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Abstract

This thesis concerns the study of semilinear fourth-order elliptic boundary
value problems and, in particular, deals with qualitative properties of the solu-
tions. Such problems arise in various fields, from Plate Theory to Conformal Ge-
ometry and, compared to their second-order counterparts, they present intrinsic
difficulties, mainly due to the lack of the maximum principle.

It is well-known that in presence of Dirichlet boundary conditions the positivity
preserving property does not hold in general. On the other hand, if we consider
Navier boundary conditions, it is easy to infer positivity by decoupling the fourth-
order problem into a system of second-order problems. Therefore, it is interesting
to study this question in the case of Steklov boundary conditions, which are an in-
termediate situation between the former and the latter. These conditions naturally
appear in the study of the minimizers of the Kirchhoff-Love functional, which rep-
resents the energy of a hinged and loaded thin plate in dependence of a parameter
σ, usually referred to as the Poisson ratio.

In the first part of the thesis we find sufficient assumptions on the domain to
obtain the positivity of the minimizer of the Kirchhoff-Love functional in the phys-
ical relevant context regarding the parameter σ, extending a previous result by
Parini and Stylianou in [75]. Then, for such domains, we study a generalized ver-
sion of the functional, which corresponds to a semilinear Steklov boundary value
problem. In particular, using variational techniques, we investigate existence and
positivity of the ground states, as well as their asymptotic behaviour for the rele-
vant values of σ.

The second part of the work is focused on the special context of the criti-
cal dimension for the biharmonic operator, namely R4. Indeed, the well-known
Trudinger-Moser inequality, generalized to polyharmonic operators by Adams, al-
lows to consider exponential nonlinearities. In this setting, we establish uniform
a-priori bounds for solutions of a fourth-order semilinear problem endowed either
with Dirichlet or Navier boundary conditions, with a rather general positive and
subcritical nonlinearity. Our results complete the picture for the a-priori bounds
issue in the polyharmonic context, and complement the works of Oswald [73] and
Soranzo [85], which considered the same problem in the subcritical dimensions,
namely RN with N ≥ 5. Our argument combines some uniform estimates near
the boundary introduced by de Figuereido, Lions and Nussbaum in [29] and a
blow-up analysis in the spirit of Robert and Wei, [81]. Finally, using Krasnosel’skii
degree theory, we infer the existence of a positive solution for these problems. Our
results apply in the case of the ball and, under an additional assumption on the
solutions, extend to general smooth domains.



Résumé

Cette thèse concerne l’étude de certains problèmes elliptiques sémilinéaries
d’ordre 4 et, notamment, des propriétés qualitatives des solutions. Ces problèmes
apparaîssent dans nombreux domaines, par example dans la Théorie des Plaques
et dans la Géometrie Conforme et, comparés aux leur homologues du deuxième
ordre, ils présentent des difficultés intrinsèques, surtout liées à l’absence d’un prin-
cipe de maximum.

Il est bien connu que la propriété de préservation de la positivité n’est pas va-
lable en présence des conditions au bord de Dirichlet, en général. De l’autre côté,
si on considère les conditions au bord de Navier, on peut la montrer aisément, en
découplant le problème au quatrième ordre en un système d’ordre deux. Pour cette
raison, il est intéressant d’étudier le cas des conditions au bord de Steklov, qui se
posent entre les deux susmentionnées. Ces conditions apparaîssent naturellement
dans l’étude des minimiseurs de la fonctionnelle de Kirchhoff-Love, qui représente
l’énergie d’une plaque encastrée soumise à l’action d’une force extérieure, en dé-
pendence d’un paramètre σ, qui prend le nom de rapport de Poisson.

Dans la première partie de la thèse on trouve des conditions suffisantes sur le
domaine telles que les minimiseurs de la fonctionnelle de Kirchhoff-Love soient po-
sitifs dans le cadre physiquement significatif par rapport au paramètre σ, en géné-
ralisant un résultat de Parini et Stylianou de [75]. En plus, pour ces domaines, on
étudie une version généralisée de la fonctionnelle qui correspond à un problème
semilinéaire avec conditions de Steklov. En particulier, en utilisant des techniques
variationnelles, on examine l’existence et la positivité des états fondamentaux,
ainsi que leur comportement asymptotique pour les valeurs significatives de σ.

La deuxième partie de la thèse est consacrée au cadre special de la dimen-
sion critique pour l’opérateur biharmonique, notamment R4. En fait, la célèbre
inégalité de Trudinger-Moser, généralisée par Adams aux opérateurs polyharmo-
niques, permet de considérer des nonlinéarités exponentielles. Dans ce contexte,
on établie des estimations uniformes a-priori pour les solutions des problèmes se-
milinéaires d’ordre 4 avec conditions au bord de Dirichlet ou Navier et avec une
nonlinéarité positive et souscritique assez générale. Ces résultats complètent le ta-
bleau pour la question des estimations a-priori dans le contexte polyharmonique
et ils s’ajoutent aux travaux de Oswald [73] et de Soranzo [85], qui considéraient
le même problème dans les dimensions souscritiques, c’est-à-dire dans RN avec
N ≥ 5. Nos arguments combinent des estimations uniformes proche du bord qui
ont été introduites par de Figuereido, Lions et Nussbaum dans [29] et une mé-
thode de blow-up dans l’esprit de Robert et Wei, [81]. Enfin, en utilisant la théorie
du degré de Krasnosel’skii, on obtient l’existence d’une solution positive pour ces
problèmes. Nos résultats s’appliquent dans le cas de la boule et, sous une condition
supplémentaire sur les solutions, ils s’étèndent aux domaines réguliers bornés.



Sommario

Principale argomento di questa tesi è lo studio di problemi ellittici semilineari
di ordine quattro ed in particolare delle proprietà qualitative delle soluzioni. Pro-
blemi di questo tipo hanno origine in diversi ambiti, ad esempio nella Teoria delle
Piastre nella Geometria Conforme, e, rispetto agli analoghi del second’ordine, pre-
sentano intrinseche difficoltà, principalmente dovute all’assenza del principio di
massimo.

È noto che in presenza di condizioni al bordo di tipo Dirichlet in generale non
si ha la proprietà di preservazione della positività; d’altro canto, se si considerano
le condizioni al bordo di tipo Navier, è agevole dedurre la positività scomponendo
il problema del quart’ordine in un sistema di problemi di ordine due. Pertanto è
interessante studiare la medesima questione considerando le condizioni al bordo
di tipo Steklov, che si pongono come un caso intermedio tra le due precedenti.
Queste ultime sorgono in maniera naturale nello studio dei minimi del funzionale
di Kirchhoff-Love, il quale rappresenta, in dipendenza da un parametro σ, detto
rapporto di Poisson, l’energia di una piastra incastrata sottoposta all’azione di una
forza esterna.

Nella prima parte della tesi si ottengono condizioni sufficienti sul dominio per
stabilire la positività dei minimi del funzionale di Kirchhoff-Love nel contesto fisi-
camente rilevante per il parametro σ, estendendo un precedente risultato di Parini
e Stylianou in [75]. In seguito, per tali dominii viene studiata una generalizza-
zione del funzionale che corrisponde ad un problema semilineare con condizioni
di Steklov. In particolare, tramite tecniche variazionali, si studiano esistenza e
positività dei ground states, oltre al loro comportamento asintotico per i valori
significativi di σ.

La seconda parte della tesi è dedicata al caso speciale della dimensione cri-
tica per l’operatore biarmonico, ossia R4. Infatti la celebre disuguaglianza di
Trudinger-Moser, generalizzata ad operatori poliarmonici da Adams, consente di
considerare nonlinearità esponenziali. In questo contesto, otteniamo stime uni-
formi a priori per le soluzioni di problemi semilineari di ordine 4, sia in presenza
di condizioni al bordo di Dirichlet che di Navier, e per nonlinearità positive e sot-
tocritiche di carattere piuttosto generale. I nostri risultati completano il quadro
per tale questione nel contesto poliarmonico e complementano i lavori di Oswald
[73] e Soranzo [85], i quali considerarono il medesimo problema nelle dimensio-
ni sottocritiche, ossia in RN con N ≥ 5. La nostra analisi si fonda principalmente
su alcune stime uniformi in un intorno del bordo, prendendo spunto dalle cor-
rispettive di de Figuereido, Lions e Nussbaum in [29], e su una analisi di tipo
blow-up nello spirito di Robert e Wei, [81]. Infine, utilizzando la teoria del grado
topologico di Krasnosel’skii, viene dedotta l’esistenza di una soluzione positiva per
tali problemi. I nostri risultati si applicano al caso della bolla e, imponendo una
condizione ulteriore sulle soluzioni, si estendono a domìni limitati regolari.
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Chapter 1

Introduction

In the last decades, fourth order PDEs (and, more in general, higher-order PDEs)
have become an important research field. Arising from Physics or Differential Ge-
ometry, they are very challenging from an analytical point of view. One of the main
well-known reasons is that, in general, for these problems the maximum princi-
ple does not hold, and consequently many familiar techniques from second-order
equations do not extend to this context. Therefore, the development of several
new methods for their investigation turned out to be necessary.
In this thesis, the central focus is on semilinear fourth-order boundary value prob-
lems of the kind {

∆2u = h(x, u) in Ω,

B(x, u,Dαu) = 0 on ∂Ω,
(1.1)

where Ω ⊂ RN is a bounded domain, namely an open and connected subset of
RN , N ≥ 2, the bilaplace operator ∆2 is defined as f 7→ ∆2f := −∆(−∆f), and
B(x, u,Dαu) are compatible boundary conditions involving also the derivatives
of u. Moreover, in general, h will be a subcritical nonlinearity. We are mainly
interested in proving existence/nonexistence and positivity of (weak) solutions of
(1.1), as well as a priori estimates.

1.1 The positivity preserving property

The first case one usually studies when dealing with problems of the form (1.1), is
the one in which h does not depend on the unknown u, that is, the linear equation

∆2u = h(x) in Ω. (1.2)

This problem arises in the theory of plates: in this setting, Ω ⊂ R2 models a thin
plate and u represents the displacement from the unloaded horizontal position,
when subjected to an external force h. The first natural question that one may
wonder is the following: if the direction of the force is the same at every point,
does the whole plate bend in a coherent way or, conversely, are there some areas
in which it moves in the opposite direction? Expressing the question in mathemat-
ical terms: if h ≥ 0, is it true that u ≥ 0 in Ω? When this holds, we say that the
problem (1.2) satisfies the Positivity Preserving Property (shortly denoted by PPP).
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A large part of the literature tried to give a complete description of this phe-
nomenon. It turns out that the boundary conditions prescribed on ∂Ω have a
strong impact to the behaviour of solutions. As a first choice, one may impose
Navier boundary conditions, namely

u = ∆u = 0 on ∂Ω. (1.3)

As a consequence, (1.2)-(1.3) splits into a system of second-order Dirichlet prob-
lems by setting v := −∆u and the standard maximum principle applies.
If instead one considers the second natural choice to complement equation (1.2),
that is, Dirichlet boundary conditions

u = un = 0 on ∂Ω, (1.4)

where un stands for the outer normal derivative on ∂Ω, the situation is completely
different. Indeed, in this setting it is still an open question to characterize the class
of domains for which the PPP holds. So far, we know that for balls this property is
ensured, as the classical work of Boggio [12] shows; on the other hand, contrary
to the general expectation and to the first conjectures by Hadamard and Boggio
himself, it is not true that convexity and/or smoothness of the boundary are suffi-
cient conditions. There are several counterexamples in this direction: we refer to
[91] for a short survey or to the monograph [40] for details. Quite recently, some
authors, among which Dall’Acqua, Grunau, Robert and Sweers, have found some
classes of domains for which the PPP holds, namely, small smooth deformations of
the ball and of the limaçon, the latter in dimension 2 (see [25, 47]).

In the study of the thin plate model, a third kind of boundary conditions natu-
rally comes out, named after Steklov for their first appearance in [88]:

u = ∆u− a(x)un = 0 on ∂Ω, (1.5)

where, in general, a is a continuous function on ∂Ω. Indeed, the elastic energy of
a thin loaded plate is modeled by the Kirchhoff-Love functional

Iσ(u) :=

ˆ
Ω

(∆u)2

2
− (1− σ)

ˆ
Ω

det(∇2u)−
ˆ

Ω

fu. (1.6)

Here, f is the density of the force applied to the plate and σ is usually referred
to as the Poisson ratio, a parameter which measures the transverse expansion
(resp. contraction) of the material, according to its positive (resp. negative) sign,
when subjected to an external compressing force. More precisely, it is defined by
σ := λ

2(λ+µ)
, where the Lamé constants λ, µ, depend on the material, and usually

there holds λ ≥ 0 and µ > 0, so that 0 ≤ σ ≤ 1
2
. Although there exist some exotic

materials with negative Poisson ratio (see [55]), it is always true that σ > −1.
If now we assume that the plate is hinged on its boundary, namely fixed (u = 0

on ∂Ω) but, unlike the clamped case, we do not prescribe un = 0 on ∂Ω, then the
natural context to settle the problem is the Hilbert space H2(Ω)∩H1

0 (Ω). Minimiz-
ing the energy Iσ in this space gives the Euler equation

ˆ
Ω

(
∆u∆v + (1− σ)(2uxyvxy − uxxvyy − uyyvxx)− fv

)
dxdy = 0
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for all v ∈ H2(Ω) ∩H1
0 (Ω). Assuming more regularity of the minimizer u, that is,

u ∈ H4(Ω) and then integrating by parts, one finds that u is the solution of the
boundary value problem

∆2u = f in Ω,

u = 0 on ∂Ω,

∆u− (1− σ)κun = 0 on ∂Ω,

(1.7)

where κ stands for the signed curvature of ∂Ω (positive on strictly convex parts).
Notice that the second term in the energy functional Iσ has no influence on the
equation: its contribution is in the second boundary condition, which comes out
when integrating by parts. These Steklov boundary conditions may thus be con-
sidered as an intermediate situation between the Navier (when σ = 1) and the
Dirichlet boundary conditions (seen as the limit case as σ → +∞). For further
details on the physical model we refer to [97] as well as [22, p.250], while on the
derivation of (1.7) to [40, 42, 16, 92].

The question whether the PPP holds for the general Steklov problem (1.2)-(1.5)
has been addressed in [42] and a complete description of the possible scenarios
has been found: nonexistence, existence and positivity, existence without neces-
sarily positivity. However, these results for the solutions of (1.2)-(1.5) do not apply
immediately to the case of the minimizers of the Kirchhoff-Love functional Iσ. In-
deed, the two problems are equivalent only in the case of a smooth boundary.
Parini and Stylianou in [75] investigated directly this problem, finding that if Ω is
convex and its boundary is sufficiently smooth, namely of class C2,1, then one can
apply the results in [42] and thus obtain that any minimizer of Iσ is positive, once
a positive source f ∈ L2(Ω) is applied. The key point in their work consists of
showing that under these assumptions the functional Iσ may be rewritten in a
more convenient way, namely

Iσ(u) =

ˆ
Ω

|∆u|2

2
− (1− σ)

2

ˆ
∂Ω

κu2
n −
ˆ

Ω

fu. (1.8)

However, the high regularity which the authors assumed on ∂Ω was needed only
for technical reasons. In the first part of this thesis, we manage to relax the as-
sumptions on the boundary and obtain the same positivity statement:

Theorem 1.1.1. Let Ω ⊂ R2 be a bounded convex domain with boundary of class
C1,1. Suppose σ ∈ (−1, 1] and 0 ≤ f ∈ L2(Ω). Then the minimizer of the Kirchho�-
Love functional Iσ is positive in Ω.

The proof is achieved in the same spirit of [75] by means of a different density
argument, which allows to have a less regular boundary. Notice that these are
the least hypothesis we can consider to have a well-defined curvature κ ∈ L∞(Ω)
in (1.7). We believe that the result remains true assuming only for instance Lip-
schitz regularity on ∂Ω and, thus, considering directly the functional (1.6), but a
practicable way is still not clear.

The second main topic of the thesis is the study of semilinear problems of the
form (1.1). Again, the choice of the boundary conditions plays a big role. In gen-
eral, fourth-order problem like (1.1) are often endowed with Dirichlet or Navier
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boundary conditions. To have an overview of the main results available in the
literature, the best reference in this field is the book [40], where several eigen-
value and semilinear problems are collected. In this thesis, we investigate two
semilinear problems which arise in connection with two different questions in the
field. The first one is the direct prosecution of the previous analysis of the Steklov
boundary value problem (1.7) considering now a nonlinearity h = h(x, u), typi-
cally of power growth in the second variable. The main interest is to prove the
positivity of least-energy solutions in dependence of the boundary parameter σ, by
means of variational methods, and Chapter 2 is dedicated to this investigation.
The second part of the thesis, contained in Chapter 3, is devoted to the study of
a semilinear Dirichlet problem in R4, the critical dimension for the fourth-order
Sobolev embeddings. This means that by the Adams extension of the well-known
Trudinger-Moser inequality, exponential nonlinearities are allowed. Our main in-
terest is to prove uniform a-priori estimates for weak solutions, a crucial step in
order to infer the existence by topological methods.

Finally, we let at the end of the thesis a brief chapter where we point out some
open problems which arose during the present study, as well as an Appendix con-
taining some known results, which are useful in our analysis.

Before entering into the details of Chapters 2 and 3, we give here a brief
overview of those problems and sketch our principal results.

1.2 A semilinear problem associated to the Kirchho�-
Love functional

Let Ω ⊂ R2 be a bounded domain and F : Ω × R → R+. We study the following
generalization of the Kirchhoff-Love functional Iσ:

Jσ(u) :=

ˆ
Ω

(∆u)2

2
− (1− σ)

ˆ
Ω

det(∇2u)−
ˆ

Ω

F (x, u)dx,

where now we let σ be any parameter in R. In case we restrict σ to the physical
meaningful interval, the functional Jσ represents the elastic energy of a thin plate
with a fixed boundary and subjected to a density load which is related to the
displacement of the plate itself. The reader may consider F as a model for an
elastic force.

Our interest is focused on the least-energy critical points of Jσ, usually referred
to as ground states. In fact, these are the most interesting critical points from a
physical point of view and, moreover, a large number of variational techniques
apply. As mentioned before, in presence of a smooth boundary and via integration
by parts, one sees that ground states of Jσ correspond to least-energy solutions of
the problem {

∆2u = f(x, u) in Ω,

u = ∆u− (1− σ)κun = 0 on ∂Ω,
(1.9)

where f(x, s) := ∂sF (x, s).
In the literature, semilinear Steklov boundary value problems of kind (1.9) have
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begun to appear quite recently in a series of papers by Gazzola, Berchio, Weth and
many co-authors. They considered the associated eigenvalue problem{

∆2u = 0 in Ω,

u = ∆u− dun = 0 on ∂Ω,

highlighting typical features which make it really different from the usual second-
order eigenvalue problems, especially when dealing with isoperimetric issues (see
[38, 16, 6]). Moreover some subcritical and critical problems are addressed in [8,
9, 41, 7], in the case of general Steklov boundary conditions (1.5) with a constant
a ∈ R.

Our aim, instead, is to provide a rather complete description of the ground
states of the semilinear Kirchhoff-Love functional Jσ, with particular attention to
their existence and positivity. Setting f(x, u) = g(x)|u|p−1uwith p ∈ (0, 1)∪(1,+∞)
and 0 < g ∈ L1(Ω), first we prove a nonexistence result for large negative values
of σ (namely, for σ ≤ σ∗(Ω) ≤ −1) and existence for the complementary interval
σ > σ∗ by some variational arguments involving the Nehari manifold. Indeed, it
is well-known that the ground state solutions correspond to the minima on the
Nehari set

N := {u ∈ H2(Ω) ∩H1
0 (Ω) \ {0} | J ′σ(u)[u] = 0},

where J ′σ denotes the Fréchet derivative of the functional Jσ. This characterization
will be also used in the proof of their positivity. To this aim, we use different
techniques according to the value of σ and again, as the linear case, the convexity
of the domain is necessary in our arguments. Indeed, assuming ∂Ω of class C1,1

and exploiting the equivalent form of Jσ, if Ω is convex, then the curvature κ is
positive and the second term in (1.8) has a sign. Thus, a distinction between the
cases σ ∈ (σ∗, 1) and σ > 1 comes naturally. In the first one, which contains
the physical relevant interval, we deduce positivity comparing the value of Jσ on
a ground state with that on a multiple of its superharmonic function. Then, an
asymptotic analysis to the Navier problem yields an extension the positivity result
in a small right neighborhood of σ = 1. Finally, induced by a comparison with
the respective Dirichlet problem, which is positivity preserving in some special
domains, we are led to a stronger positivity result for ground states of Jσ by means
of Moreau’s dual cone decomposition.

We may summarize the main results of Chapter 2 as follows:

Theorem 1.2.1 (Existence, Positivity). Let Ω ⊂ R2 be a bounded convex domain
with ∂Ω of class C1,1 and let f(x, s) = g(x)|s|p−1s, with p ∈ (0, 1) ∪ (1,+∞) and
g ∈ L1(Ω), g > 0 a.e. in Ω. Then there exist σ∗ ≤ −1 and σ1 > 1 (depending on
Ω and the latter possibly in�nite) such that the functional Jσ has no positive critical
points if σ ≤ σ∗, while it admits (at least) a positive ground state if σ ∈ (σ∗, σ1).

Theorem 1.2.2 (Asymptotic behaviour). Under the previous assumptions for Ω and
f , let (uk)k be a sequence of ground states for the respective sequence of functionals
(Jσk)k. Up to a subsequence,

i) if σk ↘ σ∗, then uk → 0 in H2(Ω) in the case p > 1, while uk → +∞ in L∞(Ω)
if p ∈ (0, 1);
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ii) if σk → 1, then uk → u in W 2,q(Ω) for every q ≥ 1, where u is a ground state
for the Navier problem;

iii) if σk → +∞, then uk → U in H2(Ω), where U is a ground state for the Dirichlet
problem.

Notice that Theorem 1.2.1 might also be seen as an extension to the semilin-
ear setting of the main positivity results established by Gazzola and Sweers [42,
Theorem 4.1] for the linear case.

Two brief sections at the end of Chapter 2 complement our analysis. In the
first one we obtain further results for positive radial solutions when Ω is a ball in
R2, while in the second we investigate what happens if we assume that Ω is not
convex. We show that the aforementioned analysis still holds in those cases for
which the PPP holds for the corresponding Dirichlet problems. This will also show
that convexity is not a necessary hypothesis for positivity of the minimizer of the
linear Kirchhoff-Love functional Iσ.

1.3 A class of semilinear problems with exponential
nonlinearities

If in the first topic of the thesis the main role was played by the boundary condi-
tions, the central actors of its second part, contained in Chapter 3, are the expo-
nential nonlinearities. There are several reasons to study boundary value problems
with such nonlinearities, either coming from physical models, or from the Confor-
mal Geometry, or more from pure analytical questions.

The Gel’fand problem{
−∆u = λeu in Ω ⊂ RN , N ≥ 2,

u = 0 on ∂Ω,
(1.10)

arises in the study of the steady states of the parabolic problem{
vt = ∆v + λ(1− εv)me

v
1+εv in Ω,

v = 0 on ∂Ω,
(1.11)

in the approximation regime ε << 1. Usually, (1.11) is known as the solid fuel
ignition model and it is derived as a model of the thermal reaction process in
a combustible, non deformable material of constant density during the ignition
period. Here, λ is known as the Frank-Kamenetskii parameter, v is an adimensional
temperature and 1

ε
the activation energy.

The problem (1.10) arises also in the context of astrophysical models of stellar
structures. The total pressure of a gaseous star is given by the Stefan-Boltzmann
law as a sum of the kinetic and radiation pressure

P =
k

µH
ρT +

a

3
T 4,
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where ρ = ρ(r) is the density distribution inside the star, supposed to be a radial
quantity, T = T (r) is the temperature, and k, µ,H are physical constant, respec-
tively the Boltzmann constant, the mean molecular weight and the mass of the
proton. In the case of isothermal conditions, then we may write P = k̄ρ+ D̄, with
k̄, D̄ constants. Being interested in the density distribution ρ(r), and recalling the
equilibrium law for a gaseous star

dP

dr
= −GM(r)

r2
ρ,

where the mass M(r) enclosed inside a spherical surface of radius r is given by

M(r) =

ˆ r

0

4πt2ρ(t)dt,

we end up with

−4πGρ =
1

r2

d

dr

(
r2

ρ

dP

dr

)
= k̄

1

r2

d

dr

(
r2d(log ρ)

dr

)
.

The change of variable ψ(r) := log(ρ(r)) gives formally then

−∆ψ =
4πG

k̄
eψ.

For further details of this model, we refer to [18, p.155].

A second important motivation to the study of semilinear problems with expo-
nential growth emerges in the context of Differential Geometry. Let (M, g0) be a
compact Riemannian manifold of dimension N = 2 and K : M → R be a smooth
function. The interest is to find a metric g conformal to g0 (that is, which differs
from g0 only by a smooth positive factor) such that K is the scalar curvature of the
new metric g. Setting g = e2ug0, the problem is reduced to find solutions of

∆g0u+Ke2u = K0,

where ∆g0 denotes the Beltrami-Laplace operator of (M, g0) and K0 is the scalar
curvature of g0. In the planar case, that is, M being a domain in R2 endowed with
the Euclidean metric, then K0 = 0 and we retrieve once again equation (1.10).
This problem has been generalized to higher-dimensional Riemannian manifolds
(M, g0) by the introduction of the Paneitz operator in [74], for N = 4 defined as

Pg : f ∈ C∞(M) 7→ ∆2
gf + div(2

3
Rgg − 2Ricg)df,

where Rg and Ricg denote respectively the scalar and the Ricci curvatures of g.
Analogously to the 2-dimensional context, if we choose a conformally invariant
metric g = e4ug0, then the function u satisfies

Pgu+ 2Q0 = 2Qe4u, (1.12)

whereQ0 is the original Q-curvature of (M, g0) andQ is the prescribed Q-curvature
in the new metric g. The Q-curvature has been introduced by Branson and Ørsted
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in [10]. Moreover, in the special case of M being a domain of R4 and g0 the
Euclidean metric, the equation (1.12) reduces to

∆2u = 6e4u. (1.13)

Both equations (1.10) and (1.13) have been widely investigated in the context of
Conformal Geometry: for the Euclidean case, among others, we refer to [19, 60,
99, 65] for important characterizations of solutions with finite energy, as well as
[13, 59, 2, 80] for concentration-compactness issues.

The dimension 4 for the biharmonic operator and, more generally, the dimen-
sion 2m for the polyharmonic operator (−∆)m are in some sense peculiar. Indeed,
it is well known that the classical Sobolev embedding Hm

0 (Ω) ↪→ Lp(Ω), where
Ω ⊂ R2m is a smooth bounded domain, holds for any p ≥ 1 but fails for p = +∞.
Consequently, one may ask which is the maximal growth function g : R → R+

such that ˆ
Ω

g(u)dx < +∞ for all u ∈ Hm
0 (Ω).

When m = 1 and N = 2 the answer has been given independently by Pohožaev
in 1965 and Trudinger in 1967 and then refined by in 1979, showing that g is
exponential. More precisely, Moser obtained

sup
‖∇u‖N=1

ˆ
Ω

eα|u|
N
N−1

dx

{
≤ C|Ω|, if α ≤ αN ,

= +∞ if α > αN .
(1.14)

where αN = Nω
1

N−1

N−1, denoting by ωn the volume of the unit ball in dimension n.
Later on, in 1988, Adams generalized (1.14) to the polyharmonic context

sup
‖∇mu‖N

m
≤1

ˆ
Ω

eβ|u|
N

N−m
dx

{
≤ C|Ω|, if β ≤ βN,m,

= +∞ if β > βN,m,
(1.15)

where βN,m can be given explicitly in terms of Gamma functions. We also point
out a further generalization by Tarsi in [94] when Hm(Ω) is endowed with Navier
boundary conditions. These inequalities allowed to study problems like (1.10) and,
more generally, of type {

(−∆)mu = h(u) in Ω ⊂ R2m,

B(u) = 0 on ∂Ω,

where B(u) stands for either Dirichlet or Navier boundary conditions, and the
growth of t 7→ h(t) is controlled by an exponential map t 7→ et

2.

In this second part of the thesis we study the issue of finding uniform a-priori
bounds for positive weak solutions of the problems{

∆2u = h(x, u) in Ω,

u = un = 0 on ∂Ω,
and

{
∆2u = h(x, u) in Ω,

u = ∆u = 0 on ∂Ω,
(1.16)

when Ω is a smooth bounded domain in R4 and h has in general an exponential
growth in the second variable. In other words, we look for a constant C, de-
pending on the domain and on the nonlinearity, such that for any solution of each

8



problem (1.16) it holds ‖u‖L∞(Ω) ≤ C.
A priori bounds have attracted much attention since the work of Brezis and

Turner [14] in 1977. Indeed, beside their own interest, they often play an im-
portant role in the analysis of the existence of positive weak solutions by means
of Liouville’s theorems or topological methods. If we go back to the second-order
Dirichlet problems in dimension N ≥ 3, and hence with a power-type nonlinear-
ity, the question has been addressed in the seminal paper by Gidas and Spruck
[43] where the authors first developed the blow-up technique to treat subcritical
nonlinearities satisfying a sort of separation of variables at infinity, namely

lim
s→+∞

f(x, s)

sp
= a(x) ∈ C(Ω), 1 < p < 2∗ − 1 :=

N + 2

N − 2
, (1.17)

uniformly in x ∈ Ω. Almost at the same time, de Figueiredo, Lions and Nussbaum
obtained in [29] a similar result using a different approach based on the moving
planes method. In the critical dimension 2, in virtue of the Trudinger-Moser in-
equality, the aforementioned results may suggest that an a-priori bound can be
established up to the critical nonlinearity t 7→ et

2. Nevertheless, this turns out to
be false. Indeed, as the seminal paper by Brezis and Merle [13] shows, a-priori
estimates may be found only if the growth is exponential or less: they provide
examples of unbounded solutions of the problem{

−∆u = V (x)eu
α in Ω ⊂ R2,

u = 0 on ∂Ω,
(1.18)

with α ∈ (1, 2) and 0 ≤ V ∈ C(Ω). On the other hand, they established that if
the potential V is positive and bounded and α = 1, solutions of (1.18) are locally
uniformly bounded inside Ω, assuming an L1 control on the right-hand side. This,
together with some estimates near the boundary in [29], proves the global state-
ment, at least for convex domains. See also [20] for similar issues.

In the higher-order framework, the usual distinction regarding the boundary
conditions is again essential: indeed, the second problem in (1.16) can be studied
as a system of second-order Dirichlet problems, while the first in (1.16) has to face
the lack of the maximum principle. Therefore, the polyharmonic generalization
of the uniform estimates of Gidas-Spruck and de Figueiredo-Lions-Nussbaum has
been carried out in [73, 85] when Ω ⊂ R2m is a ball. An acute extension of these
works appeared in [77, 78], where the authors managed to settle the problem in
any smooth domain of R2m, by proving a Liouville’s type result in the half-space.

Concerning the polyharmonic case with an exponential nonlinearity, only few
results are known and they only deal with the special nonlinearity h(x, u) =
V (x)eu, with V ≥ 0. Regarding the Dirichlet problem, the analysis in [13] has
been extended to the fourth-order case by Adimurthi, Robert and Struwe in [2]
and to the general polyharmonic context by Martinazzi in [66]; uniform bounds
for the Navier problem have been established by Lin and Wei, see [61, Corollary
2.3]. A parallel field of research is devoted to the study of the mean field equation

(−∆)mu = ρ
V (x)eu´

Ω
V (x)eudx

in Ω ⊂ R2m,
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especially dealing with concentration-compactness issues with respect to the pa-
rameter ρ. We refer to [70, 63] for the second-order problem and to [98, 81] for
the fourth-order generalization, as well as to the references therein.

It is worth to mention that in [58] Lorca, Ubilla and Ruf establish uniform
a-priori bounds in presence of exponential nonlinearities for a different operator,
namely the N -laplacian in its critical dimension N ; the nonlinearities involved
there are either growing less than et

α for some α ∈ (0, 1), or behaving like et.
The authors use Orlicz spaces techniques to cover the first alternative and some
arguments inspired by Brezis and Merle for the second case. Although in his Ph.D.
thesis [76, Chapter 6] Passalacqua improved their result, allowing a larger class of
nonlinearities, the gap between the growths etα and et was not completely filled:
for instance, the growth f(t) = et(1 + t)−α with α > 1 was not allowed. Covering
the remaining cases seems not attainable with those techniques. Let us also men-
tion in passing that a similar gap occurs also when dealing with coupled elliptic
systems in critical dimension, see [30].

Here, instead, we consider directly problems (1.16) with a general positive non-
linearity h which is assumed superlinear and subcritical or critical in the sense of
Brezis-Merle; our main results may be roughly summarized in the following Theo-
rems 1.3.1 (for the Dirichlet case) and 1.3.2 (regarding the Navier case), while the
precise statements will be given in Chapter 3. In particular we shall mainly focus
on the first, due to the lack of all second-order tools based on maximum princi-
ples. This is the main motivation for which we are restricting to the case of the ball.
Nonetheless, we shall show that the result still applies to any smooth bounded do-
main Ω provided a control on the energy of solutions is assumed (Theorem 3.4.1),
or a good boundary behaviour of the Green function holds (cf. Remark 20).

Theorem 1.3.1. Let B ⊂ R4 be a ball and h be a positive nonlinearity such that

lim
t→+∞

h(x, t)

f(t)
= a(x) ∈ C(B̄)

uniformly in B̄ and let f ∈ C1(R,R+) be increasing, superlinear and satisfy

lim
t→+∞

f ′(t)

f(t)
∈ [0,+∞). (1.19)

Then, there exists a positive constant C = C(h) such that for any weak solution u
of the Dirichlet problem {

∆2u = h(x, u) in B,
u = un = 0 on ∂B,

(1.20)

there holds ‖u‖L∞(B) ≤ C.

On the other hand, the same result in presence of Navier boundary conditions
applies for any smooth bounded convex domain.
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Theorem 1.3.2. Let Ω ⊂ R4 be a smooth convex domain and h be as in Theorem
1.3.1. Then, there exists a positive constant C̄ = C̄(h,Ω) such that for any weak
solution u of the Navier problem{

∆2u = h(x, u) in Ω,

u = ∆u = 0 on ∂Ω,
(1.21)

there holds ‖u‖L∞(Ω) ≤ C̄.

