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Titre : Convergence Benjamini-Schramm des variétés localement symétriques

Mots Clefs : Espaces localement symétriques, groupes arithmétiques, théorie des représenta-
tions, marches aléatoires

Résumé : Le sujet principal de ce mémoire est le comportement asymptotique de la géométrie et
topologie des variétés localement symétriques I'\ X quand Vol(T'\X) — co. Notre premier résultat
porte sur la convergence Benjamini-Schramm des 2 ou 3-variétés hyperboliques arithmétiques.
Une suite d’espaces localement symétriques (I',,\X) converge Benjamini-Schramm vers ’espace

% = 0, ot (IT'\X)<g est la partie
R-mince de 'espace I'\X. On montre qu'il existe une constante réelle C' = Cp satisfaisant la
propriété suivante: pour chaque réseau arithmétique de congruence I' de PGL(2,R) ou PGL(2, C)

sans torsion on a

symétrique X si pour chaque R > 0 on a lim,_,

Vol((IM\X)<r) < CrVol(I'\ X)%9%6. (0.1)
Il n’'y a qu'un nombre fini de réseaux arithmétiques de covolume borné par une constante donc
ce résultat implique la convergence Benjamini-Schramm pour des variétés arithmétiques de con-
gruence. On donne aussi une version de (0.1) un peu plus faible qui reste vraie pour des réseaux
arithmétiques qui ne sont pas de congruence. Les majorations de volume de la partie R-mince
sont déduites d’une version forte de la propriété de la multiplicité limite satisfaite par les réseaux
arithmétiques de PGL(2,R) et PGL(2,C). En utilisant nos résultats on confirme la conjecture de
Gelander pour des 3-variétés arithmétiques hyperboliques: pour chaque telle variété M on con-
struit un complexe simplicial N" homotope & M dont le nombre des simplexes est O(Vol(M)) et le
degré des noeuds est uniformément borné par une constante absolue.
Dans la deuxiéme partie on s’intéresse aux espaces localement symétriques I'\X ou X est de
rang supérieur ou égal a 2. Notre résultat principal affirme que la dimension du premier groupe
d’homologie & coefficients dans Fy (corps avec 2 éléments) est sous-linéaire en le volume. Ce résultat
est & comparer avec des travaux de Calegari et Emerton sur la cohomologie mod—p dans les tours
p—adiques des 3-variétés et les résultats de Abert, Gelander et Nikolov sur le rang des sous-groupes
d’un réseau de rang supérieur a angles droits. Le point fort de notre approche est qu’il n’y a pas
besoin de travailler dans une seule classe de commensurabilité.
La troisiéme partie est indépendante des deux premiéres. Elle porte sur une extension du théoréme
de Kesten. Le théoréme de Kesten affirme que si I' est un groupe engendré par un ensemble fini
symétrique S, N est un sous groupe normal de I' alors N est moyennable si et seulement si les
rayons spectraux du graphe de Cayley Cay(I', S) et du graphe de Scheier Sch(I'/N, S) coincident.
En utilisant les techniques de Abert, Glasner et Virag on généralise le theoréme de Kesten aux
N-uniformément récurrents.
Le dernier chapitre est consacré aux bornes sur les valeurs des caractéres irréductibles des groupes
finis de type Lie et des groupes de la forme G(Z,) ou G est un schéma en groupes lisse, réductif sur
Z. Soit G un groupe comme ci-dessus et soit x le caractére d’une représentation lisse irréductible
de G. On cherche des bornes de la forme suivante:

[X()] < x(1)° avec 6 <1,

ol J et la constante implicite ne dépendante que de 7. Les bornes de telle forme sont les ingrédients
de la preuve de (0.1) dans le deuxiéme chapitre. On montre que dans un groupe réductif G défini
sur un corps fini F, pour chaque v € G(IF,) régulier semi-simple on a

x| < W,

ou W est le groupe de Weyl. L’idée principale est de trouver un foncteur de restriction de Deligne-
Lusztig qui ne change pas la valeur des caractéres sur .




Title : Benjamini-Schramm convergence of locally symmetric spaces
Keys words : Locally symmetric spaces, arithmetic groups, representation theory, random walks

Abstract : The main theme of this work is the study of geometry and topology of locally sym-
metric spaces T\ X as Vol(I'\X) — oco. Our first main result concerns the Benjamini-Schramm
convergence for arithmetic hyperbolic 2 or 3-manifolds. A sequence of locally symmetric spaces
(Tx\X) converges Benjamini-Schramm to X if and only if for every radius R > 0 we have
lim,, o0 % = 0, where (I'\X') < stands for the R-thin part of '\ X. We prove that there

exists a positive constant C' = Cr with the following property: for every torsion free, uniform,
congruence arithmetic lattice I' in PGL(2,R) or PGL(2,C)

Vol((T\ X)<g) < CVol(T'\ X))°-9%6. (0.2)

There is only finitely many arithmetic lattices of covolume bounded by a constant so the result
above implies the Benjamini-Schramm convergence for any sequence of congruence arithmetic
hyperbolic 3-manifolds. We also prove a similar but slightly weaker inequality for non-congruence
subgroups. Our results are deduced form a strong form of the limit multiplicity property that holds
for arithmetic lattices in PGL(2,R) of PGL(2,C). As an application of our bounds we confirm
Gelander’s conjecture on the triangulations of arithmetic hyperbolic 3-manifolds: we show that
every arithmetic hyperbolic 3-manifold M admits a triangulation with O(Vol(M)) simplices and
degrees of vertices bounded uniformly by an absolute constant.

Next, we move to the setting of higher rank locally symmetric spaces. Let M, = I';,\X be a
sequence of pairwise distinct locally symmetric spaces modeled after a higher rank symmetric space
X. We show that the dimension of the first homology group with coefficients in Fy is sublinear
in volume. This can be compared with the results of Calegari and Emerton on mod—p homology
growth in p-adic analytic towers of 3-manifolds as well as the results of Abert, Gelander and Nikolov
on the rank gradient of right-angled lattices in higher rank Lie groups. The main strength of our
theorem is that we do not need to assume that the manifolds in question are commensurable.

Our third result is independent of the first two. Kesten theorem asserts that if I' is group
generated by a finite symmetric set S and N is a normal subgroup of I' then N is amenable if and
only if the spectral radii of the Cayley graphs Cay(I', S) and the Schreier graph Sch(I'/N,S) are
equal. Building on the work of Abert, Glasner and Virag we extend Kesten’s theorem to uniformly
recurrent subgroups.

The last chapter is devoted to character bounds for finite simple Lie groups and groups of form
G(Z,) where G is a reductive smooth group scheme over Z. Let G be one of the above and let x
be the character of a smooth irreducible representation of G. We are interested in bounds of form

(NI < x(1)° with § < 1,

where § and implicit constant depending only on 7. Such bounds proved very useful in proving
the Limit multiplicity property for arithmetic lattices in the second chapter. We show that in a
finite reductive group G for v regular semi-simple one has

IX(m) < W]
The key idea is to find a Deligne-Lusztig restriction functor which does not change the character
value on 7.
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CHAPTER 1

Introduction en francais

1. Espaces localement symétriques

Dans la premiére partie de 'introduction, on rappelle la définition d’un espace locale-
ment symétrique et on décrit une construction a 'aide des groupes de Lie semi-simples.
Aprés avoir parlé de réseaux arithmétiques, on présente la convergence Benjamini-Schramm
et la propriété de la multiplicité limite. Ensuite, on présente nos résultats principaux des
chapitres 2 et 3. Chaque chapitre a sa propre introduction ot ’on donne I'idée des démon-
strations et on fait une comparaison avec les résultats déja connus. Le lecteur familier avec
les espaces localement symétriques et les réseaux arithmétiques peut passer directement a
la section 1.3.

1.1. Espaces symétriques. Une variété riemannienne (M, g) est un espace symé-
trique si, pour chaque point z € M, il existe un automorphisme isométrique ¢, de
M tel que t(x) = x et diy: T,M — T,M est la multiplication par —1. Autrement
dit, ¢, renverse les géodésiques qui passent par . Un espace localement symétrique
est défini par la méme condition mais avec ¢, défini sur un voisinage ouvert de z. Un
espace symétrique simplement connexe est appelé irréductible s’il n’est pas isométrique
a un produit d’espaces localement symétriques. Un espace symétrique irréductible est dit
de type non-compact s’il est de courbure sectionnelle négative ou nulle mais pas nulle.
Finalement, en général un espace localement symétrique est dit de type non-compact s’il est
un produit d’espaces irréductibles de type non-compact. Dans cette thése, on ne s’intéresse
qu’aux espaces de type non-compact.

Les espaces symétriques de type non compact peuvent étre construits a l’aide des
groupes de Lie semisimples. Soit G un groupe de Lie connexe semi-simple, soit g son
algebre de Lie et B(—,—) sa forme de Killing. Choisissons une involution de Cartan
© : g — g, c’est une involution linéaire telle que la forme bilinéaire (X,Y’) — —B(X,0Y)
soit définie positive. On a une décomposition de g en une somme orthogonale des espaces
propres de ©:

g=tBpouOX =X pour X € tet OY = —-Y pour Y € p.

¢ est une sous-algébre de Lie, [p,p] C € et [p,€] C p. Posons K = {g € G|Ad(g)t = ¢}.
Alors, £ est I’algébre de Lie de K et K est un sous-groupe maximal compact de G.!

Soit X = G/K. L’espace tangent Tk X s’identifie avec p ~ g/¢. L’espace X est muni
de 'unique métrique riemanienne g, G-invariante a gauche, telle que

9(X,Y)=DB(X,Y) pour X,Y €p.

La variété riemannienne (X, g) est appelée ’espace symétrique de G, les involutions étant
induites par des involutions de Cartan. Le groupe G agit sur X a gauche par isométries
et cette action est propre i.e. les stabilisateur des points sont compacts.

Le tenseur de courbure de X au point K est donné par

Rx(X,Y)Z =[[X,Y],Z] pour X,Y, Z € p.

Notons que la courbure sectionnelle n’est jamais strictement positive: g(R(X,Y)X,Y) =
B([X,Y],[X,Y]) < 0 car [X,Y] € . On termine cette section en disant pourquoi X

LK est le groupe des points réels d’un groupe algébrique linéaire sur R donc il n’a qu’un nombre fini
de composantes connexes. La composante de I'identité est un groupe compacte car sa forme de Killing est
définie négative.



est contractile. La décomposition d’Iwasawa G = NAK, ou N est unipotent et A est
isomorphe & R’, , implique que X est homéomorphe & NA ~ Rdim G—dim K

1.2. Réseaux arithmétiques. Etant donné un groupe de Lie connexe semi-simple G
et son espace symétrique X, on sait produire des exemples d’espaces localement symétriques
de type I'\ X ou I' est un sous-groupe discret de G sans torsion. Si on prend I avec torsion,
on obtient un orbifold localement symétrique. Méme si ce ne sont pas des vraies variétés
riemanniennes, on va les appeler encore espaces localement symétriques. Dans cette theése,
on étudie les espaces localement symétriques de volume fini, ce qui revient & prendre des
quotients T'\ X ou I' est un réseau de G.

Une fagon de construire des réseaux dans un groupe de Lie semisimple G est d’utiliser
Parithmétique. Par exemple, si G = SL(n,R), le sous-groupe SL(n,Z) est un réseau. En
général, le théoréme de Borel-Harish-Chandra [22] affirme que pour chaque sous-groupe
algébrique connexe semi-simple G de GL(n,Q) défini sur Q sans de cractére défini sur
Q le sous-groupe G(Q) N GL(n,Z) est un réseau de G(R). Ces sont les exemples les plus
simples de réseaux arithmétiques. Pour décrire une construction qui donne tous les réseaux
arithmétiques on va utiliser les adéles. Ce point de vue est crucial dans le chapitre 2. Une
référence classique sur les adéles et les groupes algebriques est le livre de Weil [104]. Fixons
un groupe de Lie connexe semi-simple G. Soit k un corps de nombres. Ecrivons M pour
I’ensemble des places de k, M, pour les places archimédiennes et My pour les places finies.
Soient O, O, les anneaux des entiers dans k et ky, respectivement. L’anneau des adéles
A = Ay, (on va supprimer U'indice k si le corps est fixé¢) est défini comme un produit restreint

A= {(ay), € H ky | ap € O, pour presque tout p € My}
vE My
Il est muni de la topologie de produit restreint. Alors A est une algébre sur k£ et son groupe
additif est localement compact. Ce sera utile d’écrire A comme un produit A, X Ay ot A
est le produit des complétions archimédiennes de k et Ay est le produit restreint de toutes
les complétions p-adiques de k. Soit G un groupe algébrique linéaire connexe semi-simple
défini sur k. On dit que G est anisotrope sur £ s’il n’y a pas d’homomorphisme non-trivial
Gy, — G défini sur k. Si G n’est pas anisotrope, on dit qu’il est isotrope sur k. Le groupe
G(A) avec la topologie induite de A est un groupe localement compact. Afin de voir G(A)
comme un produit restreint fixons une représentation rationnelle p: G — GL(n, k). On a

G(A) :={(gv)v € H G(ky) | p(gp) € GL(n, Ok,) pour presque tout p € My}.
veM;p,

Comme avec A on a G(A) = G(Ax) x G(Ay). Par le théoréme de Mostow-Tamagawa, le
groupe G(k) est un réseau de G(A), qui est cocompact si et seulement si G est anisotrope.
Choisissons un sous-groupe ouvert compact U de G(Ay). Alors, le groupe I'yy := G(k) N
G(Ax) x U est un réseau dans G(A) x U. La projection de I'yy vers G(A) reste un
réseau. Si G(A ) admet une décomposition G x H avec H compact, 'image de I'yy est un
réseau dans G.

DEFINITION 1.1. Soit G un groupe de Lie semi-simple. Un réseau I dans G est arith-
métique s’il existe un corps de nombres k, un groupe algébrique linéaire semi-simple G défini
sur k, un sous-groupe ouvert compact U de G(Ay) et un homomorphisme p de G(A) vers
G de noyau compact tel que p(I'y) est commensurable avec I'. Si, de plus, I' contient
p(Ty), on dit que T’ est de congruence.

Etant donné un réseau arithmétique de congruence I', on peut demander s’il existe
k,G,U et p tels que I' = p(I'yy). Les réseaux arithmétiques cocompacts maximaux dans
SL(2,R) sont les normalisateurs des p(I';/) pour un certain choix de k, G, U et p et ils sont
strictement plus grands que p(I'yy) (voir [21] et [94, 11.4]). Par contre, la réponse a la
derniére question est positive si G est un groupe de Lie semi-simple adjoint (voir Lemme
2.32 et Proposition 2.33 ot on donne une démonstration pour PGL(2,R) et PGL(2,C)).
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Traitons un exemple de construction adélique d’un réseau arithmétique de SL(2,C).
Soit k& = Q(+/—5). Notons son unique place complexe v. Son anneau des entiers est
Ok = Z[v/=5]. Il y a deux places finies de k ramifi¢es (v/—5) et (2,/—5+ 1), pour chaque
nombre premier p = 11,13,17,19 mod 20, il y a une place p au dessus de p et pour chaque
p=1,3,7,9 mod 20, il y a deux places p1, p2 au dessus de p. Notons par A ’algébre des
quaternions sur k définie par

A =k +ik + jk +ijk
avec les relations i = /=5, j? =2 et ij = —ji. La forme quadratique v/—5 z2 + 2y% — 22
est anisotrope sur k donc A est un corps gauche [94, Thm 2.3.1]). La norme sur A est
définie par n(x+iy+jz+ijt) = 22 —/=5y? —2t2 +2/—5t2. Posons G = {a € A|n(a) = 1}.
Le groupe G est une k-forme de SL(2, k) c’est-a-dire G ~ SL(2) sur la cloture algébrique
de k. On a
G(A) = G(ky) x G(Ay).

On se donne un sous-anneau O de A: O = Oy 4+ 1O + jOi + 1jO. C’est un ordre de A,
c’est-a-dire un sous-Ok-module de A de rang 4 qui est aussi un sous-anneau. On va s’en
servir pour construire un sous-groupe ouvert U de Ay. L’ordre O est un sous-anneau de la
Aj-algebre A®y Ay, Soit Oy la cloture de O dans A®; Ay. C’est un sous-anneau compact
ouvert. Posons U = (9} = {s € O|n(a) = 1}. La projection de I'y = G(k)N(SL(2,C) x U)
est un réseau arithmétique de congruence dans SL(2, C). Explicitement p(I'yy) est:

{<2?Z+Z/j%/t) ;Jrﬁt)!xy,zteoketx AV Ey? 222+2\/j5t2:1}

et la projection p est définie par

s = (5 1) = (V5" _g=5) «wntr= (3 o)-

1.3. Propriété de la multiplicité limite. Soit G un groupe de Lie semi-simple et
soit I' un réseau de G. Le groupe G agit sur L?(I'\G) par des translations & droite:

(Rrg®)(z) = ®(zg) for ® € L*(T\G),g € G et z € I'\G.

Cette représentation est unitaire. Etant donnée une suite de réseaux (T'y)nen, on peut
étudier les propriétés asymptotiques des représentations L?(I',\G) quand n — co. Soit 7
une représentation irréductible unitaire de G, notons mr () sa multiplicité dans L?(I'\G)
définie comme la dimension de Homg (7, L2(T'\G). En 1978, DeGeorge et Wallach [34] ont
démontré que sous certaines conditions raisonnables sur (I'y),eN, on a

. _mr,(7)
lim —F— =d(n
n—oo Vol(I'\G) (),
ou d(7) est le degré de 7 (qui est non-nul ssi 7 est une série discréte). La propriété de la
multiplicité limite est encore plus forte que la convergence des multiplicités normalisées par
le volume. Elle est définie en termes des distributions des sous-représentations irréductibles

de L*(T'\G) dans I'espace dual unitaire” H(G) de G. Pour un réseau I' de GG, notons
= E Or.
= Vol F\G
rell(G)

On dit qu’une suite (I'y)nen a la propriété de la multiplicité limite si et seulement si la
condition suivante est satisfaite : pour chaque sous-ensemble mesurable U de II(G) tel que
la mesure de Plancherel du bord U — U? est 0, on a

: Pl
lim pur,, (U) = nP(U),
n—oo
2 II(G) est I’ensemble des classes d’équivalence des représentations unitaires irréductibles de G, munie

de la topologie de Fell [39].
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ott pf! est la mesure de Plancherel (voir [48] pour une définition abstraite de pu’?).
Sauvageot [97] a demontré qu'une suite (I'y)nen a la propriété de la multiplicité limite
si
li tr anf
im ——
n—oo Vol(I',,\G)

Notre premier résultat principal donne une borne quantitative:

= f(1), pour toute f € C°(G).

THEOREME 1.2 (Thm 2.8). Soit K = R ou C. Pour chaque R > 0 la proposition
suivante est vrate: Soit I' un réseau arithmétique de congruence, cocompact sans torsion
dans PGL(2,K). Pour chaque f € C(PGL(2,K)) dont le support est contenu dans la boule
de rayon R autour de 1, on a

[Vol(T\PCL(2,K))f(1) — trRrf| <r || f]leo(Vol(T\PGL(2, K))°-9%6. (1.1)

Borel [21] a démontré que pour tout V' € R, il n’y a qu’un nombre fini (& conjugaison
prés) de réscaux arithmétiques I' de PGL(2,K) avec Vol(I'\PGL(2,K)) < V. Par con-
séquent, notre résultat montre que toute suite de réseaux cocompacts, arithmétiques de
congruence sans torsion (I'y,)pen deux-a-deux non-conjugués a la propriété de la multiplic-
ité limite. On montre aussi une version plus faible pour des réseaux qui ne sont pas de
congruence. On en déduit le taux de croissance des nombres de Betti dans les 3-variétés
hyperboliques arithmétiques de congruence:

COROLLAIRE 1.3. Soit (I'y)nen une suite de réseaur de PGL(2,C) cocompacts, arith-
métiques sans torsion deuz-a-deux disjoints. Admettons que soit ils sont tous de congruence
soit ils sont deux-a-deux non-commensurables. Alors pour i =1,2

i (T \H3
lim bil T \F)

DN ) (2) 3y —
n—oo Vol(T',,\H3) b (E) = 0.

1.4. Convergence de Benjamini-Schramm. Soit M ’espace des espaces métriques
localement compacts pointés muni de la topologie de Gromov-Hausdorff. Rappelons que
dans cette topologie une suite d’espaces pointés (X,,,x,) converge vers (Y,y) si et seule-
ment si pour chaque R > 0 et ¢ > 0 il existe N = Npg . satisfaisant la propriété suivante:
pour n > N il existe un espace métrique M et des plongements isométriques des boules
71 : By, (zn, R) = M et mo : By (y,R) — M tels que la distance de Hausdorff entre les
images est inférieure a . De fagon intuitive, (X, z,) converge vers (Y, y) si pour chaque
R > 0 les R-boules autour de x,, ressemblent de plus en plus a la boule By (y, R). Munie de
cette topologie, M est un espace séparé. Soit (X, ) un espace métrique muni d’une mesure
de probabilité borélienne p. On associe & X une mesure de probabilité vx := [ 9 X,2) ()
sur M. La topologie de Benjamini-Schramm sur les espaces de probabilité métriques est
induite par la topologie *-faible sur PM, c’est-a-~dire (X,,, vy )nen converge vers (Y, u) si
et seulement si vx, converge *-faiblement vers vy. Ce type de convergence a été intro-
duit par Benjamini et Schramm dans [15] pour des graphes réguliers. Elle a été adapté
aux espaces localement symétriques de volume fini par Abért, Bergeron, Biringer, Ge-
lander, Nikolov, Raimbault et Samet dans [2] ot ils ont étudié (parmi d’autres choses) la
convergence de Benjamini-Schramm vers X. On peut démontrer qu’'une suite d’espaces
localement symétriques (I',,\ X ),en converge vers X si et seulement si pour chaque R > 0
on a

(VI X) )
n—oo  Vol(I'y\X)

ou (I')\X)<g est la partie R-mince de I',\ X. Autrement dit, pour n grand une R-boule
autour d’'un point typique de X, est isométrique & la R-boule de X. Soit G un groupe
de Lie semi-simple et soit X son espace symétrique. Le théoréme [3, Thm 1.2| affirme
que si G est de rang réel au moins 2 et a la propriété (T) alors chaque suite d’espaces
localement symétriques (I',,\ X )nen deux-a-deux non-isométriques converge vers X. Dans
le contexte des réseaux arithmétiques, ils donnent une majoration du volume de la partie
R-mince [3, Thm 1.12] qui reste valable pour les groupes de rang 1. Pour un réseau

=0,
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arithmétique cocompact I' de G, il existe des constantes ¢, x > 0 dépendantes de I" telles
que pour chaque sous-groupe de congruence I'' C I on a

Vol(T"\X)<r) < e“BVol(I"\ X)!™* pour tout R > 1.

On en déduit que les suites d’espaces (I',\ X )pen avec I'y, C T' sous-groupes de congruence
deux-a-deux non-conjugués convergent Benjamini-Schramm vers X.

La convergence de Benjamini-Schramm des espaces localement symétriques est reliée
a la notion de sous-groupe aléatoire invariant. Soit Subg 'espace des sous-groupes
fermés de G muni de la topologie de convergence de Hausdorff sur les sous-ensembles
compacts de G. Alors Subg est un espace métrisable [33]. Le groupe G agit sur Subg
par conjugaison. Un sous-groupe aléatoire invariant est une variable aléatoire H a valeurs
dans Subg dont la distribution est invariante par (. Parfois les mesures de probabilité
G-invariantes sur Subg sont aussi appelées les sous-groupes invariants aléatoires. Etant
donné un réseau I' de GG, on lui associe une mesure

1

= GG oo

Dans [3] les auteurs ont utilisé de fagon cruciale le fait qu’une suite d’espaces localle-
ment symétriques (I',\ X )nen converge Benjamini-Schramm vers X si et seulement si la
suite des sous-groupes invariants aléatoires vr, tend *-faiblement vers dq1y-

Notre résultat principal sur la convergence de Benjamini-Schramm porte sur les suites
de réseaux arithmétiques de PGL(2,R) et PGL(2,C). L’énoncé est similaire a |3, Thm
1.12] mais on ne suppose pas que tous les réseaux sont commensurables.

THEOREME 1.4 (Thm 2.9). Soient R > 0 et K=R,C. Soit I un réseau arithmetique
de congruence sans torsion de PGL(2,K). Alors

Vol((T'\X)<g) <r Vol((T'"\ X))%-986, (1.2)

C’est une conséquence du théoréme 1.2. On montre également une version pour des
réseaux qui ne sont pas de congruence:

THEOREME 1.5 (Thm 2.11). Soient R > 0 et K =R, C. Soit I un réseau arithmétique
de PGL(2,K). Alors pour chaque f € C(PGL(2,K)) tel que suppf C B(1,R)

[VOl(T\X) (1) — trRr f| <& [|f]lecdf "%, (1.3)

ot Ay, est le discriminant du corps des traces k de T'.

On applique théoréme 1.5 a la démonstration de la conjecture de Gelander pour des
3-variétés arithmétiques hyperboliques [53, Conjecture 1.3].

THEOREME 1.6 (Thm 2.16). Il existe des constantes positives A, B telles que toute
3-variété arithmétique hyperbolique M est homotope & un complexe simplicial N ayant
au plus AVol(M) sommets dont les degrés sont uniformément bornés par B (dans le cas
compact on peut prendre B = 245).

1.5. Croissance de la dimension de ’homologie en rang supérieur. Dans le
Chapitre 3, on entreprend une étude de la croissance de dimp, H;(I'\X,F3) ou X est un
espace symétrique de rang au moins 2, Fy et le corps a deux éléments et I'\ X est de volume
fini. D’abord exhibons quelques résultats antécédents sur la croissance d’homologie et de
la cohomologie des espaces localement symétriques. Pour 'instant, X est n’importe quel
espace symétrique de type non-compact. Le théoréme classique de Gromov [56] donne une
constante C' = C(X) telle que

bi(T\X) := dimg H'(T\ X, Q) < CVol(T'\ X),

pour chaque espace localement symétrique I'\X. Dans certains cas on sait dire plus.
Soient G un groupe de Lie et X son espace symétrique. Une suite de réseaux (I'y,)men de
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G est dite uniformément discréte si la longueur des géodésiques fermées sur (I'),\ X)
est minorée uniformément en n. Dans [3], il est montré que si (I'),)nen est une suite des
réseaux uniformément discréte et si (I'),\ X') converge Benjamini-Schramm vers X, alors

lim biln\X) - b@)(X),
n—oo Vol(I',,\ X) !
ol bEQ)(X) est le i-éme nombre de Betti L? (voir [75]). On sait qu'en rang supérieur
les suites d’espaces localement symétriques deux-a-deux non-isométriques convergent vers
X donc le résultat ci-dessus fournit un outil puissant pour étudier la croissance de la
(co)homologie & coefficients rationnels. D’autre part, les techniques analytiques qui per-
mettent de traiter les nombres de Betti rationnels ne donnent pas d’information sur les
dimensions de la (co)homologie modulo p. Le théoréme de Margulis sur les sous-groupes
normaux ou bien la propriété (T) impliquent qu’en rang supérieur le groupe Hy(I'\X,Z)
est fini donc by (I"\ X') = 0 mais on ne sait méme pas si la dimension dimp, Hy (I'\ X, [F,) est
sous-linéaire en Vol(I'\ X'). Gelander [54] démontre que pour chaque espace symétrique X
(pas forcement de rang supérieur) il existe une constante B = B(X) telle que

d(I") < BVol(T'\ X),
ot d(I") est le cardinal minimal d’'une partie génératrice de I'. Par conséquent
di H(I"X,F
lim sup img, F(I"\ ) < B.
Vol(T'\ X )—o0 Vol(T'\ X)

La croissance de la dimension de I’homologie est reliée a la notion du gradient de
rang ("rank gradient" en anglais [1,5,67|) de I". Le gradient de rang d’un groupe I relatif
a une suite de sous-groupes d’indice fini (I'y,)pen est donné par

. d(Iy,) -1

RG(T, (M) = Hm ==
si la limite existe. Dans [1] (voir aussi [5] pour le cas des réseaux de SL(2, C)), il est montré
que le gradient de rang des réseaux de rang supérieur qui sont "a angles droits" vaut 0.

Un groupe est dit & angles droits s’il admet une partie génératrice s1, so, .. ., sq telle que
[siySit1] = 1 pour i =1,...,d — 1. Il suit immédiatement que dans ce cas
dimp, Hi (I, \X,F
lim ]FP 1( 71\ p) =0

n—00 Vol(I', \ X)
En fait, pour les réseaux de rang supérieur aux angles droits, on peut faire mieux [1]:
. log [F(D\ )|
n—oo  Vol(I',\X)
Rappelons que ces résultats ne sont valables que pour des suites de sous-groupes de I'. On
croit |1, Conjecture 3| que dans un groupe semi-simple G de rang supérieur
dl) —1
A0 -1
Vol(T'\ X)—o0 Vol(I'\ X)
uniformément en tous les réseaux de G.

Revenons & I'étude de la croissance de I’homologie modulo p. Dans le cas des groupes
de rang 1, on dispose du résultat suivant de Calegari et Emerton [30]. Soit M une variété
de dimension 3 et notons I' son groupe fondamental. Soit ¢: I' = GL(n, Z,) et notons G la
cloture de ¢(T'). Posons Gy, = G N (ker GL(n,Z,) — GL(n, Z/p*7Z)) et Ty, = ¢~1(Gy,). Soit
My, le revétement fini de M correspondant au sous groupe 'y de I'. La suite des variétés
(My)ren obtenue comme ci-dessus est appelée une tour p-adique de 3-variétés. Soit d la
dimension de G en tant que groupe p—adique analytique. Dans [30], les auteurs montrent
que la dimension de Hq(Mj,Fp) satisfait une des conditions suivantes:

o dimg, Hy (M, F,) = Ap¥ + O(p'=VF) (croissance linéaire).
o dimp, Hy(Mj,F,) = Apld=Dk + O(pld=2k),
e d=2e¢t dimﬂ?p Hl(Mk,]Fp) = 0(1)
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o d =3 et dimg, H1(Mg,Fy) < 3 pour k assez grand.

. . . . .. . di Hy(My,F . .
En particulier si M est hyperbolique la limite limg_ oo %ﬂw existe. Calegari et

Emerton conjecturent que le premier cas n’est pas possible si (), .nT'n = {1}. Si c’est
vrai la dimension de ’homologie modulo p est sous-linéaire en le volume dans les tours
p-adiques de 3-variétés qui convergent Benjamini-Schramm vers H3.

Notre résultat principal dans le chapitre 3 est le théoréme suivant.

THEOREME 1.7. Soit G un groupe semi-simple de rang supérieur et soit X [’espace
symétrique associé. Alors
lim dim[@z H1 (F\X, ]F2) _
Vol(I'\ X ) =00 Vol(T'\ X)

La caractéristique 2 du corps joue une réle important dans la preuve.

2. Théoréme de Kesten

Soit G = (V, E) un graphe d-régulier avec ensemble des sommets V et ensemble des
arétes E. L’opérateur de Markov associé a la marche aléatoire (simple) sur G est donné
par

M(z) = = 3" 0(y) pour z € V,® € LA(V),
d =
ou la somme parcourt les sommets voisins de z. Le rayon spectral de G est défini
comme la norme || M|| = sup|g|,—1 [[M ®||2. Le rayon spectral décrit la vitesse d’expansion
dans G. Parmi les graphes infinis d-réguliers c’est 'arbre Ty qui posséde le rayon spectral
le plus petit: p(Ty) = @. Un graphe d-régulier infini G est dit de Ramanujan si
p(G) = p(Ta).

Soit I" un groupe dénombrable engendré par une partie finie symétrique S. Le graphe
de Cayley Cay(I',S) a I'" pour I'ensemble des sommets et {(g,9s)lg € I',s € S} pour
I’ensemble des arétes. De la méme maniére, si X est un ensemble dénombrable muni d’une
action de I' & droite on lui associe son graphe de Schreier Sch(X,S) dont ’ensemble des
sommets est X et I'ensemble des arétes est {(z,xs) |z € X,s € S}.

Un théoréme remarquable de Kesten [65,66] dit qu'un sous groupe distingué N de T’
est moyennable si et seulement si p(Cay (I, 5)) = p(Sch(N\I', S)). Un sous-groupe H de I"
est dit de Ramanugjan si p(Cay(I', S)) = p(Sch(H\TI', S)). Chaque sous-groupe moyennable
est Ramanujan mais I'inverse n’est pas vrai. Dans [6] Abért, Glasner et Virag donnent une
version probabiliste du théoréme de Kesten. Ils ont démontré qu’un sous-groupe aléatoire
invariant H est de Ramanujan presque surement si et seulement si H est moyennable
presque surement.

Dans le chapitre 4 on étend le théoréme de Kesten aux sous-groupes uniformément
récurrents. Un sous-groupe H de I' est uniformément récurrent (voir [42,43,80]) si la
cloture de la G-orbite de H dans Subg est un systéme dynamique minimal. Ces groupes
ont été récemment utilisés par Kennedy [64] pour caractériser les groupes C*-simples.

THEOREME 1.8 (Thm 3.1). Soit I un groupe engendré par une partie finie symétrique
S. Un sous-groupe uniformement recurrent H de I' est de Ramanujan st et seulement si il
est moyennable.

La démonstration repose sur I'argument de Abért, Glasner et Virag dans [4,6]. En
utilisant les ingrédients de la preuve, on redémontre un résultat récent de Lyons et Peres
[76]. Soit C(—,k): V — {1,0} la fonction définie par C(v, k) = 1 si v fait partie d’un cycle
non-contractile de longueur k et 0 sinon.

THEOREME 1.9 (Thm 4.1). Soit G un graphe infini d-régulier de Ramanugjan enraciné
en x. Soit k > 1 et soit X, la marche aléatoire simple sur G partant de xz. On a

1 n
lim —» E[C(X;,k)] =0.
=1

n—00 N 4
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3. Bornes sur les caractéres

Dans le cinquiéme chapitre, on étudie les bornes sur les caractéres irréductibles des
groupes finis de type de Lie et des groupes compacts de la forme G(Z,) ou G est un schéma
en groupes réductif lisse sur Z;,. On s’intéresse aux majorations de la forme suivante:

1x(g)] < Cx(1)}7?, pour chaque caractére irréductible x (3.1)

ou C, 6 > 0 ne dépendent que de g.
Expliquons la motivation provenant du chapitre 2. Soit I' un sous-groupe discret. Une
suite de sous-groupes d’indice fini (I'y),en de T' est dite une suite de Farber si pour
tout g € T'\ Z(T)
iy HATn [ h7lgh € Th}|
n—00 [: 1]

On voit facilement que (I'y)nen est une suite de Farber si et seulement si la suite des
graphes de Schreier Sch(I',\I', S) converge Benjamini-Schramm vers Cay (I, S), pour une
partie génératrice S de I'. Si I' est un réseau d’un groupe semi-simple G, la derniére
condition est équivalente a la convergence Benjamaini-Schramm des orbifolds I',\ X vers
X.

Soit p une représentation complexe de I' de dimension finie. Notons Y, son caractére.
La condition de Farber (3.2) peut étre exprimée en termes des caractéres des représentations
induites. Pour g e '\ Z(T'), on a

0. (3.2)

. |X1nd11: 1(9)]
im ———=0
oo Xlndll:nl(l)
Dans le chapitre 2, lemme 2.83, on montre que pour I' & croissance des représentations
polynomiale chaque borne de type

Ix(g)] < Cx(l)l_é pour Y caratére irréductible de T’
ou § > 0 implique
Y
Xind £n1(9)’ < C'Xpd L (0

pour un certain &’ > 0. Les inégalités de cette forme sont parmi les ingrédients les plus
importants de la preuve du théoréme 1.2.

L’autre source de motivation pour étudier les bornes de type (3.1) provient des travaux
de Liebeck, Shalev et al. [74] qui les ont appliquées a ’étude des marches aléatoires sur les
groupes finis de type de Lie, au probléme de la génération aléatoire et au probléme de la
génération par des mots. Les inégalités de Gliick [55] permettent de trouver pour chaque
groupe de Chevalley G des constantes C,d > 0 telles que pour g € G(F,) noncentral, on a:

Ix(9)] < Cx(1)}~? pour chaque caractére irreductible .

Soulignons que cette borne est uniforme en ¢g. La constante § extraite des bornes de Gliick
est ﬁ ce qui est loin d’étre optimal pour la plupart des éléments de G. Larsen a prouvé
dans un article non-publié [71] que si G est un groupe réductif défini sur le corps fini Fy
et g € G(F,) est régulier semi-simple alors |y(g)| < |[W|? oit W est le groupe de Weyl de
G. Dans le chapitre 2, on adapte la méthode de Larsen au cas p-adique pour monter la
majoration suivante.

THEOREME 1.10 (Remark 2.62). Soit G un groupe algébrique réductif défini sur un
corps local non-archimedien F. Soit K un sous-groupe compact ouvert de G(F) et soit
v € K un élément régulier semi-simple. Alors pour chaque caractére irréductible x de K,
nous avons

IXx() <G,
ot la constante C' ne dépend que de v et G (ni de K ni de x).
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Dans le chapitre 5, on démontre une légére amélioration de la borne de Larsen en
utilisant les foncteurs de restriction de Deligne-Lusztig. On prouve que dans un groupe
réductif G défini sur un corps fini, la valeur de chaque caractére irreductible sur un élé-
ment semi-simple régulier est bornée par |W|. Indépendamment, en poursuivant des idées
similaires, Bezrukavnikov, Liebeck, Shalev et Tiep [74]| ont amélioré les bornes de Gliick.
Notons .

a(L) := max {ilzllzc |lue Liu#1 unipotent} .

THEOREME 1.11 ( [19]). Soit v € G(F,) et soit L une composante de Levi rationnelle
d’un sous-groupe rationnel parabolique de G tel que la composante connexe du centralisateur
de 7y est contenue dans L. Alors, pour chaque caractére irréductible x de G(Fy), on a

IX(7)] < x(1)*®),

ot la constante implicite ne dépend que du rang de G.
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CHAPTER 1

Introduction in English

1. Locally symmetric spaces

In this part of the introduction we recall the definition of a locally symmetric space and
give a standard construction using semisimple Lie groups. After giving the construction of
arithmetic lattices in semisimple Lie groups we briefly introduce the Benjamini-Schramm
convergence and Limit Multiplicity property. Lastly we describe our results from Chap-
ters 2 and 3. We keep this introduction quite short because every Chapter has its own
introduction where we give more background for every result, outline the structure of the
proof as well as make comparison with literature. Reader familiar with locally symmetric
spaces and the adélic construction of arithmetic lattices may safely skip the first and the
second part of this introduction.

1.1. Symmetric spaces. A Riemannian manifold (M, g) is a symmetric space if
for every point € M there exists an isometry ¢, of M fixing x such that dv,: T, M — T, M
is the multiplication by —1. In other words ¢, reverses the geodesics passing through x. A
locally symmetric space is given by the same condition but ¢, needs to be defined only
on an open neighborhood of z. A simply connected symmetric space is called irreducible
if it is not a product symmetric spaces. An irreducible symmetric space is said to be
of non-compact type if it has non-positive but non-zero sectional curvature and more
generally a symmetric space of non-compact type is a product of irreducible symmetric
spaces of non-compact type. Throughout this text we will only consider the symmetric
spaces of non-compact type. Those spaces maybe realized as a quotient of a semisimple
Lie group [58].

Let G be a connected real semisimple Lie group. Write g for its Lie algebra and
B(—,—): g®g — R for the Killing form. Choose a Cartan involution ©: g — g, recall
that being Cartan means that the bilinear form (X,Y) — —B(X, ©Y) is positive definite.
We decompose g into orthogonal sum of eigenspaces of ©:

g=tPdp where ©X =X, X €tand OY =-Y,Y €p.

t is a Lie subalgebra of g, [p,p] C € and [¢,p] C p. Let K = {g € G|Ad(g)t = ¢} be the
stabilizer of €. Then ¢ is the lie algebra of K and K is a maximal compact subgroup of G'.

Let X = G/K, the tangent space Tk X is canonically identified with g/¢ ~ p. X is
endowed with the unique left G-invariant Riemannian metric g such that

9(X,Y)=B(X,Y) for X,Y € p.

