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Titre : Convergence Benjamini-Schramm des variétés localement symétriques

Mots Clefs : Espaces localement symétriques, groupes arithmétiques, théorie des représenta-
tions, marches aléatoires

Résumé : Le sujet principal de ce mémoire est le comportement asymptotique de la géométrie et
topologie des variétés localement symétriques Γ\X quand Vol(Γ\X)→∞. Notre premier résultat
porte sur la convergence Benjamini-Schramm des 2 ou 3-variétés hyperboliques arithmétiques.
Une suite d’espaces localement symétriques (Γn\X) converge Benjamini-Schramm vers l’espace
symétrique X si pour chaque R > 0 on a limn→∞

Vol((Γ\X)<R)
Vol(Γ\X) = 0, où (Γ\X)<R est la partie

R-mince de l’espace Γ\X. On montre qu’il existe une constante réelle C = CR satisfaisant la
propriété suivante: pour chaque réseau arithmétique de congruence Γ de PGL(2,R) ou PGL(2,C)
sans torsion on a

Vol((Γ\X)<R) ≤ CRVol(Γ\X)0.986. (0.1)
Il n’y a qu’un nombre fini de réseaux arithmétiques de covolume borné par une constante donc
ce résultat implique la convergence Benjamini-Schramm pour des variétés arithmétiques de con-
gruence. On donne aussi une version de (0.1) un peu plus faible qui reste vraie pour des réseaux
arithmétiques qui ne sont pas de congruence. Les majorations de volume de la partie R-mince
sont déduites d’une version forte de la propriété de la multiplicité limite satisfaite par les réseaux
arithmétiques de PGL(2,R) et PGL(2,C). En utilisant nos résultats on confirme la conjecture de
Gelander pour des 3-variétés arithmétiques hyperboliques: pour chaque telle variété M on con-
struit un complexe simplicial N homotope à M dont le nombre des simplexes est O(Vol(M)) et le
degré des nœuds est uniformément borné par une constante absolue.
Dans la deuxième partie on s’intéresse aux espaces localement symétriques Γ\X où X est de
rang supérieur ou égal à 2. Notre résultat principal affirme que la dimension du premier groupe
d’homologie à coefficients dans F2 (corps avec 2 éléments) est sous-linéaire en le volume. Ce résultat
est à comparer avec des travaux de Calegari et Emerton sur la cohomologie mod−p dans les tours
p−adiques des 3-variétés et les résultats de Abert, Gelander et Nikolov sur le rang des sous-groupes
d’un réseau de rang supérieur à angles droits. Le point fort de notre approche est qu’il n’y a pas
besoin de travailler dans une seule classe de commensurabilité.
La troisième partie est indépendante des deux premières. Elle porte sur une extension du théorème
de Kesten. Le théorème de Kesten affirme que si Γ est un groupe engendré par un ensemble fini
symétrique S, N est un sous groupe normal de Γ alors N est moyennable si et seulement si les
rayons spectraux du graphe de Cayley Cay(Γ, S) et du graphe de Scheier Sch(Γ/N, S) coïncident.
En utilisant les techniques de Abert, Glasner et Virag on généralise le theorème de Kesten aux
N -uniformément récurrents.
Le dernier chapitre est consacré aux bornes sur les valeurs des caractères irréductibles des groupes
finis de type Lie et des groupes de la forme G(Zp) où G est un schéma en groupes lisse, réductif sur
Z. Soit G un groupe comme ci-dessus et soit χ le caractère d’une représentation lisse irréductible
de G. On cherche des bornes de la forme suivante:

|χ(γ)| ≤ χ(1)δ avec δ < 1,

où δ et la constante implicite ne dépendante que de γ. Les bornes de telle forme sont les ingrédients
de la preuve de (0.1) dans le deuxième chapitre. On montre que dans un groupe réductif G défini
sur un corps fini Fq pour chaque γ ∈ G(Fq) régulier semi-simple on a

|χ(γ)| ≤ |W |,
où W est le groupe de Weyl. L’idée principale est de trouver un foncteur de restriction de Deligne-
Lusztig qui ne change pas la valeur des caractères sur γ.
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Title : Benjamini-Schramm convergence of locally symmetric spaces

Keys words : Locally symmetric spaces, arithmetic groups, representation theory, random walks

Abstract : The main theme of this work is the study of geometry and topology of locally sym-
metric spaces Γ\X as Vol(Γ\X) → ∞. Our first main result concerns the Benjamini-Schramm
convergence for arithmetic hyperbolic 2 or 3-manifolds. A sequence of locally symmetric spaces
(Γn\X) converges Benjamini-Schramm to X if and only if for every radius R > 0 we have
limn→∞

Vol((Γ\X)<R

Vol(Γ\X) = 0, where (Γ\X)<R stands for the R-thin part of Γ\X. We prove that there
exists a positive constant C = CR with the following property: for every torsion free, uniform,
congruence arithmetic lattice Γ in PGL(2,R) or PGL(2,C)

Vol((Γ\X)<R)� CVol(Γ\X))0.986. (0.2)

There is only finitely many arithmetic lattices of covolume bounded by a constant so the result
above implies the Benjamini-Schramm convergence for any sequence of congruence arithmetic
hyperbolic 3-manifolds. We also prove a similar but slightly weaker inequality for non-congruence
subgroups. Our results are deduced form a strong form of the limit multiplicity property that holds
for arithmetic lattices in PGL(2,R) of PGL(2,C). As an application of our bounds we confirm
Gelander’s conjecture on the triangulations of arithmetic hyperbolic 3-manifolds: we show that
every arithmetic hyperbolic 3-manifold M admits a triangulation with O(Vol(M)) simplices and
degrees of vertices bounded uniformly by an absolute constant.
Next, we move to the setting of higher rank locally symmetric spaces. Let Mn = Γn\X be a

sequence of pairwise distinct locally symmetric spaces modeled after a higher rank symmetric space
X. We show that the dimension of the first homology group with coefficients in F2 is sublinear
in volume. This can be compared with the results of Calegari and Emerton on mod−p homology
growth in p-adic analytic towers of 3-manifolds as well as the results of Abert, Gelander and Nikolov
on the rank gradient of right-angled lattices in higher rank Lie groups. The main strength of our
theorem is that we do not need to assume that the manifolds in question are commensurable.
Our third result is independent of the first two. Kesten theorem asserts that if Γ is group

generated by a finite symmetric set S and N is a normal subgroup of Γ then N is amenable if and
only if the spectral radii of the Cayley graphs Cay(Γ, S) and the Schreier graph Sch(Γ/N, S) are
equal. Building on the work of Abert, Glasner and Virag we extend Kesten’s theorem to uniformly
recurrent subgroups.
The last chapter is devoted to character bounds for finite simple Lie groups and groups of form

G(Zp) where G is a reductive smooth group scheme over Z. Let G be one of the above and let χ
be the character of a smooth irreducible representation of G. We are interested in bounds of form

|χ(γ)| � χ(1)δ with δ < 1,

where δ and implicit constant depending only on γ. Such bounds proved very useful in proving
the Limit multiplicity property for arithmetic lattices in the second chapter. We show that in a
finite reductive group G for γ regular semi-simple one has

|χ(γ)| ≤ |W |.

The key idea is to find a Deligne-Lusztig restriction functor which does not change the character
value on γ.
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CHAPTER 1

Introduction en français

1. Espaces localement symétriques

Dans la première partie de l’introduction, on rappelle la définition d’un espace locale-
ment symétrique et on décrit une construction à l’aide des groupes de Lie semi-simples.
Après avoir parlé de réseaux arithmétiques, on présente la convergence Benjamini-Schramm
et la propriété de la multiplicité limite. Ensuite, on présente nos résultats principaux des
chapitres 2 et 3. Chaque chapitre a sa propre introduction où l’on donne l’idée des démon-
strations et on fait une comparaison avec les résultats déjà connus. Le lecteur familier avec
les espaces localement symétriques et les réseaux arithmétiques peut passer directement à
la section 1.3.

1.1. Espaces symétriques. Une variété riemannienne (M, g) est un espace symé-
trique si, pour chaque point x ∈ M , il existe un automorphisme isométrique ιx de
M tel que ιx(x) = x et dιx : TxM → TxM est la multiplication par −1. Autrement
dit, ιx renverse les géodésiques qui passent par x. Un espace localement symétrique
est défini par la même condition mais avec ιx défini sur un voisinage ouvert de x. Un
espace symétrique simplement connexe est appelé irréductible s’il n’est pas isométrique
à un produit d’espaces localement symétriques. Un espace symétrique irréductible est dit
de type non-compact s’il est de courbure sectionnelle négative ou nulle mais pas nulle.
Finalement, en général un espace localement symétrique est dit de type non-compact s’il est
un produit d’espaces irréductibles de type non-compact. Dans cette thèse, on ne s’intéresse
qu’aux espaces de type non-compact.

Les espaces symétriques de type non compact peuvent être construits à l’aide des
groupes de Lie semisimples. Soit G un groupe de Lie connexe semi-simple, soit g son
algèbre de Lie et B(−,−) sa forme de Killing. Choisissons une involution de Cartan
Θ : g→ g, c’est une involution linéaire telle que la forme bilinéaire (X,Y ) 7→ −B(X,ΘY )
soit définie positive. On a une décomposition de g en une somme orthogonale des espaces
propres de Θ:

g = k⊕ p où ΘX = X pour X ∈ k et ΘY = −Y pour Y ∈ p.

k est une sous-algèbre de Lie, [p, p] ⊂ k et [p, k] ⊂ p. Posons K = {g ∈ G|Ad(g)k = k}.
Alors, k est l’algèbre de Lie de K et K est un sous-groupe maximal compact de G.1

Soit X = G/K. L’espace tangent TKX s’identifie avec p ' g/k. L’espace X est muni
de l’unique métrique riemanienne g, G-invariante à gauche, telle que

g(X,Y ) = B(X,Y ) pour X,Y ∈ p.

La variété riemannienne (X, g) est appelée l’espace symétrique de G, les involutions étant
induites par des involutions de Cartan. Le groupe G agit sur X à gauche par isométries
et cette action est propre i.e. les stabilisateur des points sont compacts.

Le tenseur de courbure de X au point K est donné par

RK(X,Y )Z = [[X,Y ], Z] pour X,Y, Z ∈ p.

Notons que la courbure sectionnelle n’est jamais strictement positive: g(R(X,Y )X,Y ) =
B([X,Y ], [X,Y ]) ≤ 0 car [X,Y ] ∈ k. On termine cette section en disant pourquoi X

1 K est le groupe des points réels d’un groupe algébrique linéaire sur R donc il n’a qu’un nombre fini
de composantes connexes. La composante de l’identité est un groupe compacte car sa forme de Killing est
définie négative.
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est contractile. La décomposition d’Iwasawa G = NAK, où N est unipotent et A est
isomorphe à Rr+, implique que X est homéomorphe à NA ' RdimG−dimK .

1.2. Réseaux arithmétiques. Étant donné un groupe de Lie connexe semi-simple G
et son espace symétriqueX, on sait produire des exemples d’espaces localement symétriques
de type Γ\X où Γ est un sous-groupe discret de G sans torsion. Si on prend Γ avec torsion,
on obtient un orbifold localement symétrique. Même si ce ne sont pas des vraies variétés
riemanniennes, on va les appeler encore espaces localement symétriques. Dans cette thèse,
on étudie les espaces localement symétriques de volume fini, ce qui revient à prendre des
quotients Γ\X où Γ est un réseau de G.

Une façon de construire des réseaux dans un groupe de Lie semisimple G est d’utiliser
l’arithmétique. Par exemple, si G = SL(n,R), le sous-groupe SL(n,Z) est un réseau. En
général, le théorème de Borel–Harish-Chandra [22] affirme que pour chaque sous-groupe
algébrique connexe semi-simple G de GL(n,Q) défini sur Q sans de cractère défini sur
Q le sous-groupe G(Q) ∩ GL(n,Z) est un réseau de G(R). Ces sont les exemples les plus
simples de réseaux arithmétiques. Pour décrire une construction qui donne tous les réseaux
arithmétiques on va utiliser les adèles. Ce point de vue est crucial dans le chapitre 2. Une
référence classique sur les adèles et les groupes algèbriques est le livre de Weil [104]. Fixons
un groupe de Lie connexe semi-simple G. Soit k un corps de nombres. Écrivons M pour
l’ensemble des places de k,M∞ pour les places archimédiennes etMf pour les places finies.
Soient Ok,Okp les anneaux des entiers dans k et kp respectivement. L’anneau des adèles
A = Ak (on va supprimer l’indice k si le corps est fixé) est défini comme un produit restreint
:

A := {(aν)ν ∈
∏
ν∈Mk

kν | ap ∈ Okp pour presque tout p ∈Mf}.

Il est muni de la topologie de produit restreint. Alors A est une algèbre sur k et son groupe
additif est localement compact. Ce sera utile d’écrire A comme un produit A∞×Af où A∞
est le produit des complétions archimédiennes de k et Af est le produit restreint de toutes
les complétions p-adiques de k. Soit G un groupe algébrique linéaire connexe semi-simple
défini sur k. On dit que G est anisotrope sur k s’il n’y a pas d’homomorphisme non-trivial
Gm → G défini sur k. Si G n’est pas anisotrope, on dit qu’il est isotrope sur k. Le groupe
G(A) avec la topologie induite de A est un groupe localement compact. Afin de voir G(A)
comme un produit restreint fixons une représentation rationnelle ρ : G→ GL(n, k). On a

G(A) := {(gν)ν ∈
∏
ν∈Mk

G(kν) | ρ(gp) ∈ GL(n,Okp) pour presque tout p ∈Mf}.

Comme avec A on a G(A) = G(A∞)×G(Af ). Par le théorème de Mostow-Tamagawa, le
groupe G(k) est un réseau de G(A), qui est cocompact si et seulement si G est anisotrope.
Choisissons un sous-groupe ouvert compact U de G(Af ). Alors, le groupe ΓU := G(k) ∩
G(A∞) × U est un réseau dans G(A∞) × U . La projection de ΓU vers G(A∞) reste un
réseau. Si G(A∞) admet une décomposition G×H avec H compact, l’image de ΓU est un
réseau dans G.

Définition 1.1. Soit G un groupe de Lie semi-simple. Un réseau Γ dans G est arith-
métique s’il existe un corps de nombres k, un groupe algébrique linéaire semi-simple G défini
sur k, un sous-groupe ouvert compact U de G(Af ) et un homomorphisme ρ de G(A∞) vers
G de noyau compact tel que ρ(ΓU ) est commensurable avec Γ. Si, de plus, Γ contient
ρ(ΓU ), on dit que Γ est de congruence.

Étant donné un réseau arithmétique de congruence Γ, on peut demander s’il existe
k,G, U et ρ tels que Γ = ρ(ΓU ). Les réseaux arithmétiques cocompacts maximaux dans
SL(2,R) sont les normalisateurs des ρ(ΓU ) pour un certain choix de k,G, U et ρ et ils sont
strictement plus grands que ρ(ΓU ) (voir [21] et [94, 11.4]). Par contre, la réponse à la
dernière question est positive si G est un groupe de Lie semi-simple adjoint (voir Lemme
2.32 et Proposition 2.33 où on donne une démonstration pour PGL(2,R) et PGL(2,C)).
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Traitons un exemple de construction adélique d’un réseau arithmétique de SL(2,C).
Soit k = Q(

√
−5). Notons son unique place complexe ν. Son anneau des entiers est

Ok = Z[
√
−5]. Il y a deux places finies de k ramifiées (

√
−5) et (2,

√
−5 + 1), pour chaque

nombre premier p ≡ 11, 13, 17, 19 mod 20, il y a une place p au dessus de p et pour chaque
p ≡ 1, 3, 7, 9 mod 20, il y a deux places p1, p2 au dessus de p. Notons par A l’algèbre des
quaternions sur k définie par

A = k + ik + jk + ijk

avec les relations i2 =
√
−5, j2 = 2 et ij = −ji. La forme quadratique

√
−5x2 + 2y2 − z2

est anisotrope sur k donc A est un corps gauche [94, Thm 2.3.1]). La norme sur A est
définie par n(x+iy+jz+ijt) = x2−

√
−5y2−2t2 +2

√
−5t2. Posons G = {a ∈ A|n(a) = 1}.

Le groupe G est une k-forme de SL(2, k) c’est-à-dire G ' SL(2) sur la clôture algébrique
de k. On a

G(A) = G(kν)×G(Af ).

On se donne un sous-anneau O de A: O = Ok + iOk + jOk + ijOk. C’est un ordre de A,
c’est-à-dire un sous-Ok-module de A de rang 4 qui est aussi un sous-anneau. On va s’en
servir pour construire un sous-groupe ouvert U de Af . L’ordre O est un sous-anneau de la
Af -algèbre A⊗kAf . Soit Of la clôture de O dans A⊗kAf . C’est un sous-anneau compact
ouvert. Posons U = O1

f = {s ∈ O |n(a) = 1}. La projection de ΓU = G(k)∩(SL(2,C)×U)

est un réseau arithmétique de congruence dans SL(2,C). Explicitement ρ(ΓU ) est:{(
x+ 4
√
−5y z + 4

√
−5t

2(z − 4
√
−5t) x− 4

√
−5y

)
| x, y, z, t ∈ Ok et x2 −

√
−5y2 − 2z2 + 2

√
−5t2 = 1

}
et la projection ρ est définie par

ρ(1) =

(
1 0
0 1

)
, ρ(i) =

(
4
√
−5 0
0 − 4

√
−5

)
et ρ(j) =

(
0 1
2 0

)
.

1.3. Propriété de la multiplicité limite. Soit G un groupe de Lie semi-simple et
soit Γ un réseau de G. Le groupe G agit sur L2(Γ\G) par des translations à droite:

(RΓgΦ)(x) = Φ(xg) for Φ ∈ L2(Γ\G), g ∈ G et x ∈ Γ\G.

Cette représentation est unitaire. Étant donnée une suite de réseaux (Γn)n∈N, on peut
étudier les propriétés asymptotiques des représentations L2(Γn\G) quand n→∞. Soit π
une représentation irréductible unitaire de G, notons mΓ(π) sa multiplicité dans L2(Γ\G)
définie comme la dimension de HomG(π, L2(Γ\G). En 1978, DeGeorge et Wallach [34] ont
démontré que sous certaines conditions raisonnables sur (Γn)n∈N, on a

lim
n→∞

mΓn(π)

Vol(Γ\G)
= d(π),

où d(π) est le degré de π (qui est non-nul ssi π est une série discrète). La propriété de la
multiplicité limite est encore plus forte que la convergence des multiplicités normalisées par
le volume. Elle est définie en termes des distributions des sous-représentations irréductibles
de L2(Γ\G) dans l’espace dual unitaire2 Π(G) de G. Pour un réseau Γ de G, notons

µΓ :=
1

Vol(Γ\G)

∑
π∈Π(G)

δπ.

On dit qu’une suite (Γn)n∈N a la propriété de la multiplicité limite si et seulement si la
condition suivante est satisfaite : pour chaque sous-ensemble mesurable U de Π(G) tel que
la mesure de Plancherel du bord U − Uo est 0, on a

lim
n→∞

µΓn(U) = µPl(U),

2 Π(G) est l’ensemble des classes d’équivalence des représentations unitaires irréductibles de G, munie
de la topologie de Fell [39].
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où µPl est la mesure de Plancherel (voir [48] pour une définition abstraite de µPl).
Sauvageot [97] a demontré qu’une suite (Γn)n∈N a la propriété de la multiplicité limite
si

lim
n→∞

trRΓnf

Vol(Γn\G)
= f(1), pour toute f ∈ C∞c (G).

Notre premier résultat principal donne une borne quantitative:

Théorème 1.2 (Thm 2.8). Soit K = R où C. Pour chaque R > 0 la proposition
suivante est vraie: Soit Γ un réseau arithmétique de congruence, cocompact sans torsion
dans PGL(2,K). Pour chaque f ∈ C(PGL(2,K)) dont le support est contenu dans la boule
de rayon R autour de 1, on a

|Vol(Γ\PGL(2,K))f(1)− trRΓf | �R ‖f‖∞(Vol(Γ\PGL(2,K))0.986. (1.1)

Borel [21] a démontré que pour tout V ∈ R, il n’y a qu’un nombre fini (à conjugaison
prés) de réseaux arithmétiques Γ de PGL(2,K) avec Vol(Γ\PGL(2,K)) ≤ V . Par con-
séquent, notre résultat montre que toute suite de réseaux cocompacts, arithmétiques de
congruence sans torsion (Γn)n∈N deux-à-deux non-conjugués a la propriété de la multiplic-
ité limite. On montre aussi une version plus faible pour des réseaux qui ne sont pas de
congruence. On en déduit le taux de croissance des nombres de Betti dans les 3-variétés
hyperboliques arithmétiques de congruence:

Corollaire 1.3. Soit (Γn)n∈N une suite de réseaux de PGL(2,C) cocompacts, arith-
métiques sans torsion deux-à-deux disjoints. Admettons que soit ils sont tous de congruence
soit ils sont deux-à-deux non-commensurables. Alors pour i = 1, 2

lim
n→∞

bi(Γn\H3)

Vol(Γn\H3)
= b

(2)
i (H3) = 0.

1.4. Convergence de Benjamini-Schramm. SoitM l’espace des espaces métriques
localement compacts pointés muni de la topologie de Gromov-Hausdorff. Rappelons que
dans cette topologie une suite d’espaces pointés (Xn, xn) converge vers (Y, y) si et seule-
ment si pour chaque R > 0 et ε > 0 il existe N = NR,ε satisfaisant la propriété suivante:
pour n ≥ N il existe un espace métrique M et des plongements isométriques des boules
π1 : BXn(xn, R) → M et π2 : BY (y,R) → M tels que la distance de Hausdorff entre les
images est inférieure à ε. De façon intuitive, (Xn, xn) converge vers (Y, y) si pour chaque
R > 0 les R-boules autour de xn ressemblent de plus en plus à la boule BY (y,R). Munie de
cette topologie,M est un espace séparé. Soit (X,µ) un espace métrique muni d’une mesure
de probabilité borélienne µ. On associe à X une mesure de probabilité νX :=

∫
δ(X,x)dµ(x)

sur M. La topologie de Benjamini-Schramm sur les espaces de probabilité métriques est
induite par la topologie *-faible sur PM, c’est-à-dire (Xn, νn)n∈N converge vers (Y, µ) si
et seulement si νXn converge *-faiblement vers νY . Ce type de convergence a été intro-
duit par Benjamini et Schramm dans [15] pour des graphes réguliers. Elle a été adapté
aux espaces localement symétriques de volume fini par Abért, Bergeron, Biringer, Ge-
lander, Nikolov, Raimbault et Samet dans [2] où ils ont étudié (parmi d’autres choses) la
convergence de Benjamini-Schramm vers X. On peut démontrer qu’une suite d’espaces
localement symétriques (Γn\X)n∈N converge vers X si et seulement si pour chaque R > 0
on a

lim
n→∞

(Vol((Γn\X)<R)

Vol(Γn\X)
= 0,

où (Γn\X)<R est la partie R-mince de Γn\X. Autrement dit, pour n grand une R-boule
autour d’un point typique de Xn est isométrique à la R-boule de X. Soit G un groupe
de Lie semi-simple et soit X son espace symétrique. Le théorème [3, Thm 1.2] affirme
que si G est de rang réel au moins 2 et a la propriété (T) alors chaque suite d’espaces
localement symétriques (Γn\X)n∈N deux-à-deux non-isométriques converge vers X. Dans
le contexte des réseaux arithmétiques, ils donnent une majoration du volume de la partie
R-mince [3, Thm 1.12] qui reste valable pour les groupes de rang 1. Pour un réseau
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arithmétique cocompact Γ de G, il existe des constantes c, µ > 0 dépendantes de Γ telles
que pour chaque sous-groupe de congruence Γ′ ⊂ Γ on a

Vol((Γ′\X)<R) ≤ ecRVol(Γ′\X)1−µ pour tout R > 1.

On en déduit que les suites d’espaces (Γn\X)n∈N avec Γn ⊂ Γ sous-groupes de congruence
deux-à-deux non-conjugués convergent Benjamini-Schramm vers X.

La convergence de Benjamini-Schramm des espaces localement symétriques est reliée
à la notion de sous-groupe aléatoire invariant. Soit SubG l’espace des sous-groupes
fermés de G muni de la topologie de convergence de Hausdorff sur les sous-ensembles
compacts de G. Alors SubG est un espace métrisable [33]. Le groupe G agit sur SubG
par conjugaison. Un sous-groupe aléatoire invariant est une variable aléatoire H à valeurs
dans SubG dont la distribution est invariante par G. Parfois les mesures de probabilité
G-invariantes sur SubG sont aussi appelées les sous-groupes invariants aléatoires. Étant
donné un réseau Γ de G, on lui associe une mesure

νΓ :=
1

Vol(Γ\G)

∫
Γ\G

δg−1Γgdg.

Dans [3] les auteurs ont utilisé de façon cruciale le fait qu’une suite d’espaces localle-
ment symétriques (Γn\X)n∈N converge Benjamini-Schramm vers X si et seulement si la
suite des sous-groupes invariants aléatoires νΓn tend *-faiblement vers δ{1}.

Notre résultat principal sur la convergence de Benjamini-Schramm porte sur les suites
de réseaux arithmétiques de PGL(2,R) et PGL(2,C). L’énoncé est similaire à [3, Thm
1.12] mais on ne suppose pas que tous les réseaux sont commensurables.

Théorème 1.4 (Thm 2.9). Soient R > 0 et K = R,C. Soit Γ un réseau arithmetique
de congruence sans torsion de PGL(2,K). Alors

Vol((Γ\X)<R)�R Vol((Γ\X))0.986. (1.2)

C’est une conséquence du théorème 1.2. On montre également une version pour des
réseaux qui ne sont pas de congruence:

Théorème 1.5 (Thm 2.11). Soient R > 0 et K = R,C. Soit Γ un réseau arithmétique
de PGL(2,K). Alors pour chaque f ∈ C(PGL(2,K)) tel que suppf ⊂ B(1, R)

|Vol(Γ\X)f(1)− trRΓf | �R ‖f‖∞∆−0.0006
k , (1.3)

Vol((Γ\X)<R)

Vol((Γ\X))
�R ∆−0.0006

k , (1.4)

où ∆k est le discriminant du corps des traces k de Γ.

On applique théorème 1.5 à la démonstration de la conjecture de Gelander pour des
3-variétés arithmétiques hyperboliques [53, Conjecture 1.3].

Théorème 1.6 (Thm 2.16). Il existe des constantes positives A,B telles que toute
3-variété arithmétique hyperbolique M est homotope à un complexe simplicial N ayant
au plus AVol(M) sommets dont les degrés sont uniformément bornés par B (dans le cas
compact on peut prendre B = 245).

1.5. Croissance de la dimension de l’homologie en rang supérieur. Dans le
Chapitre 3, on entreprend une étude de la croissance de dimF2 H1(Γ\X,F2) où X est un
espace symétrique de rang au moins 2, F2 et le corps à deux éléments et Γ\X est de volume
fini. D’abord exhibons quelques résultats antécédents sur la croissance d’homologie et de
la cohomologie des espaces localement symétriques. Pour l’instant, X est n’importe quel
espace symétrique de type non-compact. Le théorème classique de Gromov [56] donne une
constante C = C(X) telle que

bi(Γ\X) := dimQH
i(Γ\X,Q) ≤ CVol(Γ\X),

pour chaque espace localement symétrique Γ\X. Dans certains cas on sait dire plus.
Soient G un groupe de Lie et X son espace symétrique. Une suite de réseaux (Γn)m∈N de
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G est dite uniformément discrète si la longueur des géodésiques fermées sur (Γn\X)
est minorée uniformément en n. Dans [3], il est montré que si (Γn)n∈N est une suite des
réseaux uniformément discrète et si (Γn\X) converge Benjamini-Schramm vers X, alors

lim
n→∞

bi(Γn\X)

Vol(Γn\X)
= b

(2)
i (X),

où b
(2)
i (X) est le i-ème nombre de Betti L2 (voir [75]). On sait qu’en rang supérieur

les suites d’espaces localement symétriques deux-à-deux non-isométriques convergent vers
X donc le résultat ci-dessus fournit un outil puissant pour étudier la croissance de la
(co)homologie à coefficients rationnels. D’autre part, les techniques analytiques qui per-
mettent de traiter les nombres de Betti rationnels ne donnent pas d’information sur les
dimensions de la (co)homologie modulo p. Le théorème de Margulis sur les sous-groupes
normaux ou bien la propriété (T) impliquent qu’en rang supérieur le groupe H1(Γ\X,Z)
est fini donc b1(Γ\X) = 0 mais on ne sait même pas si la dimension dimFp H1(Γ\X,Fp) est
sous-linéaire en Vol(Γ\X). Gelander [54] démontre que pour chaque espace symétrique X
(pas forcement de rang supérieur) il existe une constante B = B(X) telle que

d(Γ) ≤ BVol(Γ\X),

où d(Γ) est le cardinal minimal d’une partie génératrice de Γ. Par conséquent

lim sup
Vol(Γ\X)→∞

dimFp H1(Γ\X,Fp)
Vol(Γ\X)

≤ B.

La croissance de la dimension de l’homologie est reliée à la notion du gradient de
rang ("rank gradient" en anglais [1,5,67]) de Γ. Le gradient de rang d’un groupe Γ relatif
à une suite de sous-groupes d’indice fini (Γn)n∈N est donné par

RG(Γ, (Γn)) := lim
n→∞

d(Γn)− 1

[Γ : Γn]
,

si la limite existe. Dans [1] (voir aussi [5] pour le cas des réseaux de SL(2,C)), il est montré
que le gradient de rang des réseaux de rang supérieur qui sont "à angles droits" vaut 0.
Un groupe est dit à angles droits s’il admet une partie génératrice s1, s2, . . . , sd telle que
[si, si+1] = 1 pour i = 1, . . . , d− 1. Il suit immédiatement que dans ce cas

lim
n→∞

dimFp H1(Γn\X,Fp)
Vol(Γn\X)

= 0.

En fait, pour les réseaux de rang supérieur aux angles droits, on peut faire mieux [1]:

lim
n→∞

log |H1(Γn\X)|
Vol(Γn\X)

= 0.

Rappelons que ces résultats ne sont valables que pour des suites de sous-groupes de Γ. On
croit [1, Conjecture 3] que dans un groupe semi-simple G de rang supérieur

lim
Vol(Γ\X)→∞

d(Γ)− 1

Vol(Γ\X)
= 0

uniformément en tous les réseaux de G.
Revenons à l’étude de la croissance de l’homologie modulo p. Dans le cas des groupes

de rang 1, on dispose du résultat suivant de Calegari et Emerton [30]. Soit M une variété
de dimension 3 et notons Γ son groupe fondamental. Soit φ : Γ→ GL(n,Zp) et notons G la
clôture de φ(Γ). Posons Gk = G∩ (ker GL(n,Zp)→ GL(n,Z/pkZ)) et Γk = φ−1(Gn). Soit
Mk le revêtement fini de M correspondant au sous groupe Γk de Γ. La suite des variétés
(Mk)k∈N obtenue comme ci-dessus est appelée une tour p-adique de 3-variétés. Soit d la
dimension de G en tant que groupe p−adique analytique. Dans [30], les auteurs montrent
que la dimension de H1(Mk,Fp) satisfait une des conditions suivantes:

• dimFp H1(Mk,Fp) = λpdk +O(p(d−1)k) (croissance linéaire).
• dimFp H1(Mk,Fp) = λp(d−1)k +O(p(d−2)k).
• d = 2 et dimFp H1(Mk,Fp) = O(1).
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• d = 3 et dimFp H1(Mk,Fp) ≤ 3 pour k assez grand.

En particulier si M est hyperbolique la limite limk→∞
dimFp H1(Mk,Fp)

Vol(Mk) existe. Calegari et
Emerton conjecturent que le premier cas n’est pas possible si

⋂
n∈N Γn = {1}. Si c’est

vrai la dimension de l’homologie modulo p est sous-linéaire en le volume dans les tours
p-adiques de 3-variétés qui convergent Benjamini-Schramm vers H3.

Notre résultat principal dans le chapitre 3 est le théorème suivant.

Théorème 1.7. Soit G un groupe semi-simple de rang supérieur et soit X l’espace
symétrique associé. Alors

lim
Vol(Γ\X)→∞

dimF2 H1(Γ\X,F2)

Vol(Γ\X)
= 0.

La caractéristique 2 du corps joue une rôle important dans la preuve.

2. Théorème de Kesten

Soit G = (V,E) un graphe d-régulier avec ensemble des sommets V et ensemble des
arêtes E. L’opérateur de Markov associé à la marche aléatoire (simple) sur G est donné
par

MΦ(x) =
1

d

∑
y∼x

Φ(y) pour x ∈ V,Φ ∈ L2(V ),

où la somme parcourt les sommets voisins de x. Le rayon spectral de G est défini
comme la norme ‖M‖ = sup‖Φ‖2=1 ‖MΦ‖2. Le rayon spectral décrit la vitesse d’expansion
dans G. Parmi les graphes infinis d-réguliers c’est l’arbre Td qui possède le rayon spectral
le plus petit: ρ(Td) = 2

√
d−1
d . Un graphe d-régulier infini G est dit de Ramanujan si

ρ(G) = ρ(Td).
Soit Γ un groupe dénombrable engendré par une partie finie symétrique S. Le graphe

de Cayley Cay(Γ, S) a Γ pour l’ensemble des sommets et {(g, gs)|g ∈ Γ, s ∈ S} pour
l’ensemble des arêtes. De la même manière, si X est un ensemble dénombrable muni d’une
action de Γ à droite on lui associe son graphe de Schreier Sch(X,S) dont l’ensemble des
sommets est X et l’ensemble des arêtes est {(x, xs) | x ∈ X, s ∈ S}.

Un théorème remarquable de Kesten [65,66] dit qu’un sous groupe distingué N de Γ
est moyennable si et seulement si ρ(Cay(Γ, S)) = ρ(Sch(N\Γ, S)). Un sous-groupe H de Γ
est dit de Ramanujan si ρ(Cay(Γ, S)) = ρ(Sch(H\Γ, S)). Chaque sous-groupe moyennable
est Ramanujan mais l’inverse n’est pas vrai. Dans [6] Abért, Glasner et Virag donnent une
version probabiliste du théorème de Kesten. Ils ont démontré qu’un sous-groupe aléatoire
invariant H est de Ramanujan presque surement si et seulement si H est moyennable
presque surement.

Dans le chapitre 4 on étend le théorème de Kesten aux sous-groupes uniformément
récurrents. Un sous-groupe H de Γ est uniformément récurrent (voir [42,43,80]) si la
clôture de la G-orbite de H dans SubG est un système dynamique minimal. Ces groupes
ont été récemment utilisés par Kennedy [64] pour caractériser les groupes C∗-simples.

Théorème 1.8 (Thm 3.1). Soit Γ un groupe engendré par une partie finie symétrique
S. Un sous-groupe uniformement recurrent H de Γ est de Ramanujan si et seulement si il
est moyennable.

La démonstration repose sur l’argument de Abért, Glasner et Virag dans [4, 6]. En
utilisant les ingrédients de la preuve, on redémontre un résultat récent de Lyons et Peres
[76]. Soit C(−, k) : V → {1, 0} la fonction définie par C(v, k) = 1 si v fait partie d’un cycle
non-contractile de longueur k et 0 sinon.

Théorème 1.9 (Thm 4.1). Soit G un graphe infini d-régulier de Ramanujan enraciné
en x. Soit k ≥ 1 et soit Xn la marche aléatoire simple sur G partant de x. On a

lim
n→∞

1

n

n∑
i=1

E
[
C(Xi, k)

]
= 0.
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3. Bornes sur les caractères

Dans le cinquième chapitre, on étudie les bornes sur les caractères irréductibles des
groupes finis de type de Lie et des groupes compacts de la forme G(Zp) où G est un schéma
en groupes réductif lisse sur Zp. On s’intéresse aux majorations de la forme suivante:

|χ(g)| ≤ Cχ(1)1−δ, pour chaque caractère irréductible χ (3.1)

où C, δ > 0 ne dépendent que de g.
Expliquons la motivation provenant du chapitre 2. Soit Γ un sous-groupe discret. Une

suite de sous-groupes d’indice fini (Γn)n∈N de Γ est dite une suite de Farber si pour
tout g ∈ Γ \ Z(Γ)

lim
n→∞

|{hΓn | h−1gh ∈ Γn}|
[Γ : Γn]

= 0. (3.2)

On voit facilement que (Γn)n∈N est une suite de Farber si et seulement si la suite des
graphes de Schreier Sch(Γn\Γ, S) converge Benjamini-Schramm vers Cay(Γ, S), pour une
partie génératrice S de Γ. Si Γ est un réseau d’un groupe semi-simple G, la dernière
condition est équivalente à la convergence Benjamaini-Schramm des orbifolds Γn\X vers
X.

Soit ρ une représentation complexe de Γ de dimension finie. Notons χρ son caractère.
La condition de Farber (3.2) peut être exprimée en termes des caractères des représentations
induites. Pour g ∈ Γ \ Z(Γ), on a

lim
n→∞

|χInd Γ
Γn

1(g)|
χInd Γ

Γn
1(1)

= 0.

Dans le chapitre 2, lemme 2.83, on montre que pour Γ à croissance des représentations
polynomiale chaque borne de type

|χ(g)| ≤ Cχ(1)1−δ pour χ caratère irréductible de Γ

où δ > 0 implique
|χInd Γ

Γn
1(g)| ≤ C ′χInd Γ

Γn
(1)1−δ′

pour un certain δ′ > 0. Les inégalités de cette forme sont parmi les ingrédients les plus
importants de la preuve du théorème 1.2.

L’autre source de motivation pour étudier les bornes de type (3.1) provient des travaux
de Liebeck, Shalev et al. [74] qui les ont appliquées à l’étude des marches aléatoires sur les
groupes finis de type de Lie, au problème de la génération aléatoire et au problème de la
génération par des mots. Les inégalités de Glück [55] permettent de trouver pour chaque
groupe de Chevalley G des constantes C, δ > 0 telles que pour g ∈ G(Fq) noncentral, on a:

|χ(g)| ≤ Cχ(1)1−δ pour chaque caractère irreductible χ.

Soulignons que cette borne est uniforme en q. La constante δ extraite des bornes de Glück
est 1

dimG ce qui est loin d’être optimal pour la plupart des éléments de G. Larsen a prouvé
dans un article non-publié [71] que si G est un groupe réductif défini sur le corps fini Fq
et g ∈ G(Fq) est régulier semi-simple alors |χ(g)| ≤ |W |2 où W est le groupe de Weyl de
G. Dans le chapitre 2, on adapte la méthode de Larsen au cas p-adique pour monter la
majoration suivante.

Théorème 1.10 (Remark 2.62). Soit G un groupe algébrique réductif défini sur un
corps local non-archimèdien F . Soit K un sous-groupe compact ouvert de G(F ) et soit
γ ∈ K un élément régulier semi-simple. Alors pour chaque caractère irréductible χ de K,
nous avons

|χ(γ)| ≤ C,
où la constante C ne dépend que de γ et G (ni de K ni de χ).
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Dans le chapitre 5, on démontre une légère amélioration de la borne de Larsen en
utilisant les foncteurs de restriction de Deligne-Lusztig. On prouve que dans un groupe
réductif G défini sur un corps fini, la valeur de chaque caractère irreductible sur un élé-
ment semi-simple régulier est bornée par |W |. Indépendamment, en poursuivant des idées
similaires, Bezrukavnikov, Liebeck, Shalev et Tiep [74] ont amélioré les bornes de Glück.
Notons

α(L) := max

{
dimuL

dimuG
| u ∈ L, u 6= 1 unipotent

}
.

Théorème 1.11 ( [19]). Soit γ ∈ G(Fq) et soit L une composante de Levi rationnelle
d’un sous-groupe rationnel parabolique de G tel que la composante connexe du centralisateur
de γ est contenue dans L. Alors, pour chaque caractère irréductible χ de G(Fq), on a

|χ(γ)| � χ(1)α(L),

où la constante implicite ne dépend que du rang de G.
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CHAPTER 1

Introduction in English

1. Locally symmetric spaces

In this part of the introduction we recall the definition of a locally symmetric space and
give a standard construction using semisimple Lie groups. After giving the construction of
arithmetic lattices in semisimple Lie groups we briefly introduce the Benjamini-Schramm
convergence and Limit Multiplicity property. Lastly we describe our results from Chap-
ters 2 and 3. We keep this introduction quite short because every Chapter has its own
introduction where we give more background for every result, outline the structure of the
proof as well as make comparison with literature. Reader familiar with locally symmetric
spaces and the adélic construction of arithmetic lattices may safely skip the first and the
second part of this introduction.

1.1. Symmetric spaces. A Riemannian manifold (M, g) is a symmetric space if
for every point x ∈M there exists an isometry ιx ofM fixing x such that dιx : TxM → TxM
is the multiplication by −1. In other words ιx reverses the geodesics passing through x. A
locally symmetric space is given by the same condition but ιx needs to be defined only
on an open neighborhood of x. A simply connected symmetric space is called irreducible
if it is not a product symmetric spaces. An irreducible symmetric space is said to be
of non-compact type if it has non-positive but non-zero sectional curvature and more
generally a symmetric space of non-compact type is a product of irreducible symmetric
spaces of non-compact type. Throughout this text we will only consider the symmetric
spaces of non-compact type. Those spaces maybe realized as a quotient of a semisimple
Lie group [58].

Let G be a connected real semisimple Lie group. Write g for its Lie algebra and
B(−,−) : g ⊗ g → R for the Killing form. Choose a Cartan involution Θ: g → g, recall
that being Cartan means that the bilinear form (X,Y ) 7→ −B(X,ΘY ) is positive definite.
We decompose g into orthogonal sum of eigenspaces of Θ:

g = k⊕ p where ΘX = X,X ∈ k and ΘY = −Y, Y ∈ p.

k is a Lie subalgebra of g, [p, p] ⊂ k and [k, p] ⊂ p. Let K = {g ∈ G|Ad(g)k = k} be the
stabilizer of k. Then k is the lie algebra of K and K is a maximal compact subgroup of G1.

Let X = G/K, the tangent space TKX is canonically identified with g/k ' p. X is
endowed with the unique left G-invariant Riemannian metric g such that

g(X,Y ) = B(X,Y ) for X,Y ∈ p.

The Riemannian manifold (X, g) is the symmetric space of G, the involutions inverting the
geodesics are provided by Cartan involutions. The group G acts on X by isometries and
this action is proper i.e. the stabilizers of points are compact.

The curvature tensor of X at the point K is given by

RK(X,Y )Z = [[X,Y ], Z] for X,Y, Z ∈ p.

To see that the sectional curvature is non-positive we compute g(R(X,Y )X,Y ) = B([[X,Y ], X], Y ]) =
B([X,Y ], [X,Y ]), the last term is non-positive because [X,Y ] ∈ k. The last property that

1It is the group of real points of an algebraic group so it has finitely many connected components [24].
Its connected component is compact since the Killing form restricted to k is negative definite.
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we are going to establish in this brief overview is contractibility of X. The Iwasawa de-
composition G = NAK, where A is isomorphic to Rr+ and N is a connected nilpotent
subgroup of G, yields a homeomorphism RdimG−dimK → G/K = X.

1.2. Arithmetic lattices. Given a semisimple Lie group G and its symmetric space
X we can produce examples of locally symmetric spaces of form Γ\X where Γ is a discrete
torsion free subgroup of G. As the group is torsion free the resulting quotient space is
a manifold, for a discrete group with torsion we get an orbifold. By a slight abuse of
notation we will also call such spaces locally symmetric. In this thesis we are interested
only in locally symmetric spaces of finite volume, which amounts to taking quotients Γ\X
where Γ is a lattice.

One of the ways of constructing lattices in a semisimple Lie group G is via arithmetic.
For example if G = SL(n,R) the group SL(n,Z) is a lattice. More generally whenever
G is an algebraic subgroup of GL(n,Q) defined over Q without characters defined over Q
then the group G(Q) ∩ GL(n,Z) is a lattice in G(R) by virtue of Borel Harish-Chandra
theorem [22]. Those are the simplest examples of arithmetic lattices. We are going to
describe another construction using adèles. This point of view is crucial in the first chapter.
For more in depth discussion on algebraic groups and adèles we refer to the classical book
by Weil [104]. Let k be a number field. Write M for the set of all places of k, M∞ for the
archimedean places and Mf for the finite ones. We write Ok,Okp for the rings of integers
in k, kp respectively. The adèle ring of k denoted A = Ak (we shall omit the index when
we work with a fixed field) is given by the restricted product

A := {(aν)ν ∈
∏
ν∈Mk

kν | ap ∈ Okp for almost all p ∈Mf}.

It comes with a natural topology of the restricted product which makes A into locally
compact algebra over k. It will be convenient to write A = A∞ ×Af where the A∞ is the
product over all (finitely many) archimedean places and Af is the restricted product over
infinite places. Let G be a simple linear algebraic group defined over k. We say that G
is anisotropic over k if there are no non-trivial homomorphisms Gm → G defined over k
and that G is isotropic otherwise. The group G(A) with the topology inherited from A
is a locally compact group. In order to present it as restricted product let us fix a rational
representation ρ : G→ GL(n, k). Then

G(A) := {(gν)ν ∈
∏
ν∈Mk

G(kν) | ρ(gp) ∈ GL(n,Okp) for almost all p ∈Mf}.

