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Abstract: The search for string theory vacuum solutions with non-trivial fluxes
is of particular importance for the construction of models relevant for particle physics
phenomenology. In the framework of the AdS/CFT correspondence, four-dimensional
gauge theories which can be considered to descend from N = 4 SYM are dual to ten-
dimensional field configurations with geometries having an asymptotically AdS5 factor.
In this Thesis, we study mass deformations that break supersymmetry (partially or
entirely) on the field theory side and which are dual to type IIB backgrounds with
non-zero fluxes on the gravity side. The supergravity equations of motion constrain
the parameters on the gauge theory side to satisfy certain relations. In particular, we
find that the sum of the squares of the boson masses should be equal to the sum of the
squares of the fermion masses, making these set-ups problematic for phenomenology
applications.

The study of the supergravity duals for more general deformations of the conformal
field theory requires techniques which go beyond the standard geometric tools. Excep-
tional Generalized Geometry provides a very elegant way to incorporate the supergrav-
ity fluxes in the geometry. We study AdS5 backgrounds with generic fluxes preserving
eight supercharges and we show that these satisfy particularly simple relations which
admit a geometrical interpretation in the framework of Generalized Geometry. This
opens the way for the systematic study of supersymmetric marginal deformations of
the conformal field theory in the context of AdS/CFT.

Keywords: String Theory, Flux Compactifications, Supersymmetry, Supergravity,
AdS/CFT Correspondence, (Exceptional) Generalized Geometry
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Introduction

One of the central research directions in modern theoretical physics is the attempt
to connect string theory with particle physics phenomenology. This can be a very
challenging task due to the large range of scales involved; the same theory is supposed
to describe quantum gravity at the Planck scale (∼ 1016 TeV) and also the Standard
Model of particle physics which is currently experimentally accessible at the TeV scale.
In general terms, the problems that appear have to do with the reduction of the
large amount of symmetry which the theory possesses, and also with the existence of
massless fields (moduli) which correspond to parameters of the theory that are left
unfixed without some stabilization mechanism.

A very promising approach to the solution of these problems is the study of string
theory backgrounds with non-trivial fluxes turned on. Flux compactifications play a
key role both in the construction of phenomenologically-relevant models due to their
potential to stabilize moduli, as well as in gauge/gravity duality where they realize
duals of less symmetric gauge theories. Fluxes are also related to extended objects
(branes) existing in string theory and which are also usually employed in the construc-
tion of models similar to the standard model or some supersymmetric extension of
it.

A common way to obtain theories with interesting properties for phenomenology
is to place D3-branes in flux compactifications (for reviews see [1, 2, 3]). D3-branes
(or better stacks of them) “carry” on their world-volume gauge theories with N = 4
supersymmetry. The gauge symmetry of theses theories is U(N) if they are sitting at
a regular point of the internal manifold or it can be a different gauge group (described
by the so-called quiver diagrams [4]) if they are placed at singularities. The large
amount of supersymmetry controls the UV behaviour of the theory, but on the other
hand imposes very strong restrictions on the relations between the various parameters
of the theory. A direct consequence of supersymmetry in our case is the so-called
supertrace rule: the sum of the squares of the boson masses and the fermion masses are
equal which is, of course, an obstacle necessary to overcome from the phenomenological
perspective.

The situation is improved when non-trivial fluxes are taken into account. These
can break supersymmetry to N = 1 or even to N = 0. More importantly, the
supersymmetry-breaking terms that are generated are soft and hence they do not
spoil the good renormalizability properties that supersymmetry provides. One may
therefore hope to use these D3-brane set-ups to construct realistic theories of physics
beyond-the-standard-model by avoiding the phenomenologically unviable supertrace
rule. One of the main results included in this Thesis is that in fact this is not the case

v
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and that the supertrace rule persists even when supersymmetry is broken completely
[5].

The gauge theory living on the D3-branes is conveniently studied by examining
its supergravity dual in the framework of the AdS/CFT Correspondence. As argued
by Polchinski and Strassler [6], adding mass terms for the three chiral fermions of
N = 4 SYM (and thus preserving N = 1 supersymmetry) is dual to turning on non-
normalizable modes for the three-form fluxes of type IIB supergravity. The bosonic
mass terms on the other hand, are dual to the second order (in the polarization radius)
term in the polarization potential of the D3-branes under the background five-form flux
(which was present before the mass deformation). This polarization potential is again
dictated by supersymmetry and one finds that the bosonic masses are determined by
the fermionic ones so that the supertrace rule is still satisfied.

In this Thesis, we studied deformations of the N = 4 SYM theory with generic
fermion mass terms which break supersymmetry completely [7]. This theory, even
it it not supersymmetric, has a memory of the original SU(4) R-symmetry. This
information can be combined with supergravity arguments in order to extract useful
conclusions for the bosonic mass terms. The polarization potential dual to the boson
masses can be decomposed in pieces corresponding to the trace and traceless part
of the boson mass matrix. As we show, the latter is not fully determined by the
fermion masses expressing the fact that supersymmetry has been broken. The former
however is fixed by the supergravity equations of motion to be equal to the trace of
the fermion mass matrix squared. This means that the supertrace rule is valid in the
absence of supersymmetry and it rather expresses the fact that the theory has a UV
conformal fixed point. Therefore, for gauge theories which have a holographic dual
that is asymptotically AdS5 , the sum of the squares of the boson masses and the
fermion masses are equal, fact that consists a serious obstacle in obtaining standard
model-like lagrangians.

For more general deformations of the N = 4 SYM, one has to consider more com-
plicated supergravity solutions. The study of generic backgrounds is a very ambitious
goal since the supergravity equations of motion are highly non-linear. Relying on su-
persymmetry can improve the situation making the interplay between the geometry
and the fluxes more controllable. In fact, there is a mathematical framework called
generalized geometry which can incorporate the effect of the fluxes in purely geometric
data.

In generalized geometry, the metric degrees of freedom are combined with those
of the gauge fields into a generalized metric. Similarly, the vectors generating diffeo-
morphisms are combined with forms of various degree generating gauge transforma-
tions for the gauge fields to form generalized vectors. This geometric reformulation
of backgrounds with fluxes gives a characterization that allows in principle to find
new solutions, as well as to understand the deformations, which are the moduli of the
lower dimensional theory. In the context of gauge/gravity duality, deformations of the
background correspond to deformations of the dual gauge theory.

In this Thesis we focus onAdS5 compactifications of type IIB and M-theory preserv-
ing eight supercharges [8]. These are dual to four-dimensional N = 1 conformal field
theories. The internal manifolds are respectively five and six-dimensional. The gener-
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alized tangent bundle combines the tangent bundle plus in the case of M-theory the
bundle of two and five-forms, corresponding to the gauge symmetries of the three-form
field and its dual six-form field, while in type IIB two copies of the cotangent bundle
and the bundle of five-forms and the bundle of three-forms, corresponding respectively
to the symmetries of the B-field and R-R 2-form field and their dual six-forms and
the R-R 4-form. In both cases the generalized bundle transforms in the fundamental
representation of E6(6) , the U-duality group that mixes these symmetries.

Compactifications leading to backgrounds with eight supercharges in the language
of (exceptional) generalized geometry are characterized [9] by two generalized geometric
structures that describe the hypermultiplet and vector multiplet structures of the lower
dimensional supergravity theory. When this theory is five-dimensional, the generalized
tangent bundle has reduced structure group USp(6) ⊂ USp(8) ⊂ E6(6) [10], where
USp(8), the maximal compact subgroup of E6(6) , is the generalized analogue of SO(6),
namely the structure group of the generalized tangent bundle equipped with a metric.

The integrability conditions on these structures required by supersymmetry were
formulated in [11]. The “vector multiplet” structure is required to be generalized
Killing, namely the generalized vector corresponding to this structure generates gener-
alized diffeomorphisms (combinations of diffeomorphisms and gauge transformations)
that leave the generalized metric invariant. The integrability condition for the hyper-
multiplet structure requires the moment maps for generic generalized diffeomorphisms
to take a fixed value proportional to the cosmological constant of AdS. These condi-
tions can be seen as a generalization of Sasaki-Einstein conditions: they imply that the
generalized Ricci tensor is proportional to the generalized metric. They parallel the
supersymmetry conditions obtained from five-dimensional gauged supergravity [12].

In this Thesis, we prove the integrability conditions for the generalized structures
directly from the supersymmetry equations of type IIB and eleven dimensional super-
gravity. For that, the generalized structures are written in terms of USp(8) bispinors.
These are subject to differential and algebraic conditions coming from the supersym-
metry transformation of the internal and external gravitino (plus dilatino in the case of
type IIB). We show that the latter imply the integrability conditions for the generalized
structure.

The content of this Thesis is organized as follows. In chapter 1, we introduce the
main ideas of string theory that will be used in the following chapters where more
specialized topics are developed. In chapter 2, we study mass deformations of the N =
4 SYM theory which is realized on coincident D3-branes. Using representation-theory
and supergravity arguments we show that the fermion masses completely determine
the trace of the boson mass matrix, and in particular that the sums of the squares of
the bosonic and fermionic masses are equal. In chapter 3, we move on to the study of
generic supersymmetric backgrounds with fluxes and we present generalized geometry
as the appropriate formalism to describe such backgrounds. Finally, in chapter 4
we write the supersymmetry conditions in the framework of exceptional generalized
geometry for generic AdS5 backgrounds preserving eight supercharges and we show how
these follow directly from the Killing spinor equations. We conclude with a discussion
of the results obtained in this Thesis and with the possible new research directions
that these results could open. The Appendices contain technical information which is
used throughout the main text.
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Chapter 1
Strings, fields and branes

The goal of this chapter is to provide the necessary string theory background on which
the concepts developed in this Thesis will be based on. A proper presentation of the
relevant material can be found in many textbooks and reviews (a standard reference
is [13], [14]) and here we will restrict ourselves in providing rather schematic defini-
tions and explanations of the objects that we will need later. Despite the narrowness
that its name may indicate, string theory has to do with a lot of things: particles,
strings, (mem)branes, fields, gauge theories, gravity, supersymmetry and extra dimen-
sions. Actually, string theory provides a framework on which all these concepts are
interrelated in a consistent and elegant way. In this first chapter, we will try to make
this abundance of ideas in the theory clear having in mind the applications that will
follow.

The structure of the chapter is as follows. In section 1.1 we introduce strings in the
worldsheet perspective and derive their spectrum and their basic properties. Focusing
on the massless spectrum in section 1.2, we describe the type II ten-dimensional su-
pergravity theories which will be the “arena” of our computations for the biggest part
of the Thesis. In section 1.3, we introduce M-theory which provides the natural frame-
work for the description of dualities in the string theory web. Then, in section 1.4 we
turn to vacuum solutions of type II supergravity theories and we explain the power of
supersymmetry (when it is present) in describing such solutions. Finally, we introduce
D-branes in 1.5 which play a major role in connecting string theory with gauge field
theories. The most striking such connection is the AdS/CFT Correspondence which
we introduce in 1.6.

1.1 Supersymmetric relativistic strings

The starting point of our discussion is the relatively simple case of classical relativistic
bosonic strings. These are one-dimensional objects for which we will assume for the
moment that they move in D-dimensional Minkowski space-time. Their “history”, the
worldsheet, is parametrized by coordinates XM (τ, σ), M = 0,1, . . . , D − 1. The scale
of this theory is set by the tension of the string T = 1/2πα′ with α′ = l2s = 1/M2

s .
One can adopt two supplementary points of view when thinking about string theory.

According to the first, string theory is considered to be a field theory defined on the two-

1



2 Chapter 1. Strings, fields and branes

dimensional worldsheet and theXM are field-like degrees of freedom on this worldsheet.
The other point of view is that the XM are coordinates in the space-time where the
strings live in and the string configurations are the dynamical degrees of freedom of
the theory. Hence, in the quantum version, string theory is a second quantized theory
according to the former point of view and a first quantized theory according to the
latter.

From the worldsheet point of view, this theory has two gauge symmetries: two-
dimensional reparametrization invariance and position-dependent rescalings of the two-
dimensional metric which are called Weyl transformations. The solutions to their
equation of motion are described by the center of mass modes xM , pM and oscillators
α̃Mn (left-moving) and αMn (right-moving) 1 where the level n ∈ Z∗ is related to the mode
of the Fourier expansion. In the quantum theory these become operators (creation and
annihilation operators depending on the sign of n) which act on the vacuum state |0; k>
to produce the excited states of the theory. Among these, there is one with negative
M2, the bosonic string tachyon while the massless states are

• a symmetric tensor gMN , to be identified with the graviton,

• an antisymmetric tensor BMN , which is called the B-field and

• a scalar φ, which is called the dilaton. It turns out that the vacuum expectation
value (vev) of the dilaton φ0 can be identified with the string coupling gs through

gs = eφ0 (1.1.1)

All the other states form a tower of massive modes with ∆M2 = 4/α′.
On the passage from the classical theory of strings to the corresponding quantum

mechanical version, there exists the possibility (as in any field quantization) that some
of the symmetries become anomalous. Requiring the absence of such anomalies for the
gauge symmetries of the theory has quite strong implications for the background in
which the strings move in. The most dramatic one is the restriction of the space-time
dimension to a specific integer number (critical dimension)! In the case of the bosonic
sting one gets D=26.

Furthermore, one can also study strings moving in a curved background described
by a space-time metric GMN . This metric can be thought as a coherent state of the
gravitons which string theory already contains. One can again find the conditions
under which the quantum theory is still conformally invariant2. It turns out that the
condition to be satisfied is the background to be Ricci flat, i.e. RMN = 0. One can also
consider more general backgrounds containing the other massless fields of the theory.
Again, in order to “save” conformal invariance, we get a set of equations which can be
derived from a field theory action. The latter is called an effective action because it
concerns only the massless modes of the full string theory.

The spectrum of the theory that we have described so far suffers from two major
drawbacks. First, it contains a state with negative mass squared (tachyon) which can

1At this point of the discussion, we have in mind closed strings, i.e. strings for which XM (τ, σ) =
XM (τ, σ + 2π). We will describe open strings later in this section.

2The renormalization procedure typically introduces a scale µ which ruins the conformal invariance.
The latter is the residual symmetry when one fixes the worldsheet metric.
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be a signal of instability for the vacuum state of the theory but more importantly it does
not contain fermions! These problems are both solved if one introduces supersymmetry.
There are five consistent superstring models: type I, type IIA, type IIB, heterotic
SO(32) and heterotic E8 × E8. In this Thesis, we will mainly be concerned with the
type II models which we briefly describe below.

A way to construct a superstring theory is to introduce worldsheet superpartners
ψ̃M (left-moving) and ψM (right-moving) for the XM ’s making the worldsheet theory
(1,1) supersymmetric. However, for fermions we can impose periodic (Ramond (R))
conditions or antiperiodic (Nevue-Schwarz (NS)) conditions. Again, in the quantum
theory we have creators and annihilators (this time satisfying anticommutation rela-
tions) which act on the (tachyonic) vacuum |0 > to produce the excited states. It turns
out that the (physical) massless states of the theory are described by a pair of creators,
one coming from ψ̃M and the other from ψM . In the case of superstring, supercon-
formal anomaly cancellation requires D = 10. Each of them can contribute with an
R-mode or an NS-mode resulting in 4 possibilities which can be written schematically
as

R-R: ψRψ̃R|0 >, NS-R: ψNSψ̃R|0 > ,

NS-NS: ψNSψ̃NS |0 >, R-NS: ψRψ̃NS |0 > . (1.1.2)

A state ψMR |0 > is a space-time fermion which transforms in the 16 = 8s⊕8c where
the decomposition is in Weyl representations. To have space-time supersymmetry, we
have to project out half of them. This can be done consistently through a procedure
called GSO projection [15]. The GSO projection can be used in order to project out the
tachyon which spoils the stability of bosonic string theory. Moreover, one can choose
the GSO projection in order to remove the same or different 8 R-state resulting in
type IIB or type IIA superstring theory respectively. Type II is because there are two
gravitini in the spectrum in the NS-R and R-NS sector. We will not describe the full
massless spectrum of the theory now (we will in the next section) but for the moment
let us mention that the NS-NS sector is identical to that of the bosonic string.

As in the bosonic case, one can consider strings moving in a background made of
all the massless fields of the theory. Respecting the symmetries of the theory again
gives rise to a set of equations and again we can find an action from which these
equations can be derived. This effective field theory will contain the graviton and will
be supersymmetric. In other words, it will be a supergravity. We will describe in more
detail the type II supergravities which are the low energy of the type II superstring
theories in the next section.

Up to now, we have described the theory for closed strings in which case the
local dynamics (in the worldsheet perspective) is supplemented with the periodicity
conditions. For open strings instead, one has to impose specific boundary conditions
for the motion of the endpoints. There are two kinds of these conditions, which are
called Dirichlet and Neumann boundary conditions. Let us consider an open string
which is parametrized by −∞ < τ < ∞ and 0 ≤ σ ≤ π moving in a flat background
and assume that the p+1 coordinates of the σ = 0 endpoint satisfy Neumann boundary
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condition while the other D − p− 1 satisfy Dirichlet. This is given by

∂XM

∂σ

∣∣∣∣∣
σ=0

= 0, M = 0, · · · , p ∂XM

∂τ

∣∣∣∣∣
σ=0

= 0, M = p+ 1, · · · , D − 1 (1.1.3)

The motion described by these conditions is that the particular endpoint is re-
stricted to move in a (p + 1)-dimensional plane3. The latter can be interpreted as an
extended solitonic object in string theory usually called a Dp-brane (D for Dirichlet).
The role of D-branes was underestimated in string theory until the celebrated work of
Polchinski [16] who recognized that D-branes carry Ramond-Ramond charge. We will
provide more details for D-branes in section 1.5.

A theory of open strings includes necessarily closed strings as well. This is because
two open strings can combine to form a closed string. From this particular kind of
interaction, we can understand that the closed string coupling constant gs has to be
related to the square of the open string coupling constant g2

open.
We close this section by presenting a particular kind of symmetry, T-duality, which

is a novel, purely stringy effect. As a simple but an illustrative example, we consider a
bosonic closed string moving in a flat background but with one direction, say X̂, being
a circle of radius R4. In this case, the closed periodicity condition gets modified to

X̂M (τ, σ + 2π) = X̂M (τ, σ) + 2πRw (1.1.4)

where w is an integer counting how many time the string is wrapped along the compact
direction. It is called the winding number. In the set-up we consider, there is another
integer n; it is related to the momentum of the string along the compact direction as

p̂ = n

R
(1.1.5)

This quantization condition follows the continuity of the “string waves” propagating
along X̂. It turns out that if we exchange the momentum number n with the winding
number w, the spectrum of states has the same form as the original one but for
compactification radius R′ = α′/R. This is the simplest example of T-duality.

We can study more interesting examples by considering d compact directions in-
stead of one. In that case, the momenta and the windings can be packed in a 2d vector
(na,wa). One can keep the spectrum invariant now by a more extensive group of
transformations, which turns out to be SO(d,d,Z). This is the group of integer-valued
matrices which leave invariant the “metric”

η =
(

0 1d
1d 0

)
(1.1.6)

The group SO(d,d,Z) is the T-duality group and is integer-valued because it applies
to the full string theory spectrum. If we restrict our attention to the massless sector,
it gets enhanced to its continuous version SO(d,d). This group will appear very often
in chapter 3 where we will introduce Generalized Geometry.

3Or more generally, in a (p+ 1)-dimensional submanifold of different topology.
4This is a very natural thing to do since D = 26 or D = 10 is too many directions for our world!

Considering that some of the directions on which string theory (or any theory) is defined, are compact
is called compactification of the theory.
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1.2 Type II supergravities

In the previous section, we gave a brief overview of the basic elements of string theory
adopting mostly the worldsheet point of view. For the supersymmetric models, we
described the type II theories and we explained that the low energy limits of them
correspond to the type II supergravity theories for which the space-time point of view
is more natural. Let us now give the spectrum and the basic properties of the type IIA
and IIB supergravities which correspond to the massless sector of the type IIA and
IIB string theory respectively.

Let us start first with describing the spectrum. The NS-NS sector (see (1.1.2))
is common for the two theories and contains the metric gMN , the B-field BMN and
the dilaton φ. The R-R sector for type IIA contains a 1-form C(1) and a 3-form C(3),
while for type IIB a 0-form C(0), a 2-form C(2) and a 4-form C(4) constrained by the
self-duality relation ?dC(4) = dC(4). The fermionic sectors (NS-R and R-NS) contain
two gravitinos (ΨM

1 ,ΨM
2 ) with the following chirality properties

Γ11ΨM
1 = ∓ΨM

1 , Γ11ΨM
2 = +ΨM

2 type IIA/IIB (1.2.1)

and two dilatinos (λ1, λ2) with opposite chirality than the gravitinos. Both theories
enjoy N = 2 supersymmetry in ten dimensions which means that we have two ten-
dimensional Majorana-Weyl supersymmetry parameters ε1, ε2 which have the same
chirality properties as the gravitinos.

Since the main difference between type IIA and type IIB supergravity is in their
chiral properties, it is convenient to describe both theories in the framework of the
so-called democratic formulation [17]. According to this formulation, we extend the
R-R sector of each theory by gauge potentials of appropriate degree. In this way, we
actually double the R-R sector and so we have to impose a constraint in the field
strengths in order to remain in the same theory. The procedure one follows is to first
write down a pseudo-action5, then derive the field equations from it and at the end
impose the constraints.

In the case of type IIA, the additional potentials are C(5), C(7) and C(9)
6 where the

field strength for the last one is dual to the mass parameter (Romans mass) mR for
the massive IIA supergravity [18]. In the type IIB case, the additional potentials are
C(6) and C(8). The bosonic part of the pseudo-action in the democratic formulation
reads7

Sdem = − 1
2κ2

10

ˆ
d10x

√
|g|e−2φ

(
R+ 1

2H
2 − 4(dφ)2 + 1

4
∑
n

F̃ 2
(2n)

)
(1.2.2)

where n = 0,1, · · · ,5 for type IIA and n = 1
2 ,

3
2 , · · · ,

5
2 for type IIB. The above action

includes the improved field strengths F̃(2n) which are given by

F̃ = F −H ∧ C +mRe
B, H = dB, F = dC (1.2.3)

5It is called pseudo-action because the constraints are imposed on-shell.
6C(9) is non-dynamical since we can always remove its 10 degrees of freedom by a gauge transfor-

mation C(9) → C(9) + dΛ(8).
7The kinetic terms for the field strengths are weighted as F̃ 2

(n) = 1
n! F̃M1···MN F̃

M1···MN .
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where we are using a polyform8 notation and

eB = 1 +B + 1
2!B ∧B + · · · (1.2.4)

Of course, for the type IIB case one sets mR = 0. The advantage of using F̃ instead
of F is that the former stay invariant under the gauge transformations

B → B + dΛ̃, C → C + dΛ ∧ eB −mRΛ̃ ∧ eB (1.2.5)

where Λ̃ is a one-form, Λ = Λeven/Λodd for type IIA/IIB and hence (1.2.2) is invariant
as well. The price to pay is that the improved field strengths satisfy non-standard
Bianchi identities, namely

dH = 0, dF̃ = H ∧ F̃ (1.2.6)

The constant κ10 describes the gravitational coupling of localized objects to the super-
gravity (background) fields and it is given by

1
2κ2

10
= 2π

(2πls)8 (1.2.7)

As already mentioned, (1.2.2) has to be supplemented with duality constraints which
have to imposed on-shell. In the case of solutions with vanishing fermions (bosonic
backgrounds) these take the form

F̃(2n) = (−1)Int[n] ? F̃(10−2n) (1.2.8)

Most of the applications with which will we will be concerned in this Thesis will be
in the framework of type IIB supergravity. Therefore, for concreteness we are going to
specialize from now on to the type IIB case while some of the results have analogues
in the type IIA case.

Type II theories have N = 2 supersymmetry in ten dimensions. The supersymme-
try parameters are a pair of Majorana-Weyl spinors with the same chirality for type
IIB which we write as a doublet

ε =
(
ε1
ε2

)
. (1.2.9)

parametrizing 32 real supercharges. Since we are mainly interested in bosonic back-
grounds, the supersymmetry transformations that give non-trivial information (see
section 1.4) are those of the fermions which we write explicitly below

δΨM = ∇M ε−
1
4
/HMσ

3ε+ eφ

16
[
( /̃F 1 + /̃F 5 + /̃F 9)ΓM (iσ2) + ( /̃F 3 + /̃F 7)ΓMσ1

]
ε (1.2.10)

δλ =
(
/∂φ− 1

2
/Hσ3

)
ε− eφ

8
[
4( /̃F 1 − /̃F 9)(iσ2) + 2( /̃F 3 − /̃F 7)σ1

]
ε (1.2.11)

8This actually means that we consider formal sums of forms defined on the 210-dimensional space
10⊕
n=1
∧nT ∗.
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where /̃F (n) = 1
n! F̃M1...MnΓ̂M1...Mn and σ1,σ2,σ3 , the Pauli matrices acting on the

doublet of type IIB spinors and we use hats for the ten-dimensional gamma matrices9.
Returning back to the action (1.2.2), we can observe two things that seem quite

peculiar from a general relativity perspective. The first is the overall factor e−2φ that
multiplies the action and the second is that the dilaton kinetic term seems to have
the wrong sign. This is because we are in the so-called string frame. We can go the
Einstein frame by defining the Einstein metric10

(gE)MN = (gse−φ)1/2gMN (1.2.12)

Applying this to (1.2.2) yields the standard Einstein-Hilbert term and a proper kinetic
term for the dilaton. The new (physical) gravitational coupling is

1
2κ2 = 1

2g2
sκ

2
10

(1.2.13)

The democratic formulation which we have just described is very convenient for
supergravity applications in Generalized Geometry which will be studied in chapters
3 and 4. However, for the applications in type IIB supergravity described in chapter
2 where we will need explicit solutions of the equations of motion, we will use the
standard formulation. The IIB action in this case can be written as (in Einstein
frame)11

SIIB
st = − 1

2κ2

ˆ
d10x

√
|g|
(
R+ 1

2
|dτ |2

(Imτ)2 + gs
2
|G3|2

Imτ
+ g2

s

4 F̃
2
5

)
− ig2

s

8κ2

ˆ
C4 ∧G3 ∧G∗3

Imτ
(1.2.14)

Here, we have grouped together the R-R axion and the dilaton in the complex combi-
nation

τ = C0 + ie−φ (1.2.15)

and the type IIB three-forms in the complex three-form

G3 = F3 − τH3 (1.2.16)

The self-duality constraint (1.2.8) does not apply any more for all the field strengths.
However, one still has to impose

? F̃5 = F̃5 (1.2.17)

on the equations of motion. An interesting feature of the action (1.2.14) is that it is
invariant under SL(2,R) transformations of the form

τ → aτ + b

cτ + d
, G3 →

G3
cτ + d

(1.2.18)

9Our conventions for gamma matrices and spinors are described in appendix B.
10Observe that for constant dilaton backgrounds the string and the Einstein frame metrics are the

same.
11Here, we have also included a Chern-Simons term − i2

´ C4 ∧G3 ∧G∗3
Imτ

=
´
C4 ∧H3 ∧ F3 which is

absent in the democratic formulation.
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where a,b,c,d ∈ R and ad−bc = 1 and all the other fields are invariant. On the original
field strengths F3 and H3, this symmetry is realized as the matrix representation(

F3
H3

)
→
(
a b
c d

)(
F3
H3

)
(1.2.19)

This SL(2,R) symmetry is actually part of the U-duality group (see next section) and
it will play an important role in chapters 3 and 4.

1.3 Supergravity in D=11

The supergravity theories we described in the previous section were formulated in ten
space-time dimensions. We had good reasons for working in this particular dimension
since these supergravities can be obtained as the low-energy limit of type II superstring
theories which are known to have a consistent UV behaviour only for ten dimensions.
However, it is a very natural question to ask which is the maximal dimensionality in
which a consistent supergravity theory can be formulated. It turns out12 [19] that the
answer is D = 11 and the relevant supergravity was discovered by Cremmer, Julia and
Scherk [20] and it has a privileged position in the catalogue of supergravity theories.

Gravitational theories do not have a good reputation for their renormalizability
properties even if they are supersymmetric. In the case of ten-dimensional supergravi-
ties, string theory guarantees their UV completion and one can treat them as effective
descriptions of string theory in the small curvature limit (compared to the string the-
ory length scale). In the same sense, eleven-dimensional supergravity is considered to
be the low-energy limit of a more fundamental eleven-dimensional theory called M-
theory (Witten 1995). The complete description of M-theory is still lacking but the
fundamental objects are assumed to be membranes while there are proposals that the
underlying theory is a matrix theory [21].

