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Abstract

This thesis studies hoist scheduling problems (HSPs) arising in automated electroplating lines.
In such lines, hoists are often used for material handing between tanks. These hoists play a
crucial role in the performance of the lines and an optimal schedule of the hoist operations
is a key factor in guaranteeing product quality and maximizing productivity. We focus on
extended lines (i.e. with multi-function and/or multi-capacity tanks) with a single hoist. This
research investigates three hoist scheduling problems: robust optimization for cyclic HSP,
dynamic jobshop HSP in extended lines and cyclic jobshop HSP in extended lines.

We first study the robust optimization for a cyclic HSP. The robustness of a cyclic hoist
schedule is defined in terms of the free slacks in hoist traveling times. A bi-objective
mixed-integer linear programming (MILP) model is developed to optimize the cycle time and
the robustness simultaneously. It is proved that the optimal cycle time strictly increases with
the robustness, thus there is an infinite number of Pareto optimal solutions. We established
lower and upper bounds of these two objectives. Computational results on several benchmark
instances and randomly generated instances indicate that the proposed approach can effectively
solve the problem.

We then examine a dynamic jobshop HSP with multi-function and multi-capacity tanks.
We demonstrate that an existing model for a similar problem can lead to sub-optimality. To
deal with this issue, a new MILP model is developed to generate an optimal reschedule. It
can handle the case where a multi-function tank is also multi-capacity. Computational results
on instances with and without multi-function tanks indicate that the proposed model always
yields optimal solutions, and is more compact and effective than the existing one.

Finally, we investigate a cyclic jobshop HSP with multi-function and multi-capacity tanks.
An MILP model is developed for the problem. The key issue is to formulate the time-window
constraints and the tank capacity constraints. We adapt the formulation of time-window
constraints for a simpler cyclic HSP to the jobshop case. The tank capacity constraints are
handled by dealing with the relationships between hoist moves so that there is always an
empty processing slot for new parts. Computational experiments on numerical examples
and randomly generated instances indicate that the proposed model can effectively solve the
problem.

Keywords: hoist scheduling, optimization, mixed-integer linear programming
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Résumé

Dans cette thèse, nous étudions des Hoist Scheduling Problems (HSP) qui se posent fréquem-
ment dans des lignes automatiques de traitement de surface. Dans ces lignes, des ponts
roulants sont utilisés pour transporter les pièces entre les bains. Ainsi, les ponts roulants
jouent un rôle essentiel dans la performance de ces lignes; et un ordonnancement optimal
de leurs mouvements est un facteur déterminant pour garantir la qualité des produits et
maximiser la productivité. Les lignes que nous étudions comportent un seul pont roulant
mais peuvent être des lignes de base ou des lignes étendues (où des bains sont à fonctions
et/ou capacités multiples). Nous examinons trois Hoist Scheduling Problems : l’optimisation
robuste d’un HSP cyclique, l’ordonnancement dynamique d’une ligne étendue de type job
shop et l’ordonnancement cyclique d’une telle ligne.

Pour l’optimisation robuste d’un HSP cyclique, nous définissons la robustesse comme
la marge dans le temps de déplacement du pont roulant. Nous formulons le problème en
programmation linéaire en nombres mixtes à deux objectifs pour optimiser simultanément le
temps de cycle et la robustesse. Nous démontrons que le temps de cycle minimal augmente
avec la robustesse, et que par conséquent la frontière Pareto est constituée d’une infinité
de solutions. Les valeurs minimales et maximales des deux objectifs sont établies. Les
résultats expérimentaux à partir de benchmarks et d’instances générées aléatoirement montrent
l’efficacité de l’approche proposée.

Nous étudions ensuite un problème d’ordonnancement dynamique dans une ligne étendue
de type job shop. Nous mettons en évidence une erreur de formulation dans une un modèle
existant pour un problème similaire mais sans bains multi-fonctions. Cette erreur peut rendre
l’ordonnancement obtenu sous-optimal voire irréalisable. Nous construisons un nouveau
modèle qui corrige cette erreur. De plus il est plus compact et s’applique au cas avec des
bains à la fois à capacités et à fonctions multiples. Les résultats expérimentaux menés sur des
instances avec ou sans bains multi-fonctions montrent que le modèle proposé conduit toujours
à une solution optimale et plus efficace que le modèle existant.

Nous nous focalisons enfin sur l’ordonnancement cyclique d’une ligne étendue de type
job shop avec des bains à fonctions et capacités multiples. Nous construisons un modèle
mathématique en formulant les contraintes de capacité du pont roulant, les intervalles des
durées opératoires, et les contraintes de capacité des bains. Nous établissons également
des contraintes valides. Les expériences réalisées sur des instances générées aléatoirement
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montrent l’efficacité du modèle proposé.

Mots clés : hoist scheduling, optimisation, programmation linéaire mixte en nombres entiers
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Introduction

Contents
1.1 Background and relevance . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Background and relevance

This thesis focuses on production scheduling where material handling devices play a key role
in the manufacturing process. To be more specific, we are particularly interested in problems
commonly called hoist scheduling problem or simply HSP in the literature. As we can see
hereafter, effectively solving such problems can contribute very much to the performance
of the considered production systems. Despite the fact that many efforts have been made
during the last decades, much academic research is still needed to deal with some complex
but relevant situations.

In such manufacturing systems, the transformation of raw materials into semi-finished and
then finished products involves a sequence of processing stages which are executed at different
workstations or processing units. After a processing stage of a part is completed, the part
should be transported to the next workstations to pursue its subsequent processing stages. The
transportation operations from one workstation to another are often performed by material
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2 Chapter 1. Introduction

handling devices for technical, economic and security reasons. Such material handling devices
may be Automatic Guided Vehicles (AGVs), traveling cranes/hoists, and mobile or rotational
robots, according to operating environments or specific technical requirements. Figure 1.1
illustrates an automatic electroplating line with five processing tanks and a material handling
hoist.

 

   

Hoist

Tank 1 Tank 2 Tank 3 Tank 4 Tank 5

Part

Input station Output station

Figure 1.1: Illustration of a basic automatic electroplating line

In such an electroplating line, the raw parts waiting to be processed are stored in the input
station, while finished parts are stored in the output station. Each tank contains a specific
electroplating solution used for a particular processing stage. To complete the processing,
each raw part is first unloaded from the input station, then successively treated in a sequence
of tanks in a prescribed order and finally loaded on the output station. The hoist is in charge
of the material handling operations between tanks and stations. To make sure that the finished
products conform to the specifications, there may be various constraints on the processing
time of each stage.

There are a variety of lines. In a basic line, each part visit exactly once each tank and each
tank can process at most one part at a time. When a tank is visited more than once by a part, it
is a multi-function or re-entrant tank. If a tank can process more than one part at a time, it
is a multi-capacity tank. Furthermore, the parts can be identical or different. A production
line including multi-function and/or multi-capacity tanks are called an extended line. The
production can be organized in a cyclic mode or a non-cyclic one. In a cyclic production,
the tanks and the hoist perform a same set of operations repeatedly. This production mode
is particular relevant in mass production. The length of the interval between two successive
repetitions is called cycle time. The shorter the cycle time is, the higher is the productivity.

Material handling devices are used for technical, economic as well as safety/security
reasons. On the one side, using material handling devices can not only improve the throughput
and reduce the production cost, but also guarantee the quality of parts. On the other side,
safety and security in production have become very important concerns of enterprises. Using
material handling devices in industrial manufacturing can limit harms to workers, especially in
environments with hazardous materials, as in electroplating lines involving chemical processes,
and boring and repetitive tasks.

From economic point of view, it has been reported that material handling operations have
a significant influence in production, especially for high-value products. In this context, a well-
planned schedule of material handling operations can significantly reduce manufacturing cost



1.2. Research Methodology 3

and consequently improve profits. Tompkins, White, Bozer, and Tanchoco (2010) indicated
that material handling can account for as high as 50% of the total operating cost within
manufacturing. Kumar (1994) reported that as high as 20% reduction in mean part waiting
time and 50% improvement in standard deviation of cycle time can be achieved by scheduling.
For a semiconductor manufacturer, Dawande, Geismar, Pinedo, and Sriskandarajah (2010)
showed that a 4.19% average increase in throughput and about $1.34 million in weekly revenue
can be attained by scheduling a dual-gripper robot in a 15 - stage cell. Due to the potential
economic gain, research on effective and efficient scheduling of material handling operations
has attracted much attention from scholars and practitioners. The objective is mainly to
maximize the productivity by effectively coordinating the material handling operations and
processing operations.

Because of random events in production systems, the robustness of the schedules is also
a major concern of managers. We also study robustness issues in this thesis, especially
randomness related to the traveling times of the hoist.

1.2 Research Methodology

As we can see in the next chapter, there is a large variety of hoist scheduling problems,
according to the production mode, the number of part-types, and characteristics of the tanks.
But the majority of them have been proven to be NP-hard (Lei & Wang, 1989). In the literature,
a large number of algorithms and approaches of different nature have been used to formulate
and solve hoist scheduling problems, such as branch-and-bound algorithms, Mixed-Integer
Linear Programming (MILP), heuristics, and meta-heuristics.

In this thesis, we mainly focus on mathematical formulation, in particular in forms of MILP
models. The challenge in formulating these problems into MILP models is to appropriately
define decision variables and formulate the constraints. It has been demonstrated that models
with different ways of defining variables and expressing constraints can yield very different
performances. On the other hand, there are many techniques to improve the performance of
MILP models by adding cuts and reformulating constraints (Cornuéjols, 2008). Among these
techniques, one can find valid inequalities that can tighten bounds. A valid inequality is added
to the initial model by exploring properties of the problems to reduce the solution space or
even obtain its convex hull. Furthermore, such inequalities can be integrated into an MILP
model without influencing the remaining part of the model. This makes it possible to use
sophisticated inequalities in similar MILP models.

To use MILP approaches for hoist scheduling problems, the model usually needs slight
modification when the problem slightly varies. In general, to handle complex problems, the
MILP models for simpler but similar problems can provide a good basis. For example, in
the work of Phillips and Unger (1976), the authors extended their MILP model initially for a
basic line to handle multi-function tanks by integrating the constraints that avoid collisions
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related to multi-function tanks into the original model without modifying other constraints.
Furthermore, MILP models can be solved by general mathematical programming solvers.
Nowadays many general solvers, whether commercial or academic, are available and becoming
more and more powerful, for Linear Programs (LP), Integer Programs (IP) and MILP models.
State-of-the-art solvers supporting MILP models contain commercial software packages such
as CPLEX (IBM ILOG, 2009), GUROBI (Gurobi Optimization, 2016), and open source
software such as SCIP (Achterberg, 2009) and so on. On the one hand, these general solvers
can be used as black boxes without considering the implementation details; on the other hand,
many modern solvers also support interfaces to communicate with the user during solving
processes by querying incumbent solutions and adding cuts, etc.

1.3 Contributions

Previous works mainly focus on HSPs in basic lines, or in the extended lines but with identical
parts. This thesis studies three types of HSPs extended from basic lines and extended lines.
They are respectively: robust cyclic hoist scheduling problem, dynamic hoist scheduling
problem in extended lines, and cyclic robotic jobshop scheduling problem in extended lines.
We first give an overview of the literature. Then the considered hoist scheduling problems are
addressed in the following chapters, respectively. The following results are achieved:

(1). A method is proposed to measure the robustness of a cyclic hoist schedule subject to
delays in hoist traveling times. A bi-objective MILP model is formulated to minimize
the cycle time and maximize the robustness. It is proved that the cycle time strictly
increases with the robustness, thus a Pareto optimal solution can be obtained by solving
a single-objective HSP to minimize the cycle time for a given value of robustness or
maximize the robustness for a specific cycle time.

(2). A dynamic hoist scheduling problem with multi-capacity and multi-function tanks is
addressed. We point out a flaw in an article which may lead to sub-optimal solutions or
fail to find a feasible solution. An MILP model is developed to improve and extend this
work. This new model can furthermore handle the scenario where a multi-function tank
is also multi-capacity.

(3). An MILP model is formulated for a cyclic robotic jobshop scheduling problem with
multi-capacity and multi-function tanks. To handle the multi-capacity tanks used by
multiple types of parts, the formulation for cyclic hoist scheduling with a single part-type
is extended to the multiple part-types situation. For each loaded hoist move, the number
of parts being processed in a tank at the start of a cycle, arriving at the tank before the
move and leaving the tank before the move are calculated. Based on this, the capacity
constraints for tanks are formulated.



1.4. Outline 5

1.4 Outline

The remainder of this thesis is organized as follows.
Chapter 2 provides a literature review of previous contributions related to hoist scheduling

problems. The description is divided into several sections according to the features of the
considered problem, including the type of production lines (basic lines, extended lines with
multi-function tanks and/or multi-capacity tanks), the number of hoists (single-hoist and
multi-hoist), the degrees of cyclic schedules, the number of part-types and the production
mode (cyclic and non-cyclic). Existent works and results are analyzed, and the research gap is
identified.

Chapter 3 deals with the robust optimization for cyclic hoist schedules considering delays
in hoist traveling. The influence of the delays in loaded and unloaded hoist moves are analyzed.
The measure of the robustness of a cyclic hoist schedule is defined as its ability to remain
stable in the presence of such delays. With such a definition, we propose a method to measure
the robustness of a cyclic hoist schedule. A bi-objective MILP model is developed, which aims
to simultaneously optimize the cycle time and the robustness. We investigate the relationship
between the optimal cycle time and the robustness. Furthermore, we derive the so-called ideal
and nadir points that define the lower and upper bounds for the objective values of the Pareto
front, respectively. It is proved that a Pareto optimal solution can be obtained by solving a
single-objective HSP to minimize the cycle time for a given value of robustness or maximize
the robustness for a specific cycle time. Computational experiments on several benchmark
instances and randomly generated instances are conducted to evaluated the proposed approach.

Chapter 4 deals with a dynamic hoist scheduling problem with multi-capacity and multi-
function tanks, where a multi-function tank can be multi-capacity. Parts to be processed
are of different types and dynamically arrive at the input station. Once a rescheduling is
triggered according to the current state of the system, a new schedule should be generated to
schedule the newly arriving parts and reschedule the parts in process so that the makespan
is minimized. An MILP model is developed to generate such an optimal reschedule, which
improves an existing model in the literature in several aspects. The proposed model is solved
by optimization software package CPLEX. A large number of instances with and without
multi-function tanks are used to evaluate the proposed model and compare it with an existent
model.

Chapter 5 studies a cyclic robotic jobshop scheduling problem with multi-capacity tanks
and multi-function tanks. We consider cyclic schedules with different types of parts. We
extend the time-window formulation for cyclic hoist scheduling with identical parts to the
multiple part-types situation. For each loaded hoist move, the number of parts being processed
in a tank at the start of a cycle, those arriving at the tank and those leaving the tank before
the move are calculated. To ensure the capacity of each tank is respected, at least one empty
processing unit must be available at the moment a part arrives at the tank. An MILP model is
developed for the problem. To evaluate the proposed model, a set of instances are randomly
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generated and solved.
Finally, Chapter 6 concludes this work, discusses the limitations of the present research

and suggests potentially promising directions for future research.
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In this chapter, we describe in detail the hoist scheduling problems under various settings. It
describes at the same time the notions and terms that will be used throughout the thesis. As we
can see, there are a large variety of models possible. We then give a state-of-the-art overview
of the numerous works that have been done in the last four decades. This overview shows
that despite the large number of studies, much work is still needed to address complicated
situations, especially in terms of mathematical formulation.

2.1 Hoist scheduling problem and diversity

In an automatic electroplating line, the processing from raw parts to semi-finished or final
products involves a sequence of processing stages (Phillips & Unger, 1976; Levner, Kats,
& Levit, 1997; Lee, Lei, & Pinedo, 1997; Levner, Kats, Alcaide López de Pablo, & Cheng,
2010; Manier & Lamrous, 2008; Che & Chu, 2007b; Yan, Che, Yang, & Chu, 2012).
The line consists of a series of tanks, an input station, an output station and one or more
hoists. Figure 1.1 in chapter 1, shown again and explained in detail hereafter for the sake of
self-consistency, illustrates an automatic electroplating line with five processing tanks and a
material handling hoist (see Figure 2.1).

 

   

Hoist

Tank 1 Tank 2 Tank 3 Tank 4 Tank 5

Part

Input station Output station

Figure 2.1: Illustration of a basic automatic electroplating line

The input station is used for holding the raw parts to be processed, while the output station
for completed or finished parts. Each tank contains a specific electroplating solution used for
a particular processing stage. To complete the processing, each raw part is firstly unloaded
from the input station, then successively treated in a sequence of tanks in a prescribed order
and finally loaded on the output station. The hoists are in charge of the material handling
operations between tanks. To guarantee the quality of the parts, the processing time at each
stage may be subject to restrictions. In general, the processing time at each stage of each part
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is bounded with a predefined interval, called time-window. That is, the actual processing time
must be no less than a minimum amount and no more than a maximum one. Otherwise, the
part will become defective due to insufficient treatment or excessive exposure to chemical
solution. To avoid excessive exposure to open air, there is no storage buffer between tanks.
Thus, after the processing in a tank is completed, the part should be directly transferred to the
next tank without any delay. To complete such a transfer operation, the hoist needs to unload
the part from the origin tank, transports it to the destination tank, and then loads the part into
it. The required transportation times are not negligible compared to the processing times in
tanks. Once a part is unloaded from the input station, before it arrives at the output station as
a finished part, it will be either being processed in a tank or being held by a hoist.

As all transportation tasks are carried out by hoists, the sequence of the hoist operations
is a critical factor that affects the productivity of the system. A hoist scheduling problem
aims to sequence the hoist transfer operations so that the throughput is maximized while all
constraints are respected. The challenge is to effectively coordinate the hoist operations and
processing stages so that the resources are fully utilized and related losses are cut down.

An intuitive hoist schedule is that the hoist waits at the tank after loading a part into it until
the processing is completed, and then unloads the part and transfers it to the next tank. In
such a schedule, at most one tank is used at any time and the others are idle, the productivity
thus is low. In order to maximize the productivity, one would like all resources (tanks and
hoists) to work as much as possible. In a sophisticated schedule, multiple parts are processed
simultaneously in order to improve the use rate of tanks and hoists. For instance, Figure 2.1
shows a line where three parts are processed simultaneously in the production line. In this
situation, after loading a part into a tank, the hoist, instead of waiting at the tank, may travel to
another tank to execute the next transportation operation.

Many variants of hoist scheduling problems have been addressed in the literature. To
distinguish hoist scheduling problems from one another and to classify them, Manier and
Bloch (2003) developed a four-field notation system according to production modes, physical
parameters, logical parameters and criteria that are associated with the problems. New
paragraphs presents this diversity.

2.1.1 Basic vs. extended lines

In a basic line (Liu, Jiang, & Zhou, 2002), there is a one-to-one correspondence between
the processing stages of a part and the tanks, and each tank can handle at most one part at
a time. In other words, a tank is responsible for a specific processing stage, and each part
will visit each tank once during its whole processing. Figure 2.1 illustrates a basic automatic
electroplating line.

Many practical systems involve complex configurations such as re-entrant tanks and tanks
with parallel processing slots. A re-entrant tank, also called a multi-function tank, is visited
more than once by a part during its processing route; while a tank with parallel processing
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slots, also called a multi-capacity tank, can treat multiple parts simultaneously and each
processing slot can handle at most one part at a time. A production line with multi-function
tanks and/or multi-capacity tanks is usually called an extended line in the literature (Che &
Chu, 2005a; Che & Chu, 2007b; Liu et al., 2002). An extended line has advantages in several
aspects. On the one hand, multi-function tanks can avoid deploying (or investing in) extra
tanks and shorten the production line; on the other hand, multi-capacity tanks are used for
stages requiring disproportionately long processing time compared with those of other stages.
In a more general sense, a multi-function tank can also be multi-capacity, which is referred to
as a multi-function multi-capacity tank. However, the presence of multi-function tanks and
multi-capacity tanks makes the corresponding hoist scheduling problem more challenging to
deal with.

2.1.2 Cyclic vs. non-cyclic production

Automatic electroplating lines can operate in cyclic mode (Phillips & Unger, 1976; Chen,
Chu, & Proth, 1998; Liu et al., 2002; El Amraoui, Manier, El Moudni, & Benrejeb, 2013b;
Lei & Wang, 1994; Manier & Lamrous, 2008) or in non-cyclic mode (Yih, 1994; Zhao, Fu, &
Xu, 2013b; Sun, Lai, Lam, & So, 1994; Chauvet, Levner, Meyzin, & Proth, 2000; Lamothe,
Correge, & Delmas, 1994; Yan, Che, Cai, & Tang, 2014). For non-cyclic scheduling, the
parts to be processed are waiting at the input station beforehand or dynamically arrive at
the input station. The objective is usually to sequence the parts and hoist operations so that
the makespan (the time that the last part arrives at the output station) is minimized. This
criterion is equivalent to maximizing the throughput. As for cyclic scheduling, the production
system periodically repeats a fixed sequence of operations. Each repetition of the operations is
called a cycle. At the end of a cycle, the system will reach the same state as at the start of the
cycle. The duration of a complete cycle is defined as cycle time. The reverse of the cycle time
represents the throughput rate or the productivity of the system. Thus, minimizing the cycle
time is equivalent to maximizing the throughput. Due to its simplicity of implementation and
ease of management, especially in mass production, which is often the case, cyclic scheduling
has attracted extensive attention from researchers and practitioners.

One important character of cyclic robotic scheduling is that, the same number of parts
enter and leave the system within each cycle. With this feature, the parts to be processed can
be represented by a fixed ratio according to the numbers of parts of different types (Zhao,
Fu, & Xu, 2013a; Lei, Che, & Chu, 2014). The parts are partitioned into multiple identical
small sets, called Minimal Part Set (MPS), according to this ratio, where minimal means
there is no common divisor among the elements of such a set. For example, suppose that the
demands for parts of types A, B and C are 200, 200, and 400 respectively, they follow the
ratio A : B : C = 1 : 1 : 2. Thus each MPS contains four parts: one part of type A, one part
of type B and two parts of type C. The degree of a cyclic schedule is defined as the number of
repetitions of the MPS in a cycle (Lei & Wang, 1994; Leung, Zhang, Yang, Mak, & Lam,
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2004). It is worth noting that in each cycle, the newly entering parts and the completed parts
are not necessarily the same. The cyclic schedule with multiple MPSs introduced in a cycle
are commonly referred to as a multi-degree cyclic schedule (Che & Chu, 2009; Che, Zhou,
Chu, & Chen, 2011b; Li & Fung, 2014; Li, Chan, & Chung, 2015; Lei & Wang, 1994; Leung
et al., 2004) or a multi-cyclic schedule (Zhou, Che, & Yan, 2012).

An MPS may contains one part or multiple parts according to different configuration. On
the one hand, when all parts to be processed are identical, i.e., a flowshop is considered, an
MPS contains only one part and the degree of cyclic schedules is exactly equal to the number
of parts introduced within a cycle. As the simplest case, a one - degree cyclic schedule is
commonly referred to as a simple cyclic schedule (Shapiro & Nuttle, 1988). On the other
hand, when different parts are processed, i.e., a jobshop is considered, an MPS is composed
of several parts. In this case, one - degree cyclic schedules are usually considered, where an
MPS is unloaded from the input station in a fixed sequence defined by the schedule, and a
not-necessarily-the-same MPS is loaded onto the output station during each cycle. Therefore,
such a cycle is periodically executed until the demands for parts are satisfied. Note that the
entering sequence of the parts in MPS into the production line will affect the entire schedule
of the production.

2.1.3 Diversity related to hoist traveling times

In practical systems, the hoist travel times can be influenced by the layout of the production
line, such as the position of processing tanks and input/output stations. These times can
be represented by an adjacent matrix. In the literature, three types of matrices are usually
considered (Dawande, Geismar, Sethi, & Sriskandarajah, 2007): additive, constant, and
Euclidean. For the additive situation, the times required for the hoist to travel between any
two adjacent tanks are given, and the hoist travel time between two non-adjacent tanks can be
calculated by adding up the travel times between the adjacent tanks located between them.
For the constant matrices, the hoist travel time between any two tanks, whether adjacent or
non-adjacent, are given. In the Euclidean situation, the hoist travel time between any two
tanks can be different from one another, and they are assumed to satisfy triangle inequalities.
Besides, other situations have also been considered by some works such as Kats and Levner
(1998, 2009), Feng, Che, and Wang (2014), where no particular assumptions are made about
these travel times.

2.1.4 Representation of hoist schedules

As the material handling operations are executed by the hoists, a schedule can be uniquely
represented by a sequence of all related hoist transfer operations. To intuitively demonstrate
the physical positions of the hoist and whether a tank is handling a part or not as time goes on,
a hoist schedule can be represented by a time-way diagram (Liu et al., 2002), similar to a Gantt
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Figure 2.2: Illustration of the time-way diagram for a cyclic hoist schedule
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Figure 2.3: Illustration of the time-way diagram for a non-cyclic hoist schedule

chart in classical machine scheduling. Such a time-way diagram is depicted in a rectangular
coordinate system. The horizontal axis is a time line while the vertical axis represents the
tanks. A part’s processing in a tank is denoted by a horizontal solid segment, and loaded and
unloaded hoist traveling operations are represented by solid and dashed arrows respectively,
where the arrows indicate the traveling direction of the hoist. Figure 2.2 and Figure 2.3
illustrate the time-way diagrams for a cyclic and a non-cyclic hoist schedules, respectively.

In Figure 2.2, a cycle starts by unloading a part from the input station. After loading the
part into tank 1, the hoist travels to tank 2 to unloads a part, and then travels to tank 3 to loads
the part into it. Since then, the hoist waits at tank 3 for the completion of the part’s processing.
Once the processing is completed, the hoist transfers the part to tank 4 for its next operation.
The hoist travels back to tank 1 to unload the part that is loaded at the start of the cycle and
transport it to tank 3. After this, the hoist returns to tank 4 and unloads a part from it. When
all processing stages of a part has completed, the part is moved to the output station and the
hoist returns to the input station to start a new cycle. Note that one part is in process in tank 2
at the start of a cycle and two parts are handled simultaneously during a cycle.

The non-cyclic hoist schedule in Figure 2.3 can be interpreted in a similar way except that
no cycle can be defined.
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2.1.5 Summary

In the past four decades, the hoist scheduling problem and many variants have been widely
studied by researchers from academy and industry. Many models and algorithms of various
nature, both exact and approximate, have been proposed for such problems. Due to the rich
literature, a number of survey papers have reviewed the contributions on hoist scheduling and
related problems from different perspectives. Lee et al. (1997) presented a brief review on
cyclic hoist scheduling and related scheduling in robotic cells. Levner et al. (2010) reviewed
the computational complexity results of several kinds of cyclic scheduling problems. Kats
and Levner (2012) reviewed various methods based on prohibited intervals and proposed
for cyclic hoist scheduling problems with zero-width processing time-windows, also called
no-wait systems. Crama, Kats, van de Klundert, and Levner (2000) surveyed the modeling
and complexity results of cyclic scheduling problems in robotic flowshops. More works on
hoist scheduling and related robotic scheduling can be found in Brauner (2008), Dawande
et al. (2007), Dawande et al. (2010), Lee (2008) and the references therein.

The following sections review the works on HSPs under different settings. The presentation
is divided into four sections. Section 2.2 describes the works on cyclic hoist scheduling with
time-window constraints. It covers the models and algorithms proposed for the cyclic hoist
problems raising in both basic and extended lines. Section 2.3 reviews the research works
related to non-cyclic hoist scheduling problems. It covers the models and algorithms proposed
for dynamic and static hoist scheduling in both basic and extended lines. Section 2.4 reviews
the literature related to hoist scheduling with zero-width time-windows. The research gap and
the motivation of this research are discussed in Section 2.5.

2.2 Cyclic hoist scheduling problems

In mass production environments, a large number of products of each type must be produced.
In this case, the production can be implemented in a cyclic way. Cyclic hoist scheduling
problems can thus be widely encountered in practice and have attracted extensive attention
from researchers. In this section, we review the works related to cyclic hoist scheduling. We
first introduce the study on basic lines, including simple cyclic schedules, multi-degree cyclic
schedules with identical parts and cyclic schedules with multiple types of parts. Then studies
on extended lines with multi-function and/or multi-capacity tanks are addressed. Finally, the
works on cyclic multi-hoist scheduling are surveyed.

2.2.1 Basic scheduling problems

In hoist scheduling, we have to determine an optimal sequence of hoist operations. But
because of the upper bounds of the processing times, not all sequences of hoist operations
are feasible. That is why a lot of works have been done to develop methods to check the
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feasibility and to calculate the starting time of each move so that the cycle time is minimized
for a given sequence of hoist operations. Such a problem is called basic scheduling problem.
Lei (1993) introduced a search procedure to determine the optimal integer starting times
of the hoist moves for a basic scheduling problem, which can also be used to check the
feasibility of the sequences of hoist moves for a given cycle time. Levner and Kats (1998)
formulated the basic scheduling problem as a parametric critical path problem and solved it
by a modified Bellman-Ford algorithm. Chen et al. (1998) considered in parallel the same
problem and transformed it into cycle time evaluation problems in bi-valued graphs and
proposed a polynomial algorithm of time complexity O(n4m2), where n and m are the number
of vertices and the number of arcs of the graph. Even though it has a higher worse-case
complexity than that of Levner and Kats (1998), but is computationally more effective. Kats,
Lei, and Levner (2008) showed that the multi-degree basic scheduling problem with setup
times is equivalent to a parameter critical path problem, and proposed a strongly polynomial
algorithm. Kats and Levner (2011b) studied a 2 - degree scheduling problem and proposed
a polynomial algorithm of complexity O(m8 log m), where m is the number of tanks. The
authors further developed an improved algorithm of reduced complexity O(m8) for the same
problem (Kats & Levner, 2011a). Levner, Kats, and De Pablo (2007) suggested a parametric
critical path algorithm to optimize the multi-hoist scheduling with multiple part-types. The
complexity of the proposed algorithm is O(m4), where m is the number of tanks.