Let us remark that assumption (1.19) means that f is "controlled" by the map
t 7→ eγt for some γ > 0 for large values of t. We also point out that our results are
sharp, in the sense that if the function f behaves like t 7→ et

α for some α ∈ (1, 2),
then we provide examples of unbounded solutions of both (1.20) and (1.21).

The main argument which proves Theorems 1.3.1 and 1.3.2 may be sketched
as follows. Firstly we obtain uniform boundary estimates for any solution of the
problems (1.20)-(1.21). This leads to a uniform L1-estimate of the right-hand
side h(x, u). Here, the main obstructions concerning the Dirichlet problem are
mainly due to the lack of the maximum principle and of good Green function es-
timates near the boundary. Then, assuming by contradiction the existence of an
unbounded sequence of solutions, we apply a blow-up strategy inspired by [81]
leading to a problem in the whole R4. A contradiction is found by means of a
Pohožaev identity.

An application of the Krasnosel’skii genus theory permits to infer from Theo-
rems 1.3.1-1.3.2 the existence of a positive solution for the problems (1.20)-(1.21):

Theorem 1.3.3. If in addition to the assumptions of Theorem 1.3.1 and with the
notation therein, suppose also that there holds

lim sup
t→0+

h(x, t)

t
< λ̃1 uniformly in B, (1.22)

where λ̃1 is the �rst eigenvalue of ∆2 with the Dirichlet boundary conditions. Then
problem (1.20) admits a positive solution.

A similar statement holds also for the Navier problem (1.21). We remark that
the additional assumption (1.22) is not only a matter of technicality but in some
cases it is also necessary for the existence.

Finally, we conclude Chapter 3 providing some generalizations of Theorem
1.3.1: to a larger class of domains, as briefly mentioned before, under some addi-
tional assumptions on solutions in the spirit of Brezis-Merle, and to the respective
polyharmonic problems.

1.4 Notation

Throughout the whole thesis, we use the following notation.
Let N ≥ 2. We say Ω ⊂ RN is a domain when it is open and connected; more-

over, Ω has a boundary of class Ck,α with α ∈ (0, 1) (resp. Ck,1) when ∂Ω can be
described in local coordinates by a Ck function with α - Hölder (resp. Lipschitz)
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continuous k-th derivatives. Moreover, dΩ(x) denotes the distance of x ∈ Ω from
the boundary ∂Ω.

The topological dual of a normed space X is denoted by X∗. Moreover, dx de-
notes the standard Lebesgue metric and dσ the Hausdorff measure on the bound-
ary. When the context is clear, they are is usually omitted.

We denote by ∇ku the tensor of the derivatives of u of order k and |∇ku| its
euclidean norm, namely

|∇ku|2 :=
∑
|α|=k

|Dαu|2,

where the sum is on all multi-indices with length k. In particular ∇2u stands for
the Hessian matrix of u. The derivatives may be denoted also by subscripts (ux,
uxy, ...), and un and uτ are the normal and the tangential derivative of u, n and τ
being respectively the unit exterior normal and the unit tangent vector.

In the sequel, C indicates a generic constant, whose value may vary from line
to line, and also within the same line.

Finally, we recall the definition of Sobolev spaces and their embeddings into
Lebesgue and classical spaces. Let Ω be a Lebesgue-measurable subset of RN and
let p ∈ (0,+∞] and k ∈ N: we define

W k,p(Ω) := {f ∈ Lp(Ω) | ∃ weak derivative Dαf ∈ Lp(Ω), ∀|α| ≤ k},

α being a multi-index, endowed with the norm

‖f‖Wk,p(Ω) =


( ∑
|α|≤k
‖Dαf‖pp

)1/p

if 1 ≤ p <∞,

max|α|≤k(‖Dαf‖∞) if p =∞,
where ‖ · ‖p is denoting the usual norm in Lp(Ω).
The Hilbert spaces W k,2(Ω) are usually denoted by Hk(Ω) and, moreover, we de-

fine Hk
0 (Ω) := C∞c (Ω)

‖·‖
Hk(Ω), namely the completion of the space of smooth func-

tion which are compactly supported in Ω in the norm of Hk(Ω). Equivalently, Hk
0

may be seen as the subspace of Hk(Ω) of functions which have zero trace on the
boundary. Finally, we recall that the space W s,p with s ∈ (0, 1) denotes the frac-
tional Sobolev space endowed with the Gagliardo seminorm. We refer to [32] for
a survey about the main properties of these spaces.

Lemma 1.4.1 (Sobolev embeddings, see for instance Theorem 4.12 [1]). Let Ω ⊂
RN satisfy the strong Lipschitz condition1 and let j ≥ 0, m ≥ 1 be integers and
1 ≤ p < +∞.
• If either mp > N or m = N and p = 1, then Wm,p(Ω) ↪→ Lq(Ω) for p ≤ q ≤ +∞;
• If mp = N , then Wm,p(Ω) ↪→ Lq(Ω) for p ≤ q < +∞;
• If mp < N , then Wm+j,p(Ω) ↪→ W j,q(Ω) for p ≤ q ≤ p∗ := Np

N−mp ;

• If mp > N > (m− 1)p, then Wm+j,p(Ω) ↪→ Cj,λ(Ω) for all 0 < λ < m− N
p
;

• If N = (m− 1)p, then Wm+j,p(Ω) ↪→ Cj,λ(Ω) for all 0 < λ < 1.
Moreover, if |Ω| < +∞, then the embeddings into Lebesgue or Sobolev spaces hold
also for 1 ≤ q ≤ p.

1For a de�nition of the Strong Local Lipschitz Condition, see [1, �4.9]; if Ω is bounded, it simply
reduces to the condition of a locally Lipschitz boundary.

12



Chapter 2

Fourth-order problems related to the

Kirchho�-Love functional.

In this first part of the thesis, we study a generalization of the Kirchhoff-Love
functional, namely

Jσ(u) :=

ˆ
Ω

(∆u)2

2
− (1− σ)

ˆ
Ω

det(∇2u)−
ˆ

Ω

F (x, u)dx,

where Ω ⊂ R2 is a bounded domain, the parameter σ lies in R and F : Ω×R→ R+

has a power growth in the second variable. Since we suppose the plate to be
hinged, the appropriate setting in order to look for critical points of Jσ is the
Hilbert space H2(Ω) ∩H1

0 (Ω).
Firstly, we study the linear functional, namely when F (x, u) = f(x)u, looking

for sufficient conditions which yield positivity for the (unique) minimizer in the
physical relevant context, that is, when σ ∈ (−1, 1]. Section 2.1 is devoted to this
analysis, which extends a previous result by Parini and Stylianou in [75].

In Section 2.2 we investigate the functional Jσ with a general nonlinearity
F (x, u). We focus on ground states, which are the least-energy critical points, and
we distinguish between subquadratic and superquadratic growth of F . In the first
case, existence and positivity of ground states basically follow along the same lines
as for the linear case; on the other hand, in the second case, more sophisticated
variational techniques are involved, namely the method of the Nehari manifold.
We start our analysis in Subsection 2.2.1 in the same setting for σ as we did for
the linear functional Iσ, that is σ ∈ (−1, 1]. Then Subsections 2.2.2-2.2.6 are
devoted to the study of existence and positivity outside the interval (−1, 1], where
different techniques are required to deduce positivity, in particular when σ > 1,
as the second term of the functional changes sign. To this aim, but also as an
independent goal, we also investigate the asymptotic behaviour of ground states
solutions for the extremal values of σ, as well as for the Navier and Dirichlet
cases (Subsections 2.2.3-2.2.5). Finally, further results for radial solutions and for
positivity in nonconvex domains are given in Subsections 2.2.7 and 2.2.8.

This chapter, with the exception of Subsection 2.2.8, is an adaptation of the
paper [82].
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2.1 The linear Kirchho�-Love functional

Let Ω be a bounded domain in R2, the parameter σ lie in the physical meaningful
interval (−1, 1] and consider the functional Jσ with F (x, u) = f(x)u. With this
special choice, we retrieve the standard Kirchhoff-Love functional

Iσ :=

ˆ
Ω

(∆u)2

2
− (1− σ)

ˆ
Ω

det(∇2u)−
ˆ

Ω

f(x)udx,

which represents the energy of the thin hinged plate Ω under the action of the
vertical external force of density f . We recall that, formally, via integration by parts
one finds that the minima of Jσ are solutions of the linear fourth-order Steklov
problem {

∆2u = f in Ω,

u = ∆u− (1− σ)κun = 0 on ∂Ω.
(2.1)

The main interest, therefore, is to analyse whether the positivity preserving prop-
erty holds for such solutions, when dealing with a nonnegative source term f .
A first positive answer to this problem can be found in [75], where the authors
proved the following:

Theorem 2.1.1 ([75], Theorem 3.1). Let Ω be a bounded convex domain in R2 with
a boundary of class C2,1. Assume σ ∈ (−1, 1] and f ∈ L2(Ω). Then the minimizer
uσ of Iσ is the unique solution in H2(Ω)∩H1

0 (Ω) of (2.1). If, moreover, f ≥ 0 and
f 6= 0, then uσ > 0 in Ω.

As briefly mentioned in the Introduction, the strategy of the proof is to show
that the second term appearing in the functional Iσ can be equivalently rewritten
as a boundary term depending on the curvature and, thus, it does not influence
the equation inside the domain.

What stands out in the statement of Theorem 2.1.1 are the geometric assump-
tions on the domain: the convexity and the regularity of the boundary. It is known
that if we "reject" both of them, e.g. considering an L-shaped domain, peculiar phe-
nomena occur near the re-entrant corner (see [72]). Nevertheless, we may wonder
to what extent this result holds true when assuming either less regularity on the
boundary or when dealing with nonconvex (but sufficiently smooth) domains. A
remark which supports the idea that those assumptions may be refined is that, in
the proof of Theorem 2.1.1, the C2,1 regularity of ∂Ω is necessary only because the
authors take advantage of the density of H3(Ω) ∩H1

0 (Ω) into H2(Ω) ∩H1
0 (Ω). The

feeling was that this seemed to be only a technical requirement and this actually
turned out to be true. Indeed, by a different density argument, we prove that the
PPP holds relaxing the regularity of the boundary:

Theorem 2.1.2. Let Ω ⊂ R2 be a bounded convex domain with boundary of class
C1,1. Suppose σ ∈ (−1, 1] and f ∈ L1(Ω). If f ≥ 0 and f 6= 0, then the minimizer
of the Kirchho�-Love functional Iσ is positive in Ω.

After a first subsection in which we gather some preliminary results about
equivalence of norms in H2(Ω) ∩H1

0 (Ω), the whole section is devoted to the proof
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of Theorem 2.1.2. Again, the key point will be the equivalent formulation of the
second term in Iσ as in [75], but our proof relies on a subtler density argument
due to Stylianou, [89, Theorem 2.2.4].

The second issue about the convexity assumption is left at the end of the chap-
ter, see Subsection 2.2.8. We anticipate here that we will show a class of noncon-
vex (but very smooth) domains in which the PPP still holds.

2.1.1 Equivalence of norms in H2(Ω) ∩H1
0(Ω)

We begin recalling some known useful facts about equivalence of norms in the
Hilbert space H2(Ω) ∩H1

0 (Ω).

De�nition 2.1.1. We say that Ω ⊂ RN satis�es a uniform external ball condition
if there exists R > 0 such that for all x ∈ ∂Ω there exists a ball BR of radius R such
that x ∈ ∂BR and BR ⊂ RN \ Ω.

Lemma 2.1.3. Let Ω ⊂ RN bounded with a Lipschitz boundary. Then ‖|∇2 · |‖2

and ‖ · ‖H2(Ω) are equivalent norms on H2(Ω) ∩ H1
0 (Ω). If in addition Ω satis�es

a uniform external ball condition, then also ‖∆ · ‖2 de�nes an equivalent norm on
H2(Ω) ∩H1

0 (Ω).

Proof. We refer to [71, Corollary 5.4] for a proof of the �rst statement, while the
second is due to Adolfsson, see [3].

Throughout the whole chapter, C0 = C0(Ω) and CA = CA(Ω) denote the smallest
positive constants such that

‖u‖2
H2(Ω) := ‖u‖2

2 + ‖|∇u|‖2
2 + ‖|∇2u|‖2

2 ≤ C0‖|∇2u|‖2
2 (2.2)

and
‖u‖2

H2(Ω) ≤ CA‖∆u‖2
2 (2.3)

for every u ∈ H2(Ω) ∩H1
0 (Ω).

The next result states that the first two terms of Iσ together are interpretable
as a square of an equivalent norm in our space H2(Ω) ∩H1

0 (Ω).

Lemma 2.1.4. Let Ω ⊂ RN bounded with a Lipschitz boundary and σ ∈ (−1, 1).
Then

‖u‖Hσ(Ω) :=

( ˆ
Ω

(∆u)2 − 2(1− σ)

ˆ
Ω

det(∇2u)

) 1
2

(2.4)

de�nes a norm on H2(Ω) ∩H1
0 (Ω) equivalent to the standard one.

Proof. Firstly

‖u‖2
Hσ(Ω) =

ˆ
Ω

u2
xx + u2

yy + 2u2
xy + 2σ(uxxuyy − u2

xy)

≤ ‖|∇2u|‖2
2 + 2|σ|

(
u2
xx + u2

yy

2
+ u2

xy

)
= (1 + |σ|)‖|∇2u|‖2

2.
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Moreover, one has

‖u‖2
Hσ(Ω) =

ˆ
Ω

u2
xx + u2

yy + 2(1− σ)u2
xy + 2σuxxuyy

≥
ˆ

Ω

u2
xx + u2

yy + 2(1− σ)u2
xy − |σ|(u2

xx + u2
yy) ≥ (1− |σ|)‖|∇2u|‖2

2.

(2.5)

The proof is completed by applying Lemma 2.1.3 and noticing that the map

(u, v)Hσ 7→
ˆ

Ω

∆u∆v − (1− σ)

ˆ
Ω

uxxvyy + uyyvxx − 2uxyvxy

de�nes a scalar product on H2(Ω) ∩H1
0 (Ω) for every σ ∈ (−1, 1) by (2.5).

2.1.2 A crucial identity

A rather standard technique which is often used to prove positivity of least-energy
solutions in the context of fourth-order problems is the method of the superhar-
monic function. Roughly speaking, by means of Iσ, we compare our minimizer u
with the function ũ defined as the unique element of H2(Ω) ∩H1

0 (Ω) such that{
−∆ũ = |∆u| in Ω,

ũ = 0 on ∂Ω.

It is easy to see by maximum principle that ũ > |u|, so we can compare the re-
spective first and third term of Iσ. Nevertheless, we have no information about
the behaviour of the determinant of the Hessian matrix of ũ with respect to the
same term of u. The strategy applied by Parini and Stylianou to overcome this
problem when dealing with smooth and convex domains, was to rewrite it in an
appropriate way and transform it into a boundary term. Here, we want to obtain
the same result also for a less smooth domain.

Theorem 2.1.5. Let Ω ⊂ R2 be a bounded domain of class C1,1. Then, for all
u ∈ H2(Ω) ∩H1

0 (Ω): ˆ
Ω

det(∇2u) =
1

2

ˆ
∂Ω

κu2
n. (F)

We split the proof in several lemmas, the starting point being a careful integra-
tion by parts inferred by Parini and Stylianou. For any u ∈ H2(Ω), set

K(u) :=

ˆ
Ω

det(∇2u)dx. (2.6)

Then, for any C∞(Ω), we have

〈K ′(u), ϕ〉 :=

ˆ
Ω

(ϕxxuyy + ϕyyuxx − 2ϕxyuxy).

It is thus clear that we can study K ′ instead of K as 〈K ′(v), v〉 = 2K(v) follows
from the definitions.
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Lemma 2.1.6. Let Ω ⊂ R2 be a bounded domain of class C1,1. Then for all v ∈
H2(Ω) and ϕ ∈ C∞(Ω) there holds

〈K ′(v), ϕ〉 =

ˆ
∂Ω

(κϕnvn + ϕττvn − ϕτnvτ ). (FPS)

Hence, for any v ∈ C∞(Ω):

K(v) =
1

2
〈K ′(v), v〉 =

1

2

ˆ
∂Ω

(κv2
n − (vnτ + vτn)vτ ). (FPS2)

Proof. The identity (FPS) can be found in [75, Lemma 2.5]. We give here the proof
for sake of completeness. Denote by ni, τi, i = 1, 2 the i -th coordinate of the unit
vectors n, τ . Integrating by parts, one obtainsˆ

Ω

ϕxyvxy =

ˆ
∂Ω

(ϕxyvxn2 − ϕxyyvn1) +

ˆ
Ω

ϕxxyyv

=

ˆ
∂Ω

(ϕxyvyn1 − ϕxxyvn2) +

ˆ
Ω

ϕxxyyv

and ˆ
Ω

ϕxxvyy =

ˆ
∂Ω

(ϕxxvyn2 − ϕxxyvn2) +

ˆ
Ω

ϕxxyyv,

ˆ
Ω

ϕyyvxx =

ˆ
∂Ω

(ϕyyvxn1 − ϕxyyvn1) +

ˆ
Ω

ϕxxyyv.

Notice that if ∂Ω ∈ C1,1, κ is well-de�ned in L∞(∂Ω) and the following relation
holds (see, for instance, [87, Chapter 4]):

∆ϕ = ϕnn + ϕττ + κϕn.

Moreover, recalling the decompositions ϕx = n1ϕn + τ1ϕτ and ϕy = n2ϕn + τ2ϕτ , we
have

〈K ′(v), ϕ〉 =

ˆ
∂Ω

(ϕxxvyn2 + ϕyyvxn1 − ϕxyvxn2 − ϕxyvyn1)

=

ˆ
∂Ω

∆ϕvn −
ˆ
∂Ω

(ϕxxvxn1 + ϕyyvyn2 + ϕxyvxn2 + ϕxyvyn1)

=

ˆ
∂Ω

∆ϕvn −
ˆ
∂Ω

((ϕx)nvx + (ϕy)nvy)

=

ˆ
∂Ω

(∆ϕvn − (n1vx + n2vy)ϕnn − (τ1vx + τ2vy)ϕτn)

=

ˆ
∂Ω

(ϕττvn − ϕτnvτ + κϕnvn).

Let now ϕ = v ∈ C∞(Ω). Since ∂Ω is a closed curve and by the de�nition of the
tangential derivative (i.e. as d

ds
u(γ(s)), where γ is the parametrization of the curve

∂Ω in the arch parameter s), thenˆ
∂Ω

(vnτvτ + vnvττ ) =

ˆ
∂Ω

(vnvτ )τ = 0,

and (FPS2) follows.
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The remaining strategy for the proof of Theorem 2.1.5 consists of two steps:
using (FPS2), we firstly prove that (F) holds also for every v ∈ C1,1

0 (Ω) := {u ∈
C1,1(Ω) | u|∂Ω = 0}; then, by a density result, we transfer (F) from C1,1

0 (Ω) to
H2(Ω) ∩ H1

0 (Ω). We will make use of the following Lemma, which makes a well-
known result more precise:

Lemma 2.1.7. Let Ω ⊂ RN be a bounded domain of class C1 and u ∈ C1,1(Ω).
Then there exists a sequence (uk)k∈N ⊂ C∞(Ω) such that uk → u in H2(Ω) and
‖uk‖W 2,∞(Ω) ≤ C‖u‖W 2,∞(Ω) for some positive constant C.

Proof. First of all notice that C1,1(Ω) can be equivalently seen as W 2,∞(Ω), which
is a subset of H2(Ω) since Ω is a bounded domain; moreover the fact that C∞(Ω)
is dense in H2(Ω) in H2(Ω) norm if ∂Ω is of class C1 is a standard fact (see [36,
section 5.3.3, Theorem 3]), so the only statement to be veri�ed is the W 2,∞(Ω)
estimate. Since the main tool in the proof of the H2(Ω) convergence is the local
approximation, which is achieved by molli�cation, we only have to prove that the
same inequality holds there. So, let v ∈ L∞(Ω), ε > 0 and consider

vε(x) := (ηε ∗ v)(x) =

ˆ
Bε(0)

ηε(y)v(x− y)dy,

where ηε is the standard molli�er in RN , that is ηε := ε−nη(x
ε
) and

η(x) = C̃e
1

|x|2−1χB1(0)(x),

where C̃ > 0 such that
´
B1(0)

η(z)dz = 1. So vε is well-de�ned in Ωε := {x ∈
Ω | d(x, ∂Ω) > ε}, we have vε ∈ C∞(Ωε) and

´
Bε(0)

ηε(z)dz = 1 holds.
We claim that ‖vε‖L∞(Ωε) ≤ ‖v‖L∞(Ω). Indeed,

‖vε‖L∞(Ωε) ≤ sup
x∈Ωε

ˆ
Bε(0)

|ηε(z)||v(x− z)|dz ≤ ‖v‖L∞(Ω)

ˆ
Bε(0)

|ηε(z)|dz = ‖v‖L∞(Ω).

The same inequality holds also for derivatives of v, because for any admissible mul-
tiindex α we have Dα(vε) = (Dα(v))ε (see [44, Lemma 7.3]). At this point, following
the aforementioned proof of [36], it is easy to derive the desired result.

Proposition 2.1.8. Let Ω ⊂ R2 be a bounded domain of class C1,1. Then, for all
u ∈ C1,1

0 (Ω): ˆ
Ω

det(∇2u) =
1

2

ˆ
∂Ω

κu2
n.

Proof. Applying Lemma 2.1.7, let (uk)k∈N ⊂ C∞(Ω) be a sequence converging to u
in H2(Ω), whose norms in W 2,∞ are controlled by the W 2,∞ norm of u. By (FPS2),
we know that

K(uk) =
1

2

ˆ
∂Ω

[κ(uk)
2
n − ((uk)nτ + (uk)τn)(uk)τ ].
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By the convergence in H2(Ω), using the de�nition (2.6) of K, one clearly has
K(uk) → K(u); moreover, since κ ∈ L∞(∂Ω) and using the trace theorem, one
can deduce also ˆ

∂Ω

κ(uk)
2
n →

ˆ
∂Ω

κu2
n.

Finally we have to consider the terms in which tangential derivatives are involved.
Similarly to the normal derivative, one has (uk)τ → uτ in L2(∂Ω), so (uk)τ → 0 in
L2(∂Ω), since u|∂Ω = 0. Furthermore,

(uk)nτ = ∇(uk)n · τ = ∇(∇uk · n) · τ = (∇2uk · n+∇uk · ∇n) · τ

and (see [87, Chapter 4])

(uk)τn =
2∑

i,j=1

∂2uk
∂xi∂xj

τinj

and one can infer that (uk)nτ and (uk)τn are uniformly bounded in L2(∂Ω). In fact,
since (uk)k ⊂ C∞(Ω) and using Lemma 2.1.7:

‖(uk)nτ‖L2(∂Ω) ≤ |∂Ω|1/2‖(uk)nτ‖L∞(∂Ω)

≤ |∂Ω|1/2(‖|∇2uk · n|‖L∞(∂Ω) + ‖|∇uk · ∇n|‖L∞(∂Ω))

≤ 2|∂Ω|1/2‖n‖W 1,∞(∂Ω)‖uk‖W 2,∞(Ω) ≤ C(Ω)‖u‖W 2,∞(Ω)

and similarly for (uk)τn. Consequently,

ˆ
∂Ω

(
(uk)nτ + (uk)τn

)
(uk)τ → 0.

In order to extend (F) to the space H2(Ω) ∩ H1
0 (Ω), we need a density result

(Lemma 2.1.9 below) which is taken from [89, Theorem 2.2.4] and which can
be adapted to our context: in fact, it concerns C2 functions and diffeomorphisms
but, with a little care, one can obtain the same result also in the class C1,1.

De�nition 2.1.2. ([1], �3.40, p.77) Let Φ be a one-to-one transformation of a do-
main Ω ⊂ RN onto a domain G ⊂ RN having inverse Ψ := Φ−1. We say that
Φ is a C1,1 di�eomorphism if, writing Φ = (Φ1, ..., ΦN) and Ψ = (Ψ1, ..., ΨN), then
Φi ∈ C1,1(Ω) and Ψi ∈ C1,1(G) for every i ∈ {1, ..., N}.

Lemma 2.1.9. Let Ω ⊂ RN be bounded and open such that for every x ∈ ∂Ω there
exists a j ∈ {0, ..., N − 1}, ε > 0 and a C1,1-di�eomorphism Φ : RN → RN , such
that the following hold:

• Φ(x) = 0;

• Φ(Bε(x) ∩ Ω) ⊂ Sj := {x = (x1, ..., xN) ∈ Ω |xi > 0 ,∀i > j};

• Φ(Bε(x) ∩ ∂Ω) ⊂ ∂Sj.
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Then:

C1,1
0 (Ω)

‖·‖H2(Ω)
= H2(Ω) ∩H1

0 (Ω).

Proof of Theorem 2.1.5. Let u ∈ H2(Ω) ∩ H1
0 (Ω); since the assumptions on the

boundary are clearly ful�lled if ∂Ω is of class C1,1, applying Lemma 2.1.9 we get
an approximating sequence (uk)k∈N ⊂ C1,1

0 (Ω) converging in H2(Ω) to u. With the
same steps as in the proof of Proposition 2.1.8, by the H2(Ω) convergence, we have
both K(uk)→ K(u) and

´
∂Ω
κ(uk)

2
n →

´
∂Ω
κu2

n and one concludes by the uniqueness
of the limit.

2.1.3 Existence and positivity for the minimizer of Iσ

Assuming that ∂Ω is of class C1,1, Theorem 2.1.5 enables us to rewrite the func-
tional Iσ in a more convenient way, namely

Iσ(u) =

ˆ
Ω

(∆u)2

2
− 1− σ

2

ˆ
∂Ω

κu2
n −
ˆ

Ω

f(x)u.

for every u ∈ H2(Ω) ∩H1
0 (Ω). With this formulation, now we are able to establish

the positivity of the minimizer of the functional Iσ in convex domains with bound-
ary of class C1,1 if the density function f(x) is nonnegative. We will make use of
the method of the superharmonic function, which goes back to [96], see also the
works [8, 42]. Its core is contained in the following lemma.

De�nition 2.1.3. We say that u is superharmonic in Ω when −∆u ≥ 0 in Ω and
u = 0 on ∂Ω; u is strictly superharmonic when we have in addition that −∆u 6≡ 0.

Notice that, by the strong maximum principle, a superharmonic function is either
constant or strictly superharmonic and thus positive in Ω.

Lemma 2.1.10. Let Ω ⊂ RN be a bounded convex domain; �x u ∈ H2(Ω) ∩H1
0 (Ω)

and de�ne ũ as the unique solution in H1
0 (Ω) of the Poisson problem:{

−∆ũ = |∆u| in Ω,

ũ = 0 on ∂Ω.
(2.7)

Then ũ ∈ H2(Ω) and either ũ > |u| in Ω and ũ2
n ≥ u2

n on ∂Ω or ũ = u in Ω.

Proof. Since Ω is convex by assumption, it satis�es in particular a uniform external
ball condition and thus we infer ũ ∈ H2(Ω) by Lemma 2.1.3. Suppose ũ 6≡ u. Since
in particular −∆ũ ≥ ∆u holds, by the maximum principle for strong solutions (see
for instance [44, Theorem 9.6]), one has ũ > −u in Ω and so ũn ≤ −un. Similarly,
−∆ũ ≥ −∆u, implies also ũ > u and ũn ≤ un. Combining them, the result is
proved.

We have now all elements to finally prove Theorem 2.1.2.
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Proof of Theorem 2.1.2. The existence of a unique minimizer of Iσ inH2(Ω)∩H1
0 (Ω)

is an application of Lax-Milgram theorem since, by Lemma 2.1.4,

Iσ(u) =
1

2
‖u‖2

Hσ −
ˆ

Ω

f(x)u,

with f ∈ L1(Ω) ⊂ (H2(Ω) ∩ H1
0 (Ω))∗. Moreover, by convexity, κ ≥ 0 a.e. on ∂Ω.

From u, de�ne its superharmonic function ũ as in Lemma 2.1.10. Supposing ũ 6≡ u,
by that result we infer

Iσ(ũ) =

ˆ
Ω

(∆ũ)2

2
− 1− σ

2

ˆ
∂Ω

κũ2
n −
ˆ

Ω

f(x)ũ

<

ˆ
Ω

(∆u)2

2
− 1− σ

2

ˆ
∂Ω

κu2
n −
ˆ

Ω

f(x)u = Iσ(u),

which is a contradiction. Hence, necessarily ũ coincides with u, so −∆u = −∆ũ =
|∆u| ≥ 0. As u = 0 on ∂Ω and u 6≡ 0, we deduce u > 0 in Ω.

Remark 1. Notice that the convexity and the regularity assumptions were only
needed to infer positivity, while, to prove existence, one only needs the hypothesis
of Lemma 2.1.4, namely a Lipschitz boundary (together with the outer uniform ball
condition if σ = 1, see Lemma 2.1.3).

2.2 A generalized Kirchho�-Love functional

Let us now consider the following generalization of the Kirchhoff-Love functional,
namely Jσ : H2(Ω) ∩H1

0 (Ω)→ R defined as

Jσ(u) :=

ˆ
Ω

(∆u)2

2
− (1− σ)

ˆ
Ω

det(∇2u)−
ˆ

Ω

F (x, u)dx.

Hereafter, we assume that Ω is a bounded domain inR2. Concerning the nonlinear-
ity, the functional Jσ is well-defined once we impose F (·, s) ∈ L1(Ω) and F (x, ·) ∈
C1(R) (and thus there exists f(x, ·) continuous such that F (x, s) =

´ s
0
f(x, t)dt)

and a power-type growth control on F , namely the existence of a, b ∈ L1(Ω) such
that |F (x, s)| ≤ a(x) + b(x)|s|q for some q > 0. With these assumptions on F , it is
a standard fact to prove that Jσ is a C1 functional with Fréchet derivative

J ′σ(u)[v] =

ˆ
Ω

∆u∆v − (1− σ)

ˆ
Ω

(uxxvyy + uyyvxx − 2uxyvxy)−
ˆ

Ω

f(x, u)v.

Our main goal is to investigate existence and positivity of ground states of Jσ
in dependence on the value of the parameter σ, which will play an important
role in the whole analysis. We will show that existence holds for any σ over a
threshold parameter σ∗ ≤ −1 and positivity will last up to a second parameter
σ1 > 1, possibly infinite. Moreover, we investigate the asymptotic behaviour of
ground states near the relevant special cases for σ, that are σ∗, 1 (the Navier case)
and ∞ (the Dirichlet case). Our main results can be summarized as in Theorems
1.2.1-1.2.2 given in the Introduction.
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As briefly mentioned therein, if the boundary is smooth enough (∂Ω of class
C4,α for α > 0), standard elliptic regularity results apply and one can integrate
by parts the Euler-Lagrange equation from Jσ to see that critical points satisfy the
semilinear boundary value problem{

∆2u = f(x, u) in Ω,

u = ∆u− (1− σ)κun = 0 on ∂Ω.
(2.8)

On the other hand, assuming only that the boundary is of class C1,1, the signed
curvature is well-defined in L∞(Ω) and we can have a weak formulation of prob-
lem (2.8). More precisely, in this case, by weak solution of (2.8) here we mean a
function u ∈ H2(Ω) ∩H1

0 (Ω) which satisfies
ˆ

Ω

∆u∆ϕ− (1− σ)

ˆ
∂Ω

κunϕn =

ˆ
Ω

f(x, u)ϕ ∀ϕ ∈ H2(Ω) ∩H1
0 (Ω). (2.9)

Consequently, we can equivalently say "ground states of Jσ" or "ground state so-
lutions for (2.8)". For a proof of the equivalence of the two problems, we refer to
[42].

Since the geometry of the functional plays an important role, from now on we
have to distinguish between the sublinear case, that is, when the density f has at
most a slow linear growth in the real variable (as specified in the following), and
the superlinear case, the opposite one. In fact, we will see that in the first case
Jσ behaves similarly to the linear Kirchhoff-Love functional Iσ since it is coercive
and ground states are global minima, while, in the second case, Jσ has a mountain
pass geometry and the ground states are saddle points.

We relegate at the end of this subsection a brief comment about linear growths,
for instance f(x, u) = λg(x)u, since (2.8) becomes an eigenvalue problem and can
be investigated with standard techniques.

2.2.1 Existence and positivity for σ ∈ (−1, 1]

Sublinear case

Proposition 2.2.1. Let Ω be a bounded domain with Lipschitz boundary and σ ∈
(−1, 1). Let p ∈ (0, 2) and suppose

|F (x, s)| ≤ d(x) + c(x)|s|p +
1

2
(1− |σ|)C−1

0 s2, (H)

where c, d ∈ L1(Ω). Then the functional Jσ is weakly lower semi-continuous and
coercive, hence there exists a global minimizer of Jσ in H2(Ω) ∩H1

0 (Ω). The same
conclusion holds if σ = 1, provided Ω satis�es also a uniform outer ball condition.

Proof. Let (uk)k∈N ⊂ H2(Ω) ∩ H1
0 (Ω) 3 u be such that uk ⇀ u weakly in H2(Ω);

since it is bounded in H2(Ω) and consequently in L∞(Ω), one has

|F (x, uk)| ≤ d(x) + c(x)Mp +
1

2
(1− |σ|)C−1

0 M2,
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for some M > 0, which is integrable over Ω. Moreover, by the compactness of the
embedding H2(Ω) ↪→ Lp(Ω), there exists a subsequence (ukj)j∈N such that ukj → u
in Lp(Ω) for a suitable p ≥ 1, so F (x, ukj(x)) → F (x, u(x)) a.e. in Ω by continuity
of F (x, ·). Hence, by the dominated convergence theorem, we have

´
Ω
F (x, ukj) →´

Ω
F (x, u). This, together with the weakly lower semicontinuity of the norm, implies

the same property for Jσ. If σ ∈ (−1, 1), by (2.2):

Jσ(u) ≥ 1

2
(1− |σ|)‖|∇2u|‖2

2 − ‖d‖1 − Cp‖c‖1‖u‖pH2(Ω) −
1

2
(1− |σ|)C−1

0 ‖u‖2
2

≥ 1

2
(1− |σ|)C−1

0 ‖|∇2u|‖2
2 − ‖c‖1C

pC
p
2
0 ‖|∇2u|‖p2 − ‖d‖1;

by Lemma 2.1.3, we deduce that Jσ(u)→ +∞ as ‖u‖H2(Ω) → +∞, since p ∈ (0, 2).
Easier computations provide a similar estimate to conclude the proof also in the
case σ = 1.

