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CHAPITRE 1

Introduction en francais

Prenons un espace euclidien, quelques hyperplans de cet espace, et considérons le groupe
engendré par les réflexions orthogonales par rapport a ces hyperplans. Le groupe ainsi obtenu
est appelé un groupe de réflexions. De nombreux groupes classiques en combinatoire, comme
en algébre, peuvent étre réalisés comme des groupes de réflexions. L’exemple peut-étre le plus
parlant est celui du groupe symétrique, absolument central en combinatoire. En effet, le groupe
des permutations d’un ensemble a n éléments peut étre réalisé comme le groupe engendré (dans
'espace de dimension n) par les réflexions par rapport aux hyperplans d’équations x;,1 —x; = 0,
pour tout 1 <7 <n—1.

Ce point de vue a de nombreux avantages. Par exemple, il fournit une représentation du
groupe symétrique, nous permettant d’étudier sa structure d’un point de vue géométrique.
Mais surtout, il nous meéne a la généralisation des propriétés combinatoires du groupe symé-
trique a d’autres groupes de réflexions qui lui ressemblent. Ainsi, on peut voir I'introduction
au XX¢ siécle du concept de groupe de Cozeter comme une conséquence de cette démarche
généralisatrice.

Un groupe de Coxeter est définit comme étant un groupe engendré par un ensemble de
générateurs vérifiant certaines relations mimant les propriétés des réflexions : le carré de tout
générateur est l'identité, et le produit de deux générateurs est d’ordre fixé, potentiellement
infini (ceci imite le fait que le produit de deux reflexions est une rotation). Les groupes de
Coxeter interviennent de maniére fondamentale dans de nombreux domaines des mathéma-
tiques et forment un terrain de jeu apprécié de nombreux combinatoristes.

Cette these est dédiée a I’étude d’une structure combinatoire associée a tout groupe de Coxe-
ter : l'ordre faible (voir l'article fondateur |B|) . L’ordre faible est, comme son nom l'indique,
un ordre partiel sur le groupe, et qui a de nombreuses propriétés intéressantes. Il intervient, par
exemple, dans des domaines aussi variés que la théorie des fonctions symétriques (| S2] et [L2],
la géométrie de la grassmanienne et le calcul de Schubert (voir [FGRS]| et [BJS]), ou encore
les algébres amassées (voir [FZ1], [FZ2|, [RS2] et [RS1]).

Dans cette thése nous développons un nouveau cadre théorique pour I’étude de ’ordre faible
sur tout groupe de Coxeter, et nous 'appliquons a I’étude de diverses problématiques associées.
Plus précisément, nous suivons un cheminement qui a fait ses preuves pour I’étude des groupes
de Coxeter : partir d'un probléme énumératif fondamentalement relié au groupe symétrique
(ici, ’énumeération de certains tableaux), puis extraire de la construction combinatoire faite
a 'étape précédente un modeéle applicable & une plus grand classe de groupes de Coxeter, et
enfin se servir de ce nouveau point de vue pour aborder des problémes ouverts. Dans le cadre
de cette thése, le premier probléme étudié est un ensemble de conjectures de Dyer a propos
d’'une extension de l'ordre faible, qui permettraient en principe d’étendre a tous les groupes
de Coxeter des propriétés combinatoires et géométriques usuellement restreintes au cas des
groupes de Coxeter finis. Bien que l'origine de ces conjectures remontent a 1993 (voir [D1],
ou encore [D4]), elles restent encore largement ouvertes. Elles ont cependant récemment fait
I’objet d’études intensives, conduisant a ’étude du comportement asymptotique des systémes
de racine des groupes de Coxeter (voir [DHR|, |[HLR]|), ou encore a I'étude de constructions
abstraites (voir |D2| et [D3|) aussi bien que géométriques (voir |HL| et [L1]).

L’une des motivations possibles pour I’étude des conjectures de Dyer concerne les treillis
cambriens (voir [R1] et [R3]). Les treillis Cambriens sont des quotients de 'ordre faible sur tout

9



10 1. INTRODUCTION EN FRANQGAIS

groupe de Coxeter fini, et ils sont reliés a la combinatoire des algébres amassées. En particulier
le diagramme de Hasse d'un treillis cambrien est isomorphe au graphe des échanges de I'algébre
amassé associé au groupe de Coxeter considéré (voir [R2] et [RS2]). Leur construction peut-
étre étendue a tout groupe de Coxeter (voir [RS3]), mais la correspondance avec les algébres
amassés n’est alors plus que partielle, et par exemple le diagramme de Hasse des posets ainsi
obtenu (appelé semi-treillis cambriens) n’est isomorphe qu’a un sous-graphe du graphe des
échange de I'algébre amassé correspondante (voir [RS2|). Bien que dans le cas des groupes de
Coxeter affine, Reading et Speyer aient montré dans [RS1| comment compléter les semi-treillis
cambriens pour retrouver les propriétés attendues a propos des algebres amassé, ce probléme
reste ouvert dans le cas général. Or, les conjectures de Dyer fournissant un candidat d’extension
de Pordre faible sur tout groupe de Coxeter, et il est donc naturel de voir si la construction des
semi-treillis cambriens peut étre étendue a cette extension, dans l’espoir d’obtenir toutes les
informations attendues sur 1'algébre amassée. Ceci constitue le deuxiéme probléme dont I'étude
est commencée dans cette thése.
Dans la suite de cette introduction nous détaillons le contenu de la thése.

Le chapitre 2 est dédié a quelques rappels fondamentaux sur les tableaux, les graphes orien-
tés, les ensembles partiellement ordonnés (aussi appelés posets) et plus particuliérement les
treillis et semi-treillis, et enfin les groupes de Coxeter.

Commencons par introduire le probléme énumératif a I'origine du contenu de cette thése,
i.e. I'étude des tableaux équilibrés. Cette famille de tableaux a été introduite par Edelman
et Greene dans [EG|, et ils sont définis comme étant des diagrammes de Ferrers remplis par
tous les entiers de 1 a n, ou n est la taille du diagramme, de telle fagon qu’une certaine
condition sur les équerres de chaque case du diagramme soit satisfaite. Edelman et Greene
ont démontré le résultat suivant : pour une partition A = n donnée, il y a autant de tableaux
équilibrés de forme A que de tableaux standards de méme forme. De facon assez surprenante,
la preuve proposée est a la fois bijective et, a priori, peu satisfaisante. En effet, elle utilise de
maniére fondamentale I’ordre faible sur le groupe symétrique comme intermédiaire, alors que la
similarité entre tableaux standards et équilibrés est frappante et que I'on pourrait d’attendre a
une bijection directe entre ces deux familles d’objets.

C’est en tentant de construire une bijection directe entre tableaux équilibrés et tableaux
standards que nous avons introduit les objets fondamentaux de ce chapitre. Plus précisément :
pour travailler sur cette question, il était nécessaire de trouver un moyen efficace de construire
des exemples de tableaux équilibrés. Ceci nous améne a l'introduction d’un algorithme de
remplissage, qui démarre avec un diagramme de Ferrers vide, le remplit case par case avec les
entiers de 1 & n, et donne a la fin un tableau équilibré.

T —pv pl P2 p3 Pt ps
2J1]o] [ 1o (0]
1o 1o 1 o] [1]0]
| 1 o[ s 2] 3]2]t]|]3]2]:
4 54
Ty

FIGURE 1.1. L’algorithme en action.

Méme si tous les tableaux équilibrés peuvent étre obtenus par ce biais, et malgré la richesse
combinatoire apparente de ’algorithme, cette approche n’a pas permis d’aboutir a la bijection
désirée. Néanmoins, la forme de ’algorithme améne naturellement a une généralisation du
concept de tableaux équilibrés. Ainsi, on associe a chaque tableau (qu’il soit équilibré, standard,
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ou aucun des deux) un objet combinatoire appelé le type de ce tableau. Cette notion peut-étre
formellement définie de la maniére suivante.

DEFINITION 1. Soit 7' = (7). un tableau de Young de forme S, on appelle le type de T le
tableau de forme S dont chaque case ¢ est remplit par l'entier 6(c) définie par

O(c):=|{o €S| 0€ Hg(c) et t. < ty}| pour tout ¢ € S,

ou Hg(c) désigne I'équerre basée en ¢, ¢’est-a-dire ’ensemble des cases situées a droite et en
dessous de ¢ dans le diagramme S.

Tous les tableaux possibles se trouvent alors classifiés en fonction de leur type, et les tableaux
standard et équilibrés forment deux classes particuliéres de cette classification. L’algorithme

52]0] 1o
3o 0
1
0

|O (N2 BNGURN BEGA BEN |

312
2 (1
110
110
0

FIGURE 1.2. Types associés aux tableaux standards (a gauche) et équilibrés (a
droite) de forme (4,3,2,2,1).

s’adapte naturellement a ce nouveau contexte, et cela nous permet de généraliser les résultats
de Edelman et Greene & de nombreuses autres classes de tableaux.

Plus précisément, on montre qu’a toute permutation vezillaire o (i.e. évitant le motif 2134)
on peut associer un type 7 (o), tel que les tableaux associés soient énumérés par les tableaux
standards de méme forme (voir théoréme 6.3.11). En particulier, on retrouve le fait que I’en-
semble des tableaux standards et ’ensemble des tableaux équilibrés ont méme cardinal. Il est
important de noter que cette généralisation ne repose pas sur une bijection directe, et utilise
de maniére fondamentale 1'ordre faible sur les permutations comme intermédiaire. En utili-
sant cette connexion, on montre également que le nombre tableaux de type 7 (o) tels que les
entiers 1, 2,..., k apparaissent a des positions fixés, est donné par le nombre de décomposi-
tions réduites d'une certaine permutation w explicite. Ceci généralise un résultat implicite dans
[FGRS]| a propos des tableaux équilibrés.

On peut également noter que ce modéle fournit un modéle combinatoire nouveau pour les
expressions réduites d’une permutation. On peut ainsi faire correspondre a toute permutation
une famille de tableaux, chacun obtenu a I'aide de I’algorithme, et surtout chacun étant canoni-
quement associé a une expression réduite de la permutation. Sur la figure suivante on représente
les tableaux associés aux expressions réduites de [4,1,3,5,2].

s[2]1]0] 1] 2] 3]
2|10 l2|als| [ [o]afs] | [21]4]2
110 5 5 5

i 5359535451 5359535154 5359515354

I 2] 1] 1]
permutation | 11415 | | 21415 | 31415
associée 3 3 2

[4.1,3,5,2] 5253525154 5253525451 5253545251

FIGURE 1.3. Les décomposition réduites de [4,1,3,5,2] vues comme des tableaux.
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Dans la mesure ou ces résultats peuvent étre reformulés en utilisant les généralisations in-
troduites ultérieurement, ces notions sont développés dans le chapitre 6.

Dans le chapitre 3 on change de regard sur les objets mentionné précédemment. En effet,
I’argument clé dans notre étude des tableaux est que l'algorithme aboutit & un modéle com-
binatoire des décompositions réduites des permutations. Il fournit donc également un modéle
combinatoire de 'ordre faible sur le groupe symétrique. On en vient donc naturellement a la
question suivante : est-il possible de généraliser ce modéle a I'ordre faible sur d’autres groupes
de Coxeter ? Il apparait que la description a partir de tableaux est insuffisante pour étre appli-
quée a d’autres cas, et ceci méme sur de petits exemples comme celui du groupe Bs. Cela nous
ameéne a nous placer dans un contexte bien plus général : celui des graphes orientés.

L’objet fondamental de ce chapitre est ce que nous appelons un graphe valué G = (G, 0), ou
G est un graphe orienté simple et acyclique (pas nécessairement fini), et # est une application 6
définie sur les sommets du graphe V(G) et a valeurs entiére. On impose également que 0 vérifie
I'inégalité :

pour tout z € V(G), 0 < 0(z) < d*t(z),

ou d*(z) désigne le degré sortant du sommet z. Dans ce nouveau cadre, 1’algorithme ne va plus
étre employé pour construire des tableaux, mais pour générer des suites injectives d’éléments
de V(G), appelées des épluchages de G, ceci en épluchant le graphe sommet par sommet en
respectant la contrainte donnée par la valuation €. Plus précisément, on va d’abord choisir un
sommet z dit épluchable, c’est a dire tel que :

e 0(z)=0;

e pour tout y € V(G), siil y a un arc allant de y a z, alors 0(y) > 0,
On épluche ensuite ce sommet, c’est a dire :

(1) on diminue d’un la valuation de tous les sommets y tel qu’il y ai un arc allant de y a
z;
(2) puis on efface le sommet z ainsi que tous les arcs ayant z comme point de départ ou
d’arrivée.
Le résultat aprés cette opération est encore un graphe valué, et on peut répéter ce processus.
Sur la figure 1.4, on montre le déroulement de I’algorithme sur un exemple simple.

C C C

| L=[t | _r=lt [ L=labd [ L=fabd |

FIGURE 1.4. L’algorithme d’épluchage en action. La suite L obtenue a la fin est
ce qu’on appelle un épluchage de G.

On note PS(G) I'ensemble des épluchages ainsi obtenus, et on considére I’ensemble 15(G)
des sections initales des éléments de PS(G), c’est a dire les ensembles de la forme {z1, 2o, ..., 2},
ou la suite [z1, ..., zx] est le début d’un épluchage de G. On montre alors que le poset (1.5(G), Q)
a de nombreuses propriétés similaires a celles de 1'ordre faible.
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THEOREME 1. Soit G = (G,0) un graphe valué, le poset (IS(G),C) est un semi-treillis
inférieur gradué, dont la graduation est donnée par p : A — |A|. De plus, si G est fini, alors
(I5(G),C) est un treillis complet.

On rappelle que la fonction de Mobius g sur un poset (P, <) est la fonction de P? dans Z
définie recursivement par :

e pour tout = € P, u(x,z) =1,
e pour tout z,y € P, u(x,y) = — Z w(zx, c).

z<c<y

THEOREME 2. Soit p la fonction de Mobius de (15(G),C) et A € 15(G), on définit les deux
ensembles suivants :
N(A) :={z e A|0(z) =0},
F(A):={zecA| A\{z} € IS(9)}.
On a:

(1) si F(A) = N(A), alors pu(f, A) = (—1)N@AI
(2) sinon, on a u(f, A) = 0.

V ={a,b,c,d,e, [}

FIGURE 1.5. Un exemple de poset (15(G),C) (& gauche) et le graphe valué
associé (a droite).

On s’attache ensuite a montrer, en construisant explicitelnent le graphe valué associé, que
I'ordre faible sur les groupes de Coxeter de type A, B et A peut étre décrit par ce modéle.
Ceci fournit une preuve alternative du fait qu’il s’agit de treillis gradués, un nouveau modéle
combinatoire pour leur étude, ainsi qu'une nouvelle formule pour calculer les valeurs de la
fonction de Md&bius associée a chacun de ces cas. Précisons un peu la méthode employée pour
montrer que ordre faible en type A proviens d’un graphe valué (la méthode est similaire pour
les types B et Z) Il est classique que le groupe A, _; s’identifie au groupe des permutations
S,, et on peut associer a toute permutation ¢ un ensemble, appelé son ensemble d’inversion,
défini par

Inv(o) := {(a,b) € [n)* | a < bet o (a) > o ()}
Notons qu'il ne s’agit pas ici de la définition standard (voir section 3.3.1), mais il s’agit de celle
qui s’adapte le mieux a notre étude. En particulier, on a la propriété suivante (voir par exemple
[BB| pour une preuve précise de cette proposition)

pour tout o,w € S, 0 <p w si et seulement si Inv(c) C Inv(w),
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out <p désigne 'ordre faible sur les permutations. On peut alors construire un graphe valué A
dont les sommets sont indéxés par les couples d’entiers (a,b) tels que 1 < a < b < n, et tel que

IS(A) = {Inv(o) | o € S,.},

ce qui entraine immédiatement que (IS(A),C) et (A,_1,<g) sont isomorphes. On montre
également qu’'une généralisation de 'ordre faible au cas des groupes de permutations colorées,
appelé le flag weak order et introduit par Adin, Brenti et Roichman dans [ABR], peut étre
décrit dans ce contexte. Il est intéressant de noter que ces graphes peuvent tous étre vu comme
des tableaux munis d’une structure de graphe implicite, comme représenté dans la figure 1.6.

7[6 i s

6 5 |4
=HOIE

slalsfi | [3]s|@[s]2]1]o] | [o]1]2 1o
1 | 3 i 2 2132110 01 0
s a2 |1 1110 0
2 1o 0 o
2[1]o

1]o

0

(A4, <p) (By, <p) “Flag weak order” sur G(2,3).

FIGURE 1.6. Les graphes associées a différents ordres. La structure de graphe
est donnée implicitement par une notion d’équerre adaptée a chaque diagramme
(voir chapitre 3).

Toutefois, I'exemple le plus riche de conséquence est aussi le plus simple : celui du treillis des
idéaux inférieurs (et supérieurs) de tout poset fini. En effet, on montre que pour tout poset fini
P, il existe un graphe valué G(P) dont les sommets sont les éléments de P, tel que IS(G(P))
soit constitué exactement des idéaux inférieurs de P, et tel que PS(G(P)) soit exactement
I’ensemble des extensions linéaires de P. Ainsi, notre construction peut étre vue comme une
généralisation du concept d’extension linéaire au cas des graphes valués. Or les extensions
linéaires sont intimement reliées a la théorie des fonctions quasi-symétriques, via la notion de
P-partition (voir |G|). Il est donc naturel de chercher a utiliser notre construction pour définir
des fonctions quasi-symétriques. Ceci est I'objet de la fin de ce chapitre, ot on montre comment
associer une famille de fonctions quasi-symétriques a tout élément d’un poset construit a partir
d’un graphe valué. Si, dans la majeure partie des cas, ces fonctions ne semblent pas pertinentes, a
priori, pour I'é¢tude de la structure du poset sous-jacent, il arrive que la forme méme du graphe
valué désigne un choix canonique de fonction quasi-symétrique dans cette famille. C’est par
exemple le cas pour les graphes valués associés a l'ordre faible sur les groupes de Coxeter de
type A et A. Dans ces cas on montre (en suivant une méthode similaires a celle présentée
dans [FGRS| et [YY]) que cette fonction canonique est exactement la fonction symétrique
de Stanley en type A (voir [S2]), et la généralisation de Lam en type A (voir |L2]). Notons
également que cette description aboutit naturellement a une description des séries de Stanley
comme une somme de mondmes associés & une certaine famille de tableaux, généralisant au
passage la notion de tableaux standard et semi-standard.

On en vient alors a la question de la généralisation de ces résultats a tout groupe de Coxeter.
Néanmoins, dans cette aréne bien plus large, de nombreuses difficultés apparaissent, et pour
aborder ce probléme nous allons devoir encore une fois élargir notre point de vue sur les objets en
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o=[4,1,3,5,2 Des équivalents des tableaux standards...
3(211(0|B) 1 3 -
2|1(0]|@® 5123 5214 321
110(® 1 ) ]
0 @ L1L2T3T4T5 T1T2T3T4Ts T1T9T3T4Ts
@ ... et des tableaux semi-standard.
2 7 6 3
21110 855 8141(8 1111
0 2 3 2
TT3 T T3TAT6LS w913

FIGURE 1.7. Certains tableaux associés a la permutation [4,1,3,5,2] et leurs
mondmes associés

jeu. Arrétons nous d’abord quelques instant sur la méthocke employée pour construire les graphes
valués associés aux groupes de Coxeter de types B et A. Dans chacun de ces cas on procéde
en deux étapes : tout d’abord trouver une bonne notion d’ensemble d’inversion associée aux
types B et A (i.e. généralisant les propriétés des ensembles d’inversions des permutations) afin
de construire un candidat de graphe valué, puis utiliser I'interprétation classique des éléments
de B, (resp. A,) comme des permutations signées (resp. affines) afin de prouver a l'aide de
méthodes combinatoires que les graphes valués obtenus décrivent bien I'ordre faible.

Si nous n’avons pas en général d’interprétation des groupes de Coxeter en tant qu’ensemble
de permutations (ou d’objets ressemblants), on a par contre bien une notion d’ensemble d’in-
version via les systemes de racines. 1l s’agit d'un objet essentiellement géométrique, qui permet
de voir un groupe de Coxeter comme étant effectivement un groupe de réflexion, mais dans un
cadre qui n’est généralement plus euclidien. Plus concrétement, si W est un groupe de Coxeter
de rang n, un systéme de racines de W est une sous partie ® de R"™ sur lequel W agit, qui
caractérise W complétement, et qui nous permet d’intépréter géométriquement de nombreuses
propriétés de W. En particulier, il existe une partition de ® en deux sous-ensembles ®* et &,
appelés respectivement les racines positives et les racines négatives de ®, avec laquelle on peut
définir une notion d’ensemble d’inversion. Pour tout élément w € W, on définit son ensemble
d’inversion par

Inv(w) := ®* Nw(d).

On peut alors montrer (voir [BB]) que pour tout 7 dans W, w est plus petit que 7 pour l'ordre
faible si et seulement si Inv(w) C Inv(7).

L’idée est alors de construire un graphe valué G dont les sommets sont les éléments de ®+,
et tel que 15(G) soit constitué exactement des ensembles d’inversion des éléments de 1. On se
retrouve néanmoins confronté a deux difficultés : méme dans le cas des groupes dihédraux, il
y a de nombreux graphes qui conviennent (donc on n’a pas de choix canonique) ; et quand on
veut généraliser la construction au cas des groupes de Coxeter en général, la méthode naturelle
ne donne généralement pas un graphe acyclique (donc la théorie développée au chapitre 3 ne
s’applique pas). Ces deux remarques nous aménent au contenu du chapitre 4.

Dans le chapitre 4, on commence par généraliser la construction du chapitre précédent,
en la rendant applicable au cas de graphes non acycliques. Cette nouvelle construction est en
fait une conséquence naturelle de la théorie du chapitre 3. En effet, afin de simplifier certaines
preuves on y a introduit une caractérisation intrinséque des éléments de 1S(G) qui n’utilise
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pas les épluchages, et qui ne dépend ni du caractére acyclique du graphe, ni du fait que les
éléments de 1.5(G) soient finis. On peut donc prendre cette proposition comme définition des
éléments de 1.5(G), en retirant les conditions sur le graphe ainsi que la condition de finitude.
Plus précisément, on propose pour IS(G) la définition suivante.

DEFINITION 2. Soit G = (G, ) un couple formé d’un graphe quelconque et d’'une application
0 :V(G) — N tel que
0 < 60(z) < d*(z) pour tout z € V(G).
On note alors 1S(G) 'ensemble définit par
0(z) <d
d

18(G) == {A CV(9) 0(2) > (#) pour tout z & 4 } .

n
A
1 (2) pour tout z € V(G) \ A

Notons que cette nouvelle définition généralise la définition proposée au chapitre 3. Avec
une petite subtilité néanmoins : quand le graphe est infini, simple et acyclique, on prend en
compte avec cette nouvelle définition des ensembles infinis (par exemple V(G) est toujours dans
15(G)), qui sont inaccessibles en utilisant la définition & base de sections initiales d’épluchages.
Dans ce nouveau cadre élargit, on montre le théoréme suivant.

THEOREME 3. Pour tout graphe valué G, (15(G), C) est un treillis complet.

En particulier, cela nous donne un plongement naturel des posets introduits au chapitre 3
dans un treillis complet (quand le graphe sous-jacent est infini).

Ce dernier point est particuliérement important pour la suite de ce chapitre. En effet, Dyer
a conjecturé, dans |[D1] et [D4]|, qu'il était possible de compléter I'ordre faible sur n’importe
quel groupe de Coxeter. Cette conjecture fait intervenir la notion d’ensemble bi-clos, définie
comme suit. Un ensemble A C & est dit clos si et seulement si

Va,B,v € ®T tel que v = aa + b3, a >0, b >0, sia, S € A, alors v € A.

On dit que A est bi-clos si et seulement si A et @\ A sont tous les deux clos. On note B(P™)
’ensemble des bi-clos de ®*. On peut montrer (voir, par exemple, [P]) que les ensembles bi-clos
finis sont exactement les ensembles d’inversions des éléments de W. Ainsi, le poset (B(®7), C)
est une extension de I'ordre faible, et la conjecture de Dyer est que ce poset est en fait un treillis
complet. On représente sur la prochaine figure le poset (B(®*1), C) obtenu a l'aide de I'exemple
le plus simple de groupe de Coxeter infini : le groupe dihédral infini.

: o+

! PN
s i Bs L > By e\ e}

! &\ {51, B} &\ {or, a0}
N i 5 RN {/3|17 B2, B3} o\ {?1,(127 agh

{ } {B Iﬂ fBs}

! aq, g, O3 1, 92, P3
" E . fon,a0) {ﬁ/ &)

X oy, Qg 1,32

{ou} {ﬁ/}

: 1\ / 1

0
ot (B(@*), Q)

FIGURE 1.8. On représente sur cette figure le poset (B(®*), C) obtenu en consi-
dérant un ensemble de racine du groupe dihédral infini.
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L’idée est donc de chercher un graphe valué G qui a pour ensemble de sommets ®T, et
tel que 1S(G) = B(®*1). Dans le cas du groupe dihédral, cette nouvelle contrainte restreint
considérablement le choix de graphes possibles, et on introduit alors une famille de graphes
valués appelés les échafaudages. Sur la figure suivante, on représente le treillis obtenu a I’aide
d’un de ces échaffaudages.

{a1}
\{al,ag}
V() \ iblvbmbz} V(G)\ {I(l1»(l27(13}

{al,a27a3} {b17b27b3}
{al,(lg} {bl,bQ}
/
{ai} {bi}
g 0
(15(9),<)

FIGURE 1.9. Un échaffaudage infini G, et le treillis (15(G), C) associé.

On remarque alors que le treillis obtenu avec cet échaffaudage et le treillis des bi-clos du
groupe dihédral infini sont isomorphe, en identifiant «; avec a; et §; avec b;. On va alors se servir
de ces échaffaudage (plus précisément, on va les assembler ensemble en respectant certaines
contraintes données par la géométrie du systéme de racine) pour construire des graphes valués,
qui sont dit bien assemblés sur . On montre alors que pour tout graphe valué G bien assemblé,
on a B(®*) C IS(G), et pour tout A C &+, si A € I5(G) alors @\ A est aussi dans 1.5(G).
Ainsi, on a un plongement de (B(®"),C) dans un ortho-treillis complet.

Systeme de racines de As Etape 1 Etape 2

F1GURE 1.10. Construction d’un graphe valué bien assemblé sur un systéme de
racine de Az. On peut vérifier que le treillis obtenu est bien isomorphe a (As, <g).
Voir le chapitre 4 pour plus de détails sur cette construction.

La difficulté principale qui apparait a cette étape est le caractére infini des graphes ainsi
construits. Il est de fait difficile de faire des tests pour identifier les éléments de 1.5(G), et ceci
nous ameéne a considérer une nouvelle famille de graphes valués, les graphes valués projectifs.
Les graphes valués projectifs (notés G,,) sont la limite (en un certain sens) d’une suite de
graphes valués finis et acycliques (G;);>o. Dans ce cas, on a que les ensembles /.5(G;) forment
un systéme projectif, et 1.5(G.,) peut étre pensé comme en étant la limite projective. Ainsi, on
peut complétement étudier le treillis (/.5(G), €) au travers des treillis finis (1.5(G;), C), ce qui
nous permet de les étudier et de faire des tests.
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Un autre avantage considérable des graphes valués projectifs est leur similarité avec le cas
fini acyclique. En effet, a tout graphe projectif on peut associer un ensemble d’ordres totaux
sur ses sommets, noté PS(G,,) et généralisant les épluchages. C’est-a-dire que tout élément de
I15(Gw) est une section initiale d'un élément de PS(G.,). De plus, PS(G.,) encode totalement
les chaines maximales de (15(G), €), dans le sens ou une chaine C de ce treillis est maximale si
et seulement si il existe L € PS(G) tel que C soit exactement 'ensemble des sections initiales
de L. Ces propriétés évoquent fortement une autre conjecture de Dyer (voir | D4]), qui porte sur
la structure des chaines maximales de (B(®"), C). En effet, il est conjecturé que toute chaine
C de (B(®"), C) est maximale si et seulement si il existe un ordre de réflexion L (i.e. un ordre
total sur @1 vérifiant certaines conditions) tel que C soit constituée exactement des sections
initiales de L. Ainsi, la suite du chapitre 4 est consacrée a la construction d’un graphe valué
projectif et bien assemblé sur ®*. On montre alors qu’'un tel graphe G, vérifie bien que tout
ordre de réflexion est dans PS(G.,). On montre également que, dans ce nouveau contexte, les
deux conjectures de Dyer sont équivalentes : on a B(®") = [.5(G.) si et seulement si PS(Gy)
est 'ensemble des ordres de réflexion de ®*. De plus, la structure projective nous permet de
faire de nombreux tests, ce qui nous améne a conjecturer qu’il existe au moins un graphe valué
projectif G bien assemblé sur ®* tel que 1.5(G) soit effectivement égal a B(PT), et on propose
un candidat d’un tel graphe.

La fin du chapitre est consacrée a l'étude de quelques applications possibles de notre
construction. On commence d’abord par un rapide survol des connexions qui existent entre
cette théorie et la géométrie convexe abstraite. On introduit notamment plusieurs opérateurs
de cloture, et on montre quelques-unes de leurs propriétés.

En se servant d’'un de ces opérateurs de cloture, on présente quelques résultats en direction
de I'extension des semi-treillis cambriens mentionnée plus tot dans l'introduction. On montre
comment associer a tout treillis et semi-treillis cambrien un graphe valué, puis on montre que
le (semi-)treillis cambrien est un sous-poset du treillis obtenu. On constate sur des exemples
en type A que le treillis obtenu est exactement le treillis cambrien associé, mais nous n’avons
pas encore d’explication générale de ce fait. Au passage, on introduit un nouveau concept in-
téressant, celui de treillis induit. Plus précisément, si on considére un graphe valué G et un
autre graphe valué G’ obtenu a partir de G en lui ajoutant des arcs, on définit une relation
d’équivalence ~g sur 1.5(G). On montre ensuite que toute classe d’équivalence de cette relation
admet un élément maximal, et que le poset obtenu en ordonnant ces éléments maximaux est
un treillis complet (mais pas nécessairement un sous-treillis de (1.5(G), Q)).

Dans le chapitre 5 on s’intéresse a I’étude du cas particulier du treillis de Tamari (voir
[IMHPS]), en introduisant un graphe valué¢ A', puis en montrant que le treillis (15(A}), C) est
isomorphe au (n + 1)-iéme treillis de Tamari. Notre démonstration repose sur la construction
d’une bijection directe entre I.S(A") et les chemins de Dyck de taille n+ 1, et ceci nous améne
naturellement & une description des treillis de m-Tamari a ’aide d’'un graphe valué. Notons que
le graphe valué¢ Al provient directement de la famille de graphes valués introduit a la fin du
chapitre 4, et il s’agit pour l'instant du seul cas particulier pour lequel nous avons démontré
que le graphe valué donnait bien le treillis cambrien associé.



CHAPTER 1

Introduction

Let us consider an Euclidean space, some hyperplanes of this vector space, and consider
the group generated by orthogonal reflections across these hyperplanes. The resulting group
is called a refiection group. Many classical groups appearing in algebraic combinatorics can
be realized as reflection groups. For instance, the symmetric group S, is a reflection group.
Indeed, it can be seen as the reflection group (in a vector space of dimension n) generated by
the reflections across hyperplanes of equation (x;,1 —x; = 0) for all i € [n — 1].

This point of view has many advantages. For instance, it naturally provides a representation
of S, that allows to study this group using geometric methods. Furthermore, it leads us to a
generalization of combinatorial properties of the symmetric group to other reflections groups.
The notion of Coxeter group, introduced during the XX century, provides a general context
in which these generalizations can be studied.

A Coxeter group is defined as a group generated by a set of generators satisfying some re-
lations imitating properties of reflections: the square of any generator equals the identity, and
the product of any given pair of generators has a given order which can be infinite. Coxeter
groups are fundamental in many areas of mathematics and are studied by many combinatorists.

This thesis is dedicated to the study of a combinatorial structure associated with each
Coxeter group: the weak order (see the seminal article |B|). The weak order on a Coxeter
group is a partial order on the elements of this group, having many interesting properties.
[t appears, for instance, in the study of Symmetric functions (|S2| and |L2]|), Grassmanian
geometry and Schubert calculus (see [FGRS| and [BJS]), or in the study of Cluster algebras
(see |[FZ1|, [FZ2|, |RS2| and |[RS1|).

In this thesis we develop a new theoretic framework for the study of weak order on any
Coxeter group, and we apply this to the study of various associated questions. More precisely,
we follow a classical method in the study of Coxeter groups: we begin with the study of an
enumerative problem fundamentally connected with symmetric group (here, the enumeration
of some tableaux); we then extract from the combinatorial construction made at the previous
step a general model that we apply to a wider class of Coxeter groups; finally, we use this new
framework to study various problems related to the weak order. In this thesis, the first problem
we focus on is a set of several conjectures of Dyer about an extension of the weak order, which
would allow us to extend combinatorial and geometrical properties usually confined to finite
Coxeter groups to all Coxeter groups. Even if these conjectures first appear more than 20 years
ago (see [D1| and [D4]), little is known about them. However, they recently become the object
of intensive studies, motivating the study of asymptotical behavious of roots systems (see, for
instance, [DHR] and [HLR]), of abstract constructions (see [D2| and [D3]) and of geometrical
properties of root systems (see |[HL| and [L1]).

One of the possible motivations for the study of Dyer’s conjectures is the study of Cambrian
lattices (see [R1] and [R3]). Cambrian lattices are quotients of the weak order of any finite
Coxeter groups, which are related to combinatorics of cluster algebras. In particular, the
Hasse diagram of a Cambrian lattice is isomorphic to the exchange graph of the cluster algebra
associated with the considered Coxeter group (see |R2| and |[RS2|). Their definition can be
extended to any Coxeter group (see |[RS3|), but the correspondence with cluster algebra is
only partial. For example, the Hasse diagram of the resulting poset (called Cambrian semi-
lattice) is isomorphic to a sub-graph of the corresponding cluster algebra (see |RS2|). Even if
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in the case of affine Coxeter groups Reading and Speyer showed in [RS1| how to extend these
Cambrian semi-lattices in order to obtain all the expected informations about Cluster algebras,
this problem remains open in general. However, Dyer’s conjectures provide a candidate for an
extension of the weak order on any Coxeter group. Thus, it is natural to look for a way to
extend the construction of Cambrian semi-lattice to these extensions, hoping that one could
recover more informations about cluster algebras from it. This constitutes the second problem
whose study is started in this thesis.
In the sequel of this introduction, we detail the content of the thesis.

In Chapter2, we recall some fundamental results and notations about tableaux, directed
graphs (digraphs), partially ordered sets (posets), lattices and Coxeter groups.

Let us begin with introducing the problem that motivated the development of the notion
introduced here: the study of balanced tableaux. This family of tableaux has been introduced
by Edelman and Greene in [EG]|. They are Ferrers diagrams filled with all the integers from 1 to
n, where n is the size of the diagram, satisfying a specific condition on each hook of the diagram.
Edelman and Greene showed that, for any partition A - n, balanced tableaux and standard
tableaux of shape A are equinumerous. Surprisingly, the proof is simultaneously bijective and
a bit unsatisfying. Indeed, it uses the weak order on the symmetric group as intermediary.

Our first goal was to find a bijective proof of the previous result. This originated many of
the tools introduced in this thesis. We introduced an algorithm to construct balanced tableaux,
starting with an empty Ferrers diagram, filling it box by box with the integers from 1 to n and
ending with a balanced tableau.

T = PO P! P2 P3 P! P
2T1Jo]|[1]o (0]
10 1o 1]o] [1]0]
| 1 o[ |2 o] [3]2]o]]3]2]1
4 54
Ty

FIGURE 1.1. Example of the action of the algorithm.

Even if all balanced tableaux can be obtained by this way, and despite of the combinatorial
character of the algorithm, this approach did not lead to the expected bijection. However, the
form of the algorithm naturally leads to a generalization of the concept of balanced tableaux.
Hence, we associate to each tableaux (which are not required to be standard or balanced) a
combinatorial object called its type.

DEFINITION 1. Let T' = (7). be a Young tableaux of shape X F n, the type of T is the
tableau of shape A whose each box c if filled by the integer (c) defined by

O(c):=|{o€S|0€ Hg(c) et t. <tp}| forall c €5,

where Hg(c) is the hook based on ¢, that is the set of all the boxes being below and on the
right of ¢ in the Ferrers diagram of .

By this way, tableaux are classified according to their type, and balanced and standard
tableaux form two particular classes of our classification. We can naturally adapt the algorithm
to this new context, and this allows us to generalize Edelman and Greene results to a wider
class of tableaux.

More precisely, we show that one can associate a type 7, with each vezillary permutation
o € S, (i.e. avoiding the pattern 2134), whose shape is given by a partition A(c) canonically

associated with o, such that the tableaux of type 7, and the standard tableaux of shape A(o)
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7151210 312110
51310 211(0
301 110
210 110
0 0

FIGURE 1.2. Type associated with standard (on the left) and balanced (on the
right) tableaux of shape (4,3,2,2,1).

are equinumerous. It is important to notice that this result does not rely on a direct bijection,
and uses the weak order on 5, as an intermediary. Using this connection, we are able to show
that the number of tableaux of type 7, such that the integers 1,2,..., k appear in some fixed
position is given by the number of reduced decomposition of an explicit permutation w € 5,,,
generalizing an implicit result of [FGRS] about balanced tableaux.

Note that this approach also leads to a new combinatorial model for the study of the reduced
decompositions of any permutation. Indeed, one can associate each permutation with a family of
tableaux obtained using the algorithm and such that each one of these tableaux is canonically
associated with a reduced decomposition of the permutation. We depict in Figure 1.3 the
tableaux associated with the reduced decompositions of [4,1,3,5,2].

321 0] 4] [5 ] 5]
210 [5]2]1] [4]2]1] [3]2]1]
110 3 3 4

i 5352835451 5352535154 5352515354

I 5 | 4] 5]

Associated | 412(3 | | 51213 | | 51214
permutation 1 1
[4,1,3,5,2] $983595154 59583595451 S$953545951

FIGURE 1.3. Reduced decompositions of [4,1, 3,5, 2] seen as tableaux.

Since all the results mentioned earlier can be reformulated using the generalizations intro-
duced after, these notions will be developed in Chapter 6.

In Chapter 3 we change our point of view on the objects mentioned earlier. Indeed, the
key argument in our study of combinatorics of tableaux is that the algorithm leads to a com-
binatorial model for the reduced decompositions of any permutation. Thus, it also provides a
combinatorial model for the weak order on the symmetric group. This naturally leads us to the
following question: is it possible to generalize this model to the weak order on other Coxeter
groups 7 It appears that our framework using tableaux is not sufficient to describe most of
other cases, even if we consider small examples such as the weak order on Bs. We thus have
to consider a wider family of objects (containing the notion of tableaux, as it is explained in
Chapter 6), namely digraphs.

The fundamental object of this chapter is what we call a valued digraph G = (G, 0), where
G is a simple acyclic digraph (not necessarily finite) and @ is a function from V(G), the vertices
of the digraph, to N, satisfying the following inequality

for all z € V(G), 0<0(z) < d*(2),

where d*(z) denotes the out-degree of the vertex z. In this new context, the algorithm will not
be used to construct tableaux any more, but it will be used to generate sequences of elements
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of V(G), called peeling sequences of G, by peeling the digraph vertex by vertex with respect to
the constraint given by the valuation 6. More precisely, we first chose an erasable vertex z of
V(G), that is a vertex such that:
e 0(2) =0;
o for all y € V(G), if there is an arc from y to z in G, then 6(y) > 0,
We then peel this vertex, that is:
(1) we decrease by one the valuation on each vertex y such that there is an arc from y to
-
(2) vx;e erase the vertex z and the arcs having z as starting or ending point.
What we obtain after this operation is again a valued digraph, so that we can iterate this
process. An iteration of this peeling process is depicted in Figure 1.4.

b
I |
@b
0
© ©
| L=lat] I _L=[d | r=lbd J| L=labd |

FIGURE 1.4. Peeling process in action. The resulting sequence L is what we call
a peeling sequence of G.

We denote by PS(G) the set of all the peeling sequences, and we consider the set 15(G)
of all the initial sections of the elements of PS(G), that are the sets of the form {z,..., 2}
where the sequence [z1,. .., z;] is the beginning of a peeling sequence of G. We then show that
the poset (15(G), C) has many properties similar to those of the weak order.

THEOREM 1. Let G = (G,0) be a valued digraph, the poset (15(G),C) is a graded meet
semi-lattice, with rank function given by A — |A|. Moreover, if G is finite, then (1.5(G), Q) is
a complete lattice.

We recall that the Mébius function g on a locally finite poset (P, <) is the function from
P? to Z recursively defined by:

o forall z € P, u(x,x) =1,
o forall z,y € P, p(z,y) = — Z p(z,c).

r<c<y
THEOREM 2. Let A € IS(G), N(A) :=={z € A|0(x) =0}, F(A) ={x € A| A\ {2} €
IS(G)} and p be the Mobius function of (15(G), C). Then, we have:
(1) if F(A) = N(A), then u(0, A) = (=1)MDL,
(2) else, we have u((), A) = 0.

We then prove that the weak order on Coxeter groups of type A, B and A can be described
within this theory, constructing explicitly an associated valued digraph. This provides an
alternative proof of the fact that they are graded meet semi-lattices, a new combinatorial
model for their study and a new formula for the values of their associated Md&bius functions.
Let us explain a little bit the method we follow to prove that the weak order on A, _; can be
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V ={a,b,c,d,e, f}

FIGURE 1.5. An example of poset (15(G),C) (on the left) and the associated
valued digraph (on the right).

described using a valued digraph (the method in types B and A is similar). Tt is well-known
that A, can be identified with the symmetric group 5,,, and there is a canonical set associated
with each permutation o € S,,: its inversion set, defined by

Inv(o) := {(a,b) € [n)* | a < bet o (a) > ()}
We then have the following classical property.
for all o,w € S,,, 0 <g w if and only if Inv(c) C Inv(w),

where <p denotes the weak order on A, ;. We then construct a valued digraph A whose
vertices are indexed by all pairs of integers (a,b) such that 1 < a < b < n, and such that A
satisfies the following property:

IS(A) = {Inv(o) | 0 € S,.},

implying immediately that (IS(A),C) and (A,_1,<g) are isomorphic. We also show that a
generalisation of the weak order to the group of r-colored permutations G(r,n), called the flag
weak order, introduced by Adin, Brenti and Roichman in [ABR/| can be described with a valued
digraph. It is interesting to note that all previous digraphs can be seen as diagrams endowed
with an implicit digraph structure, as depicted on Figure 1.6

However, the example of the down-set lattice of any finite poset is perhaps the one giving
the more insights on our construction. Indeed, we show that for all finite poset P, there exists
a valued digraph G(P) whose vertices are the elements of P such that IS5(G(P)) is the set of
the lower sets of P and PS(G(P)) is the set the linear extensions of P. Thus, our construction
can be seen as a generalization of the concept of linear extensions to valued digraphs. But
linear extensions are connected to the theory of quasi-symmetric functions thanks to the notion
of P-partition (see [G] or [S1]). Then, it is natural to look for a way to use valued digraphs
to define quasi-symmetric functions. This is the point of the end of Chapter 3, in which we
show how one can associate a family of quasi-symmetric functions with each element of a poset
coming from a valued digraph. In most cases, these quasi-symmetric functions do not seem to
be interesting, but sometimes the form of the digraph designates a canonical choice of a quasi-
symmetric function within this family. This is the case with the valued digraphs associated
with the weak order on types A and A, and we show that the arising series are exactly the
Stanley symmetric functions in type A (see [S2|) and Lam’s generalization in type A (see [L2]),
by following a similar method as in [FGRS| and |YY]|. Notice that this description naturally
leads to a characterization of Stanley’s series as a sum over a set of tableaux generalizing
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FIGURE 1.6. Valued digraphs associated with some posets. In each case, the
digraph structure is given by an adapted notion of hook (see Chapter 3).

the notion of standard and semi-standard tableaux (some of these tableaux are depicted in
Figure 1.7)

o=1[4,1,35,2] Some “standard” elements of Tab(o)
3f(2|1]0|® 4 3 5
2|1(0|® 523 524 321
1103 1 1 4
0 @ 5253525451 5253545251 5352515354
@ and some “semi-standard” elements
2 7 6 3
21110 815|5 8148 11111
0 2 3 2

FIGURE 1.7. Some tableaux associated with the permutation [4,1,3,5,2] and
their associated monomials.

It is natural to ask if these previous results can be generalized to any Coxeter group.
However, in this larger arena many difficulties appear, and to overcome these we have to
change our point of view on the considered objects. Let us first explain the method we followed
to construct the valued digraphs associated with Coxeter groups of type B and A. In each case,
the method can be split into two steps: first, we find a good notion of inversion set associated
with types B and A (i.e. which generalizes the properties of inversion sets of permutations) in
order to construct a candidate of valued digraph; then, we use the interpretation of the elements
of B,, (resp. A,) as signed permutations (resp. affine permutations) in order to prove that these
valued digraphs provide a description of the weak order by using combinatorial techniques.

In general, we do not have an interpretation of Coxeter groups as a group of permutations
(or similar objects), but we have a general notion of inversion set thanks to root systems. Root
systems are geometrical objects allowing us to see any Coxeter group as a reflection group,
but generally not in an Euclidean space. More precisely, a root system of a Coxeter group W
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of rank n is a subset ® of the vector space R™ on which W acts and allowing us to interpret
geometrically many properties of W. In particular, there exists a partition of ® into two subsets
O and &, respectively called the sets of positive and negative roots, from which we can define
a notion of inversion set: for all w € W, we set

Inv(w) := ®* Nw(d").

Then, it is shown in [BB]| that for all 7 € W, w is smaller than 7 for the weak order if and only
if Inv(w) C Inv(7).