2.2.2 Cyclic hoist scheduling problems in basic lines

2.2.2.1 With identical parts and simple cyclic schedules

Phillips and Unger (1976) were the first to use mathematical programming for solving hoist
scheduling problems. They proposed the first MILP model for a basic line with a single
hoist to obtain an optimal simple cyclic schedule. The model is tested on an instance derived
from a real industrial line. The instance has become a benchmark widely used in subsequent
works. Later, researchers have proposed various branch-and-bound algorithms for the problem
(Shapiro & Nuttle, 1988; Lei & Wang, 1994; Armstrong, Lei, & Gu, 1994; Chen et al., 1998;
Yan, Chu, Yang, & Che, 2010) and heuristics or meta-heuristics (Baptiste, Legeard, & Varnier,
1992; Baptiste, Legeard, Manier, & Varnier, 1993; Spacek, Manier, & Moudni, 1999; Lim,
1997; Yan et al., 2012).

Among the diverse branch-and-bound algorithms, the main differences lie in branching
rules and bounding schemes. Shapiro and Nuttle (1988) showed that a schedule can be obtained
as soon as the number of parts simultaneously processed in a cycle and the precedence between
the processing stages are known. Then, the objective became searching the minimum offset
between two successive parts. To this end, a branch-and-bound algorithm is proposed based
on enumerating the number of parts and their processing sequence at each stage. Furthermore,
the algorithm is extended to handle multi-capacity tanks. Lei and Wang (1994) proposed a
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time-window algorithm, which is based on a branch-and-bound procedure. The branching is
carried out by enumerating the sequences of hoist moves in a cycle. In order to effectively
check the feasibility of candidate schedules, the earliest and latest start times of hoist moves
are calculated to rule out infeasible candidates as soon as they are identified. Armstrong
et al. (1994) introduced a sequence-dependent parameter to estimate the minimal time interval
between two hoist moves. They showed that this parameter can provide a good lower bound of
the cycle time, and integrated it into a branch-and-bound search procedure. Chen et al. (1998)
developed a branch-and-bound algorithm consisting of two nested branching procedures. The
upper-level branching enumerates the part distribution at the start of a cycle, which indicates
whether a part is in process or not in a tank. Once such a part distribution is obtained, the
lower-level branching enumerates possible sequences of hoist moves. The maximum possible
number of parts simultaneously processed in a cycle and a lower bound of the cycle time
based on partial sequences of hoist moves are used to enhance the algorithm. The relaxed
problems at each node of the search tree were transformed into a difference system and solved
with the longest path algorithm in bi-valued graphs which are equivalent to parameterized
graphs defined by Kats and Levner (2011a). Yan et al. (2010) applied the method of prohibited
intervals which is usually used for the situations with zero-width time-windows (Levner et al.,
1997). The objective is to enumerate the non-prohibited intervals for the cycle time. A
dynamic branch-and-bound algorithm is proposed to enumerate all possible intervals for cycle
time.

Both MILP method and branch-and-bound algorithms aim to obtain an optimal solution.
However, due to the NP-hardness of the problem, the amount of computation time for large-
sized instances may become unacceptable. To cope with this, approximation algorithms
have also been investigated. Different from exact algorithms, the purpose of approximation
algorithms are to obtain satisfactory or near-optimal solutions in a reasonable amount of time.
Baptiste et al. (1992) and Baptiste et al. (1993) introduced a Constraint Logic Programming
(CLP) approach. Spacek et al. (1999) suggested a max- and min-algebra model for the problem
and introduced heuristics to handle the conflicts in the use of the tanks and the hoist. The
model was also extended to multi-hoist and multi-degree situations. Lim (1997) designed a
genetic algorithm (GA) to solve the problem by representing the sequences of hoist moves as
chromosomes. Yan et al. (2012) developed a tabu search procedure to divide the solution space
into subspaces according to the number of work-in-process parts. Furthermore, a repairing
procedure is proposed to try to obtain feasible solutions out of infeasible ones.

2.2.2.2 Problems with different parts and/or multi-degree schedules

All the above works deal with simple cyclic schedules, i.e., 1-degree cyclic scheduling. It has
been reported that multi-degree or multi-cyclic schedules can yield strictly higher productivity
than their simple-cyclic counterparts in many situations (Lei & Wang, 1994; Kats, Levner, &
Meyzin, 1999; Zhou et al., 2012). However, the related problems become more complicated,
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and the modeling and optimization are much more challenging as well.

In fact, Lei and Wang (1994) remarked that their branch-and-bound algorithm can also deal
with 2-degree cyclic scheduling, and an optimal 2-degree cyclic schedule for the benchmark
problem proposed by Phillips and Unger (1976) was reported. For general multi-degree
cases, Che et al. (2011b) proposed a branch-and-bound algorithm. The algorithm implicitly
enumerates, with two search trees, the part distributions at the start of a cycle and the sequences
of hoist moves, respectively. For the same problem, an MILP model was also developed and
solved by Zhou et al. (2012).

In the above works, all the parts are identical, thus the problem related to the entering
sequence of parts vanishes. That is, the precedence among the parts does not matter. However,
this is not the case for systems with different types of parts. It is worth noting that for two-part
cyclic scheduling which is a special case of general ones, whether the two parts are identical
or not, their entering sequence can be neglected because of the cyclic nature (Zhou et al.,
2012). Lei and Liu (2001) proposed a branch-and-bound algorithm for such a problem with
two different parts in an MPS to minimize the cycle time. The processing routes of the two
different parts are identical but their processing time-windows in each tank may be different.
The authors also remarked that the proposed algorithm can be extended to system with multiple
part-types. A different branch-and-bound approach for the problem has also been studied
by Mateo and Companys (2006). El Amraoui, Manier, El Moudni, and Benrejeb (2008)
developed an MILP model for the problem and extended it to the case where the hoist can
wait during loaded moves which is also considered by Ng (1996), Liu et al. (2002) and Che
and Chu (2007b). This work was further extended by El Amraoui, Manier, El Moudni, and
Benrejeb (2012) to handle configurations such as load-unloaded buffers which is characterized
by the time-window at input station, multi-function tanks and multi-capacity tanks.

As mentioned before, it is necessary to determine the part entering sequence if there are
more than two part-types. For such a problem, Varnier and Jeunehomme (2000) suggested an
approach to construct a feasible hoist schedule by combining the hoist schedules with identical
parts in a specific way. El Amraoui, Manier, El Moudni, and Benrejeb (2013a) studied the
cyclic scheduling where each part has its specific processing time-windows in the tanks. An
MILP model and a GA are developed to minimize the cycle time. El Amraoui et al. (2013b)
developed an MILP model similar to that proposed by Zhou et al. (2012). A heuristic based
on Earliest Start Time (EST) was suggested by El Amraoui, Manier, El Moudni, and Benrejeb
(2011) to handle multiple part-types. The algorithm aims to sequence the hoist moves so
that a cyclic schedule is achieved. Note that the obtained schedule may be multi-degree. Lei
et al. (2014) proposed a branch-and-bound algorithm composed of three nested branching
procedures. The first two procedures are mainly designed for enumerating all possible entering
sequences of the parts, while the third one for enumerating the sequences of hoist moves.

The above studies on cyclic scheduling in basic lines are summarized in Table 2.1. In the
table, #D represents the degree of the cyclic schedule; #PT and #H represent the number of
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part-types and the number of hoists, respectively.

Table 2.1: Studies on the cyclic HSPs in basic lines

#D #PT #H Method Features Reference

1 1 1 MILP Phillips and Unger (1976)
1 1 1 Branch-and-bound Shapiro and Nuttle (1988)
1/2 1 1 Branch-and-bound Lei and Wang (1994)
1 1 1 Branch-and-bound Armstrong et al. (1996)
1 1 1 Branch-and-bound Chen et al. (1998)
1 1 1 Branch-and-bound Yan et al. (2010)
1 1 1 CLP Baptiste et al. (1992)

Baptiste et al. (1993)
1/N 1 1/N Heuristics Spacek et al. (1999)
1 1 1 Genetic algorithm Lim (1997)
1 1 1 Tabu search Yan et al. (2012)
N 1 1 Branch-and-bound Che et al. (2011b)
N 1 1 MILP Zhou et al. (2012)
2/N 1 1 Branch-and-bound Lei and Liu (2001)
2 2 1 Branch-and-bound Mateo and Companys (2006)
2 2 1 MILP El Amraoui et al. (2008)
2 2 1 MILP Load-unload buffer El Amraoui et al. (2012)
N N 1 Heuristics Varnier and Jeunehomme (2000)
N N 1 MILP and GA Identical processing routes El Amraoui et al. (2013a)
N N 1 MILP Identical processing routes El Amraoui et al. (2013b)
N N 1 Heuristics Identical processing routes El Amraoui et al. (2011)
N N 1 Branch-and-bound Lei et al. (2014)

2.2.3 Cyclic hoist scheduling problems in extended lines

2.2.3.1 Simple cyclic schedules with identical parts

In addition to basic lines, extended lines which consist of multi-function tanks and/or multi-
capacity tanks have also been studied in the literature. In fact, Phillips and Unger (1976)
also discussed multi-function tanks in their work, and suggested how to extend their MILP
model to handle multi-function tanks. Shapiro and Nuttle (1988) and Lei and Wang (1994)
also showed that their branch-and-bound algorithms for basic lines can be extended to deal
with multi-capacity tanks. Ng (1995) pointed out the fact that forcing use of all parallel
processing slots of a multi-capacity tank may worsen the performance of the system. Thus
in their study, the number of actually used parallel slots of a multi-capacity tank is treated
as decision variables instead of constants. The algorithm proposed by Shapiro and Nuttle
(1988) was adapted by enumerating all possible numbers of parallel processing slots to use.
For the problem, Che and Chu (2007b) proposed a branch-and-bound algorithm, where the
branching is based on the number of actually used parallel processing slots and the sequences
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of hoist moves. Lower and upper bounds of the processing slots and the maximum number
of work-in-process parts are investigated and applied to enhance the algorithm. Zhou and
Li (2003) dealt with a similar problem but the required times for loaded hoist moves are
constant and all parallel slots of a multi-capacity tank are forced to be used. An MILP model
is developed and solved by a general optimization solver. Furthermore, the relationship
between the number of parallel processing slots, the time-window constraints associated
with bottleneck stages and the cycle time is analyzed and used to improve the computational
performance.

Unlike previous research, Ng (1996) treated the hoist traveling times as decision variables
that are no less than a given lower bound and developed a branch-and-bound algorithm. This
configuration provides the flexibility of hoist loaded moves and may achieve a better solution
than the settings with constant traveling times. Liu et al. (2002) published a representative
work, which extends Phillips and Unger’s model to handle both multi-function tanks and
multi-capacity tanks. Both the number of actually used parallel processing slots and the
loaded hoist move times are treated as decision variables as suggested by Ng (1995, 1996).
Furthermore, they pointed out the fact that forcing the use of all parallel processing slots of a
multi-capacity tank can lead to infeasibility.

Due to the challenge on both mathematical formulation and problem-solving, some
researchers resorted to hybrid approaches. Riera and Yorke-Smith (2002) developed a CP -
MILP hybrid model for a problem with multi-capacity tanks, which combines Constraint
Programming (CP) and MILP methods. Rodosek, Wallace, and Hajian (1999) also developed
a hybrid approach by integrating CLP techniques and MILP methods. Compared with MILP,
CP and CLP have some advantages in handling logic constraints.

2.2.3.2 Multi-degree schedules or problems with different parts

Multi-degree cyclic hoist scheduling in extended lines has also been investigated by researchers.
Li and Fung (2014) studied such a problem with multi-function tanks. They first proposed
an MILP model for the problem without re-entrance, which is similar to the one proposed
by Zhou et al. (2012). The difference is that the hoist moves were defined according to the
executing sequence at each stage rather than for each part. Thus the related decision is to
determine which pair of loaded and unloaded hoist moves operate the same part. The proposed
model is then extended to handle multi-function tanks by enumerating all possible conflicts
in the tanks. Recently, Li et al. (2015) investigated the multi-degree cyclic scheduling with
multi-capacity tanks, but the parts are identical. In such a case, the entering sequence does not
have any effect. Given the part entering sequence on input station, the processing sequence
on any other tank is determined at the same time and remains the same during the whole
production; that is, the earlier a stage starts, the earlier it ends.

As for the cyclic scheduling with multiple part-types, the entering sequence of parts really
matters and is part of the decision. In addition, for multi-capacity tanks, it also involves the



2.2. Cyclic hoist scheduling problems 19

Table 2.2: Studies on the cyclic HSPs in extended lines

Line #D #PT #H Method Reference

Multi-function 1 1 1 MILP Phillips and Unger (1976)
Multi-capacity 1 1 1 Branch-and-bound Shapiro and Nuttle (1988)
Multi-capacity 1 1 1 Branch-and-bound Ng (1995)
Multi-capacity 1 1 1 Branch-and-bound Ng (1996)
Multi-capacity, Multi-function 1 1 1 MILP Liu et al. (2002)
Multi-capacity, Multi-function 1 1 1 Branch-and-bound Che and Chu (2007b)
Multi-capacity, Multi-function 1 1 1 MILP Zhou and Li (2003)
Multi-capacity 1 1 1 CP and MIP Riera and Yorke-Smith (2002)
Multi-capacity 1 1 1 CLP and MIP Rodosek et al. (1999)
Multi-function N 1 1 MILP Li and Fung (2014)
Multi-capacity N 1 1 MILP Li, Chan, and Chung (2015)
Multi-capacity N N 1 MILP Zhao, Fu, and Xu (2013a)
Multi-capacity N N 1 MILP Fu, Zhao, Xu, and Ho (2013)

share of tanks among different parts. Zhao et al. (2013a) studied the cyclic hoist scheduling
with multiple part-types and multi-capacity tanks but without multi-function tanks. They
introduced an MILP model for the problem. However, their formulation may identify feasible
solutions as infeasible and also implies that each part uses all parallel processing slots of a
multi-capacity tank. Fu, Zhao, Xu, and Ho (2013) investigated a similar problem, for which
instead of a fixed number of parallel processing slots, a decision should be made on how
to assign a given number of additional processing slots to the tanks so that the throughput
is maximized. It is thus a bi-objective problem. An MILP model is formulated and an
iterative framework is designed to obtained a series of Pareto solutions that balance the cost
for configuring additional processing slots and the increased throughput. However, the tank
capacity constraints and the time-window constraints are formulated in a similar way to that
in Zhao et al. (2013a). As a consequence, it may also lead to sub-optimal solutions or even
infeasibility.

The above studies on cyclic hoist scheduling in extended lines are summarized in Table 2.2.
In the table, Line denotes the main features of the considered line, including multi-function
tanks, multi-capacity tanks. #D, #PT and #H have the same meaning with those in Table 2.1.

2.2.4 Cyclic multi-hoist scheduling problems

The motivation to employ multiple hoists is that the material handling operations may become
the bottleneck of the production system when involving a large number of material handling
tasks. Multiple hoists can simultaneously perform several transportation tasks, which can
relieve the bottleneck at some level. However, it also introduces additional issues such as the
assignment of transportation tasks to multiple hoists and the avoidance of potential collisions
between the hoists. Besides, whether the processing routes of parts are unidirectional or
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bidirectional is another critical factor affecting problem-solving. In general, bidirectional
processing routes involve more potential collisions than unidirectional ones. In order to balance
the increased productivity and the additional complexity, researchers have also investigated
many special cases of the general multi-hoist scheduling, including two-hoist scheduling,
multi-hoist scheduling with non-overlapping zones on a single track, or multi-hoist scheduling
with parallel tracks, which simplify or eliminate potential collisions among hoists.

2.2.4.1 Problems with parallel tracks

Another method to handle multiple hoists is the utilization of multiple parallel tracks. In such
a situation, each hoist has its own track, thus no collision between the hoists will occur. The
remained problem is to assign all material handling tasks to the hoists so that the throughput is
maximized. Manier and Lamrous (2008) developed an evolution algorithm for simultaneously
optimizing the number of hoists and the throughput. The encoding of the solution is based on
the sequence of unloaded hoist moves instead of loaded hoist moves.

2.2.4.2 With non-overlapping zones on a single track

When multiple hoists share a single track, the collision-avoidance is often achieved by
partitioning the track into non-overlapping segments or zones. Such a method is called
zone-partition. It should be noted that this partition may be given in advance or part of the
decision. Between any two adjacent zones, there is a boundary tank that can be seen as the
output buffer of one zone and the input buffer of the other. After the partition, each zone can
be regarded as a single hoist scheduling problem. Such a method has been investigated in
many works in the literature.

Lei and Wang (1991) studied a two-hoist cyclic scheduling problem and proposed a
heuristic algorithm. To avoid the collisions between the hoists, the shared track is partitioned
into two non-overlapping zones, and each hoist is restricted to one of them. The risk of
collisions between the hoists can only happen at the boundary tank. For each zone, a
sub-problem involving a single hoist is solved. The remaining problem is to combine the
two single-hoist cyclic schedules by calculating a common cycle time. Zhou and Li (2009)
used a similar zone-partition method for the problem. Instead of heuristics, an MILP model
was developed to obtain a final schedule for a given hoist assignment. Yang, Ju, Zheng, and
Lam (2001) also considered a multi-hoist scheduling problem with zone-partition method.
Nevertheless, the partition of the track is part of the decision instead of being given. A
simulated annealing algorithm is proposed to minimize the cycle time.

Manier, Varnier, and Baptiste (2000) proposed a different zone-partition method, for
which the production line is partitioned according to material handling operations instead
of the physical positions of tanks. Each hoist is assigned to handle a subset of operations.
By enumerating and analyzing all possible hoist collisions, a series of rules are defined to
avoid these collisions. Zhou and Liu (2008) considered two-hoist scheduling with three
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non-overlapping zones. Each hoist is responsible for one of the end zones but they share
the middle zone. Several heuristic rules are used to generate the sequences of hoist moves
and assign each move to one of the hoists. For the middle zone, twenty possible collision
situations are identified and analyzed to formulate collision-avoidance constraints. After a
feasible hoist assignment is obtained, a linear program is solved to obtain an optimal schedule.
Chtourou, Manier, and Loukil (2013) proposed an iterative heuristic to deal with a two-hoist
scheduling problem. The heuristic suggested by Zhou and Liu (2008) was adapted to generate
the sequences of hoist moves. For each generated sequence, the moves are assigned to the
hoists according to their relative positions. An MILP model is developed to obtain a candidate
schedule whose feasibility is checked by a collision-test procedure. Li and Fung (2013)
extended the work to multi-degree cyclic scheduling, where the line is manually divided
into non-overlapping zones in advance. An MILP model is developed to obtain an optimal
schedule for the given zone-partition. Li et al. (2015) developed an MILP model for the
same problem but with multi-capacity tanks. The problem becomes more complicated as the
assignment of multiple parts to parallel processing slots should be handled as well.

2.2.4.3 Direct collision avoidance

Besides zone-partition and parallel tracks, researchers have also directly studied problems
with potential hoist collisions on a single track. Leung et al. (2004) developed an MILP for
such a multi-hoist scheduling problem. The direction of loaded hoist moves is consistent with
the parts’ processing route; that is, all parts are transported toward to the same direction. Che
and Chu (2004) proposed a branch-and-bound algorithm for the same problem. Jiang and Liu
(2014) studied a similar problem and formulated an MILP model by enumerating all possible
collisions between hoists. A branch-and-bound algorithm is designed to solve the problem.
Recently, Che, Lei, Feng, and Chu (2014) pointed out that previous works usually assume
the loaded hoist moves cannot across cycles, i.e., a loaded hoist move should start and end
within the same cycle. They demonstrated that allowing loaded hoist moves to cross adjacent
cycles can lead to better solutions. To this end, an improved MILP model was developed by
reformulating the time-window constraints in Leung et al. (2004).

There are also works considering bidirectional processing routes of parts. Varnier, Bachelu,
and Baptiste (1997) adapted an approach similar to the zone-partition method, and proposed
a heuristic algorithm for a multi-hoist cyclic scheduling problem with bidirectional part
processing routes by using CLP. Leung and Zhang (2003) considered a problem similar to
Leung et al. (2004) but the processing routes of parts are bidirectional. In this case, two loaded
hoists traveling in opposite directions can meet each other halfway. Thus collisions between
hoists are more likely than with unidirectional processing routes. An MILP model was
formulated by considering all collision situations. Riera and Yorke-Smith (2002) developed
a hybrid model for generic hoist scheduling problems, which integrates CLP and MILP
techniques and addresses both multiple hoists and bidirectional processing routes of parts.
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Table 2.3: Studies on the cyclic multi-hoist scheduling

Features #D #PT #H Method Reference

Unidirectional; Zone-partition 1 1 2 Heuristics Lei et al. (1991)
Unidirectional; Zone-partition 1 1 2 MILP Zhou et al. (2009)
Unidirectional; Zone-partition 1 1 N Simulated annealing Yang et al. (2001)
Unidirectional; Zone-partition 1 1 N CLP Manier et al. (2000)
Unidirectional; Zone-partition 1 1 2 Heuristic and MILP Zhou et al. (2008)
Unidirectional; Zone-partition 1 1 2 Heuristic and MILP Chtourou et al. (2013)
Unidirectional; Zone-partition N 1 N MILP Li et al. (2013)
Multi-capacity; Unidirectional; N 1 N MILP Li et al. (2015)
Zone-partition
Unidirectional; Parallel track 1 1 N Evolution algorithm Manier et al. (2008)
Unidirectional 1 1 N MILP Leung et al. (2004)
Unidirectional 1 1 N Branch-and-bound Che et al. (2004)
Unidirectional 1 1 N Branch-and-bound Jiang et al. (2014)
Unidirectional, Moves span cycles 1 1 N Branch-and-bound Che et al. (2014)
Bidirectional; Zone-partition 1 1 N CLP Varnier et al. (1997)
Bidirectional 1 1 N MILP Leung et al. (2003)
Bidirectional 1 1 N CLP and MIP Riera et al. (2002)
Zone-partition; Given cycle time 1 1 N Heuristics Lei et al. (1993)
Zone-partition; Given cycle time 1 1 N Greedy algorithm Armstrong et al. (1996)

Due to the complication of multi-hoist scheduling, researchers also studied sub-problems
such as multi-hoist scheduling with given cycle times (Lei, Armstrong, & Gu, 1993; Armstrong,
Gu, & Lei, 1996). Lei et al. (1993) developed a heuristic to obtain a cyclic schedule for a
given cycle time such that the number of hoists that share a single track is minimized. The
algorithm partitions the line into non-overlapping zones each of which is handled by a single
hoist. Then the problem is equivalent to minimizing the number of non-overlapping zones.
They also proved that the obtained solution is optimal if and only if two hoists are needed.
Armstrong et al. (1996) proposed a greedy algorithm for the problem. By partitioning all hoist
moves into groups and then assigning each group to a single hoist, minimizing the number of
hoists is equivalent to maximizing the number of hoist moves in each group, which can be
solved by dealing with a shortest path problem.

The above studies on cyclic multi-hoist scheduling is summarized in Table 2.3.

2.3 Non-cyclic hoist scheduling problems

In cyclic hoist scheduling, the hoist(s) repeatedly execute(s) a sequence of operations. However,
it may be not applicable for multi-product and small-batch production. In such situations,
coupling all types of parts in one cycle is usually impossible, and splitting each type of parts
into a cycle can involve frequent reset and reconfiguration of the production for changing from
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one type of parts to another. Another situation where cyclic hoist scheduling is not preferred
is when the types and the numbers of parts are not known in advance. To deal with such
problems, non-cyclic hoist scheduling have also been investigated by researchers.

Non-cyclic hoist scheduling problems are divided into three classes by Manier and Bloch
(2003): predictive hoist scheduling problems (PHSP), dynamic hoist scheduling problem
(DHSP), and reactive hoist scheduling problem (RHSP). In particular, PHSP denotes the static
hoist scheduling problems except CHSP, which usually considers the following two kinds of
problems: the calculation of the minimum duration for transiting from one cyclic production
to another; the scheduling of a set of parts’ processing such that the makespan is minimized.
DHSP aims to generate a new hoist schedule when new parts arrive so that the productivity
is maximized. RHSP is to dynamically assign hoist operations so that particular criteria are
achieved.

In the literature, few works have been done to deal with PHSP. One important reason is
that scheduling a large number of parts is usually computationally difficult or even impossible
as it involves sequencing numerous operations. From this view, DHSP and RHSP can be
seen as two different compromise approaches to deal with this problem. DHSP assumes that
parts dynamically arrive at the system, thus each time a new predictive schedule involving one
or several new parts (short-term predictive schedule) are generated. In this context, a series
of short-term predictive schedules are dynamically generated one by one until all parts are
scheduled. For RHSP, no predictive schedule is generated and the hoist(s) are dynamically
dispatched to handle transportation operations with rules either predefined or dynamically
defined according to system states.

2.3.1 Predictive hoist scheduling problems

Song, Zabinsky, and Storch (1993) developed a heuristic algorithm for a single-hoist scheduling
problem. The algorithm is based on the EST heuristic. Fleury, Gourgand, and Lacomme
(2001) proposed stochastic meta-heuristics to determine a hoist schedule for which the
consequences of the variations in hoist transportation times on the makespan and the violation
of the time-windows are minimized. It is also assumed that only one new part is introduced
into the system at a time. Zhang, Manier, and Manier (2012) proposed a model for jobshop
scheduling with and without storage buffers between stages. A genetic algorithm with local
tabu search is proposed to solve it. Zhang, Manier, and Manier (2014) developed a modified
shifting bottleneck heuristic and disjunctive graph modeling. A modified disjunctive graph
including processing nodes, transportation nodes and storage nodes is used to represent the
problem. It is shown that a feasible solution is associated with a path that contains no positive
cycle. Bloch, Varnier, and Baptiste (1996) compare the efficiency of several meta-heuristics
(stochastic descent, tabu search, kangaroo algorithm, etc.).
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2.3.2 Reactive hoist scheduling problems

As mentioned before, no complete schedule for RHSPs is generated, and each hoist move is
scheduled according to the real-time state of the system. In other words, the executing sequence
of hoist operations are not known in advance (or off-line), and are reactively determined
on-line. During the production, the state of the system is first identified, the next hoist move
to be executed is then determined based on the state. Thesen and Lei (1986, 1990) introduced
an expert system to improve the productivity and reduce defective parts, which consists of a
data base for collecting system states and a rule base for selecting the best rule for specific
system states. During scheduling, a part is loaded only if all parts in the tanks will not become
defective. Sun et al. (1994) investigated the three dispatching rules proposed by Thesen and
Lei (1986, 1990) for a multi-hoist scheduling problem. The difference is that a part is loaded
if the assignment of the first future hoist move is unaffected. Mak, Gupta, and Lam (2002)
investigated a multi-hoist scheduling problem with multi-function tanks and multi-capacity
tanks. A knowledge-based simulation (KBS) system was proposed, including a part loading
heuristic and seven hoist dispatching heuristics. The part loading heuristic was adopted from
the one suggested by Sun et al. (1994), while the hoist dispatching heuristics include the four
rules proposed by Thesen and Lei (1986, 1990) and three new heuristic rules. A heuristic is
also proposed to choose appropriate dispatching rules for new parts, instead of defining all
dispatching heuristics and selection rules suggested by Thesen and Lei (1990).

Jegou, Kim, Baptiste, and Lee (2006) proposed an intelligent agent system composed of
two distinct multi-agent systems. One is used to determine the entering time of the new parts
while the other is designed to assign transportation tasks to hoists. Inside the systems, the task
dispatching is based on an auction and bidding process. However, it can produce defective
parts as the bid calculation is based on the flexibility in the current schedule. Furthermore,
neither multi-capacity tanks nor multiple part-types are supported. Goujon, Lacomme, Norre,
and Traoré (1996) developed a heuristic which uses dispatching rules that designate a higher
priority to the most urgent part. Though the dispatching rules are simple to implement,
defective parts cannot be avoided due to the nature of dispatching rules.

2.3.3 Dynamic hoist scheduling problems

With dynamic scheduling, researchers investigated three situations concerning moves already
scheduled but not yet started: (i) the starting times and hence the precedence relations among
them are not allowed to be modified in the rescheduling; (ii) the starting times are modifiable
but not the precedence relations; (iii) the precedence relations and therefore the starting times
are modifiable.
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2.3.3.1 Without changing starting times of already scheduled moves

With this assumption, the transportation and processing operations for the new part are inserted
into the idle time of the hoist and tanks in the initial schedule, respectively. Yih and Yin
(1992) studied a dynamic single-hoist scheduling problem under this assumption and with
only one new part considered each time. A two-phase heuristic is developed to explore the
flexibility of processing time-windows of the new part. In its first phase, the entering time
of the new part is updated so that no conflict in the use of tanks occurs. Its second phase
deals with possible hoist conflicts by updating the part’s entering time and exploring the
flexibility of processing time-windows. Not allowing the already scheduled operations to
change may reduce the complexity of the problem, but it prevents the potentials that improve
the productivity by rescheduling all operations.

2.3.3.2 Without changing precedence relations among already scheduled moves

The above approach (Yih & Yin, 1992) was further refined by Yih (1994) by allowing
previously scheduled operations to be rescheduled. However, the sequence of the already
scheduled hoist moves are not allowed to changed. In other words, the already scheduled
hoist moves can be shifted forward or backward. Thus it can explore the flexibility of the
processing time-windows for both the already scheduled parts and the new one. The two
heuristics (Yih & Yin, 1992; Yih, 1994) were reported to be superior to their respective basic
versions where the required processing times are fixed to their minimums. Ge and Yih (1995)
presented a branch-and-bound-based heuristic for the problem. A necessary and sufficient
condition for feasible system states is proposed and transformed into the feasibility checking
of a linear program. The heuristic is based on enumerating possible sequences of hoist moves
and is applicable for multi-hoist situations. Cheng and Smith (1997) proposed a precedence
constraint posting heuristic to schedule hoist moves, which is motivated by the heuristic and
the multi-lift algorithm suggested by Smith and Cheng (1993) and E. G., Garey, and Johnson
(1978), respectively.