As for the linear functional Iσ, these global minimizer are positive in Ω:

Proposition 2.2.2. Let Ω ⊂ R2 be a bounded convex domain with ∂Ω of class C1,1

and σ ∈ (−1, 1]. In addition to the assumption (H), suppose also that f ≥ 0 and
is positive on a subset of positive measure. If u ∈ H2(Ω) ∩ H1

0 (Ω) is a nontrivial
minimizer of Jσ, then u is strictly superharmonic in Ω, and thus positive.

Proof. The strategy is the same as in Theorem 2.1.2: de�ne the superharmonic
function ũ of u and suppose they do not coincide. Then, by Lemma 2.1.10, we have
ũ > |u| and ũ2

n ≥ u2
n. Recalling that κ ≥ 0 by convexity, we get

Jσ(ũ) =

ˆ
Ω

(∆ũ)2

2
− 1− σ

2

ˆ
∂Ω

κũ2
n −
ˆ

Ω

F (x, ũ)

≤
ˆ

Ω

(∆u)2

2
− 1− σ

2

ˆ
∂Ω

κu2
n −
ˆ

Ω

F (x, ũ)

<

ˆ
Ω

(∆u)2

2
− 1− σ

2

ˆ
∂Ω

κu2
n −
ˆ

Ω

F (x, u)dx = Jσ(u),

which is a contradiction, since u is a minimizer of Jσ. Notice that the last inequality
holds since ∂F (x,s)

∂s

∣∣
s=t

= f(x, t) ≥ 0. The conclusion follows an in the proof of
Theorem 2.1.2.

Remark 2 (A model case). A simple nonlinearity which satis�es assumption (H) is

F (x, u) = g(x)|u|p+1 + d(x)u

where p ∈ (0, 1) and d, g ∈ L1(Ω). Notice that if we apply Propositions 2.2.1-2.2.2
with g = 0, we retrieve the results of Section 2.1 about the linear Kirchho�-Love
functional Iσ.

Remark 3. It is clear that, when f(x, 0) 6= 0, by Proposition 2.2.1, we always �nd a
nontrivial global minimizer, which is positive by Proposition 2.2.2. For homogeneous
nonlinearities this is not true in general, but still holds for our model f(x, s) =
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g(x)|s|p−1s. Indeed, let u be a global minimum of Jσ and test the relation J ′σ(u) = 0
with u itself: we get

‖u‖2
Hσ −

ˆ
Ω

g(x)|u|p+1dx = 0.

This implies, since p ∈ (0, 1),

Jσ(u) =

(
1

2
− 1

p+ 1

)
‖u‖Hσ < 0,

so it is clear that in the minimization process we do not fall on the null function.
The same argument holds for more general nonlinearities f(x, u), provided

f(x, u)u

2
− F (x, u) < 0 for all u ∈ H2(Ω) ∩H1

0 (Ω).

For instance, f(x, s) = g(x)|s|p−1s+ h(x)|s|q−1s, for g, h > 0, p, q ∈ (0, 1).

Superlinear case

The strategy applied in Remark 3, that is, to test the derivative of a functional
evaluated in a function with the function itself and from this obtain further infor-
mation, constitutes the base idea of the Nehari manifold method. This technique
has been successfully applied to several different problems, and we refer to [93]
for a detailed description of the method. We will make use of this strategy to infer
the existence of (nontrivial) ground states of Jσ in the context of a mountain-pass
geometry due to the superquadratic character of the third term of Jσ. To this aim,
the structure of the problem being more involved than the sublinear case, we focus
on the nonlinearity

f(x, u) = g(x)|u|p−1u, where 0 < g ∈ L1(Ω) and p > 1. (2.10)

Indeed, the functional

Jσ(u) :=

ˆ
Ω

(∆u)2

2
− (1− σ)

ˆ
Ω

det(∇2u)−
ˆ

Ω

g(x)|u|p+1

p+ 1

is not coercive anymore: in fact, fixing any u ∈ H2(Ω) ∩ H1
0 (Ω) \ {0}, we have

Jσ(tu)→ −∞ as t→ +∞.

We define the Nehari manifold of Jσ as the set

Nσ := {u ∈ (H2(Ω) ∩H1
0 (Ω)) \ {0} | J ′σ(u)[u] = 0},

which clearly contains all nontrivial critical points of Jσ. Notice that u ∈ Nσ if and
only if ˆ

Ω

(∆u)2 − 2(1− σ)

ˆ
Ω

det(∇2u) =

ˆ
Ω

g(x)|u|p+1,

so one has two equivalent formulations for Jσ restricted on Nσ:

Jσ |Nσ (u) =

(
1

2
− 1

p+ 1

) ˆ
Ω

g(x)|u|p+1 =

(
1

2
− 1

p+ 1

)
‖u‖2

Hσ , (2.11)
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which implies Jσ |Nσ(u) > 0 for every u ∈ Nσ.
Concerning the existence, we only need that Ω ⊂ R2 is a bounded Lipschitz domain
(if σ = 1, Ω should satisfy also a uniform outer ball condition). Our arguments
take some inspiration from [17, 46]. After some preliminary results which describe
the geometry of Nσ, we show that in the manifold the infimum of Jσ is attained
and then, using a deformation lemma, we prove it is a critical point for Jσ in
H2(Ω) ∩H1

0 (Ω).
A crucial step is to study what happens on the half-lines of H2(Ω) ∩H1

0 (Ω).

Lemma 2.2.3. Let u ∈ H2(Ω) ∩ H1
0 (Ω) \ {0} and the half-line ru be de�ned as

ru := {tu | t > 0}. The intersection between ru and Nσ consists of a unique point
t∗(u)u, where

t∗(u) :=

(´
Ω

(∆u)2 − 2(1− σ)
´

Ω
det(∇2u)´

Ω
g(x)|u|p+1

) 1
p−1

. (2.12)

Moreover Jσ(t∗(u)u) = max
t>0

Jσ(tu).

Proof. For t > 0 and a �xed u ∈ H2(Ω) ∩H1
0 (Ω) \ {0}, then tu ∈ Nσ if and only if

t2
[ˆ

Ω

(∆u)2 − 2(1− σ)

ˆ
Ω

det(∇2u)

]
= tp+1

ˆ
Ω

g(x)|u|p+1,

from which we deduce t = t∗(u). Moreover, de�ne

η(t) := Jσ(tu) =
t2

2

[ˆ
Ω

(∆u)2 − 2(1− σ)

ˆ
Ω

det(∇2u)

]
− tp+1

p+ 1

ˆ
Ω

g(x)|u|p+1.

If we look for t̄ > 0 such that η′(t̄) = 0, we �nd again that t̄ = t∗(u) and, since
η′(t)(t− t∗(u)) < 0 for t 6= t∗(u), we have that t∗(u)u is the unique global maximum
on the half-line ru.

Lemma 2.2.4. The Nehari manifold is bounded away from 0, i.e. 0 /∈ Nσ.
Proof. Suppose �rst that σ ∈ (−1, 1) and let u ∈ H2(Ω) ∩ H1

0 (Ω) \ {0}. By Lem-
mas 2.1.4 and 2.2.3 and the embedding H2(Ω) ↪→ L∞(Ω), the following chain of
inequalities holds:

(1 + |σ|)‖t∗(u)u‖2
H2(Ω) ≥ ‖t∗(u)u‖2

Hσ(Ω)

= (t∗(u))p+1

ˆ
Ω

g(x)|u|p+1

≥ (C−1
0 (1− |σ|))

p+1
p−1

‖u‖
2(p+1)
p−1

H2(Ω)

(
´

Ω
g(x)|u|p+1)

2
p−1

≥ C(Ω, p, σ)
‖u‖

2(p+1)
p−1

H2(Ω)

(‖g‖1‖u‖p+1
H2(Ω))

2
p−1

=
C(Ω, p, σ)

‖g‖
2
p−1

1

.

If σ = 1, one can deduce the same result using the equivalent norm onH2(Ω)∩H1
0 (Ω)

given by ‖∆ · ‖2. In both cases, there exists a uniform bound from below for the
H2(Ω) norm of the elements in the Nehari manifold and thus 0 cannot be a cluster
point for Nσ.
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Proposition 2.2.5. There exists u ∈ Nσ such that Jσ(u) = inf
v∈Nσ

Jσ(v) =: c

Proof. As already noticed, c ≥ 0, since Jσ attains positive values on Nσ. Let now
(uk)k∈N ⊂ Nσ be a minimizing sequence for Jσ: we claim that (uk)k∈N is bounded
in H2(Ω). In fact, if σ ∈ (−1, 1), there exists a constant C > 0 such that, for every
k ∈ N,

C ≥ Jσ(uk) =

(
1

2
− 1

p+ 1

)
‖uk‖2

Hσ(Ω) ≥
(

1

2
− 1

p+ 1

)
(1− |σ|)C−1

0 ‖uk‖2
H2(Ω),

while (2.3) provides the right estimate in the case σ = 1. Hence, there exists a
subsequence (ukj)j∈N ⊂ Nσ and u ∈ H2(Ω)∩H1

0 (Ω) \ {0} such that ukj ⇀ u weakly
in H2(Ω) (and so weakly in (H2(Ω)∩H1

0 (Ω), ‖ · ‖Hσ) by Lemma 2.1.4) and strongly
in L∞(Ω) by compact embedding. Consider now t∗ = t∗(u) such that t∗u ∈ Nσ: by
weak semicontinuity of the norm

c = inf
v∈Nσ

Jσ(v)

≤ J(t∗u) = (t∗)2

[ˆ
Ω

(∆u)2

2
− (1− σ)

ˆ
Ω

det(∇2u)

]
− (t∗)p+1

ˆ
Ω

g(x)|u|p+1

p+ 1

≤ lim inf
j→+∞

(
(t∗)2

[ˆ
Ω

(∆ukj)
2

2
− (1− σ)

ˆ
Ω

det(∇2ukj)

]
− (t∗)p+1

ˆ
Ω

g(x)|ukj |p+1

p+ 1

)
= lim inf

j→+∞
Jσ(t∗ukj) ≤ lim inf

j→+∞
Jσ(ukj) = c

(2.13)

where the last inequality holds because the supremum of Jσ in each half-line {tukj | t >
0} is achieved exactly in ukj by Lemma 2.2.3. Hence, the in�mum of Jσ on Nσ is
attained on t∗u.

In the proof of Proposition 2.2.5 something weird happened: we took a minimiz-
ing sequence, which converges to an element u and we proved that there exists
α = t∗(u) ∈ R such that αu is the minimum point of our functional Jσ. One ex-
pects that the minimum is u itself and not a dilation of it. Indeed, one may show
that t∗ = 1. In fact, with the same notation as in that proof, from (2.13) we deduce
Jσ(ukj)→ c = Jσ(t∗u) by construction and t∗u ∈ Nσ, so

Jσ(ukj)→
(

1

2
− 1

p+ 1

) ˆ
Ω

g(x)|t∗u|p+1.

Moreover, we took the sequence to be in the Nehari manifold itself, so Jσ(ukj) =
(1

2
− 1

p+1
)
´

Ω
g(x)|ukj |p+1, and we have that ukj → u strongly in L∞(Ω), thus

Jσ(ukj)→
(

1

2
− 1

p+ 1

)ˆ
Ω

g(x)|u|p+1.

By the uniqueness of the limit, we must have t∗ = 1, that is u ∈ Nσ.

Theorem 2.2.6. The minimum u of Jσ in Nσ is a critical point for Jσ in H2(Ω)∩
H1

0 (Ω).
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Proof. Suppose by contradiction that u is not a critical point. Since the functional
is C1, there exists a ball centered in u and ε > 0 such that, for all v ∈ B,

c− ε ≤ Jσ(v) ≤ c+ ε,

‖J ′σ(v)‖(H2(Ω)∩H1
0 (Ω))∗ ≥ ε

2
,

where c = Jσ(u) = inf
v∈Nσ

Jσ(v). Notice that on the half-line ru, the point u is the

global maximum, so Jσ(v) < c for each v ∈ B ∩ ru, v 6= u.
If we set a = c − ε, b = c + ε, δ = 8, S = Br(u) and S0 = H2(Ω) ∩H1

0 (Ω) \B′,
where r > 0 such that Br(u) ⊂⊂ B′ ⊂⊂ B, applying [39, Proposition 5.1.25], there
exists a locally Lipschitz homotopy of homeomorphisms Γt on H2(Ω) ∩H1

0 (Ω) such
that:

(i) t 7→ Jσ(Γ(t, v)) is decreasing in Br(u) and, in general, non-increasing;

(ii) Jσ(Γ(t, v)) = v for v ∈ S0 and t ∈ [0, 1], and so also for all v ∈ ∂B.

From (i) we deduce that Jσ(Γ(t, v)) < c for every v ∈ B ∩ ru and t 6= 0. Moreover,
de�ne the map: ψ : B ∩ ru → R such that

ψ(v) := J ′σ(Γ(1, v))[Γ(1, v)]

and consider v ∈ ∂B ∩ ru, so there exists α 6= 1 such that v = αu: we know
from (ii) that Γ(1, v) = v and, by Lemma 2.2.3, J ′σ(αu)[αu] > 0 if α ∈ (0, 1) and
J ′σ(αu)[αu] < 0 if α ∈ (1,+∞), so ψ(v)(v−u) < 0 on ∂B∩ru. As a result, since one
can think at ψ as a continuous map from [x1, x2]→ R, where x1 and x2 correspond
to the intersections between the half line ru and the ball B, and since ψ(x1) > 0
and ψ(x2) < 0, there exists a zero of ψ in (x1, x2), i.e. there exists v̄ ∈ B ∩ ru such
that J ′σ(Γ(1, v̄))[Γ(1, v̄)] = 0.
Setting w := Γ(1, v̄), we have w ∈ Nσ and Jσ(w) = Jσ(Γ(1, v̄)) < c = inf

v∈Nσ
Jσ(v), a

contradiction.

Remark 4. So far, we proved the existence of a ground state for Jσ. Actually, one can
say more about the existence of general critical points by means of the Krasnosel'skii
genus theory (see [5, Section 10.2]). In fact, since our framework is subcritical, it is
quite standard to prove the Palais-Smale condition for Jσ by compact embedding of
H2(Ω) in every Lebesgue space. Moreover, our functional is C1, even and bounded
from below on the unit sphere of H2(Ω) ∩ H1

0 (Ω): indeed, if ‖u‖Hσ(Ω) = 1, then
‖u‖∞ < C for some C > 0, so

Jσ(u) =
1

2
−
ˆ

Ω

g(x)|u|p+1

p+ 1
≥ 1

2
− Cp+1‖g‖1

p+ 1
> −∞.

Hence, by [5, Proposition 10.8], one can ensure the existence of an in�nite number
of couples of critical points. The same argument may also be applied for the general
sublinear case, provided F (x, s) = F (x,−s) for every s ∈ R.
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Once the existence of ground states is achieved by Theorem 2.2.6, their posi-
tivity basically follows as in Proposition 2.2.2, imposing the same conditions on Ω.
Nevertheless, this time the standard argument is not sufficient to have a contradic-
tion since we do not know whether ũ ∈ Nσ, but we can rely on the characterization
of those points due to Lemma 2.2.3.

Proposition 2.2.7. Let Ω ⊂ R2 be a bounded convex domain with ∂Ω of class
C1,1 and σ ∈ (−1, 1]. Moreover, suppose f(x, u) = g(x)|u|p−1u, where p > 1 and
g ∈ L1(Ω) positive a.e. in Ω. Then the ground states of the functional Jσ are positive
in Ω.

Proof. Suppose, by contradiction, that there exists u ∈ Nσ such that Jσ(u) =
inf{Jσ(v) | v ∈ Nσ} and u is not positive. In the same spirit of the proof of Proposi-
tion 2.2.2, consider the superharmonic function ũ associated to u and suppose they
are not the same. By Lemma 2.2.3 there exists t∗ := t∗(ũ) ∈ R+ such that t∗ũ ∈ Nσ.
Then,

Jσ(t∗ũ) = (t∗)2

[ˆ
Ω

(∆ũ)2

2
− 1− σ

2

ˆ
∂Ω

κũ2
n

]
− (t∗)p+1

ˆ
Ω

g(x)|ũ|p+1

p+ 1

< (t∗)2

[ˆ
Ω

(∆u)2

2
− 1− σ

2

ˆ
∂Ω

κu2
n

]
− (t∗)p+1

ˆ
Ω

g(x)|u|p+1

p+ 1

= Jσ(t∗u) ≤ Jσ(u),

which is a contradiction. Notice that the last inequality holds since, by Lemma
2.2.3, Jσ restricted to every half-line attains its maximum on the Nehari manifold.
Thus necessarily ũ coincides with u, which implies that u is strictly superharmonic
and thus positive.

A-priori bounds in the sublinear case

In our sublinear model case f(x, s) = g(x)|s|p−1s, p ∈ (0, 1), something more may
be deduced: in fact, Lemma 2.2.3 still applies and, with the same steps as in the
proof of Lemma 2.2.4, (reversing the inequalities since now p − 1 < 0), one ends
up with

‖u‖H2(Ω) ≤
(
‖g‖1C(Ω)

(1− |σ|)C−1
0

) 1
1−p

for all u ∈ Nσ.

As a result, we can state the following:

Proposition 2.2.8. Let Ω be a bounded Lipschitz domain in R2 and let g ∈ L1(Ω)
be positive a.e. in Ω. For every σ ∈ (−1, 1) �xed, all critical points of Jσ with
f(x, s) = g(x)|s|p−1s and p ∈ (0, 1) are uniformly bounded in H2(Ω).

Notice that by continuous embedding H2(Ω) ↪→ L∞(Ω), one may also infer an
a-priori L∞ bound for all critical points of Jσ. The estimate becomes also uniform
with respect to σ if we restrict σ ∈ I b (−1, 1).

28



An eigenvalue problem

In the whole chapter we focus on the nonresonant case p 6= 1. Let us briefly discuss
here what happens if we consider the eigenvalue problem{

∆2u = λg(x)u in Ω,

u = ∆u− (1− σ)κun = 0 on ∂Ω,
(2.14)

when 0 < g ∈ L1(Ω) and, as usual, Ω ⊂ R2 is a bounded convex domain with C1,1

boundary. By the scaling invariance of (2.14), we can consider the minimization in
H2(Ω) ∩H1

0 (Ω) of the following Rayleigh quotient:

Rσ(v) =
‖v‖2

Hσ´
Ω
g(x)v2

and apply the standard technique, showing that the first eigenvalue λ1 is simple
and the first eigenfunction is strictly of one sign in Ω. For further details, we refer
to [8, Theorem 4].

Moreover, supposing g ∈ L∞(Ω), by standard theory (see for instance [39,
Chapter 6]) there exists a countable sequence of positive eigenvalues for problem
(2.14) 0 < λ1 ≤ λ2 ≤ · · · ≤ λk → +∞ and that the respective eigenfunctions form
an orthonormal basis of H2(Ω) ∩H1

0 (Ω) with respect to the scalar product (·, ·)Hσ .
Indeed, if we consider the solution operator of the linear problem Kσ : L2(Ω) →
H2(Ω) ∩ H1

0 (Ω) such that f 7→ Kσf := u where u is the unique critical point of
the functional Iσ, it is easy to infer that Kσ is linear, compact from L2 to itself,
self-adjoint and positive (that is, (Kσf, f) ≥ 0 for every f ∈ L2(Ω)).

Finally, one can also deduce an estimate from below for λ1. In fact, if we
consider f(x, s) = λg(x)s with λ < (1 − |σ|)C−1

0 ‖g‖−1
∞ , it is possible to show that

Jσ is strictly convex, so the global minimizer found in Proposition 2.2.1 is unique.
Since u = 0 is clearly a critical point of Jσ, then there are no other nontrivial
critical points. Consequently, λ1 ≥ (1− |σ|)C−1

0 ‖g‖−1
∞ .

2.2.2 Beyond the physical bounds: σ ≤ −1

So far, we studied the existence of critical points of the functional Jσ and we
established positivity of the ground states, always under the assumptions of σ ∈
(−1, 1] and (regarding the positivity) regularity and convexity of Ω. The role of
the lower bound σ > −1 is in particular explained by Lemma 2.1.4, as it was
necessary for showing that ‖ · ‖Hσ is an equivalent norm on H2(Ω) ∩ H1

0 (Ω). On
the other hand, the upper bound σ ≤ 1, together with the convexity assumption,
was striking in the proof of the positivity, since it allows the boundary term of Jσ
to have a positive fixed sign.

In this section, we study what happens to the ground states of Jσ if we let the
parameter be in the whole R, in particular concerning the relationship between the
existence and the lower bound σ > −1 and between the positivity and the upper
bound σ ≤ 1. To this aim, we divide the subject into two subsections, one for each
problem, addressing the latter in Subsection 2.2.6. In both, we always assume
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that Ω ⊂ R2 is a bounded convex domain of class C1,1 so that Theorem 2.1.5
holds. Moreover, as it seems more interesting from a mathematical point of view,
we mainly focus on the superlinear case f(x, u) = g(x)|u|p−1u with p > 1, pointing
out, if needed, the necessary adaptation for the sublinear power p ∈ (0, 1).

A Steklov eigenvalue problem

Let us begin by recalling some known facts about the Steklov eigenvalue problem
(for this topic, we refer to [42] or, for the case κ = 1, [8, 15]):

∆2u = 0 in Ω,

u = 0 on ∂Ω,

∆u = dκun on ∂Ω.

(2.15)

We define a Steklov eigenvalue to be a real value d such that (2.15) admits a non-
trivial weak solution, named Steklov eigenfunction, i.e. u ∈ H2(Ω) ∩H1

0 (Ω), u 6= 0,
such that for all ϕ ∈ H2(Ω) ∩H1

0 (Ω),
ˆ

Ω

∆u∆ϕ− d
ˆ
∂Ω

κunϕn = 0. (2.16)

First of all, d must be positive. In fact, if u is a Steklov eigenfunction, taking u = ϕ
in (2.16):

d

ˆ
∂Ω

κ(un)2 =

ˆ
Ω

(∆u)2 > 0,

since ‖∆ · ‖2 is a norm in H2(Ω) ∩ H1
0 (Ω). As κ ≥ 0, we have both d > 0 and´

∂Ω
κu2

n > 0. As a complementary result, in order to show nontrivial solutions of
(2.15), without loss of generality, we can restrict to the subset

H =

{
u ∈ H2(Ω) ∩H1

0 (Ω)

∣∣∣∣ ˆ
∂Ω

κ(un)2 6= 0

}
.

De�nition 2.2.1. We denote by δ̃1(Ω) the �rst Steklov eigenvalue:

δ̃1(Ω) := inf
H\{0}

‖∆u‖2
2´

∂Ω
κu2

n

.

Proposition 2.2.9. The �rst Steklov eigenvalue is attained, positive and there exists
a unique (up to a multiplicative constant) corresponding Steklov eigenfunction, which
is positive in Ω.

Proof. We refer to [42, Lemma 4.4], just noticing that the continuity of the curvature
assumed therein is not necessary to obtain this result.

A nonexistence and an existence result

From Proposition 2.2.9, it is easy to deduce a nonexistence result for positive
solutions if σ is negative enough:
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Proposition 2.2.10. If σ ≤ σ∗ := 1 − δ̃1(Ω), there is no nonnegative nontrivial
solution for the Steklov problem (2.8).

Proof. Let u be a nonnegative solution for (2.8) and Φ1 > 0 be the �rst Steklov
eigenfunction; we use Φ1 as a test function in (2.9):

ˆ
Ω

∆u∆Φ1 − (1− σ)

ˆ
∂Ω

κun(Φ1)n =

ˆ
Ω

g(x)upΦ1.

Then, interpreting u this time as a test function in (2.16), we have
ˆ

Ω

∆u∆Φ1 = δ̃1(Ω)

ˆ
∂Ω

κ(Φ1)nun.

Combining the two equalities,

(δ̃1(Ω)− (1− σ))

ˆ
∂Ω

κ(Φ1)nun =

ˆ
Ω

g(x)upΦ1 > 0.

Again by positivity of u and Φ1, we have un ≤ 0 and (Φ1)n ≤ 0. Therefore, since
κ ≥ 0, we infer δ̃1(Ω)− 1 + σ > 0.

Remark 5. We already proved that our problem (2.8) admits positive solutions
whenever σ ∈ (−1, 1] with the same assumptions on Ω. Hence, we infer that,
δ̃1(Ω) ≥ 2 and we have equality if Ω = B1(0) (see [8, Proposition 12]). This result
was already proved for C2 bounded convex domains of R2 by Parini and Stylianou
in [75, Remark 3.3], using Fichera's duality principle.

The next step is to investigate what happens if σ ∈ (σ∗,−1] in case this interval
is nonempty. We will show that the existence and the positivity results found for
σ ∈ (−1, 1] can be extended for this case. In fact, the only restriction we have to
overcome, is the fact that here Lemma 2.1.4 is not the right way to prove that the
first two terms in the functional Jσ define indeed a norm on H2(Ω) ∩H1

0 (Ω).

Lemma 2.2.11. For every σ > σ∗, the map

u 7→
[ˆ

Ω

(∆u)2 − (1− σ)

ˆ
∂Ω

κ(un)2

] 1
2

= ‖u‖Hσ

is a norm in H2(Ω) ∩H1
0 (Ω) equivalent to the standard norm.

Proof. By the de�nition of δ̃1(Ω) as an inf, we have ‖∆u‖2
2 ≥ δ̃1(Ω)

´
∂Ω
κu2

n for each
u ∈ H2(Ω) ∩H1

0 (Ω) and so, if d > 0 (which corresponds to σ < 1),

ˆ
Ω

(∆u)2 ≥
ˆ

Ω

(∆u)2 − d
ˆ
∂Ω

κu2
n ≥

(
1− d

δ̃1(Ω)

) ˆ
Ω

(∆u)2. (2.17)

On the other hand, if d < 0 (so that σ > 1),

ˆ
Ω

(∆u)2 ≤
ˆ

Ω

(∆u)2 + |d|
ˆ
∂Ω

κu2
n ≤

(
1 +

|d|
δ̃1(Ω)

) ˆ
Ω

(∆u)2.
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As a result, we have to impose that d < δ̃1(Ω) to have the positivity of the constant in
the �rst estimate, while no restriction occurs in the second. The proof is completed
noticing that the map

(u, v)Hσ 7→
ˆ

Ω

∆u∆v − d
ˆ
∂Ω

κunvn

de�nes a scalar product on H2(Ω)∩H1
0 (Ω) by inequality (2.17) for all d < δ̃1(Ω).

Proposition 2.2.12. Let Ω ⊂ R2 be a bounded convex domain with boundary C1,1

and suppose σ ∈ (σ∗,−1]; then the functional Jσ admits a positive ground state.

Proof. It is su�cient to notice that Lemma 2.2.4 holds for these values of σ if we
replace Lemma 2.1.4 by Lemma 2.2.11, while all the other propositions that led to
the existence and the positivity of ground states are not a�ected by this change.

Remark 6. It is clear that, once Lemma 2.2.11 is established, the existence of a
ground state of Jσ is ensured for any σ > σ∗. The issue of its positivity for the
remaining part of this interval, that is σ > 1, will be addressed in Section 2.2.6.

Remark 7. (Sublinear Case) Both Propositions 2.2.10 and 2.2.12 hold in the case of
a function f(x, u) which veri�es the assumption (H) (modifying in a suitable way
the constant in front of the quadratic term) and f ≥ 0, f 6≡ 0.

2.2.3 Asymptotic analysis for ground states of Jσ as σ → σ∗

Having now the existence of positive ground state solutions for σ ∈ (σ∗, 1] and
having shown that there are no positive solutions if σ ≤ σ∗, a natural question
that arises is to determine the behaviour as σk ↘ σ∗ of a sequence (uk)k∈N, each
of them being a ground state for the respective functional Jσk . We will find an
antipodal result for f(x, u) = g(x)|u|p−1u as p ∈ (1,+∞) or p ∈ (0, 1).
The following proof is an adaptation of [9, Theorem 1], which covers the critical
case f(x, u) = |u|2∗−2u, when the dimension is N ≥ 5. Moreover, the authors
considered a slightly different notion of solution, that is, the minimizers of the
Rayleigh quotient associated to the boundary value problem:

Rσ(u) :=
‖∆u‖2

2 − (1− σ)
´
∂Ω
κu2

n

(
´

Ω
g(x)|u|p+1)

2
p+1

.

However, it is a standard fact to prove that every ground state of Jσ is also a mini-
mizer of Rσ, while the converse is also true, up to a multiplication by a constant.

Theorem 2.2.13. Let Ω be as in Proposition 2.2.12 and σk ↘ σ∗ as k → +∞. If
p ∈ (0, 1), then ‖uk‖∞ → +∞, while, if p > 1, then ‖uk‖H2(Ω) → 0.

Proof. Let p > 0, p 6= 1; by the remark above, each ground state uk is such that

Rσk(uk) = inf
0 6=u∈H2(Ω)∩H1

0 (Ω)
Rσk(u) := Σσk ≥ 0.
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By Proposition 2.2.9, there exists a positive �rst Steklov eigenfunction Φ1; since we
have ‖∆Φ1‖2

2 = (1− σ∗)
´
∂Ω
κ(Φ1)2

n, we have

0 ≤ Σσk ≤ Rσk(Φ1) = (σk − σ∗)
´
∂Ω
κ(Φ1)2

n

(
´

Ω
g(x)|Φ1|p+1)

2
p+1

→ 0

as k → +∞. Moreover, since uk is a ground state for Jσk , ‖∆uk‖2
2−(1−σk)

´
∂Ω
κ(uk)

2
n =´

Ω
g(x)|uk|p+1 and, since Rσk(uk) = Σσk , we deduce( ˆ

Ω

g(x)|uk|p+1

) p−1
p+1

= Σσk → 0.

Hence, if p > 1, then
´

Ω
g(x)|uk|p+1 → 0; otherwise, if p ∈ (0, 1), then

´
Ω
g(x)|uk|p+1 →

+∞, which implies, by the Hölder inequality as g ∈ L1(Ω), that ‖uk‖∞ → +∞.
We have now to prove that, if p > 1, this convergence to 0 is actually in the natural
norm H2(Ω). By Lemma 2.2.11, ‖ · ‖Hσk is a norm in H2(Ω)∩H1

0 (Ω) for every k, so
we are able to decompose in that norm the Hilbert space as H2(Ω) ∩ H1

0 (Ω) =
span(Φ1) ⊕ [span(Φ1)]⊥. Thus, for every k there exist a unique αk ∈ R and
ψk ∈ [span(Φ1)]⊥ such that uk = αkΦ1 + ψk. Hence, for k large enough,

o(1) ≥
ˆ

Ω

g(x)|uk|p+1 = ‖∆uk‖2
2 − (1− σk)

ˆ
∂Ω

κ(uk)
2
n = (uk, uk)Hσk

= α2
k(Φ1,Φ1)Hσk + (ψk, ψk)Hσk .

(2.18)

First of all,

(Φ1,Φ1)Hσk = ‖∆Φ1‖2
2 − (1− σk)

ˆ
∂Ω

κ(Φ1)2
n = (σk − σ∗)

ˆ
∂Ω

κ(Φ1)2
n. (2.19)

Moreover, denoting by δ̃2(Ω) the second eigenvalue of the Steklov problem, i.e.

δ̃2(Ω) = inf
span(Φ1)⊥\{0}

‖∆v‖2
2´

∂Ω
κv2

n

,

and de�ning σ∗∗ := 1− δ̃2(Ω), we get

‖∆ψk‖2
2 ≥ (1− σ∗∗)

ˆ
∂Ω

κ(ψk)
2
n,

from which

(ψk, ψk)Hσk = ‖∆ψk‖2
2 − (1− σk)

ˆ
∂Ω

κ(ψk)
2
n

≥ ‖∆ψk‖2
2 −

1− σk
1− σ∗∗

‖∆ψk‖2
2 =

σk − σ∗∗

1− σ∗∗
‖∆ψk‖2

2.

(2.20)

As a result, combining (2.18) with (2.19) and (2.20), we get:

o(1) ≥
ˆ

Ω

g(x)|uk|p+1 = α2
k(σk − σ∗)

ˆ
∂Ω

κ(Φ1)2
n +

σk − σ∗∗

1− σ∗∗
‖∆ψk‖2

2.
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Since by Proposition 2.2.9 the �rst Steklov eigenfunction is simple, we have σ∗∗ < σ∗

and, recalling that σk > σ∗ by assumption, necessarily ‖∆ψk‖2 → 0. Hence,
ˆ

Ω

g(x)|αkΦ1|p+1 ≤
ˆ

Ω

g(x)[|uk|+ |ψk|]p+1 ≤ 2p
ˆ

Ω

g(x)[|uk|p+1 + |ψk|p+1]

≤ 2p
ˆ

Ω

g(x)|uk|p+1 + Cp+1(Ω)‖g‖1‖ψk‖H2(Ω) → 0.

As a result, αk → 0 and we �nally obtain

‖uk‖H2(Ω) ≤ |αk|‖Φ1‖H2(Ω) + ‖ψk‖H2(Ω) → 0.

If we read carefully the proof of Theorem 2.2.13, we notice that the fact that
each uk is a ground state for Jσ was necessary only to deduce that

´
Ω
g(x)|uk|p+1 →

0, while to prove the convergence to 0 in H2(Ω) norm it was only sufficient that
each uk is a critical point (actually, an element of the Nehari manifold Nσk , since
the only step of the proof involved is (2.18)). Therefore, we can state the following
result, which will be useful when looking at the radial case in Section 2.2.7:

Lemma 2.2.14. Let (uk)k be a sequence of critical points of Jσk in the superlinear
case, such that

´
Ω
g(x)|uk|p+1 → 0 as σk ↘ σ∗. Then ‖uk‖H2(Ω) → 0.

2.2.4 Asymptotic behaviour of ground states of Jσ as σ → 1

As mentioned at the beginning of Subsection 2.2.2, we shall investigate the be-
haviour of the ground states of Jσ when σ > 1. If, on one hand, the extension of the
existence result is straightforward since ‖ · ‖Hσ(Ω) is still a norm on H2(Ω)∩H1

0 (Ω)
by Lemma 2.2.11 (see Remark 6), on the other hand, the extension of positivity is
more involved. A way to prove it at least in a right neighborhood of σ = 1 is by
an argument which relies on the convergence of the ground states of the Steklov
problem to the respective of the Navier problem. In this section we present this
asymptotic approach, while we leave the proofs of the positivity in Subsection
2.2.6.

