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et chanceux d'être son élève.

Lst of symbols

List of symbols

R

The set of real numbers. R +

The set of non negative real numbers. R *

The set of non zero real numbers.

N

The set of natural numbers. N *

The set of non zero natural numbers.

Z

The set of integer numbers. Z *

The set of non zero integer numbers.

Q

The set of rational numbers. Q +

The set of non negative rational numbers. Q *

The set of non zero rational numbers.

C

The set of complex numbers. i

The imaginary unit.

ℜ

The real part.

ℑ

The imaginary part.

L p

The Lebesgue space.

H m

The sobolev space. C 0 The space of continuous function. C 1 the space of continuously differentiable functions.

|•|

The modulus.

•

The norm. max

The maximum. min

The minimum. sup

The supreme. inf

The infimum.

f y = ∂ y f
The partial derivative of f with respect of y. f yy = ∂ yy f The second partial derivative of f with respect of y. ∂ α,η t Fractional Derivative. sign

The sign function or signum function.

Asymptotic Notation

Let f and g be two functions defined on some subset of the real numbers, we define

• f (x) = O (g(x)) as x → ∞ to mean that there exists a positive number M and a real numbers x 0 such that |f (x)| ≤ M |g (x)| ∀ x ≥ x 0 .

• f (x) = o (g(x)) as x → ∞ to mean that lim x→∞ f (x) g(x) = 0.

INTRODUCTION

Cette thèse est consacrée à l'étude de la stabilisation directe et indirecte d'équations d'ondes par des contrôles de type fractionnaire frontière ou de type Kelvin-Voight localisé. Dans la première partie, nous considérons la stabilisation d'une équation d'ondes avec un contrôle fractionnaire au sens de Caputo agissant sur une partie du bords. D'abords, en combinant le critère général d'Arendt Batty avec le théorème de Holmgren, on montre la stabilité forte du notre système dont l'absence de la compacité de la résolvent et sans aucune condition géométrique considéré sur le domaine. Puis, on montre que notre système n'est uniformement stable en général. Donc, on éspère qu'il y a une décroissance énérgetique polynomial pour des données initiales assez régulières. Pour ce but, en appliquant la méthode frequentielle combinée avec une méthode de multiplicateur et, on suppose que la région du bords contrôlée satsifait la "Geometric Control Conditon" (GCC) et en utilisant la décroissance exponentielle des équations d'ondes avec un controle standard, on montre une décroissance énergetique polynomiale qui depends de l'ordre de la dérivée fractionnaire.

Introduction général d'Arendt-Batty avec une méthode de multiplicateur, on montre la stabilité forte du notre système, sous l'égalité de la vitesse des ondes et une condition sur le terme de couplage, dont l'absence de la compacité de la résolvente. Puis, la stabilité non exponentielle est prouvé dans la deuxième partie. D'où, une stabilitée polynomiale est espérée pour des données initiales assez régulière en appliquant la méthode fréquentielle et la condition (MGC), qui depends de l'ordre de la dérivée fractionnaire.

Dans la quatrième partie, dans le cas de la stabilité d'un système de deux équations d'ondes couplées, un amortissement viscoélastique locallement distribué de type Kelvin-Voight est appliqué à une seule équation. D'abords, d'après un théorème d'Hormander et une bonne continuation d'une résultat sur l'estimation de Carelman et par conséquent la stabilité forte du système est assurée. Puis, la stabilité non exponentielle est prouvée dans la deuxième partie et finalement, une décroissance polynomial de l'énergie du système est etablie.

In this thesis, we study the stabilization of the system of wave equations with locally boundary fractional dissipation law. Also, we study the stability of coupled wave equations with one viscoelastic damping around the boundary Γ of type Kelvin-Voight. This ph.D thesis is divided into 4 parts. In part 1, we consider a multidimensional wave equation with boundary fractional damping acting on a part of the boundary of the domain. First, combining a general criteria of Arendt and Batty with Holmgren's theorem, we show the strong stability of our system in the absence of the compactness of the resolvent and without any additional geometric conditions. Next, we show that our system is not uniformly stable in general, since it is the case of the interval. Hence, we look for a polynomial decay rate for smooth initial data of our system by applying a frequency domain approach combined with a multiplier method. Indeed, by assuming that the boundary control region satisfies the Geometric Control Condition (GCC) and by using the exponential decay of the wave equation with a standard damping, we establish a polynomial energy decay rate for smooth solutions, which depends on the order of the fractional derivative.

In part 2, we study the stability of one-dimensional coupled wave equation via one order terms with one boundary fractional damping acting on a part of the boundary of the domain. The stability of our system is influenced by the arithmetic nature of the wave propagation velocity quotient and by the algebraic nature of the coupling term. Consequently, different results of the polynomial stability are established, which depends on the order of the fractional derivative.

In part 3, we study the stability of multidimensional coupled wave equation via one order terms with one boundary fractional damping acting on a part of the boundary of the domain. First, by combining a general criteria of Arendt and Batty with a multiplier method, we show the strong stability of our system under the equality of speed propagations and some conditions on the coupling parameter term, in the absence of the compactness of the resolvent under the multiplier geometric condition denoted by (MGC). Next, under the equality of speed propagations and another condition on the coupling parameter term, we look for a polynomial decay rate for smooth initial data for our system by applying a frequency domain under the multiplier geometric condition, which depends on the order of the fractional derivative.

In part 4, we study the stability of a system of two coupled wave equations on one locally viscoelastic damping of type Kelvin-Voight applied for one equation around the boundary Γ. First, the strong stability of the system is ensured using a Hormander Theorem and a mild continuation of Carelman estimation. Next, the nonuniform stability is proved. Finally, an optimal polynomial energy decay rate of system is established.

Thesis overview

This thesis is devoted to study the stabilization of the system of waves equations with one boundary fractional damping acting on apart of the boundary of the domain and the stabilization of a system of waves equations with locally viscoelastic damping of Kelvin-Voight type. First, we study the stability of the multidimensional wave equation with boundary fractional damping acting on a part of the boundary of the domain. Second, we study the stability of the system of coupled one-dimensional wave equation with one fractional damping acting on a part of the boundary of the domain. Next, we study the stability of the system of coupled multi-dimensional wave equation with one fractional damping acting on a part of the boundary of the domain. Finally, we study the stability of the multidimensional waves equations with locally viscoelastic damping of Kelvin-Voight is applied for one equation around the boundary of the domain.

Let Ω be a bounded set in R d , d ≥ 2, with a Lipschitz boundary Γ = Γ 0 ∪ Γ 1 of class C 2 where Γ 0 and Γ 1 are open subsets of Γ such that Γ 0 ∩ Γ 1 = ∅, Γ 1 is non empty and ν = (ν 1 , . . . , ν d ) is the outward unit normal along the boundary Γ. The notation ∂ α,η t stands for the generalized Caputo's fractional derivative (see [START_REF] Caputo | Vibrations of an infinite plate with a frequency independant[END_REF]) of order α with respect to the time variable and is defined by

∂ α,η t ω(t) = 1 Γ(1 -α) t 0 (t -s)
-α e -η(t-s) dω ds (s)ds, 0 < α < 1, η ≥ 0. (0.0.4)

The system (0.0.1)-(0.0.3) is considered with initial conditions u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x) where x ∈ Ω. (0.0.5)

In [START_REF] Mbodje | Wave energy decay under fractional derivative controls[END_REF], B. Mbodje considered a 1-d wave equation with boundary fractional damping acting on a part of the boundary of the domain :

                   ∂ 2 t u(x, t) -∂ 2 x u(x, t) = 0, 0 < x < 1, t > 0, u(0, t) = 0, ∂ x u(1, t) + γ∂ α,η t u(1, t) = 0, 0 < α < 1, η ≥ 0, u(x, 0) = u 0 (x), ∂ t u(x, 0) = v 0 (x).
(0.0.6) Theorem 0.0.3. Let µ be a function defined by µ(ξ) = |ξ| 2α-1 2 , ξ ∈ R and α ∈]0, 1[, then the relation between the input "U " and the output "O" of the following system

ϕ t (ξ, t) + |ξ| 2 + η ϕ(ξ, t) -U (t)µ(ξ) = 0, ξ ∈ R, η ≥ 0 et t ∈ R + 0 , ϕ(ξ, 0) = 0, O(t) = sin(απ) π +∞ -∞ µ(ξ)ϕ(ξ, t)dξ,
is given by

O(t) = 1 Γ(1 -α)
tem (0.0.6) is not uniformly stable ; In other words, its energy has no exponential decay rate. However, using LaSalle's invariance principle, he proved that the system (0.0.6) is strongly stable for usual initial data. Secondly, he established a polynomial energy decay rate of type 1 t for smooth initial data. In this Chapter, our main interest is to generalize the results of [START_REF] Mbodje | Wave energy decay under fractional derivative controls[END_REF] by considering the multidimensional case and by improving the polynomial energy day rate. Firstly, we reformulate system (0.0.1)-(0.0.3) into an augmented system. For this aim, we need the following results Theorem 0.0.4. Let µ be the function defined by

µ(ξ) = |ξ| 2α-d 2 , ξ ∈ R d and 0 < α < 1,
then the relation between the 'input' U and the 'output' O of the following system

∂ t ω(ξ, t) + (|ξ| 2 + η)ω(ξ, t) -U (t)µ(ξ) = 0, ξ ∈ R d , t > 0, ω(ξ, 0) = 0, O(t) = 2 sin(απ)Γ d 2 + 1 dπ d 2 +1 R d µ(ξ)ω(ξ, t)dξ,
is given by

O(t) = 1 Γ(1 -α) t 0 e -η(t-τ ) (t -τ ) α dU dτ (τ )dτ.
Now, using Theorem 0.0.4, system (0.0.1)-(0.0.5) recast into the following augmented model : u tt -∆u = 0, in Ω × R + , (0.0.7) u = 0, on Γ 0 × R + , (0.0.8)

∂ t ω(ξ, t) + (|ξ| 2 + η)ω(ξ, t) -µ(ξ)∂ t u(x, t) = 0, on Γ 1 × R + , ξ ∈ R d , (0.0.9) ∂u ∂ν + γκ R d µ(ξ)ω(ξ, t)dξ = 0, on Γ 1 × R + (0.0.10)
where γ is a positive constant, η ≥ 0 and κ =

2 sin(απ)Γ( d 2 +1) dπ d 2 +1
. Moreover, system (0.0.7)-(0.0.10) is considered with the following initial conditions u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), ω(ξ, 0) = 0, x ∈ Ω, ξ ∈ R d .

(0.0.11)

Our main interest is the existence, uniqueness and regularity of the solution to this system. We define the Hilbert space

H = H 1 Γ 0 (Ω) × L 2 (Ω) × L 2 (R d )
Introduction equipped with the following inner product ((u, v, ω), (ũ, ṽ, ω))

H = Ω v v + ∇u∇ ū dx + γκ R d ω(ξ) ω(ξ)dξ,
where γ = γ |Γ 1 | and H 1 Γ 0 (Ω) is given by

H 1 Γ 0 (Ω) = u ∈ H 1 (Ω), u = 0 on Γ 0 .
The energy of the solution of system is defined by :

E(t) = 1 2 (u, u t , w) 2 H .
For smooth solution, a direct computation gives

E ′ (t) = -γκ R d (|ξ| 2 + η)|w(ξ, t)| 2 dξ.
Then, system (0.0.7)-(0.0.11) is dissipative in the sense that its energy is a nonincreasing function of the time variable t. Now, we define the linear unbounded operator A by

D(A) =      U = (u, v, ω) ⊤ ∈ H; ∆u ∈ L 2 (Ω), v ∈ H 1 Γ 0 (Ω), |ξ|ω ∈ L 2 (R d ), -(|ξ| 2 + η)ω + v| Γ 1 µ(ξ) ∈ L 2 (R d ), ∂u ∂ν | Γ 1 = -γκ R d µ(ξ)ω(ξ)dξ
Introduction solution U (t) ∈ C 0 (R + , H). Moreover, if U 0 ∈ D(A), then the problem (0.0.12) admits a unique strong solution U (t) ∈ C 1 (R + , H) ∩ C 0 (R + , D(A)).

Secondly, we study the strong stability of system (0.0.7)-(0.0.11) in the sense that its energy converges to zero when t goes to infinity for all initial data in H. It is easy to see that the resolvent of A is not compact, then the classical methods such as Lasalle's invariance principle [START_REF] Slemrod | Feedbacks stabilization of a linear system in a hilbert space with an a priori bounded control[END_REF] or the spectrum decomposition theory of Benchimol [START_REF] Benchimol | A note on weak stabilizability of contraction semigroups[END_REF] are not applicable in this case. We use then a general criteria of Arendt-Batty [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF] and without any additional geometric condition, following which a C 0 -semigroup of contractions e tA in a Banach space is strongly stable, if A has no pure imaginary eigenvalues and σ(A)∩iR contains only a countable number of elements. We will prove the following stability result Theorem 0.0.6. Assume that η ≥ 0. Then, the C 0 -semigroup (e tA ) t≥0 is strongly stable on the energy space H, i.e., for any U 0 ∈ H, we have lim t→+∞ e tA U 0 H = 0.

To prove Theorem 0.0.6, we need the following two lemmas.

Lemma 0.0.7. Assume that η ≥ 0. Then, for all λ ∈ R, we have ker (iλI -A) = {0}.

Remark that for η = 0, the operator -A is not invertible. Consequently, we prove the following lemma in general, since it is already the case for Ω = (0, 1) as shown below.

Our result is the following.

Theorem 0.0.9. Assume that d = 1. The semigroup of contractions e tA is not uniformly stable in the energy space H.

This result is due to the fact that a subsequence of eigenvalues of A is close to the imaginary axis. For this aim, we prove that then there exists a constant k 0 ∈ N * and a sequence (λ k ) |k|≥k 0 , for k large enough, a subsequence of eigenvalues satisfied the following asymptotic behavior

λ k = i(k + 1 2 )π + i γ sin π 2 (1 -α) π 1-α k 1-α - γ cos π 2 (1 -α) π 1-α k 1-α + O 1 k 2-α ,
Then a decay of polynomial type is hoped. Hence, we consider the case where η > 0 and under the (GCC) condition. For that purpose, we will use a frequency domain approach, namely we will use Theorem 2.4 of [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF] (see also [START_REF] Bátkai | Polynomial stability of operator semigroup[END_REF][START_REF] Batty | Non uniform stability for bounded semi-groups on banach spaces[END_REF][START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF]) combined with a multiplier method and using the exponentially decay of the problem of wave equation with standard boundary damping on Γ 1 :

       ϕ tt (x, t) -∆ϕ(x, t) = 0, x ∈ Ω, t > 0, ϕ(x, t) = 0, x ∈ Γ 0 , t > 0, ∂ ν ϕ(x, t) = -ϕ t (x, t), x ∈ Γ 1 , t > 0.
(0.0.13) Define the auxiliary space H a = H 1 Γ 0 (Ω) × L 2 (Ω) and the auxiliary unbounded linear operator A a by D(A a ) = Φ = (ϕ, ψ) ∈ H a : ∆ϕ ∈ L 2 (Ω); ψ ∈ H 1 Γ 0 (Ω);

∂ϕ ∂ν = -ψ on Γ 1
A a (ϕ, ψ) = (ψ, ∆ϕ) .

Then, we introduce the following hypothesis :

(H) : the problem (0.0.13) is uniformly stable in the energy space H 1 Γ 0 (Ω) × L 2 (Ω). Now, we present the main result of this Chapter.

Theorem 0.0.10. Assume that η > 0 and that the condition (H) holds. Then, for all initial data U 0 ∈ D(A), there exists a constant C > 0 independent of U 0 , such that the energy of the strong solution U of (0.0.12) satisfies the following estimation

E(t, U ) ≤ C 1 t
To proof this theorem, by tacking ℓ = 2 -2α, the polynomial energy decay E(t) holds if the following conditions iR ⊂ ρ(A) (H1) and sup |λ|∈R 1 |λ| ℓ (iλI -A) -1 < +∞ (H2) are satisfied. Condition (H1) is already proved in theorem 0.0.6. We will prove condition (H2) using an argument of contradiction. For this purpose, suppose that (H2) is false, then there exist a real sequence (λ n ), with |λ n | → +∞ and a sequence (U n ) ⊂ D(A), verifying the following conditions

U n H = (u n , v n , ω n ) H = 1 (0.0.15) and λ ℓ n (iλ n -A)U n = (f n 1 , f n 2 , f n 3 ) → 0 in H. (0.0.16)
In the following, we will check the condition (H2) by finding a contradiction with (0.0.15) such as U H = o [START_REF] Abdallah | Stabilisation et approximation de certains systèmes distribués par amortissement dissipative et de signe indéfini[END_REF]. Consequently, condition (H2) holds, and the energy of smooth solution of system (0.0.7)-(0.0.11) decays polynomial to zero as t goes to infinity. Finally, using the density of the domain D(A) in H, we can easily prove that the energy of weak solution of the system (0.0.7)-(0.0.11) decays to zero as t goes to infinity.

Chapter 3 : In this chapter, we study the stability of a system of coupled wave equations in one dimensional case with a fractional damping acting on a part of the boundary of the domain.

We consider the coupled wave equations    u ttu xx + by t = 0 on ]0, 1[×]0, +∞[, y ttay xxbu t = 0 on ]0, 1[×]0, +∞[ (0.0.17)

where (x, t) ∈]0, 1[×]0, +∞[, a > 0 and b ∈ R * . This system is subjected to the boundary conditions

       u(0, t) = 0 in ]0, +∞[, y(0, t) = y(1, t) = 0 in ]0, +∞[, u x (1, t) = -γ∂ α,η t u(1, t) in ]0, +∞[ (0.0.18)
where γ > 0. The notation ∂ α,η Introduction (0.0.18) is considered with initial conditions    u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), where x ∈]0, 1[, y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x) where x ∈]0, 1[. (0.0.19)

First, using Theorem 0.0.3, for d = 1, we reformulate system (0.0.17)-(0.0.19) into an augmented model defined by u ttu xx + by t = 0, on (0, 1) × R + , , (0.0.20)

y ttay xxbu t = 0, on (0, 1) × R + , (0.0.21)

ω t (ξ, t) + (|ξ| 2 + η)ω(ξ, t) -u t (1, t)µ(ξ) = 0, on R × R + , (0.0.22)
y(0, t) = y(1, t) = u(0, t) = 0, (0.0.23)

u x (1, t) + γκ R µ(ξ)ω(ξ, t)dξ = 0, (0.0.24)
This system is subject to the boundary conditions u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), (0.0.25) y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), (0.0.26) ω(ξ, 0) = 0. (0.0.27)

where κ = sin(απ) π . Now, using a semigroup approach, we establish well-posedness result for the problem (0.0.20)-(0.0.27). First the energy of this system is given by

E(t) = 1 2 1 0 |u t | 2 + |y t | 2 + |u x | 2 + a|y x | 2 dx + γκ +∞ -∞ |ω| 2 dξ .
Then a straightforward computation gives

E ′ (t) = -γκ +∞ -∞ (ξ 2 + η)|ω| 2 dξ ≤ 0.
Thus, the system (0.0.20)-(0.0.27) is dissipative in the sense that its energy is nonincreasing with respect to the time t. Next, we define the Hilbert space

H = H 1 L (]0, 1[) × L 2 (]0, 1[) × H 1 0 (]0, 1[) × L 2 (]0, 1[) × L 2 (R),
endowed with inner product

U, U = Introduction space defined by H 1 L (]0, 1[) = u ∈ H 1 (Ω), u(0) = 0 .
Finally, we define the unbounded linear operator A by

D(A) =                    U = (u, v, y, z, ω) ⊤ ∈ H; u ∈ H 2 (]0, 1[) ∩ H 1 L (]0, 1[), y ∈ H 2 (]0, 1[) ∩ H 1 0 (]0, 1[), v ∈ H 1 L (]0, 1[), z ∈ H 1 0 (]0, 1[) , -(ξ 2 + η) ω + v (1) µ(ξ) ∈ L 2 (R) , u x (1) + γκ +∞ -∞ µ(ξ)ω(ξ)dξ = 0, |ξ|ω ∈ L 2 (R) .                    , and A           u v y z ω           =           v u xx -bz z ay xx + bv -(ξ 2 + η) ω + v(1)µ(ξ)          
If U = (u, u t , y, y t , ω) T is a regular solution of system (0.0.20)-(0.0.27), then we rewrite this system as the following evolution equation

   U t = AU, U (0) = U 0 , (0.0.28)
where U 0 = (u 0 , u 1 , y 0 , y 1 , ω) ⊤ . It is known that operator A is m-dissipative on H and consequently, generates a C 0 -semigroup of contractions e tA following Lumer-Phillips' theorem (see [START_REF] Liu | Semigroups associated with dissipative systems[END_REF][START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]). Then, the solution to the evolution equation (0.0.28) admits the following representation : U (t) = e tA U 0 , t ≥ 0, which leads to the well-posedness of (0.0.28) . Hence, semi-group theory allows to show the next existence and uniqueness results :

Theorem 0.0.11. For any initial data U 0 ∈ H, the problem (0.0.28) admits a unique weak solution U (t) ∈ C 0 (R + , H). Moreover if U 0 ∈ D(A) then the problem (0.0.28) admits a unique strong solution U (t) ∈ C 1 (R + , H) ∩ C 0 (R + , D(A)).

Secondly, we study the strong stability of system (0.0.20)-(0.0.27) in the sense that its energy converges to zero when t goes to infinity for all initial data in H. It is easy to see that the resolvent of A is not compact, then the classical methods such as Lasalle's invariance principle [START_REF] Slemrod | Feedbacks stabilization of a linear system in a hilbert space with an a priori bounded control[END_REF] or the spectrum decomposition theory of Benchimol [START_REF] Benchimol | A note on weak stabilizability of contraction semigroups[END_REF] are not applicable in this case. We use then a general criteria of Arendt-Battay [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF], following which a C 0 -semigroup of contractions e tA in a Banach space is strongly stable, if A has no pure imaginary eigenvalues and σ(A) ∩ iR contains only a countable number of elements. We will prove the following stability result :

Theorem 0.0.12. Assume that η ≥ 0. Then the C 0 -semigroup (e tA ) t≥0 is strongly stable on the energy space H, i.e., for any U 0 ∈ H we have lim t→+∞ e tA U 0 H = 0.

To proof Theorem 0.0.12, we need the following two lemmas Lemma 0.0.13. Assume that η ≥ 0 and b satisfying the following condition

b 2 = (k 2 1 -ak 2 2 )(ak 2 1 -k 2 2 )π 2 (a + 1)(k 2 1 + k 2 2 ) , ∀k 1 , k 2 ∈ Z. (C)
Then, for all λ ∈ R, we have ker (iλI -A) = {0}.

We remark that for η = 0, the operator -A it's not invertible and consequently, we proove Lemma 0.0.14. If η > 0, for all λ ∈ R, we have

R (iλI -A) = H
while if η = 0, for all λ ∈ R ⋆ , we have

R (iλI -A) = H.
Consequently, following a general criteria of Arendt-Batty see [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF], the C 0 -semigroup of contractions e tA is strongly stable, if σ (A)∩iR is countable and no eigenvalue of A lies on the imaginary axis. First, from Lemma 0.0.13 we directly deduce that A has non pure imaginary eigenvalues. Next, using Lemma 0.0.14, we conclude, with the help of the closed graph theorem of Banach, that σ(A) ∩ iR = {∅} if η > 0 and σ(A) ∩ iR = {0} if η = 0. Now, our aim is to show that system (0.0.20)-(0.0.27) is not uniformly (i.e. exponentially) stable in general since it is already the case for Ω = (0, 1) as shown below. Our result is the following Theorem 0.0.15. Assume that d = 1. The semigroup of contractions e tA is not uniformly stable in the energy space H.

satisfied the following asymptotic behavior

λ k = ikπ 2 + c 1 k 1-α + ic 2 k 1-α + O 1 k 1-α for c 1 = γ(-1) k cos(b) -(-1) k cos π 2 (1 -α) 2 α k 1-α and c 2 = γ(-1) k cos(b) -(-1) k sin π 2 (1 -α) 2 α k 1-α .
Then a decay of polynomial type is hoped. For that purpose, we will use a frequency domain approach, namely we will use theorem 2.4 of [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF] (see also [START_REF] Bátkai | Polynomial stability of operator semigroup[END_REF][START_REF] Batty | Non uniform stability for bounded semi-groups on banach spaces[END_REF][START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF]).

Theorem 0.0.16. Suppose that η > 0, a = 1 and b satisfies the condition (C). Then, for all U 0 ∈ D(A), there exists a constant C > 0 independent of U 0 , such that the energy of the strong solution of U of (0.0.28) satisfies the following estimation

E(t, U ) ≤ C t ℓ(α) U 0 2 D(A) , ∀t > 0, where ℓ(α) =    1 3-α if a = 1 and b = kπ 1 1-α if a = 1 and b = kπ
In particular, for U 0 ∈ H, the energy E(t, U ) converges to zero as t goes to infinity. Theorem 0.0.17. Assume that η > 0, a = 1 and b satisfies condition (C). If (a ∈ Q and b small enough) or √ a ∈ Q, then for all U 0 ∈ D(A), there exists a constant C > 0 independent of U 0 , such that the energy of the strong solution U of (0.0.28) satisfies the following estimation

E(t, U ) ≤ C t 1 3-α U 0 2 D(A) , ∀t > 0.
In particular, for U 0 ∈ H, the energy E(t, U ) converges to zero as t goes to infinity.

Chapter 4 : In this chapter, we study the stabilization of the system of multidimensional wave equation defined by :

u tt -∆u + by t = 0, in Ω × R + , (0.0.29) y tt -a∆y -bu t = 0, in Ω × R + , (0.0.30) u = 0, on Γ 0 × R + , (0.0.31) y = 0, on Γ × R + , (0.0.32) ∂u ∂ν + γ∂ α,η t u = 0, on Γ 1 × R + , (0.0.33)
where ν is the unit outward normal vector along the boundary Γ 1 , γ is a positive constant involved in the boundary control, a > 0 and b ∈ R * . The notation ∂ α,η t stands the generalized Caputo's fractional derivative see [START_REF] Caputo | Vibrations of an infinite plate with a frequency independant[END_REF] of order α with respect to the time variable and is defined in equation (0.0.4) The system (0.0.29)-(0.0.33) is considered with initial conditions u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x) where x ∈ Ω, (0.0.34) y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x) where x ∈ Ω, (0.0.35)

First, using Theorem 0.0.4, we reformulate our system into the augmented model

u tt -∆u + by t = 0, in Ω × R + , (0.0.36) y tt -a∆y -bu t = 0, in Ω × R + , (0.0.37) ∂ t ω(ξ, t) + |ξ| 2 + η ω(ξ, t) -µ(ξ)∂ t u(x, t) = 0, on Γ 1 × R + , ξ ∈ R d , (0.0.38) u = 0, on Γ 0 × R + , (0.0.39) y = 0, on Γ × R + , (0.0.40) ∂u ∂ν + γκ R d µ(ξ)ω(ξ, t)dξ = 0, on Γ 1 × R + (0.0.41)
where γ is a positive constant, η ≥ 0 and κ =

2 sin(απ)Γ( d 2 +1) dπ d 2 +1
. Finally, system (0.0.36)-(0.0.41) is considered with the following initial conditions u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x) where x ∈ Ω, (0.0.42) y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x) where x ∈ Ω, (0.0.43)

ω(ξ, 0) = 0 where ξ ∈ R d . (0.0.44)
Our main interest is the existence, uniqueness and regularity of the solution of this system. We define the Hilbert space

H = H 1 Γ 0 (Ω) × L 2 (Ω) × H 1 0 (Ω) × L 2 (Ω) × L 2 (R N ), (0.0.45)
equipped with following inner product

U, U H = Ω v v + ∇u∇ ū + z z + a∇y∇ ȳ dx + γκ R d ω(ξ) ω(ξ)dξ where γ = γ |Γ 1 | U = (u, v, y, z, ω), U = (ũ, ṽ, ỹ, z, ω) ∈ H and H 1 Γ 0 (Ω) is given by H 1 Γ 0 (Ω) = u ∈ H 1 (Ω), u = 0 on Γ 0 .
The energy of the solution of system (0.0.36)-(0.0.44) is defined by :

E(t) = 1 2 (u, u t , y, y t , ω) 2 H . (0.0.46)
For smooth solution, a direct computation gives

E ′ (t) = -γκ R d |ξ| 2 + η |ω(ξ, t)| 2 dξ.
(0.0.47)

Then, system (0.0.36)-(0.0.44) is dissipative in the sense that its energy is a non-increasing function of the time variable t. Now, we define the linear unbounded operator A by

D(A) =              U = (u, v, y, z, ω) ⊤ ∈ H; ∆u ∈ L 2 (Ω), y ∈ H 2 (Ω) ∩ H 1 0 (Ω), v ∈ H 1 Γ 0 (Ω), z ∈ H 1 0 (Ω), -(|ξ| 2 + η)ω + v| Γ 1 µ(ξ) ∈ L 2 (R d ), ∂u ∂ν + γκ R d µ(ξ)ω(ξ)dξ = 0 on Γ 1 , |ξ|ω ∈ L 2 (R d )              (0.0.48)
and

A           u v y z ω           =           v ∆u -bz z a∆y + bv -(|ξ| 2 + η)ω + v| Γ 1 µ(ξ).          
By denoting v = u t and z = y t and U 0 = (u 0 , v 0 , y 0 , z 0 , ω 0 ) ⊤ , system (0.0.36)-(0.0.44) can be written as an abstract linear evolution equation on the space

H    U t = AU, U (0) = U 0 , (0.0.49)
It is known that operator A is m-dissipative on H and consequently, generates a C 0 -semigroup of contractions e tA following Lumer-Phillips' theorem (see [START_REF] Liu | Semigroups associated with dissipative systems[END_REF][START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]). Then the solution to the evolution equation (0.0.28) admits the following representation :

U (t) = e tA U 0 , t ≥ 0,
which leads to the well-posedness of (0.0.49) . Hence, semi-group theory allows to show the next existence and uniqueness results :

Secondly, we study the strong stability of system (0.0.36)-(0.0.44) in the sense that its energy converges to zero when t goes to infinity for all initial data in H. It is easy to see that the resolvent of A is not compact, then the classical methods such as Lasalle's invariance principle [START_REF] Slemrod | Feedbacks stabilization of a linear system in a hilbert space with an a priori bounded control[END_REF] or the spectrum decomposition theory of Benchimol [START_REF] Benchimol | A note on weak stabilizability of contraction semigroups[END_REF] are not applicable in this case. We use then a general criteria of Arendt-Battay [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF] combining with a specifying multiplier and under the MGC condition, following which a C 0 -semigroup of contractions e tA in a Banach space is strongly stable, if A has no pure imaginary eigenvalues and σ(A) ∩ iR contains only a countable number of elements. We will prove the following stability result Theorem 0.0.19. Assume that η ≥ 0,a = 1 and b is small enough. Then the C 0 -semigroup (e tA ) t≥0 is strongly stable on the energy space H, i.e., for any U 0 ∈ H we have

lim t→+∞ e tA U 0 H = 0.
To proof theorem 0.0.19, we need the following two lemmas Lemma 0.0.20. Assume that η ≥ 0, a = 1 and b is small enough. Then, for all λ ∈ R, we have

ker (iλI -A) = {0}.
We remark that for η = 0, the operator -A it's not invertible and consequently, we proofed Lemma 0.0.21. Suppose that a = 1 and b is small enough. Then, if η > 0, for all λ ∈ R, we have

R (iλI -A) = H while if η = 0, for all λ ∈ R ⋆ , we have R (iλI -A) = H.
Then, following a general criteria of Arendt-Batty see [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF], the C 0 -semigroup of contractions e tA is strongly stable, if σ (A) ∩ iR is countable and no eigenvalue of A lies on the imaginary axis. First, from Lemma 0.0.20 we directly deduce that A, for a = 1 and b small enough, has non pure imaginary eigenvalues. Next, using Lemma 0.0.21, we conclude, with the help of the closed graph theorem of Banach, that σ(A)

∩ iR = {∅} if η > 0 and σ(A) ∩ iR = {0} if η = 0.
The nonuniform stability is proved in Chapter 3. Then, a decay of polynomial type is hoped.

For this aim, we consider the case where η > 0, a = 1 and b small enough. For that purpose, we will use a frequency domain approach, namely we will use Theorem 2.4 of [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF] combining with a multiplier method and the MGC condition. Now, we present the main result mohamadakil1@hotmail.com of the strong solution of (0.0.49) satisfies the following estimation

E(t, U ) ≤ C 1 t 1 1-α U 0 2 D(A) .
In particular, for U 0 ∈ H, the energy E(t, U ) converges to zero as t goes to infinity.

Chapter 5 : In this chapter, we consider the following two wave equations coupled with a viscoelastic damping around the boundary Γ :

   ρ 1 (x)u tt -div(a 1 (x)∇u + b(x)∇u t ) + αy t = 0 in Ω × R + , ρ 2 (x)y tt -div(a 2 (x)∇y) -αu t = 0 in Ω × R + , (0.0.50)
with the following initial conditions :

u(•, 0) = u 0 (•) , y(•, 0) = y 0 (•) , u t (•, 0) = u 1 (•) , y t (•, 0) = y 1 (•) in Ω, (0.0.51)
and the following boundary conditions :

u (x, t) = y (x, t) = 0 on Γ × R + . (0.0.52) The functions ρ 1 , ρ 2 , a 1 , a 2 , b ∈ L ∞ (Ω) such that ρ 1 (x) ≥ ρ 1 , ρ 2 (x) ≥ ρ 2 , a 1 (x) ≥ a 1 , a 2 (x) ≥ a 2
and α is a real constant number.

The local viscoelastic damping is a natural phenomena of bodies which have one part made of viscoelastic material, and the other is made of elastic material. There are a few number of publications concerning the wave equation with local viscoelastic damping. First, using a semi-group approach, we establish well-posedness result for the system Kelvin Voight with viscoelastic damping div(b(x)∇u t ) be applied around the boundary Γ. For this aim, we define the energy of system (0.0.50)-(0.0.52)by :

E(t) = 1 2 Ω ρ 1 (x)|u t | 2 + ρ 2 (x)|y t | 2 + a 1 (x)|∇u| 2 + a 2 (x)|∇y| 2 dx. (0.0.53)
Then a straightforward computation gives

E ′ (t) = - Ω b(x)|∇u t | 2 dx ≤ 0.
Thus, the system (0.0.50)-(0.0.52) is dissipative in the sense that its energy is nonincreasing with respect to the time t. For any γ > 0 we define the γ-neighborhood O γ of the boundary Γ as follows

O γ = {x ∈ Ω : |x -y| ≤ γ, y ∈ Γ}. (0.0.54)
More precisely, we assume that

       ρ 1 (x) ≥ ρ 1 > 0, ρ 2 (x) ≥ ρ 2 > 0, a 1 (x) ≥ a 1 > 0, a 2 (x) ≥ a 2 > 0 for all x ∈ Ω, b(x) ≥ b 0 > 0 for all x ∈ O γ .
Next, we define the Hilbert space

H = H 1 0 (Ω) × L 2 (Ω)
2 endowed with the inner product

U, U = Ω a 1 ∇u • ∇ ū + a 2 ∇y • ∇ ȳ + ρ 1 v v + ρ 2 z z dx,
for all U = (u, v, y, z) ⊤ ∈ H and Ũ = (ũ, ṽ, ỹ, z) ⊤ ∈ H. Finally, we define the unbounded linear operator A by

D(A) = (u, v, y, z) ∈ H : div(a 1 (x)∇u + b(x)∇v) ∈ L 2 (Ω), div(a 2 (x)∇y) ∈ L 2 (Ω) and v, z ∈ H 1 0 (Ω) , (0.0.55)
and

A           u v y z           =              v 1 ρ 1 (x) (div(a 1 (x)∇u + b(x)∇v) -αz) z 1 ρ 2 (x) (div(a 2 (x)∇y) + αv)             
.

By denoting v = u t , z = y t and U 0 = (u 0 , v 0 , y 0 , z 0 , w 0 ) ⊤ , system (0.0.50)-(0.0.52) can be written as an abstract linear evolution equation on the space H

U t = AU, U (0) = U 0 . (0.0.56)
It is known that, under the hypothesis (H), the operator A is m-dissipative on H and consequently, generates a C 0 -semigroup of contractions e tA following Lumer-Phillips' theorem (see [START_REF] Liu | Semigroups associated with dissipative systems[END_REF][START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]). Then the solution of the evolution equation (0.0.56) admits the following representa-tion :

U (t) = e tA U 0 , t ≥ 0,
which leads to the well-posedness of (0.0.52) . Hence, the semi-group theory allows to show the next existence and uniqueness result :

Theorem 0.0.23. For any initial data U 0 ∈ H, the problem (0.0.56) admits a unique weak solution

U (t) ∈ C 0 (R + , H). Moreover if U 0 ∈ D(A) then the problem (0.0.56) admits a unique strong solution U (t) ∈ C 1 (R + , H) ∩ C 0 (R + , D(A)).
Secondly, we study the strong stability of system (0.0.50)-(0.0.52) in the sense that its energy converges to zero when t goes to infinity for all initial data in H. It is easy to see that the resolvent of A is not compact, then the classical methods such as Lasalle's invariance principle [START_REF] Slemrod | Feedbacks stabilization of a linear system in a hilbert space with an a priori bounded control[END_REF] or the spectrum decomposition theory of Benchimol [START_REF] Benchimol | A note on weak stabilizability of contraction semigroups[END_REF] are not applicable in this case. We use then a general criteria of Arendt-Battay [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF] combining with a unique continuation result based on a Carleman estimate , following which a C 0 -semigroup of contractions e tA in a Banach space is strongly stable, if A has no pure imaginary eigenvalues and σ(A) ∩ iR contains only a countable number of elements. We will prove the following stability result Theorem 0.0.24. Under hypothesis (H), the C 0 -semigroup e tA is strongly stable in H ; i.e, for all U 0 ∈ H, the solution of (0.0.56) satisfies lim t→∞ e tA U 0 H = 0.

For the proof of Theorem 0.0.24, we need the following two lemmas.

Lemma 0.0.25. Under hypothesis (H), we have

ker(iλI -A) = {0}, ∀ λ ∈ R.
Lemma 0.0.26. Under hypothesis (H), we have iλI -A is surjective for all λ ∈ R.

Next, we show that the system (0.0.50)-(0.0.52) is not exponentially stable. Throughout, this part, we assume that

a 1 , a 2 , ρ 1 , ρ 2 ∈ R + and b ∈ R +

Introduction

k large enough, a subsequence of eigenvalues satisfied the following asymptotic behavior :

λ k = i a ρ 2 µ k - α 2 2bρ 2 µ 2 k + o 1 µ 3 k , (0.0.57)
where µ k , is the eigenvalues of -∆ i.e.

   -∆ϕ k = µ 2 k ϕ k in Ω, ϕ k = 0 on Γ.
Then a decay of polynomial type is hoped. Now, we assume that

a 1 , a 2 , ρ 1 , ρ 2 , b ∈ C 1,1 (Ω). (C1)
Also, we assume the following supplementary conditions. There exists a function q ∈ C 1 (Ω, R N ) and 0 < α < β < γ, such that

∂ j q k = ∂ k q j , div(a 1 a 2 ρ 2 q), div(a 1 a 2 ρ 1 q) ∈ C 0,1 (Ω β ) and q = 0 on O α , (C2)
There exists a constant σ 1 > 0, such that

2a 2 ∂ j (a 1k q k ) + a 1 (q k ∂ j a 2 + q j ∂ k a 2 ) + a 1 a 2 ρ 2 q∇ρ 2 -q∇a 2 I ≥ σ 1 I, ∀x ∈ Ω β . (C3)
There exists a constant σ 2 > 0, such that

2a 1 ∂ j (a 2k q k ) + a 2 (q k ∂ j a 1 + q j ∂ k a 1 ) + a 2 a 1 ρ 1 q∇ρ 1 -q∇a 1 I ≥ σ 2 I, ∀x ∈ Ω β . (C4)
There exists a constant M > 0 such that for all v ∈ H 1 0 (Ω), we have

|(q • ∇v) ∇b -(q • ∇b)∇v| ≤ M √ b |∇v|, ∀x ∈ Ω β . ( C5 
)
Theorem 0.0.28. Assume that conditions (H), (C1) -(C6) are satisfied. Then for all initial data U 0 ∈ D (A), then there exists a constant C > 0 independent of U 0 , such that the energy of the strong solution U of (0.0.56) satisfyies the following estimation :

E(t, U ) ≤ C 1 t U 0 2 D(A) , ∀t > 0. (0.0.58) Introduction firstly U H = o(1) on O γ .
Next, we have showing that

U H = o(1) on Ω β .
Hence, we obtain

U H = o(1) on Ω.
In conclusion, using equations (0.0.57) and (0.0.58), an optimal polynomial energy decay of type 1 t is obtained.