Hindi and Fleszar (2004) treated the problem as a constraint satisfaction problem and
proposed a heuristic. Two checking procedures, a forward checking and a backtracking, were
developed to evaluate the feasibility of candidate schedules. Zhou and Li (2002) proposed
a heuristic procedure to obtain feasible sequences of hoist moves. An optimal schedule is
then calculated by solving linear programs for such sequences. Paul, Bierwirth, and Kopfer
(2007) developed an adaptive time-window heuristic for a similar problem and compared
it with previously published methods such as the EST heuristic (Song et al., 1993) and the
permutation-based algorithm (Yih & Yin, 1992; Yih, 1994).

Chauvet et al. (2000) proposed a polynomial algorithm for a multi-hoist scheduling
problem with multi-capacity tanks. Nevertheless, the possible collisions between hoists are not
taken into consideration. Yan et al. (2014) proposed a two-phase branch-and-bound algorithm
for a dynamic hoist scheduling problem considering disturbances defined as the deviation of
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parts’ completion times between the initial and new schedules. The objective is to minimize
the makespan of the new schedule under a limited disturbance.

2.3.3.3 Allowing rescheduling of already scheduled moves

In the above works, the processing sequence of the already scheduled parts is not changed
in the rescheduling. In some restrictive cases, even the start and end times of hoist moves
are not allowed to change. Furthermore, it is assumed that the rescheduling contains only
one new part or multiple new parts with a given entering sequence. All these may reduce the
complexity, but the flexibility of the scheduled parts vanishes at the same time. To overcome
this, researchers have also investigated the schedules where all hoist moves scheduled in the
initial schedule but not executed yet can be rescheduled.

Lamothe et al. (1994) demonstrated that allowing the previously scheduled but not yet
started hoist moves to be rescheduled may yield higher throughput but at the cost of extra
computational efforts. They introduced a branch-and-bound algorithm and showed that it
can deal with multiple new parts. To further improve the performance, Lamothe, Correge,
and Delmas (1995) proposed an improved branch-and-bound algorithm, which integrates a
solution quality checking procedure and a dynamic backtracking strategy (Ginsberg, 1993).
Furthermore, the information of initial schedules is used in the rescheduling procedure
whenever possible. A simulation on the benchmark instance given by Phillips and Unger
(1976) showed a better computational performance.

Lamothe, Thierry, and Delmas (1996) extended the above work to a multi-hoist scheduling
problem by taking into consideration the possible hoist collisions. Fargier and Lamothe (2001)
studied a similar problem, but the required processing times are treated as soft constraints
which can be violated. The quality of parts, which is measured by their actual processing
times, is represented by fuzzy numbers. A bi-criteria problem that optimizes both part quality
and makespan is solved by dealing with a series of classic hoist scheduling problems.

Kujawski and Swiatek (2011) proposed a decomposition algorithm called cyclogram
unfold method. The parts are first divided into groups according to their types. Then, the
original problem is decomposed into several independent problems, and each of them handles
a single group of parts and is solved by adapting existing cyclic schedules. Finally, the
obtained schedules are combined together to create a final schedule. On the one hand, the
method is fast as it relies on the cyclic schedules calculated in advance. On the other hand, the
performance of the method closely relies upon the quality of these cyclic schedules.

2.3.3.4 Extended lines and multiple new parts

The above works mainly considered basic lines without multi-function tanks or multi-capacity
tanks. Furthermore, most of them consider only one new part in the rescheduling procedure.
That is to say, it is assumed that only one new part is involved in the rescheduling at a time,
either in the case a new part arrives at the input station only after another has left, or multiple
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parts simultaneously arrive at the input station but their entering sequence is known in advance.
Zhao et al. (2013b) developed an MILP model to deal with a general problem with multiple
new parts and multi-capacity tanks. This problem is more complicated because it has to
simultaneously determine the entering sequence of the parts as well as the start times of
hoist moves. However, there are several flaws in this model. Firstly, the model involves a
large number of variables and constraints even for small-sized instances. Secondly, it may
identify feasible schedule as infeasible or lead to suboptimal solutions or infeasibility due to
its flawed formulation of some constraints. Tian, Che, and Feng (2013) reformulated some
constraints of the model, which significantly reduces the number of constraints and variables
and consequently improves the computational performance. However, the flaws that may lead
to suboptimal solutions or infeasibility were not addressed.

The above studies on non-cyclic hoist scheduling are summarized in Table 2.4.

Table 2.4: Studies on non-cyclic HSPs

Main features #H Method Reference

PHSP 1 Heuristic Song et al. (1993)
PHSP, Variable traveling times 1 Meta-heuristic Fleury et al. (2001)
PHSP 1 Genetic algorithm Zhang et al. (2012)
PHSP 1 Heuristics Zhang et al. (2014)
PHSP 1 Meta-heuristics Bloch et al. (1996)
RHSP 1 Heuristics Thesen and Lei (1986, 1990)
RHSP 1 Heuristics Sun et al. (1994)
RHSP, Re-entrant, Multi-capacity N Knowledge system Mak et al. (2002)
RHSP N Multi-agent system Jegou et al. (2006)
RHSP N Heuristics Goujon et al. (1996)
DHSP, Fixed start times of moves 1 Heuristics Yih and Yin (1992)
DHSP, Fixed sequence of moves 1 Heuristics Yih (1994)
DHSP, Fixed sequence of moves 1/N Heuristics Ge and Yih (1995)
DHSP, Fixed sequence of moves 1 Heuristics Cheng and Smith (1997)
DHSP, Fixed sequence of moves 1 Heuristics Hindi and Fleszar (2004)
DHSP, Fixed sequence of moves 1 Heuristics, MILP Zhou and Li (2002)
DHSP, Fixed sequence of moves 1 Heuristics Chauvet et al. (2000)
DHSP, Fixed sequence of moves 1 Heuristics Paul et al. (2007)
DHSP, Fixed sequence of moves 1 Branch-and-bound Yan et al. (2014)
DHSP 1 Branch-and-bound Lamothe et al. (1994)
DHSP 1 Branch-and-bound Lamothe et al. (1995)
DHSP N Branch-and-bound Lamothe et al. (1996)
DHSP N Heuristics Kujawski and Swiatek (2011)
DHSP, Multi-capacity 1 MILP Zhao et al. (2013b)
DHSP, Multi-capacity 1 MILP Tian et al. (2013)



28 Chapter 2. Problem Description and State of the Art

2.4 Hoist scheduling with zero-width time-windows

Due to the NP-hardness introduced by time-window constraints, the hoist scheduling with
fixed processing times has also been studied in the literature. It can be seen as a special
case of a time-window for which the lower bound is exactly equal to the upper bound, i.e., a
zero-width time-window. Such problems are also called no-wait scheduling problems in the
literature. The effort made for these problems mainly focuses on complexity issues.

2.4.1 Simple cyclic schedules

For simple cyclic schedules, Kats and Mikhailetskii (1980) studied the problem with a single
hoist to minimize the cycle time, and suggested an algorithm of time complexity O

(
m6) ,

where m stands for the number of tanks in the line. Kats and Levner (1997a) considered the
same problem and proposed an algorithm of time complexity O

(
m4) . They also demonstrated

that the time complexity for its re-entrant version is O
(
m5) . An improved algorithm of time

complexity O
(
m3 log m

)
was proposed by Levner et al. (1997).

2.4.2 Multi-degree schedules

As for multi-degree schedules, researchers have also developed various algorithms. Levner,
Kats, and Sriskandarajah (1996) proposed a geometric algorithm for solving a 2-degree cyclic
scheduling problem. The authors did not assess the computational complexity, but conjectured
that the algorithm is polynomial. The geometrical scheme was further enhanced by Kats and
Levner (2006), and an improved algorithm of complexity O

(
m5 log m

)
was developed. Che,

Chu, and Levner (2003) proposed a polynomial algorithm of complexity O
(
m8 log m

)
for the

problem, and demonstrated that the algorithm can be directly used for the situation where the
two parts introduced during a cycle are of different types. Chu (2006) improved the above
work and presented a faster algorithm of time complexity O

(
m5 log m

)
. Kats and Levner

(2009) showed that the complexity for the general non-Euclidean case remained open, and
presented an algorithm of time complexity O

(
m5 log m

)
by adapting the geometrical scheme

suggested by Levner et al. (1996).
The above works all considered 2 - degree cyclic scheduling. A general multi-degree

cyclic schedule can involve more than two parts in a cycle. For such a problem, Song et al.
(1993) developed an MILP model for maximizing the production rate of a given number
of parts. They suggested a heuristic procedure based on the EST heuristic. The obtained
schedule may be a simple cyclic one or a multi-degree one depending on specific instances.
They also proposed two modifications to improve the obtained schedules by considering hoist
traveling times when determining the earliest start times and performing a local search. Kats
et al. (1999) studied the multi-degree cyclic scheduling with integer input data. The problem
is transformed into a linear program based on the prohibited intervals method. To obtain an
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optimal schedule, a sieve method is proposed to search over all possible integer values of its
cycle time. The complexity of the algorithm is O(rm3ur), where r is the degree of cyclic
schedules, u is the number of integer values tested in the solution procedure. For the general
multi-degree cyclic scheduling, Che, Chu, and Chu (2002) proposed different algorithms and
showed that the complexity is O

(
r4(m3/r)2+r(r−1)/2

)
if m > r and O

(
r4mr(r−1)+4

)
if m ≤ r,

where m is the number of tanks and r is the degree of the considered schedule.

2.4.3 Jobshop scheduling

For the above works, all parts to be processed are identical. If multiple part-types are involved,
the problem become more complicated due to similar reasons for problems with general
processing time-windows. Thus only a few works have addressed such problems. Agnetis
(2000) investigated a two- or three-tank system with different part-types and proposed an
algorithm of complexity O(m log m), where m is the number of parts. Che, Yan, Yang, and
Chu (2010) studied a more general problem with more tanks. A branch-and-bound algorithm
is proposed with a complexity of O

(
r10(m3/r)2+r(r−1)/2

)
if r ≤ m and O

(
r10m4+r(r−1)

)
if

r > m. That is, the algorithm is polynomial in the number of tanks for a given value of r , but
exponential if it is arbitrary.

2.4.4 Extended lines

There are also works on cyclic hoist scheduling in extended lines. Che and Chu (2005a) studied
such a problem with both multi-capacity tanks and multi-function tanks, and proposed an
algorithm of time complexity O

(
n6m

)
, where n and m are the number of stages and the number

of tanks, respectively. Che and Chu (2007a) proposed a faster algorithm for a special case of
the problem where a multi-function tank cannot be multi-capacity. The time complexity of
the algorithm is reduced to O

(
n3m log n

)
due to this restriction.

2.4.5 Multi-hoist schedules

As for cyclic multi-hoist scheduling, Kats and Levner (1997b) proposed an algorithm of
time complexity O

(
m5) for obtaining the minimum number of hoists required for all possible

cycle lengths. However, the hoists were assumed to be running on parallel tracks and no
collision-avoidance constraint was involved. Later, Kats and Levner (2002) extended their
previous work for basic line (Levner et al., 1997) to the multi-hoist case with parallel tracks,
where the tanks served by each hoist are known in advance. They proposed an algorithm
which aims to minimize the cycle time in O

(
m3 log m

)
time, where m is the number of tanks

as before.
Leung and Levner (2006) and Che and Chu (2008) proposed effective polynomial

algorithms with time complexity O
(
m5) and O

(
m6k

)
, respectively, for the problem with a

single track, where k is the number of hoists. In this case, the collisions between hoists should
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be considered, which make it much more complicated than with parallel tracks. Jiang and Liu
(2007) considered a more general problem where the tanks are not arranged in the same order
with the part processing sequence. A polynomial algorithm of time complexity O

(
m6k

)
is

developed, where m and k are the numbers of tanks and hoists, respectively. Che, Chabrol,
Gourgand, and Wang (2012) considered a similar problem with multi-function tanks. The
authors developed a polynomial algorithm for obtaining the minimum number of hoists for all
feasible values of cycle time in O

(
m5) time. Consequently, the optimal cycle time for a given

number of hoists can be obtained with the same complexity.

2.4.6 Multi-degree multi-hoist schedules

Researchers have also investigated multi-degree multi-hoist cyclic scheduling. Che and Chu
(2005b) addressed a multi-degree cyclic scheduling problem with two hoists running on parallel
tracks. They proposed an algorithm to minimize the cycle time. It was proved the complexity
of the algorithm is O

(
m3/r)r(r−1)/2(r5 + m)m6r

)
if r ≤ m and O

(
mr(r−1)+4r8

)
if r > m. The

work was generalized to the scenario with multiple hoists by Che and Chu (2009). They
showed that for a given degree r, the problem can be solved in O

(
(m6+3r(r−1)/2(m2 + r5)r3

)
time. As mentioned before, the assumption that multiple hoists are running on separated
parallel tracks simplifies the problem to some extent. Some pioneer works have attempted to
relax this assumption. Che, Hu, Chabrol, and Gourgand (2011a) studied 2-degree multi-hoist
cyclic scheduling where the hoists are running on a single track. They proved that the problem
is solvable in O

(
m7) time.

The above works on hoist scheduling with zero-width time-windows are summarized in
Table 2.5.

2.5 Summary

In the previous sections, we first introduced hoist scheduling problems under various settings
and then reviewed the studies on cyclic and non-cyclic hoist scheduling problems. As a
special case of time-window constraints, the studies on hoist scheduling problems with fixed
processing times were also surveyed. It can be seen that hoist scheduling problems has been
widely studied in the literature. However, there are still a lot of works to do in this field,
especially in the formulation and optimization of HSPs with complex configurations. Based
on this overview, we make the following observations:

(1). The cyclic single-hoist scheduling problems have received extensive attention from
researchers. Diverse formulations and algorithms have been developed for these problems.
Most of the studies deal with basic lines or extended lines with one more feature such
as multi-degree schedules, multiple part-types, multi-function tanks and multi-capacity
tanks. In particular, multi-degree schedules or multiple part-types are usually considered
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Table 2.5: Studies on the HSPs with fixed processing times

Main Features #D #PT #H Complexity Reference

1 1 O
(
m6) Kats and Mikhailetskii (1980)

1 1 O
(
m4) Kats and Levner (1997a)

Multi-function 1 1 1 O
(
m5) Kats and Levner (1997a)

1 1 O
(
m3 log m

)
Levner et al. (1997)

Non-Euclidean 2 1 1 Geometric algorithm Levner et al. (1996)
2 1 O

(
m5 log m

)
Kats and Levner (2006)

2 1, 2 O
(
m8 log m

)
Che et al. (2003)

2 1 O
(
m5 log m

)
Chu (2006)

Non-Euclidean 2 1 1 O
(
m4 log m

)
Kats and Levner (2009)

1 N Heuristic Song et al. (1993)
Integer Solution N 1 1 O

(
rm3ur

)
Kats et al. (1999)

m > r N 1 1 O
(
r4(m3/r)2+r(r−1)/2) Che et al. (2002)

m ≤ r N 1 1 O
(
r4m4+r(r−1)) Che et al. (2002)

2- and 3 tanks N N 1 O(m log m) Agnetis (2000)
r ≤ m N N 1 O

(
r10(m3/r)2+r(r−1)/2)) Che et al. (2010)

r > m N N 1 O
(
r10mr(r−1)+4) Che et al. (2010)

Multi-function 1 1 1 O
(
m6n

)
Che and Chu (2005a)

Multi-capacity
Multi-function 1 1 1 O

(
n3m log n

)
Che and Chu (2007a)

Multi-capacity
Parallel tracks 1 1 N O

(
m5) Kats and Levner (1997b)

Parallel tracks 1 1 N O
(
m3 log m

)
Kats and Levner (2002)

Single-track 1 1 N O
(
m5) Leung and Levner (2006)

Single-track 1 1 N O
(
m6k

)
Che and Chu (2008)

Bidirectional 1 1 N O
(
m6k

)
Jiang and Liu (2007)

Multi-function 1 1 N O
(
m5) Che et al. (2012)

Parallel track, r ≤ n N 1 2 O
(
(m3/r)r(r−1)/2(r5 + m)m6r

)
Che and Chu (2005b)

Parallel track, r > n N 1 2 O
(
mr(r−1)+4r8) Che and Chu (2005b)

Parallel track N 1 N O
(
(m6+3r(r−1)/2(m2 + r5)r3) Che and Chu (2009)

Single track 2 1 N O
(
m7) Che et al. (2011a)

in basic lines. The research on cyclic scheduling that combine several features needs
more investigation.

(2). The work on multi-hoist scheduling, especially in lines with bidirectional part processing
routes has not received much attention. Few works have been done on multi-hoist
scheduling in extended lines with multi-function tanks and multi-capacity tanks. It is
known that the problems become more challenging when multi-degree schedules and
multiple part-types are simultaneously considered. It usually needs more attention on the
collision-avoidance constraints for hoists running on a single track.

(3). Most of the works study problems with fixed parameters without considering random
events that can alter these parameters. The schedules obtained without considering the
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variations or disturbances caused by random events may not effectively be implemented
in practice. Defective parts and deadlocks may occur due to random events that can
disrupt the schedule.

(4). Hoist scheduling with multiple part-types in extended lines with multi-function tanks and
multi-capacity tanks has not received much attention under either cyclic or non-cyclic
settings. The only existing model involves some flaws which will be analyzed and
reformulated in this study.

This thesis mainly addresses the last two points. It aims to develop mathematical models for
several hoist scheduling problems so that the throughput is maximized while all constraints are
respected. In particular, we will address the following problems: formulation and optimization
for robust cyclic hoist scheduling that considers delays in hoist traveling operations, formulation
and optimization of hoist scheduling in extended lines with multi-function multi-capacity
tanks, whether in cyclic or non-cyclic mode.
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3.1 Introduction

As mentioned above, cyclic hoist scheduling is usually used in mass production due to its
ease of management and implementation. In this situation, an optimal cyclic hoist schedule
is computed in advance according to the deterministic parameters such as the required
processing time-windows at all stages and the hoist transportation times. Then, the hoist is

33
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programmed to perform the obtained cyclic schedule repeatedly without any disruption until
the demand is satisfied. However, in real industrial environments, the hoist transportation
times between tanks and stations are subject to variations due to diverse random events, such
as variations in part weights, failures of unloading, material-handling engine problems and
communication-delay between control system and hoists (Fleury et al., 2001). In a cyclic
operating mode, the schedule is usually more compact than that in a non-cyclic mode (Brucker,
Burke, & Groenemeyer, 2012). Thus under a cyclic operating mode, any such variations can
cause the hoist to be behind schedule. The consequences may be serious because it influences
the processing of parts not only in the current cycle but also in the subsequent ones. In this
case, some final parts may be defective due to violations of processing time-windows, or more
seriously, deadlocks may occur.

To the best of our knowledge, Fleury et al. (2001) is the first study to investigate variations
of hoist traveling times and proposed a stochastic meta-heuristic framework to determine a
non-cyclic hoist schedule, for which the consequences of the variations on the makespan and
the violation of the time-windows are minimized. However, defective parts may be produced
because of violations of processing time requirements. Different from their work, we study a
hoist scheduling problem subject to variations in the hoist transportation times from a robust
perspective. That is, we try to generate a cyclic hoist schedule that is “robust” within certain
extent of variations in the hoist transportation times. In other words, as long as the hoist
transportation times vary within some range due to random events, the generated robust cyclic
hoist schedule can still be implemented without altering its corresponding cycle time and
without violating the processing time-windows. Thus no part will be defective.

In the literature, the robustness of a schedule is usually defined as its ability to perform
well under dynamic and uncertain operational environments (Dooley & Mahmoodi, 1992;
Billaut, Moukrim, & Sanlaville, 2010). Two types of robustness are usually considered in
the literature: solution robustness and quality robustness (Herroelen & Leus, 2004; Sevaux
& Sörensen, 2004; Van de Vonder, Demeulemeester, Herroelen, & Leus, 2005; Briskorn,
Leung, & Pinedo, 2011). Solution robustness is measured in terms of the deviation between
the planned and actual start times of operations, while quality robustness is measured in terms
of the deviation of the criteria (e.g. makespan, flow time, and customer service level) between
the planned and realized schedules (Van de Vonder et al., 2005). Most studies in the literature
considered the quality robustness, such as the deviation of makespan between the planned
schedules and the realized ones (Storer, Wu, & Vaccari, 1992; Rahmani & Heydari, 2013;
Xiong, Xing, & Chen, 2013), the deviation of flow time (Lu, Lin, & Ying, 2012) or customer
service level (Ranjbar, Davari, & Leus, 2012). Al-Hinai and ElMekkawy (2011) considered
three measures of solution robustness: (1) the average deviation between the completion times
of predicted and realized operations, (2) the total deviation between the completion times
of predicted and realized operations, and (3) the average deviation between the completion
times of affected predicted operations and the affected realized ones. In other studies, both the
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solution robustness and quality robustness are addressed (Wu, Storer, & Chang, 1993; LEON,
WU, & STORER, 1994; Rangsaritratsamee, Ferrell Jr, & Kurz, 2004).

The above works related to robust scheduling consider the robustness in production systems
without material handling devices. To the best of our knowledge, no work in the literature has
addressed robust optimization for cyclic hoist scheduling problems. In this chapter, we deal
with the robust optimization for a cyclic hoist scheduling problem. The work presented in
this Chapter contributes to the area in the following aspects. Firstly, we propose a method to
measure the robustness of a cyclic hoist schedule in terms of free slacks in hoist transportation.
Secondly, a bi-objective MILP model is proposed for the problem, which aims to optimize the
cycle time and the robustness. Thirdly, it is proved that the optimal cycle time strictly increases
with the robustness, thus the problem has an infinite number of Pareto optimal solutions. The
so-called ideal and nadir points are derived to describe the lower and upper bounds for the
objective values of the Pareto front. A Pareto optimal solution can be obtained by solving
a single-objective problem to minimize the cycle time for a given value of robustness or to
maximize the robustness for a specific upper bound of the cycle time.

The remainder of this chapter is organized as follows. A formal problem description and
the notation are given in Section 3.2. In Section 3.3, the measurement of the robustness for
a given cyclic hoist schedule is defined. Section 3.4 is devoted to the formulation of the
bi-objective MILP model. In Section 3.5, the proposed model is analyzed and discussed. In
Section 3.6, computational experiments on benchmark instances and randomly generated
instances are executed to evaluate the proposed approach. Finally, the work is concluded in
Section 3.7.

3.2 Problem description and notation

The production line studied is physically similar to those widely studied in the literature (Che
& Chu, 2007b; Chen et al., 1998; Leung et al., 2004; Liu et al., 2002; Phillips & Unger, 1976;
Shapiro & Nuttle, 1988) and called a basic line in the literature and the previous chapters.
Similar problem description can be found in these works. For the sake of self-consistency, we
recall this description and the notation used throughout the chapter, which are similar to those
in the literature. This production line is a basic line composed of a single computer-controlled
hoist and W +2 tanks. The tanks are arranged in a line according to the processing routine, and
are denoted by M0, M1, . . ., MW+1 from left to right, where the input station and the output
station are respectively indexed as M0 and MW+1. In some cases, the input station and output
station may be the same physical tank. All the parts to be processed are identical and waiting
at M0. The processing route of a part can be described as follows. The part is first moved
away by the hoist from M0, then is processed in M1, M2, . . ., MW successively and finally
loaded onto MW+1. The material handling operations between the tanks are carried out by the
hoist. M0 and MW+1 are assumed to be of unlimited capacity, while each tank can process at
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most one part at a time. There is no intermediate storage buffer between the tanks. After the
processing in a tank is completed, the part must be moved away and directly transported to the
next tank by the hoist. The hoist is not allowed to wait during the transportation. The actual
processing time of each part in tank Mi must be within its required time-window, which is
defined as a closed interval [Li,Ui], 1 ≤ i ≤ W . The hoist operation of transporting a part
from tank Mi to tank Mi+1 is called loaded move i, and denoted by Oi, 0 ≤ i ≤ W . The time
required to execute move Oi is Di, 0 ≤ i ≤ W . In contrast to a loaded move, the hoist operation
that travels from a tank to another without holding a part is called an empty move. The time
required for the empty move from tank Mi to tank Mj is Ei, j , 0 ≤ i, j ≤ W + 1. Furthermore,
it is assumed that the hoist traveling times satisfy the following triangular inequalities, as it is
generally the case in practice.

Ei,k + Ek, j ≥ Ei, j , for all 0 ≤ i, j, k ≤ W + 1 (3.1)

Di ≥ Ei,i+1, for all 0 ≤ i ≤ W (3.2)

In a cyclic schedule, the hoist repeatedly performs a fixed sequence of operations. Each
repetition of such a sequence of operations is called a cycle, and its duration is called cycle
time and denoted as T . A cyclic hoist schedule can be defined by a sequence of loaded moves
and their associated start times in a cycle. Hence, a cyclic hoist schedule can be represented
by (T, s[0], s[1], . . . , s[W]), where [i] is the index of the ith loaded move that the hoist performs
during a cycle and s[i] is its start time, 0 ≤ i ≤ W . For instance, [2] = 3 means that the
second loaded move executed by the hoist within a cycle is move O3, i.e., the move that
transports a part from tank M3 to tank M4. Note that each loaded move is followed by an
empty move in a cyclic hoist schedule. After loading a part into some tank, the hoist will
travel to the tank at which the next loaded move will start. If the hoist just waits until the
completion of the processing after loading a part into a tank, the associated empty move can
be treated as a dummy move. To simplify the expression, the empty move immediately follows
loaded move Oi is called empty move i, and denoted by Gi hereafter. Thus, for schedule
(T, s[0], s[1], . . . , s[W]), the hoist first performs loaded move O[0], then empty move G[0], loaded
move O[1], . . ., loaded move O[W] and empty move G[W] within a cycle.

In general, a cyclic schedule is obtained off-line with given deterministic data and then
implemented. During the execution of the schedule, inevitable random events may lead to
delays in the hoist transportation times, which may further cause a deadlock or defective parts
due to violations of processing time-windows. It can seriously degrade the performance of
the production line. To deal with this problem, it is desirable to obtain a robust schedule that
is able to remain stable in the presence of variations in the hoist transportation times.

With the problem described above, it is preferable to obtain a cyclic hoist schedule that
optimizes both the cycle time and the robustness with respect to all related constraints. To this
end, a bi-objective MILP model is developed to optimize the cycle time and the robustness
simultaneously. The developed bi-objective model will serve as a framework to minimize the
cycle time for a given value of robustness, as done in this chapter, or maximize the robustness
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for a specific cycle time according to the preference of a decision-maker. We also show that
the obtained solutions are Pareto optimal in both cases. Before proceeding, the measurement
of the robustness for a given cyclic hoist schedule is defined and analyzed.

3.3 Measuring the robustness for a cyclic hoist schedule

In this study, the robustness of a given cyclic hoist schedule is defined as the schedule’s ability
to remain stable in the presence of a certain degree of delays in the hoist transportation times.
With this definition, the robustness of a given planned cyclic hoist schedule (referred to as
the initial schedule) can be measured as the free slacks in the transportation times of loaded
and empty moves within which the initial hoist schedule can still be implemented without
altering its corresponding cycle time and without violating the processing time-windows. As
the delays occurred during loaded moves and that occurred during empty moves influence the
hoist schedule in different ways, we will separately consider their influences on a given cyclic
hoist schedule (T, s[0], s[1], . . . , s[W]) in the following analysis.

We first consider the delay occurred during an empty move and analyze its influence
on the cyclic hoist schedule. Note that tanks M[i] and M[i]+1 are the departure tank and the
destination tank of move O[i], respectively. After executing loaded move O[i], the hoist will
perform empty move G[i] by traveling from tank M[i]+1 to tank M[i+1]. If empty move G[i] is
delayed, it may affect the start time of its subsequent move, i.e., loaded move O[i+1]. We define
the free slack q̄[i] as the amount of time that empty move G[i] can delay without affecting the
start of move O[i+1]. That is to say, as long as the time required for executing empty move G[i]

is not more than E[i]+1,[i+1] + q̄[i] (i.e. with a delay not more than q̄[i]), loaded move O[i+1]

can still start at its expected time s[i+1] and consequently, the initial hoist schedule can still be
continued without any change. In what follows, we derive the free slack q̄[i] for each empty
move G[i] of a given cyclic hoist schedule (T, s[0], s[1], . . . , s[W]).

Note that if no random event occurs, the hoist will arrive at tank M[i+1] at time s[i] +

D[i] + E[i]+1,[i+1] upon the completion of move O[i]. To guarantee that loaded move O[i+1]

can be executed at its expected time, i.e., s[i+1], the free slack for empty move G[i] is
s[i+1] − (s[i] + D[i] + E[i]+1,[i+1]). Hence, we have:

q̄[i] = s[i+1] − s[i] − D[i] − E[i]+1,[i+1], for all 0 ≤ i ≤ W − 1 (3.3)

It is worth noting that if s[i+1] = s[i] + D[i] + E[i]+1,[i+1] for some empty move G[i], the
associated q̄[i] would be zero. That is, no delay is allowed for empty move G[i]. In particular,
after loaded move O[W], the last in a cycle, is completed, the hoist must have sufficient time to
travel back to M[0] to execute the first loaded move of the next cycle. Hence, we have:

q̄[W] = T −
(
s[W] + D[W] + E[W]+1,[0]

)
(3.4)

Now, we consider the delay during a loaded move and analyze its influence on the cyclic
hoist schedule. If the hoist spends more time than scheduled to perform loaded move O[i] due
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to random events, the hoist would arrive at tank M[i]+1 later than expected. On the one hand,
the delay will affect the processing time of the part in tank M[i]+1 by delaying the start time of
its processing. On the other hand, it can also affect the start time of loaded move O[i+1] by
delaying the start time of empty move G[i], which can further affect the actual processing time
in tank M[i+1]. To handle this case, we define free slack p̄[i] as the amount of time that loaded
move O[i] can vary without violating the processing time-window in tank M[i]+1 and without
delaying the start of move O[i+1].

