subject. 

 Morel-Seytoux (1988) discusses how the temporal pattern of rainfall impacts the runoff 

coefficient of a soil by illustrating the case of a rain with a total depth of 3 cm over one 

hour and three possible rainfall patterns, as reported in Table 1.3. The assumption of 

rainfall rate uniformity over one hour is unrealistic and has a negative impact on models 

results, as it can be deduced from Table 1.3. As the rainfall intensity increases the runoff 

coefficient increases too. This example let the author suggest that infiltration is at least as 
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sensitive to intensities as to total depth of rainfall and an improvement in forecasting of 

the overland flow of a catchment will come from an improvement in the definition of the 

rainfall pattern rather than from a refinement of simple infiltration formulae. 

Rainfall pattern 
Rate 3 cm h

-1
, duration 

1h 

Rate 6 cm h
-1

, duration 

0.5 h 

Rate 12 cm h
-1

, 

duration 0.25 h 

Homogeneous soil 0 5 26 

Heterogeneous soil 9 17 31 

TABLE 1.3 – Influence of rainfall temporal pattern and of soil heterogeneity in hydraulic conductivity 

on the runoff coefficient (%). Source: Morel-Seytoux (1988). 

 Some other authors investigate the importance of the time distribution of rainfall for 

runoff response and agree with the suggestion made by Morel-Seytoux (1988). For 

example, Koch and Kekhia (1987), using a physically based model and three soil types, 

show that the required complexity of the storm temporal distribution is dependent on the 

soil type and the constant intensity approximation is less adequate for more permeable 

soils. Also Woolhiser and Goodrich (1988) point out the significance of the rainfall 

intensity-infiltration interaction by using a simple physically based model, concluding that 

the constant intensity rainfall pattern cannot be recommended, especially for rapid 

catchments (response time of the same order or smaller than the duration of rainfall 

excess).  

 Some authors investigate at the same time the influence of both spatial and temporal 

rainfall patterns on the catchments hydrological response. Krajewski et al. (1991) 

investigate the sensitivity of a distributed model performance with respect to rainfall 

spatial and temporal sampling density for a very small catchment (7.5 km
2
). Their results 

indicate a greater sensitivity of basin response with respect to the temporal resolution than 

to the spatial resolution of the rainfall inputs. Menabde and Sivapalan (2001) investigate 

the relationships between the various time and space scales of variability in rainfall and 

runoff process within a similarity framework. They analyse the spatial scaling properties 

of peak flows and show the importance of the ratio between two controlling variables, 

namely the storm duration and the concentration time of catchments. This conclusion 

is supported also by other works as those by Robinson and Sivapalan (1997) and 

Gabellani et al. (2007). Nicótina et al. (2008) investigate the spatial scales at which 

rainfall spatial variability influence the flood response by coarse-graining rainfall input 

fields from 100 m- to 50 km-resolution for some Italian basins of different size. They 

found that the catchments response is less influenced by spatial variability of rainfall for 

small basin areas (up to about 3500 km
2
), rather than in larger basins where the travel time 

in the channels is a more important part of the total residence time. Paschalis et al. (2014) 

show that the flood response is strongly affected by the temporal correlation of rainfall 

and to a lesser extent by its spatial variability.  
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1.3.3 Catchment characteristic time scales 

Several definitions of the catchment characteristic time scales can be found in the literature, 

describing in different ways the time lag between a rainfall event and the resulting 

hydrograph. The primary importance in hydrological modelling of these time characteristics is 

evident. This can be argued easily as almost all hydrological models contain at least one time-

dimensioned parameter (Morin et al., 2002), and routing components (as Unit Hydrographs) 

are used to simulate the time lag between the rainfall event and the resulting streamflow peak. 

Some of the most frequently used definitions of catchment time scales are: the time of 

concentration, the lag time, the time to peak and the time base (see definitions in Table 1.4). 

For a detailed review of the estimation methods of these time parameters one can see Gericke 

and Smithers (2014) (particularly their Table A3). 

 

Catchment 

time scale 
Definition Methods of estimation Comments 

Time of 

concentration 

Time required for a drop of 

water falling on the most 

remote part of a drainage 

basin to reach its outlet 

(Singh, 1992, pp. 451-452) 

Empirical formulae (e.g. see 

formulae of Giandotti, Kirpich, 

Passini, Turazza, Ventura, etc.) 

Used in the rational 

formula (Singh, 1992, 

pp. 595) 

Lag time 

Time between the centroid 

(centre of mass) of rainfall 

excess and the centroid of 

the direct runoff hydrograph 

As in its definition or using the 

peak of the runoff hydrograph 

instead of the centre of mass (Morin 

et al., 2002) 

Examples of its use are 

provided by Caroni et al. 

(1986) and Simas and 

Hawkins (1998) who 

evaluated its variation 

Time to peak 

Time between the beginning 

of direct runoff and the peak 

of direct runoff hydrograph 

(Singh (1992), pp. 451-452) 

Algorithms aimed at defining the 

unit hydrograph (UH), e.g.: the 

DPFT method by Duband et al. 

(1993), or the IHACRES method 

(Schreider et al., 1996) 

Time lag that maximizes the cross-

correlation between rainfall and 

streamflow (Dong et al., 2005) 

Many hydrological 

applications as peak 

discharge estimation. 

Definition of a 

maximum acceptable 

time step for rainfall-

runoff models (Obled et 

al., 2009) 

Time base 
Duration of the direct runoff 

hydrograph (Singh, 1992) 
As in its definition. Unit hydrographs 

TABLE 1.4 – Summary of four common catchment characteristic time parameters: definitions and 

estimation methods. 

Other characteristic time scale parameters were suggested in the literature as the time to 

equilibrium, time of travel, rise-time, volume/peak ratio, critical-lag time, infiltration-

opportunity time and time to ponding (Singh, 1992). The definition of all these parameters 

goes beyond the scope of this work. However, we note that different methods can be 

developed to determine a time parameter describing the timing of the catchment response and 

this can be done even just by data analysis. Some data-driven methods are based on similarity 

of rainfall and runoff patterns (Morin et al., 2001; Morin et al., 2002) or spectral analysis 

(e.g. Tessier et al., 1996). It can be noted that most of the definitions of catchment 
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characteristic time scales are related to the fast response, which is only one component of the 

outlet flow. Very little is made on long characteristic time scales that relate to slower flow 

components which are typically related to storages in models. According to us, this aspect is 

as important as for fast response and should deserve more research in the future. 

As for the relationship between the catchment response time and the hydrological model time 

steps the literature is less abundant. On this topic, the work by Obled et al. (2009) (see Section 

1.4.1) uses the definition of ‘time to peak’ to define a maximum acceptable time step that can 

be used for modelling the rainfall-runoff relationship. However, we have not found published 

works dealing with the analysis of the relationship between the time-dimensioned parameters 

of rainfall-runoff models and the catchment time scales time parameters from neither a 

conceptual nor a physical point of view. This would be important for improving the 

regionalization of model parameters, as highlighted by Littlewood and Croke (2008). 

1.4 State-of-the-art on the temporal scale issue in rainfall-

runoff modelling 

The question of temporal scaling in hydrological modelling involves different aspects, as the 

relationship between process, observation and model scale or the dependency of model 

parameters and structures on time step, that are discussed in the following sections.  

1.4.1 Relation between process, observation and modelling scale 

As discussed by Blöschl and Sivapalan (1995), processes should be ideally observed and 

modelled at the scale they occur. However, this is not always possible because some 

hydrological processes have characteristic time scales of minutes (often shorter than the data 

available resolution) and they simultaneously operate at a range of scales. Available data for 

rainfall-runoff modelling are discrete: rainfall is measured with total accumulations over fixed 

time durations, usually hourly or daily, and streamflows are punctually measured at some 

instants with a fixed or variable sampling interval. Data sampling in time has a filtering effect 

on processes as we have already highlighted in Section 1.2.2. As Blöschl and Sivapalan 

(1995) observe, “processes larger than the data coverage appear as trends in the data, 

whereas processes smaller than the resolution (spacing) appear as noise”. This is a well-

known problem in the field of signal processing, where the Nyquist-Shannon theorem 

(Shannon, 1949) defines the highest frequency fn of a oscillatory continuous process that can 

be detected from a discretized data set of spacing d, as: 𝑓𝑛 =
1

2𝑑
 . 

The Nyquist criterion may be transposed to hydrological modelling after some small 

adjustments to consider that: (i) average (or cumulated) inputs/outputs over a time step are 

usually considered in hydrological modelling, instead of ‘punctual’ sampling (Chow et al., 

1988); (ii) hydrological systems are not oscillating, so their response is damped: at the 

catchment scale, an impulsive input of rainfall never generates an impulsive decrease of 

streamflow rate (Obled et al., 2009). 
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Thus, in hydrology, by following a lumped modelling approach, an adapted observation and 

modelling scale can be fixed by the dynamics of the system’s output, i.e. the outlet 

streamflow, that integrates all the different processes and time scales. As highlighted by 

Obled et al. (2009), the observation and modelling time step should be upper-bounded to 

“properly reproduce the most rapid dynamics of the system”. Thus, by following the notions 

of impulse response and time to peak, Obled et al. (2009) define a maximum acceptable time 

step (MATS) to represent the peak response of a catchment as: 

𝑀𝐴𝑇𝑆 =
𝑇𝑝

3
 (1.3) 

where 𝑇𝑝 is the time to peak of the catchment (for its definition one can see the Section 1.3.3). 

The coefficient 
1

3
 derives from the fact that the sampling technique used for streamflows is 

averaging over the time step ∆𝑡. Obled et al. (2009) empirically show that a time step ∆𝑡 ≤
𝑇𝑝

3
 

is sufficient to represent a peak response without denaturing its form by testing this on a flood 

hydrograph case study (see also Figure 1 in Obled et al., 2009). This recommendation is 

coherent with the one by Maniak (1997) that also indicates a time step upper bound of one 

third to one fifth of the time to peak of a discharge event. 

The chosen time step (MATS) is used by Obled et al. (2009) to define the maximum 

acceptable spatial resolution which allows to consider the precipitation inputs as 

homogeneous over each discretization grid element. To this end, they suggest the use of some 

known results in the field of geo-statistical analysis of precipitation, in particular on the 

"decorrelation distance" (𝑎), i.e. distance for which the correlation decreases to 1/e of its 

maximum (Rubel, 1996). It has been shown that the decorrelation distance increases with the 

time step ∆𝑡 over which rainfall is cumulated and this relationship can be described by an 

exponential model representing the correlation in function of the distance ℎ and the time step 

of accumulation ∆𝑡. Obled et al. (2009) suggest that the maximum spatial ‘step’ ∆𝑥 for which 

one can consider the rainfall uniform over the domain 𝑆 = (∆𝑥)2 is in the order of 𝑎 at most. 

So, referring to typical values of 𝑎 from the literature, between 20 and 25 km for hourly time 

step, and expressing the function 𝑎(∆𝑡) as a power of ∆𝑡 with exponent between 0.3 and 0.5, 

a maximum spatial resolution can be defined as: 

𝑆𝑘𝑚2 ≈ [𝑎(∆𝑡)]2 = 𝑁ℎ(∆𝑡) ∙ 400 𝑡𝑜 625 𝑘𝑚
2 (1.4) 

where 𝑁ℎ(∆𝑡) is the number of hours of the time step ∆𝑡 (adimensional). This means that for 

catchments with a spatial resolution in the order of 𝑆𝑘𝑚2 one can reasonably use a lumped 

model, with a single input of rainfall for the whole catchment. 

1.4.2 Effects of time steps on model parameters and performance 

The effects of the temporal sampling of calibration data on model parameters and 

corresponding model performance have been investigated by an increasing number of authors, 

such as: Finnerty et al. (1997), Ishidaira et al. (2003), Cullmann et al. (2006), Tang et al. 
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(2007), Littlewood and Croke (2008), Wang et al. (2009), Cho et al. (2009), Ostrowski et al. 

(2010), Littlewood et al. (2011), Kavetski et al. (2011), Bastola and Murphy (2013), and 

Melsen et al. (2016b). This important area of research for rainfall-runoff modelling for both 

operational and research aspects has been overlooked for a long time in the literature, but is 

now rapidly developing. 

In general, all the studies cited above show that a great part of parameters of hydrological 

models depend upon the calibration data temporal resolution and highlight the importance of 

accounting for this dependency in order to reduce the uncertainty of simulations, to improve 

parameters identifiability and regionalisation. There are parameters that are time step 

independent and can be viewed as intrinsic properties of the basin, while other parameters 

depend on the time step of calibration data. The explicit definition of parameters-time step 

dependency is important to effectively transfer a model at different time steps, which is often 

necessary in an operational context, because longer time series are more frequently available 

at coarser time steps (e.g. daily). So it is useful to define a method to transfer the information 

derived from larger time steps data to shorter time steps (e.g. Nalbantis, 1995). Further 

research is required on this topic by analysing the effects of changing time steps over a larger 

range of time scales and testing different models on a wider range of catchments. Here below 

we summarize some main findings that one can find in the literature about this topic. 

 Mathevet (2005) and Le Moine (2008) investigated the relationship between the 

parameters of the lumped GR4J model at daily time step and those of the derived hourly 

model version, GR4H (see also Section 1.4.3.2 for more details about these models). The 

two models share the same structure and functions, but the temporal scaling generates a 

transformation of some fixed and free parameters. First, these transformations were 

derived a-priori from the integration at different time steps of the model governing 

equations, expressing the fluxes of the model (Le Moine, 2008, pp. 172-173). This can be 

done for the fixed parameter (not calibrated) describing the percolation of the production 

reservoir and the four free parameters to be optimized. The four free parameters are:  

(i) the capacity of the production reservoir, 𝜃1[mm], that is theoretically independent 

from the time step; 

(ii) the water exchange coefficient, 𝜃2 [mm], whose value is derived from the 

hypothesis of slow dynamics of this process (i.e. daily fluxes uniformly distributed 

over the hourly steps). 

(iii)the capacity of the routing reservoir, 𝜃3 [mm], whose value at different time steps 

is derived from the integration of the reservoir emptying function; 

(iv) the base time of the UH, 𝜃4 [time], that is directly expressed in time step units. 

The temporal transformations were empirically verified for the optimized-parameters obtained 

at the two different time steps over a large sample of 1040 French catchments (Le Moine, 

2008, p. 179). Le Moine (2008) found a quite good coherence between the calibrated 

parameters of the hourly-model and the theoretical values obtained from the daily calibrated 
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values, as shown in Figure 1.9 (from Le Moine, 2008), especially for the two reservoirs 

capacities. The base time of the unit-hydrograph systematically deviates from the theoretical 

relationship for values lower than 24h. This is explained in Le Moine (2008) by the 

mathematical form of the UH: by construction at the daily time step the UH form does not 

change for different values of 𝜃4 lower than 24 h. 

 

FIGURE 1.9 – Coherence between the calibrated values of the parameters of the hourly model GR4H 

(vertical axis) and their values derived from the theoretical relationships linking them with the 

parameters of the daily model GR4J (reported from Le Moine, 2008, p. 180, with a different notation). 

 Littlewood and Croke (2008) investigated the data time-step dependency of the 6 

parameters of a conceptual, lumped, unit-hydrograph-based model, IHACRES, for two 

catchments in Wales (10.6 and 298 km
2
). The motivation of their work was to search for 

time-step independent parameters that could improve regionalisation. They showed that 

all the parameters change substantially when calibrated on data sets at different time steps 

from 1 h to 1 day. As the time step decreases, the parameters reach stable values, 

especially for the smaller basin. For the larger catchment this trend seems less clear, 

probably for the larger spatial variability and uncertainty in areal averaged rainfalls. The 

model performance criteria, the Nash-Sutcliffe efficiency, NSE, (Nash and Sutcliffe, 

1970a) and average relative parameter error, were relatively good and did not change 

substantially over the range of time steps. This study presents some limitations, some of 

which recognized by the authors as the fact of using only one model on only two 

catchments and the need to extend the time steps range to sub-hourly data. We found also 

two other limitations that presumably affect their results. First, too short calibration 

periods are used for the two catchments (7 and 27 months). Second, the NSE measures, 

calculated at each model time step, have been used also to compare the performance at 

different time steps, although these scale-dependent measures are not directly comparable. 

In fact, the time step strongly affects the statistical moments and correlation and so the 

NSE measures too. For comparisons at different time steps, these statistics should be 

calculated based on aggregation of the output series at a common larger time step. 
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 Wang et al. (2009) applied a conceptual model with 17 free parameters to a 0.21-km
2
 

forested experimental catchment in Japan. The model consists of reservoirs representing 

interception, evapotranspiration, infiltration, percolation processes. By employing 10-

minute, hourly and daily data they evaluate (i) daily discharge predictions on a 5-years 

period by using hourly and daily rainfall data and (ii) hourly discharge predictions on 10 

storm events by using 10-min and hourly data. In both cases results obtained with higher 

resolution data show better predictions especially on the peak discharge and recession part 

of the hydrographs and better efficiency in terms of mean relative error and NSE. We note 

that in contrast to Littlewood and Croke (2008), in these comparisons the error statistics 

were calculated at the same time step of aggregation (respectively 1 day and 1 hour in 

tests (i) and (ii) respectively) and this is consistent with our observation above.  

About the parameters-time step dependency, they show that parameters describing slow 

flow processes reveal a low sensitivity, remaining roughly constant across the time steps 

used, while quick flow parameters reveal higher dependence on the resolution. Finally, 

Wang et al. (2009) found that the rapid response parameters are roughly proportional to 

the square root of the time interval and analysed the link of this relationship with the 

rainfall depth-duration relationship by using the Sherman equation. The work by Wang et 

al. (2009) however presents some limitations, as outlined by Littlewood et al. (2011) in a 

discussion paper that we briefly summarize here. The main critical argument is that in a 

model with such a number of free parameters (17) there is likely strong correlation 

between at least some of the calibrated parameters, leading to problems of identifiability 

(Jakeman and Hornberger, 1993). Thus, in the analysis by Wang et al. (2009) it is not 

clear what is the impact of fixing some model parameters in contrast to what done by 

Littlewood and Croke (2008) who calibrated all five parameters of their model at the same 

time. This could be one reason of the different conclusions derived by Wang et al. (2009) 

compared to Littlewood and Croke (2008) who found that all parameters change with ∆𝑡, 

including non-time dimensioned and slow flow response parameters. 

 Ostrowski et al. (2010) employed a soil moisture accounting model, dominantly based on 

infiltration-excess runoff, for two small experimental catchments in Austria (about 20 

km
2
) to analyse parameters-time step dependencies. By using data at different time steps, 

from 5-minute to 1 day, over a period of 3 months, they found a strong impact of the time 

step on some parameters. They showed that an irregular response surface for larger time 

steps becomes smoother for small time steps, facilitating efficient automatic calibration. 

They proved the existence of non-linear and linear dependencies for some parameters as 

hydraulic conductivity and maximum infiltration rates. Other non-time dimensioned 

parameters, as wilting point and field capacities, resulted to be slightly or not dependent 

on time step. For the hydraulic conductivity parameter 𝑘𝑓 they tested successfully the 

functional relationship proportional to the square root of the time step suggested by Wang 

et al. (2009). Moreover they showed also the similarity of this power function with the 

relationship between rainfall maximum intensity and time steps. 
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 Kavetski et al. (2011) investigated the time step dependencies of models parameters and 

their uncertainties by examining also their relationship with model complexity (see next 

Section 1.4.3 for the latter). They used 4 model structures including increasing 

complexities, i.e. more model components and parameters (from 5 to 9), in a flexible 

model framework (Clark et al., 2008; Fenicia et al., 2008). Also they used both the fixed-

step explicit and implicit Euler time stepping schemes (see Appendix A). The parameters 

of the four tested model structures were inferred from calibration data with eight different 

time steps from 30 min to 3 days using two inference schemes for parameter uncertainty 

analysis, i.e. standard least squares (SLS) and weighted heteroscedastic least squares 

(WLS). Their results show that fixed-step explicit Euler time stepping scheme and SLS 

inference scheme tend to introduce strong spurious time scale dependencies, especially for 

quick-flow processes parameters. As for the parameter uncertainty across time scales, no 

general trends are identified but a time scale at which some parameters become 

identifiable is observed, indicating the typical time scale of the processes they represent. 

For example some quick-flow processes parameters are largely non-identifiable for large 

time steps (∆𝑡 ≥ 6ℎ), but converge to stable values when the time step decreases. 

Conversely, base flow parameters stabilize for much larger time scales. 

 Bastola and Murphy (2013) evaluated the sensitivity of model parameters and 

performance to the time step using rainfall and runoff data at 3-, 6-, 12- and 24-hourly 

time steps. They employed a lumped conceptual model, HYMOD, with 5 parameters, on 

two Irish catchments (1803 and 2452 km
2
). First, they showed a loss in performance 

(measured in terms of NSE and volume error) by using models calibrated with daily data 

for simulations at shorter time steps. This supports the argument that recalibration or 

scaling of model parameters is desirable if the model time step is changed. Then they 

assumed a-priori a linear scaling relationship between parameters and temporal scale. This 

relationship was used in a multi-time step calibration method to estimate model 

parameters for all time steps simultaneously (by maximizing the average performance for 

all model time steps). Compared to unscaled parameters, the loss in performance 

corresponding to the use of scaled parameters is shown to be significantly smaller. This 

indicates the potential of such scaling techniques in situations where sub-daily data may 

not be available. An alternative approach could have been calibrating parameters for each 

considered time step and subsequently estimating the scaling relationship from the median 

parameter values of parameter sets at the different time steps. Further work could compare 

this approach to the one followed by Bastola and Murphy (2013). 

 Melsen et al. (2016b) investigated to what extent the parameters of a model are 

transferable across temporal and spatial resolutions. They stated that “the degree to which 

parameters are transferable across temporal and spatial resolutions is an indicator of 

how well spatial and temporal variability is represented in the models”. They used the 

Variable Infiltration Capacity (VIC) model with 7 parameters for the Thur basin in 

Switzerland (1703 km
2
), run with four spatial resolutions (1-km

2
, 25-km

2
, 100-km

2
, 

lumped) and evaluated for three temporal resolutions (1 h, 1 day and 1 month), both 

applied with uniform and distributed forcing. Three objective functions were used for 
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model evaluation: (i) the Kling-Gupta efficiency (KGE) (Gupta et al., 2009) on the 

streamflow; (ii) the Nash-Sutcliffe efficiency (NSE) on the streamflow; (iii) the Nash-

Sutcliffe efficiency (NSE) on the logarithm of the streamflow. The transferability of the 

parameters across resolutions was evaluated by sampling the parameters space and 

selecting the best parameter sets, called ‘behavioural’, for each resolution. Thus the 

‘transferability’ across resolutions was defined as the percentage of agreement in these 

behavioural sets for each spatio-temporal resolution. They found that the parameters of 

the VIC model are largely transferable across spatial scales but hardly over temporal 

scales, especially when passing from daily to monthly scales. Their results show that 

“with monthly data it is impossible to determine the optimal parameter set for the hourly 

or daily time step”. Model performance was significantly affected by both temporal and 

spatial resolutions. For the uniform forcing the spatially lumped model outperformed the 

higher-resolution models, while for the distributed forcing the 100-km
2
 resolution model 

outperformed the others. The most significant changes of performance were found when 

passing from daily to monthly time steps. However their performance comparisons at 

different time steps are affected by the same limitations than those of the work of 

Littlewood and Croke (2008) (see discussion above). Still, Melsen et al. (2016b) 

recognized these limitations saying that: “the monthly model results are simply an 

aggregation from the hourly model results, which might imply that the higher score on the 

monthly time step is the result of errors which compensate for each other, and that the 

model performance scores for the monthly time step are based on a considerable lower 

number of points”. Finally, we stress the interest of the change in performance that was 

found with respect to the different objective functions, in particular at monthly time steps.  

1.4.3 Model structures 

Rainfall-runoff models have been developed historically to perform simulation at fixed time-

steps and many authors have developed specific models for different time-steps. This 

delineates today a fragmented field composed by a plethora of models at different time steps. 

Some authors use a same model structure for different time steps, without changing the model 

components (i.e. the equations) and their parameters in function of the time step. This is the 

case of some conceptual models: for example one can see the application of IHACRES at 4-

hourly time step by Schreider and Jakeman (2001) or the application of HBV at hourly time 

step by Kobold and Brilly (2006). However, it is evident that this choice is generally 

suboptimal and leads to lower performance at the time steps for which the structure is less 

adapted. The construction of a time-step adaptive structure has not yet been presented in the 

literature of conceptual and empirical hydrological models. In the field of physically based 

models, rare cases of transposable models can be found as the AFFDEF model (Moretti and 

Montanari, 2007). Another approach is to use a probability-based model (Kandel et al., 2005) 

that consists of a same model structure working at different time resolutions by means of a 

statistical distribution of the fluxes within the time step supported by the available data. 

Kandel et al. (2005) developed a temporal scaling method to scale between process time 

scales (e.g. minutes) and typical measurement time scales (e.g. daily) using a probability 
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distribution function of the rainfall intensity within a day. This approach is analogous to the 

one followed in some models to represent the spatial variability of processes (e.g. the PDM 

and ARNO models). 

1.4.3.1 Changing model complexity across time scales 

There is still not a systematic knowledge on the level of complexity and on which model 

components are needed at different time steps, especially at sub-daily time scales (Kirchner et 

al., 2004). However, this question is essential in hydrological modelling, because the choice 

of a time-step has a direct impact on how to represent the input-output relationship. The 

model time step operates as a filter respect to processes dynamics, as the sampling interval of 

observations does, implying higher information content in higher resolution data. Since some 

hydrological processes are masked by the time step, it seems intuitive that the model 

conceptualization requires a model structure of increasing complexity as the time decreases. 

This is generally accepted and has been confirmed in the literature by different authors as for 

example by: Schaake et al. (1996), Ye et al. (1997), Jothityangkoon et al. (2001), Atkinson et 

al. (2002), Farmer et al. (2003) and Kavetski et al. (2011). Some key studies are summarized 

here below. 

 Ye et al. (1997) evaluated the performance of three conceptual rainfall-runoff models at 

the daily and monthly time step in three low-yielding, ephemeral catchments in Australia. 

Their objective was to understand which level of complexity is required in conceptual 

models for predicting runoff in dry catchments. The models used are a simple conceptual 

model (GSFB; 8 parameters), a hybrid metric/conceptual model (IHACRES; 6 

parameters), and a complex conceptual model, the Large Scale Catchment Model 

(LASCAM; 22 parameters). They showed that in these dry catchments passing from the 

monthly to the daily time step, a slightly more complex model (IHACRES or LASCAM) 

performs better than a simple model that is more adequate for monthly time steps. Their 

study also shows that a better accuracy is obtained by calibrating models on daily data 

and integrating the outputs up to monthly rather than calibrating directly a model on a 

monthly time step. 

 Jothityangkoon et al. (2001) presented the formulation of a water-balance model at 

annual, monthly and daily time scales for a large semi-arid catchment in Australia by 

following a downward approach (Klemeš, 1983). Their first objective was to investigate 

the impact of some process controls (spatial variability of soil depths, rainfall and 

vegetation cover) on runoff variability at different time scales. As the time step decreases 

they found a gradual increase in the required model complexity. At the annual scale a 

simple bucket model was found adequate, including a saturation excess overland flow and 

multiple stores, connected in parallel, to reflect the spatial distribution of soil depths and 

rainfall. At the monthly scale, additional processes are required as the subsurface runoff, 

to introduce a delay mechanism in the runoff generation process, and a more detailed 

description of evapotranspiration. At the daily time scale, they found important to include 

non-linearity in the storage-discharge relationship relating to subsurface runoff, a deep 

groundwater store, and finally stream-flow routing in the river network. 
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 Atkinson et al. (2002) examined the choice of the appropriate model complexity in a 

downward approach for prediction of streamflow responses in 4 New Zealand catchments 

at annual, monthly and daily time steps. They showed that the simple single Manabe 

bucket water balance model (1 parameter) produces acceptable predictions of annual 

runoff, while at monthly and daily time steps gives progressively less accurate results. The 

authors defined a sufficient accuracy as predictions with a good timing, expressed by a 

correlation coefficient > 0.8 and good magnitude, i.e. ratio between mean annual 

observed and predicted runoff close to 1. They increased progressively the complexity of 

the model by adding a subsurface runoff component, or delayed flow, expressed through a 

non-linear storage-discharge relationship (3 more parameters) that allows obtaining a 

reasonable accuracy for the monthly time scale. This is still not sufficient for the daily 

time scale, especially during low flows, because of the presence of a persistent base flow 

component throughout the year that is not captured by the model. This is solved by a 

revised daily model including a base flow discharge as a linear function of the bucket 

storage (1 more parameter) that improves the prediction of low-flows, though it changes 

slightly the performance with respect to the timing and magnitude of the predictions. By 

means of a sensitivity analysis, they showed that with decreasing time scales the model 

becomes increasingly more sensitive to the estimated parameters, with increasingly poorer 

confidence in the predictions. A qualitative relationship of the model complexity 

expressed as function of a measure of climatic wetness (dryness index) and the time-step 

is suggested, i.e. required model complexity increases with decreasing time scale and 

increasing dryness index. 

 Kavetski et al. (2011), in their work that we have already summarized for the parameters 

issue (see Section 1.4.2), showed that parameters related to catchment's quick response to 

rainfall become progressively better identified as the data resolution is refined, thus 

supporting additional model complexity (i.e. transfer functions, non-linear reservoirs). The 

motivation is also intuitive: since their study catchment has a sub-hourly characteristic 

time scale, the averaging of observed data above hourly scales smears this quick-response 

feature of the catchment. This makes the quick-flow components of the model appear 

progressively non-identifiable, or redundant, as the time step increases. Moreover, they 

showed the effect of the model structure on the time scale dependencies of parameters. 

For example, they noted that some parameters that are common to different model 

structures of increasing complexity are highly scale dependent in simpler models but 

become progressively more stable in more complex model structures. In other words, the 

presence of structural errors in exceedingly simple models may be compensated by 

spurious time scale dependencies of the parameters. 

As for the general approach that can be followed to investigate the model complexity 

dependency on the time step, we remind that linking model conceptualizations across scales 

can follow either an upward or a downward route, according to the direction along the 

hierarchy of scales (Klemeš, 1983). Some examples of application of the downward approach 

to derive model structures at different time scales can be found in Sivapalan et al. (2003), 

Jothityangkoon et al. (2001) and Eder et al. (2003). The essence of the downward analysis is 
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that model complexity evolves from the simplest form at the largest time step to its final 

quasi-distributed framework with multiple storages and process interactions in response to 

inadequacies in signature prediction at finer time steps (Farmer et al., 2003). 

1.4.3.2 The emblematic case of the GR conceptual models chain 

In the field of lumped conceptual models, a clear example of the progressive complexification 

of the models structure as the time step becomes finer is the GR models chain developed at 

Irstea by different authors (e.g. Michel, 1983; Edijatno et al., 1999; Perrin, 2000; Perrin et al., 

2003; Mathevet, 2005; Mouelhi et al., 2006b; Mouelhi et al., 2006a; Le Moine et al., 2007; Le 

Moine, 2008; Pushpalatha et al., 2011). These models have been developed for different 

specific time-steps, up to date: annual (GR1A), monthly (GR2M), daily (GR4J, GR5J, GR6J) 

and hourly (GR4H, GR5H). They are the result of more than 30 years of progressive 

improvements, starting from a simple lumped model at the daily time step. Thus the 

development of the models for the other time steps has followed both the upward and 

downward routes. The actual daily model structures at four, five or six parameters (GR4J, 

GR5J, GR6J) derive from a first 1-parameter structure (Michel, 1983) and the progressive 

improvements by Edijatno (1991), Edijatno et al. (1999), Perrin (2000), Mathevet (2005), Le 

Moine (2008) and Pushpalatha et al. (2011). This long development of the model has 

followed a progressive increase in the complexity of the structure that has been accepted only 

if justified by a significant improvement in the performances proved over large catchment 

samples (consisting of hundreds of catchments).  

Figure 1.10 shows four of the selected models for the multi-annual, annual, monthly and daily 

time steps: the Turc equation (Mouelhi, 2003), the GR1A (Mouelhi et al., 2006a), GR2M 

(Mouelhi et al., 2006b) and GR4J (Perrin et al., 2003) models. It clearly shows the 

complexification of the structures as the time step is shortened. Table 1.5 summarizes the 

different complexities for these four models, two other daily versions (GR5J and GR6J) and 

the hourly models (GR4H and GR5H). Note that the hourly models share almost the same 

structures than their corresponding daily versions (GR4J and GR5J), thus one may refer to the 

daily structure represented in Figure 1.10. Some comments about this progressive 

complexification follow: 

 At the multi-annual time step the streamflow is only function of the inputs, P and E, at 

the same time step (see Turc equation).  

 At the annual time step it is introduced a dependency on the previous inputs taking 

into account the antecedent annual rainfall. This is a more simple way than adding a 

soil-moisture accounting storage or a transfer component and it is resulted sufficient at 

the annual step (Mouelhi et al., 2006a). 

 The necessity of a soil-moisture (or production) reservoir and a transfer component 

emerges at the monthly time step with also the need of an additional linear function 

expressing the underground exchanges of the basin. The production reservoir 

evolution is described by a power law of its storage (derived by integration over the 
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time step of its quadratic differential equations). At the monthly time scale, the 

transfer function involves just a quadratic routing reservoir.  

 Then, at the daily time step, while the soil moisture part rests unchanged, the transfer 

function of the model becomes more sophisticated including two unit hydrographs. 

The water that reaches the routing functions is partitioned into two distinct fluxes. 

While the most part (90%) is routed by a UH and then by the non-linear routing store, 

a part (10%) bypasses the routing reservoir and is routed directly by a UH (Perrin et 

al., 2003). A more complex groundwater exchange function is applied to both 

components and is described by a power law of the routing reservoir level. 

 The daily model has been adapted to the hourly time step by Mathevet (2005) and Le 

Moine (2008) following a top-down approach. The hourly structure was developed by 

empirical analysis (based on a trial-and-error process and evaluation of model 

performance), starting from the daily structure (GR4J), and testing many possible 

modifications on the model using a sample of 313 French catchments. Mathevet 

(2005) questioned the original daily structure at the hourly time step by: (1) changing 

the fixed parameters of the models, (2) complexifying the routing function of the 

model, and (3) complexifying the production function of the model. Only the first 

strategy succeeded, by changing the parameters that theoretically depend on the time 

step (see Section 1.4.2) and the UH exponent value. The UH exponent was lowered, 

leading to a more crushed form, as it is reported in Figure 1.11 from Mathevet (2005). 

The complexification strategies (2 and 3) failed. These strategies included many 

variations, as for example: changing the emptying laws of the two reservoirs; adding 

some new reservoirs in series or parallel; changing the form of the UH, or adding a 

dependency between the exponent of the UH, its base time and the production 

reservoir level. All these tests showed that no significant improvement was gained and 

the daily structure complexity was judged sufficient also for the hourly time step, 

which may be a counterintuitive finding. Moreover, Mathevet (2005) even tried to 

simplify the structure, finding that the use of only one UH with two branches does not 

modify the performance, simplifying the structure. Le Moine (2008) confirmed these 

conclusions, by also testing different addition points for the water exchanges fluxes 

and more options for the UH form. Le Moine (2008) (see p. 200) suggests two 

possible reasons for this complexification-failing: (i) indeed, “the representation of the 

rainfall-runoff transformation at the hourly time step does not need to be more 

complex than at the daily time step, the entire ‘added value’ would come from the 

richer information in the hourly rainfall signal”; (ii) the identifiability of the 

parameters would be more difficult at the hourly time step, because of the 

“simultaneous identification of parameters simulating a wide range of frequencies”. 

We think that both reasons are plausible and deserve further researches. 
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Multi-annual time step (Turc eq., in Mouelhi, 2003) Annual time step (GR1A, Mouelhi et al., 2006a)) 

  

Monthly time step (GR2M, Mouelhi et al., 2006b) 

  

Daily time step (GR4J, Perrin et al., 2003) 

 

 

FIGURE 1.10 – GR models chain at multiannual, annual, monthly and daily time steps. 
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Time-step Multiannual Annual Monthly Daily Hourly 

Model GR0P GR1A GR2M GR4J GR5J GR6J GR4H GR5H 

Number of free 

parameters 

0 

 

1 2 4 5 6 4 5 

Number of 

reservoirs 

0 0 

 

2 2 2 3 2 2 

Underground 

exchanges 

No No Yes Yes Yes Yes Yes Yes 

Unit hydrographs 

(n.) 

No No No Yes 

(2) 

Yes 

(1) 

Yes 

(2) 

Yes 

(1) 

Yes 

(1) 

TABLE 1.5 – Differences between the structures of the GR models at different time-steps, from 

multiannual to hourly time step. Table inspired from Mathevet (2005), modified from his table 6.1 

(page 205). 

 

FIGURE 1.11 – UH form for two values of the exponent of its power law: power=2.5, used in the daily 

model GR4J, and power=1.25 selected for the hourly model GR4H (from Mathevet (2005)). 

To conclude, although the GR models have structural affinities at different time steps, sharing 

some identical functions, especially for monthly, daily and hourly time steps, an exhaustive 

explicit link between them has not been clearly established and some questions are still open. 

For example the parameters dependency on time steps should be tested on a more continuous 

temporal domain. Moreover these models at different time steps should be further validated in 

a multi-criteria framework (flood, regime, low flows) and considering also their inner 

consistency (Mouelhi, 2003; Mathevet, 2005; Le Moine, 2008). Thus, we will start from these 

similar models at different time steps and we will try to validate their current state on a wider 

range of time steps, especially from the daily time step downwards, because of the primary 

operational interest of these time scales. By testing a larger set of time steps we will be able to 

derive a continuous relationship between the time steps and the model parameters and 

structures. The time step could be used as a sort of fixed-input of the model that may change 

continuously some other parameters and components (e.g. some function forms, as the UH 

function) and activate (or switch off) some components as the time step changes. In this 

direction, new investigations must be done, for example on the consistency of the state 

variables and internal fluxes of the models as the time step changes, topic that has not yet 

been investigated in the literature. 
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1.5 Synthesis and resulting research objectives 

In this chapter, we have focused our review on rainfall-runoff modelling and provided a 

synthesis of the general modelling framework, distinguishing eight different time concepts 

that are not sufficiently well recognized in the literature. We have thoroughly discussed the 

classification of different types of models, by focusing more on the underlying hypotheses on 

temporal and spatial scales than what is generally done. We have argued that this focus is 

essential for a meaningful and process-based conceptualization. Then we have discussed the 

general principles of the spatial and temporal scaling issues in hydrology, focusing in more 

details on the following aspects involved in the temporal scaling of conceptual hydrological 

models: (i) the relationship between process and modelling scale; (ii) the dependency of 

model parameters and performance on time step; (iii) the impact of temporal resolution on 

model structures. In each of these aspects, some advances have been made, but more research 

is needed to improve our qualitative and quantitative understanding on these issues. In this 

study, we will try to consider all these aspects together with their interplay, by testing 

different model structures at different time steps (starting from the cited GR4J and GR4H 

models) on a large set of catchments. The key issues that will deserve attention in our work 

can be summarized in the following points. 

The importance of the time-distribution of rainfall for streamflows simulation 

Absolutely central to the time scale issue in rainfall-runoff modelling is the importance of the 

time-distribution of rainfall for runoff simulations. Nowadays, we can better explore the 

crucial significance of the rainfall sub-daily variability in conceptual hydrological modelling, 

thanks to the increased computer power and increased availability of observations at sub-

hourly time steps (from different sources, e.g. rain gauges and radars). We think that the 

research on the temporal variability in hydrological modelling is more urgent than the spatial 

variability for different reasons, as for example: (1) for data availability, because, typically, 

space resolutions are still poorer than time resolutions in hydrology (Blöschl and Sivapalan, 

1995); (2) for a large sensitivity of runoff response to precipitation temporal variability, that is 

possibly more important than spatial variability as highlighted by some authors (e.g. 

Krajewski et al., 1991; Ishidaira et al., 2003; Paschalis et al., 2014); (3) the fact that, despite 

its importance, this temporal scaling issue in hydrological modelling has been the object of a 

smaller number of case studies respect to the spatial scaling issue. Given these considerations, 

we will investigate the impact of model time step on model performance by using rainfall 

data at short sub-daily time steps. Our model assessment will be based on a multi time scale 

approach, by evaluating model outputs at different time steps, larger than the model 

functioning one. This approach, often neglected in the literature, seems to us a valuable and 

demanding validation test for model consistency and temporal transposability.  

Model parameters dependency on temporal resolution 

Some authors have explored the issue of model parameters-time scale dependency, providing 

some insights on the impact of calibration data time step on the estimated parameters of 

conceptual models. A general consensus exists that most model parameters are time scale 
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dependent (Littlewood and Croke, 2008; Wang et al., 2009; Littlewood et al., 2011; Bastola 

and Murphy, 2013; Littlewood and Croke, 2013). However, despite all these studies, as 

Kavetski et al. (2011) note, there is still insufficient quantitative understanding about the 

precise underlying causes of these dependencies, their mathematical representations and 

physical interpretation. Current treatments and analyses of parameters scaling are largely 

heuristic and empirical (e.g. Littlewood and Croke, 2008; Wang et al., 2009; Bastola and 

Murphy, 2013) and only sometimes based on a sound mathematical basis (integration of the 

model equations), as in Le Moine (2008). In this context, one objective of our research work 

will be to further investigate the models parameters dependency on the calibration data time 

step and try to explicit and understand the conceptual basis of this dependency. This work 

could help to improve the physical interpretation of calibrated model structures and elucidate 

their connections to catchment attributes, facilitating their regionalization to ungauged 

catchments (e.g. Wagener and Wheater, 2006; Bárdossy and Singh, 2008). 

Model structures 

Some works have shown that the complexity in model structure increases as the time step 

decreases, as for instance Atkinson et al. (2002) and Farmer et al. (2003). The GR models 

chain is an example of set of specific models developed for different time steps, with some 

similarities and increasing complexity passing from the monthly to the daily time step 

(Mouelhi, 2003). However, in contrast to expectations, a complexification of the GR model 

structure has not been proofed to be necessary at the hourly time step (Mathevet, 2005; Le 

Moine, 2008).  

In our work, we will continue the development of the GR models at different time steps, and 

search for the actual limits in the temporal transferability of these model structures. For this, 

we will start from the simple GR4J daily model (Perrin et al., 2003) and follow a downward 

scaling approach for model development at multiple time steps. In this direction, new 

investigations should be done for analysing the internal coherence of the model. This will 

imply the analysis of the impact of time step not only on model parameters and performance, 

but also on the consistency of the state variables and internal fluxes of the models as the 

time step changes. The time step will be an input of the model that will adapt its structure and 

parameters as the time step changes. The explicit statement of the time step size in the model 

equations will allow to easily applying the same model to data with different time steps, as 

promoted by Kavetski and Clark (2011).  
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2.1 Introduction 

In this chapter we present the hydro-climatic data set used for this thesis. In order to develop 

robust and general models, it is necessary to work on a wide range of hydro-climatic 

conditions and a variety of hydrologic environments. Thus, we built a large catchment data 

base, as promoted by previous authors, as for example by Perrin et al. (2001) and Andréassian 

et al. (2009) among others. This scientific approach is frequently adopted in the “Catchment-

Hydrology” team at Irstea (Antony), where this work was carried out. One may see some 

previous PhD theses carried out at Irstea, such as Le Moine (2008) and Lobligeois (2014).  

In this chapter, we present in details our catchment selection procedure and the characteristics 

of the large and varied set of 240 mesoscale French catchments selected. 

Finally, we briefly present the GR4 simulation model, the calibration-evaluation procedure 

and the main evaluation criteria that will be used in this thesis. 

2.2 Building-up the hydro-climatic database 

2.2.1 Precipitation data 

The precipitation data series available for our work consist of the following products at 

different time steps. 

i. The catchment precipitation time-series at the daily time step were constructed at 

Irstea for 3701 French catchments by Bourgin et al. (2010) starting from the 

SAFRAN reanalysis developed by Météo-France (Vidal et al., 2010). This is a 

reanalysis of surface observations combined with data from analysis of meteorological 

models estimates of climate variables (liquid and solid precipitation, temperature, 

humidity, wind and solar radiation). The SAFRAN data, originally available at 8-km-

resolution, were aggregated at the catchment scale for the French metropolitan 

territory. This database is constantly updated and currently covers the period 1/8/1958 

- 31/7/2013, without gaps. The catchment rainfall series provide the cumulated rainfall 

for each day i, between 6h UTC of the same day and 6h UTC of the day i+1. 

ii. Rain gauge data of precipitation at 6-minute time step (Météo-France) are available 

for 1622 automatic rain gauges in Metropolitan France (1405 stations) and French 

Overseas Departments and Territories (217). The time-series cover the period 2005-

2013 (starting and ending at different dates depending on the station), with gaps. The 

6-minute rainfall data for a given time step ti corresponds to the cumulated rainfall 

between instants ti-t (t=6 minutes) and ti (for example, the data assigned to 0:06 h 

corresponds to the rainfall cumulated between 0h and 0:06 h UTC).  
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iii. The catchment precipitation time-series at the hourly time step were constructed 

by Lobligeois (2014) for 1133 French catchments from the COMEPHORE reanalysis 

developed by Météo-France (Guéguen et al., 2011). This is a reanalysis at 1-km spatial 

resolution of surface observations from rain gauges at hourly and daily time steps 

combined with data from radar measures at 5-minute time step. The time-series cover 

the period 1997-2006, without gaps. The hourly rainfall data for a given time step ti 

corresponds to the cumulated rainfall between instants ti-t (t=1h) and ti 

Because of our interest in testing a wide range of model time steps, up to sub-hourly, we 

decided to use only products (i) and (ii) to construct the rainfall time-series that we will use in 

our modelling tests. Note also that product (iii) is available for a more limited number of 

catchments than (i), while product (ii) is made of punctual observations over the whole 

Metropolitan French territory.  

Then, by using product (ii), the maximum time coverage of our modelling tests will be 8 years 

(from 2005 to 2013). The hourly rainfall time-series (iii) will be used, in combination with the 

catchment rainfall time-series at the daily time step (i), to construct rainfall series for some 

years before 2005 used as a warm-up period. Product (iii) is used also for a critical assessment 

of the quality of product (ii) by analysing the consistency of the two products (see Appendix 

B). Since the catchment daily precipitation time-series (i) are available for a longer period and 

without gaps, the constraints on data availability will concern only 6-minute rainfall data and 

streamflow data. 

2.2.1.1 Analysis of the quality of the 6-minute data  

Here we briefly present the analysis of the 6-minute precipitation database available for the 

French Metropolitan territory.  

Figure 2.1 shows the geographical distribution of the 1405 rain gauges in Metropolitan 

France and the corresponding Thiessen polygons. The spatial distribution of these rain 

gauges is not homogeneous over the French territory. The network is very dense in the Paris 

region and in areas with higher spatial variability of precipitation fields (Cevennes, Vosges, 

Var, Alpes-Maritimes, and Rhône-Alpes regions) and sparser elsewhere. 

 

The average area of the Thiessen polygons (also called average rain gauges area, see section 

2.3.2) of the 1405 rain gauges at 6 minutes time step on the French metropolitan territory is 

about 487 km
2
, i.e. there is one rain gauge every 487 km

2
 on average.  

This density is approximately the same than for the hourly rain gauges network (459 km
2
), 

and more than 3 times less than the daily network (136 km
2
), according to the analyses by 

Lobligeois (2014) on the latter two networks. Even the range of the Thiessen polygons areas 

is almost the same than for the hourly network, being:  

 16 - 1650 km
2
 for the 6 minutes pluviometers network,  

 6 - 1275 km
2 

for the hourly pluviometers network (Lobligeois, 2014); 

 2 - 440 km
2
 for the daily pluviometers network (Lobligeois, 2014). 
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FIGURE 2.1 - Network of 1405 rain gauges stations at 6 minutes sampling intervals in Metropolitan 

France and correspondent Thiessen polygons. 

For most rain gauges, the 6-minute time series are 8-year long, starting in 2005 (from June to 

August) and ending in 2013 (August). More than 80% of the 1405 rainfall time series begin 

before the 1
st
 July 2005 and terminate after the 13

th
 August 2013. So, for our modelling work 

we decided to consider the period 1/8/2005 - 31/7/2013, including 8 years (i.e. 2922 days or 

701280 intervals of 6 minutes), to have a common test period for all the basins for practical 

reasons. This 8-year test period is judged sufficiently long to allow applying a model 

calibration-validation procedure, in line with previous studies such as Perrin et al. (2008) and 

Merz et al. (2009). We can add some previous years to the test period 2005-2013, as a warm-

up period, in order to set the initial conditions for the model simulations in calibration and 

validation periods. To obtain the rainfall data for the years before 2005, for sub-daily time 

steps, we decided to either disaggregate the daily data using a uniform temporal distribution 

over the day or use the hourly data from the COMEPHORE reanalysis when this is available. 