Aperçu de la thèse

Cette thèse est consacrée à l'étude de la stabilisation directe et indirecte de différents systèmes d'équations d'ondes avec un contrôle frontière de type fractionnaire ou un contrôle local viscoélastique de type Kelvin-Voight. Nous considérons, d'abords, la stabilisation de l'équation d'ondes multidimensionnel avec un contrôle frontière fractionnaire au sens de Caputo. Sous des conditions géométriques optimales, nous établissons un taux de décroissance polynomial de l'énergie de système. Ensuite, nous nous intéressons à l'étude de la stabilisation d'un système de deux équations d'ondes couplées via les termes de vitesses, dont une seulement est amortie avec contrôle frontière de type fractionnaire au sens de Caputo. Nous montrons différents résultats de stabilités dans le cas 1-d et N-d. Finalement, nous étudions la stabilité d'un système de deux équations d'ondes couplées avec un seul amortissement viscoélastique localement distribué de type Kelvin-Voight.

Cette thèse est divisée en cinq chapitres.

Chapitre 1. Dans ce chapitre, nous rappelons quelques définitions et théorèmes concernant la théorie de semi-groupe et l'analyse spectrale. Ainsi, nous présentons et discutons les conditions géométriques et les méthodes utilisées dans cette thèse pour obtenir notre résultats de la stabilité.

Chapitre 2. Ce chapitre est consacré à la stabilisation d'une équation d'onde sous l'action d'un amortissement de type fractionnaire au sens de Caputo. Soit Ω un ouvert borné non vide dans R d , d ≥ 2, ayant une frontière Γ de classe C 2 composée de deux morceaux : Γ 0 la partie encastrée et Γ 1 la partie où on applique un amortissement de type fractionnaire où ν = (ν 1 , ν 2 , . . . , ν N ) est le vecteur normal unitaire extérieur à Γ. On considère l'équation suivante : 

         u tt -∆u = 0 dans Ω × R + u = 0 sur Γ 0 × R + ∂u ∂ν = -γ∂ α,η t u sur Γ 1 × R + (0.0.
u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x) tels que x ∈ Ω.
Dans [START_REF] Mbodje | Wave energy decay under fractional derivative controls[END_REF], Mbodje a étudié la stabilisation du système (0.0.59) dans le cas monodimensionnel. D'abords, il a reformulé le système en utilisant la même méthode du (Mbodje and Montseny) qui est basée sur le fait que la relation entrée-sortie par une équation de diffusion qui réalise l'opérateur de dérivée fractionnaire, définie par le théorème suivant Théorème 0.0.29. Soit µ la fonction définie par

µ(ξ) = |ξ| 2α-1 2 , ξ ∈ R et α ∈]0, 1[, alors la relation entre l'entrée "U " et la sortie "O" du système suivant ϕ t (ξ, t) + |ξ| 2 + η ϕ(ξ, t) -U (t)µ(ξ) = 0, ξ ∈ R, η ≥ 0 et t ∈ R + 0 , ϕ(ξ, 0) = 0, O(t) = sin(απ) π +∞ -∞ µ(ξ)ϕ(ξ, t)dξ, est donnée par O(t) = 1 Γ(1 -α) t 0 e -η(t-τ ) (t -τ ) α dU dτ (τ )dτ.
Toutefois, en utilisant la principe de l'invariance de LaSalle, il a prouvé que son système est fortement stable. Puis, il a demontré que l'énergie de la solution du son système décroît polynomialement comme 1 t vers 0 pour des données initiales assez régulières. Dans le cas multidimensionnel, on a généralisé le travail du Mbodje et on a amélioré le taux de la décroissance énergétique polynomiale. Tout d'abord, on a reformulé le système (0.0.59) en utilisant le théorème suivant Théorème 0.0.30. Soit µ la fonction définie par

µ(ξ) = |ξ| 2α-d 2 , ξ ∈ R d et α ∈]0, 1[, alors la relation entre l'entrée "U " et la sortie "O" du système suivant ω t (ξ, t) + |ξ| 2 + η ω(ξ, t) -U (t)µ(ξ) = 0, ξ ∈ R d , η ≥ 0 et t ∈ R + 0 , ω(ξ, 0) = 0, O(t) = 2 sin(απ)Γ d 2 + 1 dπ Introduction est donnée par O(t) = 1 Γ(1 -α) t 0 e -η(t-τ ) (t -τ ) α dU dτ (τ )dτ.
En utilisant le théorème 0.0.30, le système (0.0.59) sera écrit sous la forme d'un modèle augmenté situé ci-dessous

u tt -∆u = 0, dans Ω × R + , (0.0.61) u = 0, sur Γ 0 × R + , (0.0.62) ∂ t ω(ξ, t) + (|ξ| 2 + η)ω(ξ, t) -µ(ξ)∂ t u(x, t) = 0, sur Γ 1 × R + , ξ ∈ R d , (0.0.63) ∂u ∂ν + γκ R d µ(ξ)ω(ξ, t)dξ = 0, sur Γ 1 × R + (0.0.64) où γ > 0, η ≥ 0 et κ = 2 sin(απ)Γ( d 2 +1) dπ d 2 +1
et le système (0.0.61)-(0.0.64) est considéré par les conditions initiales suivantes

u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), ω(ξ, 0) = 0, x ∈ Ω, ξ ∈ R d .
(0.0.65)

On définit l'espace de Hilbert

H = H 1 Γ 0 (Ω) × L 2 (Ω) × L 2 (R d ) muni du produit scaliare suivant U, Ũ = Ω ∇u∇ ū + v vdx + γκ R d ω ωdξ. où γ = γ|Γ 1 | et H 1 Γ 0 (Ω) est définit par H 1 Γ 0 (Ω) = {u ∈ H 1 (Ω); u | Γ 0 = 0}
L'énergie de la solution du système est définie par

E(t) = 1 2 (u, u t , ω) 2 H .
Pour une solution régulière, par un calcul direct on obtient 

E ′ (t) = -γκ
D(A) =      U = (u, v, ω) ⊤ ∈ H; ∆u ∈ L 2 (Ω), v ∈ H 1 Γ 0 (Ω), |ξ|ω ∈ L 2 (R d ), -(|ξ| 2 + η)ω + v| Γ 1 µ(ξ) ∈ L 2 (R d ), ∂u ∂ν | Γ 1 = -γκ R d µ(ξ)ω(ξ)dξ      (0.0.66) and A(u, v, ω) ⊤ = (v, ∆u, -(|ξ| 2 + η)ω + v| Γ 1 µ(ξ)) ⊤ On note v = u t et U 0 = (u 0 , v 0 , ω 0 ),
U (t) ∈ C 1 (R + , H) ∩ C 0 (R + , D(A)).
Puis on a étudié la stabilité forte du notre système, au sens que l'énergie converge vers zéro lorsque t tends vers l'infini, dont l'absence de la compacité de la résolvante de l'opérateur A et sans aucune condition géométrique sur le domaine Ω. Donc le principe de l'invariance de Lasalle [START_REF] Slemrod | Feedbacks stabilization of a linear system in a hilbert space with an a priori bounded control[END_REF] et la décomposition spectrale de Benchimol [START_REF] Benchimol | A note on weak stabilizability of contraction semigroups[END_REF] ne seront pas appliquées dans ce cas. Pour cela, en utilisant le critère général d'Arendt-Batty [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF], on montre que un C 0 -semigroupe de contractions e tA dans un espace de Banach est fortement stable, si Ce résultat est dû au fait qu'une branche des valeurs propres du l'opérateur A s'approche de l'axe imaginaire. Pour cela, on a trouvé qu'il existe k 0 ∈ N * et une suite (λ k ) |k|≥k 0 des valeurs propres simples de l'opérateur et qui satisfait le comportement asymptotique suivant

λ k = i k + 1 2 π + i γ sin π 2 (1 -α) π 1-α k 1-α - γ cos π 2 (1 -α) π 1-α k 1-α + O 1 k 2-α .
Alors une décroissance de type polynomiale est éspérée. Pour ce but, on considère le cas η > 0 et sous la condition (GCC) sur le bords, on utilise la méthode frequentielle [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF] (voir aussi [START_REF] Bátkai | Polynomial stability of operator semigroup[END_REF][START_REF] Batty | Non uniform stability for bounded semi-groups on banach spaces[END_REF][START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF]) combinée avec une méthode de multiplicateur et on utilise la décroissance exponentielle des équations d'ondes avec un amortissement standard sur Γ 1 :

       ϕ tt (x, t) -∆ϕ(x, t) = 0, x ∈ Ω, t > 0, ϕ(x, t) = 0, x ∈ Γ 0 , t > 0, ∂ ν ϕ(x, t) = -ϕ t (x, t), x ∈ Γ 1 , t > 0.
(0.0.68)

On définit l'espace auxilière H a = H 1 Γ 0 (Ω) × L 2 (Ω) et l'opérateur auxiliaire linéaire non-borné

A a définie par D(A a ) = Φ = (ϕ, ψ) ∈ H a : ∆ϕ ∈ L 2 (Ω); ψ ∈ H 1 Γ 0 (Ω); ∂ϕ ∂ν = -ψ on Γ 1 .
A a (ϕ, ψ) = (ψ, ∆ϕ) .

Et on introduit la condition suivante (H) : Le problème (0.0.68) est uniformément stable dans l'espace de l'énergie 

H a = H 1 Γ 0 (Ω) × L 2 (Ω).
= (u n , v n , ω n ) H = 1 (0.0.70) et λ ℓ n (iλ n -A) U n = (f n 1 , f n 2 , f n 3 ) → 0 in H. ( 0 
       u(0, t) = 0 dans ]0, +∞[, y(0, t) = y(1, t) = 0 dans ]0, +∞[, u x (1, t) = -γ∂ α,η t u(
u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x) où x ∈ Ω, (0.0.80) y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x) où x ∈ Ω, (0.0.81) ω(ξ, 0) = 0 où ξ ∈ R d . (0.0.82) et l'espace d'énergie H = H 1 L (0, 1) × L 2 (0, 1) × H 1 0 (0, 1) × L 2 (0, 1), muni du produit scalaire U, U = 1 0 u x ūx + v v + ay x ȳx + z z dx + γκ +∞ -∞
ω ωdξ, pour tout U = (u, v, y, z, ω) ⊤ ∈ H et U = (ũ, ṽ, ỹ, z, ω) ∈ H. Puis on définit l'opérateur lineaire non-borné A par 

D(A) =                    U = (u, v, y, z, ω) ⊤ ∈ H; u ∈ H 2 (]0, 1[) ∩ H 1 L (]0, 1[), y ∈ H 2 (]0, 1[) ∩ H 1 0 (]0, 1[), v ∈ H 1 L (]0, 1[), z ∈ H 1 0 (]0, 1[) , -(ξ 2 + η) ω + v (1) µ(ξ) ∈ L 2 (R) , u x (1) + γκ +∞ -∞ µ(ξ)ω(ξ)dξ = 0, |ξ|ω ∈ L 2 (R) .                    (0.0.83) et A           u v y z ω           =           v u xx -bz z ay xx + bv -(ξ 2 + η) ω + v(1)µ(ξ)           . ( 0 
> 0 et λ ∈ R) ou (η = 0 et λ ∈ R * ) alors R(I -λA) = H, et pour η = 0 et λ = 0, on a démontré que 0 / ∈ ρ(A).
Par conséquent, en utilisant le théorème de Banach férmé, on aura que si η > 0 alors σ(A) ∩ iR = ∅ et si η = 0 alors σ(A) ∩ iR = {0}. Puis, on va étuder le genre de cette stabilité. On a trouvé que si le paramètre de couplage b vérifie la condition (C), en utilisant une approche spectrale, la décroissance de l'énergie du système (0.0.74)-(0.0.82) n'est pas uniforme. De plus, si b / ∈ πZ, ∃k 0 ∈ N * suffisamment large tel que

σ(A) ⊃ σ 0 ∪ σ 1 où σ 0 = {λ k } k∈J , σ 1 = {λ k } |k|≥k 0 , σ 0 ∩ σ 1 = ∅.
De plus, J est un enemble fini et

λ k = ikπ 2 + c 1 k 1-α + ic 2 k 1-α + o 1 k 1-α pour c 1 = γ(-1) k cos(b) -(-1) k cos π 2 (1 -α) 2 α k 1-α et c 2 = γ(-1) k cos(b) -(-1) k sin π 2 (1 -α) 2 α k 1-α .
De plus, pour le cas où a = 1, on admet la même démarche que le cas où a = 1, on aura 

λ m = i m + 1 2 π + o(1), et\ou λ n = inπ √ a + o(1
E(t) ≤ C 1 t ℓ(α) U 0 2 D(A) , ∀t > 0, où ℓ(α) =    1 3-α si b ∈ πZ, 1 1-α si b / ∈ πZ. Théorème 0.0.40. Supposons que η > 0, a = 1 et b satisfait la condition (C). Si (a ∈ Q et b suffisamment petit) ou √ a ∈ Q, donc pour toute U 0 ∈ D(A) il existe C > 0 indépendante de
U 0 tel que l'energie de la solution forte du système (0.0.85) admet la décroisance polynomiale suivante

E(t) ≤ C 2 t 1 3-α U 0 2 D(A) , ∀t > 0.
Chapitre 4. Dans ce chapitre, on a généralizé les travaux du chapite 2. On a étudié la stabilisation d'un système des équations d'ondes, multidimensionel, couplées fortement sous l'action d'un amortissement au bords de type fractionnaire au sens de Caputo appliqué à une seule équation considéré. On considère un ouvert, borné Ω dan

R d tel que d ≥ 2 et Γ = ∂Ω de classe C 2 qui vérifie Γ = Γ 0 ∪ Γ 1 et Γ 0 ∩ Γ 1 = ∅ et on considère le système suivant :    u tt -∆u + by t = 0 sur Ω×]0, +∞[, y tt -a∆y -bu t = 0 sur Ω×]0, +∞[ (0.0.86) où (x, t) ∈ Ω×]0, +∞[, a > 0 et b ∈ R * .
Ce système sera complété par les conditions initiales suivantes . Finalement, le système (0.0.88)-(0.0.93) est considéré avec les conditions initiales

         u = 0 sur Γ 0 ×]0,
u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x) où x ∈ Ω, (0.0.94) y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x) où x ∈ Ω, (0.0.95) ω(ξ, 0) = 0 où ξ ∈ R d . (0.0.96)
On définit l'espace de Hilbert

H = H 1 Γ 0 (Ω) × L 2 (Ω) × H 1 0 (Ω) × L 2 (Ω) × L 2 (R d ).
muni du produit scalaire suivant

U, Ũ = Ω ∇u∇ ū + v v + z z + a∇y∇ ȳ dx + γκ R d ω ωdξ. où γ = γ|Γ 1 | et H 1 Γ 0 (Ω) est définie par H 1 Γ 0 (Ω) = {u ∈ H 1 (Ω); u = 0 sur Γ 0 }
L'énergie de la solution du système est définit par

E(t) = 1 2 (u, u t , y, y t , ω) 2 H .
Pour une solution régulière et par un calcul direct on obtient

E ′ (t) = -γκ
Introduction de la variable t. Maintenant, on définit l'opérateur linéaire non borné A par 

D(A) =              U = (u, v, y, z, ω) ⊤ ∈ H; ∆u ∈ L 2 (Ω), y ∈ H 2 (Ω) ∩ H 1 0 (Ω), v ∈ H 1 Γ 0 (Ω), z ∈ H 1 0 (Ω), -(|ξ| 2 + η)ω + v| Γ 1 µ(ξ) ∈ L 2 (R d ), ∂u ∂ν + γκ R d µ(ξ)ω(ξ)dξ = 0 sur Γ 1 , |ξ|ω ∈ L 2 (R d )              (0.0.97) et A           u v y z ω           =           v ∆u -bz z a∆y + bv -(|ξ| 2 + η)ω + v| Γ 1 µ(ξ).           On note v = u t , z = y t et U 0 = (u 0 , v 0 , y 0 , z 0 , ω 0 ),
E(t, U ) ≤ C 1 t 1 1-α U 0 2 D(A) .
Chapitre 5 : Dans ce chapitre, on considère un système des équations d'ondes couplées sous l'action d'un seul amortissement viscoélastique autour de Γ, définit par : 

Introduction avec les conditions initiales suivantes u(•, 0) = u 0 (•) , y(•, 0) = y 0 (•) , u t (•, 0) = u 1 (•) , y t (•, 0) = y 1 (•) dans Ω, (0.0.100) et les conditions aux bords suivantes u (x, t) = y (x, t) = 0 surΓ × R + . (0.0.101) Les fonctions ρ 1 , ρ 2 , a 1 , a 2 , b ∈ L ∞ (Ω) telles que ρ 1 (x) ≥ ρ 1 , ρ 2 (x) ≥ ρ 2 , a 1 (x) ≥ a 1 ,
E(t) = 1 2 Ω ρ 1 (x)|u t | 2 + ρ 2 (x)|y t | 2 + a 1 (x)|∇u| 2 + a 2 (x)
       ρ 1 (x) ≥ ρ 1 > 0, ρ 2 (x) ≥ ρ 2 > 0, a 1 (x) ≥ a 1 > 0, a 2 (x) ≥ a 2 > 0 pour tout x ∈ Ω, b(x) ≥ b 0 > 0 pour tout x ∈ O γ .
dans ce cas. Par conséquent, en utilisant un critère général d'Arendt-Batty [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF] combiné avec un résultat de continuation basée sur les estimations de Carelman voir [START_REF] Hormander | Linear partial differential operators[END_REF] 

λ k = i a ρ 2 µ k - α 2 2bρ 2 µ 2 k + o 1 µ 3 k , (0.0.106) où µ k est la valeure propre du -∆ , i.e.    -∆ϕ k = µ 2 k ϕ k dans Ω, ϕ k = 0 sur Γ.
Introduction Donc, une stabilitée polynomiale est éspérée. Maintenant, on suppose que

a 1 , a 2 , ρ 1 , ρ 2 , b ∈ C 1,1 (Ω). (C1)
Ainsi, on suppose les conditions supplémentaires suivantes. Il existe une fonction q ∈ C 1 (Ω, R N ) et 0 < α < β < γ, tels que

∂ j q k = ∂ k q j , div(a 1 a 2 ρ 2 q), div(a 1 a 2 ρ 1 q) ∈ C 0,1 (Ω β ) et q = 0 sur O α , (C2)
Il existe une constante σ 1 > 0, telle que

2a 2 ∂ j (a 1k q k ) + a 1 (q k ∂ j a 2 + q j ∂ k a 2 ) + a 1 a 2 ρ 2 q∇ρ 2 -q∇a 2 I ≥ σ 1 I, ∀x ∈ Ω β . (C3)
Il existe une constante σ 2 , telle que

2a 1 ∂ j (a 2k q k ) + a 2 (q k ∂ j a 1 + q j ∂ k a 1 ) + a 2 a 1 ρ 1 q∇ρ 1 -q∇a 1 I ≥ σ 2 I, ∀x ∈ Ω β . (C4)
Il existe une constante M > 0, tel que pour tout v ∈ H 1 0 (Ω), on a

|(q • ∇v) ∇b -(q • ∇b)∇v| ≤ M √ b |∇v|, ∀x ∈ Ω β . ( C5 
)
Théorème 0.0.51. On suppose que les conditions (H), (C1) -(C6) soit vérifiées. Donc, pour toute donnée initial U 0 ∈ D(A), il existe une constante C > 0 indépendante de U 0 , telle que l'énergie de la solution forte U de (0.0.105) satisfaite l'estimation suivante :

E(t, U ) ≤ C 1 t U 0 2 D(A) , ∀t > 0. (0.0.107)
En particulier, pour U 0 ∈ H, l'énergie E(t, U ) converge vers zéro lorsque t tends vers l'infini.

Dans ce but, on va appliquer la méthode fréquentielle, voir le théorème 2.4 de [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF] combinée avec une méthode de multiplicateur. Donc, premièrement, on démontre que

U H = o(1) sur O γ ,
Puis, on prouve que

U H = o(1) sur Ω β .

Donc, on obtient

U H = o(1) sur Ω.
Finalement, en utilisant (0.0.106) et (0.0.107), on obtient la décroissance énergetique polyno-miale optimale de la solution forte de (0.0.105).
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PRELIMINARIES

As the analysis done in this P.H.D thesis local on the semigroup and spectral analysis theories, we recall, in this chapter, some basic definitions and theorems which will be used in the following chapters. we refer to [START_REF] Batty | Non uniform stability for bounded semi-groups on banach spaces[END_REF], [START_REF] Batty | Non-uniform stability for bounded semi-groups on Banach spaces[END_REF], [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF], [START_REF] Christensen | An introduction to frames and Riesz bases[END_REF], [START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF], [START_REF] Diagana | Almost automorphic type and almost periodic type functions in abstract spaces[END_REF], [START_REF] Gohberg | Basic classes of linear operators[END_REF], [START_REF] Gohberg | Introduction to the theory of linear nonselfadjoint operators[END_REF], [START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical system in hilbert space[END_REF], [START_REF] Istruactescu | Inner product structures[END_REF], [START_REF] Kato | Perturbation theory for linear operators[END_REF], [START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF], [START_REF] Liu | Semigroups associated with dissipative systems[END_REF], [START_REF] Luo | Stability and stabilization of infinite dimensional systems with applications[END_REF], [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF], [START_REF] Prüss | On the spectrum of c 0 -semigroup[END_REF], [START_REF] Riewe | Nonconservative lagrangian and hamilton mechanics[END_REF], [START_REF] Riewe | Mechanics with fractional derivatives[END_REF].

Bounded and Unbounded linear operators

We start this chapter by give some well known results abound bounded and undounded operators. We are not trying to give a complete development, but rather review the basic definitions and theorems, mostly without proof.

Let (E, • E ) and (F, • F ) be two Banach spaces over C, and H will always denote a Hilbert space equipped with the scalar product •, • H and the corresponding norm • H .

A linear operator T : E -→ F is a transformation which maps linearly E in F , that is

T (αu + βv) = αT (u) + βT (v), ∀ u, v ∈ E and α, β ∈ C. Definition 1.1.1. A linear operator T : E → F is said to be bounded if there exists C ≥ 0 such that T u F ≤ C u E ∀ u ∈ E.
The set of all bounded linear operators from E into F is denoted by L(E, F ). Moreover, the set of all bounded linear operators from E into E is denoted by L(E). Definition 1.1.2. A bounded operator T ∈ L(E, F ) is said to be compact if for each sequence (x n ) n∈N ∈ E with x n E = 1 for each n ∈ N, the sequence (T x n ) n∈N has a subsequence which converges in F .

The set of all compact operators from E into F is denoted by K(E, F ). For simplicity one writes K(E) = K(E, E).

Definition 1.1.3. Let T ∈ L(E, F ), we define • Range of T by R (T ) = {T u : u ∈ E} ⊂ F. • Kernel of T by ker (T ) = {u ∈ E : T u = 0} ⊂ E. Theorem 1.1.4. (Fredholm alternative) If T ∈ K(E), then • ker (I -T ) is finite dimension, (I is the identity operator on E) . • R (I -T ) is closed. • ker (I -T ) = 0 ⇔ R (I -T ) = E. Definition 1.1.5. An unbounded linear operator T from E into F is a pair (T, D (T ))
, consisting of a subspace D (T ) ⊂ E (called the domain of T ) and a linear transformation.

T : D (T ) ⊂ E -→ F.
In the case when E = F then we say (T, D (T )) is an unbounded linear operator on E. If

D (T ) = E then T ∈ L(E, F ).
Definition 1.1.6. Let T : D (T ) ⊂ E -→ F be an unbounded linear operator.

• The range of T is defined by

R (T ) = {T u : u ∈ D (T )} ⊂ F.
• The Kernel of T is defined by

ker (T ) = {u ∈ D (T ) : T u = 0} ⊂ E.
• The graph of T is defined by an unbounded linear operator T can be characterize as following

G (T ) = {(u, T u) : u ∈ D (T )} ⊂ E × F. Definition 1.1.7. A map T is said to be closed if G (T ) is closed in E × F .
if u n ∈ D (T ) such that u n → u in E and T u n → v in F, then u ∈ D (T ) and T u = v. Definition 1.1.8. Let T : D (T ) ⊂ E -→ F be a closed unbounded linear operator.
• The resolvent set of T is defined by

ρ (T ) = {λ ∈ C : λI -T is bijective from D (T ) onto F } .
• The resolvent of T is defined by

R (λ, T ) = (λI -T ) -1 : λ ∈ ρ (T ) .
• The spectrum set of T is the complement of the resolvent set in C , denoted by

σ (T ) = C/ρ (T ) .
Definition 1.1.9. Let T : D (T ) ⊂ E -→ F be a closed unbounded linear operator. we can split the spectrum σ(T ) of T into three disjoint sets, given by

• The ponctuel spectrum of T is define by

σ p (T ) = {λ ∈ C : ker(λI -T ) = {0}}
in this case λ is called an eigenvalue of T .

• The continuous spectrum of T is define by

σ c (T ) = λ ∈ C ker(λI -T ) = 0, R(λI -T ) = F and (λI -T ) -1 is not bounded .
• The residual spectrum of T is define by 

σ r (T ) = {λ ∈ C : ker(λI -T ) = 0 and R(λI -T ) is not dense in F } .

Semigroups, Existence and uniqueness of solution

In this section, we start by introducing some basic concepts concerning the semigroups. The vast majority of the evolution equations can be reduced to the form

   U t = AU, t > 0, U (0) = U 0 , (1.2.1)
where A is the infinitesimal generator of a C 0 -semigroup S (t) over a Hilbert space H. Lets start by basic definitions and theorems. Let (X, • X ) be a Banach space, and H be a Hilbert space equipped with the inner product •, • H and the induced norm

• H . Definition 1.2.1. A family (S (t)) t≥0 of bounded linear operators in X is called a strong conti- nous semigroup (in short, a C 0 -semigroup) if
• S (0) = I (I is the identity operator on X).

• S (t + s) = S (t) S (s) , ∀ t, s ≥ 0.

• For each u ∈ H, S (t) u is continous in t on [0, +∞[.

Sometimes we also denote S (t) by e tA . Definition 1.2.2. For a semigroup (S (t)) t≥0 , we define an linear operator A with domain D (A) consisting of points u such that the limit

Au := lim t→0 + S (t) u -u t , u ∈ D (A)
exists. Then A is called the infinitesimal generator of the semigroup (S (t)) t≥0 .

Proposition 1.2.3. Let (S (t)) t≥0 be a C 0 -semigroup in X. Then there exist a constant M ≥ 1 and ω ≥ 0 such that

S (t) L(X) ≤ M e ωt , ∀t ≥ 0.
If ω = 0 then the corresponding semigroup is uniformly bounded. Moreover, if M = 1 then (S (t)) t≥0 is said to be a C 0 -semigroup of contractions.

Definition 1.2.4. An unbounded linear operator

(A, D (A)) on H, is said to be dissipative if ℜ Au, u H ≤ 0, ∀ u ∈ D (A) .

Definition 1.2.5. An unbounded linear operator (A, D (A)) on X, is said to be m-dissipative if

• A is a dissipative operator.

• ∃ λ 0 > 0 such that R (λ 0 I -A) = X. Theorem 1.2.6. Let A be a m-dissipative operator, then • R (λI -A) = X, ∀ λ > 0. • ]0, ∞[ ⊆ ρ (A) . Theorem 1.2.7. (Hille-Yosida) An unbounded linear operator (A, D (A)) on X, is the infi- nitesimal generator of a C 0 -semigroup of contractions (S (t)) t≥0 if and only if • A is closed and D (A) = X.
• The resolvent set ρ (A) of A contains R + , and for all λ > 0,

(λI -A) -1 L(X) ≤ λ -1 .

Theorem 1.2.8. (Lummer-Phillips) Let (A, D (A)) be an unbounded linear operator on X, with dense domain D (A) in X. A is the infinitesimal generator of a C 0 -semigroup of contractions if and only if it is a m-dissipative operator.

Theorem 1.2.9. Let (A, D (A)) be an unbounded linear operator on X. If A is dissipative with R (I -A) = X, and X is reflexive then D (A) = X.

Corollary 1.2.10. Let (A, D (A)) be an unbounded linear operator on H. A is the infinitesimal generator of a C 0 -semigroup of contractions if and only if

A is a m-dissipative operator.

Theorem 1.2.11. Let A be a linear operator with dense domain D (A) in a Hilbert space H.

If A is dissipative and 0 ∈ ρ (A), then A is the infinitesimal generator of a C 0 -semigroup of contractions on H. Theorem 1.2.12. (Hille-Yosida) Let (A, D (A)) be an unbounded linear operator on H. Assume that A is the infinitesimal generator of a C 0 -semigroup of contractions (S (t)) t≥0 .

1. For U 0 ∈ D (A), the problem (1.2.1) admits a unique strong solution

U (t) = S(t)U 0 ∈ C 0 R + , D (A) ∩ C 1 R + , H .
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U (t) ∈ C 0 R + , H .

Stability of semigroup

In this section we start by itroducing some definion about strong, exponential and polynomial stability of a C 0 -semigroup. Then we collect some results about the stability of C 0 -semigroup.

Let (X, • X ) be a Banach space, and H be a Hilbert space equipped with the inner product

•, • H and the induced norm • H .

Definition 1.3.1. Assume that A is the generator of a strongly continuous semigroup of contractions (S (t)) t≥0 on X. We say that the C 0 -semigroup (S (t)) t≥0 is

• Strongly stable if lim t→+∞ S (t) u X = 0, ∀ u ∈ X. • Uniformly stable if lim t→+∞ S (t) L(X) = 0.
• Exponentially stable if there exist two positive constants M and ǫ such that

S (t) u X ≤ M e -ǫt u X , ∀ t > 0, ∀ u ∈ X.
• Polynomially stable if there exist two positive constants C and α such that

S (t) u X ≤ Ct -α u X , ∀ t > 0, ∀ u ∈ X.
Proposition 1.3.2. Assume that A is the generator of a strongly continuous semigroup of contractions (S (t)) t≥0 on X. The following statements are equivalent

• (S (t)) t≥0 is uniformly stable.

• (S (t)) t≥0 is exponentially stable.

First, we look for the necessary conditions of strong stability of a C 0 -semigroup. The result was obtained by Arendt and Batty.

Theorem 1.3.3. (Arendt and Batty)

Assume that A is the generator of a strongly continuous semigroup of contractions (S (t)) t≥0 on a reflexive Banach space X. If

• A has no pure imaginary eigenvalues.

• σ (A) ∩ iR is countable.
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Then S (t) is strongly stable.

Remark 1.3.4. If the resolvent (I -T ) -1 of T is compact, then σ (T ) = σ p (T ). Thus, the state of Theorem 1.3.3 lessens to σ p (A) ∩ iR = ∅.
Next, when the C 0 -semigroup is strongly stabe, we look for the necessary and suffient conditions of exponential stability of a C 0 -semigroup. In fact, exponential stability results are obtained using different methods like : multipliers method, frequency domain approach, Riesz basis approach, Fourier analysis or a combination of them . In this thesis we will review only two methods. The first method is a frequency domain approach method was obtained by Huang-Pruss.

Theorem 1.3.5. (Huang-Pruss)Assume that A is the generator of a strongly continuous semigroup of contractions (S (t)) t≥0 on H. S (t) is uniformly stable if and only if

• iR ⊂ ρ (A) . • sup β∈R (iβI -A) -1 L(H) < +∞.
The second one, is a classical method based on the spectrum analysis of the operator A.

Definition 1.3.6. Let (A, D (A)) be an unbounded linear operator on H. Assume that A is the infinitesimal generator of a C 0 -semigroup of contractions (S (t)) t≥0 .

• The growth bound of A is define by

ω 0 (A) = inf ω ∈ R : ∃ N ω ∈ R such that ∀ t ≥ 0 we have S (t) ≤ N ω e ωt .
• The spectral bound of A is define by

s (A) = sup {ℜ (λ) : λ ∈ σ (A)} . Proposition 1.3.7. Let (A, D (A)
) be an unbounded linear operator on H. Assume that A is the infinitesimal generator of a C 0 -semigroup of contractions (S (t)) t≥0 . Then (S (t)) t≥0 is uniformly exponentially stable if and only if its growth bound ω 0 (A) < 0.

Proposition 1.3.8. Let (A, D (A)) be an unbounded linear operator on H. Assume that A is the infinitesimal generator of a C 0 -semigroup of contractions (S (t)) t≥0 . Then, we have

s (A) ≤ ω 0 (A) .
Corollary 1.3.9. Let (A, D(A)) be an unbounded linear-operator on H. Assume that s (A) = 0, then (S(t)) t≥0 is not uniformly exponentially stable.

In the case when the C 0 -semigroup is not exponentialy stable we look for a polynomial one. In general, polynomial stability results also are obtained using different methods like : multipliers method, frequency domain approach, Riesz basis approach, Fourier analysis or a combination of them . In this thesis we will review only one method. The first method is a frequency domain approach method was obtained by Batty, A. 

lim |λ|→+∞ sup 1 λ ℓ (λI -A) -1 L(H) < +∞. 2. S (t) U 0 H ≤ C t ℓ -1 U 0 D(A) ∀ t > 0, U 0 ∈ D (A), for some C > 0.

Fractional Derivative Control

In this part, we introduce the necessary elements for the good understanding of this manuscript. It includes a brief reminder of the basic elements of the theory of fractional computation as well as some examples of applications of this theory in this scientific field. The concept of fractional computation is a generalization of ordinary derivation and integration to an arbitrary order. Derivatives of non-integer order are now widely applied in many domains, for example in economics, electronics, mechanics, biology, probability and viscoelasticity. A particular interest for fractional derivation is related to the mechanical modeling of gums and rubbers. In short, all kinds of materials that preserve the memory of previous deformations in particular viscoelastic. Indeed, the fractional derivation is introduced naturally. There exists a many mathematical definitions of fractional order integration and derivation. These definitions do not always lead to identical results but are equivalent for a wide large of functions. We introduce the fractional integration operator as well as the two most definitions of fractional derivatives, used, namely that Riemann-Liouville and Caputo, by giving the most important properties of the notions. Fractional systems appear in different fields of research. However, the progressive interest in their applications in the basic and applied sciences. It can be noted that for most of the domains presented ( automatic, physics, mechanics of continuous media). The fractional operators are used to take into account memory effects. We can mention the works that reroute various applications of fractional computation. In physics, on of the most remarkable applications of fractional computation in physics was in the context of classical mechanics. Riewe, has shown that the Lagrangien of the motion of temporal derivatives of fractional orders leads to an equation of motion with friction forces and nonconservative are essential in macroscopic variational processing such as friction. This result are remarkable because friction forces and non conservative forces are essential in the usual macroscopic variational processing and therefore in the most advances methods classical mechanics. Riewe, has generalized the usual Lagrangian variation which depends on the fractional derivatives in order to deal with the usual non-conservative forces. On the another hand, several approaches have been developed to generalize the principle of least action and the Euler-Lagrange equation to the case of fractional derivative. The definition of the fractional order derivation is based on that of a fractional order integration, a fractional order derivation takes on a global character in contrast to an integral derivation. It turns out that the derivative of a fractional order of a function requires the knowledge of f (t) over the entire interval ]a, b[, where in the whole case only the local knowledge of f around t is necessary. This property allows to interpret fractional order systems as long memory systems, the whole systems being then interpretable as systems with short memory. Now, we give the definition of the fractional derivatives in the sense of Riemann-Liouville as well as some essential properties. Definition 1.4.1. The fractional integral of order α > 0, in sense Riemann-Liouville is given by

I α a f (t) = 1 Γ(α) t a (t -s) α-1 f (s)ds, t > a. Definition 1.4.2. The fractional derivative of order α > 0, in sens of Riemann-Liouville of a function f defined on the interval [a, b] is given by D α RL,a (t) = D n I n-α a f (t) = 1 Γ(n -α) d n dt n t a (t -s) n-α-1 f (s)ds, n = [α] + 1, t > a. (1.4.1)
In particular, if α = 0, then

D 0 RL,a f (t) = I 0 a f (t) = f (t). If α = n ∈ N, then D n RL,a f (t) = f (n) (t). Moreover, if 0 < α < 1, then n = 1, then D α RL,a f (t) = 1 Γ(1 -α) d dt t a (t -s) -α f (s)ds, t > a. Example 1.4.3. Let α > 0, γ > -1 and f (t) = (t -a) γ , then I α a f (t) = Γ(γ + 1) Γ(γ + α + 1) (t -a) γ+α , D α RL,a f (t) = Γ(γ) Γ(γ -α + 1) (t -a) γ-α .
In particular, if γ = 0 and α > 0, then

D α RL,a (C) = C (t-a) -α Γ(1-α) .
The derivatives of Riemann-Liouville have certain disadvantages when attempting to model real world phenomena. The problems studied require a definition of the fractional derivatives allowing the use of the physically interpretable initial conditions including y(0), y ′ (0), etc. There shortcomings led to an alternative definition of fractional derivatives that satisfies these demands in the last sixties. It was introduced by Caputo. In fact, Caputo and Minardi used this definition in their work on viscoelasticity. Now, we give the definition of the fractional derivatives in the sense of Caputo as well as some essential properties. 

D α C,a f (t) = D α RL,a f (t) - n-1 k=0 f (k) (a) k! (t -a) k , (1.4.2)
where

n =    [α] + 1 if α / ∈ N, α if α ∈ N * .
In particular, where 0 < α < 1, the relation (1.4.2) take the form

D α C,a f (t) = D α C,a ([f (t) -f (a)]) = I 1-α a f ′ (t) = 1 Γ(1 -α) t a (t -a) -α f ′ (s)ds. If α ∈ N, then f (n) (t) and D α C,a (t) coincides i.e. D α C,a f (t) = f (n) (t). Example 1.4.5. Let α > 0 and f (t) = (t -a) γ where γ > -1. Then D α Ca f (t) = Γ(γ + 1) Γ(γ -α + 1) (t -a) γ-α .
In particular, if γ = 0 and α > 0, then D α Ca C = 0.

Geometric Condition

In this section, we present two different types on the geometric conditions.
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x 0 ∈ R d and a positive constant m 0 > 0 such that m • ν ≤ 0 on Γ 0 and m • ν ≥ m 0 on Γ 1 , with m(x) = x -x 0 , for all x ∈ R d .
We recall the Geometric Control condition GCC introduced by Bardos, Lebeau and Rauch [START_REF] Bardos | Sharp sufficient conditions for the observation, control and stabilisation of waves from the boundary[END_REF] :

Definition 1.5.2. We say that Γ satisfies the geometric condition named GCC, if every ray of geometrical optics, starting at any point x ∈ Ω at time t = 0, hits Γ 1 in finite time T .

Remark 1.5.3. In [START_REF] Bardos | Sharp sufficient conditions for the observation, control and stabilisation of waves from the boundary[END_REF], Bardos et 

al. proved that (H) holds if Γ is smooth (of class C ∞ ), Γ 0 ∩ Γ 1 =
∅ and the GCC condition. For less regular domains, namely of class C 2 , (H) holds if the vector field assumptions described in [START_REF] Lagnese | Decay of solutions of wave equations in a bounded region with boundary dissipation[END_REF] (see (i),(ii),(iii) of Theorem 1 in [START_REF] Lagnese | Decay of solutions of wave equations in a bounded region with boundary dissipation[END_REF]) hold. Moreover, in Theorem 1.2 of [START_REF] Lasiecka | Uniform stabilization of the wave equation with dirichlet or neumann feedback control without geometrical conditions[END_REF] the authors prove that (H) holds for smooth domains under weaker geometric conditions than in [START_REF] Lagnese | Decay of solutions of wave equations in a bounded region with boundary dissipation[END_REF] (without (ii) of Theorem 1). Finally, it is easy to see that the multiplier control condition MCC implies that the vector field assumptions described in [START_REF] Lagnese | Decay of solutions of wave equations in a bounded region with boundary dissipation[END_REF] are satisfied and therefore the condition (H) holds if MCC holds.