For a given hoist schedule (T, s[0], s[1], . . . , s[W]), we first derive the free slack for loaded
move O[i] without violating the processing time-window in tank M[i]+1. If no random event
occurs, a part will arrive at tank M[i]+1 at time s[i]+D[i] and departs from the tank at time s[i]+1.
Hence, the actual processing time of the part in tank M[i]+1 is s[i]+1− s[i]−D[i] if move O[i]+1 is
executed after move O[i] within a cycle; and the actual processing time is T + s[i]+1 − s[i] − D[i]

otherwise. To guarantee the actual processing time in tank M[i]+1 is within its required
time-window [L[i]+1,U[i]+1], the free slack for loaded move O[i] is s[i]+1 − s[i] − D[i] − L[i]+1

in the first case and it is T + s[i]+1 − s[i] − D[i] − L[i]+1 in the second.
For a given hoist schedule (T, s[0], s[1], . . . , s[W]), we now derive the free slack for loaded

move O[i] without delaying the start of loaded move O[i+1]. Note that in case of no random
event, upon the completion of move O[i], the hoist will arrive at tank M[i+1] at time instant
s[i] + D[i] + E[i]+1,[i+1]. To guarantee move O[i+1] can be executed at its expected time s[i+1],
the free slack for loaded move O[i] is s[i+1] − s[i] − D[i] − E[i]+1,[i+1]. From the above analysis,
we have:

p̄[i] = min
(
s[i]+1 − s[i] − D[i] − L[i]+1, q̄[i]

)
, ∀0 ≤ [i] ≤ W − 1, s[i]+1 > s[i]. (3.5)

p̄[i] = min
(
T + s[i]+1 − s[i] − D[i] − L[i]+1, q̄[i]

)
, ∀0 ≤ [i] ≤ W − 1, s[i]+1 < s[i]. (3.6)

p̄W = q̄W . (3.7)

According to the definition, the robustness of a given cyclic hoist schedule (the initial
schedule) must be less than or equal to the minimum free slack time among all loaded and
empty moves. If the delay does not exceed the robustness, the initial hoist schedule can still
be executed without altering its associated cycle time and without violating the processing
time-window in any tank. Note that p̄[i] ≤ q̄[i] always holds according to equalities (3.5)–(3.7).
Thus the robustness of a given hoist schedule, which is denoted by R, can be formulated as:

R = min
1≤i≤W

{
p̄[i], q̄[i]

}
= min

1≤i≤W

{
p̄[i]

}
(3.8)

Note that the robustness considered in this study can be seen as both solution robustness
and quality robustness. That is, both the start times for all loaded and empty moves and the
cycle time of the schedule will remain unchanged as long as the delay does not exceed the
robustness. With the above definition, every loaded move O[i], (resp. every empty move G[i])
can be delayed with up to p̄[i] (resp. q̄[i]) time units while the initial hoist schedule can still
be executed without altering its associated cycle time and without violating the processing
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time-windows. However, it should be noted that the delay in a loaded hoist move and that
in its subsequent empty hoist move are not independent. From the above analysis, if both
loaded move O[i] and empty move G[i] are delayed, their delays cannot exceed p̄[i] and q̄[i],
respectively. Furthermore, the sum of their delays should not exceed the value of q̄[i] to
guarantee the initial hoist schedule can be implemented as planned.

Table 3.1: Time-windows and move times for the example

Tank M0 M1 M2 M3 M4

Li (s) – 60 30 20 30
Ui (s) – 90 60 40 49
Di (s) 12 15 17 10 13

We now use an example to illustrate the concept of robustness. Figure 3.1 shows a cyclic
hoist schedule for an electroplating line with four processing tanks. In the figure, M0 and
M5 are the input and output stations, respectively. The empty move times are estimated as
Ei, j = E j,i = |i − j |/0.4 s, for all 0 ≤ i, j ≤ 5. The other parameters for the example are given
in Table 3.1.
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Figure 3.1: A robust cyclic hoist schedule for the example

The cyclic hoist schedule depicted in Figure 3.1 can be represented by (T = 121, s0 = 0,
s2 = 15.5, s3 = 53.5, s1 = 73, s4 = 94.5). Thus we can have: [0] = 0, [1] = 2, [2] = 3,
[3] = 1 and [4] = 4. That is, the hoist successively performs loaded move O0, empty move
G0, loaded move O2, empty move G2, loaded move O3, empty move G3, loaded move O1,
empty move G1, loaded move O4, and empty move G4. Note that empty move G2 is a dummy
move as the hoist just waits at the tank for the completion of the processing after releasing a
part into tank M3.

With equations (3.3) and (3.4), we can obtain the free slack for each empty move as follows:
q̄0 = 1s, q̄1 = 1.5s, q̄2 = 21s, q̄3 = 2 s, q̄4 = 1s. With equations (3.5)–(3.7), we can also
obtain the free slack for each loaded move as follows: p̄0 = 1s, p̄1 = 1.5s, p̄2 = 1s, p̄3 = 1s,
p̄4 = 1s. It can be seen from formula (3.8) that the robustness of the schedule is R = 1s. This
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means that as long as the delay in any loaded move or empty move does not exceed 1s, the
initial hoist schedule can still be executed without any modification. To illustrate this point,
we take loaded move O0 as an example. If O0 is executed as scheduled, it will complete at
time instant 12s, as illustrated in Figure 3.1. In this case, the actual processing time of the
part in tank M1 is (73 − 12) = 61s. Upon completion of O0, the hoist travels to tank M2 and
arrives at the tank at time 14.5s in order to execute move O3 at time instant 15.5s. Suppose
that O0 is delayed by 1s. In this case, the hoist will complete loaded move O0 at time instant
13s. Thus the actual processing time of the part in tank M1 becomes (73 − 13) = 60s, which
is still within its required time-window [60, 90]. Furthermore, due to this delay, the hoist will
depart from tank M1 at time instant 13s, instead of 12s as scheduled. As a result, it will arrive
at tank M2 at time 15.5s. As move O2 starts at time 15.5s, the initial schedule can still be
executed without any modification.

3.4 Problem formulation

Let pi and qi be actual delays in the execution of loaded move Oi and empty move Gi,
respectively. To formulate the model, we define the following binary variables.

yi, j : binary variables. yi, j = 1 if move O j is executed after move Oi within a cycle;
otherwise, yi, j = 0, for all 1 ≤ i ≤ j ≤ W .

The considered cyclic hoist scheduling problem can be formulated as the following MILP
model whose constraints will be explained in detail later.
P:

Minimize T (3.9)

Maximize R (3.10)

subject to:
Processing time-window constraints considering robustness:

s1 − D0 ≥ L1 + p0. (3.11)

s1 − D0 ≤ U1. (3.12)

si − si−1 − Di−1 ≥ Li + pi−1 − M
(
1 − yi−1,i

)
, ∀2 ≤ i ≤ W . (3.13)

si − si−1 − Di−1 ≤ Ui + M
(
1 − yi−1,i

)
, ∀2 ≤ i ≤ W . (3.14)

T + si − si−1 − Di−1 ≥ Li + pi−1 − Myi−1,i, ∀2 ≤ i ≤ W . (3.15)

T + si − si−1 − Di−1 ≤ Ui + Myi−1,i, ∀2 ≤ i ≤ W . (3.16)

Hoist capacity constraints considering robustness:

s0 = 0. (3.17)

si ≥ D0 + E1,i + q0, ∀1 ≤ i ≤ W . (3.18)
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T ≥ si + Di + Ei+1,0 + qi, ∀1 ≤ i ≤ W . (3.19)

si + Di + Ei+1, j + qi ≤ s j + M
(
1 − yi, j

)
, ∀1 ≤ i ≤ j ≤ W . (3.20)

s j + D j + E j+1,i + q j ≤ si + Myi, j, ∀1 ≤ i ≤ j ≤ W . (3.21)

Other constraints:

pi ≤ qi, ∀0 ≤ i ≤ W . (3.22)

R ≤ pi, ∀0 ≤ i ≤ W . (3.23)

yi, j ∈ {0, 1} , ∀1 ≤ i ≤ j ≤ W . (3.24)

The processing time-window constraints are associated with each processing tank and
ensure the actual processing time of each part in each tank must fall into its prescribed
time-window. Violation of time-window constraints can cause defective parts. The processing
time-window constraints without considering robustness can be formulated as (3.25)–(3.30)
(Chen et al., 1998; Liu et al., 2002; Phillips & Unger, 1976).

s1 − D0 ≥ L1 (3.25)

s1 − D0 ≤ U1 (3.26)

si − si−1 − Di−1 ≥ Li − M
(
1 − yi−1,i

)
, ∀2 ≤ i ≤ W . (3.27)

si − si−1 − Di−1 ≤ Ui + M
(
1 − yi−1,i

)
, ∀2 ≤ i ≤ W . (3.28)

T + si − si−1 − Di−1 ≥ Li − Myi−1,i, ∀ ≤ i ≤ W . (3.29)

T + si − si−1 − Di−1 ≤ Ui + Myi−1,i, ∀ ≤ i ≤ W . (3.30)

If the execution of loaded move Oi−1 is delayed, it can affect the start time of the processing
in tank Mi, and consequently the actual processing time may violate the time-window
constraints, as explained in Section 3.3. To ensure the time-window for tank Mi be respected,
the delay in the execution of move Oi−1 must satisfy (3.31)–(3.33).

p0 ≤ s1 − D0 − L1. (3.31)

pi−1 ≤ si − si−1 − Di−1 − Li, ∀2 ≤ i ≤ W, if yi−1,i = 1. (3.32)

pi−1 ≤ T + si − si−1 − Di−1 − Li, ∀2 ≤ i ≤ W, if yi−1,i = 0. (3.33)

Constraints (3.31)–(3.33) can be derived from (3.5)–(3.7) and the fact that pi ≤ p̄i for all
0 ≤ i ≤ W . From (3.25)–(3.33), we can obtain the time-window constraints (3.11)–(3.16)
with robustness considered.

Hoist capacity constraints ensure that the hoist not be required to execute more than one
move at a time. Without loss of generality, loaded move O0 is assumed to be executed at the
start of a cycle. Since all the moves are executed by the hoist, hoist capacity constraints ensure
no conflict occurs in the use of the hoist between any pair of moves at any time. In particular,
any loaded move Oi, 1 ≤ i ≤ W , cannot start until loaded move O0 is completed. After the
last loaded move in a cycle is completed, the hoist must have sufficient time to travel back
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to M0 where it will execute the first loaded move of the subsequent cycle. The basic hoist
capacity constraints without considering robustness can be formulated as (3.34)–(3.38) (Chen
et al., 1998; Liu et al., 2002; Phillips & Unger, 1976).

s0 = 0. (3.34)

si + Di + Ei+1, j ≤ s j + M
(
1 − yi, j

)
, ∀1 ≤ i ≤ j ≤ W . (3.35)

s j + D j + E j+1,i ≤ si + Myi, j, ∀1 ≤ i ≤ j ≤ W . (3.36)

si ≥ D0 + E1,i, ∀1 ≤ i ≤ W . (3.37)

T ≥ si + Di + Ei+1,0, ∀1 ≤ i ≤ W . (3.38)

If the execution of an empty move is delayed, it may affect its subsequent loaded move. To
guarantee that the execution of the loaded move starts at expected time, the delay during the
empty move must satisfy:

q0 ≤ si − D0 − E1,i, ∀1 ≤ i ≤ W . (3.39)

qi ≤ s j − si − Di − Ei+1, j, ∀1 ≤ i ≤ j ≤ W, if yi, j = 1. (3.40)

qi ≤ si − s j − D j − E j+1,i, ∀1 ≤ i ≤ j ≤ W, if yi, j = 0. (3.41)

qi ≤ T −
(
si + Di + Ei+1,0

)
, ∀1 ≤ i ≤ W . (3.42)

Constraints (3.39)–(3.41) can be derived from constraints (3.1)–(3.3) and the fact that
q[i] ≤ q̄[i], 0 ≤ i ≤ W − 1, while constraint (3.42) can be derived from (3.1)–(3.4) and the fact
that q[W] ≤ q̄[W]. With constraints (3.34)–(3.42), we can obtain the hoist capacity constraints
(3.17)–(3.21) with robustness considered.

As explained above, both the delay for a loaded move and that for an empty move can affect
the hoist schedule, and these two types of delays are not independent. Thus we have inequality
(3.22) by considering constraints (3.5)–(3.7), while constraint (3.23) can be derived from (3.8)
and (3.23). Constraint (3.23), together with inequality (3.22), means that the robustness of a
cyclic hoist schedule is the minimum among all free slacks for loaded and empty moves. In
addition, formula (3.24) indicates the values of binary variables.

Note that the robustness of a cyclic hoist schedule is measured as the minimum value
among all free slacks for loaded and empty moves. We may define other measures of the
robustness. For example, the robustness can be defined as the total sum of all the free slacks.
In that case, it is sufficient to replace equation (3.23) with R =

∑W
i=0 (pi + qi) while the other

part of the model remains the same.

3.5 Analysis of the MILP model

As the schedule with a larger robustness may lead to a longer cycle time, the two objectives of
the proposed MILP model (i.e. cycle time and robustness) may be conflicting. To derive the
relation between them, we first define a new problem as follows.
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P(R0):
Minimize T

subject to:

R = R0 (3.43)

and constraints (3.11)–(3.24). Problem P(R0) aims to minimize the cycle time for a given
robustness R0. Let T∗(R0) be the optimal cycle time of P(R0). With the new defined problem,
we can have the following Proposition.

Proposition 3.1. The optimal cycle time of P(R0) strictly increases with R0, i.e. for any two
values R1 and R2, if R2 > R1, then T∗(R2) > T∗(R1) always holds.

Proof. We first show that if R2 > R1, then T∗(R2) ≥ T∗(R1) always holds. For any two
robustness values R1 and R2, if R2 > R1, then constraint (3.23) of problem P(R2) is tighter
than that of P(R1) while the other constraints of the two problems remain the same. Thus, the
optimal cycle time of P(R2) is greater than or equal to that of P(R1), i.e., T∗(R2) ≥ T∗(R1).
We now show that in this case, T∗(R2) = T∗(R1) is impossible by contradiction. Assume that
T∗(R2) = T∗(R1). Let δ = R2 − R1. Suppose that (T∗(R2), s[0], s[1], . . . , s[W]) is an optimal
cyclic hoist schedule for P(R2) with robustness R2. From this schedule, we can always
construct a new cyclic hoist schedule (T∗(R2)− δ, s[0]− δ, s[1]− δ, . . . , s[W]− δ) with robustness
R2 − δ. According to the constraints of P(R0) and the definition of robustness, we can verify
that the new hoist schedule (T∗(R2) − δ, s[0] − δ, s[1] − δ, . . . , s[W] − δ) satisfy all constraints
of P(R1), and it is a feasible schedule with robustness R2 − δ (i.e., R1). By assumption
T∗(R2) = T∗(R1), it means we would obtain a feasible cyclic hoist schedule whose cycle
time and robustness are T∗(R1) − δ and R1 respectively. This is in contradiction with the
fact that T∗(R1) is the optimal cycle time for all cyclic hoist schedules with robustness R1.
Hence, it is impossible to have T∗(R2) = T∗(R1) in this case. Consequently, if R2 > R1, then
T∗(R2) > T∗(R1) always holds. □

As R is a continuous (real) variable, we can have the following corollary.

Corollary 3.2. Problem P has infinite number of Pareto optimal solutions.

With Proposition 3.1 and Corollary 3.2, a Pareto optimal solution can be obtained by
solving a single-objective optimization problem to minimize the cycle time for a given value
of robustness or maximize the robustness for a specific cycle time. To derive the Pareto front,
it is important for a decision-maker to know the lower and upper bounds of the robustness and
the cycle time for a given instance. In what follows, we will deal with the problem of how to
obtain lower and upper bounds of the robustness for a given instance.

Let RL and RU be a lower bound and an upper bound of R, respectively. We give in
Proposition 3.3 an upper bound of R.
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Proposition 3.3. min
1≤i≤W

(Ui − Li) is a valid upper bound of R for any feasible cyclic hoist
schedule.

Proof. Given a feasible cyclic hoist schedule (T, s[0], s[1], . . . , s[W]), we first consider the case
that s[i] < s[i]+1, 1 ≤ [i] ≤ W . That is, move O[i]+1 is executed after move O[i] within a cycle,
0 ≤ [i] ≤ W − 1. By considering (3.5), we have the following equation:

p[i] ≤ s[i]+1 − s[i] − D[i] − L[i]+1, ∀0 ≤ [i] ≤ W − 1. (3.44)

Furthermore, the processing time in tank M[i]+1 must be less than or equal to its upper
bound U[i]+1 for a feasible schedule. Thus, we have:

s[i]+1 − s[i] − D[i] ≤ U[i]+1, ∀0 ≤ [i] ≤ W − 1. (3.45)

With inequalities (3.44) and (3.45), we must have:

p[i] ≤ U[i]+1 − L[i]+1, ∀0 ≤ [i] ≤ W − 1. (3.46)

In a similar way, we can show that (3.46) also holds for the case that s[i] > s[i]+1. It follows
from (3.23) and (3.46) that R ≤ min1≤i≤W (Ui − Li). Thus, the upper bound of R can be set as
RU = min1≤i≤W (Ui − Li). □

Corollary 3.4.
(
T∗(RU), RU )

is a Pareto optimal point in the objective space for problem P.

With Proposition 3.3 and Corollary 3.4, we can also know that RU is a tight upper bound
for R. We now derive a lower bound of R. First, let us consider the following standard
non-robust cyclic hoist scheduling problem:
P∗:

Minimize T

subject to constraints (3.24)–(3.30) and (3.34)–(3.38).
Let

(
T∗, s[0]∗, s[1]∗, . . . , s[W]∗

)
be an optimal cyclic schedule for P∗ and R∗ the robustness

of the schedule. We can have the following Proposition 3.5.

Proposition 3.5. R∗ = 0 holds for schedule
(
T∗, s∗

[0], s
∗
[1], . . . , s

∗
[W]

)
of P∗.

Proof. First, it is quite clear that R∗ ≥ 0. In the following, we demonstrate by con-
tradiction that R∗ > 0 is impossible. To this end, we assume that R∗ > 0. With a
similar way described in the proof of Proposition 3.1, we can obtain a new schedule(
T∗ − R∗, s∗

[0] − R∗, s∗
[1] − R∗, . . . , s∗

[W]
− R∗

)
. According to the constraints of P∗ and the defi-

nition of robustness, the obtained new schedule satisfies all constraints of P∗. This means that
there would exist a feasible schedule for problem P∗ with cycle time T∗ − R∗ < T∗, which is
in contradiction with the fact that T∗ is the optimal cycle time of P∗. Hence, the robustness of
the optimal schedules for P∗ must be zero, which also implies that zero is a tight lower bound
of R. □
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Corollary 3.6. (T∗, 0) is a Pareto optimal point in the objective space for problem P.

As mentioned above, a decision-maker may also want to maximize the robustness for a
specific cycle time. In this case, it is desirable to know the lower and upper bounds of the
cycle time for a given instance, which can be determined by the following proposition.

Proposition 3.7. It is sufficient to restrict the cycle time within the closed interval
[
T∗,T∗(RU)

]
in order to obtain the Pareto front of problem P.

Proof. First, it is obvious that the lower bound of the cycle time is T∗ since it is the minimum
cycle time obtained by solving the single-objective optimization problem P∗. Note that
T∗

(
RU )

is the minimum cycle time corresponding to robustness RU . As RU is an upper
bound of the robustness, any schedule whose cycle time is greater than T∗

(
RU )

must be
dominated by any schedule corresponding to

(
T∗

(
RU )
, RU )

. Thus, to obtain the Pareto front,
it is unnecessary to consider the values of the cycle time greater than T∗

(
RU )

. □

Figure 3.2: Illustration of the ideal and nadir points

Now we can define the so-called ideal point and nadir point in the objective space, which
define the lower and upper bounds for the objective function values of Pareto front. The ideal
point (objective vector) is composed of the optimal values for all objective functions when a
single objective is optimized. The nadir point (objective vector) represents the upper bound of
each objective function to be minimized or the lower bound of each objective to be maximized
in the Pareto front (not in the entire solution space). In other words, a nadir point and an ideal
point together define upper and lower bounds on the objective function values of Pareto front
(Branke, Deb, Miettinen, & Slowinski, 2008).

According to the above analysis, the ideal and nadir points of P are
(
T∗, RU )

and(
T∗

(
RU )
, 0

)
, respectively, as shown in Figure 3.2. In the figure, the region above the solid

curve is the feasible objective space. With Proposition 3.7, the Pareto front is located in the
shadow region of Figure 3.2.

Furthermore, we can obtain Proposition 3.8.
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Proposition 3.8. Problem P(R0) can be transformed into a standard non-robust cyclic hoist
scheduling problem (i.e., problem P∗) with a new loaded move times D′

i = Di + R0 for each
move Oi, 0 ≤ i ≤ W , and a new upper bound U′

i = Ui − R0 for the processing time in each
tank Mi, 1 ≤ i ≤ W .

Proof. With constraints (3.22) and (3.23), we can substitute all pi’s and qi’s with R0 in the
P(R0) without changing the feasible solution space. After this substitution, we can replace
all Di + R0 in constraints (3.11), (3.13), (3.15), and (3.18)–(3.21) with D′

i . Note that the
triangular inequalities still hold and these constraints with D′

i are equivalent to constraints
(3.25), (3.27), (3.29), and (3.35)–(3.38) of P∗ with new loaded move times D′

i .
We now consider constraints (3.12), (3.14) and (3.16). Take constraint (3.14) for example,

it is equivalent to the following inequality:

si − si−1 − (Di−1 + R0) ≤ Ui − R0 + M
(
1 − yi−1,i

)
, ∀2 ≤ i ≤ W . (3.47)

By substituting Di−1 + R0 and Ui − R0 in (3.47) with D′
i−1 and U′

i , respectively, (3.14) is
equivalent to (3.28) with new loaded move times D′

i and new upper bounds of processing
times U′

i . Similarly, we can show that (3.12) and (3.16) are equivalent to (3.26) and (3.30)
respectively with D′

i and U′
i . After the above transformation, problem P(R0) is equivalent

to a standard non-robust cyclic hoist scheduling problem that minimizes the cycle time T

subjecting to (3.25)–(3.30) and (3.34)–(3.38) with new loaded move times D′
i and new upper

bounds of processing times U′
i . □

With Proposition 3.8, problem P(R0), which aims to minimize the cycle time for a given
robustness R0, can be solved with any of existing various approaches for classical non-robust
cyclic hoist scheduling problems in the literature, such as Chen et al. (1998), Lim (1997), and
Yan et al. (2012). However, the proposed bi-objective MILP model is still valuable for the
following reasons. Firstly, in some circumstances, a decision-maker may want to maximize
the robustness for a specific cycle time. In that case, the proposed bi-objective MILP model
can be reduced to a single-objective MILP model that maximizes the robustness for a given
cycle time. Secondly, as mentioned above, the robustness may be defined in an alternative
way such as the sum of all the free slacks p̄[i] and q̄[i], 0 ≤ i ≤ W , in some situations. In these
cases, the corresponding problem can no longer be transformed into a standard non-robust
cyclic hoist scheduling problem in the same way. However, with the proposed bi-objective
MILP model, we can obtain the Pareto front of the problem with multi-objective optimization
approaches such as ε–constraint method (Kirlik & Sayın, 2014; Zhang & Reimann, 2014).

3.6 Computational results

In this section, we use six well-known benchmark instances as well as a set of randomly
generated instances to evaluate the proposed approach. The instances are solved by CPLEX
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(Version 12.5) via its C++ API. The default parameters setting of CPLEX is used for all
instances. The computation is done on a personal computer with a 3.1 GHZ CPU and 4.0 GB
RAM. Each instance is solved to guaranteed optimality.

3.6.1 Benchmark instances

The six benchmark instances are called Phillips, Ligne1, Ligne2, Bo1, Bo2 and Mini,
respectively. Their data can be obtained from Phillips and Unger (1976), Manier and Lamrous
(2008) and Leung et al. (2004). The computational results are given in Table 3.2. From the
table, we see that the theoretical upper bound of R ranges from 10 to 60 for these instances.
Note that this is a theoretical upper bound of R. In industrial applications, the data about the
variations in the hoist travel times can be obtained from historical data. The actual upper
bound of R is usually determined based on both its theoretical upper bound and instance data.
In our experiments, the actual upper bound of R is set as 10. We continually solved problem
P(R) for R = 0, 1, . . . , 10 and obtained 11 Pareto optimal solutions for each instance. With
Proposition 3.8, problem P(R) is solved by dealing with its corresponding standard non-robust
cyclic hoist scheduling problem (i.e., problem P∗) with D′

i = Di + R and U′
i = Ui − R.

Table 3.2: Cycle times for the benchmark instances

Instance Phillips Ligne1 Ligne2 Bo1 Bo2 Min

R = 0 521.00 392.00 712.00 281.90 279.30 287.00
R = 1 566.00 426.00 714.00 305.40 281.30 295.00
R = 2 576.00 436.00 716.00 335.00 325.00 303.00
R = 3 679.00 446.00 718.00 341.10 329.00 402.00
R = 4 690.00 456.00 720.00 356.90 337.00 407.00
R = 5 701.00 468.00 722.00 378.90 342.40 412.00
R = 6 712.00 494.00 724.00 384.90 364.40 417.00
R = 7 723.00 507.00 726.00 390.90 375.40 422.00
R = 8 734.00 523.00 749.00 406.70 386.40 427.00
R = 9 807.00 534.00 761.00 413.60 397.40 432.00

R = 10 816.00 545.00 773.00 423.00 408.40 437.00

Table 3.3: Computation times for the benchmark instances (in CPU seconds)

Instance Phillips Ligne1 Ligne2 Bo1 Bo2 Min

R = 0 0.289 0.321 0.227 0.240 0.192 0.149
R = 1 0.277 0.350 0.250 0.203 0.209 0.193
R = 2 0.232 0.273 0.191 0.259 0.266 0.135
R = 3 0.251 0.327 0.191 0.220 0.270 0.150
R = 4 0.250 0.386 0.200 0.219 0.280 0.147
R = 5 0.254 0.336 0.224 0.192 0.229 0.128
R = 6 0.250 0.279 0.281 0.217 0.267 0.137
R = 7 0.254 0.266 0.275 0.189 0.234 0.129
R = 8 0.188 0.263 0.261 0.204 0.233 0.167
R = 9 0.226 0.255 0.254 0.228 0.220 0.166

R = 10 0.220 0.201 0.264 0.171 0.222 0.145
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From Table 3.2, we can see the cycle time T increases with the robustness R which verifies
Proposition 3.1. Table 3.3 shows the computation times for the instances, and indicates that
these benchmark instances can be solved in very short time.

We now examine in detail how the cycle time varies when the robustness changes. For this
purpose, we uniformly divide the robustness interval [0, 10] with 1000 points; that is, there
is a step of size 0.01 between two adjacent points. Then, we solve a set of problems P(R)

for R = 0, 0.01, 0.02, . . . , 10 and obtain 1001 Pareto optimal solutions for each instance. The
objective values for the obtained Pareto optimal solutions are plotted in Figure 3.3, which
illustrates how the optimal cycle time changes as the value of R increases.
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Figure 3.3: Partial Pareto fronts for the benchmark instances

From Figure 3.3, it is interesting to see that the optimal cycle time T is a piecewise linear
increasing function of the robustness R. That is, the optimal cycle time increases linearly with
the robustness in some interval, and it increases discontinuously at some special points. This
phenomenon can be explained as follows.

To simplify the discussion, we analyze how the optimal cycle time for P∗ varies when
the robustness increases from R = 0 to R = δ, where δ is an arbitrarily small positive value.
As mentioned above, the cyclic hoist schedule

(
T∗, s∗

[0], s
∗
[1], . . . , s

∗
[W]

)
, whose robustness is

zero, is an optimal schedule of problem P∗. Let t∗
[1], t∗

[2], . . ., t∗
[W]

be its corresponding actual
processing times in tanks M[1], M[2], . . ., M[W], respectively.

We now consider the cyclic hoist scheduling problem with fixed processing times t∗
[1], t∗

[2],
. . ., t∗

[W]
. According to Levner et al. (1997), the optimal cycle time for the problem can be

formulated as a set of prohibited intervals of the cycle time as follows.

T < Q =
⎧⎪⎨⎪⎩(−∞, β) ∪

W−1⋃
j=0

W⋃
i= j+1

W⋃
k=1

(
Zi − Z j − D j − E j+1,i

k
,

Zi − Z j + Di + Ei+1, j

k

)⎫⎪⎬⎪⎭
where β = max1≤i≤W

(
t∗i + Di + Ei+1,i−1 + di−1

)
, Zi =

∑i
j=1

(
d j−1 + t∗j

)
, 1 ≤ i ≤ W .
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As demonstrated by Levner et al. (1997), Q is a union of open prohibited intervals which
are not necessarily disjoint. However, Q can be considered as a union of disjoint prohibited
intervals after merging the intersecting ones. With the above formulation, it can be proved that
the optimal cycle time T∗ is necessarily the upper bound of the first open disjoint prohibited
interval (Levner et al., 1997). Note also that the upper bound of any disjoint prohibited
interval, after merging, is necessarily an upper bound of one of the prohibited intervals before
merging. This means that the optimal cycle time satisfies:

T∗ ∈ {β} ∪

{
Zi − Z j + Di + Ei+1, j

k
, 0 ≤ j ≤ W − 1, j + 1 ≤ i ≤ W, 1 ≤ k ≤ W

}
Furthermore, we can also have:

β = max
1≤i≤W

(
t∗i + Di + Ei+1,i−1 + Di−1

)
= max

1≤i≤W

(
Zi − Zi−1 + Di + Ei+1,i−1

)
By combining the above sets, we have:

T∗ ∈

{
Zi − Z j + Di + Ei+1, j

k
, 0 ≤ j ≤ W − 1, j + 1 ≤ i ≤ W, 1 ≤ k ≤ W

}
Without loss of generality, we assume that T∗ =

(
Zi∗ − Z j∗ + Di∗ + Ei∗+1, j∗

)
/k∗ for some

i∗, j∗ and k∗, which is called the optimal upper bound hereafter. Note that the robustness of
schedule

(
T∗, s∗

[0], s
∗
[1], . . . , s

∗
[W]

)
is zero. There are two possible cases concerning the optimal

cycle time as the robustness increases from R = 0 to R = δ:

1. The optimal upper bound for R = 0 is still the optimal upper bound for R = δ.
This implies that t∗

[1], t∗
[1], . . ., t∗

[W]
are still the optimal processing times in tanks

M[1], M[2], . . ., M[W] for the problem with R = δ, respectively. Consequently, the
new optimal cycle time can be represented by T δ =

(
Zi∗ − Z j∗ + Di∗ + Ei∗+1, j∗

)
/k∗ +

(i∗ − j∗ + 1) δ/k∗ = T∗ + (i∗ − j∗ + 1) δ/k∗. As a result, the increase of the optimal
cycle time, i.e. (i∗ − j∗ + 1) δ/k∗, is a linear function of δ.

