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Abstract

Automatic learning processes are becoming ubiquitous in many domains of science. However,
nowadays databases commonly comprise millions or billions of elements, which challenge tra-
ditional learning methods. Furthermore, modern database architectures involve new difficul-
ties: data may be seen once then discarded (a situation usually referred to as data stream), often
databases are not stored in one single location but distributed across several storage places and
it is undesirable to gather the whole database in one place for the sake of privacy and robust-
ness to malicious attacks. It has thus become necessary to derive learning procedures that are
amenable to very large databases, and to distributed and streaming computing.

A popular idea is to define an intermediary compressed representation of a database, which is
fast to compute, adapted to streaming and distributed computing through update and merge
mechanisms, preserve data privacy, and such that the desired learning task can be performed
using only this compressed representation, with a computational complexity that is greatly re-
duced compared to using the full database. A popular class of such representations is called
linear sketches: the whole database is compressed into a single fixed-size vector called sketch,
such that the sketch of the union of two databases is the sum of their sketches. Because of
this property it is obvious that linear sketches are particularly convenient for streaming, dis-
tributed and parallel computing.

In [BGP13; BGP15], Bourrier et al. introduced a learning method based on a linear sketch
formed by a random sampling of the empirical characteristic function of a collection of mul-
tidimensional vectors. They showed empirically that it was possible to fit a Gaussian Mix-
ture Model (GMM) with fixed identity covariance on the original data, using only its sketch.
However, the method was restricted to GMMs with identity covariance, and theoretical justi-
fications were still an open question. Extending this method to other models and providing a
theoretical analysis of the approach is the main purpose of this thesis work.

To do so, we develop an original framework based on several different sets of mathematical
tools. The expression of the sketching operator is formalized by combining kernel mean embed-
ding, which allows to define tunable Hilbertian metrics on the set of probability distributions,
with Random Feature expansions, that approximate the infinite-dimensional mapping associated
with a kernel function by a finite-dimensional mapping designed randomly. Using this math-
ematical framework, we analyze the sketching method under the lens of Compressive Sensing,
which states that any signal that is in some sense less complex than the ambient dimension
can be successfully compressed and estimated. We adapt classic proofs for finite-dimensional
settings to our generalized infinite-dimensional framework. We provide guarantees for many
problems, including for that of estimating mixtures of multivariate elliptic α-stable distribu-
tions from a sketch, for which no estimator was known. We particularly extend the framework
and relate it to more traditional learning in two cases: first when recovering centroids from a
sketch for the k-means or k-medians problem, and for GMM estimation with known covari-
ance.

We introduce a flexible heuristic greedy algorithm coined Compressive Learning - Orthog-
onal Matching Pursuit with Replacement (CL-OMPR) that can estimate any parametric mix-
ture model from any sketch in a very wide variety of situations. Experiments are performed on
real and synthetic data for three models. First, mixtures of Diracs, for which our approach is
shown to be more efficient and more stable than k-means on large databases; second, GMMs
with unknown diagonal covariances, where the proposed approach is seen to be faster and
lighter that classic Expectation Maximization (EM). And, finally, mixtures of multivariate el-
liptic α-stable distributions, where our approach is the first viable algorithm of which we are
aware that can perform this task.
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Résumé en français

Cette section rédigée en français reprend la motivation initiale de la thèse et en résume
les contributions principales. Le manuscrit principal commence à la suite de ce résumé et
est rédigé en anglais.

This section written in French reviews the initial motivation of the thesis work and sum-
marizes the main contributions. The main part of the manuscript begins after this sum-
mary and is written in English.

Les bases de données modernes peuvent contenir un très grand nombre d’éléments. De
plus, pour des questions de robustesse à d’éventuelles attaques informatiques ou de préser-
vation de la vie privée, elles sont rarement stockées intégralement en un unique endroit, mais
plutôt divisées en plusieurs parties conservées séparément et pour un temps possiblement
limité. On observe donc un besoin croissant pour des méthodes de traitement rapides pou-
vant exploiter un très grand nombre de données, et suffisamment flexibles pour s’adapter à
des bases de données distribuées et constamment mises à jour.

Une méthode classique basée sur ces critères est l’utilisation d’une représentation com-
pressée de la base de données appelée sketch linéaire. Un sketch linéaire est un unique vecteur
contenant diverses informations sur la base de données, pouvant être récupérées en temps
voulu par l’utilisateur. La propriété principale des sketchs linéaires est la suivante: le sketch
d’une union de deux bases de données est la somme de leurs sketchs. Ainsi, les sketchs linéaires
sont adaptés aux situations où la base de données est distribuée, puisqu’il suffit de calculer
les sketchs de chacune des parties puis de faire la somme de tous ces sketchs pour obtenir le
sketch de la base de données globale, ainsi qu’au calcul en ligne, c’est-à-dire lorsque les élé-
ments de la base sont collectés de manière séquentielle et que l’on ne désire pas forcément les
garder en mémoire.

Une tâche classique d’apprentissage non-supervisé est celle d’estimer la distribution de
probabilité sous-jacente d’un ensemble d’objets. C’est-à-dire, en supposant que l’on dispose
de n objets {z1, . . . , zn} tirés aléatoirement et de manière indépendante selon une certaine
distribution de probabilité π?, on cherche à estimer π?. En utilisant la propriété de linéarité
des sketchs, il est facile de voir qu’un sketch linéaire y de cet ensemble peut toujours s’écrire
y =

∑n
i=1 Φ(zi), où Φ(z) ∈ Rm est le sketch d’un élément unique. Connaissant le nombre

d’éléments n dans la base données (ce nombre étant lui-même un sketch linéaire), on peut
alors calculer ŷ = 1

n

∑n
i=1 Φ(zi). Il s’agit d’une moyenne empirique de la function Φ(·), approx-

imativement égale à l’espérance Ez∼π?Φ(z) d’après la loi des grands nombres. Ceci permet
de définir un opérateur linéaire sur les distributions de probabilité Aπ = Ez∼πΦ(z), et ainsi le
sketch est approximativement ŷ ≈ Aπ?. Ainsi il est possible d’estimer π? à partir du sketch
ŷ en utilisant des méthodes de problème inverse: le sketch est une mesure linéaire de la distri-
bution de probabilité sous-jacente aux données, et l’on cherche à retrouver cette distribution à
partir de cette mesure.

Cette thèse se concentre sur l’étude d’une méthode pour estimer la distribution de proba-
bilité sous-jacente à un ensemble de vecteurs à partir d’un sketch linéaire de cet ensemble, en
l’approchant par un modèle de mélange, c’est-à-dire une combinaison linéaire de k éléments
pris dans un ensemble de distributions basiques {πθ}. Un algorithme d’estimation rapide et
flexible est défini, et une étude théorique des possibilités de reconstruction est réalisée.

Garanties générales pour les problèmes inverses sur des ensembles de basses dimension.
Après un chapitre introductif, notre second chapitre porte sur une première contribution in-
dépendante de la méthode de sketching décrite ci-dessus. Elle concerne l’étude de garanties
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génériques de reconstruction pour les problèmes inverses, où l’on cherche à retrouver un sig-
nal x à partir de mesures bruitées y = Ψ (x) + e. Dans de nombreux cas l’opérateur de mesure
Ψ (·) perd de l’information, et la reconstruction n’est faisable qu’avec un a priori sur le signal x.
Des études ont été réalisées prouvant que sous certaines conditions la reconstruction est pos-
sible lorsque le signal est proche (au sens d’une certaine métrique) d’un modèle de signaux de
“faible complexité” S : l’exemple le plus classique se trouve dans le domaine de l’acquisition
comprimée, où le signal x est un vecteur approximativement k-parcimonieux, c’est-à-dire ne
possédant que k coordonnées significativement différentes de zéro, où k est bien plus faible
que la dimension ambiante. Ces études montrent que la possibilité d’une reconstruction ro-
buste est en réalité équivalente à une propriété d’Isométrie Restreinte (ou RIP, pour Restricted
Isometry Property) satisfaite par l’opérateur Ψ, c’est-à-dire que cet opérateur préserve approxi-
mativement les distances sur le modèle S. Ces résultats, d’abord formulés lorsque l’opérateur
Ψ est linéaire et le signal x est de dimension finie, ont été étendus à la dimension infinie. Nous
étendons encore ces résultats dans plusieurs directions:

– nous démontrons que ces résultats restent valides même lorsque l’opérateur Ψ (·) est
non-linéaire et le signal x appartient à un ensemble quelconque munit d’une métrique
(et pas forcément un espace vectoriel);

– la RIP exacte étant parfois difficile à prouver, nous laissons la possibilité d’une erreur ad-
ditive η ≥ 0 dans sa formulation et démontrons que la reconstruction stable est toujours
possible et peu dégradée;

– enfin, lorsque l’opérateur Ψ (·) est tiré aléatoirement (comme c’est souvent le cas en
acquisition comprimée), nous formulons des résultats de reconstruction non-uniformes,
c’est-à-dire exprimant la possibilité de reconstruire un signal fixé x avec forte probabil-
ité, par opposition à la capacité de reconstruire tous les signaux avec forte probabilité.
Nous formulons une version non-uniforme de la RIP, qui est à notre connaissance totale-
ment nouvelle.

Techniquement, tous ces résultats ne seront pas nécessaires pour analyser la méthode d’estimation
de distribution à partir d’un sketch sur laquelle porte cette thèse. En particulier, l’opérateur de
mesureA est linéaire par rapport aux distributions de probabilités. Néanmoins, ces nouveaux
résultats pourront se révéler utiles lors de développements futurs.

Un cadre pour l’estimation de distributions à partir de sketchs. Notre deuxième contribu-
tion concerne la définition d’un cadre donnant naissance à un certain type de sketchs linéaires
permettant de réaliser l’estimation de distributions. Au vu des résultats du chapitre précé-
dent, nous aimerions prouver que l’opérateur A satisfait la RIP, afin de garantir la possibilité
d’une estimation stable de la distribution π? à partir du sketchAπ?. Néanmoins, les métriques
classiques sur les espaces de mesures ne semblent pas adaptées. Ainsi, nous faisons appel au
domaine des méthodes à noyaux, qui permettent de munir n’importe quel ensemble d’objets
d’une géométrie euclidienne dont les propriétés sont ajustables relativement aisément par le
choix d’une fonction appelée noyau, qui sert de produit scalaire. Nous utilisons ainsi un outil
appelé noyau moyen, qui à partir d’un noyau classique sur un espace mesurable permet de
définir un noyau sur les mesures définies sur cet espace. Afin de construire l’opérateur de
sketch, nous faisons appel à un dernier outil mathématique : les descripteurs aléatoires (RF,
pour Random Features) de noyaux, qui permettent d’approcher cette fonction noyau par des
plongements explicites dans des espaces de dimension finie, construits aléatoirement. Ainsi,
dans le troisième chapitre :

– nous démontrons que sous certaines conditions portant sur la “dimension” intrinsèque
du modèle S et sur le comportement des descripteurs aléatoires d’un certain noyau,
l’opérateur de sketch construit (aléatoirement) à partir de ces descripteurs satisfait la
RIP avec forte probabilité, ce qui garantit la possibilité d’une estimation stable des dis-
tributions proches du modèle à partir de leur sketch;

– en guise de première application du résultat, nous prouvons que la reconstruction est
possible pour de nombreux modèles lorsque le sketch est aussi grand que la base de
donnée originale. Ces résultats préliminaires ne permettent pour le moment pas de dire
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qu’utiliser le sketch est plus économe que les méthodes utilisant toute la base de don-
nées, mais ils sont relativement simples à démontrer et permettent de se familiariser
avec les outils. On observera par la suite qu’ils sont fort heureusement significativement
sous-optimaux par rapport aux expériences pratiques;

– nous illustrons ces premiers résultats sur deux modèles, en particulier sur le modèle de
mélanges de distributions α-stables elliptiques multivariées, pour lequel il n’existait à
notre connaissance pas d’estimateur avec garanties.

Ainsi nous sommes potentiellement en mesure d’estimer une distribution à partir de son
sketch de manière stable. Nous devons maintenant définir un algorithme capable de réaliser
cette tâche. Malheureusement la fonction de coût à minimiser ressortant de notre étude est le
plus souvent non-convexe, et il semble difficile de la minimiser avec exactitude. Nous définis-
sons dans la suite une heuristique gloutonne, afin de traiter du cas particulier où le modèle de
faible complexité S est un modèle de mélange.

Algorithme d’estimation glouton. Une distribution dans un modèle de mélange Sk est for-
mée par la combinaison linéaire de k éléments pris dans un ensemble de base {πθ} indexé
continuement par le paramètre θ. Estimer un tel mélange à partir d’un sketch revient à

un problème de moindres carrés non-linéaires minθ,ξ

∥∥∥∑k
l=1 ξlf(θl)− y

∥∥∥2

2
, où un vecteur y

est approché par une combinaison linéaires d’atomes choisis dans le dictionnaire {f(θ)}, où
f(θ) := Aπθ pour la méthode de sketch. Dans cette troisième contribution, nous étudions un
algorithme pouvant être appliqué à n’importe quel problème de ce type lorsque la fonction f
est différentiable. Ainsi dans le quatrième chapitre :

– nous commençons par démontrer que la fonction de coût est potentiellement convexe
par bloc lorsque l’on se situe suffisamment proche de la solution optimale. Nous évo-
quons la possibilité d’utiliser un algorithme de descente de gradient par bloc, qui en
pratique se révèle très limité en l’absence d’une bonne initialisation;

– nous proposons ensuite notre approche gloutonne, qui ajoute itérativement les éléments
au mélange en se basant sur le principe de l’algorithme classique Orthogonal Matching
Pursuit (OMP). Afin de gérer le dictionnaire continuement indexé, l’algorithme alterne
chaque itération avec des étapes de descente de gradient classique. Nous donnons une
deuxième variante de cet algorithme avec Remplacement, qui est capable d’ajouter des
atomes mais également d’en retirer par seuillage dur;

– nous appliquons ces algorithmes à un premier exemple simple, et nous observons effec-
tivement que l’algorithme avec remplacement surpasse les autres approches.

Bien que les garanties de cet algorithme heuristique soient encore une question ouverte, nous
démontrons par la suite qu’il se révèle empiriquement efficace sur de nombreux problèmes.

Applications. Nous appliquons notre approche gloutonne à l’estimation pratique de mod-
èles de mélange à partir d’un sketch. Nous commençons le cinquième chapitre par décrire
une méthode pour apprendre à partir d’une infime fraction de la base de données certains
paramètres pour ajuster la méthode de sketch, en l’absence de connaissance a priori sur les
données. Puis nous implémentons la méthode sur trois cas.

– Dans un premier cas, le sketch est utilisé afin de retrouver des mélange de distributions
de Dirac. Bien que la vraie distribution des données π? n’est bien évidemment pas un
mélange de Diracs, on observe en pratique que les Diracs reconstruits sont placés au
centre des groupes significatifs de données. Nous comparons ainsi la méthode obtenue
avec l’algorithme classique des k-moyennes, qui calcule de tels centres. Nous observons
que notre méthode de sketch est bien plus rapide que cette algorithme lorsque la base de
données est de grande taille, et globalement plus stable. Nous comparons également les
algorithmes sur données réelles, sur une tâche de reconnaissance de chiffres manuscrits.
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– Dans un deuxième temps, l’algorithme est instancié pour estimer des modèles de mélange
de distributions gaussiennes avec covariance diagonale. La méthode de sketch est com-
parée à l’algorithme classique Espérance-Maximisation (EM), et on observe une nouvelle
fois qu’elle est plus rapide et moins gourmande en mémoire sur les grandes bases de
données. Les algorithmes sont comparés sur un problème de reconnaissance de locu-
teur.

– Enfin, la méthode de sketch est appliquée à l’estimation de mélanges de distributions α-
stables elliptiques multivariées. À notre connaissance, jusqu’à présent aucun algorithme
n’était capable de traiter du cas multivarié pour les mélanges de distributions α-stables.

Dans ces trois cas, on observe que la taille du sketch suffisante pour obtenir à un résultat
qualitativement bon se comporte en m ≈ O (kd), où k est le nombre de composantes dans le
mélange et d est la dimension des données. Cette taille est indépendante de la taille de la base
de données initiales (et intuitivement optimale puisqu’il s’agit du nombre de paramètres du
problème), ce qui confirme que nos premiers résultats théoriques du troisième chapitre étaient
effectivement pessimistes.

Étude plus poussée de deux modèles. Dans un dernier chapitre, nous exploitons plus en
profondeur les résultats associés à notre cadre générique, dans un double but : prouver que
l’estimation est possible à partir d’un sketch dont la taille ne dépend pas de la taille de la base
de données initiales mais seulement de la complexité du modèle (tel qu’observé en pratique),
et relier ces résultats non plus à une certaine métrique à noyaux, parfois difficile à interpréter,
mais à des fonctions de coût plus classique en apprentissage. Ainsi :

– nous développons une analyse plus poussée dans le cas des modèles de mélange. Cette
analyse est basée sur l’hypothèse-clé suivante: au sein d’un mélange donné, les com-
posantes sont deux à deux suffisamment séparées. Sous cette hypothèse de séparation,
lorsque l’on examine deux modèles de mélange proches, chaque composante de l’un
peut être appariée à une unique composante de l’autre, formant ce que l’on appellera
un “dipôle”, tout en étant éloignée de toutes les autres composantes. La différence entre
deux mélanges peut alors être décomposée en une somme de dipôles. Sous certaines
hypothèses sur le noyau, ces dipôles peuvent être traités indépendamment les uns des
autres, et il est alors possible d’obtenir un contrôle fin sur les différentes métriques.

– Dans un premier exemple, nous revenons sur les mélanges de Diracs implémentés dans
le chapitre précédent. Nous démontrons que l’estimation est possible avec une taille de
sketch m ≈ O

(
k2d2

)
, qui est encore légèrement pessimiste comparée à la pratique mais

effectivement indépendente de la taille de la base de donnée initiale. Par ailleurs, nous
relions ces garanties aux fonctions de coût classiques pour les problèmes de k-moyennes
et k-médianes.

– Nous appliquons ensuite cette analyse aux modèles de mélange de gaussiennes dont la
covariance est fixée et connue. Nous démontrons que l’estimation est possible avec une
taille de sketch m ≈ O

(
k2d2C

)
, où C est un paramètre dépendant de la séparation im-

posée sur les moyennes au sein d’un mélange. On obtient C = O (1) pour une “grande”
séparation en O

(√
d log k

)
, et C = O

(
ed
)

pour une séparation faible en O
(√

log k
)
. Ces

garanties sont reliées au maximum de vraisemblance classique.

Nous finissons par donner de nombreuses pistes, théoriques et algorithmiques, soulevées
par nos travaux. Soulignons parmi celles-ci la recherche d’un algorithme avec garantie, poten-
tiellement basé sur une possible relaxation convexe du problème tel que cela est fait dans le
domaine de la super-résolution, ou encore la possible analyse RIP d’opérateurs non-linéaires
obtenus en cascadant des descripteurs aléatoires construisant des noyaux plus complexes, tels
que les réseaux de neurones multi-couches.
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Chapter 1

Introduction

You can’t do sketches enough.
Sketch everything and keep your curiosity
fresh.

John Singer Sargent

We live in the “Big data” era. This term is now ubiquitous in nearly all domains of industry
or science. It designates a reality: with large quantities of data new opportunities arise, but
databases are becoming so big that traditional methods to handle them no longer work. With
the invention of the Internet, increasing use of smartphones and tablets, or large-scale scientific
experiments, massive amounts of data are collected, stored and processed every minute. The
ability to treat databases at such unprecedented scales is a crucial challenge in many scientific
fields, while at the same time very few organizations have access to the computational power
of huge corporations.

Designing light, fast and mathematically sound methods that can process vast quantities
of data with controlled computational power is a paramount challenge for the future. A nat-
ural and long-studied idea is to first pre-process the data to reduce its size while still keeping
the ability to learn the information of interest from this compressed representation. The goal
of this thesis is to study one such method where a collection of items is compressed into a
representation called sketch, which is then exploited to learn the properties of the distribution
of these items. This introductory chapter starts by presenting the motivations for this work. It
then provides the main mathematical background upon which this thesis is built, and finishes
by describing the contributions of the thesis and layout of the rest of the manuscript.

1.1 Motivation

We have recently witnessed the tremendous growth of a field called Machine Learning (one may
even distinguish the related and overlapping field of Data Science [Don15]), at the intersection
of Computer Science and Statistics, that has impacted a great number of other areas of science.
Researchers in Machine Learning develop methods and algorithms to exploit data and learn
how to automatically execute certain tasks: recognize faces on images, transcribe and trans-
late speech, recommend movies that a user may like based on the content he has previously
enjoyed, but also vanquish a grand master of Go, discover the properties of molecules, and so
on and so forth.

Any learning scheme usually makes use of a set of training data, whose properties one
wants to infer, in order to exploit them later in test situations. A substantial branch of Machine
Learning is inspired by Statistics, in that it incorporates randomness in the formulation of the
learning problem. For instance, assuming each training item is drawn at random from some
probability distribution, one may want to learn some properties of this distribution.

However, nowadays data are available in such vast quantities that traditional statistical
methods are strongly challenged.

Data compression. To handle large-scale learning tasks, a very natural idea is to compress
(reduce the size of) a database before performing any actual “learning” on it. This two-step
approach permits to focus separately on making the compression a fast and efficient process,
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while the learning step will be naturally lighter since it is performed on the compressed rep-
resentation and not on the full database itself.

With modern database architectures, new challenges emerge. First, data collections are of-
ten not stored in one single location but distributed across many storage places. Therefore,
when building a compressed representation of a database of objects, it is desirable that partial
summaries can be computed in each of these places then merged without having to transmit
original data from one place to another (parallel/distributed computation). Second, it is in-
creasingly frequent for data to be collected and/or updated continuously, in the so-called data
stream model. As data arrives, its compressed representation must be updated: ideally, this
operation should be fast to perform, and independent of previous events. Finally, increasing
efforts are dedicated to preserving data privacy, i.e. prevent a third party from examining indi-
vidual data points contained in a database. One therefore looks for representations that also
encrypt the data and do not allow for recovering the original data from it, while still permitting
to perform the appropriate learning task on it.

Data compression has a long and rich history, attempting to give an exhaustive description
of the field here would be vain. We outline three different methodologies as examples, which
will naturally lead us to the notion of sketching, which is the main focus of this thesis.

z1 . . . zn

Database

z′1 . . . z′n

Dimensionality reduction

z1 . . . zn′

Sub-sampling, Coresets

y

Sketch

θ

Parameters

FIGURE 1.1: Three complementary routes to compressive learning. The train-
ing data is compressed into a smaller representation. This can either consist in
reducing the dimensions of each individual entry (left), reducing the number
of items (center), or in computing a more global compressed representation of

the data, called sketch (right).

1.1.1 Three complementary compression schemes

Consider a database formed by a collection of n items zi. The goal is to learn some parameters
θ from this database. Compression schemes come in many different flavors, we describe three
different kinds in this section, illustrated in Figure 1.1.

Dimensionality reduction. A natural idea is to compress each individual item in the database
(left scheme in Figure 1.1). It can be referred to as dimensionality reduction. For instance, in a
database containing images, each individual image can be stored in a compressed format with
controlled loss of information (e.g. JPEG), the ability to learn from the full database will be only
mildly affected. Dimensionality reduction is trivially amenable to streaming and distributed
computing, since each data point is treated independently from all others. Data privacy may
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however not be respected: if the compression process preserves enough information, then the
original data points can be recovered from it.

The dimensionality reduction process can either be learned (a general idea often referred
to as feature selection), or defined as a general-purpose reduction process independent of any
task, for instance by random projection. Feature selection [TAL14; ATL16] has a long history
linked to the broader problem of model selection. It consists in applying learning procedures
to eliminate the “features” of the items zi that are not relevant for the problem at hand and
reduce their size. It can be a supervised learning method, meaning that the learning process
is designed for a particular target task and it requires being able to qualitatively evaluate the
execution of this task for candidate reduction schemes, or done in an unsupervised manner,
meaning that it does not necessarily depend on the particular task that one wants to accom-
plish after the compression. For instance, a well-known unsupervised approach is Principal
Component Analysis [Jol02] (PCA), which projects the data along dimensions where it varies
the most, making the underlying assumption that these dimensions will be the most useful for
the learning task. Opposite to these learned schemes, random projection [Ach01; FM03] is a
general-purpose dimension-reduction method that is not learned from training data but simply
takes random linear measurements of the data points. Under some assumptions on the items
zi, such random measurements do not degrade the capacity to perform the learning task.

Random projection schemes has been successfully applied to many subsequent tasks such
as classification [CJS09; Reb+13], regression [MM09], clustering with k-means [BZD10; Coh+15],
or fitting a Gaussian Mixture Model (GMM) [Das99].

Dimensionality reduction is however challenged in the case where each individual item zi
is not very large but their number n is great, since the number of elements n is not reduced in
the compressed version of the database.

Sub-sampling, coresets. A classic approach to treat databases with many elements is to sub-
sample it, i.e. keep only a reduced number of elements from it (center-scheme of Figure 1.1).
Sub-sampling has a very long history in Statistics, a good summary on sub-sampling schemes
can be found e.g. in the book by Cormode et al. [Cor+11]. The loss of information induced by
sub-sampling schemes can often be easily quantified with traditional statistical tools.

Modern sub-sampling schemes are also the basis for a class of methods called coresets.
Coresets were initially developed for k-means [HPM04] and, more generally, subspace approx-
imation [Fel+10; FL11]. They have been recently extended to other problems such as learning
Gaussian Mixture Models [FFK11; Luc+17]. In coresets methods the number of items in the
database is reduced by either sub-sampling (often weighted and adaptive [FFK11; Luc+17],
similar to the k-means++ algorithm [AV07]) or construction of small local summaries using a
hierarchical approach. Then classic learning algorithms are applied on this reduced database,
often in a weighted version [Luc+17].

Compared to other compression methods, coresets are somehow closer to already approxi-
mately performing the learning task. For instance, the coreset described in [FS05] incorporates
steps of Lloyd’s k-means algorithm in its construction.

Coresets often present strong theoretical guarantees: compared to using the full data, the
ability to perform the learning task from a coreset is generally precisely controlled. From
a computational point of view, coresets are not specifically build for the streaming context,
and they may require several passes over the data. Nevertheless they can still be adapted to
streams of data, as described e.g. in [HPM04; FL11; Luc+17], by using a merge-and-reduce
hierarchical strategy: for each batch of data that arrives sequentially, the user builds a coreset,
then groups these coresets and build a coreset of coresets, and so on. However one must in
general balance between keeping many coresets and letting the size of the overall summary
grow with the number of points in the database, or keeping only highest-level coresets at the
cost of losing precision in the theoretical guarantees each time the height of the hierarchical
structure increases. Furthermore coresets methods based on a sub-sampling are obviously not
privacy preserving, since some original data is kept unchanged in the reduced database.

Linear sketches. A third possibility corresponds to the right-scheme in Figure 1.1: the whole
database is compacted into a single vector called sketch, built smartly in order to be able to
learn the parameters from it. Relatively recent compared to compression of individual items
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zizi−1zi−2 zi+1 zi+2. . . . . .

Stream of data

y

Sketch

Update

FIGURE 1.2: Data Stream model and sketching. In the data stream model, each
data point is seen once then discarded. The sketch is updated each time a data
point arrives. The update operation is ideally fast (real-time) and independent

of previous events: linear sketches satisfy these requirements.

or sub-sampling, the literature on sketching has been quickly growing in the last years, due to
their many computational advantages, see again [Cor+11]. In this book the notion of sketch is
closely linked with the development of streaming methods. The sketch is a small summary of
the data seen at a given time, that can be queried for a particular piece of information about the
data. As required by the streaming context, when the database is modified, e.g. by inserting or
deleting an element, the subsequent update of the sketch is fast and independent of previous
events (see Figure 1.2).

A popular class of sketch amenable to both streaming and distributed computing is that of
linear sketches, i.e. structures such that the sketch of the union of two databases is the sum of their
sketches1. When a data point is added to the database, one simply adds the individual sketch of
this single element (ideally, fast to compute) to the global sketch of the database. Moreover the
sketch of a database divided across several storage devices is simply the sum of all the sketches
of its parts, which renders distributed and parallel computing trivial to implement. In the case
of distributed data, computing a sketch does not require the original data to be transmitted
from one place to the other, which greatly increases robustness to malicious attacks. In the
same fashion, they are extremely efficient in preserving data privacy.

The study of a particular sketching method for density estimation is the main focus of this
thesis. Sketches have been used for a large variety of operations [Cor+11] such as detection of
heavy-hitters [Cor+04; CM05; CH09] or, closer to our framework, approximately maintaining
histograms [Tha+02] or quantiles [Gil+02]. However the latter are subject to the well-known
curse of dimensionality and are unfeasible even in moderate dimension.

Compression v.s. Online learning. Finally, let us note that various learning algorithms have
been directly adapted to streams of data without resorting to compressed representations of
the database. Examples include modified versions of the Expectation-Maximization (EM) al-
gorithm [AD03; CM09], the k-means algorithm [Guh+00; AJM09; GLA16], or Principal Com-
ponent Analysis [GPP16]. In each case, the result of the algorithm is directly updated as data
arrive, without resorting to maintaining an intermediate structure. However these algorithms
do not fully benefit from the many advantages of sketches. Sketches are simpler to merge in
a distributed context, update operations are more immediate, and the learning step can be

1One can think of linear sketches as a generalization of hash tables [Cor+11].
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defered in time. For instance, private data can be collected and sketched on a large number
of portable devices, then sketches can be transmitted to a centralized machine where they can
be merged and the learning can take place. Furthermore, sketches can sometimes be queried
for several task that do not need to be specified in advance, unlike when directly performing
the learning as data are seen. We will see that this is the case for the sketch presented in this
thesis: in Chapter 5, the same sketch is used to compute centroids as in the k-means problem,
fit a Gaussian Mixture Model or a mixture of elliptic stable distributions2 on the database.

1.1.2 From Sketching to linear measurements of probability distributions

Consider a database Z = {z1, . . . , zn} ⊂ Rd that we want to compress into a linear sketch
Sk(Z) ∈ Cm formed by m complex numbers (or, equivalently, 2m real numbers). Since the
sketch is linear, i.e. the sketch of a union of two sets is the sum of their sketches, it is necessarily
expressed as a sum of individual “sketches” for each data point:

Sk(Z) =

n∑
i=1

Φ(zi) ,

where Φ : Rd → Cm is some function. If one also maintains online the number n of elements in
the database (which is also a linear sketch n =

∑n
i=1 1 ), the following sketch can be computed:

Skn(Z) =
1

n

n∑
i=1

Φ(zi) , (1.1)

which is formed by a collection of m empirical generalized moments, meaning that it is the em-
pirical average of the function Φ(z). The term “generalized” refers here to the fact that we
do not necessarily consider traditional polynomial moments z, z2 etc. here, but any function
of z instead. Strictly speaking, the sketch Skn(Z) is not a linear sketch, since it involves the
normalization 1/n that is non-linear, however as we have seen it can be easily computed from
the linear sketch {Sk(Z), n}.

Assume now that the items zi are drawn i.i.d. from a probability distribution π?. Many meth-
ods in machine learning basically consist in learning some properties of this probability distri-
bution.

The law of large numbers states that when the number of items n is large, the sketch Skn(Z)
is approximately equal to

Skn(Z) ≈ Ez∼π?Φ(z) . (1.2)

Therefore one can define the following linear operator on the set of probability distributions:

Aπ = Ez∼πΦ(z) ,

and the sketch is approximately3

Skn(Z) ≈ Aπ? .

Thus we can state:

Any linear sketch is approximately a collection of linear measurements of the underlying
probability distribution.

Leveraging this idea, learning from a sketch can be interpreted as an inverse problem: we
treat a probability distribution as an object that is encoded in a sketch then “decoded” under the
form of the properties we want to learn from it.

Using this paradigm, this thesis work is mainly based on the combination of three frame-
works described below.

2Stable distributions are more often called α-stable distributions, however in the thesis we do not use this term: it
somehow suggests that the so-called characteristic exponent α is fixed, and as we will see in a mixture the parameter
α is different for each component of the mixture. Hence we simply denote “stable distribution”, as in [Cas04] for instance.

3In fact, the sketch is exactly Skn(Z) = Aπ̂n, where π̂n = (
∑n
i=1 δzi )/n is the empirical probability distribution

of the data. The approximation comes from the law of large numbers.
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Step 1: goal of the thesis. In [BGP13], Bourrier et al. introduced an elegant sketching method
that is the basis of this thesis work. They built a linear sketch (1.1) of a database of items in

Rd by defining the function Φ(z) =
[
eiω>j z

]m
j=1

as a collection of complex exponentials with

randomly selected frequencies ωj ∈ Rd. They then developed an algorithm to fit a Gaus-
sian Mixture Model (GMM) where each component has identity covariance on the original
database, using only its sketch. It resulted in an efficient two-steps method to perform density
fitting: first construct the sketch using all the advantages of a linear sketch, then learn the den-
sity using an algorithm on this sketch. They demonstrated empirically that this approach is
more efficient than traditional methods that use the full database. However the method was
limited to GMMs with identity covariance, and was only demonstrated to work empirically
without theoretical justifications.