The quality of the 6-minute data was checked by cumulating and comparing these data with 

the rain gauges measurements at the hourly time step reconstructed from the COMEPHORE 

reanalysis by Météo-France for the corresponding pixels (see point (iii) in Section 2.2.1). This 

analysis of data coherence was performed at 257 rain gauges operating over the period July 

2005 – December 2006 that is common between the two databases we have. This analysis 

confirmed a good consistency of the two products, as it is shown in Appendix B, providing 

some summary statistics about this comparison. 
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2.2.1.2 Constitution of catchment rainfall series at time-intervals from sub-hourly 

to daily 

Given the two rainfall databases available at daily and 6-minute sampling times (section 2.2.1, 

points (i) and (ii)) we can derive catchment rainfall time-series at all time steps from 6 

minutes upwards. 

For sub-daily intervals, we temporally disaggregate the daily precipitation series (see 

Section 2.2.1, point (i)) using the information of the sub-hourly distribution contained in 

the data of the 6-minute resolution rain gauges (see Section 2.2.1, point (ii)). One may 

wonder why we did not use directly the 6-minute data to calculate the catchment sub-daily 

rainfall estimates instead of disaggregating the daily precipitation series. There are two 

reasons for this choice: firstly, the 6-minute rain gauges network is much less dense than the 

daily network (at least 3 times less dense, as already discussed in Section 2.2.1.1). 

Furthermore, the spatial correlation of the precipitation at 6-minute time steps decreases with 

the distance more quickly than the spatial correlation of daily precipitation. The dependence 

of the correlation function of rainfall on the time scale has been discussed by a number of 

authors (e.g. Zawadzki, 1973; Obled et al., 2009). A key measure in this context is the so-

called decorrelation distance, i.e. distance for which the correlation decreases to 1/e of its 

maximum (Rubel, 1996). Considering the accumulation time of precipitation, typical 

decorrelation distances are 10 km for 15 minutes (Zawadzki, 1973), 50 km for hourly (Rubel, 

1996), 200 km for 12-hourly and daily (Rubel, 1996) and 300 km for monthly (Berndtsson, 

1987) accumulated values of precipitation. For these reasons the spatial interpolation of 6-

minute rainfall data is more hazardous than that of daily data. Thus, to avoid problems of 

water balance, we take as daily accumulated precipitation the values given by the SAFRAN 

reanalysis and use only the sub-daily temporal distribution given by the 6-minute 

network. This choice is analogous than that of Le Moine (2008). 

The temporal disaggregation of the catchment daily rainfall is operated by calculating a 

distribution function (DF) of the 6-minute rainfall data over each day, as described in more 

details below. As for sub-daily time intervals, we decided to consider only intervals multiple 

of 6 minutes, otherwise we should distribute the precipitation making arbitrary assumptions 

about the sub-hourly distribution that are not supported by information in the data and then 

adding uncertainty. The procedure followed for the temporal distribution at sub-hourly 

intervals involves the following steps: 

1. We determine the N rain gauges of the 6-minute network that influence each basin b, 

by intersection of the Thiessen polygons (Figure 2.1) with the catchment area. For 

each Thiessen polygon k we calculate its percentage of coverage pk on the basin. 

2. For each basin b we calculate the areal rainfall estimates 𝑃𝑏
6−min  at 6-minute time 

steps ti as an average of the 6-minute rain gauges data weighted by the percentages of 

coverage of the correspondent Thiessen polygons on the basin, as:  
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𝑃𝑏
6−min(𝑡𝑖) = ∑ 𝑃𝑘

𝑁
𝑘=1 (𝑡𝑖) ∙ 𝑝𝑘(𝑡𝑖)  

where 𝑃𝑘(𝑡𝑖) is the cumulated rainfall between time step ti-6’ and ti and 𝑝𝑘(𝑡𝑖) is the 

weight of the station k, that depends on the time step, since for some time steps one or 

more station can be not operational (see discussion below). 

3. From 𝑃𝑏
6−min  we calculate the discrete distribution 𝐷𝐹𝑏,𝑑 of the catchment rainfall 

series at 6-minute time steps for each day d, from 6h UTC of day d to 6h UTC of 

the next day d+1, that is then used to disaggregate the daily rainfall up to 6-minute 

time resolution, as: 

 𝑃𝑏(𝑡𝑖) = 𝐷𝐹𝑏,𝑑(𝑡𝑖) ∙ 𝑃𝑏
𝑆𝑎𝑓𝑟𝑎𝑛(𝑑)  

where 𝑡𝑖 is a sub-daily time step on day d. 

Note that if one (or more) station(s) k is (/are) not operational on a certain time interval, its 

(/their) weight pk is uniformly redistributed among the other stations influencing the basin. If 

no data of the 6-minute stations influencing a basin is available for a certain time interval t, 

we search for the nearest station k’ of the 6-minute network that is in operation on that time 

interval t and we use its measures with a weight pk’(t)=1 (only in this case, otherwise its 

weight is always zero). These cases are limited by considering only basins located in an area 

with a high density of the pluviometers network (see criteria explained in Section 2.3.2). In 

fact, for our final catchment sample of 240 basins, this absence of operating pluviometers 

happens for 133 basins for an average time interval (of ‘absence’ of pluviometers) of less than 

5 days and a maximum of 45 days over the total study period of 2922 days. 

2.2.1.3 Analysis of the goodness of areal rainfall estimates derived from 6-minute 

rain gauges at the daily time step 

In order to provide a first evaluation of the goodness of the areal rainfall estimates derived 

from spatial aggregation of the sole 6-minute data, we compared the average areal rainfall 

time series at 6-minute time steps (𝑃𝑏
6−min , see point 2 of previous section), cumulated at the 

daily time step, with the daily rainfall series derived from the daily SAFRAN reanalysis 

(𝑃𝑏
𝑆𝑎𝑓𝑟𝑎𝑛

, see point (i) in Section 2.2.1). Note that this comparison aims at assessing the 

coherence of two independent estimates of catchment daily rainfall, the first being based on 

the 6-minute rain gauges data only, and the second on the daily reanalysis. The objective of 

this analysis is to validate the goodness of the estimates derived from the 6-minute rain 

gauges only and so the quality of the original 6-minute data set. In fact, we can assume that 

the daily reanalysis is the reference areal rainfall at the daily time step, since it is the best 

estimate available for the two reasons already discussed in Section 2.2.1.2 (higher density of 

the daily rain gauges network and higher spatial correlation at the daily time step respect to 6-

minute step). 

To quantify the goodness of areal rainfall estimates, we used two indexes proposed by 

Andréassian et al. (2001): the GORE and the BALANCE indexes. 
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The Goodness of Rainfall Estimation (GORE) index is the transposition of the Nash-

Sutcliffe criterion (Nash and Sutcliffe, 1970b) in the rainfall domain, and compares the sum 

of the squared errors in the rainfall estimates 𝑃𝑏
𝐸  (in our case 𝑃𝑏

6−min) for a basin b to the 

temporal variance of the reference areal precipitation 𝑃𝑏
𝑟𝑒𝑓

 (in our case 𝑃𝑏
𝑆𝑎𝑓𝑟𝑎𝑛

). It is 

computed with the square roots of the rainfall data (to reduce the weight of extreme events), 

as: 

𝐺𝑂𝑅𝐸 = 1 −

∑ (√𝑃𝑏,𝑖
𝐸  −  √𝑃𝑏,𝑖

𝑟𝑒𝑓
)

2

𝑛
𝑖=1

∑ (√𝑃𝑏,𝑖
𝑟𝑒𝑓

−√𝑃𝑏
𝑟𝑒𝑓

̅̅ ̅̅ ̅̅ ̅̅
)

2

𝑛
𝑖=1

 

where n is the number of time steps of the period of analysis and √𝑃𝑏
𝑟𝑒𝑓

̅̅ ̅̅ ̅̅ ̅̅
 is the mean of the 

square root of the reference precipitation over the study period. The GORE index can vary 

between −∞ and 1. Its maximum value is reached when the estimated rainfall equals the 

reference rainfall; otherwise the index decreases as the estimates become poorer. 

The BALANCE index compares the sum of estimated rainfall to the sum of reference rainfall 

over the analysis period, and is defined as: 

𝐵𝐴𝐿𝐴𝑁𝐶𝐸 =
∑ 𝑃𝑏,𝑖

𝐸𝑛
𝑖=1

∑ 𝑃𝑏,𝑖
𝑟𝑒𝑓𝑛

𝑖=1

 

The BALANCE index is greater than 1 in case of rainfall overestimation, and smaller than 1 in 

case of underestimation. 

These two easy-to-interpret indexes describe the quality of the rainfall time distribution and of 

the total depth, which are very important aspects in hydrological modelling. 

In Figure 2.2, we report the empirical cumulative distribution of GORE index values for the 

240 catchments of our final sample (see Sections 2.3 for the selection process). The daily 

temporal distribution of areal rainfall estimates derived from the 6-minute data corresponds 

very well to that of the reference data (derived from the SAFRAN reanalysis data). In fact, the 

median value of GORE index is 0.94 and the 10
th

 percentile is 0.90. Only for two basins of 

the sample the GORE index is below 0.82, being the worst value 0.43 and the second worst 

0.78. 
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FIGURE 2.2 – Distribution of the Goodness of Rainfall Estimation (GORE) index for 240 catchments of 

our sample. 

 

In Figure 2.3 we report the empirical cumulative distribution of BALANCE index values for 

the 240 catchments of our final sample.  

 

FIGURE 2.3 - Distribution of the BALANCE index for 240 catchments of our sample. 

The areal rainfall estimates derived from the 6-minute data tend to underestimate the daily 

catchment rainfall with respect to the reference data, being the 80% of the BALANCE index 

values below 0.99. However this underestimation is limited: the minimum value of 

BALANCE index is 0.74 and the 10
th

 percentile is 0.87. The worst value of BALANCE index 

is 1.75, which corresponds to an overestimation of 75% of the total cumulated rainfall over 

the whole study period. This value concerns the basin of our sample with the worst value of 

GORE index too (0.43). This basin (i.e. the Tarnon River at Florac, code ‘O3064010’) seems 
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to be suffering from the problem of having rain gauges not operating for a great portion of the 

study period, since 2 of the 3 pluviometers influencing the catchments are inoperative for 

25% of the time. 

For the most part of our catchment sample, the GORE and BALANCE indexes validate the 

goodness of the daily areal rainfall estimates derived from the 6-minute data, as for 99% of 

our sample the indexes fall in a confidence band of 20% around the optimal value of 1. Only 

for a few basins there are bad outliers for the indexes of quality of rainfall estimates. However 

we decided to keep in our sample also these outliers, to evaluate the impact of the quality of 

rainfall estimates on model performance. Moreover, the uncertainties derived from the spatial 

aggregation of 6-minute rainfall data will concern the sub-daily temporal distribution of 

rainfall and not the accumulation of daily rainfall, due to our procedure of disaggregation of 

the daily precipitation series. 

2.2.2 Streamflow data 

Streamflow measures at variable sampling time were available at 1859 hydrometric stations 

in France from the “Banque-Hydro” data base, under HYDRO2 (SCHAPI, 2014), thanks to 

the extraction performed at Irstea (UR HHLY) in December 2013. These data cover our test 

period 2005-2013 and correspond to a half of the 3701 French catchments for which daily 

rainfall data are available. For these reasons, and given the time required to operate the 

extraction under HYDRO2 of flow time series at variable time steps, we considered that this 

data set was sufficient and it was not necessary to extract a large amount of additional data for 

other stations (only some additional data for few stations have been extracted to complement 

this data base).  

As for the time standard of these time-series, we discovered that each gauging station has 

its specific time reference history, since we found in the metadata (‘comments’ or ‘events’ 

field) that for some of the 1859 stations a change of time standard reference occurred during 

our study period. However, the hydrometric services have not always kept track of the time 

standard followed and eventual changes occurred during the time series, in the metadata of the 

centralized Banque-Hydro archive. So we asked directly the time standards information to the 

individual services that manage the hydrometric stations of our data base: 21 DREALS, 2 

SPC, one research centre (Irstea) and one regional Parc. The collected elements (although 

presenting a certain degree of uncertainty) allowed us to reprocess the data extracted from 

the Banque Hydro to put them in a uniform time standard reference, the Coordinated 

Universal Time (UTC). This was judged necessary to avoid potential biases due to the time 

standard changes occurred during our study period at a great part of stations. These changes 

involve two or even three time standards (winter time, summer time and UTC) and so lead to 

systematic biases in the streamflow series caused by one hour or two of artificial time lag in 

the temporal reference.  



2. Material and methods 

65 

 

2.2.2.1 Statistical characterization of the temporal resolution of streamflow series 

at variable time steps  

Given our interest to work at multiple temporal scales, including sub-hourly scales, here we 

analyse the temporal resolution of the streamflow series at variable time steps to see whether 

they have sufficient information content. The question arises because the hydrometric gauging 

stations are configurable and each hydrometric service operating a set of gauging stations in 

France may set up a different configuration. The time step can be lowered up to the minute 

but it is usually larger to avoid not affecting the autonomy of field devices (personal 

communication). In particular, the variability of the sampling time intervals depends on the 

variability of the river flows, and instruments are configured to operate more frequent 

measure recordings when the flow varies more quickly. For this reason, our expectation is to 

have time steps as small as possible and in any case at least less than one hour for the part of 

the streamflow series with the fastest variations (i.e. the high-flows periods, which generally 

cover a small portion of the series). Figure 2.4 shows the cumulative distribution function of 

the 10% quantile of the variable sampling intervals of flow series for the 240 catchments of 

our sample. Given that the median of this distribution is 28 minutes and the 90
th

 percentile is 

60 minutes (i.e. for 90% of our stations the 10%-quantile of the variable sampling intervals is 

less than 1 hour), the temporal resolution of our data set satisfies our expectation. Note also 

that the 10%-quantile of the time steps of streamflow series is greater than 2 hours only for 

two catchments in the sample. 

 

FIGURE 2.4 - Distribution of the 10% quantile of the variable sampling intervals of flow series for the 

240 gauging stations corresponding to the catchments selected in our final sample. 

We made this analysis on the temporal resolution of streamflow data a posteriori, after 

selecting our catchment sample, and since the result is satisfactory we decided not to further 

discard catchments by fixing a limit on the distribution of the sampling intervals of the 

streamflow series.  
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2.2.2.2 Constitution of streamflow series at time-intervals from sub-hourly to daily 

The streamflow data at variable time steps have been aggregated at different time steps 

proceeding as done in previous works by Le Moine (2008) and Lobligeois (2014). Streamflow 

time-series at different sampling times are generated by linear interpolation of original data 

at variable time step and integration on every desired time interval. If a variable time step 

data necessary to calculate a new fixed time interval data is considered as a gap, the 

aggregated data is not calculated, it is considered a gap too. Data for which the quality of 

measurements (indicated by a quality code in the Banque-Hydro database) is unknown 

(quality code 'I' or 'S') are considered as data gaps. Also, all the data corresponding to initial 

measurements after a suspension of the station operation (quality code ending with ‘;1’) are 

considered as data gaps, to avoid interpolating between two non-continuous measurements. 

As done by Lobligeois (2014) and unlike Le Moine (2008), we have retained all the data 

whether they are good (quality code '9') or reconstituted (quality code '8') or estimated 

(quality code '5'). This treatment avoids cutting the hydrographs above a threshold, due to 

data judged unreliable by the hydrometric services for the highest gauging points of the rating 

curves. Moreover, we applied two additional criteria, in order to avoid interpolating data 

over long time intervals, by defining as gaps:  

- Data corresponding to an interval between two measurements larger than 15 days; 

- Data corresponding to an interval between two measurements larger than 5 days 

and a difference of two subsequent flow values larger than 0.05 m
3
/s. This is to 

avoid interpolating over too long periods when streamflow significantly varies, while 

avoiding considering as gaps the low flows or dry periods (streamflow close to 0 and 

without significant variations) for which flow measures registration is sometimes 

suspended 

2.2.3 Evapotranspiration data 

Meteorological data necessary for the calculation of potential evapotranspiration (PE, also 

noted EP) are available at daily time intervals from the SAFRAN database by Météo-France. 

However, this information is not available at sub-daily time intervals. So we decided to 

calculate the potential evapotranspiration (PE) at daily time intervals and then disaggregate 

these data at the sub-daily scale by some empirical assumptions, as described below.  

The PE formula that we used is the one proposed by Oudin et al. (2005) that depends only on 

data of daily air temperature, the latitude of the catchment and the Julian day in the year: 

𝐸𝑃 =
𝑅𝑒
𝜆 ∙ 𝜌

(
𝑇𝑎 + 5

100
) 

where EP is the daily evapotranspiration (mm/d), Ta is the air temperature (°C), 𝑅𝑒 is the 

extra-terrestrial radiation (MJ/m
2
/d), λ the latent heat of vaporization (MJ/kg) and ρ the water 

density (kg/m
3
). 
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For the temporal disaggregation of daily PE, we followed the method used in Lobligeois 

(2014), where daily PE is distributed at hourly time steps according to a parabola. This 

parabola is null between 19h and 6h UTC and reaches its maximum from 12h to 13h UTC 

(see Figure 2.5). This is clearly an approximation, but it should not generate significant errors 

in streamflow simulations, given the insensitivity of rainfall-runoff models to high-frequency 

PE variations as shown by Oudin et al. (2004). 

 

FIGURE 2.5 - PE temporal distribution at hourly time step used to disaggregate daily PE (Lobligeois, 

2014). 

2.3 Catchment selection criteria 

Our scope is to construct a sample of unregulated catchments as large and varied as possible, 

aiming at the same time to contain the number of basins below 250 to keep the computation 

time reasonable. Catchments are selected to have no or low human and snow influences, since 

the model used is designed for natural catchments and is applied without a snow module. 

Some criteria on data quality are also required, as a minimum rain gauges density (for the 6-

min network) and a limit to streamflow data gaps. 

We aim to keep basins with different hydrological behaviours including basins with fast 

response times and slower ones. We desire also that our sample contains some catchments 

followed by the French flood forecasting services (SPC, French acronym for “Services de 

Prévision des Crues”) and low-flows monitoring stations. So, we verified this feature at the 

end of our selection process (see Section 2.4). 

In this section, we present the steps followed to select our test catchments, according to 

criteria on catchments characteristics and on rainfall and flow data. 
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2.3.1 Criteria on catchment characteristics 

The selection has been performed starting from a list of 3701 catchments in metropolitan 

France (Figure 2.6) having a hydrometric station at the outlet indexed in the Banque Hydro 

data-base (SCHAPI, 2014). It is a consistent part of the 4437 catchments set constructed at 

Irstea by Bourgin et al. (2010), by defining the basin contours from the hydrometric stations 

position and a digital terrain model (DTM) at 100-m-resolution, from which the flow 

directions were defined. The choice to start from the 3701 catchments subset is due to the 

availability of catchment rainfall time-series at the daily time step only for this subset.  

 

FIGURE 2.6 - The contours of the 3701 catchments in metropolitan France used as starting point for 

our catchment set selection. 

The following selection criteria were applied: 

 We kept 3421 catchments having a surface larger than 5 km
2
 and smaller than 10000 

km
2
. This range of surfaces is judged sufficiently large to ensure the interest of our 

modelling work with different time steps, from sub-hourly to daily. We decided to 

exclude basins with a surface smaller than 5 km
2
 because of the too large uncertainty 

that we would have on the precipitations for these basins (we remember that the daily 

rainfall data were originally available at 8-km-resolution from the SAFRAN data-

base). 

 We kept 3245 catchments whose hydrometric station is not coded as virtual and has a 

finality of general hydrometric record or flood warning or low-flow monitoring or 

experimental basin. In this way we excluded stations designed for dam management 

and water police. 

 We kept 2829 catchments indexed in the Banque Hydro data base as basins with low 

or no influence.  

 Another selection criterion followed for the scope of keeping only natural catchments, 

without human influence, was to consider an upper limit for the estimated storage 

capacities upstream each station. For this scope we used the database of dams storages 

(in Mm
3
) inventoried by Payan, 2007. When the sum of all these storage capacities 
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represents more than a 10-mm equivalent water depth, the station is discarded (278 

stations). This led to a number of 2551 catchments. 

 To remove the basins with a too large snow influence, we kept only the ones with a 

percentage of solid precipitation lower than (or equal to) 10% (1977 catchments). 

 A last criterion was to discard the basins containing some key-words in their names as 

“channel”, “source”, “resurgence”, and “pond” and this lead us to select 1961 

catchments. 

2.3.2 Criteria on rainfall data 

The quality of precipitation data is critically important for hydrological models development 

and calibration, as highlighted in the MOPEX project (Duan et al., 2006). Oudin et al. (2004) 

showed that the quality of streamflow simulation is highly dependent on the quality of rainfall 

data (contrary to evapotranspiration). When using precipitation data in lumped hydrological 

models, uncertainty comes from the raw data errors but also from the spatial aggregation at 

the catchment scale. 

2.3.2.1 Selection on data gaps frequency 

A first essential requirement is that the rainfall time series does not contain data gaps (missing 

data). The daily catchment rainfall time series are without gaps. However the 6-minute series 

contain gaps. Therefore a first selection is operated on the 1405 rain gauges stations of the 6-

minute network based on the gaps percentages in these series. Our scope is to limit as much as 

possible the frequency of gaps in the series to ensure that the sub-daily temporal distribution 

of rainfall is mostly based on 6-minute observations and not arbitrary assumptions. To do so, 

we kept in consideration only the stations with less than 5% of gaps in the observations series 

for more than 90% of the days (1366 stations). Furthermore we selected only the stations with 

series including at least 5 years of data with less than 10% of gaps (1128 gauge stations). 

2.3.2.2 Selection on rain gauge density 

Further criteria were imposed to ensure a minimum density of the 6-minute rain gauges to 

limit the errors introduced by the disaggregation of daily catchment rainfall using the 

measurements of the 6-minute network. Otherwise these errors can be great given the lower 

spatial correlation of rainfall at sub-hourly time steps (see discussion in Section 2.2.1.2).  

Previous studies for the MOPEX project have established a minimum density requirement 

for rain gauges based on basin size (Duan et al., 2006). Schaake et al. (2000) made a 

practical estimate of gauge density requirements to obtain highly accurate mean areal 

precipitation (MAP) estimates. They developed an equation by using observations from a 

very dense gauge network (45 km
2
 per gauge station) across a number of basins of different 

basin size in the United States. The time step used to develop this equation is one-fourth of 

the basin lag time. The required number of gauges for a basin of area A (km
2
) is: 

N = 0.6 A
0.3

 (2.1) 
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The exponent 0.3 implies that the required number of gauges doubles as the basin size 

increases by a factor of 10. The number of gauges given by Equation (2.1) should give MAP 

estimates for each time step that are accurate with a maximum MAP error of 20 percent for 80 

percent of the time during thunderstorm rainfall events (Schaake et al., 2000). The equation is 

applicable for basins between 200 and 20000 km
2
. Below 200 km

2
, Equation (2.1) may 

underestimate gauge requirements because the spatial correlation function for precipitation 

tends to fall more quickly with distance for shorter distances. This means that a minimum 

number of gauges, about 3, are needed for basins smaller than 200 km
2
, to filter the noise 

associated with this “nugget” of the decorrelation function. In our catchment sample selection, 

we decided to verify these density criteria for the 6-minute rain gauges, reducing to 2 the 

minimum number of gauges for basins smaller than 25 km
2
, because of the difficulty of 

having 3 gauges influencing such a basin area. To verify these gauges density criteria, we 

identified the pluviometers located in a square region of side 100 km around each basin and 

constructed the Thiessen polygons of these rain gauges (using ArcGIS). We counted the 

number N' of pluviometers influencing each catchment (with corresponding Thiessen 

polygon intersecting the catchment) and checked whether N' verifies Equation (2.1) or is at 

least 3 for basins smaller than 200 km
2
 or at least 2 for basins smaller than 25 km

2
. In this 

way, 1157 catchments are selected. Moreover, for the basins larger than 200 km
2
 (682 

basins) we applied an additional criterion requiring at least one rain gauge located within the 

catchment area (discarding 212 basins without any rain gauge). We did not apply this 

criterion for smaller basins (730 basins), in order to take in the sample a sufficient number of 

these basins that are interesting for our work at finer time steps. Note also that even if no rain 

gauge is located within the catchment boundaries for about 85% of these small catchments, a 

large number of them present a high density of rain gauges close to their boundaries (see 

Figure 2.7). 

Furthermore, we used additional criteria to limit the impact of the rain gauge density on the 

quality of the MAP estimates. To this end, we used a measure of the density of the 6-minute 

rain gauges network for each basin b, the average rain gauges area 𝜌𝑃,𝑏, defined as the 

average area of influence of the rain gauges. In practice it is calculated as the average area of 

the Thiessen polygons intersecting the catchments weighted by the percentage of coverage of 

each polygon in the basin: 

𝜌𝑃,𝑏 =∑𝐴𝑘
𝑇ℎ ∙

𝑁

𝑘=1

𝐴𝑘
𝐼𝑛𝑡.

𝐴𝑏
 (2.2) 

where N is the number of pluviometers, 𝐴𝑘
𝑇ℎ the area of the Thiessen polygon of pluviometer 

k, 𝐴𝑘
𝐼𝑛𝑡. the area of the intersection of the Thiessen polygon with the basin, and 𝐴𝑏 the area of 

basin b. Equation (2.2) can be viewed as a natural definition of the rain gauge network 

density, and it has been already used in literature, for example by Lobligeois (2014). 

However, this formula makes no difference if a rain gauge is within the basin or not and this 

is not good for our scope of selection of catchments. We do not want to discard a catchment 

for a low density of the rain gauges just outside the basin (with large values of 𝜌𝑃,𝑏) but to 

keep a catchment that has a high density inside its surface even if lower outside. To this end, 
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we modified Equation (2.2) taking into account only the area of Thiessen polygons 

intersecting the basin in case of pluviometers k inside the basin: 

𝜌𝑃,𝑏
′ =∑

𝐴𝑘
𝐼𝑛𝑡.2

𝐴𝑏

𝑁𝑖𝑛

𝑗=1

+ ∑ 𝐴𝑘
𝑇ℎ ∙

𝑁𝑜𝑢𝑡

𝑘=1

𝐴𝑘
𝐼𝑛𝑡.

𝐴𝑏
 (2.3) 

where 𝑁𝑖𝑛 is the number of pluviometers inside the basin and 𝑁𝑜𝑢𝑡 is the number of 

pluviometers outside (𝑁𝑖𝑛 + 𝑁𝑜𝑢𝑡 = 𝑁).  

Some statistics of the number of rain gauges influencing the selected catchments and their 

‘average rain gauge area’ will be reported later in this chapter (see Table 2.1, Section 2.4.4). 

Note that the additional criteria on rain gauge density are useful, since there is a weak positive 

correlation between the number of rain gauges influencing each catchment and the ‘average 

rain gauge area’, as defined above (Pearson correlation coefficient r=0.28).  

 

FIGURE 2.7 - Values of average rain gauges area and basin area for the 1157 catchments sample, with 

regression line. The vertical line (at 200 km2) represents the limit of basin area chosen to fix two 

classes of criteria for the minimum average rain gauges area (400 km2 and 225 km2). 

 

Figure 2.7 reports the values of average rain gauges area obtained by Equation (2.3) in 

relation to basin area for the sample catchments selected so far (339). The range of average 

rain gauges area is (30, 1603) km
2
, while the range of basin area is (5, 9389) km

2
. As 

example, Figure 2.8 shows the rain gauges influencing two basins of our sample with the 
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Thiessen polygons used to calculate the value of the average rain gauges area by Eq. (2.3). 

The first basin is smaller and presents a denser rain gauge network than the second, as shown 

by the values of average rain gauges area. 

  

FIGURE 2.8 - Average rain gauges area for the 6-minutes rain gauge network on two catchments of 

different size (Y4414030, 164 km2 and H6321011, 5191 km²). The surface of the Thiessen polygons 

(km²) and their percentages of coverage on the basin are shown in each polygon that intersects the 

catchment. 

 

We defined two different limits for the average rain gauges area depending on the 

catchment surface (𝐴𝑏): 

{
𝜌𝑃,𝑏
′ ≤ 400 𝑘𝑚2  𝑖𝑓 𝐴𝑏 < 200 𝑘𝑚

2 

𝜌𝑃,𝑏
′ ≤ 625 𝑘𝑚2 𝑖𝑓 𝐴𝑏 ≥ 200 𝑘𝑚

2  (2.4) 

These limit values were chosen empirically, considering the following ideas: (a) given the 

trend of growth of the average rain gauges area with the basin size (see Figure 2.7) we tried to 

be not too selective with respect to basins larger than 200 km
2
; (b) for smaller basins we fixed 

a more restrictive criterion to ensure a high density in the proximity of the basin to 

compensate the fact that we have not required the presence of at least one rain gauge within 

the catchment; (c) we also verified to keep Thiessen polygons with area values in the range of 

circle area with radius equal to the typical decorrelation distances of rainfall for sub-hourly 

time steps, i.e. from 10 km for 15 minutes (Zawadzki, 1973) to 50 km for hourly (Rubel, 

1996); this allows us to exclude basins with an excessive portion farther than these distances 

from the nearest rain gauge; (d) we aimed also at being consistent with the maximum spatial 

resolution proposed by Obled et al. (2009), considering hourly time steps (see Section 1.4.1).  

By applying the selection criteria of Equation (2.4), we kept the 584 catchments represented 

in Figure 2.9. The selected catchments are fairly well distributed in France, although there are 

obviously regions more represented than others, corresponding to the regions where the 
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density of the pluviometers network is higher (as it can be seen comparing Figure 2.9 with 

Figure 2.1). 

 

FIGURE 2.9 - The 584 French catchments (orange) selected by the criteria on rainfall data from the 

1961 catchments (hollow and orange) selected by basins characteristics criteria. 

2.3.3 Criteria on flow data 

As for the flow data availability, we kept only the hydrometric stations for which less than 

35% of daily flow data are missing over each of the two periods 01/8/2005 – 31/7/2009 

and 01/8/2009 - 31/7/2013 (being the two periods of equal length). The limit of 35% of gaps 

has been fixed by sensitivity analysis on the resulting sample, so as to keep a certain variety 

of catchments. Moreover this value can be considered over the limit below which the split-

sample calibration-validation approach, advocated by Klemeš (1986b), would be difficult to 

apply. To have a measure of this problem, one can see for example Merz et al. (2009) that 

analysed the impact of the number of years available for calibration on model performances 

for 269 catchments in Austria. They show that model performance increases with the 

calibration period length, and using more than 3 years of calibration, one tends to sample 

sufficiently diverse hydrological conditions and the likelihood that one particular catchment 

performs poorly in the predictive mode is much lower than with shorter periods. In our case, 

by allowing at most 35% of data gaps on each calibration period of 4 years, the actual length 

of the data series available on each period will be at least almost 3 years. Note also that 

applying this criterion to daily time-series is more restrictive than to smaller time steps 

because the gaps frequency decreases with the sampling time, given the construction 

procedure of the flow series by interpolation of the variable time steps data (see Section 

2.2.2.2). By applying the criteria on flow data availability explained above, we selected the 

223 catchments shown in Figure 2.10.  
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FIGURE 2.10 - Catchment sample of 223 French catchments (red) selected by criteria on flow data 

from the 584 catchments (hollow and red) selected so far, by basins characteristics and rainfall data 

criteria. 

Among the 584 catchments selected so far: 261 were discarded because the source time series 

of streamflow (at variable time step) are not available; 56 were discarded because the source 

time series do not cover at all the period 2005-2013; 44 were discarded because their 

streamflow time series have more than 35% of data gaps over at least one of the two sub-

periods used for the split-sample calibration-validation procedure. The limit of 35% of gaps 

will be sufficient to have enough data to calibrate and validate our rainfall-runoff models, also 

given the fact that the gaps frequency is less than 15% for about 90% of the catchments over 

the two periods (see Figure 2.11). The mean value of data gaps frequency is about 5% and the 

median value is less than 3% over the two periods. Thus for most of the catchments we will 

have almost 4 years of data availability (for each calibration-validation period) that can be 

considered a time period sufficiently long to have enough climate variability. 
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FIGURE 2.11 - Cumulative distribution of data-gaps in streamflow series for the 223 catchments of 

the sample selected by criteria on flow data, over the two periods 01/08/2005 – 31/07/2009 and 

01/08/2009 - 31/07/2013. 

2.3.4 Additional catchments recovered for particular reasons 

At the end of the process of catchment sample selection explained above, we added some 

catchments for specific interests, by allowing a slight relaxation of the selection criteria 

especially for criteria on rainfall data.  

Firstly, we added two very small catchments (S<5 km
2
), for which the sub-hourly time steps 

are likely of the same order as the catchment response time. We selected them from the 

catchments with surface between 3 and 5 km
2
, with the same criteria than the ones described 

above for the other catchments, except for the minimum number of pluviometers of the 6-

minutes network influencing the catchments, that we reduced to one, while requiring the 

distance of the pluviometers from the catchment centroid to be less than 2 km. These 

catchments are: (i) the Morcille brook at Villié-Morgon, 4.12 km
2
 (code ‘U4506010’), that is 

an experimental basin followed by Irstea, for which we have also hourly rainfall measures at 

one rain gauge located within the catchment; (ii) the Sienne river at Saint-Sever-Calvados, 

3.54 km
2
 (‘I7001040’). We remember that on these very small basins, the uncertainty on the 

daily precipitations is larger because they are derived from original data at 8-km-resolution 

from the SAFRAN data-base. For this reason, we have limited the number of these small 

basins in our sample. 

We added also another small experimental basin of 46 km
2
, the Yzeron river at Craponne 

(‘V3015010’), located in the Rhône-Alpes region in eastern France. 

We decided to include also some additional basins of the southwest and northern parts of 

France, because these regions were under-represented for the lower density of rain gauges of 

the 6-minutes network. So we recover some basins that were discarded for our criteria on rain 

gauges density, but that almost respect these criteria. To this scope we relaxed the criteria on 

maximum average rain gauges area, 900 km
2 

instead of 625 km
2
 for basins with a surface 
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larger than 200 km
2
, and minimum number of gauges, 2 instead of 3, for basins smaller than 

200 km
2
. In this way, we recovered: 5 catchments of the southwest of France, ‘O5292510’ 

(1603 km
2
), ‘Q0224020’ (154 km

2
), ‘Q3120010’ (7707 km

2
), ‘Q3464010’ (843 km

2
) and 

‘S2242510’ (1678 km
2
), and 4 catchments of the north, ‘B5572010’ (368 km

2
), ‘E4035710’ 

(392 km
2
), ‘G2011010’ (307 km

2
) and ‘G2203010’ (317 km

2
). 

Also an additional set of 5 catchments from the Adour basin, in the Atlantiques Pyrenees 

region, was included in the sample to respond to the request to work on some basins followed 

by the flood forecasting service of the Adour basin (SPC GAD, Gironde-Adour-Dordogne). 

These catchments are: (i) the Adour river at Tarbes (‘Q0120060’); (ii) the Arros river at 

Tournay (‘Q0522530’); (iii) the Lees river at Lannux (‘Q1094010’); (iv) the Gave d'Oloron 

river at Oloron-Sainte-Marie (‘Q7002910’); (v) the Nive river at Ossees (‘Q9102510’). The 

criteria of catchment selection described above were not applied for these catchments, being 

originally discarded for: 

- dams influence on the streamflows (only one catchment shows an influence 

significantly greater than the limit in terms of stored volume, i.e. the basin 

‘Q7002910’ with a total storage capacity of 32-mm equivalent water depth; the other 

catchments are below the limit of 10-mm or just around, 11-mm in one case);  

- density of the 6-minute rain gauges network (3 catchments: ‘Q0522530’, ‘Q1094010’, 

‘Q9102510’, that however present an acceptable density of rain gauges in their 

vicinity, with 𝜌𝑃,𝑏
′ < 900 𝑘𝑚2 for the worst case); 

- snow influence (2 basins, ‘Q012060’ and ‘Q7002910’, present a percentage of solid 

precipitation significantly larger than our limit of 10%, i.e. around 25%). 

Note that the different characteristics of these additional basins could negatively impact the 

results, but it could be interesting to analyse this impact, for example in term of loss of 

performance of the models due to the reduced density of the 6-minute rain gauges network, or 

the lack of description of the melting snow process, or dams operation.  

Figure 2.12 shows the final sample of 240 catchments (223 catchments selected so far + 17 

additional catchments) that will be used in our modelling tests. The list of the selected 

catchments is reported in Appendix C. 
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FIGURE 2.12 - Final catchment sample of 240 French catchments (red), including basins selected by 

criteria on catchment characteristics, rainfall and flow data, and basins recovered for specific reasons 

(basins smaller than 5 km2, in the southwest part of France, and followed by the flood forecasting 

service of the Adour basin). 

2.4 Summary of the characteristics of our catchment sample  

2.4.1 Morphological and hydro-climatic characteristics 

Our final catchment sample includes 240 lowland mesoscale French catchments (Figure 

2.12), whose surfaces vary from 3.5 km
2
 to 3296 km

2
. The selected basins are geographically 

well distributed over the whole French metropolitan territory and consequently represent a 

wide variety of morphological and hydro-climatic characteristics. Figure 2.13 and Figure 2.14 

show respectively the statistical and geographical distribution of twelve physiographic, 

morphological and hydro-climatic catchment characteristics (definitions of some 

characteristics and comments are provided here below). 

i. Surface (S [km
2
]): our catchment sample mainly presents small catchments (Figure 

2.13): the catchment surfaces vary from 3.5 km
2
 to 8790 km

2
, with a median value of 

356 km
2
 (Figure 2.13), and about 93% of the basins are smaller than 1000 km

2
. Thus 

our sample concerns just small rivers, upstream of the larger French rivers. 

ii. Hydraulic length (HL [km]): it is an index indirectly related to the water course 

length and is calculated as the average hydraulic length of all the pixels in the raster 

Digital Elevation Model (DEM) falling in the basin. The average hydraulic length of 

each pixel i is calculated as the distance from the outlet of the basin, following the 

flow direction grid from pixel i; in our catchment sample HL ranges from about 2 to 

173 km. 
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iii. Drainage density (DD [km
2
]): for the Drainage Density we used an index that 

represents the total surface of the “source basins” as proposed by Le Moine (2008); 

the higher the density of the river network, the lower the value of this index and vice 

versa. The value of DD for a certain basin b was obtained, following Lobligeois 

(2014), as the geometric mean value of the surfaces of the “source basins” that 

intersect the basin b. The lower values of DD in our sample are in the Mediterranean 

area and in the Pyrenees region (where there is the most part of the basins with 

DD<0.1 km
2
; see Figure 2.14), where the surface drainage network consists of a lot of 

small water courses. High values of DD (DD>1 km
2
) are concentrated especially in 

the north of France, but the highest value (DD=110 km
2
) is for a basin in the 

Mediterranean area characterized by karst geology (the Mas Pomier creek at Nant in 

the Regional Natural Park of “Grands Causses”, i.e. the Park of large limestone 

plateaus, from French). In fact, a large surface of the “source basins” means that water 

tends to infiltrate in the soil instead of flowing in surface, as observed also by 

Lobligeois (2014).  

iv. Average altitude (z [m]): it is calculated as the average altitude of the DEM pixels 

falling in the basin; almost all our catchments are lowland basins (z<1000 m) with a 

range of average altitude between 70 m and 1308 m above the sea level and a median 

of 362 m; the catchments with the highest altitudes are in the Pyrenees, Alps and 

Cévennes regions. 

v. Average slope (tan(), [-]): it is the average of the slopes of the DEM pixels falling in 

the basin, where the slope of each pixel i is calculated as:  

tan(𝛽) =
(𝑧𝑖 − 𝑧𝑢𝑝)

√(𝑥𝑖 − 𝑥𝑢𝑝)2 + (𝑦𝑖 − 𝑦𝑢𝑝)2
 

where 𝛽 is the slope in degrees, (𝑥𝑖 , 𝑦𝑖, 𝑧𝑖) the projected coordinates x, y and altitude z 

of the considered pixel and (𝑥𝑢𝑝, 𝑦𝑢𝑝, 𝑧𝑢𝑝) the projected coordinates x, y and altitude z 

of the upstream pixel, identified by the steepest slope around pixel i. The average 

slope is correlated with the average altitude as logically expected (Figure 2.14). 

vi. Topographic index (log(ni)/i, [-]): it is the topographic index of TOPMODEL 

(Beven and Kirkby, 1979) calculated as by Ducharne (2009), i.e. rescaled to be 

independent from the DEM resolution, as:  

𝐼𝑡𝑜𝑝𝑜 = log (
𝑛𝑖
𝛼𝑖
) 

where 𝑛𝑖 is the number of pixels upstream pixel i and 𝛼𝑖 is the slope (tan()) of pixel i. 

From its definition the topographic index is correlated to the basin surface (Figure 

2.14). 

vii. Average annual streamflow (Q, [mm/y]): it is the annual mean value of stream-flows 

observed at the basin outlet, converted into water sheet (mm) on the catchment area to 

be comparable between different basins; it is calculated over the whole period of daily 

data availability from the data-base constructed at Irstea by Bourgin et al. (2010). For 

our catchment sample it ranges from 36 to 1524 mm/y (Figures 2.13 and 2.14). 

Together with the average annual rainfall and evapotranspiration, it can be used to 
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characterize the hydrological regimes and annual water balance of our catchment 

sample (see also Figure 2.15). 

viii. Average annual rainfall (P, [mm/y]): calculated as the mean annual precipitation 

over the whole period of daily data availability; for our catchment sample, P ranges 

from about 650 to 2108 mm/y (Figures 2.13 and 2.14). 

ix. Average annual potential evapotranspiration (PE, [mm/y]): calculated as the mean 

annual potential evapotranspiration over the whole period of daily data availability; 

for our catchment sample PE ranges from about 600 to 1130 mm/y (Figures 2.13 and 

2.14). 

x. Autocorrelation of streamflows at time-lag 24 hours ((Qt, Qt+24h), [-]): it is the 

correlation coefficient between the daily streamflows (Q) at time steps t and t+24h. A 

high value of autocorrelation indicates a slow response of the catchment to 

precipitation (that is more smoothed out), while on the contrary a fast response is 

characterized by lower values of the autocorrelation. In our sample the catchments 

with the faster response are in the Mediterranean area (Figure 2.14). 

xi. Daily precipitation intensity coefficient (P99/Pm, [-]): it is calculated as the ratio 

between the 99
th

 percentile of the daily rainfall (P99) and the inter-annual daily mean 

value of rainfall (Pm). A high value of P99/Pm indicates that the catchment is exposed 

to intense convective precipitation events. The catchments in our sample with the 

highest values of the daily rainfall intensity coefficient are concentrated above all in 

the Cévennes region and more generally distributed in the Mediterranean area. 

xii. Base Flow Index (BFI, [-]): it is defined as the ratio between the base flow component 

and the total flow at the outlet; thus the base flow index (BFI) ranges between 0 and 1. 

The BFI here is calculated following the method described by Gustard et al. (1992). A 

high BFI value (BFI>0.65) indicates the presence of a large base flow component in 

the catchment, generally reflecting the importance of the underground flow. The 

highest values of BFI in our sample are mostly located in the north of France that is 

well-known for the geologic dominance of chalk formations. However, some basins 

with high BFI are present also in the Mediterranean area. Note also that high BFI 

values are highly correlated to high DD values (see comments in point (iii) here above 

and Figure 2.14). 
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FIGURE 2.13 - Distribution of the morphological and hydro-climatic characteristics of our catchment 

sample. 
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FIGURE 2.14 - Spatial distribution of the morphological and hydro-climatic characteristics of our 

catchment sample. 
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Figure 2.15 shows the annual hydrologic balance, between precipitation P, potential 

evapotranspiration EP and streamflow Q for the 240 catchments of our sample (red points) in 

the non-dimensional graph Q/P=f(P/EP). The two dashed curves in Figure 2.15 define the 

realistic physical region that should normally contain all basins without groundwater 

contribution to or from its neighbours. Normally for these basins the flow should never 

exceed precipitation (i.e. 𝑄 𝑃 ≤ 1⁄ ). On the other hand, since the potential evaporation is the 

upper bound of the actual evaporation, the flow should always be greater than the difference P 

- Ep (i.e. 𝑄 𝑃 ≥⁄ 1 − 𝐸𝑃 𝑃⁄ ). Only a dozen of our 240 catchments are outside these limits, and 

these mostly correspond to basins with high values of the base flow index (BFI>0.6; Figure 

2.14). Note also that the annual water balance of our catchment sample is largely 

representative of the wide variety of regimes of the French basins (grey points, Figure 2.15). 

 

 

FIGURE 2.15 - Representation of the annual hydrologic balance of the 240 catchments of our sample 

(red points) and of 4437 French catchments (grey points) for which hydro-climatic data are 

available. 

2.4.2 Hydrological regimes 

Here we present a classification of the hydrological regimes that can be found in our 

catchment sample, following the classification of river flow regimes made by Sauquet et al. 

(2008), who identified 12 regime groups for France according to the distribution of the 

normalized inter-annual monthly runoff time series (ratio between mean monthly and 

annual flows, Qm/Qy). As discussed by Sauquet et al. (2008), twelve reference hydrographs 

were constructed by hierarchical cluster analysis based on similarity criteria (Ward’s 

minimum variance method and Euclidian distance) to construct a flow regime map of France. 

Figure 2.16 shows the reference hydrographs constructed by Sauquet et al. (2008) for the 9 

classes of regimes present in our catchment sample. Figure 2.17 reports the geographical 

distribution of the 9 groups of catchments for each hydrological regime in Figure 2.16. Note 

that obviously snowmelt-fed regimes (groups 10-12 in Sauquet et al., 2008) are not 

represented in our sample, as we discarded the catchments with a solid precipitation fraction 
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greater than 10%. However, there are some basins in the transition (or pluvio-nival) regime 

and the nivo-pluvial regime (Groups 8 and 9) distributed in the mountainous areas of Alps, 

Massif Central and Pyrenees (16 basins). These basins include for example the two 

catchments not respecting the criterion on solid precipitation fraction recovered in the sample 

for a specific reason (see Section 2.3.4). For these catchments, high flows are observed in 

spring, which reflects the fact that the seasonal variation of streamflow is influenced as much 

by precipitation as snowmelt timing.  

The great part of our catchment sample is characterized by pluvial river flow regimes (Groups 

1 to 7), representing the dominant regimes in metropolitan France, with the oceanic pluvial 

regimes that reigns outside the Mediterranean area. These groups mainly differ by the contrast 

between the maximum and the minimum of monthly streamflow and small nuances in their 

timing. Nearly uniform flows through most of the year (Group 1) are found in 9 basins of our 

sample, mostly coinciding with catchments where large aquifers moderate flows (BFI>0.65) 

as in the northern part of France and in the southern karst region of the Regional Park of 

“Grands Causses” (see also section 2.4.1, point (iii)). All our basins of Brittany and almost all 

of Normandy regions are allocated in Group 5, which describes the strong homogeneity of 

these regions in terms of river flow regime. This runoff pattern includes 35 basins (not only in 

north-west part of France) characterized by very low flow in summer, reflecting the lack of 

deep groundwater storages in these basins. A similar but more smoothed behaviour 

characterizes 86 basins of our sample belonging to Groups 4 and 2, which present only one 

maximum observed flow in winter (similarly to Group 5) and low flows in summer (less 

extreme than Group 5). These basins are quite spread over France, but include almost all the 

basins of the Eastern part of France (Alsace and Lorraine regions). Similar to this flows 

regime are also Groups 3 and 6, including 73 basins of our sample, most of them in the centre 

of France, presenting a less monotonous trend of high flows (increasing of flows also in 

spring). Finally, 21 basins are allocated to Group 7 that is representative of Mediterranean 

river flow regimes, particularly in the Cevennes region, where small rivers basins experience 

hot and dry summers and intense rainy events in autumn and winter. Their runoff pattern 

therefore exhibits severe low flows in summer, with possible totally dry periods, and 

maximum annual high flows in November, with possible flash floods due to intense but short 

rainy events. These basins present also a local maximum flow in spring (in April), reflecting 

the influence of snowmelt in the Alps and Massif Central areas.  
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FIGURE 2.16 - Hydrological regimes of our catchment sample (with absolute frequency) based on the 

reference hydrographs for France defined by Sauquet et al. (2008). 
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FIGURE 2.17 - Geographical distribution of the hydrological regimes of our catchment sample (with 

absolute frequency) based on the reference hydrographs for France defined by Sauquet et al. (2008). 

2.4.3 Operational interest of our catchment sample 

Figure 2.18 and Figure 2.19 show the catchments of our sample followed respectively for 

flood warning by the French flood forecasting services, (S.P.C., Service de Prévision des 

Crues), and for low-flows monitoring, by the Regional Directions of the Environment, 

Planning and Housing (DREAL, Directions régionales de l’environnement, de 

l’aménagement et du logement). 
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FIGURE 2.18 - Catchments of our sample (hollow) followed by the SPC, i.e. French flood forecasting 

services (134 catchments coloured in orange). 