Then, the idea is to construct a valued digraph G whose vertices are the elements of &+
and such that 1.S(G) is made exactly of the inversion sets of the elements of W. However,
two major difficulties appear: there is no canonical choice for a valued digraph in the case of
dihedral groups (many valued digraphs work); when we try to generalize the construction to
the case of any Coxeter group, the resulting digraph is generally not acyclic, so that the theory
developed in Chapter 3 does not apply. These two remarks lead us to the content of Chapter 4.

In Chapter 4, we begin with generalizing the construction made in the previous chapter,
allowing us to study the case where the valued digraph is not acyclic. This new construction is
a natural consequence of the content of Chapter 3. Indeed, in order to simplify some proofs we
introduced a characterization of the elements of 1.5(G), which does not rely on peeling sequences
and does not rely on the properties of the digraph (such as acyclicity). Therefore, we can take
this characterization as a definition of 1.5(G) and remove the conditions on the digraph. More
precisely, we have the following definition.

DEFINITION 2. Let G = (G, 0) be a couple of a digraph G together with a function 6 :
V(G) — N such that
0 < 6(z) < d*(z) pour tout z € V(G).

We denote by 15(G) the set defined by
0(2)
0(z)

where d(z) is the number of arcs in G having 2 as starting point and an element of A as ending
point.

< dj
IS(G) = ACV(G) o
Z Gy

(z) forall z € A
(z) forall z € V(G)\ A |’

This definition generalizes the one proposed in Chapter 3, but note that a subtlety appears.
When the digraph is infinite, simple and acyclic, then with this definition 1.S(G) contains sets
being infinite (for example, V(G) is always in 1.5(G)), and these sets can not be defined using
initial sections of peeling sequences. In this more general framework, we have the following
theorem.

THEOREM 3. For all valued digraph G, (15(G), C) is a complete lattice.

In particular, this provides a natural embedding of posets of Chapter 3 into a complete
lattice (when the underlying digraph is infinite).

This last point is particularly important for the sequel of this chapter. Indeed, Dyer conjec-
tured in [D1| and |D4| that it is possible to extend the weak order on any Coxeter group into
a complete lattice. This conjecture uses the notion of bi-closed sets of ®T. We say that a set
A C @7 is closed if and only if for all o, 8,y € & such that v = aa+ b3, with a > 0and b > 0
we have that

if a, 8 € A, then v € A.
We say that A is bi-closed if and only if both A and ®* \ A are closed, and we denote by
B(®*) the set of bi-closed sets of ®*. It is known that finite bi-closed sets are exactly the

inversion sets of the elements of W (see, for instance, |P]). Thus, the poset (B(®"),C) is an
extension of the weak order on W, and Dyer’s conjecture says that this poset is a complete
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lattice. We represent in Figure 1.8 the poset (B(®*1), C) obtained considering bi-closed sets of
a root system of the infinite dihedral group.

i i >
: YO
: : Bs ST\ {8} o*\ {on}
/
O\ {51, B2} O\ {on, az}
i \ {ﬁlvﬁ?vﬁiﬂ} (I)+\ {a17a27a3}
5 i i
{Oz17(|)ég,a3} {6171827ﬂ3}
B
{ay, an} {51, Ba}
c B
{h}\ @/{ }
o (B(@+),C)

FIGURE 1.8. On the right, the poset (B(®*1),C) obtained considering a root
system of the infinite dihedral group (on the left).

Therefore, the idea is to look for a valued digraph G having ®* as set of vertices and
such that IS(G) = B(®T). In the case of the dihedral group, this new constraint restricts
considerably the available choices and leads us to introduce a new family of valued digraph
that we call scaffoldings. On Figure 1.9 we depict the lattice obtained considering an infinite
scaffolding. We see that the lattice obtained with this scaffolding and the poset of the bi-closed

V(G)
N
V@) \{biy  V(G) \{ai}
{aba?}

/
V(G) \ {b1, ba} V()

{a17 ag, a3}

V(G)\ ‘?bl»bzyba} V(G)

{&1702,03} {b17b27b3}
{a1, a2} {1, 02}
/
{a1} {01}
g 0
(15(9), <)

FIGURE 1.9. On the left, an infinite scaffolding G; on the right, the resulting
lattice (15(G), C).

sets of the infinite dihedral group are isomorphic, identifying «; with a; and §; with b;. Using
this information, we use scaffoldings (more precisely, we glue scaffoldings together with respect
to some constraint given by the geometry of the root system) in order to construct a family of
valued digraph that we call well-assembled on ®*. We then show that for all well-assembled on
®* valued digraph G, we have B(®1) C 15(G) and for all A € 15(G), we have &7\ A € 15(G).
Thus, we have an embedding of (B(®"), C) into a complete ortho-lattice.
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Root system of Aj Step 1 Step 2

F1GURE 1.10. Construction of a valued digraph which is well-assembled on a root
system of Az. One can check that the resulting lattice is isomorphic to (As, <g).
See Chapter 4 for more details about this construction.

One of the main difficulties appearing at this stage is the infinite character of the considered
valued digraphs. Indeed, it is quite technical to make tests in order to identify the elements of
I15(G), and this problem leads us to the definition of a new family of valued digraph, namely
projective valued digraphs. These valued digraphs (denoted by G.,) are valued digraphs that
can be seen as a limit (in a certain sense) of a sequence (G;);>1 of finite acyclic valued digraphs.
In this case, we prove that the family (1.5(G;));>1 is a projective system (for a well-chosen set of
projections), and that 1.5(G.,) can be seen as the projective limit of this projective system. This
allows us to study the lattice structure of (1.5(Gw), C) through the finite lattices (1.5(G;), Q)
and to make effective tests.

Another interesting point about projective valued digraphs is their similarity with the fi-
nite acyclic case. Indeed, we can associate each projective valued digraph G., with a set of
total orderings of the vertices of G.,, which we denote by PS(G.), generalizing the notion
of peeling sequences. That is, each element of 15(G,,) is an initial section of an element of
PS(Gw). Furthermore, PS(G.,) totally encodes maximal chains of (1.5(G.,),C): for all chain
C of (IS(G), <), we have that C is maximal if and only if there exists I € PS(G.,) such
that C equals the set of the initial sections of I. This property leads us to consider another
conjecture of Dyer (see [D4]) about the structure of maximal chains of (B(®*),C). Indeed,
Dyer conjectures that for all chain C of (B(®"), C), we have that C is maximal if and only if
there exists a reflection orderings L of ®T such that C equals the set of the initial sections of L.
Thus, in the sequel of Chapter 4 we prove that there exists a projective well-assembled on &
valued digraph, and we prove that for each such valued digraph G., we have that each reflection
orderings of @ is in PS(G. ). Then, we show that in this context the two conjectures of Dyer
are equivalent: we have that B(®1) = IS(G,,) if and only if PS(G..) is the set of the reflections
orderings of ®*. Moreover, the projective structure allows us to perform many tests, and we
conjecture that there exists at least one projective well-assembled on ®* valued digraph G,
such that B(®1) = 15(G).

The end of this chapter is devoted to the study of some applications of our construction.
We begin with a quick examinations of connections existing between our theory and abstract
convex geometry. In particular, we introduce several closure operators, and we show some of
their properties.

Using one of these closure operator, we then introduce some results in the direction of the
extension of Cambrian semi-lattices mentioned earlier in the introduction. More precisely, we
show how one can associate to each Cambrian semi-lattice a valued digraph, and we prove
that the Cambrian semi-lattice is a sub-poset of the resulting lattice. We observe on various
examples on type A that this lattice is isomorphic to the associated Cambrian lattice, but we
do not have an explanation of this fact yet.

In Chapter 5, we study the particular case of the Tamari lattice, introducing a valued digraph
denoted by Al and showing that the lattice (I5(A}), C) is isomorphic to the (n+ 1)-th Tamari
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lattice. Our proof is based on the construction of a one-to-one correspondence between [S(A")
and the set of Dyck paths of size n+ 1, allowing us to provide a similar description of m-Tamari
lattices.



CHAPTER 2

Preliminaries and notations

In this chapter we give some definitions and basic properties we will use in this thesis.

2.1. Tableaux, digraphs and lattices

For further informations about the objects introduced in this section, we refer the reader to

S3].

2.1.1. Partitions and tableaux. A partition A of a nonnegative integer n € N, is a
nonincreasing sequence of nonnegative integers A\; > Ay > --- such that > A\; = n. The integers
A; # 0 are called parts of the partition A. The Ferrers diagram of X is a finite collection of
boxes, or cells, arranged in left-justified rows of lengths given by the parts of A. By flipping this
diagram over its main diagonal we obtain the diagram of the conjugate partition of A denoted
. We usually identify a partition with its Ferrers diagram.

More generally, in this thesis we work with diagrams of arbitrary shape, namely finite
subsets of N x N, without any constraint: let S C N x N such that |S| = n (where |S| denotes
the cardinal of S). A tableau T of shape S is a bijective filling of S (seen as a set of boxes)
with entries in [n] := {1,2,...,n}. Given a tableau we denote its shape by Sh(7"). The set
of all tableaux of shape S will be denoted by Tabg. If we require Sh(7") to be a partition A,
then T will be what is usually called a Young tableau. Moreover, if we consider Young tableaux
satisfying the conditions that the filling is

(1) increasing from left to right across each row;
(2) increasing down each column;

we obtain the set of standard Young tableauz of shape A, denoted by SYT(A).

DEFINITION 2.1.1. Let S be a diagram and ¢ = (a, b) be a box of S. We define the following
sets,

(2.1) Lay(S) = { (k,0) | k > a, (k,b) € S}, Auy(S) ={ (a,k) | k > b, (a,k) € S},

(2.2) H,(S) = Aap |H Las,

respectively called the leg, the arm, and the hook based on (a,b). We will denote by [,(.5),
245(9), and h,,(S) their respective cardinalities.

This notion of hook allows us to enumerate standard Young tableaux, thanks to the well-
known hook-length formula (see [S3]| for more details about this formula).

THEOREM 2.1.2. Let X be a partition of the integer n, seen as a diagram. Then, we have
n!

H(a,b)e)\ ha,b()\) .

In [EG], Edelman and Greene introduced the concept of balanced tableaux, defined as
follows.

ISYT(A)] =

DEFINITION 2.1.3. Let A be a partition of the integer n. A balanced tablean T = (top)(ab)er
of shape X is a Young tableau satisfying the following condition:

for all (a,b) € X, agp = [{(z,y) € Hap(N) | tay > tas}l-
We denote by Bal(A) the set of all balanced tableaux of shape A
29
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In the same paper, Edelman and Greene proved the following result, which is the main
motivation for the content of Chapter 6.

THEOREM 2.1.4. For all A+ n, we have |Bal(\)| = [SYT())|.
2.1.2. Digraphs.

DEFINITION 2.1.5. A digraph is a couple G = (V| E), where V is the set of vertices of G
(not necessarily finite), and E is a multi-set E of elements of V' x V| called the set of arcs of

G.

In this thesis, we are particularly interested in a special family of digraphs, that we define
below.

DEFINITION 2.1.6. We say that a digraph G = (V, E) is simple if and only if E' is a set and
for all z € V, (2,2) ¢ E. An oriented cycle (also called a cycle) of G is a sequence of vertices
21,22, . - ., Zp Such that (z;, z;.1) € F for all ¢, where the indices are taken modulo n. A digraph
which does not have any cycle is called acyclic.

We finish with defining a useful statistic on the vertices of a digraph.
DEFINITION 2.1.7. Set G = (V, F) a digraph, A C V', and z € V. We define the following

statistic
di(G2) = Y My,

yeA
(z,y)EE

where M.,y denotes the multiplicity of the arc (z,y) in E. Note that its value can be infinite
when the underlying digraph is infinite. In the special case where A = V', the obtained statistic
is called the out-degree of z, denoted d*(z).

2.1.3. Posets and lattices.

DEFINITION 2.1.8. A poset is a pair (P, <) where P is a set and < is a binary relation on
P being:
e reflexive, i.e. forall x € P, x < x;
e transitive, 7.e. for all z,y,2z in P, if v <y and y < z, then x < z;
e anti-symmetric, .e. for all z,y in P, if + <y and y < z, then x = y.

We say that a poset (P, <) is locally finite if and only if for all z,y € P, theset {z € P |z <
z < y} is finite. For any locally finite poset, one can define a function pu: P x P — N, called
its Mobius function, to be the unique application satisfying the following conditions:

o forall z € P, p(z,z) = 1;
e forall z,y € P, u(z,y) = Zumz

r<z<y

Let (P, <) be a poset and X be a subset of P, a lower bound (resp. upper bound) of X in
P is an element z € P such that for all z € X, we have z < x (resp. x < z). If there exists
z € P such that for all lower bound y of X we have y < z, then z is necessarily unique and
is called the infimum (or the meet) of X, usually denoted by AX. Similarly we have the dual
notion of supremum (also called the join), that is an element x € P such that for all upper
bound y of X we have x < y, which is usually denoted by VX. We say that (P, <) is a complete
meet semi-lattice (resp. complete join semi-lattice) if and only if any subset of P admits an
infimum (resp. a supremum). Finally, we say that a poset which is both a complete meet and
join semi-lattice is a complete lattice.

In Chapter 4, we will mainly focus on some specific complete lattices, namely complete
ortho-lattices. We say that a complete lattice (P, <) is a complete ortho-lattice if and only if
there exists an application = — z+ from P to itself, called the ortho-complement of P, such
that for all x,y € P we have that:
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e the supremum of {x, 2z} (usually denoted by = V zt) is the maximal element of P;

e the infimum of {x,2+} (usually denoted by = A z1) is the minimal element of P;

o if + <y, then y*+ < at;

o o1t =1

We say that (P, <) is bounded if and only if there are a maximal and a minimal element in

P, i.e. P itself has a supremum and an infimum. This notion generally allows us to simplify
the proof of the fact that a given poset is a complete lattice, thanks to the following classical
lemma.

LEMMA 2.1.9. If (P,<) is a bounded complete meet (or join) semi-lattice, then it is a
complete lattice.

PrROOF. Let X C P and C be the set of the upper bounds of X, which is non empty since
(P, <) is bounded. We denote by z the infimum of C. By definition, any element = of X is a
lower bound of C, so that x < z by definition of the infimum. Thus, z is the join of X, so that
P is a complete lattice. The proof in the case where (P, <) is a join semi-lattice is similar. [J

We now give two classical notions of poset theory, which will be useful in Chapters 3 and 4.

DEFINITION 2.1.10. A subset A of P is called a lower set of (P, <) if and only if for all z,y
in P,ify e Aand z <y, then z € A.

DEFINITION 2.1.11. A poset (L, <) is called a total order if and only if for all z and y in L,
we have either x <y, or y < z. The lower sets of a total order are called initial sections of L.
Classical examples of total orders are given by the linear extensions of any finite poset (P, <),
which we recall are total orders (P, <) such that x <y whenever z < y.

We conclude with a classical lemma connecting lower sets of a finite posets to its linear
extensions (see [S3]).

LEMMA 2.1.12. The lower sets of any finite poset are exactly the initial sections of its linear
extensions.

PROOF. This can be easily proved by induction on the cardinality of P. U]

2.2. Coxeter groups and weak order

In this section we recall some basic properties and definitions about Coxeter groups and
their associated root systems. We refer the reader to [BB| and [H] for more details about these
topics.

2.2.1. Coxeter groups and weak order. Let S be a set (usually finite) and M =
(mst)stes a Cozeter matriz, that is a matrix which takes values into Zs; U {oo}, which is
symmetrical and such that m,, = 1 for all s € S. The Cozeter group W associated with S and
M is the group generated by S and subject only to the relations (st)"s* = Id, for any s and ¢
in S. By convention, when mg; = oo the previous relation just means that st is not of finite
order. The couple (W, S) is called a Cozeter system. The cardinality of S is called the rank of
W. It is convenient to represent such a Coxeter system (W, S) by its Cozeter graph, that is the
non-oriented graph whose vertices are the elements of S, with an edge between s and ¢ if and
only if ms, > 3, and such that edges are labelled by ms; whenever m,, > 3. Note that the
finite Coxeter groups are completely classified, and we recall in Figure 2.1 the complete list of
the Coxeter graph of each finite irreducible Coxeter group.

To each element w in W we can associate its length, denoted by ¢(w), and defined by

lw) :=min{k e N |w =515, s5; € S}

This statistic is the rank function of a graded poset structure on W, namely the (right) weak
order on W. That is, the reflexive and transitive closure of the relation

VweW, se S, w<pw.sif and only if {(w) < l(w.s).
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F1GURE 2.1. Coxeter graphs of all finite Coxeter groups.

In |B], Bjorner proved the following general result about this poset.

THEOREM 2.2.1. The poset (W, <g) is a graded meet semi-lattice in general, and a graded
complete lattice when W 1is finite.

Finally, we define the reduced decompositions of any w € W to be the elements of the set
Red(w) := {(i1, .- igw)) | 55 € S and s;, - - 50y = W}

As usual, most of the time we will say that s;, --- sy is a reduced decomposition, instead of
(il, . ,ig(w)).



CHAPTER 3

A family of posets defined from simple acyclic digraphs

This chapter comes from the article [V] “A new family of posets generalizing the weak order
on some Cozeter groups” available at http://arziv.org/pdf/1508.0614102.pdf.

Introduction

The weak order on a Coxeter group W is a partial order on W which plays a significant
role in many areas of algebra and algebraic combinatorics as Grassmannian geometry, and
Schubert polynomials (see [FGRS|). Moreover, it is closely related to the geometry of the root
system associated with a Coxeter group (see [D4|, [DH|, [P], or [DHR]), and to the theory
of quasi-symmetric functions (see [BM] for a general survey) thanks to the Stanley symmet-
ric functions. These functions were introduced by Stanley in [S2], in order to enumerate the
reduced decompositions of any permutation ¢ in the symmetric group S, equivalently enumer-
ating the maximal chains from the identity to o in the weak order on S, and turned out to
be of fundamental importance in many areas of algebra (see |[BJS]). In |L2|, Lam generalized
Stanley’s work to the affine Coxeter group of type A.

In this chapter we introduce a new family of posets, defined from a digraph together with a
valuation on its vertices. Here, we focus exclusively on the case where the digraph is simple and
acyclic, in which case the corresponding poset has a rich combinatorial structure. It appears
that many well-known posets can be described within this theory, and after a careful case by
case study, we show that the weak order on Coxeter groups of type A, A and B, the flag weak
order on wreath product Z,. 1S, (see |[ABR]), and the up-set (resp. down-set) lattice of any
finite poset, admit such a description.

The study of this family of posets will be further developed in Chapter 4, in which we
will show how they can be used to study two long-standing conjectures of Matthew Dyer on
the geometry of root systems in infinite Coxeter groups (see [D1] and [D4]). Moreover, in
another subsequent publication we will highlight connections which exist between our theory
and Tamari and Cambrian lattices. Note that except for the case of Coxeter groups of type A,
the content of Chapter 4 will not overlap the content of the current chapter. Indeed, Chapter 4
is mainly centred on algebraic and geometric aspects of this construction, while here we develop
the combinatorial ones: we give a new formula for the values of the Mdbius function and we
provide a new comllinatorial model for the maximal chains in the weak order on Coxeter groups
of type A, B and A.

Our construction relies on a generalization of the notion of linear extension of a finite poset
to simple acyclic digraph, and leads us to associate quasi-symmetric functions with each element
of our posets, as it is the case for linear extensions in the context of P-partitions (see [S1]). It
seems that most of the functions associated with an element do not give much insights about
the underlying poset structure. However, the form of the underlying digraph sometimes leads
to a canonical choice among these quasi-symmetric functions, which occurs when considering
the digraphs associated with types A and A. In these two cases, we show (following a similar
method as in [FGRS] and [YY]) that the canonical quasi-symmetric functions which arise are
exactly the Stanley and Lam’s symmetric functions.

In the author’s opinion, Section 3.4 just scratch the surface of the connections existing be-
tween our construction and quasi-symmetric functions presented in and would require a more
exhaustive study. Moreover, our results suggest that the construction presented in this chapter
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34 3. A FAMILY OF POSETS DEFINED FROM SIMPLE ACYCLIC DIGRAPHS

could be generalized so as to obtain the weak order on any Coxeter group (see Chapter 4), and
thus may lead to a generalization of Stanley symmetric functions to a wider class of Coxeter
groups. A good starting point would be to look for a combinatorial description of type B
Stanley symmetric functions, using the digraph introduced in this chapter.

The Chapter is organised as follows: in Section 3.1 we define the family of posets from
valued digraphs, which are couples of a simple acyclic digraph together with a valuation on its
vertices. We exhibit some general properties of these posets, namely they are graded complete
meet semi-lattices in the general case, graded complete lattices when the underlying digraph is
finite, and we give a simple and explicit formula to compute the values of their Mdbius function.
In Section 3.3, we show that the (right) weak order on Coxeter groups A, 1, B, and A,, the
flag weak order on Z,. 1S, and the up-set (resp. down-set) lattice of any finite poset can be
described thanks to this theory. In Section 3.4, we exhibit a link between these posets and
the theory of quasi-symmetric functions. More precisely, we explain how the series associated
with any P-partition (see [BM]), the Stanley symmetric functions, and Lam’s generalization
naturally arise from this description.

3.1. Definition of a new family of posets

We present here a method to obtain all lower sets of a finite poset P. Since P is finite, there
exists a; in P which is a minimum, that is if x < ay in P, then x = ay. Let P, = (P \ {a1}, <)
be the finite poset obtained by removing a; from P. Then, there exists ay in Py which is a
minimum and we can define the poset Ps obtained by removing as in Ps, and so on. Finally,
we end with an injective sequence [ay,...,a,]| of elements of P. This sequence is a linear
extension of P by construction. Furthermore, one can easily prove by induction that all the
linear extensions of P can be obtained by this way.

In a certain sense, this method “peels” a finite poset element by element, in order to obtain
a family of sequences which give rise to an interesting family of sets (here, the lower sets). Here,
we propose to apply a similar principle to a simple acyclic digraph. Namely, we will peel the
digraph vertex by vertex, with respect to a constraint given by a valuation on its vertices. It
will give rise to a family of sequences of vertices of the graph, then to a family of subsets of
vertices having an interesting poset structure once ordered by inclusion.

We start with the definition of the valuation on the vertices of a simple acyclic digraph.

DEFINITION 3.1.1. Let G = (V, E) be a simple acyclic digraph. A valuation 6 : V' — N is
called an out-degree compatible valuation on G (OCV) if and only if for all x € V', we have

0<0(x) <d" ().

A pair G = (G,0), where G is a simple acyclic digraph and 0 is an OCV, is called a valued
digraph.

In what follows, G = (G, #) will denote a valued digraph. Recall that our aim is to generalize
the method which peels finite posets to valued digraphs. Thus, we first need to specify which
vertices of a valued digraph can be peeled. This is the point of the following definition.

DEFINITION 3.1.2 (Erasable vertex). A vertex x of G is called erasable in G if and only if:
e O(x) = 0;
e for all z € V such that (z,x) € E, we have 0(z) # 0.

We now introduce the peeling process, which is indeed a generalisation of the process on
finite posets presented in the introduction of this section.

DEFINITION 3.1.3 (Peeling process and peeling sequences). Given G = (G,0) a valued
digraph, we construct recursively two sequences: a sequence L = [x1,Xs,...| of elements of V,
and a sequence (G; = (G, 60;))1<; of valued digraphs as follows.

(].) Let gl = g
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(2) Tf there is not any erasable vertex in G;, the process stop. Otherwise, choose x a vertex
of (G; which is erasable in G;, and set x; = x.
(a) Let G;41 be the simple acyclic directed graph obtained by removing the vertex z;
in G; and all the arcs of the form (z, ;) or (x;, z) in G;.
(b) Let 0;11 be the OCV on G, such that 0;,1(y) = 0;(y) — 1 if (y,z;) is an arc of
Gi, and 0;11(y) = 0;(y) otherwise. Then set G;11 = (Gi11,0;41) and iterate Step
2.

A sequence L arising from this process is called a peeling sequence of G, and we denote PS(G)
the set of all peeling sequences of G.

Recall that the lower sets of any finite poset P are the initial sections of some linear extension
P, and we can extends this notion to valued digraph in the natural way.

DEFINITION 3.1.4. Let L = [z, x9,...] be a peeling sequence of G. The initial sections of
L are the sets of the form {x1,25..., 2}, k¥ € N*. By convention, () is an initial section of L.
The set of the initial sections of all the peeling sequences of G will be denoted by 1.5(G).

Finally, recall that the lower sets of any finite poset gives rise, once ordered by inclusion, to
a classical lattice called its down-set lattice. Once again, this concept naturally generalizes to
valued digraphs, and the posets we will consider all along this Chapter are the posets (15(G), C)
for some valued digraphs G.

ExAMPLE 3.1.0.1. Consider G as depicted in the upper left corner of Figure 3.1. The peeling
sequences of G are Ly = [a, ¢,b] and Ly = [, ¢, a|, thus IS(G) = {0, {a}, {b},{a,c}, {b,c},{a,b,c}}.

We finish this section with stating our main results concerning the properties of (15(G), Q).
The proofs are given in Section 3.2.

THEOREM 3.1.5. Let G = (G,0) be a valued digraph, the poset (I1S(G),C) is a graded
complete meet semi-lattice, and its rank function is p : A — |A|. Moreover, if G is finite, then
(15(G),C) is a complete lattice.

We also have an explicit formula for the values of the Mobius function of (15(G), C). For
the sake of clarity, we give the formula only for the couples of the form (0, A), A € I5(G), but
a similar one can be stated for all couples in 15(G).

THEOREM 3.1.6. Let A € I1S(G), N(A) ={z € A | 0(x) =0} and F(A) ={z € A| A\
{z} € I15(G)}, we have two cases.

(1) If F(A) = N(A), then p(B, A) = (—1)N@I,
(2) Otherwise, u(0, A) = 0.
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Let us briefly explain how one can use Theorem 3.1.6 to compute all the values of the Mobius
function. Let A, B € 1S(G) such that A C B, and denote by G’ the valued digraph obtained
after we peeled all the vertices of A using the peeling process. It is straightforward to check
using Proposition 3.2.1 (see Section 6.3.3 below) that B\ A € I5(G’), and that the intervals
[A, B]g and [, B\ A] are isomorphic. Therefore, if we denote by g’ the Mdbius function of
(15(G"), ) then we have

u(A, B) = 1/(0, B\ A).

3.2. Proofs

In this section, we provide the proofs of Theorems 3.1.5 and 3.1.6. Both proofs rely on an
intrinsic characterization of the elements of 1.5(G) (Proposition 3.2.1) and on a technical lemma
(Lemma 3.2.3), which we give here.

PROPOSITION 3.2.1. Let G = (G, 0) be a valued digraph and A be a finite subset of vertices
of G, then A € 15(G) if and only if:

(1) for allz € A, 0(x) <|{y |y € Aand (z,y) € E}|;
(2) forallx € V\ A, 6(x) > |{y|yeAand (z,y) € E}|.

PROOF. Assume that A € 15(G), i.e. there exists L = [x1,22...] € PS(G) and k € N*
such that {z1,..., 25} = A. Let x be a vertex of G, then we divide our study into two cases.

e If x € A, then there exists i < k such that z; = z, and we obviously have
{z;|j<iand (z;,z;) e E} C{y|ye€Aand (z;,y) € E}.

Furthermore, by definition of the peeling process, we have 6(z;) = |[{ z; | j <
i and (x;,z;) € E}|. Hence, x satisfies point (1).

o If x ¢ A, then set G; = (G;,0;) the sequence associated with L. By definition of the
peeling process, we have 0 1(z) =60(z) —[{y |y € Aand (z,y) € E}| > 0. Hence, z
satisfies Point (2).

Conversely, assume that A satisfies both points (1) and (2). We prove that A € 15(G)
recursively on k := |A|. If £ = 1, then set z the vertex of G such that A = {z}. We have
0(z) = 0 thanks to Point (1), and Point (2) implies that for all y # x such that (y,z) € E
we have 6(y) > 1 > 0. Hence, x is erasable in G, so that A € I.5(G). Let k be such that the
property is true and assume that |A| = k + 1. We first prove that there exists a vertex in A
which is erasable. Since (G is acyclic and A is finite, there exists z € A such that for all y € A,
(z,y) ¢ E. Then, by Point (1), we have #(z) = 0. Again, since G is acyclic and A is finite, there
exists « in A such that §(z) = 0 and for all y € A, if (y,x) € E then 6(y) > 0. Furthermore,
for all z € A such that 6(z) = 0, if there exists y € V' \ A such that (y,z) € E, then 6(y) > 0
by Point (2). Consequently, this vertex x is erasable and can be peeled at the first step of the
peeling process. Thus, if we set G’ the valued digraph obtained with the peeling process after
we peeled the vertex x, then |A\ {z}| = k and A \ {z} clearly satisfies Points (1) and (2) in
G'. Therefore, by induction we have A € 15(G). O

REMARK 3.2.2. We stress that Proposition 3.2.1 is fundamental, not only because it simpli-
fies the proofs of Theorems 3.1.5 and 3.1.6, but also because it leads to the content of Chapter 4.

We finish with a technical lemma.

LEMMA 3.2.3. Let S C IS(G) and denote by X the set ﬂ A. If there exists x € X such

AeS
that 6(x) = 0, then there exists z € X which is erasable in G.

PrROOF. We first recall that the underlying digraph of a valued digraph is acyclic. Let
z € X be such that 6(z) = 0. For all y ¢ X, there exists B € S such that y ¢ B. Therefore,
if (y,z) € E, then by Proposition 3.2.1 we have 6(y) > 1. Assume by contradiction that for all
x € X such that §(z) = 0, there exists y € X such that 6(y) = 0 and (y,z) € E. Since X is
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finite, this implies that there is a cycle in G, which is absurd. Hence, there exists an erasable
vertex of G in X, and this ends the proof. O

3.2.1. Proof of Theorem 3.1.5. We divide the proof of Theorem 3.1.5 into two distinct
steps. First, we prove that (15(G),C) is a graded poset (Proposition 3.2.4). Then, we prove
that it is a meet semi-lattice (Corollary 3.2.6), constructing explicitly the infimum of any subset
of I5(G).

Let us begin with a proposition, which immediately implies that (1.5(G), C) is graded.

PROPOSITION 3.2.4. Let A and B be two elements of 1S(G), and denote by k and q the
cardinality of A and B, respectively. If A C B, then there exists L = [x1,x2,...] € PS(G) such
that A = {x1,..., 2t} and B = {xy,...,x,}. Consequently, (15(G),C) is graded with rank
function A |A|.

PROOF. Since the case k = ¢ is obvious, we assume that k£ < ¢. Let us now perform the
peeling process on G, in order to construct the claimed peeling sequence. Since A € 15(G),
we begin with constructing the sequence L by peeling the first k& elements zq,...,z; in A.
Consequently, A = {x1,..., x4}

Let us now consider the valued digraph Gi.1 = (Ggi1, 0k1+1) coming from the peeling process
after we peeled xy, ..., x;. By definition of Gy,1, C = B\ A is a subset of vertices of Gj1. We
prove that C'is in 1.5(Gg1) checking that C satisfies both Points (1) and (2) of Proposition 3.2.1.
By construction, for all z € C' we have 0,1(2) =0(z) — {y € A | (z,y) € E}|, and

yelClzy eBy={yeBl(zy) c E}\{yc Al (zy) € E}.
Since B € 15(G), we have by Proposition 3.2.1 that 0(z) < [{y € B | (z,y) € E}|, so that
Opa(z) <Hye Bl (zy) e B} -Hye Al (zy) € B} =[{y e C| (zy) € E}|.

Then, C satisfies Point (1) of Proposition 3.2.1. Using similar arguments, we show that C' also
satisfies Point (2) of Proposition 3.2.1. Hence, there exists a peeling sequence [zyi1, Tgi2, .. .|

of Gry1 such that C' = {zy41,...,2,}, and finally, the sequence L = [z, x9,...] is a peeling
sequence of G such that A = {zy,..., 2} and B = {x1,...,z,}. This ends the proof of the
proposition. 0

We end the proof of Theorem 3.1.5 showing that (1.5(G), C) is a meet semi-lattice. For that
purpose, we construct explicitly the infimum (also called the meet) of a set S C I.5(G).

Construction of the meet. Let S be a subset of 15(G) and X be the intersection of all the
elements of S, we construct recursively a set C' € 1.5(G) as follows.

If for all x € X, O(x) # 0, we set C' = (). Otherwise, let z; € X be an erasable vertex of G
and start the peeling process by peeling this vertex. We denote by Go = (Ga, ) the obtained
valued digraph. Then, for all A € S, we have A\ {z1} € 15(Gs). Therefore, we can again apply
Lemma 3.2.3 to X \ {z1} seen as a subset of vertices of Gy: if for all x € X \ {2z} we have
Oo(z) # 0, then we set C' = {z1}; otherwise, let zo € X \ {2} be an erasable vertex of Gy and
perform the peeling process peeling this z, in G5. We repeat this procedure until there is not
any erasable vertex left (this process always ends, since X is finite), and we set C' the resulting
set. By construction, C' € 15(G).

At first glance, this set C' does not appear to be well defined, and seems to depend heavily
on the choices of vertices made at each step of its construction. The next proposition shows
that is not the case.

PROPOSITION 3.2.5. Let A € IS(G). If AC X, then ACC.

PrOOF. We split the proof into two cases.

o If for all z € X we have 0(z) # 0, then, by definition of the peeling process, we have
that A=0=C.
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e If there exists z € X such that 6(z) = 0, then C' # (. Thus there exists L =
[x1,29,...] € PS(G) and k € N* such that C' = {x1,...,c}. Let us denote by
G; = (G;, 0;); the sequence of valued digraphs associated with L and let L' = [z, 2, .. ]
be in PS(G) such that A = {z,..., 24}

Assume by contradiction that A ¢ C' and consider j < |A| minimal such that
z; ¢ C. We have that z; is a vertex of G4, and, by minimality, for all ¢ < j there
exists 1 < i, < k such that z; = x;,. Let us now compute the value of 0;,(2;). By
definition of the peeling process, we have

0(z) = {a <j | (z,2) € B} = Ha <j | (3,2,) € E}.
However, for all ¢ < j we have i, < k, so that
Ocr1(z) = 0(2) —{p <k | (25,2,) € E}| <0.
Thus, 6x11(2;) = 0 and this is absurd by construction of C, hence A C C.
This ends the proof O

As C' C X by construction, Proposition 3.2.5 implies the following corollary.
COROLLARY 3.2.6. The set C' is the infimum of S.

Finally, note that if the underlying graph G is finite, then we obviously have that V', the
set, of all the vertices of G, satisfies the Points (1) and (2) of Proposition 3.2.1. Consequently,
V € 15(G), and the poset (15(G), C) is bounded. Thus, (15(G), C) is a lattice since it is a meet
semi-lattice (more precisely, it is a complete lattice), and this ends the proof of Theorem 3.1.5.

3.2.2. Proof of Theorem 3.1.6. The proof of this formula is purely combinatorial, and
is based on the well-known Inclusion-Ezclusion Principle (see §2 in [S3]). We first introduce
some notations: for all A € I5(G), we denote by [0, A] the set {B € IS(G) | § C B C A}. Let
A, N(A) and F(A) be as defined in Theorem 3.1.6, for all S C F(A), let us denote by Ag the
infimum of {A\ {z} | x € S} C I5(G).

We begin the proof with a technical lemma.

LEMMA 3.2.7. Let S C F(A), we have Ag # 0 if and only if N(A) £ S.
PROOF. Obviously, ﬂ(A\{x}) = A\ S. Thanks to Lemma 3.2.3, if N(A) ¢ S, then

zeS
there exists z € A\ S which is erasable in G, so that the infimum of {A\ {z} | z € S} is not
U

(). The proof of the converse implication is based on similar arguments.

An immediate consequence of the meet semi-lattice structure of P(G) is that, for all A and
Bin I1S(G), [0, AJn[0, B] = [0, AN B] where AA B is the infimum of {A, B}. This basic remark
leads to the claimed formula.

First, we have

0,4\ {4} = |J 0. Aw).

zeF(A)

Then, by the Inclusion-Exclusion Principle, we have

ﬂ [0, A{x}]

zeSs

0, AN {AN = ) (-pB

0£SCF(A)

= > (DB, A4l

0£SCF(A)

Once applied to the Mobius function of P(G), this gives rise to the following identity:

(3.1) w0, A) =~ 3 (DS 0, B)

0£SCF(A) Be[0,Ag)
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By definition of the Mo6bius function, Z w(d,B) =1if Ag = 0, and 0 otherwise. Hence,
BE[@,As]
thanks to Lemma 3.2.7, if N (A) ¢ F(A), then u(0, A) = 0. Otherwise, Equation (3.1) becomes

p@0,4)=— 3 (=S = (@l ST (ls

N(A)CSCF(A) SCF(A\N(4)
— (—1)WI(1 = )F@OWEAL

Theorem 3.1.6 follows immediately.

3.3. Link with the weak order

In this section, we show several examples of classical posets which can be described using
valued digraphs. We first recall the definition of weak order on a Coxeter groups.

Let W be a Coxeter group with generating set S, the weak order on W is the poset (W, <g),
defined as follows: we say that w <g 7 if and only if there exists si,...,s; in S such that
T =wsy S and £(7) = L(w) + k.

It is well-known that (W, <g) is a complete meet semi-lattice when W is infinite, a complete
lattice when W is finite, and that its Mobius function takes values into {£1,0} (see |[B| and
[BB|). Hence, it is natural to look for an interpretation of the weak order through the theory
developed in the previous section. Indeed such an interpretation exists in some cases, and we
give an explicit description for the following list of posets.

THEOREM 3.3.1. For each poset (P, <) in the following list, there exists an explicit valued
digraph G such that (P, <) is isomorphic to (1S(G),C):

o (W, <g) where W = A,,_1, B, ;1; and <g isthe (right) weak order on W;
o the flag weak order (Z, 1Sy, <y);
e the up-set (resp. down-set) lattice of any finite poset.

We prove Theorem 3.3.1 with a careful case-by-case study, which is done in the following
sections. More precisely, in Section 3.3.1 we provide a candidate of valued digraph associated
with the weak order on A,_;, and we prove that this candidate indeed provides a description
of the weak order on A,_; in Section 3.3.2. Similarly, in Section 3.3.3 we construct a valued
digraph associated with B,,, and we prove in Section 3.3.4 that this valued digrapll describe
the weak order on B,,. Section 3.3.5 is devoted to the study of the weak order on A,,. Finally,
in Sections 3.3.6 and 3.3.7 we study the cases of the flag weak order and the up-set lattice,
respectively.

3.3.1. Weak order on A,_;. Recall that A,_; is the Coxeter group with generating set
S = {s1,...,8,-1} and with Coxeter matrix M = (mg)sses given by my,,,, = 3 for all
1<i<n—2, mg=1forall s €S and mgy = 2 otherwise. As usual, we identify A, _; with
the symmetric group S, identifying the generator s; with the simple transposition of S, which
exchanges the integers ¢ and 7 + 1.

When we try to find a valued digraph G = (G, #) such that (A,,_1,<g) is isomorphic to
(15(G), C), the first problem arising is that, on the one hand we have a poset whose elements
are permutations, and on the other hand we have a poset whose elements are sets. In order
to overcome this difficulty, let us consider a canonical set associated with each permutation
o €S, its inversion set:

(3.2) Inv(o) = {(a,b) € [n]* | a < band ¢ *(a) > o' (b)}.

Note that the definition we give here is not the usual one (see | BB, eq.(1.25)| for the classical
definition). However, it is straightforward to check that the connection between inversion sets
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and the weak order on S, is preserved. That is, we have the following property (see [BB, p.67|):
for any o,w € S,

(3.3) o0 <g w if and only if Inv(c) C Inv(w).

This property allows us to clarify our goal: we are looking for a valued digraph G = (G, #) such
that,

(1) the vertices of the graph are indexed by couples of integers (a,b) € [n]? such that a < b;
(2) the digraph structure of G, together with the valuation 6, imply that IS(G) is consti-
tuted exactly of the sets of the form Inv(o), o € 5,.

There is a convenient way to represent the set {(a,b) € [n]? | a < b}, considering the n-th
staircase diagram, namely the Ferrers diagram of the partition A\, = (n—1,n—2,...,1) of size
N = (’;) On the left of Figure 3.2, the diagram associated to the case n = 5 is represented.
The coordinates of each box can be read thanks to the circled integers on the diagonal. From

now on, we identify \,, with the set {(a,b) € [n]* | a < b}. As shown in the middle of Figure 3.2,
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The coordinates of
this box are (2,5)

The inversion set of Hook based on (2,5)

o=1[4,1,3,5,2]

FIGURE 3.2.

one can easily visualize the inversion set of any element of S,, as a subset of boxes in A,,. Note
that the set made of all the boxes of the diagram corresponds to the inversion set of the reverse
permutation [n,n —1,... 1] € S,, which is the maximal element in the weak order.

We can define a digraph structure G on the staircase diagram ), (where the vertices are
the boxes of the diagram), thanks to a classical combinatorial object associated to each box
¢ € A\, the hook based on ¢, denoted H(c), consisting of ¢ and all the boxes which are on the
right and below ¢ (see Figure 3.2, on the right): we say that there is an arc from ¢ to 0 if and
only if ¢ # 0 and 0 € H(c). Obviously, the resulting digraph G is acyclic, and the out-degree
of any box is an even number. Thus, if we set # the function defined by 0(c¢) := d+2(c), then the
couple A = (G, 0) is a valued digraph. Let us summarize this construction in a definition.

DEFINITION 3.3.2. Let G = (V, E) be the digraph such that
Vi=A={(a,b)€[n]* |a<b}and E:={(c,0) € X2 | c#£0dand d € H(c)}.
We denote by A := (G, 0) the valued digraph such that for all ¢ € A\,

0(c) := d;(c).

One can check that the posets (1.5(.A), C) obtained in the cases n = 2, 3 and 4 are isomorphic
to the weak order on Ay, Ay and Az, respectively. As stated in the following theorem, this
situation is in fact general.

THEOREM 3.3.3. The posets (S,, <g) and (IS(A), C) are isomorphic.

The next section is dedicated to the proof of Theorem 3.3.3.
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3.3.2. Proof of Theorem 3.3.3. In this section, we show that
IS(A) ={Inv(o) | 0 € S,},

which immediately implies Theorem 3.3.3 (thanks to (3.3)). We divide our proof into three
steps. First, for any permutation o € S,, we define a statistic d, on A, \Inv(c) (Definition 3.3.4),
which we characterize using the notion of adjacency (see Lemma 3.3.6). We then use this to
give a combinatorial interpretation of the valuations 6; appearing when we perform the peeling
process on A (see Proposition 3.3.8). Finally, using this combinatorial interpretation, we prove
that 1S(A) = {Inv(o) | 0 € S,} (see Proposition 3.3.9 and Corollary 3.3.10).

We begin with the definition of the statistic d,.

DEFINITION 3.3.4. Let 0 € S,, and (a,b) € A\, \ Inv(c). Then, we set:
d,(a,b) == {a<k<b|o(a) <o (k) <o '(b)}

Let o € S, and (a,b) € \,, we say that a and b are adjacent in o if and only if o1 (b) =
o~ 1(a) + 1. One can clearly visualize two adjacent entries of a permutation o € S, using the
window notation of 0. That is, a and b are adjacent in o if and only if (a,b) € A, and

o=1lo(l),0(2),...,a,b,...,0(n—1),0(n)].

This notion is linked to the weak order thanks to the following well-known property: for all
o,w € S, we have 0 <p w and ¢(w) = l(o) + 1 if and only if w can be obtained from o by
swapping positions of two adjacent entries of o and we say that w covers o, denoted by o <lgw.
This can be transposed to the context of inversion sets using Equation (3.3) as follows: for all
o,w € S,, we have

0 <r w if and only if Inv(w) = Inv(c) U {(a,b)}
for a and b two adjacent entries of o.

REMARK 3.3.5. Note that if @ and b are two adjacent entries of o, then d,(a,b) = 0, but
the converse is not true.

We now provide a characterization of the statistic d,.
LEMMA 3.3.6. Let 0 € S,, and (a,b) € A\, \ Inv(c). Then, we have
do(a,b) ={a<k<b|keN} —-|{a<k<b]| (ak)€Inv(o) or (k,b) € Inv(o)}|.

PROOF. Let s;---s, be a reduced decomposition of o and denote by o; the permutation
s1+-+8;, 0 < i < g (with the convention that oy = Id). We prove by induction on i that the
lemma is true for o;.

Note that the property is obviously true for og. Let ¢ > 0 be such that the property is true.
For the sake of clarity, let us denote by d; the integer d,,(a,b). Since s;---s, is reduced, we
have 0; <\ 0,41, thus there exists a unique (a;41, b;+1) in Inv(o;11) \ Inv(o;). We now show how
one can deduce the value of §;;; from both §; and (a;41,b;41)-

e (case (ajt1,bi11) = (a, k) with a < k < b) the permutation ;. is obtained from o; by
exchanging the position of the integer a with the position of the integer k. Moreover,
since 0; <g 011, a and k are adjacent in o;. However, (a,b) ¢ Inv(o;), thus k lies
strictly between a and b in the window notation of o;, i.e. we have

oo=1o(1),...,a,k,...;b,...,0(n).

Hence, it is no longer the case in 0;,1, so that ;.1 = J; — 1.

o If (a;41,bi11) = (k,b) with @ < k < b, then with similar arguments we show that
(51'_5_1 = (Sz - 1

e In all other cases, both a;,1 and b, either lie between a and b in o;, or they do note,
and this is also true for o;,;. Therefore, we have d;,1 = ;.

Finally, by induction hypothesis, ;.1 satisfies the property, and this ends the proof. [

For the sake of clarity, we introduce the following useful notation.
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DEFINITION 3.3.7. Let G = (G,0) be a valued digraph and A € 1S5(G), we denote by
Ga = (Ga,04) the valued digraph obtained after removing all the elements of A in G using the
peeling process.

We are now able to provide a combinatorial interpretation of 64 for some A € I5(A).