The main goal of this thesis is to extend this method to other models and provide theo-
retical justifications.

Step 2: analysis strategy For their sketching method, Bourrier et al. drew their inspiration
from Compressive Sensing (CS) [CT04; Don06], in the field of Signal Processing. Compressive
Sensing advocates that, under some hypotheses on a signal, compression can be performed
at the acquisition stage (hence the name) to accelerate the measuring process and occupy less
storage memory, with controlled loss of information about the true signal which can later be esti-
mated. Basically, if this signal in intrinsically less complex than it seemed at first (for instance
images are often formed by big blobs of uniform color, which is significantly simpler than any
random color at each pixel), then one may be able to compress this signal into a representation
that will be only as big as the signal’s true complexity, without losing too much information.
The sketching method of Bourrier et al. indeed falls into this category: it assumes that the
probability distribution π? is approximately a Gaussian Mixture Model, i.e. it has a much sim-
pler structure than a probability distribution with no assumption.

First applied on signals such as audio or images, CS has been extended to more general
notions of “signals”, like functions. In this spirit, Bourrier et al. [Bou+14] derived very gen-
eral conditions under which an object can be successfully compressed and recovered: if the
measurement operator satisfies the so-called Restricted Isometry Property (RIP), i.e. it approx-
imately preserves distance on a set of “simple” objects (like GMMs in the case of the sketching
method), then robust decoding of this simple set is possible.

Studying RIP-like conditions for the linear operator A is the main theoretical contribu-
tion of this manuscript.

Step 3: mathematical framework Unfortunately, traditional norms on the set of probabil-
ity distributions such as the total variation norm do not seem appropriate to derive the RIP:
existing proofs of the RIP usually make use of the properties of the Euclidean norm, which
in finite dimension is equivalent to any other norm but not in the infinite-dimensional space
in which probability distributions live. The solution came when we incorporated ideas from
kernel methods to the problem, and in particular a method called kernel mean embedding.

Kernel methods [Aro50; SS01] are elegant and successful examples of the paradigm which,
like modern CS, consists in extending traditional methods to generalized notion of “signal”. A
“kernel” function between any two objects is defined, and under mild conditions it is shown to
correspond to an inner product between the embeddings of these objects in a high-dimensional
Hilbert space, known as the Reproducing Kernel Hilbert Space (RKHS). Therefore, any set of
objects can be equipped with a Euclidean geometry, and classic learning algorithms can be
performed with it.

This paradigm has indeed been applied to probability distributions, in a method referred
to as kernel mean embedding. With this approach, any kernel on a measurable set of objects can
be transformed into a kernel on the set of probability distributions on these objects.

In this thesis, we show that by using an appropriate and tunable kernel on the set of
probability distributions, the analysis of the sketching operatorA can be derived in a Com-
pressive Sensing spirit.

The core of this thesis manuscript is therefore based on the combination of these three
components:
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– The main goal of this thesis is to extend, both theoretically and algorithmically, the
sketching method of Bourrier et al. [BGP13]

– To provide information-preservation guarantees for the sketching method, our strat-
egy is to prove that the sketching operator A satisfies the RIP.

– To do so, an appropriate mathematical framework is that of kernel mean embedding
and related tools.

The rest of this introductory chapter is divided in three sections (Sections 1.2, 1.3 and 1.4)
that can be read independently, each introducing the main mathematical tools of these three
frameworks. We finish by a summary of the contributions of the thesis and layout of the
manuscript in Section 1.5.

1.2 Inspiration: Sketched Gaussian Mixture modeling

In this section we describe the sketched learning method introduced by Bourrier et al. in

[BGP13; Bou14; BGP15]. The principle is to first compress a database z1, ..., zn
i.i.d.∼ π? of vectors

in Rd into a sketch y ∈ Cm, withm� nd, then fit a density on the original database using only
the sketch, which is faster and more memory efficient than using the full data. In this work,
the sketch is formed by randomly sampling the empirical characteristic function of the data,
and the density is recovered as a Gaussian Mixture Model (GMM) where each component
has identity covariance. As described in the introduction, this sketching process is extremely
amenable to parallel, distributed and online computing. By approximately recovering π? (as a
GMM) from the sketch, one therefore obtains an efficient two-step density estimation process:
first compute the sketch efficiently, then estimate π? with a procedure that is lighter than using
the full data. As mentioned before, the main inspiration behind this work comes from the field
of Compressive Sensing, of which we recall a few principles below.

1.2.1 Compressive Sensing

Compressive Sensing (CS) is based on the paradigm that when a signal has an intrinsic low-
dimensional structure, it can be efficiently compressed without losing too much information
and approximately recovered from its compressed representation. It is therefore useful in a
number of applications where taking one measurement of the signal is costly: the compression
step is applied directly at the acquisition stage (hence the name “Compressive Sensing”) and
the true signal is recovered later.

Somehow counter-intuitively, the acquisition rate can in fact be far below the classic Shannon-
Nyquist threshold rate when the signal is sparse, i.e. it has only a few non-zero coefficients in
a well-chosen basis. The field of Compressive Sensing was initiated by a quick succession of
papers published between 2004 and 2006 by Candès, Tao and Romberg [CT04; CRT06b; CT06;
CRT06a] and Donoho [Don06]. In 2013, Foucart and Rauhut published a book [FR13] that
summarizes the main results about Compressive Sensing and gives a list of more than five
hundreds references. Giving a complete overview of Compressive Sensing is of course out of
scope here, we only give a quick description of the usual tools that will be of particular interest
to us.

In traditional Compressive Sensing, a signal vector x? ∈ Rd is measured through a linear
operator M ∈ Rm×d:

y = Mx? + e (1.3)

where e ∈ Rm is additive noise. The goal is to (approximately) recover x? from y.
Two key notions of Compressive Sensing will be of particular interest: sparsity and random

measurements.

Sparsity. In Compressive Sensing the measurement process is most often dimension reducing,
meaning that m < d, which makes the recovery problem theoretically ill-posed even in the
noiseless case. Recovery is however possible when the signal x = [xi]

d
i=1 is sparse, meaning

that it has only a few non-zero coefficients in a well-chosen basis (for simplicity, we will assume
that it is sparse in the canonical basis of Rd here). We call support of the signal x the set of
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indices where it is non-zero: Γ(x) = {i | xi 6= 0}, and x is called k-sparse if |Γ(x)| ≤ k. For
a set of indices Γ of cardinality k, we denote MΓ ∈ Rm×k (resp. xΓ ∈ Rk) the restriction of
the matrix M (resp. the vector x) to columns (resp. entries) in Γ. The measurement vector
y ≈

∑
i∈Γ(x) xiMei is then a sum of atoms in the dictionary D = {Mei | i ∈ J1, dK}, where

e1, . . . , ed is the canonical basis of Rd.

Random Measurement Matrices. An attractive feature of Compressive Sensing is the de-
sign of a random measurement process. A key result states that a vector which is almost k-
sparse (meaning that it is close to its best k-term approximation) can be estimated from m =
O (k log(d/k)) measurements. One of the ways to prove this result is to show that the mea-
surement matrix satisfies the so-called Restricted Isometry Property (RIP) for 2k-sparse vector
with constant 0 ≤ δ < 1, which reads: for all 2k-sparse vectors x, we have

(1− δ) ‖x‖22 ≤ ‖Mx‖22 ≤ (1 + δ) ‖x‖22 . (1.4)

The RIP states that the measurement matrix M is “almost” an isometry (i.e. it preserves dis-
tances) on the set of 2k-sparse vectors. Intuitively, if M satisfies the RIP, it is able to “distin-
guish” two k-sparse vectors since it does not cancel on their difference, and recovering the
measured k-sparse signal is possible. However designing deterministic matrices M that have
the RIP in polynomial time is still an open question (see [FR13] Sec. 6.1). A key property of
CS is that, by drawing the matrix M randomly, it is possible to prove that it satisfies the RIP
with high probability. One of the first designs of this kind [CT04] was to randomly sample the
Fourier transform of the signal. Modern popular choices include matrices where entries are
i.i.d. Gaussian or Bernoulli variables (or, more generally, sub-Gaussian random variables), and
many other random measurement processes have been studied since.

Recovery. One way [BD08b] to recover x? is to solve:

arg min
z∈Rd

‖Mz− y‖2 subject to ‖z‖0 ≤ k (1.5)

where the so-called `0 seminorm4 ‖·‖0 is the number of non-zero elements in a vector, i.e. this
program returns the k-sparse vector that minimizes the measurement error. It can be shown
that the solution is robust even in a noisy setting, or when the true signal x? is not exactly
sparse.

Unfortunately, the minimization (1.5) is NP-complete ([FR13], Sec. 2.3), and thus unfeasible
in practice. Two main approaches have been developed to solve this issue.

– Convex relaxation: the possibility for a convex relaxation of (1.5) is also a great achieve-
ment of Compressive Sensing. In this case, it consists in replacing the `0 norm with the
`1 norm (the “convex” version of the `0 norm):

arg min
z∈Rd

‖Mz− y‖2 subject to ‖z‖1 ≤ τ. (1.6)

Under this form, this problem is known as the LASSO [Tib11] and is more often found
in Statistics, but it is equivalent ([FR13], Prop. 3.2) to other optimization problems such
as Quadratically Constrained Basis Pursuit, or Basis Pursuit Denoising, which are more
popular in CS.

Under some hypotheses on the matrix M, the problem (1.6) robustly recovers the true
signal, despite the NP-completeness of (1.5), with a number of measurements that still
scales in m = O (k log(d/k)). Since (1.6) is a convex problem, many efficient solvers are
available (see [FR13], Chap. 3 and 15).

– Greedy algorithms: greedy approaches consist in iteratively extending the support Γ of the
solution according to some criterion. Since y is a weighted sum of atoms in the dictionary
{Mei}di=1, Matching Pursuit (MP) [MZ93] and its variation Orthogonal Matching Pursuit
(OMP) [PRK93] choose at each iteration the atom Me` that is most correlated with the

4See the definition of a seminorm in Appendix A.
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residual signal r = y −Mz, where z is the current solution. The OMP algorithm (Alg.
1) is the main inspiration for the CL-OMPR algorithm developed in this thesis. Under
some assumptions (see e.g. [FR13], Sec. 3.2 and 5.3), the OMP algorithm is guaranteed to
return a good approximation of the true signal x?.

Compressive Sensing has since been extended in many directions. A number of works have
been dedicated to design other measurement processes, in particular to increase their speed
[LG16; Cha+15; KCW16]. The notion of “sparsity”, or more generally low-dimensionality, has
been extended to other type of signals: low-rank matrices [Can08; CT10; RFP07], cosparse
vectors [Nam+13], dictionary models [CP11], signals that live in a union of subspaces [PGD13;
Blu11] or more generally in a low-complexity subset of any Hilbert space [Bou+14; TG15;
PDG15].

Algorithm 1: Orthogonal Matching Pursuit [MZ93; PRK93] (OMP)
Data: Measurement vector y, measurement operator M, sparsity k
Result: x̃
r← y, Γ← ∅ ;
for t← 1 to k do

Step 1: Find the normalized atom most correlated with residual
`? ← arg maxi/∈Γ

∣∣∣〈 Mei
‖Mei‖2

, r
〉∣∣∣ ;

end
Step 2: Expand sparse support

Γ← Γ ∪ {i?} ;
end
Step 3: Find coefficients by Least Squares

x← arg minz ‖y −MΓz‖;
end
Update residual: r← y −MΓx;

end
Return vector x̃ such that x̃Γ = x and x̃Γc = 0;

1.2.2 Sketched GMM learning

After this brief reminder of CS concepts, let us describe the sketching technique by Bourrier et
al. [BGP13; Bou14; BGP15].

Denote P = P(Rd) the set of probability distributions on Rd. The authors define a linear5

operator A : P → Cm (referred to as sketching operator) that computes a collection of general-
ized moments of a probability distribution:

y = Aπ? := Ez∼π? [Φ(z)] (1.7)

where Φ(z) : Rd → Cm is some non-linear map. One immediately sees the resemblance with
the classic CS framework, although the reduction of dimension is here extreme: the measure-
ment vector is of finite dimension while the encoded object is infinite dimensional.

In practice, one does not have access to the probability distribution π?, but to a database of
vectorsZ = {z1, ..., zn} in Rd, drawn i.i.d. from π?. The sketch of the database is then computed
as

ŷ = Aπ̂n =
1

n

n∑
i=1

Φ(zi) (1.8)

where π̂n := n−1
∑n
i=1 δzi is the empirical distribution of the data. The goal is to recover π?

from ŷ. By pursuing the comparison with CS the sketch can be rewritten as

ŷ = Aπ? + e

5Meaning thatA(tπ + (1− t)π′) = tAπ + (1− t)Aπ′.
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where e := Ez∼π? [Φ(z)]− 1
n

∑n
i=1 Φ(zi) is a “noise” vector, which by the Law of Large Num-

bers have small amplitude with high probability. As mentioned before, two key notions of CS
will be of interest here, random measurements and sparsity.

Random Measurements. Inspired by random Fourier sampling, the authors define the func-
tion Φ as a collection of complex exponentials evaluated at some frequencies ωj ∈ Rd, 1 ≤ j ≤
m :

Φ(z) =
[
exp

(
iz>ωj

)]m
j=1

(1.9)

Continuing the parallel with CS and random Fourier sampling, the frequencies are chosen

randomly: ω1, ...,ωm
i.i.d.∼ Λ for some distribution Λ on Rd.

With this definition, the sketching operator is a random sampling of the characteristic func-
tion of a probability distribution π, defined as

ψπ(ω) = Ez∼π
[
exp

(
iz>ω

)]
. (1.10)

Sparsity and Mixture Models. Bourrier et al. then define a notion of “sparsity” in P, making
a parallel with the classic notion of mixture of distributions. Given T = {πθ | θ ∈ T } a basic
set of parametric distributions, a distribution π is said k-sparse if it is a k-mixture:

πΘ,ξ =

k∑
l=1

ξlπθl , (1.11)

where Θ = (θ1, ...,θk) ∈ T k is a set of parameters and ξ ∈ Sk−1 is a weight vector with
Sk−1 =

{
ξ ∈ Rk+ |

∑k
l=1 ξl = 1

}
the k − 1 dimensional simplex. To compare this definition

with classic CS, a k-sparse vector is a linear combination of k elements from the canonical basis
of Rd, and a k-mixture is a combination of k elements from T. The support of a k-mixture πΘ,ξ

is Θ and the dictionary of atoms is {Aπθ | θ ∈ T }. Notations and comparisons with traditional
CS are given in Table 1.1. In Bourrier’s original method [BGP13], the set T is chosen as the set
of Gaussian distribution with identity covariance, i.e. πθ = N (θ, I) and θ ∈ T = Rd.

Recovery. Adapting the cost function (1.5), estimating a k-mixture from ŷ is done by (ap-
proximately) solving

arg min
Θ∈T k, ξ∈Sk−1

‖AπΘ,ξ − ŷ‖2 (1.12)

which indeed corresponds to searching for the k-sparse distribution (i.e. k-mixture) that min-
imizes the measurement error. However, while analyzing (1.5) can be easily done with basic
linear algebra (see [FR13] chap. 2), and most of the work in CS is dedicated to coping with
its NP-completeness, analyzing the result produced by solving (1.12) is far from being trivial
(before even wondering if it is algorithmically feasible). In [Bou14], Bourrier shows that, in
the case of mixtures of Gaussians with identity covariance, for some deterministic choice of
m = O

(
k3d
)

frequencies, the mapping (Θ, ξ) 7→ AπΘ,ξ is injective. Hence, if we had access
to the true sketch y = AπΘ,ξ, solving (1.12) with ŷ = y would indeed produce the right re-
sults. However, robustness to noise (using ŷ instead of y) and stability to modeling error (the
true distribution of the data π? is not exactly a GMM but close to one) are not guaranteed, in
particular when using a random choice of frequencies as done in practice. In this thesis, we
will provide theoretical guarantees for generalized sketch distribution estimation methods in
Chapter 3, and examine more deeply the GMM with known covariances case in Chapter 6.

Algorithm. In general, the cost function (1.12) is non-convex with many spurious local min-
ima6, and cannot be exactly minimized numerically (this is somehow the equivalent of (1.5)
being NP-complete).

The convex relaxation of such generalized problems has been formulated recently [Cha+12;
TG15], however here this would be equivalent to manipulating the convex hull of the set of

6For instance, since permuting the components in the GMM does not change the cost function, each local (or global)
minimum is found at least k! times in the space of parameters.
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Usual compressive sensing Compressive mixture estimation
Signal x ∈ Rd π ∈ P

Model k-sparse vectors k-mixtures πΘ,ξ =
∑k
l=1 ξlπθl

Measurement operator M ∈ Rm×d A : P→ Cm
Support Γ(x) = {` | x` 6= 0} Γ (πΘ,ξ) = Θ = {θ1, ...,θk}

Dictionary of atoms {Me`}`=1,d {Aπθ}θ∈T

TABLE 1.1: Correspondance between objects manipulated in usual compressive
sensing of finite-dimensional signals and in compressive mixture estimation

framework.

Gaussians in P, which seems difficult and is unlikely to yield a practical algorithm beyond
very simple cases (see [DP15; DeC+15] which treats that of one-dimensional Diracs).

Another solution is to assume that the set of parameters T ⊂ Rd is bounded, and discretize
it to obtain a finite dictionary of atoms, from which usual methods can be applied [Bun+10].
However, it is well-known that, due to the so-called “curse of dimensionality”, it becomes
unfeasible when d increases to even moderate values: indeed for a precision of ε the size of the
grid (and therefore of the dictionary) scales in O

(
(1/ε)d

)
.

A final solution is to somehow derive continuous adaptations of classic CS algorithms.
In this spirit, the authors [BGP13] develop an algorithm based on Iterative Hard Thresholding
[BD08b; BD09], which in CS is an algorithm that alternates between a gradient descent step and
a Hard Thresholding (IHT) step that ensures sparsity. Here the “gradient” step (with respect
to π, not the parameters Θ, ξ) cannot by performed exactly, and is replaced by adding many
atoms to the support (2k in the original implementation) along which the decrease of the cost
function (4.1) is maximal, then keeping only a support of size k by Hard Thresholding7. These
atoms are found by randomly initialized numerical optimization schemes that only yield local
minima. Compared to traditional IHT, this algorithm involves additional gradient descent
steps of the whole cost function (4.1) at each iteration, to further decrease it.

Link with Generalized Method of Moments The recovery problem (1.12) is similar to a clas-
sic method in Statistics (and particularly Econometry) called the Generalized Method of Mo-
ments (GeMM) [Lan87; Hal05], in which the parameters θ of a model are learned by matching
a collection of theoretical generalized moments from the distribution πθ with empirical ones
from the data. GeMM is often seen as an alternative to Maximum Likelihood estimation,
to obtain different identifiability guarantees [BS10a; HK13; And+13] or for complex models
for which the likelihood is not available, such as α-stable distributions [NPM01] or recursive
models [Hal05, Sec. 1.3]. Traditionally, a finite number of moments is considered, but recent
developments give guarantees in a theoretical framework where an infinite (integral) num-
ber of moments are available [CF00; CF02; CF14]. The collection of moments materialized
by the sketch (1.7) is a sampling of the characteristic function, which has a long history of
use in Statistics and GeMM, since it is a natural way of obtaining moment conditions [FM77;
FM81]. It has been used for Gaussian Mixture modeling [Tra98; XK10], time series estimation
[KY02], two-sample test [AJM08], estimation of α-stable distributions [NPM01], among many
other problems. Following developments of GeMM with a continuum of moments instead of
a finite number of them [CF00], estimators can be derived when the characteristic function is
theoretically available at all frequencies simultaneously [CF02; XK10; CF14], i.e. by computing
(approximate) integrals of the characteristic function against some operator. In practice these
methods often require some prior knowledge to provide a good initialization of the optimiza-
tion procedures, and because of the use of approximate methods for integration they can be
time consuming.

7This version of the IHT algorithm is in fact more similar to CoSAMP [NT09], which is a variation of the classic
OMP in which at each iteration the 2k atoms most correlated with the residual are added to the support, then reduced
by Hard Thresholding. The “gradient step” of Bourrier indeed adds 2k atoms to the support by maximizing their
correlation to the residual (note that only local maxima are found), then reduces it with Hard Thresholding.
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GeMM vs Sketching. Although the recovery problem (1.12) is, strictly speaking, an instance
of GeMM, the point of view of the sketching method is fairly distinct from what is usually con-
sidered in the GeMM literature. First, GeMM traditionally considers the collection of moments
as a mathematical tool to obtain a statistical estimator different from maximum likelihood for
instance, whereas the collection of moments that forms the sketch is considered as a compressed
representation of the data and as a mean to achieve a learning task. As such, GeMM is rarely
considered from a practical point of view: in most of the literature, the minimization (1.12) is
performed with classic optimization routines and approximate numerical integration, while in
the sketching context powerful algorithms are developed to handle more complex cases, with
a particular attention on their computational complexity. From a theoretical point of view,
GeMM studies usual statistical guarantees such as consistency and efficiency of the estimator
θ̂, while the results that we will obtain in this thesis are more akin to Compressive Sensing
and Machine Learning. For instance, we consider robustness to modeling error (e.g. the true
distribution of the data is not exactly a Gaussian Mixture but close to one), which is to our
knowledge never a concern in GeMM. In the proof technique (Chapters 3 and 6), this is done
by replacing the so-called “global identifiability condition” (i.e. injectivity of the moment op-
erator, which is a classic condition in GeMM but is already difficult to prove and sometimes
simply assumed by practitioners, see [NM94, p. 2127]) by the strictly stronger Restricted Isom-
etry Property (RIP) from the Compressive Sensing literature.

1.3 Analysis strategy: robust decoding of inverse problems

In this section we present recent results [Bou+14; CDD09] that establish a connection between
the Restricted Isometry Property (RIP) [Can08; Bar+08] and the existence of a robust decoder,
for generalized linear inverse problems.

These results take place in a very general framework. Let E,F be two vector spaces
equipped with two seminorms, respectively ‖·‖E , ‖·‖F . Consider a linear operator M : E →
F , and suppose that we measure an object x? ∈ E with noise e ∈ F :

y = Mx? + e. (1.13)

The linear operator M is usually dimension-reducing, meaning that the “dimension” of E is
“larger” than that of F (note that neither of them is required to be finite-dimensional). In that
case, simple arguments often prove that there is no hope of recovering all signals x? from
their corresponding measurements y without prior knowledge. Hence we define a “low-
dimensional” model S ⊂ E (the equivalent of the set of k-sparse vectors in classic CS) that
will serve as an a priori on x?: our general goal is to guarantee that we can estimate objects in
(or close to) the model S from their measurements. Intuitively, as in CS the size of the mea-
surement vector y required by this type of analysis will be tightly related to the “complexity”
of the model S.

In [Bou+14], the authors establish an equivalence between two classic notions of Compres-
sive Sensing, the Restricted Isometry Property (RIP) (or, more precisely, the Lower RIP, or LRIP)
and the existence of an Instance Optimal decoder, i.e. a (non-linear) procedure capable of esti-
mating x? from (1.13) while being stable with respect to modeling error and robust to noise.
This connection was already noted in classic finite-dimensional CS [CDD09; FR13], its exten-
sion to general spaces was hinted in [PGD13] then formalized in [Bou+14] in the way that we
are going to present here.

Lower restricted Isometry Property. The RIP (1.4) states that M is almost an isometry on the
model S, meaning that it approximately preserves distance between any pair of signals in the
model S. For the Lower RIP, only one side of the inequality remains.

Definition 1.3.1 (Lower Restricted Isometry Property). The operator M satisfies the Lower
Restricted Isometry Property (LRIP) for the model S with constant α > 0 if: for all x,x′ ∈ S it
holds that

‖x− x′‖E ≤ α ‖M (x− x′)‖F . (1.14)
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Remark 1.3.2. In the original RIP (1.4), the RIP constant is placed on the left-hand side, and it is
desirable to have a constant as close to 1 as possible, to obtain recovery guarantees on e.g. convex relax-
ations of the original inverse problem [TG15]. The corresponding constant in (1.4) is then formulated
as α = 1√

1−δ , with δ small. It is not our goal here: any RIP constant strictly positive will guarantee
the existence of an instance optimal decoder, and in practice this constant will be fixed to an arbitrary
value.

Instance Optimal Decoder. A decoder ∆ takes a linear operator M, a measurement vector y,
and return a decoded signal x̃. It satisfies the Instance Optimality Property (IOP) with respect to
the model S if this decoding is stable to modeling error (the true signal is not in the model but
close to the model) and robust to the presence of noise.

Definition 1.3.3 (Instance Optimality Property (IOP)). A decoder ∆ satisfies the Instance
Optimality Property (IOP) for the operator M and model S with constants A,B > 0 and pseudo-
metric dE if: for all signals x? ∈ E and noise e ∈ F , denoting x̃ = ∆(M,Mx?+e) the recovered
signal, it holds that:

‖x? − x̃‖E ≤ AdE(x?,S) +B ‖e‖F (1.15)

where dE(x,S) = infxS∈S dE(x,xS).

The result in [Bou+14] is the following.

Theorem 1.3.4 (Bourrier et al. [Bou+14]). Consider an operator M and a model S.

1. If there exists a decoder ∆ which satisfies the Instance Optimality Property for M and S
with constants A,B > 0 and pseudometric dE , then the operator M satisfies the LRIP for
the model S with constant α := B (note that dE does not play a role in the LRIP).

2. If the operator M satisfies the LRIP for the model S with constant α, then assuming that it
existsa the decoder defined by

∆(M,y) ∈ arg min
x∈S

‖Mx− y‖F (1.16)

satisfies the Instance Optimality Property for the operator M and model S with constants
A := 1, B := 2α and pseudometric dE defined by dE(x,x′) = ‖x− x′‖E+2α ‖M (x− x′)‖F .

awhen it is not the case, we can define the decoder as an approximate minimization with an additional
additive error as small as desired, see Chapter 2.

This result is not exactly found in this form in [Bou+14], but is proved through the use of the
so-called “null space property”, with slightly different constants. In Theorem 2.2.3 we prove a
generalization of this theorem, hence the proof also applies to Theorem 1.3.4.

Relation with Sketching. Note that the decoder (1.16) corresponds to the cost function (1.5)
in classic CS and (4.1) in sketch learning. A major theoretical contribution of this thesis is to
prove that the sketching operator A satisfies the LRIP for some model S, which proves that
the recovery program (4.1) is an instance optimal decoder.

Proving the LRIP: Normalized Secant Set. In traditional CS, where M is a random matrix,
one of the most classic proofs for the LRIP [Bar07] has two steps. First, it uses concentration
inequalities to prove that, for any fixed pair of signals x,x′ ∈ S, with high probability on
the drawing of M, the desired inequality (1.14) is verified. Then this inequality is uniformly
extended, i.e. it is shown that with high probability on M, for all x,x′ ∈ S the inequality (1.14) is
verified (note the inversion of quantifiers, which is crucial). It is done by showing that certain
sets have finite covering numbers, meaning that they can be covered by a finite number of balls.
The order of magnitude of these covering numbers largely drives the size of the measurement
vector. Detailed definitions on coverings can be found in Section A.1 in Appendix A.



14 Chapter 1. Introduction

A key object stemming from this proof is the normalized secant set of S:

S (S) =

{
x− x′

‖x− x′‖E

∣∣∣ x,x′ ∈ S, ‖x− x′‖E > 0

}
. (1.17)

Indeed, the LRIP for the operator M is equivalent to having: for all y ∈ S(S),

‖My‖E ≥ α
−1. (1.18)

The normalized secant set is actually the object that needs to be “low-dimensional”, and in
particular we usually need to prove that it has finite covering numbers. While this is trivial
in the finite-dimensional case, where it is included in a unit ball that is necessarily compact,
in an infinite-dimensional framework the task is much more arduous. Interestingly, when
conversely the normalized secant set is assumed to have finite covering numbers, then it is
possible to explicitly build an operator that will satisfy the RIP with high probability (however
not always implementable in practice), as described in [PDG15].

1.4 Mathematical framework: Kernel methods

Let us now turn to the third and final main inspiration for this thesis: kernel mean embedding,
and Random Feature expansions of kernels.

Kernel methods have greatly gained in popularity in the last decades. Before the recent
explosion of deep neural networks, they yielded state-of-the-art results on many problems.
With kernel methods, any set of objects can be embedded into a Hilbert space, by defining
only a kernel function that will serve as the inner product of this space. By the so-called kernel
trick, the actual embedding does not need to be explicitly expressed. Hence, not only kernel
methods permit to solve a more general class of problems than classic learning algorithms,
they are also an elegant and powerful way to define geometries on any set of objects: graphs
[Vis+10], text documents [Lod+02], molecules [Les+04], and so on.

Kernel methods have been applied to probability distributions. Kernel mean embedding
[BTA04; Bor+06; Gre+06; Smo+07; Son08; Sri+10] is a method that defines a kernel between
two finite signed measures over a measurable space Z, given a more traditional kernel on the
space Z. It has been used for two-sample test [Gre+06; Smo+07; Chw+15], i.e. determining if
two sets of samples come from the same distribution or not, but also as a measure of inde-
pendence [Fuk+07], for classification [Mua+12; Sut+15; OSS15], for performing operations on
distributions [Sch15] and, closer to the sketching method studied in this thesis, for density esti-
mation [Son+08; Sri11]. In particular, in [Sri11] the estimation of a mixture model with respect
to the metric of the RKHS is considered with a greedy algorithm. The proposed algorithm
is however designed to approximate the target distribution by a large mixture with many
components, resulting in an approximation error that decreases as the number of components
increases, while the sketching approach considers a mixture model as a “sparse” combina-
tion of a fixed, limited number of components which we aim at identifying. Furthermore the
algorithm proposed in [Sri11] does not seem to be directly implementable.

In this section, we recall the basic tools of kernel methods, present the main ideas of ker-
nel mean embeddings, and finish by describing the so-called Random Feature expansions of
kernels.

1.4.1 Reproducing Kernel Hilbert Space

The theory of Reproducing Kernel Hilbert Space (RKHS) is based on the notion of positive
definite kernel.



1.4. Mathematical framework: Kernel methods 15

Definition 1.4.1 (Positive definite (p.d.) kernels). Let Z be an arbitrary set. A Hermitiana

function, or kernel, κ : Z×Z 7→ C is called positive definite (p.d.) if, for all n ∈ N, c1, ..., cn ∈
C and all z1, ..., zn ∈ Z, we have

n∑
i,j=1

cic̄jκ(zi, zj) ∈ R+ (1.19)

ameaning that κ(z, z′) = κ(z′, z)

Note that strict positivity is not mandatory in the above equation. In terms of vocabulary, p.d.
kernels bear connections with, e.g., positive semi-definite matrices (however they are indeed
called positive definite kernels in the literature).

RKHS. Let κ : Z × Z → C be a p.d. kernel. The Moore-Aronzajn theorem [Aro50] states
that we can associate to this kernel a unique functional Hilbert Space K ⊂ CZ that satisfies the
following properties:

– for any z ∈ Z we have κ(z, ·) ∈ K;

– reproducing property: for all z ∈ Z, f ∈ K it holds that f(z) = 〈f, κ(z, .)〉K.

This space is called the Reproducing Kernel Hilbert Space (RKHS) associated with κ. By the
reproducing property, we have κ(z, z′) = 〈κ(z, .), κ(z′, .)〉K, hence defining the mapping ϕ :
Z → K as ϕ(z) = κ(z, .) , we have indeed defined an embedding of Z into the Hilbert space K
such that 〈ϕ(z), ϕ(z′)〉K = κ(z, z′) .

Kernel trick. The so-called kernel trick is linked to the representer theorem [KW70; SHS01],
which basically states that the solutions to a large class of optimization problems over f ∈ K
that use a finite quantity of data z1, ..., zn ∈ Z can be expressed as functions f(·) =

∑n
i=1 αiκ(·, zi),

and that finding the αi can be done by using only the inner products κ(zi, zj), meaning that
the explicit high-dimensional mapping needs never be expressed. This allows for a large class
of algorithm to have a “kernel” counterpart [SS01]: Principal Component Analysis (PCA),
Support Vector Machine (SVM), and so on.

Feature maps. An alternative view on RKHS is to directly define feature maps. Let Π : X → H
be a mapping from Z to a Hilbert Space H. It is then immediate that κ(z, z′) := 〈Π(z),Π(z′)〉H
is a positive definite kernel κ, to which is associated some RKHS K, which is not necessarily
the Hilbert space H (in particular the space H is not necessarily a functional space included
in CZ). In fact, we have H = K only when Π is the “canonical” feature map of the kernel
Π(z) = ϕ(z) = κ(z, .), but this is not necessarily the case8.