As with the ring of adèles we have G(A) = G(A∞) × G(Af ). By the Mostow-Tamagawa
theorem [83] the group G(k) is a lattice of G(A), which is cocompact if and only if G is
anisotropic. This is the starting point for the adélic construction of lattices in semisimple
Lie groups. Let us choose an open compact subgroup of G(Af ). Then the group ΓU :=
G(k) ∩ G(A∞) × U is a lattice in G(Af ) × U . Let us split the set archimedean places
M∞ = Σ1 t Σ2 where Σ1 = {ν ∈M∞ | G(kν) is not compact } and Σ2 = M∞ \ Σ1. Then

G(A∞) = G1 ×G2 =

∏
ν∈Σ1

G(kν)

×
∏
ν∈Σ2

G(kν)

 .

G1 is a semisimple Lie group and the projection of ΓU to G1 is a lattice in G1.

Definition 1.1. Let G be a semisimple Lie group without compact factors. A lattice
Γ ⊂ G is an irreducible arithmetic lattice if there exists a number field k, simple algebraic
group G defined over k, an open compact subgroup U of G(Af ) and an isomorphism ρ :
G1 ' G such that Γ is commensurable with ρ(ΓU ). Moreover, if ρ(ΓU ) ⊂ Γ then Γ is
a congruence arithmetic lattice. Non irreducible arithmetic lattices are those which are
commensurable with Cartesian products of irreducible arithmetic lattices.

If Γ is a congruence arithmetic lattice one can ask if we can find k,G, U and ρ such that
Γ = ρ(ΓU ). In general this is not possible, for example the maximal cocompact arithmetic
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lattices in SL(2,R) are normalizers of ρ(ΓU ) for certain choices of k,G, U but they are
strictly bigger than ρ(ΓU ) (see [21] and [94, 11.4]). The answer is positive if we restrict to
the adjoint semisimple Lie groups (see Lemma 2.32 and Proposition 2.33 where we prove
this for maximal arithmetic lattices PGL(2,R),PGL(2,C)).

We examine an example of the above construction in SL(2,C). Let k = Q(
√
−5). This

field has a single complex place ν. Its ring of integers is Ok = Z[
√
−5]. The finite places of

k are parametrized as follows: unique ramified primes (
√
−5), (2, 1 +

√
−5), single prime

lying over every rational prime p with p ≡ 11, 13, 17, 19 mod 20, and two primes lying over
every rational prime p ≡ 1, 3, 7, 9 mod 20. Consider the quaternion algebra A over k:

A = k + ik + jk + ijk,

with relations i2 =
√
−5, j2 = 2 and ij = −ji. The quadratic form −x2 +

√
−5y2 + 2z2 is

anisotropic over k so the algebra A is a division ring ( [94, Thm 2.3.1]). The norm on A is
given by n(x+iy+jz+ijt) = x2−

√
−5y2−2z2 +2

√
−5t2. We put G = {a ∈ A | n(a) = 1},

the group G is a k-form of SL(2, k) i.e. G ' SL(2) over the algebraic closure k. We have

G(A) = G(kν)×G(Af ) = SL(2,C)×G(Af ).

Consider the subring of A given by O = Ok + iOk + jOk + ijOk. It is an order in A i.e. an
Ok-module of rank 4 which is also a subring of A. We use it to construct an open compact
subgroup U of G(Af ). The algebra A and the order O are subrings of A ⊗k Af . Let Of
be the closure of O in A⊗ Af , it is a compact open subring. We define U as the group of
elements of Of of norm 1. The projection of the group ΓU = G(k) ∩ (SL(2,C)× U) is an
arithmetic lattice in SL(2,C). Explicitly, ρ(ΓU ) is the subgroup{(

x+ 4
√
−5y z + 4

√
−5t

2(z − 4
√
−5t) x− 4

√
−5y

)
| x, y, z, t ∈ Ok and x2 −

√
−5y2 − 2z2 + 2

√
−5t2 = 1

}
,

and the projection ρ is given by

ρ(1) =

(
1 0
0 1

)
, ρ(i) =

(
4
√
−5 0
0 − 4

√
−5

)
and ρ(j) =

(
0 1
2 0

)
.

1.3. Limit Multiplicity property. Let G be a semisimple Lie group and let Γ be a
lattice in G. The group G acts on L2(Γ\G) by right translations:

(RΓgΦ)(x) = Φ(xg) for Φ ∈ L2(Γ\G), g ∈ G and x ∈ Γ\G.

This representation is unitary. Given a sequence of lattices (Γn) we can study the asymp-
totic properties of L2(Γn\G) as n→∞. For example one can ask about the growth of the
multiplicity mΓ(π) := dim HomG(π, L2(Γ\G)) of a given irreducible unitary representation
π in L2(Γn\X). This question was considered by DeGeorge and Wallach in [34] where they
proved that under certain reasonable conditions on (Γn) we have

lim
n→∞

mΓn(π)

Vol(Γ\G)
= d(π),

where d(π) is defined as the degree of π if π is in discrete series and 0 otherwise. The limit
multiplicity is stronger than the convergence of multiplicities, it deals with the distribution
of irreducible subrepresentations of L2(Γ\G) in the space Π(G) of all irreducible unitary
representations of G, equipped with the Fell topology (see [39]). For every lattice Γ ⊂ G
we construct a measure

µΓ :=
1

Vol(Γ\G)

∑
π∈Π(G)

δπ.

We say that a sequence (Γn) has the limit multiplicity property if the following
condition is satisfied: for every measurable subset U of Π(G) such that the Plancherel
measure (see [48]) of the boundary U − Uo is 0 we have

lim
n→∞

µΓn(U) = µPl(U),
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where µPl is the Plancherel measure. Sauvageot showed [97] that for cocompact lattices
the Limit Multiplicity property holds if

lim
n→∞

trRΓnf

Vol(Γn\G)
= f(1), for all f ∈ C∞c (G). (1.1)

Our first main result gives the following quantitative bound:

Theorem 1.2. [Thm. 2.8] Let K = R or C. There exists a > 0 such that for any
R > 0 the following holds. Let Γ be a uniform torsion free, congruence arithmetic lattice
in PGL(2,K). For any f ∈ C(PGL(2,K)) with suppf ⊂ B(1, R)

|Vol(Γ\PGL(2,K))f(1)− trRΓf | �R ‖f‖∞(Vol(Γ\PGL(2,K))1−a. (1.2)

We can take a ≥ 0.014.

Borel [21] showed that for every V > 0 there exists only finitely many arithmetic
lattices Γ ⊂ PGL(2,K) with Vol(Γ\G) ≤ V so our result implies that any sequence (Γn)
of pairwise disjoint, cocompact torsion free arithmetic congruence lattices one has the
Limit Multiplicity Property. As a corollary we can control the growth of Betti numbers in
sequences of arithmetic congruence hyperbolic 3-manifolds:

Corollary 1.3 (Corollary 2.18). Let (Γn) be a sequence of pairwise distinct arith-
metic, torsion free lattices in PGL(2,C). Assume that either the are congruence or they
are pairwise non-commensurable. Then for i = 1, 2

lim
n→∞

bi(Γn\H3)

Vol(Γn\H3)
= b

(2)
i (H3) = 0.

1.4. Benjamini-Schramm convergence. LetM be the space of rooted locally com-
pact metric spaces equipped with the pointed Gromov-Hausdorff topology (see [57]). In
that topology a sequence of rooted metric spaces (Xn, xn) converges to (Y, y) if for ev-
ery R > 0 and ε > 0 there exists N = NR,ε with the following property: for n ≥ N
there exists a metric space M and isometric embeddings of R-balls π1 : BXn(xn, R) →
M,π2 : BY (y,R) → M such that the Hausdorff distance between π1(BXn(xn, R)) and
π2(BY (y,R)) is at most ε. Intuitively (Xn, xn) converges to (Y, y) if R-balls around xn
look like an R-ball around y for big enough n. With that topology, the spaceM is a Hauss-
dorf topological space. For a metric space X with a probanility measure ν we send it to a
probability measure

∫
δ(X,x)dµ(x) ∈ PM where PM is the space of all Borel probability

measures onM. The Benjamini-Schramm topology is the topology on metric probability
spaces induced by the weak-* convergence in PM . Originally this notion of convergence
was considered by Benjamini and Schramm for regular graphs in [15]. It was adapted to
the setting of locally symmetric spaces of finite volume by Abert, Bergeron, Biringer, Ge-
lander, Nikolov, Raimbault and Samet in [3]. The question of particular interest is when
a sequence of locally symmetric spaces Γn\X converges to X. The condition in that case
is much simpler than the abstract definition of Benjamini-Schramm convergence: (Γn\X)
converges to X if and only if for every R > 0 we have

lim
n→∞

Vol((Γn\X)<R)

Vol(Γn\X)
= 0.

(Γn\X)<R is the R-thin part of the orbifold Γn\X. This means that in the sequences
of orbifolds convergent Benjamini-Schramm to X the R-balls around typical points look
like an R-ball in the universal cover X. It is known [3, Thm 1.5] that if G has property
(T) and is of real rank at least 2 then every sequence of pairwise non-conjugate lattices
(Γn) converges to X in the Benjamini-Schramm topology. For an arithmetic, cocompact
lattice Γ ⊂ G of arbitrary rank, there are constants c, µ > 0 such that for every congruence
subgroup Γ′ ⊂ Γ and R > 1 one has [3, Thm 1.12]:

Vol((Γ′\X)<R) ≤ ecRVol(Γ′\G)1−µ.

It implies that for every sequence of pairwise distinct congruence subgroups (Γn) of Γ the
orbifolds (Γn\X) converge to X in the Benjamini-Schramm topology.
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Benjamini-Schramm convergence of locally symmetric spaces is related to invariant
random subgroups. Let SubG be the space of closed subgroups of G equipped with
the topology of Haussdorff convergence on compact sets. It makes SubG into a metrizable
space [33]. The group G acts on SubG by conjugation. An invariant random subgroup H
is a random variable taking values in SubG with Borel probability distribution invariant
by conjugation by G. Sometimes we will work directly with G-invariant Borel probability
measures on SubG and call them invariant random subgroups. Given a lattice in G we
construct an invariant random subgroup

νG :=
1

Vol(Γ\G)

∫
Γ\G

δg−1Γgdg.

One of the key steps in [3] is the observation that (Γn\X) converges Benjamini-Schramm
to X if and only if νΓn converges weakly-* to δ{1}.

Our main result on Benjamini-Schramm convergence deals with sequences of arithmetic
latices in PGL(2,R) and PGL(2,C), it is similar to [3, Thm 1.12] but the big difference is
that we do not need to assume that lattices are contained in a single arithmetic lattice.

Theorem 1.4 (Thm 2.9). There exists a > 0 such that for any R > 0 the following
holds. Let Γ be a torsion free, congruence arithmetic lattice in PGL(2,K). Then

Vol((Γ\X)<R)�R Vol((Γ\X))1−a. (1.3)

We can take a ≥ 0.014.

It is derived from Theorem 1.2. For non cocompact lattices it was shown by Raimbault
in [92]. We also prove a version for non-congruence subgroups

Theorem 1.5 (Thm 2.11). There exists c > 0 such that for any R > 0 the following
holds. Let K = R or C, let Γ be a torsion free, arithmetic lattice in PGL(2,K). Then for
any f ∈ C(PGL(2,K)) with suppf ⊂ B(1, R)

|Vol(Γ\X)f(1)− trRΓf | �R ‖f‖∞∆−ck , (1.4)
Vol((Γ\X)<R)

Vol((Γ\X))
�R ∆−ck , (1.5)

Where ∆k is the discriminant of the trace field k of Γ and c ≥ 0.0006.

We use Theorem 1.5 to prove Gelander’s conjecture for arithmetic hyperbolic 3-manifolds
[53, Conjecture 1.3]:

Theorem 1.6. [Theorem 2.16] There exist positive constants A,B such that every
arithmetic, hyperbolic 3-manifold M is homotopically equivalent to a simplicial complex
with at most AVol(M) vertices and each vertex has degree bounded by B (if M is compact
we can take B = 245).

1.5. Growth of homology in higher rank. In Chapter 3 we investigate the growth
of the dimension of H1(Γ\X,F2) for finite volume locally symmetric spaces Γ\X, where
X is a higher rank symmetric space. Let us review what is known about the homology
and cohomology growth in locally symmetric spaces. A classical theorem of Gromov [56]
asserts that there exists a positive constant C = C(X) such that

bi(Γ\X) := dimQH
i(Γ\X,Q) ≤ CVol(Γ\X)

for every finite volume locally symmetric space Γ\X. In some cases Gromov’s result may
be improved to a precise asymptotic. A sequence of cocompact lattices (Γn) is uniformly
discrete if the length of closed geodesics on (Γn\X) is bounded from below uniformly in n.
In [3] it is proved that for a uniformly discrete sequence of cocompact lattices (Γn) such
that Γn\X converges to X in Benjamini-Schramm topology we have

lim
n→∞

bi(Γn\X)

Vol(Γn\X)
= b

(2)
i (X)
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where b(2)
i (X) is the i−th L2-Betti number of X. Combined with [3, Thm 1.2] it gives a

powerful tool to study the growth of Betti numbers in higher rank symmetric spaces. The
aforementioned results give satisfactory control over the growth of homology or cohomology
with rational coefficients but give little information about the mod−p homology or coho-
mology. For higher rank symmetric spaces X of dimension d the Margulis normal subgroup
theorem or property (T) implies that H1(Γ\X,Z) is finite so b1(Γ\X) = bd−1(Γ\X) = 0
but we do not even know whether dimFp H1(Γ\X,Fp) is sublinear in volume. In [54] Ge-
lander showed that for every symmetric space X (not necessarily higher rank) there exists
a positive constant B = B(X) such that

d(Γ) ≤ BVol(Γ\X),

where d(Γ) is the minimal cardinality of a generating set. The result of Gelander implies
that

lim sup
Vol(Γ\X)→∞

dimFp H1(Γ\X,Fp)
Vol(Γ\X)

≤ B.

The question on the growth of dimensions of mod−p homology groups is related to the
rank gradient [1, 5, 67]. The rank gradient of a group Γ with respect to a sequence of
subgroups (Γn) is defined as

RG(Γ, (Γn)) := lim
n→∞

d(Γn)− 1

[Γ,Γn]
,

provided that the limit exists. In [1] (see [5] for a similar problem for fundamental groups
of hyperbolic 3-manifolds) it is shown that if Γ is a higher rank lattice which admits a set of
generators2 s1, s2, . . . , sn such that [si, si+1] = 1 then RG(Γ, (Γn)) = 0 for every sequence
of pairwise distinct finite index subgroups (Γn). We can deduce immediately that

lim
n→∞

dimFp H1(Γn\X,Fp)
Vol(Γn\X)

= 0.

In fact for right-angled groups an even stronger conclusion holds ( [1]):

lim
Vol(Γ\X)→∞

log |H1(Γ\X,Z)|
Vol(Γ\X)

= 0.

It is conjectured [1, Conjecture 3] that

lim
n→∞

d(Γn)− 1

Vol(Γn\X)
= 0

for any sequence of pairwise distinct lattices in a higher rank semisimple Lie group.
Regarding the growth of mod−p homology groups in rank one lattices we have the

following result of Calegari and Emerton [30]. Let M be a 3-manifold with fundamental
group Γ. Fix a map φ : Γ → GL(n,Zp) and write G for the closure of φ(Γ). Put
Gk := G ∩ (ker

[
GL(n,Zp)→ GL(n,Z/pkZ)

]
) and Γk := φ−1(Gk). Associated to each Γk

we have a finite connected cover Mk of M such that π1(Mk) = Γk. The sequence of 3-
manifolds obtained in this way is called a p−adic analytic tower. Let d be the dimension
of G as a p−adic analytic group. In [30] it is proved that the dimensions of the homology
groups H1(Mk,Fp) may grow only in one of the following ways:

• dimFp H1(Mk,Fp) = λpdk +O(p(d−1)k) (linear growth).
• dimFp H1(Mk,Fp) = λp(d−1)k +O(p(d−2)k).
• d = 2 and dimFp H1(Mk,Fp) = O(1).
• d = 3 and dimFp H1(Mk,Fp) ≤ 3 for k large enough.

In particular whenMk are hyperbolic then the limit limk→∞
dimFp H1(Mk,Fp)

Vol(Mk) exists. Calegari
and Emerton conjecture that the first possibility can not occur if

⋂
Γk = {1}. If that is

true then the dimension of mod−p homology groups would grow sublinearly in p−adic
analytic towers of hyperbolic 3-manifolds which converge Benjamini-Schramm to H3.

2Such groups are called right-angled.
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Our main result from Chapter 3 deals with mod−2 homology in higher rank spaces:

Theorem 1.7. Let X be the symmetric space of a higher rank group G and let (Γn) be
a sequence of pairwise distinct torsion free lattices in G. Then

lim
n→∞

dimF2 H1(Γn\X,F2)

Vol(Γn\X)
= 0.

The argument uses non-trivially the characteristic 2 and any extension to odd charac-
teristic would require substantial modifications.

2. Kesten theorems

For a d-regular graph G = (V,E) the Markov averaging operator M : L2(V )→ L2(V )
associated to the random walk on G is given by

MΦ(x) =
1

d

∑
y∼x

Φ(y) for Φ ∈ L2(V ), x ∈ V,

where the sum is taken over all the neighbors of x. The spectral radius of G is defined
as the operator norm ‖M‖ = sup‖φ‖2=1 ‖Mφ‖2. The spectral radius measures the rate at
which random walk expands in the graphs. Among infinite d regular graphs the one with
the lowest spectral radius is the d-regular tree Td whose spectral radius is ρ(Td) = 2

√
d−1
d .

An infinite d-regular graph G is called Ramanujan graph if ρ(G) = ρ(Td).
Let Γ be a countable group with a finite symmetric set of generators S. The Cayley

graph Cay(Γ, S) is the graph with vertex set Γ and edges {(g, gs) | g ∈ Γ, s ∈ S}. Similarly
for any countable set X with right action of Γ we define the Schreier graph Sch(X,S) as
the graph with vertex set X and edges {(x, xs) | g ∈ G, s ∈ S}.

A well known theorem of Kesten [65, 66] asserts that a normal subgroup N of Γ is
amenable if and only if ρ(Cay(Γ, S)) = ρ(Sch(N\Γ, S)). A subgroupH is called Ramanujan
if ρ(Sch(H\Γ, S)) = ρ(Cay(Γ, S)). Every amenable subgroup is Ramanujan but there are
examples of non-amenable not normal subgroups (e.g. free group on 2 generators inside
a free group on 5 generators). In [6] Abert, Glasner and Virag proved a probabilistic
analogue of Kesten’s theorem. They prove that if an invariant random subgroup H of Γ is
Ramanujan almost surely then it is amenable almost surely. This allows to extend Kesten’s
theorem beyond normal subgroups.

Our main result from Chapter 4 is the extension of Kesten’s theorem to uniformly
recurrent subgroups. A subgroup H of Γ is called uniformly recurrent (see [42,43,80])
if the closure of the G-orbit of H in SubΓ is a minimal dynamical system. Such groups
proved useful in the recent characterization of C∗-simplicity by Kennedy [64]. We show

Theorem 1.8 (Thm 3.1). Let Γ be a group generated by finite symmetric set S. A
uniformly recurrent subgroup H of Γ is Ramanujan if and only if it is amenable.

The proof is based on the argument of Abert, Glasner and Virag from [4,6]. Using
similar techniques we give a short proof of a recent result of Lyons and Peres [76]. Define
the function C(−, k) : G → {1, 0} by C(v, k) = 1 if v is contained in a non-backtracking
cycle of length k and 0 otherwise.

Theorem 1.9 (Thm 4.1). Let G be a d-regular rooted infinite Ramanujan graph. Let
(Xi) be the standard random walk on G. Then for any k ≥ 1

lim
n→∞

1

n

n∑
i=1

E
[
C(Xi, k)

]
= 0.

3. Character bounds

In Chapter 5 we study character bounds for the finite groups of Lie type as well as the
compact p-adic reductive groups. We are interested in bounds of the form

|χ(g)| ≤ Cχ(1)1−δ, for every irreducible character χ (3.1)
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where C, δ > 0 depend only on g.
Let us begin by explaining the motivation coming from Chapter 2. Let Γ be a discrete

group. We say that a sequence of finite index subgroups (Γn) of Γ is a Farber sequence
if for every g ∈ Γ \ Z(Γ)

lim
n→∞

|{hΓn | h−1gh ∈ Γn}|
[Γ : Γn]

= 0. (3.2)

It is not hard to see that a sequence of subgroups (Γn) is a Farber sequence if and only if the
sequence of Schreier graphs Sch(Γn\Γ, S) converges to Cay(Γ, S) in Benjamini-Schramm
topology, for any generating set S. In case if Γ is a lattice in a semisimple Lie group the
last condition is equivalent to convergence of orbifolds Γn\X to X in Benjamini-Schramm
topology.

For a finite dimensional representation ρ we write χρ for its character. The Farber
condition (3.2) can be reformulated in terms of characters of the induced representations.
For every non-central g ∈ Γ we have

lim
n→∞

|χInd Γ
Γn

1(g)|
χInd Γ

Γn
1(1)

= 0.

In Chapter 2, Lemma 2.83 we show that for Γ with a polynomial representation growth
any bound of the form

|χ(g)| ≤ Cχ(1)1−δ for χ irreducible

with δ > 0 implies
|χInd Γ

Γn
1(g)| ≤ C ′χInd Γ

Γn
1(1)1−δ′

for certain positive δ′. Inequalities of this type are one of the crucial components of the
proof of Theorem 1.2.

Another motivation to study the bounds of the form (3.1) comes from work of Liebeck,
Shalev et al. [74] who successfully applied them to study random walks on finite groups of
Lie type, random generation problem and word generation problem. Inequalities obtained
by Glück [55] imply that for every Chevalley group G there exists C, δ > 0 such that for
every g ∈ G(Fq) non-central we have

|χ(g)| ≤ Cχ(1)1−δ for every irreducible character χ.

Note that this bound is uniform in q. The constant δ4 = resulting from Glück’s estimates is
1

dimG which is highly non-optimal for most elements of G. Larsen proved in an unpublished
note [71] that if G is a reductive group defined over a finite field Fq and g ∈ G(Fq) is regular
semsimple then |χ(g)| ≤ |W |2 where W is the absolute Weyl group of G. In Chapter 2 we
adapted Larsen’s method to the p-adic setting and proved the following:

Theorem 1.10. Let G be a reductive group defined over a non-archimedean local field
F . Let K be a compact open subgroup of G(F ), let γ ∈ K be a regular semisimple element.
Then for every irreducible character χ of K:

|χ(γ)| ≤ C,

where constant C depends only on γ and G (not on K or χ).

In Chapter 5 we prove a slight improvement of Larsen’s bound using Deligne-Lusztig
restriction functors. We prove that in a reductive group G over a finite field the value
of an irreducible character on any semisimple regular element is bounded by |W |. A
similar approach using restriction functors was developed independently by Bezrukavnikov,
Liebeck, Shalev and Tiep [74]. They use it to strengthen Glück’s bound. Write

α(L) := max

{
dimuL

dimuG
| u ∈ L, u 6= 1 unipotent

}
.
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Theorem 1.11 ( [19]). Let γ ∈ G(Fq) and let L be a rational Levi subgroup of some
rational parabolic subgroup of G such that G0

γ ⊂ L. Then, for every irreducible character
χ of G(Fq) we have

|χ(γ)| � χ(1)α(L),

where the implicit constant depends only on the rank of G.
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CHAPTER 2

Strong limit multiplicity for arithmetic hyperbolic surfaces
and 3-manifolds

1. Introduction

1.1. Limit multiplicity. Let G be a semisimple Lie group and let Γ be a cocompact
lattice in G. We fix a Haar measure on G. The group G acts on L2(Γ\G) by right
translations which makes it a unitary representation of G. If Γ is cocompact, the space
L2(Γ\G) decomposes as a direct sum of its irreducible subrepresentations, possibly with
multiplicities. A natural question one can pose is how the distribution of the irreducible
components of L2(Γ\G) changes as we vary the lattice Γ. First major results in this
direction were obtained by DeGeorge and Wallach in [34]. They showed that if (Γi)i∈N is
a tower of cocompact lattices in G, i.e a sequence satisfying the following three conditions:
Γi+1 ⊂ Γi, Γi C Γ1,

⋂∞
i=1 Γi = {1}, then the asymptotic multiplicities of the discrete

series representations are proportional to the volume Vol(Γ\G). More precisely, for every
irreducible unitary representation π of G they prove that

lim
i→∞

mΓ(π)

Vol(Γ\G)
=

{
dπ if π is in the discrete series,
0 otherwise,

where mΓ(π) = dimC HomG(π, L2(Γ\G)) is the multiplicity of π in L2(Γ\G). In the same
paper DeGeorge and Wallach conjectured a stronger result called the limit multiplicity
property (see [37]). It states that under the same conditions, the distribution of irreducible
components of L2(Γ\G) counted with multiplicity divided by the covolume of Γ tends to
the Plancherel measure. Let us recall the definition of the Plancherel measure.

Let Π(G) denote the set of the irreducible unitary representations up to equivalence.
For π ∈ Π we write Hπ for the underlying Hilbert space. For a function f ∈ L1(G) we can
consider its Fourier transform, given by

f̂(π) := π(f) :=

∫
G
f(g)π(g)dg.

It is a bounded linear operator on Hπ [48, Chapters 7.4,7.5]. If f ∈ C∞c (G) the operator
f̂(π) is a Hilbert-Schmidt operator [87, Proof of Theorem 8.2]. Thus we can treat f̂(π) as
an element of Hπ ⊗ H∗π. The Plancherel measure is the unique measure µpl on Π(G) for
which

‖f‖2L2 =

∫
Π(G)

‖f̂(π)‖2Hπ⊗H∗πdµ
pl for all f ∈ C∞c (G).

Equivalently it is the unique measure for which

〈f, g〉 =

∫
Π(G)
〈f̂(π), ĝ(π)〉Hπ⊗H∗πdµ

pl =

∫
Π(G)

tr(π(f)π(g)∗)dµpl.

By approximating the Dirac delta at the identity by functions from C∞c (G) we can deduce
yet another identity

f(1) =

∫
Π(G)

tr(π(f))dµpl for all f ∈ C∞c (G).

The last equality can be also used as the definition of the Plancherel measure. The tem-
pered spectrum Πtemp(G) is defined as the support of the Plancherel measure.
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Let us return to the limit multiplicity property. For any lattice Γ (not necessarily
cocompact) we define the measure µΓ on Π(G) by

µΓ =
1

Vol(Γ\G)

∑
π∈Π(G)

mΓ(π)δπ.

We say that a sequence of lattices (Γi)i∈N has the limit multiplicity property if for every
bounded function φ ∈ C(Πtemp(G)) 1

lim
i→∞

∫
Π(G)

φ(π)dµΓi =

∫
Π(G)

φ(π)dµpl

and for every bounded set B in Π(G)\Πtemp(G) the measures µΓi(B) tend to 0. Sauvageot
showed in [97] that it is enough to test the convergence for functions of the form π 7→
tr(π(f)) where f is a smooth, compactly supported function on G (see also [101]).

Theorem 2.1 (Sauvageot Density Principle). A sequence of lattices (Γi) has the limit
multiplicity property if and only if, for every f ∈ C∞c (G) we have

lim
i→∞

∫
Π(G)

trπ(f)dµΓi = f(1).

We remark that this theorem holds for uniform as well as for non-uniform lattices.
Write RΓf for the operator

RΓf(Φ)(x) :=

∫
G
f(g)Φ(xg)dg for Φ ∈ L2(Γ\G). (1.1)

The Sauvageot density principle is especially convenient in the uniform case, because then
L2(Γ\G) decomposes discretely and we have∫

Π(G)
trπ(f)dµΓ =

1

Vol(Γ\G)

∑
π∈Π(G)

mΓ(π)trπ(f) =
trRΓf

Vol(Γ\G)
.

In 1979 DeGeorge and Wallach [35] proved the limit multiplicity property for towers of
cocompact lattices in semisimple Lie groups of real rank 1 and in 1986 Delorme [37] settled
the question for cocompact towers in arbitrary semsimple Lie groups. For sequences of non-
uniform lattices Sarnak [96] showed that any sequence of principal congruence subgroups
Γ(Ni) ∈ SL(2,Z) with Ni →∞ has the limit multiplicity property. Analogues in the non
uniform case of the results of DeGeorge and Wallach about the multiplicites of irreducible
unitary representations were obtained by DeGeorge [36], Barbasch—Moscovici [14] for
groups of real rank one, and by Clozel [32] for general groups. The strongest results for
asymptotic multiplicities in towers of arithmetic lattices were obtained by Rohlfs—Spehr
[95] and Savin [98]. These results were followed by works of Finis, Lapid and Mueller [47]
who proved the limit multiplicity for principal congruence subgroups of SL(n,Ok) whereOk
is the ring of integers in a number field k. By the Borel-Harish-Chandra Theorem those are
lattices in the semisimple Lie group SL(n, k ⊗Q R). This result was later extended in [46]
to arbitrary sequences (Γi)i∈N of congruence subgroups of SL(n,Ok).

In the uniform case, a substantial breakthrough was obtained in [2]. Using invariant
random subgroups and the notion of Benjamini-Schramm convergence it was shown that if
G has real rank at least 2 and Kazhdan’s property (T), then every sequence of cocompact
lattices (Γi)i∈N which are pairwise non conjugate and whose injectivity radius is uniformly
bounded away from 0 has the limit multiplicity property. It was the first result dealing with
sequences of not necessarily commensurable lattices. In 2013 Jean Raimbault [92, Corol-
lary 1.3.5] obtained very general results on sequences of maximal lattices in SL(2,C) which
are all defined over quadratic or cubic number fields. Recently Jasmin Matz [81] proved
that the Limit Multiplicity hold for groups G = SL(2,R)r1 × SL(2,C)r2 and sequences of
arithmetic lattices of form SL(2,OF ) where F is a number field with r1 real and r2 complex
places.

1We mean functions continuous with respect to the Fell topology on Π(G) [39, 18.1]
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1.2. Benjamini-Schramm convergence. Let G be a semisimple Lie group and Γ ⊂
G a cocompact lattice. Let K be a maximal compact subgroup of G. Let X = G/K be
the symmetric space of G endowed with the G-invariant Riemannian metric defined by the
Killing form of G (see [58]). Let dG be associated left invariant Riemannian metric on G
and write BG(Σ, R) for the open R-ball around the set Σ ⊂ G. We can define the R-thin
part of the orbifold Γ\X as

(Γ\X)<R :=
{

ΓgK | BG(K,R) ∩ g−1Γg 6= {1}
}

(1.2)

Let x ∈ Γ\X and let x̃ ∈ X be a lift of x. Recall We that the injectivity radius injradx
is defined as the supremum of real numbers R such that the projection map B(x̃, R) →
B(x,R) is injective. Given a sequence of lattices (Γi)∈N we consider the sequence of locally
symmetric spaces (Γi\X)i∈N. We say that the sequence (Γi\X)i∈N converges Benjamini-
Schramm (or B-S converges) to G/K if for every R > 0 we have

lim
i→∞

Vol((Γi\X)<R)

Vol(Γi\X)
= 0 (1.3)

For brevity we shall say that (Γi)i∈N has property B-S if the sequence (Γi\X)i∈N converges
Benjamini-Schramm to X. The notion of Benjamini-Schramm convergence originates from
the paper [15] where they defined it for the sequences of graphs of bounded degree. For
locally symmetric spaces it was defined and studied in [2]. It is a special case of Benjamini-
Schramm convergence for metric spaces with probability measures (see [2, Chapter 3]).

It is well-known that the Limit Multiplicity Property implies the Benjamini-Schramm
convergence for sequences of cocompact lattices (see Section 11).

One of the main results of [2] is the following:

Theorem 2.2 ( [2, Theorem 1.5]). Let G be a real semisimple Lie group of real rank
at least 2 and with Kazhdan’s property (T). Then every sequence of pairwise non-conjugate
lattices (Γi)i∈N in G has property B-S.

For a sequence of congruence subgroups of a fixed uniform arithmetic lattice they
showed a stronger quantitative version of B-S convergence:

Theorem 2.3 ( [2, Theorem 1.12]). Let Γ0 a uniform arithmetic lattice in G. Then
there exist positive constants c, µ depending only on Γ0 such that for any congruence sub-
group Γ ⊂ Γ0 and any R > 0 we have

Vol((Γ\X)<R) ≤ ecRVol(Γ\X)1−µ

The result concerning the limit multiplicity property that we referred to in the last
section is a consequence of Theorem 2.2 and the following:

Theorem 2.4 ( [2, Theorem 1.2]). Let (Γi)i∈N be a sequence of lattices with property
B-S, such that the injectivity radius inj rad(Γi\X) is uniformly bounded away from 0 2.
Then (Γi)i∈N has the limit multiplicity property.

The Margulis injectivity radius conjecture [77] predicts that for a fixed semisimple
Lie group G the injectivity radius of Γ\G/K is bounded away from 0 uniformly for all
arithmetic lattices. This would be implied by the Lehmer conjecture and would itself imply
the Salem number conjecture. So far no decisive progress has been made towards the proof
of the Margulis conjecture. Finally we should mention the results of Jean Raimbault [92]
for arithmetic lattices in SL(2,C) and associated arithmetic 3-orbifolds, we shall describe
them in greater detail in the next paragraph devoted to sequences of arithmetic lattices.

2The actual condition is: the lengths of closed geodesics are uniformly bounded from below and the
order of torsion elements of Γi is uniformly bounded from above.
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1.3. Sequences of arithmetic lattices. In this section we shall discuss what are
the reasonable conditions that we should put on a sequence of arithmetic lattices (Γi)i∈N
to expect that it has the limit multiplicity property or the B-S property. The first obvious
condition is

(1) limi→∞Vol(Γi\G) =∞,
By Theorem 2.2 this is sufficient for property B–S in higher rank groups with property (T).
IfG is a rank 1 Lie group, then this is not enough. For example if Γ is a torsion free, uniform
arithmetic lattice in SL(2,R) and M0 := Γ\H is the corresponding compact hyperbolic
surface, we can take (Mi)i∈N a sequence of cyclic covers of M0. Clearly (Mi)i∈N does not
converge Benjamini-Schramm to H because the radius of injectivity is uniformly bounded
by 5diamM0

3. Hence the sequence of fundamental groups Γi = π1(Mi) does not have
property B-S. There is a similar counter-example constructed by Sarnak and Phillips [88]
for the limit multiplicity property. In both of these constructions the sequences contained
lattices which were not congruence lattices. Hence, it seems reasonable to add the second
condition

(2) Γi is a congruence lattice for all i ∈ N.
With these conditions we expect that at least the weak version of the following conjecture
holds:

Conjecture 2.5. • (Weak version) Let G be a semisimple Lie group with triv-
ial center and (Γi)i∈N a sequence of arithmetic lattices in G satisfying conditions
(1) and (2). Then (Γi)i∈N has the limit multiplicity property and the B-S property.
• (Strong version) Let X = G/K be the Riemannian symmetric space of a center-
free semisimple group G. There exists a δ > 0 such that for any R > 0 and any
congruence arithmetic lattice Γ in G and any f ∈ C(G) with suppf ⊂ B(1, R) we
have

Vol((Γ\X)<R)�R Vol(Γ\X)1−δ, (1.4)∣∣∣∣f(1)− trRΓf

Vol(Γ\G)

∣∣∣∣�R ‖f‖∞Vol(Γ\G)−δ. (1.5)

Cases of this conjecture for maximal lattices and for lattices defined over fields of
bounded degree were present in [92, Section 1.1.2] and that a similar statement holds was
conjectured in [2, Conjecture 6.1]. For G = SL(2,C) and lattices defined over a cubic or
quadratic field this was settled by Jean Raimbault [92, Theorem A]. He has shown, among
other things, that there exists δ > 0 with the following property. For any maximal lattice
Γ in SL(2,C) defined over a cubic or quadratic number field put M = Γ\SL(2,C)/K then

Vol((M)<R)�R Vol(M)1−δ.

This implies that any sequence of maximal lattices (Γi)i∈N defined over a cubic field has
property B-S if Vol(Γi\G) tends to infinity. In particular, he solved completely the case
of sequences of non uniform lattices as all arithmetic non-uniform lattices in SL(2,C)
are defined over a quadratic imaginary number field. For multiple factors of SL(2,R)
and SL(2,C) Jasmin Matz [81] proved a reasonable analogue of Strong Limit Multiplicity
property for certain sequences of non-uniform arithmetic congruence lattices. Raimbault
has also addressed Conjecture 2.5 for sequences of lattices defined over fields of bounded
degree. He obtained the following

Theorem 2.6. [92, Theorem B] Let (Γi)i∈N be a sequence of lattices in SL(2,C) with
fields of definition Fi such that:

• Fi is a quadratic extension of a totally real subfield Bi,

3Let a, b ∈ π1(M0) be such that c = aba−1b−1 6= 0 and let γ be a geodesic on M0 corresponding to
c. Since the covering Mi → M0 is abelian for all i the geodesic γ lifts to a closed geodesic on Mi. Every
point x in Mi is at distance at most diamM0 to a lift of γ so injrad (x) ≤ diamM0 + l(γ) where l(γ) is the
length of γ. We can pick a, b such that the loops representing them are of lengths smaller than diamM0.
If follows that l(γ) ≤ 4diamM0 and consequently injrad (x) ≤ 5diamM0.
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• the relative discriminants ∆Fi/Bi go to infinity,
• the absolute degree [Fi : Q] is bounded.

Then (Γi)i∈N has property B-S.

The second condition is reminiscent of the assumptions of the Brauer Siegel theorem,
but the proof in [92] does not use it. The argument follows the strategy of [2] via Invariant
Random Subgroups (IRS) and the Borel density Theorem for IRS’s [2, Theorem 2.6].

Let us explain how one could deduce the weak version of Conjecture 2.5 from the
statement that holds only for maximal lattices. We shall use Theorems 2.3 and 2.4 (
[2, Theorems 1.12,1.2]).

Lemma 2.7. Let G be a semisimple Lie group. Suppose that every sequence of maximal
arithmetic lattices (Γi)i∈N such that Vol(Γi\G) → ∞ has the limit multiplicity property
and property B-S. Then every sequence of congruence arithmetic lattices (Λi)i∈N satisfying
limi→∞Vol(Λi\G) =∞ has the limit multiplicity property and property B-S.

Proof. Let (Λi)i∈N be as in the statement. It will be enough to show that we can
always find a subsequence with the desired properties. For any i choose a maximal arith-
metic lattice Γi containing Λi. We consider two cases, either Vol(Γi\G) goes to ∞ or not.
In the first case, the sequence (Γi) has the limit multiplicity property and the B-S property.
For any R > 0 and f ∈ Cc(G) we have

Vol((Λi\G/K)<R)

Vol(Λi\G/K)
≤Vol((Γi\G/K)<R)

Vol(Γi\G/K)
(1.6)∣∣∣∣f(1)− trRΛif

Vol(Λi\G)

∣∣∣∣ ≤ ∣∣∣∣f(1)− trRΓif

Vol(Γi\G)

∣∣∣∣ . (1.7)

Inequality (1.6) follows from the fact that the R-thin part of Λi\G/K covers only the
R-thin part of Γi\G/K so Vol((Λi\G/K)<R) ≤ [Γi : Λi]Vol((Γi\G/K)<R). To prove (1.7)
note that for every Γi-conjugacy class [γ]Γi we have∑

[γ′]Λi⊂[γ]Γi

Vol(Λi,γ′\Gγ′)Oγ′(f) ≤ [Γi : Λi]Vol(Γi,γ\Gγ)Oγ(f).

Now (1.7) follows from the Selberg trace formula and the identity Vol(Λi\G/K) = [Γi :
Λi]Vol(Γi\G/K).

Hence (Λi)i∈N also has the limit multiplicity property and the B-S property. In the
second case we invoke the result of Borel and Prasad [23, Theorem A] on the finiteness
of the number of arithmetic lattices of bounded volume. It follows that there exists an
infinite subsequence (ni)i∈N such that Γni = Γ for some fixed maximal Γ. The lattices
in the sequence (Λni)i∈N are all contained in Γ so by Theorem 2.3 it has property B-S.
Moreover the radius of injectivity of Λni\G/K is at least as big as injrad (Γni\G/K) so by
Theorem 2.4 (Λni)i∈N has the limit multiplicity property. �

Note that even if the strong version of the Conjecture 2.5 holds for maximal lattices
the argument above does not yield the strong version in the general case. The reason for
that is that the implicit constant and the exponent in Theorem 2.3 depend of the lattice
in a non-explicit way. 4

1.4. Main results. Our main results deal with sequences of arbitrary, torsion free
congruence arithmetic lattices in PGL(2,R) and PGL(2,C). Let K = R or C and let
K be a maximal compact subgroup of PGL(2,K). Write X for the symmetric space
PGL(2,K)/K equipped with the Riemannian metric induced by the Killing form.

4It looks difficult to extract sufficient dependence of Γ from the proofs of [2, Thm 1.2] and the analogous
result from [46]. One of the main innovation of the present paper is an alternative approach to [2, Thm
1.2] which gives very explicit bounds.
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1.4.1. Strong Limit Multiplicity and Benjamini-Schramm convergence.

Theorem 2.8. [Strong Limit Multiplicity] There exists a > 0 such that for any R >
0 the following holds. Let Γ be a uniform torsion free, congruence arithmetic lattice in
PGL(2,K). For any f ∈ C(PGL(2,K)) with suppf ⊂ B(1, R)

|Vol(Γ\PGL(2,K))f(1)− trRΓf | �R ‖f‖∞(Vol(Γ\PGL(2,K))1−a. (1.8)

We can take a ≥ 0.014.

Theorem 2.9. [Strong Benjamini Schramm convergence] There exists a > 0 such that
for any R > 0 the following holds. Let Γ be a torsion free, congruence arithmetic lattice in
PGL(2,K). Then

Vol((Γ\X)<R)�R Vol((Γ\X))1−a. (1.9)
We can take a ≥ 0.014.

Remark 2.10. This settles both versions of Conjecture 2.5 for lattices in PGL(2,R)
and PGL(2,C) with an additional assumption that they are torsion free. The method
also applies to congruence lattices without torsion of small order. Lattices with 2-torsion
elements are the hardest case, where the bounds we can obtain are not sufficient to prove
the Strong Limit Multiplicity.

Without assuming the congruence condition we have

Theorem 2.11. There exists c > 0 such that for any R > 0 the following holds.
Let K = R or C, let Γ be a torsion free, arithmetic lattice in PGL(2,K). Then for any
f ∈ C(PGL(2,K)) with suppf ⊂ B(1, R)

|Vol(Γ\X)f(1)− trRΓf | �R ‖f‖∞∆−ck , (1.10)
Vol((Γ\X)<R)

Vol(Γ\X)
�R ∆−ck , (1.11)

where ∆k is the discriminant of the trace field k of Γ and c ≥ 0.0006.

As a corollary of the proof we will get

Corollary 2.12. Let (Γi)i∈N be a sequence of torsion free arithmetic lattices in PGL(2,K).
Then either infinitely many Γi’s are commensurable or the sequence (Γi)i∈N has property
B–S.

By using a different argument Corollary 2.12 is vastly improved in [49] (see Corollary
2.15).

Remark 2.13. An element g is called R-regular ( [16,91]) if Ad g has no eigenvalues
on the unit circle. Define

trrrRΓf =
∑

[γ]∈Γ

γ R−regular

Vol(Γγ\Gγ)Oγ(f).

In the proof Theorem 2.8 we actually show that for any congruence lattice Γ (possibly
non-uniform or with torsion)∣∣∣∣ trrrRγf

Vol(Γ\PGL(2,K))

∣∣∣∣�R ‖f‖∞Vol(Γ\PGL(2,K))(1−a). (1.12)

Theorem 2.8 follows because in the torsion free lattices of PGL(2,K) every nontrivial ele-
ment is R-regular.

Several steps of the proofs of Theorems 2.8, 2.9 and 2.11 work also for other simple
Lie groups. The difficulties arise when we want to estimate the adelic volumes of the
centralizers (c.f. Proposition 2.93) and the values of irreducible congruence characters at
semisimple, non-regular elements (c.f. Theorem 2.61). For general semisimple Lie group G
the methods from the present paper should be mutatis mutandis enough to prove that the
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contribution to the geometric side of the trace formula coming from R-regular elements
(see [16,91]) of a congruence lattice Γ is bounded by Vol(Γ\G)1−α for some α > 0. For
torsion free uniform lattices in PGL(2,R),PGL(2,C) all nontrivial elements are R-regular
so trRΓf−f(1)Vol(Γ\G) = trrrRΓf and we can prove the strong form of limit multiplicity.
In the forthcoming work with Jean Raimbault [49] we prove:

Lemma 2.14. [49] Let G be simple Lie group and let (Γi)i∈N be a sequence of lattices
in G such that for every f ∈ Cc(G) we have

lim
i→∞

trrrRΓif

Vol(Γ\G)
= 0.

Then the sequence of locally symmetric spaces Γi\X tends to X in Benjamini-Schramm
convergence.

As a corollary of (1.12) and the above lemma one gets

Corollary 2.15. [49] Let be (Γi)i∈N be any sequence of pairwise non-conjugate arith-
metic congruence lattices in PGL(2,K). Then Γi\X converges B-S to X.

1.4.2. Triangulations of arithmetic hyperbolic 3-manifolds. As an application of
above results we prove Gelander conjecture [53, Conjecture 1.3] for arithmetic 3-manifolds:

Theorem 2.16. There exist absolute positive constants A,B such that every arithmetic,
hyperbolic 3-manifold M is homotopically equivalent to a simplicial complex with at most
AVol(M) vertices and each vertex has degree bounded by B (if M is compact we can take
B = 245).