2. The optimal upper bound for R = 0 is no longer the optimal upper bound for R = δ. In
this case, the initial optimal cycle time falls in some prohibited intervals and becomes
infeasible when the robustness increases from R = 0 to R = δ. As a result, t∗

[1], t∗
[2], . . .,

t∗
[W]

are not necessarily the actual processing times in tanks M[1], M[2], . . ., M[W] for
R = δ, respectively. In this case, the optimal cycle time may suffer from a discontinuous
increasing when the robustness increases from R = 0 to R = δ.

3.6.2 Randomly generated instances

In addition, three sets of randomly generated instances are used to further test the proposed
approach. The instances are generated using integer uniform distributions. Let U(a, b) denote
the uniform distribution with lower bound a and upper bound b. The parameters used to generate
the first set of random instances are: Li = 40 + U(0, 140), Ui = [1.5Li], Ei,i+1 = 1 + U(0, 4),
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Table 3.4: Computational results for the randomly generated instances

W 12 14 16 18 20 22

Set 1 24.5 23.9 23.6 24.4 24.1 22.3
RU Set 2 49.5 48.3 47.6 49.2 48.5 45.1

Set 3 74.0 72.2 71.2 73.6 72.6 67.4
Set 1 365.20 451.80 579.70 704.30 945.10 1187.80

R = 0 Set 2 303.80 352.20 431.40 504.60 623.00 744.00
Set 3 285.90 328.30 431.40 446.90 538.50 614.20
Set 1 6.63 3.21 10.30 6.28 3.96 8.07

R = 1(%) Set 2 4.34 6.70 7.23 8.22 7.95 6.98
Set 3 5.00 5.39 7.23 5.24 5.66 6.09
Set 1 13.06 13.63 17.79 22.04 10.26 17.20

R = 2(%) Set 2 9.28 12.81 12.63 13.99 12.84 10.15
Set 3 9.86 11.12 12.63 11.10 12.05 10.73
Set 1 20.89 17.40 30.33 25.71 26.27 27.77

R = 3(%) Set 2 17.31 17.58 19.98 19.68 18.80 15.50
Set 3 14.94 16.24 19.98 18.42 17.38 17.29
Set 1 29.71 26.60 42.02 33.55 30.93 33.38

R = 4(%) Set 2 21.79 23.59 24.97 26.42 23.88 24.29
Set 3 20.22 22.81 24.97 25.15 22.92 24.68
Set 1 39.07 34.93 45.32 46.51 39.64 36.63

R = 5(%) Set 2 26.14 29.27 28.86 32.96 28.70 30.39
Set 3 26.09 28.45 28.86 31.01 27.58 30.58
Set 1 43.18 40.55 53.23 53.57 55.68 40.65

R = 6(%) Set 2 34.63 35.32 36.56 37.99 31.89 33.53
Set 3 31.20 33.32 36.56 36.90 33.13 36.75
Set 1 52.44 45.42 66.22 59.18 58.72 61.26

R = 7(%) Set 2 40.26 43.47 43.42 45.03 37.05 37.26
Set 3 36.03 39.26 43.42 43.68 40.07 43.88
Set 1 64.07 54.69 76.51 63.60 74.12 78.67

R = 8(%) Set 2 45.46 47.90 50.76 50.42 45.43 45.35
Set 3 41.97 46.36 50.76 50.57 46.89 48.75
Set 1 72.84 63.35 81.27 77.33 77.60 80.27

R = 9(%) Set 2 50.43 53.44 55.96 55.65 54.90 53.00
Set 3 46.76 50.99 55.96 55.99 53.20 53.13
Set 1 93.32 75.08 83.04 91.88 86.97 100.96

R = 10(%) Set 2 56.48 58.72 60.80 62.17 62.01 62.31
Set 3 52.99 56.38 60.80 61.58 58.01 58.27

Ei, j = E j,i =
∑ j−1

k=i Ek,k+1, Di = Ei,i+1 + 12, 0 ≤ i ≤ W , W ∈ {12, 14, 16, 18, 20, 22}, where
[x] represents the nearest integer of x. The parameters of the second and the third sets of
instances are identical to these for the first set, except that the upper bounds of time-windows
are set as Ui = 2Li and Ui = [2.5Li], respectively. The three sets of instances correspond to
different widths of time-windows. For each given value of W , ten instances are generated
according to the above method.

For the randomly generated instances, we also set the actual upper bound of R as 10. We
solve a set of problems P(R) successively for R = 0, 1, . . . , 10 and obtain 11 Pareto optimal
solutions for each instance. The computational results are summarized in Table 3.4. In the
table, the rows for R = 0 give the average cycle time over ten instances for each pair of
parameters W and R, while the rows for R = 1, 2, . . . , 10 are the average increasing ratio of
the optimal cycle time for R = 1, 2, . . . , 10 with respect to its corresponding cycle time for
R = 0, respectively.

We see from Table 3.4 that for each set of instances, the average cycle time increases with
robustness R due to Proposition 3.1. Furthermore, after a careful comparison of average
increasing ratio of the optimal cycle time of instances of set 2 (resp. set 3) with that of
set 1 (resp. set 2), we can see that the average increasing ratio of the cycle time shows a
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Table 3.5: Average computation times for the randomly generated instances

W 12 14 16 18 20 22

Set 1 0.279 0.488 0.740 1.100 0.964 1.011
R = 0 Set 2 0.569 2.329 5.593 21.380 17.297 34.864

Set 3 0.923 5.840 45.508 227.263 889.323 2638.370
Set 1 0.263 0.490 0.635 0.993 0.766 0.781

R = 1 Set 2 0.659 2.226 6.844 20.597 13.921 30.239
Set 3 1.186 5.889 51.150 340.654 679.715 1004.780
Set 1 0.283 0.431 0.587 0.862 0.667 0.767

R = 2 Set 2 0.739 2.282 8.418 18.174 10.757 17.011
Set 3 1.189 7.508 56.668 214.219 540.886 698.569
Set 1 0.259 0.381 0.573 0.734 0.635 0.707

R = 3 Set 2 0.642 2.306 5.149 14.952 8.645 15.196
Set 3 1.259 8.244 56.168 320.760 257.497 885.726
Set 1 0.239 0.346 0.543 0.571 0.561 0.575

R = 4 Set 2 0.615 2.363 4.427 9.274 6.906 13.030
Set 3 1.544 9.927 41.799 339.184 312.053 663.675
Set 1 0.243 0.324 0.438 0.609 0.477 0.494

R = 5 Set 2 0.581 2.128 3.824 10.126 5.743 8.671
Set 3 1.471 9.978 44.934 181.326 162.793 355.366
Set 1 0.218 0.318 0.418 0.511 0.473 0.447

R = 6 Set 2 0.622 1.949 3.461 9.248 5.136 7.105
Set 3 1.556 10.535 39.850 185.375 145.695 491.090
Set 1 0.226 0.292 0.372 0.453 0.426 0.455

R = 7 Set 2 0.540 1.365 2.510 5.040 3.962 4.832
Set 3 1.553 7.553 31.970 119.587 123.577 221.715
Set 1 0.215 0.299 0.351 0.403 0.394 0.399

R = 8 Set 2 0.574 1.603 2.483 3.974 3.491 5.219
Set 3 1.456 8.631 28.783 120.531 85.100 243.728
Set 1 0.214 0.291 0.355 0.365 0.364 0.408

R = 9 Set 2 0.509 1.251 1.993 4.767 3.507 4.242
Set 3 1.388 6.249 20.359 105.166 72.015 128.297
Set 1 0.204 0.277 0.340 0.394 0.345 0.331

R = 10 Set 2 0.436 1.093 1.648 2.939 2.883 3.235
Set 3 1.484 7.098 21.250 77.338 75.931 83.134

decreasing trend as the time-windows become wider. That is, the wider the time-window is,
generally the smaller the average increasing ratio of the cycle time will be. This suggests
that when time-windows are wide, the impact on the cycle time resulting from the increase
of the robustness is relatively small. This observation can be explained as follows. When
the time-windows are wider, it is apt to obtain a smaller cycle time due to the flexibility in
processing times. Thus, a smaller increase of the cycle time can be expected as the robustness
R increases. As a result, it increases the possibility to achieve a smaller average increasing
ratio of the cycle time.

The computation times for the randomly generated instances are given in Table 3.5. The
results in this table suggest that the average computation time has an obvious increasing trend
as W increases. Furthermore, for each pair of W and R, the average computation time of
the instances in each set has an obvious increasing trend as the time-windows become wider.
This is because wider time-windows means looser constraints on the processing times in
the tanks. It turns a large number of sequences of hoist moves that is infeasible for narrow
time-windows into feasible ones. As a result, a larger solution space is available and finding an
optimal solution in it is become time-consuming. However, it seems that there exists no clear
relationship between the computation time and the robustness. We also see from Table 3.5 that
even for the instances with 22 tanks, the optimal cycle time for any given R can be obtained
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within one hour.

3.7 Conclusions

This chapter studied the cyclic hoist scheduling problem considering both cycle time and
robustness. We proposed a method to measure the robustness of a cyclic hoist schedule in
terms of free slacks in hoist travel times. A bi-objective MILP model was developed for the
problem, which aims to minimize the cycle time and maximize the robustness. We proved that
the optimal cycle time strictly increases with the robustness, thus the problem has an infinite
number of Pareto optimal solutions. Furthermore, we derived lower and upper bounds for
the two objectives. A Pareto optimal solution can be obtained by solving a single-objective
model by minimizing the cycle time for a given value of robustness or by maximizing the
robustness for a specific cycle time. Computational results indicate that the optimal cycle
time is a piecewise linear function of the robustness and the increase in cycle time caused by
robustness is relatively small when time-windows are wide.
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4.1 Introduction

Different from cyclic hoist scheduling, which aims to obtain a cyclic schedule that will run
periodically, the objective of non-cyclic hoist scheduling is to obtain a non-cyclic schedule so
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that the makespan is minimized. Non-cyclic hoist scheduling where operations are rescheduled
as soon as one part or more enter the line is referred to as DHSP (Manier & Bloch, 2003).

Existing studies related to dynamic hoist scheduling usually consider a single new part in
the rescheduling procedure (Chauvet et al., 2000; Ge & Yih, 1995; Yih, 1994; Yih & Yin,
1992). With this assumption, it is assumed that each time only one new part is involved in
rescheduling. This restriction applies to cases where a new part arrives at the input station
only after another one has left, or multiple parts may arrive at the input station at a time
but their entering sequence into the production line is known in advance. Consequently, the
problem to sequence the parts vanishes. On the other hand, these works usually consider basic
lines (Lamothe et al., 1994; Lamothe et al., 1995; Lamothe et al., 1996). Only a few studies
for DHSP with multi-function and/or multi-capacity tanks have been reported in the literature.
One interesting work is the MILP model developed by Zhao et al. (2013b), which extended
Lamothe et al.’s work (Lamothe et al., 1995) by introducing multi-capacity tanks and multiple
new arriving parts. This problem is more complicated because it concerns determining the
parts’ entering sequence and their associated entering times as well as the start times of
transportation moves. Tian et al. (2013) reformulated the hoist capacity constraints of Zhao
et al.’s model and obtained a more compact MILP model. In the above studies, it was also
assumed that a multi-function tank cannot be multi-capacity.

In this study, we develop an MILP model for a DHSP with multi-function tanks, multi-
capacity tanks and multiple new arriving parts. We improve the model proposed by Zhao et al.
(2013b) in the following aspects. Firstly, we study a more general DHSP with multi-function
tanks, which was not considered in Zhao et al. (2013b). It can deal with a more general case
where a multi-function tank can also be multi-capacity. Secondly, we demonstrate that Zhao et
al.’s model may lead to sub-optimal solutions or infeasibility due to some flaws in formulating
tank capacity constraints. To handle this problem, an improved formulation is established.
Thirdly, we present a more compact MILP model than Zhao et al.’s in terms of the numbers of
constraints and variables. Computational results indicate that the proposed model is much
more effective both in solution quality and in computation time.

The remainder of this chapter is organized as follows. we give a formal description of
the considered problem in Section 4.2. In Section 4.3, the flawed formulation of Zhao et
al.’s model is analyzed and demonstrated by a counterexample. An improved MILP model is
developed in Section 4.4. Computational results are presented and analyzed in Section 4.5.
Finally, this study is concluded in Section 4.6.

4.2 Problem description and notation

The DHSP considered in this study is similar to those in Lamothe et al. (1995) and Zhao et al.
(2013b). The difference is that multi-function tanks were not considered in Zhao et al. (2013b)
and neither multi-function tanks nor multi-capacity tanks were addressed by Lamothe et al.
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(1995). Similar description for the problem without multi-function tanks or multi-capacity
tanks can be found in the above cited references. However, for the sake of self-consistency,
we recall this description. Furthermore, the notation given in Zhao et al.’s model cannot be
used to formulate the constraints related to multi-function tanks. Hence, we define our own
notation used throughout the chapter.

The considered DHSP can be described as follows. The production line is composed of
W processing tanks and a computer-controlled hoist. The W tanks are indexed as M1, M2,
. . . , and MW , respectively. Let M0 and MW+1 denote the input station and output station,
respectively. The parts to be processed are of different types. The difference between parts
is characterized by their processing routes and processing time requirements in each tank.
That is, the considered system is a jobshop. Parts randomly arrive at the input station. The
type and the number of the arriving parts are not known until their arrival at the input station.
The processing procedure for a part can be described as follows. The part is first unloaded
from the input station, and then treated successively in a set of processing tanks according to
its specified sequence, and finally moved out of the line into the output station. The tanks
may have single-part or multi-part processing capacity. A multi-capacity tank has multiple
processing slots and each slot can process at most one part at a time. Thus, if the processing
capacity of Mw is Cw, the tank can handle at most Cw parts simultaneously. A part cannot be
processed in more than one tank or slot at the same time. The hoist is used to transport parts
between the tanks and stations. The hoist can hold at most one part at a time.

Let P be the set of all parts associated with the rescheduling. P consists of the set of parts
waiting at the input station, denoted by PI , and the set of parts being processed in the line at
the start of the reschedule (also called rescheduling point hereafter), denoted by PL . That is,
P = PI ∪ PL . Let Nr be the number of (remaining) processing stages for part r ∈ P. The ith

processing stage of part r is represented by Sr,i. The index of the tank in which the processing
of stage Sr,i is executed is denoted by Vr,i. Without loss of generality, stages Sr,0 and Sr,Nr+1

are assumed to be performed on M0 and MW+1, respectively. That is, we always have Vr,0 = 0
and Vr,Nr+1 = W + 1.

Due to the presence of multi-function tanks, a part may visit some tanks more than once.
This means we may have Vr,i = Vr, j for some parts r ∈ P, 1 ≤ i < j ≤ Nr . Let K be the set of
all tanks, excluding M0 and MW+1. Set K consists of two subsets: the set of single-capacity
tanks, denoted by KS, and the set of multi-capacity tanks, denoted by KM , i.e., K = KS ∪ KM .
The actual processing time at stage Sr,i, r ∈ P, 1 ≤ i ≤ Nr , is bounded from below by a given
constant Lr,i and from above by a given constant Ur,i. If the actual processing time for any
stage is less than its lower bound or greater than its upper bound, the associated part will be
identified as defective. Once the processing at a stage is completed, the corresponding part
must be unloaded so that the requirement of its processing time is respected. After unloading
a part, the hoist should transport it into the next tank for its subsequent processing without
any delay. That is, any wait is not allowed during the execution of a transportation operation.
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However, the hoist can wait if it is not holding a part. The operation of transporting part r from
tank Vr,i to tank Vr,i+1 is called a loaded move, and denoted as Or,i, r ∈ P, 1 ≤ i ≤ Nr . Move
Or,i is composed of three operations: (1) unloading part r from Vr,i; (2) transporting the part
to Vr,i+1; and (3) loading it into Vr,i+1. The time required for the hoist to execute move Or,i is
Dr,i, r ∈ P, 1 ≤ i ≤ Nr . The hoist operation of traveling from Mi to Mj , i, j ∈ K∪ {0,W + 1},
without holding a part is called an unloaded move, and denotes as Gi, j . The time required for
executing Gi, j is Ei, j . The loaded and unloaded move times satisfy the triangular inequality.
Note that we assume the traveling time between any two processing slots of a multi-capacity
tank is negligible, i.e., the times required for both loaded and unloaded moves between any
two tanks do not vary with particular slots.

As parts randomly arrive at the system, their characteristics cannot be known until they
arrive at the input station. Once new parts arrive, a rescheduling is triggered and an optimal
reschedule should be established according to the current state of the system, including the
current status of parts, tanks and hoist (Zhao et al., 2013b). Without loss of generality, the
rescheduling point is set to 0. At the rescheduling point, some stages of part r, r ∈ PL , are
completed, and the part is being processed in some tank. Note that we do not consider the
case where the hoist is moving a part from one tank to the next one, since this transportation
cannot be rescheduled. Any reschedule cannot start until this move is completed. In other
words, the rescheduling point can start only when the hoist is performing an unloaded move or
waiting for the completion of some processing stage without loss of generality. Let Ir be the
index of the stage at which part r is being processed at the rescheduling point; that is, part r ,
r ∈ PL , is being processed at stage Sr,Ir in tank Vr,Ir . Note that Ir = 0 for any part r such that
r ∈ PI , without loss of generality.

With the above problem, the objective is to obtain an optimal hoist reschedule for all
involved parts so that the makespan is minimized. During the rescheduling, all the processing
stages for parts at the input station, and the remaining processing stages for parts being
processed in the line should be scheduled. A feasible schedule should satisfy the following
three families of constraints (Tian et al., 2013; Zhao et al., 2013b):

• Hoist capacity constraints. The start times of all related hoist moves are well defined so
that the hoist is not required to handle more than one part at any time.

• Tank capacity constraints. At any time, a tank cannot handle more parts than its capacity.

• Processing time constraints. The processing time at each stage should be not less than
its lower bound and not greater than its upper bound.

As all transportation operations are executed by the hoist, a reschedule can be uniquely
represented by the sequence of all moves Or,i, r ∈ P, Ir ≤ i ≤ Nr and their associated start
times. Hence, the following decision variables are defined.

T : the makespan. It equals to the time instant when the last part arrives at the output
station.
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sr,i: the start time of move Or,i in the reschedule, r ∈ P, Ir ≤ i ≤ Nr . To simplify the
expression, the start time of a reschedule is set to 0. The start time of each move is calculated
relative to the related rescheduling point.

yr,i;u, j : binary variable. yr,i;u, j = 1 if and only if sr,i < su, j , for all r, u ∈ P, Ir ≤ i ≤ Nr ,
Iu ≤ j ≤ Nu. That is, for any pair of moves Or,i and Ou, j , if move Or,i is executed before move
Ou, j , then yr,i;u, j = 1; otherwise, yr,i;u, j = 0.

4.3 Illustration and analysis of a counterexample

Zhao et al. (2013b) developed an MILP model for a similar problem without multi-function
tanks. In this section, we will use a counterexample to illustrate that the solution obtained
with Zhao et al.’s model is not necessarily optimal. The counterexample is derived from the
“Case 4” given in Zhao et al. (2013b) with the following modification: (1) the lower bound of
the processing time for parts of type A in tank M3 is decreased from 75s to 30s; (2) the lower
bound of the processing time for parts of type B in tank M3 is increased from 75s to 120s. For
this example, tank M3 is the only multi-capacity tank with C3 = 2, while the other tanks are all
single-capacity ones. With Zhao et al.’s model, the optimal makespan for this example is 425s.
The obtained optimal reschedule is illustrated in Figure 4.1. To distinguish different parts of
the same type, each part is denoted by its type and an integer in the figure. For example, A1
represents the first part of type A. At the rescheduling point, part A1, part A2 and part B1
have already been processed for 61s, 25s and 36s in M5, M4 and M3, respectively. Figure 4.2
illustrates another feasible reschedule for this example. Note that the reschedule in Figure 4.2
is obtained with our model described in the next section, and its makespan is 424s which is
shorter than that of the reschedule in Figure 4.1.
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Figure 4.1: The reschedule obtained with Zhao et al.’s model

As both reschedules in Figure 4.1 and Figure 4.2 are feasible, the reschedule in Figure 4.1
is actually not an optimal solution for the example. We now analyze why the solution obtained
with Zhao et al.’s model is not optimal. In Figure 4.2, part B1 is being processed in tank M3

at the rescheduling point. During its processing, part A3 and part B2 are processed in tank
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Figure 4.2: A feasible reschedule with smaller makespan

3 sequentially. We can see that the number of parts simultaneously processed in tank M3

never exceeds its capacity (C3 = 2) during the production. However, such a situation will be
identified as infeasible by Zhao et al.’s formulation as explained in the following.

In the following analysis, we will follow the same notation given by Zhao et al. (2013b)
when the related notation is not defined in this study. To formulate tank capacity constraints,
Zhao et al. first defined a binary variable xi,r,u as follows: if part u ever stays with part r

in tank Mi, then xi,r,u = 1, and xi,r,u = 0 otherwise. With such a definition, the following
constraint is formulated to attempt to ensure that the total number of parts simultaneously
processed in tank Mi does not exceed its capacity Ci at any time:∑

u∈P
xi,r,u + 1 ≤ Ci, ∀i ∈ SI A

r ; i ∈ SI A
u ; r, u ∈ P, r , u (4.1)

where P is the set of parts, SI A
r and SI A

u are the set of processing tank for part r and u

respectively, not including M0 and MW+1, Ci is the processing capacity of tank Mi. From the
above constraint, we can see that the maximum number of parts processed simultaneously in
tank Mi is expressed as the following formula:

max
r∈P

(∑
u∈P

xi,r,u + 1

)
(4.2)

In what follows, we show that the maximum number of parts simultaneously processed
in tank Mi may be over-counted using formula (4.2). In Figure 4.2, both parts A3 and B2
sometime stay with part B1 in tank M3. By the definition of xi,r,u, we can have x3,B1,A3 = 1
and x3,B1,B2 = 1. With formula (4.2), the maximum number of parts simultaneously processed
in tank M3 is three, instead of two as shown in Figure 4.2. That is, the maximum number of
parts simultaneously processed in tank M3 is over-counted in this case. For this reason, the
reschedule in Figure 4.2 will be identified as infeasible by Zhao et al.’s model as tank M3 only
has two-part processing capacity.

In fact, the maximum number of parts simultaneously processed in tank Mi can be correctly
calculated with formula (4.2) if all parts to be processed in the tank are sometime being
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simultaneously processed in the tank, as illustrated in Figure 4.3(a). However, if not all parts
are simultaneously processed in a tank (i.e., some part enters the tank after another one has
left), as illustrated in Figure 4.3(b), the maximum number of parts processed simultaneously
in the tank is over-counted with formula (4.2). For this reason, a feasible solution may be
identified as infeasible with Zhao et al.’s model. It is worth noting that the scenario illustrated
in Figure 4.3(b) very likely to happen when the processing time of some part is much longer
than those of other parts in a multi-capacity tank. This suggests that it is more likely that Zhao
et al.’s model cannot obtain an optimal solution in such situations.

part processing
TimeTime(a) (b)

loaded hoist move

slot 1

slot 2

slot 3

slot 1

slot 2

slot 3

Figure 4.3: Illustration of tank capacity constraints

To sum up, a feasible reschedule can be identified as infeasible with Zhao et al.’s model
due to the flawed formulation of tank capacity constraints. For this reason, the solution
obtained with Zhao et al.’s model is not necessarily optimal. To fix this problem, we propose
an improved MILP model in the next section, which can correctly handle multi-capacity tanks.
Furthermore, we generalize the model by considering multi-function tanks.

4.4 Problem formulation

In this section, we propose a new scheme to formulate the tank capacity constraints. The
formulation can handle the situation where a multi-function can also be multi-capacity and can
obtain an optimal solution for the problem. Note that the brief formulation for the processing
time constraints given below are borrowed from Lamothe et al. (1995) and Zhao et al. (2013b),
while similar formulation for the hoist capacity constraints can be found in Tian et al. (2013).
For self-consistency, we give a complete formulation in what follows.

4.4.1 Time-window constraints

Processing time constraints require that the actual processing time at each stage be not less
than its lower bound and not greater than its upper bound. For any part r ∈ P, and its
processing stage Sr,i, Ir + 1 ≤ i ≤ Nr , the part enters tank Vr,i at time instant sr,i−1 + Dr,i−1,



60 Chapter 4. Dynamic Jobshop Hoist Scheduling in Extended Lines

which is the completion time of move Or,i−1. After the processing of Sr,i is completed, it will
be unloaded from tank Vr,i at time instant sr,i, which is the start time of move Or,i. Thus, the
actual processing time of stage Sr,i is sr,i − sr,i−1 − Dr,i−1. Note that at the rescheduling point,
for any part r in set PL , some of its processing stages are completed and it is being processed
at stage Sr,Ir . The processing time constraints can be formulated as (4.3) and (4.4) (Lamothe
et al., 1995; Zhao et al., 2013b).

Lr,i ≤ sr,i − sr,i−1 − Dr,i−1 ≤ Ur,i, ∀r ∈ P, Ir + 1 ≤ i ≤ Nr . (4.3)

Lr,Ir ≤ T s + sr,Ir − s0
r,Ir−1 − Dr,Ir−1 ≤ Ur,Ir, ∀r ∈ PL . (4.4)

where T s is the estimated rescheduling point of the current schedule, at which the current
schedule is switched to the reschedule, and s0

r,i−1 is the start time of move Or,i−1 in the current
schedule. Note that the meaning of T s is two-fold: on the one hand, its value is determined
according to the start point of the current schedule; on the other hand, it also denotes the start
point of the reschedule. In other words, the rescheduling point may denotes T s when referring
to the current schedule, or the start point of the reschedule (which is set as 0) otherwise. With
this point, the processing of stage Sr,Ir is divided into two parts: the processing executed
in the current schedule and the processing to be executed in the reschedule. The first part
can be formulated as T s − s0

r,Ir
− Dr,Ir−1 while the second part is sr,Ir . The value of T s can

be determined according to the arrival time of new parts, the hoist status and the estimated
computation time of the reschedule with the method suggested by Zhao et al. (2013b).

4.4.2 Hoist capacity constraints

Hoist movement constraints ensure that the hoist is not required to handle more than one part
at any time. To this end, the start times of all moves in the reschedule should be such that
for any pair of moves Or,i and Ou, j , either move Or,i starts after move Ou, j is completed or
reversely. Furthermore, after executing a loaded move, there should be enough time for the
hoist to travel from its current position to the tank where the next move starts. Thus the hoist
capacity constraints can be formulated as (4.5) and (4.6) (Tian et al., 2013).

su, j − sr,i ≥ Dr,i + EVr,i+1,Vu, j − M
(
1 − yr,i;u, j

)
,

∀r, u ≤ P, Ir ≤ i ≤ Nr, Iu ≤ j ≤ Nu, r , u or i , j . (4.5)

yr,i;u, j + yu, j;r,i = 1, ∀r, u ≤ P, Ir ≤ i ≤ Nr, Iu ≤ j ≤ Nu, r , u or i , j . (4.6)

where M is a very large positive number. Similar hoist capacity formulation can also be found in
cyclic hoist scheduling (Leung & Zhang, 2003; Liu et al., 2002; Zhou et al., 2012). In particular,
constraint (4.5) ensures that if sr,i < su, j (i.e. yr,i;u, j = 1), then su, j − sr,i ≥ Dr,i + EVr,i+1,Vu, j ,
which guarantees that the empty hoist should have sufficient amount of time to travel to tank
Vu, j so as to execute move Ou, j . Constraint (4.6) ensures the consistency of variables yr,i;u, j

and yu, j;r,i; that is, if yr,i;u, j = 1, then yu, j;r,i = 0 and vice versa.
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Furthermore, there should be sufficient time for the hoist to travel from its current position
to the tank at which the first move in the reschedule is executed. As any other move can start
after the first move is completed, they can start after the hoist arrives at its associated tank.
Let h be position of the hoist at the rescheduling point, the requirements can be formulated as
(4.7) (Zhao et al., 2013b).

sr,i ≥ Eh,Vr,i, ∀r ≤ P, Ir ≤ i ≤ Nr . (4.7)

4.4.3 Tank capacity constraints

Tank capacity constraints ensure that any tank is not required to handle more parts than its
processing capacity at any time. This requires that all processing stages processed in the same
tank be well scheduled so that no conflict occurs in the use of the tank. For a multi-capacity
tank, each stage can use any processing slot of the tank. Thus the specific slot in which a stage
is processed should be determined as well. Furthermore, the stages sharing the same slot
should also be well scheduled to avoid any conflict in the use of the slot. For this reason, the
capacity constraint for multi-capacity tanks is more complicated than that for single-capacity
tanks. Thus we separately formulate the tank capacity constraints for single-capacity and
multi-capacity tanks. Due to this separation, the model will be more compact in terms of
numbers of constraints and variables.