Now, we present a models satisfies and doesn't satisfy (GCC) and (MGC) conditions. •Models does not satisfies (GCC) :

• Models satisfy (GCC) but does not satisfy (MGC) condition 

µ(ξ) = |ξ| 2α-d 2 , ξ ∈ R d and 0 < α < 1.
(1.6.1)

The relation between the "imput" U and the "output" O of the following system

∂ t ω(ξ, t) + |ξ| 2 + η ω(ξ, t) -U (t)µ(ξ) = 0, ξ ∈ R d , t ∈ R + and η ≥ 0, (1.6.2) ω(ξ, 0) = 0, (1.6.3) O(t) = 2 sin(απ)Γ d 2 + 1 dπ d 2 +1 R d µ(ξ)ω(ξ, t)dξ (1.6.4)
is given by

O = I 1-α,η U = D α,η U.
(1.6.5)

Proof:

Step 1. Take η = 0, the from equation (1.6.2) and (1.6.3), we have

ω(ξ, t) = t 0 µ(ξ)e -|ξ| 2 (t-τ ) U (τ )dτ. (1.6.6) 
Then from equations (1.6.4) and (1.6.6), we get

O(t) = δ R d |ξ| 2α-d t 0 e -|ξ| 2 (t-τ ) U (τ )dτ dξ. (1.6.7) where δ = 2 sin(απ)Γ d 2 + 1 dπ d 2 +1
. Next, using the spherical coordinates defined by,

                               ξ 1 = ρ sin(φ 1 ) sin(φ 2 ) • • • sin(φ d-3 ) sin(φ d-2 ) sin(φ d-1 ), ξ 2 = ρ sin(φ 1 ) sin(φ 2 ) • • • sin(φ d-3 ) sin(φ d-2 ) cos(φ d-1 ), ξ 3 = ρ sin(φ 1 ) sin(φ 2 ) • • • sin(φ d-3 ) cos(φ d-2 ), ξ 4 = ρ sin(φ 1 ) sin(φ 2 ) • • • cos(φ d-3 ), . . . ξ d-1 = ρ sin(φ 1 ) cos(φ 2 ), ξ d = ρ cos(φ 1 ).
(1.6.8)

where,

ρ = |ξ| = d i=1 |ξ i | 2 , φ j ∈ [0, π] if 1 ≤ j ≤ d -2 and φ d-1 ∈ [0, 2π]. The jacobian J is
Mohammad AKIL Page 58 of 181 mohamadakil1@hotmail.com

Chapter 1. Preliminaries defined by

J = ρ d-1 d-2 j=1 sin d-1-j (φ j ).
(1.6.9)

Since the integrating is a function which depends only on |ξ| = ρ, thus we can integrate on all the angles and the calculation reduces that of a simple integral on the positive real axis. Then, from equations (1.6.7)-(1.6.9) we get

O(t) = δ +∞ 0 ρ 2α-1 d-2 j=1 π 0 sin d-1-j (φ j )dφ j 2π 0 dφ d-1 t 0 e -ρ 2 (t-τ ) U (τ )dτ dρ. (1.6.10)
By induction, it easy to see that 

d-2 j=1 π 0 sin d-1-j (φ j )dφ j 2π 0 dφ d-1 = dπ d 2 Γ d 2 + 1 . ( 1 
O(t) = sin(απ) π t 0 2 +∞ 0 ρ 2α-1 e -ρ 2 (t-τ ) dρ U (τ )dτ.
(1.6.12) Thus,

O(t) = sin(απ) π t 0 (t -τ ) -α Γ(α) U (τ )dτ. (1.6.13) 
Using the fact that sin(απ)

π = 1 Γ(α)Γ(1 -α)
in equation, we obtain

O(t) = t 0 (t -τ ) -α Γ(1 -α) U (τ )dτ. (1.6.14)
It follows that, from equation (1.6.14) we have

O = I 1-α U.
(1.6.15)

Step 2. By simply effecting the following change of function

ω(ξ, t) := e -ηt ϕ(ξ, t)
in equations (1.6.2) and (1.6.4), we directly obtain 

∂ t ω(ξ, t) + |ξ| 2 + η ω(ξ, t) -U (t)µ(ξ) = 0, ξ ∈ R N , t ∈ R + and η ≥ 0, (1.6.16) ω(ξ, 0) = 0, ( 1 
O(t) = e -ηt t 0 (t -τ ) -α Γ(1 -α) e ητ U (τ )dτ.
The proof has been completed.

Lemma 1.6.2. For all λ ∈ R and η > 0, we have

A 1 = R d |ξ| 2α-d |λ| + η + |ξ| 2 dξ = c (|λ| + η) α-1 and A 3 = R d |ξ| 2α-d (|λ| + η + |ξ| 2 ) 2 1 2 = c (|λ| + η) α 2 -1
where c, c are two positive constants given by

c = dπ d 2 +1
2Γ d 2 + 1 sin(απ)

and c =   dπ d 2 2Γ d 2 + 1 +∞ 1 (y -1) α y 2 dy   1 2
.

(1.6.19)

Proof:

Calculation of A 1 : Using the hyper-spherical coordinates in A 1 , we get

A 1 = +∞ 0 ρ 2α-1 |λ| + η + ρ 2 d-2 j=1 π 0 sin d-1-j (φ j )dφ j 2π 0 dφ d-1 dρ.
(1.6.20)

Using equation (1.6.11) in equation (1.6.20), we get

A 1 = dπ d 2 Γ d 2 + 1 +∞ 0 ρ 2α-1 |λ| + η + ρ 2 dρ.
(1.6.21)

Let x = ρ 2 in equation (1.6.21), we obtain

A 1 = dπ d 2 2Γ d 2 + 1 +∞ 0 x α-1 |λ| + η + x dx. (1.6.22) Let y = x |λ| + η + 1 in equation (1.6.

22), we get

A 1 = dπ d 2 (|λ| + η) α-1 2Γ d 2 + 1 +∞ 1 (y -1) α-1 y dy.
(1.6.23)

Let z = 1 y in equation (1.6.23), we get

A 1 = dπ d 2 (|λ| + η) α-1 2Γ d 2 + 1 1 0 z -α (1 -z) α-1 dz. (1.6.24)
Then from equation (1.6.24), we get

A 1 = dπ d 2 (|λ| + η) α-1 2Γ d 2 + 1 B(1 -α, α) = dπ d 2 (|λ| + η) α-1 2Γ d 2 + 1 Γ(1 -α)Γ(α). (1.6.25) Using the fact that Γ(1 -α)Γ(α) = π sin(απ)
in equation (1.6.25), we get

A 1 = c (|λ| + η) α-1 , (1.6.26)
where c is defined in (1.6.19).

Calculation of A 3 :

Using the hyper-spherical coordinates and the same arguments of A 1 , we get

A 2 3 = dπ d 2 Γ d 2 + 1 +∞ 0 ρ 2α-1 (|λ| + η + ρ 2 ) 2 dρ.
(1.6.27)

Let y = x |λ| + η + 1 in equation (1.6.27), we get

A 2 3 = dπ d 2 (|λ| + η) α-2 2Γ d 2 + 1 +∞ 1 (y -1) α y 2 dy.
(1.6.28)

Its clear that +∞ 1 (y -1) α-1 y 2 dy < +∞ for α ∈]0, 1[, then we get A 3 = c (|λ| + η) α 2 -1 ,
where c is defined in (1.6.19)

Lemma 1.6.3. If λ ∈ D = {λ ∈ C; ℜ(λ) + η > 0} ∪ {λ ∈ C; ℑ(λ) = 0}, then +∞ -∞ µ 2 (ξ) λ + η + ξ 2 dξ = π sin(απ) (λ + η) α-1 . Proof: Let us set f λ (ξ) = µ 2 (ξ) λ + η + ξ 2 .
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We have

|f λ (ξ)| ≤                µ 2 (ξ) ℜ(λ) + η + |ξ| 2 or µ 2 (ξ) |ℑ(λ)| + η + |ξ| 2
Then the function f λ is integrable. Moreover,

|f λ (ξ)| ≤          µ 2 (ξ) η 0 + η + |ξ| 2 for all ℜ(λ) ≥ η 0 > -η. µ 2 (ξ) η 1 + |ξ| 2 for all |ℑ(λ)| ≥ η 1 > 0.
Them from Theorem 1.16.1 in [START_REF]Fonctions Holomorphes-Equation diffé[END_REF] , the function

f λ : D → C is holomorphe. For a real λ > -η, we have +∞ -∞ µ 2 (ξ) λ + η + ξ 2 dξ = +∞ 0 x α-1 λ + η + ξ dx with ξ 2 = x = (λ + η) α-1 +∞ 1 y -1 (y -1) α-1 dy with x = (λ + η)(y -1) = (λ + η) α-1 1 0 z -α (1 -z) α-1 dz with yz = 1 = (λ + η) α-1 B(1 -α, α) = (λ + η) α-1 Γ(1 -α)Γ(α) = π sin(απ) (λ + η) α-1 .
The proof has been completed.

CHAPITRE 2 STABILIZATION OF MULTIDIMENSIONAL WAVE EQUATION WITH LOCALLY BOUNDARY FRACTIONAL DISSIPATION LAW

Introduction

Let Ω be a bounded domain of R d , d ≥ 2, with a Lipschitz boundary Γ = Γ 0 ∪Γ 1 , with Γ 0 and Γ 1 open subsets of Γ such that Γ 0 ∩ Γ 1 = ∅ and Γ 1 is non empty. We consider the multidimensional wave equation

u tt -∆u = 0, in Ω × R + , (2.1.1) u = 0, on Γ 0 × R + , (2.1.2) ∂u ∂ν + γ∂ α,η t u = 0, on Γ 1 × R + (2.1.3)
where ν is the unit outward normal vector along the boundary Γ 1 and γ is a positive constant involved in the boundary control. The notation ∂ α,η t stands for the generalized Caputo's fractional derivative see [START_REF] Caputo | Vibrations of an infinite plate with a frequency independant[END_REF] of order α with respect to the time variable and is defined by

∂ α,η t ω(t) = 1 Γ(1 -α) t 0 (t -s) -α e -η(t-s) dω ds (s)ds, 0 < α < 1, η ≥ 0. The system (2.1.1)-(2.1.3) is considered with initial conditions u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x) where x ∈ Ω. (2.1.4)

Chapter 2. Stabilization of multidimensional wave equation with locally boundary fractional dissipation law

The fractional derivative operator of order α, 0 < α < 1, is defined by

[D α f ](t) = t 0 (t -τ ) -α Γ(1 -α) df dτ (τ )dτ. (2.1.5)
The fractional differentiation is inverse operation of fractional integration that is defined by

[I α f ](t) = t 0 (t -τ ) α-1 Γ(α) f (τ )dτ, 0 < α < 1. (2.1.6)
From equations (2.1.5), (2.1.6), clearly

[D α f ] = I 1-α Df. (2.1.7)
Now, we present marginally distinctive forms of (2.1.5) and (2.1.6). These exponentially modified fractional integro-differential operators an will be denoted by us follows

[D α,η f ](t) = t 0 (t -τ ) -α e -η(t-τ ) Γ(1 -α) df dτ (τ )dτ (2.1.8)
and

[I α,η f ](t) = t 0 (t -τ ) α-1 e -η(t-τ ) Γ(α) f (τ )dτ. (2.1.9)
Note that the two operators D α and D α,η differ just by their Kernels. D α,η is merely Caputo's fractional derivative operator, expect for its exponential factor. Thus, similar to identity (2.1.7), we do have

[D α,η f ] = I 1-α,η Df. (2.1.10)
The order of our derivatives is between 0 and 1.

The boundary fractional damping of the type ∂ α,η t u where 0 < α < 1, η ≥ 0 arising from the material property has been used in several applications such as in physical, chemical, biological, ecological phenomena. For more details we refer the readers to [START_REF] Mbodje | Wave energy decay under fractional derivative controls[END_REF], [START_REF] Mbodje | Boundary fractional derivative control of the wave equation[END_REF], [START_REF] Bagley | A different approach to the analysis of viscoelasticity damped structures[END_REF], [START_REF] Bagley | On the appearance of the fractional derivative in the behavior of real material[END_REF], [START_REF] Bagley | A theoretical basis for the application of fractional calculus to viscoelasticity[END_REF] and [START_REF] Mainardi | The applications of real order derivatives in linear viscoelasticityl[END_REF]. In theoretical point of view, fractional derivatives involves singular and non-integrable kernels (t -α , 0 < α < 1). This leads to substantial mathematical difficulties since all the previous methods developed for convolution terms with regular and/or integrable kernels are no longer valid.

There are a few number of publications concerning the stabilization of distributed systems with fractional damping. In [START_REF] Mbodje | Wave energy decay under fractional derivative controls[END_REF] fractional damping acting on a part of the boundary of the domain :

                   ∂ 2 t u(x, t) -∂ 2 x u(x, t) = 0, 0 < x < 1, t > 0, u(0, t) = 0, ∂ x u(1, t) + γ∂ α,η t u(1, t) = 0, 0 < α < 1, η ≥ 0, u(x, 0) = u 0 (x), ∂ t u(x, 0) = v 0 (x).
(2.1.11) Firstly, he proved that system (2.1.11) is not uniformly stable, on other words its energy has no exponential decay rate. However, using LaSalle's invariance principle, he proved that system (2.1.11) is strongly stable for usual initial data. Secondly, he established a polynomial energy decay rate of type 1 t for smooth initial data. In this paper, our main interest is to generalize the results of [START_REF] Mbodje | Wave energy decay under fractional derivative controls[END_REF] by considering the multidimensional case and by improving the polynomial energy day rate. Then, we study the stabilization of the system of multidimensional wave equation with boundary fractional damping (2.1.1)-(2.1.3). In a first step, a general criteria of Arendt and Batty [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF] and with the help of Holmgren's theorem we show the strong stability of system (2.1.1)-(2.1.3), but for the simple example like the case when Ω = (0, 1) we show that our system is not uniformly stable, since the corresponding spatial operator has a sequence of eigenvalues that approach the imaginary axis. Hence, we are interested in proving a weaker decay of the energy, for that purpose, we will apply a frequency domain approach (see [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF][START_REF] Batty | Non uniform stability for bounded semi-groups on banach spaces[END_REF][START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF] ) based on the growth of the resolvent on the imaginary axis. More precisely, we will give sufficient conditions that garantee the polynomial decay of the energy of our system (for smooth initial data). For this aim, by assuming that the boundary control region satisfy the Geometric Control Condition (GCC ) and by using the exponential decay of the wave equation with the standard damping

∂ ν u(x, t) + u t (x, t) = 0, on Γ 1 × R ⋆ +
we establish a polynomial energy decay rate for smooth solutions, which depends on the order of the fractional derivative. More precisely, we show that the energy of smooth solution of system (2.1.1)-(2.1.3) converges to zero, as t goes to infinity, as

1 t 1 1-α .
In [START_REF] Dai | Exponential growth for wave equation with fractional boundary dissipation and boundary source term[END_REF], Zhang and Dai considered the multidimensional wave equation with boundary source term and fractional dissipation defined by

                     u tt -∆u = 0, x ∈ Ω t > 0, u = 0, x ∈ Γ 0 t > 0, ∂u ∂µ + ∂ α t u = |u| m-1 u, x ∈ Γ 1 t > 0, u(x, 0) = u 0 , x ∈ Ω, u t (x, 0) = u 1 (x), x ∈ Ω (2.1.12)
where m > 1. They proved by Fourrier transforms and the Hardy-Littelwood-Sobolev inequality the exponential stability for sufficiently large initial data.

In [START_REF] Achouri | The euler-bernoulli beam equatin with boundary dissipation of fractional derivative type[END_REF], Benaissa and al. considered the Euler-Bernoulli beam equation with boundary dissipation of fractional derivative type defined by

             ϕ tt (x, t) + ϕ xxxx (x, t) = 0, in ]0, L[×]0, +∞[, ϕ(0, t) = ϕ x (0, t) = 0, in ]0, +∞[, ϕ xx (L, t) = 0, in ]0, +∞, ϕ xxx (L, t) = γ∂ α,η t ϕ(L, t), in ]0, +∞[ (2.1.13)
where 0 < α < 1, η ≥ 0 and γ > 0. They proved, under the condition η = 0, by a spectral analysis, the non uniform stability. On the other hand, for η > 0, they also proved that the energy of system (4.1.17) decay as time goes to infinity as 1

t 1 1-α .
This chapter as organized as follows : In Subsection 2.2.1, we reformulate the system (2.1.1)-(3.1.3) into an augmented system by coupling the wave equation with a suitable diffusion equation and we prove the well-posedness of our system by semigroup approach. In the subsection 2.2.2, combining a general criteria of Arendt and Batty with Holmgren's theorem we show that the strong stability of our system in the absence of the compactness of the resolvent and without any additional geometric conditions. In subsection 2.2.3, We show that our system is not uniformly stable in general, since it is the case of the interval, more precisely we show that an infinite number of eigenvalues approach the imaginary axis. In Section 2.3, we look for a polynomial decay rate for smooth initial data for our system by applying a frequency domain approach combining with a multiplier method. Indeed, by assuming that the boundary control region satisfy the Geometric Control Condition (GCC) and by using the exponential decay of the wave equation with a standard damping, we establish a polynomial energy decay for smooth solution as type 1

t 1 1-α .

Well-Posedness and Strong Stability

In this section, we will study the strong stability of system (2.1.1)-(2.1.3) in the absence of the compactness of the resolvent and without any additional geometric conditions on the domain Ω. First, we will study the existence, uniqueness and regularity of the solution of our system.

Chapter 2. Stabilization of multidimensional wave equation with locally boundary fractional dissipation law

Augmented model and well-Posedness

Firstly, we reformulate system (2.1.1)-(2.1.3) into an augmented system. For this aim, we need the following results Proposition 2.2.1. Let µ be the function defined by

µ(ξ) = |ξ| 2α-d 2 , ξ ∈ R d and 0 < α < 1.
(2.2.1)

Then the relation between the 'input' U and the 'output' O of the following system

∂ t ω(ξ, t) + (|ξ| 2 + η)ω(ξ, t) -U (t)µ(ξ) = 0, ξ ∈ R d , t > 0, (2.2.2) ω(ξ, 0) = 0, (2.2.3) O(t) = 2 sin(απ)Γ d 2 + 1 dπ d 2 +1 R d µ(ξ)ω(ξ, t)dξ, (2.2.4)
is given by

O = I 1-α,η U = D α,η U (2.2.5)
where D α,η and I 1-α,η are given by (4.1.11) and (4.1.12) respectively.

Proof:[proof] See theorem 1.6.1 in chapter 1. Now, using Proposition 2.2.1, system (2.1.1)-(2.1.4) may be recast into the following augmented model :

u tt -∆u = 0, in Ω × R + , (2.2.6) u = 0, on Γ 0 × R + , (2.2.7) ∂ t ω(ξ, t) + (|ξ| 2 + η)ω(ξ, t) -µ(ξ)∂ t u(x, t) = 0, on Γ 1 × R + , ξ ∈ R d , (2.2.8) ∂u ∂ν + γκ R d µ(ξ)ω(ξ, t)dξ = 0, on Γ 1 × R + (2.2.9)
where γ is a positive constant, η ≥ 0 and κ =

2 sin(απ)Γ( d 2 +1) dπ d 2 +1
. Finally, system (2.2.6)-(2.2.9) is considered with the following initial conditions

u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), ω(ξ, 0) = 0, x ∈ Ω, ξ ∈ R d .
(2.2.10)

Our main interest is the existence, uniqueness and regularity of the solution to this system. We define the Hilbert space equipped with the following inner product

H = H 1 Γ 0 (Ω) × L 2 (Ω) × L 2 (R d ), ( 2 
((u, v, ω), (ũ, ṽ, ω)) H = Ω v v + ∇u∇ ū dx + γκ R d ω(ξ) ω(ξ)dξ
where γ = γ |Γ 1 |, and H 1 Γ 0 (Ω) is given by

H 1 Γ 0 (Ω) = u ∈ H 1 (Ω), u = 0 on Γ 0 .
The energy of the solution of system is defined by :

E(t) = 1 2 (u, u t , w) 2 H .
(2.2.12)

For smooth solution, a direct computation gives

E ′ (t) = -γκ R d (|ξ| 2 + η)|w(ξ, t)| 2 dξ.
(2.2.13)

Then, system (2.2.6)-(2.2.10) is dissipative in the sense that its energy is a nonincreasing function of the time variable t. Now, we define the linear unbounded operator A by

D(A) =      U = (u, v, ω) ⊤ ∈ H; ∆u ∈ L 2 (Ω), v ∈ H 1 Γ 0 (Ω), |ξ|ω ∈ L 2 (R N ), -(|ξ| 2 + η)ω + v| Γ 1 µ(ξ) ∈ L 2 (R d ), ∂u ∂ν | Γ 1 = -γκ R d µ(ξ)ω(ξ)dξ      (2.2.14) and A(u, v, ω) ⊤ = (v, ∆u, -(|ξ| 2 + η)ω + v| Γ 1 µ(ξ)) ⊤ .
By denoting v = u t and U 0 = (u 0 , v 0 , w 0 ) ⊤ , system (2.2.6)-(2.2.10) can be written as an abstract linear evolution equation on the space H

U t = AU, U (0) = U 0 . (2.2.15)
It is known that operator A is m-dissipative on H and consequently, generates a C 0 -semigroup of contractions e tA following Lumer-Phillips' theorem (see [START_REF] Liu | Semigroups associated with dissipative systems[END_REF][START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]). Then the solution to the evolution equation (2.2.15) admits the following representation : 

U (t) = e tA U 0 , t
strong solution U (t) ∈ C 1 (R + , H) ∩ C 0 (R + , D(A)).

Strong Stability of the system

In this subsection, we study the strong stability of system (2.2.6)-(2.2.10) in the sense that its energy converges to zero when t goes to infinity for all initial data in H. It is easy to see that the resolvent of A is not compact, then the classical methods such as Lasalle's invariance principle [START_REF] Slemrod | Feedbacks stabilization of a linear system in a hilbert space with an a priori bounded control[END_REF] or the spectrum decomposition theory of Benchimol [START_REF] Benchimol | A note on weak stabilizability of contraction semigroups[END_REF] are not applicable in this case. We use then a general criteria of Arendt-Battay [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF], following which a C 0 -semigroup of contractions e tA in a Banach space is strongly stable, if A has no pure imaginary eigenvalues and σ(A) ∩ iR contains only a countable number of elements. We will prove the following stability result Theorem 2.2.3. Assume that η ≥ 0. Then the C 0 -semigroup (e tA ) t≥0 is strongly stable on the energy space H, i.e., for any U 0 ∈ H we have

lim t→+∞ e tA U 0 H = 0.
First we need to prove the following lemmas : (2.2.16)

Equivalently, we have v = iλu, (2.2.17) ∆u = iλv, (2.2.18) -(|ξ| 2 + η)ω + v| Γ 1 µ(ξ) = iλω. (2.2.19)
Next, a straightforward computation gives Now we distinguish two cases : Case 1. λ = 0. A straightforward computation gives u = 0 and consequently, U = 0. Case 2. λ = 0. Then, using (2.2.17) and (2.2.22) we deduce that u = 0 on Γ 1 . Therefore, using Holmgren's theorem, we deduce that u = 0 and consequently, U = 0.

ℜ (AU, U ) H = -γκ R d (|ξ| 2 + η)|ω| 2 dξ. ( 2 
Lemma 2.2.5. Assume that η = 0. Then, the operator -A is not invertible and consequently 0 ∈ σ(A).

Proof: First, let ϕ k ∈ H 1 Γ 0 (Ω) be an eigenfunction of the following problem

         -∆ϕ k = µ 2 k ϕ k , in Ω, ϕ k = 0, on Γ 0 , ∂ϕ k ∂ν = 0, on Γ 1 (2.2.26) such that ϕ k 2 H 1 Γ 0 (Ω) = Ω |∇ϕ k | 2 .
Next, define the vector F = (ϕ k , 0, 0) ∈ H. Assume that there exists

U = (u, v, w) ∈ D(A) such that -AU = F. It follows that v = -ϕ k in Ω, |ξ| 2 ω + µ(ξ)v = 0 on Γ 1 (2.2.27)
and

         ∆u = 0, in Ω, u = 0, on Γ 0 , ∂u ∂ν + γκ R d µ(ξ)ω(ξ)dξ = 0, on Γ 1 .
( 

         λ 2 u + ∆u = f, in Ω, u = 0, on Γ 0 , ∂u ∂ν + (λ 2 c 1 + iλc 2 )u = 0, on Γ 1 , (2.2.29)
where

c 1 (λ, η) = γκ R d µ 2 (ξ) λ 2 + (|ξ| 2 + η) 2 dξ and c 2 (λ, η) = γκ R d µ 2 (ξ)(|ξ| 2 + η) λ 2 + (|ξ| 2 + η) 2 dξ (2.2.30)
admits a unique solution u ∈ H 1 Γ 0 (Ω).

Proof: First, it is easy to check that, if (η > 0 and λ ∈ R) or (η = 0 and λ ∈ R ⋆ ), then, for α ∈]0, 1[, the coefficients c 1 (λ, η) and c 2 (λ, η) are well defined. Moreover, if η > 0 and λ = 0 then, using Lax-Milgram 's theorem we deduce that system (2.2.29) admits a unique solution u ∈ H 1 Γ 0 (Ω). Now, assume that η ≥ 0 and λ ∈ R ⋆ and let us consider the following problem

         -∆u = f, in Ω, u = 0, on Γ 0 , ∂u ∂ν + (λ 2 c 1 + iλc 2 )u = 0, on Γ 1 (2.2.31) Let u = u 1 + iu 2 , f = f 1 + if 2
and we separate the real and the imaginary part of (2.2.31), we obtain

                           -∆u 1 = f 1 in Ω, -∆u 2 = f 2 in Ω, u 1 = u 2 = 0 on Γ 0 , ∂u 1 ∂ν + λ 2 c 1 u 1 -λc 2 u 2 = 0 on Γ 1 , ∂u 2 ∂ν + λ 2 c 1 u 2 + λc 2 u 1 = 0 on Γ 1 .
(2.2.32)

Next, we give a variational formulation of (2.2.32). For this aim, find (u where

1 , u 2 ) ∈ H 1 Γ 0 (Ω)×H 1 Γ 0 (Ω) such that a((u 1 , u 2 ), (ϕ 1 , ϕ 2 )) = L((ϕ 1 , ϕ 2 )), ∀(ϕ 1 , ϕ 2 ) ∈ H 1 Γ 0 (Ω) × H 1 Γ 0 (Ω), ( 2 
a((u 1 , u 2 ), (ϕ 1 , ϕ 2 )) = Ω (∇u 1 ∇ϕ 1 + ∇u 2 ∇ϕ 2 ) dx + c 1 Γ 1 λ 2 u 1 ϕ 1 + λ 2 u 2 ϕ 2 dΓ 1 +c 2 Γ 1 (λu 1 ϕ 2 -λu 2 ϕ 1 ) dΓ 1 ,
and

L((ϕ 1 , ϕ 2 )) = Ω (f 1 ϕ 1 + f 2 ϕ 2 ) dx.
It is clear that the bilinear form a is continuous and coercive on the space

H 1 Γ 0 (Ω) × H 1 Γ 0 (Ω) 2
and the linear form L is continuous on the space Γ 0 (Ω). In addition, we have (see [START_REF] Lions | Problèmes aux limites non-homogènes et applications[END_REF])

H 1 Γ 0 (Ω) × H 1 Γ 0 (Ω).
u H 2 (Ω) ≤ c f L 2 (Ω) . (2.2.34)
It follows, from the compactness of the embedding

H 1 Γ 0 (Ω) ⊂ L 2 (Ω), that the inverse operator (-∆) -1 defined in (2.2.31) is compact in L 2 (Ω). Then applying (-∆) -1 to (2.2.29), we get λ 2 (-∆) -1 -I u = (-∆) -1 f. (2.2.35)
In addition, the same computation in (2.2.23)-(2.2.25) shows that ker (λ 2 (-∆) -1 -I) = {0}.

Then, following Fredholm's alternative (see [START_REF] Brezis | Analyse fonctionelle. Théorie et applications[END_REF]), the equation (2.2.35) admits a unique solution.

Lemma 2.2.7. If η > 0, for all λ ∈ R, we have

R (iλI -A) = H while if η = 0, for all λ ∈ R ⋆ , we have R (iλI -A) = H.
Proof: We give the proof in the case η > 0, the proof of the second statement is fully similar. Let λ ∈ R and F = (f, g, h) ⊤ ∈ H, then we look for Equivalently, we have

U = (u, v, ω) ⊤ ∈ D(A) solution of (iλI -A)U = F. ( 2 
       iλu -v = f, in Ω, iλv -∆u = g, in Ω, iλω + (|ξ| 2 + η)ω -v| Γ 1 µ(ξ) = h, on Γ 1 .
As before, by eliminating v and ω from the above system and using the fact that

∂ ν u + γκ R d µ(ξ)ω(ξ)dξ = 0 on Γ 1 ,
we get the following system :

         λ 2 u + ∆u = -g -iλf, in Ω, u = 0, on Γ 0 , ∂u ∂ν + λ 2 c 1 + iλc 2 u = -iλc 1 f + c 2 f + I 1 h + I 2 h , on Γ 1 , (2.2.37)
where c 1 , c 2 is defined in equation (2.2.30) and I 1 h , I 2 h are given by

I 1 h (λ, η) = iλγκ R d h(ξ)µ(ξ) λ 2 + (|ξ| 2 + η) 2 dξ and I 2 h (λ, η) = -γκ R d h(ξ)µ(ξ)(|ξ| 2 + η) λ 2 + (|ξ| 2 + η) 2 dξ.
It easy to check that, for h ∈ L 2 R d and α ∈]0, 1[, the integrals I 1 h and I 2 h are will defined. First, let ϕ h ∈ H 1 Γ 0 (Ω) be defined by

         -∆ϕ h = 0 in Ω, ϕ h = 0 on Γ 0 , ∂ϕ h ∂ν = I 1 h + I 2 h on Γ 1 .
(2.2.38)

Then setting ũ = u + ϕ h in (2.2.38), then we get Then setting χ = ũθ, we get

         λ 2 ũ + ∆ũ = λ 2 ϕ h -(g -iλf ) in Ω, ũ = 0 on Γ 0 , ∂ ũ ∂ν + λ 2 c 1 + iλc 2 ũ = -iλc 1 f + c 2 f + (λ 2 c 1 + iλc 2 ) ϕ h on Γ 1 . (2.2.39) Next, let θ ∈ H 2 (Ω) ∩ H 1 Γ 0 (Ω) such that θ = 0 and ∂θ ∂ν = -iλc 1 f + c 2 f + λ 2 c 1 + iλc 2 ϕ h ∈ H 1 2 (Γ 1 ) on Γ 1 . ( 2 
           λ 2 χ + ∆χ = λ 2 ϕ h -λ 2 θ -∆θ -(g -iλf ) in Ω, χ = 0 on Γ 0 , ∂χ ∂ν + λ 2 c 1 + iλc 2 χ = 0 on Γ 1 .
( 

ω = h(ξ) iλ + |ξ| 2 + η + iλu| Γ 1 µ(ξ) iλ + |ξ| 2 + η - f | Γ 1 µ(ξ) iλ + |ξ| 2 + η
we deduce that U = (u, v, ω) belongs to D(A) and is solution of (2.2.36). This completes the proof.

Proof of Theorem 2.2.3. Following a general criteria of Arendt-Batty see [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF], the C 0 -semigroup of contractions e tA is strongly stable, if σ (A) ∩ iR is countable and no eigenvalue of A lies on the imaginary axis. First, from Lemma 2.2.4 we directly deduce that A has non pure imaginary eigenvalues. Next, using Lemmas 2.2.5 and 2.2.7, we conclude, with the help of the closed graph theorem of Banach, that σ(A) ∩ iR = {∅} if η > 0 and σ(A) ∩ iR = {0} if η = 0. The proof is thus completed.

Non Uniform Stability

The aim of this section is to show that system (2.2.6)-(2.2.10) is not uniformly (i.e. exponentially) stable in general since it is already the case for Ω = (0, 1) as shown below. Our result is the following Theorem 2.2.8. Assume that d = 1. The semigroup of contractions e tA is not uniformly stable in the energy space H. This result is due to the fact that a subsequence of eigenvalues of A is close to the imaginary axis. For this aim, let λ ∈ C and U = (u, v, ω) ⊤ ∈ D(A) be such that AU = λU . Equivalently we have

       v = λu, u xx = λv, -(|ξ| 2 + η)ω + v(1)µ(ξ) = λω.
Since A is dissipative, we study the asymptotic behavior of the large eigenvalues λ of A in the strip -α 0 ≤ ℜ(λ) ≤ 0, for same α 0 > 0 large enough. By eliminating v and ω from the above
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u x (1) + γκ R µ(ξ)ω(ξ)dξ = 0,
we get the following system :

       λ 2 u -u xx = 0, u(0) = 0, u x (1) + γλ(λ + η) α-1 u(1) = 0. (2.2.42)
We have the following asymptotic behavior Proposition 2.2.9. There exist k 0 ∈ N * and a sequence (λ k ) |k|≥k 0 of simple eigenvalues of A and satisfying the following asymptotic behavior :

λ k = i(k + 1 2 )π + i γ sin π 2 (1 -α) π 1-α k 1-α - γ cos π 2 (1 -α) π 1-α k 1-α + O 1 k 2-α , (2.2.43)
for k large enough.

Proof:

The general solution of (2.2.42) is given by

u(x) = c 1 e λx + c 2 e -λx .
(2.2.44)

Thus the boundary conditions may be written as the following system

M (λ)C(λ) =   1 1 h 1 (λ)e λ h 2 (λ)e -λ     c 1 c 2   =   0 0   , ( 2.2.45) 
where

h 1 (λ) = λ + γλ(λ + η) α-1 and h 2 (λ) = -λ + γλ(λ + η) α-1 .
Hence a non-trivial solution u of system (2.2.42) exists if and only if the determinant of M (λ) vanishes. Set f (λ) = det M (λ), then we have

f (λ) = f 0 (λ) + f 1 (λ) (λ + η) 1-α , (2.2.46)
where f 0 (λ) = e λ + e -λ and f 1 (λ) = γ e λe -λ .

(2.2.47)

Note that f 0 and f 1 remain bounded in the strip -α 0 ≤ ℜ(λ) ≤ 0. It easy to check that the roots of f 0 are given by

λ 0 k = iµ k , k ∈ Z, (2.2.48) 
where µ -K = i k + 1 2 π. Using Rouché's theorem, we deduce that f (λ) admits an infinity of simple roots in the strip -α 0 ≤ ℜ(λ) ≤ 0 denoted by λ k , with |k| ≥ k 0 , for k 0 large enough, such that 

λ k = iµ k + o(1) as k → +∞. ( 2 
f 0 (λ k ) = 2i(-1) k ε k + O(ε 2 k ), (2.2.51 
) 

f 1 (λ k ) = 2iγ(-1) k + O(ε 2 k ), (2.2.52) 1 (λ k + η) 1-α = cos π 2 (1 -α) k 1-α π 1-α - i sin π 2 (1 -α) k 1-α π 1-α + O 1 k 2-α . ( 2 
ε k = - γ cos π 2 (1 -α) k 1-α π 1-α + i γ sin π 2 (1 -α) k 1-α π 1-α + O 1 k 2-α .
(2.2.54)

From equation (2.2.54), we have

|k| 1-α ℜ(λ k ) ≈ - γ cos π 2 (1 -α) π 1-α .
Inserting 

Polynomial stability under Geometric Control Condition

This section is devoted to the study of the polynomial stability of system (2.2.6)-(2.2.10) in the case η > 0 and under appropriated geometric conditions. For that purpose, we will use a frequency domain approach, namely we will use Theorem 2.4 of [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF] (see also [START_REF] Bátkai | Polynomial stability of operator semigroup[END_REF][START_REF] Batty | Non uniform stability for bounded semi-groups on banach spaces[END_REF][START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF]) that we partially recall.

Theorem 2.3.1. Let (T (t)) t≥0 be a bounded C 0 -semigroup on a Hilbert space H with generator A such that iR ⊂ ρ(A). Then for a fixed ℓ > 0 the following conditions are equivalent

(is -A) -1 = O(|s| ℓ ), s → ∞, (2.3.1 
)

T (t)A -1 = O(t -1/ℓ ), t → ∞. (2.3.2)
As the condition iR ⊂ ρ(A) was already checked in Theorem 2.2.3, it remains to prove that condition (2.3.1) holds. This is made with the help of a multiplier method under some geometric conditions on the boundary of the domain and by using the exponential decay of an auxiliary problem. Firstly, like as [START_REF] Abdallah | Stabilisation et approximation de certains systèmes distribués par amortissement dissipative et de signe indéfini[END_REF][START_REF] Nicaise | Indirect stability of the wave equation with a dynamic boundary control[END_REF], we consider the following auxiliary problem, namely the wave equation with standard boundary damping on Γ 1 :

       ϕ tt (x, t) -∆ϕ(x, t) = 0, x ∈ Ω, t > 0, ϕ(x, t) = 0, x ∈ Γ 0 , t > 0, ∂ ν ϕ(x, t) = -ϕ t (x, t), x ∈ Γ 1 , t > 0.
(

Define the auxiliary space H a = H 1 Γ 0 (Ω) × L 2 (Ω) and the auxiliary unbounded linear operator A a by

D(A a ) = Φ = (ϕ, ψ) ∈ H a : ∆ϕ ∈ L 2 (Ω); ψ ∈ H 1 Γ 0 (Ω); ∂ϕ ∂ν = -ψ on Γ 1 A a (ϕ, ψ) = (ψ, ∆ϕ) .
We then introduce the following condition :

(H) : the problem (2.3.3) is uniformly stable in the energy space

H 1 Γ 0 (Ω) × L 2 (Ω).
Secondly, we recall the Geometric Control condition GCC introduced by Bardos 

m 0 > 0 such that m • ν ≤ 0 on Γ 0 and m • ν ≥ m 0 on Γ 1 , with m(x) = x -x 0 , for all x ∈ R d .
Next, we present the main result of this section.

Theorem 2.3.4. Assume that η > 0 and that the condition (H) holds. Then, for all initial data U 0 ∈ D(A), there exists a constant C > 0 independent of U 0 , such that the energy of the strong solution U of (4.2.14) satisfies the following estimation

E(t, U ) ≤ C 1 t 1 1-α U 0 2 D(A) .
(2.3.4)

In particular, for U 0 ∈ H, the energy E(t, U ) converges to zero as t goes to infinity.