As a simple corollary we obtain:

Corollary 2.17. There exists a constant C > 0 such that any arithmetic lattice Γ in
PGL(2,C) admits a presentation

Γ = 〈S | Σ〉
where the size of |S|, |Σ| is bounded by CVol(M) and all relations in Σ are of length at
most 3.

1.4.3. Growth of Betti numbers. Mathsushima’s formula [18, 79] provides a link
between the spectral decomposition of L2(Γ\PGL(2,K) and dimensions of cohomology
groups H i(Γ\X,C). We use standard notation bi(Γ\X) := dimCH

i(Γ\X,C) and we write
b
(2)
i (X) for the L2-Betti numbers of X. Using theorems 2.8 and 2.11 we deduce:

Corollary 2.18. Let (Γi)i∈N be a sequence of pairwise distinct arithmetic, torsion
free lattices in PGL(2,K). Assume that either the are congruence or they are pairwise
non-commensurable. Then

lim
i→∞

bi(Γ\X)

Vol(Γ\X)
= b

(2)
i (X) =

{
1

2π X = H2, i = 1

0 otherwise.

1.5. Baby Case. The proof of Theorem 2.8 is quite long and does not split well
into separate steps. Before giving the outline for the general case we will give a detailed
sketch of the proof for a very particular type of arithmetic lattices. The baby case deals
with the class of "nice" lattices in PGL(2,R) (we will define them shortly) which are
very close to being maximal. This example already involves lattices with trace fields of
unbounded degree so it does not follow from the results of Matz [81] nor from the work of
Raimbault [92]. The only reason why we can not work with maximal lattices is that they
contain torsion elements and some of our arguments break down for such. We recommend
the reader to get acquainted with our notations (Section 2), preliminaries on the quaternion
algebras (Section 3) and the construction of arithmetic lattices (Section 4.2, Definitions
2.35,2.48,2.34) before reading this sketch.

Let k be a totally real number field of odd degree. We assume that the ring of integers
Ok has a prime ideal p0 such that Ok/p0 ' F2. Fix a real place ν0 of k. Let D be the
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quaternion algebra over k with the ramification set RamD = M∞k \ {ν0}. By Proposition
2.29 such D exists and is unique up to k-isomorphism. Write PD× for the projective
multiplicative group of D. The group of adeles decomposes as the restricted product

PD×(A) ' PGL(2,R)× PO(3,R)[k:Q]−1 ×
∗∏

p∈Mf
k

PGL(2, kp). (1.13)

We fix a maximal open compact subgroup U of PGL(2,Af ):

U =
∏

p∈Mf
k

PGL(2,Okp). (1.14)

We putK0 = {k×p0
x | x ∈ GL(2,Okp0

), x ≡ Id mod p2
0} and U0 = K0×

∏
p∈Mf

k
p6=p0

PGL(2,Okp).

Since Ok/p0 ' F2 we have PGL(2,Okp0
) ' PGL(2,Z2) and

K0 ' {Z×2 x | x ∈ GL(2,Z2), x ≡ Id mod 4}
is a torsion-free subgroup of PGL(2,Okp0

) of index 48. We put Γ := PD×(k)∩
(
PD×(A∞)× U0

)
and identity Γ with its projection to PD×(kν0) ' PGL(2,R). It is a congruence arithmetic
torsion-free lattice in PGL(2,R). We will call the lattices constructed in this way nice. In
the baby case we will show that for any f ∈ Cc(PGL(2,R)) and a nice lattice Γ we have

|trRΓf −Vol(Γ\PGL(2,R))f(1)| �f Vol(Γ\PGL(2,R))1−a, (1.15)

for some positive constant a5. Since nice lattices are subgroups of maximal lattices of
uniformly bounded index, the argument will be much simpler than in the general case. In
particular, we will not need to use the representation zeta functions and the machinery
developed in Section 8.

Step 1. We would like to bound the LHS of (1.15) from above using the adelic version
of Selberg trace formula and give a lower bound on the volume Vol(Γ\PGL(2,R) using our
variant of Borel volume formula (Corollary 2.92). Put fA = f⊗(1PO(3,R))

[k:Q]−1⊗(48 ·1U0)
(see Section 4.5 for the explanation why we choose fA in this way) and put the standard
Haar measure (see Section 2.4) on PD×(A). We recall that the standard measure depends
implicitly on the choice of the subgroup U . By Section 4.5, Corollary 2.54 we have the
following estimate

|Vol(Γ\PGL(2,R))f(1)− trRΓf | ≤
2

|cl (U0)|
∑

[γ]PD×(k)

γ 6=1

Vol(PD×γ (k)\PD×γ (A))Oγ(|f |A),

(1.16)
and by Corollary 2.92

Vol(Γ\PGL(2,R)) =
[U : U0]

|cl (U0)|
|∆k|3/2ζk(2)

π(4π2)[k:Q]−1
≥ 48|∆k|3/2

|cl (U0)|(4π2)[k:Q]
. (1.17)

Note that in the case of nice lattices the ramification set of the quaternion algebra consists
only of archimedean places and the set S of places p where U 6' PGL(2, Okp) is empty so
the above formulas are simpler than in the general case. The proofs of Corollaries 2.54 and
2.92 are as hard for the baby case as they are in general.

Step 2. Note that Oγ(|f |A) 6= 0 implies that the conjugacy class of γ in PGL(2,R)
intersects the support of f . We endow PGL(2,R) with a left-invariant group metric
d(x, y) = ‖1 − Ad (y−1x)‖ where ‖A‖ =

√
tr(ATA). Assume that suppf is contained

in a ball B(1, R). In Lemma 2.69 we show that if the conjugacy class of γ intersects
B(1, R) then the logarithmic Mahler measure m(γ) of γ 6 is bounded by R. The Mahler

5Our proof in this special case yields a ≥ 1/2 and this is not optimal. Note that the bound in general
case is much weaker, with a≥ 0.014.

6For the definition of Mahler measure of an algebraic number see Section 5, m(γ) is defined as m(λ)
where λ is a non-trivial eigenvalue of Ad γ.
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measure controls many arithmetic quantities related to γ including the orbital integrals
and the adelic volumes appearing on the right hand side of 1.16. It is important to keep
in mind that the non-vanishing of Oγ(|f |A) gives a uniform bound on m(γ).

The estimate of RHS of (1.16) can be split in three parts. First we need to estimate the
number of the conjugacy classes that bring a non-zero contribution to the sum, secondly
we need a uniform upper bound on Vol(PD×γ (k)\PD×γ (A)) for those γ with Oγ(|f |A) 6= 0
and finally a uniform upper bound on Oγ(|f |A).

Step 3. We give an upper bound on the number N = N(f,Γ) of rational conjugacy
classes γ such that Oγ(|f |A) 6= 0. In Section 7 we prove (Theorem 2.77) that N =
exp(o([k : Q])). The argument does not simplify for the baby case so for the details we
refer to Section 7. The uniform bound on the logarithmic Mahler measure m(γ) allows to
use Bilu equidistribution theorem for the eigenvalues of γ. In the proof of Theorem 2.77 we
apply bounds of Kabatianski-Levenstein on the number of almost orthogonal vectors in an
Euclidean space to estimate the number of possible eigenvalues of Ad γ by exp(o([k : Q])).
In the projective group PD×(k) the eigenvalues of Ad γ practically determine the conjugacy
class of γ (see Proposition 2.26) so we are done.

Step 4. Let γ be a regular non-torsion semisimple element of PD×(k) such that
Oγ(|f |A) 6= 0. To bound the volume Vol(PD×γ (k)\PD×γ (A)) we express it using the com-
pleted Artin L-functions. Again, we will use the fact that Oγ(|f |A) 6= 0 implies a bound on
the logarithmic Mahler measure of γ. Let λ be one of the non-trivial eigenvalues of Ad γ.
Put l = k(λ), it is a quadratic extension of k. Let ξk(s), ξl(s) be the completed Dedekind
zeta functions of k and l respectively. Put Λ(s, χl/k) = ξl(s)/ξk(s)

7. By Proposition 2.93
we have

Vol(PD×γ (k)\PD×γ (A))�
Λ(1, χl/k)

(2π)[k:Q]
. (1.18)

With the help of Theorem 2.59 we can prove that |Λ(s, χl/k)| �s exp(o(k : Q)). In this
step we have to use the assumption that γ is non-torsion and that m(γ) < R. Next, we
mimic the complex-analytic proof of the Brauer-Siegel theorem to get

Vol(PD×γ (k)\PD×γ (A))�ε,R
|∆k|1/2+ε

(2π)[k:Q]
. (1.19)

Inequality (1.19) is the contens of Proposition 2.95.
Step 5. Finally we need to bound the orbital integrals Oγ(|f |A). This is the part

where the baby case is much easier than the general case. Note that

|f |A = |f | ⊗ (1PO(3,R)⊗[k:Q]−1 ⊗ 481K0 ⊗
⊗
p6=p0

1PGL(2,Okp ),

so
Oγ(|f |A) = 48Oγ(|f |)Oγ(1K0)

∏
p6=p0

Oγ(1PGL(2,Okp )).

By inequality (6.16) from the proof of Proposition 2.65 we deduce that

|Oγ(1PGL(2,Okp )) ≤ 3e|∆(γ)|−1/2
p , (1.20)

where e = 0 if |∆(γ)|p = 1 and e = 1 otherwise. Recall that ∆(γ) is the Weyl discriminant
of γ and that | · |p stands for the multiplicative p-adic valuation, normalized so that |π|p =
N(p)−1 where π is the uniformiser of Okp .

We obviously have Oγ(1K0) ≤ Oγ(1PGL(2,Okp0
) so

Oγ(|f |A) ≤ 48 · 3N
∏
p

|∆(γ)|−1/2
p = Oγ(|f |A) ≤ 48 · 3N |Nk/Q(∆(γ))|1/2,

where N is the number of primes p for which |∆(γ)|p 6= 1. If Oγ(|f |) 6= 0 then by
Lemma 2.58 |Nk/Q(∆(γ))| = exp(o([k : Q])). This is one of the key ways we use Bilu

7This is completed Artin L-function attached to the unique non-trivial character χl/k of Gal(l/k).
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equidistribution theorem. Note that

3N < 22N ≤
∏
p

|∆(γ)|−2 = |Nk/Q(∆(γ)|2 = exp(o([k : Q])).

It remains to deal with the archimedean orbital integral. By Corollary 2.70 Oγ(|f |A) �
[k : Q]4 = exp(o([k : Q])). Putting those estimates together we get

Oγ(|f |A)� exp(o([k : Q])).

Step 6. We apply the bounds from the last three steps to (1.16):

|trRΓf −Vol(Γ\PGL(2,R)| � 2

|cl (U0)|
|∆k|1/2+ε

(2π)[k:Q]
exp(o([k : Q]))� |∆k|1/2+2ε

|cl (U0)|(2π)[k:Q]
.

In the last inequality we have used Minkowski’s lower bound on ∆k which tells us that ∆k

grows exponentially in the degree [k : Q]. On the other hand the volume is bounded from
below by

Vol(Γ\PGL(2,R))� |∆k|3/2

|cl (U0)|(4π2)[k:Q]
.

We look for a > 0 such that

|∆k|1/2+2ε

|cl (U0)|(2π)[k:Q]
�

(
|∆k|3/2

|cl (U0)|(4π2)[k:Q]

)1−a

.

(4π2)(1−a)[k:Q]

|cl (U0)|a(2π)[k:Q]
� |∆k|(1−a)3/2−1/2.

Minkowski lower bound on the discriminant8 yields |∆k| � e2[k:Q]−log[k:Q] � e1.99[k:Q] so it
would be enough to take a > 0 such that(

(4π2)(1−a)

(2π)

)[k:Q]

� e1.99[k:Q][(1−a)3/2−1/2].

If we take a = 1/2 the left hand side is equal to 1 while the right hand side equals e1.99[k:Q]/4.
The Strong Limit Multiplicity for the baby case follows with a = 1/2.

1.6. Outline of the proofs.
1.6.1. From Limit Multiplicity to Benjamini-Schramm convergence. The Strong Benjamini-

Schramm convergence will be deduced from the Strong Limit Multiplicity property in the
Section 11. The proof is just an application of Strong Limit Multiplicity to the charac-
teristic function of the ball of radius R around the identity. Section 11 contains also the
proofs of Theorem 2.11 and Corollary 2.12.

1.6.2. Gelander Conjecture. We construct appropriate simplical complex as nerve of
a covering of M by balls. We use Dobrowolski lower bound on Mahler measure [40] to
control the injectivity radius in terms of the degree of the trace field and Theorem 2.11
to estimate the volume of the thin part of the manifold. Quantitative control over both
allows to deduce Theorem 2.16. Proof occupies Section 12.

1.6.3. Strong Limit Multiplicity. The proof of Theorem 2.8 is divided into several steps.
(1) Adelic Trace Formula. The first step is to express the trace of RΓf using

the adelic Arthur-Selberg trace formula. For brevity write G = PGL(2,K). The
ordinary Selberg trace formula yields the equality

trRΓf =
∑

[γ]Γ⊂Γ

Vol(Γγ\Gγ)

∫
Gγ\G

f(g−1γg)dg.

We shall write Oγ(f) for the orbital integral
∫
Gγ\G f(g−1γg)dg. The problem

with this trace formula is that we sum orbital integrals over conjugacy classes

8Minkowski gives
√

∆k ≥ nn

n!

(
π
4

)r2 where n = [k : Q] and r2 is the number of complex places of k. As
the field k is totally real the desired bound follows from Stirling’s approximation.
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in Γ. A priori it is not clear how to parametrize conjugacy classes in Γ. The
adelic version of the trace formula allows to replace Γ by the k-points of a certain
algebraic group PD× and to sum over rational conjugacy classes in PD×(k). The
latter are easy to classify, we do this in Section 3.4.

In Section 4 we recall the construction of congruence arithmetic lattices and
develop a suitable trace formula (Theorem 2.50) that allows to express trRΓ as
a weighted sum of orbital integrals. For example, if D is a quaternion algebra
defined over Q which splits over R, O is a maximal order in D, then the group of
units of norm 1 denoted by Γ = O1 is an arithmetic lattice in SL(2,R). We can
choose an open, compact subgroup U of D1(Af ) such that Γ = D1(Q)∩U . Write
R for the right regular action of D1(A) on L2(D1(k)\D1(A)). The trace formula
reads

trRΓf = trRfA =
∑

[γ]∈D1(Q)

Vol(D1
γ(Q)\D1

γ(A))

∫
D1
γ(A)\D1(A)

fA(x−1γx)dµA(x), (1.21)

where fA ∈ C∞c (D1(A)) is a tensor product of f and the characteristic function
of U and µA is an appropriate measure D1(A). To get the first equality one
has to follow the argument from the proof of Lemma 2.42 plus the fact that D1

satisfies the strong approximation property. A similar result holds for congruence
subgroups which are derived from orders of quaternion algebras over number fields
in the sense of [94].

Unfortunately not all congruence lattices can be constructed this way i.e.
using simply connected algebraic groups (by the work of Borel [21] we know that
each commensurability class of arithmetic lattices in SL(2,C) contains infinitely
many maximal elements while the construction forom [94] provides only finitely
many candidates for maximal lattices). Not all of them can be constructed as
groups O1 for an order in a quaternion algebra. To construct and parametrize all
congruence lattices we switch to the projective groups PD×. For an admissible
quaternion algebra D defined over a number field k the congruence lattices are
obtained as intersections FV = PD×(k)∩V where V is an open compact subgroup
of PD×(Af ). The details of the construction are summarized in Sections 4.1, 4.2
and 4.3.

As we see in Lemma 2.42 the formula (1.21) does not hold for PD× and the
adelic trace is a sum of traces RΓ′V

f where Γ′V are lattices from the same packet
(cf. Definition 2.34) as ΓV . To isolate the trace of RΓV f we introduce twisted
operators RχfA (cf. Definition 2.43). Using Fourier inversion on the class group
of D (cf. Definitions 2.35 and 2.48) we express the trace of RΓV f as a linear
combination of traces trRχfA. This occupies Sections 4.4 and 4.5 and the final
result is Theorem 2.50:

trRΓV f =
∑

[γ]PD×(k)

Vol(PD×γ (k)\PD×γ (A))ΞVγ (fA), (1.22)

where ΞVγ (fA) is a combination of twisted orbital integrals defined in the state-
ment of Theorem 2.50. Using basic Class Field Theory (Lemma 2.52) we get the
following estimate (Corollary 2.54)

|ΞVγ (h)| ≤ 2

|cl (V )|
|Oγ(h)|, (1.23)

for any smooth compactly supported function h ∈ C∞c (PD×(A)) and regular
semisimple γ ∈ PD×(k). The class group cl (V ) is defined in Definition 2.48.

(2) Normalization. This step is crucial if we want to treat all congruence subgroups
ΓV not just the maximal ones. We fix a maximal compact subgroup U of PD×(A)
containing V . To prove the Strong Limit Multiplicity we will have to bound the
orbital integrals Oγ(fA) appearing in the trace formula. The function fA is given
by a tensor product fA = fA∞ ⊗ [U : V ]1V . We need to reprove the Limit
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Multiplicity analogue of Theorem 2.3 for Γ0 = ΓU with constants depending
explicitly on D and U . The first step is to observe that the orbital integrals
Oγ(fA) are linear and invariant under conjugation by U . This allows us to replace
[U : V ]1V by χInd UV 1

. Next, using Frobenius reciprocity, we get

χInd UV 1
=
∑
ρ∈IrrU

〈Ind U
V 1, ρ〉χρ.

Recall that 〈Ind U
V 1, ρ〉 = dimW V

ρ where Wρ is the space on which ρ acts and
W V
ρ is the subspace fixed by V . We have (cf. Lemma 2.55 and Corollary 2.54)

|ΞVγ (fA)| ≤ 2|Oγ(fA∞)|
|cl (V )|

∑
ρ∈Irr(U)

dimW V
ρ |Oγ(χρ)|

By the trace formula (Theorem 2.50) we get

|trRΓV f −Vol(ΓV \PGL(2,K))f(1)| ≤
∑

16=[γ]∈PD×(k)

Vol(PD×γ (k)\PD×γ (A))

2|Oγ(fA∞)|
|cl (V )|

∑
ρ∈Irr(U)

dimW V
ρ |Oγ(χρ)|.

After reversing the order of summation the right hand side reads

∑
ρ∈Irr(U)

dimW V
ρ

 ∑
16=[γ]∈PD×(k)

Vol(PD×γ (k)\PD×γ (A))
2|Oγ(fA∞)|
|cl (V )|

|Oγ(χρ)|

 .
The passage from [U : V ]1V to a sum of irreducible characters will be referred to
as normalization. Our next step is bounding the orbital integrals of irreducible
characters appearing on the right side. To this end we first extend the character
bounds of Larsen [71] (see Section 6.1) to the case of p-adic analytic groups and
deduce that the orbital integral of χ is bounded by χ(1)1−δ for some absolute
δ > 0 (see Section 6.5). Given such bound we can use the special representation
zeta function and Lemma 2.83 to bound the sum of orbital integrals over all
irreducible characters. After that we will estimate the adelic volumes and the
number of conjugacy classes with nontrivial contribution.

(3) Orbital integrals. Recall that U was a maximal open compact subgroup of
PD×(Af ). In Section 6 we give an upper bound on |Oγ(fA∞)||Oγ(χρ)| for an
irreducible representation ρ of U . Since U =

∏
p∈Mf

k
Up the character χρ can be

written as χρ =
⊗

p∈Mf
k
χp
ρ where χp

ρ are irreducible characters of Up. We have

|Oγ(χρ)| =
∏

p∈Mf
k

|Oγ(χp
ρ)|.

The problem is now reduced to estimates on the local orbital integrals. This is one
of the advantages of normalization since, in general, the characteristic function of
a subgroup V of U does not admit a factorization over finite places. For a finite
place p we show in Proposition 2.65 that

|Oγ(χp
ρ)| � |∆(γ)|−3/2

p

where ∆(γ) is the Weyl discriminant of γ (see Notations 2.2) and the implicit
constant is 1 for all but finitely many places. In the actual proof we have to
control the precise value of the constant in terms of γ because we have to multiply
this inequality over all finite places. After doing so we get that for δ sufficiently
small we have (Proposition 2.74):

|Oγ(χρ)| � 25[k:Q]8δ|Ramf (D)|χρ(1)1−δ,
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if γ is torsion and (Proposition 2.75):

|Oγ(χρ)| � exp(o([k : Q]))2δ|RamfD|χρ(1)1−δ

if γ has infinite order. In the non torsion case we rely crucially on Bilu’s Equidis-
tribution theorem (see Theorem 2.56 and Section 5).

The archimedean orbital integrals are estimated in Section 6.3. Recall that
we work with the assumption that f is supported on a ball of radius R. In this
case we show that the integral is bounded by

|Oγ(f)| �R [k : Q]2‖f‖∞,

if γ is hyperbolic and

|Oγ(f)| �R [k : Q]4‖f‖∞,

if γ is elliptic. Their contribution is polynomial in the degree of k, which will turn
out to be negligible. Combining these two we get that when γ is non-torsion then

|Oγ(fA∞)||Oγ(χρ)| �R exp(o([k : Q]))2δ|RamfD|χρ(1)1−δ.

(4) An estimate on the adelic volumes. To control the size of Vol(PD×γ (k)\PD×γ (A))
we show in Proposition 2.93 that

Vol(PD×γ (k)\PD×γ (A)) ≤ Λ(1, χl/k)

where l is the quadratic extension of k generated by γ in D, χl/k is the unique
nontrivial character of the Galois group Gal(l/k) and Λ(s, χl/k) is the completed
Artin L-function associated to χl/k. This is probably well known to experts. We
give a self contained proof using periods of Eisenstein series. Next, using Bilu’s
equidistribution theorem and the maximum principle, we show in Proposition 2.95
that when γ is not torsion and Oγ(f) 6= 0 then for any ε > 0 we have

Vol(PD×γ (k)\PD×γ (A))�ε exp(o([k : Q]))
|∆k|1/2+ε

(2π)[k:Q]
.

(5) Number of conjugacy classes. The estimates on orbital integrals and the
adelic volume allow us to give a uniform bound on the contribution of a single
conjugacy class. Now we need to bound the number of classes with non-trivial
contribution. As we show in Section 3.4 the conjugacy classes are either 2-torsion
or they are determined by their eigenvalues. By Lemma 2.69 from Section 6.3 the
eigenvalues of non-torsion elements are Salem numbers. Then one can use Bilu
equidistribution theorem and some geometric arguments to show that the number
of classes with nontrivial contribution is of order exp(o([k : Q])).

(6) Conclusion. Putting the three last steps together we get that∑
[γ]∈PD×(k)
torsion free

Vol(PD×γ (k)\PD×γ (A))2|Oγ(fA∞)||Oγ(χρ)| � (1.24)

‖f‖∞ exp(o([k : Q]))
|∆k|1/2+ε

(2π)[k:Q]
2δ|RamfD|χρ(1)1−δ. (1.25)

From which it follows that for a torsion free lattice ΓV we have

|trRΓV f −Vol(ΓV \PGL(2,K))f(1)| � (1.26)

‖f‖∞
|cl (V )|

∑
ρ∈IrrU

dimW V
ρ

[
exp(o([k : Q]))

|∆k|1/2+ε

(2π)[k:Q]
2δ|RamfD|χρ(1)1−δ

]
. (1.27)
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Using a variant of Lemma 2.83 we deduce that there exist positive constants α
and b (depending only on δ) such that

|trRΓV f −Vol(ΓV \PGL(2,K))f(1)| � (1.28)

‖f‖∞ exp(o([k : Q]))
|∆k|1/2+ε

(2π)[k:Q]
2δ|RamfD|ζ∗U (b)α

[U : V ]1−α

|cl (V )|1−α
, (1.29)

where ζ∗U stands for the special representation zeta function of U . Note that in
this bound, the only factor that depends on V is [U :V ]1−α

|cl (V )|1−α . By comparing the
estimate with the Borel Volume formula for maximal lattices (see [94, Chapter
11] and Section 9), Corollary 2.51 and a lower bound on discriminants due to
Odlyzko ( [85]) we get the inequality

|trRΓV f −Vol(ΓV \PGL(2,K))f(1)| � ‖f‖∞Vol(ΓV \PGL(2,K))1−α.

This concludes the proof of Strong Limit Multiplicity for torsion free congruence lattices
in PGL(2,K).

1.6.4. Short geodesics and their consequences. Let Γ be an arithmetic lattice in PGL(2,K)
and let X be the symmetric space of PGL(2,K). One of the key aspects of our proof is
exploiting the properties of the trace field forced by the presence of short closed geodesics
in Γ\X. By short we mean shorter that some fixed positive constant R. Both the Strong
Limit Multilicity property and Strong Benjamini-Schramm convergence hold trivially for
compact quotients if there are no short closed geodesics so in our argument we may assume
that there are short geodesics on Γ\X. A primitive closed geodesic on Γ\X of length `
corresponds to a unique conjugacy class [γ]Γ such that Ad γ has an eingenvalue λ with
log |λ| = `. Lemma 2.69 tells us then that the logarithmic Mahler measure of λ is bounded
by `. Eigenvalue λ generates a quadratic extension over k so form the presence of short
geodesics we can infer that k has quadratic extensions containing numbers of small loga-
rithmic Mahler measure. Using the machinery developed in Section 5 we extract nontrivial
information on the distribution of prime ideals of small norm in Ok (c.f. Theorem 2.59 and
Corollary 2.60). This information is put to use in Section 10 where the volume formulas
and our bounds are very sensitive to the presence of ideals of small norm in Ok.
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this problem as well as for many useful remarks and constant encouragement. Many
thanks go to Miklos Abert, Andrei Jaikin-Zapirain and Farrell Brumley for their interest
and helpful conversations. I am also grateful to Bertrand Rémy for helping me understand
the Bruhat-Tits buildings.

2. Notation

2.1. Analysis. We shall use Vinogradov notation. If f, g are two functions dependent,
among others on a variable X we write f �X g if there exists a constant C dependent on
X such that f ≤ Cg similarly we write f �X g if the opposite inequality is true. We will
write f = oX(g) if lim f

g = 0 and the speed of convergence depends on X. Logarithms are
always in base e. We write Q,R,C for the fields of rational, real and complex numbers
respectively. Throughout the text K will mean either R or C. For any function f we
write ‖f‖∞ for the supremum norm and ‖f‖Lp for the Lp norm whenever the latter can
be defined. If z is a complex number we write |z| for its modulus.

2.2. Groups. Let G be a group acting on a set X. For a subset S ∈ G we write XS

for the set of points fixed by S, Gx for the orbit of G containing x and StabGx for the
stabilizer of x. If H is a subgroup of G and γ ∈ G we write [γ]H for the H-conjugacy class
of γ. If H = G we may omit the subscript and write [γ]. For two elements x, y ∈ G we
shall write x ∼H y if y ∈ [x]H .

If G acts by automorphisms on the group X then we write H1(G,X) for the first
cohomology set and if X is abelian we write H i(G,X) for the i-th cohomology group.
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If G is a Lie group defined over a field F we shall write g for its Lie algebra and
Ad : G→ GL(g) for the adjoint action. We write X∗(G) for the group of characters of G
i.e. homomorphisms to F ∗. If G is semisimple and T is a maximal torus of G we write
Φ(G,T ) for the set of roots of G with respect to T . For a semisimple element γ ∈ G we
define the Weyl discriminant ∆(γ) of γ as 0 if γ is not regular semisimple and otherwise
as

∆(γ) =
∏

λ∈Φ(G,T )

(1− λ(γ)),

where T is the maximal torus containing γ.

2.3. Number Theory. Throughout the text, the letter k will usually mean a number
field. For a given number field k we write

• Ok for the ring of integers,Mk for the set places of k,M
f
k for the set of finite places

and M∞k for the set of infinite (archimedean) places, for any finite set S ∈ Mk

containing M∞k write Ok,S for the ring of S-integers;
• For an ideal a inOk we writeN(a) for the norm of a. It is defined as the cardinality
of Ok/a;
• Usually we shall use letters ν, ω to denote infinite or general places and p is
reserved for finite places. We identify the set of finite places with prime ideals of
Ok and write q = N(p) for the cardinality of the residue field Ok/p;
• For every ν ∈ Mk we write kν for the completion of k with respect to ν. For
x ∈ kν we write |x|ν for the valuation of x. The p-adic valuation is normalized so
that |π|p = q−1 for the uniformizer π;
• Let l/k be a finite extension. We write Nl/k : l→ k for the norm and trl/k : l→ k
for the trace of the extension l/k;
• Write ∆k for the discriminant of k and ∆l/k for the relative discriminant of ex-
tension l/k. We have ∆l = ∆

[l:k]
k Nk/Q(∆l/k).

• For a non-archimedean local field F which is an extension of Qp of degree d we
write ∆F for the ideal

〈det((trF/Qpxixj)ij) | x1, . . . , xd ∈ OF 〉.

We have
|∆k| =

∏
p∈Mf

k

|∆kp |−1
p .

• We write Ak for the ring of adeles of k. For most time we work with a single
number field k so we omit the subscript and write A instead of Ak;
• If S, F are subsets ofMk such thatM∞k ⊂ S we write ASF for the ring of S-integral
F -adeles which is defined as

ASF =

∗∏
ν∈S∩F

kν ×
∏

ν∈F\S

Okν , (2.1)

where * means that almost all coordinates are integers. When using this conven-
tion we replace M∞k with symbol ∞ and Mf

k with f . For example Af is the ring
of finite adeles, A∞ is the product of archimedean completions of k and A∞f is the
ring of finite adeles integral on all coordinates;
• For a Galois extension l/k we write Gal(l/k) for the Galois group. Usually we
will denote the nontrivial elements of the Galois group by σ and write xσ for the
result of acting by σ on x ∈ l;
• For a number field l we denote the Dedekind Zeta function of l by ζl(s) and
completed Dedekind Zeta function by ξl(s);
• For a character χ of Gal(k/k) we write L(s, χ) for the associated Artin L-function,
fχ for the conductor of χ and Λ(s, χ) for the completed L-function. We will recall
their definitions in Section 9 devoted to volumes of adelic quotients;
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• Whenever D is a quaternion algebra over the field k we write k×D for n(D×) ⊂ k×
and A×D for n(D×(A)) ⊂ A×. Recall that n, tr stand for the reduced norm and
the reduced trace respectively (see Section 3.2).
• Let D be a quaternion algebra defined over a non-archimedean local field F/Qp.
Choose a maximal order O in D. We define ∆D/F as the ideal 〈det((tr(xixj))ij) |
x1, . . . , x4 ∈ O〉. As all maximal orders in D are conjugate [94, Theorems 6.4.1,
6.5.3] the definition does not depend on the choice of O.

2.4. Volume conventions. Let X be a topological space with a measure µ and let Γ
be a group acting properly discontinuously on X and preserving µ. We write Volµ(Γ\X)
for the measure of a fundamental domain of Γ. When X is a Riemannian manifold we
usually take µ to be the volume form on X in which case we omit the subscript µ and
write Vol(Γ\X) for the Riemannian volume of Γ\X.

Let G be a reductive algebraic group defined over a local field F . We shall define
a canonical Haar measure on G which will be called the standard measure of G. If F
is archimedean then this measure will be defined uniquely while in the non-archimedean
case it will depend on the choice of a maximal compact subgroup. Let us start with the
archimedean semisimple case.

Definition 2.19. Choose a maximal compact subgroup K of G. Let X = G/K be the
symmetric space equipped with the left G-invariant Riemannian metric associated to the
Killing form of G (see [59]). Write dx for the volume form on X and dk for the normalized
Haar measure on K. We define the standard Haar measure on G as the unique measure
for which ∫

fdµ(g) =

∫
X

∫
K
f(xk)dkdx for any f ∈ Cc(G) (2.2)

As all maximal compact subgroups are conjugate this definition does not depend on the
choice of K.

When G is reductive let H = [Go, Go] be the maximal connected semisimple subgroup
of G. The connected component T1 := (G/H)o of T0 := G/H is isomorphic to (R×+)a ×
(C×)b. We endow T1 with a Haar measure

dt =
a∏
i=1

dti
ti
×

b∏
j=1

dxidyi

2π(x2
i + y2

i )
1/2

and extend it to T0 by putting dt/[T0 : T1] on each connected component. Now we are ready
to define the standard measure on arbitrary reductive algebraic group over an archimedean
field.

Definition 2.20. The standard measure on G is defined as the unique measure dg for
which ∫

fdµ(g) =

∫
T0

∫
H
f(th)dhdt for any f ∈ Cc(G), (2.3)

where dh stands for the standard measure on H.

In the reductive non-archimedean case the definition is analogous but a bit simpler
because maximal compact subgroups are open.

Definition 2.21. Choose a maximal compact subgroup U of G. The quotient X = G/U
is a discrete space. Write dx for the counting measure on X and dk for the normalized
Haar measure on U i.e. the one for which Vol(U) = 1. We define the standard Haar
measure on G as the unique measure for which∫

fdµ(g) =

∫
X

∫
K
f(xk)dkdx for any f ∈ Cc(G) (2.4)

The definition depends on the choice of maximal compact subgroup. There are finitely many
conjugacy classes of maximal compact subgroups in G (cf. [89, Chapter 3.4]).
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The definition of the standard measure extends to the adele groups. Let k be a number
field and let G be a reductive algebraic group defined over k. The group G(A) is a locally
compact group. Let us fix a maximal compact subgroup U of the group of finite adeles
G(Af ). By maximality U decomposes as a product U =

∏
p∈Mf

k
Up with Up maximal

in G(kp). Then the standard measure on G(A) is defined as
⊗

ν∈Mk
µν where µν is the

standard Haar measure on G(kν).

2.5. Representation Theory. For any topological group G, write IrrG for the set
of equivalence classes of irreducible, continuous unitary representations of G. Whenever
ρ is a unitary representation of G, we shall write Wρ for the underlying Hilbert space.
For a finite dimensional representation, we write χρ for the character of ρ. For any closed
subgroup H of G and representations ρ1, ρ2 of G, we write 〈ρ1, ρ2〉 = dimC HomH(ρ1, ρ2).
If ρ1, ρ2 are finite dimensional then we also write 〈χρ1 , χρ2〉 = 〈ρ1, ρ2〉.

3. Preliminaries on quaternion algebras

3.1. Quaternion algebra. Throughout this section let F be an arbitrary field of
characteristic different than 2.

Definition 2.22. An associative unital algebra A over F is called a quaternion algebra
if it is 4 dimensional and there exist i, j,k ∈ A such that:

• 1, i, j,k is a basis of A over F ;
• i2, j2,k2 ∈ F×;
• ij = −ji = k.

If A satisfies the above conditions the values i2 = a, j2 = b determine A up to F -isomorphism
and we write A =

(
a,b
F

)
.

Let E be a an extension of F , we say that a quaternion algebra A splits over E if
A⊗F E 'M(2, E). If A splits over F we just say that it splits.

Proposition 2.23. [94, Chapter 2] The following conditions are equivalent:

(1) A quaternion algebra
(
a,b
F

)
splits;

(2) the quadratic form x2 − ay2 − bz2 + abt2 is isotropic;
(3) −ay2 − bz2 − abt2 is isotropic.

In particular every quaternion algebra A over F splits over the algebraic closure F .

3.2. Norm, trace and involution. Let A =
(
a,b
f

)
be a quaternion algebra over F .

Let x = x1 + ix2 + jx3 + kx4. The standard involution on A is defined as

x = x1 − ix2 − jx3 − kx4.

The trace on A is defined as

tr(x) = x+ x = 2x1.

The norm on A is defined as

n(x1 + x2i + x3j + x4k) = xx = x2
1 − ax2

2 − bx2
3 + abx2

4.

For any element x ∈ A we have x2 − tr(x)x+ n(x) = 0. In particular if F (x) is a subfield
of A then n(x) = NF (x)/F (x) and tr(x) = TrF (x)/F (x). An element x ∈ A is invertible if
and only if n(x) 6= 0. If that is the case, we have x−1 = x

n(x) .
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3.3. Quaternion algebras and algebraic groups. Given a quaternion algebra A
we can associate to it three linear algebraic groups:

A× ={x ∈ A|n(x) 6= 0} (3.1)

A1 ={x ∈ A|n(x) = 1} (3.2)

PA× =A×/Z(A×) = A×/Gm (3.3)

If A is split then they are isomorphic to GL(2, F ), SL(2, F ), PGL(2, F ) respectively. In
particular the last two are simple algebraic groups of type A1. Recall that we write Gγ for
the centralizer of γ in G.

Lemma 2.24. Let γ be a non-central, semisimple element of PA×(F ) and let γ̃ be one
of its preimages in A× and let ω1, ω2 be the roots of the polynomial X2 − tr(γ̃)X + n(γ̃).
If ω1, ω2 6∈ F put E = F (ω1). Then

(1) F [γ] ' F 2 if ω1, ω2 ∈ F and F [γ] ' F [ω] otherwise;
(2) PA×γ ' Gm if ω1, ω2 ∈ F and PA×γ ' Res 1

E/FGm otherwise;
(3) PA×γ is a maximal torus of PA×. If λ1, λ2 are the roots of PA× with respect to

PA×γ then up to a change of enumeration λ1(γ) = ω1
ω2

and λ2(γ) = ω2
ω1
;

(4) The Weyl discriminant of γ is given by

∆(γ) = (1− ω1

ω2
)(1− ω2

ω1
)

The same statement holds for γ ∈ A1(F ).

Proof. (1) follows from the Cayley-Hamilton theorem. For (2) observe that F [γ̃] is the
centralizer of γ̃ in A so on the level of F -points we have PA×γ ' F [γ̃]×/F×. If ω1, ω2 ∈ F
then by (1) PA×γ ' Gm × Gm/∆Gm ' Gm, where ∆ is the diagonal embedding. If
E = F [γ̃] is a quadratic extension of F then PA×γ ' Res E/FGm/Gm. By Hilbert’s
Theorem 90 the latter is isomorphic to Res 1

E/FGm via the map x 7→ x−1xσ where σ is
the generator of Gal(E/F ). For (3) recall that λ1(γ), λ2(γ) are the nontrivial eigenvalues
of Ad γ. (4) follows directly from (3) and the definition of the Weyl discriminant (see
Notations 2.2). �

3.4. Conjugacy classes.

Theorem 2.25 (Skolem-Noether). Let A be a central simple algebra over F and B a
simple algebra over F . Any two nontrivial F -homomorphisms φ1 : B → A and φ2 : B → A
are conjugate by an element of A×

From this we can deduce:

Proposition 2.26. Let A be a non split quaternion algebra over a field F . Let γ ∈
PA× \ {1} and let λ be one of the non-trivial eigenvalues of Ad γ.

(1) γ and γ−1 are conjugate in PA×;
(2) γ is 2-torsion if and only if λ = −1. Otherwise λ 6∈ F× and the values of λ, λ−1

determine the PA×-conjugacy class of γ;
(3) Write n : PA× → F×/(F×)2 for the map induced by the norm. The map n

induces an injective map from the set of 2-torsion conjugacy classes in PA× to
n(A×)/(F×)2. Moreover for any lift γ̃ of γ we have F [γ̃] ' F [

√
−n(γ)].

Proof. (1) Let γ̃ be a lift of γ to A× and E = F (γ̃) be the subfield of A generated
by γ̃. It is a quadratic extension of F . Let σ be the generator of Gal(E/F ), it
acts on E by an F -automorphism so by Skolem-Noether theorem there exists an
a ∈ A× such that xσ = axa−1 for all x ∈ E. In particular

γ̃aγ̃a−1 = γ̃γ̃σ = n(γ̃) ∈ F×.

But this means that aγa−1 = γ−1.
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(2) If λ = −1 then the eigenvalues of γ2 are both equal to 1 so γ is 2-torsion. Con-
versely, if γ2 = 1 then λ = λ−1 = −1. Assume that γ is not 2-torsion. We claim
that F (λ) is a quadratic extension of F . Choose an element γ̃ ∈ A× lifting γ.
Write ω1, ω2 for the roots of the characteristic polynomial of γ̃. We have ω1 = λω2

and
(1 + λ)ω2 = ω1 + ω2 = trγ̃ ∈ F.

Since γ is not 2-torsion λ+1 6= 0. If λ ∈ F then ω1, ω2 ∈ F×. This cannot happen
unless A is split. Thus, we have λ 6∈ F . We have λ ∈ F (ω1) so by comparing
degrees we get F (λ) = F (ω1) ' F (γ) ⊂ A.

Now we prove that if λ 6= −1 then it determines uniquely the conjugacy class
of γ in PA×. Let γ1, γ2 ∈ PA× be elements with same eigenvalues λ, λ−1, different
than −1. Let γ̃1, γ̃1 be their lifts to A×. We have shown that F (γ̃1) ' F (γ̃2) '
F (λ). Thus by the Skolem-Noether theorem (Thm 2.25) we find a ∈ A× such that
aγ̃2a

−1 ∈ F (γ̃1). We can replace γ2 by aγ2a
−1. The equality of eigenvalues and a

simple computation using characteristic polynomials implies that either γ1 = γ2

or γ1 = γ−1
2 . By the point (1) of present proposition γ1 and γ2 are conjugate.

(3) Let γ be a 2-torsion element in PA×. We claim that n(γ) ∈ F×/(F×)2 determines
uniquely the PA× conjugacy class of γ. Let γ̃ be a lift of γ to A× and E = F (γ̃)
be the subfield of A generated by γ̃. It is a quadratic extension of F . Let σ be the
generator of Gal(E/F ). We have (γ̃σ/γ̃)2 = 1 so γ̃σ = −γ̃, otherwise γ̃ would be
in F×. Thus n(γ̃) = −γ̃2 and consequently E ' F (

√
−n(γ̃)). The isomorphism

class of E depends only on the class of n(γ̃) modulo (F×)2 so it is determined
uniquely by the value of n(γ). If γ1, γ2 ∈ PA× are 2-torsion and n(γ1) = n(γ2)
then F (γ̃1) ' F (γ̃2) so by Skolem-Noether γ̃2 ∈ F (γ̃1) up to conjugation. But
then n(γ1) = n(γ2) implies that γ̃2

1 ≡ γ̃2
1 modulo (F×)2 so γ1 = γ2.

�

3.5. Quaternion algebras over local fields.

Proposition 2.27. Let F be a local field. If F is non-archimedean or R there exist
exactly two isomorphism classes of quaternion algebras over F . If F is non-archimedean
there exists a unique unramified quadratic extension E/F .Let π be the uniformizer of F
and σ the nontrivial Galois automorphism of E/F . The unique division quaternion algebra
over F is given by (

x y
πyσ xσ

)
where x, y ∈ E

If F = R then the unique division quaternion algebra is the Hamilton quaternion algebra

H = R + iR + jR + kR where i2 = j2 = k2 = −1 and ij = −ji = k

Lemma 2.28 (cf. [94, Exercise 7.5.2]). If F is a non-archimedean local field of residue
field of size q and D is a quaternion algebra over F then |∆D/F | = 1 if D is split and q−2

if D is a division algebra.

3.6. Quaternion algebras over number fields. Let k be a number field and let
D be a quaternion algebra defined over k. By previous section for a place ν of k the
algebra D ⊗k kν is either isomorphic to M(2, k) or to the unique, up to isomorphism,
quaternion divison algebra over kν . In the second case we say that D is ramified in ν.
Write RamD for the set of places where D is ramified. We put RamfD := RamD ∩Mf

k
and Ram∞D = RamD ∩M∞k .

Proposition 2.29 ( [94, Chapter 7]). Let k be a number field and let D be a quaternion
algebra defined over k. The set RamD is finite of even cardinality and it determines the
isomorphism class of D. Conversely, for every subset S of Mk of even cardinality there
exists a unique up to isomorphism quaternion algebra D such that RamD = S.
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4. Trace formula for congruence lattices

Let G = SL(2,K) or PGL(2,K) where K = R or K = C. In this section we give a
parametrization of maximal arithmetic lattices in G, and prove trace formulas for Γ\G for Γ
an arithmetic congruence lattice. The first section follows the exposition from [94, Chapter
11.4]. In the next we switch to the adelic setting and give a construction of maximal lattices,
originally due to Borel. In Sections 3, 4 and 5 we develop a trace formula valid for arbitrary
congruence arithmetic lattices in PGL(2,K).

4.1. Commensurability classes. Let us begin with the parametrization of the com-
mensurability classes of irreducible arithmetic lattices of G, those will be in one-to-one
correspondence with certain quaternion algebras defined over number fields.

Let k be a number field with at most one complex place such that at least one
archimedean completion of k is isomorphic to K. We enumerate its infinite places M∞k =
{ν1, . . . , νr1+r2} in such a way that kν1 = K. Let D be a quaternion algebra over k (i.e.
D =

(
a,b
k

)
for some a, b ∈ k×) which splits only in one infinite place ν1. Every algebra D

satisfying above conditions will be called admissible. To shorten the formulas we will write
d = r1 + r2. We introduce two isogeneous algebraic groups

D1 = {x ∈ D | n(x) = 1} and PD× = D×/ZD×

where ZD× stands for the center of D×. We have

D1(k ⊗Q R) ' SL(2,K)× SO(3,R)d−1 = G× SO(3,R)d−1

PD×(k ⊗Q R) ' PGL(2,K)× PO(3,R)d−1

The classical procedure for constructing an arithmetic lattice in G is to take an order O in
D and project O1 to G. The resulting subgroup, which we denote by ΓO1 is an arithmetic
lattice. Changing the order O gives a commensurable lattice so every admissible algebra
D gives a well defined commensurability class, for which we will write C(D).