4.4.3.1 Single-capacity tanks

For any pair of stages Sr,i and Su, j such that Vr,i = Vu, j , they are not allowed to use the shared
tank at the same time. That is, either stage Sr,i is processed before stage Su, j with sufficient
amount of time, or stage Su, j is processed before stage Sr,i with sufficient amount of time.
As the transportation moves are executed by the hoist, the following requirements must be
satisfied: 1) either move Ou, j−1, by which part u is moved into the shared tank, is executed
after move Or,i, by which part r is moved away from the tank; 2) or move Or,i−1, by which part
r is moved into the shared tank, is executed after move Ou, j , by which part u is moved away
from the tank. The above requirement can be formulated as the below logical relationship:

either su, j−1 ≥ sr,i or sr,i−1 ≥ su, j, ∀r, u ∈ P, if Vr,i = Vu, j .

The above relation can be equivalently written as:

yr,i;u, j−1 + yu, j;r,i−1 = 1,

∀r, u ∈ P, Ir + 1 ≤ i ≤ Nr, Iu + 1 ≤ j ≤ Nu, if Vr,i = Vu, j,CVr,i = 1. (4.8)

Note that any part r such that r ∈ PL is being processed in tank Vr,Ir at the rescheduling
point. Thus any other stages to be processed in the tank can start only after stage Sr,Ir is
completed. This suggests that any part to be processed in tank Vr,Ir can enter the tank after part
r has been moved away by the hoist. Such a requirement can be formulated as equation (4.9).

yr,Ir ;u, j−1 = 1, ∀r ∈ PL, u ∈ P, Iu + 1 ≤ j ≤ Nu, if Vr,Ir = Vu, j,CVr,Ir = 1. (4.9)
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4.4.3.2 Multi-capacity tanks

For a multi-capacity tank Mi, there are Ci identical processing slots. Without loss of generality,
the Ci processing slots are indexed as slot 1, slot 2, . . . , slot Ci in arbitrary order. To formulate
the capacity constraints, the following binary variable is defined.

xr,i,k : If stage Sr,i, r ∈ P, Ir + 1 ≤ i ≤ Nr , is executed in slot k of tank Vr,i, 1 ≤ k ≤ CVr,i ,
then xr,i,k = 1; otherwise, xr,i,k = 0.

For a pair of stages Sr,i and Su, j such that Vr,i = Vu, j , two cases are possible: 1) they are
processed in different processing slots of the tank; 2) they are processed in the same processing
slot, say slot k, of the tank. In the first case, there is certainly no conflict as they do not use
the same slot. However, in the second case, the conflict between the stages has to be avoid as
they are both handled in slot k of the tank, i.e., xr,i,k = 1 and xu, j,k = 1. Such a requirement
can be formulated as the following constraints.

yr,i;u, j−1 + yu, j;r,i−1 ≥ xr,i,k + xu, j,k − 1,

∀r, u ∈ P, Ir + 1 ≤ i ≤ Nr, Iu + 1 ≤ j ≤ Nu,Vr,i = Vu, j, 1 ≤ k ≤ CVr,i . (4.10)

yr,i;u, j−1 + yu, j;r,i−1 ≤ 3 − xr,i,k − xu, j,k,

∀r, u ∈ P, Ir + 1 ≤ i ≤ Nr, Iu + 1 ≤ j ≤ Nu,Vr,i = Vu, j, 1 ≤ k ≤ CVr,i . (4.11)
CVr,i∑
k=1

xr,i,k = 1, ∀r ≤ P, Ir + 1 ≤ i ≤ Nr . (4.12)

In particular, if Sr,i and Su, j use the same slot k of tank Mi (i.e., xr,i,k = 1 and xu, j,k = 1),
equations (4.10) and (4.11) would be reduced to equation (4.8). It ensures that no conflict in
the use of the same slot occurs. On the other hand, the constraints become redundant if the
stages use different slots of tank Vr,i. Equation (4.12) ensures that exactly one processing slot
of tank Vr,i is used to handle stage Sr,i.

Note that it may lead to symmetric solutions if more than two slots of a multi-capacity
tank are empty at the rescheduling point, because different allocations of stages among the
slots may represent the same solution. Knowing that all processing slots are identical and the
travel time between any two slots of a multi-capacity tank is negligible, we can change one
solution to another by renumbering the empty slots. To illustrate this phenomenon, we use the
following example to explain how this can be achieved. Suppose that there are two empty
slots at the rescheduling point and three parts denoted by part 1, part 2 and part 3, respectively
are processed in the two slots during the reschedule. If part 1 and part 2 are processed in
the same slot while part 3 is processed in the other slot. The following two solutions are
possible: 1) part 1 and part 2 are processed in slot 1 and part 3 is processed in slot 2; 2) part 3
is processed in slot 1, while part 1 and part 2 are processed in slot 2. The other part of the two
solutions are identical. However, the above two situations represent the same solution due to
their symmetry. By swapping the two slots, we can change the former solution to the latter one
and vice versa. To reduce the number of symmetric solutions, it is assumed that the number
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of parts processed in the slot with smaller index is greater than or equal to that in empty slot
with larger index. Let f (w) be the set of the empty slots of tank Mw at the rescheduling point
and | f (w)| the number of elements in set f (w). This requirement can be formulated as the
following constraint. ∑

r∈P,Ir+1≤i≤Nr,Vr,i=w

xr,i,k ≥
∑

r∈P,Ir+1≤i≤Nr,Vr,i=w

xr,i,k ′,

∀w ∈ KM ; k, k′ ∈ f (w), k < k′; if | f (w)| ≥ 2. (4.13)

Similar to the formulation for single-capacity tanks, if part r is being processed in slot vr

of tank Vr,Ir at the rescheduling point, i.e., xr,Ir,vr = 1, any other stages to be processed in this
slot can start only after stage Sr,Ir is completed. Note that vr can be determined as soon as the
rescheduling point T s is determined. This requirement can be formulated as constraint (4.14).

yr,Ir ;u, j−1 ≥ xu, j,vr, ∀r ∈ PL, u ∈ P, Iu + 1 ≤ j ≤ Nu. (4.14)

Furthermore, the processing sequence of a part must respect its processing route. That is,
for any pair of stages Sr,i and Sr, j of part r such that i < j, constraint (4.15) should be satisfied.

yr,i;r, j = 1, ∀r ∈ P, Ir ≤ i ≤ j ≤ Nr . (4.15)

As T is defined as the makespan, we have:

T ≥ sr,Nr + Dr,Nr, ∀r ∈ P. (4.16)

In addition, the binary variables xr,i,k and yr,i,u, j must satisfy the following relations
according to their definitions:

yr,i;u, j ∈ {0, 1} , ∀r, u ≤ P, Ir ≤ i ≤ Nr, Iu ≤ j ≤ Nu. (4.17)

xr,i,k ∈ {0, 1} , ∀r ≤ P, Ir ≤ i ≤ Nr, 1 ≤ k ≤ CVr,i . (4.18)

With the constraints given above, the problem addressed in this study can be formulated
as:
P:

Minimize T (4.19)

subject to: (4.3)–(4.18).

4.5 Computational results

In this section, we first use instances with both multi-capacity and multi-function tanks to test
the proposed model. Then, we compare our model with Tian et al.’s (Tian et al., 2013) using
instances without multi-function tanks. As mentioned above, Tian et al. (2013) improved the
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formulation of hoist capacity constraints proposed by Zhao et al. (2013b), while the other part
of the model remains the same. That is, Tian et al.’s model represents an improved version of
Zhao et al.’s. Thus we compare our model with Tian et al.’s rather than Zhao et al.’s. Both Our
and Tian et al.’s models are solved by ILOG CPLEX (Version 12.6) with default parameters.
All experiments are conducted on a personal computer with 2.27 GHZ CPU and 4.0GB RAM.

4.5.1 Instances with multi-function tanks

In this subsection, we first use an instance with multi-capacity multi-function tanks to test the
proposed model. The considered production line is composed of W = 7 processing tanks. The
input station and the output station share the same physical tank (i.e. M0) placed at the left end
of the line. The tanks are arranged in the line from left to right with the following sequence:
tank M0, tank M1, tank M3, tank M2, tank M4, tank M6, tank M5, and then tank M7. The
capacities of the tanks are set as follows: C1 = C3 = C4 = C5 = C7 = 1, C2 = 4, C6 = 2. The
time required for the hoist to travel between adjacent tanks is Ei,i+1 = 2, 0 ≤ i ≤ 6. The time
required for the hoist to execute move Or,i is Dr,i = EVr,i,Vr,i+1 +1. There are three types of parts
to be processed in the line. The processing route and associated processing time requirement
for each type are given in Table 4.1, Table 4.2, and Table 4.3, respectively. Note that both tank
M2 and tank M6 are multi-function tanks and multi-capacity tanks simultaneously.

Table 4.1: Processing routine for the parts of type A

Stage 0/10 1 2 3 4 5 6 7 8 9

Tank 0 1 2 3 4 2 5 6 7 6
Lr,i – 30 200 60 60 200 30 35 90 70
Ur,i – 60 400 90 120 400 120 75 160 200

Table 4.2: Processing routine for the parts of type B

Stage 0/7 1 2 3 4 5 6

Tank 0 1 2 3 4 2 6
Lr,i – 20 220 70 90 200 70
Ur,i – 50 550 120 160 400 200

Table 4.3: Processing routine for the parts of type C

Stage 0/7 1 2 3 4 5 6

Tank 0 1 2 5 6 7 2
Lr,i – 25 200 80 70 90 200
Ur,i – 55 550 150 200 160 400
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Suppose that, two new parts, one of type A and the other of type C, arrive at the input
station at time instant 179s in the initial schedule. The system needs to be rescheduled so as to
minimize the makespan for all parts. Assume that the rescheduling point T s is set as 180s,
which is the start point of the reschedule. At this point, the processing status for the parts are
given in Table 4.4, including the indexes of tanks in which the parts are being processed and
the start times of the moves by which these parts are moved to the tanks during the initial
schedule. Furthermore, the hoist is at the input station, i.e., h = 0, at the rescheduling point.

Table 4.4: The initial state at the rescheduling point

Parts (r) A2 A1 B2 B1 C2 C1

Ir 0 4 2 6 0 6
Vr,Ir 0 4 2 6 0 2
s0
r,Ir

– 145 75 120 – 152

Note that such a hoist rescheduling problem with multi-capacity multi-function tanks
cannot be solved by any models or approaches in the literature. With the MILP proposed
in this study, we obtain an optimal reschedule with T = 825 for this instance. The schedule
is illustrated by the time-way diagram shown in Figure 4.4. Note that the start time of the
reschedule is set to 0 in order to facilitate the presentation.
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Figure 4.4: The obtained optimal reschedule for the instance

From Figure 4.4, we can see that parts B2 and C1 are being processed on two different
processing slots of tank M2 at the start of the reschedule. Parts A2 and A1 enter tank M2 at
time instants 38 and 43, respectively. Thus, starting at time instant 43, tank M2 will handle 4
parts simultaneously. This status will last until part B2 leaves the tank at time instant 120.
Tank M2 treats 4 parts simultaneously again after part C2 arrives at the tank at time instant 133.
In the remainder of the schedule, tank M2 handles at most 3 parts after part C1 has left at time
instant 181. Similarly, we can also see that tank M6 handles at most two parts simultaneously
at any time. No tank is required to process more parts than its capacity during the schedule.
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To further evaluate the proposed model, a set of randomly generated instances, denoted
by Set-1, are constructed. For each value of W ∈ {8, 10, 12}, 30 instances are generated.
Let U(a, b) represent an integer random distribution drawn from interval [a, b]. Each
instance is generated in the following way: the number of new parts is generated by
U (1,W/2), Nr = U(2,W) for r ∈ P, Vr,i = U(1,W) for r ∈ P, 1 ≤ i ≤ Nr such that
Vr,i , Vr,i+1, Cw = U(1, 2) for 1 ≤ w ≤ W , Ei,i+1 = U(1, 2) and Ei, j =

∑ j−1
k=i Ek,k+1 such that

Ei, j = E j,i for i, j ∈ K ∪ {0,W + 1}, and Dr,i = EVr,i,Vr,i+1 + 5 for r ∈ P, 1 ≤ i ≤ Nr ; the
processing time requirement for each stage is generated by randomly selecting one of the
following three methods: 1) Lr,i = U(90, 150), Ur,i = Lr,i + U(0, 60); 2) Lr,i = U(30, 90),
Ur,i = Lr,i + U(0, 90); and 3) Lr,i = U(150, 270), Ur,i = Lr,i + U(0, 150). The rescheduling
point is set as T s = U(30,T0), where T0 is the makespan of the current schedule. To evaluate
the effects of parallel processing slots, we also generate another set of instances, denoted by
Set-2. The instances in Set-2 are generated with the above parameters except that the capacity
of all processing tanks are set to Cw = 1, 1 ≤ w ≤ W .

The computational results for the two sets of instances, Set-1 and Set-2, are summarized
in Table 4.5. Note that the results are the average values of the 30 tested instances. In the
table, #Moves denotes the average number of moves in the reschedule; #Cons and #Vars
represent the average number of constraints and the average number of variables, respectively;
#Makespan is the average makespan; and #Time is the average computation time measured in
CPU seconds.

Table 4.5: Computational results for random instances with multi-function tanks

W Set #Moves #Cons #Vars #Makespan #Time (s)

8
Set-1 21.03 1180.57 521.83 875.6 0.4274
Set-2 23.5 1413.5 640.5 1105.4 1.0695

10
Set-1 33.73 3011.43 1350.2 1279.77 2.8813
Set-2 32.13 2821.8 1298.6 1328.37 4.5391

12
Set-1 44.17 5157.97 2348.63 1565.83 14.5236
Set-2 42.4 4717.03 2185.93 1689.3 28.4573

As shown in Table 4.5, all instances are optimally solved in half a minute. By comparing
the makespan of the two sets, we can see that the instances with multi-capacity tanks usually
report shorter makespan than those without multi-capacity tanks. The average difference
ranges from 48.6 to 229.8, which is equivalent to about 3.8%–26.2% reduction in makespan
by using multi-capacity tanks. On the other hand, it shows a positive correlation between the
numbers of constraints or variables and the number of moves needed to be scheduled. In
spite of more moves to be scheduled in Set-1, the presence of multi-capacity tanks usually
requires shorter computation time as shown in the table. This phenomenon can be explained
as follows. The multiple processing slots of a multi-capacity tank improve the flexibility in
assigning stages among the slots. It implies greater opportunity to obtain a better schedule,
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which may provide better bounds in the solution procedure.

4.5.2 Instances without multi-function tanks

Note that multi-function tanks are not addressed in Zhao et al.’s model and Tian et al.’s model.
To compare the performance of our model and Tian et al.’s, we test them on four instances
given in the literature and a set of randomly generated instances in this subsection.

We first compare our model with Tian et al.’s using four numerical instances (called Case 1,
Case 2, Case 3, and Case 4, respectively) given in Zhao et al. (2013b) and the counterexample
given above (called Case 5 below). For the five instances, there is a single multi-capacity tank
and no multi-function tank in the system. At the rescheduling point, there are five, four and
five parts being processed in the system for Case 1, Case 2 and Case 3, respectively, each
including one part at the input station. For Cases 4 and 5, six parts are being processed in the
system, including three parts at the input station.

For the five cases, Table 4.6 gives the computational results of the two models. Note that
the results for Tian et al.’s model were also reported in Tian et al. (2013). We can see that the
two models report the same optimal makespan for Cases 1–4. Zhao et al.’s model obtain actual
optimal solutions for the four instances in spite of the flawed formulation of tank capacity
constraints. However, the solution obtained with Zhao et al.’s model for Case 5 is not optimal.
For all the five instances, our model can obtain a genuine optimal solution.

Table 4.6: Computational results for the numerical instances

Case Model #Cons #Vars #Makespan #Time

Case 1
Tian et al. 795 368 283 0.359

Our 670 297 283 0.281

Case 2
Tian et al. 396 174 235 0.296

Our 337 148 235 0.281

Case 3
Tian et al. 481 216 248 0.234

Our 392 173 248 0.187

Case 4
Tian et al. 1497 714 426 1.56

Our 1295 584 426 0.421

Case 5
Tian et al. 1497 714 425 1.435

Our 1295 584 424 0.437

To further compare our model with Tian et al.’s, a set of randomly generated instances are
used to test these two models. For each value of W ∈ {8, 10, 12}, 30 instances are generated.
The parameters used to generate these instances are the same with those for Set-1 except that
any part can visit each tank at most once during its processing, i.e., Vr,i , Vr, j for all r ∈ P,
1 ≤ i, j ≤ Nr .

The computational results for the randomly generated instances are summarized in Table 4.7.
In the table, #Feas represents the number of instances that are reported feasible by the model,
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while the other columns have the same meaning as those in Table 4.6. The results in Table 4.7
are the average results for all feasible instances.

Table 4.7: Computational results for random instances without multi-function tanks

W Model #Feas #Moves #Cons #Vars #Makespan #Time (s)

8
Tian et al. 30 21.67 1338.53 778.93 948.2 0.911

Ours 30 21.67 1225.87 549.4 947.93 0.3918

10
Tian et al. 30 27.17 2320.37 1327.07 1162.8 6.8368

Ours 30 27.17 2130.97 958.7 1154.33 1.0434

12
Tian et al. 29 48.45 6430.83 3494.97 1597.38 60.2148

Ours 30 48.45 5649.31 2577.14 1590.28 9.403

Note that for W = 12, 29 out of all 30 instances are reported feasible by Tian et al.’s
model, while all 30 instances can be solved to optimality by our model. This can be explained
as follows. If all feasible solutions for an instance contains similar situations with the one
illustrated in Figure 4.3(b), Tian et al.’s model (as well as Zhao et al’s model) may identify all
of them as infeasible and consequently leads to infeasibility. On the other hand, our model
can correctly deal with such situations and obtain an optimal solution.

From Table 4.6 and Table 4.7, we can also see that our model always includes fewer
constraints and variables. This suggests that our model is more compact than Tian et al.’s.
Consequently, our model is more effective in solving these instances than Tian et al.’s. This
phenomenon becomes even more obvious as the value of W increases. This can be explained
as follows. First, the tank capacity constraints for the single-capacity and multi-capacity tanks
are separately formulated, which reduces the number of constraints and variables. Second,
Tian et al.’s model used Zhao et al.’s formulation of tank capacity constraints which introduce
additional binary variables.

As for the computational performance, our model performs better than Tian et al’s in terms
of makespan and computation time. First, our model can handle all instances correctly, while
one instance is reported infeasible by Tian et al.’s for the reason explained above. Second, for
three groups of instances, our model always reports shorter average makespan than Tian et
al.’s as the latter one can identify feasible instance as infeasible. Third, our model is more
effective than Tian et al.’s as our model always requires shorter average computation time.
In summary, our model is more effective than Tian et al.’s in terms of both computational
efficiency and solution quality.

4.6 Conclusions

This chapter proposed an improved MIP model for DHSP with multi-function tanks and
multi-capacity tanks. We demonstrated that an existing model for a similar problem without
multi-function tanks may obtain sub-optimal solution or identify feasible instance as infeasible.
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To handle the tank capacity constraint correctly, a new MILP model was developed. It was
shown that the proposed model can deal with a more general and complicated case where a
multi-function tank can also be multi-capacity. The computational results indicated that the
improved model can guarantee the optimality of the obtained solutions and is more efficient
than an existing model in the literature.
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5.1 Introduction

As discussed in Chapter 2, few works have addressed cyclic jobshop hoist scheduling in
extended lines due to its complexity. On the one hand, the formulation of tank capacity
constraints is more complicated due to the following reasons. First, some tanks are not visited
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by some parts in a jobshop. Furthermore, a multi-function tank will be visited by a part more
than once. Thus the processing for parts will not follow the first-in-first-out rule. Second,
the processing time in a multi-capacity tank can be longer than the cycle time, which is
more complicated than that in non-cyclic scheduling. On the other hand, the tank capacity
constraints and the processing time-window constraints should be consistent in order to
guarantee all possible scenarios can be handled correctly. A prior work is the model proposed
by Zhao et al. (2013a). The authors developed an MILP model for cyclic jobshop hoist
scheduling in an extend line with multi-capacity tanks. The model is formulated by separately
addressing the hoist capacity constraint, the tank capacity constraints, and the processing
time-window constraints. However, their model can lead to sub-optimality or infeasibility
due to some flawed formulation of tank capacity constraints and processing time-window
constraints.

In this chapter, we consider the cyclic jobshop hoist scheduling in extended lines. In
particular, we consider a more general cyclic hoist scheduling problem in a jobshop with both
multi-function tanks and multi-capacity tanks. It involves the scenario where a multi-function
tank can also be multi-capacity. We develop an MILP model for the problem. In particular,
we extend the formulation of time-window constraints for cyclic hoist scheduling with a
single part-type and multi-capacity tanks in the literature to the jobshop scenario. This is
done by first examining the relationship between the actual processing time of a stage and
the cycle time in different cases, and then formulating the general constraints with binary
variables. As for tank capacity constraints, we transformed them into two equivalent families
of constraints which can be separately addressed. For tank capacity constraints, we investigate
the properties related to single-capacity tanks, with which the above general constraints can
be tightened. Computational experiments are conducted to test the proposed model on an
illustrative instance and a set of randomly generated instances.

The remainder of this chapter is organized as follows. Section 5.2 presents a formal
description of the problem and defines the notation used throughout the chapter. In Section 5.3,
an MILP model is formulated and analyzed. Section 5.4 is devoted to computational results
and analysis. Finally, the work is concluded in Section 5.5.

5.2 Problem description and notation

The studied cyclic jobshop hoist scheduling problem can be described as follows. The jobshop
is composed of a material handling hoist, W processing tanks denoted as M1,M2, . . . ,MW ,
respectively, and an input station and an output station denoted as M0 and MW+1, respectively.
Tank Mw, 1 ≤ w ≤ W , contains Cw identical processing slots each of which can handle at
most one part at a time. Thus the value of Cw defines the processing capacity of Mw, i.e., the
maximum number of parts it can handle simultaneously. Tank Mw, 1 ≤ w ≤ W , is called a
single-capacity tank if Cw = 1 and a multi-capacity one otherwise. M0 and MW+1 are assumed
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to have infinite capacity; thus they can handle any number of parts. Parts of different types are
processed in the jobshop. Each part-type is characterized by its specific processing routing,
including the tanks to be visited, the order of visits and the required processing time-window
in each tank. Note that some parts may visit certain (multi-function) tanks more than once
while some parts will never visit certain tanks. Furthermore, it is assumed that any two
consecutive stages of the same part cannot use the same tank, as the two stages can be treated
as a single one in such a situation. To simplify the expression, the notation used throughout
the chapter is summarized in Table 5.1.

Table 5.1: Notation and decision variables

Input data:
R: The number of parts in an Minimal Part Set (MPS).
W : The number of processing tanks.
Nr : The number of stages for part r in an MPS (Minimal Part Set), 1 ≤ r ≤ R.
Cw: The number of processing slots in tank Mw, 1 ≤ w ≤ W .
Sr,i: The ith processing stage of a part of class r , 1 ≤ r ≤ R, 0 ≤ i ≤ Nr + 1.
Vr,i: The tank in which stage Sr,i is processed, 1 ≤ r ≤ R, 0 ≤ i ≤ Nr + 1.
Or,i: The hoist move that transports a part of class r from tank Vr,i to tank Vr,i+1,

1 ≤ r ≤ R, 0 ≤ i ≤ Nr .
Qw: The set of all stages processed in tank Mw, i.e., Qw = {Sr,i such that Vr,i =

w, 1 ≤ r ≤ R, 0 ≤ i ≤ Nr + 1}, 1 ≤ w ≤ W .
Lr,i: The lower bound of the processing time-window of Sr,i, 1 ≤ r ≤ R, 1 ≤ i ≤ Nr .
Ur,i: The upper bound of the processing time-window of Sr,i, 1 ≤ r ≤ R, 1 ≤ i ≤ Nr .
Dr,i: The time required to execute move Or,i, for all 1 ≤ r ≤ R, 0 ≤ i ≤ Nr .
Ew,v: The time required to execute unloaded move Gw,v, 0 ≤ w, v ≤ W + 1.
M: A very big positive number.
Decision variables:
T : The cycle time.
sr,i: The start time of move Or,i within a cycle, 1 ≤ r ≤ R, 0 ≤ i ≤ Nr .
tr,i: The actual processing time of stage Sr,i, 1 ≤ r ≤ R, 1 ≤ i ≤ Nr .
zr,i,k : 0 − 1 variable. If tr,i is within time interval [kT, (k + 1)T) then zr,i,k = 1;

otherwise, zr,i,k = 0, 1 ≤ r ≤ R, 1 ≤ i ≤ Nr , 0 ≤ k ≤ CVr,i − 1.
yr,i,u, j : 0 − 1 variable. For any pair of moves Or,i and Ou, j , 1 ≤ r, u ≤ R, 0 ≤ i ≤ Nr ,

0 ≤ j ≤ Nu, yr,i,u, j = 1 if and only if move Or,i is executed before move Ou, j

within a cycle; otherwise, yr,i,u, j = 0.

The production runs in a cyclic mode. During each cycle, an associated MPS composed
of R parts is unloaded from M0 to start its processing and a not-necessarily-the-same MPS is
loaded into MW+1 after its processing is completed. Note that some of the R parts in an MPS
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may be identical. To distinguish the parts, we say two parts are of the same class if and only if
the difference between the moments they are unloaded from M0 is a multiple of the cycle time
T . Therefore, the R parts in each MPS, denoted as part 1, part 2, . . . , part R, respectively, are
of different classes one from another. Thus, all parts can be classified into R classes, denoted
as class 1, class 2, . . . , class R, respectively. To simplify the presentation, it is assumed that
part r in each MPS is of class r , r = 1, 2, . . . , R.

For part r in each MPS, let Nr be the number of required processing stages and Vr,i the
tank in which its ith stage, 1 ≤ i ≤ Nr , is processed. Furthermore, we assume that M0 and
MW+1 represent two dummy stages, the 0th stage and the (Nr + 1)th stage, respectively; that
is, we have Vr,0 = M0 and Vr,Nr+1 = MW+1 for all r = 1, 2, . . . , R. Thus the processing flow
for any part of class r can be described as follows. After the part is unloaded from M0, it is
successively processed in Vr,1,Vr,2, . . . ,Vr,Nr , and finally loaded into MW+1. The processing
time at its ith stage, 1 ≤ i ≤ Nr , must fall within a prescribed time-window [Lr,i,Ur,i]. The
hoist is responsible for transporting the parts from a tank to another. Once a part of class r

completes its processing in Vr,i, it must be moved to Vr,i+1, 0 ≤ i ≤ Nr .
The operation that the hoist transports a part of class r from Vr,i to Vr,i+1 is called a (loaded)

move, and denoted as Or,i, 1 ≤ r ≤ R, 0 ≤ i ≤ Nr ; and the hoist operation of traveling
from Mw to Mv without holding a part is called an unloaded move, and denoted as Gw,v,
0 ≤ w, v ≤ W + 1. The hoist can hold at most one part at a time, and it is not allowed to
wait during the execution of a loaded move. The time required for executing move Or,i is
Dr,i, 1 ≤ r ≤ R, 0 ≤ i ≤ Nr , and the time required for executing unloaded move Gw,v is Ew,v,
0 ≤ w, v ≤ W + 1. It is worth noting that the hoist travel times, whether loaded or unloaded,
only depend on the related tanks and are independent of the specific processing slots, as it is
commonly treated in the literature (Liu et al., 2002; Li et al., 2015). Furthermore, Dr,i and
Ew,v satisfy the triangular inequalities (5.1) and (5.2), which is usually the case in practice.

Dr,i > EVr,i,Vr,i+1, ∀1 ≤ r ≤ R, 0 ≤ i ≤ Nr . (5.1)

Ew,v ≤ Ew,u + Eu,v, ∀0 ≤ w, u, v ≤ W + 1. (5.2)

It is worth nothing that during each cycle, each of the R parts (in an MPS), after being
unloaded from M0 and until it is loaded onto MW+1, is being either processed in some tank or
held by the hoist. Furthermore, the processing of a part may span several cycles, depending
on its processing time at each stage (Phillips & Unger, 1976; Liu et al., 2002). Due to the
presence of multi-capacity tanks, several not-necessarily-identical parts may be simultaneously
processed in the same tank during a cycle. We study the cyclic schedule when the system has
been in steady state. In this situation, the hoist repeatedly executes a fixed sequence of moves
during each cycle; thus a cyclic schedule can be represented by a permutation over the set of
moves

{
Or,i | 1 ≤ r ≤ R, 0 ≤ i ≤ Nr

}
and the start time sr,i for each move Or,i. To simplify

the description and without loss of generality, the start time of move O1,0, i.e., s1,0, is set as
the start point of a cycle.
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With the problem described above, the objective is to obtain an optimal cyclic hoist
schedule so that the cycle time is minimized; i.e., the throughput rate is maximized. A feasible
cyclic hoist schedule should satisfy the following three categories of constraints (Phillips &
Unger, 1976; Liu et al., 2002; Zhou et al., 2012; Zhao et al., 2013a):

• Hoist capacity constraints. Because the hoist can handle at most one part at a time, the
start and end times of hoist moves should be well defined so that no conflict exists in the
use of the hoist at any time.

• Time-window constraints. The actual processing time of each part at each stage should
fall within its prescribed time-window.

• Tank capacity constraints. Each tank cannot handle more parts than its capacity at any
time.

Figure 5.1 illustrates the time-way diagram of a cyclic schedule for a jobshop with W = 6
tanks and R = 2 classes of parts. For this example, M2 is a multi-capacity tank with C2 = 3
processing slots while the others are with single-capacity. At the start of a cycle, two parts of
class 2 are being processed in M2, and one part of class 1 is being processed in M4. During
each cycle, the hoist successively executes the moves in the following order: O1,0, O1,4, O1,1,
O2,2, O1,5, O2,0, O2,3, O1,6, O2,1, O1,2, O2,4, and O1,3. Note that with move O2,2, the hoist will
unload a part of class 2 that is being processed at the start of the cycle. Note also that this part
was being processed in the tank over the entire previous cycle and was unloaded from M0 in
an even earlier cycle. With move O2,1, the hoist unloads the part (of class 2) from M1 and
transports it to M2. Later on, this part will be processed in M2 until the end of the current
cycle, and for the entire next cycle. During each cycle, one part of class 2 is processed in
M2 during the entire cycle. This part is unloaded from M0 in the previous cycle and will be
loaded into M7 in the next cycle. Among all the stages, the processing of any part of class 2 in
M2 (i.e., stage S2,2) is longer than the cycle time T , while that for any other stage is less than
the cycle time.