PROPOSITION 3.3.8. Let A € IS(A), if there exists o € S, such that A = Inv(o), then for
all (a,b) € A\, \ Inv(o), we have 04(a,b) = d,(a,b).

PROOF. Let (a,b) € A, \ Inv(o), by construction of A = (G, ), there is an arc from (a,b)

to (¢, d) if and only if (¢,d) = (a, k) or (k,b) with a < k < b. Thus, by definition of the peeling
process, we have

0a(a,b) =0(a,b) —{a <k <b| (a,k)€Inv(o) or (k,b) € Inv(o)}|.

Moreover, we obviously have 0(a,b) =b—a—1=|{a < k <b | k € N}|. Consequently, thanks
to Lemma 3.3.6, we have

Oa(a,b) ={a<k<b|keN} —|{a<k<b]| (ak)€lnv(o)or (k,b) € Inv(o)}| = d,(a,b),
which ends the proof. O

Finally, we are now able to prove the main property of this section, which immediately leads
to the proof of Theorem 3.3.3 (see Corollary 3.3.10).

PROPOSITION 3.3.9. Let A € IS(A), 0 € S, such that A = Inv(o) and (a,b) € A, \ A.
Then, a and b are adjacent in o if and only if (a,b) is erasable in Ag.

PROOF. Assume that a and b are adjacent in o, then d,(a,b) = 0. Let (¢,d) € A\, \ A
be such that there is an arc from (c¢,d) to (a,b), thus we have (¢,d) = (a,p) with p > b or
(¢,d) = (q,b) with ¢ < a. Since a and b are adjacent in o, we have in the first case that b is
between a and p in the window notation of o, i.e we have

o=1o(l),...,a,b,...,p,...,0(n)],

and we have in the second case that a is between ¢ and b in o. In both cases, 04(c,d) =
dy,(c,d) > 1. Consequently, (a,b) is erasable in A4.

We now prove the converse implication. Let (a,b) € A, \ A be erasable in A4, and assume
by contradiction that a and b are not adjacent in o. Then, there exists 1 < ¢ < n which is
between a and b in o and since 04(a,b) = d,(a,b) = 0, we have ¢ < a or ¢ > b.

e Case ¢ < a. Let d be maximal such that d < a and d is between a and b in o, and let
k be an integer which is between d and b in o (if such a k exists), we have:
— by maximality of d, k ¢ [d, a];
— since d,(a,b) =0, k ¢ [a,].
Thus, d,(d,b) = 0 = 0(d, b), which is absurd since (a,b) is erasable and there is an arc
from (d,b) to (a,b).

e Case ¢ > b leads to a similar contradiction.

This proves that a and b are adjacent in ¢, and this ends the proof. [l
COROLLARY 3.3.10. IS(A) = {Inv(o) | 0 € S,.}.

PROOF. Let L = [(a1,b1), ..., (an,bn)] € PS(A), since Inv(Id) = (), a; and b, are adjacent
in Id by Proposition 3.3.9. Let oy be the permutation which has {(a;, b;)} as inversion set, then,
using recursively Proposition 3.3.9, we show that for all 1 < k£ < N, there exists a permutation
oy which has {(aq,b1),..., (ax, br)} as inversion set. This is enough to prove the corollary. [J

This concludes the proof of Theorem 3.3.3.
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3.3.3. Weak order on B,. Recall that B, is the Coxeter group with generating set
S = {s0,51,...,5.-1}, and with Coxeter matrix M = (mg)sscs given by my,,,, = 3 for
all 1 <i<n—1, mg =1forall s €S, myg, =4 and my = 2 otherwise. This group can
be seen as the group of the signed permutations w of the set [+n| := {—n,...,—1,1,...,n}
satisfying w(—m) = —w(m) for all m. Within this interpretation, sq is the signed permutation
such that so(1) = —1 and so(j) = j for all 7 > 1, and s; is the permutation which exchange the
positions of ¢ and i+ 1 (and also the positions of —i and —i —1). In what follows, we sometimes
represent an element w in B,, by its full window notation, that is:

(=), w(~(n—1)),....0(~1),w(1),... w(n — 1), w(n)),
Our aim in this section is to provide an interpretation of (B,, <g) using our theory. First,

we need to find a candidate of valued digraph. For that purpose, we follow the same method
as in Section 3.3.1, using a good notion of inversion set.

REMARK 3.3.11. It is important to note that we will not use the notion of inversion set
coming from root systems in this chapter. Indeed, the combinatorial techniques we use here
heavily depend on the interpretation of B, as a set of permutations, and not as a set of
reflections. The drawback of this approach is that we have to relate by ourselves these inversion
sets to the weak order on B,. Fortunately, most of the technical points have already been
accomplished in [BB].

We begin with associating to each element w of B,, a B-inversion set, defined by:
(3.4) Invp(w) = {(a,b) € [+n] x [n] | a < b, |a| < band w '(a) > w ' (b)}.

Let us now relate B-inversion set to the weak order on B,. For that purpose, we need a
definition and a result coming from |BB|, which we now give.

DEFINITION 3.3.12 (see [BB]|, eq. (8.2) p.247). Let w € B,,, the B-inversion number of w
is the quantity

invg(w) :=|{(a,b) € [n)* | @ < b and w(a) > w(b)}|
+ H(a,b) € [n)* | @ < b and w(—a) > w(b)}.|
LEMMA 3.3.13 (see [BB|, Eq. (8.6) and (8.7) p. 247). Let w € B,, and i € [n — 1], we have
v () — { invp(w)+ 1, ifw() <w(@+1),

invg(w) — 1, if w(i) > w(i+1).
We also have invg(wsg) = invy(w) + sign (w(1)).
The statistic invg is related to B-inversion sets, thanks to the following lemma.
LEMMA 3.3.14. For all w € B,,, we have invg(w) = |Invg(w)].
PROOF. We have
invg(w) = [{(a,b) € [n)* | @ < b and w(a) > w(b)}|
+ |{(a,b) € [n)* | @ < b and w(—a) > w(b)}.|
= |{(a,b) € [£n| x [n] | a < b, |a] < b and w(a) > w(b)}
= [Imvp(w)],
which is the expected result. [

We now begin to prove that B-inversion sets can be used to study (B,, <g). That is, we
show that for all w, 7 € B,, we have

(3.5) w <g 7 if and only if Invg(w) C Invg(7).

We start with defining the equivalent of the notion of adjacency in type B.
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DEFINITION 3.3.15. Let w € B,, and a < b be in [+n], we say that a and b are B-adjacent
in w if and only if the following two conditions are true:
(1) la] < b,
(2) a and b are adjacent in w (seen as a permutation of [+n], i.e. the full window notation
of w is of the form
w=[w(-n),...,;a,b,...,w(n)].

It appears that the notion of B-adjacency plays the same role in type B as the usual notion
of adjacency do in type A, as shown in the next proposition.

PROPOSITION 3.3.16. Let w € B, and 0 < j < n — 1, there exists (a,b) such that |a| < b,
and such that ws; is obtained from w by swapping the positions of a and b and the positions of
—b and —a in w. Then, we have two possibilities:

e if a and b are B-adjacent in w, then {(ws;) = {(w) + 1 and Invg(ws;) = Invg(w) U {(a,b)};
e ifa and b are not B-adjacent in w, then ((ws;) = {(w)—1 and Invp(ws;) = Invg(w)\{(a,b)}.

PROOF. This is a consequence of Lemma 3.3.14 together with Lemma 3.3.13 and Defini-
tion 3.3.15. u

An immediate consequence of Proposition 3.3.16 is the following proposition.

PROPOSITION 3.3.17. Let w,7 € B,,. Then, w <gr 7 if and only if there exists a,b € [£n]
B-adjacent in w such that Invg(7) = Invg(w) U {(a,b)}.

Proposition 3.3.17 implies the direct implication (=) of (3.5). Note that a proof of the
converse implication of (3.5), which is of fundamental importance for our purpose, will follow
from the results of Section 3.3.4 (see Corollary 3.3.25), and we will postpone till there.

Let us now introduce a way to visualize B-inversion sets. First, note that the B-inversion
set of any element of B, is a subset of {(a,b) € [£n] x [n] | |a| < b}. One can easily represent
the set {(a,b) € [£n] x [n] | |a|] < b} considering the shifted diagram M\ of the partition
(2n —1,2n — 3,...,1), as depicted on Figure 3.3. The coordinates of each box can be read
thanks to the circled integers.

From now on, we identify A3 with the set {(a,b) € [£n] x [n] | |a| < b}.
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The coordinates of this box
are (—2,4).
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Shifted hook based on (—2,4).

FIGURE 3.3.

We now define a digraph structure G on A} (where the vertices are the boxes of the diagram),
using the equivalent of hooks of Ferrers diagrams in the shifted case, namely shifted hooks (as
depicted on the right of Figure 3.3). The shifted hook based on (a,b) in A} is formally defined
by

(K, b)
H(a,b) == {(a,b)} U{ (z,y) € A} | Ik € N such that a < k < b and (z,y) = | or (a, k)
or (—k,—a)
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Following the same methods of Section 3.3.1, we define a digraph structure G' on A} by saying
that there is an arc from ¢ to 0 in G if and only if ¢ # 0 and 0 is in the shifted hook based
on ¢. It appears that G is acyclic and the out-degree of any box is an even number, so that
the valuation 0(¢) = €@ 5 an OCV on G. Thus, B := (G,0) is a valued digraph. Let us

2
summarize this construction in a definition.

DEFINITION 3.3.18. Let G = (V, E) be the digraph such that
V=X and E = {(c,0) € (\3)? | c£0 and 0 € H(c)}.
We denote by B = (G, ) the valued digraph such that for any ¢ € A2

d*(c)
0(c) = ———.
=2
One can easily check that the poset (1.5(B), C) is isomorphic to the weak order on (B, <g)

when n = 2 or 3. This situation is in fact general, as stated in the following theorem.
THEOREM 3.3.19. The posets (B, <g) and (IS(B), <) are isomorphic.

The proof of this theorem follows the exact same pattern as the one of Theorem 3.3.3.
However, many technical difficulties appear in the B, case, so that we detail completely the
proofs in the following section.

3.3.4. Proof of Theorem 3.3.19. In this section, we show that
IS(B) = {Invg(w) | w € B,},

which implies Theorem 3.3.19. We follow the same method as in Section 3.3.2 and we divide
our proof into three steps. First, for any w € B,, we define a statistic d,, on A} \ Invg(w) (Defini-
tion 3.3.20). Then by using the notion of adjacency (see 3.3.15) in B,, we provide an alternative
definition of d, (Lemma 3.3.21), leading to a combinatorial interpretation of the valuations
appearing when one performs the peeling process on B (Proposition 3.3.22). Finally, we prove
that 1.S(B) = {Invg(w) | w € B,} by using this combinatorial interpretation (Corollary 3.3.24).
Moreover, as a consequence we obtain the converse implication of (3.5) (Corollary 3.3.25), so

that (IS(B),C) and (B, <g) are isomorphic.

We begin with the definition of the statistic d,,.

DEFINITION 3.3.20. Let w € B,, and (a,b) € A5 \ Invp(w). We define the statistic d,(a,b)
as follows:
e if |a| < b, then dy(a,b) :==|[{a <k <b|w(a) <w (k) <w D)}
o if —a=>b, then d,(a,—a) =|{l1 <k < —a|wa) <w k) <w(—a)}|

The statistic d,, admits the following characterization.
LEMMA 3.3.21. Let w € B,,, and (a,b) € X} \ Invg(w), then we have
dy(a,b) = dra(a,b) — |H(a,b) N Invg(w)).

PROOF. Let s;---s, be a reduced decomposition of w and denote by w; the signed permu-
tation s;---s;, 0 <17 < g. We prove by induction on ¢ that the lemma is true for w;.

The property is obviously true for /d. Let ¢ > 0 be such that the property is true. For
the sake of clarity, let us denote by d; the integer d,,(a,b). Since s;--- s, is reduced, we have
0; <g 0i+1, hence there exists a unique (a;41,b;41) in Invp(w;s1) \ Invp(w;). We now show how
one can deduce the value of d;;; from both ¢; and (a;11,b;+1). We split our study into three
cases
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e (Case (aj41,bi41) = (a,k) with a < k < b and |a|] < k) w;41 is obtained from w; by
swapping the positions of @ and k£ and the positions of —& and —a. Furthermore, a
and k are adjacent in w; and (a,b) ¢ Invg(w;), so that we have

wi=[..,a,k,...;0b,. ..

We now distinguish two sub-cases.
— If |a|] < b, then the full window notation of w has one of the three following forms:

L.,a,k,..., =k, —a,....b,..]
or[...,a, k,....,b,..., =k, —a,...]
or[..., =k, —a,...,a,k,....b,. . ]

Therefore, in all cases either both —k and —a are between a and b in w;, or both
—k and —a are not between a and b. Hence, it is again the case in w;.1, so we
have d;,1 = 0; — 1. Moreover, we also have

|H (a,b) N Invg(wil)| = [H(a,b) N Invg(w;)| + 1.
— If b = —a, then we have
wi=[..,a,k,...., =k, —a,..]

so that both k£ and —k lie between ¢ and —a in w;, and it is no longer the case in
wir1. Hence, by definition of d,(a, —a), we have §;,1 = §; — 1. Furthermore, we
also have

|H (a,b) N Invg(wi1)| = [H(a,b) NInvg(w)| + 1.
o (case (aj41,bi41) = (k,b) or (—k,—a) with a < k < b) using similar arguments as in the
previous case, we show that ;1 = d; — 1 (notice that the case (a;41,b;,41) = (—b, —k)
cannot occur thanks to the condition |a| < b) and

|H (a,b) N Invg(wii1)| = [H(a,b) NInvg(w)| + 1.

e Otherwise, we have that both a;.; and b;,; either lie between a and b in w;, or do not
lie between a and b (and similarly for —b;,1 and —a;y1). Thus, it is still true in w;,1,
so that ;11 = ¢; and

|H(a,b) NInvg(wiy1)| = |H(a,b) N Invg(w;)]|.
By induction hypothesis w;,; satisfy the property, so that the lemma is proved. l
We now give a combinatorial interpretation of 64 for some A € I.5(B)

PROPOSITION 3.3.22. Let A € IS(A), if there exists w € B,, such that A = Invg(w), then
for all (a,b) € X3 \ Invg(w), we have O4(a,b) = d,(a,b).

PROOF. Note that 6(a,b) = dr4(a,b). Thus, by the definitions of the underlying digraph of
B using shifted hooks and of the peeling process, and thanks to Lemma 3.3.21, the property
follows. O

Proposition 3.3.22 allows us to link the weak order on B,, and the poset (IS5(B),C), as it is
shown in the next proposition.

PROPOSITION 3.3.23. Let A € 1S(B). If there exists w € B,, such that A = Invg(w), then
for all (a,b) € A2\ A, we have that (a,b) is erasable in Ba if and only if a and b are adjacent
m w.

PROOF. Let (a,b) € A2 \ A and assume that a and b are adjacent in w. Our aim is to prove
that (a,b) is erasable in B4.

First, note that 04(a,b) = d,(a,b) = 0. Let (¢,d) € X3 \ A be such that there is an arc
from (c,d) to (a,b). We prove that 64(c,d) # 0. Equivalently, we show that d,(c,d) # 0. By
definition of the underlying digraph of B, we have only three cases which we now detail.
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e ((a,b) = (¢,p) such that |¢|] < p < d). Since a and b are adjacent in w, we have that ¢
and p are adjacent in w. Moreover, we have (¢,d) ¢ A = Invg(w), so that ¢ is on the
left of d in the window notation of w. It follows that we have

w=[..,c,p,...,d,. . ]

However, we have ¢ < p < d by hypothesis, hence d,(c,d) > 1.
e ((a,b) = (q,d) with ¢ < ¢ < d). We have that ¢ and d are adjacent in w. Moreover,
we have (¢,d) ¢ Invg(w), so that we have

w=[..,c,....,q,d,..]

Nevertheless, we have ¢ < ¢ < d by hypothesis, hence d,(c,d) > 1.

e ((a,b) = (k,—c) with ¢ < k < —c¢). First, note that we have ¢ < —k < —¢. Moreover,
we have (¢,d) € A2, so that —c < |¢| < d. We thus have ¢ < —k < —¢ < d. Assume
by contradiction that —k = d, then —c = d, hence we have

(a,b) = (=d,d) = (k, —c) = (¢, d).

Consequently, there is an arc from (a,b) to (a,b) in the underlying graph of B, and
this is absurd. Therefore, we have ¢ < —k < d.
Let us now show that —k lies between ¢ and d in w. By hypothesis, we have

w=1[..,k, —c,..]
but w is a signed permutation, so that we have
w=1[..,c, —k,....
However, (¢,d) ¢ Invg(w), hence we have
w=l..,c, =k, ... d,..]
Therefore, if —c # d, then we have d,(c,d) > 1. If —c = d, then we have
w=[..,c, =k, ...k, —c,...],

and we also have ¢ < —k < k < —¢, so that d,(c,d) > 1

In all cases, we have d,(c,d) > 1, but §(c,d) = d,(c, d) by Proposition 3.3.22, hence 0(c,d) > 1.
Thus, we just proved that for all box ¢ € A%\ A, if there is an arc from ¢ to (a,b), then 6(¢) > 1.
Consequently, (a,b) is erasable in By.

Let us now prove the converse. Let (a,b) € A2 \ A be erasable in B, and assume by
contradiction that a and b are not adjacent in w. We divide the study into two cases.

e (Case a = —b) Since —b and b are not adjacent in w, there exists k lying between —b
and b in w. By symmetry, both k£ and —k lie between —b and b, thus we can suppose
that k£ > 0. Furthermore, d,(—b,b) = 0, so that k > b. Let us consider p > b minimal
lying between a and b and let ¢ be an integer lying between —b and p in w (if such a
q exists). Then, we have

w=[..,=b,...,q,...,p,...,b,..]

so that ¢ is between —b and b in w. Moreover, we have the following facts:

— by minimality of p, ¢ ¢ [b, p];

— since d,(—b,b) =0, ¢ ¢ [0, D].
Consequently, ¢ ¢ [—b, p], hence d,(—b,p) = 0 = 04(—b,p). However, there is an arc
from (—b,p) to (—b,b), and this is a contradiction since (—b,b) is erasable.

e (Case |a| < b) There exists k lying between a and b such that either & > b or k < a.
In the first case, similar arguments as in the previous case lead to a contradiction with
the fact that (a,b) is erasable. In the second case, we consider p < a maximal lying
between a and b. We have the following two sub-cases.
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— If —b < p < a, then for each ¢ between p and b in w, we have either ¢ < p by
maximality, or ¢ > b because d,(a,b) = 0. Thus, d,(p,b) = 0, so that 6(p,b) = 0.
but there is an arc from (p,b) to (a,b), hence it contradicts the fact that (a,b) is
erasable.

— If p < —b, then we prove that d,(—b, —p) = 0. For that purpose, assume by
contradiction that d,(—b, —p) = 0. Thus, there exists g between —b and —p in w
such that —b < ¢ < —p. Then, we have p < —q < b. Moreover, since w is a signed
permutation we have

(3.6) w=[.., P,y =q,..., b,..]
but p is between a and b in w, hence we have
w=[..,a,. .., —q,...,b,..]
Therefore, we have p < —q¢ < b and by maximality of p, we have a < —q. Since
p is between a and b in w, thanks to 3.6, we have a # —q. Eventually, we
have a < —¢ < b, and this is absurd since d,(a,b) = 0. Consequently, we have
d,(—b,—p) = 0, so that #(—b, —p) = 0. But there is an arc from (—b, —p) to (a,b),
hence it contradicts the fact that (a,b) is erasable.

Finally, in all cases we obtain a contradiction. Thus, a and b are adjacent in w and this concludes
the proof. 0

With Proposition 3.3.23, one can prove the following result using exactly the same method
as in the proof of Corollary 3.3.10.

COROLLARY 3.3.24. IS(B) = {Invp(w) | w € B,}.

This result has the following important consequence (which gives the converse direction of
(3.5)).
COROLLARY 3.3.25. Let o,w € By, then 0 <g w if and only if Invg(c) C Invg(w).

PROOF. The direct direction is given by (3.5), and we now prove the converse. Assume
that Invg(c) C Invg(w), then there exist L = [z1,...,2,2] € PS(B) and p < ¢ two integers
such that Inv(c) = {21,...,2,} and Inv(w) = {21,...,2,}. Then thanks to Corollary 3.3.24
and Proposition 3.3.17, there exist oq,...,0 such that 0 = 01 <g 03 g ... <r 0 = w, and
this ends the proof. O

Consequently, thanks to Corollary 3.3.24 the posets (I5(B),C) and (B,,, <g) are isomorphic.
This concludes the proof of Theorem 3.3.19.

3.3.5. Weak order on A,. Recall that A, is the Coxeter Group with generating set
S = {s1,...,5,}, and with Coxeter matrix given by my,,, = 3 if j = i+1 (where the indices are
taken modulo n), and m,, = 2 otherwise. This group can be seen as the group of the affine
permutations, that is, the group of all the bijections o : Z +— Z such that:

(1) for all k and ¢ in Z, o(q + kn) = o(q) + kn;

(2) o(1) +0(2) +--- +o(n) = "5
Thanks to this interpretation, we identify s; with the affine permutation swapping positions of
the integers @ + kn and ¢ 4+ 1 + kn, for all k € Z.

We are going to follow the same method of the previous sections. In order to find a candidate
of valued digraph, we consider a notion of A-inversion set adapted to the case of A, (see
Definition 3.3.29). After we checked that this notion is effectively related to the weak order on
A, (see Property 3.8), we propose a graphical interpretation of A-inversion sets using cylindrical
diagrams. Once again, this representation carries a natural notion of hooks, called cylindrical
hooks, which leads us to define a digraph structure on a cylindrical diagram as in Sections 3.3.1
and 3.3.3. Then, we define a valued digraph using the resulting digraph, and we check that the
obtained lattice is indeed isomorphic to (A,, <g).
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REMARK 3.3.26. We point out that, as in Section 3.3.3, the notion of A-inversion set
we use here does not come from a root system of :42 This choice gives the same benefits
(a “permutation point of view” on the weak order) and disadvantages (we have to relate A-
inversion sets to the weak order by ourselves) as in Section 3.3.3. Fortunately, once again most
of technical points have already been studied in [BB].

We associate to each affine permutation o an A-inversion set, define as follows:
(3.7) Inv ;(0) := {(a,b) € [n] x N* | a < b, and 0~ '(a) > o~ ()},

DEFINITION 3.3.27 (see |BBJ, eq. (8.30) p.261). Let o € A,, the A-inversion number of o
is the quantity
inv;(o) == [{(a,b) € [n] x N* | a <band o(a) > og(b)}|

Note that we clearly have inv ;(o) = |Inv 3(o)| for all o € A,.

LEMMA 3.3.28 (see [BB], Eq. (8.34) p. 262). Let o0 € A, and i € [n], we have

v (o)) — { invi(o)+1, ifo(i) <o(i+1),
AV inv(o) = 1, if o(i) > o(i + 1).

We now begin to prove that A-inversion sets can be used to study (;4\;, <g). That is, we
show that we have

(3.8) for all o,w € A,, if 0 <g w, then Inv ;(0) C Inv z(w).
We start with defining the equivalent of the notion of adjacency in type A

DEFINITION 3.3.29. Let o € A, and (a,b) € [n] x N*. We say that a and b are A-adjacent
in ¢ if and only if @ < b and o7 (a) = o71(b) — 1.

We are now able to state the lemma which connects A-inversion sets to (Z;, <Rg).

LEMMA 3.3.30. Let 0 € ANn and 1 < j < mn. Then, there exists (a,b) such that 1 < a < n,

a < b and os; is obtained from o by swapping positions of the integers a + kn and b + kn for
all k € Z, and we have two possibilities:

e if a and b are adjacent in o, then ((os;) = {(0)+1 and Inv 7(0s;) = Invz(o)U{(a,b)};

e if a and b are not adjacent in o, then {(os;) = {(0) — 1 and Inv 3(0s;) = Invz(o) \

{(a,0)}.

PROOF. This is an immediate translation of the results in Lemma 3.3.28 in terms of A-
adjacency. l

An immediate consequence of Lemma 3.3.30 is that (3.8) holds.

REMARK 3.3.31. As in Section 3.3.3, note that the converse implication holds, and it is also
a by-product of the following results.

We now introduce a convenient way to represent A-inversion sets. First, note that for all
o € A, and for all a,b € Z such that 1 < a < n and b = a (mod n), since ¢ is an affine
permutation we have (a,b) ¢ Invz(c). Thus, each A-inversion is a subset of

{(a,b) eN*|1<a<n, b#a (modn), a<b}.

This set can be represented by a diagram, which we denote by A%, as depicted in Figure 3.4.
From now on, we identify A%’ with the set {(a,b) € N> |1 <a <n, b # a (mod n), a < b}.
This diagram A% can be thought as an infinite version of the diagram associated with the
symmetric group rolled around a cylinder. With this point of view, A%’ naturally carries a
notion of hooks, which we call cylindrical hooks, as depicted on the right of Figure 3.4. More
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: Cylindric hook based on (2,9).
FIGURE 3.4. Diagram \{"

formally, for all (a,b) € A%, the cylindrical hook based on (a,b) is the subset H%(a,b) of A\
defined by:

H(a,b) == {(a,k) € \X¥ |a<k<b} U U {kger?a<k<b}
g=b (mod n)
q<b

Consequently, we can define a digraph structure G on A\ using cylindrical hooks. That is,
for all ¢,0 € A%, there is an arc from ¢ to ? in G if and only if ¢ # 0 and € H%(c). Notice
that the out-degree of a box of A% is generally not an even number, so that we cannot define
the valuation as in the previous sections. Nevertheless, after some tests it appears that the
valuation 6 defined for all (a,b) € A" by

0(a,b) := [{(a,k) € XY | a < k < b},
which is just the number of boxes which are below (a, b) in the graphical representation of !,

seems to lead to the expected description of the weak order on A,,. Before moving to the proof
that this is indeed the case, let us summarize this construction in a definition.

DEFINITION 3.3.32. Let G = (V, E) be the digraph defined by
V=A% and E:={(c,0) € A\¥)? | c£0and 0 € H¥(c)}.
We denote by A = (G, ) the valued digraph such that for all (a,b) € AV,
0(a,b) = |{(a, k) € X" | a < k < b}|.
Our aim is now to prove that (IS(A),C) is isomorphic to (A,, <z). This can be done
following exactly the same method as in Section 3.3.4, and we refer the reader to the introduction
of Section 3.3.4 for the detail of the different steps.

We first define the statistic on the affine permutations, which leads us to the combinatorial
interpretation of the valuations appearing when one perform the peeling process on A.

DEFINITION 3.3.33. Let 0 € A, and (a,b) € A%\ Inv 7(0). We set
dy(a,b) :=={a<k<b|k#a (modn), o '(a) <o (k) <o ()}

We then have the following characterization of the statistic d,.
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LEMMA 3.3.34. For all o € A, and (a,b) € AV \ Inv ;(o), we have
dy(a,b) = dra(a,b) — |[H¥ (a,b) N Inv z(0)].
PROOF. The proof is similar as the one of Lemma 3.3.6. U

Thanks to Lemma 3.3.34, we have the following proposition.

PROPOSITION 3.3.35. Let A € IS(A), if there ezists o € A, such that A = Inv 7(0), then
for all (a,b) € X'\ A we have 04(a,b) = dy(a,b).

PROOF. The proof is similar as the one of Proposition 3.3.8. 0

We can now state and prove the main proposition of this section.

PROPOSITION 3.3.36. Let A € IS(A), if there exists o € A, such that A = Inv ;(o), then
(a,b) is erasable in AA if and only iof a and b are A—adjacent m o.

PROOF. Once again, the proof is similar to that of Proposition 3.3.9. [l

Eventually, we have the following three corollaries that conclude this section.
COROLLARY 3.3.37. IS(A) = {Invz(o) | 0 € ALl
COROLLARY 3.3.38. Let 0,w € A,. Then, 0 <p w, if and only if Inv 7(0) C Inv z(w).

COROLLARY 3.3.39. The two posets (IS(A), C) and (A,,<g) are isomorphic.

3.3.6. Flag Weak Order on 7Z,!.S,. In this section, we consider an order on G(r,n) :=
7,1 S,, (introduced by Adin, Brenti and Roichman in [ABRY]), called the flag weak order, that
generalizes the weak order on the symmetric group. In order to define this new poset, let us
first introduce some notations and definitions. We denote by Z, the (additive) cyclic group of
order r and by G(r,n) the group

G(r,n) :={((c1,...,¢n),0) | ¢; €[r], o € Sy}
with the group operation given by

((c1y--ven) o). ((drs .o dn),w) = ((co@) +dis .o Com) + dn), ow),

where the sums c, ;) +d; are taken modulo r. This group is usually called the group of r-colored
permutations, i.e. bijections g of the set Z, x {1,...,n} onto itself such that:

g9(c,i) = (d,j) = glc+ C’, i) =(d+c,j).
Note that the group G(r,n) can also be viewed as a complex reflection group. However, once
again it is the “permutation point of view" on G(r,n) that allows us to apply our theory here.

Before moving to the definition of the flag weak order, we introduce some useful notations
taken from [ABRY].

DEFINITION 3.3.40. Let m = ((c1,...,¢,),0) be in G(r,n), we define:
(1) || = o3

(2) Inv(m) = Inv(|r);

(3) n(m) =, ci;

(4) finv(m) = r.|Inv(7)| + n(r), called the flag inversion number of .

Let us now present the philosophy behind the definition of the flag weak order, by first
recalling the definition of the weak order on the symmetric group. The definition of (S, <g)
can be decomposed into two distinct steps:

e first, we consider a specific set S of generator of S,, (here the simple transpositions);
e then, we consider a statistic £ on S, (here the length) and we define the weak order to
be the reflexive and transitive closure of the relation

for all o,w € S,,, 0 <pw <= s € S such that w=0s and {(1) < {(m).
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The flag weak order is defined by following a similar pattern:

e first, we define a special generating set of G(r,n), denoted by AU B;
e then, we define the flag weak order to be the reflexive and transitive closure of the
relation: for all =, 7 € G(r,n),

T <y 7<= 3s € AU B such that 7 =7s and finv(r) < finv(7).

As one can notice, the only difference with the definition of (S,,<g) is that we swapped
the length with the flag inversion number (see Definition 3.3.40). Let us now formalize this
construction in a definition.

DEFINITION 3.3.41 (Flag weak order, see |[ABRJ|). We denote by A and B the two subsets
of G(r,n) defined by

A={a; € G(r,n) |ien—1], a; = ((0i1,---,0i,---,0in), i)}, and
B= {bz S G(T’,n) | 1€ [n], bz = (((511,,511,,51n),ld)},

where s; is the i-th elementary transposition of the symmetric group and d,; = 1 if i = j, and
0 otherwise. The flag weak order <; on G(r,n) is the reflexive and transitive closure of the
relation <1y defined by:

Vr, 7€ G(r,n), m <y 7 <= 3s € AU B such that 7 =7s and finv(7) < finv(m).

The following lemma provide a complete description of covering relations in the flag weak
order.

LEMMA 3.3.42 (|ABR], Prop. 7.4). Let 7 = ((c1,...,¢,),0) € G(r,n) and s € AU B.
Then, s covers m in the flag weak order if and only if one of the two following situations
occur:

(1) there exists 1 < i <n such that s =b; € B and ¢; #r — 1;
(2) there exists 1 < i <n—1 such that s=a; € A, ¢c;y1 =7 —1 and o(i) < o(i + 1).

We now have enough general informations about the flag weak order to propose a valued
digraph which describes the flag weak order. The key point leading us to the construction of
this valued digraph is that the elements of A “look like” the simple transpositions of .S,,. That is,
they act on r-coloured permutations as simple transpositions act on permutation, by swapping
the positions of two adjacent entries. Furthermore, one can note that the function

o S, — G(r,n)
o — ((0,...,0),0)

is an injective poset morphism from (5,,<g) to (G(r,n),<y). Thus, the flag weak order
contains a sub-poset isomorphic to the weak order on S,. Using this facts as hints and after
some “guess and try” tests on the example of G(2,4), the author found out a candidate of valued
digraph, which is depicted on Figure 3.5. Once again, the digraph structure of this diagram is

0111213 211160
011]2 110
Vs 011 0 Vs

0

FIGURE 3.5. The candidate of valued digraph for (G(2,4), <y)

given implicitly, using a suitable notion of hook. A bit more formally, we say that for all boxes
¢ and 0 in this diagram, there is an arc from ¢ to 0 if and only if ¢ # ? and 0 is either in the
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same row and on the right of ¢, or in the same column and below ¢. With this definition, one
can check that the resulting poset is indeed isomorphic to (G(2,4), <j).

Let us now generalize and formalize this construction to the case of r and n arbitrary, by
first defining the diagram.

DEFINITION 3.3.43. We set A, := V4, U Vg, , where
Van = {(a,b) € [n]* | a < b}, and Vi, :={(a,b) € Zx [n] | —b(r —1) <a < —1}.

@

®

5 e &
e e e O
elcleleiclelelelele)

FIGURE 3.6. Graphical representation of \s4 with its coordinates

Note that we have V4, = A, (see Section 3.3.1), and we sometimes use this notation. Let us
now define the notion of hook associated with the diagram J, ,,, being suggested by its graphical
representation (see Figure 3.6).

DEFINITION 3.3.44. Let (a,b) € A, ,, we denote by H(a,b) the subset of \,.,, defined by
{(z,y) €\ | FEEN, a <k <b, (z,y) = (a,k) or (k,b)} if (a,b) € Vap,
H¢(a,b) == {

{(z,y) € A\ | @ <z and y = b} if (a,b) € Vpn.
Eventually, we can now define the valued digraph.
DEFINITION 3.3.45. Let G = (V, E) be the digraph defined by
Vi=XAyand E:={(c,0) € X} | c#0dand d € Hy(c}.
We denote by G(r,n) := (G, 0) the valued digraph such that for all (a,b) € A,
b—a—1 if (a,b) € Vay,
0(a,b) = bt { a

r —

1J if (CL, b) S Van.

EXAMPLE 3.3.6.1. We represent on Figure 3.7 the valued digraph G(2,4). As one can see,
this is exactly the valued digraph depicted on Figure 3.5.

of1]2]3 (2o l@®
o]1]2 C o l®
Vi ; 0|1 0@
! 0D M

eleleloelelocloe)

FiGURE 3.7.

Our aim is now to show that (15(G(r,n)),C) and (G(r,n),<s) are isomorphic, by con-
structing an explicit poset isomorphism. For that purpose, we split our study into two distinct
steps: we first construct a bijection between IS(G(r,n)) and G(r,n) (see Definition 3.3.49 and
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Proposition 3.3.51), and then we show that this bijection is in fact a poset isomorphism (see
Theorem 3.3.52). We begin with a lemma, which shows how we can associate a permutation
with each element of I.5(G(r,n)).

LEMMA 3.3.46. Let U € 1S(G(r,n), then U N Vy,, is the inversion set of a permutation in
Anq.

PROOF. Let us denote by X the set UNVy,, and by E’ the set of arcs of A, where A is the
valued digraph associated to (S,, <g) defined in Section 3.3.1. Since X\, = Va4, if X € IS(A),
then X is the inversion set of a permutation thanks to Corollary 3.3.10. We still have to show
that X is in 1.5(A). First, notice that for all ¢ in Vy ,,, we have H(¢) = H(c), where H(c) is the
hook based on ¢ in A\, defined in Section 3.3.1. Thus, by definition of the underlying digraph
of G(r,n), for all ¢ € Vy,, we have

{oeX |oel, (¢,0)e E} =Un Hy(c)
=UnNH(c)
={0e)N |0el, (¢0) e £}
Consequently, for all ¢ € A\, if ¢ € U, then by Proposition 3.2.1 we have
Oc) <{oe N, |oel, (¢,0) € E}
<H{oex |oeUl, (¢0) € E},

and the converse inequality holds when ¢ ¢ U. Thus, X is in I5(.A) by Proposition 3.2.1, and
this ends the proof. O

Thanks to Lemma 3.3.46, one can associate to each element of 1.5(G(r,n)) a permutation in
S,. What remains to understand is how to associate a color to each value of the permutation.
For that purpose, we introduce a new notation.

DEFINITION 3.3.47. Let U € I5(G(r,n)) and i € [n], we define the following two quantities
R,(U) = |{(z,i) € U | (x,i) € Van}| and L;(U) := |{(z,i1) € U | (x,i) € VBrn}l.
LEMMA 3.3.48. Let U € 1S(G(r,n)) and i € [n|. Then, we have
0<Li(U)— (r—1R;(U) <r—1.
PROOF. By definition, for all (z,7) € Vp,, and (y,i) € V4, we have ((z,7),(y,1)) € E.
Thus, we have for all (z,i) € Vg,
&i(U) < [{oeU|((x,9),0) € E}|.
Let us consider the following set
X=A(x,i)) € Vpyn | —i(r—1)<z<—(i—R(U))(r—1)}
Clearly, we have | X| = (r — 1)R;(U). Moreover, by definition we have for all (z,i) € X that

T

— <R(U)—i = {£—1J<Ri(U)—i — ¢+{L1J<Riw)

= O(z,i) < Ry(U) = O(z,i)<|{o€U|((x,i),0) € E}|.
We thus have X C U by Proposition 3.2.1. Therefore, we have
(3.9) (r—D)R,U)=|X|<L;(U) = 0<L;(U)—(r—1)R;(U).
To prove the converse inequality, we consider the set
Y ={(y,i) € Vgon | —((—R(U)—1)(r—1) <y <—-1}.
For all (y,i) € Y, we have

)
r —

R(U)—i+1< s RZ-(U)—z'<{ Y J —  Ri(U) < 0(y, ).

r—1
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Let us now fix (y,4) in Y. We show by backward induction on y that (y,i) ¢ U. By definition,
each arc having (—1,) as starting point has an element of Vy, as ending point. Moreover,
such an arc has its ending point in row ¢, so that we have

{oeU|((-1,i),0) € E}| < Ri(U) < 0(-1,i).

Thus, (—1,7) ¢ U by Proposition 3.2.1, and one can finish the induction using similar argu-
ments. Consequently, Y N U is empty. However, we have |Y| = (i — R;(U) — 1)(r — 1), so
that

(3.10) Ly(U)<i(r—=1)—Y| = (R(U)+1)(r—1) = L;U)—-RU)(r—1) <r-—1.
Combining 3.10 and 3.9, we have the expected result. 0

Thanks to Lemma 3.3.48 and Lemma 3.3.46, we are now able to associate a r-colored
permutation to each element of 1.5(G(r,n)).

DEFINITION 3.3.49. Let U € 15(G(r,n)). We denote by oy the unique permutation such
that Inv(oy) = U N Vy,,, and we denote by (¢;(U))1<i<n the sequence defined by

co1))(U) := Li(U) — (r = 1)R;(U).
We denote by ¥ the map from IS(G(r,n)) to G(r,n) defined by
for all U € IS(Q('/’, n)), \I/(U) = ((Ci(U>>1§i§n,UU>-

In what follows, we will show that the function WU is a poset isomorphism between (15(G(r,n)), C
) and (G(r,n), <j). We first give a technical lemma, which is useful for both step of our proof.

LEMMA 3.3.50. Let U € 1S(G(r,n)) and (a,b) € V.. Then, for all k € Z such that
—b(r—1) <k <a,

if (a,b) € U, then (k,b) € U. On the representation of G(r,n) as a diagram, this means that if
a bozx of V., is in U, then all the boxes which are strictly on its left and in the same row are
also in U.

PROOF. Let k in Z be such that —b(r — 1) < k < a and assume that (a,b) € U. By
Proposition 3.2.1, we have

O(a,b) <[{o €U | ((a,b),0) € E}|.

Let us consider 0 € U such that ((a,b),0) € E. By construction of the underlying digraph of
G(r,n), we have ((k,b),0) € E. Moreover, ((k,b), (a,b)) is also in E, so that

{oeU| ((a,0),0) € E}| < |{o €U | ((k,b),0) € E}|.
Finally, by definition of § we have 6(k,b) < 6(a,b), hence we have
O(k,b) <|{p€ U] ((k,b),d) € E}|.
Thus, (k,b) € U by Proposition 3.2.1, and this concludes the proof. O

PROPOSITION 3.3.51. The function V is a bijection.

PROOF. Let us first prove that W is injective. Let U, U’ € G(r,n) such that U(U) = ¥(U").
Then oy = oy, hence Inv(oy) = Inv(oy), so that U NV, = U' N Vy4,. Therefore, we have
R;(U) = R;(U’) for all j € [n]. Let us now fix j € [n], by definition of (¢;)1<;<, we have

Li(U) = (r = DR;(U) = L;(U") = (r = HR;(U),
so that L;(U) = L;(U’). Thus, the number of boxes that are in Vz,, NU and in row j equals

the number of the boxes that are in Vj,, NU’" and in row j. However, thanks to Lemma 3.3.50,
these boxes are left-justified in Vg, ,, hence we have

{(a,) € Ve | (a,5) € U} ={(a,]) € VB | (a,j) €U},
Thus, UNVp,,, =U' NVp,, so U ="U’, and this proves that U is injective.
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We now prove that WU is surjective. Let m = ((¢;);,0) € G(r,n), we denote by R; the quantity
defined by

R; = |{(z,i) € Va,, | (z,i) € Inv(o)}],
and we define the following sets:
foralli e [n], Uy={(x,i) | —i(r—1) <o < —(i—R)(r—1)+co-13)}-
We prove that U := Inv(o) UU; UUy U ... U U, is in IS(G(r,n)). For that purpose, let us
consider ¢ € A, , and divide our study into four cases.

(1) (case ¢ € UNVy,). Following a similar method as in the proof of Lemma 3.3.46, one
can show that

6(c) <|{o €U | (c,0) € E}|
(2) (case ¢ € V4, \ U). A similar argument as in Case (1) shows that
0(c) = {oe U | (c,0) € E}|
(3) (case c € UNVpg,n). We set (x,i) = c. By definition of U;, we have
r<—(i—R)(r—1)+co-1(i) = z<—(i—R)(r—1)+(r—1)

s
—

x <l1+R;—1 = L
r—1

but R; <|{d € U | (¢,d) € E}| by definition of the digraph, hence we have
6(c) <|{oeU | (c,0) € £}
(4) (case ¢ € V,.p, \ U). A similar argument as in case (3) shows that
O(c) > |{p€U|(c,0) € E}.

Consequently, U € IS(G(r,n)) thanks to Proposition 3.2.1, and by construction we have
U(U) = 7. Thus, V is surjective, and this conclude the proof. O

r—1

We now prove that ¥ is a morphism of posets.

PROPOSITION 3.3.52. Let U, U" € 15(G(r,n)), we have that U covers U’ in (I1S(G(r,n)), C)
if and only if WV(U) covers W(U') in the flag weak order.

PrOOF. We set
U(U) := ((¢;)i,0) =7 and W(U') := ((c});,w) = 7.

Assume that U covers U’ in (15(G(r,n)), ). Since (1S(G(r,n)), ) is graded, there exists
(x,y) € A\ \ U such that
U=UU{(z,y)}
We now prove that W(U) covers W(U’) using Lemma 3.3.42. There are two cases.
o (Case (x,y) € Va,). We have that w is obtained from o by swapping positions of x
and y. Moreover, by definition of ¥ we have the following two facts:
0 (2) = o (y) + 1 and (z,9) ¢ Tnv(0),

so that = and y are adjacent in ¢. It remains to show that c,-1(,)(U) = r — 1. For the
sake of clarity, let us denote by 4 the integer 0~!(y), and assume by contradiction that
¢;(U) < r —1. Since we have

c(U) = Li(U) — (r = 1)R(U), ((U) = Ly(U") and Ri(U") = Ri(U) + 1,

we thus have L;(U")—(r—1)R;(U’") < 0, and this contradicts Lemma 3.3.48. Therefore,
we have 7’ = m.a;, ¢;y1 =7 —1and o(i) < o(i + 1), so that 7’ covers 7 in G(r,n) by
Lemma 3.3.42.
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e (Case (z,y) € Vg,n). As in the previous case, let us denote by i the integer o~ '(y),
and assume by contradiction that ¢;(U) = r — 1. By definition, we have

ci(U)=L(U)—(r—1)R;(U)=r—1and Ly(U") = L;(U) + 1,
so that ¢;(U’) = r, which is absurd. Thus, we have ¢;(U) < r — 1 and it is clear that
7" = 7.b;. Consequently, 7’ covers m by Lemma 3.3.42.

We now prove the converse. If 7/ = 7.b;, then ¢;(B) = ¢;(A) 4+ 1, so that U’ is obtained
from U by adding just one box in the i-th line of V., by Lemma 3.3.50. Thus U’ covers U. If
7' = m.a;, then a straightforward calculation using the definition of the function ¥ shows that
U'=UU{(c7'(i),07 (1 + 1)}, so that U’ covers U. This concludes the proof. O

As an immediate consequence of Propositions 3.3.51 and 3.3.52, we have the following
corollary, which concludes this section.

COROLLARY 3.3.53. The posets (G(r,n), <s) and (15(G(r,n)), <) are isomorphic.

3.3.7. Down-set (resp. up-set) lattice of a finite poset. In this section, we consider
P = (P, <) a finite poset. Let us denote by G = (V, E) the digraph defined by

V:=Pand E:={(z,y) € P* | v #yand z < y}.

It is clear that G is a simple acyclic digraph, and we denote by G(P) = (G,0) the valued
digraph such that for all z € P, 6(z) = 0.

PROPOSITION 3.3.54. The set PS(G(P)) equals the set of the linear extensions of P.

PROOF. Let us perform the peeling process on G(P). By definition of 6, a vertex z € P is
erasable in G(P) if and only if we have the following property: for all y € P

if y <z, then y =z,

i.e. 2z is a minimum of (P, <). Let us denote by G(P)" the valued digraph obtained after we
peeled a minimum element z of P, and denote by P’ the poset (P \ {z}, <). Clearly, we have

g(P) =G(F).

