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Résumé 
 
 L’anisotropie des propriétés mécaniques et acoustiques 
des matériaux poro-élastiques est un facteur  
déterminant dans le comportement de panneaux utilisés 
dans différents domains de l’ingénierie. La  
compréhension des différents mécanismes physiques 
conditionnant la réponse en fréquence de ces structures 
est alors nécessaire. L’anisotropie intrinsèque des 
matériaux poreux visco-élastiques présente un potential  
particulier pour l’optimisation multi-fonctionnelle de 
parois multicouches. En effet, ces parois doivent  
souvent respecter des contraintes de raideur et isolation 
sonore et thermique de manière simultanée. Une 
méthode par superposition d’ondes planes dans des 
parois composées de matériaux poro-viscoélastiques 
est présentée afin d’analyser la sensibilité de la réponse 
acoustique de structures multicouches à l’alignement 
relative des couches poreuses anisotropes dans celles 
ci. La méthode est validée et appliquée à l’étude d’un 
système composée d’une mousse de mélamine située 
entre deux parois métalliques. Ce système permet 
d’illustrer des phénomènes intrinsèques aux couche 
poro-élastiques anisotropes, tel que le décalage en 
fréquence de la résonance fondamentale du système, et 
les couplages de compression-cisaillement dans le 
milieu poro-élastique. Ce phénomène de couplage est 
particulièrement intéressant puisqu’il n’est 
caractérisable que par la polarisation des ondes dans le 
milieu poro-élastique anisotrope. En fin, la méthode est 
appliquée afin d’optimiser un système multicouche pour 
des performances acoustiques. Les variables 
d’optimisation sont les orientations relatives des 
couches poro-élastiques anisotropes par rapport au 
système de coordonnées globales. Les solutions aux 
problems d’optimisation sont analysées en termes de 
comportement mécanique, ce qui permet d’établir une 
corrélation entre performances acoustiques et 
comportement dynamique. 
 

Mots clés 
matériaux poro-visco-élastique, anisotropie, 
ondes planes, panneaux multicouches, dynamique. 

Abstract 
 
The mechanical and acoustic anisotropy of media is a 
governing factor in the behaviour of multilayered 
systems including such media. The understanding of the 
mechanisms conditioning the dynamic behaviour of 
multilayered systems is of paramount importance. In 
particular, the intrinsic anisotropy of poroelastic media 
presents a potential for the optimal design of systems 
for multifunctional performances. Indeed, these 
multilayered systems are bound by stiffness, thermal 
and acoustic performance constraints in simultaneously. 
A plane wave method is presented to study the 
influence of material orientation in the dynamic 
behaviour of multilayered systems composed of 
anisotropic poroelastic media. The method is applied to 
a system composed of an anisotropic open-celled 
melamine foam core in between two metal sheets. This 
particular multilayered configuration allows to shed light 
on phenomena intrinsic to layers composed of 
anisotropic poroelastic materials, such as the frequency 
shift of the fundamental resonance of the panel, or the 
compression-shear coupling effects taking place in the 
poroelastic core layers. The latter phenomena is of 
particular importance, as it is evidenced on the 
unconventional polarisation of waves in anisotropic 
poroelastic media. Finally, the method is adapted to the 
optimisation of multi-layered systems for acoustic 
performance. the design variables are consequently the 
core material orientations with respect to the global 
coordinate system. The solutions to the optimisation 
problem are analysed in terms of dynamic behaviour, 
thus allowing to correlate acoustic performance of the 
overall structure, and the response of each individual 
layer. 
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"Goodbye," said the fox. "And now here is my secret, a very simple

secret: It is only with the heart that one can see rightly; what is

essential is invisible to the eye."

"What is essential is invisible to the eye," the little prince repeated,

so that he would be sure to remember.

"It is the time you have wasted for your rose that makes your rose so

important."

"It is the time I have wasted for my rose–" said the little prince, so

that he would be sure to remember.

"Men have forgotten this truth," said the fox. "But you must not forget

it. You become responsible, forever, for what you have tamed. You

are responsible for your rose..."

"I am responsible for my rose," the little prince repeated, so that he

would be sure to remember.

Antoine de Saint-Exupéry, The Little Prince.

to my nephew, Emilio.
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On multilayered system dynamics and waves in anisotropic

poroelastic media

Abstract

This thesis proposes a method for the extended dynamic analysis of multilayered sys-

tems under arbitrary excitation, and in particular, those including anisotropic poroelastic

media. This method fills a gap in the numerical methods that allow for a systematic

study of both the dynamics of a multilayered system, and the phenomena intrinsic to the

anisotropy of the poroelastic layers that compose it.

The approach relies on the expansion of the dynamic solution as a superposition of

plane waves. The formulation is based on a state-space representation in terms of physical

field variables, and directly provides the characteristics of the waves in the different layers

of the structure. This method requires the computation of the state matrix of each material

layer, which characterises its the dynamic state. Two methods for the derivation of the

state matrix are proposed. A term-by-term, or analytical derivation, is presented for

the acoustic analysis of fluid, solid, and poroelastic media. This approach is however

unpractical and prone to errors for media where the state vector is large. Therefore, a

semi-analytical derivation of the state matrix is proposed. Given its formulation, the

state matrix of any type of linear homogeneous medium, including arbitrary anisotropic

properties and multi-physics interactions, may be derived.

An analysis of the wave propagation in an infinite anisotropic poroelastic medium is

done with respect to its orientation. A first study of the wave propagation in an anisotropic

poroelastic medium where there is strong mechanical coupling between the saturating

fluid and the solid frame is performed. Then, the investigation of the wave propagation in

an industrial open-celled foam where the mechanical coupling between the two phases

of the material is weak is done. A discussion with regards to the properties of each

wave in the medium allows for the understanding of the wave phenomena induced by the

anisotropy of the medium.

Through the proposed method, the influence of the anisotropy of poroelastic cores

on the behaviour of the multilayered systems, as well as the dynamic phenomena within

the material layers, is evaluated. The studied system is composed of an anisotropic

open-celled melamine foam core in between two metal sheets. A frequency shift of the

fundamental resonance of the panel is observed, and linked to the variation of the stiffness

coefficient coupling compressional stresses and strains within the core with respect to its

material orientation. Furthermore, the compression-shear coupling effects taking place

in the poroelastic core layers are analysed. The influence of this phenomena on the overall

iii
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behaviour of the panel is correlated to the wave characteristics and amplitudes within

the core. Finally, the optimisation of multilayered systems for acoustic performance

in terms of sound transmission loss is presented. The systems consists in a melamine

poroelastic anisotropic core within two metallic sheets. The melamine core consists

on either one or two layers of equal thickness with independent material orientations.

The design variables are the core material alignment angles with respect to the global

coordinate system. This allows to control the phenomena related to the anisotropy of

the core layers without increasing the mass of the overall system. The solution to the

minimisation problem suggests the existence of a unique optimal solution in terms of

material orientation regardless of the layer partitioning of the core, which may be related

to the overall stiffness in compression of the core. The solution to the maximisation

problem shows that the acoustic response can be improved by sectioning the core into two

independently oriented poroelastic layers. The enhancement of sound transmission loss is

correlated to the dynamic phenomena in the core layers in terms of relative deformation.

An alternative optimisation problem may defined in terms of shear-compression coupling.

Its solution differs in terms of overall acoustic performance of the panel, but may be

exploited for the tuning of the acoustic behaviour at particular frequencies.

Keywords: poroelastic media, anisotropy, plane waves, multilayered systems, dynamics,

acoustics, optimisation.



Dynamique de systèmes multicouches et ondes dans des milieux

poro-élastiques anisotropes

Résumé

L’anisotropie des propriétés mécaniques et acoustiques des matériaux poro-élastiques

est un facteur déterminant dans le comportement de panneaux utilisés dans différents

domaines de l’ingénierie. La compréhension des différents mécanismes physiques con-

ditionnant la réponse en fréquence de ces structures est alors nécessaire. L’anisotropie

intrinsèque des matériaux poreux visco-élastiques présente un potentiel particulier pour

l’optimisation multi-fonctionnelle de parois multicouches. En effet, ces parois doivent

souvent respecter des contraintes de raideur et isolation sonore et thermique de manière

simultanée. Une méthode par superposition d’ondes planes dans des parois composées de

matériaux poro-visco-élastiques est présentée afin d’analyser la sensibilité de la réponse

acoustique de structures multicouches à l’alignement relative des couches poreuses

anisotropes dans celles-ci. La méthode est validée et appliquée à l’étude d’un sys-

tème composée d’une mousse de mélamine située entre deux parois métalliques. Ce

système permet d’illustrer des phénomènes intrinsèques aux couche poro-élastiques an-

isotropes, tel que le décalage en fréquence de la résonance fondamentale du système, et

les couplages de compression-cisaillement dans le milieu poro-élastique. Ce phénomène

de couplage est particulièrement intéressant puisqu’il n’est caractérisable que par la

polarisation des ondes dans le milieu poro-élastique anisotrope. En fin, la méthode est

appliquée afin d’optimiser un système multicouche pour des performances acoustiques.

Les variables d’optimisation sont les orientations relatives des couches poro-élastiques

anisotropes par rapport au système de coordonnées globales. Les solutions aux problèmes

d’optimisation sont analysées en termes de comportement mécanique, ce qui permet

d’établir une corrélation entre performances acoustiques et comportement dynamique.