1.4.2 Mean embedding of finite signed measures

Kernel mean embedding [BTA04; Bor+06; Gre+06; Smo+07; Son08; Sri+10] defines, from a
positive definite kernel on a measurable space Z, a positive definite kernel on the set of prob-
ability distributions over that space. Although mean kernels are usually stated on probability
distributions only, we formulate here the definitions on the whole space M of finite signed
measures over Z. One can easily check that the few results that we will use also hold in that
case, by noting that any finite signed measure can be decomposed as µ = cπ − c′π′, where π
and π′ are probability distributions and c, c′ ≥ 0.

8For instance, consider the linear kernel κ(z, z′) = z>z′ where z ∈ Rd. A possible feature map is just the identity
Π(z) = z associated with the Hilbert space H = Rd, however the RKHS associated to this kernel is the dual of Rd,
and the corresponding feature map ϕ is the one that associates z with its dual element z∗ such that z∗(z′) = z>z′.
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Mean kernel. Let Z be any measurable space, denote M the space of finite signed measures9

over Z. Let κ be a p.d. kernel on Z, and K the associated RKHS. All throughout the manuscript,
for simplicity and technical (integrability) reasons, we assume that the kernel κ is bounded.

One can then define [Gre+06; Sri+10] the following feature map from M to K:

Π(µ) :=

∫
Z

κ(z, .)dµ(z) ∈ K (1.20)

It naturally defines a kernel between measures, that by abuse of notation we also denote κ,
called the mean kernel:

κ(µ, µ′) := 〈Π(µ),Π(µ′)〉K
(a)
=

∫∫
Z

κ(z, z′)dµ(z)dµ′(z′) (1.21)

where (a) is shown, e.g., in [Sri+10] as a direct consequence of Riesz’s representation theorem
and the reproducing property of κ . The careful reader would have noted that the space K
is not the RKHS associated with the mean kernel κ(µ, µ), but the RKHS associated with the
original kernel κ(z, z′). However the mean kernel can indeed be defined with a feature map Π
that goes from M to K.

Empirical approximation. Given two sets of samples z1, ..., zn
i.i.d.∼ π and z′1, ..., z

′
n′

i.i.d.∼ π′,
one can approximate the kernel κ(π, π′) by

κ(π, π′) = Ez∼πEz′∼π′κ(z, z′) ≈ 1

nn′

n∑
i=1

n′∑
j=1

κ(zi, z
′
j) = κ

(
π̂n, π̂′n′

)
. (1.22)

This yields a very simple framework to apply kernel methods to objects that can be repre-
sented as sets of features (images, biological data...). It has been shown that the quality of this
estimation can be improved beyond the use of simple concentration inequalities [Mua+14].
The cost of computing κ

(
π̂n, π̂′n′

)
is O (nn′), which can be prohibitive when the numbers of

elements are too large. A potential solution to this computational bottleneck is to leverage
techniques such as Random Feature expansions, as we will describe in the next section.

MMD. The mean kernel naturally defines a seminorm on M :

‖µ‖2κ = κ(µ, µ) (1.23)

often referred to as the Maximum Mean Discrepancy (MMD) [Bor+06; Gre+06]. A large body
of work has been devoted to derive conditions under which ‖·‖κ is a proper norm. Gretton
et al. [Gre+06] introduce the concept of universal kernels κ when Z is compact, while Sripe-
rumbudur et al. [Sri+10] later extends this notion to that of characteristic kernels. In particular,
in the latter the authors derive easily checkable conditions when κ is a translation-invariant
kernel.

Translation-invariant kernels. When Z is a vector space, a translation-invariant kernel is
defined as κ(z, z′) = K(z− z′), for some function K : Z→ C. When Z ⊆ Rd, the function K is
characterized by Bochner’s Theorem.

Theorem 1.4.2 (Bochner [Rud62], Thm. 1.4.3). Consider K : Rd → C. A kernel of the form
κ(x, y) = K(x − y) is positive definite if and only if there exists a probability distribution
Λ ∈ P(Rd) such that:

K(x) = κ(0, 0)

∫
Rd
eiω>xdΛ(ω) . (1.24)

9See definition in Appendix A.
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Example 1.4.3. For a Gaussian kernel κ(z, z′) = e−
1
2 z>Σ−1z, the frequency probability distribution

is a Gaussian Λ = N
(
0,Σ−1

)
.

We can therefore express the kernel as an expectation:

κ(z, z′) = Eω∼Λ

(
φω(z)φω(z′)

)
, (1.25)

where φω(z) =
√
κ(0, 0)eiω>z .

Using this expression on the mean kernel, we get the following:

κ(µ, µ′) =

∫∫
Z

κ(z, z′)dµ(z)dµ′(z′)

=

∫∫
Z

∫
Rd
φω(z)φω(z′)dΛ(ω)dµ(z)dµ′(z′)

=

∫
Rd

(∫
Z

φω(z)dµ(z)

)(∫
Z

φω(z)dµ(z)

)
dΛ(ω) =

∫
Rd
ψµ(ω)ψµ′(ω)dΛ(ω) , (1.26)

where we denote
ψµ(ω) :=

∫
Z

φω(z)dµ(z) . (1.27)

For a probability distribution π ∈ P, the function ψπ is the characteristic function of π (multi-
plied by a constant).

We therefore have
‖µ‖2κ =

∫
Rd
|ψµ(ω)|2 dΛ(ω) . (1.28)

Using this expression, we can characterize translation-invariant characteristic kernels, i.e. ker-
nels for which ‖·‖κ is a proper norm on M . Intuitively, if there is an open set O ⊂ Rd such
that Λ(O) = 0, then a measure µ such that ψµ is non-zero only on O but zero elsewhere (if it
exists) is such that ‖µ‖κ = 0 and µ 6= 0, therefore ‖·‖κ is not a proper norm, and conversely.
This is formalized by the notion of support of a measure10. The following Theorem is found in
[Sri+10].

Theorem 1.4.4 (Sriperumbudur et al. [Sri+10], Theorem 9). A translation-invariant kernel κ
is characteristic if and only if supp(Λ) = Rd, where Λ is defined by (1.24).

All explicit kernels considered in this thesis are translation-invariants, and therefore it is
easy to check if they are characteristic kernels. However, we emphasize that none of the
results presented in this thesis technically requires the kernel to be characteristic (of course,
one could argue that estimation guarantees with respect to the MMD are only meaningful
when the MMD is a proper metric, but one could also envision tasks involving a particular
loss function for which this is not required).

Let us now turn to another mathematical tool that will be useful for our analysis, Random
Feature (RF) expansions of kernels.

1.4.3 Random Feature expansions

Traditional kernel methods on a collection of items z1, ..., zn require the computation and stor-
age of the so-called Gram matrix K = (κ(zi, zj))ij , which scales in O

(
n2
)
. This cost becomes

quickly prohibitive when the number of points n grows large.
A typical approach to address this problem is by replacing the Gram matrix with an ap-

proximate surrogate, for instance a low-rank approximation [WS01; PAB16]. This is typically
referred to as “Nyström’s method” and exploits, for instance, the properties of some sub-
sampling schemes.

10See definition in Appendix A.
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Another method consists in approximating the kernel κ by a traditional inner product be-
tween finite-dimensional mappings of the samples: κ(z, z′) ≈ Φ(z)>Φ(z′) where Φ : Z→ Cm,
then perform kernel methods as traditional linear methods on the vectors Φ(zi), which can be
much faster, as it usually scales linearly in the number of items n.

Random Fourier Features. Drawing the map Φ at random has been a popular idea in the
last decade. One of the most used method of this kind is due to Rahimi and Recht [RR07;
RR09], and is usually referred to as Random Fourier Features (RFF). It is based on Bochner’s
Theorem (Thm. 1.4.2), and the expression of the kernel as an expectation (1.25). Random
Fourier Features consist in drawingm frequencies ωj ∈ Rd i.i.d. from Λ, and defining the finite
dimensional map11

Φ(z) :=
1√
m

[
φωj (z)

]m
j=1

. (1.29)

Then, by the Law of Large Numbers, we immediately see that

Φ(z)>Φ(z′) =
1

m

m∑
j=1

φωj (z)φωj (z
′) ≈ Eω∼Λ

(
φω(z)φω(z′)

)
(1.25)
= κ(z, z′) ,

which is the desired approximation. In the original paper [RR07], the authors show that when
Z is a compact subset of Rd, the approximation error can be controlled uniformly over it. Re-
fined results on the convergence rate of the approximation error of RFF are derived in [SS07;
SS15].

Other Random Features. Since the original paper [RR07], the field of random features for
kernel approximation has considerably grown. Beside the original RFFs, other random maps
(that we will designate under the general term Random Feature (RF) expansions) have been de-
signed to increase the precision of the mapping, accelerate their computation, or approximate
other types of kernels. In [Xin+16; CRW17], RFFs are orthogonalized to maximize their effec-
tiveness. In [LSS13; Yan+15; CV16], fast procedures for computing RF expansions are derived,
using structured fast transforms, while in [Saa+16] Random Features corresponding to a par-
ticular kernel are computed almost instantaneously by means of an optical device. Random
Features are also derived for other type of kernels such as additive kernels [VZ12] or polyno-
mial kernels [PY15]. Finally, some approaches learn an RF expansion in a supervised manner
[WA13; Yan+15; Muk16; SD16].

Use in kernel mean embedding. When we combine Random Fourier Features κ(z, z′) ≈
Φ(z)>Φ(z′) with kernel mean, we obtain exactly the sketching operator of Bourrier et al. (Sec-
tion 1.2) that randomly samples the characteristic function of a distribution (with the addi-
tional normalization m−

1
2 here). Indeed, define Φ as (1.29) where the frequencies are drawn

i.i.d. from Λ, and recall the sketching operator (1.7) defined as Aπ = Ez∼πΦ(z) . For two
probability distributions π, π′ we have:

(Aπ)>(Aπ′) =
1

m

m∑
j=1

Ez∼πφωj (z)Ez′∼π′φωj (z
′) ≈ Eω∼Λ

[
Ez∼πφω(z)Ez′∼π′φω(z′)

]
= Ez′∼π′Ez∼π

[
Eω∼Λφω(z)φω(z′)

]
(1.25)
= Ez′∼π′Ez∼πκ(z, z′)

(1.21)
= κ(π, π′)

This connection between the sketching operator and the geometry induced by the kernel mean
embedding via Random Fourier Features is the starting point of the theoretical analysis pre-
sented in this thesis.

Structures combining RFFs with mean kernel embedding of probability distributions have
also been recently used by the kernel community [BS09; Sut+15; OSS15] to accelerate methods

11In its original form [RR07], the RFF mapping is slightly different from (1.29), and is expressed as Φ(z) =[
cos(ω>j z + bj)

]
j=1,m

, where the phases bj ’s are drawn i.i.d. uniformly from [0; 2π]. One can show that when m

grows large this mapping also approximates the kernel κ, however we choose the expression (1.29) to later link RFF
with the sketch defined by Bourrier [BGP13]. An extensive comparison between the two mappings is done in [SS07].
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such as classification with the so-called Support Measure Machine [Mua+12; Sut+15; OSS15]
or two-sample test [ZM15; Chw+15; Jit+16; PSW16]. A theoretical analysis of the approxi-
mation power of RF expansions for kernel mean embedding is performed in [Jos+10], and a
connection with quadrature rules is done in [Bac15].

1.5 Layout of the manuscript

The main goal of this Ph.D. thesis is to extend the sketching method of Bourrier beyond mix-
ture of Gaussians with identity covariance, and provide a theoretical analysis of the method.
We extend the heuristic method to general mixture of distributions with a new robust al-
gorithm coined Compressive Learning-Orthogonal Matching Pursuit with Replacement (CL-
OMPR), and apply it on three mixture models on synthetic and real data. A theoretical analysis
of the method using tools from kernel mean embedding and Compressive Sensing is devel-
oped, bridging a gap between several distinct fields.

The layout of the manuscript is the following.

• In Chapter 2, we present a first contribution that is independent of sketching. Consider-
ing the general inverse problem framework of Section 1.3, we extend the results on the
Restricted Isometry Property (RIP) and its link with the existence of an instance optimal
decoder, in several ways.

– we extend the results to measurement processes that are not necessary linear, and
signals that do not necessarily live in a vector space but in any metric set;

– since the exact LRIP is sometimes difficult to prove, we let the possibility of a
small additive error η ≥ 0 in its formulation, as is sometimes done in quantization
[BRM15], and show that instance optimality is degraded by only this small error;

– in a second part we assume that the measurement process is drawn at random and
extend the results to non-uniform recovery: a given signal is recovered with high
probability, in opposition to recovering all signals with high probability. A non-
uniform version of the LRIP is formulated, which to our knowledge is entirely new.

While all these new results are not, strictly speaking, necessary for analyzing the sketch
procedure (in particular, the sketching operator is linear), they may prove very useful in
the future for characterizing complex measurement or sketching processes (e.g. neural
networks).

• In Chapter 3, we introduce the main analysis of the sketching method. We describe a
framework in which the sketching operator is built from a RF expansion of a kernel, and
aim at providing information-preservation guarantees. More precisely:

– we prove that under two conditions the sketching operator satisfies the non-uniform
LRIP with high probability, with respect to the MMD. The first condition is the
domination between certain metrics and will be referred to as admissibility of the
RF expansion of the kernel, and the second condition is finiteness of the covering
numbers of some normalized secant set.

– In a second part, we temporarily relax these strong assumptions and only assume
finiteness of the covering numbers of the low-dimensional model S itself, which
is often relatively easy to prove. In this case we prove preliminary reconstruction
results, in which the sketch needs to be as big as the original database to attain a
fixed error level. These first results therefore do not guarantee that the sketching
method is in that case more efficient than using the full data. However they still
yield new guarantees for some models, and are useful to familiarize oneself with
the mathematical tools. It is seen in the rest of the manuscript that these results are
fortunately largely pessimistic compared to what is observed in practice.

– We apply this preliminary framework with relaxed assumptions to two mixture
models. In particular, the second considered model is that of mixtures of multivari-
ate elliptic stable distributions, for which, to our knowledge, there is no estimator
in the literature.
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Some of these results have been published in [Ker+17b].

• In Chapter 4 we propose a greedy algorithm for learning generic mixture models from
a sketch. In fact we treat general cost functions where a measurement vector y is ap-
proached, for the Euclidean norm, by a linear combination of atoms in a dictionary
{f(θ)} continuously indexed by θ, where f is differentiable. This is later applied to the
sketching method by taking f(θ) = Aπθ.

– We start by proving that the cost function is sometimes locally block convex when
sufficiently close to the optimum. This encourages us to apply a simple Block Co-
ordinate Descent algorithm, that indeed works with a good initialization. However
this algorithm fails in the absence of prior knowledge.

– We then propose a greedy approach inspired by OMP, modified to alternate be-
tween adding an atom and non-convex updates. We give a second variant with
Replacement that incorporates the capacity to suppress spurious atoms by Hard
Thresholding. These two algorithms are respectively coined Compressive Learning-
OMP (CL-OMP) and CL-OMP with Replacement (CL-OMPR). We give details to
facilitate and optimize their practical implementation.

– We apply these algorithms to a first artificial problem independent of sketching.
The Block Coordinate Descent indeed only succeeds when initialized close to the
true solution, while CL-OMPR succeeds most of the time even without prior knowl-
edge.

The CL-OMPR algorithm is found in [Ker+16; Ker+17b; Ker+17a], and the code is avail-
able as a Matlab toolbox at [Ker16].

• In Chapter 5 the CL-OMPR algorithm is applied to the practical estimation of mixture
models from a sketch. We start by describing an unsupervised learning method to learn
an appropriate kernel for the method, from a fraction of training data. We then imple-
ment the method for three mixture models, illustrated in Fig. 1.3.

– First we instantiate the CL-OMPR algorithm to recover mixture of Diracs from a
sketch. Although the true distribution of the data is obviously not a mixture of
Diracs, we show empirically that when data are well-clustered the locations of the
recovered Diracs correspond to the center of these clusters, also called centroids.
The method is therefore compared to a classic method for unsupervised clustering,
the k-means algorithm. The sketching method is shown to be significantly faster
and more memory efficient than k-means on large databases, and more stable to
initialization. The algorithms are also compared on a spectral clustering task for
handwritten digits recognition with the MNIST database [LCB98]. This approach is
published in [Ker+17a].

– The CL-OMPR algorithm is then applied to the estimation of GMMs with unknown
diagonal covariance. It is shown to be more efficient than classic Expectation Max-
imization (EM) on large databases. The algorithm are compared on a speaker ver-
ification task, using the NIST05 database. These results are published in [Ker+16;
Ker+17b].

– Finally, the method is instantiated to estimate mixtures of multivariate elliptic stable
distributions. To our knowledge, we obtain the only algorithm capable of perform-
ing such a task in the multivariate case. At the time of this manuscript these results
are not yet published.

In these three cases, we empirically observe on synthetic data that the sketch size nec-
essary for the success of the estimation is as m ≈ O (kd), where k is the number of
components in the mixture and d is the dimension of the data, and independent of the
number of points n in the original database. It confirms that the preliminary theoretical
results obtained at the end of Chapter 3 are indeed sub-optimal.

• In Chapter 6, we greatly extend the theoretical analysis of the method, with a double
purpose in mind: proving that the size of the sketch only depends on the complexity of
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the model S (as observed in practice), and relating the results to classic learning costs
instead of the MMD, which is sometimes difficult to analyze.

– We develop a more advanced analysis of generic mixture models that fully exploits
the general results presented in the first half of Chapter 3. It is based on the key
restriction of the model to mixtures where components are pairwise sufficiently sep-
arated. Under this assumption, when two mixtures are close to each other, each
component from the first mixture can be paired with a single component from the
second and separated from all other components. Two such components form what
we call a “dipole”. Under some assumptions on the kernel, those dipoles can be
treated independently, and we are able to prove “strong” versions of the admissi-
bility condition and finiteness of the covering numbers of the normalized secant
set.

– We first apply this analysis to the clustering problem by recovering mixtures of
Diracs as considered in the experiments. We provide guarantees with respect to the
k-means and k-medians cost. We prove that the estimation is feasible for a sketch
size approximately as m ≈ O

(
k2d2

)
(up to logarithmic terms), which is indeed

independent of the size of the database n, but still slightly sub-optimal compared
to what is observed in practice.

– We then instantiate the analysis method to GMMs with known covariance. Re-
sults are given with respect to classic log-likelihood cost function. The necessary
sketch size is as m ≈ O

(
k2d2C

)
, where C is a constant that varies with the im-

posed separation ε of the means between components in the model of GMMs. At
one end of the spectrum, we get C = O (1) for a relatively large separation in
ε = O

(√
d log k

)
, while at the other end we have a large C = O

(
ed
)

but for a
separation ε = O

(√
log k

)
that compares favorably to existing literature.

We finish by conclusions and outlooks in Chapter 7.
In Appendix A we group some definitions and generic results. Appendix B contains the

proof of Chapter 3. Appendices C, D and E contain the proofs of the results of Chapter 6.
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Database

y

Sketch

Mixture of Diracs GMM Mixture of stable dist.

FIGURE 1.3: Illustration of the three sketched mixture learning schemes im-
plemented in Chapter 5. From the same sketch, we derive either a mixture
of Diracs (which is comparable to unsupervised clustering methods such as k-

means), a GMM, or a mixture of elliptic stable distributions.
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Chapter 2

Robust Decoding for Generalized
Inverse Problems

This small chapter contains a first contribution that is not directly related to sketching, but will
be used in the main sketching framework (Chapter 3). This contribution extends the results
of [CDD09; Bou+14] on robust decoding in generic linear inverse problems. In particular, we
generalize the results to non-linear inverse problems, which may be of paramount interest in
the future for modern embedding architectures such as neural networks.

In Chapter 1 Section 1.3, we have reviewed the results of [Bou+14], where the authors show
that the existence of a robust decoder is equivalent to the linear measurement process satisfy-
ing the Lower Restricted Isometry Property (LRIP). In this chapter these results are extended
in several ways:

– we show that the equivalence between LRIP and the existence of an instance optimal
decoder is still valid when the measurement process is non-linear;

– we do not assume that the signals live in a vector space, but any set;

– we allow for an additional error η ≥ 0 in the LRIP and the decoding, i.e. when the LRIP
is not exactly satisfied;

– when the measurement process is random, we extend the result to a non-uniform for-
mulation similar to [CDD09]. We show that a non-uniform LRIP implies a non-uniform
Instance Optimality Property, which is strictly less restrictive than the results presented
in [CDD09].

All throughout the chapter, we call signal the measured object x, since the RIP analysis
originated from Compressive Sensing. However we emphasize that x can be any mathe-
matical object, and that we are considering generalized inverse problems here.

We begin by some notations in Section 2.1, then turn to guarantees that are uniform in
probability in Section 2.2. We then treat of non-uniform guarantees in Section 2.3.

2.1 Framework

Let us begin by introducing the problem.

2.1.1 Inverse problem

Let E be an arbitrary set1 and F be a vector space equipped with a seminorm ‖·‖F . Consider a
mapping Ψ : E 7→ F , not necessarily linear2, and suppose that we measure a signal x? ∈ E with
noise e ∈ F :

y = Ψ (x?) + e. (2.1)

1Notice the difference with Section 1.3 where the signal was assumed to live in a vector space.
2Again, the set of signals E does not even need to be a vector space equipped with an additive operation
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Our goal is to estimate the signal x? from the measurement y. As usual the measurement
process is “dimension-reducing” (taken here in a very large sense since neither E nor F are re-
quired to be finite-dimensional andE is not necessarily a vector space), we therefore introduce
a “low-dimensional” subset of signals S ⊂ E that can potentially be successfully recovered
from their measurements.

2.1.2 Approximate decoder

In any realistic system one can expect both modeling error and noise. In that case, we have
seen in Section 1.3 that successful recovery is linked to the notion of instance optimal decoder
[CDD09; FR13; Bou+14], i.e. a decoder ∆ such that the recovered signal ∆(Ψ,y) is close to the
original signal x? even when it is not exactly in the model and in the presence of noise.

As in Section 1.3, we would like to define the “ideal” decoder as

∆(Ψ,y) ∈ arg min
x∈S

‖Ψ (x)− y‖F (2.2)

However, this minimization is not guaranteed to have a solution, unless we make additional
assumptions on the model S and measurements function Ψ, such as compactness of the model
(if E is a Banach space) and continuity of the function x 7→ ‖Ψ (x)− y‖F , both with respect to
some norm ‖·‖E . However this would unnecessarily restrict our framework: k-sparse vectors
would not even be included since the set of sparse vectors is not compact.

Hence, similar to [Bou+14], we state our results for a family of decoders ∆ι where ι ≥ 0,
such that for all Ψ and y, it returns an element of the model x̃ = ∆ι(Ψ,y) ∈ S such that

‖Ψ (x̃)− y‖F ≤ inf
x∈S
‖Ψ (x)− y‖F + ι. (2.3)

In other words, it returns one signal that approaches the infimum (2.2) with a precision ι. For
ι > 0 the decoder ∆ι is always defined. The ideal decoder ∆0 only exists if we can guarantee
the existence of a projection operator on the model for the appropriate metric, such that (2.2)
always has a solution (not necessarily unique).

For the sake of simplicity, we will denote such an approximate infimum by

∆ι(Ψ,y) = arg min
x∈S, error ι

‖Ψ (x)− y‖F (2.4)

and use this notation all throughout the manuscript.
While our motivation for this subtlety is mainly mathematical, we note that it can also

materialize the fact that we may not be able to solve (2.2) exactly due to algorithmic limitation
but only up to a precision ι0 > 0, in which case the decoder ∆ι only exists for ι ≥ ι0.

2.2 Uniform guarantees

In this section we consider that the measurement operator Ψ is fixed, and give sufficient and
necessary conditions to ensure instance optimal decoding. Inspired by the existing results pre-
sented in Section 1.3, our goal is to generalize the equivalence between the Instance Optimality
Property (IOP) and the Lower Restricted Isometry Property (LRIP), schematically illustrated
in Fig. 2.1.

Modified IOP and LRIP. We give our modified versions of the LRIP and IOP below. Com-
pared to the previous definitions of the LRIP (Def. 1.3.1) and IOP (Def. 1.3.3), their most
notables features are the non-linearity of Ψ and the presence of a possible additive error η ≥ 0.

Definition 2.2.1 (Lower Restricted Isometry Property). The mapping Ψ satisfies the Lower
Restricted Isometry Property (LRIP) for the model S with constant α > 0, pseudometric dE and
error η ≥ 0 if: for all x,x′ ∈ S it holds that

dE(x,x′) ≤ α ‖Ψ (x)−Ψ (x′)‖F + η. (2.5)
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LRIP (Def. 2.2.1) IOP (Def. 2.2.2)

Thm. 2.2.3

FIGURE 2.1: Schematic illustration of the LRIP and decoder satisfying the
IOP. The LRIP (left) states that the measurement process Ψ approximately pre-
serves the distances on the model S. A decoder ∆ that satisfies the IOP (right)
returns, from the measurement of an object, an element of the model that is al-
most the one closest to the original signal. The two properties are equivalent by

Theorem 2.2.3.

Definition 2.2.2 (Instance Optimality Property). A decoder ∆ satisfies the Instance Optimal-
ity Property for the mapping Ψ and model S with constants A,B > 0, pseudometrics dE , d′E on
E and error η ≥ 0 if: for all signals x? ∈ E and noise e ∈ F , denoting x̃ = ∆(Ψ,Ψ (x?) + e)
the recovered signal, it holds that:

dE(x?, x̃) ≤ Ad′E(x?,S) +B ‖e‖F + η (2.6)

where d′E(x,S) = infxS∈S d
′
E(x,xS).

We show equivalence between IOP and LRIP in the following theorem. It has essentially
the same form as Bourrier’s result (Theorem 1.3.4), with the addition that Ψ is not necessarily
linear and that we allow for an additive error η ≥ 0.

Theorem 2.2.3 (Equivalence between IOP and LRIP.). Consider a mapping Ψ and a model
S.

1. If there exists a decoder ∆ which satisfies the Instance Optimality Property for Ψ and S
with constants A,B > 0, pseudometrics dE , d′E and error η ≥ 0, then the mapping Ψ
satisfies the LRIP for the model S with constant α = B, pseudometric dE and error 2η.

2. If the mapping Ψ satisfies the LRIP for the model S with constant α, pseudometric dE and
error η ≥ 0, then the decoder ∆ι defined by 2.4 satisfies the Instance Optimality Property
for the mapping Ψ and model S with constants A = 1 and B = 2α, pseudometrics dE
and d′E where d′E is defined by d′E(x,x′) := dE(x,x′) + 2α ‖Ψ (x)−Ψ (x′)‖F , and error
η + αι.

Proof. 1. Consider x,x′ ∈ S. By triangular inequality we have

dE(x,x′) ≤ dE(x,∆(Ψ,Ψ (x′)) + dE(∆(Ψ,Ψ (x′)),x′).

Then, by applying the Instance Optimality Property with noise e := Ψ (x′)−Ψ (x) we
get dE(x,∆(Ψ,Ψ (x′)) ≤ B ‖Ψ (x′)−Ψ (x)‖F + η, and by applying again the Instance
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Optimality Property it holds that dE(∆(Ψ,Ψ (x′)),x′) ≤ η, hence the result.

2. Consider any signal x? ∈ E and noise e ∈ F , denote y = Ψ (x?) + e and x̃ = ∆ι(Ψ,y).
Let xS ∈ S be any element of the model. We have:

dE(x?, x̃) ≤ dE(x?,xS) + dE(xS, x̃)

LRIP
≤ dE(x?,xS) + α ‖Ψ (xS)−Ψ (x̃)‖F + η

≤ dE(x?,xS) + α ‖Ψ (xS)− y‖F + α ‖y −Ψ (x̃)‖F + η .

By definition of the decoder (2.4) we have ‖Ψ (x̃)− y‖F ≤ ‖Ψ (xS)− y‖F + ι and
therefore

dE(x?, x̃) ≤ dE(x?,xS) + 2α ‖Ψ (xS)− y‖F + η + αι

≤ dE(x?,xS) + 2α ‖Ψ (xS)−Ψ (x?)‖F + 2α ‖Ψ (x?)− y‖F + η + αι

≤ d′E(x?,xS) + 2α ‖e‖F + η + αι

where d′E(x,x′) = dE(x,x′) + 2α ‖Ψ (x)−Ψ (x′)‖F . Since the result is valid for all
xS ∈ S, we can take the infimum of d′E(x,xS) with respect to xS ∈ S and obtain the
result.

We now turn to our non-uniform formulation of the result.

2.3 Non-uniform guarantees

As we have seen, in Compressive Sensing the mapping Ψ is usually drawn at random. Most
results state that with high probability on the drawing of the mapping Ψ, the LRIP holds
and the decoder (2.4) is instance optimal. This type of guarantee is referred to as uniform
in probability: with high probability on the mapping, the equation (2.6) is simultaneously
verified for all signals x? and noise vectors e. This is opposed to a non-uniform guarantee: for
a given signal x?, with high probability on the mapping Ψ, recovery of x? is guaranteed. This
kind of non-uniform recovery result is also studied in classic Compressive Sensing [FR13], and
it is known that some algorithms can only yield non-uniform recovery guarantees [Rau08].

In this thesis the non-uniform results are focused on the “LRIP implies IOP” implication
(as discussed at the end of the section the converse implication seems to be less direct).

Boundedness property, non-uniform LRIP. First of all, it can be seen that the mapping Ψ
itself intervenes in the definition of the metric d′E on the right-hand side of (2.6), which is
potentially undesirable since it is random. In [CDD09], the authors introduce a “bounded-
ness property” (BP) to address this problem, of which we give a slightly modified version
below. The authors in [CDD09] then show (in the usual finite-dimensional framework of Com-
pressive Sensing) that a uniform LRIP and the non-uniform Boundedness Property implies a
non-uniform IOP. We extend this result to our generalized framework where in particular the
mapping Ψ is not required to be linear, and most importantly we prove that a non-uniform
LRIP and a non-uniform boundedness property implies a non-uniform IOP, which is strictly
stronger than the results of [CDD09].

Our definitions of the non-uniform Boundedness Property and non-uniform LRIP are as
follows.

Definition 2.3.1 (Boundedness property). The mapping Ψ satisfies the (non-uniform) Bound-
edness Property for a signal x ∈ E, a model S and a fixed element of the model xS ∈ S with
constant β, pseudometric dG and probability 1−ρ if: with probability at least 1−ρ on Ψ, we have

‖Ψ (x)−Ψ (xS)‖F ≤ βdG (x,xS) . (2.7)
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Definition 2.3.2 (Non-uniform LRIP). The mapping Ψ satisfies the non-uniform LRIP for the
model S and a fixed element of the model xS ∈ S, with constant α > 0, pseudometric dE ,
probability 1− ρ and error η ≥ 0 if: with probability at least 1− ρ on Ψ, for all x′S ∈ S we have

dE(xS,x
′
S) ≤ α ‖Ψ (xS)−Ψ (x′S)‖F + η. (2.8)

Remark 2.3.3 (“Semi”-uniformity of the LRIP.). Note that our definition of the LRIP is not “fully”
non-uniform but “semi”-uniform in probability: it is non-uniform with respect to the first signal xS ∈
S, which is given a priori, but uniform with respect to the second signal x′S ∈ S. The necessity of this
unusual formulation can be understood intuitively by examining the proof of the uniform case (Theorem
2.2.3). When the LRIP is used in the proof, the first signal xS ∈ S can be indeed fixed before drawing
Ψ, however the second one is x′S = x̃ = ∆(Ψ,y) the recovered signal, which is itself random since it
depends on the mapping Ψ. Therefore it cannot be fixed before the drawing of Ψ.

In the same fashion as the LRIP, the considered non-uniform IOP is non-uniform with
respect to the signal x ∈ E, but uniform with respect to the noise e ∈ F . It is defined as
follows.

Definition 2.3.4 (Non-uniform IOP). A decoder ∆ satisfies the non-uniform Instance Opti-
mality Property for the (random) mapping Ψ, model S, signal x? ∈ E and element of the model
xS ∈ S with constantsA,B > 0, pseudometrics dE , d′E , probability 1−ρ and error η ≥ 0 if: with
probability at least 1− ρ on the mapping Ψ, for all noise e ∈ F , denoting x̃ = ∆(Ψ,Ψ (x?) + e)
it holds that:

dE(x?, x̃) ≤ Ad′E(x?,xS) +B ‖e‖F + η (2.9)

Remark 2.3.5 (Bias term.). In this definition, the distance from x? to the model is replaced by its
distance to a particular element of the model xS fixed a priori. Indeed, because of the “non-uniform”
flavor of the IOP, we cannot prove that the bound holds uniformly for all xS ∈ S and perform a
minimization a posteriori, as in the proof of Theorem 2.2.3. Ideally, one would therefore like to choose
xS such that d′E(x?,xS) = infx∈S d

′
E(x?,x) = d′E(x?,S). However, as mentioned before, such an

element xS does not always exist. We therefore leave the term d′E(x?,xS) in the instance optimality
bound, and in some cases we will be able to exhibit a xS to express this term more explicitly.