Although we will not get in details, let us also mention that M-theory is considered
to be the “master” theory which includes as limits and through a web of dualities
all the five superstring models and eleven-dimensional supergravity. A particularly
simple example which can also be seen at the supergravity level is that M-theory
compactified on a circle gives type IIA sting theory. In this Thesis, we will use the
terms M-theory and eleven-dimensional supergravity as synonymous and we will always
mean the latter.

The field content of M-theory consists of

• The eleven-dimensional metric gMN which plays the same role as in any extension
of General Relativity.

• A fully antisymmetric three-form field AMNP with the associated field strength
G = dA. M-theory contains extended objects which couple to G electrically
(M2-branes) and magnetically (M5-branes).

12The reason for that has to do with the dimensional reduction of the gravitino. Reducing on the
7-torus, ones gets a field content which cannot be packed in multiplets which involve only spins s ≤ 2.
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• A gravitino field Ψα
M which satisfies the Majorana condition. This is a 32-

component spinor and completes the supergravity multiplet of the eleven-dimensional
supergravity.

Let us first write the expression for the 11-dimensional action

SM = 1
2κ2

11

ˆ
d11x

√
|g|
(
R− 1

2G
2
)
− 1

12κ2
11

ˆ
G ∧G ∧A+ SF (1.3.1)

where we have written explicitly only the bosonic part since this is the relevant one
for the rest of this Thesis. The associated equations of motion are

RMN −
1
2(GMPQRGN

PQR − 1
12gMNG

2) = 0 (1.3.2)

and
d ? G+ 1

2G ∧G = 0 (1.3.3)

while the Bianchi identity for the four-form flux is simply

dG = 0 (1.3.4)

The supersymmetry transformation rules for the bosons read

δgMN = 2ε̄Γ(MΨN) (1.3.5)

δAMNP = −3ε̄Γ[MNΨP ] (1.3.6)

and for the gravitino (up to quadratic terms)

δΨM = ∇M ε+ 1
288

(
Γ NPQR
M − 8δNMΓPQR

)
GNPQR ε (1.3.7)

At the eleven-dimensional level, M-theory has also gauge symmetries. These are
the usual diffeomorphisms present in any Einstein-type theory of gravity but also gauge
transformations (the analogues of (1.2.5)) for the three-form potential:

A(3) → A(3) + dΛ(2) (1.3.8)

Looking at (1.3.2) and (1.3.3), we see that they are invariant under the following global
symmetry

gMN → e2αgMN , AMNP → e3αAMNP (1.3.9)

Symmetries of this type have the common feature that the various fields transform
with a factor of enα where n is the number of indices they carry13 and they are usually
called trombone symmetries.

The discussion of symmetries becomes much more interesting when one considers
compactifications of M-theory on a d-torus. In this case, the theory “loses” part of
its gauge symmetry due to the fact that it does not preserve the compactification
ansatz or, in other words, it maps fields in the effective (11 − d)-theory to degrees

13Note that this is a symmetry only at the level of the equations of motion and not at the level of
the lagrangian.
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of freedom out of it. As a result, some of the gauge (position-dependent in D=11)
symmetries become global symmetries in the effective description (independent of the
11− d coordinates). We briefly describe below (following [22]) in what kind of groups
this reorganization of global symmetries leads to.

In an M-theory compactification on a d-dimensional torus, one gets in the effective
theory a metric, a number of one-forms and two-forms, and a bunch of scalar fields.
Concentrating on the latter, we distinguish three types of them:

• d dilatonic scalars. These correspond to the diagonal elements of the metric gii,
i = 10− d, · · · ,11.

• 1
2d(d − 1) axionic scalars coming from the metric. These correspond to the
elements of the metric gij , i > j = 10− d, · · · ,11.

• n =
(
d
3

)
axionic scalars coming from the three-form A. These correspond to the

elements Aijk, i > j > k = 10− d, · · · ,11.

If these are the only scalars in the effective theory (we will see below that one can
consider additional scalars), then the global symmetry group can be expressed as the
semi-direct productGL(d,R)n(R+)n. As mentioned earlier, (almost) all this symmetry
comes from local symmetries at the eleven-dimensional level.

To be more concrete, the SL(d,R) part of this symmetry comes from reparametriza-
tions of the internal coordinates that preserve the torus structure. Then, the R+ factor
in GL(d,R) = SL(d,R) × R+ comes from a combination of the trombone symmetry
(1.3.9) and scaling transformations which change the volume of the internal manifold.
Regarding the (R+)n part of the global symmetry, this is due to the gauge transfor-
mation (1.3.8) when restricted to its action on the axions coming from A and with the
requirement to preserve the compactification ansatz. The semi-direct product comes
from the fact that the diffeomorphisms and the gauge transformations acting on Aijk
do not commute.

However, this is not the end of the discussion regarding the global symmetries
of the compactified theory. It turns out that the effective theory (with the maximal
number of scalars) coming from M-theory compactifications on a d-torus d ≤ 8, has an
Ed(d) symmetry. In order to explain how this symmetry is related to the GL(d,R) n
(R+)n , it is convenient to consider three different cases(for details see [22]):

• The case d = 1,2 is trivial since there is no (R+)n factor while the groups GL(d,R)
and Ed(d) coincide.

• For d = 3,4,5, one gets n = 1,4,10 gauge axions respectively with their corre-
sponding shift symmetries. The latter combine with the GL(d,R) part to form
the groups SL(3,R)×SL(2,R), SL(5,R) and O(5,5) which are just different ways
of writing E3(3), E4(4) and E5(5) respectively.

• The analysis for d = 6,7,8 is more complicated due to the fact that are additional
scalars one can consider. These come from the dualization (in the (11 − d)-
external space) of the 1 three-from, 7 two-forms and 36 one-forms respectively.
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Dualizing all these to scalar fields changes the global symmetries of the effec-
tive theory.14. A careful analysis of the algebra of transformations shows that
the relevant global symmetry corresponds to the groups the exceptional groups
E6(6), E7(7) and E8(8)

We conclude that toroidal compactifications of M-theory are characterized by an
Ed(d) symmetry. Actually, it turns out that this symmetry has a much deeper meaning.
It is related to the web of dualities that relate the five superstring theories mentioned
earlier and it comes under the name U-duality. In type II language, it corresponds to
transformations mixing the NS-NS and the R-R sector. In chapter 3, we will present a
formalism in which supergravity compactifications can be described in a way where U-
duality is manifest. This formalism is called Exceptional Generalized Geometry since
it is based on the exceptional groups Ed(d) and in chapter 4 we are going to apply it to
study supersymmetric backgrounds both for type IIB and M-theory.

1.4 Supersymmetric vacuum solutions

In order to analyse the global symmetries of lower dimensional effective theories in
the previous section, we were actually concerned with compactifications of M-theory
on a torus. One can do the same thing for compactifications of type II supergravity;
the analysis of the symmetries would be more intricate but the basic procedure to
derive the spectrum and the action would be essentially the same and can be done in
a rather straightforward way. Torus compactifications have several advantages from
the computational point of view:

• Their topological and their differential-geometric properties are trivial. Since
a torus is just a flat space endowed with periodicities, one can reorganize all
the degrees of freedom in the action in a lower-dimensional language by just
performing a Fourier expansion.

• The massless modes are very easily identified, they are just those that have no
internal-coordinates-dependence. Therefore, one has just to split appropriately
the indices in the various fields and then consider them as functions of only the
external coordinates.

• Once the Kaluza-Klein reduction has been performed (keeping only the massless
modes), the truncation is guaranteed to be consistent. This is because the mass
of the modes is related to U(1)d isometry group of the d-torus and the massless
modes correspond to singlets of it. Hence, they cannot source the higher Kaluza-
Klein states and the reduction is consistent.

Despite the above computational advantages, torus-compactifications are charac-
terized by a major drawback. They preserve 32 supercharges, so actually all the su-
persymmetry of type II string theory or M-theory survives the dimensional reduction.
For compactifications down to four dimensions, this is N = 8 which is just too much
for any attempt to connect with particle physics phenomenology.

14Note that theory also loses some of its gauge symmetry due to the dualization.
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In principle, one is interested in compactifications that partially break supersym-
metry. The reasons that we still need some amount of supersymmetry preserved after
the compactification are mainly two: i) The compactification scale is assumed to be
close to the Planck scale and if supersymmetry is broken at that scale, corrections to
the Higgs boson mass would lead to the well-known hierarchy problem. ii) From a
more practical point of view, supersymmetric solutions are much easier to find and
analyse due to the fact that the supersymmetry transformations ((1.2.10),(1.2.11) for
type IIB and (1.3.7) for M-theory) contain first derivatives (in contrast to the equations
of motion which are second order).

It seems like the whole problem now is just to pick the right manifold that preserves
the desired amount of supersymmetry and then just do the dimensional reduction. Of
course, the choice of the internal manifold should be consistent with the equations
of motion or in our case with preserving the right amount of supersymmetry15. In
practice, finding the class of allowed manifolds without any further assumptions is a
quite complicated task, and therefore we first look at the “ground state” (vacuum) of
the system which is a solution characterized by an especially large amount of symmetry.

In the vacuum, the higher-dimensional metric takes the block-diagonal form

ds2 = e2A(y)g̃µν(x)dxµdxν + gmn(y)dymdyn (1.4.1)

where the external metric g̃µν(x) is required to admit the maximal amount of isome-
tries, i.e. be Minkowski, de Sitter or anti-de Sitter, gmn(y) stands for the metric of the
internal manifold the properties of which we would like to determined and A(y) is the
warp factor.

For concreteness, let us specialize to type IIB warped compactifications preserving
8 supercharges which will be the main interest of chapter 4. We will consider two
different types of backgrounds: i) Minkowski vacua of the form M10 = R1,3 ×wM6
and ii) Anti-de Sitter vacua of the formM10 = AdS5 ×wM5

16.
i)IIB 4-dim Minkowski vacua:
The vacuum expectation values (VEVs) of the fluxes should also respect the Poincaré

symmetry of Minkowski space-time. This actually means that they can have either
four legs or none on the external space and moreover that they should be independent
of its coordinates. Combining this with the “democratic constraint” (1.2.8), we have
[28] 17

F̃(2n) = F(2n) + Vol4 ∧ F̂(2n−4), F̂(2n−4) = (−1)Int[n] ?6 F(10−2n) (1.4.2)

where now F have only internal components. The decomposition of the ten-dimensional
supersymmetry parameters (1.2.9) is

ε = ζ+
1 ⊗Θ1 + ζ+

2 ⊗Θ2 + c.c. (1.4.3)

Here, the ζ+
i are four-dimensional Weyl spinors of positive chirality and serve as the

supersymmetry parameters of the corresponding four-dimensional N = 2 effective
15In fact, supersymmetry and the Bianchi identities imply the equations of motion [23],[24],[25].
16Supersymmetric warped compactifications do not have a good reputation for giving de Sitter vacua

[26]. However, see also [27] for a recent and interesting possibility on this issue.
17Here, we slightly abuse notation. The F defined here refer to the internal components of F̃ while

F in section 1.2 was the ten-dimensional exterior derivatives of the gauge fields.
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supergravity. The Θi are doublets of Weyl spinors in six dimensions (with the same
chirality for IIB):

Θi =
(
η+
i

η̃+
i

)
(1.4.4)

and should be regarded as (position-dependent) expansion coefficients of the ten-
dimensional fermions in terms of the four-dimensional ones.

The fact that the solution preserves the amount of supersymmetry parametrized by
the ζi means that the supersymmetry variations of all the fields should vanish on this
solution for every ζi. This requirement is trivial for the variations of the bosons since
these are proportional to the VEVs of the fermions which vanish by four-dimensional
Lorentz invariance. On the other hand, the supersymmetry variations of the fermions
(Eqs. (1.2.10) and (1.2.11)) split in three equations corresponding to the external
and internal components of the gravitino and to the dilatino variation. Using the
decomposition of ten-dimensional gamma matrices as in (B.21) and after factoring out
the ζi piece, we get18

(/∂A)η+
i −

eφ

4 (/F 1 + /F 3 + /F 5)η̃+
i = 0 (1.4.5a)

(/∂A)η̃+
i + eφ

4 (/F 1 − /F 3 + /F 5)η+
i = 0 (1.4.5b)

∇aη+
i −

1
4
/Haη

+
i + eφ

8 (/F 1 + /F 3 + /F 5)Γaη̃+
i = 0 (1.4.6a)

∇aη̃+
i + 1

4
/Haη̃

+
i −

eφ

8 (/F 1 − /F 3 + /F 5)Γaη+
i = 0 (1.4.6b)

(/∂φ)η+
i −

1
2
/Hη+

i −
eφ

2 (2/F 1 + /F 3)η̃+
i = 0 (1.4.7a)

(/∂φ)η̃+
i + 1

2
/Hη̃+

i + eφ

2 (2/F 1 − /F 3)η+
i = 0 (1.4.7b)

These equations, known as the Killing spinor equations, provide the connection
between the geometry and the flux configuration on the internal manifold for a given
amount of supersymmetry preserved. In chapter 3, we will present a mathematical
framework where these equations can acquire a purely geometrical meaning despite
their complexity. For the moment, let us consider the simplest case where all the
fluxes are set to zero. We then get for the internal spinor

∇aη = 0 (1.4.8)

As we explain in chapter 3, the fact that the internal manifold admits a covariantly
constant spinor means that it is a Calabi-Yau manifold. Calabi-Yau manifolds are
very well-studied objects in the mathematics and physics literature [29]. We will not
provide many details for them since, in this Thesis, we will not make an analysis of
the corresponding effective supergravity theories after the compactification. However,

18The indices a,b,c, · · · run from 1 to 6 while the indices m,n,p · · · run from 1 to 5.
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let us mention that finding the set of massless (from the four-dimensional perspective)
modes, or in other words the analogues of the Fourier zero modes of torus compactifi-
cations) can be done using the tools of complex and symplectic geometry (see section
3.1). Given that, one can derive the spectrum and the action of the effective super-
gravity theory for compactifications on Calabi-Yau 3-folds [30],[31],[32],[33].

Calabi-Yau manifolds admit a generalization when the condition (1.4.8) is weakened
by the presence of fluxes. We will provide more details for this in chapter 3.

ii)IIB AdS5 vacua:
We turn now to the study of AdS5 vacua which are particularly important in

string theory due to their role in the AdS/CFT Correspondence (see section 1.6).
First, let us note that one cannot have an AdS vacuum with a fluxless configuration
since the fluxes provide the necessary energy-momentum tensor to support a non-zero
cosmological constant. However, there is a simple example with a connection to Calabi-
Yau geometry which we will explain in section 3.1. But for the moment let us consider
the general case where all the fluxes are allowed to have non-zero VEVs.

For backgrounds preserving eight supercharges, we parametrize19 the ten-dimensional
supersymmetry parameters εi as

εi = ψ ⊗ χi ⊗ u+ ψc ⊗ χci ⊗ u, i = 1,2. (1.4.9)

Here ψ stands for a complex spinor of Spin(4,1) which represents the supersymmetry
parameter in the corresponding five-dimensional supergravity theory, and satisfies the
Killing spinor equation of AdS5

∇µψ = m

2 ρµψ (1.4.10)

where m is the curvature of the AdS20. (χ1, χ2) is a pair of (complex) sections of
the Spin bundle for the internal manifold. The two component complex object u fixes
appropriately the reality and chirality properties of the ten-dimensional supersymmetry
parameters εi (see (B.15)).

The fluxes now have to respect the SO(4,2) symmetry of AdS5 which forces them
to have the form

F̃(2n) = F(2n) + Vol5 ∧ F̂(2n−5), F̂(2n−5) = (−1)Int[n] ?5 F(10−2n) (1.4.11)

where (1.2.8) was again used.
As previously, we insert the decompositions (1.4.9) and (1.4.11) in (1.2.10) and

(1.2.11) and require the variations to vanish. After using (1.4.10), this gives rise to
three equations corresponding to the external gravitino, internal gravitino and dilatino
respectively:[

m− eA(/∂A)Γ6Γ7 + i
eφ+A

4
(
(/F 1 + /F 5)Γ6 − /F 3

)](χ1
χ2

)
= 0 (1.4.12)

19The decomposition of the ten-dimensional gamma matrices as well as that of the IIB spinors is
described in detail in appendix B.

20Five-dimensional Minkowski solutions are described by taking appropriately the limit m→ 0.
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[
∇m −

1
4
/HmΓ6 + i

eφ

8
(
/F 1 + /F 5 − /F 3Γ6

)
ΓmΓ7

](
χ1
χ2

)
= 0 (1.4.13)

[
(/∂φ)Γ6Γ(7) + 1

2
/HΓ7 −

ieφ

2
(
2/F 1Γ6 − /F 3

)](χ1
χ2

)
= 0 (1.4.14)

where the Γ- matrices appearing in the above equations are built out of the five-
dimensional ones as described in appendix B.

These Killing spinor equations were analysed in the framework of conventional
differential geometry in [24]. In chapter 4, we will show that in the framework of
Exceptional Generalized Geometry they can be written in a purely geometric form,
but for the moment let us present the simplest case which has a nice description
also in conventional geometry. As can be seen from (1.4.12), there are no non-trivial
solutions with m 6= 0 for Fi = 0.

We consider the case where the only non-vanishing flux is F5 and the two internal
spinors are linearly dependent21

χ2 = iχ1 ≡ iχ (1.4.15)

which also has constant warp factor and dilaton. Taking A = 0 without loss of gener-
ality, we get from (1.4.13) and (1.4.12)

∇mχ = − im2 γmχ (1.4.16)

One can recognize in this expression the Killing spinor equation for a sphere. In fact,
there is a larger class of manifolds which satisfy the above equations, but they are
not spheres (but still Einstein). These manifolds are called Sasaki-Einstein and they
are close relatives of Calabi-Yau manifolds. We will provide more details for Sasaki-
Einstein manifolds and their relation to Calabi-Yau geometry in chapter 3. In chapter
4, we will see that the Killing spinor equations (1.4.12), (1.4.13) and (1.4.14) with
generic fluxes can be written in Exceptional Generalized Geometry which allows for
an interpretation of the underlying manifold as generalized Sasaki-Einstein.

Before closing this section, it is worth mentioning that the two kinds of backgrounds
that we described in this section are actually related. To see this, we can observe that
a four-dimensional Minkowski space can be embedded in AdS5 as

ds2
AdS5 = m2r2ηµνdx

µdxν + dr2

m2r2 (1.4.17)

Using this, we can write the ten-dimensional metric for warped AdS5 compactifications
as

ds2 = e2A(y)ds2
AdS5 + ds2

5(y) = (e2A(y)m2r2)ηµνdxµdxν + e2A(y)

m2
dr2

r2 + ds2
5(y)︸ ︷︷ ︸

ds26

(1.4.18)

21This is the only way the two spinors can be linearly dependent; for more details see appendix C
of [24].
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which is the form of the metric for warped Mink4 compactifications with new warp fac-
tor e2Am2r2. In chapter 3, we will see that this relation between Mink4 and AdS5 vacua
is reflected in the internal geometry as a relation between Calabi-Yau and Sasaki-
Einstein manifolds.

1.5 D-branes

In section 1.1, we introduced D-branes as hyper-surfaces on which the endpoints of
(classical) open strings can end. Let us now move to the quantum theory and find the
spectrum of these open strings considering for the moment that both endpoints lie on
the same D-brane (satisfy identical boundary conditions). The effect of the boundary
conditions on the mode expansion is that the center of mass mode is restricted to the
D-brane hyper-surface while the momentum mode transverse to the brane vanishes.
Regarding the oscillators, one finds that the left and the right moving modes are
not independent but are related to each other. The ground state is again tachyonic
while the massless modes (the ones which are obtained by acting on the ground state
by lowest order oscillator modes) fall in two categories depending on whether they
correspond to directions with Neumann or Dirichlet boundary conditions (see (1.1.3)).
Specifically:

• Acting with oscillators carrying an an index in the first p+1 directions in (1.1.3)
creates states corresponding to an abelian gauge field Aµ(ξ), µ = 0, · · · ,p where
now ξ refers to the coordinates parametrizing the brane world-volume22. They
have the interpretation of describing the longitudinal motion of the brane.

• Acting with oscillators with an index in the directions i = p + 1, · · · , D − 1 of
(1.1.3) creates states which are scalar with the respect to the Poincaré symmetry
of the first p + 1 directions. Therefore, one gets D − p − 1 scalar fields Φi(ξ)
which can be interpreted as fluctuations of the brane in the directions transverse
to it.

From the interpretation of the fields living on a brane as coming from open string
modes, it is natural to ask whether one can construct an action describing the dynamics
of these fields in a similar way that the supergravity actions we presented in 1.2 were
constructed from fields corresponding to closed string modes. However, the open string
modes couple to the closed string modes through string interactions and therefore the
effective description of a D-brane should include both. We will not get into the details
of deriving the effective action that describes the dynamics of the massless modes but
we will state the result and explain the features which are relevant for our purposes.
This effective action consists of two parts

SD = SDBI + SCS (1.5.1)

SDBI = −Tp
ˆ
dp+1ξ e−φ

√
−det([E∗]µν + 2πα′Fµν) (1.5.2)

22This will become more meaningful in a while. For the moment it is just ξµ = Xµ.
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SCS = µp

ˆ [∑
C(n)e

B
]
∗
e2πα′F (1.5.3)

We should mention that the brane fields Aµ and Φi appearing in (1.5.2) and (1.5.3)
should be accompanied with their fermionic superpartners and there should exist a
supersymmetric completion for the action. However, in this Thesis we will not be very
explicit with this piece of the action23.

Let us now explain the framework in which the above expressions appear and their
meaning. First, we have specified at this point that we are we working in the framework
of type II superstring theory and consequently the space-time is ten-dimensional. The
coordinates ξµ, µ = 0, · · · ,p parametrize now the world-volume of the brane while the
ten functions of X(ξ) parametrize the (dynamical) position of the brane in space-time.
The fields that appear in (1.5.2) and (1.5.3) fall in two categories:

• The world-volume fields which, as explained already, consist of a U(1) gauge field
Aµ(ξ), µ = 0, · · · , p with field strength Fµν = ∂µAν − ∂νAµ and the 9− p scalar
fields Φi(ξ), i = p+ 1, · · · 9. The appearance of the latter in the action is implicit
through the pullbacks [·]∗ of the bulk fields (see below) while their identification
with transverse motions of the brane is through δxi = 2πα′Φi. These fields
describe the dynamical degrees of freedom on the brane.

• The bulk fields {GMN ,BMN ,φ, C(n)} which correspond to the closed string modes
and which enter the world-volume action as external fields through the their
pullback [·]∗ on it. For example, in a gauge where ξµ = Xµ we have

[B∗]µν = Bµν + 2(2πα′)Bi[µ∂ν]Φi + (2πα′)2Bij∂µΦi∂νΦj (1.5.4)

and similarly for the other fields. The Dirac-Born-Infeld action (1.5.2) contains
contributions only from the NS-NS sector where the following combination ap-
pears

EMN = gMN +BMN (1.5.5)

On the other hand, the Chern-Simons action (1.5.3) contains the coupling of the
D-brane to the R-R gauge potentials.

Depending on whether we consider type IIA or type IIB superstring theory, we
get D-branes of different dimensionality. In particular, for type IIA we have D0, D2,
D4, D6 and D8-branes while for type IIB D1, D3, D5, D7 and D9-branes. This is in
agreement with (1.5.3) where the R-R gauge potentials are odd-dimensional for type
IIA and even-dimensional for type IIB. This is in agreement with (1.5.3) where only
the relevant R-R potentials for each theory appear.

The D-brane action also contains the tension Tp of the brane and the charge µp.
The former describes describes the gravitational interaction of the brane with the
background and the latter the electric coupling of it to the R-R gauge potentials.
These are given by

Tp = µp = 2π
gs(2πls)p+1 (1.5.6)

23In section 1.6, we will give more details about the case of D3-branes.



18 Chapter 1. Strings, fields and branes

D-branes can be viewed as higher-dimensional generalizations of charged particles in
standard electromagnetism. This can be seen from their action where the DBI part
(1.5.2) is similar to the gravitational worldline action −m

´
dτ of a point particle while

the CS piece (1.5.3) is the analogue of the electric coupling of a charged particle in an
external electromagnetic field q

´
dxµAµ.

This last fact fits very well with the picture of the R-R gauge potentials as gen-
eralizations of the electromagnetic potential with their corresponding gauge transfor-
mations (1.2.5). In electromagnetism, one can “detect” the presence of a charged
particle by studying the flux of the electric (and/or magnetic) field around it. The
same happens here and one can see D-branes as (solitonic) solutions of the equations
of motion derived from the type II supergravity action by going to the Einstein frame
as explained in 1.2. For concreteness, let us present one such solution for a Dp-brane.

The ten-dimensional metric is sourced from the energy-momentum tensor of the
D-brane. It takes the following “black brane” form

ds2 = (Z(r))α(p)ηµνdx
µdxν + (Z(r))β(p)δijdy

idyj (1.5.7)

where we have split the coordinates in brane directions xµ and transverse directions yi

and r =
√
δijyiyj parametrizes the distance from the brane. The exponents α(p) and

β(p) are just numbers depending on the dimensionality of the brane. The brane also
sources the (p+ 2)-form field strength which has components

Fµ1···µp+1i = εµ1···µp+1i∂
iZ−1(r) (1.5.8)

and generally there is also a non-trivial dilaton profile. The entire solution is charac-
terized by a single harmonic function which has the form

Z(r) = 1 +Qrp−7 (1.5.9)

where Q is the charge of the D-brane. This can be seen by integrating the field strength
on a sphere transverse to the brane at infinity:

ˆ
S8−p

?F(p+2) = Q (1.5.10)

The charge Q can be identified with the constant µp in the Chern-Simons action (1.5.3).
Moreover, the electric flux (1.5.10) for F(p+2) can alternatively be seen as a magnetic
flux for F(8−p) sourced by a (6 − p)-dimensional “magnetic monopole”. The presence
of both electric and magnetic sources leads to the quantization of the charge Q in a
way similar to the Dirac quantization condition in ordinary electromagnetism.

The supergravity solution described above preserves exactly half of the 32 super-
symmetries of the theory. States with this property are called BPS states. A result of
this fact is that two D-branes which preserve the same 16 supercharges act no force
on each other. This can be seen in a geometric way by considering a probe D-brane
(a brane whose backreaction on the background can be neglected) in a background
created by other D-branes. The potential of the probe brane is computed by inserting
the values of the background fields in the probe D-brane action. It is a functional of
the world-volume scalar fields which parametrize the transverse distance of the probe
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brane from the other branes. One finds then that this potential is constant owing to a
cancellation of the DBI and CS pieces due to (1.5.6). We can therefore conclude that
two D-branes can be in equilibrium since the attractive gravitational force coming from
the DBI action and the repulsive electric force coming from the CS action cancel.

1.6 The AdS/CFT Correspondence

In the previous section, we saw that the world-volume of a Dp-brane contains an abelian
gauge field Aµ and 9− p scalar fields Φi. In fact, the DBI action (1.5.2) provides also
the dynamics for these fields. One can see this by expanding the square root and keep
only the lowest order terms in α′. Then, one obtains a Maxwell term FµνFµν from
the expansion of the square root and a kinetic term for the scalars coming from the
pullback of the ten-dimensional metric on the D-brane world-volume. There is also a
constant term which expresses the rest mass of the D-brane which is irrelevant for the
purpose of this section and therefore we drop it.

One can obtain more interesting gauge theories with a richer field content by con-
sidering more copies of D-branes. We will explore this set-up in more detail in section
2.1, but for the moment let us present some basic facts which are necessary to in-
troduce the AdS/CFT Correspondence. We focus therefore on the case of N parallel
D3-branes sitting at the same point of the ten-dimensional space (coincident branes).

The U(1) gauge symmetry in the case of a single brane gets now enhanced to a
U(N) gauge symmetry. This can be explained by the fact that an open string can
have endpoints lying on different branes. These are charged under different U(1)
components of the gauge field corresponding to the different branes and moreover
there should be transformations mixing them since they belong to the same string.
Therefore, there is now a U(N) gauge field (Aµ)ab with its corresponding non-abelian
field strength. The scalar fields parametrizing the positions of the D3-branes now
become also N ×N matrices (Φi)ab transforming in the adjoint of U(N). Although we
have not been explicit with fermions, we should keep in mind that the D-brane action
contains also a supersymmetric completion. It turns out that the fermionic content of
the gauge theory living on the D3-branes is four Weyl fermions (λα)ab transforming in
the adjoint of U(N).