Therefore, applying the peeling process on G(P) is equivalent to performing on P the process
described in the introduction of Section 3.1. It follows that each peeling sequence of G(P) is
a linear extension of P. The converse implication can be easily proved by induction on the
cardinality of P. O

We have the following immediate corollary.
COROLLARY 3.3.55. The poset (I1S(G(P)), C) is isomorphic to the down-set lattice of (P, <).

REMARK 3.3.56. Note that one can obtain the up-set lattice of (P, <) by the same method,
considering the same digraph G endowed with the valuation 7 defined by

for all z € P, n(z) :=d*(z).

3.4. Generalized columns and Quasi-symmetric functions

Symmetric functions can be defined as the homogeneous formal power series F(xy, 2o, ...)
in countable infinitely many variables being invariant under the action of the symmetric group.
That is, for any monomial X = z;, ---z; appearing in I’ and for any simple transposition
s; € Sy, the monomials X and s;.X have the same coefficient, where s;.X denote the monomial
obtained by permuting the variables z; and z;;; in X. Quasi-symmetric functions admits a
similar definition. We say that F(xy,zs,...) is a quasi-symmetric function if and only if for
any monomial X = x;, ---z;, appearing in /' and for any simple transposition s; such that not
both z; and x;;; appear in X, then X and s;.X have the same coefficient in F'. In particular,
symmetric functions are quasi-symmetric functions.
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A useful basis of the space of quasi-symmetric functions (of degree n) is given by the
fundamental quasi-symmetric functions, introduced by Gessel in |G| (see also [S3]| (7.81)).
They are defined as follows: for any X C [n — 1] we set

Gy (21, x9,...) == Z Tiy Ty

11 <12<...<ip
ij<ijyr if jEX

that we generally denote by Gy when there is no ambiguity.

3.4.1. Linear extensions and quasi-symmetric functions. The first occurrence of
quasi-symmetric function goes back to the thesis work of Stanley, via the notion of P-partition
which generalizes the concept of classical partition of an integer. A P-partition is the couple of
a finite poset P (with |P| = n), together with a given bijection ~ from P to [n]. For any linear
extension L = [z1,..., z,] of P, let Des(L,7) be the set of all the indices j € [n — 1] such that
v(%;) > v(zj+1), called the descent set of L. Stanley associates in [S1| a formal power series
with the P-partition (P,~) as follows:

(3.11) (P, y) = Z GDes(L )
L

where the sum is over all linear extensions of PP. Note that this is a classical reformulation of
the original definition, that we give in the following proposition.

PROPOSITION 3.4.1. A (P, ~)-partition is a function f from P to N* such that there exists
a linear extension L = [z1,..., z,| of P which satisfies:

(1) for all 1 <i<j<mn, f(z) < f(z);

(2) for all 1 <i<j<m, if y(z;) > v(z;), then f(z) < f(z;).
We have T'(P,~) = Z H T y(p), where the sum is over all (P,~)-partitions.

f peP
3.4.2. Definition of the formal power series. Thanks to Section 3.3.7, we have that

the notion of peeling sequence is a generalization of linear extension of a finite poset to a valued
digraph. Thus, it is natural to look for a generalization of (3.11) to the case of valued digraphs.
This is the point of this section. We begin with introducing a useful notation.

DEFINITION 3.4.2. Let G = (G, 0) be a valued digraph. For all A € (15(G),C) we denote
by PS(A) the set defined by

A:{Zl,...,z‘m}
J[x1,z2,...] € PS(G) such that z; = z; for all i < |A] |~

A straightforward way to generalize the series I'( P, ) would be to consider a bijection p from
the vertices of G to {1,...,|V]}, and directly adapt (3.11) to this new context. However, in the
sequel we will need a slightly more general definition, which is inspired by the column-strictness
conditions introduced in [FGRS| and [YY]|.

DEFINITION 3.4.3. A set of generalized columns of G is a family U = (U,).cy of subsets of

V. Let A € 15(G), U be a set of generalized columns and f be a function from A to N. We say
that f is a (A,U)-semi-standard function if and only if there exists L = [z1,..., 2z,] € PSA(G)
such that:

(1) for all 1 <i < j <mn, we have f(z;) < f(2));

(2) for all 1 <i<j<n,if z; €U, then f(z) < f(z).
Such a peeling sequence is called a f-compatible peeling sequence of A. We denote by SSF(A,U)
the set of all the (A, U)-semi-standard functions (when there is no ambiguity, we simply denote
it by SSF(A)). Finally, we define the formal power series

F(A,Z/{) = Z H:Uf(z).

FESSF(A) z€A

P0) = {lea ozl |
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PROPOSITION 3.4.4. The series I'(A,U) is a quasi-symmetric function.

PROOF. Let n = |A|, i € N* and f € SSF(A) such that f~'({i}) # 0 and f~'({i+1}) = 0.
Let L = [21,...,2,] be a f-compatible peeling sequence of A and denote by f the function from
A to N* defined by

n +1if z € F7H({q)),
e A e { e

We prove that L is a f—compatible sequence. Since f € SSF(A), then fis weakly increasing
along [z1,...,%,]. Assume by contradiction that there exists p < ¢ such that z, € U, and

~

flz) = f(zq). Then, we have f(z,) = f(2,) and this contradicts the fact that L is f-compatible.

~

Therefore, L is f-compatible, hence f is an (A,U)-semi-standard function, and this is enough
to prove that I'(A,U) is quasi-symmetric. This concludes the proof. O

It appears that I'(A,U) is a generalization of the function associated with a P partition,
thanks to the following immediate proposition.

PROPOSITION 3.4.5. Let (P, <) be a finite poset, (P,7) be a P-partition and G(P) be the
valued digraph defined in Section 3.3.7. We set U,(y) :=={y € P | v(z) > v(v)} and U(y) =
(U.(7))zep a set of generalized columns of G(P). Then

L(PU(v)) = T(P, 7).

QUESTION 3.4.6. As suggested before, we could have defined T'(A,U) associating a descent
set to each element of PS4(G) in the obvious way and then summing all the associated funda-
mental quasi-symmetric functions. However, it seems not to be any particular reason to expect
these two definitions to coincide in general. It should be interesting to investigate if there exists
some valued digraphs with a choice of generalized columns for which this equality occurs.

We finish this section with an obvious lemma connecting this function to the enumeration
of maximal chains in (15(G), C).

LEMMA 3.4.7. Let G be a valued digraph, U be a set of generalized columns of G and A be
an element of 1S(G). Then, the coefficient of x5 -z, in I'(A,U) is equal to the number of
mazimal chain from () to A in (IS(G), Q).

PROOF. This is clear by definition of SSF(A). O

3.4.3. Type A and Stanley’s symmetric function. In this section, we consider the
valued digraph A = (G, 0) associated with the weak order on A,,_; (see Section 3.3.1). Since
A can be seen as the Ferrers diagram of the partition \,, we have a natural choice for a set of
generalized columns, given by the columns of A.

DEFINITION 3.4.8. The set of generalized columns U = (Uap))1<a<b<n 0f A is defined by:
Uap) = {(a,k) | a <k <n}.

Surprisingly, the series which arise from this choice of generalized columns are the well-
known Stanley symmetric functions of type A (see |S2|). Let us first recall the definition of
Stanley symmetric functions.

DEFINITION 3.4.9. Let 0 € S, the Stanley symmetric function associated with o is the
formal power series defined by:

F,(xy,29,...):= E E Ty Try = Tryys

(il,...,ig(o.))ERed(o') TlS’I’QS...S’I‘aJ)
rj<rji1 if i;<ijiq

where Red (o) denote the set of the reduced decompositions of o.
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In [FGRS], the authors give a characterization of such function indexed by a permutation
o € S,, in terms of sums over a set of tableaux called balanced labellings of the Rothe dia-
gram of 0. We will prove that the series arising from our description are exactly the Stanley
symmetric functions. we follow the same method as them. Note that another method con-
sists in constructing an explicit bijection between these balanced labellings and the elements of
SSF(Inv(a),U"), but we do not detail this here.

THEOREM 3.4.10. For all o € S,,, we have:
(Inv(o), U = F,.
Before giving the proof, we need the following technical lemma.

DEFINITION 3.4.11. Let 0 € S,,, f € SSF(Inv(c),U) and M = max{f(c) | ¢ € Inv(o)}.
The leading cell of f is the unique element (a,b) € Inv(o) such that:
(1) f(a,b) = M;

(2) the integer 0~!(a) is minimal such that (1) is true.

LEMMA 3.4.12. Let 0 € S,,, f € SSF(Inv(c)) and (a,b) be the leading cell of f. Then, there
exists w € S,, such that Inv(w) = Inv(o) \ {(a,b)}.

PROOF. Let M = f(a,b) and L = [(a1,b1), - .., (ayo), bi(s))] € PStav(s)(A) be a f-compatible
peeling sequence. Thanks to Corollary 3.3.10, there exists 01,09, ...,044) € S, such that:
(1) ld<lgpo1<lg...<g O¢(o) = O,
(2) Inv(o;) = {(ay,b1), ..., (a;, b))}
There exists k such that (ag,bx) = (a,b), hence a and b are adjacent in o;_; and oy, is obtained
from 0,1 by swapping the positions of a and b. Let us assume that the position of a and b in
oy is preserved in o, that is we have

(3.12) o = log(1),...,b,a,...,0(n)] and o =o(1),...,b,a,...,o(n).

In that case, the permutation w obtained from ¢ by swapping the positions of b and a satisfy
Inv(w) = Inv(o) \ {(a,b)}, which is exactly the expected result. We still have to prove that
(3.12) is true. For that purpose, we show that a, # a and b, # b for all p > k, implying that
the positions of a an b stay the same in oy, o441, ..., 040) = 0.

Assume by contradiction that there exists p > k such that a, = a. Then, we have f(a,b,) =
M = f(a,b) because f is weakly increasing along L. But (a,b,) and (a,b) are in the same
column of \,, and this is absurd by definition of /. Similarly, assume by contradiction that
there exists p > k such that b, = b. Then, for all ¢ > p we have (a,,b,) # (a,,a) (otherwise
(ap,by) and (a,, by) would be both in the column a,, but it is impossible since f takes the value
M on both of them), hence we have

o=[o(1),...,ap,...,a,...,0(n)].
Thus, we have 0~ '(a,) < 0~!(a), and this contradicts the minimality of o~ '(a).
Consequently, 3.12 is true, and this concludes the proof. [

We now have everything we need to prove Theorem 3.4.10.

PROOF OF THEOREM 3.4.10. We define a bijection W associating a (Inv(c),U")-semi-
standard function f with a pair of sequences, denoted by

(3.13) U(f)=(liry--y i), [r1,-o 7] ),
such that

(1) si, ---s;, is a reduced decomposition of o;
(2) (r;); is weakly increasing and 7; < 7,41 whenever i; < i;41;

@) I[ == 11 @

1<5<k z€Inv(o)
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Clearly, if such a bijection exists, then Theorem 3.4.10 is true. We split our proof into two
step: first, we define a function satisfying all the required conditions; then, we prove that it is
bijection, constructing its reverse function.

Step 1: Definition of ¥. Let f € SSF(Inv(c)), we define by backward induction a pair
of sequences [i1, ..., iyy)] and [r; < ... < 7rye] using Lemma 3.4.12 as follows:

e let (a,b) € Inv(o) be the leading cell of f;
e let w € S, be such that Inv(w) = Inv(o)\ {(a, b)} and set iy, and ry the two integers
such that o = ws;,, and rye) = f(a,b);
e repeat this procedure swapping o with w and f with g := f|i(.), and so on.
Let us now check that this pair of sequences satisfies conditions (1), (2) and (3). Clearly, we
have ri <ry <... <7y, and thanks to Lemma 3.4.12 s;, -~ s;,  is in Red(o). We still have

to prove that r; < r;;1 whenever ¢; < i;,;. We prove the contrapositive: let j be such that
r; = rj;+1, and denote by a and b the two integers such that

8i1~..5ij71 = [...,a,,b,...},

Sip t Sq; :[...,b,a,...}.

Our aim is now to prove that 4, is strictly smaller than i;. Assume by contradiction that
i; < 111, and consider the three following cases.

o If i; =iy, then s, --- Sige) is not reduced, which is absurd.
o If 4,1 = 7; + 1, then there exists c such that we have

Sil"'sij = [...,b,a,c,...],

Siy*Si = .-, 0,¢a,. ..

However, (a,b) and (a,c) are in the same column of \,, and by hypothesis we have

f(a,b) =7r; =r;11 = f(a,c), and this contradicts the fact that f € SSF(Inv(o),U).
o If i;.1 > 7; + 1, then there exists two integers ¢ and d such that
=[..,ba,....cd, ...,

Sil---sijﬂ:[...,b,a,...,d,c,...].

87:1 '..Sij

And this contradicts the fact that (c,d) is a leading-cell (of f|1nv(si1..‘sij+1), see the
iterative definition of the sequences above). Indeed, we have f(a,b) = f(c,d) and
o~ 1(a) < o71(c), which contradicts the minimality of o~!(c).

In all cases, we have a contradictions. Thus, 7;.; <<¢;, and this concludes the proof.

Step 2: construction of the reverse function. Let s;, --- Sig) € Red(o) andry <... <
T¢o) be a sequence of integers such that r; < ;1 whenever ¢; <i;,,. Tt is easy to associate a
function f : Inv(o) — N* to this pair of sequences: let L = [(a;,b;)]i<i<t(0) € PStnv(s)(A) be
the sequence such that for all 7,

Sil...sij:[...,aj,bja"‘]7

Siy 0t Sijp = [...,bj,aj,...].

Then, we define f : Inv(o) — N* by f(a;,b;) = r; for all j. Let us first show that f €
SSF(Inv(c)). In order to do so, let us consider j < k such that a; = ax. We prove that
f(aj,b;) < f(ag,by), implying that f is in SSF(Inv(c)). Consider the sequence ij,%;41, ..., i,
and assume by contradiction that this sequence is decreasing. Then, for all ¢ < g < k we have
either

and s;, -85 = [...,a5,¢,.. ],
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or we have
Sil"'siq = [...,c,d,...,aj,...],
and s;, -8, = [...,d,c,....a;,.. ]
In other words, we obtain s;, ---s; ., from s; ---s; either by swapping positions of a; with

an integer just on its left, or by swapping positions of two integers being on the left of a;.
Therefore, we a, # a;, which is absurd. Thus, there exists j < ¢ < k such that ¢, < iy,
but s;, -« s;,,, is reduced, so that i; <i441. Consequently, we have ry < rgq by definition so
flaz, b;) < fak, by).

In order to complete the proof, we just have to show that this function is the inverse of
W, and this can be easily done recursively: assume by contradiction that (ag(g),bg(g)) is not
the leading cell of f. Then, there exists k& < {(o) such that f(ay,br) = f(aes),bys)) and
o '(ar) < 07 (aye)). Therefore, we have

0 = [...,(lk,...,bg(a),ag(a),...],

so that there is an integer ¢ such that k < ¢ < /(o) and i, < iy, so that we have

flag, by) =1 <71g <7y = flago), beto)),

and this is absurd. Repeating this argument, we have the expected property by induction, and
this ends the proof. O

This construction leads to a combinatorial interpretation of F, as a sum over a set of
tableaux (which are depicted on Figure 3.8): let us consider a permutation o € S,, and denote
by A its inversion set Inv(o) seen as as subset of boxes of A,. Clearly, A inherits the digraph
structure and the valuation of A. Moreover, A defines a valued digraph because A € I.S(.A) (in
a sense, A define a “sub-valued digraph of A”), so that we can perform the peeling process on
it. Obviously, the arising sequences are precisely the elements of PS4(A), and we can represent
each element of PS4(A) as a tableau of shape A. That is, let L = [z1,..., 2] € PS4(A), then
L can be represented as a tableau of shape A where the box z; is filled by the integer i. These
tableaux can be seen as the equivalent counterpart of standard tableaux within our theory.

Similarly, we can define a family of “semi-standard” tableaux by the following way: let
L =z,...,2) € PSa(A), we construct a tableau of shape A by putting an integer ¢; in the
box z;, satisfying the following two conditions:

(1) the sequence (t;) is weakly increasing along L;
(2) a given integer cannot appear twice in the same column (equivalently, if ¢ < j and z;
and z; are in the same column, then ¢; < t;).
Clearly, these tableaux are in bijection with the elements of SSF(A). Therefore, if we denote
by T the monomial xlT(l)sz(Q) -+« where T'(7) is the number of occurrences of i in a tableau T’
obtained by the previous method, then the Stanley symmetric function F is the sum over all
the tableaux of these monomials z7.

3.4.4. Type A and affine Stanley series. In this section we apply the same method
used in the previous section to the valued digraph A = (G, 0), associated with the weak order

on A, (see Section 3.3.5). Once again, the graphical representation of G as a diagram leads to
a natural choice for a set of generalized columns, given by the usual columns of G.

DEFINITION 3.4.13. We denote by U* = (Uiap))1<a<n, a<b the set of generalized columns
of A defined by:
Uap) = {(a,k) | a <kand k #a (mod n)}.

As in the A, _; case, the series arising from this choice of generalized columns is known,
namely the affine Stanley symmetric function, introduced by Lam in |L2|. Note that a com-
binatorial interpretation in terms of tableaux of this series has already been provided by Yun
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o=1[4,1,3,5,2] Some “standard” elements of Tab(o)
e T ; 5
2[1]0|®D 502103 50214 321
L0]|® 1 1 4
0 @ 5253525451 5253545251 5352515354
@ and some “semi-standard” elements
2 7 3
21110 515 81418 1111
0 2 3 2
FIGURE 3.8.

and Yoo in [YY], and the one arising from our model is very similar. Therefore, the proofs are
similar.
Let us begin with the definition of the affine Stanley symmetric function.

DEFINITION 3.4.14. A sequence (iy, ..., 1) of elements of Z/nZ is called cyclically decreasing
if and only if:
e cach element of Z/nZ appears at most once in the sequence;
o if there exists p and ¢ such that i, = j and i, = j + 1, then ¢ < p.

An affine permutation o € ;4\; is called cyclically decreasing if there exists a cyclically decreas-
ing sequence (iy,...,4) such that s;, ---s; is a reduced decomposition of ¢ (note that Id is
cyclically decreasing by convention). For any w € A,,, a cyclically decreasing factorization of w

is an expression of w as a product w = vyvy - - - v, such that:

e cach v; € 2{\; is cyclically decreasing;
o l(w)="4l(vy)+ -+ L(v).
Finally, the affine Stanley symmetric function F,, associated with w is defined as
fw(xl, To,...) = Z mi(ul) o gblon),
W=7 Vp

where the sum is over all cyclically decreasing factorisations of w (see [L2]).

DEFINITION 3.4.15. Let w € A,, f € SSF(Inv(w)), L = [(a;,b;)] € PSIHV(W)(E) be a f-
compatible peeling sequence and s;, ... Sig) be the reduced decomposition of w associated with
L. We define the following factorization of w:

U(f, L) :=wvjvy--- vy,
where vy, is defined as follows: for all 7,
o if f(a;,b;) # k, then v, = Id,
o if there exists p < ¢ such that f(a;,b;) = k if and only if p < j < ¢, then v, =
Sipsip"rl T SZ‘I

PROPOSITION 3.4.16. The function ¥ does not depend on the choice of the f-compatible

peeling sequence L, and V(f, L) is a cyclically decreasing factorization of w.

PROOF. Since vy, is uniquely determined by the inversions (a;,b;) for which f(a;,b;) = k,
the first statement of the proposition is clear.
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It remains to show that v is cyclically decreasing for all k. If vy = Id, then it is clear.
Let £ be such that v;, # Id, hence there exists p < ¢ such that vy = s;,---s;,. If p=¢q, v is
obviously cyclically decreasing.

We now focus on the case p < ¢q. Assume by contradiction that there exists p < u < v <gq
such that i, = i, + 1. Without loss of generality, we can suppose that v is minimal with this
property. As usual, we denote by w,, the affine permutation s;, ---s; . We have that w,,;; is
obtained from w,, by swapping the positions of all the pair of integers a,, + rn and b,, + rn,
r € Z. For the sake of clarity, we just say that the positions of a,, and b,, are swapped. Let us
now split the study into two cases.

o If for all w < j < v we have b; # a,, then the position of a, remains unchanged in
each w;. Thus, by minimality of v, (ay,b,) = (ay,b,), which is absurd since (ay,b,)
and (a,, b,) are in the same column and f € SSF(Inv(w),U).

o If there exists u < j < v such that b; = a,, then there exists an integer m such that

we have
wj=1[..,m,ay,...] and wj1 =1[ .. a,m,...]
Since we have w, = [..., by, ay,...], there exists u < j' < j such that
wjr=[...,m,by,...] and wy1 =1[...,b,,m,...].

Therefore, we have f(m,b,) = f(m,a,) which is absurd since (m,b,) and (m,a,) are
in the same column.

In all cases we have a contradiction, so that v is cyclically decreasing, and this concludes the
proof. ([l

We are now able to prove the main theorem of this section, using this function ¥ (the proof
is similar to that of the A, _; case).

THEOREM 3.4.17. For all w € Zl, we have
F, = I (Inv 3(w), U).

PROOF. Thanks to Proposition 3.4.16, we have a map which associate to each f € SSF(Inv(w))
a cyclically decreasing factorization w = vy - - - v,.. Moreover, we clearly have that

c€lnv 3 (w)

Consequently, we just have to show that this function is a bijection to prove the theorem.

Let us construct the reverse function: let w = vy - - - v, be a cyclically decreasing factorization
of w. Consider any cyclically decreasing reduced decomposition of v; and concatenate them
to get a reduced decomp~osition of w, de. w = (Siy iy, ) (Sigeoryin """ Sigoryieqny)) - L€

L = [(a;,b;)]; € PSiny(w)(A) be the peeling sequences canonically associated with this reduced
decomposition, and we define a function f from Inv ;(w) to N* by the following way:

if O(vy) + -+ lvp) +1 <75 <lv)+---+L(v) +l(vk11), then f(a;,b;) =k+ 1.

Clearly this function f does not depends on the cyclically decreasing reduced decomposition
chosen for each v;, but depends only on the cyclically decreasing factorization of w.

Let us prove that f is in SSF(Inv ;(w)) As usual, we denote w; = s;, - - s;,. Set k such that
lvg) > 2, p="L(v1)+--+L(vr_1)+1, and g = €(v1)+- - -+ €(vx). Now assume that there exists
p <u<v<qsuch that f(ay,b,) = f(ay,b,) = k with a, = a,. Without loss of generality, we
can suppose that u is maximal with this property, and that v is minimal with this property.
Once again, there are two cases.

o Ifforallu < j <w, b; # a,, then the position of a, remains unchanged in wy41, ..., wWy_1.
Hence by minimality of v we have i, = 4, + 1, which is absurd since vy is cyclically
decreasing.



3.4. GENERALIZED COLUMNS AND QUASI-SYMMETRIC FUNCTIONS 65

o If there exists u < j < v such that b; = a,, then there exists u < j* < j such that
(aj,b;) = (aj,by,) since b, is just on the left of a, in w,. Hence we found j > u such

that there exists j > j' with a;; = a;, which is absurd by maximality of w.
Hence f € SSF(Inv(w)), and this function clearly invert the one defined earlier, and this achieves

the proof of the theorem. O






CHAPTER 4

Extending the weak order and Cambrian semi-lattices

Introduction

When we deal with the weak order on a Coxeter group W of finite rank, we generally have
two opposite configurations depending on whether W is finite or not. On the one hand, when
W is finite the weak order defines a graded complete ortho-lattice on W, with the identity
as bottom element, and with ortho-complement given by the map w — wow, where wy is the
maximal element of W. Moreover, the maximal chains of this poset are totally encoded by a
well studied combinatorial object: the reduced decompositions of wg, that are, the expressions
of wy as a product of a minimal number of generators. On the other hand, when W is infinite
the situation is less enjoyable: the weak order only defines a complete meet semi-lattice on W,
and there are no clear equivalents of wy and its reduced decompositions.

This difference of behaviour is particularly evident in the context of Cambrian lattices,
which are well studied generalisations of the Tamari lattices to any finite Coxeter groups. They
were introduced by Nathan Reading in [R1], who subsequently studied several of their aspects
in [R2], [R3]. In particular, he showed that they are complete lattices. They are, for instance,
connected to Coxeter-Catalan combinatorics and to cluster algebras (see, for instance, [RS2]),
for example the Hasse diagram of a Cambrian lattice is isomorphic to the exchange graph of
the corresponding Cluster algebra.

As shown by Reading and Speyer in |[RS3|, this construction can be extended to infinite
Coxeter groups. Unsurprisingly, in this much more general case, the resulting poset inherits
the “insufficiencies” of the weak order in the infinite case: we do not obtain a complete lattice,
but a semi-lattice called the Cambrian semi-lattice. Furthermore, Reading and Speyer showed
in [RS2| that this Cambrian semi-lattice does not give all the expected information about the
associated Cluster algebra (for example, the Hasse diagram of a Cambrian semi-lattice corre-
sponds to a strict sub-graph of the exchange graph). Nevertheless, they showed in [RS1| how
this construction can be “completed” in the case of affine Coxeter groups, but in general this
problem remains open.

This problem can also be viewed from another angle: instead of defining a Cambrian semi-
lattice and then trying to “complete” it, one can try to “complete” the weak order first, and
then to construct directly a Cambrian lattice from this completion. A little bit more formally,
this method consists in two distinct steps. The first one consists in finding for each infinite
Coxeter group W a poset Py such that the weak order on W is isomorphic to a sub-poset of
Pw (in the ideal situation, the weak order would be a lower set of Py/), and such that Py
has enough “nice” properties generalizing those of the finite case. The second step consists in a
generalisation of Cambrian lattices using Py, instead of the weak order.

In this chapter, we will first deeply study the first step, providing a theory in which many
extensions of the weak order can be constructed, and we will finish with an approach of the
second step within our theory, providing also an extension of Cambrian semi-lattices. More
precisely, we introduce here a new family of complete lattices, which deeply generalises the
construction of Chapter 3. The fundamental objects of this chapter are, once again, what we
call valued digraphs. Namely, couples of the form G = (G, ), where G is a simple digraph (note
that the difference with the previous chapter lies in the fact that we allow valued digraphs to
contain cycles) and 6 a function from V(G) the vertices of G to the nonnegative integers such
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that for all vertices z of G, 0(z) is weakly smaller than the out-degree of z (Definition 4.1.1).
To each valued digraph G = (G, 0), we associate a subset of the power set of V(G), denoted
by 15(G) (Definition 4.1.5), and defined by simple inequalities. We prove that in general
(15(G),C) is a complete lattice (Theorem 4.1.6), and we exhibit a family of valued digraphs,
called balanced valued digraphs (Definition 4.1.9), such that (15(G),C) is a complete ortho-
lattice (Proposition 4.1.10), with ortho-complement given by the usual set complement of V(G).

We continue our study defining the notion of projective valued digraphs (Definition 4.2.10).
That are, valued digraphs G = (G, ) that can be seen as the limit (in a certain sense) of a
sequence (G;);>1 of finite acyclic valued digraphs. This gives rise to a projective system, where
the structure of (15(G), <) can be studied completely using the sequence of finite complete
lattices (1.5(G;), C)i>1 (Theorem 4.2.17). Still in the case where G is projective, we define a set
PS(G) (Definition 4.2.4) of total orderings of V(G), which totally encodes the maximal chains
of (15(G),C). That is, for each chain C of (15(G), C), C is maximal if and only if there exists
I € PS(G) such that the elements of C are exactly the initial sections of I (Theorem 4.2.24).
We finish this theoretic construction with showing that for all projective valued digraph G,
(15(G), Q) is an algebraic complete lattice (Theorem 4.2.30).

We then apply, in Section 4.3, these theoretic construction to the study of two conjectures of
Dyer about an extension of the weak order on a Coxeter group W using the so-called bi-closed
sets and reflection orderings of a root system of W (see |D4| and [D1]). More precisely, we
introduce the notion of well-assembled on ®* valued digraph, and we prove that each such
valued digraph provides an extension of the weak order having most of the properties that are
conjecturally attached to Dyer’s extensions.

In Section 4.4, we provide a quick study of some connections there exist between our con-
struction and convex geometry, associating to each acyclic valued digraph G a non-trivial ab-
stract conver geometry and its associated closure operator extending the lattice introduced in
this paper.

We finish, in Section 4.5, with giving an extension of Cambrian semi-lattices into complete
lattices. More precisely, we explain how one can associate to each well-assembled on ®* valued
digraph G and each Cambrian semi-lattice of W, a sub-poset of (/5(G),C) extending this
Cambrian semi-lattice, and we prove that this sub-poset is a complete lattice.

4.1. General construction

Let us first recall the following notation, introduced in Chapter 2.
DEFINITION 4.1.1. Let G be a digraph, A C V(G) and z € V(G), we set
45(G,2) = {y € A | (5,3) € B(G)}
which we simply denote by d{(z) when there is no ambiguity.
REMARK 4.1.2. Note that if A C B C V(G), then d}(2) < df(z) for all z € V(G).

4.1.1. Definition of a family of posets. We begin with the definition of the fundamental
object of this paper, which is the straightforward generalization of Definition 3.1.1 to the case
of any digraph (without the acyclicity condition).

DEFINITION 4.1.3. A walued digraph G is a couple (G, 0) of a simple digraph G, together
with a valuation 6 : V(G) — N, such that for all z € V(G), we have

0<0(z) <dt(z).
Throughout this section, G will denote a valued digraph with underlying digraph G and

valuation 6.

REMARK 4.1.4. In this paper we essentially work with valued digraphs, hence we use the
notations V(G) := V(G), E(G) := E(G), and d}(G,2) := d}(G,z) for the sake of clarity.
Similarly, when we say that a valued digraph has a property commonly associated with ordinary
digraphs (such as “@ is acyclic”), we actually mean that the underlying digraph has this property.
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We now define a family of subsets of V(G), which has a rich poset structure once ordered
by inclusion.

DEFINITION 4.1.5. We denote by 1.5(G) the family of subsets of V(G) defined as follows:
for all A CV(G) , we have A € 15(G) if and only if the following two conditions are true:
(1) Vz € A, 0(z) < d}i(2);
(2) V2 € V(G)\ A, 0(2) > d}(2).

Notice that this definition generalize that of Chapter 3 thanks to Proposition 3.2.1. How-
ever, note that in the case of and infinite simple acyclic valued digraph, the set I.5(G) coming
from Definition 4.1.5 is bigger than the one obtained using the peeling process. Indeed, Def-
inition 4.1.5 allows us to consider infinite subsets of V(G). The following theorem gives the
general structure of the poset (1.5(G),C). However, notice that it does note replace the proof
of Theorem 3.1.5 since it does not give us information about the graded structure of (15(G), Q)
when G is finite and acyclic.

THEOREM 4.1.6. For all valued digraph G, the poset (15(G), <) is a complete lattice.

PROOF. First, note that both V(G) and @ are in I.5(G). Thus, (I5(G), C) is bounded, and
it is enough to prove that it is a complete join semi-lattice.

We now construct explicitly the join of any subset of 1.5(G). For that purpose, fix X C I5(G)
and denote by Jy the set | Jzo ¢ B, we then define recursively a sequence (.J;)i>o as follows:

Obviously, we have Jy C J; C Jy, C ..., and we denote by J,, = U;>¢J; the limit of these sets.
We now show that Jo is in 1.5(G). Let z € V(G), we have three cases.

o If 2 € Jy, then there exists B € X such that z € B, so that 0(z) < dj(z), but
B C Jy C Ju, hence 6(z) < dj_(z) thanks to Remark 4.1.2.

o If z € Jo \ Jo, then there exists ¢ > 0 such that z € J;;1 \ J;, hence 6(z) < d}i(z) <
dj ().

o If z € V(G) \ Ju, then for all i > 0 we have 6(z) > dj(z). Thus, if we denote
by C; the set {y € J; | (z,y) € E(G)}, then we have Cy € C; € Cy C ... and
|Ci| = dj (2) < 6(z) for all i > 0. Therefore, the sequence (C;);>o is stationary at a
given rank, i.e. there exists N > 0 such that for all m > N, C,, = Cy. Thus, we have
dj (2) = dj, (2) < 0(2).

It follows that J is in 1.5(G).

Finally, we show that J. is the join of X. Let A be an upper bound of X, we show by
induction on ¢ that J; C A for all i« > 0. Since A is an upper bound of X, we have Jy C A. Let
i > 0 be such that the property is true and consider z € Ji1\ J;, we have §(z) < dj (z) < d}(z)
by induction hypothesis. Therefore, z € A, so that J;;; C A. Thus, we have J,, C A, which
implies that J, is the join of X in (I5(G), C), and this ends the proof. O

We conclude this section with the study of a special class of valued digraphs, which is funda-
mental for our study of Dyer’s conjectures, namely balanced valued digraphs (Definition 4.1.9).
Before giving their definition, we briefly study a natural case of valued digraph such that
the dual (as a poset) of their associated lattice can also be described using a valued digraph
(Proposition 4.1.8).

DEFINITION 4.1.7. We say that a valued digraph G is of finite out-degree if and only if for
all z € V(G), d:j(g)(z) < +o00. For all valued digraph G = (G, 6) of finite out-degree, we denote
by G = (G, 6) the valued digraph such that for all z € V(G), 6(z) = d;;(g)(z) —6(z). We call G
the dual valued digraph of G.

PROPOSITION 4.1.8. Let G be a valued digraph of finite out-degree, we have

15(G) ={V(@)\ A AcIS5G)}
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In particular, this implies that (1S(G), C) is isomorphic to the dual of (15(G), Q).

PROOF. Let A € 15(G) and z € V(G), we have two cases.
o If 2 € A, then 0(2) < df{(2), so that —0(z) > —d () and finally we have

0(2) = df g, — 0(2) > diyg) — df(2) = dfy g 4(2).

e If 2 € V(G) \ A, then we prove with a similar argument that 6(z) < dlt(g)\A(Z>'

This proves that V(G)\ A € I5(G). With the same method, one can show that if B isin 15(G),
then V(G) \ B is in I15(G), and this ends the proof. O

Among all valued digraphs of finite out-degree, some naturally lead to complete ortho-
lattices, as shown in Proposition 4.1.10.

DEFINITION 4.1.9. A valued digraph G of finite out-degree is called balanced if and only if

for all z € V(G), d*(z) is an even number and 0(z) = dzﬁ.

PROPOSITION 4.1.10. Let G be a wvalued digraph of finite out-degree, if G is balanced,
then (15(G),C) is a complete ortho-lattice whose ortho-complement is given by the usual set-
complement of V(G).

B PrROOF. This is immediate thanks to Proposition 4.1.8 together with the fact that G =
g. O

REMARK 4.1.11. Notice that all these previous results do not depend on the fact that G is
simple. Consequently, they naturally generalize to the case where G is not simple.

4.1.2. The example of scaffoldings. In this section, we introduce a family of digraphs
called scaffoldings (Definition 4.1.13), which will be of central importance in Section 4.3. In
the following, an injective sequence will be a sequence which is injective once seen as a function
from N to a given set. For any sequence (a;);>1, we denote by Im(a) the set {a,as, ...}

The definition of scaffoldings requires the notion of shuffle of a pair of sequences, which we

now define.

DEFINITION 4.1.12. Let @ = (a;);>1 and b = (b;);>1 be two injective sequences (which can be
finite or not) of elements of some disjoint sets X, and Xj, respectively. A sequence ¢ = (¢;)i>1
is called a shuffle of a and b if and only if:

(1) ¢ is an injective sequence taking all the values inside Im(a) U Im(b);
(2) both a and b appear in the same relative order in c.

For example, if we set a = [aq, as, ag] and b = [by, by], then [aq, by, as, as, by] is a shuffle of a
and b, but [ay, by, as, as, by] is not.

DEFINITION 4.1.13. Let a and b be two injective sequences on two disjoint sets. A digraph
G is called a scaffolding made of a and b if and only if there exists a sequence ¢ such that:

e c is a shuffle of a and b;

e V(G) =1Im(a) UIm(b) = Im(c);

[} {Cl,CQ} = {al,bl};

e the out-degree of ¢; and cs is 0;

e for all j > 3, if we denote by j, (resp. j,) the maximal integer such that j, < j (resp.
J» < j) and ¢;, € Im(A) (resp. ¢;, € Im(b)), then (¢;,¢;,) and (c;, ¢j,) are the only arcs
having ¢; as starting point in G.

This definition has two immediate consequences, which are given in the next lemma.

LEMMA 4.1.14. If G is a scaffolding made of a and b, then:

(1) the out-degree of any vertex z of G is 0 if z € {ay,b1}, and 2 otherwise;
(2) for all j > 1, (aj11,a;) and (bj11,b;) are both in E(G).
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c= [(11, bla a2, b27 b3a b4} c= [ah bla @z, b27 as, b3: - ]
FIGURE 4.1. Two examples of scaffoldings.

PROOF. Point (1) is clear by definition. Point (2) is an immediate consequence of the fact
that G is constructed with a shuffle ¢ of a and b such that {cy, co} = {a1,b1}. O

By Point (1) of Lemma 4.1.14, each scaffolding G defines a (unique) balanced valued digraph
G. The relatively simple digraph structure of G allows us to determine completely the elements
of 15(G), and this is the point of the next proposition. We represent on Figure 4.2 the poset
(15(G), C) associated with the scaffolding on the right of Figure 4.1.

PROPOSITION 4.1.15. Let G be a scaffolding made of a and b, two injective sequences on
two disjoint sets, G be the balanced valued digraph having G as underlying digraph, A be the
set of the initial sections of a (seen as a total order on Im(a)) and B be the set of the initial
sections of b. Then, we have

IS(G)={C CV(@G) | CorV()\Cisin AUB}.

PROOF. In this proof, we denote by c¢ the shuffle of a and b associated with G.
We first show that AUB C IS(G). Let A € A and z € V(G). we divide our study into two
cases.

o If 2 € A, then we have two possibilities.
— If 2 = ay, then d}{(z) = 0= 0(z), so that d}(z) > 0(z).
— If 2z = a, with £ > 1, then a;_; is in A because A € A. Moreover, we have
(ag,ax_1) € E(G). Thus, we have d{(z) > 1 = 0(2).
o If 2 € V(G) \ A, then we have either z = a1, or z = by, or there exists an integer j
such that (z,b;) € E(G). In the first case we have A = (), in the second case we have
di(2) =0 =0(z), and in the third case we have df{(z) < 1 = 6(z) thanks to the fact
that AN Im(b) = () together with the fact that the out-degree of z is smaller than 2
(see Lemma 4.1.14). Thus, we have df{(z) < 6(z).
Consequently, A € IS(G), hence A C I1S(G). With similar arguments, one can show that
B C I1S(G). Thus, AUB C IS(G). Finally, since G is balanced and thanks to Proposition 4.1.10,
we have
{CCV@)|CorV(@G)\Cisin AUB} C IS(G).
It remains to show that the converse inclusion holds. In order to do that, let C' € I5(G) be
such that C' # (), we have three cases to consider.
o If C' C Im(a), then consider k£ > 1 (if such a k exists) such that a; € C. We have
O(ar) = 1, and the only arc of G having a; as starting point and not having an element
of Im(b) as ending point is (ax, ar_1). Therefore, a1 € C, and by induction we can
prove that for all j <k, a; € C. Thus, C € A.
e If C' C Im(b), a similar argument shows that C' € B.
e If C contains some elements from both Im(a) and Im(b), then we have three sub-cases.
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— If a; ¢ C, then there exists & > 1 minimal such that a; € C. We show that
O = {ak, A1, - - } U {bl, bQ, .. } = V(Q) \ {al, as, . .. ,ak_l}.

By construction, there are only two arcs with ay as starting point: (ag, ax_1) and
(ax,b,) for some ¢ > 1. By minimality, we have a;_; ¢ C, hence b, € C. Note
that b, appears before a; in ¢ by construction. Therefore, if ¢ > 1, then there
exists r < k such that (b,,b,—1) and (b,, a,) are the only arcs having b, as starting
point, so that b,_; € C by minimality of k. Repeating this argument, one can
easily show by induction that {by,...,b,} C C.

In order to conclude the study of this case, let us now denote by j > 1 the integer
such that ¢; = a;. By definition of a scaffolding, both (cj11,b,) and (cj41,ax)
are in E(G), so that 8(c;11) = 1 < dfi(cjy1). Thus, ¢4 € C. We then show,
using similar arguments, that c¢;;o € C (separating the cases c¢j;2 = a1 and
Cj+2 = by+1), and so on. By induction, we have {c;,c¢ji1,...} € C, but ¢ is a
shuffle of @ and b, hence we have

C= {ak, A1, - - } U {bl, bg, .. } = V(Q) \ {Cll, ag, . .. ,ak,l}.
— The case by ¢ C is similar, so that there exists & > 1 such that
C — V(Q) \ {bl, bg, ceey bk—l}-

— If {¢1,0} = {a1,b1} C C, then one can easily check by induction that C' =
{Cl, Co,C3, .. } = V(g)
In all cases, either C' or V(G) \ C'is in AU B, and this ends the proof. O

EXAMPLE 4.1.16. On the following figure, we depict the lattice obtained with the scaffolding
on the right of Figure 4.1.

i I
{a17a2,a3} {b17b2,b3}
{a1, as} {b1, b2}

{br1}

{ai}
g AN @/

(15(9),<)

FIGURE 4.2.

4.2. Projective valued digraphs, their peelings, and algebraicity

At this point, an issue arises: when G is infinite, the study of (IS(G), <) seems to be
difficult in general. Furthermore, one may ask if it is possible to generalize the notion of
peeling sequences (see Definition 3.1.3) to our new context.

These two points are the main motivations for the theoretic construction presented in this
section. We will exhibit a family of infinite valued digraphs such that:
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(1) the resulting lattice can be seen as a projective limit of finite lattices (Theorem 4.2.17),
allowing us to make effective tests despite of the infinite nature of the lattice;

(2) the maximal chains of the resulting lattice are encoded by some specific total orderings
of the vertices of the valued digraph (see Theorem 4.2.24).

This construction is in fact a generalization of the theory developed in Chapter 3. Indeed, in
the previous chapter we studied the case where the valued digraph G is acyclic and finite, and
we constructed the poset (1.5(G), C) using all the initial sections of some specific total orderings
of V(G) (which we called peeling sequences of G).

These infinite valued digraphs are what we call projective valued digraphs (Definition 4.2.10).
That are, infinite valued digraphs which can be seen as a limit (in a certain sense) of a sequence
of finite acyclic valued digraphs. We will show that for any projective valued digraph G, there
exists a set PS(G) of total orderings of V(G) (Definition 4.2.4), which completely encodes the
maximal chains of (15(G), C) (Theorem 4.2.24). That is, a chain C of (15(G), C) is maximal if
and only if there exists I € PS(G) such that C equals set of the initial sections of 1. We will also
explain how the lattice structure of (15(G), C) can be completely studied trough an associated
sequence of finite complete lattices (Theorem 4.2.17), allowing us to make some computational
tests. We finish this section showing that (1.5(G), C) is algebraic whenever G is projective.

4.2.1. Some facts about the finite acyclic case. In this section, we briefly study
the case where the valued digraph G is finite and acyclic, from which all the results of this
section come. This case has already been intensively studied in Chapter 3, using combinatorial
techniques. Since we want this chapter to be as self contained as possible, we will only use a
particular case of Theorem 3.1.5, from which all the following results can be deduced.

THEOREM 4.2.1. Let G be a valued digraph, if G is finite and acyclic, then (15(G),C) is a
graded complete lattice with rank function p: A |A|.

In the finite acyclic case, this graded structure leads to the following construction. Let G
be a finite acyclic valued digraph and n = |V(G)|. Thanks to Theorem 4.2.1, a maximal chain
in (15(G), Q) is a sequence (A;)o<i<n of elements of 1.5(G) such that for all ¢ > 1, there exists
zi € V(G) \ A;—1 such that A; = A;_1 U {z;}. Thus, one can associate to each maximal chain
of (I5(G),C) an injective sequence [z, ..., z,] of elements of V(G). Such a sequence is called
a peeling sequence of G, and we denote by PS(G) the set of all the peeling sequences of G. Let
us summarize this construction.

DEFINITION 4.2.2. Let G be a finite valued digraph, |V(G)| =n and L = [21,...,2,] be an
injective sequence of V(G). We say that L is a peeling sequence of G if and only if

for all k € [n], {z1,2,..., 2} € 1S(G),
and we denote by PS(G) the set of all the peeling sequences of G.

It follows that, in the finite acyclic case, the study of I1S5(G) is equivalent to the study of
PS(G). In Chapter 3, we explained how those peeling sequences can be constructed combinato-
rially thanks to an algorithmic procedure, called the peeling process. However, in this chapter
we will need a more intrinsic characterization, which is given in the following proposition.

PROPOSITION 4.2.3. Let G = (G,0) be a finite acyclic valued digraph, |V(G)| = n and
(21, ..., 2n] be an injective sequence of elements of V(G). Then, [z1,...,z,) € PS(G) if and only
if we have

for alli € [n], 0(z) = {j <] (z,2) € E(G)}.

PROOF. Let us denote by Ay, the set {z1,..., 2} for all k € [n], with the convention that
Ag = 0. If [z1,...,2,) € PS(G), then for all i € [n] we have A; 1, A; € IS(G). Moreover,
zi ¢ A;_1, so that by definition

0(zi) 2 {z € Aia | (21,2) € E(G)} = {7 < (2,2) € E(G)}]
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We also have z; € A;, hence
0(zi) <z € Ai | (2,2) € E(G)} = {1y < i (21, 2) € E(G)}-
Finally, since G is simple, we have (z;, z;) ¢ E(G), so that
{0 <il(zi,2) € B(G)} ={j <i] (2, 2) € E)},

and this implies that 6(z;) = [{j < i | (2, 2;) € E(G)}| as required.
We now prove the converse implication. Note that, by definition, for all integers i, k € [n],
we have

di, (z:) = {J < k| (2i,2) € E(G)}.
Therefore, we have
Vi € [n], 0(z) = df (z).