Again, we assume hereafter that Ω ⊂ R2 is a bounded convex domain with C1,1

boundary, and that the nonlinearity satisfies (2.10). Moreover, (uk)k∈N will always
denote a sequence of ground states solutions of the Steklov problems{

∆2u = g(x)|u|p−1u in Ω,

u = ∆u− (1− σk)κun = 0 on ∂Ω,
(2.21)

for a sequence (σk)k∈N converging to 1. In order to underline the peculiarity of
the problem when σ = 1, we set JNAV := J1, whose critical points are the weak
solution of the following Navier problem:{

∆2u = g(x)|u|p−1u in Ω,

u = ∆u = 0 on ∂Ω,
(2.22)
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Finally, u will always denote a ground state of JNAV . Our first purpose is to prove
the convergence uk → u in the natural norm, i.e. in H2(Ω), as σk → 1, without
any distinction about the sign of 1 − σk. Then, we will promote it to a stronger
norm.

First, we show that it is enough to prove a weak convergence.

Lemma 2.2.15. Let (uk)k∈N and u be as speci�ed above. If uk ⇀ u weakly in H2(Ω)
as σk → 1, then (up to a subsequence) uk → u strongly in H2(Ω).

Proof. As uk ⇀ u weakly in H2(Ω), there exists M > 0 such that ‖uk‖2
H2(Ω) ≤ M .

Moreover, uk is a solution of (2.21) for each k ∈ N and u of the Navier problem
(2.22), thus, for every test function ϕ ∈ H2(Ω) ∩H1

0 (Ω):
ˆ

Ω

∆uk∆ϕ− (1− σk)
ˆ
∂Ω

κ(uk)nϕn =

ˆ
Ω

g(x)|uk|p−1ukϕ, (2.23)

ˆ
Ω

∆u∆ϕ =

ˆ
Ω

g(x)|u|p−1uϕ.

Hence

C−1
A ‖uk − u‖

2
H2(Ω) ≤ ‖∆uk −∆u‖2

2 =

ˆ
Ω

∆uk∆(uk − u)−
ˆ

Ω

∆u∆(uk − u)

= (1− σk)
ˆ
∂Ω

κ(uk)n(uk − u)n +

[ˆ
Ω

g(x)|uk|p−1uk(uk − u)−
ˆ

Ω

g(x)|u|p−1u(uk − u)

]
.

For the �rst term:∣∣∣∣(1− σk)ˆ
∂Ω

κ(uk)n(uk − u)n

∣∣∣∣ ≤ |1− σk|C2
T‖κ‖L∞(∂Ω)‖uk‖H2(Ω)‖uk − u‖H2(Ω)

≤ |1− σk|C2
T‖κ‖L∞(∂Ω)M(M + ‖u‖H2(Ω))→ 0,

where CT is the constant in the trace theorem. Concerning the second, it is enough
to invoke the dominated convergence theorem as we have pointwise convergence and
since∣∣∣∣g(x)(|uk|p−1uk − |u|p−1u)(uk − u)

∣∣∣∣ ≤ |g(x)|[C(Ω)pMp + |u|p][C(Ω)M + u] ∈ L1(Ω),

where C(Ω) is the constant in the embedding H2(Ω) ↪→ L∞(Ω).

Remark 8. This result holds not only for ground states, but for generic solutions,
i.e. if (uk)k∈N is a sequence of weak solutions of the Steklov problem (2.21) and u
a weak solution of the Navier problem (2.22) and we know that uk ⇀ u weakly in
H2(Ω), then, up to a subsequence, it converges strongly too.

A crucial observation is that the Nehari manifolds are nested with respect to
the parameter σ:

Lemma 2.2.16. Let σ1 < σ2 and �x u ∈ H2(Ω) ∩H1
0 (Ω) \ {0}. Then

t∗σ1
(u) ≤ t∗σ2

(u).
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Proof. Indeed, −(1− σ1) < −(1− σ2) and so, by (2.12),

t∗σ1
(u)p−1 =

´
Ω

(∆u)2 − (1− σ1)
´
∂Ω
κu2

n´
Ω
g(x)|u|p+1

≤
´

Ω
(∆u)2 − (1− σ2)

´
∂Ω
κu2

n´
Ω
g(x)|u|p+1

= t∗σ2
(u)p−1.

Notice that if u ∈ H2
0 (Ω) then one has the equality; if we suppose moreover that

κ > 0 a.e., we deduce also the converse.

Proposition 2.2.17. The sequence of ground states (uk)k∈N is bounded in H2(Ω).

Proof. Set kmax such that σkmax = max{(σk)k∈N, 1} and so ukmax is a ground state
for Jσkmax (with the convention that if σkmax=1, then ukmax is a ground state for
JNAV ). De�ning wk := t∗σk(ukmax)ukmax ∈ Nσk , that is, the "projection" of ukmax on
the Nehari manifold Nσk along its half-line, one has

ˆ
Ω

g(x)|uk|p+1 ≤
ˆ

Ω

g(x)|wk|p+1 ≤
ˆ

Ω

g(x)|ukmax|p+1. (2.24)

Indeed, the �rst inequality comes from the fact that uk is a ground state of Jσk , which
has the equivalent formulation (2.11); the second is obtained by Lemma 2.2.16 since

ˆ
Ω

g(x)|wk|p+1 = (t∗σk(ukmax))
p+1

ˆ
Ω

g(x)|ukmax |p+1

≤ (t∗σkmax (ukmax))
p+1

ˆ
Ω

g(x)|ukmax|p+1 =

ˆ
Ω

g(x)|ukmax|p+1.

Furthermore, for any σ > 0 (and here we can assume it without loss of generality),
ˆ

Ω

(∆u)2 − (1− σ)

ˆ
∂Ω

κu2
n ≥ min{σ, 1}CA(Ω)‖u‖2

H2(Ω). (2.25)

In fact, if σ ∈ [1,+∞) the proof is straightforward since −(1− σ) ≥ 0, otherwise, if
σ ∈ (0, 1):
ˆ

Ω

(∆u)2 − (1− σ)

ˆ
∂Ω

κu2
n =

ˆ
Ω

(∆u)2 + 2(1− σ)

ˆ
Ω

(−det(∇2u))

=

ˆ
Ω

[
u2
xx + u2

yy + 2σuxxuyy + 2(1− σ)u2
xy

]
≥ σ

ˆ
Ω

(∆u)2 + 2(1− σ)

ˆ
Ω

u2
xy

≥ σ

ˆ
Ω

(∆u)2 ≥ σC−1
A (Ω)‖u‖2

H2(Ω).

Combining (2.24) with (2.25), we get:

‖uk‖2
H2(Ω) ≤

CA(Ω)

min{σk, 1}

ˆ
Ω

g(x)|uk|p+1 ≤ CA(Ω)

min{σk, 1}

ˆ
Ω

g(x)|ukmax|p+1,

which is the estimate we needed.
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As a direct consequence of Proposition 2.2.17, the sequence (uk)k∈N, up to a sub-
sequence, is weakly convergent to some u∞ ∈ H2(Ω) ∩ H1

0 (Ω) with strong con-
vergence in L∞(Ω). It is also easy to see that u∞ is a weak solution of the Navier
problem (2.22): it is enough to apply to (2.23) the weak convergence in H2(Ω),
the strong convergence in L2(∂Ω) of the normal derivatives and the dominated
convergence theorem. As a consequence, by Proposition 2.2.15, the convergence
uk → u∞ is strong in H2(Ω).

Theorem 2.2.18. Let σk → 1 and Ω ⊂ R2 be a bounded convex domain with
boundary of class C1,1. Then the sequence (uk)k∈N of ground state solutions for the
Steklov problems (2.21) admits a subsequence (ukj)j∈N which converges in H2(Ω)
to u∞, which is a ground state for the Navier problem (2.22), and thus strictly
superharmonic.

Proof. Clearly, as u∞ is weak solution of (2.22), we have JNAV (u∞) ≥ infNNAV JNAV .
Now we have to prove the converse inequality. Firstly, we have JNAV (u∞) ≤
lim infk→+∞ Jσk(uk). Indeed,

lim inf
k→+∞

Jσk(uk) = lim inf
k→+∞

ˆ
Ω

(∆uk)
2

2
− lim

k→+∞

1− σk
2

ˆ
∂Ω

κ(uk)
2
n − lim

k→+∞

ˆ
Ω

g(x)|uk|p+1

p+ 1

≥
ˆ

Ω

(∆u∞)2

2
−
ˆ

Ω

g(x)|u∞|p+1

p+ 1
= JNAV (u∞),

having used the compactness of the map ∂n : H2(Ω)→ L2(∂Ω) and the dominated
convergence theorem. Moreover, if we suppose σk < 1 for k large enough, by Lemma
2.2.16 (with a similar argument to that in (2.24)), for all k ∈ N we have

Jσk(uk) =

(
1

2
− 1

p+ 1

) ˆ
Ω

g(x)|uk|p+1 ≤
(

1

2
− 1

p+ 1

) ˆ
Ω

g(x)|u∞|p+1 = JNAV (u∞),

(2.26)
so in this case we are done. If otherwise σk > 1 for a in�nite number of indices,(2.26)
does not hold. In this case, without loss of generality, we can assume that σk ↘ 1.
By the existence theorems in Subsection 2.2, we know that there exists a ground
state u ∈ H2(Ω)∩H1

0 (Ω) for JNAV and we de�ne uk := t∗σk(u)u to be the "projection"
on the Nehari manifold Nσk . Then ‖uk − u‖H2(Ω) = |1− t∗σk(u)|‖u‖H2(Ω) with

1− (t∗σk(u))p−1 [u∈NNAV ]
= (t∗NAV (u))p−1 − (t∗σk(u))p−1 = 2(1− σk)

´
Ω
det(∇2u)´

Ω
g(x)|u|p+1

→ 0,

so uk → u in H2(Ω), which implies
ˆ

Ω

g(x)|uk|p+1 →
ˆ

Ω

g(x)|u|p+1. (2.27)

Nevertheless, since uk is a ground state of Jσk ,ˆ
Ω

g(x)|uk|p+1 [uk∈Nσk ]
= (1

2
− 1

p+1
)Jσk(uk) ≥ (1

2
− 1

p+1
)Jσk(uk)

[uk∈Nσk ]
=

ˆ
Ω

g(x)|uk|p+1;

(2.28)
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furthermore, since we assumed σk > 1 and by Lemma 2.2.16,
ˆ

Ω

g(x)|uk|p+1 ≥
ˆ

Ω

g(x)|t∗NAV (uk)uk|p+1 = (1
2
− 1

p+1
)JNAV (t∗NAV (uk)uk)

≥ (1
2
− 1

p+1
)JNAV (u) =

ˆ
Ω

g(x)|u|p+1.

(2.29)

Combining (2.27), (2.28) and (2.29), we �nd
ˆ

Ω

g(x)|uk|p+1 →
ˆ

Ω

g(x)|u|p+1, (2.30)

from which Jσk(uk)→ JNAV (u), which completes our equality.
To conclude, notice that we have already obtained in the proof of Proposition 2.2.7
that ground states of the Navier problem (2.22) are strictly superharmonic.

Remark 9. The same analysis may be adapted also for the sublinear case p ∈ (0, 1),
paying attention to some minor changes: for instance, Lemma 2.2.16 holds with the
reverse inequality, but this compensates for the fact that this time the coe�cient
1
2
− 1

p
in the equivalent formulation of Jσ is negative.

In order to apply this convergence argument to the study of the positivity of
ground states for a right neighborhood of σ = 1, we need a stronger result, namely,
we need to upgrade our convergence to a stronger norm. Indeed, we need also a
uniform control on the normal derivative on the boundary, which is not given by
the simple H2 norm.

A first step is to investigate, for a fixed σ > σ∗, the regularity of the solutions
of (2.21) and (2.22) with just a slightly more regular boundary (actually, we have
to impose that ∂Ω is of class C2). This will be obtained by means of the following
lemma by Gazzola, Grunau and Sweers, which follows from a result by Agmon,
Douglis and Nirenberg [4, Theorem 15.3’, p.707]:

Lemma 2.2.19 ([40], Corollary 2.23). Let q > 1 and take an integer m ≥ 4. Assume
that ∂Ω ∈ Cm and a ∈ Cm−2, then there exists C = C(m, q, a,Ω) > 0 such that

‖u‖Wm,q(Ω) ≤ C

(
‖u‖q+‖∆2u‖Wm−4,q(Ω) +‖u‖

W
m− 1

q ,q(∂Ω)
+‖∆u−aun‖

W
m−2− 1

q ,q(∂Ω)

)
,

for every u ∈ Wm,q(Ω). The same statement holds for any m ≥ 2 provided the
norms on the right-hand side are suitably interpreted.

Hence we have to define ∆2u as a distribution in W−2,q(Ω), i.e. acting on functions
inW 2,q′

0 (Ω). Let u ∈ H2(Ω)∩H1
0 (Ω) be a weak solution of (2.8); we define the linear

functional over H2(Ω):

∆2u : H2(Ω) 3 ϕ 7→< ∆2u, ϕ >:=

ˆ
Ω

∆u∆ϕ

which is well-defined and continuous. If we let

upg : ϕ 7→< upg, ϕ >:=

ˆ
Ω

g(x)|u|p−1uϕ,
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it is clearly well-defined and continuous on W 2,q′

0 (Ω) and, by the weak formulation
of the PDE, on the subset H2

0 (Ω) it acts identically as ∆2u. As a result, we define

∆2u : W 2,q′

0 (Ω) 3 ϕ 7→< ∆2u, ϕ >:=

ˆ
Ω

g(x)|u|p−1uϕ. (2.31)

Proposition 2.2.20. If ∂Ω ∈ C2, for every σ > σ∗ the weak solutions of Steklov
and Navier problems (2.21) and (2.22) lie in W 2,q(Ω) for every q > 2.

Proof. Let u ∈ H2(Ω)∩H1
0 (Ω) be a weak solution of (2.8). Applying Lemma 2.2.19

with m = 2 and a = (1− σ)κ ∈ C0(∂Ω) (a = 0 for the Navier case), we �nd:

‖u‖W 2,q(Ω) ≤ C(q, σ,Ω)

(
‖u‖q + ‖∆2u‖W−2,q(Ω)

)
,

which is well-de�ned in view of (2.31). Since

‖∆2u‖W−2,q(Ω) = sup
0 6=ϕ∈W 2,q′

0 (Ω)

∣∣∣∣ ´Ω g(x)|u|p−1uϕ

∣∣∣∣
‖ϕ‖

W 2,q′
0 (Ω)

≤ C(p, q,Ω)‖g‖1‖u‖pH2(Ω), (2.32)

we �nally deduce from (2.32) that

‖u‖W 2,q(Ω) ≤ C(q, σ,Ω)

(
‖u‖q + C(p, q,Ω)‖g‖1‖u‖pH2(Ω)

)
< +∞.

We stress that we did not use either the fact that u is a ground state solution, or
its positivity: the above result holds true for every weak solution of Steklov and
Navier problems.

Proposition 2.2.21. Let Ω be of class C2 and (uk)k∈N be a sequence of weak solu-
tions for the Steklov problems (2.21) converging in H2(Ω) to u, a weak solution for
the Navier problem (2.22). Then the convergence is in W 2,q(Ω) for every q ≥ 2.

Proof. Let q ≥ 2 and apply the regularity estimate of Lemma (2.2.19) to uk − u
with m = 2, a = 0:

‖uk−u‖W 2,q(Ω) ≤ C(q,Ω)
(
‖uk−u‖q+‖∆2uk−∆2u‖W−2,q(Ω)+|1−σk|‖κ(uk)n‖

W
− 1
q ,q(∂Ω)

)
,

(2.33)
using that on ∂Ω we have ∆(uk − u)− a(uk − u)n = ∆uk −∆u = (1− σk)κ(uk)n.
By (2.31) and the dominated convergence theorem:

‖∆2uk −∆2u‖W−2,q(Ω) = sup
0 6=ϕ∈W 2,q′

0 (Ω)

∣∣ ´
Ω
g(x)|uk|p−1ukϕ−

´
Ω
g(x)|u|p−1uϕ

∣∣
‖ϕ‖

W 2,q′
0 (Ω)

→ 0,

similarly to (2.32). We need now to prove that (κ(uk)n)k∈N is bounded inW
− 1
q
,q(∂Ω).

Notice that if we provide a uniform bound in Lq(∂Ω), then we are done. In
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fact W− 1
q
,q(∂Ω) :=

(
W

1
q
,q′(∂Ω)

)∗
and W

1
q
,q′(∂Ω) ↪→ Lq

′
(∂Ω), so we directly infer

W− 1
q
,q(∂Ω)←↩ Lq(∂Ω).

Moreover, it is known that, with our assumptions on ∂Ω, the normal trace of func-
tions inW s,p(Ω) lies in Lp(∂Ω), provided s > 1+ 1

p
(for this and some further sharper

results, see [64, Theorem 2]). Hence,

‖κ(uk)n‖
W
− 1
q ,q(∂Ω)

≤ C(q,Ω)‖κ(uk)n‖Lq(∂Ω) ≤ C(q,Ω)‖κ‖L∞(∂Ω)‖(uk)n‖Lq(∂Ω)

≤ C(q,Ω, s)‖κ‖L∞(∂Ω)‖uk‖W s,q(Ω),

(2.34)

for some s > 1 + 1
q
. Thus, we need to �nd an appropriate fractional Sobolev space

in which H2(Ω) is embedded. We claim that H2(Ω) ↪→ W 1+3/2q,q(Ω). Actually,
it is enough to prove that H1(Ω) := W 1,2(Ω) ↪→ W 3/2q,q(Ω) by the de�nition of
W s,p(Ω) for s > 1. So, let u ∈ W 1,2(Ω); by the Stein total extension theorem [1,
Theorem 5.24] there exists U ∈ W 1,2(R2) such that U|Ω = u a.e. and ‖U‖W 1,2(R2) ≤
C‖u‖W 1,2(Ω) for some positive constant independent of u. Applying an interpolation
result (see Theorem A.0.1 in the Appendix) to U with θ = 3

2q
and the Sobolev

embedding W 1,2(R2) ↪→ L4q−6(R2) since 4q − 6 ≥ 2:

‖U‖W 3/2q,q(R2) ≤ C‖U‖
3
2q

W 1,2(R2)‖U‖
1− 3

2q

L4q−6(R2) ≤ C1‖U‖W 1,2(R2).

Hence,

‖u‖W 3/2q,q(Ω) = ‖U‖W 3/2q,q(Ω) ≤ ‖U‖W 3/2q,q(R2) ≤ C1‖U‖W 1,2(R2) ≤ C2‖u‖W 1,2(Ω).

As a result, noticing that s = 1 + 3
2q
> 1 + 1

q
, we can continue (2.34), obtaining:

‖κ(uk)n‖
W
− 1
q ,q(∂Ω)

≤ C(q,Ω)‖κ‖L∞(∂Ω)‖uk‖W 1+3/2q,q(Ω) ≤ C̃(q,Ω)‖κ‖L∞(∂Ω)‖uk‖H2(Ω),

which is uniformly bounded in k. Combining estimate (2.33) with the ones above
for the second and the third terms of (2.33), we �nally end up with the strong
convergence in W 2,q(Ω).

2.2.5 The Dirichlet problem and an asymptotic analysis as

σ → +∞
There is another relevant case in which an interesting asymptotic analysis may be
performed: the Dirichlet problem{

∆2u = g(x)|u|p−1u in Ω,

u = un = 0 on ∂Ω,
(2.35)

seen as the limit problem as σ → ∞. We do not expect to deduce any positivity
argument for sufficiently large values of σ from a possible convergence result,
since the normal derivative on the boundary of the limiting problem vanishes.
However, we can hope to infer from it a further evidence that the positivity might
hold for all values of σ > σ∗, at least when dealing with some special domains (see
the subsequent Subsection 2.2.6). To this aim, we prove the following:
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Theorem 2.2.22. Let σk → +∞ and Ω be a bounded convex domain in R2 with
boundary of class C1,1. Assume also that the curvature κ is positive a.e on ∂Ω.
Then the sequence (uk)k∈N of ground states of (Jσk)k∈N admits a subsequence (ukj)j∈N
convergent in H2(Ω) to U , which is a ground state for the Dirichlet problem (2.35).

The argument is similar to that we used in Subsection 2.2.4 for the convergence
to the Navier problem, but now we have to pay attention to the fact that in this case
the two functional spaces are different (H2(Ω) ∩ H1

0 (Ω) for the Steklov problem
and H2

0 (Ω) for the Dirichlet). We are not giving here the details of the proof of
the existence of ground states of (2.35), as it can be obtained as for the Steklov
framework by the Nehari method of Section 2.2. In what follows, as usual, uk will
always denote a ground state for Jσk and U a ground state for JDIR : H2

0 (Ω) → R
defined as

JDIR(u) =
1

2

ˆ
Ω

(∆u)2 − 1

p+ 1

ˆ
Ω

g(x)|u|p+1,

whose critical points are weak solutions of (2.35). Moreover, similarly to the
Steklov case, we define the Nehari manifold for JDIR:

NDIR := {u ∈ H2
0 (Ω) \ {0} | J ′DIR(u)[u] = 0}.

First of all, notice that for each σ

Jσ |
H2

0(Ω)
= JDIR, (2.36)

so Nσ restricted to the subspace H2
0 (Ω) coincides with NDIR.

Proof of Theorem 2.2.22. We follow the same steps as in Subsection 2.2.4 to deduce
Theorem 2.2.18. Firstly, we prove that (uk)k∈N is bounded in H2(Ω). Indeed, �x
W ∈ H2

0 (Ω) a ground state for the Dirichlet problem (2.35), then

‖∆uk‖2
2 ≤
ˆ

Ω

(∆uk)
2 − (1− σk)

ˆ
∂Ω

κ(uk)
2
n =

ˆ
Ω

g(x)|uk|p+1

= inf
v∈Nσk

ˆ
Ω

g(x)|v|p+1 ≤ inf
v∈Nσk∩H

2
0 (Ω)

ˆ
Ω

g(x)|v|p+1 =

ˆ
Ω

g(x)|W |p+1.
(2.37)

Hence, there exists U ∈ H2(Ω) ∩ H1
0 (Ω) such that, up to a subsequence, uk ⇀ U

weakly in H2(Ω). Moreover, (2.37) implies that

0 ≤ (σk − 1)

ˆ
∂Ω

κ(uk)
2
n ≤
ˆ

Ω

g(x)|uk|p+1 ≤ C(Ω, p)‖g‖1‖uk‖p+1
H2(Ω) ≤ D(Ω, p, g)

and, taking into account that σk → +∞, we deduce that
ˆ
∂Ω

κ(uk)
2
n → 0.

By the compactness of the map ∂n : H2(Ω)→ L2(∂Ω), we have also that
ˆ
∂Ω

κ(uk)
2
n →

ˆ
∂Ω

κU2
n.
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Hence, combining the two and recalling that we assumed κ > 0 on ∂Ω, we deduce
that Un ≡ 0 on ∂Ω and thus U ∈ H2

0 (Ω).
Finally, testing the weak formulation of problem (2.21) with ϕ ∈ H2

0 (Ω) and passing
to the limit as k → +∞, we get

ˆ
Ω

∆U∆ϕ =

ˆ
Ω

g(x)|U |p−1Uϕ,

so U is a solution of the Dirichlet problem (2.35) and, similarly to Lemma 2.2.15,
we can prove that the convergence is strong in H2(Ω). It remains to prove that U
is actually a ground state for JDIR. Let W ∈ H2

0 (Ω) be a ground state solution of
JDIR. Then, by (2.36):

m = JDIR(W ) = Jσk(t
∗
σk

(W )W ) ≥ inf
Nσk∩H

2
0 (Ω)

Jσk ≥ inf
Nσk

Jσk = Jσk(uk),

hence we deduce that m ≥ lim infk→+∞ Jσk(uk). Moreover, by strong convergence,

JDIR(U) = (1
2
− 1

p+1
)

ˆ
Ω

g(x)|U |p+1 = lim
k→+∞

(1
2
− 1

p+1
)

ˆ
Ω

g(x)|uk|p+1 = lim
k→+∞

Jσk(uk).

Finally, since U is a solution of the Dirichlet problem (2.35), we have U ∈ NDIR, so:

m ≤ JDIR(U) ≤ lim inf
k→+∞

Jσk(uk) ≤ m.

2.2.6 Beyond the physical bounds: σ > 1

This subsection is devoted to establish the positivity of ground states for σ > 1.
We will provide two different proofs (which will produce two slightly different
results): the first is relied on the convergence analysis given in Subsection 2.2.4,
while the second is based on the method of dual cones, connecting our semilinear
problem with the linear one. Again, for convenience, we assume the exponent of
the nonlinearity (2.10) to be p > 1.

First method for positivity: a convergence argument

Let us start by noticing that, by Morrey’s embeddings, the convergence in W 2,q(Ω)
for every q ≥ 2 of Proposition 2.2.21 implies the convergence in C1,α(Ω) for every
α < 1, so in particular in C1(Ω). This will be the main ingredient in the next proof.

Proposition 2.2.23. Let Ω ⊂ R2 be a bounded convex domain of class C2 and
(uk)k∈N be a sequence of ground states for the functional Jσk with σk ↘ 1. Then
there exists a subsequence (ukj)j∈N and j0 ∈ N such that ukj > 0 in Ω for every
j ≥ j0.

Proof. By Propositions 2.2.20 and 2.2.21 and by the previous observation, we know
that, up to a subsequence, uk → u in C1(Ω) for some u, a ground state for JNAV .
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Since Ω has a C2 boundary, the interior sphere condition holds and one can extend
the outer normal vector n in a small neighborhood ω0 ⊂ Ω of ∂Ω and thus de�ne here
un := ∇u · n (see [87, Chapter 4]). Moreover, since u is strictly superharmonic, the
normal derivative un is negative on ∂Ω and, by compactness of ∂Ω and continuity
of un, there exists α > 0 such that

un|∂Ω
≤ −α < 0.

Hence, again by continuity, there exists a second neighborhood ω ⊂ ω0 of ∂Ω such
that

un|ω ≤ −
2

3
α < 0.

Take now ε1 = α
3
: by the C1(Ω) convergence, there exists k1 ∈ N such that for every

k ≥ k1 and x ∈ ω:

|(uk)n(x)| ≥ |un(x)| − |(uk)n(x)− un(x)|

>
2α

3
− ‖|n|‖L∞(ω)‖|∇uk −∇u|‖L∞(Ω) >

2α

3
− ε1 >

α

3
.

By the interior sphere condition, the map ω → ∂Ω, x 7→ x0 such that d(x, x0) =
inf{d(x, y)|y ∈ ∂Ω} is well de�ned and the vector x − x0 has the same direction
as n(x) and n(x0). Hence by Lagrange Theorem and recalling that uk |∂Ω

= 0, for
x ∈ ω:

|uk(x)| = |uk(x)− uk(x0)| ≥ min
y∈[x0,x]

|(uk)n(y)||x− x0| >
α

3
|x− x0| > 0. (2.38)

Moreover, notice that by compactness of Ω0 := Ω \ ω we have

u|Ω0
≥ min

Ω0

u := m > 0

and so by the uniform convergence it is easy to deduce that, for k large enough,
uk(x) > m

2
for every x ∈ Ω0. The result follows by combining this with (2.38).

Theorem 2.2.24. Let Ω ⊂ R2 be a bounded convex domain of class C2; then there
exists σ1 > 1 such that for every σ ∈ (1, σ1) the ground states of Jσ are positive in
Ω.

Proof. By contradiction, suppose that such σ1 does not exist. Hence we would be
able to �nd a sequence (σk) ↘ 1 such that for each of them there exists a ground
state uk for Jσk which is not positive. This would contradict Proposition 2.2.23.

Remark 10. As we are dealing with continuous functions, since H2(Ω) ↪→ C0(Ω),
we are interested in the strict positivity everywhere in Ω and not only a.e. in Ω.
Theorem 2.2.24 gives a positive answer for this question: in fact, as u ∈ H2(Ω) =
W 2,N(Ω) is strictly superharmonic, by the strong maximum principle for strong
solutions [44, Theorem 9.6], we deduce that it cannot achieve its minimum on the
interior of Ω, thus u(x) > 0 for every x ∈ Ω. By the C1 convergence we deduce the
same strict inequality for uσ, with σ ∈ (1, σ1).
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Second method for positivity: a dual cone decomposition

The positivity result of Theorem 2.2.24 leaves us a bit unsatisfied, for two main
reasons. On one hand, we have no estimates which quantify "how large" this right
neighborhood of σ = 1 is and, moreover, if we think of the Dirichlet problem
(2.35), seen as the limit case as σ → +∞, then there exists at least one case in
which we know that its ground states are positive, namely when Ω is a ball in R2

(see [37] for the case g ≡ 1, but the arguments therein hold also in our general
situation). Thus, we expect to be able to completely extend the positivity for such
domains. We point out that proving positivity of ground states of (2.35) is quite a
hard subject, since it strongly relies on the geometry of the domain, even in the
linear case, namely f(x, u) = f(x), as recalled in the Introduction.
Roughly speaking, this technique allows to split any function u which belongs to
an Hilbert space, into a sum of a positive term and (in the best case) a nega-
tive one, both belonging to the same Hilbert space. In practice, this replaces the
decomposition u = u+ − u− which is not available in the context of high-order
Sobolev spaces. This method will allows to obtain from a supposed sign-changing
ground state solution u, a function w of one sign and in the same space with a
strictly lower energy level, leading to a contradiction.

At the end of this subsection, one may also compare the resulting analysis with
the respective one for the linear problem with the same boundary conditions, due
to Gazzola and Sweers in [42].

De�nition 2.2.2. Let Ω ⊂ R2 be a bounded domain of class C1,1 and �x σ ∈ R.
The linear Steklov boundary problem{

∆2u = f in Ω,

u = ∆u− (1− σ)κun = 0 on ∂Ω,
(2.39)

is positivity preserving in Ω if there exists a unique solution u ∈ H2(Ω)∩H1
0 (Ω) and

f ≥ 0 implies u ≥ 0, and this holds for each f ∈ L2(Ω). We shorten this by saying
"Ω is a [PPPσ] domain for (2.39)".

Our aim is to apply the dual cone decomposition (see Theorem A.0.2 in the
Appendix) to the Hilbert space (H2(Ω)∩H1

0 (Ω); ‖ · ‖Hσ), where ‖ · ‖Hσ is the norm
(2.4), and K := {v ∈ H | v ≥ 0}, the cone of nonnegative functions, looking for
a decomposition of each element into a positive and a negative part. Hence, we
need a characterization of the dual cone K∗:

Lemma 2.2.25. If Ω is a [PPPσ] domain for (2.39) for a �xed σ ∈ R, then K∗ ⊆
{w ∈ H |w < 0 a.e.} ∪ {0}.

Proof. We adapt here the proof of [40, Proposition 3.6]. Let ϕ ∈ C∞c (Ω), ϕ ≥ 0 and
let vϕ ∈ H2(Ω) ∩H1

0 (Ω) be the unique weak solution of the linear problem{
∆2vϕ = ϕ in Ω

vϕ = ∆vϕ − (1− σ)κ(vϕ)n = 0 on ∂Ω,
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that is, for every test function w ∈ H2(Ω) ∩H1
0 (Ω), we have

(vϕ, w)Hσ :=

ˆ
Ω

∆vϕ∆w − (1− σ)

ˆ
∂Ω

κ(vϕ)nwn =

ˆ
Ω

ϕw.

Hence, suppose w = u ∈ K∗: as Ω is a [PPPσ] domain and ϕ ≥ 0, we deduce that
vϕ ≥ 0, so vϕ ∈ K and thus (vϕ, u)Hσ ≤ 0. As a result, we obtain that

´
Ω
ϕu ≤ 0

holds for every ϕ ∈ C∞c (Ω), ϕ ≥ 0, implying that u ≤ 0 a.e. in Ω.
Moreover, let us suppose that the null-set of u, namely N := {x ∈ Ω |u(x) = 0},
has positive measure, consider ψ := χN 6= 0 and let v0 be the unique solution of the
linear Navier problem: {

∆2v0 = ψ in Ω,

v0 = ∆v0 = 0 on ∂Ω.
(2.40)

Then v0 is strictly superharmonic by the maximum principle, thus v0 > 0 and, by
the Hopf Lemma, (v0)n < 0. As a result, for any function v ∈ H2(Ω) ∩H1

0 (Ω) one
can produce two positive constants α, β such that v + αv0 ≥ 0 and v − βv0 ≤ 0.
Moreover we claim that (u, v0)Hσ ≥ 0. In fact, as v0 is the weak solution of (2.40)
and by de�nition of ψ:

ˆ
Ω

∆u∆v0 =

ˆ
Ω

uψ =

ˆ
N

u = 0.

Thus, since σ > 1, κ ≥ 0, un ≤ 0 as u ≥ 0, and (v0)n < 0:

(u, v0)Hσ :=

ˆ
Ω

∆u∆v0 − (1− σ)

ˆ
∂Ω

κun(v0)n ≥ 0.

As a result, recalling that u ∈ K∗, v + αv0 ∈ K and v − βv0 ∈ (−K), we have the
chain of inequalities:

0 ≥ (u, v + αv0)Hσ = (u, v)Hσ + α(u, v0)Hσ ≥ (u, v)Hσ
≥ (u, v)Hσ − β(u, v0)Hσ = (u, v − βv0)Hσ ≥ 0,

which implies (u, v)Hσ = 0 and holds for all v ∈ H2(Ω) ∩H1
0 (Ω). Hence this is true

also for v de�ned as the unique solution of the Steklov problem:{
∆2v = u in Ω,

v = ∆v − (1− σ)κvn = 0 on ∂Ω,

and, using u as a test function, we deduce that

0 = (u, v)Hσ =

ˆ
Ω

u2 = ‖u‖2
2,

which implies u = 0 a.e.

Proposition 2.2.26. Let σ > 1 and suppose Ω is a [PPPσ] domain for (2.39).
Then the ground states of Jσ are either positive a.e. or negative a.e.
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Proof. Let u ∈ H2(Ω)∩H1
0 (Ω) be a ground state and suppose by contradiction that

u is sign-changing. Denoting as before the cone of nonnegative functions by K, by
Theorem A.0.2 and Lemma 2.2.25 there exists a unique couple (u1, u2) ∈ K × K∗
such that u = u1 + u2, u1 ≥ 0 and u2 < 0, and such that (u1, u2)Hσ = 0. Moreover,
u is supposed to change sign, so u1 6= 0. De�ning w := u1 − u2 ∈ H2(Ω) ∩H1

0 (Ω),
we have w > |u|. Indeed,

w = u1 − u2 > u1 + u2 = u,

w = u1 − u2 > −u1 − u2 = −u.