The field content we just described is the field content of N = 4 super Yang-Mills
theory. A complete analysis shows that the interactions derived from the D-brane
action are the right ones for N = 4 SYM. More precisely, comparing the dilaton factor
in the DBI action with the standard normalization of the Yang-Mills action, we get a
relation for the couplings on the two sides of the correspondence. Moreover, in the CS
action there is a term of the form ∼ C(0)F ∧F providing the theta term for the gauge
theory. The precise relations are

g2
YM = 4πgs, θ = 2πC(0) (1.6.1)

The SU(4) R-symmetry of the gauge theory is identified with the SO(6) global sym-
metry of the space transverse to the brane. Therefore, we see that the gauge theory
living on the stack of N coincident D3-branes is N = 4 SYM.
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Let us now consider the background solution in the presence of these D3-branes.
The metric is given by (1.5.7) where the exponents for D3-branes are

α = −1
2 , β = +1

2 (1.6.2)

and the charge is given by Q = 4πgsNα′2. Let us also take the so-called near-horizon
limit r → 0. However, since the transverse distance is identified with the scalar fields
of the brane theory (δxi = 2πα′Φ) and we want to keep the latter finite, we need also
to send α′ → 0. Therefore, the correct limit is

r → 0, α′ → 0, r

α′
fixed (1.6.3)

In this limit, the harmonic function Z(r) becomes

Z(r)→ R4

r4 (1.6.4)

where
R4 ≡ 4πgsNα′2 (1.6.5)

The metric finally becomes

ds2 = ( r
2

R2 ηµνdx
µdxν + R2

r2 dr
2) +R2dΩ2

5 (1.6.6)

which can be recognized as the metric of the product AdS5 × S5 where both factors
have the same radius R.

From the D3-brane action (1.5.2) and (1.5.3), one can also see that the coupling be-
tween the bulk fields and the brane fields is parametrized by α′. Therefore, in the limit
(1.6.3), the interactions between the bulk theory and the gauge theory are turned off.
However, the bulk theory was considered to be “sourced” by the branes which contain
the gauge theory. The AdS/CFT Correspondence is actually the statement/conjecture
that the bulk and the gauge theory are equivalent. Or more precisely, type IIB string
string theory on AdS5 × S5 is equivalent to N = 4 SYM theory with gauge group
SU(N). It was first proposed by Maldacena in [34].

Let us discuss the space-time symmetries on the two sides of the correspondence.
N = 4 SYM is a four-dimensional conformally invariant theory and hence it enjoys
conformal invariance in four dimensions characterized by the group SO(4,2). This is
precisely the isometry group of AdS5. Actually, theN = 4 SYM theory is characterized
by superconformal symmetry which means that the 16 supersymmetries related to the
four supertranslations have to be supplemented by other 16 supersymmetries related
to the so-called superconformal generators. In total, it has 32 supercharges which
is exactly the amount of supersymmetry of type IIB string theory. Finally, the R-
symmetry of the gauge theory is SU(4) and this is isomorphic to SO(6), i.e. the
isometry group of S5, the internal manifold on the gravity side.

The gauge theory contains as independent parameters the gauge coupling g2
YM , the

theta angle θ and the number of colors N . These are given in terms bulk quantities
through equations (1.6.1) and (1.6.5). A supergravity description for the bulk is valid



1.6. The AdS/CFT Correspondence 21

when the string coupling constant gs is small so that loop diagrams can be neglected
and also when the radius of curvature is much greater than the string scale (R�

√
α′).

On the gauge theory side this means that the so-called ’t Hooft coupling λ ≡ g2
YMN

is large and that N → ∞. At large N , the ’t Hooft coupling is the effective coupling
of the gauge theory and therefore the supergravity regime (weak coupling) is dual to
the strong coupling regime of the gauge theory.

Although we motivated the AdS/CFT Correspondence through the D3-brane set-
up, we can observe that the basic statement of the correspondence makes no reference
to D-branes. But then, since we cannot talk any more for the D-brane world-volume,
where does the gauge theory live in? In order to answer this question, we have to look
at the near-horizon limit (1.6.3) which actually probes the bulk field configuration in
the region close to the brane. But since the brane fields are kept fixed in this procedure,
this means that they are localized in the boundary of AdS5 after the limit has been
taken.

In fact, this bulk-boundary correspondence can be made more precise. The basic
statement of AdS/CFT is that CFT operators are dual to supergravity solutions of
the bulk fields. These are dual in the sense that the source in the CFT generating
functional can be interpreted as the boundary value of the bulk field. The conformal
dimension ∆ of the CFT operator is related to the mass of the supergravity field. For
example, for scalar fields this relation is

m2 = ∆(∆− 4)
R2 (1.6.7)

The radial coordinate r of AdS has a very natural interpretation from the gauge
theory perspective. This can be found by observing that the AdS metric (1.4.17) is
invariant under

xµ → λxµ, r → 1
λ
r (1.6.8)

We therefore see that the radial coordinate can be identified with the typical energy
scale on the dual field theory. The boundary r →∞ corresponds to the UV regime of
the field theory while flowing to the IR corresponds to moving towards the interior of
AdS.

Using AdS/CFT, we can also describe deformations of the original N = 4 SYM
theory. A deformation by a local operator O of conformal dimension ∆ corresponds
to turning on nonnormalizable modes for the dual field φO on the gravity side. These
have the asymptotic behaviour at large r

φnon-norm
O ∼ r∆−4 (1.6.9)

On the other hand, the vacuum expectation value of O corresponds to turning on
normalizable modes modes for φO. Their asymptotic behaviour is

φnorm
O ∼ r−∆ (1.6.10)

In the next chapter, we will be concerned with deformations of N = 4 SYM which
break supersymmetry first to N = 1 and finally to N = 0. We will see that the
description of the theory in terms of the supergravity dual will provide very useful
conclusions for the gauge theory.
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Chapter 2

Mass deformations of N = 4 SYM
and their supergravity duals

The main focus of this chapter is to study deformations of the N = 4 SYM by adding
mass terms for the four fermions and the six scalars of the theory. The N = 4 SYM
theory can be realized on the world-volume of stacks of D3-branes and therefore, as
explained in the last section of the previous chapter, AdS/CFT allows to study these
theories by analysing the dual supergravity background. More specifically, adding mass
terms for the fermions of the gauge theory corresponds to deforming the AdS5 × S5

solution dual to the original N = 4 theory with nonnormalizable modes for the type
IIB three-form fluxes [6]. The supergravity equations of motion then relate the mass
deformations of the fermions with those of the bosons. These relations should also
have a “memory” of the SU(4) R-symmetry of the N = 4 theory, which we analyse
using group theory arguments. Combining this information with results for special
cases existing in the literature, we find a quite general constraint: the trace of the
fermions mass matrix squared must be equal to the trace of the boson mass matrix.

This chapter is organized in the following way. In section 2.1, we explain that
assembling parallel branes at the same point of a supergravity background can result in
various new effects. One with particular importance for our purposes is a “polarization”
mechanism for D-branes, in which lower dimensional branes can “expand” to higher
dimensional ones in the presence of supergravity fluxes. This effect was employed by
Polchinski and Strassler [6] to study the so-called N = 1∗ theory which we briefly
describe in section 2.2. In section 2.3, we explain the strategy for proving our main
result for generic (nonsupersymmetric) bosonic and fermionic mass deformations. In
sections 2.4 and 2.5 we use group theory to find the bosonic potential arising from
the square of the fermionic masses using the isomorphism between SO(6) and SU(4).
Although the group theory is well-known and most of Section 2.4 is a review, our
final formulas in section 2.5 are new, as only their supersymmetric versions have so
far appeared in the literature. In section 2.6 we explain how the bosonic masses
appear in supergravity. This section contains the main observations of this chapter. In
section 2.7 we recapitulate the main conclusions of our analysis and their relation to
perturbative gauge theories. In subsection 2.7.2 we explain with explicit calculations
why our results hold even when quantum corrections in the gauge theory are taken into

23
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account. Appendix A includes a summary of useful formulas for intertwining between
SO(6) and SU(4) representations.

2.1 Myers effect

In the previous chapter, the physical picture we gave for D-branes is that of extended
objects which, in a given supergravity background, couple to the fields of the NS-NS
sector through their tension T and to those of the R-R sector through their electric
charge µ. The precise form of these couplings is given by the sum (1.5.2) and (1.5.3) for
a single Dp-brane. From the world-volume theory point of view, there is a U(1) gauge
field and 9 − p scalars living on the brane corresponding to the transverse directions
in space-time.

Let us take a closer look at the Chern-Simons piece (1.5.3). We see that in the
absence of B-field and world-volume gauge field A, the only contribution from the R-R
sector comes from C(p+1) giving the natural (electric) coupling of a (p+1)-dimensional
object to the corresponding (p+ 2)-dimensional field strength. However, when B 6= 0
or F 6= 0, there are additional contributions from the R-R sector (for example of the
form B∧C(p−1)) indicating that the Dp-brane is charged under fields corresponding to
lower-dimensional branes. This situation can be interpreted in terms of bound states
of these lower dimensional branes [35] and the scalar fields can then be considered to
be “composite”, built out of the fields in the lower dimensional branes.

It is then natural to ask what is the description of this system in the dual picture;
namely how the higher dimensional brane is described when one starts with a stack of
branes of lower dimension. The answer was found by Myers in [36] and it resembles
the familiar situation from electrostatics where a dielectric material gets polarized
when external electric field is applied to it. In the present framework this means that
collections of Dp-branes couple to R-R gauge fields C(p′+1) with p′ > p, i.e. they
acquire p′-brane dipole charge.

In this section, we will describe this phenomenon (following [36]) in a simple set-up
where a number of D0-branes “polarize” into a (noncommutative) spherical D2-shell
in a background of nontrivial F(4). In the next section, we will apply this idea to the
situation relevant for AdS/CFT, i.e. the case where N parallel D3-branes are placed
at the same point in transverse space. The Myers mechanism applies also there and
the D3-branes acquire 5-brane dipole charge due to their magnetic coupling to the
background R-R 3-form flux.

In order to proceed, one needs the generalization of (1.5.2) and (1.5.3) for the
nonabelian case which is the relevant one here since this is the world-volume theory on
N Dp-branes. This was constructed in [36] by demanding consistency with T-duality
and the two pieces are given by

S̃DBI = −Tp
ˆ
dp+1ξTr

(
e−φ

√
−det([Eµν + Eµi(Q−1 − δ)ijEjν ]∗ + 2πα′Fµν)det(Qij)

)
(2.1.1)

and
S̃CS = µp

ˆ
Tr
(
[ei2πα′ιΦιΦ(

∑
C(n)e

B)]∗]e2πα′F
)

(2.1.2)
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Let us pause for a moment to explain the above expressions which are important on
their own right. The first obvious change compared to (1.5.2) and (1.5.3) is that the
world volume gauge field Aµ and scalars Φi now become hermitian N × N matrices
in the adjoint of U(N) corresponding to the combinations of branes on which an open
string can end (Chan-Paton labels) [37]. The same holds for the background fields
as a result of their functional dependence of Φi while the derivatives of the scalar
fields in the pullbacks [·]∗ are replaced with U(N)-covariant ones. Taking the trace is
understood with a symmetrization over the gauge indices and ιΦ denotes contraction
in the directions transverse to the brane, i.e. (ιΦC)i1···in = ΦjCji1···in . Moreover, we
have

Qij = δij + i2πα′[Φi,Φj ] (2.1.3)
and the i,j,k indices are raised and lowered with Eij defined in (1.5.5) and its inverse
Eij .

In order to see how the above action attributes dielectric properties to the collection
of D0-branes, it is necessary to compute their potential in a background with R-R
fluxes. A convenient choice is a flat background where only C(3) is turned on such that
the only nonzero components of F(4) are

Ftijk = −2fεijk (2.1.4)

where f is a constant, i,j,k ∈ {1,2,3}1 and we are working in a static gauge t = ξ0. In
such a situation, the contributions to the potential of the world-volume scalars come
from the determinant det(Qij) in (2.1.1) and the first term of the Taylor expansion
of C(3) in (2.1.2) (the higher order terms vanish in our constant background but in
general give the brane-analogue of a multipole expansion). The former is the usual
quartic scalar interaction of a supersymmetric nonabelian gauge theory while the latter
is a U(N)-invariant cubic interaction for the scalars. The explicit form is

V [Φ] = 4π2α′2
(
− T0

4 Tr([Φi,Φj ]2)− i

3µ0Tr(ΦiΦjΦk)Ftijk
)

(2.1.5)

with minima given by
[[Φi,Φj ],Φk] + ifεijk[Φj ,Φk] = 0 (2.1.6)

An obvious solution to the above equation is given by diagonal (mutually-commuting)
matrices

Φi
c = 1

2πα′diag(xi1, · · · , xiN ) (2.1.7)

which has the interpretation of N D0-brane sitting at the positions xi1, · · · , xiN . The
potential for this solution is obviously

V [Φi
c] = 0 (2.1.8)

However, Eq. (2.1.6) has other solutions as well. In particular, it is satisfied when the
matrices Φi form an N-dimensional representation of SU(2) which we write as

Φi
nc = f

2α
i
N , where [αiN , α

j
N ] = 2iεijkαkN (2.1.9)

1Note that the rest of the coordinates x4, · · · , x9 do not play any role in the discussion that follows.
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Computing the potential for the case that this is the N-dimensional irreducible repre-
sentation, we get

V [Φi
nc] = 4π2α′2f4(N3 −N)

(T0
8 −

µ0
6
)

= −π
2l3sf

4

6g (N3 −N) (2.1.10)

from which we see that the noncommutative solution is favoured energetically against
the commutative one. It turns out that the above solution has the lowest potential
and therefore corresponds to the ground state of the system. In matrix theory, it has
the interpretation of the fuzzy sphere [38] and it corresponds to a D2-spherical shell
with D0-branes bound to it.

In order to close this section, let us also try to give the physical picture of the
comparison of the two solutions we just described, the commutative with zero potential
and the noncommutative one with potential given by (2.1.10). As can be seen from
this expression, the external electric field of C(3) tends to “expand” the system of
N D0-branes by “increasing the noncommutativity” of the relevant coordinates (the
electric potential is lower for Φnc). However, this increase of noncommutativity is
obstructed by the gravitational attraction of the system (the potential due to the
brane tension is higher for Φnc) which finally stabilizes the system. The net result is a
configuration of point-like branes but with a sphere-like dipole moment. The analogy
can be made more clear by comparing the second term of (2.1.5) with the standard
expression for the potential energy of an electric dipole U = − ~E · (q ~rrel) from ordinary
electrostatics. In the latter case, the electric nature of the otherwise neutral dipole
arises from the separation ~rrel of the two oppositely charged constituent particles. In
the case of branes, these do not have internal structure and the corresponding dipole
moment µ0Tr(Φ[iΦjΦk]) arises from the noncommutativity of the coordinates of the
constituent lower dimensional branes.

2.2 The N = 1? theory

We nowmove to the main interest of this chapter which is to study (non)supersymmetric
mass deformations of the N = 4 SYM in the framework of AdS/CFT. In section 1.6
we briefly presented the field content of N = 4 SYM in a way which makes the full
supersymmetry of the theory manifest. However, in order to study deformations of
the theory which break supersymmetry, it is more convenient to describe it in a N = 1
language. In this case, the six real adjoint scalars combine in three complex scalars
ΦI , I = 1,2,3 as the lowest components of three N = 1 chiral multiplets. From the four
N = 4 fermions one becomes the gaugino while the other three comprise the fermionic
content of the chiral multiplets. In N = 1 language the superpotential of the theory
reads

W = 2
√

2
3g2
YM

εIJKTr(ΦIΦJΦK) (2.2.1)

The N = 4 SYM theory deformed with three chiral multiplet masses, known as
the N = 1? theory, is one of the most studied examples of supersymmetric confining
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gauge theory, as it shares some of the most interesting features of QCD: confinement,
baryons and flux tubes. It is obtained from N = 4 by adding to the superpotential
arbitrary mass terms

δW = 1
g2
YM

Tr(m1Φ2
1 +m2Φ2

2 +m3Φ2
3) (2.2.2)

Furthermore, since this theory has a conformal UV fixed point, it can be put on
the lattice much easier than other four-dimensional gauge theories that one studies
using the AdS/CFT correspondence, and hence can serve as an important benchmark
for lattice gauge theory calculations.

The AdS/CFT dual of this theory has been spelled out by Polchinski and Strassler
[6], who deformedAdS5×S5 with non-normalizable modes in the R-R and NS-NS three-
form fluxes, corresponding to masses for the fermions in the three chiral multiplets.
They argued that in the resulting geometry the D3-branes that source AdS5 × S5

polarize via the Myers effect [36] into spherical shells with five-brane dipole charge,
that are the holographic duals of the confining, screening and oblique vacua of the
N = 1? theory [39].

In this section, we are going to review briefly the supergravity dual of the N = 1?
theory following [6] with our main focus on the polarization potential of the D3-branes.
This supergravity solution can be considered as a perturbation over the AdS5 × S5,
dual the original N = 4 SYM theory. The solution for the undeformed background is
given by:

ds2 = Z−1/2ηµνdy
µdyν + Z1/2δABdx

AdxB (2.2.3)

F̃5 = dχ4 + ?dχ4, χ4 = 1
gsZ

vol4 (2.2.4)

The dilaton and the axion take the constant values

eφ = gs, C0 = θ

2π (2.2.5)

while all the other fields are vanishing.
In order to study perturbations linear in H3 and F3, it is more convenient to use the

complex combination G3 of the IIB three-form fluxes and the axio-dilaton τ defined in
(1.2.16) and (1.2.15) respectively.

The solution for the non-normalizable modes of G3 corresponding to the fermion
masses was computed in [6] where the result was given in terms of two tensors T3 and
V3 as

G3 = c

r4

(
T3 −

4
3V3

)
, (2.2.6)

where c = ζR4/gs. For the N = 1∗ theory, the nonzero components of the tensor T3
are given (in complex coordinates) by

T12̄3̄ = m1, T1̄23̄ = m2, T1̄2̄3 = m3 (2.2.7)

and is position independent while the tensor V3 is given in terms of T3 as

VABC = 3
r2x

Dx[ATBC]D . (2.2.8)
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This solution and the existence of supersymmetry was enough to allow the authors
of [6] to determine the full polarization potential of the D3-branes and to read off
certain aspects of their physics. More precisely, in the limit when the number of
five-branes is small, the polarization potential of the D3-branes is given by equation
(62) of [6] and has three terms. The first term, proportional to the fourth power
of the polarization radius, is a universal term that gives the difference between the
mass of unpolarized D3-branes and the mass of a five-branes with all these D3-branes
inside. The second term, proportional to the third power of the radius, represents
roughly the polarization force that the RR and NSNS three-form perturbations exert
on the five-brane shell. The third term, proportional to the square of the radius, is the
potential felt by a probe D3-brane along what used to be the Coulomb-branch of the
undeformed theory. This term comes from the backreaction of the three-forms dual to
fermion masses on the metric, dilaton and five-form. In [6] the value of this term was
guessed by using supersymmetry to complete the squares in the polarization potential.
When the masses of the fermions in all the three chiral multiplets are equal, the value
of this term was computed directly in supergravity by Freedman and Minahan [40]
and found to be exactly the one guessed in [6].

2.3 Moving towards the N = 0? theory

Our main goal for the rest of this chapter is to study the non-supersymmetric version
of the Polchinski-Strassler story, and in particular to spell out a method to determine
completely the D3-brane Coulomb branch potential (or the quadratic term in the polar-
ization potential) for the N = 4 SYM theory deformed with a generic supersymmetry-
breaking combination of fermion and boson masses. Many of the issues in the problem
we are addressing have been touched upon in previous explorations, but when one tries
to bring these pieces of the puzzle together one seems to run into contradictions. We
will try to explain how these contradictions are resolved, and give a clear picture of
what happens in the supergravity dual of the mass-deformed N = 4 theory.

As explained in [6], a fermion mass deformation of the N = 4 SYM field theory,
λiMijλ

j , corresponds in the bulk to a combination of R-R and NS-NS three-form field
strengths with legs orthogonal to the directions of the field theory, that transforms in
the 10 of the SU(4) R-symmetry group. The complex conjugate of the fermion mass,
M †, corresponds to the complex conjugate combination transforming in the 10. Since
the dimension of these fields is 3, the normalizable and non-normalizable modes dual
to them behave asymptotically as r−3 and r−1.

The boson mass deformation in the field theory, φaMabφ
b, can be decomposed into

a term proportional to the trace of M, which is a singlet under the SU(4) ' SO(6)
R-symmetry, and a symmetric traceless mass operator, which has dimension 2 and
transforms in the 20′ of SO(6). The traceless mass operator in the 20′ corresponds
in the AdS5 × S5 bulk dual to a deformation of the metric, dilaton and the RR four-
form potential that is an L = 2 mode on the five-sphere, and whose normalizable
and non-normalizable asymptotic behaviors are r−2 and r−2 log r [41]. On the other
hand, the dimension of the trace operator is not protected, and hence, according to the
standard lore, turning on this operator in the boundary theory does not correspond
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to deforming AdS5 × S5 with a supergravity field2, but rather with a stringy operator
[42]. The anomalous dimension of this operator at strong coupling has consequently
been argued to be of order (gsN)1/4.

On the other hand, there exist quite a few supergravity flows dual to field theories
in which the sum of the squares of the masses of the bosons are not zero [43, 44, 45,
46, 47, 48, 49, 50, 51, 52], and none of these solutions has any stringy mode turned
on, which seems to contradict the standard lore above. In the next sections of this
chapter we would like to argue that the solution to this puzzle comes from the fact
that the backreaction of the bulk fields dual to the fermions determines completely
the singlet piece in the quadratic term of the Coulomb branch potential of a probe
D3-brane. Therefore, the trace of the boson mass matrix that one reads off from the
bulk will always be equal to the trace of the square of the fermion mass matrix.

This, in turn, indicates that in the presence of fermion masses, the stringy operator
is not dual to the sum of the squares of the boson masses, but to the difference between
it and the sum of the squares of the fermion masses. Mass deformations of the N =
4 theory where the supertrace of the square of the masses is zero can therefore be
described holographically by asymptotically-AdS supergravity solutions [43, 44, 45,
46, 47, 48, 49, 50, 51, 52]. However, to describe theories where this supertrace is
nonzero, one has to turn on “stringy” non-normalizable modes that correspond to
dimension-(gsN)1/4 operators, which will destroy the AdS asymptotics.

To see this we begin by considering the backreaction of the three-form field strengths
corresponding to fermion mass deformations on the metric, the dilaton and the four-
form potential, which has been done explicitly for several particular choices of masses
[40, 53]. This backreaction can give several terms that modify the action of a probe
D3-brane, giving rise to a Coulomb-branch potential that is quadratic in the fermion
masses and that transforms either in the 1 or in the 20′ of SO(6). Furthermore, one
can independently turn on non-normalizable modes in the 20′ of SO(6) that corre-
spond to deforming the Lagrangian with traceless boson bilinears, and that can also
give rise to a Coulomb-branch potential. Since all these terms behave asymptotically
as r−2 and transform in the same SO(6) representation, disentangling the contribu-
tions of the non-normalizable modes from the terms coming from the backreaction
of the three-forms can be quite nontrivial. For example, in equation (62) in [6], the
Coulomb-branch potential appears to contain both contributions in the 1 and in the
20′ of SO(6) coming from the backreaction of the fermion mass tensor Tijk, and to
have no non-normalizable contribution.

We will show that the backreaction of the modes dual to the fermion masses can
only source terms in the D3-brane Coulomb-branch potential that are singlets under
SO(6), and hence the Coulomb-branch potential terms that transform in the 20′ of
SO(6) can only come from non-normalizable L = 2 (traceless) modes that one has to
turn on separately from the fermion masses. Since the singlet term in the Coulomb-
branch potential is the supergravity incarnation of the trace of the boson mass matrix,
our result implies that in the bulk this boson mass trace is completely determined by
the fermion masses: the sum of the squares of the boson masses will always be equal
to the sum of the squares of the fermion masses.

2This is consistent with the fact that there are no perturbations around AdS5×S5 that are SO(6)
singlets and behave asymptotically as r−2 and r−2 log r.
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Our calculation establishes that asymptotically-AdS5 solutions can only be dual to
theories in which the sum of the squares of the boson masses is the same as the sum
of the squares of the fermion masses. Theories where these quantities are not equal
cannot by described holographically by such solutions.

From a field theory perspective this interpretation is very natural: the solutions
that are asymptotically AdS5 can only be dual to field theories that have a UV con-
formal fixed point, and therefore their masses and coupling constants should not run
logarithmically in the UV (their beta-functions should be zero). At one loop this can-
not happen unless the sum of the squares of the boson masses is equal to the sum
of the squares of the fermion masses [54], which reduces the degree of divergence in
the corresponding Feynman diagram and makes the beta-functions vanish.3 Thus in
perturbative field theory one inputs boson and fermion masses, and one cannot obtain
a UV conformal fixed point unless the sums of their squares are equal; in contrast,
in holography one inputs an asymptotically-AdS solution (dual to a conformal fixed
point) and the non-normalizable modes corresponding to fermion masses, and obtains
automatically the sum of the squares of the boson masses.

This understanding of how the sum of the squares of the boson masses appears
in AdS-CFT also clarifies some hitherto unexplained miraculous cancellations. In the
Pilch-Warner dual of the N = 2? theory [45], which from the N = 1 perspective
has a massless chiral multiplet and two chiral multiplets with equal masses, the only
non-normalizable modes that were turned on in the UV were those corresponding to
the fermion masses M = diag(m,m,0,0) and to a traceless (L = 2) boson bilinear of
the form m2

3 (|φ1|2 + |φ2|2 − 2|φ3|2). Since the latter contains some tachyonic pieces
one could have expected the potential for the field φ3 to be negative, but in the full
solution this potential came out to be exactly zero. Using the new understanding
developed in this paper it is clear that this "miraculous cancellation" happens because
the backreaction of the fields dual to fermion masses gives a non-trivial contribution
to the trace of the boson mass,of the form 2m2

3 (|φ1|2 + |φ2|2 + |φ3|2), and as a result the
potential for φ3 exactly cancels (see also [56] for a related discussion of some of this
issues). The only way to create a tachyonic solution is to turn on a traceless (L = 2)
boson bilinear whose coefficient is larger than m2

3 [52].
One of the motivations for this work is the realization that the near-horizon regions

of anti-branes in backgrounds with charges dissolved in fluxes have tachyonic instabil-
ities [57, 58]. From the point of view of the AdS throat sourced by the anti-branes,
this tachyon comes from a particular L = 2 bosonic mass term that is determined
by the gluing of this throat to the surrounding region. Understanding the interplay
between this mass mode and the fluxes of the near-brane region is crucial if one is
to determine whether the tachyonic throat has any chance of supporting metastable
polarized brane configurations of the type considered in the KPV probe analysis [59].
Preliminary results of this investigation have already appeared in [60].

3Note that this discussion only applies to asymptotically-AdS5 backgrounds. The Klebanov-
Strassler solution [55], which is not asymptotically-AdS5, is dual to a field theory where the coupling
constants run logarithmically.
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2.4 Group theory for generic mass deformations

The goal of this section is to identify the SO(6) representation of the fermionic and
bosonic mass deformations. We begin by reviewing in detail the group theory behind
the mass deformations because this will play an important role in our discussion.

2.4.1 Fermionic masses
The most general non-supersymmetric fermionic mass deformation of N = 4 SYM is
given by the operator:45

λiMijλ
j , (2.4.1)

where λi, i = 1,...,4 are the 4 Weyl fermions of the N = 4 theory, that in N = 1
language are the three fermions in chiral multiplets plus the gaugino. The mass matrix
M is in the 10 of SU(4), which is the symmetric part of 4× 4:

4× 4 = 6a + 10s . (2.4.2)

As noted in [6], this matrix in the 10 of SU(4) ∼= SO(6) can equivalently be encoded
in an imaginary anti-self dual 3-form6 TABC . The map between them for the N = 1∗
theory is given by (2.2.7) while for a generic mass matrix M will be given in the next
section.

In the language of N = 1, one distinguishes a U(1)R ⊂ SU(4)R that singles out
the gaugino within the 4 fermions, or in other words the SU(4) R-symmetry group is
broken as:

SU(4)R → SU(3)× U(1)R (2.4.3)

corresponding to the splitting of the fundamental index 4 = 3 + 1 (i = {I,4}). In this
breaking, the fermionic mass matrix in the 10 decomposes as

10 = 6 + 3 + 1 . (2.4.4)

This corresponds to the breaking of M into the following pieces

Mij =
(
mIJ m̂I

m̂T
I m̃

)
(2.4.5)

where mIJ , m̂I and m̃ are respectively in the 6, 3 and 1.