Definition 2.30. A lattice Γ of G is an irreducible arithmetic lattice if it is, up to
automorphisms of G, commensurable with ΓO1 for certain admissible D.

The assignment D 7→ C(D) is a bijection between the set of admissible quaternion
algebras and the commensurability classes of arithmetic lattices of G.

4.2. Maximal lattices. It has been observed by Borel, that even if we take O to be
a maximal order in D the resulting lattice ΓO1 is not maximal in the set-theoretic sense.
Instead we have to look for maximal lattices among the normalizers of ΓO1 ’s. Alternatively
we may construct the maximal lattices using a projection from PD× rather that D1. 9

Write PG for the group PGL(2,K) and π for the projection π : G→ PG. A lattice Γ in G
is maximal if and only if π−1(Γ) is maximal in PG. Similarly Γ is arithmetic if and only
if π−1(Γ) is. Thus, we may study the problem for PG. Instead of working with orders it
will be more instructive to switch to the adelic setting. We have

PD×(A) ' PG× PO(3, R)d−1 × PD×(Af )

The group PD×(k) is embedded diagonally in PD×(A) as a lattice. For any open compact
subgroup U of PD×(Af ) we put ΓU = PD×(k)∩PD×(A∞)U and by abuse of notation we
write the same for the projection of ΓU to PG. Then ΓU is an arithmetic lattice in PG
and all arithmetic lattices are commensurable with ones constructed in this fashion.

Definition 2.31. A lattice Γ of PGL(2,K) is called arithmetic if it is commensurable
with ΓU for some choice of U .

9The reason why most sources start with a construction using D1 is that this algebraic group is simply
connected so it satisfies the Strong Approximation Property which makes it easier to work with.
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Let Γ be a maximal arithmetic irreducible lattice in PG. We argue that Γ is of form
ΓU for some maximal open compact subgroup U of PD×(A∞f ). Pick V open and compact,
such that Γ ∩ ΓV has finite index in Γ and ΓV , we can do this by the arithmeticity of Γ.
We claim that elements of Γ have rational coefficients.

Lemma 2.32. If Γ and ΓV are commensurable, then Γ is contained in the projection of
PD×(k) onto PG.

Proof. We identify PG with PD×(kν1). The lattice ΓV by construction lies in
PD×(k). We want to show that the same holds for Γ. Let γ ∈ Γ and let Λ := γ−1ΓV γ∩ΓV .
The group Λ has a finite index in Γ so it is a lattice in PG. By Borel’s density theorem
Λ is a Zariski dense subset of PD×(kν1) contained in PD×(k). The map x 7→ γxγ−1 is
an automorphism of PD×(kν1) defined over kν1 which maps Λ into a subset of ΓV . In
particular it maps a Zariski dense subset of points defined over k to points defined over k,
which by [106, Proposition 3.1.10] implies that x 7→ γxγ−1 is defined over k. As PD× is
an adjoint group we deduce that γ ∈ PD×(k). �

Once we know that Γ is contained in PD×(k) we can see it as a subset of PD×(A).
Γ and ΓV were commensurable so for every finite place p ∈ Mf

k the p-adic closure of Γ
denoted Γp is an open compact subgroup of DP×(kp). Hence for any p we can find an
open compact subset Up of DP×(kp) such that Γ ⊂ PD×(k) ∩ PD×(A∞)

∏
p∈Mf

k
Up. By

maximality of Γ the last inclusion has to be an equality. We obtain the following:

Proposition 2.33. Let Γ be a maximal arithmetic lattice in SL(2,K) lying in the
commensurability class C(D). Then there exists a maximal open compact subgroup U of
PD×(Af ) such that Γ = π−1(ΓU ).

4.3. Packets of maximal lattices. For this section we assume familiarity with the
theory of Bruhat-Tits trees of SL(2, F ) where F is a non-archimedean local field. For
necessary background see [94, Chapter 5.2.1]. We shall write X(SL(2, F )) for the tree
associated to SL(2, F ). Recall that the adjoint group PGL(2, F ) also acts on X(SL(2, F )).
This action is transitive on the vertices and on the edges. In order to use Proposition
2.33 we have to describe the set of maximal open compact subgroups of PD×(Af ). Such a
group U can always be written as a product

U =
∏

p∈Mf
k

Up,

where Up is a maximal compact subgroup of PD×(kp) and for almost all places Up =
PGL(2,Okp). If D is ramified at p then PD×(kp) is compact so Up = PD×(kp). If that is
not the case then PD×(kp) ' PGL(2, kp) and by Tits fixed point theorem and maximality,
Up is either a stabilizer of a vertex or of an edge. The set S of places where Up is a stabilizer
of an edge determines the PD×(A) conjugacy class of U . Indeed, if Up is the stabiliser of
a vertex or edge v then g−1Upg is the stabilizer of vg. The action of PD×(kp) is transitive
both on vertices and on edges of X(SL(2, kp)) so all stabilizers of vertices are conjugate
and likewise all stabilizers of edges are conjugate.

Definition 2.34. Let S be a finite subset of Mf
k \Ramf (D). We write C(D,S) for the

set of conjugacy classes of arithmetic lattices ΓU with U maximal open compact subgroup
of PD×(Af ) given by

U =
∏

p∈Mf
k

Up

where Up stabilizes an edge of X(SL(2, kp)) if and only if p ∈ S and Up = PD×(kp) for
p ∈ RamfD. The set C(D,S) will be called a packet of arithmetic lattices.

Even though all subgroups U satisfying the conditions imposed in the definition are
conjugate in PD×(A) the resulting lattices ΓU need not be conjugate in PGL(2,K). That
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is why a packet may contain multiple conjugacy classes. We also point out that depending
on the choice of S, a packet may consist of non-maximal lattices.

We shall parametrize the conjugacy classes inside C(D,S) using certain class group.
The result is similar to the classification of maximal orders in a quaternion algebra from
[94, Chapter 6.7]. Recall that subscript D means that we take only elements positive on
all archimedean places of k where D is ramified. Recall that kD = n(D), AD = n(D(A))
and kF =

∏
ν∈F kν for any finite subset F of Mk. We will write A∞,D for n(D(A∞)).

Definition 2.35. For any finite subset S ⊂Mf
k \ Ramf (D) we define the class group

cl S(D) = cl S (we omit D when it is clear from the context) by

cl S := PD×(k)\PD×(A)/PD×(A∞)U ' A×D/k
×
DA
×
∞,D(kS∪Ramf (D))×.

The second isomorphism is induced by the norm map. We explain where it comes from in
the proof of Proposition 2.37.

Remark 2.36. The class group cl S is a quotient of the narrow class group cl +(k) of
exponent 2.

Proposition 2.37. There is a surjective map from the group cl S to the set C(D,S).
In particular the packets are finite.

For the proof we will need:

Lemma 2.38. Lattices ΓU and ΓV are conjugate in PGL(2,K) if and only if they are
conjugate in PD×(k).

Proof. Like in the proof of 2.32 any automorphism mapping ΓU into ΓV has to be
defined over k. Thus, every g such that gΓUg

−1 = ΓV lies in PD×(k). �

By abuse of notation we shall also denote by n the map n : PD×(A) → A×/(A×)2

induced by the norm map.

Lemma 2.39. Let Up be a maximal open compact subgroup of PD×(kp). All matrices
written below are to be understood as their image in the projective group.

• If D splits over kp and Up stabilizes a vertex of X(SL(2, kp)) then, up to conjugacy
Up = PGL(2,Okp). We have n(Upkp

×) = O×kp(k×p )2.

• If D splits over kp and Up stabilizes an edge then, up to conjugacy

Up =

〈(
O×kp Okp
p O×kp

)
,

(
0 π
1 0

)〉
,

where π is the uniformizer of kp. We have n(Upkp
×) = k×p .

• If p ∈ Ramf (D) then Up = PD×(kp). Let E be the unique unramified quadratic
extension of kp. Then we can represent Up as

Up =

{(
x y
πyσ x

)
| x, y ∈ E

}
,

where σ is the unique non-trivial element of Gal(E/kp). We have n(Upkp
×) = k×p .

The proof follows from the description of maximal compact subgroups as stabilizers
of a point or an edge in the Bruhat-Tits tree. To see the last part note that NE/kp is
surjective ( [68]).

Theorem 2.40 (Strong Approximation Property, [89, 7.1]). The group D1(k) is dense
in D1(Af ).

Proposition 2.41 ( [94, Theorem 7.41]). The image of the norm map k×D := n(D×(k))
is equal to {x ∈ k× | (x)ν > 0 for all ν ∈ Ram∞(D)}.
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Proof of Proposition 2.37. By Lemma 2.38 we can look at PD×(k) conjugacy
classes of lattices in C(D,S). Fix a maximal open compact subgroup U of PD×(Af )
stabilizing edges only for p ∈ S. We start with the parametrization of PD×(k)-conjugacy
classes of subgroups U ′ conjugate to U under PD×(A), for simplicity we refer to this set
as C1(D,S). By maximality, U is equal to its normalizer in PD×(Af ). Hence

C1(D,S) ' PD×(k)\PD×(A)/PD×(A∞)U ' D×(k)\D×(A)/D×(A∞)A×f U. (4.1)

Put U1 = {x ∈ (Af )×U | n(x) = 1}. By Strong Approximation

D1(k)\D1(A)/D1(A∞)U1 = 1.

Hence, the map from (4.1) induced by the norm

n : D×(k)\D×(A)/D×(A∞)A×f U → k×D\A
×
D/(A∞,D)×(A×)2n(A×f U)

is an isomorphism. By Lemma 2.39

n(A×f U) =
∏

p∈Mf
k \S

(k×p )2O×kp ×
∏

p∈S∪Ramf (D)

k×p .

Hence,

C1(D,S) ' k×D\A
×/(A∞)×(A×)2n((Af )×U) ' A×D/k

×
DA

S∪Ramf (D)
D (A×)2 = cl S . (4.2)

If two groups U,U ′ are conjugate under PD×(k) then the lattices ΓU and ΓU ′ are also con-
jugate under PD×(k). This gives us a well defined surjective map from cl S ' C1(D,S)→
C(D,S). �

4.4. Trace formula for maximal lattices. Recall that the geometric side of the
Selberg Trace formula yields that for any cocompact lattice Γ ⊂ G and any function
f ∈ Cc(G) we have

trRΓf =
∑
[γ]Γ

Vol(Γγ\Gγ)

∫
G/Gγ

f(x−1γx)dx,

where RΓ is the right translation on L2(Γ\G) In this section we develop an adelic version
of the trace formula for maximal lattices which allows to express the geometric side as
a sum over rational conjugacy classes in PD×(k). In the next section we generalize this
procedure to arbitrary congruence lattices. Throughout the following sections we
assume that D is not split so there will be no continuous spectrum.

Let S be a finite subset of Mf
k \Ramf (D). We fix U a maximal compact subgroup of

PD×(Af ) stabilizing an edge for p ∈ S. We fix the standard Haar measure (see Section
2.4) µA on PD×(A) given by

µA = µν1 × . . . µνd × µAf (4.3)

Recall that the standard measure µAf depends on the choice of U . Where µν1 is the
volume on PGL(2,K), µνi is the normalized Haar measure on PO(3,R) for d ≥ i > 1
and µAf is a Haar measure on PD×(Af ) normalized so that µAf (U) = 1. We write
R : PD×(A)→ U(L2(PD×(k)\PD×(A))) for the right translation (R(g)φ)(x) = φ(xg).

For any f ∈ Cc(PGL(2,K)) we define fA ∈ Cc(PD×(A)) as fA = fA∞ ⊗ fAf where

fA∞ = f ⊗
d⊗
i=2

1PO(3,R)

fAf = 1U

Using fA we can relate the traces of RΓU f and RfA. The following lemma illustrates this
principle.

Lemma 2.42. Let 1 = c1, c2, . . . , ck be representatives of cl S in PD×(Af ) and put
Ui = ciUc

−1
i . With fA and measure µA defined as above, we have

∑k
i=1 trRΓUi

f = trRfA.
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Proof. To shorten notation, write Ũ for
∏d
i=2 PD×(kνi)×U . Observe that the image

ofRfA lies in the Ũ -fixed vectors of L2(PD×(k)\PD×(A)), so trRfA = trRfA |L2(PD×(k)\PD×(A))Ũ
.

We have a PD×(kν1)-equivariant isometry

L2(PD×(k)\PD×(A))Ũ ' L2(PD×(k)\PD×(A)/Ũ).

By repeating the arguments from the proof of 2.37 we get a PD×(kν1)-equivariant bijection

PD×(k)\PD×(A)/Ũ '
k⊔
i=1

ΓUi\PD×(kν1),

so

L2(PD×(k)\PD×(A)/Ũ) '
k⊕
i=1

L2(ΓUi\PD×(kν1))

as unitary representations of PGL(2, kν1). Thus trRfA =
∑k

i=1 trRΓUi
f . �

As a first step to isolate the trace trRΓU f we shall consider a family of modified
operators on L2(PD×(k)\PD×(A)).

Definition 2.43. Let χ : PD×(A)→ C1 be a smooth character vanishing on PD×(k).
For any continuous, compactly supported f ∈ Cc(PD×(A)) we define an operator Rχf :
L2(PD×(k)\PD×(A))→ L2(PD×(k)\PD×(A)) by

(Rχf(φ))(x) = (Rf(φ))(x)χ(x).

Proposition 2.44.

trRχf =
∑

[γ]PD×(k)

χ|
PD×γ (A)

=1

Vol(PD×γ (k)\PD×γ (A))

∫
PD×γ (A)\PD×(A)

χ(x)f(x−1γx)dx

Proof. We have

(Rχf(φ))(x) = χ(x)

∫
PD×(A)

f(y)φ(xy)dy

= χ(x)

∫
PD×(A)

f(x−1y)φ(y)dy

=

∫
PD×(k)\PD×(A)

 ∑
γ∈PD×(k)

χ(x)f(x−1γy)

φ(y)dy

So the operator (Rχf(φ)) is given by the kernel Kχ(x, y) =
∑

γ∈PD×(k) χ(x)f(x−1γy).
The algebra D is not split so the quotient PD×(k)\PD×(A) is compact. For a compact
quotient, the kernel is integrable on the diagonal and we have

trRχf =

∫
PD×(k)\PD×(A)

Kχ(x, x)dx

=
∑

γ∈PD×(k)

∫
PD×(k)\PD×(A)

χ(x)f(x−1γx)dx

=
∑

[γ]PD×(k)

∫
PD×γ (k)\PD×(A)

χ(x)f(x−1γx)dx

=
∑

[γ]PD×(k)

∫
PD×γ (A)\PD×(A)

∫
PD×γ (k)\PD×γ (A)

χ(zx)f(x−1γx)dzdx

=
∑

[γ]PD×(k)

χ|
PD×γ (A)

=1

Vol(PD×γ (k)\PD×γ (A))

∫
PD×γ (A)\PD×(A)

χ(x)f(x−1γx)dx.
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Lemma 2.45. Let 1 = c1, c2, . . . , ck be representatives of cl S chosen from PD×(Af )

and put Ui = ciUc
−1
i . Let χ be a smooth character of PD×(A) that factors through cl S or

equivalently, vanishes on PD×(A∞)U and PD×(k). We have trRχfA =
∑k

i=1 χ(ci)trRΓUi
f

Proof. As in the proof of the Lemma 2.42 we will exploit the fact that the image
Rχf lies in the subspace of Ũ -fixed vectors (for the definition of Ũ see the proof of Lemma
2.42), so by recalling the proof of Lemma 2.42 we get

PD×(A) =
k⊔
i=1

PD×(k)ciŨPD×(kν1). (4.4)

Hence

L2(PD×(k)\PD×(A))Ũ '
k⊕
i=1

L2(ΓUi\PD×(kν1))

Using Equation (4.4) we get under that the last isomorphism the character χ is given by

χ =
k∑
i=1

χ(ci)1ΓUi\PD×(kν1 ).

It follows that

trRχfA =
k∑
i=1

χ(ci)trRΓUi
f.

�

Corollary 2.46.

trRΓUi
f =

1

|cl S |
∑
χ∈ĉl S

χ(ci)trR
χfA

Proof. By Lemma 2.45, for any character χ of cl S we have

trRχfA =
k∑
i=1

χ(ci)trRΓUi
f.

Thus ∑
χ∈ĉl S

χ(ci)trR
χfA =

k∑
j=1

∑
χ∈ĉl S

χ(ci)χ(cj)trRΓUi
f = |cl S |trRΓUi

f.

�

Combining Corollary 2.46 and Proposition 2.44 we get:

Proposition 2.47. With U, f, fA as before, we have

trRΓUi
f =

∑
[γ]PD×(k)

Vol(PD×γ (k)\PD×γ (A))Ξγ(fA),

where, for h ∈ Cc(PD×(A))

Ξγ(h) :=
1

|cl S |
∑
χ∈ĉl S

χ|
PD×γ (A)

=1

∫
PD×γ (A)\PD×(A)

χ(x)h(x−1γx)dx.
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Proof. By Corollary 2.46 and Proposition 2.44 we get

trRΓUi
f =

1

|cl S |
∑
χ∈ĉl S

trRχfA (4.5)

=
∑

[γ]PD×(k)

Vol(PD×γ (k)\PD×γ (A)) (4.6)

1

|cl S |
∑
χ∈ĉl S

χ|
PD×γ (A)

=1

∫
PD×γ (A)\PD×(A)

χ(x)fA(x−1γx)dx (4.7)

=
∑

[γ]PD×(k)

Vol(PD×γ (k)\PD×γ (A))Ξγ(f) (4.8)

�

4.5. Trace formula for congruence lattices. The reasoning will be very close to
one we conducted for maximal lattices. We decided to split this into two parts to avoid
an overload of technicalities. We keep the notation from previous sections, in particular
D is still an admissible quaternion algebra defined over a number field k. Any congruence
lattice in the commensurability class C(D) defined by D is of the from Γ = ΓV for some
open compact subgroup V ⊂ PD×(Af ). From now on we fix such V and we fix a maximal
open compact U containing V . We use U to define a measure µA on PD×(A) the same
way we did in Equation (4.3). Let f ∈ Cc(PGL(2,K)), we define

fVA = fA∞ ⊗ fVAf ,

where

fA∞ =f ⊗ 1PD×(kν2 ) ⊗ . . .⊗ 1PD×(kνd ) (4.9)

fVAf =[U : V ]1V (4.10)

Definition 2.48. We define the class group cl (D,V ) = cl (V ) (we omit D when it is
clear from the context) as the quotient PD×(k)\PD×(Af )/V .

With this notation, for U maximal we have cl (U) = cl S where S is the set of places
where Up fixes an edge of the Bruhat-Tits tree.

Lemma 2.49. The norm map induces an isomorphism

cl (V ) ' A×D/k
×
Dn(A×V ) ' A×f /k

×
Dn(A×f V ).

In particular cl (V ) is finite and has an abelian group structure. 10

Proof. Let V 1 denote the preimage of V in D1(Af ). By the Strong Approximation
Theorem (Thm. 2.40) the product D1(k)V 1 equals D1(Af ). Thus the map induced by the
norm

n : PD×(k)\PD(Af )/V → k×D\A
×
D/n(V A×) (4.11)

is an isomorphism. The second isomorphism is a consequence of the Weak Approximation
Property for the multiplicative group Gm (see [89, Chapter 7]). �

The last Lemma allows us to identify the characters of A×f /k
×
D(A×f )2n(V ) with the

characters of PD×(A) vanishing on V and PD×(k). Repeating the exact same argument
as in the proof of Proposition 2.44 we get

10Note, that while n(V ) alone is not well defined because it is a subset of PD×(Af ) not D×(Af ) the
product (A×f )2n(V ) = n(A×f V ) is.
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Theorem 2.50. Let D be an admissible quaternion division algebra over k and let V
be an open compact subset of PD×(Af ). For any continuous, compactly supported function
f on SL(2,K) we have

trRΓV f =
∑

[γ]PD×(k)

Vol(PD×γ (k)\PD×γ (A))ΞVγ (fA), (4.12)

Where, for h ∈ Cc(PD×(A))

ΞVγ (h) :=
1

|cl (V )|
∑

χ∈ĉl (V )
χ|

PD×γ (A)
=1

∫
PD×γ (A)\PD×(A)

χ(x)h(x−1γx)dx. (4.13)

As a corollary we get the formula for the volume

Corollary 2.51.

Vol(ΓV \PGL(2,K)) =
Vol(PD×(k)\PD×(A))[U : V ]

|cl (V )|
(4.14)

Proof. Take a sequence (fi) of functions with support contained in smaller and
smaller balls around 1 and with fi(1) = 1. By the usual Selberg trace formula limi→∞ trRΓV fi =
Vol(ΓV \PGL(2,K)). On the other hand by Theorem 2.50 we have

lim
i→∞

trRΓV fi =
Vol(PD×(k)\PD×(A))[U : V ]

|cl (V )|
. (4.15)

�

Lemma 2.52. With D,V as before and γ ∈ PD×(k), γ 6= 1 there are at most two
characters χ ∈ ĉl (V ) which vanish on PD×γ (A).

Proof. Let χ ∈ ĉl (V ) be a character vanishing on PD×γ (A). By Lemma 2.49 we can
write χ(g) = θ(n(g)) where θ is a character of A×D vanishing on k×D and n(A×V ). Let l be
the quadratic extension of k generated by the eigenvalues of γ. The image of D×γ (A) via
the norm map equals Nl/k(A×l ). Hence, θ factors through

A×D/k
×
Dn(A×V )Nl/k(A×l ).

By the weak approximation theorem for the multiplicative group we have A× = k×AD and
hence A×D/k

×
D ' A×/k×. The last quotient can be rewritten as

A×/k×n(A×V )Nl/k(A×l ).

We claim that this is a group of order at most two. To do this we use Class Field Theory.
By the Reciprocity Law [82, Theorem 5.3] there exists a homomorphism (Artin map)
φk : A× → Gal(kab/k) satisfying the following properties

• φ(k×) = 1
• for every abelian extension l/k map φk defines an isomorphism

φl/k : A×/k×Nl/k(A×l )→ Gal(l/k).

In particular, if l/k is a quadratic extension then |A×/k×Nl/k(A×l )| = 2. �

Remark 2.53. An alternative way to finish the proof is to use the Second Inequality
of the Class Field Theory [82, Theorem 5.1.a] which states that |A×/k×Nl/k(Al)| divides
[l : k] for any finite Galois extension l/k. In particular, this part of the proof should
generalize to the other semisimple Lie groups without greater difficulty.

Corollary 2.54. For any h ∈ Cc(PD×(A)) we have

|ΞVγ (h)| ≤ 2

|cl (V )|
|Oγ(|h|)|.
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In particular

|Vol(ΓV \PGL(2,K))f(1)− trRΓV f | ≤
2

|cl (V )|
∑

[γ]PD×(k)

γ 6=1

Vol(PD×γ (k)\PD×γ (A))Oγ(|f |A),

(4.16)

4.6. Normalization. The maximal arithmetic lattices of SL(2,K) or PGL(2,K) ad-
mit a fairly explicit description (cf. Proposition 2.33). Therefore proving a limit multiplic-
ity property (or property B-S) for sequences of maximal lattices is a priori much easier than
doing it in full generality. In this section we develop methods to prove the strong version
of Conjecture 2.5 for arbitrary congruence lattices, not necessarily maximal. The idea is
to replace the characteristic function 1V in the definition of fAf by a function invariant by
conjugation by some maximal compact subgroup U containing V and then express it as a
combination of finite dimensional characters of U .

Let us fix an admissible quaternion algebra D, an open compact subgroup V of
PD×(A∞f ) and a maximal open compact subgroup U containing V . Recall that we write
IrrG for the set of irreducible complex representations of a group G, and whenever ρ is
such a representation we write χρ for its character and Wρ for the vector space on which
G acts. If G is a group acting on a space W we write WG for the set of fixed points. For
f ∈ Cc(PGL(2,K)) let fA = fVA , fA∞ and fVAf be defined by Equations (4.9).

Lemma 2.55. Let γ ∈ PD×(k)

|ΞVγ (fA)| ≤ 2|Oγ(fA∞)|
|cl (V )|

∑
ρ∈Irr(U)

dimW V
ρ |Oγ(χρ)| (4.17)

Proof. By corollary 2.54 we have

|ΞVγ (fA)| ≤ 2|Oγ(fA)|
|cl (V )|

(4.18)

Let f̃Af :=
∫
U fAf (u−1xu)du. Then

Oγ(fA∞)Oγ(f̃Af ) =Oγ(fA∞)

∫
U

∫
PD×γ (Af )\PD×(Af )

f((ux)−1γxu)dudx (4.19)

=Oγ(fA∞)Oγ(fAf ) (4.20)
=Oγ(fA) (4.21)

On the other hand

f̃Af =

∫
U

[U : V ]1uV u−1du =
∑

u∈U/V

1uV u−1 = χInd UV 1. (4.22)

By the Frobenius reciprocity 〈Ind U
V 1, ρ〉U = dimW V

ρ so

χInd UV 1 =
∑
ρ∈IrrU

dimW V
ρ χρ. (4.23)

Hence

|ΞVγ (fA)| ≤2|Oγ(fA)|
|cl (V )|

(4.24)

≤2|Oγ(fA∞)|
|cl (V )|

|Oγ(fAUf
)| (4.25)

≤2|Oγ(fA∞)|
|cl (V )|

∑
χ∈Irr(U)

dimW V
ρ |Oγ(χρ)|. (4.26)

�
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Section 6 will be devoted to estimates of orbital integrals appearing on the right hand
side of Lemma 2.55. We will aim at an estimate of the form |Oγ(χρ)| ≤ Cχ1−δ

ρ where δ > 0
and C is a constant depending on the lattice in an explicit way (see Propositions 2.74 and
2.75).

5. Short geodesics and equidistribution

5.1. Bilu equidistribution theorem. Recall that the logarithmic Mahler mea-
sure of an algebraic number α is given by m(α) =

∑
ν∈MQ(α)

log+ |α|ν , where log+ t =

max{log t, 0} for t > 0. We shall use the following result due to Bilu [20]

Theorem 2.56. Let (αn) be a sequence of algebraic integers such that m(αn)
[Q(αn):Q] tends

to 0 as n goes to infinity, where m(αn) is the logarithmic Mahler measure. Define the
sequence of probability measures

µn :=
1

[Q[αn] : Q]

∑
σ∈Hom(Q(αn),C)

δ(αn)σ .

Then for any bounded continuous function f : C→ C we have

lim
n→∞

∫
fdµn =

1

2π

∫ 2π

0
f(eiθ)dθ.

The following corollary is crucial to estimate the orbital integrals in the non torsion
case (see Section 6).

Corollary 2.57. Let (αn) be a sequence of algebraic integers with bounded logarithmic
Mahler measure and degree tending to infinity. Then

|NQ(αn)/Q(1− αn)| � eo([Q(αn):Q]).

Proof. Let µn be probability measures defined as in Theorem 2.56. Then
1

[Q(αn) : Q]
log |NQ(αn)/Q(1− αn)| =

∫
log |1− x|dµn

Pick A > 0 big. We have

lim
n→∞

∫
log |1− x|dµn ≤ lim

n→∞

∫
max{−A, log |1− x|}dµn

We assume that the logarithmic Mahler measure of αn is uniformly bounded so the support
of µn lies in a fixed compact set. Hence, the function on the right hand side is uniformly
bounded on the support of all µn’s. By Bilu’s equidistribution theorem, the limit on the
right hand side equals

1

2π

∫ 2π

0
max{−A, log |1− eiθ|}dθ.

By Lebesgue dominated convergence we have

lim
A→∞

1

2π

∫ 2π

0
max{−A, log |1− eiθ|}dθ =

1

2π

∫ 2π

0
log |1− eiθ|dθ.

Pick the branch of complex logarithm that is defined on C\ (−∞, 0]. Let C be the contour
of the unit circle. For any τ > 0 we have∫ 2π

0
log |1 + τ − eiθ|dθ = Im

∫
C

log(1 + τ − z)dz
z

= 0,

taking τ → 0 we get ∫ 2π

0
log |1− eiθ|dθ = 0.

It follows that
lim
n→∞

1

[Q(αn) : Q]
log |NQ(αn)/Q(1− αn)| = 0

which ends the proof. �
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We shall show that

Lemma 2.58. Let Γ be an arithmetic lattice in PGL(2,K) (K = R,C) with trace field
k. Let γ ∈ Γ non-torsion and m(γ) ≤ M . Recall that we define m(γ) as m(λ1) = m(λ2)
where λ1, λ2 are the non-trivial eigenvalues of Ad γ . Then

|Nk/Q(∆(γ))| � eoM ([k:Q]).

∆(γ) was defined in Section 2.2.

Proof. Note that λ1λ2 = 1. Let L = k(λi). Then

|Nk/Q(∆(γ))|[L:k] =

2∏
i=1

|NL/Q(1− λi)| = eo([L:Q]) = eo([k:Q]).

The inequalities follow from Corollary 2.57 and the fact that Q(λi) = k(λi) by Lemma
2.69. �

Theorem 2.59. Let (αi) be a sequence of algebraic integers such that m(αi)
[Q(αi):Q] → 0 and

[Q(αi) : Q]→∞ as i tends to infinity.
(1) Let ki = Q(αi) and πki be the prime counting function for the field ki i.e.

πki(x) = #{p prime ideal of Oki | N(p) ≤ x}.
Then, for any x > 0 we have

lim
i→∞

πki(x)

[ki : Q]
= 0.

(2) Let N ≥ 1 be a natural number and for each i ∈ N let ki be a subfield of Q(αi)
with [Q(αi) : ki] ≤ N . Then, for any x > 0 we have

lim
i→∞

πki(x)

[ki : Q]
= 0.

Proof. We start with the proof of (1). Since for a fixed x we have only finitely many
rational primes p less than x the theorem is equivalent to the following statement. For
every rational prime p, let np,i(x) be the number of prime ideals p of Oki lying above p
with N(p) ≤ x. Then

lim
i→∞

np,i(x)

[ki : Q]
= 0.

Let L be the largest natural number such that pL ≤ x. For every prime ideal p of Oki with
p | p and N(p) ≤ x we have αp

L!

i − αi ∈ p. Hence∏
p|p

N(p)≤x

p | αp
L!

i − αi, (5.1)

so
pnp,i(x) ≤ N(αp

L!

i − αi) = N(αi)N(αp
L!−1

i − 1) ≤ eo([ki:Q]). (5.2)
The last inequality is a consequence of Corollary 2.57.

To deduce (2) observe that πki(x) ≤ πQ(αi)(x
[Q(αi):ki]) ≤ πQ(αi)(x

N ) so

lim
i→∞

πki(x)

[ki : Q]
≤ N lim

i→∞

πQ(αi)(x
N )

[Q(αi) : Q]
= 0. (5.3)

�

As a simple corollary of Theorem 2.59 we get

Corollary 2.60. Let N be a natural number, let αi be a sequence of algebraic integers
such that m(αi)

[Q(αi):Q] → 0 as i tends to infinity. For every i ∈ N let ki be a subfield of Q(αi)

such that [Q(αi) : ki] ≤ N . Then for every σ > 1 and Re(s) ≥ σ we have |ζki(s)| =
exp(oσ([ki : Q])).
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Proof. Since |ζki(Re(s))| ≥ |ζki(s)| we may assume that s is real. For M > 0 define

AM (s) =
∑

pm–prime power
pm≥M

∞∑
n=1

n−1

pmns
,

where the sum is taken over powers of rational primes. For s ≥ σ > 1 we have

log ζki(s) =
∑

p∈Mf
ki

∞∑
n=1

n−1

N(p)ns
≤

∑
p∈Mf

ki
N(p)≤M

∞∑
n=1

n−1

N(p)ns
+ [k : Q]AM (s). (5.4)

By Theorem 2.59

lim
i→∞

| log ζki(s)|
[ki : Q]

≤ AM (s).

But for Res > 1 limM→∞AM (s) = 0. The rate of convergence of AM (s) to 0 depends on
σ, so we get that log ζki(s) = oσ([k : Q]). �

6. Orbital integrals

In this section we give upper bounds for the orbital integrals. We start with the
local considerations. For non-archimedean places we consider the integrals of the form
Oγ(χρ) where ρ is an irreducible representation of a maximal compact open subgroup U
of PD×(Af ) and D is an admissible division algebra. For archimedean places we estimate
Oγ(fA∞) where fA∞ has uniformly bounded support.

6.1. Values of irreducible characters at regular elements. Let G be a simple
group of type A1 defined over kp. Let U be a maximal compact subgroup of G(kp). In this
section we give an upper bound on the values of irreducible characters of U on the regular
elements of U . The main result of this section is

Theorem 2.61. Let χ be a character of an irreducible representation of U . Then for
all γ ∈ U regular we have

|χ(γ)| ≤ 8|∆(γ)|−1
p .

If γ is torsion of order 2, 3 or 4 the constant 8 can be improved to 4, 8
√

3/3 and 4
√

2
respectively.

Following Serre11 [100, Formule (21)] we shall use the Weyl integration formula. We
choose a Haar measure dg on G(kp) and for any torus T we choose compatible measures
dx, dt on G(kp)/T (kp), T (kp) respectively. For a torus T defined over kp put W (T ) =
N(T (kp))/T (kp). For any continuous compactly supported function φ on G(kp) we have∫

φ(g)dg =
∑

[T ]G(kp)⊂G

1

|W (T )|

∫
G(kp)/T (kp)

∫
T (kp)

|∆(t)|pφ(xtx−1)dt dx (6.1)

Where the sum is taken over the set of G(kp)-conjugacy classes of maximal tori defined
over kp. We normalize dg so that the measure of U is 1 and dt so that the measure of the
maximal compact subgroup of T (kp) is 1. From it we can deduce a similar formula for U .
A directed torus is a pair (T, c) consisting of a torus and a Weyl chamber c ⊂ X∗(T )⊗R.
The group G(kp) acts on the set of directed tori by conjugation and the stabilizer of (T, c)
is precisely T (kp). To distinguish directed tori from the usual ones we will usually denote

11The formula is stated there for central simple division algebras but the same statement holds for
any reductive algebraic group.
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them by
−→
T . Note that the number of directed conjugacy classes [

−→
T ]G(kp) is a single class

[T ]G(p) equals W (G)
W (T ) . From (6.1) we deduce∫

U
φ(g)dg =

1

|WG|
∑

[
−→
T ]G(kp)⊂G

∫
G(kp)/T (kp)

∫
T (kp)

|∆(t)|pφ(xtx−1)dt dx (6.2)

=
1

|WG|
∑

[
−→
T ]U⊂G

∫
U/(T (kp)∩U)

∫
T (kp)∩U

|∆(t)|pφ(utu−1)dt du (6.3)

To get the second equality we split the integral over a single G(kp)-conjugacy class of
directed tori into sum of integrals over U -conjugacy classes. For a class function on U this
simplifies to ∫

U
φ(g)dg =

1

|WG|
∑

[
−→
T ]U⊂G

1

µT (U ∩ T (kp))

∫
T (kp)∩U

|∆(t)|pφ(t)dt (6.4)

To simplify the notation, for any directed torus
−→
T we shall normalize the measure µT on

T (kp) so that µT (U ∩ T ) = 1. Now we are ready to start the proof of Theorem 2.61. The
proof is inspired by [71] where M. Larsen has proven an analogous result for finite groups
of Lie type.

Proof. Let χ be a character of an irreducible representation of U . By the formula
(6.4) we get

1 =

∫
U
|χ(u)|2du =

1

|WG|
∑

[
−→
T ]U∈G

∫
T (kp)∩U

|∆(γ)|p|χ(t)|2dt (6.5)

In particular

|WG| ≥
∫
T (kp)∩U

|∆(t)|p|χ(t)|2dt, (6.6)

for any directed torus
−→
T . Now take T such that γ ∈ T (kp). We can do so because γ is

regular. We shall approximate |∆(t)|p by an integral combination of characters of T (kp)∩U .
Write λ1, . . . , λr for the positive roots of T . For any t ∈ T (kp) the Weyl discriminant is
given by

∆(t) =

r∏
i=1

(1− λi(t))(1− λi(t)−1)

(cf. Notation). Note that the image of U ∩ T (kp) via any character of T (kp) has to be
compact so λi(U ∩ T (kp)) ⊂ O×kp for i = 1, . . . , r. For any i = 1, . . . , r we pick a character
θi : O×kp → C× such that θi(λi(γ)) 6= 1 but θi(λi(t)) = 1 for any t satisfying

|1− λi(t)|p < |1− λi(γ)|p. (6.7)

Define Θ : T (kp) ∩ U → C by

Θ =

r∏
i=1

(1− θi ◦ λi).

We can choose characters θi is such a way that |Θ(γ)| ≥ 1 and at least 2,
√

3,
√

2 if γ is 2, 3, 4
torsion respectively. Because of condition (6.7) Θ(t) = 0 for all t with |∆(t)|p < |∆(γ)|p.
It follows that |Θ(t)|2/|∆(t)|p ≤ |Θ(t)|2/|∆(γ)|p. We combine this inequality with (6.6) to
get ∫

T (kp)∩U
|Θ(t)|2|χ(t)|2dt ≤ sup

t∈T (kp)∩U
|Θ(t)|2|∆(γ)|−1

p |WG|. (6.8)

The function Θ(t)χ(t) is an integral combination of characters of T (kp)∩U . We can write

Θ(t)χ(t) =
∑

ζ∈Π(T (kp)∩U)

cζζ(t) with cζ ∈ Z (6.9)
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Function Θ can be trivially bounded from above by 2r where r is the number of posi-
tive roots. The inequality (6.8) implies that

∑
ζ∈Π(T (kp)∩U) c

2
ζ ≤ 22r|∆(γ)|−1

p |WG| so in
particular

|χ(γ)| ≤ |Θ(γ)χ(γ)| =

∣∣∣∣∣∣
∑

ζ∈Π(T (kp)∩U)

cζζ(γ)

∣∣∣∣∣∣ ≤
∑

ζ∈Π(T (kp)∩U)

|cζ | ≤ 22r|∆(γ)|−1
p |WG|.

(6.10)
In case when G if of type A1 we have r = 1 and |WG| = 2 which ends the proof. �

Remark 2.62. Note that we use the assumption that G is of type A1 only in the last
line of the proof. In particular the bound (6.10) holds for every reductive group G over
kp, any open compact subgroup U of G(kp). The regularity assumption on γ is essential,
otherwise ∆(γ) = 0.

6.2. Estimates on the non-archimedean local orbital integrals. The aim of this
section is to estimate the local orbital integrals of the characteristic functions of maximal
open compacts subsets of PD×(kp) for p ∈ Mf

k . Note that in the local case PD×(kp)
is either anisotropic and compact or isomorphic to PGL(2, kp) and we know the explicit
description of the maximal compact subgroups. In the anisotropic case

Oγ(1Up) =

∫
PD×γ (kp)\PD×(kp)

1dx = 1

so we are left to deal with the case PD×(kp) ' PGL(2, kp). We start by recalling the ba-
sic properties of the Bruhat-Tits tree (for necessary background see [94, Chapter 5.2.1]).
We write X(SL(2, kp)) for the Bruhat-Tits tree of SL(2, kp). It is a regular q + 1-valent
tree. We endow it with the natural metric. The group PGL(2, kp) acts on X(SL(2, kp))
by graph automorphisms. This action is transitive on vertices and on edges. Every max-
imal subgroup of PGL(2, kp) is a stabilizer of a vertex or of an edge. By a geodesic on
X(SL(2, kp)) we mean a path on X(SL(2, kp)) infinite in both directions. If T is a maximal
split torus of PGL(2, kp) then T (kp) stabilizes a unique geodesic on X(SL(2, kp)), we shall
call it the apartment of T . The argument below follows the exposition from [8, Chapter
5] (see also [70]). We shall write ν for the normalized additive p-adic valuation on kp and
νE for the unique extension ν to a finite field extension E/kp.

Lemma 2.63. Let γ be a regular element of PGL(2, kp) and let T be the connected
component of its centralizer. Let Fγ be the subset of X(SL(2, kp)) fixed by γ. If ∆(γ) 6∈ Okp
then Fγ = ∅.

(1) If T is split over kp then Fγ is a strip of radius ν(∆(γ))/2 around the apartment
of T .

(2) If T is split over an unramified quadratic extension E/kp then Fγ is a ball of
radius ν(∆(γ))/2 around a vertex of X(SL(2, kp)).

(3) If T is split by a tamely ramified quadratic extension E/kp then Fγ is a ball of
radius ν(∆(γ))/2 around the midpoint of an edge of X(SL(2, kp)).

(4) If T is split over a wildly ramified extension E/kp. Let σ be the generator of
the Galois group Gal(E/kp). Put w = min{νE(a

σ

a − 1) | a ∈ E×} then Fγ is
contained in a ball of radius ν(∆(γ))/2− w/2 around the midpoint of an edge in
X(SL(2, kp)).

Proof. By abuse of notation let us replace γ with its lift to GL(2, kp) so that we
can write it down as an explicit matrix. If ∆(γ) 6∈ Okp then the group generated by γ
is not compact so it does not stabilize any point of X(SL(2, kp)). From now on assume
∆(γ) ∈ Okp . We will write d for the distance on tree, AT for the apartment of T and q for
the cardinality of the residue field of kp.

(1) Split case Without loss of generality assume that T is the group of diagonal
matrices and that the entries of γ are in Okp . We can do it because ∆(γ) ∈ Okp .
Fix a vertex v of X(SL(2, kp)) stabilized by K = GL(2,Okp) and assume that gv
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is fixed by γ for certain g ∈ GL(n, kp). Using the Iwasawa decomposition we write
g as the product g = ank where a ∈ T (k) n is upper triangular unipotent and
k ∈ GL(2, kp). The vertex gv is stabilized by γ if only if nv is. This is equivalent
to saying that nγn−1 ∈ GL(2,Okp) or γ−1nγn−1 ∈ GL(2,Okp).

if γ =

(
a 0
0 b

)
, n =

(
1 x
0 1

)
then γ−1nγn−1 =

(
1 x(1− a

b )
0 1

)
. (6.11)

It follows that γ−1nγn−1 ∈ GL(2,Okp) if and only if ν(x) ≥ −ν(1 − a
b ) =

−ν(∆(γ))/2. The set of vertices of form anv with a ∈ T (kp) and n =

(
1 x
0 1

)
subject to the condition ν(x) ≥ −ν(1− a

b ) = −ν(∆(γ))/2 forms a strip of radius
ν(∆(γ))/2 around the apartment of T which ends the proof.

(2) Unramified case By [26, Théorème 5.1.25] there is a natural embedding ι : X(SL(2, kp))→
X(SL(2, E)) and an action of the Galois group on X(SL(2, E)) such that

X(SL(2, E))Gal(E/kp) = ι(X(SL(2, kp))).

Moreover ι is an isometry. The set of points in X(SL(2, E)) fixed under the
action of γ is a strip of radius ν(∆(γ))/2 around the apartment of T which we
will call AT . To finish the proof of this case it will be sufficient to show that
AT intersects ι(X(SL(2, kp)) in a single vertex v. Then, since ι(X(SL(2, kp)) is a
totally geodesic subspace, its intersection with this strip will be a ball around v
of radius ν(∆(γ))/2.

T is defined over kp so the apartment AT is stable under Gal(E/kp). The
torus T is not split over kp so the Galois group acts non-trivially on AT . Thus
the only possible action is an orientation reversing isometry which has a unique
fixed point x. Thus AGal

T (E/kp) = AT ∩ ι(X(SL(2, kp)) consists of a single point
which has to be a vertex, because of the geometry of a tree. This ends the proof
in the unramified case.

(3) Tamely ramified case The argument is the same as in the unramified case
except that ι : X(SL(2, kp)) → X(SL(2, E)) is no longer an isometry. The image
ι(X(SL(2, kp)) contains vertices which are not images of a vertex. More precisely,
the images of midpoints of edges in X(SL(2, kp)) are vertices in X(SL(2, E)) and
those are the only new vertices in ι(X(SL(2, kp)). In particular d(ι(x), ι(y)) =
2d(x, y) for any two vertices x, y. By the work of Prasad [90] for a tamely ramified
extension E/kp we have ι(X(SL(2, kp))) = X(SL(2, E))Gal(E/kp) so the argument
from the unramified case, tells us that AGal(E:kp)

T consists of a single point which
has to be a vertex v inside ι(X(SL(2, kp)). We argue that it has to be an image of
midpoint of an edge. Assume the contrary that v = ι(x). We know that x has q+1
adjacent edges. The extension is totally ramified so ι(x) also has q + 1 adjacent
edges. It follows that all edges adjacent to ι(x) are Gal(E/kp) stable which would
mean that AT contains an edge fixed by Gal(E/kp). This contradicts what we
already know. It follows that Fγ is a ball of radius ν(∆(γ))/2 around a midpoint
of an edge.

(4) Wildly ramified case We argue as in the tamely ramified case. The only differ-
ence is that there exists w > 0 such that X(SL(2, E))Gal(E/kp) contains a tubular
neighborhood of radius w around ι(X(SL(2, kp)). As before AT has a unique fixed
point fixed by Gal(E/kp) and by uniqueness it has to coincide with the vertex of
AT closest to ι(X(SL(2, kp)). We write v for the unique fixed point of AT and v′
for the vertex of ι(X(SL(2, kp)). As in the tamely ramified case we can show that
v′ is a midpoint of an edge and that d(v, v′) ≥ w. It follows that Fγ is contained a
ball of radius [ν(∆)−w]/2 around a midpoint of an edge. It remains to compute
w which we do in the Lemma 2.64.