In the rest of the manuscript, we will refer to this term d′E(x?,xS) as “bias” term, i.e. deviation in
the recovery due to modeling error.

Our main result is the following.

Theorem 2.3.6 (The non-uniform LRIP and BP implies the non-uniform IOP). Consider
a random mapping Ψ, a model S, a signal x? ∈ E and a fixed element of the model xS ∈ S.
Assume that:

i) the mapping Ψ satisfies the non-uniform LRIP for the model S and element of the model
xS with constant α > 0, pseudometric dE , probability 1− ρ1 and error η ≥ 0 ;

ii) the mapping Ψ satisfies the non-uniform Boundedness Property for x? and xS with con-
stant β, pseudometric dG and probability 1− ρ2 ;

Then, the decoder ∆ι defined by (2.3) satisfies the non-uniform Instance Optimality Property for
the mapping Ψ, model S signal x? and element of the model xS with constantsA := 1, B := 2α,
pseudometrics dE and d′E := dE + 2αβdG, probability 1− ρ1 − ρ2 and error η + αι.

Proof. By assumption i), we apply the non-uniform LRIP on xS, and with probability at
least 1− ρ1 on the mapping Ψ we have

∀x′S ∈ S, dE(xS,x
′
S) ≤ α ‖Ψ (xS)−Ψ (x′S)‖F + η. (2.10)
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Non-uniform LRIP
(Def. 2.3.2)

BP
(Def. 2.3.1)

Non-uniform IOP
(Def. 2.3.4)

Thm. 2.3.6

FIGURE 2.2: Illustration of Theorem 2.3.6. The non-uniform LRIP and the BP
imply the non-uniform IOP.

In the same fashion, by assumption ii), we apply the non-uniform Boundedness Prop-
erty, and with probability at least 1− ρ2 on the mapping Ψ we have

‖Ψ (x?)−Ψ (xS)‖F ≤ βdG (x?,xS) . (2.11)

Therefore, by a union bound, with probability at least 1−ρ1−ρ2 on the mapping Ψ both
(2.10) and (2.11) are satisfied, and for all noise element e ∈ F , denoting y = Ψ (x?) + e and
x̃ = ∆(Ψ,y), we have:

dE(x?, x̃) ≤ dE(x?,xS) + dE(xS, x̃)

≤ dE(x?,xS) + α ‖Ψ (xS)−Ψ (x̃)‖F + η

≤ dE(x?,xS) + α ‖Ψ (xS)− y‖F + α ‖y −Ψ (x̃)‖F + η .

by (2.10). Once again by definition of the decoder (2.4) we have ‖Ψ (x̃)− y‖F ≤ ‖Ψ (xS)− y‖F+
ι and therefore

dE(x?, x̃) ≤ dE(x?,xS) + 2α ‖Ψ (xS)− y‖F + η + αι

≤ dE(x?,xS) + 2α ‖Ψ (xS)−Ψ (x?)‖F + 2α ‖Ψ (x?)− y‖F + η + αι

≤ d′E(x?,xS) + 2α ‖e‖F + η + αι.

by applying (2.11).

We schematically illustrate this theorem in Fig. 2.2. In general, proving the non-uniform
LRIP is much more difficult than showing the non-uniform BP. In this thesis, we will mostly
use uniform bound ‖Ψ (x)−Ψ (x′)‖F . dG (x,x′) valid for any pair of signals x,x′, meaning
that the BP is satisfied with probability 1.

Converse implication. Like the uniform case, it would be desirable to have a converse impli-
cation “the non-uniform IOP implies the non-uniform LRIP”, to obtain equivalence between
the two properties. Unfortunately, it seems that a supplementary hypothesis on the decoder is
required (namely, that it decodes uniformly the signals that are exactly in the model) for this im-
plication. Since this side of the implication is not crucial for our goal where we aim at proving
that the sketching operator A satisfies the LRIP, we elected to exclude it from this manuscript.
Deriving a more satisfying formulation of the necessity of the LRIP in a non-uniform context
will be subject to future investigations.



2.4. Conclusion 29

2.4 Conclusion

In this chapter, we considered inverse problems for dimension-reduction measurement pro-
cesses, and showed that the LRIP is necessary and sufficient for the existence of instance op-
timal decoders, in frameworks much more general than traditional Compressive Sensing. In
particular, the signal does not need to live in a vector space but only in any metric set, and the
measurement operator does not need to be linear. When this operator is designed at random
we showed the LRIP can be relaxed to a non-uniform formulation, and still guarantees non-
uniform instance optimal recovery. These results may have strong implications for many prob-
lems where dimension reduction processes are used, especially intricate non-linear schemes.
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Chapter 3

A Framework for Sketched Learning

This chapter presents the main analysis of the sketching method in a very general framework,
and constitutes the core of this manuscript. Using tools from kernel mean embedding and RF
expansions, we generalize the sketching method of Bourrier et al. [BGP13] (Section 1.2) and
provide recovery guarantees under general assumptions.

The chapter is divided in three parts.

– We start by describing the framework in Section 3.1. We generalize the notations and
definitions of Section 1.2, and define the sketch recovery problem.

– In Section 3.2, we establish conditions for the sketching operator to verify the non-
uniform LRIP. They involve a domination condition between some metrics related to
the considered random features (that will be referred to as admissibility of the RF expan-
sion), and a condition of finiteness of the covering numbers of the normalized secant set,
similar to the classic CS settings described in Section 1.3. Our main result for the LRIP
is Theorem 3.2.5. Once the LRIP and the IOP are guaranteed, the empirical error can be
controlled with a generalized Hoeffding’s inequality, and we obtain our main recovery
result in Theorem 3.2.7.

– In Section 3.3 we formulate a first application of the Theorem 3.2.7 under weaker as-
sumptions, namely only assuming that the model S itself has finite covering numbers
(instead of the normalized secant set). In that case, we obtain estimation guarantees with
a precision that scales in O (1/

√
n+ 1/

√
m), where n is the size of the original database

and m is the size of the sketch. This is obviously of limited interest, since it does not
prove that the method is effective with a sketch that is significantly smaller than the
original database (but is fortunately seen to be largely pessimistic in practice, see Chap-
ter 5), and will be improved upon in Chapter 6. Nevertheless, we show that this result
applies to a large variety of models without requiring the advanced analysis of Chapter
6. We give two examples: first GMM with diagonal covariance, and second mixtures of
multivariate elliptic stable distributions, for which, unlike GMMs, this result constitutes
(to our knowledge) the only known estimator with provable guarantees.

3.1 Framework, definitions

Let κ be a p.d. kernel on a measurable space Z.

Remark 3.1.1. Unlike the previous sketching framework introduced by Bourrier (Section 1.2), our
results apply to any measurable space (Z,Σ) equipped with a p.d. kernel, and not only Rd. In practice,
our experiments are still performed with Z = Rd (Chapter 5).

Denote M = M(Z) the space of finite signed measures over Z, and P ⊂ M the space
of probability distributions, i.e. nonnegative measures π such that ‖π‖TV = 1 (see Appendix
A.1.2 for detailed definitions).

Random Feature Expansion. As mentioned in Section 1.4.3, the proposed construction of the
sketching operator is based on the important notion of Random Feature expansion (which is a
generalization of Random Fourier Features), that we formally define below.
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Definition 3.1.2 (Random Feature expansion, uniformly bounded features.). A pair (FR,Λ)
is a Random Feature (RF) expansion of the kernel if:

κ(z, z′) = Eω∼Λφω(z)φω(z′) , (3.1)

where FR = {φω : Z→ C | ω ∈ Ω} is a set of bounded continuous feature functions from Z to C
parameterized by ω ∈ Ω, and Λ is a probability distribution over a measurable space Ω.

The Random Features are said uniformly bounded by BFR <∞ if

sup
ω∈Ω,z∈Z

|φω(z)| ≤ BFR . (3.2)

By similarity with Random Fourier Features (that arise from Bochner’s Theorem and are
defined as φω(z) = eiω>z with z,ω ∈ Rd, see Section 1.4.3), the parameters ω ∈ Ω will be
called frequencies, even if in theory they can be very general objects. The only requirement
is for Ω to be a measurable space.

For a given kernel κ there is usually an infinity of pairs (FR,Λ) for which (3.1) is satisfied.
A simple but important example is to take existing features and re-weight them.

Example 3.1.3 (Reweighting of features). Consider a Random Features expansion of the kernel
(FR,Λ) (based on Bochner’s Theorem for instance). Then, for any function c (ω) > 0 such that

CΛ =

√
Eω∼Λc (ω)

2
< ∞, we can define F̃R =

{
φ̃ω = CΛφω/c (ω)

∣∣∣ φω ∈ FR} and Λ̃ such

that dΛ̃(ω) = c (ω)
2
dΛ(ω)/C2

Λ. One can then easily verify that (F̃R, Λ̃) is also a RF expansion of the
kernel κ. This reweighting of features will be of importance in Chapter 6, where some results will only
be valid after re-weighting usual Random Fourier Features φω(z) = eiω>z.

RF expansion and kernel mean embedding. In the following paragraph we recall some
properties and definitions that emerge when we associate RF expansions and the kernel mean
embedding methodology.

The following notations will be encountered all throughout the thesis.

– For a bounded continuous function f : Z → C and a finite signed measure µ ∈ M we
denote

〈µ, f〉 :=

∫
Z

f(z)dµ(z) ∈ C . (3.3)

Similarly, for a multivariate function f : Z→ Cm, we denote 〈µ, f〉 := [〈µ, fj〉]mj=1 ∈ Cm.

– Integral Probability Metric [Mul97]. For any family of functions F = {f : Z 7→ C}, we
define the seminorm

‖µ‖F := sup
f∈F
|〈µ, f〉| (3.4)

– Maximum Mean Discrepancy. For any RF expansion (FR,Λ) of the kernel κ, recall (see
Section 1.4.2) that by a simple computation the MMD ‖µ‖κ = |κ(µ, µ)|

1
2 can be expressed

as
‖µ‖2κ =

∫
Ω

|ψµ(ω)|2 dΛ(ω) (3.5)

where we define
ψµ(ω) := 〈µ, φω〉 , (3.6)

which can be thought of as a generalization of the characteristic function of probability
distributions : the function ψµ is indeed the characteristic function of a probability dis-
tribution π when φω(z) = eiω>z are Random Fourier features and µ = π is a probability
distribution.
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Note that, when the function f is a so-called “test function” the definition 〈µ, f〉 (and all the
definitions that follow) can be extended to µ being a tempered distribution instead of a finite
signed measure. This will only be briefly needed in the proofs of Chapter 6, hence we do not
elaborate further on the subtle interplay between measures and distributions here. See Rudin’s
books [Rud87; Rud91] for a complete review of these notions.

Remark 3.1.4. Often the definitions above correspond to objects with which the reader may be more
familiar. For instance, the so-called Integral Probability Metric ‖·‖F will be often used when F is a
set of feature functions F = FR = {φω | ω ∈ Ω}, where (FR,Λ) is a RF expansion of a kernel κ. In
that case, again denoting ψµ(ω) = 〈µ, φω〉, we have (in a loose sense, assuming these norms are well
defined):

‖µ‖FR = sup
ω∈Ω
|〈µ, φω〉| = ‖ψµ‖L∞

‖µ‖κ =

(∫
Ω

|〈µ, φω〉|2 dΛ(ω)

) 1
2

= ‖ψµ‖L2(Λ) ,

i.e. these norms are respectively the L∞ and L2 norms of the same function. The interplay between the
two will often be at the core of our analysis, and it is useful to keep in mind these representations that
use the generalized characteristic function during the proofs.

Sketching Operator. We construct the sketching operator A : M → Cm by combining RF
expansions with the kernel mean embedding framework. Let (FR,Λ) be an RF expansion of a

kernel κ. Drawing ω1, ...,ωm
i.i.d.∼ Λ, define Φ(z) :=

[
1√
m
φωj (z)

]m
j=1

and

Aµ := 〈µ,Φ〉 =
1√
m

[ψµ(ωj)]
m
j=1 ∈ Cm , (3.7)

where ψµ(ω) is defined by (3.6) for the family of feature functions FR.
This sketching operator has a similar form compared to the one proposed by Bourrier et

al. [BGP13] (Section 1.2), with generic RF expansions instead of specifically Random Fourier
Features.

Useful properties. In the course of the thesis, we will make heavy use of simple domination
properties between the metrics (3.4) and (3.5), summarized in the following Lemma.

Lemma 3.1.5. For any uniformly bounded RF expansion (FR,Λ), any draw of the sketching
operator (3.7) and any finite signed measure µ ∈M, we have

‖µ‖κ
‖Aµ‖2

 ≤ ‖µ‖FR ≤ BFR ‖µ‖TV (3.8)

Proof. All inequalities are immediate, using simple manipulations of the definitions above.

Several consequences arise from this simple Lemma:

– If the kernel is characteristic (i.e. ‖·‖κ is a proper norm), then ‖·‖FR is also a proper norm,
since ‖µ‖FR = 0 implies ‖µ‖κ = 0 which implies µ = 0. However, we outline that none
of our results require the kernel to be characteristic1.

– For any model S, the sketch operator always satisfies the Boundedness Property (Def.
2.3.1) with the metric dG := ‖·‖FR and probability 1, since ‖Aµ‖2 ≤ ‖µ‖FR is always

1As mentioned in the introduction, one might argue that estimation guarantees with respect to the MMD are only
meaningful when the MMD is a proper metric, but it is not technically required.
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true. In practice this is the property we will use most of the time , and our focus will be
on proving the LRIP, which combined to this always-true Boundedness Property yields
the instance-optimality of the decoder ∆ι.

– When the RFs are uniformly bounded, all (semi)norms are well-defined, since ‖µ‖TV
is finite. In the rest of the thesis we will always consider families of RFs that are
uniformly bounded.

Sketched distribution learning: toward information-preservation guarantees. We general-
ize the sketching method of Bourrier et al. (Section 1.2). Given a database Z = {z1, ..., zn} of
items in Z drawn i.i.d. from a probability distribution π? ∈ P, we compute the sketch of this
database by

ŷ :=
1

n

n∑
i=1

Φ(zi) = Aπ̂n ∈ Cm

and aim at estimating π? from ŷ. Since the sketching operator embeds infinite-dimensional
objects into a finite-dimensional space, as usual we have to recourse to a low-complexity model
S ⊂ P. In practice the definition of the model often naturally emerges from the estimation
task we want to perform (e.g. it is defined as the set of mixtures of Gaussians to perform GMM
estimation). As in Chapter 2 the decoder is expressed as

∆ι(A,y) = arg min
π∈S, error ι

‖Aπ − y‖2 (3.9)

with the presence of an error ι ≥ 0 that can be chosen as small as desired but strictly positive
when the argmin is not guaranteed to exist (see Chapter 2 Section 2.1.2).

We have shown in the previous chapter that if A satisfies the non-uniform LRIP then this
decoder verifies the non-uniform IOP. Our main contribution stems from the connection with
kernel mean embedding: we have indeed

‖Aµ‖22 =
1

m

m∑
j=1

|ψµ(ωj)|2 ≈ Eω∼Λ |ψµ(ω)|2 (3.5)
= ‖µ‖2κ

In particular, when µ = π − π′ is a difference between probability distributions, with high
probability we have

‖A(π − π′)‖22 ≈ ‖π − π
′‖2κ (3.10)

and this fact will be at the base of our strategy to prove that A satisfies the LRIP.

3.2 Information-preservation guarantees

In this section, core of the chapter, we provide information-preservation guarantees for the
sketching method. Our strategy is to prove that the sketching operator satisfies the non-
uniform LRIP with respect to the MMD, then use the results of our study of generalized inverse
problems in Chapter 2.

We want to show that there exist constants α > 0 and η ≥ 0 such that for any fixed πS ∈ S,
with high probability on A (i.e. on the drawing of the frequencies ωj) we have

∀π′S ∈ S, ‖πS − π′S‖κ ≤ α ‖A(πS − π′S)‖2 + η. (3.11)

We will give sufficient conditions on the model S, the kernel κ and its RF expansion (FR,Λ) to
prove that the sketching operator satisfies the non-uniform LRIP. The proofs presented in the
rest of this chapter make heavy use of the definitions and properties in Appendix A, especially
the lemmas on covering numbers of Section A.3. We recommend that the reader interested in
the proofs and unfamiliar with covering numbers reads this appendix first.
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3.2.1 Non-uniform version of the normalized secant set

As in Section 1.3, we will see that a key object to prove the LRIP is the normalized secant set,
of which we introduce a non-uniform version with error η ≥ 0 below. Given a distribution in
the model πS ∈ S, it is defined as:

Sη(πS,S) :=

{
πS − π′S
‖πS − π′S‖κ

∣∣∣ π′S ∈ S, ‖πS − π′S‖κ > η

}
. (3.12)

It is the set of normalized differences of distributions πS−π′S
‖πS−π′S‖κ

, where πS ∈ S is fixed and

π′S ∈ S varies. Similar to classic LRIP proofs [Bar07] (Section 1.3), the “size” (i.e. the covering
numbers) of this set represents the “dimensionality” of the problem and largely drives the
sketch size with which we will obtain estimation guarantees.

As we will see immediately after, the additive error η ≥ 0 in the LRIP is reflected in the
condition ‖πS − π′S‖κ > η in the above definition. When η > 0, we will see that it greatly fa-
cilitates the control over the behavior of πS−π′S

‖πS−π′S‖κ
∈ Sη(πS,S) since the denominator cannot

go to 0. However, this comes at the price of having a potentially harmful additive error η > 0
in the LRIP and therefore in the decoding.

When η > 0 we say that the normalized secant set is “extruded” at level η, in the sense that
it does not take into account the distributions π′S that are in a ball of radius η around πS.

By Lemma 3.1.5 we have ‖π − π′‖κ ≤ ‖π − π′‖FR ≤ BFR ‖π − π′‖TV ≤ 2BFR , and there-
fore when η ≥ 2BFR the normalized secant set is empty since the condition ‖π − π′‖κ > η
is never satisfied. Of course in reality one wishes η to be small while BFR is in general in
O (1), nevertheless for simplicity in the rest of the manuscript we have to make the following
(mostly technical) supposition.

To avoid trivial situations where the normalized secant set is empty, we always assume
η < 2BFR .

Strategy to prove the LRIP. For a fixed πS ∈ S, if we can prove that with high probability
on the sketching operator, for all µ ∈ Sη(πS,S) it holds that

‖Aµ‖2 ≥ α
−1 (3.13)

for some constant α > 0, then for all π′S ∈ S such that ‖πS − π′S‖κ > η we have

‖πS − π′S‖κ ≤ α ‖A(πS − π′S)‖2 .

Therefore for all π′S ∈ S we have

‖πS − π′S‖κ ≤ max(α ‖A(πS − π′S)‖2 , η) ≤ α ‖A(πS − π′S)‖2 + η.

which is indeed the desired LRIP. Our main goal is therefore to prove that with high proba-
bility (3.13) hold for all µ ∈ Sη(πS,S).

Our strategy to prove (3.13) and therefore the LRIP follows a two-step methodology in-
spired by CS [Bar07] (also evoked in Section 1.3):

1. first prove that for any fixed µ ∈ Sη(πS,S), the desired inequality (3.13) holds with
high probability,

2. then extend to a result valid for all µ ∈ Sη(πS,S) with high probability, by assum-
ing that the normalized secant set (3.12) has finite covering numbers.
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3.2.2 Admissibility

We will deal with the first step by controlling the approximation (3.10) with Bernstein’s con-
centration inequality (Lemma A.2.1). To apply it we need to uniformly bound the elements in
the normalized secant set. We define the notion of admissible RF expansion of the kernel.

Definition 3.2.1 (Admissibility). The Random Feature expansion (FR,Λ) of the kernel κ is
admissible for the model S with constant WΛ < ∞ and error η ≥ 0 if: for all πS ∈ S and all
µ ∈ Sη(πS,S), we have

‖µ‖FR ≤WΛ (3.14)

First note that, by Lemma 3.1.5, we have necessarily WΛ ≥ 1 since ‖·‖κ ≤ ‖·‖FR . As noted
before, a kernel often has an infinity of possible RF expansions, with potentially different ad-
missibility constants WΛ and error η.

Remark 3.2.2. To better understand the admissibility condition, recall the expression of the (semi)norms:
‖µ‖FR = ‖ψµ‖L∞ and ‖µ‖κ = ‖ψµ‖L2(Λ). Hence, proving that the admissibility condition holds

amounts to showing that for πS−π′S
‖πS−π′S‖κ

∈ Sη(πS,S) it holds that:

∥∥∥ψπS−π′S

∥∥∥
L∞

.
∥∥∥ψπS−π′S

∥∥∥
L2(Λ)

.

One can immediately see that this is in general not true, and even if true, potentially challenging to
prove. In the simple examples presented at the end of this chapter, we will use a “weak” admissibility
condition, introduced below, that is always true when η > 0. It will however come at the price of
obtaining sub-optimal results in terms of sketch size. In the more advanced analysis of Chapter 6, we
will fully exploit the geometry of the model S instead, to prove admissibility conditions with η = 0.

Weak admissibility. Since all the considered features are uniformly bounded, we have the
following “weak” admissibility result.

Lemma 3.2.3 (Weak admissibility.). For any model S and strictly positive error η > 0, any RF
expansion (FR,Λ) is admissible for S with error η and constant WΛ = 2BFR/η.

Proof. Consider any model S, error η > 0 and RF expansion (FR,Λ). Let πS ∈ S be an
element of the model. Any measure µ ∈ Sη(πS,S) can be decomposed as µ = (πS −
π′S)/ ‖πS − π′S‖κ where π′S ∈ S and ‖πS − π′S‖κ > η. Then we have

‖µ‖FR =
‖πS − π′S‖FR
‖πS − π′S‖κ

Lem. 3.1.5
≤

BFR ‖πS − π′S‖TV

η
≤ 2BFR

η
,

since ‖πS − π′S‖TV ≤ 2.

Remark 3.2.4 (Recovery results with weak admissibility). As mentioned above, the weak ad-
missibility condition is always true but leads to sub-optimal results. More precisely, we will see
in the next theorem that our analysis yields a sufficient sketch size for the LRIP that is at least as
m ≥ O

(
W 2

Λ

)
, and that such an expression leads to a recovery result where the additive error behaves

asO (1/
√
n+ 1/

√
m), which only proves that sketch learning is possible with a sketch size of the order

of that of the original database. In Chapter 6 we prove the existence of admissibility constants that
produce better estimation results.

3.2.3 Proof of the LRIP

Before proving the LRIP, we describe a possible route to relate the problem to other metrics
instead of the MMD, as will be done in Chapter 6 to link the sketching method to more tradi-
tional learning.
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Replacing the MMD with a more meaningful metric. By combining the LRIP (3.11) with
the Theorem 2.2.3, we guarantee that the decoder (3.9) is instance optimal with respect to the
MMD ‖·‖κ. We could be satisfied with this result: the MMD has indeed been used as an evalu-
ation metric in many problems, including density fitting [Sri+09]. However, it may be unclear
whether this result yields guarantees with respect to more traditional metrics [Red+15]. In
the formulation of our main result below (assumption iii) in Theorem 3.2.5), we allow for re-
placing the MMD with another metric dL, by assuming that it is dominated by the MMD, to
eventually obtain recovery results with respect to dL if so desired. As outlined this assumption
is “optional” in the sense that one can always select dL := ‖·‖κ to obtain recovery result with
respect to the MMD, with no additional assumption.

Let us now formulate our result for the LRIP.

Theorem 3.2.5 (LRIP for the sketching operator). Consider a model S ⊂ P, a fixed distribu-
tion in the model πS ∈ S, a kernel κ with a RF expansion (FR,Λ), an error η ≥ 0 and a sketch
size m such that:

i) the RF expansion (FR,Λ) is admissible (Def. 3.2.1) for the model S with constantWΛ <∞
and error η;

ii) the normalized secant set Sη(πS,S) has finite covering numbers (see definition in Ap-
pendix A.1.1). Denote

N := N
(
‖·‖FR ,S

η(πS,S),
1

4

)
<∞; (3.15)

iii) there is a pseudometric dL and a constant WL <∞ such that for all π′S ∈ S,

dL(πS, π
′
S) ≤WL ‖πS − π′S‖κ (3.16)

(as mentioned before this assumption is optional, one can take dL := ‖·‖κ and WL := 1);

iv) the sketch size satisfies

m ≥ cW 2
Λ log

(
N

ρ

)
, (3.17)

for some ρ > 0, where c = 1760/147 is a universal constant.

Then, the sketching operator (3.7) satisfies the non-uniform LRIP for the model S and element
of the model πS with constant α = 2WL, pseudometric dL, probability 1 − ρ and error WLη.
Meaning that, with probability at least 1− ρ on the drawing of the ωj ’s that define the sketching
operator A by (3.7), we have for all π′S ∈ S :

dL(πS, π
′
S) ≤ 2WL ‖AπS −Aπ′S‖2 +WLη (3.18)

Proof. Denote S = Sη(πS,S). We are going to prove that with high probability on the
sketching operator A, for all µ ∈ S it holds that

‖Aµ‖2 ≥
1

2
, (3.19)

from which we have seen that we can deduce that for all π′S ∈ S we have

‖πS − π′S‖κ ≤ max(2 ‖A(πS − π′S)‖2 , η) ≤ 2 ‖A(πS − π′S)‖2 + η,

which combined with (3.16) yields the desired result.
To prove that (3.19) holds with high probability for all µ ∈ S, we prove that it holds for

a finite number of µi’s in S with high probability, then use a δ-covering to extend the result
to the whole set.
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Let π′S ∈ S be such that ‖πS − π′S‖κ > η. Define µ =
πS−π′S
‖πS−π′S‖κ

∈ S . Draw ω1, ...,ωm ∈

Ω i.i.d. from Λ and denote Yj = 1− |ψµ(ωj)|2 . We have:

– the Yj ’s are i.i.d. and EYj = 1− Eωj∼Λ

∣∣∣ψπS−π′S(ωj)
∣∣∣2 / ‖πS − π′S‖2κ = 0 ;

– by admissibility,
|ψµ(ωj)|2 =

∣∣〈µ, φωj〉∣∣2 ≤ ‖µ‖2FR ≤W 2
Λ ,

and therefore Yj ∈ [1−W 2
Λ, 1] which, since by Lemma 3.1.5 we have necessarily WΛ ≥

1, implies
|Yj | ≤W 2

Λ ;

– the variance of the Yj ’s satisfies

Var(Yj) = Var
(
|ψµ(ωj)|2

)
≤ E |ψµ(ωj)|4 =

E
∣∣∣ψπS−π′S(ωj)

∣∣∣4
‖πS − π′S‖

4
κ

≤
‖πS − π′S‖

2
FR E

∣∣∣ψπS−π′S(ωj)
∣∣∣2

‖πS − π′S‖
4
κ

=
‖πS − π′S‖

2
FR

‖πS − π′S‖
2
κ

≤W 2
Λ .

– defining the sketching operator as (3.7), we have 1
m

∑m
j=1 Yj = 1− ‖Aµ‖22

Hence, we can apply Bernstein’s inequality (Lemma A.2.1 in Appendix A), we obtain that:

P

(
1− ‖Aµ‖22 ≥

7

16

)
≤ exp

(
− m

cW 2
Λ

)
with c = 1760

147 .
Denote N = N

(
‖·‖FR ,S,

1
4

)
and let µ1, ..., µN be a 1/4-covering of S. A union bound

yields that with probability at least 1−N exp
(
− m
cW 2

Λ

)
, we have:

∀µi, ‖Aµi‖2 ≥
√

1− 7

16
=

3

4
. (3.20)

Assuming now that (3.20) is satisfied, for all µ ∈ S there exists µi such that ‖µ− µi‖FR ≤
1/4 and we have

1− ‖Aµ‖2 = 1− ‖Aµi‖2 + ‖Aµi‖2 − ‖Aµ‖2
(3.20)
≤ 1− 3

4
+ ‖Aµi‖2 − ‖Aµ‖2

Then using the reverse triangular inequality

1− ‖Aµ‖2 ≤
1

4
+ ‖A(µ− µi)‖2

Lem. 3.1.5
≤ 1

4
+ ‖µ− µi‖FR ≤

1

4
+

1

4
=

1

2

which is the desired result. We then denote ρ = N exp
(
− m
cW 2

Λ

)
the probability of failure

and solve for m to obtain the bound (3.17).

Hypotheses. As we discussed, this theorem shows that the LRIP holds under two main hy-
potheses: the admissibility condition and the assumption of finiteness of the covering numbers
of the normalized secant set. As we will further observe in Chapter 6, both can be relatively
technical to prove, depending on the allowed additive error η ≥ 0.

Sketch size. The bound (3.17) on the sufficient sketch size involves two terms, coming from
our two-parts proof strategy. The first is the squared admissibility constant W 2

Λ, which reflects
how well the LRIP inequality holds for a fixed pair of distributions, with high probability
(i.e. it reflects the quality of the concentration result obtained with Bernstein’s inequality). This
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pointwise concentration is the first part of our proof. The second term is the logarithm of the
covering numbers of the normalized secant set, log(N). It arises from the second part of the
proof, which is to extend the pointwise concentration result to a uniform bound valid for all
element of the normalized secant set with high probability. Both terms are important and must
be carefully controlled in each particular instantiation of the sketching method.

Usual expression of the covering numbers. We will see that the normalized secant set usu-
ally has a finite upper box counting dimension q ∈ N [Rob11; PDG15], meaning that its covering
numbers are as N (‖·‖ ,S, δ) ∝ (C/δ)q . In that case, the logarithm of the covering numbers
is as q log(C/δ), and the sketch size (3.17) indeed scales, up to logarithmic terms, in O

(
W 2

Λq
)
.

Here q reflects the complexity (the “dimensionality”) of the problem.

3.2.4 Bounding the empirical error

The LRIP implies that the decoder (3.9) is instance optimal. When the decoding is done from
the empirical sketch ŷ = Aπ̂n the “noise” is

e = Aπ −Aπ̂n (3.21)

which, given that the operator A computes a collection of moments, can be bounded using a
generalized Hoeffding’s inequality (Lemma A.2.2).

Lemma 3.2.6 (Bounding the empirical error.). Consider z1, ..., zn ∈ Z drawn i.i.d. from π?

and let ω1, ...,ωm ∈ Ω be m frequencies drawn i.i.d. from Λ. Then, with probability at least 1−ρ
on the drawing of both zi’s and ωj ’s we have

‖A(π? − π̂n)‖2 ≤
BFR

(
1 +

√
2 log(1/ρ)

)
√
n

(3.22)

Proof. Consider for now a fixed set of frequencies {ω1, ...,ωm} that define an operator A.
Draw z1, ..., zn i.i.d. from π, and denote Yi = m−

1
2

[
φωj (zi)

]m
j=1

, which are drawn i.i.d. in
Cm. We have Aπ̂n = 1

n

∑n
i=1 Yi , Aπ = EYi, and ‖Yi‖2 ≤ BFR since the Random Features

are uniformly bounded by BFR . We can therefore apply Lemma A.2.2, which yields that:

Pz

‖A(π − π̂n)‖2 ≤
BFR

(
1 +

√
2 log(1/ρ)

)
√
n

 ≥ 1− ρ.

Then, since the samples zi and frequencies ωj ’s are drawn independently and this prop-
erty is valid with probability 1− ρ for all sets of ωj ’s, it is valid with probability 1− ρ on the
drawing of botha the zi’s and ωj ’s.

aIndeed, if an event A depends on two independent random variables X and Y and we have that for all
fixed y, PX(A(X, y)) =

∫
x 1A(x, y)dPX(x) ≥ 1 − ρ, then the joint probability is such that PX,Y (A(X,Y )) =∫∫

x,y 1A(x, y)dPX,Y (x, y) =
∫
y

(∫
x 1A(x, y)dPX(x)

)
dPY (y) ≥ (1− ρ)

∫
y dPY (y) = 1− ρ.

3.2.5 Main result

Using the LRIP and the bound on the empirical error, we obtain the following theorem, which
is our main recovery result.
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Theorem 3.2.7 (Information-preservation guarantees for the sketching method). Consider
a model S ⊂ P, a distribution π? ∈ P, a distribution in the model πS ∈ S, a kernel κ with a RF
expansion (FR,Λ), an error η ≥ 0 and a sketch size m such that:

– the hypotheses of Theorem 3.2.5 hold:

i) the RF expansion (F ,Λ) is admissible (Def. 3.2.1) for the model S with constant
WΛ <∞ and error η;

ii) the normalized secant set Sη(πS,S) has finite covering numbers. Denote

N := N
(
‖·‖FR ,S

η(πS,S),
1

4

)
<∞ ; (3.23)

iii) there is a pseudometric dL and a constant WL <∞ such that for all π′S ∈ S,

dL(πS, π
′
S) ≤WL ‖πS − π′S‖κ ; (3.24)

iv) the sketch size satisfies

m ≥ cW 2
Λ log

(
N

ρ

)
, (3.25)

for some ρ > 0, where c = 1760/147 is a universal constant.