Consequently,
´

Ω
g(x)|w|p+1 >

´
Ω
g(x)|u|p+1 and, since the decomposition is orthog-

onal under that norm, ‖w‖2
Hσ

= ‖u1‖2
Hσ

+ ‖u2‖2
Hσ

= ‖u‖2
Hσ
. Moreover, by Lemma

2.2.3, there exists t∗ := t∗(w) ∈ (0,+∞) such that w∗ := t∗(w)w ∈ Nσ. Therefore,

Jσ(w∗) =
(t∗)2

2
‖w‖2

Hσ −
(t∗)p+1

p+ 1

ˆ
Ω

g(x)|w|p+1

<
(t∗)2

2
‖u‖2

Hσ −
(t∗)p+1

p+ 1

ˆ
Ω

g(x)|u|p+1 = Jσ(t∗(w)u) ≤ Jσ(u),

since u is the maximum of Jσ on the half-line {tu | t ∈ (0,+∞)} by Lemma 2.2.3.
This is again a contradiction, since u was the in�mum of Jσ on the Nehari manifold
Nσ. Hence, there must hold u ≥ 0.
Finally, as u is a critical point of Jσ, we have for each a positive test function
ϕ ∈ H2(Ω) ∩H1

0 (Ω):

(u, ϕ)Hσ =

ˆ
Ω

∆u∆ϕ− (1− σ)

ˆ
∂Ω

κunϕn =

ˆ
Ω

g(x)upϕ ≥ 0,

which implies −u ∈ K∗. Applying Lemma 2.2.25, we get −u < 0, that is, u > 0.

As a consequence, the problem of proving positivity of ground state is led back
to a problem of positivity preserving for the linear problem, which was already
investigated by Gazzola and Sweers.
In the sequel, f  0 means f(x) ≥ 0 for all x and f 6= 0.

Lemma 2.2.27 ([42], Theorem 4.1). Let Ω ⊂ RN (N ≥ 2) be a bounded domain with
∂Ω of class C2 and let 0 � β ∈ C(∂Ω). Then there exist δ1,β = δ1,β(Ω) ∈ (0,+∞)
and δc,β = δc,β(Ω) ∈ [−∞, 0) such that, if α ∈ C(∂Ω) and δc,ββ < α � δ1,ββ and we
consider the following linear problem{

∆2u = f in Ω,

u = ∆u− αun = 0 on ∂Ω,
(2.41)

then 0 � f ∈ L2(Ω) implies u > 0 in Ω.

Theorem 2.2.28. Let σ > 1 and Ω ⊂ R2 be a bounded convex domain with ∂Ω of
class C2. There exists δ̃c(Ω) ∈ (1,+∞] such that if σ ∈ (1, δ̃c(Ω)), the ground states
of the functional Jσ are either positive a.e. or negative a.e.
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Proof. Choosing β = κ in Lemma 2.2.27, we infer the existence of δc,κ(Ω) ∈ [−∞, 0)
such that if (1 − σ)κ ≥ δc,κ(Ω)κ, then the positivity preserving for problem (2.39)
holds in Ω. Hence, de�ning δ̃c(Ω) := 1 + |δc,κ(Ω)|, we can apply Proposition 2.2.26,
provided σ < δ̃c(Ω).

Remark 11. Again, up to some easy modi�cations in the proofs, both the conver-
gence in Theorem 2.2.22 and the positivity result in Theorem 2.2.28 hold also in the
sublinear case p ∈ (0, 1).

Comparing Theorems 2.2.28 and 2.2.24, one may argue that we have nothing
more than what we already knew: in both we obtain the existence of σ1 = σ1(Ω) >
1 such that for all σ ∈ (1, σ1) the ground state solutions of problem (2.8) are pos-
itive. Nevertheless, in Theorem 2.2.28 we get further precise information about
how the interval of positivity depends on the domain, relating it strongly with the
positivity preserving property. This fact is striking in the case of the disc and allows
us to finally answer the question which we asked at the beginning of the present
analysis.

Corollary 2.2.29. Let B ⊂ R2 be a disc and let σ > 1. Then the ground states of
the functional Jσ are either positive a.e. or negative a.e.

Proof. It is enough to notice that here κ = 1 and applying [42, Corollary 2.9] one
can deduce δc,κ(B) = −∞, which implies δ̃c(B) = +∞.

The ball is not the unique case in which we have δ̃c(Ω) = +∞. In the sequel,
we denote by GΩ : Ω×Ω\{(x, x) : x ∈ Ω} → R the Green function of the Dirichlet
problem {

∆2u = f in Ω,

u = un = 0 on ∂Ω.
(2.42)

Lemma 2.2.30 ([42], Theorem 2.6). Let Ω ⊂ RN (N ≥ 2) be a bounded domain
with ∂Ω ∈ C4,γ and let 0 � β ∈ C(∂Ω). If

GΩ(x, y) ≥ cdΩ(x)2dΩ(y)2, (2.43)

then, for all α ∈ C(∂Ω) with α � δ1,ββ and 0 � f ∈ C(Ω), the weak solution of
(2.41) satis�es u > 0 in Ω.

Therefore, any sufficiently smooth bounded domain such that (2.43) holds is a
domain for which δ̃c(Ω) = +∞. Indeed, the fact we have a smaller class of f ≥ 0
such that (2.41) has a positive solution has no consequences on the proof of positiv-
ity for the semilinear problem, since we only need it for f ∈ C∞c (Ω). Nonetheless,
the estimate from below (2.43) is a stronger condition than the positivity preserv-
ing property itself, thus it is far from being easy to infer. The unique examples
available in the literature are provided by Dall’Acqua and Sweers and concern a
special class of domains, referred to as limaçons, and their smooth deformations.

De�nition 2.2.3. Let a ∈ [0, 1
2
]. The limaçon of parameter a is de�ned as the set:

Ωa := {(ρ cos(ϕ), ρ sin(ϕ)) ∈ R2 | 0 ≤ ρ < 1 + 2a cos(ϕ)}.
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For 0 ≤ a ≤ 1
2
, the curve ρ = 1 + 2a cos(ϕ) is non self-intersecting. Special values

of the parameter a are the following:

• a = 0 : Ω0 is the unit disc;

• a = 1
4

: Ωa is convex if and only if a ∈ [0, 1
4
];

• a = 1
2

: Ω 1
2

is the cardioid.

De�nition 2.2.4. Let ε > 0, γ ∈ (0, 1), k ∈ N and Ω,Ω′ be two domains in RN . We
say that Ω is ε-close to Ω′ in Ck,γ-sense if there exists a Ck,γ mapping g : Ω′ → Ω
such that g(Ω′) = Ω and ‖g − Id‖Ck,γ(Ω′) ≤ ε.

The following result has been established by Dall’Acqua in [23, Theorem 5.3.2]
(see also [25], Theorem 3.1.3 and Remark 3.4.3).

Lemma 2.2.31. Let ā ∈ (1
4
,
√

6
6

) and γ ∈ (0, 1). Then there exist ε0 > 0 and
c1, c2 > 0 such that for every ε ∈ [0, ε0] and a ∈ [0, ā] the following holds: if Ω
is ε-close in C2,γ-sense to the limaçon Ωa, then the Green function GΩ of (2.42)
satis�es

0 < c1DΩ(x, y) ≤ GΩ(x, y) ≤ c2DΩ(x, y) for every x, y ∈ Ω, (2.44)

where

DΩ(x, y) := dΩ(x)dΩ(y) min

{
1,
dΩ(x)dΩ(y)

|x− y|2

}
.

Thanks to Lemma 2.2.31, we can improve Corollary 2.2.29, enlarging the class
of domains for which a "full positivity" result applies for the ground states of Jσ:

Proposition 2.2.32. Let Ω ⊂ R2 be a convex bounded domain of class C4,α which
is ε-close in C2,γ-sense to a limaçon as in Lemma 2.2.31. Then the ground states
of Jσ are positive, provided σ > σ∗(Ω).

Proof. The result is proved by applying Lemmas 2.2.31, 2.2.30, 2.2.27 and Proposi-
tion 2.2.26, noticing that the estimate from below (2.43) easily follows from (2.44).

One should finally notice that here the positivity found by the dual cones method
is up to a subset of the domain with zero Lebesgue measure, so almost everywhere
in Ω. This is the price we have to pay to extend the positivity beyond the parameter
σ1 found in Theorem 2.2.24 (cf. Remark 10).

2.2.7 Radial case

This section is devoted to some further investigation when the domain is a disc in
R2 and the function g is radial. In particular, we want to analyse existence, pos-
itivity and some qualitative properties of radially symmetric solutions. Moreover,
we establish the counterpart of the convergence results of Subsections 2.2.3-2.2.5
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for general radial positive solutions.
For simplicity, we focus on the problem{

∆2u = g(x)|u|p−1u in B,
u = ∆u− (1− σ)un = 0 on ∂B,

(2.45)

where B := B1(0) ⊂ R2, g = g(|x|) lies in L1(B) and it is strictly positive inside B.
Moreover, we let the parameter σ ∈ R and p ∈ (0, 1) ∪ (1,+∞) to cover both the
sublinear and the superlinear case. Notice that the curvature does not appear in
the mixed boundary condition since κ(B) ≡ 1.

Positive radially decreasing solutions and uniform bounds

First of all, by Proposition 2.2.10, our analysis concerns only the range σ > −1:
in fact, if Ω = B, one has σ∗ = −1, since the first Steklov eigenvalue δ̃1(B) = 2
(see [8, Proposition 12]). Retracing exactly the same steps of Subsection 2.2, it is
quite easy to obtain the existence of a positive radial solution. In fact, confining
ourselves to the closed subspace of radial functions

Hrad(B) := {u ∈ H2(B)∩H1
0 (B) |u(x) = u(|x|), ∀x ∈ B} = FixO(2)(H

2(B)∩H1
0 (B)),

we deduce the existence of a critical point of Jσ restricted to Hrad(B). Then it
is enough to notice that Jσ is invariant under the action of O(2) and to apply
the Principle of Symmetric Criticality due to Palais (see Theorem A.0.3 in the
Appendix), retrieving that these points are critical for Jσ also with respect to the
whole space.
Finally, if we restrict to the interval (−1, 1], the positivity of such critical points
is proved as in Propositions 2.2.2 and 2.2.7, realizing that the superharmonic
function of a radially symmetric function is radial too (see (2.7)). On the other
hand, if σ > 1, one can apply the dual cone decomposition to the Hilbert space
Hrad(B) and argue as in Lemma 2.2.25 and Proposition 2.2.26, taking into account
that B is a [PPPσ] domain for every σ > −1. Summarizing, we have shown the
following:

Proposition 2.2.33. Let p ∈ (0, 1) ∪ (1,+∞), g = g(|x|) ∈ L1(B), g > 0. If
σ ≤ −1, there is no positive nonnegative nontrivial solution for (2.45), while, if σ >
−1, there exists at least a positive radial solution, which is strictly superharmonic
whenever σ ∈ (−1, 1].

Let us now focus on qualitative properties of radial positive solutions of (2.45).
The first result concerns the radial behaviour, while the second the uniform bound-
edness in L∞(B). Before proving these results, one should notice that such solu-
tions are strong, namely in W 4,q(B), provided g ∈ Lq(B) for some q > 2 and also
classical assuming in addition that g ∈ W 1,q(B) for some q > 2. This is a straight-
forward application of Lemma 2.2.19 combined with Morrey’s embeddings.
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Lemma 2.2.34. Let BR(0) be the ball of radius R in R2 centered in 0, q > 2 and
h̃ ∈ W 2,q(BR(0)) be radial. De�ning h : [0, R]→ R to be its restriction to the radial
variable, for all t ∈ [0, R] the following equality holds:

th′(t) =

ˆ t

0

s∆h(s)ds.

Proof. If h is of class C2, it comes directly from integration by parts and from the
radial representation of the laplacian as

∆h̃(x) = h′′(|x|) +
1

|x|
h′(|x|).

Otherwise, let (f̃k)k∈N ⊂ C∞(B̄R(0)) be such that f̃k → h̃ in W 2,q(BR(0)), so in
C1(B̄R(0)). Since h̃ is radial, we claim that it is possible to choose each f̃k to be
radial and we denote its restriction to the radial variable as fk. If so, for every k ∈ N
we have:

tf ′k(t) =

ˆ t

0

s∆fk(s)ds.

As a result, as k → +∞ :∣∣∣∣ ˆ t

0

s(∆fk(s)−∆h(s))ds

∣∣∣∣ =
1

2π
‖∆f̃k −∆h̃‖L1(Bt(0)) ≤ C(q)‖f̃k − h̃‖W 2,q(BR(0)) → 0.

The result is proved by the convergence in C1(B̄R(0)) and the uniqueness of the
limit. Now we have to justify our previous claim. Since h̃ ∈ W 2,q(BR(0)), we have

∑
i,α

ˆ
BR(0)

∣∣∣∣∂αh̃∂iα (x, y)

∣∣∣∣qdxdy < +∞,

where i ∈ {x, y} and α is a multi-index of length 0 ≤ |α| ≤ 2. Since each ∂αh̃
∂iα

is radial, this is equivalent to saying that h ∈ W 2,q([0, R], r), that is the weighted
Sobolev space with weight r. Hence, by [54, Theorem 7.4] (M = {0}, ε = 1 in
notation therein), there exists a sequence (fk)k∈N ⊂ C∞([0, R]) such that fk → h in
W 2,q([0, R], r), that is ∑

i,α

ˆ R

0

r

∣∣∣∣∂αh∂iα (r)− fk(r)
∣∣∣∣qdr → 0.

Hence, de�ning Fk(x) := fk(|x|), each Fk ∈ C∞(B̄R(0)), is radial and

‖h̃− Fk‖W 2,q(BR(0)) =
∑
i,α

ˆ
BR(0)

∣∣∣∣∂αh̃∂iα (x, y)− Fk(x, y)

∣∣∣∣qdxdy
= 2π

∑
i,α

ˆ R

0

r

∣∣∣∣∂αh∂iα (r)− fk(r)
∣∣∣∣qdr → 0,

and the claim is proved.
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Proposition 2.2.35 (Radial Decay). Assume g ∈ Lq(B) for some q > 2, g is radial
and g > 0. and let u 6≡ 0 be a nonnegative radial solution of (2.45) with σ ∈ (−1, 1]
and p ∈ (0, 1) ∪ (1,+∞). Then u is strictly radially decreasing, thus u > 0 in B.

Proof. By the assumption on g, we infer that u is a strong solution, thus w := ∆u ∈
W 2,q(B). Since ∆w = ∆2u = g(|x|)up ≥ 0 in [0, 1], applying Lemma 2.2.34, we
have w′ > 0 in (0, 1]. Hence ∆u is strictly increasing in (0, 1]. Moreover, since u
is nonnegative and u(1) = 0, we have u′(1) ≤ 0; hence, using the second boundary
condition, ∆u(1) = (1 − σ)u′(1) ≤ 0. Since ∆u is strictly increasing in (0, 1], we
deduce that ∆u < 0 in [0, 1), and �nally, applying again Lemma 2.2.34, u′ < 0 in
(0, 1].

In the next result we find a uniform upper bound for positive radial solutions
of (2.45), which may be seen as a superlinear counterpart of Proposition 2.2.8. We
will make use of a blow up method which goes back to the work [43] of Gidas and
Spruck, and which was adapted to the polyharmonic case by Reichel and Weth
in [77, 78]. Briefly, our argument is the following: supposing the existence of
a sequence of positive radial solutions with diverging L∞ norm, we rescale each
of them in order to have another sequence of functions with the same L∞ norm,
satisfying the same equation in nested domains which tend to occupy the whole
R2. Then we show that, up to a subsequence, it converges uniformly on compact
subsets to a continuous nonnegative but nontrivial function. This turns out to be
a solution of the same equation on R2 and to contradict a Liouville’s-type result by
Wei and Xu (see Theorem A.0.5 in the Appendix, with N = 2 and m = 2).

Proposition 2.2.36. Let σ ∈ (−1, 1] and g ∈ Lq(B) for some q > 2, radial and
g > 0. Suppose also that g is continuous in 0. Then, there exists C > 0 independent
of σ such that ‖u‖∞ ≤ C for every u radial positive solution of (2.45).

Proof. By contradiction, suppose there exists a sequence (vk)k∈N of radial positive
solutions such that ‖vk‖∞ ↗ +∞. According to Proposition 2.2.35, each vk is
radially decreasing, so vk(0) = ‖vk‖∞ ↗ +∞. For each k ≥ 1, de�ne

uk(x) = λ
4
p−1

k vk(λkx),

where λk ∈ R+ are such that λ
4
p−1

k = 1/vk(0). With this choice, each uk satis�es∆2uk = g(|λkx|)upk in B 1
λk

(0),

uk = ∆uk − (1− σ)λk(uk)n = 0 on ∂B 1
λk

(0),

is in W 4,q
(
B 1

λk

(0)
)
, radially decreasing and

‖uk‖L∞(B 1
λk

(0)) = uk(0) = λ
4
p−1

k vk(0) = 1. (2.46)

We claim that the sequence (uk)k∈N is uniformly bounded on compact sets of R2

in W 4,q norm. In fact, let K ⊂ R2 be compact, then there exists ρ > 0 such that
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Bρ(0) ⊃ K and, for k large enough, each uk is well de�ned in K since B 1
λk

(0) ⊃
B2ρ(0) de�nitively. For such k, by (2.46) and applying the local estimate of Lemma
A.0.4 in the Appendix with Ω = B2ρ(0), m = N = 2 and δ = 1/2, we get

‖uk‖W 4,q(K) ≤ ‖uk‖W 4,q(Bρ(0)) ≤ C(ρ,q)
(1/24)

(‖∆2uk‖Lq(B2ρ(0)) + ‖uk‖Lq(B2ρ(0)))

≤ 16C(ρ, q)(‖g(|λk · |)‖Lq(B2ρ(0)) + |B2ρ(0)|
1
q ).

(2.47)

Moreover, �xing ε > 0 and supposing k large enough,

‖g(|λk · |)‖Lq(B2ρ(0)) = (4πρ2)
1
q

(
1

|B2ρλk(0)|

ˆ
B2ρλk

(0)

|g(y)|qdy
) 1

q

≤ (4πρ2)
1
q g(0) + ε

(2.48)
where the last inequality follows from the Lebesgue di�erentiation theorem. Hence,
combining (2.47) with (2.48), we infer ‖uk‖W 4,q(K) ≤ C(p, q,K, g), so uniformly in
k. Incidentally, notice that this constant does not depend on σ. Hence we �nd
u ∈ W 4,q(K) such that, up to subsequences, uk → u in C3(K), where u ∈ C3(R2),
u ≥ 0 and u(0) = 1 by (2.46) and satisfying

∆2u = g(0)up in R2.

so, by a bootstrap method, we deduce that u is also a classical solution. Finally,
setting for all x ∈ R2 w(x) := u(bx) with b := g(0)−1/4, one has w is a nonnegative
solution of

∆2w = wp in R2,

with w(0) = u(0) = 1, which contradicts Theorem A.0.5.

Convergence results

We want to investigate what happens to radial solutions at the endpoints of the
interval (−1, 1] in which σ lies. More precisely, our aim is to examine if any result
similar to Theorems 2.2.13 and 2.2.18 can be found assuming (uk)k∈N to be a
sequence of positive radial solutions of (2.45) with σ = σk but without imposing
any "minimizing" requirement. Unless otherwise stated, we assume g ≡ 1 and
p > 1.

Let us start with the behaviour for σk → 1, where the main ideas are taken from
the same result for ground states. Notice that we know everything for the Navier
problem in the ball: in fact, Dalmasso proved in [26] that there exists a unique
positive solution, which is radially symmetric and radially decreasing thanks to a
result by Troy, [95].

Proposition 2.2.37. Let (uk)k∈N be a sequence of positive radial solutions of (2.45)
with σk ↗ 1. Then uk → u in H2(B), where u is the unique positive solution of the
Navier problem.

Proof. We �rstly claim that such a sequence is bounded in H2(B). Indeed, by
Proposition 2.2.36:

‖uk‖2
H2(B) ≤ C0‖∆uk‖2

2 ≤ C0

(
1− 1− σk

2

)−1

‖uk‖2
Hσk

=
2C0

1 + σk
‖uk‖p+1

p+1 ≤ 2πC0C
p+1.
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Hence, we can extract a subsequence (ukj)j∈N such that there exists v ∈ H2(B) ∩
H1

0 (B) such that ukj ⇀ v weakly in H2(B). By Proposition 2.2.15, together with
Remark 8, one can infer that this subsequence is actually strongly convergent in
H2(B) and then that v is a weak solution of the Navier problem (thus classical by
regularity theory). Moreover, since the convergence is pointwise, we immediately
deduce that v is nonnegative, radially symmetric and radially non-increasing. Fur-
thermore, by Proposition 2.2.35, v is actually strictly decreasing and positive in B,
so it coincides with the unique positive solution u of the Navier problem. By the
uniqueness of the limit and applying Urysohn subsequence principle, we retrieve the
convergence of the whole sequence (uk)k∈N from which we started.

Let us now investigate the case σk ↘ −1. As already noticed in Lemma 2.2.14,
it is enough to understand the behaviour of the Lp+1(B) norm of a sequence of
solutions to infer the convergence in the H2(B) norm. Since the proof of Theorem
2.2.13 strongly relies on the fact that it deals with ground states, we need a differ-
ent technique. The first step is a Pohožaev-type identity by Mitidieri in [68]: it will
allow to prove an inequality involving Lp(B) and Lp+1(B) norms which, combined
with the uniform bound of Proposition 2.2.36, will lead us to the convergence
result.

Lemma 2.2.38 ([68], Proposition 2.2). Let Ω be a smooth domain and u ∈ C4(Ω).
The following identity holds:
ˆ

Ω

(∆2u)x · ∇u− N

2

ˆ
Ω

(∆u)2 − (N − 2)

ˆ
Ω

∇∆u · ∇u

= −1

2

ˆ
∂Ω

(∆u)2x · n+

ˆ
∂Ω

(
(∆u)n(x · ∇u) + un(x · ∇∆u)−∇∆u · ∇u(x · n)

)
.

Corollary 2.2.39. Suppose u is a positive solution for problem (2.45) with g ≡ 1,
then the following identity holds:
ˆ
∂BR

(
(∆u)n + (1− σ)

(
1− 1− σ

2

)
un

)
un = −

(
1 +

2

p+ 1

) ˆ
BR

up+1. (2.49)

Proof. By similar computations as in [9, Section 6], from Lemma 2.2.38 one infers:(
N − 4

2
− N

p+ 1

) ˆ
Ω

up+1 =

ˆ
∂Ω

(
x ·∇∆u+

N

2
(1−σ)κun−

1

2
(1−σ)2κ2un(x ·n)

)
un.

If N = 2 and Ω = B, we have x = n and κ = 1, so x · ∇∆u = (∆u)n and (2.49)
follows.

The next result follows from some ideas of Berchio and Gazzola contained in
[7, Proposition 4].

Lemma 2.2.40. Let σ ∈ (−1, 1) and u be a positive radial solution of problem
(2.45) with g ≡ 1. Then the following estimate holds:

‖u‖p+1
p+1 ≥

3

64

(
1− 3

64
(1− σ)

)
1

π(1 + σ)

p+ 1

p+ 3
‖∆2u‖2

1. (2.50)
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Proof. By radial symmetry, (2.49) reduces to

2(∆u)′(1)u′(1) + (1− σ)(1 + σ)(u′(1))2 = −p+ 3

p+ 1

1

π

ˆ
B
up+1, (2.51)

and by the divergence theorem we have

u′(1) =
1

2π

ˆ
B

∆u and (∆u)′(1) =
1

2π

ˆ
B

∆2u. (2.52)

Moreover, let w be the �rst Steklov eigenfunction w(x) = 1
4
(1− |x|2), which veri�es

∆w = −1 in B, wn|∂B = w′(1) = −1/2, w|∂B = w(1) = 0. Then integrating by
parts, using the properties of w and the boundary conditions:

−
ˆ
B

∆u =

ˆ
B

∆w∆u =

ˆ
B
w∆2u+

ˆ
∂B
wn∆u =

ˆ
B
w∆2u− 1

2

ˆ
∂B

∆u =

=

ˆ
B
w∆2u− 1− σ

2

ˆ
∂B
un =

ˆ
∂B
w∆2u− 1− σ

2

ˆ
B

∆u,

where the last equality comes from the divergence theorem. Therefore we getˆ
B
w∆2u = −1 + σ

2

ˆ
B

∆u. (2.53)

and hence, by (2.51), (2.52) and (2.53),( ˆ
B

∆2u− (1− σ)

ˆ
B
w∆2u

) ˆ
B
w∆2u =

p+ 3

p+ 1
(1 + σ)π

ˆ
B
up+1. (2.54)

Noticing that 0 ≤ w ≤ 1/4, we claim that

3

64

ˆ
B

∆2u ≤
ˆ
B
w∆2u ≤ 1

4

ˆ
B

∆2u. (2.55)

Indeed, w and u radially decreasing and so is ∆2u, henceˆ
B

∆2u =

ˆ
B\B 1

2
(0)

∆2u+

ˆ
B 1

2
(0)

∆2u = |B \B 1
2
(0)|∆2u(1

2
)

≤ 1

w(1
2
)

(
1 +
|B \B 1

2
(0)|

|B 1
2
(0)|

) ˆ
B
w∆2u =

64

3

ˆ
B
w∆2u,

which yields the �rst inequality in (2.55), while the second is straightforward.
Hence, de�ning now d := (1− σ), s :=

´
B w∆2u and A :=

´
B∆2u, the left-hand

side of (2.54) becomes

As− ds2, with s ∈ [ 3
64
A, 1

4
A].

Since d > 0, we know ψ : s 7→ As − ds2 is a concave function, so it attains its
minimum on the extremal values of the interval: in this case, with 0 < d < 2, one
has

ψ(s) ≥ 3
64

(1− 3
64
d)A2.

Combining this with (2.54), one �nds the desired estimate (2.50).
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Theorem 2.2.41. Let σk ↘ −1 and (uk)k∈N be a sequence of positive radial func-
tions, each of them solution of the problem (2.45) with g ≡ 1 and σ = σk. Then,
uk → 0 in H2(B).

Proof. By Lemma 2.2.14, it is enough to prove the convergence in Lp+1(B) norm.
Since every solution of (2.45) is smooth, we have ‖∆2uk‖1 = ‖uk‖pp. Moreover, by
the uniform L∞ estimate found in Proposition 2.2.36, we know that there exists a
constant C > 0 not depending on σk, such that

‖uk‖p+1
p+1 ≤ ‖uk‖p+1

∞ |B| ≤ πCp+1.

As a result, using the estimate provided by Lemma 2.2.40, one has

1 + σk
1− 3

64
(1− σk)

≥ p+ 1

p+ 3

3

64π2Cp+1
‖uk‖2p

p ,

so, letting σk → −1 we deduce ‖uk‖p → 0. This, together with the L∞(B) estimate of
Proposition 2.2.36, gives us the convergence in Lp+1(B) and so the desired result.

2.2.8 Positivity in nonconvex domains

So far, the hypothesis of convexity for our domain was always indispensable in
order to prove existence and positivity. Indeed, we needed it to establish that

‖u‖Hσ =

[ˆ
Ω

(∆u)2 − (1− σ)

ˆ
∂Ω

κu2
n

] 1
2

is an equivalent norm on H2(Ω) ∩ H1
0 (Ω) provided ∂Ω of class C1,1, see Lemma

2.2.11. Then, we needed that the linear Steklov problem (2.39) was positivity pre-
serving, and this was deduced by applying Lemma 2.2.27 with β = κ, which has
to be a positive function on ∂Ω.
On the other hand, we know that the Navier problem is positivity preserving for
any domain, using a simple application of the second-order maximum principle
and, moreover, we already saw in Lemma 2.2.31 examples of nonconvex domains
for which the positivity preserving property holds true, regarding the linear Dirich-
let problem (2.42), together with the useful Green function estimate (2.43). It is
thus natural to conjecture that at least for those domains the ground states of Jσ
are positive. This section answers affirmatively, extending successfully the method
of the dual cones presented in Subsection 2.2.6.

Throughout this subsection, regarding our domains, we assume:

(HPPP ) Ω ⊂ R2 is a bounded domain of class C4,α which is ε-close in C2,γ-sense
to a limaçon Ωa, with a ∈ [0, ā] and ε ∈ [0, ε0], ā and ε0 being fixed by
Lemma 2.2.31.

Moreover, we focus on the superlinear nonlinearity f(x, u) = g(x)|u|p−1u with
p > 1, the case p ∈ (0, 1) being similar.
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The case σ < 1

A first natural choice is to consider a different boundary function β, namely β =
|κ|. In this case, in order to apply Theorem 2.2.27, we have to compare it with
our boundary function α = (1− σ)κ. By that result, we infer the existence of two
parameters δ1,|κ|(Ω) > 0 and δc,|κ|(Ω) ∈ [−∞, 0) such that if δc,|κ||κ| < (1 − σ)κ �
δ1,|κ||κ|, where α := (1 − σ)κ, one has the positivity preserving property for the
linear Steklov problem (2.39). If we assume (HPPP ), then Lemmas 2.2.31 and
2.2.30 show that δc,|κ||κ| = −∞. Hence, we only have to check

(1− σ)κ(x) � δ1,|κ||κ|(x) for every x ∈ ∂Ω :

• if x belongs to a convex part of the boundary, then κ(x) ≥ 0 and so we
retrieve the condition σ > 1− δ1,|κ|;

• otherwise, if κ(x) < 0, we have κ(x) = −|κ|(x) and so we find an upper
bound: σ < 1 + δ1,|κ|, which is always satisfied if σ < 1.

We have just proved the following result:

Proposition 2.2.42. Let Ω ⊂ R2 satisfy condition (HPPP ) and σ ∈ (1 − δ1,|κ|, 1].
Then the linear Steklov problem (2.39) is positivity preserving.

Remark 12. It is clear that if Ω is also convex, we retrieve the lower bound σ > σ∗.

Theorem 2.2.43. Let Ω ⊂ R2 satisfy (HPPP ), 0 < g ∈ L1(Ω) and σ ∈ (1−δ1,|κ|, 1].
Then the ground states of Jσ are positive a.e. in Ω.

Proof. The only fact which has to be proved is that for such domains and values of
σ, the map ‖ · ‖Hσ is still an equivalent norm on H2(Ω) ∩H1

0 (Ω). On one hand,

‖u‖2
Hσ = ‖∆u‖2

2 + (1− σ)

ˆ
∂Ω

(−κ)u2
n ≤ ‖∆u‖2

2 + (1− σ)

ˆ
∂Ω

|κ|u2
n

≤ ‖∆u‖2
2 + (1− σ)

‖∆u‖2
2

δ1,|κ|
=

[
1 +

1− σ
δ1,|κ|

]
‖∆u‖2

2.

On the other hand,

‖u‖2
Hσ = ‖∆u‖2

2 + (1− σ)

ˆ
∂Ω

(−κ)u2
n ≥ ‖∆u‖2

2 − (1− σ)

ˆ
∂Ω

|κ|u2
n

≥ ‖∆u‖2
2 − (σ − 1)

‖∆u‖2
2

δ1,|κ|
=

[
1− 1− σ

δ1,|κ|

]
‖∆u‖2

2.

At this point, we can repeat the proof of Theorem 2.2.28. Indeed, Ω is a [PPPσ]
domain by Proposition 2.2.42, so the dual cone of the positive cone is composed by
negative functions and we may apply the dual cones decomposition as in Proposition
2.2.26 to obtain the positivity result.
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The case σ > 1

For these values of σ, the strategy applied so far produces an artificial upper bound,
namely σ < 1 + δ1,|κ|. This is particularly unsatisfying since the Dirichlet problem
is positivity preserving in domains for which the condition (HPPP ) holds and thus
we expect to retrieve a result comparable with Theorem 2.2.28, that is, without
any upper bound for σ. The main difficulty was due to the strained comparison
between κ and |κ| to infer the positivity preserving property for the linear Steklov
problem. So, let us rewrite our functional as

Jσ(u) =

[
1

2

ˆ
Ω

(∆u)2 − 1− σ
2

ˆ
∂Ω

|κ|u2
n

]
+

1− σ
2

ˆ
∂Ω

[|κ| − κ]u2
n −
ˆ

Ω

g(x)|u|p+1

p+ 1
=

=
1

2
Nσ(u)2 + (1− σ)

ˆ
∂Ω

κ−u2
n −
ˆ

Ω

g(x)|u|p+1

p+ 1
,

where κ− := max{0,−κ} = 1
2
(|κ| −κ) is the negative part of the curvature and the

map Nσ is defined on H2(Ω) ∩H1
0 (Ω) as

Nσ(u) :=

[
‖∆u‖2

2 − (1− σ)

ˆ
∂Ω

|κ|u2
n

] 1
2

This reminds to our semilinear problem (2.8) with a second boundary condition

∆u = (1− σ)|κ|un.

Lemma 2.2.44. Let Ω ⊂ R2 be a bounded domain with boundary of class C2 and
assume σ > 1. Then the map Nσ is a norm on H2(Ω) ∩ H1

0 (Ω), equivalent to
the standard one. Moreover, set KNσ := {u ∈ H2(Ω) ∩ H1

0 (Ω) |u ≥ 0}. If σ ∈
(1, 1 + |δc,|κ||), then K∗Nσ ⊆ {w ∈ H |w < 0 a.e.} ∪ {0}.

Proof. Firstly, Nσ(·) is indeed a norm since

(u, v)Nσ :=

ˆ
Ω

∆u∆v − (1− σ)

ˆ
∂Ω

|κ|unvn

is a scalar product on H2(Ω)∩H1
0 (Ω). Moreover, recalling the de�nition of δ1,|κ|, we

have

‖∆u‖2
2 ≤ ‖∆u‖2

2 + (σ− 1)

ˆ
∂Ω

|κ|u2
n ≤ ‖∆u‖2

2 + (σ− 1)
‖∆u‖2

2

δ1,|κ|
=

[
1 +

σ − 1

δ1,|κ|

]
‖∆u‖2

2.