5.3 Problem formulation

In this section, we formulate an MILP model for the studied cyclic jobshop hoist scheduling
problem by addressing its hoist capacity constraints, time-window constraints and tank capacity
constraints, respectively.

5.3.1 Hoist capacity constraints

Since the hoist can handle at most one part at a time, it should not be required to handle
another part when it is holding one. In other words, for any pair of moves Or,i, 1 ≤ r ≤ R,
0 ≤ i ≤ Nr , and Ou, j , 1 ≤ u ≤ R, 0 ≤ j ≤ Nu, either move Or,i is executed before move Ou, j ,
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Figure 5.1: Illustration of a schedule with two classes of parts

or the opposite. Furthermore, after a move is completed, the hoist should have enough time to
travel from the tank where it loads the part to the tank at which the next move will start. The
requirements can be formulated as constraint (5.3) and (5.4) (Phillips & Unger, 1976; Liu
et al., 2002; Leung et al., 2004; Zhou et al., 2012).

su, j − sr,i ≥ Dr,i + EVr,i+1,Vu, j − M
(
1 − yr,i,u, j

)
,

∀1 ≤ r, u ≤ R, 0 ≤ i ≤ Nr, 0 ≤ j ≤ Nu; r , u or i , j . (5.3)

yr,i,u, j + yu, j,r,i = 1,

∀1 ≤ r, u ≤ R, 0 ≤ i ≤ Nr, 0 ≤ j ≤ Nu; r , u or i , j . (5.4)

As mentioned before, the start time of move O1,0 is set as the start point of the cycle.
Furthermore, any other move in the cycle must be executed after O1,0 is completed. In addition,
after the final move in the cycle is completed, the hoist should have enough time to travel back
to the input station M0 to execute the first move of the next cycle. These requirements can be
represented by constraints (5.5)–(5.7), respectively.

s1,0 = 0. (5.5)

sr,i ≥ D1,0 + EV1,1,Vr,i, ∀1 ≤ r ≤ R, 0 ≤ i ≤ Nr ; r , 1 or i , 0. (5.6)

T ≥ sr,i + Dr,i + EVr,i+1,0, ∀1 ≤ r ≤ R, 0 ≤ i ≤ Nr . (5.7)

5.3.2 Time-window constraints

Time-window constraints ensure that the actual processing time of each part at each stage is
within its prescribed time-window. For any single-capacity tank, all the stages processed in it
will share its single processing slot. However, for a multi-capacity tank, each stage may be
processed in any of its processing slots, and multiple stages may be simultaneously processed
in it during a cycle. Accordingly, the processing of a stage may start and end during the same
cycle or in different cycles; and its processing time may vary depending on these situations.
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The main difficulty comes from the fact that the actual processing time of any stage Sr,i,
denoted as tr,i, 1 ≤ r ≤ R, 0 ≤ i ≤ Nr , may be longer than the cycle time T . We introduce a
binary variable zr,i,k which is equal to 1 if and only if tr,i is within time interval [kT, (k + 1)T)
and is equal to 0 otherwise, where k is an integer.

We first determine the range of k. It is obvious that k ≥ 0. Consider now its upper limit.
If zr,i,k = 1, tr,i ∈ [kT, (k + 1)T). When move Or,i−1 loads a part (of class r) into Vr,i for its ith

stage (stage Sr,i) during a cycle, this stage will be still uncompleted k cycles later. Conversely,
due to the cyclic nature, at time sr,i−1 during the cycle, the parts of class r loaded into Vr,i by
move Or,i−1 up to k cycles earlier (i.e., those loaded after time sr,i−1 − kT) are still in process
for their ith stages. There are k such parts, since exactly one such part is loaded into Vr,i in
each cycle, and each of them occupies a processing slot. Therefore, when move Or,i−1 starts in
a cycle, exactly k processing slots are occupied by parts of class r for their ith stages. On the
other hand, for Or,i−1 to be able to start, there must be at least one processing slot available.
As a consequence, we must have k ≤ CVr,i − 1. The following constraint (5.8) is the result of
the range of k and the definition of zr,i,k’s.

CVr,i
−1∑

k=0
zr,i,k = 1, ∀1 ≤ r ≤ R, 1 ≤ i ≤ Nr . (5.8)

In particular, equation (5.8) is a consistency constraint ensuring that tr,i is within exactly
one of the disjoint intervals

{
[kT, (k + 1)T) | k = 0, 1, . . . ,

(
CVr,i − 1

)}
.

We now establish the relation between the processing time of a stage and the decision
variables. Before proceeding, let h be such that tr,i ∈ [hT, (h + 1)T). In other words, relation
(5.9) must hold.

h =
⌊ tr,i

T

⌋
=

CVr,i
−1∑

k=0
kzr,i,k . (5.9)

By definition, stage Sr,i of a part starts at time sr,i−1 + Dr,i−1 and finishes at time sr,i + lT

for some nonnegative integer l. In other words, sr,i−1 + Dr,i−1 + tr,i = sr,i + lT or equivalently,

tr,i = sr,i −
(
sr,i−1 + Dr,i−1

)
+ lT . (5.10)

According to equality (5.10) and the definition of h, we can obtain relation (5.11).

h =
⌊ tr,i

T

⌋
= l +

⌊
sr,i −

(
sr,i−1 + Dr,i−1

)
T

⌋
. (5.11)

By definition, if yr,i−1,r,i = 1, from constraints (5.3), (5.6) and (5.7), we can obtain relation
(5.12).

0 ≤ sr,i −
(
sr,i−1 + Dr,i−1

)
< sr,i < T . (5.12)

Therefore, relations (5.4), (5.11) and (5.12) can lead to relation (5.13).

h =
⌊ tt,i

T

⌋
= l +

⌊
sr,i −

(
sr,i−1 + Dr,i−1

)
T

⌋
= l = l + yr,i−1,r,i − 1 = l − yr,i,r,i−1. (5.13)
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Coupling relations (5.9) and (5.13), we can obtain equality (5.14).

l =
CVr,i

−1∑
k=0

kzr,i,k − yr,i−1,r,i + 1 =
CVr,i

−1∑
k=0

kzr,i,k + yr,i,r,i−1. (5.14)

Similarly, we can show that equality (5.14) also holds if yr,i−1,r,i = 0. Relations (5.10)
and (5.14) imply that the time-window constraints are equivalent to the following nonlinear
constraint (5.15).

Lr,i ≤ sr,i −
(
sr,i−1 + Dr,i−1

)
+

©«
CVr,i

−1∑
k=0

kzr,i,k − yr,i−1,r,i + 1ª®¬T ≤ Ur,i . (5.15)

With linearizing methods, constraint (5.15) can be formulated as linear constraints
(5.16)–(5.19).

sr,i − sr,i−1 − Dr,i−1 + kT ≥ Lr,i − M
(
2 − yr,i−1,r,i − zr,i,k

)
,

∀1 ≤ r ≤ R, 1 ≤ i ≤ Nr, 0 ≤ k ≤ CVr,i − 1. (5.16)

sr,i − sr,i−1 − Dr,i−1 + kT ≤ Ur,i + M
(
2 − yr,i−1,r,i − zr,i,k

)
,

∀1 ≤ r ≤ R, 1 ≤ i ≤ Nr, 0 ≤ k ≤ CVr,i − 1. (5.17)

sr,i − sr,i−1 − Dr,i−1 + (k + 1)T ≥ Lr,i − M
(
1 + yr,i−1,r,i − zr,i,k

)
,

∀1 ≤ r ≤ R, 1 ≤ i ≤ Nr, 0 ≤ k ≤ CVr,i − 1. (5.18)

sr,i − sr,i−1 − Dr,i−1 + (k + 1)T ≤ Ur,i + M
(
1 + yr,i−1,r,i − zr,i,k

)
,

∀1 ≤ r ≤ R, 1 ≤ i ≤ Nr, 0 ≤ k ≤ CVr,i − 1. (5.19)

In particular, tr,i is correctly defined for the case yr,i−1,r,i = 1 by constraints (5.16) and
(5.17), and for the case yr,i−1,r,i = 0 by constraints (5.18) and (5.19).

5.3.3 Tank capacity constraints

As for tank capacity constraints, each tank cannot handle more parts than its capacity at any
time. As the start and end times of the stages are determined by their associated moves,
the hoist moves should be well scheduled so that the parts processed in a tank should never
exceeds its capacity at any time. This requirement is equivalent to the following two families
of constraints:

WCC1: For each tank Mw, 1 ≤ w ≤ W , at most Cw parts are being processed in it at the
start/end point of each cycle.

WCC2: During each cycle, at the moment any move Or,i−1, 1 ≤ r ≤ R, 1 ≤ i ≤ Nr , loads
a part into Vr,i, at least one empty processing slot of Vr,i is available.

The sufficiency of the above two families of constraints for ensuring tank capacities to be
respected is obvious because they ensure there are enough processing slots to handle parts at
the beginning of a cycle (the first family of constraints WCC1) and at any moment a part is
loaded till the end of the cycle (the second family of constraints WCC2).
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Figure 5.2: The use of processing slots of Vr,i by stage Sr,i

We first deal with constraints WCC1. To formulate these constraints, we should know the
number of parts being processed (i.e, the number of processing slots occupied by parts) in
each tank at the beginning of a cycle. Let φw be the number of parts being processed in Mw at
the beginning of a cycle. It is obvious that φw ≥ 0. Thus, the first family of constraints can be
formulated as (5.20).

0 ≤ φw ≤ Cw, ∀1 ≤ w ≤ W . (5.20)

The value of φw can be calculated by first determining the number of parts of each class
r being processed in Mw and then summing these numbers up. As multi-function tanks
are visited by some parts more than once, the parts of each class r, 1 ≤ r ≤ R, may be
processed in the same tank for different stages. In a tank, some parts of class r are processed
for their ith stage while some other parts of the same class are processed for stages. Thus
in order to calculate φw, we first determine how many parts of each class r, 1 ≤ r ≤ R, are
being processed in Mw for their ith stage at the start point of a cycle, and then obtain φw by
considering all stages of the parts of each class.

For any part of class r , 1 ≤ r ≤ R, and any stage index i, 1 ≤ i ≤ Nr , such that Vr,i = Mw,
we should determine how many parts of class r are being processed in Vr,i for their ith stages
at the start point of a cycle. In fact, the number l defined in relation (5.14) gives this number,
as illustrated in Figure 5.2. As analyzed above, if tr,i is within [kT, (k + 1)T) for some k, i.e.,
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zr,i,k = 1, k parts of class r are being processed in Vr,i for their ith stages at the moment move
Or,i−1 loads a part in Vr,i during a cycle.

If yr,i−1,r,i = 0, move Or,i is executed before this Or,i−1 and has moved a part (of class r)
away from Vr,i after the its ith stage is completed, thus there are k + 1 (which is also equal to
k − yr,i−1,r,i +1) parts of class r being processed for their ith stages at the beginning of the cycle.
Note that moves Or,i−1 and Or,i may operate on the same processing slot (see Figure 5.2(a)) or
different processing slots (see Figure 5.2(b)).

Similarly, if yr,i−1,r,i = 1, no part of class r being processed for its ith stage is removed
from Vr,i in a cycle before Or,i−1 because move Or,i is executed after this Or,i−1, thus there
are also k (which is also equal to k − yr,i−1,r,i + 1) parts of class r being processed for their
ith stages at the beginning of the cycle. Note that moves Or,i−1 and Or,i necessarily operate
on different processing slots if zr,i,0 = 0 (see Figure 5.2(c)) and the same processing slot if
zr,i,0 = 1 (see Figure 5.2(d)).

In either cases, relation (5.14) correctly defines the number of parts (of class r) being
processed in Vr,i for their ith stages at the start point of a cycle. Therefore, φw can be calculated
with equality (5.21) by considering all stages of the parts of each class processed in Mw.

φw =
∑

Sr,i∈Qw

(
Cw−1∑
k=0

kzr,i,k − yr,i−1,r,i + 1

)
, ∀1 ≤ w ≤ W . (5.21)

By substituting (5.21) into (5.20), the first family of tank capacity constraints WCC1 can
be formulated as (5.22).

0 ≤
∑

Sr,i∈Qw

(
Cw−1∑
k=0

kzr,i,k − yr,i−1,r,i + 1

)
≤ Cw, ∀1 ≤ w ≤ W . (5.22)

We now deal with the second family of constraints WCC2 that guarantees at least one
empty processing slot of Vr,i is available for the part loaded by each move Or,i−1, 1 ≤ r ≤ R,
0 ≤ i ≤ Nr . To this end, we should know how many processing slots of Vr,i are occupied
at this moment. Let φ1

r,i and φ2
r,i denote the number of parts that have been loaded into Vr,i

before move Or,i−1 within a cycle and the number of parts unloaded from Vr,i before move
Or,i−1 within a cycle, respectively. Recall that the number of parts being processed in Vr,i

at the beginning of a cycle, φVr,i , can be calculated by equation (5.21). Thus at the moment
move Or,i−1 loads a part (of class r) into Vr,i, the number of occupied processing slots can be
formulated as φVr,i + φ

1
r,i − φ

2
r,i. It is worth noting that no other parts can be unloaded from

or loaded into Vr,i when the hoist is performing move Or,i−1, i.e., between the start and end
times of move Or,i−1. The number of of processing slots occupied must be less than or equal
to CVr,i − 1. Of course, the number of processing slots occupied must be nonnegative. Thus,
the second family of tank capacity constraints WCC2 can be formulated as (5.23).

0 ≤ φVr,i + φ
1
r,i − φ

2
r,i ≤ CVr,i − 1, ∀1 ≤ r ≤ R, 1 ≤ i ≤ Nr . (5.23)
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To implement constraint (5.23), the values of φ1
r,i and φ2

r,i should be determined. We first
derive the value of φ1

r,i. For this purpose, we are interested in the parts loaded into Vr,i before
move Or,i−1. Any move Ou, j−1, 1 ≤ u ≤ R, 1 ≤ j ≤ Nu, such that Vu, j = Vr,i and u , r or
j , i, loads a part (of class u) into Vr,i before move Or,i−1 if and only if yu, j−1,r,i−1 = 1. As a
result, φ1

r,i can be calculated by equation (5.24).

φ1
r,i =

∑
Su, j∈QVr,i

\{Sr,i}

yu, j−1,r,i−1, ∀1 ≤ r ≤ R, 1 ≤ i ≤ Nr . (5.24)

Similarly, φ2
r,i can be calculated by equation (5.25). Note that equation (5.25) is achieved

under the assumption that any two consecutive stages of the same part cannot be processed in
the same tank.

φ2
r,i =

∑
Su, j∈QVr,i

yu, j,r,i−1, ∀1 ≤ r ≤ R, 1 ≤ i ≤ Nr . (5.25)

By substituting equations (5.21), (5.24) and (5.25) into inequality (5.23), the second family
of tank capacity constraints can be formulated as (5.26).

0 ≤
∑

Su, j∈QVr,i

©«
CVr,i

−1∑
k=0

kzu, j,k + yu, j,u, j−1 − yu, j,r,i−1
ª®¬ +

∑
Su, j∈QVr,i

\{Sr,i}

(
yu, j−1,r,i−1

)
≤ CVr,i − 1,

∀1 ≤ r ≤ R, 1 ≤ i ≤ Nr . (5.26)

We now demonstrate that with constraint (5.26), the first family of tank capacity constraints
(5.22) is respected automatically (i.e., becomes redundant). With constraint (5.26), the number
of parts being processed at the start of a cycle is no more than Cw for any tank Mw. This can
be explained by the fact that the same number of parts are processed in this tank at the start
and end points of a cycle. At the moment the last loaded move in a cycle loads a part into tank
Mw, constraint (5.26) ensures that at most Cw − 1 parts are processed in Mw. After this loaded
move is completed, at most Cw parts are processed in Mw. No other part will be loaded into
Mw in the remaining of the cycle; thus at most Cw parts are being processed in Mw at the end
(i.e., start) point of each cycle.

As a consequence, the function of constraint (5.26) is two-fold. First, it ensures that at
least one empty processing slot of Vr,i is available at the moment when move Or,i−1 loads
a part into the tank during each cycle. Second, it also ensures that at most CVr,i parts are
being processed in Vr,i at the start point of each cycle. This means the second family of tank
capacity constraints is a necessary and sufficient condition for ensuring the tank capacity to
be respected. In spite of this, constraint (5.22) can still be used to tighten the model.

Note that we did not distinguish single-capacity and multi-capacity tanks in the above
analysis. Constraints (5.22) and (5.26) are obviously valid for single-capacity tanks. Never-
theless, we further analyze the properties of single-capacity tanks, and formulate a set of valid
constraints.

For any single-capacity tank, all stages processed in it use the unique processing slot. No
potential conflict in the use of the tank is equivalent to saying that any pair of stages processed
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Figure 5.3: The use of workstation Vr,i when yr,i−1,r,i = yu, j−1,u, j = 1
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Figure 5.4: The use of workstation Vr,i when yr,i−1,r,i , yu, j−1,u, j

in it have no overlap during their processing durations, which can be formulated as constraint
(5.27).

yr,i−1,r,i + yu, j−1,u, j + yr,i,u, j−1 + yu, j,r,i−1 = 3,

∀1 ≤ r, u ≤ R, 1 ≤ i ≤ Nr, 1 ≤ j ≤ Nu; r , u or i , j; Vr,i = Vu, j . (5.27)

From constraint (5.22), for any pair of stages Su, j and Sr,i such that Vr,i = Vu, j and CVr,i = 1,
at least one of yu, j−1,u, j and yr,i−1,r,i must be equal to 1.

If yu, j−1,u, j = yr,i−1,r,i = 1, both stages Su, j and Sr,i start and end at the same cycle. For there
to be no overlap, either stage Su, j starts after the completion of stage Sr,i (i.e., yr,i,u, j−1 = 1 and
yu, j,r,i−1 = 0, see Figure 3(a)), or Sr,i starts after the completion of stage Su, j (i.e., yu, j,r,i−1 = 1
and yr,i,u, j−1 = 0, see Figure 3(b)). In other words, equality (5.27) must hold for this case.

If either yu, j−1,u, j or yr,i−1,r,i is equal to 1, we consider only the case where yu, j−1,u, j = 1
and yr,i−1,r,i = 0 (see Figure 4(a)), since the opposite case where yu, j−1,u, j = 0 and yr,i−1,r,i = 1
(see Figure 4(b)) is symmetric and can be analyzed similarly. In this case, stage Su, j starts and
ends at the same cycle but stage Sr,i starts at the previous cycle. As a consequence, stage Su, j

has to start after the completion of stage Sr,i (i.e., yr,i,u, j−1 = 1) but end before the start of the
ith stage of the next part of class r (i.e., yu, j,r,i−1 = 1). Once again, equality (5.27) must hold
in this case.

Note that constraint (5.27) is similar to the formulation for cyclic hoist scheduling problem
with a single part-type (Liu et al., 2002). Nevertheless, equation (5.27) is more compact than
the inequality established in Liu et al. (2002).
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Furthermore, the decision variables should satisfy their definitions (5.28)–(5.30).

sr,i ≥ 0, ∀1 ≤ r ≤ R, 0 ≤ i ≤ Nr . (5.28)

yr,i,u, j ∈ {0, 1} , ∀1 ≤ r, u ≤ R, 0 ≤ i ≤ Nr, 0 ≤ j ≤ Nu. (5.29)

zr,i,k ∈ {0, 1} , ∀1 ≤ r ≤ R, 1 ≤ i ≤ Nr, 0 ≤ k ≤ CVr,i − 1. (5.30)

With the above analysis, the cyclic jobshop hoist scheduling with multi-function and
multi-capacity tanks can be formulated as follows.
P:

Minimize T (5.31)

Subject to:
Hoist capacity constraints: (5.3)–(5.7).
Time-window constraints: (5.8) and (5.16)–(5.19).
Tank capacity constraints: (5.22) and (5.26).
Valid inequality for single-capacity tanks: (5.27).
Variable definitions: (5.28)–(5.30).

5.4 Computational results

In this section, the proposed MILP model is evaluated on a series of numerical instances. We
first give an illustrative instance to demonstrate how it is handled by the model. The time-way
diagram of an optimal schedule for the instance is presented. To further validate the model, a
set of randomly generated instances are constructed. The effects of the number of parts in an
MPS, the number of multi-capacity tanks, and the hoist speed are evaluated. All instances
are solved by ILOG CPLEX (Version 12.6.2) with default parameters. All experiments are
conducted on a personal computer with 3.2 GHz CPU and 8.0 GB RAM.

5.4.1 An illustrative instance

The production line consists of W = 12 processing tanks, an input station and an output station.
Each MPS contains R = 3 different parts, denoted by part 1, part 2, and part 3, with N1 = 12,
N2 = 8 and N3 = 8 stages, respectively. The other problem data is given in Table 5.2. Tanks
M2, M7, M8 are multi-capacity ones with C2 = 2, C7 = 3, C8 = 2, respectively, while the other
tanks are with single-capacity. The hoist travel times and move times are given as follows,
Ei,i+1 = 2, and Ei, j = E j,i =

∑ j−1
k=i Ek,k+1 for 0 ≤ i < j ≤ W + 1; Dr,i = EVr,i,Vr,i+1 + 20 for all

1 ≤ r ≤ R, 0 ≤ i ≤ Nr .
For this instance, the required processing times for the stages processed in M2, M7, M8 are

longer than that in other tanks, especially the three stages processed in tank M7. To handle
these stages effectively, the corresponding tanks are with multi-capacity ones as given before.
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Table 5.2: Input data for the illustrative instance

i 1 2 3 4 5 6 7 8 9 10 11 12

V1,i 1 2 3 4 5 6 7 8 9 10 11 12
L1,i 30 150 60 60 30 40 350 90 70 45 60 30
U1,i 60 350 90 120 75 120 800 160 200 90 120 80
V2,i 1 2 4 5 7 8 11 12 – – – –
L2,i 30 130 30 40 420 50 90 70 – – – –
U2,i 50 280 70 90 850 120 160 200 – – – –
V3,i 1 3 5 7 8 9 10 12 – – – –
L3,i 30 80 40 300 50 90 90 70 – – – –
U3,i 50 220 90 550 120 150 160 200 – – – –

Solving this instance with the proposed MILP model, we can obtain the optimal cycle time
T = 1005 and its corresponding cyclic schedule as illustrated in Figure 5.5.

In Figure 5.5, the start and end times of a hoist move are labeled at its two ends of the
corresponding solid arrow line, respectively. We can see that for each multi-capacity tank,
multiple parts are processed simultaneously at some time instants, and the number of these
parts does not exceed its capacity at any time. We demonstrate this by taking tank M7 for an
example. At the start point of a cycle, there are two parts being processed in M7, and an empty
processing slot is available. This empty processing slot is occupied since part 3 is loaded into
it at time instant 372. From now on, as all three processing slots of M7 are occupied, and no
part can enter it unless some part is unloaded from it. In the remaining of the cycle, two parts
are unloaded from M7 at time instants 452 and 476, respectively; and two parts are loaded
into the tank at time instants 704 and 742, respectively. Note that the two unloaded parts
arrived at M7 in previous cycle, and the two loaded parts will be unloaded from the tank in the
subsequent cycle. After the part loaded at time 372 is unloaded at time 843, tank M7 will
keep this state until the end of the current cycle.

Note that the optimal cycle time for the problem without parallel processing slots is 1222.
This shows that applying parallel processing slots leads to 17.76% reduction of the cycle time.
This can be partially explained by the processing of the stages in tank M7 as demonstrated
above. The three stages processed in tank M7, S1,7, S2,5, and S3,4, have long processing times
compared to other stages, and the sum of the lower bounds of the time-windows of the three
stages, which is L1,7 + L2,5 + L3,4 = 1070, is longer the optimal cycle time T = 1005. With
a multi-capacity tank, three processing slots are used to handle these stages. This allows
multiple stages to be processed simultaneously during the cycle. As a results, a hoist schedule
with a shorter cycle time is obtained.



5.4. Computational results 85

0 time
 0

1

2

3

4

5

6

7

8

9

10

11

12

13

22 78

90
322

344 424

446 506

528 560

582 682

704476

498
654

676
746

768 813

835 899

957911

242

264 300

322
534

558 626

648 718

742452

474

612

586

770

792
873

104

126
156

180
268

292
348

372 843

865 929

951
38

60 195

219
382

895 979404

Tanks

loaded hoist move unloaded hoist move part processing

1005

Figure 5.5: An optimal schedule for the illustrative example

5.4.2 Randomly generated instances

Furthermore, a set of random instances are generated to evaluate the proposed model. Let
U(a, b) represents an integer located in the closed interval [a, b] and derived by a uniform
distribution.

We first generate a production line with W processing tanks, an input station and an output
station. The unloaded hoist travel time between two adjacent tanks is set as Ei,i+1 ∈ {2, 4},
and Ei, j = E j,i =

∑ j−1
k=i Ek,k+1, 0 ≤ i < j ≤ W + 1. For each part r , 1 ≤ r ≤ R, the number of

stages is set as Nr = U(W
2 ,W). For each stage Sr,i, its associated tank is set as Vr,i = U(1,W)

such that Vr,i , Vr,i+1. The time required for executing move Or,i is Dr,i = EVr,i,Vr,i+1 + 20.
The time-window for stage Sr,i is generated by randomly selecting one of the following
three sets: (1) Lr,i = U(30, 70) and Ur,i = U

(
1.2Lr,i, 1.5Lr,i

)
; (2) Lr,i = U(50, 90) and

Ur,i = U(1.5Lr,i, 2Lr,i); and (3) Lr, i = U(90, 150) and Ur,i = U
(
2Lr,i, 4Lr,i

)
.

Let P denote the number of multi-capacity tanks. To balance the workloads among the
tanks, we choose P tanks with the heaviest workload as multi-capacity tanks. The workload
of tank Mw is evaluated by the following equation.

W Lw =
∑

Sr,i∈Qw

(
Dr,i−1 + Dr,i + Lr,i +Ur,i

)
The workload is set by taking into account the number of stages processed in a tank,
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measured by item (Dr,i−1 + Dr,i), and the required processing time for the stages, measured by
item (Lr,i +Ur,i).

For each W ∈ {6, 8, 10, 12, 14, 16, 18, 20}, R ∈ {2, 3, 4} and P ∈ {1, 2, 3}, the instances are
generated by the following way. For each multi-capacity tank Mw, its capacity is determined
by Cw = U(2, 3). To evaluate the effects of Cw, let T0 be the cycle time for the corresponding
instances with Cw = 1 for all 1 ≤ w ≤ W . For each combination of W , R, P, denoted as
(W, R, P), and Ei,i+1, ten instances are generated. There are in total 1440 instances for the test.

The computational results of the random tests are summarized in Table 5.3. The presented
results are the average values of the ten instances for each combination of W , R, P and Ei,i+1.
In this table, #Move represents the average number of moves to be scheduled, and #Cons and
#Vars stand for the average numbers of constraints and variables, respectively. They measure
the size of the instances. For the computational performance, T gives the average cycle time of
the ten instances, I presents the ratio of the average cycle times for instances with and without
multi-capacity tanks (I = T

T0
× 100%), #Node represents the average number of nodes explored

in the solution procedure, and #Time gives the average CPU computation time measured in
seconds.