Mots-clés: matériaux poro-visco-élastique, anisotropie, ondes planes, panneaux mul-

ticouches, dynamique, acoustique, optimisation.
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On multilayered system dynamics and waves in anisotropic

poroelastic media

Sammanfattning

Den mekaniska och akustiska anisotropin är styrande för hur materialegenskaperna

i ett flerskikt-system beter sig. Förståelsen av de mekanismer som styr ett flerskikts-

systems dynamiska egenskaper är av största vikt. För poroelastiska material möjliggör

dess inneboende anisotropi en optimering av multifunktionella system. Sådana system

är begränsade av dess prestanda vad gäller styvhet, termisk koppling och akustiska

egenskaper. En planvågsmetod presenteras för att studera riktningsberoendet för de

dynamiska egenskaperna i anisotropa poroelastiska material, när de används i fler-

skiktssystem. Metoden tillämpas på ett system med en anisotrop kärna av melaminskum

med öppna celler placerad mellan två metallskikt. Denna konfiguration möjliggör studier

av de fenomen som uppstår då anisotropa poroelastiska material används i flerskiktssys-

tem, exempelvis förflyttning av panelens grundresonansfrekvens och kopplingseffekter

mellan kompression och skjuvning i den poroelastiska kärnan. Det senare fenomenet

är speciellt viktigt eftersom grundar sig i en okonventionell polarisering av vågor i

anisotropa poroelastiska material. Metoden är slutligen anpassad för en optimering av de

akustiska egenskaperna i flerskiktssystem. Variablerna för denna optimering är således

kärnmaterialets riktning relativt ett globalt koordinatsystem. Optimeringsproblemets

lösningar analyseras med avseende på dynamiska egenskaper vilket gör det möjligt att

korrelera de akustiska egenskaperna för det övergripande systemet till responsen för

vardera skikt separat.

Nyckelord: Poroelastiska material, anisotropi, planvågor, flerskiktssystem, dynamik, ak-

ustik, optimering
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Overview





Chapter I

Introduction

The instability of petrol prices and the increasing concerns related to global warm-

ing have forced aeronautical and vehicle industries to invest in research in favour of

environmentally-friendly and economical production processes and methods. Moreover,

the legislative pressure on vehicle manufacturers has been important in the past decade.

For example, the failure to respect toxic particle emissions limitations on new vehicle

designs(i) carries severe economical penalties for the car manufacturers(ii).

In order to fulfil legal requirements and remain competitive, aeronautical and vehicle

manufacturers have introduced novel solutions ranging from the re-dimensioning of

transport infrastructures for optimised haulage(iii), to the use of lightweight materials23,65,

all supported by an increasing usage of computational tools29.

The conventional design paradigm relies on sequential evaluations of systems with

respect to individual performances. Following a Ford-type method (i.e. sequential chain

of production), the design partially depends on the negotiation skills of the designers. As

a consequence, the vehicle assembly consists of a load carrying body-in-white to which

several layers of materials and structures are added, each layer fulfilling an individual

requirement. This conventional paradigm, even though efficient with regard to particular

performances, is prone to being costly regarding weight, consequently increasing the

fuel consumption and decreasing the haulage capacity of the vehicle.

(i)Reducing CO2 emissions from passenger cars. European Commission (Climate Action).
http://ec.europa.eu/clima/policies/transport/vehicles/cars/index_en.htm
(ii)In September 2015, the United States Environmental Protection Agency publicly notified Volkswagen Group
of their violation of a federal law (ClearAir Act) with regards to intentionally manipulating a polluting-emissions
software. The settlement cost the company 14.7 billion USD. Other worldwide legal and financial repercussions
are expected.
(iii)Scania Group, in collaboration with Siemens, opened in June 2016 the first road with overhead power lines in
Gävle (Sweden), and has equipped several trucks with pantograph collectors which allow the trucks to function
under electric power, considerably reducing the environmental and economical footprint of their operational
regime.

3
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To fulfil a larger range of functionalities without penalising the fuel or transport

efficiency of the vehicle, a shift to a design paradigm based on the optimisation for

multi-functional performance is currently explored. This method relies on the iterative

evaluation of several functions (cost, fatigue,dynamic behaviour, etc.), adapting (choosing

or designing) the materials and structures until the completed vehicle concept fulfils the

set requirements.10,66. The aerospace industry, for example, has replaced materials like

steel, titanium and aluminium, to topologically-optimised lightweight hybrid materials55,

such as fibre-composite materials, or honeycomb structures39.

Moreover, novel material modelling and characterisation techniques17,47,62 open the

possibility to include complex phenomena in the design paradigm, such as the influence

of temperature gradients or flow on the behaviour of poroelastic materials24, amongst

others35,41,52. This has enabled the study of more realistic structures. An example of

numerical methods commonly used is the Finite-Element Method30,33 which is versatile

although costly in terms of computational efforts. Consequently, there is a need for

computationally efficient methods that reflect the phenomena intrinsic in complex yet

real material models.

Additionally, most porous materials used in aeronautical and vehicle engineering

applications exhibit a certain degree of anisotropy inherent to manufacturing processes.

The modelling of the behaviour of such materials is such that isotropic approximations fail

to provide sufficient insight into the different phenomena involved2,13,31,51. For critical

functions this could result in unacceptable designs, and studies on multilayered finite-

sized systems clearly demonstrate that anisotropy can significantly alter the dynamic

behaviour of a poroelastic material34. Thus, there is a need for tools to correlate the

dynamic behaviour of the multilayered system with critical performance in terms of

dissipative and kinetic phenomena within the anisotropic material layers.

To contribute to meeting the needs for numerical methods to study the dynamics

of multilayered systems and the phenomena intrinsic to anisotropic poroelastic material

layers, this thesis focuses on three objectives. The first objective is to develop a model

for the dynamic behaviour of multilayered systems including anisotropic poroelastic

media. Using this method, the second objective is to study the physical phenomena

taking place in the different layers composing such structures. The last objective is to

study the optimisation of multilayered systems with anisotropic poroelastic cores for

acoustic performance.

The manuscript is organised as follows.

Chapter II presents the mathematical background, which relies on a state-space

representation. Two different methods to derive the state matrix of a medium are

proposed. The first method is focused on a term-by-term, or analytical derivation, for the
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acoustic analysis of fluid, solid, and poroelastic media. The second method is corresponds

to a semi-analytical derivation, which is an extension of the state-space representation

for the dynamic analysis of any type of linear homogeneous medium, including arbitrary

anisotropic properties and multi-physics interactions.

Chapter III presents a detailed study of the wave propagation in anisotropic poroelastic

media. First, a validation of the semi-analytical derivation of the state matrix is presen-

ted. The calculation of wave properties in an infinite poroelastic medium with strong

fluid/solid dynamic coupling is validated against a wave propagation model available

in the literature. Thereafter, the wave propagation problem is solved in the case of an

anisotropic industrial melamine foam, and the nature of the waves propagating in such

media is discussed.

Chapter IV studies the dynamic behaviour of several multilayered configurations

using the proposed model. First, the dynamic analysis of a multilayered system with a

core composed of the melamine foam previously studied is performed. The proposed

method is used to access the physical field variables, as well as the properties and

contributions of the waves in each layer. A particular interest is given to the influence

of the anisotropic material core orientation on the dynamic behaviour of the panel.

This allows the investigation of phenomena inherent to anisotropic poroelastic media,

like compression-shear motion coupling, and the shift in the fundamental resonance

frequency of the panel. Finally, a study of the optimal material alignment of anisotropic

poroelastic cores of a multilayered system for dynamic performance is presented. The

performance of the panel is measured in terms of sound transmission loss within a

range of frequencies. The solutions to the optimisation problem are analysed in terms

of dynamic response of the cores, and the stability of the solution in terms of small

variations of the design variables, probing the governing physical phenomena behind

the optimal configurations. In this way, the Pareto optimal solution is determined as a

compromise between the value of cost function at the solution and its robustness. The

phenomena governing the response of system and the Pareto optimal solution are used

to construct an alternative optimisation problem, where the performance is measured by

the dynamic response of the anisotropic poroelastic cores.

Conclusions are given in Chapter V, where also a perspective of further applications

and future work is presented.





Chapter II

Model for the wave propagation and dynamic

behaviour of multilayered systems with

anisotropic poroelastic layers

The multilayered systems used for aeronautical and vehicle engineering applica-

tions are usually composed of several layers, fulfilling a large range of functionalities.

From a mechanical perspective, one of the roles fulfilled by such panels is the control

of sound absorption and transmission. Most common sound-absorbing poroelastic ma-

terials are composed of a porous solid skeleton saturated by air. This enables energy

dissipation through different mechanisms such as viscous effects, thermal effects and

structural damping. The dynamic behaviour of a fluid-saturated poroelastic medium

can be described under the modelling paradigm established by Biot7–9. This theory,

originally developed for geophysical applications, has been shown to be successful for

characterising and predicting the behaviour of isotropic sound-absorbing materials in a

wide range of problems27,49.

Regarding acoustic and mechanical behaviour of anisotropic poroelastic media,

fundamental publications by Biot4–6, and more recent works by Melon et al.36,37, or

Allard et al.1, amongst others14,26,48,59, set the basis for the current models.

The study of multilayered panels including anisotropic porous materials requires

a combination of physical models and simulation techniques. As discussed in the

introduction, a commonly used method is the Finite Element Method30, specially in

the low frequency regime. Semi-analytical formulations have been developed for the

mechanical behaviour of seismic waves in unbounded media11,54. However, the physical

phenomena induced by coupling finite-sized anisotropic porous media to other media

in bounded panels has not been addressed. Furthermore, Khurana et al.32 extended the

Transfer Matrix Method (TMM) to transverse isotropic porous materials in multilayered

structures. This particular case of anisotropy allows for an analytical solution of the

7
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dispersion relation governing the wavenumbers of the waves travelling in the medium.

Another example is the recent paper by Allard et al.3, where the authors extended the

method of Khurana et al. to transverse isotropic porous media whose plane of symmetry

differs from the plane of incidence. Thus, the wave amplitudes were analytically evaluated

in the layer by referring to a similar geometry to that in Khurana’s work. As in previous

geophysical studies, neither the transfer matrix nor the acoustic behaviour of bounded

orthotropic porous media were addressed, and the extension of such methodologies to

fully anisotropic media would yield cumbersome and thus impractical expressions. This

highlights the fact that a numerical approach is inevitable at least in some stages of the

method in order to assess a complete, accurate and reliable picture of wave propagation

in bounded fully anisotropic poroelastic media.

Having access to computational tools, the understanding of the mechanical and

dissipative phenomena linked to the behaviour of anisotropic multilayered structures

may be enhanced. Based on works by Biot4–6, Carcione11 developed an advanced model

for the free field propagation of elastic waves through anisotropic porous media for

geophysical purposes, allowing for the calculation of energy quantities in such media.

There is however a gap in the tools for the systematic computation of the dynamic

behaviour of panels, as well as the energy balance and wave properties in bounded

material layers.