2.4.2 Bosonic Masses
A generic 6 × 6 bosonic mass matrix M2

AB has 21 components, coming from the
symmetric piece in

(6× 6)s = 1 + 20′ . (2.4.6)
4We use i,j,k, . . . = 1,2,3,4 indices for the fermions (i.e. for the fundamental of SU(4)) and

A,B,C, . . . = 1, . . . , 6 for the bosons (fundamental SO(6) representation).
5From now on, we omit the trace over the color indices to simplify notation.
6In our conventions the anti-self duality means (?6T )ABC = 1

3! εABC
DEFTDEF = −iTABC .
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If bosonic masses come from the backreaction of the fermion masses on the super-
gravity fields,M2 should be of orderM2. The most naive guess is that they are related
to the hermitian matrix MM †, which involves the following SU(4) representations:

10× 10 = 1 + 15 + 84 . (2.4.7)

From these very simple group-theory arguments one can immediately conclude
that either our naive guess was too simple, or that the backreaction of the fermionic
masses only generates the singlet (the trace) in the bosonic masses. However, since this
goes against most people’s intuition, particularly when there is some supersymmetry
preserved, let us then push a bit further the possibility that our naive guess was wrong,
or in other words that the bosonic masses are determined by fermionic ones, and see
where it takes us.

The 20′ representation in (2.4.6), which is not in the product (2.4.7), appears
instead in

10× 10 = 20′s + 35s + 45a . (2.4.8)

In terms of SU(4), the 20′s is one of the three 20-dimensional representations whose
Young tableau and Dynkin label are:

20′ = � =
(
0 2 0

)
. (2.4.9)

There is an important caveat here: this representation is complex, and we therefore
have to project out half of the components in order to get a real representation for the
bosonic masses. As we will see in the next section this projection is directly related to
the map between SU(4) and SO(6). A straightforward check that this representation is
the one describing bosonic masses is to see what happens when N = 1 supersymmetry
is preserved (m̂I = m̃ = 0 in (2.4.5)). The bosonic mass matrix should then be
proportional to mm† in

3× 3 = 1 + 8 . (2.4.10)

The 1 representation is the one we discussed above, while the 8 representation indeed
appears in 20′, with the right U(1)R charge, since for the breaking (2.4.3), we have
[61]:

20′ = 6(−4/3) + 6(4/3) + 8(0) . (2.4.11)

From these group-theory arguments we conclude that if boson masses are generated
by fermion masses at second order, then

Tr
(
MM †

)
→ Tr

(
M2

)
(2.4.12)

while the other 20 components ofM2 come from the product MM . Anticipating, we
will see this map explicitly in the next section, from which we will conclude that only
the former is true.
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2.5 The explicit map between bosonic and fermionic mass ma-
trices

In this section we will construct explicitly the maps (2.4.7) and (2.4.8), and the re-
lationship between SU(4) and SO(6) representations. This will give the form of the
possible terms in the supergravity fields that depend quadratically on fermion masses,
which come from the backreaction of the fields dual to these masses. As shown in the
previous section, the backreaction splits into two parts, corresponding to the 20′ and
1 representations.

To build a map between SU(4) and SO(6) one identifies the 6a representation of
SU(4) we have encountered above in (2.4.2) with the fundamental representation of
SO(6). The former is given by a 4×4 antisymmetric matrix, ϕT = −ϕ, that transforms
as ϕ→ UϕUT under U ∈ SU(4). The complex 6 can be further decomposed into two
real representations, 6 = 6+ + 6−, by imposing the duality condition:7

? ϕ = ±ϕ† , (2.5.1)

where (?ϕ)ij = 1
2ε
ijklϕkl. In what follows we will use the following parametrization of

6+:

ϕ =


0 Φ̄3 −Φ̄2 −Φ1
−Φ̄3 0 Φ̄1 −Φ2
Φ̄2 −Φ̄1 0 −Φ3
Φ1 Φ2 Φ3 0

 , (2.5.2)

where the Φ1,2,3 are complex combinations of the six real scalars φA=1,...,6 in the fun-
damental representation of SO(6). We choose conventions such that ΦI = φI + i φI+3

for I = 1,2,3. This parametrization is convenient as it makes explicit the 6 → 3 + 3
decomposition and the relation with the three chiral multiplets of N = 4. From (2.5.2)
we find:

ϕij =
6∑

A=1
GAijφ

A or φA = 1
4G

Aijϕji , (2.5.3)

where the six matrices GA are antisymmetric self-dual matrices (sometimes referred as
’t Hooft symbols, or generalized Weyl matrices) which intertwine between SO(6) and
SU(4), and whose form and explicit properties we give in Appendix A, and GAij ≡ GAji.
An SU(4) rotation given by a matrix U is related to an SO(6) rotation by a matrix O
via:8

U k
i G

A
klU

l
j = OABG

B
ij or OAB ≡ 1

4G
A
klU

l
jG

BjiU k
i . (2.5.4)

Note that the action of SO(6) is the same when U → −U , and so, as expected,
SO(6) = SU(4)/Z2.

With the help of t’Hooft matrices, we can work out the explicit map between the
fermion mass matrix Mij and an anti-self dual 3-form TABC . We get

TABC = − 1
2
√

2
Tr
(
MGAGB

†
GC
)
, Mij = 1

12
√

2
TABC(GA†GBGC†)ij , (2.5.5)

7The projection commutes with SU(4) since εijkl is an invariant tensor.
8The SO(6) indices are raised with δAB .
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where the trace in the first expression is over the SU(4) indices and the numeric factors
are chosen to reproduce (35) of [6] for a diagonal M . One can use the properties of
the ’t Hooft matrices in (A.2) and (A.3) to verify that TABC is indeed an anti-self-dual
three-form.

In terms of the 3-form T , the different representations correspond to the following
components:9

6 : (1,2)primitive TIJ̄K̄ = T 6
IJ̄K̄

, 1
2TIJ̄K̄ε

J̄K̄
L = mIL

3 : (2,1)non-primitive TIJK̄ = T 3
IJK̄

, i
2TIJK̄J

JK̄ = −m̂I (2.5.6)
1 : (3,0) TIJK = T 1

IJK , 1
6TIJKε

IJK = m̃

where JIJ̄ is the symplectic structure associated to the SU(3) group. In our conventions
it is just J11̄ = J22̄ = J33̄ = i.

Let us now discuss the bosonic masses, in the 20′+ 1 representations of SO(6). In
terms of SU(4), the 20′ representation is labelled by four indices and from its Young
tableau (2.4.9) we learn that:

Bij,kl = Bkl,ij = −Bji,kl = −Bij,lk . (2.5.7)

Furthermore, the zero-trace condition

εijklBij,kl = 0 (2.5.8)

eliminates the singlet leaving only 20′ from 20′ ⊕ 1. Following our discussion we can
decompose this complex SU(4) representation into two real SO(6) representations,
20′C = 20′+ + 20′−. This is achieved by requiring:

Bij,kl = ±1
4ε

ijmnBmn,pqε
pqkl , (2.5.9)

and we will use the choice 20′+. The explicit map between the 20′ representations of
SU(4) and SO(6) then works very similarly to (2.5.3):

V AB
20′ = 1

4G
AijBij,klG

Bkl . (2.5.10)

It is straightforward to verify that V AB
20′ is symmetric and real when Bij,kl satisfies

(2.5.7) and (2.5.9) with the upper sign. Moreover, by using the fact that the ’t Hooft
matrices satisfy (A.2), one can see that the tracelessness of V AB

20′ is guaranteed by
(2.5.8).

Now, given a fermionic mass matrix M , one can build the following matrix in the
20′+ :

Bij,kl = 1
2 (MikMjl −MilMjk) + 1

4εijpqεrsklM
pr
M

qs
. (2.5.11)

9The primitive 6 and non-primitive 3̄ pieces of a 3-form G are obtained as follows

G6
IJ̄K̄ = GIJ̄K̄ − JI[J̄ GK̄]LM̄J

LM̄

G3̄
IJ̄K̄ = JI[J̄ GK̄]LM̄J

LM̄ .
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Here the first term is dictated by the Young tableau (2.4.9) and the second guarantees
(2.5.9) with the 20′+ choice. Furthermore, it is by construction traceless. One can add
a trace to this, which, as discussed, should be built from MM †. We define

B̃ij,kl = −1
2εijklTr

(
MM †

)
, (2.5.12)

which in turn, using the properties listed in appendix A, implies that:

V AB
1 ≡ 1

4G
AijB̃ij,klG

Bkl = Tr
(
MM †

)
δAB . (2.5.13)

To summarize, the most general bosonic mass matrix produced by the backreaction
of the fermionic masses is V AB

quad., given by some linear combination of the 20′ and 1
contributions, V AB

20′ and V AB
1 . The latter is related to the fermion masses as in (2.5.13),

while the former is determined by (2.5.10) with (2.5.11). Out of this we can build a
scalar φAV AB

quad.φ
B, or identifying the scalars φA with some local coordinates on the

six-dimensional space xA we get the “potentials"

V1 ≡ xAV AB
1 xB , V20′ ≡ xAV AB

20′ xB . (2.5.14)

Let us now examine the form of these potentials for the simple example of a diagonal
fermionic mass matrix:

M = diag (m1,m2,m3,m4) , (2.5.15)

which yields

V1 = (|m1|2 + |m2|2 + |m3|2 + |m4|2)
(
x2

1 + . . .+ x2
6

)
(2.5.16)

V20′ = Re(m2m3 +m1m4)(x2
1 − x2

4) + Re(m1m3 +m2m4)(x2
2 − x2

5)
+ Re(m1m2 +m3m4)(x2

3 − x2
6)− 2 Im(m2m3 −m1m4)x1x4

− 2 Im(m1m3 −m2m4)x2x5 − 2 Im(m1m2 −m3m4)x3x6 .

It is not hard to see that when the fourth fermionic mass is zero, and hence N = 1
supersymmetry is preserved, there is no combination of these two terms that can yield
the N = 1? supersymmetric bosonic mass potential

VN=1? = |m1|2
(
x2

1 + x2
4

)
+ |m2|2

(
x2

2 + x2
5

)
+ |m3|2

(
x2

3 + x2
6

)
. (2.5.17)

Hence, the bosonic mass matrix cannot be fully determined by the fermion mass matrix.

2.6 Mass deformations from supergravity

In this section, we will discuss how to get the bulk boson masses from the dual super-
gravity solution given by the full backreaction of the dual of the fermion masses on
AdS5 × S5. The fully backreacted ten-dimensional (Einstein frame) metric is generi-
cally of the form

ds2 = e2Aηµνdy
µdyν + ds2

6 , (2.6.1)
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with the R-R four-form potential along space-time

C4 = α dy0 ∧ . . . ∧ dy3 , (2.6.2)

a dilaton φ and some internal 3-form fluxes that are combined into the complex form
(1.2.16).

As explained in section 2.3 and as can be seen from the explicit flow solutions
corresponding to mass deformations of N = 4 theory that have been constructed
explicitly [43, 45, 44] the boson masses can be read off from the quadratic terms in the
D3 Coulomb-branch potential, given by:

VD3 =
ˆ
d4y
√
g‖ −

ˆ
C4 =

ˆ
d4y (e4A − α) , (2.6.3)

where the warp factor and four-form potential are those of the fully backreacted solu-
tion. This computation is quite complicated for generic fermion masses, and was only
obtained for some special choices, corresponding to the equal-mass N = 1? theory (
M = diag(m,m,m,0)) [40] and the supersymmetry-breaking-SO(4)-invariant N = 0?
theory (M = diag(m,m,m,m)) [53]. We will see how much of the quadratic term of
V we can infer from these examples and from our group-theoretic arguments in the
previous sections.

On the gravity side the fermionic mass deformation corresponds to the non-normalizable
modes of the complex 3-form flux G3 [44],[6]. As we argued in the previous sections,
the 10 representation of the SU(4) fermion mass matrix Mij is equivalent to the 10 of
SO(6) corresponding to imaginary anti-self-dual 3-forms.

At first order in the mass perturbation the supergravity equations of motion are
satisfied if the imaginary anti-self-dual 3-form e4A(?6G3− iG3) is closed and co-closed.
One option is to set this to zero, i.e. to have G3 be purely in the 10 (imaginary
self-dual), but this solution does not correspond to the dual of the N = 1? gauge
theory.10 The three-form flux has therefore both 10 and 10 components, and has the
r−1 behavior of a non-normalizable mode dual to the ∆ = 3 operator corresponding
to the fermion masses. It has the same form as (2.2.6) which we repeat here for
convenience

G3 = c

r4

(
T3 −

4
3V3

)
, (2.6.4)

T3 is the imaginary anti-self-dual 3-form corresponding to the fermion masses and is
now given by Eq. (2.5.5). V3 is constructed from T3 and combinations of the vector
xA as in (2.2.8), and it has both 10 and 10 components.

At second order (quadratic in the fermionic masses) one has to solve for the dilaton,
the metric and the 4-form potential, whose equations of motion depend quadratically
on G3, and this was only done for the special mass deformations discussed above
[40, 53]; for supersymmetric unequal masses only the solution for the dilaton-axion is
known [62]. Here we will not need the details of these solutions, but we note a few key
points from which we will draw our conclusions.

The EOMs for the dilaton, warp factor and four-form potential have schematically
the following structure:

~∇ · ~∇ (Bosonic fields) = (3-form Fluxes)2 , (2.6.5)
10On this solution, the D3-branes feel no force, which implies that the potential is zero.
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Since the fluxes are known, a general solution for the bosonic fields has inhomogeneous
and homogeneous parts.

For fluctuations around AdS5 × S5, the homogenous part is a combination of har-
monics of the sphere with different fall-offs in r. The quadratic term in (2.6.3) comes
from modes with a r−2 fall off (the background warp factor e4A0 ∼ r4), or in other
words from modes which are dual to an operator of dimension ∆ = 2. Only the 20′
representation in the combination of metric and four-form potential that is relevant to
compute (2.6.3) has this behavior [41]. It corresponds to the second harmonic on the
five-sphere, and was referred in [6] as the L = 2 mode.

The inhomogeneous piece is sourced by quadratic combinations of the three-form
fluxes, which transform in (2.4.7) and (2.4.8). Out of these, only the 1 and 20′ con-
tribute to the masses of the bosons.

The corresponding pieces in the fields that give rise to these masses can then be
schematically represented as:

φ ∼ fφinhom.(r)V20′ + gφinhom.(r)V1 + hφhom.(r)U20′

g‖ ∼ fginhom.(r)V20′ + gginhom.(r)V1 + hghom.(r)U20′ (2.6.6)
α ∼ fRRinhom.(r)V20′ + gRRinhom.(r)V1 + hRRhom.(r)U20′ ,

where the first two terms in each line correspond to inhomogeneous solutions, whose
dependence on the fermionic mass we computed in the previous section (equation
(2.5.16) for a diagonal mass matrix), and the last term is the contribution from the
homogeneous solution whose angular dependence,

U20′ ≡ xAµ20′
ABx

B , (2.6.7)

is determined by 20 free parameters µ20′
AB, that have the dimension of mass squared.11

It is important to note that, unlike the components of V20′ , the components of U20′

are not related in any direct way to the fermionic masses Mij , but are determined in
a given configuration by IR and UV boundary conditions.

With the solution for the metric and the 4-form potential at hand, one can compute
the boson masses directly in supergravity, through (2.6.3). If one works in Einstein
frame, this requires only the combination of warp factor and four-form potential Φ− =
e4A−α, whose equation of motion has a right-hand side of the form (see (2.30) of [64]):

2 (Φ−) ∝ |?6G3 − iG3|2 + . . . ∝ |T3|2 + . . . , (2.6.8)

where the . . . stand for the terms that are higher order in the mass deformation, and
in the last step we have used (2.6.4) together with the duality properties ?6T3 = −iT3
and ?6V3 = −i (T3 − V3). The crucial observation is that V3 drops out of the equation.
The remaining piece, |T3|2, has no x-dependence and as a result is proportional to
the singlet of the 10 × 10 product. We see that out of the 20′ and the 1 parts in
the inhomogeneous solution (2.6.6), only the latter contributes to the Φ− equation12.

11Only a subset of these are possible in a symmetric configuration. For example, when an SO(3)
symmetry is preserved (M = diag(m,m,m,m̃)), there are only two invariant parameters [63].

12This fact was already noticed in [6, 65].
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Furthermore, as we already mentioned, Φ− unambiguously determines the r2 part of
the potential.

We therefore conclude that the quadratic piece in the bosonic potential is neces-
sarily of the form:

V quad.
D3 = V1 + U20′ . (2.6.9)

We emphasize once more that the 20 coefficients µ20′
AB in U20′ are added “by hand”

and are fixed only by the boundary conditions. Furthermore, for the N = 1? theory
(m4 = 0) we know that this contribution has to be non-zero when the three masses
of the chiral multiplets are different. This is obvious from the form of the N = 1?
bosonic potential in (2.5.17), which has terms coming from both the 1 (trace) and
the 20′ representations. Therefore, the solution dual to this theory must contain non-
normalizable L = 2 modes.

We close this section by a short summary: when considering the supergravity dual
of the mass-deformed N = 4 theory, the backreaction of the fields dual to the fermion
masses gives rise to perturbations in the dilaton, metric and 5-form flux proportional
to m2

f , but these conspire to yield an overall zero contribution to the traceless part of
the quadratic term of the polarization potential. That term therefore can arise only
from the homogeneous traceless L = 2 modes that we referred to as U20′ . This implies
that in order to construct the supergravity dual of, say, N = 1? SYM theory one has to
add “by hand” proper homogeneous 20′ UV modes in order to ensure that the bosonic
masses will match the fermionic ones.

2.7 The trace of the bosonic and fermionic mass matrices

2.7.1 Constraints on the gauge theory from AdS/CFT
From the previous section we can arrive to another crucial observation. From (2.6.9)
and the explicit form of the singlet (2.5.16) (or (2.5.13) for a generic mass matrix), we
find

Tr[bosonmasses2] = Tr[fermionmasses2] (2.7.1)
Tr(M2) = Tr(MM †) = Tr(mm†) + 2 m̂I

¯̂mI + m̃2 .

This result establishes that only theories where the supertrace of the mass squared
is zero can be described holographically by asymptotically-AdS solutions. The sum
of the squares of the boson masses, which is an unprotected operator (also known as
the Konishi) and has been argued to be dual to a stringy mode of dimension (gsN)1/4,
can be in fact turned on without turning on stringy corrections, as one could have
anticipated from the solutions of [43, 45, 44]. In the presence of fermion masses, what
is dual to a stringy mode is not therefore the sum of the squares of the boson masses,
but rather the mass super-trace (the difference between the sums of the squares of
the fermion masses and the boson masses). Theories where this supertrace is zero can
be described without stringy modes, but to describe theories where this supertrace is
nonzero, one has to turn on “stringy” non-normalizable modes which destroy the AdS
asymptotics.



2.7. The trace of the bosonic and fermionic mass matrices 39

One can also see the relation between this zero-supertrace condition and the exis-
tence of an asymptotically-AdS holographic dual from the dual gauge theory. Indeed,
in a gauge theory where supersymmetry is broken by adding bosonic masses, there are
no quadratic divergences, and the explicit breaking of supersymmetry is called soft.
There are other soft supersymmetry-breaking terms that one can add to an N = 1
Lagrangian, such as gaugino masses m̃, and trilinear bosonic couplings of the form

Vcubic = 1
2c

K
IJφ

IφJ φ̄K + 1
6aIJKφ

IφJφK + h.c. (2.7.2)

Similar to the quadratic terms discussed in the previous section, the bosonic cubic
terms can also be read off by considering the action of probe D3-branes. They are
proportional to the (3,0) and (2,1) imaginary anti-self-dual piece of the three form flux
T3 [36], which in turn are determined by the supersymmetry breaking fermionic masses
m̂I , m̃ as in (2.5.6) [66]. One gets13

cKIJ = δK[I m̂J ] , aIJK = m̃εIJK . (2.7.3)

We see that supergravity constrains the masses and the couplings of the gauge
theory to satisfy the equations (2.7.1) and (2.7.3). We will now explore the effect of
these relations for the loop corrections on the gauge theory.

2.7.2 Quantum corrections in the gauge theory

Let us now forget for a moment AdS/CFT and focus solely on the gauge theory. We
are interested in theories that descend from N = 4 SYM and which contain supersym-
metric masses for the the three chiral multiplets and also soft supersymmetry-breaking
terms. Generically, the Lagrangian of such a theory (up to cubic terms) will contain14

Lsusy + Lsoft = −(mm†)IJφI φ̄J −
(1

2mIJψ
IψJ + h.c

)
− (m2

soft)IJφI φ̄J −
(1

2bIJφ
IφJ + m̂Iψ

Iλ+ 1
2m̃λλ+ h.c.

)
−
(1

2mILε
LJKφI φ̄J φ̄K

−1
2c

K
IJφ

IφJ φ̄K −
1
6aIJKφ

IφJφK + h.c.

)
(2.7.4)

where in the N = 1 notation ψI are the three fermions in the chiral multiplets and λ
is the gaugino. In the above expression, the first and the third lines contain the super-
symmetric terms coming from the superpotential (2.2.1) and (2.2.2) while the second
and the fourth lines contain soft-supersymmetry breaking terms. Armed with this, one
can compute the one-loop beta functions for all the coupling constants including the
“non-standard soft supersymmetry breaking” terms m̂ [68].

The authors of [68] considered general N = 1 theories with a gauge multiplet
{Aµa, λa} and chiral multiplets {φi, ψi} where now the indices i,j,k, · · · transform in

13For exact normalizations see [67].
14Note that the coupling constant gYM has been absorbed in a redefinition of the fields.
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a representation R of the gauge group G and a,b,c, · · · are adjoint indices in G. They
considered a superpotential of the form

W ′ = 1
6Y

ijkφiφjφk (2.7.5)

where the coefficients Y ijk are completely arbitrary and they also considered soft
supersymmetry-breaking terms

L′soft =(mm† +m2
soft)ijφiφj +

(1
6h

ijkφiφjφk + 1
2b

ijφiφj + 1
2m̃λaλa + h.c.

)
+
(1

2r
jk
i φ

iφjφk + 1
2m

ijψiψj + 1
2m̂

iaψiλa + h.c.
)

(2.7.6)

where raising and lowering indices implies complex conjugation, e.g. φ∗i = φi. Note
that the supersymmetric masses have been included in the soft terms since they con-
tribute in the same way in the Feynman diagrams.

Then, the one-loop beta functions for arbitrary values of the above couplings and
representation R were computed to be15

16π2βg = g3
(
T (R)− 3C(G)

)
(2.7.7)

16π2(βm)ij = P kimkj + P kjmik (2.7.8)

16π2(βm̂)ia = P j im̂ja + g2
(
T (R)− 3C(G)

)
m̂ia (2.7.9)

16π2(βr)jki = 1
2P

l
ir
jk
l + P klr

jl
i + 1

2r
mn
i YlmnY

ljk + 2rmjl YimnY
kln + 2g2rjkl C(R)li

+ 2g2rmjl (Ra)ki(Ra)lm − 2mlmY
mnjY plkYnpi − 4g2milC(R)lmY mjk

− 4g
√

2
(
g2C(G)m̂ja(Ra)ki + (Ra)j lY lmkYmnim̂

na
)

+ (k ↔ j) (2.7.10)

16π2βijkh = hijlP kl+Y ijl
(
hkmnYlmn+4g2m̃C(R)kl

)
+ (cyclic permutations) (2.7.11)

16π2βijb = bilP j l + rilmh
jlm + riml rjlm −mklY

ilmmmnY
jnk

+ 4g2m̃mikC(R)jk − 4g2C(G)m̂iam̂ja + (i↔ j) (2.7.12)

16π2βm̃ = 2g2
(
T (R)− 3C(G)

)
m̃ (2.7.13)

16π2(β(mm†+m2
soft))ij = 1

2YjpqY
pqn(mm† +m2

soft)in + 1
2Y

ipqYpqn(mm† +m2
soft)nj

+ 2Y ipqYjpr(mm† +m2
soft)rq + hjpqh

ipq + rklj r
i
kl + 2rkjlrilk

− 4
(
mklmlm + m̂mam̂

ka
)
Y imnYjkn

− 8g2
(
m̃m̃∗C(R)ij +mklmjkC(R)il + C(G)m̂iam̂ja + (RaRb)ijm̂kam̂

kb
)

− 4
√

2g
(
Y imlmmn(Ra)njm̂la + Yjmlm

mn(Ra)inm̃la
)

(2.7.14)

15Here, we have g = gYM .
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where
P ij = 1

2Y
iklYjkl − 2g2C(R)ij (2.7.15)

and the group theory invariants are defined as

Tr(RaRb) = T (R)δab, facdfbcd = C(G)δab, C(R)ij = (RaRa)ij (2.7.16)

with (Ra)ij being the generators of G in the representation R and fabc the structures
constants. To summarize, for a superpotential of the form (2.7.5) and arbitrary values
of the couplings in (2.7.6), the renormalization group evolution of these couplings at
one loop is described by the beta functions given above.

Let us now specialize to our case, the N = 0∗ theory. Since this descends from
N = 4 SYM (with gauge group SU(N)) which contains three chiral multiplets, the
representation of the matter fields R is actually three copies of the adjoint represen-
tation of SU(N). We can therefore split the index i = (I, ai) where i = 1,2,3 and
ai = 1, · · ·N2 − 1. The generators in that case are written as

(Ra)(Ib)
(Jc) = iδIJfabc (2.7.17)

This immediately gives T (R) = 3C(G) and therefore from (2.7.7) we see that g does
not run

βg = 0 (2.7.18)

The various couplings for the N = 0∗ theory are

Y (Ia)(Jb)(Kc) =
√

2gεIJKfabc

h(Ia)(Jb)(Kc) = −
√

2gm̃εIJKfabc,

r
(Jb)(Kc)
(Ia) =

√
2g(mILε

JKL − 2iδ[J
I m̂

K])fabc (2.7.19)

and the mass parameters mij , (mm† +m2
soft)ij and m̂ia are diagonal in colour indices

e.g. m̂(Ib)a = m̂Iδab. From the equations (2.7.19), the first one expresses the N = 4
superpotential (2.2.1), the second one expresses the relation between the (3,0) trilinear
couplings (second of equations (2.7.3)) and the third one contains the supersymmetric
trilinear couplings but also the soft (2,1) couplings (first of equations (2.7.3)). Inserting
these expressions in the beta functions above, we find

βm = βm̂ = βr = βh = βb = βm̃ = 0 (2.7.20)

and

16π2(β(mm†+m2
soft))ij = 4g2C(G)

(
Tr(mm† +m2

soft)︸ ︷︷ ︸
Tr(M2)

−Tr(mm†)− 2m̂km̂k − m̃2︸ ︷︷ ︸
Tr(MM†)

)
δij

(2.7.21)
We therefore find that if one uses the relation between the soft trilinear terms

and the fermion masses (2.7.3), all the one loop beta functions except the one for the
boson masses vanish exactly [54]. The one-loop beta functions for the boson mass trace
vanishes if and only if the trace of the boson masses is equal to that of the fermions
at tree level, which is precisely what happens for the N = 0? theories that have an
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asymptotically-AdS supergravity dual (Eq. (2.7.1)), and also for any gauge theory that
has a UV conformal fixed point (such as the ones found on D3-branes at singularities).
We have checked this for branes at a regular point of the internal manifold, and also
for branes at Z2 and Z3 singularities.

The two-loop beta functions were computed in Refs. [69] and [70]. We find that for
D3-branes at nonsingular points in the internal manifold, all of these beta functions
again vanish when the supertrace of the square of the masses vanish (there might be
additional regularization scheme-dependent conditions; for example, in Ref. [70] the
mass of the fictitious “ε scalar" should be set to zero).

It is very likely that all beta functions vanish perturbatively at all loops. Indeed,
the fermionic masses (2.5.6) are given by a constant (position independent) tensor,
and therefore we do not expect them to run with the energy scale (corresponding to
the radial distance away from the branes). Furthermore, since the trace of the bosonic
masses is equal to the trace of the fermionic ones classically and at one and two loops,
and the latter do not run, we expect this equality to hold at all loops. When the
branes are placed in an SO(3) × SO(3) invariant background that has (1,2) but no
(3,0) components, this expectation can also be confirmed by explicit calculations [67]:
the theory on their world volume is simply N = 4 broken to N = 1 by the introduction
of supersymmetric chiral multiplet masses, and it is broken to N = 0 only by a certain
traceless bosonic bilinear. Using some clever superspace tricks, this theory was shown
in Ref. [71] to have vanishing beta functions at all loops.

Hence, the field theory computation of the one and two-loop beta functions con-
firms the results of our holographic analysis: Asymptotically-AdS solutions are dual
to theories with UV conformal fixed points, and if one turns on the fermion masses,
the sum of the squares of the boson masses is automatically determined to be equal to
the sum of the squares of the fermion masses. Conversely, in perturbative field theory
one can turn on arbitrary boson and fermion masses, but for a generic choice of masses
the beta-functions will be non-zero and the theory will not have a UV conformal fixed
point. These beta-functions only vanish when the sums of the squares of the fermion
and boson masses are equal. We can graphically summarize this as two equivalent
statements:

SUPERGRAVITY: Asympt-AdS ⇔ UV conformal → ∑
m2

boson = ∑
m2

fermion

FIELD THEORY: ∑
m2

boson 6=
∑
m2

fermion → UV co����nformal ⇔ Asympt-���AdS



Chapter 3
Supersymmetry and (Generalized) Ge-
ometry

As we explained in section 1.4, string theory compactifications that preserve some
supersymmetry can be studied much more easily than non-supersymmetric ones due
to the fact that the supersymmetry equations contain only first derivatives of the
spinors while the equations of motion are second order differential equations. In this
chapter, we are going to take a closer look to the restrictions imposed on the solutions
by supersymmetry and more specifically, we are going to see how the latter determines
the geometrical structure of the internal manifold.