�
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Lemma 2.64. Let E be a wildly ramified quadratic extension of kp and w = min{νE(a−
aσ) | a ∈ OE}. Let ι be the natural injection ι : X(SL(2, kp))→ X(SL(2, E)). Then

B(ι(X(SL(2, kp)), w) ⊂ X(SL(2, E))Gal(E/kp)

Proof. To prove the inclusion it is sufficient to show that for every apartment A in
X(SL(2, kp)) the tubular neighborhood B(ι(A), w) is pointwise fixed by Gal(E/kp). Since
all apartments are in a single SL(2, kp) orbit we may without loss of generality assume
that A is the apartment associated to the diagonal torus. In this case we have a vertex
o ∈ A stabilized by PGL(2,Okp). We abuse the notation and also write o for the image
of o in X(SL(2, E)) via ι, this one is stabilized by PGL(2,OE). All vertices of ι(A) are of

form to where t =

(
a 0
0 1

)
and a ∈ E×. Write πE for the uniformiser of E and πk for the

uniformiser of kp. For any real number R and vertex v ∈ B(ι(A), R) there exists x ∈ E
with vE(x) ≥ −R and n ∈ Z such that

v =

(
πnE 0
0 1

)(
1 x
0 1

)
o

Write σ for the generator of Gal(E/kp). Vertex o is Gal(E/kp) invariant so v ∈ X(SL(2, E))Gal(E:kp)

if and only if (
π−nE 0

0 1

)(
1 −x
0 1

)(
(πσE)n 0

0 1

)(
1 xσ

0 1

)
∈ PGL(2,OE) (6.12)(

(π−1
E πσE)n (π−1

E πσE)nxσ − x
0 1

)
∈ PGL(2,OE). (6.13)

As (π−1
E πσE) ∈ OE this is equivalent to (π−1

E πσE)nxσ − x ∈ OE . We have to check that
νE((π−1

E πσE)nxσ − x) ≥ 0.

νE((π−1
E πσE)nxσ − x) = νE

(
(πnEx)σ

πnEx
− 1

)
+ νE(x) (6.14)

≥ w + νE(πnx). (6.15)

Thus v is fixed by Gal(E/kp) as long as ν(x) ≥ −w. It follows that all vertices in the tubular
neighborhood B(ι(A), w) are fixed. Since X(SL(2, kp)) is the sum of its apartments we get
that B(ι(X(SL(2, kp)), w) is fixed by the Galois group.

�

Using 2.61 and 2.63 we can now give an upper bound on the orbital integrals of type
Oγ(χ) where γ is a regular element and χ is the character of an irreducible representation
of a maximal compact subgroup of PD×(kp).

Proposition 2.65. Let G be an adjoint group of type A1 defined over kp, let γ ∈
G(kp) be a regular element and U be a maximal compact subgroup of G(kp). Put M =

min{8|∆(γ)|−1
p , χ(1)}. Let q be the cardinality of the residue field of kp. Then for any

irreducible character χ of U we have

|Oγ(χ)| ≤M

(
|∆(γ)|−1/2

p + b
|∆(γ)|−1/2

p

q − 1

)
,

where b = 0 if the centralizer of γ is split or |∆(γ)|p = 1 and b = 2 otherwise. If G is
anisotropic then we have

|Oγ(χ)| ≤M.

Moreover if γ is 2, 3, 4 torsion the constant 8 can be improved to 4, 8
√

3/3 and 4
√

2 respec-
tively.

Proof. We start with the case G ' PGL(2, kp). We shall prove that

|Oγ(1U )| ≤ |∆(γ)|−1/2
p + b

|∆(γ)|−1/2
p

q − 1
. (6.16)
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When dealing with orbital integrals we fix the standard Haar measure µG on G(kp) giving
mass 1 to U and the standard Haar measure µGγ on Gγ(kp) giving mass 1 to the max-
imal compact subgroup of Gγ(kp). The integration will be done against a measure on
Gγ(kp)\G(kp) compatible with those two. We have∫

Gγ(kp)\G(kp)
1U (x−1γx)dx =

∑
g∈Gγ(kp)\G(kp)/U

1U (g−1γg)

µGγ (Gγ(kp) ∩ gUg−1)
(6.17)

We shall give an interpretation of the right hand side in terms of action of γ on the Bruhat-
Tits tree X(SL(2, kp)). U is a maximal compact subgroup of G(kp) so it stabilizes a vertex
or an edge of X(SL(2, kp)). Note that 1U (g−1γg) = 1 if and only if γgU = gU . If we let
o be the vertex (edge) stabilized by U then 1U (g−1γg) = 1 if and only if o is stabilized by
γ. Write T for the maximal compact subgroup of Gγ(kp). We have chosen µGγ so that
µGγ (T ) = 1 so µGγ (Gγ(kp)∩gUg−1)−1 = [T : Gγ(kp)∩gUg−1]. The group Gγ(kp)∩gUg−1

is the stabilizer of go under the action of T so we have

µGγ (Gγ(kp) ∩ gUg−1) = #{Tgo}.

Thus the right hand side of 6.17 is the sum of sizes of orbits of T fixed by γ lying in pairwise
disjoint Gγ(kp) orbits. Let S be a T -invariant subset of vertices (edges) of X(SL(2, kp))
fixed by γ such that

• every Gγ(kp) orbit fixed by γ has nonempty intersection with S;
• if x, y ∈ S are in the same Gγ(kp) orbit then they are in the same T -orbit.

We will refer to these conditions as to (∗). It is easy to see that the right hand side of 6.17
must be equal to #S. It remains to construct such a set and compute its cardinality. In
the case when Gγ is anisotropic the group Gγ(kp) is compact so we have T = Gγ(kp) and
we can take S to be the set of vertices (edges) fixed by γ. let E be the quadratic extension
of kp generated by the eigenvalues of γ and let q be the cardinality of the residue field of
kp. Lemma 2.63 implies that

• if E : kp is unramified then

#S = |∆(γ)|−1/2
p + 2

|∆(γ)|−1/2
p − 1

q − 1
(vertices), (6.18)

#S = |∆(γ)|−1/2
p + 2

|∆(γ)|−1/2
p − 1

q − 1
− 1 (edges). (6.19)

• if E/kp is ramified then

#S ≤ 2
|∆(γ)]|−1/2 − q−1/2

q3/2 − q1/2
(vertices), (6.20)

#S ≤ 2
|∆(γ)]|−1/2 − q−1/2

q3/2 − q1/2
− 1 (edges). (6.21)

(6.22)

with equalities if E/kp is tamely ramified.
In the case when Gγ is split the set of points fixed by γ is too big. In order to choose
a subset satisfying (∗) we proceed as follows. Let A be the apartment of X(SL(2, kp))
associated to Gγ . Fix a vertex o ∈ A and an edge e ∈ A adjacent to o. Let S′ be the subset
of vertices (edges) v of X(SL(2, kp)) \A fixed by γ such that the vertex of A closest to v is
o. We let S = o∪S′ if U fixes a vertex and S = {e} ∪S′ if U stabilizes an edge. We verify
that S satisfies (∗). Note that T fixes A pointwise so by definition S is T invariant. Let
u be any vertex (edge) stabilized by γ and let w be the vertex of A closest to u. For any
t ∈ Gγ(kp) the vertex tw is the point of A closest to tu. The group Gγ(kp) acts transitively
on the set of vertices of A so there exists a t0 ∈ Gγ(kp) such that t0u ∈ S. This proves
that every orbit of Gγ(kp) fixed by γ intersects S. It remains to check that if two elements
x, y of S are in the same Gγ orbit then they lie in the same T orbit. If x = ty for some
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t ∈ Gγ(kp) then to = o, but the stabilizer of o is T so the condition (∗) holds. By Lemma
2.63 we get

#S = |∆(γ)|−1/2
p (vertices), (6.23)

#S = |∆(γ)|−1/2
p (edges). (6.24)

Combining the inequalities above we get inequality (6.16). Now we can invoke Theorem
2.61 to give the estimate:

|Oγ(χ)| ≤ |Oγ(1Up)| max
γ′∈[γ]G(kp)

|χ(γ′)| ≤

(
|∆(γ)|−1/2

p + b
|∆(γ)|−1/2

p − 1

q − 1

)
Mγ . (6.25)

We recall that Mγ = min{8|∆(γ)|−1
p , χ(1)}. If G is anisotropic over kp then U = G(kp)

and we trivially have Oγ(1U ) = 1 so by Theorem 2.61

|Oγ(χ)| ≤Mγ . (6.26)

If γ is 2, 3, 4 torsion the constant 8 can be improved to 4, 8
√

3/3 and 4
√

2 respectively. �

6.3. Archimedean Orbital Integrals. Let G = PGL(2,K) with K = R,C, let γ
be a regular semisimple element of G. For a compactly supported continuous function f
of G we shall bound |Oγ(f)| in terms of ‖f‖∞, |∆(γ)| and the size of the support of f . To
speak about size we have to choose a metric on G. We fix a norm on G given as follows.
For g ∈ G we choose a representative A ∈ GL(2,K)

Ã =

(
a b
c d

)
(6.27)

with |detA| = 1. We define the Frobenius norm of g as ‖g‖2 = |a|2 + |b|2 + |c|2 + |d|2 =
trA †A. Let K be the maximal compact subgroup of G fixed by the conjugate transpose.
As †k = k−1 for any k ∈ K the norm ‖·‖ is bi-K invariant. We fix a metric d : G×G→ R+

by setting

d(g, h) = ‖g−1h‖.

Proposition 2.66. Fix R > 0. Let γ be a regular semisimple element of G such that
Gγ splits over K. For any continuous function f ∈ Cc(G) with suppf ⊂ B(1, R) we have

|Oγ(f)| �R |∆(γ)|−1/2‖f‖∞. (6.28)

Proof. Put fK(g) :=
∫
K f(k−1gk)dk, then Oγ(f) = Oγ(fK), ‖fK‖∞ ≤ ‖f‖∞ and

suppfK ⊂ B(1, R) because the metric is bi-K invariant. Hence it is enough to show the
theorem for functions which are constant on the K-conjugacy classes. From now on assume
that f is constant on K conjugacy classes. Choose a measurable bounded function α on
G such that

∫
Gγ
α(tg)dt = 1 for all g ∈ G. Then

Oγ(f) =

∫
Gγ\G

f(x−1γx)dx =

∫
G
α(g)f(g−1γg)dg. (6.29)

Since Gγ is split, it is conjugate to the subgroup of diagonal matrices A. Since our problem
is conjugation invariant we may assume Gγ = A. We have Iwasawa decomposition G =
ANK where N is the group of unipotent upper triangular matrices. By [69, Theorem
2.5.1] for any integrable h we have∫

G
h(g)dg =

∫
A

∫
N

∫
K
h(ank)dadndk. (6.30)
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Hence

Oγ(f) =

∫
A

∫
N

∫
K
α(ank)f(k−1n−1a−1γank)dadndk (6.31)

=

∫
A

∫
N

∫
K
α(ank)f(n−1γn)dadndk (6.32)

=

∫
N
f(n−1γn)dn (6.33)

=

∫
N
f(γ(γ−1n−1γn))dn. (6.34)

The map φ : n 7→ γ−1n−1γn is a differentiable automorphism of N . If γ has a lift
(
a 0
0 b

)
then it is easy to check that the Jacobian of φ is constant and equal to 1− b

a . Thus

Oγ(f) =

∫
N
f(γ(γ−1n−1γn))dn =

∣∣∣∣1− b

a

∣∣∣∣−1 ∫
N
f(γn)dn�R

∣∣∣∣1− b

a

∣∣∣∣−1

‖f‖∞. (6.35)

The last inequality stems from the fact that the support of f is contained in a ball of
radius R so the rightmost integral can be bounded by

√
2R‖f‖∞. Elements γ and γ−1 are

conjugate under the Weyl group so Oγ(f) = Oγ−1(f). From this we deduce that

|Oγ(f)| �R min

{∣∣∣∣1− b

a

∣∣∣∣−1

,
∣∣∣1− a

b

∣∣∣−1
}
‖f‖∞ (6.36)

≤
∣∣∣∣(1− b

a

)(
1− a

b

)∣∣∣∣−1/2

‖f‖∞ (6.37)

=|∆(γ)|−1/2‖f‖∞. (6.38)

�

We have an analogous inequality for elements with anisotropic centralizer. Note that
this can only happen in PGL(2,R) since C is algebraically closed.

Proposition 2.67. Let G = PGL(2,R) and let γ be a regular semisimple element with
anisotropic centralizer. Then for any continuous function f ∈ Cc(G) with suppf ⊂ B(1, R)
we have

|Oγ(f)| �R |∆(γ)|−1‖f‖∞. (6.39)

Proof. Note that in PGL(2,R) all semisimple elements with anisotropic centralizer
are conjugate to an element of the group

K =

〈(
cos θ sin θ
− sin θ cos θ

)
,

(
0 1
1 0

)
| θ ∈ R

〉
,

and their connected centralizer is conjugate to the group

K0 =

{(
cos θ sin θ
− sin θ cos θ

)
| θ ∈ R

}
.

Without loss on generality we may assume this is the case for γ. As in the proof of
Proposition 2.66 we can assume that f is constant on the K conjugacy classes. We have
the Cartan decomposition

G = K0A
+K where A+ =

{(
a 0
0 1

)
| a ≥ 1

}
.

Define the function J : A+ → R+ by

J

((
a 0
0 1

))
=

(
a+ a−1

2

)2

.

66



Then, by [63, p.37] we have∫
G
h(g)dg =

∫
K0

∫
A+

∫
K
J(a)h(k0ak)dk0dadk.

Fix a function α : G→ R such that
∫
K0
α(tg)dt = 1 for all g ∈ G. Then

Oγ(f) =

∫
K0\G

f(x−1γx)dx =

∫
G
α(g)f(g−1γg)dg (6.40)

=

∫
K0

∫
A+

∫
K
J(a)f(k−1a−1k−1

0 γk0ak)dk0dadk (6.41)

=

∫
K0

∫
A+

∫
K
J(a)f(a−1γa)dk0dadk (6.42)

=

∫ ∞
1

(
t+ t−1

2

)2

f

((
t−1 0
0 1

)
γ

(
t 0
0 1

))
dt

t
. (6.43)

Write γ =

(
cos θ sin θ
− sin θ cos θ

)
, we have(

t−1 0
0 1

)(
cos θ sin θ
− sin θ cos θ

)(
t 0
0 1

)
=

(
cos θ t−1 sin θ
−t sin θ cos θ

)
. (6.44)

The distance of the last matrix to 1 is given by
(
2(cos θ − 1)2 + (t2 + t−2) sin2 θ

)1/2 ≥
t| sin θ|. The support of f lies in the ball B(1, R) so from equation 6.40 we get

|Oγ(f)| ≤ ‖f‖∞
∫ R
| sin θ|

1

(
t+ t−1

2

)2
dt

t
�R | sin θ|2. (6.45)

It remains to relate | sin θ| and |∆(γ)|. In PGL(2,C) the element γ is conjugate to the

matrix
(
eiθ 0
0 e−iθ

)
. Therefore ∆(γ) = (1 − e2iθ)(1 − e−2iθ) = (e−iθ − eiθ)(eiθ − e−iθ) =

− sin2 θ. Combining this with inequality 6.45 we get

|Oγ(f)| �R ‖f‖∞|∆(γ)|−1. (6.46)

�

Now we shall combine previous estimates with number theoretic input to obtain esti-
mates on the archimedean orbital integrals for regular elements of an arithmetic lattice.
The key ingredient is a theorem due to Dobrowolski [40]

Theorem 2.68. Let α be an algebraic number of degree d. Then

m(α)�
(

log log d

log d

)3

.

Lemma 2.69. Let γ be a semisimple regular element of an arithmetic lattice γ in
PGL(2,K) and let λ be one of the eigenvalues of Adγ. Let k be the trace field of Γ
i.e. the field generated by traces of Adg for g ∈ Γ. Then λ is an algebraic integer and if
γ ∈ B(1, R) then m(λ) ≤ R. Moreover if γ is not torsion , then there exists a unique place
ω of k(λ) such that |λ|ω > 1. In such case we have |λ| = |λ|±1

ω and Q(λ) is an extension
of k of degree at most 2.

Since k(λ) ' k(γ) ⊂ D we will writem(γ) for the Mahler measure of γ seen as algebraic
number over k. Clearly m(γ) = m(λ).

Proof. Without loss of generality assume that γ ∈ Γ and Γ is a maximal arithmetic
lattice. The fact that γ is an algebraic number follows straight from the construction of
maximal arithmetic lattices (c.f. Proposition 2.33). There exists an admissible quaternion
algebra D and family of open compacts subsets Up ⊂ PD×(kp) for p ∈Mf

k such that Γ is
the projection of PD×(k)∩

∏
p Up to PGL(2,K). In particular, the eigenvalue λ lies in Okp
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because of compactness of Up. It follows that λ is an algebraic integer. Recall that the
logarithmic Mahler measure is given by

m(λ) =
∑

ω∈MQ(λ)

log+ |λ|ω.

Let ν1 be the unique archimedean place where D splits. For any place ν of k except ν1

the element γ is contained in a compact subgroup of PD×(kν) so for any ω extending ν we
have |λ|ω = 1. It follows that

m(λ) =
[Q(λ) : Q]

[k(λ) : Q]

∑
ω∈Mk(λ)

log+ |λ|ω =
[Q(λ) : Q]

[k(λ) : Q]

∑
ω|ν1

ω∈Mk(λ)

log+ |λ|ω.

Note that for any ω|ν1 we have |λ| = |λ|±ω . Among all extensions w of ν1 to k(λ) there
is at most one with |λ|ω > 1. If there is none, then by Kronecker lemma λ is a root of
identity and γ is torsion, in which case m(λ) = 0.

We have d(γ, 1) = ‖1− γ‖ ≤ R. The matrix 1− γ has eignvalues 1− λ, 1− λ−1 so the
last inequality implies that

|1− λ| ≤ R (6.47)

|λ| ≤ R+ 1 ≤ eR (6.48)

log+ |λ| ≤ R. (6.49)

Hence m(λ) ≤ R. In the case |λ|ω 6= 1 we can easily show that k(λ) is at most a quadratic
extension of Q(λ). �

Combining Lemma 2.69, Theorem 2.68 and Propositions 2.66, 2.67 we get

Corollary 2.70. Fix R > 0. Let γ be a regular element of an arithmetic lattice
in PGL(2,K) defined over a number field k and let f ∈ Cc(PGL(2,K)) be a continuous
function supported on a ball B(1, R). Then

|Oγ(f)| �R

(
log[k : Q]

log log[k : Q]

)3

‖f‖∞ if γ is loxodromic or hyperbolic, (6.50)

|Oγ(f)| �R [k : Q]2‖f‖∞ if γ is elliptic and K = C, (6.51)

|Oγ(f)| �R [k : Q]4‖f‖∞ if γ is elliptic and K = R. (6.52)
(6.53)

Proof. Note that if γ is loxodromic, hyperbolic or K = C then its centralizer splits.
In that case m(λ) = log |λ| where λ is the unique eigenvalue of Ad γ of modulus greater
than 1. For the first inequality observe that Lemma 2.69 and Theorem 2.68 give

|∆(γ)| = |1− λ||1− λ−1| ≥ m(λ)2 �
(

log[k : Q]

log log[k : Q]

)−6

. (6.54)

This combined with estimate from Proposition 2.66 gives (6.50). In the elliptic case the
eigenvalues λ, λ−1 of γ are roots of unity. Let n be the order of γ. Since λ lies in a quadratic
extension of k we have [Q(λ) : Q] = φ(n) ≤ 2[k : Q] where φ is the Euler’s totient function.
Using a crude estimate n � φ(n)2 we get n � [k : Q]2. Thus |1 − λ| � [k : Q]−2. If the
centralizer of γ is split (which happens if and only if K = C) we get, by Proposition 2.66

|Oγ(f)| �R [k : Q]2‖f‖∞.

If K = R the centralizer of γ is anisotropic so

|Oγ(f)| �R [k : Q]4‖f‖∞,

by Proposition 2.67. �
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6.4. Global orbital integrals - general case. In this section we combine the results
from Sections 6.3 and 6.2 to get a bound on |Oγ(fAf )|. We start the discussion by a general
bound resulting from what we did in the previous sections. We leave the non-torsion for
the next section. To deal with the non-archimedean part we shall use a classical result of
Frobenius

Theorem 2.71 (Frobenius). Any irreducible representation of PGL(2,Fq) of dimension
bigger than 1 has dimension at least q − 1.

For the anisotropic case we will use a result of Carayol on the dimensions of irreducible
representations of quaternion algebras over a local field.

Theorem 2.72 ( [31, Proposition 6.5]). Let A be a division quaternion algebra defined
over kp. Let π be a smooth irreducible representation of A× of minimal level c and let
r = gcd(2, c). Then if c ≥ 2 the dimension of π is given by the formula

dimπ = r
q2 − 1

qr − 1
q

1
2

(c+r−4). (6.55)

For the definition of minimal level we refer to [31]. If the level is 1 then the repre-
sentation π is of dimension 1 because it factors through an abelian group. Any complex
representation of PA× can be seen as a representation of A× with trivial central character.
As a consequence12 we get:

Corollary 2.73. Let Up be a maximal compact subgroup of PD×(kp). If p 6∈ RamfD
and U ' PGL(2,Okp) then any non-trivial irreducible representation of Up of dimension
> 1 has dimension at least N(p) − 1 and if Up 6' PGL(2,Okp) then every irreducible
representation of dimension > 2 has dimension at least N(p)− 1. If p ∈ RamfD then any
non-trivial representation of dimension > 2 has dimension at least N(p) + 1.

We briefly recall the notation. D× is an admissible quaternion algebra defined over
a field k, U is a maximal compact subgroup of PD×(Af ) and χ is the character of an
irreducible representation of U . We have a decomposition U =

∏
p∈Mf

k
Up so the character

χ can be written as χ =
⊗

p∈Mf
k
χp. As a direct application of the Proposition 2.65 we get

Proposition 2.74. (1)

|Oγ(1U )| ≤ |Nk/Q(∆(γ))|1/2
∏

p|∆(γ)
kp[γ]quadratic

(
N(p) + 1

N(p)− 1

)
.

(2) For the character χ of an irreducible representation of U we have

|Oγ(χ)| ≤ |Nk/Q(∆(γ))|3/2
∏

p|∆(γ)
kp[γ]quadratic

(
N(p) + 1

N(p)− 1

) ∏
p∈Mf

k

8|∆(γ)|−1
p <χp(1)

8
∏
p∈Mf

k

8|∆(γ)|−1
p ≥χp(1)

χp(1),

If γ is 2, 3, 4 torsion the constant 8 can be improved to 4, 8
√

3/3 and 4
√

2 respec-
tively.

Proof. For any χ we have

|Oγ(χ)| =
∏

p∈Mf
k

|Oγ(χp)|

For the first inequality put χ = 1U . If p divides ∆(γ) and the extension kp[γ]/kp is
quadratic then by Proposition 2.65 (more precisely (6.16)) we have

|Oγ(1Up)| ≤ |∆(γ)|−1/2
p

N(p) + 1

N(p)− 1
,

12For the rigorous proof of lower bounds on dimensions in the unramified case see Section 8.2.
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otherwise |Oγ(1Up)| ≤ |∆(γ)|−1/2
p . Observe that |Nk/Q(∆(γ))| =

∏
p∈Mf

k
|∆(γ)|−1

p so we
get

|Oγ(1U )| ≤ |Nk/Q(∆(γ))|1/2
∏

p|∆(γ)
kp[γ] quadratic

N(p) + 1

N(p)− 1
.

The proof of the second inequality is completely analogous. �

We need to find more practical bounds on the factors |Nk/Q(∆(γ))|,

∏
p|∆(γ)

kp[γ]quadratic

(
N(p) + 1

N(p)− 1

)
and

∏
p∈Mf

k

8|∆(γ)|−1
p <χp(1)

8
∏
p∈Mf

k

8|∆(γ)|−1
p ≥χp(1)

χp(1)

At this point it is clear that presence of many prime ideals of small norm makes the problem
harder. In the next section we will show that if γ is non-torsion and the archimedean orbital
integral Oγ(fAf ) does not vanish then all three factors are of order exp(o([k : Q])). This
is more that enough for our purposes.

6.5. Global orbital integrals - non torsion case. In the non torsion case we shall
use the Bilu equidistribution theorem to control the norms of Weyl discriminants and the
distribution of prime ideals of small norm. This yields a much better bound than in the
general case. Throughout this section let R be a fixed real positive number. The main
result is

Proposition 2.75. Let Γ be a uniform arithmetic lattice of PGL(2,K) defined using
a quaternion algebra D over a number field k and a maximal open compact subgroup U
of PD×(Af ). Let S be the set of finite places p such that Up 6' PGL(2,Okp). Let f ∈
Cc(PGL(2,K) with suppf ∈ B(1, R) and γ ∈ Γ\{1}. If Oγ(f) 6= 0 then for any irreducible
character χ of U and any 0 < δ < 1/2 we have

|Oγ(χ)| ≤ χ(1)1−δ2δ|S| exp(oR([k : Q])). (6.56)

Proof. Using Proposition 2.74 we get

|Oγ(χ)| ≤ |Nk/Q(∆(γ))|3/2
∏

p|∆(γ)
kp[γ]quadratic

(
N(p) + 1

N(p)− 1

) ∏
p∈Mf

k

8|∆(γ)|−1
p <χp(1)

8
∏
p∈Mf

k

8|∆(γ)|−1
p ≥χp(1)

χp(1).

We shall estimate the right hand side factor by factor. The fact that Oγ(f) 6= 0 implies
that m(γ) ≤ R. By Lemma 2.58 |NkQ(∆(γ))| = exp(o([k : Q])). By Theorem 2.59 the
number of prime ideals of bounded norm is sublinear in [k : Q] so

∏
p|∆(γ)

kp[γ]quadratic

(
N(p) + 1

N(p)− 1

)
= exp(o([k : Q])).

Choose δ between 0 and 1. By Corollary 2.73 the primes p with χp(1) > 8 and 8 ≥ χp(1)1−δ

satisfy (N(p)−1)1−δ ≤ 8. Again using Theorem 2.59 we get that the number of such primes
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is sublinear in [k : Q]. It follows that

|Oγ(χ)| ≤ exp(o([k : Q]))
∏
p∈Mf

k
8<χp(1)

8
∏
p∈Mf

k
8≥χp(1)

χp(1) (6.57)

≤ exp(o([k : Q]))χ(1)1−δ
∏
p∈Mf

k
8<χp(1)

8

χp(1)1−δ

∏
p∈Mf

k
8≥χp(1)

χp(1)δ (6.58)

≤ exp(o([k : Q]))χ(1)1−δ
∏
p∈Mf

k
8≥χp(1)

χp(1)δ. (6.59)

By Corollary 2.73 ideals p with 1 < χp(1) ≤ 8 and p 6∈ S satisfy N(p)− 1 ≤ 8 (note that it
is not true for primes in S as Up has irreducible representations of dimension 2). By 2.59
we conclude that

|Oγ(χ)| ≤ exp(o([k : Q]))χ(1)1−δ
∏
p∈S

8≥χp(1)

χp(1)δ (6.60)

≤ exp(o([k : Q]))χ(1)1−δ2δ|S|. (6.61)

The factor 2 appears because by Theorem 2.72 for p ∈ S the dimension of an irreducible
representation of PD×(kp) is either smaller or equal to 2 or at is greater or equal to
N(p)− 1. �

7. Number of conjugacy classes with nontrivial contribution

Throughout this section fix f ∈ Cc(PGL(2,K)) with suppf ⊂ B(1, R). In Section 6.3,
Lemma 2.69 we showed that if λ is an eigenvalue of a semisimple, non-torsion conjugacy
class [γ] in an arithmetic lattice and [γ]PGL(2,K)∩B(1, R) 6= ∅ then the logarithmic Mahler
measure satisfies m(λ) ≤ R. Moreover, if Γ is defined over k then there exists a unique
place ω of k(λ) such that |λ|ω > 1. In this section we will estimate the number of possible
values of λ and in this way give an upper bound on the number of torsion free, rational
conjugacy classes [γ] ∈ PD×(k) with Oγ(f∞) 6= 0. We will write m(γ) for m(λ), this does
not depend on the choice of eigenvalue since they have the same minimal polynomial over
Q.

Remark 2.76. The problem reduces to counting the possible eigenvalues. If λ is such
an eigenvalue, it is an algebraic integer, its logarithmic Mahler measure is bounded by R
and λ+λ−1 ∈ Ok. A priori the number of all algebraic integers satisfying those conditions
may be much smaller than the number of all algebraic integers α of degree at most 2[k : Q]
and with m(α) ≤ R. The size of the latter set was bounded by Dubickas and Konyagin
in [41]:

|{α ∈ Zalg|[Q(α) : Q] ≤ d and m(α) ≤ R}| � eR([k:Q]+o([k:Q])). (7.1)
This bound is exponential in the degree while we need a sub-exponential one.

The main result of this section is

Theorem 2.77. Fix R > 0. Let D be a K-admissible quaternion algebra defined over a
number field k. The number of conjugacy classes [γ] ⊂ PD×(k) with m(γ) ≤ R is of order
exp(OR(log2[k : Q])).

We always assume that D is a K-admissible quaternion algebra. Before proving Theo-
rem 2.77 let us prove some auxiliary results.

For z ∈ C, |z| ≤ 1 and t ≥ 0 define the function

logt |1− z| =
1

2

∞∑
n=1

−e−nt(zn + zn)

n
. (7.2)
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Note that for t = 0 the series converge absolutely only if |z| < 1. In that case we have
log0 |1− z| = log |1− z|.

Lemma 2.78. (1) for t < 1 we have | logt 0| ≤ − log t+O(1).
(2) for |z| = 1, z 6= 1 we have log |1− z| ≤ t

2 + logt |1− z|.
Proof. (1)

0 ≥ logt 0 =
∞∑
n=1

−e−nt

n
(7.3)

= log |1− e−t| (7.4)
≥ log t+O(1). (7.5)

(2) Note that |z| = 1 implies zn = z−n.

log |1− z| − logt |1− z| =
∫ t

0

∂

∂s
logs |1− z|ds (7.6)

=
1

2

∫ t

0

∂

∂s

∑
n 6=0

−e−|n|szn

|n|

 ds (7.7)

=
1

2

∫ t

0

∑
n6=0

−e−|n|szn
 ds (7.8)

=
t

2
− 1

2

∫ t

0

( ∞∑
n=−∞

e−|n|szn

)
. (7.9)

To finish the proof it is enough to show that the sum
∑∞

n=−∞ e
−|n|szn is positive

for all z on the unit circle and s > 0. We have
∞∑

n=−∞
e−|n|szn =

1

1− e−sz
+

1

1− e−sz
− 1 (7.10)

=
1− e−2s

|1− ze−s|2
(7.11)

>0. (7.12)

�

Lemma 2.79. Let α ∈ Q be an algebraic integer of degree N such that m(α) ≤ R and
there exists at most C embeddings ρ : Q(α)→ C such that |ρ(α)| 6= 1. Then∣∣∣∣trQ(α)/Qα

N

∣∣∣∣�R,C

(
logN

N

)1/2

. (7.13)

Proof. The proof follows the methods of [44] and [12]. Let α1, . . . , αN be the roots
of the minimal polynomial of α. We divide them in two parts {α1, . . . , αN} = H1 t H2

where H1 = {αi | |αi| = 1} and H2 = {αi | |αi| 6= 1}. The discriminant of the minimal
polynomial of α is a non zero integer so∑

1≤i 6=j≤n
log |αi − αj | ≥ 0. (7.14)

Hence ∑
ω 6=ω′∈H1

log |ω − ω′| ≥ − 2
∑
ω∈H1
ω′∈H2

log |ω − ω′| −
∑

ω 6=ω′∈H2

log |ω − ω′| (7.15)

≥− 2|H1||H2| log(eR + 1)−
(
|H2|

2

)
log(2eR) (7.16)

�R,C −N. (7.17)
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We have used the fact that m(α) ≤ R to guarantee that |ω| ≤ eR for any ω ∈ H2. The
left hand side of the inequality can be rewritten as

∑
ω 6=ω′∈H1

log |1− ωω′|. Using the last
inequality and Lemma 2.78 we get for t ∈]0, 1[∑

ω,ω′∈H1

logt |1− ωω′| ≥|H1| log t+O(|H1|)−
t

2
|H1|2 −OR,C(N) (7.18)

�R,C −N(
tN

2
− log t+O(1)). (7.19)

Note that in the above sum we allow ω = ω′ hence the term |H1| log t. For t = 1/N we get∑
ω,ω′∈H1

logt |1− ωω′| �R,C −N(logN +O(1)). (7.20)

We multiply both sides by −1 and use the Fourier expansion of logt |1− z| to get

N(logN +O(1))�R,C

∑
n6=0

e−|n|/N

|n|
∑

ω,ω∈H1

ωnω′
n (7.21)

=
∑
n6=0

e−|n|/N

|n|

∣∣∣∣∣∣
∑
ω∈H1

ωn

∣∣∣∣∣∣
2

. (7.22)

We deduce ∣∣∣∣∣∣
∑
ω∈H1

ω

∣∣∣∣∣∣
2

�R,C e
1/NN(logN +O(1)) (7.23)

∣∣∣∣∣∣
∑
ω∈H1

ω

∣∣∣∣∣∣�R,C N
1/2(logN)1/2. (7.24)

We turn back to the main inequality of the lemma:∣∣∣∣trQ(α)/Qα

N

∣∣∣∣ ≤ ∣∣∣∣
∑

ω∈H1
w

N

∣∣∣∣+

∣∣∣∣
∑

ω∈H2
w

N

∣∣∣∣ (7.25)

�R,C

(
logN

N

)1/2

+
CeR

N
�R,C

(
logN

N

)1/2

. (7.26)

�

We will need a simplified version of Kabatjianksi-Levenstein bound on the number of
almost orthogonal vectors on the unit sphere.

Lemma 2.80. [T.Tao [102]] Let v1, v2, . . . , vm be unit vectors in an n-dimensional
Euclidean space such that for every i 6= j |〈vi, vj〉| ≤ An−1/2 for some 1

2 < A < 1
2

√
n. Then

m ≤
(
Cn
A2

)CA2

for some absolute constant C.

No we can proceed to the proof:

Proof of Theorem 2.77. By Lemma 2.26 if γ is not 2-torsion then any nonzero
eigenvalue λ of γ determines the conjugacy class [γ]. The eigenvalue λ is an algebraic integer
of logarithmic Mahler measure at most R. We will prove the theorem by showing that there
are at most exp(O(log2[k : Q])) possible choices of λ. Let us enumerate the archimedean
places of k by ν1, ν2, . . . , νr1+r2 is such a way that kν1 = K and {ν2, . . . , νr1+r2} = Ram∞D.
Note that in our setting the number of complex places r2 is 1 if K = C and 0 otherwise.

Define the set

SR = {λ ∈ Q|λ+λ−1 ∈ k,m(λ) ≤ R, (λ+λ−1)ν1 6∈ [−2, 2] and |λ+λ−1|νi ≤ 2 for i = 2, . . . , r1+r2}
(7.27)

By Lemma 2.69 the eigenvalues of γ lie in SR. We want to show that

|SR| ≤ exp(O(log2[k : Q])). (7.28)

73



Consider the set

AR = {λ+ λ−1|λ ∈ SR and Re(λ+ λ−1)ν1 > 0}. (7.29)

Here xν1 denotes the image of x under any embedding ρ : k → C s.t. |x|ν1 = |ρ(x)|. Such
an embedding is defined up to complex conjugation so the real part is well defined. We
have |SR| ≤ 4|AR|. Let us fix a Dirichlet embedding ι : k → Cr2 × Rr1 := V given by
x 7→ (xν1 , xν2 , . . . , xνr1+r2

). We introduce a scalar product on V given by

〈x, y〉 =

{
1

[k:Q]

(
2x1y1 +

∑r1+r2
i=2 xiyi

)
if K = C

1
[k:Q]

∑r1+r2
i=1 xiyi if K = R

(7.30)

By means of the Dirichlet embedding we think of k as a subset of V . We claim that for every
pair x, y ∈ AR we have |〈x, y〉| � (log[k : Q]/[k : Q])1/2 and |〈x, x〉| = 2+O((log[k : Q]/[k :

Q])1/2). We postpone the proofs of these inequalities to Lemma 2.81. For every x ∈ AR
put x̃ = x/

√
〈x, x〉. V is a Euclidean space of dimension [k : Q] and the set {x̃|x ∈ AR}

consists of unit vectors. For any distinct x̃, ỹ we have 〈x̃, ỹ〉 ≤ C1 log1/2[k : Q]/[k : Q]1/2.
We apply Lemma 2.80 to get:

|AR| �
(

C[k : Q]

C2
1 log[k : Q]

)CC2
1 log[k:Q]

� exp(CC2
1 log2[k : Q]). (7.31)

It follows that |SR| = exp(O(log2[k : Q])). Since the conjugacy class of γ is determined by
its eigenvalues that gives the desired bound on the number of conjugacy classes. �

Lemma 2.81. Put N = [k : Q]. With the notation from the proof of Theorem 2.77, for
every x 6= y ∈ AR we have

(1)

|〈x, y〉| �
(

logN

N

)1/2

(2)

〈x, x〉 = 2 +O

((
logN

N

)1/2
)

Proof. Let us treat the case K = R, the proofs for K = C are nearly identical. Write
x = λ1 + λ−1

1 and y = λ2 + λ−1
2 with λ1, λ2 ∈ SR. The conditions imposed on AR ensure

that λ1 6= ±λ±1
2 .

Claim. Q(λ±1
1 λ±1

2 ) = Q(λ1, λ2). To prove this statement we are going to use some
basic Galois theory. Assume Q(λ1λ2) ( Q(λ1, λ2). Then, there exists an automorphism
σ ∈ Gal(Q/Q) fixing Q(λ1λ2) but not Q(λ1, λ2). So σ(λ1λ2) = λ1λ2 but σ(λ1) 6= λ1 or
σ(λ2) 6= λ2. Let us examine the possibilities. The numbers λ1, λ2 are Salem numbers
(see Lemma 2.69) so σ(λi) is either complex non-real of modulus 1 or σ(λi) = λ±1

i . Since
σ(λ1)σ(λ2) = λ1λ2 is a real number the only possibility is that both σ(λi) are real or
that they are complex of modulus 1 and λ1λ2 = 1. Both scenarios lead quickly to the
contradiction with the condition λ1 6= λ±1

2 . The Claim follows.
In particular, the Claim implies that Q(λ±1

1 λ±1
2 ) contains k and 4 ≥ [Q(λ±1

1 λ±1
2 ) : Q) :

k] ≥ 2. We have

〈x, y〉 =
trk:Qxy

[k : Q]
=
∑
±,±

[k(λ±1
1 λ±1

2 ) : k]trQ(λ±1
1 λ±1

2 )/Q(λ±1
1 λ±1

2 )

[Q(λ±1
1 λ±1

2 ) : Q]
(7.32)

≤4
∑
±,±

trQ(λ±1
1 λ±1

2 )/Qλ
±1
1 λ±1

2

[Q(λ±1
1 λ±1

2 ) : Q]
(7.33)

�R

(
log[k : Q]

[k : Q]

)1/2

. (7.34)
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In the last passage we have used Lemma 2.79. Now we move to the proof of the second
equality.

〈x, x〉 =
trk/Qx

2

[k : Q]
=

trk/Q2 + trk/Q(λ2
1 + λ−2

1 )

[k : Q]
(7.35)

=2 +
∑
±

[k(λ±2
1 ) : k]trQ(λ±2

1 )/Qλ
±2
1

[Q(λ±2
1 ) : Q]

(7.36)

=2 +OR

((
log[k : Q]

[k : Q]

)1/2
)
. (7.37)

�

8. Representation Zeta functions

8.1. Definitions and motivation. Let G be a topological group. The representation
zeta function of G denoted ζG is defined as the formal Dirichlet series

ζG(s) =
∑
ρ∈IrrG

(dim ρ)−s (8.1)

The series are well defined only for rigid groups i.e. those which have finitely many irre-
ducible representations of bounded dimension. For our purposes we will be interested in
the representations of a maximal compact subgroup U of PD×(Af ), where D is an ad-
missible quaternion algebra. By maximality U decomposes as a product of local factors
U =

∏
p∈Mf

k
Up so formally we have

ζU =
∏

p∈Mf
k

ζUp .

Unfortunately for us, the group U is not rigid and the representation zeta function is not
well defined. Indeed, the image of U via the norm map n(U) ⊂ A×/(A×)2 is infinite so U
has infinitely many one dimensional representations. For this reason we define the special
zeta function:

Definition 2.82. Let G be a topological group. We identify the group of one dimen-
sional characters of G with IrrGab. IrrGab acts on IrrG by tensor product. The special
representation zeta function of G denoted ζ∗G is defined as the formal Dirichlet series

ζ∗G(s) =
∑

ρ∈IrrG/IrrGab

(dim ρ)−s. (8.2)

For U we have the product decomposition:

ζ∗U =
∏

p∈Mf
k

ζ∗Up
.

We will show in Section 8.2 that this function is well defined and can be explicitly bounded.
Our motivation to study the representation zeta functions is illustrated by the following
abstract principle.

Lemma 2.83. Let G be a group and let H be a subgroup of finite index. Let γ ∈ G be
an element such that there exists 1 ≥ δ > 0 such that |χ(γ)| ≤ (dim ρ)1−δ for all irreducible
characters of G.

(1) Let b ∈ R be such that ζG(b− 1) is finite and put a = δ/(1 + b). Then

χInd GH1
(γ) =

∑
ρ∈IrrG

dimWH
ρ χρ(γ) ≤ [G : H]1−aζG(b− 1)a. (8.3)

75



(2) Let b ∈ R be such that ζ∗G(b− 1) is finite and put a = δ/(1 + b). Write A for the
image of H in Gab. Then

χInd GH1
(γ) ≤ [G : H]1−aζ∗G(b− 1)a[Gab : A]a. (8.4)

Proof. (1) By Hölder’s inequality we have∣∣∣∣∣∣
∑
ρ∈IrrG

dimWH
ρ χρ(γ)

∣∣∣∣∣∣ ≤
∑
ρ∈IrrG

dimWH
ρ (dim ρ)1−δ (8.5)

=
∑
ρ∈IrrG

(dimWH
ρ dim ρ)1−a

(
dimWH

ρ

(dim ρ)b

)a
(8.6)

≤

 ∑
ρ∈IrrG

dimWH
ρ dim ρ

1−a ∑
ρ∈IrrG

dimWH
ρ

(dim ρ)b

a

(8.7)

≤[G : H]1−aζG(b− 1)a (8.8)

(2) Dividing by a finite index normal subgroup N ⊂ H we may assume without loss
on generality that G is finite. For an irreducible representation ρ let Sρ = #{θ ∈
IrrGab | ρ ' ρ⊗ θ}13. We have

χInd GH1(γ) =
∑

ρ∈IrrG
〈1, ρ〉Hχρ(γ) (8.9)

=
∑

ρ∈IrrG/IrrGab

1

Sρ

∑
θ∈IrrGab

〈1, ρ⊗ θ〉Hχρ(γ)θ(γ) (8.10)

=
∑

ρ∈IrrG/IrrGab

χρ(γ)

Sρ

 ∑
θ∈IrrGab

〈θ, ρ〉Hθ(γ)

 (8.11)

If θ1|A = θ2|A then14 〈θ1, ρ〉H = 〈θ2, ρ〉H . It follows that∑
θ∈IrrGab

〈θ, ρ〉H = [Gab : A]
∑
θ∈IrrA

〈θ, ρ〉H (8.12)

Put C(ρ) :=
∑

θ∈IrrA〈θ, ρ〉H . Then using inequality |χρ(γ)| ≤ (dim ρ)1−δ and the
Hölder inequality we get

χInd GH1(γ) ≤[Gab : A]
∑

ρ∈IrrG/IrrGab

|χρ(γ)|C(ρ)

Sρ
(8.13)

≤[Gab : A]
∑

ρ∈IrrG/IrrGab

(dim ρ)1−δC(ρ)

Sρ
(8.14)

=[Gab : A]
∑

ρ∈IrrG/IrrGab

(
(dim ρ)C(ρ)

Sρ

)1−a( C(ρ)

Sρ(dim ρ)b

)a
(8.15)

≤[Gab : A]

 ∑
ρ∈IrrG/IrrGab

(dim ρ)C(ρ)

Sρ

1−a ∑
ρ∈IrrG/IrrGab

C(ρ)

Sρ(dim ρ)b

a

(8.16)

By definition C(ρ) ≤ dim ρ and Sρ ≥ 1 so we can bound the last expression by

≤ [Gab : A]a

 ∑
ρ∈IrrG/IrrGab

(dim ρ)C(ρ)[Gab : A]

Sρ

1−a

ζ∗G(b− 1)a (8.17)

13The only reason why we replace G with a finite quotient is that we need Sρ to be finite.
14Recall that A is the image of H in Gab.
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By plugging γ = 1 in (8.9-8.12) we see that ∑
ρ∈IrrG/IrrGab

(dim ρ)C(ρ)[Gab : A]

Sρ

 = χInd GH1(1) = [G : H] (8.18)

which ends the proof.
�

We will not be using Lemma 2.83 directly but apply a similar reasoning to bound the
right hand side in Lemma 2.55. The upper bounds on the values of irreducible characters
will be replaced by upper bounds on orbital integrals from Propositions 2.74 and 2.75.