The Riemannian manifold (X, g) is the symmetric space of G, the involutions inverting the
geodesics are provided by Cartan involutions. The group G acts on X by isometries and
this action is proper i.e. the stabilizers of points are compact.

The curvature tensor of X at the point K is given by

Ri(X,Y)Z = [[X,Y],Z] for X,Y,Z € p.

To see that the sectional curvature is non-positive we compute g(R(X,Y)X,Y) = B([[X, Y], X],Y])

B([X,Y],[X,Y]), the last term is non-positive because [X,Y] € €. The last property that

1t is the group of real points of an algebraic group so it has finitely many connected components [24].
Its connected component is compact since the Killing form restricted to € is negative definite.
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we are going to establish in this brief overview is contractibility of X. The Iwasawa de-
composition G = NAK, where A is isomorphic to R’ and N is a connected nilpotent
subgroup of G, yields a homeomorphism R4mG—dimK _, & /K =X.

1.2. Arithmetic lattices. Given a semisimple Lie group G and its symmetric space
X we can produce examples of locally symmetric spaces of form I'\ X where I is a discrete
torsion free subgroup of G. As the group is torsion free the resulting quotient space is
a manifold, for a discrete group with torsion we get an orbifold. By a slight abuse of
notation we will also call such spaces locally symmetric. In this thesis we are interested
only in locally symmetric spaces of finite volume, which amounts to taking quotients I"\ X
where ' is a lattice.

One of the ways of constructing lattices in a semisimple Lie group G is via arithmetic.
For example if G = SL(n,R) the group SL(n,Z) is a lattice. More generally whenever
G is an algebraic subgroup of GL(n, Q) defined over Q without characters defined over Q
then the group G(Q) N GL(n,Z) is a lattice in G(R) by virtue of Borel Harish-Chandra
theorem [22|. Those are the simplest examples of arithmetic lattices. We are going to
describe another construction using adéles. This point of view is crucial in the first chapter.
For more in depth discussion on algebraic groups and adéles we refer to the classical book
by Weil [104]. Let k£ be a number field. Write M for the set of all places of k, M, for the
archimedean places and My for the finite ones. We write Ok, O, for the rings of integers
in k, ky respectively. The adéle ring of k£ denoted A = A, (we shall omit the index when
we work with a fixed field) is given by the restricted product

A:={(a)), € H ky|ap € O, for almost all p € My}
veE M,

It comes with a natural topology of the restricted product which makes A into locally
compact algebra over k. It will be convenient to write A = A, x Ay where the A, is the
product over all (finitely many) archimedean places and Ay is the restricted product over
infinite places. Let G be a simple linear algebraic group defined over k. We say that G
is anisotropic over k if there are no non-trivial homomorphisms G,, — G defined over k
and that G is isotropic otherwise. The group G(A) with the topology inherited from A
is a locally compact group. In order to present it as restricted product let us fix a rational
representation p: G — GL(n, k). Then

G(A) :=={(g.)v € [] Gk | plgp) € GL(n, O,) for almost all p € M;}.
ve My,

As with the ring of adéles we have G(A) = G(Ax) X G(Ay). By the Mostow-Tamagawa
theorem [83] the group G(k) is a lattice of G(A), which is cocompact if and only if G is
anisotropic. This is the starting point for the adélic construction of lattices in semisimple
Lie groups. Let us choose an open compact subgroup of G(Ay). Then the group I'y :=
G(k) N G(Ax) x U is a lattice in G(Ay) x U. Let us split the set archimedean places
My = %1 U39 where X1 = {v € My | G(k,) is not compact } and 9 = My \ £1. Then

G(hw) =G1xGy= | [] Gk) | x | [] Gk)

veYX Ve

(1 is a semisimple Lie group and the projection of I'yy to G is a lattice in Gj.

DEFINITION 1.1. Let G be a semisimple Lie group without compact factors. A lattice
I' C G is an irreducible arithmetic lattice if there exists a number field k, simple algebraic
group G defined over k, an open compact subgroup U of G(Ay) and an isomorphism p :
G1 ~ G such that T' is commensurable with p(I'yy). Moreover, if p(I'y) C T’ then T' is
a congruence arithmetic lattice. Non irreducible arithmetic lattices are those which are
commensurable with Cartesian products of irreducible arithmetic lattices.

If T is a congruence arithmetic lattice one can ask if we can find k, G, U and p such that
I' = p(T'y). In general this is not possible, for example the maximal cocompact arithmetic
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lattices in SL(2,R) are normalizers of p(I'ty) for certain choices of k,G,U but they are
strictly bigger than p(I'yy) (see [21] and [94, 11.4]). The answer is positive if we restrict to
the adjoint semisimple Lie groups (see Lemma 2.32 and Proposition 2.33 where we prove
this for maximal arithmetic lattices PGL(2,R), PGL(2, C)).

We examine an example of the above construction in SL(2,C). Let k = Q(v/=5). This
field has a single complex place v. Its ring of integers is Oy = Z[v/—5]. The finite places of
k are parametrized as follows: unique ramified primes (v/=5), (2,1 + v/=5), single prime
lying over every rational prime p with p = 11,13,17,19 mod 20, and two primes lying over
every rational prime p = 1,3,7,9 mod 20. Consider the quaternion algebra A over k:

A =k + ik + jk + ijk,

with relations i = /=5,j2 = 2 and ij = —ji. The quadratic form —z? + /—=5y? + 222 is
anisotropic over k so the algebra A is a division ring ( [94, Thm 2.3.1]). The norm on A is
given by n(z+iy+jz+ijt) = 22 —/—=5y? —222+2y/=5t2. Weput G = {a € A | n(a) = 1},
the group G is a k-form of SL(2,k) i.e. G ~ SL(2) over the algebraic closure k. We have

G(A) = G(kl,) X G(Af) = SL(Q,(C) X G(Af)

Consider the subring of A given by O = Oy +i0; + jOr +ijOg. It is an order in A i.e. an
Op-module of rank 4 which is also a subring of A. We use it to construct an open compact
subgroup U of G(Af). The algebra A and the order O are subrings of A ®; Ay. Let Oy
be the closure of O in A® Ay, it is a compact open subring. We define U as the group of
elements of Oy of norm 1. The projection of the group I'y = G(k) N (SL(2,C) x U) is an
arithmetic lattice in SL(2, C). Explicitly, p(T'yy) is the subgroup

T+ vV-by 2+ /-5t ) -
{(2(z—{7j5t) x — Y/ —by | 2,y,2,t € Of and 2* — V—5y* —22° + 2V/—5t* =1,

and the projection p is given by

p(l):<é (1]>ap(i)=<40_5 _\49_—5> and p(j) = <(2) (1)>

1.3. Limit Multiplicity property. Let G be a semisimple Lie group and let I' be a
lattice in G. The group G acts on L?(I'\G) by right translations:

(Rrg®)(z) = ®(zg) for ® € L*(T\G),g € G and z € I'\G.

This representation is unitary. Given a sequence of lattices (I',,) we can study the asymp-
totic properties of L?(I',\G) as n — oo. For example one can ask about the growth of the
multiplicity mp(7) := dim Homg(7, L?(T\G)) of a given irreducible unitary representation
7 in L?(I',\X). This question was considered by DeGeorge and Wallach in [34] where they
proved that under certain reasonable conditions on (I',,) we have
. mp,(7)
A oy ~ 4

where d(7) is defined as the degree of 7 if 7 is in discrete series and 0 otherwise. The limit
multiplicity is stronger than the convergence of multiplicities, it deals with the distribution
of irreducible subrepresentations of L?(T'\G) in the space II(G) of all irreducible unitary
representations of G, equipped with the Fell topology (see [39]). For every lattice I' C G
we construct a measure

pr= VolF\G Z On-

We say that a sequence (I';,) has the limit mult1p11c1ty property if the following
condition is satisfied: for every measurable subset U of II(G) such that the Plancherel
measure (see [48]) of the boundary U — U° is 0 we have

im_pr, (U) = p"(U),

n—oo
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where p is the Plancherel measure. Sauvageot showed [97] that for cocompact lattices
the Limit Multiplicity property holds if

lim _uwhr,f
n—oo Vol(I',\G)

Our first main result gives the following quantitative bound:

THEOREM 1.2. [Thm. 2.8] Let K = R or C. There exists a > 0 such that for any
R > 0 the following holds. Let I' be a uniform torsion free, congruence arithmetic lattice
in PGL(2,K). For any f € C(PGL(2,K)) with suppf C B(1, R)

|[Vol(T\PGL(2,K)) f(1) — trRr f| <Rr || f]|oo(Vol(I'\PGL(2, K))l_a. (1.2)
We can take a > 0.014.

= f(1), for all f € C°(G). (1.1)

Borel [21] showed that for every V' > 0 there exists only finitely many arithmetic
lattices I' € PGL(2,K) with Vol(I'\G) < V so our result implies that any sequence (I'),)
of pairwise disjoint, cocompact torsion free arithmetic congruence lattices one has the
Limit Multiplicity Property. As a corollary we can control the growth of Betti numbers in
sequences of arithmetic congruence hyperbolic 3-manifolds:

COROLLARY 1.3 (Corollary 2.18). Let (I'y,) be a sequence of pairwise distinct arith-
metic, torsion free lattices in PGL(2,C). Assume that either the are congruence or they
are pairwise non-commensurable. Then fori=1,2

bi(Dp \H?)
im
n—oo Vol(I',, \H?)

1.4. Benjamini-Schramm convergence. Let M be the space of rooted locally com-
pact metric spaces equipped with the pointed Gromov-Hausdorff topology (see [57]). In
that topology a sequence of rooted metric spaces (X,,x,) converges to (Y,y) if for ev-
ery R > 0 and € > 0 there exists N = Ng. with the following property: for n > N
there exists a metric space M and isometric embeddings of R-balls m: By, (zn, R) —
M,my: By (y,R) — M such that the Hausdorff distance between m(Bx, (zn, R)) and
m2(By (y, R)) is at most €. Intuitively (X,,zy) converges to (Y,y) if R-balls around z,
look like an R-ball around y for big enough n. With that topology, the space M is a Hauss-
dorf topological space. For a metric space X with a probanility measure v we send it to a
probability measure [ 6(x ,)du(z) € PM where PM is the space of all Borel probability
measures on M. The Benjamini-Schramm topology is the topology on metric probability
spaces induced by the weak-* convergence in PM. Originally this notion of convergence
was considered by Benjamini and Schramm for regular graphs in [15]. It was adapted to
the setting of locally symmetric spaces of finite volume by Abert, Bergeron, Biringer, Ge-
lander, Nikolov, Raimbault and Samet in [3]. The question of particular interest is when
a sequence of locally symmetric spaces I',,\ X converges to X. The condition in that case
is much simpler than the abstract definition of Benjamini-Schramm convergence: (I'y,\X)
converges to X if and only if for every R > 0 we have

i Vol((T'x\X)<r)
n—oo  Vol(I',\ X)

(I'»\X)<r is the R-thin part of the orbifold I',\X. This means that in the sequences
of orbifolds convergent Benjamini-Schramm to X the R-balls around typical points look
like an R-ball in the universal cover X. It is known [3, Thm 1.5] that if G has property
(T) and is of real rank at least 2 then every sequence of pairwise non-conjugate lattices
(I'y) converges to X in the Benjamini-Schramm topology. For an arithmetic, cocompact
lattice I' C G of arbitrary rank, there are constants ¢, 1 > 0 such that for every congruence
subgroup I'' C T" and R > 1 one has [3, Thm 1.12]:

Vol(I"\X) <r) < e“BVol(I"\G)' 7+

It implies that for every sequence of pairwise distinct congruence subgroups (I',) of T the
orbifolds (I',\ X') converge to X in the Benjamini-Schramm topology.

= P (HP) = 0.

=0.
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Benjamini-Schramm convergence of locally symmetric spaces is related to invariant
random subgroups. Let Subg be the space of closed subgroups of G equipped with
the topology of Haussdorff convergence on compact sets. It makes Subg into a metrizable
space [33]. The group G acts on Subg by conjugation. An invariant random subgroup H
is a random variable taking values in Subg with Borel probability distribution invariant
by conjugation by G. Sometimes we will work directly with G-invariant Borel probability
measures on Subg and call them invariant random subgroups. Given a lattice in G we
construct an invariant random subgroup

1
Vg :

N Y
VOIT\G) Jp 19

One of the key steps in [3] is the observation that (I',,\X) converges Benjamini-Schramm
to X if and only if v, converges weakly-* to dy).

Our main result on Benjamini-Schramm convergence deals with sequences of arithmetic
latices in PGL(2,R) and PGL(2,C), it is similar to [3, Thm 1.12| but the big difference is
that we do not need to assume that lattices are contained in a single arithmetic lattice.

THEOREM 1.4 (Thm 2.9). There exists a > 0 such that for any R > 0 the following
holds. Let T' be a torsion free, congruence arithmetic lattice in PGL(2,K). Then

Vol((T\X)<r) <r Vol((T'\ X))~ (1.3)
We can take a > 0.014.

It is derived from Theorem 1.2. For non cocompact lattices it was shown by Raimbault
in [92]. We also prove a version for non-congruence subgroups

THEOREM 1.5 (Thm 2.11). There exists ¢ > 0 such that for any R > 0 the following
holds. Let K =R or C, let T be a torsion free, arithmetic lattice in PGL(2,K). Then for
any f € C(PGL(2,K)) with suppf C B(1, R)

[Vol(T\X) f(1) — trRr f| <r || fllec A} °, (1.4)
Vol((T\X)<r) e
ol (VX)) <r AT, (1.5)

Where Ay, is the discriminant of the trace field k of T’ and ¢ > 0.0006.

We use Theorem 1.5 to prove Gelander’s conjecture for arithmetic hyperbolic 3-manifolds
[53, Conjecture 1.3]:

THEOREM 1.6. [Theorem 2.16] There exist positive constants A, B such that every
arithmetic, hyperbolic 3-manifold M is homotopically equivalent to a simplicial complex
with at most AVol(M) vertices and each vertex has degree bounded by B (if M is compact
we can take B = 245).

1.5. Growth of homology in higher rank. In Chapter 3 we investigate the growth
of the dimension of Hq(I'\X,F3) for finite volume locally symmetric spaces I'\ X, where
X is a higher rank symmetric space. Let us review what is known about the homology
and cohomology growth in locally symmetric spaces. A classical theorem of Gromov [56|
asserts that there exists a positive constant C' = C'(X) such that

bi(T\X) := dimg H'(T\ X, Q) < CVol(I'\ X)

for every finite volume locally symmetric space I'\ X. In some cases Gromov’s result may
be improved to a precise asymptotic. A sequence of cocompact lattices (I'y,) is uniformly
discrete if the length of closed geodesics on (I'y,\ X) is bounded from below uniformly in 7.
In [3] it is proved that for a uniformly discrete sequence of cocompact lattices (I';,) such
that T',,\ X converges to X in Benjamini-Schramm topology we have

bi(T\X) (2
e Vol T\ X) ~
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where bz@) (X) is the i—th L?-Betti number of X. Combined with [3, Thm 1.2] it gives a
powerful tool to study the growth of Betti numbers in higher rank symmetric spaces. The
aforementioned results give satisfactory control over the growth of homology or cohomology
with rational coefficients but give little information about the mod—p homology or coho-
mology. For higher rank symmetric spaces X of dimension d the Margulis normal subgroup
theorem or property (T) implies that H;(I'\X,Z) is finite so b;(I'\X) = bg—1(I'\X) = 0
but we do not even know whether dimp, H1(I'\X,F,) is sublinear in volume. In [54] Ge-
lander showed that for every symmetric space X (not necessarily higher rank) there exists
a positive constant B = B(X) such that

d(I') < BVol(T'\ X),

where d(T") is the minimal cardinality of a generating set. The result of Gelander implies
that

. dimF Hl(P\X,Fp)

lim sup -

Vol(T'\ X )—o0 Vol(T'\ X)

The question on the growth of dimensions of mod—p homology groups is related to the
rank gradient [1,5,67]. The rank gradient of a group I'" with respect to a sequence of
subgroups (I';,) is defined as

<B.

L d(Fn) —1
RG(T, () := lim =

provided that the limit exists. In [1] (see [5] for a similar problem for fundamental groups
of hyperbolic 3-manifolds) it is shown that if T is a higher rank lattice which admits a set of
generators” 1, Sa, . .., S, such that [s;, s;11] = 1 then RG(T, (T,,)) = 0 for every sequence
of pairwise distinct finite index subgroups (I';,). We can deduce immediately that

lim dime H1 (Fn\X, Fp) —0
n—00 Vol(I', \ X)
In fact for right-angled groups an even stronger conclusion holds ( [1]):
o log|H (0\X.Z)
Vol(I\X)—oo  Vol(I'\ X)

It is conjectured |1, Conjecture 3| that

=0.

. dly) -1
lim ———————
n—oo Vol(I',\ X)
for any sequence of pairwise distinct lattices in a higher rank semisimple Lie group.
Regarding the growth of mod—p homology groups in rank one lattices we have the
following result of Calegari and Emerton [30]. Let M be a 3-manifold with fundamental
group I Fix a map ¢ : I' — GL(n,Zy,) and write G for the closure of ¢(I'). Put
Gr == G N (ker [GL(n, Zy) — GL(n, Z/p"Z)]) and T := ¢~1(Gj). Associated to each Ty
we have a finite connected cover My of M such that m(My) = I'y. The sequence of 3-
manifolds obtained in this way is called a p—adic analytic tower. Let d be the dimension
of G as a p—adic analytic group. In [30] it is proved that the dimensions of the homology
groups Hi(Mj,F,) may grow only in one of the following ways:
dimg, Hi(My,Fp) = Ap? + O(p'@=V¥) (linear growth).
dimg, Hy (M, Fp) = Apld=Dk 4+ O(pld=2k),
d = 2 and dimp, Hy(My,F,) = O(1).
d = 3 and dimg, Hy(My,F,) < 3 for k large enough.
dimg, Hy(My,Fp)
Vol (M)
and Emerton conjecture that the first possibility can not occur if T'y = {1}. If that is
true then the dimension of mod—p homology groups would grow sublinearly in p—adic
analytic towers of hyperbolic 3-manifolds which converge Benjamini-Schramm to HS3.

=0

In particular when M), are hyperbolic then the limit limy_, exists. Calegari

2Such groups are called right-angled.
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Our main result from Chapter 3 deals with mod—2 homology in higher rank spaces:

THEOREM 1.7. Let X be the symmetric space of a higher rank group G and let (T'y,) be
a sequence of pairwise distinct torsion free lattices in G. Then
lim dim]F2 H1 (Fn\X, Fg)
n—00 Vol(I', \ X)

The argument uses non-trivially the characteristic 2 and any extension to odd charac-
teristic would require substantial modifications.

=0.

2. Kesten theorems

For a d-regular graph G = (V, E) the Markov averaging operator M : L*(V) — L*(V)
associated to the random walk on G is given by

M®(z) = %Z@(y) for ® € L3(V),z €V,
Yy~x
where the sum is taken over all the neighbors of x. The spectral radius of GG is defined
as the operator norm [[M|| = supg|,—1 [[M¢[l2. The spectral radius measures the rate at
which random walk expands in the graphs. Among infinite d regular graphs the one with
the lowest spectral radius is the d-regular tree Ty whose spectral radius is p(Ty) = 2%‘/?.
An infinite d-regular graph G is called Ramanujan graph if p(G) = p(Ty).

Let I" be a countable group with a finite symmetric set of generators S. The Cayley
graph Cay(T", S) is the graph with vertex set I and edges {(g,gs) | g € ', s € S}. Similarly
for any countable set X with right action of I' we define the Schreier graph Sch(X,S) as
the graph with vertex set X and edges {(z,zs) | g € G,s € S}.

A well known theorem of Kesten [65,66] asserts that a normal subgroup N of T' is
amenable if and only if p(Cay (I, S)) = p(Sch(N\T', 5)). A subgroup H is called Ramanujan
if p(Sch(H\TI', S)) = p(Cay(I',S)). Every amenable subgroup is Ramanujan but there are
examples of non-amenable not normal subgroups (e.g. free group on 2 generators inside
a free group on 5 generators). In [6] Abert, Glasner and Virag proved a probabilistic
analogue of Kesten’s theorem. They prove that if an invariant random subgroup H of I is
Ramanujan almost surely then it is amenable almost surely. This allows to extend Kesten’s
theorem beyond normal subgroups.

Our main result from Chapter 4 is the extension of Kesten’s theorem to uniformly
recurrent subgroups. A subgroup H of I' is called uniformly recurrent (see [42,43,80])
if the closure of the G-orbit of H in Subr is a minimal dynamical system. Such groups
proved useful in the recent characterization of C*-simplicity by Kennedy [64]. We show

THEOREM 1.8 (Thm 3.1). Let T be a group generated by finite symmetric set S. A
uniformly recurrent subgroup H of I' is Ramanugjan if and only if it is amenable.

The proof is based on the argument of Abert, Glasner and Virag from [4,6]. Using
similar techniques we give a short proof of a recent result of Lyons and Peres [76]. Define
the function C(—,k): G — {1,0} by C(v,k) = 1 if v is contained in a non-backtracking
cycle of length £ and 0 otherwise.

THEOREM 1.9 (Thm 4.1). Let G be a d-regular rooted infinite Ramanujan graph. Let
(X;) be the standard random walk on G. Then for any k > 1

RS
Jin;ongE[C(Xi,k)] = 0.

3. Character bounds

In Chapter 5 we study character bounds for the finite groups of Lie type as well as the
compact p-adic reductive groups. We are interested in bounds of the form

Ix(9)| < Cx(1)'7°, for every irreducible character y (3.1)
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where C,§ > 0 depend only on g.

Let us begin by explaining the motivation coming from Chapter 2. Let I' be a discrete
group. We say that a sequence of finite index subgroups (I';,) of I is a Farber sequence
if for every g € I'\ Z(I')

. |{ATy [ h™'gh € T}
1
o0 [T,

It is not hard to see that a sequence of subgroups (I'y,) is a Farber sequence if and only if the
sequence of Schreier graphs Sch(I',\I', S) converges to Cay(I',.S) in Benjamini-Schramm
topology, for any generating set S. In case if I' is a lattice in a semisimple Lie group the
last condition is equivalent to convergence of orbifolds I',\ X to X in Benjamini-Schramm
topology.

For a finite dimensional representation p we write x, for its character. The Farber
condition (3.2) can be reformulated in terms of characters of the induced representations.
For every non-central g € I' we have

= 0. (3.2)

. |X1nd§ 1(9)]
lim —2—— =0
oo XIndll:nl(l)
In Chapter 2, Lemma 2.83 we show that for I' with a polynomial representation growth
any bound of the form

Ix(g)] < C’X(l)l_(S for y irreducible
with 0 > 0 implies
_5/
’XInd ll:nl(g)| < C/Xlnd gnl(l)l

for certain positive ¢’. Inequalities of this type are one of the crucial components of the
proof of Theorem 1.2.

Another motivation to study the bounds of the form (3.1) comes from work of Liebeck,
Shalev et al. [74] who successfully applied them to study random walks on finite groups of
Lie type, random generation problem and word generation problem. Inequalities obtained
by Gliick [55] imply that for every Chevalley group G there exists C,d > 0 such that for
every g € G(F,) non-central we have

Ix(9)] < Cx(1)}7° for every irreducible character .

Note that this bound is uniform in g. The constant §4 = resulting from Gliick’s estimates is

G which is highly non-optimal for most elements of G. Larsen proved in an unpublished
note [71] that if G is a reductive group defined over a finite field F, and g € G(Fy) is regular
semsimple then |x(g)| < |W|? where W is the absolute Weyl group of G. In Chapter 2 we
adapted Larsen’s method to the p-adic setting and proved the following:

THEOREM 1.10. Let G be a reductive group defined over a non-archimedean local field
F. Let K be a compact open subgroup of G(F), let v € K be a regular semisimple element.
Then for every irreducible character x of K:

XM < C,
where constant C' depends only on v and G (not on K or x).

In Chapter 5 we prove a slight improvement of Larsen’s bound using Deligne-Lusztig
restriction functors. We prove that in a reductive group G over a finite field the value
of an irreducible character on any semisimple regular element is bounded by |[W|. A
similar approach using restriction functors was developed independently by Bezrukavnikov,
Liebeck, Shalev and Tiep [74]|. They use it to strengthen Gliick’s bound. Write

dim u”
a(L) := max {leIEZG |ue Liu#1 unipotent} .
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THEOREM 1.11 ( [19]). Let v € G(F,) and let L be a rational Levi subgroup of some
rational parabolic subgroup of G such that Gg C L. Then, for every irreducible character
x of G(Fy) we have

()] < x (1),

where the implicit constant depends only on the rank of G.
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CHAPTER 2

Strong limit multiplicity for arithmetic hyperbolic surfaces
and 3-manifolds

1. Introduction

1.1. Limit multiplicity. Let G be a semisimple Lie group and let I" be a cocompact
lattice in G. We fix a Haar measure on G. The group G acts on L?(I'\G) by right
translations which makes it a unitary representation of G. If I' is cocompact, the space
L?(I'\G) decomposes as a direct sum of its irreducible subrepresentations, possibly with
multiplicities. A natural question one can pose is how the distribution of the irreducible
components of L2(T'\G) changes as we vary the lattice I'. First major results in this
direction were obtained by DeGeorge and Wallach in [34]. They showed that if (T';);en is
a tower of cocompact lattices in G, i.e a sequence satisfying the following three conditions:
Iiyp € Iy, Ty Ty, Mgy T = {1}, then the asymptotic multiplicities of the discrete
series representations are proportional to the volume Vol(I'\G). More precisely, for every
irreducible unitary representation 7 of G they prove that

. mr(m) {d7r if 7 is in the discrete series,

fare Vol(I'\G) 0  otherwise,

where mp(7) = dime Homg (7, L2(T'\G)) is the multiplicity of 7 in L?(I'\G). In the same
paper DeGeorge and Wallach conjectured a stronger result called the limit multiplicity
property (see [37]). It states that under the same conditions, the distribution of irreducible
components of L?(I'\G) counted with multiplicity divided by the covolume of I' tends to
the Plancherel measure. Let us recall the definition of the Plancherel measure.

Let II(G) denote the set of the irreducible unitary representations up to equivalence.
For m € II we write H, for the underlying Hilbert space. For a function f € L'(G) we can
consider its Fourier transform, given by

f(m) = m(f) = /G f(g)m(g)dg.

It is a bounded linear operator on H, [48, Chapters 7.4,7.5]. If f € C2°(G) the operator
f(m) is a Hilbert-Schmidt operator [87, Proof of Theorem 8.2]. Thus we can treat f(m) as

an element of H, ® H*. The Plancherel measure is the unique measure p?' on II(G) for
which

12 = /H o Moy foral £ € C().

Equivalently it is the unique measure for which
)= [ s e = [ty

By approximating the Dirac delta at the identity by functions from C2°(G) we can deduce
yet another identity

£(1) —/ tr(r ()P for all f € C=(G),
(@)

The last equality can be also used as the definition of the Plancherel measure. The tem-
pered spectrum IT*™P(G) is defined as the support of the Plancherel measure.
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Let us return to the limit multiplicity property. For any lattice I' (not necessarily
cocompact) we define the measure pur on II(G) by

1
= ———— Or.
FE = Nol(D\G) 2 mr(m
mell(G)
We say that a sequence of lattices (I';);en has the limit multiplicity property if for every
bounded function ¢ € C(IT*™P(G)) !

im [ o(m)dpr, = / G
1—>00 H(G

and for every bounded set B in II(G)\ I[I*™P(G) the measures ur,(B) tend to 0. Sauvageot
showed in [97] that it is enough to test the convergence for functions of the form 7 +—
tr(m(f)) where f is a smooth, compactly supported function on G (see also [101]).

THEOREM 2.1 (Sauvageot Density Principle). A sequence of lattices (I';) has the limit
multiplicity property if and only if, for every f € C°(G) we have

tim [ ter(f)dpr, = £(1).
1— 00 H(G)
We remark that this theorem holds for uniform as well as for non-uniform lattices.
Write Rr f for the operator

Rrf(® / f(9)®(zg)dg for ® € L*(I'\G). (1.1)

The Sauvageot density principle is especially convenient in the uniform case, because then
L?*(T'\G) decomposes discretely and we have

1 trRp f
Juo ™00 = iy PR TiE)

In 1979 DeGeorge and Wallach [35] proved the limit multiplicity property for towers of
cocompact lattices in semisimple Lie groups of real rank 1 and in 1986 Delorme [37] settled
the question for cocompact towers in arbitrary semsimple Lie groups. For sequences of non-
uniform lattices Sarnak [96] showed that any sequence of principal congruence subgroups
I'(V;) € SL(2,Z) with N; — oo has the limit multiplicity property. Analogues in the non
uniform case of the results of DeGeorge and Wallach about the multiplicites of irreducible
unitary representations were obtained by DeGeorge [36], Barbasch—Moscovici [14] for
groups of real rank one, and by Clozel [32] for general groups. The strongest results for
asymptotic multiplicities in towers of arithmetic lattices were obtained by Rohlfs—Spehr
[95] and Savin [98]. These results were followed by works of Finis, Lapid and Mueller [47]
who proved the limit multiplicity for principal congruence subgroups of SL(n, Oy) where Oy,
is the ring of integers in a number field k. By the Borel-Harish-Chandra Theorem those are
lattices in the semisimple Lie group SL(n, k ®g R). This result was later extended in [46]
to arbitrary sequences (I';);en of congruence subgroups of SL(n, Oy).

In the uniform case, a substantial breakthrough was obtained in [2|. Using invariant
random subgroups and the notion of Benjamini-Schramm convergence it was shown that if
G has real rank at least 2 and Kazhdan’s property (T), then every sequence of cocompact
lattices (I';);en which are pairwise non conjugate and whose injectivity radius is uniformly
bounded away from 0 has the limit multiplicity property. It was the first result dealing with
sequences of not necessarily commensurable lattices. In 2013 Jean Raimbault [92, Corol-
lary 1.3.5] obtained very general results on sequences of maximal lattices in SL(2, C) which
are all defined over quadratic or cubic number fields. Recently Jasmin Matz [81] proved
that the Limit Multiplicity hold for groups G = SL(2,R)™ x SL(2,C)" and sequences of
arithmetic lattices of form SL(2, Op) where F' is a number field with r1 real and r3 complex
places.

We mean functions continuous with respect to the Fell topology on TI(G) [39, 18.1]
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1.2. Benjamini-Schramm convergence. Let G be a semisimple Lie group and I' C
G a cocompact lattice. Let K be a maximal compact subgroup of G. Let X = G/K be
the symmetric space of G endowed with the G-invariant Riemannian metric defined by the
Killing form of G (see [58]). Let dg be associated left invariant Riemannian metric on G
and write Bg (X, R) for the open R-ball around the set ¥ C G. We can define the R-thin
part of the orbifold I'\ X as

(M\X)_p, = {TgK | Ba(K, R) g 'Tg # {1}} (1.2)

Let z € I'\X and let Z € X be a lift of x. Recall We that the injectivity radius injrad x
is defined as the supremum of real numbers R such that the projection map B(Z, R) —
B(z, R) is injective. Given a sequence of lattices (I';) N we consider the sequence of locally
symmetric spaces (I';\ X );en. We say that the sequence (I';\ X);en converges Benjamini-
Schramm (or B-S converges) to G/K if for every R > 0 we have

Vol(T\X) <r)

A oA xy (13)

For brevity we shall say that (I';);en has property B-S if the sequence (I';\ X );en converges
Benjamini-Schramm to X. The notion of Benjamini-Schramm convergence originates from
the paper [15] where they defined it for the sequences of graphs of bounded degree. For
locally symmetric spaces it was defined and studied in [2]. It is a special case of Benjamini-
Schramm convergence for metric spaces with probability measures (see [2, Chapter 3|).

It is well-known that the Limit Multiplicity Property implies the Benjamini-Schramm
convergence for sequences of cocompact lattices (see Section 11).

One of the main results of [2] is the following:

THEOREM 2.2 ( |2, Theorem 1.5]). Let G be a real semisimple Lie group of real rank
at least 2 and with Kazhdan’s property (T). Then every sequence of pairwise non-conjugate
lattices (T';)ien in G has property B-S.

For a sequence of congruence subgroups of a fixed uniform arithmetic lattice they
showed a stronger quantitative version of B-S convergence:

THEOREM 2.3 ( [2, Theorem 1.12]). Let I'g a uniform arithmetic lattice in G. Then
there exist positive constants c,pu depending only on 'y such that for any congruence sub-
group I' C T'g and any R > 0 we have

Vol((N\X)<g) < e“fVol(I'\ X))+

The result concerning the limit multiplicity property that we referred to in the last
section is a consequence of Theorem 2.2 and the following;:

THEOREM 2.4 ( [2, Theorem 1.2]). Let (I';);en be a sequence of lattices with property
B-S, such that the injectivity radius inj rad(T';\X) is uniformly bounded away from 0 2.
Then (I';)ien has the limit multiplicity property.

The Margulis injectivity radius conjecture |77] predicts that for a fixed semisimple
Lie group G the injectivity radius of I'\G/K is bounded away from 0 uniformly for all
arithmetic lattices. This would be implied by the Lehmer conjecture and would itself imply
the Salem number conjecture. So far no decisive progress has been made towards the proof
of the Margulis conjecture. Finally we should mention the results of Jean Raimbault [92]
for arithmetic lattices in SL(2,C) and associated arithmetic 3-orbifolds, we shall describe
them in greater detail in the next paragraph devoted to sequences of arithmetic lattices.

2The actual condition is: the lengths of closed geodesics are uniformly bounded from below and the
order of torsion elements of I'; is uniformly bounded from above.
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1.3. Sequences of arithmetic lattices. In this section we shall discuss what are
the reasonable conditions that we should put on a sequence of arithmetic lattices (I';)ic
to expect that it has the limit multiplicity property or the B-S property. The first obvious
condition is

(1) lim;—00 VOI(I';\G) = o0,

By Theorem 2.2 this is sufficient for property B-S in higher rank groups with property (T).
If G is arank 1 Lie group, then this is not enough. For example if I is a torsion free, uniform
arithmetic lattice in SL(2,R) and M, := I'\H is the corresponding compact hyperbolic
surface, we can take (M;);cn a sequence of cyclic covers of My. Clearly (M;);en does not
converge Benjamini-Schramm to H because the radius of injectivity is uniformly bounded
by 5diamMy®. Hence the sequence of fundamental groups I'; = m1(M;) does not have
property B-S. There is a similar counter-example constructed by Sarnak and Phillips [88|
for the limit multiplicity property. In both of these constructions the sequences contained
lattices which were not congruence lattices. Hence, it seems reasonable to add the second
condition

(2) I'; is a congruence lattice for all i € N.

With these conditions we expect that at least the weak version of the following conjecture
holds:

CONJECTURE 2.5. o (Weak version) Let G be a semisimple Lie group with triv-
ial center and (I';);en a sequence of arithmetic lattices in G satisfying conditions

(1) and (2). Then (T;)ien has the limit multiplicity property and the B-S property.

e (Strong version) Let X = G/K be the Riemannian symmetric space of a center-
free semisimple group G. There exists a § > 0 such that for any R > 0 and any
congruence arithmetic lattice T in G and any f € C(G) with suppf C B(1, R) we

have
Vol((T\X)<gr) <g Vol(T'\X)' 7, (1.4)
1) = iy <n 1l Vol\G) . (15)

Cases of this conjecture for maximal lattices and for lattices defined over fields of
bounded degree were present in [92, Section 1.1.2] and that a similar statement holds was
conjectured in |2, Conjecture 6.1]. For G = SL(2,C) and lattices defined over a cubic or
quadratic field this was settled by Jean Raimbault [92, Theorem A]. He has shown, among
other things, that there exists § > 0 with the following property. For any maximal lattice
I' in SL(2,C) defined over a cubic or quadratic number field put M = I'\SL(2,C)/K then

Vol((M)<g) < Vol(M)' .

This implies that any sequence of maximal lattices (I';);en defined over a cubic field has
property B-S if Vol(I';\G) tends to infinity. In particular, he solved completely the case
of sequences of non uniform lattices as all arithmetic non-uniform lattices in SL(2,C)
are defined over a quadratic imaginary number field. For multiple factors of SL(2,R)
and SL(2,C) Jasmin Matz [81] proved a reasonable analogue of Strong Limit Multiplicity
property for certain sequences of non-uniform arithmetic congruence lattices. Raimbault
has also addressed Conjecture 2.5 for sequences of lattices defined over fields of bounded
degree. He obtained the following

THEOREM 2.6. [92, Theorem BJ Let (I';);en be a sequence of lattices in SL(2, C) with
fields of definition F; such that:

e F; is a quadratic extension of a totally real subfield B,

3Let a,b € m1(Mo) be such that ¢ = aba"'b™! # 0 and let  be a geodesic on M; corresponding to
c. Since the covering M; — My is abelian for all ¢ the geodesic v lifts to a closed geodesic on M;. Every
point z in M; is at distance at most diamMy to a lift of v so injrad () < diamMy + I(y) where [(v) is the
length of v. We can pick a, b such that the loops representing them are of lengths smaller than diamM,.
If follows that {(v) < 4diamMy and consequently injrad (z) < 5diamMo.
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e the relative discriminants A, /g, go to infinity,
e the absolute degree [F; : Q] is bounded.

Then (I';);en has property B-S.

The second condition is reminiscent of the assumptions of the Brauer Siegel theorem,
but the proof in [92] does not use it. The argument follows the strategy of [2] via Invariant
Random Subgroups (IRS) and the Borel density Theorem for IRS’s [2, Theorem 2.6].

Let us explain how one could deduce the weak version of Conjecture 2.5 from the
statement that holds only for maximal lattices. We shall use Theorems 2.3 and 2.4 (
[2, Theorems 1.12,1.2]).

LEMMA 2.7. Let G be a semisimple Lie group. Suppose that every sequence of maximal
arithmetic lattices (I';)jen such that Vol(T';\G) — oo has the limit multiplicity property
and property B-S. Then every sequence of congruence arithmetic lattices (A;)ien satisfying
lim;_, o0 VOl(A;\G) = oo has the limit multiplicity property and property B-S.

PROOF. Let (A;)ieny be as in the statement. It will be enough to show that we can
always find a subsequence with the desired properties. For any ¢ choose a maximal arith-
metic lattice I'; containing A;. We consider two cases, either Vol(I';\G) goes to oo or not.
In the first case, the sequence (I';) has the limit multiplicity property and the B-S property.
For any R > 0 and f € C.(G) we have

VOl(ANG/K)<n) _Vol(T\G/K) <n)

Vol(ANG/K) = Vol(T\G/K) (16)
trRa, f trRr, f
0~ G| <0 - e a7

Inequality (1.6) follows from the fact that the R-thin part of A;\G/K covers only the
R-thin part of I';\G/K so Vol((Ai\G/K)<r) < [I'; : Ai]Vol((I';\G/K)<Rr). To prove (1.7)
note that for every I';-conjugacy class [y]r, we have

Z Vol(Ai y \Gy) Oy (f) < [T+ Ai] VOI(Ti y \G) O5(f ).

[v]a; ClVIr;

Now (1.7) follows from the Selberg trace formula and the identity Vol(A;\G/K) = [I'; :
A;]Vol(T'\G/K).

Hence (A;)ien also has the limit multiplicity property and the B-S property. In the
second case we invoke the result of Borel and Prasad [23, Theorem A| on the finiteness
of the number of arithmetic lattices of bounded volume. It follows that there exists an
infinite subsequence (n;);eny such that I',,, = I" for some fixed maximal I". The lattices
in the sequence (Ay,)ien are all contained in I' so by Theorem 2.3 it has property B-S.
Moreover the radius of injectivity of A,,\G/K is at least as big as injrad (I'y,\G/K) so by
Theorem 2.4 (Ay,)ien has the limit multiplicity property. U

Note that even if the strong version of the Conjecture 2.5 holds for maximal lattices
the argument above does not yield the strong version in the general case. The reason for
that is that the implicit constant and the exponent in Theorem 2.3 depend of the lattice
in a non-explicit way. *

1.4. Main results. Our main results deal with sequences of arbitrary, torsion free
congruence arithmetic lattices in PGL(2,R) and PGL(2,C). Let K = R or C and let
K be a maximal compact subgroup of PGL(2,K). Write X for the symmetric space
PGL(2,K)/K equipped with the Riemannian metric induced by the Killing form.