– the sketching operator satisfies the non-uniform Boundedness Property (Def. 2.3.1) for π?

and πS with constant β, pseudometric dG and probability 1− ρ′.

Denote the (ideally small) bias term

τ = d′E(π?, πS) , (3.26)

where d′E = dL + 4βWLdG.
Consider items z1, ..., zn ∈ Z drawn i.i.d. from π? and frequencies ω1, ...,ωm ∈ Ω drawn

i.i.d. from Λ, which define the sketching operator A by (3.7). Denote π̃ = ∆ι(A,Aπ̂n) the
probability distribution recovered from the empirical sketch. Then, with probability at least 1 −
(ρ+ ρ′ + ρ′′) on the drawing of the zi’s and ωj ’s, it holds that

dL(π?, π̃) ≤ τ +
4WLBFR

(
1 +

√
2 log(1/ρ′′)

)
√
n

+WL(η + 2ι). (3.27)

Proof. Since the hypotheses of Theorem 3.2.5 hold, the sketching operator satisfies the non-
uniform LRIP (Def. 2.3.2) for the model S and distribution πS with constant α := 2WL,
pseudometric dL, probability 1− ρ and error WLη.

By hypothesis the sketching operator satisfies the non-uniform Boundedness Property,
and we can therefore apply Theorem 2.3.6, which shows that the decoder satisfies the non-
uniform IOP for the sketching operatorA, model S, signal π? and distribution in the model
πS with constant A := 1 and B := 4WL, pseudometrics dL and d′E := dL + 4βWLdG,
probability 1− ρ− ρ′ and error WL(η+ 2ι). Meaning that, with probability at least 1− ρ− ρ′
on the drawing of the frequenciesωj , for all sets of items z1, ..., zn, denoting π̃ = ∆ι(A,Aπ̂n)
we have

dL(π?, π̃) ≤ d′E(π?, πS) + ‖A(π? − π̂n)‖2 +WL(η + 2ι),

We use Lemma 3.2.6 to bound ‖A(π? − π̂n)‖2, with a union bound to get the desired result.

The proof mechanisms of this theorem are illustrated is Fig. 3.1, where we emphasize our
use of the previous results of Chapter 2.

Precision of the estimation. Theorem 3.2.7 shows that, under assumptions that are essen-
tially that of Theorem 3.2.5 (admissibility and finiteness of covering numbers), the distribution
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Admissibility
of (FR,Λ)
(Def. 3.2.1)

Finite cover-
ing numbers
of Sη(S, πS)

Non-uniform LRIP
(Def. 2.3.2)

Thm. 3.2.5

BP
(Def. 2.3.1)

Non-uniform IOP
(Def. 2.3.4)

Theorem 3.2.7
(main result)

Thm. 2.3.6

+ Lem. 3.2.6

(Optional) Use
of metric dL

FIGURE 3.1: Illustration of the proof of Theorem 3.2.7. The admissibility con-
dition and finiteness of the covering numbers of the normalized secant sets are
used to prove the LRIP, then the previous results of Chapter 3 show the IOP.

With the additional control on the empirical error, it yields Theorem 3.2.7.

π̃ recovered from the empirical sketch is close to the true distribution of the data π?, with a
precision that involves several terms:

– the bias term τ = d′E(π?, πS), which indicates how well the true distribution of the data
is modeled by S, such that the recovery is stable to modelization error. If the distribution
of the data is in the model, this term is zero.

– the empirical error in O (1/
√
n). This is a classic learning rate when using empirical

data, that arises from well-known concentration inequalities such as the Hoeffding’s in-
equality that we used in Lemma 3.2.6. That this learning rate is not degraded by the
sketch-and-learn process is somewhat fortuitous, if not relatively expected given that
our proof strategy considers the empirical error as the amplitude of a “noise”, and that
an instance optimal decoder is robust to noise.

– two additional errors, η and ι. As described in Chapter 2 Section 2.1.2, the latter mostly
exists for technical reasons and can be chosen as small as desired. On the contrary, the
additive error η ≥ 0 is crucial, as it may largely drive the admissibility condition and
the covering numbers of Sη(πS,S). The ideal case is η = 0, and we will exhibit some
examples that satisfy this condition in Chapter 6. As we will see in the next section, at
the other end of the spectrum, the “worst” case (in the sense that it is almost always
true) is an error that behaves as η = O (1/

√
m). In this “worst” case, the total error is as

O (1/
√
n+ 1/

√
m), and the obtained recovery result does not prove that the sketching

method is efficient when using a sketch that is significantly smaller than the original
database.

3.3 First applications of Theorem 3.2.7

As mentioned earlier, the admissibility hypothesis and finiteness of the covering numbers of
the normalized secant set can be technical to obtain, especially in the case where a true LRIP
is desired with no additive error (η = 0). In this section, we will derive preliminary results
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under weaker hypotheses that will apply to a large class of models. We will however obtain
an additional error η that is significantly sub-optimal compared to what is observed in practice.

The proofs of this section are given in Appendix B.

3.3.1 Weak assumptions

Here we just assume that the model S itself has finite covering numbers (instead of the normal-
ized secant set), which is often relatively easy to prove (for instance in the next sections we
will show this property for GMMs and mixtures of elliptic stable distributions). In that case
we show that for all strictly positive error levels (η > 0) the normalized secant set Sη(πS,S)
has finite covering numbers.

Lemma 3.3.1 (Covering numbers of the extruded secant set). Let (FR,Λ) be a Random
Feature expansion of the kernel κ that is admissible for the model S with constant WΛ > 0 and
strictly positive error η > 0. Assume the model S has finite covering numbers with respect to
the norm ‖·‖FR . Then, for any π ∈ S, the normalized secant set Sη(π,S) has finite covering
numbers for the norm ‖·‖FR and we have:

N
(
‖·‖FR ,S

η(π,S), δ
)
≤ N

(
‖·‖FR ,S,

δη

8WΛ

)
(3.28)

Proof. This is a particular case of Lemma A.3.5 which proves this result for more general
normalized secant sets. We apply with ‖·‖a := ‖·‖FR , ‖·‖b := ‖·‖κ, A := 1 and B := WΛ.

Then, with no other assumption, we obtain the following corollary.

Corollary 3.3.2 (Information-preservation guarantees with weak assumptions.). Consider
a model S, a distribution π? ∈ P, a distribution in the model πS ∈ S, a kernel κ with a RF
expansion (FR,Λ), an error η > 0 and a sketch size m such that:

– the model has finite covering numbers with respect to the norm ‖·‖FR ;

– the sketch size satisfies

m ≥ 4cB2
FRη

−2 log

N
(
‖·‖FR ,S,

η2

64BFR

)
ρ

 , (3.29)

for some ρ > 0, where c = 1760/147.

Denote the bias term
τ = d′E(π?, πS) ,

where d′E := ‖·‖κ + 4 ‖·‖FR .
Consider items z1, ..., zn ∈ Z drawn i.i.d. from π? and frequencies ω1, ...,ωm ∈ Ω drawn

i.i.d. from Λ, which define the sketching operator A by (3.7). Denote π̃ = ∆ι(A,Aπ̂n) the
probability distribution recovered from the empirical sketch. Then, with probability at least 1 −
(ρ+ ρ′) on the drawing of the zi’s and ωj ’s, it holds that

‖π? − π̃‖κ ≤ τ +
4BFR

(
1 +

√
2 log(1/ρ′)

)
√
n

+ η + 2ι, (3.30)

Proof. The result is obtained by directly using Theorem 3.2.7 with assumptions that are sim-
plified as much as possible:

– the covering numbers of the normalized secant sets are bounded using Lemma 3.3.1;



3.3. First applications of Theorem 3.2.7 43

– we use “weak” admissibility (Lemma 3.2.3);

– we do not suppose the existence of the optional metric dL but use the fact that Theorem
3.2.7 is applicable with dL := ‖·‖κ and WL := 1;

– we also use the fact that the sketching operator satisfies the Boundedness Property for
dG := ‖·‖FR and probability 1 (see the discussion after Lemma 3.1.5).

Sub-optimal sketch size. If the model has an upper box counting dimension q, the error η in
this corollary scales approximately in O

(√
q/m

)
. As mentioned earlier, since the empirical

error in Theorem 3.2.7 behaves as O (1/
√
n), the result indeed suggests that attaining a fixed

error level requires a sketch as big as the original database. While this corollary does not show
that the sketching method is significantly faster than using the full data, it proves nevertheless
that the sketch-and-recover procedure is asymptotically stable, when both database and sketch
sizes are large, which is a first step toward more optimal results. Furthermore, there may
be cases where a reduced sketch size is somehow not our primary concern. For instance, in
the case of mixture of multivariate stable distributions described after, to our knowledge the
proposed sketching method is the first estimator with guarantees.

Fortunately, these results are largely pessimistic compared to what is observed in practice.
In numerical experiments we obtain excellent recovery results for sketches whose size does
not seem to depend on the size of the database but rather on the number of parameters in
the model. In Chapter 6 we will push further the theoretical analysis and obtain this kind of
results.

Result with admissibility. Let us examine the case where we still only assume finiteness of
the covering numbers of the model instead of the normalized secant set, but where we assume
additionally that we have an RF expansion of the kernel that is admissible with a constant
WΛ <∞ that does not depend on η > 0. In that case we can change (3.29) by

m ≥ cW 2
Λ log

N
(
‖·‖FR ,S,

η
32WΛ

)
ρ

 . (3.31)

When the model has a finite upper box counting dimension q the additive error scales as
η = O

(
e−m/q

)
, which is far better than the result in η = O (1/

√
m) obtained when we used

the weak admissibility. In that case, the sketching method is indeed effective with a sketch
significantly smaller than the full database. In some sense, the admissibility condition is there-
fore the first and most crucial condition to obtain an efficient sketching method, since it drives
the very concentration result at the heart of the LRIP.

Such importance of the admissibility condition is due to our use of (this version of) Bern-
stein’s inequality, which requires a uniform bound. In future work we will examine if other
concentration inequalities can be used to refine this presently quite rough condition.

In Chapter 6 we will prove a “strong” admissibility condition with η = 0 in two particular
cases.

3.3.2 Mixture model

This thesis work is mainly oriented toward mixture models. We show that the covering num-
bers of a basic set of distributions can be used to bound the covering numbers of the set of
mixtures of distributions from this set.

Consider a set of basic probability distributions T ⊂ P and an integer k > 0. The mixture
model Sk (T) is defined as

Sk (T) =

{
k∑
l=1

ξlπl

∣∣∣ ξ ∈ Sk−1, πl ∈ T

}
(3.32)
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where Sk−1 =
{
ξ ∈ Rd+ |

∑k
l=1 ξl = 1

}
is the k − 1 dimensional simplex.

Lemma 3.3.3. Consider any RF expansion (FR,Λ) . For all 0 < δ ≤ 16BFR the set Sk (T)
satisfies

N
(
‖·‖FR ,Sk (T) , δ

)
≤

(
16BFRN

(
‖·‖FR ,T, δ/2

)
δ

)k
. (3.33)

Hence for any mixture models we can very quickly obtain (sub-optimal) recovery guaran-
tees by:

1. bounding the covering numbers of the set T of basic distributions;

2. applying Lemma 3.3.3 to bound the covering numbers of the set of mixtures Sk (T);

3. applying Corollary 3.3.2.

Bounding the covering numbers of the set of basic distributions T can often be done easily
enough. In general, it is a parametric set of distributions T = {πθ | θ ∈ T } where the param-
eter θ lives in a finite-dimensional set T ⊂ Rq assumed bounded2. Then our strategy is to
prove that the embedding θ 7→ πθ is Lipschitz continuous, and use Lemma A.3.2 to bound the
covering numbers of T by these of T .

We will now give two examples of this application.

3.3.3 Example 1: Gaussian Mixture model

We first illustrate Corollary 3.3.2 on the problem of recovering a Gaussian Mixture Model with
unknown covariance. We restrict to diagonal covariance for simplicity.

In this example Z := Rd. The basic set of distributions is defined as a parametric set T :=
{πθ | θ ∈ T }, where θ := (µ,σ) contains the mean µ ∈ Rd and diagonal of the covariance
σ =

[
σ2
l

]d
l=1
∈ Rd+ of a Gaussian πθ := N (µ,diag (σ)).

We restrict to a parameter set T = Dµ × Dσ where Dµ ⊂ Rd is the set of means that is
defined as a Euclidean ball3:

Dµ := BRd,‖·‖2(0, Rµ) =
{
µ ∈ Rd | ‖µ‖2 ≤ Rµ

}
, (3.34)

and Dσ is a bounded set of vectors in Rd+ such that

Rσ := max
σ∈Dσ

‖σ‖2 <∞ , (3.35)

σ2
min := min

σ∈Dσ
min

1≤i≤d
σ2
i > 0 , (3.36)

meaning that the Euclidean norm of the vector σ is bounded by Rσ and each of its entries is
bounded away from 0 by σ2

min.
As we have said, our strategy is to prove that the mapping θ 7→ πθ is Lipschitz. We use the

following lemma (all proofs are in Appendix B).

Lemma 3.3.4. Consider two Gaussians π1 = N (µ1,Σ1), π2 = N (µ2,Σ2). We have

‖π1 − π2‖TV ≤ ‖µ1 − µ2‖Σ +

(
1

2
‖Σ1 −Σ2‖F

∥∥Σ−1
1 −Σ−1

2

∥∥
F

) 1
2

(3.37)

where Σ =
(

Σ−1
1 +Σ−1

2

2

)−1

, ‖·‖Σ is the Mahalanobis norm defined by ‖x‖2Σ = x>Σ−1x and ‖·‖F

is the Frobenius norm.

2Note that the sample domain Z is not assumed compact or bounded, but the set of parameters T is in general
assumed bounded.

3Notation in Appendix A.
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We can now apply Lemma A.3.2 to bound the covering numbers of the set of Gaussians.

Lemma 3.3.5. For any family of random feature functions FR, we have: for all δ > 0,

N
(
‖·‖FR ,T, δ

)
≤ max

((
A

δ

)d
, 1

)
·max

((
B

δ

)d
, 1

)
. (3.38)

with A = 8BFRRµ/σmin and B = 8BFR
√

2Rσ/σ
2
min.

Now that we have shown that the covering numbers of the set of single Gaussians are
bounded, we can use Lemma 3.3.3 to bound the covering numbers of the set of GMMs

Sk (T) =

{
πΘ,ξ =

k∑
l=1

ξlπθl

∣∣∣ ξ ∈ Sk−1, θl ∈ T

}

where the support of the mixture is denoted Θ = (θ1, . . . ,θk). Then we use Corollary 3.3.2 to
directly obtain a recovery result.

Corollary 3.3.6. Consider π? ∈ P and πS ∈ Sk (T) which is a good approximation of π? in
terms of Kullback-Leibler (KL) divergence (Definition A.1.7 in Appendix A), denote the bias

τ = (DKL (π?||πS) +DKL (πS||π?))
1
2 (3.39)

(note that we use a symmetrized version of the KL divergence).
Consider any kernel κ with a RF expansion (FR,Λ). Let ρ, η > 0 be two constants, assume

the sketch size satisfies

m ≥ 4cB2
FRη

−2

[
dk

(
log+

(
128BFRA

η2

)
+ log+

(
128BFRB

η2

))

+ 2k log

(
32BFR
η

)
+ log

(
1

ρ

)]

where c = 1760/147, log+ = max(log, 0), and A,B are defined as in Lemma 3.3.5.
Consider items z1, ..., zn ∈ Rd drawn i.i.d. from π? and frequencies ω1, ...,ωm ∈ Ω drawn

i.i.d. from Λ, which define the sketching operator A by (3.7). Denote πΘ̃,ξ̃ = ∆ι(A,Aπ̂n) the
GMM recovered from the empirical sketch. Then, with probability at least 1 − (ρ + ρ′) on the
drawing of the zi’s and ωj ’s, it holds that

∥∥∥π? − πΘ̃,ξ̃

∥∥∥
κ
≤ 5BFRτ +

4BFR

(
1 +

√
2 log(1/ρ′)

)
√
n

+ η + 2ι . (3.40)

Proof. Using Lemma 3.3.5 with Lemma 3.3.3, for all 0 < δ ≤ 16BFR we can bound

N
(
‖·‖FR ,Sk (T) , δ

)
≤
(

16BFR
δ

)k
·max

((
2A

δ

)dk
, 1

)
·max

((
2B

δ

)dk
, 1

)

where A,B are defined as in Lemma 3.3.5.
The desired result is then directly obtained as a consequence of Corollary 3.3.2, where

the covering numbers of Sk (T) are taken with δ := η2

64BFR
(such that δ ≤ BFR/16 is indeed

verified since we assumed η ≤ 2BFR in the whole chapter).
We use the additional bound on the bias term with Lemma 3.1.5:

‖π? − πS‖κ + 4 ‖π? − πS‖FR ≤ 5 ‖π? − πS‖FR ≤ 5BFR ‖π? − πS‖TV
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Then apply Pinsker’s inequality [FHT03]:

‖π − π′‖2TV ≤ 2DKL (π||π′)

from which
‖π? − πS‖TV ≤

√
DKL (π?||πS) +DKL (πS||π?) = τ .

As mentioned before, here we have used the “weak” version of the admissibility condition,
and therefore obtained recovery results with an additive error in η = O (1/

√
m). It only proves

that stable recovery is possible when the sketch is as large as the original database, and is
strongly sub-optimal compared to what we could expect from a compressive GMM estimation
method (as we will see, fortunately we can do much better in practice). Nevertheless, we
obtain a novel GMM estimator that is in particular stable to modeling error.

Remark 3.3.7 (Role of characteristic kernels.). The result above is valid for any RF expansion
(FR,Λ) with bounded family of features FR. This can seem absurd: does it imply that taking e.g. a
singleton family FR = {1} allows for recovery? This is of course not the case: in this case the kernel
is not characteristic, i.e. the MMD ‖·‖κ is not a proper metric, and may be meaningless in terms of
recovery. This illustrates the importance of characteristic kernels to avoid trivial results, even though
no result in this thesis requires the kernel to be characteristic.

3.3.4 Example 2: Mixture of elliptic stable distributions

Let us now turn to a second example: estimation of mixtures of multivariate elliptic stable
distributions.

Stable distributions are also called α-stable distributions, however in the thesis we do
not use this term: it somehow suggests that the so-called characteristic exponent α is
fixed, while on the contrary in the considered mixtures the parameter α is different for each
component. Hence we simply say “stable distribution”.

Stable distributions have been proven to be useful to model asymmetric and/or heavy-
tailed distributions. Although first and foremost used in practice in economy [GK99; NPM01;
Nol03], they have also been introduced in signal processing [Cas04; BKK13]. However their
use remains very scarce in this domain: they are indeed notoriously hard to estimate, mainly
due to the intractability of the likelihood except for few special cases. In particular, they have
been limited by a) the heavy use of approximate integrals which are time consuming and
make the estimation intractable on large databases and b) the lack of available estimators for
mixtures of multivariate data.

Although multimodal distributions are very common in some domains, very few works
address the problem of estimating mixtures of stable distributions [SGKR09; SGKR10; Sho+10],
and to our knowledge existing methods are restricted to the univariate case. The theoretical
results presented here and the implementation described in Chapter 5 constitute the first valid
method of which we are aware.

Elliptic stable distributions. Generic multivariate stable distributions are not parametrized
by finite dimensional quantities but by a measure called the spectral measure, which renders
their estimation extremely arduous. As often done in the literature, we thus restrict to the
so-called elliptic stable distributions [Ome15; Nol13; Kri+09].

In the literature (e.g. in [Ome15]), elliptic stable distributions are sometimes referred to as
subgaussian stable distributions. However we do not use this term to avoid the confusion
with subgaussian random variables, which is an unrelated notion, and for instance often
encountered in Compressive Sensing.

An elliptic stable distribution πθ is parameterized by θ := (µ,Σ, α) where µ ∈ Rd is the
mean of the distribution, Σ ∈ Rd×d is a positive definite matrix referred to as the dispersion
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matrix, and α ∈ (0, 2] is the so-called characteristic exponent of the distribution. In general,
stable distributions do not have explicit likelihood, or even second order moments. They are
defined by their characteristic function ψπ(ω) := Ez∼πe

iω>z, which in the case of elliptic stable
distribution has the form:

ψπθ (ω) = eiω>µe−( 1
2ω
>Σω)

α/2

(3.41)

When α = 2 the distribution πθ is a Gaussian, with mean µ and covariance Σ. This is the only
particular case for which the distribution has a second order moment.

Bounded parameters. Similar to the GMM case, we will restrict to diagonal matrices Σ =
diag (σ), and restrict the parameters θ = (µ,σ, α) to a set T := Dµ × Dσ × Dα such that
(3.34) holds, i.e. Dµ is a ball of radius Rµ, the set Dσ is such that (3.35) and (3.36) hold, and
Dα = [αmin, 2] where αmin > 0. The set of stable distributions is denoted by T = {πθ | θ ∈ T }.

Like the previous case we begin by proving that the embedding θ 7→ πθ is Lipschitz con-
tinuous. However, unlike GMMs proving this property for the TV norm seems difficult due
to the lack of closed form expressions. Since the characteristic function of stable distribution
is convenient to work with, in this section we directly work with the norm ‖·‖FR where the
feature family FR is the family of Fourier features (unlike GMMs where our results hold for all
RF expansions), defined as:

FR :=
{
φω : z 7→ eiω>z

∣∣∣ ω ∈ Rd
}

We prove the following Lipschitz continuity property.

Lemma 3.3.8. Consider πθ1
, πθ2

∈ T. We have

‖πθ1 − πθ2‖FR ≤ L1 ‖µ1 − µ2‖2 + L2 ‖σ1 − σ2‖2 + L3 |α1 − α2| (3.42)

with

L1 = sup
x>0, α∈[αmin,2]

xe
−
(
σ2

min
2 x2

)α/2

L2 = sup
x>0, α∈[αmin,2]

α

2(σ2
min)1−α/2x

αe−(xσmin)α

L3 = sup
x>0, α,α′∈[αmin,2]

∣∣∣log
(√

Rσx
)∣∣∣ (√Rσx)α′ e−(xσmin)α

Note that it is easy to prove that these constants are finite, we leave this proof for the reader (explicit
closed-form expressions are not crucial here).

With this Lipschitz property we can bound the covering numbers of the set of stable distri-
butions.

Lemma 3.3.9. For all δ we have

N
(
‖·‖FR ,T, δ

)
≤ max

((
A

δ

)d
, 1

)
·max

((
B

δ

)d
, 1

)
·max

(
C

δ
, 1

)
(3.43)

where A = 12RµL1, B = 12RσL2, C = 3(2 − αmin)L3 where L1, L2, L3 are defined as in
Lemma 3.3.8.

Finally, we obtain the same corollary as in the Gaussian case.
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Corollary 3.3.10. Consider π? ∈ P and a mixture of α-stable πS ∈ Sk (T) which is a good
approximation of π? in terms of KL-divergence, denote

τ := (DKL (π?||πS) +DKL (πS||π?))
1
2 (3.44)

(note that for any distribution π? the bias term can be chosen at least as small as in the GMM
case, since the model of mixtures of elliptic stable distributions strictly includes that of GMMs).

Consider any kernel κ with a RF expansion (FR,Λ) where FR are the Fourier features. Let
ρ, η > 0 be two constants, assume the sketch size satisfies

m ≥ 4cη−2

[
dk

(
log+

(
128A

η2

)
+ log+

(
128B

η2

))

+ k

(
log+

(
128C

η2

)
+ 2 log

(
32

η

))
+ log

(
1

ρ

)]

where c = 1760/147 and A,B,C is defined as in Lemma 3.3.9.
Consider items z1, ..., zn ∈ Rd drawn i.i.d. from π? and frequencies ω1, ...,ωm ∈ Rd drawn

i.i.d. from Λ, which define the sketching operator A by (3.7). Denote πΘ̃,ξ̃ = ∆ι(A,Aπ̂n) the
probability distribution recovered from the empirical sketch. Then, with probability at least 1 −
(ρ+ ρ′) on the drawing of the zi’s and ωj ’s, it holds that

∥∥∥π? − πΘ̃,ξ̃

∥∥∥
κ
≤ 5τ +

4
(

1 +
√

2 log(1/ρ′)
)

√
n

+ η + 2ι . (3.45)

Proof. The proof is exactly the same than that of Corollary 3.3.6, but with BFR = 1.

As in the previous case for GMM estimation, here the weak admissibility condition yields
results that hold only when the sketch is as large as the database, due to the presence of the
error η = O (1/

√
m). However, if in the previous case methods that use the full database do

exist and these sub-optimal theoretical results were of limited interest, here on the contrary
we obtain, to our knowledge, the first estimator for mixtures of multivariate elliptic stable
distribution with provable guarantees. As we will see in Chapter 5, this theoretical sufficient
sketch size is also sub-optimal compared to what is observed in practice.

3.4 Conclusion

In this chapter, we presented the general principles of our main theoretical contribution.
In Section 3.1 and 3.2, we established the connection between the sketching methodology

and kernel mean embedding, using Random Features expansions. Using a strategy inspired
by Compressive Sensing in infinite-dimensional spaces, we proved that the LRIP holds when
the RF expansion satisfies some admissibility condition, and the normalized secant sets of the
low-dimensional model have finite covering numbers. These somewhat technical assumptions
will be developed in Chapter 6.

We proved that sub-optimal recovery results can already be obtained with simpler assump-
tions, as soon as the model itself has finite covering numbers. We applied this result to two
models: GMM with diagonal covariance and mixtures of elliptic stable distributions. In this
second case in particular, even with sub-optimal sketch size the obtained result constitutes the
first estimator with provable guarantees.

We therefore showed that the parallel between the sketching method and Compressive
Sensing initiated by Bourrier et al. can be extended to obtain theoretical guarantees, by re-
working usual proof techniques and using adapted tools from kernel mean embedding and
Random Features. By seeing the RF expansion as a compressed representation of the distribu-
tion instead of a finite mapping that aims at approximating the high-dimensional embedding
induced by the kernel, we make new connections between these fields.
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Chapter 4

A Greedy Algorithm for Learning
Mixture Models

Context. In Chapter 3, we introduced conditions under which the following minimization
problem yields an instance optimal decoder:

arg min
π∈S

‖Aπ − ŷ‖2 (4.1)

where ŷ ∈ Cm is the pre-computed sketch of a database, S ⊂ P(Z) is a low-dimensional
model of probability distributions and A : M→ Cm is a linear sketching operator, built in our
analysis by combining RF expansions and kernel mean embedding.

Consider the case where the model is formed by mixtures of distributions. Denote T =
{πθ | θ ∈ T } a parametric set of distributions, where T ⊂ Rq . For k > 0 the mixture model is
defined as

S := Sk (T) =

{
πΘ,ξ =

k∑
l=1

ξlπθl

∣∣∣ θl ∈ T , ξ ∈ Sk−1

}
. (4.2)

where Θ = (θ1, . . . ,θk) ∈ Tk denotes the tuple of parameters. In that case the sketch is a linear
combination of k atoms in the dictionary {Aπθ}θ, continuously indexed by θ.

This chapter. In this chapter, we develop a greedy approach, inspired by Compressive Sens-
ing, to handle the estimation problem (4.1) in the case of mixture models. In fact, the proposed
algorithm is applicable to any generic minimization problems of the form

min
Θ∈T k, ξ∈Sk−1

G(Θ, ξ) (4.3)

where, given a vector y ∈ Cm and defining a smooth function f : T → Cm, the cost function
has the form

G(Θ, ξ) =

∥∥∥∥∥y −
k∑
l=1

ξlf(θl)

∥∥∥∥∥
2

2

, (4.4)

When cast for a mixture model S = Sk (T), the estimation problem (4.1) is indeed of the form
(4.4) by defining

f(θl) := Aπθl , (4.5)

and therefore the proposed algorithm is applicable to any mixture model and sketching operator,
as long as θ 7→ Aπθ and its derivative have a closed-form expression.

The layout of the chapter is the following.

– In Section 4.1 we realize a preliminary study of the cost function, and introduce a naive
approach to minimize it.

– In Section 4.2 we describe the proposed greedy approach, inspired by the OMP algorithm
adapted to continuous settings.

– In Section 4.3 we give some implementation details about the proposed algorithm.
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– we finish by a comparison of the algorithm on a simple example problem in Section 4.4,
before the applications to the sketched mixture model estimation problem in the next
chapter.

4.1 Brief study of the cost function, naive algorithm

As mentioned in Section 1.2, a simple method to handle 4.3 consists in discretizing the param-
eter space T ⊂ Rq and optimizing using this finite grid either by brute-force or, e.g. , using
methods inspired by CS [Bun+10]. However this approach quickly fails in moderate or high
dimension q. We directly derive an algorithm in the continuous settings instead. Let us first
briefly examine the cost function G and its derivatives.

Notations. For a univariate function f : Rq → R, we denote ∇θf(θ) =
[
∂
∂θi
f(θ)

]q
i=1
∈ Rq its

gradient, and Hf (θ) =
[

∂2

∂θi∂θl
f(θ)

]
i=1,q
l=1,q

∈ Rq×q its Hessian matrix. For a multivariate func-

tion f : Rq → Rm, we denote fj : Rq → R its jth coordinate and Jf (θ) =
[
∂
∂θi
fj(θ)

]
j=1,m
i=1,q

∈

Rm×q its Jacobian matrix (i.e. whose rows are ∇θfj(θ)>). When a function f(θ1,θ2) depends
on several parameters, the Hessian may be only derived with respect to the parameters θ1 and
written Hf (θ1) (which is here evaluated in (θ1,θ2) where θ2 is defined with no ambiguity in
the text) and similarly for the Jacobian matrix of f(θ1,θ2). Finally, for a vector x ∈ Rd the nota-
tions Re (x) ∈ Rd and Im (x) ∈ Rd indicate the vectors formed respectively by the real part and
imaginary part of its entries, and similarly for a complex multivariate function f : Rq → Cm,
the notation Re (f) (resp. Im (f)) indicates the function from Rq to Rm formed by the real part
(resp. imaginary part) of its coordinates.

Minimization with respect to the weights. When all parameters θl are fixed, minimizing
ξ 7→ G(Θ, ξ) is a convex problem, since it is a simple Least-Square problem restricted to the
convex domain Sk−1 . There is therefore a whole range of methods to solve this problem, see
e.g. the book by Boyd and Vandenberghe [BV04].

Considering this, a good intuitive strategy is to alternatively minimizeG(Θ, ξ) with respect
to ξ and Θ. Similar to usual CS, finding the true support Θ? is much more challenging than
estimating the weights.

Non-linear Least Squares. Consider now that the weights ξ are fixed. With respect to the
hyper parameter Θ, the minimization of the cost function (4.4) is a Non-Linear Least Squares
(NLLS) problem [Mar63; MNT04]. The gradient of the cost function reads ∇ΘG(Θ, ξ) =

[∇θlG(Θ, ξ)]
k
l=1 ∈ Rkq , with

∇θlG(Θ, ξ) = −2ξl

(
JRe(f) (θl)

>
Re (r) + JIm(f) (θl)

>
Im (r)

)
, (4.6)

where r = r(Θ, ξ) = y−
∑k
l=1 ξlf(θl) is the residual in Cm (which also depends on Θ). Putting

all these gradients to zero leads to the normal equations that characterize a stationary point of
the problem. Nevertheless, unlike classic Least Squares, in general stationary points cannot be
explicitly characterized, hence the need for iterative procedures. Although there is a growing
literature on non-convex optimization problems [SQW15] and their properties, we leave this
type of study of the cost function for future work and focus on developing a heuristic that
works well in practice.

Numerous algorithms can be applied to the NLLS problem, from simple gradient de-
scents to more advanced Gauss-Newton type methods such as the well-known Levenberg-
Marquardt algorithm [Mar63]. See [MNT04] for a good summary. Nevertheless, NLLS prob-
lems are generally non-convex and notoriously hard to initialize. A rule of thumb is that the
initial guess must be somewhat close to the optimum: to illustrate this claim let us attempt to
prove that G is convex with respect to Θ ∈ T k. Denote F : Θ 7→

∑k
l=1 ξlf(θl) (recall that the
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weights are fixed), the Hessian matrix of the cost function G with respect to the parameter Θ
reads

HG (Θ) = 2
(
JRe(F) (Θ)

>
JRe(F) (Θ) + JIm(F) (Θ)

>
JIm(F) (Θ)

)
− 2

m∑
j=1

(
Re (rj)HRe(Fj) (Θ) + Im (rj)HIm(Fj) (Θ)

)
. (4.7)

The right-hand side of this expression is a sum of two terms. The first is necessarily positive
semi-definite, while the second is not. Nevertheless, when the residual r goes to 0 the second
term may become negligible compared to the first one, in which case the problem is locally
convex around the optimum.