8.2. Special Zeta function of maximal compact subgroup. Throughout this
section U is a maximal compact subgroup of PD×(Af ). It decomposes as a product
U =

∏
p∈Mf

k
Up where Up is a maximal compact subgroup of PD×(kp). We have seen

in Lemma 2.39 that the structure of Up is known explicitly. Representation zeta functions
for compact p-adic groups like Up have been studied in [9,10,61,72] and many others but
it seems that the exact type of bound that we need is not present in the literature. The
formula for the representation zeta function of SL(2,Okp) is known explicitly by the work
of Jaikin-Zapirain [61]. Let q = N(p) be odd, then

ζSL(2,Okp )(s) =1 + q−s +
q − 3

2
(q + 1)−s + 2

(
q + 1

2

)−s
+
q − 1

2
(q − 1)−s + 2

(
q − 1

2

)−s

+
4q
(
q2−1

2

)−s
+ q2−1

2 (q2 − q)−s + (q−1)2

2 (q2 + q)−s

1− q−s+1
.

We will use the following lemma

Lemma 2.84. Let G be a group and H a normal subgroup such that G/H is abelian.
Then for every s > 0 where ζ∗G(s) and ζH(s) are well defined we have ζ∗G(s) ≤ ζH(s).

Proof. For ρ ∈ IrrH let Irr(G|ρ) denote the set of irreducible representations of G
whose restriction to H contains ρ. For any π ∈ IrrG write aπ for #{π ⊗ θ|θ ∈ IrrGab}. If
ρ1, ρ2 ∈ IrrH we write ρ1 ∼ ρ2 if they are conjugate by G. We have

ζ∗G(s) =
∑

ρ∈IrrH/∼

 ∑
π∈Irr(G|ρ)

(dimπ)−s

aπ

 ≤ ∑
ρ∈IrrH/∼

 ∑
π∈Irr(G|ρ)/Irr(G/H)

(dimπ)−s

 .

(8.19)
In the last inequality we use the fact that G/H is abelian and IrrG/H acts on Irr(G|ρ) by
tensor product. Write K = Kρ for the stabilizer of ρ in G. By Clifford’s theorem [60, 6.2,
6.11, 6.17, and 11.22] for any π ∈ Irr(G|ρ) there exists e such that eρ extends to an
irreducible representation ρ̃ ofK and π = Ind G

K ρ̃. For now let us fix π. Direct computation
of characters gives ∑

θ∈IrrK/H

χθ⊗ρ̃ = [K : H]1Hχρ̃ = eχInd KHρ
(8.20)

so every irreducible constituent of Ind K
Hρ is of form θ ⊗ ρ̃ for some character θ of K/H.

In particular by Frobenius reciprocity every π′ ∈ Irr(G|ρ) is of form π′ = Ind G
Kθ ⊗ ρ̃ for

some θ ∈ IrrK/H. Now if θ2 ∈ IrrG/H then θ2⊗ Ind G
K ρ̃ = Ind G

K(θ2|K)⊗ ρ̃. This together
with the previous remark shows that the action of IrrG/H on Irr(G|ρ) is transitive. This
means that the right side of (8.19) equals∑

ρ∈IrrH/∼

([G : Kρ] dim ρ)−s ≤ ζH(s) (8.21)

�

A corollary of the proof is
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Corollary 2.85. Let G be a group and H a normal subgroup such that G/H is
abelian. Let ρ be an irreducible representation of H. Write Kρ for the stabilizer of ρ under
conjugation. Then all representations π of G such that π|H contains ρ are in a single
IrrG/H orbit and dimπ ≥ [G : Kρ] dim ρ. In particular

ζ∗G(s) ≤
∑

ρ∈IrrH/∼

([G : Kρ] dim ρ)−s.

Now we can proceed to the estimates on ζ∗Up
(s). We divide the reasoning in three parts

according to the isomorphism class of Up. In general the argument will be as follows. First
we find a normal subgroup H of Up with abelian quotient. For a representation ρ of H
of level n we prove a lower bound on [Up : StabUpρ] dim ρ of order qn. We use a crude
bound on the number of irreducible representations of level n of order (q−1)q3(n−1). Using
Corollary 2.85 we will get a satisfactory bound for s ≥ 7 (see Corollary 2.86).

(1) Up ' PGL(2,Okp). Put H = PSL(2,Okp). The quotient G/H is abelian and we
even have H = Gab unless q = 2, 3. Write Kn for the kernel of the reduction
map PSL(2,Okp) → PSL(2,Okp/pn). We call Kn the n-th principal congruence
subgroup. Recall that an irreducible representation ρ of H is of level n if Kn ⊂
ker ρ and Kn−1 6⊂ ker ρ. We will write Stabρ for the stabilizer of ρ under the
action of Up by conjugation.

Step 1. All open normal subgroups of PSL(2,Op) contained in K1 are of form
Kn. Indeed let N ⊂ K1 be an open normal subgroup of PSL(2,Op). Let n be
a minimal natural number such that N ⊂ Kn. Put N ′ = Kn+1N . By definition
it is a normal subgroup contained in Kn. The quotient Kn/Kn+1 is naturally
identified with sl(2,Fq) and the action of PSL(2,Okp) factors through the adjoint
action of PSL(2,Fq). The quotient N ′/Kn+1 is a non zero subspace of sl(2,Fq)
invariant by PSL(2,Fq). But sl(2,Fq) is an irreducible PSL(2,Fq) module so
N ′/Kn+1 = Kn/Kn+1. Now the fact that [K1,Kl] = Kl+1 and a simple inductive
argument show that N = Kn.

Step 2. Let ρ be an irreducible representation of H of level n. Then [Up :
Stabρ] dim ρ ≥ (q − 1)qn−1. The proof is similar to the original argument of

Frobenius. For any natural a let Na :=

(
1 Okppa
0 1

)
. By Step 1 the normal

closure of Na in PSL(2,Okp) equals Ka. It follows that the restriction ρ|Nn−1 is
nontrivial. In particular there exists an irreducible character θ of Okp contained

in ρ|N0 nontrivial on Nn−1. The subgroup B :=

(
O×kp 0

0 O×kp

)
of Up normalizes

N0 and [G : Stabρ] dim ρ ≥ |Bθ| = |O×kpθ|. Since θ is of level n we have |O×kpθ| =
(q − 1)qn−1.

Step 3. Here we bound the number of Up orbits of irreducible representations
of H of level n. It is easy to see that the number of Up-orbits of irreducible
representations of H/Kn equals the number of Up conjugacy classes in H/Kn =
PSL(2,Okp/pn). We have

#{Up conjugacy classes in PSL(2,Okp/pn)} (8.22)
≤#{Up conjugacy classes in PSL(2,Fq)}[K1 : Kn] (8.23)

≤q + 3

2
q3n−3 for q odd, (8.24)

≤(q − 1)q3n−3 for q even. (8.25)
(8.26)
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Step 4. If q ≥ 3 then q−1
(q−1)5 ≤ 1

q2 and q+3
2(q−1)5 ≤ 1

q2 so steps 2, 3 and Corollary
2.85 combined give

ζ×Up
(5) ≤ 1 +

∞∑
n=1

q3(n−1)

q2q5(n−1)
= 1 +

∞∑
n=1

1

q2n
= (1− q−2)−1 (8.27)

If q = 2 the groups H and Up are equal. We have H/K1 = PSL(2,F2) = S3 so the
contribution of characters of level 1 to ζ∗Up

(s) equals 1+2−s. Using steps 2,3 we can

estimate the contribution of higher level representations by
∑∞

n=2
(q−1)q3n−3

(q−1)sqs(n−1) =∑∞
n=1 2−s−3n. Hence we have ζ∗Up

(6) ≤ (1− q−2)−1

(2)

Up '

〈(
O×kp Okp
p O×kp

)
,

(
0 π
1 0

)〉
,

In this case we will not be using Corollary 2.85. If A is a subgroup of Up we will
write A1 for the intersection A ∩ PSL(2,Okp). Put

U ′ =

(
O×kp Okp
p O×kp

)
(8.28)

and

Ln :=

(
1 + pn+1 pn

pn+1 1 + pn+1

)1

. (8.29)

Those are normal subgroups of Up which will play a role analogous to the principal
congruence subgroups Kn from the previous case. We say that a representation
ρ of H is of level n if Ln ∈ ker ρ and Ln−1 6∈ ker ρ. Note that this definition of
level differs from the one used in the previous case.

Step 1. Let Na =

(
1 Okppa
0 1

)
. Let Ma be the normal closure of Na in Up.

Then Ma = La. To see this, first note that(
0 1
π 0

)
,

(
1 x
0 1

)(
0 1
π 0

)−1

=

(
1 0
πx 1

)
. (8.30)

Hence Ma contains the group〈(
1 0

pa+1 1

)(
1 pa+1

0 1

)〉
. (8.31)

We identify the quotient Ka+1/Ka+2 with sl(2,Fq). Put M ′a = Ma ∩Ka+1. The
image M ′a/Ka+2 in Ka+1/Ka+2 is an U ′-invariant subspace of sl(2,Fq) contain-

ing the vectors
(

0 1
0 0

)
,

(
0 0
1 0

)
. A simple calculation shows that the only U ′

invariant subspace containing them is sl(2,Fq). It follows that M ′aKa+2 = Ka+1.
M ′a is normal in U ′ and K1 ⊂ U ′. We have [K1,Kn] = Kn+1 for any n so a
simple inductive argument shows that M ′a = Ka+1. Finally we conclude that
Ma = NaKa+1 = La.

Step 2. Any irreducible representation of Up of level n has dimension at least
(q − 1)qn−1. The proof is identical to the proof of Step 2 from the previous case.
Note that we adapted the definition of level so that the argument still works.

Step 3. The group Up/L0 is isomorphic to the dihedral group Dq−1 so it has
q+5

2 conjugacy classes if q odd and q+2
2 if q is even (c.f. [99, 5.3]). Hence we can

bound the number of conjugacy classes in Up/Ln by
q + 5

2
[L0 : Ln] =

q + 5

2
q3n for q odd (8.32)

q + 2

2
[L0 : Ln] =

q + 2

2
q3n for q even. (8.33)
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Step 4. We start with the case q ≥ 3. We have Up/L0 ' Dq−1. The dihedral
group Dq−1 has 4 representations of dimension 1 and q−3

2 representations of di-
mension 2 if q is odd and 2 representations of dimension 1 and q−2

2 representations
of dimension 2 if q is even (c.f. [99, 5.3]). The contribution of representations of
level 0 to ζ∗Up

(s) is at most 1 + q−3
2 2−s for q odd and at most 1 + q−2

2 for q even.
Combining this with steps 2,3 we get that for q odd

ζ∗Up
(s) ≤ 1 +

q − 3

2
2−s +

∞∑
n=1

(q + 3)q3n

2(q − 1)sqs(n−1)
. (8.34)

If follows that ζ∗Up
(7) ≤ (1 + q−2)−1 + q−3

2 2−7 ≤ (1 − q−2)−1(1 + q). For q even
we get

ζ∗Up
(s) ≤ 1 +

q − 2

2
2−s +

∞∑
n=1

(q + 2)q3n

2(q − 1)sqs(n−1)
. (8.35)

If q ≥ 4 then as before ζ∗Up
(7) ≤ (1 + q−2)−1 + q−2

2 2−7 ≤ (1 + q−2)−1(1 + q). For
q = 2 there are additional complications because our method from the second
step gives a trivial bound on the representations of level 1. In this case we have
to compute the contribution of the representations of levels 0 and 1 by hand. The

group Up/L0 is isomorphic to D1 ' Z/2Z with generator
(

0 1
2 0

)
and L0/L1 '

(Z/2Z)2 with generators
(

1 1
0 1

)
and

(
1 0
2 1

)
. Group Up/L0 acts on L0/L1 '

(Z/2Z)2 be swapping coordinates so Up/L0 ' (Z/2Z) o (Z/2Z)2. We conclude
that Up/L1 has 4 representations of dimension 1 and a single representation of
dimension 2. Together with Steps 2 and 3 this yields the estimate

ζ∗Up
(s) ≤ 1 + 2−s +

∞∑
n=2

23n+2

21+(n−1)s
. (8.36)

We get ζ∗Up
(s) ≤ 1 + 2−7 + 1 + 2−4 + 2−8 + . . . ≤ (1− q−2)−1(1 + q).

(3) D is ramified in p and U = PD×(kp). WriteMi for the subgroup {x ∈ D×(kp)|n(x−
1) ∈ pi} and M1

i = Mi ∩D1(kp). We have a surjective map D(kp)
× → PD×(kp)

with abelian kernel so ζ∗
PD×(kp)

(s) ≤ ζD×(kp)∗(s) for every s where they are well
defined. We will use Carayol’s formula for the dimensions of irreducible represen-
tations in term of levels ( [31], see theorem 2.72 for the statement). For every
class c in IrrD×(kp)/IrrD

×(kp)
ab we choose a representative ρc of minimal level.

Recall that in a finite group G the number of classes in IrrG/IrrGab coincides with
the number of conjugacy classes in [G,G]. It follows that the number of classes
c ∈ IrrD×(kp)/IrrD

×(kp)
ab such that ρc is of level n is at most the number of

conjugacy classes in D1(kp)/M
1
n−1. As in Theorem 2.72 we put r = gcd(n, 2),

then D1(kp)/M
1
n = (q + 1)q

1
2

(3n+r−4). Using the dimension formula we get

ζ∗D×(kp) ≤ 1 + 2−s(q + 1) +
∑
n≥3

(q + 1)q
1
2

(3n+r−4)(
r(q2 − 1)(qr − 1)−1q

1
2

(n+r−4)
)s (8.37)

For s ≥ 7 the left hand side is bounded by q+1
27 +(1+q−2)−1 ≤ (1+q−2)−1(1+q).

We wrap up the estimates on special representation zeta functions for maximal compact
subgroups. Rather than aiming at an optimal estimate we will try to give simpler version
with application to Strong Limit Multiplicity problem in mind.

Corollary 2.86. Let D be an admissible quaternion algebra defined over a number
field k. Let U =

∏
p∈Mf

k
Up be a maximal compact subgroup of PD×(Af ) and let S be the
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set of places where Up 6' PGL(2,Okp). Then for s ≥ 7 we have

ζ∗U (s) ≤ ζk(2)
∏
p∈S

(N(p) + 1) (8.38)

8.3. Abelianization of maximal compact subgroup. Let U be a maximal com-
pact subgroup in PD×(Af ) and V an open subgroup. To prove the Strong Limit Multi-
plicity for a lattice ΓV = PD×(k) ∩ V we will use a variation of the second part of the
Lemma 2.83. With this application in mind we need to control the index of the image of
V in the abelianization of U . Write φ : U → Uab, we will prove:

Proposition 2.87.

[Uab : φ(V )] ≤ 23[k:Q]+|S||cl (k)| |cl (V )|
|cl (U)|

, (8.39)

where cl (V ), cl (U) are the class groups defined in 2.48 and cl (k) is the usual class group
of k.

Proof. We will use a simple fact that whenever H ⊂ G are groups such that G/H is
finite and ι is a homomorphism of G with finite kernel, then [G : H] ≤ | ker ι|[ιG : ιH].

Step 1. The norm induces a map n : Uab → n(U). Write U1 for the kernel of
n : U → n(U). We have U1 =

∏
p∈Mf

k
U1
p . If p 6∈ RamfD and Up ' PGL(2,Okp) then

[Up, Up] = U1
p unless15 N(p) = 2, 3. If N(p) = 2, 3 then [Up, Up] is a subgroup of U1

p of
index 2. If p 6∈ RamfD and Up 6' PGL(2,Okp) then Up is of the second type in 2.39. For
such groups we have [Up, Up] = U1

p .
Finally if p ∈ RamfD then [Up, Up] = U1

p . It follows that | ker
[
Uab → n(U)

]
| ≤ 2n2+n3

where ni is the number of prime ideals in k of norm i. There are at most [k : Q] prime
ideals above every rational prime so we deduce [Uab : φ(V )] ≤ 22[k:Q][n(U) : n(V )].

Step 2. Our task is reduced to finding an upper bound on [n(U) : n(V )]. Let
S be the set of finite places p where Up 6' PGL(2,Okp). At this point it is good to
recall that U ⊂ PD× so n(U) ⊂ (ASf )×/((A×f )S)2. Let us consider the quotient map
(ASf )×/((ASf )×))2 → A×f /k

× × ((Af )×)2 and write WU ,WV respectively for the image of
n(U), n(V ). We have an exact sequence

1 −−−−→ (ASf )×/O×k,S −−−−→ A×f /k
× −−−−→ A×f /k

×(ASf )× −−−−→ 1 (8.40)

Let us call the last group by cl S(k), it is a quotient of the class group of k. We tensor the
exact sequence by Z/2Z to get

[cl S(k)]2 −−−−→ (ASf )×/O×kD((ASf )×)2 −−−−→ A×f /k
×
D(A×f )2 −−−−→ cl S(k)/2cl S(k) −−−−→ 1.

(8.41)
Then the kernel of the map n(U) → (ASf )×/O×k ((ASf )×)2 is a subgroup of O×k,S/(O

×
k,S)2.

By Dirichlet’s Unit Theorem the latter is cardinality at most 2r1+r2+|S| so the kernel
of the map n(U) → WU is of cardinality at most 2r1+r2+|S||[cl S(k)]2|. We deduce that
[n(U) : n(V )] ≤ 2[k:Q]+|S||cl (k)|[WU : WV ].

15 The groups PSL(2,Fq) are simple if q 6= 2, 3.
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Step 3. Consider the commutative diagram
1 1 ker[cl (V )→ cl (U)]y y y

1 −−−−→ WV −−−−→ A×f /k
×
D(A×f )2 −−−−→ cl (V ) −−−−→ 1y y y

1 −−−−→ WU −−−−→ A×f /k
×
D(A×f )2 −−−−→ cl (U) −−−−→ 1y y y

WU/WV 1 1

(8.42)

The rows and columns are exact so by snake lemma WU/WV ' ker[cl (V ) → cl (U)]. It
follows that

[Uab : φ(V )] ≤ 23[k:Q]+|S||cl (k)| |cl (V )|
|cl (U)|

. (8.43)

�

In the Section 9 we will show that for fixed f ∈ Cc(PGL(2,K)) if a congruence lattice
ΓV contains non torsion elements with nonzero contribution to trRΓV f then |cl (k)| �ε

|∆k|1/2+ε.

9. Adelic Volumes

9.1. Volumes of projective division algebras. In this section we compute the
volume of PD×(k)\PD×(A) with respect to the standard measure (cf. Section 2.4). The
standard measure depends on the choice of maximal compact subgroup U of PD×(A). The
reasoning follows [94, Chapters 7,10,11]) but we work with PD× instead of D1. Let us
start by recalling the definition of a Tamagawa measure on an algebraic group.

Let G be an algebraic group defined over a number field k. Fix a left invariant gauge
form ω on G defined over k. For any place ν in Mk the form ω induces a left invariant
Haar measure on G(kν) denoted |ω|ν . For the construction see [105, Section 2.2]. For
any a ∈ k× we have |aω|ν = |a|ν |ω|ν . A sequence of positive real numbers (λν)ν∈Mk

is
called a set of convergence factors if the product

⊗
ν∈Mk

(λ−1
ν |ω|ν) is a left invariant Haar

measure on G(A). If that is the case the measure |∆k|− dimG/2
⊗

ν∈Mk
(λ−1
ν |ω|ν) is called

the Tamagawa measure for G derived from the convergence factors (λν) and we denote
it by (ω, (λν)ν∈Mk

). Tamagawa measures do not depend on the choice of ω. If G is a
semisimple algebraic group then (1)ν∈Mk

is a set of convergence factors and the Tamagawa
measure derived from (1)ν∈Mk

is called the canonical Tamagawa measure on G. We shall
write µTam for the Tamagawa measure on a semisimple group G. We have the following
result on the Tamagawa measure of G(k)\G(A) when G is the projective group of a division
algebra:

Theorem 2.88. [Weil, [105, Theorem 3.2.1]] Let A be a central division algebra of
dimension n2 over a number field k. The canonical Tamagawa measure of the quotient
PA×(k)\PA×(A) equals n.

Computing Tamagawa measures straight from definition is not very convenient. We
shall use an explicit description of Tamagawa measures on D×(A) and A× as products
of local measures defined without reference to any gauge form. The constructed local
measures coincide with those from [94, Chapter 7.5]. For this, we fix a maximal order O
in D and put Op = O ⊗Ok Okp for each p ∈ Mf

k and proceed as in [94, Chapter 7]. Fix
a set of convergence factors (λν)ν with λν = 1 if ν ∈ M∞k and λp = (1 − N(p)−1)−1 for
p ∈Mf

k . First let us describe additive measures. The Tamagawa measures on A and D(A)

are given by µTam
D(A) =

∏
ν∈Mk

µTam
D(kν) and µTam

A =
∏
ν∈Mk

µTam
kν

. At a non-archimedean
place the local measures µTam

kp
, µTam

D(kp) are defined as the unique Haar measures giving
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masses |∆kp |
1/2
p , |∆kp |2p|∆D/kp |

1/2
p respectively to Okp and Op. At an archimedean place

ν, dµTam
kν

is defined as Lebesgue measure if kν ' R and if kν ' C and z = x + iy then
dµTam

kν
(z) = 2dxdy. For the quaternion algebra we put dµTam

D(kν)(x) =

• 4dx1dx2dx3dx4 if D(kν) ' H and x = x1 + ix2 + jx3 + kx4;

• dx1dx2dx3dx4 if D(kν) 'M(2,R) and x =

(
x1 x2

x3 x4

)
;

• 16dx1x2 . . . dx8 if D(kν) 'M(2,C) and x =

(
x1 + ix2 x3 + ix4

x5 + ix6 x7 + ix8

)
.

The local multiplicative Tamagawa measures on D×(kν) and k×ν derived from the set
of convergence factors (λν)ν are given by dµTam

k×ν
(a) = |a|−1

ν dµTam
kν

and dµTam
D×(kν)(x) =

|n(x)|−2
ν dµTam

D(kν)(x) respectively. We have to pay particular attention to the case kν ' C
where the valuation |x|ν is the square of complex modulus. The measures µTam

D×(A) =∏
ν∈Mk

µTam
D×(kν) and µTam

A× =
∏
ν∈Mk

µTam
k×ν

are the Tamagawa measures derived from the
set of convergence factors (λν)ν . Let us recall the definitions of matching gauge form and
matching Haar measures. Let

1 −−−−→ A
ι−−−−→ B

π−−−−→ C −−−−→ 1,

be an exact sequence of algebraic or topological locally compacts groups. Let ωA, ωB, ωC
be invariant gauge forms on A,B,C. We say that ωA, ωB, ωC match together algebraically
if ωB = ι∗(ωA) ∧ π∗(ωC). Let da, db, dc be Haar measures on A,B,C respectively. We say
that dA, dB, dC match together topologically if, for every integrable f∫

B
f(b)db =

∫
C

(∫
A
f(ac)da

)
dc.

To handle the canonical Tamagawa measure on PD×(A) we use

Proposition 2.89. [Weil, [105, Theorem 2.4.3]] Let G be a connected algebraic group
defined over k and let N be a normal closed subgroup. Put H = G/N . Let dg, dn, dh be
left invariant gauge forms on G,H,N respectively, defined over k and matching together
algebraically (cf. [105, p 24]). Let (aν)Mk

, (bν)Mk
, (cν)Mk

be respective sets of factors such
that aν = bνcν . Then:

(1) If two of three sets (aν)Mk
, (bν)Mk

, (cν)Mk
are sets of convergence factors, so is

the third one.
(2) If (1) holds then the measures (dx, (aν)Mk

), (dn, (bν)Mk
), (dh, (cν)Mk

) match to-
gether topologically.

For R = A or R = kν , ν ∈Mk consider the exact sequence

1 −−−−→ R× −−−−→ D×(R) −−−−→ PD×(R) −−−−→ 1

Define µTam
PD×(kν)

as the unique measure compatible with µTam
k×ν

on k×ν and µTam
D×(kν) onD

×(kν).
Then the product measure

∏
ν∈Mk

µTam
PD×(kν)

is compatible with with µTam
A× and µTam

D×(A). By
Proposition 2.89 ∏

ν∈Mk

µTam
PD×(kν)

= µTam
PD×(A)

where µTam
PD×(A)

is the canonical Tamagawa measure. Be definition (see Section 2.4) the
standard measure admits a similar decomposition

µst
PD×(A) =

∏
ν∈Mk

µst
PD×(kν)

.

It depends implicitly on the choice of maximal compact subgroup U of PD×(Af ).
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To compute the standard volume of PD×(k)\PD×(A) we need to find the ratio

µTam
PD×(A)

µst
PD×(A)

=
∏
ν∈Mk

µTam
PD×(kν)

µst
PD×(kν)

.

The remaining part of this section is devoted to computations of local ratios.
Case D(kν) 'M(2,R). Put f(A) = e−πtrAAt | det(A)|2. Then∫

GL(2,R)
f(g)dµTam

GL(2,R)(g) =

∫
R4

e−π(x2
1+x2

2+x2
3+x2

4)dx1dx2dx3dx4 (9.1)

=

(∫
R
e−πx

2
dx

)4

= 1 (9.2)

(9.3)

By compatibility of µTam
R× , µTam

GL(2,R) and µTam
PD×(R)

the same integral may be rewritten as∫
GL(2,R)

f(g)dµTam
GL(2,R)(g) =

∫
PGL(2,R)

(∫
R×

f(gt)
dt

|t|

)
dµTam

PGL(2,R)(gR
×) (9.4)

=

∫
PGL(2,R)

(
| det g|2

∫
R×

e−πt
2(trggt)|t|3dt

)
dµTam

PGL(2,R) (9.5)

=
1

π2

∫
PGL(2,R)

|det g|2

(trggt)2
dµTam

PGL(2,R)(gR
×) (9.6)

Hence
∫

PGL(2,R)
| det g|2
(trggt)2dµ

Tam
PGL(2,R)(gR

×) = π2. We integrate the same function against the
standard measure. Choose the maximal compact subgroup K = PO(2,R) and write A for
the subgroup of positive diagonal matrices and N for the group upper triangular unipo-
tent matrices. We have the Iwasawa decomposition PGL(2,R) = NAK, which induces a
diffeomorphism NA ' H2 given explicitly by

NA 3
(

1 x
0 1

)(
y 0
0 1

)
7→ x+ iy ∈ H2.

The function ϕ(g) = | det g|2
(trggt)2 is right K-invariant so∫

PGL(2,R)
ϕ(g)dµst

PGL(2,R)(g) =

∫
H2

ϕ(g)dgK (9.7)

=

∫
R

∫
R+

ϕ

((
y x
0 1

))
dydx

y2
(9.8)

=

∫
R

∫
R+

1

(1 + y2 + x2)2
dydx (9.9)

=
1

2

∫ 2π

0

∫ ∞
0

r

(1 + r2)2
drdθ (9.10)

=
π

2
(9.11)

It follows that µTam
PGL(2,R)/µ

st
PGL(2,R) = 2π

Remark 2.90. Using the same method one can show that

µTam
PGL(n,R)/µ

st
PGL(n,R) =

π
n2+n

4

2n−1Γ(1/2)Γ(2/2) . . .Γ(n/2)
.

Case D(kν) ' M(2,C). Put f(A) = e−πtrAA∗ |det g|4 where A∗ is the Hermitian
transpose of A. Note that for x ∈ kν , |x|ν = |x|2 i.e. the valuation ν is not the complex
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modulus but its square. We have∫
f(g)dµTam

GL(2,C) =16

∫
R8

e−π(x2
1+...+x2

8)dx1 . . . dx8 (9.12)

=16

(∫
R
e−πx

2
dx

)8

= 16 (9.13)

By compatibility we can rewrite this integral as∫
GL(2,C)

f(g)dµTam
GL(2,C)(g) =

∫
PGL(2,C)

(∫
C×

f(gz)dµTam
C× (z)

)
dµTam

PGL(2,C)(g) (9.14)

=

∫
PGL(2,C)

(∫
C×

f(g(x+ iy))
2dxdy

x2 + y2

)
dµTam

PGL(2,C)(g) (9.15)

=

∫
PGL(2,C)

(∫
R+

r

∫ 2π

0
f(greiθ)

2dθdr

r2

)
dµTam

PGL(2,C)(g) (9.16)

=

∫
PGL(2,C)

4π|det g|4
(∫

R+

e−πr
2trgg∗r7dr

)
dµTam

PGL(2,C)(g)

(9.17)

=4π

∫
PGL(2,C)

| det g|4Γ(4)

2π4(trgg∗)4
dµTam

PGL(2,C)(g) (9.18)

=
12

π3

∫
PGL(2,C)

| det g|4

(trgg∗)4
dµTam

PGL(2,C)(g) (9.19)

Hence
∫

PGL(2,C)
| det g|4
(trgg∗)4dµ

Tam
PGL(2,C)(g) = 4π3

3 . We compute the same integral against µst
PGL(2,C).

Let φ(g) = |det g|4
(trgg∗)4 . Let K = PU(2), A be the group of positive diagonal matrices and

let N the group of upper triangular unipotents. We use the upper halfspace model to
represent H3. Using the Iwasawa decomposition we identify NA with H3 via the map(

1 x1 + ix2

0 1

)(
y 0
0 1

)
7→ (x1, x2, y) ∈ H3.

The function φ is right K-invariant so∫
PGL(2,R)

φ(g)dµst
PGL(2,C)(g) =

∫
H3

φ(g)dgK (9.20)

=

∫
R

∫
R

∫
R+

φ

((
y x1 + ix2

0 1

))
dydx1dx2

y3
(9.21)

=

∫
R

∫
R

∫
R+

y

(1 + y2 + x2
1 + x2

2)4
dydx1dx2 (9.22)

=
1

6

∫
R

∫
R

1

(1 + x2
1 + x2

2)2
dx1dx2 (9.23)

=
1

3

∫ 2π

0

∫ ∞
0

r

(1 + r2)2
drdθ (9.24)

=
π

6
(9.25)

Hence µTam
PGL(2,C)/µ

st
PGL(2,C) = 4π3

3
6
π = 8π2

Case D(kν) ' H = R + iR + jR = kR. Put f(x) = e−πn(x)n(x)2. Then∫
H×

f(g)dµTam
H× (g) =

∫
R4

e−π(x2
1+x2

2+x2
3+x2

4)4dx1dx2dx3dx4 (9.26)

=4

(∫
R
e−πx

2
dx

)4

= 4 (9.27)
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On the other hand:∫
H×

f(g)dµTam
H× (g) =

∫
PH×

(∫
R×

f(gt)
dt

|t|

)
dµTam

PH×(g) (9.28)

=

∫
PH×

(
n(g)2

∫
R×

e−πn(g)t2 |t|3dt
)
dµTam

PH×(g) (9.29)

=

∫
PH×

Γ(2)

π2
dµTam

PH×(g) (9.30)

=
1

π2
VolTam(PH×), (9.31)

so VolTam(PH×) = 4π2. Since the standard volume of a compact group is 1 we get
µTam

PH×
/µst

PH×
= 4π2.

We proceed to finite places where there are only 2 cases:
Case p ∈ Mf

k and D(kp) ' M(2, kp). Let Op be the same maximal order of D(kp) as
the one used to define µTam

D(kp). Up to conjugation we may assume Op = M(2,Okp). Define
f : GL(2, kp)→ R by

f(g) =

{
|n(g)|2 if g ∈ Op

0 otherwise.

Then ∫
GL(2,kp)

f(g)dµTam
GL(2,kp)(g) =

N(p)

N(p)− 1

∫
M(2,kν)

1Opdµ
Tam
M(2,kp) (9.32)

=
N(p)

N(p)− 1
|∆kp |2p (9.33)

By compatibility of Tamagawa measures we have∫
GL(2,kp)

f(g)dµTam
GL(2,kp)(g) =

∫
PGL(2,kp)

(∫
k×p

f(gt)dµTam
k×p

(t)

)
dµTam

PGL(2,kp)(g) (9.34)

=

∫
PGL(2,kp)

|∆kp |
1/2
p |n(g)|2pN(p)

N(p)− 1

(∫
kp

1Op(gt)|t|3pdt

)
dµTam

PGL(2,kp)(g).

(9.35)

Here dt stands for Haar measure on kp giving mass 1 to Okp . Let us write ‖g‖p for the
maximal valuation of coefficients of g. That is ‖g‖p := ming∈tOp |t|p or ‖g‖p = N(p)−k

where k = min{i | g ∈ πiOp}. We have

N(p)

N(p)− 1

∫
kp

1Op(gt)|t|3pdt =
N(p)

N(p)− 1

∑
n∈Z

1Op(gπn)|π|3np Vol(πnO×kp) (9.36)

=
∑
n∈Z

1Op(gπn)N(p)−4n (9.37)

=
∞∑

n=−k
N(p)−4n =

N(p)k

1−N(p)−4
=

‖g‖4p
1−N(p)−4

. (9.38)

We deduce that∫
PGL(2,kp)

|det g|2

‖g‖4p
dµTam

PGL(2,kp) =|∆kp |
3/2
p (1−N(p)−4)(1−N(p)−1)−1. (9.39)

Let us compute the same integral against the standard measure. We will assume some
familiarity with Bruhat-Tits trees. The standard measure depends on the choice of a
maximal compact subgroup so let us start with Up = PGL(2,Okp). Function g 7→ | det g|2p

‖g‖4p
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is bi Up-invariant so

∫
PGL(2,kp)

|det g|2

‖g‖4p
dµst

PGL(2,kp) =
∑

g∈PGL(2,kp)/Up

| det g|2p
‖g‖4p

(9.40)

The cosets PGL(2, kp)/Up may be identified with vertices of the Bruhat-Tits treeX(SL(2,Kp).

Let v0 be the vertex stabilized by Up and put φ(gv0) =
|det g|2p
‖g‖4p

. Because of bi-Up invariance
the value of φ(v) depends only on the Up orbit of v, but by Cartan decomposition the latter
depends only on the distance to v0. More precisely the set of vertices v with d(v, v0) = n is

a single Up orbit of size N(p)n−1(N(p)+1) or 1 if n = 0, with a representative
(
πn 0
0 1

)
v0.

Consequently

∑
g∈PGL(2,kp)/Up

|det g|2p
‖g‖4p

=1 + (N(p) + 1)
∞∑
n=1

N(p)n−1N(p)−2n (9.41)

=1 + (N(p) + 1)
∞∑
n=0

N(p)−n−2 (9.42)

=(1 +N(p)−2)(1−N(p)−1)−1 (9.43)

Hence

µTam
PGL(2,kp)

µst
PGL(2,kp)

= |∆kp |
3/2
p (1−N(p)−2).

If Up 6' PGL(2,Okp) then [PGL(2,Okp) : Up] = N(p)+1
2 so in this case

µTam
PGL(2,kp)

µst
PGL(2,kp)

=
2|∆kp |

3/2
p

N(p) + 1
(1−N(p)−2).

Case p ∈ RamfD. Recall that in this case Op = {x ∈ D(kν) | |n(x)|p ≤ 1}. We
define f : D(kp)→ R by the same formula as in the split case. By Lemma 2.28 we have

∫
D×(kp)

f(g)dµTam
D×(kp)(g) = |∆kp |2p|∆D/kp |

1/2
p

N(p)

N(p)− 1
=
|∆kp |2p
N(p)− 1

. (9.44)

By compatibility of Tamagawa measures we have

∫
D×(kp)

f(g)dµTam
D×(kp) =

∫
PD×(kp)

(∫
k×p

f(gt)dµTam
k×p

(t)

)
dµTam

PD×(kp)
(g) (9.45)

=

∫
PD×(kp)

(∫
k×p

f(t)dµTam
k×p

(t)

)
dµTam

PD×(kp)
(9.46)

(9.47)
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Let PD×(kp) = A ∪ B where A = {xk×p | |n(x)|p ∈ N(p)2Z} and B = {xk×p | |n(x)|p ∈
N(p)2Z+1}. Then VolTam(A) = VolTam(B) = 1

2VolTam(PD×(kp)). We have∫
A

(∫
k×p

f(t)dµTam
k×p

(t)

)
dµTam

PD×(kp)
= VolTam(A)

(
|∆kp |

1/2
p N(p)

N(p)− 1

∫
Okp
|t|3pdt

)
, (9.48)

=
Vol(PD×(kp))

2

|∆kp |
1/2
p

1−N(p)−4
(9.49)∫

B

(∫
k×p

f(t)dµTam
k×p

(t)

)
dµTam

PD×(kp)
=

Vol(PD×(kp))

2

|∆kp |
1/2
p N(p)−2

1−N(p)−4
(9.50)

∫
D×(kp)

f(g)dµTam
D×(kp) =Vol(PD×(kp))

|∆kp |
1/2
p

2(1−N(p)−2)
(9.51)

(9.52)

It follows that VolTam(PD×(kp)) =
2|∆kp |

3/2
p

N(p)−1 (1−N(p)−2).

Proposition 2.91. Let D be an admissible quaternion algebra defined over k i.e. one
that can be used to construct arithmetic lattices in PGL(2,K),K = R,C. Let U be a
maximal compact subgroup of PD×(Af ) and let µst

PD×(A)
be the standard measure relative

to U . Denote by S the set finite places p such that Up 6' PGL(2,Okp). The standard volume
of PD×(k)\PD×(A) equals

2|∆k|3/2ζk(2)
∏

p∈RamfD(N(p)− 1)
∏

p∈S\RamfD(N(p) + 1)

2π(4π2)[k:Q]−12|S|
, (9.53)

if K = R and

2|∆k|3/2ζk(2)
∏

p∈RamfD(N(p)− 1)
∏

p∈S\RamfD(N(p) + 1)

8π2(4π2)[k:Q]−22|S|
, (9.54)

if K = C.

Proof. We just need to put together the local ratio computations with Theorem
2.88. �

Using Corollary 2.51 we get:

Corollary 2.92. With U as before let V be an open subgroup of U . Then

Vol(ΓV \H2) =
[U : V ]

|cl (V )|
|∆k|3/2ζk(2)

∏
p∈RamfD(N(p)− 1)

∏
p∈S\RamfD(N(p) + 1)

π(4π2)[k:Q]−12|S|
, (9.55)

if K = R and

Vol(ΓV \H3) =
[U : V ]

|cl (V )|
|∆k|3/2ζk(2)

∏
p∈RamfD(N(p)− 1)

∏
p∈S\RamfD(N(p) + 1)

4π2(4π2)[k:Q]−22|S|
, (9.56)

if K = C.

9.2. Volumes of algebraic tori. Let l be a quadratic extension of a number field k
and let T = Res 1

l/kGm be the norm torus. In this section we prove an upper bound on
the volume of T (k)\T (A) with respect to the standard measure (see Section 2.4). We will
start with an exact formula for the volume which is probably well known to experts. For
a representation ρ of the Galois group Gal(k/k the function Λ(s, ρ) denotes the completed
Artin L-function

Proposition 2.93. Let χl/k be the unique nontrivial character of the Galois group l/k.
We have

Volst(T (k)\T (A)) =
2Λ(1, χl/k)

2ae(l/k)
,
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where a = r1,l − r1,k + r2,l − r2,k and e(l/k) =
∏

p∈Mf
k
e(lp/kp) is the global ramification

index.

The idea of the proof is to see T as a subgroup of PGL(2, k) and consider the period
integral of an Eisenstein series along T (k)\T (A). The residue of Eisenstein series at 1 is
constant so it is enough to compute the residue of the integral to determine the volume of
T (k)\T (A). Before moving to the proof we will show a simple lemma on compatibility of
standard measures on certain algebraic tori:

Lemma 2.94. Let k be a number field and l/k a finite extension. Put T = Res l/kGm/Gm

so that T (k) ' l×/k× canonically. Then T (A) ' A×l /A
× and for every function f ∈

Cc(A×l ) we have∫
A×l

f(g)dµst
A×l

= e(l/k)

∫
T (A)

(∫
A×

f(gt)dµst
A×(t)

)
dµst

T (A)(g),

where e(l/k) =
∏

p∈Mf
k
e(lp/kp) is the product of local ramification indices.

Proof. It is clear that the lemma will follow from the corresponding local statement:
For any ν ∈Mk and some f ∈ Cc(l×ν ) we have∫

l×ν

f(g)dµst
l×ν

= e(lν/kν)

∫
T (kν)

(∫
k×ν

f(gt)dµst
k×ν

(t)

)
dµst

T (kν)(g),

with e(lν/kν) defined to be 1 for all archimedean places.
If the extension lν/kν is split i.e. lν ' k2

ν then the assertion is clear. If lν ' C and
kν ' R then the desired inequality may be shown by integrating the characteristic function
of an annulus. It remains to treat the case p ∈ Mf

k and lp quadratic extension of kp. Put
f = 1O×lp

. The group O×lp is the maximal compact subgroup of l×p so∫
l×p

f(g)dµst
l×p

(g) = 1.

On the other hand∫
l×p /k

×
p

(∫
k×p

f(tg)dµst
k×p

)
dµst

l×p /k
×
p

(g) =

∫
l×p /k

×
p

{
1 if |g|p ∈ |k×p |p
0 otherwise

dµst
l×p /k

×
p

(g) (9.57)

=e(lp/kp)
−1 (9.58)

�

Proof of Proposition 2.93. Note that T ' Res l/kGm/Gm so T (k) ' l×/k×. Fix
an isomorphism l ' k2. Multiplication by an element of l× gives rise to an embedding
l× ↪→ GL(2, k) which induces an embedding T (k) ↪→ PGL(2, k). From now on think of
T as of subgroup of PGL(2, k). To compute the standard volume Volst(T (k)\T (A)) we
consider a period integral

P (s) :=

∫
T (k)\T (A)

E(s, g)dµst
T (A)(g),

where E(s, g) is an explicit Eisenstein series that we are going to define shortly. The residue
of E(s, g) in s = 1 is a constant function on PGL(2, k)\PGL(2,A) so

Volst(T (k)\T (A)) =
ress=1P (s)

ress=1E(s, g)
.

We will choose E(s, g) in such a way that P (s) = Cξl(s) i.e. a constant times the completed
zeta function of l. Let P be the parabolic subgroup consisting of upper triangular matrices
in PGL(2, k). Put

E(s, g) =
∑

γ∈P (k)\PGL(2,k)

τ(γg, s),
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where

τ(g, s) = ‖detg‖sA
∫
A×

g0((0, 1)tg)‖t‖2sA dµTam
A× (t),

where g0 : A2 ' Al → C is defined as in [68, p. 298] for the number field l. With this choice
of τ the Eisenstein series E(s, g) have simple poles on 0 and 1 with residues respectively
−1

2VolTam(A1/k×)g0(0) and 1
2VolTam(A1/k×)ĝ0(0).

It remains to compute the period integral. We follow the notes by Garrett [51] but
keep track of all the constants.

P (s) =

∫
T (k)\T (A)

E(s, g)dµst
T (A)(g) (9.59)

=

∫
T (k)\T (A)

∑
γ∈P (k)\PGL(2,k)

τ(γg, s)dµst
T (A)(g) (9.60)

=

∫
T (A)

τ(γg, s)dµst
T (A)(g) (9.61)

The last transition holds because T (k) acts freely transitively on l×/k× ' P1(k) =
P (k)\PGL(2, k). We unwind the expression for τ and use compatibility of Tamagawa
measures to get: ∫

T (A)
‖detg‖sA

∫
A×

g0((0, 1)tg)‖t‖2sA dµTam
A× (t)dµst

T (A)(g) (9.62)

=
µst
T (A)

µTam
T (A)

∫
T (A)

∫
A×

g0((0, 1)tg)‖tg‖sA×l
dµTam

A× (t)dµTam
T(A)(g) (9.63)

=
µst
T (A)

µTam
T (A)

∫
A×l

g0((0, 1)a)‖a‖×Aldµ
Tam
A×l

(a). (9.64)

By [68, Corollary 3, p.300] the integral is equal to ξl(s) – the completed zeta function of l.
Let r1,k, r1,l denote the number of real places of k, l respectively and r2,k, r2,l the number
of complex places of k, l respectively. In explicit terms

ξl(s) = (2−2r2,lπ−[l:Q]|∆l|)s/2Γr1,l(s/2)Γr2,l(s)ζl(s).

On the other hand by [68, Proposition 11, p. 298] g0(0) = ĝ0(0) = |∆l|1/2(2π)−r2,l and
VolTam(A1/k×) = ress=1ζk(s) = ρk so

ress=1E(s, g) = ρk|∆l|1/2(2π)−r2,l2−1. (9.65)

We turn to the residue of the period integral. By Lemma 2.94 we have

µst
T (A)

µTam
T (A)

=
µst
A×l

µTam
A×l

µTam
A×

µst
A×

e(l/k)−1 (9.66)

=
|∆l|1/2

2r1,l(4π)r2,l
2r1,k(4π)r2,k

|∆k|1/2
e(l/k)−1 (9.67)

=
|∆k|1/2|Nk/Q(∆l/k)|1/2

2r1,l−r1,k(4π)r2,l−r2,ke(l/k)
. (9.68)

We put the formulas together to get

Volst(T (k)\T (A)) =2
|∆k|1/2|Nk/Q(∆l/k)|1/2ρlρ−1

k

2r1,l−r1,k+r2,l−r2,k(2π)r2,l−r2,ke(l/k)
(9.69)

=2
Λ(1, χl/k)

2ae(l/k)
, (9.70)

where a = r1,l − r1,k + r2,l − r2,k. �
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In the following proposition we assume that the lattice is of the form ΓV and fA is as
in Section 4.5 with suppf ∈ B(1, R).

Proposition 2.95. Let γ be a non-torsion element in an arithmetic lattice Γ in
PGL(2,K), such that Oγ(fA) 6= 0. Let D be the quaternion algebra used to define Γ
and let k be its field of definition. Let T be the centralizer of γ in PD×(k). Then

Volst(T (k)\T (A))�ε,R
|∆k|1/2+ε

(2π)[k:Q]
.