As announced in Theorem 2. are satisfied. Condition (H1) is already proved in Theorem 2.2.3. We will prove condition (H2) using an argument of contradiction. For this purpose, suppose that (H2) is false, then there exist a real sequence (λ n ), with |λ n | → +∞ and a sequence (U n ) ⊂ D(A), verifying the following conditions

U n H = (u n , v n , ω n ) H = 1 (2.3.5) and λ ℓ n (iλ n -A)U n = (f n 1 , f n 2 , f n 3 ) → 0 in H. (2.3.6)
For simplicity, we drop the index n. Detailing equation (2.3.6), we get 

iλu -v = f 1 λ ℓ -→ 0 in H 1 Γ 0 (Ω), (2.3.7) iλv -∆u = f 2 λ ℓ -→ 0 in L 2 (Ω), (2.3.8) 
(iλ + |ξ| 2 + η)ω -v| Γ 1 µ(ξ) = f 5 λ ℓ -→ 0 in L 2 (R N ). ( 2 
λ 2 u + ∆u = - f 2 λ ℓ - if 1 λ ℓ-1 . ( 2 
∂ ν u L 2 (Γ 1 ) = o(1) λ 1-α , (2.3.13) u L 2 (Γ 1 ) = o(1) λ . ( 2 

.3.14)

Proof: Using equations (2.3.5) and (2.3.7), we deduce directly the first estimation (2.3.12). Now, from the boundary condition 

∂ ν u + γκ R d µ(ξ)ω(ξ)dξ = 0 on Γ 1 we get ∂u ∂ν ≤ γκ R d µ 2 (ξ) |ξ| 2 + η dξ 1 2 R d (|ξ| 2 + η)|ω| 2 dξ 1 2 . ( 2 
A 1 |v| Γ 1 | ≤ A 2 R d (|ξ| 2 + η)|ω| 2 dξ 1 2 + 1 |λ| ℓ A 3 R d |f 3 (ξ)| 2 dξ 1 2 , (2.3.16)
where,

A 1 = R N |µ(ξ)| 2 (|λ| + |ξ| 2 + η) dξ, A 2 = R N |µ(ξ)| 2 |ξ| 2 + η dξ 1 2
and

A 3 = R N |µ(ξ)| 2 (|λ| + |ξ| 2 + η) 2 dξ 1 2 .
Using Lemma 1.6.2. we have Then, for any λ ∈ R, the solution

A 1 = c (|λ| + η) α-1 and A 3 = c (|λ| + η) α 2 -
ϕ u ∈ H 1 (Ω) of system              -(λ 2 + ∆)ϕ u = u in Ω, ϕ u = 0 on Γ 0 , ∂ϕ u ∂ν + iλϕ u = 0 in Γ 1 .
(2.3.20)

satisfying the following estimate

λϕ u L 2 (Γ 1 ) + ∇ϕ u L 2 (Ω) + λϕ u Ω u L 2 (Ω) . ( 2 

.3.21)

Proof: First, by Huang-Pruss Theorem (see [START_REF] Gearhart | Spectral theory for contraction semigroups on hilbert space[END_REF]-[29]- [START_REF] Prüss | On the spectrum of c 0 -semigroup[END_REF]), the exponential stability of system (2.3.3) implies that the resolvent of the auxiliary operator A a is uniformly bounded on the imaginary axis i.e. there exists M > 0 such that

(iλI -A a ) -1 L(H) ≤ M < +∞. (2.3.22)
for all λ ∈ R. Now, since u ∈ L 2 (Ω), then the pair (0, u) belong H a and from (2.3.22), then there exists a unique solution (ϕ 

u , ψ u ) ∈ D(A a ) such that (iλ -A a )(ϕ u , ψ u ) = (0, u) ⊤ i.e. iλψ u -∆ϕ u = u, ( 2 
∇ϕ u L 2 (Ω) + λϕ u L 2 (Ω) u L 2 (Ω) . (2.3.26)
So, multiplying the first equation of (2.3.20) by λ φu , using Green formula and using the third equation of (2.3.20), we get 

-λ Ω |λϕ u | 2 dx + λ Ω |∇ϕ u | 2 dx + i Γ 1 |λϕ u | 2 dΓ 1 = λ Ω u φu dx. ( 2 
Ω |u| 2 dx = Γ 1 ((∂ ν u) φu + iλ φu u) dΓ + Ω f 2 λ ℓ + i λf 1 λ ℓ φu dx. (2.3.31)
Firstly, using equation (2.3.21), (2.3.12) and the fact that

f 2 L 2 (Ω) = o(1), we get Ω f 2 λ ℓ φu dx = o(1) λ ℓ+2 . (2.3.32)
On the other hand, multiplying the first equation of (2.3.20) by f 1 and integrating, we get 

Ω λ 2 f 1 φu dx = Ω ∇f 1 • ∇ φu dx + i Γ 1 λf 1 φu dΓ - Ω uf 1 dx. ( 2 

Conclusion

We have studied the stabilization of multidimensional wave equation with boundary fractional damping acting on a part of the boundary of the domain. Non uniform stability is proved and a polynomial energy decay rate of type 

CHAPITRE 3 THE INFLUENCE OF THE COEFFICIENTS OF A SYSTEM OF WAVE EQUATIONS COUPLED BY VELOCITIES WITH ONE FRACTIONAL DAMPING ON ITS INDIRECT BOUNDARY STABILIZATION

Introduction

In this chapter, we consider the one-dimensional coupled wave equations defined by :

   u tt -u xx + by t = 0 on ]0, 1[×]0, +∞[, y tt -ay xx -bu t = 0 on ]0, 1[×]0, +∞[ (3.1.1)
where (x, t) ∈]0, 1[×]0, +∞[, a > 0 and b ∈ R * . This system is subject to the boundary conditions

       u(0, t) = 0 in ]0, +∞[, y(0, t) = y(1, t) = 0 in ]0, +∞[, u x (1, t) = -γ∂ α,η t u(1, t) in ]0, +∞[ (3.1.2)
where γ > 0. The notation ∂ α,η t stands for the generalized Caputo's fractional derivative of order α with respect to time variable. It is defined as follows The fractional derivative operator of oder α such that α ∈]0, 1[ is defined by

∂ α,η t ω(t) = 1 Γ(1 -α) t 0 (t -s) -α e -η(t-
[D α f ](t) = t 0 (t -τ ) -α Γ(1 -α) df dτ (τ )dτ. (3.1.4)
The fractional differentiation is inverse operation of fractional integration that is defined by Now, we present marginally distinctive forms of (3.1.4) and (3.1.5). These exponentially modified fractional integro-differential operators an will be denoted by us follows

[I α f ](t) = t 0 (t -τ ) α-1 Γ(α) f (τ )dτ, 0 < α < 1. ( 3 
[D α,η f ](t) = 1 0 (t -τ ) -α e -η(t-τ ) Γ(1 -α) df dτ (τ )dτ (3.1.7)
and

[I α,η f ](t) = t 0 (t -τ ) α-1 e -η(t-τ ) Γ(α) f (τ )dτ. (3.1.8) 
The order of our derivatives is between 0 and 1. Very little attention has been paid to this type of feedback. In addition to being nonlocal, fractional derivatives involve singular and nonintegrable kernels (t -α , 0 < α < 1). This leads to substantial mathematical difficulties since all the previous methods developed for convolution terms with regular and/or integrable kernels are no longer valid. In the last year, fractional differential equations have become popular among scientists in order to model various stable physical phenomena with a slow decay rate, say that are not uniformly stable (i.e. are not of exponential type) . It has been shown (see [START_REF] Matignon | Energy decay rate for wave equations with damping of fractional order[END_REF] and [START_REF] Mbodje | Boundary fractional derivative control of the wave equation[END_REF]) that, as ∂ t forces the system to become dissipative and the solution to approach the equilibrium state. Therefore, when applied on the boundary, we can consider them as controllers which help to reduce the vibrations. Boundary dissipations of fractional order or, in general, of convolution type are not only important from the theoretical point of view but also for applications. They naturally arise in physical, chemical, biological, ecological phenomena see for example [START_REF] Park | Energy decay of solutions for timoshenko beam with a weak non-linear dissipation[END_REF], [START_REF] Samko | Fractional integrals and derivatives[END_REF] and references therein. They are used to describe memory and hereditary properties of various materials and processes. For example, in viscoelasticity, due to the nature of the material micro-structure, both elastic solid and viscous fluid like response qualities are involved. Using Boltzman assumption, we end up with a stressstrain relationship defined by a time convolution. Viscoelastic response occurs in a variety of materials, such as soils, concrete, rubber, cartilage, biological tissue, glasses, and polymers (see [START_REF] Bagley | A different approach to the analysis of viscoelasticity damped structures[END_REF]- [START_REF] Bagley | On the appearance of the fractional derivative in the behavior of real material[END_REF]- [START_REF] Bagley | A theoretical basis for the application of fractional calculus to viscoelasticity[END_REF] and [START_REF] Mainardi | The applications of real order derivatives in linear viscoelasticityl[END_REF]). In our case, the fractional dissipations may come from a viscoelastic surface of the beam or simply describe an active boundary viscoelastic damper designed for the purpose of reducing the vibrations (see [START_REF] Mbodje | Wave energy decay under fractional derivative controls[END_REF] and [START_REF] Mbodje | Boundary fractional derivative control of the wave equation[END_REF]).

In [START_REF] Mbodje | Wave energy decay under fractional derivative controls[END_REF], Mbodje investigate the asymptotic behavior of solutions with the system

                   ∂ 2 t u(x, t) -∂ 2 x u(x, t) = 0, x ∈]0, 1[, t > 0, u(0, t) = 0. ∂ x u(1, t) = -γ∂ α,η t u(1, t), α ∈]0, 1[, η ≥ 0, u(x, 0) = u 0 (x), ∂ t u(x, 0) = v 0 (x), (3.1.9)
He also proved that the associated semigroup is not exponentially stable, but only strongly asymptotically and the solution of this system will decay, as times goes to infinity, as 1 t . In this chapter, we obtain the stabilization of the coupled 1-D wave equations by means of a boundary viscoelastic damper, the action of which is to cause a feedback (frictional) force opposite in direction of the fractional derivative of the position of a boundary point. More precisely, we are interested im finding a rate of decay for the energy of such a feedback system. The plan of this chapter is as follows : In section 3.2, first we show that the system (3.1.1)-(3.1.3) can be replaced by an augmented model by coupling the wave equation with a suitable diffusion equation for can reformulate into an evolution equation and we deduce the well-posedness property of the problem by the semigroup approach. Second, using a criteria of Arendt-Batty we show that the augmented model is strongly stable in absence of compactness of the resolvent under a condition on b. In section 3.3, we show that the augmented model is non uniformly stable i.e.(non exponential), this result is due to the fact that a subsequence of eigenvalues is due to the imaginary axis. In section 3.4, we show the polynomial energy decay rate of type

1 t 1 3-α if a = 1 and b = kπ, 1 t 1 1-α if a = 1 and b = kπ, 1 t 1 3-α if a = 1 and (a ∈ Q and b small enough) or √ a ∈ Q.

Well-Posedness and Strong Stability

Well-Posedness

In this subsection, using a semigroup approach, we establish the well-posedness result for the problem (3.1.1)-(3.1.3). We are in position to reformulate system (3.1.1)-(3.1.3) into the augmented model for can be reformulated into the well-known operator theoretic form : U t (t) = AU (t). For this goal (see [START_REF] Mbodje | Wave energy decay under fractional derivative controls[END_REF]), let µ be the function defined by µ(ξ) = |ξ| 

∂ t ω(ξ, t) + (ξ 2 + η)ω(ξ, t) -u t (1, t)µ(ξ) = 0, ξ ∈ R, η ≥ 0, t > 0, (3.2.1) ω(ξ, 0) = 0, (3.2.2) u x (1) = sin(απ) π +∞ -∞ µ(ξ)ω(ξ, t)dξ (3.2.3) verifying that u x (1, t) = I 1-α,η u t = D α,η u t . ( 3 
u tt -u xx + by t = 0, on (0, 1) × R + , , (3.2.5 
)

y tt -ay xx -bu t = 0, on (0, 1) × R + , (3.2.6) ω t (ξ, t) + (|ξ| 2 + η)ω(ξ, t) -u t (1, t)µ(ξ) = 0, on R × R + , (3.2.7) y(0, t) = y(1, t) = u(0, t) = 0, (3.2.8) u x (1, t) + γκ R µ(ξ)ω(ξ, t)dξ = 0, (3.2.9 
)

ω(ξ, 0) = 0. (3.2.10)
where γ is a positive constant, η ≥ 0 and κ = sin(απ) π . Our main interest is the existence, uniqueness and regularity of the solution of this system. First the energy of this system is given by

E(t) = 1 2 1 0 |u t | 2 + |y t | 2 + |u x | 2 + a|y x | 2 dx + γκ +∞ -∞ |ω| 2 dξ .
Then a straightforward computation gives

E ′ (t) = -γκ +∞ -∞ (ξ 2 + η)|ω| 2 dξ ≤ 0.
Thus, the system (3.2.5)-(3.2.10) is dissipative in the sense that its energy is non increasing with respect to the time t. Next, we define the Hilbert space

H = H 1 L (]0, 1[) × L 2 (]0, 1[) × H 1 0 (]0, 1[) × L 2 (]0, 1[) × L 2 (R),
endowed with inner product

U, U = 1 0 u x ūx + v v + ay x ȳx + z z dx + γκ +∞ -∞ ω ωdξ,
for all U = (u, v, y, z, ω) ⊤ ∈ H and U = (ũ, ṽ, ỹ, z, ω) ∈ H, where H 1 L (]0, 1[) is the Sobolev space defined by

H 1 L (]0, 1[) = u ∈ H 1 (Ω), u(0) = 0 .
Finally, we define the unbounded linear operator A by

D(A) =                    U = (u, v, y, z, ω) ⊤ ∈ H; u ∈ H 2 (]0, 1[) ∩ H 1 L (]0, 1[), y ∈ H 2 (]0, 1[) ∩ H 1 0 (]0, 1[), v ∈ H 1 L (]0, 1[), z ∈ H 1 0 (]0, 1[) , -(ξ 2 + η) ω + v (1) µ(ξ) ∈ L 2 (R) , u x (1) + γκ +∞ -∞ µ(ξ)ω(ξ)dξ = 0, |ξ|ω ∈ L 2 (R) .                    , and A           u v y z ω           =           v u xx -bz z ay xx + bv -(ξ 2 + η) ω + v(1)µ(ξ)          
If U = (u, u t , y, y t , ω) T is a regular solution of system (3.2.5)-(3.2.10), then we rewrite this system as the following evolution equation

   U t = AU, U (0) = U 0 , (3.2.11)
where U 0 = (u 0 , u 1 , y 0 , y 1 , ω) ⊤ .

Proposition 3.2.1. The unbounded linear operator A is m-dissipative in the energy space H.

Proof: For all U = (u, v, y, z, ω) ∈ D (A), we have Equivalently, we have the following system 

ℜ ( AU, U ) = -γκ +∞ -∞ (ξ 2 + η)|ω| 2 dξ ≤ 0, (3.2.12) which implies that A is dissipative. Now, let F = (f 1 , f 2 , f 3 , f 4 , f 5 ) ⊤ ,
u -v = f 1 , (3.2.14) v -u xx + bz = f 2 , (3.2.15) y -z = f 3 , (3.2.16) z -ay xx -bv = f 4 , (3.2.17) (1 + ξ 2 + η)ω -v(1)µ(ξ) = f 5 . ( 3 
ω = f 5 1 + ξ 2 + η + u(1)µ(ξ) 1 + ξ 2 + η - f 1 (1)µ(ξ) 1 + ξ 2 + η . ( 3 
u -u xx + by = f 1 + f 2 + bf 3 , (3.2.20) y -ay xx -bu = -bf 1 + f 3 + f 4 , (3.2.21)
with the boundary conditions 

u(0) = 0, u x (1) = -γκ +∞ -∞ µ(ξ)ω(ξ)dξ and y(0) = y(1) = 0. (3.2.22) Let φ = (ϕ 1 , ϕ 2 ) ∈ H 1 L (]0, 1[) × H 1 0 (]0,
uϕ 1 dx + 1 0 u x ϕ 1x dx -[u x ϕ 1 ] 1 0 + b 1 0 yϕ 1 dx = 1 0 F 1 ϕ 1 dx, (3.2.23) 1 0 yϕ 2 dx + a 1 0 y x ϕ 2x dx -b 1 0 uϕ 2 dx = 1 0 F 2 ϕ 2 dx (3.2.24)
where

F 1 = f 1 + f 2 + bf 3 and F 2 = -bf 1 + f 3 + f 4 .
Using (3.2.9) and (3.2.22), we get

-[u x ϕ 1 ] 1 0 = ϕ 1 (1)M 1 + u(1)ϕ(1)M 2 + f 1 (1)ϕ(1)M 2 (3.2.25)
where 

M 1 = γκ +∞ -∞ µ(ξ)f 5 1 + η + ξ 2 dξ and M 2 = γκ +∞ -∞ µ 2 (ξ) 1 + η + ξ 2 dξ. ( 3 
)) = L (ϕ 1 , ϕ 2 ) , ∀(ϕ 1 , ϕ 2 ) ∈ H 1 l (]0, 1[) × H 1 0 (]0, 1[), (3.2 

.27)

Chapter 3. The influence of the coefficients of a system of wave equations coupled by velocities with one fractional damping on its indirect boundary stabilization where a ((u, y), (ϕ 1 , ϕ 2 )) =

1 0 uϕ 1 dx + 1 0 u x ϕ 1x dx + 1 0 yϕ 2 dx + a 1 0 y x ϕ 2x dx u(1)ϕ 1 (1)M 2 + b 1 0 yϕ 1 dx -b 1 0 uϕ 2 dx (3.2.28) and L(ϕ 1 , ϕ 2 ) = 1 0 F 1 ϕ 1 dx + 1 0 F 2 ϕ 2 dx -M 1 ϕ 1 (1) + ϕ 1 (1)f 1 (1)M 2 . (3.2.29)
Using Lax-Milligram, we deduce that there exists (u, y) ∈ H 1 L (]0, 1[)×H 1 0 (]0, 1[) unique solution of the variational problem (3.2.27). Applying the classical elliptic regularity we deduce that U = (u, v, y, z, ω) ∈ D(A).

From proposition 3.2.1, we have have the operator A is m-dissipative on H and consequently, generates a C 0 -semigroup of contractions e tA following Lummer-Phillips theorem (see [START_REF] Liu | Semigroups associated with dissipative systems[END_REF] and [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]). Then the solution to the evolution equation (3.2.11) admits the following representation :

U (t) = e tA U 0 , t ≥ 0,
which leads to the well-posedness of (3.2.11). Hence, semi-group theory allows to show the next existence and uniqueness results : Theorem 3.2.2. For any U 0 ∈ H, problem (3.2.11) admits a unique weak solution

U (t) ∈ C 0 (R + , H). Moreover, if U 0 ∈ D(A), then U (t) ∈ C 1 (R + , H) ∩ C 0 (R + , D(A)).

Strong Stability

In this subsection, we study the strong stability of system (3.2.5)-(3.2.10) in the sense that its energy converges to zero when t goes to infinity for all initial data in H. It is easy to see that the resolvent of A is not compact, then the classical methods such as Lasalle's invariance principle or the spectrum decomposition theory of Benchimol are not applicable in this case. We use then a general criteria of Arendt-Batty, following which a C 0 -semigroup of contractions e tA in a Banach space is strongly stable, if A has no pure imaginary eigenvalues and σ(A) ∩ iR contains only a countable number of elements. We will prove the following stability result. 

2 = (k 2 1 -ak 2 2 )(ak 2 1 -k 2 2 )π 2 (a + 1)(k 2 1 + k 2 2 ) , ∀k 1 , k 2 ∈ N * , k 2 < k 1 . (C)
For the proof of Theorem 3.2.3, we need the following two lemmas. Using equation (3.2.12), we get

-γκ +∞ -∞ (ξ 2 + η)|ω| 2 dξ = ℜ ( AU, U H ) = 0, then ω = 0. (3.2.31)
Now, detailing (3.2.30), we get v = iλu, z = iλy, v(1) = 0 and using equations (3.2.9), we obtain the following system where B = λ 2 (a + 1) and C = λ 2 (λ 2b 2 ). The characteristic equation is given by

λ 2 u + u xx -iλby = 0, ( 3 
u(0) = u(1) = u x (1) = y(0) = y(1) = 0. ( 3 
P (t) = at 4 + Bt 2 + C. ( 3 

.2.41)

Setting P 1 (m) = am 2 + Bm + C, the discriminant of P 1 is given by ∆ = λ 4 (a -1) 2 + 4ab 2 λ 2 > 0, then P 1 has two distinct reel roots m 1 and m 2 given by

m 1 = -B - √ ∆ 2a
and

m 2 = -B + √ ∆ 2a
. Using the fact t 2 2t 2 1 = 0, then from equation (3.2.56) if sin(t 1 ) = 0 then cos(t 1 ) = ±1. Using (3.2.55) and the fact that (t 1 , t 2 ) = (0, 0), we get sin(t 2 ) = 0. Then there exists k 1 , k 2 ∈ N * , one fractional damping on its indirect boundary stabilization

It is clear that m 1 < 0. As B 2 -∆ = 4aλ 2 (λ 2 -b 2 ),
u(x) = c 1 e it 1 x + c 2 e -it 1 x + c 3 e it 2 x + c 4 e -it 2 x . ( 3 
k 1 < k 2 (remember that t 1 > t 2 > 0) such that t 1 = k 1 π and t 2 = k 2 π. Hence, (k 2 1 + k 2 2 )π 2 = t 2 1 + t 2 2 = -m 1 -m 2 = λ 2 (a + 1) a . (3.2.58)
and

k 2 1 k 2 2 π 4 = t 1 t 2 2 = m 1 m 2 = λ 2 (λ 2 -b 2 ) a (3.2.59)
Eliminating λ 2 in (3.2.58) and (3.2.59), we get

b 2 = (ak 2 1 -k 2 2 )(k 2 1 -ak 2 2 ) (a + 1)(k 2 1 + k 2 2 ) π 2 , ∀k 1 , k 2 ∈ N * , k 2 < k 1 .
Under this condition (3.2.35) admits a non trivial solution. Conversely if (C) holds, λ is not an eigenvalue of A.

Lemma 3.2.5. Assume that η = 0. Then, the operator -A is not invertible and consequently 0 ∈ σ(A).

Proof: Define the vector F = (sin(x), 0, 0, 0, 0) ∈ H. Assume that there exists sin(1) / ∈ L 2 (R). So, the assumption of the existence of U is false and consequently, the operator -A is not invertible. Lemma 3.2.6. Assume that (η > 0, λ ∈ R) or (η = 0, λ ∈ R * ). Then, for any h, g ∈ L 2 ((0, 1)), the following problem

U = (u, v, y, z, ω) ∈ D(A) such that -AU = F, it follows that v = -sin x in ]0,
                   λ 2 u + u xx -iλby = h, in (0, 1), λ 2 y + ay xx + iλbu = g, in (0, 1), u(0) = 0, y(0) = y(1) = 0, u x (1) + (λ 2 c 1 + iλc 2 ) u(1) = 0 (3.2.61)
where

c 1 (λ, η) = γκ R µ 2 (ξ) λ 2 + (|ξ| 2 + η) 2 dξ and c 2 (λ, η) = γκ R µ 2 (ξ)(|ξ| 2 + η) |λ| 2 + (|ξ| 2 + η) 2 dξ (3.2.62)
admits a unique solution (u, y) ∈ H 1 L ((0, 1)) × H 1 0 ((0, 1)).

Proof: First, it easy to check that, if (η > 0 and λ ∈ R) or (η = 0 and λ ∈ R * ), then, for α ∈]0, 1[, the coefficients c 1 (λ, η) and c 2 (λ, η) are well defined. Moreover, if η > 0 and λ = 0 then, using Lax-Milligram's theorem we deduce that system (3.2.61) admits a unique solution (u, y) ∈ H L 1 ((0, 1)) × H 1 0 ((0, 1)). Next, let us consider the following problem

                   -u xx + iλby = h, in (0, 1), -y xx -iλbu = g, in (0, 1), u(0) = 0, y(0) = y(1) = 0, u x (1) + (λ 2 c 1 + iλc 2 ) u(1) = 0. (3.2.63)
Next, we give a variational formulation of (3.2.63). For this aim, find (u

1 , u 2 ) ∈ H L ((0, 1)) 1 × H 1 0 (Ω) such that a((u, y), (ϕ, ψ)) = L((ϕ, ψ)) (3.2.64)
where Define the operator, 

a((u, y), (ϕ, ψ)) = 1 0 (u x ϕ x + y x ψ x )dx + (λ 2 c 1 + iλc 2 )u(1)ϕ(1)
LU =   -u xx + iλby -ay xx -iλbu   , ∀U = (u, y) ⊤ ∈ H 1 L (0, 1) × H 1 0 (0, 1) Then L is an isomorphism from H 1 L (Ω) × H 1 0 (Ω) into H 1 L (Ω) × H 1 0 (Ω). Using the compactness embedding from L 2 (Ω) × L 2 (Ω) into (H 1 L (Ω)) ′ × H -1 (Ω) and H 1 L (Ω) × H 1 0 (Ω) into L 2 (Ω) × L 2 (Ω), we deduce that L -1 is compact from L 2 (Ω) × L 2 (Ω) into L 2 (Ω) × L 2 (Ω). Then applying L -1 to (3.2.61), we get λ 2 L -1 -I U = L -1 f. ( 3 

Proof:

We give the proof in the case η > 0, the proof of the second statement is fully similar. Let λ ∈ R and

F = (f 1 , f 2 , f 3 , f 4 , f 5 ) ⊤ ∈ H, then we look for U = (u, v, y, z, ω) ⊤ ∈ D(A) solution of (iλU -A)U = F. (3.2.66)
Equivalently, we have

iλu -v = f 1 , (3.2.67) iλv -u xx + bz = f 2 , (3.2.68) iλy -z = f 3 , (3.2.69) iλz -ay xx -bv = f 4 , (3.2.70) iλω + (ξ 2 + η)ω -v(1)µ(ξ) = f 5 . ( 3 

.2.71)

As before, by eliminating v and ω from the above system and using the fact that

u x (1) + γκ R µ(ξ)ω(ξ)dξ = 0,
we get the following system

λ 2 u + u xx -iλby = -f 2 -iλf 1 -bf 3 , (3.2.72) λ 2 y + ay xx + iλbu = -f 4 -iλf 3 + bf 1 , (3.2.73) u(0) = 0, (3.2.74) y(0) = y(1) = 0, (3.2.75) u x (1) + (λ 2 c 1 + iλc 2 )u(1) = -iλc 1 f 1 (1) + c 2 f 1 (1) + I 1 f 5 + I 2 f 5 . (3.2.76)
where c 1 , c 2 is defined in equation (3.2.62) and I 1 f 5 , I 2 f 5 are given by

I 1 f 5 (λ, η) = iλγκ R f 5 (ξ)µ(ξ) λ 2 + (|ξ| 2 + η) 2 dξ and I 2 f 5 (λ, η) = -γκ R f 5 (ξ)µ(ξ)(|ξ| 2 + η) λ 2 + (|ξ| 2 + η) 2 dξ.
It easy to check that, for f 5 ∈ L 2 (R) and α ∈]0, 1[, the integrals I 1 f 5 and I 2 f 5 are will defined.

First, let (ϕ

f 5 , ψ f 5 ) ∈ H 1 L (Ω) × H 1 0 (Ω) are defined by                    -(ϕ 5 ) xx + iλbψ 5 = 0, in (0, 1) -(ψ 5 ) xx -iλbϕ 5 = 0, in (0, 1) ϕ 5 (0) = 0, ψ 5 (0) = ψ 5 (1) = 0, (ϕ 5 ) x (1) = I 1 f 5 + I 2 f 5 .
(3.2.77)

Then setting ũ = u + ϕ f 5 and ỹ = y + ψ f 5 in (3.2.72)-(3.2.76), we get

                   λ 2 ũ + ũxx -iλbỹ = λ 2 ϕ 5 -f 2 -iλf 1 -bf 3 in (0, 1), λ 2 ỹ + aỹ xx + iλbũ = λ 2 ψ 5 -f 4 -iλf 3 + bf 1 in (0, 1), ũ(0) = 0, ỹ(0) = ỹ(1) = 0, ũx (1) + (λ 2 c 1 + iλc 2 )ũ(1) = -iλc 1 f 1 (1) + c 2 f 1 (1) + (λ 2 c 1 + iλc 2 )ϕ f 5 (1). (3.2.78) Next, let θ ∈ H 2 ((0, 1)) ∩ H 1 L ((0, 1)), such that θ(1) = 0, θ x (1) = -iλc 1 f 1 (1) + c 2 f 1 (1) + (λ 2 c 1 + iλc 2 )ϕ f 5 (1). 
Then setting χ = ũθ in (3.2.78), we get the following problem 

                   λ 2 χ + χ xx -iλbỹ = λ 2 ϕ f 5 -λ 2 θ -θ xx -f 2 -iλf 1 -bf 3 in (0, 1), λ 2 ỹ + aỹ xx + iλbχ = λ 2 ψ f 5 -iλbθ -f 4 -iλbf 3 + bf 1 in (0, 1), χ(0) = 0, ỹ(0) = ỹ(1) = 0, χ x (1) + (λ 2 c 1 + iλc 2 ) χ(1) = 0. ( 3 
) ∈ H 1 l ((0, 1)) × H 1 0 (Ω). By defining v = iλu -f 1 , z = iλy -f 3 in (0, 1) and ω = h(ξ) iλ + |ξ| 2 + η + iλu | Γ 1 µ(ξ) iλ + |ξ| 2 + η - f | Γ 1 µ(ξ) iλ + |ξ| 2 + η .
We deduce that U = (u, v, y, z, ω) belongs to D(A) and is solution of (3.2.66). This completes the proof.

Proof of Theoreme 3.2.3 Following a general criteria of Arendt-Batty see [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF], the C 0 -semigroup of contractions e tA is strongly stable, if σ(A)∩iR is countable and no eigenvalue of A lies on the imaginary axis. First, using Lemma 3.2.4, we directly deduce that A has non pure imaginary eigenvalues. Next, using Lemmas 3.2.5 and 3.2.7, we conclude, with the help of the closed graph theorem of Banach, that σ(A) ∩ iR = {∅} if η > 0 and σ(A) ∩ iR = {0} if η = 0. The proof is thus completed.

Non Uniformly Stable

Non Uniform Stability for a = 1

In this section, we assume that a = 1, η > 0 and b verified condition (C) reduced to

b = π √ 2 k 2 1 -k 2 2 k 2 1 + k 2 2 . ( C1 
)
Our goal is to show that system (3.2.5)-(3.2.10) is not exponentially stable. This result is due to the fact that a subsequence of eigenvalues of A is due to the imaginary axis.

Theorem 3.3.1. Assume that a = 1 and b satisfies condition (C1). Then the semigroup of contractions e tA is not uniformly stable in the energy space H.

For the proof of Theorem 3.3.1, we aim to show that an infinite of eigenvalues of A approach the imaginary axis. we can distinguish two cases. We determine the characteristic equation satisfied by the eigenvalues of A. For the aim, let λ ∈ C be an eigenvalue of A and let U = (u, v, y, z, ω) ⊤ ∈ D(A) be an associated eigenvector such U H = 1. Then v = λu, (3.3.1)

u xx -bz = λv, (3.3.2) z = λy, ( 3.3.3 
) Consequently, we have

y xx + bv = λz, (3.3.4) -(|ξ| 2 + η)ω + v(1)µ(ξ) = λω. ( 3 
ℜ(λ) = -γκ +∞ -∞ (|ξ| 2 + η)|ω| 2 dξ < 0.
The proof is thus complete.

Proposition 3.3.3.

There exists k 0 ∈ N * sufficiently large such that

σ(A) ⊃ σ 0 ∪ σ 1 ,
where

σ 0 = {λ k } k∈J , σ 1 = {λ k } |k|≥k 0 , σ 0 ∩ σ 1 = ∅.
Moerover, J is a finite set, and 

λ k = ikπ 2 + c 1 k 1-α + ic 2 k 1-α + o 1 k 1-α , where, for b = kπ c 1 = γ(-1) k (cos(b) -(-1) k ) cos( π 2 (1 -α)) 2 α π 1-α , c 2 = γ(-1) k+1 (cos b -(-1) k ) sin( π 2 (1 -α)) 2 α π 1-
u x (1) = -γλ(λ + η) α-1 u(1). ( 3.3.20) 
Using equations (3.3.17 

λ 2 y x (1) -γλ(λ + η) α-1 y xx (1) -y xxx (1) = 0, . (3.3.26)
We consider the characteristic equation, we get

t 4 -2λ 2 t 2 + λ 2 (λ 2 + b 2 ) = 0. (3.3.27)
The general solution of equation (3.3.19) is given by

y(x) = 4 i=1 c i e t i x , (3.3.28)
where

t 1 (λ) = √ λ 2 + ibλ, t 2 (λ) = -t 1 (λ), t 3 (λ) = √ λ 2 -ibλ and t 4 (λ) = -t 3 (λ).
Here and below, for simplicity we denote t i (λ) by t i . Thus the boundary conditions may be written as the following system

M (λ)C(λ) =        1 1 1 1 e t 1 e -t1 e t3 e -t3 t 2 1 t 2 1 t 2 3 t 2 3 g 1,λ (t 1 )e t 1 g 2,λ (t 1 )e -t 1 g 3,λ (t 3 )e t 3 g 4,λ (t 3 )e -t 3               c 1 c 2 c 3 c 4        = 0, (3.3.29)
where

             g 1,λ (t 1 ) = λ 2 t 1 -γλ(λ + η) α-1 t 2 1 -t 3 1 , g 2,λ (t 1 ) = -λ 2 t 1 -γλ(λ + η) α-1 t 2 1 + t 3 1 , g 3,λ (t 3 ) = λ 2 t 3 -γλ(λ + η) α-1 t 2 3 -t 3 3 , g 4,λ (t 3 ) = -λ 2 t 3 -γλ(λ + η) α-1 t 2 3 + t 3 3
Step 1. We start by the expansion of t 1 and t 3 :

t 1 = λ + ib 2 + b 2 8λ - i|b| 3 16λ 2 + O 1 λ 3 , (3.3.30) t 3 = λ - ib 2 + b 2 8λ + i|b| 3 16λ 2 + O 1 λ 3 . (3.3.31)
The determinant of M (λ) is given by

f (λ) = (t 2 1 -t 2
3 ) (g 2g 4 )e -(t 1 +t 3 ) + (g 1g 3 )e t 1 +t 3 + (g 3g 2 )e t 3 -t 1 + (g 4g 1 )e t 1 -t 3 , (3.3.32) where 

             g 2 -g 4 = λ 2 (t 3 -t 1 ) + γλ(λ + η) α-1 (t 2 3 -t 2 1 ) + t 3 1 -t 3 3 , g 1 -g 3 = λ 2 (t 1 -t 3 ) + γλ(λ + η) α-1 (t 2 3 -t 2 1 ) + t 3 3 -t 3 1 , g 3 -g 2 = λ 2 (t 1 + t 3 ) + γλ(λ + η) α-1 (t 2 1 -t 2 3 ) -(t 3 1 + t 3 3 ), g 4 -g 1 = -λ 2 (t 1 + t 3 ) + γλ(λ + η) α-1 (t 2 1 -t 2 3 ) + t 3 1 + t 3 3 . ( 3 
                               e -(t 3 +t 1 ) = e -2λ 1 - b 2 4λ + b 4 32λ 2 + O 1 λ 3 , e t 1 +t 3 = e 2λ 1 + b 2 4λ + b 4 32λ 2 + O 1 λ 3 , e t 3 -t 1 = e -ib 1 + ib 3 8λ 2 + O 1 λ 3 , e t 1 -t 3 = e ib 1 - ib 3 8λ 2 + O 1 λ 3 . ( 3 
                         g 2 -g 4 = 2ibλ 2 -2ibγλ 1+α -2ibγη(α -1)λ α + ib 3 4 + O 1 λ 1-α , g 1 -g 3 = -2ibλ 2 -2ibγλ 1+α -2ibγη(α -1)λ α - ib 3 4 + O 1 λ 1-α , g 3 -g 2 = 2ibγλ 1+α + b 2 λ + 2ibγη(α -1)λ α + O 1 λ 1-α , g 4 -g 1 = 2ibγλ 1+α -b 2 λ + 2ibγη(α -1)λ α + O 1 λ 1-α .
f (λ) = A + B + C + D, (3.3.36)
where

                       A = -4b 2 λ 3 e -2λ 1 - γ λ 1-α + O 1 λ , B = 4b 2 λ 3 e -2λ 1 + γ λ 1-α + O 1 λ , C = -4γb 2 λ 2+α e -ib 1 + O 1 λ α , D = -4γb 2 λ 2+α e ib 1 + O 1 λ α .
(3.3.37) Using (3.3.37), we find the following asymptotic expansion Step 2. We look at the roots of S(λ). It easy to check that the root of f 0 is given by

S(λ) = f (λ) 4b 2 λ 3 = f 0 (λ) + f 1 (λ) λ 1-α + O(1) λ , ( 3 
λ 0 k = iµ k , k ∈ Z, (3.3.40)
where µ k = 1 2 kπ. Since the real part of λ is bounded (see Proposition 3.3.2), then with help of Rouché's Theorem, and λ large enough, we show that the roots of S are close of those of f 0 . In the other words, there exists a sequence λ k of roots of f such that .3.41) This implies that the C 0 -semigroup of contraction e tA is not uniformly stable in the energy space H. On the other hand, we will find the real part of the eigenvalues λ k for b = kπ.

λ k = iµ k + o(1) as k → +∞. ( 3 
Step 3. From step 2, we can write

λ k = iµ k + ε k where ε k = o(1). (3.3.42)
Consequently, it follows from (3.3.39) and (3.3.42) that 

f 0 (λ k ) = 4(-1) k ε k + O(ε 2 k ), (3.3.43) f 1 (λ k ) = 2γ (-1) k -cos(b) + O (ε 2 k ) i 1-α k 1-α π 1-α , (3.3.44) and 1 i 1-α = cos π 2 (1 -α) -i sin π 2 (1 -α) . ( 3 
ε k = (-1) k γ cos(b) -(-1) k cos π 2 (1 -α) 2 α k 1-α π 1-α -i (-1) k γ cos(b) -(-1) k sin π 2 (1 -α) 2 α k 1-α π 1-α +o 1 k 2-α .
(3.3.46)

Non Uniform Stability for a = 1

In this subsection, we assume that a = 1, η > 0 and b verified condition (C). Our goal is to show that (3.2.5)-(3.2.10) is not exponentially stable. This result is due to the fact that a subsequence of eigenvalues of A is due to the imaginary axis. Theorem 3.3.4. Assume that a = 1 and b satisfies the condition (C). Then, the semigroup of contractions e tA is not uniformly stable in the energy space H.

For the proof of Theorem 3.3.4, we aim to show that an infinite of eigenvalues of A approach the imaginary axis. We determine the characteristic equation satisfied by the eigenvalues of A. For the aim, let λ ∈ C be an eigenvalue of A and let U = (u, v, y, z, ω) ⊤ ∈ D(A) be an associated eigenvector such that U H = 1. Then 

v = λu, ( 3 
λu 2 + λy 2 + u x 2 + a y x 2 + γκū(1) +∞ -∞ µ(ξ)ω(ξ)dξ + 2ibλℑ 1 0 yūdx = 0. (3.3.57)
Remark that λ = 0, indeed if λ = 0 it easy to check that U = 0. Multiplying equation (3.3.54) by ω, integrate over R and using the fact λ = 0, we get Consequently, we have

ω 2 + 1 λ +∞ -∞ (|ξ| 2 + η)|ω| 2 dξ = ū(1) +∞ -∞ µ(ξ)ω(ξ)dξ. ( 3 
ℜ(λ) = -γκ +∞ -∞ (|ξ| 2 + η)|ω| 2 dξ < 0.
The proof is thus complete. 