However, in practical situations this condition might still be arduous to derive with respect
to the full parameter Θ.

Block convexity. Although it is in general difficult to guarantee local convexity with respect
to the whole parameter Θ, it is sometimes possible to characterize local convexity with respect
to one parameter θl, which is referred to as block convexity in the literature [Tse01; XY13]. The
Hessian matrix of the cost function G with respect to the parameter θl reads:

HG (θl) = 2ξ2
l

(
JRe(f) (θl)

>
JRe(f) (θl) + JIm(f) (θl)

>
JIm(f) (θl)

)
− 2ξl

m∑
j=1

(
Re (rj)HRe(fj) (θl) + Im (rj)HIm(fj) (θl)

)
, (4.8)

hence, since ξl ≥ 0, it is positive semi-definite if and only if: for all vectors x ∈ Rq we have

ξl

(∥∥JRe(f) (θl) x
∥∥2

2
+
∥∥JIm(f) (θl) x

∥∥2

2

)
−

m∑
j=1

(
Re (rj)x

>HRe(fj) (θl) x + Im (rj)x
>HIm(fj) (θl) x

)
≥ 0 . (4.9)

Once again this condition might be satisfied when the residual signal is sufficiently small. This
is best illustrated on an example, see also Fig. 4.1.

Example 4.1.1. Define m frequency vectors ωj ∈ Rq , and consider the complex exponential functions

fj(θ) := eiω>j θ . (4.10)

In that case, we have

∇Re (fj)(θ) = − sin(ω>j θ)ωj , ∇Im (fj)(θ) = cos(ω>j θ)ωj

and

HRe(fj) (θ) = − cos(ω>j θ)ωjω
>
j , HIm(fj) (θ) = − sin(ω>j θ)ωjω

>
j .

Hence, denoting Cj = cos(ω>j θl) and Sj = sin(ω>j θl), the left hand side of (4.9) reads

ξl

m∑
j=1

(
S2
j

(
ω>j x

)2
+ C2

j

(
ω>j x

)2)
+

m∑
j=1

(
CjRe (rj)

(
ω>j x

)2
+ SjIm (rj)

(
ω>j x

)2)
=

m∑
j=1

(
ω>j x

)2
(ξl + CjRe (rj) + SjIm (rj))

≥
m∑
j=1

(
ω>j x

)2
(ξl − |rj |) .
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FIGURE 4.1: Value of the cost function for a toy instantiation of Example 4.1.1,
for k = 2 components with parameter dimension q = 1 and measurement
vector dimension m = 5000. We first draw ω1, . . . , ωm from N (0, 25), and
define the functions fj(θ) := eiωjθ . The measurement vector is defined as y =
0.6f(0.5)+0.4f(−0.5), and we display the cost function with the weights put at
their true value G(θ1, θ2) = ‖0.6f(θ1) + 0.4f(θ2)− y‖22. We can clearly see that
the cost function is indeed not globally convex. We observe a basin of attraction
at the true values of the parameters θ1 = 0.5, θ2 = −0.5, but also when the
values of the parameters are exchanged (which is equivalent to approaching

the vector y with the right parameters θl but exchanged weights).

Hence, when each coordinate of the residual is such that |rj | ≤ ξl , the cost function G is convex with
respect to θl. Furthermore, if m ≥ q and the m frequency vectors ωj ∈ Rq span the whole space Rq ,
this convexity is strict.

Note that this somehow supports the intuitive fact that components with a higher weight ξl are more
easily identified than components with a low weight, since the above condition is valid for a larger range
of residuals.

Block coordinate descent algorithm. This possible block convexity encourages us to apply
a block coordinate descent (BCD) algorithm [XY13], which is simply a minimization of the cost
function G with respect to each θl in turn, treated in a random order at each cycle, while all
the other parameters are kept fixed. We describe this block coordinate descent algorithm in
Algorithm 2. Note that the minimization with respect to θl, denoted by minimizeθl , can be
done with any algorithm for Non-Linear Least Squares. In the absence of block convexity, it
yields only a local minimum. After each cycle of going through each θl, we minimize the cost
function with respect to ξ with a Non-Negative Least Squares (NNLS) [LH95] minimization
algorithm, denoted minimizeξ≥0. Note that we do not enforce normalization

∑k
l=1 ξl = 1 at

each iteration. Instead, a normalization of ξ is performed at the end of the algorithm1.
There have been studies of the properties of the block coordinate descent algorithm [Tse01;

XY13] in various mathematical contexts. However, we will see that in practice this approach
has a very limited efficiency, and conditions for block convexity seem to be rarely met unless
very close to the optimal solution. Instead, similar to Bourrier et al. [BGP13] (see Sec. 1.2),
in the next section we propose a strategy inspired by classic Compressive Sensing and de-
velop a greedy algorithm similar to Orthogonal Matching Pursuit and its variant OMP with
Replacement (OMPR).

1Enforcing the normalization constraint at each iteration was found on initial experiments to have a negligible
effect while increasing computation time
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Algorithm 2: Block Coordinate Descent algorithm (BCD)

Data: Sketch y, function f , number of iterations T , initial parameters (Θ0, ξ0)
Result: Parameters (Θ, ξ)
(Θ, ξ)← (Θ0, ξ0) ;
for t← 1 to T do

Draw a random permutation of J1, kK noted σ;
for p← 1 to k do

l← σ(p);

θl ← minimizeθ∈T

(∥∥∥y −∑u6=l ξuf(θu)− ξlf(θ)
∥∥∥2

2
, init = θl

)
;

end

ξ ← minimizeξ≥0

(∥∥∥y −∑k
l=1 ξlf(θl)

∥∥∥2

2
, init = ξ

)
;

end
Normalize ξ such that

∑k
l=1 ξl = 1;

4.2 Proposed greedy approach

The cost function (4.4) is a particular case of NLLS. Its main notable feature is the form of the
function with which the vector y is approached:

Fk(Θ, ξ) :=

k∑
l=1

ξlf(θl) . (4.11)

Going back to the vocabulary of sparse recovery and Compressive Sensing of Section 1.2,
the function F is a linear combination of a limited number of atoms in the dictionary D =
{f(θ) | θ ∈ T }. Like the usual Compressive Sensing settings, the main difficulty in solving
(4.3) is to localize the support Θ = (θ1, . . . ,θk). Once this is done we have already mentioned
that finding the weights ξ is less challenging.

Similar to the original work by Bourrier et al. [BGP13], this encourages us to adapt classic
CS algorithms for sparse recovery to this continuous settings. In this fashion, Bourrier et al.
develop an algorithm inspired by Iterative Hard Thresholding (IHT) [BD09], where the gra-
dient step is approximated by an extension of the support in many directions2, then reduce
the support to a size k with Hard Thresholding, and reiterate. Although originally developed
for the case of GMM with identity covariance estimation, this IHT algorithm can easily be
adapted to any differentiable function f . However we observed that, for certain richer mixture
models like GMMs with unknown covariances, this IHT algorithm has limited efficiency and
can easily get stuck into spurious local minima , due to the particular form of its approximate
gradient step that adds many atoms at once (see Fig. 4.2). We found instead that it was prefer-
able to proceed more carefully and add atoms only one at a time to the support, in a strategy
similar to Matching Pursuit - based methods.

4.2.1 Compressive Learning - OMP (CL-OMP)

Matching Pursuit [MZ93] and Orthonormal Matching Pursuit (OMP) [PRK93] (see Alg. 1) deal
with general sparse approximation problems. They gradually extend the sparse support by
selecting atoms most correlated with the residual signal, until the desired sparsity is attained.

Adapting OMP to the considered framework requires several modifications. The main
challenge stems from the continuous indexation of the dictionary (instead of having a finite
dictionary as in classic CS), which e.g. prevents us from exactly maximizing the correlation
between an atom and the residual signal and requires the use of a continuous optimization
scheme instead.

We detail the modifications brought to OMP below, and summarize them in Algorithm 3.
We call the resulting algorithm Compressive Learning - OMP (CL-OMP).

2Due to the form of this approximate gradient step, this IHT algorithm is in fact also similar to CoSAMP [FR13].
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FIGURE 4.2: Comparison of the result obtained with IHT [BGP13] (left) and the
proposed CL-OMPR (right) on the GMM with unknown covariance estimation
problem of Chapter 5. During its step that adds many atoms at once, the IHT
algorithm falls into a local minimum of the cost function where all Gaussians

in the mixture are equal.

– Non-negativity. The compressive mixture estimation framework imposes a non-negativity
constraint on the weights ξ, that we enforce at each iteration. Thus Step 1 is modified
compared to classic OMPR by replacing the modulus of the correlation by its real part, to
avoid negative correlation between atom and residual. Similarly, in Step 4 we perform
a Non-Negative Least-Squares (NNLS) [LH95] instead of a classic Least-Squares, like in
the BCD algorithm.

– Continuous dictionary. As mentioned before the set T of parameters is continuously
indexed and cannot be exhaustively searched. Instead we propose to replace the maxi-
mization in Step 1 of classic OMP with a randomly initialized gradient descent, denoted
by a call to a sub-routine maximizeθ, leading to a – local – maximum of the correlation
between atom and residual. Note that the atoms are normalized during the search, as is
often the case with OMP.

– Additional non-convex optimization step to handle coherent dictionaries. Compared
to classic OMP, the proposed algorithm includes a new step at each iteration (Step 4),
which further reduces the cost function with a few gradient descent steps initialized with
the current parameters (Θ, ξ). This is denoted by a call to the sub-routine minimizeΘ,ξ.
The need for this additional step stems from the lack of incoherence between the el-
ements of the uncountable dictionary. For instance, in the case of GMM estimation,
i.e. f(θ) = Aπθ where πθ is a GMM with unknown covariance, a (k + 1)-GMM approx-
imation of a distribution cannot be directly derived from a k-GMM by simply adding
a Gaussian. An example run of CL-OMP for GMM estimation is shown in Figure 4.3,
where the need for this additional non-convex update after each extension of the sup-
port is clearly visible.

This is reminiscent of a similar problem handled in High Resolution Matching Pursuit
(HRMP) [Gri+96], which uses a multi-scale decomposition of atoms, while we handle
here the more general case of a continuous dictionary using a global gradient descent
that adjusts all atoms.

In difficult cases, the CL-OMP algorithm can still be challenged: in particular, if during one
iteration it has mistakingly placed a component θl far from the true support, then even the
gradient descent of Step 4 might not be enough to modify it significantly before the algorithm
stops. Thus we also study a variant of OMP called OMP with Replacement (OMPR) [JTD11],
that allows for the suppression of spurious atoms.
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FIGURE 4.3: Step-by-step execution of the CL-OMP algorithm on a GMM es-
timation problem (Chapter 5) with three components in dimension d = 2. Al-
though the data points are displayed here, recall that the algorithm has only
access to the sketch of the data. The three iterations of CL-OMP are displayed
from top to bottom, just after adding an atom (Step 1) on the left, and just after
the gradient descent on all parameters (Step 4) on the right. The necessity for
Step 4 is here clearly outlined: each time a Gaussian component is added, the

previous ones must be displaced to accommodate for it.
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Algorithm 3: Compressive Learning OMP (CL-OMP)

Data: Measurement vector y ∈ Cm, function f : Rq → Cm, sparsity k > 0
Result: Parameters (Θ, ξ)
r← y; Θ← ∅ ;
for t← 1 to k do

Step 1: Find a normalized atom highly correlated with the residual with a gradient
descent (local maximum)
θ ← maximizeθ′

(
Re
(〈

f(θ′)
‖f(θ′)‖2

, r
〉)
,init = rand

)
;

end
Step 2: Expand support

Θ← Θ ∪ {θ} ;
end
Step 3: Project to find weights

ξ ← minimizeξ≥0

∥∥∥y −∑t
l=1 ξlf(θl)

∥∥∥
2
;

end
Step 4: Perform a gradient descent initialized with current parameters

Θ, ξ ← minimizeΘ, ξ≥0

(∥∥∥y −∑t
l=1 ξlf(θl)

∥∥∥
2
,init. = (Θ, ξ)

)
;

end
Update residual: r← y −

∑t
l=1 ξlf(θl);

end
Normalize ξ such that

∑k
l=1 ξl = 1;

4.2.2 CL-OMP with Replacement

In classic CS, an efficient variation of OMP called OMP with Replacement (OMPR) [JTD11]
exhibits better reconstruction guarantees. Inspired by IHT [BD09], and similar to CoSAMP or
Subspace Pursuit [FR13], it increases the number of iterations of OMP, extends the size of the
support further than the desired sparsity and reduces it with Hard Thresholding to suppress
spurious atoms.

Our adaptation of OMPR is very simple: first we perform CL-OMP to find initial parame-
ters. Then we continue to perform the same steps as CL-OMP for k additional iterations, with
the addition of a Hard Thresholding step between Step 2 and Step 3 of CL-OMP to suppress
one atom.

We obtain an algorithm coined CL-OMP with Replacement (CL-OMPR), described in Algo.
4. Although the modification from CL-OMP to CL-OMPR seems exceedingly simple, we will
see that on a number of problems the CL-OMPR algorithm perform far better than CL-OMP.

Function HardThres(Θ,y, f , k): reduction of the support by Hard Thresholding

Data: Current support Θ, measurement vector y ∈ Cm, function f : Rq → Cm, desired
sparsity k

Result: Reduced support Θ

ξ̃ ← arg minξ≥0

∥∥∥y −∑|Θ|l=1 ξl
f(θl)
‖f(θl)‖2

∥∥∥
2
;

Select the k largest entries ξi1 ≥ . . . ≥ ξik ;
Reduce the support Θ← (θi1 , . . . ,θik);

Learning the number of components? In the proposed framework, the number of compo-
nents k is known in advance and provided by the user. However, it is known that greedy
approaches such as OMP are convenient to derive stopping conditions, that could be readily
applied to CL-OMP: when the residual falls below a fixed (or adaptive) threshold, stop the al-
gorithm (adapted strategies could be derived for CL-OMPR). In this thesis however, we only
compare the proposed method with classic approaches such as the Expectation Maximization
(EM) algorithm, that also consider the number of components k to be known in advance. We
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Algorithm 4: Compressive Learning OMP with Replacement (CL-OMPR)

Data: Measurement vector y ∈ Cm, function f : Rq → Cm, sparsity k, additional number
of iterations T > 0 (usually T = k)

Result: Parameters (Θ, ξ)
First initialize with CL-OMP (Alg. 3): (Θ, ξ)← CL-OMP(y, f , k);
r← y −

∑k
l=1 ξlf(θl);

for t← 1 to T do
Perform Step 1 and Step 2 of Alg. 3 (the support has now size k + 1);
Additional step : Suppress one atom by Hard Thresholding

Θ← HardThres(Θ,y, f , k);
end
Perform Step 3 and Step 4 of Alg. 3;
Update residual: r← y −

∑k
l=1 ξlf(θl);

end
Normalize ξ such that

∑k
l=1 ξl = 1;

leave the implementation of a stopping condition for CL-OMP(R) and comparison with exist-
ing methods for model selection for future work.

Guarantees for CL-OMP(R). It is not surprising that theoretical guarantees for the CL-OMP
algorithm seem complicated to obtain: it involves a number of random steps and non-convex
gradient descent steps for which no guarantees can be provided in general.

At the time of our first publication of the CL-OMPR algorithm, we were made aware of
the parallel work of Boyd et al. [BSR15], where the authors develop an algorithm coined Al-
ternating Descent Conditional Gradient Method, for generalized sparse inverse problems in con-
tinuous domain. Surprisingly enough, although the interpretations of the two approaches are
fairly different this algorithm is extremely similar to CL-OMP, in that it progressively extends
a sparse support and alternates with non-convex updates3. In fact a similar algorithm also
appeared in [BP12]. The two main differences between these algorithms and the proposed
CL-OMP(R) are a) the normalization of atoms by their Euclidean norm in the maximization
of correlation step of CL-OMP(R) (step 1 of Alg. 3), which is seen to be empirically neces-
sary when dealing e.g. with GMMs with unknown covariance, for numerical stability reasons,
and b) the Hard Thresholding step (for CL-OMPR), which as we will see can dramatically
improves performance.

In these papers, the authors provide theoretical guarantees that hold even without the non-
convex update step. They are of the form:

“when k grows to infinity, the cost function (different from ours) can be reduced
with a provable rate”.

This is unfortunately fundamentally different from the type of guarantees that would be of
interest for our problem, which is that we aim at identifying a fixed number of exactly k sparse
components. In particular, for the sketching method of Chapter 3, this number k is related to
the complexity of the problem and our analysis fails if k is allowed to grow indefinitely.

When the number of components is fixed, provable guarantees for CL-OMP(R) are still
an open question. In this thesis we have focused in Chapter 3 on providing feasibility and
information-preservation guarantees, proving that approximately minimizing the cost function
indeed solves the problem. In the next chapter we demonstrate empirically that CL-OMPR
performs excellently on a number of problems. A paramount question for the future is to prove
that there is an algorithm which, possibly under some additional hypotheses, approximately
solves (4.3).

3Performed by the BCD algorithm!
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4.3 Implementation and complexity

In this section, we briefly study the complexity of the algorithms and give a few implemen-
tation details on the CL-OMP(R) algorithm. We released a Matlab implementation of CL-
OMP(R) at [Ker16]. The algorithm can be implemented for every differentiable function f , and
the code is written so that users can easily implement their own models.

4.3.1 Complexity of the algorithms

Assuming that the complexity of the optimization scheme minimizeθl with respect to θl ∈ Rq
scales linearly in O (q), the BCD algorithm simply scales in O (Tmqk), where T is the (fixed)
number of iterations.

Just as OMP, whose complexity scales quadratically with the sparsity parameter k, the pro-
posed greedy approaches CL-OMP or CL-OMPR have a computational cost of the order of
O
(
mqk2

)
. This is potentially a limiting factor for the estimation of mixtures with many basic

components (large k). In classic sparse approximation, approximate least squares approaches
such as Gradient Pursuit [BD08a] or LocOMP [MG09] have been developed to overcome this
computational bottleneck. One could probably get inspiration from these approaches to fur-
ther scale up compressive mixture estimation, which is left for future work. For some particu-
lar models in Chapter 5 however, we will leverage some ideas based on hierarchical construc-
tions to reduced the quadratic cost to k log k.

4.3.2 Implementing the optimization procedures of CL-OMP(R)

The CL-OMP(R) algorithm requires the implementation of optimization schemes for two func-
tions:

v(θ) = Re

(〈
f(θ)

‖f(θ)‖2
, r

〉)
, G(Θ, ξ) =

∥∥∥∥∥y −
k∑
l=1

ξlf(θl)

∥∥∥∥∥
2

2

.

The first function is the correlation between a normalized atom and the residual that must
be approximately maximized in Step 1, and the second is the global cost function that must
be further reduced in Step 4. We therefore have to compute the gradients of these functions
to implement numerical optimization schemes. Let us show that this can be done if one is
able to numerically compute two functions: the feature function f(θ) ∈ Cm and the function
g : Rq × Cm 7→ Rq defined by

g(θ,x) = JRe(f) (θ)
>

Re (x) + JIm(f) (θ)
>

Im (x) . (4.12)

In the implementation of CL-OMP(R) available at [Ker16], the user can thus instantiate the
method on a new model by simply providing expressions for f and g.

Global cost function. We have already computed the gradient of the cost function G in Sec-
tion 4.1. It takes the form:

∇ξG = −2 [Re (〈f(θl), r〉)]kl=1 ∈ Rk, ∇θlG = −2ξlg(θl, r) ∈ Rq (4.13)

where r = y −
∑k
l=1 ξlf(θl) is the residual. These expressions can indeed be derived using

only the functions f and g.

Normalized correlation. Let us now examine the function maximized in the first step of CL-
OMP(R), the correlation between a normalized atom and the residual signal. For simplicity
of computation, denote by f̃(θ) ∈ R2q (resp. r̃ ∈ R2q) the function (resp. vector) obtained by
stacking the real and imaginary parts of f(θ) ∈ Cm (resp. r ∈ Cm). The function v then takes
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the form v(θ) = f̃(θ)>r̃

‖f̃(θ)‖
2

. Its gradient is:

∇θv(θ) =
Jf̃ (θ)

>
r̃∥∥∥f̃(θ)
∥∥∥

2

− f̃(θ)>r̃∥∥∥f̃(θ)
∥∥∥3

2

Jf̃ (θ)
>

f̃(θ) =
1∥∥∥f̃(θ)
∥∥∥

2

· Jf̃ (θ)
>

r̃− v(θ)∥∥∥f̃(θ)
∥∥∥

2

f̃(θ)


and therefore

∇θv(θ) =
1

‖f(θ)‖2
· g
(
θ, r− v(θ)

‖f(θ)‖2
f(θ)

)
(4.14)

which can indeed be expressed only in terms of f and g.

4.3.3 Possibility for fast transforms

We thus showed the following:

Since all optimization schemes in CL-OMP(R) can be performed only by computing f

and g, there is in general no need to compute the whole matrix Jf (θ)
>, but only its

multiplication by a vector.

A very interesting possibility is then to replace the matrix-vector multiplication by a faster
operation, sometimes with sub-linear cost (a so-called fast transform).

Let us illustrate this by going back to example 4.1.1. Denoting W = [ω1, . . . ,ωm] ∈ Rq×m
the matrix containing the frequency vectors, the computation of the function f can be done as

f(θ) = ρim.
(
W>θ

)
(4.15)

where ρim. (·) is the pointwise application of x 7→ eix. Once f(θ) has been computed, one can
apply the function g by:

g(θ,x) =

m∑
j=1

(
− sin(ω>j θ)Re (xj)ωj + cos(ω>j θ)Im (xj)ωj

)
= W

(
− Im (f(θ))� Re (x) + Re (f(θ))� Im (x)

)
(4.16)

where � is the Hadamard product between matrices or vectors, i.e. element-by-element mul-
tiplication.

In these expression, the matrix-vector multiplications θ 7→ W>θ and x 7→ Wx have, in
theory, a computational cost of O (mq). However, it has been shown that the matrix W can
be defined with an underlying structure such that these operations are made much faster, and
such that there is no need to store the entire matrix W but only the few parameters that define
it, which makes the method not only faster but also more memory efficient.

A paramount example of such fast transforms is the well-known Fast Fourier Transform
(FFT) algorithm: when the matrix W is the squared Fourier matrix of size d, the FFT algorithm
performs its multiplication by a vector in time O (d log d) instead of O

(
d2
)
. Generalizing this

principle, some approaches define efficient matrices while preserving the important proper-
ties of usual random matrices [LSS13; Yan+15] or deep networks [SS16; CS16], while other
methods attempt to learn an efficient factorization of any matrices [LeM16; Cha+15].

In this manuscript we do not experiment with fast transforms, and leave this interesting
idea that would allow for an even more efficient sketching method for future investigations.
Some works [Cha17] have already begun to explore this direction.

4.4 Experimental illustration

In this last section, we briefly compare the proposed algorithms by implementing the frame-
work of Example 4.1.1, and show empirically that the CL-OMPR algorithm performs incredi-
bly better than the BCD and CL-OMP algorithms (also recall that the algorithm in [BSR15] is
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roughly similar to CL-OMP without Replacement).
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FIGURE 4.4: Example of true parameters Θ? and recovered parameters Θ̃ along
the first two dimensions, for the three algorithms BCD (left), CL-OMP (center)

and CL-OMPR (right).
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FIGURE 4.5: Evolution of the cost function G with time, for 30 experiments, for
the four algorithms BCD oracle (top left), BCD (top right), CL-OMP (bottom

left) and CL-OMPR (bottom right).

Setup. In this experiment, we consider a mixture of k = 10 components, with parameters
θl of size q = 5 (recall that the total parameter size of the mixture, counting the weights, is
k(q + 1)), for a measurement vector of size m = 300. First we generate the true parameter Θ?

by drawing k points θ?l uniformly from T = [0, 1]q . The weights ξ? are chosen by first drawing
a vector of k numbers between 0.5 and 1.5 uniformly, then normalizing such that

∑k
l=1 ξ

?
l = 1.

We draw the frequency vectorsωj randomly from a Gaussian distributionN (0, σ2I) with σ2 =

25, which defines the function f(θ) =
[
eiω>j θ

]m
j=1

. The measurement vector is then computed

without noise as y =
∑k
l=1 ξ

?
l f(θ?l ).
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Parameters (Θ̃, ξ̃) are then recovered using four different algorithms. First, to test the local
convexity when close to the optimum, the BCD algorithm is performed with initial parameters
Θ0 that are close to the true parameters, defined as Θ0 = Θ? + 0.05 ∗ Θ̄ where Θ̄ are k points
drawn i.i.d. from [0, 1]q . This is referred to as BCD oracle. Second, the BCD algorithm is per-
formed with no a priori knowledge, with initial parameters θ0

l directly drawn i.i.d. from [0, 1]q .
In both cases the weights are initialized uniformly as ξ0

l = 1/k. Finally, we perform CL-OMP
(Alg. 3) and CL-OMPR (Alg. 4), where the gradient descent of Step 1 is initialized with a
random point in [0, 1]q . An example of true and recovered parameters is given in Figure 4.4.

Minimization of the cost function. We repeat this experiment 30 times. We measure the
evolution of the cost functionG(Θ, ξ) with respect to the time of execution in Figure 4.5. In this
figure we consider that the minimization is “successful” when the cost function falls below an
arbitrary threshold of 10−2 on the y axis. It is seen that BCD with oracle initialization manage to
attain this goal almost at each run, while the BCD algorithm is never successful. This confirms
that NLLS problems can be dealt with using a simple (naive) approach with a good oracle
initialization, and are difficult with no a priori knowledge.

Even without prior knowledge, CL-OMP is successful in a few runs of the experiment, and
CL-OMPR is successful in a great majority of the cases.

BCD CL-OMP CL-OMPR BCD oracle
Mean SSE 1.06 0.794 0.0825 3.80e−5

Var. SSE 0.453 0.259 0.0845 1.99e−8

Median SSE 1.01 0.742 5.65e−13 7.40e−12

TABLE 4.1: Mean, variance and median of the SSE (lower is better) over 30
experiments for the BCD, BCD oracle, CL-OMP and CL-OMPR algorithm.

Recovery of the parameters: a first step toward Compressive k-means. To confirm the re-
covery of the parameters Θ? by minimization of the cost function, we examine the sum of
squared distances of each parameter θ?l to its closest recovered point, referred to as the Sum of
Squared Error (SSE):

SSE(Θ̃) =

k∑
l=1

min
1≤p≤k

∥∥∥θ?l − θ̃p∥∥∥2

2
.

We show the mean, the variance and the median of the SSE over 30 experiments in Table 4.1 .
All three quantities indicate that the BCD algorithm with oracle initialization indeed almost al-
ways yields an SSE very close to 0, which indicates that in nearly all cases the true parameters
are exactly recovered. The CL-OMP performs slightly better than BCD without oracle, how-
ever, it yields a rather elevated median SSE, which indicates that in the majority of the cases
the parameters Θ? are not recovered. The CL-OMPR algorithm has a mean SSE that is slightly
degraded by the few failure cases, but exhibits a median SSE that is close to 0, similar to BCD
with oracle initialization. Among the three algorithms with no oracle knowledge, CL-OMPR
indeed seems to be the only one capable of recovering Θ? in the vast majority of the cases.

We observe that minimizing the cost functionG indeed leads to recovering the true param-
eters Θ?. The problem of exactly recovering points (centroids) in Rq with a Random Fourier
Sampling is akin to the Compressive k-means problem that will be examined in the next chap-
ter, and for which theoretical guarantees of success are given in Chapter 6.

4.5 Conclusion

In this chapter, we developed a greedy approach for handling a particular Non-Linear Least
Squares problem, where a measurement vector is approached by a linear combination of atoms
chosen in an infinite, continuously indexed dictionary. This flexible algorithm can be applied
as soon as the mapping which associates a parameter with an atom is differentiable.
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We showed that the considered optimization problem is sometimes locally block convex
when close to the optimum. This was illustrated on an example where a simple block coordi-
nate descent algorithm was shown to perform well when initialized close to the true solution.
In the absence of prior knowledge, however, this naive approach was observed to fail. On the
contrary, the proposed CL-OMPR algorithm successfully minimized the cost function in the
vast majority of the experiments, without requiring a good initialization.

Future work will aim at experimenting with fast transforms to speed-up the greedy method,
and most of all provide theoretical guarantees for CL-OMP(R).

In the next chapter, we apply the CL-OMPR algorithm to the sketching problem defined in
Chapter 3, for the estimation of several mixture models, and examine in more details the role
of each parameters in the algorithm.
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Chapter 5

Application: Sketched estimation of
three mixture models

Context. In the previous chapter, we defined a flexible heuristic algorithm to deal with the
minimization of any function of the form

G(Θ, ξ) =

∥∥∥∥∥
k∑
l=1

ξlf(θl)− y

∥∥∥∥∥
2

2

(5.1)

where y ∈ Cm is a measurement vector, θl ∈ T ⊂ Rq are parameters, ξ ∈ Sk−1 are normalized
weights and f : Rq 7→ Cm is a differentiable feature function. We briefly applied it on a simple
example.

This chapter. In this chapter we go back to the sketching problem defined in Chapter 3 in
the case of mixture model estimation (recalled below), and apply the CL-OMP(R) algorithm to
this difficult non-convex optimization problem, by defining f(θ) := Aπθ, where πθ is a basic
component in a mixture and A is a linear operator randomly designed.

The outline of the chapter is the following.

– In Section 5.1, we develop a simple unsupervised method to learn the parameters nec-
essary for the design of the sketching operator A before the actual sketching takes place,
using a very small sample of training data. The proposed approach is relatively simple
compared to existing methods to design kernels, but it is nevertheless shown to yield
good results in practice.

– In Section 5.2 we summarize the methodology and discuss some implementation details.

– In Section 5.3 we describe a first implementation of CL-OMPR, where πθ = δθ is a Dirac
distribution. This implementation is compared to the k-means algorithm, and in the next
chapter we will give related theoretical results for this method.

– In Section 5.4 we implement CL-OMP(R) for Gaussian Mixture Modeling with diago-
nal covariance, i.e. πθ = N (µ,diag (σ)). We introduce an algorithm, alternative to CL-
OMP(R) but specific to GMM, that scales in k log k instead of k2. The sketching approach
is compared to the traditional Expectation-Maximization (EM) algorithm.

– In Section 5.5 we briefly compare the proposed sketching method with the coreset method
described in [Luc+17], for both the k-means and GMM estimation problems.

– In Section 5.6 we instantiate CL-OMP(R) for the problem of estimating mixtures of multi-
variate elliptic stable distributions with diagonal precision matrix πθ = Sα (µ,diag (σ)).
To our knowledge, our approach is the first algorithm capable of performing this estima-
tion.

Sketching method with RFFs. Let us briefly recall the sketching method, as it will be instan-
tiated in this chapter. Let T = {πθ | θ ∈ T } ⊂ P(Rd) be a set of probability distributions over
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Rd. Define a sketching function Φ : Rd 7→ Cm, and the sketching operator as:

Aµ := 〈µ,Φ〉 . (5.2)

Given a database of samples z1, . . . , zn ∈ Rd, the sketch of the database is computed as

ŷ := Aπ̂n =
1

n

n∑
i=1

Φ(zi) (5.3)

Fitting a k-mixture on the database can then be done (Chapter 3) as:

min
Θ∈T k, ξ∈Sk−1

‖AπΘ,ξ − ŷ‖22 (5.4)

where πΘ,ξ =
∑k
l=1 ξlπθl . This problem is indeed of the form (5.1) with f(θ) := Aπθ, and we

can apply the CL-OMP(R) algorithm as long as θ 7→ Aπθ and its gradient have a closed-form
expression.

In the applications presented in this chapter we will implement the method with the func-
tion Φ defined as a collection of complex exponentials at randomly drawn frequencies, which
is an instantiation of the sketching method of Chapter 3 with the kernel RF expansion taken
as Random Fourier Features [RR07], and similar to Bourrier’s original framework [BGP13]
(Chapter 1 Section 1.2). Indeed, since we aim at spatially localizing several components, a
Fourier sampling seems natural1. Given frequency vectorsω1, . . . ,ωm ∈ Rd (in practice drawn
i.i.d. from a distribution Λ) the sketching function is defined as

Φ(z) =
[
eiω>j z

]m
j=1

. (5.5)

where, compared to the sketch (3.7) studied in Chapter 3, we omit the normalization 1√
m

since
it has no influence on the recovery procedure. The sketching operator A is then a sampling of
the characteristic function of the distribution π, defined as

ψπ(ω) = Ez∼πe
iω>j z . (5.6)

For many important parametric sets of distributions T = {πθ} the characteristic function has
a differentiable, closed-form expression with respect to θ, such that the CL-OMP(R) algorithm
can be applied.