Fix an integer ¢ € [n], we prove that A; € 15(G;). Let z € V(G), if z € A;, then there exists
J < such that z; = z. Since A; C A;, we have

0(z) = 0(2)) = d} (2) < d}, (%)
If z ¢ A;, then there exists k > i such that z = z;. Since A; C A, we have

0(2) = 0(z) = d}, (21) > dy (2)-

This proves that A; is in 1.5(G). Thus, by definition, [21,..., z,] € PS(G), and this ends the
proof. O

4.2.2. Peelings of any valued digraph. Proposition 4.2.3 gives us a natural way to
extend the definition of peeling sequences to any simple valued digraph. This is the point of
this section. We stress the fact that, even if the definition can be extended to any arbitrary
valued digraph, the resulting object does not have all the properties of their counter part in
the finite acyclic case (see Remark 4.2.8).

DEFINITION 4.2.4. Let G = (G, ) be a valued digraph and I = (V(G), <) be a total ordering
of V(G), we say that I is a peeling of G if and only if for all z € V(G),

0(z) = {y 2 2 | (z,y) € E(G)}].
We denote by PS(G) the set of all the peelings of G.

Notice that the set PS(G) may be empty (see Remark 4.2.8). For the sake of clarity, let us
introduce the following notation, which we will use throughout this section.

DEFINITION 4.2.5. Let X be a set and I = (X, <) be a total ordering of X, for all z € X
we denote by I, the set {y € X | y < z}.

Our aim is now to prove that Definition 4.2.4 indeed generalizes some of the properties of
peeling sequences. That is, we will prove that each initial section of a peeling (if a peeling
exists) is in 1.S(G) (see Proposition 4.2.7). We begin with a quite trivial, but useful, lemma.

LEMMA 4.2.6. Let G be a valued digraph and I be a total ordering of V(G). Then, I € PS(G)
if and only if 0(z) = dj (G, z) for all z € V(G).

PROOF. By definition, dZ(g,z) =Hyel|(zy) e EG)}H=Hy=z2]|(z,y) € E(G)}. O

We are now able to prove that each initial section of any peeling is in 1.S(G). Notice that
the relationship between PS(G) and [S(G) is in fact stronger than that, and the following
proposition also provides an alternative characterization of the elements of PS(G).

PROPOSITION 4.2.7. Let G be a valued digraph and I be a total ordering of V(G). Then, I
is in PS(G) if and only if each initial section of I is in 15(G).
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PROOF. Assume that the initial sections of [ are in IS(G) and let z be in V(G). Both
I, and J := I, \ {z} are initial sections of I. Since (z,2z) ¢ E(G) (because G is simple),
we have df(z) = dj (z). Furthermore, by definition we have z € I. and z ¢ J, so that
0(z) < df (z) and 0(z) > dj(z) = dj (z), hence 0(z) = dj (z). Thus, I € PS(G).

We now prove the converse. Let A be an initial section of I € PS(G) and z € V(G), if
z € A, then I, C A, so that 0(z) = di(z) < d}(z). Similarly, if z ¢ A, then A C I, hence
0(2) > d}(z). Thus, A € I5(G), and this ends the proof. O

REMARK 4.2.8. In the finite acyclic case, there is a one-to-one correspondence between
peelings and maximal chains of (15(G),C), but it is not a general situation. For example,
PS(G) may be empty. Even in the case where PS(G) # 0, there can be some elements of
IS5(G) which are not initial sections of elements of PS(G) (see Figure 4.3 for two illustrations
of these facts). Nevertheless, we can find a family of infinite valued digraphs such that this

b

15(G) = {0,{a,b}} 15(G) = {0, {c}.{e}.{e. d},{c.d,e}}
PS(g):® PS(g)I{[E,d,CH

a

FIGURE 4.3.

correspondence between maximal chains and generalised peeling sequences is preserved. Those
are the projective valued digraphs mentioned in the introduction of this section.

4.2.3. Definition of projective valued digraphs. Let us explain the philosophy behind
the notions introduced here. Our aim in this section can be summarized in the following
question: s there a family of infinite valued digraph whose properties generalize those of the
finite acyclic case ¢ More precisely, can we find an infinite valued digraph G such that each
maximal chain of (15(G), C) is the set of the initial sections of an element of PS(G)?

A natural starting point is to consider digraphs (we will consider valued digraphs a little
bit after) that can be seen as a limit of a sequence of finite acyclic digraphs. There are many
natural way to define a notion of limit of a sequence of digraphs, and the one we will consider
here is perhaps one of the simplest: let (G;);>1 be a sequence of digraphs such that

(1) Gy is finite, simple and acyclic;

(2) V(Gi41) is obtained from V(G;) by adding a new vertex z;41 to it;

(3) E(Gyy1) is obtained from E(G;) by adding some new arcs to it, each one having z;.;
as starting point (notice that we do not allow to add arcs having z;,; as ending point).

Such a sequence clearly define what corresponds to the intuitive notion of “limit of a sequence
of digraphs”, that is the digraph G, such that

V(Gx) = JV(G) and E(Gx) =] E(G).
i>0 i>0
On Figure 4.4 we represent the beginning of such a sequence of digraphs. With these conditions,
the sequence of digraph is made of finite acyclic digraphs, so that GG, is indeed a limit of simple
acyclic digraphs. However, the main advantage of this definition lies on a technical point, related

to our theory of valued digraphs. That is, consider A a subset of V(G;) and z € V(G;), with
1 < j. Then, we have

(4.1) d4(Gy,2) = Al (95, 2) = Ay, (G, 2)-
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Z3 Z3
| i ; 22® 22@24
G G Gy

FIGURE 4.4.

Indeed, by definition of the sequence (G;);>1 there is no arc in G; having z as starting point
and an element of V(G,) \ V(G;) as ending point (a formal and precise proof of (4.1) is given
in Lemma 4.2.13). Equation (4.1) has two immediate consequences, which are fundamental in
what follows.

First, if we consider a valuation 6 : V(G;) — N such that G; = (G}, ) is a valued digraph,
then for all z € V(G,;) we have:

0<6(2) < d:;(Gj)(Gj,z) — 0<60(2) < d:;(Gi)(Gi,z).

Therefore, the pair G; := (G}, 0) (where 0 is restricted to the elements of V(G,)) is also a valued
digraph. Even more interesting, we have that for all A C V(G;), then

0(z) < d}(Gj,z) forallz€ A

AelS(G)) = {9(2) > dj(Gj,Z) for all z € V(G;)\ A

so that we have

0(z) < dsz(Gi)(Gi, z) forall z € ANV(G;)

AcIS(G)) =
() { 0(z) > dXﬂV(Gi)(Gi’ z) forall z € V(G;)\ A

and finally, by definition of 1.5(G;) we have
(4.2) AelS(G) = V(G;)NAeclISG).
In other words, we can project 15(G;) on 15(G;), as depicted in Figure 4.5, and the family

15(Gy) < 15(Gs) < ....................... IS(Gj1) s 15(G;)
ANV(G)+—— ANV(Gy)= ANV(G_ ) +—A
“\\y j
FIGURE 4.5.

(15(Gj))i>1 is what we call a projective system for a well-chosen set of projections (see the
definition below).

DEFINITION 4.2.9. A projective system is a family (A;, p;;)1<i<;, where the indices are taken
in NU {00}, A; is a set and p;; is a function from A; to A; such that

Dk,i 0 Djk = pji for all i < 5 < k.
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Consequently, for any element A in 1.5(G.,) (a limit valued digraph, once we fixed a valua-
tion), there exists a sequence of elements (A;);>1 obtained by projecting A on each 15(G;), each
one of these A; being finite. Our aim in this section is twofold: first, we will formalize properly
the construction presented above, and then show that the elements of 1.5(G.) are completely
determined by their sequence of projections. This second point has an important consequence,
that is we can study the lattice structure of (15(G), C) using the sequence of finite lattices
(15(G;), C), allowing us to make effective tests on G, despite of its infinite nature.

We begin with defining the notion of projective valued digraph.

DEFINITION 4.2.10. A sequence of valued digraphs (G; = (G}, 0;))i>1 is called projective if
and only if the four following conditions are satisfied.

(1) The valued digraph G, is finite and acyclic.
(2) For all 4 > 1, there exists z;+; ¢ V(G;) such that V(G;11) = V(G;) U {211}
(3) For all i > 1, there exists X C V(G;) such that E(G;11) = E(G;) U{(zix1,2) | x € X}
(note that X may be empty).
(4) For all i > 1 and z # z1, 0;41(2) = 0;(2).
To each projective sequence of valued digraphs (G;);>1, we associate an infinite valued digraph,
denoted by G, defined by:

V(G) = UV(Q}), E(Gw) = UE(QZ) and for all z € V(G), 00(2) = 0;(2),

i>0 i>0
where j is an integer such that z € V(G;). Such a G, is called projective valued digraph.

Throughout this section, G, will denote a projective valued digraph, (G;);>; will denote its
associated projective sequence and z; will denote the unique element of V(Gy.) \ V(Gr_1). We
begin our study with some general properties of G..

PROPOSITION 4.2.11. A projective valued digraph G, is acyclic and of finite out-degree.

PROOF. We first prove that G, is of finite out-degree. Let z € V(G ) and assume by
contradiction that d* (G, 2) is infinite. By construction, there exists ¢ > 1 such that z € V(G;).
Since G; is finite, d*(G;, z) is finite, hence there exists k > i such that zj is the unique element of
V(Gr)\V(Gk—1) and such that (z, z;) € E(Gy), and this contradicts Point (3) of Definition 4.2.10.
Thus, G is of finite out-degree.

We now prove that G, is acyclic. Assume by contradiction that there exists ¢ > 1 such
that G; is not acyclic, and let n > 1 be minimal such that G,, contains a cycle (G; cannot be
acyclic by definition). By minimality, a cycle of G, must contain the vertex z,, hence there
exists z € V(G,) such that (z, z,) € F(G,), which contradicts Definition 4.2.10-(3). Therefore,

g; is acyclic for all ¢ > 1. Finally, assume by contradiction that there exists a cycle zy,...,z,
in Go,. By construction, there exists an integer m such that zy,...,z, are all vertices of G,,,
thus xy,..., 2, is also a cycle of G,,, which is absurd. Therefore, G, is acyclic, and this ends
the proof. O

Our aim is now to prove that the family (1.5(G;))1<i<e is a projective system (Proposi-
tion 4.2.14) for a well chosen family of projections (p;;)i<i<j<c (Definition 4.2.12), and then
to show that 1.5(G.) can be seen as a “kind of” projective limit of (1.5(G;), pj.i)1<i<j<co (@ good
formulation in terms of categories is missing, this explains the “kind of”).

We begin with the definition of the projections.

DEFINITION 4.2.12. For all 1 < i < j < oo, we have V(G;) C V(G;) by construction. We
denote by p;,; the map from the power set of V(G;) to the power set of V(G;), defined by

pji(A) = ANV(G),

for all A C V(G;). These functions p;; are called the projections associated with G,. Note that
we clearly have p;; o pr; = pp; forall 1 <i¢ < j <k <oo.
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We now begin the proof that (15(G;), pji)i<i<j<oo is @ projective system. We start with a
technical but (very) useful lemma, which is the formal proof of (4.1).

LEMMA 4.2.13. Let 1 <i < j < oo, ACV(G;) and z € V(G;), we have
dix_(gﬁ Z) - d;-j’i(A)<gi7 Z)

PROOF. We set C; = {y € A | (z,y) € E(G;)} and C; = {y € p;i(A) | (z,y) € E(G)}.
We prove that C; = C;. Since p;;(A) € A and E(G;) C E(G;), we have C; C C;. Assume
by contradiction that there exists z € C; \ Cj, then there exists an integer k& > i such that
V(Gr) = V(Gk—1) U{z}, i.e. © =z, But z; € C}, hence there exists an arc from z to z; in Gy.
But z is in V(G;) so it is in V(Gi_1), and this contradicts Point (3) of Definition 4.2.10. Thus,
we have C; = ;. Finally, we have by definition that d}(G;,2) = |C;| and d;j,i(A)(gi, z) = |Cy,
hence d}(G;,2) = d;““(A)(gi, z), and this ends the proof. O

We are now able to prove that (1.5(G;), p;i)1<i<j<co 1S @ projective system.

PROPOSITION 4.2.14. For all 1 <i < j < 00, we have

pi(15(G5)) = 15(Gi).
PROOF. Let A € 15(G;). We prove that p;,(A) € I5(G;). For that purpose, fix z € V(G;),

and consider the following two cases.

o If z € A, then we have 6;(2) < d}(G;,z). Thanks to Lemma 4.2.13, we have
di(Gj,2) = d;ji(A)(Gi, z). Moreover, 6;(z) = 0;(z) by construction, hence we have

(=) = 03(2) < d5(G,2) = dF (0 (Ghr2).
o If 2 € V(G;) \ A, then using the same arguments, we have
0(2) = 0(2) = d5(G,2) = dF 0 (G 2).
Thus, p;(A) € 15(G;), so that p;;(15(G,)) C 15(G;).

We now prove that the converse inclusion holds. Equivalently, we prove that the restriction

of p;; to 15(G,) is surjective onto 1.5(G;). Let B € 15(G;), we construct explicitly an element B,
in 15(G,) such that p;,(B;) = B. For that purpose, we define recursively a sequence (By);<k<;
as follows:

e B, =B:;

o forall i < k < j, By = Br_1 U {2z} if Ox(2x) < djgkil(gk,zk) (we recall that zj is the

unique element of V(Gy) \ V(Gx-1)), and By = By, otherwise.

Finally, if j = +o00, then we set B, = |J,~; Br. By construction, for all i < k < g < j the
following identities hold:

(43) pq7k(Bq) = Bk
In particular, p;;(B;) = B;. It remains to prove that B; € I5(G;). Fix z € V(G;), and consider
the following four possible cases.
oIf z € B C V(Gi), then 6;i(z) < dj(Gi,z). Thanks to Equation (4.3) we have
B; = pji(B;), and by Lemma 4.2.13, we have dj, (G;,2) = d;“j’i(Bj)(gi,z) = df (Gi, 2).
Consequently, we have
0,(2) = 0:(2) < di (G 2) = 1, (G 2).
o If z € B, \ B;, then there exists an integer k such that i < k¥ < j and z = z,. By
construction, we have 60x(z;) < dj_ (G, z). Furthermore, since (z,2:) ¢ E(Gr),
we have dgk (Gk, 21) = dgk(gk,zk), and by Lemma 4.2.13 we have d}j(gj,zk) =

1
dp, (G, z1). Thus, we have

0i(zk) = O(2k) < dfs, , (Gr, 21) = dpp, (Gk, 21) = dfy (G, 2)-
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o If 2 € V(G;) \ B;, then using the same arguments of the first case, we have
0;(2) = 0i(2) = d (Gi,2) = d})51(Gi, 2) = dg (Gj, 2).
o If z € V(G;) \ (Bj UV(G;)), then there exists an integer k such that i < k < j and
z = z;,. By construction, 0y (zy) > d;kfl(gk, k), and using the same arguments of the
second case, we conclude that
0,(2) = df, (G5, 2).

Thus, we have B; € 15(G,), and this ends the proof. O
Consequently, (15(G;), pj.i)i<i<j<oo 18 a projective system. Let us now explain how this pro-

jective structure can be used to study the lattice (15(G ), C). For that purpose, we introduce
the following function.

DEFINITION 4.2.15. We denote by 1.5,,,;(G1, G2, .. .) the set

i>1
and we define the function 7 : 1.5(Go) — 1.Spr0j(G1, G, - . .) to be
VA € I15(G), T(A) == (Poo.1(A), Poc2(A),...).
Since for all ¢+ > 1 and A € IS(Gx), we have pii1(Pocit1(A)) = Doi(A), thanks to
Proposition 4.2.14, the map 7 is well defined.
PROPOSITION 4.2.16. The function w is a bijection.

PRrROOF. This function is clearly injective. To show that it is surjective, consider
(A1, Az, .. .) € 15405(G1,Ga, - . ),
and set A := J,~; Ai. We show that A € 1S(G). In order to do so, fix z € V(G), and
consider the following two cases.

o If z € A, then there exists n > 1 such that z € A, C V(G,). Since A, € 15(G,),
0n(z) < df (Gn,z). Thus, by Lemma 4.2.13 we have

Oso(2) = 0,(2) < d}(Goo, 2)-
o if 2 € V(G,) \ A, then there exists m > 1 such that z € V(G,,) \ A,. Then, by
proceeding as in the previous case, we have

Ooo(2) > dz(gomz)-
Thus, A € 15(Gw), and we obviously have m(A) = (A, As, . ..), so that 7 is surjective and this
concludes the proof. O

Proposition 4.2.16 shows that 1.5(G.,) behaves like a projective limit of the projective sys-
tem (15(G;),pji)i<i<j<co- In the following theorem, we show how this projective structure is
transferred to the complete lattice (15(Gx), C), allowing us to study it through the sequence
of finite lattices (1.5(G;), C)1<icoo-

THEOREM 4.2.17. Let G, be a projective valued digraph, with associated projective sequence
(gi)izl, X - [S(goo) and A, B e [S(goo), with 7T(A) = (Al,AQ, . ) and 7T(B> = (Bla BQ, .. )
Then, the following four statements are true.

(1) We have A C B if and only if A; C B; for all i > 1.
(2) The dual valued digraph Goo (see Definition 4.1.7) is projective with associated sequence

(Gi)iz1-
(3) For all i € N* U {oo}, if we denote by V; the join in (1S5(G;), C), then

W(\/OOX) = (\/1 poo,l(X)v \/2 poo,2(X)7 H )
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(4) Similarly, T(AoX) = (A1 Poo,1(X), A2 Poo2(X), .. .).

PROOF. Since A = {J;5, 4; and B = J;, B, Point (1) is obvious. Note that the values of
the valuation does not play a role in the definition of a projective valued digraph. Thus, Point
(2) is clearly true.

Let us prove Point (3). Let 7(VooX) = (C1,Cy,...) and denote by X; the set poo;(X) for
all © > 1. Since VX is an upper bound of X, C; is an upper bound of X; for all 7 > 1, so that
we have Vi, Xz Q Cz

We now prove that the converse inclusion holds. For that purpose, we first show that
VuXn = Pnsin (Va1 Xny1) for all n > 1. We use the notations of the proof of Theorem 4.1.6:
let (J;) be the sequence associated with V,1X,1, and (J!) be the sequence associated with
VX, We prove that p,1,(J;) = J/ by induction on 1.

e Since Jo = Ucx,,, 4 and Jj = Uacy, A, we clearly have p,i1,(Jo) = Jp.
e Let ¢ > 0 be such that p,1,(J;) = J; and z € V(G,), thanks to Lemma 4.2.13, we
have d} (Gpi1,2) = df 7y(Gn, 2) = d?,(Gn, ), hence, by definition of the sequences

Pn+1, n
Jand J', z € J; 1 if and only if z € J/, ;. Thus, we have ppy1n(Jiv1) = J/ ;.

This implies that

pn+1,n(\/n+1Xn+1) = Pn+1,n (U Jz) Uanrl n 'L U J/ = Vn X
>0 i>0 i>0

Therefore, by Proposition 4.2.16 we have (|J,», ViXi) € 15(G). Furthermore, it is an upper
bound of X by construction, hence Voo X C (U5, ViXi). Thus, (1) implies that for all ¢ > 1,
C; C V;X;. Consequently, we have V;X; = C;, and this ends the proof of (3).

Point (4) is an immediate consequence of (3) together with (2) and Proposition 4.1.8. [

4.2.4. Link between PS(G) and IS(G) in the projective case. It appears that the
elements of PS(Gw) also inherit the projective structure of G.,. Using this structure, we will
prove that peelings in the projective case encode maximal chains of (/5(G), C) in the same
way they do in the finite acyclic case (see Theorem 4.2.24). We begin with showing that
(PS(Gi))i>1 is a projective system, introducing first its associated projections.

DEFINITION 4.2.18. Set 1 < i < j < oo and J = (V(G;),<) € PS(G;). We denote by
p;.i(J) the total ordering of V(G;) obtained by restricting < to V(G;).

Note that for all 1 < i < j < oo, z € V(G;) and J € PS(G;), we have p;;(J.) = (p;i(J))..
We now prove that (PS(G;), pji)i<i<j<co 1S a projective system.

PROPOSITION 4.2.19. For all 1 <i < j < oo, p;(PS(G;)) € PS(G).

PROOF. This is an immediate consequence of Lemma 4.2.6 together with Lemma 4.2.13:
let J € PS(G;), I =p;:(J)and z € V(G;), we have

H(Z) = d}rz(gﬁz) p i(J2) (glv ) - It(glaz)
Thus, by Lemma 4.2.6 I € PS(G;), and this concludes the proof. O
Proposition 4.2.19 allows us to define the following function.

DEFINITION 4.2.20. We denote by P.S,,;(G1,Go, . ..) the set
{([1,[2, .. ) € HPS(QZ) | Pj,i(]j) =1 fOT' all 1 <i< ]},

i>1
and we define the map 7 : PS(Gs) — PSproj(G1, G2, .. .) to be
7(I) := (Pooi (1), Poc2(I), . . ).

We now prove the analogous of Proposition 4.2.16 for the peelings in the projective case.
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PROPOSITION 4.2.21. The function 7 is a bijection.

PROOF. The function 7 is clearly injective. It remains to show that it is surjective. Let
(L;)i>1 € PSproj(G1,...), we have p;,;(I;) = I; for all 1 < ¢ < j. Thus, for all  and y such
that x is smaller than y in [;, then z is also smaller than y in I;. Therefore, we can define
I = (V(Gw), <) the total ordering of V(G ) obtained by setting x < y whenever there exists
m > 1 such that x is smaller than y in [,,. Clearly, 7(I) = (I3, I, ...) so we just need to show
that I € PS(Gw) to prove the property. Let us now prove that [ € PS(Gw). For that purpose,
consider A an initial section of I and denote by A; the set p ;(A) for all ¢ > 1. We have
pit1:(Air1) = A;, and A, is an inital section of [; for all ¢ > 1. But I; € PS(G;) with G, finite
and acyclic, hence A; is in 1.5(G;). Thus, by Proposition 4.2.16 we have A € 15(G.,). Finally,
thanks to Proposition 4.2.7 [ is in PS(G), and this ends the proof. O

We finish this section studying the maximal chains in (/5(Gw), €): we will show that, in
the projective case, they are encoded by peelings (Theorem 4.2.24). We start with two technical
lemmas.

LEMMA 4.2.22. Let k € N*, C be a chain in (15(Gr+1),C) and I € PS(Gg) be such that
Pr+1.k(C) is included in the set of the initial sections of I (since Gyyq is finite and acyclic, such
a I always ezists). Then, there exists J € PS(Gyy1) such that:

(1) pr+1x(J) = I;
(2) C is included in the set of the initial sections of J.

PROOF. For the sake of clarity, in this proof we denote by 6 the valuation 6j..

We construct explicitly the peeling J. Without loss of generality, we can assume that both
() and V(Gy1) are in C. Since Gy is finite, we can write I as a sequence [xq,...,x,] with
n = |V(Gx)|- By hypothesis, there exists 0 =iy < iy < ... <4, =n such that

Prer1i(C) = {As, | 1 <5 < q},

where A;, = {z1,..., 7} and with the convention that Ay = A; = (). Let us denote by B; the
smallest element in C such that pyy1x(B;) = A;, and by z the unique element of V(Gy11)\V(Gr).
Since () and V(G41) are both in C, there exists 1 < m < ¢ minimal such that z ¢ B,, and
z € B,,11. We now split our study into two cases.

o 1 |C| > |prs1n(C)|, then C = {Bi. ..., B, B, Bus1,. .., B} with B = B,, U {z}. We

set J the sequence defined by
J =Ty, T 2 T 1y ey T

Let us now prove that J € PS(Gy41). Since for all j € [n] we have (z;,2) ¢ E(Gg41),

we also have that df (z;) =d¥} (z;). Thus, we have
= wj

O(x;) = d};j (z;) = dzj (x;) for all j € [n].

Furthermore, since z ¢ B,, and z € B, we have 0(z) > dj (Gpi1,2) and 0(z) <
d5(Grs1, 2). But (2,2) € E(Gry1), so that df (Grg,2) = dj(Grs1,z). Consequently,
we have

(=) = df, (G, ).
Thus, thanks to Lemma 4.2.6 we have J € PS(Gyy1), and J clearly satisfies (1) and
(2).

o If |C| = |pr+14(C)|, then C = {By,...,B,;}. Consider the finite sequence (d;)o<i<n
defined by d; = [{j < i | (2,2;) € E(Gr41)}| — 0(2), this sequence is weakly increasing
and we have d; 1 —d; <1 for all 0 < i < n. By definition, z € B,,.\ B, with B,, and
Bin41 both in 15(Gryq), hence d;, < 0 and d;,,,, > 0, so that there exists  minimal
such that 7, <r <i,,.1 and d, = 0. Consequently, if we set

J = [wla-~'7'I7"727x1”+17"'7xn]a
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then thanks to a similar argument as in the previous case we have
O(xy) = d};k (xy) = d};k (x1) for all k € [n],

and 0(z) = d (z) by definition of d,. Thus, J € PS(Gg41) and satisfy Point (1) and
(2). O

We now give the second technical lemma.

LEMMA 4.2.23. Let I = (X, =) and J = (X, =) be two total orderings of a set X. If the
set of the initial sections of I is included in the set of the initial sections of J, then [ = J.

PRrROOF. We show that = < y if and only if x <; y. First, note that for all z;y € X, x <; y
if and only if there exists an initial section A of I such that x € A and y ¢ A, and similarly for
<. Therefore, if z <; y, then x <; y. Conversely, if z <; y then we have that either x <; vy,
or y <y = (because I is a total order). Assume by contradiction that y <; x, then there exists
an initial section B of I such that y € B and = ¢ B. However, by hypothesis, B is also an
initial section of J, so that y <; x and this is absurd. Thus, we have x <; y.

Eventually, we proved that x <; y if and only if x <; y, hence I = J, and this ends the
proof. O

We are now able to state and prove the main theorem of this section.

THEOREM 4.2.24. Let G, be a projective valued digraph, (G;);>1 be its associated sequence
of valued digraphs and C be a chain of (1S(Gx), C). Then, there exists I € PS(Gw) such that
C s included in the set of the initial sections of I and C is mazximal if and only if we have
equality.

PROOF. Step 1: first, we construct a peeling I such that C is included in the set of the initial
sections of 1. We denote by C; the set p;(C) (notice that p;;(C;) = C;). Since C; is a chain in
(15(Gy), C) and since G, is finite and acyclic, by Theorem 4.2.1 there exists [; € PS(G;) such
that C; is included in the set of the initial sections of ;. Thus, using recursively Lemma 4.2.22,
for all i > 1 there exists I; € PS(G;) such that:

e (C; is included in the set of the initial sections of I;;

hd pi—‘rl,i(Ii—l—l) = 1I;.
Eventually, thanks to Proposition 4.2.21 there exists I = (V(Gy), =) € PS(Gs) such that
7T(]) = ([1, [2, .. )

We now prove that each element of C is an initial section of I. Let A € C, by construction
each A; = pooi(A) is an initial section of I;. Let u =< v be such that v € A, there exists k > 1
such that both u and v are in V(Gy). Then, we have v € A, but Ay is an initial section of I,
so that u € Ag. Consequently, u € A so A is an initial section of I. Thus, C is included in the
set of the initial sections of I, and this ends the first part of our proof.

Step 2: We now prove that C is maximal if and only if C is equal to the set of the initial
sections of I. Since the set of the initial section of [ is a chain that contains C, if C is maximal
then we have equality. Conversely, assume that there exists I € PS(G4) such that C is equal to
the set of the initial sections of I. There exists C" a maximal chain such that C C C’ (note that
this is a consequence of Zorn’s Lemma, and its use can be avoided but the proof is somewhat
longer). By Step 1 there exists J € PS(Gy,) such that C’ is the set of the initial sections of J. As
a consequence, the initial sections of I are initial sections of J. Thus, thanks to Lemma 4.2.23
we have I = J, so that C = C’, which obviously implies that C is maximal. U

Theorem 4.2.24 has the following corollary, which concludes this section.

COROLLARY 4.2.25. Let A € 15(G), there exists I € PS(G) such that A is an initial
section of I.
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PROOF. Since A is included in a maximal chain, this corollary is clear. If one wants to avoid
the use of Zorn’s Lemma hidden in this little argument, note that we can in fact construct the
peeling [ using recursively Lemma 4.2.22. 0

4.2.5. Projective implies algebraic. Let us first recall the definitions of compact ele-
ments of a complete lattice and of algebraic complete lattices.

DEFINITION 4.2.26. Let P = (P, <) be a complete lattice and ¢ € P, we say that c is
compact if and only if for all subset X of P such that ¢ < VX, there exists Y C X finite such
that ¢ < VY.

DEFINITION 4.2.27. A complete lattice P = (P, <) is called algebraic if and only if:
for all z € P, we have = V{c < x | ¢ compact}.

It is obvious that a finite complete lattice is algebraic, since in this case all the elements
are compact. Therefore, (15(G), Q) is algebraic whenever G is finite, so that the lattice coming
from a projective Valued digraph is a limit of algebraic lattices, and it is natural to ask if the
property “to be algebraic” also passes to the limit.

We will show that it is indeed the case (Theorem 4.2.30). In the following of this section,
Goo will denote a projective valued digraph with associated sequence (G;);>1, and, as usual,
for all £ > 1 we will denote by z; the unique element of V(Gi) \ V(Gr_1). We begin with
introducing a family of subsets of V(G ), which turn out to be compact elements of (1.5(Gw), C)
(Proposition 4.2.29).

DEFINITION 4.2.28. Let k € N* and A € 15(Gy), we recursively define a sequence (A;) as
follows:
o forall 1 <i<k, A; = pii(A);
e for all] > k‘ AJ+1 = A, U{Z]+1} if Q(Zj—l-l) < d:Z] (gj+1, Zj+1>, and Aj—i—l = Aj otherwise.

Finally, we denote by A the set (J;5, A

<—
PROPOSITION 4.2.29. For all k € N* and A € 15(Gy), we have that A is in [S(Gx) and is
compact in (15(G), C).

PROOF. We first show that A € IS(Gs). Let (A;) be the sequence associated with Z,
since A € 15(Gy), we have that for all i < k, A; € 15(G;).

We now prove by induction on j that A; is in 15(G;) for all 7 > 1. First, notice that
Ag € 15(Gy) by definition, and for all i < k we have A; = pi;(Ax) € 15(G;). Let j > k be such
that A; € 15(G;), and let z € V(G,41). There are two cases.

o If 2 # zj41, then z € V(G)) and d}y , (Gj11,2) = dj (G),2) by Lemma 4.2.13. There-
fore, if 2 € A4, then z € A; and 6(z) < djj(gj, z) = d
have 6(z) > djjﬂ(gjﬂ, z).

o If z = z; 14, then the fact that (241, zj+1) ¢ E(G;41) implies that

(Qj+1, z), otherwise we

djgj (Gjr1, Zj41) = dAJ+1 (Gj+1, Zj41)-
Thus, by definition of A;q, if z;,1 € Ajyq, then 6(z;11) < djj+1(gj+1,zj+1), and
0(zj+1) > dzj+1(gj+1,z‘j+1) otherwise.
In all cases, A1 € 15(G,4q) for <zﬂl j. Moreover for all j > 1, p;11 j(Aj11) = A, and pOO](Z)
A;, thus, by Proposmon 4.2.16, A isin IS(Gw).

We now show that A is compact. Let X C IS(G.) be such that A C VX, and denote
by Y the set pox(X), which is a finite subset of 15(G;). There exists Y a finite subset of
X such that px(Y) = Y;. Let us denote by Y; the set p,;(Y) for all ¢ > 1, and note that
thanks to Theorem 4.2.17 (3) we have w(VY) = (V1Y1,VaYs,...). Consequently, if we prove
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%
that A; C Vv;Y; for all ¢ > 1, then by Theorem 4.2.17 (1) we have that A C VY, which is the
expected result. It remains to show that A; C V,;Y;, and we proceed by induction on .

e By construction, for all 1 <i < k we have A; C V,Y;.
e Let j Z k be such that Aj Q \/]5/] If Zj4+1 S Aj+1, then

0(zj+1) < dJAfj(ng, zjr1) < dtjyj(gjﬂa zjr1) < dtjﬂyjﬂ(gﬂla Zjt1)-
ThIlS, Zj+1 € vj—i—ly}'—l—l; so that Aj—i-l Q \/j-&—l}/j—l-l- If Zj+1 ¢ Aj+17 then Aj = Aj+1 Q
ViY; © VY
By induction, we have the desired property, and this ends the proof. [
We are now able to prove that “projective implies algebraic”.
THEOREM 4.2.30. Let G be a valued digraph, if G is projective, then (1S(G), Q) is algebraic.
PROOF. Let A € 15(G), (G;)i>1 be its associated sequence of valued digraphs, z; be the
unique element of V(G;) \ V(Gi—1) and k € N*, we denote by A; the set po.;(A) for all i > 1.

— <=
We prove that Ay C A. In order to do so, let us denote by B; the set p ; (Ak) for all 7 > 1.

We prove by induction on 7 that B; C A,.
By definition, it is clear that for all i« < k, B; = A;. Let ¢ > k be such that B; C A; and
z € B;y1. We have two cases.

o If z = 2z, then we have 6(z) < dj (Gi, 2) by definition. Moreover, we have that
(Zi+17 Zi-‘,-l) g E(gH_l), which 1mphes that
Q(Z) < dgi(gia Z) < dl(Gi? Z) = dii(gi*‘l’ Z) < dl‘ﬂ(gi*l’ Z>’
hence z € A;4q.
o If 2z € Bi, then z € Bz g Az g Ai—i—l-
In all cases, we have B;;; C A;;1, and this ends the induction. Consequently, thanks to

Theorem 4.2.17, we have that A, C A.
Eventually, we now are able to prove that (1.5(G), C) is algebraic. For all z € A, there exists

%
k € N* such that z € V(Gy,), thus z € pe i (A), so that z € Aj. Therefore, we have
AcJmc |J cca

k>1 ccA
C' compact
This implies that (15(G), C) is algebraic, and this ends the proof. O

4.3. Application to the study of Dyer’s conjectures

In this section, we follow the terminology used in [DH].

4.3.1. Dyer’s conjectures and statement of the results of this section. Let us
begin with recalling some facts about Coxeter groups and their root systems. In this section we
consider a Coxeter group W with finite generating set S, and Coxeter matrix M = (mgy)sres-
That is, M is a symmetric matrix with mg, = 1 and, for s # ¢, mg = mys € {2,3,...} U {oc}.
The relations among the generators are of the form (st)™* = 1 if my < oo. For all w € W,
we denote by ¢(w) the minimum length of any decomposition w = s;---s; with s; € S. This
statistic £ on W is the rank function of a poset structure (W, <g), called the (right) weak order
on W, and which is defined as follows: we say that w <g 7 if and only if there exists sq,..., 5.
in S such that 7 = wsy--- s and (1) = {(w) + k. In the remaining of this chapter, we will
exclusively work with the right weak order so we use from now on the term “weak order” instead
of “right weak order”.
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Let us consider a quadratic space (V, B), where V is a vector space of finite dimension |S|
with basis A = {as | s € S}, and where B is a bilinear form which satisfies the following
conditions: for all s and ¢ in S,

™ .
) if mg < +oo,
Mgy

B(as, ay) € | — 00; —1] otherwise.

B(as, ) = — cos(

We denote by Og(V) the group of linear maps that preserve B. A vector v € V is called

isotropic if and only if B(v,v) = 0, and to each non-isotropic vector « we associate the B-

reflection s, (u) = u — 2§EZ’3Q, So € Op(V). Then we have a geometric representation of W,

that is a faithful representation of W as a subgroup of Og (V') such that S is mapped into the
set of B-reflections associated to A. We denote by ® := W (A) the corresponding root system
with basis A, which is partitioned into positive roots ®* (the elements of ® that are linear
combination of elements of A with non-negative coefficients) and negative roots &~ = —®*. We
call the couple (®, A) a geometric system of W, and we call A a simple system of this geometric
system. To each w € W one can associate its inversion set, namely Inv(w) = ®T Nw(P~). The
inversion set is a finite set of positive roots, which has the two following classical properties
(see |BB]).

(1) For all w € W, {(w) = |Inv(w)|.

(2) For all w and 7 in W, we have that w <g 7 if and only if Inv(w) C Inv(7).

For more details about geometric representations and general properties of Coxeter groups, the
reader may consult, for instance, |[H| and [BB].

In what follows, we will represent root systems using projective representations of ®, as in
[DH|, [DHR|, and [HLR]. Since ® = ®* LI &~ is encoded by the set of positive roots, we

represent ® by an affine cut ®. That is, there exists an affine hyperplane V; in V' such that for
all v € ®T the ray RT+ intersects V; in a unique nonzero point 7 (in the classical geometric
repreqentatlon one can choose V] as the hyperplane of equation z; +x9+---+x, = 1). Finally,
d is the set obtained considering all those intersection points 7, and ® is what is called a
projective representation of ®. We depict in Figure 4.6 a projective representation of the root
system ® = {e; —e; | 4,5 € [n—1], ¢ # j} of A3, where e; denotes the i-th vector of the
canonical base of R". Clearly, three points are aligned in a projective representation if and only
if their corresponding roots are coplanar. Since this property is fundamental for what follows,
we represent collinearity with a portion of line.

(07 17 71’ 0)

(0,1,0,—1 (1,0,

) _170)

(070717_1) (1/717070)

FIGURE 4.6. A projective representation of a root system of Az, where we omited
the symbole “
We will particularly focus on some subsets of ®*, that we define below.
DEFINITION 4.3.1. Let A C ®T, we say that A is closed if and only if
for all o, 3,y € ®* such that vy = aa + 08, a >0, b >0, if a, 3 € A, then v € A.

We say that A is bi-closed if and only if both A and ®*\ A are closed. We denote by B(®")
the set of all the bi-closed sets of .
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Using this notion, there is a geometrical characterization of the inversion sets of the elements
of W, as shown in Proposition 4.3.2. For a proof of this proposition, the interested read may
consult, for instance, [P].

PROPOSITION 4.3.2. The finite bi-closed sets of ®t are exactly the inversion sets of the
elements of W.

Therefore, the poset (B(®*1), C) provides a natural extension of the weak order.

CONJECTURE 4.3.3 ([D1], Remark 2.14). The poset (B(®*), C) is a complete ortho-lattice
with ortho-complement given by the set complement of ®7.

Let us now focus on a second conjecture of Dyer, which gives a generalisation of the reduced
decompositions of the maximal element in the finite case, in terms of reflection orderings.

DEFINITION 4.3.4. A reflection ordering is a total order I = (&, <) of ®*, such that
for all a, 3,7 € ®T,if y =aa+ b5, a >0, b>0, thena <y =<, or f < v = a.

It is known that, in the finite case, we have a one-to-one correspondence between reduced
decomposition of the maximal element and reflection orderings. More precisely, if W is finite,
then a chain C of (B(®"), C) is maximal if and only if there exists a reflection ordering I such
that C is constituted exactly of the initial sections (i.e. lower sets) of I. The second conjecture
says that this situation is preserved in the infinite case.

CONJECTURE 4.3.5 (|D4], Section 2.2). A chain C of (B(®"), C) is maximal if and only if
there exists a reflection ordering I such that C is constituted exactly of the initial sections of I.

Our aim in the following sections is to apply the notion of valued digraph to the study
of Dyer’s conjectures. First, we introduce in Section 4.3.2 a family of valued digraph, called
well-assembled on ®* that we relate to Conjectures 4.3.3 and 4.3.5. In Section 4.3.3, we prove
that there exists a projective well-assembled on ®* valued digraph, constructing explicitly such
a valued digraph.

In Section 4.3.4, we explore some of the consequences of the existence of a projective well-
assembled on ®* valued digraph G. More precisely, we prove the following theorem.

THEOREM 4.3.6. Let W be a Cozeter group of finite rank, ® = ®+ 11 ®~ be the associated
root system, B(®T) be its set of bi-closed sets and G be a projective well-assembled on ® valued
digraph, we have the two following properties.

(1) The poset (1S(G),C) is a complete algebraic ortho-lattice such that B(®T) C 15(G),
and each reflection ordering of ®% is in PS(G).
(2) We have that 1S(G) = B(®T) if and only if PS(G) is equal to the set of the reflection

orderings of ®+.

Then we explain how the projective structure of G can be used to test if 1.5(G) has a chance
to be equal to B(®™) or not (Proposition 4.3.25). Using Proposition 4.3.25, we provide an
example of a projective valued digraph G’ being well-assembled on a root system of the Coxeter
group Cj3 such that 15(G") # B(®'). Nevertheless, we make the following conjecture.

CONJECTURE 4.3.7. Let W be a Coxeter group of finite rank and ® = ®* LI ®~ be a root
system of W, there exists at least one projective valued digraph G well-assembled on ®* such

that 15(G) = B(®™).

Finally, in Section 4.3.5 we use results from Sections 4.3.3 and 4.3.4 to prove that our
conjecture holds in the case of finite simply laced Coxeter groups (Corollary 4.3.30), that are
Coxeter groups A,, D,, Eg, E7 and Eg.
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4.3.2. Definition of well-assembled valued digraphs. A natural way to approach Con-
jecture 4.3.3 with the theory developed in the previous sections is to look for a balanced valued
digraph G such that V(G) = @ and I5(G) = B(®"). Let us first see if this can be done on the
simplest infinite example: the infinite dihedral Coxeter group.

EXAMPLE 4.3.8. We represent on Figure 4.7 the poset obtained by ordering by inclusion
the bi-closed sets of a root system of the infinite dihedral group, i.e. the Coxeter group with
two generators s and ¢ such that m,; = +00. As one can see, the lattice obtained is isomorphic
to the one depicted in Example 4.1.16, identifying «; with a; and 3; with b;.

: oF

! PN
as E Bs o\ (A} 0\ {a}

! /

E O\ {B1, B2} O\ {a1, as}
o i 5 <D+ \ {[‘)}1, [))2, ,33} (I)+ \ {(le, g, (13}

i {a170|527a3} {Bl?lﬁ%ﬂii}
aq : ﬁl

: {a1, a0} {81, Ba}

; {al}\ /{51}

0
Pt (B(@"),9)

FIGURE 4.7.

As it is shown in the previous example, one can describe the lattice (B(®™), C) using scaf-
folding whenever W is a dihedral group (of course, we have to use a finite scaffolding whenever
W is a finite dihedral group). In what follows, we propose a family of candidates for a val-
ued digraph describing bi-closed sets (see Definition 4.3.11), using scaffoldings as fundamental
compounds. Let us first introduce some definitions and properties about the geometry of ®7.

A maximal dihedral sub-system is a set ® = ® N P where P is a plan of V, such that
|®*| > 2 (where T = ®T N ®’). Then, there exists A’ = {«a, 8} C ®'* and a dihedral Coxeter
group W' such that:

e cach element of ®'* is a linear combination of v and 8 with non-negative coefficients;
e (' A’) is a geometric system of W’ where the bilinear form is given by B restricted
to P.

For a proof of these facts, we refer the reader to |H|, Section 8.2.
DEFINITION 4.3.9. We denote by M the set of all the maximal dihedral sub-systems of ®.
For each positive root v, we define the set M, C M to be
M, ={P" e M |ved and v ¢ A' (D)},
where A’(®’) denotes the simple system of ¢'.

We now explain what we will do in this section. The key point is the following immediate
property:
(4.4) B(@")={ACd" | AND' € B(P'") for all ?’ € M},

i.e. the property “to be bi-closed” is fundamentally 2-dimensional. However, in the case of
dihedral groups, we already have a family of valued digraph describing the lattice of bi-closed
sets (see Figures 4.2 and 4.7). Therefore, considering this fact together with (4.4), we have a

natural way to construct our candidate of valued digraph G following a two step method:
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(1) associate to each &' € M a scaffolding G¢ such that V(Ge) = T and 15(Ge) =
B(®");

(2) “gluing” together these scaffoldings in order to obtain a valued digraph G such that
V(G) = & (more formally, we identify the vertices corresponding to the same pos-
itive root, and the valuation is obtained by adding the valuations coming from each
scaffolding).

Root system of Az Step 1 Step 2

F1GURE 4.8. Representation of our method in the case of a root system of Aj.
Note that the resulting valued digraph is the same one introduced in Chap-
ter 3 Section 3.3.1.

We give the formal definition of this family of valued digraphs after a preliminary lemma.
LEMMA 4.3.10. For all v € ®*, the set M, is finite.

PROOF. There exists w in W such that v € Inv(w), and Inv(w) is finite and bi-closed.
Moreover, if we consider ¢ € M, with associated simple system A’ = {«, 3}, then v is a
linear combination with positive coefficients of « and . Thus, we have that o € Inv(w) or
p € Inv(w). Clearly, if we consider ®” € M, \ {®’} with associated simple system A”, then
A”N®" = (). Furthermore, we also have A” NInv(w) # 0. Thus, we have |[M,,| < |Inv(w)|, but
Inv(w) is finite, so that we have the expected property. 0

In the following definition, we define the claimed family of balanced valued digraphs, each
one of them giving rise to a complete ortho-lattice containing (B(®"), C) as a sub-poset (The-
orem 4.3.13). We will explain just after how this definition fits in our two step procedure.

DEFINITION 4.3.11. Let G = (G, ) be a valued digraph such that V(G) = ®*, we say that
G is well-assembled on ®* if and only if:

(1) for all & € M with simple system A’ there exists two disjoint injective sequences
(a;);>1 and (b;);>1 taking values in @' := &' N &+ such that:
(a) {ai, b1} =A%
(b) & =TIm(a) U Im(b);
(c) the initial sections of a and b are bi-closed in @' (but not necessarily in ®);
(d) the digraph G’ obtained by restraining G to ®'* is a scaffolding made of a and b.
(2) for all v € ®F, O(y) = |M,[;

Points 1-(a) to (d) correspond to the first step of our program: these technical points are
here to ensure that the restriction of a well-assembled on ®* valued digraph to any ® € M
is a scaffolding (Point 1-(d)), and such that the balanced valued digraph Gg defined by this
scaffolding satisfies 15(Gg) = B(®'") (Points 1-(a) to (¢)). Point (2) corresponds to the second
step: on Figure 4.8, we see that the value of the valuation obtained after we glued the scaffolding
precisely equals |M,|.