This chapter presents a model for the dynamic behaviour of multilayered structures

with linear homogeneous media, in particular anisotropic poroelastic media, in terms of

physical field variables and wave field characteristics.

In the following, the scalar quantities are denoted in normal font, and the tensors

are denoted in bold font. When convenient, a definition of the dimensions for tensors is

expressed under the form [∈ Cu×v], where u and v are the dimensions. The convention

ı =
√
−1 is used in the manuscript. Note that, for consistency purposes, the nomenclature

of some terms in this thesis differs to that of the appended publications.

II.1 State-space representation

The dynamic state of a linear homogeneous medium, under harmonic excitation of

circular frequency ω, may be described in general by a system of m partial derivative

equations with respect to space on the physical field variables chosen to represent the

medium in a Cartesian coordinate system xyz,[
A0 + Ax

∂

∂x
+ Ay

∂

∂y
+ Az

∂

∂z

]
w(x, y, z) = 0, (1)
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where w(x, y, z) ∈ Cm is the vector composed of physical fields necessary to model the

medium; and the matrices {Ai ∈ Cm×m , i = {0, x, y, z}} are known, and depend on the

frequency.

An excitation of the system by a plane wave prescribing the wavenumbers kx and

ky is considered. Therefore, an arbitrary physical field v ∈ w, can be written as

v(x, y, z, t) = v(z) eı(ωt−kx x−kyy). (2)

As a consequence of the harmonic plane wave excitation, the system in Eq. (1) may be

rewritten as [
R + Az

∂

∂z

]
w(z) eı(ωt−kx x−kyy)

= 0, (3)

where R = A0 − ıkxAx − ıkyAy . Let n be the rank of the system, with n ≤ m. The

analytical expressions of the matrices {Ai , i = {0, x, y, z}} can be found in Appendix A

for the dynamic modelling of fluid, anisotropic solid, and anisotropic poroelastic media.

As the term eı(ωt−kx x−kyy) is common to all physical fields, it will be omitted in the

following in order to simplify the notation.

The vector w(z) has n ≤ m linearly independent variables. The solution of the

system corresponds to finding an expression for the partial derivative over z of w(z). A

direct solution of Eq. (3) is not possible as the matrix Az is singular. w(z) is partitioned

in such a way that the n linearly independent physical fields compose a vector s(z) ∈ Cn,

often called state vector. Let s0(z) ∈ Cq , where q = m − n, be the vector composed of

the remaining field variables.

It is important to note that, for a particular medium, the choice of the variables in

the state vector s(z) is not unique: the field variables depend on the equations governing

the media. Only the length of the state vector is unique to the physics of the problem,

and is equal to the rank of the system of equations governing the state of the medium.

An example of such vector partitioning may be illustrated by analysing the three

equations of motion and the constitutive law governing the dynamic state of a perfect

fluid,

−∇p = −ω2 ρ f u f , (4)

p = −K f ∇ · u f , (5)

where ρ f and K f are the fluid density and compressibility, p is the pressure, and u f ∈ C3

is the vector of fluid particle displacements.

Under the plane wave expansion assumption as described in Eq. (2), the rank of

the system of Eqs. (4) and (5) is equal to 2. Therefore, the state vector s(z) will be of

length equal to 2. Moreover, if the system of equations is written in terms, for example,

of pressure and particle velocities, the state vector would include exclusively the pressure
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and the particle velocity on the z−axis, as these are the physical field variables with

which boundary conditions are written. Consequently, the vector w(z) may be partitioned

into

w(z) = {s0(z) | s(z)}T
=

{
u
f
x(z) u

f
y (z) | u

f
z (z) p(z)

}T
. (6)

The state of the medium is then uniquely defined by the evolution with respect to

z of the the state vector s(z), which enables the rewriting of the problem in the form of

the state-space representation19,53,64, where the evolution of the fields can be described

solely as a function of the state vector:

∂

∂z
s(z) = −α s(z), (7)

where α ∈ Cn×n is called the state matrix, and depends only on the material parameters,

frequency, and prescribed wavenumbers kx and ky . The latter representation allows for

the modelling of the dynamic state of a system, as a direct solution of Eq. (7) yields the

transfer matrix M(z, z0) between two points of coordinates z0 and z,

M(z, z0) = e−(z−z0)α, (8)

where e[.] is the exponential matrix operator. To proceed, the derivation of the state

matrix α is required. Therefore, linear relations between the variables in s0(z) and s(z)
need to be established from Eq. (3) in order to calculate the partial derivatives of the

fields in the state vector.

II.2 Analytical derivation of the state matrix for different media

A straightforward method to derive the state matrix is a term-by-term, or analytical,

derivation, for each material model studied.

II.2.1 Fluid media

The equations governing the dynamic state of a perfect fluid medium, see Eqs. (4)

and (5), may be used to define the state vector, see. Eq. (6). The state matrix α ∈ C2×2

for a perfect fluid medium relates ∂u
f
z (z)/∂z and ∂p(z)/∂z as a function of u

f
z (z) and

p(z).
From the projection of Eq. (4) on z, the partial derivative over z of the pressure may

be expressed as
∂p(z)
∂z

= ω2 ρ f u
f
z (z). (9)
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The term
∂u

f
z (z)
∂z

may be derived from the constitutive law in Eq. (5)

∂u
f
z (z)
∂z

= − p(z)
K f

+ ıkxu
f
x(z) + ıkyu

f
y (z). (10)

The terms u
f
x(z) and u

f
y (z) may be then expressed as a function of the field variables in

s(z), which can be done from the projection of Eq. (4) in x and y,

u
f
x(z) = − ıkx

ω2 ρ f
p(z), (11)

u
f
y (z) = −

ıky

ω2 ρ f
p(z). (12)

Thus, the state matrix for a perfect fluid medium is

α =


0 − 1

K f

+

k2
x + k2

y

ω2 ρ f

ω2 ρ f 0


. (13)

II.2.2 Anisotropic poroelastic media

In a similar way, the state matrix for a poroelastic, or solid, medium may be derived.

The analytical expression of the state matrix for an isotropic media has been presented in

the literature19. There, the terms dependent on ky are neglected as the material behaviour

is independent of the azimuthal angle of incidence of the excitation.

In general, poroelastic media may be modelled via the paradigm established by

Biot7,8. Several representations that model the coupling between the solid skeleton and

the saturating fluid exist in the literature. Here, the {us, ut } representation18 is adopted,

but the procedure for the derivation of the state matrix for the
{
us, u f

}
representation,

or other, is essentially the same.

The equations governing the dynamic state of an anisotropic poroelastic medium

are

∇ · σ̂s
= −ω2

ρ̃su
s − ω2

ρ̃eqγ̃ut, (14)

−∇p = −ω2
ρ̃eqγ̃us − ω2

ρ̃equt, (15)

σ̂
s
= H ǫ

s, (16)

p = −K̃eq∇ · ut, (17)

where us, u f and ut are respectively the displacement fields of the solid and fluid

phases, and the total displacement fields, and are related by the porosity of the foam
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φ as ut
= φ u f

+ (1 − φ)us; ǫ s and σ
s are the porous solid Cauchy strain and stress

vectors; and p is the pore pressure. The scalar quantity K̃eq is the compressibility of the

equivalent fluid model, modified to take into account the thermal dissipative phenomena

through thermal effects.

The poroelastic media considered are fully anisotropic, thus the complex terms ρ̃s ,

ρ̃
eq and γ̃ are second order symmetrical tensors. H is the Hooke’s tensor of the solid

phase of the material. The anisotropy is also reflected in the flow resistivity σ
flow, which

is a second order symmetrical tensor, from which are derived several porous parameters

(see Refs.1,18,30,32 for isotropic media, which have been extended to anisotropic media30).

From the equations governing the behaviour of the medium, and the assumed plane

wave expansion of the form of Eq. (2), the vector of physical field variables w(z) may be

divided into

s0(z) =

{
utx(z) uty(z) σ̂xx(z) σ̂yy(z) σ̂xy(z)

}T
, (18)

s(z) =

{
us
x(z) us

y(z) us
z(z) utz(z) σ̂zz(z) σ̂yz(z) σ̂xz(z) p(z)

}T
. (19)

From the latter, it is clear that the analytical derivation of the relations expressing

the partial derivative over z of the state vector physical fields, as was done in Eqs.

(11) and (12), could be quite cumbersome. In general, for material models when the

length of the state vector becomes large, the analytical derivation of α is prone to errors.

Moreover, when the studied system includes physical phenomena of different nature, the

number of governing coupled equations may be large, rendering the isolation of the state

vector difficult. The analytical derivation of the state matrix becomes impractical, and

sometimes even impossible.

An alternative approach is to manipulate the different terms in the equations of

motion and constitutive laws in matrix form. The details of the analytical derivation of

the state matrix for anisotropic poroelastic media may be found in Parra Martinez et

al.43. The expression of the state matrix α is quite involved, and is only valid for the

case of the dynamic modelling of poroelastic media under the {us, ut } representation.

An generalisation of a method that relies in an term-by-term derivation is not evident.

Therefore, the use of a semi-analytical derivation method, as presented in the

following section, is advised.
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II.3 Semi-analytical derivation of the state matrix for arbitrary linear

homogeneous media

The generalised un-symmetric eigenvalue problem associated to R and Az in Eq.

(3) can be written as

Az = RΦΛΓ, Γ = Φ
−1, (20)

where Λ ∈ Cm×m is the diagonal matrix of m eigenvalues, and Φ ∈ Cm×m is a matrix

of eigenvectors, corresponding to Eq. (20). Due to the rank deficiency, q = m − n

eigenvalues in Λ are equal to zero. Thus, reordering the eigenvectors such that the first n

columns in Φ and the first n rows in Γ correspond to the non-zero eigenvalues yields,

Λ =


Λn 0nq

0qn 0qq


, Φ = [Φn Φ0] , Γ =


Γn

Γ0


, (21)

where Λn ∈ Cn×n, Φn ∈ Cm×n, Γn ∈ Cn×m, Φ0 ∈ Cm×q and Γ0 ∈ Cq×m. The matrices

0i j ∈ Ci×j correspond to null matrices.