Let now ϕ ∈ C∞c (Ω) be nonnegative and let vϕ ∈ H1
0 (Ω) be the unique weak solution

of the linear problem{
∆2vϕ = ϕ in Ω,

vϕ = ∆vϕ − (1− σ)|κ|(vϕ)n = 0 on ∂Ω.
(2.56)

Then vϕ ∈ H2(Ω) ∩ H1
0 (Ω) by regularity assumptions on ∂Ω, and vϕ ≥ 0 since we

assumed the condition [PPPσ], so vϕ ∈ KNσ . Hence, for each u ∈ K∗Nσ ,

0 ≥ (vϕ, u)Nσ =

ˆ
Ω

∆u∆vϕ − (1− σ)

ˆ
∂Ω

|κ|un(vϕ)n =

ˆ
Ω

uϕ,
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which implies u ≤ 0 a.e. in Ω. Moreover, with similar steps as in Lemma 2.2.25, we
deduce also u < 0 a.e. In conclusion, our problem reduces again to the investigation
of the positivity preserving property for the linear Steklov problem (2.56). Thanks
to the new boundary condition involving |κ|, an application of Lemma 2.2.27 with
α = (1 − σ)|κ| and β = |κ| shows that the condition [PPPσ] holds whenever σ ∈
(1− δ1,|κ|, 1 + |δc,|κ||).

We have finally obtained the nonconvex extension of Proposition 2.2.32.

Theorem 2.2.45. Let Ω ⊂ R2 satisfy the condition (HPPP ) and assume p > 1,
0 < g ∈ L1(Ω) and σ > 1. Then the ground states of Jσ are positive a.e. in Ω.

Proof. Suppose u ∈ H2(Ω) ∩H1
0 (Ω) is a sign-changing ground state. By dual cone

decomposition, one may write u = u1 + u2 with u1 ∈ KNσ , 0 6≡ u2 ∈ K∗Nσ and
(u1, u2)Nσ = 0. De�ning w = u1 − u2 > 0, we have:

w > |u|, w2
n ≥ u2

n, Nσ(w)2 = Nσ(u)2.

For σ ∈ (1 − δ1,|κ|, 1] the result is already achieved in Theorem 2.2.43, so suppose
here σ > 1. By Lemma 2.2.3, there exists a unique t∗(w) > 0 such that t∗(w)w ∈ Nσ
and thus

Jσ(t∗(w)w) = t∗(w)2

[
1

2
Nσ(w)2 + (σ − 1)

ˆ
∂Ω

κ−(−w2
n)

]
− t∗(w)p+1

ˆ
Ω

g(x)|w|p+1

p+ 1

< t∗(w)2

[
1

2
Nσ(u)2 + (σ − 1)

ˆ
∂Ω

κ−(−u2
n)

]
− t∗(w)p+1

ˆ
Ω

g(x)|u|p+1

p+ 1

= Jσ(t∗(w)u) ≤ Jσ(u).

Since u is a minimum of Jσ in Nσ, being a ground state, we have our contradiction.
In both cases, this implies u2 = 0 and consequently that u = u1 ≥ 0. With the same
argument as in Proposition 2.2.26, we conclude the strict positivity of u in Ω.

Remark 13. The same statement holds by letting Ω ⊂ R2 be a bounded domain
with boundary of class C2 and for σ ∈ [1, 1 + |δc,|κ||).
Remark 14. Theorem 2.2.45 gives a partial answer to a question which was posed
in our work [82].

58



Chapter 3

A-priori bounds for fourth-order

problems in critical dimension

In this second part of the thesis we establish uniform a-priori bounds for solutions
of the semilinear problems{

∆2u = h(x, u) in Ω,

B(u,Dαu) = 0 on ∂Ω,

where Ω is a bounded smooth domain of R4, B(u,Dαu) = 0 stands for homoge-
neous Dirichlet (u = un = 0) or Navier (u = ∆u = 0) boundary conditions, and
h : Ω × R → R+ is a positive superlinear and subcritical function in the sense
of the Trudinger-Moser-Adams inequality (1.15). Typically, we consider h with an
exponential behaviour in the second variable. In other words, our goal is to find
a constant C, depending on the domain and on the nonlinearity, such that for any
solution of each problem (1.16) there holds ‖u‖L∞(Ω) ≤ C.

Our analysis is mainly inspired by the work of [29] concerning the control of
the behaviour near the boundary and of [81] regarding the blow-up technique to
obtain the estimates in the interior of our domain. The results we get, extend and
in some cases complete the analysis of the uniform a-priori bounds in the context
of fourth-order boundary value problems in the literature.

This chapter is an adaptation of the forthcoming paper [83] and it is organized
as follows. In Section 3.1 we introduce the definitions and we give the precise
statements of the main results and some details about the class of the nonlin-
earities we consider. Section 3.2 and Section 3.3 are devoted to the analysis of
the problem endowed with Dirichlet boundary conditions, the former regarding
the behaviour of solutions near the boundary, and the latter in the interior, by a
blow-up technique. Some generalizations of the results achieved are considered
in Section 3.4. The Navier problem can be studied with a similar analysis and it
is briefly addressed in Section 3.5. Finally, in Section 3.6 we deduce an existence
result from our a-priori estimates and in Section 3.7 we present a counterexample
which shows that the class of growth considered is in some sense sharp.
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3.1 De�nitions and main results

Throughout this chapter, unless otherwise stated, we focus on Dirichlet boundary
conditions, confining the investigation of the Navier problem in Section 3.5.

Let Ω ⊂ R4 be a smooth domain, that is, of class C4,α for some α ∈ (0, 1) and
consider the Dirichlet boundary value problem{

∆2u = h(x, u) in Ω,

u = un = 0 on ∂Ω.
(3.1)

De�nition 3.1.1. We say u ∈ H2
0 (Ω) is a weak solution of (3.1) if for every ϕ ∈

H2
0 (Ω), we have: ˆ

Ω

∆u∆ϕ =

ˆ
Ω

h(x, u)ϕ. (3.2)

The nonlinearity h : Ω× R→ R+ is always assumed to satisfy the conditions:

H1) h ∈ L∞(Ω× [0, τ ]) for all τ ∈ R+;

H2) there exist functions f ∈ C1([0,+∞)) satisfying assumption (A) below and
0 < a ∈ L∞(Ω) ∩ C(Ω) such that

lim
t→+∞

h(x, t)

f(t)
= a(x) uniformly in Ω.

De�nition 3.1.2. A function f ∈ C1([0,+∞)) satis�es assumption (A) if

A1) f > 0 and f ′(t) ≥ 0 for any t > M for some M ∈ R;

A2) f is superlinear at ∞, that is, lim
t→+∞

f(t)
t

= +∞;

A3) there exists lim
t→+∞

f ′(t)
f(t)
∈ [0,+∞).

Our assumptions on the nonlinearity h may be seen as a generalization of those
of Reichel and Weth in [77], which are the fourth-order counterpart of (1.17). In-
deed, we are prescribing a sort of separation of variables at ∞ and a growth for
the real variable which follows a "special" profile f . Nevertheless, at a first sight,
assumption (A3) on this function f may be not completely clear. The next propo-
sition provides then a characterization of such f , showing that (A3) is equivalent
to require a control from above by a suitable exponential function. This means,
also, that our analysis is not restricted to a precise profile at∞ as in [85, 77, 76],
but we include (almost) any growth in t which is controlled from above by eγt for
some γ > 0. Notice also that the function a might vanish on ∂Ω: this will make
our preliminary estimates a little more technical.

Proposition 3.1.1. Let f satisfy assumption (A1) of De�nition 3.1.2.
a) Let γ > 0 and suppose the existence of

lim
t→+∞

eγt

f(t)
∈ (0,+∞] and lim

t→+∞

(
eγt

f(t)

)′
≥ 0. (3.3)
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Then lim
t→+∞

f ′(t)

f(t)
∈ [0, γ].

b) Suppose lim
t→+∞

f ′(t)

f(t)
:= γ̃ ∈ [0,+∞). Then there exists γ > 0 such that (3.3)

holds.

Proof. a) It is clear from the assumption (A1 ) that lim inft→+∞
f ′(t)
f(t)
≥ 0. Moreover,(

eγt

f(t)

)′
=

eγt

f(t)

(
γ − f ′(t)

f(t)

)
, (3.4)

thus

0 ≤ lim
t→+∞

f(t)

eγt
lim
t→+∞

(
eγt

f(t)

)′
= lim

t→+∞

(
γ − f ′(t)

f(t)

)
,

which clearly implies our claim.
b) From our hypothesis, there exists M > 0 such that f ′(t) ≤ (γ̃ + 1)f(t) for

any t ≥ M . De�ning γ := γ̃ + 1 and integrating on [M, t], we get f(t) ≤ f(M) +
γ
´ t
M
f(s)ds and, applying Gronwall Lemma, f(t) ≤ f(M)e−γMeγt which in turn

implies eγt

f(t)
≥ C(M) for any t ≥M . This means, in particular, lim inft→+∞

eγt

f(t)
> 0.

Moreover (3.4) implies eγt

f(t)
is nondecreasing, so there exists the limit as t→ +∞ of

eγt

f(t)
and it is positive. Again by (3.4) we have the existence of the limit as t→ +∞

of
(
eγt

f(t)

)′ ≥ 0.

Remark 15. From (H1 )-(H2 ) it follows that for each ε > 0 there exists a constant
dε ≥ 0 such that

(1− ε)a(x)f(t)− dε ≤ h(x, t) ≤ (1 + ε)a(x)f(t) + dε for all t ≥ 0, x ∈ Ω. (3.5)

Indeed, (H2 ) implies the existence of τ(ε) such that (3.5) holds with dε = 0 for
t ≥ τε. Moreover, by (H1 ),

sup
x∈Ω

max
t∈[0,τε]

h(x, t) ≤ C(τε).

Therefore, h(x, t) ≤ (1 + ε)a(x)f(t) + C(τε) for all t ≥ 0. Finally, since

h(x, t) ≥

{
0 if t ∈ [0, τε],

(1− ε)a(x)f(t) if t ≥ τε,

and de�ning dε := max{C(τε), (1− ε)‖a‖∞maxt∈[0,τε] f(t)}, then (3.5) follows.

It will be useful in the sequel to distinguish among the admissible growths,
in dependence of "how far" they are from being exponential, according to the
following definition:

De�nition 3.1.3. Let h satisfy assumptions (H1 )-(H2 ) and f be as in (H2 ). We
say that h is subcritical if

lim
t→+∞

f ′(t)

f(t)
= 0. (3.6)
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On the other hand, we say that h is critical if

lim
t→+∞

f ′(t)

f(t)
∈ (0,+∞). (3.7)

Roughly speaking, the behaviour of the nonlinearities of subcritical type largely
differs from the exponential map. An example is h(x, t) = a(x) logθ(t + 1)tpet

α

with θ, p ≥ 0, α ∈ [0, 1) and a ∈ C(Ω). The class of critical functions gathers
instead maps which are quite close to et with respect to the second variable, not
affecting too much its exponential behaviour; model nonlinearities for this case
are h(x, t) = a(x) eγt

(t+1)q
with q, γ > 0.

The results we find for subcritical and critical nonlinearities, which we present
here, are very similar. Nevertheless, we have to consider this distinction because,
after a preliminary common analysis, the limiting equation found by means of a
blow-up method will be linear in the first case and nonlinear in the second, thus
the critical case will be more involved.

The main results of our analysis may be summarized as follows:

Theorem 3.1.2. Let B be a ball in R4 and h be a subcritical nonlinearity satisfying
assumptions (H1)-(H2) and, moreover, one of the following:

i) a(·) ≥ a0 > 0 and h(·, 0) ∈ L∞(B);

ii) lim
t→+∞

f(t)
tα

= +∞, for some α > 1.

Then there exists C > 0 such that ‖u‖L∞(B) ≤ C for all weak solutions u of (3.1).

Let us now define

F (t) :=

ˆ t

0

f(s)ds and H(x, t) :=

ˆ t

0

h(x, s)ds. (3.8)

Notice that, by de l’Hôpital’s Theorem and assumption (H2),

lim
t→+∞

H(x, t)

F (t)
= lim

t→+∞

h(x, t)

f(t)
= a(x) (3.9)

uniformly with respect to x ∈ Ω.

Theorem 3.1.3. Let B be a ball in R4 and h be a critical nonlinearity satisfying as-
sumptions (H1)-(H2). Suppose moreover that there exist functions 0 ≤ B ∈ L∞(B),
0 ≤ D ∈ L1(B) such that

|∇xH(x, t)| ≤ B(x)F (t) +D(x), for any t ≥ 0, x ∈ B. (H3)

Then there exists C > 0 such that ‖u‖C4(B̄) ≤ C for all weak solutions u of (3.1).

Before going into the details of the proofs, let us make some remarks about these
two results:
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1. It is easy to infer that in the critical case the condition (ii) of Theorem 3.1.2 is
automatically satisfied, therefore it has not to be required as an assumption
as therein.

2. The additional assumption (H3), when applied to a model nonlinearity h(x, t) =
a(x)f(t), is nothing but a uniform control on ∇a, and is thus equivalent to
the request a ∈ W 1,∞(Ω). Roughly speaking, this condition will allow us to
control H and ∇xH in a similar way.

3. As mentioned before, the assumptions on f gather all superlinear profiles
which can be controlled by a map t → eγt for some γ > 0. This bound
from above on the growth of f reveals to be sharp. Indeed, in the spirit of
Brezis and Merle, in Section 3.7 we provide a counterexample for a class of
nonlinearities which, although being subcritical, do not satisfy assumption
(A3).

As mentioned in the Introduction, the main motivation to study a-priori bounds
for semilinear elliptic problems is to infer the existence of solutions. The subse-
quent Theorem 3.1.4 is in fact obtained applying the Krasnosel’skii topological
degree theory by means of Theorems 3.1.2 and 3.1.3. We remark that the exis-
tence of solutions for semilinear Dirichlet problems like (3.1) can be obtained also
up to the critical growth (in the sense of Adams, cf. (1.15)) t 7→ et

2 by variational
methods. We refer to [56, 57] for this subject for general Dirichlet polyharmonic
problems with subcritical and critical exponential nonlinearities.

To fix the notation, here and in the sequel, we denote by λ̃1(Ω) (resp. λ1(Ω)) the
first eigenvalue of ∆2 (resp. −∆) in the domain Ω subjected to Dirichlet boundary
conditions, omitting the domain whenever it is clear from the context.

Theorem 3.1.4. Let B be a ball in R4 and h : B×R→ R be a continuous function
satisfying the assumptions of Theorems 3.1.2 or 3.1.3 and, in addition, h(·, t) ∈
C(B̄) (resp. C0,γ(B̄) for some γ ∈ (0, 1)) for any t ≥ 0 and

lim sup
t→0+

h(x, t)

t
< λ̃1 uniformly in x ∈ B. (3.10)

Then, problem (3.1) admits a positive strong (resp. classical) solution.

Remark 16. The assumption Ω = B is not an intrinsic restriction but only a conse-
quence of the hypothesis of Theorems (3.1.2)-(3.1.3).

Remark 17. The assumptions of Theorem 3.1.4 are, for instance, satis�ed by h(x, t) =
a(x)tpet

α
for any α ∈ [0, 1), p > 1 regarding the subcritical context, or h(x, t) =

a(x)tp eθt

(t+1)γ
for any γ ≥ 0, p > 1 and θ > 0 for the critical framework.

Before entering into the details of the arguments, let us fix some notation.

Let f, g : Ω → R+: we say that f � g if there exists a constant c > 0 such that
f(t) ≤ cg(t) for all t ∈ Ω, and we write f ' g if both f � g and g � f hold. Finally,
we define f ∧ g := min{f, g}.
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3.2 A-priori estimates near the boundary and on
the right-hand side

The main result of this section provides an uniform bound for solutions of (3.1)
in a neighborhood of ∂Ω and a uniform L1 control on the right-hand side of the
equation.

Proposition 3.2.1. Let B the unit ball in R4. Let h verify assumptions (H1)-(H2)
and suppose one of the following holds:

i) a(·) ≥ a0 > 0 and h(·, 0) ∈ L∞(B);

ii) lim
t→+∞

f(t)
tα

= +∞, for some α > 1.

Then there exist C1,Λ > 0 and a small neighborhood ω ⊂ B of ∂B such that

‖u‖L∞(ω) ≤ C1 and

ˆ
B
h(x, u)dx ≤ Λ

for all (positive) weak solutions u of (3.1).

In other words, Proposition 3.2.1 prevents the boundary blow-up and, further,
yields a uniform L1 bound on the right-hand side of our problem (3.1), which
will be essential for the blow-up technique in Section 3.3. The proof is inspired
by some arguments which first appeared in [29] applied to second order elliptic
problems, and which are a very flexible tool, since they adapt to many other con-
texts, for instance N−Laplacian problems ([58]) or elliptic systems ([30]). Notice
that all these problems do not have to deal with the lack of maximum principle,
as for the fourth-order context. At the present, as recalled in the Introduction,
the most general setting we can consider to be sure that the positivity preserv-
ing property holds for fourth-order Dirichlet boundary value problems is to work
in small deformations of the ball (see [47]). Nevertheless, although most of our
results hold for this kind of domains, in the subsequent Lemma 3.2.6 we need a
precise behaviour of the Green function of the operator ∆2 subjected to Dirichlet
boundary conditions near the boundary, so we have to further restrict to the case
of a ball.

In the following, we will often make use of the Green function G∆2,Ω associated
to the biharmonic operator with Dirichlet boundary conditions. We recall that
G∆2,Ω : Ω × Ω \ {(x, x) : x ∈ Ω} → R is defined as the unique function such that
for any g ∈ L2(Ω),

u(x) :=

ˆ
Ω

G∆2,Ω(x, y) g(y) dy

is the unique solution in H2
0 (Ω) of the equation ∆2u = g in Ω. From now on, we

will use the shorter notation GΩ to underline the dependence on the domain, since
the operator and the boundary conditions are fixed.

We collect here some results about pointwise estimates of GΩ and of its deriva-
tives, as they will be needed in the sequel. They go back to the work of Krasovskĭı
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[53] later on refined by Dall’Acqua and Sweers in [24]. However, very smooth
boundaries are required therein. This formulation which assumes less regularity
can be deduced combining [47, Theorem 4] and [48, Theorem 2].

Lemma 3.2.2. Let Ω ⊂ R4 be a bounded domain of class C4,γ for some γ ∈ (0, 1).
There exists a positive constant C depending on the domain, such that for all x, y ∈
Ω, x 6= y, there holds

|GΩ(x, y)| ≤ C log

(
2 +

1

|x− y|

)
, (3.11)

|∇iGΩ(x, y)| ≤ C

|x− y|i
, for any i ≥ 1.

For further and sharper results in this direction, we refer to [49] and to the mono-
graph [40]. In the special case of Ω = B, thanks to the explicit Boggio’s formula,
also the estimate from below of GB may be obtained. Therefore, the following
sharp two-sided estimate holds:

Lemma 3.2.3 ([40], Theorem 4.6). In B ×B we have

GB(x, y) ' log

(
1 +

(
dB(x)dB(y)

|x− y|2

)2)
. (3.12)

In the whole section, we suppose h as in Proposition 3.2.1 and we denote by
ϕ̃1 the first eigenfunction of ∆2 in Ω subjected to Dirichlet boundary conditions.
Notice that ϕ̃1 > 0 if Ω is positivity preserving (see [40, Theorem 3.7] and remarks
below).

We split the proof of Proposition 3.2.1 in some steps. First, we obtain a local
uniform estimate for the right-hand side of equation (3.1). Here the assumptions
(i)-(ii) of Theorem 3.1.2 will play a significant role. If the domain is a ball, then
the proof follows rather easily by pointwise Green function estimates from below
which are available in this context. Refining the approach of [29], we also give
a proof which does not rely on these estimates for general positivity preserving
domains, provided some assumptions on the function a(·) are imposed according
to the behaviour of f . Indeed, unlike similar arguments in [20, 30, 31], we are able
to include in our analysis also functions a(·) which may vanish on the boundary
∂Ω. The boundary estimate and the L1 bound for the right-hand side are then
proved in Lemmas 3.2.7 and 3.2.8, once the key Lemma 3.2.6 is obtained.

Lemma 3.2.4 (Local a-priori L1 estimate in the ball). Suppose that condition (ii)
of Proposition 3.2.1 holds, there exists a constant C > 0 such that

ˆ
B
h(x, u)ϕ̃1 = λ̃1

ˆ
B
uϕ̃1 ≤ C, (3.13)

for all weak solutions u of (3.1).
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Proof. We follow here some ideas of [33], see also [86]. Let c1, c2 be positive constants
such that

c1d
2
B(x) ≤ ϕ̃1(x) ≤ c2d

2
B(x)

for all x ∈ B, see [21, Lemma 3]. By the representation formula and the pointwise
estimate of the Green function (see [50], Proposition 2.3 and Remark 3):

GB(x, y) ≥ C log

(
2 +

dB(y)

|x− y|

)(
1 ∧ d

2
B(x)d2

B(y)

|x− y|4

)
,

for all solutions u of (3.1) there holds

u(x) ≥ C

ˆ
B

log

(
2 +

dB(y)

|x− y|

)(
1 ∧ d

2
B(x)d2

B(y)

|x− y|4

)
h(y, u(y))dy

≥ Cd2
B(x)

ˆ
B
d2
B(y)h(y, u(y))dy ≥ Cc−2

2 ϕ̃2
1(x)

ˆ
B
ϕ̃2

1(y)h(y, u)dy.

(3.14)

Moreover, by (3.5) with ε = 1
2
and condition (ii), we have

ˆ
B
h(x, u)ϕ̃1(x)dx ≥ 1

2

ˆ
B
a(x)f(u)ϕ̃1(x)dx− d

ˆ
B
ϕ̃1(x)dx

≥
ˆ
B
a(x)(Cuγ(x)−D)ϕ̃1(x)dx− d

ˆ
B
ϕ̃1(x)dx

where C and D are suitable positive constant. Therefore, by (3.14),
ˆ
B
h(x, u)ϕ̃1(x)dx+ C(‖a‖1, γ) ≥ C

ˆ
B
a(x)uγ(x)ϕ̃1(x)dx

≥ C

( ˆ
B
a(x)ϕ̃1+γ

1 (x)dx

)(ˆ
B
h(x, u)ϕ̃1(x)dx

)γ
.

Since γ > 1 and all constants are positive, then
´

Ω
h(x, u)ϕ̃1 ≤ C. Finally, the

equality in (3.13) is proven simply by testing (3.2) with ϕ = ϕ̃1 > 0:
ˆ

Ω

h(x, u)ϕ̃1 =

ˆ
Ω

∆u∆ϕ̃1 = λ̃1

ˆ
Ω

uϕ̃1.

The next result is an extension of the previous local L1 estimate also for gen-
eral positivity preserving domains, provided the map a(·) satisfies some additional
assumptions according to the growth of f . We remark that if the growth of h(x, ·)
is exponential these additional assumptions on a are mild.

Lemma 3.2.5 (Local a-priori L1 estimate in general positivity preserving domains).
Let Ω ⊂ R4 be a bounded domain where the positivity preserving property holds. Let
h verify assumptions (H1)-(H2) and suppose one of the following:

i) lim
t→+∞

f(t)
t

= +∞, a(·) ≥ a0 > 0 and h(·, 0) ∈ L1(Ω);
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ii) lim
t→+∞

f(t)
tα

= +∞, for α > 1, a(·)−
1

α−1 ∈ L1(Ω) and h(·, 0) ∈ L∞(Ω);

iii) lim
t→+∞

f(t)

et
β = +∞, for β ∈ (0, 1], log(a(·)) ∈ L1/β(Ω) and h(·, 0) ∈ L1(Ω).

Then there exists a constant C > 0 such that (3.13) holds for all weak solutions u
of (3.1).

Proof. As in the previous proof, testing (3.2) with ϕ = ϕ̃1 > 0 we get
ˆ

Ω

h(x, u)ϕ̃1 = λ̃1

ˆ
Ω

uϕ̃1.

Since t 7→ h(·, t) is superlinear for large t by assumption (A2 ), we know that for
every M > 0 and x ∈ Ω there exists t0(M,x) > 0 such that h(x, t) ≥ Mt + h(x, 0)
for all t ≥ t0(M,x). More precisely, �xed x ∈ Ω, we may choose t0 as the last point
of intersection between the graphs of h(x, t) and of g(t) = Mt + h(x, 0). Setting
A := {x ∈ Ω |u(x) ≥ t0(x)}, we have
ˆ

Ω

uϕ̃1 =

ˆ
A

uϕ̃1 +

ˆ
Ω\A

uϕ̃1 ≤
1

M

ˆ
Ω

h(x, u)ϕ̃1 −
1

M

ˆ
A

h(x, 0)ϕ̃1 +

ˆ
Ω\A

t0(x)ϕ̃1

≤ λ̃1

M

ˆ
Ω

uϕ̃1 + ‖ϕ̃1‖∞
(

1

M
‖h(·, 0)‖1 +

ˆ
Ω

t0(x)dx

)
.

If we choose M = 2λ̃1, then we deduce
ˆ

Ω

uϕ̃1 ≤ 2‖ϕ̃1‖∞
(

1

2λ̃1

‖h(·, 0)‖1 +

ˆ
Ω

t0(x)dx

)
,

which is now independent on u. However, we have to be sure that this is a �nite
quantity, so we have to link somehow t0 to the integrability of a. Hence, we split
the proof in three cases according to our possible assumptions:

Suppose (i) holds : by (3.5),

1

2
a(x)f(t0(x))− d ≤ h(x, t0(x)) = Mt0(x) + h(x, 0) (3.15)

that is, since a(x) ≥ a0 > 0,

f(t0(x)) ≤ 2M

a0

t0(x) +
2

a0

h(x, 0).

Since f is superlinear and h(·, 0) ∈ L1(Ω), then
´

Ω
t0 is bounded.

Suppose (ii) holds : then there exists a constant N ≥ 0 such that f(t) ≥ tα −N
for all t ≥ 0. Hence, by (3.5) with the choice ε = 1

2
, by de�nition of t0 and since

a(·), h(·, 0) ∈ L∞(Ω),

1

2
a(x)t0(x)α ≤Mt0(x) + h(x, 0) + d+

1

2
a(x)N ≤Mt0(x) + C (3.16)
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for some C > 0. Recall the Young inequality, which may be stated in the following
form: let a, b > 0, then for any ε > 0, one has

ab ≤ εap

p
+

bq

qεq/p,
(3.17)

where p > 1, q = p
p−1

. Apply (3.17) with a = t0(x), p = α, b = M and choose
ε = ε(x) = α

4
a(x). Then from (3.16) we get

t0(x) ≤ C

a(x)
1
α

(
1 +

1

a(x)
1

α−1

) 1
α

≤ C

a(x)
1
α

(
1 +

1

a(x)
1

α(α−1)

)
= C

(
1

a(x)
1
α

+
1

a(x)
1

α−1

)
.

Consequently, since we know that a ∈ L∞(Ω), then once we impose that a(·)−
1

α−1 ∈
L1(Ω), we infer t0 ∈ L1(Ω), our goal.

Suppose (iii) holds : there exists clearly a constant C0 > 0 such that f(t) ≥ t2−C0

for any t ≥ 0, so, t ≤
√
f(t) +

√
C0. From (3.15), set τ :=

√
f(t0(x)); we obtain the

inequality
1
2
a(x)τ 2 −Mτ − [d+ h(x, 0)] ≤ 0. (3.18)

Recalling a ∈ L∞(Ω), from (3.18) we �nd

f(t0(x)) ≤ C
(1 + h(x, 0))

a(x)2
.

Using now our assumption on f in (iii), we obtain

t0(x) ≤ C[1 + log
1
β (1 + h(x, 0)) + | log

1
β (a(x))|],

which is integrable on Ω by using our assumption on a and h(x, 0).

Remark 18. It is easy to show that the same conclusion of Lemma 3.2.5 holds once
instead of (ii) one considers the following condition:
(ii)' lim

t→+∞
f(t)
tα

= +∞, for some α > 1, a(·)−
1

α−1 ∈ L1(Ω) and h(·, 0)a(·)−1 ∈ L 1
α (Ω).

Remark 19 (Example). The class of functions considered for a in the condition (iii)
of Lemma 3.2.5 contains also functions which vanish on ∂Ω with order more than
polynomial. For instance, if Ω = B is the unit ball in R4, taking

a(x) = e
− 1

(1−|x|)β ,

then log(a(·)) ∈ L1/α(B) for all β < α. Indeed,

ˆ
B

(
1

(1− |x|)β

)1/α

= C4

ˆ 1

0

r3

(1− r)β/α
< +∞ ⇔ β < α.

Lemma 3.2.6. Let u be a solution of (3.1). There exist δ > 0 and ε > 0 such that
∇u(x) · θ ≤ 0 for every x ∈ Bε := {x ∈ B | d(x, ∂B) < ε} and for every direction θ
such that |θ − n(x)| < δ.
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Proof. By Lemma 3.2.3, we know that the Green function is positive and vanishes
on ∂B precisely of order 2 (see also [42]). This means that for �xed y ∈ B and
x→ ∂B one has:

1

C(y)
(1− |x|)2 ≤ GB(x, y) ≤ C(y)(1− |x|)2, C(y) > 0. (3.19)

Since on the right and on the left we have the same behaviour, (3.19) implies that

∂

∂|x|
GB(x, y) ' −2C(y)(1− |x|).

Following [29], the statement of the lemma is equivalent to prove that if x0 ∈ ∂B
with (x0)1 = 〈n(x), n(x0)〉 > 0, there exists δ > 0 such that in B ∩ {|x − x0| < δ},
∂u
∂x1

< 0. De�ning h(x) = (1− |x|)2, we have ∇h(x) = −2(1− |x|)
(
x1

|x| ;
x2

|x|

)
and so

∂u

∂x1

(x) =

ˆ
B

∂

∂x1

GB(x, y)h(y, u(y))dy ≤ −2

ˆ
B
(1− |x|) x1

|x|
C(y)h(y, u(y))dy < 0

for each x ∈ B ∩ {|x− x0| < δ} for δ > 0 small enough.

Remark 20. As pointed out at the beginning of this section, this is the only step in
which we do require that the domain is a ball, as we need the two-sided boundary
estimate (3.19). Actually, one may replace the assumption Ω = B with Ω positivity
preserving domain such that

GΩ(x, y) ≥ cdΩ(x)2dΩ(y)2 (3.20)

in Ω× Ω. See also Open Problem 5 in Section 4.

Roughly speaking, Lemma 3.2.6 shows that near ∂B all solutions are uniformly
decreasing in some outwards directions. This enables us to relate the behaviour of
a solution close to the boundary with its local properties. The outcome is exactly
Proposition 3.2.1, whose proof is contained in the following two lemmas.

Lemma 3.2.7. There exists a neighborhood ω of ∂B and C1 > 0 such that ‖u‖L∞(ω) ≤
C1 for all weak solutions u of (3.1).

Proof. By Lemma 3.2.6, arguing as in [29], one may infer that for every x ∈ ωr :=
{x ∈ B | d(x, ∂B) < r} there exists a set Ix and a constant γ > 0 independent of
x such that |Ix| ≥ γ, Ix ⊆ B \ ω r

2
and u(y) ≥ u(x) for all y ∈ Ix. Taking x ∈ ωr,

by positivity of ϕ̃1 and either by Lemma 3.2.4 if we assume (ii) or Lemma 3.2.5
assuming instead (i):

C ≥
ˆ
B
h(x, u)ϕ̃1dx ≥ λ̃1

ˆ
B\ω r

2

uϕ̃1 ≥ λ̃1 min
B\ω r

2

ϕ̃1

ˆ
Ix

u(y)dy ≥ c(B)γu(x),

which implies the uniform L∞ boundedness of u in ωr.

Lemma 3.2.8. There exists a constant Λ > 0 such that
´
B h(x, u)dx ≤ Λ for all

weak solutions u of (3.1).
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Proof. By (3.5), Lemma 3.2.7, the positivity of ϕ̃1 and Lemma 3.2.5 or 3.2.4,ˆ
B
h(x, u)dx =

ˆ
ω

h(x, u)dx+

ˆ
B\ω

h(x, u)dx

≤ 2f(C1)‖a‖L1(B) + d|B|+ 1

m(ω)

ˆ
B\ω

h(x, u)ϕ̃1dx

≤ 2f(C1)‖a‖L1(B) + d|B|+ 1

m(ω)

ˆ
B
h(x, u)ϕ̃1dx ≤ Λ(B, h)

having de�ned m(ω) := minB\ω ϕ̃1 > 0.

3.3 Uniform bounds inside the domain

By now, we know that solutions of problem (3.1) in the ball B are bounded near
the boundary, but they might become arbitrarily large around a point inside the
domain. This is the situation we want to exclude via a blow-up argument in
order to complete the proofs of Theorems 3.1.2 and 3.1.3. The beginning of the
argument is the same for both of them and follows the approach of [81]: we
define a sequence of rescaled functions on some expanding domains, which turns
out to be locally compact in a Hölder space, and we find a limit profile v satisfying
an equation in R4. In the subcritical framework it will be quite easy to find a
contradiction as the limiting equation is linear, while in the critical case some
further investigation will be needed.

Although the analysis that we present here concerns the problem (3.1) in B, in
this section we use the notation Ω to indicate the ball. This will be explained in
Section 3.4.1, where we show that the same argument can be easily applied also
for general smooth domains.

Let us start supposing by contradiction that there is a sequence (uk)k∈N of so-
lutions of problem (3.1) and of maximum points (xk)k∈N ⊂ Ω such that

uk(xk) = ‖uk‖L∞(Ω) =: Mk ↗ +∞. (3.21)

Since Ω is bounded, necessarily the points xk accumulate to a limit point which has
positive distance from the boundary, by Proposition 3.2.1. So, up to a subsequence,
xk → x∞ ∈ Ω. Moreover, we define the rescaled functions vk : Ωk → R as

vk(x) := uk(xk + µkx)−Mk, (3.22)

where the scaling is

µk :=
1

(f(Mk))1/4
→ 0 as k → +∞ (3.23)

and the expanding domains are Ωk := Ω−xk
µk

. Notice that x∞ ∈ Ω implies Ωk ↗ R4.
Let us compute what is |∆2vk|:

|∆2vk(x)| = µ4
k|(∆2uk)(xk + µkx)| = h(xk + µkx, uk(xk + µkx))

f(Mk)

≤ (1 + ε)a(xk + µkx)
f(uk(xk + µkx))

f(Mk)
+

dε
Mk

,

(3.24)
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by (3.5), so it is uniformly bounded. Moreover, we obtain the following result:

Lemma 3.3.1. Let x ∈ BR(0). There holds |∇ivk(x)| ≤ C(R) for any i ∈ {0, 1, 2, 3}.