σ(A) ⊃ σ 0 ∪ σ 1 ,
where 

σ 1 = {λ m } m∈Z * ,|m|≥N ∪ {λ n } n∈Z * ,
ay xxxx -(a + 1)λ 2 y xx + λ 2 (λ 2 + b 2 )y = 0. (3.3.62)
Using the same fact in the case a = 1, then we get the following system We consider the characteristic equation defined by

ay xxxx -(a + 1)λ 2 y xx + λ 2 (λ 2 + b 2 )y = 0, ( 3 
at 4 -(a + 1)λ 2 t 2 + λ 2 (λ 2 + b 2 ) = 0. (3.3.68)
The general solution of equation (3.3.68) is given by

y(x) = 4 i=1 c i e r i x . (3.3.69)
where

                     r 1 (λ) = (a + 1)λ 2 + (a -1) 2 λ 4 -4ab 2 λ 2 2a , r 2 (λ) = -r 1 (λ), r 3 (λ) = (a + 1)λ 2 -(a -1) 2 λ 4 -4ab 2 λ 2 2a , r 4 (λ) = -r 3 (λ).
Here and bellow, for simplicity we denote r i (λ) by r i . Thus the boundary conditions may be
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M (λ)C(λ) =        1 1 1 1 e r1 e -r1 e r3 e -r3 r 2 1 r 2 1 r 2 3 r 2 3 f 1 (r 1 )e r1 f 2 (r 1 )e -r1 f 3 (r 3 )e r3 f 4 (r 3 )e -r3               c 1 c 2 c 3 c 4        = 0, (3.3.70)
where

             f 1 (r 1 ) = λ 2 r 1 -aγλ(λ + η) α-1 r 2 1 -ar 3 1 , f 2 (r 1 ) = -λ 2 r 1 -aγλ(λ + η) α-1 r 2 1 + ar 3 1 , f 3 (r 3 ) = λ 2 r 3 -aγλ(λ + η) α-1 r 2 3 -ar 3 3 , f 4 (r 3 ) = -λ 2 r 3 -aγλ(λ + η) α-1 r 2 3 + ar 3 3 (3.3.71)
Step 1. We start by the expansion of r 1 and r 3 :

r 1 = λ - b 2 2(a -1)λ - b 4 (5a -1) 8(a -1) 3 λ 3 + O 1 λ 5 (3.3.72) r 3 = λ √ a + √ ab 2 2(a -1)λ - a 2 b 4 (a -5) 8 √ a(a -1) 3 λ 3 + O 1 λ 5 . (3.3.73)
The determinant of M (λ) is given by

f (λ) = r 2 1 -r 2 3 (f 2 (r 1 ) -f 4 (r 3 
))e -(r 1 +r 3 ) + (f 1 (r 1 )f 3 (r 3 ))e r 1 +r 3 (f 3 (r 3 )f 2 (r 1 ))e r 3 -r 1 + (f 4 (r 3 )f 1 (r 1 ))e r 1 -r 3 , (3.3.74)

where where

                             f 2 (r 1 ) -f 4 (r 3 ) = λ 2 (r 3 -r 1 ) + aγλ(λ + η) α-1 (r 2 3 -r 2 1 ) + a (r 3 1 -r 3 3 ) , f 1 (r 1 ) -f 3 (r 3 ) = λ 2 (r 1 -r 3 ) + aγλ(λ + η) α-1 (r 2 3 -r 2 1 ) + a (r 3 3 -r 3 1 ) , f 3 (r 3 ) -f 2 (r 1 ) = λ 2 (r 1 + r 3 ) + aγλ(λ + η) α-1 (r 2 1 -r 2 3 ) -a (r 3 1 + r 3 3 ) , f 4 (r 3 ) -f 1 (r 1 ) = -λ 2 (r 1 + r 3 ) + aγλ(λ + η) α-1 (r 2 1 -r 2 3 ) + a (r 3 1 + r 3 3 ) . ( 3 
                                                 e -(r 1 +r 3 ) = e -λ 1+ 1 √ a 1 - b 2 ( √ a -1) 2(a -1)λ + b 4 ( √ a -1) 2 8(a -1) 2 λ 2 + O 1 λ 3 , e (r 1 +r 3 ) = e λ 1+ 1 √ a 1 + b 2 ( √ a -1) 2(a -1)λ + b 4 ( √ a -1) 2 8(a -1) 2 λ 2 + O 1 λ 3 , e r 3 -r 1 = e λ -1+ 1 √ a 1 + b 2 ( √ a + 1) 2(a -1)λ + b 4 ( √ a + 1) 2 8(a -1) 2 λ 2 + O 1 λ 3 , e r 1 -r 3 = e λ 1-1 √ a 1 - b 2 ( √ a + 1) 2(a -1)λ + b 4 ( √ a + 1) 2 8(a -1) 2 λ 2 + O 1 λ 3 . ( 3 
                                                                         f 2 (r 1 ) -f 4 (r 3 ) = λ 3 (a -1) + γ(1 -a)λ 2+α + aγη(α -1)λ 1+α + b 2 (1 -2 √ a -3a)λ 2(a -1) + O(λ α ) f 1 (r 1 ) -f 3 (r 3 ) = λ 3 (1 -a) + γ(1 -a)λ 2+α + aγη(α -1)λ 1+α + b 2 (-1 + 2 √ a + 3a)λ 2(a -1) + O(λ α ) f 3 (r 3 ) -f 2 (r 1 ) = λ 3 (1 -a) + γ(a -1)λ 2+α + aγη(1 -α)λ 1+α + b 2 (-1 -2 √ a + 3a)λ 2(a -1) + O(λ α ) f 4 (r 3 ) -f 1 (r 1 ) = λ 3 (1 -a) + γ(a -1)λ 2+α + aγη(1 -α)λ 1+α + b 2 (1 + 2 √ a -3a)λ 2(a -1) + O(λ α ).
                                                 A = λ 5 (a -1) 2 a e -λ 1+ 1 √ a 1 - γ λ 1-α - b 2 ( √ a -1) 2(a -1)λ + O 1 λ 2-α , B = λ 5 (a -1) 2 a e λ 1+ 1 √ a -1 - γ λ 1-α - b 2 ( √ a -1) 2(a -1)λ + O 1 λ 2-α , C = λ 5 (a -1) 2 a e λ -1+ 1 √ a -1 + γ λ 1-α - b 2 ( √ a + 1) 2(a -1)λ + O 1 λ 2-α , D = λ 5 (a -1) 2 a e λ 1-1 √ a 1 + γ λ 1-α - b 2 ( √ a + 1) 2(a -1)λ + O 1 λ 2-α . (3.3.79)
Using equation (3.3.79), we find the following asymptotic expansion

h(λ) = af (λ) (a -1) 2 λ 5 = f 0 (λ) + f 1 (λ) λ 1-α + f 2 (λ) λ + O 1 λ 2-α , (3.3.80)
where

                                         f 0 (λ) = e -λ 1+ 1 √ a -e λ 1+ 1 √ a -e λ 1 √ a -1 + e λ 1-1 √ a , f 1 (λ) = γ -e -λ 1+ 1 √ a -e λ 1+ 1 √ a + e λ 1 √ a -1 + e λ 1-1 √ a , f 2 (λ) = -b 2 2(a -1) ( √ a -1) e -λ 1+ 1 √ a + e λ 1+ 1 √ a +( √ a + 1) e λ 1 √ a -1 + e λ 1-1 √ a (3.3.81)
Step 2. We look at the roots of h(λ). It easy to check that

f 0 (λ) = e λ 1+ 1 √ a 1 + e -2λ -1 + e -2λ √ a . (3.3.82)
Then the roots of f 0 is given by

λ 0 m = i m + 1 2 π and/ or λ 0 n = inπ √ a m, n ∈ Z.
Since the real part of λ is bounded, then with help of Rouch'é's Theorem, and λ large enough, we show that the roots of h(λ) are close of those of f 0 (λ). In the other words, there exists a sequence λ k of roots of f such that 1) and/or λ n = inπ √ a + o(1) as m, n → +∞. (3.3.83) This implies that the C 0 -semigroup of contraction e tA is not uniformly stable in the energy space for a = 1, η > 0 and b verified (C).

λ m = i m + 1 2 π + o(

Polynomial Stability

Polynomial Stability for a = 1

In this subsection, assume that a = 1 and η > 0 and b satisfy the condition (C1), we study the asymptotic behavior of solution of system (3.2.5)-(3.2.10) for 2 distinguish cases (b = kπ and b = kπ) for all k ∈ Z. Our main result is the following theorem. Theorem 3.4.1. Assume that η > 0, a = 1 and b satisfies condition (C). Then, for all initial data U 0 ∈ D(A), there exists a constant C > 0 independent of U 0 , such that the energy of the strong solution U of satisfies the following estimation

E(t) ≤ C 1 t ℓ(α) U 0 2 D(A) , ∀t > 0, (3.4.1)
where

ℓ(α) =    1 3-α if a = 1 and b = kπ, 1 1-α if a = 1 and b = kπ,
In particular, for U 0 ∈ H, the energy E(t, U ) converges to zero at t goes to infinity. (H2) Condition (H1) was already proved, we will prove (H3) using an argument of contradiction. Suppose that (H2) is false, then there exist a real sequence (λ n ) and a sequence U n = (u n , v n , y n , z n , ω n ) ∈ D(A), verifying the following conditions 

|λ n | -→ +∞, U n = (u n , v n , y n , z n , ω n ) = 1, (3.4.2) λ ℓ n (iλ n I -A)U n = (f n 1 , g n 1 , f n 2 , g n 2 , f n 3 ) -→ 0 in H. ( 3 
iλ n u n -v n = f n 1 λ ℓ n -→ 0 in H 1 L (0, 1), (3.4.4) iλ n v n -u n xx + bz n = g n 1 λ ℓ n -→ 0 in L 2 (0, 1), (3.4.5) iλ n y n -z n = f n 2 λ ℓ n -→ 0 in H 1 0 (0, 1), (3.4.6) iλ n z n -y xx -bv n = g n 2 λ ℓ n -→ 0 in L 2 (0, 1), (3.4.7) iλ n ω n + (ξ 2 + η)ω n -v n (1)µ(ξ) = f n 3 (ξ) λ ℓ n -→ 0 in L 2 (R). (3.4.8)
Multiply in H equation (3.4.3) by the uniformly bounded sequence

U n = (u n , v n , y n , z n , ω n ), we get -γκ +∞ -∞ (ξ 2 + η)|ω n | 2 dξ = ℜ ( (iλ n I -A)U n , U n H ) = o(1) λ ℓ n . (3.4.9)
For the simplicity, we drop the index n. Multiplying equation (3.4.8) by (iλ + |ξ| 2 + η) -1 µ(ξ), tacking the absolute values of both sides, integrating over R with respect to the variable ξ and applying Cauchy-Shwartz inequality, we obtain

A 1 |v(1)| ≤ A 2 (|ξ| 2 + η)|ω| 2 dξ 1 2 + 1 |λ| ℓ A 3 R |f 3 (ξ)|dξ 1 2 (3.4.11)
where

A 1 = R |µ(ξ)| 2 |λ| + |ξ| 2 + η dξ, A 2 = R |µ(ξ)| 2 |ξ| 2 + η dξ 1 2
and

A 3 = R |µ(ξ)| 2 (|λ| + |ξ| 2 + η) 2 dξ 1 2
.

For α ∈]0, 1[, from lemma 1.6.2, we have Furthermore, we have 

A 1 = c 2 (|λ| + η) α-1 A 2 = c 2 and A 3 = c 3 (|λ| + η) α 2 -1 , ( 3 
|u x (1)| ≤ γκ +∞ -∞ µ(ξ)ω(ξ)dξ ≤ γκ +∞ -∞ (ξ 2 + η) -1 2 µ(ξ)(ξ 2 + η) 1 2 ω(ξ)dξ ≤ γκ +∞ -∞ (ξ 2 + η) -1 |µ(ξ)| 2 1 2 +∞ -∞ (ξ 2 + η)|ω| 2 dξ 1 2 . (3.4.15) For α ∈]0, 1[, we have +∞ -∞ (ξ 2 + η) -1 |µ(ξ)| 2
- 1 0 h ′ |λu| 2 dx - 1 0 h ′ |u x | 2 dx - 1 0 h ′ |λy| 2 dx - 1 0 h ′ |y x | 2 dx + h(1)|y x (1)| 2 -h(0)|y x (0) 2 | -h(0)|u x (0)| 2 = o(1) λ ℓ+2α-2 + O(1)
λ . 

λ 2 u + u xx -iλby = - g 1 + iλf 1 + bf 2 λ ℓ , (3.4.19) λ 2 y + y xx + iλbu = - g 2 + iλf 2 -bf 1 λ ℓ . (3.4.20)
Multiplying equation (3.4.19) by 2hū x , integrate by part and using Lemma 3.4.2, we get

- 1 0 h ′ |λu| 2 dx - 1 0 h ′ |u x | 2 dx -h(0)|u x (0)| 2 + 2iλb 1 0 hy x ūdx = o(1) λ ℓ-2+2α + O(1) λ . (3.4.21)
Multiplying equation (3.4.20) by 2hȳ x , integrate by part and using lemma 3.4.2, we get where

- 1 0 h ′ |λy| 2 dx - 1 0 h ′ |y x | 2 dx + h(1)|y x (1)| 2 -h(0)|y x (0)| 2 + 2iλb
δ =    ℓ -2 + 2α if b / ∈ πZ, ℓ + 2α -6 if b ∈ πZ.
Proof: Let Y = (u, u x , y, y x ), then system (3.4.19) and (3.4.20), could be written as

Y x = BY + F, (3.4.24)
where 

B =        0 1 0 0 -λ 2 0 iλb 0 0 0 0 1 -iλb 0 -λ 2 0        and F =          0 - g 1 + iλf 1 + bf 2 λ ℓ 0 - g 2 + iλf 2 -bf 1 λ ℓ          . ( 3 
                                                     b 11 = λ (λ(t 1 -t 2 ) + b(t 1 + t 2 )) (e t 1 + e -t 1 + e t 2 + e -t 2 ) 4t 1 t 2 (t 1 -t 2 ) , b 12 = λb(e t 1 -e -t 1 + e t 2 -e -t 2 ) + (λ 2 + t 1 t 2 )(e t 1 -e -t 1 -e t 2 + e -t 2 ) 4t 1 t 2 (t 1 -t 2 ) , b 13 = i 4 e t 1 + e -t 1 -e t 2 -e -t 2 , b 14 = i 4t 1 t 2 t 2 e t 1 -e -t 1 -t 1 e t 2 -e -t 2 , b 21 = -λ 4t 1 t 2 (t 1 -t 2 ) (λ -b)(t 1 t 2 + λ 2 + λb) e t 1 -e -t 1 -(λ + b)(t 1 t 2 + λ 2 -λb)(e t 2 -e -t 2 ) , b 23 = -iλ 4t 1 t 2 (t 1 -t 2 ) (λ -b)(t 1 t 2 + λ 2 + λb)(e t 1 -e -t 1 ) + (λ + b)(t 1 t 2 + λ 2 -λb)(e t 2 -e -t 2 ) ,
where t 1 = √ bλλ 2 and t 2 = √ -bλλ 2 . Performing advanced calculation for the exponential of matrix B and -B, we obtain the following matrix

e B =         A 1 1 λ A 2 -b 2λ 2 A 4 + b 4 A 1 iA 3 -i λ A 4 -ib 2λ 2 b 4 A 3 -A 2 b 2 b 4 A 1 -A 4 A 1 ib 2 A 2 + b 4 A 3 iA 3 -iA 3 i λ A 4 + ib 2λ 2 b 4 A 3 -A 2 A 1 1 λ A 2 -b 2λ 2 A 4 + b 4 A 1 -ib 2 A 2 + b 4 A 3 -iA 3 b 2 b 4 A 1 -A 4 A 1         +        0 0 0 0 -λA 2 0 iλA 4 0 0 0 0 0 iλA 4 0 -λA 2 0        +        o(1) O 1 λ 3 o(1) O 1 λ 3 o(1) o(1) o(1) o(1) o(1) O 1 λ 3 o(1) O 1 λ 3 o(1) o(1) o(1) o(1)        , Mohammad AKIL
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e -B =         A 1 -1 λ A 2 + b 2λ 2 A 4 + b 4 A 1 iA 3 i λ A 4 + ib 2λ 2 b 4 A 3 + A 2 -b 2 b 4 A 1 -A 4 A 1 -ib 2 A 2 + b 4 A 3 iA 3 iA 3 i λ A 4 + ib 2λ 2 b 4 A 3 -A 2 A 1 -1 λ A 2 + b 2λ 2 A 4 + b 4 A 1 -ib 2 A 2 + b 4 A 3 iA 3 -b 2 b 4 A 1 -A 4 A 1         +        0 0 0 0 λA 2 0 -iλA 4 0 0 0 0 0 iλA 4 0 +λA 2 0        +        o(1) O 1 λ 3 o(1) O 1 λ 3 o(1) o(1) o(1) o(1) o(1) O 1 λ 3 o(1) O 1 λ 3 o(1) o(1) o(1) o(1)       
, where,

A 1 = cos(λ) cos b 2 , A 2 = sin(λ) cos b 2 , A 3 = sin(λ) sin b 2 and A 4 = cos(λ) sin b 2 .
On the another hand, using Lemma 3.4.2, we get

Y (1) = o(1) λ ℓ 2 +α , o (1) λ ℓ 2 , 0, y x (1) ⊤ . (3.4.29) 
Using the expression of e B and e -B , we get

e -B 1 0 e B(1-z) F (z)dz = o(1) λ ℓ , o(1) λ ℓ-1 , o(1) λ ℓ , o(1) λ ℓ-1 ⊤ . ( 3.4.30) 
Using equations (3.4.28)-(3.4.30), we get Consequently, squaring equations (3.4.33) and (3.4.35), tacking the sum and using the fact

1 λ A 2 y x (1) - b 2λ 2 A 4 + b 4 A 1 y x (1) = o(1) λ ℓ 2 +α , (3.4.31) 
1 λ A 4 y x (1) + ib 2λ 2 b 4 A 3 + A 2 y x (1) = o(1)
A 2 3 + A 2 4 = sin 2 b 2 , we get |y x (1)| 2 = o(1) λ ℓ+2α-6 .
The same proof for b = 2sπ. Case 2 : Suppose that b = kπ, then from equations (3.4.31) and (3.4.32), we get 

1 λ A 4 y x (1) = o(1) λ ℓ 2 +α , (3.4.36) 1 λ A 2 y x (1) = o(1) λ ℓ 2 +α . (3.4.37) (3.4.38) 
- 1 0 h ′ |λu| 2 dx - 1 0 h ′ |u x | 2 dx - 1 0 h ′ |λy| 2 dx - 1 0 h ′ |y x | 2 dx = o(1). (3.4.45)
In the another hand, we have 

+∞ -∞ |ω| 2 dξ ≤ 1 η +∞ -∞ (ξ 2 + η)|ω| 2 dξ = o(1) λ 6-2α . ( 3 
Choose h = x in equation (3.4.18) and using equation (3.4.47), we get

- 1 0 h ′ |λu| 2 dx - 1 0 h ′ |u x | 2 dx - 1 0 h ′ |λy| 2 dx - 1 0 h ′ |y x | 2 dx = o(1). (3.4.48)
In the another hand, we have

+∞ -∞ |ω| 2 dξ ≤ 1 η +∞ -∞ (ξ 2 + η)|ω| 2 dξ = o(1) λ ℓ . ( 3.4.49) 
Using equations (3.4.9) and (3.4.48), we get U H = o(1) which contradicts (3.4.3). This implies that sup

λ∈R (iλI -A) L(H) = O(λ 2-2α ).

Polynomial Stability in the general case i.e. a = 1

In this subsection, assume a = 1, η > 0 and b satisfy the condition (C). We study the asymptotic behavior of system (3.2.5)-(3.2.10). Our main result is the following theorem Theorem 3.4.5. Assume that η > 0, a = 1 and b satisfies condition (C). If (a ∈ Q and b small enough) or √ a ∈ Q, then, for all initial data U 0 ∈ D(A), there exists a constant C > 0 Chapter 3. The influence of the coefficients of a system of wave equations coupled by velocities with one fractional damping on its indirect boundary stabilization independent of U 0 such that the energy of the strong solution U of (3.2.11) satisfies the following estimation

E(t) ≤ C 2 t 1 3-α U 0 2 D(A) , ∀t > 0. (3.4.50)
In particular, for U 0 ∈ H, the energy E(t, U ) converges to zero as t goes to infinity.

Proof: Following Borichev and Tomilov, a C 0 -semigroup of contractions e tA on a Hilbert space verify iR ⊂ ρ(A) (H1) and sup

λ∈R 1 |λ| ℓ (iλI -A) -1 < +∞. ( H2 
)
Condition (H1) was already proved, we will prove (H2) using an argument of contradiction. Suppose that (H2) is false, then there exist a real sequence (λ n ) and a sequence

U n = (u n , v n , y n , z n , ω n ) ∈ D(A), verifying the following conditions |λ n | -→ +∞, U n = (u n , v n , y n , z n , ω n ) = 1, (3.4.51) 
λ ℓ n (iλ n I -A)U n = (f n 1 , g n 1 , f n 2 , g n 2 , f n 3 ) -→ 0 in H. (3.4.52) 
Detailing equation (3.4.52), we get

iλ n u n -v n = f n 1 λ ℓ n -→ 0 in H 1 L (0, 1), (3.4.53 
)

iλ n v n -u n xx + bz n = g n 1 λ ℓ n -→ 0 in L 2 (0, 1), (3.4.54 
)

iλ n y n -z n = f n 2 λ ℓ n -→ 0 in H 1 0 (0, 1), (3.4.55 
)

iλ n z n -ay n xx -bv n = g n 2 λ ℓ n -→ 0 in L 2 (0, 1), (3.4.56 
) 

iλ n ω n + (ξ 2 + η)ω n -v n (1)µ(ξ) = f n 3 (ξ) λ ℓ n -→ 0 in L 2 (-∞, +∞). ( 3 
λ 2 u + u xx -iλby = - g 1 + iλf 1 + bf 2 λ ℓ , ( 3.4.58) 
λ 2 y + ay xx + iλbu = - g 2 + iλf 2 -bf 1 λ ℓ , . (3.4.59) 
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Let Y = (u, u x , y, y x ), then system (3.4.58) and (3.4.59), could be written as

Y x = BY + F. ( 3.4.60) 
Where

B =        0 1 0 0 -λ 2 0 iλb 0 0 0 0 1 -iλb a 0 -λ 2 a 0        , F =        0 -g 1 +iλf 1 +f 2 λ ℓ 0 -g 2 +iλg 1 -bf 1 λ ℓ        and Y 0 =        0 u x (0) 0 y x (0)        .
The solution of equation (3.4.60) at 1 is given by

Y (1) = e B Y 0 + 1 0 e B(x-z) F (z)dz, (3.4.61) 
from equation (3.4.61), we obtain

e -B Y (1) = Y 0 + e -B 1 0 e B(1-z) F (z)dz, (3.4.62) 
where 

e B =       
                                                                                       b 11 = ((a -1)λ + ∆)(e t 1 + e -t 1 ) + ((1 -a)λ + ∆)(e t 2 + e -t 2 ) 4∆ , b 12 = a √ 2 (((a -1)λ -∆)t 1 (e -t 2 -e t 2 ) + ((a -1)λ + ∆)t 2 (e t 1 -e -t 1 )) 4t 1 t 2 ∆ , b 13 = iab 2∆ e t 2 + e -t 2 -e t1 -e -t 1 , b 14 = -ia 2 b √ 2 2t 1 t 2 ∆ t 2 e t 1 -e -t 1 -t 1 e t 2 -e -t 2 , b 21 = -aλ √ 2 (((a -1)λ 2 + λ∆ + 2b 2 ) t 2 (e t 1 -e -t 1 ) + ((a -1)λ 2 + λ∆ -2b 2 ) t 1 (e t 2 -e -t 2 )) 4t 1 t 2 ∆ , b 23 = iabλ √ 2 (((a + 1)λ + ∆) t 2 (e t 1 -e -t 1 )) + ((∆ -(a + 1)λ) t 1 (e t 2 -e -t 2 )) 4t 1 t 2 ∆ , b 33 = ((1 -a)λ + ∆) (e t 1 + e -t 1 ) + ((a -1)λ + ∆) (e t 2 + e -t 2 ) 4∆ , b 34 = a √ 2 (((a -1)λ + ∆) t 1 (e t 2 -e -t 2 ) + ((1 -a)λ + ∆) t 2 (e t 1 -e -t 1 )) 4t 1 t 2 ∆ , b 43 = λ √ 2 (((1 -a)λ 2 -λ∆ + 2ab 2 ) t 1 (e t 2 -e -t 2 ) + ((a -1)λ 2 -λ∆ -2ab 2 ) t 2 (e t 1 -e -t 1 )) 4t 1 t 2 ∆ ,
where

t 1 = -2aλ ((a + 1)λ + ∆) 2 , t 2 = 2aλ (∆ -(a + 1)λ) 2 and ∆ = (a -1) 2 λ 2 + 4ab 2 .
Performing advanced calculation for the exponential of matrix B and -B, we obtain the following matrix

e B =         cos(λ) 0 0 0 -λ sin(λ) -b 2 2(a-1) cos(λ) cos(λ) ib (a-1) a sin(λ) - √ a sin λ √ a 0 0 0 cos λ √ a 0 -ib a(a-1) a sin(λ) - √ a sin λ √ a 0 -λ √ a sin λ √ a + b 2 2(a-1) cos λ √ a cos λ √ a         +(o ij ),
where

o ij = O(1) λ .
In particular, we have

o 14 = iab (a -1)λ 2 sin(λ) + √ a sin λ √ a + iab 3 2(a -1) 2 λ 3 cos(λ) -a cos λ √ a + O(1) λ 4 , o 31 = - ib (a -1)λ cos λ √ a -cos(λ) + O(1) λ 2 , o 32 = - ib (a -1)λ 2 sin(λ) + √ a sin λ √ a + O(1) λ 3 , o 34 = √ a λ sin λ √ a - ab 2 2(a -1)λ 2 cos λ √ a + O(1) λ 3 .
Our aim is to show that y x (1) = o(1), suppose that y x (1) = 1. Using the expression of e B , e -B , F and Lemma 3.4.2 we get 

e -B 1 0 e B(1-z) F (z)dz = o(1) λ ℓ , o(1) λ ℓ-1 , o(1) λ ℓ , o (1) λ ℓ-1 ⊤ (3.4.63) 
iab (a -1)λ 2 sin(λ) + √ a sin λ √ a + iab 3 2(a -1) 2 λ cos(λ) -a cos λ √ a + O(1) λ 4 + o(1) λ ℓ 2 +α + o(1) λ ℓ = 0, (3.4.65) 
and

- √ a λ sin λ √ a + ab 2 2(a -1)λ 2 cos λ √ a + O(1) λ 3 + o(1) λ ℓ 2 +α + o(1) λ ℓ = 0 (3.4.66)
Multiplying equations (3.4.65) and (3.4.66) by λ 2 and -λ √ a respectively, we get 

sin λ + b 2 2(a -1)λ = O(1) λ 2 + o(1) λ ℓ 2 +α-2 + o(1) λ ℓ-2 , (3.4.67) sin λ √ a - b 2 √ a 2(a -1)λ = O(1) λ 2 + o(1) λ ℓ 2 +α-1 + o(1) λ ℓ-1 . ( 3 
λ = nπ - b 2 2(a -1)λ + O(1) λ + o(1) λ min( ℓ 2 +α-2,ℓ-2) (3.4.69) λ √ a = mπ + √ ab 2 2(a -1)λ + O(1) λ 2 + o(1) λ min( ℓ 2 +α-1,ℓ -1) 
λ 2 = n 2 π 2 - b 2 a -1 + O(1) λ + o(1) λ min( ℓ 2 +α-3,ℓ-3) , ( 3.4.71 
) 

λ 2 = am 2 π 2 + ab 2 a -1 + O(1) λ + o(1) λ min( ℓ 2 +α-2,ℓ-2) . ( 3 
n 2 π 2 -am 2 π 2 = b 2 a + 1 a -1 + O(1) λ + o(1) λ min( ℓ 2 +α-3,ℓ -3) 
.

(3.4.73)

Take ℓ = 6 -2α in equation (3.4.73), we get

n 2 π 2 -am 2 π 2 = b 2 a + 1 a -1 + O(1) λ + o(1). (3.4.74)
We distinguish three case. Indeed, Case 1 : Assume that there exists p 0 , q 0 ∈ Z such that a =

p 2 0 q 2 0 = n 2 m 2 .
Then from equation (3.4.74), we get the following contradiction

0 = b 2 a + 1 a -1 + O(1) λ + o(1). Case 2 : If a = p 2 0 q 2 0 = n 2 m 2 .
Then from equation (3.4.74), we get

n 2 - p 2 0 q 2 0 m 2 = b 2 π 2 a + 1 a -1 + o(1) + O(1) λ .
Equivalently, we obtain

nq 0 -p 0 m q 0 = b 2 π 2 a + 1 a -1 q 0 n 0 q 0 + p 0 m + o(1) λ + O(1) λ 2 . ( 3 
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Them, we get the following contradiction

1 q 0 ≤ O(1) λ + o(1).
Consequently, from Case 1 and Case 2, the system is polynomially stable for √ a ∈ Q.

Case 3 : Assume that there exists p 0 , q 0 ∈ Z such that a = p 0 q 0 and a = p 2 q 2 for all p, q ∈ Z. Then from equation (3.4.74), we have

q 0 n 2 -p 0 m 2 q 0 ≤ b 2 π 2 a + 1 a -1 + O(1) λ + o(1). (3.4.76)
Since b is small enough, we can assume that

b 2 ≤ π 2 (a -1) 2q 0 (a + 1) . (3.4.77)
Consequently, using equations (3.4.76) and (3.4.77), we get the following contradiction

1 2q 0 ≤ 1 q 0 - b 2 (1 + a √ a) π(a -1) ≤ O(1) λ + o(1). ( 3.4.78) 
Finally, the system is polynomially stable for a ∈ Q and b small enough.

Conclusion

We have studied the influence of the coefficients on the indirect stabilisation ba a fractional derivative control in the sense of Caputo of order α ∈ (0, 1) and η ≥ 0 of a system of wave equation coupled via the velocity terms. If the wave speeds are equal (a = 1), η > 0 and if the coupling parameter b = kπ (resp.b = kπ), k ∈ Z and it is outside a discrete set of exceptional values, a non-uniform stability is expected. Then, using a frequency domain approach combining with a multiplier method, we have proved a polynomial energy decay rate of type 1

t 1 1-α (resp. 1 t 1 3-α
). In the general case, when a = 1 a non uniform stability is expected. Finally, if √ a is a rational number or (a is a rational number and b is small enough) and if b is outside another discrete set of exceptional values, using a frequency domain approach, we proved a polynomial energy decay rate of type 1

t 1 3-α
. But, it is interesting to remark that both energy decay in Theorem 3.4.1 (resp. Theorem 3.4.5) approach 1 t and (resp. 1 √ t ) as α → 1 which is the energy decay given in [START_REF] Nadine | Étude de la stabilisation exponentielle et polynomiale de certains systèmes d'équations couplées par des contrôles indirects bornés ou non bornés[END_REF]. We conjecturer that the remaining cases could be analyzed in the same way with a slower polynomial decay rate.

Introduction

Let Ω be a bounded domain of R d , d ≥ 2, with a Lipschitz boundary Γ = Γ 0 ∪ Γ 1 , with Γ 0 and Γ 1 open subsets of Γ such that Γ 0 ∩ Γ 1 = ∅ and Γ 1 is non empty. We consider the multidimensional coupled wave equations u tt -∆u + by t = 0, in Ω × R + , (4.1.1)

y tt -a∆y -bu t = 0, in Ω × R + , (4.1.2) u = 0, on Γ 0 × R + , ( 4.1.3) 
y = 0, on Γ × R + , (4.1.4) ∂u ∂ν + γ∂ α,η t u = 0, on Γ 1 × R + , ( 4.1.5) 
where ν is the unit outward normal vector along the boundary Γ 1 , γ is a positive constant involved in the boundary control, a > 0 and b ∈ R * . The notation ∂ α,η t stands the generalized Caputo's fractional derivative see [START_REF] Caputo | Vibrations of an infinite plate with a frequency independant[END_REF] of order α with respect to the time variable and is defined by

∂ α,η t ω(t) = 1 Γ(1 -α) t 0 (t -s) -α e -η(t-s) dω ds (s)ds, 0 < α < 1, η ≥ 0.
The system (4.1.1)-(4.1.5) is considered with initial conditions

u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x) where x ∈ Ω, (4.1.6) 
y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x) where x ∈ Ω, (
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The fractional derivative operator of order α, 0 < α < 1, is defined by

[D α f ](t) = t 0 (t -τ ) -α Γ(1 -α) df dτ (τ )dτ. (4.1.8)
The fractional differentiation is inverse operation of fractional integration that is defined by

[I α f ](t) = t 0 (t -τ ) α-1 Γ(α) f (τ )dτ, 0 < α < 1. (4.1.9) 
From equations (4.1.8), (4.1.9), clearly

[D α f ] = I 1-α Df. (4.1.10)
Now, we present marginally distinctive forms of (4.1.8) and (4.1.9). These exponentially modified fractional integro-differential operators an will be denoted by us follows

[D α,η f ](t) = 1 0 (t -τ ) -α e -η(t-τ ) Γ(1 -α) df dτ (τ )dτ (4.1.11)
and

[I α,η f ](t) = t 0 (t -τ ) α-1 e -η(t-τ ) Γ(α) f (τ )dτ. (4.1.12) 
Note that the two operators D α and D α,η differ just by their Kernels. D α,η is merely Caputo's fractional derivative operator, expect for its exponential factor. Thus, similar to identity (4.1.10), we do have

[D α,η f ] = I 1-α,η Df. (4.1.13)
The order of our derivatives is between 0 and 1.

The boundary fractional damping of the type ∂ α,η t u where 0 < α < 1, η ≥ 0 arising from the material property has been used in several applications such as in physical, chemical, biological, ecological phenomena. For more details we refer the readers to [START_REF] Mbodje | Wave energy decay under fractional derivative controls[END_REF], [START_REF] Mbodje | Boundary fractional derivative control of the wave equation[END_REF], [START_REF] Bagley | A different approach to the analysis of viscoelasticity damped structures[END_REF], [START_REF] Bagley | On the appearance of the fractional derivative in the behavior of real material[END_REF], [START_REF] Bagley | A theoretical basis for the application of fractional calculus to viscoelasticity[END_REF] and [START_REF] Mainardi | The applications of real order derivatives in linear viscoelasticityl[END_REF]. In theoretical point of view, fractional derivatives involves singular and non-integrable kernels (t -α , 0 < α < 1). This leads to substantial mathematical difficulties since all the previous methods developed for convolution terms with regular and/or integrable kernels are no longer valid. There are a few number of publications concerning the stabilization of distributed system with fractional damping. In [START_REF] Mbodje | Wave energy decay under fractional derivative controls[END_REF], B. Mbodje considered a 1d wave equation with boundary damping fractional damping acting on a part of the boundary of the domain :

                   ∂ 2 t u(x, t) -∂ 2 x u(x, t) = 0, 0 < x < 1, t > 0, u(0, t) = 0. ∂ x u(1, t) = -γ∂ α,η t u(1, t), 0 < α < 1, η ≥ 0, u(x, 0) = u 0 (x), ∂ t u(x, 0) = v 0 (x), (4.1.14)
Firstly, he proved that system (4.1.14) is not uniformly stable, on other words its energy has no exponential decay rate. However, using LaSalle's invariance principle, he proved that system (4.1.14) is strongly stable for usual initial data. Secondly, he established a polynomial energy decay rate of type 1 t for smooth initial data. In [START_REF] Akil | Stabilization of multidimensional wave equation with locally boundary fractional dissipation law[END_REF], we considered a multidimensional wave equation with boundary fractional damping acting on a part of the boundary of the domain :

                     u tt -∆u = 0, in Ω × R + , u = 0, on Γ 0 × R + , ∂u ∂ν + γ∂ α,η t = 0, on Γ 1 × R + , u(x, 0) = u 0 (x) in Ω, u t (x, 0) = u 1 (x), in Ω. (4.1.15) 
Firstly, combining a general criteria of Arendt and Batty with Holmgren's theorem we showed the strong stability of system(4.1.15) in the absence of the compactness of the resolvent and without any additional geometric conditions. Next, we show that our system is not uniformly stable in general, since it is the case of the interval. Hence, we look for a polynomial decay rate for smooth initial data for our system by applying a frequency domain approach combining with a multiplier method. Indeed, by assuming that the boundary control region satisfy the Geometric Control Condition (GCC ) and by using the exponential decay of the wave equation with a standard damping

∂ ν u(x, t) + u t (x, t) = 0, on γ 1 × R * +
we established a polynomial energy decay rate for smooth solutions, which depends on the order of the fractional derivative. In [START_REF] Dai | Exponential growth for wave equation with fractional boundary dissipation and boundary source term[END_REF], Zhang and Dai considered the multidimensional wave equation with boundary source term and fractional dissipation defined by

                     u tt -∆u = 0, x ∈ Ω t > 0, u = 0, x ∈ Γ 0 t > 0, ∂u ∂µ + ∂ α t u = |u| m-1 u, x ∈ Γ 1 t > 0, u(x, 0) = u 0 , x ∈ Ω, u t (x, 0) = u 1 (x), x ∈ Ω (4.1.16)
where m > 1. They proved by Fourrier transforms and the Hardy-Littelwood-Sobolev inequality the exponential stability for sufficiently large initial data.

In [START_REF] Achouri | The euler-bernoulli beam equatin with boundary dissipation of fractional derivative type[END_REF], Benaissa and al. considered the Euler-Bernoulli beam equation with boundary dissipation of fractional derivative type defined by

             ϕ tt (x, t) + ϕ xxxx (x, t) = 0, in ]0, L[×]0, +∞[, ϕ(0, t) = ϕ x (0, t) = 0, in ]0, +∞[, ϕ xx (L, t) = 0, in ]0, +∞, ϕ xxx (L, t) = γ∂ α,η t ϕ(L, t), in ]0, +∞[ (4.1.17) 
where 0 < α < 1, η ≥ 0 and γ > 0. They proved, under the condition η = 0, by a spectral analysis, the non uniform stability. On the other hand, for η > 0, they also proved that the energy of system (4.1.17) decay as time goes to infinity as 1

t 1 1-α .
In [START_REF] Alabau-Boussouira | Indirect boundary stabilization of weakly coupled hyperbolic systems[END_REF] see also ([5]- [START_REF] Alabau-Boussouira | Indirect internal stabilization of weakly coupled evolution equations[END_REF]), Alabau-Boussouira studied the boundary indirect stabilization of a system of two level second order evolution equations coupled through the zero order terms. The lack of uniform stability as proved in the case where the ratio of the wave propagation speeds of the two equation is equal to 1 k 2 with k being an integer and Ω os a cubic domain in R 3 , or by a compact perturbation argument and a polynomial energy decay rate of type 1 √ t is obtained by a general integral inequality in the case where the wave propagates at the same speed and Ω is a star-shaped domain in R N . These results are very interesting but not optimal. In [START_REF] Ammari | Stabilization of coupled systems[END_REF], Ammari and Mehrenberger, gave a characterization of the stability of a system of two evolution equations coupling through the velocity terms subject one bounded viscous feedbacks. In [START_REF] Liu | Frequency domain approach for the polynomial stability of a system of partially damped wave equations[END_REF] Liu and Rao, considered a system of two coupled wave equations with one boundary damping described by

                   u tt -a∆u + αy = 0, in Ω × R + , y tt -∆y + αu = 0, in Ω × R + , a∂ ν u + γu + u t = 0, on Γ 1 × R + , u = 0, on Γ 0 × R + , y = 0, on Γ × R + (4.1.18)
dary feedbacks described by The polynomial energy decay rate occurs in many control problems where the open-loop systems are strongly stable, but not exponentially stable (see [START_REF]Mathematical control theory of coupled pde's[END_REF]). We quote [START_REF] Lebeau | Equation des ondes amorties[END_REF], [START_REF] Lebeau | Stabilisation de l'équation des ondes par le bord[END_REF] for wave equations with local internal or boundary damping, [START_REF] Bátkai | Polynomial stability of operator semigroup[END_REF] and [START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF]for abstract system, [START_REF] Russell | A general framework for the study of indirect damping mechanisms in elastic systems[END_REF], [START_REF] Zhang | Polynomial decay and control of a 1-d hyperbolic-parabolic coupled system[END_REF] for systems of coupled wave-heat equations.

                   u tt -∆u + by t = 0, in Ω × R + , y tt -a∆y -bu t = 0, in Ω × R + , ∂ ν y -y t = 0, on Γ 1 × R + , u = 0, on Γ × R + , y = 0, on Γ 0 × R + .
This chapter is organized as follows : In Subsection 4.2.1, we reformulate the system (4.1.1)-(4.1.7) into an augmented model system by coupling the wave equation with a suitable equation and we prove the well-posedness of our system by semigroup approach. In the subsection 2.2.2, Under the equal speed wave propagation condition (in the case a = 1) and if the coupling parameter b is small enough, using a general criteria of Arendt and Batty theorem, we show that the strong stability of our system for in the absence of the compactness of the resolvent and under the multiplier control condition noted by (MGC). In Section 4.3, under the equal speed wave propagation and the coupling parameter b verify another condition, we look for a polynomial decay rate for smooth initial data for our system by applying a frequency domain approach combining with a multiplier method. Indeed, by assuming that the boundary control region satisfy the Multiplier Geometric Control Condition (MGC), we establish a polynomial energy decay for smooth solution of type 1

t 1 1-α .