41t looks difficult to extract sufficient dependence of I" from the proofs of [2, Thm 1.2] and the analogous
result from [46]. One of the main innovation of the present paper is an alternative approach to [2, Thm
1.2] which gives very explicit bounds.
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1.4.1. Strong Limit Multiplicity and Benjamini-Schramm convergence.

THEOREM 2.8. [Strong Limit Multiplicity] There exists a > 0 such that for any R >
0 the following holds. Let I' be a uniform torsion free, congruence arithmetic lattice in

PGL(2,K). For any f € C(PGL(2,K)) with suppf C B(1, R)
Vol('\PGL(2, K))f(1) — trRrf| <r | floo(VOD\PGL(2,K)) ™% (1.8)
We can take a > 0.014.

THEOREM 2.9. [Strong Benjamini Schramm convergence] There exists a > 0 such that
for any R > 0 the following holds. Let T" be a torsion free, congruence arithmetic lattice in
PGL(2,K). Then

Vol(T\X) <) <pg Vol((T\ X))~ (1.9)
We can take a > 0.014.

REMARK 2.10. This settles both versions of Congecture 2.5 for lattices in PGL(2,R)
and PGL(2,C) with an additional assumption that they are torsion free. The method
also applies to congruence lattices without torsion of small order. Lattices with 2-torsion
elements are the hardest case, where the bounds we can obtain are not sufficient to prove
the Strong Limit Multiplicity.

Without assuming the congruence condition we have

THEOREM 2.11. There exists ¢ > 0 such that for any R > 0 the following holds.
Let K =R or C, let T be a torsion free, arithmetic lattice in PGL(2,K). Then for any
f € C(PGL(2,K)) with suppf C B(1, R)

[Vol(T\X) f(1) — trRr f| <r || fllooA) (1.10)
Vol(IM\X)<r) —¢
W\X,)R <R Ak , (1.11)

where Ay is the discriminant of the trace field k of I' and ¢ > 0.0006.
As a corollary of the proof we will get

COROLLARY 2.12. Let (I';)ien be a sequence of torsion free arithmetic lattices in PGL(2, K).
Then either infinitely many I';’s are commensurable or the sequence (I';);en has property

B-S.

By using a different argument Corollary 2.12 is vastly improved in [49] (see Corollary
2.15).

REMARK 2.13. An element g is called R-regular ( [16,91]) if Ad g has no eigenvalues
on the unit circle. Define

tr" R f = Z Vol(T,\G4) O, (f)-
[yler
yR—Teqular

In the proof Theorem 2.8 we actually show that for any congruence lattice I' (possibly
non-uniform or with torsion)

tr'"" R, f

Vol(I'\PGL(2,K))

Theorem 2.8 follows because in the torsion free lattices of PGL(2,K) every nontrivial ele-
ment is R-reqular.

<& || fllee VOI(I\PGL(2, K)) 1~ (1.12)

Several steps of the proofs of Theorems 2.8, 2.9 and 2.11 work also for other simple
Lie groups. The difficulties arise when we want to estimate the adelic volumes of the
centralizers (c.f. Proposition 2.93) and the values of irreducible congruence characters at
semisimple, non-regular elements (c.f. Theorem 2.61). For general semisimple Lie group G
the methods from the present paper should be mutatis mutandis enough to prove that the
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contribution to the geometric side of the trace formula coming from R-regular elements
(see [16,91]) of a congruence lattice T' is bounded by Vol(T'\G)!~® for some a > 0. For
torsion free uniform lattices in PGL(2,R), PGL(2, C) all nontrivial elements are R-regular
so trRr f — f(1)Vol(T\G) = tr'" Rr f and we can prove the strong form of limit multiplicity.
In the forthcoming work with Jean Raimbault [49] we prove:

LEMMA 2.14. [49] Let G be simple Lie group and let (T';)ien be a sequence of lattices
in G such that for every f € C.(G) we have

. tr""Rp, f
lim —————— =0.
1—00 VOI(F\G)
Then the sequence of locally symmetric spaces I';)\X tends to X in Benjamini-Schramm
convergence.

As a corollary of (1.12) and the above lemma one gets

COROLLARY 2.15. [49] Let be (I';);en be any sequence of pairwise non-conjugate arith-
metic congruence lattices in PGL(2,K). Then I';\X converges B-S to X.

1.4.2. Triangulations of arithmetic hyperbolic 3-manifolds. As an application of
above results we prove Gelander conjecture [53, Conjecture 1.3| for arithmetic 3-manifolds:

THEOREM 2.16. There exist absolute positive constants A, B such that every arithmetic,
hyperbolic 3-manifold M is homotopically equivalent to a simplicial complexr with at most
AVol(M) wvertices and each vertex has degree bounded by B (if M is compact we can take
B =245).

As a simple corollary we obtain:

COROLLARY 2.17. There ezxists a constant C' > 0 such that any arithmetic lattice T' in
PGL(2,C) admits a presentation
[={(5[%)
where the size of |S|, |X| is bounded by CVol(M) and all relations in ¥ are of length at
most 3.

1.4.3. Growth of Betti numbers. Mathsushima’s formula [18,79] provides a link
between the spectral decomposition of L?(I'\PGL(2,K) and dimensions of cohomology
groups H'(I'\ X, C). We use standard notation b;(I'\ X) := dim¢ H*(I'\ X, C) and we write
652) (X) for the L2-Betti numbers of X. Using theorems 2.8 and 2.11 we deduce:

COROLLARY 2.18. Let (T';)ien be a sequence of pairwise distinct arithmetic, torsion
free lattices in PGL(2,K). Assume that either the are congruence or they are pairwise
non-commensurable. Then

bi(T\X) 5 ):{2; X=H2i=1

imboo Vol(T'\ X) — 0 otherwise.

1.5. Baby Case. The proof of Theorem 2.8 is quite long and does not split well
into separate steps. Before giving the outline for the general case we will give a detailed
sketch of the proof for a very particular type of arithmetic lattices. The baby case deals
with the class of "nice" lattices in PGL(2,R) (we will define them shortly) which are
very close to being maximal. This example already involves lattices with trace fields of
unbounded degree so it does not follow from the results of Matz [81] nor from the work of
Raimbault [92]. The only reason why we can not work with maximal lattices is that they
contain torsion elements and some of our arguments break down for such. We recommend
the reader to get acquainted with our notations (Section 2), preliminaries on the quaternion
algebras (Section 3) and the construction of arithmetic lattices (Section 4.2, Definitions
2.35,2.48,2.34) before reading this sketch.

Let k be a totally real number field of odd degree. We assume that the ring of integers
Oy has a prime ideal po such that Oy /py ~ Fa. Fix a real place vy of k. Let D be the
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quaternion algebra over k with the ramification set RamD = M® \ {vo}. By Proposition
2.29 such D exists and is unique up to k-isomorphism. Write PD* for the projective
multiplicative group of D. The group of adeles decomposes as the restricted product

PD*(A) ~ PGL(2,R) x PO(3,R)FU~1 5 TT PGL(2, k). (1.13)
peM;

We fix a maximal open compact subgroup U of PGL(2, A¢):

U= [] PGL(2,0O%,). (1.14)
peM;
We put Ko = {kpz | z € GL(2,0f, ),z =1d mod pé} and Uy = Koprer PGL(2,Oy,).
k
p#Po

Since Of/po ~ F2 we have PGL(2, O, ) ~ PGL(2,Z2) and
Ko~ {ZJx |z € GL(2,Z2),x =1d mod 4}

is a torsion-free subgroup of PGL(2, Oy, ) of index 48. We put I' := PD* (k)N(PD*(As) x Up)
and identity I" with its projection to PD* (k,,) ~ PGL(2,R). It is a congruence arithmetic
torsion-free lattice in PGL(2,R). We will call the lattices constructed in this way nice. In
the baby case we will show that for any f € C.(PGL(2,R)) and a nice lattice I" we have

trRp f — Vol(I\PGL(2,R)) f(1)| < Vol(T\PGL(2,R))*~, (1.15)

for some positive constant a’. Since nice lattices are subgroups of maximal lattices of

uniformly bounded index, the argument will be much simpler than in the general case. In
particular, we will not need to use the representation zeta functions and the machinery
developed in Section 8.

Step 1. We would like to bound the LHS of (1.15) from above using the adelic version
of Selberg trace formula and give a lower bound on the volume Vol(I'\PGL(2, R) using our
variant of Borel volume formula (Corollary 2.92). Put fa = f® (1po(37R))[k:Q}*1 ®(48-1yy,)
(see Section 4.5 for the explanation why we choose f in this way) and put the standard
Haar measure (see Section 2.4) on PD*(A). We recall that the standard measure depends
implicitly on the choice of the subgroup U. By Section 4.5, Corollary 2.54 we have the
following estimate

VoI(T\PGLE. B)) /(1) ~ Ref| < e 30 VollPD ()\PDS ()05 (111,
h}igg(k)
(1.16)
and by Corollary 2.92
Vol(T\PGL(2, R)) — (LU0 IAP26(2) 48 An (1.17)

el (Uo)| w(4n2) Q=1 = [cI (Up)| (4n2) Q"
Note that in the case of nice lattices the ramification set of the quaternion algebra consists
only of archimedean places and the set S of places p where U % PGL(2, O, ) is empty so
the above formulas are simpler than in the general case. The proofs of Corollaries 2.54 and
2.92 are as hard for the baby case as they are in general.

Step 2. Note that O,(|f|a) # 0 implies that the conjugacy class of v in PGL(2,R)
intersects the support of f. We endow PGL(2,R) with a left-invariant group metric
d(z,y) = ||[1 — Ad (y~'z)|| where ||A|| = /tr(ATA). Assume that suppf is contained
in a ball B(1,R). In Lemma 2.69 we show that if the conjugacy class of v intersects
B(1, R) then the logarithmic Mahler measure m(v) of v ¢ is bounded by R. The Mahler

50ur proof in this special case yields a > 1/2 and this is not optimal. Note that the bound in general
case is much weaker, with a> 0.014.

6For the definition of Mahler measure of an algebraic number see Section 5, m(7) is defined as m(})
where A is a non-trivial eigenvalue of Ad~y.
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measure controls many arithmetic quantities related to ~ including the orbital integrals
and the adelic volumes appearing on the right hand side of 1.16. It is important to keep
in mind that the non-vanishing of O,(|f|a) gives a uniform bound on m(y).

The estimate of RHS of (1.16) can be split in three parts. First we need to estimate the
number of the conjugacy classes that bring a non-zero contribution to the sum, secondly
we need a uniform upper bound on Vol(PDJ (k)\PDJ (A)) for those v with O, (|f[a) # 0
and finally a uniform upper bound on O (] f|a).

Step 3. We give an upper bound on the number N = N(f,I') of rational conjugacy
classes v such that O,(|f|a) # 0. In Section 7 we prove (Theorem 2.77) that N =
exp(o([k : Q])). The argument does not simplify for the baby case so for the details we
refer to Section 7. The uniform bound on the logarithmic Mahler measure m(v) allows to
use Bilu equidistribution theorem for the eigenvalues of . In the proof of Theorem 2.77 we
apply bounds of Kabatianski-Levenstein on the number of almost orthogonal vectors in an
Euclidean space to estimate the number of possible eigenvalues of Ad «y by exp(o([k : Q)])).
In the projective group PD* (k) the eigenvalues of Ad ~y practically determine the conjugacy
class of v (see Proposition 2.26) so we are done.

Step 4. Let v be a regular non-torsion semisimple element of PD* (k) such that
O,(|fla) # 0. To bound the volume Vol(PDJ (k)\PD (A)) we express it using the com-
pleted Artin L-functions. Again, we will use the fact that O, (|f|4) # 0 implies a bound on
the logarithmic Mahler measure of 7. Let A be one of the non-trivial eigenvalues of Ad 7.
Put I = k()), it is a quadratic extension of k. Let & (s),&(s) be the completed Dedekind
zeta functions of k£ and [ respectively. Put A(s, xi/x) = &(s)/&k(s) . By Proposition 2.93
we have
AL, x/k)

(27‘(‘)[’95(@] )
With the help of Theorem 2.59 we can prove that |[A(s, x;/,)| <s exp(o(k: Q)). In this
step we have to use the assumption that ~ is non-torsion and that m(vy) < R. Next, we
mimic the complex-analytic proof of the Brauer-Siegel theorem to get

‘Ak|1/2+5
(277)[k3(@] )

Vol(PD (k)\PDX (A)) < (1.18)

Vol(PDX (k)\PDX (A)) <.z (1.19)

Inequality (1.19) is the contens of Proposition 2.95.
Step 5. Finally we need to bound the orbital integrals O, (|f[a). This is the part
where the baby case is much easier than the general case. Note that

1fla =11 ® Qpoar)®F YU @481k, ® ® 1pGrL(2,04,)>
p#Ppo
S
O,(f1a) = 480,(| )05 (1) [ O5(1rcrizon,))-
p#po
By inequality (6.16) from the proof of Proposition 2.65 we deduce that
e ~1/2
105(Iperio,,) < 35180 2 (1.20)

where e = 0 if |[A(y)], = 1 and e = 1 otherwise. Recall that A(y) is the Weyl discriminant
of v and that |- |, stands for the multiplicative p-adic valuation, normalized so that ||, =
N(p)~! where 7 is the uniformiser of Oy, .

We obviously have O, (1g,) < Ozy(].PGL(ZOpr) SO

O,(If1s) <48 - 3N TT1IAM 2 = 0,(1£1s) < 48 3NNy g(A(M))[2,
p

where N is the number of primes p for which |A(y)|, # 1. If O,(|f]) # 0 then by
Lemma 2.58 [Ny (A(y))| = exp(o([k : Q])). This is one of the key ways we use Bilu

"This is completed Artin L-function attached to the unique non-trivial character x; /i of Gal(l/k).
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equidistribution theorem. Note that

3V <22V < TTIAM)I™ = [Nijo(A()I* = exp(o([k  Q))).
p

It remains to deal with the archimedean orbital integral. By Corollary 2.70 O, (]f]a) <
[k : Q]* = exp(o([k : Q])). Putting those estimates together we get

O5(1f1a) < exp(o([k : Q))).
Step 6. We apply the bounds from the last three steps to (1.16):
) |Ak’1/2+€ . |Ak’1/2+26
A o)l @mpea P O < g e

In the last inequality we have used Minkowski’s lower bound on Ay which tells us that Ag
grows exponentially in the degree [k : Q]. On the other hand the volume is bounded from
below by

|trRrf — Vol(T'\PGL(2,R)| <«

’Ak‘3/2
el (U)|(472) Q"

Vol(T\PGL(2,R)) >

We look for a > 0 such that

|Ak|1/2+25 < |Ak|3/2 a

|cl (Up)](2) k0l lcl (Up)|(472) @] '
(47[.2)(1—11) (k:Q]

el (Ug)[a(2m) T

Minkowski lower bound on the discriminant® yields |Ay| > 2@ -loglk:Q] 5, 1.99k:Q] g it
would be enough to take a > 0 such that

—a [k:Q)
((47r(2)(1))> < 1 99k:QI[(1-a)3/2-1/2]
2

< ‘Ak|(1_a)3/2_1/2'

If we take a = 1/2 the left hand side is equal to 1 while the right hand side equals e1-99[k:Ql/4,
The Strong Limit Multiplicity for the baby case follows with a = 1/2.

1.6. Outline of the proofs.

1.6.1. From Limit Multiplicity to Benjamini-Schramm convergence. The Strong Benjamini-
Schramm convergence will be deduced from the Strong Limit Multiplicity property in the
Section 11. The proof is just an application of Strong Limit Multiplicity to the charac-
teristic function of the ball of radius R around the identity. Section 11 contains also the
proofs of Theorem 2.11 and Corollary 2.12.

1.6.2. Gelander Conjecture. We construct appropriate simplical complex as nerve of
a covering of M by balls. We use Dobrowolski lower bound on Mahler measure [40| to
control the injectivity radius in terms of the degree of the trace field and Theorem 2.11
to estimate the volume of the thin part of the manifold. Quantitative control over both
allows to deduce Theorem 2.16. Proof occupies Section 12.

1.6.3. Strong Limit Multiplicity. The proof of Theorem 2.8 is divided into several steps.

(1) Adelic Trace Formula. The first step is to express the trace of Rrf using
the adelic Arthur-Selberg trace formula. For brevity write G = PGL(2,K). The
ordinary Selberg trace formula yields the equality

trRef = ) Vol(T,\G,) / flg~ vg)dy.
[v]rcT G\

We shall write O,(f) for the orbital integral fGW\G f(g7'vg)dg. The problem
with this trace formula is that we sum orbital integrals over conjugacy classes

8Minkowski gives VAg > %7 (%)7'2 where n = [k : Q] and r2 is the number of complex places of k. As

the field k is totally real the desired bound follows from Stirling’s approximation.
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in I'. A priori it is not clear how to parametrize conjugacy classes in I'. The
adelic version of the trace formula allows to replace I' by the k-points of a certain
algebraic group PD* and to sum over rational conjugacy classes in PD* (k). The
latter are easy to classify, we do this in Section 3.4.

In Section 4 we recall the construction of congruence arithmetic lattices and
develop a suitable trace formula (Theorem 2.50) that allows to express trRp as
a weighted sum of orbital integrals. For example, if D is a quaternion algebra
defined over Q which splits over R, O is a maximal order in D, then the group of
units of norm 1 denoted by I' = O! is an arithmetic lattice in SL(2,R). We can
choose an open, compact subgroup U of Dl(Af) such that I' = DY(Q)NU. Write
R for the right regular action of D*(A) on L?(D!(k)\D'(A)). The trace formula
reads

trRrf = trRfa = Z Vol(D,ly(Q)\D,ly(A))/ falz™yz)dua(z), (1.21)

hleD' (@) DDA

where fy € C2°(D'(A)) is a tensor product of f and the characteristic function
of U and pp is an appropriate measure D'(A). To get the first equality one
has to follow the argument from the proof of Lemma 2.42 plus the fact that D!
satisfies the strong approximation property. A similar result holds for congruence
subgroups which are derived from orders of quaternion algebras over number fields
in the sense of [94].

Unfortunately not all congruence lattices can be constructed this way i.e.
using simply connected algebraic groups (by the work of Borel [21] we know that
each commensurability class of arithmetic lattices in SL(2,C) contains infinitely
many maximal elements while the construction forom [94| provides only finitely
many candidates for maximal lattices). Not all of them can be constructed as
groups O! for an order in a quaternion algebra. To construct and parametrize all
congruence lattices we switch to the projective groups PD*. For an admissible
quaternion algebra D defined over a number field k the congruence lattices are
obtained as intersections Fyy = PD*(k)NV where V is an open compact subgroup
of PD*(Ay). The details of the construction are summarized in Sections 4.1, 4.2
and 4.3.

As we see in Lemma 2.42 the formula (1.21) does not hold for PD* and the
adelic trace is a sum of traces Rp/v f where T}, are lattices from the same packet
(cf. Definition 2.34) as I'y:. To isolate the trace of Rr, f we introduce twisted
operators RXfy (cf. Definition 2.43). Using Fourier inversion on the class group
of D (cf. Definitions 2.35 and 2.48) we express the trace of Rr, f as a linear
combination of traces trRX fy. This occupies Sections 4.4 and 4.5 and the final
result is Theorem 2.50:

trRr, f= Y Vol(PDX(k)\PD (A)EY (fa). (1.22)
['Y]pDX<k)

where E,‘Y/ (fa) is a combination of twisted orbital integrals defined in the state-
ment of Theorem 2.50. Using basic Class Field Theory (Lemma 2.52) we get the
following estimate (Corollary 2.54)

=V 2

for any smooth compactly supported function h € C°(PD*(A)) and regular
semisimple 7 € PD* (k). The class group cl (V') is defined in Definition 2.48.

Normalization. This step is crucial if we want to treat all congruence subgroups
'y not just the maximal ones. We fix a maximal compact subgroup U of PD*(A)
containing V. To prove the Strong Limit Multiplicity we will have to bound the
orbital integrals O, (fa) appearing in the trace formula. The function fy is given
by a tensor product fy = fa._ ® [U : V]ly. We need to reprove the Limit
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Multiplicity analogue of Theorem 2.3 for I'g = I'yy with constants depending
explicitly on D and U. The first step is to observe that the orbital integrals
O, (fa) are linear and invariant under conjugation by U. This allows us to replace
U : V]1y by Xiq Uy- Next, using Frobenius reciprocity, we get

Xmd Y1 = Z (Ind /1, p) x,-
pElrrU
Recall that (Ind g]l, p) = dim W,Y where W, is the space on which p acts and
W/Y is the subspace fixed by V. We have (cf. Lemma 2.55 and Corollary 2.54)

2|0y (fas)] :
W Z dlmW,}/|Ov(Xp)|

p€Elrr(U)

EY (fa)l <

By the trace formula (Theorem 2.50) we get

[trRr, f — VoMV \PCL2,K) f(1)| < Y Vol(PDZ (k)\PDZ (A))

pelrr(U) 1#£[y]ePD* (k)

1£[7]€PD* (k)

2|0y (fas)l .
W Z dlmeV\Ov(Xp)‘-

p€elrr(U)

After reversing the order of summation the right hand side reads

2|0, (fas)

> dimW) > Vol(PDJ(k)\PDJ(A)) A ()]

|OV(XP)|

The passage from [U : V]1y to a sum of irreducible characters will be referred to
as normalization. Our next step is bounding the orbital integrals of irreducible
characters appearing on the right side. To this end we first extend the character
bounds of Larsen [71] (see Section 6.1) to the case of p-adic analytic groups and
deduce that the orbital integral of x is bounded by X(1)1_5 for some absolute
d > 0 (see Section 6.5). Given such bound we can use the special representation
zeta function and Lemma 2.83 to bound the sum of orbital integrals over all
irreducible characters. After that we will estimate the adelic volumes and the
number of conjugacy classes with nontrivial contribution.

Orbital integrals. Recall that U was a maximal open compact subgroup of
PD*(Ay). In Section 6 we give an upper bound on |O~(fa.)||O~(x,)| for an
irreducible representation p of U. Since U = Hp e/ Uy the character x, can be

written as x, = ®p em! Xf; where XE are irreducible characters of U,. We have
k

10 (xp)| = H ’O’Y(Xf))"

f
peM/

The problem is now reduced to estimates on the local orbital integrals. This is one
of the advantages of normalization since, in general, the characteristic function of
a subgroup V of U does not admit a factorization over finite places. For a finite
place p we show in Proposition 2.65 that

0,0 < 1AM, >

where A(7) is the Weyl discriminant of v (see Notations 2.2) and the implicit
constant is 1 for all but finitely many places. In the actual proof we have to
control the precise value of the constant in terms of v because we have to multiply
this inequality over all finite places. After doing so we get that for § sufficiently
small we have (Proposition 2.74):

: am/ -
|0 (xp)| < 25k AUARamI DIy (7)170,
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if v is torsion and (Proposition 2.75):

10, (x,p)| < exp(o([k : Q]))20Ram Ply (1)1

if v has infinite order. In the non torsion case we rely crucially on Bilu’s Equidis-
tribution theorem (see Theorem 2.56 and Section 5).

The archimedean orbital integrals are estimated in Section 6.3. Recall that
we work with the assumption that f is supported on a ball of radius R. In this
case we show that the integral is bounded by

05 (H)l <r [k QP flloos
if v is hyperbolic and

105 (H) <R [k Q1 flloos

if 7y is elliptic. Their contribution is polynomial in the degree of k, which will turn
out to be negligible. Combining these two we get that when ~ is non-torsion then

|04 (Fa:) 1105 (x0)| < g explof[k = @]))2°1Rm Pl (1)1,

(4) An estimate on the adelic volumes. To control the size of Vol(PDJ (k)\PDZ (A))
we show in Proposition 2.93 that

Vol(PDZ (k)\PDX (A)) < AL, x1/)

where [ is the quadratic extension of k generated by v in D, x;, is the unique
nontrivial character of the Galois group Gal(l/k) and A(s, x;/;) is the completed
Artin L-function associated to x;/,. This is probably well known to experts. We
give a self contained proof using periods of Eisenstein series. Next, using Bilu’s
equidistribution theorem and the maximum principle, we show in Proposition 2.95
that when + is not torsion and O, (f) # 0 then for any € > 0 we have

| Ay |12

Vol(PDJ (k)\PDJ (A)) < exp(o([k : Q]))m-

(5) Number of conjugacy classes. The estimates on orbital integrals and the
adelic volume allow us to give a uniform bound on the contribution of a single
conjugacy class. Now we need to bound the number of classes with non-trivial
contribution. As we show in Section 3.4 the conjugacy classes are either 2-torsion
or they are determined by their eigenvalues. By Lemma 2.69 from Section 6.3 the
eigenvalues of non-torsion elements are Salem numbers. Then one can use Bilu
equidistribution theorem and some geometric arguments to show that the number
of classes with nontrivial contribution is of order exp(o([k : Q])).

(6) Conclusion. Putting the three last steps together we get that

Y. Vol(PDZ(k)\PDZ (4))2(O05(fa. )0 (xp)| < (1.24)
PIEPD (k)
torsion free
A, [1/2+e
1o explofl @) GEr 2 Py, (1)1 (1.25)

From which it follows that for a torsion free lattice I'yy we have

|trRp,, f — Vol(Ty \PGL(2,K)) f(1)] < (1.26)
[ flloo : 1% . |Ak’1/2+5 §|Ram/ D] -6
G pgzr;Udlme exp(o([k : QD)W2 Xp(1)' 0] (1.27)
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Using a variant of Lemma 2.83 we deduce that there exist positive constants «
and b (depending only on ¢§) such that

[trRr,, f — Vol(I'v\PGL(2,K)) f(1)| < (1.28)
‘Ak‘1/2+€ S|Ram/ D| -x [U : V]lia
00 : — 2 e 1.2
1flloc exp(o([k = Q])) om0 () OIS (1.29)
where (j; stands for the special representation zeta function of U. Note that in
this bound, the only factor that depends on V is % By comparing the

estimate with the Borel Volume formula for maximal lattices (see [94, Chapter
11] and Section 9), Corollary 2.51 and a lower bound on discriminants due to
Odlyzko ( [85]) we get the inequality

[trRpy, f — Vol(T'v\PGL(2,K)) f(1)] < [|fl|oc VOl \PGL(2, K))' .

This concludes the proof of Strong Limit Multiplicity for torsion free congruence lattices
in PGL(2, K).

1.6.4. Short geodesics and their consequences. Let I' be an arithmetic lattice in PGL(2, K)
and let X be the symmetric space of PGL(2,K). One of the key aspects of our proof is
exploiting the properties of the trace field forced by the presence of short closed geodesics
in "'\ X. By short we mean shorter that some fixed positive constant R. Both the Strong
Limit Multilicity property and Strong Benjamini-Schramm convergence hold trivially for
compact quotients if there are no short closed geodesics so in our argument we may assume
that there are short geodesics on I'\X. A primitive closed geodesic on I'\ X of length ¢
corresponds to a unique conjugacy class [y]r such that Ad~ has an eingenvalue A with
log|A| = ¢. Lemma 2.69 tells us then that the logarithmic Mahler measure of A is bounded
by ¢. Eigenvalue A\ generates a quadratic extension over k so form the presence of short
geodesics we can infer that k has quadratic extensions containing numbers of small loga-
rithmic Mahler measure. Using the machinery developed in Section 5 we extract nontrivial
information on the distribution of prime ideals of small norm in O (c.f. Theorem 2.59 and
Corollary 2.60). This information is put to use in Section 10 where the volume formulas
and our bounds are very sensitive to the presence of ideals of small norm in Oy.

Acknowledgment. I would like to thank Emmanuel Breuillard for suggesting to me
this problem as well as for many useful remarks and constant encouragement. Many
thanks go to Miklos Abert, Andrei Jaikin-Zapirain and Farrell Brumley for their interest
and helpful conversations. I am also grateful to Bertrand Rémy for helping me understand
the Bruhat-Tits buildings.

2. Notation

2.1. Analysis. We shall use Vinogradov notation. If f, g are two functions dependent,
among others on a variable X we write f < x ¢ if there exists a constant C' dependent on
X such that f < Cg similarly we write f > x g if the opposite inequality is true. We will
write f = ox(g) if limg = 0 and the speed of convergence depends on X. Logarithms are
always in base e. We write Q, R, C for the fields of rational, real and complex numbers
respectively. Throughout the text K will mean either R or C. For any function f we
write ||f||co for the supremum norm and || f||z» for the LP norm whenever the latter can
be defined. If z is a complex number we write |z| for its modulus.

2.2. Groups. Let G be a group acting on a set X. For a subset S € G we write X
for the set of points fixed by S, Gz for the orbit of G containing x and Stabgz for the
stabilizer of x. If H is a subgroup of G and v € G we write [y|y for the H-conjugacy class
of v. If H = G we may omit the subscript and write [y]. For two elements z,y € G we
shall write  ~p y if y € [2]g.

If G acts by automorphisms on the group X then we write H'(G, X) for the first
cohomology set and if X is abelian we write H'(G, X) for the i-th cohomology group.
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If G is a Lie group defined over a field F' we shall write g for its Lie algebra and
Ad : G — GL(g) for the adjoint action. We write X*(G) for the group of characters of G
i.e. homomorphisms to F*. If G is semisimple and T is a maximal torus of G we write
®(G,T) for the set of roots of G with respect to T'. For a semisimple element v € G we
define the Weyl discriminant A(y) of v as 0 if v is not regular semisimple and otherwise
as

Am =TI a=-xm),
Xe®(G,T)

where T is the maximal torus containing ~.

2.3. Number Theory. Throughout the text, the letter k will usually mean a number
field. For a given number field k we write

o (O, for the ring of integers, My, for the set places of k, M ,{ for the set of finite places
and Mp° for the set of infinite (archimedean) places, for any finite set S € Mj
containing Mp° write Oy, g for the ring of S-integers;

e For an ideal a in Oy we write N (a) for the norm of a. It is defined as the cardinality
of O /a;

e Usually we shall use letters v,w to denote infinite or general places and p is
reserved for finite places. We identify the set of finite places with prime ideals of
O and write ¢ = N(p) for the cardinality of the residue field O /p;

e For every v € My we write k, for the completion of k with respect to v. For
x € k, we write |z|, for the valuation of x. The p-adic valuation is normalized so
that |7, = ¢~! for the uniformizer ;

e Let I/k be a finite extension. We write N;/,: | — k for the norm and tr;/,: | — k
for the trace of the extension I/k;

e Write Ay for the discriminant of k and Ay, for the relative discriminant of ex-

tension I/k. We have &; = AN, oA ).
e For a non-archimedean local field F' which is an extension of @, of degree d we
write Ap for the ideal

(det((trF/pri:cj)ij) | X1,...,2q € OF>
We have

1Al = T 128k
peM]
e We write Ay for the ring of adeles of k. For most time we work with a single
number field £ so we omit the subscript and write A instead of Ag;
o If S, " are subsets of M}, such that M ° C S we write A% for the ring of S-integral
F-adeles which is defined as

Az = I] & x [ Ow. (2.1)

veSNF VvEF\S

where * means that almost all coordinates are integers. When using this conven-
tion we replace MZ° with symbol co and M ,f with f. For example A is the ring
of finite adeles, A, is the product of archimedean completions of k£ and A?O is the
ring of finite adeles integral on all coordinates;

e For a Galois extension [/k we write Gal(l/k) for the Galois group. Usually we
will denote the nontrivial elements of the Galois group by ¢ and write z? for the
result of acting by o on x € [;

e For a number field | we denote the Dedekind Zeta function of I by (;(s) and
completed Dedekind Zeta function by & (s);

e For a character y of Gal(k/k) we write L(s, ) for the associated Artin L-function,
f for the conductor of x and A(s, x) for the completed L-function. We will recall
their definitions in Section 9 devoted to volumes of adelic quotients;
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e Whenever D is a quaternion algebra over the field k we write &k} for n(D*) C k*
and A} for n(D*(A)) C A*. Recall that n,tr stand for the reduced norm and
the reduced trace respectively (see Section 3.2).

e Let D be a quaternion algebra defined over a non-archimedean local field F'/Q,,.
Choose a maximal order O in D. We define Ap/p as the ideal (det((tr(ziz;));) |
Z1,...,24 € O). As all maximal orders in D are conjugate |94, Theorems 6.4.1,
6.5.3] the definition does not depend on the choice of O.

2.4. Volume conventions. Let X be a topological space with a measure p and let T’
be a group acting properly discontinuously on X and preserving p. We write Vol,(I'\ X))
for the measure of a fundamental domain of I'. When X is a Riemannian manifold we
usually take p to be the volume form on X in which case we omit the subscript u and
write Vol(I'\ X)) for the Riemannian volume of I'\ X.

Let G be a reductive algebraic group defined over a local field F. We shall define
a canonical Haar measure on G which will be called the standard measure of G. If F
is archimedean then this measure will be defined uniquely while in the non-archimedean
case it will depend on the choice of a maximal compact subgroup. Let us start with the
archimedean semisimple case.

DEFINITION 2.19. Choose a mazimal compact subgroup K of G. Let X = G/K be the
symmetric space equipped with the left G-invariant Riemannian metric associated to the
Killing form of G (see [59]). Write dx for the volume form on X and dk for the normalized
Haar measure on K. We define the standard Haar measure on G as the unique measure

for which
/fdu(g) :/ / f(zk)dkdx for any f € C.(G) (2.2)
X JK

As all mazimal compact subgroups are conjugate this definition does not depend on the
choice of K.

When G is reductive let H = [G°, G°] be the maximal connected semisimple subgroup
of G. The connected component Ty := (G/H)® of Ty := G/H is isomorphic to (R} )*
(C*)’. We endow Ty with a Haar measure

dt; da;dy;
d:UT U xii 172

and extend it to Ty by putting dt/[Ty : T1] on each connected component. Now we are ready

to define the standard measure on arbitrary reductive algebraic group over an archimedean
field.

DEFINITION 2.20. The standard measure on G is defined as the unique measure dg for
which

/fd,u(g) :/T /Hf(th)dhdt for any f € C.(G), (2.3)

where dh stands for the standard measure on H.

In the reductive non-archimedean case the definition is analogous but a bit simpler
because maximal compact subgroups are open.

DEFINITION 2.21. Choose a mazximal compact subgroup U of G. The quotient X = G /U
is a discrete space. Write dx for the counting measure on X and dk for the normalized
Haar measure on U i.e. the one for which Vol(U) = 1. We define the standard Haar
measure on G as the unique measure for which

/fdu(g) = /X/Kf(mk:)dk:dx for any f € C.(G) (2.4)

The definition depends on the choice of mazximal compact subgroup. There are finitely many
conjugacy classes of maximal compact subgroups in G (cf. [89, Chapter 3.4]).
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The definition of the standard measure extends to the adele groups. Let k be a number
field and let G be a reductive algebraic group defined over k. The group G(A) is a locally
compact group. Let us fix a maximal compact subgroup U of the group of finite adeles
G(Ay). By maximality U decomposes as a product U = HpeM,f Uy with U, maximal
in G(kyp). Then the standard measure on G(A) is defined as @), ¢y, 1 Where p, is the
standard Haar measure on G(k, ).

2.5. Representation Theory. For any topological group G, write IrrG for the set
of equivalence classes of irreducible, continuous unitary representations of G. Whenever
p is a unitary representation of G, we shall write W), for the underlying Hilbert space.
For a finite dimensional representation, we write x, for the character of p. For any closed
subgroup H of G and representations p1, p2 of G, we write (p1, p2) = dimc Hompg (p1, p2).
If p1, p2 are finite dimensional then we also write (X,,, Xp.) = (P1,02)-

3. Preliminaries on quaternion algebras

3.1. Quaternion algebra. Throughout this section let F' be an arbitrary field of
characteristic different than 2.

DEFINITION 2.22. An associative unital algebra A over F is called a quaternion algebra
if it is 4 dimensional and there exist i,j,k € A such that:

e 1,i,j,k is a basis of A over F;
° i2,j2,k2 c FX,‘
e ij=—ji=k.

2

If A satisfies the above conditions the values i = a,j*> = b determine A up to F-isomorphism

and we write A = (a};,b).

Let E be a an extension of F, we say that a quaternion algebra A splits over E if
A®p E~ M(2,F). If A splits over F' we just say that it splits.
PROPOSITION 2.23. [94, Chapter 2] The following conditions are equivalent:
(1) A quaternion algebra (aﬁb) splits;
2

(2) the quadratic form x? — ay® — bz? 4 abt? is isotropic;
(3) —ay?® — bz? — abt? is isotropic.

In particular every quaternion algebra A over F splits over the algebraic closure F.

3.2. Norm, trace and involution. Let A = aj}b be a quaternion algebra over F'.

Let © = x1 + ixo + jrs + kxy. The standard involution on A is defined as
T =x1 — ire — jrg — ka4,
The trace on A is defined as
tr(x) =z + T = 2x;.
The norm on A is defined as

n(zy + xoi + x3j + 24k) = 2T = 23 — ax3 — bai + abxi.
For any element z € A we have 22 — tr(z)x + n(x) = 0. In particular if F(z) is a subfield
of A then n(z) = Np(,)/r(z) and tr(z) = Trpe)/p(z). An element x € A is invertible if

and only if n(z) # 0. If that is the case, we have 27! = Ok
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3.3. Quaternion algebras and algebraic groups. Given a quaternion algebra A
we can associate to it three linear algebraic groups:

A* ={z € Aln(z) # 0} (3.1)
Al ={z € An(z) = 1} (3.2)
PA* =A*)Z(A*) = A" |Gy, (3.3)

If A is split then they are isomorphic to GL(2, F),SL(2, F), PGL(2, F) respectively. In
particular the last two are simple algebraic groups of type A;. Recall that we write G, for
the centralizer of v in G.

LEMMA 2.24. Let vy be a non-central, semisimple element of PA*(F) and let 7 be one
of its preimages in A and let wy,wa be the roots of the polynomial X? — tr(7)X + n(7).
If wi,wy & F put E = F(wy). Then
(1) Fly] ~ F? if w1, w2 € F and F[y] ~ F|w] otherwise;
(2) PA?; ~ Gy if wy,ws € F and PAX ~ Res JIE/FGm otherwise;
(3) PAY is a mazximal torus of PA*. If A1, \a are the roots of PA* with respect to

PAY then up to a change of enumeration Ai(7y) = &b and Aa(y) = £2;
(4) The Weyl discriminant of ~y is given by
w1 w2
Aly)=(1-—)1-—=
0 =0-2)a -2

The same statement holds for v € AY(F).

PRrROOF. (1) follows from the Cayley-Hamilton theorem. For (2) observe that F'[] is the
centralizer of 4 in A so on the level of F-points we have PAX ~ F[]*/F*. If w1,ws € F
then by (1) PAY ~ G x Gm/AG,, ~ G,,, where A is the diagonal embedding. If
E = F[7] is a quadratic extension of F' then PAY =~ Res p/rG;, /Gy By Hilbert’s

1

Theorem 90 the latter is isomorphic to Res }3 / pGm via the map = — 27 2% where o is

the generator of Gal(E/F'). For (3) recall that A1(), A2(7y) are the nontrivial eigenvalues
of Ad~. (4) follows directly from (3) and the definition of the Weyl discriminant (see
Notations 2.2). O

3.4. Conjugacy classes.

THEOREM 2.25 (Skolem-Noether). Let A be a central simple algebra over F' and B a
simple algebra over F. Any two nontrivial F'-homomorphisms ¢1: B — A and ¢2: B — A
are conjugate by an element of A*

From this we can deduce:

PROPOSITION 2.26. Let A be a non split quaternion algebra over a field F. Let v €
PAX\ {1} and let X be one of the non-trivial eigenvalues of Ad .
(1) v and v~ are conjugate in PA*;
(2) « is 2-torsion if and only if A\ = —1. Otherwise A € F* and the values of \, \~!
determine the PA* -conjugacy class of v;
(3) Write n: PA* — FX/(F*)? for the map induced by the norm. The map n
induces an injective map from the set of 2-torsion conjugacy classes in PA* to

n(A*X)/(F*)2. Moreover for any lift 5 of v we have F[¥] ~ F[\/—n(7)].

PROOF. (1) Let 4 be alift of v to A* and E = F(¥) be the subfield of A generated
by 4. It is a quadratic extension of F. Let o be the generator of Gal(E/F), it
acts on E by an F-automorphism so by Skolem-Noether theorem there exists an
a € A% such that 2% = aza™! for all z € E. In particular

Java~t =477 = n(7) € F*.