In order to partition the vector of physical fields w(z) into the state vector s(z) and the

vector of remaining field variables s0(z), the system in Eq. (3) may be expressed in terms

of non-zero eigenvalues and correspondent eigenvectors. This enables the rewriting of

the contributions of the terms in s0(z) as a function of the fields in the state vector s(z).
Consequently, the partial derivative of s(z) with respect to z is obtained as,

∂

∂z
s(z) = − (RnΦnΛnΓnT)−1 RnT s(z), (22)

where

T =


In

−B0
−1Bs


, (23)

and In ∈ Cn×n is the identity matrix. The expressions of B0 and Bs depend on the

non-zero eigenvalues and correspondent eigenvectors. Therefore, the matrix α may be

expressed as,

α = (ΓnAzT)−1
ΓnRT. (24)

The details of the semi-analytical derivation of the state matrix for linear homogen-

eous media may be found in Parra Martinez et al.44. As may be seen from the latter,

this method allows for the derivation of the state matrix for the dynamic analysis of any

homogeneous linear media.
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II.4 Solution in the eigenspace

The eigenvalue problem associated to α ∈ Cn×n reads

α = ΘΛnΘ
−1. (25)

where Θ ∈ Cn×n and Λn ∈ Cn×n are respectively a matrix whose columns are the

eigenvectors, and the diagonal matrix with the eigenvalues. Note that the eigenvalues

Λn correspond to the same eigenvectors as in the un-symmetric eigenvalue problem in

Eq. (21), and Θ correspond to the projection of the n eigenvectors Φn on the n field

variables in s(z). The eigenvalues and eigenvectors represent linearly independent states

of motion in the medium, i.e. waves: the eigenvalues Λn are inversely proportional to

the wave velocities, and the eigenvectors Θ represent the polarisation of each wave.

Introducing a change of variables,

s(z) = Θq(z) (26)

and substituting this into Eq. (7) allows for the solution at a point z to be expressed in

terms of the solution at a reference point z0,

q(z) = e−Λn (z−z0) q(z0), (27)

where q(z0) ∈ Cn is a vector containing the contribution of each wave in the layer at z0.

Transforming back to physical variables,

s(z) = Θ e−Λn (z−z0)Θ−1 s(z0), (28)

which describes the wave propagation from z0 to z in terms of the eigenvectors and

eigenvalues ofα. Therefore, the transfermatrix between the two given points, as expressed

in Eq. (8), may be written as

M(z, z0) = Θ e−Λn (z−z0)Θ−1. (29)

It follows that

s(z) = ΘL(z − z0)q(z0), (30)

where
{
L ∈ Cn×n , L(z − z0) = e−Λn (z−z0)

}
describes the propagation between z0 and z.

Consequently, for a medium characterised by a state matrix α ∈ Cn×n, the solution

of the system of equations governing the media can be described as a superposition of n

waves in the media.
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II.5 Wave properties and dynamic indicators

From a known solution, i.e. a point z0 where the state vector s(z0) is known, the wave

contributions q(z0) can be determined by projecting the corresponding state variables in

the eigenspace, as

q(z0) = Θ−1 s(z0). (31)

Several wave properties may be derived from the solution in the eigenspace, such as

the wave slowness si , wave attenuation τi , and wavelength λi of the i-th wave. Introducing

ıkz,i = (Λn)i , these can be written as

si = Re

{
1

Vi

}
, (32)

τi = −ω Im

{
1

Vi

,

}
, (33)

λi = Re

{
2π

kz,i

}
, (34)

where Vi = ω/kz,i is the phase velocity of the i-th wave.

From the state-matrix and the wave space properties, the response may be further

assessed in terms of several dynamic and acoustic indicators. For example, the internal

powers P of a material layer of thickness d placed at the origin of a coordinated system,

i.e. z0 = 0, defined by the integral over the thickness associated with the scalar product

of two complex quantities f (z) and g(z) such that f (z) = T f s(z) and g(z) = Tgs(z), is

expressed analytically as such:

P( f , g) =
d∫

0

f ∗(z)g(z) dz, (35)

where [∗] denotes the complex conjugate operator.

Thus, the integration over the thickness can be rewritten in terms of wave properties

and contributions by introducing Ξ {P} = T f ∗Tg, where the matrix Ξ ∈ Cn×n holds the

contribution of the different state variables involved,

P( f , g) = q∗(0)


d∫
0

L∗(z)Θ∗
Ξ {P} ΘL(z) dz


q(0). (36)

It is important to note that the quadratic factor Ξ {P} depends on the nature of the

quadratic quantity evaluated and the material model.

A similar procedure may be applied in order to obtain the sound transmission loss,

sound pressure level, or absorption coefficient of a multilayered system under a plane

wave excitation.





Chapter III

Wave propagation in anisotropic poroelastic

media

This chapter presents a validation as well as an applications of the proposed method.

The validation case of the semi-analytical derivation of the state matrix studies the

wave propagation in a poroelastic medium with heavy fluid/solid coupling. Then, a

detailed study on the influence of the material orientation on the wave propagation in an

anisotropic melamine foam is presented.

As explained by Allard et al.3, the wave properties may be derived by solving the

state matrix of the medium for a every material alignment of the medium with respect to

the global coordinate system, and then computing the eigenvalue problem, see Eq. (25).

The expression of the wave properties in the material or global coordinate system are

coupled by trigonometric relations with respect to the material alignment angles.

III.1 Waves in a human femoral bone

The wave propagation in human femoral bone11 is studied using the semi-analytical

derivation of the state matrix. The medium is considered infinite, and modelled using

the
{
us, u f

}
representation of the Biot-Newton equations for poroelastic materials under

heavy fluid-structure interaction5,6. The state of the medium can be described by a set

of 6 equations of motion and 7 constitutive laws,

0 = ω2ρus
+ ω2ρ f u

f
+ ∇ · σ, (37)

0 = ω2ρ f u
s
+ ω2Y u f − ∇p, (38)

0 = Cǫ + Ma∇ · u f − σ, (39)

where
(
ρs, ρ f , ρ

)
are respectively the grain density, saturating fluid density, and composite

density such that ρ = (1 − φ)ρs + φρ f ; us, u f ∈ C3 are respectively the solid and fluid

17
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(relative to the solid) displacements; φ is the porosity; p denotes the pore pressure;

σ, ǫ ∈ C6 are the solid stress and strain vectors; C ∈ C6×6 is the dry-rock stiffness tensor;

M denotes the fluid/solid coupling modulus; and a ∈ C6 denotes the vector composed

of the effective stress components. Y ∈ C3×3 denotes the Biot visco-dynamic operator

defined as

Y =
ıη f

ω
q−1

0 +
ρ f

φ
T (40)

where T, q0 ∈ C3×3 are respectively the tortuosity and global permeability tensors; and

η f is the dynamic viscosity of the saturating fluid.

For this particular application, an expansion of the form of Eq. (2) is adopted, with a

propagation direction such that kx = 0 and ky = 0. Therefore, the vector of field variables

w(z) may be divided into

s0(z) =
{
u
f
x(z) u

f
y (z) σxx(z) σyy(z) σxy(z)

}T
, (41)

s(z) =
{
us
x(z) us

y(z) us
z(z) u

f
z (z) σzz(z) σyz(z) σxz(z) p(z)

}T
. (42)

The system of Eqs. (37)-(39) may be expressed under the form of a simplified linear ho-

mogeneous system, see Eq. (3), where
{
Ai ∈ C13×13 , i = {0, x, y, z}

}
. Their expressions

can be found on Appendix A.4.

The expressions of the different material parameters, including the viscoelastic

model, may be found in Carcione11. The values of the material parameters are detailed

in Table 1.

Fig. 1 shows the phase velocities of the waves in the femoral bone. The results

are computed, as defined in Sec. II.4, through the post-processing of the state matrix,

computed by the semi-analytical method(i). To validate the state matrix formulation and

derivation, the results are compared to those computed through the method proposed by

Carcione11.

The solution to the eigenvalue problem consists in four pairs of waves, as predicted by

the Biot theory7,8. As may be seen from the material parameters in Table 1, the material

is modelled as orthotropic, thus its Hooke’s law may be described through 9 independent

elastic constants. As the eigenvalue problem is computed for all material rotations along

the y−axis, 3 elastic coefficients remain constant with respect to the rotations, creating

two planes of symmetry (xy and yz) in the material parameters. Therefore, only one

quadrant of the curves is shown. The velocities of the four waves predicted by Biot1 may

be observed. By studying the polarisation of space in each wave, it can be determined

that the two waves with velocities around 2 km.s−1 are quasi-shear (qS) waves. As the

solution in terms of waves is calculated for material orientations where the y−axis of

(i)See Sec. II.3
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Human femoral bone

Parameter Symbol Value

Water density ρ f 1000 kg.m−3

Water bulk mod. K f 2.5 × 109 Pa

Viscosity η 1 cP

Grain density ρs 1815 kg.m−3

Grain bulk mod. Ks 28 × 109 Pa

Porosity φ 1

Tortuosity T



2 0 0

3 0

sym. 3.6


Permeability q0



1.2 0 0

0.8 0

sym. 0.7


× 10−12 m2

Drained stiffness C



18 9.98 10.1

20.2 10.7 0

27.6

6.23

sym. 5.61

4.01



× 109 Pa

Table 1. Mechanical parameters of a human femoral bone11.

the material coordinate system and of the global coordinate system are aligned, one of

the qS waves induces exclusively shear deformations (S wave). The other qS wave is

polarised in such a way that it also induces compressional deformations on the medium.

The two remaining waves correspond to slow and fast quasi-compressional waves (Slow

qP and Fast qP).

It may be observed that the two methods yield the same results in terms of eigenvalues

to the wave propagation problem in the medium, therefore validating the semi-analytical

derivation of the state matrix of the medium.
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Figure 1. Phase velocities of the waves in the xz-plane of a human
femoral bone at f = 10 kHz. Circled dashed line: method proposed
by Carcione11. Crossed dotted line: semi-analytical method proposed
by Parra Martinez et al.44

III.2 Waves in an industrial melamine foam

Melamine foam is largely used in several engineering applications due to its low

density, and dynamic performances. It is, for example, used for sound absorption in

architectural applications, or in the fuselage of aeroplanes. The choice of melamine

for the detailed study in this work has been motivated by its known anisotropy. This

particular material has been modelled as fully anisotropic and anelastic. The different

characterisation techniques that allowed for the derivation of the material parameters

here used may be found in the literature15,16,25,28,31,60–63.