5.1 Kernel choice

The selection of an appropriate Random Feature expansion (FR,Λ) amounts to choosing a
kernel κ. Given some learning task, the selection of an appropriate kernel, or kernel design,
is known to be a difficult problem. The theoretical results of Chapter 6 will be derived for a
Gaussian kernel for the simplicity of its expression, however in practice one must adjust the
kernel to the given data less the method may perform very poorly.

With the Fourier features that we use in this chapter, it is seen that the frequencies ωj used
to build the sketching operator have to be (randomly) selected at the right scale to obtain good
results, i.e. with the right balance between “low” and “ high” frequencies.

In this section we describe a simple unsupervised procedure to learn this scale parameter
using a fraction of training data, prior to the actual sketching. We also derive an innovative
radial kernel whose expression is based on a heuristic and which seems to perform well in
practice.

Note that, by Theorem 1.4.4, it is easy to check that all RF expansions presented here yield
characteristic kernels, i.e. the induced MMD is a proper norm. Let us first give some references
on kernel design.

1In the next Chapter, we will provide guarantees for reweighted versions of the Fourier sampling (Example 3.1.3).
In practice we find that adding these weights has very little effect and increases computation time.
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5.1.1 A few general principles for kernel design

Kernel design/learning is often done in a supervised manner with respect to a particular learn-
ing task. A natural idea is to define a parametric family of kernels (e.g. Gaussian kernels
parametrized by a bandwidth) and apply a supervised parameter learning scheme. Modern
architectures often learn the kernel as a convex combination of many kernels [BLJ04; Son+06].

With Random Features. Since supervised kernel design can be computationally intensive,
one can use acceleration techniques like RF expansions to leverage the computational gain
of explicit embeddings. Often the considered frequency distribution Λ is derived from a ker-
nel κ chosen in a parametric family endowed with closed-form expressions for both κ and Λ
[RR07]. However an increasingly popular idea is to directly learn the RF expansion of the ker-
nel, without resorting to a closed-form expression for the kernel κ. Researchers have explored
the possibility of modifying the matrix of frequencies to obtain a better approximation quality
[Xin+16] or to accelerate the computation of the kernel [LSS13; Yan+15]. Both ideas have been
exploited for learning an appropriate frequency distribution Λ, for instance modeled as a mix-
ture of Gaussians [WA13; Yan+15; Oli+15], or by optimizing weights over a finite dictionary
of many distributions [SD16].

For kernel mean embedding. In the context of kernel mean embedding, learning a kernel
has mainly been explored for the two-sample test problem [Sri+09; Gre+12], i.e. the problem of
deciding if two sets of samples are drawn from the same distribution. The main idea of these
methods is to maximize the “discriminative” power of the MMD, i.e. its ability to distinguish
distributions of interest that are different. In [Sri+09], the authors introduce a new metric
defined as the maximal MMD over a whole family of kernels. In [Gre+12] a learning procedure
is described to derive a kernel with maximal testing power, as a convex combination over a
finite family of kernels. In [Chw+15; Jit+16] the acceleration provided by RF expansions is
exploited to learn kernels, also for two-sample test, while in [PSW16] the learning is done in a
streaming context.

In this chapter. In the next section, we describe a simple method to learn a frequency distri-
bution Λ for RFFs, adapted to compute the sketch of some data in practice. Most approaches
described in the literature cannot be readily applied in this context, since we sketch only a sin-
gle distribution that we aim at recovering, while the two-sample test aims at distinguishing the
distributions of several sets of samples. However, the general idea of maximizing the capacity
of the MMD to discriminate distributions that are close to the true distribution of the data will
still be our main inspiration. The biggest difference is that the proposed method is done in a
completely unsupervised manner, based on an approximate theoretical expression of the MMD
for clustered data, instead of a thorough statistical analysis of the kernel learning problem.
We leave experimentation with more exotic kernels and more advanced learning methods for
future work.

5.1.2 Oracle frequency sampling pattern for clustered data

In this thesis, the sketching method is applied to mixture model learning. The data are there-
fore supposed to be approximately clustered, i.e. shaped as several localized groups of data.
Hence we develop our heuristic for kernel learning based on the supposition that the proba-
bility distribution of the data π? is a mixture of Gaussians. In practice, the learning method
derived in the next section works well even when π? is not a GMM (e.g. on speech data in
Section 5.4.6): it learns a “scale” at which patterns are potentially interesting in the data.

We denote a Gaussian distribution in Rd by πθ = N (µ,Σ), where µ ∈ Rd is the mean
of the Gaussian, the positive definite matrix Σ ∈ Rd×d is its covariance, and θ = (µ,Σ) is
the set of both parameters. A k-GMM is denoted πΘ,ξ =

∑k
`=1 ξ`πθ` where ξ ∈ Sk−1 and

Θ = (θ1, ...,θk).
Recall that in this chapter we consider usual Random Fourier FeaturesFR =

{
eiω>z | ω ∈ Rd

}
,

such that the sketch Aπ is a random sampling of the characteristic function of the probability
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distribution π. For a Gaussian πθ, the characteristic function is

ψπθ (ω) = eiω>µe−
1
2ω
>Σω . (5.7)

which we also denote ψθ . The characteristic function of a GMM is denoted by ψΘ,ξ .
To derive a method to automatically learn a kernel, we proceed step by step. We first

describe a heuristic to choose an appropriate frequency distribution Λ when the distribution
π? is a single Gaussian with known parameter θ? (which is of course not the case in practice).
We refer to this “ideal” distribution as oracle distribution. We then extend to mixtures of
Gaussians with known parameters. Finally, inspired by this study we derive our learning
method.

Oracle frequency sampling pattern for a single known Gaussian

We start by designing a heuristic for choosing frequencies adapted to the estimation of a single
Gaussian πθ? , assuming the parameter θ? = (µ?,Σ?) is available.

Gaussian frequency distribution. Consider the expression (5.7) of the characteristic function
of the Gaussian πθ? . It is an oscillating function with Gaussian amplitude of inverted variance
with respect to the original Gaussian. Given that |ψθ? | ∝ N

(
0, (Σ?)

−1
)

, choosing a Gaussian

frequency distribution denoted by Λ
(G)
Σ? = N

(
0, (Σ?)

−1
)

is a possible, intuitive choice [BGP13;
BGP15] to sample the characteristic function. It concentrates frequencies in the regions where
the sampled characteristic function has high amplitude.

However, points drawn from a high-dimensional Gaussian concentrate on an ellipsoid
which moves away from the origin as the dimension d increases. Such a Gaussian sampling
therefore “undersamples” low or even middle frequencies (Fig. 5.1). This phenomenon has
long been one of the reasons for using dimensionality reduction for GMM estimation [Das99].
Hence, in high dimension the amplitude of the characteristic function becomes negligible
(with high probability) at all selected frequencies. We will see in Chapter 6 that reconstruc-
tion is still possible in theory, however in practice the CL-OMP(R) algorithm of Chapter 4 is
very unstable in that case.
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FIGURE 5.1: Modulus of the entries of a sketch y = AπΘ,ξ of a mixture of
k = 5 isotropic Gaussians computed with sampling frequencies {ω1, ...,ωm}
drawn from a normal distribution Λ

(G)
I , for dimensions d = 2 (left) and d = 10

(right). Each point |yj | is placed with respect to the norm of the corresponding
frequency ‖ωj‖2. As expected, in high dimension only the “tail” of the charac-

teristic function ψΘ,ξ is captured.

Folded Gaussian radial frequency distribution. In light of the problem observed with the
Gaussian frequency distribution, we propose to draw frequencies from a distribution that al-
lows for an accurate control of the quantity ω>Σ?ω, and thus of the amplitude e−

1
2ω
>Σ?ω of
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the characteristic function. This is achieved by drawing

ω = R (Σ?)
− 1

2 ρ , (5.8)

where ρ ∈ Rd is uniformly distributed on the `2 unit sphere Sd−1, and R ∈ R+ is a radius
chosen independently from ρwith a distribution πR we will now specify.

With the decomposition (5.8), the characteristic function ψθ? is now expressed as

ψθ?
(
R (Σ?)

− 1
2 ρ
)

= exp
(

iRρ> (Σ?)
− 1

2 µ?
)

exp
(
− 1

2R
2
)

= ψθ(R),

where ψθ is the characteristic function of a one-dimensional Gaussian with mean µ = ρ>Σ?− 1
2µ

and variance σ2 = 1. We thus consider the estimation of a one-dimensional Gaussian πθ? =

N
(
µ?, (σ?)

2
)

, with any mean but variance σ? = 1, as our baseline to design a radius distribu-
tion πR.

In this setting, we no longer suffer from unwanted concentration phenomena and can re-
sort to the intuitive Gaussian radius distribution to sample ψθ? . It corresponds to a radius
density function πR = N+(0, 1

σ?2 ) = N+(0, 1) (i.e. Gaussian with absolute value, referred to
as folded Gaussian). Using this radius distribution with the decomposition (5.8) yields a fre-
quency distribution Λ

(FGr)
Σ? referred to as Folded Gaussian radius frequency distribution. Note

that, similar to the Gaussian frequency distribution, the Folded Gaussian radius distribution
only depends on the (oracle) covariance Σ? of the sketched distribution πθ? .

Adapted radius distribution Though we will see it yields decent results, the Folded Gaus-
sian radius frequency distribution somehow produces too many frequencies with a low radius
R. These carry a limited quantity of information about the original distribution, since all char-
acteristic functions equal 1 at the origin2. We now present a heuristic that may avoid this
“waste” of frequencies.

As described in Section 5.1.1, maximizing the capacity of the MMD to discriminate between
different distributions of interest is a classic strategy for two-sample tests using kernel mean
embeddings. Although only a single distribution is sketched here, intuitively the MMD should
distinguish the true distribution from distributions that are “close” to it, to be able to recover
it from the sketch with precision. Thus the chosen frequencies should properly discriminate
Gaussians with different parameters in the neighborhood of the true parameter θ? = (µ?, 1).
This corresponds to promoting frequencies ω leading to a large difference |ψθ(ω)− ψθ?(ω)| for
parameters θ close to θ?. A way to achieve this is to promote frequencies where the norm of
the gradient ‖∇θψθ(ω)‖ is large.

Recall that for a one-dimensional Gaussian ψθ(ω) = eiµωe−
1
2σ

2ω2

. The norm of the gradient
is expressed as:

‖∇θψθ(ω)‖22 = |∇µψθ(ω)|2 + |∇σ2ψθ(ω)|2

= |iωψθ(θ)|2 +

∣∣∣∣−1

2
ω2ψθ(ω)

∣∣∣∣2 =

(
R2 +

R4

4

)
e−σ

2R2

where R = |ω|, and therefore ‖∇θψθ?(ω)‖2 =
(
R2 + R4

4

) 1
2

e−
1
2R

2

since (σ?)
2

= 1. This ex-
pression still has a Gaussian decrease (up to polynomial factors), and indeed avoids very low
frequencies (Figure 5.2). It can be normalized to a density function:

πR = C
(
R2 + R4

4

) 1
2

e−
1
2R

2

, (5.9)

with C some normalization constant. Using this radius distribution with the decomposition
(5.8) yields a distribution Λ

(Ar)
Σ referred to as Adapted radius frequency distribution. Once

again, this distribution only depends on the covariance Σ.

2In a way, numerous measures of the characteristic function near the origin essentially measure its derivatives at
various orders, which are associated to classic polynomial moments.
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FIGURE 5.2: Folded Gaussian radius (FGr) and Adapted radius (Ar) distribu-
tions.

Oracle frequency sampling pattern for a known mixture of Gaussians

Any frequency distribution Λ
(.)
Σ selected for sampling the characteristic function of a single

known Gaussian πθ? can be immediately and naturally extended to a frequency distribution
Λ

(.)
Θ?,ξ? to sample the characteristic function of a known GMM πΘ?,ξ? =

∑k
l=1 ξ

?
l πθ?l , by mixing

the frequency distributions corresponding to each Gaussian:

Λ
(.)
Θ?,ξ? =

k∑
l=1

ξ?l Λ
(.)
Σ?
l
. (5.10)

Each component Λ
(.)
Σ?
l

has the same weight as its corresponding Gaussian πθ?l . Indeed, a Gaus-
sian with a high weight must be precisely estimated, as its influence on the overall recon-
struction error (e.g. in terms of Kullback-Leibler divergence) is more important than that of
components with low weights. Thus more frequencies adapted to this Gaussian are selected.

The draw of frequencies with an oracle distribution Λ
(.)
Θ,ξ is summarized in Function DrawFreq.

5.1.3 Learning the frequency sampling pattern in practice

Inspired by the study of the previous section for known GMM, we now derive a method to
automatically learn a kernel that works well in practice with no a priori knowledge. The
reader should also keep in mind that it is still very easy to integrate some prior knowledge in
this design, especially since the proposed frequency distributions only take into account the
variances of the GMM components, not their means.

Given a database z1, . . . , zn ∈ Rd that we want to sketch, this method uses a fraction of the
database z1, . . . , zn0 with n0 � n to learn an appropriate frequency distribution with a light
procedure, before the actual sketch is computed on the database.

The idea is to estimate the average variance σ̄2 = 1
kd

∑k
l=1

∑d
i=1 σ

2
l,i of the components

in the GMM, where σ2
l,1, ..., σ

2
l,d are the eigenvalues of Σl . Note that this parameter may be

significantly different from the global variance of the data, for instance in the case of well-
separated components with small variances. This estimation is performed using a light sketch
y0 with m0 frequencies, computed on a small subset of n0 items from the database, then a
frequency distribution corresponding to a single isotropic Gaussian Λ

(.)
σ̄2I is selected.

Indeed, if the variances σ2
l,i’s are not too different from each other, the amplitude of the em-

pirical characteristic function
∣∣∣ 1
n0

∑n0

i=1 e
iω>zi

∣∣∣ approximately follows e−
1
2‖ω‖

2
2σ̄

2

with high oscil-
lations, allowing for a very simple amplitude estimation process: assuming them0 frequencies
used to compute the sketch y0 are ordered by increasing norm, the sketch y0 is divided into
consecutive blocks, maximal peaks of its modulus are identified within each block forming
a curve that approximately follows e−

1
2R

2σ̄2

, then a simple regression is used to estimate σ̄2.
This process is illustrated in Figure 5.3.
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FIGURE 5.3: Illustration of the estimation of σ̄2 (Function EstimMeanSigma),
for d = 10, k = 5, m0 = 500 and n0 = 5000. Green dots: modulus of the sketch
with respect to the norm of frequencies (ordered by increasing radius). Blue
lines: visualization of the peaks in each block of 20 consecutive values. Red

curve: fitted curve e−
1
2
R2σ̄2

for the estimated σ̄2.

To cope with the fact that the “range” of frequencies that must be considered to compute y0

is also not known beforehand, we initialize σ̄2 = 1 and reiterate this procedure several times,
each time drawing m0 frequencies adapted to the current estimate of σ̄2, i.e. with some choice
of frequency distribution Λ

(.)
σ̄2I, and update σ̄2 at each iteration. In practice, the procedure

quickly converges in a few iterations. The entire process is summarized in detail in Function
EstimMeanSigma.

Function DrawFreq(
(
{Σl}k`=1 , ξ

)
,m,distr): drawing frequencies for a GMM with

known variances and weights, choosing one of the three distributions described in Sec-
tion 5.1.2

Data: Set of variances and weights of a GMM
(
{Σl}kl=1 , ξ

)
, number of frequencies m,

type of frequency distribution distr ∈ {(G), (FGr), (Ar)}
Result: Set of frequenciesW = {ω1, ldots,ωm}
for j ← 1 to m do

Draw a label according to the weights of the GMM lj ∼
∑k
l=1 ξlδl;

if distr = (G) then
ωj ∼ N

(
0,Σ−1

lj

)
; // Gaussian

end
else

Draw a direction ρ ∼ U (Sd−1);
if distr = (FGr) then

R ∼ N+(0, 1) ; // Folded Gaussian radius
end
else if distr = (Ar) then

R ∼ πR with πR defined by (5.9) ; // Adapted radius
end

ωj ← RΣ
− 1

2

lj
ρ;

end
end

Connections with Distilled sensing. The reader may note that designing a measurement
operator adapted to some particular data does not fit the classic paradigm of Compressive Sens-
ing. The two-stage approaches used to choose the frequency distribution presented above can
be related to a line of work referred to as adaptive (or distilled) sensing [Hau+11], in which
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Function EstimMeanSigma(Z,m0, c, T ): Estimation of the mean variance σ̄2

Data: Small training dataset Z = {z1, ..., zn0
}, small number of frequencies m0, number

of blocks c ∈ N∗+, number of iterations T
Result: Estimated mean variance σ̄2

begin Initialize
σ̄2 ← 1;

end
for t← 1 to T do

begin Draw some frequencies adapted to the current σ̄2

{ω1, ...,ωm0
} ← DrawFreq(σ̄2I, 1,m0, (Ar));

Sort the frequencies {ω1, ...,ωm0
} by increasing radius ‖ωj‖2;

end
begin Compute small empirical sketch (Figure 5.3, green dots)

ŷ0 ←
[

1
n0

∑n0

i=1 e
iω>j zi

]m0

j=1
;

end
begin Divide sketch into blocks, find maximum peak in each block (Figure 5.3, blue

line)
s← bm0/cc ;
for q ← 1 to c do

jq = arg maxj∈[(q−1)s+1;qs] |ŷ0,j | ;
end

end
begin Update σ̄2 (Figure 5.3, red curve)

ê←
[
ŷ0,jq

]c
q=1

;

σ̄2 = arg minσ2>0

∥∥∥∥ê− [e− 1
2R

2
jq
σ2
]c
q=1

∥∥∥∥
2

;

end
end
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(G) (FGr) (Ar)

d = 2
Λ

(.)
Θ?,ξ? −7.88 −7.90 −8.24

Λ
(.)
σ̄2I −7.61 −6.91 −7.77

d = 20
Λ

(.)
Θ?,ξ? 11.96 −5.45 −5.72

Λ
(.)
σ̄2I 32.44 −5.28 −5.62

TABLE 5.1: Log-KL-divergence on synthetic data using the CL-OMPR algo-
rithm on the GMM estimation problem with synthetic data (see Section 5.4), for
k = 5 components, m = 10dk frequencies and n = 200 000 items. We com-
pare the three proposed frequency distributions: Gaussian [BGP13] (G), Folded
Gaussian radius (FGr) or Adapted radius (Ar), using either the oracle distribu-
tion defined in Section 5.1.2 or the approximate distribution used in practice,

learned with EstimMeanSigma.

a portion of the computational budget is used to crudely design the measurement operator
while the rest is used to actually measure the signal. Most often these methods are extended
to multi-stage approaches, where the measurement operator is refined at each iteration, and
have been used in machine learning [CGJ96] or signal processing [BRH08].

5.1.4 Experiments
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FIGURE 5.4: KL-divergence results (lower is better) of CL-OMPR for the GMM
estimation problem of Section 5.4 for k = 5 components, m = 10dk frequencies
and n = 2 · 105 items. We compare a Gaussian frequency distribution with a
varying bandwidth σ2 (blue dotted curve), and the proposed learned frequency
distribution Λ

(Ar)

σ̄2I
(red dashed line). In each case we outline the time taken to

“learn” the frequency distribution: for the Gaussian kernel it corresponds to
trying every value of σ2, for the proposed method it is the execution time of

EstimMeanSigma.

We conduct a small experiment to validate the proposed design and automatic learning of
the distribution of frequencies, on the GMM learning problem that will be studied in Section
5.4 (however there should be no need to read Section 5.4 to understand the few experiments
of the current section).

The parameters of a GMM (Θ?, ξ?) are generated as described in Section 5.4.3, then n items
zi are drawn i.i.d. from it. The frequency distribution is either chosen as the oracle Λ

(·)
Θ?,ξ? to

serve as a baseline (i.e. using Function DrawFreq with the true parameters of the GMM) – we
remind the reader that this setting unrealistically assumes that the variances and weights of
the GMM are known beforehand –, or taken as Λ

(·)
σ̄2I where σ̄2 is learned on a small portion of

the data with EstimMeanSigma. Then m frequencies are drawn i.i.d. from this distribution,
the sketch is computed and a GMM is recovered using the CL-OMPR algorithm. The precision
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of the recovery is measured using the KL-divergence, as described in Section 5.4.3: lower is
better.

We compare different choices of frequency distributions. We draw n = 2 · 105 items in
dimension d = 2 or d = 20, with k = 5 components in the GMM. In each setting we construct
the sketch with m = 10kd frequencies.

In Table 5.1, we compare the three frequency distributions introduced in Section 5.1.2, both
with the oracle frequency distribution Λ

(.)
Θ?,ξ? , and with the approximate one Λ

(.)
σ̄2I. The results

show that the Gaussian frequency distribution indeed yields poor reconstruction results in
high dimension (d = 20), while the Adapted radius frequency distribution outperforms the
two others. The use of the approximate Λ

(.)
σ̄2I instead of the oracle Λ

(.)
Θ?,ξ? is shown to have little

effect.
In Figure 5.4 we compare the reconstruction results obtained either by learning the scale

parameter σ̄2 with the proposed unsupervised method and selecting the Adapted radius fre-
quency distribution Λ

(Ar)
σ̄2I , or by performing a supervised learning method where we try many

Gaussian frequency distributions Λ = N (0, Iσ2) with different values of σ2 and select the one
that yields the best reconstruction results. This second method roughly corresponds to the
supervised learning procedure that is often done in practice [RR07; Sut+15], i.e. each evalua-
tion requires the CL-OMPR algorithm to be applied and we assume that a method to evaluate
the quality of the estimated GMM is available. It is seen that the Adapted radius distribution
approaches the result of the best Gaussian distribution in dimension d = 2 and reaches it in
dimension d = 20. It is also seen that the supervised learning of the best Gaussian distribu-
tion (i.e. trying every value of σ2) is far more time consuming that the proposed unsupervised
learning procedure.

5.2 Summary of the method, computational details

At this point, it seems useful to summarize the sketching methodology before diving into the
experiments. This is done in Algorithm 5. The code is available as a Matlab toolbox in [Ker16].

Algorithm 5: Summary of the sketching method.

Data: Dataset Z = {z1, . . . , zn}, parametric model T = {πθ | θ ∈ T }, sketch size m,
number of components k, (Optional) frequency distribution Λ

Result: Mixture parameters (Θ, ξ)
if the distribution Λ is not provided then

Estimate σ̄2 with function EstimMeanSigma;
Set Λ = Λ

(Ar)
σ̄2I ;

end
begin

Draw frequencies ω1, . . . ,ωm
i.i.d.∼ Λ;

end
begin

Compute the sketch ŷ = 1
n

[
eiω>j zi

]m
j=1

; // Streaming, distributed, etc.

end
begin

Recover (Θ, ξ) by approximately minimizing (5.4) with CL-OMP(R);
end

Frequency distribution. The frequency distribution Λ can either be provided by the user, or
learned with EstimMeanSigma and selected as Λ = Λ

(Ar)
σ̄2I . In our experiments the function

EstimMeanSigma is performed with parameters n0 = min(5000, n), m0 = 500, c = 30, T =
3. Although originally designed for data drawn from a GMM, the proposed unsupervised
learning method proves to yield good results for many types of data3.

3In practice we use EstimMeanSigma for all experiments except for the MNIST data of Section 5.3.
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Computation of the sketch. Computing the sketch has a cost that scales in O (mnd), which
is linear in the size of the database n. However, as mentioned throughout the whole thesis,
since ŷ is a linear sketch (with additional normalization 1/n) it can be computed extremely
efficiently in a streaming, distributed and parallel context, in only one pass over the data.
Once the sketch is computed, the complexity of the CL-OMPR algorithm is independent of the
size of the database.

In the present experiments, we did not implement parallel or distributed computations of
the sketch (except for the speaker verification experiment in Section 5.4.6 where the database
is distributed), since such implementations are highly dependent on the user’s available hard-
ware. For real-life applications of our method, practitioners are however encouraged to do
so.

Fast transforms. Observe that computing the sketch can be expressed as:

1. Compute the matrix U = W>Z, where W = [ω1, . . . ,ωm] ∈ Rd×m and Z = [z1, . . . , zn] ∈
Rd×n;

2. Apply non-linearity V = ρim. (U) where ρim. (·) is the pointwise application of x 7→ eix;

3. Average the columns of V.

Hence it would be possible to replace the full matrix-vector multiplication z 7→ W>z by a
structured frequency matrix corresponding to a fast transform, to accelerate the computation
of the sketch, as is described in Section 4.3.3 for the implementation of CL-OMP(R). The use
of fast transforms is left for future work here, a first adaptation of the sketching method with
fast transforms is done in [Cha17].

Link with neural networks. Readers familiar with neural networks may notice that it is
possible to draw connections between the proposed sketching operation and a simple one-
layer network, formed by the successive application of a linear transformation, a pointwise
non-linearity ρim. (·) and an average-pooling. Neural networks with weights W chosen at
random rather than learned on training data have been studied in the so-called Random Kitchen
Sinks [RR09], which is a follow-up of RFFs by the same authors, or in the context of Deep
Neural Networks (DNN) with Gaussian weights [GSB15]. In the latter, they have been shown
to perform a stable embedding of the input z when it lives on a low-dimensional manifold. In
a similar fashion, we show in this thesis that with high probability the sketching procedure is
a stable embedding of the probability distribution of z when this distribution belongs to a low-
dimensional model.

Execution of CL-OMP(R). All continuous optimization schemes in CL-OMPR are performed
with Stephen Becker’s adaptation of the L-BFGS-B algorithm [Byr+95] in C, with Matlab wrap-
pers [Bec13]. In some cases (which will be detailed in due time) we enforce “box”-constraints,
i.e. all parameters θl ∈ Rq are constrained to ` ≤ θl ≤ u where `,u ∈ Rq are some vectors
and ≤ is element-by-element comparison. The initialization of Step 1 is also detailed on a
case-by-case basis.

5.3 Compressive k-means

Let us turn to the first proposed implementation of the CL-OMPR algorithm where basic dis-
tributions πθ are defined as Dirac distributions πθ = δθ. The resulting method is somehow not
that of the traditional density fitting paradigm: the data are obviously not drawn from a mix-
ture of Diracs. However, if intuitively the data are well clustered, they are intuitively drawn
from a “noisy” mixture of Diracs. Recovering a mixture of Diracs from the sketch is there-
fore identified with finding the centers of significant clusters. Thus we draw a connection
between this first application of the sketching framework and the classic k-means clustering
method, recalled below.

Note that, since the sketching method discards the training data after computing the sketch,
in real life applications it would be used for clustering only test data, that have a similar be-
havior to the training data. On the contrary, the k-means algorithm is often used to cluster the
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data on which it has been trained. In our experiments, we still evaluate both algorithms on the
training data, using the cost function that k-means aims at minimizing (the SSE, see below).

5.3.1 Framework

Consider a database Z = {z1, . . . , zn} ⊂ Rd. The k-means problem consists in finding a set
(θ1, . . . ,θk) of k points in Rd called centroids, that minimizes the Sum of Squared Errors

SSE(Θ) =

n∑
i=1

min
1≤`≤k

‖zi − θ`‖22 (5.11)

which is the sum of squared distances between each point in the database and its closest cen-
troid. Although simple in its formulation, this problem is known to be NP-hard [Alo+09].

k-means. The most well-known heuristic is known as Lloyd-Max algorithm [Ste56; Llo82],
which iterates over two simple steps:

– Assign each point to its closest centroids: li ← arg minl ‖zi − θl‖
2
2

– update each centroid by taking the mean of its assigned points: θl ← 1
|{#i,li=l}|

∑
i, li=l

zi

Indeed, it is easy to show that the solution that minimizes (5.11), although NP-hard to com-
pute, is such that each centroid is the empirical average of the points closest to it, which is the
main inspiration behind the Lloyd-Max algorithm. In fact this algorithm is often directly re-
ferred to as k-means (henceforth when we say k-means algorithm we will refer to Lloyd-Max’s
algorithm).

Sketching method. In this application the sketching approach and the CL-OMPR algorithm
are used to recover mixtures of Diracs πθ = δθ with θ ∈ Rd from the sketch. Considering the
Fourier features (5.5), once the sketch is computed recovering πΘ,ξ corresponds to minimizing
the cost function (5.1) with the feature function

f(θ) := Aδθ =
[
eiω>j θ

]m
j=1

. (5.12)

where the ωj ’s are drawn i.i.d. from some distribution Λ. This framework is exactly that of
Example 4.1.1 in Chapter 4, therefore all details of implementation of CL-OMP(R) for this case
have already been derived in this previous chapter. In particular, we have outlined that the
simple expressions of the functions f(θ) and g(θ,x) = JRe(f) (θ)

>
Re (x) + JIm(f) (θ)

>
Im (x)

(which, remember, are the only expressions required for the implementation of the method)
would allow for efficient implementations using fast transforms instead of the full frequency
matrix.

5.3.2 Setup

We compare k-means and CL-OMPR on synthetic and real data.

Generating synthetic data. Given d, k, the data points zi ∈ Rd are drawn i.i.d. from a well-
clustered GMM generated as follows.

The weights ξ are drawn on the k− 1-simplex according to a Dirichlet distribution Dir(α)
where α is a vector of so-called concentration parameters set to α = α1 is our experiments, with
parameter α = 5. Basically, the higher α is, the higher the probability for ξ to be close to a
uniform weight vector 1/k is.

The means µl ∈ Rd are drawn according to a Gaussian distribution N (0, c2σ2
µI) with a

constant c = 1.5. The σ2
µ is defined as σµ := k1/d, using volumetric considerations: considering

that a ball of radius r has volume Ddr
d (with Dd a constant that depends on d), an isotropic

Gaussian with covariance σ2I “occupies” a volume Vσ2 = σdV1, where V1 is a reference volume
for σ = 1, σ2

µ is defined such that Vσ2
µ

contains k volumes V1.
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Real data. We will also test our method on real data. The considered problem consists in
performing spectral clustering [NJW01] on the MNIST dataset [LCB98]. To test our method’s
performance on a large dataset, we use the original 7 · 104 images, that we complete with
images artificially created by distortion of the original ones using the toolbox infMNIST pro-
posed in [LCB07]. In our experiments we use up to n = 106 images. For each dataset, we ex-
tract SIFT [VF10] descriptors of each image, and compute the k-nearest neighbours adjacency
matrix (with k = 10) using FLANN [ML09]. As we know there are ten classes, we compute the
first ten eigenvectors of the associated normalized Laplacian matrix, and run CKM on these n
10-dimensional feature vectors.

Remark 5.3.1. Note that spectral clustering requires the first few eigenvectors of the global Laplacian
matrix, of size n2, which becomes prohibitive for large n and does not fit with our compressive, stream-
ing approach. There exist indeed compressive versions of spectral clustering [Tre+16a; Tre+16b] or
efficient kernel methods such as in [CJJ12], combining them with the sketching method is left for future
investigations.

Computing the sketch. The frequency distribution is set as Λ := Λ
(Ar)

σ2
freq.I

, for some parameter

σ2
freq. either defined as σ2

freq. := σ̄2 where σ̄2 is learned with EstimMeanSigma, or set manu-
ally (see next section). Then, as described in Algorithm 5, m frequency vectors ωj are drawn
i.i.d. from Λ, and the sketch of the database is computed as (5.3) with the sketching function
(5.5). For this application, during the computation of the sketch ŷ we also compute the max-
imum and minimum value of the data along each dimension (which can also be done in a
streaming or distributed context): i.e. we store `,u ∈ Rd such that for all 1 ≤ i ≤ n we have
` ≤ zi ≤ u.

CL-OMPR. We then recover parameters (Θ, ξ) with the CL-OMPR algorithm4. The opti-
mization schemes of CL-OMPR are here constrained so that centroids θl lie in ` ≤ θl ≤ u).
Unless otherwise specified, the maximization of the correlation in Step 1 of CL-OMP(R) is
initialized by a point drawn uniformly between ` and u.

For this application the weights ξ are not used, only the centroids Θ are kept.

k-means. We compared our sketching approach with Matlab’s kmeans function. The num-
ber of iterations is limited to 1000. By default the k-means algorithm is also initialized with
points drawn uniformly between ` and u.

For both methods the quality of the reconstruction is then evaluated using the SSE (5.11).
For the spectral clustering problem for handwritten digits recognition, we also use the Ad-
justed Rand Index [Ran71], which evaluates the difference between the clustering produced
by the algorithm and the ground truth.

Results are averaged over 50 experiments, using the geometric mean for the SSE and arith-
metic mean for the Adjusted Rand Index, computing time or memory consumption.

5.3.3 Choosing the parameter σ2
freq.

For synthetic data drawn from a GMM, we use the function EstimMeanSigma to learn σ̄2

and put the parameter of the frequency distribution to σ2
freq = σ̄2. Preliminary experiments

similar to the experiments performed in Section 5.1.4 show that it performs as well as the best
σ2 chosen among a large range of parameters. Is it also true for real data ?

In some cases such as the speaker verification experiments that will be performed in Section
5.4.6, we will see that this learned parameter yields good results.