But this means that aya™! =y~
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(2) If A = —1 then the eigenvalues of 72 are both equal to 1 so ~ is 2-torsion. Con-
versely, if 2 =1 then A = A™! = —1. Assume that 7 is not 2-torsion. We claim
that F'(\) is a quadratic extension of F. Choose an element ¥ € A* lifting ~.
Write wy, ws for the roots of the characteristic polynomial of 4. We have w; = Awo
and

(1+ Nwe =wy +we =try € F.

Since 7 is not 2-torsion A+1 #£ 0. If A € F then wy,ws € F*. This cannot happen
unless A is split. Thus, we have A ¢ F. We have A\ € F(w;) so by comparing
degrees we get F'(\) = F(w1) ~ F(v) C A.

Now we prove that if A % —1 then it determines uniquely the conjugacy class
of vin PAX. Let v1,72 € PA* be elements with same eigenvalues A, A~!, different
than —1. Let 41,71 be their lifts to A*. We have shown that F(3;) >~ F(72) ~
F(\). Thus by the Skolem-Noether theorem (Thm 2.25) we find a € A such that
ayea~! € F(71). We can replace v by ayea™!. The equality of eigenvalues and a
simple computation using characteristic polynomials implies that either v; = 2
or y1 = Yy L By the point (1) of present proposition ; and 7, are conjugate.

(3) Let v be a 2-torsion element in PAX. We claim that n(y) € F*/(F*)? determines
uniquely the PA* conjugacy class of 7. Let 4 be a lift of v to A* and E = F (%)
be the subfield of A generated by 4. It is a quadratic extension of F. Let o be the
generator of Gal(E/F). We have (77 /%)% = 1 so 4° = —7, otherwise ¥ would be
in F*. Thus n(y) = —42 and consequently E ~ F(y/—n(¥)). The isomorphism
class of E depends only on the class of n(¥) modulo (F*)? so it is determined
uniquely by the value of n(v). If 41,72 € PA* are 2-torsion and n(y1) = n(y2)
then F(71) ~ F(72) so by Skolem-Noether 42 € F'(41) up to conjugation. But
then n(y;) = n(y2) implies that 72 = 2 modulo (F*)? so v = 7o.

O

3.5. Quaternion algebras over local fields.

PROPOSITION 2.27. Let F' be a local field. If F is non-archimedean or R there exist
exactly two isomorphism classes of quaternion algebras over F. If F is non-archimedean
there exists a unique unramified quadratic extension E/F.Let m be the uniformizer of F
and o the nontrivial Galois automorphism of E/F. The unique division quaternion algebra

over F' s given by
T Yy
(ﬂyg :U") where T,y € B

If F =R then the unique division quaternion algebra is the Hamilton quaternion algebra
H=R+iR+jR+kR wherei?=j>=k>=—1 andij= —ji=k

LEMMA 2.28 (cf. [94, Exercise 7.5.2|). If F is a non-archimedean local field of residue
field of size q and D is a quaternion algebra over F' then |Ap,p| =1 if D is split and q?
if D is a division algebra.

3.6. Quaternion algebras over number fields. Let & be a number field and let
D be a quaternion algebra defined over k. By previous section for a place v of k the
algebra D ®y k, is either isomorphic to M(2,k) or to the unique, up to isomorphism,
quaternion divison algebra over k,. In the second case we say that D is ramified in v.
Write RamD for the set of places where D is ramified. We put Ram/D := RamD N M ,f
and Ram®D = RamD N Mg°.

PROPOSITION 2.29 ( |94, Chapter 7|). Let k be a number field and let D be a quaternion
algebra defined over k. The set RamD is finite of even cardinality and it determines the
isomorphism class of D. Conversely, for every subset S of My of even cardinality there
exists a unique up to isomorphism quaternion algebra D such that RamD = S.
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4. Trace formula for congruence lattices

Let G = SL(2,K) or PGL(2,K) where K = R or K = C. In this section we give a
parametrization of maximal arithmetic lattices in G, and prove trace formulas for I'\G for T’
an arithmetic congruence lattice. The first section follows the exposition from [94, Chapter
11.4]. In the next we switch to the adelic setting and give a construction of maximal lattices,
originally due to Borel. In Sections 3, 4 and 5 we develop a trace formula valid for arbitrary
congruence arithmetic lattices in PGL(2, K).

4.1. Commensurability classes. Let us begin with the parametrization of the com-
mensurability classes of irreducible arithmetic lattices of G, those will be in one-to-one
correspondence with certain quaternion algebras defined over number fields.

Let k£ be a number field with at most one complex place such that at least one
archimedean completion of & is isomorphic to K. We enumerate its infinite places M° =
{vi,...,Vr,4ry } in such a way that k,, = K. Let D be a quaternion algebra over k (i.e.

D= (a,;b> for some a,b € k) which splits only in one infinite place v1. Every algebra D

satisfying above conditions will be called admissible. To shorten the formulas we will write
d =11 4+ ro. We introduce two isogeneous algebraic groups

D' ={z € D|n(z) =1} and PD* = D*/ZD*
where ZD* stands for the center of D*. We have
D(k ®g R) ~ SL(2,K) x SO(3,R)?"! = G x SO(3,R)4~?
PD*(k ®g R) ~ PGL(2,K) x PO(3,R)¢!

The classical procedure for constructing an arithmetic lattice in G is to take an order O in
D and project O! to G. The resulting subgroup, which we denote by I'»1 is an arithmetic
lattice. Changing the order O gives a commensurable lattice so every admissible algebra
D gives a well defined commensurability class, for which we will write C(D).

DEFINITION 2.30. A lattice I' of G is an irreducible arithmetic lattice if it is, up to
automorphisms of G, commensurable with U'n1 for certain admissible D.

The assignment D — C(D) is a bijection between the set of admissible quaternion
algebras and the commensurability classes of arithmetic lattices of G.

4.2. Maximal lattices. It has been observed by Borel, that even if we take O to be
a maximal order in D the resulting lattice I'»1 is not maximal in the set-theoretic sense.
Instead we have to look for maximal lattices among the normalizers of I'p1’s. Alternatively
we may construct the maximal lattices using a projection from PD* rather that D'. °
Write PG for the group PGL(2,K) and 7 for the projection 7: G — PG. A lattice I' in G
is maximal if and only if 771(T) is maximal in PG. Similarly T is arithmetic if and only
if 771(T") is. Thus, we may study the problem for PG. Instead of working with orders it
will be more instructive to switch to the adelic setting. We have

PD*(A) ~ PG x PO(3, R)*™! x PD*(A;)

The group PD* (k) is embedded diagonally in PD*(A) as a lattice. For any open compact
subgroup U of PD*(Af) we put 'y = PD* (k) "PD* (A )U and by abuse of notation we
write the same for the projection of I'yy to PG. Then I'y is an arithmetic lattice in PG
and all arithmetic lattices are commensurable with ones constructed in this fashion.

DEFINITION 2.31. A lattice T' of PGL(2,K) is called arithmetic if it is commensurable
with L'y for some choice of U.

9The reason why most sources start with a construction using D? is that this algebraic group is simply
connected so it satisfies the Strong Approximation Property which makes it easier to work with.
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Let I' be a maximal arithmetic irreducible lattice in PG. We argue that I' is of form
I'y for some maximal open compact subgroup U of PD* (A;ZO) Pick V open and compact,
such that I' N I'y has finite index in I' and T'y/, we can do this by the arithmeticity of T'.
We claim that elements of I have rational coefficients.

LEMMA 2.32. IfT" and I'yy are commensurable, then T is contained in the projection of
PD*(k) onto PQG.

PrOOF. We identify PG with PD*(k,,). The lattice 'y by construction lies in
PD* (k). We want to show that the same holds for I'. Let v € T" and let A := 4~ 1TyyNTy.
The group A has a finite index in T so it is a lattice in PG. By Borel’s density theorem
A is a Zariski dense subset of PD*(k,,) contained in PD* (k). The map x + yoy~! is
an automorphism of PD*(k,,) defined over k,, which maps A into a subset of I'yy. In
particular it maps a Zariski dense subset of points defined over k to points defined over k,
which by [106, Proposition 3.1.10] implies that x +— yzy~! is defined over k. As PD* is
an adjoint group we deduce that v € PD* (k). O

Once we know that I' is contained in PD* (k) we can see it as a subset of PD*(A).
I" and I'yy were commensurable so for every finite place p € M,f the p-adic closure of T’
denoted I'" is an open compact subgroup of DP*(k,). Hence for any p we can find an
open compact subset U, of DP*(ky) such that I' C PD* (k) N PD*(A) HpeM]f Up,. By

maximality of I' the last inclusion has to be an equality. We obtain the following:

PROPOSITION 2.33. Let I' be a mazimal arithmetic lattice in SL(2,K) lying in the
commensurability class C(D). Then there exists a mazximal open compact subgroup U of

PD*(Ay) such that T = 7= (Ty).

4.3. Packets of maximal lattices. For this section we assume familiarity with the
theory of Bruhat-Tits trees of SL(2, F') where F' is a non-archimedean local field. For
necessary background see |94, Chapter 5.2.1|. We shall write X (SL(2, F')) for the tree
associated to SL(2, F). Recall that the adjoint group PGL(2, F') also acts on X (SL(2, F)).
This action is transitive on the vertices and on the edges. In order to use Proposition
2.33 we have to describe the set of maximal open compact subgroups of PD*(A¢). Such a
group U can always be written as a product

U= 1] U

f
peM;

where U, is a maximal compact subgroup of PD* (k) and for almost all places U, =
PGL(2,Oy,). If D is ramified at p then PD*(ky) is compact so U, = PD*(ky). If that is
not the case then PD* (k,) ~ PGL(2, k) and by Tits fixed point theorem and maximality,
Uy is either a stabilizer of a vertex or of an edge. The set S of places where Uy, is a stabilizer
of an edge determines the PD*(A) conjugacy class of U. Indeed, if U, is the stabiliser of
a vertex or edge v then g~ 1Uyg is the stabilizer of vg. The action of PD* (k) is transitive
both on vertices and on edges of X (SL(2,kp)) so all stabilizers of vertices are conjugate
and likewise all stabilizers of edges are conjugate.

DEFINITION 2.34. Let S be a finite subset of Mg\Ramf(D). We write C(D, S) for the
set of conjugacy classes of arithmetic lattices I'y with U maximal open compact subgroup

of PD*(Ay) given by
v= 1] Us

peM;
where Uy, stabilizes an edge of X(SL(2,kp)) if and only if p € S and U, = PD*(ky) for
p € Ram/D. The set C(D, S) will be called a packet of arithmetic lattices.

Even though all subgroups U satisfying the conditions imposed in the definition are
conjugate in PD*(A) the resulting lattices 'y need not be conjugate in PGL(2,K). That
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is why a packet may contain multiple conjugacy classes. We also point out that depending
on the choice of S, a packet may consist of non-maximal lattices.

We shall parametrize the conjugacy classes inside C(D, S) using certain class group.
The result is similar to the classification of maximal orders in a quaternion algebra from
[94, Chapter 6.7]. Recall that subscript D means that we take only elements positive on
all archimedean places of k where D is ramified. Recall that kp = n(D), Ap = n(D(A))
and k¥ = [, ¢ kv for any finite subset F of My. We will write Ao, p for n(D(Ax)).

DEFINITION 2.35. For any finite subset S C M,f \ Ram’ (D) we define the class group
cls(D) =clg (we omit D when it is clear from the context) by

cl g := PD*(k)\PD* (A)/PD* (Aoc)U ~ AJ/kSAY L (kSURam! (D))x.
The second isomorphism is induced by the norm map. We explain where it comes from in
the proof of Proposition 2.57.

REMARK 2.36. The class group cl s is a quotient of the narrow class group cl* (k) of
exponent 2.

PROPOSITION 2.37. There is a surjective map from the group clg to the set C(D,S).
In particular the packets are finite.

For the proof we will need:

LEMMA 2.38. Lattices I'y and T'y are conjugate in PGL(2,K) if and only if they are
conjugate in PD* (k).

PRrROOF. Like in the proof of 2.32 any automorphism mapping I'y; into I'yy has to be
defined over k. Thus, every g such that gT'yg~—! = 'y lies in PD* (k). O

By abuse of notation we shall also denote by n the map n: PD*(A) — AX/(A*)?
induced by the norm map.

LEMMA 2.39. Let U, be a mazimal open compact subgroup of PD* (k). All matrices
written below are to be understood as their image in the projective group.

o If D splits over ky, and U, stabilizes a vertex of X (SL(2, ky)) then, up to conjugacy
Uy = PGL(2,0y,). We have n(Uyky™) = (’),fp(kpx)?
o If D splits over ky and U, stabilizes an edge then, up to conjugacy

X
Up = Okp O]:f ’ 07 )
p Ok‘n 10
where m is the uniformizer of ky. We have n(Upky™) = k;'.

e If p € Ram/ (D) then Uy = PD*(ky). Let E be the unique unramified quadratic
extension of ky. Then we can represent U, as

_ Ly
Up_{(ﬂ.ya l‘) ]x,yeE},

where o is the unique non-trivial element of Gal(E/ky). We have n(Uyky™) = k'

The proof follows from the description of maximal compact subgroups as stabilizers
of a point or an edge in the Bruhat-Tits tree. To see the last part note that Ng, is
surjective ( [68]).

THEOREM 2.40 (Strong Approximation Property, [89, 7.1]). The group D'(k) is dense
m Dl(Af).

PROPOSITION 2.41 ( [94, Theorem 7.41]). The image of the norm map kj; := n(D* (k))
is equal to {x € k* | (z), > 0 for all v € Ram™>(D)}.
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PROOF OF PROPOSITION 2.37. By Lemma 2.38 we can look at PD* (k) conjugacy
classes of lattices in C(D,S). Fix a maximal open compact subgroup U of PD*(Ay)
stabilizing edges only for p € S. We start with the parametrization of PD* (k)-conjugacy
classes of subgroups U’ conjugate to U under PD*(A), for simplicity we refer to this set
as C1(D, S). By maximality, U is equal to its normalizer in PD* (Af). Hence

C1(D,S) ~PD*(k)\PD*(A)/PD*(Ax,)U =~ Dx(k)\DX(A)/DX(AOO)A;U. (4.1)
Put U = {z € (Af)*U | n(z) = 1}. By Strong Approximation
DY (E)\D'(A)/D'(A)U' = 1.
Hence, the map from (4.1) induced by the norm
n: DX (k)\D*(A)/D* (o) AFU = k3\AS/(Aoe,p) (A )Pn(AFU)
is an isomorphism. By Lemma 2.39
(A= [[ ®r2ogx I k-
peMi\S peSURam/ (D)

Hence,
C1(D, S) = k\AZ /(A=) (A%)Pn((Ag)*U) = AS kAR "™ P (472 = 5. (42)

If two groups U, U’ are conjugate under PD* (k) then the lattices 'y and T'y» are also con-
jugate under PD* (k). This gives us a well defined surjective map from cl ¢ ~ Cy(D, S) —
e(D, S). 0

4.4. Trace formula for maximal lattices. Recall that the geometric side of the
Selberg Trace formula yields that for any cocompact lattice I' C G and any function
f € C.(G) we have

trRrf = ZVOI(FV\GV)/G f(z yz)de,

[VIr Gy

where Rr is the right translation on L?(I'\G) In this section we develop an adelic version
of the trace formula for maximal lattices which allows to express the geometric side as
a sum over rational conjugacy classes in PD* (k). In the next section we generalize this
procedure to arbitrary congruence lattices. Throughout the following sections we
assume that D is not split so there will be no continuous spectrum.

Let S be a finite subset of M ,f \ Ram/ (D). We fix U a maximal compact subgroup of
PD*(Ay) stabilizing an edge for p € S. We fix the standard Haar measure (see Section
2.4) pua on PD*(A) given by

[A = oy X oy X [ (4.3)
Recall that the standard measure pa, depends on the choice of U. Where p,, is the

volume on PGL(2,K), p,, is the normalized Haar measure on PO(3,R) for d > ¢ > 1
and fip, is a Haar measure on PD*(Ay) normalized so that u (U) = 1. We write

R: PD*(A) — U(L*(PD*(k)\PD*(A))) for the right translation (R(g)¢)(z) = ¢(xg).
For any f € C.(PGL(2,K)) we define fy € Ce(PD*(A)) as fa = fa,, ® fa, where

d
fae = f® ® Lpo(3,r)

=2
fAf = ]lU

Using fa we can relate the traces of Rr, f and Rfs. The following lemma illustrates this
principle.

LEMMA 2.42. Let 1 = ci,c¢a,...,c; be representatives of clg in PD*(Ay) and put
U; = ciUci_l. With fa and measure pp defined as above, we have Zle terUif =trRfa.
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PROOF. To shorten notation, write U for Hf:2 PD*(k,,) x U. Observe that the image
of Rfy lies in the U-fixed vectors of L?(PD* (k)\PD*(A)), so trRfy = trRfa |L2(PDX

We have a PD*(k,, )-equivariant isometry
L2(PD*(k)\PD*(A))V ~ L2(PD*(k)\PD*(A)/U).
By repeating the arguments from the proof of 2.37 we get a PD* (k,, )-equivariant bijection

(k)\PD* (4))U"

k
PD* (k)\PD*(A)/U ~ | | Ty, \PD*(ky,),
i=1

SO
k
L*(PD*(k)\PD*(4)/U) ~ €P L*(Ty,\PD* (k. ))
i=1
as unitary representations of PGL(2, k,,). Thus trRfy = Zle terUif. O

As a first step to isolate the trace trRp,f we shall consider a family of modified
operators on L2(PD*(k)\PD*(A)).

DEFINITION 2.43. Let x : PD*(A) — C! be a smooth character vanishing on PD* (k).
For any continuous, compactly supported f € C.(PD*(A)) we define an operator RXf :
L*(PD*(k)\PD*(A)) — L*(PD*(k)\PD*(A)) by

(R J(@)(x) = (RF(6)) (@)x(x).

PROPOSITION 2.44.

trRXf = > Vol(PDJ(k)\PDJ(A)) / x(@) f(z" Y yx)dx
PDJ (A)\PD* ()
[’Y]PDX(k)
)<|F’D§(A):1

PRrROOF. We have

RIO@ =3 [ f)ody

= x(x z!
@) [ 1@

= z)f(z™?
_/pm(m\pnxm) { > x(@)f( vy)] ¢(y)dy

~EPDX (k)

So the operator (RXf(¢)) is given by the kernel KX(z,y) = ZWEPDX(k)X(‘/L‘)f(x_lryy)'
The algebra D is not split so the quotient PD* (k)\PD*(A) is compact. For a compact
quotient, the kernel is integrable on the diagonal and we have

trRXf = KX(x,x)dx
PDX (k)\PD* (A)

/ @) )
e PDx (k) | PD* ()\PD* (4)

- ¥

['Y]PDX(I@)

/ (@) f (@ w)dz
PD (k)\PD* (4)

x(zz) f(z™ yx)dzdzx

/PD$ (4)\PD* (4) /PDi (k)\PDX (A)

[’Y]PDX(k)
= ) Vol(PD}(k)\PD}(A)) / x(@) f(z"\yz)da.,
PDJ (A)\PD* (4)
[’V]PDX(IC)
X|F>D§(A):1
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g

LEMMA 2.45. Let 1 = c1,¢,...,¢; be representatives of cl g chosen from PD*(Ay)
and put U; = ciUc;l, Let x be a smooth character of PD*(A) that factors through cl g or
equivalently, vanishes on PD* (Axo)U and PD* (k). We have trRXfy = S2F | x(ci)trRr,, f

PROOF. As in the proof of the Lemma 2.42 we will exploit the fact that the image
RXf lies in the subspace of U-fixed vectors (for the definition of U see the proof of Lemma
2.42), so by recalling the proof of Lemma 2.42 we get

k
PD*(A) = | |PD*(k)c;UPD* (ky,). (4.4)

Hence
L*(PD*(k)\PD*( @L2 Ty, \PD* (k.,))

Using Equation (4.4) we get under that the last isomorphism the character x is given by

k
X = ZX(Ci)HFUi\PDX(kyl)'
i=1
It follows that

k
trRX fa = Z x(ci)terUi I

i=1

O
COROLLARY 2.46.
tTRI‘U f= Z Cz trRXfA
|Cl s|
XEC] S
PRrROOF. By Lemma 2.45, for any character y of cl ¢ we have
k

trRX fa = Z X(Ci)trRFUi f

i=1

Thus
Z (ci) trRXfA Z Z x(¢; terU = |CIS|tTRFUi f
xecl g i=lyedg
O

Combining Corollary 2.46 and Proposition 2.44 we get:
ProproSITION 2.47. With U, f, fa as before, we have
Ry, f= ) Vol(PD}(k)\PD(A)Z,(fa),
(Y pox ()
where, for h € Co.(PD* (A))
= (h) = ‘ds‘ S /PD e MG e

XGCI S
XIPD,Y =1
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ProOF. By Corollary 2.46 and Proposition 2.44 we get

1
trRFUif:m Z tI'RXfA (45)
xedl
= Y Vol(PDJ(k)\PD}(A)) (4.6)
[W}PDX(;C)
1 / 1
— x(x) falz™ va)dx 4.7
|cl 5| Z\ PDX (A)\PD* (A) (=)l ) 4.7
x€Ecl g
XlPD§(A):1
= 3" Vol(PDJ(k)\PD(A))E,(f) (4.8)
[’”PDX(IQ)
O

4.5. Trace formula for congruence lattices. The reasoning will be very close to
one we conducted for maximal lattices. We decided to split this into two parts to avoid
an overload of technicalities. We keep the notation from previous sections, in particular
D is still an admissible quaternion algebra defined over a number field k. Any congruence
lattice in the commensurability class C(D) defined by D is of the from I" = I'ys for some
open compact subgroup V' C PD*(Ay). From now on we fix such V and we fix a maximal
open compact U containing V. We use U to define a measure py on PD*(A) the same
way we did in Equation (4.3). Let f € C.(PGL(2,K)), we define

where
Jae =F @ Lppx(h,,) @ .. @ Lppx(, ) (4.9)
=l Viy (4.10)

DEFINITION 2.48. We define the class group cl (D, V) =cl (V) (we omit D when it is
clear from the context) as the quotient PD* (k)\PD* (Af)/V.

With this notation, for U maximal we have cl (U) = cl g where S is the set of places
where U, fixes an edge of the Bruhat-Tits tree.

LEMMA 2.49. The norm map induces an isomorphism
(V) = AS/kpn(A*V) =~ A7 /kpn(AFV).

In particular cl (V) is finite and has an abelian group structure.

PROOF. Let V! denote the preimage of V in Dl(Af). By the Strong Approximation
Theorem (Thm. 2.40) the product D'(k)V! equals D'(A). Thus the map induced by the

norm

n: PD*(k)\PD(Ay)/V — k5\AL/n(VA™) (4.11)
is an isomorphism. The second isomorphism is a consequence of the Weak Approximation
Property for the multiplicative group G,, (see [89, Chapter 7]). O

The last Lemma allows us to identify the characters of A%/ kB(A;)Qn(V) with the

characters of PD*(A) vanishing on V and PD* (k). Repeating the exact same argument
as in the proof of Proposition 2.44 we get

10Note, that while n(V) alone is not well defined because it is a subset of PD*(Af) not D*(Af) the
product (A;)Qn(\/) =n(AFV) is.
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THEOREM 2.50. Let D be an admissible quaternion division algebra over k and let V

be an open compact subset of PD*(Ay). For any continuous, compactly supported function
f on SL(2,K) we have

trRp, f = Y Vol(PDJ(k)\PDJ (A)ZY (fa), (4.12)

['Y]PDX (k)

Where, for h € C.(PD*(A))

1
=V -1
= (h) = ——— E x(x)h(z™ vx)d. 4.13
7( ) el (V)] —— JPDX(A)\PD*(A) @ ) ( )
x€cl (V)
XlPD:;(A):l

As a corollary we get the formula for the volume

COROLLARY 2.51.
Vol(Ty\PGL(2, K)) = “ DX(’“EC\;’(B;(A))[U V]

PROOF. Take a sequence (f;) of functions with support contained in smaller and
smaller balls around 1 and with f;(1) = 1. By the usual Selberg trace formula lim;_, trRr,, f; =
Vol(I'y\PGL(2,K)). On the other hand by Theorem 2.50 we have

Vol(PD* (k)\PD* (A))[U : V]

(4.14)

lim t P = . 4.15

iy ke A (V)] (4.15)

O

LEMMA 2.52. With D,V as before and v € PD*(k),y # 1 there are at most two

—

characters x € cl (V') which vanish on PDJ(A).

PROOF. Let x € m be a character vanishing on PDJ(A). By Lemma 2.49 we can

write x(g) = 0(n(g)) where 0 is a character of A}, vanishing on k}, and n(A*V'). Let [ be
the quadratic extension of k generated by the eigenvalues of v. The image of Di (A) via
the norm map equals N/ (A;). Hence, 6 factors through

By the weak approximation theorem for the multiplicative group we have A* = k*Ap and
hence AY/kf ~ A*/k*. The last quotient can be rewritten as

We claim that this is a group of order at most two. To do this we use Class Field Theory.
By the Reciprocity Law [82, Theorem 5.3] there exists a homomorphism (Artin map)
or : A — Gal(k®/k) satisfying the following properties

. o(k*) =1
e for every abelian extension [/k map ¢ defines an isomorphism
In particular, if I/k is a quadratic extension then [AX/EX N/, (A[)] = 2. O
REMARK 2.53. An alternative way to finish the proof is to use the Second Inequality
of the Class Field Theory [82, Theorem 5.1.af which states that |A /k* Ny (Ar)| divides
[l : k] for any finite Galois extension l/k. In particular, this part of the proof should
generalize to the other semisimple Lie groups without greater difficulty.
COROLLARY 2.54. For any h € C.(PD*(A)) we have
2

[l (V)]
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In particular

[Vol(T'v\PGL(2,K)) f(1) — trRry f| < Y Vol(PDJ(k)\PDJ(4)O, (| fla),

[’Y]ppx<k)

7#1

2
el (V)]

(4.16)

4.6. Normalization. The maximal arithmetic lattices of SL(2,K) or PGL(2,K) ad-
mit a fairly explicit description (cf. Proposition 2.33). Therefore proving a limit multiplic-
ity property (or property B-S) for sequences of maximal lattices is a priori much easier than
doing it in full generality. In this section we develop methods to prove the strong version
of Conjecture 2.5 for arbitrary congruence lattices, not necessarily maximal. The idea is
to replace the characteristic function 1y in the definition of fy, by a function invariant by
conjugation by some maximal compact subgroup U containing V' and then express it as a
combination of finite dimensional characters of U.

Let us fix an admissible quaternion algebra D, an open compact subgroup V of
PD* (A;io) and a maximal open compact subgroup U containing V. Recall that we write
IrrG for the set of irreducible complex representations of a group G, and whenever p is
such a representation we write x, for its character and W, for the vector space on which
G acts. If G is a group acting on a space W we write W& for the set of fixed points. For
f € C.(PGL(2,K)) let fa = f), fa.. and fo be defined by Equations (4.9).

LEMMA 2.55. Let v € PD* (k)

2|0
Yl < 22l S dim w10, ) (.17
pelrr(U)
PRrROOF. By corollary 2.54 we have
210
2V (fa)l < m (4.18)
Let fAf = [y fa, (u'zu)du. Then
0,110, (Fa) =Os(f) | [ fl(uz) yrwdudz  (4.19)
U JPDX(Af)\PD*(A)
=04 (fa..)Oy(fa;) (4.20)
=0y(fa) (4.21)
On the other hand
fAf /[U VIL,yy-1du = Z Lyyu—1 = Xnd Y1 (4.22)
uelU/V

By the Frobenius reciprocity (Ind g—l, p)u = dim va SO

Xmd§1 = Z dim W, x,. (4.23)
pelrrU
Hence
=V 2105 (fa)l
Ey (fa)l SW (4.24)
2|0, (ono)l
205 LS am w0, (1.26)
‘Cl( )| x€Irr(U)
O
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Section 6 will be devoted to estimates of orbital integrals appearing on the right hand
side of Lemma 2.55. We will aim at an estimate of the form |O,(x,)| < C'Xfl,_‘S where § > 0
and C' is a constant depending on the lattice in an explicit way (see Propositions 2.74 and

2.75).

5. Short geodesics and equidistribution

5.1. Bilu equidistribution theorem. Recall that the logarithmic Mahler mea-
sure of an algebraic number « is given by m(a) = ZueM@(Q) log™ |al,, where log™ ¢t =

max{logt,0} for ¢ > 0. We shall use the following result due to Bilu [20]

THEOREM 2.56. Let (ay,) be a sequence of algebraic integers such that [@(( )2@] tends

to 0 as n goes to infinity, where m(«y,) is the logarithmic Mahler measure. Define the
sequence of probability measures

1
b= Qe @ 2 S

oc€Hom(Q(an),C)
Then for any bounded continuous function f:C — (C we have

i [ fdun = 0 oy

n—oo

The following corollary is crucial to estimate the orbital integrals in the non torsion
case (see Section 6).

COROLLARY 2.57. Let (av,) be a sequence of algebraic integers with bounded logarithmic
Mahler measure and degree tending to infinity. Then

| No(an ol — an)| < @),

PROOF. Let u, be probability measures defined as in Theorem 2.56. Then

1
mlog’]\f@ /@(1—04”)] _/log‘l_ﬂdﬂn

Pick A > 0 big. We have

lim [ log|l — z|du, < lim /maX{A,log |1 — z|}duy,
n—oo n—oo

We assume that the logarithmic Mahler measure of «, is uniformly bounded so the support
of u, lies in a fixed compact set. Hence, the function on the right hand side is uniformly
bounded on the support of all u,’s. By Bilu’s equidistribution theorem, the limit on the

right hand side equals

1 [ ,
by max{—A, log|1 — ¢%|}d6.
By Lebesgue dominated convergence we have

1 2 . 1 2 .
lim — max{—A,log |1 — e’9|}d9 = 2/ log |1 — ele‘de'
™ Jo

A—o0 27 0

Pick the branch of complex logarithm that is defined on C\ (—o00,0]. Let C' be the contour
of the unit circle. For any 7 > 0 we have

2 W0 dz
log|l+7—¢e"|dd =Im [ log(1+7—2)— =0,
0 C z
taking 7 — 0 we get
27
/ log |1 — €|df = 0.
0

It follows that

1
lim —————log [Ng( 1—ay)|=0
A e O g |Ng(an)/af )=
which ends the proof. O
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‘We shall show that

LEMMA 2.58. Let I be an arithmetic lattice in PGL(2,K) (K = R, C) with trace field
k. Let v € T' non-torsion and m(y) < M. Recall that we define m(vy) as m(A1) = m(\2)
where \1, Ao are the non-trivial eigenvalues of Ad~ . Then

|Nijg(AM))] < e,
A(v) was defined in Section 2.2.
PROOF. Note that A\ = 1. Let L = k()\;). Then

2
NI = [T Nz g1~ 3)] = Q) = olled)
i=1
The inequalities follow from Corollary 2.57 and the fact that Q(\;) = k()\;) by Lemma
2.69. O

m(a;)

THEOREM 2.59. Let (a;) be a sequence of algebraic integers such that DI 0 and
[Q(a) : Q] — oo as i tends to infinity.
(1) Let ki = Qo) and my, be the prime counting function for the field k; i.e.
7, () = #{p prime ideal of O, | N(p) < z}.
Then, for any x > 0 we have
Ty (2)
lim — =
(2) Let N > 1 be a natural number and for each i € N let k; be a subfield of Q(a;)
with [Q(ay) : ki) < N. Then, for any x > 0 we have
: ks (I‘)
T )
PROOF. We start with the proof of (1). Since for a fixed = we have only finitely many
rational primes p less than x the theorem is equivalent to the following statement. For

every rational prime p, let n,;(x) be the number of prime ideals p of Oy, lying above p
with N(p) < . Then

()
1 p,t —
e T T
Let L be the largest natural number such that p” < x. For every prime ideal p of Oy, with

Lt
)

p|pand N(p) <x we have o; — a; € p. Hence

I] »la? - (5.1)

plp
N(p)<z

SO
pril®) < N(afL‘ — ;) = N(ai)N(afL‘_l —1) < eolki:QD), (5.2)
The last inequality is a consequence of Corollary 2.57.
To deduce (2) observe that my, () < ﬂ@(ai)(x[(@(ai):ki]) < ﬂ@(ai)(xN) SO
N
. (2) . TQay) (@)
lim <N lim ———= =0. 5.3
i—00 [kz : Q] T i—oo [Q(OA,) : (@] ( )

As a simple corollary of Theorem 2.59 we get

COROLLARY 2.60. Let N be a natural number, let «; be a sequence of algebraic integers
such that % — 0 as i tends to infinity. For every i € N let k; be a subfield of Q(ay)
such that [Q(oy) : ki] < N. Then for every o > 1 and Re(s) > o we have |(x,(s)| =

exp(0y([ki = QJ))-
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PROOF. Since |k, (Re(s))| > |Ck, (s)| we may assume that s is real. For M > 0 define

AM(S) - Z Z mns’

p—prime power n= 1
p">M

where the sum is taken over powers of rational primes. For s > ¢ > 1 we have

o

logy(s) = D D v ( s < Z Z k:QAu(s).  (54)

PGM,f n=1 f n= 1
' N(p)SM

By Theorem 2.59
1 ,
li ’Ongz(s)‘ < A (8)

1—00 [kz : Q] B
But for Res > 1 limp;,00 Apas(s) = 0. The rate of convergence of Ays(s) to 0 depends on
o, so we get that log (x,(s) = o ([k : Q]). O

6. Orbital integrals

In this section we give upper bounds for the orbital integrals. We start with the
local considerations. For non-archimedean places we consider the integrals of the form
O+(x,) where p is an irreducible representation of a maximal compact open subgroup U
of PD*(Ay) and D is an admissible division algebra. For archimedean places we estimate
O,(fa..) where fa__ has uniformly bounded support.

6.1. Values of irreducible characters at regular elements. Let G be a simple
group of type A; defined over k. Let U be a maximal compact subgroup of G(k;). In this
section we give an upper bound on the values of irreducible characters of U on the regular
elements of U. The main result of this section is

THEOREM 2.61. Let x be a character of an irreducible representation of U. Then for
all v € U regular we have

XM < 8lAM)

If v is torsion of order 2,3 or 4 the constant 8 can be improved to 4,8v/3/3 and 4v/2
respectively.

Following Serre!! [100, Formule (21)] we shall use the Weyl integration formula. We
choose a Haar measure dg on G(ky) and for any torus 7" we choose compatible measures
dx,dt on G(kp)/T(ky),T(ky) respectively. For a torus T' defined over k, put W(T') =
N(T'(ky))/T(ky). For any continuous compactly supported function ¢ on G(ky) we have

= A -1 .
[ otards - ,W o s o @bt (61)

Where the sum is taken over the set of G(ky)-conjugacy classes of maximal tori defined
over kp. We normalize dg so that the measure of U is 1 and dt so that the measure of the
maximal compact subgroup of T'(ky) is 1. From it we can deduce a similar formula for U.
A directed torus is a pair (T, ¢) consisting of a torus and a Weyl chamber ¢ C X, (T) ® R.
The group G(ky) acts on the set of directed tori by conjugation and the stabilizer of (7', ¢)
is precisely T'(ky). To distinguish directed tori from the usual ones we will usually denote

UThe formula is stated there for central simple division algebras but the same statement holds for
any reductive algebraic group.
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them by ? Note that the number of directed conjugacy classes [?]G(kp) is a single class

[T (p) equals (( )) From (6.1) we deduce

) “hdtd 6.2
/¢ . ’W ' 2 /Gwp )/T(0) /T(kp)| Olpplate™)dide (62)

G(kp)

o 2 Lo 3
= |A(t)|pp(utu™")dt du (6.3)
Wel [?%CG U/(T(ke)U) T () U

To get the second equality we split the integral over a single G(k,)-conjugacy class of
directed tori into sum of integrals over U-conjugacy classes. For a class function on U this

simplifies to
1
———— A d 6.4
] #0 |?Z STTATE) Jo o AOBO0E (6
[TlucG

To simplify the notation, for any directed torus ? we shall normalize the measure pur on
T'(kp) so that ur (U NT) =1. Now we are ready to start the proof of Theorem 2.61. The
proof is inspired by [71] where M. Larsen has proven an analogous result for finite groups
of Lie type.

PROOF. Let x be a character of an irreducible representation of U. By the formula
(6.4) we get

_ 2 _ 2
1= [ Pt 37 a@bix P (65
ﬁﬁU
In particular
Wel > / Al (0)]dt, (6.6)
T (ky)NU

for any directed torus ? Now take 7" such that v € T'(k,). We can do so because 7 is
regular. We shall approximate |A(t)|, by an integral combination of characters of T'(k,)NU.
Write Ai,..., A, for the positive roots of T. For any ¢t € T'(k,) the Weyl discriminant is
given by

T

A) =TJO = @) —x@®™
i=1
(cf. Notation). Note that the image of U N T'(ky) via any character of T'(ky) has to be
compact so \;(UNT(ky)) C OX fori=1,. For any i = 1,...,r we pick a character

T
0;: (’)X — C* such that 0;(\;(y )) # 1 but 6; ( i(t)) = 1 for any ¢ satisfying

1=y <1 =Ai(V)lp- (6.7)
Define © : T'(k,) N U — C by

1=1

We can choose characters 6; is such a way that [©(7)| > 1 and at least 2,/3, /2 if v is 2,3, 4
torsion respectively. Because of condition (6.7) ©(t) = 0 for all ¢ with [A(t)], < |[A(Y)]p-
It follows that |©(2)]?/|A(t)]y < |O(t)[?/|A(7)]p. We combine this inequality with (6.6) to
get

/ OO Ix(®)?dt < sup  [O(1)F|AM) Wl (6.8)
(kp)NU teT (kp)NU
The function O(t)x(¢) is an integral combination of characters of T'(k,) NU. We can write
Otx(t) = > ccl(t) with ¢ € Z (6.9)
CET(T (kp)NU)
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Function © can be trivially bounded from above by 2" where r is the number of posi-
tive roots. The inequality (6.8) implies that deH(T(kP)mU) cg < 227’|A(7)|;1]Wg| so in

particular
X< OMXxM)I =] > el D el <27AMW) Wl
CET(T (kp)NU) CET(T (kp)NU)
(6.10)
In case when G if of type A; we have r = 1 and |W¢| = 2 which ends the proof. O

REMARK 2.62. Note that we use the assumption that G is of type A1 only in the last
line of the proof. In particular the bound (6.10) holds for every reductive group G over
kyp, any open compact subgroup U of G(ky). The regularity assumption on vy is essential,
otherwise A(vy) = 0.

6.2. Estimates on the non-archimedean local orbital integrals. The aim of this
section is to estimate the local orbital integrals of the characteristic functions of maximal
open compacts subsets of PD* (k) for p € M,f Note that in the local case PD* (k)
is either anisotropic and compact or isomorphic to PGL(2, k,) and we know the explicit
description of the maximal compact subgroups. In the anisotropic case

0,(1y,) = / lde =1
PD3 (ky)\PD* (ky)

so we are left to deal with the case PD* (k) ~ PGL(2, ky). We start by recalling the ba-
sic properties of the Bruhat-Tits tree (for necessary background see [94, Chapter 5.2.1|).
We write X (SL(2,k;)) for the Bruhat-Tits tree of SL(2, k). It is a regular ¢ + 1-valent
tree. We endow it with the natural metric. The group PGL(2, ky) acts on X (SL(2, kp))
by graph automorphisms. This action is transitive on vertices and on edges. Every max-
imal subgroup of PGL(2, k) is a stabilizer of a vertex or of an edge. By a geodesic on
X (SL(2, ky)) we mean a path on X (SL(2, ky)) infinite in both directions. If T" is a maximal
split torus of PGL(2, ky) then T'(ky) stabilizes a unique geodesic on X (SL(2, ky)), we shall
call it the apartment of 7. The argument below follows the exposition from [8, Chapter
5] (see also [70]). We shall write v for the normalized additive p-adic valuation on k, and
vg for the unique extension v to a finite field extension E/k,.