 

 

FIGURE 2.19 - Catchments of our sample (hollow) followed for low-flows monitoring by DREAL (42 

catchments coloured in green). 

2.4.4 Synthesis of the catchment characteristics 

The test catchments are geographically well distributed over the entire area of metropolitan 

France and represent the variety of oceanic and Mediterranean pluvial regimes existing in 

continental France.  

Table 2.1 summarizes the distribution of ten morphological and hydro-climatic characteristics 

of the 240 catchments. These characteristics were chosen to investigate their relationship with 

model behaviour at different time steps (see the analyses of Chapter 3). Typically, smaller and 

steeper catchments are expected to present faster responses to precipitation and to benefit 
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more from a refined temporal resolution of rainfall. The daily precipitation intensity 

coefficient (P99/Pm ratio) and the flow auto-correlation at 24 h characterize the temporal 

variability and dynamics of rainfall and streamflow, respectively. The highest values of the 

daily precipitation intensity coefficient are concentrated mainly above the Cévennes region 

and in the south-eastern Mediterranean area, indicating the occurrence of intense convective 

precipitation events. In the same area, the lowest values of the flow auto-correlation are 

found, corresponding to catchments presenting the fastest response to precipitation with 

frequent flash floods (Delrieu et al., 2005; Berne et al., 2009; Saulnier and Le Lay, 2009; 

Javelle et al., 2010; Braud et al., 2014).  

The catchment set includes as many catchments as possible respecting the selection criteria 

discussed above, with the objective to get general results, i.e. not too much dependent on 

specific catchment types or climate conditions. No a priori removal of “outlier” catchments 

(e.g. karstic catchments or groundwater-dominated catchments) was done, as advised by 

Andréassian et al. (2009). As a consequence, two catchments (the Laine river at 

Soulaines−Dhuy and the Siagne river at Callian) which are notoriously karstic, have mean 

annual runoff coefficients larger than 1 (Table 2.1).  

The ten characteristics in Table 2.1 may present strong linear correlations. The highest 

Pearson correlation coefficients (r>0.75) are found between catchment area, hydraulic length 

and topographic index, and between average altitude and slope. A quite large negative 

correlation (r=−0.62) was found between the daily precipitation intensity coefficient and the 

flow auto-correlation at 24 h, reflecting that catchments with the fastest flow dynamics are 

also subject to the most intense precipitation events. Despite these correlations, all descriptors 

were kept in subsequent analyses, since linearly correlated descriptors may not be similarly 

relevant given the non-linearity of hydrological processes. 
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# 
Catchment 

characteristics 
Definition / reference Min 

1
st
 

Quartile 
Median 

3
rd

 

Quartile 
Max 

MH1 
Catchment area 

[km
2
] 

- 4 163 356 770 8790 

MH2 
Hydraulic length 

[km] 

Average hydraulic length 

of all the catchment 

pixels 

2 15 25 38 173 

MH3 
Average altitude 

[m] 
- 70 200 362 538 1308 

MH4 Average slope [-] - 0.02 0.05 0.08 0.16 0.45 

MH5 
Topographic 

index [-] 

As calculated in 

Ducharne (2009) 
8.20 12.10 13.30 14.20 17.30 

MH6 
Runoff coefficient 

[-] 

Ratio of mean annual 

runoff to precipitation 
0.04 0.26 0.34 0.46 1.69 

MH7 Aridity index [-] 

Ratio of mean annual 

potential 

evapotranspiration to 

precipitation 

0.29 0.64 0.76 0.91 1.53 

MH8 
Base Flow Index 

[-] 

As calculated by Gustard 

et al. (1992) using daily 

streamflow data 

0.19 0.47 0.57 0.66 0.95 

MH9 

Flow auto-

correlation at 24 h 

[-] 

- 0.39 0.77 0.84 0.91 1.00 

MH10 

Daily precipitation 

intensity 

coefficient, P99/Pm 

[-] 

Ratio of the 99
th

 

percentile to the mean 

daily precipitation 

7.58 8.59 9.29 11.50 19.90 

RGD1 

Number of rain 

gauges 

influencing the 

catchment [-] 

Rain gauges of the 6-min 

network with Thiessen 

polygons intersecting the 

catchment 

1 3 5 7 32 

RGD2 
Average rain 

gauge area [km
2
] 

Average area of the 

Thiessen polygons 

weighted by coverage 

percentage over the 

catchment 

30 208 302 393 1126 

TABLE 2.1 – Summary of the distribution of ten morphological and hydro-climatic (MH) 

characteristics and two rain gauge density (RGD) indicators over the 240 test catchments. 

2.5 Flood event set 

An automated procedure of flood event selection adapted from Lobligeois (2014) (see 

Appendix D for greater detail) was used to select ten flood events for each catchment over the 

8-year test period (2005–2013), providing a set of 2400 flood events over the 240 catchments. 

Table 2.2 presents the distribution of some average flood descriptors for the 240 catchments. 

These flood characteristics were chosen because they are conceptually related to the temporal 

dynamics of flood events and therefore are expected to be relevant for our analyses. One 



2. Material and methods 

89 

 

descriptor, the Goodness of Uniform Estimates (GOUE) Index, was proposed in this study 

and is further described in Appendix E. It is applied to both precipitation and streamflow 

series, to evaluate their respective degree of temporal variability at a fine resolution (6 min) 

compared to a reference larger time scale (1 day).  

As for the catchment characteristics, some of these flood descriptors are correlated. The 

highest Pearson correlation coefficients (r>0.75) are found between: flood and storm 

durations (r=0.88); the GOUE Index on streamflows and the 24-h flow shape coefficient 

(r=−0.83); rainfall-runoff lag time and duration of storms (r=0.79) and floods (r=0.76); the 

GOUE index on streamflows and the flood duration (r=0.77); and the 24-h flow shape 

coefficient and mean flow gradient (r=0.76). No strong correlations of this order (r>0.75) 

were found between the flood descriptors in Table 2.2 and the catchment morphological and 

hydro-climatic characteristics (Table 2.1). However, the daily flow auto-correlation is 

correlated with the 24-h flow shape coefficient as well as the mean flow gradient (r=−0.64) 

and with the GOUE Index on streamflows (r=0.64). The expected correlations between 

rainfall-runoff lag time and catchment area and hydraulic length were partially confirmed 

(respectively with r=0.61 and r=0.68), while the slope is less correlated with lag time 

(r=−0.40). 
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# 
Flood 

characteristics 
Definition Min 

1
st
 

Quartile 
Median 

3
rd

 

Quartile 
Max 

FE1 Flood duration [h] 

Number of hourly time 

steps between the start 

and end of the event 

20 65 111 232 518 

FE2 
Storm duration 

[h] 

Number of hourly time 

steps with non-zero 

precipitation between 

the start and peak of the 

event 

5 21 33 55 155 

FE3 

Amount of 

precipitation for 

event [mm] 

Cumulated precipitation 

over the total event 

duration 

18 45 62 86 204 

FE4 
24-h flow shape 

coefficient [-] 

Ratio between the 

maximum instantaneous 

flow and the maximum 

of mean flows on 24-h 

duration around the peak 

1.01 1.10 1.22 1.45 4.60 

FE5 
Mean flow 

gradient [mm/h
2
] 

Ratio between the flow 

difference between peak 

flow and base flow and 

the rising limb duration 

0.0000 0.0045 0.0125 0.0304 0.35 

FE6 
Rainfall-runoff 

lag time [h] 

Time shift maximizing 

the cross-correlation of 

rainfall-runoff series 

over each event at 6-min 

resolution 

1.25 7.56 13.10 24.06 92.00 

FE7 

GOUE(P) [-] of 

daily precipitation 

at 6-min reference 

[-] 

Nash-Sutcliffe criterion 

between daily rainfall 

uniformly disaggregated 

at 6-min time step and 

the 6-min observed 

series (see Appendix E) 

−0.04 0.11 0.16 0.22 0.47 

FE8 

GOUE(Q) [-] of 

daily streamflow 

at 6-min reference 

[-] 

Nash-Sutcliffe criterion 

between daily 

streamflow uniformly 

disaggregated at 6-min 

time step and the 6-min 

observed series (see 

Appendix E) 

−0.30 0.49 0.71 0.87 0.99 

TABLE 2.2 – Summary of the distribution of the flood event (FE) characteristics over the 2400 selected events 

averaged by catchments (by the median values for each catchment). 
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2.6 Model and calibration-evaluation procedure  

2.6.1 The GR4 rainfall-runoff model 

The model used in this study is the GR4 model (Perrin et al., 2003), a four-parameter lumped 

rainfall-runoff model. In its daily version, it is popularly known as GR4J. In this thesis, since 

we will use and adapt this model at multiple time steps, we have removed the ‘J’ letter from 

the original name, because it stood for daily (from French ‘journalier’). 

This model was chosen because of the expertise gained from previous works on its 

development at daily and hourly time steps and for its operational relevance for the French 

flood forecasting services (e.g. Berthet et al., 2009). A detailed description of the structure of 

the GR4 model can be found in Perrin et al. (2003) and an overview of the model equations is 

provided hereafter. The GR4 model is composed of a production function, similar to soil 

moisture accounting functions, followed by routing and water exchange functions, as 

schematically represented in Figure 2.20. The soil moisture accounting store receives part of 

the net rainfall (Ps) and satisfies part of the net potential evapotranspiration (Es) determined 

by zero-capacity interception storage. The routing function consists of a linear routing with 

two unit hydrographs (UH) and a non-linear routing store. The groundwater exchange term 

makes it possible to import (export) water from (to) the outside of the basin. The four free 

parameters to be optimized are:  

(i) the maximum capacity of the production store (x1, [mm]);  

(ii) the water exchange coefficient (x2, [mm/time step]), which can be either positive 

for water gains or negative for water losses;  

(iii) the maximum capacity of the routing store at one time step ahead (i.e. capacity 

after removing the output of the store) (x3, [mm]);  

(iv) the time base of the unit hydrograph (x4, [time step]).  

The model also has fixed parameters, the value of which is justified by Perrin et al. (2003).  

As discussed in Chapter 1, there were previous works to adapt the GR4 simulation model to 

sub-daily time steps: Mathevet (2005) and later Le Moine (2008) successively proposed 

improved model versions at the hourly time-step. Le Moine (2008) made more explicit the 

relationships of model parameters with time step. Following his work, we identified the 

theoretical time-step dependencies of the fixed and free model parameters (see Table 2.3). 

Thus, the GR4 model can be already tested at sub-daily time steps by simply adapting its 

time-step dependent parameters. This will be the starting point for our modelling tests at 

multiple time steps. 

The current hourly version of the model, called GR4H (in the literature), proved already 

adequate with respect to model performance, as showed by Mathevet (2005) and Le Moine 
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(2008). Also, other works report the use of the GR4H model with satisfactory results when 

compared to other hourly models (Van Esse et al., 2013; de Boer-Euser et al., 2017).  
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FIGURE 2.20 – Schematic representation of the GR4 model structure (Perrin et al., 2003). 

 

GR4 model 

parameter 

Theoretical transformation 

from ∆𝐭𝟏[𝐬] to ∆𝐭𝟐[𝐬] 

Source of the time-step dependency 

 [-] 
 (∆t2)

=  (∆t1)
(
∆𝑡1 

∆𝑡2 
)

1

4

 
Integration of the percolation rate from the production 

store that is a power 5 function 

x2 [mm/time step] 
𝑥2 (∆t2) = 𝑥2 (∆t1) (

∆t1 

∆t2 
)
−
1

8

 
Integration of the exchange flux formulation (dependent on 

the routing reservoir level) 

x3 [mm] 
𝑥3 (∆t2) = 𝑥3 (∆t1) (

∆t1 

∆t2 
)

1

4

 
Integration of the emptying function of the routing reservoir 

that is a power 5 function 

x4 [time step] 
𝑥4 (∆t2) = ⌊𝑥4 (∆t1) (

∆t1 

∆t2 
)⌋ 

Value expressed in time-step units and rounded to the 

nearest integer 

TABLE 2.3 – Theoretical time-step dependency of one fixed and three free time step-dependent 

parameters of the GR4 model. 
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Model equations 

Here we present the discrete equations of the GR4 model used as baseline model for multiple 

time steps. All equations derive from the integration of the continuous equations over a time 

step t, apart from the equations representing the interception loss and the exchange fluxes, 

which are directly written in their discrete form. In the following equations, the water fluxes 

are integrated over the model time step and are expressed in mm on the integration time step. 

The first operation is the determination of an interception loss, i.e. evaporation from 

intercepted water (𝐸𝑖), by a neutralisation function of the precipitation P by the potential 

evapotranspiration E, which are consequently reduced to a net rainfall (Pn) and a net 

evapotranspiration amount (En): 

𝐸𝑖 = min (𝑃, 𝐸) (2.5) 

𝑃𝑛 = 𝑃 − 𝐸𝑖 (2.6) 

𝐸𝑛 = 𝐸 − 𝐸𝑖 (2.7) 

In case the precipitation P is greater than the potential evapotranspiration E, the net 

evapotranspiration is null, while if E is greater than P, the net rainfall is null. 

The production store is filled by a part Ps of the net rainfall, representing the part of rainfall 

infiltrating in the soil moisture accounting store. The remaining part of the net rainfall 

(𝑃𝑛 − 𝑃𝑠) bypasses the production store and reaches directly the routing part of the model. The 

amount of water Ps is determined as: 

𝑃𝑠 =
𝑥1 (1 − (

𝑆

𝑥1
)
2

) tanh (
𝑃𝑛

𝑥1
)

1 +
𝑆

𝑥1
tanh (

𝑃𝑛

𝑥1
)

 (2.8) 

where S [mm] is the level in the production store at the beginning of the time step and x1 is the 

maximum capacity of the production store. 

Under the effect of the net evapotranspiration amount, the production store is emptied of a 

quantity of water Es, i.e. the actual evaporation from the store, determined as: 

𝐸𝑠 =
𝑆 (2 −

𝑆

𝑥1
) tanh (

𝐸𝑛

𝑥1
)

1 + (1 −
𝑆

𝑥1
) tanh (

𝐸𝑛

𝑥1
)
 (2.9) 

Given the inputs to the store (net rainfall and net evapotranspiration) and a certain store 

capacity (𝑥1), the actual evaporaton Es increases with the level 𝑆 in the store, while the 

amount of infiltrating water Ps decreases. 

The total amount of water evaporated from the model on the time step is therefore given by 

the sum of 𝐸𝑖  and Es. 
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The discrete Equations (2.8) and (2.9) are derived from the integration over the time step of 

the differential equation 
𝑑𝑆

𝑑𝑡
= [1 − (

𝑆

𝑥1
)
2

]𝑃𝑛 −
𝑆

𝑥1
(2 −

𝑆

𝑥1
)𝐸𝑛, as reported by Edijatno (1991) 

(see pp. 329-332). 

The production store level 𝑆 is updated by adding Ps and removing Es. Then a percolation 

leakage 𝑃𝑒𝑟𝑐 is removed from the store. It is calculated as: 

𝑃𝑒𝑟𝑐 = 𝑆 {1 − [1 + (
𝑆


∆t
∙ 𝑥1

)

4

]

−
1

4

} (2.10) 

The discrete Equation (2.10) is obtained from the integration over the time step of an 

instantaneous leaking function of power 5, which leads to a time-step dependent percolation 

constant 
∆t

 (see Table 2.3).  

The percolation 𝑃𝑒𝑟𝑐 reaches the routing part of the model, where it is added to the part of the 

net rainfall that has bypassed the production store (𝑃𝑛 − 𝑃𝑠). 

The total amount of routed water, i.e. 𝑃𝑟 = 𝑃𝑒𝑟𝑐 + (𝑃𝑛 − 𝑃𝑠), is divided into two flow 

components by a fixed ratio: 90% of 𝑃𝑟 is routed by a unit hydrograph (UH1) and then a non-

linear routing store, and 10% of 𝑃𝑟 is routed only by another unit hydrograph (UH2). Both 

unit hydrographs depend on the same time parameter 𝑥4, expressed in time-step units, with a 

time base equal to 𝑥4 for UH1 and 2𝑥4 for UH2. The ordinates of the unit hydrographs are 

derived from the corresponding S-curves (SH1 and SH2) defining the cumulative distribution 

of the inputs with time, as detailed by Perrin et al. (2003). These curves are calculated over a 

number of time steps equal to the base time of the unit hydrographs, as:  

𝐹𝑜𝑟 0 ≤ 𝑡 ≤ 𝑥4:  𝑆𝐻1(𝑡) = (
𝑡

𝑥4
)
5/2

  (2.11) 

𝐹𝑜𝑟 0 < 𝑡 ≤ 𝑥4:  𝑆𝐻2(𝑡) =
1

2
(
𝑡

𝑥4
)
5/2

, (2.12) 

and 𝑓𝑜𝑟 𝑥4 < 𝑡 ≤ 2𝑥4:  𝑆𝐻2(𝑡) = 1 −
1

2
(2 −

𝑡

𝑥4
)
5/2

 (2.13) 

The ordinates of the unit hydrographs are then calculated as:  

𝑈𝐻1(𝑗) = 𝑆𝐻1(𝑗) − 𝑆𝐻1(𝑗 − 1) (2.14) 

𝑈𝐻2(𝑗) = 𝑆𝐻2(𝑗) − 𝑆𝐻2(𝑗 − 1)  

 
(2.15) 
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where j is an integer between 1 and the maximum number of ordinates, n and m, for UH1 and 

UH2, respectively, i.e. the smallest integers exceeding x4 and 2x4. The ordinates are used in 

the convolution product of effective rainfall to calculate the outputs of the unit hydrographs. 

A groundwater exchange loss (or gain) is then released (or added) from (to) both flow 

components. The potential half exchange, F, is calculated as: 

𝐹 = 𝑥2 (
𝑅

𝑥3
)
3.5

∙ ∆𝑡  (2.16) 

where R [mm] is the level in the routing store at the beginning of the time step, x2 [mm/time 

step] is the water exchange coefficient, and x3 [mm] is the reference capacity of the routing 

store. In absolute terms, the higher the level in the routing store and the higher the water 

exchange coefficient 𝑥2, the larger the exchange 𝐹. The actual exchange losses are limited by 

the water available in the routing store and by the flows components coming from the unit 

hydrographs. 

Then the water content of the routing store R is updated by adding the output of the unit 

hydrograph UH1 (𝑄9) and removing (or adding) the exchange component F. The outflow 

from the routing store gives the first flow component 𝑄𝑟, and is calculated as: 

𝑄𝑟 = 𝑅{1 − [1 + (
𝑅

𝑥3
)
4

]

−
1

4

} (2.17) 

Similarly to the percolation equation, the discrete Equation (2.17) is obtained from the 

integration over the time step of an instantaneous leaking function of R at power 5, which 

leads to a theoretical time step dependency of the routing store reference capacity 𝑥3 (see 

Table 2.3). 

The output of the second unit hydrograph UH2 provides the direct flow component 𝑄𝑑, after 

being subject to the same groundwater exchange component (loss or gain) F, as: 

𝑄𝑑 = max (0; 𝑄1 + 𝐹) (2.18) 

The total streamflow is finally given by the sum of the two flow components (𝑄𝑟 + 𝑄𝑑). 

Baseline model implementation and considered time steps 

An implementation of the GR4 model at daily and hourly time steps is freely available in the 

“airGR” R package developed at Irstea by Coron et al. (2017). This implementation is used as 

the baseline version of the model tested in this thesis, with some code adaptations to run the 

model at multiple time steps. 

In order to achieve the objectives of this thesis, we will use a set of model time steps ensuring 

a sufficient continuity in the temporal sub-daily scale. The time steps that will be used are the 

following: 6, 12, 30 min, 1, 3, 6, 12 h and 1 day. 
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2.6.2 Calibration and evaluation procedure 

The available 8-year period was split into two test sub-periods (01/08/2005–31/07/2009 and 

01/08/2009–31/07/2013). Eight years were judged sufficient to apply a common calibration-

validation procedure, following the split-sample test (Klemeš, 1986b) on the two 4-year sub-

periods. Some previous studies with different conceptual hydrological models empirically 

indicated that this is a period length sufficient to obtain robust parameters (e.g. Yapo et al., 

1996; Perrin et al., 2007; Merz et al., 2009).  

For our data set, this choice is also supported by two aspects: (i) the stability of the climatic 

conditions between the two sub-periods, and (ii) the significant event-based variability within 

each period.  

First, there is no strong change in the climatic conditions between the two periods, over the 

catchment set, as shown in Figure 2.21. On average, over the catchment set, the mean annual 

precipitation amount varies between the two 4-year sub-periods of about 5% (median), while 

the maximum relative variation is about 33% (see Figure 2.21(a)). The strongest relative 

variations (>20%) of mean annual precipitation between the two periods are found in 

catchments located in Southern France, where higher interannual variability of precipitation is 

expected. For both periods, the mean annual precipitation is about 940 mm on average over 

the catchment set (median), which is an evidence of a stationary climate over this 8-year 

period. For the potential evapotranspiration, the median relative variation of the mean annual 

values between the two sub-periods is lower than 1%, while the maximum variation is about 

3% (see Figure 2.21(b)). The mean annual potential evapotranspiration is about 700 mm on 

average over the catchment set for both periods. On average, the mean annual streamflow 

varies slightly more between the two periods, with a median relative variation of about 13% 

and a maximum of about 92% (see Figure 2.21(c)). Still, the average hydrological regime is 

stationary between the two periods (no general increase/decrease is observed) and only a few 

catchments are affected by large absolute deviations of streamflow between the two periods 

(i.e. catchments with low runoff coefficients, located in Southern France, which therefore are 

more sensitive to changes in rainfall). The median absolute deviation (with sign) of annual 

streamflow is only about +13 mm by passing from the first to the second 4-year period 

(compared to an annual value of about 300 mm). Regarding the precipitation distribution, the 

daily precipitation intensity coefficient (P99/Pm, see Section 2.4.1) varies on average of only 

8% between the two sub-periods (see Figure 2.21(d)). 
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FIGURE 2.21 – Cumulative distribution over the catchment set of the relative variation between the 

two 4-year periods (2005-2009 and 2009-2013) of: (a) mean annual precipitation, (b) potential 

evapotranspiration, (c) mean annual streamflow, and (d) daily rainfall intensity coefficient coefficient 

(P99/Pm). The variation is expressed in absolute terms and then normalized to the mean value over 

the whole 8-year period. 

 

Second, within each 4-year sub-period, the information content in the data-set is sufficiently 

varied, including dry and wet conditions, and a representative variability of flood events 

characteristics, as shown in Table 2.4. The statistics of the flood event characteristics over the 

two periods show that the variability of the events is similar across the two 4-year periods. 

Overall, the statistics provided in Figures 2.21 and Table 2.4 show that the climatic regimes of 

the two periods are not significantly contrasting and each 4-year sub-period includes varied 

events. Thus, the periods can be considered sufficiently long to lead to robust parameter sets. 
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# 
Flood 

characteristics 

Period I (01/08/2005 – 31/07/2009) Period II (01/08/2009 – 31/07/2013) 

Min Median Max 

Mean 

width of 

variation 

range by 

catchment 

Min Median Max 

Mean 

width of 

variation 

range by 

catchment 

FE1 
Flood duration 

[h] 
18 103 550 141 16 122 521 187 

FE2 
Storm duration 

[h] 
5 30 175 50 4 37 152 57 

FE3 

Amount of 

precipitation for 

event [mm] 

8 59 218 60 16 66 349 86 

FE4 
24-h flow shape 

coefficient [-] 
1.01 1.22 3.46 0.64 1.01 1.21 5.92 0.66 

FE5 
Mean flow 

gradient [mm/h
2
] 

0.00 0.01 0.42 0.06 0.00 0.01 0.29 0.08 

FE6 
Rainfall-runoff 

lag time [h] 
0.30 13.10 120.20 13.68 0.20 13.90 160.20 17.41 

FE7 

GOUE(P) [-] of 

daily 

precipitation at 

6-min reference 

[-] 

−0.04 0.16 0.47 0.22 −0.08 0.16 0.42 0.24 

FE8 

GOUE(Q) [-] of 

daily streamflow 

at 6-min 

reference [-] 

−0.22 0.70 0.99 0.43 −0.42 0.74 0.99 0.43 

TABLE 2.4 – Summary of the distribution of the flood event (FE) characteristics over the 2400 

selected events divided by the two 4-year periods 2005-2009 (1149 events) and 2009-2013 (1251 

events) and averaged by catchment (by the median values for each catchment over each period). For 

each period, the “mean width of variation range by catchment” represents the average absolute value 

of the range amplitude of the characteristic over the catchment set. 

After some first tests and analyses (not shown), we decided to use a warm-up period of two 

years before each calibration and simulation sub-period (i.e. 01/08/2003 to 31/07/2005 and 

01/08/2007 to 31/07/2009; see section 2.2.1.1), which was judged sufficiently long to 

initialize the model states. 

2.6.2.1 Model calibration 

The model is calibrated on each 4-year sub-period, using the Kling–Gupta efficiency (KGE) 

criterion (Gupta et al., 2009) as objective function, calculated on all the time steps of the sub-

period. The KGE criterion is calculated as: 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝑎 − 1)2 + (𝑏 − 1)2 (2.19) 

where:  

- r is the linear correlation coefficient between simulated and observed flows;  
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- a is the ratio of the standard deviation of simulated flows to the standard deviation of 

observed flows, i.e. a measure of relative variability between simulated and observed 

values;  

- b is the ratio of the mean of simulated flows to the mean of observed flows, i.e. an 

index of the overall bias in water balance.  

The ‘ideal’ value for KGE and its three components (a,b,r) is 1. Since in general we aim at 

reproducing the overall volume of flow (ideally ), the variability (ideally ) and the 

timing and shape of the hydrograph (ideally r=1), maximising the KGE criterion is a good 

compromise solution because it minimizes the Euclidian distance from the ideal point 

(r=1). 

The model calibration is performed by a two-step optimization procedure proposed by 

Mathevet (2005): 

(i) A pre-filtering search in the parameter space is performed using three quantiles for 

each of the four parameters. The quantiles of the parameters (used as possible 

starting values) are given by parameter sets libraries resulting from previous works 

on the GR4 model development on large catchment sets (Perrin et al., 2008). 

(ii) Starting from the best solution provided by the pre-filtering search, an iterative 

local optimization is performed using the “pas-à-pas” (step-by-step) method 

developed at Irstea. This procedure proved to be effective and robust for different 

conceptual rainfall-runoff models, including the GR4 model (Mathevet, 2005; 

Perrin et al., 2008). 

2.6.2.2 Model validation 

The model validation (or evaluation) is performed by various criteria calculated either over 

the whole validation sub-period or only over the flood events of the validation sub-period.  

For the evaluation over the whole period, the KGE criterion and its three components 

(variability ratio a, ratio of means b and correlation r) are routinely used.  

As a complement, other criteria are used at some moments of our model diagnostics and 

identification process, in order to evaluate the model in a multi-criteria perspective (flood, 

average regime and low-flows). These complementary criteria are based on the Flow duration 

curve (FDC) to evaluate the spread of simulated flows with respect to the observed flows 

frequency distribution and to detect any trend of over or under-estimation of extremes. In 

particular, the criteria used are:  

a. Ratio of lower quantiles (e.g. 20
th

 percentiles) of simulated and observed streamflows 

(
𝑄20
𝑠𝑖𝑚

𝑄20
𝑜𝑏𝑠), characterizing low flows; we used the 20

th
 percentiles and not lower quantiles, 

to avoid constraining our evaluation to reproduce very low flows (which is not the 

objective of short time steps modelling), and because of the large relative errors in 

low-flow measurements; 
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b. Ratio of the higher quantiles (e.g. ninety-ninth percentiles) of simulated and observed 

streamflows: (
𝑄99
𝑠𝑖𝑚

𝑄99
𝑜𝑏𝑠), characterizing high flows. 

c. The percent bias in the slope of the mid-segment of the FDC [%], that is related to the 

vertical soil moisture redistribution as discussed by Yilmaz et al. (2008). The slope of 

the mid-segment of the FDC is stepper for catchments with a more “flashy” response 

(due to small storage capacity and larger percentage of overland flow), while is flatter 

for catchments having slower and more sustained groundwater flow response. The 

percent bias in the slope of the mid-segment of the FDC, between 0.2 and 0.7 flow 

exceedance probabilities, can be defined as:  

 

𝑆𝑙𝑜𝑝𝑒𝐵𝑖𝑎𝑠𝐹𝐷𝐶(0.2−0.7) = 100( 
log(𝐹𝐷𝐶𝑠𝑖𝑚(0.2)) −   log(𝐹𝐷𝐶𝑠𝑖𝑚(0.7))

log(𝐹𝐷𝐶𝑜𝑏𝑠(0.2)) − log(𝐹𝐷𝐶𝑜𝑏𝑠(0.7))
− 1) [%] (2.20) 

 

where 𝐹𝐷𝐶𝑠𝑖𝑚/𝑜𝑏𝑠(p) represents the simulated/observed flow with exceedance 

probability p. Being a bias, the ideal value of the criterion 𝑆𝑙𝑜𝑝𝑒𝐵𝑖𝑎𝑠𝐹𝐷𝐶(0.2−0.7) is 

0%. A positive percentage indicates that the simulated catchment response is more 

rapid than the correspondent observed catchment response, while a negative value 

indicates the opposite tendency. 

For the evaluation over the flood events, we mainly used the KGE and its components. In 

order to ensure the significance of these aggregated statistics (KGE, a, b and r) over short 

time series, these criteria are calculated on the ten flood events taken altogether for each 

catchment (and not on each single event individually). Moreover, for events with durations 

shorter than three days, the event start and end are adjusted to have an evaluation period 

lasting at least three days.  

In Chapter 3, a complementary assessment is carried out on each flood event individually to 

evaluate the proper identification of flood peak magnitude and timing. This was based on 

three event-based criteria to evaluate the peak flows, the timing and the volume errors (see 

Chapter 3). 

2.7 Synthesis 

In order to meet the research objectives of this thesis, we have built up a large data base of 

French catchments, for which high-resolution hydro-climatic data is available, over a period 

of at least 8 years. We have presented the data available and the treatments done to prepare 

the time series of catchment precipitation, potential evapotranspiration and streamflow at 

different time steps, needed for our modelling tests. 

The catchment selection procedure was reported in detail. This procedure led to a set of 240 

test catchments presenting a wide range of morphological and hydro-climatic characteristics. 
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Finally, we have presented the GR4 simulation model (general naming of the GR4J model at 

different time steps) and the calibration-evaluation procedure that will be used in this thesis. 

The GR4 model, developed at Irstea (Antony), has already been adapted from the daily to the 

hourly time step in some previous works. A first simple way of adapting the model at 

different time steps has been reported, based on expliciting its time-step dependent 

parameters. Thus, the GR4 model represents the baseline model version that we will test and 

try to improve at a varied set of sub-daily resolutions. 
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This chapter corresponds to an article published in Journal of Hydrology. : 

Ficchì, A., Perrin, C., Andréassian, V. (2016). Impact of temporal resolution of inputs on 

hydrological model performance: An analysis based on 2400 flood events, Journal of 

Hydrology, Vol. 538, 454–470, http://dx.doi.org/10.1016/j.jhydrol.2016.04.016.  

 

 

Notes 

In this chapter, we have removed some parts of the original paper dealing with:  

- the presentation of the hydro-climatic data, and the catchment and flood event sets 

(Section 2 of the original paper); 

- the GR4 model (Section 3.1 of the original paper). 

These parts of the original paper were removed to avoid repetition, because they were already 

presented in the previous chapter of the thesis (2 - Material and methods).  

About the GR4 model, here we start from the assumption that the same model structure can 

be maintained whatever the time step is, from daily to sub-hourly. This hypothesis is 

supported by previous work on the model (Mathevet, 2005; Le Moine, 2008) showing that the 

optimal structure was rather stable passing from daily to hourly time steps and no additional 

complexity seemed necessary, on the basis of model performance. As suggested by Le Moine 

(2008) (p. 200), there can be different reasons for this, including the hypothesis that the 

representation of the rainfall-runoff relationship at the catchment scale would not need to be 

more complex as the time step decreases from daily to hourly. In support of this, there would 

be the possibility that the greater variability of the streamflow at shorter time steps would be 

completely explained by the rainfall information at higher resolution. This hypothesis is to be 

verified by considering also other possible problems that could affect the results at different 

time steps (e.g. identifiability of parameters and internal coherence of the model). This 

chapter addresses this issue more thoroughly from the point of view of the model 

performance. We remind that to limit any bias in applying the model at different sub-daily 

time steps, we identified the theoretical time-step dependencies of the fixed and free model 

parameters following Mathevet (2005) and Le Moine (2008) (see Chapter 2, Table 2.3). 

Moreover, we have done a first analysis of the consistency of the parameters calibrated at 

different time steps finding an overall good coherence. A detailed discussion of the impact of 

the time step on parameter values is not within the scope of this paper. However, we present 

in Appendix F a summary of the consistency of the parameter values at different time steps, 

for the GR4 model used in this chapter. 

 

http://dx.doi.org/10.1016/j.jhydrol.2016.04.016
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Abstract 

Hydro-climatic data at short time steps are considered essential to model the rainfall–runoff 

relationship, especially for short-duration hydrological events, typically flash floods. Also, 

using fine time step information may be beneficial when using or analysing model outputs at 

larger aggregated time scales. However, the actual gain in prediction efficiency using short 

time-step data is not well understood or quantified. In this paper, we investigate the extent to 

which the performance of hydrological modelling is improved by short time-step data, using a 

large set of 240 French catchments, for which 2400 flood events were selected. Six-minute 

rain gauge data were available and the GR4 rainfall-runoff model was run with precipitation 

inputs at eight different time steps ranging from 6 minutes to 1 day. Then model outputs were 

aggregated at seven different reference time scales ranging from sub-hourly to daily for a 

comparative evaluation of simulations at different target time steps. Three classes of model 

performance behaviour were found for the 240 test catchments: (i) significant improvement of 

performance with shorter time steps; (ii) performance insensitivity to the modelling time step; 

(iii) performance degradation as the time step becomes shorter. The differences between these 

groups were analysed based on a number of catchment and event characteristics. A statistical 

test highlighted the most influential explanatory variables for model performance evolution at 

different time steps, including flow auto-correlation, flood and storm duration, flood 

hydrograph peakedness, rainfall-runoff lag time and precipitation temporal variability. 
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3.1 Introduction 

3.1.1 Importance of short time-step data 

The transformation of rainfall into streamflow includes a large number of processes, with 

various dynamics and characteristic time scales on the order of 1 minute to hundreds of years 

(Blöschl and Sivapalan, 1995). The proper description and simulation of these processes may 

require short time steps for at least three reasons: (i) because of the short duration of the 

modelled runoff events (e.g. flash floods); (ii) because of the considerable intra-storm 

variability that controls some runoff processes and (iii) for numerical reasons especially 

related to the integration of differential equations in the model structure. This raises the issue 

of the appropriate time step of data used as input to hydrological models (typically 

precipitation). 

Until the 1990s, hydrologists had to rely mostly on data at the daily step at best, e.g. ground 

accumulated rainfall amounts recorded once a day by observers. This could cause limitations 

in the applicability of rainfall-runoff models needing shorter time steps, which had to be run 

with data disaggregated over the shorter time steps either uniformly or by mass curves 

(Blöschl and Sivapalan, 1995) or by more sophisticated stochastic generators (Creutin and 

Obled, 1980). However, over the last two decades, the availability of hourly and even sub-

hourly data tremendously increased in many countries, especially with the implementation of 

automatic rain gauge networks and meteorological radars (e.g. Creutin and Borga, 2003; 

Berne and Krajewski, 2013). This boosted the development of hydrological models running at 

short time steps to make use of these available data (e.g. Hughes, 1993; Moretti and 

Montanari, 2007; Chu and Steinman, 2009; Jeong et al., 2010). 

One idea underlying these developments is that data at short time steps contain more 

information and therefore should contribute to better modelling of the rainfall-runoff 

relationship. This is supported by several studies that showed that runoff generation is highly 

affected by sub-hourly dynamics of precipitation, particularly where the infiltration-excess 

overland flow mechanism dominates the rainfall-runoff response (e.g. Koch and Kekhia, 

1987; Morel-Seytoux, 1988; Woolhiser and Goodrich, 1988; Krajewski et al., 1991; Kandel et 

al., 2005; Paschalis et al., 2014). The precipitation controls the high-frequency catchment 

response, contrary to evapotranspiration whose variations are much more smoothed (Oudin et 

al., 2006). The temporal distribution of rainfall affects not only the runoff temporal 

distribution, i.e. flood shape, but also the peak discharge value (Gabellani et al., 2007) and the 

runoff volume (Viglione et al., 2010). This is due to the nonlinear nature of infiltration (and 

runoff) processes, with characteristic time scales of a few minutes (Blöschl and Sivapalan, 

1995; Kandel et al., 2005). Woolhiser and Goodrich (1988) point out the significance of the 

rainfall intensity–infiltration interaction using a simple physically based model, concluding 

that the constant intensity rainfall pattern on an hourly scale cannot be recommended, 

especially for rapid catchments. Various studies have shown that infiltration excess surface 

runoff is modelled better using a sub-daily time step rather than daily time-step models, and 



3. Impact of temporal resolution of inputs on hydrological model performance: An analysis based on 2400 flood events 

110 

 

peak rates of rainfall are recognized as the most important controls for rainfall-runoff 

modelling (e.g. Yu et al., 1998; Socolofsky et al., 2001; Kandel et al., 2004; Kandel et al., 

2005).  

3.1.2 Modelling at short time steps to evaluate at larger time steps 

Given the importance of sub-daily variability of rainfall for runoff modelling, one may be 

more confident in a model running with short time-step data than a model running with larger 

time-step data, even when the target model assessment time step is large. However, in the 

literature there is a limited number of case studies, where a rainfall-runoff model is run at a 

short time step and its outputs are used or evaluated at a larger time step (e.g. Hughes, 1993; 

Finnerty et al., 1997; Schreider and Jakeman, 2001; Kannan et al., 2007; Jeong et al., 2010; 

Yang et al., 2016). Typically (sub-)hourly or daily time steps are used for running the model 

and then performance assessment is based on daily or monthly aggregated outputs, 

respectively. Hughes (1993) discussed the advantages of using fine sub-daily time steps up to 

5 min by applying a variable time-step model structure to two semi-arid catchments and a 

total of six storm events. The results suggested that the simulated runoff volume may be 

improved as the time step decreases up to 1 h for one catchment and even up to 5 min for the 

other catchment with higher rainfall intensities and a faster response. Finnerty et al. (1997) 

analysed the sensitivity of the SAC-SMA model to the spatial and temporal discretization of 

rainfall inputs while holding the parameters constant. They showed that the runoff volumes 

cumulated over a 9-month period significantly changed when the time step decreases from 6 h 

to 1 h. The surface runoff resulted in being the most temporally sensitive model component, 

which is attributed to the varied averaging of high-intensity short-duration precipitation 

events that affect surface runoff. Jeong et al. (2010) developed a sub-hourly version of the 

SWAT model and tested it on a small catchment. They showed the improvement in model 

performance when sub-daily predicted streamflows (at 15 min and 1 h) are aggregated to 

daily averages compared to daily simulation results. Similar results were shown also by Yang 

et al. (2016), using hourly and daily rainfall observations as inputs of the SWAT model for 

daily streamflow simulation on one medium-sized catchment, while, for the same model, 

contrasting results were found by Kannan et al. (2007) for the ranking of sub-daily and daily 

inputs options on one small catchment. 

Despite these overall encouraging findings, the common modelling practice is still to choose 

the model and input data time step equal to the evaluation time step. The assessment of 

aggregated outputs using shorter time-step data is rarely reported, even among the increasing 

number of studies examining the time scale dependencies of rainfall-runoff model parameters 

(e.g. Littlewood and Croke, 2008; Wang et al., 2009; Ostrowski et al., 2010; Littlewood et al., 

2011; Bastola and Murphy, 2013; Littlewood and Croke, 2013). In these studies, simulation 

outputs and performance scores at different time steps are sometimes compared at one 

aggregation time scale, daily or hourly (e.g. Wang et al., 2009) and sometimes without a 

preliminary aggregation (e.g. Littlewood and Croke, 2008). However, the rankings of model 

performance at different time steps may depend on the evaluation time scales chosen for 



3. Impact of temporal resolution of inputs on hydrological model performance: An analysis based on 2400 flood events 

111 

 

comparative analysis. A comparison across a wide range of evaluation time scales could help 

find general tendencies or specific behaviours emerging at certain time scales. 

The case of artificial reservoirs is an example of an application of hydrological models that 

could benefit from time steps shorter than the operation model time step. For large flood-

control or water-supply reservoirs, their management may only require the forecast of daily 

inflows, but these daily inflow forecasts may be obtained using an hourly model and 

aggregating the outputs to obtain the daily inflow. This could provide a better description of 

flood events, which contribute most of the flow volume. Although this approach is still rare in 

the reservoir operation literature, examples of its advantages can be found. For example, 

Schreider and Jakeman (2001) applied the IHACRES model at a 4-hourly time step for ten 

catchments in the Upper Murray Basin, feeding Hume and Dartmouth lakes, two of 

Australia’s four largest reservoirs. They showed that long-term daily forecasts of streamflows 

used for reservoirs’ operational management can be obtained by aggregating the 4-hourly step 

simulations with the same or higher accuracy than by daily model simulations.  

Although this approach of using shorter time steps intuitively makes sense, there are several 

reasons that may limit the added value of short time-step data when looking at results at larger 

aggregated time scales. First the model input data, especially rainfall, may have a lower 

signal-to-noise ratio at shorter time steps due to the greater difficulty validating data and the 

greater uncertainty in areal averaged rainfalls (Yu et al., 1997; Obled et al., 2009). Second, 

catchments behave like low-pass filters, which may smooth out the short-term variability of 

input and limit the sensitivity of outputs to this additional information. This may be especially 

true when the characteristic time of studied events is far longer than the time step used (e.g. 

Obled et al., 2009). The model structure itself may also be less appropriate to catch the greater 

complexity of processes at shorter time steps, as already expressed for example by Hughes 

(1993). Last, the averaging effect of output data aggregation may also limit the usefulness of 

using fine time-step input data. Hence, it is useful to investigate the influence of the time step 

on modelling results, since there may be a compromise between the expected advantages 

obtained by refining the inputs and the model time step, and the possible limits affecting 

model efficiency at shorter time steps more than at the larger evaluation time step. 

3.1.3 Scope and structure of the article 

The literature review has shown that, despite the general knowledge of the importance of sub-

daily variability of rainfall for flood volume modelling, the advantages of using rainfall data 

at fine temporal resolution for flow simulation are still not well quantified. There is a need for 

further investigations to evaluate the usefulness of short time-step information for 

hydrological model simulations, by comparing different model time-step outputs at common 

aggregated time scales, using a large set of catchments. A parallel can be made between these 

investigations on the temporal discretization issue and the studies conducted to investigate the 

impact of refined spatial discretization of catchments on modelling results, which have 

received more attention in the literature (see e.g. Obled et al., 1994; Das et al., 2008; 

Lobligeois et al., 2014). Recently, Melsen et al. (2016a) noted the surprising contrast between 
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the trend of increasing spatial resolutions and the stagnation of time steps used for calibration 

and validation of the VIC model (based on 192 studies of last two decades), and they 

advocated the need of a simultaneous refinement of temporal resolutions. 

The present research aims at better understanding the usefulness of fine time-step hydro-

climatic data for hydrological model performance on a large set of 240 catchments and 2400 

flood events. This will allow going beyond the specific conclusions of previous single-

catchment tests by investigating the relationship of model performance behaviour at different 

time steps with a number of catchment and flood event characteristics. Simulations made at 

different sub-daily time steps (up to 6 min) will be aggregated and compared at selected 

evaluation time scales going from sub-hourly to daily. This choice is essential to provide a 

rigorous evaluation framework and to ensure consistency in the comparison. This analysis has 

the advantage of quantifying the possible improvements in hydrological simulations evaluated 

at certain aggregated time scales using shorter time-step information. 

In Section 3.2, the general testing framework and evaluation methodology followed for 

comparing simulations at different model time steps are presented. In Section 3.3, the results 

of model performance at different time steps on the whole catchment set are presented and 

discussed. The different performance behaviours and the possible explanatory variables 

behind these differences are investigated. Section 3.4 provides some concluding remarks and 

discussion on the limitations of this work and the perspectives for further research. 

3.2 Testing approach and evaluation methodology 

3.2.1 Testing approach for model evaluation at different time steps 

The main objective of this study is to analyse the usefulness of using short time step 

information and modelling when the analysis is performed at larger (aggregated) time steps. 

To this aim, we applied the testing approach summarized in Fig. 3.1. 



3. Impact of temporal resolution of inputs on hydrological model performance: An analysis based on 2400 flood events 

113 

 

 

FIGURE 3.1 – Testing approach followed for model evaluation and comparisons at different time 

steps. Left panel: daily evaluation for simulation time steps from 6 min to 1 day; right panel: hourly 

evaluation for simulation time steps from 6 min to 1 h. 

The GR4 model is run at a short time step using inputs and simulating outputs at the same 

time step. Then model outputs are aggregated at a larger time step, which is called the model 

evaluation reference time scale. The model was run at eight time steps: 6, 12, 30 min, 1, 3, 6, 

12 h and 1 day (d). So, all time steps are multiples of shorter time steps (except in the case of 

30 and 12 min). For an exhaustive comparative evaluation, output series at a certain model 

time step were aggregated at all the larger time steps: 12, 30 min, 1, 3, 6, 12 h and 1 day. This 

methodology aims to answer the question: “When evaluated at a certain reference time scale, 

can model performance benefit from shorter time-step information and modelling?”. To test 

the significance of the differences between model performance at different time steps, 

statistical tests were performed. Since the evaluation statistics of models at different time 

steps are paired (i.e. the same basins are used) and not normally distributed, we used the 

Friedman rank test, also known as the Friedman two-way analysis of variance (Friedman, 

1937), to determine whether two or more paired samples have been selected from populations 

having equal medians. 
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3.2.2 Calibration and evaluation procedure 

The available 8-year data period was split into two test sub-periods (01/08/2005–31/07/2009 

and 01/08/2009–31/07/2013). Eight years were judged sufficient to applying a common 

calibration-validation procedure (e.g. as shown at a daily time step by Merz et al., 2009), 

following the split-sample test (Klemeš, 1986b) on the two 4-year sub-periods. The models 

were calibrated on each sub-period, using the Kling–Gupta efficiency (KGE) criterion (Gupta 

et al., 2009) as objective function, calculated on all the time steps of the sub-period before 

aggregation at the evaluation reference time scale. The KGE criterion is calculated as: 

𝐾𝐺𝐸 = 1 −√(𝑟 − 1)2 + (𝑎 − 1)2 + (𝑏 − 1)2 (3.1) 

where r is the linear correlation coefficient between simulated and observed flows; 𝑎 is the 

ratio of the standard deviation of simulated flows to the standard deviation of observed flows, 

i.e. a measure of relative variability between simulated and observed values; 𝑏 is the ratio of 

the mean of simulated flows to the mean of observed flows, i.e. an index of the overall bias in 

water balance. The ‘ideal’ value for KGE and its three components (𝑎, 𝑏, 𝑟) is 1.  

The model evaluation is presented here only on the flood events of the validation sub-period 

after temporal aggregation at each reference time scale. The overall evaluation was performed 

with the KGE criterion and its three components (variability ratio a, ratio of means b and 

correlation r). To ensure the significance of these aggregated statistics (𝐾𝐺𝐸, 𝑎, 𝑏 and 𝑟), 

these criteria were calculated on the ten events taken altogether for each catchment (and not 

on each single event individually). Moreover, for events with durations shorter than three 

days, the event start and end were adjusted to have an evaluation period lasting at least three 

days.   