Proof. By the representation formula for derivatives and Lemma 3.2.2,

|∇ivk(x)| = |µik∇iuk(xk + µkx)| = µik

∣∣∣∣ ˆ
Ω

∇i
xGΩ(xk + µkx, y)h(y, uk(y))dy

∣∣∣∣
≤ Cµik

ˆ
Ω\B2Rµk

(xk)

h(y, uk(y))

|xk + µkx− y|i
dy + Cµik

ˆ
B2Rµk

(xk)

h(y, uk(y))

|xk + µkx− y|i
dy.

In Ω \B2Rµk(xk) there holds |xk +µkx− y| ≥ |y−xk|−µk|x| ≥ 2Rµk−Rµk = Rµk,
while in B2Rµk(xk) we have f(uk(y)) ≤ f(Mk) = µ−4

k (this follows from 0 ≤ f ′(t)→
+∞). Hence, by Proposition 3.2.1 and (3.5) with ε = 1

2
,

|∇ivk(x)| ≤ CR−iΛ + Cµik

ˆ
B2Rµk

(xk)

2a(y)f(uk(y)) + d

|xk + µkx− y|i
dy

≤ CR−iΛ + C(2‖a‖∞ + dµ4
k)µ

i−4
k

ˆ
B2Rµk

(xk)

1

|xk + µkx− y|i
dy.

(3.25)

Using the change of variable y = µkz + xk, the last integral becomes
ˆ
B2Rµk

(xk)

1

|xk + µkx− y|i
dy =

ˆ
B2R(0)

1

µik|x− z|i
µ4
kdz = µ4−i

k

ˆ
B2R(0)

1

|z − x|i
dz.

Inserting it into (3.25), we obtain

|∇ivk(x)| ≤ CR−iΛ + (2‖a‖∞ + dµ4
k)C

ˆ 2R

0

ρ3−idρ,

which is �nite for i ∈ {1, 2, 3} since µk → 0 as k → +∞.
If we �nally take i = 0 and x ∈ BR(0),

|vk(x)| = |vk(x)− vk(0)| ≤ sup
BR(0)

|∇vk||x| ≤ C(R).

Summarizing, we are able to control both ∆2vk in (3.24) and, by Lemma 3.3.1,
∇ivk locally in R4. Hence, the local boundedness of the sequence (vk)k∈N is
achieved by Lemma A.0.4, see the Appendix. This means that (vk)k∈N is bounded
in W 4,p

loc (R4) so, by compact embedding, there exists v ∈ C3(R4) such that vk → v in
C3,γ
loc (R4) for any γ ∈ (0, 1), satisfying v ≤ 0 and v(0) = 0. Looking for the equation

satisfied by v in R4, one may rewrite (3.24) and obtain

∆2vk(x) ≤ (1 + ε)a(xk + µkx)elog(f(uk(xk+µkx)))−log(f(Mk)) + dε
Mk
. (3.26)

Taking the first-order Taylor expansion of log ◦f around Mk, one finds

log(f(uk(xk + µkx))) = log(f(Mk)) +
f ′(zk(x))

f(zk(x))
(uk(xk + µkx)−Mk),
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where zk(x) := Mk + θ(uk(xk +µkx)−Mk) = Mk + θvk(x), θ ∈ (0, 1). Hence, (3.26)
becomes

∆2vk(x) ≤ (1 + ε)a(xk + µkx)e
f ′(zk(x))

f(zk(x))
vk(x)

+ dε
Mk
. (3.27)

Analogously, the following lower bound holds:

∆2vk(x) ≥ (1− ε)a(xk + µkx)e
f ′(zk(x))

f(zk(x))
vk(x) − dε

Mk
. (3.28)

Since vk → v uniformly on compact sets and Mk → +∞, then zk(x) → +∞ uni-
formly on compact sets, so the behaviour at∞ of the term f ′(zk(x))

f(zk(x))
is determined,

roughly speaking, on how far is the nonlinearity f from being critical. As a result,
we split our analysis according to whether f is subcritical or critical in the sense
of Definition 3.1.3.

3.3.1 The subcritical case

In this framework, besides our standard assumptions on h, we further assume

lim
t→+∞

f ′(t)

f(t)
= 0

according to Definition 3.1.3. Therefore, taking the limit as k → +∞ in (3.27) and
(3.28), we find

(1− ε)a(x∞) ≤ ∆2v ≤ (1 + ε)a(x∞) in R4,

which implies, by the arbitrariness of ε > 0:

∆2v = a(x∞) in R4.

Incidentally notice that a(x∞) 6= 0 since x∞ ∈ Ω and here a > 0. Nevertheless,
since this equation is satisfied by the limit profile v, we can quite easily deduce
a contradiction. Indeed, we have the following chain of inequalities, which is a
consequence of the Taylor expansion already used, Fatou Lemma, (3.5) with ε = 1

2

and finally Proposition 3.2.1:

+∞ =

ˆ
R4

a(x∞) =

ˆ
R4

lim
k→+∞

a(xk + µkx)e
f ′(zk(x))

f(zk(x))
vk(x)

χΩk(x)dx

=

ˆ
R4

lim
k→+∞

a(xk + µkx)elog(f(uk(xk+µkx)))−log(f(Mk))χΩk(x)dx

≤ 2 lim inf
k→+∞

ˆ
Ωk

[1
2
a(xk + µkx)f(uk(xk + µkx))− d] + d

f(Mk)
dx

≤ 2 lim inf
k→+∞

[ˆ
Ωk

h(xk + µkx, uk(xk + µkx))

f(Mk)
dx+ d

ˆ
Ωk

dx

f(Mk)

]
[y=xk+µkx]

= 2 lim inf
k→+∞

[ˆ
Ω

h(y, uk(y))dy + d|Ω|
]
≤ 2[Λ + d|Ω|],

where the last inequality is due to Proposition 3.2.1. This contradiction proves
Theorem 3.1.2.

72



3.3.2 The critical case

Let us come back to inequalities (3.27) and (3.28), recalling that in this case we are
assuming

lim
t→+∞

f ′(t)

f(t)
=: β ∈ (0,+∞).

This time, once we take the limit as k → +∞ in both of them, and again recalling
that ε is arbitrary, we find

∆2v = a(x∞)eβv in R4, (*)

where a(x∞) > 0 as before. Hence, the chain of inequalities used in Section 3.3.1
does not yield to a contradiction, so we have to bring further our investigation:
we will see that the key point will be the characterization of the limit profile of
the rescaled functions and a Pohozaev-type identity. Nevertheless, with exactly the
same computations, one may infer that the limit profile v has finite energy:

Lemma 3.3.2.
´
R4 e

βv < +∞.

Proof. As in the proof of Theorem 3.1.2:

a(x∞)

ˆ
R4

eβv =

ˆ
R4

lim
k→+∞

a(xk + µkx)e
f ′(zk(x))

f(zk(x))
vk(x)

χΩk(x)dx

≤ 2 lim inf
k→+∞

[ ˆ
Ω

h(y, uk(y))dy + d|Ω|
]
≤ 2[Λ + d|Ω|].

Since v solves equation (*), in order to characterize it precisely, we need some
further information about its growth at∞.

Lemma 3.3.3 ([67], Lemma 4). For all i = 1, 2, 3 and p ∈ [1, 4
i
), there exists a

constant C(i, p) > 0 such that ‖∇iuk‖pLp(Br(x0)) ≤ Cr4−ip for any Br(x0) ⊂ Ω.

Proof. By the Green representation formula and Lemma 3.2.2 we have

|∇iuk(x)| ≤
ˆ

Ω

|∇i
xGΩ(x, y)|h(y, uk(y))dy ≤ C

ˆ
Ω

1

|x− y|i
h(y, uk(y))dy.

Thus, for any ϕ ∈ C∞c (Br(x0)) and p′ being the conjugate exponent of p, we have
ˆ
Br(x0)

|∇iuk(x)|ϕ(x)dx ≤
ˆ
Br(x0)

( ˆ
Ω

|∇i
xGΩ(x, y)|h(y, uk(y))dy

)
|ϕ(x)|dx

≤ C

ˆ
Ω

(
h(y, uk(y))

ˆ
Br(x0)

|x− y|−i|ϕ(x)|dx
)
dy

≤ C

ˆ
Ω

h(y, uk(y))‖|x− y|−i|‖Lp(Br(x0))‖ϕ‖Lp′ (Br(x0))dy

≤ Λr4−ip‖ϕ‖Lp′ (Br(x0)),

using Proposition 3.2.1 and the boundedness of Ω. By duality, this yields our claim.
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Lemma 3.3.4. v(x) = o(|x|2) as |x| → +∞.

Proof. Firstly, by (3.22) and Lemma 3.3.3 with i = 2 and p = 1, there holds
ˆ
BR(0)

|∆vk| = µ2
k

ˆ
BR(0)

|∆uk(xk + µkx)|dx = µ−2
k

ˆ
BRµk (xk)

|∆uk|

≤ µ−2
k C(Rµk)

4−2 = CR2.

(3.29)

Suppose now by contradiction that v(x) = o(|x|2) as |x| → +∞ does not hold. By
Lin [60] we would infer that there exists b > 0 such that −∆v(x) ≥ b for every
x ∈ R4. This, combined with (3.29) and Fatou's Lemma, would imply

CbR4 ≤
ˆ
BR(0)

|∆v| ≤ lim inf
k→+∞

ˆ
BR(0)

|∆vk| ≤ CR2,

which contradicts the arbitrariness of R > 0. This proves our claim.

We can now apply a Liouville-type result by Martinazzi (see Theorem A.0.6 in the
Appendix) and determine explicitly v:

Lemma 3.3.5. v(x) = −c1 log(1 + c2|x|2) for some ci = ci(β, a(x∞)), i = 1, 2.
Moreover,

lim
R→+∞

lim inf
k→+∞

ˆ
BRµk (xk)

h(y, uk(y))dy ≥ θ > 0. (3.30)

Proof. Parameters in the explicit formula of v may be found by standard compu-
tations from Theorem A.0.6 with x0 = 0 (in the notation therein) since v(0) = 0.
Moreover, arguing as in Section 3.3.1, we have

0 < 2θ := a(x∞)

ˆ
R4

eβv = lim
R→+∞

ˆ
BR(0)

lim
k→+∞

a(xk + µkx)e

(
f ′(zk(x))

f(zk(x))

)
vk(x)

dx

≤ lim
R→+∞

lim inf
k→+∞

ˆ
BR(0)

a(xk + µkx)e

(
f ′(zk(x))

f(zk(x))

)
vk(x)

dx

= 2 lim
R→+∞

lim inf
k→+∞

[ˆ
BR(0)

1
2
a(xk + µkx)f(uk(xk + µkx)− d)

f(Mk)
dx+

d

f(Mk)
|BR(0)|

]
≤ 2 lim

R→+∞
lim inf
k→+∞

ˆ
BRµk (xk)

h(y, uk(y))dy.

So far, we have investigated the behaviour of each uk around one maximum
point xk. This is indeed what happens for each sequence of blow-up points, as
stated in the next result:

Lemma 3.3.6. There are N > 0 and converging sequences xk,i → x(i), 1 ≤ i ≤ N ,
with limk→+∞ uk(xk,i) = +∞ such that, setting

vk,i(x) := uk(xk,i + µk,ix)− uk(xk,i), µk,i := (f(uk(xk,i)))
−1/4,

we have
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(i) limk→+∞
|xk,i−xk,j |

µk,i
= +∞ for 1 ≤ i 6= j ≤ N ;

(ii) vk,i → v in C3,γ
loc (R4), for 1 ≤ i ≤ N , where v is de�ned in Lemma 3.3.5 and

estimate (3.30) still holds;

(iii) inf1≤i≤N |x− xk,i|4h(x, uk(x)) ≤ C for every x ∈ Ω;

(iv) inf1≤i≤N |x− xk,i|j|∇juk(x)| ≤ C for every x ∈ Ω and 1 ≤ j ≤ 4.

Proof. The proof mainly follows the arguments of [81, Claims 5-7] (see also [67,
Lemmas 7-8]) with some modi�cations as in our Lemmas 3.3.1-3.3.5.
We say that the property Hp holds if there exist p sequences of blow-up points, that
is, (xk,i)

p
i=1 ⊂ Ω such that (i-ii) hold. Notice that Lemmas 3.3.1-3.3.5 imply that

H1 holds. We �rst show the following alternative:
Claim 1: Supposing property Hp holds for some p ∈ N\{0}, then either Hp+1 holds
or there exists a constant C independent of k such that

inf
1≤i≤p

|x− xk,i|4h(x, uk(x)) ≤ C for any x ∈ Ω. (3.31)

Let wk(x) := inf1≤i≤p |x − xk,i|4h(x, uk(x)) and suppose the uniform bound (3.31)
does not hold, i.e. ‖wk‖∞ → +∞ and denote by (yk)k ⊂ Ω the maximum points.
Our aim is to prove that such points are the ones that, together with (xk,i)

p
i=1, verify

property Hp+1. De�ne γk := f(uk(yk))
−1/4 and let

ũk(x) := uk(yk + γkx)− uk(yk).

Firstly, |yk−xk,i|
γk

→ +∞ for any i. Indeed, by (3.5)

+∞← wk(yk) ≤ inf
i=1,··· ,p

|x− xk,i|4(2‖a‖∞f(uk(yk)) + d)

≤ 2‖a‖∞ inf
1≤i≤p

(
|yk − xk,i|

γk

)4

+ d(diam(Ω))4.
(3.32)

Hence, (i) is proved once we show also |yk−xk,i|
µk,i

→ +∞ for any i. Suppose by
contradiction that yk−xk,i = O(µk,i), that is, yk = xk,i +µk,iθk,i for some |θk,i| < C.
Notice that (yk)k, being a blow-up sequence for (wk)k, is a blow-up sequence for (uk)k
too. Indeed, with the same computations as in (3.32), one infers f(uk(yk)) → ∞,
which implies uk(yk)→∞. Hence,

wk(yk) = |yk − xk,i|4h(yk, uk(yk)) = µ4
k,i|θk,i|4h(yk, uk(yk))

≤ µ4
k,i|θk,i|4(2a(yk)f(uk(yk)) + d)

= |θk,i|4(2a(xk,i + µk,iθk,i)e
log(f(uk(xk,i+µk,iθk,i)))−log(f(uk(xk,i))) + d

f(uk(xk,i))
).

Since log(f(uk(xk,i+µk,iθk,i))) = log(f(uk(xk,i)))+
f ′(zk,i(θk,i))

f(zk,i(θk,i))
vk,i(θk,i), where zk,i(θk,i) :=

uk(xk,i) + t(uk(xk,i + µk,iθk,i) − uk(xk,i)) = uk(xk,i) + tvk,i(θk,i), for some t ∈ (0, 1),
then

= |θk,i|4
(

2a(xk,i + µk,iθk,i)e
f ′(zk,i(θk,i))
f(zk,i(θk,i))

vk,i(θk,i)
+

d

f(uk(xk,i))

)
→ 2|θ∞,i|4a(x∞,i)e

βv(θ∞,i),

(3.33)
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In fact, uk(xk,i)→ +∞, while vk,i(θk,i) stays bounded by the same computations as
in Lemma 3.3.1 (θk,i being bounded), which yields zk,i → +∞ too and (3.33) follows
by assumption (A3 ). Moreover, we have an explicit pro�le of v by Lemma 3.3.5, so
we �nally have

lim sup
k→+∞

wk(yk) ≤ 2|θ∞,i|4
a(x∞,i)

(1 + c2|θ∞,i|2)c1β
<∞,

which contradicts wk(yk)→ +∞. Hence (i) is proved.
In order to prove (ii), we have to show that the sequence (ũk)k is uniformly

bounded. Nevertheless, in contrast of what happened for the blow-up sequence
(vk)k de�ned in (3.22), for which 0 ≤ f(uk(xk+µkx))

f(Mk)
≤ 1 (xk being as in (3.21)), here

this term may be unbounded, and so ∆2ũk, losing the boundedness required by
Lemma A.0.4. We now show that this cannot happen. To this aim, let R > 0 and
ε ∈ (0, 1) be �xed and x ∈ BR(0). We have wk(yk +γkx) ≤ wk(yk) which, rewritten,
is

h(yk + γkx, uk(yk + γkx))

h(yk, uk(yk))
≤
(

inf1≤i≤p |yk − xk,i|
inf1≤i≤p |yk + γkx− xk,i|

)4

.

Since |yk−xk,i|
γk

→ +∞, there exists k̄(R, ε) > 0 such that for any k ≥ k̄ we have
γkR ≤ ε|yk − xk,i|. Hence, |yk + γkx − xk,i| ≥ |yk − xk,i| − γkR ≥ (1 − ε)|yk − xk,i|
and thus,

h(yk + γkx, uk(yk + γkx))

h(yk, uk(yk))
≤ 1

(1− ε)4
. (3.34)

Therefore, by (3.34) and (3.5), we have

1

(1− ε)4
≥

1
2
a(yk + γkx)f(uk(yk + γkx))− d

2a(yk)f(uk(yk))) + d

≥
1
4
a(y∞)f(uk(yk + γkx))

2‖a‖∞f(uk(yk))) + d
− d

2‖a‖∞f(uk(yk)) + d

≥ 1

b

f(uk(yk + γkx))

f(uk(yk))
− C,

for some b, C > 0, since f(uk(yk)) → +∞. This means f(uk(yk+γkx)))
f(uk(yk))

≤ C̃ and, in
turn, together with (3.24), that (∆2ũk)k is uniformly bounded. This leads to the
compactness of (ũk)k in W 4,q(Ω) for any q ≥ 1 and with the same arguments as in
Lemmas 3.3.1-3.3.5, we obtain (ii). This completes the proof of Claim 1.

Claim 2:There exists N ≥ 1 such that both property HN and (3.31) hold.
Suppose by contradiction that the property Hp holds for any p ∈ N �xed. Hence,
by (i-ii) for any k ∈ N one can �nd p points (xk,i)

p
i=1 and disjoint balls BRµk,i(xk,i)

such that (3.30) holds. Thus,

Λ ≥
ˆ

Ω

h(x, uk(x))dx ≥
ˆ
⋃p
i=1 BRµk,i (xk,i)

h(x, uk(x))dx

=

p∑
i=1

ˆ
BRµk,i (xk,i)

h(x, uk(x))dx ≥ pθ,
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an upper bound for p, a contradiction.
Finally, we have to prove (iv). By the Green representation formula and the

estimates of Lemma 3.2.2, we have

|∇juk(x)| ≤ C

ˆ
Ω

|x− y|−jh(y, uk(y))dy.

For any k ∈ N and i ∈ {1, · · · , N}, de�ne Ωk,i := {x ∈ Ω | |x− xk,i| = inf1≤i≤N |x−
xk,i|}, the set containing all points in Ω which are nearer to the blow-up point xk,i,
and moreover Bk,i := B |x−xk,i|

2

(xk,i). Decompose Ω = ∪i((Ωk,i ∩ Bk,i) ∪ (Ωk,i \ Bk,i))

and, consequently,

|∇juk(x)| ≤ C
N∑
i=1

( ˆ
Ωk,i∩Bk,i

h(y, uk(y))

|x− y|j
dy +

ˆ
Ωk,i\Bk,i

h(y, uk(y))

|x− y|j
dy

)
. (3.35)

Notice that |x− y| ≥ 1
2
|x− xk,i| for any y ∈ Ωk,i ∩Bk,i, while on Ωk,i \Bk,i we apply

inequality (iii), obtaining from (3.35) and by Proposition 3.2.1,

|∇juk(x)| ≤ 2jCΛN

|x− xk,i|j
+ C

N∑
i=1

ˆ
Ωk,i\Bk,i

dy

|x− y|j|y − xk,i|4
. (3.36)

To estimate the second term, we decompose Ωk,i \Bk,i = Ω
(1)
k,i ∪ Ω

(2)
k,i , where

Ω
(1)
k,i := (Ωk,i \Bk,i) ∩B2|x−xk,i|(x) and Ω

(2)
k,i := (Ωk,i \Bk,i) \B2|x−xk,i|(x).

Then, |y − xk,i| ≥ 1
2
|x − xk,i| for any y ∈ Ω

(1)
k,i since it gathers points outside Bk,i;

moreover, Ω
(1)
k,i ⊂ B2|x−xk,i|(x), so

ˆ
Ω

(1)
k,i

dy

|x− y|j|y − xk,i|4
≤ C

|x− xk,i|4

ˆ
B2|x−xk,i|(x)

dy

|x− y|j

=
C

|x− xk,i|4

ˆ 2|x−xk,i|

0

ρ3−jdρ ≤ C

|x− xk,i|j
.

(3.37)

On the other hand, for any y ∈ Ω
(2)
k,i , there holds |y − x| ≤ |y − xk,i| + |x − xk,i| ≤

3
2
|y − xk,i|, thus

ˆ
Ω

(2)
k,i

dy

|x− y|j|y − xk,i|4
≤ C

ˆ
(B |x−xk,i|

2

(x))c

dy

|y − xk,i|4+j

≤ C

ˆ +∞

|x−xk,i|
2

ρ−jdρ ≤ C

|x− xk,i|j
.

(3.38)

(iv) is �nally obtained by (3.36), (3.37) and (3.38).

Denote by S the set of blow-up points, that is, S := {y | ∃yk → y, uk(yk) →
+∞}. Lemma 3.3.6 has two important consequences. First, S coincides with the
set {x(i), 1 ≤ i ≤ N}, and therefore, S is finite. In fact, suppose by contradiction
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that there exist x̄ 6∈ (x(i))Ni=1 and a sequence x̄k → x̄ such that uk(x̄k)→ +∞. Since
N < ∞, one has infk,i |x̄k − x(i)| ≥ d̄ > 0. Notice also that d(x̄, ∂Ω) ≥ η > 0 by
Proposition 3.2.1, so a(x̄k) ≥ a0 > 0. Hence, by (iii) of Lemma 3.3.6 and (3.5)
with ε = 1

2
, we get

C

d̄
≥ h(x̄k, uk(x̄k)) ≥

1

2
a0f(uk(x̄k))− d,

which in turn implies uk(x̄k) ≤ C by the superlinearity of f .
Moreover, we also deduce a local boundedness of (uk)k outside S:

‖uk‖W 4,∞
loc (Ω\S) ≤ C. (3.39)

Indeed, let K ⊂⊂ Ω \ S and r > 0 such that K ∩ Br(x
(i)) = ∅ for each x(i) ∈ S.

Firstly, |uk| ≤ C since there are no blow-up points in K; moreover, inf1≤i≤N |x −
xk,i| ≥ r

2
by construction, so by (iv) we infer |∇juk(x)| ≤ C(r) for any j ∈

{1, · · · , 4}.
In order to conclude the proof of Theorem 3.1.3, we need a Pohožaev identity
which can be found in [68] (see also [81, Lemma 2.2]). For the sake of complete-
ness, we sketch its proof.

Lemma 3.3.7. Let u ∈ H4(Ω) be a strong solution of ∆2u = h(x, u) in Ω. Then,
for any y ∈ R4, we have

4

ˆ
Ω

H(x, u)dx+

ˆ
Ω

〈x− y,∇xH(x, u)〉dx =

ˆ
∂Ω

〈x− y, n(x)〉H(x, u)dσ + b(y, u),

where H is de�ned in (3.8) and b collects all remaining boundary terms:

b(y, u) :=
1

2

ˆ
∂Ω

(∆u)2〈x− y, n(x)〉dσ − 2

ˆ
∂Ω

un∆udσ −
ˆ
∂Ω

(∆u)n〈x− y,∇u〉dσ

−
ˆ
∂Ω

un〈x− y,∇(∆u)〉dσ +

ˆ
∂Ω

〈∇(∆u),∇u〉〈x− y, n(x)〉dσ

Sketch of the Proof. The following identities may be proved with standard and te-
dious computations:

div[(x− y,∇∆u)∇u+ (x− y,∇u)∇∆u− (∇u,∇∆u)(x− y)]

= (x− y,∇∆u)∆u+ (x− y,∇u)∆2u− 2(∇u,∇∆u);
(3.40)

div
[

1
2
(∆u)2(x− y)− 2∆u∇u

]
= ∆u(∇∆u, x− y)− 2(∇∆u); (3.41)

div[(x− y)H(x, u)] = 4H(x, u) + (x− y,∇xH(x, u)) + (x− y,∇tH(x, u))

= 4H(x, u) + (x− y,∇xH(x, u)) + (x− y,∇u)h(x, u).
(3.42)

Applying the Divergence Theorem to (3.40) one hasˆ
∂Ω

(∆u)n〈x− y,∇u〉dx+

ˆ
∂Ω

un〈x− y,∇(∆u)〉dx−
ˆ
∂Ω

〈∇(∆u),∇u〉〈x− y, n(x)〉dx

=

ˆ
Ω

(x− y,∇∆u)∆u+

ˆ
Ω

(x− y,∇u)∆2u− 2

ˆ
Ω

(∇u,∇∆u)

=

ˆ
Ω

(x− y,∇∆u)∆u− 2

ˆ
Ω

(∇u,∇∆u) +

ˆ
Ω

(x− y,∇u)h(x, u).
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Once we apply (3.41) to the �rst two terms and (3.42) to the last one and in both
the Divergence Theorem again, the proof is completed.

Proof of Theorem 3.1.3. Let x0 ∈ S and r > 0 be su�ciently small such that
Br(x0) ∩ S = {x0} and apply the identity of Lemma 3.3.7 in Br(x0) with y = x0

and u = uk which belongs to H4(Ω) by elliptic regularity:

4

ˆ
Br(x0)

H(x, uk)dx+

ˆ
Br(x0)

〈x− y,∇xH(x, uk)〉dx

=

ˆ
∂Br(x0)

〈x− x0, n(x)〉H(x, uk)dσ +
1

2

ˆ
∂Br(x0)

(∆uk)
2〈x− x0, n(x)〉dσ

− 2

ˆ
∂Br(x0)

(uk)n∆ukdσ −
ˆ
∂Br(x0)

(∆uk)n〈x− x0,∇uk〉dσ

−
ˆ
∂Br(x0)

(uk)n〈x− x0,∇(∆uk)〉dσ +

ˆ
∂Br(x0)

〈∇(∆uk),∇uk〉〈x− x0, n(x)〉dσ.

Since F , de�ned in (3.8), is continuous in R+ and ∂Br(x0) ⊂⊂ Ω \ S, (3.39) and
(3.9) imply
ˆ
∂Br(x0)

〈x−x0, n(x)〉H(x, uk)dσ ≤ 2r

ˆ
∂Br(x0)

(a(x)F (uk)+d)dσ+d|∂Br(x0)| = o(r).

Hence, applying (3.39) on the boundary terms in the right-hand side,

4

ˆ
Br(x0)

H(x, uk)dx+

ˆ
Br(x0)

〈x− y,∇xH(x, uk)〉dx = o(r). (3.43)

We want to bound from below the left-hand side of (3.43) with a positive constant
independent of r, to get the contradiction. Let 0 < ε < 1

2
arbitrary; (3.9) and the

assumption (H3) imply

4

ˆ
Br(x0)

H(x, uk)dx+

ˆ
Br(x0)

〈x− y,∇xH(x, uk)〉dx

≥ 4(1− ε)
ˆ
Br(x0)

a(x)F (uk)dx− 4dε|Br(x0)| −
ˆ
Br(x0)

rB(x)F (uk)− r
ˆ
Br(x0)

D(x)

≥
(

4(1− ε)a(x0)

2
− r‖B‖∞

) ˆ
Br(x0)

F (uk)dx− dεCr4 − r
ˆ
Br(x0)

D(x),

when r > 0 is so small that a(x) > a(x0)
2

for any x ∈ Br(x0). Supposing further, up

to a smaller value of r that r‖B‖∞ ≤ a(x0)
2

, we �nd

4

ˆ
Br(x0)

H(x, uk)dx+

ˆ
Br(x0)

〈x− y,∇xH(x, uk)〉dx+ o(r) ≥ a(x0)

2

ˆ
Br(x0)

F (uk)dx.

(3.44)
We now claim there exists m ≥ 1 such that

F (t) ≥ 1

m
f(t) for any t ≥ 0. (3.45)
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Indeed, let us de�ne

m := max

{
1,max

t≥0

f ′(t)

f(t)

}
.

Then 1 ≤ m < +∞ since 0 ≤ f ∈ C1([0,+∞)) by (A1 ), together with the limit
assumption (A3 ). Hence(

F − 1

m
f

)′
(t) = f(t)− 1

m
f ′(t) = f(t)

(
1− 1

m

f ′(t)

f(t)

)
≥ 0,

(
F − 1

m
f

)
(0) = f(0)

(
1− 1

m

)
≥ 0,

which together imply (3.45). Finally, we further estimate from below the left-hand
side of (3.44), by (3.45) and Lemma 3.3.5, obtaining

a(x0)

2

ˆ
Br(x0)

F (uk) ≥
a(x0)

2m

ˆ
Br(x0)

f(uk)

≥ a(x0)

4m‖a‖∞

[ˆ
Br(x0)

(2a(x)f(uk) + d)− d|Br(x0)|
]

≥ a(x0)

4m‖a‖∞

[ˆ
Br(x0)

h(x, uk(x))dx− d|Br(x0)|
]

≥ a(x0)

4m‖a‖∞
θ

4
+ o(r),

This contradicts (3.43). As a consequence, we deduce S = ∅ and thus the bounded-
ness of (uk)k∈N in C4(Ω).

3.4 Some extensions of Theorems 3.1.2 and 3.1.3

The uniform a-priori estimates obtained in Theorems 3.1.2-3.1.3 deal with a large
range of nonlinearities (the basic requirements being positivity, superlinearity and
a control at ∞ by an exponential map), but they apply uniquely for the case of
the ball. In this section we present a sufficient condition in the spirit of Brezis-
Merle [13, Open problem 2] which enables us to generalize our results to smooth
domains. Finally, we show that the present analysis can be similarly carried out
also in the polyharmonic framework.

3.4.1 Extension to general smooth domains

The restrictions to the extension of Theorems 3.1.2 and 3.1.3 to more general
domains are mainly two. Firstly, unless the domain is positivity preserving, we
cannot guarantee that solutions of (3.1), as well as the first eigenfunction ϕ̃1, are
positive, and all estimates of Section 3.2 rely on this fact. Secondly, the two-sided
estimate (3.12) is available only for balls, so we are able to conclude the argument
for the boundary estimate in Lemma 3.2.7 only in this case. Nevertheless, once we
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have
´

Ω
h(x, u) ≤ C available, a careful reading of Sections 3.3.1 and 3.3.2 shows

that the blow-up argument applies for any domain, provided the rescaled domains
expand to cover all R4. The following result shows indeed that, once the uniform
bound on the right-hand side is satisfied, the uniform bound can be obtained.

Theorem 3.4.1. Let Ω ⊂ R4 be a bounded C4,γ smooth domain, γ ∈ (0, 1) and
h satisfy (H1)-(H2) with 0 < a0 ≤ a(·) ∈ C(Ω). Suppose one of the following
conditions holds:

1) h is subcritical as speci�ed in (3.6);

2) h is critical as speci�ed in (3.7) and (H3) holds in Ω.

Furthermore, suppose there exists Λ > 0 such that
ˆ

Ω

h(x, u)dx ≤ Λ

for all weak solutions of (3.1). Then there exists C > 0 such that ‖u‖L∞(Ω) ≤ C for
all weak solutions of (3.1). In addition, if (2) holds, solutions are also bounded in
C4(Ω).

Notice that, since the blow-up points may concentrate to x∞ ∈ ∂Ω, we have
to impose strict positivity on the coefficient a to be sure that a(x∞) > 0. In both
cases, the argument is essentially the one contained in Sections 3.3.1 and 3.3.2,
up to some preliminary verifications.

Proof. By contradiction, suppose the existence of points (xk)k∈N ⊂ Ω and solutions
(uk)k∈N ⊂ H2

0 (Ω) such that Mk := ‖uk‖L∞(Ω) = uk(xk) ↗ +∞. We de�ne Ωk and
µk as in (3.23) as well as the rescaled functions vk as in (3.22). Since Ω is bounded,
the maximum points xk accumulate to some x∞ ∈ Ω. We claim that, in any case,
limk→+∞

d(xk,∂Ω)
µk

= +∞, so that Ωk ↗ R4. Indeed, suppose by contradiction that
d(xk, ∂Ω) = O(µk), that is, up to an a�ne transformation, Ωk → (−∞, 0) × R3.
Letting R > 0 and x ∈ BR(0) ∩ Ωk, with the same computations of Lemma 3.3.1,
we infer |∇ivk| ≤ C(R) for any x ∈ BR(0)∩Ωk. Choosing x ∈ BR(0)∩ ∂Ωk, so that
vk(x) = −Mk, we would get

Mk = |vk(x)| = |vk(x)− vk(0)| ≤ CR,

a contradiction. For the subcritical case (1), now it is enough to repeat the same
compactness arguments as well as the contradiction provided in Section 3.3.1, to
infer the a-priori bound. On the other hand, if we suppose (2), we have to take care
a little bit more the fact that x∞ may belong to ∂Ω. In particular, once we �nd that
the limit function v ∈ C∞(R4) satis�es ∆2v = a(x∞)eβv in R4 and the analogues of
Lemmas 3.3.2-3.3.6, the argument via the Pohoºaev identity is a bit di�erent, since it
might happen that x∞ ∈ ∂Ω. In this case, we have to consider the identity of Lemma
3.3.7 integrated in Br(x0)∩Ω with x0 ∈ S∩∂Ω (we recall that S is the set of blow-up
points), so two kinds of boundary terms appear: the ones relative to Ω ∩ ∂Br(x0)
and the others to ∂Ω ∩ Br(x0). All terms of the second kind vanish by the Dirichlet
boundary conditions except for the term

´
∂Ω∩Br(x0)

(∆uk)
2〈x−y, n(x)〉dσ. Therefore,
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we have to choose in a clever way a sequence of points (yk)k∈N so that also this term
vanishes. Following [81], we de�ne yk := x0 + ρk,rn(x0), where

ρk,r :=

´
∂Ω∩Br(x0)

(∆uk)
2〈x− x0, n(x)〉dx´

∂Ω∩Br(x0)
(∆uk)2〈n(x0), n(x)〉dx

and, up to a smaller value, we may choose r so that 1
2
≤ 〈n(x0), n(x)〉 ≤ 1 for all

x ∈ Br(x0) ∩ Ω. With these choices, we have |ρk.r| ≤ 2r and
ˆ
∂Ω∩Br(x0)

(∆uk)
2〈x− yk, n(x)〉dx = 0.