LEMMA 2.63. Let v be a reqular element of PGL(2,ky) and let T' be the connected
component of its centralizer. Let I, be the subset of X (SL(2, kp)) fived by v. If A(y) € Ok,
then F, = ).

(1) If T is split over ky then F, is a strip of radius v(A(7))/2 around the apartment
of T.

(2) If T is split over an unramified quadratic extension E/ky then F is a ball of
radius v(A(7))/2 around a vertex of X (SL(2, kp)).

(3) If T is split by a tamely ramified quadratic extension E/ky, then F., is a ball of
radius v(A(7))/2 around the midpoint of an edge of X (SL(2,ky)).

(4) If T is split over a wildly ramified extension E/k,. Let o be the generator of
the Galois group Gal(E/ky). Put w = min{vg(% — 1) | a € EX} then F, is
contained in a ball of radius v(A(Y))/2 —w/2 around the midpoint of an edge in
X (SL(2, kyp)).

PROOF. By abuse of notation let us replace v with its lift to GL(2,kp) so that we
can write it down as an explicit matrix. If A(y) € O, then the group generated by -y
is not compact so it does not stabilize any point of X(SL(2,k,)). From now on assume
A(7) € O,. We will write d for the distance on tree, A7 for the apartment of 7" and ¢ for
the cardinality of the residue field of k.

(1) Split case Without loss of generality assume that 7' is the group of diagonal
matrices and that the entries of v are in O,. We can do it because A(y) € O, .
Fix a vertex v of X(SL(2,kp)) stabilized by K = GL(2, Og,) and assume that gv
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is fixed by  for certain g € GL(n, k;). Using the Iwasawa decomposition we write
g as the product g = ank where a € T'(k) n is upper triangular unipotent and
k € GL(2, ky). The vertex gv is stabilized by ~ if only if nv is. This is equivalent
to saying that nyn™" € GL(2, O,) or Y Inyn~! € GL(2, Ok, )-

if v = <8 2) ,n = <(1) 31:> then v lnyn~! = ((1) x(ll— b)> : (6.11)

It follows that v~ 'nyn™' € GL(2,04,) if and only if v(z) > —v(1 — ¢)

—v(A(7))/2. The set of vertices of form anv with a € T'(ky) and n = <(1) T

subject to the condition v(z) > —v(1 — §) = —v(A(y))/2 forms a strip of radi
v(A(7))/2 around the apartment of T which ends the proof.

S~— ||

o

S

Unramified case By |26, Théoréme 5.1.25] there is a natural embedding ¢: X (SL(2, kp)) —

X (SL(2, E)) and an action of the Galois group on X (SL(2, F)) such that
X (SL(2, E))CalEe) — (X (SL(2, ky))).

Moreover ¢ is an isometry. The set of points in X (SL(2, F)) fixed under the
action of v is a strip of radius v(A(y))/2 around the apartment of 7" which we
will call Ap. To finish the proof of this case it will be sufficient to show that
Ar intersects ¢(X (SL(2, kp)) in a single vertex v. Then, since ¢(X(SL(2, ky)) is a
totally geodesic subspace, its intersection with this strip will be a ball around v
of radius v(A(7))/2.

T is defined over ky so the apartment Ar is stable under Gal(E/ky). The
torus 7' is not split over £, so the Galois group acts non-trivially on Az. Thus
the only possible action is an orientation reversing isometry which has a unique
fixed point . Thus AF(E/ky) = Ar N (X (SL(2, kp)) consists of a single point
which has to be a vertex, because of the geometry of a tree. This ends the proof
in the unramified case.

Tamely ramified case The argument is the same as in the unramified case
except that ¢: X (SL(2,ky)) — X (SL(2, E)) is no longer an isometry. The image
t(X(SL(2, ky)) contains vertices which are not images of a vertex. More precisely,
the images of midpoints of edges in X (SL(2, ky)) are vertices in X (SL(2, E)) and
those are the only new vertices in (X (SL(2,kp)). In particular d(c(z),(y)) =
2d(z,y) for any two vertices x,y. By the work of Prasad [90] for a tamely ramified
extension E/k, we have 1(X (SL(2,ky))) = X (SL(2, E))%l(E/k) 50 the argument

from the unramified case, tells us that Agal(E:k'“) consists of a single point which

has to be a vertex v inside (X (SL(2, kp)). We argue that it has to be an image of
midpoint of an edge. Assume the contrary that v = ¢(z). We know that = has ¢+1
adjacent edges. The extension is totally ramified so ¢(z) also has ¢ + 1 adjacent
edges. It follows that all edges adjacent to «(z) are Gal(E/ky) stable which would
mean that Az contains an edge fixed by Gal(E/ky). This contradicts what we
already know. It follows that F, is a ball of radius v(A(y))/2 around a midpoint
of an edge.

Wildly ramified case We argue as in the tamely ramified case. The only differ-
ence is that there exists w > 0 such that X (SL(2, E))S(E/k) contains a tubular
neighborhood of radius w around ¢«(X (SL(2, ky)). As before Az has a unique fixed
point fixed by Gal(E/ky) and by uniqueness it has to coincide with the vertex of
Ar closest to ¢(X (SL(2, kp)). We write v for the unique fixed point of Ar and v’/
for the vertex of +(X (SL(2, kp)). As in the tamely ramified case we can show that
v’ is a midpoint of an edge and that d(v,v") > w. It follows that F, is contained a
ball of radius [¥(A) —w]/2 around a midpoint of an edge. It remains to compute
w which we do in the Lemma 2.64.

0
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LEMMA 2.64. Let E be a wildly ramified quadratic extension of ky and w = min{vg(a—
a’) | a € Og}. Let v be the natural injection v: X (SL(2,ky)) — X(SL(2, E)). Then

B(e(X (SL(2, ky)), w) C X (SL(2, E))Cal(E/k)

PrOOF. To prove the inclusion it is sufficient to show that for every apartment A in
X (SL(2, kp)) the tubular neighborhood B(:(A), w) is pointwise fixed by Gal(E/ky). Since
all apartments are in a single SL(2, k) orbit we may without loss of generality assume
that A is the apartment associated to the diagonal torus. In this case we have a vertex
0 € A stabilized by PGL(2,Oy,). We abuse the notation and also write o for the image
of 0 in X (SL(2, E)) via ¢, this one is stabilized by PGL(2,Op). All vertices of t(A) are of

form to where t = and a € E*. Write mg for the uniformiser of E and m;, for the

a 0
0 1
uniformiser of k,. For any real number R and vertex v € B(t(A), R) there exists z € F
with vg(x) > —R and n € Z such that

_(7E 0\ (1 =
”‘(0 1)(0 1>°

Write o for the generator of Gal(E/ky). Vertex o is Gal(E /k,) invariant so v € X (SL(2, E))G21(F:k)

if and only if
g 0\ (1 —z\ ((z%)" 0\ (1 27
O ) () craeon o

((WElgr%)" (rg ) e’ — $> € PGL(2,0p). (6.13)

1
In9)"2x® — 2 € Op. We have to check that

As (73'7%) € Op this is equivalent to (75

vp((rp'ng)"a? —x) > 0.

I/E((ﬂ'gl’f('%)nxa _ x) =vg <(7;%%:L20 — 1> + I/E(ZL') (614)
> w+ vg(r'z). (6.15)

Thus v is fixed by Gal(E/kp) as long as v(x) > —w. It follows that all vertices in the tubular
neighborhood B(t(A), w) are fixed. Since X (SL(2, k,)) is the sum of its apartments we get
that B(«(X(SL(2, kp)), w) is fixed by the Galois group.

U

Using 2.61 and 2.63 we can now give an upper bound on the orbital integrals of type
O~ (x) where 7 is a regular element and x is the character of an irreducible representation
of a maximal compact subgroup of PD* (k).

PROPOSITION 2.65. Let G be an adjoint group of type Ay defined over ky, let v €
G(ky) be a reqular element and U be a maximal compact subgroup of G(ky). Put M =
min{8]A(’y)\;1,X(1)}. Let q be the cardinality of the residue field of ky. Then for any
wrreducible character x of U we have

~1/2
0,00 < M (mm S b%) ,

where b = 0 if the centralizer of ~y is split or |A(v)|, = 1 and b = 2 otherwise. If G is
anisotropic then we have
[0, (X)| < M.

Moreover if v is 2,3, 4 torsion the constant 8 can be improved to 4, 8\/‘3/3 and 4v/2 respec-
tively.
PROOF. We start with the case G ~ PGL(2, ky). We shall prove that
—-1/2
AL

0,(1)] < JAMI ™ + b=

(6.16)
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When dealing with orbital integrals we fix the standard Haar measure pc on G(ky) giving
mass 1 to U and the standard Haar measure ug., on G (ky) giving mass 1 to the max-
imal compact subgroup of G,(k,). The integration will be done against a measure on
G (kp)\G(ky) compatible with those two. We have

- 3 1y(9~'v9)
G (ky) NgUg™ !
9EG (kp)\G(ky) /U 1, (Gy(ky) NgUg™1)

/Gw(kp)\G(kp)

We shall give an interpretation of the right hand side in terms of action of v on the Bruhat-
Tits tree X (SL(2, kp)). U is a maximal compact subgroup of G(ky) so it stabilizes a vertex
or an edge of X (SL(2,k,)). Note that 1y(g~1vg) = 1 if and only if vgU = gU. If we let
0 be the vertex (edge) stabilized by U then 1y (g~ 1vg) = 1 if and only if o is stabilized by
7y. Write T' for the maximal compact subgroup of G (ky). We have chosen g, so that
pa, (T) = 1s0 pa, (Gy(ky)NgUg™ )™t = [T : Gy (ky)NgUg ™). The group G, (ky)NgUg ™!
is the stabilizer of go under the action of 7" so we have

pe, (G (ky) N gUg™") = #{Tgo}.

Thus the right hand side of 6.17 is the sum of sizes of orbits of T fixed by v lying in pairwise
disjoint G (k) orbits. Let S be a T-invariant subset of vertices (edges) of X (SL(2,kp))
fixed by v such that

e every G (kp) orbit fixed by v has nonempty intersection with .S;
o if 2,y € S are in the same G, (k) orbit then they are in the same T-orbit.

We will refer to these conditions as to (). It is easy to see that the right hand side of 6.17
must be equal to #5. It remains to construct such a set and compute its cardinality. In
the case when G, is anisotropic the group G (ky) is compact so we have T' = G (kp) and
we can take S to be the set of vertices (edges) fixed by v. let E be the quadratic extension
of ky generated by the eigenvalues of v and let ¢ be the cardinality of the residue field of
kyp. Lemma 2.63 implies that

e if I : ky is unramified then

. A(y) %=1
#S =AM, Y2y 2|(7)|pl (vertices), (6.18)
q—
. Ay =1
45 =AM+ 2|(7()J”_1 ~1 (edges). (6.19)
o if £/k, is ramified then
A2 = g1/2 .
#S < 2’ ( q)fyﬂ Y (vertices), (6.20)
A(N-1/2 _ g=1/2
45 < 2] (7(1);"/2 ~ ql/g 1 (edges). (6.21)
(6.22)

with equalities if E/ky is tamely ramified.

In the case when G is split the set of points fixed by « is too big. In order to choose
a subset satisfying () we proceed as follows. Let A be the apartment of X (SL(2, %))
associated to G4. Fix a vertex 0 € A and an edge ¢ € A adjacent to 0. Let S” be the subset
of vertices (edges) v of X(SL(2,k;)) \ A fixed by « such that the vertex of A closest to v is
0. Welet S =0US"if U fixes a vertex and S = {e} US" if U stabilizes an edge. We verify
that S satisfies (x). Note that T fixes A pointwise so by definition S is T invariant. Let
u be any vertex (edge) stabilized by v and let w be the vertex of A closest to u. For any
t € G (ky) the vertex tw is the point of A closest to tu. The group G~ (ky) acts transitively
on the set of vertices of A so there exists a tg € G4(kp) such that tyu € S. This proves
that every orbit of G, (ky) fixed by ~ intersects S. It remains to check that if two elements
x,y of § are in the same G orbit then they lie in the same T orbit. If x = ty for some
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t € G (kp) then to = o, but the stabilizer of 0 is T" so the condition () holds. By Lemma,
2.63 we get

NG (vertices), (6.23)
#S =A@, (cdges). (6.24)

Combining the inequalities above we get inequality (6.16). Now we can invoke Theorem
2.61 to give the estimate:

1/2
0,001 <10,(15,)| , max |X(’Y’)|§<\A( >|p”2+b‘”‘“_11)My. (6.25

Y EM G (ky)

We recall that M, = min{8|A('y)|p_1,x(1)}. If G is anisotropic over k, then U = G(ky)
and we trivially have O, (1) =1 so by Theorem 2.61

10,(x)| < M, (6.26)

If v is 2, 3,4 torsion the constant 8 can be improved to 4, 8\/3/3 and 41/2 respectively. [

6.3. Archimedean Orbital Integrals. Let G = PGL(2,K) with K = R,C, let ~
be a regular semisimple element of G. For a compactly supported continuous function f
of G we shall bound |O,(f)] in terms of || f|o, |A(7)| and the size of the support of f. To
speak about size we have to choose a metric on G. We fix a norm on G given as follows.
For g € G we choose a representative A € GL(2, K)

i— (Z Z) (6.27)

with |det A| = 1. We define the Frobenius norm of g as ||g||? = |a|? + [b|? + |c¢|?> + |d|? =
trATA. Let K be the maximal compact subgroup of GG fixed by the conjugate transpose.
As Tk = k! for any k € K the norm || || is bi-K invariant. We fix a metric d: G x G — R,
by setting

d(g,h) = llg~"hll.

PROPOSITION 2.66. Fiz R > 0. Let v be a regular semisimple element of G such that
G, splits over K. For any continuous function f € C.(G) with suppf C B(1, R) we have

O3 (NI <R 1AM 2] flo- (6.28)

PROOF. Put fX(g) i= [, f(k~gk)dk, then O,(f) = O (FX), [|f¥]loc < [|flloc and

suppfX c B(1,R) because the metric is bi-K invariant. Hence it is enough to show the
theorem for functions which are constant on the K-conjugacy classes. From now on assume
that f is constant on K conjugacy classes. Choose a measurable bounded function « on
G such that fG (tg)dt =1 for all g € G. Then

O,(f) = /G A = /G o(9) (g~ 19)dy. (6.29)

Since G is split, it is conjugate to the subgroup of diagonal matrices A. Since our problem
is conjugation invariant we may assume G, = A. We have Iwasawa decomposition G =
ANK where N is the group of unipotent upper triangular matrices. By [69, Theorem
2.5.1] for any integrable h we have

h(g)dg = h(ank)dadndk. (6.30)
G AJNJK
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Hence

alank) f(k~'n"ta " yank)dadndk (6.31)

J,

f

w\x\

alank) f(n~ yn)dadndk (6.32)

n_lvn)dn (6.33)

—

I
Z\Z\h;\

f(y(v " 'n"lm))dn. (6.34)

The map ¢: n+— v 'n~'yn is a differentiable automorphism of N. If v has a lift <O 2)

then it is easy to check that the Jacobian of ¢ is constant and equal to 1 — E' Thus

-1
0,1 = [ st man =12 [ fman < -

The last inequality stems from the fact that the support of f is contained in a ball of

radius R so the rightmost integral can be bounded by v2R||f||so. Elements v and v~ are

conjugate under the Weyl group so O(f) = O,-1(f). From this we deduce that

[ flloo- (6.35)

X
bt -
‘Ov(f)’<<Rmin{‘1—a ,‘1—%‘ 1}Hf’oo (6.36)
b ay |12
g\(l - ) (EITE (6.37)
=AM £ ]loo- (6.38)

g

We have an analogous inequality for elements with anisotropic centralizer. Note that
this can only happen in PGL(2,R) since C is algebraically closed.

PROPOSITION 2.67. Let G = PGL(2,R) and let v be a regular semisimple element with
anisotropic centralizer. Then for any continuous function f € C.(G) with suppf C B(1, R)
we have

105N <& AT Flloo- (6.39)

PRrROOF. Note that in PGL(2,R) all semisimple elements with anisotropic centralizer
are conjugate to an element of the group

cosf sinf 0 1
K_<<—sin9 0059>’<1 0>6€R>’

and their connected centralizer is conjugate to the group

cosf sinf
KG:{(—SinG cos@) WGR}'

Without loss on generality we may assume this is the case for . As in the proof of
Proposition 2.66 we can assume that f is constant on the K conjugacy classes. We have
the Cartan decomposition

G:KOA+KwhereA+:{<g (1)> ]azl}.

Define the function J: AT — R, by

(6 5)-(57)
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Then, by [63, p.37] we have

/ dg—/ / / h(koak)dkodadk.
Ko JAt

Fix a function a: G — R such that fK a(tg)dt = 1 for all g € G. Then

0,(f) = /K = /G o(9) (g~ "19)dg (6.40)

= / / / J(a)f(k~ra kg Y ykoak)dkodadk (6.41)
Ko JAT JK

_ /K 0 /A ) /K J(a) f(a~ va)dkodadk (6.42)
FEAGEPENE e

Write v = <—C2isn99 ig; Z) , we have
t=t 0 cosf sinf\ [t 0\ [ cosf® tlsind (6.44)
0 1) \—sinf cosf)\O 1) \—tsinf® cosf )’ ’

The distance of the last matrix to 1 is given by (2(cosf — 1)? + (2 + ¢~ %)sin*6) V2>
t| sin §]. The support of f lies in the ball B(1, R) so from equation 6.40 we get

|s1t\0\ t+t 1 th .
0,1 < sl [ () <l sinol (6.45)

It remains to relate |sinf| and |A(y)]. In PGL(2,C) the element v is conjugate to the

if
matrix (60 OZ-(;). Therefore A(y) = (1 — e?0)(1 — e720) = (e70 — ) (e — %) =
—sin? . Combining this with inequality 6.45 we get
105 (H <R (I flloo A7 (6.46)

g

Now we shall combine previous estimates with number theoretic input to obtain esti-
mates on the archimedean orbital integrals for regular elements of an arithmetic lattice.
The key ingredient is a theorem due to Dobrowolski [40]

THEOREM 2.68. Let a be an algebraic number of degree d. Then

loglogd 3
m(a)>>< logd )

LEMMA 2.69. Let v be a semisimple regular element of an arithmetic lattice v in
PGL(2,K) and let A be one of the eigenvalues of Ady. Let k be the trace field of T
i.e. the field generated by traces of Adg for g € I'. Then X is an algebraic integer and if
~v € B(1, R) then m(\) < R. Moreover if v is not torsion , then there exists a unique place
w of k(\) such that |\, > 1. In such case we have |\ = |A\E! and Q()\) is an extension
of k of degree at most 2.

Since k(A) =~ k() C D we will write m(~y) for the Mahler measure of vy seen as algebraic
number over k. Clearly m(y) = m(\).

Proor. Without loss of generality assume that v € I' and I' is a maximal arithmetic
lattice. The fact that v is an algebraic number follows straight from the construction of
maximal arithmetic lattices (c.f. Proposition 2.33). There exists an admissible quaternion
algebra D and family of open compacts subsets U, C PD* (k) for p € M, ,f such that T is
the projection of PD* (k)N Hp Up to PGL(2,K). In particular, the eigenvalue A lies in O,
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because of compactness of Up. It follows that A is an algebraic integer. Recall that the
logarithmic Mahler measure is given by

m(\) = Z logt Al
wEMQ()\>

Let v be the unique archimedean place where D splits. For any place v of k except 14
the element + is contained in a compact subgroup of PD*(k,) so for any w extending v we
have |A|, = 1. It follows that

k() :
BT 2 k@ 2
WEMk()\)
Note that for any w|v; we have |A| = |[A|5. Among all extensions w of vy to k()\) there

is at most one with |[A|,, > 1. If there is none, then by Kronecker lemma A is a root of
identity and + is torsion, in which case m(\) = 0.

We have d(7,1) = |1 — || < R. The matrix 1 —~ has eignvalues 1 —\,1 — A~! so the
last inequality implies that

1-A <R (6.47)
AN <R+1<el (6.48)
log™ |\ < R. (6.49)

Hence m(A) < R. In the case |\|, # 1 we can easily show that k() is at most a quadratic
extension of Q(A). O

Combining Lemma 2.69, Theorem 2.68 and Propositions 2.66, 2.67 we get

COROLLARY 2.70. Fiz R > 0. Let v be a regular element of an arithmetic lattice
in PGL(2,K) defined over a number field k and let f € C.(PGL(2,K)) be a continuous
function supported on a ball B(1, R). Then

1 : 3
0,(f)| <r (og[k@]}) | flloo if v is lozodromic or hyperbolic, (6.50)

loglog[k : Q
10,(F)| <r [k : Q| flloo if v s elliptic and K = C, (6.51)
10,(N)| <r [F: QY flloo if v is elliptic and K = R. (6.52)
(6.53)

PROOF. Note that if v is loxodromic, hyperbolic or K = C then its centralizer splits.
In that case m(A) = log|A| where X is the unique eigenvalue of Ad~y of modulus greater
than 1. For the first inequality observe that Lemma 2.69 and Theorem 2.68 give

log[k : Q] )6
loglog[k : Q] ’

This combined with estimate from Proposition 2.66 gives (6.50). In the elliptic case the
eigenvalues A\, A\~! of 7 are roots of unity. Let n be the order of 7. Since A lies in a quadratic
extension of k we have [Q(A) : Q] = ¢(n) < 2[k : Q] where ¢ is the Euler’s totient function.
Using a crude estimate n < ¢(n)? we get n < [k : Q2. Thus |1 — A| > [k : Q2. If the
centralizer of +y is split (which happens if and only if K = C) we get, by Proposition 2.66

105 (F)l <R [k : QP flloc-

If K = R the centralizer of v is anisotropic so

105N <R [k QY| floos
by Proposition 2.67. O

AG)| = 1= AL = A7 > m(0)? > ( (6.54)
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6.4. Global orbital integrals - general case. In this section we combine the results
from Sections 6.3 and 6.2 to get a bound on [0, (fa,)|. We start the discussion by a general
bound resulting from what we did in the previous sections. We leave the non-torsion for
the next section. To deal with the non-archimedean part we shall use a classical result of
Frobenius

THEOREM 2.71 (Frobenius). Any irreducible representation of PGL(2,F,) of dimension
bigger than 1 has dimension at least ¢ — 1.

For the anisotropic case we will use a result of Carayol on the dimensions of irreducible
representations of quaternion algebras over a local field.

THEOREM 2.72 ( |31, Proposition 6.5]). Let A be a division quaternion algebra defined
over ky. Let m be a smooth irreducible representation of A* of minimal level c and let
r = ged(2,¢). Then if ¢ > 2 the dimension of w is given by the formula

2
g -1

— gz, (6.55)
q J—

dimnm =r

For the definition of minimal level we refer to [31]. If the level is 1 then the repre-
sentation 7 is of dimension 1 because it factors through an abelian group. Any complex
representation of PA* can be seen as a representation of A* with trivial central character.
As a consequence'” we get:

COROLLARY 2.73. Let U, be a mazimal compact subgroup of PD* (ky). If p & Ram/ D
and U ~ PGL(2, O,) then any non-trivial irreducible representation of Uy, of dimension
> 1 has dimension at least N(p) — 1 and if Uy 2 PGL(2,0y,) then every irreducible
representation of dimension > 2 has dimension at least N(p) —1. Ifp € Ram’ D then any
non-trivial representation of dimension > 2 has dimension at least N (p) + 1.

We briefly recall the notation. D* is an admissible quaternion algebra defined over

a field k, U is a maximal compact subgroup of PD*(A¢) and x is the character of an

irreducible representation of U. We have a decomposition U = Hp e/ Up so the character
k

x can be written as y = ®p emf X As a direct application of the Proposition 2.65 we get
k
PROPOSITION 2.74. (1)
N(p)+1
O, (10)| < | Nijo(AM))[H? ).
0,10 < Wi TT - (F o1

pIA(M)
kp[v]quadratic

(2) For the character x of an irreducible representation of U we have
N(p)+1
o< eao® T (yo3) s I w,

N —1
plA() (b) peM peM]

k drati _ _
»Dlquadratic A <xp (D) SIAM)  >xp(1)

If v is 2,3,4 torsion the constant 8 can be improved to 4, 8\/3/3 and 4v/2 respec-
tively.

PROOF. For any x we have
0,001 = ] 10-(x»)]
peM;

For the first inequality put x = 1y. If p divides A(y) and the extension ky[v]/ky is
quadratic then by Proposition 2.65 (more precisely (6.16)) we have

—12N(p)+1
O, (1) < |A(y)|y V2P T2
‘ ’Y( Up)| — ‘ (7)‘!3 N(p)*l’
12For the rigorous proof of lower bounds on dimensions in the unramified case see Section 8.2.
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otherwise |0, (1y,)| < |A(y) ;1/2. Observe that [Ny /o(A(7))] = HpeM]f IA()[; " so we
get
H N(p)+1

Nio) 1"

pIA()
kp[y] quadratic

|04(10)] < [Nisg (A2

The proof of the second inequality is completely analogous. U

We need to find more practical bounds on the factors | Ny ,q(A(7))l,

N(p) +1
I (Rg5)me I s I wo
N(p)—1
plA(Y) ) pEM,{ pEM,{
o Danadratic BAG) < (D) SIAm =)

At this point it is clear that presence of many prime ideals of small norm makes the problem
harder. In the next section we will show that if v is non-torsion and the archimedean orbital
integral O~ (fys) does not vanish then all three factors are of order exp(o([k : Q])). This
is more that enough for our purposes.

6.5. Global orbital integrals - non torsion case. In the non torsion case we shall
use the Bilu equidistribution theorem to control the norms of Weyl discriminants and the
distribution of prime ideals of small norm. This yields a much better bound than in the
general case. Throughout this section let R be a fixed real positive number. The main
result is

PROPOSITION 2.75. Let ' be a uniform arithmetic lattice of PGL(2,K) defined using
a quaternion algebra D over a number field k and a maximal open compact subgroup U
of PD*(Ay). Let S be the set of finite places p such that U, % PGL(2,04,). Let f €
Ce(PGL(2,K) with suppf € B(1,R) and y € I'\{1}. If O(f) # 0 then for any irreducible
character x of U and any 0 < § < 1/2 we have

10500)] < x(1)' 2% exp(or([k : Q))). (6.56)

PRroOOF. Using Proposition 2.74 we get

oo T (3oty) I s I wo.

N P|A(’é) pEM]f pEM,f
ti _ _
p[]quadratic SAM  <xp (D) SIAM)  >xp(1)

We shall estimate the right hand side factor by factor. The fact that O,(f) # 0 implies
that m(y) < R. By Lemma 2.58 | Ny, (A(7))| = exp(o([k : Q])). By Theorem 2.59 the
number of prime ideals of bounded norm is sublinear in [k : Q] so

N(p)+1
———— | = exp(o([k : Q])).
G

Choose § between 0 and 1. By Corollary 2.73 the primes p with x,(1) > 8 and 8 > y,(1)'~°
satisfy (N (p)—1)'~% < 8. Again using Theorem 2.59 we get that the number of such primes
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is sublinear in [k : Q]. It follows that

0, (x)| <exp(o ) 11 8 I @ (6.57)
pEMIf peM]f
8<xp(1)  82xp(1)

<exp(o([k: Q))x()'"° ] x( 5 11 @ (6.58)

per pEM,f
8<Xp( ) 8>xp(1)
<exp(o(fk: Q1) [T xe()’. (6.59)
pGM,{
8>xp (1)

By Corollary 2.73 ideals p with 1 < x,(1) < 8 and p ¢ S satisfy N(p) —1 < 8 (note that it
is not true for primes in S as Uy, has irreducible representations of dimension 2). By 2.59
we conclude that

|0,(x)| < exp(o([k : QJ)) " 11 wa (6.60)
821);?1)
<exp(o([k : Q]))x(1)' 025, (6.61)

The factor 2 appears because by Theorem 2.72 for p € S the dimension of an irreducible
representation of PD*(ky) is either smaller or equal to 2 or at is greater or equal to
N(p) — 1. O

7. Number of conjugacy classes with nontrivial contribution

Throughout this section fix f € C.(PGL(2,K)) with suppf C B(1, R). In Section 6.3,
Lemma 2.69 we showed that if A is an eigenvalue of a semisimple, non-torsion conjugacy
class [y] in an arithmetic lattice and [v]pgr(2,x) N B(1, R) # () then the logarithmic Mahler
measure satisfies m(A\) < R. Moreover, if I" is defined over k then there exists a unique
place w of k() such that [A|, > 1. In this section we will estimate the number of possible
values of A and in this way give an upper bound on the number of torsion free, rational
conjugacy classes [y] € PD* (k) with O4(foo) # 0. We will write m(v) for m(X), this does
not depend on the choice of eigenvalue since they have the same minimal polynomial over

Q.

REMARK 2.76. The problem reduces to counting the possible eigenvalues. If X is such

an eigenvalue, it s an algebraic integer, its logarithmic Mahler measure is bounded by R

and A+ "1 € Oy. A priori the number of all algebraic integers satisfying those conditions

may be much smaller than the number of all algebraic integers a of degree at most 2[k : Q]

and with m(a) < R. The size of the latter set was bounded by Dubickas and Konyagin
in [41]:

{o € Z%|[Q(a) : Q] < d and m(a) < R}| < eflEQ+o([k:Ql) (7.1)

This bound is exponential in the degree while we need a sub-exponential one.
The main result of this section is

THEOREM 2.77. Fiz R > 0. Let D be a K-admissible quaternion algebra defined over a
number field k. The number of conjugacy classes [y] C PD* (k) with m(y) < R is of order

exp(Or(log?[k : Q))).

We always assume that D is a K-admissible quaternion algebra. Before proving Theo-
rem 2.77 let us prove some auxiliary results.
For z € C,|z| <1 and ¢t > 0 define the function

1 — —e M (2" 421
log, |1 — 2| = 52 - : (7.2)

n=1
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Note that for ¢t = 0 the series converge absolutely only if |z| < 1. In that case we have
logg |1 — z| =log |1 — z|.

LEMMA 2.78. (1) fort <1 we have |log, 0| < —logt+ O(1).
(2) for |z| =1,z # 1 we have log |1 — z| < L +log, |1 — z|.

PROOF. (1)
| 0 et
> = .
0 > log, 0 nZ::l - (7.3)
=log |l — e (7.4)
>logt+ O(1). (7.5)
(2) Note that |z| = 1 implies 2" = z7".
t
log\l—z—logtll—z]:/ 210g5|1—z\d$ (7.6)
0 ds
1 /t 0 Z —eInlszn
= | = — | ds (7.7)
2 Jo Os o n|
1 t
:2/0 Z—ef|n|sz" ds (7.8)
n#0
t 1 ! . —|n|s ,n
:2_2/0<Ze||z>. (7.9)

To finish the proof it is enough to show that the sum > 2 e~ Inls 2 is positive

for all z on the unit circle and s > 0. We have
o0

1 1
—In|s n _ 1 1
n_z_:ooe : 1—e 352 + 1—e35z (7.10)
1— 6_28
>0. (7.12)
[l

LEMMA 2.79. Let a € Q be an algebraic integer of degree N such that m(a) < R and
there exists at most C' embeddings p: Q(a) — C such that |p(a)| # 1. Then

£10(0)/0 log N\
. 7.13
N <LR,C N ( )
PROOF. The proof follows the methods of [44] and [12]. Let a1, ...,ax be the roots
of the minimal polynomial of a. We divide them in two parts {aq,...,an} = Hy U Hs

where H; = {a; | |oi| = 1} and Hy = {a; | |ou| # 1}. The discriminant of the minimal
polynomial of « is a non zero integer so

Z log |a; — aj| > 0. (7.14)
I<i#j<n

Hence

Z log]w—w’\Z—QZIOg]w—w'\— Z log |w — W' (7.15)

w#w'eHy weH, wFw'€Hy
w'€Ho
R | Ha| R
> — 2 Hy|[Ha|log(e™ +1) — (77 ) log(2¢™) (7.16)
>rc — N. (7.17)
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We have used the fact that m(a) < R to guarantee that |w| < eft for any w € Hy. The
left hand side of the inequality can be rewritten as 3_, ¢, 10g|1 — ww'|. Using the last
inequality and Lemma 2.78 we get for ¢ €]0, 1]

_ t

Z log, |1 — ww'| >|Hi|logt + O(|Hy|) — i\Hl\Q — Op,c(N) (7.18)
w,w'€Hy
tN
>>R,C—N(7 —logt+ O(1)). (7.19)
Note that in the above sum we allow w = ' hence the term |Hy|logt. For t = 1/N we get
> log |1 —w!| >re —N(log N+ O(1)). (7.20)
ww'€Hy

We multiply both sides by —1 and use the Fourier expansion of log, |1 — z| to get

=Inl/N
N(log N +O(1 >>RCZ:6 > W (7.21)
n#0 w,weH1!
—Inl/N
Z c 3w (7.22)
n#0 weH;
We deduce
2
> w| <reeNN(log N +0(1)) (7.23)
weH,
> w| <re NY?(log N)'2. (7.24)
weH;
We turn back to the main inequality of the lemma:
troa) /00
log N U2 CeR log N 1/2
— . 2
<<R,c< ~ ) + - <re (—y (7.26)
O

We will need a simplified version of Kabatjianksi-Levenstein bound on the number of
almost orthogonal vectors on the unit sphere.

LEMMA 2.80. [T.Tao [102]] Let vi,va, ..., vy be unit vectors in an n-dimensional
Buclidean space such that for every i # j |{vi,v;)| < An=Y/2 for some 3 <A< iyn. Then

CA?
m < (%) for some absolute constant C'.
No we can proceed to the proof:

PRrROOF OF THEOREM 2.77. By Lemma 2.26 if v is not 2-torsion then any nonzero
eigenvalue A of v determines the conjugacy class [y]. The eigenvalue A is an algebraic integer
of logarithmic Mahler measure at most R. We will prove the theorem by showing that there
are at most exp(O(log?[k : Q])) possible choices of A. Let us enumerate the archimedean
places of k by v1,va, ..., Vp, 1r, is such a way that k,, = Kand {va,...,Vp,4r,} = Ram™D.
Note that in our setting the number of complex places 75 is 1 if K = C and 0 otherwise.

Define the set

Sr={Ac QAN chk,m(\) <R, (MM, €[-2,2] and |MATY,, <2 fori=2,...,r1+r0}
(7.27)
By Lemma 2.69 the eigenvalues of v lie in Sp. We want to show that
1Sg| < exp(O(log?[k : Q])). (7.28)
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Consider the set
Arp = {2+ X1\ € Sk and Re(A + A71),, > 0}. (7.29)

Here x,, denotes the image of z under any embedding p: k — C s.t. |z|,, = |p(z)|. Such
an embedding is defined up to complex conjugation so the real part is well defined. We
have |Sr| < 4|Ag|. Let us fix a Dirichlet embedding ¢ : & — C™ x R™ := V given by

= (T, T,y - - ,HUVTHTQ). We introduce a scalar product on V given by
(2.5} = wg (20171 + S ay) ifK=C 70,
’ g L wiys K =R

By means of the Dirichlet embedding we think of k as a subset of V. We claim that for every
pair z,y € Ag we have |(z, )| < (log[k : Q]/[k : Q))'/2 and |(z, z)| = 24+ O((log[k : Q]/[k :
Q])/2). We postpone the proofs of these inequalities to Lemma 2.81. For every z € Ag
put £ = x/y/(x,x). V is a Euclidean space of dimension [k : Q] and the set {Z|z € Ar}

consists of unit vectors. For any distinct Z,§ we have (Z,7) < Cylog"/?[k : Q]/[k : Q]'/2.
We apply Lemma 2.80 to get:
2 .
Clk : Q] CC7 loglk:Q) 0 o
A —_ CCilog®[k = Q)). 7.31

It follows that |Sg| = exp(O(log®[k : Q])). Since the conjugacy class of v is determined by
its eigenvalues that gives the desired bound on the number of conjugacy classes. ]

LEMMA 2.81. Put N = [k : Q]. With the notation from the proof of Theorem 2.77, for
every x #y € Ar we have

(1)

log N\ /2
ol < (<5

(r,2) =240 <<lo§VN> 1/2>

PROOF. Let us treat the case K = R, the proofs for K = C are nearly identical. Write
T =M+ )\fl and y = Ao + )\2—1 with A\, \s € Sg. The conditions imposed on Ar ensure
that Ay # 25"

Claim. Q(A\E!AE!) = Q(A1, A2). To prove this statement we are going to use some
basic Galois theory. Assume Q(A1A2) € Q(A1, A2). Then, there exists an automorphism
o € Gal(Q/Q) fixing Q(A1A2) but not Q(A1,A2). So a(AA2) = A2 but o(\;) # Aj or
o(A2) # A2. Let us examine the possibilities. The numbers A1, A2 are Salem numbers
(see Lemma 2.69) so a()\;) is either complex non-real of modulus 1 or o(\;) = A, Since
o(A1)o(A2) = A1Ag is a real number the only possibility is that both o();) are real or
that they are complex of modulus 1 and AjA2 = 1. Both scenarios lead quickly to the
contradiction with the condition A; # /\éﬂ. The Claim follows.

In particular, the Claim implies that Q(AF!'AS!) contains k and 4 > [Q(AF'AE!) : Q)
k] > 2. We have

(2)

[kOATIASY) Kltrgnyen AT

_ Teery _ 7.32
trgaEagt M A
<4 7.33
2 T (EnE g (v33)
. 1/2
<n <W) . (7.34)
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In the last passage we have used Lemma 2.79. Now we move to the proof of the second
equality.

_ trk/Q:L‘2 _ trk/(@2 + tl"k/@()\% + )\Iz)

(z,z) = %Q ) (7.35)
- k(M) : Kltrg2 oM
=2+ zi: Q) - Q) (7.36)
B log[k : Q] /2
=2+ Op <<N> ) . (7.37)

O

8. Representation Zeta functions

8.1. Definitions and motivation. Let G be a topological group. The representation
zeta function of G denoted (¢ is defined as the formal Dirichlet series

a(s) = > (dimp)~* (8.1)

pelrrG

The series are well defined only for rigid groups i.e. those which have finitely many irre-
ducible representations of bounded dimension. For our purposes we will be interested in
the representations of a maximal compact subgroup U of PD*(Af), where D is an ad-
missible quaternion algebra. By maximality U decomposes as a product of local factors
U= Hp en! Uy, so formally we have

w= 1] <

f
peM]

Unfortunately for us, the group U is not rigid and the representation zeta function is not
well defined. Indeed, the image of U via the norm map n(U) C AX/(A*)? is infinite so U
has infinitely many one dimensional representations. For this reason we define the special
zeta function:

DEFINITION 2.82. Let G be a topological group. We identify the group of one dimen-
sional characters of G with TrrG®. TrrG® acts on IrrG by tensor product. The special
representation zeta function of G denoted (7. is defined as the formal Dirichlet series

Gls)= Y (dimp)™. (8.2)
pElrrG /IrrGab
For U we have the product decomposition:
Cik]: H Cz}p‘
peM;

We will show in Section 8.2 that this function is well defined and can be explicitly bounded.
Our motivation to study the representation zeta functions is illustrated by the following
abstract principle.

LEMMA 2.83. Let G be a group and let H be a subgroup of finite index. Let v € G be
an element such that there exists 1 > 6 > 0 such that |x ()| < (dim p)'=° for all irreducible
characters of G.