For the comparison of simulations at different model time steps, we used the relative KGE 

Index (𝑅𝐾𝐺𝐸) as formulated by Lerat et al. (2012) to compare two modelling options, here 

called alternatives r, i.e. simulation at the reference time step r, and x, i.e. simulation at the 

shorter time step x<r: 

𝑅𝐾𝐺𝐸(𝑥|𝑟) =
𝑚(𝑞𝑜𝑏𝑠, �̂�𝑟) − 𝑚(𝑞𝑜𝑏𝑠, �̂�𝑥)

𝑚(𝑞𝑜𝑏𝑠, �̂�𝑟) + 𝑚(𝑞𝑜𝑏𝑠, �̂�𝑥)
 (3.2) 

where 𝑚 = 1 − 𝐾𝐺𝐸 is a metric measuring the discrepancies between simulated and 

observed flows, with m=0 for a perfect simulation; 𝑞𝑜𝑏𝑠 is the observed streamflow at the 

reference time step r; �̂�𝑟 is the simulated flow using the model at the reference time step r and 

�̂�𝑥 is the flow simulated at time step x<r and then aggregated at time step r. 𝑅𝐾𝐺𝐸  ranges from 

−1 to 1, with positive values corresponding to better performance at time step x with respect 

to the reference, and vice-versa for negative values. The interpretation of this index is further 

detailed in Table 3.1 adapted from Lerat et al. (2012). The bounded range of the index is an 

advantage for calculating mean results over large sets of catchments (e.g. Mathevet et al., 

2006). 
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𝑹𝑲𝑮𝑬(𝒙|𝒓) 𝒎(𝒒𝒐𝒃𝒔, �̂�𝒙)/ 𝒎(𝒒𝒐𝒃𝒔, �̂�𝒓) Interpretation 

1 0 
Simulated flow (qsim) at time step (t.s.) x is perfect according to 

metric m 

0.5 1/3 
Error metric m for qsim at t.s. x is 3 times smaller than for reference 

r 

0.33 1/2 Error metric m for qsim at t.s. x is twice as small as for reference r 

0.05 9/10 Error metric m for qsim at t.s. x is 10% smaller than for reference r 

0 1 Error metric m for qsim at t.s. x is equal to that of reference r 

−0.05 10/9 Error metric m for qsim at t.s. x is 10% larger than for reference r 

−0.33 2 Error metric m for qsim at t.s. x is twice as large as for reference r 

−0.5 3 Error metric m for qsim at t.s. x is 3 times larger than for reference r 

−1 +∞ qsim at t.s. r is perfect according to metric m 

TABLE 3.1 – Summary for interpretation of the relative KGE index, RKGE , between simulations at the 

reference time step r and the shorter time step x using the error metric 𝒎(𝒒, �̂�) = 𝟏 − 𝑲𝑮𝑬(𝒒, �̂�) 

(Lerat et al., 2012). 

A complementary assessment was carried out on each flood event individually to evaluate the 

proper identification of flood peak magnitude and timing. This was based on three event-

based criteria, namely ∆𝑄𝑃, ∆𝑡𝑃, and 𝑉𝐸, defined as: 

∆𝑄𝑃 =
𝑄𝑃
𝑠𝑖𝑚 − 𝑄𝑃

𝑜𝑏𝑠

𝑄𝑃
𝑜𝑏𝑠  (3.3) 

∆𝑡𝑃 = 𝑡(𝑄𝑃
𝑜𝑏𝑠) − 𝑡(𝑄𝑃

𝑠𝑖𝑚) (3.4) 

𝑉𝐸 = 1 −
∑ |𝑞𝑠𝑖𝑚,𝑖 − 𝑞𝑜𝑏𝑠,𝑖|
𝑛
𝑖=1

∑ 𝑞𝑜𝑏𝑠,𝑖
𝑛
𝑖=1

 (3.5) 

where ∆𝑄𝑃 [-] is the ‘peak flow error’ that has an ideal value at zero and is positive for peaks 

overestimation and negative for underestimation; 𝑄𝑃
𝑠𝑖𝑚 and 𝑄𝑃

𝑜𝑏𝑠 are the simulated and 

observed peak flow amplitudes, respectively; ∆𝑡𝑃 [time steps] is the ‘time to peak error’ that 

has an ideal value at zero; 𝑡(𝑄𝑃
𝑜𝑏𝑠) and 𝑡(𝑄𝑃

𝑠𝑖𝑚) are the time steps of the observed and 

simulated peaks, respectively; 𝑉𝐸 [-] is the ‘volumetric efficiency’, proposed by Criss and 

Winston (2008), that has an ideal value at 1. For an unbiased model, VE represents the 

fraction of water delivered at proper time along a time horizon (i.e. the flood event period of n 

time steps, in our case), so it is a measure of the overall goodness of simulated streamflows 

timing. 

3.3 Results and discussion 

3.3.1 Performance with time step over the whole catchment set 

In this section, we present a summary of the results of our testing approach for the whole 

catchment set by evaluating over the selected flood events the outputs obtained at different 

model time steps and then aggregated at the reference evaluation time scales. Figure 3.2 
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shows a summary of how model performance evolved when evaluated at a daily reference 

scale by the relative KGE Index (𝑅𝐾𝐺𝐸) as the model time step varies from daily to 6 min 

(from right to left on the horizontal axis). The median RKGE Index is positive at all the sub-

daily time steps (Fig. 3.2) and reaches its maximum at 6 h with 𝑅𝐾𝐺𝐸=0.05, meaning that the 

error metric (1-KGE) is 10% smaller than for the daily reference (see Table 3.1).  

 

FIGURE 3.2 – Summary of the relative KGE index normalized with daily reference over the whole 

catchment sample as the model time step changes from 6 min to 1 day. 

Figure 3.2 suggests that the model performance at sub-daily time steps evaluated on a daily 

basis is higher than at the daily time step on average over the entire catchment set and this 

improvement seems to stabilize from 12-h or 6-h time steps. The Friedman test applied on the 

KGE indices at different time steps confirms the significance of performance differences 

between the median KGE values (p-value < 2.2e-16) and the trends in performance seen in 

Fig. 3.2: (i) the performance greatly improves passing from 1 day to 12 h, and the 

performance upper bound is reached at the 6-h time step, for which the median KGE is 

significantly higher than at all other time steps, except the 3-h time step; (ii) a trend reversal 

(KGE degradation) is found going from the 1-h to the 6-min time step, which results in a 

statistically non-significant difference between KGE from the 6-min and 1-day model time 

steps (at significance level 0.05). 

The distinctive KGE components (variability ratio a, ratio of means b and correlation r) were 

used to evaluate whether the differences in performance at different time steps can be related 

more to the variability, balance or timing of streamflow. Figure 3.3 (a-b-c) shows a summary 

of the statistics of how these three components evolved as evaluated at the daily reference 

scale over the time steps tested. Note that the optimal value for the three components is 1. On 

average over the whole sample, the relative variability and the correlation at the daily time 

step are improved by going towards shorter time steps, while on the contrary the capacity of 

the model to reproduce the water balance (ratio of means b) has slightly deteriorated. It 
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therefore seems that reducing the time step has the counter-effect of limiting the capacity of 

the model to maintain a good water balance simulation in high-flow conditions. However, 

note that: (i) the median bias over floods was already significant at the daily time step 

(b=0.935) and worsens of 0.036 points passing to 6-min time step; (ii) when evaluated on the 

whole time series, the median ratio of means (b) is stable at 1 for all time steps (not shown). 

Table 3.2 reports a summary of the evaluation by the three event-based criteria (∆𝑄𝑃, ∆𝑡𝑃, and 

𝑉𝐸), calculated on each flood event after aggregation of the simulated hydrographs at the 

daily reference time scale. All the event-based performance criteria improved as the model 

time step becomes shorter. The largest improvement is obtained when passing from 1 day to 

12 h. The negative median peak flow errors show that, on average, simulated peaks are under-

estimated by the model at all time steps, but are closer to observed peaks at shorter time steps. 

The overall timing of the hydrographs is better reproduced at sub-daily time steps with respect 

to daily, as reflected by the VE values. The flood peak timing is improved at shorter time 

steps on a significant part of the 2400 events (e.g. passing from daily to 6-h or shorter time 

steps, ∆𝑡𝑃 becomes null for more than 300 events). This improvement concerns the cases of 

advanced (∆𝑡𝑃 ≥ 1𝑑) or delayed (∆𝑡𝑃 ≤ 1𝑑) simulated peaks, that are reduced at sub-daily 

time steps, and is more significant considering only events with sub-daily lag times (e.g. ∆𝑡𝑃 

is null respectively for 60% and 79% of the 1079 events with lag time shorter than 12h at 

daily and 6-h model time step). This expected result confirms previous findings in the 

hydrological literature, illustrating that daily models inevitably fail to correctly reproduce 

hydrograph timing due to the aggregation effect at the daily scale (e.g. Asadzadeh et al., 

2016). 
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FIGURE 3.3 – Summary of the KGE components evaluated on flood events at the daily reference scale 

over the whole catchment sample as the model time step changes from 6 min to 1 day. (a) Relative 

variability, a; (b) ratio of means, b; (c) correlation, r. 
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 Model time step 

 6-min 12-min 30-min 1-h 3-h 6-h 12-h 1-d 

Median peak flow error, 

∆𝑄𝑃 [%] 
-10.5 % -10.6 % -10.9 % -10.6 % -10.7 % -11.2 % -12.6 % -17.1 % 

Median volumetric 

efficiency, VE [-] 
0.759 0.760 0.759 0.759 0.761 0.763 0.756 0.737 

Number of events with 

null time to peak error, 

∆𝑡𝑃 = 0 𝑑 (% on the 

whole set) 

1760 

(73.3%) 

1764 

(73.5%) 

1758 

(73.3%) 

1760 

(73.3%) 

1747 

(72.8%) 

1748 

(72.8%) 

1680 

(70.0%) 

1443 

(60.1%) 

Number of events with 

positive time to peak error 

∆𝑡𝑃 ≥ 1 𝑑 (% on the 

whole set) 

351 

(14.6%) 

348 

(14.5%) 

352 

(14.7%) 

353 

(14.7%) 

357 

(14.9%) 

362 

(15.1%) 

387 

(16.1%) 

480 

(20.0%) 

Number of events with 

negative time to peak error 

∆𝑡𝑃 ≤ −1 𝑑 (% on the 

whole set) 

289 

(12.0%) 

288 

(12.0%) 

290 

(12.1%) 

287 

(12.0%) 

296 

(12.3%) 

290 

(12.1%) 

333 

(13.9%) 

477 

(19.9%) 

TABLE 3.2 – Summary of model performance over the 2400 flood events set, evaluated at the daily 

reference time scale, by the three event-based criteria, ∆𝑄𝑃, ∆𝑡𝑃, and 𝑉𝐸 (best values are highlighted 

in italics). 

The same simulation results were evaluated at all the reference time scales from 12 h to 12 

min. Figure 3.4 shows that the distribution of the relative KGE index has analogous behaviour 

at all the reference time scales. The RKGE distribution is symmetrical around zero, which 

means that the performance improved by using shorter model time steps for approximately 

one-half of the catchments and that it deteriorated for the other half. This result may appear a 

bit paradoxical since one could expect that a shorter time step systematically yields 

performance improvement by providing additional information. However, this can be 

explained by the limits of the added value of short time-step data discussed in the introduction 

(see Section 3.1.2). 

The median RKGE index is quite stable at all model time steps for all the reference time scales, 

being slightly positive just for the 12-h reference time scale (as it was for 1 day) and slightly 

negative at all other reference scales. This is in line with the results found at the daily 

reference time scale for which KGE median values of the 6-h time-step model were 

significantly higher than other model time steps. Hence these results indicate that, for 

reference time steps shorter than or equal to 6 h, on average and on our catchment set, there is 

no added value of using shorter model time steps (when evaluation is based on outputs 

aggregated at the reference time scales). 

As the reference time scale decreases, the interquartile range is narrower around zero, 

meaning that the differences in performance become smaller. This could be expected, since 
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the time scales are increasingly closer (note the logarithmic scale of the x-axis in Fig. 3.4). 

For the extreme behaviours, the largest jumps in performance are found passing from the 

reference time scale to a model time step equal to one-half or one-third of the reference. After 

that, there is a slower trend, or a plateau of performance is reached. 

 

 

FIGURE 3.4 – Summary over the whole catchment set of the relative KGE Index normalized to 

different reference time scales: (a) 12 h; (b) 6 h; (c) 3 h; (d) 1 h; (e) 30 min; (f) 12 min. 

Like the daily evaluation, the Friedman test applied on the KGE indices evaluated at all the 

different reference time scales confirmed the presence of significant differences between the 

median KGE values at different model time steps (with a p-value < 2.2e-16). The ranking of 

the results from different model time steps is coherent with that found at the daily evaluation 

time step. 



3. Impact of temporal resolution of inputs on hydrological model performance: An analysis based on 2400 flood events 

121 

 

The evaluation by the event-based criteria at all the reference time scales leads to similar 

conclusions. Consistently with the daily evaluation, from 12-h to 3-h reference time scales, 

the identification of flood peaks and timing is improved at shorter time steps. For example, 

for the 6-h reference, the median error ∆𝑸𝑷 is reduced from -0.17 at 6-h time step to -0.13 at 

1-h or shorter, 𝑽𝑬 is stable, and ∆𝒕𝑷 becomes null for more than 430 events at 1-h time step 

or shorter. The differences in performance are smaller as the reference scale decreases, and 

vanish from 1-h or shorter. For the hourly reference, median values of ∆𝑸𝑷 and 𝑽𝑬 are stable 

(at -0.14 and 0.73, respectively) for all shorter model time steps. 

3.3.2 Behavioural catchment clusters for the evolution of model 

performance 

For more detailed analysis, the daily reference was chosen because of the greater differences 

between performance at the daily reference scale and at shorter time steps. We distinguished 

three types of performance behaviours with time steps: (i) improvement, (ii) insensitivity and 

(iii) degradation of the KGE Index as the time step becomes shorter. We partitioned the set of 

catchments into distinct groups using clustering analysis techniques. The optimal number of 

clusters was confirmed to be three, based on the optimum average silhouette width and the 

Calinski-Harabasz criteria (Caliński and Harabasz, 1974). To partition the catchment 

behaviours, we used the K-means algorithm, a well-known iterative algorithm solving the 

clustering problem by minimizing a sum of squared Euclidean distances from the centroid of 

the groups. The result of this clustering method is shown in Fig. 3.5 in terms of the changes 

with time step in the relative KGE Index at the daily reference scale. A statistical summary of 

the three catchment clusters is reported in Table 3.3. It shows that half of the catchments are 

not statistically sensitive to the time step (not at all or only slightly) and that a similar 

proportion (about one-fourth each) is subject to either improvement or degradation, with a 

larger number of improvements. 
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FIGURE 3.5 – Partitioning of model performance with time steps over the 240 catchments (one line 

per catchment) in three groups using the k-means algorithm. The three clusters correspond to (i) 

improvement, (ii) insensitivity or (iii) degradation of the KGE Index as the time step becomes finer. 

 
Improvement 

cluster 

Insensitivity 

cluster 

Degradation 

cluster 

Min, median, max relative KGE index values of 1-

h model (with daily ref.) 

0.06 −0.09 −0.36 

0.19 0.03 −0.14 

0.60 0.20 −0.03 

Number of catchments (% on the whole set) 65 (27%) 122 (51%) 53 (22%) 

Median KGE of daily model (evaluated at daily 

ref.) 
0.708 0.700 0.795 

Median KGE of 12-h model (evaluated at daily 

ref.) 
0.785 0.712 0.762 

Median KGE of 6-h model (evaluated at daily ref.) 0.815 0.720 0.742 

Median KGE of 3-h model (evaluated at daily ref.) 0.804 0.713 0.720 

Median KGE of 1-h model (evaluated at daily ref.) 0.803 0.716 0.735 

Median KGE of 30-min model (evaluated at daily 

ref.) 
0.804 0.716 0.697 

Median KGE of 12-min model (evaluated at daily 

ref.) 
0.799 0.722 0.692 

Median KGE of 6-min model (evaluated at daily 

ref.) 
0.798 0.718 0.698 

TABLE 3.3 – Statistical summary of the three behavioural catchment clusters of model performance 

evolution, with median KGE values of simulations at different time steps, evaluated on flood events at 

the daily reference scale. 

Figure 3.6(a–d) shows a summary of the distribution of the KGE Index and its three 

components (a, b, r) over the three catchment clusters for the two extreme model time steps 

(daily and 6-min) evaluated at the daily reference. Figure 3.6(a) shows that, on average, the 
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improvement catchment cluster presents lower KGE values for the daily reference model than 

the degradation cluster. On these catchments, the margin of progress is therefore greater, and 

the large time step may be an actual limitation for the model to reach higher performance. For 

the improvement cluster, the KGE increase is related to an improvement in the relative 

variability and correlation (i.e. at the 6-min time step, a and r values are closer to 1), while the 

average ratio of means (b) slightly deteriorates. For the degradation cluster, the drop in 

performance is mainly explained by a counterproductive augmentation of the relative 

variability, which was already too high (a>1), and a degradation of the bias (ratio of means b, 

which was already too low), while the correlation is fairly stable. The Kruskal-Wallis non-

parametric test (Kruskal and Wallis, 1952) was used to evaluate whether the mean ranks of 

the KGE Index and its components are significantly different between the catchment clusters. 

The test confirmed the significance in differences (at the 0.05 significance level) between the 

three groups of all the performance indices at the reference and finest time scales (daily and 6-

min), except the daily bias. The most significant differences are in the relative variability 

component. 
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FIGURE 3.6 – Distribution over the three catchment clusters of the performance scores of the daily 

and 6-min models evaluated at the daily reference scale: (a) KGE; (b) relative variability, a; (c) ratio 

of means, b; and (d) correlation, r. The box plots report the median value and interquartile range, and 

the whiskers represent the minimum and maximum values. The optimal score (1) is highlighted by a 

horizontal dashed line. 

3.3.3 Understanding the causes underlying the behavioural catchment 

clusters 

To better understand the differences between clusters, we first searched for possible regional 

trends. The geographical distribution of clusters is shown in Fig. 3.7. Except for a cluster of 

degrading catchments in northwestern France, no strong regional trend could be identified. 

This may indicate that local physical characteristics have a greater influence than regional 

climate-based influences. The comparison of Fig. 3.7(c) and Fig. 2.1 (with the network of 6-

min rain gauges, see Chapter 2) also shows that the zones with lower benefits (or degradation) 

are not systematically the zones with lower density of rain gauges (see for example the south-

east Mediterranean arc). 
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FIGURE 3.7 – Geographical distribution of the three behavioural catchment clusters corresponding to (a) 

improvement, (b) insensitivity and (c) degradation of the KGE Index as the time step becomes finer. 

Therefore, the different behavioural catchment clusters were analysed in relation to 20 

explanatory variables, i.e. the morphological and hydro-climatic (MH) characteristics, the rain 

gauges density (RGD) indicators (see Chapter 2, Table 2.1) and the flood event-based (FE) 

characteristics (see Chapter 2, Table 2.2). The Kruskal-Wallis test was performed to decide 

whether the distributions of these variables are significantly different for the three catchment 

clusters. The rejection of the null hypothesis (p<0.05) means that the explanatory variable 

considered in the test is likely to have an imprint on the evolution of model performance with 

the time step. Table 3.4 reports the results of Kruskall-Wallis test on the explanatory 

variables’ distributions and their median values over the three catchment clusters. The 

characteristics that turn out to have significant differences among catchment clusters (at 

significance level 0.05) are mostly flood event characteristics. Only the event’s amount of 

precipitation does not appear among the most influential FE characteristics. None of the 

morphological or hydro-climatic descriptors showed significant differences between clusters, 

except the streamflow auto-correlation, but this is highly dependent on the dynamics of flood 

events. The smaller catchments could be expected to present faster responses to precipitations 

and to benefit more from fine temporal resolution of rainfall but this was not the case on our 

catchment set. None of the 6-min rain gauges density indicators showed significant 

differences between catchment clusters of model performance. This surprising result could be 

related to other factors impacting the quality of rainfall data that we did not consider in our 

analysis (e.g. measurement errors of 6-min rain gauges, uncertainty on daily amount, rain 

gauges spatial distribution, etc.). We remind also that the spatial resolution of the daily data 

used is 64 km
2
, so the uncertainty of daily precipitation is larger for smaller catchments. This 

could partly explain the non-significant difference of catchment area and rain gauges density 

indicators between clusters. 

For the influential characteristics, the clusters’ ranking is almost completely monotonic (i.e. 

the same along the entire cumulative distribution), as shown in Fig. 3.8(a-h). As expected, the 

model performance tends to benefit more from finer time steps for rapid basins with a shorter 

response time and higher streamflows and rainfall temporal variability, i.e. a lower GOUE 

Index, a lower daily flow auto-correlation, and a higher flow shape coefficient and gradient. 

Also, for catchments with shorter flood and storm duration the performance significantly 
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benefits from finer time steps. Conversely, performance tends to be insensitive or deteriorate 

at shorter time steps for slower catchments with highly auto-correlated streamflows and 

longer flood events. Note that the GOUE Index calculated on streamflows proves more 

significant than the one calculated on rainfall, as shown by the different orders of magnitude 

of the p-value in Table 3.4 and the distance of cluster distributions in Fig. 3.8(c) and (h). This 

is in line with the fact that the rainfall temporal variability is not sufficiently smoothed out by 

the model for the degradation cluster’s catchments, as shown by the over-estimated flow 

variability discussed in the previous section. 

Note also that some of these significant characteristics are correlated, as discussed in Chapter 

2, but we chose to keep all of them in the analyses. This choice is motivated by the fact that 

setting a discriminating threshold of correlation would be an excessively arbitrary choice, 

because some characteristics prove more significant than others even if highly correlated with 

each other. This is proved by the different orders of magnitude of p-values for the correlated 

flood-based characteristics. Moreover, some characteristics, such as catchment area and 

hydraulic length, do not show an imprint in the evolution of model performance, even if quite 

well correlated with the rainfall-runoff lag time (r=0.61 and r=0.68).  

As complementary analysis, we performed the statistical test by considering different classes 

of catchments, in order to search for possible patterns masked by considering all the 

catchments together. We split the total set of 240 catchments into sub-sets of 120 catchments, 

by considering the median value of each characteristic that did not show significant 

differences between clusters (MH & RGD). On each sub-set we performed the Kruskal-

Wallis test to decide whether the distributions of the variables (MH & RGD) not used for sub-

setting were significantly different between catchment clusters. Moreover, we checked 

whether the clusters’ ranking was the same along the cumulative distributions of the 

characteristics subject to testing (as in Fig. 3.8). Only the daily precipitation intensity 

coefficient emerged as influential for some conditions (at significance level 0.05): (i) for 

catchments with low altitudes (z<363m); (ii) for catchments with low runoff coefficient 

(RC<0.34). This analysis, still non-exhaustive, shows that other masked general patterns are 

not easy to detect by considering only sub-sets of particular catchments. 
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# Explanatory variable Median by cluster p-value 

(i) 

Improvement 

(ii) 

Insensitivity 

(iii) 

Degradation 

MH9 Flow auto-correlation at 24 h [-] 0.80 0.85 0.88 9.4 x 10
-6

 

FE1 Flood duration [h] 79.00 116.25 136.50 9.7 x 10
-6

 

FE8 GOUE Index of daily streamflow (at 6-min ref.) [-] 0.59 0.73 0.80 9.3 x 10
-5

 

FE4 24-h flow shape coefficient [-] 1.38 1.20 1.17 1.3 x 10
-4

 

FE2 Storm duration [h] 26.50 35.75 40.00 8.1 x 10
-4

 

FE5 Mean flow gradient [mm/h²] 0.018 0.009 0.012 6.7 x 10
-3

 

FE6 Rainfall-runoff lag time [h] 9.55 14.13 15.40 9.3 x 10
-3

 

FE7 GOUE Index of daily precipitation (at 6-min ref.) [-] 0.13 0.18 0.17 2.0 x 10
-2

 

RGD2 Average rain gauge area [km²] 289.05 316.91 270.23 2.1 x 10
-1

 

MH8 Base Flow Index [-] 0.58 0.57 0.55 2.9 x 10
-1

 

MH6 Runoff coefficient [-] 0.34 0.33 0.38 3.6 x 10
-1

 

MH10 Daily precipitation intensity coefficient [-] 9.29 9.22 9.19 4.2 x 10
-1

 

MH4 Average slope [-] 0.09 0.08 0.07 4.5 x 10
-1

 

FE3 Event amount of precipitation [mm] 54.14 63.02 65.55 4.6 x 10
-1

 

RGD1 Number of rain gauges influencing the catchment [-] 5 5 5 5.1 x 10
-1

 

MH5 Topographic Index [-] 13.02 13.38 13.24 8.3 x 10
-1

 

MH2 Hydraulic length [km] 24.27 24.66 24.91 8.6 x 10
-1

 

MH7 Aridity Index [-] 0.78 0.75 0.76 9.2 x 10
-1

 

MH3 Average altitude [m] 371.38 365.04 325.19 9.3 x 10
-1

 

MH1 Catchment area [km²] 381.56 332.43 358.51 9.8 x 10
-1

 

TABLE 3.4 – Results of Kruskal-Wallis tests on the differences of potential explanatory characteristics (flood 

event-based (FE), morphological and hydro-climatic (MH) characteristics and rain gauge density (RGD) 

indicators) for the three behavioural catchment clusters ordered by p-value. The first eight characteristics 

highlighted in italics show significantly different medians among catchment clusters at a significance level 0.05. 
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FIGURE 3.8 – Cumulative distributions of the eight characteristics presenting significant differences 

among the three behavioural catchment clusters: (a) flow auto-correlation at 24 h, (b) flood duration, 

(c) GOUE Index of daily streamflow (at 6-min reference), (d) 24-h flow shape coefficient, (e) storm 

duration, (f) mean flow gradient, (g) rainfall-runoff lag time, (h) GOUE Index of daily rainfall (at 6-

min reference). 

3.4 Conclusions and perspectives 

3.4.1 Summary 

This research aimed at understanding the potential hydrological benefit of short time step 

hydro-climatic data to simulate streamflow, over a large and varied set of 240 catchments and 

2400 flood events. A lumped rainfall-runoff model was run at eight time steps from 6 min to 1 

day. The modelling results at different time steps were aggregated and compared at different 

evaluation time scales ranging from sub-hourly to daily. The statistical analysis of the 

simulation results on the whole catchment set showed significant differences in model 

performance at different time steps.  

On average, the use of shorter time steps significantly improved streamflow simulations when 

evaluating on a daily or 12-h reference time scale, with the greatest improvements obtained 
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for a time step of 6 h. At shorter reference time scales (3 h or shorter), the differences in 

performance are smaller and there is a trend reversal, i.e. a slight average degradation of 

performance at finer time steps on our catchment set. At all the evaluation reference time 

scales, three types of behaviours of performance evolution with time step can be found: (i) 

improvement, (ii) insensitivity and (iii) degradation of the KGE Index as the time step 

becomes shorter. At all reference time scales, the largest jumps in performance are found 

when changing to a model time step equal to one-half or one-third of the reference. However, 

as the reference time scale decreases, performance varies less.  

An assessment of the ability of the model to correctly reproduce peaks magnitude and timing 

over the 2400 flood events showed a marked improvement passing from daily to sub-daily 

time steps for both aspects. In particular, the results highlight that a daily model time step 

provides poorer results in representing flood peaks and timing, even when the simulation is 

evaluated at a daily scale. 

The three different classes of model performance behaviour were further analysed at the daily 

reference time scale, for which the largest performance differences were found. The KGE 

components of relative variability and correlation are significantly different among catchment 

clusters at the two extreme model time steps (daily and 6 min), and are improved or degraded 

at shorter time steps depending on the catchment clusters. In contrast, the daily bias is not 

significantly different among clusters and is slightly degraded on average over all three 

clusters. 

The relationship of the different behaviours with a number of catchment and flood event 

descriptors was investigated by statistical tests. Some characteristics showed significant 

differences between behavioural catchment clusters: the 24-h flow auto-correlation, the flood 

and storm duration, the rainfall-runoff lag time, the flow gradient and shape coefficient and 

the GOUE Index of temporal variability in rainfall and streamflow series. On average, model 

performance is significantly improved at finer time steps for the basins presenting shorter 

response times and flood durations, lower streamflow auto-correlation, and shorter and highly 

variable storm events, i.e. low GOUE(P) values. On the other hand, for the catchments 

characterized by higher flow auto-correlation and longer but less intense events, model 

performance is degraded at shorter time steps, on average, mainly because of the excessive 

variability of the simulated flows. 

3.4.2 Limits of this study and further research needs 

The positive and original aspect of this work is the use of a large number of catchments and 

an evaluation methodology based on different reference time scales, for the sake of seeking 

general conclusions. The results confirmed that working on different catchments and time 

scales is necessary, since different model performance dependencies on time step were found 

over different catchments and across the range of reference time scales. However, the results 

may still be affected by certain limitations. 
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First, the results may be dependent on the single model structure used in this study across 

different catchments and time steps. The GR4 model is a simple but robust model, which has 

already demonstrated good performance across a wide variety of catchments at daily and 

hourly time steps (e.g. Perrin et al., 2003; Le Moine et al., 2007; Van Esse et al., 2013). 

However, we know that some of our colleagues would prefer to adapt the model structure 

(e.g. Fenicia et al., 2011; Van Esse et al., 2013). Also, the same model structure was applied 

at all time steps by simply adapting certain time step-dependent parameters, with average 

good performance at all time steps. This is in line with previous studies on the GR4 model at 

daily and hourly time steps (e.g. Le Moine, 2008). The coherent and good performance across 

time steps confirms that the GR4 structure is flexible enough to run properly at daily and sub-

daily time steps as well. However, since the GR4 model was originally developed (and more 

extensively tested) at a daily time step, some refinements of the model structure may still be 

necessary at sub-daily time steps. Specifically, it was noted that the bias (evaluated on flood 

events) tended to slightly degrade from daily to shorter time steps, i.e. the model capacity of 

controlling the water balance is slightly degraded at sub-daily time steps. Thus the proposed 

model testing approach across time scales proves to be a valuable tool to diagnose model 

deficiencies. The performance of GR4 model at sub-daily time steps would rise if a solution 

was brought to the water balance degradation issue (and this would reduce the number of 

surprising cases where overall performance degraded with shorter time steps). Thus, the 

actual benefits in using refined resolution input data may be underestimated by the use of the 

current fixed structure of GR4 at sub-daily time steps. More research on large data sets using 

other models is still needed to improve our quantitative understanding of the benefits of using 

shorter time step data. 

The results may also partially depend on the calibration and evaluation methodology used. In 

this study, a simple calibration function based on the KGE Index calculated on streamflows at 

the model time step resolution was used. The choice of the objective function may be partially 

responsible for the bias degradation on flood events. Indeed the simulations at shorter time 

steps may be more constrained to follow the fine temporal dynamics than to reproduce the 

long-term water balance. Hence some adaptation of the objective function may be needed 

when changing model time step and this could help solve some cases of degradation when 

evaluating at longer time steps. 

Last, another limitation of this study is the application of only a lumped approach for spatial 

discretization. This does not allow considering the spatial heterogeneity in precipitation over 

the catchment, which is greater as the time step decreases, and the interactions between spatial 

and temporal discretization. Therefore, further research will explore the extension of the 

testing framework presented at multiple time steps with a semi-distributed modelling 

approach, in line for example with the study reported by Lobligeois et al. (2014), thus 

investigating the effect of spatial and temporal discretization simultaneously. 
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In Chapter 3, we have shown that the GR4 rainfall-runoff model may be run at multiple time 

steps simply by adaptation of some of its parameters, with good average accuracy over a large 

catchment set. However, this is only a necessary starting point, and some improvements at 

shorter time steps seem to be needed. In fact, some problems have been noticed, such as the 

degradation of performance affecting a significant number of catchments as the time step 

decreases. In particular, we have highlighted a worsening of the underestimation of flood 

volumes when using shorter modelling time steps. In order to investigate the possible causes 

of these undesirable problems, we proceeded to a model diagnosis by specific evaluations of 

the model input-state-output response at different time steps.  

First, we show that the temporal variability of precipitation inputs has a significant impact on 

model performance over flood events, contrary to potential evapotranspiration. At first glance, 

this impact may seem just an expected general improvement. However, by analysing the 

model bias, a counter-intuitive degradation of the capacity of reproducing the water balance is 

still observed by using higher resolution precipitation patterns, instead of a constant-intensity 

pattern over larger durations. Since the precipitation volume is constant and only its temporal 

distribution changes, this result clearly indicates the presence of structural problems in the 

way the precipitation is processed in the model.  

Then our model diagnosis is based on targeted evaluations of the consistency of the inner 

fluxes of the model, especially in terms of volumes of water losses and gains that contribute 

to reproduce the water balance. Our analyses show how neglecting what can be considered as 

the interception process in the GR4 model (or badly representing it) has a cascade of 

consequences at different time steps. The automated calibration of the model alleviates only 

partially the lack of interception losses by the compensation of other fluxes, which hides the 

problems especially on long-term evaluations. However, this cascade of consequences results 

in a worsening of flood simulations and in particular in an underestimation of the flood 

volumes. Also, the calibrated parameters are impacted by spurious time-step dependencies, 

because of the lack of interception losses. Following the results of the evaluations presented 

in this chapter, some possible ways of improvement of the GR4 model structure will be 

suggested, and they will be tested and analysed in Chapter 5. 
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4.1 General scheme of our model diagnostics framework 

4.1.1 Model diagnosis scope 

Our model diagnostics will deal with the performance and internal consistency of the model at 

daily and sub-daily time steps. We designed a set of tests and analyses with the aim of 

understanding the problems that affect the current model structure. This approach can be 

interpreted as a model diagnosis, following Yilmaz et al. (2008): 

“Model diagnosis is a process by which we make inferences about the possible causes of an 

observed undesirable symptom via targeted evaluations of the input-state-output response of 

the system model.” 

The results of a model diagnosis should highlight “inadequacies in model performance” and 

point “toward the specific aspects of the model structure and/or parametrization that are 

causing the problem(s)” (Yilmaz et al., 2008). Our targeted analyses are summarized in 

Figure 4.1 and will provide the basis for the identification and improvement of a multi time-

step model, ensuring the consistency in model performance and internal functioning at 

multiple time steps. The following targeted evaluations will be presented in the present 

chapter: 

(i) the impact of the inputs temporal distribution on model performance (Section 4.2); 

(ii) the consistency of model internal fluxes at different time steps (Section 4.3); 

(iii) the consistency of model parameters and states at different time steps (Section 4.4); 

First, for the model inputs, we analyse the impact of two opposite assumptions for the 

temporal distribution of precipitation and potential evapotranspiration: a distributed temporal 

pattern and a uniform pattern (see Section 4.2). Second, the analysis of the consistency of 

model internal fluxes simulated at different time steps is proved to be a key question of this 

model diagnosis (see Section 4.3). The model fluxes considered are interception loss, actual 

evapotranspiration, and groundwater exchanges. Although we do not have measures of these 

fluxes, we can expect or require the model to satisfy some physical principles, as the 

continuity equation in time of the volumes of cumulated fluxes. In the end of the Chapter, the 

analysis of model parameters and states consistency at different time steps is proposed to 

complete the diagnosis (see Section 4.4) and to better explain the impacts of time step on the 

model fluxes.  
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FIGURE 4.1 – Scheme of our process of model diagnosis and improvement at multiple time steps. 

4.1.2 General remarks on the evaluation procedure 

In all the tests presented in the following sections, the calibration-validation procedure is the 

same as the one presented in Chapter 3. We remind that the available 8-year period was split 

into two 4-year test sub-periods (2005–2009 and 2009–2013) and the split-sample test 

(Klemeš, 1986b) was applied. The model is calibrated on each sub-period, using the KGE 

criterion (Gupta et al., 2009) as objective function, calculated on the streamflow at all the time 
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steps of the calibration sub-periods. The evaluation was performed on both the whole 

validation sub-periods and on the set of selected flood events. The differences in performance 

between different modelling hypotheses were evaluated by means of the following criteria: 

(i) the KGE criterion and its components (relative variability, ratio of means and 

correlation), evaluated both on the whole time series and on flood events only;  

(ii) the criteria on the Flow Duration Curve (FDC), i.e. ratios of extreme quantiles of 

simulated and observed flows, and bias in the slope of the FDC.  

A non-parametric statistical hypothesis test, i.e. the Friedman test (Friedman, 1937), was used 

to detect significant changes in mean ranks of performance across the alternative tested 

modelling options over the catchments set (at significance level 0.05). The post-hoc analysis 

of the Friedman test (Conover, 1999) is used to rank the different alternatives (by multiple 

pairwise comparisons) and the ranking is showed as a complement to box plots or to average 

values reported in tables. Since the Friedman test is based on ranking the variables (the 

criteria values in our case), it must be applied according to the boundaries and optimal values 

of the different criteria:  

(i) for criteria with optimal value at the upper limit of their domain (e.g. KGE and r) the 

test is directly applied on the original score values;  

(ii) for criteria with optimal values not equal to the domain upper boundary (e.g. relative 

variability, ratio of means, ratio of quantiles of the FDC and slope bias), the test is 

applied on the transformed values so as to make the optimal value infinity (e.g. taking 

the inverse of the absolute value of the criterion centered at zero at its original 

optimum).  

Note also that when a difference in ranks between alternative options is judged “significant” 

by the statistical test, it should be further discussed according to the absolute difference in 

average values of criteria. In fact, the difference in ranks does not mean that the differences in 

the criteria distributions are significant from the point of view of a “meaningful” hydrological 

interpretation. To this end, an arbitrary level for the numeric differences between criteria 

should be considered. For example we consider negligible an absolute difference of average 

values of KGE (and its components) and FDC quantiles ratios smaller than 0.01. 

4.2 Hypotheses on the model inputs temporal distribution  

In this section, we present the results of some modelling tests using different hypotheses of 

the temporal distributions of model inputs, i.e. precipitation and evapotranspiration. Note that 

the volumes of the model inputs are consistent across the following tests, i.e. the daily 

precipitation and evapotranspiration do not change but their distribution over the day does. 
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4.2.1 Precipitation temporal distribution  

Some tests were performed for assessing the impact of the precipitation constant-intensity 

hypothesis over different durations on model performance. This is interesting because the 

temporal variability of rainfall is more uncertain than the total amount, and the catchment 

low-pass filtering behaviour smooths out this variability (see the statistical analysis on our 

data sets in Chapter 2). In Chapter 3 we showed that the streamflow variability simulated by 

the GR4 model generally increases as the model time step decreases. This increase in 

simulated variability, together with a balance bias degradation, is responsible for the model 

performance degradation on flood events detected for a significant part of our catchment set 

(about 20%). This finding means that for a part of our catchment set, the GR4 model does not 

smooth out sufficiently the precipitation input variability. For this reason, we can expect that 

for some catchments, a precipitation constant-intensity pattern could even improve the model 

performance at one short time step, e.g. one hour, with respect to the use of the observed 

precipitation temporal pattern. We tested this hypothesis, by running the GR4 model at the 

hourly time step by the use of larger time steps (i.e. 3-, 6-, 12-h and 1-day) for the source data 

of precipitation and a hypothetic uniform distribution over this time span. The use of this 

constant-intensity pattern was compared with the use of the hourly precipitation observations 

by evaluating model performance over the whole validation period and on flood events only. 

4.2.1.1 Evaluation over the whole validation period 

The evaluation over the whole validation period indicates that the precipitation constant-

intensity hypothesis has a very slight impact on the average model performance at the hourly 

time step with respect to the use of observed hourly precipitation (see Table 4.1).  

The statistics in Table 4.1 summarize the distributions over the catchment set of the 

performance scores (KGE, its components, and the FDC-based criteria) calculated over the 

whole time series. In general, this set of criteria shows limited changes in the average model 

performance across the different tested options. However the Friedman test and its post-hoc 

analysis detect the following significant changes in the performance mean ranks of the 

aggregated KGE statistics (with a p-value of 10
-15

):  

(i) mean scores of the hourly model using source data at 6 h time step are higher than in 

other cases;  

(ii) mean scores of the hourly model using 3 h and 12 h source data are higher than with 

hourly data;  

(iii) mean scores with daily data are lower than all other time steps.  

These differences in ranks are not impressive on the average values of KGE and not even on 

other quantiles (not shown) because the average differences for the different tests are in the 

order of 0.01 of KGE values, and so can be considered as negligible. For example, for more 

than two-thirds of the basins, the KGE values increase using source data at 6-h time step with 

respect to hourly data, but the mean absolute increase in KGE is only 0.007. Note also that 
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opposing trends are observed, for example for 40% of the catchments a slight unexpected 

improvement is observed passing from 1-h to 1-d constant-intensity duration with a mean 

increase in KGE of 0.02. Conversely, the opposite trend for the rest of the catchments (60%) 

is associated to a mean increase of 0.03. The most evident changes among the KGE 

components are found in the correlation which degrades relatively more passing from the sub-

daily to daily constant-intensity duration. 

 

Statistics of model performance criteria [-] evaluated over 

the 8-years validation period (at the hourly resolution) 

Precipitation constant-intensity duration 

[time step] 

1-h 3-h 6-h 12-h 1-d 

Median Kling-Gupta Efficiency, KGE [-] 0.820 0.822 0.823 0.822 0.813 

Friedman test on the KGE distributions: significant differences 

(for different letters) and ranking (alphabetical order) 

c b a b d 

Median relative variability, a [-] 0.989 0.988 0.988 0.989 0.988 

Median ratio of means, b [-] 1.009 1.004 1.004 1.005 1.007 

Median linear correlation, r [-] 0.897 0.899 0.900 0.895 0.884 

Median 99
th

 quantiles ratio, Q99sim/Q99obs [-] 0.972 0.973 0.977 0.984 0.980 

Percent bias in the slope of the mid-segment of the flow 

duration curve (0.2 – 0.7 flow exceedance probabilities) [%] 

1.394 1.600 2.830 4.167 6.854 

TABLE 4.1 – Summary of the distributions over the catchment set of the performance criteria 

evaluated over the whole validation period for the hourly model with the precipitation constant-

intensity hypothesis over different durations (1, 3, 6, 12 h and 1 d). The ideal value is 1 for all the 

criteria except for the percent bias in the slope of the flow duration curve (FDC) that is 0%. The 

results of the Friedman test on the KGE scores are shown for a significance level of 0.05.  

Among the indexes calculated on the FDC, the ratios of the 99
th

 quantiles of simulated and 

observed flows show an interesting unexpected trend, being improved with larger source data 

resolutions (12 h and 1 d), on average. For example, by using hourly source data, the high 

flows with an exceedance probability of 1% are underestimated on average of about 3%, 

while the average underestimation is reduced to about 2% by using constant-intensity 

precipitation over larger durations (12 h and 1 d). This means that, counterintuitively, the 

high-flows volumes and peaks (linked to the largest precipitation events) seem to be better 

simulated by neglecting the actual temporal distribution of precipitation over the day. On the 

other hand, the percent bias in the slope of the mid-segment of the FDC 

(𝑆𝑙𝑜𝑝𝑒𝐵𝑖𝑎𝑠𝐹𝐷𝐶(0.2−0.7)) shows an expected trend with marked differences. On average, the bias 

𝑆𝑙𝑜𝑝𝑒𝐵𝑖𝑎𝑠𝐹𝐷𝐶(0.2−0.7) is positive for all the alternative tests, indicating that the simulated 

response is more rapid than the observed catchment response. A constant improvement is 

detected by using finer temporal resolutions for precipitation data, with a reduction of the bias 

of more than 5% passing from 1 d to 1 h constant-intensity durations. 
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4.2.1.2 Evaluation over the flood events only 

Figure 4.2 shows the comparison of the results of the hourly model simulations evaluated on 

flood events, by using the hourly observed precipitation and the uniform temporal patterns 

over different durations. The box plots in Figure 4.2(a) show that, on average, the model 

using the observed hourly precipitation markedly outperforms the model using a uniform 

precipitation pattern over time intervals larger than 3 h. In fact, the median KGE value 

decreases from 0.729 using hourly observations to 0.645 using daily uniform precipitation 

(i.e. a decrease of more than 11%). The Friedman test (with its post-hoc analysis) confirms 

that this trend is significant, with a p-value < 10
-44

, and specifies also that all the options with 

sub-daily patterns (1, 3, 6, 12 h) outperform the one with daily uniform precipitation. Overall, 

this is explained by a coherent average ranking for the variability and correlation components 

Figure 4.2(b, d). Conversely, the water balance criterion (ratio of means) follows an opposite 

and counterintuitive trend being improved by the uniform precipitation pattern over larger 

durations, coherently with the analogous trend of the 99
th

 flow quantiles ratio observed in the 

previous section. The ratio of means (Figure 4.2(c)) shows a general underestimation of the 

flood volumes (of 10% on average) by the hourly model with hourly precipitation data. This 

underestimation is partially (but significantly) reduced by the constant-intensity precipitation 

pattern over the day.  

Despite the general positive trend highlighted above for the aggregated KGE statistics, for a 

part of our catchment set (about 15%), the richer sub-daily temporal information in the 

rainfall signal steadily degrades the global performance of the GR4 model. For the 

36 catchments for which model performance degrades passing from the use of daily uniform 

patterns to hourly observations, the mean degradation in KGE is 0.06 that is not negligible. 

These results confirm the findings presented in Chapter 3, specifying that while for a major 

part of the catchments, shorter time step information is effective for flood simulation, a 

degradation of the model performance may be found as the data time step decreases even 

when using the same model and evaluation time steps (e.g. 1 hour). This degradation is 

mainly due to:  

(i) a general decrease of the ratio of means (i.e. water balance bias degradation) for the 

majority of the cases;  

(ii) an excessive increase of the relative variability for a minor part of the catchment set.  
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FIGURE 4.2 – Distribution over the catchment set of the performance criteria over the selected flood 

events for the hourly model with the precipitation constant-intensity hypothesis over different 

durations (1, 3, 6, 12 h and 1 d): (a) KGE, (b) relative variability, a; (c) ratio of means, b; and (d) 

correlation, r. The box plots report the median value, interquartile range, and the whiskers represent 

the 10th and 90th percentiles; the red points refer to mean values. The letters above each box plot 

specify the ranking (alphabetical order) and the significant differences detected by the Friedman test 

at significance level 0.05 (distributions with the same letter are not significantly different). 

The trend of the model balance bias is particularly interesting for the GR4 model diagnostics 

for two reasons: 

(i) While the problem of the relative variability increase as the time step decreases could 

be due to errors in precipitation and streamflow data for some catchments (at least 

partially), the negative trend in model balance bias cannot be a problem of data errors. 

In fact we remind that the precipitation and streamflow volumes are constant across 

the different tests presented here, where only the temporal patterns change. This means 

that the balance bias degradation is due to inadequacies in the rainfall-runoff 

model at sub-daily time steps or to more problems in the calibration phase at 

shorter time steps.  
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(ii) The general decrease of the ratio of means (b) using finer time step information has a 

negative impact on model performance for most of the 240 basins. For example b 

degrades passing from daily to hourly constant-intensity patterns for about 65 % of the 

catchments. This happens also when the overall performance (i.e. KGE) improves (as 

for analogous tests in Chapter 3). On the other hand, the increase of relative variability 

is a counter-productive issue only for a minor part of the catchment set (for about 

30 % of the basins passing from daily to hourly precipitation constant patterns). 

4.2.2 Potential evapotranspiration temporal distribution 

We remind that the potential evapotranspiration (PE) at the daily time step was calculated 

using the temperature-based formula proposed by Oudin et al. (2005) and daily temperature 

data from the SAFRAN reanalysis. Hourly temperature observations were not available, so 

the original source data time step for PE is daily. Thus, in order to disaggregate PE at the sub-

daily time steps some assumptions have to be made. To evaluate the impact of the 

hypothesized temporal distribution of potential evapotranspiration over the day, we tested two 

different temporal patterns: 

(i) “Uniform pattern”: daily values of PE uniformly disaggregated over sub-daily time 

steps (see Figure 4.3(a)); this is the simplest hypothesis to disaggregate daily data at 

shorter time steps, in the condition of lack of data; 

(ii) “(Quasi-)sinusoidal pattern”: daily values of PE disaggregated over the day using the 

shape of the crest section of a sine-wave between 6:00 and 19:00 (with maximum 

from 12:00 noon to 13:00) and null values in the rest of the day/night (Figure 4.3(b)); 

this is a more physically-based hypothesis, that is typically used for describing diurnal 

variations of temperature, radiation and degree-day factors (e.g. Tobin et al., 2013). 

 

FIGURE 4.3 – Hypotheses of sub-daily temporal patterns for potential evapotranspiration 

(disaggregation of a daily unit value): (a) uniform pattern; (b) (quasi)-sinusoidal pattern. 

The results of model performance with these two different hypotheses were analysed for 
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validation and on flood events periods only. However, only the hourly model results are 

presented here, because these are representative of all the sub-daily time steps tests. 

4.2.2.1 Evaluation over the whole validation period 

If we evaluate the GR4 hourly model simulations by the KGE criterion and its components on 

the whole time series, we note that the two PE temporal patterns (uniform and sinusoidal) lead 

to very similar performance scores, as shown in Table 4.2. The median KGE on the catchment 

set is 0.82 for both the uniform and sinusoidal sub-daily distribution. The entire distributions 

of KGE and its components (a, b and r) remain stable too. The Friedman test detects a slightly 

significant difference between the ranks of KGE scores of the two testing hypotheses, with a 

p-value < 10
-3

 (just slightly lower than the significance level). However, the differences 

between the two modelling options in terms of KGE scores are negligible. For example for 

60% of the catchments the uniform pattern slightly outperforms the sinusoidal, with a mean 

difference in KGE of only 0.003 points. 

Also by evaluating the two tested PE temporal patterns by the indexes based on the Flow 

Duration Curve (FDC), the conclusions are similar. No significant difference is detected by 

the statistical test and the distributions of the scores are very similar for the two options. For 

example, Table 4.2 reports the median values of the ratio of the 99
th

 quantiles of simulated 

and observed streamflow and of the bias in the slope of the FDC. 