Our final goal is to describe the Killing spinor equations ((1.4.5), (1.4.6),(1.4.7)
and (1.4.12), (1.4.13),(1.4.14)) in purely geometrical terms. These expressions are
completely general in the sense that any flux configuration respecting the isometries
of the external space is allowed. Although our goal is to study the geometry in this
general case, it is much easier to develop our tools for this study starting with simplified
versions of the problem and then generalize them by relaxing our assumptions step by
step.

The structure of this chapter follows the aforementioned generalization procedure.
We start in section 3.1 by reviewing the general requirements that are imposed on
the topology and the geometry of the internal manifold due to supersymmetry. The
simplest cases arise for fluxless compactifications down to four dimensions where the
internal manifold is described by the Calabi-Yau geometry, and five-dimensional com-
pactifications with only five-form flux turned on in which case the internal manifold is
Sasaki-Einstein.

In section 3.2, we make a first step towards the geometrization of the supergravity
fluxes by introducing O(d,d)-generalized geometry. At this level of generalization, the
fluxes from the NS-NS sector are incorporated in the geometry in the way we explain
in subsection 3.2.1. Then, in 3.2.2 we describe how the Killing spinor equations can be
written in a O(d,d)-generalized geometric way as the integrability conditions of pure
spinors on the generalized tangent bundle.

On the other hand, fluxes from the R-R sector act as obstruction to the integra-
bility of pure spinors and they cannot be given a geometric meaning in the context of
O(d,d)-generalized geometry. One needs to generalize the geometry further and con-
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sider structures transforming in representations of the exceptional groups Ed(d) . The
relevant geometry is thus called Exceptional Generalized Geometry (EGG). In section
3.3, we introduce the main ideas of this generalization providing more details for the
particular case of E6(6) . In the next chapter, we analyse the supersymmetry condi-
tions in the language of EGG and we show how these follow from the Killing spinor
equations.

Generalized geometry was introduced by Hitchin and his students [72],[73] in order
to describe complex and symplectic geometry in a unifying framework. It was then
realized that these are precisely the kind of geometries relevant for string compact-
ifications with fluxes [74], [75]1. The original references for Exceptional Generalized
Geometry are [77] and [78].

3.1 Supersymmetry, topology and geometry

The Killing spinor equations that we encountered in section 1.4 are actually statements
about the internal manifold with η or χ serving as the expansion coefficients of the
ten-dimensional supersymmetry parameters in the solution under study (see (1.4.3)
and (1.4.9)). Hence, when we write a Killing spinor equation for the internal manifold,
it is always implied that such a mode expansion can be made for the ten-dimensional
spinor which is a non-trivial requirement for the internal manifoldM. Having that in
mind, we distinguish the superysmmetry constraints in two classes:

• Topological constraints on the manifold. The internal space should have the right
topological properties that allow for the existence of a spinor field (satisfying
certain reality and chirality conditions) in a well-defined way. More technically,
the spinor implies a reduction of the structure group2[79] of the tangent bundle
ofM.

• Differential constraints on the manifold. Equations (1.4.6) and (1.4.13) actually
describe the parallel transport of the internal spinor. This is a statement about
the connection defined onM and in technical terms leads to a reduction of the
holonomy group3 of the internal space.

Let us now start discussing the simplest case of compactifications of type II super-
gravity in the absence of fluxes with (at least) a covariantly constant spinor (1.4.8)
on the internal manifold. We will specialize to the case where the internal manifold
is six-dimensional although most of the definitions and statements hold for all even-
dimensional manifolds which admit a covariantly constant spinor.

1The deep relation between supersymmetric solutions and generalized geometry can also be seen
at the ten-dimensional level [76].

2The structure group is the group of transition functions that are allowed in order to preserve some
structure (or structures) on the overlap of two patches. The existence of well-defined tensors (tensors
which take a constant value in every patch with a particular choice of frame) reduces the structure
group from GL(d,R) to a subgroup G of it. We refer to such a strucure as a G-structure.

3The holonomy group is related to the parallel transport of vector (or spinor) around a closed loop.
Generically, the new vector differs from the original one by a GL(d,R) element. The group of all such
transformations is a subgroup of GL(d,R) and is defined as the holonomy group.
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From the spinor η, one can construct the following real two-form

ωab = −2iη†Γabη (3.1.1)

which is well-defined onM. The existence of ω reduces the structure group to Sp(6,R).
Furthermore, since η is covariantly constant, ω is closed:

dω = 0 (3.1.2)

This actually implies the integrability of ω in the sense that one can define the so-called
Darboux coordinates (qi,pi), i = 1,2,3 such that

ω = dpi ∧ dqi (3.1.3)

In such a case, we say that a symplectic structure is defined onM.
The spinor η (and its charge conjugate ηc = C∗η∗) can be also used for the con-

struction of another important three-form:

Ωabc = −2iηc†Γabcη (3.1.4)

Ω is a complex three-form and in order to be well-defined, the structure group should
be in SL(3,C). The existence of Ω is related to the existence of an almost complex
structure onM, i.e. a tensor Iab satisfying

IacI
c
b = −δab (3.1.5)

Moreover, Ω is also closed
dΩ = 0 (3.1.6)

implying that I is integrable4 (and hence becomes a complex structure) which actually
means that one can define complex coordinates onM. Splitting then the components
of Ω and ω in holomorphic and anti-holomorphic, one has that that Ω is of type (3,0)
and ω of type (1,1) and they satisfy the following compatibility5 condition

ω ∧ Ω = 0 (3.1.7)

The structure group of M then lies in the intersection of the symplectic and the
complex structure6

SU(3) = Sp(6,R) ∩ SL(3,C) (3.1.8)

Complex manifolds which have a closed real two-form ω which is compatible with
the complex structure are called Kähler manifolds and ω a Kähler form. In our case,
we have in addition that Ω is closed and therefore the manifold is Calabi-Yau.

4Actually, the closure of Ω is a stronger condition than the integrability of I. A necessary and
sufficient criterion for the latter is the vanishing of the Nijenhuis tensor the components of which are
given by (NI)abc = Idc∂dI

a
b − Idb∂dIac + Iad∂bI

d
c − Iad∂cIdb.

5Another equivalent statement would be that the symplectic structure can be obtained from the
complex structure by lowering an index with the metric.

6The fact that the structure group is SU(3) (instead of U(3)) is related to the fact that the

normalization of Ω is fixed by ωd/2 = (d/2)!
2d/2

(−1)
d(d/2+1)

4 id/2Ω ∧ Ω̄.
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Calabi-Yau manifolds are Ricci-flat manifolds and therefore the Einstein equation
for the internal manifold is satisfied in the absence of fluxes. As we mentioned in
1.4, the main advantage of compactifications on Calabi-Yau manifolds is the fact the
set of harmonic forms7 is well known. Using the so-called Hodge theorem, one can
show that the space of harmonic p-forms is in one-to-one correspondence with the
pth-cohomology. Information about the cohomology classes for a Kähler manifolds is
encoded in what is known as the Hodge diamond. This is a diamond-like diagram
which contains in its entries the dimensions of the various (p,q)-cohomology classes
where p(q) is the number of holomorphic(antiholomorphic) indices for each form. For
a Calabi-Yau 3-fold, the information contained in its Hodge diamond is the following:

• There is 1 one-form (with representative 1), 1 (3,0)-form and 1 (0,3)-form (with
representatives Ω and Ω̄) and 1 (3,3)-form which can be represented by the CY
volume.

• There are h1,1 (1,1)-forms and h2,1 (2,1)-forms as well as another h1,1 (2,2)-forms
and h2,1 (1,2)-forms following from the symmetries of the Hodge diamond.

We see that the CY 3-fold is characterized by two numbers of topological nature, h1,1

and h2,1. Given the above and choosing appropriate bases so that certain orthogonal-
ity properties are satisfied, one can expand any given form-field and deformations of
the metric in this basis. One can then perform the dimensional reduction by integrat-
ing over the internal manifold in a similar fashion to the torus case, although more
complicated.

We turn now to compactifications on odd-dimensional manifolds and we will be
particularly interested in the case d = 5. Here, one cannot apply the same ideas
that led to the concept of Calabi-Yau manifolds since one cannot have a complex or a
symplectic structure. However, there is an analogous geometrical description which is
derived directly from the Killing spinor equation (1.4.16) in a similar fashion that the
Calabi-Yau conditions are derived from (1.4.8) which is the Killing spinor equation for
Calabi-Yau manifolds.

At first sight, it might seem like (1.4.16) is “destroying” the Calabi-Yau condition
(1.4.8). However, it turns out that the most natural way to understand the former is
as a special case of the analysis for the latter. To see this, letM be a five-dimensional
internal manifold and let C(M) be the cone over it8:

ds2
C = dr2 + r2ds2

M (3.1.9)

Let us also construct a Weyl spinor θ living on the cone from the spinor χ living on
M in the following way:

θ =
(
χ
−iχ

)
(3.1.10)

Taking the covariant derivative on the cone, we see that the extra piece of the spin
connection cancels the flux term in (1.4.16) yielding

∇(C)θ = 0 (3.1.11)
7A form is harmonic if it is both closed and coclosed. Forms that are harmonic on the internal

manifold are massless if viewed as fields on the external space.
8For convenience, we have set m = 1 in (1.4.16).
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and therefore the cone is a Calabi-Yau manifold! We are thus naturally led to the
following definitions which can be given without involving supersymmetry.

• A manifold is Sasaki if the cone over it is Kähler.

• A manifold is Sasaki-Einstein if the cone over it is Calabi-Yau.

Sasaki-Einstein manifolds are Einstein manifolds (as the name suggests), a property
which is inherited from the Ricci-flatness of the Calabi-Yau cone.

As we saw before, the Calabi-Yau conditions can be given either in spinor lan-
guage (1.4.8) or in form language (3.1.2),(3.1.6) and (3.1.7). A similar story hap-
pens for Sasaki-Einstein (SE) manifolds which are characterized by a triplet of objects
(ξ, ωB,ΩB) (or equivalently (σ, ωB,ΩB)) which we are going to define through the cone
construction.

The Reeb vector ξ is defined through the complex structure on the cone as

ξ = I(r∂r) (3.1.12)

This has a vanishing cone direction ξr = 0 and therefore lies in the Sasaki-Einstein
manifold. The contact form σ which is defined in the “dual manner”9:

σ = I(r−1dr) (3.1.13)

lies in the SE manifold and satisfies

ιξσ = 1 (3.1.14)

Finally, the two-forms ωB and ΩB for Sasaki-Einstein manifolds can be defined through
the cone construction as10

ωB = 1
r2ω −

1
r
dr ∧ σ (3.1.15)

and
ΩB = − i

r3 ιξΩ (3.1.16)

A Sasaki-Einstein manifold can be seen as a fibration over a Kähler-Einstein base
defined by the Reeb vector. Then, ωB becomes a (1,1)-form and ΩB a (2,0)-form with
respect to the complex structure defined on the base. ωB is related to the contact
structure σ through

dσ = 2ωB (3.1.17)

The closure of the Calabi-Yau structures ω and Ω translate to

dωB = 0 (3.1.18)

and
dΩB = 3iσ ∧ ΩB (3.1.19)

9Note that in components, there is a minus sign due to the natural action of tensors on forms, i.e.:
(A · j)a = −Abajb.

10We are assuming that the holomorphic (3,0)-form of the Calabi-Yau satisfies LξΩ = 3Ω which is
always possible in a non-compact Calabi-Yau.
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while they also satisfy ιξωB = ιξΩB = 0. Finally, the compatibility condition (3.1.7)
and the normalization of Ω imply

ωB ∧ ΩB = 0 (3.1.20)

and
ωB ∧ ωB = 1

2ΩB ∧ Ω̄B (3.1.21)

3.2 O(d,d) Generalized Geometry

In the previous section, we saw that the main features of Calabi-Yau and Sasaki-
Einstein manifolds can be conveniently described using the tools of complex and
symplectic geometry. However, these geometries appeared in rather special cases of
string theory backgrounds; the fluxless case for compactifications to four-dimensional
Minkowski vacua and flux compactifications but with only special flux configuration
(we considered the case where only F5 was non-zero) for AdS5 vacua. In order to study
more general backgrounds, we need to generalize the geometric concepts we use.

3.2.1 Geometrizing the NS-NS degrees of freedom
The starting point of generalized geometry is the extension of the tangent bundle TM
of the internal manifold to a generalized tangent bundle E in such a way that the
elements of this bundle generate all of the bosonic symmetries of the theory (diffeo-
morphisms and gauge transformations). The generalized tangent bundle transforms in
a given representation of the corresponding duality group acting on the symmetries.
Following the historical path, we start by discussing the O(d,d) generalized geometry,
relevant to the NS-NS sector of type II theories compactified on d-dimensional man-
ifolds. In section 3.3, we introduce Ed(d) generalized geometry which encodes the full
bosonic sector of type II theories compactified on a (d − 1)-dimensional manifold, or
M-theory on a d-dimensional geometry.

The NS-NS sector of type II supergravity contains the metric g(mn), the Kalb-
Ramond field B[mn] and the dilaton φ. The symmetries of this theory are diffeomor-
phisms generated by vectors k and gauge transformations of the B-field which leave the
H = dB invariant and which are parametrized by one-forms λ. The latter corresponds
to the restriction of the first transformation in (1.2.5) restricted on the d-dimensional
internal manifold. The combined action of these symmetries can be thought to be
generated by a single object

V = (k, λ) , k ∈ TM , λ ∈ T ∗M (3.2.1)

on the combined bundle TM⊕ T ∗M. In fact, V is well-defined only in a patch ofM.
If there is H-flux, the gauge potential can change in the overlap of two patches by a
gauge transformation leaving the field strength invariant in a situation similar to the
Dirac string. In order to construct a global section of the bundle, we need to consider

eBV ≡ (k, λ+ ιkB) (3.2.2)
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taking thus into account the non-trivial transformation of the B-field on the overlap
of two patches. These generalized vectors belong to the generalized tangent bundle

E ' TM⊕ T ∗M (3.2.3)
where the isomorphism is provided by the eB defined above. The structure group of
this bundle can be reduced from GL(2d) to O(d,d) by observing that there exists an
invariant metric defined by

η(V, V ′) ≡ 1
2(ιkλ′ + ιk′λ) . (3.2.4)

The symmetries of this metric are:
• ka → Aabk

b, λa → Aa
bλb, where A ∈ GL(d,R) and AcaAcb = δab ,

• ka → ka, λa → λa +Babk
b, where B ∈ ∧2T ∗M

• ka → ka + βabλb, λa → λa, where β ∈ ∧2TM
All together, they form the group O(d,d) which corresponds to the T-duality group of
toroidal compactifications that we encountered in section 1.1. The first two of these
symmetries are related to the fact that the components of metric and the B-field change
on the overlap of two patches and therefore generalized diffeomorphisms parametrized
by V have to take this fact into account. The meaning of the last transformation is more
subtle since there is no “β-field” in the type II supergravity action. For more details
for the interpretation of the β- transform in the context of non-geometric backgrounds,
the reader is referred to [80],[81],[82],[83],[84],[85] and [86].

It is possible to extend many of the concepts of ordinary differential geometry
on TM to analogues on E. The resulting geometry is called Generalized Complex
Geometry (GCG) or O(d,d)-generalized geometry11.

One of the key elements in this construction is the analogue of the Lie derivative.
This is the so-called Dorfman derivative along a generalized vector V on another
generalized vector V ′12. It expresses the infinitesimal action of the symmetries encoded
in V and is given by13

LV V ′ = (Lkk′,Lkλ′ − ιk′dλ) (3.2.5)
where L is the ordinary Lie derivative. One can write this in a more O(d,d)-covariant
way by embedding the ordinary derivative in a O(d,d)-covariant object through

DM = (∂m, 0) ∈ E∗ (3.2.6)
where m = 1,...,d, while M = 1,...,2d. The Dorfman or generalized Lie derivative
(3.2.5) takes the form

LV V ′ = (V ·D)V ′ − (D × V )V ′ (3.2.7)
where · and × stand respectively for the inner product and the projection to the adjoint
representation between the vector and dual vector representations14.

11For a more complete introduction to this with a focus on supergravity applications, see [87]. A
nice review for generalized complex geometry with applications for D-branes is [88].

12By the Leibniz rule, it can be extended to arbitrary tensors constructed from E and E∗.
13Note that V and V ′ now are sections of E and therefore the Dorfman derivative takes into account

the non-triviality of the B-field patching.
14Using explicit indices, V ·D = VMDM , (D × V ) = DMV

N |adjoint. In the O(d,d) case, the latter
is (D × V )MN = DMV

N − ηNP ηMQDPV
Q.
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3.2.2 Supersymmetry in O(d,d) Generalized Geometry
In section 3.1 we explained how the existence and the differential properties of a spinor
(or more) on the internal manifold provide topological and geometrical properties of
it. However, this could be done in a clearly geometric way only for rather special
flux configurations; for fluxless backgrounds for d = 6 and only for five-form flux
for d = 5. For more general backgrounds, the integrability conditions for the relevant
structures fail to be satisfied and one loses the power of geometrical tools that have been
developed for Calabi-Yau and Sasaki-Einstein manifolds. Generalized Geometry avoids
the aforementioned failure by providing geometrical meaning for the fluxes and hence
one can obtain integrability conditions for appropriately defined generalized structures
which have a similar form to the previous ones but describe more general backgrounds.

Let us start with the case of d = 6 which is the relevant one for generalizing the
concept of Calabi-Yau manifolds (or better Calabi-Yau 3-folds). Now, the internal
spinor η in appearing in the Killing spinor equations (1.4.5) to (1.4.7) is not any more
covariantly constant and therefore the CY forms ω and Ω are not closed. The first
step therefore is to generalize these objects in their O(d,d) counterparts which will
have now (in general) indefinite rank. These are first built out of two internal spinors
as

Φ± = η1
+ ⊗ η

2†
± = 1

4

6∑
k=0

1
k!η

2†
± Γa1...akη

1
+Γak...a1 (3.2.8)

where in the second equality a Clifford expansion has been performed. One can then
identify these bispinors with (poly)forms through the Clifford map

6∑
k=0

1
k!C

(k)
a1...akΓa1...ak ←→

6∑
k=0

1
k!C

(k)
a1...akdxa1 ∧ . . . ∧ dxak (3.2.9)

This map allows one to think of Φ± either as (Weyl) spinors of Spin(6,6) or as poly-
forms and change easily between the two pictures. As constructed these spinors are
pure in the sense that they annihilated by half of the Cliff(6,6) gamma-matrices. In the
form language this means that they are annihilated by half of the generalized vectors15

where the (Clifford)16 action of a generalized vector V = (k,λ) on a polyform Φ is
defined by

V · Φ = ιkΦ + λ ∧ Φ (3.2.10)

In order to see how the CY structures embed inside the generalized structures, we
have to set η1 = η2. Then, the pure spinors (3.2.8) reduce to

Φ+ = e−iω, Φ− = −iΩ (3.2.11)

The geometrical significance of the pure spinors Φ± can be seen in a more clear way
if we introduce another piece of terminology. A generalized almost complex structure

15More technically, if the annihilator space of (the space of generalized vectors annihilating) Φ is of
maximal rank, i.e. is six-dimensional.

16Note that generalized vectors can indeed be interpreted as O(d,d)-gamma matrices since acting
on forms they satisfy {V,V ′} = 2η(V,V ′).
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(GACS)17 is defined as a tensor IAB on the generalized tangent bundle satisfying the
following two properties

IACICB = −δAB, ICAηCDIDB = ηAB (3.2.12)

The first of these relations is the direct analogue of to (3.1.5) for the generalized tangent
bundle while the second of them expresses the fact that the metric (3.2.4) is hermitian
with respect to this generalized almost complex structure. The existence of a GACS
implies the reduction of the structure group of E from O(6,6) to U(3,3) and it specifies
a splitting of E (or better the complexification of it) into its (±i)-eigenbundles.

The relation of a pure spinor Φ and a GACS I is then established by identifying
the annihilator space of Φ with the (+i)-eigenbundle of I. Therefore, one obtains a
one-to-one correspondence18

pure spinor Φ ↔ I GACS (3.2.13)

We now turn to the integrability conditions for the generalized structures. The
pure spinors Φ± are formal sums of spinor bilinears constructed from the internal
spinors η ((3.2.8) and (3.2.9)) and therefore one can use the conditions (1.4.5),(1.4.6)
and (1.4.7) to derive differential conditions for Φ±. In the context of N = 1 vacua, this
has been performed in [75] and it corresponds to setting η+

2 = η̃+
2 = 0 in the Killing

spinor equations (see (1.4.3)). We will not provide here the technical details of this
computation, but we will state the results and interpret them. The equations one gets
for type IIB are19

(d+H∧)(e2A−φΦ+) = e2A−φ
(
dA ∧ Φ̄+ −

i

16e
φ+A ?6 FRR

)
(3.2.14)

and
(d+H∧)(e2A−φΦ−) = 0 (3.2.15)

where we have grouped together the following combination of R-R fluxes

FRR = F1 − F3 + F5 (3.2.16)

The norms of the Spin(6,6) spinors satisfy

|Φ±| = eA (3.2.17)

Let us focus on the second of the two differential conditions (3.2.15) which seems
to attribute integrability properties to the structure Φ−. From the left-hand side, we
that the NS-NS three-form flux H enters the geometry by providing a twisting for the
exterior derivative:

dH = d+H∧ (3.2.18)
17In string theory, the generalized almost complex structure appears naturally from the worldsheet

point of view [89].
18There is a subtlety here since the one-to-one correspondence is modulo an overall factor which is

related to the dilaton and the warp factor in supergravity applications. However, we will not be very
precise with this factor in the context of O(d,d)-Generalized Geometry.

19Here the H-twisting appears with a different sign than in [75] due to the different conventions we
use.
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Perhaps, we can make the geometric picture more clear by observing that e−BdeB = dH
and defining the dressed pure spinors

ΦD = eBΦ (3.2.19)

where the action of the exponential on forms is given by (1.2.4). Neglecting for the
moment the scaling factor e2A−φ, (3.2.15) becomes

dΦD
− = 0 (3.2.20)

But this is very similar to the Calabi-Yau integrability condition (3.1.6). In fact,
the closure of ΦD

− implies that the GACS related to it through (3.2.13) is integrable20

becoming now a generalized complex structure. According to the so-called Generalized
Darboux Theorem[73], the existence of a generalized complex structure on a manifold
implies that locally the manifold is equivalent to the product Ck×Rd−2k

Sp where Rd−2k
Sp is

the standard symplectic space. Therefore, a generalized complex manifold interpolates
between a complex and symplectic manifold. The integer k ≤ d/2 is called the rank
and is allowed to jump over certain points or planes. Manifolds which admit a pure
spinor Φ that is closed dΦ = 0 were called in [72] Generalized Calabi-Yau.

Let us now return back to the differential condition (3.2.15) or rather its dressed
version (3.2.20). The eB action (3.2.19) is inherited from the corresponding dressing
of generalized vectors (3.2.2) and therefore it is natural to appear in the integrability
conditions. The scaling factor in (3.2.15) is related on the one hand to the normaliza-
tion of the internal spinors (see (3.2.17) or (4.2.4) for the five-dimensional case) and
on the other hand to an additional R+ action on the generalized tangent bundle which
we have neglected here (see [87] for details).

We therefore see that, according to our previous discussion, four-dimensional vacua
N = 1 vacua of type IIB supergravity with generic fluxes are H-twisted generalized
Calabi-Yau manifolds. This means in particular that there is an (integrable) gener-
alized complex structure on the “twisted” generalized tangent bundle spanned by the
twisted generalized vectors (3.2.2).

Moving now to the other differential condition for the pure spinor Φ+, we see that
its integrability is obstructed from the presence of R-R fluxes through the combination
FRR. This means that the GACS related to the pure spinor Φ+ is not integrable. How-
ever, this is rather expected since, as we have already explained, in O(d,d)-generalized
geometry only the NS-NS sector of type II supergravity is geometrized. In reference
[90] where N = 2 vacua were studied with NS-NS fluxes only, both pure spinors were
shown to be twisted closed dHΦ± = 0. The inclusion of the R-R fluxes in the geometry
requires a further generalization to which we turn in the next section.

Before closing this section, let us briefly explain how O(d,d)-generalized geome-
try works for compactifications of type II theory down to AdS5 (in this case O(5,5)-
generalized geometry). The extension of the tangent bundle and the discussion of the
symmetries for the metric η proceeds in exactly the same way as for the six-dimensional
case. However, in odd dimensions one does not have a generalized almost complex

20Actually, the integrability of a GACS is a weaker condition than the closure of the corresponding
pure spinor. A GACS is integrable if there exists a generalized vector V such that the pure spinor Φ
associated with the GACS satisfies dΦ = V · Φ.
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structure and therefore the one-to-one correspondence between a GACS and an O(5,5)
pure spinor is not present here. Nevertheless, O(5,5) pure spinors are well-defined and
one can derive the differential conditions they satisfy from the Killing spinor equations
for the internal manifold. We will not get into the details of this analysis, but let us
mention some basic facts. The differential conditions have the schematic form[91]21

dHΦ = dA ∧ Φ̄ +mΦ + FRR (3.2.21)

where some terms may be absent depending on the precise form of the bispinor con-
sidered. We see that, similarly to the analysis for Mink4 vacua, the R-R fluxes act
generically as an obstruction for the integrability of Φ and there is also the “peculiar”
term dA ∧ Φ̄ on the right-hand side. Furthermore, the AdS5 mass parameter m also
appears on the right-hand side in a term proportional to Φ. We will see in chapter 4
that in exceptional generalized geometry, m is embedded in an SU(2) vector λa which
breaks the R-symmetry of the theory SU(2)R → U(1)R and there is no term like dA∧Φ̄
(it has been incorporated in the geometry).

The fact that the supersymmetry conditions have a similar form in O(6,6) and
O(5,5)-generalized geometry gives us evidence that they could be described in a uni-
fied form for various dimensions. It turns out that is true in exceptional generalized
geometry where the supersymmetry conditions have exactly the same form for various
dimensions and the only thing that changes is the group theory formulae.22.

3.3 Exceptional Generalized Geometry

The usefulness of generalized geometry in describing supersymmetric vacua in string
compactifications, in the way we described in the previous section, is the fact that the
structure group of the generalized tangent bundle at each point inM, namely O(d,d)
coincides with the T-duality group of the massless sector of string theory. T-duality
transforms the NS-NS sector and the R-R sector separately, i.e. does not mix them.
However, the NS-NS and R-R sectors are the bosonic parts of the supersymmetric full
string theory and we expect further symmetries mixing them to hold.

In order to include the gauge transformations of the R-R fields, or to do a general-
ized geometry for M-theory, one needs to extend the tangent bundle even further. Not
surprisingly, the appropriate generalized bundle should transform covariantly under
the group Ed(d) [77, 78], which is the U-duality group of the massless sector of type II
string theory (M-theory) when compactified on a d − 1 (d) dimensional manifold. In
the concrete applications in chapter 4, we will deal with compactifications of type IIB
and M-theory down to five dimensions, and the relevant group is therefore E6(6) . This
extended version of generalized geometry is called Exceptional Generalized Geometry
[93, 94]. In the following, we will introduce the main ideas of Exceptional Generalized
Geometry for the type IIB case, and then we will present the analogous concepts for
M-theory compactifications.

21The supersymmetry conditions for AdS4 vacua were derived in [92] and they have a similar form
to (3.2.21).

22In the next chapter we will study just AdS5 vacua where the relevant group is E6(6) , but the
analysis is similar for AdS4 vacua with the U-duality group being E7(7).
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The generalized tangent bundle for type IIB decomposes as follows

E ' TM⊕ (T ∗M⊕ T ∗M)⊕ ∧3T ∗M⊕ (∧5T ∗M⊕∧5T ∗M) (3.3.1)

where the additional components T ∗M , ∧3T ∗M and the two copies of ∧5T ∗M corre-
spond to the gauge transformations of C2, C4, C6 and B6, the dual of B2 (one can also
understand this in terms of the charges of the theory, namely D1, D3, D5 and NS5
-brane charges respectively). In the above expression, we have grouped together terms
that transform as doublets under the SL(2,R) symmetry of type IIB supergravity
which we encountered in section 1.2.