(1) Let b € R be such that (c(b— 1) is finite and put a = /(1 +b). Then

Xind 51(7) = Z dim W,f]Xp('Y) <[G: H]I_GCG(b -1~ (8.3)
p€lrrG
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(2) Let b € R be such that (5(b— 1) is finite and put a = §/(1 + b).

image of H in G*®. Then

Write A for the

Nt 1 (1) < [G+ H'G(0 — 1[G : A" (8.4)
PROOF. (1) By Holder’s inequality we have
Z dim W;IX/J(’Y) < Z dim Wf(dimp)l_‘s (8.5)
p€lrrG pElrG
e [(dimW

= Z (dim W," dim p)~~* oV (8.6)

pElrrG ( 1 p)

l1—a a
dim W
. H - p

pelrG p€lrrG

<[G: H]'"%a(b—1)° (8.8)

(2) Dividing by a finite index normal subgroup N C H we may assume without loss
on generality that G is finite. For an irreducible representation p let S, = #{0 €

IrG® | p ~ p® 0}'%. We have

XmaG1 (V) = Y (Lo x,(7)

pElrrG
1
= > 5 2 (Lp@omx(i()
p€ElrrG /IrrGeb P petrrGab
Xp(7)

pelrrG /IrrGab P
If 61]4 = o] 4 then' (01, p) i = (Ao, p) . Tt follows that
Y (0.u=1G":A Y (0.0

OclrrGab feclrrA

Z <07 p>H§(7)

fclrrGab

(8.9)

(8.10)

(8.11)

(8.12)

Put C(p) :== 3 perren(0s p) . Then using inequality |x,(7)| < (dimp)!~° and the

Holder inequality we get

a Xe(MIC(p)
pelrrG /IrrGab P
dim p)'~°C(p)
<(6: 4] ( (8.14)
pEIrrGE/IrrG’ab Sp
dimp)C(m)l‘“ ( C(p) )a
=l6% 4 (( SREEYST 8.15
| | peIrrGE/IrrG’ab Sp Sp(dim p)b ( )
1—-a a
dim p)C'(p) C(p)
<G A (dim p)C(p) RN N
: L= Sp 2 S@mpp | 10
pelrrG /IrrGab pelrrG /TrrGab

By definition C(p) < dim p and S, > 1 so we can bound the last expression by

(dimp)C)G™: 4]\
Sp

< [Gab . A]a

>

p€ElrrG /IrrGab

(b —1)"

(8.17)

L3 The only reason why we replace G with a finite quotient is that we need S, to be finite.

MRecall that A is the image of H in G,
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By plugging v =1 in (8.9-8.12) we see that

dim p)C(p)[G? : A
3 (dim p) Esi)[ ]

= Xmag1(1) =[G : H] (8.18)
pelrrG /IrrGab

which ends the proof.
O

We will not be using Lemma 2.83 directly but apply a similar reasoning to bound the
right hand side in Lemma 2.55. The upper bounds on the values of irreducible characters
will be replaced by upper bounds on orbital integrals from Propositions 2.74 and 2.75.

8.2. Special Zeta function of maximal compact subgroup. Throughout this
section U is a maximal compact subgroup of PD*(Af). It decomposes as a product
U = Hpe yf Up where Uy is a maximal compact subgroup of PD*(ky). We have seen

in Lemma 2.39 that the structure of Uy is known explicitly. Representation zeta functions
for compact p-adic groups like U, have been studied in [9,10,61,72] and many others but
it seems that the exact type of bound that we need is not present in the literature. The
formula for the representation zeta function of SL(2, O, ) is known explicitly by the work
of Jaikin-Zapirain [61]. Let ¢ = N(p) be odd, then

s, a3 s g+1\7 g¢-1 s q—1\7"
(s1(2,04,)(8) =1+ ¢ +"75‘(Q-F1) +2 <22) +"7;‘(Q‘— )7 +2 S

2 it 2_ _ _1)2 _
4q<q21) +q21(q2_q) s+(q21) (q2+q)s

+ 1— qfs+1

We will use the following lemma

LEMMA 2.84. Let G be a group and H a normal subgroup such that G/H 1is abelian.
Then for every s > 0 where (5(s) and Cu(s) are well defined we have (5(s) < Cu(s).

PRrROOF. For p € IrrH let Irr(G|p) denote the set of irreducible representations of G
whose restriction to H contains p. For any 7 € IrrG write a, for #{r ® 0|0 € IrrG®}. If
p1, p2 € IrrH we write p; ~ po if they are conjugate by G. We have

G- > |y Mty >

pelrrH/~ \7m€lrr(Glp) 4 pElrrH/~ \7m€lrr(G|p)/Irr(G/H)
(8.19)
In the last inequality we use the fact that G/H is abelian and IrrG/H acts on Irr(G|p) by
tensor product. Write K = K|, for the stabilizer of p in G. By Clifford’s theorem [60, 6.2,
6.11, 6.17, and 11.22| for any m € Irr(G|p) there exists e such that ep extends to an
irreducible representation g of K and # = Ind IG(ﬁ. For now let us fix 7. Direct computation
of characters gives
Z X@@ﬁ = [K . H]]lHXﬁ = eXInd gp (8.20)
0chrrK/H
so every irreducible constituent of Ind gp is of form 6 ® p for some character 6 of K/H.
In particular by Frobenius reciprocity every n’ € Irr(G|p) is of form «’ = Ind IG(G ® p for
some @ € IrrK/H. Now if 65 € IrrG/H then 6 ® Ind ¢ = Ind % (62| ) @ p. This together
with the previous remark shows that the action of IrrG/H on Irr(G|p) is transitive. This
means that the right side of (8.19) equals

S (6 K, dimp) ™ < Culs) (8.21)
pElrrH/~
O
A corollary of the proof is
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COROLLARY 2.85. Let G be a group and H a normal subgroup such that G/H s
abelian. Let p be an irreducible representation of H. Write K, for the stabilizer of p under
conjugation. Then all representations ™ of G such that w|H contains p are in a single
IrrG/H orbit and dim7 > [G : K| dim p. In particular

Ca(s) < Z ([G: K,]dimp)~*.

pElrrH/~

Now we can proceed to the estimates on C[*]P (s). We divide the reasoning in three parts
according to the isomorphism class of Uy. In general the argument will be as follows. First
we find a normal subgroup H of U, with abelian quotient. For a representation p of H
of level n we prove a lower bound on [U, : Staby,p]dim p of order ¢". We use a crude
bound on the number of irreducible representations of level n of order (¢ — 1)q3(”_1). Using
Corollary 2.85 we will get a satisfactory bound for s > 7 (see Corollary 2.86).

(1) Up ~ PGL(2,0,). Put H = PSL(2, Ok,). The quotient G/H is abelian and we
even have H = G unless ¢ = 2,3. Write K,, for the kernel of the reduction
map PSL(2,0y,) — PSL(2, 0y, /p"). We call K, the n-th principal congruence
subgroup. Recall that an irreducible representation p of H is of level n if K,, C
kerp and K,,—1 ¢ kerp. We will write Stabp for the stabilizer of p under the
action of U, by conjugation.

Step 1. All open normal subgroups of PSL(2, O,) contained in K are of form
K. Indeed let N C K; be an open normal subgroup of PSL(2,0;). Let n be
a minimal natural number such that N C K,,. Put N’ = K, ;1 N. By definition
it is a normal subgroup contained in K,. The quotient K, /K, 1 is naturally
identified with sl(2,F;) and the action of PSL(2, Oy,) factors through the adjoint
action of PSL(2,F;). The quotient N'/K,, ;1 is a non zero subspace of s[(2,FF,)
invariant by PSL(2,F;). But sl(2,F,) is an irreducible PSL(2,F,;) module so
N'/Kp+1 = K, /Kp4+1. Now the fact that [K, K;] = K;11 and a simple inductive
argument show that N = K,,.

Step 2. Let p be an irreducible representation of H of level n. Then [U, :
Stabp]dimp > (¢ — 1)¢™!. The proof is similar to the original argument of

L O,p®

0 1

closure of N, in PSL(2, Oy, ) equals K,. It follows that the restriction p|N,_1 is

nontrivial. In particular there exists an irreducible character 6 of Oy, contained

Frobenius. For any natural a let N, := By Step 1 the normal

or 0

in p|Np nontrivial on N,,_;. The subgroup B := < (;“*’ (’)X> of U, normalizes
Ey

Ny and [G : Stabp]dim p > |Bl| = |O,:p0|. Since 6 is of level n we have |(’),€Xp9] =

(¢ —1g" "

Step 3. Here we bound the number of U, orbits of irreducible representations
of H of level n. It is easy to see that the number of Uy-orbits of irreducible
representations of H/K, equals the number of U, conjugacy classes in H/K, =
PSL(2, O, /p"). We have

#{U, conjugacy classes in PSL(2, O, /p")} (8.22)
<#{U, conjugacy classes in PSL(2,F,)}[K; : K] (8.23)
gi;’q%—?’ for ¢ odd, (8.24)
<(qg—1)g*"3 for ¢q even. (8.25)

(8.26)
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Step 4. If ¢ > 3 then (qq:11)5 < q% and ﬁ < q2 so steps 2, 3 and Corollary
2.85 combined give

00 3(n—

@B <1+ Z qqq =1+ Z =(1-g¢g?)! (8.27)
=1

If ¢ = 2 the groups H and U, are equal. We have H/K; = PSL(2,FF3) = S3 so the
contribution of characters of level 1 to C;}p (s) equals 14-27%. Using steps 2,3 we can

_ 3n—3
estimate the contribution of higher level representations by > >, (q(zl)ls)% =
Yoo 27573, Hence we have C[*]p(G) <(1-q 2?7t

ka Ok, 0 =«
Up—<< pp Oljp 7(1 0) )

In this case we will not be using Corollary 2.85. If A is a subgroup of U, we will
write A for the intersection AN PSL(2,0y,). Put

or O
U = ( p’ﬂv O:;) (8.28)
P
and )
1+ n+1 n
L, :—< png-l 1_|_ppn+1) : (8'29)

Those are normal subgroups of U, which will play a role analogous to the principal
congruence subgroups K, from the previous case. We say that a representation
p of H is of level n if L,, € kerp and L,,_1 & ker p. Note that this definition of
level differs from the one used in the previous case.

a
Step 1. Let N, = (1) Ok{p . Let M, be the normal closure of N, in Uj.

Then M, = L,. To see this, first note that

<72 (1)><(1) T) <2 (1)>_1:<7T1x 2) (8.30)

Hence M, contains the group

(967

We identify the quotient Kqy1/Kqq2 with s((2,F,). Put M} = M, N K,41. The
image M/ /Kyy2 in Kqy1/Kqyo is an U'-invariant subspace of sl(2,F,) contain-
ing the vectors (8 é) , ((1) 8) A simple calculation shows that the only U’
invariant subspace containing them is s[(2,FF,). It follows that M) K,yo = Kq41.
M is normal in U’ and K; C U'. We have [K1,K,] = K41 for any n so a
simple inductive argument shows that M) = K,i1. Finally we conclude that
M, = NyKqgy1 = L.

Step 2. Any irreducible representation of U, of level n has dimension at least
(¢ — 1)g™t. The proof is identical to the proof of Step 2 from the previous case.
Note that we adapted the definition of level so that the argument still works.

Step 3. The group Uy,/Lyg is isomorphic to the dihedral group Dy so it has
%5 conjugacy classes if ¢ odd and ‘I;F—Q if ¢ is even (c.f. [99, 5.3]). Hence we can
bound the number of conjugacy classes in U,/L,, by

) )

L0 L] = %q% for ¢ odd (8.32)
2 2

%[LO : Ly = %q?’" for ¢ even. (8.33)
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Step 4. We start with the case ¢ > 3. We have U, /Ly ~ Dy_1. The dihedral
group Dy_1 has 4 representations of dimension 1 and (1;—3 representations of di-
mension 2 if ¢ is odd and 2 representations of dimension 1 and q;22 representations
of dimension 2 if ¢ is even (c.f. [99, 5.3]). The contribution of representations of
level 0 to ¢f; (s) is at most 1+ %2_5 for ¢ odd and at most 1 + % for ¢ even.
Combining this with steps 2,3 we get that for ¢ odd

(g+3)q
q_l sn 1)°

Ci?()<1+—2 +Z (8.34)

If follows that (f; (MN<A+q¢g2) L+ (15—32_7 < (1—-¢ 2741+ q). For q even
we get

gUp()<1+—2 +Z q+28 . (8.35)

* —2\— —20— —2\—
If ¢ > 4 then as before CUP(7) <S(A+g )+ 227" < (1+¢2) (1 +g). For
g = 2 there are additional complications because our method from the second
step gives a trivial bound on the representations of level 1. In this case we have
to compute the contribution of the representations of levels 0 and 1 by hand. The

group Up/Lg is isomorphic to Dy ~ Z/2Z with generator and Lo/L; ~

0 1
(5 o)
) 11 10
(Z/2Z)* with generators (O 1) and (2 1). Group Uy/Lg acts on Lo/Ly ~
(Z/2Z)* be swapping coordinates so U,/Lo ~ (Z/2Z) x (Z/27Z)?. We conclude
that U,/L1 has 4 representations of dimension 1 and a single representation of
dimension 2. Together with Steps 2 and 3 this yields the estimate

[o.¢]

. B 23n+2

G (s) S 1+2 +Zm (8.36)
n=2

We get (77 (s) S1+277+14+271 42784+ . <(1-¢72)7'(1+9).

D is ramified in p and U = PD*(ky). Write M; for the subgroup {x € D*(k)|n(z—
1) € p'} and M}! = M; N D*(k,). We have a surjective map D(kyp)* — PD* (k)
with abelian kernel so C;‘,Dx(kp)(s) < (px(k,)*(8) for every s where they are well
defined. We will use Carayol’s formula for the dimensions of irreducible represen-
tations in term of levels ( [31], see theorem 2.72 for the statement). For every
class ¢ in TrrD* (ky)/IrrD* (ky)® we choose a representative p. of minimal level.
Recall that in a finite group G' the number of classes in IrrG'/TrrG® coincides with
the number of conjugacy classes in [G,G]. It follows that the number of classes
¢ € IrrD* (ky) /Trr D* (ky )20 such that p. is of level n is at most the number of
conjugacy classes in D'(ky)/M!_|. As in Theorem 2.72 we put r = ged(n,2),

then DY(ky)/M} = (¢ + 1)q2(3”‘” 4). Using the dimension formula we get

q + 1)q%(3n+7“74)

Chogey STH27°(q+ 1)+ 5
’ n>3 ( r(¢* = 1)(q" - 1)_16]%(””74))

For s > 7 the left hand side is bounded by % Ll (14¢) < (1+¢2) 1 (1+9).

(8.37)

We wrap up the estimates on special representation zeta functions for maximal compact
subgroups. Rather than aiming at an optimal estimate we will try to give simpler version
with application to Strong Limit Multiplicity problem in mind.

COROLLARY 2.86. Let D be an admissible quaternion algebra defined over a number

field k. Let U = Hper Uy be a mazimal compact subgroup of PD*(A¢) and let S be the
k
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set of places where Uy £ PGL(2,Oy,). Then for s > 7 we have

Gr(s) < G2 [T (N (p) + 1) (8.38)

peS

8.3. Abelianization of maximal compact subgroup. Let U be a maximal com-
pact subgroup in PD*(Af) and V' an open subgroup. To prove the Strong Limit Multi-
plicity for a lattice 'y = PD*(k) NV we will use a variation of the second part of the
Lemma 2.83. With this application in mind we need to control the index of the image of
V in the abelianization of U. Write ¢: U — U, we will prove:

PROPOSITION 2.87.

[t (V)]
e (U)I

(U (V)] < 23F:QHSN el (k)| (8.39)

where cl (V),cl (U) are the class groups defined in 2.48 and cl (k) is the usual class group
of k.

PrROOF. We will use a simple fact that whenever H C G are groups such that G/H is

finite and ¢ is a homomorphism of G with finite kernel, then [G : H] < |ker¢|[.G : tH].

Step 1. The norm induces a map n : U% — n(U). Write U! for the kernel of
n:U — n(U). We have U' = HpeMg Ul If p ¢ Ram/D and U, ~ PGL(2,0y,) then
Uy, Up] = Up1 unless'” N(p) = 2,3. If N(p) = 2,3 then [Up,U,] is a subgroup of Up1 of
index 2. If p ¢ Ram/ D and Up 22 PGL(2,0},) then U, is of the second type in 2.39. For
such groups we have Uy, Uy] = U,

Finally if p € Ram/ D then [Up, Uy] = U} It follows that | ker [U% — n(U)] | < 2n2tns
where n; is the number of prime ideals in k of norm i. There are at most [k : Q] prime
ideals above every rational prime so we deduce [U% : ¢(V)] < 22FW[n(U) : n(V)).

Step 2. Our task is reduced to finding an upper bound on [n(U) : n(V)]. Let
S be the set of finite places p where U, 2 PGL(2,0y,). At this point it is good to
recall that U € PD* so n(U) C (A?)X/((A?)S)Q. Let us consider the quotient map
(A?)X/((A?)X))2 — A? Jk* x ((Af)*)? and write Wy, Wy respectively for the image of
n(U),n(V). We have an exact sequence

L —— (A})*/OF g —— ATk —— AF/E(AF)" —— 1 (8.40)

Let us call the last group by ¢l (k), it is a quotient of the class group of k. We tensor the
exact sequence by Z/27Z to get

15 (k)] —— (AF)* /O ((AF))* —— AT/KS(AT)? —— Cls(k)/2015(k)(m—1)> L.
Then the kernel of the map n(U) — (A?)X/O;((A?)X)Z is a subgroup of O ¢/(OF ¢)*.

By Dirichlet’s Unit Theorem the latter is cardinality at most 271772+l 5o the kernel

of the map n(U) — Wy is of cardinality at most 271472+l [c] ¥ (k)]5|. We deduce that
n(U) : n(V)] < 2EQHST el (k) |[[Wy : Wy ).

15 The groups PSL(2,F,) are simple if g # 2, 3.
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Step 3. Consider the commutative diagram

1 1 ker[cl (V') — cl (U)]
1 —— Wy —— AJ/kp(A})? —— cl (V) — 1
(8.42)
1l —— Wy —— AJ/kp(A})? —— cl (U) — 1
Wy /Wy 1 1
The rows and columns are exact so by snake lemma Wy /Wy ~ ker[cl (V) — cl (U)]. It
follows that o (V)|
c
(U p(V)] < 230 QHIS e ()| =t (8.43)
el (U)]
O

In the Section 9 we will show that for fixed f € C.(PGL(2,K)) if a congruence lattice
I'y contains non torsion elements with nonzero contribution to trRr,, f then |cl (k)| <.
| Ag|t/2te.

9. Adelic Volumes

9.1. Volumes of projective division algebras. In this section we compute the
volume of PD*(k)\PD*(A) with respect to the standard measure (cf. Section 2.4). The
standard measure depends on the choice of maximal compact subgroup U of PD*(A). The
reasoning follows [94, Chapters 7,10,11]) but we work with PD* instead of D!. Let us
start by recalling the definition of a Tamagawa measure on an algebraic group.

Let G be an algebraic group defined over a number field k. Fix a left invariant gauge
form w on G defined over k. For any place v in M} the form w induces a left invariant
Haar measure on G(k,) denoted |w|,. For the construction see [105, Section 2.2|. For
any a € k* we have |aw|, = |a|,|w|,. A sequence of positive real numbers (\,) enr, is
called a set of convergence factors if the product @), Mk()\;1|w\,,) is a left invariant Haar
measure on G(A). If that is the case the measure |Ay|~4imG/2 e, (A, Hwly) is called
the Tamagawa measure for G derived from the convergence factors ()\,) and we denote
it by (w, (A\v)venr, ). Tamagawa measures do not depend on the choice of w. If G is a
semisimple algebraic group then (1),ear, is a set of convergence factors and the Tamagawa,
measure derived from (1),eps, is called the canonical Tamagawa measure on G. We shall
write prgm for the Tamagawa measure on a semisimple group G. We have the following
result on the Tamagawa measure of G(k)\G(A) when G is the projective group of a division
algebra:

THEOREM 2.88. [Weil, [105, Theorem 3.2.1]] Let A be a central division algebra of
dimension n? over a number field k. The canonical Tamagawa measure of the quotient

PAX(E)\PA*(A) equals n.

Computing Tamagawa measures straight from definition is not very convenient. We
shall use an explicit description of Tamagawa measures on D*(A) and A* as products
of local measures defined without reference to any gauge form. The constructed local
measures coincide with those from [94, Chapter 7.5|. For this, we fix a maximal order O
in D and put Oy = O ®0, Oy, for each p € M,{ and proceed as in [94, Chapter 7]. Fix
a set of convergence factors (A,), with A\, = 1if v € M and A\, = (1 — N(p)~!)~! for

peM ,{ . First let us describe additive measures. The Tamagawa measures on A and D(A)

are given by M%a(X) =1l M, u%a(fy) and p}@m = ILc M, ,ugj‘m. At a non-archimedean

place the local measures ugjm,u%}fp) are defined as the unique Haar measures giving
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masses ]Akp\;/ 2, | Ak, [7]Ap /kp‘;/ ? respectively to Ok, and Op. At an archimedean place

v, d,uTam is defined as Lebesgue measure if k, ~ R and if k, ~ C and z = x + iy then
d,u'krjm( ) = 2dxdy. For the quaternion algebra we put du%?,? )( x) =

o 4dxidredrsdry if D(k,) ~ H and x = 1 + izg + jx3 + kay;

o dridradrsdry if D(k,) ~ M(2,R) and z = <i; ii>;
e 16dzixy...dxs if D(ky) ~ M(2,C) and z = <331 +1iz9 T3+ wz4>_

Ts +1xg X7 +iTg

The local multiplicative Tamagawa measures on D* (k) and k,* derived from the set

of convergence factors (\,), are given by d,uTam( ) = ]a\ulduTam and duTa“E )(ac) =

|n(x )’VQd,u,’B?’? )( x) respectively. We have to pay particular attention to the case k, ~ C

where the valuation |z|, is the square of complex modulus. The measures ,uTa“E A =

ILc M, ,uDX(k ) and ,uTam = [Lc M, ugim are the Tamagawa measures derived from the

set of convergence factors (A,),. Let us recall the definitions of matching gauge form and
matching Haar measures. Let

1 A L‘B Ul C > 1

be an exact sequence of algebraic or topological locally compacts groups. Let wa,wp,wo
be invariant gauge forms on A, B, C. We say that wa,wp,wc match together algebraically
if wp = tx(wa) A m*(we). Let da,db, dc be Haar measures on A, B, C' respectively. We say
that dA,dB,dC match together topologically if, for every integrable f

/B F(B)db = /C ( /A f(ac)da> de.

To handle the canonical Tamagawa measure on PD*(A) we use

PROPOSITION 2.89. [Weil, [105, Theorem 2.4.3]] Let G be a connected algebraic group
defined over k and let N be a normal closed subgroup. Put H = G/N. Let dg,dn,dh be
left invariant gauge forms on G, H, N respectively, defined over k and matching together
algebraically (cf. [105, p 24]). Let (ay)m,, (by)n,, (cv)m, be respective sets of factors such
that a, = byc,. Then:

(1) If two of three sets (ay)my, (b)), (cv)m, are sets of convergence factors, so is
the third one.

(2) If (1) holds then the measures (dx, (ay)nr, ), (dn, (by)ar,, ), (dh, (cv)ar,) match to-
gether topologically.

For R=A or R = k,,v € Mj, consider the exact sequence
1 —— R —— D*(R) —— PD*(R) —— 1

Define ,ugaD”; (k) 3 the unique measure compatible with uTi‘m on kS and u%a;r(lku) on D* (k).

Tam

and Hp¥ () By

Tam Tam

Then the product measure HueMk HpD (k)

is compatlble with with g
Proposition 2.89

T T
H Hppx (k) — = [ppx (A)

veMjy,
where ugaD“; ) is the canonical Tamagawa measure. Be definition (see Section 2.4) the
standard measure admits a similar decomposition
st
wppa = 11 #eps (kv)"
ve My

It depends implicitly on the choice of maximal compact subgroup U of PD* (Ay).

83



To compute the standard volume of PD* (k)\PD*(A) we need to find the ratio

Tam Tam

Fppxa) H Fpp* (k,)

t t
Hppx(a) e M, HBDx (1))

The remaining part of this section is devoted to computations of local ratios.
Case D(k,) ~ M(2,R). Put f(A) = e ™44 det(A)|2. Then

/GL( o f(g)dﬂgaﬁlll&)(g) :/R4 e—w(x%+z§+:v§+xi)dm1d$2dx3dx4 (9.1)
27
4
= </R e_”2dx> =1 (9.2)
(9.3)

By compatibility of ,uﬁaxm, ué}“& R) and ugaD“; the same integral may be rewritten as

(R)

'am dt am
/ F(@)duéitomy(9) = / ( f(gt)) A o ) (9R) (0.4)
GL(Z.R) PGL(2,R) \JRX ||
N /PGL(2 R) ( det gl /RX e_ﬁtQ(trggt)WSdQ d/lgénﬁ(g,n@) (9.5)
1 | det g|? T y
T2 (traqh)2 HPGLE ) (9R 9.6
2 PGL.R) (trggt)? PGL(2,R)( ) (9.6)

2
Hence fPGL(2 R) }& (;tgfggdugaé“ﬁ@ R) (gR*) = 2. We integrate the same function against the

standard measure. Choose the maximal compact subgroup K = PO(2,R) and write A for
the subgroup of positive diagonal matrices and N for the group upper triangular unipo-
tent matrices. We have the Iwasawa decomposition PGL(2,R) = NAK, which induces a
diffeomorphism N A ~ H? given explicitly by

1 z\ [y O . 2
NAB(O 1><0 1)»—>x+zyeH.

The function ¢(g) = (|§ (;i]‘?‘; is right K-invariant so
/P cLem) p(9)dpperor) (9) = /H L elg)dgK (9.7)
L) e
-, /R L (9:9)
= /027r /00o ﬁdrde (9.10)
% (9.11)

It follows that ug“g}nﬁ(zm / M%tGL (2R) = o

REMARK 2.90. Using the same method one can show that

n2+n
MTam /Iust — mo
PGL(nR)/FPGLMR) ™ on—11(1/2)1(2/2) ... T(n/2)’

Case D(k,) ~ M(2,C). Put f(A) = e ™44%| det g|* where A* is the Hermitian
transpose of A. Note that for x € k,, |z|, = |2|? i.e. the valuation v is not the complex
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modulus but its square. We have

/f(g)dugag?lc) =16 /R8 e @A) gy L drg (9.12)

8
~16 (/ e‘”zdx> =16 (9.13)
R

By compatibility we can rewrite this integral as

| a6 - | < Flg2)duem (= >) B 0 (9) (9.14)
GL(2,C) PGL(2,C)

.\ 2dzdy am
Z/ < flg(z + Zy))gg> dugGL(Q olg)  (9.15)
PGL(2,C) +

o 2d0dr -
/PGL (2,C) </R+ / flg )d“gGL(z o (9) (9.16)

[ anldetglt ([ e tw*ﬂdr) ARl
PGL(2,C) R+

(9.17)

| det g'T'(4) ,
PGL(2,C) 274 (trgg*)* PGL(2,<C)( ) ( )

12 det g|* o
-_= ‘ | dugGL(z,C)(g) (9.19)

pGL(2,C) (trgg*)?

Hence fPGL(Q’C) (ltci(;tgg|)4 d/‘g%;nﬁ(zc) (9) = %. We compute the same integral against u%tGL(Q’(C).

Let ¢(g) = gt(iztggl)4. Let K = PU(2), A be the group of positive diagonal matrices and

let N the group of upper triangular unipotents. We use the upper halfspace model to
represent H?. Using the Iwasawa decomposition we identify N A with H? via the map

1 =z +ix 0
(O ! 1 2) <g 1> = (l‘l,l‘g,y) € HS'

The function ¢ is right K-invariant so

/ 0(9) it 0.0 (9 / o(9)dgK (9.20)
PGL(2,R)

/// <<y :r1+z:c2>> dydxidzs

R+ 1 y3
dydxid 9.22

///R+ 1+y +m1+ TR G (9:22)

d d 9.23
// 1+x1 T ( )

—

9.21)

27

=— 7d do 9.24
s ] ae (5:24)

T
E— 9.25
: (9:25)

m 473
Hence Mg%}L(Q,(C)/ N%tGL(Q,(C) 3 g = 8’

Case D(k,) ~ H =R +iR + jR = kR. Put f(z) = e ™@)pn(x)2. Then

F(9)du(g) :/ e~ @SS D) A do dwodasday (9.26)
HX* R4

— (/R e—m2d;p>4 =4 (9.27)
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On the other hand:

am dt am
[ seadra = [ ([ o) o) (9.29
PH* \JRx 2]
:/ <n(g)2/ e~ |t\3dt> dug (g) (9.29)
PH* RX
I'2) .
- =12 T (g 9.30
e (930
1
—— Voltum (PH*), (9.31)
s0 Volram(PH*) = 472. Since the standard volume of a compact group is 1 we get

P/ HEyyx = 4m. .
We proceed to finite places where there are only 2 cases:
Case p € M,{ and D(kp) ~ M(2,ky). Let Op be the same maximal order of D(ky) as

the one used to define u%‘?‘,&). Up to conjugation we may assume Op = M (2, Oy, ). Define

f: GL(2,ky) — R by
flg) = {|n(g>|2 if g € Oy

0 otherwise.
Then
N(p T:
f(g)dpE™ g :/ 1o, duy e 9.32
/GL(2,kp) (9)dBGT(2,,)(9) N () — 1 Jason,y MR (9.32)
__ N 2
~N(p) -1 1Ak, [p (9.33)
By compatibility of Tamagawa measures we have
/ F(9)duiion,)(9) = / ( flgt)dp ™ (t )> AUpEL (2 1, (9) (9-34)
GL(2,kp) PGL(2,kp)
[Asy "I (9) BN (p) / AR
= 1o, (gt)|todt | dupdy g).
s N [ o, (o0l ) dnfi o, ()
(9.35)

Here dt stands for Haar measure on k, giving mass 1 to Oy,. Let us write ||g[|, for the

maximal valuation of coefficients of g. That is ||g|ly := mingeso, ||y or [lglly = N(p)~*
where k = min{i | g € 7'O,}. We have
N(p) 3 3
—_ 1 t,dt = 1 "Vol(n" O 9.36
W) 21 ), en ol Z o, (97" [{" Vol (" OF.) (9.36)
:Zlop g™ )N (p)~" (9.37)
nez
- _ N(p)* lgllz
_ N(p) 4 — - S 9.38
P e RO
We deduce that
|detg|2 m 3/2 — —1\—
/ it ) =100 870 - NGO - N (089
PGL(2,kp) Hng

Let us compute the same integral against the standard measure. We will assume some

familiarity with Bruhat-Tits trees. The standard measure depends on the choice of a
|detg\g
llglls

maximal compact subgroup so let us start with U, = PGL(2, O, ). Function g
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is bi Up-invariant so

|detgl® | !detglﬁ
———du; = E 9.40
/P L2k) PGL(2,kp) ( )

4 4
Ik N P

The cosets PGL(2, k) /U, may be identified with vertices of the Bruhat-Tits tree X (SL(2, K,).
2
Let v be the vertex stabilized by U, and put ¢(gvo) = |G|l|egt‘|‘(i‘p
p
the value of ¢(v) depends only on the U, orbit of v, but by Cartan decomposition the latter
depends only on the distance to vg. More precisely the set of vertices v with d(v,vp) = n is

n
a single Uy orbit of size N(p)"Y(N(p)+1) or 1if n = 0, with a representative <7T O> (B

. Because of bi-U,, invariance

0 1
Consequently
| det g|2 s .- Con
> H H4p =1+ (N(p) +1) Y N(p)"'N(p)~? (9.41)
gEPGL(2,kp)/Up 9llp n=1
=1+ (N(p)+1)>_ N(p) ™" (9.42)
n=0
=L+ N(p) )1 -N@Ep)H™ (9.43)
Hence
Mgaénﬁ(zkp

POLEA) A 1871 - N(p) 7).
HPGL(2,ky)

If Uy 22 PGL(2, Of,) then [PGL(2,0,) : Uy| = N('JZ)H so in this case

T 3/2
HBGL(2,k,) _2|Ay, p/

Pparer,) NE)+1

(1-N(p)~2).

Case p € Ram/D. Recall that in this case Op = {x € D(k,) | |n(z)], < 1}. We
define f : D(kp) — R by the same formula as in the split case. By Lemma 2.28 we have

N(p) A, |7
d Ta;n _ 2 1/2 _ plp . )
/Dx(kp)f(g) KD (9) = B 518D/ b R 7T = Ry — 1 (9.44)
By compatibility of Tamagawa measures we have
f(g)dutem :/ Flgt)dpam () | dptem g 9.45
/wa @y = [ | S0 ) i, @ (9.45)
Tam Tam
= ¢ % 4
/pr(kp)< | (t)) A (9.46)
(9.47)
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Let PD*(ky) = AU B where A = {zk,* | |n(z)], € N(p)?*} and B = {zk, | |n(z)|, €
N(p)?Z+1}. Then Volram(A) = Volam(B) = §Volram(PD* (ky)). We have

'am 'am |Akp 1/2 (p)
/A ( kX f(t)dﬂT (t )) dﬂgDX(kp) = Volram(4) (N(p)—l /(9k |t|3dt) (9.48)

p

 Vol(PD*(kp)) 1Akl

2 1—N(p)— (9.49)
am am Vol(PD* (ky)) [ A, [3/* N (p) 2
/B ( k;( f(t)d#;ﬂ[;;( (t)> d'u“gDX(kp) - 2 ’ 1k_ N(p>_4 (950)
- A, 1/2
/Dx(kp) F(@)dp ¥,y =Vol(PD (kp))m (9.51)
(9.52)

3/2
It follows that Volpam (PD* (ky)) = 222 (1 - N(p)2).

PROPOSITION 2.91. Let D be an admissible quaternion algebra defined over k i.e. one
that can be used to construct arithmetic lattices in PGL(2,K),K = R,C. Let U be a
mazimal compact subgroup of PD*(Ay) and let ,u;tDX(A) be the standard measure relative
to U. Denote by S the set finite places p such that Uy % PGL(2, Oy, ). The standard volume
of PD*(k)\PD*(A) equals

2| A2 (2) Tperams (N () = 1) Tpes\rams p (N (p) + 1)
k:

2m (472 [k:Q=12S] ’ (9-53)
if K=R and
2’Ak‘3/2<k(2) HpeRame(N(p) - 1) Hpes\Rame(N(p) + 1) (9 54)
872 (42) Q225 ’ '
if K=C.

PrROOF. We just need to put together the local ratio computations with Theorem
2.88. O

Using Corollary 2.51 we get:
COROLLARY 2.92. With U as before let V' be an open subgroup of U. Then

U :V] ’Ak‘3/2gk(2) HpeRame(N(p) —1) HpeS\Rame(N(p) +1)

Vol(Ty\H?) = BTl (A T3S , (9.55)
if K=R and

Arl26(2) Theram (N ®) = D) TLocsrams o (N (p) + 1
VOI(FV\Hg) ’[Ulv( V)]|’ k‘ gk( )Hp & 4;13E471-(2]J))[k@)21;[|g| L fD( (p) )7 (9-56)
if K=C.

2. Volumes of algebraic tori. Let [ be a quadratic extension of a number field k
and let T" = Res ll/ka be the norm torus. In this section we prove an upper bound on
the volume of T'(k)\T'(A) with respect to the standard measure (see Section 2.4). We will
start with an exact formula for the volume which is probably well known to experts. For
a representation p of the Galois group Gal(k/k the function A(s, p) denotes the completed
Artin L-function

PROPOSITION 2.93. Let x;1, be the unique nontrivial character of the Galois group l/k.

We have 2A(1 )
Vol (T(K)\T'(A)) = 2“6(7%6’
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where a = r1; — ik + 12 — rog and e(l/k) = Hper e(ly/kp) is the global ramification
k
mndez.

The idea of the proof is to see T' as a subgroup of PGL(2, k) and consider the period
integral of an Eisenstein series along T'(k)\T'(A). The residue of Eisenstein series at 1 is
constant so it is enough to compute the residue of the integral to determine the volume of
T(k)\T(A). Before moving to the proof we will show a simple lemma on compatibility of
standard measures on certain algebraic tori:

LEMMA 2.94. Let k be a number field andl/k a finite extension. PutT = Res ;/1,Gm /G,
so that T(k) ~ 1" /k* canonically. Then T(A) ~ A[/A* and for every function f €
C.(A]) we have

/Af f(g)duf;lx = e(l/k) /T(A) (/A fgt)dpsts (g) dit ) (9),

where e(l/k) = HPGM,f e(ly/ky) is the product of local ramification indices.

PROOF. It is clear that the lemma will follow from the corresponding local statement:
For any v € M}, and some f € C.(I5) we have

[t =cturi) [ ([ rlonaity ) a0,

with e(l,/k,) defined to be 1 for all archimedean places.

If the extension I, /k, is split i.e. 1, ~ kl% then the assertion is clear. If [, ~ C and
k, ~ R then the desired inequality may be shown by integrating the characteristic function
of an annulus. It remains to treat the case p € M, ,{ and [, quadratic extension of k,. Put
f=1 ;- The group OIX,, is the maximal compact subgroup of I so

/lx F(g)dpe(9) = 1.

On the other hand

) s ]. lf g - ]{jX s
/ f(tg)dﬂktx dﬂlg/kx(g) _/ 4l . ol d:“’zg/kx(g) (9.57)
1k \J k) p P /ey |0 otherwise A

=e(lp/ky) " (9.58)

PROOF OF PROPOSITION 2.93. Note that T' >~ Res ;)G /Gy, so T'(k) =~ 1" /k*. Fix
an isomorphism | ~ k2. Multiplication by an element of [* gives rise to an embedding
[* — GL(2, k) which induces an embedding T'(k) — PGL(2,k). From now on think of
T as of subgroup of PGL(2,k). To compute the standard volume Vol (T'(k)\T(A)) we
consider a period integral

P(s)i= [ Blsg)dinlo),
T(R\T(A)
where E(s, g) is an explicit Eisenstein series that we are going to define shortly. The residue
of E(s,g) in s =1 is a constant function on PGL(2, k)\PGL(2, A) so
ress—1 P(s)
Volgt (T (K\T(A)) = ————.
Oh(TUNT(A)) = =rE,

We will choose E(s, g) in such a way that P(s) = C§(s) i.e. a constant times the completed
zeta function of [. Let P be the parabolic subgroup consisting of upper triangular matrices
in PGL(2,k). Put

E(s,g9)= Y,  7(79,9),

~EP(k)\PGL(2,k)
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where
7(g,8) = IIthQHZ/AX 90((0, Dytg)[[tl|Z°dpgs™ (L),

where go : A% ~ A; — C is defined as in [68, p. 298] for the number field I. With this choice
of 7 the Eisenstein series E(s,g) have simple poles on 0 and 1 with residues respectively
— 2 Volram (A /k*) go(0) and 2 Volrum(A/k*)go(0).

It remains to compute the period integral. We follow the notes by Garrett [51] but
keep track of all the constants.

P(s) = / E(s, )i (9) (9.50)
T(E)\T(A)

_ / Yo (g 8)duFy(9) (9.60)
T(RNT(A) Je p(k)\PGL(2,k)

- / (19, )iy (9) (9.61)
T(A)

The last transition holds because T'(k) acts freely transitively on I*/k* ~ PY(k) =
P(E)\PGL(2,k). We unwind the expression for 7 and use compatibility of Tamagawa
measures to get:

Idetglli | go((0, 1)tg) 112 dpss™ () dpay(9) (9.62)

T(A) AX
MEE(A) s Tam Tam

= 90((0, 1)tg)|[tgll’ x dpes 5™ (t)dp(a) (9) (9.63)
Hpiay JT(A) JAX !
HT(a)

x| onl(0. )l i ). (9.64)
MT(A) 1 t

By [68, Corollary 3, p.300] the integral is equal to &(s) — the completed zeta function of I.
Let 71,71, denote the number of real places of £, respectively and 79 1,72 the number
of complex places of k, [ respectively. In explicit terms

&i(s) = (2722t U A )20 (5 /2)T721 (5) i (s).

On the other hand by [68, Proposition 11, p. 298] go(0) = §o(0) = |A;|Y/2(27) 24 and
Volam (A /EX) = ress—1Cx(s) = pi so

ress—1E(s, g) = pp| A2 (2m) 720271 (9.65)
We turn to the residue of the period integral. By Lemma 2.94 we have

st st

'LL /,L X Te;.(m

giﬁl) 'ﬁafm Mét e(l/k;)il (966)
By Hax Hax

- |A|V/2 2k (4m)rak
T 9T (47r)r2t ‘Ak‘1/2
| AkM2| Ny (Ax) V2

e(l/k)~t (9.67)

Tk (4m)2iT2re(l k) (9.68)
We put the formulas together to get
1/2 12 —1
Vol (T(k)\T'(4)) =2 21'%’@’;']75/@%: f)‘l/_plf:(l i (9.69)
A xayw) (9.70)
20¢e(l/k)’
where a =11 —ri g+ 12 — T2 k- ]
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In the following proposition we assume that the lattice is of the form I'y and fy is as
in Section 4.5 with suppf € B(1, R).