Table 5.3: Computational results for random instances

(W, R, P) #Move #Cons #Vars
Ei,i+1 = 2 Ei,i+1 = 4

T I(%) #Node #Time T I (%) #Node #Time

(6, 2, 1) 10.6 315.4 128.9 355.0 85.05% 140.4 0.17 483.7 89.03% 108.3 0.23
(6, 2, 2) 10.6 325.8 131.5 344.6 82.56% 393.2 0.20 471.1 86.71% 223.5 0.19
(6, 2, 3) 10.6 335.0 133.8 325.4 77.96% 1305.6 0.27 460.7 84.80% 627.6 0.22
(6, 3, 1) 16.4 669.8 291.7 597.4 86.78% 897.9 0.49 809.4 89.90% 757.0 0.46
(6, 3, 2) 16.4 693.0 297.5 536.8 77.98% 2727.6 0.85 762.5 84.69% 2245.5 0.67
(6, 3, 3) 16.4 700.6 299.4 523.6 76.06% 3413.6 1.10 736.1 81.76% 2865.6 0.88
(6, 4, 1) 21.1 1055.5 473.1 717.7 82.04% 3002.9 1.77 937.0 86.80% 2639.1 1.73
(6, 4, 2) 21.1 1073.1 477.5 655.1 74.89% 8097.9 3.61 893.4 82.76% 6482.6 3.15
(6, 4, 3) 21.1 1097.1 483.5 630.3 72.05% 59157.8 15.81 851.1 78.84% 15541.7 6.67
(8, 2, 1) 14.0 510.0 215.0 495.6 82.92% 610.0 0.75 724.3 87.76% 626.4 0.75
(8, 2, 2) 14.0 525.6 218.9 469.6 78.57% 2049.0 1.02 696.0 84.33% 1403.8 0.85
(8, 2, 3) 14.0 535.2 221.3 464.6 77.73% 3500.9 1.30 689.3 83.52% 1891.1 0.92
(8, 3, 1) 22.2 1158.0 519.3 844.7 85.73% 3111.7 1.67 1193.5 92.86% 1927.9 1.26
(8, 3, 2) 22.2 1186.4 526.4 774.7 78.63% 5949.4 2.88 1122.3 87.32% 4581.7 2.00
(8, 3, 3) 22.2 1202.0 530.3 758.8 77.01% 8828.9 4.01 1092.2 84.98% 4239.5 2.24
(8, 4, 1) 26.9 1658.9 758.3 981.7 86.18% 5633.8 4.59 1419.6 89.99% 5828.6 3.08
(8, 4, 2) 26.9 1687.3 765.4 934.3 82.02% 26717.0 10.77 1366.6 86.63% 7631.6 4.77
(8, 4, 3) 26.9 1696.9 767.8 909.9 79.88% 98076.0 37.60 1308.0 82.92% 12859.8 9.43
(10, 2, 1) 16.1 658.5 282.0 575.8 90.62% 2004.9 0.96 961.9 98.18% 938.1 0.82
(10, 2, 2) 16.1 670.9 285.1 565.5 89.00% 3932.0 1.46 945.8 96.54% 1625.0 1.10
(10, 2, 3) 16.1 682.5 288.0 563.7 88.72% 6125.9 1.88 909.8 92.87% 1768.8 1.09
(10, 3, 1) 25.2 1480.6 670.5 965.2 93.09% 9207.1 4.34 1466.0 92.64% 5019.0 2.70
(10, 3, 2) 25.2 1498.6 675.0 939.7 90.63% 14591.1 6.19 1435.4 90.71% 6957.8 3.52
(10, 3, 3) 25.2 1519.4 680.2 916.3 88.38% 52668.4 15.26 1393.5 88.06% 8249.8 4.21
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Table 5.3: Computational results for random instances (continued)

(W, R, P) #Move #Cons #Vars
Ei,i+1 = 2 Ei,i+1 = 4

T I(%) #Node #Time T I (%) #Node #Time

(10, 4, 1) 34.1 2603.7 1210.0 1378.4 95.54% 21908.3 16.90 2137.4 97.06% 8878.0 7.81
(10, 4, 2) 34.1 2631.3 1216.9 1331.7 92.31% 59331.2 35.56 2065.4 93.79% 11240.5 9.66
(10, 4, 3) 34.1 2655.3 1222.9 1289.7 89.39% 513994.0 380.35 2031.0 92.23% 29517.9 22.29
(12, 2, 1) 19.7 951.7 416.7 827.6 96.55% 3717.9 1.54 1328.2 98.61% 1544.1 1.00
(12, 2, 2) 19.7 961.3 419.1 811.7 94.69% 5415.1 2.03 1302.5 96.70% 1937.9 1.09
(12, 2, 3) 19.7 971.7 421.7 807.9 94.25% 6299.2 2.26 1298.9 96.44% 2826.0 1.30
(12, 3, 1) 31.7 2281.1 1050.9 1393.9 93.68% 11809.3 10.07 2265.3 97.00% 5216.4 4.52
(12, 3, 2) 31.7 2301.5 1056.0 1346.0 90.46% 21125.9 17.08 2162.8 92.61% 6643.5 5.88
(12, 3, 3) 31.7 2317.9 1060.1 1307.6 87.88% 59854.4 38.36 2123.0 90.91% 8738.5 7.83
(12, 4, 1) 41.1 3725.5 1752.2 1635.2 93.93% 73278.4 117.40 2585.1 94.10% 12082.7 27.85
(12, 4, 2) 41.1 3761.1 1761.1 1596.3 91.69% 195779.0 186.82 2562.5 93.27% 12469.6 29.80
(12, 4, 3) 41.1 3783.1 1766.6 1571.7 90.28% 253659.0 414.00 2497.3 90.90% 19062.1 49.80
(14, 2, 1) 23.7 1350.5 605.1 1038.5 93.63% 5264.1 2.97 1800.8 99.57% 2239.8 1.58
(14, 2, 2) 23.7 1366.5 609.1 1011.5 91.20% 6949.9 3.38 1769.8 97.85% 2788.0 1.44
(14, 2, 3) 23.7 1378.5 612.1 999.0 90.07% 7217.2 3.65 1749.2 96.72% 3056.7 1.68
(14, 3, 1) 35.7 2846.7 1324.1 1646.1 94.41% 22685.4 22.67 2978.4 99.02% 4795.0 5.38
(14, 3, 2) 35.7 2865.1 1328.7 1623.1 93.09% 78118.0 49.32 2911.3 96.79% 7431.7 6.18
(14, 3, 3) 35.7 2894.3 1336.0 1583.5 90.82% 146645.0 96.17 2821.7 93.81% 9545.9 7.22
(14, 4, 1) 46.7 4733.5 2240.7 2123.1 98.09% 47498.6 153.00 3619.7 98.42% 10700.4 29.70
(14, 4, 2) 46.7 4751.5 2245.2 2074.2 95.83% 210635.0 317.28 3600.1 97.89% 11406.0 38.84
(14, 4, 3) 46.7 4781.1 2252.6 2028.4 93.72% 224323.0 463.17 3514.3 95.55% 12937.7 50.15
(16, 2, 1) 24.1 1371.7 612.9 1201.7 97.80% 3744.7 1.95 2178.5 96.94% 850.4 1.10
(16, 2, 2) 24.1 1386.9 616.7 1188.8 96.75% 4303.2 2.18 2178.5 96.94% 712.0 1.17
(16, 2, 3) 24.1 1400.9 620.2 1185.2 96.46% 5619.5 2.88 2148.9 95.63% 1186.7 1.24
(16, 3, 1) 38.9 3350.3 1564.5 1874.6 97.81% 78734.5 63.30 3278.4 96.64% 7712.4 10.88
(16, 3, 2) 38.9 3370.3 1569.5 1831.8 95.58% 51514.8 61.52 3251.4 95.84% 9396.7 12.60
(16, 3, 3) 38.9 3377.5 1571.3 1816.3 94.77% 64659.3 73.34 3235.2 95.36% 9366.2 10.77
(16, 4, 1) 52.1 5856.9 2782.9 2550.2 96.84% 137367.0 451.27 4389.8 96.59% 14313.5 68.91
(16, 4, 2) 52.1 5877.7 2788.1 2498.0 94.85% 143292.0 633.82 4344.7 95.59% 15415.7 75.22
(16, 4, 3) 52.1 5911.3 2796.5 2438.7 92.60% 426549.0 1237.40 4299.6 94.60% 23967.5 160.11
(18, 2, 1) 32.5 2396.1 1101.0 1812.4 97.11% 7290.6 5.23 3223.4 100.00% 1449.9 1.88
(18, 2, 2) 32.5 2408.9 1104.2 1775.1 95.11% 8944.3 6.04 3223.4 100.00% 1451.8 1.74
(18, 2, 3) 32.5 2426.5 1108.6 1721.6 92.24% 12067.9 7.57 3196.7 99.17% 1896.6 2.22
(18, 3, 1) 42.6 4059.6 1908.1 2207.0 98.76% 49605.9 120.43 3882.3 100.00% 5152.3 13.46
(18, 3, 2) 42.6 4070.8 1910.9 2196.0 98.27% 119411.0 399.04 3857.7 99.37% 6232.9 19.52
(18, 3, 3) 42.6 4099.6 1918.1 2180.8 97.59% 105355.0 334.33 3807.7 98.08% 8539.3 20.83
(18, 4, 1) 60.1 7736.9 3703.1 3186.7 96.51% 65514.5 558.97 5599.5 97.17% 13351.9 109.92
(18, 4, 2) 60.1 7764.5 3710.0 3122.3 94.56% 97491.8 830.16 5523.9 95.86% 10142.1 98.41
(18, 4, 3) 60.1 7797.7 3718.3 3059.6 92.66% 125042.0 971.23 5471.4 94.95% 20796.4 190.40
(20, 2, 1) 30.2 2088.2 950.9 1686.2 98.61% 6849.8 4.67 3003.5 100.00% 1803.6 1.69
(20, 2, 2) 30.2 2099.4 953.7 1659.4 97.05% 6388.7 4.92 2945.1 98.06% 1612.9 1.75
(20, 2, 3) 30.2 2107.8 955.8 1657.9 96.96% 8893.4 5.82 2945.1 98.06% 2486.0 1.92
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Table 5.3: Computational results for random instances (continued)

(W, R, P) #Move #Cons #Vars
Ei,i+1 = 2 Ei,i+1 = 4

T I(%) #Node #Time T I (%) #Node #Time

(20, 3, 1) 47.6 4938.6 2332.4 2809.2 98.12% 50663.7 105.16 4905.1 100.00% 8641.1 14.23
(20, 3, 2) 47.6 4957.4 2337.1 2744.6 95.86% 89069.8 152.34 4834.2 98.55% 8037.6 14.34
(20, 3, 3) 47.6 4979.8 2342.7 2728.5 95.30% 78767.7 221.00 4833.5 98.54% 9619.6 15.44
(20, 4, 1) 64.8 8968.0 4305.7 3659.0 97.78% 132682.0 1724.76 6454.2 98.13% 16765.2 288.30
(20, 4, 2) 64.8 9002.8 4314.4 3606.6 96.38% 213538.0 2647.62 6361.4 96.72% 17722.7 391.62
(20, 4, 3) 64.8 9018.8 4318.4 3572.0 95.45% 382829.0 4689.31 6322.7 96.13% 22505.9 305.05

From Table 5.3, we can see that the average cycle time per each part (T/R) benefits from
multi-capacity tanks. The increase of both R and P can lead to a certain degree of reduction
of the average cycle time per part. In particular, as the value of P increases, which means
the number of multi-capacity tanks increases, it usually yields a shorter cycle time. For the
instances with Ei,i+1 = 4, the increase of P usually leads to a large reduction of the cycle
time when W is less than or equal to 10. However, when W becomes larger, the reduction
becomes less significant. For some cases (see the instances with I = 100%), the increase of P

even has no effect on the cycle time. When Ei,i+1 changes from 4 to 2, which means a much
faster hoist, the situation is improved to some extent. This is because the hoist is becoming
more critical as the number of tanks (W) and the number of moves to be scheduled (#Move)
increase, and a much faster hoist can overcome this bottleneck in some degree. However, such
an improvement is limited as a too fast hoist may reduce the stability of the system in practice.

In particular, as the value of R increases, which usually leads to a larger number of moves
to be scheduled (#Move), it may yields a higher productivity measured by the average cycle
time. A careful analysis demonstrates that the increase of cycle time when R changes from 3
to 4 is relatively small compared with that observed when R changes from 2 to 3. A reasonable
explanation for this is that when R increases, more parts and stages are involved, there is less
probability for the resources to get idle.

For the instances with a high-speed hoist (Ei,i+1 = 2), the number of nodes explored
and the computation time increase accordingly, and this trend becomes more obvious as the
number of moves (#Move) increases. This is because the sequences of the hoist moves that are
infeasible when the hoist is slow become feasible for a faster hoist. As the number of moves
(#Move) increases, the number of feasible sequences of the hoist moves increases sharply.
Note that when W becomes large, which implies a longer production line, the number of
nodes explored and the computation time decrease for some instances. This can be partially
explained as follows. In these situations, the hoist has to serve a large number of tanks and
perform loaded and unloaded moves that span over a long distance. Many sequences of the
hoist moves become infeasible due to the time-window constraints. This means that the hoist
is becoming the bottleneck of the system. However, when the number of moves (#Move)
increases, the solution space becomes larger accordingly. The computation time will be the
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results of the trade-off of the two factors.
Due to the NP-hardness of the problem, the computation time sharply increases as the

size of the problem increases such as the number of parts in an MPS R, the number of moves
(#Move), the number of tanks (W), and the number of multi-capacity tanks (P). However, the
proposed model can, within a reasonable amount of time, solve the scheduling problem with
W = 20 tanks and R = 4 classes of parts, which is very realistic for lines with a single hoist.

Table 5.4: Comparison of the results obtained with and without valid inequalities

(W, R, P)
Ei,i+1 = 2 Ei,i+1 = 4

(W, R, P)
Ei,i+1 = 2 Ei,i+1 = 4

%Node %Time %Node %Time %Node %Time %Node %Time

(6, 2, 1) 81.34% 93.59% 61.22% 75.36% (14, 2, 1) 106.78% 95.69% 96.36% 88.60%
(6, 2, 2) 101.70% 95.19% 80.72% 92.07% (14, 2, 2) 103.71% 108.97% 90.75% 103.30%
(6, 2, 3) 90.14% 95.99% 99.25% 95.76% (14, 2, 3) 113.58% 107.19% 93.15% 97.85%
(6, 3, 1) 65.06% 84.06% 91.62% 97.87% (14, 3, 1) 154.73% 108.06% 107.88% 89.45%
(6, 3, 2) 108.42% 114.60% 90.06% 98.33% (14, 3, 2) 91.64% 91.45% 108.25% 106.84%
(6, 3, 3) 102.19% 91.57% 89.54% 87.96% (14, 3, 3) 78.10% 83.31% 76.09% 98.37%
(6, 4, 1) 59.00% 67.22% 74.16% 76.51% (14, 4, 1) 216.91% 112.85% 135.76% 112.59%
(6, 4, 2) 102.54% 92.49% 94.89% 88.20% (14, 4, 2) 39.07% 69.78% 103.27% 72.18%
(6, 4, 3) 86.82% 86.82% 83.42% 83.33% (14, 4, 3) 127.50% 98.30% 96.36% 78.07%
(8, 2, 1) 84.90% 95.70% 82.01% 93.61% (16, 2, 1) 98.53% 99.92% 73.58% 93.98%
(8, 2, 2) 104.42% 87.71% 95.10% 100.21% (16, 2, 2) 110.58% 106.05% 89.94% 92.26%
(8, 2, 3) 105.52% 104.39% 90.75% 97.98% (16, 2, 3) 108.23% 95.34% 104.52% 114.50%
(8, 3, 1) 62.75% 78.31% 72.37% 90.79% (16, 3, 1) 114.92% 100.32% 98.42% 71.59%
(8, 3, 2) 84.28% 87.01% 72.73% 77.01% (16, 3, 2) 174.21% 118.79% 94.86% 92.77%
(8, 3, 3) 125.73% 114.76% 106.94% 102.54% (16, 3, 3) 171.94% 155.40% 86.27% 101.35%
(8, 4, 1) 88.32% 74.03% 86.99% 92.04% (16, 4, 1) 88.22% 71.39% 78.74% 55.08%
(8, 4, 2) 90.85% 93.59% 92.06% 96.03% (16, 4, 2) 136.61% 100.71% 78.39% 60.87%
(8, 4, 3) 78.06% 104.97% 122.30% 91.01% (16, 4, 3) 272.36% 162.60% 67.39% 51.08%
(10, 2, 1) 104.32% 96.20% 110.84% 97.72% (18, 2, 1) 109.38% 101.67% 101.15% 90.63%
(10, 2, 2) 104.79% 99.41% 94.83% 100.75% (18, 2, 2) 84.08% 88.65% 101.65% 103.41%
(10, 2, 3) 101.48% 97.42% 87.91% 95.80% (18, 2, 3) 97.49% 122.11% 107.90% 94.11%
(10, 3, 1) 90.13% 85.14% 93.83% 96.41% (18, 3, 1) 122.47% 117.71% 106.91% 105.82%
(10, 3, 2) 111.61% 105.17% 94.79% 94.31% (18, 3, 2) 89.43% 87.25% 81.45% 86.95%
(10, 3, 3) 117.66% 117.80% 103.25% 106.91% (18, 3, 3) 97.62% 133.17% 79.88% 102.98%
(10, 4, 1) 94.92% 79.16% 101.23% 84.64% (18, 4, 1) 102.77% 84.76% 113.78% 65.29%
(10, 4, 2) 124.13% 109.77% 98.97% 95.27% (18, 4, 2) 97.51% 95.62% 162.48% 63.97%
(10, 4, 3) 106.91% 117.41% 60.89% 60.65% (18, 4, 3) 223.75% 110.54% 103.07% 52.85%
(12, 2, 1) 104.57% 98.28% 106.48% 100.29% (20, 2, 1) 96.68% 91.63% 95.02% 103.42%
(12, 2, 2) 92.80% 95.99% 96.85% 96.18% (20, 2, 2) 121.80% 95.37% 112.59% 105.06%
(12, 2, 3) 96.96% 95.83% 82.82% 93.83% (20, 2, 3) 75.95% 92.22% 107.59% 103.34%
(12, 3, 1) 144.38% 103.86% 97.67% 83.04% (20, 3, 1) 98.15% 87.44% 66.53% 83.83%
(12, 3, 2) 137.58% 102.62% 114.04% 88.71% (20, 3, 2) 52.45% 85.15% 88.46% 85.14%
(12, 3, 3) 93.49% 89.41% 115.05% 103.25% (20, 3, 3) 143.27% 138.98% 106.80% 140.70%
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Table 5.4: Comparison of the results obtained with and without valid inequalities (continued)

(W, R, P)
Ei,i+1 = 2 Ei,i+1 = 4

(W, R, P)
Ei,i+1 = 2 Ei,i+1 = 4

%Node %Time %Node %Time %Node %Time %Node %Time

(12, 4, 1) 176.60% 87.19% 93.18% 74.12% (20, 4, 1) 81.64% 79.47% 92.18% 77.34%
(12, 4, 2) 77.80% 77.71% 123.84% 100.29% (20, 4, 2) 82.40% 77.96% 166.67% 79.82%
(12, 4, 3) 210.86% 124.01% 193.94% 100.40% (20, 4, 3) 116.39% 82.27% 122.53% 138.91%

To evaluate the influence of the valid inequality (5.27), we also test the above instances
with the model without inequality (5.27). Table 5.4 presents the comparison of the results
obtained with and without valid inequality (5.27). The presented results are the average values
of the ten instances for each combination of (W, R, P) and Ei,i+1. In this table, %Node gives
the ratio of the average numbers of nodes explored during solution procedure of the models
with and without inequality (5.27), and %Time represents the ratio of the average computation
times for the solution procedure of the models with and without inequality (5.27).

Note that in Table 5.4, if the ratio is larger than one, it means that the number of the nodes
or the amount of computation time related to the model without inequality (5.27) is less than
these related to the model with inequality (5.27). For the instances with Ei,i+1 = 2, more than
half of the instances explore a larger number of nodes if inequality (5.27) is involved, and as
for computation time the proportion is about 1/3. This means that the solution procedure with
inequality (5.27) explores more nodes in a shorter time for some instances while in a longer
time for some other instances. Note that a similar phenomenon occurs for the instances with
Ei,i+1 = 4. This can be partially explained as follows. On the one hand, the solver may be able
to generate tighter linear relaxations by implementing inequality (5.27). On the other hand,
with inequality (5.27) the solver has a trend to explore more nodes during the solution because
of these extra constraints. Thus for the instances that more nodes are explored in a shorter time,
the tighter linear relaxations will dominate the total computation time while the increased
number of nodes to explore will play a leading role for the others. Furthermore, a careful
examination demonstrates that the model with inequality (5.27) performs more effective on
the instances with Ei,i+1 = 4 than those with Ei,i+1 = 2. This can be partially explained as
follows. As mentioned above, a high-speed hoist usually implies more feasible sequences
of hoist moves, and the solution space become large as a result. To search for an optimal
solution for the instances with Ei,i+1 = 2, the solver usually explore a large number of nodes.
Therefore, it also has a larger possibility to be affected by the extra constraints introduced by
inequality (5.27).

5.5 Conclusions

In this chapter, we studied the cyclic jobshop hoist scheduling with multi-function and
multi-capacity tanks. An MILP model is developed for the problem. The presence of multiple
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part-types, multi-function tanks and multi-capacity tanks makes the problem more complicated.
To model the problem, we separately addressed its time-window constraints, hoist capacity
constraints and tank capacity constraints. The properties of single-capacity tanks were also
investigated to simplify and tighten the model. An illustrative instance and a set of randomly
generated instances are used to test the effectiveness and efficiency of the proposed model.
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Hoist scheduling problems arise in the surface treating. In this scenario, the material
handling device is a hoist. As the hoist executes all transportation operations between tanks,
it plays an important role in the production. A well planned schedule of the operations can
improve the productivity of the system. The thesis studies several hoist scheduling problems
in basic and extended electroplating lines. We developed MILP models for these problems to
improve the throughput. In this chapter, we first conclude our main research work. Then, we
discuss the limitations of the present research and suggest potentially promising directions for
future research.

6.1 Conclusions

In this research, three types of hoist scheduling problems are investigated: robust optimization
for cyclic hoist scheduling problems, a dynamic jobshop hoist scheduling problem in extended
lines and a cyclic jobshop hoist scheduling problem in extended lines. The main contributions
are summarized as follows.

Chapter 3 studied the robust optimization for a cyclic hoist scheduling problem. The
robustness of a cyclic hoist schedule is defined as its ability to remain feasible in the presence
of perturbations or variations of certain degree in the hoist transportation times. With such

93
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a definition, we proposed a method to measure the robustness in terms of the free slacks in
both loaded and unloaded hoist moves. A bi-objective MILP model was developed, which
aims to simultaneously optimize the cycle time and the robustness. It was proved that the
optimal cycle time strictly increases with the value of the robustness. With this property, the
problem has an infinite number of Pareto optimal solutions. Furthermore, we examined the
lower and upper bounds of these objectives, and derived the ideal and nadir points which
define the region containing the Pareto front. A Pareto optimal solution can be obtained by
solving a single-objective hoist scheduling problem that aims to minimize the cycle time
for a given value of robustness or maximize the robustness for a specific cycle time. It was
also demonstrated that the single-objective HSP that aims to minimize the cycle time for a
given value of robustness can be transformed into a classical HSP with some substitutions.
Computational results on several benchmark instances and randomly generated instances
indicate that the proposed approach can effectively handle the problem.

Chapter 4 examined a dynamic jobshop hoist scheduling problem with multi-function
and multi-capacity tanks. In a general case, a multi-function tank can also be multi-capacity.
The parts to be processed dynamically arrive at the input station. Upon arrival of new parts,
a rescheduling may be triggered to schedule all parts in the system, including the waiting
ones and the uncompleted ones, such that the makespan is minimized. A counterexample
demonstrates that an existing MILP model for a similar problem but without multi-function
tanks may lead to sub-optimality due to the flawed formulation of tank capacity constraints.
To deal with this issue, a new MILP model was developed to generate an optimal reschedule.
The key point is the formulation of capacity constraints for multi-capacity tanks. This was
handled by considering the collision-avoidance constraints for each processing slot of the
tanks. Computational experiments on instances with and without multi-function tanks were
carried out to evaluate the proposed model and compare it with an existing model. The
results indicate that the proposed model can always obtain an optimal solution, while the
existing model may lead to infeasibility for some cases. Furthermore, the proposed model
is more compact and effective than the existing model in terms of both solution quality and
computation time.

Chapter 5 investigated a cyclic jobshop hoist scheduling problem with multi-function and
multi-capacity tanks. Multiple parts of different types are to be processed during a cycle.
An MILP model was developed for the problem by addressing the time-window constraints,
hoist capacity constraints and tank capacity constraints. As for tank capacity constraints,
we equivalently transformed them into two families of constraints which can be separately
addressed. We showed that when one of the families of constraints are satisfied, the other
family of constraints are automatically satisfied. We showed also that the above general
constraints can be simplified and tightened for single-capacity tanks. Computational results
on an illustrative instance and a set of randomly generated instances indicate the effectiveness
and efficiency of the proposed model.
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6.2 Limitations and future research

This thesis focuses on modeling and optimization of three types of hoist scheduling problems
arising in electroplating industry. In what follows, we discuss the limitations of this research
and suggest some further work which seems to be relevant and promising.

(1). The hoist scheduling problems studied in this thesis consider production lines with a
single hoist. However, many production systems, especially large ones, may be quipped
with multiple hoists running on a single track or parallel tracks. With multiple hoists,
several material handling tasks can be executed at the same time. Thus, it is desirable to
consider multi-hoist scheduling in both situations with a single track or parallel tracks.

(2). In the present research, the processing route for each part is fixed and prescribed in advance.
In practice, several alternative processing routes may be available and equivalent from a
technological perspective. The final processing route can be determined by considering
factors such as ease of management and cost efficiency. The availability of alternative
processing routes provides flexibility in the scheduling of the material handling operations.
For example, a specific stage of a part can be handled by one of two tanks located on
different positions, thus the actual processing route of the part can involve either one of
the tanks. This yields two different processing routes for the part.

(3). The main criterion for hoist scheduling problems is the cycle time or makespan. In this
thesis, we also consider the robustness of cyclic schedules. Besides these objectives,
other factors may be important and need to be considered in scheduling. Production
cost is a critical factor that affects the decision-making in production and operations
planning. Several costs, such as energy consumption and loss due to defective parts, can
be considered. Some of the costs are related to material handling operations. Thus, it is
desirable to take these related costs into consideration when dealing with scheduling of
hoist operations.

(4). Most works assume that the resources are continuously available, and no breakdown
happens during the planning horizon. Obviously, it is not the case in reality. Equipment
failures may occur during production. The consequences may be serious if the hoist
device breaks down. In this case, all subsequent tasks will be delayed, and defective parts
may be produced because of the violation of processing time-windows. Furthermore, if a
defective part is detected, it is desirable to be able to remove it from the production as
soon as possible. From this point of view, if a failure occurs, a recovery strategy that
yields the least influence would be of much interest.

(5). Besides electroplating lines, material handling devices are widely used in many other
sectors such as hoists in steel production, cranes in quay scheduling, cluster tools in wafer
fabrication. Similar scheduling problems can be found in these systems. Future work can
adapt the results obtained in the present research to these systems.
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Titre : Modélisation et optimisation des Hoist Scheduling Problems
Mots clés : hoist scheduling, optimisation, programmation linéaire mixte en nombres entiers

Résumé : Dans cette thèse, nous étudions des Hoist Sche-
duling Problems (HSP) qui se posent fréquemment dans
des lignes automatiques de traitement de surface. Dans
ces lignes, des ponts roulants sont utilisés pour transporter
les pièces entre les bains. Ainsi, les ponts roulants jouent
un rôle essentiel dans la performance de ces lignes ; et
un ordonnancement optimal de leurs mouvements est un
facteur déterminant pour garantir la qualité des produits et
maximiser la productivité. Les lignes que nous étudions
comportent un seul pont roulant mais peuvent être des
lignes de base ou des lignes étendues (où des bains sont à
fonctions et/ou capacités multiples). Nous examinons trois
Hoist Scheduling Problems : l’optimisation robuste d’un
HSP cyclique, l’ordonnancement dynamique d’une ligne
étendue de type job shop et l’ordonnancement cyclique
d’une telle ligne.
Pour l’optimisation robuste d’un HSP cyclique, nous dé-
finissons la robustesse comme la marge dans le temps
de déplacement du pont roulant. Nous formulons le pro-
blème en programmation linéaire en nombres mixtes à
deux objectifs pour optimiser simultanément le temps de
cycle et la robustesse. Nous démontrons que le temps de
cycle minimal augmente avec la robustesse, et que par
conséquent la frontière Pareto est constituée d’une infinité
de solutions. Les valeurs minimales et maximales des deux

objectifs sont établies. Les résultats expérimentaux à par-
tir de benchmarks et d’instances générées aléatoirement
montrent l’efficacité de l’approche proposée.
Nous étudions ensuite un problème d’ordonnancement
dynamique dans une ligne étendue de type job shop. Nous
mettons en évidence une erreur de formulation dans une
un modèle existant pour un problème similaire mais sans
bains multi-fonctions. Cette erreur peut rendre l’ordon-
nancement obtenu sous-optimal voire irréalisable. Nous
construisons un nouveau modèle qui corrige cette erreur.
De plus il est plus compact et s’applique au cas avec des
bains à la fois à capacités et à fonctions multiples. Les
résultats expérimentaux menés sur des instances avec ou
sans bains multi-fonctions montrent que le modèle proposé
conduit toujours à une solution optimale et plus efficace
que le modèle existant.
Nous nous focalisons enfin sur l’ordonnancement cyclique
d’une ligne étendue de type job shop avec des bains à fonc-
tions et capacités multiples. Nous construisons un modèle
mathématique en formulant les contraintes de capacité du
pont roulant, les intervalles des durées opératoires, et les
contraintes de capacité des bains. Nous établissons égale-
ment des contraintes valides. Les expériences réalisées sur
des instances générées aléatoirement montrent l’efficacité
du modèle proposé.
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Abstract: This thesis studies hoist scheduling problems
(HSPs) arising in automated electroplating lines. In such
lines, hoists are often used for material handing between
tanks. These hoists play a crucial role in the performance
of the lines and an optimal schedule of the hoist operations
is a key factor in guaranteeing product quality and maxi-
mizing productivity. We focus on extended lines (i.e. with
multi-function and/or multi-capacity tanks) with a single
hoist. This research investigates three hoist scheduling
problems: robust optimization for cyclic HSP, dynamic
jobshop HSP in extended lines and cyclic jobshop HSP in
extended lines.
We first study the robust optimization for a cyclic HSP. The
robustness of a cyclic hoist schedule is defined in terms
of the free slacks in hoist traveling times. A bi-objective
mixed-integer linear programming (MILP) model is de-
veloped to optimize the cycle time and the robustness
simultaneously. It is proved that the optimal cycle time
strictly increases with the robustness, thus there is an
infinite number of Pareto optimal solutions. We estab-
lished lower and upper bounds of these two objectives.
Computational results on several benchmark instances and
randomly generated instances indicate that the proposed

approach can effectively solve the problem.
We then examine a dynamic jobshop HSP with multi-
function and multi-capacity tanks. We demonstrate that
an existing model for a similar problem can lead to sub-
optimality. To deal with this issue, a new MILP model is
developed to generate an optimal reschedule. It can handle
the case where a multi-function tank is also multi-capacity.
Computational results on instances with and without multi-
function tanks indicate that the proposed model always
yields optimal solutions, and is more compact and effective
than the existing one.
Finally, we investigate a cyclic jobshop HSP with multi-
function and multi-capacity tanks. An MILP model is
developed for the problem. The key issue is to formu-
late the time-window constraints and the tank capacity
constraints. We adapt the formulation of time-window
constraints for a simpler cyclic HSP to the jobshop case.
The tank capacity constraints are handled by dealing with
the relationships between hoist moves so that there is
always an empty processing slot for new parts. Computa-
tional experiments on numerical examples and randomly
generated instances indicate that the proposed model can
effectively solve the problem.
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