Proof. By virtue of Proposition 2.93 and the fact that for admissible quaternion
algebras a = 1 it is enough to show that

|Λ(1, χl/k)| �ε
|∆k|1/2+ε

(2π)[k:Q]
(9.71)

The function Λ(s, χl/k) is symmetric with respect to transformation s 7→ 1−s and bounded
in vertical strips ( [27, Theorem 3.1.2]). Hence, by the maximum principle, we have

|Λ(1, χl/k)| ≤ sup
t∈R
|Λ(1 + δ + it, χl/k)|, (9.72)

for any δ > 0. Choose δ > 0 such that 2δΓ(1 + δ/2) ≤ 60ε/3. For K = R we have
r1,k = [k : Q], r2,k = 0 and r1,l = 2, r2,l = [k : Q] − 1. For simplicity we put d = [k : Q].
We have

|Λ(1+δ+it, χl/k)| =
(

2−2(d−1)π−d∆kNk/Q(∆l/k)
) 1+δ

2 |Γ(1 + δ + it)|d−1

|Γ(1+δ+it
2 )|d−2

|L(1+δ+it, χl/k)|.

(9.73)
Using Legendre’s duplication formula Γ(z)Γ(z + 1

2) = 21−2z√πΓ(2z) we get∣∣∣∣∣Γ(1 + δ + it)

Γ(1+δ+it
2 )

∣∣∣∣∣ =

∣∣∣∣2δΓ(1 +
δ

2
+
it

2
)

∣∣∣∣π−1/2 (9.74)

≤2δΓ(1 +
δ

2
)π−1/2 (9.75)

≤60ε/3π−1/2 (9.76)

Odlyzko’s lower bound [85] on the discriminant ∆k yields 16

|Γ(1 + δ + it)|d−1

|Γ(1+δ+it
2 )|d−2

� |∆k|ε/3π−d/2. (9.77)

Now we estimate the absolute value of Nk/Q(∆l/k). The relative discriminant ∆l/k is
defined as the ideal of Ok generated by the set{

det

(
a b
aσ bσ

)2

| a, b ∈ Ol

}
(9.78)

Let λ be one of non zero eigenvalues of Adγ. By choosing a = 1, b = λ we get

Nk/Q(∆l/k) ≤|Nk/Q((λ− λσ)2)| = Nl/Q(λ− λ−1) (9.79)

=Nl/Q(1− λ2). (9.80)

We have used the fact that λσ = λ−1 and that λ is a unit in Ol (see the proof of Proposition
2.26). By Lemma 2.69 non vanishing of Oγ(f) implies that m(λ) ≤ R so m(λ2) ≤ 2R. By
Corollary 2.57 we have Nl/k(1− λ2)�R exp(o([k : Q])). Consequently

|Nk/Q(∆l/k)| � exp(o([k : Q]))� |∆k|ε/3. (9.81)

16Here we could use as well Minkowski’s weaker bound.
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By Corollary 2.60 we also have

|L(1 + δ + it, χl/k)| =
∏

p∈Mf
k

∣∣∣∣1− χl/k(p)

N(p)1+δ+it

∣∣∣∣−1

(9.82)

≤ |ζk(1 + δ)| = exp(o([k : Q]))� |∆k|ε/3. (9.83)

Note that at this point we crucially use the fact that γ is not torsion as otherwise we can
not say that the Weil height goes to 0 as the degree [k : Q] grows. Putting everything
together we get

|Λ(1, χl/k)| �ε
|∆k|1/2+ε

(2π)[k:Q]
. (9.84)

�

10. Proof of Strong Limit Multiplicity

In this section we prove Theorem 2.8 stating that for a uniform torsion free arithmetic
congruence lattice Γ in PGL(2,K),K = R,C and any f ∈ Cc(PGL(2,K)) supported in the
ball B(1, R) we have

|trRΓf − f(1)Vol(Γ\PGL(2,K))| �R ‖f‖∞Vol(Γ\PGL(2,K))1−a, (10.1)

for some absolute constant a > 0. We start with a lower bound on the covolume of a
maximal arithmetic lattice.

Proposition 2.96. Let R > 0. Let Γ = ΓU be a maximal arithmetic lattice in
PGL(2,K) with the trace field k and associated quaternion algebra D defined over k. Write
S for the set of finite places p of k where Up 6' PGL(2,Okp). Then either Γ does not
contain any non-torsion elements γ with [γ]PGL(2,K) ∩B(1, R) 6= ∅ or

Vol(Γ\PGL(2,K))� |∆k|0.044
∏

p∈RamfD

N(p)− 1

2

∏
p∈S\RamfD

N(p) + 1

2
. (10.2)

Proof. Suppose that there exists γ ∈ Γ of infinite order, such that [γ]PGL(2,K) ∩
B(1, R) 6= ∅. By Corollary 2.92, (10.2) reduces to the estimate

|∆|0.044
k � |∆k|3/2ζk(2)

|cl (U)|(2π)2[k:Q]
.

Let us start by bounding |cl (U)|. By Lemma 2.49 we have |cl (U)| = |A×f /(A
×
f )2k×Dn(U).

From Equation 4.2 we deduce that n(U) contains the group A∞f
×/(A∞f

×)2. In particular
cl (U) is a quotient of the narrow class group cl +(k). It is well known that |cl +(k)| ≤
2[k:Q]|cl (k)| so we can deduce that |cl (U)| ≤ 2[k:Q]|cl (k)|. It remains to find a good upper
bound on the class number |cl (k)|. Recall that we write Rk for the regulator of k. The
analytic proof of the Brauer-Siegel theorem (see [68] or Section 9.2) yields the estimate

|cl (k)|Rk �ε |∆k|1/2+ε/2|ζk(1 + ε/2)|. (10.3)

Let λ, λ−1 be the non-trivial eigenvalues of γ. By Lemma 2.69 we know that k ⊂
Q(λ), [O(λ) : k] ≤ 2 and the logarithmic Mahler measure of λ satisfies m(λ) ≤ R. We ap-
ply Corollary 2.60 to get |ζk(1+ε/2)| = exp(oε([k : Q])).We combine it with the inequality
10.3 to get

|cl (U)| ≤ |cl (k)|2[k:Q] �ε 2[k:Q]|∆k|1/2+εR−1
k . (10.4)

We invoke a lower bound on regulator due to Zimmert [107]. It states that Rk �
exp(0.46r1,k+0.1r2,k) where r1,k and r2,k are the numbers of respectively real and complex
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places of k. In our case we get Rk � exp(0.46[k : Q]) > 1.58[k:Q] because all places of k
except possibly 1 are real. We get

|∆k|3/2ζk(2)

|cl (U)|(2π)2[k:Q]
� |∆k|1−εRk

2[k:Q](2π)2[k:Q]
(10.5)

�|∆k|1−ε

50[k:Q]
. (10.6)

Using Odlyzko’s lower bound 17 |∆k| � 60[k:Q] (see [85]) we can estimate the last expression
by |∆k|1−log 50/ log 60−ε ≥ |∆k|0.0445−ε. To end the proof we note that we can take ε ≤
0.0005. �

Proof of Theorem 2.8. Without loss of generality we may assume that ‖f‖∞ ≤ 1.
Write Γ = ΓV for an open compact subgroup V of PD×(Af ) and let ΓU , V ⊂ U be a
maximal lattice containing Γ. By Theorem 2.50 and Corollary 2.51 we have

trRΓf − f(1)Vol(Γ\PGL(2,K)) =
∑

16=[γ]∈PD×(k)

Vol(PD×γ (k)\PD×γ (A))ΞVγ (fA). (10.7)

Since Γ is torsion free we can sum only over the non-torsion conjugacy classes. Using
Lemma 2.55 we get a bound

|trRΓf − f(1)Vol(Γ\PGL(2,K))| ≤ (10.8)∑
[γ]∈PD×(k)
γ torsion free

Vol(PD×γ (k)\PD×γ (A))
2|Oγ(fA∞)|
|cl (V )|

∑
ρ∈Irr(U)

dimW V
ρ |Oγ(χρ)|. (10.9)

By virtue of Proposition 2.95 the adelic volume Vol(PD×γ (k)\PD×γ (A)) is uniformly bounded18

for conjugacy classes [γ] for which the orbital integral does not vanish. We get

|trRΓf−f(1)Vol(Γ\PGL(2,K))| �R,ε

∑
[γ]∈PD×(k)
γ torsion free

|∆k|1/2+ε

(2π)[k:Q]

|Oγ(fA∞)|
|cl (V )|

∑
ρ∈Irr(U)

dimW V
ρ |Oγ(χρ)|.

(10.10)
If the orbital integral Oγ(f∞) does not vanish then the conjugacy class of γ intersects the
ball B(1, R). Hence m(γ) ≤ R. By Theorem 2.77 the number of such classes is of order
exp(O(log2[k : Q])) = exp(o([k : Q])� |∆k|ε. We get

|trRΓf − f(1)Vol(Γ\PGL(2,K))| �R,ε
|∆k|1/2+2ε

(2π)[k:Q]

|Oγ(fA∞)|
|cl (V )|

∑
ρ∈Irr(U)

dimW V
ρ |Oγ(χρ)|.

(10.11)
From Corollary 2.70 we deduce the bound |Oγ(f∞)| = exp(of ([k : Q])) and from Proposi-
tion 2.75 for any δ > 0 and Γ torsion free we have

|Oγ(χ)| ≤ χ(1)1−δ exp(of,δ([k : Q]))2δ|S|, (10.12)

where S is the set of finite places where Up 6' PGL(2,Okp). Note that by Minkowski’s
bound exp(oR,δ([k : Q]))�R,δ,ε |∆k|ε. We apply those inequalities to get

|trRΓf − f(1)Vol(Γ\PGL(2,K))| �R,δ,ε 2δ|S|
|∆k|1/2+3ε

(2π)[k:Q]|cl (V )|
∑

ρ∈Irr(U)

dimW V
ρ χ(1)1−δ

(10.13)

17Note that at this point we use the full strength of Odlyzko’s bound, Minkowski’s basic bound is not
sufficient.

18 independently of Γ and γ.
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Pick b ∈ R such that ζ∗U (b− 1) converges and let a = δ/(b+ 1). Write ρ : U → Uab for the
abelianization map. Using the exact same argument as one in the proof of Lemma 2.83
(2) we get

|trRΓf−f(1)Vol(Γ\PGL(2,K))| �R,δ,ε 2|S|
|∆k|1/2+3ε

(2π)[k:Q]|cl (V )|
[U : V ]1−aζ∗U (b−1)a[Uab : ρ(V )]a.

(10.14)

Lemma 2.97. Assume the lattice ΓU contains a non-torsion element γ such that Oγ(fA) 6=
0. Then for c = 46 > 2/0.044 we have ζ∗U (7)[Uab : ρ(V )]� Vol(ΓU\PGL(2,K))c |cl (V )|

|cl (U)| .

Proof. Let us write S for the set of finite places p where Up 6' PGL(2,Okp). By
Corollary 2.86 and Proposition 2.87 we have

ζ∗U (7)[Uab : ρ(V )]
|cl (U)|
|cl (V )|

� ζk(2)
∏
p∈S

(N(p) + 1)23[k:Q]+|S||cl (k)|. (10.15)

We have shown in the proof of Proposition 2.96 that |cl (k)| � [∆k|1/2+ε. By Proposition
2.96 we get

Vol(Γ\PGL(2,K))� |∆k|0.044
∏

p∈RamfD

N(p)− 1

2

∏
p∈S\RamfD

N(p) + 1

2
. (10.16)

c > 2/0.044 so 0.044c ≥ max{1
2 +2ε+3 log 2

log 60 , 2} for ε small enough. Then Odlyzko’s lower
bound yields19

Vol(Γ\PGL(2,K))c �|∆k|
1
2

+2ε+3 log 2
log 60

∏
p∈RamfD

(
N(p)− 1

2

)2 ∏
p∈S\RamfD

(
N(p) + 1

2

)2

(10.17)

≥|∆k|
1
2

+ε23[k:Q]|∆k|ε
∏
p∈S

(
N(p)− 1

2

)2

. (10.18)

By Theorem 2.59 we get that
∏

p∈S (N(p) + 1) ≥ exp(oR([k : Q]))32|S| and we always have∏
p∈S (N(p)− 1) ≥

∏
p∈S

N(p)+1
2 . It follows that

|∆k|ε
∏
p∈S

(
N(p)− 1

2

)2

≥|∆k|ε
∏
p∈S

(N(p) + 1)
∏
p∈S

N(p) + 1

16
(10.19)

≥|∆k|ε exp(oR([k : Q]))
∏
p∈S

(N(p) + 1) 2|S| (10.20)

�Rζk(2)2|S|
∏
p∈S

(N(p) + 1) . (10.21)

In the last passage we have used the Corollary 2.60 together with Minkowski’s lower bound
on the discriminant. Finally we conclude that

Vol(Γ\PGL(2,K))c �R ζk(2)|∆k|
1
2

+ε23[k:Q]+|S|
∏
p∈S

(N(p)+1)�R ζ
∗
U (7)[Uab : ρ(V )]

|cl (U)|
|cl (V )|

.

(10.22)
The lemma follows. �

Lemma 2.98. Suppose that ΓU contains a non-torsion semisimple element γ such that
Oγ(fA) 6= 0. Then for any ε > 0

2|S| �R Vol(ΓU\PGL(2,K))ε

19With a bigger c this part of the argument would work with Minkowski’s bound .
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Proof. By Proposition 2.96

Vol(ΓU\PGL(2,K))�
∏
p∈S

N(p)− 1

2
(10.23)

From Theorem 2.59 we infer that

2|S| =

∏
p∈S

N(p)− 1

2

o(1)

, (10.24)

which proves the Lemma. �

We return to the proof of Strong Limit Multiplicity. We use Lemma 2.97 and Lemma
2.98:

|trRΓV f − f(1)Vol(Γ\PGL(2,K))| �R,δ,ε
|∆k|1/2+3ε[U : V ]1−a

(2π)[k:Q]|cl (V )|
Vol(ΓU\PGL(2,K))ac+ε

(
|cl (V )|
|cl (U)|

)a
(10.25)

�R,δ,ε
|∆|1/2+3ε[U : V ]1−a|cl (U)|1−a

(2π)[k:Q]|cl (U)||cl (V )|1−a
Vol(ΓU\PGL(2,K))ca+ε

(10.26)

By Corollary 2.51 we have

[U : V ]|cl (U)|
|cl (V )|

=
Vol(ΓV \PGL(2,K))

Vol(ΓU\PGL(2,K))
. (10.27)

Hence

|trRΓV f − f(1)Vol(Γ\PGL(2,K))| �R,δ,ε
|∆k|1/2+3ε

(2π)[k:Q]|cl (U)|
Vol(ΓV \PGL(2,K))1−a

Vol(ΓU\PGL(2,K))1−a−ca−ε

(10.28)

By Corollary 2.92 we have |∆k|1/2+3ε

(2π)[k:Q]|cl (U)| �R Vol(ΓU\PGL(2,K))1/3+2ε. Therefore

|trRΓV f − f(1)Vol(Γ\PGL(2,K))| �R,δ,ε
Vol(ΓV \PGL(2,K))1−a

Vol(ΓU\PGL(2,K))2/3−3ε−a−ca (10.29)

For δ and ε small we will have 2/3− 3ε− a− ca ≥ 0 so finally

|trRΓV f − f(1)Vol(Γ\PGL(2,K))| �R,δ,ε Vol(ΓV \PGL(2,K))1−a, (10.30)

this proves the Strong Limit Multiplicity property for torsion free, cocompact arithmetic
congruence lattices. Recall that in Lemma 2.97 for ε small enough we can take c = 46 so
the inequality works with a = 0.014 < 2

3·47 −
2ε
47 . �

11. Proof of Strong Benjamini-Schramm Convergence

The aim of this section is to prove Theorem 2.9. Let Γ = ΓV be a congruence arithmetic
lattice in PGL(2,K) as defined in Section 4.5. The case of non-uniform arithmetic lattices20
was treated in [92, Theorem A] so we may assume that Γ is a uniform lattice. Throughout
this section the Haar measure on PGL(2,K) is the standard measure (see Section 2.4).
Fix an identification X ' PGL(2,K)/K where K is a maximal compact subgroup of
PGL(2,K). Choose a bi K-invariant metric on PGL(2,K) such that the quotient metric
on X coincides with the Riemannian metric.

20If K = R they are defiend over Q and if K = C the are defined over a quadratic imaginary number
field.
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Proof of Theorem 2.9. To prove the Strong Benjamini-Schramm convergence we
need to show that for every R > 0 we have

Vol((Γ\X)<R)�R Vol(Γ\X)1−a (11.1)

for some absolute positive constant a ≥ 0.014. To this end we apply Theorem 2.8 to the
lattice Γ and the bi-K-invariant function f = 1B(K,R) - the characteristic function of the
set of points at length at most R from K. This function is not continuous but it can be
approximated from above by continuous compactly supported functions so the estimate
from Theorem 2.8 is still valid. We have

|trRΓf −Vol(Γ\PGL(2,K))| �R Vol(Γ\PGL(2,K))1−a. (11.2)

Since we are working with standard measure we have Vol(Γ\PGL(2,K)) = Vol(Γ\X)). On
the other hand unfolding the proof of Selberg Trace formula for compact quotients (see
e.g. [8, p. 9, second equality]) gives

trRΓf =

∫
Γ\PGL(2,K)

∑
γ∈Γ

f(x−1γx)dx (11.3)

=

∫
Γ\X
|{B(K,R) ∩ x−1Γx}|dx. (11.4)

=Vol(Γ\X) +

∫
Γ\X

[
|{B(K,R) ∩ x−1Γx}| − 1

]
dx (11.5)

The last two integrals are well defined because of the bi-K invariance of the metric on
PGL(2,K) and the last one is non-negative. The set of points x ∈ X whose injectivity
radius is smaller than R can be described as {xK ∈ X | |B(K,R) ∩ x−1Γx| ≥ 2}. Hence

trRΓf −Vol(Γ\PGL(2,K)) ≥ Vol((Γ\X)<R). (11.6)

By Strong Limit Multiplicity Vol((Γ\X)<R) �R Vol(Γ\X)1−a for some absolute positive
constant a ≥ 0.014. This ends the proof of Strong Benjamini-Schramm convergence for
cocompact, torsion free, congruence arithmetic lattices. �

Remark 2.99. This argument is very general and can be used to show that the Limit
Multiplicity property implies property B–S for arbitrary sequences of cocompact lattices in
any semisimple Lie group G.

Proof of Theorem 2.11. Let Γ be a torsion free arithmetic lattice with the trace
field k. Like in the in the argument above it is enough to show that for some positive
constant c and for f = 1B(1,R) we have

trRΓf −Vol(Γ\PGL(2,K))�R Vol(Γ\PGL(2,K))|∆k|−c (11.7)

We cannot apply Theorem 2.8 directly because we do not assume that Γ is a congruence
lattice. Let Γ′ be a maximal lattice containing Γ. Maximal lattices are all congruence
lattices of form Γ′ = ΓU so by the proof of Theorem 2.8 we have∑

[γ]Γ′
not torsion

Vol(Γ′γ\PGL(2,K)γ)Oγ(f)�R Vol(Γ′\PGL(2,K))1−a. (11.8)

The function f is non-negative and every conjugacy class in Γ′ splits into at most [Γ′ :
Γ]/[Γ′γ : Γγ ] conjugacy classes in Γ. It follows that

trRΓf −Vol(Γ\PGL(2,K)) =
∑
[γ]Γ

Vol(Γγ\PGL(2,K)γ)Oγ(f) (11.9)

≤[Γ′ : Γ]
∑
[γ]Γ′

not torsion

Vol(Γ′γ\PGL(2,K)γ)Oγ(f) (11.10)

�R[Γ′ : Γ]Vol(Γ′\PGL(2,K))1−a (11.11)

=Vol(Γ\PGL(2,K))Vol(Γ′\PGL(2,K))−a. (11.12)
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Now we consider two cases. Either Γ does not contain any non-torsion conjugacy classes
[γ] such that [γ]PGL(2,K) intersects a ball of radius R or by Proposition 2.96 we have

Vol(Γ′\PGL(2,K))�R |∆k|0.044
∏

p∈RamfD

N(p)− 1

2
. (11.13)

By Theorem 2.59 the product
∏

p∈RamfD
N(p)−1

2 is bounded from below by exp(−o([k : Q]))

so by Odlyzko’s bound21 we get

Vol(Γ′\PGL(2,K))�R |∆k|0.043. (11.14)

This proves the theorem with c = 0.043a ≥ 0.0006. �

Now we can prove Corollary 2.12.

Proof. Put f = 1B(1,R). Let (Γi)i∈N be a sequence of cocompact arithmetic (not
necessarily congruence) lattices in PGL(2,K). By Theorem 2.11 either (Γi)i∈N has property
B–S or infinitely many lattices share the same trace field, say k. For the sake of the proof
we may assume that the trace field of all Γi’s is equal to k and the lattices are pairwise non
commensurable. Let Di be the quaternion algebra defined over the field k determining the
commensurability class of Γi (see Section 4.1). Let Γ′i be a maximal lattice containing Γi.
From the inequalities (11.9)–(11.13) we get

Vol((Γi\PGL(2,K)<R) ≤trRΓif −Vol(Γi\PGL(2,K)) (11.15)

�k,RVol(Γi\PGL(2,K))Vol(Γ′i\PGL(2,K))−a (11.16)

�k,RVol(Γi\PGL(2,K))

 ∏
p∈RamfDi

2

N(p)− 1

a

. (11.17)

We know that the isomorphism class of Di is uniquely determined by the set RamDi.
Hence limi→∞ |RamDi| =∞ and

lim
i→∞

Vol((Γi\PGL(2,K)<R)

Vol(Γi\PGL(2,K))
= 0. (11.18)

�

12. Applications

12.1. Gelander conjecture. The entirety of this section is devoted to Theorem 2.16.

Proof of Theorem 2.16. Let Γ ⊂ PGL(2,C) be a torsion free arithmetic lattice
with the trace field k. Put M = Γ\H3. Gelander already proved the conjecture for non-
uniform arithmetic lattices so we shall assume that Γ is uniform22 . Following the method
from [53] we will construct a simplicial complex N homotopic toM as a nerve of a covering
of M by certain balls. We are able to bound the number of simplices in N because both
the size of the thin part of the manifold and its injectivity radius can be controlled by the
degree [k : Q]. Let ε be the Margulis constant for H3.

For x ∈ Γ\H3 or x ∈ H3 we will write B(x,R) for the ball of radius R centered in x.
Define i(x) = min{injradx, 1} for x ∈ M . Let B be a maximal with respect to inclusion
set of points in M satisfying the following conditions: For any distinct x, y ∈ B we have
B(x, i(x)/16) ∩B(y, i(y)/16) = ∅ (B(x, i(x)/16) is to be replaced by B2

x if x ∈ C) .
Claim 1. ⋃

c∈C
B1
c ∪

⋃
x∈B

B(x, i(x)/5) = M.

21 Alternatively we could use Minkowski’s lower bound.
22 The key feature he used is that non-uniform lattices are all defined over a qudratic imaginary field.

This implies a uniform lower bound on the lengths of closed geodesics on such manifolds.
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Proof. Let y ∈ M . The proof for non-compact case is completely analogous. By
maximality of B there exists x ∈ B such that B(x, i(x)/16) ∩ B(y, i(y)/16) 6= ∅. Hence
d(x, y) < i(x)+i(y)

16 . If i(x) ≥ i(y) then d(x, y) < i(x)/8 so y ∈ B(x, i(x)/5). We shall use
crucially the fact that i(x) is a 1-Lipschitz function, this is easy to see using the definition
of injectivity radius as the maximal radius of a ball around a lift of x which maps injectively
to Γ\H3. If i(x) < i(y) then

i(y)− i(x) ≤ d(x, y) <
i(x) + i(y)

16
,

so i(y) < 17
15 i(x). Then

d(x, y) <
i(x) + i(y)

16
<

2

15
i(x)

and y ∈ B(x, i(x)/5). �

Claim 2. For every y ∈ B the number of x ∈ B such that B(x, i(x)/5)∩B(y, i(y)/5) 6=
∅ is at most 245.

Proof. If x ∈ B\C andB(x, i(x)/5)∩B(y, i(y)/5) 6= ∅ thenB(x, i(x)/5) ⊂ B(y, i(y)+2i(x)
5 ).

Note that
i(x) ≤ i(y) + d(x, y) < i(y) +

i(x) + i(y)

5
,

so i(x) < 3
2 i(y). Hence B(x, i(x)/5) ⊂ B(y, i(x)+2i(y)

5 ) ⊂ B(y, 4i(y)/5). On the other
hand i(x) ≥ i(y)− d(x, y) > i(y)− i(x)+i(y)

5 so i(x)
5 > 2i(y)

15 . By comparing the volumes of
B(x, i(x)/5) and B(y, 4i(y)/5) we get

|{x ∈ B | B(x, i(x)/5)∩B(y, i(y)/5) 6= ∅}| ≤ Vol(B(y, 4i(y)/5))

Vol(B(y, 2i(y)/15))
≤ Vol(B(y, 4/5))

Vol(B(y, 2/15))
≈ 244.52 < 245

The last inequality is a consequence of the formula for the volume of a ball in hyperbolic
3-space Vol(B(x,R)) = π(sinh 2R−2R) [93, p.83 Ex 3.4.5] and an elementary calculation.
In the non compact case we may start with y ∈ C. �

Let U be the open cover M =
⋃
x∈B B(x, i(x)/5), by the first claim it is indeed a cover

of M . Any nonempty intersection of sets in U is a convex set so it is contractible. It
follows that the cover U is "good" in the terminology of [25]. By [25, Theorem 13.4] the
nerve N of U is homotopy equivalent to M . By definition the vertices in N correspond to
the open sets in U and k-simplices correspond to unordered k-tuples in U with nonempty
intersection. Using the second claim we deduce that the degree of vertices in N is bounded
by 245.

It remains to bound the number of vertices in N which is equal to |B|. We will bound
the size separately for B1 := B ∩M≥1 and B2 := B ∩M<1. The union

⊔
x∈B1

B(x, 1/16) is
disjoint so

|B1| ≤
Vol(M)

Vol(B(x, 1/16))
� Vol(M).

For any semisimple γ ∈ Γ the minimal displacement23 of γ is given by m(γ). In this
case m(γ) is the half of the logarithmic Mahler measure of the characteristic polynomial of
γ. For a short argument see [53, p. 39]. By Lemma 2.69 and Dobrowolski Theorem [40]
we get that for γ 6= 1

m(γ)� (log[k : Q])−3.

We can deduce that the injectivity radius of M is bounded below by C(log[k : Q])−3 < 1
for some absolute positive constant C. The disjoint union

⊔
x∈B2

B(x,C log[k : Q])−3/16)
lies in M<17/16 so

|B2| ≤
Vol(M<5/4)

Vol(B(x,C log[k : Q])−3/16))
� Vol(M<5/4)(log[k : Q])9).

23Recall that the minimal displacement of g ∈ G is defined as the infimum of d(x, gx) over all x ∈ X,
where X is the symmetric space of G.
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By Theorem 2.11 and Odlyzko’s lower bound [85] (or Minkowski’s weaker bound) we
get |B2| � Vol(M)60−0.0006[k:Q] log[k : Q])3) = o(Vol(M)). Hence |B| � Vol(M) +
o(Vol(M)) � Vol(M). This proves that the number of vertices in N is at most linear
in the volume of M . �

To prove Corollary 2.17 one just has to repeat the steps of the proof of [53, Theorem
11.2]. Another consequence of Theorem 2.16 (actually Corollary 2.17) is the following
bound on the size of the torsion part of H1(Γ\H3):

Corollary 2.100. Let Γ be a torsion free, arithmetic lattice in PGL(2,C). Then

log |H1(Γ\H3,Z)tors| � Vol(Γ\H3).

In a forthcoming paper [11] Bader, Bergeron, Gelander and Sauer prove the analogous
bound for the torsion of homology groups of higher rank symmetric spaces. Theorem 2.16
will be used as an ingredient in their proof.

12.2. Growth of Betti numbers.

Proof of Corollary 2.18. In this section we follow closely the exposition from
[17, p.11-17]. Before the proof of Corollary 2.18 let us set up some notations. Write
G = PGL(2,K), g = Lie(G). Let K be a maximal compact subgroup of G and let
X = G/K be the associated symmetric space. Lie algebra g can be written as g = k ⊕ p
where k = Lie(K) and p is the space orthogonal to k via the Killing form 24. The restriction
of the Killing form to p is a positive definite and is preserved by the action of K so we will
think of p as a unitary representation of K. Let Hk(Γ\X) denote the space of harmonic
differential k-forms on the locally symmetric space Γ\X. By Hodge theory we know that
Hk(Γ\X,C) ' Hk(Γ\X). The dimension of the space of harmonic k-forms can be read
from the decomposition of L2(Γ\G) into irreducible unitary representations. The Casimir
operator Ω ∈ g⊗ g is given by

Ω =

dim g∑
i=1

ei ⊗ e∗i ,

where (ei) is a basis of g and (e∗i ) is the basis of g dual to (ei) via the Killing form.
Let π ∈ Π(G) be an irreducible unitary representation of G acting on a Hilbert space

Hπ. The number Ω(π) is the unique real number such that for every smooth vector v ∈ Hπ

we have

Ωv :=

dim g∑
i=1

DeiDe∗i
v = Ω(π)v.

The main tool to prove Corollary 2.18 is a special case of the Matsushima’s formula [18].

Theorem 2.101.

dimHk(Γ\X) =
∑

π∈Π(G)
Ω(π)=0

mΓ(π) dim HomK

(∧
kp, π

)
. (12.1)

Note that dim p = dimX so the terms in the above sum vanish for k > dimX.
Irreducible representations π which have non-trivial contribution in the above sum for some
k ∈ {1, . . . ,dimX} are called the cohomological representations. The set of equivalence
classes of cohomological representations of G is finite [103]. Once we admit this fact, the
proof of Corollary 2.18 is a simple consequence of the Limit Multiplicity property. Indeed,
let Σ = {π1, . . . , πn} be the set of equivalence classes of the cohomological representations
of G. By Theorem 2.8 or Theorem 2.11 we have

lim
i→∞

mΓi(πl)

Vol(Γi\G)
=

{
d(πl) if πl is discrete series
0 otherwise.

24Note that Killing form is negative definite on k so p ∩ k = 0.
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To shorten the formulas we shall extend the formal degree to all irreducible representations
by putting d(π) = 0 whenever π is not discrete series. Using Theorem 2.101 and the fact
that with our choice of measures we have Vol(Γi\X) = Vol(Γi\G) we deduce that

lim
i→∞

bk(Γi\X)

Vol(Γi\X)
=

n∑
l=1

d(πl) dim HomK

(∧
kp, πl

)
.

The last expression is known to be the k−th L2-Betti number of X [86]. �
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CHAPTER 3

Growth of mod−2 homology in higher rank locally symmetric
spaces

1. Introduction

Throughout this paper G will stand for a semisimple Lie group, X for the symmetric
space G/K where K is a maximal compact subgroup and Γ (possibly with index) for a
torsion free lattice inG. In recent years the growth of homology groups of locally symmetric
spaces, i.e. orbifolds of form Γ\X has been an area of active research. Let us mention
two examples. In [2] Abert, Bergeron, Biringer, Gelander, Nikolov, Samet and Raimbault
show that for any uniformly discrete1 sequence of pairwise non-conjugate lattices (Γi) in a
higher rank Lie group G the limit

lim
i→∞

dimCHk(Γi\X,C)

Vol(Γi\X)

exists and is equal to the L2-Betti number b(2)
k (X). It is proved that such sequences have

the limit multiplicity property (see [45]) and the convergence of normalized Betti numbers
is then deduced from Matsushima’s formula [78]. The second example is due to Calegari
and Emerton [30]. Let Γ be a lattice in SL(2,C) and let p be a rational prime. Calegari
and Emerton define p-adic analytic towers of covers of Γ\H3 and study the growth
of the first mod−p homology group in such towers. Their results imply that in a p-adic
analytic tower (Γk\H3) the limit

lim
k→∞

dimFp H
k(Γk\X,Fp)

Vol(Γk\X)

always exists. DeRham complex of differential forms on Γk\X doesn’t afford the mod-
p cohomology classes so the analytic methods are not accessible. Calegari and Emerton
solve this problem by using the completed homology and cohomology groups (see [29]).
In this paper we develop a new geometric approach to study the homology growth in
non-commensurable case. We show:

Theorem 3.1. Let G be a real semisimple Lie group of real rank at least 2 and let X be
the associated symmetric space. Then for any sequence of pairwise non-conjugate lattices
(Γn) we have

lim
n→∞

dimF2 H1(Γn\X,F2)

Vol(Γn\X)
= 0.

Let us briefly review what is known on the growth of the mod−p homology groups in
higher rank groups. Margulis normal subgroup theorem implies that H1(Γn\X,Z) is finite.
Our result controls the size of the 2−torsion part of H1(Γn\X,Z) in terms of Vol(Γ\X).
Conjecturally [1] a stronger statement should hold, it is expected that

lim
n→∞

d(Γn)

Vol(Γn\X)
= lim

n→∞

|H1(Γn\X,Z)|
Vol(Γn\X)

= 0 (1.1)

where d(Γn) is the rank of Γn i.e. the minimal number of generators of Γn. If the limit
on the left-hand side exists it is called the rank gradient of (Γn). In [1] it was shown
that (1.1) holds for all sequences of pairwise different subgroups (Γn) ⊂ Γ where Γ is a

1The uniform discreteness assumption will be lifted in an upcoming work [7] by a subset of authors
of [2].
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right-angled lattice. A group H is called right angled if it admits a finite sequence of
generators (possibly with repetitions) s1, s2, . . . , sd such that [si, si+] = 1. If the group
Γ is a lattice in a higher rank group so every non-stationary sequence of subgroups is a
Farber sequence, this is why we do not need to put additional conditions on the sequence of
subgroups. The other instance where it is known to be true is for sequences of congruence
subgroups Γ1 of a fixed arithmetic lattice Γ0. In that case we control the rank by logarithm
of index:

d(Γ1)�Γ log[Γ : Γ0].

The implicit constant depends on Γ so even in the case of congruence lattices it wasn’t
previously known that the dimension of the first mod−p homology group grows sublinear
in volume if we consider sequences non-commensurable lattices. The argument in [1] is
based on the relation between the rank gradient and the combinatorial cost (see [50,73]
and [5]). Combinatorial cost is a powerful tool when one wants to study the rank gradient
or similar limits associated to a sequence of subgroups of a given group. To the author’s
knowledge this method has not been yet adapted to handle non-commensurable sequences
of lattices.

1.1. Idea of the proof. To simplify the argument let us assume in this sketch that the
fundamental rank δ(G) of G is at least 2. The fundamental rank is the difference between
the absolute rank of G and the maximal rank of a compact torus in G e.g. δ(SL(2,C)) =
1, δ(SL(2n,R)) = n − 1 and δ(SL(2n + 1,R)) = n. This assumption will ensure that the
closed geodesics will lie in closed flats of dimension at least 2. The advantage of working
with F2 is that every homology class is represented by a sum of unoriented cycles. We
will show that elements of H1(Γi\X,F2) can be reprenented by combinations of closed
geodesics whose total length is o(Vol(Γi\X) (see Proposition 3.5). This, together with few
facts on triangulations of Γi\X constructed by Gelander [53] will yield sufficiently good
bounds on |H1(Γi\X,F2)| (see Proposition 3.2) to deduce Theorem 3.1. We define the
"reduced representatives" of a homology class α in H1(Γi\X,F2) as the representatives
c ∈ Z1(Γi\X,F2) of minimal total length. Because we do not need to care about the
orientation it is easy to see that c is always a sum of uniformly separated closed geodesic
(see Lemma 3.8). If the fundamental rank is at least 2 then every closed geodesic on
Γ\X is contained in a closed totally geodesic flat subspace of dimension ≥ 2. We can
move the geodesic components of c in their respective maximal flats without changing the
homotopy class of c. Together with uniform separation of geodesics this yields the uniform
separation of flats supporting c. In general case this argument is replaced by Lemma
3.9. Once we know that flats supporting c are uniformly speparated, it is enough to use
the Benjamini-Schramm convergence of (Γi\X) to X established in [2] to deduce that c
cannot "fill" Γi\X with positive density so `(c) = o(Vol(Γi\X)). In the actual proof we
use R-lengths (see Equation 2.1) instead of ordinary lengths in order to avoid technical
difficulties. Nevertheless we hope this sketch gives the right idea.

1.2. Outline. In Section 2 we establish the connection between the lengths of repre-
sentatives of homology classes and the dimension of the first homology group. The main
tools are the simplicial complexes constructed by Gelander in [53] and the Benjamini-
Schramm convergence of higher rank locally symmetric spaces established in [2]. In Section
3 we prove that in a higher rank locally symmetric space M all the homology classes in
H1(M,F2) are represented by a cycle whose length inside the thick part is sublinear in the
volume of M . We also give the proof of the main theorem (Theorem 3.1).

2. Lengths of homology classes and the dimension

Throughout this section we write M for a Riemannian manifold of the form M = Γ\X
where X is a higher rank symmetric space. The reasoning is carried out for any prime
p, special properties of p = 2 play an important part only in the next section. We write
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Z1(M,Z) for the module of 1-cycles on M . Any cycle c ∈ Z1(M,Z) can be represented as

c =
∑
i∈I

aiγi,

where I is finite set of indices, ai ∈ Z and γi are oriented smooth differentiable curves
γi : S1 →M . Fix R > 0, the R-length of a cycle c is defined as

`R(c) :=
∑
i∈I
|ai|`R(γ), (2.1)

where `R(γi) stands for the length of γi ∩ M>R. We put `(c) := `0(c). The universal
coefficients theorem says that any class in H1(M,Fp) has a representative in Z1(M,Z), we
define the total length (resp. total R-length) of α ∈ H1(M,Fp) by

`(α) = inf
c∈Z1(M,Z)

[c]=α

`(c) (2.2)

`R(α) = inf
c∈Z1(M,Z)

[c]=α

`R(c) (2.3)

Finally, the normalized R-length of M is defined as

`R(M) =
supα∈H1(M,Fp) `

R(α)

Vol(M)
.

The following proposition is the main goal of this section:

Proposition 3.2. For every δ > 0 there exist δ′ > 0 such that for every manifold M
with `R(M) ≤ δ′ and Vol(M) big enough we have

dimF2 H1(M,Fp) ≤ δVol(M).

We shall prove it after introducing some tools. In [53] Gelander constructed for every
manifold X = Γ\X a simplicial complex N , with π1(N ) ' π1(M), with the number of
vertices bounded by AVol(M) and degrees bounded uniformly by B for certain constants
A = A(X), B = B(X) dependent only on X. We shall extract from his construction the
following lemma:

Lemma 3.3. Let M,X be as before and let N be a simplicial complex constructed
in [53] and let R > 0 be bigger than the Margulis constant of X. There exists a constant
C1 = C1(X) such that any homology class α ∈ H1(M,Fp) is represented by an integral
combination

∑
i∈I aiei, where e1 are edges of N and

∑
i∈I |ai| ≤ C1`

R(α) +O(Vol(M<R)).

Proof. Let us recall few details of the Gelander’s construction. Write d : X×X → X
for the Riemannian metric on X and let ε′ = ε′X be the Margulis constant of X [13, Thm
9.5]. Let ε = ε′/10, we decompose the manifoldM into the thick partM≥ε and the thin part
M<ε. In [53], Gelander shows that there exists a closed submanifold N of codimension
≥ 3 of M<ε such that M \ N retracts onto M≥ε. The inclusion induces a surjective
map i∗ : π1(M≥ε) → π1(M). There is a simplicial complex N homotopy equivalent to
M \N . Inside it, there is a subcomplex Nthin which is homotopy equivalent to M<ε′ \N .
Moreover we can choose Nthin which has only O(Vol(M<ε)) simplices [52]. The complex
N is constructed as the nerve of a "good cover" U of M≥ε. By general theory [25, 13.4],
N is homotopy equivalent to M≥ε. To construct U we choose a radius r take maximal
r/2-separated family Σ of points in M≥ε and put U0 = {BM≥ε(x, r) | x ∈ Σ}. Next, in
order to get a good cover we have to modify the covering close to the boundary of M≥ε.
This delicate procedure is the bulk of [53]. Subcomplex Nthin is the nerve of the covering
Uthin = {U ∈ U | U ∩ ∂M≥ε 6= ∅}. We are going to use the fact that away from Nthin the
complex N looks like the nerve of U0. For R > ε let us write N<R for the part of the nerve
coming from M≥ε∩M<R. The complex N<R has at most O(Vol(M<R) simplices. Now we
are ready to prove Lemma 3.3:

Step 1. Let γ be a simple closed geodesic on M . Write γ = γ1 t γ2 t γ3 where
γ1 = γ ∩M<ε, γ2 = γ ∩M≥ε ∩M<R and γ3 = γ ∩M≥R. By perturbing γ by an arbitrarily
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small amount we can assume it is disjoint from N . Write r : M \ N → M≥ε for the
retract defined by Gelander. Then i∗(r(γ)) represents the same homotopy class as γ.
We have r(γ) = r(γ1) ∪ γ2 ∪ γ3. Now, as γ3 passes through the interior of M≥R and
r(γ1) ∪ γ2 ⊂ M. ≥ε ∩M<R we can find a finite families of balls Fi, i = 2, 3 from the good
cover U such that γi ⊂

⋃
U∈Fi U, |F2| = O(Vol(M<R)) and |F3| ≤ C0`(γ3)2. Thus, the

homology class of γ can be represented by a sum of certain number of edges in N<R, and
at most Z1`(γ3) ≤ Z1`

R(γ) edges from N≥ε.
Step 2. Let c =

∑
i aiγi be a representative of α such that `(c) ≤ 2`(α). By the

first step we can represent c as c = c1 + c2 + c3 where c1 + c2 =
∑

e∈N<R aee and c3 =∑
e∈N≥R bee with

∑
e∈N≥R |be| ≤ C1`

R(α). Since we are interested in homology mod−p
we can assume that in our representation all coefficients have absolute values less than
p. Hence,

∑
e∈N<ε |ae| = O(Vol(M<R)). We put the inequalities together to get the

lemma. �

Lemma 3.4. For every 0 < δ < 1
2 and n big enough we have

[δn]∑
i=1

(
n

i

)
(p− 1)i � pδ(2−log δ)n

Proof. By Stirling approximation
[δn]∑
i=1

(
n

i

)
(p− 1)i ≤ (p− 1)δnδn

(
n

[δn]

)
(2.4)

� (p− 1)δnδn
nδneδn

(δn)δn
� (p− 1

2
)δn
(
eδ

δδ

)n
(2.5)

= pδ((log p)−1−log δ+1)n ≤ pδ(2−log δ)n. (2.6)

�

Proof of Proposition 3.2. Let N be the simplicial complex constructed by Ge-
lander, with the property that π1(N ) ' π1(M). Recall that there are constants A,B
dependent only on the symmetric space X such that N has at most AVol(M) vertices,
all with degrees bounded by B. Let C1 be as in Lemma 3.3, let δ > 1

2 and let δ′ > 0
be such that if we put δ′′ = 2C1δ

′/AB then δ′′(2 − log δ′′) ≤ δ/2ABC1. Assume that
`R(M) ≤ δ′. By Lemma 3.3 every class in H1(M,Fp) can be represented as a sum at
most C1δ

′Vol(M) +O(Vol(M<R)) 1-cells in N . By [2, Theorem 1.5] we have Vol(M<R) =
o(Vol(M)). Hence, for big enough Vol(M) every class in H1(M,Fp) is represented by a
sum of at most 2C1δ

′Vol(M) 1-cells in N . Total number of 1-cells in N is bounded by
ABVol(M). By applying lemma Lemma 3.4 with n = ABVol(M) and δ′′ we deduce that
the number of such representatives is bounded by pδVol(M). We infer that for Vol(M) big
enough we have dimFp H1(M,Fp) ≤ δVol(M). �

3. Reduced representatives

In the sequel M is a locally symmetric space of higher rank and p = 2. The aim of this
section is to show that the assumption of Proposition 3.2 are automatically satisfied once
Vol(M) and R are big enough:

Proposition 3.5.
`R(M) ≤ C2R

−1/2.

We postpone the proof until the end of this section. Once we have Proposition 3.5 our
main result is a simple consequence:

2Set F3 can be taken as the set of all balls in U intersecting γ3. By Gelander’s contruction their
cenetrs are uniformly spearated, hence the inequality |F3| ≤ C0`(γ3).
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Proof of Theorem 3.1. Let δ > 0. By Proposition 3.2 there exists δ′ such that
dimF2 H1(M,F2) ≤ δVol(M) for Vol(M) big enough and M such that `R(M) ≤ δ′Vol(M).
Pick R ≥ (δ′)−2C2

3 . By Proposition 3.5 we have `R(M) ≤ δ′ so

lim sup
Vol(M)→∞

dimF2 H1(M,F2)

Vol(M)
≤ δ.

To get the Theorem we let δ go to 0. �

Fix R > 1. Recall that a reduced representative of a homology class α ∈ H1(M,Fp) is
a cycle c ∈ Z1(M,Z) such that `(c) = `(α). Standard compactness argument yields

Lemma 3.6. Every class α ∈ H1(M,Fp) has a reduced representative. It is an integral
combination of closed geodesics with coefficients bounded in absolute value by p

2 . In general
it is not unique.

Remark 3.7. We could define the R-reduced representatives in the same way but the
would not have such a simple description. As it will turn out, any reduced representative
c satisfies `R(c) = o(V ol(M)) which is already enough to show that `R(M) tends to 0 as
Vol(M)→∞.