Applying now the identity of Lemma 3.3.7 in Ω ∩ Br(x0) with y = yk and u = uk,
one retrieves

4

ˆ
Ω∩Br(x0)

H(x, uk)dx+

ˆ
Ω∩Br(x0)

〈x− y,∇xH(x, uk)〉dx = o(r).

and the conclusion follows from the same argument as in the Proof of Theorem
3.1.3.

3.4.2 Extension to the polyharmonic case

By now, we considered our problem (3.1) in dimension 4, the critical dimension
for the fourth-order Sobolev inequalities. One may further ask if the same results
hold true, once we consider the related Dirichlet problem for the polyharmonic
operator: {

(−∆)mu = h(x, u) in Ω,

u = ∂nu = · · · = ∂m−1
n u = 0 on ∂Ω,

(3.46)

where Ω ⊂ R2m is a bounded smooth domain (that is, of class C2m,γ, for some
γ ∈ (0, 1)), m ≥ 2. Indeed, 2m the critical dimension in the sense of the Trudinger-
Moser-Adams inequality. Moreover, we assume h verifies (H1)-(H2). Herein, we
mean by weak solution of (3.46) a function u ∈ Hm

0 (Ω) such that
ˆ

Ω

∇mu∇mϕ =

ˆ
Ω

h(x, u)ϕ,

for every ϕ ∈ Hm
0 (Ω), with the convention

∇m :=

{
∆m/2, m odd,

∇∆(m−1)/2, m even.

Theorem 3.4.2. Let B be a ball in R2m and h be a nonlinearity satisfying assump-
tions (H1)-(H2). Suppose moreover that one of the following holds:

I) h is subcritical as speci�ed in (3.6) and either (i) or (ii) of Proposition
3.2.1 holds;
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II) h is critical as speci�ed in (3.7) and (H3) holds.

Then there exists C > 0 such that ‖u‖L∞(B) ≤ C for all weak solutions of (3.46).
In addition, if (II) holds, solutions are also bounded in C2m(B).

Proof. An analogue of Proposition 3.2.1 in dimension 2m holds, following the same
arguments of Section 3.2 with only evident changes. In particular, Lemmas 3.2.4,
3.2.5 and 3.2.6 hold by considering λ(m)

1 and ϕ
(m)
1 as respectively the �rst eigen-

value and the �rst eigenfunction in Ω of the operator (−∆)m subjected to Dirichlet
boundary conditions and since we have the same behaviour of the Green function,
that is, it vanishes near the boundary precisely of order m (see [40, Theorem 4.6]):

G(−∆)m,B(x, y) ' log

(
1 +

(
dB(x)dB(y)

|x− y|2

)m)
.

Then, Lemmas 3.2.7 and 3.2.8 easily follow, since they rely on properties that do
not depend on the di�erential operator. Let us focus now on the blow-up argument.
A careful reading of Section 3.3 may convince the reader that all statements are still
valid for problem (3.46) once we adapt the scaling as

µ
(m)
k :=

1

(f(Mk))
1

2m

.

In particular, Lemma 3.3.1 holds for any i ∈ {0, 1, · · · , 2m−1}. Hence, again by the
local compactness guaranteed by Lemma A.0.4, we �nd v ∈ C2m−1(R2m) satisfying

(−∆)mv = a(x∞)eβv in R2m. (*m)

In the subcritical case (I), one has β = 0, an the contradiction is found exactly as
in Section 3.3.1. On the other hand, in the critical framework (II), that is when
β ∈ (0,+∞), the characterization of entire solutions of equation (*m) again follows
by Theorem A.0.6. Consequently, repeating the same steps as in Section 3.3.2, one
has the result. It is only worth to mention how the Pohoºaev identity modi�es to
�t in this context: for any u ∈ C2m(Ω) solution of (−∆)mu = h(x, u) in Ω ⊂ R2m

and for any y ∈ R2m, there holds:

2m

ˆ
Ω

H(x, u)dx+

ˆ
Ω

〈x− y,∇xH(x, u)〉dx

=

ˆ
∂Ω

〈x− y, n(x)〉H(x, u)dσ +
1

2

ˆ
∂Ω

(∇mu)2〈x− y, n(x)〉dσ

+
m−1∑
j=0

(−1)m+j

ˆ
∂Ω

〈n(x),∇j((x− y)∇u)∇2m−1−ju(x)〉dσ.

At this point, it is straightforward to combine the arguments presented in Sec-
tion 3.4.1 with the necessary modifications mentioned in the proof of Theorem
3.4.2 to obtain the following generalization of Theorem 3.4.1:
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Corollary 3.4.3. Let Ω ⊂ R2m be a bounded C2m,γ smooth domain, γ ∈ (0, 1) and
h be a nonlinearity satisfying assumptions (H1)-(H2) with 0 < a0 ≤ a(·) ∈ C(Ω).
Suppose one of the conditions (I)-(II) is satis�ed and that there exists Λ > 0 such
that

´
Ω
h(x, u)dx ≤ Λ for all weak solutions of (3.46). Then there exists C > 0

such that ‖u‖L∞(Ω) ≤ C for all weak solutions of (3.46). In addition, if (II) holds,
solutions are also bounded in C2m(Ω).

3.5 The Navier boundary conditions

So far, we studied the fourth-order problem (3.1) endowed with Dirichlet boundary
conditions. In this section, we show that a similar analysis can be provided also
when considering Navier boundary conditions:{

∆2u = h(x, u) in Ω,

u = ∆u = 0 on ∂Ω,
(3.47)

when Ω ⊂ R4 is a bounded convex and smooth domain. As well-known, in this
context this fourth-order problem can be seen as a system of coupled second-order
problems: {

−∆u = w in Ω,

u = 0 on ∂Ω,

{
−∆w = h(x, u) in Ω,

w = 0 on ∂Ω.
(3.48)

and thus the maximum principle holds. Hence, we are able to prove the a-priori
uniform bounds as we did in the ball for the Dirichlet case.

A-priori bounds for Navier problems (3.47) and, in general, for systems of
second-order equations have been investigated in several papers, most of the liter-
ature deals with power-type nonlinearities in dimension N ≥ 5 (see [85, 52, 84]
and references therein) or in N = 4 for the special case h(x, t) = et ([61, 98, 62]).
General exponential nonlinearities are the subject of a series of papers by de
Figueiredo, do Ó and Ruf ([30, 31]), dealing with elliptic systems in dimension 2.

Recall that u ∈ H2(Ω) ∩H1
0 (Ω) is a weak solution of (3.47) whenever
ˆ

Ω

∆u∆ϕ =

ˆ
Ω

h(x, u)ϕ (3.49)

for any test function ϕ ∈ H2(Ω) ∩H1
0 (Ω). Our main results are the following.

Theorem 3.5.1. Let Ω be a bounded and convex C2,γ domain in R4 and h be a
subcritical nonlinearity satisfying (H1)-(H2) and those speci�ed in Proposition 3.5.4.
Then there exists C > 0 such that ‖u‖L∞(Ω) ≤ C for all weak solutions u of (3.47).

Theorem 3.5.2. Let Ω be a bounded and convex C2,γ domain in R4 and h be a
critical nonlinearity satisfying (H1)-(H2) and those speci�ed in Proposition 3.5.4.
Suppose moreover that there exist functions 0 ≤ B ∈ L∞(Ω), 0 ≤ D ∈ L1(Ω) such
that (H3) holds. Then there exists C > 0 such that ‖u‖C4(Ω) ≤ C for all weak
solutions u of (3.47).
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This section is devoted to the proof of Theorems 3.5.1-3.5.2, following the
strategy used in Sections 3.2-3.3.

As for Dirichlet boundary conditions, the first step in order to get the a-priori
uniform estimates on solutions is to obtain a uniform control near the boundary
and of the right-hand side of (3.47). In Section 3.2, the key point was the be-
haviour of the Green function near the boundary of the ball. If we also assume the
convexity of our domain Ω, its counterpart for Navier boundary conditions is the
moving planes technique. Indeed, denoting Ωr := {x ∈ Ω | d(x, ∂Ω) < r}, we have
the following:

Lemma 3.5.3. Assume Ω ⊂ R4 is a bounded C2,γ convex domain and that there
exist r̄, δ̄ > 0 such that h(·, t) ∈ C1(Ωr̄) for all t ≥ 0 and ∇xh(x, t) · θ ≤ 0 for all
x ∈ Ωr̄, t ≥ 0 and unit vectors θ such that |θ− n(x)| ≤ δ̄. Then, there exist r, δ > 0
such that ∇u(x) · θ ≤ 0 for all x ∈ Ωr and |θ − n(x)| ≤ δ, for any solution u of
(3.47).

Proof. The proof is an adaptation of [30, Lemma 3.2]. Each point x ∈ R4 will be
denoted by x = (x1, x̂1) to isolate the �rst component, x̂1 standing for (x2, x3, x4).
We can assume without loss of generality, that Ω ⊂ R4

+ := {x = (x1, x̂1) ∈ R4 |x1 >
0} and that 0 ∈ ∂Ω. Moreover, let us de�ne the cap Σλ := {x ∈ Ω |x1 < λ}, the
re�ected cap Σλ := {(2λ− x1, x̂1) | (x1, x̂1) ∈ Σλ} and the segment dividing the two
Tλ := {x ∈ Ω |x1 = λ}. By convexity, there exists λ̄(r̄) > 0 such that Σλ ∪Σ′λ ⊂ Ωr̄

for any λ ∈ (0, λ̄). For such λ, de�ne

wλ(x) := u(2λ− x1, x̂1)− u(x).

Therefore,

∆2wλ(x) = ∆2u(2λ− x1, x̂1)−∆2u(x)

= h((2λ− x1, x̂1), u(2λ− x1, x̂1))− h((x1, x̂1), u(x1, x̂1))

≥ h((x1, x̂1), u(2λ− x1, x̂1))− h((x1, x̂1), u(x1, x̂1))

since our assumption with θ = −x1 reads as ∂h
∂x1

(x, t) ≥ 0 for any x ∈ Ωr̄. Using the
mean value theorem,

∆2wλ(x) ≥ ∂h

∂t
((x1, x̂1), η(x1, x̂1))[u(2λ− x1, x̂1)− u(x)] = c(x)wλ(x),

where η(x1, x̂1) is a real number between u(2λ− x1, x̂1) and u(x). For λ su�ciently
small and positive, Σλ has small measure. Thus, the maximum principle for coop-
erative elliptic systems in small domains (see [28]) implies wλ ≥ 0, which means
that near the boundary ∂Ω the function u is increasing along the direction x1. The
general statement follows by a compactness argument.

With this result available, we can thus recover the analogous of Proposition
3.2.1, whose proof is only sketched, being very similar:
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Proposition 3.5.4. Let Ω and h be as in Lemma 3.5.3. Suppose also that one of
the conditions (i)-(ii) of Proposition 3.2.1 holds. Then there exist r, C1,Λ > 0 such
that

‖u‖L∞(Ωr) ≤ C1 and

ˆ
Ω

h(x, u)dx ≤ Λ (3.50)

for all (positive) weak solutions u of (3.47), where Ωr := {x ∈ Ω | d(x, ∂Ω) < r}.

Sketch of the Proof. Recall that λ1 and ϕ1 are respectively the �rst eigenvalue and
the �rst eigenfunction of (−∆) with Dirichlet boundary conditions in Ω. Choosing
ϕ = ϕ1 in (3.49), we get

ˆ
Ω

h(x, u)ϕ1 =

ˆ
Ω

∆u∆ϕ1 = −λ1

ˆ
Ω

∆uϕ1 = λ1

ˆ
Ω

∇u∇ϕ1 = λ2
1

ˆ
Ω

uϕ1.

Exploiting the superlinearity of h, with the same steps as in Lemma 3.2.5 and with
the notation therein, we infer

ˆ
Ω

uϕ1 ≤ 2‖ϕ1‖∞
(

1

2λ2
1

‖h(·, 0)‖1 +

ˆ
Ω

t0(x)dx

)
.

By conditions (i)-(iii) of Lemma 3.2.5, we can bound the term involving t0, obtainingˆ
Ω

h(x, u)ϕ1dx ≤ C (3.51)

for some positive constant C independent of u. This uniform estimate, together
with Lemma 3.5.3 allow to retrace Lemmas 3.2.7 -3.2.8 and get the desired bounds
(3.50). On the other hand, the local L1 bound (3.51) may be also obtained retracing
the proof of Lemma 3.2.4, where the Green function estimates therein are replaced
by the analogues for the Navier boundary conditions (see [40, Proposition 4.13] and
the subsequent Proposition 3.5.5).

Let now exclude internal blow-up. The main ingredients of the arguments for
the Dirichlet case contained in Section 3.3 are the uniform estimates of Proposition
3.2.1 and the estimates on the Green function and of its derivatives provided by
Lemma 3.2.2: once we have these two, Theorems 3.1.2 and 3.1.3 follow at once,
as Section 3.3 shows. Therefore, by Proposition 3.5.4, we just have to find the
counterpart of Lemma 3.2.2 for the Navier boundary conditions. A reference for
the estimates for the Green function GNAV (x, y) is [51]; nevertheless, although we
believe they already exist in the literature, we were not able to find any reference
for the estimates of its derivatives. Hence, we prove here the following:

Proposition 3.5.5. Let Ω ⊂ R4 be a bounded domain of class C1,1 and let GNAV (x, y)
be the Green function in Ω of the biharmonic operator subjected to Navier boundary
conditions. There exists C > 0 such that for all x, y ∈ Ω, x 6= y, we have that

|GNAV (x, y)| ≤ C log

(
1 +

dΩ(x)dΩ(y)

|x− y|2

)
, (3.52)

|∇xGNAV (x, y)| ≤ C

|x− y|
.
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Proof. In view of the decomposition (3.48), GNAV can be described as an iterated
Green function for the Laplace operator with Dirichlet boundary conditions, denoted
by G−∆,Ω. Indeed, if u is the solution of ∆2u = f with u = ∆u = 0, then

∇iu(x) =

ˆ
Ω

∇i
xG−∆,Ω(x, y)v(y)dy

=

ˆ
Ω

∇i
xG−∆,Ω(x, y)

(ˆ
Ω

G−∆,Ω(y, z)f(z)dz

)
dy

=

ˆ
Ω

( ˆ
Ω

∇i
xG−∆,Ω(x, y)G−∆,Ω(y, z)dy

)
f(z)dz,

which yields

∇i
xGNAV (x, z) =

ˆ
Ω

∇i
xG−∆,Ω(x, y)G−∆,Ω(y, z)dy. (3.53)

For a proof of (3.52) (that is, when i = 0), we refer to [40, Proposition 4.13] as
well as for its generalizations in [51, Theorem 1.2]. Let now i = 1 and recall the
estimates for G−∆,Ω in R4, which go back to the work of Widman [100] (cf. [90] for
this formulation):

|G−∆,Ω(x, y)| � |x− y|−2

(
1 ∧ d(x)d(y)

|x− y|2

)
, (3.54)

|∇xG−∆,Ω(x, y)| � |x− y|−3

(
1 ∧ d(y)

|x− y|

)
. (3.55)

In the sequel, we strictly follow [51]. Fix x, z ∈ Ω, de�ne Ox := B 2
3
|x−z|(x) ∩ Ω and

similarly Oz := B 2
3
|x−z|(z) ∩ Ω and let R := Ω \ (Ox ∪ Oz). By (3.53), (3.54) and

(3.55),

|∇i
xGNAV (x, z)| �

ˆ
Ω

(
1 ∧ d(y)

|x−y|

)(
1 ∧ d(y)d(z)

|y−z|2
)

|x− y|3|y − z|2
dy =:

ˆ
Ω

Q(x, y, z)dy.

On Ox we have |y − z| ∼ |x− z|. Indeed, 1
3
|x− z| ≤ |y − z| ≤ 5

3
|x− z|. Hence,

ˆ
Ox
Q(x, y, z)dy �

ˆ
Ox
|x− y|−3|y − z|−2dy � |x− z|−2

ˆ
Ox
|x− y|−3dy

� |x− z|−2

ˆ 2
3
|x−z|

0

dρ � 1

|x− z|
.

(3.56)

Analogously, on Oz there holds |x− y| ∼ |x− z| and thus
ˆ
Oz
Q(x, y, z)dy �

ˆ
Oz
|x− y|−3|y − z|−2dy � |x− z|−3

ˆ
Oz
|y − z|−2dy

� |x− z|−3

ˆ 2
3
|x−z|

0

ρdρ � 1

|x− z|
.

(3.57)

On R there holds |y − z| ∼ |x − y|. In fact, on one hand |y − z| ≥ 2
3
|x − y|, so

|x− y| ≤ |x− z|+ |z− y| ≤ 5
2
|y− z|, and, on the other, |y− x| ≥ 2

3
|x− z|, implying
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|y − z| ≤ |x− y|. Furthermore, the following relation holds (see [50, Lemma 3.2] as
well as [40, Lemma 4.5]):(

1 ∧ d(y)d(z)

|y − z|2

)
∼
(

1 ∧ d(y)

|y − z|

)(
1 ∧ d(z)

|y − z|

)
≤ 1 ∧ d(z)

|y − z|
.

As a result, we getˆ
R
Q(x, y, z)dy �

ˆ
R
|x− y|−5

(
1 ∧ d(y)

|x− y|

)(
1 ∧ d(z)

|y − z|

)
�
ˆ
Ocx
|x− y|−5

(
1 ∧ 1

|x− y|

)(
1 ∧ d(z)

|x− y|

)
.

(3.58)

To estimate (3.58) we distinguish two cases depending on the reciprocal distance
of x and z compared with their distance from the boundary. We denote by D a
su�ciently large radius so that R ⊂ BD(x) \ Ox.
Case |x− z|2 ≤ d(z). If so, one has 2

3
|x− z| ≤

√
d(z) and thus we continue (3.58)

as follows: ˆ
R
Q(x, y, z)dy �

ˆ D

2
3
|x−z|

ρ−5

(
1 ∧ 1

ρ

)(
1 ∧ d(z)

ρ

)
ρ3dρ

�
ˆ √d(z)

2
3
|x−z|

ρ−2dρ+ d(z)

ˆ D

√
d(z)

ρ−4dρ

� 1

|x− z|
+

1

d(z)
� 1

|x− z|
.

(3.59)

Case |x− z|2 > d(z). Then,
ˆ
R
Q(x, y, z)dy � d(z)

ˆ D

2
3
|x−z|

ρ−4dρ � d(z)

|x− z|3
<

1

|x− z|
. (3.60)

The result is obtained summing up estimates (3.56), (3.57), (3.59) and (3.60).

The estimate on ∇xGNAV provided by Proposition 3.5.5 allows to recover most
of the arguments of Section 3.3, in particular the compactness of the sequence
of the rescaled functions (vk)k, leading then to the contradictory argument which
proves Theorem 3.5.1. On the other hand, to deal with critical nonlinearities, we
need also the estimates for the higher-order derivatives. However, they easily fol-
low by means of the decomposition into coupled systems (3.48) and the estimates
on the Green functions for the Laplacian. Indeed, we have

w(x) =

ˆ
Ω

G−∆,Ω(x, y)h(y, u(y))dy and ∇w(x) =

ˆ
Ω

∇xG−∆,Ω(x, y)h(y, u(y))dy.

Thus, by (3.54) and (3.55), we infer

|w(x)| ≤ C

ˆ
Ω

1

|x− y|2
h(y, u(y))dy and |∇w(x)| ≤ C

ˆ
Ω

1

|x− y|3
h(y, u(y))dy,

which is enough for our purposes recalling that |w| = |∆u|. This, indeed, allow us
to retrace Lemmas 3.3.3 and 3.3.6 and prove Theorem 3.5.2.
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Remark 21. It should be now clear that an analogue statement to Theorem 3.4.1
holds also when dealing with Navier boundary conditions and domains which are
not necessarily convex.

3.6 Existence results

The a-priori bound for solutions of (3.1) obtained in the previous sections is es-
sential to apply topological methods and infer the existence of positive solutions.
We follow the standard approach which has been widely applied in the literature
(see, for instance, [29, 85, 31]), and which relies on a well-known result firstly
due to Krasnosel’skii, which may be equivalently stated in the following way (see
[27, Theorem 3.1] and the subsequent results):

Lemma 3.6.1. Let X be a Banach space and K ⊂ X a cone, which induces a
partial order in X de�ned as follows: x ≤ y if and only if y− x ∈ K. Moreover, let
Φ : K → K be a compact map with Φ(0) = 0 and suppose there exist 0 < r < R and
τ > 0 such that:

1. there exists a bounded linear operator A : X → X such that A(K) ⊂ K with
spectral radius r(A) < 1 and such that Φ(x) ≤ Ax for all x ∈ K with ‖x‖ = r;

2. there exists Ψ : K × [0,+∞)→ K such that

(a) Ψ(x, 0) = Φ(x);

(b) Ψ(x, t) 6= x for all t ≥ 0 and ‖x‖ = R;

(c) Ψ(x, t) 6= x for all t ≥ τ and ‖x‖ ≤ R.

Then Φ has a �xed point x ∈ K with r < ‖x‖ < R.

Proof of Theorem 3.1.4. Let X = C(B) and K := {f ∈ C(B) | f ≥ 0} be the closed
cone of nonnegative functions, which induces the standard pointwise order on C(B).
Moreover, let T := (∆2)−1 be the inverse of the bilaplace operator with Dirichlet
boundary conditions, that is, Tg = w if and only if w solves{

∆2w = g in B,
w = wn = 0 on ∂B.

Then T : C(B) → C(B) is a linear compact and positive operator. De�ning now
Φ := T ◦h(x, ·), then Φ(K) ⊆ K by maximum principle and Φ is a bounded compact
operator, by the continuity of h.
By our assumptions on h, there exist α ∈ (0, λ̃1) and t0 > 0 such that h(x, t) ≤ αt
for any x ∈ B, t ∈ (0, t0). Hence, de�ning A := αT , then:

Φ(u) = T (h(x, u)) ≤ T (αu) = αT (u) = A(u).

Moreover A(0) = 0 by de�nition, A(K) ⊂ K and

r(A) = αmax{λ |λ is an eigenvalue of A−1} =
α

λ̃1

< 1,
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so condition 1 of Lemma 3.6.1 is veri�ed.
Let us now de�ne Ψ(u, t) := T (h(x, u + t)), for any t ≥ 0. It is clear that

Ψ(u, 0) = Φ(u). We are thus led to study the following family of problems:{
∆2u = h(x, u+ t) in B,
u = un = 0 on ∂B.

(Pt)

With the same steps as in the proof of Lemma 3.2.5, we can get
ˆ
B
h(x, u+ t)ϕ̃1dx ≤ C, (3.61)

where the constant C is independent of t; this in turns implies
ˆ
B
a(x)(u+ t)ϕ̃1dx ≤ C.

Since u, a and ϕ̃1 are positive, we necessarily �nd that t is bounded. This means
that there are no (positive) solutions of problem (Pt) when t > T̃ for some T̃ > 0
which depends on Ω and h, so condition (2c) is ful�lled. Hence, we can restrict to
t ∈ [0, T̃ ] and prove the uniform a-priori bound for these values of the parameter
t. In fact, in view of (3.61), �rstly one can repeat the same steps of the proofs
in Sections 3.2 and produce the same uniform estimates of Proposition 3.2.1. In
particular, we get ˆ

B
h(x, u+ t)dx ≤ Λ(h, T̃ ),

uniformly with respect to t ∈ [0, T̃ ]. This is su�cient to guarantee that the contra-
dictory argument of Section 3.3 can be retraced for solutions of problem (Pt) with
only minor adaptations, �nding an a-priori bound which depends only on h and T̃ .
Rephrased, this means that there are no solutions of problem (Pt) for any t ∈ [0, T̃ ]
with ‖u‖ ≥ R for some R = R(T̃ ) > 0 (and thus also for any t ≥ 0). Hence,
condition (2b) is veri�ed.
Since all assumptions of Lemma 3.6.1 are then ensured, the existence of a posi-
tive solution of problem (3.1) follows. Regularity of such solutions is given by the
standard elliptic arguments.

Remark 22. It should be clear from Theorem 3.4.2 that all the arguments used in the
proof of Theorem 3.1.4 apply also for the polyharmonic context and a higher-order
analogue of Theorem 3.1.4 holds.

We point out that the assumption (3.10) which was imposed to obtain condi-
tion 1 of Lemma 3.6.1, is also necessary in same cases. Indeed, if one considers
h(x, s) = λsf(s), with f(s) ≥ 1 for any s ≥ 0 (for instance, f(s) = es

α with
α ∈ (0, 1]), then a simple calculation shows that if λ > λ̃1, we have no (positive)
solutions for problem (3.1) in any domain. Indeed, by integration by parts, one
gets

λ̃1

ˆ
Ω

uϕ̃1 =

ˆ
Ω

∆u∆ϕ̃1 = λ

ˆ
Ω

uf(u)ϕ̃1 ≥ λ

ˆ
Ω

uϕ̃1,

which implies λ ≤ λ̃1.
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3.7 A counterexample

In Theorems 3.1.2-3.1.3 and in their subsequent generalizations, the maximal
growth allowed for the nonlinearity is of kind t 7→ eγt for some γ > 0. On the
other hand, when dealing with polynomial nonlinearities in higher dimensions,
we know e.g. from [77] that the analogue a-priori bounds can be reached until
the critical threshold. One is thus induced to think that this is a matter of tech-
nicality and one may improve our result until the Trudinger-Moser-Adams critical
growth t 7→ et

2. This section shows that our result is instead sharp. Indeed, we
present an example of a problem of type (3.1) with a growth of kind t 7→ et

α with
α ∈ (1, 2) which admits unbounded solutions.

Let f(t) = et
α with α ∈ (1, 2) and fix 1 < γ < 2 − 1

α
. Notice that f satisfies

assumptions (A1) and (A2) but not (A3). In B ⊂ R4 consider the function

u(x) = u(|x|) = u(r) := | log(r4 logγ( e
r
))| 1α .

It is easy to see that euα ∈ L1(B). Defining now a(x) := (∆2u)e−u
α, then u satisfies{

∆2u = a(x)eu
α in B,

u = 0 on ∂B.

With similar computations as in [13, Example 2], one verifies that a behaves near 0
like | log(r)| 1α−2 and therefore a ∈ L∞(Bε(0)) for a suitable ε ∈ (0, 1). On the other
hand, u 6∈ L∞(B) since u ∼ | log(r)| 1α near the origin. However, un(x) 6= 0 on ∂B.
Hence, let us introduce η ∈ C∞c (B) be such that η(x) = η(r) ≥ 0 and decreasing
in the radial variable, η ≡ 1 if r ∈ [0, 1

2
] and η ≡ 0 if r ∈ [3

4
, 1]. Moreover, denote

by ρ ∈ (0, 3
4
] the radius such that Bρ(0) = {x ∈ Ω | η(x) 6= 0} ⊂⊂ B. If we now set

w := uη, then w satisfies{
∆2w = a(x)ew

α in Bρ(0),

w = wn = 0 on ∂Bρ(0),

with a(x) := (∆2w)e−w
α. Moreover, we have:

1. ewα ∈ L1(Bρ(0)) as w ≤ u in Bρ(0);

2. a is positive and continuous in Bρ(0);

3. a ∈ L∞(Bρ(0)): in fact, firstly, away from a neighborhood of 0 and of ∂B, all
derivatives of u are bounded and η has compact support in B; furthermore
we have a ≡ a in B 1

2
(0) by construction;

4. w 6∈ L∞(Bρ(0)) since w ≡ u in B 1
2
(0).

This example shows that the assumption limt→+∞
f ′(t)
f(t)
∈ [0,+∞) is indeed sharp.

Remark 23. This counterexample also works when dealing with Navier boundary
conditions, since by construction ∇iw = 0 on ∂Bρ(0) for any i ≥ 0.
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Chapter 4

Open problems and perspectives

In this last chapter we collect some possible extensions and unsolved questions.

Concerning Chapter 2...

• If Ω is a ball, are the ground states of Jσ radially symmetric?

In fact, we deduced the existence of ground states and of radial solutions which
are indeed ground states among all possible radial solutions; both of them are
positive and have the same behaviour when σ → −1 and σ → 1. But no standard
techniques such as the Talenti symmetrization principle seem to apply (except for
the Navier case) to prove that these classes of functions are indeed the same.

• Are the radial positive solutions radially decreasing if σ > 1?

Indeed, the radial decay property proved in Proposition 2.2.35 does not apply in
this setting and, by now, we cannot extend Proposition 2.2.36 for these values of
σ.

Moreover, in the spirit of [26] and [37]:

• Can we say something about the uniqueness of (at least) the positive radially
symmetric ground state of Jσ, for some values of σ?

Finally, all the techniques developed from Section 2.2 strongly relied on the as-
sumptions we made on the boundary, that is ∂Ω of class C1,1 in order to have
κ ∈ L∞(∂Ω). In particular, Theorem 2.1.5 allowed us to rewrite in an appropriate
way our functional.

• May we deduce the positivity of ground states of Jσ for domains with less regu-
larity on the boundary?

In the particular case of a convex polygon P, it is known that ground states of Jσ
are positive for every σ: in fact, the superharmonic method applies easily once
we have

´
P det(∇

2u) = 0 thanks to a result by Grisvard [45, Lemma 2.2.2]. We
believe that positivity for ground states of Jσ still holds imposing, for instance,
only Lipschitz regularity for ∂Ω.
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Concerning Chapter 3...

We proved the a-priori bound for solutions of problem (3.1) when the domain is
a ball. Nevertheless, as specified in Section 3.4.1, the blow-up technique may
be applied independently of our domain, provided we already have the uniform
estimate

´
Ω
h(x, u) ≤ C. Moreover, the arguments presented in Section 3.2 hold

for any (regular) bounded positivity preserving domain in R4, except for Lemma
3.2.6.

• Can we extend Lemma 3.2.6 (at least) for small deformations of the ball?

Indeed, these are the only explicit class of domains which are known to satisfy the
positivity preserving property when dealing with Dirichlet boundary conditions in
dimension N ≥ 3 (see Grunau and Robert, [47]). It would be sufficient to prove
that the Green function inequality (3.20) holds for such domains (cf. Remark 20).

Finally:

• May we extend the present investigation also for other problems in critical di-
mension, for instance involving the N -laplacian operator in bounded domains
of RN?

This will lead a generalization of the results in [58, 76]. Notice that in that context
most of the tools we used are available, since the analysis near the boundary has
been already achieved in [58], and the quasilinear Liouville’s equation has been
recently studied by Morlando and Esposito in [35, 34]. However, we have to
replace all arguments which rely on the Green function estimates.
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Appendix A

Some useful classical results

In this appendix, we only list some important results used several times during the
proofs presented in this work.

Interpolation in Fractional Sobolev Spaces

Theorem A.0.1 ([13], Corollary 2). For 0 ≤ s1 < s2 < +∞, 1 < p1, p2 < +∞, for
every s, p such that s = θs1 + (1− θ)s2 and 1

p
= θ

p1
+ 1−θ

p2
, we have

‖f‖W s,p(RN ) ≤ C‖f‖θW s1,p1 (RN )‖f‖
1−θ
W s2,p2 (RN )

.

The Dual Cone Decomposition

Often, this decomposition is named after Moreau since his work [69].

De�nition A.0.1. Let H be a Hilbert space with scalar product (·, ·)H and K ⊂ H
be a nonempty closed convex cone. Its dual cone K∗ is de�ned as

K∗ := {w ∈ H | (w, v)H ≤ 0, ∀v ∈ K}.

Theorem A.0.2 ([40], Theorem 3.4). Let H be a Hilbert space with scalar product
(·, ·)H and K and K∗ as before. Then for every u ∈ H, there exists a unique couple
(u1, u2) ∈ K ×K∗ such that u = u1 + u2 and (u1, u2)H = 0.

The Principle of Symmetric Criticality

We follow the exposition in [101, Theorem 1.28].

De�nition A.0.2. The action of a topological group G on a normed space X is a
continuous map

G×X → X : [g, u] 7→ gu

such that
1 · u = u, (gh)u = g(hu), u 7→ gu is linear.

The action is isometric if ‖gu‖ = ‖u‖; the space of invariant points is de�ned by

Fix(G) := {u ∈ X | gu = u,∀g ∈ G}.
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A set A ⊂ X is invariant if gA = A for every g ∈ G. A function ϕ : X → R is
invariant if ϕ◦g = ϕ for every g ∈ G. A map f : X → X is equivariant if g◦f = f ◦g
for every g ∈ G.

Theorem A.0.3 (Principle of Symmetric Criticality, Palais, 1979). Assume that
the action of the topological group G on the Hilbert space X is isometric. If ϕ ∈
C1(X;R) is invariant and if u is a critical point of ϕ restricted to Fix(G), then u
is a critical point of ϕ.

A local regularity result and Liouville's theorems for higher-

order equations

The following local regularity estimate is a particular case of a more general result
by Reichel and Weth:

Lemma A.0.4. ([77], Corollary 6) Let Ω = BR(0) ⊂ RN , m ∈ N, h ∈ Lp(Ω) for
some p ∈ (1,+∞) and suppose u ∈ W 2m,p(Ω) satis�es

(−∆)mu = h in Ω.

Then there exists a constant C = C(R,N, p,m) such that for any δ ∈ (0, 1),

‖u‖W 2m,p(BδR(0)) ≤
C

(1− δ)2m
(‖h‖Lp(BR(0)) + ‖u‖Lp(BR(0))).

Finally, we collect some Liouville’s theorems which are an important tool in our
blow-up arguments:

Theorem A.0.5. ([99], Theorem 1.4) Let m ∈ N and assume that p > 1 if N ≤ 2m
and 1 < p ≤ N+2m

N−2m
if N > 2m. If u is a classical nonnegative solution of

(−∆)mu = up in RN ,

then u ≡ 0.

Theorem A.0.6. ([65], Theorem 2) Suppose u is a solution of{
(−∆)mu = (N − 1)!eNu on RN , N = 2m,´
RN e

Nu < +∞,

such that u(x) = o(|x|2) as |x| → ∞. Then u(x) is symmetric with respect to some
point x0 ∈ RN and there exists some λ > 0 so that

u(x) = log

(
2λ

λ2 + |x− x0|2

)
for all x ∈ RN .
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