Well-Posedness and Strong Stability

In this section, we will study the strong stability of system (4.1.1)-(4.1.7) in the absence of the compactness of the resolvent and by the (M GC) condition defined in Definition ??. First, we will study the existence, uniqueness and regularity of the system of our system.

Augmented model and well-Posedness

Firstly, we reformulate system (4.1.1)-(4.1.7). For this aim, we use Theorem 1.6.1, system (4.1.1)-(4.1.7) may be recast into the following model :

u tt -∆u + by t = 0, in Ω × R + , (4.2.1)
y tt -a∆y -bu t = 0, in Ω × R + , (4.2.2) ∂ t ω(ξ, t) + |ξ| 2 + η ω(ξ, t) -µ(ξ)∂ t u(x, t) = 0, on Γ 1 × R + , ξ ∈ R d , (4.2.3) u = 0, on Γ 0 × R + , ( 4.2.4 
)

y = 0, on Γ × R + , (4.2.5) ∂u ∂ν + γκ R d µ(ξ)ω(ξ, t)dξ = 0, on Γ 1 × R + (4.2.6)
where γ is a positive constant, η ≥ 0 and κ =

2 sin(απ)Γ( d 2 +1) dπ d 2 +1
. Finally, system (4.2.1)-(4.2.6) is considered with the following initial conditions u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x) where x ∈ Ω, (

y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x) where x ∈ Ω, (4.2.8) ω(ξ, 0) = 0 where ξ ∈ R d . (4.2.9)

Our main interest is the existence, uniqueness and regularity of the solution of this system. We define the Hilbert space

H = H 1 Γ 0 (Ω) × L 2 (Ω) × H 1 0 (Ω) × L 2 (Ω) × L 2 (R d ), (4.2.10) 
equipped with following inner product

U, U H = Ω v v + ∇u∇ ū + z z + a∇y∇ ȳ dx + γκ R d ω(ξ) ω(ξ)dξ
where γ = γ |Γ 1 | and U = (u, v, y, z, ω), U = (ũ, ṽ, ỹ, z, ω) ∈ H and H 1 Γ 0 (Ω) is given by

H 1 Γ 0 (Ω) = u ∈ H 1 (Ω), u = 0 on Γ 0 .
The energy of the solution of system (4.2.1)-(4.2.9) is defined by : 

E(t) = 1 2 (u,
D(A) =              U = (u, v, y, z, ω) ⊤ ∈ H; ∆u ∈ L 2 (Ω), y ∈ H 2 (Ω) ∩ H 1 0 (Ω), v ∈ H 1 Γ 0 (Ω), z ∈ H 1 0 (Ω), -(|ξ| 2 + η)ω + v| Γ 1 µ(ξ) ∈ L 2 (R d ), ∂u ∂ν + γκ R d µ(ξ)ω(ξ)dξ = 0 on Γ 1 , |ξ|ω ∈ L 2 (R d )              (4.2.13)
and

A           u v y z ω           =           v ∆u -bz z a∆y + bv -(|ξ| 2 + η)ω + v| Γ 1 µ(ξ).          
By denoting v = u t and z = y t and U 0 = (u 0 , v 0 , y 0 , z 0 , ω 0 ) ⊤ , system (4.2.1)-(4.2.9) can be written as an abstract linear evolution equation on the space 

H    U t = AU, U (0) = U 0 , ( 4 
ω(ξ) = f 5 (ξ) |ξ| 2 + η + 1 + u| Γ 1 µ(ξ) |ξ| 2 + η + 1 - f 1 µ(ξ) |ξ| 2 + η + 1 . (4.2.27) Let φ = (ϕ 1 , ϕ 2 ) ∈ H 1 Γ 0 (Ω) × H 1 0 (Ω)
Ω uϕ 1 dx + Ω ∇u∇ϕ 1 dx - Γ 1 ∂u ∂ν ϕ 1 dΓ + b Ω yϕ 1 dx = Ω F 1 ϕ 1 dx. (4.2.28) Ω yϕ 2 dx + a Ω ∇y∇ϕ 2 dx -b Ω uϕ 2 dx = Ω F 2 ϕ 2 dx. (4.2.29)
where

F 1 = f 1 + f 2 + bf 3 and F 2 = f 3 + f 4 -bf 1 .
Using equations (4.2.6) and (4.2.27), we get 

- Γ 1 ∂u ∂ν ϕ 1 dΓ = M 1 Γ 1 ϕ 1 dΓ + M 2 Γ 1 uϕ 1 dΓ -M 2 Γ 1 f 1 ϕ 1 dΓ. ( 4 
)) = L(ϕ 1 , ϕ 2 ), ∀(ϕ 1 , ϕ 2 ) ∈ H 1 Γ 0 (Ω) × H 1 0 (Ω) (4.2.32)
where

a((u, y), (ϕ 1 , ϕ 2 )) = Ω uϕ 1 dx Ω ∇u∇ϕ 1 dx + ω yϕ 2 dx + a Ω ∇y∇ϕ 2 dx +M 2 Γ 1 uϕ 1 dΓ + b Ω yϕ 1 dx -b Ω uϕ 2 dx. (4.2.33) and L(ϕ 1 , ϕ 2 ) = Ω F 1 ϕ 1 dx + Ω F 2 ϕ 2 dx -M 1 Γ 1 ϕ 1 dΓ + M 2 Γ 1 f 1 ϕ 1 dΓ. (4.2.34)
Using Lax-Milgram, we deduce that their exists (u, y) ∈ H 1 Γ 0 (Ω) × H 1 0 (Ω) unique solution of the variationnel problem (4.2.32), using the fact Γ0 ∩ Γ1 = ∅ and the regularity of the Laplaciana we deduce that (u, v, y, z, ω) ∈ D(A). From proposition 4.2.1, we have the operator A is maximal on H and consequently, generates a C 0 -semigroup of contractions e tA following Lummer-Philipps theorem (see [START_REF] Liu | Semigroups associated with dissipative systems[END_REF] and [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]). Then, the solution of the evolution equation (4.2.14) admits the following representationL U (t) = e tA U 0 , t ≥ 0, which leads to the well-posedness of (4.2.14). Hence, semi-group theory allows to show the next existence and uniqueness results : Theorem 4.2.2. For any U 0 ∈ H, problem (4.2.14) admits a unique weak solution

U (t) ∈ C 0 (R + ; H). Moreover, if U 0 ∈ D(A), then U (t) ∈ C 1 (R + , H) ∩ C 0 (R + , D(A)).

Strong Stability

In this subsection, we study the strong stability of system (4.2.1)-(4.2.9) in the sense that its energy converges to zero when t goes to infinity for all initial data in H under the condition where a = 1 and b small enough. It easy to see that the resolvent of A is not compact, then the classical methods such as Lasalle's invariance principle or the spectrum decomposition theory on Benchimol are not applicable in this case. We use then a general criteria of Arendt-Batty, following which a C 0 -semigroup of contractions e tA in a Banach space is strongly stable, if A has no pure imaginary eigenvalues and σ(A)∩iR contains only a countable number of elements. We will prove the following stability result Theorem 4.2.3. Suppose that η ≥ 0, a = 1 and b small enough, then the C 0 -semigroup (e tA ) t≥0 is strongly stable on the energy space H, i.e, for all U 0 ∈ H, we have

lim t→∞ e tA U 0 H = 0.
For the proof of Theorem 4.2.3, we need the following lemmas. If λ = 0, then v = z = 0, then we obtain the following systems Using the green formula, we get 

         ∆u = 0 in Ω × R + , u = 0 on Γ 0 × R + , ∂u ∂ν = 0 on Γ 1 × R + , ( 4 
-2ℜ Ω ∇u • ∇(m • ∇ū)dx = (N -2) Ω |∇u| 2 dx - Γ (m • ν)|∇u| 2 dx. ( 4 
λ 2 Ω |u| 2 dx + Ω |∇u| 2 dx - Γ 0 (m • ν) ∂u ∂ν 2 ≤ (d -1) 2 |λ| 2 |b| 2 4ε + m ∞ |λ| 2 |b| 2 ε Ω |y| 2 dx +ε(1 + C) Ω |∇u| 2 dx (4.2.64)
where C = 1 α and α is the smallest eigen value of -∆ in H 1 0 (Ω). Now, using the geometric condition (??) and equation (4.2.54), we get Proof: First, let ϕ k ∈ H 1 Γ 0 (Ω) and ψ k ∈ H 1 0 (Ω) be an eigenfunctions respectively of the following problems

λ 2 Ω |u| 2 dx + Ω |∇u| 2 dx ≤ λ 2 b 2 (d -1) 2 4ε + m 2 ∞ ε Ω |y| 2 dx + ε(1 + C) Ω |∇u| 2 dx
       -∆ϕ k = µ 2 k ϕ k in Ω, ϕ k = 0, on Γ 0 , ∂ϕ k ∂ν = 0 on Γ 1 and        -∆ψ k = 0 in Ω, ϕ k = 0, on Γ 0 , ∂ϕ k ∂ν = 0 on Γ 1 . (4.2.71) such that ϕ k H 1 Γ 0 (Ω) = Ω |∇ϕ k | 2 dx.
Next, define the vector F = (ϕ k , 0, 0, 0, 0) ∈ H. Assume that there exists U = (u, v, y, z, ω) ∈ D(A) such that -AU = F. 

It follows that

       v = -ϕ k , in Ω z = 0 in Ω, -|ξ| 2 ω + µ(ξ)v = 0 on Γ 1 , (4.2.72) and                      ∆u = 0, in Ω, ∆y = 0, in Ω, u = 0, on Γ 0 , ∂u ∂ν + γκ R d µ(ξ)ω(ξ)dξ = 0, on Γ 1 , y = 0, on Γ.
                             λ 2 u + ∆u -iλby = h in Ω, λ 2 y + ∆y + iλbu = g in Ω, u = 0 on Γ 0 ∂u ∂ν + λ 2 c 1 + iλc 2 u = 0 on Γ 1 y = 0 on Γ. ( 4 

.2.74)

where

c 1 = γκ R d µ 2 (ξ) λ 2 + (|ξ| 2 + η) 2 dξ and c 2 = γκ R d µ 2 (ξ) (|ξ| 2 + η) λ 2 + (|ξ| 2 + η) 2 dξ, (4.2.75) admits a unique solution (u, y) ∈ H 1 Γ 0 (Ω) × H 1 0 (Ω).
Proof: First, it easy to check that, if (η > 0 and λ ∈ R) or (η = 0 and λ ∈ R * ), then, for α ∈]0, 1[ the coefficients c 1 (λ, η) and c 2 (λ, η) are well defined. Moreover, if η > 0 and λ = 0, then, using Lax-Milligram's theorem we deduce that system (4.2.74) admits a unique solution (u, y) ∈ H 1 Γ 0 (Ω) × H 1 0 (Ω). Now, we assume that η ≥ 0 and λ ′ inR * and let us consider the following problem

                             -∆u + iλby = h in Ω, -∆y -iλbu = g in Ω, u = 0 on Γ 0 ∂u ∂ν + λ 2 c 1 + iλc 2 u = 0 on Γ 1 y = 0 on Γ. (4.2.76)
Next, we give a variational formation of (4.2.76). For this aim, find (u, y) Equivalently, we have

∈ H 1 Γ 0 (Ω) × H 1 0 (Ω), such that a ((u, y), (ϕ, ψ)) = L(ϕ, ψ) ∀ (ϕ, ψ) ∈ H 1 Γ 0 (Ω) × H 1 0 (Ω). ( 4 
Then L is an isomorphism from H 1 Γ 0 (Ω)×H 1 0 (Ω) into H 1 Γ 0 (Ω)×H 1 0 (Ω). Using the compactness embedding from L 2 (Ω) × L 2 (Ω) into H 1 Γ 0 (Ω) ′ × H -1 (Ω) and H 1 Γ 0 (Ω) × H 1 0 (Ω) into L 2 (Ω) × L 2 (Ω), we deduce that L -1 is compact from L 2 (Ω) × L 2 (Ω) into L 2 (Ω) × L 2 (Ω). Then applying L -1 to (4.2.74), we get λ 2 L -1 -I U = L -1 f. ( 4 
                   iλu -v = f 1 , in Ω, iλv -∆u + bz = f 2 , in Ω, iλy -∆z = f 3 , in Ω, iλz -∆y -bv = f 4 , in Ω, iλω + (|ξ| 2 + η)ω -vµ(ξ) = f 5 , on Γ 1
as before, by eliminating v, z and ω from the above system and using the fact that

∂ ν u + γκ R d µ(ξ)ω(ξ)dξ = 0 on Γ 1 ,

Mohammad AKIL

Page 139 of 181 mohamadakil1@hotmail.com Chapter 4. On the stability of multidimensional coupled wave equations with one boundary fractional damping we get the following system :

                             λ 2 u + ∆u -iλby = -f 2 -iλf 1 -bf 3 in Ω, λ 2 y + ∆y + iλbu = -f 4 -iλf 3 + bf 1 in Ω, u = 0 on Γ 0 , y = 0 on Γ, ∂u ∂ν + λ 2 c 1 + iλc 2 u = -iλc 1 f 1 + c 2 f 1 + I 1 f 5 + I 2 f 5 on Γ 1 . (4.2.81)
where c 1 , c 2 is defined in equation (4.2.75) and I 2 f 5 , I 2 f 5 are given by

I 1 f 5 (λ, η) = iλγκ R d f 5 (ξ)µ(ξ) λ 2 + (|ξ| 2 + η) 2 dξ and I 2 f 5 (λ, η) = -γκ R d f 5 (ξ)µ(ξ)(|ξ| 2 + η) λ 2 + (|ξ| 2 + η) 2 dξ.
It easy to check that, for f 5 ∈ L 2 (R d ) and α ∈]0, 1[, the integrals I 1 f 5 and I 2 f 5 are will defined. First, let (ϕ f 5 , ψ f 5 ) ∈ H Γ 0 × H 1 0 (Ω) be defined by

                             -∆ϕ f 5 + iλbψ f 5 = 0 in Ω -∆ψ f 5 -iλbψ f 5 = 0 in Ω ϕ f 5 = 0 on Γ 0 , ψ f 5 = 0 on Γ, ∂ϕ f 5 ∂ν = I 1 f 5 + I 2 f 5 on Γ 1 .
(4.2.82)

Then setting ũ = u + ϕ f 5 and ỹ = y + ψ f 5 in (4.2.82), then we get Then setting χ = ũθ, we get 

                             λ 2 ũ + ∆ũ -iλbỹ = λ 2 ϕ f 5 -f 2 -iλf 1 -bf 3 in Ω, λ 2 ỹ + ∆ỹ + iλbũ = λ 2 ψ f 5 -f 4 -iλf 3 + bf 1 in Ω, ũ = 0 on Γ 0 , ỹ = 0 on Γ, ∂ ũ ∂ν + λ 2 c 1 + iλc 2 ũ = -iλc 1 f 1 + c 2 f 1 + (λ 2 c 1 + iλc 2 ) ϕ f 5 on Γ 1 . (4.2.83) Next, let θ ∈ H 2 (Ω) ∩ H 1 Γ 0 (Ω) such that θ = 0, ∂θ ∂ν = -iλc 1 f 1 + c 2 f 1 + λ 2 c 1 + iλc 2 ϕ f 5 on ′ Γ 1 . ( 4 
                     λ 2 χ + ∆χ -iλbỹ = λ 2 ϕ f 5 -λ 2 θ -∆θ -f 2 -iλf 1 -bf 3 in Ω, λ 2 ỹ + ∆ỹ + iλbχ = λ 2 ψ f 5 -iλbθ -f 4 -iλf 3 + bf 1 in Ω, χ = 0 on Γ 0 , ∂χ ∂ν + λ 2 c 1 + iλc 2 χ = 0 on Γ 1 (4.
) ∈ H 1 Γ 0 (Ω) × H 1 0 (Ω). By defining v = iλu -f 1 , z = iλu -f 3 in Ω and ω = f 5 (ξ) iλ + |ξ| 2 + η + iλu Γ 1 µ(ξ) iλ + |ξ| 2 + η - f 1 | Γ 1 µ(ξ) iλ + |ξ| 2 + η
we deduce that U = (u, v, y, z, ω) belongs to D(A) and is solution of (4.2.80). This complete the proof.

Proof of Theorem 4.2.3. Following a general criteria of Arendt-Batty see ..., the C 0 -semigroup of contractions e tA is strongly stable, if σ(A) ∩ iR is countable and no eigenvalue of A lies on the imaginary axis. First, from Lemma 4.2.4 we directly deduce that A has non pure imaginary eigenvalues. Next, using Lemmas 4.2.5 and 4.2.7, we conclude, with the help of the closed graph theorem of Banach, that σ(A) ∩ iR = {∅} if η > 0 and σ(A) ∩ iR = {0} if η = 0. The proof is thus completed.

Polynomial Stability

This section is devoted to the study of the polynomial stability of system (4.2.1)-(4.2.9) in the case η > 0, a = 1, b small enough and under the (MGC) condition defined in Definition 2.3.3. For the purpose, we will use a frequency domain approach, namely we will use Theorem 2.4 of [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF] (see also [START_REF] Bátkai | Polynomial stability of operator semigroup[END_REF][START_REF] Batty | Non uniform stability for bounded semi-groups on banach spaces[END_REF][START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF]) that we partially recall. Theorem 4.3.1. Let (T (t)) t≥0 be a bounded C 0 -semigroup on a Hilbert space H with generator A such that iR ⊂ ρ(A). Then for a fixed ℓ > 0 the following conditions are equivalent

(is -A) -1 = O(|s| ℓ ), s → ∞, (4.3.1) T (t)A -1 = O(t -1/ℓ ), t → ∞. (4.3.2)
As the condition iR ⊂ ρ(A) was already checked in Theorem 4.2.3, it remains to prove that condition (4.3.1) holds. This is made with the help of a multiplier method under the (MGC) condition defined in Definition 2.3.3. We define the two opens sets by

       Γ ε 0 = x ∈ Ω; inf y∈Γ 0 |x -y| ≤ ε , Γ ε 1 = x ∈ Ω; inf y∈Γ 1 |x -y| ≤ ε
and we define the function θ by

       θ ≡ 0 on Γ 0 , θ ≡ 1 on Γ 1 , θ(x) ∈ [0, 1]. (4.3.3) Since Γ 0 ∩ Γ 1 = ∅, we can choose ε > 0 small enough such that Γ 0 ⊂ Γ ε 0 and Γ 1 ⊂ Γ ε 1 .
Next, we present the main result of this section Theorem 4.3.2. Assume that a = 1, η > 0 and b small enough. Then, for all initial data U 0 ∈ D(A), there exists a constant C > 0 independent of U 0 , such that the energy of the strong solution U of (4.2.14), satisfies the following estimation

E(t, U ) ≤ C 1 t 1 1-α U 0 2 D(A) , ∀t > 0. ( 4 

.3.4)

In particular, for U 0 ∈ H, the energy converges to zero at t goes to infinity.

As announced in Theorem 4. 

= (u n , v n , y n , z n , ω n ) H = 1 (4.3.5) and λ ℓ n (iλ n -A)U n = (f n 1 , f n 2 , f n 3 , f n 4 , f n 5 ) → 0 in H. (4.3.6)
For the simplicity, we drop the index n. Detailing equation (4.3.6), we get

iλu -v = f 1 λ ℓ -→ 0 in H 1 Γ 0 (Ω), (4.3.7) iλv -∆u + bz = f 2 λ ℓ -→ 0 in L 2 (Ω), (4.3.8) iλy -z = f 3 λ ℓ -→ 0 in H 1 0 (Ω), (4.3.9) iλz -∆y -bv = f 4 λ ℓ -→ 0 in L 2 (Ω), (4.3.10) iλω + (|ξ| 2 + η)ω -v| Γ 1 µ(ξ) = f 5 λ ℓ -→ 0 in L 2 (R d ). (4.3.11)
Note U is uniformly bounded in H. Then, taking the inner product of (4.3.6) with U in H, we get

-γκ R d (|ξ| 2 + η)|ω| 2 dξ = ℜ ((iλI -A)U, U ) H = o(1) λ ℓ . (4.3.12)
As below, by eliminating v and z from the above system, we get 

λ 2 u + ∆u -iλby = - f 2 λ ℓ - iλf 1 λ ℓ - bf 3 λ ℓ , ( 4.3.13) 
λ 2 y + ∆y + iλbu = - f 4 λ ℓ - iλf 3 λ ℓ + bf 1 λ ℓ . ( 4 
∂ ν u L 2 (Γ 1 ) = o(1) λ 1-α , (4.3.17) u L 2 (Γ 1 ) = o(1) λ . ( 4 
∂ ν u + γκ R d µ(ξ)ω(ξ)dξ = 0 on Γ 1 we get |∂ ν u| ≤ γκ R d µ 2 (ξ) |ξ| 2 + η dξ 1 2 R d (|ξ| 2 + η)|ω| 2 dξ 1 2 . ( 4 
A 1 |v| Γ1 | ≤ A 2 R d (|ξ| 2 + η)|ω| 2 dξ 1 2 + 1 |λ| ℓ R d |f 3 (ξ)| 2 dξ 1 2 , (4.3.20)
where,

A 1 = R d |µ(ξ)| 2 (|λ| + |ξ| 2 + η) dξ, A 2 = R d |µ(ξ)| 2 |ξ| 2 + η dξ 1 2
and

A 3 = R d |µ(ξ)| 2 (|λ| + |ξ| 2 + η) 2 dξ 1 2 .
Using lemma 1.6.2 , we obtain 

A 1 = c(|λ| + η) α-1 and A 3 = c(|λ| + η)
∂ ν y L 2 (Γ 1 ) = O(1) + o(1) λ 1-α . ( 4 
Ω λ 2 yθ(m • ∇ȳ)dx + 2 Ω ∆yθ(m • ∇ȳ)dx + 2i Ω λbuθ(m • ∇ȳ)dx = -2 Ω θ f 4 λ ℓ + iλf 3 λ ℓ - bf 1 λ ℓ (m • ∇ȳ)dx. (4.3.24)
Firstly, using the facts that ∇y is bounded in L

2 (Ω), f 1 H 1 Γ 0 (Ω) = o(1) and f 4 L 2 (Ω) = o(1), we get -2 Ω θ f 4 λ ℓ -b f 1 λ ℓ (m • ∇ȳ) dx = o(1) λ ℓ . (4.3.25)
On the other hand, using Green formula and the fact that y = 0 on Γ for the second term of 

Ω ∆yθ(m • ∇ȳ)dx = -2ℜ Ω ∇y • ∇ (θ(m • ∇ȳ)) dx + 2 Γ θ(∂ ν y) (m • ∇ȳ) dΓ.
(4.3.29) Furthermore, using Green formula for the first term on right hand side of equation (4.3.29), we get

             -2ℜ Ω ∇y • ∇ (θ(m • ∇ȳ)) dx = Ω (m • ∇θ)|∇y| 2 dx + (d -2) Ω θ|∇y| 2 dx - Γ θ(m • ν)|∇y| 2 dΓ -2ℜ Ω (∇y • ∇θ)(m • ∇ȳ)dx . (4.3.30)
Then, combining equation (4.3.29), (4.3.30) and using the fact that y = ∂y ∂τ = 0 on Γ , we get 

             2ℜ Ω ∆yθ(m • ∇ȳ)dx = -2ℜ Ω (∇y • ∇θ)(m • ∇ȳ)dx -(2 -d) Ω θ|∇y| 2 dx + Γ 1 θ(m • ν) |∂ ν y| 2 dΓ 1 + Ω (m • ∇θ)|∇y| 2 dx. ( 4 
               Γ 1 θ(m • ν) |∂ ν y| 2 dΓ = Ω (dθ + (m • ∇θ)) |λy| 2 dx -(d -2) Ω θ|∇y| 2 dx +2ℜ Ω (∇y • ∇θ)(m • ∇ȳ)dx - Ω (m • ∇θ)|∇y| 2 dx -2ℜ iλ Ω buθ(m • ∇ȳ)dx + o(1) λ ℓ . ( 4 
λ 3 uȳdx -λ Ω ∇u∇ȳdx -ib Ω |λy| 2 dx = - Ω f 2 λ ℓ + i λf 1 λ ℓ + bf 3 λ ℓ λȳdx (4.3.34)
and 

Ω λ 3 yūdx -λ Ω ∇y∇ūdx + λ Γ 1 (∂ ν y)ūdΓ 1 + ib Ω |λu| 2 dx = - Ω f 4 λ ℓ + iλf 3 λ ℓ - bf 1 λ ℓ λūdx. ( 4 
(Ω) = o(1), f 2 L 2 (Ω) = o(1), f 3 H 1 0 (Ω) = o(1) and f 4 L 2 (Ω) = o(1), we get Ω f 2 λ ℓ + bf 3 λ ℓ λȳdx = o(1) λ ℓ , (4.3.36) Ω f 4 λ ℓ - bf 1 λ ℓ λūdx = o(1) λ ℓ , ( 4 
Ω λ 2 u f3 - Ω ∇u∇ f3 dx = iλb Ω y f3 dx = - Ω f 2 λ ℓ + i λf 1 λ ℓ + bf 3 λ ℓ f3 dx (4.3.39)
and 

Ω λ 2 y f1 dx - Ω ∇y∇ f1 dx + Γ 1 (∂ ν y) f1 dΓ 1 + iλb Ω u f1 dx = - Ω f 4 λ ℓ + i λf 3 λ ℓ - bf 1 λ ℓ f1 dx. ( 4 
(Ω) = o(1), f 2 L 2 (Ω) = o(1), f 3 H 1 0 (Ω) = o(1), f 4 L 2 (Ω) = o(1)
Ω λ 2 u(m • ∇ū)dx + 2 Ω ∆u(m • ∇ū)dx -2iλb Ω by(m • ∇ū)dx = -2 Ω f 2 λ ℓ + iλf 1 λ ℓ + bf 3 λ ℓ (m • ∇ū)dx. (4.3.49) 
Firstly, using the fact that

f 2 L 2 (Ω) = o(1), f 3 H 1 0 (Ω) = o(1), ∇ū is bounded in L 2 (Ω)
, and the fact that ℓ = 2 -2α, we get

-2 Ω f 2 λ ℓ + bf 3 λ ℓ (m • ∇ū)dx = o(1) λ 2-2α . (4.3.50)
On the other hand, we say that 2iλ 

Ω f 1 λ ℓ (m • ∇ū)dx = -2 iλ λ ℓ Ω ū • ∇(f 1 m)dx + 2iλ λ ℓ Γ 1 (mf • ν)ūdΓ 1 . ( 4 
Ω f 1 λ ℓ (m • ∇ū)dx = o(1) λ 2-2α . (4.3.52)
Secondly, using integration by parts, we get 

2 Ω λ 2 u(m • ∇ū)dx = -d Ω |λu| 2 dx + λ 2 Γ 1 (m • ν)|u| 2 dΓ 1 . ( 4 
-d Ω |λu| 2 dx + (d -2) Ω |∇u| 2 dx + 2ℜ Γ ∂u ∂ν (m • ∇ū)dΓ - Γ (m • ν)|∇u| 2 dΓ +2λbℜ -i Ω y(m • ∇ū)dx = o(1). (4.3.57)
Using the fact ∂u ∂τ = 0 on Γ 0 , we get

-2ℜ Γ ∂u ∂ν (m • ∇ū)dΓ + Γ (m • ν)|∇u| 2 dΓ = - Γ 0 (m • ν) ∂u ∂ν 2 dΓ -2ℜ Γ 1 ∂u ∂ν (m • ∇ū)dΓ + Γ 1 (m • ν)|∇u| 2 dΓ (4.3.58)
Let ε > 0, so by Young inequality, we get 

2ℜ Γ 1 ∂u ∂ν (m • ∇ū)dΓ ≤ m 2 ∞ ε Γ 1 ∂u ∂ν 2 dΓ 1 + ε Γ 1 |∇u| 2 dΓ. ( 4 
-2ℜ Γ ∂u ∂ν (m • ∇ū)dΓ + Γ (m • ν)|∇u| 2 dΓ ≥ - Γ 0 (m • ν) ∂u ∂ν 2 dΓ -ε Γ 1 |∇u| 2 dΓ + Γ 1 (m • ν)|∇u| 2 dΓ + o(1) λ 2-2α . ( 4 

INDIRECT STABILITY OF A SYSTEM OF STRONGLY COUPLED WAVE EQUATONS WITH LOCAL KELVIN-VOIGHT DAMPING

Introduction

Let Ω ⊂ R N be a bounded open set with Lipchitz boundary Γ. We consider the following two wave equations coupled with a viscoelastic damping around the boundary Γ :

   ρ 1 (x)u tt -div(a 1 (x)∇u + b(x)∇u t ) + αy t = 0 in Ω × R + , ρ 2 (x)y tt -div(a 2 (x)∇y) -αu t = 0 in Ω × R + , (5.1.1)
with the following initial conditions :

u(•, 0) = u 0 (•) , y(•, 0) = y 0 (•) , u t (•, 0) = u 1 (•) , y t (•, 0) = y 1 (•) in Ω, (5.1.2) 
and the following boundary conditions :

u (x, t) = y (x, t) = 0 on Γ × R + . (5.1.3) The functions ρ 1 , ρ 2 , a 1 , a 2 , b ∈ L ∞ (Ω) such that ρ 1 (x) ≥ ρ 1 , ρ 2 (x) ≥ ρ 2 , a 1 (x) ≥ a 1 , a 2 (x) ≥ a 2
and α is a real constant number. The local viscoelastic damping is a natural phenomena of bodies which have one part made of viscoelastic material, and the other is made of elastic material. There are a few number of publications concerning the wave equation with local viscoelastic damping. In [START_REF] Liu | Exponential stability for the wave equations with local kelvin-voight damping[END_REF], Liu and Rao studied the stability of a wave equations with local viscoelastic damping distributed around the boundary of the domain. They proved that the energy of the system goes exponentially to zero for all usual initial data. K. Liu and Z. Liu in [START_REF] Liu | Exponential decay of energy of the euler-bernouilli beam with locally distributed kelvin-voight damping[END_REF], considered the longitudinal and transversal vibrations of the Euler-Bernoulli beam with Kelvin-Voigt damping distributed locally on any subinterval of the region occupied by the beam. They proved that the semigroup associated with the equation for the transversal motion of the beam is exponentially stable, although the semigroup associated with the equation for the longitudinal motion of the beam is not exponentially stable. In [START_REF] Nadine | Étude de la stabilisation exponentielle et polynomiale de certains systèmes d'équations couplées par des contrôles indirects bornés ou non bornés[END_REF], they consider a system of wave equations which are weakly coupled and partially damped by one locally distributed Kelvin-Voigt damping. The first equation is effectively damped, the second equation is indirectly damped through the coupling parameter. Firstly, using a unique continuation result based on a Carleman estimate, they show that the system is strongly stable for all usual initial data. Secondly, using a spectral approach, we show that the system is not uniformly exponentially stable. Then, it is natural to expect a polynomial energy decay rate. For this aim, using a frequency domain approach combined with piece wise multiplier method, we establish a polynomial energy decay rate. This chapter is organized as follows. First, in section 2, we show the well-posedness of the system and using a general criteria of Arendt-Batty see [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF] and a mild continuation of Hormander Theorem 8.3.1 (see [START_REF] Hormander | Linear partial differential operators[END_REF]), we show the strong stability of the system in the absence of the compactness of the resolvent. Next, in section 3, using a spectrum approach, we prove the non-uniform stability of the system. Finally, in section 4, we establish an optimal polynomial energy decay rate as 1 t for smooth functions by a frequency domain approach combined with a piece ways multiplier method.

Well-Posedness and Strong Stability

Well posedness of the problem

In this part, using a semigroup approach, we establish well-posedness result for the system Kelvin Voight with viscoelastic damping div(b(x)∇u t ) be applied around the boundary Γ. Now, the energy of system (5.1.1)-(5.1.3) is given by

E(t) = 1 2 Ω ρ 1 (x)|u t | 2 + ρ 2 (x)|y t | 2 + a 1 (x)|∇u| 2 + a 2 (x)|∇y| 2 dx. (5.2.1)
Then a straightforward computation gives More precisely, we assume that

E ′ (t) = - Ω b(x)|∇u t | 2 dx ≤ 0.
       ρ 1 (x) ≥ ρ 1 > 0, ρ 2 (x) ≥ ρ 2 > 0, a 1 (x) ≥ a 1 > 0, a 2 (x) ≥ a 2 > 0 for all x ∈ Ω, b(x) ≥ b 0 > 0 for all x ∈ O γ . (H)
Next, we define the Hilbert space

H = H 1 0 (Ω) × L 2 (Ω) 2 
endowed with the inner product

U, U = Ω a 1 ∇u • ∇ ū + a 2 ∇y • ∇ ȳ + ρ 1 v v + ρ 2 z z dx,
for all U = (u, v, y, z) ⊤ ∈ H and Ũ = (ũ, ṽ, ỹ, z) ⊤ ∈ H. Finally, we define the unbounded linear operator A by

D(A) = (u, v, y, z) ∈ H : div(a 1 (x)∇u + b(x)∇v) ∈ L 2 (Ω), div(a 2 (x)∇y) ∈ L 2 (Ω) and v, z ∈ H 1 0 (Ω) , where ϕ(x) = |x-x 0 | 2 2
for a fixed x 0 ∈ Ω. By density argument we extend equation ( 5 

(τ 3 -C 3 ) Ω e 2τ ϕ (|u| 2 + |y| 2 )dx + (τ -C 4 ) Ω e 2τ ϕ (|∇u| 2 + |∇y| 2 )dx ≤ C 5 Ω e 2τ ϕ (|A 1 u| 2 + |A 2 y| 2 )dx, (5.2.30) 
where C 1 , C 2 and C 3 are positive constants. Finally, take τ such that τ 3 -C 1 ≥ 1 2 and τ -C 2 ≥ 1 2 , we deduce that u = 0 and y = 0 in Ω. The proof is thus complete. Lemma 5.2.5. Under hypothesis (H), iλI -A is surjective for all λ ∈ R.

Proof: Since 0 ∈ ρ(A). We still need to show the result for λ ∈ R ⋆ . For any Equivalently, we have 

F = (f 1 , f 2 , f 3 , f 4 ) ⊤ , λ ∈ R ⋆ ,
iλu -v = f 1 , (5.2.31) iλv - 1 ρ 1 (div(a 1 ∇u + b∇v) -αz) = f 2 , ( 5 
         -λ 2 u - 1 ρ 1 div ((a 1 + iλb)∇u) + i αλ ρ 1 y = h 1 , -λ 2 y - 1 ρ 2 div(a 2 ∇y) -i αλ ρ 2 u = h 2 , ( 5.2.36) 
where

         h 1 = iλf 1 + f 2 - 1 ρ 1 div(b∇f 1 ) + α ρ 1 f 3 , h 2 = - α ρ 2 f 1 + iλf 3 + f 4 .
(5.2.37)

Define the operators

LU =      - 1 ρ 1 div ((a 1 + iλb)∇u) + i αλ ρ 1 y - 1 ρ 2 div(a 2 ∇y) -i αλ ρ 2 u      , ∀ U = (u, y) ⊤ ∈ H 1 0 (Ω) 2 .
Using Lax-Milgram theorem, it is easy to show that L is an isomorphism from (H 1 0 (Ω)) 2 onto (H 1 0 (Ω)) 2 . Let U = (u, y) ⊤ and h = (h 1 , h 2 ) ⊤ , then we transform system (5.2.36) into the following form Uλ 2 L -1 U = L -1 F.

(5.2.38)

Using the compactness embeddings from L 2 (Ω) into H -1 (Ω) and from H 1 0 (Ω) into L 2 (Ω) we deduce that the operator L -1 is compact from L 2 (Ω) into L 2 (Ω). Consequently, by Fredholm alternative, proving the existence of U solution of (5.2.38) reduces to proving the injectivity of the operator Idλ 2 L -1 . Indeed, if U = (ũ, ỹ) ⊤ ∈ ker (Id -L -1 ), then we have λ 2 U -L U = 0. (5.2.39)

Now, it is easy to see that if (ũ, ỹ) is a solution of (5.2.39) then the vector Û = (ũ, i ũ, ỹ, i ỹ) belongs to D(A) and we have iλ Û -A Û = 0. Therefore, by lemma 5.2.4, we get Û and so ker(Idλ 2 L) = {0}. Thanks to Fredholm alternative, the equation (5.2.38) admits a unique solution U = (u, y) ∈ (H 1 0 (Ω)) 2 . Thus using (5.2.35) and a classical regularity arguments, we conclude that (iλI -A) U = F admits a unique solution U ∈ D(A). The proof is thus complete.

Proof of Theorem 5.2.3. Following a general criteria of Arendt-Batty in [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF], the C 0 -semigroup e tA of contractions is strongly stable if A has no pure imaginary eigenvalues and σ(A) ∩ iR is countable. By Lemma 5.2.4, the operator A has no pure imaginary eigenvalues and by Lemma 5.2.5, R(iλ -A) = H for all λ ∈ R. Therefore, the closed graph theorem of Banach implies that σ(A) ∩ iR = ∅. The proof is thus complete.

Remark 5.2.6. We mention [START_REF] Rao | Polynomail energy decay rate and strong stability of kirchoff plates with non-compact resolvent[END_REF] for a direct approach of the strong stability of Kirchhoff plates in the absence of compactness of the resolvent.

Non Uniform Stability

In this section, our goal is to show that the system (5.1.1)-(5.1.3) is not exponentially stable. Throughout, this part, we assume that For the proof of Theorem 5.3.1, we aim to show that an infinite of eigenvalues of A approach the imaginary axis. First, we determine the characteristic equation satisfied by the eigenvalues of A. For the aim, let λ ∈ C be an eigenvalue of A and let U = (u, v, y, z) ⊤ ∈ D(A) be an Since U H = 1, then we have ρ 1 λu 2 + ρ 2 λy 2 + a ∇u 2 + a ∇y 2 and ∇u 2 are bounded. Consequentially there exists constant κ > 0, such that -κ ≤ ℜ (λ) < 0.

The proof is thus complete. 

σ 0 = {λ k } k∈J , σ 1 = {λ k } |k|≥k 0 , σ 0 ∩ σ 1 = ∅.
Moreover, J is a finite set, and Since λ µ k is bounded and ξ k → 0, then thanks to Rouché's Theorem, there exists k 0 large enough such that for all |k| ≥ k 0 the large roots of the polynomial P are close to the roots of the polynomial P 0 (ξ) = ρ 2 bξ 3 + a 2 bξ.

λ k = i a ρ 2 µ k - α 2 2bρ 2 µ 2 k + o 1 µ 3 k . ( 5 
Moreover, the large roots of P 0 satisfy the following asymptotic The proof thus is complete.

ξ = i a 2 ρ 2 . ( 5 
Proof of Theorem 5.3.1. From Proposition 5.3.3 the large eigenvalues in (5.3.8) approach the imaginary axis and therefore the system (5.1.1)-(5.1.3) is not uniformly stable in the energy space H.

Polynomial Stability

In this section we prove that the system (5.1.1)-(5.1.2) is polynomially stable in the energy space H. Throughout, this part, we assume that a 1 , a 2 , ρ 1 , ρ 2 , b ∈ C 1,1 (Ω).