The isomorphism implied in (3.3.1) is given by an element eµ ∈ E6(6) , µ ∈ e6(6)
which can be constructed from the gauge fields of the theory in such way that the
generalized vectors are well-defined in the overlap of two patches. This is in direct
analogy with the O(d,d) case where the only non-trivial gauge field is the B-field. The
expression for µ in our case is given below in (3.3.6).

One can also here embed the derivative in a covariant object in E∗, such that its
non-zero components are on T ∗M. The Dorfman derivative takes the same form as in
the O(d,d) case, namely (3.2.7). For its expression in terms of the GL(5) decomposition
of E in (3.3.1), namely the analogue of (3.2.5), see [93].

Finally, let us mention that a complete treatment of both O(d,d) and Ed(d) gener-
alized geometry also includes the geometrization of the so-called trombone symmetry
(see [93] for details). This is an additional R+ symmetry which exists in warped
compactifications of M-theory and can be understood as a combination of the scaling
symmetry in the eleven-dimensional theory (1.3.9) (and therefore is inherited also in
type II) and constant shifts of the warp factor in the compactified theory. In order to
incorporate the action of this symmetry for the supersymmetry conditions in chapter
(4), we rescale appropriately our structures (see (4.1.10) below) where the appearance
of the dilaton in the type IIB case reflects the fact that the dilaton can be interpreted
as a contribution to the warp factor in an M-theory set-up.

Particular case of E6(6)

Let us now specialize to the case of E6(6) . The generalized tangent bundle E transforms
in the fundamental 27 representation, whose decomposition is given in (3.3.1). In terms
of representations of GL(5)× SL(2)23 this is

27 = (5,1)⊕ (5,2)⊕ (10,1)⊕ (1,2) . (3.3.2)

It will actually turn out to be convenient to use the SL(6) × SL(2) decomposition,
where the two SL(2) singlets are combined into a two-vector, while the two SL(2)
doublets are combined into a doublet of forms. Under SL(6)×SL(2) the fundamental
(anti-fundamental) representation V (Z) of E6(6) therefore decomposes as

27 = (6,2) + (15,1), V = (V i
a, V

ab) (3.3.3a)

27 = (6,2) + (15,1), Z = (Zai, Zab) (3.3.3b)
23For details in the representations of E6(6) see appendix C.
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where a,b,c, . . . run from 1 to 6 and i,j,k, . . . from 1 to 2.
The derivative embeds naturally in the anti-fundamental representation as24

Di
m = Di

6 = Dmn = 0, Dm6 = e2φ/3∂m (3.3.4)

where we use m,n, . . . for the coordinate indices on the internal manifold.
The adjoint representation splits under SL(6)× SL(2) as

78 = (35,1) + (1,3) + (20,2), µ = (µab,µij , µiabc) . (3.3.5)

In our conventions, the dilaton and gauge fields embed in this representation in the
following way

µ1
mn6 = eφCmn (3.3.6a)

µ2
mn6 = Bmn (3.3.6b)

µmn = −φ6 δ
m
n (3.3.6c)

µ6
6 = 5φ

6 (3.3.6d)

µn6 = −eφ(∗C4)n (3.3.6e)

µij =
(
−(φ/2) eφC0

0 (φ/2)

)
(3.3.6f)

while the other components of µ vanish25. Note that the the gauge fields from the R-R
sector carry an eφ factor.

E6(6) for M-theory

We now turn to compactifications of eleven-dimensional supergravity down to AdS5
and outline the M-theory counterpart of the of the above construction. The situation
is similar to the type IIB case since the group of global symmetries remains the same,
namely E6(6) . However, the analogous formulae are more transparent since M-theory
combines the degrees of freedom in a more compact form, avoiding thus the compli-
cations due to the GL(5) ⊂ SL(6) embedding. In particular, the generalized tangent
bundle is decomposed in this case as

E ' TM⊕∧2T ∗M⊕∧5T ∗M (3.3.7)

where the internal manifold M is now six-dimensional and the various terms corre-
spond to momenta, M2- and M5-brane charges respectively. The latter can be dualized
to a vector, and together with the first piece they form the (6,2) piece in the split
of the fundamental 27 representation under SL(6) × SL(2) given in (3.3.3). The

24The reason for the additional factor of e2φ/3 is related to the rescaling of the bispinors which will
be introduced later, see (4.1.10).

25These other components of µ could have non-vanishing values in a different U-duality frame.
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derivative is embedded in one of the two components of this doublet appearing in the
anti-fundamental representation26

D2
a = ∇a, D1

a = Dab = 0 . (3.3.8)

The decomposition of the adjoint representation is given in (3.3.5), and the three-form
gauge field C embeds in µ as

µ1
abc = −(?C)abc (3.3.9a)

µ2
abc = µij = µab = 0. (3.3.9b)

We therefore see that for both type IIB and M-theory, the effect of the gauge potentials
can be incorporated in the twisting of the generalized tangent bundle by appropriately
embedding them in an adjoint element eµ of E6(6) . This is similar to the dressing of
pure spinors (3.2.19) by the NS-NS gauge potential eB in O(d,d)-generalized geometry
where the structure Φ was constructed as a bispinor in (3.2.8). In the next chapter,
we will explore compactifications of type IIB and M-theory down to AdS5 preserving
eight supercharges with generic fluxes. We will show that one can construct appropri-
ate bispinors K and Ja as the generalization of the pure spinors Φ. We will then prove
that the dressed objects K = eµK and Ja = eµJa need to satisfy certain integrabil-
ity conditions which will be the analogues of the closure of the dressed pure spinors
(3.2.20).

26Note that here D does not carry a rescaling factor in contrast to the type IIB case.



Chapter 4

Generalized Geometric vacua with eight
supercharges

The analysis of the previous chapter revealed that in order to incorporate the effect of
fluxes in geometric structures, one needs to extend the tangent bundle of the internal
manifold appropriately to its generalized version in order to include the charges present
in the theory (momenta, NS-brane and D-brane charges). In the case of O(d,d)-
generalized geometry, the generalization of the tangent bundle includes only momenta
and NS-brane charges; the latter corresponding to the gauge transformations of the
B-field. Therefore, only the NS-NS sector is geometrized.

In this chapter, we will show that in exceptional generalized geometry we are able
to describe the general case (AdS5 vacua with generic fluxes preserving eight super-
charges) in a purely geometric way. Specifically, we will write the Killing spinor equa-
tions relevant for AdS5 compactifications purely in terms of the geometric structures
K = eµK and Ja = eµJa defined in the previous chapter which live in representa-
tions of the corresponding exceptional group. Here, µ contains all the gauge potentials
(both from NS-NS and R-R sector, see (3.3.6)) and K and Ja can be constructed
as bispinors of the internal spinors. We perform the analysis for both type IIB and
M-theory compactifications.

We proceed as follows. In section 4.1 we introduce concretely the exceptional
structures K and Ja focusing on the type IIB case. In subsection 4.1.1 we describe the
compatibility conditions they should satisfy as a result of their group theory properties
while in subsection 4.1.2 we give the integrability properties they should satisfy. Section
(4.2) is devoted to the proof of the integrability conditions for the structures K and
Ja which are constructed as bispinors. In section 4.3, we repeat the analysis for the
M-theory case. Intermediate results which we make use of in the analysis are proved
in section 4.4. Two key elements in the statement and the proof of the integrability
conditions are the moment map for Ja and the Dorfman derivative along K. Their
explicit calculation is given in sections 4.5 and 4.6 respectively. Appendix C contains
the necessary group theory formulae to derive the results in this chapter.
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4.1 Supersymmetry in Exceptional Generlaized Geometry

4.1.1 Backgrounds with eight supercharges
In the end of the previous chapter we mentioned briefly how the supergravity degrees
of freedom can be packed into generalized geometric objects which belong to repre-
sentations of the corresponding duality group. In this section, we focus on the case
of backgrounds that have eight supercharges off-shell, and in the next subsection we
show how the on-shell restriction (i.e., the requirement that the background preserves
the eight supercharges) is written in the language of exceptional generalized geometry.

As we explained in section 3.1, backgrounds with off-shell supersymmetry are char-
acterized in ordinary geometry by the existence of well-defined spinors, or in other
words a reduction of the structure group of the tangent bundle from SO(d) to sub-
groups of it singled out by the fact that they leave the well-defined spinors invariant.
This means that the metric degrees of freedom can be encoded in objects that are in-
variant under the structure group, built out of bilinears of the spinors. For the familiar
case of SU(d/2) structures (like the case of Calabi-Yau), these objects are the Kähler
2-form ω and the holomorphic d/2-form Ω, satisfying certain compatibility conditions1.

On-shell supersymmetry imposes differential conditions on the spinors, which are
translated into differential conditions on the bilinears of spinors. In the absence of
fluxes, the supersymmetric solutions involve an external Minkowski space, and the
differential conditions lead to integrable structures on the internal space. In the case of
M-theory compactifications down to five dimensions preserving eight supercharges, the
internal manifold has to be Calabi-Yau, namely the Kähler 2-form and the holomorphic
3-form are closed.

Compactifications to AdS require on one hand some flux to support the curvature,
and on the other hand the integrability conditions are weaker (they are usually referred
to as weakly integrability conditions)2. The simplest example of compactifications to
AdS5 is that of type IIB, where the curvature is fully provided by the 5-form flux,
and the internal space is Sasaki-Einstein (the simplest case being S5). In section
3.1 we saw that Sasaki-Einstein manifolds are U(1)-fibrations over a Kähler-Einstein
base (defined by a Kähler 2-form ωB and a holomorphic 2-form ΩB satisfying the
compatibility condition) and a contact structure σ, satisfying3

dσ = 2mωB, dΩB = 3imσ ∧ ΩB (4.1.1)

where m is at the same time the curvature of the internal space (more precisely, the
Einstein condition is Rmn = 4m2gmn), that of AdS5, and give also the units of five-
form flux. The integrability conditions on the structures for more general solutions
were obtained in [24].

In M-theory there is no such a simple AdS5 solution. The most well known solution
is that of Maldacena and Nuñez [26], corresponding to the near horizon limit of M5-

1These were given in section 3.1 and we repeat them here for convenience:
ω ∧ Ω = 0, , ωd/2 = (d/2)!

2d/2
(−1)

d(d/2+1)
4 id/2Ω ∧ Ω̄.

2For full integrability all torsion classes are zero, while for weak integrability there is a torsion in a
singlet representation of the structure group, proportional to the curvature of AdS.

3Here, we have restored the AdS5 curvature m which we had set to 1 in chapter 3.
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branes wrapped on holomorphic cycles of a Calabi-Yau 3-fold. More general solutions
are studied in [95], and correspond topologically to fibrations of a two-sphere over a
Kähler-Einstein base.

The effective five-dimensional gauged supergravity encodes the deformations of the
background. When there is a G-structure, the moduli space of metric deformations is
given by the deformations of the structures. Together with the moduli coming from
the B-field and the R-R fields, they form, in the case of N = 2 gauged supergravity,
the hypermultiplets and vector multiplets of the effective theory.

In the generalized geometric language, metric degrees of freedom can also be en-
coded in bilinears of spinors (this time transforming under the the compact subgroup
of the duality group, namely USp(8) for the case of E6(6) ), and furthermore these can
be combined with the degrees of freedom of the gauge fields such that the correspond-
ing objects (called generalized structures4) transform in given representations of the
Ed(d) group. For eight supercharges in five dimensions the relevant generalized struc-
tures form a pair of objects (K,Ja), first introduced in [9]. In the next section we are
going to give their explicit form, but for the moment let us explain their geometrical
meaning.

The structure K transforms in the fundamental representation of E6(6) and it is
a singlet under the SU(2) R-symmetry group of the relevant effective supergravity
theory. If K was to be built just as a bispinor (we will call that object K, its explicit
expression is given in (4.2.14)), then it would be a section of the right-hand side of
(3.3.1) and it would not capture the non-trivial structure of the flux configuration on
the internal manifold. Therefore, the proper generalized vector which transforms as a
section of E is the dressed one

K = eµK . (4.1.2)
This structure was called the V-structure (vector-multiplet structure) in [10] since it
parametrizes the scalar fields of the vector multiplets in the effective theory.

The other algebraic structure, or rather an SU(2)R triplet of structures, describing
the hypermultiplets (and thus called H-structure in [10]) is Ja, a = 1,2,3. It transforms
in the adjoint of E6(6). As for K, we need the dressed object

Ja = eµJae−µ = eJµ,·KJa (4.1.3)

where we are using J·, ·K to denote the e6(6) adjoint action. These are normalized as5

Tr(Ja,Jb) = 8ρ2δab (4.1.4)

where ρ will be related to the warp factor, and satisfy the SU(2) algebra

JJa,JbK = (4iρ)εabcJc . (4.1.5)

As in Calabi-Yau compactifications where ω and Ω have to satisfy compatibility
conditions to define a proper Calabi-Yau structure (see footnote 1), similar require-
ments apply here, and read

JaK = 0 , c(K,K,K) = 6ρ3 (4.1.6)
4In the case of O(d,d) generalized geometry these are Spin(d,d) pure spinors.
5We use the notation Tr(·,·) to denote the Killing form for e6(6).
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where in the first expression we mean the adjoint action of J on K, and in the second
one c is the cubic invariant of E6(6) . Since the above expressions are E6(6) -covariant,
they have exactly the same form if we replace (K,Ja) with their dressed version (K,Ja).

4.1.2 Supersymmetry conditions

In the previous section we have introduced the generalized structures defining the
backgrounds with eight supercharges off-shell, namely those that allow to define a five-
dimensional (gauged) supergravity upon compactification. Here we discuss the inte-
grability conditions that these backgrounds need to satisfy in order to preserve all eight
supersymmetries leading to an AdS5 geometry on the external space. The supersym-
metry conditions were originally introduced in [11], and the relevant backgrounds called
“exceptional Sasaki-Einstein” (the simplest case corresponding to Sasaki-Einstein man-
ifolds). Here we will write the supersymmetry conditions in a slightly different way,
and in section 4.2 we will use the fact that they are independent of the (generalized)
connection6 to choose a convenient one to verify them directly from the ten-dimensional
supersymmetry conditions.

Compactifications to warped AdS5 require, both in M-theory and in type IIB7

DJ̃a + κ εabcTr(J̃b, DJ̃c) = λac(K̃,K̃, ·) (4.1.7)

LK̃K̃ = 0 (4.1.8)

LK̃ J̃a = 3i
2 εabcλbJ̃c (4.1.9)

These equations involve the rescaled bispinors, which for type IIB are (the analogue
expressions for M-theory are given in (4.3.1))

K̃ = e−2φ/3K , J̃a = e2A−2φJa , (4.1.10)

where A is the warp factor and φ the dilaton. D is the derivative defined in (3.3.4),
whose explicit index we have omitted, and corresponds to the direction missing in the
cubic invariant8. The coefficient κ is related to the normalization of the structures and
is given by

1
κ

= i‖J̃a‖ ≡ i
√

8Tr(J̃a,J̃a) (4.1.11)

and for type IIB is9

κ = − i

4
√

2
e−3A+2φ. (4.1.12)

Finally, λa are a triplet of constants related to the AdS5 cosmological constant m by

λ1 = λ2 = 0, λ3 = −2im . (4.1.13)
6See [93] for details.
7In our conventions, (4.1.9) has a different sign in M-theory, see (4.3.3).
8To write this index explicitly we substitute D → DM , c(K̃,K̃, ·)→ cMNP K̃

NK̃P .
9Note that κ accounts for both the normalization of the internal spinors (see (4.2.4) below) and

the rescalings (4.1.10) as can be seen by writing it as κ = (8iρe2A−2φ)−1.



4.2. From Killing spinor equations to Exceptional Sasaki Einstein conditions61

Let us explain very briefly the meaning of these equations. For more details, see
[10, 11]. The first equation which one can write in terms of the Dorfman derivative
along a generic generalized vector,10 implies that the moment map for the action
of a generalized diffeomorphism along V takes a fixed value that involves the vector
multiplet structure and the SU(2)R breaking parameters λa (AdS5 vacua only preserve
a U(1)R ∈ SU(2)R [12, 96]), given by λaJa. The second and third equation imply that
K̃ is a generalized Killing vector of the background. Indeed, (4.1.8) implies that it
leaves K̃ invariant, while (4.1.9) shows that the generalized diffeomorphism along K̃
amounts to an SU(2)R rotation of the Ja. This rotation does not affect the generalized
metric which encodes all the bosonic degrees of freedom. Thus, the generalized vector
K̃ was called “generalized Reeb vector” of the exceptional Sasaki-Einstein geometry.

As shown in [11], these conditions imply that these backgrounds are generalized
Einstein, as the generalized Ricci tensor is proportional to the generalized metric.

We can compare these to the conditions coming from the five dimensional gauged
supergravity [12]. More specifically, (4.1.9) corresponds to the hyperini variation,
(4.1.8) corresponds to the gaugini, while (4.1.7) corresponds to a combination of the
gravitini and the gaugini.

In the next section, we will give more details of the construction of H-and V struc-
tures in terms of internal spinors, and we show by an explicit calculation that AdS5
compactifications preserving eight supercharges require conditions (4.1.7)-(4.1.9).

4.2 From Killing spinor equations to Exceptional Sasaki Ein-
stein conditions

In this section we show that supersymmetry requires the integrability conditions (4.1.7)-
(4.1.9).

4.2.1 The Reeb vector
Let us state again the basic conditions which we will require. We are interested in
solutions of type IIB supergravity which

• respect the isometry group SO(4,2) of AdS5 and

• preserve 1/4 of the original supersymmetry, i.e. 8 supercharges.

According to the former condition, the ten-dimensional metric is written as (1.4.1)
where g̃µν(x) is now the metric of AdS5 and gmn(y) is the metric of the internal
manifold, while the fluxes are of the form given in (1.4.11) so that they respect the
democratic constraint (1.2.8) and where F(n) is purely an internal piece.

We start with the supersymmetry transformations of type IIB supergravity for the
gravitino and the dilatino. These are given (in the democratic formulation) by (1.2.10)
and (1.2.10) respectively.

10The expression is as follows

κ εabcTrJJ̃b,LV J̃cK = λac(K̃,K̃, V ) .
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The ansatz (1.4.9) gives the decomposition of the type IIB spinors (1.2.9) in terms
of the external spinor ψ and the internal spinors χi. The spinor ψ is a Killing spinor
for AdS5 and therefore is required to satisfy (1.4.10) which involves the AdS5 mass
parameter m. The latter enters the Killing spinor equations for the internal spinors χi
through the external component of the gravitino variation (1.2.10).

Combining the above information, the ten-dimensional Killing spinor equations
translate into the conditions (1.4.12), (1.4.13) and (1.4.14). These equations contain
all the information we need to derive the integrability conditions and we repeat them
here for convenience:[

m− eA(/∂A)Γ6Γ7 + i
eφ+A

4
(
(/F 1 + /F 5)Γ6 − /F 3

)](χ1
χ2

)
= 0 (4.2.1)

[
∇m −

1
4
/HmΓ6 + i

eφ

8
(
/F 1 + /F 5 − /F 3Γ6

)
ΓmΓ(7)

](
χ1
χ2

)
= 0 (4.2.2)

[
(/∂φ)Γ6Γ(7) + 1

2
/HΓ7 −

ieφ

2
(
2/F 1Γ6 − /F 3

)](χ1
χ2

)
= 0 (4.2.3)

Now, let us mention some generic properties of IIB flux compactifications down to
AdS5 which are implied by the supersymmetry requirements. Although these state-
ments can be proved without any reference to generalized geometry (as in [24]), we will
postpone their proof until section 4.4.1 to see how nicely this formalism incorporates
them. Here, we just state them.

The first property has to do with the norms of the internal spinors. From (4.4.8),
we see that the two internal spinors have equal norms and from (4.4.11) that they scale
as eA:11

χ†1χ1 = χ†2χ2 ≡ ρ = eA√
2

(4.2.4)

Moreover, (4.4.9) expresses the following orthogonality property

χ†1χ2 + χ†2χ1 = 0 (4.2.5)

An important consequence of the supersymmetry conditions which will be crucial
for the geometrical characterization ofM is the existence of an isometry parametrized
by a vector ξ [24], the so-called Reeb vector12. The components of ξ can be constructed
from spinor bilinears as

ξm = 1√
2

(χ†1γmχ1 + χ†2γ
mχ2) (4.2.6)

Actually, it turns out (see section 4.4.1) that ξ generates a symmetry of the full bosonic
sector of the theory:

Lξ{g,A, φ,H, F1, F3, F5} = 0. (4.2.7)
11Note that the ρ defined here is the same as the one appearing in the normalization condition of
J , Eq. (4.1.4).

12In the context of AdS/CFT, this isometry corresponds in the dual picture to the surviving R-
symmetry of the N = 1 gauge theory.
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Using this, we can easily see that the Lie derivatives Lξχi of the spinors satisfy the same
equations (1.4.12) - (1.4.14) as the spinors themselves13 and so they are proportional
to them which means that they have definite charge. This charge is computed in
appendix 4.4.1. From (4.4.31) we have

Lξχi = 3im
2 χi (4.2.8)

These conditions are very useful in proving the integrability conditions in the next
section.

4.2.2 The H and V structures as bispinors
Let us now construct the H and V structures from the internal spinors, as appropriate
E6(6) objects. For this, it is useful to decompose the group in its maximal compact
subgroup USp(8) .14

The fundamental 27 (anti-fundamental 27 ) representation is undecomposable, and
corresponds to an antisymmetric 8×8 matrix V αβ (Zαβ) which is traceless with respect
to the symplectic form Cαβ of USp(8)

27 , V = V αβ , such that VαβCαβ = 0 (4.2.9)

The adjoint 78 representation corresponds to a symmetric 8 × 8 matrix and a fully
antisymmetric rank 4 tensor

78 = 36 + 42, µ = (µαβ, µαβγδ) (4.2.10)

The internal spinors (χ1,χ2) which are sections of Spin(5) ∼= USp(4), are combined
into the following USp(8) spinors

θ1 =
(
χ1
χ2

)
, θ2 =

(
χc1
χc2

)
. (4.2.11)

In terms of the USp(8) spinors θi, the normalization condition (4.2.4) implies

θ∗αi θj,α = 2ρ δij . (4.2.12)

Now, one can define the H and V structures as bispinors in a natural way. The
triplet of H structures Ja are defined as

(Ja) βα = (σa)ijθi,αθ?βj (4.2.13)
where σa = (σ1, σ2, σ3) are the Pauli matrices. Note that Ja have components only in
the 36 piece of the 78.

For the V structure, we have

Kαβ = J αβ0 − 1
8C

αβCδγJ γδ0 , with (J0) βα = δijθi,αθ
?β
j (4.2.14)

13Here, note that the existence of the isometry is crucial for the Lie derivative to commute with the
covariant one.

14Here, we just present some basic facts. More details are given in appendix C.
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where Cαβ is the charge conjugation matrix, which in our conventions is the symplectic
form of USp(8) . Note that K is traceless by construction. From now on, we will drop
the USp(8) indices α, β in K, J .

The su(2) algebra of the structures Ja, Eq. (4.1.5), follows from the orthogonality
and normalization of the spinors (4.2.12). Similarly we have

J 2
a = J 2

0 = 2ρJ0 (4.2.15a)

J0Ja = JaJ0 = 2ρJa (4.2.15b)

where ρ can also be related to the trace part of J0, namely

ρ = 1
4Tr[J0] (4.2.16)

The fact that Ja and J0 commute translates in E6(6) language (by using (C.2.4))
into the compatibility condition (4.1.6).

In the following, it will turn out useful to have explicitly the GL(5)× SL(2) com-
ponents of K and Ja. For the former, using the decomposition of the 27 representation
given in (3.3.2), we have:

K = [ξ, (ζ, ζ7), V, (R,R7)] . (4.2.17)

These can be organized in terms of a Clifford expansion as

K = 1
2
√

2

[
iξmΓm67 + ζmΓm + iζ7

mΓm7 + i

2VmnΓmn7
]

(4.2.18)

where the various components can be obtained by taking appropriate traces with K
15. In terms of bilinears involving the internal spinors χ1 and χ2 these components are

ζm = 1√
2

(χ†1γmχ2 + χ†2γ
mχ1)

ζm7 = 1√
2

(−χ†1γmχ1 + χ†2γ
mχ2)

ξm = 1√
2

(χ†1γmχ1 + χ†2γ
mχ2) (4.2.19)

V mn = 1√
2

(χ†1γmnχ2 − χ†2γ
mnχ1)

R = 1√
2

(χ†1χ1 − χ†2χ2)

R7 = 1√
2

(χ†1χ2 + χ†2χ1)

Note the absence of R and R7 in the expansion (4.2.18). This is because these vanish
as a consequence of the supersymmetry conditions that impose the two internal spinors
to be orthogonal and have equal norm (see (4.2.4), (4.2.5)). Moreover, note that the

15For example, ξm = 1
2
√

2Tr[KΓm67].
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vector component ξ of K appearing in the above expression is the Reeb vector given
in (4.2.6).

For the particular case of Sasaki-Einstein manifolds, where χ2 = iχ1, also the
one-forms ζ and ζ7 are zero, while the two-form V corresponds to ∗(σ ∧ ωB).16 The
holomorphic 2-form of the base ΩB is instead embedded in Ja, to which we now turn.

The triplet Ja is in the 36 representation of USp(8) , which decomposes under
GL(5)× SL(2) as

36 = (5,1) + (10,1) + (1,1) + (10,2) . (4.2.20)

The Clifford expansion of Ja is 17

Ja = −1
8
[
Jm6
a Γm6 + 1

2J
mn
a Γmn − J 7

a Γ7 + 1
2J

mn6
a Γmn6 + 1

6J
mnp
a Γmnp

]
(4.2.21)

where each piece is given by the first terms in (C.3.5).
In particular, one can identify in the expansion (4.2.21) all possible spinor bilinears

with non-zero charge under ξ18

Jm6
+ = 4χT1 γmχ2

Jmn+ = −2(χT1 γmnχ1 + χT2 γ
mnχ2)

Jmn6
+ = −2(χT1 γmnχ1 − χT2 γmnχ2) (4.2.22)
Jmnp+ = −4χT1 γmnpχ2

J 7
+ = 4iχT1 χ2

where we have defined
J± = J1 ± iJ2 . (4.2.23)

The components of J− have exactly the same form with the replacement χi → χci and
an overall minus sign in the above expressions.19 On the other hand, J3 is neutral
since it is constructed from two oppositely charged spinors (χ and χ†). The explicit
expressions for the related bilinears are

Jm6
3 = 2(−χ†1γmχ2 + χ†2γ

mχ1)
Jmn3 = 2(χ†1γmnχ1 + χ†2γ

mnχ2)
Jmn6

3 = 2(χ†1γmnχ1 − χ†2γ
mnχ2) (4.2.24)

Jmnp3 = 2(χ†1γmnpχ2 + χ†2γ
mnpχ1)

J 7
3 = 2i(−χ†1χ2 + χ†2χ1)

Together with those coming from K (4.2.19), these form the set of spinor bilinears
which are neutral under the Killing vector ξ. Moreover, note that expansions similar
to (4.2.18) and (4.2.21) can be done for the rescaled bispinors K̃ and J̃ .

16The Reeb vector ξ and the contact structure σ satisfy ιξσ = 1.
17We use the notation J (I)

a = Tr[JaΓ(I)], a = 1,2,3 where (I) is a collection of indices.
18Our notation is χT γχ′ = χαγ

αβχ′β and χ†γχ′ = χ∗αγ β
α χ
′
β for a Cliff(5) element γ and two Spin(5)

spinors χ and χ′.
19For example, we have Jm6

− = −4χcT1 γmχc2.
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4.2.3 Proof of the generalized integrability conditions

In this section we describe the general methodology used to prove the generalized inte-
grability conditions (4.1.7)-(4.1.9) from the Killing spinor equations (1.4.12)-(1.4.14),
while we relegate the details to sections 4.5 and 4.6.