Statistics of model performance criteria [-] evaluated over the 8-years validation 

period (at the hourly resolution) 

PE temporal pattern 

Uniform Sinusoidal 

Median Kling-Gupta Efficiency, KGE [-] 0.822 0.820 

Friedman test on the KGE distributions: significant differences (for different letters) 

and ranking (alphabetical order) 
a b 

Median relative variability, a [-] 0.986 0.989 

Median ratio of means, b [-] 1.008 1.009 

Median linear correlation, r [-] 0.899 0.897 

Median 99
th

 quantiles ratio, Q99sim/Q99obs [-] 0.972 0.972 

Percent bias in the slope of the mid-segment of the flow duration curve (0.2 – 0.7 flow 

exceedance probabilities) [%] 
2.286 1.394 

TABLE 4.2 – Summary of the distributions over the catchment set of the performance criteria 

evaluated over the whole validation period for the hourly model with the uniform and sinusoidal 

temporal patterns for potential evapotranspiration. The ideal value is 1 for all the criteria except for 

the percent bias in the slope of the flow duration curve (FDC) that is 0%. The results of the Friedman 

test on the KGE scores are shown for a significance level of 0.05. 

4.2.2.2 Evaluation over the flood events only 

The two PE temporal distributions lead to very similar results also when model performance 

is evaluated on flood events only, as reported in Figure 4.4. The absolute difference in mean 

KGE and components values on the 240 catchments with the uniform and the sinusoidal 
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distributions are smaller than 0.003 points, so the statistical differences in mean ranks 

detected by the statistical test are considered negligible. 

 

FIGURE 4.4 – Distribution over the catchment set of the performance criteria over the selected flood 

events for the hourly model with uniform and sinusoidal temporal patterns for potential 

evapotranspiration: (a) KGE, (b) relative variability, a; (c) ratio of means, b; and (d) correlation, r. 

The box plots report the median value, interquartile range, and the whiskers represent the 10th and 

90th percentiles; the red points refer to mean values. The letters above each box plot specify the 

ranking (alphabetical order) and the significant differences detected by the Friedman test at 

significance level 0.05 (distributions with the same letter are not significantly different). 

4.2.2.3 Conclusions and our choice of a sub-daily pattern 

The almost identical performance scores for the sub-daily simulations with the two PE 

temporal patterns represent a useful outcome for at least two reasons:  

(i) it led us to validate the choice of a quasi-sinusoidal temporal pattern for PE 

because, for a same level of performance, we prefer to adopt a more physically-

based assumption (e.g. see Fig. 2 in Tobin et al., 2013); 
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(ii) the non-influence of sub-daily patterns of PE confirms that the high frequencies of 

potential evaporation are smoothed out by the catchment low-pass filtering 

behaviour, contrary to precipitation (Oudin et al., 2006); so we expect that the lack 

of data for sub-daily estimates of PE does not affect our modelling results. 

4.3 Consistency of the model internal fluxes at different time 

steps 

4.3.1 Motivation 

In general, the consistency of the model internal fluxes in time should be considered a 

prerequisite for the identification of a multi-time step model, as suggested in Section 4.1.1 

(see Figure 4.1). A consistent rainfall-runoff model at different time steps should simulate the 

same cumulated internal fluxes, in addition to the same accurate outputs. One could perhaps 

argue that accurate simulations of the only output (streamflow at the outlet) at different time 

steps are also achievable by inconsistent internal model functioning at different time steps, 

thanks to compensations among the internal fluxes. However, we think that a model 

displaying temporal inconsistencies of fluxes would be sub-optimal for different reasons:  

(i) Inconsistent model fluxes and compensations in the model are likely to be 

associated to inconsistent calibrated parameters at different time steps. 

(ii) If accurate streamflow simulations are achieved by inconsistent model fluxes at 

different time steps, this would be evidence of large structural uncertainties. 

(iii) Since it is preferable to get “the right answer for the right reasons” (Kirchner, 

2006), a lumped hydrological model at multiple time steps should respect the 

physical law of the mass conservation, in terms of volumes consistency. In other 

words, by decreasing the model time step we can expect that the dynamics of each 

flux are better described (thanks to a finer representation of inputs temporal 

variability) but the volumes cumulated in time should be coherent with the ones 

obtained by simulations at larger time steps. 

Also, previous evaluations of the model indicated the need of an analysis of the consistency of 

model fluxes at different time steps. As we have shown in Chapter 3 and Section 4.2.1, a 

problem of balance bias degradation for the GR4 model simulations over flood events 

emerges as the data and modelling time step becomes shorter than daily. This problem is not 

linked to input data because of the construction of the tests (i.e. the consistency of cumulated 

inputs at multiple time steps, as already discussed), so it is due to the rainfall-runoff model 

(structure and/or parameters). In particular, the decrease in the ratio-of-means criterion over 

flood events, by using shorter time steps for input data and modelling (see Figure 4.2(c) and 

3.8(c)), indicates that:  
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(i) On average, in high-flow conditions, the catchment water balance is currently better 

reproduced by the daily GR4 model rather than the sub-daily versions of the model. 

(ii) Since for all time steps we used consistent inputs (same cumulated volumes of P and 

PE), we deduce that, over flood events, the simulated water losses are overestimated 

and/or the gains underestimated at sub-daily time steps with respect to the daily 

model.  

For these reasons, it is essential to analyse the changes in the model internal fluxes across 

different time steps not only for building a consistent multi-time step model but also to 

understand the causes of the observed undesirable balance bias degradation at shorter time 

steps over flood events.  

4.3.2 Analysis of the consistency of interception, evapotranspiration 

and groundwater exchanges 

We focus here on the internal fluxes of the GR4 rainfall-runoff model corresponding to 

catchment water losses and gains, i.e. fluxes going outside of the basin before reaching the 

outlet or gains from the outside of the basin. We do not focus on water fluxes that are just 

transfers in time (e.g. the percolation from the production reservoir or the unit hydrographs 

outputs). We consider here the integrated fluxes over time (in mm over the integration time 

step), obtained by multiplying the model fluxes (mm/time step) by the time step. Then the 

fluxes of the GR4 model considered here are:  

a) Interception loss (𝐸𝑖 or 𝐼 [mm]), representing the evaporation from intercepted water 

(see Section 1.3.1, p. 35, for a broader definition of the process and its scale), that 

occurs mainly during a rainfall event (and shortly after). In the GR4 baseline model, 

the interception loss is modelled at the basin scale as the difference between input 

precipitation, 𝑃, and net rainfall, 𝑃𝑛 (see Section 2.6.1, Eqs. (2.5-2.7)). This 

formulation allows evaporation of intercepted water only for the time steps with 

rainfall (P>0) and thus neglects the possible “memory” of the process. We remind 

here that the net rainfall 𝑃𝑛 is calculated as the difference between precipitation P and 

potential evapotranspiration E (limited to positive values or zero), and then the 

interception loss can be formulated as: 

𝐸𝑖 = min (𝑃,   𝐸) [mm] (4.1) 

where: 𝐸𝑖 is the interception loss “computed as if there were an interception storage of 

zero capacity” (Perrin et al., 2003) and zero resistance to potential evapotranspiration 

energy; P and E are the precipitation and potential evapotranspiration cumulated over 

the current time step ∆𝑡 [mm]. Accordingly, the net rainfall and net evaporation 

capacity are respectively: 𝑃𝑛 = 𝑃 − 𝐸𝑖 and 𝐸𝑛 = 𝐸 − 𝐸𝑖. 

b) Actual evapotranspiration (AE or Es [mm]) from the production (soil moisture 

accounting) store, corresponding to the amount of water evaporated from the store 
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under the effect of the net evapotranspiration amount (see Section 2.6.1, Eq. (2.9)). 

We remind here below the discrete equation to calculate AE: 

𝐴𝐸 =
𝑆 (2 −

𝑆

𝑥1
) tanh (

𝐸𝑛

𝑥1
)

1 + (1 −
𝑆

𝑥1
) tanh (

𝐸𝑛

𝑥1
)
 [mm] (4.2) 

where: 𝑆 [mm] is the production store water content (at the beginning of the time 

step); 𝑥1 [mm] is the maximum capacity of the SMA store; 𝐸𝑛 is the net 

evapotranspiration capacity (i.e. 𝐸 − 𝐸𝑖) [mm]. 

c) Exchanged fluxes or inter-catchment groundwater flows (FL and FG [mm]) that can 

be losses (FL) or gains (FG), according to the sign of the calibrated 𝑥2 parameter (and 

F). The half potential exchange, F, is calculated as in Eq. (2.9) (see Section 2.6.1) that 

is also reported below (see Eq. (4.3)). Actual gains are as twice as F (see Eq. (4.4)). 

Actual losses FL are limited by the water available in the routing store and by the 

flows components coming from the unit hydrographs (see Eq. (4.5)): 

𝐹 = 𝑥2 (
𝑅

𝑥3
)
3.5

∙ ∆𝑡 [mm] (4.3) 

𝐹𝐺 = 2𝐹 [mm] (4.4) 

𝐹𝐿 = −[min(|𝐹|,   𝑅 + 𝑄9∆𝑡) + min (|𝐹|,  𝑄1∆𝑡)] [mm] (4.5) 

   

where: 𝑅 [mm] is the level in the routing store at the beginning of the time step; 𝑥3 

[mm] is its one-time-step-ahead capacity; 𝑥2 [mm/time-step] is the groundwater 

exchange coefficient; 𝑄9 [mm/time-step] is the water input into the routing store, i.e. 

the output of the first unit hydrograph (UH1); and 𝑄1 [mm/time-step] is the direct flow 

component coming from the second unit hydrograph (UH2). 

In the following we analyse the accumulation in time of these different fluxes obtained by 

simulations at different time steps, by cumulating each flux over the whole validation period 

of 8 years (including the two 4-year validation sub-periods) and over the selected flood 

events. These fluxes are not measurable at the catchment scale and are obtained by calibration 

on the measurable flux that is the outlet streamflow. However, their accumulation over long 

periods (larger than a day) should be consistent for multiple modelling time steps to comply 

with the simple mass balance equation. 

To evaluate the consistency of the simulated fluxes at multiple sub-daily and daily time steps, 

we considered the daily model fluxes as the reference, in terms of volumes, since we showed 

that the latter (daily fluxes) allow obtaining a better water balance simulation. 

For each tested model time step x, from 6 min to 1 day, we calculated the ratio of each 

cumulated flux simulated by the model at time step x normalized on the corresponding 

reference flux simulated at daily time step. We called these ratios the cumulative flux ratios. 

They are non-dimensional indexes, evaluated for each catchment, by the following equations: 
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𝐼𝑟𝑎𝑡𝑖𝑜[𝑥|1 𝑑] =
𝐸𝑖[𝑥]

𝐸𝑖[1 𝑑]
 [-] (4.6) 

𝐴𝐸𝑟𝑎𝑡𝑖𝑜[𝑥|1 𝑑] =
𝐴𝐸[𝑥]

𝐴𝐸[1 𝑑]
 [-] (4.7) 

FL𝑟𝑎𝑡𝑖𝑜[𝑥|1 𝑑] =
𝐹 [𝑥]

𝐹𝐿[1 𝑑]
 [-] (4.8) 

FG𝑟𝑎𝑡𝑖𝑜[𝑥|1 𝑑] =
𝐹 [𝑥]

𝐹𝐺[1 𝑑]
 [-] (4.9) 

 

where: 𝐸𝑖[𝑥], 𝐴𝐸[𝑥], and 𝐹 [𝑥] represent the cumulated interception loss, actual evaporation 

and exchanges fluxes (losses or gains) [mm] of the GR4 model at the sub-daily time step 𝑥 

with 𝑥 ∈ (6, 12, 30 min, 1, 3, 6, 12 h); 𝐸𝑖[1 𝑑], 𝐴𝐸[1 𝑑], 𝐹𝐿[1 𝑑] and 𝐹𝐺[1 𝑑] represent the 

cumulated interception loss, actual evaporation and exchanges fluxes (losses, 𝐹𝐿, and gains, 

𝐹𝐺) [mm] of the GR4 model at the daily time step 𝑑. The “optimal” value of the cumulative 

flux ratios is 1, which corresponds to consistent modelled fluxes at different time steps. 

 

Note that:  

(i) The calculation of the cumulative flux ratios for the exchanged fluxes (F), i.e. 

𝐹𝐿𝑟𝑎𝑡𝑖𝑜[𝑥|1 𝑑] and 𝐹𝐺𝑟𝑎𝑡𝑖𝑜[𝑥|1 𝑑], is admissible on our catchment set, because 

𝐹𝐿[1 𝑑] and 𝐹𝐺[1 𝑑] are not null for all the catchments (the minimum absolute 

value of 𝐹𝐿[1 𝑑] and 𝐹𝐺[1 𝑑] is about 4 mm). 

(ii) Since the exchanged fluxes can be either positive or negative we calculated the 

index 𝐹𝑟𝑎𝑡𝑖𝑜[𝑥|1 𝑑] by Eqs. (4.8) and (4.9) corresponding to the two cases:  

(A) 𝐹 [1 𝑑]<0, i.e. catchments presenting losses at daily reference 

(197 catchments of our sample). 

(B) 𝐹 [1 𝑑]>0, i.e. catchments presenting gains at daily reference 

(43 catchments). 

This allows to univocally interpret the values of the ratios, because of the possible 

change in sign in the numerator (𝐹 [𝑥]) with respect to the denominator. This 

means that for FG𝑟𝑎𝑡𝑖𝑜[𝑥|1 𝑑] we can have the following cases:  

- (B1) FG𝑟𝑎𝑡𝑖𝑜[𝑥|1 𝑑] > 1, i.e. gains are larger at sub-daily time step x;  

- (B2) FG𝑟𝑎𝑡𝑖𝑜[𝑥|1 𝑑] < 1,  i.e. gains are larger at daily time step;  

- (B3) FG𝑟𝑎𝑡𝑖𝑜[𝑥|1 𝑑] < 0, i.e. the exchanges are gains at daily time step but 

become losses at sub-daily time step x.  

Three similar cases could potentially be found for the case (A). 

4.3.2.1 Evaluation over the whole validation period 

Figure 4.5 (a-d) shows a statistical summary of the evolution of the cumulative flux ratios 

calculated over the eight-year validation period as the time step changes (for the catchment 

set). The evolution of the flux ratios is presented by some quantiles over the catchment 
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sample as the time step decreases from 1 day to 6 min (from right to left on the x-axis). The 

following clear trends in the fluxes evolution are detected: 

 

a) The interception loss steadily decreases as the time step decreases reaching a 

median 𝐼𝑟𝑎𝑡𝑖𝑜[6 𝑚𝑖𝑛|1 𝑑] of about 19 %. In other words, on average, the 

cumulated interception loss simulated by the 6-min model is only less than one 

fifth of the same flux simulated by the daily model. Note that the dispersion 

around the average cumulative ratios is relatively small (the 5
th

 and 95
th

 quantiles 

are close to less than 10% around the median ratio). It means that the interceptive 

losses significantly and constantly decrease at shorter time steps for all the 240 

catchments. The decrease rate is the highest (-31%) when passing from 1 d to 12 h. 

b) The actual evaporation from the production reservoir monotonically increases as 

the time step becomes finer, reaching a median 𝐴𝐸𝑟𝑎𝑡𝑖𝑜[6 𝑚𝑖𝑛|1 𝑑] of about 

145 %. The increase rate is the highest (+18%) when passing from 1 d to 12 h. The 

trend in actual evaporation cumulative ratios is opposite to the one for interception. 

This may be explained by the direct compensation of a reduced interception loss 

(see also discussion below on absolute differences in fluxes and Table 4.3).  

c) The negative groundwater exchanged fluxes at daily reference (losses) get stronger 

as the time step becomes shorter, reaching a median increase, FL𝑟𝑎𝑡𝑖𝑜[6 𝑚𝑖𝑛|1 𝑑], 

of about 165 %. As it was noted for actual evaporation, the trend in negative 

exchanged fluxes is opposite to the one for interception. So, it seems that the 

model compensates the reduced interception loss at sub-daily time steps also by 

increasing exchange losses. In opposition to this general trend, the losses are 

reduced at some sub-daily time steps (with respect to daily) only for 6 out of the 

197 catchments with groundwater losses at daily time step. 

d) The positive groundwater exchanged fluxes at daily reference (gains) decrease 

with time step, on average, reaching a median decrease at 6 min of about 50 % 

(FG𝑟𝑎𝑡𝑖𝑜[6 𝑚𝑖𝑛|1 𝑑] = 0.5). Moreover, for 15 out of the 43 catchments with 

groundwater gains at daily time step (35% of the set), the gains become zero and 

even change sign as the time step x decreases (F[x]<0). This means that these 

catchments gain water at the daily time step, but as the time step decreases their 

water gains become losses that get larger as the time step becomes finer. 

These large changes in cumulated fluxes, over the whole series, must be further specified in 

absolute terms (i.e. in mm) for each time step, without the normalization by the daily 

reference, in order to allow a comparison of the magnitude of changes for the different fluxes. 

Table 4.3 reports the median values of annual averages of cumulated fluxes for all the tested 

time steps and the median value of the net cumulated losses (the sum of interception loss, 

actual evaporation and exchanges for each catchment). It shows that the changes in the 

different fluxes over the whole series counterbalance each other perfectly, by providing a 

constant average net (total) loss across the different time steps. 
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The absolute changes of cumulated fluxes shown in Table 4.3 are very large. Unfortunately, 

we do not have any measurements for these fluxes to provide a physical validation of the 

internal behaviour of the model. In future works, it would be interesting to compare the 

internal fluxes modelled at different time steps to observations in a small experimental 

catchment (with measurements of the fluxes of interest), to have a reference for the 

assessment of the fluxes consistency (even considering the potential problems to overcome, 

e.g. correspondence between modelled and observed variables, representativeness of the 

measurements at the basin scale, etc.). However, here it is interesting to discuss at least the 

order of magnitude of the annual interception loss simulated at different time steps, compared 

to the mean annual precipitation and to the total evaporation. In fact, from the literature, it is 

expected that, at least in temperate climates (as in France), the annual interception loss may 

represent a significant portion of the total evaporation, and amount up to 15-50% of 

precipitation (Calder, 1990; Savenije, 2004; Gerrits, 2010). Thus, one may note that the 

simulated annual interception loss at the daily time step is more consistent with this 

expectation (see Table 4.3). In fact, at the daily time step the interception loss represents an 

important part of total evaporation (about 40%) but significantly decreases at shorter time 

steps. Moreover, while the simulated interception flux at the daily time step represents on 

average the 25% of precipitation, it drops down to less than 5% at the shortest 6-min time step 

(we remind that the median value of mean inter-annual precipitation over the catchment set is 

940 mm/y, see Chapter 2). This rough comparison provides a first validation of our choice of 

using the daily modelled fluxes as a reference. 

Annual cumulated flux statistics [mm/y] 

over the 8-years validation period 

Model time step 

6-m 12-m 30-m 1-h 3-h 6-h 12-h 1-d 

Median annual interception loss, I [mm/y] 45 55 69 81 108 135 166 241 

Median annual actual evaporation from 

production reservoir, AE [mm/y] 

455 449 437 430 409 391 367 311 

Median annual groundwater losses, from 

basins losing water at daily time step, FL 

[mm/y] 

122 122 117 113 108 101 92 72 

Median annual groundwater gains, from 

basins gaining water at daily time step, FG 

[mm/y] 

29 30 32 53 57 53 60 78 

Median annual net losses (I+AE+FL-FG) 

[mm/y] 

601 601 600 603 603 603 602 604 

TABLE 4.3 – Summary of the annual averages of the cumulated internal fluxes modelled by the GR4 

model at different time steps. 

It is also interesting to analyse the dispersion over the catchment set of the absolute changes 

of cumulated fluxes around the averages provided in Table 4.3. To provide an example, 

Figure 4.6 shows the comparison between the annual averages of cumulated fluxes simulated 

at the daily time step and the same fluxes obtained by the hourly simulation. For a consistent 
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multi-time step model the points should be aligned along the 1:1 line. Thus, it is evident that 

the current structure of the hourly GR4 model is not consistent with its daily original version 

for the whole catchment set. Still the model manages to get a coherent water balance at the 

outlet (see the equality of total ‘net losses’ in Figure 4.6(d)) thanks to the compensations 

between interception loss, actual evaporation and groundwater exchanges. 
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FIGURE 4.5 – Summary of the cumulative flux ratios at different time steps (with daily reference) 

over the whole validation period and the 240-catchment set: (a) interception loss, I; (b) actual 

evaporation from production reservoir, AE; (c) groundwater losses, FL; (d) groundwater gains, FG. 
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FIGURE 4.6 – Annual average cumulated fluxes from daily and hourly GR4 model simulations over 

the 240-catchment set: (a) interception loss, I; (b) actual evaporation from the production reservoir, 

AE; (c) actual groundwater losses, (negative values represent gains), F; (d) net losses (=I+AE+F). 

4.3.2.2 Evaluation over the flood events only 

The same analysis of the internal fluxes volumetric consistency at different time steps was 

performed also by evaluating on the selected flood events only. Figure 4.7(a-d) shows a 

statistical summary of the evolution of the cumulative flux ratios as the time step changes, by 

evaluating over the set of 2400 selected flood events.  
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FIGURE 4.7 – Summary of the cumulative flux ratios at different time steps (with daily reference) 

over the 2400 flood events for the 240-catchment set: (a) interception loss, I; (b) actual evaporation 

from the production reservoir, AE; (c) groundwater losses, FL; (d) groundwater gains, FG. 
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By comparing the statistics of flux ratios in Figures 4.7 and 4.5, it can be noted that the same 

trends of changes in fluxes simulated at different time steps are found when evaluating either 

on flood events only or over the whole 8-years validation period. In more detailed and relative 

terms, it seems that: 

a) The interception loss decreases with time step also on flood events, but at a slightly 

lower rate than on the whole validation period, reaching a median 𝐼𝑟𝑎𝑡𝑖𝑜[6 𝑚𝑖𝑛|1 𝑑] of 

about 30 %. 

b) The actual evaporation from the production reservoir monotonically increases at 

shorter time steps also on flood events, and at a higher rate than on the whole series, 

reaching a median 𝐴𝐸𝑟𝑎𝑡𝑖𝑜[6 𝑚𝑖𝑛|1 𝑑] of about 285 %.  

c) The negative groundwater exchanged fluxes at daily reference (losses) get stronger as 

the time step becomes shorter at around the same rate than on the whole series, 

reaching a median increase, 𝐹𝐿𝑟𝑎𝑡𝑖𝑜[6 𝑚𝑖𝑛|1 𝑑], of about 190 %.  

d) The positive groundwater exchanged fluxes at daily reference (gains) decrease, on 

average at the same rate than on the whole series, reaching a median decrease at 6 min 

of about 50 % (𝐹𝐺𝑟𝑎𝑡𝑖𝑜[6 𝑚𝑖𝑛|1 𝑑] = 0.54). 

Also for flood events Table 4.4 reports a summary of the changes in model fluxes at different 

time steps in absolute terms (mm), averaged on a daily basis that is the most appropriate scale 

to evaluate the average fluxes over the selected floods (since the average flood-duration is of a 

few days). It shows the median values of the daily average cumulated fluxes and the net 

cumulated losses (the sum of interception loss, actual evaporation and exchanges over floods 

for each catchment). Table 4.4 shows that, in contrast to the case of the whole series 

validation, the changes in the different fluxes over flood events do not counterbalance 

each other, but the total net losses increase as the time step decreases. This increase in 

total net losses is mainly due to the increasing losses from the underground exchanges while 

interception loss and actual evapotranspiration counterbalance almost perfectly. For example, 

by passing from the daily simulation to the 6-min one, the average daily total net losses 

increase of about 30% (while the losses from the surface compartments, interception and 

evaporation, change of only 4%).  
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Daily cumulated flux statistics [mm/d] over the 

2400 selected flood events 

Model time step 

6-m 12-m 30-m 1-h 3-h 6-h 12-h 1-d 

Median daily interception loss, I [mm/d] 0.23 0.27 0.32 0.36 0.45 0.52 0.61 0.72 

Median daily actual evaporation from production 

reservoir, AE [mm/d] 
0.71 0.68 0.63 0.58 0.51 0.44 0.37 0.25 

Median daily groundwater losses, from basins 

losing water at daily time step, FL [mm/d] 
1.30 1.27 1.25 1.20 1.12 1.06 0.98 0.76 

Median daily groundwater gains, from basins 

gaining water at daily time step, FG [mm/d] 
0.34 0.25 0.21 0.50 0.54 0.59 0.65 0.67 

Median daily net losses (I+AE+FL-FG) [mm/d] 2.13 2.15 2.09 2.07 2.04 1.99 1.88 1.67 

Median daily losses from interception + 

evaporation (I+AE) [mm/d] 
0.98 0.99 0.99 1.00 1.00 1.01 1.01 1.02 

TABLE 4.4 – Summary of the daily average of the cumulated internal fluxes modelled by the GR4 

model at different time steps over the 2400 selected flood events. 

The scatter-plots in Figure 4.8 show the comparison of the daily average fluxes calculated 

from hourly and daily simulations and confirm the trends discussed above for the whole 

catchment set. It shows that the net losses are generally inconsistent and greater at hourly time 

step than at daily (points lying above the identity line for positive losses). This result is 

analogous at all time steps: the net losses are greater at all sub-daily time steps with respect to 

the daily model for at least 93% of the 240 catchments (for 222 catchments at 12-h and for 

226 at 6-min time step). 
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FIGURE 4.8 – Daily average cumulated fluxes from daily and hourly GR4 model simulations over the 

2400 selected flood events: (a) interception loss, I; (b) actual evaporation from the production 

reservoir, AE; (c) actual groundwater losses, (negative values represent gains), F; (d) net losses 

(=I+AE+F). 
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the neutralisation function for interception 

The problem of fluxes inconsistency reported in the previous sections suggests that some of 

the GR4 model components should be changed as the time step decreases in order to ensure a 
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reduced interception losses at shorter time steps. In order to ensure coherent fluxes, it seems 

necessary to change the simple neutralisation function governing the interception flux to 

intercept more water at shorter time steps. Our analyses indicate that, at sub-daily time steps, 

the process of interception would be represented in a more consistent way if its ‘memory’ 

would be extended up to a daily time interval. This could be done by adding an interception 

reservoir in the model at sub-daily time steps. These results are in line with previous findings 
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interception loss by Haddeland et al. (2006), and also with the broad definition of the 

interception as a process (e.g. Gerrits, 2010).  

Haddeland et al. (2006) analysed the sensitivity of the simulated internal fluxes of the 

Variable Infiltration Capacity (VIC) model to model time step and data temporal resolution 

(decreasing from daily to hourly). Similarly to our results, Haddeland et al. (2006) observed 

that, also for the VIC model, the changes in the cumulated model fluxes and outputs at 

different time steps are explained by the scheme used to parametrize canopy evaporation. The 

possibility of intercepting the whole current precipitation at the daily time step leads to 

increased intercepted volumes at daily time steps rather than at sub-daily time steps.  

Gerrits (2010), reviewing the definitions of interception in the literature, argued that 

interception should be defined by considering it as a process, governed by the sum of the 

change of an interception storage and the evaporation from this stock. She reported that the 

time scale of the interception process is in the order of one day. After a daily time span, for 

most climates, the change of interception storage approaches zero and the interception loss 

becomes upper-limited by the potential evaporation, i.e. our assumption of zero-capacity 

interception store.  

In the following, we propose a proof to add a formal argument for the inadequacy of the 

neutralisation function at sub-daily time steps. In a retrospective way, this proof lays the 

foundation of our empirical findings on the temporal inconsistency of the assumption of zero-

capacity interception. 

 

Proof of the temporal inconsistency of zero-capacity interception 

A simple formal proof of the general inconsistency of the neutralisation function (Eq. (4.1)), 

corresponding to zero-capacity interception) at multiple time steps is given below based on 

classical deductive logic. It is proved by contradiction that the neutralisation function may 

provide consistent results when applied on data at two different time steps (∆𝑡𝑓𝑖𝑛𝑒 < ∆𝑡𝑙𝑎𝑟𝑔𝑒) 

if and only if (iif) a particular condition is verified. The condition is that the precipitation and 

potential evapotranspiration values at the shorter time step (∆𝑡𝑓𝑖𝑛𝑒) are ranked in the same 

way (i.e. either 𝑃 ≤ 𝐸 or 𝑃 ≥ 𝐸) for all the duration of the larger time step (∆𝑡𝑙𝑎𝑟𝑔𝑒). If this 

condition is not verified the neutralisation calculated on data at the fine resolution and 

cumulated over the larger time step ∆𝑡𝑙𝑎𝑟𝑔𝑒 is smaller than the neutralisation calculated 

directly on data at the ∆𝑡𝑙𝑎𝑟𝑔𝑒 resolution. 

For facilitating the understanding of the notation, the case of hourly (h) and daily (d) time 

steps is assumed. However, the same proof is valid for any other couple of time steps (with 

notation h for the shorter time step and d for the larger one). 
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Proof of the temporal inconsistency of the neutralisation function for interception 

Hypotheses: Let 𝐻 = {ℎ1, ℎ2, … , ℎ24} be the set of the 24 hours of a day.  

The hourly precipitation (𝑃ℎ) and potential evapotranspiration (𝐸ℎ) are consistent with the daily values (𝑃 𝑑 and 

𝐸𝑑) in terms of daily accumulations: 

{
 
 

 
 ∑ 𝑃ℎ𝑖 =  𝑃 𝑑

24

𝑖=1

∑𝐸ℎ𝑖 = 𝐸𝑑

24

𝑖=1

 

Claim: [min(𝑃𝑑 , 𝐸𝑑) = ∑ min(𝑃ℎ𝑖 , 𝐸ℎ𝑖)
24
𝑖=1 ]  

𝑖𝑖𝑓
⇔ (𝑃ℎ ≥ 𝐸ℎ  ∀ℎ ∈ 𝐻) | (𝑃ℎ ≤ 𝐸ℎ ∀ℎ ∈ 𝐻)  

Otherwise, if the condition on the right-side is not true, min(𝑃𝑑 , 𝐸𝑑) > ∑ min(𝑃ℎ𝑖 , 𝐸ℎ𝑖)
24
𝑖=1 . 

 

Proof: First, the simple conditional statement (if condition) can be easily proved directly from the hypotheses. 

Let the estimations of interception loss at daily and hourly time step follow the notation 𝐼𝑑 and 𝐼ℎ,𝑐𝑢𝑚𝑑
 

respectively. From the neutralisation function (Eq. (4.1)), we have: 𝐼𝑑 = min(𝑃𝑑 , 𝐸𝑑) and 𝐼ℎ,𝑐𝑢𝑚𝑑
=

∑ min(𝑃ℎ𝑖 , 𝐸ℎ𝑖)
24
𝑖=1 . 

𝐼𝑑 and 𝐼ℎ,𝑐𝑢𝑚𝑑
 will be equal in the two following alternative cases, as stated by the claim: 

1. If 𝑃ℎ ≥ 𝐸ℎ  ∀ℎ  → 𝐼ℎ,𝑐𝑢𝑚𝑑
= ∑ min(𝑃ℎ , 𝐸ℎ)

24
ℎ=1 = ∑ 𝐸ℎ  = 𝐸𝑑 = min(𝑃𝑑 , 𝐸𝑑)

24
ℎ=1 = 𝐼𝑑  

2. If 𝑃ℎ ≤ 𝐸ℎ  ∀ℎ → 𝐼ℎ,𝑐𝑢𝑚𝑑
= ∑ 𝑃ℎ

24
ℎ=1 = 𝑃𝑑 = min (𝑃𝑑 , 𝐸𝑑)  = 𝐼𝑑 

Second, the biconditional statement (iif) in the claim can be proved by contradiction. 

The claim is negated assuming the following assertion (i.e. its negation, noted as p):  

𝑝 {
[min(𝑃𝑑 , 𝐸𝑑) = ∑ min(𝑃ℎ𝑖 , 𝐸ℎ𝑖)𝑖∈𝐻 ], 𝑎𝑛𝑑 

𝐻 can be partitioned into two subsets 𝐻1 and 𝐻2 with (𝑃ℎ𝑗 > 𝐸ℎ𝑗  ∀ℎ𝑗 ∈ 𝐻1)  and (𝑃ℎ𝑘 < 𝐸ℎ𝑘  ∀ℎ𝑘 ∈ 𝐻2)
  

The possible existence of a third subset 𝐻3 with (𝑃ℎ𝑙 = 𝐸ℎ𝑙  ∀ℎ𝑙 ∈ 𝐻3) is not considered since it would not 

change the proof. 

By considering this partition of the 𝐻 set, it is true that: 

∑ min(𝑃ℎ𝑖 , 𝐸ℎ𝑖)𝑖∈𝐻 = ∑ min (𝑃ℎ𝑗 , 𝐸ℎ𝑗) +𝑗∈𝐻1
∑ min(𝑃ℎ𝑘 , 𝐸ℎ𝑘)𝑘∈𝐻2

= ∑ 𝐸ℎ𝑗 +𝑗∈𝐻1
∑ 𝑃ℎ𝑘𝑘∈𝐻2

. 

Then, following the negation of the claim to be proved (p) we would have:  

min(𝑃𝑑 , 𝐸𝑑) = ∑ min(𝑃ℎ𝑖 , 𝐸ℎ𝑖)
24
𝑖=1 → min(𝑃𝑑 , 𝐸𝑑) = ∑ 𝐸ℎ𝑗 +𝑗∈𝐻1

∑ 𝑃ℎ𝑘𝑘∈𝐻2
 (Assertion q). 

However, the sum on the right-side of the last assertion cannot be equal to neither 𝑃𝑑 neither 𝐸𝑑, but must be 

smaller than min(𝑃𝑑 , 𝐸𝑑). This comes from the definitions of the sets 𝐻1 and 𝐻2, which lead to: 

∑ 𝑃ℎ𝑘𝑘∈𝐻2
< (𝐸𝑑 − ∑ 𝐸ℎ𝑗)𝑗∈𝐻1

 → ∑ 𝐸ℎ𝑗 +𝑗∈𝐻1
∑ 𝑃ℎ𝑘𝑘∈𝐻2

< 𝐸𝑑, and 

∑ 𝐸ℎ𝑗𝑗∈𝐻1
< (𝑃𝑑 − ∑  𝑃ℎ𝑘𝑘∈𝐻2

)  → ∑ 𝐸ℎ𝑗 +𝑗∈𝐻1
∑ 𝑃ℎ𝑘𝑘∈𝐻2

< 𝑃𝑑 . 

So, when the condition (𝑃ℎ ≥ 𝐸ℎ  ∀ℎ ∈ 𝐻) | (𝑃ℎ ≤ 𝐸ℎ  ∀ℎ ∈ 𝐻) is negated we have: 

min(𝑃𝑑 , 𝐸𝑑) > ∑ min(𝑃ℎ𝑖 , 𝐸ℎ𝑖)
24
𝑖=1 , as stated in the end of the claim. 

The negation of the claim implies two contradictory assertions (p and q). Since these cannot both be true, the 

assumption that the claim is false must be wrong. Then the claim is true. 

 

Q.E.D. (end of proof) 

 

Note that on a normal rainy day (when interception is an active process) the precipitation and 

potential evapotranspiration rarely respect the condition for the temporal consistency of 

neutralisation proved above. This condition should be ensured in two particular types of 

climate: (i) hot temperatures and very low-intensity precipitation (P[mm]<E[mm]), or (ii) cold 

temperatures and high-intensity precipitation (P[mm]>E[mm]). Conversely, in a temperate 
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climate as in France, it is more likely that precipitation and potential evapotranspiration at 

sub-daily time steps do not rank the same all along the day. It is sufficient to see some 

statistics of average hourly values of precipitation and evapotranspiration in a temperate 

region (as in France) and think at the intermittency of storm events to understand it. 

Moreover, empirical proof of this was provided by our analyses of the inconsistency of the 

interception loss in the GR4 model simulations at different time steps on our catchment set. 

4.4 Consistency of model parameters and states at different 

time steps 

4.4.1 Model parameters 

Three of the four free parameters of the GR4 model affect the formulation of two internal 

fluxes considered in the analysis of the previous section, i.e. actual evaporation and 

groundwater exchanges. Among the three internal fluxes considered, only the interception 

loss is independent of all parameters. The actual evaporation from the production reservoir 

depends on the capacity of this reservoir (x1), as stated in Equation (4) in Perrin et al. (2003). 

The groundwater exchanges are directly related to the groundwater exchanges coefficient (x2) 

and the capacity of the routing reservoir (x3), as in Equation (18) in Perrin et al. (2003). So we 

can logically expect that the inconsistencies in model internal fluxes at different time steps are 

likely to imply inconsistent parameter values (of x1, x2 and x3) across time steps.  

As we have highlighted in Chapter 2, three of the four free parameters of the model are 

theoretically time-step dependent (x2, x3, and x4), and their theoretical relationships can be 

derived from the integration of the model governing equations (see also Le Moine, 2008, pp. 

172-173). So, the comparison of the calibrated parameters at different time steps has to be 

done after normalization at a same reference time step by using these theoretical relationships 

(see Table 2.3 in Chapter 2). We have shown a brief statistical summary of the changes in the 

distributions of the four parameters of the GR4 baseline model in Appendix F (Figure F.1). 

Here we further analyse this issue by searching for possible links between the fluxes 

inconsistencies and the deviations of the parameters from their theoretical time-step 

dependencies. 

To provide a first overview of the impact of time step on parameters, Figure 4.9 shows the 

comparison of the parameters calibrated at the hourly and daily time steps on our catchment 

set. The daily parameter values are normalized at an hourly reference by using their 

theoretical relationships (see Table 2.3, Chapter 2). For a consistent multi-time step model, 

the points should be aligned along the 1:1 line. In general a good but not perfect coherence 

may be observed in the four graphs. At first glance, the most marked deviation from the 

identity line regards the time base of the unit hydrograph (x4). This deviation is due to the unit 

hydrographs discrete construction, which leads to increasingly precise estimations of the x4 

parameter as the time step decreases (as further discussed in Appendix F). The other 

parameters seem to be relatively more consistent, even if an asymmetric dispersion around the 
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identity line seems to appear for x1 and x2, for which a trend of decrease of the parameters at 

shorter time steps seems to be plausible. However, a thorough comparison cannot be done by 

means of Figure 4.9, because the ranges of the parameter values are too large compared to 

their average deviations at different time steps. To complement the analysis, we must further 

analyse the deviations of the parameters from their theoretical time step dependency by taking 

the daily model parameters as a reference (see Table 4.5 and Figure 4.10). 

 

FIGURE 4.9 – Comparison of the GR4 model parameters calibrated at the hourly and daily time steps 

over the 240-catchment set (the daily model parameters are normalized at the hourly reference by 

their theoretical relationships): (a) capacity of the production store (x1); (b) water exchange 

coefficient (x2); (c) capacity of the routing store at one time step ahead (x3); (d) time base of the unit 

hydrograph (x4).  

Table 4.5 reports some statistics useful to better understand the changes in parameters at the 

eight tested time steps. The median values of the parameters at the two extreme time steps, i.e. 

1 day and 6 minutes, show large relative differences (compared to the parameter average 

value) especially for the x2 and x4 parameters. This trend is confirmed at all the tested time 

steps by the median values of the relative changes (see ∆𝒓𝒆𝒍 equation in Table 4.3) between the 

daily reference parameters and the corresponding calibrated values. Note that these relative 
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changes at different time steps are comparable to the relative standard deviation (modulus of 

the coefficient of variation) of the parameters over the catchment set. 

Figure 4.10 shows the distributions of the deviations of the parameters calibrated at the eight 

time steps (from 6-minute to 1-day) from the corresponding value obtained by calibration at 

the daily time step (all parameters are normalized at the hourly reference). The optimal 

deviation for a consistent multi-time step model should be around zero, as the daily reference, 

at least for the parameters governing the water balance (above all x1 and x2, and x3 to a minor 

extent). We report this complementary analysis also for the time base parameter, x4, 

governing the linear routing of the unit hydrographs. However, the impact of time step on x4 

was already clear in Figure 4.9 and it has already been discussed (see also Le Moine, 2008) 

that it is normal that its values stabilize at shorter time steps, going towards more precise 

estimations of the catchment response time. 

Parameter Units 

Median 

parameter 

(normalized 

at 1 h ref.) 

Relative 

standard 

deviation 

|
𝝈

𝝁
| [%] 

Median relative change (rel.) of parameter calibrated 

at time step t, with respect to the daily reference 

∆𝒓𝒆𝒍= 𝟏𝟎𝟎 ∙ [𝒙𝒊(∆𝐭) − 𝒙𝒊(𝟏𝐝)]/|𝒙𝒊(𝟏𝐝)|[%] 

where 𝒙𝒊(∆𝐭) is the i-th parameter calibrated at t.s. t 

1 d 6 m 1 d 6 m 6 m 12 m 30 m 1 h 3 h 6 h 12 h 

x1 [mm] 264 232 181 91 -10 -10 -9 -8 -7 -7 -5 

x2 [mm/h] -0.58 -1.07 282 176 -59 -57 -53 -46 -41 -33 -24 

x3 [mm] 114 106 153 154 -6 -6 -5 -7 -6 -5 -2 

x4 [h] 48 12 50 123 -72 -71 -70 -68 -62 -53 -35 

TABLE 4.5 – Median values of the GR4 parameters calibrated at daily and 6-min time step, their 

coefficient of variation, and the median relative changes in parameter values at seven time steps from 

6-min to 12-h with respect to the daily value over the 240-catchment set.  

This additional analysis allows disclosing some clear trends in the parameters dependency 

with time step also for x1 and x2, and to a smaller extent for x3: 

(i) On average, the capacity of the production store, x1, decreases at sub-daily time 

steps with respect to the daily reference values. This decrease is significant in 

terms of ranks distributions (see results of the Friedman test in Figure 4.10) and is 

also important in relative terms (see Table 4.5). 

(ii) The water exchange coefficient, x2, steadily decreases with time step. The decrease 

is clearly significant in terms of distributions (see also Friedman test results) for all 

the time steps. In relative terms, the changes of x2 with time step are the most 

impressive among the first three parameters, since they are the closest to the order 

of magnitude of the coefficient of variation (see Table 4.5). 

(iii) On average, the capacity of the routing store at one time step ahead, x3, slightly 

decreases (see Table 4.5). This change is not always significant for all the tested 
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time steps (see results of the Friedman test). The distributions of the parameter 

deviations from the daily values are quite symmetric around 0 (Figure 4.10) with 

increasing dispersion. 

 

FIGURE 4.10 – Distributions of the deviations of the GR4 model parameters between the daily model 

reference and the eight time steps from 6 min to 1 day over the 240-catchment set (the parameters 

are normalized at the hourly reference by their theoretical relationships): (a) capacity of the 

production store (x1); (b) water exchange coefficient (x2); (c) capacity of the routing store at one time 

step ahead (x3); (d) time base of the unit hydrograph (x4). The box plots report the median value, 

interquartile range, and the whiskers represent the 10th and 90th percentiles; the red points refer to 

mean values. The letters above each box plot specify the ranking (alphabetical order) and the 

significant differences detected by the Friedman test at significance level 0.05 (distributions with the 

same letter are not significantly different). 

The presence of these trends highlighted above for the x1, x2 and x3 parameter is coherent with 

our expectations following the model fluxes inconsistencies.  
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The impact of time step on the water exchange coefficient x2 is the largest among the three 

parameters (after the logically-expected one on x4) and it is straightforward to interpret. In 

fact, the GR4 model groundwater exchanges (see Eq. (4.4)-(4.6)) have the sign of x2 and their 

absolute value increases with the absolute value of x2. So, the observed changes in the water 

exchange coefficient correspond well to the observed changes in model fluxes at shorter time 

steps, i.e. the water losses increase (larger negative x2 values) and the gains decrease 

(reduction of positive x2 values). 

On the other hand, the links between the changes in the x1 and x3 parameters and the 

corresponding governed fluxes (actual evaporation, AE, and exchanges, F, respectively) are 

less straightforward. Indeed, the fluxes depend on the evolution of the corresponding state 

variables, i.e. production and routing store levels respectively (see Eq. (4.2) and (4.3)). 

Moreover, the increase in the AE fluxes at shorter time steps is at least partially explained by 

the net evapotranspiration capacity (𝐸𝑛 = 𝐸 − 𝐼) that increases as the interception loss 

decreases. So we further discuss the possible links between fluxes changes and production 

and routing store levels in the following section where we present the impact of time step on 

these state variables. 

4.4.2 Model states 

The GR4 model states include:  

- the water content in the production store, i.e.: 𝑆 [mm], linked to the non-linear 

functions of actual evaporation (see Eq. (4.2)), infiltration and percolation (Perrin et 

al., 2003); 

- the level of the routing store, i.e. R [mm], linked to the exchanged fluxes (see Eq. 

(4.3)) and to its outflow, i.e. the main permanent component of the simulated 

streamflow; 

- the unit hydrographs inputs, i.e. the rainfall excess that is being routed by the two unit 

hydrographs. 

The linearity of the unit hydrographs (UH) ensures the consistency of the state-response 

function of the UH to the rainfall excess at different time steps. So here we focus only on the 

two first model states, i.e. the production and routing stores levels, which in addition are 

directly linked to the internal fluxes impacted by the model time step (AE and F). 

Table 4.6 reports a summary of the distributions of the filling rates of the two stores (i.e. the 

ratios between the amount of water in the store and its capacity, i.e. 
𝑆

𝑥1
 for the production store 

and 
𝑅

𝑥3
 for the routing store) for the GR4 model at different time steps, over the whole 

catchment set. The statistics of the two stores levels are calculated over the 8-year simulation 

period at the same resolutions as the model time steps (from 6-min to 1-day). 

 



4. Model diagnostics at multiple time steps 

166 

 

Note that: 

- The maximum capacity of the production store (x1) does not depend theoretically on 

the time step (as already discussed in the previous section). So, any possible change of 

the filling rates of this store at multiple time steps would depend directly on the actual 

changes in the store inputs (𝑃𝑛 and 𝐸𝑛) and the concerned fluxes (AE, and the store 

filling and percolation). 

- The filling rate of the routing store is calculated as the ratio of the stock and the actual 

maximum capacity (𝑥3) calibrated at each model time step without the normalization 

at a common reference time step (given by integration of the governing equation of the 

store) This choice is motivated by the importance of analysing the actual values of the 

filling rates, which are the ones directly impacting the exchange (see Eq. (4.4)). 

 

Median of model stores filling 

rates (FR) [-] time-series 

statistics over the catchment set 

Model time step 

6 m 12 m 30 m 1 h 3 h 6 h 12 h 1 d 

Production store mean FR 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 

Production store FR 10
th

 quantile 0.31 0.30 0.30 0.30 0.30 0.30 0.30 0.29 

Production store FR 90
th

 quantile 0.78 0.78 0.79 0.78 0.78 0.79 0.79 0.78 

Production store FR coefficient of 

variation 

0.32 0.33 0.32 0.33 0.33 0.33 0.34 0.34 

Routing store mean FR 0.13 0.16 0.20 0.24 0.31 0.37 0.43 0.51 

Routing store FR 10
th

 quantile 0.10 0.11 0.14 0.17 0.22 0.26 0.31 0.36 

Routing store FR 90
th

 quantile 0.17 0.20 0.26 0.31 0.40 0.48 0.56 0.66 

Routing store FR coefficient of 

variation 

0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 

TABLE 4.6 – Summary of the distribution of the states of the production and routing stores of the 

GR4 model at different time steps over the whole validation period and the selected flood events for 

the 240-catchment set. 

The results in Table 4.6 show that: 

(i) For the production soil moisture accounting (SMA) store: the filling rates do not 

change on average when changing the model time step. The median value (for the 

240 catchments) of the mean filling rate over the 8-years period is stable at about 

56% across all model time steps. Also, the extreme quantiles (10
th

 and 90
th

) and the 

coefficient of variation of the production store filling rate do not significantly 

change. This is coherent with the expected slow dynamics of this store, which must 

lead to a constant mean filling rate (for different model time steps). 
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(ii) For the routing store: the filling rates significantly decrease with the model time step. 

The median value steadily decreases from 51% at the daily time step to 13% at the 6-

min time step. The same decreasing trend is observed on the extreme quantiles. It is 

interesting to note that the coefficient of variation is constant (around 22%) across 

time steps. 

Some interesting interpretations of these results can be deduced by linking the statistics of the 

model stores filling rates at different time steps with the changes observed in parameters and 

fluxes. 

4.4.2.1 Discussion on the changes in the production store filling rates 

Figure 4.11 shows the coherence of the hourly and daily filling rates of the production 

reservoir for each catchment (mean and 90
th

 quantile). Note that the slight dispersion around 

the 1:1 line (emerging for the 90
th

 quantile) is likely to be explained by the fact that the 

statistics are calculated at each model resolution. For a perfectly fair comparison, the hourly 

simulations could have been preliminarily aggregated at the daily time step (before statistics 

calculation). 

Note that even if the maximum capacity of the production store decreases on average at 

shorter time steps (see Table 4.5 and Figure 4.10), its filling rate is stable (Figure 4.11). 

 

FIGURE 4.11 – Coherence of the production store filling rates between daily and hourly GR4 

simulations over the catchment set: (a) mean values; (b) 90th quantiles of filling rates. 