From now on it will be important that we work with p = 2. Being a reduced represen-
tative of a mod−2 homology class forces strong geometric constraints on c. The following
Lemma guarantees that whenever a cycle c has two geodesic components that are not
κ1−separated in the thick part M>R then there is a mod−2 homologous cycle c′ with
`(c′) ≤ `(c)−κ2 for some positive constant κ2. We will write [a, b] for the shortest geodesic
connecting points a and b.

Lemma 3.8. There exist κ1, κ2 > 0 with following property. Then for any two closed,
non-contractible curves γ1, γ2 on M such that dM≥R(γ1, γ2) ≤ κ1 there exists a cycle c ∈
Z1(M,F2) such that `(c) ≤ `(γ2) + `(γ2)− κ2 and [c] = [γ1 + γ2] in H1(M,F2).

Proof. Let x1, x2 be points on γ1∩M≥R, γ2∩M≥R respectively, such that d(γ1, γ2) =
d(x1, x2). Let y be the midpoint of the shortest geodesic connecting x1, x2. Fix some
radius R′ < 1 and consider the intersection of γ1, γ2 with BM (y,R′). Note that R′ < R
so the ball is isometric to an R′-ball in X. Since neither of γ1, γ2 is contractible, they
have non-empty intersection with SM (y,R′). Let pi, qi be intersection points of γi with the
sphere SM (y,R′) such that xi lies on the segment of γi bounded by pi and qi, for i = 1, 2.

y

p

p

1

2

q

q

1

2

p

p

1

2

q

q

1

2

. .

y

Figure 1. Before (left) and after (right) performing a surgery on close curves.

We replace segments γ1 ∩ B(y,R′) and γ2 ∩ B(y,R′) by geodesics [p1, p2], [q1, q2] or
[p1, q2], [p2, q1] as in Figure 1. We always choose the pair with minimal total length. For
R′ small enough (how small depending only on X) the metric inside B(y,R′) is close to
the flat euclidean metric so for κ1 close to 0 it is evident that one of those operations will
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reduce the total length by at least κ2 for some positive constant κ2. Note that this surgery
does not change the mod−2 homology class. �

The second lemma says that in higher rank we have a lot of freedom to perturb closed
geodesics into curves with a minimal increase in length. From this point onward we assume
for technical reasons that R > 2(1+κ1 +κ2), this is not a problem since later we are going
to let R tend to infinity anyway.

Lemma 3.9. Let γ be a closed geodesic on M . Let κ1, κ2 be as in Lemma 3.8. Put

N(γ) = {x ∈M≥R | ∃γ′ curve homotopic to γ such that d(x, γ′) < κ1/2 and `(γ′) < `(γ)+κ2/2}.

Then Vol(N(γ)) ≥ C3`
R(γ)R

1
2 for some absolute positive constant C3.

Proof. Write ι : X →M for the covering map and B(Σ, ε) for the open ε-neigborhood
of a set Σ. Let x1, . . . , xN be a maximal R-separated subset of γ ∩ M>R. Clearly we
have N ≥ `R(γ)/2R. Choose a lift γ̃ of γ to X and let x̃i be lifts of xi’s lying on γ̃.
There exits a maximal flat F of X containing γ̃ 3Since X is a higher rank symmetric
space F is isometric to Rd with d = rankX ≥ 2 [84, p.152]. For every i = 1, . . . , N let
Fi = F ∩ B(xi, R − κ1/2) and Gi = B(Fi, κ1/2). Note that covering map ι : X → M is
injective on Gi for every i and the images in M are pairwise disjoint. Let x′i, x

′′
i be the

pair of points on γ̃ at distance R − κ1/2 − κ2 from x̃i. Consider the open ellipsoid Ei in
Fi defined as Ei = {y ∈ Fi | d(y, x′i) + d(y, x′′i ) < 2R+ κ2/2} (see Figure 2).

.

X

i

.

X'

i

.

X"

i

E

i

Figure 2. Image of Ei ⊂ Fi under the covering map.

Note that for any point y ∈ ι(Ei) there exists a closed curve γ′ homotopic to γ such
that γ′ passes through y and `(γ′) < `(γ)+κ2/2. Put Hi = B(Ei, κ1/2). We have Hi ⊂ Gi
so the images of Hi are pairwise disjoint. Formula for the volume of an ellipsoid yields
Vol(Hi) ≥ C4R

d+1
2 ≥ C4R

3
2 for some positive constant C4 depending only on X and κ1.

Hence

Vol(
N⊔
i=1

Hi) ≥ C3`
R(γ)R

1
2 .

By construction ι(Hi) ⊂ N(γ) for every = 1, . . . N which ends the proof. �

As a corollary of Lemmas 3.8 and 3.9 we get

3Flat F does not necessarily descend to a closed flat on M .
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Corollary 3.10. Let α ∈ H1(M,F2) and let c be a reduced representative of α. Write
c =

∑
i∈I γi for some set of closed geodesics indexed by I. Then the sets N(γi), i ∈ I

defined as in Lemma 3.9 are pairwise disjoint.

Proof. We argue by contradiction. Let γ1, γ2 be two geodesic components of c such
that N(γ1) ∩N(γ2) 6= ∅. Let y ∈ N(γ1) ∩N(γ2). By definition y ∈ M>R and there exist
closed curves γ′1, γ′2 homotopic to γ1, γ2 respectively such that `(γ′i) < `(γi) + κ2/2 and
d(γ′i, y) < κ1/2 for i = 1, 2. Let c′ be the cycle obtained from c by replacing γi by γ′i for
i = 1, 2. It represents the same homology class. We have `(c′) < `(c) + κ2. Curves γ′1, γ′2
satisfy dM>R

(γ′1, γ
′
2) < κ1 so we may perform the surgery from Lemma 3.8 to construct

homologous cycle c′′ with `(c′′) ≤ `(c′) − κ2 < `(c). The last inequality contradicts the
assumption that c was a reduced representative. �

Proof of Proposition 3.5. Let α ∈ H1(M,F2) and let c be a reduced represen-
tative of α. Write Write c =

∑
i∈I γi for some set of closed geodesics indexed by I. By

Corollary 3.10 the sets N(γi) are pairwise disjoint and by Lemma 3.9 we have Vol(N(γi)) ≥
C3`

R(γi)R
1
2 so

`R(c) =
∑
i∈I

`R(γi) ≤
Vol(M>R)

C3R
1
2

.

We deduce that `R(M) ≤ C−1
3 R−

1
2 .

�
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CHAPTER 4

Kesten’s theorem for uniformly recurrent subgroups

1. Introduction

1.1. Kesten theorems. The spectral radius of an infinite d-regular, countable, undi-
rected graph G is defined as the `2-norm of the Markov averaging operator M : `2(G) →
`2(G). Fix a vertex o of G. If we write AG(n) for the set of walks starting at o and
returning to o after time n the spectral radius can be computed as the limit

ρ(G) = lim
n→∞

(
|AG(2n)|
d2n

)1/2n

.

If G is an infinite countable group generated by a symmetric set S and H is a sugbroup
of G we write Cay(G,S) for its Cayley graph and Sch(H\G,S) for the Schreier graph
whose vertices are left H cosets. For a subgroup H of G write ρ(G) = ρ(Cay(G,S)) and
ρ(H\G) = ρ(H\G,S) for the spectral radii of the random walk on the Cayley graph and
the Schreier graph respectively. The subject of this paper has its origins in the criterion
for amenability given by Kesten [65,66]

Theorem 1.1 (Kesten). Let G be a group generated by a finite symmetric set S. Then
G is amenable if and only if ρ(G) = 1.

The following result, also due to Kesten extends Theorem 1.1 and characterizes the
amenability of a normal subgroup in terms of the spectral radius ρ(H\G).

Theorem 1.2 (Kesten). Let G be a group generated by a finite symmetric set S and
let H be a normal subgroup of G. Then H is amenable if and only if ρ(G) = ρ(H\G).

If H is amenable then ρ(G) = ρ(H\G) unconditionally but the converse does not
hold in general. We shall say that a subgroup H is Ramanujan (with respect to S) if
ρ(G) = ρ(H\G). In [4] Abert, Glasner and Virag proved a probabilistic version of Kesten’s
theorem:

Theorem 1.3 (Aber,Glasner,Virag). Let G be a group generated by a finite symmetric
set S and let H be an invariant random subgroup of G. Then H is amenable almost surely
if and only if H is Ramanujan almost surely.

In other words an IRS is Ramanujan if and only if it is amenable. We refer to the
article [4] for the definition and properties of IRS’ses. In the present paper we develop a
quantitative version of Kesten’s theorem that works for any subgroup H of G. We prove
an inequality (Theorem 2.1) relying ρ(G,S) and ρ(H\G,S) in terms of certain averages of
the logarithms of spectral radii ρ(Hg, Hg ∩ S) for g ∈ G:

log ρ(H\G,S)− log ρ(G,S) ≥
lim supn→∞

∫
|Hg ∩ S|(− log ρ(Hg, S ∩Hg))dµ2n(g)

|S|2ρ(G,S)2
,

(1.1)
where µ2n is averaging measure over traces of recurrent random walks of length 2n. Section
2 is devoted to the proof of (1.1). We follow closely the argument from [4]. In fact our
main contribution is just an application of the inequality between the arithmetic and the
geometric means in the right place, similarly to how it was used in [6]. In Sections 3,4 we
derive two consequences of the inequality 1.1. First one extends Kesten theorem to the
uniformly recurrent subgroups and the second is a relatively short proof that [76, Theorem
1.2] holds on average.
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1.2. Uniformly recurrent subgroups. Uniforlmy recurrent subgroup is the top-
logical dynamical analogue of an ergodic IRS. Write SubG for the set of subgroups of a
group G endowed with the Chabauty topology [33]. A closed subset X of SubG invariant
under conjugation is called a uniformly recurrent subgroup (URS for short) if it is
minimal as a dynamical G-system. The notion of URS was defined for the first time by
Glasner and Weiss in [43] and was further studied in recent papers [42,80]. It was used
by Kennedy [64] in a new characterization of C∗-simplicity for countable groups.

Theorem 1.4 (Kennedy). A countable group G is C∗-simple if and only if it has no
amenable URS.

We prove that the natural extension of Kesten’s theorem holds for URS’ses.

Theorem 1.5. [Theorem 3.1] Let G a countable group generated by a finite set S, let
X be an URS of G and let H ∈ X . Then H is amenable (i.e. consists of amenable
subgroups) if and only if ρ(G) = ρ(H\G).

It was already shown in [43] that an URS is amenable if and only if it contains an
amenable subgroup, similarly an URS is Ramanujan if and only if it contains a Ramanujan
subgroup.

1.3. Cycle density in Ramanujan graphs. Let (G, x) be a d-regular Ramanujan
graph and let k ≥ 1 be a fixed integer. For any n ≥ 0 write qn for the probability that a
random walk starting at x lies at time n on a cycle of length at most k. In [76] Lyons and
Peres proved that limn→∞ qn = 0. Their result was motivated by [6, Problem 11]. Using
inequality 1.1 we show (Theorem 4.1) that

lim
n→∞

1

n

n∑
j=1

qj = 0.

In other words the random walks on a Ramanujan graph do not spend much time in the
short cycles. This gives a relatively simple proof that the conclusion of [76, Theorem 1.2]
holds in average.

Acknowledgment. Part of this work was included in the author’s master thesis super-
vised by Emmanuel Breuillard whom I thank for suggesting the topic and for many helpful
discussions. I would also like to thank Miklos Abert for his interest and for bringing my
attention to the work of Russel Lyons and Yuval Peres.

2. Inequality on spectral radii

Let G be a group generated by a finite symmetric set S. If H is a subgroup of G
write Sch(H\G,S) for the Schreier graph encoding the action of generators from S on the
coset space H\G. Write A(n, S), AH(S, n) for the sets of walks on Cay(G,S) respectively
Sch(H\G,S) that return to the identity after n steps. We identify the walks of length n
with elements of Sn. We will consider the right action of G on Sch(H\G,S). For a walk
w = (a1, . . . , an) we write w(i) = a1a2 . . . ai for the position after i steps. Write ρ(H\G,S)
for the spectral radius of the graph Sch(H\G,S). If H is a subgroup of G and F ⊂ H we
adopt the convention that ρ(H,F ) = ρ(〈H ∩ F 〉, F ) in the case when F does not generate
H. We will use abbreviation Hg = g−1Hg.

Define the measure

µn =
1

|A(n, S)|
∑

w∈A(n,S)

(
1

n

n∑
i=1

δw(i)

)
.

Intuitively µn(g) tells us how large proportion of time is spent in g by a random recurrent
walk of length n. We have
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Theorem 2.1. Let I(H,S) = lim supn→∞
∫
|Hg ∩ S|(− log ρ(Hg, S ∩ Hg))dµ2n(g).

Then

log ρ(H\G,S)− log ρ(G,S) ≥ I(H,S)

|S|2ρ(G,S)2
. (2.1)

Proof. We follow closely the strategy from [4]. For a walk w ∈ Sn we will write
T (w) = {t ∈ {1, . . . , n}|Hw(t− 1) = Hw(t)}. It is the set of times where a walks doesn’t
change the H-coset. For each walk we define its class C(w) as

C(w) = {w′ ∈ Sn|T (w′) = T (w) and w′(t− 1)−1w′(t) = w(t− 1)−1w(t) for t 6∈ T (w)}.

Two walks are in the same class if they have the same trajectories on H\G and whenever
they change H-coset they move by the same element of S. For every walk w ∈ A(n, S)
have C(w) ∈ AH(n, S) so

|AH(n, S)| ≥
∑

w∈A(n,S)

|C(w)|
|C(w) ∩A(n, S)|

.

By lemmas 8 and 9 from [4] we have

|C(w)|
|C(w) ∩A(n, S)|

≥
∏

t∈T (w)

ρ(Hw(t), S ∩Hw(t))−1.

Using the inequality between arithmetic and geometric means we get

|AH(n, S)|
|A(n, S)|

≥ 1

|A(n, S)|
∑

w∈A(n,S)

∏
t∈T (w)

ρ(Hw(t), S ∩Hw(t))−1 (2.2)

≥

 ∏
w∈A(n,S)

∏
t∈T (w)

ρ(Hw(t), S ∩Hw(t))−1

 1
|A(n,S)|

. (2.3)

Take logarithms of both sides

log |AH(n, S)| − log |A(n, S)| ≥ 1

|A(n, S)|
∑

w∈A(n,S)

∑
t∈T (w)

− log ρ(Hw(t), Hw(t) ∩ S) (2.4)

=
1

|A(n, S)|

n∑
t=1

∑
w∈A(n,S)

−1T (w)(t) log ρ(Hw(t), Hw(t) ∩ S).

(2.5)
(2.6)

We can estimate the rightmost sum by counting for each t ∈ {2, . . . , n} only the walks of
form w = (s1, . . . , st−2, h, h

−1, st+1, . . . , sn) with h ∈ Hw(t−2)∩S and (s1, . . . , st−2, st+1, . . . , sn) ∈
A(n− 2, S). Thus, for t ∈ {2, . . . , n} we have

−
∑

w∈A(n,S)

1T (w)(t) log ρ(Hw(t), Hw(t) ∩ S) ≥ −
∑

w∈A(n−2,S)

|Hw(t−2) ∩ S| log ρ(Hw(t−2), Hw(t−2) ∩ S)

(2.7)

We plug it into our previous estimate to get

log |AH(n, S)| − log |A(n, S)| ≥ −1

A(n, S)

∑
w∈A(n−2,S)

n−2∑
t=1

|Hw(t) ∩ S| log ρ(Hw(t), Hw(t) ∩ S)

(2.8)

=
−(n− 2)|A(n− 2, S)|

|A(n, S)|

∫
|Hw(t) ∩ S| log ρ(Hw(t), Hw(t) ∩ S)dµn−2(g)

(2.9)
(2.10)
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We divide both sides by n to get
log |AH(n, S)|

n
− log |A(n, S)|

n
≥ −(n− 2)|A(n− 2, S)|

n|A(n, S)|

∫
|Hw(t)∩S| log ρ(Hw(t), Hw(t)∩S)dµn−2(g)

(2.11)
Replace n by 2n and take limes superior of both sides as n→∞

log ρ(H\G,S)−log ρ(G,S) ≤ lim sup
n→∞

−|A(2n− 2, S)|
|A(2n, S)|

∫
|Hw(t)∩S| log ρ(Hw(t), Hw(t)∩S)dµ2n−2(g)

(2.12)
Let P : l2(G)→ l2(G) be the transition operator of the random walk on Cay(G,S). Then

|A(2n, S)| = |S|2n〈P 2n1e,1e〉 = |S|2n‖Pn1e‖22 ≤ |S|2n‖P‖2‖Pn−21e‖22 = |S|2ρ(G,S)2|A(2n−2, S)|
Hence

log ρ(H\G,S)−log ρ(G,S) ≥
lim supn→∞

∫
|Hw(t) ∩ S|(− log ρ(Hw(t), Hw(t) ∩ S))dµ2n(g)

|S|2ρ(G,S)2

(2.13)
�

3. Application to uniformly recurrent subgroups

Theorem 3.1. Let G be a countable group generated by a finite symmetric set S and
let X ⊂ SubG be a uniformly recurrent subgroup. The following conditions are equivalent

(1) X contains an amenable subgroup;
(2) X is amenable;
(3) ρ(H\G,S) = ρ(G,S) for all H in X;
(4) there exists H ∈ X such that ρ(H\G,S) = ρ(G,S).

For the proof define the probability measures νn as

νn =
1

n

2n∑
k=n+1

µ2k.

Lemma 3.2. For any s ∈ S and any subset A of G we have

νn(As) ≥ nν(A)

(n+ 1)|S2|ρ(G,S)2
− 1

n
.

Proof. First, let us show that for each s ∈ S we have µ2k(As) ≥ k
(k+1)|S2|ρ(G,S)2µ2(k+1)(A).

We have

µ2(k+1)(As) =
1

(2k + 2)|A(2k + 2, S)|

2k+2∑
t=1

∑
w∈A(2k+2,S)

δw(t)(A).

We estimate the leftmost sum from below by counting only walks of form (a1, . . . , at−1, s, s
−1, at+2, . . . , a2k+2)

with (a1, . . . , at−1, at+2, . . . , a2k+2) ∈ A(2k, S). For 2 ≤ t ≤ 2k + 1∑
w∈A(2k+2,S)

δw(t)(As) ≥
∑

w∈A(2k,S)

δw(t−1)(A).

Hence

µ2k+2(As) ≥ 1

(2k + 2)|A(2k + 2, S)|
∑

w∈A(2k,S)

2k+1∑
t=2

∑
w∈A(2k,S)

δw(t−1)(A) =
(2k)|A(2k, S)|

(2k + 2)|A(2k + 2, S)|
µ2k(A).

As
|A(2k, S)|
|A(2k + 2, S)|

≥ 1

|S|2ρ(G,S)2

we get

µ2k(As) ≥
kµ2(k+1)(A)

(k + 1)|S2|ρ(G,S)2
.
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it follows that

νn(As) +
µ2n+2(As)

n
≥ nνn(A)

(n+ 1)|S2|ρ(G,S)2

νn(As) ≥ nνn(A)

(n+ 1)|S2|ρ(G,S)2
− 1

n
.

�

Proof of Theorem 3.1. Equivalences between (1)↔ (2) and (3)↔ (4) follow form
[43, Proposition 2.2] and the fact that the property of being amenable or Ramanujan is
admissible in the sense of [43, Definition 2.1].

Implication (2) =⇒ (3) is an application of Kesten’s theorem and (3) =⇒ (4) is obvious.
The only nontrivial implication is (4) =⇒ (1). Let H0 ∈ X be a subgroup such that
ρ(H\G,S) = ρ(G,S). By Theorem 2.1 we have lim supn→∞

∫
|Hg

0 ∩ S|(− log ρ(Hg
0 , H

g
0 ∩

S)dµ2n(g) = 0. Then we also have

lim
n→∞

∫
|Hg

0 ∩ S|(− log ρ(Hg
0 , H

g
0 ∩ S)dνn(g) = 0.

Let δH0 be the dirac mass in H0 and let ω be a weak-* limit of measures δH0 ∗νn as n→∞.
Then ∫

|H ∩ S|(− log ρ(H,H ∩ S))dω(H) = 0

so the set of H such that ρ(H,H ∩ S) > 0 has measure 0. By Kesten’s criterion this is
precisely the set of H for which 〈H ∩ S〉 is non-amenable. As S is finite the latter set is
open . From Lemma 3.2 we deduce that ω is quasi-invariant (i.e. ω(E) = 0 if and only if
ω(gE) = 0 for all g ∈ G). X is a minimal dynamical G-system so the support of ω has to
be the whole X. In particular the only open set of measure 0 is the empty set. If follows
that 〈H ∩ S〉 is amenable for all H ∈ X. By taking S′ = ({1} ∪ {S})m and letting m go
to infinity we show in this way that every H ∈ X is amenable. �

Corollary 3.3. Let G be countable C∗-simple group with a finite symmetric generat-
ing set S. If H is a Ramanujan subgroup of G (i.e. ρ(G) = ρ(H\G)) then there exists a
sequence (gi)i∈N such that Hgi converges to the identity subgroup in the Chabauty topology.

Proof. The closure X = {Hg | g ∈ G} consists of Ramanujan subgroups. By the
Zorn lemma there exists a minimal G-invariant closed subset Y ⊂ X. By Theorem 3.1 and
Kennedy’s criterion ( Theorem 1.4) Y = {1} which proves the assertion. �

4. Cycle density along random walks

Let G be a d-regular graph. For any vertex x and k ≥ 1 let CG(x, k) = 1 if there exists
a non-backtracking cycle of length k starting at x and CG(x, k) = 0 otherwise. Similarly
let DG(x, k) = 1 if there exist at least two independent1 non-backtracking cycles starting
at x and CG(x, k) = 0 otherwise. In this section we prove:

Theorem 4.1. Let G be d-regular rooted Ramanujan graph. Let (Xi) be the standard
random walk on G. Then for any k ≥ 1

lim
n→∞

1

n

n∑
i=1

E
[
CG(Xi, k)

]
= 0.

Write Td for the d-regular rooted tree. If G = (V,E) we shall write Gk for the graph
(V,Ek) where the (multi)set of edges is given by

Ek = {(e0, ek)|(e0, e1, . . . , ek) is a non-backtracking walk in G}.
Gk is always a d(d− 1)k−1-regular graph and CG(x, k) = CGk(x, 1). We have

Lemma 4.2. G is a Ramanujan graph if and only Gk is.

1Here independent means: non equal and one is not the inverse of another.
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Proof. Since Tkd = Td(d−1)k−1 it enough to observe that ρ(Gk) is a strictly decreasing
function of ρ(G). �

We will use the notion of a stationary random graph. We think of the d-regular
random graphs as the Borel probability measures on the space of isomorphism classes
of rooted d-regular graphs. For more comprehensive introduction to random graphs we
refer to [6]. A random, rooted d-regular graph (G̃, x̃) is called stationary if its probability
distribution is invariant under replacing the root x̃ by a random neighbor. A good example
of stationary random graphs are the graphs of form Sch(H\G,S) where H is a random
subgroup of a group G satisfying E

[
f(H)

]
= 1
|S|
∑

s∈S E
[
f(Hs)

]
for every continuous

function f on SubG. Such random subgroups groups are called stationary random
subgroups.

Proof of Theorem 4.1. First note that if we can prove this theorem for some k > 1
then it is automatically true for 1 because C(x, 1) ≤ C(x, k). We will use that to assume
that k ≥ 2 in the third step. Since our methods wouldn’t yield any quantitative estimates
we will use an argument by contradiction to shorten the proof. The idea will be to take
a graph for which the conclusion does not hold and construct a random limit object with
contradictory properties.

Step 1. We replace G by a stationary random graph. Let

0 < α = lim sup
n→∞

1

n

n∑
i=1

E
[
CG(Xi, k)

]
.

There exists an increasing sequence (ni)i∈N such that α = limi→∞
1
ni

∑ni
j=1 E

[
CG(Xj , k)

]
.

For each i ≥ 0 (G,Xi) is a random graph isomorphic to G whose root is given by the
position of the random walk at time i. Let (G̃, x̃) be any weak limit of the sequence of
random graphs

1

ni

ni∑
j=1

(G,Xj).

Then (G̃, x̃) is a stationary random graph and E
[
CG̃(x̃, k)

]
= α > 0. Moreover, since G

was Ramanujan G̃ is Ramanujan almost surely.
Step 2. We show that there exists a > 0 such that E

[
DG̃a(x̃, k)

]
> 0. Since

DG̃a(x̃, k) = DG̃ka(x̃, 1) we may assume in this step that k = 1. First, we claim that for
A big enough the ball BG̃(x̃, A) contains at least two vertices y1, y2 such that CG̃(y1, 1) =

CG̃(y2, 1) = 1. Let (X̃i) denote the random walk on G̃. By stationarity we have (G̃, x̃) =

(G̃, X̃i) for all i ∈ N. Since G̃ is Ramanujan almost surely, the random walk "flattens"
the probability distribution uniformly fast. Hence, there exists an A > 0 such that: for
almost all (G̃, x̃), for every vertex v ∈ G̃ we have P

[
X̃A = v

]
< α

3 . Then, the equality
E
[
CG̃(X̃A, k)

]
= E

[
CG̃(x̃, k)

]
= α implies that with positive probability (G̃, x̃) is such

that there are at least 2 possible values for X̃A where C(X̃A, 1) = 1. That proves the
claim. If the ball BG̃(x̃, A) contains two distinct vertices with loops attached (loop =
1-cycle) then we can construct two independent non-backtracking cycles of length 2A+ 1
starting at x̃. Thus E

[
DG̃2A+1(x̃, 1)

]
> 0.

Step 3. Let k ≥ 2. Put 2d′ = d(d − 1)a−1. We are going to replace the random
rooted graph (G̃a, x̃) by a Schreier graph Sch(H\Fd′ , S) where Fd′ is the free group on d′
generators, S the standard symmetric free generating set and H a random subgroup of
Fd′ . By Fatou lemma the graph (G̃a, x̃) satisfies with positive probability the following
property:

lim sup
n→∞

1

n

n∑
i=1

DG̃a(X̃i, k) > 0. (4.1)

In particular there exist (deterministic) d′-regular Ramanujan graph (G1, x1) with this
property. Note that the degree of G1 is even so by [62] it is isomorphic to a Schreier
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graph. Hence, there exists H0 ⊂ Fd′ such that (G1, x1) ' Sch(H0\F′d′ , S). We construct
a stationary random subgroup H as a weak-* limit of 1

n

∑n
i=1

1
|S|i
∑

s∈Si H
s along a sub-

sequence for which the limit superior (4.1) converges to a positive number. Then we have
E
[
DSch(H\F′d′ ,S)(H, k)

]
> 0.

Step 4. We reinterpret the condition E
[
DSch(H\Fd′ ,S)(H, k)

]
> 0 in terms of the

expected spectral radius. Let H1 be any deterministic subgroup of Fd′ . Any two in-
dependent non-backtracking k-cycles c1, c2 in Sch(Fd′/H1, S) starting at H1 give rise to
two elements a, b ∈ Sk ∩ H generating a free subgroup. Hence there is β = β(k, d′) <
1 such that DSch(F′d′/H1,S)(H1, k) = 1 implies ρ(H1, H1 ∩ Sk) ≤ β. We deduce that
E
[
− log ρ(H1, H1 ∩ Sk)

]
> 0.

Step 5. We use Theorem 2.1 to get a contradiction. The graph Sch(F′d′/H, S) is
Ramanujan almost surely so by Theorem 2.1

lim
n→∞

−E
[ ∫

Fd′

|Hg ∩ Sk| log ρ(Hg, Hg ∩ Sk〉)dµ2n(g)
]

= 0. (4.2)

The density function of µ2n for the free group and the standard symmetric generating is
a spherical function on Fd′ (its value depends only on the distance from the root). Hence,
we can use the property that H is stationary to get

−E
[ ∫

Fd′

|Hg ∩ Sk| log ρ(Hg, Hg ∩ Sk〉)dµ2n(g)
]

= −E
[
|H ∩ Sk|(− log ρ(H1, H1 ∩ Sk))

]
,

which together with (4.2) contradicts the conclusion of the fourth step. �

Remark 4.3. Steps 2-5 can be used to prove [6, Theorem 4, Theorem 5]. Indeed, any
sequence of finite Ramanujan graph gives rise to an unimodular random graph which is
Ramanujan almost surely. Unimodularity implies that such a graph is stationary. Steps
2-5 show that any Ramanujan stationary random graph has to be the regular tree.
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CHAPTER 5

Character bounds in finite groups of Lie type

1. Introduction

1.1. Notation. Let G be a reductive group defined over a finite field Fq. We will
write F for the Frobenius automorphism and GF for the group of Fq points. We will write
Ind G

H and Res GH for the usual induction, restriction functors. When L is a rational Levi
subgroup of G we write RGL ,

∗RGL for the Deligne-Lusztig induction, restriction functors.

1.2. Motivation. Let χ be an irreducible character of GF and let γ in GF be a non-
central element. We look for bounds of type |χ(γ)| ≤ Cγχ(1)1−δ with δ > 0 dependent
only on the (dimension of) the centralizer Gγ . At this point it is a bit hard to tell how
δ should depend on Gγ . When γ is regular i.e. dimGγ = rankG where we can take
δ = 1 so we have the best possible exponent. In general the lower the dimension of the
centralizer the bigger δ we can take . The motivation for studying character bounds is
twofold: First by the work of Shalev, Liebeck (see [74] for a survey article) and others we
know that such bounds can be used to study questions on random walks on finite groups
of Lie type as well as problems concerning the diameter and word generation. Secondly a
simple argument using Frobenius reciprocity and Holder inequality show a bound on fixed
point ratios |(G/H)γ | � |G/H|1−δ′ where δ′ depends only on δ and the type of G. These
estimates on fixed point ratios for the finite groups of Lie type can often be obtained by
other means [28] and are relatively well understood. We hope that by giving a proof via
character estimates we will be able to approach the problem of bounding the fixed point
ratios on compact groups of type SL(n,Zp).

1.3. Known results. In an unpublished note [71] Larsen gives an elegant proof of
the following estimate:

|χ(γ)| ≤ |W |2

for any regular semisimple element γ ∈ GF and irreducible character χ. The main property
used in the proof is that a centralized of such γ is abelian and that the typical element of
GF
γ has the same centralizer as γ. His method would probably also yield an estimate by

a constant for non-semisimple regular elements. The functorial approach we are going to
use to bound the values at regular elements improves Larsens’ results by giving the best
possible bounds.

We have seen that for the regular elements the problem is more or less settled. On
the other end of the spectrum are the elements with big centralizers. Here the Larsens’
method cannot be used - the main problem being the fact that the centralizers are no
longer abelian. For the the unipotent, non-regular elements (which can be seen as the
most pathological examples) Glück [55] has shown that |χ(γ)| � |χ(1)|/q1/2. While this
implies the bound of desired type we see no way in which his proof would generalize to
the compact p-adic context. Finally we note that in an upcoming work [19], announced
in [74] R. Bezrukavnikov, M. W. Liebeck, A. Shalev, and P. H. Tiep proved independently
a very general bound for non-regular elements. Let L be a Levi subgroup of G. We write

α(L) := max

{
dimuL

dimuG
| u ∈ L, u 6= 1 unipotent

}
.

Theorem 5.1 ( [19]). Let γ ∈ G(Fq) and let L be rational Levi subgroup of some
rational parabolic subgroup of G such that G0

γ ⊂ L. Then, for every irreducible character
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χ of G(Fq) we have
|χ(γ)| � χ(1)α(L),

where the implicit constant depends only on the rank of G.

The proof also uses the invariance of character values under certain parabolic restric-
tion.

1.4. Our results. In Lemma 5.2 we establish a link between orbital integrals in p-
adic groups and the "naîve" parabolic restriction functor on compact p-adic groups. In
the context of finite groups we Lie type we have the following result: Let γ ∈ GF and let
γ = su be the Jordan decomposition of γ. In Proposition 5.3 we show that for any rational
Levi subgroup L containing the connected component of the centralizer G0

s we have

χ(γ) = ∗RGLχ(γ),

for every character χ. As an application we deduce a strengthening of Larsen’s bound
from [71]: for any regular semisimple element γ ∈ GF and any irreducible character χ we
have

|χ(γ)| ≤ |W |.

1.5. Baby cases for finite groups. Here we show how one can get the optimal
bound for regular the semisimple elements which have quasi-spit centralizer. A maximal
rational torus T of G is called quasi-split if it is contained in a rational Borel subgroup.
We will show that for such γ we have

|χ(γ)| ≤ |W |,
where W is the absolute Weyl group of G.

Proof. Let T be the centralizer of γ and let B = TU be a Levi decomposition of a
Borel subgroup B containing T . By the formula for parabolic restriction [38, p. 49]

∗RGT χ(γ) =
1

|UF |
∑
u∈UF

χ(ul).

Since γ is regular the map UF → UF given by u 7→ ulu−1l−1 is bijective. In particular for
any u ∈ UF there exists v ∈ UF such that u = vlv−1l−1 but then ul = vlv−1. We deduce
that ∗RGT χ(γ) = χ(γ). Finding a suitable restriction functor which does not change the
value of characters on γ will be the key ingredient in all our estimates. Now it remains to
bound the dimension of ∗RGT χ.

dim∗RGT χ =
∑
θ∈T̂F

〈χ,RGT θ〉G.

The Mackey formula for parabolic induction [38, Theorem 5.1] implies that any irre-
ducible character appears in

∑
θ∈T̂F R

G
T θ with multiplicity at most |W |. It follows that

dim∗RGT χ ≤ |W | and consequently |χ(γ)| = |∗RGT χ(γ)| ≤ |W |. �

In the general semisimple case we shall replace parabolic restriction by the Deligne-
Lusztig restriction and the Mackey formula has to be replaced by the results on geometric
disjointness of induced characters. Also for non-regular elements instead of restricting to
the centralizer we will have to restrict to a rational Levi subgroup containing Gγ .

Now let us treat the unipotent "baby case". Let γ ∈ Gγ be a regular unipotent
element. The proof is entirely different from the semisimple case, thought we also use a
suitable functor. This time it will be the Alvin-Curtis duality functor. We will show that if
γ is a regular unipotent element of GF , the center of G is connected and the characteristic
is good (this excludes a finite (small) number of exceptions) then

|χ(γ)| ≤ 1.

Of course this is optimal in all applicable cases.
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Proof. If the center is connected and the characteristic is good there is only one
conjugacy class of regular unipotent elements. Write ψ = |GF

γ |1[γ]. Then χ(γ) = 〈χ, ψ〉G.
The duality functor DG (see [38, Chapter 8]) is a an isometry on the space of class function
on GF , so χ(γ) = 〈DGχ,DGψ〉G. The (virtual) character DGχ is an irreducible character
up to sign. On the other hand the fuction DGψ is, by [38, Corollary 14.37] the character
of the Gelfand-Graev represenatation of GF , denoted Γ. By [38, Theorem 14.30] Gelfend-
Graev representations are multiplicity free, hence |χ(γ)| = |〈DGχ,Γ〉G| ≤ 1. �

1.6. Bounds for compact p-adic groups. By a compact p-adic group we will mean
a compact subgroupK of linear algebraic group G(F ) defined over a local non-archimedean
field F . For example SL(n,Zp) ⊂ SL(n,Qp) or SL(n,Fq[[t]]) ⊂ SL(n,Fq((t)). A modifica-
tion of Larsen’s method [71] yields near optimal bounds for values of irreducible characters
at regular elements in compact p-adic groups (Chapter 2 see Theorem 2.61, Remark 2.62).
The bounds on values of irreducible characters on non-central elements are useful in the
context of the Limit Multiplicity problem where we need to estimate the orbital integrals
of form ∫

Gγ(F )\G(F )
χ(x−1γx)dx

For G = PGL(2, F ) we used in Chapter 2 an argument involving the Bruhat-Tits buildings
and character bounds to show that∣∣∣∣∣

∫
Gγ(F )\G(F )

χ(x−1γx)dx

∣∣∣∣∣ ≤ C|∆(γ)|−3/2
F ,

where C is a constant dependent only on the type of G. We end this paragraph by
showing the simplest instance of the functorial approach to estimating the orbital integrals.
It is a p-adic analogue of the split regular case for finite groups. Let G = SL(2,Qp),
K = SL(2,Zp), let T be the subgroup of diagonal matrices in G and let P,U be the
groups of upper triangular resp. unipotent upper triangular matrices. Define the "naive"
parabolic restriction ∗RKT∩K as the composition of ordinary restriction Res KK∩P with taking
U ∩K-coinvariants. The action of parabolic restriction on the characters of K is given by

∗RKT∩Kχ(t) =

∫
U∩K

χ(tu)du.

The measure du on U ∩K is the normalized Haar measure.

Lemma 5.2. Let χ be a character of K then for every regular element γ ∈ T we have∫
T (F )\G(F )

χ(x−1γx)dx = |∆(γ)|−1/2
F

∗RKT∩Kχ(γ).

The Haar measures on G(F ), T (F ) are chosen so that K respectively K ∩ T (F ) have
measure 1.

Proof. Use the Iwasawa decomposition to get∫
T (F )\G(F )

χ(x−1γx)dx =

∫
K

∫
U(F )f(k−1u−1γuk)dudx (1.1)

=

∫
U(F )

f(u−1γu) =

∫
U(F )

f(γ[γ−1, u])du. (1.2)

Since γ is regular, the map u 7→ [γ−1, u] is a diffeomorphism with constant Jacobian equal
to |∆(γ)|1/2F . Hence∫

T (F )\G(F )
χ(x−1γx)dx = |∆(γ)|−1/2

∫
U(F )∩K

f(γu)du = |∆(γ)|−1/2
F

∗RKT∩Kχ(γ).

�
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We cannot repeat the ending of the proof in the finite case because this time the
parabolic restriction of an irreducible character can have a priori unbounded number of
irreducible constituents. To get the desired bound we need to study the properties of the
functor ∗RKT∩K . For G = PGL(2, F ) many properties of ∗RKT∩K can be extracted from the
well developed theory of smooth representations of PGL(2, F ).

2. A property of Deligne-Lusztig restriction

In this section we prove proposition that will be the key component in the estimates
for semisimple elements. Let l be a fixed prime number not dividing q.

Proposition 5.3. Let γ ∈ GF and let γ = su be the Jordan decomposition of γ. Then,
for any rational Levi subgroup L containing the connected component of the centralizer G0

s

we have
χ(γ) = ∗RGLχ(γ),

for every character χ.

Before the proof let us recall few facts on the Deligne-Lusztig induction. All module
we consider will be over the field Ql. We start with the notion of a generalized induction
functor. Both DL-induction and restriction are the examples of such functor. Let G0, H0

be groups and let M be a G0-module-H0. We define the generalized induction functor
RG0
H0

associated to M by

RG0
H0

: ModH0 3 N 7→ N ⊗Ql[H0] M ∈ ModG0 .

Lemma 5.4. Let H0 be a subgroup of G0 and let γ ∈ H0. Let M be a H0-module-G0

and write RH0
G0

for the associated generalized induction functor. Then the functor RH0
G0

has
the property that RH0

G0
χ(γ) = χ(γ) for every character γ if and only if

tr((γ, g) |M) =

{
|(G0)γ | if γ and g−1 are conjugate in G0

0 otherwise.
(2.1)

Proof. By [38, Proposition 4.5]

RH0
G0
χ(γ) = |G0|−1

∑
g∈G0

tr((γ, g−1) |M)χ(g).

From that it is clear that if Equation 2.1 holds if and only if the functor RH0
G0

does not
change the value of characters on γ. �

If N is a G0-module-H0 we write N∧ for the same Z-module with left H0-action
and right G0-action of (h, g) ∈ H0 × G0 given by (h, g) × m 7→ g−1mh−1. If RG0

H0
is

the generalized induction functor associated to a N then the adjoint functor ∗RG0
H0

is the
generalized induction functor associated to the H0-module-G0 N

∧.
We will recall briefly the construction of Deligne-Lusztig induction functor. Let G be

a reductive group defined over Fq with the Frobenius automorphism F . Write L : G→ G
for the Lang-Steinberg map given by x 7→ x−1Fx (we denote the action by Frobenius
endomorphism on the left to avoid confusion with taking the F -fixed points). Let P be a
parabolic subgroup of G with Levi decomposition P = LU , where L is a Levi component
and U is the unipotent radical. Assume that L is rational i.e. FL = L. The preimage
L−1(U) is an affine subvariety of G. We have an GF × LF action on L−1(U) given by
x 7→ gxl. The virtual module H∗c (L−1(U)) is given by

H∗c (L−1(U)) = H∗c (L−1(U), Ql) =
∞∑
i=0

(−1)iH i
c(L−1(U),Ql).

The left GF -action and right LF -action makes H∗c (L−1(U)) a GF -module-LF . Deligne-
Lusztig induction functor denoted by RGL is the generalized induction functor associ-
ated to H∗c (L−1(U)). The restriction functor ∗RGL is the induction functor associated to

120



H∗c (L−1(U))∧ = H∗c (L−1(U)∧) where LF ×GF acts on the variety L−1(U)∧ by (l, g)×x 7→
g−1xl−1.

Proof of Proposition 5.3. Since all irreducible representations of GF in charac-
teristic 0 are defined over Q we may prove it for Ql-representations and the statement for
complex ones will follow. Let γ ∈ GF with Jordan decomposition γ = su. Let L be a
rational Levi subgroup containing G0

s. By Lemma 5.4 we have to verify that

tr((γ, g) | H∗c (L−1(U)∧)) =

{
|(G0)γ | if γ and g−1 are conjugate in G0

0 otherwise.
(2.2)

Let g = rv be the Jordan decomposition of g. To shorten notation we will write L−1(U)∧ =
X. By [38, Proposition 10.14] we have

tr((γ, g) | H∗c (X)) = tr((u, v) | H∗c (X(s,r)).

Note that if x ∈ X(s,r) then r−1xs−1 = x so xsx−1 = r−1. Since r ∈ GF we deduce that
L(x) = x−1Fx ∈ Gs. Since L(x) is unipotent it is contained in the connected component
G0
s ⊂ L. But L ∩ U = 0 so we must have L(x) = 0 and consequently x ∈ GF . This proves

that if X(s,r) is non-empty if and only is s, r−1 are conjugate in GF and in that case there
exists x ∈ GF such that X(s,r) = xGFs . The variety X(s,r) = xGFs is zero-dimensional so
by [38, Proposition 10.8] H∗c (X(s,r)) is the permutation module Ql[xG

F
s ]. We have

tr((u, v) | Ql[xG
F
s ]) = |{y ∈ xGFs | u = y−1v−1y}|.

The latter is equal to |(GFs )u| if u and x−1v−1x are conjugate in GFs and 0 otherwise. It’s
easy to see that γ and g−1 are conjugate in GF if and only if there exists x ∈ GF such that
xsx−1 = r−1 and u is conjugate to x−1v−1x in GFs . As GFγ = (GFs )u we deduce (2.2). �

For the next part we will need the notion of geometric conjugacy. LetG be as before and
let T, T ′ be two maximal rational tori and θ, θ′ irreducible characters of T, T ′ respectively.
We say that pairs (T, θ) and (T ′, θ′) are geometrically conjugate if there exists n ≥ 0,
g ∈ Gfn such that T ′ =g T and

θ(NFn/F (t)) = θ′(NFn/F (gt)) for all t ∈ T.

NFn/F stands for the norm map defined as x 7→ xFxF
2
x . . .F

n−1
x. For future use we prove

a quick lemma:

Lemma 5.5. For any algebraic torus T defied over Fq and any n ≥ 0 the norm map is
surjective.

Proof. Let x ∈ T . By Lang-Steinberg theorem there exists y ∈ T such that x =

y−1Fny. Then NFn/F (y−1F y) = y−1F y(F y)−1F 2
y . . . (F

n−1
y)−1Fny = y−1Fny = x. �

As a quick application of Proposition 5.3 we get the following bound

Corollary 5.6. Let G be a reductive group defined over Fq with Frobenius morphism
F . Then for any regular semisimple element γ ∈ GF and any irreducible character χ we
have

|χ(γ)| ≤ |W |.

Proof. The proof will be similar to the "baby-case" of regular semisimple elements
with split centralizer. Let T be the connected component of the centralizer of γ and let W
be the Weyl group of T . As a first step let us prove that ∗RGT χ(1) ≤ |W | for any irreducible
character χ of GF . Let θ, θ′ be irreducible characters of TF such that θ is a constituent of
∗RGT χ. By [38, Proposition 10.15] we have

〈RGT θ,RGT θ〉 = |{w ∈WF |wθ = θ}|.

Therefore the maximal multiplicity of θ in ∗RGT χ is |StabWF θ|1/2. On the other hand,
by [38, Proposition 13.3] the representations RGT θ and RGT θ

′ have no common irreducible
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constituents unless (T, θ) and (T, θ′) are geometrically conjugate. In that is the case then
θ′ = θw where

θw(NFn/F (wt)) = θ(NFn/F (t)) = for all t ∈ T.
This defines an irreducible representation of TF because the norm map is surjective
(Lemma 5.5). Note that if w′ ∈ StabWF θ then θw′w = θw so

{θ′ ∈ IrrTF | 〈θ, χ〉 6= 0〈} ⊂ {θw | w ∈ StabWF θ\W}.
We deduce that

∗RGT χ(1) ≤ |StabWF θ|1/2||StabWF θ\W | ≤ |W |.
We finish the proof using Proposition 5.3:

|χ(γ)| = |∗RGT χ(γ)| ≤ ∗RGT χ(1) ≤ |W |.
�
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