Killing spinor equations

In order to use the supersymmetry conditions efficiently, we need to turn the Killing
spinor equations (1.4.12)-(1.4.14) into equations on Ja and J0. This can be done easily
by taking the complex conjugate and transpose of the former. From the equation
coming from requiring that the variation of the external gravitino equation vanishes,
Eq. (1.4.12), we get
External gravitino

mJ± = ±J±GE (4.2.25a)

mJ3 = −J0G
E (4.2.25b)

mJ0 = −J3G
E (4.2.25c)

where

GE = eA
[
(/∂A)Γ6Γ7 + i

eφ

4
(
(/F 1 + /F 5)Γ6 − /F 3

)]
(4.2.25d)

From the requirement that the variation of the internal component of the gravitino
vanishes, Eq. (1.4.13), we get
Internal gravitino

∇mJa = [Ja,GISm ] + {Ja,GIAm }, a = 0,1,2,3 (4.2.26a)

where

GISm = −1
4
/HmΓ6 + ieφ

8 (F1,m + /F 3,mΓ6)Γ7 −
eφ

8 (∗F5)Γm6 (4.2.26b)

GIAm = ieφ

8 (F pΓmp + Fnpq

3! ΓmnpqΓ6)Γ7 (4.2.26c)

From requiring that the dilatino stays invariant, Eq. (1.4.14), we get
Dilatino

JaGD = 0, a = 0,1,2,3 (4.2.27a)

where

GD =
[
(/∂φ)Γ6Γ(7) −

1
2
/HΓ7 + ieφ

2
(
2/F 1Γ6 − /F 3

)]
(4.2.27b)
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Integrability conditions

Now, we are ready to prove the integrability conditions (4.1.7)-(4.1.9) for the H and
V structures. These are given in terms of the dressed objects Ja,K, but it turns out
to be more tractable to work with the undressed objects J , K, in particular since the
gauge fields and the derivative satisfy

µ̃D ≡ (µ+ 2φ
3 )D = 0 (4.2.28)

where µ̃ is an element of e6(6) ⊕ R+. The dilaton appears here due to the way it
embeds in the GL(5) piece in the adjoint action (see (3.3.6c), (3.3.6d)), and it reflects
the fact that the (anti) fundamental representation is actually charged under the R+,
i.e. we are working with objects which are dressed under the trombone (see (3.3.4)
and (4.1.10)).

We will also use a crucial trick: the generalized integrability conditions stem from
the generalized Lie derivative operation (3.2.7), which is independent of the generalized
connection, as long as it is torsion free [93]. Thus, instead of embedding the partial
derivative into the generalized derivative as in (3.3.4), we are going to embed the
covariant derivative, namely we will use as generalized connection the ordinary Levi-
Civita connection. We thus have

Dm6 = e2φ/3∇m . (4.2.29)

Ja equations

Let us start with the moment map condition for the hyper-multiplet structure, Eq.
(4.1.7), that we repeat here

DJ̃a + κ εabcTr(J̃b, DJ̃c) = λac(K̃,K̃, ·) (4.2.30)

When undressing Ja, each term on the left hand side contributes two terms, one where
the derivative is acting on the naked J , and another one with the derivative acting
on µ. Acting on the whole equation by e−µ to undress it, we get the twisted moment
map densities Ma

Ma ≡ e−µ
(
DJ̃a + κ εabcTr(J̃b, DJ̃c)

)
=

DJ̃a + JDµ, J̃aK + κεabcTrJJ̃b, DJ̃cK + κεabcTrJJ̃b, JDµ, J̃cKK (4.2.31)

where in analogy with their twisted counterparts (4.1.10), we have defined the rescaled
bispinors

J̃a = e2A−2φJa , K̃ = e−2φ/3K . (4.2.32)

We are going to perform this calculation in USp(8)basis, where the derivative D
has components (cf. (C.3.2b))

Dαβ = ie2φ/3

2
√

2
(Γm67)αβ∇m ≡ (vm)αβ∇m (4.2.33)
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where for later use we have defined the generalized vector v, which has only a vectorial
component along direction of the generalized derivative. We then get that (4.2.31)
reads, in USp(8) basis

Ma = [∇mJ̃a, vm] + (J∇mµ, J̃aKvm) + Tr[J̃aGISm ]vm − Tr[(∇mµ)J̃a)]vm . (4.2.34)

Here we have used the fact that the Ja contain only a 36 component (and thus the
Killing form (C.2.11) just reduces to a matrix trace) and in the third and fourth terms
we have used the su(2) algebra (4.1.5). For the third term we also used the internal
gravitino equation (4.2.26). The commutators [ , ] and the traces are now understood
as matrix commutators and traces respectively (vm ∝ Γm67). The second term means
the action of the adjoint element J∇mµ, J̃aK on the fundamental vm.

Although (4.2.34) seems not to be gauge-invariant (µ contains the gauge fields),
this is not the case since the second and the fourth term together project onto the
exterior derivative of the gauge fields, i.e. the fluxes. Using the internal and external
gravitino equations (4.2.26) and (4.2.25) as well as the dilatino equations (4.2.27), we
find (see section 4.5 for the details of this computation)

M± = 0 (4.2.35a)

M3 = (−2im)ρe−4φ/3K (4.2.35b)

We thus verify the ± components of the moment map equations (4.2.30), for the choice
λ± = 0, in agreement with (4.1.13). The third component M3, should be, according to
(4.2.30) and (4.1.13) proportional to the dual vector of K through the cubic invariant.
Indeed, one can check using the explicit form of K in terms of spinors (4.2.14), as well
as the spinor normalizations (4.2.15a) and the definition of the rescaled K (4.2.32) that

[
c(K̃,K̃, ·)

]αβ = ρe−4φ/3Kαβ . (4.2.36)

We therefore verify the third component of the moment map equation with λ3 = −2im,
in accordance to (4.1.13).

K and compatibility equations

We rewrite here the integrability condition for K and the condition coming from
requiring compatibility of the integrable H and V structures, Eqs (4.1.8) and (4.1.9)

LK̃K̃ = 0 (4.2.37)

LK̃ J̃a = 3i
2 εabcλbJ̃c . (4.2.38)

They both contain the Dorfman derivative along the (rescaled) twisted generalized vec-
tor K̃ = e−2φ/3K = e−2φ/3(eµK). As before, it is convenient to split the contributions
coming from the derivative of µ from the rest. Using the expression for the Dorfman
derivative (3.2.7), one gets

e−µLK̃ = (K̃ · v)
(
∇+∇µ

)
−
(
v × (∇K̃ + (∇µ)K̃)

)
(4.2.39)
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where the generalized vector v along the direction of the derivative D was defined in
(4.2.33). The first and third term are the same as in LK̃, while with the second and
the fourth we define a twisted Dorfman derivative L̂K̃, namely

L̂K̃ ≡ e
−µLK̃ = LK̃ + (K̃ · v)∇µ− v ×

(
(∇µ)K̃

)
. (4.2.40)

Using this twisted derivative, we can now rewrite the integrability conditions (4.2.37)
and (4.2.38) as equations on the undressed structures K and J (or rather their rescaled
versions K̃ and J̃ defined in (4.2.32)) as follows

L̂K̃K̃ = 0 (4.2.41)

L̂K̃J̃a = 3i
2 εabcλbJ̃c (4.2.42)

These equations turn out to be very simple using the fact that the twisted Dorfman
derivative along K̃ on spinor bilinears actually reduces to the usual Lie derivative along
the vector part of K [10], namely the Killing vector ξ defined in (4.2.6)

L̂K̃ = Lξ on bispinors . (4.2.43)

Let us show briefly why this is so. The derivative acting on a generic element can be
split as in a differential operator, corresponding to the first term in (3.2.7), and the
rest, which is an algebraic operator from the point of view of the element that it acts
on:

L̂K̃ = (K̃ · v)∇+A (4.2.44)

The first piece reduces to the directional derivative along the Killing vector ξ. For
the algebraic part, we decompose the operator A, which acts in the adjoint, into the
USp(8) pieces

A = A|36 +A|42 (4.2.45)

and we have furthermore that A|36 can be viewed as an element of Cliff(6). We show
in section 4.6 that supersymmetry implies that

A|36 = 1
4(∇mξn)Γmn, A|42 = 0 (4.2.46)

Now let us consider the action of L̂K on K and Ja. These are respectively in the 27
and 36 of USp(8) , and combined they form the 63, the representation of hermitean
traceless bispinors, and thus we have simply

AK = 1
4(∇mξn)[Γmn,K], JA,JaK = 1

4(∇mξn)[Γmn,Ja] (4.2.47)

where the commutators are just gamma matrix commutators. Together with the di-
rectional derivative along ξ from the first term in (4.2.44), we conclude that L̂K̃ = Lξ.

Using this, it is very easy to show (4.2.41) and (4.2.42). Given that the Spin(5)
spinors have a definite charge under this action, Eq. (4.2.8), the USp(8) spinors θ1,2
have charges ±(3im/2) and therefore the bispinors satisfy

LξJ± = ±3imJ± and LξJ3 = LξK = 0 (4.2.48)
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from which one can immediately verify (4.2.41) and (4.2.42).
Before closing this section, let us note that the fact that the twisted generalized

Lie derivative along K̃ reduces to an ordinary Lie derivative along its vector part is
actually a generic feature of “generalized Killing vectors”20: it can be shown that
if a generalized vector is such that the generalized Lie derivative along that vector
on the objects defining the background –generalized metric for a generic background,
and spinors or spinor bilinears for a supersymmetric one– vanishes, then the Dorfman
derivative along such a generalized vector reduces to an ordinary Lie derivative along
its vector component [97].

4.3 The M-theory analogue

The rescaled structures for M-theory are

K̃ = K , J̃a = e2AJa , (4.3.1)

having the same form as for type IIB but with a vanishing dilaton.
Equations (4.1.7) and (4.1.8) have exactly the same form as in the type IIB case,

with
κ = − i

4
√

2
e−3A = (8iρe2A)−1 (4.3.2)

while (4.1.9) has a different sign in our conventions, i.e.

LK̃ J̃a = −3i
2 εabcλbJ̃c (4.3.3)

where again λ1 = λ2 = 0, λ3 = −2im. This sign difference is due to the fact the
internal spinor has opposite charge compared to the type IIB case (cf. (4.4.39)).

The supersymmetry variation of the gravitino (up to quadratic terms) reads21

δΨM = ∇M ε+ 1
288

(
Γ̃ NPQR
M − 8δNM Γ̃PQR

)
GNPQRε (4.3.4)

where G = dC and ε is the eleven-dimensional (Majorana) supersymmetry parameter.
The eleven-dimensional metric is written again in the diagonal form

ds2 = e2A(y)g̃µν(x)dxµdxν + gab(y)dyadyb (4.3.5)

where now the internal metric gab22 is six-dimensional and the spinor decomposition
ansatz for M-theory compactifications reads

ε = ψ ⊗ θ + ψc ⊗ θc (4.3.6)
20We thank C. Strickland-Constable for sharing this with us.
21We use tildes for the eleven-dimensional gamma-matrices (see appendix B).
22We use a,b,c, . . . to describe representations of the GL(6) group of diffeomorphisms of the internal

manifold. Moreover, we will suppress from now on the SU(2)R adjoint index a in Ja in order to avoid
confusion with the GL(6) ones.
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where θ is a complex 8-component spinor on the internal manifold. Finally, the field
strength G is allowed to have only internal components in order to respect the isome-
tries of AdS5.

There is again a vector field ξ which generates a symmetry of the full bosonic sector:

Lξ{g,A,G} = 0, (4.3.7)

where ξ is now given by
ξa = i√

2
θ†Γa7θ (4.3.8)

One can construct the H and V structures in exactly the same way as for the type
IIB case. In particular, the expressions (4.2.12) to (4.2.16) have exactly the same form
where

θ1 = θ , θ2 = θc . (4.3.9)

However, the θi are not constructed from two Spin(5) spinors as in type IIB.
The decomposition of the supersymmetry variation (4.3.4) in external and internal

pieces is similar to the type IIB case with the difference that here we do not have a
dilatino variation. In terms of Ja and J0, we get the differential condition

∇aJ = [J ,GISa ] + {J ,GIAa }, J = J±,J3,J0 (4.3.10)

where
GISa = − 1

36GabcdΓ
bcd, GIAa = − i

12(?G)abΓb7 (4.3.11)

and the algebraic ones
mJ± = ±J±GE (4.3.12)

mJ3 = −J0G
E (4.3.13)

mJ0 = −J3G
E (4.3.14)

where now GE is given by

GE = eA
[
(/∂A)Γ7 + i

12(?G)abΓab
]

(4.3.15)

The Clifford expansion for K is now

K = 1
2
√

2

[
ζaΓa + iξaΓa7 + i

2VabΓ
ab7
]

(4.3.16)

where the components correspond to the different pieces in the SL(6) decomposition
of the fundamental, Eq. (3.3.7), and correspond to the following spinor bilinears

ζa = 1√
2
θ†Γaθ, V ab = i√

2
θ†Γab7θ (4.3.17)

and the vector ξ is the Killing vector defined in (4.3.8).
For the triplet J , the expansion reads

J = −1
8
[1
2J

abΓab − J 7Γ7 + 1
6J

abcΓabc
]

(4.3.18)
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where now the the analogue of the (4.2.20) split under GL(6) is

36 = 15 + 1 + 20 (4.3.19)

The components of J+ are given by the following spinor bilinears, all charged under ξ

J ab+ = −2θTΓabθ, J abc+ = −2θTΓabcθ, J 7
+ = −2θTΓ7θ (4.3.20)

and the corresponding expressions for J− are given by the replacement θ → θc and an
overall minus sign. For J3, the analogous expressions are

J ab3 = 2θ†Γabθ, J abc3 = 2θ†Γabcθ, J 7
3 = 2θ†Γ7θ (4.3.21)

The procedure to prove the integrability conditions is the same as the one described
in subsection 4.2.3 for type IIB. In particular, we again work with the undressed struc-
tures K and J and with the twisted moment map density and the twisted Dorfman
derivative defined in (4.2.31) and (4.2.39) respectively for type IIB. We leave the de-
tails of this calculation to the appendices. The key point that the twisted Dorfman
derivative along K reduces to the ordinary Lie derivative along ξ, Eq. (4.2.43), is also
true here and from (4.4.39), we get

LξJ± = ∓3imJ± and LξJ3 = LξK = 0 (4.3.22)

4.4 Some constraints from supersymmetry
In this section we are going to prove some useful conditions that the spinor bilinears
in (4.2.22), (4.2.24), (4.2.19), (4.3.20), (4.3.21), (4.3.17) and (4.3.8) satisfy and which
serve as an intermediate step in order to derive the integrability conditions (4.1.7)-
(4.1.9). The most important relations have also been stated and used before. Here we
prove them. We split into the bilinears in type IIB, and those of M-theory.

4.4.1 Type IIB
Let us start by studying the vector ξ defined in (4.2.6). By tracing (4.2.26) with Γn67,
we get

∇mξn = −1
2ζ

p
7Hmnp + eφ

4 ζ
pFmnp + eφ

4 (∗V )mnpF p + eφ

4 Vmn(∗F5) (4.4.1)

Since the right hand side is antisymmetric, we have ∇(mξn) = 0 and therefore ξ is a
Killing vector:

Lξg = 0 (4.4.2)

Actually ξ is more than an isometry. By taking 0 = Tr[J0G
D] = Tr[J0G

DΓ7] from
(4.2.27a), we obtain

Lξφ = LξC0 = 0 (4.4.3)

and by using the Bianchi identity for F1 we get

LξF1 = 0 . (4.4.4)
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Moreover, by taking the trace of (4.2.25b), we get

LξA = 0 . (4.4.5)

Using that Tr[JaGDΓ6] = Tr[JaGDΓ67] = 0, we get

Jmna (∗H)mn = 0, a = 1,2,3 (4.4.6)

Jmna (∗F3)mn = 0, a = 1,2,3 (4.4.7)

By tracing (4.2.25c) with Γ6 we also get that

R = 0 (4.4.8)

Then, by tracing (4.2.25c) with Γ67 and using (4.4.7) with a = 3, we have

R7 = 0 (4.4.9)

The power of the warp factor in the norm of the spinors also comes from supersym-
metry. By tracing (4.2.26) for a = 0, we get

∂mρ = eφ

4
√

2
VmnF

n − eφ

4
√

2
ζn(∗F3)mn (4.4.10)

The right-hand side can be related to the warp factor by tracing (4.2.25b) with Γm67
which yields23

∂mρ− ρ∂mA = 0 ⇒ ρ = c eA (4.4.11)

and we chose c = 1/
√

2. Let us now show that the Lie derivative along ξ acting on the
rest of the fluxes H,F3 and F5 vanishes. By tracing (4.2.26) for a = 0 with Γn7 and
antisymmetrizing over [mn], we get

∇[mζ
7
n] = −1

2ξ
pHmnp ⇒ d(ιξH) = 0 (4.4.12)

which by the Bianchi identity for H yields

LξH = 0 (4.4.13)

The situation for F3 is slightly more complicated due to the non-standard Bianchi
identity it satisfies. By tracing (4.2.26) for a = 0 with Γn and antisymmetrizing over
[mn], we get

∇[mζn] = −1
4(∗V )pq[mH pq

n] −
eφ

4 ξ
pFmnp −

1
2
√

2
ρeφ(∗F3)mn (4.4.14)

We eliminate the H-term using 0 = Tr[J0G
DΓmn67] from (4.2.27) and we get

dζ = dφ ∧ ζ − eφF1 ∧ ζ7 − 2eφιξF3 (4.4.15)
23The integration constant is chosen so that it reproduces the standard value of the charge of the

spinors, see (4.4.31).
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Taking the exterior derivative of this expression, replacing again ιξF3 from (4.4.15)
and using (4.4.12), we get

dιξF3 + F1 ∧ ιξH = 0 (4.4.16)
The second term is equal to ιξdF3 as can be seen from the RR Bianchi identities
dF1 = 0 and dF3 = H ∧ F1. Thus, (4.4.16) becomes simply

LξF3 = 0 (4.4.17)

In order to compute the the Lie derivative along ξ on F5, we first need LξJ 7
3 . By

tracing (4.2.26) with Γ7, we get for a = 1,2,3

∂mJ 7
a = −1

4J
np67
a Hmnp + ieφ

8 J
np6
a Fmnp + ieφ

4 J
a
mpF

p (4.4.18)

and using 0 = Tr[JaGDΓm6] from (4.2.27), we get

∂mJ 7
a = J 7

a ∂mφ+ 3ieφ
8 J

np6
a Fmnp −

3ieφ
4 J

a
mpF

p (4.4.19)

If we trace (4.2.25c) with Γm6 and replace in the above equation for a = 3, we get

∂mJ 7
3 = J 7

3 ∂m(φ− 3A) ⇒ LξJ 7
3 = 0 (4.4.20)

where (4.4.3) and (4.4.5) were used. Now, it is easy to compute LξF5. Taking the
trace of (4.2.25b) with Γ7 and using (4.4.11) gives

mJ 7
3 = −e

φ+2A

2
√

2
(∗F5) (4.4.21)

Taking the Lie derivative along ξ on both sides and using (4.4.2), (4.4.3), (4.4.5) and
(4.4.20), we get

LξF5 = 0 (4.4.22)
Finally, let us also state another relation which will be useful later. This is easily
derived by tracing (4.2.26) for a = 0 with Γmn7 and eliminating the H-term using
0 = Tr[J0G

DΓn6]. We get

∇mVmn = Vmn∂
mφ− eφζm7 (∗F3)mn + ζm(∗H)mn − ξn(∗F5) (4.4.23)

The spinor charges
Here, we compute the charge q of the spinors χi under the U(1) generated by the

Killing vector ξ. Actually, it turns out that it is more convenient to compute first 2q,
i.e. the charge of some charged spinor bilinear (we choose J 7

+), and then divide by 2.
In order to do that, we first need to derive some identities. Multiplying (B.29) with
(JaΓ7)βαJ δγ0 and using J0Ja = 2ρJa, we get for a = 1,2,3

J aba Tr[J0Γab7] = −16Tr[J0JaΓ7] + 8ρJ 7
a = −24ρJ 7

a (4.4.24)

Actually, we can prove a stronger identity by rewriting this in terms of the 5-dimensional
spinors χi, for which we use (4.2.22). We will need

J 7
+ = 4iCαβ5 χ1

αχ
2
β (4.4.25a)
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Jm6
+ = 4(γm)αβχ1

αχ
2
β (4.4.25b)

Jmn+ = −2(γmn)αβ(χ1
αχ

1
β + χ2

αχ
2
β) (4.4.25c)

and (see (4.2.19))
ξm = 1√

2
γαβm (χ1c

α χ
1
β + χ2c

α χ
2
β) (4.4.26a)

Vmn = 1√
2
γαβmn(χ1c

α χ
2
β − χ2c

α χ
1
β) . (4.4.26b)

Using (B.35) and the symmetry properties for gamma matrices in five dimensions, we
can show

VmnJmn+ = 4ξmJm6
+ (4.4.27)

Combining this with (4.4.24) for a = + and using (4.4.11) we get

ξmJm6
+ = −ieAJ 7

+ (4.4.28)

Now, we are ready to see how supersymmetry determines the spinor charges. If we
trace (4.2.25a) with Γm6 and replace in (4.4.19) for a = ±, we get

∂mJ 7
± = J 7

±∂m(φ− 3A)∓ 3me−AJm6
± (4.4.29)

If we contract with ξm, the first term drops out due to (4.4.3) and (4.4.5). For the
second term, we get using (4.4.28)

LξJ 7
+ = 3imJ 7

+ (4.4.30)

and therefore the charges of the spinors χi are

q = 3im
2 (4.4.31)

4.4.2 M-theory

The Killing vector in M-theory is the bilinear (4.3.8). This is indeed Killing since
(4.3.10) yields

∇aξb = −1
6GabcdV

cd − 1
3
√

2
ρ(?G)ab (4.4.32)

and the right-hand side is antisymmetric in a and b. Therefore

Lξg = 0 (4.4.33)

The trace of (4.3.13) immediately gives

ξa∂aA = LξA = 0 (4.4.34)

Finally, we can compute dV by using (4.3.10) for J0 to get

dV = ιξG4 =⇒ LξG4 = 0 (4.4.35)
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where the Bianchi identity for G4 was used. We see that similarly to the type IIB case,
ξ generates a symmetry of the full bosonic sector of the theory.

Let us also derive the warp factor dependence of the normalization of the spinors
given by θ∗αi θj,α = 2ρ δij . Taking the trace of (4.3.10) for a = 0 and eliminating G by
taking the trace of (4.3.13), we find

∂mρ− ρ∂mA = 0 ⇒ ρ = eA√
2

(4.4.36)

where we have chosen the integration constant in the same way as for the IIB case.
Another useful relation is found by tracing (4.3.10) with Γa, which yields

∇aζa = 1
2(?G)abV ab (4.4.37)

Finally let us mention that the M-theory spinor has also definite charge under the
action of ξ, i.e.

Lξθ = q θ (4.4.38)
Matching our conventions with those of [11], we find that

q = −3im
2 (4.4.39)

4.5 The moment map for Ja

4.5.1 Type IIB
In this section, we prove Eq. (4.1.7), which says that the moment map for the action
of a generalized diffeomorphism is related to the dual vector associated to K (given by
the cubic invariant of E6(6) c(K,K,V )). As explained in the main text, this condition
can be written in terms of the twisted moment map density Ma which is given by
(4.2.34) and we rewrite here for convenience:

Ma = [∇mJ̃a, vm] + (J∇mµ, J̃aK vm) + Tr[J̃aGISm ]vm − Tr[(∇mµ)J̃a)]vm (4.5.1)

where the second term means the action of J∇mµ, J̃aK on vm while in the rest of the
terms vm is understood as an element of Cliff(6) and is given by vm = ie2φ/3

2
√

2 Γm67.
Let us compute the various terms in the above expression. The first term is com-

puted by using (4.2.26) for a = 1,2,3. We give the result as a Clifford expansion

[∇mJ̃a,Γm67] =
[ 1
16 J̃

a
mnpq7H

npq − ieφ

8 J̃
a
mn6F

n − 1
2 J̃

a
mn67∂
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a
mn67∂

nφ
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+
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np
a Hmnp + ieφ
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a
mn67F

n − ieφ
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a
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a
mn6∂
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a
mn6∂

nφ
]
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+
[ 1
16 J̃

a
pqmH

pq
n + ieφ

16 J̃
a
mnp67F

p − eφ

16 J̃
a
mn(∗F5) + 1

2 J̃
a
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1
2 J̃

a
m6∂nφ

]
Γmn7

+
[
− 1

8 J̃
a
np6H

mnp − ieφ

4 J̃
a
7 Fm −

eφ

4 J̃
a
m6(∗F5)− 1

2 J̃
a
mn∂

nA+ 1
2 J̃

a
mn∂

nφ
]
Γm67

(4.5.2)
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where the derivatives of the dilaton and the warp factor appear as a result of the
rescalings (4.2.32). The second and the fourth term in (4.5.1) are those that “twist”
the moment map density. If we consider them separately they are not gauge invariant,
however, their sum is, as it projects onto the fluxes. These terms are computed as
follows. For the second term, it is more convenient to use the SL(6) × SL(2) basis.
We first insert (3.3.6) and the SL(6)×SL(2) components of J̃a24 in (C.1.5). We then
use the resulting expression in (C.1.4) to compute the action on vm and finally we
transform it to the USp(8) basis using (C.3.2b). For the fourth term in (4.5.1), we first
transform ∇mµ to the USp(8)basis using (C.3.4a) (exploiting the fact that the Ja do
not have a 42 component) and then use (C.2.11). The combined result of these two
terms is then25

J∇mµ, J̃aKΓm67 − Tr[∇mµJ̃a]Γm67 =
[
− 1

24 J̃
a
mnpq7H

npq − 1
4 J̃

a
mn67∂

nφ
]
Γm

+
[ ieφ

24 J̃
a
mnpq7F

npq + ieφ

4 J̃
a
mn67F

n
]
Γm7

+
[1
4 J̃

a
m6∂nφ

]
Γmn7

+
[1
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m − ieφ

8 J̃
a
np67F

np
m + eφ

4 J̃
a
m6(∗F5)− ieφ

4 J̃
a
7 Fm

]
Γm67

(4.5.3)

Finally, the third term in (4.5.1) is computed directly from (4.2.26b) and the result
reads

Tr[J̃aGISm ]Γm67 =
[
− 1

8 J̃
np6
a Hmnp + ieφ

8 J̃
7
a Fm + ieφ

16 J̃
np67
a Fmnp −

eφ

8 J̃
a
m6(∗F5)

]
Γm67

(4.5.4)
When adding (4.5.2), (4.5.3) and (4.5.4), the various terms organize themselves

as coefficients of a Cliff(6) expansion. In the next step, we eliminate the H-field us-
ing the dilatino equation (4.2.27) by taking appropriate traces. More specifically,
we use Tr[JaGdΓm] = 0 for the Γm terms, Tr[JaGdΓm7] = 0 for the Γm7 terms,
Tr[JaGdΓmn7] = 0 for the Γmn7 terms and Tr[JaGdΓm67] = 0 for the Γm67 terms. The
result is( ie2φ/3
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(4.5.5)

For a = 3 we can find the relation between this and K by using the external
gravitino equation (4.2.25c). Reading off the Γm,Γm7,Γmn7 and Γm67 components of

24These can be easily found using (C.3.5).
25Here, we mean J∇mµ, J̃aKΓm67 = ( ie

2φ/3

2
√

2 )−1J∇mµ, J̃aKvm.
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this equation, we see that the right-hand sides are exactly the brackets appearing in
the above equation. Thus

M3 = −ime
A−4φ/3

2
[
ζmΓm + iζ7

mΓm7 + i

2VmnΓmn7 + iξmΓm67
]

= −2imρe−4φ/3K (4.5.6)

where in the last step we used (4.2.18). Following the same procedure for a = ± and
using this time (4.2.25a), we get

M± = 0 (4.5.7)

These are exactly the conditions (4.2.35) which in turn imply the J̃a integrability
condition (4.1.7).

4.5.2 M-theory

In this section, we will present the calculation leading to the integrability condition
for the Ja for M-theory compactifications. The methodology is similar to the one for
IIB described in the previous subsection. However the details are different due to
the different E6(6) embedding of the derivative and the gauge field in M-theory (Eqs.
(3.3.8) and 3.3.9). The general expression for the moment map density (4.2.31) now
reads26

M = [∇aJ̃ , va] + (J∇aµ, J̃ K va) + Tr[J̃GISa ]va − Tr[(∇aµ)J̃ )]va (4.5.8)

where now
va = i

2
√

2
Γa7 (4.5.9)

and GIa is given by (4.3.11).
The various terms are computed in exactly the same way as in type IIB so we just

give the results here. The first term reads

[∇aJ̃ ,Γa7] =
[ 1
72 J̃

bcd7Gabcd −
1
2 J̃

7∂aA
]
Γa+

+
[
− 1

36 J̃
bcdGabcd −

1
2 J̃ab∂

bA
]
Γa7

+
[ i
6 J̃

7(?G)ab + 1
48 J̃

cdGabcd −
1
4 J̃abc∂

cA
]
Γab7 (4.5.10)

while the sum of the second and the fourth is simply

J∇aµ, J̃ KΓa7 − Tr[∇aµJ̃ ]Γa7 =
[
− i

8 J̃
7(?G)ab

]
Γab7 (4.5.11)

and the third gives
Tr[J̃GIa]Γa7 =

[
− 1

36 J̃
bcdGabcd

]
Γa7 (4.5.12)

26As in the main text, we omit the SU(2) index a with the understanding that J̃ = J̃±,J̃3.
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For M = M±, we see that the sum of (4.5.10), (4.5.11) and (4.5.12) vanishes by
virtue of (4.3.12)27. Thus

M± = 0 (4.5.13)

For M = M3, we follow the same procedure but this time using (4.3.14). The result is

M3 = − ime
A

2
[
ζaΓa + iξaΓa7 + i

2VabΓ
ab7
]

= −2imρK (4.5.14)

where we used (4.3.16). We this verify the M-theory moment map equation (4.1.7)
where the rescaled structures are those of (4.3.1), are as in type IIB λ1 = λ2 = 0, and
λ3 = −2im.