The foam is modelled with the {us, ut } representation18 of the Biot theory7,8, see

Eqs. (14)-(17), with a plane wave expansion of the form of Eq. (2), with a propagation

direction such that kx = 0 and ky = 0. The state vector is detailed in Eq. (19).

The material parameters are defined in the global coordinate system through the

rotation angles {α, β, γ} of the material coordinate system with respect to the global

coordinate system16. The transformation of tensors are defined through the rotation

matrix16

r = rx(α) ry(β) rz(γ). (43)

The flow resistivity of the melamine core at an arbitrary material orientation is given

by

σ
flow
= rσflow

0 rT, (44)
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with

σ
flow
0 =



0.9727 0 0

1.0655 0

sym. 1.1318


× 104 Pa.s.m−2. (45)

In a similar way, the stiffness matrix H is defined at each material alignment15,16,60

as

H = R H0 RT, (46)

where R is the Bond matrix56 defined by r. The stiffness matrix H0 is computed from

the elastic matrix C0 through an augmented Hooke’s law16,21,50,61,

H0 = C0

©­­«
1 +

b̂
(
ıω

β̂

) α̂
1 +

(
ıω

β̂

) α̂ ª®®¬
, (47)

where C0 is expressed in the material coordinate system15,16,60 as

C0 =



7.7194 3.4252 −0.0226 0 0 0

4.2782 1.1845 0 0 0

2.2155 0 0 0

1.0364 0 0

sym. 1.2368 0

1.0123



× 105 Pa, (48)

and α̂, β̂ and b̂ are respectively the fractional derivative order, the relaxation frequency,

and the anelastic contribution. The acoustic parameters that derive from the material

stiffness and flow resistivity (effective densities, dynamic tortuosity, etc.) are then affected

by the material orientation. The additional parameters of the melamine foam can be

found in Parra Martinez et al.43.

In order to avoid redundancy of rotated states, the angles are then bounded by

α ∈ [−π, π] rad, β ∈ [−π/2, π/2] rad, γ ∈ [−π, π] rad. (49)

The rank of the system of Eqs. (14)-(17) is equal to 8. Therefore, as discussed in

Chap. II, the solution to the dynamic problem in the medium may be expressed as a

superposition of 8 waves.
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Figure 2. Polar representation of the velocities of the waves in an
infinite poroelastic anisotropic medium composed of the melamine at
f = 100 Hz.

Furthermore, the medium is considered infinite in all directions of space. As a

consequence of the lack of coupling between the poroelastic medium with any other

medium, there are four pairs of waves. Each pair of waves exhibit the same polarisation

and velocity, but propagate in opposite travel directions. Note that this is not always the

case as, when the poroelastic medium is coupled to other material layers, interactions

between the different media at the boundaries affect the wave propagation behaviour43.

Accordingly, in the following, only the properties of 4 waves are studied, their pairs

are omitted.

The velocities of the waves ψ1, ψ2, ψ3 and ψ4 are shown in Fig. 2 at f = 100 Hz in

the xz−plane. As in the previous section, only one quadrant is shown due to the planes

of symmetry induced by the material orthotropy. It may be seen that the velocities of the

waves ψ1, ψ3 and ψ4 exhibit a dependence on the material orientation, whereas the wave

velocity of the wave ψ2 is constant in space.

In order to further understand the nature of the acoustic waves, their polarisation in

terms of displacement of the solid phase is shown in Fig. 3 for three material orientations.

As its velocity, the polarisation of the wave ψ2 is invariant with respect to the material

orientation. Furthermore, its solid displacement polarisation vector is parallel to the

y−axis of the global coordinate system. This suggests that, due to orthotropy of the

material, this wave corresponds to a pure shear wave (S wave).

Moreover, when the material coordinate system is aligned with the global coordinate

system (β = 0 rad, or β = pi/2 rad), the wave ψ3 is parallel to the x−axis of the global
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Figure 3. Wave polarisations in terms of normalised displacement
of the solid phase of the melamine foam at f = 100 Hz.
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coordinate system, and the waves ψ1 and ψ4 are parallel to the z−axis. However for

any other material orientation, the polarisation of these three waves is in the xz−plane,

but is not aligned with the global coordinate system. In this particular case of material

orthotropy, the wave ψ3 is known as a quasi-shear (qS) wave, and the waves ψ1 and ψ4

correspond to quasi-compressional (qP) waves.

In the case of an arbitrary material orientation, the waves may be polarised an

arbitrary direction. Therefore, the nomenclature of the waves in anisotropic media must

be defined with respect to criteria other than their polarisation.

Additionally, as discussed by Allard1, the Biot theory7,8 identifies the two compres-

sional waves in the poroelastic media as a slow wave and a fast wave.

Nevertheless, it may be seen in Fig. 4a that the velocity of these waves vary strongly

with respect to the frequency for a material orientation where β = π/2 rad. At low

frequencies, the velocity of the wave ψ1 is smaller than the velocity of the wave ψ4. At a

frequency close to 750 Hz, the waves exhibit the same velocity. At high frequencies, the

velocity of the wave ψ1 is greater than that of the wave ψ4. In this case, the velocities of

the S and qS waves is constant with respect to the frequency.

Moreover, the Biot theory predicts that, for the case of weak coupling between the

saturating fluid and the solid frame (as is the case for the melamine foam) the ratio of

fluid to solid displacement tends to 0 for one wave (frame-borne wave) and is higher than

1 for the other wave (airborne wave). This is not the case in the melamine, where the

ratio of displacement in the phases is also dependent on frequency, as can be seen in Fig.

4b. As a matter of fact, for frequencies below 750 Hz, both waves are airborne (the ratio

of displacement fluid/solid is higher than 1). For higher frequencies, the wave ψ4 shifts

from being predominantly airborne to being predominantly frame-borne. Additionally, it

may be seen that both the S and qS waves are frame-borne and the ratio of displacements

fluid/solid does not depend on the frequency.

In conclusion, the wave propagation in anisotropic media is strongly dependent of

frequency and material orientation, rendering the classification of the waves by velocity

or polarisation in space inappropriate.
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Figure 4. Wave properties in an infinite poroelastic anisotropic
medium composed of the melamine for β = π/2 rad.





Chapter IV

Dynamics of multilayered systems with

anisotropic poroelastic media

In this chapter, the proposed method is used to study the influence of the anisotropy

of poroelastic media in the dynamic behaviour of a multilayered panels including such

media. Additionally, an optimisation problem is solved to investigate the potential

acoustic performance enhancement of a panel by manipulating the orientation of one or

two independently aligned identical anisotropic poroelastic core layers.

IV.1 Influence of the material orientation of anisotropic poroelastic cores

in multilayered systems

A multilayered system, as seen in Fig. 5, is studied. The core is made of an 88mm

anisotropic visco-elastic porous melamine foam. The face sheets are composed of 1mm

isotropic solid aluminium. The material parameters of the different layers can be found

in Parra Martinez et al.43.

Three study types of harmonic acoustic excitation are considered: normal incidence

(θ1 = θ2 = 0◦), oblique incidence (θ1 = 45◦, θ2 = 50◦), and diffuse field. The latter

corresponds to a superposition of plane waves with incidence angles ranging from 0◦

to 70◦ for the altitude angle, and from 0◦ to 360◦ for the azimuth angle. The angles are

distributed according to Gauss-Legendre quadratures. The number of points was chosen

through a preliminary convergence study of the solution. It was determined that using

12 points for the azimuth distribution, and 12 points for the altitude distribution were

sufficient to model the acoustic diffuse field.

The melamine is modelled with the {us, ut } representation18 of the Biot theory7,8,

as defined in Eqs. (14)-(17). The state vector of the medium is detailed in Eq. (19).

The influence of the anisotropy of the core is studied by successive rotations of the

27
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layer 2
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...

Figure 5. Multilayered system studied under plane wave incidence.

material coordinate system of the melamine with respect to the global coordinate system,

as defined in Eq. (43). The state matrix of each layer, as well as the solution to the

dynamic problem, were computed with the method in Chap II. A comparison is made

with a configuration in which the anisotropic core is replaced with its closest isotropic

equivalent poroelastic core, here computed through a method proposed by Norris40.

IV.1.1 Dynamic behaviour

A preliminary study on the influence of the rotations through transformations with

respect to one single rotation angle was performed. It was found45 that the rotations with

respects to the y−axis of the material coordinate system, i.e. defined by the angle β, had

a greater influence on the response of the structure than the rotations with respect to the

x− or z−axes. Therefore, in the following, only the influence with respect to rotations of

the material coordinate system around the y−axis is presented.

Fig. 6 presents the sound transmission loss (STL) of the multilayered system under

a normally incident, obliquely incident, and diffuse field excitations as a function of the

frequency, defined as,

STL( f ) = −10 log

����Wr ( f )
Wi( f )

���� , (50)

where Wr and Wi are respectively the sound power incident on the structure, and the

sound power radiated by the bottom face sheet of the structure.

Under all incidence cases, the lower frequency behaviour ( f . 800 Hz) is character-

ised by a shift in the fundamental resonance frequency. This resonance frequency shift

translates into STL differences of up to ∼ 15 dB between two core material orientations.
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Figure 6. STL of the multilayered system.
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Figure 7. Kinetic power of the poroelastic core.

Noticeably, under normal incidence, the configuration where β = π/4 rad presents a

resonance and anti-resonance at f ∼ 145 Hz, which is not apparent in other rotations or

under other excitations, that translate into a difference of STL of ∼ 20dB.

In higher frequencies ( f & 800 Hz), for alignments where β ∼ π/2 rad, the

response is characterised a more resonant behaviour than for other material orientations.

However, the appearance of anti-resonances affect the response of the panel for particular

frequencies, increasing the STL of ∼ 50 dB between two configurations in some cases.

The influence of the material alignment on the acoustic behaviour of the system is

also observed in the kinetic power associated with the motion in the core, as seen in Fig.