We have showed that by decreasing the time step of the GR4 model, the interception loss 

decreases (due to inputs temporal distribution) and, as a consequence, the actual evaporation 

from the production store (𝐴𝐸) increases (see Table 4.3). Since the level of the production 

store does not change, the AE changes can be explained by the differences of net precipitation 

and net potential evaporation inputs (due to interception loss changes). In fact, in Equation 

(4.2) we may note that the AE flux increases with the filling rate of the production store and 
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with the net evapotranspiration capacity (𝐸𝑛 = 𝐸 − 𝐸𝑖). Since the filling rates are stable as the 

time step changes, the observed increase in AE fluxes at shorter time steps is essentially due 

to the increase of the net evapotranspiration capacity (𝐸𝑛). So, the impact of the time step on 

the production part of the model is only due to the structural inadequacy of the interception 

component! This induces a feed-back on the actual evaporation from the production store, that 

is only due to the different inputs (𝐸𝑛 and 𝑃𝑛) and not to other structural problems. 

4.4.2.2 Discussion on the changes in the routing store filling rates 

The level of the routing store is linked to two internal fluxes of the GR4 model: (1) the 

exchange fluxes (F) and (2) the outflow of the store (QR). 

(1) Is there a link between the decreasing filling rates and the exchange? 

The exchange fluxes (𝐹) depend on the routing store filling rate as we have reported in Eq. 

(4.3) (from Perrin et al., 2003). One may easily note from this equation that the absolute value 

of the exchange (|F|) increases with the filling rate of the routing store (
𝑅

𝑥3
). Thus, the 

decreasing trend observed in the routing store levels at shorter time steps is in opposition to 

the observed increase of magnitude of the exchange. This means that the decrease of the 

routing store filling rates is not caused by the “need” of increasing the water losses by the 

exchange component to compensate the reduced interception loss. 

(2) Is there a link between the decreasing filling rates and the outflow? 

The outflow of the routing reservoir is governed by a differential non-linear emptying 

function, such as: 

𝑑𝑅

𝑑𝑡
= −ℎ𝑅𝛼   (4.10) 

where ℎ and 𝛼 are two parameters that can be fixed or calibrated. In the GR4 model, ℎ 

depends on the calibrated parameter 𝑥3 (see here below), while 𝛼 is fixed at 5.  

As showed by previous authors who contributed to the GR4 models chain development (e.g. 

Le Moine, 2008, Appendix C, pp. 275-276), the integration of this equation on a time step 

gives the outflow of the reservoir given by Equation (20) in Perrin et al. (2003), here reported: 

𝑄𝑅 = 𝑅𝑡 − 𝑅𝑡+∆𝑡 = 𝑅𝑡 (1 − [1 + (
𝑅𝑡
𝑥3
)
𝛼−1

]

−
1

𝛼−1

) [mm] (4.11) 

where we have:   

𝑥3 = [
1

(𝛼 − 1) ∙ ℎ ∙ ∆𝑡
] [mm] 

(4.12) 
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which is used to transform the integrated equation over a time step and obtain an easy-to-

interpret parameter to be calibrated (𝑥3), representing the ‘reference’ store-capacity one time 

step ahead (that cannot be exceeded at the end of the time step). 

From Equation (4.12), as Le Moine (2008) observes, it is possible to obtain the relationship to 

transform the parameter 𝑥3 from one time step ∆𝑡 into the corresponding parameter 𝑥3
′ at 

time step ∆𝑡′, i.e.: 

𝑥3
′

𝑥3
= (

∆𝑡

∆𝑡′
)

1

𝛼−1
  

 (4.13) 

For example, by passing from the time step ∆𝑡 = 24 ℎ to ∆𝑡′ = 1 ℎ, the ratio of maximum 

‘reference’ capacities is 24
1

𝛼−1 (around 2.21, for 𝛼 = 5). Since the 𝑥3
′ capacity increases at 

shorter time steps and the average stocks should not change, the mean filling rates should be 

reduced as the time step decreases by the same factor of Equation (4.13).  

So we found that the theoretical transformation described above explains well the observed 

trends reported in Table 4.6. In fact, the decrease in the routing store filling rates at shorter 

time steps corresponds to the transformation described above, not only for the mean filling 

rates but also for their 10
th

 and 90
th

 quantiles. One may easily check this relationship by 

verifying the transformation (Eq. (4.13)) applied to the statistics of Table 4.6. As a 

complement, Figure 4.12 shows the coherence of the hourly and daily filling rates of the 

routing store for each catchment (mean and 90
th

 quantile) after applying the transformation of 

Equation (4.13), over the whole catchment set. These results are satisfactory, since they 

should allow inferring the model states (e.g. initial conditions of reservoirs before a storm 

event) at one short time step (e.g. 1 h) from the state at a larger time step (e.g. 1 day). 

 

FIGURE 4.12 – Coherence of the routing store filling rates between daily and hourly GR4 simulations 

over the catchment set, by applying the theoretical relationship between time-step and routing store 

capacity: (a) mean values; (b) 90th quantiles of filling rates. 
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4.5 Synthesis 

In this chapter, we have set up a diagnostic framework of the internal consistency of the GR4 

model at multiple time steps. This analysis was based on targeted evaluations of the input-

state-output response of the GR4 model. Particular attention was devoted to:  

(i) the impact of inputs temporal distribution on model performance;  

(ii) the consistency of the internal fluxes of the model across different time steps;  

(iii) the impact of time step on calibrated parameters and model states.  

Eventually, this manifold diagnosis led us to point towards serious inadequacies of the current 

model structure at sub-daily time steps and to understand possible ways of improvement. 

Some problems in the performance of the GR4 model at sub-daily time steps were already 

presented in Chapter 3. In particular, we showed that for a significant part of the catchment 

set (about 20%) model performance degrades using shorter model time steps on flood events. 

It was shown that this degradation is mainly due to the undesired worsening of the ratio of 

means criterion (bias) by using shorter time steps for the majority of cases (even when 

average global model performance improves). 

In our model diagnosis, we started analysing the impact of the temporal distribution of the 

precipitation and evapotranspiration inputs over the day, showing that the sub-daily 

distribution of precipitation inputs is more important than for evapotranspiration.  

Despite the general improvement of simulations of flood events by using precipitation data at 

shorter time steps (i.e. shorter constant-intensity durations), some contrasting results were 

found. Above all, the water balance criterion follows an opposite trend being improved as the 

constant-intensity duration increases. This is counterintuitive because the use of larger data 

time steps corresponds to a loss of information (P temporal variability), while the volumes are 

consistent. Nevertheless, this problem is in line with what was found in Chapter 3, i.e. general 

significant decrease of the ratio of means over flood events with shorter model time steps. 

These results indicate that the capacity of the GR4 model to reproduce the water balance is 

jeopardized by simply using shorter temporal resolutions for precipitation inputs (even using 

the same model time step!). These results suggest some structural inadequacies that are 

strictly linked to the use of precipitation in the GR4 model equations at shorter time steps. 

As for the potential evapotranspiration, we tested two different temporal patterns at sub-daily 

time steps: the uniform and “sinusoidal” patterns. The two patterns lead to very similar results 

(with no significant change) by evaluating either over the whole validation period or over 

flood events only. Thus, the sinusoidal temporal pattern is to be preferred to the uniform one, 

because it has a sounder physically-based basis, and is likely to lead to more consistent 

representations of the moisture fluxes. 

The problem of water balance degradation at shorter time steps was linked to the rainfall-

runoff model functioning, by a detailed analysis of the internal modelled fluxes inconsistency.  
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In fact, the interception loss, actual evapotranspiration and inter-catchment groundwater flows 

markedly change as the time step becomes finer. The implicit assumption in the model 

structure of zero-capacity interception storage turned out to be not admissible at sub-

daily time steps. This was proved both empirically and formally: by our simulations of the 

GR4 model leading to large changes of interception loss volumes at different time steps 

(based on this assumption) and by a mathematical proof. 

 

The large under-estimation of interception loss volumes at shorter time steps affects the other 

fluxes by strong effects of compensation. Since the model components after the 

interception function receive more water at shorter time steps, the other functions for 

water balance-closure, i.e. the actual evaporation from the production store and the losses by 

groundwater exchange, are used to get rid of more water outside of the catchment. These 

compensations seem to be able to ensure the good water balance at all time steps only by 

evaluating on average over the whole series, but they lead to increasingly biased 

simulations over flood events.  

 

In the end of our model diagnosis, we evaluated the impact of the time step on model 

parameters and states. These impacts were analysed with particular attention to their links 

with the previously examined temporal inconsistencies of model fluxes. 

 

For the GR4 model parameters, our analysis disclosed some clear trends of the values of the 

water-balance parameters (the capacity of production store x1 and the water exchange 

coefficient x2) across different time steps that differently from x4 were neither a-priori 

expected nor obvious by looking at the distribution over the catchment set. However, the 

inconsistencies of model fluxes foretell possible spurious impacts on parameters that are 

eventually confirmed by our analyses (for x1 and x2). On average, the capacity of the 

production store, x1, and the water exchange coefficient, x2, decrease at sub-daily time steps 

with respect to the daily reference values. These impacts are directly related to the fluxes 

inconsistencies and to the model states. In fact, while the production store capacity (x1) 

decreases the average filling rate of the store is constant across time steps. This confirms that 

the increase in actual evaporation directly depends on the different amounts of net 

precipitation and evaporation capacity at different time steps. On the other hand, the water 

exchange coefficient (x2) decrease is directly explained by its role in the exchange fluxes 

equation. The latter equation depends on x2 and x3 (via the routing store filling rate), but only 

the x2 changes in order to contribute compensating the reduced interception loss at shorter 

time steps. 

As for the filling rates of the routing store, it is shown that they decrease with time step, but 

coherently to the integration of their outflow differential equation. Our analysis of the GR4 

model states has an important practical implication: the model states representing the levels 

of the production and routing stores are transferrable across different model time steps. 

 

In the next chapter, we will present our attempts performed to solve the problem of internal 

fluxes consistency. Our primary structural modification will be adding an interception store, 
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to favour the capacity of the model of evaporating intercepted water at sub-daily time steps. 

After solving the problem of the interception loss inconsistency, we should still focus on the 

actual role of the exchanges at different time steps. In fact, it has been shown that they seem 

determinant for the bias over flood events, while actual evaporation and interception loss 

counterbalance each other. Other exchange functions will be tested to see whether a reduction 

of the role of exchanges in high-flows conditions would further improve the water balance. 
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A modeller’s Holy Grail: improving simulations accuracy by 

ensuring the fluxes consistency at multiple time steps 

In Chapter 4 we have shown that the GR4 rainfall-runoff model is affected by problems of 

internal inconsistencies when run at multiple sub-daily time steps. It has been proved that 

these internal fluxes inconsistencies depend on the model structure. In particular, a structural 

inadequacy has been detected in the neutralisation function which represents the interception 

process at daily and sub-daily time steps. The GR4 model, with the neutralisation function, 

intercepts less and less water as the time step decreases from daily to 6 min. This is likely to 

be the cause of a chain of compensation effects on the model internal fluxes and parameters, 

which worsens the simulation bias over flood events at shorter time steps. 

To solve this problem, a change of the interception component is necessary. This structural 

modification is tested by adding a simple interception store as the first model component in 

the production part of the GR4 model. We propose to fix its capacity parameter, in order to 

ensure the interception flux consistency. The results of this new model structure are evaluated 

by criteria on model performance and on the temporal consistency of the modelled fluxes. 

The two aspects are evaluated over the whole simulation period and flood events only. This 

analysis validates the insertion of the interception store in the GR4 model at sub-daily time 

steps, because it leads to significant benefits for model fluxes temporal consistency and for 

model performance over floods.  

However, a decrease of performance over low flows is detected. It is argued that this problem 

could be solved by testing alternative exchange functions. The use of the exchange function 

proposed by Le Moine (2008) in combination with the model with the interception store 

proposed here solves the problem on low flows and provides further improvement to model 

performance over flood events (reduction of the bias).  

Finally, other complementary tests are performed to take into account the precipitation 

intensity in the model. Our tested implementations of an infiltration-excess runoff component 

and a precipitation correction factor are briefly presented. They did not provide any 

significant improvement to the current version of the model. However, these tests are not 

exhaustive and some of these issues may deserve further research in the future. 
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5.1 General scheme of our model structure modifications 

In this chapter, we present the structural modifications of the GR4 model that have been 

tested at daily and sub-daily time steps with the aims of: 

(i) Improving model performance and particularly reduce the simulations bias 

(underestimation) on flood events that was detected at daily and even more at sub-

daily time steps;  

(ii) Improving the internal fluxes coherence at multiple time steps and particularly 

stabilize the interception loss and the other interdependent model fluxes (actual 

evaporation from production reservoir and inter-catchment groundwater 

exchanges). 

We apply the testing protocol for model calibration and validation used in the previous tests 

of the GR4 model at multiple time steps (see Chapter 3 and 4). Calibration is performed using 

the KGE criterion on streamflows at all the time steps of the time series as objective function. 

As explained in Chapter 4, we propose a two-step approach for empirical model identification 

of a consistent multi-time step model, which complements the validation of model 

performance with the validation of the consistency of model fluxes and parameters across 

time scales. In our approach, a structural modification is accepted if and only if most of 

the criteria of model performance are improved (or not degraded) and the fluxes 

consistency criterion is improved (or not degraded) too. 

In the validation process, model performance will be evaluated using different criteria on 

streamflow over the whole validation period and over flood events, i.e. KGE, relative 

variability, ratio of means, correlation and FDC-based criteria (extreme quantiles of flow 

ratios and slope bias in the mid-segment of the FDC). Note that since our evaluation of model 

performance is based on a multi-criteria approach, the problem of model identification is not 

an easy task. A compromise choice must be made by the modeller if significant improvements 

in some criteria are detected at the price of a degradation of other criteria. 

For the validation of the temporal consistency of fluxes (at multiple time steps), we will use 

the multiplicative bias indexes defined in Chapter 4 and called cumulative flux ratios (i.e. 

ratios of cumulated fluxes simulated at different time steps) on the whole validation time 

series and on the flood events only. 

Regarding the models naming, the baseline model structure, simply called GR4, refers to 

the structure described in Perrin et al. (2003) and run at multiple time steps by simple 

adaptation of its fixed time-dependent parameters (i.e. the model used in the previous 

chapters). We remind that the number in the model name stands for the number of free 

parameters (4). Analogously, the model versions presented in this chapter will be called by a 

code (i.e. an acronym) starting with GRX where X is the number of free parameters of the new 

version. The final part of the code is composed of letters and numbers, with letters 
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abbreviating a particular structural modification and numbers standing either for the ordinal 

number of the implemented structure and/or for a new fixed parameter value, as for instance: 

‘GR4-I1’ stands for GR4 baseline model with a first implementation of an interception model 

component. 

For sake of clarity, sometimes we will refer to the “order” of a new derived structure that can 

be defined as the number of model components involved by the structural modification with 

respect to the baseline GR4 model. For example, a first-order derived model will concern the 

insertion (or modification) of only one particular model component (function) with respect to 

the baseline model (e.g. the addition of only an interception model component or the sole 

modification of the groundwater exchange function lead to first-order derived models). The 

combination of two first-order model adaptations in one new structure generates a second-

order derived structure, and so on.  

To summarize all the modifications, the following four points recall the first-order 

modifications of the GR4 baseline model that we have tested at multiple time steps and that 

will be presented in this chapter: 

I. Insertion of an interception storage component (see Section 5.2); 

II. Modification of the groundwater exchange function (see Section 5.3); 

III. Insertion of a function accounting for infiltration-excess capacity (see Section 5.4.1); 

IV. Insertion of a precipitation correction factor (see Section 5.4.2). 

The largest part of our work has been devoted to the first point (interception), and will be 

thoroughly presented in this chapter. Our investigations on the other three types of structural 

modifications have been less exhaustive and will be presented in fewer details. Only some of 

all the possible higher-order modifications (given by the combination of the first-order ones) 

have been tested and will be presented in this chapter, such as the combination of the insertion 

of an interception store with a modified exchange function saturating on high-flows (see 

Section 5.3).  

5.2 Refinement of the interception component 

The need of a refinement of the interception component of the model is motivated by the 

results of our model diagnosis (Chapter 4): the neutralisation function currently used in the 

GR4 model proved inadequate to consistently represent the interception process across daily 

and sub-daily time steps, as demonstrated by both an empirical analysis and a formal proof. 

This inadequacy is the cause of large undesired time-step effects on model internal fluxes and 

parameters, which are presumably related to a degradation of the model simulations over 

flood events (i.e. increasing bias as the time step decreases).  

Given the observed compensations between model fluxes, it seems necessary to stabilize in 

priority the interception loss at different time steps in order to make all the model fluxes more 
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consistent. This could be done by extending the memory of the function used for representing 

interception to durations longer than the model time step by using a store. 

Thus, we will test the insertion of an interception store in the GR4 model at daily and sub-

daily time steps, to replace the temporally inconsistent neutralisation function. A similar 

complexification of the interception component of the GR4 model was already tested in a 

previous study on the development of the hourly version of the model, without detecting any 

significant improvement of model performance (Mathevet, 2005; pp. 220-221). Mathevet 

(2005) tested the insertion of an interception store of either fixed or free capacity in the GR4 

hourly model but he did not report in his PhD thesis the tested function for interception and 

detailed results. According to his evaluation framework, he claimed that the insertion of an 

interception store would not lead to any significant improvement in model performance. 

However, unlike us, Mathevet (2005) did not evaluate neither the model fluxes consistency 

nor the simulation performance on flood events. For this reason, we may expect that the 

refinement of the interception component deserves more attention and that we could find 

different conclusions than Mathevet (2005), thanks to our different evaluation framework. 

Also, Mathevet (2005) (p. 223) recognizes that his efforts in the hourly model development 

focused more on the routing part of the model than on the production part. So, he argued that 

further work should deepen the question of optimality of the production functions 

(interception, evaporation and infiltration). 

5.2.1 A new structure with a bucket-style interception store 

For the complexification of the interception component, we consider the insertion of a simple 

bucket-style store at the top of the current GR4 model structure (see Figure 5.1). The 

interception store has a capacity of a few millimetres (𝐼𝑚𝑎𝑥), which allows to temporarily 

store an amount of intercepted rainfall (I) for a few hours or days. The stock of water in the 

store overflows and produces throughfall (𝑃𝑡ℎ) when the capacity 𝐼𝑚𝑎𝑥 is exceeded, while is 

reduced by evaporation (𝐸𝑖) at the potential rate, unless the effective water supply rate 

(P+I/t) is limiting. This simple type of interception model component has been already used 

in rainfall-runoff modelling at sub-daily time steps by other authors (e.g. Kandel et al., 2005).  

The interception store capacity (𝐼𝑚𝑎𝑥) could be either fixed or calibrated, according to criteria 

based on model performance and internal fluxes consistency. We will evaluate both 

possibilities by empirical modelling tests. As for denoting the new versions of the model, we 

name as GR4-I the model obtained by adding an interception store of fixed capacity and as 

GR5-I the model with the interception store of free capacity (which would become the 5
th

 

free parameter of the model). 

Given the fixed time-step numerical implementation of the model, the order of the 

interactions of the two climatic inputs (P and 𝐸𝑝) with the interception store could impact the 

modelling results, especially at larger time steps. Two possible implementations of the 

interception model component represented in Figure 5.1 are possible, depending on the 

priority given at the beginning of each fixed time step to either throughfall or evaporation 
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from the store. In the first implementation (named I1), the throughfall (𝑃𝑡ℎ) is calculated prior 

to evaporation (𝐸𝑖), while in the second (named I2), the evaporation is prior to throughfall 

(see Table 5.1). In the following, the derived model structures of these two implementations 

are denoted respectively as GR4-I1 (or GR5-I1) and GR4-I2 (or GR5-I2). 
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FIGURE 5.1 – Schematic representation of the GR4-I and GR5-I model structure, modified from the 

GR4 baseline model by Perrin et al. (2003) by insertion of an interception store (of maximum 

capacity Imax). The store capacity may be either fixed (in GR4-I) or calibrated as a fifth free parameter 

(in GR5-I). 

Since part of the potential evapotranspiration energy available (Ep) is used to evaporate water 

from the interception store, only the difference (𝐸𝑃 − 𝐸𝑖) remains available to evaporate 

water from the production soil-moisture accounting store. In other words, with respect to the 

GR4 baseline model and the corresponding notation established by model equations in Perrin 

et al. (2003) (see also Section 2.6.1), in the GR4-I and GR5-I model structures (for both -I1 

and -I2 versions) the net evaporation capacity 𝐸𝑛 is equal to 𝐸𝑃 − 𝐸𝑖. In the same way, the 

rainfall intensities are smoothed by the interception store, and the throughfall 𝑃𝑡ℎ is the new 

net rainfall 𝑃𝑛. 

The total actual evaporation loss (𝐸𝐴) will be the sum of 𝐸𝑖 and 𝐸𝑠, where 𝐸𝑠 is the amount of 

water evaporated from the production store (see Eq. (2.9) in Section 2.6.1), calculated here as 

a function of the new net evaporation capacity: 
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𝐸𝑠 =
𝑆 (2 −

𝑆

𝑥1
) tanh (

𝐸𝑃−𝐸𝑖

𝑥1
)

1 + (1 −
𝑆

𝑥1
) tanh (

𝐸𝑃−𝐸𝑖

𝑥1
)
 (5.1) 

 

Interception store with throughfall prior to 

evaporation (I1) – Equations over a time step ∆t 

Interception store with evaporation prior to 

throughfall (I2) – Equations over a time step ∆t 

1 – The throughfall (𝑃𝑡ℎ) rate is calculated as:  

𝑃𝑡ℎ = 𝑚𝑎𝑥 [0, 𝑃 −
(𝐼𝑚𝑎𝑥 − 𝐼0)

∆𝑡
] 

2 – The actual evaporation (𝐸𝑖) rate is calculated as: 

𝐸𝑖 = min (𝐸𝑃 , 𝑃 +
𝐼0
∆𝑡
− 𝑃𝑡ℎ) 

3 – The I store water content is then updated as:  

𝐼 = 𝐼0 + (𝑃 − 𝑃𝑡ℎ − 𝐸𝑖)∆𝑡 

1 – The actual evaporation (𝐸𝑖) rate is calculated as:  

𝐸𝑖 = min (𝐸𝑃 , 𝑃 +
𝐼0
∆𝑡
) 

2 - The throughfall (𝑃𝑡ℎ) is calculated as:  

𝑃𝑡ℎ = 𝑚𝑎𝑥 [0, 𝑃 −
(𝐼𝑚𝑎𝑥 − 𝐼0)

∆𝑡
− 𝐸𝑖] 

3 – The I store water content is then updated as:  

𝐼 = 𝐼0 + (𝑃 − 𝐸𝑖 − 𝑃𝑡ℎ)∆𝑡 

TABLE 5.1 – Equations of the two implementations of the interception store depending on the 

priority given to either evaporation or throughfall (model names with either I1 or I2). P and 𝐸𝑃 are 

the rainfall and potential evapotranspiration rates over the time step ∆t, 𝐼𝑚𝑎𝑥 is the interception 

store capacity; 𝐼0 is the initial water content in the interception store (at the beginning of the time 

step ∆t); 𝐸𝑖  is the actual evaporation rate from the I store; 𝑃𝑡ℎ is the throughfall rate from the I store. 

5.2.2 Results of the GR4-I model with an interception store of fixed 

capacity 

The interception store capacity 𝐼𝑚𝑎𝑥 was initially fixed, with different values (ranging from 0 

to 15 mm), to test the sensitivity of model results to this parameter. This choice was made to 

avoid possible interactions with the other production parameters of the model (i.e. capacity of 

production store and water exchange coefficient) in the calibration step. We have chosen to 

test a limited number of fixed values (less than 20) to limit the number of models runs at short 

time steps and so the calculation time. The chosen set of possible fixed values, named ‘F’, 

consists in the following eighteen values: 

- 0.1 mm; 

- all values between 0.25 and 3 mm with a step of 0.25 mm;  

- 4, 5, 7.5, 10 and 15 mm.  

Note that the neutralisation function of the GR4 baseline model is equivalent to an 

interception store of null capacity, and so the tested capacity values are nineteen. 
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The range of 𝐼𝑚𝑎𝑥 values was chosen by extending of a few millimetres the typical range of 

interception storage capacities reported in the literature for different land cover types (e.g. 

Gerrits, 2010). The choice of considering more values between 0.25 and 3 mm was based also 

on our first analysis on the fluxes consistency at multiple time steps. In fact, this analysis 

indicated that the capacities between 0.25 and 3 mm were more effective to stabilize the 

internal fluxes at multiple time steps, as reported in details later (see Section 5.2.4). 

For each 𝐼𝑚𝑎𝑥 value in the F set, we recalibrated the GR4-I models, and so the four free 

parameters that are in common with the GR4 baseline model are changed in the calibration 

phase. To summarize the results of the GR4-I1 and GR4-I2 models (19 modelling tests for 

each version and time step), we selected for each catchment the fixed value of interception 

store capacity (among the nineteen) that leads to the maximum KGE value in calibration 

mode. We named this fixed catchment-dependent capacity as ‘F-opt’, to indicate that it 

consists of the optimal 𝐼𝑚𝑎𝑥 values within the F set. 

In this way, the selected results provide a first estimation of the upper-bound of performance 

that can be achieved by adding an interception store of fixed capacity (within the limited F 

set). A summary of the model performance at hourly and daily time steps is provided 

respectively in Table 5.2 and Table 5.3 for the two new model versions (GR4-I1 and -I2) and 

for the baseline model without interception store (GR4).  

The results at the hourly time step (Table 5.2) show that, on average, the GR4-I1 and -I2 

models lead to a marked improvement with respect to the GR4 baseline model for both 

evaluations over the whole 8-year period and over flood events. The average improvement in 

KGE is of about 1 point (i.e. 10
-2

) over the whole period and 3 points over flood events with 

both GR4-I1 and -I2 implementations. It is important to note the positive pronounced trend in 

the ratio of means (b) in flood conditions. At the hourly time step, the median ratio of means 

increases from about 90% with the GR4 model to 93% with the GR4-I models with 

interception store. In other words, the average flood volumes underestimation is significantly 

reduced by introducing the interception store in the GR4 model: the flood volumes are 

underestimated on average by 7% with the new GR4-I model, while they were underestimated 

by 10% with the GR4 baseline model. This confirms that the introduction of the 

interception store is especially advantageous for improving the simulation of flood 

events with respect to the baseline model, as it was suggested in Chapter 4.  

On the other hand, at the daily time step (Table 5.3) the differences in average performance 

between GR4 and GR4-I1/-I2 are smaller, and over the whole validation period they are 

negligible (<10
-2

). A significant improvement (1.5 points of KGE) is still detected by 

evaluating over flood events, but is clearly less pronounced than for the hourly time step. 

 



5. Towards a consistent multi-time step model 

183 

 

Hourly 

model 

Median 

Imax store 

capacity 

[mm] 

Median criteria on the whole series 

(validation) 

Median criteria on flood events 

(validation) 

KGE [-] a [-] b [-] r [-] KGE [-] a [-] b [-] r [-] 

GR4 0 0.820 0.989 1.009 0.897 0.727 0.969 0.904 0.832 

GR4-I1 

(F-opt) 
7.5 0.832 0.998 0.999 0.912 0.759 0.975 0.929 0.839 

GR4-I2 

(F-opt) 
7.5 0.833 0.999 0.999 0.912 0.759 0.972 0.928 0.841 

TABLE 5.2 – Summary of the median performance criteria of the hourly GR4 (baseline), GR4-I1 and -

I2 models, with fixed capacity 𝐼𝑚𝑎𝑥, over the catchment set. The criteria presented are the KGE and 

its components over the whole validation period and over the selected flood events. The results are 

presented for the 𝐼𝑚𝑎𝑥 capacity (F-opt) which provides the maximum KGE value in calibration mode, 

selected for each catchment among the set of 19 values between 0 and 15 mm. 

Daily 

model 

Median 

Imax store 

capacity 

[mm] 

Median criteria on the whole series 

(validation) 

Median criteria on flood events 

(validation) 

KGE [-] a [-] b [-] r [-] KGE [-] a [-] b [-] r [-] 

GR4 0 0.836 0.992 1.005 0.906 0.718 0.934 0.935 0.800 

GR4-I1 

(F-opt) 

5.0 0.836 0.998 1.000 0.915 0.735 0.938 0.950 0.807 

GR4-I2 

(F-opt) 

5.0 0.833 0.997 1.001 0.914 0.731 0.936 0.947 0.811 

TABLE 5.3 – Summary of the median performance criteria of the daily GR4 (baseline), GR4-I1 and -I2 

models, with fixed capacity 𝐼𝑚𝑎𝑥, over the catchment set. The criteria presented are the KGE and its 

components over the whole validation period and over the selected flood events. The results are 

presented for the 𝐼𝑚𝑎𝑥 capacity (F-opt) which provides the maximum KGE value in calibration mode, 

selected for each catchment among the set of 19 values between 0 and 15 mm. 

Note that the two implementations of GR4-I1 and -I2 lead to very similar model performance 

scores at the hourly and daily time steps by both evaluations over the whole time series and 

over flood events. The differences in the median values of KGE and its components between 

these two implementations are negligible, being in the order of 10
-3

. Thus, with respect to 

model performance, a choice between the two model versions (GR4-I1 and -I2) would be 

arbitrary. The same conclusion is inferred by looking at the performance scores at all the other 

sub-daily time steps, from 6 min to 12 h. 

In Figure 5.2, we provide a more detailed summary of model performance scores over the 

catchment set for the evaluation over flood events. The statistics of performance of the GR4-

I2 model are presented for a representative sub-set of interception capacities ranging from 0 to 

15 mm and for the sub-set of optimal capacities selected in the set F (F-opt). The Friedman 
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test shows the significant improvement in the whole distribution of the KGE and ratio-of-

means criteria, when passing from zero-interception storage to any interception store capacity 

greater or equal to 1 mm. On the contrary, on average, the relative variability and the 

correlation are more stable across the different tests reported in Figure 5.2. The differences in 

performance between the GR4-I model with the catchment-dependent interception capacities 

(F-opt) and with the fixed capacity between 5 and 10 mm (for all catchments) are not 

significant, except for the correlation (see results of the test in Figure 5.2). Also, the 

maximum median KGE over floods for a single fixed capacity (among the 19) for all 

catchments is obtained with the interception capacity of 2.5 mm. However, the performance 

scores of the models with capacities from 2 to 10 mm are not significantly different according 

to the Friedman test (note that the test was applied for all the 19 tested capacities and not only 

the ones reported in the figure).  

The average performance scores reported in Table 5.2 and Table 5.3 are associated to large 

median interception store capacities, i.e. 7.5 and 5 mm respectively at the hourly and daily 

time steps. It is interesting to note that these values are larger than the typical values reported 

in the literature (i.e. observations), even if an accurate physical interpretation of our simple 

interception model is not our objective and is made difficult by the representativeness of the 

measurements at the basin scale. One may refer for example to the review of canopy 

interception by Gerrits (2010) (see her Table 1.1 and references therein). The values of typical 

water storage capacities reported for France range from 1.7 to 3.8 mm, with values lower than 

2 mm for broad-leaved trees forests and values larger than 3 mm for coniferous (see 

Aussenac, 1968).  

So, the GR4 model benefits more in terms of model performance from higher values of 

interception storage capacity than what has been reported in the literature (even if the 

comparison is rough). This could be linked to the specific internal functioning of the GR4 

model and in particular to what happens inside the model when the interception capacity 

increases. As highlighted in Chapter 4, there is an internal feedback mechanism that 

compensates for interception loss and exchange fluxes. This is verified by looking at the 

changes of the parameters of the GR4-I model for different interception store capacities (see 

Figure 5.3). In fact, when adding an interception store of increasing capacity, we observe a 

consequent decrease (in absolute value) in the water exchange coefficient, as shown in Figure 

5.3(b). At the hourly time step, the median water exchange coefficient (x2) passes from 

−0.98 mm/h with the GR4 baseline model to −0.38 mm/h with both the GR4-I2 and GR4-I1 

models with the interception capacities selected on the basis of performance (F-opt). This is a 

relative change from the baseline GR4 parameter of about 61%. At the daily time step, the 

analogous relative change is of about 42% (the median x2 passes from -0.87 to -0.51 mm/d). 

The second maximum relative change is in the production store capacity (about 11% between 

GR4 and GR4-I2-F-opt). On average, the two other parameters are more stable when adding 

the interception store. So the need of higher values of interception capacities in the GR4-I 

model (to maximise model performance) is especially linked to this mechanism of 

compensations of the interception and exchange components of the model. This issue will be 

further discussed in terms of model fluxes in Section 5.2.5. 
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FIGURE 5.2 – Distribution over the catchment set of the performance criteria over the selected flood 

events for the GR4-I2 hourly model with different interception store capacities: (a) KGE, (b) relative 

variability, a; (c) ratio of means, b; and (d) correlation, r. The model with null interception store 

capacity corresponds to the GR4 baseline model, while the “F-opt” capacity corresponds to the 

catchment-specific capacity selected in the F set of 19 capacities between 0 and 15 mm. The box-

plots report the median value, interquartile range, and the whiskers represent the 10th and 90th 

percentiles; the red points refer to mean values. The letters above each box plot specify the ranking 

(alphabetical order) and the significant differences detected by the Friedman test at significance level 

0.05 (distributions with the same letter are not significantly different). 
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FIGURE 5.3 – Distribution over the catchment set of the calibrated values of the four free parameters 

of the GR4-I2 hourly model with different interception store capacities: (a) capacity of the production 

store (x1); (b) water exchange coefficient (x2); (c) capacity of the routing store at one time step ahead 

(x3); (d) time base of the unit hydrograph (x4). The model with null interception store capacity 

corresponds to the GR4 baseline model, while the “F-opt” capacity corresponds to the catchment-

dependent capacity selected in the F set of 19 capacities between 0 and 15 mm. The box plots report 

the median value, interquartile range, and the whiskers represent the 10th and 90th percentiles; the 

red points refer to mean values. The letters above each box plot specify the ranking (alphabetical 

order) and the significant differences detected by the Friedman test at significance level 0.05 

(distributions with the same letter are not significantly different). 

5.2.3 Results of the GR5-I model with interception store of free 

capacity 

The findings reported in the previous section led us to question the possible benefits of 

calibrating the interception store capacity for each catchment by automated calibration, within 

a continuous domain, instead of choosing a fixed value within a limited set. So we tested the 

GR5-I model (Figure 5.1) with interception store with free capacity, bringing the number of 

calibrated parameters of the model from four to five. 
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Our scope here is to evaluate whether the performance of the GR5-I model is improved with 

respect to the GR4-I model, thanks to the increased degrees of freedom in the model, or if the 

increased number of free parameters would jeopardize model calibration and so performance 

and robustness. We remind that this analysis based on performance improvement is only the 

first step in our process of model identification at multiple time steps that will be followed by 

an analysis of the impact of the interception store on model fluxes consistency at different 

time steps (see next Section 5.2.5). 

Table 5.4 and Table 5.5 report the average performance statistics for the two versions of the 

GR5-I model at the hourly and daily time steps. The two model versions (GR5-I1 and -I2) 

lead to the same average scores. Note that the median calibrated values of the interception 

capacity are very similar for the two model versions at the hourly time step, while they are 

more different at the daily time step. This is due to the fact that the different order of 

operations in the two implementations of the interception store has an impact only at larger 

time steps, as logically expected (because inputs are aggregated). 

Hourly 

model 

Median 

Imax store 

capacity 

[mm] 

Median criteria on the whole series 

(validation) 

Median criteria on flood events 

(validation) 

KGE [-] a [-] b [-] r [-] KGE [-] a [-] b [-] r [-] 

GR5-I1 5.79 0.828 0.995 0.996 0.912 0.753 0.977 0.933 0.833 

GR5-I2 5.96 0.829 0.996 0.997 0.911 0.752 0.976 0.934 0.834 

TABLE 5.4 – Summary of the median performance criteria of the hourly GR5-I1 and -I2 models, with 

free (calibrated) capacity 𝐼𝑚𝑎𝑥, over the catchment set. The criteria presented are the KGE and its 

components over the whole validation period and over the selected flood events. 

Daily 

model 

Median 

Imax store 

capacity 

[mm] 

Median criteria on the whole series 

(validation) 

Median criteria on flood events 

(validation) 

KGE [-] a [-] b [-] r [-] KGE [-] a [-] b [-] r [-] 

GR5-I1 6.45 0.830 1.001 1.000 0.912 0.725 0.935 0.946 0.807 

GR5-I2 5.08 0.832 1.001 1.002 0.912 0.724 0.926 0.944 0.807 

TABLE 5.5 – Summary of the median performance criteria of the daily GR5-I1 and -I2 models, with 

free (calibrated) capacity 𝐼𝑚𝑎𝑥, over the catchment set. The criteria presented are the KGE and its 

components over the whole validation period and over the selected flood events. 

We compared the performance statistics of the GR5-I models with the statistics of the GR4 

and GR4-I models with fixed interception store capacities reported in the previous section 

(Table 5.2 and Table 5.3; Figure 5.2). The average scores of the GR5-I models are slightly 

lower than those of the GR4-I models (with capacity F-opt) at both time steps and they are 

even lower than the scores of the GR4 baseline model at the daily time step. However, in 

general these differences in average performance are not significant (less than 10−2 
in KGE 

and components values). Also, the Friedman test was applied to detect any significant 
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difference between the distributions of the performance scores of the GR5-I model and those 

of all the nineteen GR4-I models (for all tested fixed capacities). The test stated that there is 

no significant difference (at a 0.05 significance level) between the KGE scores over the whole 

series and over flood events for the GR5-I models and the GR4-I model with any fixed 

capacity between 2.25 and 10 mm (using the same capacity for all catchments). This means 

that there is no added value to be gained by calibrating the interception capacity together with 

the other four free parameters of the GR4 model.  

In other words, the added complexity of a free interception store capacity is not necessary and 

may also be counterproductive in terms of model performance. The interception store capacity 

should be fixed independently from the other parameters and a search step of about 0.25 mm 

should be sufficient in terms of model performance. This finding could be explained by a 

reduction of the robustness of the model with an increased number of free parameters. The 

difficulty of calibrating the interception store capacity in the GR5-I model is revealed also by 

the interaction between this parameter and the water exchange coefficient, already discussed 

in the previous section (see Figure 5.3). By means of this interaction, the same levels of 

model performance are achieved for different parameters sets and this proves the presence of 

equifinality problems in the GR5-I model calibration. In this context, a possible way out of 

these problems is our second step of empirical model identification based on the temporal 

consistency of the internal fluxes. 

5.2.4 Fixing the interception store capacity by seeking the fluxes 

coherence at different time steps 

5.2.4.1 The choice of a reference for the interception flux 

As demonstrated in the previous sections, the insertion of an interception store in the GR4 

model may lead to significant improvements in model performance at the hourly time step, 

for both evaluations over the whole 8-year period and over flood events. At the daily time 

step, only a slight improvement over flood events was detected for the optimal fixed 

interception capacities (F-opt). No improvement of model performance was found by 

calibrating the interception parameter, with even a slight degradation at the daily time step. So 

in terms of model performance, our tests lead us to accept the insertion of an interception 

store in the GR4 model at hourly but not at the daily time step. 

Moreover we have shown that there is a problem of identification of the interception store 

capacity due to interactions with the exchange coefficient, if model identification is based on 

the sole basis of model performance. For this reason, we expect that the improvement of the 

temporal consistency of the model fluxes could help identifying this new component of the 

model at sub-daily time steps. 

The choice of not accepting the insertion of the interception store at the daily time step, 

because of model performance issues, brings us to the possibility of considering as a reference 

the daily interception flux calculated by the neutralisation function. Moreover, the fact that 

the insertion of an interception store seems necessary only at sub-daily time steps is in line 
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also with the definition of the interception process in the literature. As argued by Savenije 

(2004), evaporation from interception may be defined “as the fast feedback to the atmosphere 

(within a time span of about one day) of the rainfall that does not reach the root-zone or the 

drainage system”. Also Gerrits (2010) recognizes that “the time scale of the interception 

process is in the order of one day”. The broad definition of interception and its characteristic 

time scale support our choice of using the daily neutralisation as the reference flux for the 

interception loss calculated by the interception store at sub-daily time steps. 

Thus we searched for the interception store capacities Iopt-flux that could ensure the coherence 

of the interception fluxes at different sub-daily time steps (from 6 min to 12 h) with the 

reference given by the daily neutralisation function. The criterion of fluxes consistency that 

we chose to optimize is the cumulative flux ratio (see Eq. (4.6) in Chapter 4). We remind that 

it is defined as the ratio of the cumulated flux simulated by the model at time step x 

normalized on the daily reference flux cumulated over the 8-year simulation period. So the 

cumulative flux ratio is equivalent to a ratio-of-means criterion (ratio of simulated flux on 

daily reference). 

5.2.4.2 Determination of the interception store capacities ensuring the temporal 

consistency of the flux 

A simple iterative search algorithm was set up in order to maximise the coherence of the 

interception fluxes at each time step with the daily reference flux. The iterative procedure is 

based on exploring the interception capacity space between 0 and 15 mm and calculating the 

corresponding interception loss at each model time step x. A search step of 1 mm is chosen 

for a first screening of the parameter space to detect a provisional (rough) optimal interception 

parameter for the temporal consistency of the fluxes (between time step x and the daily 

reference). Then the search is reiterated in a range of 2 mm around this first optimal value and 

the search step is reduced to 0.25 mm in order to find a refined solution. The effectiveness of 

the search step size is finally verified by checking that the cumulative flux ratio is close to 1 

(optimal value) with a maximum tolerance distance of 5 % (arbitrary threshold). Applied to 

each catchment and for each time step, this procedure led us to identify the interception store 

capacity that is optimal for ensuring an estimation of the cumulated interception loss that is 

coherent across model time steps. 

The average values (over the catchment set) of the resulting optimal interception capacities 

for the fluxes temporal consistency are reported in Table 5.6 for the two tested 

implementations (I1 and I2) of the interception store.  

For the two implementations, the maximum relative deviation around the optimal cumulative 

flux ratios is about 3 % at any time step, and the median relative difference in cumulated 

interception fluxes over the catchment set is lower than 𝟎. 𝟓 % at all time steps. These 

satisfactory results confirm that the discrete search step of 0.25 mm is fine enough for our 

scope. We remind that for the GR4 baseline model (without interception store) the minimum 

relative difference of the cumulated interception fluxes at different time steps was at least 
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30 % (and largely greater than this for time steps shorter than 12 h), as shown in Chapter 4 

(see Figure 4.5). 

Implementation of 

the interception 

store 

Median interception store capacity [mm] at time step x for 

the maximisation of the coherence of interception fluxes with 

daily reference 

Max relative 

deviation from 

optimal cumulative 

flux ratio [%] 1 

d 

12 h 6 h 3 h 1 h 30 m 12 m 6 m 

I1 0 2.50 2.25 2.00 2.00 2.00 2.00 2.00 3.3 

I2  0 1.25 1.50 1.75 2.00 2.00 2.00 2.00 3.1 

TABLE 5.6 – Median values of the optimal interception capacities at different time steps over the 

catchment set. The criterion optimized for the temporal consistency of the simulated interception 

fluxes is the cumulative flux ratio of the simulated fluxes at time step x normalized with the daily 

reference. 

The results in Table 5.6 show that, on average, for the two implementations, the interception 

capacity for ensuring the consistency of fluxes with the daily reference stabilizes at a value of 

2 mm when the time step decreases from daily to 6 min. However, a different trend emerges 

for the two implementations for time steps larger than 3 h. The first implementation (I1) needs 

larger interception capacities at larger sub-daily time steps (e.g. 2.5 mm at 12 h), and presents 

a not monotonous trend (increasing between 1 d and 12 h and then decreasing at shorter time 

steps). This may be explained by the fact that the interception store with throughfall prior to 

evaporation (see equations in Table 5.1) needs larger capacities to avoid being bypassed by 

the precipitation at larger time steps, because the throughfall is calculated before evaporation. 

On the contrary, for the second implementation (I2), the trend of the optimal capacities for 

different time steps is monotonous, increasing from the daily zero-storage to the 2-mm 

capacity at the 6-min scale. For this reason, we choose the second implementation for the 

interception store (I2), since we think that its behaviour is more intuitive for this 

monotonous relationship between the storage capacity and the time steps. This 

implementation is also in line with what is classically done in conceptual models (e.g. Kandel 

et al., 2005) and with the physical description of the interception process that is usually 

proposed (see, for instance, Aussenac, 1968, Section 3.2). In particular, it is recognized that 

evaporation phenomena mostly occur at the beginning of the interception process, because the 

surface temperature of the leaves may be higher than the air temperature. Then, with the 

continuation of the rainfall event, these phenomena rapidly reduce. Conversely, throughfall 

increases with time. At the beginning of a rainfall event, most of the water drops can be 

intercepted by the vegetation. Then intercepted water accumulates over the plant surfaces 

until the maximum storage capacity is reached, i.e. until the surface tension forces are 

exceeded by the force of gravity. 

The distribution of the optimal interception capacities of the GR4-I2 model at different time 

steps is reported in Figure 5.4. It shows the stabilization of the parameter (to values around 2 

mm) as the time step decreases. The relationship between interception capacity and time step 

was verified to be monotonous not only on average but also for each catchment (not shown). 
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FIGURE 5.4 – Distribution over the catchment set of the optimal capacity of the interception store of 

the GR4-I2 model for ensuring the temporal consistency of the simulated interception flux with the 

daily reference flux. The box plots report the median value, interquartile range, and the whiskers 

represent the 10th and 90th percentiles; the red points refer to mean values. 

5.2.5 Results of the GR4-I2 model with interception store of 

catchment-dependent capacity based on fluxes consistency 

After the determination of the interception capacities ensuring the temporal consistency of the 

interception flux, we have run the GR4-I2 model with these catchment-dependent capacities. 

In the following, we present the evaluation of this model from the point of view of the 

temporal consistency of the simulated fluxes corresponding to catchment water losses and 

gains: interception loss, actual evapotranspiration from the production store and groundwater 

exchanges. The motivations for analysing these specific internal fluxes of the model were 

introduced in Chapter 4. The reader can refer to Section 4.3.2 for the definition of these fluxes 

in the GR4 baseline model and for the definition of the cumulative flux ratios that will be used 

also in this section. Note that only the equations governing the interception fluxes have been 

directly changed in the GR4-I2 model with respect to the GR4 baseline model. So the changes 

in the other fluxes will indirectly result from this change (and the possible changes in 

optimized parameter values). 

Here our scope is to analyse the effectiveness of the GR4-I2 model in order to reduce the 

large undesired changes of fluxes simulated by the GR4 baseline model at different time 

steps. We will analyse whether the stabilization of the interception flux as the time step 

changes in the GR4-I2 model leads to a stabilization of all the other model fluxes. In case this 

happens, we will evaluate whether the improved fluxes consistency leads to improved water 

balance simulations over floods. 

5.2.5.1 Evaluation of the temporal consistency of fluxes over the whole validation 

period 

Figure 5.5 reports a summary of the evolution of the internal fluxes of the GR4-I2 model 

cumulated over the whole 8-year validation period as the time step decreases from 1 day to 6 
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min (over the catchment set). The changes are normalized to the chosen reference given by 

the fluxes of the daily GR4 model (GR4-I2 model with zero-capacity interception storage). 

Figure 5.5 shows that the model fluxes have been stabilized across different time steps 

thanks to the introduction of the interception store. In fact, the median value and the 

interquartile range of the cumulative flux ratios are centred around the optimal ratio (1) for all 

the fluxes at all time steps, unlike the baseline model case. The cumulated interception flux 

does not change of more than 1.5 % at all time steps. As a consequence, also all the other 

modelled fluxes deviate on average by less than 5% from the correspondent reference daily 

model fluxes. So, these results show that the insertion of an interception store in the GR4 

model at sub-daily time steps can provide large improvements in terms of temporal 

consistency of the modelled fluxes over a long period. Figure 5.5 shows that, for interception 

loss and actual evaporation, the extreme quantiles (5
th

 and 95
th

) of the cumulative flux ratios 

do not deviate much from 1 (about 5 % at most). Only for the exchange fluxes there are still 

some important relative changes (>20%). However, these large relative deviations can be 

associated to small absolute deviations (in mm) with respect to the whole annual water 

balance of the catchment, because the reference exchange flux can be small. Moreover, for the 

GR4-I2 model even the largest relative deviations in the exchange fluxes are much lower than 

the ones observed for the GR4 baseline model (see Figure 4.5). Note that the y-axis scales of 

the graphics in Figure 5.5 and Figure 4.5 are different. We chose this to allow detecting the 

relative changes of the actual fluxes of the GR4-I2 and GR4 models which are different (by 

more than a factor of 10 in general). If the same y-scales were used, the relative changes in the 

fluxes of the GR4-I2 model would be not visible because they would be crushed in a too 

narrow strip around the optimal ratio. 