4.6 The Dorfman derivative along K

4.6.1 Type IIB

The Dorfman derivative is a generalization of the usual Lie derivative for “generalized
flows” parametrized by the E6(6) vector K. Here we show that the background is
invariant under this flow.

The embedding of the derivative in the E6(6) object D, Eq. (4.2.33), picks a partic-
ular direction v in the space of generalized vectors. We start by showing Eq. (4.2.43),
namely the fact that the (twisted) Dorfman derivative actually reduces to the Lie
derivative along this direction.

As explained in the main text (see (4.2.44) and the discussion after that), the
twisted Dorfman derivative can be split into a differential piece which is just the
directional derivative along the Killing vector ξ, given in (4.2.6), namely

(K̃ · vm)∇m = ξm∇m (4.6.1)

and an algebraic piece A in the adjoint of E6(6) . We show that A satisfies the equations
in (4.2.46). We start with the 36 piece which according to (4.2.39) reads

Aαβ = (K̃ · vm)∇mµαβ −
[
∇mK̃, vm

]
αβ
−
[
(∇mµ)K̃, vm

]
αβ

(4.6.2)

where the commutators are just matrix commutators, ∇mµαβ in the first term is just
the derivative of the 36 piece of µ interpreted as a Cliff(6) element, ((∇mµ)K̃)αβ is the
standard action28 of E6(6) on the fundamental and (C.2.10a) was used for the projection
in the adjoint.

The first and the third term in (4.6.2) twist the Dorfman derivative, so we are
computing them together29. ∇mµ is computed just by inserting (3.3.6), in (C.3.4a)

27By taking the trace with Γa, Γa7 and Γab7.
28This term has contributions from both the 36 and the 42 components of µ.
29Similarly to the moment map equation described in the previous section, each of these terms is

not gauge invariant but their sum is.
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while we compete (∇mµ)K̃ using (C.1.3) and then use (C.3.2a) to transform that to
the USp(8)basis. The result is

(K̃ · vm)∇mµ−
[
(∇mµ)K̃, vm

]
=
[
− 1

6ξm∂nφ
]
Γmn
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[ ieφ
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ieφ

4 ζ7
mFn

]
Γmn67 (4.6.3)

where we have expressed the result in terms of the spinor bilinears ξ, ζ,ζ7 and V defined
in (4.2.18). Finally, the second term in (4.6.2) is easily computed by using (4.2.18):

−
[
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]
=
[1
4∇mξn + 1

6ξm∂nφ
]
Γmn

+
[
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]
Γmn67 (4.6.4)

where the derivatives of the dilaton appear due to the rescaling of K̃ given in (4.1.10).
Collecting the pieces together, i.e. adding (4.6.3) and (4.6.4), we easily see that

the terms proportional to Γn6 cancel out due to (4.4.23), those proportional to Γmn6

due to (4.4.12) and those proportional to Γmn67 due to (4.4.15). The remaining terms
in (4.6.1) are the sum of the first lines of (4.6.3) and (4.6.4) which is simply

A|36 = 1
4(∇mξn)Γmn . (4.6.5)

This is exactly the first equation in (4.2.46). Let us now look at A|42, given by

A|αβγδ = (K̃ · vm)∇mµαβγδ − (vm ×∇mK̃)αβγδ − (vm × (∇mµ)K̃)αβγδ (4.6.6)

where the 42 piece of the adjoint projection is given in (C.2.10b). The first term is
computed by inserting (3.3.6) into (C.3.4b) while the third by using (C.2.10b). Using
Fierz identities from appendix B, we get for the sum of these two terms[
(K̃ · vm)∇mµ− (vm × (∇mµ)K̃)

]
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=
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γδ] (4.6.7)
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containing only the fluxes. The second term in (4.6.6) is given by inserting (4.2.18) in
(C.2.10b) and using again some Fierz identities from appendix B:

−(vm ×∇mK̃)αβγδ =
[
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[αβ Γ67
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+
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Γmn7

[αβ Γ6
γδ] (4.6.8)

If we insert now (4.6.7) and (4.6.8) in (4.6.6) and use (4.4.12), (4.4.15) and (4.4.23)
(as for the 36 component), we get

A|42 = 0 , (4.6.9)

which completes thus the proof of (4.2.46). Combining this with (4.6.1) and the fact
that the Ja have only a 36 component we arrive at (4.2.43) as we explain in the main
text.

4.6.2 M-theory
Let us now perform the same kind of calculation for the M-theory set-up. Although
the details are different than in type IIB, the basic procedure to prove that the twisted
Dorfman derivative along K is equal to the usual Lie derivative along the corresponding
Killing vector is actually the same. The differential piece is again the directional
derivative along ξ30

(K · va)∇a = ξa∇a (4.6.10)
The 36 piece of the operator A is given by

Aαβ = (K · va)∇aµαβ −
[
∇aK, va

]
αβ
−
[
(∇aµ)K, va

]
αβ

(4.6.11)

The first term together with the third is

(K · va)∇aµ−
[
(∇aµ)K, va

]
=
[ 1
24ξ

dGabcd
]
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[ i
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ab(?F )ab
]
Γ7 . (4.6.12)

while the second is

−
[
∇aK, va7] =

[1
4∇aξb

]
Γab +

[
− 1

8∇aVbc
]
Γabc +

[
− i

4∇aζ
a
]
Γ7 . (4.6.13)

It is straightforward to see using (4.4.35) and (4.4.37) that their sum is just

A|36 = 1
4(∇aξb)Γab (4.6.14)

We finally show that A|42 = 0 also in M-theory. We have

Aαβγδ = (K · va)∇aµαβγδ − (va ×∇aK)αβγδ − (va × (∇aµ)K)αβγδ (4.6.15)
30We recall that K̃ = K for the M-theory case.
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Similarly to type IIB[
(K · va)∇aµ− (va × (∇aµ)K)

]
αβγδ

=
[ i
16V

ab(?G)ab
]
Γc[αβΓc7γδ] +

[
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dGabcd

]
Γa7

[αβΓbc7γδ]
(4.6.16)

where we have used (B.30) and (B.31) to simplify the terms proportional to V and
(B.32) for the terms proportional to ξ. Using (4.3.16), we also get

−
[
va ×∇aK]αβγδ =

[
− i

8∇aζ
a
]
Γc[αβΓc7γδ] +

[
− 3

8∇[aVbc]
]
Γa7

[αβΓbc7γδ] (4.6.17)

where again the terms proportional to derivatives of ζ are absent because of (B.30)
(B.31) while due to (B.32) only the exterior derivative of V appears. The sum of
(4.6.16) and (4.6.8) vanishes using (4.4.35) and (4.4.37). We thus get

A|42 = 0 (4.6.18)

and therefore we verify (4.2.43) for M-theory as well.



Discussion of results and outlook

In this Thesis, we focused on the study of flux backgrounds in string theory compacti-
fications. In chapter 2 we studied mass deformations of the N = 4 SYM theory which,
in the framework of AdS/CFT, are dual to supergravity solutions with non-trivial
three-from fluxes, while in chapters 3 and 4 we explained how generic supersymmetric
flux backgrounds can be given a geometrical meaning in the framework of generalized
geometry.

The main result of chapter 2 was that gauge theories realized on the world-volume
of stacks of D3-branes where supersymmetry is softly broken, should still satisfy the
supertrace rule: the sum of the squares of the boson masses and the sum of the squares
of the fermion masses should be equal. Since no light supersymmetric particles have
been discovered so far, this result is not phenomenologically appealing. We obtained
this result exploiting the fact that the theory descends for N = 4 SYM and using
arguments based on the AdS/CFT Correspondence.

Alternatively, all of the parameters in the Lagrangian (2.7.4) can be computed
purely within N = 1 supergravity with chiral fields including a hidden sector (moduli)
on top of the observable sector (brane fields). After breaking supersymmetry sponta-
neously in the hidden sector via F terms (which can be done by turning on three-form
fluxes), integrating out the moduli fields and taking the limit of infinite Planck mass
while keeping the gravitino mass finite, one obtains a softly broken N = 1 gauge the-
ory for the visible sector. The parameters of the latter are given in terms of the F
terms, the superpotential, and the Kähler potential of the original N = 1 supergravity
theory31 [100, 101]. Comparing these with those obtained from the D3-brane action,
one finds [65] that they all agree, except for the boson masses. Furthermore, it is
only for nonscale supersymmetry breaking and zero supersymmetric masses that the
supertrace obtained by the supergravity calculation is zero; generically, it is not. It
would be interesting to understand why the supergravity calculation fails to reproduce
this feature of the D3-brane action.

The expression for the soft parameters in terms of the fluxes is also expected
to receive α′ corrections coming from higher derivative terms in the ten-dimensional
bulk and brane actions. These terms induce corrections to the Kähler potential of
the four-dimensional N = 1 supergravity theory that generically break the no-scale
structure [102], and induce corrections to the soft masses [103] (and thus to their

31For D3-branes in CY compactifications, the Kähler potential is of sequestered form if the complex
structure moduli are integrated out [65], as done in Kachru-Kallosh-Linde-Trivedi models [98] or in
large volume scenarios [99].
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trace). In the so-called ultralocal limit, where the coupling between the matter and
the moduli in the Kähler potential has a particular form, the breaking of no-scale
structure is not seen in the visible sector, and the soft terms do not get corrected.
From our arguments in section 2.7.2, it is very likely that the full Kähler potential
for D3-branes in Calabi-Yau manifolds falls into this category, and our result holds
even when taking α′ corrections into account. On the other hand, one might expect
that nonperturbative corrections to the superpotential, which are usually invoked in
string phenomenology scenarios, modify this result. Unfortunately, there is no way
of analyzing this at the ten-dimensional level, as such corrections are modeled in the
four-dimensional field theory only. One could thus try to compute the soft terms,
including these types of corrections using N = 1 supergravity calculations, as discussed
in the previous paragraph, and check to see whether the zero supertrace result still
holds. However, it is hard to extract meaningful conclusions from such calculations:
first, because these calculations fail already at tree level to reproduce the trace of soft
masses found from the ten-dimensional equations of motion and, second, because to
do these calculations correctly one would need to include the full dependence of the
nonperturbative corrections on the moduli (particularly the unknown dependence on
complex structure moduli).

It is worth stressing that our analysis also holds for D3-branes at orbifold singular-
ities. Explicit tree-level and one-loop calculations for the Z2 and Z3 model confirm our
expectations. It would be interesting to see if this result extends also to other types
of singularities and to other types of branes.

In chapter 3, we discussed backgrounds with more general flux configurations. We
explained that Generalized Geometry provides the appropriate tools for the description
of such backgrounds in the case that there is some supersymmetry preserved. We
first introduced O(d,d)-generalized geometry in which only fluxes from the NS-NS
sector acquire a geometrical meaning and in a second step we presented Exceptional
Generalized Geometry where generic flux backgrounds (including both NS-NS and R-R
fluxes) are described in a geometric language.

In chapter 4, we proved that the supersymmetry equations relevant for AdS5 vacua
with generic fluxes preserving eight supercharges in type IIB and M-theory compacti-
fications translate into the integrability conditions (4.1.7),(4.1.8) and (4.1.9) in Excep-
tional Generalized Geometry. The integrability conditions involve generalized struc-
tures in the fundamental and adjoint representations of the E6(6) U-duality group.
Although our calculations were performed for the particular case of AdS5 compact-
ifications, the integrability conditions are expected to be the same for other AdSd
vacua of type II (either IIA or IIB) and M-theory compactifications preserving eight
supercharges, since these are described by vector and hypermultiplets. A particularly
interesting case to analyse is that of AdS4 vacua, where the relevant U-duality group
is E7(7), with maximal compact subgroup SU(8). The construction of the generalized
structures from spinor bilinears is the same, and since our calculations were done in
USp(8) language, the extension to SU(8) should be rather straightforward.

The description of AdS5 vacua in exceptional generalized geometry has nice appli-
cations in AdS/CFT. The original example is the AdS5 × S5 solution supported by
five-form flux (in the type IIB case) which is dual to N = 4 SYM. Allowing for generic
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internal manifolds (and fluxes) but still preserving some supersymmetry corresponds
to supersymmetric deformations on the field theory side. AdS vacua are dual to de-
formations that preserve conformal invariance on the gauge theory. Having a compact
description of the internal geometry opens then the way for finding the supergravity
dual of these deformations in a rather systematic way, as very recently shown in [104].
We will explore this direction further in future work.
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Chapter A
’t Hooft symbols

The explicit form of the ’t Hooft matrices GAij is

G1 =
(

0 −iσ2
−iσ2 0

)
G2 =

(
0 −σ0
σ0 0

)
G3 =

(
iσ2 0
0 −iσ2

)

G4 =
(

0 −iσ1
iσ1 0

)
G5 =

(
0 iσ3
−iσ3 0

)
G6 =

(
σ2 0
0 σ2

)
(A.1)

Here σ1,2,3 are the standard Pauli matrices and σ0 is the 2 × 2 unit matrix. These
matrices satisfy the following basis independent properties:

GAijδABG
Bkl = −2

(
δki δ

l
j − δkj δli

)
, Tr

(
GA
†
GB

)
= GA

ij
GBji = 4δAB , (A.2)

and

GAikG
B†kj +GBikG

A†kj = 2δABδji (A.3)

iεABCDEFG
A
ik1G

Bk1k2
GCk2k3G

Dk4k5
GEk5k6G

F k6j = δji .
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Chapter B
Spinor conventions

In the paper we use spinors of Spin(1,4) and Spin(5) and Spin(1,9) for type IIB, and
Spin(6) and Spin(1,10) in M-theory. We give our conventions for all of them, explain
their relations and provide some useful formulae for our calculations. In this section,
all the indices are meant to be flat.

For five Euclidean dimensions, the gamma matrices are denoted by γm, m =
1, . . . 5 and satisfy

(γm)† = γm (B.1a)
(γm)T = C5γ

mC−1
5 (B.1b)

(γm)∗ = D5γ
mD−1

5 (B.1c)
where we take D5 = C5 and we have γ12345 = 14. An explicit construction for them is
given by

γ1 = σ1 ⊗ σ0 (B.2a)
γ2 = σ2 ⊗ σ0 (B.2b)
γ3 = σ3 ⊗ σ1 (B.2c)
γ4 = σ3 ⊗ σ2 (B.2d)
γ5 = γ1γ2γ3γ4 (B.2e)
C5 = σ1 ⊗ σ2 (B.2f)

For a spinor χ, the conjugate spinor is defined as
χc = D∗5χ

∗ (B.3)
and satisfies the properties

(γmχ)c = γmχc, D∗5D5 = −1⇒ χcc = −χ (B.4)
For the 5-dimensional external space, we have a Lorentzian version of the above.

The intertwining relations for the gamma matrices ρµ are
(ρµ)† = −A1,4ρ

µA−1
1,4 (B.5a)

(ρµ)T = C1,4ρ
µC−1

1,4 (B.5b)
(ρµ)∗ = −D1,4ρ

µD−1
1,4 (B.5c)
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where µ = 0, . . . ,4, ρ01234 = −i 14 and D1,4 = −C1,4A1,4. Explicitly we can take

ρ0 = iσ2 ⊗ σ0 (B.6a)
ρi = σ1 ⊗ σi, i = 1,2,3 (B.6b)
ρ4 = iρ0ρ1ρ2ρ3 (B.6c)
A1,4 = ρ0 (B.6d)
C1,4 = ρ0ρ2 (B.6e)

The conjugate spinor is defined as

ψc = D∗1,4ψ
∗ (B.7)

and satisfies
(ρµψ)c = −ρµψc, D∗1,4D1,4 = −1⇒ ψcc = −ψ (B.8)

Now, let us combine the above representations to construct a 10-dimensional Clif-
ford algebra. We define

Γ̂µ = ρµ ⊗ 14 ⊗ σ3, µ = 0, . . . ,4 (B.9a)
Γ̂m+4 = 14 ⊗ γm ⊗ σ1, m = 1, . . . ,5 (B.9b)

The last factor is needed to allow for a chirality matrix in 10 dimensions:

Γ̂(11) = Γ̂0 . . . Γ̂9 = 14 ⊗ 14 ⊗ σ2 (B.10)

The 10-dimensional interwiners are constructed as follows

A1,9 = −A1,4 ⊗ 14 ⊗ σ3 =⇒ (Γ̂M )† = −A1,9Γ̂MA−1
1,9 (B.11a)

C1,9 = C1,4 ⊗ C5 ⊗ σ2 =⇒ (Γ̂M )T = −C1,9Γ̂MC−1
1,9 (B.11b)

D1,9 = D1,4 ⊗D5 ⊗ σ1 =⇒ (Γ̂M )∗ = D1,9Γ̂MD−1
1,9 (B.11c)

A 10-dimensional spinor ε splits as

ε = ψ ⊗ χ⊗ u (B.12)

where u is acted upon by the Pauli matrices. For the conjugate spinor we have

εc = D∗1,9ε
∗, D∗1,9D1,9 = 1⇒ εcc = ε (B.13)

The type IIB Majorana-Weyl spinors εi are

εi = ψ ⊗ χi ⊗ u+ ψc ⊗ χci ⊗ u, i = 1,2 (B.14)

Their chirality and reality properties require

u = σ2u = σ1u∗ (B.15)
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We construct now gamma matrices Γa, a = 1, . . . 6 for Cliff(6) from our represen-
tation for Cliff(5). We define

Γm =
(

0 γm

γm 0

)
, m = 1, . . . ,5, Γ6 =

(
1 0
0 −1

)
(B.16)

Γ7 = iΓ1 . . .Γ6 =
(

0 −i
i 0

)
, iΓ67 =

(
0 1
1 0

)
(B.17)

The interwiner for Cliff(6) is

C = Cαβ =
(
C5 0
0 C5

)
, C−1 = Cαβ =

(
C−1

5 0
0 C−1

5

)
(B.18)

which raises and lowers spinor indices as Γαβ = CαγΓγβ, Γαβ = ΓαγCγβ. For any
Cliff(6) element Γ, we have

Γ(n)
βα = −(−)Int[n/2]Γ(n)

αβ (B.19)

while the reality properties read1

Γ∗a = CΓaC−1 (B.20)

With these Γ we can also construct ten-dimensional gamma matrices relevant for
for compactifications to four dimensions as

Γ̂µ = ρµ ⊗ 18, µ = 0, . . . ,3 (B.21a)
Γ̂m+3 = ρ4 ⊗ Γm, m = 1, . . . ,6 (B.21b)

The 6-dimensional gamma matrices act on USp(8) spinors θα, α = 1,..8. In the
main text, we use the following

θ1 =
(
χ1
χ2

)
, θ2 =

(
χc1
χc2

)
(B.22)

satisfying
θ∗iα = (−iσ2)ijCαβθjβ (B.23)

The eleven-dimensional gamma-matrices relevant for M-theory can be built directly
from the six-dimensional ones Γa constructed above and from the ρµ of AdS5 as follows

Γ̃µ = ρµ ⊗ Γ7, µ = 0, . . . ,4 (B.24a)
Γ̃a+4 = 14 ⊗ Γa, a = 1, . . . ,6 (B.24b)

The relevant interwiners for eleven dimensions are

C1,10 = C1,4 ⊗ C6Γ7 =⇒ (Γ̃M )T = −C1,10Γ̃MC−1
1,10 (B.25a)

D1,10 = D1,4 ⊗D6 =⇒ (Γ̃M )∗ = D1,10Γ̃MD−1
1,10 (B.25b)

1All the C’s defined in this section are antisymmetric, hermitian and unitary.
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A spinor in eleven dimensions ε decomposes as

ε = ψ ⊗ θ (B.26)

while the conjugate spinor is given by

εc = D∗1,10ε = ψc ⊗ θc (B.27)

The Majorana property of the M-theory supersymmetry parameter requires then

ε = ψ ⊗ θ + ψc ⊗ θc (B.28)

We finish by giving some Fierz identities which are heavily used in our calculations

(Γab7)αβ(Γab7)γδ − 2(Γa)αβ(Γa)γδ + 2(Γa7)αβ(Γa7)γδ = 16δα[γδ
β
δ] + 2CαβCγδ (B.29)

Γ(a
[αβΓb)7γδ] = 1

6g
abΓc[αβΓc7γδ] (B.30)

Γ[a
[αβΓb]7γδ] = −Γab7[αβCγδ] = − i

24εabcdefΓcd7
[αβΓef7

γδ] (B.31)

Γ[a|7
[αβΓbc]7γδ] = Γa7

[αβΓbc7γδ] + 2ga[bΓc][αβCγδ] (B.32)

Γ6
[αβΓmγδ] = −Γ67

[αβΓm7
γδ] (B.33)

Γm67
[αβ Γnp7γδ] + Γmnp6[αβ Cγδ] = 2gm[nΓp][αβΓ6

γδ] (B.34)

γαβmn(γmn)γδ = 10Cαβ5 Cγδ5 + 6γαβm (γm)γδ + 8γαγm (γm)βδ (B.35)

Let us note that one can derive additional Fierz identities by exploiting the following
Leibniz-like rule:

A[αβBγδ] = C[αβDγδ] =⇒ (AΓ)[αβBγδ] +A[αβ(BΓ)γδ] = (CΓ)[αβDγδ] + C[αβ(DΓ)γδ]
(B.36)

for any antisymmetric elements A,B,C,D and Γ of Cliff(6).



Chapter C
E6 representation theory

The group E6(6) is a particular real form of the E6 family of Lie groups. It is generated
by 78 elements, out of which 36 are compact and 42 are not. It contains as subgroups
USp(8) and SL(6)× SL(2) .

C.1 SL(6)× SL(2)decomposition

The vector representation V of E6(6) is 27-dimensional and splits under SL(6)×SL(2) as

27 = (6,2) + (15,1), V = (V i
a, V

ab) (C.1.1a)

while we will also need its dual

27 = (6,2) + (15,1), Z = (Zai, Zab) (C.1.1b)

The adjoint decomposes

78 = (35,1) + (1,3) + (20,2), µ = (µab,µij , µiabc) (C.1.2)

and its action on the vector is given by

(µV )ia = −µbaV i
b + µijV

j
a + 1

2µ
i
abcV

bc (C.1.3a)

(µV )ab = µacV
cb − µbcV ca − εij(?µi)abcV j

c (C.1.3b)

while on the dual vector by

(µZ)ai = µabZ
b
i − µ

j
iZ

a
j −

1
2εij(?µ

j)abcZbc (C.1.4a)

(µZ)ab = −µcaZcb + µcbZca − µiabcZci (C.1.4b)

where a,b,c, . . . run from 1 to 6 and i,j from 1 to 2.
The e6(6) algebra Jµ, νK is

Jµ, νKij = µikν
k
j + 1

12µ
i
abcεjk(?νk)abc − (µ↔ ν) (C.1.5a)
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Jµ, νKab = µacν
c
b −

1
4µ

i
bcdεij(?νj)acd − (µ↔ ν) (C.1.5b)

Jµ, νKiabc = µijν
j
abc − 3µd[aνibc]d − (µ↔ ν) (C.1.5c)

The group E6(6) has a quadratic and a cubic invariant. Given a vector V and a
dual vector Z, the quadratic invariant is

b(V,Z) = V i
aZ

a
i + 1

2V
abZab (C.1.6)

while the cubic is given by

c(V,U,W ) = 1
2
√

2
εij

(
V abU iaW

j
b + UabV i

aW
j
b +W abV i

aU
j
b

)
− 1

16
√

2
εabcdefV

abU cdW ef

(C.1.7)
where U,V and W are all in the fundamental. This allows to construct a dual vector
from two vectors by “deleting” one of the vectors in the cubic invariant, namely

[c(V,U, ·)]ai = 1
2
√

2
εij
(
V abU jb + UabV j

b

)
(C.1.8a)

[c(V,U, ·)]ab = 1√
2
εijV

i
[aU

j
b] −

1
8
√

2
εabcdefV

cdU ef (C.1.8b)

C.2 USp(8)decomposition

The other subgroup of E6(6) that we use is USp(8) . The 27 fundamental representa-
tions of E6(6) is irreducible under USp(8) , and encoded by an antisymmetric traceless
tensor

V = V αβ (C.2.1)

with V α
α = 0. The USp(8) indices α, β, . . . are raised and lowered with Cαβ in (B.18)

, which plays the role of USp(8) symplectic invariant.
The adjoint decomposes as

78 = 36 + 42, µ = (µαβ, µαβγδ) (C.2.2)

with µαβ = µβα, µαβγδ = µ[αβγδ] and µαβγδCγδ = 0. Furthermore, in our conventions
we have

µ∗αβ = −µαβ, µ∗αβγδ = µαβγδ (C.2.3)

The adjoint action is

(µV )αβ = µαγV
γβ − µβγV γα − µαβγδVγδ (C.2.4)

(µZ)αβ = µαγZ
γβ − µβγZγα + µαβγδZγδ (C.2.5)

and the e6(6) algebra is given by

Jµ, νKαβ = µ γ
α νγβ −

1
3µ

γδε
α νγδεβ − (µ↔ ν) . (C.2.6a)
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Jµ, νKαβγδ = −4µ ε
[ανβγδ]ε − (µ↔ ν) (C.2.6b)

The quadratic and the cubic invariant of E6(6) take a particularly simple form in the
USp(8) basis

b(V,Z) = V αβZβα (C.2.7)

and
c(V,U,W ) = V α

βU
β
γW

γ
α (C.2.8)

and we also have

[c(V,U, ·)]αβ = 1
2(V α

γV
′γβ − V β

γV
′γα − 1

4C
αβV γδV ′δγ) (C.2.9)

In our calculations we also need the adjoint projection built out of a vector V and a
dual vector Z. This is given by

(V × Z)αβ = 2V (α
γZ
|γ|β) (C.2.10a)

(V × Z)αβγδ = 6
(
V [αβZγδ] + V [α

εZ
|ε|βCγδ] + 1

3(V ε
ζZ

ζ
ε)C [αβCγδ]

)
(C.2.10b)

Finally, the Killing form is

Tr(µ, ν) = µαβναβ + 1
6µ

αβγδναβγδ (C.2.11)

C.3 Transformation between SL(6)× SL(2) and USp(8)

Our calculations involve objects which are more naturally described in the SL(6) ×
SL(2) basis (gauge fields and derivative) and others (spinors) which have a natural
USp(8) description. Therefore, it is useful to have explicit formulae for the transfor-
mation rules between them. For this purpose, we use the gamma matrices Γa defined
in 6 dimensions. It’s also useful to introduce two sets of them:

Γai = (Γa, iΓaΓ7), i = 1,2 (C.3.1)

The transformation rules for the vector (fundamental) and the dual vector (anti-
fundamental) representation are

V αβ = 1
2
√

2
(Γai )αβV i

a + i

4
√

2
(Γab7)αβV ab (C.3.2a)

Zαβ = 1
2
√

2
(Γia)αβZai + i

4
√

2
(Γab7)αβZab (C.3.2b)

and are easily inverted

V i
a = 1

2
√

2
V αβ(Γia)βα, V ab = i

2
√

2
V αβ(Γab7)βα (C.3.3a)

Zai = 1
2
√

2
Zαβ(Γai )βα, Zab = i

2
√

2
Zαβ(Γab7)βα (C.3.3b)
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For the adjoint representation we have1

µαβ = 1
4

[
µab(Γ b

a )αβ + iε ji µ
i
j(Γ7)αβ + 1

6ε
j
i µ

i
abc(ΓabΓcj)αβ

]
(C.3.4a)

µαβγδ = 1
8

[
− µab

(
(Γia)[αβ(Γbi)γδ] − (Γac7)[αβ(Γcb7)γδ]

)
+ µij(Γai )[αβ(Γja)γδ]

+ iµiabc(Γai )[αβ(Γbc7)γδ]
]

(C.3.4b)

Their inverses are given by

µab = −1
4µ

αβ(Γab)βα −
1
16µ

αβγδ(Γai )[αβ(Γib)γδ] (C.3.5a)

µij = − i4ε
i
jµ
αβ(Γ7)βα + 1

48µ
αβγδ(Γia)[αβ(Γaj )γδ] (C.3.5b)

µiabc = − i4µ
αβ(ΓiaΓbc7)βα + i

8µ
αβγδ(Γia)[αβ(Γbc7)γδ] (C.3.5c)

1SL(2) indices are raised and lowered with δij .
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