Before we move to the study of well-assembled valued digraphs, we have to be sure that
such a valued digraph exists. This is the point of the following lemma.
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LEMMA 4.3.12. For all Coxeter group W with associated root system ® = &+ LI O, there
exists a well-assembled on ® valued digraph.

PROOF. Let ® € M and consider its projective representation, we fix an arbitrary orien-
tation of this representation and we define two sequences ag and bg as depicted in Figure 4.9
(ag corresponds to the left side of the representation, and bgs to the right side). It is clear

Orientation ' Orientation
= ' =

1
ay as as by by X ay az az aq by b3 by by
o — e ) \ o—o—0c0—1F—0—0—0——0
Left Right ' !

1

1

1

example in the finite case example in the infinite case

FIGURE 4.9. For the sake of clarity, we omit the index & on this figure

(see Figure 4.9) that the sequences ag and bgs satisfy points (1.a), (1.b) and (1.c) of Defini-
tion 4.3.11.

We now construct a well-assembled on ®* valued digraph. For this purpose, we first con-
struct the underlying digraph. For all &’ € M, fix G¢ an arbitrary scaffolding made of ag
and bg and then let G be the digraph such that V(G) = & and

E(G)= | | E(Ga).
d’eM
By construction, G satisfies points (1.a), (1.b), (1.c) and (1.d) of Definition 4.3.11.
We now show that the valuation 6 : V(G) — N, defined by 6(v) = |M,|, satisfy

(4.5) Yy e @, 0<0(y) < d™ (G, ).

In order to prove (4.5), we explicitly compute the value of d*(G, ). Let ® € M, with simple
system A’, and v € ®'. By construction, if v € A, then d"(Gg/,7y) = 0, and d*(Ger,7y) = 2
otherwise. Furthermore, we clearly have

(4.6) dH(G,y) = Y d(Ge,7).

P'eM

~ED!
Thus, by definition of M., we have d*(G,vy) = 2|M,|. Consequently, 6 satisfy (4.5) and
(G,0) is a valued digraph, which is well-assembled on ®* by construction. This complete the
proof. [l

THEOREM 4.3.13. Let W be a Cozxeter group, ® = &+ U D~ be a root system of W, B(®T)
be the set of the bi-closed sets of @ and G = (G, 0) be a well-assembled on ® valued digraph.
Then, G is balanced and B(®T) C 15(G).

PROOF. Since G clearly satisfy Equation (4.6), G is balanced.

We now prove that B(®*) C 1.5(G). Let B € B(®*), v € &* and ¢’ € M., we denote by
(a;); and (b;); the sequences associated with @ (see Definition 4.3.11 (1)) and by A and B their
respective sets of initial sections. We divide our study into two cases.

e Case 7 € B: since B € B(®™), the set B’ := BN d is bi-closed in &'+ = ' NPT,
By definition of a well-assembled valued digraph, A and B are both constituted of
bi-closed sets of ® and {aq,b;} is the simple system of ®'. Therefore, the projective
representation of @’ is, once again, as depicted in Figure 4.9. Thanks to this graphical
representation and to the fact that B’ is bi-closed in ®'*, it is clear that we have
either B’ € AUB, or &\ B’ € AU B. Thus, thanks to the fact that the restriction
of G to ' is a scaffolding made of a and b and to Proposition 4.1.15, there exists
p € @+ N B such that (y,p) € E(G). Since this is true for any choice of ® in M.,
we have d}(G,v) > |M,| = 6(z).
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e Case v ¢ B: using similar arguments as in the previous case, one can show that

0(z) =2 d*(G,7).
The conclusion of this study is that B € IS(G). Thus, B(®"T) C IS(G) and this ends the
proof. 0

COROLLARY 4.3.14. For any well-assembled on ®* valued digraph G, there exists an injective
poset morphism from (B(®T), C) to the complete ortho-lattice (1S5(G),C).

REMARK 4.3.15. Notice that the valued digraphs introduced in Chapter 3 in order to de-
scribe the weak order on A,,_; and B, can both be seen as well-assembled on a root system
corresponding to A, ; and B,, respectively. However, note that it is not the case for the

valued digraph describing the weak order on A,,, since in this case some vertices have an odd
out-degree.

4.3.3. Depth-increasing sequence and associated projective valued digraph. Our
aim in this section is to construct a projective well-assembled on ®* valued digraph. First,
notice that any scaffolding is obviously projective, as depicted in Figure 4.10. Therefore, a

a2 a2

gl g2 g.?
F1GURE 4.10. Scaffoldings are projective.

natural idea to construct a projective well assembled on ®* valued digraph G would be to find
a way to construct simultaneously the scaffoldings of G, according to the pattern described on

Figure 4.10. For that purpose, we consider a classical statistic on the positive root system (see
[BB|). Let 5 € ®F, then the depth of (3 is

dp(f) == min{l(w) |w e W, w(B) € O™ }.

We will prove in what follows that for any ® € M with simple system A’, there exists two
injective sequences (a;) and (b;) of elements of ®'* such that:

o for all i < j, we have dp(a;) < dp(a;) and dp(b;) < dp(b,);

e &' =Tm(a) U Im(b);

o A'={ay,b };

e cach initial section of (a;); or (b;); is a bi-closed set of ®'*.
Therefore, if one considers an injective sequence (¢;) such that ®* = Im(c) and for all i, j € N,
if dp(c;) < dp(c;) then i < j, then the restriction (c}); of (¢;); to the elements of @ is a shuffle
of a and b, and the corresponding scaffolding satisfies points (1)-(a) to (d) of Definition 4.3.11.
Thus, one can construct a projective well-assembled on ®* valued digraph using the sequence
(Cz)z

Let us begin the formal construction with a well-known property of the depth (see for

instance ||[BB|, Lemma 4.6.2]).

PROPOSITION 4.3.16. Let s € S and f € &1\ {a,}, we have dp(as) =1 and

dp(B) =1 if B(as, f8) >0
dp(s(83)) = dp(B) if B(as,8) =0
dp(B)+1 if B(as8) <0

We also introduce a useful notation.
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DEFINITION 4.3.17. Let v be a positive root, and ' € M be such that v € &', we denote
by dpg(7) the depth of v, seen as an element of @'

The following proposition will allow us to prove Proposition 4.3.19, which is the key property
allowing us to construct a projective well-assembled on ®* valued digraph.

PROPOSITION 4.3.18. Let v € ®*, we have the three following properties.

(1) We have dp(vy) =1+ Z (dpg/ () — 1).

oeM,

(2) For all " € M, with associated simple system A, there exists « € A’ such that:
B(y,a) > 0, and for all p € ", if B(p,a) > 0 and if dpg(p) < dpe (), then
dp(p) < dp(7)-

(3) For all ® € M, and oo € A, we have dp(a)) < dp(7).

PROOF. Point (1): our proof relies on the construction of a well-chosen subset A C ®*,
such that A is the inversion set of some w € W, v € A and |A| = dp(y). For that purpose, let
¢’ € M, with simple system A’ and a be an element of A" such that B(v,a) > 0 (such a «
always exists), we denote by U, () the set of all the roots u € ' such that dpg (1) < dpg ()
and B(u, ) > 0. Graphically, U, () is of the form depicted in Figure 4.11.

FIGURE 4.11. Illustration in the case of an infinite dihedral sub-system.

Note that both Uy, (v) U {7} and @' \ U,(v) are bi-closed in ®'*. We also have
(4.7) Ua(7)] = dpg/(v) — 1, and [\ Ua(7)| > [Ua(7)].
Choose an arbitrary labelling of the elements of M., that is

v = {(I)l(’}/)v q)2(7)7 R (I)Mv(fy)}’

and let a; be an element of the simple system of ®;(vy) such that B(vy,a;) > 0. We now
consider w € W such that v € Inv(w), since Inv(w) is bi-closed, we have that U,,(y) U {vy} or
Ot \U,, () is included in Inv(w). Since the sets U, (7),Ua, (7), - - . are pairwise disjoint, thanks
to Equation (4.7) we have the following inequality:

v@] > [ U U] 121+ Y dpg() L

1<i<|IM,| 1<i<| M, |
We now prove by induction on the depth of 7, that there exists a finite sequence of positive
roots (o )i<i<|m. | such that:
o for all 1 <i < |M,|, a; is in the simple system of ®;(y) and B(v, a;) > 0;

o {7} U U Uy, () | is the inversion set of a given w in W.
1<i<| M|
If dp(y) = 1, then ~ is a simple root, so that M., = () and the property is obviously true.
Let n 4+ 1 be the depth of v, and assume that the property is true for all roots of depth at
most n. Then, there exists p of depth n and « a simple root of ®* such that s,(u) = 7. By

induction, there exists (a;)1<i<jm,| such that {u} U <U1<i<|Mu| Un, (/L)) is the inversion set of
a permutation w. We divide our study into two cases.

o If for all 1 < ¢ < |[M,| we have o ¢ ®;(p), then o ¢ Inv(w), hence Inv(s,w) =
{a} Usq(Inv(w)). We have the following facts:
— So(Pi(p)) € M, for all 1 <i < M,;
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— Sa(y) is in the simple system of s, (P;(u));
= B(7,5a(ai)) = B(sa(p), sale)) = B(p, ai) > 0;
— AP, (@,(2)) (5a(B)) = dpg, () (B) for all B € O;(p).
Therefore, if we set 5; = s,(q;) we have s,(Ua, (1)) = Up,(77), so that Inv(s,w) =

{a,7}U (UISiSIMm Us, (7)) . Note that {«, u¢} is the simple system of an element of M.,.
Moreover, dp(y) > dp(sa (7)) thus B(a,v) > 0 by Proposition 4.3.16, so that U, (y) =

{a} and if we denote SBjrq(u)+1 = o we have Inv(s,w) = {7} U <U1§i§|/\/lu\+l Up, (7))
In order to finish the study of this case, we just have to show that |M,| = [M,|+ 1,
and this is immediate since the intersection of Inv(s,w) with any element of M., is
non-empty.

o If there exists 1 < j < |M,| such that o € ®;, then « is in the simple system of ®;
(because it is a simple root). Moreover, by Proposition 4.3.16 we have B(«, ) < 0,
so that we have a ¢ U, (1). Hence, Inv(s,w) = {a} U s,(Inv(w)). From that, we
conclude with a similar method as in the previous case.

In all cases, the property is proved. As a consequence, point (1) is true.

Point (2): consider a positive root v, ® € M., and « in the simple system of ®’ such that
U,(7) is in the inversion set of an element w € W such that |Inv(w)| = dp(y) (such a w always
exists, thanks to the proof of Point (1)). Let u € U,(7), by minimality of |Inv(w)| there exists
W' € W such that p € Inv(w’) C Inv(w), then dp(u) < |Inv(w’)| < |Inv(w)| = dp(y), and this
ends the proof of the point (2).

Point (3): this can easily be shown by induction, with a similar method as in the proof of
Point (1).

This ends the proof of this Proposition. 0

PROPOSITION 4.3.19. For any ® € M with simple system A, there exists two injective
sequences (a;) and (b;) of elements of ®'F such that:

o for alli < j, we have dp(a;) < dp(a;) and dp(b;) < dp(b;);
e &' =Tm(a)UIm(b);
o A= {ay,bi};

e cach initial section of (a;); or (b;); is a bi-closed set of ®'.

PROOF. We construct recursively the two sequences. First, note that we have the situation
depicted in Figure 4.12. We arbitrary set a; and by such that {a;,b;} = A’. Then, we consider

FIGURE 4.12. Values of dp, for an infinite (on top) and a finite (on bottom)
maximal dihedral sub-systems.

v € ®"* such that dp, () = 2. Thanks to Proposition 4.3.18-(2), there exists o € A such that
B(a,vy) > 0 and dp(«) < dp(y). Therefore, if o = a; then we set v = as, and we set v = by
otherwise. If there exists y € ®* such that p # v and dpy (1) = 2, then we have B(a, p) > 0
and we set u = by if @« = ay, 4 = ay otherwise. We repeat this procedure for the roots of
depth 3, and so on. At the end, we have the configuration represented on Figure 4.13, and the
sequences (a;); and (b;); satisfy the conditions of the property. This ends the proof. O
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a1 a9 as Qg - o by b3 bo by
[ L 4 L —0-0—00—0 L 4 L 4 @
FIGURE 4.13.

Thanks to the previous proposition, we are now able to construct a projective well-assembled
on ®F valued digraph (Definition 4.3.22). This construction relies on the concept of depth-
increasing sequences of ®, so that we begin with defining those sequences.

DEFINITION 4.3.20. Let ¢ = (¢;);>1 be an injective sequence of elements of ®*, we say that
c is a depth-increasing sequence of positive roots if and only if @+ =TIm(c) and i < j whenever

dp(c;) < dp(cj).

The fact that a depth-increasing sequence of positive roots exists is clear, since there are
only a finite number of roots which have a given depth. Before moving to the construction of the
valued digraph, we introduce a useful notation, which considerably simplifies its construction.

DEFINITION 4.3.21. Let (¢;); be a depth-increasing sequence of root, k € N* and ' € M., ,
we denote by Fg(cy) = {c;, ¢;} the set of the two unique roots in ®* such that ¢; = ac; + be;
with a > 0, b > 0, and with 4, j both maximal and strictly smaller than k.

The fact that Fg/(ci) is non empty whenever & € M., is clear by Point (3) of Proposi-
tion 4.3.19. We now have everything required to define the claimed valued digraphs.

DEFINITION 4.3.22. Let ¢ = (¢;);>1 be a depth-increasing sequence of root, we define recur-
sively the sequence of digraph (G;(c));>1 by:

e V(G1(c)) ={c1} and E(G4(c)) = 0;

e V(Giti(c)) = V(Gi(c)) U{cita};

o E(Gisi(c)) = E(Gi(c)) U{(cit1,a) | a € U@/eMc,.H]:@'(Cz’H)}-
We denote by Gw (c) the simple digraph such that

V(Gw(c)) = U1 V(Gi(c)) and E(Gw/(c)) = U1 E(G;(c)).

By construction and thanks to Lemma 4.3.10, the out-degree of any root ¢ is an even number
equal to 2| M., |, and we set Gy (c) the balanced valued digraph associated with Gy (c).

PROPOSITION 4.3.23. Let W be a Cozeter group and ® = ®TUD™ its associated root system,

for each depth-increasing sequence c, we have that Gy (c) is projective and well-assembled on
o,

PROOF. First, notice that Gy (c) is obviously projective by construction.

We now prove that Gy (c) is well-assembled on ®*. Let ¢’ be a maximal dihedral sub-system
of ® and (a;);, (b;); be two sequences coming from Proposition 4.3.19. Then, there exists (ix)
and (jg)r two sequences of increasing indices such that

forall k > 1, ¢;, = a; and ¢;, = by.

Let us denote by ¢ the sequence obtained restraining ¢ to the elements of ®'. By definition, ¢
is a shuffle of @ and b, and thanks to Proposition 4.3.19 together with the fact the ¢ is depth
increasing, we have that the digraph obtained by restraining Gy (¢) to @’ is a scaffolding made
of a and b, the initial sections of a and b are bi-closed in ®’, and the simple system of &’ equals
{a1, 81}, Thus, Gy (c) is well-assembled on @', and this concludes the proof. O

4.3.4. Consequences of this construction. In this section, we give some consequences
of the existence of a projective well-assembled on ®* valued digraph. We begin with proving
Theorem 4.3.6.
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PROOF OF THEOREM 4.3.6. Point (1): Thanks to Theorem 4.3.13 and Theorem 4.2.30,
(I5(G), C) is a complete algebraic ortho-lattice such that B(®") C I.5(G). Moreover, any initial
section of a reflection ordering is a bi-closed set, then it is in 1.5(G). Consequently, thanks to
Proposition 4.2.7, each reflection ordering is in PS(G) and this ends the proof of Point (1).

Point (2): Assume that I5(G) = B(®*) and let I = (&1, <) € PS(G) and a, 3,7 € &
such that v = aa + b3, with a > 0 and b > 0. Without loss of generality, we can suppose that
a < f. Since Iz € B(®'), we have v € Iz so that v < . Thus, we have that 5 ¢ I, but
I, € Bsothat o € I, and o < . Finally, we have o < v < 3, thus I is a reflection ordering.
The converse is clear, and this concludes the proof of Point (2). U

In what follows, we explain how the projective structure of a projective well-assembled on
®* valued digraph G can be used to test if 15(G) has a chance to be equal to B(®™).

DEFINITION 4.3.24. Let A C & and B C A, we say that B is A-closed if and only if
Ya, 3,7 € A such that v = aa+ b5, a >0, b >0, if o, € B, then v € B.

We say that B is A-bi-closed if and only if B and A\ B are both A-closed. We denote by B(A)
the set of the A-bi-closed sets.

PROPOSITION 4.3.25. Let G be a projective well-assembled on ® wvalued digraph, with
associated sequence of valued digraphs (G;)i>1, we have that 1S(G) = B(®T) if and only if
I1S(G;) € B(V(G:)) for alli > 1.

PROOF. Let A € B(®™), we have that ANV(G;) is in B(V(G;)), thus if 15(G) = B(®™),
We now prove the converse. Let «, 3,7 € &t be such that v = aa + bS with @ > 0 and
b >0, n > 1 be such that «, 8,7 € V(G,) and A € IS(G). If a and § are in A, then o and
[ are in pe ,(A) which is V(G,)-bi-closed, so that v € ps ,(A) and, as a consequence, 7 € A.
We conclude with a similar argument that if o and § are both in V(G)) \ A, then v € V(G) \ A.
Thus, A is bi-closed and this concludes the proof. U

Using Proposition 4.3.25, we are able to provide an example of a projective well-assembled
on ®* valued digraph G such that 1.5(G) # B(®) in the case of W = Cj (the author wants to
thank Matthew Dyer, who found this simple example). We recall that 6; is the Coxeter group
of rank 3 with generators a, b, and ¢ such that m,; = my . = 4 and m, . = 2. Consider a root
system ® = &+ U®P~ of Cy, with simple system {a, 8,7} corresponding respectively to a, b, and
c, and let us define a depth increasing sequence d of ®* whose ten first terms are ordered as
follows:

d= [Oz, 57 e a(ﬁ)v b<a)7 b(’}/), C(ﬂ)v ab(7)7 Cb(Oé), ac(ﬁ)v"']'

On the projective representation of ®*, the configuration is as depicted in Figure 4.14.

FIGURE 4.14.

In that case, we have that {«,dy,ds,dg} is in 1S(Gyg), but is not {dy,...,do}-bi-closed
since dyq is a linear combination of v and dy. Hence, thanks to Proposition 4.3.25, we have that
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IS(Gw(d)) # B(®1). However, note that this situation does not occur if we swap the positions
of dy and dyo. Despite of this counter-example, we finish this section with a (quite long) remark
to motivate Conjecture 4.3.7.

REMARK 4.3.26. At least in rank 3, there is a family of depth-increasing sequences which
never led to a counter example, despite of multiple tests. Those are the sequences defined as
follows. Consider an ordering L; = [«q, ..., a,] of the simple system of the positive root of a
Coxeter group of rank n, and denote by s; the reflection corresponding to «;. Then we define
the following sequence:

L' = [s1(a1),s1(), ..., s1(an), s2(1), ..., Sa(n), s3(aq), ..., sp(an)],

and we define Ly = [f1,. .., 3], the sequence obtained from L’ by, first, keeping only the first
occurrence of each root in L', and then deleting the roots which are not positive of depth 2.
Similarly, we define:

L' = [81(51)7 ceey 31(519)7 32(51)7 <o 7371(619)]7

and we define L3 from L” by deleting the roots which are not of depth 3, and deleting the
repetitions, and so on. It follows that we defined a family of sequences L;, and by construction
L; is a total ordering of the positive roots which are of depth 7. Thus, the sequence ¢ obtained
concatenating the sequences L; is a depth increasing sequence.

The reason why these sequences seem to satisfy Conjecture 4.3.7 (at least in rank 3) remains
quite mysterious. Indeed, this is an empiric observation based on the study of rank 3 Coxeter
groups, and the author does not know why the situation seems to work that way. However, it
seems that a proof or a refutation of our conjecture (using these sequences or not) would be
based on a better understanding of the geometry of ®T, as it is the case in the Section 4.3.5.

4.3.5. Finite simply-laced case. In this section, we prove that Conjecture 4.3.7 holds
when W is a finite simply-laced Coxeter group (Corollary 4.3.30). Our proof relies on the fact
that in the finite simply-laced case, there is only one projective valued digraph well-assembled
on ®*, and on some geometric properties of @ (see Definition 4.3.27 and Proposition 4.3.28).

We begin with recalling the definition of a simply laced Coxeter group. We say that a
Coxeter system (W, S) of finite rank is simply-laced if and only if for all s and ¢ in S, we have
either mg = 2, or my = 3. The finite simply-laced Coxeter groups are exactly the Coxeter
groups A,, D,, Eg¢, E7, and Eg.

In the remaining of this section, we assume that W is a finite simply-laced Coxeter group.
By (|K], Lemma 3.2.3 (a)), we have that for all &’ € M, [®'Nd*| =2 or 3. Since there is only
one scaffolding with respectively 2 and 3 vertices (see Figure 4.15), there is only one valued
digraph well-assembled on @, so that we simply denote by Gy this (projective) well-assembled

valued digraph.

Scaffolding with three vertices

Scaffolding with two vertices

FIGURE 4.15.

Our aim is now to prove that IS(Gy ) = B(®*1). In order to do so, the first key remark is
that the construction and the properties of projective valued digraphs remain true when the
sequence of valued digraph is stationary after a given rank. That is, consider a finite sequence
(Gi)1<i<n of finite simple acyclic valued digraphs such that forall 1 <i < N—1, G, is obtained
from G; adding to it a vertex and some arcs with respect to the conditions of Definition 4.2.10,
then the sets 15(G;) form a projective system, and Gy has all the properties that G, has in
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the infinite case. Hence, if we consider a depth-increasing sequence ¢ = (¢;)1<;<jo+| of & and
(G;) the associated sequence of valued digraph, then we have a projective system (with all the
good properties) and Gjo+| = Gy In particular, Proposition 4.3.25 holds and we can use it to
prove that 15(Gw) = B(®") by induction.

In what follows, we denote by ¢ a depth-increasing sequence of @, by (G;) the finite sequence
of valued digraphs associated with Gy, and by By, the set of {cy, ..., c;}-bi-closed sets. Clearly,
for all £ smaller than the rank of W, we have 1.5(G;) = B; (this is true for any Coxeter group
We show by induction on i that IS(G;) = B;. For that purpose, we need to study the
geometry of ®*. This is the point of the following definition and properties.

DEFINITION 4.3.27. Let v € ®* such that |[M.,| > 2, and ¢’, " be two distinct elements of
M., with respective simple system A’ and A”. We say that ®" and ®” are in a kite-configuration
with respect to v if and only if there exists y € ®* and a labelling A" = {ay, 41} and A” =
{ag, B2} such that a; (resp. ) is a linear combination with positive coefficients of p and ay
(resp. p and ;). This kind of configuration has a simple projective representation, depicted
in Figure 4.16.

ay B

as B

FIGURE 4.16. Projective representation of a kite-configuration

PROPOSITION 4.3.28. Let v € @ be such that |M,| > 2 and @', ®” be two distinct elements
of M.,, we have that ® and ®" are in a kite configuration with respect to .

PrROOF. We prove this proposition by induction on the depth n of +. First, note that if
dp(y) = 1 or 2, then | M.,| = 0 or 1 respectively, hence each positive root of depth 1 or 2 satisfy
the property.

Let n > 2 be such that the property is true for all positive root of depth at most n, and
assume that v is of depth n + 1. Notice that there exists a simple root p and a positive root p
of depth n such that v =s,(p). Let ', ®” € M., we have two cases.

e There exists ®; € M, such that &' = 5,(P;) and " NO*T = {p,~, u}. Let {oy, 51} be
the simple system of ®;, and consider the maximal dihedral subsystems which contain
respectively {u, a1} and {u, 8;}. Since W is finite, we have that those two maximal
dihedral subsystems cannot both contain 3 positive roots: otherwise W would have
a reflection sub-group isomorphic to As. Hence, we have the three possible cases
depicted in Figure 4.17 (up to relabelling). In case 1, we have that s,(p) = p, and this
is impossible since dp(p) < dp(y) = dp(su(p)). In case 3, by Proposition 4.3.19 we
have dp(p) > dp(y), so that this case cannot occur. At the end, the only remaining
possibility is case 2, and this proves that & and ®” are in a kite configuration with
respect to 7.

e There exists ®; and ®, in M, with respective simple system A; and A, such that
P = 5,(P;) and " = s5,(P2). By induction, &; and P, are in a kite configuration
with respect to p, hence there exists v € & and a labelling Ay = {aq, /1 } and Ay =
{aw, B2} such that we have the situation depicted in Figure 4.18. Since dp(s,(p)) >
dp(p), we have that pu ¢ {v,as, f1}, but s, is a linear map such that s,(®* \ {u}) =
O+ \ {p}, so that s,({on,az, b1, B2, v}) € @, s,(aq) is a linear combination with
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positive coefficients of s, (v) and s,(a2), and s,(f2) is a linear combination with positive
coefficients of s,(v) and s,(f8;). That is, ® and ®” are in a kite configuration with
respect to .

By induction, the proof is done. O
With this geometric property, we are now able to prove the main result of this section.
PROPOSITION 4.3.29. For all 1 <i < |®T|, we have 15(G;) C B;.

PROOF. We prove that 1.5(G;) C B; by induction on i. As stated earlier in this section, this
property is obviously true when ¢ is smaller than the rank of W.

Let ¢ be such that IS(G;) C B, and A € 15(G;41). First, note that, thanks to Proposi-
tion 4.2.14, if we denote by A’ the set AN V(G;), then A’ € 15(G;). Our aim is now to prove
that both A and V(G;11) \ A are V(G;.1)-closed. In order to do so, let a, 8,7 € {c1,...,cii1}
such that v = a4 bf with a > 0 and b > 0. That is, {«, 5} is the simple system of an element
o’ in M.,

Step 1: We first prove that A is V(G; 1)-closed. Assume that «, 5 € A, then we have two
cases.

e Case |M,| =1: we have that {y € A|(v,y) € E(Gi+1)} = {«, B}, thus

d}3(Gir1,7) = {o. B} =2>1=10(),

so that v € A.

e Case [M,| > 2: let &” € M, \ {®'}, thanks to Proposition 4.3.28 " and ®” are in
a kite configuration with respect to v. Thus, there exists u € ®* and a relabelling
{a, B} = {aq,p1} and a labelling {as, f2} of the simple system of ®” such that o
(resp. [32) is a linear combination with positive coefficients of p and s (resp. p and
p1). By Proposition 4.3.19, this implies that the depth of 7 is strictly bigger than the
depth of oy, ag, f1, B2, and p. Hence {ay, ag, f1, fa, u} C V(G;).

By induction hypothesis, we have A’ € B;. Moreover, both «; and (3; are in A’
but «; is a linear combination with positive coefficient of p and «ay. Hence, we have
that ap € A or p € A’ If p € A’, then 5 € A’ for the same reason. In fact, we just
proved that for any ®” € M., the intersection of A with the simple system of ®” is
non empty, however, by construction of G; ., there is an arc from v to each element of
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the simple system of ®”, so that we have
A4 (Giv1,7) > M| = 01 (),

which implies that v € A.

Consequently, A is V(G;11)-closed.

Step 2: since G;4; is balanced, we have that V(G;11) \ A is in 1.5(G;41). Thus, by Step 1,
we have that V(G;11) \ A is V(G;41)-closed.

Therefore, A € B;,1, and this ends the proof. O

This proposition has the following immediate corollary, which concludes this section.

COROLLARY 4.3.30. In the finite simply-laced case, (W, <g) and (I1S5(Gw), <) are isomor-
phic.

4.4. Link with convex geometry and closure operators

REMARK 4.4.1. The author want to thank Matthew Dyer for his useful suggestions, which
led to the content of this section.

In this section, we briefly highlight some connections existing between our construction and
the notion of abstract convexr geometry and their associated closure operators. Before stating
the results of this section, we recall the definition of these two notions (for more informations
about abstract convex geometries, the interested reader may consult, for instance, [EJ|).

Let X be a set (finite or not), a closure operator on X is a map I" from the power set of X
to itself such that:

(1) forall AC X, ACT(A);
(2) for all A and B subsets of X, if A C B, then I'(A) C I'(B);
(3) for all AC X, I'(I'(A)) =T'(A).

We say that ' is of finite type if and only if for all A C X,

r4) = J rm.

Let us denote by C the set {I'(A)|A C X}, we say that the couple (C,T") (or simply C,
when there is no ambiguity) is an abstract convex geometry if and only if T' satisfies the anti-
exchange property, that is, for all K € C and p,q ¢ K such that p # ¢, if ¢ € T(K U {p}), then
p & T(K U{g}).

Let us now state the results of this section. In Section 4.4.1, we define, for any valued digraph
G, a subset C(G) of the power set of V(G) and a closure operator I' on V(G) (Definition 4.4.2).
We then show that C(G) is closed under arbitrary intersection and that C(G) = {I'(A)|A C
V(G)} (Proposition 4.4.3). Notice that the link between (C(G),I') and the theory developed
in previous sections is guaranteed by the facts that /5(G) C C(G) and for all X C IS(G),
r (Uan A) = VX. Finally, we prove that if G is acyclic, then ' has the anti-exchange property,
so that (C(G),I') is a convex geometry (Proposition 4.4.4).

In section 4.4.2, we assume that G is projective, and we prove that the set of the intersections
of elements of 15(G) is also a convex geometry (Proposition 4.4.7).

Finally, in Section 4.4.3 we study closure operators of the form

VX CV(G), Ts(X) = [ 4
KE
for some well-chosen subset S of 1.5(G). In particular, we show that if G is projective and S is
projective complete (Definition 4.4.8), then I's is of finite type (Theorem 4.4.12). A consequence
of this result is that both I';gg) and I'g+) are of finite type (Corollary 4.4.13).
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4.4.1. The acyclic case. In this section, we explain how we can associate to each acyclic
valued digraph G = (G, 0) a convex geometry (C(G),I") such that 1.5(G) C C(G), and such that

for all X C I1S(G), we have VX =T U A |. Note that the closure operator introduced in

AeX
this section is of fundamental importance for our study of Cambrian lattices in Section 4.5.

DEFINITION 4.4.2. We denote by C(G) the subset of the power set of V(G) defined by
C(G):={ACV() | 0(z) >d}(G,z) for all z € V(G)\ A},
and by I' the operator defined by
VX CV(G), T(X) =],

i>0
where (J;) is a sequence of subset of V(G) recursively defined by:

[ J(]:X,
e for all ¢ Z O, Jz‘-i—l = Jz U {Z S V(Q) \ Jz | 9(2) < dz(g, Z)}

We begin with some general properties of C(G) and I'.

PROPOSITION 4.4.3. Let G be a valued digraph, the set C(G) and the operator T’ have the
following properties:

(1) IS(G) C C(G) and for all X C IS(G), VX =T ( U A) ;
A
(2) the intersection of any family of elements of C(G) ifalso in C(G);

(3) C(G) ={T'(A)|[A S V(9)};
(4) T is a closure operator of finite type.

PROOF.

Point (1): the fact that 1.5(G) C C(G) is clear. The second part of this point can be proved
following the exact same method as in the proof of Theorem 4.1.6.

Point (2): let X C C(G), Y be the intersection of all the elements of X and z € V(G) \ Y.
There exists A € X such that z ¢ A, hence 0(z) > d}(G,2), but Y C A so that d}(G,z) >
dy (G, z). Consequently, 0(z) > di(G, 2) so that Y € C(G).

Point (3): following the exact same method as in the third point of the proof of Theo-
rem 4.1.6, we have that I'(A) € C(G) for all A. We now prove the converse, let B € C(G) and
denote by (J;) the non-decreasing sequence of sets associated with I'(B). We have that for all
z€V(G)\ Jo. 0(z) > dj (G, z) by definition of C(G), hence J; = .Jy = B, and by induction we
have J; = B for all i > 0. It proves that I'(B) = B, and this ends the proof of Point (3).

Point (4): we first show that I" is a closure operator. Thanks to the proof Point (3), we
have that I'(I'(A)) = I'(A) for all A C V(G). Moreover, it is obvious by definition of I" that
A CT'(A). Tt remains to show that for all A C B C V(G), I'(4) C I'(B). In order to do so, let
A C B CV(G) and denote by (J;); and (J;); the non-decreasing sequences of sets respectively
associated with I'(A) and I'(B). We prove by induction that J; C J/ for all @ > 0. First, note
that Jy = A C B = J| by definition. Let i > 0 be such that J; C J! and set z € J; 11 \ J;. We
have that 0(z) < dJ (G, z) < d},(G, z) by induction hypothesis, so that z € J/,, thus we have
Jiy1 C JJ,, and this ends the induction. Consequently, we have that ['(A) C I'(B), so that T
is a closure operator.

We now prove that I' is of finite type. Let A C V(G), (J;); the non-decreasing sequence of
sets associated with I'(A) and z € I'(A). By construction, there exists k& > 0 such that z € Ji,
and we prove by induction on £ that there exists X C A finite such that z € I'(X). If z € Jp,
then the set {z} obviously works. Let & > 0 be such that the property is true, and assume
that z € Jgy1 \ Ji. Then, we have 6(z) < d}“k(g,z), thus there exists zy,..., zg(;)41 pairwise
distinct in Ji such that (2, z;) € E(G) for all 1 < j < 6(z)+ 1. By induction hypothesis, for all
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1 <j <6(z)+1 there exists a finite subset X; of A such that z; € I'(X;). Let us denote by X
the union of all these X, which is finite and a subset of A. Since I' is a closure operator, we
have z; € T'(X) for all j, so that 6(z) < d;“(X)(g,z), but I'(X) € C(G), hence z € I'(X), and
this prove that I' is of finite type. l

The above properties lead us to a natural question: is the couple (C(G),I') an abstract
convex geometry 7 In the general case, we do not know precisely when the closure operator I'
has the anti-exchange property (see the example on the right of Figure 4.3 for a valued digraph
such that the associated closure operator does not have the anti-exchange property). However,
the couple (C(G),I") is an abstract convex geometry when G is acyclic, as stated in the following
proposition.

PROPOSITION 4.4.4. Let G be a valued digraph and 1" be its associated closure operator, if
G is acyclic, then I' has the anti-exchange property.

PrROOF. We divide the proof into two distinct steps. In the first step, we show a technical
property of I', then, in the second step, we use this property to prove that I' is of finite type.

Step 1: let AeC(G),peV(G)\Aand z € ('(AU{p})) \ (AU {p}), we show that there
exists a sequence 2y, ...,z such that (z,21), (21, 22),. .., (2k—1, 2x), (2, p) are all in F(G). For
that purpose, let (J;); be the sequence of sets associated with I' (AU {p}). Note that there
exists j > 0 such that z € J;11 \ J;. We prove the property by induction on j.
If j = 0, then we have that 0(z) < d}u{p}(g,z), but A € C(G), so that 0(z) > d}(G, z).
consequently, there is an arc from z to pin G. Let j > 0 be such that the property is true, and
assume that 2 € Jj;5 \ Jjy1. We have that 0(2) < dj (G,2) and 0(2) > dj (G, 2) (otherwise,
z would have been in J;i;), thus there exists z; in J;41 \ J; such that (z,z;) € E(G), and
by induction hypothesis there exists zo, ...,z such that (z1,22), ..., (2k-1, 2), (2x, p) are all in
E(G). This ends the induction.

step 2: we now prove that I has the anti-exchange property. Let ¢,p € V(G) \ A such that
g #pand g € T(AU {p}). Thanks to Step 1, there exists a finite sequence of arcs starting
at ¢ and ending at p. Assume by contradiction that p € I'(A U {q}), then we have a finite
sequence of arcs starting at p and ending at ¢, and this is a contradiction since G is acyclic. As
a consequence, p ¢ I'(AU {q}) so that I" has the anti-exchange property. O

4.4.2. A “smaller” convex geometry in the projective case. Let us begin this section
with a remark. Let TV be a dihedral group with root system ® = ®*U®~ and B(®™) be the set
of the bi-closed sets of ®*. It is clear that the set A of all the intersections of elements of B(®T)
is the set of the closed sets of @t and that A is an abstract convex geometry. However, in
general for a valued digraph G well-assembled on ®*, we have that C(G) is strictly bigger than
A. This leads us to the following natural question: is there (in the case where G is acyclic) a
convex geometry smaller than C(G), which contains 1.5(G), and such that the closure operator
associated with this geometry gives the join when applied to the union of a family of elements
of 15(G) ?

In general, this question remains open. However, in the projective case we can show that
the natural choice, i.e. the set of the intersections of elements of 1.5(G), is a convex geometry.
In what follows, G, will denote a projective valued digraph, with associated sequence of valued
digraph (G;);>1, and 15(G) will denote the set of the intersections of elements of 15(G). Let
us begin with defining a family of closure operator V(G.,)

DEFINITION 4.4.5. Let S be a subset of 1.5(G.,), we define the closure operator I's by

VX CV(Gx), Ts(X) = (] A
AeS
XCA

Note that, by definition, 1.5(G.,) is closed under intersection and we have

I1S(G) = {T15(6.)(X) | X CV(G)}-
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We now prove that (IS(QOO) I'rs(g..)) is an abstract convex geometry. For that purpose, we
first give a characterisation of FIS (Goo)-

PROPOSITION 4.4.6. Let L € PS(Gy), IS(L) be the set of the initial sections of L and
denote by I'y, the closure operator defined by

VX CV(Gx), T = ()] A

A€IS(L)
XCA

We have that

VX CV(Gx), Tisg.)(X) = ﬂ I (X).
LEPS(Goo)

PROOF. We first show that for all L = (V(Gx), %) € PS(Gx) and X C V(Gx), I't(X) €
IS(L). Notice that we clearly have

I (X)={2€V(0) | v € X, z 2 x}.

Let y, 2z € V(G ) be such that y < z and assume that z € I';(X). Then, there exists © € X
such that z < 2. Thus, y < 2 so y € I'L(X). Therefore, we have I'(X) € IS(L), but
IS(L) € 1S5(Gw), hence
Prsa)(X) S (] Tu(X).
LePS(Go)
We now prove that the reverse inclusion holds. Let A € 15(G) such that X C A, there

exists L' in PS(G) such that A is an initial section of L’. Then, we have I't/(X) C A. As a
consequence, we have

(| TuX)S (] A=Tisg(X)

LePS(Go) AEIS(ZOO)
XC

This ends the proof. O
We are now able to prove that (/5(G),'1s(g..)) is an abstract convex geometry.

PROPOSITION 4.4.7. Let Go, be a projective valued digraph, the closure operator I'isg..) has
the anti-exchange property.

PROOF. Let A € 15(G.,) and p,q € V(G) \ A be such that p # ¢, we have that p ¢ A =
I'75(g..)(A), thus, thanks to Proposition 4.4.6, there exists L' = (V(Gx), <) € PS(Gs) such
that p ¢ T'1/(A). So for all z € A, z < p (i.e. pis an upper bound of A in L'). Assume that
q € I'1sg.)(AU{p}), then we have ¢ € I',(AU{p}), so that ¢ < p. Thus, for all z € AU{q} we
have z < p, hence p ¢ I'r/ (AU {q}), and this implies that p & I';g.)(AU {q}). Consequently,
I'1s(g.) has the anti-exchange property. [

4.4.3. Some closure operators of finite type in the projective case. It follows from
Proposition 4.4.7 that (15(G),'s(g)) is an abstract convex geometry. One may ask if I';g(g)
is of finite type. As it will turn out, it is indeed the case, and we prove it in this section
(Corollary 4.4.13). Furthermore, our proof can be extended to show that I'zg+) is also of finite

type.
As usual, we denote by G, a projective valued digraph with associated sequence of valued

digraphs (91)121
DEFINITION 4.4.8. Let So, C 15(Gw) and S; C 15(G;) for all ¢ > 1, we say that the family
(Si)lgz‘goo is projective complete if and only if the following properties are true:
(1) for all 1 <1< j < o0, pj7i(8j) - Si;
(2) conversely, for all sequences A; € S;, if pi1,(Aiv1) = A, for all i > 1, then U;A; € Sx.
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There are two main examples of projective complete families. The first one is simply the
family (15(G;))1<i<co- The second one comes from the bi-closed sets of a Coxeter group. That
is, let G be a projective well-assembled on ®* valued digraph, (G;); be its associated sequence
and B(V(G,,)) be the set of V(G,)-bi-closed sets of ®*. Then, we have B,(V(G,)) C 15(G,),
and following the same method as in the proof of Proposition 4.3.25, one can prove that
(B(V(G:)))1<i<oo is projective complete.

In what follows, (S;)1<i<eo Will denote a projective complete family such that V(G;) € S;
for all 1 <14 < oo. In general, I's__ does not have the anti-exchange property, but we will show
that it is of finite type. The proof is a bit tricky, and we need to introduce several notations.
In what follows, X will denote a subset of V(G ). We define the following sets:

X; = poo,i(X)a
Vi, j such that 1 <i < j < oo, Si(X)={AeIS(G) | X, C A},
Sja(X) = pja(S;(X)).
In order to prove that I's__ is of finite type, we first prove three technical lemmas.

LEMMA 4.4.9. For all + > 1, we have
Sit1,i(X) 2 Sit2,i(X) 2 Sigs4(X) D -+

PROOF. Let j > and A € SJ<X) Then, Xj CAso X; = pjﬂ-(Xj) - pjﬂ-(A) €S, Thus,
we have S;;(X) C §;(X). Let k > j, we have

Ski(X) = Pri(Se(X)) = 05 (Pr,; (Sk(X))) = P3,i(Ski (X)) C psa(S;(X)) = Sja(X). O

Thanks to Lemma 4.4.9 and to the fact that V(G;) € S;,(X) for all j > ¢, we have that
(S;i(X))j>i is a non-increasing sequence of finite non-empty sets. Thus, there exists n > i
such that for all m > n, §,,:(X) = S,;(X). We denote by S, ;(X) the set S,,;(X) (which is
non-empty).

LEMMA 4.4.10. For all j > i, p;i(Sec (X)) = Sec.i( X).

PROOF. There exists n > j such that p, ;(S,(X)) = Sa;(X) and p,, (S, (X)) = Swi(X).
Thus, we have

05.i(S00j (X)) = Pj.i(Pn i (Sn(X))) = Pri(Sn(X)) = Swci( X). O

LEMMA 4.4.11. Let (A;)i>1 be such that A; € Sui(X) and A = Ui21 A If for all i > 1,
pi+1,i(Ai+1) = Ai; then A € SOO(X)

PROOF. Since (S;)1<i<oo 18 projective complete and S, ;(X) C S;, we have A € S,. Con-
sider z € X, there exists ¢ > 1 such that x € V(G;). Moreover, x € X; and A; € S;(X), so that
x € A;. Therefore, x € A, thus X C A. That is, A € S (X). O

Thanks to these lemmas, we are now able to prove the main result of this section.

THEOREM 4.4.12. Let (S;)1<i<co be a projective complete family such that V(G;) € S; for all
1 > 1. Then, U's_ is of finite type.

PROOF. Let X C V(G) and z € I's,_(X). Assume by contradiction that for all n > 1,
there exists m > n such that there exists B € S,,(X) such that z ¢ B. In particular, consider
i > 1 such that z € V(G;) and let n > i be such that S ;(X) = S,:(X). Then, there exists
m > n and B € S,,(X) such that z ¢ B, but p,,;(Sn(X)) = Sw.i(X), so that p,,;(B) is in
Swo.i(X). Notice that z ¢ p,,;(B) by construction. Thanks to Lemma 4.4.10, there exists a
sequence (Aj)jZI such that Aj & SOO,J(X> for all] Z 1, Az = pm,z<B) and pj+1,j<Aj+1) = Aj for
all j > 1. Thanks to Lemma 4.4.11, A := U;A; is in S,(X). Moreover, we have that =z ¢ A by
construction, so that z ¢ T's_(X) and this is absurd.

Therefore, there exists n > 1 such that for all m > n and for all B € §,,(X), z € B.
Let A € S, be such that X,y C A, where X, 1 is seen as a subset of V(G ). Then,
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Xn+1 € Poont1(A) € Spt1, hence po ni1(A) € Sp11(X), so that z € peg ni1(A) and this finally
implies that z € A. As a consequence, we have z € I's_(X,,41), but X, is a finite subset of
X, thus I's__ is of finite type. O]

This theorem has the following corollary.

COROLLARY 4.4.13.

(1) Let G be a projective valued digraph, the operator I'1sg) is of finite type.
(2) Let W be a Cozeter group of finite rank, ® = ®T U d~ be a root system of W and
B(®) be the set of bi-closed sets of T, the operator I'g+) is of finite type.

We conclude this section with a remark about these various closure operators.

REMARK 4.4.14. Note that in general, we do not know if the operator I'gg+) has the anti-
exchange property. Still in relation with Dyer’s conjecture, one can define another closure
operator using reflection orderings. That is, consider A the set of the initial sections of all the
reflection orderings of ®, then the closure operator

VX C T, Tu(X):= ] 4
et
has the anti-exchange property. However, we do not know if A is projective complete, hence we
do not know if it is of finite type. Finally, note that if there exists a projective valued digraph G
well-assembled on ®* such that 1S(G) = B(®™"), then the associated closure operator I';g(g) is
equal to the closure operators I'gg+) and I'4. Hence, the study of those two closure operators
I'go+) and I'4 (and proving or disproving that they are of finite type with the anti-exchange
property) should be a good starting point to the study of Conjecture 4.3.7.

4.5. Toward Cambrian lattices?

REMARK 4.5.1. The author wants to thank Christophe Hohlweg for many useful discussions,
which led to the content of this section.