7. The partitioning of the kinetic power into the contributions due to motions in the x−,
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y− and z−directions illustrates the nature of the deformations induced by the excitation.

It is important to note that the kinetic power associated with the motion in one particular

direction does not imply that the core deforms in a particular way.

Under normal incidence, the kinetic power associated with the motion in the

z−direction is several orders of magnitude higher than the kinetic power associated

with the motions in x and y over all of the frequency range. As the material orientation

tends to β = π/2 rad, the kinetic power associated with the motion in z is more resonant

than for other material alignments. This correlates with the resonant profile of the STL

at higher frequencies, as seen in Fig. 6a. However, when β = π/4 rad, the kinetic power

associated with the motion in x-direction is higher than the kinetic power associated

with the motions in y and z at very low frequencies. For the same material alignment,

an anti-resonant behaviour may be observed at f ∼ 145 Hz. This suggests that, by

correlation with the STL, see Fig. 6a, there is a change in the nature of the deformations

induced in the core by the material orientation around that particular frequency, that

directly affects the acoustic performance of the panel.

Under oblique incidence, the kinetic powers associated with motions in all directions

have a similar order of magnitude for all material orientations. This suggests that the

deformations of the core are strongly linked with the angle of incidence of the excitation.

Similarly, under an acoustic diffuse field excitation, see Fig. 3 in Parra et al.46, the

kinetic powers are similar for all material orientations. The kinetic power associated with

motion of the core in the z−direction is higher in low frequencies than the powerassociated

with motions in the other directions. At certain frequencies, the power associated with

motions in the x-direction is more important, suggesting a change in the nature of the

motion governing the behaviour of the core at those frequencies. These will be discussed

more depth in the following.

IV.1.2 Phenomena intrinsic to the influence of anisotropic poroelastic media

in multilayered systems

In particular, two phenomena may be observed from the dynamic response of the

studied multilayered system.

IV.1.2.1 Fundamental resonance frequency shift

The fundamental resonance is commonly known as the mass-spring-mass resonance

of the multilayered system22. In multilayered systems where the core is modelled as

isotropic, the frequency at which this resonance occurs is proportional to the square root

of the Young’s modulus of the poroelastic core. However, when the core is anisotropic, the
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Figure 8. Fundamental resonance of the multilayered system under
normally incident and diffuse field excitations, and stiffness coefficient√

Hzz as a function of the material alignment rotation.

value of the stiffness coefficients in the Hooke’s matrix depend on the material orientation.

As seen in the STL and kinetic powers, the fundamental resonance of the panel shifts in

frequency when the material orientation changes. The fundamental resonance frequency

as a function of the core material orientation is shown in Fig. 8. There is a correlation

between the stiffness in compression along the z−axis of the poroelastic core and the

frequency at which the fundamental resonance occurs. Furthermore, the correlation

between resonance frequency and stiffness in compression is higher when the system

is excited by a diffuse field, but is however not constant with respect to the material

alignment angle. This suggests that the panel does not exhibit only a compressional

deformation at the fundamental resonance, but rather a superposition of compressional

and shear deformations.

IV.1.2.2 Compression-shear coupling

The material core model in this application corresponds to an orthotropic medium,

as described by Cuenca et al.16 and Van der Kelen et al.60. When the material coordinate

system is not aligned with the global coordinate system, the stiffness matrix H of the core,

see Eq. (48), presents only compression-compression (known as Poisson effect), and

shear terms. As the material coordinate system is rotated, compression-shear coupling

terms appear in the matrix. This suggests that the response of the core will present
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Figure 9. Relative deformation of the solid frame of the poroelastic
core in the xz− and zz− planes, according to Eq. (51), under normally
incident plane wave excitation of the panel. The relative deformation
in the yz−plane is negligible in this case.

couplings between compressional and shear deformations, regardless of the type of

traction excitation applied to the core.

The effects of the compression-shear coupling in the poroelastic core are mainly

visible under normally incident excitation. This is due to the fact that, under this particular

excitation case, the top face sheet of the panel only exerts a compressional stress on the

poroelastic core.

For rotations where the material orientation tends to be aligned with the global

coordinate system, i.e. β ∼ 0 rad and β ∼ π/2 rad, the waves governing the power

transmission through the medium are pure compressional. In contrast, for β ∼ π/4 rad,

the contributing waves exhibit a high shear deformation, reflecting a high degree of

compression-shear coupling. As may be seen in Figs. 6a and 7b, a consequence of this

coupling is that a resonance/anti-resonance appears at low frequencies ( f ∼ 145 Hz). Fig.

9 shows the relative deformation along the z−axis in the solid phase of the poroelastic

core at f ∼ 145 Hz. The resulting deformation is expressed as a sum of the n waves in the

layer (n = 1 . . . , 8 in poroelastic media under the Biot representation) at the frequency

f , and is defined as

κrz( f ) =

8∑
n=1

�� [ǫ srz( f )
]
n

��
∑

k,l=x,y,z

{
8∑

n=1

��� [ǫ s
kl
( f )

]
n

���
} , for r = x, y, z, (51)

where ǫ s
kl
=

1
2

(
∂us

k

∂l
+

∂us
l

∂k

)
for k, l = x, y, z. It may be seen that the excitation induces an

overall compressional deformation along the z−direction. For core material orientations
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Figure 10. Sound pressure level spectra for maximum and min-
imum solutions of the optimisation problem defined by Lind Nordgren
et al.34, computed with the method proposed in Chap. II.

where β = π/4 rad, the behaviour of the material is governed by a shear deformation for

frequencies close to f ∼ 145 Hz.

In conclusion, there is a strong influence of the core material orientation in the

dynamic behaviour of multilayered systems composed of anisotropic poroelastic cores.

Whether this may be used to enhance the acoustic performance of multilayered panels is

explored in the following.

IV.2 Optimal alignment of anisotropic poroelastic cores in a multilayered

system for dynamic performances

In a recent paper, Lind Nordgren et al.34 showed that the response of a sandwich

panel could be optimised for vibro-acoustic performance by manipulating the material

orientation of two anisotropic poroelastic cores in the structure. The panel corresponds

to two solid face sheets separated by two independently oriented orthotropic poroelastic

foams and a thin air gap. Fig. 10 shows the sound level spectra of the panel configurations

in the optimal material orientations, computed through the method proposed in Chap. II.

Even though there is a difference in amplitude and frequency with respect to the results in

Lind Nordgren’s publication, the optimal solution spectra computed by the two methods

exhibit the same global trends. The discrepancies arise from the difference in modelling

techniques. Indeed, Lind Nordgren et al. modelled a finite sized panel under a local
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Figure 11. Multilayered system setup used in the optimisation problems.

harmonic excitation source, evaluating the radiated pressure by integrating the pressure

field a finite volume on a radiated fluid volume. The results shown in Fig. 10 represent

the computation of the solution of an infinite panel under diffuse field excitation. Lind

Nordgren found that the fundamental resonance frequency and amplitude of a sandwich

panel with two identical anisotropic poroelastic cores could be controlled by manipulating

the material alignment of the cores. However, the extreme points were not studied in

terms of physical phenomena taking place within the material layers.

In order to understand the physical phenomena governing the behaviour of the

structure at the optimal solutions, an alternative optimisation problem is defined.

IV.2.1 Multilayered system and design variables

The studied setup is shown Fig. 11. The dimensions of the layers and materials used

represent structures commonly used in aeronautical and vehicle engineering applications.

The panel consists of an orthotropic melamine core of 88mm in between two isotropic

aluminium face sheets(i).

An acoustic performance indicator F is constructed in terms of the STL of the panel,

as defined in Eq. (50), under a normally incidence acoustic wave excitation of frequency

f . It is defined as the sum of the STL over a frequency range discretised by a resolution

∆ f ,

F =
∑
n

{STL( fn)} . (52)

(i)The material parameters may be found in the appended publications 43.
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The optimisation problem is solved with the GCMMA algorithm57,58. The gradients

of the solution at each iteration are calculated through finite differencing.

The design variables are the Tait-Bryan rotation angles {α, β, γ} of the poroelastic

core material coordinate system with respect to the global coordinate system16.

In order to understand the physical phenomena dominating the behaviour of the

core at the optimal configurations, two systems are studied. The two configurations of

panels, referred to as the one-core system and the two-core system, correspond to the

panel defined in Fig. 11, composed respectively of one or two core layers independently

oriented. In both configurations, the thickness of the panel is 88mm, which means that

each core in the two-core system is 44mm thick.

The design space for the one-core system is defined by the variables {α, β, γ}. The

design variables of the two-core system is defined by the variables

{αt, βt, γt, αb, βb, γb}, where t and b refer to respectively the top and bottom core

layers.

IV.2.2 Optimisation problem and stability of extreme points

The optimisation problems for the one-core and two-core systems are respectively

opt.
x

F(x) and opt.
x

F(x)

s.t. x = {α, β, γ} , s.t. x = {αt, βt, γt, αb, βb, γb} ,

α ∈ [−180◦, 180◦], αt, αb ∈ [−180◦, 180◦],

β ∈ [−90◦, 90◦], βt, βb ∈ [−90◦, 90◦],

γ ∈ [−180◦, 180◦], γt, γb ∈ [−180◦, 180◦],

(53)

where ’opt.’ denotes minimisation or maximisation. The design variables at optimal

solution are denoted x∗. The cost function at the optimal point defined by x∗ is denoted

F(x∗).
As a measure of robustness of the solution in terms of sensitivity with respect to the

design variables, a stability indicator δ of the solution is defined as

δF(x∗) =
max

x

{����∂F(x∗)
∂x

����
}

|F(x∗)| , (54)

whit xstab = argmax
x

{����∂F(x∗)
∂x

����
}
.

The solution is stable, or robust, when δ → 0, i.e. when its sensitivity to a small

variation of the design variable xstab is small. Correspondingly, the solution is unstable
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when δ → ∞, which means that a small variation of the design variable xstab would

strongly affect the value of the cost function.

In the current work, a number of different randomly chosen starting points were

used within the design space. However, the complex phenomena governing the dynamic

behaviour of the multilayered system render the chosen cost function F non-convex in the

design space. Thus, there is no natural global optimal solution, rather local extreme points

(maxima and minima). In particular, the strong frequency dependence together with the

occurrence of local system resonances in the spectrum, are factors contributing to this

aspect. Therefore, a criterion based on Pareto optimality38 was defined as a function

of the value of the cost function at the solution and the robustness of the solution. The

optimal design variables of the Pareto solution are denoted xP, and the cost function at

the point defined by xP is denoted FP.