To summarize the changes in fluxes in absolute terms (mm), Table 5.7 provides the median 

values of the annual cumulated fluxes and the total net cumulated losses simulated at the eight 

tested time steps. The fluxes appear to be stabilized also by looking at their average absolute 

values simulated by the model at different time steps. Figure 5.6 shows the comparison of the 

cumulated fluxes between the hourly and daily models for all the 240 catchments. It shows a 

very good temporal consistency of the simulated fluxes over the whole catchment set, with 

almost all the catchments presenting approximately the same fluxes as the time step changes 

from daily to hourly. So the problem of large changes in cumulated fluxes is solved in general 

over the catchment set by the new version of the model with interception store (GR4-I2).  

Also the problem of cases of groundwater exchange fluxes changing sign as the model time 

step changes is almost completely solved, as shown in Figure 5.6(c). There were 15 cases 

with the GR4 model, and now with the GR4-I2 model only 3 catchments still present this 

problem but with very small exchange fluxes (absolute cumulated annual values lower than 

20 mm). 
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FIGURE 5.5 – Summary of the cumulative flux ratios of the GR4-I2 model at different time steps (with 

daily reference) over the whole validation period and the 240-catchment set: (a) interception loss, I; (b) 

actual evaporation from the production reservoir, AE; (c) groundwater losses, FL; (d) groundwater gains, 

FG. 

6 m 12 m 30 m 1 h 3 h 6 h 12 h 1d

0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

I r
a

ti
o
 [
x
 |
1
d

]

Model time step [log(s)]

(a)

Median 1st/3rd quartile 5th/95th percentile Optimal ratio

6 m 12 m 30 m 1 h 3 h 6 h 12 h 1d

0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

A
E

ra
ti
o
 [
x
 |
1
d
]

Model time step [log(s)]

(b)

6 m 12 m 30 m 1 h 3 h 6 h 12 h 1d

0.60

0.80

1.00

1.20

1.40

1.60

1.80

F
L

ra
ti
o
 [
x
 |
1
d

]

Model time step [log(s)]

(c)

6 m 12 m 30 m 1 h 3 h 6 h 12 h 1d

-1.50
-1.00
-0.50
0.00
0.50
1.00
1.50
2.00
2.50

F
G

ra
ti
o
 [
x
 |
1
d
]

Model time step [log(s)]

(d)



5. Towards a consistent multi-time step model 

194 

 

In this general view of good consistency of modelled fluxes, only one very critical outlier is 

detected by looking at the scatterplots in Figure 5.6(c-d). It is the only point presenting a 

difference of daily and hourly fluxes of more than 67 mm/y (186 mm/y). This catchment is 

the Espérelle brook at Roque-Sainte-Marguerite (602 km
2
; Banque-Hydro code: 

“O3395010”), that is characterized by a typical karst geology (limestone plateaus). The 

hydro-climatic characteristics of this catchment reveal that its significant water losses are 

determinant for the water balance: with inter-annual mean values of precipitation and 

potential evapotranspiration of 1200 mm/y and 725 mm/y respectively, the mean annual flow 

is only 55 mm/y! The drainage density indicator of this catchment is very high (2.6 km
2
), 

indicating that water tends to infiltrate in the soil. The model calibration well detects this 

characteristic, by assigning one of the largest negative values to the exchange coefficient 

(about −21 mm/h). So, in this case, it is not surprising that a refined interception component 

does not manage to solve the problem of inconsistent values of exchange fluxes across time 

steps.  

This particular case indicates that another problem of structural inconsistency (not driven by a 

compensation of the interception loss) seems to jeopardize the coherence of the exchange flux 

across time steps when the groundwater exchange flux is necessarily very high. This seems to 

be due to a structural problem located in the exchange function itself. So it seems that this 

problem should be solved by other specific structural modifications of the exchange function. 

 

Annual cumulated flux statistics [mm/y] 

over the 8-years validation period 

Model time step 

6-m 12-m 30-m 1-h 3-h 6-h 12-h 1-d 

Median annual interception loss, I [mm/y] 242 243 241 240 242 242 242 241 

Median annual actual evaporation from 

production reservoir, AE [mm/y] 
306 305 305 308 307 308 308 311 

Median annual groundwater losses, from 

basins losing water at daily time step, FL 

[mm/y] 

77 74 77 72 75 74 73 72 

Median annual groundwater gains, from 

basins gaining water at daily time step, FG 

[mm/y] 

70 60 64 77 79 80 78 78 

Median annual net losses (I+AE+FL-FG) 

[mm/y] 
602 602 604 603 603 602 602 604 

TABLE 5.7 – Summary of the annual averages of the cumulated internal fluxes modelled by the GR4-

I2 model at different time steps. 
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FIGURE 5.6 – Annual average cumulated fluxes from daily and hourly GR4-I2 model simulations over 

the 240-catchment set: (a) interception loss, I; (b) actual evaporation from the production reservoir, 

AE; (c) actual groundwater losses, (negative values represent gains), F; (d) net losses (=I+AE+F). 

5.2.5.2 Evaluation of the temporal consistency of fluxes over the flood events only 

Figure 5.7 shows the relative changes of the fluxes cumulated over the selected flood events 

provided by the simulations of the GR4-I2 model at the eight tested time steps. As in the case 

of the evaluation over the whole validation period, also over the flood events, there is a large 

improvement of the fluxes consistency with respect to the baseline model. In fact, the median 

cumulative flux ratios at 6-min time step are 1.14, 0.64, 1.16 and 1.34 for interception loss, 

actual evaporation, groundwater losses and gains respectively. These values are much closer 

to one than for the case of the GR4 baseline model, for which they were about 0.3, 2.85, 1.9, 

and 0.54 respectively (see Figure 4.7). 

The fact that the interception flux over flood events is not stabilized could be a surprise at 

first, given the methodology followed to build the GR4-I2 model. However, this is likely to be 

due to the fact that we have not taken into account the initial and final conditions of the 

interception store (whether it is empty or not) at the beginning and at the end of each flood 

event. In fact, the interception flux is calculated over the same actual duration of the flood 

events for each time step. However, in this specific evaluation, the use of a same temporal 

window is not the most correct choice to assess a temporal coherence of the flux, because the 
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interception store used at sub-daily time steps could provide more water to evaporate, coming 

from the time steps before the considered storm event. Also, it could store some water that 

will be evaporated the day after the end of the selected flood event period. We decided not to 

further explore the issue, because the change in the interception flux is relatively low and is 

not important in absolute terms. In fact, by looking at the average daily fluxes of interception 

loss and actual evaporation from the production reservoir (see Table 5.8), one may observe 

that the average change in interception loss over floods is at most 0.1 mm/d and it is perfectly 

compensated by the actual evaporation changes (see last line in Table 5.8). Since this 

compensation is confined to the evaporative losses, this means that we have solved the 

problematic effects chain affecting the groundwater losses that was detected in the GR4 

model. 

Still, the groundwater losses significantly increase on average of about 16 % (by passing from 

daily to hourly or sub-hourly time steps) also in the new GR4-I2 model, although they no 

longer have to compensate for spurious changes of interception loss volumes. The largest part 

of the changes of groundwater losses across time steps has been reduced (they increased by 

about 90 % in the baseline model) by adding the interception store. The residual problem of 

inconsistency of the exchange fluxes in the GR4-I2 model is likely due to a structural 

inconsistency of the exchange function itself. An indication of the same kind is also found by 

looking at the evolution of the groundwater gains (Figure 5.7(d)). In fact, on average, we 

remind that in the GR4 model they decreased with time step to compensate for the reduction 

of interception losses. Now, in the GR4-I2 model, they increase without the need to 

compensate for other fluxes changes.  
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FIGURE 5.7 – Summary of the cumulative flux ratios at different time steps (with daily reference) 

over the 2400 flood events for the 240-catchment set: (a) interception loss, I; (b) actual evaporation 

from the production reservoir, AE; (c) groundwater losses, FL; (d) groundwater gains, FG. 

6 m 12 m 30 m 1 h 3 h 6 h 12 h 1d

0.80

0.90

1.00

1.10

1.20

1.30

1.40

I r
a

ti
o
 [

x
 |
1

d
]

Model time step [log(s)]

(a)

Median 1st/3rd quartile 5th/95th percentile Optimal ratio

6 m 12 m 30 m 1 h 3 h 6 h 12 h 1d

0.00

0.20

0.40

0.60

0.80

1.00

1.20

A
E

ra
ti
o
 [

x
 |
1

d
]

Model time step [log(s)]

(b)

6 m 12 m 30 m 1 h 3 h 6 h 12 h 1d

0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2.20
2.40

F
L

ra
ti
o
 [

x
 |
1

d
]

Model time step [log(s)]

(c)

6 m 12 m 30 m 1 h 3 h 6 h 12 h 1d

-1.50
-1.00
-0.50
0.00
0.50
1.00
1.50
2.00
2.50
3.00

F
G

ra
ti
o
 [

x
 |
1

d
]

Model time step [log(s)]

(d)



5. Towards a consistent multi-time step model 

198 

 

Table 5.8 shows that the median daily net losses still present an increase at shorter time steps 

in the GR4-I2 model of about 8 % (it is almost 4 times less than in the baseline model). This 

increase in total net losses is now essentially due to the underground exchange function itself, 

given the trends observed in the modelled fluxes at different time steps and the perfect 

compensation of interception loss and actual evaporation from the production reservoir (Table 

5.8). The scatter-plots in Figure 5.8 present the comparison of the daily average exchange 

fluxes and the total net losses calculated from hourly and daily simulations, confirming the 

trend observed in the average values. If the simulation bias is still worse at shorter time steps 

than at daily, this increase of exchange losses is likely to be a potentially undesired structural 

inadequacy of the model. In the next section we will evaluate this possible residual impact on 

the GR4-I2 model performance, especially on the bias of flood events simulations at shorter 

time steps. 

 

Daily cumulated flux statistics [mm/d] over the 

2400 selected flood events 

Model time step 

6-m 12-m 30-m 1-h 3-h 6-h 12-h 1-d 

Median daily interception loss, I [mm/d] 0.82 0.82 0.82 0.82 0.82 0.81 0.80 0.72 

Median daily actual evaporation from production 

reservoir, AE [mm/d] 
0.16 0.16 0.16 0.16 0.16 0.17 0.19 0.25 

Median daily groundwater losses, from basins 

losing water at daily time step, FL [mm/d] 
0.88 0.87 0.88 0.81 0.87 0.82 0.78 0.76 

Median daily groundwater gains, from basins 

gaining water at daily time step, FG [mm/d] 
0.90 0.50 0.57 0.78 0.87 0.83 0.78 0.67 

Median daily net losses (I+AE+FL-FG) [mm/d] 1.81 1.80 1.81 1.72 1.77 1.72 1.72 1.67 

Median daily losses from interception + 

evaporation (I+AE) [mm/d] 
1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 

TABLE 5.8 – Summary of the daily average of the cumulated internal fluxes modelled by the GR4-I2 

model at different time steps over the 2400 selected flood events. 
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FIGURE 5.8 – Daily average cumulated fluxes from daily and hourly GR4-I2 model simulations over the 

2400 selected flood events (with regression line): (a) actual groundwater losses, (negative values represent 

gains), F; (d) net losses (=I+AE+F). 

5.2.5.3 Model parameters consistency of the GR4-I2 model 

In Chapter 4, we have shown that, for the GR4 baseline model, the inconsistencies in model 

internal fluxes at different time steps result in inconsistent parameter values. In particular, the 

clearest impact of the fluxes inconsistencies on the parameters of the GR4 model is detected 

on the water exchange coefficient, x2, which steadily decreases with time step (going towards 

larger negative values). Here, we expect that the spurious time-step dependency of x2 is 

reduced, given the large improvement in the temporal consistency of the fluxes of the GR4-I2 

model. Figure 5.9 shows the distributions of the deviations of the x2 parameters of the GR4 

baseline model (left panel) and the GR4-I2 model (right panel) calibrated at the eight time 

steps from the corresponding value obtained by calibration at the daily time step. For a 

consistent comparison, the parameters at all different time steps are converted to their 

corresponding hourly value ([mm/h]) by applying the theoretical relationship derived from the 

integration of the model governing equations, as already discussed in Chapters 3 and 4 (see 

also Le Moine, 2008, pp. 172-173). 
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FIGURE 5.9 – Distributions of the deviations of the water exchange coefficient (x2) parameter 

between the daily model reference and the eight time steps from 6 min to 1 day over the 240-

catchment set (the parameters are converted to their corresponding hourly values by their 

theoretical relationships): (a) GR4 baseline model; (b) GR4-I2 with interception store of catchment-

dependent capacity to ensure the flux temporal consistency (Iopt-flux). The box plots report the median 

value, interquartile range, and the whiskers represent the 10th and 90th percentiles; the red points 

refer to mean values. The letters above each box plot specify the ranking (alphabetical order) and the 

significant differences detected by the Friedman test at significance level 0.05 (distributions with the 

same letter are not significantly different). 

Figure 5.9 shows that the water exchange coefficient parameter is stabilized thanks to the 

insertion of the interception store. The decreasing trend that was observed for GR4 (left 

panel) has disappeared for GR4-I2 (right panel). For the new model version, the average 

deviation of the parameter is centred at around zero (its optimal value) at all time steps. Some 

cases of large relative deviations of the parameter at different time steps are still found over 

the catchment set, but no particular trends are detected. 

Table 5.9 reports some statistics useful to better understand the positive effect of the 

interception store on the temporal coherence of all the GR4-I2 parameters. The median values 

of the parameters at the two extreme time steps, i.e. 1 day and 6 minutes, are much more 

stable than what was observed for GR4 (see Table 4.5). Note that the relative changes of the 

first three parameters at different time steps are now much lower than the relative standard 

deviation of the parameters over the catchment set.  

The spurious trends that were observed in the GR4 parameters dependency with time step 

(especially for x1 and x2) have been drastically reduced after refining the interception 

component. This finding corroborates the results presented by Kavetski et al. (2011), who 

showed that some parameters that are common to different model structures of increasing 

complexity are highly scale dependent in simpler models but become progressively more 

stable in more complex model structures. 
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Parameter Units Median 

parameter 

(converted to 

1-h ref. 

values) 

Relative 

standard 

deviation 

|
𝝈

𝝁
| [%] 

Median relative change (rel.) of parameter calibrated 

at time step t, with respect to the daily reference 

∆𝒓𝒆𝒍= 𝟏𝟎𝟎 ∙ [𝒙𝒊(∆𝐭) − 𝒙𝒊(𝟏𝐝)]/|𝒙𝒊(𝟏𝐝)|[%] 

where 𝒙𝒊(∆𝐭) is the i-th parameter calibrated at t.s. t 

1 d 6 m 1 d 6 m 6 m 12 m 30 m 1 h 3 h 6 h 12 h 

x1 [mm] 264 244 181 90 -3 -4 -4 -4 -2 -2 -2 

x2  [mm/h] -0.58 -0.63 282 227 -2 -3 -3 -3 +1 +1 +3 

x3  [mm] 114 122 153 164 +4 +4 +5 +5 +3 +3 +2 

x4  [h] 48 12 50 110 -72 -72 -71 -71 -63 -63 -36 

TABLE 5.9 – Median values of the GR4-I2 parameters calibrated at daily and 6-min time step, their 

coefficient of variation, and the median relative changes in parameter values at seven time steps from 

6-min to 12-h with respect to the daily value over the 240-catchment set.  

5.2.5.4 Evaluation of model performance of the GR4-I2 model 

Table 5.10 reports the median values of the criteria of model performance over the whole 

validation period and over flood events for the hourly simulation of the GR4-I2 model with 

the capacity Iopt-flux (ensuring the temporal consistency of the model fluxes). For comparison, 

the same statistics are reported for the GR4 baseline model and for the GR5-I2 model.  

Hourly 

model 

Median criteria on the whole 

series (validation) 

Median FDC-based criteria 

(validation) 

Median criteria on flood 

events (validation) 

KGE 

[-] 

a [-] b [-] r [-] 𝐐𝟗𝟗,𝐬𝐢𝐦 

𝐐𝟗𝟗,𝐨𝐛𝐬
 

[-] 

Slope-

bias 

FDC 

[%] 

𝐐𝟐𝟎,𝐬𝐢𝐦 

𝐐𝟐𝟎,𝐨𝐛𝐬
 

[-] 

KGE  

[-] 

a [-] b [-] r [-] 

GR4 0.820 0.989 1.009 0.897 0.972 1.394 0.952 0.727 0.969 0.904 0.832 

GR4-I2 

(Iopt-flux) 

0.827 0.991 1.008 0.905 0.979 4.526 0.887 0.742 0.979 0.920 0.836 

GR5-I2  0.829 0.996 0.997 0.911 0.980 7.499 0.837 0.752 0.976 0.934 0.834 

TABLE 5.10 – Summary of the median performance criteria of the hourly GR4 (baseline), GR4-I2 and 

GR5-I2 models. The interception capacity in the GR4-I2 model is the one fixed to ensure the flux 

temporal consistency (Iopt-flux), while in the GR5-I2 model it is calibrated using the KGE criterion on 

the whole series as objective function. 

Comparison with the baseline model 

The GR4-I2 model with Iopt-flux capacity outperforms the baseline model for the criteria over 

the whole period (i.e. regime) and more significantly over flood events, as confirmed also by 

the Friedman test (see also Figure 5.11 that is reported later for comparison with also another 
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structure). On the other hand, a decrease of performance in low-flow conditions is detected by 

a marked degradation of the ratio of the lower quantiles of the flow duration curve (Table 

5.10). Low flows appear to be more under-estimated by the new GR4-I2 model with 

interception store than they were by the baseline model. This consequently increases the bias 

in the slope of the mid-segment of the flow duration curve. 

Comparison with the GR5-I2 model 

First, we remind that the GR5-I2 model (with the calibrated interception capacity) is a sub-

optimal choice with respect to GR4-I2 (with the Iopt-flux capacity) because GR5-I2 does not 

ensure the model fluxes temporal consistency as well as GR4-I2 does. However, it is 

interesting to see if some performance benefits could be provided by calibrating the 

interception store (GR5-I2), and understand the reasons of the performance changes.  

With respect to the GR5-I2 model, the GR4-I2 model with Iopt-flux capacity shows a slight 

decrease of performance over flood events (not significant according to the Friedman test). 

However, the GR5-I2 model degrades more the simulation of lows flows than GR4-I2 does 

with respect to GR4. One may note that the performance changes between GR5-I2 and GR4-

I2 are essentially related to the following differences in the interception and exchange 

components:  

(i) the average interception store capacity is about 6 mm for GR5-I2 and 2 mm for GR4-

I2; 

(ii) the change of interception capacity has a direct impact on the exchange flux and its 

related parameter (see Section 5.2.2; Figure 5.3(b)): when the interception capacity 

increases, the absolute value of the exchange coefficient decreases. 

Note that the changes in the exchange have a direct impact on the simulation bias, while the 

changes in the interception flux are almost perfectly compensated by the feedback of the 

actual evaporation from the production store (as we proved by our previous analyses). 

So a logical deduction from the observations above could explain the observed changes of 

performance. The further improvement of the floods volume simulation of GR5-I2 with 

respect to GR4-I2 should be linked to the reduced importance of the exchange due to the 

reduction of the water exchange coefficient. In fact we remind that for most of the catchments 

(about 80 % of the set) the exchange is negative (losses). So the reduction of the absolute 

value of the exchange coefficient in GR5-I2 is likely to be the cause of the improvement of 

the ratio-of-means (b) criterion over floods. For this reason, we think that further tests should 

attempt at recovering the gains in performance of the GR5-I2 model over flood events by 

changing the exchange function shape to reduce the exchange flux in high-flow conditions 

with respect to regime. 

Decision on the acceptance of the GR4-I2 model structure 

The GR4-I2 model structure with Iopt-flux capacity (ensuring the fluxes temporal 

consistency) is accepted as an improvement of the current GR4 model at sub-daily time 
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steps. In fact, it significantly improves the model adaptability at different time steps thanks to 

the internal fluxes stabilization and its positive consequences (e.g. improved transferability of 

parameters). This model seems to be better, in this provisional version (as it has been 

proposed so far), for applications of the model focusing on regime or high-flow conditions 

rather than low flows. In these conditions, our modification of the model significantly 

improves the fluxes consistency and provides significant benefits in performance with respect 

to the baseline model. Further tests should focus on possible improvements in low-flow 

simulations. These could be achieved in different ways, such as:  

(i) modifying the interception function itself for low incoming precipitation rates;  

(ii) modifying the exchange function shape with particular attention to improving low-

flow simulations;  

(iii) testing the insertion of a precipitation correction factor.  

Here we decided to terminate our tests on the refinement of the interception function, because 

its introduction has already proved many benefits and it seems now more urgent to work on 

other model components. In the rest of this chapter, we will focus more on the exchange 

function providing evidence of its importance for improving model performance on low 

flows. 

Further research for improving the interception component 

We report here some ideas on further possible ways of improvement of our simple 

interception model that could help improving low-flow simulation. These ideas are inspired 

by the well-established Rutter model (Rutter et al., 1971), one of the most often used 

conceptual models for interception at sub-daily time scales (Valente et al., 1997; Gerrits, 

2010). The two following characteristics of the Rutter model could be combined with our 

bucket interception store: 

(i) a slow leaking function from the interception store, that allows draining a small 

portion of intercepted water to the production reservoir;  

(ii) the addition of a free throughfall branch, i.e. throughfall which does not touch the 

interception store at all (i.e. a fixed portion of the precipitation P). 

These modifications should reduce the evaporation from the interception store when it is 

filled by low precipitation rates, but they could not be effective for improving low-flow 

simulation because of the compensative feedback of the evaporation from the production 

store. Thus, we suspect that these changes would be of second order with respect to the 

modification of the exchange function to attempt reducing the impact on low flows. 

5.2.5.5 Relationship between interception store capacity and catchment 

characteristics 

We performed a first rough analysis of the possible relationship between the interception 

parameter and some catchment characteristics. A proper correlation analysis was not possible 
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because the interception capacity values have a very low dispersion, being highly 

concentrated around a median value and with only a few values around. For example, at the 

hourly time step, there are only five capacity values for the 240 catchments, ranging from 1.5 

to 2.5 mm and their standard deviation is 0.22 mm. This low dispersion is likely to be (at least 

partially) due to the choice of using a search step of 0.25 mm for screening the parameter 

space in our optimization procedure. However, the impact of this discrete search step on the 

cumulated flux is not large, as already discussed. So we think that a first analysis of the 

parameter dependency on catchment characteristics is still possible. 

The analysis was performed at the hourly time step, for which the capacities are stabilized at 

their values corresponding to short sub-hourly time steps. The indicators of catchment 

characteristics that we considered are the following twelve: surface, altitude, topographic 

index, mean annual precipitation and potential evapotranspiration, aridity index, runoff 

coefficient, daily precipitation intensity index, GOUE index of precipitation temporal 

variability (at 6-min), percentage of broad-leaved, coniferous and mixed forest covers (see 

Chapter 2). 

By grouping the 240 catchments in five classes according to their interception capacity 

parameter, we searched for possible clear monotonous relationships between the capacity 

values and the catchment characteristics. This trend was visually identified by means of box-

plots if most of the quantiles of the distribution of the catchment characteristics changed in 

the same way (increasing or decreasing) by increasing interception capacity.  

Among the 12 indicators considered, the clearest trend was found for the aridity index, as 

shown in Figure 5.10: the most arid the catchment is, the lower the interception capacity. This 

trend corresponds to the logical expectation of a decrease of the interception capacity for 

increasingly arid environments, where the vegetation cover should be sparser. This 

information could be useful to rapidly prescribe first approximate capacity values of the 

interception store of the GR4-I2 model in function of the aridity index of the catchment. 

However, our advice is to favor a more accurate method for ensuring the temporal consistency 

of the interception flux. 
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FIGURE 5.10 – Aridity index of the 240 catchments grouped by the interception store capacity of the 

GR4-I2 model at hourly time step. The values of the store capacity are those fixed to ensure the 

temporal consistency of the interception flux at different time steps. 

Two other variables turned out to be seemingly correlated with the interception capacity 

parameter, but to a lower extent: the surface, and the GOUE index of precipitation temporal 

variability. Smaller catchments and catchments with higher precipitation variability are 

associated to higher interception capacities. The effect of the catchment size is likely to be 

due to the spatial averaging of this parameter, which should increasingly smooth out possible 

localized high values of storage capacities as the catchment surface increases. 

Some limits of our analysis could 'hide' the possible links of the model parameter with some 

expected explanatory variables, like the forest cover. In addition to the low number of pre-

defined values of capacity values, another limit is the fact that we defined the capacities by 

the internal coherence of the model (with the daily modelled flux) and not by a physical 

approach. 
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5.3 Attempts at improving model performance by 

modification of the exchange function 

As shown in our previous analyses of model fluxes across time steps, the underground losses 

are generally too large during flood events, at daily and even more at sub-daily time steps, for 

both the GR4-I2 and GR4 models. In particular, in the GR4-I2 model, the exchange flux is 

not subject to a compensation of interception loss changes, but it is still increasing 

significantly at shorter time steps and this worsens the flood volumes simulation bias. We 

attempted solving this problem by searching ways of reducing the groundwater losses during 

floods. To this end, we tested some variants of the ground-water exchange function designed 

to either saturate (i.e. come to a limit) or reduce the increase of exchanged fluxes in high-flow 

conditions or change its dependency on the routing store level.  

5.3.1 Tested variants of the exchange function 

The common thread of our tested modifications is that they are supposed to change the 

distribution of the exchange flux along different streamflow levels.  

We did not question the dependency of the exchange function on the routing reservoir 

level itself. This starting point relies on previous works on the development of the GR4 model 

(Nascimento, 1995; Perrin, 2000; Le Moine, 2008) showing that the current solution 

outperforms several alternatives (such as the dependency from the production reservoir level). 

Moreover, since our scope is to change the distribution of the exchange for different levels of 

streamflows, the dependency on the routing store level is the most logical one. Note that we 

re-tested some previously tested functions for the exchange (Perrin, 2000; Le Moine, 2008), 

as changing the exponent of the power function, because our evaluation framework is 

different from the previous works cited. In fact, the added value of our evaluation stems from 

the attention paid to the internal fluxes of the model and to the flood events simulation. 

The following four classes of exchange function were tested: 

1. As a reference comparison, a simplified version of the baseline model without exchange 

function at all (F=0) has been tested. This model version has been called GR3-F0 (for 

zero-exchange flux, F) and has only 3 free parameters, since the exchange coefficient is 

not used. Of course, this model is not expected to improve model performance, given the 

importance of the exchange flux to allow a correct catchment water balance. In fact, in 

regime conditions, the current exchange function of the GR4 model seems essential and 

effective (as shown by the analysis of the fluxes over the whole series). The aims of this 

test are: (i) to show the possible lower-bound of model performance when the exchange 

component is neglected, and (ii) especially to show the impact of a null exchange flux on 

the bias over flood events. 

2. We tested the exchange function of the model developed by Le Moine (2008) starting 

from the GR4 baseline model. This exchange function was identified by Le Moine (2008) 
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as a valid alternative to the GR4 model’s one, particularly for improving the simulation of 

low flows. This originated a well-established model version derived from the GR4 

baseline model at the daily and hourly time step that has been called GR5 (5 free 

parameters). This version of the model is used as the elementary block of the semi-

distributed GR-SD model (e.g. Lobligeois et al., 2014). The exchange function of this 

model is a linear function of the routing reservoir level. Its formulation includes an 

additional free parameter (x5 [-]), representing the level of the routing store for which 

the exchanged flux changes sign. As proposed by Le Moine (2008), this linear exchange 

function is: 

𝐹 = 𝑥2 (
𝑅

𝑥3
− 𝑥5)  (5.2) 

where: R is the level in the routing store [mm], 𝑥3 its reference capacity (one time step 

ahead) [mm], 𝑥5 the threshold level for which the exchange function changes in sign (with 

𝑥5 ∈ [0, 1]), and 𝑥2 the water exchange coefficient [mm/t.s.]. 

In the following we will call this structure GR5-FL (where L stands for linear function for 

exchange, F) to better distinguish it from other models names. This linear exchange 

function has been tested also with the interception store of the GR4-I2 formulation, 

leading to a second-order modification called GR5-I2-FL. 

3. The first new exchange function variant that we propose involves the only modification 

of the exponent (p) of the power function (the current exponent is 3.5) of the level of the 

routing reservoir. The p-power exchange function is:  

𝐹 = 𝑥2 (
𝑅

𝑥3
)
𝑝

 (5.3) 

where: R is the level in the routing store [mm], 𝑥3 its reference capacity [mm], 𝑥2 the 

water exchange coefficient [mm/t.s.], and p a positive exponent. The sensitivity of model 

performance to different values of p has been tested. We tested values of p lower and 

greater than 3.5 (ranging from 2 to 5). Our expectation is that the exchanges in high-flow 

conditions are reduced by increasing the exponent of the power function, because F is 

calculated by raising a term that is always lower than 1 (i.e. 
𝑅

𝑥3
) to power p. However, also 

values of p lower than 3.5 have been tested because of the interaction of the change in p 

values with the calibrated values of 𝑥2. This structure is called GR4-Fp-X, where X is the 

exponent of the power function. 

4. One may note that by raising the exponent of the power function, exchanges are overall 

reduced whatever the routing reservoir level is. On the contrary, our previous analyses on 

the modelled fluxes seem to indicate that the exchanges should be reduced only in high-

flows conditions. For this reason, we tested some exchange functions saturating as the 

routing reservoir filling rate approaches 1, in order to reduce the losses only when the 

routing reservoir is fuller.  
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We tested several functions based on hyperbolic tangent and sigmoid functions of the 

routing reservoir level (or of its power functions). Some preliminary tests with slightly 

different arguments of these functions (i.e. with different power functions of the routing 

reservoir level, as argument) led us to choose the following formulation: 

𝐹 = 𝑥2𝑡𝑎𝑛ℎ (5
𝑅

𝑥3
)
4

 (5.4) 

The model derived from the baseline model with the exchange defined by using the 

hyperbolic tangent function of the routing reservoir level is called GR4-Fth. This function 

has been tested also with the interception store of the GR4-I2 formulation, building a 

second-order modification called GR4-I2-Fth. 

Our tests for the improvement of the exchange function are obviously not exhaustive. For 

example, other variants of the exchange functions above and other combinations with the 

GR4-I2 model structure with interception store could have been tested. However, as already 

mentioned, our study follows other previous works for the empirical development of the 

model that have tested other tens of variants of the exchange functions. 

5.3.2 Synthesis of the results with different exchange functions 

Table 5.11 shows the average performance scores over the catchment set for seven 

representative implementations of the model variants described in the previous section at the 

hourly time step. The performance scores of the GR4 baseline and the GR4-I2 models are also 

reported to ease comparison. The model performance is evaluated by different criteria 

calculated over the whole time series, the FDC and the flood events. 

The average values of the criteria over the catchment set (see Table 5.11) show that: 

1. The GR3-F0 model without exchange function at all presents the most significant loss of 

performance for all aspects (regime, low and high flows). In particular, it leads to a large 

overestimation of the mean long-term streamflow, and of the low flows. This proves that 

the exchange function of the GR4 model is essential to provide accurate water-balance 

simulations. This finding corroborates the results presented by Le Moine (2008) who 

showed that it is better to include the exchange function in the model, also rather than 

other surrogate solutions (as input correction factors). Also, it is important to note that 

even without exchange losses at all, the flood volumes underestimation is significantly 

degraded with respect to GR4. 

2. The GR5-FL model, with the linear exchange function proposed by Le Moine (2008), 

provides, in general, better average scores (for the different criteria) than all other tested 

options except the ones derived from GR4-I2. The use of a linear exchange function (with 

a fifth additional free parameter) provides a marked improvement with respect to GR4 for 

both low flows and flood events simulation. The average scores of GR5-FL over the 

whole series and over flood events are slightly lower than for the GR4-I2-Fth model, but 
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GR5-FL is better than the latter for low flows. For this reason, the combination of the 

insertion of an interception store (GR4-I2) with the use of the linear exchange function of 

GR5-FL seems promising, because the two modifications are advantageous for different 

aspects. Indeed, this expectation is met: the GR5-I2-FL model (with interception store 

and linear exchange function with change in sign) provides the best average scores 

over all conditions (regime, low and high flows). However, this gain of performance is 

achieved by increasing the complexity of the model by adding a fifth free parameter. 

3. The performance of the GR4-Fp models (exchange function with different exponents of 

the power function) is not satisfactory. For exponents lower than 3.5, even if the flood 

bias is improved, a degradation of model performance is observed over the whole 

validation period and more significantly over low flows. For higher exponents, 

performance is only improved over low flows but is significantly degraded over the whole 

series and flood events. 

4. The GR4-Fth model derived from the baseline by saturating the exchange flux in high-

flows (by the hyperbolic tangent function) performs well in general, but highly 

underestimates low flows. The floods volume bias is reduced, but less than by the GR5-

FL and GR4-I2 models which provide also better results in general. 

 

Figure 5.11 shows the distribution of the performance scores over flood events (at the hourly 

time step) for the GR4 baseline model, the GR4-I2 and GR5-I2-FL model with interception 

store and linear exchange function. It shows that:  

(i) The performance improvements provided by both the GR4-I2 and GR5-I2-FL 

structures are statistically significant for the KGE, relative variability and ratio-of-

means criteria over floods.  

(ii) The GR5-I2-FL model leads to an additional significant improvement in the ratio-

of-means criterion over floods also with respect to the GR4-I2 model. 
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Hourly 

model 

Median criteria on the whole 

series (validation) 

Median FDC-based criteria 

(validation) 

Median criteria on flood 

events (validation) 

KGE 

[-] 

a [-] b [-] r [-] 𝐐𝟗𝟗,𝐬𝐢𝐦 

𝐐𝟗𝟗,𝐨𝐛𝐬
 

[-] 

Slope-

bias 

FDC 

[%] 

𝐐𝟐𝟎,𝐬𝐢𝐦 

𝐐𝟐𝟎,𝐨𝐛𝐬
 

[-] 

KGE 

[-] 

a [-] b [-] r [-] 

GR4 0.820 0.989 1.009 0.897 0.972 1.39 0.952 0.727 0.969 0.904 0.832 

GR4-I2 

(Iopt-flux) 

0.827 0.991 1.008 0.905 0.979 4.526 0.887 0.742 0.979 0.920 0.836 

GR3-F0 0.658 0.960 1.177 0.857 0.972 -21.26 1.671 0.668 0.868 0.866 0.795 

GR4-

Fp-2 

0.815 0.997 0.997 0.894 0.976 11.01 0.795 0.707 0.955 0.923 0.813 

GR4-

Fp-5 

0.809 0.977 1.019 0.882 0.973 -1.37 1.006 0.711 0.953 0.869 0.829 

GR4-Fth  0.825 0.991 1.004 0.900 0.975 8.92 0.820 0.725 0.957 0.914 0.828 

GR4-I2-

Fth 

0.830 0.989 1.007 0.904 0.977 4.46 0.894 0.743 0.977 0.921 0.834 

GR5-FL 0.826 0.993 1.002 0.903 0.979 -2.35 1.023 0.737 1.018 0.924 0.829 

GR5-I2-

FL 

0.831 0.998 1.002 0.909 0.991 -2.03 1.017 0.747 1.032 0.936 0.835 

TABLE 5.11 – Summary of the median performance criteria of different hourly model structures 

derived by modification of the exchange function in the GR4 baseline model and in the new GR4-I2 

modified version with interception store. 

 

Note that all the model solutions presented above that are derived from GR4 only by changing 

the exchange function (without interception store) are a sub-optimal choice because of the 

modelled fluxes inconsistency across time steps. In fact, in all these models (GR3-F0, GR4-

Fp-X, GR4-Fth, GR5-FL), the interception process is modelled by the same neutralisation 

function as in the GR4 baseline model. So the interception flux is affected by the same 

temporal inconsistencies that affect also all the sub-sequent model fluxes, as in the GR4 

baseline model. However, we tested these models to show the changes in performance given 

only by the first-order modification of the exchange (independently from interception). 
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FIGURE 5.11 – Distribution over the catchment set of the performance criteria over the selected flood 

events for three models run at the hourly time step: GR4, GR4-I2 (with interception store) and GR5-

I2-FL (with interception store and linear exchange function): (a) KGE, (b) relative variability, a; (c) 

ratio of means, b; and (d) correlation, r. The box plots report the median value, interquartile range, 

and the whiskers represent the 10th and 90th percentiles; the red points refer to mean values. The 

letters above each box plot specify the ranking (alphabetical order) and the significant differences 

detected by the Friedman test at significance level 0.05 (distributions with the same letter are not 

significantly different). 

 

Finally, the findings of this section lead us to retain the GR5-I2-FL model with the 

interception store and the linear exchange function at sub-daily time steps. For sake of 

brevity, the model could be renamed as GR5-I (with 5 parameters and interception store). This 

model ensures large improvements of the temporal consistency of the modelled fluxes (as 

shown for its parent model GR4-I2) while also significantly improving model performance in 

all conditions (regime, low and high flows). The GR5-I model equations are further presented 

in Appendix G. 
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5.4 Attempts at taking into account rainfall intensities for 

improving the production function 

As we have highlighted in Chapter 1, it is generally recognized in the literature that the 

rainfall intensity is a key driver for runoff generation. This is particularly important in 

rainfall-runoff modelling at short time steps, as hourly and sub-hourly, for the possibility of 

considering the actual variability of rainfall intensities.  

In the GR4 and GR4-I2 models, rainfall intensity is considered in the interception function 

and in the infiltration to the production reservoir. However, the latter function is not ‘rate-

limited’, i.e. there is no threshold limiting infiltration for high values of precipitation. We 

identified two other different ways to take into account rainfall intensity. 

First, a rate-limited function can be introduced to represent the infiltration-excess runoff 

process. Several authors argued that this is a key mechanism of runoff generation that acts at 

short time durations (particularly at hourly and sub-hourly scales) as already reported in 

Chapter 1. A second way of considering the precipitation intensity can be the use of a 

correction factor depending on the precipitation intensity. A few implementations of these 

two additional components of the model were tested and they are briefly discussed in the 

following sections. 

5.4.1 Infiltration-excess runoff based on precipitation intensity 

We designed and tested some mathematical functions for representing an infiltration-excess 

runoff mechanism, by a simplification of the perceptual model of the so-called Horton 

overland flow. Following this concept, we decided to test the introduction of a rate-limited 

function in the model that acts immediately after interception to generate a direct runoff 

component for high values of precipitation. The function is activated only for precipitation 

intensities higher than a threshold, with the aim of increasing runoff in these conditions. 

Conversely, low precipitation rates may still entirely infiltrate in the production store. We 

tested the addition of this function in both the GR4 baseline model and its derived version 

with interception store (GR4-I2). In the GR4 baseline model, the infiltration-excess runoff 

component acts on the net precipitation (Pn, given by the neutralisation function). 

Analogously, its insertion in the GR4-I2 model is located on the throughfall (Pth) branch, 

after interception, as shown in Figure 5.12. 
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FIGURE 5.12 – Schematic representation of the production part of the GR5-I-PR model structure, 

derived from the GR4-I2 model (baseline model by Perrin et al. (2003) with interception store), by 

addition of an infiltration-excess runoff function, f(Pth, x5), depending on the intensity of net 

precipitation (i.e. throughfall, Pth). 

This infiltration-excess runoff function takes as input the net precipitation (throughfall) and 

separates it in two components: 

- a part of the throughfall Pth’ may potentially infiltrate in the production store; the part 

Ps (of Pth’) that actually fills the store is determined as in the GR4 baseline model (in 

function of the store filling rate). 

- the remaining part, named PR,, contributes to the direct runoff component by-passing 

the production store.  

The following two alternative functions were tested to operate this separation: 

𝑃𝑅 = 𝑃𝑡ℎ ∙ (1 − 𝑒
−𝑥5∙𝑃𝑡ℎ

𝛾
) 

 (5.5) 

𝑃𝑅 = 𝑃𝑡ℎ ∙ (1 −
1

(1 + (𝑃𝑡ℎ𝑥5)𝛾)
1

𝛾

)  
(5.6) 
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where, for both the alternative functions: 𝛾 is a positive fixed parameter [-], and x5 [-] is a free 

parameter representing the speed of the yield rate of the infiltration-excess runoff (PR/Pth) in 

approaching the unity. The variation range of the free parameter has been fixed to [0, +10]. 

After some first sensitivity tests, we have fixed a value of 3.0 and 5.0 for 𝛾 in equations (5.5) 

and (5.6) respectively. The main difference between the two functions is that one (5.6) 

increases more gradually as the precipitation intensity increases than the other. 

The two alternative functions above (Eq. (5.5) or (5.6)) are inserted in the production part of 

the model, as represented in Figure 5.12. As for the new model names, when the infiltration-

excess function is added in the GR4 baseline model, the new model structures are called GR5-

PRexp and GR5-PRpf respectively for the exponential function (Eq. (5.5)) and the power 

function (Eq. (5.6)). Analogously, when inserted in the GR4-I2 model, the new structures 

codes are GR5-I2-PRexp and GR5-I2-PRpf. 

Table 5.12 reports the average performance scores of the new model structures obtained by 

adding the infiltration-excess runoff component to either the GR4 baseline model or the GR4-

I2 model with interception store. It shows that for all the criteria the new model structures 

lead to similar levels of average performance as their parent model structure (GR4 or GR4-

I2) without any significant change. So it seems that this complexification of the model is not 

effective for improving the simulation of flood events, as it could be expected. The best 

performance scores over floods is provided by the GR5-I2-PRpf model but the changes in 

KGE and components are lower than 10
-2

 and can be considered negligible. 

Note that these tests intended to be only a first exploration of this issue and do not provide a 

comprehensive view. Future work on the model development should further investigate this 

issue by testing other possible implementations. 
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Hourly 

model 

Median criteria on the whole 

series (validation) 

Median FDC-based criteria 

(validation) 

Median criteria on flood 

events (validation) 

KGE 

[-] 

a [-] b [-] r [-] 𝐐𝟗𝟗,𝐬𝐢𝐦 

𝐐𝟗𝟗,𝐨𝐛𝐬
 

[-] 

Slope-

bias 

FDC 

[%] 

𝐐𝟐𝟎,𝐬𝐢𝐦 

𝐐𝟐𝟎,𝐨𝐛𝐬
 

[-] 

KGE 

[-] 

a [-] b [-] r [-] 

GR4 0.820 0.989 1.009 0.897 0.972 1.39 0.952 0.727 0.969 0.904 0.832 

GR4-I2 

(Iopt-flux) 

0.827 0.991 1.008 0.905 0.979 4.53 0.887 0.742 0.979 0.920 0.836 

GR5-

PRpf 

0.822 0.989 1.010 0.897 0.971 -0.11 0.976 0.728 0.974 0.910 0.838 

GR5-

PRexp 

0.820 0.986 1.008 0.897 0.970 0.71 0.963 0.729 0.974 0.904 0.835 

GR5-I2-

PRpf 

0.826 0.994 1.007 0.906 0.984 2.12 0.930 0.749 0.985 0.926 0.841 

GR5-I2-

PRexp 

0.828 0.995 1.007 0.904 0.983 4.62 0.909 0.744 0.979 0.921 0.831 

TABLE 5.12 – Summary of the median performance criteria of different hourly model structures 

derived by insertion of an infiltration-excess runoff function in the GR4 baseline model and in the 

GR4-I2 model with interception store. 

5.4.2 Precipitation intensity-based correction 

The introduction of a correction factor for precipitation has been considered only for 

reference, as done by Perrin (2000) at the daily time step. In fact, we agree with Perrin (2000) 

in stating that the use of such correction factors is tricky and ambiguous because it is halfway 

between data processing and hydrological modelling. 

The correction factor that we tested is a multiplicative coefficient applied to precipitation. We 

defined it as a function depending on precipitation intensity that decreases as the precipitation 

increases. The tested function was defined by the following equation: 

𝑃𝐶 = 𝑃 ∙ (1 + 𝑥5𝑒
−𝛾𝑃) 

 (5.7) 

where: x5 is a free parameter determining the correction factor magnitude for small values of 

P [-]; and 𝛾 is a fixed parameter determining the ‘rapidity’ of the correction factor in 

approaching the unity as the precipitation increases [-]. The free parameter’s domain is fixed 

to [−1,+10]. The fixed parameter 𝛾 has been fixed to 1.5, after first sensitivity tests (by 

calibrating it and fixing it at its median value). 

The precipitation correction factor has been added to the baseline model either with exchange 

(in GR4) or without exchange function (in GR3-F0) to analyze the contribution of only the 

correction function without its interaction with the exchange. This function did not bring any 
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significant improvement with respect to the baseline version of the model. When added to the 

model without exchange it provides slightly lower average scores than the GR4 baseline 

model. We do not report the statistics of its performance scores since these tests did not lead 

us to any other specific conclusion. 
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5.5 Synthesis 

In this chapter, we have presented the empirical tests performed for improving the model 

performance and the internal coherence of the GR4 model at sub-daily time steps. As 

indicated by our previous analysis (see Chapters 3 and 4), a modification of the GR4 model 

structure at sub-daily time steps is needed to improve the consistency of the model fluxes at 

multiple time steps. This is expected to possibly improve also simulations accuracy, 

especially over flood events. 

To this end, we have tested the insertion of an interception store in the production part of the 

GR4 model, as our previous analysis indicated the need of increasing the capacity of the 

model to evaporate intercepted water at sub-daily time steps. This structural modification has 

been implemented by a simple bucket-style interception store with either a fixed or calibrated 

maximum capacity. Two possible implementations of the interception component on a 

discrete time steps were tested (named GR4-I1 and GR4-I2), depending on the priority given 

to either throughfall or evaporation calculation. A first evaluation of this structural 

modification was based on model performance. It validated the benefit of adding the 

interception store in the GR4 model at sub-daily time steps. In fact, both implementations of 

the interception store with either a fixed or calibrated capacity led to a significant increase of 

model performance. The flood volumes bias is significantly reduced by the insertion of the 

interception store in the baseline model. No significant improvement of model performance 

was found by calibrating the interception parameter with respect to the use of a fixed value (in 

a range between 2 and 10 mm). Moreover, some difficulties in the calibration of this 

parameter were detected because of its interactions with the exchange function (and its 

calibrated parameter). 

Then, we evaluated the benefit of the insertion of the interception store for improving the 

coherence of the internal fluxes at different time steps. For each catchment, we calculated the 

“optimal” interception capacity that allows ensuring the coherence of the cumulated 

interception flux at all time steps using the daily reference flux of the GR4 model. The 

relationship between this optimal interception capacity and the time step was shown to be 

clearer for one of the two implementations of the interception store (GR4-I2, with evaporation 

prior to throughfall at each time step). So, this implementation was preferred and tested at 

time steps ranging from 6-min to 1 day, with the catchment-dependent capacity ensuring the 

fluxes consistency. This test proved that the stabilization of the interception flux as the 

time step changes leads to a significant improvement of the coherence of all the other 

model fluxes. The consistency of the model fluxes leads to a consistency in model 

parameters. Also, model performance is significantly improved over regime and high-flow 

conditions. On the other hand, a decrease of performance for low-flows simulations is 

detected. To improve this aspect, we have focused on the modification of the exchange 

function. 

Thus, we have presented the tests performed with a few different exchange functions. These 

tests also aimed at further improving model performance over flood events. Some new 
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functions are proposed to reduce the exchanged fluxes in high-flow conditions, but, contrary 

to our expectation, this did not lead to any other significant improvements for the floods bias. 

Also, we tested another existing alternative of the exchange function of GR4, i.e. the linear 

exchange function proposed by Le Moine (2008), with an additional free parameter 

permitting a seasonal change of sign in the exchange flux. The combination of this exchange 

function with the GR4-I2 structure proposed here is proved to be the most effective solution 

for further increasing model performance with respect to the baseline model, also on low 

flows. Then, this model structure, with the interception store and the linear exchange function, 

provides significant improvements of model performance at sub-daily time steps with respect 

to GR4 in a multi-criteria perspective (regime, floods and low flows).  

Thus, we recommend the new model structure (renamed here as GR5-I, with an 

interception store and five free parameters; see Appendix G), for the improvement of both 

model performance and internal coherence at sub-daily time steps. This is a positive and 

promising conclusion because it means that ensuring the improvement of the temporal 

consistency of the model fluxes (with the interception store) represents an added value for 

model performance in any condition. 

In the end, we have briefly presented some attempts of introducing in the model a function 

taking into account the impact of rainfall intensity on flow production. These tests based on 

the introduction of either an infiltration-excess runoff component or a precipitation correction 

factor did not provide any significant improvement of model performance. However, our 

implementations of these functions are not exhaustive, and further work on the model 

development could focus on other variants or combinations of these structural modifications. 
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This PhD thesis focused on issues related to temporal scaling in hydrological modelling. This 

issue is linked to essential operational demands, as for example the need of adaptive models 

for multiple time steps, in flood forecasting systems. It involves also multiple inter-related 

scientific questions such as: the relationship between processes, the observation and 

modelling scales, and the dependency of model parameters and structures on time step. These 

issues, long overlooked in the hydrological literature, have only received attention very 

recently.  