In this section we begin with applying our theory to the problem of extending Cambrian
semi-lattices. Note that this is just an approach of this problem, and if we indeed provide an
extension of Cambrian semi-lattices into complete lattice, we are not even able to prove that
our extension coincide with Cambrian lattices in type A. However, this problem motivates the
introduction of a new development of our theory, which seems to be interesting in its own (see
Section 4.5.3).

4.5.1. Definition of Cambrian semi-lattices. We begin with recalling the definition of
Cambrian semi-lattices, following [RS3]. In this section W denotes a Coxeter group of finite
rank n with generating set S, and c denotes a Coxeter element of W, that is an element which
has a reduced word of the form sysy---s,, where S = {s1,...,s,}.

DEFINITION 4.5.2. For all subset J of [n], denote by R, the word sj,sj,---s;,, where
J=A{j1,.., gk} and j; < jo < -++ < jg. An element w in W is called c-sortable if and only
if there exists a finite sequence of set [n] O J; D Jy O -+ D J, such that the concatenation
Ry Ry, --- Ry, is a reduced word for w (note that c-sortable elements do not depend on the
choice of a particular reduced decomposition of ¢). The Cambrian semi-lattice associated with
c is the set of all the c-sortable elements of W ordered by the weak order on W.

The fact that Cambrian semi-lattices are effectively semi-lattices is not trivial, and a com-
plete proof can be found in [RS3] (or in [R1] in the case where W is finite). It appears that
c-sortable elements of W can be recognized by the geometry of their inversion sets. Before, we
need to introduce the general notion of orientation of a root system.
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DEFINITION 4.5.3. Consider ® = ®T U ®~ a root system of W, and denote by M-+, the set
of the maximal dihedral sub-systems of ®* containing strictly more than two positive roots.
An orientation 3 of ® consists in a subset X of M.s (the elements of X are called the oriented
elements of M) together with a function ¢ : X — & x ®T associating to each &’ € X a
couple (v, B), such that {«, 5} is the simple system of @'.

— —
Now consider A C & and ® an orientation of ®, we say that A is ®-aligned if and only
if the two following conditions are satisfied:
(1) A is bi-closed;
(2) for all &' € X with ¢(®') = (a, f), if AN P’ contains both  and sz(a), then & C A.
An orientation of a Coxeter group can easily be represented on the projective representation

of its root system, as depicted in Figure 4.19 on an example of rank two Coxeter group. In this
case, the aligned elements are exactly the subsets

®7 {CY}, {Oé?r)/l}a {a7r717’72}a {a771a72a73}7 {Oéa’717’7’2;73>5}> {/B}

Orientation
° ° ® ° °
« T Y2 3 B

FIGURE 4.19.

Note that these bi-closed sets are exactly the inversion sets of the s,sg-sortable elements.
Hence, once we ordered these sets by inclusion, we obtain the Cambrian lattice associated with
SaSs (see Figure 4.20).

QL Y1, Y2, Y3, 6
51,72, 773

a, Y1, 2
\ 15

@, 7

Q

™~
0

FIGURE 4.20.

This fact is not a coincidence, and the following general result was showed by Reading and
Speyer in [RS3] (and first by Reading in [R1] in the case W is finite).

THEOREM 4.5.4. For each Cozxeter element c, there erists an orientation 3 such that the
inversion sets of c-sortable elements of W are ® -aligned. Such an orientation is called a c-
orientation of ®. If W is finite, we have that the inversion sets of c-sortable elements of W
are exactly the @ -aligned elements.

In what follows, we will work on general orientations of roots system, and not only on c-
orientations. Thus, the fact that such a c-orientation exists will be sufficient for the rest of
this section, and we refer the interested reader to |[RS3| or |R1| for a precise construction of a
c-orientation.
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4.5.2. An interesting phenomenon. In this section, we will follow the same method as
in Section 4.3.2, by first giving a complete description of Cambrian semi-lattices and lattices in
dihedral Coxeter group, and then applying this construction to provide a candidate of valued
digraph in the general case.

Consider a dihedral Coxeter group W with generating set S = {s1, s2}, and let ® = dTUP~
be a root system of W. Denote {«y, s} the simple system of ®T, where «; is the simple root

corresponding to s;. Finally, consider the orientation of ® given by ¥ (®) = (ay,as). As

&, non-oriented. &, oriented.

»
L

Qg vy o%) aq v %)

Valued digraph well-assembled

on ¢+,

gl

oy, Q2,7 o, 02,y
VRN / \
Qaq, 7y Q, 7y ag,
| | | “
e %1 (e%) aq
N/ AN /
0 0

FIGURE 4.21. An interesting valued digraph.

depicted in Figure 4.21, in the case where (s152)® = Id we have a valued digraph 6 such that

IS(G) is constituted exactly of the ®-aligned elements of ®*. In fact, this situation is not
limited to this specific case, and we can find such a valued digraph for each dihedral group.

PROPOSITION 4.5.5. Let G be a wvalued digraph well assembled on ®, and denote by 6
the valued digraph obtained from G by adding an arc from oy to ss(ay). Then the elements of

IS(?) are exactly the ® -aligned elements of ®+.

PROOF. Let A € IS(?) and z € V(a)\{al}, by construction we have d{ (G, z) = d}(a, z).
Therefore, if z € A, then 0(z) < d}(G, 2), and 0(z) > d}(G, z) otherwise. Note that 6(a;) =0
and there is no arc in G having «; as starting point, hence in all cases we have 0(a;) =
di(G,a1) =0, so that A € 15(G), which implies that A is bi-closed since W is dihedral. With

similar arguments we show that {as} € ]S(a) and each bi-closed set which contains «; is in
15(9),

It remains only to show that these bi-closed sets are the only one in IS(?). Note that if A
contains both as and sy(ay), then dj(?,al) =1> 0(a), so that a; € A, but A is bi-closed,
thus A = V(a) and this ends the proof. O

This construction naturally extends to any Coxeter group W.
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v

FIGURE 4.22. An example on a dihedral group of cardinality 10.

DEFINITION 4.5.6. Let W be a Coxeter group of finite rank, ® = ®* U ®~ be a root system
of W, G be a valued digraph well assembled on ® and ® be an orientation of ®. We denote by

%
G the valued digraph associated with ®, obtained from G by adding to it the arcs (o, sg(a)),
where {«, 5} is the simple system of an oriented element ®" of M5 such that ¥(®') = (a, f).

Let us see what happens in the case of various orientations of As. On Figure 4.23, we depict
the valued digraph obtained considering the s;sysz-orientation and the s;szss-orientation. In
both cases, one can check that the elements of IS(QX;)) are exactly the inversion sets of the
respective aligned elements. Thus, the resulting lattice is the corresponding Cambrian lattice
in both cases. Finally, let us consider an orientation which does not come from a Coxeter
element of Aj (see Figure 4.24). In this case, the corresponding aligned elements are all in the
obtained lattice. However, note that there are elements in 1.5(Gg) which are not aligned (see
the elements in the red boxes of Figure 4.24).

Even if the general situation seems to be quite complicated, notice that in the case of
any c-orientation of As, the resulting lattice is always the corresponding Cambrian lattice.
Furthermore, this construction always gives rise to a complete lattice, for finite and infinite
Coxeter groups. Consequently, this construction may lead to an extension of Cambrian lattices
in infinite Coxeter groups. In order to investigate this possibility, we need to develop new tools.
Indeed, a fundamental property of Cambrian lattices is that they are sub-posets of the weak
order on the corresponding Coxeter group. However, if we consider a valued digraph G and a
second valued digraph G’ obtained from G by adding some arcs to G, then 1S(G’) is generally
not included in 1S(G) (see Figure 4.25). In fact, the relationship between IS(G’) and I1S5(G)
seems to heavily depend on the considered valued digraphs, and 1.5(G’) can be really different
from I5(G). To overcome this difficulty, we develop in the next section a different (and more
subtle) approach, by explaining how G’ can be used to define a sub-poset of (1.5(G), C), which
turns out to be a lattice (but generally not a sub-lattice of (15(G), Q)).

4.5.3. Adding arcs in a valued digraph and induced lattice. In this section, G and G’
will denote two valued digraphs such that V(G) = V(G'), E(G) C E(G’), and for all z € V(G),
0(z) = 0'(z). Note that we do not restrict our study to simple digraphs here, hence E(G)
and F(G’) can be two multi-sets. Therefore, the formula E(G) C E(G’') means that for each
a € F(G), the multiplicity of a in E(G) is weakly smaller than the multiplicity of a in E(G).
Before we explain what we will do exactly in this section, let us first introduce a few notations
and concepts.
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(65}

aq, g, [, 7Y

FIGURE 4.23. On the top: valued digraph and lattice obtained with the s;s953-
orientation of As. On the bottom: the same thing considering the s;s389-
orientation.

We denote by IT' the closure operator associated with G defined in Definition 4.4.2. That is,
for all X C V(G), we have

F(X) = U Ji,

i>0
where (J;);>o is recursively defined by Jy = X, and
Jz‘+1 =J;U {Z S V(g) \ J; ’ Q(Z) < d};(g, Z)}

We denote by I the closure operator similarly associated with G’. Let us start our study by
giving some fundamental properties of I" and I". We begin with a useful definition.



108 4. EXTENDING THE WEAK ORDER AND CAMBRIAN SEMI-LATTICES

65}

Qq, g, 7y

FIGURE 4.24. Valued digraph and lattice obtained with an orientation which is
not a c-orientation. The elements in the red boxes are not aligned.

a,b,c

(D)
0/

c a,b a a,
| =
a a a a
© | © \
g ! g !

FIGURE 4.25. The element in the red box is in 1.5(G’), but not in 15(G).

DEFINITION 4.5.7. Set X C V(G), we say that X is a germ in G if and only if we have
for all z € X, 0(z) < d¥(G,x).

LEMMA 4.5.8. If X CV(G) is a germ in G, then I'(X) is in 15(G).

PROOF. The proof is similar as the one of Theorem 4.1.6.

LEMMA 4.5.9. For all z € V(G) = V(G') and for all X C V(G), we have d%(G,z) <
dy (G, 2).
PROOF. This is immediate since E(G) C E(G'). O

Our aim in this section will be to define an equivalence relation on 1S(G) (see Defini-
tion 4.5.10), using the closure operator I". More precisely, we will say that A and B in I15(G)
are G'-equivalent if and only if I'(A) = I'(B). Then, we will show that each equivalence
class of this relation admits a maximal element (see Proposition 4.5.13), and finally we will
prove that the poset obtained by ordering by inclusion these maximal elements is a lattice (see
Corollary 4.5.17), but not a sub-lattice of (1.5(G), C) in general (see Figure 4.26).
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DEFINITION 4.5.10. Let A, B € 15(G), we say that A and B are G’-equivalent, denoted by
A ~g B, if and only if I"(A) = I"(B).

We now begin the study of this equivalence relation.
PROPOSITION 4.5.11. For all A € 15(G), we have I"(A) € 15(G").

PROOF. For all z € A, we have 0(z) < d}(G,2) < d{(G',z), hence A is a germ in G’ and
we conclude thanks to Lemma 4.5.8. ]

The following Lemma shows how, in a certain sense, IV “dominate” T.
LEMMA 4.5.12. For all X CV(G) =V(¢'), I'(I'(X)) = I"(X).

PROOF. We have X C I'(X), so that I"(X) C I'"(I'(X)).

In order to prove that the reverse inclusion holds, we consider the non-decreasing sequences
of sets (J;)i>0 and (J!);>o respectively associated Wlth I'(X) and I'"(X). We will show by
induction that J; C J! for all ¢ > 0. Since Jy = X = Jj, the case i = 0 is obvious. Let i be
such that the property is true, and fix z € J;;1 \ J;, we have

0(z) < dj (G, 2) < d+,(g z) < d(G', ).
Therefore, z € J/,,, thus J;1q C J/, ;. Hence, we have I'(X) C I''(X), so that
((X)) € T/(I'(X)) = T'(X),
By double inclusion, we have I"(I'(X)) = I'(X) and this concludes the proof. O
We now prove that each equivalence class of ~g admits a maximal element.

PROPOSITION 4.5.13. Consider Q@ C 1S(G) an equivalence class of ~g/, then @Q has a
mazimal element for the inclusion, which is given by the join in (15(G), C) of all the elements

of Q.

PROOF. Set X := U A, thanks to Proposition 4.4.3 we have that I'(X) is the join of Q

Ae@
n (15(G),<). Therefore, if T'(X) € @, then T'(X) is maximal in @. Tt remains to prove that

I'(X) e Q. Fix A€ @, we have A C X, hence A C I'(X) and I'"(A) C I'"(I'(X)).
We now prove that the reverse inclusion holds. Let B € @), we have I"(A) = ["(B), so that
B CT'(A), and this is true for all B € Q). Then, we have X C I"(A), so that

I'(X) C T(I"(4)) = T(A).

Finally, thanks to Lemma 4.5.12 we have I"(I'(X)) C I"(A). Consequently, I'(X) is in @), and
it is maximal in (). This ends the proof. O

DEFINITION 4.5.14. We denote by 15(G,G’) C IS(G) the set constituted of the maximal
elements of the equivalence classes of ~g.

PROPOSITION 4.5.15. Let A, B € 15(G,G’), we have A C B if and only if I'(A) C I"(B).

PROOF. Clearly, A C B implies I"(A) C T"(B).

We now show the converse implication. Consider B’ =T (BUA) € I15(G), we have B C B/,
thus I"(B) C I"(B’). We also have that BU A C I'(B), so that ["(BU A) C I''(B), and
thanks to Lemma 4.5.12 we have I"(BU A) = I"(I'(B U A)) = I"(B’). As a consequence,
I'(B') = I"(B), and by maximality of B we have I'(BU A) = B, so that BU A C B, hence
A C B, and this ends the proof. O

Proposition 4.5.15 implies that the two posets (I5(G,G'),C) and (I"(15(G)), C
morphic. Consequently, proving that (I"(15(G)), C) is a lattice implies that (15(G,G
lattice.

THEOREM 4.5.16. The poset (I'(1S(G)), C) is a lattice.

) are iso-
/

); ) is
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PROOF. Let X' be a subset of IV(15(G)), X C I5(G,G’) be such that I'(X) = X’ and
denote by Y the union of all the elements of X. Consider I'(Y) € 15(G), for all A € X we
have A C Y so that IV(A) C I'(Y) = I"(I'(Y)). Thus, I"(I'(Y)) is an upper bound of X’ in
(I'(15(9)), ©)-

We now prove that I'"(T'(Y")) is the supremum of X’. Let M be an upper bound of X’ in
(I"(15(G)), ©). By definition, we have I"(A) C M for all A in X. Therefore, A C M for all
A€ X, hence Y C M, so that

'ry)) =1r(Yy)cr(M) =M.

(
This shows that IV(T'(Y")) is the supremum of X’ in (I"(1S5(G)), ). In order to complete the
proof, remark that both () and V(G) = V(G’) are in I'(15(G)). Thus, (I'(15(G)), C) is bounded,
hence (I'(15(G)), C) is a lattice. O

COROLLARY 4.5.17. The poset (15(G,G'),C) is a lattice.

REMARK 4.5.18. Note that in general (I5(G,G’),C) is not a sub-lattice of (15(G), C).
Indeed, in the example represented on Figure 4.26, the join of {a} and {b} is {a,b,c} in

d

FIGURE 4.26. The red boxes correspond to the elements of 15(G,G’).

(15(G), <), but their join in (15(G,G"),C) is {a,b,c,d}.

Now that we have an interesting sub-poset of (1.5(G), C), the next natural step is to look
for a way to identify the elements of 1S5(G,G’) inside 1.S(G). At this point, finding such a
description in the general case remains an open problem. However, the following proposition is
a partial but useful result in this direction.

PROPOSITION 4.5.19. Let A € IS(G'), if A€ IS(G), then A€ 15(G,G").

PROOF. Since I"(A) = A, we have that A is maximal in its equivalence class, so it is in

15(G,6"). 0

Finally, we use the theory developed in this section to start the study of the problem of
finding an extension of Cambrian lattices.
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THEOREM 4.5.20. Let W be a Coxeter group with root system ® = ®+U P, G be a valued
digraph well-assembled on ®T, <I> be cm orientation of ® and Gz be the valued dzgraph associated

with this orientation. If A C ®F is <I> aligned, then A is in 15(G,Gg).

PROOF. By definition, A is bi-closed, hence A € IS(G). Let z € V(G), if z € A then
0(z) < df(G,z). Consequently, we have §(z) < d}(G, z) < df(Gg, 2).

If z ¢ A, then assume by contradiction that 6(z) < d}(Gg,2). Since §(z) > d}(G, z), there
exists ® an oriented element of M-, such that ¢(®') = (z,«) and s,(z) € A, however A is
bi-closed and z ¢ A, so that o € A. But A is ®-aligned, thus ® C A and z € A, and this is
absurd, hence 0(z) > d} (G, 2).

Therefore, A € 15(Gg), and thanks to Proposition 4.5.19, we have A € 15(G,Gg), and this
ends the proof. O

Theorem 4.5.20 has the following immediate corollary, which shows that our construction
extends Cambrian semi-lattices.

_>
COROLLARY 4.5.21. If W is a Cozeter group, and ® s a c-orientation, then the Cambrian
semi-lattice associated with ¢ is a sub-poset of (15(G,Gg), ).






CHAPTER 5

Description of Tamari lattices using valued digraphs

Introduction

In this chapter, we show how the theory developed in Chapter 4 can be used to study Tamari
and Cambrian lattices. More precisely, we introduce a new valued digraph, denoted by AT,
and we show, using combinatorial methods, that (I/S(A!),C) is isomorphic to the (n + 1)-th
Tamari lattice 7,,,1. Moreover, our proof allows us to provide a similar description of m-Tamari
lattices, which are a generalisation of Tamari lattices.

5.1. Brief summary of previous results, and definition of Tamari and m-Tamari
lattices using Dyck paths

5.1.1. How to obtain the valued digraph associated with (A,_;, <gr) using root
systems. Consider the Coxeter group A,,_;, with generating set S = {si,...,s,-1}. Consider
the vector space R™ with canonical base (e;)1<i<n. A root system of A, is given by the set

(I):{ej_ei ’j7£27 1] € [n]}a
with the bilinear form given by the ordinary scalar product on R™. In this case, we choose
A ={eir1—e; | 1 <i<n} assimple system (here, s; corresponds to the simple root e; 11 —e;).
With this choice, the set of positive roots is @7 = {e;—e; | 1 <i < j < n}. Since A,,_; is simply-
laced, to construct the (unique) well assembled on ®* valued digraph Gy (see Section 4.3.5),
we just need to identify, for each (e; —e;) € T, all the pairs of distinct roots {u, v} such that

(5.1) {u,0} T ", e; —e; = au + bv, with a > 0 and b > 0.
We have that for all k € [n]
if i <k <j, thene; —e; = (e; —ex) + (ex — €;),

and it is easy to see that the pairs of the form {(e; —ey), (ex — €;)} are the only ones satisfying
Equation 5.1. Thus, the only arcs having e; — e; as starting point in Gy are (e; — e;,€; — ex)
and (e; — e;,e,, — €;), for all @ < k < j. As in Chapter 3, we represent Gy with a Ferrers

® 016
@

v

s==0l @

© e
® | ® |
©) 3 ©) 3

3
2
1
0
O O

This box represents

@

(implicit) digraph
the root e5 — es. structure.

FIGURE 5.1. The case of A,.

diagram of staircase shape as depicted in Figure 5.1. The left picture on Figure 5.1 explains
how to associate a positive root to each box of the diagram, the center one depicts the digraph
structure, and the right one represents the valuation. As claimed before, the obtained valued
digraph is exactly the one constructed in Chapter 3.

113
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5.1.2. Tamari and m-Tamari lattices. The n-th Tamari lattice can be defined in many
ways, and the most adapted to our purpose is the one involving Dyck paths. A Dyck path of
size n is a path on the square grid consisting of steps (1,0) and (0, 1), starting at (0,0) and
ending at (n,n), and which never goes below the line of equation z = y. To each Dyck path
of size n corresponds a word of length 2n having entries in {0, 1}, where the i-th entry of the
word is a 1 if the i-th step of the corresponding Dyck path is (0,1), 0 otherwise. Consider a
word D which corresponds to a Dyck path and denote by DJi] the i-th letter of D. We say that
a word D’ of the form D[j|D[j + 1] --- D[j + 2k| for some j and k is a Dyck factor of D if and
only if D’ is the word corresponding to a Dyck path of size k (see Figure 5.2 for an illustration
of these notions). In what follows, we identify a Dyck path with its corresponding word. That
is, for any Dyck path P, P[i] will denote the i-th letter of its corresponding word.

) (8.8)

D =(1,1,1,0,1,0,1,0,0/1,1,0,0/1,0,0)

FIGURE 5.2. An example of Dyck path of size 8. In red, a dyck factor of size 2.

Let us denote by Dyck(n) the set of all the Dyck paths of size n. We define an order on
Dyck(n) as follows. Let D € Dyck(n) which does not begin by n up-steps, and set 1 <i < 2n
such that D[i] =0 and D[i + 1] = 1. It is clear on the graphical representation of D that there
exists a minimal & > 0 such that D[i + 1] --- D[i 4+ 2k] is a Dyck factor of D. We say that the
Dyck path D', obtained by swapping the positions of D[i] and this shortest Dyck factor, covers
D (see Figure 5.3).

DEFINITION 5.1.1. The n-th Tamari lattice 7, is the poset obtained by considering the
transitive and reflexive closure of this covering relation.

A (8,8) A (8,8)
Covéring
rela:tion
—
D=(,1,1,0,1,0,1,0,0J1,1,0,0{1,0,0) D' =(1,1,1,0,1,0,1,0(1,1,0,0,0, 1,0,0)

FI1GURE 5.3. An example of covering relation.

The n-th m-Tamari lattice 7?1(7”) is defined similarly, by replacing the Dyck paths of size n
by m-ballot paths of size n. A m-ballot path of size n is a path on the square grid consisting
of steps (1,0) and (0, 1), starting at (0,0), ending at (mn,n) and never going below the line of
equation x = my. As in the case of Dyck paths, for each up-step i of a m-ballot path there
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exists a notion of shortest m-ballot factor which starts by the step 7. This leads us to the
following definition of n-th m-Tamari lattice.

DEFINITION 5.1.2. Set D and D’ two m-ballot paths of size n. We say that D’ covers D if
and only if there exists in D a horizontal step ¢ followed by an up-step, such that D’ is obtained
from D by swapping the positions of the step ¢ and the shortest m-ballot factor of D that begins
with the step 7 + 1. The n-th m-Tamari Lattice 7™ is the poset obtained by considering the
reflexive and transitive closure of this covering relation.

5.2. From valued digraphs to Tamari and m-Tamari lattices

Let us consider the example Sy = As. It is known (see |R1|) that the Cambrian lattice
associated with s;S9s3 is isomorphic to the Tamari lattice 7;. In the previous chapter, we
associated a valued digraph to the s;ssss-orientation and we checked that the resulting lattice
is indeed the associated Cambrian lattice (see Figure 3.23). As it is depicted in Figure 5.4, this
valued digraph can easily be represented using the staircase diagram, by adding arcs in each
column.

C2 1,110
—_— C'l 0
CZO

FIGURE 5.4. Two representations of the valued digraph associated with the
S1S9S3-orientation.

In what follows, we will generalize this construction and prove that each Tamari Lattice 7,
can be described with a valued digraph of this form.

5.2.1. The valued digraph A! and its connections with Dyck(n+1). We denote by
A, = (G, ) the valued digraph associated with (A,,<g). We recall that we have
V(A,) ={(a,b) | 1<a<b<n+1},
E(An) = {((a,b),(a,d)) [ b>d} U{((a,c),(bc)) | a<b},
O(a,b) :=b—a—1 for all (a,b) € V(A,).
DEFINITION 5.2.1. We denote by Al = (G',¢’) the valued digraph such that:
V(AL) = V(An),
E(A}) = BE(An) U{((a,b). (a,d)) | b < d},
6'(z) = 0(2) for all z € V(AD).
The construction of Al from A, is depicted in Figure 5.5, in the case n = 3. Since there is no

ambiguity, in what follows we will simply denote by 6 the valuation associated with both A,
and A!. Note that for all ¢ € V(A!), 6(c) is the number of boxes which are below ¢ and in the

same column.

On Figure 5.6, we represent the lattices associated with .Ag and Ag, where the red boxes
correspond to the elements of IS(AT). In the first case, we can recognize the Tamari lattice
73, and in the second 7;.

In what follows, we will prove that the correspondence between the lattice (I5(.A"), C) and
T.+1 observed for n = 2 and 3 is actually general. For this purpose, we will construct explicitly
a poset isomorphism between these two lattices decomposing our study into three steps, that
we now detail.
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21110 2 A1 0

1o - < 1 ['o

0 As -0 Aj
FIGURE 5.5. From Ajs to Al
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FIGURE 5.6. The lattices (IS(A}), C) and (IS(A}), ©).

(Step 1) First, we associate each element of Dyck(n + 1) with a sequence of integers called its
code.

(Step 2) Then, do the same thing with the elements of I.S(A!), associating them with sequences
of integers that we also call codes.

(Step 3) Finally, we construct the isomorphism by defining a well-chosen bijection between
codes of Dyck(n + 1) and codes of IS(A}).

Let us summarize this planning on a diagram, depicted in Figure 5.7.

Step 1
Dyck(n 4+ 1) <+——— {Codes of Dyck(n + 1)}

Step 3

Step 2
IS(AD) <L> {Codes of IS(A!)}

FIGURE 5.7.

Let us begin with defining the code of a Dyck path. Note that we clearly have a one-to-
one correspondence between partitions (Mg, ..., \x) such that for all 1 <i <n, \; <n —1i and
Dyck(n+1), associating such a partition with the Dyck path given by its boundary, as depicted
in Figure 5.8.

Thanks to this point of view, we are now able to accomplish the first step (see Figure 5.7).
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FIGURE 5.8. Dyck path of size 7 associated with (4,2,2,1).

DEFINITION 5.2.2. Let D € Dyck(n) and A = (\y,..., A\x) be its associated partition. We
define the code of D to be the finite sequence (¢;(D))1<i<n—1, where

¢i(D)y=n—i—\ foralli<n-—1,
with the convention that \; = 0 whenever i > k.

It is clear that two distinct Dyck paths have distinct codes. Before we move to the second
step, let us give a useful characterization of the finite sequences which are the code of some
Dyck paths.

LEMMA 5.2.3. A sequence (¢;)1<i<n—1 1S the code of a Dyck path of size n if and only if the
following two conditions are satisfied:
o forallien—1],0<¢ <n-—1i;
o forallien—1], ¢; —cipq < 1.

PROOF. Assume that (¢;); is the code of a Dyck path of size n, and denote by A =
(Nis ..., Ag) the corresponding partition. It clearly satisfies the first condition. Moreover, we
have

ci—ciH:n—i—)\i—(n—z’—l—)\iﬂ) :1_()\i_)\i+1)7
but A is a non-increasing sequence, hence ¢; — ¢; 11 < 1.

We now prove the converse. Let us consider p = (pq, ..., pin—1 where pu; :=n —i—¢; for all

i € [n — 1]. Clearly, we have p; <n —i. Furthermore, we have

,ui—,uiﬂ:n—z'—cl-—(n—i—l—ciﬂ):1—(ci—ci+1)21—120.
Thus, p is a non-increasing sequence, ¢.e. it is a partition. This concludes the proof. 0
We now begin with the study of the second step (Figure 5.7). Fortunately, there is a

canonical sequence of integers associated with each element A of I.5(A!), which is given by the
number of boxes of A in each row of V(A!). Let us formalize this remark in a definition.

DEFINITION 5.2.4. Let A € IS(A!), we define the code of A to be the sequence (c;(A));,
where for all i € [n],

ci(A) = {(a,i+1) € V(AN | (a,i+ 1) € A}|.

REMARK 5.2.5. At this point, it is not clear that we have a one-to-one correspondence
between IS(A") and the set of its codes, but this will follow from Proposition 5.2.7.

Our aim is now to construct a one-to-one correspondence between codes of IS(A!) and
codes of Dyck(n+1). In order to do so, we need to understand a bit more what the elements of
[S(AZ) look like. In the following lemma, we formalize and prove the following two properties:

(1) for all A € IS(Al) and ¢ € V(A!), if ¢ is in A, then all the boxes which are in the
same column and below ¢ are in A;

(2) for all A € IS(AT) and ¢ € V(AT), if there is a box in the same row and on the right
of ¢ which is in A and if the box being just below ¢ is also in A, then ¢ is in A (see
Figure 5.9 for a graphical representation of this situation).

LEMMA 5.2.6. Let A € IS(A!) and (a,b) € V(A'). Then, we have:
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FIGURE 5.9. The red boxes are in A

(1) if (a,b) € A, then (a,k) € A for all a < k < b;
(2) if (a,b—1) € A and there exists a < q < b such that (q,b) € A, then (a,b) € A.

PROOF. We show the first point by induction on k, where k ranges between a+1 and b — 1.

Note that f(a,a+ 1) = 0 and ((a,a + 1), (a,b)) € E(A?), hence
(a,a+1) < d5(AL (a,a+ 1)),
so that (a,a+ 1) € A. Let k < b— 1 be such that (a,j) € A for all a+1 < j < k. Then, we
have ((a,k + 1), (a,b)) € E(A!), and ((a,k + 1), (a,5)) € E(A!) for all a + 1 < j < k. Thus,
we have
O(ak+1) =k —a<di(A (a, k+1)),

so that (a,k + 1) € A. By induction, (1) is proved.

Let us now prove (2). Since (a,b— 1) € A, by (1) we have (a,k) € Aforalla <k <b—1.
Moreover, we also have

((a,b),(q,b)) € E(A!) and ((a,b), (a,k)) € E(A!) foralla <k <b—1,
so that 0(a,b) < d(A!, (a,b)), hence (a,b) € A and this concludes the proof. O

Let us explain how one can associates the code of an element of IS(A!) with the code of
an element of Dyck(n + 1).

PROPOSITION 5.2.7. Let A € IS(A!) and (d;)i<i<n be the sequence defined by d; :=
Cni1-i(A). Then, (d;)1<i<n is the code of a Dyck path of size n + 1.

PROOF. We prove this proposition using Lemma 5.2.3. First, note that we clearly have
d; <n+1—1, hence we just need to prove that d; — d;;; < 1. Equivalently, we have to show
that ¢;11(A) — ¢;(A) < 1 for all ¢. For that purpose, let us consider a box (k,i + 1) € A.
If 1 <k < i, then by Lemma 5.2.6 we have (k,i) € A, and since (i,7 + 1) is the only box
in the (7 + 1)-th row which does not have any box below it, this immediately implies that
cit1(A) — ¢;(A) < 1, as required. O

DEFINITION 5.2.8. We denote by W the application from I.S(A!) to Dyck(n+1) which asso-
ciate each A € IS(A) with the unique D € Dyck(n+1) whose code is given by (¢, 11-i(A))1<i<n-

PROPOSITION 5.2.9. The application V is a bijection.

Since the proof of Proposition 5.2.9 is quite long and technical, we detail it separately in
Section 5.3.1.

5.2.2. The Tamari lattice 7,,; and (IS(A]), C) are isomorphic. In this section, we
will prove that W is more than just a bijection: it is a poset isomorphism between (I.S(A'), C)
and 7,,1. In order to prove this, we will prove that ¥ “respects”’ covering relations in both
posets. That is, we will prove that A’ covers A in (IS(A"), C) if and only if W(A’) covers W(A)
in 7,,,1. Consequently, we need to understand covering relations in (I.S(A!), C) first.

DEFINITION 5.2.10. Let A € IS(A!) and i € [n]. We define the following terms.

e We call the height of the column ¢ of A the minimal integer k such that (i, k) ¢ A.
e We say that the box (i, k) is admissible above A if and only if k is the height of the
column ¢, and for all 7 < i the height of the column j is different from k.
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e A subset C of V(A!) is called an admissible column above A if and only if there exists
a box (i, k) admissible above A such that C' = {(i, k), (i,k +1),...,(i,¢ — 1)}, where
q is the height of the column k of A.

See Figure 5.10 for an illustration of these notions.

FIGURE 5.10. An element A in I.S(A) is depicted in red, while an admissible
column above A is in grey.

Using the notion of admissible columns, we provide a complete characterization of covering
relations in (IS(A!), C) in the following proposition, whose proof is given in Section 5.3.2.

PROPOSITION 5.2.11. Let A, A’ € IS(A!), then A’ covers A in (IS(AV),C) if and only if
there exists C an admissible column above A such that A’ = AU C.

Since the definition of ¥ involves the notion of code of a Dyck path, we need to interpret
covering relations in 7,1 in terms of the codes of the appearing Dyck paths. In what follows,
we consider D € Dyck(n + 1). Label by 1 the second up-step of D, 2 the third, and so on.
Consider the sequence (d;) defined by d; = ¢,,_;(D) and set dy = d,,+1 = 0 (this is fundamental
for our further remarks). Note that d; gives the position of the up-step labelled by ¢ of D, as
depicted in Figure 5.11. Thanks to this graphical interpretation the following facts are obvious.

FIGURE 5.11.

e There is an horizontal step between the i-th and (i 4+ 1)-th up-step if and only if
d;i > dig1.

e Consider the Dyck factor of size k£ of D which has the i-th up-step as first step. If £k is
minimal, then d;1; < d; and for all j such that i < j < k + ¢, we have d; > d,.

e Conversely, if there exist two integers ¢ and k such that dy,; < d; and for all j such
that i < j < k 44, we have d; > d;, then there exists a minimal Dyck factor of size k
of D which has the i-th up-step as first step.

These remarks allow us to propose an alternative description of the covering relations in

Tt1-
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PROPOSITION 5.2.12. Let D, D" € Dyck(n + 1) and denote by (d;)1<i<n and (d})1<i<n the
sequences defined by d; = ¢,_;(D) and d; = ¢,,_;(D") with the convention that dy = df, = d,11 =
d,., = 0. We have that D" covers D in Tpi1 if and only if there exist two integers 1 < i <n
and k > 0 such that:

(1) di < di_y;
(2) divk < d; and for alli < j < k41, d; > d;;
(3) for all j € [n+1], if i <j < k+ithen d; =d; + 1, and dj = d; otherwise.

PROOF. Thanks to the graphical interpretation, if D’ covers D then the three points of
Proposition 5.2.12 are satisfied.

We now prove the converse: consider D and D’ satisfying the three points. Point (2) implies
that there is a minimal Dyck factor F of D having the i-th up-step of D as first step. Point (1)
implies that the step which is just before the i-th up-step of D is an horizontal step. Finally,
thanks to the point (3) and the graphical interpretation, we have that D’ is obtained from D
by swapping the positions of F' and the horizontal step that precedes F. That is, D’ covers D
in n+1- ]

Finally, we have everything we need to state and prove the main theorem of this section.
THEOREM 5.2.13. Let A, A" € IS(A}). Then, A’ covers A in (IS(A}),C) if and only if
W(A") covers W(A) in Tpyi1-

PROOF. Step 1: assume that A’ covers A in (IS(A]),C) and denote by (d;); and (d});
their respective codes. By Proposition 5.2.11 there exists C' an admissible column above A such
that A” = AUC. Denote by ¢ the index of the column which contains C' and let 7 and k be the
minimal integers such that (¢,7) € C and (¢,7 + k) ¢ C (see Figure 5.12).

i+k

FIGURE 5.12.

We will prove that the sequences (d;); and (d}); satisfy Points (1), (2) and (3) of Proposi-
tion 5.2.12.

e Point (1): we have to show that A has more boxes in row ¢ — 1 than in row i. Let
us consider (p,i) € A and divide our study into three cases, depending on the value
of p. If p < g, then by Lemma 5.2.6 (p,i — 1) € A. Since (q,7) is admissible above
A, it is not in A. Finally, assume by contradiction p > ¢. Then, by construction the
box just below (g,7) is in A, and (p,?) is in the same row on the right of (¢q,7). Thus,
by Lemma 5.2.6 (¢,7) € A which is absurd. Consequently, for each box of A in row 4
there is a corresponding box in A in row ¢ — 1, so that d; < d;_;.

e Point (2): let us first prove that d; > d; for all i < j < k +¢. Since this property is
clearly true when k& = 1, we assume that k& > 1. Let us consider (p,i) € A, we will
prove by induction on j, where j ranges between i and k + ¢, that (p,j) € A. Since
i + k is the height of column i of A, (i,i+ 1) € A. Thus, the box just below (p,i+ 1)
is in A by definition and (7,7 + 1) is on the right of (p,i+ 1), hence (p,i+1) € A. One
can complete the induction repeating this argument, so that we have d; < d; for all
i < j < k+i. Finally, note that i + k is the height of column i, so that (i,j) € A for
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all i < j <k + 1. However, (i,7) ¢ V(A!), so it is obviously not in A, and this implies
that d; > d;, as required.

We still have to show that d;y < d;. By definition, all the boxes below (q,7 + k)
are in A, but (¢,7i+ k) ¢ A. Thus, for all p > ¢, we have (p,i+ k) ¢ A. Moreover, for
all p such that p < g and (p,i+k) € A, by Lemma 5.2.6 we have (p,i) € A. Therefore,
we have d; > d; .

e Point 3: this is clear, since A’ = AU C with C an admissible column.

Step 2: we now prove the converse. Let us denote by D and D’ the Dyck paths W(A) and
W(A'), respectively, and assume that D’ covers D in T,,;. Let us denote by (d;); and (d}) the
sequences defined by d; = ¢, (D) and d; = ¢,_;(D’), by hypothesis (d;); and (d}); satisfy the
three conditions of Proposition 5.2.12. Let us keep the notations of this proposition, and let
and k be the two integers which appear in Proposition 5.2.12.

Our aim is now to prove that there exists an admissible column C' above A such that
A’ = AUC. For that purpose, let us first prove that there is an admissible box above A in row
i. Assume by contradiction that (i —1,7) is in A, then for all p < i — 1 such that (p,i—1) € A,
we have (p,i) € A by Lemma 5.2.6 (2). Thus, we have d; > d;_; and this contradicts point
(1) of Proposition 5.2.12, hence (i — 1,i) ¢ A. Therefore, there exists a box (g,7) which is
admissible above A (note that we possibly have (¢,i) = (i — 1,1)).

Let us now show that {(q,7), (¢,i+1),...,(¢,i+k—1)} is admissible above A. Equivalently,
we will show that the height of the colum i of A is i + k by dividing our study into two cases.

e Case k = 1: assume by contradiction that (i,i41) isin A. Then, for all p < i such that
(p,i) € A, we have (p,i+ 1) € A, which implies d; < d;y1 = d;; and thus contradicts
point (2) of Proposition 5.2.12. Therefore, (i,7 + 1) is not in A so the height of the
column ¢ of A is i 4+ 1. Thus, {(q,7)} is an admissible column above A.

e Case k > 1: we will show by induction on j, where j ranges strictly between ¢ and
k + i, that the following two properties are true:

B (27]) S A7

— for all p < i such that (p,7) € A, we have (p,j) € A.
First, note that for all p < i such that (p,i + 1) € A we have (p,i) € A, and since
diyv1 > d;, we have (i,7 + 1) € A. Thus, the properties are true for j =i+ 1.

Let 7 be such that the properties are true and such that j < k47 — 1. Assume
by contradiction that (i, + 1) is not in A. By induction hypothesis, all the boxes
below (i, + 1) are in A. Consequently, there is no box in the same row and on the
right of (4,7 4+ 1) by Lemma 5.2.6, hence for any box in A different from (7,7 + 1) and
in row j + 1, there exists a box below it in row ¢ which is also in A. Thus, we have
d;j+1 < d; and this is absurd. We thus have (i,5 + 1) € A. Let us now ow consider an

integer p < i such that (p,7) € A. Then, by induction hypothesis all the boxes below

(p,j+ 1) are in A, and (4,7 + 1) is on the right of (i,p). Thus, (p,j + 1) is in A and

this concludes the induction.

We can now prove that ¢ + k is the height of column 7. Assume by contradiction
that (i,7 + k) € A. Then, thanks to similar arguments as in (case k = 1), we have
that d; > d; contradicting point (2) of Proposition 5.2.12. Thus, i + k is the height
of column i. Therefore, the set {(¢,i+1),...,(¢q,i+ k — 1)} is an admissible column
above A.

In all cases, C' = {(q,i+1),...,(q,i+k—1)} is admissible above A. Moreover, AU C has the
same code as A, so that A’ = AU C thanks to the fact that ¥ is a bijection. Thus, A’ covers
Ain (IS(A!, C), and this concludes the proof. O

This theorem has the following immediate corollary, which concludes this section.

COROLLARY 5.2.14. The posets T1 and (IS(A!), C) are isomorphic.
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5.2.3. A similar description of m-Tamari lattices. As it is mentioned in [ BMFPR],
the n-th m-Tamari lattice 7}(m) can be seen as an interval in 7,,,. More precisely, let us

consider the minimal m-ballot bath D of 7™ and replace each up-step of D by a sequence of
m consecutive up-step, as depicted in Figure 5.13.

FIGURE 5.13.

Clearly, the resulting path D’ is a Dyck path of size nm, and one can easily show that
the sub-poset of 7,,, made of all the paths bigger than D’ is isomorphic to ’E(m). With this
property, it is clear that m-tamari lattices can be described using a valued digraph, as described
in Figure 5.14.

2121010

2121010
2121010

2121010
010

010
010

010

FIGURE 5.14. How to obtain a valued digraph associated with 75(2). The (non-
simple) valued digraph on the right also gives a lattice isomorphic to 73(2).

5.3. Proofs
In this section, we provide the proofs of Proposition 5.2.9 and 5.2.11.
5.3.1. Proposition 5.2.9.

PROOF OF PROPOSITION 5.2.9. We will show this assertion recursively on n. First, note
that it is obvious for n = 1. Let n be such that the property is true.

Step 1 (injectivity): let A and A’ be in IS(A] ), with respective codes (¢;)1<i<ni1 and
(ch)1<i<n+1- Assume that W(A) = U(A'), then we have ¢; = ¢ for all ¢ € [n + 1]. We will prove

that A = A’. For this purpose, let us denote by A and A’ the two subsets of V(A!) defined by
A= ANV(AD),
A= A nV(AD).

FIGURE 5.15. From A to A.

We now show that both A and A’ are in IS(A!) considering a box ¢ in V(A!). If ¢ € A,

then ¢ € A. Consequently, all the boxes below ¢ are in A, so that they are also in A. Thus, we
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have 0(c) < d%(c). If ¢ ¢ A, then ¢ ¢ A, so that we have 0(c) > d¥(c) > d*(c) thanks to the
fact that A C A. This proves that A € IS(A!, ), and we prove similarly that A’ € IS(A? ).
Clearly, the sequence (¢;)1<i<n is the code of both A and ,Zf/, hence by induction hypothesis we
have A = A

We are now able to prove that A = A’. Let us denote by a; < as < ... < a; all the indices

such that (a;,n+ 1) € A and denote by aj4; the integer n+ 1. Thanks to Lemma 5.2.6, a box
which is both in A and in row n + 2 is in the set

{<alan + 2)7 (&27n + 2)7 R (akan + 2)7 (akJrlan + 2)}

Assume that (a;,n + 2) € A, then for all 1 < j < ¢ we have (aj,n + 2) € A thanks to
Lemma 5.2.6 (2). This means that the boxes which are in A in row n+ 2 are all in the leftmost
positions available (with respect to Lemma 5.2.6 (1)). In particular, this implies that A and A’
are equal since they have same number of boxes in row n + 2.

Step 2 (surjectivity): Let D € Dyck(n + 2) and (¢;)1<;<n+1 be its code. Clearly, there
exists D’ € Dyck(n+1) whose code is given by (¢;)a<i<n+1. Thus, by induction hypothesis there
exists A’ € IS(A) such that W(A’) = D', and A’ can also be seen as an element of I.S(A/ ),
as depicted in Figure 5.16. As in Step 1, let us denote by a1 < as < ... < a; all the indices

AI

FIGURE 5.16.

such that (a;,n +1) € A’ and we set az;; = n + 1. Let us denote by A the subset of V(A] )
defined by
A=A U{(a1,n+2),(az,n+2),...,(ac,n+2)}

By construction, if Aisin IS(A',,), then ¥(A) = D. We still have to prove that A € IS(A! . )).

In order to do so, we consider ¢ = (a,b) € V(A!,,) and we split our study into four cases.
o If c € A, then 6(c) < d¥,(c) < dj(c) since A’ C A.
eIf ¢ ¢ A and is not in the (n + 2)-th row, then d(¢c) = d},(c). Thus, we have
0(c) > d5(0).
e lf c € Aand b = n + 2, then all the boxes below ¢ are in A. Therefore, we have
6(c) < d}(c).
o If c ¢ Aand b=n+ 2, then we have two sub-cases.
— If all the boxes below ¢ are in A, then by construction of A from A’, we have that
all the boxes on the right of ¢ are not in A. Hence d}j(¢) =b—a—1=0(c).
— If there exists a box in the same column and below ¢ which is not in A, then we
consider ? = (a, k) with & minimal such that @ ¢ A. By hypothesis, we have
k <n+1,so that 9 ¢ A’. Assume by contradiction that there exists an integer
j such that a < j < k and (j,n + 2) € A. Then, by construction of A we have
(j,k) € A, and thus we have (j,k) € A’. However, by minimality of £k all the
boxes in the same column and below 9 are in A, and (j, k) is in the same row and
on the right of 9. We thus have that 0 is in A’, which is absurd. Therefore, we
have (j,n +2) ¢ A for all @ < j < k. Thus, the following inequality holds:

di(e) < H{(a,a+1),(a,a+2),...,(a,k = 1), (k,n+2),(k+1,n+2),....,(n+1,n+2)}
<(k—-1—a)+(n+2—k)=Mn+2)—a—1=0(c).

The conclusion of this case by case study is that A is in [S(AZH), and this ends the proof. [
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5.3.2. Proof of Proposition 5.2.11. We split the proof of this Proposition into two
distinct lemmas.