PROPOSITION 2.95. Let v be a mon-torsion element in an arithmetic lattice T’ in
PGL(2,K), such that O(fs) # 0. Let D be the quaternion algebra used to define T
and let k be its field of definition. Let T be the centralizer of v in PD* (k). Then
| Ay |1/2e
(27‘(‘)[’93(@} '

PRrROOF. By virtue of Proposition 2.93 and the fact that for admissible quaternion
algebras a = 1 it is enough to show that

Volso(T(K)\T'(A)) <e.r

|Ak’1/2+5
(27‘(‘)[19?@]

The function A(s, x;/x) is symmetric with respect to transformation s + 1—s and bounded
in vertical strips ( [27, Theorem 3.1.2]). Hence, by the maximum principle, we have

AL, x| < Sup [A(L 46 + ity xi/e)l, (9.72)
S

IA(L, xiye)| <e (9.71)

for any § > 0. Choose § > 0 such that 2°I'(1 + §/2) < 60°/%. For K = R we have

g = [k:Q],rer =0and r; = 2,r9; = [k : Q] — 1. For simplicity we put d = [k : Q].

We have

B2 (1 4 6 + it) |4
|F(1+g+”)|d—2

|A(L+8+it, xyk)] = (2_2(d_1)7r_dAka/@(Al/k)) [L(146+it, xi/x)l-

(9.73)
Using Legendre’s duplication formula I'(z)['(z + ) = 2!1722/7T(22) we get
T(1+6+it)| | 5 it 1
o
<2T(1 + i)w—l/Q (9.75)
<60°/37~1/2 (9.76)
Odlyzko’s lower bound [85] on the discriminant Ay, yields '°
L(1+6+it)|!
| ( +o+:1 )‘ < ’Ak’8/37r_d/2. (9.77)

]F( 1+t;+it)‘d—2

Now we estimate the absolute value of Nj/q(4A;/;). The relative discriminant A, is
defined as the ideal of Oy generated by the set

2
a b
{det <ag b") | a,b e Ol} (9.78)

Let A be one of non zero eigenvalues of Ad~y. By choosing a = 1,b = A we get
Nijo(Aik) <INgg((A = A = Nyg(h =A™ (9.79)
=Ny (1 = A?). (9.80)

We have used the fact that A = A~! and that ) is a unit in O; (see the proof of Proposition
2.26). By Lemma 2.69 non vanishing of O, (f) implies that m(\) < R so m(A\?) < 2R. By
Corollary 2.57 we have N;/x(1 — A?) <g exp(o([k : Q])). Consequently

[Nio(Ayp)| < explof[k = Q) < A7, (9.81)

16Here we could use as well Minkowski’s weaker bound.
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By Corollary 2.60 we also have

LA+ 6+ it x| = ] —Nz‘é/ﬁ% (9.82)
peM;
< [¢u(1 +6)| = exp(o([k : Q])) < |Ag[/3. (9.83)

Note that at this point we crucially use the fact that ~ is not torsion as otherwise we can
not say that the Weil height goes to 0 as the degree [k : Q] grows. Putting everything
together we get

Ay |12t

RIER (9.84)

|A(17 Xl/k)’ <e

g

10. Proof of Strong Limit Multiplicity

In this section we prove Theorem 2.8 stating that for a uniform torsion free arithmetic
congruence lattice I' in PGL(2,K), K = R, C and any f € C.(PGL(2,K)) supported in the
ball B(1, R) we have

ltrRrf — f(1)Vol(T\PGL(2,K))| <g || f|leo VOl(T\PGL(2, K))* ™4, (10.1)

for some absolute constant ¢ > 0. We start with a lower bound on the covolume of a
maximal arithmetic lattice.

PROPOSITION 2.96. Let R > 0. Let I' = I'y be a mazimal arithmetic lattice in
PGL(2, K) with the trace field k and associated quaternion algebra D defined over k. Write
S for the set of finite places p of k where Uy, % PGL(2,04,). Then either I' does not
contain any non-torsion elements v with [y]parex) N B(1, R) # 0 or

N({p)—1 N 1
Vol(T'\PGL(2,K)) > [A,[*%* ] ("g 11 (12+ (10.2)
peRam’ D peS\Ram/ D

PROOF. Suppose that there exists v € I' of infinite order, such that [y]par(2x) N
B(1,R) # ). By Corollary 2.92, (10.2) reduces to the estimate

| Ag3/2¢(2
|cl (U)](2m)2lkQ)"

Let us start by bounding |cl (U)|. By Lemma 2.49 we have |cl (U)| = |A;/(A?)2k‘]§n(U).
From Equation 4.2 we deduce that n(U) contains the group A%/ (A?OXV. In particular
cl (U) is a quotient of the narrow class group cl T(k). It is well known that |cl T(k)| <
2lF@cl (k)| so we can deduce that |cl (U)] < 2(5Q|c] (k)|. It remains to find a good upper
bound on the class number |cl (k)|. Recall that we write Ry for the regulator of k. The
analytic proof of the Brauer-Siegel theorem (see [68| or Section 9.2) yields the estimate

AR <

el (k) [ R < |AG]Y2H72] G (1 + 2/2)]. (10.3)

Let A,A™! be the non-trivial eigenvalues of v. By Lemma 2.69 we know that k C
Q(A), [O(N) : k] <2 and the logarithmic Mahler measure of A satisfies m(A) < R. We ap-
ply Corollary 2.60 to get |(x(1+¢/2)| = exp(o:([k : Q])). We combine it with the inequality
10.3 to get

el (U)] < [el (k)2 <, 2@ Ay |12 R L (10.4)

We invoke a lower bound on regulator due to Zimmert [107|. It states that Ry >
exp(0.46rq 1, +0.1r3 1) where 71 j, and 73, are the numbers of respectively real and complex
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places of k. In our case we get Ry > exp(0.46[k : Q]) > 1.58%Q because all places of k
except possibly 1 are real. We get

|ARP2¢H(2) AL Ry 05
|l (U)](27)2(k:Q ™ 2[k:Q] (277)2(k:Q) :
|Ak|1—a
> 500k:Q] (10.6)

Using Odlyzko’s lower bound 7 |Ag| > 60(5Q (see [85]) we can estimate the last expression
by |Ag|tl0850/log60—e > | A 1004452 Ty end the proof we note that we can take ¢ <
0.0005. 0

PROOF OF THEOREM 2.8. Without loss of generality we may assume that || f|lec < 1.
Write I' = 'y for an open compact subgroup V of PD*(A¢) and let Ty, V. C U be a
maximal lattice containing I'. By Theorem 2.50 and Corollary 2.51 we have

trRrf — f()VOI(T\PGL(2,K)) = > Vol(PDX(k)\PDX(A)ZY (fa). (10.7)
14 €PD (k)

Since I' is torsion free we can sum only over the non-torsion conjugacy classes. Using
Lemma 2.55 we get a bound

ltrRrf — f(1)Vol(T\PGL(2,K))| < (10.8)
> Vol(PDj(k)\PDj(A))W > dim W) [0, (x,)]. (10.9)

[v]ePD* (k) p€lrr(U)
7 torsion free

By virtue of Proposition 2.95 the adelic volume Vol(PDZ (k)\PDZ (A)) is uniformly bounded'®
for conjugacy classes [y] for which the orbital integral does not vanish. We get

AL+ |05 (Fae ) R
> amEe a2 amiw10,00)
pelrr(U)

[trRr f—f(1)Vol(I'\PGL(2,K))| <p.

[v]eEPD* (k)
7 torsion free

(10.10)
If the orbital integral O (fs) does not vanish then the conjugacy class of v intersects the
ball B(1,R). Hence m(y) < R. By Theorem 2.77 the number of such classes is of order

exp(O(log?[k : Q])) = exp(o([k : Q]) < |Ax[". We get
|Ak|1/2+25 |O (

trRrf — f(1)VOl(T\PGL(2,K))| <r. EoFd el (V )\

Z dim W05 (xp)]-
pelrr(U)

(10.11)
From Corollary 2.70 we deduce the bound |O(fs)| = exp(of([k : Q])) and from Proposi-

tion 2.75 for any d > 0 and I" torsion free we have

105001 < x(1)'° exp(opa([k - Q)2 (10.12)

where S is the set of finite places where U, %2 PGL(2,Oy,). Note that by Minkowski’s
bound exp(ors([k : Q])) g |Ak|®. We apply those inequalities to get

Z dim WV

pEIrr )

’Ak‘1/2+38
(2m) Q|1 (V

trRrf — f(1)Vol(D\PGL(2,K))| s 2°1°

(10.13)

ITNote that at this point we use the full strength of Odlyzko’s bound, Minkowski’s basic bound is not
sufficient.
18 independently of I' and ~.
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Pick b € R such that (};(b — 1) converges and let a = §/(b+ 1). Write p: U — U for the
abelianization map. Using the exact same argument as one in the proof of Lemma 2.83
(2) we get

A1/
(2m) =@l (V)]

trRp f— f(1)Vol(T\PGL(2,K))| <gs. 2/° [U : V]Y=2 (b—1)[U : p(V)]2.

(10.14)

LEMMA 2.97. Assume the lattice 'y contains a non-torsion element y such that O (fa) #

0. Then for ¢ = 46 > 2/0.044 we have G5(T)[U : p(V)] < Vol(Ty\PGL(2, K))*SH4;

PROOF. Let us write S for the set of finite places p where U, # PGL(2,0y,). By
Corollary 2.86 and Proposition 2.87 we have

GO oG <@ [0V + 02 Sla @l (0.s)
pes

We have shown in the proof of Proposition 2.96 that |cl (k)| < [Ag|'/2*¢. By Proposition
2.96 we get

N(p)—1 N(p)+1

0.044

Vol(T\PGL(2,K)) > |Ay| 1 =5— II =%~  «o
peRam’ D peS\Ram/ D

¢ > 2/0.044 so 0.044c > max {3 +2c+ SILOgggO, 2} for e small enough. Then Odlyzko’s lower
bound yields"’

log 2 _ 2 2
Vol(T\PGL(2,K))° [ Ay 72w ] (N(p;l> 11 <N<P;+1>
D

peERam pES\Rame
(10.17)
2
Z‘Ak‘%+€23[k):@}|Ak’€H <N(pg1> . (10.18)
pes

By Theorem 2.59 we get that Hpes (N(p) +1) > exp(or([k : Q]))32|5| and we always have
[lpes (N(p) = 1) > []pes N(p2)+1. It follows that

- 2
A T (N(p; 1) (o IT vy + 1 [T 0L (10.19)
pesS peS peS
> Agl* expor([k: Q) [T (N (p) +1) 2 (10.20)
pesS
>rG(2)25 T (V) +1). (10.21)
peS

In the last passage we have used the Corollary 2.60 together with Minkowski’s lower bound
on the discriminant. Finally we conclude that

1 ) 1 (U
Vol(I\PGL(2, K))° 3> Gx(2)|Ag|2 22 TT(N () +1) >R (MU - p(V)] ;21 Ev;;
S
" (10.22)
The lemma follows. O

LEMMA 2.98. Suppose that I'yy contains a non-torsion semisimple element v such that
O~(fa) #0. Then for any e > 0

2181 <k Vol(Iy\PGL(2, K))®

with a bigger c this part of the argument would work with Minkowski’s bound .
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PRrROOF. By Proposition 2.96

N(p)—1
Vol(Ty\PGL(2,K)) > [] ("g (10.23)
peS
From Theorem 2.59 we infer that
. o(1)
N(p)—1
2l — A 10.24
1 , (10.21)

pes

which proves the Lemma. O

We return to the proof of Strong Limit Multiplicity. We use Lemma 2.97 and Lemma
2.98:
’Ak’1/2+3e[U . V]lfa

[trfiry f = FAIVOUTNPGLE K)I <roe ™o Sigliaq )]

o)

(10.25)
|A‘1/2+35[U . V]17a|cl (U)|1fa

Vol(T'y\PGL(2, K))*e
SR R )l (Ve o PELE )
(10.26)
By Corollary 2.51 we have
[U: V]|l (U)] _ Vol(I'y\PGL(2,K)) (10.27)

lcl (V)] Vol(I'y\PGL(2,K))"
Hence
|Ag[1/2H3 Vol(T'y\PGL(2,K))!

(2m)kQcl (U)| Vol(I'y \PGL(2, K))1—a—ca=e
(10.28)

[trRr, f — f(1)Vol(I'\PGL(2,K))| <rs

|Ak‘1/2+38

m <R VOI(FU\PGL(Q, K))1/3+25. Therefore

By Corollary 2.92 we have

Vol(T'\PGL(2, K))!—¢

trR — f(1)Vol(I'\PGL(2,K c 10.29
|t v f f(1)Vol(I'\ (2,K))| LRy, VOI(FU\PGL<27K))2/3—3a—a—ca ( )

For § and € small we will have 2/3 — 3¢ — a — ca > 0 so finally
ltrRr,, f — f(1)Vol(T'\PGL(2,K))| <R, Vol(T'y \PGL(2,K))*~, (10.30)

this proves the Strong Limit Multiplicity property for torsion free, cocompact arithmetic
congruence lattices. Recall that in Lemma 2.97 for € small enough we can take ¢ = 46 so

the inequality works with a = 0.014 < % — i—‘;. O

11. Proof of Strong Benjamini-Schramm Convergence

The aim of this section is to prove Theorem 2.9. Let I' = I'y; be a congruence arithmetic
lattice in PGL(2, K) as defined in Section 4.5. The case of non-uniform arithmetic lattices*’
was treated in [92, Theorem A] so we may assume that I' is a uniform lattice. Throughout
this section the Haar measure on PGL(2,K) is the standard measure (see Section 2.4).
Fix an identification X ~ PGL(2,K)/K where K is a maximal compact subgroup of
PGL(2,K). Choose a bi K-invariant metric on PGL(2,K) such that the quotient metric
on X coincides with the Riemannian metric.

VK =R they are defiend over Q and if K = C the are defined over a quadratic imaginary number
field.
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PRrROOF OF THEOREM 2.9. To prove the Strong Benjamini-Schramm convergence we
need to show that for every R > 0 we have

Vol((T'\X)<r) <g Vol(T'\ X)' @ (11.1)
for some absolute positive constant a > 0.014. To this end we apply Theorem 2.8 to the
lattice I" and the bi-K-invariant function f = 1p(x g) - the characteristic function of the
set of points at length at most R from K. This function is not continuous but it can be

approximated from above by continuous compactly supported functions so the estimate
from Theorem 2.8 is still valid. We have

trRp f — Vol(I'\PGL(2,K))| < Vol(T\PGL(2,K))!~*. (11.2)

Since we are working with standard measure we have Vol(I'\PGL(2, K)) = Vol(T'\X)). On
the other hand unfolding the proof of Selberg Trace formula for compact quotients (see
e.g. [8, p. 9, second equality]) gives

= ) da .
trRrf = r\pGL@,K)%ﬂ yz)d (11.3)
:/ {B(K,R) Nz 'Tz}|dx. (11.4)
X
:Vol(F\X)+/ [{B(K,R) N2 'Tz}| — 1] dz (11.5)
n\x

The last two integrals are well defined because of the bi-K invariance of the metric on
PGL(2,K) and the last one is non-negative. The set of points z € X whose injectivity
radius is smaller than R can be described as {rK € X | |B(K,R) Nz~ 'T'z| > 2}. Hence

trRpf — Vol(I'\PGL(2,K)) > Vol((IT'\X ) <g)- (11.6)
By Strong Limit Multiplicity Vol((I'\X)<r) <z Vol(T'\X)!~® for some absolute positive

constant a > 0.014. This ends the proof of Strong Benjamini-Schramm convergence for
cocompact, torsion free, congruence arithmetic lattices. Il

REMARK 2.99. This argument is very general and can be used to show that the Limit
Multiplicity property implies property B-S for arbitrary sequences of cocompact lattices in
any semisimple Lie group G.

PrROOF OF THEOREM 2.11. Let I' be a torsion free arithmetic lattice with the trace
field k. Like in the in the argument above it is enough to show that for some positive
constant ¢ and for f = 1pg(; r) we have

trRr f — Vol(T\PGL(2,K)) < Vol(T'\PGL(2,K))|A|~ (11.7)

We cannot apply Theorem 2.8 directly because we do not assume that I' is a congruence
lattice. Let I'" be a maximal lattice containing I". Maximal lattices are all congruence
lattices of form IV = I'y so by the proof of Theorem 2.8 we have

> Vol(T\PGL(2,K),)O,(f) <r Vol(T"\PGL(2,K))" . (11.8)

1Y .
not torsion

The function f is non-negative and every conjugacy class in I splits into at most [TV :
[']/[I, : T';] conjugacy classes in I'. It follows that

trRrf — Vol(I\PGL(2,K)) = _ Vol(I';,\PGL(2,K),)O(f) (11.9)
YIr
<[:T) ) Vol(T\PGL(2,K),)O,(f)  (11.10)
['Y]F/‘
<R[l : T]Vol(I"\PGL(2,K))! @ (11.11)
=Vol(I'\PGL(2,K))Vol(I"\PGL(2,K)) ™. (11.12)
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Now we consider two cases. Either I' does not contain any non-torsion conjugacy classes
[v] such that [y]par,2,x) intersects a ball of radius R or by Proposition 2.96 we have

N(p) -1

Vol(T"\PGL(2,K)) >r A" ] ;

peRam? D

(11.13)

By Theorem 2.59 the product [ [,cgams p N(F'Q)_l is bounded from below by exp(—o([k : Q]))
so by Odlyzko’s bound?' we get

Vol(T"\PGL(2,K)) >p |A|*043. (11.14)
This proves the theorem with ¢ = 0.043a > 0.0006. O

Now we can prove Corollary 2.12.

PROOF. Put f = lp( ). Let (I';)ien be a sequence of cocompact arithmetic (not
necessarily congruence) lattices in PGL(2, K). By Theorem 2.11 either (I';);en has property
B-S or infinitely many lattices share the same trace field, say k. For the sake of the proof
we may assume that the trace field of all I';’s is equal to k and the lattices are pairwise non
commensurable. Let D; be the quaternion algebra defined over the field k determining the
commensurability class of I'; (see Section 4.1). Let I'; be a maximal lattice containing I';.
From the inequalities (11.9)—(11.13) we get

Vol (Ti\PGL(2, K) - ) <trRr f — Vol(T:\PGL(2, K)) (11.15)
<50 gVol(Ti\PGL(2, K)) Vol (I\ PGL(2, K)) (11.16)
<kaVOlTAPGLE2,K) | [ N(S_l RENCTRTS

peRam’ D,

We know that the isomorphism class of D; is uniquely determined by the set RamD;.
Hence lim;_,+, |[RamD;| = co and
i YOU(TAPGL(2,K)<R)
i—co  Vol(I';\PGL(2,K))

=0. (11.18)

g

12. Applications

12.1. Gelander conjecture. The entirety of this section is devoted to Theorem 2.16.

PROOF OF THEOREM 2.16. Let I' € PGL(2,C) be a torsion free arithmetic lattice
with the trace field k. Put M = I'\H®. Gelander already proved the conjecture for non-
uniform arithmetic lattices so we shall assume that I" is uniform?®? . Following the method
from [53] we will construct a simplicial complex N homotopic to M as a nerve of a covering
of M by certain balls. We are able to bound the number of simplices in N because both
the size of the thin part of the manifold and its injectivity radius can be controlled by the
degree [k : Q]. Let € be the Margulis constant for H?®.

For z € T\H? or x € H? we will write B(z, R) for the ball of radius R centered in .
Define i(z) = min{injrad z, 1} for z € M. Let B be a maximal with respect to inclusion
set of points in M satisfying the following conditions: For any distinct z,y € B we have

B(z,i(x)/16) N B(y,i(y)/16) = 0 (B(x,i(x)/16) is to be replaced by B2 if z € C) .

Claim 1.
| Biu | B(x,i(2)/5) = M.
ceC zeB

21 Alternatively we could use Minkowski’s lower bound.
22 The key feature he used is that non-uniform lattices are all defined over a qudratic imaginary field.
This implies a uniform lower bound on the lengths of closed geodesics on such manifolds.
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PrOOF. Let y € M. The proof for non-compact case is completely analogous. By
maximality of B there exists € B such that B(z,i(x)/16) N B(y,i(y)/16) # 0. Hence
d(z,y) < "W 1t i(z) > i(y) then d(z,y) < i(x)/8 so y € B(x,i(z)/5). We shall use
crucially the fact that i(z) is a 1-Lipschitz function, this is easy to see using the definition

of injectivity radius as the maximal radius of a ball around a lift of  which maps injectively
to T\H3. If i(z) < i(y) then
. , i(x) +1
i) — i) < d(ay) < D),
s0 i(y) < i(z). Then

d(z,y) < W < 1351(56)

and y € B(x,i(z)/5). O

Claim 2. For every y € B the number of x € B such that B(z,i(x)/5)NB(y,i(y)/5) #
() is at most 245.

PROOF. If 2 € B\C and B(z,i(z)/5)NB(y,i(y)/5) # 0 then B(z,i(x)/5) C B(y, W2

Note that ) .
(@) < i) + () < ify) + D,
so i(z) < 3i(y). Hence B(z,i(z)/5) C B(y,w) C B(y,4i(y)/5). On the other
hand i(z) > i(y) — d(z,y) > i(y) — M S0 @ > % By comparing the volumes of
B(x,i(x)/5) and B(y, 4i(y) /5) we get

: : Vol(B (y,42( )/5)) _ Vol(B(y,4/5))

The last inequality is a consequence of the formula for the volume of a ball in hyperbolic
3-space Vol(B(z, R)) = m(sinh 2R — 2R) [93, p.83 Ex 3.4.5| and an elementary calculation.
In the non compact case we may start with y € C. Il

~2 244.52 < 245

Let U be the open cover M = |J, .5 B(z,i(x)/5), by the first claim it is indeed a cover
of M. Any nonempty intersection of sets in U is a convex set so it is contractible. It
follows that the cover U is "good" in the terminology of [25]. By [25, Theorem 13.4] the
nerve N of U is homotopy equivalent to M. By definition the vertices in N correspond to
the open sets in U and k-simplices correspond to unordered k-tuples in & with nonempty
intersection. Using the second claim we deduce that the degree of vertices in AV is bounded
by 245.

It remains to bound the number of vertices in A/ which is equal to |B|. We will bound
the size separately for By := BN M>1 and By := BN Mc;. The union | |,cp B(x,1/16) is
disjoint so

Vol(M)
Vol(B(z,1/16))

For any semisimple v € T the minimal displacement®® of 7 is given by m(y). In this
case m(y) is the half of the logarithmic Mahler measure of the characteristic polynomial of
7. For a short argument see [53, p. 39]. By Lemma 2.69 and Dobrowolski Theorem [40]
we get that for v # 1

1By < < Vol(M).

m(y) > (log[k : Q)
We can deduce that the injectivity radius of M is bounded below by C(log[k : Q]) ™% < 1
for some absolute positive constant C. The disjoint union | |, 5 B(z, Cloglk : Q])3/16)
lies in M.17/16 sO

Vol( <5/4)

1Ba] < Vol(B(z, C'log[k : Q])~3/16))

< Vol(M_5,4)(log[k Q).

23Recall that the minimal displacement of g € G is defined as the infimum of d(x, gz) over all z € X,
where X is the symmetric space of G.
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By Theorem 2.11 and Odlyzko’s lower bound [85] (or Minkowski’s weaker bound) we
get |By| < Vol(M)6000006k:Q o5k = Q])3) = o(Vol(M)). Hence |B] < Vol(M) +
o(Vol(M)) <« Vol(M). This proves that the number of vertices in A is at most linear
in the volume of M. O

To prove Corollary 2.17 one just has to repeat the steps of the proof of [53, Theorem
11.2].  Another consequence of Theorem 2.16 (actually Corollary 2.17) is the following
bound on the size of the torsion part of Hy(I'\H?):

COROLLARY 2.100. Let I" be a torsion free, arithmetic lattice in PGL(2,C). Then
log | Hy (P\H?, Z)sors| < Vol(T\H?).

In a forthcoming paper [11| Bader, Bergeron, Gelander and Sauer prove the analogous
bound for the torsion of homology groups of higher rank symmetric spaces. Theorem 2.16
will be used as an ingredient in their proof.

12.2. Growth of Betti numbers.

PrROOF OF COROLLARY 2.18. In this section we follow closely the exposition from
[17, p.11-17|. Before the proof of Corollary 2.18 let us set up some notations. Write
G = PGL(2,K), g = Lie(G). Let K be a maximal compact subgroup of G and let
X = G/K be the associated symmetric space. Lie algebra g can be written as g = ¢ & p
where £ = Lie(K) and p is the space orthogonal to € via the Killing form ?*. The restriction
of the Killing form to p is a positive definite and is preserved by the action of K so we will
think of p as a unitary representation of K. Let H¥(I'\X) denote the space of harmonic
differential k-forms on the locally symmetric space I'\X. By Hodge theory we know that
HH('\X,C) ~ H¥('\X). The dimension of the space of harmonic k-forms can be read
from the decomposition of L?(I'\G) into irreducible unitary representations. The Casimir

operator {2 € g ® g is given by
dimg

Q= Zei@)e;‘,
i=1

where (e;) is a basis of g and (e}) is the basis of g dual to (e;) via the Killing form.
Let m € II(G) be an irreducible unitary representation of G acting on a Hilbert space
H. The number Q(7) is the unique real number such that for every smooth vector v € H,

we have
dimg

Qu = Z De;Dezv = Q(7)v.
i=1
The main tool to prove Corollary 2.18 is a special case of the Matsushima’s formula [18].

THEOREM 2.101.

dimH*T\X) = 3 mr(r) dim Homg (/\ kp,w) . (12.1)

Tell(G)

Q(m)=0
Note that dimp = dim X so the terms in the above sum vanish for k£ > dim X.
Irreducible representations m which have non-trivial contribution in the above sum for some
ke {1,...,dim X} are called the cohomological representations. The set of equivalence
classes of cohomological representations of G is finite [103]. Once we admit this fact, the
proof of Corollary 2.18 is a simple consequence of the Limit Multiplicity property. Indeed,
let ¥ = {m,...,m,} be the set of equivalence classes of the cohomological representations

of G. By Theorem 2.8 or Theorem 2.11 we have

. mr, () d(m) if m is discrete series
im =
0 otherwise.

1—00 VOI(PZ‘\G)

24Note that Killing form is negative definite on € so pN¢ = 0.
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To shorten the formulas we shall extend the formal degree to all irreducible representations
by putting d(m) = 0 whenever 7 is not discrete series. Using Theorem 2.101 and the fact
that with our choice of measures we have Vol(I';\ X)) = Vol(I';\G) we deduce that

TN\X) .
L ~ 2 o (Ao

The last expression is known to be the k—th L?-Betti number of X [86]. g
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CHAPTER 3

Growth of mod—2 homology in higher rank locally symmetric
spaces

1. Introduction

Throughout this paper G will stand for a semisimple Lie group, X for the symmetric
space G/K where K is a maximal compact subgroup and I' (possibly with index) for a
torsion free lattice in G. In recent years the growth of homology groups of locally symmetric
spaces, i.e. orbifolds of form I'\ X has been an area of active research. Let us mention
two examples. In [2] Abert, Bergeron, Biringer, Gelander, Nikolov, Samet and Raimbault
show that for any uniformly discrete! sequence of pairwise non-conjugate lattices (I';) in a
higher rank Lie group G the limit

iy e Hi(FAX, C)

exists and is equal to the L?-Betti number b,(f) (X). It is proved that such sequences have

the limit multiplicity property (see [45]) and the convergence of normalized Betti numbers
is then deduced from Matsushima’s formula [78]. The second example is due to Calegari
and Emerton [30]. Let I' be a lattice in SL(2,C) and let p be a rational prime. Calegari
and Emerton define p-adic analytic towers of covers of I'\H? and study the growth
of the first mod—p homology group in such towers. Their results imply that in a p-adic
analytic tower (I'y\H?) the limit

i dimp, H*(Dp\ X, F))
oo Vol(Tx\X)

always exists. DeRham complex of differential forms on I';\ X doesn’t afford the mod-
p cohomology classes so the analytic methods are not accessible. Calegari and Emerton
solve this problem by using the completed homology and cohomology groups (see [29]).
In this paper we develop a new geometric approach to study the homology growth in
non-commensurable case. We show:

THEOREM 3.1. Let G be a real semisimple Lie group of real rank at least 2 and let X be
the associated symmetric space. Then for any sequence of pairwise non-conjugate lattices
(T'n) we have

lim diI?(l]F2 Hl(Fn\X, ]FQ) _
n—o0 Vol(T',,\ X)

Let us briefly review what is known on the growth of the mod—p homology groups in
higher rank groups. Margulis normal subgroup theorem implies that Hy(I',\ X, Z) is finite.
Our result controls the size of the 2—torsion part of H;(I',\X,Z) in terms of Vol(T'\ X).
Conjecturally [1]| a stronger statement should hold, it is expected that

: d(T'y) - [H T\ X, Z))|
00 VOlLo\X)  nhoe Vol(Tp\X) (1.1)
where d(I',) is the rank of I',, i.e. the minimal number of generators of I',,. If the limit
on the left-hand side exists it is called the rank gradient of (I';,). In [1] it was shown
that (1.1) holds for all sequences of pairwise different subgroups (I';,) C T" where I' is a

1The uniform discreteness assumption will be lifted in an upcoming work [7] by a subset of authors
of [2].
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right-angled lattice. A group H is called right angled if it admits a finite sequence of
generators (possibly with repetitions) s1, so,...,sq such that [s;, s;4] = 1. If the group
I' is a lattice in a higher rank group so every non-stationary sequence of subgroups is a
Farber sequence, this is why we do not need to put additional conditions on the sequence of
subgroups. The other instance where it is known to be true is for sequences of congruence
subgroups I'; of a fixed arithmetic lattice I'y. In that case we control the rank by logarithm
of index:

d(T'1) <7 log[I" : To).

The implicit constant depends on I' so even in the case of congruence lattices it wasn’t
previously known that the dimension of the first mod—p homology group grows sublinear
in volume if we consider sequences non-commensurable lattices. The argument in [1] is
based on the relation between the rank gradient and the combinatorial cost (see |50, 73|
and [5]). Combinatorial cost is a powerful tool when one wants to study the rank gradient
or similar limits associated to a sequence of subgroups of a given group. To the author’s
knowledge this method has not been yet adapted to handle non-commensurable sequences
of lattices.

1.1. Idea of the proof. To simplify the argument let us assume in this sketch that the
fundamental rank §(G) of G is at least 2. The fundamental rank is the difference between
the absolute rank of G and the maximal rank of a compact torus in G e.g. §(SL(2,C)) =
1,5(SL(2n,R)) = n — 1 and 6(SL(2n + 1,R)) = n. This assumption will ensure that the
closed geodesics will lie in closed flats of dimension at least 2. The advantage of working
with o is that every homology class is represented by a sum of unoriented cycles. We
will show that elements of Hp(I';\X,[F2) can be reprenented by combinations of closed
geodesics whose total length is o(Vol(I';\ X) (see Proposition 3.5). This, together with few
facts on triangulations of I';\ X constructed by Gelander [53] will yield sufficiently good
bounds on |Hy(I;\X,F2)| (see Proposition 3.2) to deduce Theorem 3.1. We define the
"reduced representatives" of a homology class « in Hi(I';\X,Fs) as the representatives
¢ € Z1(I''\X,F2) of minimal total length. Because we do not need to care about the
orientation it is easy to see that c is always a sum of uniformly separated closed geodesic
(see Lemma 3.8). If the fundamental rank is at least 2 then every closed geodesic on
'\ X is contained in a closed totally geodesic flat subspace of dimension > 2. We can
move the geodesic components of ¢ in their respective maximal flats without changing the
homotopy class of c. Together with uniform separation of geodesics this yields the uniform
separation of flats supporting c. In general case this argument is replaced by Lemma
3.9. Once we know that flats supporting ¢ are uniformly speparated, it is enough to use
the Benjamini-Schramm convergence of (I';\X) to X established in 2| to deduce that ¢
cannot "fill" T';\ X with positive density so ¢(c) = o(Vol(I';\X)). In the actual proof we
use R-lengths (see Equation 2.1) instead of ordinary lengths in order to avoid technical
difficulties. Nevertheless we hope this sketch gives the right idea.

1.2. Outline. In Section 2 we establish the connection between the lengths of repre-
sentatives of homology classes and the dimension of the first homology group. The main
tools are the simplicial complexes constructed by Gelander in [53] and the Benjamini-
Schramm convergence of higher rank locally symmetric spaces established in [2]. In Section
3 we prove that in a higher rank locally symmetric space M all the homology classes in
Hy(M,TFy) are represented by a cycle whose length inside the thick part is sublinear in the
volume of M. We also give the proof of the main theorem (Theorem 3.1).

2. Lengths of homology classes and the dimension

Throughout this section we write M for a Riemannian manifold of the form M = T'\ X
where X is a higher rank symmetric space. The reasoning is carried out for any prime
p, special properties of p = 2 play an important part only in the next section. We write
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Z1(M,7Z) for the module of 1-cycles on M. Any cycle ¢ € Z1(M,Z) can be represented as
c= Z a;%i,
el
where [ is finite set of indices, a; € Z and ~; are oriented smooth differentiable curves
vi: St = M. Fix R > 0, the R-length of a cycle c is defined as

0f(e) =) lailt (), (2.1)
i€l
where ¢f(v;) stands for the length of v; N M<r. We put £(c) := £°(c). The universal
coefficients theorem says that any class in H; (M, F,) has a representative in Z1 (M, Z), we
define the total length (resp. total R-length) of a € Hy(M,F,) by

/)= inf ¢ 2.2

(a) celer(lMZ) (c) (2.2)
[d]=a

)= inf 8 2.3

(a) . ﬁr(lM,m (c) (2.3)

Finally, the normalized R-length of M is defined as

SUPoe Hy (M Fp) F(a)
Vol (M)

The following proposition is the main goal of this section:

R(M) =

PROPOSITION 3.2. For every § > 0 there exist &' > 0 such that for every manifold M
with (F(M) < &' and Vol(M) big enough we have

dimp, Hy (M, F,) < §Vol(M).

We shall prove it after introducing some tools. In [53] Gelander constructed for every
manifold X = I'\X a simplicial complex N, with 71 (N) ~ 71(M), with the number of
vertices bounded by AVol(M) and degrees bounded uniformly by B for certain constants
A = A(X),B = B(X) dependent only on X. We shall extract from his construction the
following lemma:

LEMMA 3.3. Let M,X be as before and let N be a simplicial complex constructed
in [53] and let R > 0 be bigger than the Margulis constant of X. There exists a constant
C1 = Ci(X) such that any homology class o € Hy(M,F,) is represented by an integral
combination Y, a;e;, where ey are edges of N and >,y |ai| < C10%(a) + O(Vol(M<Rg)).

PROOF. Let us recall few details of the Gelander’s construction. Write d : X x X — X
for the Riemannian metric on X and let ¢’ = £’y be the Margulis constant of X [13, Thm
9.5]. Let e = ¢’/10, we decompose the manifold M into the thick part M. and the thin part
Mc.. In [53], Gelander shows that there exists a closed submanifold N of codimension
> 3 of M. such that M \ N retracts onto M>.. The inclusion induces a surjective
map *: m(M>.) — m(M). There is a simplicial complex N homotopy equivalent to
M \ N. Inside it, there is a subcomplex Nipi, which is homotopy equivalent to M.\ N.
Moreover we can choose Nihin which has only O(Vol(M..)) simplices [52]. The complex
N is constructed as the nerve of a "good cover" U of M>.. By general theory (25, 13.4],
N is homotopy equivalent to M>.. To construct U we choose a radius r take maximal
r/2-separated family ¥ of points in M>. and put Uy = {Ba_(z,r) | * € £}. Next, in
order to get a good cover we have to modify the covering close to the boundary of M->..
This delicate procedure is the bulk of [53]. Subcomplex Niphiy is the nerve of the covering
Uhin = {U € U | UNOM>. # 0}. We are going to use the fact that away from My, the
complex N looks like the nerve of Uy. For R > ¢ let us write N for the part of the nerve
coming from Ms. N Mcp. The complex N.p has at most O(Vol(M<pg) simplices. Now we
are ready to prove Lemma 3.3:

Step 1. Let v be a simple closed geodesic on M. Write v = 1 U 72 Ll v3 where
Y1 =7NMce,v2 =vNM>.NMcg and 3 = v N M>g. By perturbing v by an arbitrarily
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small amount we can assume it is disjoint from N. Write r : M \ N — M>. for the
retract defined by Gelander. Then *(r(7)) represents the same homotopy class as 7.
We have r(y) = r(v1) U~v2 U~s. Now, as 3 passes through the interior of M>pr and
r(y1) U C Ms, N Mcp we can find a finite families of balls F;,7 = 2,3 from the good
cover U such that v; C Upyer U, |F2| = O(Vol(M<g)) and [F3| < Col(y3)?. Thus, the
homology class of « can be represented by a sum of certain number of edges in Ng, and
at most Z14(y3) < Z14%(v) edges from N>..

Step 2. Let ¢ = ), a;v; be a representative of a such that ¢(c) < 2{(«). By the

first step we can represent c as ¢ = ¢1 + ¢ + ¢3 where ¢1 + ¢co = ZeEN<R ace and c3 =
ZeeNZR bee with ZeeNZR lbe] < C1£7 (). Since we are interested in homology mod—p
we can assume that in our representation all coefficients have absolute values less than
p. Hence, > cn__lael = O(Vol(M<pg)). We put the inequalities together to get the

lemma. O

LEMMA 3.4. For every 0 < § < % and n big enough we have

[on]

Z (?) (»— 1)1‘ < p6(2710g6)n
i=1
PRrROOF. By Stirling approximation
[0n] n i 5 n
> (M- < w-vro( ) (2.4
< (p— 1)5”6n7(l;:;§: < (p— %)5” (;Z) (2.5)
— pP((logp) ™ —log s+ )n < 5(2-logd)n (2.6)

PROOF OF PROPOSITION 3.2. Let A/ be the simplicial complex constructed by Ge-
lander, with the property that m1(N) ~ m(M). Recall that there are constants A, B
dependent only on the symmetric space X such that A has at most AVol(M) vertices,
all with degrees bounded by B. Let C7 be as in Lemma 3.3, let § > % and let & > 0
be such that if we put 6” = 2C16'/AB then §"(2 — logd”) < 6/2ABC;. Assume that
(R(M) < §. By Lemma 3.3 every class in Hy(M,F,) can be represented as a sum at
most C10"Vol(M) + O(Vol(M.g)) 1-cells in N. By [2, Theorem 1.5] we have Vol(M_.g) =
o(Vol(M)). Hence, for big enough Vol(M) every class in Hy(M,F,) is represented by a
sum of at most 2C16'Vol(M) 1-cells in . Total number of 1-cells in A/ is bounded by
ABVol(M). By applying lemma Lemma 3.4 with n = ABVol(M) and ¢” we deduce that
the number of such representatives is bounded by p®V°UM) We infer that for Vol(M) big
enough we have dimg, Hy(M,F,) < §Vol(M). O

3. Reduced representatives

In the sequel M is a locally symmetric space of higher rank and p = 2. The aim of this
section is to show that the assumption of Proposition 3.2 are automatically satisfied once
Vol(M) and R are big enough:

PROPOSITION 3.5.
(B(M) < CoRV2,
We postpone the proof until the end of this section. Once we have Proposition 3.5 our

main result is a simple consequence:

2Set F3 can be taken as the set of all balls in U/ intersecting v3. By Gelander’s contruction their
cenetrs are uniformly spearated, hence the inequality |F3| < Cof(y3).
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PROOF OF THEOREM 3.1. Let § > 0. By Proposition 3.2 there exists ¢’ such that
dimp, Hq(M,F3) < §Vol(M) for Vol(M) big enough and M such that £%(M) < §"Vol(M).
Pick R > (6')~2C2. By Proposition 3.5 we have ¢(M) < §' so

di H{(M,F
lim sup i, H1 (M, F5) <.
Vol(M)—00 Vol(M)
To get the Theorem we let § go to 0. g

Fix R > 1. Recall that a reduced representative of a homology class o € Hy(M,F),) is
a cycle ¢ € Z1(M,Z) such that ¢(c) = ¢(«). Standard compactness argument yields

LEMMA 3.6. Every class « € Hi(M,Fy) has a reduced representative. It is an integral
combination of closed geodesics with coefficients bounded in absolute value by §. In general
1t 15 not unique.