In this PhD thesis, we have explored the adaptability of the GR rainfall-runoff models for 

different daily and sub-daily time steps. The main objective was to identify an adaptive multi-

time step model starting from the well-known GR4 model, initially developed at the daily 

time step, and popularly known as GR4J (see Perrin et al., 2003). To this end, we have first 

carried out a diagnosis to highlight the current structural inadequacies of the model. Then, we 

have based the modification of the model on the improvement of its internal consistency at 

different time steps.  

Main contributions 

All along this thesis, we have evaluated our modelling tests over a large set of 240 catchments 

and 2400 observed flood events, in order to obtain as general results as possible and to ensure 

a robust model diagnosis over a wide variety of hydro-climatic conditions. 

This thesis brings a methodological innovation with the proposal of a new approach for 

empirical model identification based on two validation steps:  

(i) the improvement of model performance;  

(ii) the evaluation of fluxes consistency across time scales. 

Impact of time step on model performance 

The evaluation of model performance at multiple time steps was based on two levels: (a) the 

evaluation of the outputs aggregated at larger time scales, to allow comparisons of criteria 

across different model time steps; (b) the evaluation of the outputs at the model time step, for 

assessing performance at the model (short) temporal scales. The distinction of these two 

levels is necessary when dealing with a multi-time step model. 

The use of refined modelling time steps (hourly and sub-hourly) is obviously needed to 

estimate timing and intensity of short-duration events (flash floods), but one open question is 

whether it could contribute also to improve the simulation of events, with different dynamics 

and durations, in terms of volumes. We tried to answer this question by using the GR4 model 

at different sub-daily time steps. Our results indicate that, on average, the use of a shorter 

model time step (up to 3 h) may significantly improve model performance even when 

simulations are evaluated at a larger (daily) time scale. Thanks to our extensive tests on a 

large data set, we were able to analyse the links between model performance behaviour and a 

number of catchment and flood events characteristics. This led us to detect that improvements 
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of model performance at shorter time steps should be rather expected for fast-reactive 

catchments, subject to short-duration and highly-variable flood and storm events. 

This analysis was useful also to detect the presence of model deficiencies at sub-daily time 

steps, such as the degradation of the model bias at shorter time steps. This kind of analysis 

could be applied to other models for the same diagnostic purpose. 

Diagnosis of the internal coherence of the model 

We have proposed a model diagnostic procedure based on some specific evaluations of the 

model input-state-output response at different time steps. First, the impact of inputs temporal 

distribution on model performance has been evaluated. Despite the general positive impact of 

higher-resolution precipitation inputs on model performance, our results confirmed the 

presence of a structural inadequacy in the GR4 model at shorter time steps, affecting its 

capacity to reproduce adequately the water balance. 

A major outcome of our diagnosis was given by the analysis of the fluxes consistency at 

multiple time steps. The quest of the internal coherence of the model across time steps led us 

to understand and localize the structural inadequacies at multiple time steps. In particular, the 

evaluation of the consistency of the water gains and losses as the model time step changes 

proved to be essential. For the GR4 model, it was proved that the current representation of the 

interception (i.e. fast-feedback evaporation term) as a simple neutralisation function generates 

multiple internal inconsistencies in the model at sub-daily time steps. The automated 

calibration of the model seeks to compensate the underestimation of interception loss at 

shorter time steps by modifying other fluxes (evaporation from production reservoir and 

exchange). In this way, the problems are hidden but the capacity of reproducing the water 

balance in high-flow conditions is jeopardized. Moreover, the inconsistency of interception 

fluxes due to this structural inadequacy leads to spurious time-step dependencies of the 

calibrated parameters. 

Improvements of the GR models at multiple sub-daily time steps 

Finally, we have shown that it is possible to solve the problems of model internal coherence 

by targeted structural changes following the indications provided by the fluxes diagnostics at 

multiple time steps. In particular, in the case of the GR models, the insertion of an 

interception store of fixed capacity proved to be effective to stabilize all the model fluxes 

across time steps. This turned out to make the calibrated parameters more consistent across 

time steps. This finding indicates that the analysis of parameters time-step dependencies must 

always be preceded by an evaluation of the coherence of the model fluxes across time steps, 

to avoid confusing spurious parameters trends with something hydrologically meaningful. 

Last but not least, the structural modifications made to improve the internal coherence of the 

model lead also to improve model performance at sub-daily time steps. The simulation bias 

over flood events is significantly reduced thanks to the insertion of the interception store, 

something that nobody would have suspected initially. 
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Thus, we have finally retained this new improved model structure with interception store 

(GR4-I) that is best suited for coherent simulations at multiple time steps. This structure 

includes an interception store (component ‘activated’ at sub-daily time steps) with a fixed (i.e. 

not optimised) capacity, which must be computed for a given time step from climate inputs of 

the catchment, so that the interception flux equals the daily neutralisation flux. The use of the 

linear exchange function with an additional parameter proposed in the previous work by Le 

Moine (2008) is also suggested as a complementary change that fits better with the 

introduction of the interception store in the model, leading to a new model with 5 free 

parameters (GR5-I). 

Perspectives for further research 

Here below, we briefly discuss some of the most interesting perspectives of this PhD thesis. 

Further improvements of the model 

Regarding the transferability of the model across time steps, our work brought large 

improvements in the coherence of the model fluxes, solving almost all the identified 

inconsistencies. However, a residual problem of (relatively slight) inconsistency of the 

exchange fluxes in the GR4-I model remains. This could be due to a residual structural 

inconsistency of the exchange function. This hypothesis should be further tested in future 

works on the model development. Moreover, linked to this, a new improved exchange 

function could be identified by starting from a differential equation formulation allowing an 

analytical integration over fixed time steps (as it is currently done for the other model 

equations that are sequentially integrated over the time step). 

Finally, further work on model development could evaluate the impact of the currently used 

“operator splitting” (or sequential flux) approach (Clark and Kavetski, 2010) for the 

integration of the model governing equations of the GR models on a fixed time step. It would 

be interesting to analyse the differences between this approach and a possible global solution 

of the whole state-space system (or a numerical approximation), in terms of model 

performance and consistency of parameters across time steps. Work on this issue by Santos et 

al. (2017) is in progress (at Irstea) and may provide further insights on the structural 

behaviour of the model. 

Operational flood forecasting applications 

The structural improvements that we have introduced in the GR simulation model at sub-daily 

time steps will be directly transferable in the GRP forecasting model (Berthet, 2010) that is 

currently used (at the hourly time step) in the flood forecasting centres in France. In fact, the 

production part of the GRP model is composed of the same components as the GR4 

simulation model initially used in this work (with the neutralisation function for interception). 

So, the GRP model is affected by the same problem of inconsistency of the interception flux 

across time steps. To solve this, we suggest using the interception store proposed in this thesis 

(in place of the neutralisation function) which should allow effectively (and coherently) 
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changing the time step of the GRP model. We think that the effects of the current 

representation of interception by a neutralisation function in the GRP model are qualitatively 

the same as what has been shown for the GR4 model. Thus, based on our findings in the 

simulation context, the insertion of an interception store in the GRP model is likely to be a 

good solution for improving:  

(i) the adaptability of the model across different sub-daily time steps;  

(ii) the model's ability to reproduce the flood volumes.  

The structural modification proposed for the forecasting model (GRP) could be tested on our 

large database, using different time steps (from 5 minutes to 1 day). Last, in the forecasting 

context, it will be interesting to analyse the effects of data assimilation techniques when the 

model time step changes. 

Combined refinement of temporal and spatial resolutions 

Further research on the temporal issues should be carried out not only with a lumped 

approach, but also with a semi-distributed (or distributed) one. A spatially (semi-)distributed 

approach could perhaps be preferred at shorter time steps because the spatial variability of 

precipitation increases as the time step decreases. However, we consider that the improvement 

of the lumped model presented in this work was a necessary prior step to testing a semi-

distributed version of this model. Nevertheless, an exploration of the simultaneous refinement 

of the temporal and spatial model resolutions was conducted in parallel to this thesis. I have 

collaborated in the co-supervision of a MSc thesis work (Goullet, 2016) leading to 

encouraging results. We have tested a semi-distributed version of the GR models, called GR-

SD (Lobligeois, 2014), with different combinations of temporal and spatial resolutions, 

ranging respectively from 3 to 24 h and from 250 km
2
 to spatially lumped. These modelling 

tests were performed on three catchments (extracted from our 240 catchment-set) presenting 

varied characteristics. The results (reported in Goullet, 2016) showed that the simultaneous 

refinement of spatial and temporal resolutions could lead to a synergistic effect for improving 

model performance, especially in Mediterranean catchments subject to highly-variable 

storms. The positive effects of a combined refinement of spatio-temporal resolutions may 

enhance the benefits of modelling at high temporal resolutions obtained in this thesis. 
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A - Complements to literature review: Time stepping 

schemes 

One important issue in the context of temporal scaling in rainfall-runoff modelling is the 

accuracy and stability of numerical schemes. Often analytical solutions for the systems of 

differential equations classically used in hydrological models do not exist for most fluxes 

formulations. Thus, numerical approximations techniques must be used (e.g. see Clark and 

Kavetski, 2010). These approximations may be needed at two different levels: for the whole 

system of interconnected fluxes and for each flux separately.  

At a first level we may distinguish between:  

I. Operator-splitting (OS), or “sequential flux”, approach (Clark and Kavetski, 2010) 

which decomposes unwieldy systems of differential equations into simpler sub-

problems, which can be treated individually using an analytical solution or a 

numerical approximation for each of them (see the second level, for the possible 

numerical approximations of each flux); 

II. Global solutions of the whole state-space system of differential equations. 

At a second level, different classes of numerical methods may be applied, for each individual 

flux, if we have adopted the OS approach, or for the global system, otherwise. One may 

distinguish between:  

i. Explicit vs. implicit formulations; 

ii. Fixed-step vs. adaptive implementations. 

The most commonly used scheme in current conceptual hydrological models is the explicit 

Euler method (EE). It approximates the analytical solution using the fluxes at the beginning of 

each time step (explicit formulation). It is commonly used, for its algorithmic simplicity and 

computational speed, but it is known to be highly unreliable unless numerical error control is 

used. Conversely, implicit Euler method (IE) uses the fluxes at the end of the time step 

(implicit formulation). It requires more expensive iterative solutions, but it is generally more 

robust and facilitates model calibration thanks to derived smooth response surfaces. Usually 

both these methods are used with a fixed-step implementation.  

As discussed by Clark and Kavetski (2010), it is recognized that the fixed-step size time 

stepping schemes can produce inaccurate (in both explicit or implicit formulations) or 

unstable (in the explicit case) solutions. To overcome these limitations the adaptive 

approximation scheme reduces the step size ∆𝑡 until the error is below a user-prescribed 

tolerance 𝜏. However, the adaptive integration with error control remains rare in conceptual 

hydrological models. A synthesis of the main numerical schemes used in hydrological 

modelling is reported in Table A.1, which highlights their advantages and disadvantages. 
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In the GR4J rainfall-runoff model (Perrin et al., 2003), it was chosen to adopt the operator 

splitting technique with analytical integration of each individual model flux in a 

predetermined sequence. Clark and Kavetski (2010) and Kavetski and Clark (2011) suggest 

that the use of OS is probably suboptimal for the additional “splitting” errors with respect to 

the whole state-space system (delays or over/under estimation of the flux given by the original 

governing equations). However, to our knowledge, the impact of the operator splitting in 

hydrological modelling has not been thoroughly investigated yet. The authors cited above 

only tested the impact of the numerical approximations of the second level of the 

classification above, but they did not analyse the case of the operator splitting with analytical 

integration of each flux. 

Still, we agree with Clark and Kavetski (2010) in saying that it is not recommended to use the 

OS scheme without formulating the governing differential equations. They state that 

governing equations are seldom formulated when OS is used. However, in the case of the 

GR4J model, the governing equations have been formulated for all fluxes (see Le Moine, 

2008), except the groundwater exchange. The main limitation of the OS approach without 

formulation of governing equations is that “the model conceptualization is conflated with the 

numerical implementation”. This may reveal a methodological weakness “because modelling 

errors arising from the physical conceptualization and numerical implementation become 

difficult to separate, diagnose, and resolve” (Clark and Kavetski, 2010). 

Clark and Kavetski (2010) evaluate 8 different time stepping schemes in terms of numerical 

reliability and computational efficiency by using 6 different conceptual rainfall-runoff models 

on 13 catchments. They show that the numerical errors of fixed-step explicit time stepping 

schemes routinely dwarf the structural errors of the model conceptualization. These 

numerical errors have significant implications for hypothesis testing, sensitivity analysis, 

parameter estimation (and interpretation) and operational prediction. For example, the 

numerical artefacts of unreliable time-stepping schemes can compensate for structural 

weaknesses in the model, as highlighted also by Kavetski and Clark (2010) and Kavetski et al. 

(2011), leading a model to obtain better results for the wrong reasons. From the range of 8 

time stepping schemes evaluated by Clark and Kavetski (2010), the fixed-step IE method and 

the adaptive explicit Heun method emerge as good practical choices. 

Also Kavetski et al. (2011) show the importance of using robust numerical approximations. 

The use of the unreliable fixed-step EE time stepping scheme is shown to introduce artificial 

time scale dependencies in model parameters, not detected by using the implicit Euler 

scheme. The EE scheme is unreliable also in the context of hypothesis testing, since it 

produces changes in performances between validation and calibration that are not observed 

when using a robust numerical approximation as the IE scheme. Another effect of numerical 

approximations noted by Kavetski et al. (2011) is that since the EE scheme evaluates the 

outflows before the inflows are added to the stores, it introduces a delay into the response 

dynamics, which unreliably interacts with the explicit routing component of the models. 



Appendices 

245 

 

Numerical 

method 
Advantages Disadvantages 

Example of models 

implementing it 

Explicit Euler 

method (EE) 

Algorithmic simplicity; 

computational speed. 

Only conditionally stable; 

unreliable (unless using 

numerical control error); 

inconsistencies at different 

time steps; less robust for 

larger step sizes 

The most part of 

conceptual 

hydrological 

models 

Implicit Euler 

method (IE) 

Unconditionally stable; robust even 

for large step sizes; smooth 

solution with respect to input 

forcing and parameters (important 

in gradient-based parameter 

optimization). 

Need of expensive iterative 

solutions (e.g. Newton-

Raphson root solver); 

algorithmic complexity; 

computational cost. 

Models in 

SUPERFLEX 

framework 

(Kavetski et al., 

2011) 

 

Adaptive sub-

stepping 

schemes 

Stability and accuracy. 

Computational cost; roughness 

of the resulting objective 

function (Kavetski and Clark, 

2010) 

Rarely used (e.g. 

Clark and Kavetski, 

2010) 

Operator 

splitting with 

analytical 

integration of 

most fluxes 

Algorithmic simplicity; 

computational speed; analytical 

solutions may become possible for 

individual fluxes 

Potential “splitting” errors and 

inconsistencies at different 

time steps (to be verified case 

by case); less robust for larger 

step sizes 

GR4J (Perrin et al., 

2003) 

TOPMODEL 

(Beven, 1997) 

VIC (Wood et al., 

1992) 

TABLE A.1 – Summary of approximation methods generally used to solve numerically continuous 

differential equations in hydrological modelling with main advantages/disadvantages and examples 

of models implementing these methods. 
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B - Complements to Chapter 2: Analysis of the quality 

of the 6-minute precipitation measurements 

This appendix is a complement to Chapter 2 (Section 2.2.1 “Rainfall data”). It provides some 

results of our analysis of the coherence between 6-minute rain gauges measurements and 

hourly data reconstructed at the same stations (at Irstea) by using the COMEPHORE 

reanalysis by Météo-France. This analysis of data coherence was performed at 257 rain 

gauges stations of the 6-min network operating over the period July 2005 – December 2006, 

which is common between the two databases we have.  

Figure B.1 shows that the mean absolute deviations between the hourly cumulus from 6-min 

rain gauges data and from the hourly reanalysis are negligible (always smaller than 0.01 mm).  

Figure B.2 shows that the maximum absolute deviations are also small on average (3 mm). 

Note that the presence of rare and not significant errors can be due to the fact that the 

reference hourly data reconstructed from the COMEPHORE reanalysis are combined with 

daily surface measurements and 5-minute radar observations.  

Figure B.3 shows that the null-error frequency is very high, being at least 95% for all the 

stations. 

This analysis confirms a very good consistency of the two products, which is an evidence of 

good quality for the precipitation data used in this work. 
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FIGURE B.1 – Cumulative distribution of mean absolute error between hourly cumulus from the 6-

minute rain gauges and hourly values reconstructed at the same stations at Irstea by using the 

COMEPHORE reanalysis by Météo-France (257 stations with enough data over the common period 

July 2005 – December 2006). 

  

FIGURE B.2 – Cumulative distribution of maximum absolute error between hourly cumulus from 6-

minute rain gauges and hourly values reconstructed at the same stations at Irstea by using the 

COMEPHORE reanalysis by Météo-France (257 stations with enough data over the common period 

July 2005 – December 2006). 
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FIGURE B.3 – Cumulative distribution of null-error frequency (number of time steps with a null 

error/total n. of time steps) between hourly cumulus from 6-minute rain gauges station and hourly 

values reconstructed at the same stations at Irstea by using the COMEPHORE reanalysis by Météo-

France (257 stations with enough data over the common period July 2005 – December 2006). 
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C - List of the 240 selected catchments 

 

Station name  Code S [km
2
] Z 

[m] 

L'Ill à Altkirch A1050310 238 282 

L'Ill à Didenheim A1080330 668 242 

L'Ill à Osthouse A2240310 3296 150 

La Mossig à Soultz-les-Bains A2842010 167 169 

La Bruche à Holtzheim 2 A2860110 676 144 

La Moder à Schweighouse-sur-Moder aval A3301010 622 144 

La Zorn à Waltenheim-sur-Zorn A3472010 684 147 

La Moder à Drusenheim A3501010 787 118 

La Mortagne à Gerbéviller A6731220 498 234 

L'Eichel à Oermingen A9352050 280 214 

La Meuse à Domrémy-la-Pucelle B1150010 1035 266 

La Seine à Plaines-Saint-Lange H0100020 686 180 

L'Aube à Bar-sur-Aube H1201010 1298 167 

La Laine à Soulaines-Dhuys H1333010 22 137 

Le Serein à Bierre-lès-Semur H2322010 267 312 

Le Serein à Dissangis H2332020 645 189 

Le Serein à Chablis Pont de la déviation H2342020 1119 125 

Le Serein à Beaumont H2342030 1352 85 

L'Armance à Chessy-les-Prés H2473010 477 110 

L'Ouanne à Charny H3122010 559 133 

L'Ouanne à Gy-les-Nonains H3122020 877 99 

Le ru d'Ancoeur à Blandy H3923010 188 70 

L'Orge à Épinay-sur-Orge Le Breuil H4232040 641 38 

L'Yvette à Villebon-sur-Yvette H4243010 231 54 

L'Orge à Morsang-sur-Orge H4252010 934 38 

Le Réveillon à Férolles-Attilly La Jonchère H4333410 57 73 

Le Grand Morin à Meilleray H5702010 350 125 

L'Orgeval à Boissy-le-Châtel Le Theil, 

ultrasons 

H5723011 105 79 

Le Grand Morin à Pommeuse H5732010 769 62 

L'Aire à Beausite Amblaincourt H6102010 283 222 

L'Aire à Varennes-en-Argonne H6122010 629 154 

La Vesle à Saint-Brice-Courcelles H6412010 735 71 

L'Ardres à Faverolles-et-Coëmy H6423020 145 84 

L'Ysieux à Luzarches Bertinval H7833540 55 37 

Le Lieutel à Neauphle-le-Vieux H7913620 77 64 

L'Eure à Saint-Luperce H9021010 315 155 

L'Avre à Acon H9202010 477 119 
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L'Avre à Muzy H9222010 872 78 

La Dives au Mesnil-Mauger I2051040 616 16 

L'Orne à la Courbe I3121010 935 141 

Le Noireau à Cahan Les Planches - CD 911 I3462010 525 54 

L'Orne à Grimbosq barrage du Val de Viard I3531010 2263 16 

La Seulles à Juvigny-sur-Seulles I4022010 134 56 

La Seulles à Tierceville I4032010 256 8 

La Souleuvre à Carville I5053010 116 76 

La Vire à Malloué I5101010 478 63 

La Vire à Tessy-sur-Vire I5121020 640 39 

La Vire à Saint-Lô Moulin des Rondelles I5221010 883 15 

L'Aure à Maisons Pont-Fatu I5321510 136 17 

La Drôme à Sully I5352010 241 22 

Le Petit Douet à Héauville I6964010 12 21 

Le Trieux à Saint-Clet Moulin-de-Châteaulin J1721720 416 12 

L'Horn à Mespaul Kertanguy J3014330 38 40 

Le Moros à Concarneau Pont D 22 J4514010 21 20 

L'Oust à Pleugriffet La Tertraie J8202310 931 42 

L'Yvel à Loyat Pont D 129 J8363110 301 35 

La Coise à Larajasse Le Nézel K0663310 61 583 

L'Anzon à Débats-Rivière-d'Orpra Cotes K0744010 180 410 

L'Aix à Saint-Germain-Laval K0813020 197 378 

Le Gand à Neaux K0974010 86 364 

Le Rhins à Saint-Cyr-de-Favières Pont 

Mordon 

K0983010 435 293 

L'Arroux à Dracy-Saint-Loup Surmoulin K1251810 772 291 

L'Arroux à Étang-sur-Arroux Pont du Tacot K1321810 1792 268 

La Vouzance à Saint-Léger-sur-Vouzance K1414010 131 242 

Le Bedat à Saint-Laure K2773120 348 297 

L'Ambène à Ennezat K2774020 109 308 

La Morge à Maringues Côte Rouge K2783010 668 292 

La Bouble à Chareil-Cintrat K3373010 563 246 

La Vauvise à Saint-Bouize La Grange K4073110 389 151 

La Cisse à Nazelles-Négron K4853000 799 53 

Le Cher à Chambonchard La Caborne K5090900 524 321 

L'Aumance à Hérisson K5383020 877 199 

L'Ouatier à Moulins-sur-Yèvre Maubranche K5554580 161 136 

L'Auron à Bourges L'Ormediot K5653010 575 129 

L'Arnon à Méreau Alnay K6192420 2177 98 

La Grande Sauldre à Brinon-sur-Sauldre 2 K6332520 617 130 

La Petite Sauldre à Ménétréol-sur-Sauldre K6373020 332 151 

La Sauldre à Salbris Valaudran K6402520 1220 103 

L'Indre à Ardentes K7202610 688 157 

La Ringoire à Déols K7207510 96 140 

L'Indre à Saint-Cyran-du-Jambot K7312610 1707 82 

L'Indrois à Genillé K7433030 402 78 
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L'Échandon à Saint-Branchs K7514010 128 66 

La Vienne à Eymoutiers L0050630 375 408 

La Combade à Roziers-Saint-Georges L0093020 170 314 

La Briance à Condat-sur-Vienne Chambon 

Veyrinas 

L0563010 605 218 

L'Aurence à Isle L0614020 86 235 

La Creuse à Felletin L4010710 190 507 

La Petite Creuse à Fresselines Puy Rageaud L4411710 853 218 

La Bouzanne à Velles Forges L4653010 438 124 

La Gartempe à Saint-Victor-en-Marche L5001810 78 434 

La Gartempe à Folles Bessines L5101810 568 297 

Le Vincou à Bellac 2 L5223020 286 178 

La Brame à Oradour-Saint-Genest L5323010 232 171 

L'Anglin à Mérigny L5741910 1634 77 

La Sarthe à Saint-Céneri-le-Gérei Moulin du 

Désert 

M0050620 909 124 

L'Orne Saosnoise à Montbizot Moulin Neuf 

Cidrerie 

M0243010 502 52 

L'Huisne à Nogent-le-Rotrou Pont de bois M0361510 833 102 

L'Huisne à Montfort-le-Gesnois La Pécardière M0421510 1936 57 

La Sarthe à Saint-Denis-d'Anjou Beffes M0680610 7523 21 

L'Ozanne à Trizay-lès-Bonneval Prémoteux M1034020 267 126 

Le Loir à Saint-Maur-sur-le-Loir M1041610 1080 118 

L'Yerre à Saint-Hilaire-sur-Yerre Bêchereau M1114011 293 101 

L'Escotais à Saint-Paterne-Racan M1354020 68 66 

Le Loir à Durtal M1531610 7918 22 

L'Aisne à Javron-les-Chapelles Les Chapelles M3014010 144 145 

La Mayenne à Madré M3020910 329 129 

La Mayenne à Ambrières-les-Vallées Cigné M3060910 832 102 

La Mayenne à l'Huisserie Bonne M3340910 2908 45 

L'Ouine au Breuil-Bernard Les Alleuds M7005610 63 163 

La Maine à Remouillé M7453010 595 19 

Le Tarnon à Florac O3064010 132 554 

Le Tarn à Mostuéjouls La Muse O3141010 945 405 

Le ruisseau du Mas de Pomier Durzon à Nant 

Le Mas du Pré 

O3335010 110 535 

La Dourbie à Millau Massebiau 3 O3394030 654 373 

Le ruisseau de l'Espérelle O3395010 602 408 

Le Cernon à Sainte-Eulalie-de-Cernon terrain 

de Football 

O3414010 8 592 

Le ruisseau de Balastière O3416610 18 532 

L'Anrou O3575510 12 769 

Le Dourdou à Vabres-l'Abbaye Le Poujol O3594020 684 302 

Le Rancé à Saint-Sernin-sur-Rance O3754010 289 305 

Le Tescou à Saint-Nauphary O4984320 284 99 

Le Dourdou à Conques O7874010 545 236 

Le Célé à Orniac Les Amis du Célé O8133520 1246 142 

La Triouzoune à Saint-Angel P0924010 79 631 

La Loyre à Voutezac Pont de l'Aumonerie P3234010 104 153 
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La Loyre à Saint-Viance Pont de Burg P3274010 254 105 

La Corrèze à Corrèze Pont de Neupont P3352510 164 478 

La Corrèze à Tulle Pont des soldats P3502510 354 224 

La Corrèze à Brive-la-Gaillarde Le Prieur P3922510 954 103 

La Vézère à Montignac Le Pertuis P4161020 3174 74 

La Vézère à Campagne P4271010 3657 56 

L'Auvézère à Benayes P6202510 22 361 

L'Auvézère à Lubersac P6222510 113 291 

L'Auvézère à Tourtoirac P6362510 665 133 

L'Auvézère au Change Aubarède P6382510 884 99 

La Lizonne à Saint-Séverin Le Marchais P8284010 624 51 

La Dronne à Bonnes P8312520 1912 37 

La Dronne à Coutras Coutras aval P8462520 2798 6 

L'Adour à Hères Ju Belloc Q0360010 1093 144 

L'Adour à Cahuzac-sur-Adour Q0450010 1279 120 

La Nivelle à Saint-Pée-sur-Nivelle S5144010 142 31 

Le Coney à Fontenoy-le-Château U0124010 316 258 

Le Breuchin à la Proiselière-et-Langle U0415010 123 343 

La Lanterne à Fleurey-lès-Faverney U0474010 1028 209 

La Colombine à Frotey-lès-Vesoul U0525010 143 220 

La Saône à Ray-sur-Saône U0610010 3761 195 

L'Ognon à Chassey-lès-Montbozon Bonnal U1044010 852 249 

L'Ognon à Beaumotte-Aubertans U1054010 1259 229 

L'Ognon à Pin U1074020 1699 203 

La Saône à Auxonne U1120010 8790 178 

Le Saint-Nicolas à Rougemont-le-Château U2305210 9 474 

La Bourbeuse à Froidefontaine U2324210 300 329 

L'Allan à Fesches-le-Châtel U2334010 705 321 

La Savoureuse à Belfort U2345030 144 358 

La Savoureuse à Vieux-Charmont U2345040 235 318 

Le Rhome à Lachapelle-sous-Chaux 

Lachapelle Bis 

U2345420 19 408 

La Rosemontoise à Rougegoutte U2345830 23 444 

L'Allan à Courcelles-lès-Montbéliard U2354010 1109 311 

Le Cusancin à Cusance U2425250 154 311 

La Grosne à Jalogny Cluny U3214010 334 243 

L'Azergues à Châtillon U4624010 337 211 

La Turdine à l' Arbresle Gobelette U4636610 169 231 

L'Azergues à Lozanne U4644010 798 198 

La Bourbre à Tignieu-Jameyzieu V1774010 696 204 

Le Suran à Neuville-sur-Ain La Planche V2814020 331 272 

Le Suran à Pont-d'Ain V2814030 359 241 

L'Yzeron à Francheville Taffignon V3015020 127 190 

Le Rival à Beaufort V3424310 467 280 

Le Ternay à Savas Ternay V3517010 25 520 

La Cance à Sarras V3524010 382 148 
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La Galaure à Saint-Uze V3614010 228 164 

Le Doux à Colombier-le-Vieux V3724010 380 244 

L'Embroye à Toulaud V4025010 7 360 

La Véore à Beaumont-lès-Valence Laye V4034020 195 128 

La Glueyre à Gluiras Tisoneche V4145210 72 430 

Le Roubion à Soyans V4414010 192 276 

Le Jabron à Souspierre V4455010 79 256 

L'Ardèche à Ucel V5014030 478 207 

La Cèze à Tharaux V5454010 665 109 

La Cèze à Montclus V5464015 833 89 

L'Ouvèze à Entrechaux Pont Saint Michel V6042010 475 241 

Le Gardon de Saint-Jean à Corbès Roc 

Courbe 

V7135010 262 147 

Le Gardon de Saint-Jean à Saint-Jean-du-

Gard Bâtiment communal 

V7135017 153 185 

L'Herbasse à Clérieux Pont de l'Herbasse W3534020 190 142 

Le Coulon à Oppède La Garrigue X3484020 885 109 

La Massane à Argelès-sur-Mer Mas d'en 

Tourens 

Y0115410 16 101 

Le Tech à Argelès-sur-Mer Pont d'Elne Y0284060 722 12 

Le Fresquel à Villepinte Y1314010 211 129 

Le Lampy à Raissac-sur-Lampy Y1345010 58 139 

Le Fresquel à Carcassonne Pont Rouge Y1364010 936 94 

L'Orbieu à Saint-Martin-des-Puits Y1524010 172 187 

L'Orbieu à Luc-sur-Orbieu Y1564010 590 38 

La Cesse à Mirepeisset Y1605050 251 35 

L'Aude à Moussan Moussoulens - écluse Y1612020 4914 12 

L'Arre au Vigan La Terrisse Y2015010 155 198 

La Vis à Saint-Laurent-le-Minier Y2035010 306 156 

L'Hérault à Laroque Y2102010 916 139 

La Lergue à Lodève Y2214010 181 160 

Le Vistre à Bernis Y3514020 280 18 

Le Vistre lit mineur au Cailar Y3534010 496 2 

L'Arc à Pourrières Y4002010 50 252 

L'Arc à Meyreuil Pont de Bayeux Y4022010 297 174 

L'Huveaune à Roquevaire 2 Y4414030 165 167 

Le Gapeau à Solliès-Pont Y4604020 184 81 

Le Réal Martin à la Crau Decapris Y4615020 284 31 

Le Gapeau à Hyères Sainte-Eulalie Y4624010 536 12 

Le Cauron à Bras Pont de l'Avocade Y5005210 146 254 

L'Argens à Châteauvert Y5032010 505 183 

La Bresque à Salernes Les Vingalières Y5115020 166 212 

L'Argens aux Arcs Y5202010 1651 42 

L'Aille à Vidauban Le Baou Y5215020 229 46 

La Nartuby à Trans-en-Provence Y5235010 194 151 

L'Argens à Roquebrune-sur-Argens Y5312010 2514 8 

Le Reyran à Fréjus Sainte-Brigitte Y5325010 73 23 

La Giscle à Cogolin Y5424010 66 7 
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La Siagne à Callian Ajustadoux Y5514040 166 235 

La Brague à Biot Plan Saint-Jean Y5605210 42 19 

Le Loup à Tourrettes-sur-Loup Les Vallettes Y5615010 206 133 

Le Loup à Villeneuve-Loubet Moulin du Loup Y5615030 289 7 

L'Estéron à Sigale Pont du Coude Y6434005 262 377 

L'Estéron au Broc La Clave Y6434010 443 140 

La Bévéra à Sospel Pont D 2204 Y6635010 96 343 

La Sienne à Saint-Sever-Calvados La Croix 

du Rocher 

I7001040 * 4 264 

L'Adour à Tarbes 2 Q0120060 * 388 314 

L'Arros à Tournay Q0522530 * 239 260 

Le Larcis à Lannux Q1094010 * 426 92 

Le Gave d'Oloron à Oloron-Sainte-Marie 

Oloron-SNCF 

Q7002910 * 1101 211 

La Nive à Ossès Q9102510 * 597 110 

La Morcille à Villié-Morgon Pont des 

Versauds 

U4506010 * 4 316 

L'Aveyron à Laguépie 1 O5292510 * 1604 163 

L'Échez à Bordères-sur-l'Échez Q0224020 * 154 286 

Le Luy à Saint-Pandelon Q3464010 * 1144 6 

L'Eyre à Salles S2242510 * 1678 14 

La Sormonne à Belval B5572010 * 369 146 

L'Aa à Wizernes E4035710 * 392 19 

La Béthune à Saint-Aubin-le-Cauf G2011010 * 307 13 

L'Eaulne à Martin-Église G2203010 * 317 4 

L'Adour à Saint-Vincent-de-Paul Q3120010 * 7707 6 

L'Yzeron à Craponne V3015010 * 46 243 

 

TABLE C.1 – List of the 240 selected catchments with correspondent code (“Banque-Hydro” data 

base), surface (S [km2]) and mean altitude (Z [m]). In this list, 17 catchments (reported at the end of 

the list and identified by ’*’ after the station code), were selected after relaxing some selection 

criteria (see Section 2.3.4). 
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D - Flood event selection procedure 

The flood event selection procedure includes the following steps: 

i. Select the current maximum discharge (Qmax) in the hourly streamflow time series. 

ii. Within a 15-day period before (after) the peak flow, the beginning (end) of the event is 

placed at the time step at which the streamflow is lower than a threshold discharge Q0: 

Q0 = max(Qmax ∙ 0.25,   Qmin + 0.05(Qmax − Qmin)) (D.1) 

where Qmin is the minimum discharge observed over the 15-day period before (after) 

the peak flow. 

iii. If the precipitation is not null at the beginning of the event defined so far, then the 

beginning of the event is shifted to the first of the preceding time steps at which 

precipitation is null. 

iv. The current event selected is discarded if one of the following criteria is verified: 

 if the duration of the rising (falling) limb is shorter than 3 h. This allows discarding 

high flows within a rising/falling limb. 

 if the event period overlaps with a previously defined flood event period. This 

allows one to consider independent flood events. 

 if the precipitation amount, cumulated before the discharge peak, is less than 2.5 

mm, the current event is discarded. This allows one to automatically remove 

implausible values in the precipitation–flow pair data. 

 if the flow series over the selected period is almost constant, according to two 

empirically derived conditions: (1) maximum absolute relative difference of two 

successive hourly flows less than 10% and (2) ratio of peak flow on mean flow 

less than 1.3. These empirical conditions allow discarding events that are not 

actual independent floods with recognizable rising/declining limbs, but are part of 

recession flows. 

 if the hourly flow series around the peak presents either a gap rate greater than 

10% or an overly long interpolated piece (linearly interpolated from variable time-

step data). The latter is verified by empirically derived conditions on the maximum 

allowed duration of subsequent equal flow differences around the peak (𝑑∆𝑄 𝑐𝑜𝑠𝑡
ℎ ): 

(1) 𝑑∆𝑄 𝑐𝑜𝑠𝑡
ℎ  less than 24 h; (2) 𝑑∆𝑄 𝑐𝑜𝑠𝑡

ℎ  less than 50% of the duration of rising and 

falling limbs. This allows one to keep only floods with a minimum quality of 

observed flow data to evaluate streamflow simulations at sub-daily time steps. 
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The restrictive selection criteria of point (iv) were adjusted empirically by preliminary visual 

analysis of the hydrographs in order to avoid subjectivity in the selection of a representative 

and criticized set of floods. We believe that this automated procedure should be preferred to 

manual selection by hydrograph visualization and expert judgement only. 
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E – GOUE index 

To quantify the degradation of the information on precipitation and streamflow temporal 

dynamics when passing from a short time step (e.g. 6 min) to a larger time step (equal to s 

short time steps, e.g. 1 h), we built the Goodness of Uniform Estimates (GOUE) derived from 

the Goodness of Rainfall Estimation (GORE) Index proposed by Andréassian et al. (2001). 

The GOUE Index is based on the Nash-Sutcliffe criterion (Nash and Sutcliffe, 1970b) 

formulation applied to rainfall or streamflow, considering the data at the shortest temporal 

resolution available as the reference observation. The GOUE Index is computed on rainfall 

and streamflow for a given catchment as in Equations (E.1) and (E.2): 

𝐺𝑂𝑈𝐸(𝑃) = 1 −
∑ (𝑃𝑖

𝐿𝑠 − 𝑃𝑖
f)2𝑛

𝑖=1

∑ (𝑃𝑖
f − 𝑃f̅̅ ̅̅ )2𝑛

𝑖=1

 (E.1) 

𝐺𝑂𝑈𝐸(𝑄) = 1 −
∑ (𝑄𝑖

𝐿𝑠 − 𝑄𝑖
f)2𝑛

𝑖=1

∑ (𝑄𝑖
f − 𝑄f̅̅ ̅̅ )2𝑛

𝑖=1

 (E.2) 

where n is the number of time steps of the period; P𝑖
f and 𝑄𝑖

f [mm] are, respectively, the 

reference catchment precipitation and streamflow at the short time step i (6 min); 𝑃𝑖
𝐿𝑠 and 𝑄𝑖

𝐿𝑠 

are the precipitation and streamflow estimate at time step i obtained by uniformly 

disaggregating the value at a large time step (i.e. 1/s of that precipitation or streamflow); and 

𝑃f̅̅ ̅̅  and 𝑄f̅̅ ̅̅   are the mean of the reference precipitation and streamflow. The GOUE Index 

varies between −∞ and 1.  

GOUE Index values are expected to decrease as s increases and to depend on the 

characteristics of precipitation on the basin. The GOUE Index should decrease more quickly 

for basins subject to intense convective storm events than for basins with mostly stratiform 

events.  
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F - Consistency of the GR4 model parameters at 

different time steps 

As discussed in Chapter 2, the capacity of the production store, x1, is the GR4 model’s only 

free parameter that is independent of time step. For the other three calibrated parameters, the 

time-step dependency can be formulated by theoretical relationships derived from the model 

governing equations (see Table 2.3). 

In this study, after calibrating the free parameters at each model time step, we verified the 

consistency of parameter values obtained at the different time steps tested (according to the 

theoretical relationships in Table 2.3), as done in previous studies (Le Moine, 2008). 

Figure F.1 reports a statistical summary of the comparison of the calibrated parameter values 

at different time steps for the 240 catchments used in this study, after normalization at the 

hourly reference time step thanks to the theoretical relationships given in Table 2.3. The 

parameters’ consistency at different time steps is verified, with no clear deviations from their 

theoretical relationships, except for the time base of the unit hydrograph (x4), because of its 

discrete construction. In fact, for example at the daily time step the UH form does not change 

for different values of x4 lower than 24 h, since x4 is rounded to the nearest integer value. 

Thus, as the time step decreases the time base parameter is identified with greater precision. 

No other strong time-scale dependencies can be identified, but only a slight decrease of the 

water exchange coefficient (x2). Kavetski et al. (2011) feared that strong artificial time-scale 

dependencies in parameter estimates are introduced when unreliable time stepping schemes 

are used. However, in the present case, where the operator splitting technique is used the 

results in Fig. F.1 show that the GR4 model parameters are fairly stable. 
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FIGURE F.1 – GR4 model parameters calibrated at eight time steps from 6 min to 1 day: (a) 

maximum capacity of the production store (x1); (b) water exchange coefficient (x2); (c) maximum 

capacity of the routing store at one time step ahead (x3); (d) time base of the unit hydrograph (x4). 

The box plots report the median value, interquartile range, and the whiskers represent the 10th and 

90th percentiles. 
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G - Formulation of the GR5-I model (complements to 

Chapter 5) 

Here we summarize the formulation of the GR5-I model structure retained in this thesis 

as the new recommended model version for multiple sub-daily time steps (see Figure G.1), 

based on both model performance and temporal consistency of the fluxes. This structure 

differs from the GR4 baseline model described in Chapter 2 for the insertion of an 

interception store of fixed capacity, determined to maximize the coherence of the interception 

fluxes across time steps (see Chapter 5), and for the use of the linear exchange function 

proposed by Le Moine (2008), with an additional free parameter.  
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FIGURE G.13 – Schematic representation of the GR5-I model structure, modified from the GR4 

baseline model by Perrin et al. (2003) by insertion of an interception store of maximum capacity 

Imax and modification of the exchange function, as a linear function with a fifth free parameter. The 

interception store capacity is fixed by optimizing the consistency of the interception loss at different 

time steps. 
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Note: 

The equations of the model are here presented over a generic sub-daily time step ∆𝒕. We 

remind that for the daily time step, a zero-capacity interception store is recommended, i.e. 

using the neutralisation function of GR4J. Thus, the GR5-I model at the daily time step 

coincides with the GR5J model proposed by Le Moine (2008). 

Model equations 

Inputs 

The inputs of the model are the precipitation P and the potential evapotranspiration 𝐸 over 

each time step ∆t.  

Parameters 

The interception store capacity 𝐼𝑚𝑎𝑥 can be fixed prior to running the model, simply by 

processing the two time-series of the inputs (P and 𝐸) to ensure the consistency of the 

interception losses at different time steps (as discussed in Chapter 5). To this end, the 

calculation of the interception loss can be iterated with the equations summarized here below 

for different values of the capacity 𝐼𝑚𝑎𝑥, until getting to the same value than the interception 

loss obtained at a daily time step by a zero-capacity interception store. 

The five free parameters to be calibrated are:  

- the maximum capacity of the production store (x1, [mm]);  

- the water exchange coefficient (x2, [mm/t.s.]);  

- the routing store reference capacity (x3, [mm]);  

- the time base of the unit hydrograph (x4, [t.s.]);  

- the threshold level for which the exchange function changes in sign (𝑥5[−] ∈ [0, 1]). 

Before starting the simulation, the ordinates of the two unit hydrographs, which will be used 

to spread effective rainfall at each time step, can be computed based on the x4 parameter only. 

These ordinates are calculated from the corresponding S-curves (cumulative distribution of 

the input with time), as explained by Perrin et al. (2003), denoted as SH1 and SH2. These 

curves are calculated over a number of time steps equal to the base time of the unit 

hydrographs, as:  

𝐹𝑜𝑟 0 ≤ 𝑡 ≤ 𝑥4:  𝑆𝐻1(𝑡) = (
𝑡

𝑥4
)
5/2

  

𝐹𝑜𝑟 𝑡 > 𝑥4:  𝑆𝐻1(𝑡) = 1  
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𝐹𝑜𝑟 0 < 𝑡 ≤ 𝑥4:  𝑆𝐻2(𝑡) =
1

2
(
𝑡

𝑥4
)
5/2

  

𝐹𝑜𝑟 𝑥4 < 𝑡 ≤ 2𝑥4:  𝑆𝐻2(𝑡) = 1 −
1

2
(2 −

𝑡

𝑥4
)
5/2

 

𝐹𝑜𝑟 𝑡 > 2𝑥4:  𝑆𝐻2(𝑡) = 1  

The ordinates of the unit hydrographs are then calculated as:  

𝑈𝐻1(𝑗) = 𝑆𝐻1(𝑗) − 𝑆𝐻1(𝑗 − 1)  

𝑈𝐻2(𝑗) = 𝑆𝐻2(𝑗) − 𝑆𝐻2(𝑗 − 1) 

where j is an integer between 1 and the maximum number of ordinates, n and m, respectively 

for UH1 and UH2, i.e. the smallest integers exceeding x4 and 2x4. 

Initial conditions 

At the beginning of each time step, the model states are:  

- 𝐼0, i.e. the initial water content in the interception store [mm];  

- 𝑆 , i.e. the initial water content in the production store [mm]; 

- 𝑅 , i.e. the initial water content in the routing store [mm]; 

Interception 

The first operation is the determination of an interception loss 𝐸𝑖, i.e. evaporation from 

intercepted water (I), by means of a simple bucket interception store. The interception loss 𝐸𝑖 

is calculated as:  

𝐸𝑖 = min (𝐸𝑃, 𝑃 + 𝐼0) 

Thus, the potential evapotranspiration is reduced to a net evapotranspiration capacity (𝐸𝑛):  

𝐸𝑛 = 𝐸𝑃 − 𝐸𝑖 

The precipitation is reduced to throughfall or net rainfall (𝑃𝑡ℎ) that is calculated as:  

𝑃𝑡ℎ = 𝑚𝑎𝑥[0, 𝑃 − (𝐼𝑚𝑎𝑥 − 𝐼0) − 𝐸𝑖] 

The interception store water content is then updated as:  

𝐼 = 𝐼0 + (𝑃 − 𝐸𝑖 − 𝑃𝑛) 

and will be used as initial condition for the next time step. 
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Production store 

Then, in case Ps is greater than zero, the production store is filled by a part Ps of the 

throughfall calculated as: 

𝑃𝑠 =
𝑥1 (1 − (

𝑆

𝑥1
)
2

) tanh (
𝑃𝑡ℎ

𝑥1
)

1 +
𝑆

𝑥1
tanh (

𝑃𝑡ℎ

𝑥1
)

 

In case Es is greater than zero, the evaporation from the production store 𝐸𝑠 is calculated as: 

𝐸𝑠 =
𝑆 (2 −

𝑆

𝑥1
) tanh (

𝐸𝑃−𝐸𝑖

𝑥1
)

1 + (1 −
𝑆

𝑥1
) tanh (

𝐸𝑃−𝐸𝑖

𝑥1
)
 

The production store level 𝑆 is updated by adding Ps or removing Es.  

Then a percolation leakage 𝑃𝑒𝑟𝑐 is calculated as:  

𝑃𝑒𝑟𝑐 = 𝑆 {1 − [1 + (
𝑆


∆t
∙ 𝑥1

)

4

]

−
1

4

} 

where the percolation constant 
∆t

 is a function of the model time step ∆𝑡 (in seconds):  


∆t
= 5.25 (

3600 

 ∆𝑡 
)

1

4

 

The production store level 𝑆 is updated by removing Perc and will serve as initial condition 

for the next time step. 

The percolation 𝑃𝑒𝑟𝑐 reaches the routing part of the model, where it is added to the part of the 

net rainfall that has bypassed the production store, i.e. 𝑃𝑟 = 𝑃𝑒𝑟𝑐 + (𝑃𝑛 − 𝑃𝑠).  

The routed water amount 𝑃𝑟 is divided into two flow components by a fixed ratio: 90% is 

routed by a unit hydrograph (UH1) and then a non-linear routing store, and 10% only by 

another unit hydrograph (UH2).  

Unit hydrographs 

At the current time step k, the outputs Q9 and Q1 of the unit hydrographs UH1 and UH2 

correspond to the convolution of the previous rainfalls by the distribution key corresponding 

to the UH ordinates. They are calculated by: 
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Groundwater exchange term 

A groundwater exchange loss (or gain) is then released (or added) from (to) both flow 

components. The potential half exchange, F, is calculated as proposed by Le Moine (2008): 

𝐹 = 𝑥2 (
𝑅

𝑥3
− 𝑥5)  

If 𝐹 > 0 the actual exchange gains (𝐹𝐺) are twice as F.  

If 𝐹 < 0, the actual exchange losses (𝐹𝐿) are limited by the water available in the routing store 

and by the flow components coming from the unit hydrographs: 

𝐹𝐿 = −[min(|𝐹|,   𝑅 + 𝑄9) + min (|𝐹|,  𝑄1)] 

Routing store 

Then the water content of the routing store R is updated by adding the output of the unit 

hydrograph UH1 (𝑄9) and removing (or adding) the exchange component F.  

The outflow from the routing store gives the first flow component 𝑄𝑟, and is calculated as: 

𝑄𝑟 = 𝑅{1 − [1 + (
𝑅

𝑥3
)
4

]

−
1

4

} 

The content of the routing store is updated by removing 𝑄𝑟 and will serve as initial condition 

for the next time step. 

Pseudo-direct flow component 

The output of the second unit hydrograph UH2 (Q1) provides the direct flow component 𝑄𝑑, 

after being subject to the same groundwater exchange component (loss or gain) F, as: 

𝑄𝑑 = max (0; 𝑄1 + 𝐹) 

Simulated flow 

Finally, the total streamflow at the outlet is given by the sum of the two flow components:  

𝑄 = 𝑄𝑟 + 𝑄𝑑 

 





 

 

 