LEMMA 5.3.1. Let A, A" € IS(A!). If A# A’ and A C A’, then there exists C an admissible
column above A which is included in A’.

PROOF. By hypothesis, there exists 0 = (a,b) € A’\ A. Let us denote by k the eight of the
column b of A. By definition of the height, we have (a,k) € A"\ A, so that there exists i < k
such that (i, k) is admissible above A. Then, all the boxes in the same column and below (i, k)
are in A, hence they are in A’. Moreover, (a, k) is in A" and (a, k) is on the right of (¢, k), hence
(i,k) € A’ by Lemma 5.2.6.

We now set ¢ the height of the column %k of A and we show by induction on j, k < 7 < g,
that (i,j) € A’. Notice that we already know that (i,k) € A’. Fix j such that the property
is true and such that j + 1 < ¢q. We have that all the boxes below and in the same column as
(i,7+ 1) are in A’. Moreover, by definition of ¢ we have (k,j+1) € A, and (k,j + 1) is on the
right and in the same row as (i,j + 1). As a consequence, we have (i,j + 1) € A’. This proves
that

(G,k), ik + 1), .., (i, — 1)} C A,

and this set is an admissible column above A by definition. U

We now prove a kind of converse implication to Lemma 5.3.1.

LEMMA 5.3.2. Let A € IS(A}) and C be an admissible column above A, then AU C' is in
IS(ATD).

PROOF. Let ¢ € V(AD). If ¢ € A, then 0(c) < d¥(c) < d} (c). If ¢ € C, then all the boxes
below and in the same column as ¢ are in AU C, hence 0(c) < d}j (c). If ¢ ¢ AUC, then we
have three cases.

e If ¢ = (a,b) is above and in the same column as C, then consider (a,q) the unique
box which is in the column a and admissible above A, and denote by p the height of
the column ¢ in A. By construction, for all integers k such that p < k& < b we have
(a,k) ¢ AUC. Now consider (k,b) in A such that a < k, i.e. (k,b) is on the right
and in the same row as ¢. Clearly, & # ¢ (otherwise p could not be the height of the
column ¢ in A). Assume by contradiction that a < k < ¢, then by Lemma 5.2.6, (k, q)
is in A, but (a, q) is admissible in A, thus all the boxes below (a, q) are in A and there
is an arc from (a,q) to (k,q), hence 6(a,q) < d}(a,q), and this contradicts the fact
that A € IS(Al). Therefore we have k > ¢. Assume, again by contradiction, that
q < k < p, then we similarly have that (k,p) € A, but all the boxes below and in the
same column as (g, p) are in A, and there is an arc from (g, p) to (k, p), hence (¢, p) is in
A, and this contradicts the fact that the height of the column ¢ is p. As a consequence
k > p, and we have the following inequality:

dioc(ab) < {(a,a+1),...,(a,p—1),(p,b),...,(b—1,0)}
<(p—a—-1)+(b—-—p) =b—a—1=0(a,b).

e If there exists 0 = (¢,b) € C which is on the right and on the same row as ¢ = (a,b),
then we have two sub-cases.

— If there exists p such that a < p < g and (p,b) € A, then by Lemma 5.2.6 (p,p+1)
is in A. Assume by contradiction that (a,p) is in A, then all the boxes below and
in the same column as (a,p+ 1) are in A, and (p,p+ 1) is a box on the right and
in the same row as (a,p + 1) which is in A, thus (a,p+ 1) is in A. By induction,
we show that (a,p+ 2) is in A, and so on, until we reach (a,b), and thus (a,b) is
in A, which is absurd. Therefore, if there exists p (minimal) such that a < p < ¢
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and (p,b) € A, then the following inequality holds:

d:ZUC(a7 b) S \{(a,a + 1)7 ceey (aap - 1)7 (p7 b)a R (b - ]-7b)}|
<(p—1-a)+(b-p) =0(ab)

— If for all p such that (p,b) € AUC, we have p > ¢q. Assume by contradiction that
(a,q) is in A and consider (a,q+1): we have two possibilities, either (¢,q+1) € A
and this implies that (a,q+ 1) is also in A (since all the boxes below it are in A),
or (¢,q+1) ¢ A and then (a,q+ 1) € A (since (q,q+ 1) is admissible above A by
definition). Using the same type of arguments as in the previous case, we show
by induction that (a,b) is also in A, and this is a contradiction. Consequently, we
have

dhoo(a,b) < {(a,a+1),...,(a,q—1),(q,0),...,(b—1,b)}|
< 0(a,b).

e In all the other cases, d(¢) = d}y (¢) so 0(c) > d} o (c).
The conclusion of this case by case study is that AUC is in IS(A"), which ends the proof. [

Eventually, Proposition 5.2.11 follows immediately from Lemma 5.3.1 and 5.3.2.






CHAPTER 6

Application to tableaux combinatorics

Introduction

In this chapter we present the problem that initially motivated the introduction of the
notions developed in this thesis, namely the combinatorics of tableaux. More precisely, we will
generalize some of the results from [FGRS| and [EG] relative to the combinatorial properties
of balanced tableaux to a wider class of tableaux.

6.1. Valued digraphs and type of a tableau

In this section we explain how the construction made in Chapter 3 leads to a new classifi-
cation of tableaux, associating to each tableau a combinatorial object that we called its type.
Note that both sets of standard and balanced tableaux of a given shape can be seen as special
classes in our classification.

6.1.1. Type of a tableau. In Chapter 3, we constructed various examples of valued
digraphs using suitable notions of hooks. In this chapter, we go back to the usual notion of
hook, as used in Section 2.3.1 to study weak order on A,_;.

DEFINITION 6.1.1. Let S be a diagram and ¢ = (a,b) be a box of S. We define the following
sets,

(6.1) Ls(a,b) == {(k,b) | k > a, (k,b) € S}, Ag(a,b) := {(a,k) | k > b, (a, k) € S},

(6.2) and Hg(a,b) :== Aup H—J Loy,

respectively called the leg, the arm and the hook based on ¢. We denote by ls(a,b), ag(a,b),
and hg(a,b) their respective cardinalities.

With this notion of hook, we can associate a digraph with each diagram.

DEFINITION 6.1.2. Let S be a diagram, we denote by G the simple acyclic digraph defined
by
V(Gg) := S and E(Gg) :={(c,0) | ¢ #0 and d € Hg(c)}.

Eventually, we are now able to associate a valued digraph to each tableau of a given shape.

DEFINITION 6.1.3. Let S be a diagram, a valued digraph whose underlying digraph is Gg
is called a type of shape S. We denote by Type(S) the set of all the types of shape S, and the
shape of the underlying diagram of any type 7T is denoted by Sh(7). Let T' = (t.)es € Tabg,
then the type of T'is the type T = (Gg,0) € Type(S) whose valuation is given by

O(c) =|{d € Hs(c) | ty < t.}| for all c € S.

We denote by Tabg(7) the set of all tableaux of shape S whose type is 7. When there is no
ambiguity, we simply denote this set by Tab(7).

Notice that this definition contains the definition of standard Young tableaux. Let A be a
partition of n and consider the type Sty = (G, 6) where for all ¢ € A we have 6(¢) = 0. Then,
it is clear that Tab(St)) = SYT(A). Our definition also contains that of balanced tableaux,
and we will detail this in Section 6.2.

127
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w]7]e6al3]2 s1alsf2]1]0
s|slal2]1 als3l2]1]o
7lal3]1]o slsl2]1]o

1]o] 4110 2110
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o 0| 0|

FI1GURE 6.1. The types of the tableaux in Figure 1.

6.1.2. Some general results about types. In this section, we focus on some general
properties of the notion of types. Let us first explain how one can construct each tableaux of
a given type using the peeling process (see Chapter 3, Definition 3.1.3).

PROPOSITION 6.1.4. Let S be a diagram, T = (Ggs,0) be a type of shape S and L =
[c1,...,¢n] € PS(T). Then, the tableau Ty, := (t.)es defined by

te, =1 for all i € [n],
s of type T, and all tableaux of type T can be obtained by this way.
PROOF. Thanks to Proposition 4.2.3 in Chapter 4, this is immediate. 0

COROLLARY 6.1.5. Let S be a diagram and T = (G, 0) be a type of shape S, then Tab(T) #
0.

We give an example to visualise a dynamic construction of the tableau 77 associated with
a peeling sequence L.

EXAMPLE 6.1.6. Consider the type 7 on the top-left of Figure 6.2 and the peeling sequence
L=1(1,3);(1,1);(1,2);(2,2);(2,1)] (since we represent Ferrers diagram with the English con-
vention, we use the matrix coordinates for each box). The types on the top of the figure are
the types obtained after each iteration of the peeling process.

T =70 P! P2 p3 Pt P
2J1 o] [ 1o [0 |
1]o 1o 10| |1|0|
| 1 21|321|321|321
4 54
T
FIGURE 6.2.

Now that we have a classification of all the tableaux of a given shape according to their
type and a way to construct all tableaux in a given class, the following natural question arises.

QUESTION 6.1.7. For any type T, is it possible to find a formula to compute |Tab(7)| 7

Even if the general case seems to be quite difficult, we have some basic properties in that
direction that we now detail.

First, note that if A = (n) or A = (1"), then for any 7 € Type(\) there exists a unique
tableau of type 7. This is clear, since at each iteration of the peeling process there is only
one (i,j) € A which is erasable. This basic fact leads us to our first enumerative proposition,
generalizing Lemma 3.2 from |[EG].

PROPOSITION 6.1.8. Let k and p be two integers and T = (G, 0) be a type of shape A =
(k,17). Then, we have
| Tab(T)| = f*.
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PROOF. First, note that for any tableau 7" = (¢.).ex of type T, we have t;; =n — 61, by
definition. Thus, if we set S := A\ {(1,1)} (see Figure 6.3) and 7" := (Gg,0), then we have

|Tab,\(T)| = ‘Tabs(T/) |

Moreover, when we perform the peeling process on 77, the only thing we have to chose at each

2 |

Arm of the type

41— Leg of the type

FIGURE 6.3.

step is an element in the leg or in the arm of S and this is independent of the choice of 7. This
concludes the proof. O

This first result might lead us to think that there should be a simple way to answer Ques-
tion 6.1.7, such as a general “hook-length formula”, but a quick verification shows that the
situation seems to be considerably more complicated. For example, the number of tableaux of

type

0/0]
0

‘OL\DO

is 11 which does not divide 6! = 720. Nevertheless, we have a sort of probabilist result.

PROPOSITION 6.1.9. Let S be a diagram and Type(S) the set of all types of shape S, if we
choose uniformly a type T in Type(S), then the expected value for |Tabg(T)| is
n!

HCES hS(c) ‘

PROOF. Set Hg = [[.c, hs(c), it is clear that the number of types of shape S is precisely
Hg. Then, because of the uniform choice, the probability for a type 7 to be chosen is exactly
HLS. Thus, the expected value for |Tab(7)| is

ZTGType(S) ‘Ta’bs(T) |
Hg '

and the numerator clearly equals n!. The result follows. 0

This last proposition leads us to the following natural question.
QUESTION 6.1.10. Is it possible to find an explicit formula for the variance ?

This last question is open, and it seems that the value of the variance heavily depends on
the shape of the considered diagram.

6.2. Types and reduced decompositions

As it has been mentioned in the previous section, it seems to be difficult to find a general
formula to compute the value of |Tab(7)| for any given type 7. However, in the rest of this
chapter we will exhibit, for any partition A, a family of types of shape A\ whose corresponding
tableau are enumerated by f*. For that purpose, we will adapt the approach of [EG] and
[FGRS| to our terminology (see Section 6.2.2), and then generalize their results to a wider
class of tableaux (Section 6.3).
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6.2.1. Balanced tableaux. In this section we recall the definition of balanced tableaux
and we briefly explain some of the results of [FGRS| and [EG]. Let us begin with the definition
of balanced tableaux, which is a straightforward reformulation of the one given in [FGRS| and
[EG] using our terminology.

DEFINITION 6.2.1. Let S be a diagram and denote by T¢4 = (Gg, 0) the type of shape S
such that

O(c) :=ag(c) for all c € S.
The element of Tab(7&%) are called the balanced tableauz of shape S. When S is the Ferrers
diagram of a partition A, we denote by Bal(\) the set of the balanced tableaux of shape A.
In [EG] the authors proved the following result about combinatorics of balanced tableaux.
THEOREM 6.2.2 (|[EG], Theorem 2.2). Let A be a partition of n. Then, we have
Bal(\)] = [SYTOV)| =

The original proof is quite involved, and an alternative one is given in [FGRS|, which we
now detail. The main ingredient is the notion of vexillary permutations.

DEFINITION 6.2.3. Let 0 € S, we denote by (d;(0)); and (g;(c)); the finite sequences
defined by

o di(o) :={j >i|o(j) <o(i)}.

e gi(0) :==[{j <ila(j) >a(i)}]
We denote by u(o) and A(o) the partitions obtained by rearranging in a nonincreasing order
the sequences (d;); and (g;);, respectively. We say that o is vezillary if and only if A(o) = p/(0).

In [S2], Stanley proved the following result using symmetric functions, giving an explicit
formula to compute the number of reduced decompositions of any vexillary permutation.

THEOREM 6.2.4 (Stanley, [S2|). Let o € S, if o is vexillary then
[Red(0)| = fA).

Let us now explain the proof of Theorem 6.2.2 that can be found in [FGRS]|, using Theo-
rem 6.2.4 as fundamental tool. The first step consists in associating a diagram to each permu-
tation.

DEFINITION 6.2.5. Let 0 € S, the Rothe diagram D(o) of o is the subset of [n] x [n] defined
by
D(o) :={(a,o(b)) € [n] x [n] | a < b and o(a) > o(b)}.

FIGURE 6.4. Rothe diagram of the permutation o = [5,3,2,1,4] (on the left)
and a balanced tableau of shape D(o) (on the right).

As it is shown in [FGRS], the balanced tableaux whose shape is the Rothe diagram of
a given permutation o (also called balanced labellings of D(o)) are intimately related to the
reduced decompositions of o.
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THEOREM 6.2.6 ([FGRS]|, Theorem 2.4). Let o € S,, and D(o) be its Rothe diagram. Then,
there is a bijection between the set of the reduced decompositions of o and the set of the balanced
tableauz of shape D(o).

Let us briefly explain how this bijection is constructed. By definition of the Rothe diagram
of a permutation o € S, it is clear that
(a,o(b)) € D(0o) if and only if (a,b) € Inv(o).
Thus, a balanced tableaux corresponds to an ordering [(a1,b1), .. ., (ays), be(r))] of the inversions
of 0. Furthermore, the authors proved in [FGRS| that {(a,b1),...,(a;, b;)} is the inversion
set of a permutation o; € S, for all 1 < i < {(0). Therefore, we have
ld<lgpo1 <lgos<pg... <R O¢(o) = O,

i.e., a balanced tableau of shape D () corresponds to a maximal chain from Id to o in (S,, <g).
Thus, it corresponds to a reduced decomposition of o, and it is proved in [FGRS] that this
correspondence is in bijective.

Eventually, this correspondence leads to a proof of Theorem 6.2.2.

THEOREM 6.2.7 ([FGRS]|, Theorem 3.4). Let A be a partition of n. Then, there ezists a
vezillary permutation o € Sy for some k € N such that

e \No) =\
e the shape of D(0) is A (up-to the deletion of some empty columns).

Combining Theorem 6.2.4 and Theorem 6.2.7, Theorem 6.2.2 follows immediately.
6.2.2. A similar approach using valued digraphs. We introduced in Chapter 3 an

interpretation of weak order on A,,_; using a valued digraph, and we detail in this section how
this description lead to an interpretation of the reduced decomposition of any permutation o
in terms of tableaux. First, recall that the valued digraph A = (G, #) defined by

VA) =\, =(n—1,n—2,...,2,1),

E(A) :={(c,9) | c#0dand 0 € Hy, (c)},

0(a,b) :=b—a—1for all (a,b) € \,,
provides a combinatorial description of (A,_1, <g). That is, we have
(6.3) IS(A) = {Inv(o) | 0 € S,.}.
This description naturally leads to associate each permutation with a type.

DEFINITION 6.2.8. Let o € S,,, we denote by T, = (G,,0,) the type such that
e Sh(7,) = Sh(Inv(o)) where Inv(o) is seen as an element of 1.S(.A), i.e. a sub diagram
of \,;
e for all ¢ € Inv(o), 6,(c) = 0(c).
Since there is no ambiguity, we will usually denote by 6 the valuation associated with 7.

PROPOSITION 6.2.9. Let o € S, then we have
[Tab(75)| = [Red(0)|.

PROOF. The proof is straightforward: by Proposition 6.1.4 we have |Tab(7;)| = |PS(7,)|,
and thanks to (6.3) we have a one-to-one correspondence between PS(7,) and the set of maxi-
mal chains from Id to o in (A,,_1, <g). However, there is a one-to-one correspondence between
these maximal chains and reduced decompositions of o. This ends the proof. [l

The benefit of this interpretation are twofold. First, it allows us to easily construct all
the reduced decompositions of any permutation using the peeling process, as depicted on Fig-
ure 6.5. Moreover, it allows us to provide an interpretation of the reduced decompositions of
any permutation in terms of tableaux, as represented on Figure 6.6.
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The element of Red (o) associated with [c1, ¢a, ¢3] € Fil(75) is sas3s1.

FIGURE 6.5.
321 0] 4] 5] 5]
2(1 o 52]1] [4]2]1] [3]2]1
1|0 3 3 4
L 5352535451 5352535154 5352515354
I 5 4] 3]
Associated [4]2]3] 523 | [5]2]4
permutation 1 1 1
[4,1,3,5,2] 5953595154 5953598451 5953545951

FIGURE 6.6. The set Red([4,1,3,5,2]) seen as a set of tableaux.

Note that these two points are also true for the tableaux of [FGRS]|: for any permutation
o € Sp, the balanced tableaux of shape D(o) already provide an interpretation of Red(o) in
terms of tableaux, and one can easily construct all such balanced tableaux using the peeling
process. However, the benefit of our description lies on two points:
e our description provides a description of the weak order on 5, i.e. it is straightforward
to check whenever two permutations are comparable using their corresponding type;
e as it will be detailed in the next section, the type associated with a tableau allows us
to use combinatorial techniques to construct bijections between sets of tableaux.

6.3. Study of vexillary permutations using their type

Our aim in this section is to generalize Theorem 6.2.2. That is, we will associate each
vexillary permutation o with a type 7;,E whose shape is A\(0) and such that

(6.4) [Tab(T,7)| = [Red(0)| = f.

For that purpose, we need to introduce new tools. Indeed, our starting point will be the type
T, but this type is generally not of shape A(¢), so that we need to find a way to modify its
shape without changing its combinatorial properties. This will be done in Section 6.3.2, using
the transformation introduced in the next section.

6.3.1. A transformation on type. Let us begin this section with introducing two nota-
tions.
DEFINITION 6.3.1. Let S be a diagram and “a” (resp. “b”) be a row (resp. a column) of

S. We denote by S|, (resp. ?b) the diagram obtained by swapping rows a and a + 1 (resp.
columns b and b+ 1) of S.
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DEFINITION 6.3.2. Let T be a tableau of shape S and a (resp. b) a row (resp. a column)

of S. We denote by T, (resp. ?b) the tableau of shape S|, (resp. ?b) obtained from 7' by
exchanging rows a and a + 1 (resp. columns b and b+ 1).

Let us consider a type T of shape S and let a be the index of a row of S. In general, the
set
A={T|, | T € Tab(T)}
does not correspond to a class of our classification. That is, in general there is no type T’ of
shape S|, such that A = Tab(7”’). However, we will prove in the sequel of this section that
such a type 7" exists in a specific case.

DEFINITION 6.3.3. Let S be a diagram, 7 = (Gg,0) € Type(S) and “a” be the index of a
row of 7. We say that the row a is dominant if and only if
o for all (a,y) € N x N, if (a,y) € S, then (a+ 1,y) € S;
e for all (a,y) € S we have 0(a,y) > 0(a+ 1,y).
We have a similar definition of dominant column (see Figure 6.7) for a graphical representation
of these two notions).

212112 2 0
O11f(oj114((2]1/0 210 1
1 0 2121110
1 013[2]1
0 2121110
0 0

FIGURE 6.7. A dominant row (on the left) and a dominant column (on the right).

Before moving to the combinatorial study of the types having a dominant row or column,
let us introduce one last notation.

DEFINITION 6.3.4. Let T be a type of shape S and “a” be the index of a dominant row of
T. We denote by T, the type of shape S|, such that obtained from 7T by first decreasing by
one all the integers in the row a of T, then by swapping rows a and a + 1 (resp. columns b and
b+ 1) of T, and keeping all other entries unchanged (see Figure 6.8).

Dominant [ 9 | 211 4] 110 1131110 O|
row
113]1]0)0|— [1]3]1]0 0|—> 1 110
1{1]0 111]0 1({1]0
T Th
FIGURE 6.8.

Our aim is not to prove that for any dominant row a of a type 7 we have
(6.5) (Tl | T € Tab(T)} = Tab(Tla).
For that purpose, we first prove a technical lemma.

LEMMA 6.3.5. Let T = (Gg,0) € Type(S) and a be the index of a dominant row of T.
Then, for any T = (t.) € Tab(T), we have tq, > toy1, for all (a,y) € S.
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PROOF. Let T' = (t(z4))(@yes € Tab(T), and assume by contradiction that the lemma is
not true and consider y maximal such that ¢(, ) < t(a+1,). Let ¢ € Hg(a,y) \ {(a,y)} such that
tc < t(ay), and let us split our study into two cases.

o If c € Lg(a,y), then we have that ¢ € Hg(a + 1,y) and t. < t(ay) < tat1y)-
o If c € Ag(a,y), then there exists z > y such that ¢ = (a, z), and we have by maximality
of y
bat1y) 2 Hay) > taz) > Latrz)-
This is enough to show that 6(a,y) < 6(a+1,y), and this contradicts the fact that a is dominant.
This concludes the proof. O

We now prove that (6.5) holds.

PROPOSITION 6.3.6 (Exchange property). Let T be a type and “a” (resp. b) be a dominant
row (resp. column) of T. Then, the map T — Tl, (resp. T > T°) is a bijection between
Tab(T) and Tab(T1,) (resp. Tab(T?)).

PROOF. Let T' € Tab(T), and denote by 7' = (Gg,,0') the type of the tableau 7" := T ,=
1" = (t,,). We will prove that 7' = T,.
Let (z,y) be a box of S|, and let us define the following set

He ) (T) = {tap | (a,0) € Hy y (SW(T)) }.
We split our study into three cases.
o If ¢ {a,a+ 1}, then we have H, ,(T') = H,,(T"), so that 0'(z,y) = 0(z,y).
o If v = a, then we have H,,(1") = Hu41,(T) U {t.,}. However, by Lemma 6.3.5 we
have t, | = ta11y < tay, so that §'(a,y) = 0(a +1,y).

o If v = a+ 1, then we have Hyy1,(T") = Hay(T) \ {tas1,y}, so that 0, = 0,, — 1.

Then, we have 7' = T |,, hence T — T |, send an element of Tabg(7) to an element of
Tabg, (7 }s). Similar arguments show that 7" +— 7], also sends an element of Tabg, (7 |4)
to an element of Tabg(7) and J, is an involution so is bijective. This concludes the proof for
rows. The proof of the same property for columns is similar. O

We finish this section with a useful definition.

DEFINITION 6.3.7. Let 7 be a type of shape S and a be the index of a row of 7. The row
a is called dethroned if and only if
e for all (a,y) € Nx N, if (a,y) € S, then (a — 1,y) € S,
o for all (a,y) € S we have 6(a — 1,y) < 0(a,y).
We have a similar notion of dethroned column.

Obviously, if @ is a dominant row of 7, then a + 1 is a dethroned line of 7, and viceversa.
The same holds for dominant columns. If @ + 1 is a dethroned line of 7, we denote by 771,41
the type 7 such that T'|,= T.

6.3.2. The exchange algorithm. In this section, we explain how one can turn the type
T, (where o € S, is vexillary) into a type of shape A(o) using recursively Proposition 6.3.6 on
lines an column.

DEFINITION 6.3.8 (Line-exchange algorithm). Let T be a type of shape S, the line-exchange
algorithm is the algorithm described below.

(1) Erase all the empty rows of 7.
(2) Set i = 1.
(a) If 7 is a dominant row of T, then set T := T; and go back to step (2). Otherwise,
go to step (2-b).
(b) If there is no row below 4, then the algorithm stops. Otherwise, set i := i+ 1 and
go back to step (2-a).
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We denote by T* the type obtained after we perform the line-exchange algorithm.

There is an obvious analogous column-ezchange algorithm, and we denote by T¢ the type
obtained after we perform this algorithm on a type 7.

LEMMA 6.3.9. For any type T, we have
[ Tab(7)| = |Tab(7")| = [Tab(7T°)].
PROOF. It is clear by Proposition 6.3.6. U

DEFINITION 6.3.10. For all type T, we denote by T the type (T*) obtained by first per-
forming the line exchange algorithm on 7, and then performing the column exchange algorithm

on TL.
We now state the main result of this section, whose proof is detailed in Section 6.3.3

THEOREM 6.3.11. Let 0 € S, be a vexillary permutation and T, be its associated type.
Then, we have:
(1) |Tab(TF)| = f2@) = fA0);
(2) The shape of TE is A(o)'.

000|0|
0lo
olo

Ol || W] W| W
Ol || W] W | W

FIGURE 6.9. This is the type T.Z obtained considering the vexillary permutation
o=14,8,9,5,7,6,1,3,2]

6.3.3. Proof of Theorem 6.3.11. The first step of the proof consists in a characterization
of vexillary permutations using their associated type.

DEFINITION 6.3.12. Let o € S,,, we denote by (1;(75)); and (¢;(7T,)); the sequences defined
by

L(Te) = i | (1) € Inv(o)}],
¢i(To) =i | (4, 7) € Inv(a)}].

The following lemma is immediate by Definition 6.2.3.

(resp. (¢i(T,))i) in a non-increasing order is (o) (resp. A(o)).

Let us now consider o € S,,, we begin with putting the diagram Inv(c) in a grid as depicted
on Figure 6.10. We first push all the boxes of Inv(o) against the Y-axes, and we then push all
the boxes against the X-axes, obtaining by this way a Ferrers diagram (see Figure 6.11).

The partition obtained after this Y X -process is u(o). Indeed, after we packed all the boxes
against the Y-axes we obtain a diagram whose rows are left-justified, and row 7 contains exactly
1;(75) boxes. Therefore, when we push everything on the X-axes, we are just rearranging these
rows in a non-increasing order. Thus, thanks to Lemma 6.3.13 the resulting diagram is precisely
p(o). Clearly, if we first stack on the X and then on the Y-axes (this process is called the XY -
process), then the resulting partition is precisely A(o)'.

The following proposition is an immediate consequence of the observation made in the
previous paragraph.
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X

Y

FIGURE 6.10. Diagram associated with o = [7,8,4,5,1,2,6,9,3] € S

S [ ]
A A
i .
- .
A A 1 1
ST Vo
D — L
D —— .
L

Y -process X-process

FIGURE 6.11.

PROPOSITION 6.3.14. Let 0 € S,,. Then, o is vexillary if and only if the partitions obtained
after we perform the XY -process and Y X -process on Inv(o) are the same.

We now prove an intermediate lemma.

LEMMA 6.3.15. Let o € S, be a vexillary permutation and i,j be two integers. Then, we
have the following two properties.

o Ifl;(T,) <;(T,), then we have that for all (i,a) € N x N,
if (a,i) € Sh(T,), then (a,j) € Sh(T,).
o If ci(T,) < ¢;(T,), then we have that for all (a,i) € N x N,
if (i,a) € Sh(T,), then (j,a) € Sh(7T,).

PROOF. We prove this lemma only for lines since the proof for columns is similar, and we
simply denote by I; the integer ;(7,).

We denote by n the number of non-empty rows in the diagram Sh(7,) and we set iy, ..., 1,
a sequence of indices such that:

o [;, #0forall k € [n];

e the sequence (l;,...,[; ) is non-increasing.
We will prove by induction on k € [n] that the property holds for the row ;. First, notice that
we have [;; > ; for all 1 < ¢ < n. Let us fix such a ¢, and consider a box ¢ = (44, p) € Sh(75).

Assume by contradiction that (i1, p) € Sh(7,), then we have the configuration depicted on

Figure 6.12. Therefore, if we push the boxes against the X-axes, then in the first row there
must be strictly more than [;; boxes as represented on Figure 6.13. Thus, there are strictly
more than [;; boxes in the first row of the partition obtained after we perform the XY -process
on Sh(7,). However, by maximality of [; , the first row of the partition obtained we perform
the Y X-process on Sh(7,) contains /;, boxes. Thus, A(0) # p(o)’, and this contradicts the fact
that o is vexillary. Consequently, we have (i1, p) € Sh(7,) and the lemma is true for row i;.
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FIGURE 6.13. Configuration after we pushed the boxes of Sh(7,) against the X-axes.

Let k be such that the lemma is true for rows iy,..., i, and let A(0) = (A1,...,\y). By
induction, if we delete rows iy,...,7; in Sh(7,) and then perform the XY or Y X stacking

process on the obtained diagram, then the resulting partition is (Agi1,...,Ay,) in both cases.
Then, the same argument as for ¢; proves that the lemma holds for row i;,;, and this ends the
proof. [l

Eventually, we can now provide a proof of Theorem 6.3.11.

PROOF OF THEOREM 6.3.11. Point (1): thisis an immediate consequence of Theorem 6.2.4
together with Proposition 6.2.9 and Proposition 6.3.6.
Point (2): first, note that by definition of the line-exchange algorithm, we have

(6.6) for all type T of a given shape S, we have (T%)* = 7% and (7)) = T¢.

Let us denote by @ the valuation associated with 7.2 and by /; the number of boxes in row
i of Sh(T}). Assume by contradiction that there exists an integer k such that I, < ;. Then,
thanks to Lemma 6.3.15 we have that Sh(72% ) is as represented on Figure 6.14. However, by

sigma

Row k
| | | Row k + 1

FIGURE 6.14. Rows k and k + 1 of Sh(TF).

construction for all (a, k) € Sh(TL) we have 0(a, k) > 0(a + 1, k). Therefore, if we perform the
line-exchange algorithm on 7Z, then these two rows are exchanged, so that we have

(TH: # T,
contradicting (6.6). Thus, the sequence (;); is non-increasing. Using a similar argument, we
prove that the sequence (¢;); is non-increasing, where ¢; is the number of boxes in column ¢ of
Sh(T) = Sh((T)°).
Eventually, the same arguments as for the proof of Lemma 6.3.15 prove that Sh(77F) is a
partition, which is necessarily equal to A(o)'. O

6.3.4. Link with balanced tableaux. Let us now explain how the construction made
in the previous sections can be use to provide an alternative (but not fundamentally different
from the one in [FGRS]|) proof of Theorem 6.2.2. Let A be a partition of an integer n that we
identify with its Ferrers diagram. A box ¢ = (a,b) of A is called a corner of A if and only if
there is no boxes on the right and below ¢, i.e. both (a+ 1,b) and (a,b+ 1) are not in A.
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Let ¢ = (a,b) be a corner of A such that &k = A\, + A\j — 1 is maximal (such a corner is
not necessarily unique). Then, we can place X in the staircase partition Ay ; as shown on
Figure 6.15.

™ Corner ¢ = (a,b) such that X\, + X, — 1

is maximal.

FIGURE 6.15.

Let us look at the corners (u,v) of A which are on the diagonal boundary of the staircase
partition. For each such corner, we set R,y = {(z,y) € A | # < u, y < v} and we consider
the union R of the R(,,). Then we let each connected component of A\ R fall in the staircase
tableau as shown on Figure 6.16. We repeat the same procedure for each connected component
of the resulting diagram, while it is possible. At the end, we get a sub-diagram A, which we

denote by S(A).

}X{ Diagram S
FIGURE 6.16.

LEMMA 6.3.16. There exists 0 € Sipy1 such that Sh(Tzy = S(A). Moreover, oy is vexillary
and A(o) = A.

PROOF. We denote by 6 the valuation of the valued digraph A associated with (Ski1, <g).
We will prove that S(\) € IS(A). Let 2 = (z,y) € Ayt

o If 2 ¢ S(N), then for all 2/ € H,(Ar+1) N S(A), 2’ is in the same column and strictly
below z. Moreover, by definition 6, equals the number of boxes strictly below z. Thus,
we have 0, > |H, (A1) N S(N)| = dJSF(A)(.A, 2):;

o If 2 = (z,y) € S(\), then by construction of S(\) there exists 2z’ = (2/,y) € S(\) such
that: ' > 2, v >y, 6., =0, and

for all z <wu <2’ and y < v <y, we have (u,v) € S(\).

Thus, we have 0, = (z' — 2) + (y —y) < [H.(S(N))| = 1 = d§, (A, 2).

Therefore, by Definition 4.1.5 we have S(\) € 15(A), so that there exists o, such that Sh(7,,) =
Sy. Moreover, if we perform the stacking process on S()), it is clear that both XY and VX
processes end with the partition A(c). Thus, o, is vexillary and this concludes the proof. [
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PROPOSITION 6.3.17. Let oy be the permutation whose inversion set is S(\). Then, we

have
Tab(T.(,)) = Bal()).

PROOF. First, note that we have Sh(7;L(/\)) = A\ by construction of S(A). We denote by 6 and

¢' the valuations associated with the types T\ and 7;L()\), respectively. Let ¢ = (a,b) € S()\)
such that all boxes in the same row and on the right of ¢ are not in S(\). Then, by construction
of S(A) and by definition of # we have:

e 0(c) equals the number of indices k& < a such that row k& of S(A) contains more boxes

than row a;

e for all 0 = (a,d) € S(\), we have () = 0(c) +d — b.
Therefore, when we perform the line-exchange algorithm on 7;(\) we have that the row a of
To(n) is swapped with exactly §(c) rows below it. Thus, we have that for all 0 € A,

0'(0) = ax(0),
hence the elements of Tab(7;(y)) are the balanced tableaux of shape A, and reciprocally. This
ends the proof. O
The previous proposition together with Proposition 6.3.6 immediately imply Theorem 6.2.2.

6.3.5. An equivalence relation between vexillary permutations. At this point, a
natural question arises: given two vexillary permutation o and w, when do we have 7% = TF
? In this section we answer this section by exhibiting an equivalence relation ~, on the set of
vexillary permutations with the property that, for any two vexillary permutations o € S,, and
w € Sy, TE =TF if and only if o ~, w.

We first introduce a useful notation. Let ¢ € S,, p < n be the lowest integer such that
o(p) # p and ¢ < n be the biggest integer such that o(q) # gq. We define

og=[op)=p-1); olp+)=p-1; ...; 0@ —(p—-1)]
Note that 7 is an element of S, ,1_,_, because of the choice of p and q.

DEFINITION 6.3.18. We say that o ~, w if and only if 7 = .

THEOREM 6.3.19. Let o and w be two vezillary permutations, then TF = T if and only if
0~y W.

PROOF. Step 1: we begin with giving a combinatorial interpretation for the relation ~,.
Let 0 € S, and w € 5, be such that o ~, w. Without loss of generality, we can assume that n
is larger than m. Then, we can see w as a permutation of S,, by adding (n —m) fixed points at
the end of w. Let us denote by p, (resp. p,) the smallest integer such that o(p,) # p, (resp.
w(pw) # pw). By definition, we have Inv(g) = Inv(@) and

Inv(o) = {(z + (po = 1),y + (po — 1)) | (z,y) € Inv(7)}.
Thus, if we look at 7, and 7, we have the situation described on Figure 6.17. Then, we have

We get 7, by translating

T., along the diagonal.

FIGURE 6.17. The types 7, and 7, seen as subsets of A,,.

TE = TF by construction.
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Step 2: in order to prove the converse implication, we define two algorithms: one which
reverses the Line-exchange Algorithm and another which reverse the Column-exchange Algo-
rithm. Since these two algorithms are similar, we only give the definition of the algorithm
on lines. Let 7 be a type of shape S, the reverse line-exchange algorithm is the algorithm
described below.

(1) Erase all the empty rows of 7.
(2) Set i :=r, where r is the number of non-empty rows of 7.
(a) If i is a dethroned row of T, then set T := T7; and go back to step (2). Otherwise,
go to step (2-b).
(b) If there is no row above 4, then the algorithm stops. Otherwise, set i := i — 1 and
go back to step (2-a).

We denote by ©T the type obtained after we perform the reverse line-exchange algorithm. We
also denote by T the type obtained from 7T deleting empty rows. In general, the type *(TF) is
different from the type 7. However, it is clear that L(’TL) = T whenever there is no dethroned
lines in 7, and by construction there is no dethroned lines in 7, for any o € S,,.

Therefore, for all vexillary permutations o,w € S,,, if T.” = T then we have T, = T, and
this implies that 7, = 7T,. Then, we have Inv(g) = Inv(w) implying that ¢ = @, i.e. w ~, 0.
This concludes the proof. [

6.3.6. Partial fillings of tableaux of type 7.Z. In this section, we generalize an implicit
result in [FGRS| about combinatorics of balanced tableaux to our construction. That is, we
will enumerate for any vexillary permutation ¢ € S, the number of tableaux of type 7. such
that the integers 1,2, ..., k appear at a given fixed position. We begin with introducing a useful
notation.

DEFINITION 6.3.20. Let o € S, be a vexillary permutation such that A(o) - n and U =

[21, ..., 2] be a sequence of boxes of the Ferrers diagram of A(o). We denote by N,y the set
defined by

Nyv :={T = (t)eer € Tab(TF) | t., =i for all i € [k]}.

THEOREM 6.3.21. Let o0 € S, be a vezillary permutation such that \(o) = n and U =

[21,. .., 2k] be a sequence of bozes of the Ferrers diagram of X o). Then, we have that either
Ny is empty, or there erists w € Sy, such that
[Now!| = [Red(w)].

PROOF. Let us assume that N,y is not empty. By construction, there exists a bijection
U between the set of boxes of 7, and the inversion set of ¢ such that for any sequence L =
[21,..., 2], we have L € PS(TF) if and only if

(U(21),¥(z2),...,¥(x,)] € PS(T,),

Furthermore, thanks to Proposition 6.1.4 there is one-to-one correspondence between N, and
the set

Py = {[x1,...,2,) € PS(TF) | 2; = 2 for all i € [k]}.

Thus, U({z1,...,2x}) is the inversion set of a permutation 7 € S,,, and thanks to Corol-
lary 3.3.10 we have a one-to-one correspondence between N,y and the set of the maximal
chains from 7 to o in (S,,, <g). Thanks to [BB]| (Prop. 3.1.6, page 69), we have that the set of
maximal chains from 7 to o in (S,,, <g) is in one-to-one correspondence with Red(7'w), and
this concludes the proof. O

This theorem applies in particular to balanced tableaux. Moreover, this result is construc-
tive: the permutation w can be computed. We cannot provide a systematic description of the
associate permutation, however we have the following combinatorial result.
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THEOREM 6.3.22. Let 0 € S,, be a vexillary permutation such that A(o) = n and U =
[21,. .., 2k] be a sequence of boxes of the Ferrers diagram of \. If there exists a partition pu b
n — k) such that the resulting partition of the XY and Y X processes applied on the diagram

(
Ao)\{z1,..., 2k} is p, then |[Nyy| = f*.

PROOF. We keep the notations introduced in the proof of Theorem 6.3.21. T.et 7 be the
permutation whose inversion set is given by {W(z1),..., ¥(z;)}. Since w = 7 'o with 7 <p o,
we have

Inv(w) =7 Inv(e) \ Inv(7)) = 771 (Sh(T,) \ {¥(z1),..., U (zp)}).
Thus, if we denote by I; (resp. ¢;) the number of boxes in row (resp. column) i of A(o) \
{z1,..., 2}, we have that the sequences (I;); and (g;(w)); (resp. (¢;); and (r;(w));) are equal
up to re-ordering. Therefore, w is vexillary and p(w) = p. This concludes the proof. U
Notice that the results of the current section apply to balanced tableaux.

DEFINITION 6.3.23. Let A = (A1,...,\x) be a partition of n and (a,b), (c,d) € \, we say
that (a,b) and (c,d) are in the same block if and only if A\, = \.. Let B be a block of A and
let ¢ be the minimal integer such that (i, \;) € B, then the box (i, \;) is called the upper right
corner of B.

Let T be a balanced tableau of shape A\ = n. By definition, we have that the integer 1
appears in the upper right corner of a block (see Figure 6.18).

< / 1 appears in one of these boxes

FIGURE 6.18.

Then, thanks to Theorem 6.3.22 we immediately have the following result.

PROPOSITION 6.3.24. Let B be a block of A\ = n and ¢ be the upper right corner of B. Then,
the number of balanced tableaux of shape X\ such that 1 is in the box ¢ equals the number of
standard tableaux of shape A\~, where A~ Fn — 1 is obtained from X\ by suppressing the corner
of the block B.
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From valued digraphs to complete lattices: a new ap-
proach of weak order on Cozxeter groups.

Abstract: Weak order on a Coxeter group W is a partial order on W appear-
ing in many areas of algebraic combinatorics. In this thesis, we propose a new
general model for the study of the weak order and other related partially ordered
sets (also called “posets”), and we explore various algebraic and combinatorial
consequences of this construction.

We begin with studying a restricted version of this model in Chapter 3. More
precisely, we explain how one can associate a poset to any simple acyclic digraph
together with a valuation on its vertices (also called “valued digraph”). We then
prove that these posets are complete meet semi-lattices in general, complete lat-
tices when the underlying digraph is finite, and we give an explicit formula to
compute the value of their Mobius functions. Then, we show that the weak order
on Coxeter groups of type A, B and A, the flag weak order, and the up-set (resp.
down-set) lattices of any finite poset can be described within this theory. This
description naturally leads to associate a quasi-symmetric function to any element
of A, and A,,, and we demonstrate that this function is in fact the corresponding
Stanley symmetric function.

In Chapter 4 we introduce the main results of this thesis. Indeed, we introduce
in this chapter the generalization of the construction made in Chapter 3 to the
case of any valued digraph, that is without the simplicity and acyclicity condition.
Furthermore, this new definition allows us to get rid of some constraints of the
definition of Chapter 3, allowing us to associate a complete lattice to each valued
digraph. In particular, the meet semi-lattices of Chapter 3 are naturally extended
into complete lattices. This leads us to the study of some conjectures of Dyer
about the properties of an extension of the weak order on any Coxeter group
(among other things, these extensions would be complete lattices). Then, using
our formalism we construct several extensions of the weak order having a lot
of the properties conjecturally attached to Dyer’s extensions, and we prove that
each one of our extensions contains Dyer’s extension as a sub-poset. We make
the conjecture that one of this extension coincide with the one of Dyer, and we
provide tools in order to test this conjecture.

Finally, we study various consequences of out theory: we provide extensions of
Cambrian semi-lattices into complete lattices (end of Chapter 4), we construct a
new combinatorial model for Tamari and m-Tamari lattices (Chapter 5), and we
finish with an application to tableaux combinatorics (Chapter 6).

Keywords: Coxeter groups; Root systems; Weak order; Digraphs; lattices;
Cambrian semi-lattices.



Résumé: L’ordre faible sur un groupe de Coxeter W est un ordre partiel sur les éléments
de W, intervenant dans de nombreux domaines de la combinatoire algébrique. Dans cette
these, on propose un nouveau modeéle général pour I'étude de cet ordre ainsi que d’autres
ensembles ordonnés affiliés, et on explore diverses conséquences aussi bien algébriques que
combinatoires de cette construction.

On commence, dans le chapitre 3, par étudier une version restreinte de ce modeéle. Plus
précisément, on explique comment on peut associer un ensemble ordonné (aussi appelé
“poset”) & tout graphe orienté, simple, acyclique et muni d’'une valutation sur ses sommets
(aussi appelé “graphe valu¢”). On montre ensuite que ces posets sont en général des semi-
treillis inférieurs, des treillis quand le graphe est fini, et on donne une formule explicite
pour les valeurs de leurs fonctions de Mobius. On prouve ensuite que l'ordre faible sur les
groupes de Coxeter de type A, B et A, le “flag weak order” ainsi que le treillis des idéaux
supérieurs et inférieurs de tout poset fini peuvent étre décrit avec notre modéle. Cette
description amene naturellement & associer une série quasi-symétrique a chaque élément
de A, et A, et on montre que cette série est en fait la série de Stanley associée.

On présente dans le chapitre 4 les résultats centraux de la thése, en effet on y introduit
la généralisation de la construction faite au chapitre précédent au cas de tout graphe
valué, c’est a dire sans condition d’acyclicité et de simplicité. On s’affranchit également de
certaines contraintes imposées par la définition du chapitre 3, ce qui nous permet d’associer
a tout graphe valué un treillis complet, et non plus un semi-treillis. En particulier, les semi-
treillis du chapitre 3 se retrouvent naturellement plongés dans un treillis complet. Ceci nous
amene a nous intéresser a des conjectures de Dyer portant sur ’étude d’une extension de
'ordre faible sur tout groupe de Coxeter (entre autres, il est conjecturé que ces extensions
sont des treillis complets). On construit alors, a 'aide de notre formalisme, des extensions
de l'ordre faible ayant beaucoup des propriétés conjecturalement attachées aux extensions
de Dyer, et contenant ces derniéres comme sous-poset. On conjecture que 'une de ces
extensions coincide avec celle de Dyer, et on fournit des outils pour le tester.

Finalement, on étudie diverses conséquences de notre théorie : la construction d’extensions
des semi-treillis cambriens (fin du chapitre 4), la construction d’'un nouveau modéle com-
binatoire pour les treillis de Tamari et m-Tamari (chapitre 5), et enfin on propose une
application & la combinatoire des tableaux (chapitre 6).

Mots clés: Groupe de Coxeter; Systéme de racines; Ordre faible; Graphes orientés; Treil-
lis; Semi-treillis cambriens.

Image en couverture : Graphes valués associés a deux treillis cambriens en type A.
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