(C1) Also, we assume that the following supplementary conditions. There exists a function q ∈ C 1 (Ω, R N ) and 0 < α < β < γ, such that ∂ j q k = ∂ k q j , div(a 1 a 2 ρ 2 q), div(a 1 a 2 ρ 1 q) ∈ C 0,1 (Ω β ) and q = 0 on O α , (C2)

There exists a constant σ 1 > 0, such that 2a 2 ∂ j (a 1k q k ) + a 1 (q k ∂ j a 2 + q j ∂ k a 2 ) + a 1 a 2 ρ 2 q∇ρ 2 -q∇a 2 I ≥ σ 1 I, ∀x ∈ Ω β . (C3)

There exists a constant σ 2 > 0, such that 2a 1 ∂ j (a 2k q k ) + a 2 (q k ∂ j a 1 + q j ∂ k a 1 ) + a In particular, for U 0 ∈ H, the energy E(t, U ) converges to zero as t goes to infinity. We Know that condition (H1) is verified. Our goal now is to prove that condition (H2) is satisfied. To this aim, we proceed by a contradiction argument. Suppose that (H2) does not hold, then there exist a sequence (λ n ) n ∈ R and a sequence (U n ) ⊂ D(A) such that (5.4.17)

|λ n | -→ +∞, U n H = (u n , v n , y n , z n ) H = 1 (5.
Finally, using (5.4.17), condition (H) and the fact that η = 1 on O γ , we get the second estimation of (5.4.9). Thus the proof is complete. (2a 2 ∂ j (a 1k q k ) + a 1 q k ∂ j a 2 + a 1 q j ∂ k a 2 ) Using Green formula, we get Take h = div(a 1 a 2 ρ 2 q), using the fact ∇y is uniformly bounded in L 2 (Ω) and Lemma 5. In the another hand, we have Using Green formula, we get (5.4.31)

∂ j y∂ k ȳdx + Ω a 1 a 2 2 a 2 ρ 2 q • ∇ρ 2 -q • ∇a 2 |∇y| 2 dx -ℜ iαλ
-λ 2 ℜ Ω ρ 2 yq • a 1 N dx = -λ 2 ℜ Ω a 1 a 2 ρ 2 yq • ∇ȳdx = 1 2 Ω div(
-ℜ Ω div(N )q • a 1 N dx = -ℜ Ω ∂ j N j q k a 1k Nk dx = ℜ Ω (N j ∂ j (a 1k q k ) Nk + N j q k a 1k ∂ j Nk )dx = ℜ Ω (N j ∂ j (a 1k q k ) Nk + N j q k a 1k ∂ k Nj )dx + ℜ Ω N j q k a 1k (∂ j Nk -∂ k Nj ))dx.
-ℜ Ω div(N )q • a 1 N dx = ℜ Ω N j ∂ j (a 1k q k ) Nk - 1 2 div(a 1 q)|N | 2 dx + ℜ Ω N • [(a 1 q • ∇ȳ)∇a 2 -(
) + a 1 q k ∂ j a 2 + a 1 q j ∂ k a 2 )∂ j y∂ k ȳ dx + Ω a 1 a 2 2 a 2 ρ 2 q • ∇ρ 2 -q • ∇a 2 |∇y| 2 dx -ℜ iαλ
The proof has been completed. (2a 1 ∂ j (a 2k q k ) + a 2 q k ∂ j a 2 + a 2 q j ∂ k a 2 ) ∂ j u∂ k ūdx + Ω a 1 a 2 2 (5.4.35)

a 1 ρ 1 q • ∇ρ 1 -q • ∇a 1 |∇y| 2 dx -ℜ iαλ
Let ĥ ∈ C 0,1 ( Ω). Multiplying equations (5.4.4) and (5. Using equation (5.4.35), (5.4.38) and take ĥ = div(a 1 a 2 ρ 1 q), we get Ω (M j ∂ j (a 2k q k ) Mk + M j q k a 2k ∂ j Mk )dx = ℜ Ω (M j ∂ j (a 2k q k ) Mk + M j q k a 2k ∂ k Mj )dx + ℜ Ω M j a 2k q k (∂ j Mk -∂ k Mj ))dx.

-λ 2 ℜ Ω ρ 1 uq • a 2 M dx =
(5.4.40)

Using Green formula in equation (5.4.40), we get (5.4.42)

-ℜ Ω div(M )q • a 2 M dx = ℜ Ω M j ∂ j (a 2k q k ) Mk - 1 2 |M | 2 div(a 2 q)dx + ℜ Ω M • [(a 2 q • ∇ū)∇a 1 -(a 2 q • ∇a 1 )∇ū] dx + ℜ Ω a 2 M • [(q • ∇v)∇b -(q • ∇b)∇v] dx .
A direct calculation gives,

Ω a 1 2ρ 1 div(a 1 a 2 ρ 1 q)|∇u| 2 dx + ℜ Ω a 2 1 ∂ j u∂ j (a 2k q k )∂ k ū - 1 2 |M | 2 div(a 2 q) dx +ℜ Ω a 1 a 2 2 (q k ∂ j a 1 + q j ∂ k a 1 )∂ j u∂ k ū -a 1 a 2 q • ∇a 1 |∇u| 2 dx +ℜ iαλ Ω a 1 a 2 yq • ∇ūdx = o(1).
( 5.4.43) This implies that Ω a 1 2 (2a 1 ∂ j (a 2k q k ) + a 2 q k ∂ j a 1 + a 2 q j ∂ k a 1 )∂ j u∂ k ūdx where

+ Ω a 1 a 2 2 a 1 ρ 1 q • ∇ρ 1 -q • ∇a 1 |∇u| 2 dx +ℜ iαλ
                         A 1 = a 2 2 
((2a 2 ∂ j (a 1k q k ) + a 1 q k ∂ j a 2 + a 1 q j ∂ k a 2 )),

A 2 = a 1 a 2 2 a 2 ρ 2 q • ∇ρ 2 -q • ∇a 2 , A 3 = a 1 2
(2a 1 ∂ j (a 2k q k ) + a 2 q k ∂ j a 1 + a 2 q j ∂ k a 1 ),

A 4 = a 1 a 2 2 a 1 ρ 1 q • ∇ρ 1 -q • ∇a 1 .
Using condition (C 3 ) and (C 4 ) in equation ( 5 The result follows from [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF]. 
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Abstract

This thesis is devoted to study the stabilization of the system of waves equations with one boundary fractional damping acting on apart of the boundary of the domain and the stabilization of a system of waves equations with locally viscoelastic damping of Kelvin-Voight type. First, we study the stability of the multidimensional wave equation with boundary fractional damping acting on a part of the boundary of the domain. Second, we study the stability of the system of coupled onedimensional wave equation with one fractional damping acting on a part of the boundary of the domain. Next, we study the stability of the system of coupled multi-dimensional wave equation with one fractional damping acting on a part of the boundary of the domain. Finally, we study the stability of the multidimensional waves equations with locally viscoelastic damping of Kelvin-Voight is applied for one equation around the boundary of the domain.
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Introduction

  multidimensional wave equationu tt -∆u = 0, in Ω × R + , (0.0.1) u = 0, on Γ 0 × R + , (0.0.2) ∂u ∂ν + γ∂ α,η t u = 0, on Γ 1 × R + .(0.0.3)

  le système (0.0.61)-(0.0.64) peut être écrire comme une équation d'évolution linéaire sur l'espace H U t = AU, U (0) = U 0 . (0.0.67) On a demontré que l'opérateur A est m-disssipatif sur H et par conséquent, d'après Lumer-Philipps ( voir [42, 51]), il engendre un C 0 -semi-groupe de contractions e tA . Donc la solution de l'équation d'évolution (0.0.67) admet la représentation suivante : U (t) = e tA U 0 , ∀t ≥ 0, ce qui mène que le système (0.0.67) est bien posé. Par conséquent, la théorie du semi-groupe permet du démontrer le résultat de l'existence et l'unicité suivant : Théorème 0.0.31. Pour toute donnée initiale U 0 ∈ H, le problème (0.0.67) admet une solution unique faible U (t) ∈ C 0 (R + , H). De plus, si U 0 ∈ D(A) donc le problème (0.0.67) admet une solution unique forte

  A n'admet pas des valeurs propres imaginaires pures et σ(A) ∩ iR contient un ensemble dénombrable d'éléments. Par conséquent, on a obtenu le résultat de stabilité suivant Théorème 0.0.32. Supposons que η ≥ 0. Alors, le C 0 -semi-groupe e tA t≥0 est fortement stable dans l'espace d'énergie H, i.e. pour tout U 0 ∈ H, on a lim t→+∞ e tA U 0 H = 0. Pour la démonstration de ce Théorème, on a besoin de démontrer les deux Lemmes suivantes Lemma 0.0.33. Supposons que η ≥ 0. Alors, pour tout λ ∈ R, on a ker (iλI -A) = {0}. On a remarqué que, pour η = 0, l'opérateur -A n'est pas inversible et par conséquent, on aura Lemma 0.0.34. Si η > 0, pour tout λ ∈ R, on a R(iλI -A) = H tandis que, si η = 0, pour tout λ ∈ R * , on a R(iλI -A) = H. Alors, d'après le Lemme (0.0.33), on déduit directement que l'opérateur A n'admet pas des valeurs propres imaginaires pures. Puis, en utilisant le Lemme (0.0.34) et le théorème de Banach férmé on conclut que σ(A) ∩ iR = {∅} si η > 0 et σ(A) ∩ iR = {0} si η = 0. Maintenant, on va étudier le genre de cette stabilité. Pour ce but, on a démontré que le système (0.0.61)-(0.0.64) n'est pas uniformément stable c-à-d n'est pas exponentiellement stable dans le cas Ω = [0, 1]. Notre résultat est le suivant Théorème 0.0.35. Supposons que d = 1. Le semi-groupe de contractions e tA n'est pas uniformément stable dans l'espace de l'énergie H.

Definition 1 . 1 . 10 .Theorem 1 . 1 . 12 .Theorem 1 . 1 . 13 .

 111011121113 Let T : D (T ) ⊂ E -→ F be a closed unbounded linear operator and let λ be an eigevalue of A. A non-zero element e ∈ E is called a generalized eigenvector of T associated with the eigenvalue value λ, if there exists n ∈ N * such that (λI -T ) n e = 0 and (λI -T ) n-1 e = 0. If n = 1, then e is called an eigenvector. Definition 1.1.11. Let T : D (T ) ⊂ E -→ F be a closed unbounded linear operator. We say that T has compact resolvent, if there exist λ 0 ∈ ρ (T ) such that (λ 0 I -T ) -1 is compact. Let (T, D (T )) be a closed unbounded linear operator on H then the space D (T ) , • D(T ) where u D(A) = T u H + u H ∀ u ∈ D (T ) is banach space . Let (T, D (T )) be a closed unbounded linear operator on H then, ρ (T ) is an open set of C.

Definition 1 . 4 . 4 .

 144 The fractional derivative of order α > 0, in sens of Caputo, defined on the interval [a, b], is given by

Remark 1 . 5 . 4 . 1 .

 1541 In this figure, We take an open arc Υ in the boundary that contains a halfcircumference and let P denote the midpoint of Υ. For ε sufficiently small denote γ ε the closed arc centered at P with length less ε. For a ray to miss Υ\P at must hit P as does the equilateral triangle with vertex P . Let θ denote the union of two open arcs centered respectively at the antipodal of P and one of the other vertices of the equilateral triangle. Let Γ 1 = (Υ ∪ θ)\γ ε and Γ 0 = ∂Ω\Γ 1 , then the condition GCC holds. •Models satisfies (M GC) and (GCC) boundary conditions : Let µ be the function defined by

Lemma 2 . 2 . 4 .

 224 Assume that η ≥ 0. Then, for all λ ∈ R, we have ker (iλI -A) = {0}. Proof: Let U ∈ D(A) and let λ ∈ R, such that AU = iλU.

3 . 1 , 1

 311 by tacking ℓ = 2 -2α, the polynomial energy decay (2.3.4) holds if the following conditions iR ⊂ ρ(A) |λ| ℓ (iλI -A) -1 < +∞ (H2)

Chapter 3 .

 3 s) dω ds (s)ds.The system (3.1.1), (3.1.2) is considered with initial conditions   u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), where x ∈]0, 1[, y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x) where x ∈]0, 1[. (3.1.3) The influence of the coefficients of a system of wave equations coupled by velocities with one fractional damping on its indirect boundary stabilization

.1. 5 )

 5 From equations (3.1.4), (3.1.5), clearly[D α f ] = I 1-α Df.(3.1.6)

Chapter 3 .

 3 The influence of the coefficients of a system of wave equations coupled by velocities with one fractional damping on its indirect boundary stabilization α ∈]0, 1[. Using theorem 0.0.3, the solution of the system

.2. 4 )

 4 Then the system (3.1.1)-(3.1.2) is equivalently to the augmented model defined by

  we prove the existence of U = (u, v, y, z, ω) ⊤ ∈ D(A), unique solution of the equation (I -A)U = F. (3.2.13) one fractional damping on its indirect boundary stabilization

Theorem 3 . 2 . 3 .Chapter 3 .

 3233 The semigroup of contractions e tA is strongly stable on the energy space H The influence of the coefficients of a system of wave equations coupled by velocities with one fractional damping on its indirect boundary stabilization i.e. lim t→+∞ e tA U 0 H = 0 for all U 0 ∈ H, if and only if b

Lemma 3 . 2 . 4 .

 324 Suppose that η ≥ 0 and b satisfying condition (C). Then, for all λ ∈ R, we haveker (iλI -A) = {0}. Proof: Let λ ∈ R and U = (u, v, y, z, ω) ∈ D (A) such that AU = iλU.(3.2.30)

  1[, |ξ| 2 ω + sin(1)µ(ξ) = 0. (3.2.60) From (3.2.60), we deduce that ω(ξ) = |ξ| 2α-5 2

Lemma 3 . 2 . 7 .

 327 .2.65) The same computation in Lemma 3.2.4 shows ker (λ 2 L -1 -I) = {0} for b small enough. Then following Fredholm's alternative, the equation (3.2.61) admits a unique solution. If η > 0, for all λ ∈ R, we have R(iλI -A) = H one fractional damping on its indirect boundary stabilization while if η = 0, for all λ ∈ R * , we have R(iλI -A) = H.

  ) and(3.3.20), we getλ 2 y x (1)γλ(λ + η) α-1 y xx (1)y xxx (1) = 0. (3.3.21)Finally, using the fact y(0) = y(1) = u(0) = 0, and (3.3.21) we get the following systemy xxxx -2λ 2 y xx + λ 2 (λ 2 + b 2 )y = 0

( 3 .

 3 3.35) Using (3.3.34) and (3.3.35) in (3.3.32), we get

  .3.38) where f 0 (λ) = e 2λe -2λ and f 1 (λ) = γ e 2λ + e -2λ -(e ib + e -ib ) .(3.3.39) 

.3. 45 )

 45 It follows that , from (3.3.43)-(3.3.45) where b = kπ,

.3. 58 )

 58 Inserting equation(3.3.58) in(3.3.57), and using the factU H = 1 we get λ = -γκ +∞ -∞ (|ξ| 2 + η)|ω| 2 dξ -2ib|λ| 2 ℑ

Proposition 3 . 3 . 6 .

 336 Assume a = 1, η > 0 and b satisfying condition (C). There exists a constant N ∈ N such that

λ 2

 2 y x (1)aγλ(λ + η) α-1 y xx (1)ay xxx (1) = 0, . (3.3.67)

( 3 .Chapter 3 .

 33 3.77) Using equations (3.3.76) and (3.3.77) in (3.3.74), we getf (λ) = A + B + C + D, (3.3.78)The influence of the coefficients of a system of wave equations coupled by velocities with one fractional damping on its indirect boundary stabilization

Following 1

 1 Borichev and Tomilov, a C 0 -semigroup of contractions e tA on a Hilbert space verify iR ⊂ ρ(A) |λ| ℓ (iλI -A) -1 < +∞.

Chapter 3 .

 3 The influence of the coefficients of a system of wave equations coupled by velocities with one fractional damping on its indirect boundary stabilization Detailing equation(3.4.3), we get

Lemma 3 . 4 . 2 .

 342 Assume that a = 1, η > 0 and b satisfies the condition (C1). Then, the solution (u, v, y, z, ω) of (3.4.4)-(3.4.8) satisfies the following estimations From equations (3.4.4), (3.4.6) and (3.4.2), it easy to check that

  .4.12) where, c 1 , c 2 and c 3 in R. Then, we deduce that from equation(3.4.11) and(3.4.12) 

Lemma 3 . 4 . 3 .

 343 Assume that a = 1, η > 0 and b satisfies the condition (C1). Then, For all h ∈ W 1,∞ (0, 1), the solution (u, v, y, z, ω) of (3.4.4)-(3.4.8) satisfies the following estimation we have

( 3 . 4 . 18 ) 3 .

 34183 Chapter The influence of the coefficients of a system of wave equations coupled by velocities with one fractional damping on its indirect boundary stabilization Proof: Substitute v and z in equations (3.4.4) and (3.4.6) by (3.4.5) and (3.4.7), we get

1 0Lemma 3 . 4 . 4 .

 1344 hȳ x udx = o(1) λ ℓ . (3.4.22) Adding equations (3.4.21) , (3.4.22) and tacking the reel part we get equations (3.4.18). Then the proof has been completed. Assume that a = 1, η > 0 and b satisfies the condition (C1). Then, the solution (u, v, y, z, ω) of (3.4.19)-(3.4.20) satisfies the following estimations |y x (1)| 2 = o(1) λ δ(α) , (3.4.23)

.4. 25 )Chapter 3 . 1 0e 1 0b 12 b 13 b 14 b 21 b 11 bb

 2531111 Using Ordinary Differential Equation Theory, the solution of equation(3.4.24) is given byY (x) = e Bx Y 0 + x 0 e B(x-z) F (z)dz. (3.4.26) The influence of the coefficients of a system of wave equations coupled by velocities with one fractional damping on its indirect boundary stabilization The solution on 1 is given by Y (1) = e B Y 0 + B(1-z) F (z)dz. (3.4.27) Equivalently, we get e -B Y (1) = Y 0 + e -B 23 b 13 -b 13 -b 14 b 11 b 12 -b 23 -b 13 b 21 b 11 11 -b 12 b 13 -b 14 -b 21 b 11 -b 23 b 13 -b 13 b 14 b 11 -b 12 b 23 -b 13 -b 21 b 11 ij ) is defined by

Case 1 :Chapter 3 .λ 2 A 3 y x ( 1

 1321 Suppose that b = kπ. Assume that b = (2s + 1)π, then cos b 2 = 0 then A 1 = A 2 = 0, using this fact and multiplying equation (3.4.32) by λ 2 , we get A 4 y x (1The influence of the coefficients of a system of wave equations coupled by velocities with one fractional damping on its indirect boundary stabilization Inserting equation (3.4.33) in equation (3.4.32), we get 1

Multiplying equations ( 3 . 4 . 40 ) 2 = 0 , 1 : 1 :

 34402011 36) and (3.4.37) by λ, we get A 4 y x (1Using the fact b = kπ, then cos( b 2 ) = 0 and sin b then from equations (3.4.39) and (3.4.40), we get cos(λ)y x (141) and (3.4.42), we get |y x (1)| 2 = o(1) λ ℓ+2α-2 . (3.4.43) The proof has been completed. Proof of the Theorem 3.4.Case If b ∈ πZ, take ℓ = 6 -2α then |y x (1)| 2 = o(1). (3.4.44) Take h = x in equation (3.4.18) and using equation (3.4.44), we get

.4. 46 )Case 2 :

 462 Using equations (3.4.9), (3.4.45) and (3.4.46), we get U H = o(1) which contradicts (3.4.3). This implies that sup λ∈R (iλI -A) L(H) = O(λ 6-2α ). For b / ∈ πZ, take ℓ = 2 -2α in equation (3.4.23), then we get |y x (1)| 2 = o(1).(

.4. 57 )

 57 For the simplicity, we dropped the index n. Eliminate v and z in equations (3.4.53) and (3.4.55) by (3.4.54) and (3.4.56), we obtain the reduced system

b 11 b 12 b 13 b 14 b 21 b 11 b 23 b 13 -b 13 abChapter 3 .

 133 11 -b 12 b 13 -b 14 -b 21 b 11 -b 23 b 13 -The influence of the coefficients of a system of wave equations coupled by velocities with one fractional damping on its indirect boundary stabilization and

  3.4.63) and (3.4.64) in (3.4.62) and using the expression of o 14 and o 34 , we get

  .4.68) It follows from equations (3.4.67)-(3.4.68), there exists n, m ∈ Z such that

( 3 .

 3 4.70) Using the fact that λ is big enough i.e. λ ∼ πn ∼ π √ am, then by tacking the squares of equations (3.4.69) and (3.4.70), we get respectively

  .4.72) Combining equations (3.4.70)-(3.4.71), we get

( 4 .

 4 1.21) where Ω ⊂ R N is an open bounded domain of class C 2 , ∂Ω = Γ 0 ∪ Γ 1 , with Γ 0 ∩ Γ 1 = ∅, ν is the unit normal vector to Γ 1 pointing toward the exterior of Ω, a > 0 and b ∈ R * are constants. Under the equal speed wave propagation condition (in the case a = 1) and if the coupling parameter b is small enough, she established an exponential energy decay rate.

Lemma 4 . 2 . 4 .

 424 Assume that η ≥ 0, a = 1 and b small enough. Then, for all λ ∈ R, we have ker(iλI -A) = {0} . Proof: Let U ∈ D(A) and let λ ∈ R, such that AU = iλU.

  (

From ( 4 . 2 . 2 ϕ k | Γ 1 .Lemma 4 . 2 . 6 .Chapter 4 .

 42214264 72), we deduce that ω(ξ) = |ξ| 2α-d-[START_REF] Alabau-Boussouira | Indirect boundary stabilization of weakly coupled hyperbolic systems[END_REF] We easily check that, for α ∈]0, 1[, the function ω(ξ) / ∈ L 2 (R d ). So, the assumption of the existence of U is false and consequently the operator -A is not invertible. Assume that (η > 0 and λ ∈ R) or (η = 0, λ ∈ R * ). Then, for any f ∈ L 2 (Ω), On the stability of multidimensional coupled wave equations with one boundary fractional damping the following problem

Lemma 4 . 2 . 7 .

 427 .2.79) The same computation in Lemma 4.2.4 shows ker (λ 2 L -1 -I) = {0} for b small enough. Then following Fredholm's alternative, the equation (4.2.79) admits a unique solution. If λ > 0, for all λ ∈ R, we have R(iλI -A) = H. while if η = 0 for all λ ∈ R * , we have R(iλI -A) = H.Proof:We give the proof in the case η > 0, the proof of the second statement is fully similar. Let λ ∈ R and F = (f 1 , f 2 , f 3 , f 4 , f 5 ) ⊤ ∈ H, then we look for U = (u, v, y, z, ω) ⊤ ∈ D(A) solution of (iλ -A)U = F. (4.2.80)

α 2 - 1 ( 4 Lemma 4 . 3 . 4 .

 214434 .3.21) where c and c are two positive constants. Inserting equation (4.3.12) and (4.3.21) in equation (4.3.20) and using the fact that ℓ = 2 -2α, we get v L 2 (Γ 1 ) = o(1). (4.3.22) It follows, from (4.3.7), that equation (4.3.18) holds. The proof has been completed. Assume that η > 0. Then, the solution (u, v, y, z, ω) ∈ D(A) of (4.3.7)-(4.3.11) satisfies the following asymptotic behavior estimation

Chapter 5 .

 5 we prove the existence of U = (u, v, y, z) ⊤ ∈ D(A) solution for the following equation (iλI -A)U = F Indirect Stability of a system of strongly coupled wave equatons with local Kelvin-Voight damping

a 1 ,Theorem 5 . 3 . 1 .

 1531 a 2 , ρ 1 , ρ 2 ∈ R + and b ∈ R + * (H') Under hypothesis (H'), the system (5.1.1)-(5.1.3) is not uniformly stable in the energy space H.

Proposition 5 . 3 . 3 .

 533 There exists k 0 ∈ N ⋆ sufficiently large such thatσ(A) ⊃ σ 0 ∪ σ 1 ,where

2 a 1 ρ 1 q∇ρ 1 -Theorem 5 . 4 . 1 .Chapter 5 .

 15415 q∇a 1 I ≥ σ 2 I, ∀x ∈ Ω β . (C4)There exists a constant M > 0 such that for all v ∈ H 1 0 (Ω), we have|(q • ∇v) ∇b -(q • ∇b)∇v| ≤ M √ b |∇v|, ∀x ∈ Ω β .(C5) Assume that conditions (H), (C1) -(C5) are satisfied. Then for all initial data U 0 ∈ D (A), there exists a constant C > 0 independent of U 0 , such that the energy of the Indirect Stability of a system of strongly coupled wave equatons with local Kelvin-Voight damping strong solution U of (5.2.4) satisfying the following estimation :

Following

  Borichev and Tomilov, a C 0 -semigroup of contractions e tA on a Hilbert space H verify (5.4.1) if iR ⊂ ρ(A),

4 .2) and λ 2 n 4 ) 7 ) 5 . 4 . 2 .Chapter 5 .Lemma 5 . 4 . 3 . 2 ( 2 , 1 ) λ 2 .Lemma 5 . 4 . 4 . 7 )Chapter 5 .Ω(a 1 ΩΩ a 2 η ρ 2 |∇y| 2

 4247542554322125447512 (iλ -A)U = (f 1 , g 1 , f 2 , g 2 ) -→ 0 in H,(5.4.3) are satisfied. For simplicity, We drop the index n . By detailing equation (H2), we get the following system iλu -iλρ 1 v -(div(a 1 ∇u + b∇v)αz) = ρ 1 g 1 λ 2 -→ 0 in L 2 (Ω),(5.4.5)iλyz = f 2 λ ℓ -→ 0 in H 1 0 (Ω),(5.4.6)iλρ 2 z -(div(a 2 ∇y) + αv) = ρ 2 g 2 λ 2 -→ 0 in L 2 (Ω). (5.4.Lemma Assume that conditions (H), (C1) -(C5) holds. Then the solution (u, v, y, z) ∈ D(A) of equations (5.4.4)-(5.4.7) satisfying the following estimations ∇v L 2 (Oγ ) = o(1) λ and v L 2 (Oγ ) = o(1) λ .Proof: Multiply in H equation (H2) by the uniformaly bounded sequence U = (u, v, y, z), we getΩ b(x)|∇v| 2 dx = -ℜ ( (iλI -A)U, U H ) = o(1) λ 2 . IndirectStability of a system of strongly coupled wave equatons with local Kelvin-Voight damping It follows that b(x)∇v L 2 (Ω) = oand Poincarré inequality in equation (5.4.8), we get the second estimation desired. Assume that conditions (H), (C1) -(C5) holds. Then, the solution (u, v, y, z) ∈ D(A) of equations (5.4.4)-(5.4.7) satisfying the following estimations u L and ∇u L 2 (Oγ ) = o(Proof: First, using equations (5.4.4), (5.4.6) and the fact U H = 1, we get the first and the second estimation. Second using equation (5.4.4) and Lemma 5.4.2, we get the third and the fourth estimation. The proof has been completed. Assume that conditions (H), (C1) -(C5) holds. Then, the solution (u, v, y, z) ∈ D(A) of equations (5.4.4)-(5.4.7) satisfying the following estimations Oγ |z| 2 dx = o(1) and Oγ |∇y| 2 dx = o(1).(5.4.9)Proof: We define the cut-off function η ∈ C 1 (0 ≤ η ≤ 1 otherwith.Multiplying (5.4.5) by ηz in L 2 (Ω). Then using the fact that z is uniformly bounded in L 2 (Ω) and g 1 converges to zero in L 2 (Ω), we get i by ηv in L 2 (Ω). Then using the fact that v is uniformly bounded in L 2 (Ω) and g 2 converges to zero in L 2 (Ω), we get i 10)-(5.4.11), taking real part of the resulting equation and using Lemma 5.4.2, we getℜ Ω (a 1 ∇u + b∇v) • ∇ ηz ρ 1 dx + α Ω η ρ 1 |z| 2 dx = o 1 λ 2 . (5.4.12) Indirect Stability of a system of strongly coupled wave equatons with local Kelvin-Voight damping Using Lemmas 5.4.2, 5.4.3, and the fact that ∇z λ and z are uniformly bounded in L 2 (Ω), we get ℜ ∇u + b∇v) (5.4.14), hypothesis (H) and the fact that η = 1 on O γ , we get the first estimation of (5.4.9). Next, Multiplying (5.4.7) by η ȳ in L 2 (Ω). Then using the fact that λy is uniformly bounded in L 2 (Ω) and g 2 converges to zero in L 2 (Ω), we get i Lemmas 5.4.2, 5.4.3, and (5.4.14)-(5.4.15), we get 4.16), the definition of η and the fact that ∇y, λy are uniformly bounded in L 2 (Ω), we get dx = o(1).
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 545546 Assume that conditions (H), (C1) -(C5) holds. Then, from Lemmas 5.4.3-5.4.4 the solution (u, v, y, z) ∈ D(A) of equations (5.4.4)-(5.4.7) satisfying the following estimations U H = o(1) on O γ . (5.4.18) Now, we need to show that U H = o(1) on Ω β . Assume that conditions (H), (C1) -(C6) holds. Then, the solution (u, v, y, z) ∈ D(A) of equations (5.4.4)-(5.4.7) satisfying the following estimations Ω a 2 2

Ω a 1 Chapter 5 . 20 ) 2 Ωρ 2

 152022 a 2 uq • ∇ȳdx = o(1). Indirect Stability of a system of strongly coupled wave equatons with local Kelvin-Voight damping Proof: Define the following multiplier N = a 2 ∇y. (5.4.19) Eliminate v and z in equation (5.4.7) by (5.4.4) and (5.4.6), we getλ 2 ρ 2 ydiv(N )iαλu = oMultiply equation(5.4.20) by q • a 1 N , we getλ yq • a 1 N dx -Ω div(N )q • a 1 N dxiα Ω λuq • a 1 N dx = o

  4.3 in equation(5.4.23), we getΩ div(a 1 a 2 ρ 2 q)|λy| 2 dx = Ω a 2 ρ 2 div(a 1 a 2 ρ 2 q)|∇y| 2 dx + o(1).(5.4.24)From equations (5.4.22) and (5.4.24), we obtainλ 2 ℜ Ω ρ 2 yq • a 1 N dx = Ω a 2 2ρ 2 div(a 1 a 2 ρ 2 q)|∇y| 2 dx + o(1).(5.4.25) 

Chapter 5 .

 5 Indirect Stability of a system of strongly coupled wave equatons with local Kelvin-Voight damping

Ω a 1 a 2

 2 uq • ∇ȳdx = o(1).

Lemma 5 . 4 . 7 .Chapter 5 .

 5475 Assume that conditions (H), (C1) -(C5) holds. Then, the solution (u, v, y, z) ∈ Indirect Stability of a system of strongly coupled wave equatons with local Kelvin-Voight damping D(A) of equations (5.4.4)-(5.4.7) satisfying the following estimations Ω a 1 2

Ω a 1 2 Ωρ 1 ρ 1 2 Ω

 12112 a 2 yq • ∇ūdx = o[START_REF] Abdallah | Stabilisation et approximation de certains systèmes distribués par amortissement dissipative et de signe indéfini[END_REF].Proof: Define the following multiplier M = a 1 ∇u + b∇v.(5.4.32)From equations (5.4.4), (5.4.6) and (5.4.5) we haveλ 2 ρ 1 udiv(a 1 ∇u + b∇v) + iαλy = o(1) λ .(5.4.33)Multiplying equation (5.4.32) by q • a 2 M , we obtainλ uq • a 2 M dx -Ω div(a 1 ∇u + b∇v)q • a 2 M dx + iα Ω yq • a 2 M dx = ouq • a 2 M dx = -λ 2 ℜ Ω a 2 ρ 1 uq • (a 1 ∇u + b∇v)dx =1div(a 1 a 2 ρ 1 q)|λu| 2 dx + o(1).

4 . 5 )

 45 by iλ ĥu and ĥu respectively and using Lemma 5.4.3-5.4.4, we get -

Ω a 2 Chapter 5 .

 25 2ρ 2 div(a 1 a 2 ρ 1 q)|∇u| 2 dx + o(1).(5.4.39) Indirect Stability of a system of strongly coupled wave equatons with local Kelvin-Voight damping Furthermore, we have-ℜ Ω div(M )q • a 2 M dx = -ℜ Ω ∂ j M j q k a 2k Mk dx = ℜ

( 5 . 4 . 41 ) 2 |M | 2

 544122 Using Condition (C5), then from equation (5.4.41) we getΩ a 1 2ρ 1 div(a 1 a 2 ρ 1 q)|∇u| 2 dx+ℜ Ω M j ∂ j (a 2 k) Mk -1 div(a 2 q)dx + ℜ Ω M • [(a 2 q • ∇ū)∇a 1 -(a 2 q • ∇a 1 )∇ū] dx + ℜ iαλ Ω a 1 a 2 yq • ∇ūdx = o(1).

Ω a 1

 1 a 2 yq • ∇ūdx = o(1).
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 55481234 Indirect Stability of a system of strongly coupled wave equatons with local Kelvin-Voight dampingThe proof has been completed. Assume that conditions (H), (C1) -(C5) holds. Then, the solution (u, v, y, z) ∈ D(A) of equations (5.4.4)-(5.4.7) satisfying the following estimationsU H = o(1) on Ω β .Proof: Adding equations (5.4.31) and(5.4.44), it easy to see thatΩ j y∂ k ȳdx + Ω |∇y| 2 dx + Ω j u∂ k ūdx + Ω |∇u| 2 dx = o(1),(5.4.45) 

Proof of Theorem 5 . 4 . 1 1 L

 5411 .4.45), then we get ∇u L 2 (Ω β ) = o(1) and ∇y L 2 (Ω β ) = o(1). (5.4.46) Consequently, from equations (5.4.24), (5.4.38) and (5.4.46), we obtain U H = o(1) on Ω β . The proof has been completed. Using The fact U H = o(1) on O γ and Lemma 5.4.8, we get U H = o (1) over Ω which contradicts (H2). This implies that sup λ∈R (iλId -A) -

  

  

  

  ).

	influencé par la nature du paramètre du couplage b (ainsi avec des conditions supplémentaires
	sur b) et par la propriété arithmétique du rapport de vitesse de propagation des ondes (a). On
	aura les théorèmes principaux suivantes
	Théorème 0.0.39. Supposons que η > 0, a = 1 et b satisfait la condition (C), donc pour tout
	U 0 ∈ D(A) il existe une constante C 1 > 0 indépendante de U 0 tel que l'énergie de la solution forte du système (0.0.85), admet la décroissance polynomiale suivante
	Après l'étude spectrale, alors une décroissance de type polynomiale est espérée. Pour cela, on
	utilise le théorème de Borichev et Tomilov (méthode frequentielle) et en utilisant la théorie de
	des équations différentielles ordinaires et si le paramètre de couplage b vérifie la condition (C), on
	montre que la décroisssance polynomiale de l'énergie du système (0.0.74)-(0.0.82) est fortement

Théorème 0.0.41. Pour toute donnée initiale

  

	Théorème 0.0.42. Supposons que η ≥ 0, a = 1 et b suffisamment petit. Donc le C 0 -semi-groupe e tA t≥0 est fortement stable dans l'espace d'énergie H, i.e. pour tout U 0 ∈ H, on a
	lim t→+∞	e tA U 0 H = 0.
	Pour la démonstration de ce théorème, on a besoin de démontrer les deux lemmes suivantes
	Lemma 0.0.43. Supposons que η ≥ 0, a = 1 et b suffisamment petit. Donc, pour tout λ ∈ R, on a
	ker (iλI -A) = {0}.
	On a remarqué que pour η = 0 l'opérateur -A n'est pas inversible et par conséquent, on aura
	Lemma 0.0.44. Si η > 0, pour tout λ ∈ R, on a	le système (0.0.88)-(0.0.96) peut être écrire
	comme une équation d'évolution linéaire sur l'espace H R(iλI -A) = H
	U t = AU, U (0) = U 0 . tandis que, si η = 0, pour tout λ ∈ R * , on a	(0.0.98)
	On a demontré que l'opérateur A est m-disssipatif sur H et par conséquent, d'après Lumer-R(iλI -A) = H. Philipps, il engendre un C 0 -semi-groupe de contractions e tA . Donc la solution de l'équation d'évolution (0.0.98) admet la représentation suivante : Alors, d'après le Lemme (0.0.43), on déduit directement que l'opérateur A n'admet pas des valeurs propres imaginaires pures. Puis, en utilisant le Lemme (0.0.44) et le théorème de Banach U (t) = e tA U 0 , ∀t ≥ 0, ce qui mène que le système (0.0.98) est bien posé. Par conséquent, la théorie du semi-groupe férmé on conclut que σ(A) ∩ iR = {∅} si η > 0 et σ(A) ∩ iR = {0} si η = 0. Ensuite, la stabilité non-exponentielle (i.e. non uniforme) du système (0.0.88)-(0.0.96) est déjà
	permet du démontrer le résultat de l'éxistence et l'unicité suivant : prouvé dans le chapitre 2. Alors une décroissance de type polynomiale est éspérée. Pour ce but,
	on considère le cas η > 0, a = 1 et b suffisamment petit et le domaine Ω satisfait les conditions
	(M GC). Donc on a obtenu le résultat suivant unique faible U (t) ∈ C 0 (R + , H). De plus, si U 0 ∈ D(A) donc le problème (0.0.67) admet une U 0 ∈ H, le problème (0.0.67) admet une solution Théorème 0.0.45. Supposons que η > 0, a = 1 et b suffisamment petit. Donc, pour toute solution unique forte U (t) ∈ C 1 (R + , H) ∩ C 0 (R + , D(A)). Puis on a étudié la stabilité forte du notre système, au sens que l'énergie converge vers zéro donnée initiale U 0 ∈ D(A) il existe une constante C > 0 indépendante de U 0 , telle que l'énergie de la solution forte U de (0.0.98) satisfaite l'estimation suivante
	lorsque t tends vers l'infini, dont l'absence de la compacité de la résolvante de l'opérateur A et avec une condition géométrique notée (M GC) sur le domaine Ω. Donc la méthode classique de
	l'invariance de Lasalle et la décomposition spectrale de Benchimol ne seront pas appliquées dans
	ce cas. Pour cela, en utilisant le critère général d'Arendt-Batty, on montre que un C 0 -semi-groupe de contractions e tA dans un espace de Banach est fortement stable, si A n'admet pas des valeurs propres imaginaires pures et σ(A) ∩ iR contient un ensemble dénombrable d' éléments. Par conséquent, on a obtenue le résultat de stabilité suivant

Théorème 0.0.50. Sous

  

		, on démontre que
	l'opérateur A n'admet pas des valeurs propres imaginaires pures et σ(A)∩iR contient seulement un ensemble dénombrable d'élements. Par conséquent, on va démontrer le résultat de stabilité
	suivant :	
	Théorème 0.0.47. Sous l'hypothèse (H), le C 0 -semi-groupe e tA est fortement stable dans H ; i.e. pour tout U 0 ∈ H, la solution de (0.0.105) satisfaite
	lim t→+∞	e tA U 0 H = 0.
	Pour démontrer ce théorème, on a besoin de démontrer ses deux Lemmes.
	Lemme 0.0.48. Sous l'hypothèse (H), on a
	ker (iλI -A) = {0}, ∀λ ∈ R.
	Lemme 0.0.49. Sous l'hypothèse (H), iλI -A est surjective pour tout λ ∈ R.
	Puis, on démontre que le système (0.0.99)-(0.0.101) n'est pas uniformément stable i.e. expo-
	nentiellement table. Pour cela, on suppose que
	a 1 , a 2 , ρ 1 , ρ 2 ∈ R + et b ∈ R + * .	(H ′ )
	Donc, on aura le résultat suivant	
	l'hypothèse (H ′ ), le système (0.0.99)-(0.0.101) n'est pas uniformément
	stable dans l'espace d'énérgie H.	
	Ce résultat est dû au fait que, une sous suite des valeurs propres de l'opérateur A s'approche de l'axe des imaginaires. Donc, on montre qu'il existe une constante k 0 ∈ N * et une suite (λ k ) |k|≥k 0 , pour k assez grand. On a trouvé une sous suite de ses valeurs propres satisfiat la direction asymptotique suivante
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.2.11) Chapter 2.

com Chapter 2. Stabilization of multidimensional wave equation with locally boundary fractional dissipation law

  

	It follows, from (2.2.14) and (2.2.19), that	
	∂u ∂ν	= 0 and v = 0 on Γ 1 .	(2.2.22)
	Thus, by eliminating v, the system (2.2.17)-(2.2.19) implies that
	λ 2 u + ∆u = 0 in Ω,	(2.2.23)
		u = 0 on Γ 0 ,	(2.2.24)
		∂u ∂ν	= 0 on Γ 1 .	(2.2.25)

.2.20) Then, using (2.2.16) and (2.2.20) we deduce that ω = 0 a.e. in R d . (2.2.21) Mohammad AKIL Page 69 of 181 mohamadakil1@hotmail.
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.2.28) From (2.2.27), we deduce that ω(ξ) = |ξ| 2α-d-4 2 ϕ k | Γ 1 . We easily check that, for α ∈]0, 1[, the function ω(ξ) / ∈ L 2 R d . So, the assumption of the existence of U is false and consequently the Mohammad AKIL Page 70 of 181 mohamadakil1@hotmail.

operator -A is not invertible.