REMARK 3.7. We could define the R-reduced representatives in the same way but the
would not have such a simple description. As it will turn out, any reduced representative
c satisfies £f(c) = o(Vol(M)) which is already enough to show that £%(M) tends to 0 as
Vol(M) — oo.

From now on it will be important that we work with p = 2. Being a reduced represen-
tative of a mod—2 homology class forces strong geometric constraints on c¢. The following
Lemma guarantees that whenever a cycle ¢ has two geodesic components that are not
k1—separated in the thick part Msp then there is a mod—2 homologous cycle ¢’ with
0(c') < U(c) — k2 for some positive constant ko. We will write [a, b] for the shortest geodesic
connecting points a and b.

LEMMA 3.8. There exist k1, ko > 0 with following property. Then for any two closed,
non-contractible curves v1,v2 on M such that dMZR(’yl,'yg) < K1 there exists a cycle ¢ €
Z1(M,F2) such that £(c) < l(v2) + U(y2) — ke and [¢] = [y1 + 2] in H1(M,Fy).

PROOF. Let z1,z2 be points on v N M> g, v2 N M> g respectively, such that d(y1,72) =
d(x1,x2). Let y be the midpoint of the shortest geodesic connecting x1,x2. Fix some
radius R’ < 1 and consider the intersection of ~;,vs with By (y, R'). Note that R' < R
so the ball is isometric to an R/-ball in X. Since neither of 71,72 is contractible, they
have non-empty intersection with Sys(y, R’). Let p;, ¢; be intersection points of ; with the
sphere Sys(y, R’) such that x; lies on the segment of 7; bounded by p; and ¢;, for i = 1, 2.

o

FIGURE 1. Before (left) and after (right) performing a surgery on close curves.

We replace segments v1 N B(y, R') and v, N B(y, R') by geodesics [p1, p2], [¢1,¢2] or
[p1,q2], [p2, q1] as in Figure 1. We always choose the pair with minimal total length. For
R’ small enough (how small depending only on X) the metric inside B(y, R’) is close to
the flat euclidean metric so for 1 close to 0 it is evident that one of those operations will
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reduce the total length by at least ko for some positive constant k. Note that this surgery
does not change the mod—2 homology class. O

The second lemma says that in higher rank we have a lot of freedom to perturb closed
geodesics into curves with a minimal increase in length. From this point onward we assume
for technical reasons that R > 2(1+ k1 + K2), this is not a problem since later we are going
to let R tend to infinity anyway.

LEMMA 3.9. Let v be a closed geodesic on M. Let k1, ks be as in Lemma 3.8. Put
N(y) ={x € M>g | 37 curve homotopic to v such that d(x,~") < k1/2 and £(y") < (y)+kK2/2}.
Then Vol(N(~)) > CgER(y)R% for some absolute positive constant C.

PROOF. Write ¢: X — M for the covering map and B(X, €) for the open e-neighorhood
of a set X. Let z1,...,zxy be a maximal R-separated subset of y N Msp. Clearly we
have N > ¢f(y)/2R. Choose a lift 7 of v to X and let Z; be lifts of z;’s lying on 7.
There exits a maximal flat F' of X containing 4 ®Since X is a higher rank symmetric
space F is isometric to R? with d = rankX > 2 [84, p.152]. For every i = 1,..., N let
F; = FN B(zi, R — k1/2) and G; = B(F;,k1/2). Note that covering map ¢: X — M is
injective on G; for every i and the images in M are pairwise disjoint. Let z},z! be the
pair of points on 7 at distance R — k1/2 — k2 from Z;. Consider the open ellipsoid E; in
F; defined as E; = {y € F; | d(y,z}) + d(y, =) < 2R + k2/2} (see Figure 2).

FIGURE 2. Image of E; C F; under the covering map.

Note that for any point y € ¢(E;) there exists a closed curve 4/ homotopic to « such
that 4/ passes through y and ¢(7') < £(y) 4+ k2/2. Put H; = B(E;, k1/2). We have H; C G;
so the images of H; are pairwise disjoint. Formula for the volume of an ellipsoid yields
Vol(H;) > C’4R% > C4R% for some positive constant Cy depending only on X and k.

Hence
N

Vol(| | Hy) > C5¢%(y)Rs.
i=1
By construction ¢(H;) C N(v) for every = 1,... N which ends the proof. O

As a corollary of Lemmas 3.8 and 3.9 we get

3Flat F does not necessarily descend to a closed flat on M.
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COROLLARY 3.10. Let o« € H1(M,F9) and let ¢ be a reduced representative of . Write
c = Y i1 for some set of closed geodesics indeved by I. Then the sets N(v;),i € I
defined as in Lemma 3.9 are pairwise disjoint.

PrOOF. We argue by contradiction. Let 71,2 be two geodesic components of ¢ such
that N(v1) N N(y2) # 0. Let y € N(71) N N(7y2). By definition y € M- and there exist
closed curves 71,74 homotopic to 1,72 respectively such that £(v)) < £(v;) + K2/2 and
d(vl,y) < k1/2 for i = 1,2. Let ¢’ be the cycle obtained from ¢ by replacing ~; by ~; for
i = 1,2. Tt represents the same homology class. We have £(c’) < {(c) + k2. Curves v{,75
satisfy dar. ,(7],75) < K1 so we may perform the surgery from Lemma 3.8 to construct
homologous cycle ¢ with £(¢") < ¢(¢') — ko < £(c). The last inequality contradicts the
assumption that ¢ was a reduced representative. O

PROOF OF PROPOSITION 3.5. Let o« € Hy(M,Fy) and let ¢ be a reduced represen-
tative of «. Write Write ¢ = Zie ;7 for some set of closed geodesics indexed by I. By
Corollary 3.10 the sets N (v;) are pairwise disjoint and by Lemma 3.9 we have Vol(N (v;)) >
CgZR('y,-)R% SO

Vol (M
(o) = 3 R(y) < YHALR)
i€l C3Rz
We deduce that ¢f(M) < C’glR*%.
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CHAPTER 4

Kesten’s theorem for uniformly recurrent subgroups

1. Introduction

1.1. Kesten theorems. The spectral radius of an infinite d-regular, countable, undi-
rected graph G is defined as the £2-norm of the Markov averaging operator M : £?(G) —
/2(G). Fix a vertex o of G. If we write Ag(n) for the set of walks starting at o and
returning to o after time n the spectral radius can be computed as the limit

p(G) = lim <|AG<2">’)”2”.

n—00 d?n

If G is an infinite countable group generated by a symmetric set S and H is a sugbroup
of G we write Cay(G,S) for its Cayley graph and Sch(H\G, S) for the Schreier graph
whose vertices are left H cosets. For a subgroup H of G write p(G) = p(Cay(G, S)) and
p(H\G) = p(H\G, S) for the spectral radii of the random walk on the Cayley graph and
the Schreier graph respectively. The subject of this paper has its origins in the criterion
for amenability given by Kesten |65, 66|

THEOREM 1.1 (Kesten). Let G be a group generated by a finite symmetric set S. Then
G is amenable if and only if p(G) = 1.

The following result, also due to Kesten extends Theorem 1.1 and characterizes the
amenability of a normal subgroup in terms of the spectral radius p(H\G).

THEOREM 1.2 (Kesten). Let G be a group generated by a finite symmetric set S and
let H be a normal subgroup of G. Then H is amenable if and only if p(G) = p(H\G).

If H is amenable then p(G) = p(H\G) unconditionally but the converse does not
hold in general. We shall say that a subgroup H is Ramanujan (with respect to S) if
p(G) = p(H\G). In [4] Abert, Glasner and Virag proved a probabilistic version of Kesten’s
theorem:

THEOREM 1.3 (Aber,Glasner,Virag). Let G be a group generated by a finite symmetric
set S and let H be an invariant random subgroup of G. Then H is amenable almost surely
if and only if H is Ramanujan almost surely.

In other words an IRS is Ramanujan if and only if it is amenable. We refer to the
article [4] for the definition and properties of IRS’ses. In the present paper we develop a
quantitative version of Kesten’s theorem that works for any subgroup H of G. We prove
an inequality (Theorem 2.1) relying p(G, S) and p(H\G, S) in terms of certain averages of
the logarithms of spectral radii p(HY, H9 N S) for g € G:

lim SUPp 00 f ’Hg n S|(_ log p(Hg’ SN Hg))d/Qn(g)
1S[?p(G, S)? ’

(1.1)
where o, is averaging measure over traces of recurrent random walks of length 2n. Section
2 is devoted to the proof of (1.1). We follow closely the argument from [4]. In fact our
main contribution is just an application of the inequality between the arithmetic and the
geometric means in the right place, similarly to how it was used in [6]. In Sections 3,4 we
derive two consequences of the inequality 1.1. First one extends Kesten theorem to the
uniformly recurrent subgroups and the second is a relatively short proof that |76, Theorem
1.2] holds on average.
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1.2. Uniformly recurrent subgroups. Uniforlmy recurrent subgroup is the top-
logical dynamical analogue of an ergodic IRS. Write Subg for the set of subgroups of a
group G endowed with the Chabauty topology [33]. A closed subset X of Subg invariant
under conjugation is called a uniformly recurrent subgroup (URS for short) if it is
minimal as a dynamical G-system. The notion of URS was defined for the first time by
Glasner and Weiss in [43] and was further studied in recent papers [42,80]. It was used
by Kennedy [64] in a new characterization of C*-simplicity for countable groups.

THEOREM 1.4 (Kennedy). A countable group G is C*-simple if and only if it has no
amenable URS.

We prove that the natural extension of Kesten’s theorem holds for URS’ses.

THEOREM 1.5. [Theorem 5.1] Let G a countable group generated by a finite set S, let
X be an URS of G and let H € X . Then H is amenable (i.e. consists of amenable
subgroups) if and only if p(G) = p(H\G).

It was already shown in [43] that an URS is amenable if and only if it contains an
amenable subgroup, similarly an URS is Ramanujan if and only if it contains a Ramanujan
subgroup.

1.3. Cycle density in Ramanujan graphs. Let (G, x) be a d-regular Ramanujan
graph and let £ > 1 be a fixed integer. For any n > 0 write ¢, for the probability that a
random walk starting at x lies at time n on a cycle of length at most k. In [76| Lyons and
Peres proved that lim,_,~ ¢, = 0. Their result was motivated by |6, Problem 11]. Using
inequality 1.1 we show (Theorem 4.1) that

N
Jm 52 4=
]:

In other words the random walks on a Ramanujan graph do not spend much time in the
short cycles. This gives a relatively simple proof that the conclusion of |76, Theorem 1.2]
holds in average.

Acknowledgment. Part of this work was included in the author’s master thesis super-
vised by Emmanuel Breuillard whom I thank for suggesting the topic and for many helpful
discussions. I would also like to thank Miklos Abert for his interest and for bringing my
attention to the work of Russel Lyons and Yuval Peres.

2. Inequality on spectral radii

Let G be a group generated by a finite symmetric set S. If H is a subgroup of G
write Sch(H\G, S) for the Schreier graph encoding the action of generators from S on the
coset space H\G. Write A(n, S), Ag(S,n) for the sets of walks on Cay(G, S) respectively
Sch(H\G, S) that return to the identity after n steps. We identify the walks of length n
with elements of S™. We will consider the right action of G on Sch(H\G, S). For a walk
w = (ay,...,a,) we write w(i) = ajas .. .a; for the position after i steps. Write p(H\G, S)
for the spectral radius of the graph Sch(H\G, S). If H is a subgroup of G and F C H we
adopt the convention that p(H, F') = p((H N F'), F') in the case when F' does not generate
H. We will use abbreviation H9 = g~ 'Hg.

Define the measure

1 1 o
Hon, = [A(m. 5)| Z <n Zéw(i)> :
weA(n,S) =1

Intuitively u,(g) tells us how large proportion of time is spent in g by a random recurrent
walk of length n. We have
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THEOREM 2.1. Let I(H,S) = limsup,_, [ |H? N S|(—1logp(HY,S N HY))dusn(g).
Then

I(H,S)
1SPp(G, 8)*

PROOF. We follow closely the strategy from [4]. For a walk w € S™ we will write
T(w)={te{l,...,n}|Hw(t — 1) = Hw(t)}. It is the set of times where a walks doesn’t
change the H-coset. For each walk we define its class C(w) as

C(w) = {w € S"T(w') = T(w) and w'(t — 1)~ w/(t) = w(t — 1) w(t) for t & T(w)}.

Two walks are in the same class if they have the same trajectories on H\G and whenever
they change H-coset they move by the same element of S. For every walk w € A(n,S)
have C(w) € Ag(n,S) so

A8z Y

log p(H\G, S) — log p(G, S) > (2.1)

J2 TCw) A A )
By lemmas 8 and 9 from [4] we have
|C(w) )
(H*® §n HY
C(w )ﬂAnS tel;[ 4 "~

Using the inequality between arithmetic and geometric means we get

|Ag(n, S)| 1 ot ot
> .
[A(n, S)| ~[A(n, ) > I e soE)™ (2.2)
weA(n,S) teT (w)

m
> I 1II etE“®,5nHE"®)"! : (2.3)

weA(n,S) teT (w)
Take logarithms of both sides

g A (1.)| = log |A(n. 5) > o 3030 ~logp(HU L HYONS) (24
wEA(n S) teT (w)

w(t) prw(t)
nS|Z Z t)log p(H\Y, H*'" N S).
t=1 weA(n,S)

(2.5)

(2.6)
We can estimate the rightmost sum by counting for each ¢t € {2,...,n} only the walks of
formw = (s1,...,82,h, h ™1, 8441,...,8,) with h € H*(=2)N G and (S1y-vySt—2,St41y---,5n) €
A(n —2,8). Thus, for t € {2,...,n} we have
= ) 1@ logpHYD H* DN S) >~ Y [H"7) 1 S|log p(HY2), HYI72) 0 )

weA(n,S) weA(n—2,5)
(2.7)

We plug it into our previous estimate to get

n—2
-1
1 1 > w(t) 1 w(t) w(t)
og |Am(n, S)| —log|A(n, S)| > in.5) weA(EnQ 5 ;1 |[H*" 0 S|log p(H™, H'Y N S)

(2.8)
= _Iiiij:,(g)l_ = / [0 018 log p(H™, H®) 1 8)dpin—2(9)
(2.9)

(2.10)
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We divide both sides by n to get
log|Apn(n, )| _log|A(n, S)| _ —(n —2)|A(n
n n - n|A(n, )|

2 0s tog o110, 5000

(2.11)
Replace n by 2n and take limes superior of both sides as n — oo

: —[A(2n —
— <
log p(H\G, S)—log p(G, S) < hilljolép A(2n, S

2L 008 tog o110, 10018 o)
(2.12)

Let P : 1%(G) — I2(G) be the transition operator of the random walk on Cay(G, S). Then

[A(2n, S)| =[S (P 1c, 1e) = [SI"[[PMLell3 < [SPMPIPIP"21ell3 = SI*0(G, S)*|A(2n~2, )|

Hence

limsup,, o, [ [H"" N S| (—log p(H“®, H*") N1 5))dpan(g)

_ >
log p(H\G, S)—log p(G, S) > 1S12p(G, S)2

(2.13)
O

3. Application to uniformly recurrent subgroups

THEOREM 3.1. Let G be a countable group generated by a finite symmetric set S and
let X C Subg be a uniformly recurrent subgroup. The following conditions are equivalent
) X contains an amenable subgroup;
2) X is amenable;
3) p(H\G,S) = p(G,S) for all H in X;
4) there exists H € X such that p(H\G S) =p(G,S).

(1
(
(
(

For the proof define the probability measures v, as

1 2n
s Z K2k

k=n+1
LEMMA 3.2. For any s € S and any subset A of G we have

nv(A) 1
volds) 2 CO D@ 52w

PROOF. First, let us show that for each s € S we have pg(As) > W“Q(k’ﬂ) (A).
We have

As) = A).

We estimate the leftmost sum from below by counting only Walks of form (a1,...,ai_1,5,8 %, asia,...,a2%42)
with (al, ey Qp—1, A2, - - ,a2k+2) € A(2]{2, S) For2 <t<2k+1

o Guw(As) = D bupmn(A).
weA(2k+2,5) weA(2k,S)

Hence
2k+1

1 _ (2K)|A(2K,9)]
Haks2(A8) 2 (op oAk 1 2, 5) GA% 5 tz; we%g 5 P04 = o)Ak + 2, 5 )

As
|A(2k, S)| 1

[A(2k +2,9) ~ [5]?p(G, 9)?

we get
k:u2(k:+1)(A)
(k+ 1)|5?[p(C. 5)%
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it follows that
ton+2(As) nvp(A)
(A >
S CE S R (A
nvp(A) 1
(n+1)[52%]p(G, S)?

vn(As) >

3

0

PROOF OF THEOREM 3.1. Equivalences between (1) <> (2) and (3) <> (4) follow form
[43, Proposition 2.2] and the fact that the property of being amenable or Ramanujan is
admissible in the sense of [43, Definition 2.1].

Implication (2) = (3) is an application of Kesten’s theorem and (3) = (4) is obvious.
The only nontrivial implication is (4) = (1). Let Hp € X be a subgroup such that
p(H\G,S) = p(G,S). By Theorem 2.1 we have limsup,,_,, [ |Hj N S|(—logp(HY, HJ N
S)dpan(g) = 0. Then we also have

lim / S (1 S|(— log p(HY, H (1 S)dun(g) = 0.

Let dp, be the dirac mass in Hy and let w be a weak-* limit of measures dp, *vp, as n — o0o.
Then

/ \H (1 S|(— log p(H, H 1 S))dw(H) = 0
so the set of H such that p(H,H NS) > 0 has measure 0. By Kesten’s criterion this is
precisely the set of H for which (H N S) is non-amenable. As S is finite the latter set is
open . From Lemma 3.2 we deduce that w is quasi-invariant (i.e. w(E) = 0 if and only if
w(gFE) =0 for all g € G). X is a minimal dynamical G-system so the support of w has to
be the whole X. In particular the only open set of measure 0 is the empty set. If follows

that (H N S) is amenable for all H € X. By taking S’ = ({1} U{S})™ and letting m go
to infinity we show in this way that every H € X is amenable. O

COROLLARY 3.3. Let G be countable C*-simple group with a finite symmetric generat-
ing set S. If H is a Ramanugjan subgroup of G (i.e. p(G) = p(H\G)) then there exists a
sequence (g;)ieN such that H9 converges to the identity subgroup in the Chabauty topology.

PROOF. The closure X = {HY9| g € G} consists of Ramanujan subgroups. By the
Zorn lemma there exists a minimal G-invariant closed subset Y C X. By Theorem 3.1 and
Kennedy'’s criterion ( Theorem 1.4) Y = {1} which proves the assertion. O

4. Cycle density along random walks

Let G be a d-regular graph. For any vertex x and k > 1 let Cg(x, k) = 1 if there exists
a non-backtracking cycle of length & starting at x and Cg(x, k) = 0 otherwise. Similarly
let Dg(z, k) = 1 if there exist at least two independent! non-backtracking cycles starting
at x and Cg(z, k) = 0 otherwise. In this section we prove:

THEOREM 4.1. Let G be d-regular rooted Ramanujan graph. Let (X;) be the standard
random walk on G. Then for any k > 1

Write Ty for the d-regular rooted tree. If G = (V, E) we shall write G* for the graph
(V, E¥) where the (multi)set of edges is given by

E* = {(eq, ex)|(e0, €1, ..., ex) is a non-backtracking walk in G}.
G* is always a d(d — 1)*~L-regular graph and Cg(z, k) = Cqr(z,1). We have
LEMMA 4.2. G is a Ramanujan graph if and only G* is.

Here independent means: non equal and one is not the inverse of another.
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PROOF. Since TS = Ty(g—1)»—1 it enough to observe that p(GF¥) is a strictly decreasing
function of p(G). O

We will use the notion of a stationary random graph. We think of the d-regular
random graphs as the Borel probability measures on the space of isomorphism classes
of rooted d-regular graphs. For more comprehensive introduction to random graphs we
refer to [6]. A random, rooted d-regular graph (é, Z) is called stationary if its probability
distribution is invariant under replacing the root & by a random neighbor. A good example
of stationary random graphs are the graphs of form Sch(H\G, S) where H is a random
subgroup of a group G satisfying E[ f(H) | = ﬁ S ses E[ f(H®)] for every continuous
function f on Subg. Such random subgroups groups are called stationary random
subgroups.

PrROOF OF THEOREM 4.1. First note that if we can prove this theorem for some &k > 1
then it is automatically true for 1 because C(z,1) < C(z, k). We will use that to assume
that & > 2 in the third step. Since our methods wouldn’t yield any quantitative estimates
we will use an argument by contradiction to shorten the proof. The idea will be to take
a graph for which the conclusion does not hold and construct a random limit object with
contradictory properties.

Step 1. We replace G by a stationary random graph. Let

1 n
0 < a=limsup — E| Ca(X;, k) |.
n—>oop n 7,21 [ G( ‘ )]
There exists an increasing sequence (n;);en such that o = lim;_, n% Z;“:l E[Cg(X s k) ]
For each i > 0 (G, X;) is a random graph isomorphic to G whose root is given by the

position of the random walk at time i. Let (G,Z) be any weak limit of the sequence of
random graphs

1 &
n. Z(GaX])
% j=1

Then (G, #) is a stationary random graph and E[Cx(Z,k)] = a > 0. Moreover, since G
was Ramanujan G is Ramanujan almost surely.

Step 2. We show that there exists @ > 0 such that E[Dg.(Z, k)] > 0. Since
D¢a(Z,k) = Dgna(Z,1) we may assume in this step that & = 1. First, we claim that for
A big enough the ball Bx(Z, A) contains at least two vertices y1,y2 such that Cx(y1,1) =
Caly2,1) = 1. Let (X;) denote the random walk on G. By stationarity we have (G, #) =
(G, X;) for all i € N. Since G is Ramanujan almost surely, the random walk "flattens"
the probability distribution uniformly fast. Hence, there exists an A > 0 such that: for

8]

almost all (é,i), for every vertex v € G we have P[f( A= v] < g . Then, the equality
E[CG(XA, k)] = E[Cx(Z,k) | = a implies that with positive probability (G, %) is such
that there are at least 2 possible values for X4 where C(X4,1) = 1. That proves the
claim. If the ball Bs(Z, A) contains two distinct vertices with loops attached (loop =
1-cycle) then we can construct two independent non-backtracking cycles of length 24 + 1
starting at 2. Thus E[DG2A+1(J~:7 1)] > 0.

Step 3. Let k > 2. Put 2d’ = d(d — 1)*"!. We are going to replace the random
rooted graph (G%,#) by a Schreier graph Sch(H\Fy, S) where Fy is the free group on d’
generators, S the standard symmetric free generating set and H a random subgroup of
Fy. By Fatou lemma the graph (éa,i’) satisfies with positive probability the following
property:

1 ~
lim sup — Z Dga(Xi, k) > 0. (4.1)

In particular there exist (deterministic) d’-regular Ramanujan graph (Gp,x1) with this
property. Note that the degree of Gy is even so by [62] it is isomorphic to a Schreier
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graph. Hence, there exists Hy C Fy such that (G1,z1) ~ Sch(Ho\F'g,S). We construct
a stationary random subgroup H as a weak-* limit of %Z?:l ﬁ Y scgi H? along a sub-
sequence for which the limit superior (4.1) converges to a positive number. Then we have
E| Dsen(i\p,,5)(H, k) | > 0.

Step 4. We reinterpret the condition E[Dsch(H\Fd“S) (H, k:)] > 0 in terms of the
expected spectral radius. Let Hy be any deterministic subgroup of Fy. Any two in-
dependent non-backtracking k-cycles c1,co in Sch(Fy/Hy,S) starting at Hy give rise to
two elements a,b € S¥ N H generating a free subgroup. Hence there is § = B(k,d') <
1 such that Dsenr,,/m,,s)(H1,k) = 1 implies p(Hy, Hi N Sk) < B. We deduce that
E[—log p(Hy,H1 N S*) ] > 0.

Step 5. We use Theorem 2.1 to get a contradiction. The graph Sch(Fiy/H,S) is
Ramanujan almost surely so by Theorem 2.1

lim —E[/ |H9 N S| log p(HY, HI N Sk>)d,u2n(g)} =0. (4.2)
n—o0 Fdl
The density function of us, for the free group and the standard symmetric generating is
a spherical function on Fy (its value depends only on the distance from the root). Hence,
we can use the property that H is stationary to get

E[/ |H9 1 S*|log p(HY, HY N Sk>)d,u2n(g)] = —E[|H n S*|(—log p(Hy, Hy N S%)) ],
Fy
which together with (4.2) contradicts the conclusion of the fourth step. O

REMARK 4.3. Steps 2-5 can be used to prove [6, Theorem 4, Theorem 5]. Indeed, any
sequence of finite Ramanujan graph gives rise to an unimodular random graph which is
Ramanujan almost surely. Unimodularity implies that such a graph is stationary. Steps
2-5 show that any Ramanujan stationary random graph has to be the reqular tree.
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CHAPTER 5

Character bounds in finite groups of Lie type

1. Introduction

1.1. Notation. Let G be a reductive group defined over a finite field F,. We will
write F' for the Frobenius automorphism and G** for the group of F, points. We will write
Ind % and Res § for the usual induction, restriction functors. When L is a rational Levi
subgroup of G we write Rf,* Rg for the Deligne-Lusztig induction, restriction functors.

1.2. Motivation. Let x be an irreducible character of G and let v in G¥" be a non-
central element. We look for bounds of type |x(7)| < C,x(1)}~? with § > 0 dependent
only on the (dimension of) the centralizer G.. At this point it is a bit hard to tell how
0 should depend on G,. When 7 is regular i.e. dimG, = rankG where we can take
0 = 1 so we have the best possible exponent. In general the lower the dimension of the
centralizer the bigger § we can take . The motivation for studying character bounds is
twofold: First by the work of Shalev, Liebeck (see [74] for a survey article) and others we
know that such bounds can be used to study questions on random walks on finite groups
of Lie type as well as problems concerning the diameter and word generation. Secondly a
simple argument using Frobenius reciprocity and Holder inequality show a bound on fixed
point ratios |(G/H)"| < |G/H|*~% where ¢’ depends only on § and the type of G. These
estimates on fixed point ratios for the finite groups of Lie type can often be obtained by
other means 28| and are relatively well understood. We hope that by giving a proof via
character estimates we will be able to approach the problem of bounding the fixed point
ratios on compact groups of type SL(n,Zy).

1.3. Known results. In an unpublished note [71| Larsen gives an elegant proof of

the following estimate:

x(n)] < WP

for any regular semisimple element v € G¥ and irreducible character x. The main property
used in the proof is that a centralized of such « is abelian and that the typical element of
Gf has the same centralizer as . His method would probably also yield an estimate by
a constant for non-semisimple regular elements. The functorial approach we are going to
use to bound the values at regular elements improves Larsens’ results by giving the best
possible bounds.

We have seen that for the regular elements the problem is more or less settled. On
the other end of the spectrum are the elements with big centralizers. Here the Larsens’
method cannot be used - the main problem being the fact that the centralizers are no
longer abelian. For the the unipotent, non-regular elements (which can be seen as the
most pathological examples) Gliick [55] has shown that |x(7)| < |x(1)|/¢"/?. While this
implies the bound of desired type we see no way in which his proof would generalize to
the compact p-adic context. Finally we note that in an upcoming work [19], announced
in [74] R. Bezrukavnikov, M. W. Liebeck, A. Shalev, and P. H. Tiep proved independently
a very general bound for non-regular elements. Let L be a Levi subgroup of G. We write

dim u”
a(L) = max{ — UG |ue Liu#1 unipotent} .

dim u
THEOREM 5.1 ( [19]). Let v € G(F,) and let L be rational Levi subgroup of some
rational parabolic subgroup of G such that GQ/ C L. Then, for every irreducible character
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x of G(Fy) we have

()] < x(1)**,
where the implicit constant depends only on the rank of G.

The proof also uses the invariance of character values under certain parabolic restric-
tion.

1.4. Our results. In Lemma 5.2 we establish a link between orbital integrals in p-
adic groups and the "naive" parabolic restriction functor on compact p-adic groups. In
the context of finite groups we Lie type we have the following result: Let v € G and let
~v = su be the Jordan decomposition of . In Proposition 5.3 we show that for any rational
Levi subgroup L containing the connected component of the centralizer G? we have

X(v) = *REx(v),

for every character xy. As an application we deduce a strengthening of Larsen’s bound
from [71]: for any regular semisimple element v € G and any irreducible character y we
have

IXx(MI < .

1.5. Baby cases for finite groups. Here we show how one can get the optimal
bound for regular the semisimple elements which have quasi-spit centralizer. A maximal
rational torus T of G is called quasi-split if it is contained in a rational Borel subgroup.
We will show that for such « we have

IX()] < W],
where W is the absolute Weyl group of G.

PRrROOF. Let T be the centralizer of v and let B = TU be a Levi decomposition of a
Borel subgroup B containing T'. By the formula for parabolic restriction [38, p. 49|

REX) = e 2 ).
ueUr
Since « is regular the map U — U given by u — ulu~'17! is bijective. In particular for
any u € UF there exists v € U such that v = vlv™'~! but then ul = viv™'. We deduce
that *R$x(7) = x(7). Finding a suitable restriction functor which does not change the
value of characters on ~ will be the key ingredient in all our estimates. Now it remains to

bound the dimension of *R% X-

dim* REx = > (x, RF0)c-
0cTF
The Mackey formula for parabolic induction [38, Theorem 5.1| implies that any irre-

ducible character appears in 3, — R$6 with multiplicity at most [W|. It follows that

dim* RGx < [ W] and consequently [x(7)| = [*R§x(7)] < [W]. O

In the general semisimple case we shall replace parabolic restriction by the Deligne-
Lusztig restriction and the Mackey formula has to be replaced by the results on geometric
disjointness of induced characters. Also for non-regular elements instead of restricting to
the centralizer we will have to restrict to a rational Levi subgroup containing G .

Now let us treat the unipotent "baby case". Let v € G be a regular unipotent
element. The proof is entirely different from the semisimple case, thought we also use a
suitable functor. This time it will be the Alvin-Curtis duality functor. We will show that if
~ is a regular unipotent element of G¥', the center of G is connected and the characteristic
is good (this excludes a finite (small) number of exceptions) then

X(M < L.
Of course this is optimal in all applicable cases.
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PRrROOF. If the center is connected and the characteristic is good there is only one
conjugacy class of regular unipotent elements. Write 1) = |G$|1M. Then x(v) = (x,¥)q-
The duality functor D¢ (see [38, Chapter 8|) is a an isometry on the space of class function
on G¥' so x(7) = (Dax, Dg)g. The (virtual) character DgYx is an irreducible character
up to sign. On the other hand the fuction Dgv is, by [38, Corollary 14.37| the character
of the Gelfand-Graev represenatation of G¥', denoted I'. By [38, Theorem 14.30] Gelfend-
Graev representations are multiplicity free, hence |x(v)| = [(Dax, I')a| < 1. O

1.6. Bounds for compact p-adic groups. By a compact p-adic group we will mean
a compact subgroup K of linear algebraic group G(F’) defined over a local non-archimedean
field F'. For example SL(n,Z,) C SL(n,Q,) or SL(n,F4[[t]]) C SL(n,F,((t)). A modifica-
tion of Larsen’s method [71] yields near optimal bounds for values of irreducible characters
at regular elements in compact p-adic groups (Chapter 2 see Theorem 2.61, Remark 2.62).
The bounds on values of irreducible characters on non-central elements are useful in the
context of the Limit Multiplicity problem where we need to estimate the orbital integrals
of form

/ x(z ™ tyz)da
G (FO\G(F)

For G = PGL(2, F) we used in Chapter 2 an argument involving the Bruhat-Tits buildings
and character bounds to show that

x(z ya)dz| < C|A(y) 72,

/Gw<F>\G<F>

where C' is a constant dependent only on the type of G. We end this paragraph by
showing the simplest instance of the functorial approach to estimating the orbital integrals.
It is a p-adic analogue of the split regular case for finite groups. Let G = SL(2,Q)),
K = SL(2,Z,), let T be the subgroup of diagonal matrices in G' and let P,U be the
groups of upper triangular resp. unipotent upper triangular matrices. Define the "naive"
parabolic restriction * RE .- as the composition of ordinary restriction Res % » with taking
U N K-coinvariants. The action of parabolic restriction on the characters of K is given by

RIS ox(t) = / x(tu)du.
UNK

The measure du on U N K is the normalized Haar measure.

LEMMA 5.2. Let x be a character of K then for every regular element v € T we have

/ X yz)de = A7 RE v (7).
T(F)\G(F)

The Haar measures on G(F),T(F) are chosen so that K respectively K N T(F) have
measure 1.

PRrROOF. Use the Iwasawa decomposition to get

/ X(x_lfyx)da::/ /U(F)f(k_lu_lfyuk)dudx (1.1)
T(F)\G(F) K

- / Fu ) = / Forby ] (1.2)
U(F) U(F)

-1

Since 7 is regular, the map w +— [y~ ', u] is a diffeomorphism with constant Jacobian equal

to |A(y) ;/2. Hence

/ x(x ™ yz)de = |A(7)|_1/2/ fyu)du = |A(y) ;UQ*RII“(DKX('Y)-
T(FN\G(F) U)K
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We cannot repeat the ending of the proof in the finite case because this time the
parabolic restriction of an irreducible character can have a priori unbounded number of
irreducible constituents. To get the desired bound we need to study the properties of the
functor *R:,KQK. For G = PGL(2, F') many properties of *RIISOK can be extracted from the
well developed theory of smooth representations of PGL(2, F').

2. A property of Deligne-Lusztig restriction

In this section we prove proposition that will be the key component in the estimates
for semisimple elements. Let [ be a fixed prime number not dividing q.

PROPOSITION 5.3. Let v € G and let v = su be the Jordan decomposition of v. Then,
for any rational Levi subgroup L containing the connected component of the centralizer GO
we have

x(7) = "REx(7),
for every character x.

Before the proof let us recall few facts on the Deligne-Lusztig induction. All module
we consider will be over the field Q;. We start with the notion of a generalized induction
functor. Both DL-induction and restriction are the examples of such functor. Let Gg, Hg
be groups and let M be a Gp-module-Hy. We define the generalized induction functor
Rgg associated to M by

R : Modp, 3 N = N @gry) M € Modg,.

LEMMA 5.4. Let Hy be a subgroup of Gy and let v € Hy. Let M be a Hy-module-G
and write Rgg for the associated generalized induction functor. Then the functor Rgg has

the property that Rggx(v) = x(v) for every character ~ if and only if

[(Go)| if v and g=* are conjugate in Gy (2.1)
0 otherwise. '

tr((%g)lM)Z{

PRrROOF. By [38, Proposition 4.5]

REOY(y) = 1Gol ™1 Y (7,971 | M)x(g)-
g9€Go

From that it is clear that if Equation 2.1 holds if and only if the functor Rgg does not
change the value of characters on ~. O

If N is a Go-module-Hy we write N for the same Z-module with left Hy-action
and right Go-action of (h,g) € Hp x Gg given by (h,g) x m — g 'mh=1. If Rgg is
the generalized induction functor associated to a N then the adjoint functor *Rf[g is the
generalized induction functor associated to the Hp-module-Gy N”.

We will recall briefly the construction of Deligne-Lusztig induction functor. Let G be
a reductive group defined over F, with the Frobenius automorphism F. Write £ : G — G
for the Lang-Steinberg map given by z + 7'z (we denote the action by Frobenius
endomorphism on the left to avoid confusion with taking the F-fixed points). Let P be a
parabolic subgroup of G with Levi decomposition P = LU, where L is a Levi component
and U is the unipotent radical. Assume that L is rational i.e. L = L. The preimage
L7YU) is an affine subvariety of G. We have an G¥ x L action on £71(U) given by
x + gzl. The virtual module H*(L~1(U)) is given by

[e.e]
HI(L7HU)) = HI(L7H(U), Q) = Y (~1)'HAL™(U), Q).
i=0
The left GI-action and right L¥-action makes H}(L~Y(U)) a GF-module-L¥. Deligne-
Lusztig induction functor denoted by Rf is the generalized induction functor associ-
ated to H*(L~1(U)). The restriction functor *R¢ is the induction functor associated to
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HX (LY U = HX(L7Y(U)") where LT x G acts on the variety £L71(U)" by (I, g) x x +
—1.-1
g Tzl

PROOF OF PROPOSITION 5.3. Since all irreducible representations of Gf' in charac-
teristic 0 are defined over Q we may prove it for Q;-representations and the statement for
complex ones will follow. Let v € GF with Jordan decomposition v = su. Let L be a
rational Levi subgroup containing G%. By Lemma 5.4 we have to verify that

1

if v and g7 are conjugate in Gy

. (2.2)
0 otherwise.

t((1,9) | HE(LHUYY) = {l(GoM

Let g = rv be the Jordan decomposition of g. To shorten notation we will write £~1(U)" =
X. By [38, Proposition 10.14] we have

tr((7, 9) | HZ (X)) = tr((u,0) | HI (X

Note that if 2 € X(7) then r~'zs™' = 2 so asz™! = r~L. Since r € G¥ we deduce that
L(z) =2~z € Gy. Since L(x) is unipotent it is contained in the connected component
GY C L. But LNU = 0 so we must have £(z) = 0 and consequently z € GI". This proves
that if X(*) is non-empty if and only is s, 71 are conjugate in G¥ and in that case there
exists € G such that X(®") = zGL'. The variety X®") = zGI" is zero-dimensional so
by |38, Proposition 10.8] H*(X (")) is the permutation module Q;[zG%]. We have

tr((u,v) | QzGE]) = {y € 2GL | u =y v y}|.

The latter is equal to |(GL),| if u and 2= 'v~1x are conjugate in G and 0 otherwise. It’s
easy to see that v and ¢! are conjugate in G¥' if and only if there exists € G¥ such that
zsz~t =r~! and u is conjugate to 2~ v~z in G, As GE = (G, we deduce (2.2). O

For the next part we will need the notion of geometric conjugacy. Let G be as before and
let T, 7" be two maximal rational tori and 6,6’ irreducible characters of T, T" respectively.
We say that pairs (T,6) and (77,60') are geometrically conjugate if there exists n > 0,
g € GI" such that T/ =9 T and

H(an/p(t)) = GI(NFn/F(gt)) fOI' all t e T.

2 —
FCCF xT.. .Fn

Npn,p stands for the norm map defined as x — " 2. For future use we prove

a quick lemma:

LEMMA 5.5. For any algebraic torus T' defied over Fy and any n > 0 the norm map is
surjective.

PrROOF. Let x € T. By Lang-Steinberg theorem there exists y € T such that z =

_ n _ _ _ 2 n—1 _ n _ n
y 1y, Then Npw p(y=Fy) =y Fy(Fy) oy (57 )y =y My = 2. O

As a quick application of Proposition 5.3 we get the following bound

COROLLARY 5.6. Let G be a reductive group defined over IFy with Frobenius morphism
F. Then for any regular semisimple element v € G¥' and any irreducible character x we
have

XM < .

PRrROOF. The proof will be similar to the "baby-case" of regular semisimple elements
with split centralizer. Let T' be the connected component of the centralizer of v and let W
be the Weyl group of 7. As a first step let us prove that *R%x(1) < |[W| for any irreducible
character x of G¥'. Let 0,60’ be irreducible characters of T such that 6 is a constituent of
*R%x. By [38, Proposition 10.15] we have

(R$0, RG0) = |[{w € WF["0 = 0}].

Therefore the maximal multiplicity of 6 in *R$% is |Stabyr0|'/2. On the other hand,
by [38, Proposition 13.3| the representations R%H and R%@’ have no common irreducible
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constituents unless (T,6) and (T,6") are geometrically conjugate. In that is the case then
0" = 0,, where
Gw(NFn/F(“’t)) = G(an/p(t» = for all ¢ eT.

This defines an irreducible representation of T because the norm map is surjective
(Lemma 5.5). Note that if w’ € Staby,r60 then 0,,, = 0, so

(0" € e | (8, %) £ 00} C {0, | w € Staby rO\W1.

We deduce that
*RSx(1) < |Stabyy#0|'/?||Staby,r0\W| < [W].

We finish the proof using Proposition 5.3:
XM = "REX(7)] < *REx(1) < [W].
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