In the following, unless indicated, only the Pareto optimal solution of each system

optimisation is addressed.

IV.2.3 Short-range frequency optimisation for acoustic performance

A first range of frequency is studied, chosen in order to capture both the fundamental

resonance frequency shift and compression-shear coupling effects observed in Chap. III.

The frequency range is defined as f = [100 − 600] Hz.

The STL of the panel at xP may be found in Fig. 12 for the minimisation and max-

imisation of F. It shows that the minimisation of the one- and two-core systems converge

to solutions with the same acoustic response. On the other hand, the maximisations

converge to solutions with different acoustic behaviour. This suggests that the acoustic

response of the overall system may be improved by partitioning the core into two layers

of equal thickness with individual material orientations.

The real part of the stiffness coefficients H35, H34 and H33 (respectively Hxz ,

Hyz and Hzz) at 40 different solutions x∗ are shown in Fig. 13. These coefficients

relate the compressional stress σs
zz and the strains ǫ sxz , ǫ

s
yz and ǫ szz . It can be seen that the

minimisations yield solutions where the core layers exhibit a high compressional stiffness

and a negligible shear stiffness. The maximisations converge to solutions where the core

layers have a low stiffness in compression. However, the solutions to the one-core system

maximisation present a negligible stiffness in shear. In contrast, in the solutions to the

two-core system maximisation, the core layers are oriented in such a way that there is

a non-negligible shear stiffness. This shear stiffness difference between the solutions of

the one- and the two-core systems maximisations explains the difference in the STL at

the Pareto optima, see Fig. 12b.
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Figure 12. STL at the Pareto optimal solutions of the optimisation
problems in Eq. (53).

One phenomenon that is not observed under the presented optimisation setup, which

was observed by Lind Nordgren et al.34, is the amplitude variation of the fundamental

resonance. The reason might be the difference between the system modelled,which do not

capture the same physics governing the fundamental resonance of the panel. As seen in

Sec. IV.1.2.1, the deformations responsible for the fundamental resonance in multilayered

systems including anisotropic poroelastic cores are not exclusively compressional. The

system modelled by Lind Nordgren includes an air gap, mechanically decoupling the

bottom core layer and the radiating face sheet. The air gap ensures that only compressional

stresses are applied from the bottom core layer to the air gap, and consequently to the

bottom face sheet. In the system modelled in the current work, the bottom core layer
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Figure 13. Real part of the stiffness coefficients H35, H34 and H33

of the poroelastic material core layers at x∗. Legend: minimisations in
blue, maximisations in red.

is perfectly bounded to the radiating face sheet. Thus, there is a continuity of stresses

normal to the interface between the two layers. Both compressional and shear stresses

are then applied to the radiating face sheet. As a consequence, the deformations inducing
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the fundamental resonance of the system are not the same when the system includes an

air gap.

IV.2.4 Large-range frequency optimisation for acoustic performance

A second range of frequencies, f = [100 − 1100] Hz, allows to isolate the effects

induced by the mechanical anisotropy of the core, disregarding the high-frequency

acoustic effects induced by the anisotropy of the flow resistivity45.

All of the solutions x∗ to the minimisation problem, each from a random ensemble

of starting points within the design space, lead to the same cost function acoustic

response. Furthermore, all the extreme points found share a material alignment yielding

the same stiffness in compression in the z−direction in the core, represented by the

term H33 of the Hooke’s law of the poroelastic layers, i.e. H33 = 8.074 × 105(±10−9)
Pa. This corresponds to material alignments where the melamine layer is the stiffest in

compression, thus shifting the fundamental resonance frequency to high frequencies43.

These results, as well as the short-frequency range minimisations, suggest that the system

might present a global minimum acoustic performance with regards to the cost function

F.

The relative deformation in the poroelastic core(s) for the solution to the maxim-

isation problem shows that the motion in the core is governed by compression strain

on the z−axis. However, it presents a significant shear deformation on both xz− and

yz−planes, which, for some particular frequencies in the low-frequency domain, govern

the mechanical response of the core. Furthermore, the compressional deformation in the

z−axis of the two poroelastic layers in the two-core system governs the overall behaviour

of the core, and present a significant shear deformation for some particular frequencies.

Also, it may be observed that the top core of the two-core system behaves like the core

of the one-core system. The shear deformation of the bottom core layer dominates the

behaviour of the core at a higher frequency rage.

Note that the system is excited by a normally incident plane wave, inducing exclus-

ively a traction on the z−direction on the top face sheet. Consequently, the solution to the

maximisation problem is one which takes advantage of the STL improvement induced

by shear-compression coupling effects in the poroelastic cores.

To explore this further, an alternative cost function may be constructed from the

relative shear deformations, defining a new maximisation problem,

max
x

S(x) =
∑
n

∑
c

{
κcxz( fn, x) + κcyz( fn, x)

}
(55)
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where κ is the relative deformation, see Eq. (51); c is the number of layers of equal

thickness which are composing core; and x is the design variables of the one-core or

two-core systems. The design variables and design space remain the same as in the

optimisation of acoustic performances. In this case, the stability indicator is defined as

in Eq. (54) with respect to S.

The solutions to the maximisation of S show a similar relative deformation profile in

the core(s) as in the case of maximisation of F. The one-core system exhibits a significant

amount of shear deformation which governs the mechanical behaviour of the core at lower

frequencies. The solution to the two-core system maximisation presents a particular

dependence on the frequency. The top core is oriented as the core in the one-core system

solution, inducing similar relative deformations. In contrast, the bottom core is oriented

in such a way that the shear deformation on high frequencies is significant.

The acoustic response of the panel at the solutions to the different optimisation

problems show that the maximisation of F and of S lead to solutions where the STL

exhibits different shear-compression coupling resonance frequencies, as well as a different

behaviour in high frequency. This high frequency difference in STL directly correlates

to the shear induced by the bottom core in the two-core system.

It may be seen that the solutions to the maximisation of F and of S are not the

same. However, the optimisation of S may be used for the tuning of the resonances and

anti-resonances in the system, improving the STL of the system at particular frequencies.





Chapter V

Conclusions

The central subject of this thesis is the study of wave propagation and dynamic

analysis of multilayered systems,and, in particular, those including anisotropic poroelastic

media. Among the main outcomes of the thesis is a method for the semi-analytical

derivation of the full solution of multilayered panels including anisotropic poroelastic

materials. The method provides insight in the physical mechanisms governing energy

transmission and dissipation in the media. Important results have been achieved by using

the developed method as a design tool. In particular, and most interestingly, it has been

shown that the sound transmission loss of a multilayer panel may be enhanced, without

an increase in its mass or volume, by partitioning a poroelastic layer into two sub-layers

with independent material orientation.

The proposed method for the study of multilayered systems is based on the expansion

of the dynamic solution as a superposition of plane waves. The formulation relies on

a state-space representation in terms of physical field variables, and directly provides

the characteristics of the waves in the different layers of the structure. The state-space

representation requires the computation of the state matrix, characterising the dynamic

state of each material layer in a system. Two methods for the derivation of the state matrix

have been studied. A term-by-term, or analytical derivation, has been presented for the

acoustic analysis of fluid (or fluid equivalent), solid, and poroelastic media. However,

it has been proven to being unpractical and prone to errors for media where the state

vector is large. Consequently, a semi-analytical derivation method of the state matrix has

been derived. Given its formulation, the state matrix of any type of linear homogeneous

medium, including arbitrary anisotropic properties and multi-physics interactions, may

be implemented.

Using the proposedmethod,a study of the wave propagation in anisotropic poroelastic

media has been performed. The validation of the state matrix derivation method has been

done. By computing the eigenvalues to the wave propagation problem in a poroelastic

43
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medium with strong fluid/solid dynamic coupling, the proposed method was validated

against a model available in the literature. Additionally, the analysis of the wave propaga-

tion in an industrial anisotropic melamine foam was presented. It was found that, for this

commonly used material, there is a strong influence of the inherent anisotropy of the

material in the wave propagation through the medium.

Having established the effects of the anisotropy on the wave propagation through the

medium, the influence of the anisotropy of poroelastic cores on the dynamic behaviour

of multilayered systems, as well as the phenomena within the material layers, has been

evaluated. By varying the material orientation of the anisotropic poroelastic core in a

multilayered system, it was found that the core alignment had a strong influence on the

wave propagation in the medium, as well as on the acoustic behaviour of the panel. A

shift in the fundamental resonance frequency of the overall structure is observed, and

may be linked to the variation of the stiffness coefficient linking traction to compressional

strains within the core medium with respect to its orientation. Furthermore, the shear-

compressional effects have been shown to have an important influence on the behaviour

of the structure.

Finally, an optimisation problem for acoustic performance has been studied in terms

of material orientation of the anisotropic poroelastic cores of a multilayered system.

The optimal solution was obtained through a Pareto optimality criterion. The latter was

constructed from the value of the cost function of the solution, and the robustness of the

solution in terms of sensitivity to small variations in the design variables. It was found

that the system exhibits a global minimum, regardless of the number of layers in which the

core is partitioned. This was correlated to the stiffness in compression of the poroelastic

core at the solution for each layer. Moreover, it was shown that the acoustic response of a

multilayered system in terms of sound transmission loss could be improved by sectioning

the core into two independently oriented poroelastic layers, without increasing the mass

of the overall system. The improvement of sound transmission loss was correlated to the

dynamic phenomena in the core layers. Based of these results, an alternative optimisation

problem was defined in terms of shear-compression coupling. The solution was found to

differ in terms of overall acoustic performance, but may be exploited for the tuning of

the acoustic behaviour at particular frequencies.

Quo vadis?

The methods and results in this thesis open several possibilities for expansion.

The state matrix semi-analytical derivation has been developed in such a way that

the only input are the matrices proportional to the partial derivatives. In this thesis, the
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state matrix was computed for acoustic problems. It would be then interesting to extend

the algorithm with sets of linear equations that combine different types of physics. The

question that arises is how to evaluate the interaction between such physics within a

medium. This is of particular interest in geophysical applications, where phenomena

such as electrosiesmic waves are subjected to multi-physical modelling12,49.