Lemma 2.2.6. Assume that (η > 0 and λ ∈ R) or (η = 0 and λ ∈ R ⋆ ). Then, for any f ∈ L 2 (Ω), the following problem
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.2.33)
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  Consequently, by Lax-Milligram's theorem, the variational problem (2.2.33) admits a unique solution (u 1 , u 2 ) ∈ H 1 Γ 0 (Ω) × H 1 Γ 0 (Ω). By choosing appropriated test functions in (2.2.33), we see that (u 1 , u 2 ) satisfies (2.2.32) and therefore problem (2.2.31) admits a unique solution u ∈ H 1
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.2.36)
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  equation (2.2.54) in (2.2.50), we get the desired equation(2.2.43). This implies that the C 0 -semigroup of contractions e tA is not uniformly stable in the energy space H.

	Numerical Validation. The asymptotic behavior λ k in equation (2.2.43) can be numerically
	validated. For instance, with α = 0.5, η = 1 and γ = 1 then from equation (2.2.43) we have
				lim k→+∞	√	kℜ (λ k ) = -	√ 2 √ π 2	≈ -0.398942.	
	√	k kℜ(λ	400	500		600	700	800	900	1000

The table below confirms this behavior. k ) -0.39874 -0.398781 -0.398808 -0.398827 -0.398842 -0.398853 -0.398862
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  We say that the multiplier control condition MCC holds if there exist x 0 ∈ R d and a positive constant
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, Lebeau and Rauch

[START_REF] Bardos | Sharp sufficient conditions for the observation, control and stabilisation of waves from the boundary[END_REF] 

: Definition 2.3.2. We say that Γ satisfies the geometric condition named GCC, if every ray of geometrical optics, starting at any point x ∈ Ω at time t = 0, hits Γ 1 in finite time T .

We also recall the multiplier control condition MCC in the following definition :

  .3.11) 

	Lemma 2.3.5. Assume that η > 0. Then the solution (u, v, w) ∈ D(A) of (2.3.7)-(2.3.9) satisfies the following asymptotic behavior estimation
	u L 2 (Ω) =	O(1) λ	,	(2.3.12)

1

  (2.3.17) where c and c are two positive constants. Inserting equation (2.3.10) and (2.3.17) in equation

	Mohammad AKIL	Page 79 of 181	mohamadakil1@hotmail
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  2.3.16) and using the fact that ℓ = 2 -2α, we getv L 2 (Γ 1 ) = o(1). (2.3.18) It follows, from (2.3.7), that equation (2.3.14) holds. The proof has been completed.

	Lemma 2.3.6. Assume that η > 0. Then the solution (u, v, w) ∈ D(A) of (2.3.7)-(2.3.9) satisfies the following asymptotic behavior estimation
	Ω	|λu| 2 dx -	Ω	|∇u| 2 dx =	o(1) λ ℓ .	(2.3.19)
	Proof: Multiplying equation (2.3.11) by ū, using Green formula and Lemma 2.3.5 we get
	equation (2.3.19).					

Lemma 2.3.7. Assume that the condition (H) holds and let u be a solution of problem

(2.3.11)

.

Stabilization of multidimensional wave equation with locally boundary fractional dissipation law

  Inserting equations (2.3.32), (2.3.34) and (2.3.35) in (2.3.31) and use the fact that ℓ = 2 -2α, we get

	Secondly, using (2.3.13),(2.3.14) and (2.3.21), we get				
	Γ 1	(∂ ν u) φu dΓ 1 =	o(1) λ 3-α and	Γ 1	λu φu dΓ =	o(1) λ 2 .	(2.3.35)
		Ω	|λu| 2 dx = o(1).			(2.3.36)
	The proof is thus complete.					
	Proof of Theorem 2.3.4. Using (2.3.19) and (2.3.29), we get		

.3.33) So, using (2.3.13),

(2.3.14) 

and the fact that f 1 H Γ 0 (Ω)

1 

(Ω) = o(1), we obtain, from

(2.3.33) 

that

Ω λ 2 f 1 φu dx = o(1) λ . (

2

.3.34) Chapter 2. Ω |∇u| 2 dx = o(1). It follows, from (2.3.10) and (2.3.19), that U H = o(1) which is a contradiction with (2.3.5). Consequently condition (H2) holds and the energy of smooth solution of system (2.2.6)-(2.2.10) decays polynomial to zero as t goes to infinity. Finally, using the density of the domain D(A) in H, we can easily prove that the energy of weak solution of system (2.2.6)-(2.2.10) decays to zero as t goes to infinity. The proof has been completed.

  is established. In view of the asymptotic behavior of the eigenvalues of the operator A see equation (2.2.43), we deduce that the optimal energy decay rate of type1 

				1
				1
			t	1-α
	t	2 1-α	. This question still be open.

  the sign of m 2 depends following to the value of λ 2b 2 . Therefore, we distinguish the three case. Case 1 : (λ 2 < b 2 ). For this case, clearly that m 2 > 0. Setting t 1 = √ -m 1 and t 2 = √ m 1 2, then P has 4 roots it 1 , -it 1 , t 2 and -t 2 . Then, we find the general solution of (3.2.35) given byu(x) = c 1 e it 1 x + c 2 e -itx + c 3 e t 2 x + c 4 e -t 2 x .Then from (3.2.49), sin(t 1 ) = 0 then cos(t 1 ) = ±1, then from (3.2.46) and (3.2.48), we get t 2 sinh(t 2 ) = 0, its not possible. Therefore, for this case (3.2.42) admits only trivial solution, then U = 0. Case 2 (λ 2 = b 2 ) : For this case, it easy to check that m 2 = 0 and t 1 = √ -m 1 = |b| a+1 a . Then P has 2 simple roots it 1 , -it 1 and 0 as a double root. Then we find the general solution of (3.2.35) by u(x) = c 1 e it 1 x + c 2 e -it 1 x + c 3 + c 4 x.

	(3.2.42) (3.2.43) (3.2.44) (3.2.45) (3.2.46) (3.2.47) (3.2.48) Using equations (3.2.36)-(3.2.40) and the fact t 1 = 0, then the general solution of (3.2.35) is Using equations (3.2.36) and (3.2.39) in (3.2.42), we get (t 2 1 + t 2 2 )(c 3 + c 4 ) = 0. In the other hand, t 2 1 + t 2 2 = -√ ∆ a = 0, then from (3.2.36) and (3.2.43) we get u(x) = 2ic 1 sin(t 1 x) + 2c 3 sinh(t 2 x). Assume that u = 0, using (3.2.37),(3.2.38) and (3.2.40), we get     sin(t 1 ) sinh(t 2 ) t 1 cos(t 1 ) t 2 cosh(t 2 ) -t 2 1 sin(t 1 ) t 2 2 sinh(t 2 )       c c ′   = 0. Therefore the rank of the previous matrix is one, that means that we have t 1 t 2 (t 2 cos(t 1 ) sinh(t 2 ) + t 1 sin(t 1 ) cosh(t 2 )) = 0, t 2 1 + t 2 2 sin(t 1 ) sinh(t 2 ) = 0, t 2 sin(t 1 ) cosh(t 2 ) -t 1 cos(t 1 ) sinh(t 2 ) = 0. Using the fact t 2 1 + t 2 2 = 0, then from (3.2.47) we have given by u(x) = 2ic 1 sin(t 1 x). (3.2.51) Suppose that c 1 = 0, Using (3.2.37) and (3.2.38) in (3.2.50) we get cos(t 1 ) = sin(t 1 ) = 0, That is not possible. Then (3.2.50) admits only trivial solution. sin(t (3.2.50) Case 3 (λ

1 ) sinh(t 2 ) = 0. (3.2.49) Suppose that sinh(t 2 ) = 0 then t 2 = ikπ for all k ∈ Z, then m 2 = -(kπ) 2 < 0 its not possible. 2 > b 2 ) : For this case clearly that m 2 < 0. Setting t 1 = √ -m 1 and t 2 = √ -m 2 , then P has four roots it 1 , -it 1 , it 2 , -it 2 and the general solution of (3.2.35) is given by
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	.3.5) (3.3.6) (3.3.7) (3.3.8) (3.3.9) (3.3.10) (3.3.11) (3.3.12) mohamadakil1@hotmailover (0, 1), we get Inserting equations (3.3.1), (3.3.3) in (3.3.2), (3.3.4) and (3.3.5), we get λ 2 u -u xx + bλy = 0, λ 2 y -y xx -bλu = 0, (λ + |ξ| 2 + η)ω -λu(1)µ(ξ) = 0. Mohammad AKIL Page 97 of 181 λ λu 2 + u x 2 + b|λ| 2 1 0 yūdx = λu x (1)ū(1), λ λy 2 + y x 2 -b|λ| 2 1 0 uȳdx = 0, . Adding equations (3.3.9), (3.3.10) , we get λ λu 2 + λy 2 + u x 2 + y x 2 + 2ib|λ| 2 ℑ 1 0 yūdx = λu x (1)ū(1). Multiplying equation (3.3.8) by γκω, integrate over R and using (3.2.9), we get λγκ ω 2 + γκ +∞ -∞ (|ξ| 2 + η)|ω| 2 dξ + λu(1)ū x (1) = 0. Inserting equation (3.3.12) in (3.3.11), and using the fact U H = 1 we get λ = -γκ +∞ -∞ (|ξ| 2 + η)|ω| 2 dξ + 2ib|λ| 2 ℑ 1 0 ȳudx . (3.3.13)

Lemma 3.3.2. Let λ ∈ C be a eigenvalue of A. Then ℜ(λ) is bounded. Proof: Multiplying equations (3.3.6) and (3.3.7) by λu and λy respectively, and integrating

  α .

	Proof: Using equations (3.3.6)-(3.3.8), we get	
	λ 2 u -u xx + bλy = 0, λ 2 y -y xx -bλu = 0, (λ + ξ 2 + η)ω -λu(1)µ(ξ) = 0, .	(3.3.14) (3.3.15) (3.3.16)
	From equation (3.3.15), we have			
	u = u xx =	1 bλ 1 bλ	λ 2 y -y xx , λ 2 y xx -y xxxx , .	(3.3.17) (3.3.18)
	Inserting equations (3.3.17) and (3.3.18) in equation (3.3.15), we obtain	
	y			

xxxx -2λ 2 y xx + λ 2 (λ 2 + b 2 )y = 0. (3.3.19)

Using equation

(3.3.16)

, we easy to check that
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  .3.34) 

	Mohammad AKIL mohamadakil1@hotmailSimilarly, using (3.3.25) and (3.3.26) in (3.3.33), we get Page 100 of 181

one fractional damping on its indirect boundary stabilization

  Let λ ∈ C be a eigenvalue of A. Then, ℜ(λ) is bounded.

	Inserting equations (3.3.47), (3.3.49) in (3.3.48), (3.3.50) and (3.3.51), we get
	λ 2 u -u xx + bλy = 0, λ 2 y -ay xx -bλu = 0, (λ + |ξ| 2 + η)ω -λu(1)µ(ξ) = 0.	(3.3.52) (3.3.53) (3.3.54)
	Lemma 3.3.5. Proof: Multiplying equations (3.3.52) and (3.3.53) by ū and ȳ respectively, and integrating
	over (0, 1), we get					
	λu 2 + u x	2 -u x (1)ū(1) + bλ	0	1	yūdx = 0,	(3.3.55)
		λy 2 + a y x	2 -bλ	0	1	uȳdx = 0, .	(3.3.56)
	Adding (3.3.55), (3.3.56) and using (3.2.9), we get			
							.3.47)
		u xx -bz = λv, z = λy,	(3.3.48) (3.3.49)

y xx + bv = λz, (3.3.50) -(|ξ| 2 + η)ω + v(1)µ(ξ) = λω. (

3

.3.51) 
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  |n|≥N ,

	Mohammad AKIL Proof: From equations (3.3.52) and (3.3.53), we have Page 103 of 181 λ m = i m + 1 2 π + o(1) and/or λ n = inπ u = 1 bλ (λ 2 y -ay xx ), u xx = 1 bλ λ 2 y xx -ay xxxx mohamadakil1@hotmailMoreover, J is finite set, and √ a + o(1). (3.3.60) (3.3.61) Inserting equations (3.3.60) and (3.3.61) in equation (3.3.52), we obtain
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  .3.75) 

	Mohammad AKIL mohamadakil1@hotmailUsing equations (3.3.72) and (3.3.73), we get Page 105 of 181

  u t , y, y t , ω)2 Then, system (4.2.1)-(4.2.9) is dissipative in the sense that its energy is a non-increasing function of the time variable t. Now, we define the linear unbounded operator A by

	For smooth solution, a direct computation gives	
	E ′ (t) = -γκ	R d	|ξ| 2 + η |ω(ξ, t)| 2 dξ.	(4.2.12)
			H .	(4.2.11)

  is dissipative in the sense that its energy is a non-increasing function of the time variable t. Now, let F = (f 1 , f 2 , f 3 , f 4 , f 5 ) ⊤ ∈ H, we prove the existence of U = (u, v, y, z, ω) ⊤ ∈ D(A), unique solution of the equation

	damping					
	Equivalently, we have the following system	
			u -v = f 1 , v -∆u + bz = f 2 , y -z = f 3 , z -(a∆y + bv) = f 4 , ω + (|ξ| 2 + η)ω -v| Γ 1 µ(ξ) = f 5 (ξ).	(4.2.17) (4.2.18) (4.2.19) (4.2.20) (4.2.21)
	By equation (4.2.21), we get				
	ω(ξ) = From equations (4.2.17) and (4.2.19), we have f 5 (ξ) + v| Γ 1 µ(ξ) |ξ| 2 + η + 1	.	(4.2.22)
			v = u -f 1 and z = y -f 3 .	(4.2.23)
	Using equation (4.2.23) in equations (4.2.18) and (4.2.20), we get the following problem
			u -∆u + by = f 1 + f 2 + bf 3 , y -a∆y -bu = f 3 + f 4 -bf 1	(4.2.24) (4.2.25)
	with the boundary conditions			
	u = 0 on Γ 0 ,	∂u ∂ν	= -γκ	R d	µ(ξ)ω(ξ, t)dξ on Γ 1 , y = 0 on Γ.	.2.14) (4.2.26)
	space H. Proposition 4.2.1. For η ≥ 0, the unbounded linear operator A is m-dissipative in the energy Using equations (4.2.22) and (4.2.23), we get
	Proof: For all U = (u, v, y, z, ω) ⊤ ∈ D(A), we have
		ℜ ( AU, U H ) = -γκ	R d	(|ξ| 2 + η)|ω(ξ, t)| 2 dξ ≤ 0.	(4.2.15)
	which implies that A (I -A) U = F.	(4.2.16)

  test function. Multiply equations (4.2.24) and (4.2.25) by ϕ 1 and ϕ 2 respectively, we obtain
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  .2.30) (ξ) ∈ L 2 (R d ) and for α ∈]0, 1[ it easy to check that M, N < +∞. Adding equations (4.2.28) and (4.2.29), we obtain

	Mohammad AKIL M = γκ mohamadakil1@hotmailwhere, Page 131 of 181 R d µ(ξ)f 5 (ξ) |ξ| 2 + η + 1 dξ, and N = γκ R d µ 2 (ξ) |ξ| 2 + η + 1 dξ. (4.2.31) using the fact f 5 a((u, y), (ϕ 1 , ϕ 2
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	4.2.35) (4.2.36) (4.2.37) (4.2.38) (4.2.39) (4.2.40) (4.2.41) (4.2.42) mohamadakil1@hotmailIt follows, from (4.2.13) and (4.2.40), that Equivalently, we have v = iλu, ∆u -bz = iλv, z = iλy, ∆y + bv = iλz, -|ξ| 2 + η ω + v| Γ 1 µ(ξ) = iλω. Next, a straightforward computation gives ℜ ( AU, U H ) = -γκ R d |ξ| 2 + η |ω| 2 dξ. Then using equation (4.2.35) and (4.2.41) we deduce that ω = 0 a.e. in R d . Mohammad AKIL Page 133 of 181 ∂u ∂ν = 0 and v = 0 on Γ 1 . (4.2.43)
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  Adding equations (4.2.52) and (4.2.53) and tacking the imaginary part, we obtain

	.2.44) (4.2.45) It clear that problem (4.2.44) and (4.2.45) have u = 0 and y = 0 unique solution respectively, and    ∆y = 0 in Ω × R + , y = 0 on Γ × R + . then U = 0, Which contradict the hypothesis U = 0. If λ = 0, using equation (4.2.43) and (4.2.36), we get u = 0 on Γ 1 . (4.2.46) Eliminating v and z in equations (4.2.36) and (4.2.38) in equations (4.2.37) and (4.2.39), we obtain the following system λ 2 u + ∆u -iλby = 0 in Ω, (4.2.47) λ 2 y + ∆y + iλbu = 0 in Ω, (4.2.48) u = 0 on Γ (4.2.49) ∂u ∂ν = 0 on Γ 1 , (4.2.50) y = 0 on Γ. (4.2.51) We divide the proof into several steps. Step 1. Multiplying equations (4.2.47) and (4.2.48) by ȳ and ū respectively, using green formula and the boundary conditions, we get Ω λ 2 uȳdx -Ω ∇u • ∇ȳdx -i Ω λb|y| 2 dx = 0, (4.2.52) Ω λ 2 yūdx -Ω ∇y • ∇ūdx + i Ω λb|u| 2 dx = 0. (4.2.53) Mohammad AKIL Page 134 of 181 |u| 2 dx = Ω |y| 2 dx. (4.2.54) Step 2. Multiplying equation (4.2.47) by ū, using green formula and the boundary conditions, we get Ω λ 2 |u| 2 dx -Ω |∇u| 2 dx = -ℜ -i Ω λbyūdx . (4.2.55) Step 3. Multiplying equation (4.2.47) by 2(m • ∇ū), we get 2 Ω λ 2 u(m • ∇ū)dx + 2 Ω ∆u(m • ∇ū)dx = 2i Ω λby(m • ∇ū)dx. (4.2.56) U ∈ D(A), then the regularity is sufficiently for applying an integration on the second integral in the left hand said in equation (4.2.56). Then we obtain mohamadakil1@hotmailΩ 2 Ω ∆u(m • ∇ū)dx = -2 Ω ∇u • ∇ (m • ∇ū) dx + 2 Γ ∂u ∂ν (m • ∇ū)dΓ. (4.2.57)
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	.2.58) Inserting equation (4.2.58) in equation (4.2.57) and using equations (4.2.49) and (4.2.50), we get 2ℜ Ω ∆u(m • ∇ū)dx = (N -2) Ω |∇u| 2 dx + Γ 0 (m • ν) ∂u ∂ν 2 dΓ. (4.2.59) In the another hand, it easy to see that 2 Ω λ 2 u(m • ∇ū)dx = -dλ 2 Ω |u| 2 dx. (4.2.60) Inserting equations (4.2.59) and (4.2.60) in equation (4.2.56), we get dλ 2 Ω |u| 2 dx + (2 -d) Ω |∇u| 2 dx -Γ 0 (m • ν) ∂u ∂ν 2 dΓ = -2ℜ Ω iλby(m • ∇ū) dx. (4.2.61) Multiplying equations (4.2.55) by 1 -N , and tacking the sum of this equation and (4.2.61), we get λ 2 Ω |u| 2 dx+ Γ 0 (m•ν) ∂u ∂ν 2 dΓ = ℑ λb Ω y((d -1)ū + 2(m • ∇ū))dx . (4.2.62) Using Cauchy-Shwartz inequality in the right hand side equation (4.2.62), then for ε > 0, we Mohammad AKIL Page 135 of 181 λ 2 Ω |u| 2 dx + Ω |∇u| 2 dx -Γ 0 (m • ν) ∂u ∂ν 2 dΓ ≤ (d -1)|λ||b| Ω |y| 2 2ε dx 1 2 Ω 2ε|u| 2 dx 1 2 +2 m ∞ |λ||b| Ω |y| 2 ε dx 1 2 Ω ε|∇u| 2 dx 1 2 . (4.2.63) mohamadakil1@hotmailget Using Young and Poincaré inequality, we get

Ω

|∇u| 2 dx-
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  .2.84)
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  .3.18) 

	Proof: Using equations (4.3.6), (4.3.7) and (4.3.9), we deduce directly the estimations (4.3.15)-
	(4.3.16). Now, from the boundary condition

  .3.19) Then, combining equation (4.3.12) and equations (4.3.19), we obtain the desired equation (4.3.17). Finally multiplying equation (4.3.11) by (iλ + |ξ| 2 + η) -1 µ(ξ), integrating over R d with respect to the variable ξ and applying Cauchy-Schwartz inequality, we obtain

  .3.23) 

	Proof: Multiplying equation (4.3.14) by 2θ(m • ∇ȳ), we obtain
	2
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	the right hand side of equation (4.3.24), we get	
		-2	Ω	iλθf 3 λ ℓ (m • ∇ȳ)dx = 2	Ω	i	λȳ • ∇(θmf 3 ) λ ℓ	.	(4.3.26)
	So, using equation (4.3.16) and the fact that f 3 H 1 0 (Ω) = o(1), we obtain, from (4.3.26) that
					-2	Ω	iλθf 3 λ ℓ (m • ∇ȳ)dx =	o(1) λ ℓ .	(4.3.27)
	Secondly, using Green formula and the fact y = 0 on Γ, for the first term of the left hand side
	of equation (4.3.24), we get					
	2	Ω	λ 2 yθ (m • ∇ȳ) dx = -	Ω	(dθ + (m • ∇θ)) |λy| 2 dx.	(4.3.28)
	Next, using the Green formula, for the second term of he left hand side of equation (4.3.24),
	we get							
	2ℜ							
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  .3.31) So, inserting equations (4.3.25), (4.3.27), (4.3.28) and (4.3.31) in equation (4.3.24), we obtain
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  .3.32) Finally, using equation(4.3.16), the fact that ∇y is bounded in L 2 (Ω), θ = 1 on Γ 1 and ℓ = 2 -2α, we obtain the desired equation(4.3.23). The proof is thus complete.

	Lemma 4.3.5. Assume that η > 0. Then the solution (u, v, y, z, ω) ∈ D(A) of (4.3.7)-(4.3.11) satisfies the following asymptotic behavior estimation

Ω |λu| 2 dx -Ω |λy| 2 dx = o(1). (4.3.33) Proof:[proof] Multiplying equations (4.3.13) and (4.3.14) by λȳ and λū respectively, using Green formula, we obtain Ω
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					.3.37)
	Using equations Lemma 4.3.3 and (4.3.23), we get	
	λ	Γ 1	∂y ∂ν	ūdΓ 1 = o(1).	(4.3.38)
	Next, multiplying equations (4.3.13) and (4.3.14) respectively by f3 and f1 and integrating, we
	Mohammad AKIL	Page 146 of 181	mohamadakil1@hotmail
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  and ∇u, ∇y are bounded in L 2 (Ω), we obtain, from (4.3.39)-(4.3.40) Using Lemma 4.3.3 in equation (4.3.46), we get the desired (4.3.45). The proof is thus complete.

	Ω On the other hand, combining equation (4.3.35), (4.3.37), (4.3.38) and (4.3.41) we obtain λf 1 f3 λ ℓ dx + o(1), (4.3.41) Ω λ f3 f 1 λ 2ℓ dx + o(1) λ ℓ . (4.3.43) (4.3.44) Finally, adding equations (4.3.43)-(4.3.44), use the fact that ℓ = 2 -2α and tacking the imagi-nary part, we get the desired equation (4.3.33). The proof is thus complete. Lemma 4.3.6. Assume that η > 0. Then the solution (u, v, y, z, ω) ∈ D(A) of (4.3.7)-(4.3.11) satisfies the following asymptotic behavior estimation Ω |∇y| 2 dx = o(1). (4.3.45) Γ 1 ∂u ∂ν ūdΓ 1 -ib Ω λyūdx = o(1) λ ℓ . (4.3.46) Mohammad AKIL Page 147 of 181 Ω λuȳdx = o(1) λ ℓ (4.3.47) Lemma 4.3.7. Assume that η > 0. If |b| ≤ 1 m ∞ then the solution (u, v, y, z, ω) ∈ D(A) of (4.3.7)-(4.3.11) satisfies the following asymptotic behavior estimation Ω |λu| 2 dx = o(1). (4.3.48) Proof: Multiplying equation (4.3.13) by 2(m • ∇ū), we get mohamadakil1@hotmailMultiplying equation (4.3.14) by ȳ, using green formula, we get 2

Ω λ 2 u f3 dx = -i Ω λ 2 y f1 dx = -i Ω λf 3 f1 λ ℓ dx + o(1).. (

4

.3.42) Now, combining equation (4.3.34), (4.3.36) and (4.3.42) we get

Ω λ 3 uȳdxλ Ω ∇u∇ȳdxib Ω |λy| 2 dx = Ω λ 3 yūdxλ Ω ∇y∇ūdx + ib Ω |λu| 2 dx = Ω λ f1 f 3 λ 2ℓ dx + o(1). Ω |λu| 2 dx -Ω |∇u| 2 dx = o(1)

and Ω |λy| 2 dx -Proof:[proof] Multiplying equation (4.3.13) by ū, using Green formula, we get Ω |λu| 2 dx -Ω |∇u| 2 dx + Ω |λy| 2 dx -Ω |∇y| 2 dx + ib
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  .3.61) we can easily prove that the energy of weak solution of system (4.2.1)-(4.2.9) decays to zero as t goes to infinity.

	Mohammad AKIL -2ℜ Γ ∂u ∂ν (m • ∇ū)dΓ + Tacking ε < δ, then we get -2ℜ Γ ∂u ∂ν (m • ∇ū)dΓ + Page 149 of 181 Γ (m • ν)|∇u| 2 dΓ ≥ o(1) λ 2-2α + (δ -ε) Γ (m • ν)|∇u| 2 dΓ ≥ o(1) Γ 1 |∇u| 2 dΓ. λ 2-2α . Inserting equation (4.3.63) in equation (4.3.57), we get d Ω |λu| 2 dx + (2 -d) Ω |∇u| 2 dx ≤ 2λbℜ -i Ω y(m • ∇ū)dx + o(1). Multiplying equation (4.3.45) by 1 -d and combining with equation (4.3.64), we get Using Young inequality, we get 2ℜ -i Ω bλy(m • ∇ū)dx ≤ m 2 ∞ b 2 Ω |λy| 2 dx + Ω |∇u| 2 dx. Inserting equation (4.3.66) in equation (4.3.65), we get Using Lemma 4.3.5, we get Finally, using the fact that |b| < 1 m ∞ in equation (4.3.68), we get the desired equation (4.3.48). (4.3.62) (4.3.63) (4.3.64) (4.3.65) (4.3.66) (4.3.67) (4.3.68) Thus the proof is complete. Proof of Theorem 4.3.1. Using (4.3.33), (4.3.45) and (4.3.48), we get Ω |∇u| 2 dx = o(1), Ω |λy| 2 dx = o(1), and Ω |∇y| 2 dx = o(1). (4.3.69) mohamadakil1@hotmailUsing the (MGC) condition, in equation (4.3.61), we get It follows, from (4.3.12), (4.3.48) and (4.3.69), that U

Ω |λu| 2 dx + Ω |∇u| 2 dx ≤ 2ℜ -i Ω bλy(m • ∇ū)dx + o(1). Ω |λu| 2 dx + Ω |∇u| 2 dx ≤ m 2 ∞ b 2 Ω |λy| 2 dx + Ω |∇u| 2 dx + o(1). Ω (1m 2 ∞ b 2 )|λu| 2 dx ≤ o(1). H = o(

1

) which a contradiction with (4.3.5). Consequently condition (H2) holds and the energy of smooth solution of system (4.2.1)-(4.2.9) decays polynomial to zero as t goes to infinity where a = 1 and b small enough and verifying |b| < 1 m ∞ . Finally, using the density of the domains D(A) in H,
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  Thus, the system (5.1.1)-(5.1.3) is dissipative in the sense that its energy is non increasing with respect to the time t. For any γ > 0 we define the γ-neighborhood O γ of the boundary Γ as follows O γ = {x ∈ Ω : |x -y| ≤ γ, y ∈ Γ}.(5.2.2)

  .2.26) into space H 2 c (Ω). Now, by taking f = u and f = y in equation (5.2.26), we get

			τ 3	Ω	e 2τ ϕ |u| 2 dx + τ	Ω	e 2τ ϕ |∇u| 2 dx ≤ C 1	Ω	e 2τ ϕ |∆u| 2 dx,	(5.2.27)
			τ 3	Ω	e 2τ ϕ |y| 2 dx + τ	Ω	e 2τ ϕ |∇y| 2 dx ≤ C 2	Ω	e 2τ ϕ |∆y| 2 dx.	(5.2.28)
	Adding (5.2.27) and (5.2.28), we get
	τ 3	Ω	e 2τ ϕ (|u| 2 + |y| 2 )dx + τ	Ω	e 2τ ϕ (|∇u| 2 + |∇y| 2 )dx
									≤ 2C	Ω	e 2τ ϕ (|a∆u| 2 + |a∆y| 2 )dx. (5.2.29)
	From (5.2.25) and (5.2.29), we get
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  .3.8) Inserting (5.3.9) in(5.3.5), we get the following equationa 2 (a 1 + λb)∆ 2 y -(a 2 ρ 1 + a 1 ρ 2 )λ 2 + ρ 2 bλ 3 ∆y + λ 2 ρ 1 ρ 2 λ 2 + α 2 y = 0.(5.3.10)Now, let ϕ k be an normalized eigenvector of the following problemThen by taking y = ϕ k in (5.3.10), we deduce the following characteristic equationP (λ) = ρ 1 ρ 2 λ 4 + ρ 2 bµ 2 k λ 3 + (a 2 ρ 1 + a 1 ρ 2 )µ 2 k + α 2 λ 2 + a 2 bµ 4 k λ + a 1 a 2 µ 4 k .(5.3.12)Next, taking ξ = λ µ k and ζ k = 1 µ k in (5.3.12), we getρ 2 bξ 3 + a 2 bξ + a 1 a 2 ξ k + α 2 ξ 2 ξ 3 k + (a 2 ρ 1 + a 1 ρ 2 ) ξ 2 ξ k + ρ 1 ρ 2 ξ 4 ξ k = 0. (5.3.13) 

	Mohammad AKIL	Page 162 of 181 mohamadakil1@hotmail   -∆ϕ k = µ 2 k ϕ k in Ω, ϕ k = 0 on Γ. (5.3.11)

Proof: From (5.3.6), we have u = 1 αλ ρ 2 λ 2 ya 2 ∆y .

(5.3.9)
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  .3.14) Then from equation(5.3.14) and Rouché's Theorem, we get the large roots of P satisfy the asymptotic equations Inserting equation(5.3.16) in equation (5.3.17), we get

	ξ = i Inserting equation (5.3.15) in equation (5.3.13), we get a 2 ρ 2 + ε k where lim |k|→+∞ ε k = o 1 µ k and λ k = i a 2 ρ 2 µ k + εk , where Multiplying equation (5.3.12) 1 µ 4 k , we get ρ 1 ρ 2 µ 4 k λ 4 + ρ 2 b µ 2 k λ 3 + (a 2 ρ 1 + a 1 ρ 2 ) µ 2 k λ 2 + α 2 µ 2 Mohammad AKIL Page 163 of 181 mohamadakil1@hotmailεk = -ε k = 0. (5.3.15) lim |k|→+∞ εk = 0. (5.3.16) α 2 2bρ 2 µ 2 k + o 1 k µ 3 . (5.3.18)

k λ 2 + a 2 bλ + a 1 a 2 = 0.

(5.3.17)

  a 1 a 2 ρ 2 q)|λy| 2 dx.(5.4.22) Now, let h ∈ C 0,1 ( Ω). Multiply equation(5.4.20) by hȳ, using Lemma 5.4.3, we get -

	Ω	a 2 ρ 2	h|∇y| 2 dx +

Ω h|λy| 2 dx + Ω a 2 ρ 2 ȳ∇h • ∇ydx = o(

1

).

(5.4.23) 

  a 1 q • ∇a 2 )∇ȳ]dx . [(a 1 q • ∇ȳ)∇a 2 -(a 1 q • ∇a 2 )∇ȳ]dx -ℜ iαλ Ω a 1 a 2 uq • ∇ȳdx = o(1). div(a 1 a 2 ρ 2 q)|∇y| 2 dx + ℜ ∂ j y∂ j (a 1k q k )∂ k ȳ -∂ j a 2 + q j ∂ k a 2 )∂ j y∂ k ȳa 1 a 2 q • ∇a 2 |∇y| 2 dx

								(5.4.27)
	Inserting equations (5.4.25) and (5.4.27) in (5.4.21), we get
		Ω	a 2 2ρ 2	div(a 1 a 2 ρ 2 q)|∇y| 2 dx + ℜ	Ω	N j ∂ j (a 1k q k ) Nk -	1 2	div(a 1 q)|N | 2 dx
								+	(5.4.28)
	It follows that		
	Ω	a 2 2ρ 2					Ω	a 2 2 1 2	div(a 1 q)|∇y| 2 dx
								+	(5.4.29)
	A direct calculation, gives	
	Ω	a 2 2ρ 2	div(a 1 2	div(a 1 q)|∇y| 2 dx
					+ℜ	Ω	a 1 a 2 2	(q k -ℜ iαλ	(5.4.30)
	This implies that		
					Ω	a 2 2	(2a 2 ∂

Ω N • Ω a 1 a 2 ∇y • [(q • ∇ȳ)∇a 2 -(q • ∇a 2 )∇ȳ]dx -ℜ iαλ Ω a 1 a 2 uq • ∇ȳdx = o(1). 1 a 2 ρ 2 q)|∇y| 2 dx + ℜ Ω a 2 2 ∂ j y∂ j (a 1k q k )∂ k ȳ -Ω a 1 a 2 uq • ∇ȳdx = o(1)

. j (a 1k q k

stabilisation directe et indirecte d'équations d'ondes par des contrôles de type fractionnaire frontière ou de type Kelvin-Voight localisé Résumé

  Cette thèse est consacrée à l'étude de la stabilisation directe et indirecte de différents systèmes d'équations d'ondes avec un contrôle frontière de type fractionnaire ou un contrôle local viscoélastique de type Kelvin-Voight. Nous considérons, d'abords, la stabilisation de l'équation d'ondes multidimensionnel avec un contrôle frontière fractionnaire au sens de Caputo. Sous des conditions géométriques optimales, nous établissons un taux de décroissance polynomial de l'énergie de système. Ensuite, nous nous intéressons à l'étude de la stabilisation d'un système de deux équations d'ondes couplées via les termes de vitesses, dont une seulement est amortie avec contrôle frontière de type fractionnaire au sens de Caputo. Nous montrons différents résultats de stabilités dans le cas 1-d et N-d. Finalement, nous étudions la stabilité d'un système de deux équations d'ondes couplées avec un seul amortissement viscoélastique localement distribué de type Kelvin-Voight.
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mohamadakil1@hotmail.com Chapter 4. On the stability of multidimensional coupled wave equations with one boundary fractional damping They established that, under some arithmetic condition on the ratio of the wave propagation speeds of the two equations, a polynomial energy decay rate for smooth initial data on a 1-dimensional domain. Furthermore, under the equality speed wave propagation, they proved that the energy of the system (4. 1.18) decays at the rate 1 t for smooth initial data on a N -dimensional domain Ω with usual geometrical condition.

In [START_REF] Ammar-Khodja | Stability of systems of one dimensional wave equations by internal or boundary control force[END_REF] Ammar-Khodja and Bader studied the simultaneous boundary stabilization of a system of two wave equations coupling through the velocity terms described by by

where a and α are two constants strictly positives and b ∈ C 0 ([0, 1]). They proved, in the general case, when a = 1, the system (4.1.19) is uniformly stable if and only if it is strongly stable and there exists p, q ∈ Z such that a = (2p+1) 2 q 2

. Moreover, under the equal speed wave propagation condition i.e. (a = 1), They proved that, system (4. 1.19) is uniformly stable if and only if it is strongly stable and the coupling parameter b(x) verifies that 1 0 b(x)dx = (2k+1)π 2 for any k ∈ Z. Note that, system (4. 1.19) is damped by two related boundary controls. In [START_REF] Nadine | Étude de la stabilisation exponentielle et polynomiale de certains systèmes d'équations couplées par des contrôles indirects bornés ou non bornés[END_REF] and [START_REF] Wehbe | The influence of the coefficients of a system of coupled wave equations on its indirect boundary stabilization[END_REF], Najdi and Wehbe considered a 1d coupled wave equations on its indirect boundary stabilization defined by :

where a > 0 and b ∈ R * are constants. Firstly, they proved that system (4.1.20) is strongly stable if and only if the coupling parameter b is outside a discrete set S of exceptional values.

Next, for b / ∈ S, they proved that the energy decay rate of system (4.1.20) is greatly influenced by the nature of the coupling parameter b (an additional condition on b) and by the arithmetic property of the ratio of the wave propagation speeds a. In [START_REF] Toufayli | Stabilisation pôlynomiale et contrôlabilité exacte des équations des ondes par des contrôles indirects et dynamiques[END_REF], Toufayli considered a multidimensional system of coupled wave equations to on boun-Proposition 5.2.1. Under hypothesis (H), the unbounded linear operator A is m-dissipative in the energy space H.

Proof: For all U = (u, v, y, z) ⊤ ∈ D(A), we have

unique solution of the equation -AU = F Equivalently, we have the following system

Inserting (5.2.6), (5.2.8) in (5.2.7) and (5.2.9), we get

Multiplying (5.2.10) and (5.2.11) by φ and ψ respectively, and integrating their sum, we get

(5.2.12)

Using Lax-Milgram Theorem (see [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]), we deduce that (5.2.12) admits a unique solution (u, y) in H 1 0 (Ω) × H 1 0 (Ω). Clearly this solution satisfies (5.2.10)-(5.2.11) by choosing appropriated test functions. Thus, using (5.2.6)-(5.2.8) and classical regularity arguments, we conclude that -AU = F admits a unique solution U ∈ D (A) and 0 ∈ D (A) . Since D (A) is dense in H, then, by the resolvent identity, for small λ > 0 we have R (λI -A) = H (see Theorem 1.2.4 in [START_REF] Liu | Semigroups associated with dissipative systems[END_REF]) and A is m-dissipative in H. The proof is thus complete.

Thanks to Lumer-Phillips Theorem (see [START_REF] Liu | Semigroups associated with dissipative systems[END_REF] and [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]), we deduce that A generates a C 0semigroup of contraction e tA in H and therefore problem (5.1.1)-(5.1.3) is well-posed. Then we mohamadakil1@hotmail.com Chapter 5. Indirect Stability of a system of strongly coupled wave equatons with local Kelvin-Voight damping have the following result : Theorem 5.2.2. For any U 0 ∈ H, problem (5.2.4) admits a unique weak solution

Strong Stability

In this part, we use a general criteria of Arendt-Batty in [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF] to show the strong stability of the C 0 -semigroup e tA associated to the system (5.1.1)-(5.1.3) in the absence of the compactness of the resolvent of A. Throughout this part, we assume that

Theorem 5.2.3. Under hypothesis (H), the C 0 -semigroup e tA is strongly stable in H ; i.e, for all U 0 ∈ H, the solution of (5.2.4) satisfies lim t→∞ e tA U 0 H = 0.

For the proof of Theorem 5.2.3, we need the following two lemmas.

Lemma 5.2.4. Under hypothesis (H), we have

Proof: From Proposition 5.2.1, 0 ∈ ρ(A). We still need to show the result for λ ∈ R * . Suppose that there exists a real number λ = 0 and U = (u, v, y, z) ⊤ ∈ D(A) such that AU = iλU.

(5.2.13) From (5.2.5) and (5.2.13), we have 

(5.2.25)

Using the fact that a 1 , a 2 ∈ C 0,1 (Ω), we deduce that the solution (u, y) of system (5.2.25) belong to H 2 c (Ω) × H 2 c (Ω), where

Ω) and with compact support .

From Theorem 8.3.1 see [START_REF] Hormander | Linear partial differential operators[END_REF], there exist C > 0 and τ 0 >> 1, such that for all τ > τ 0 , we have