Another motivating subject of studies that would profit of such developments is the

influence of temperature gradients on the dynamic and acoustic behaviour of multilayered

structures. Recent studies have shown that there is an influence of temperature gradients

in open-celled foams in their mechanical parameters31. It is then of interest to study the

phenomena induced by temperature gradients in the different layers, and how it affects

the transmission of acoustic power through the system.

Furthermore, the studied structures are modelled as infinite in two directions. Some

studies have been done with respect of the inclusion of effects inherent to finite-sized

structures (like boundary effects) on in-plane infinite models by multiplying the radiation

efficiency of the structure by a corrective factor1 but present limitations with respect to

the systems with complex geometries. It is then of interest to adapt the method presented

in this thesis to the modelling of finite-sized structure, by coupling the derivation to

finite-sized methods, such as the finite-element method30, or the wave based method20.

Finally, the method presented in this thesis with respect to the dynamic analysis of

multilayered systems have been partially validated with respect to other existing models

in the literature. It is however of interest to develop experimental validating techniques,

where the poroelastic material core is manufactured with controlled anisotropy and

material orientation. An option is to look into the development of advanced manufac-

turing techniques, such as 3D-printing, for the realisation of microscopically controlled

geometric cells, amounting to a controlled macroscopic anisotropy of the material.





Chapter A

Matrices for the semi-analytical calculation of

the state matrix in linear homogeneous media

In the following, the matrix In correspond to the identity matrix of dimensions

n × n. The matrix A0 corresponds to the sum of the matrices Aa and Ab. A numerical

convention is used for the referencing of explicit rows and columns in tensors. For a given

first or second order tensor f, in the notation f
��k:l

i:j
the subscripts refer to the lines i to j,

and the superscripts refer to the columns k to l. The stand-alone symbol [ : ] corresponds

to all the elements in a corresponding dimension. An integer alone corresponds to the

index of an individual row (or column).

A.1 Fluid (or fluid equivalent) media

The dimensions of the matrices are
{
Ai ∈ C4×4 , i = {a, b, x, y, z}

}
. The state vector

is detailed in Eq. (6).

Aa

��j
i
=




1 i = 4, j = 4,

0 otherwise
(56)

Ab

��j
i
,=



−ıωρ f I3 i = 1, . . . , 3, j = 1, . . . , 3,

0 otherwise.
(57)

Ax

��j
i
=




−1 i = 1, j = 4,

K f i = 4, j = 1,

0 otherwise.

(58)

47
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Ay

��j
i
=




−1 i = 2, j = 4,

K f i = 4, j = 2,

0 otherwise.

(59)

Az

��j
i
=




−1 i = 3, j = 4,

K f i = 4, j = 3,

0 otherwise.

(60)

A.2 Solid elastic media

The linear dynamic state of a solid elastic medium may be described through 6

constitutive laws (Hooke’s law) and 3 equations of motion, respectively

σ = Ce
ǫ, (61)

∇ · σ = −ω2ρsu
e, (62)

where ue, is the vector of displacement fields; ǫ and σ are the solid Cauchy strain and

stress vectors, related by the stiffness matrix Ce ∈ C6×6; and ρs is the density of the

solid. The state vector and redundant field variables vector are respectively

s(z) =

{
ux(z) uy(z) uz(z) σzz(z) σyz(z) σxz(z)

}T
, (63)

s0(z) =

{
σxx(z) σyy(z) σxy(z)

}T
. (64)

The dimensions of the matrices are
{
Ai ∈ C9×9 , i = {a, b, x, y, z}

}
.

Aa

��j
i
=



−1 [i, j] = {[1, 1], [2, 2], [3, 9], [4, 8], [5, 7], [6, 3]}

0 otherwise
(65)

Ab

��j
i
,=



−ıωρsI3 i = 7, . . . , 9, j = 4, . . . , 6,

0 otherwise.
(66)

Ax

��j
i
=




1 [i, j] = {[ 7, 1], [8, 3], [9, 7]}

Ce
��1
:

i = 1, . . . , 6, j = 4,

Ce
��6
:

i = 1, . . . , 6, j = 5,

Ce
��5
:

i = 1, . . . , 6, j = 6,

0 otherwise.

(67)
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Ay

��j
i
=




1 [i, j] = {[ 7, 3], [8, 2], [9, 8]}

Ce
��6
:

i = 1, . . . , 6, j = 4,

Ce
��2
:

i = 1, . . . , 6, j = 5,

Ce
��4
:

i = 1, . . . , 6, j = 6,

0 otherwise.

(68)

Az

��j
i
=




I3 i = 7, . . . , 9, j = 7, . . . , 9,

Ce
��5
:

i = 1, . . . , 6, j = 4,

Ce
��4
:

i = 1, . . . , 6, j = 5,

Ce
��3
:

i = 1, . . . , 6, j = 6,

0 otherwise.

(69)

A.3 Poroelastic media with light fluid/solid coupling under the Dazel

{us, ut } representation

The dimensions of the matrices are
{
Ai ∈ C13×13 , i = {a, b, x, y, z}

}
. The expression

of the different coefficients may be found in the literature1,18,30,32. The formulation follows

the notation in Parra Martinez et al.43, where the correspondent state vector s(z) and

redundant variables vector s0(z) may be found.

Aa

��j
i
=




1 i = 7, j = 13,

−1 [i, j] = {[8, 3], [9, 4], [10, 12], [11, 11], [12, 10], [13, 5]}

0 otherwise

(70)

Ab

��j
i
,=




−ıωρ̃s i = 1, . . . , 3, j = 6, . . . , 8,

−ıωρ̃eqγ̃eq i = 4, . . . , 6, j = 6, . . . , 8,

−ıω
[
ρ̃eqγ̃eq

] ��1:2

:
i = 1, . . . , 3, j = 1, . . . , 2,

−ıω
[
ρ̃eqγ̃eq

] ��3
:

i = 1, . . . , 3, j = 9,

−ıωρ̃eq
��1:2

:
i = 4, . . . , 6, j = 1, . . . , 2,

−ıωρ̃eq
��3
:

i = 4, . . . , 6, j = 9,

0 otherwise.

(71)
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Ax

��j
i
=




1 [i, j] = {[ 1, 3], [2, 5], [3, 10]}

−1 i = 4, j = 13,

K̃eq i = 7, j = 1,

Ĥ
��1
:

i = 8, . . . , 13, j = 6,

Ĥ
��6
:

i = 8, . . . , 13, j = 7,

Ĥ
��5
:

i = 8, . . . , 13, j = 8,

0 otherwise.

(72)

Ay

��j
i
=




1 [i, j] = {[ 1, 5], [2, 4], [3, 11]}

−1 i = 5, j = 13,

K̃eq i = 7, j = 2,

Ĥ
��6
:

i = 8, . . . , 13, j = 6,

Ĥ
��2
:

i = 8, . . . , 13, j = 7,

Ĥ
��4
:

i = 8, . . . , 13, j = 8,

0 otherwise.

(73)

Az

��j
i
=




I3 i = 1, . . . , 3, j = 10, . . . , 12,

−1 i = 6, j = 13,

K̃eq i = 7, j = 9,

Ĥ
��5
:

i = 8, . . . , 13, j = 6,

Ĥ
��4
:

i = 8, . . . , 13, j = 7,

Ĥ
��3
:

i = 8, . . . , 13, j = 8,

0 otherwise.

(74)

A.4 Poroelastic media with heavy fluid/solid coupling under the

Biot-Newton {us, u f } representation

The notations correspond to those in Carcione11. The state vector is detailed in Eq.

(42). The dimensions of the matrices are
{
Ai ∈ C13×13 , i = {a, b, x, y, z}

}
.

Aa

��j
i
=



−1 [i, j] = {[7, 13], [8, 3], [9, 4], [10, 12], [11, 11], [12, 10], [13, 5]}

0 otherwise
(75)
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Ab

��j
i
,=




−ıωρ f i = 3, j = 9,

−ıωρ f I2 i = 1, . . . , 2, j = 1, . . . , 2,

−ıωρ I3 i = 4, . . . , 6, j = 6, . . . , 8,

−ıωρs I3 i = 1, . . . , 3, j = 6, . . . , 8,

−ıωY
��1:2

:
i = 4, . . . , 6, j = 1, . . . , 2,

−ıωY
��3
:

i = 4, . . . , 6, j = 9,

0 otherwise.

(76)

Ax

��j
i
=




1 [i, j] = {[ 1, 3], [2, 5], [3, 10]}

−1 i = 4, j = 13,

M i = 7, j = 1,

Ma
��
1

i = 7, j = 6,

Ma
��
6

i = 7, j = 7,

Ma
��
5

i = 7, j = 8,

Ma i = 8, . . . , 13, j = 1,

C
��1
:

i = 8, . . . , 13, j = 6,

C
��6
:

i = 8, . . . , 13, j = 7,

C
��5
:

i = 8, . . . , 13, j = 8,

0 otherwise.

(77)

Ay

��j
i
=




1 [i, j] = {[ 1, 5], [2, 4], [3, 11]}

−1 i = 5, j = 13,

M i = 7, j = 2,

Ma
��
6

i = 7, j = 6,

Ma
��
2

i = 7, j = 7,

Ma
��
4

i = 7, j = 8,

Ma i = 8, . . . , 13, j = 2,

C
��6
:

i = 8, . . . , 13, j = 6,

C
��2
:

i = 8, . . . , 13, j = 7,

C
��4
:

i = 8, . . . , 13, j = 8,

0 otherwise.

(78)
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Az

��j
i
=




−1 i = 6, j = 13,

M i = 7, j = 9,

Ma
��
5

i = 7, j = 6,

Ma
��
4

i = 7, j = 7,

Ma
��
3

i = 7, j = 8,

Ma i = 8, . . . , 13, j = 9,

C
��5
:

i = 8, . . . , 13, j = 6,

C
��4
:

i = 8, . . . , 13, j = 7,

C
��3
:

i = 8, . . . , 13, j = 8,

0 otherwise.

(79)
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