For the MNIST data, we performed a first experiment to assess the quality of the results
when using σ2

freq. = σ̄2. In Fig. 5.5 we show the SSE obtained by varying the parameter σ2
freq.,

and outline the value of the parameter learned with EstimMeanSigma. It is seen that this
value yields decent results, but is a bit low compared to the best choice for σ2

freq.. In practice,

4In Chapter 4 we have already established the superiority of CL-OMPR over CL-OMP and BCD for the task of
recovering Diracs from Fourier measurements.
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when we use this learned value, the CL-OMPR algorithm is seen to be quite unstable and
have a non-negligible rate of “failure” between runs (recall that the results are averaged over
50 experiments).

Hence in the rest of the experiments, for the spectral clustering problem we manually
choose σ2

freq. = 0.2, which is seen to yield very stable results. We leave the search for a kernel
learning method that would produce this parameter for this type of data for future work.
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FIGURE 5.5: SSE result (lower is better) of CL-OMPR on the spectral clus-
tering problem with MNIST data (d = 10, k = 10) with n = 3 · 105, with
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5.3.4 Role of initialization
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FIGURE 5.6: Comparison of initialization methods for k-means and CL-OMPR,
with Gaussian synthetic data (d = 10, k = 10, n = 2 · 105) or MNIST data
(with the same d, k, n). We display box plots over 50 experiments, that indi-
cates median value, 25th and 75th percentiles, maximum and minimum values
(outsiders are indicated as points). For the sketched approach, only the "range"

method actually fits in the compressive framework.

The k-means algorithm admits several initialization methods that can greatly influence
the produced result. In CL-OMPR, the only step for which an initialization method must
be defined is Step 1, the gradient descent that seeks for a maximum correlation between the
residual signal and an atom.
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By default, the CL-OMPR and k-means algorithms are initialized with points drawn uni-
formly between ` and u (what we call “range” below). We perform an experiment to test this
approach against two other initialization methods:

– Range: for CL-OMPR, Step 1 is initialized by a point drawn uniformly between ` and u;
for kmeans, select k such points. This is the default initialization method in the rest of
the experiments.

– Sample: for CL-OMPR, select a point θ = zi from the data at random; for kmeans, select
k such points.

– k++, a strategy analog to the k-means++ algorithm [AV07]: for CL-OMPR, select θ = zi
from the data with a probability inversely proportional to its distance to the current set
of centroids Θ; for kmeans, run exactly the K++ algorithm [AV07].

Note that the last two strategies do not fit in the sketching framework, since they still
require access to the data. They are implemented for testing purpose. In the rest of the
experiments the “Range” strategy is always adopted.

Fig. 5.6 shows box plots for SSE results over 50 experiments, for both synthetic and real
data. The k++ approach is seen to significantly improve kmeans on real data, while the CL-
OMPR algorithm seems to be more robust to initialization strategy. The CL-OMPR algorithm
also seems to perform surprisingly well on MNIST data.

5.3.5 Time and memory use on large-scale databases
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FIGURE 5.7: Time, memory and SSE of CL-OMPR divided by those of Mat-
lab’s kmeans function (black dotted line) on Gaussian synthetic data with

d = 10, k = 10.

Next we examine the gains of the proposed sketching method compared to Matlab’s kmeans
function in terms of computation time and memory requirement, to confirm that the compres-
sive approach is more efficient than using the full data for large databases.

Experiment. In Fig. 5.7, relative computation time, memory requirement and SSE of the
sketching method (i.e. time, memory and SSE of CL-OMPR divided by those of Matlab’s
kmeans function) are showed, for four increasingly large databases with n = 104, 105, 106, 107

items. For the computation time, we do not take into account the computation of the sketch
here but only the CL-OMPR algorithm, since we suppose the sketch to be computed before-
hand in a streaming, distributed and parallel context.



78 Chapter 5. Application: Sketched estimation of three mixture models

It is seen that, for a sketch size that does not seem to depend on the size of the database n of
approximately m = 10kd = 1000, the compressive approach reaches the precision of kmeans
in terms of SSE, while being much more efficient on large databases, up to 104 times more
memory efficient and 102 times faster for n = 107, for the same SSE. The reader must also keep
in mind that kmeans is an extremely optimized implementation of Lloyd-Max’s algorithm,
while CL-OMPR is written in Matlab [Ker16].

5.3.6 Empirically sufficient sketch size

FIGURE 5.8: Relative SSE (SSE of CL-OMPR divided by that of Matlab’s
kmeans) on synthetic data with n = 105, with respect to relative sketch size
m/(kd), for many dimension d and number of components k. On the left k = 10

and on the right d = 10.

Since we observed on the previous experiment that the sketch size m empirically sufficient
to obtain a good result does not seem to depend on the number of element n in the database,
one guesses that it depends on the complexity of the problem instead, i.e. the dimension d and
number of components k.

Experiment. In Fig. 5.8 we draw so-called phase transition diagrams, where we examine
the relative SSE of the sketching method with respect to the relative sketch size m/(kd), for
many numbers of components k and dimensions d. It seems that a sketch size of the order
of the numbers of parameters m ≈ O (kd) is sufficient to obtain an SSE of the order of that
produced by kmeans. Intuitively, this result is “optimal”, by dimensionality arguments. In
the next chapter (Chapter 6) our theoretical study will lead to a complexity m ≈ O

(
d2k2

)
with

additional logarithmic terms, which is still polynomial in d and k but sub-optimal compared
to what is observed in practice. Further work will aim at bridging this gap.

5.3.7 Influence of the number of replicates

Often the k-means algorithm is repeated several times with random initializations, and the
set of centroids yielding the lowest SSE is kept. One can wonder if increasing the number of
replicates for the compressive approach also improve the results. However, in the compres-
sive approach, we do not have access to the SSE in practice since the data are discarded after
computation of the sketch. Hence, when several replicates of CL-OMPR are performed, we
select instead the set of centroids that minimizes the cost function (5.1) (although we will see
below that several replicates of CL-OMPR are in general not required).

Experiments. In Fig. 5.9, we compare k-means and CL-OMPR when using 1 or 5 replicates
on the spectral clustering problem, in terms of SSE and Adjusted Rand Index. It is seen that
CL-OMPR performs excessively well on this problem: it outperforms k-means in almost all
settings. In particular, it is extremely stable between runs. While k-means is, as expected,
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FIGURE 5.9: SSE divided by n (top, lower is better) and clustering performance
with Adjusted Rand Index [Ran71] (bottom, higher is better) for k-means and

CL-OMPR, on MNIST data (d = 10, k = 10), for three database sizes.

greatly improved by performing five replicates instead of one, there is almost no difference for
CL-OMPR between one and five replicates.

5.3.8 Conclusion on mixtures of Diracs

In this first Section, we have shown that, by instantiating the CL-OMPR algorithm to recover
mixtures of Diracs, we can efficiently recover centroids of clustered data from their sketch.

Compared to Matlab’s kmeans implementation, our approach is several orders of magni-
tude faster and more memory efficient on large databases. It also performs surprisingly well
on real data in a spectral clustering problems, where it is seen to be much more stable than
kmeans with respect to the number of replicates and the initialization strategy.

The sketch size empirically sufficient to guarantee success of the CL-OMPR algorithm does
not seem to depend on the size of the database, but rather on the complexity of the problem,
with an evolution roughly proportional to the number of parameters m ≈ O (kd).

5.4 Gaussian Mixture Models

We now implement the sketching method for estimating GMMs with unknown diagonal co-
variances, which is an extension of the original framework of Bourrier et al. [BGP13]. In
Chapter 3, we obtained information preservation guarantees with a sufficient sketch size that
was as large as the original database. Fortunately, in practice we are going to see that the
sketch size seems to depend only on the complexity of the problem.
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In the GMM with diagonal covariance framework, a mixture component is a Gaussian
distribution

πθ = N (µ,diag (σ)) (5.13)

with θ = (µ,σ) ∈ R2d, where µ ∈ Rd is the mean of the distribution and σ ∈ Rd+ is the
diagonal of the covariance of the Gaussian, with entries σ2

i > 0.
Given a database z1, . . . , zn, learning a GMM πΘ,ξ is usually done by minimizing the neg-

ative log-likelihood:

min
Θ, ξ

(
−

n∑
i=1

log πΘ,ξ(zi)

)
(5.14)

The most classic heuristic to perform this task is the Expectation Maximization (EM) algorithm
[DLR77], against which we are going to compare our sketching approach.

5.4.1 Implementation of CL-OMP(R)

Given randomly drawn frequencies ω1, . . . ,ωm ∈ Rd, the feature function f is a sampling of
the characteristic function of a Gaussian, which is:

f(θ) =
[
eiω>j µe−

1
2

∑d
i=1 ω

2
j,iσ

2
i

]m
j=1

(5.15)

As usual (see Section 4.3.2), implementing CL-OMP(R) only requires being able to compute
f and the function g defined by (4.12). Similar to the Dirac case, in the Gaussian case we can
obtain simplified expressions:

f(θ) = ρim.
(
W>µ

)
� ρre.

(
−1

2
W>

2 σ

)
(5.16)

where W2 = W �W with � the Hadamard product (element by element multiplication),
ρim. (·) is the pointwise application of x 7→ eix and ρre. (·) is the pointwise application of x 7→ ex.
For the function g(θ,x) we get:

g(θ,x) =

[ ∑m
j=1

(
− sin(ω>j θ)Re (xj)ωj + cos(ω>j θ)Im (xj)ωj

)
e−

1
2

∑d
i=1 ω

2
j,iσ

2
i∑m

j=1

(
− 1

2 cos(ω>j θ)Re (xj)ω
�2
j − 1

2 sin(ω>j θ)Im (xj)ω
�2
j

)
e−

1
2

∑d
i=1 ω

2
j,iσ

2
i

]

=

 W
(
− Im (f(θ))� Re (x) + Re (f(θ))� Im (x)

)
− 1

2W2

(
Re (f(θ))� Re (x) + Im (f(θ))� Im (x)

)} size d}
size d

(5.17)

where x�2 = x� x.
Like the Dirac case these expressions may potentially allow for the use of fast transforms

instead of full matrix-vector multiplications (see Section 4.3.3). However in that case one must
not only implement fast versions of µ 7→ W>µ and x 7→ Wx, but also σ 7→ W>

2 σ and
x 7→ W2x, where W2 = W �W. Methods to learn fast factorization of matrices such as
[LG16] may thus become all the more useful.

5.4.2 A fast hierarchical alternative to CL-OMP(R)

As mentioned before, the greedy CL-OMP(R) scales quadratically in the number of compo-
nents k, which is potentially limiting. In this section we describe an alternative to CL-OMP(R),
specific to GMMs, that scales in k log k instead of k2.

Inspired by hierarchical versions of the classic Expectation Maximization (EM) algorithm
[SSH13], this algorithm replaces the greedy step by a division of each Gaussian component
along its direction of highest variance. The algorithm in [SSH13] alternates this division step
with a few EM steps, while in the compressive approach we alternate with the gradient descent
(Step 4) already present in CL-OMPR.

This algorithm, coined Hierarchical Compressive GMM estimation (HCGMM), is described
in Algorithm 6. The binary split is performed by calling the function Split. In the case where
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the targeted number of components k is not a power of 2, we split the GMM until the support
reaches a size 2dlog2 ke > k, then reduce it with a Hard Thresholding.

Function Split(Θ): split each Gaussian in the support along its dimension of highest vari-
ance

Data: Support Θ = {θ1, . . . ,θk}where θl = (µl,σl)
Result: New support Θnew of size |Θnew| = 2k
Θnew ← ∅ ;
for l← 1 to k do

i0 ← arg max1≤i≤d σ
2
l,i ;

Θnew ← Θnew ∪ {(µl − σl,i0ei0 ,σl) , (µl + σl,i0ei0 ,σl)} ;
end

Algorithm 6: Hierarchical Compressive GMM estimation (HCGMM)

Data: Measurement vector y ∈ Cm, function f : Rq → Cm, sparsity k > 0
Result: Parameters (Θ, ξ)
Θ← ∅ ;
begin Initialize with one atom highly correlated with the sketch

Perform Step 1 and Step 2 of Alg. 3;
end
for t← 1 to dlog2 ke do

begin Split each Gaussian in the support along its dimension of highest variance
Θ← Split(Θ);

end
if |Θ| > k then

Θ← HardThres(Θ,y, f , k);
end
Perform Step 3 and Step 4 of Algorithm 3;

end
Normalize ξ such that

∑k
l=1 ξl = 1

Let us now turn to our experiments.

5.4.3 Setup

We first test the estimation of GMMs from a sketch on synthetic data.

Generating the data. Given a number of components k and a dimension d, we randomly
generate the parameters of a GMM as follows, inspired by classic Bayesian prior distributions.

Like in the previous section, the weights ξ are generated according to a Dirichlet distribu-
tion Dir(α1) with parameterα = 5, and the means are drawn from a distributionN

(
0, c2k1/dI

)
,

with a parameter c = 1 (recall that in the previous section we chose c = 1.5).
Each variance parameter σ2

l,i, for 1 ≥ l ≥ k and 1 ≤ i ≤ d, is drawn according to an inverse-
Wishart distribution with p > 2 degrees of freedom scaled such that E(σ2

l,i) = 1, i.e. it is drawn
as σ2

l,i = (p− 2)/x, where x ∼ χ2(p) is drawn according to a χ2 distribution with p degrees of
freedom. Basically, the higher p is, the more concentrated σ2

l,i is around 1. In practice we put
p = 10, which yields the histogram showed in Fig. 5.10.

Computing the sketch. In all experiments we use the frequency distribution defined as Λ :=

Λ
(Ar)
σ̄2 with σ̄2 learned by EstimMeanSigma, including on real data (Section 5.4.6). Note that,

since we know that E(σ2
l,i) = 1 here, the learning procedure EstimMeanSigma should learn a

parameter σ̄2 close to 1. However for fairness we do not assume prior knowledge of this, and
let the algorithm run with the value σ̄2 learned by EstimMeanSigma.
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FIGURE 5.10: Histogram of 5000 draws of σ2 according to a normalized
inverse-Wishart distribution with p = 10 degrees of freedom.

Then m frequency vectors ωj are drawn i.i.d. from Λ, and the sketch of the database is
computed as described in Algorithm 5.

Compressive algorithms. The CL-OMP, CL-OMPR or HCGMM algorithm is then performed
to recover a GMM from the sketch. Step 1 in all algorithms is initialized with a centered
isotropic Gaussian N

(
0, bσ̄2I

)
, where σ̄2 is the parameter that has been learned for the fre-

quency distribution and b is a random variable drawn uniformly between 0.5 and 1.5. During
the optimization schemes of the algorithms, the means are unconstrained, and the variances
σ2
l,i are constrained to be above a value 10−15 for numerical stability.

Expectation Maximization. We compare our approach with the classic EM [DLR77] algo-
rithm for GMM estimation. We use the gmm function of the toolbox VLFeat [VF10], which by
default already returns a GMM with diagonal covariances. Each run is limited to 100 itera-
tions. The EM algorithm is either performed only once and denoted “EM1”, or repeated 10
times with random initializations and the result that yields the best log-likelihood is selected,
which is denoted “EM10”. As we observed in the previous experiments that the sketching
method is usually stable between runs, we always perform only one replicate of the compres-
sive approaches.

Evaluation measure. Since we know the ground truth GMM here, we use a distance measure
that does not depend on the training data (as would traditional log-likelihood for instance) but
directly quantifies the difference between the ground truth GMM and the recovered one. We
use a symmetrized version of the Kullback-Leibler divergence (Definition A.1.7), still referred
to as “KL-divergence” in practice:

d(π, π′) = DKL (π||π′) +DKL (π′||π)

= Ez∼π log π(z) + Ez∼π′ log π(z′)− Ez∼π′ log π(z′)− Ez∼π log π′(z)

To compute it in practice, given two GMMs π and π′, we draw n = 3 · 105 samples zi from π
and z′i from π′ (independent of the training data used in the algorithm), then compute

d(π, π′) ≈ 1

n

n∑
i=1

(log π(z) + log π′(z′)− log π(z′)− log π′(z)) (5.18)

Results are averaged over 50 experiments, using the geometric mean for the KL-divergence
and the arithmetic mean for the computation time and the memory consumption.
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5.4.4 Role of database size
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FIGURE 5.11: Comparison of the different algorithms: KL-divergence result
with respect to n, in dimension d = 10, with k = 5 (left) or k = 20 (right), using

m = 15kd frequencies for the sketching method.

We first compare the proposed compressive algorithms against the classic EM algorithm
for increasingly large database sizes, to assess precision of the compressive methods, and time
and memory savings.

Precision of the estimation. In Fig. 5.11, KL-divergence result are shown for all algorithms,
with respect to the number of items n in the database. Two problems, k = 5 and k = 20 in
dimension d = 10 are shown. For k = 5, all compressive algorithms yield the same precision
for all database sizes, which would suggest using the fastest one (HCGMM) in practice. For
k = 20 however, CL-OMPR significantly outperforms other approaches for large databases,
confirming its capacity to handle more difficult problems. In both k = 5 and k = 20, EM10
is seen to significantly outperform EM1 at large n, which is to be expected. And, while it is
performed for only one run, the CL-OMPR algorithm is on par with EM10 in each case, which
confirms its stability compared to classic approaches, as already observed for the Dirac case.
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FIGURE 5.12: Relative time and memory consumption of the sketch algorithms
with respect to the EM10 algorithm, in dimension d = 10, with m = 15kd.
The relative memory used by the sketching method also includes the frequency

matrix.

Time and memory savings. In Fig. 5.12 we examine relative time and memory consumption
of the compressive approaches, compared to EM10. Once again, for the time curve we do not
outline the time taken to compute the sketch, since we suppose it has been done beforehand in
an streaming or distributed context. As expected, for large n the compressive approaches are
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FIGURE 5.13: Log-KL divergence result for CL-OMPR, with respect to the rela-
tive sketch size m/(kd). On the left, d = 10, on the right k = 10.
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FIGURE 5.14: (Left) Clustering example: partitioning synthetic data into a small
number of meaningful groups; (Right) Example of density estimation problem:
using EM to fit a GMM with many components to speech data (MFCC features).
The HCGMM algorithm is expected to be a suitable alternative to CL-OMP and

EM for the latter problem on the right.

order of magnitudes faster and more memory efficient than VLFeat’s state-of-art C++ imple-
mentation of EM. It is also seen that when the number of components k increases, HCGMM is
faster than CL-OMPR, since it scales in k log k instead of k2.

5.4.5 Empirically sufficient sketch size

Like in the case of mixtures of Diracs, we evaluate the sketch size m empirically sufficient to
obtain acceptable estimation results, by constructing transitions diagrams for the CL-OMPR
algorithm (Fig. 5.13). Despite a little deviation for high number of components k (that might
be an artifact from using the CL-OMPR algorithm or the definition of the KL-divergence itself),
it is seen that, like in the Dirac case a sketch size in m ≈ O (kd) is approximately sufficient.

It confirms that the theoretical results of Chapter 3 indeed seems to be largely pessimistic.
As we will see, the analysis that will be presented in Chapter 6 will unfortunately not apply to
GMMs with unknown covariances, and improving upon the current theoretical results in this
case is left for future investigations.

5.4.6 Large-scale proof of concept: Speaker verification

Gaussians Mixture Models are popular for their capacity to smoothly approximate any distri-
bution [RR95] by a large number of Gaussians. This is often the case with real data, and the
problem of fitting a large GMM to data drawn from some distribution is somewhat different



5.4. Gaussian Mixture Models 85

from that of clustering data and identifying reasonably well separated components, as pre-
sented in the previous section (Figure 5.14). In order to try out the sketching method on this
challenging task, we test it on a speaker verification problem, with a classic approach requiring
GMM referred to as Universal Background Model (GMM-UBM) [RQD00].

Overview of Speaker Verification

Given a fragment of speech and a candidate speaker, the goal is to assess if the fragment was
indeed spoken by that person.

We quickly describe GMM-UBM in this section. For more details we refer the reader to the
original paper [RQD00]. Similar to many speech processing tasks, this approach uses Mel Fre-
quency Cepstrum Coefficients (MFCC) and their derivatives (∆-MFCC) as features zi. Those
features have been often modeled with GMMs or more advanced Markov models. However,
in our framework we do not use ∆-MFCC; indeed those coefficients typically have a negligible
range in dynamic compared to the MFCC, which results in a difficult and unstable choice of
frequencies. This problem may be potentially solved by a pre-whitening of the data, which we
leave for future work. In this configuration, the speaker verification results will indeed not be
state-of-the-art, but our goal is mainly to test our compressive approach on a different type of
problem than that of clustering synthetic data, for which we have already observed excellent
results.

In the GMM-UBM model, each speaker S is represented by one GMM (ΘS , ξS). The
key point is the introduction of a model (ΘUBM , ξUBM ) that represents a “generic” speaker,
referred to as Universal Background Model (UBM). Given speech data Z and a candidate
speaker S, the statistic used for hypothesis testing is a likelihood ratio between the speaker
and the generic model:

T (Z) =
πΘS ,ξS (Z)

πΘUBM ,ξUBM (Z)
. (5.19)

If T (Z) exceeds a threshold τ , the data Z are considered to be uttered by the speaker S.
The GMMs corresponding to each speaker must somehow be “comparable” to each other

and to the UBM. Therefore, the UBM is learned prior to individual speaker models, using a
large database of speech data uttered by many speakers. Then, given training data ZS specific
to one speaker, one M-step from the EM algorithm initialized with the UBM is used to adapt the
UBM and derive the model (ΘS , ξS). We refer the reader to [RQD00] for more details on this
procedure.

In our framework, the EM or compressive estimation algorithms are used to learn the
UBM.

We note that this type of signal processing task may fully benefit from the advantages of
the sketch structure. For instance, in practice one can imagine collecting bit by bit the data
to train the UBM in a real-life environment, in which case the sketch and the UBM may be
progressively updated without having to keep the spoken fragments, possibly of sensitive
nature.

Setup

The experiments were performed on the NIST05 speaker verification database. Both train-
ing and testing fragments are 5-minutes conversations between two speakers. The database
contains approximately 650 speakers, and 30 000 trials.

The MFCCs are computed using the Voicebox toolbox [Bro05]. After filtering the audio data
by a speech activity detector, the MFCCs are computed on 23ms frames with a 50% overlap.
The first coefficient is removed and we obtain 12-dimensional features (d = 12).

Results are presented by choosing the threshold τ that yields the same rates of false alarm
and missed detection, referred to as Equal Error Rate (EER). Each result is obtained as the
mean of five experiments.

In all experiments, except when indicated otherwise, the compressive methods are per-
formed using a sketch obtained by compressing the entire database of n = 2.108 MFCC vec-
tors after voice activity detection. Here the computation of the sketch is performed taking
advantage of distributed computing, by dividing the database into 200 parts that are then
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compressed simultaneously on a computer cluster. Hence, even for a high number of frequen-
cies m = 105 the compression of the n = 2.108 items takes less than an hour.

Results

EER (%) Time (s)
CL-OMPR HCGMM CL-OMPR HCGMM

m = 103 40.3 32.5 7.102 5.10
m = 104 29.4 29.0 7.103 5.102

m = 105 28.8 28.6 7.104 5.103

TABLE 5.2: Comparison between CL-OMPR and HCGMM for speaker verifica-
tion, with k = 64.

Hierarchical algorithm In the previous section, HCGMM was observed to be less accurate
than CL-OMPR. However, as mentioned before the estimation problem considered here is
somehow not to identify well-separated components, but rather to fit a GMM with a large
number of components to a smooth probability density. In the first case, on synthetic data,
HCGMM is indeed expected to sometimes yield poor results: unlike a Matching Pursuit-based
approach such as CL-OMPR, at each iteration it locally divides the current Gaussians rather
than “exploring” elsewhere. In the second case however, HCGMM may yield a correct ap-
proximation of the smooth density, by successively approaching it with GMMs at increasingly
finer scales.

In Table 5.2, we compare the results obtained with CL-OMPR and HCGMM on the speaker
verification task using k = 64 Gaussians in the UBM. Results are indeed similar when the
number of frequencies m is large, and even surprisingly better with HCGMM for a low num-
ber of frequencies m = 1000. Naturally, HCGMM is much faster than CL-OMPR, with more
than a 10 times speedup.

Sketching a large database In Table 5.3, we compare EER results when using either n1 =
3.105 items uniformly selected in the database to cover all speakers, or all n2 = 2.108 items
in the database. The compressive HCGMM is performed at both scales, while EM is only
performed with n1 items, since the whole database is too large to be handled by the VLFeat
toolbox on a machine with 8 GB of RAM. For the compressive approach, the use of the entire
database indeed improves the results when compared to using only n1 items to compute the
sketch. At low k = 8 or k = 64 and high number of frequencies m, the compressive approach
using n2 items outperforms EM using only n1 items.

K = 8 K = 64 K = 512
n1 n2 n1 n2 n1 n2

EM 31.4 n/a 29.5 n/a 27.5 n/a

Alg. 2
m = 103 32.5 31.2 31.1 32.5 31.2 29.4
m = 104 32.1 30.7 30.2 29.0 30.3 29.1
m = 105 32.5 30.7 29.8 28.6 29.4 29.2

TABLE 5.3: Comparison between EM and HCGMM for speaker verification,
in terms of EER, for n1 = 3 · 105 or n = 2 · 108. For HCGMM, results that

outperform those of EM are outlined.

Limitations due to coherence. While increasing the number of components k seems to con-
sistently improves the results of EM, it is not the case with the compressive method for a fixed
sketch size m. A possible intuitive explanation could be that, by increasing the number of
components we also increase the coherence between them – i.e. the Gaussians in the GMM are
increasingly overlapping each other – which makes it more and more difficult to handle for
any sparsity-based approach. In practice, it results in many components in the GMM having
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weights ξl ≈ 0. In other words, the algorithm outputs a k′-GMM with k′ < k: there seems to be
a “limit” number of components above which additional Gaussians are useless. It may be pos-
sible to deal with a higher level of sparsity by drastically increasing the number of frequencies
m, at the cost of higher compression and estimation times.
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FIGURE 5.15: Equal Error Rate (lower is better) with respect to sketch size,
using n1 = 3 · 105 items for EM and n2 = 2 · 108 items for HCGMM.

Number of components k and compression. In Figure 5.15 we study the effect of m for
various numbers of components k = 8, 64 and 512. In each case we observe a sharp phase
transition going from an EER of 50%, which corresponds to random guessing, to the results
observed in Table 5.3. Somehow surprisingly, this phase transition does not seem to depend
on k, unlike the one observed on synthetic data. As mentioned before it could be interesting
to drastically increase m to see if the gap between results obtained EM and those obtained
with HCGMM can be bridged in the k = 512 case, however the phase transition pattern does
not support this idea but rather a limitation of the method itself, maybe in the algorithmic
approach.

Overall, results on synthetic and real data show that the fitting problem is, as expected,
more challenging than the clustering problem for the proposed sparsity-based approach. In-
deed, while the clustering problem (synthetic data) is that of identifying well-separated com-
ponents of a sparse distribution, the fitting problem is similar to a sparse approximation task,
which is known to be challenging when the “signal” (i.e. the true distribution of the data)
is not sparse. Nevertheless, let us point out that in Figure 5.15, results approaching those of
EM are obtained for m = 3000 frequencies only, which corresponds to a whopping 33000-fold
compression of the database.

5.4.7 Conclusion on compressive GMM estimation

In this application the compressive method was used to estimate GMMs with unknown diag-
onal covariances, for which it was naturally seen to be significantly more efficient than EM on
large databases. In addition to the greedy approaches proposed in Chapter 4, we developed a
hierarchical algorithm that scales in k log k instead of k2 with respect to the number of compo-
nents. Both CL-OMP and this algorithm were observed to perform on par with CL-OMPR on
simple problems, while CL-OMPR outperforms them on more complex problems.

Similar to the previous application a sketch size in m ≈ O (kd) was also observed to be
sufficient, and furthermore this sketch size is independent from the number of points n in the
database, which further indicates that the theoretical results obtained at the end of Chapter 3
seem to be sub-optimal.

The method was applied to a speaker verification problem, where the problem is more that
of computing a smooth approximation of a distribution with many components than that of
identifying separated components. On this problem the sparsity-based sketching method was
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naturally observed to be more challenged, and the hierarchical approach was seen to be more
effective than the greedy method. However the sketching method is easily applicable to a
quantity of data for which classic approaches would require huge computational power.

5.5 Comparison with coresets
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FIGURE 5.16: Comparison of the sketching method and the coreset approach
in [Luc+17]. Left: SSE result for the k-means problem, which for the sketching
method corresponds to recovering mixtures of Diracs, on MNIST data (k =
10, d = 10) with n = 2 · 105. Right: KL-divergence result for GMM estimation

on synthetic data with k = 10, d = 10, n = 2 · 105.

In this short section, we briefly compare our sketching method with the coreset method de-
scribed in [Luc+17] which is very simple to implement, for both the k-means problem (Section
5.3) or learning GMMs with diagonal covariances (Section 5.4).

Coresets. As described in the introduction of the thesis, a coreset is a summary of a database
usually formed by a reduced number of weighted points, often taken as an adaptive subsam-
pling of the data or a hierarchical construction. The method described in [Luc+17] is seeded
with k-means++ [AV07], then performs an adaptive sampling of the database to return a col-
lection of m weighted items from the database, where points far from the seeds are sampled
with more probability but have lower weight. Then a weighted version of k-means or EM
is performed on the coreset to learn either centroids or a GMM. In [Luc+17], guarantees are
given when learning a GMM on this coreset5.

Note that, as such, the global memory occupied by the coreset ism(d+1) (since it is formed
by m points and their weights), which is exactly the memory occupied by the sketch plus the
collection of frequencies (although the sketching method has the advantage that the frequency
matrix can be shared by several instantiations of the method). However we have seen that the
sketching method could leverage the use of fast transforms for speed-up and reduced memory
use.

Experiment. In Fig. 5.16 we compare results for the coreset method and the sketching method
with respect to their size m. We consider MNIST data for the k-means problem, and synthetic
data for the GMM estimation problem. In each case, it is seen that the results obtained with
the coreset method improve regularly and steadily when the size of the coreset increases. For
the sketching method however, we witness the “phase transition” pattern already observed is
past experiments: experiments are unsuccessful until a certain sketch size is reached then they
become fully successful. Hence it is seen that, before the phase transition, coresets outperform
the sketching method, while after the phase transition, the sketching method is more precise
than the coreset method.

5Although in the original paper [Luc+17] guarantees are only given for GMM for this particular coreset, we also
adopt the same method for k-means, for the simplicity of its implementation. It is very similar to other coresets for
which guarantees are given for k-means.
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5.6 Mixtures of elliptic stable distribution

We now instantiate the CL-OMPR algorithm to estimate mixtures of elliptic stable distribu-
tions. In Chapter 3 Section 3.3.4, we have obtained theoretical guarantees similar to those for
GMMs with diagonal covariances, for which the sufficient sketch size is as large as the original
database. However in that case these results yield, to our knowledge, the first estimator with
guarantees for multivariate mixtures of stable distributions.

As described in Section 3.3.4, mixtures of multivariate stable distributions have been scarcely
used in practice, due to the lack of algorithms to estimate them. In the univariate case, a few
methods do exist, mainly based on Bayesian approaches [SGKR10; Cas04], using computa-
tionally intensive tools such as MCMC simulations. Interestingly, some works have tried to
abstract from these demanding and unpractical approaches by defining a new class of distribu-
tions inspired by stable distributions [Sho+10; Bro+13], and our sketching method may also
apply in this case.

None of these approaches work in the multivariate case however, our instantiation of CL-
OMPR might be the first algorithm able to handle this problem. Furthermore, in most existing
methods [Cas04; Sho+10; Bro+13] practitioners limit themselves to k = 2 or k = 3 compo-
nents for univariate variables, while CL-OMPR easily handles k = 10 or more components in
dimension d = 10 or more.

Brief comparison with reported results. We leave comparison of CL-OMPR to existing ap-
proaches (in the univariate case) for future work. However, as an illustration, let us already
point out a first comparison with results reported in the literature: in [Cas04], an execution
time of t = 9249s is reported for estimating a mixture of k = 2 distributions in dimension
d = 1 using n = 15000 runs of a Gibbs sampler, while the entire sketching method (including
computation of the sketch here, without parallel computing nor fast transforms) for estimating
k = 10 components in dimension d = 10 on n = 2 · 105 points with m = 2000 frequencies takes
a mere t = 80s.

Elliptic stable distributions. Recall the parameterization of an elliptic stable distribution
with diagonal dispersion matrix (Sec. 3.3.4), denoted by

πθ = Sα (µ,diag (σ)) (5.20)

with θ = (µ,σ, α) ∈ R2d+1, where µ ∈ Rd is the mean of the distribution, σ ∈ Rd+ is the
diagonal of the dispersion matrix with coordinates σ2

i > 0, and α ∈ (0, 2] is the characteristic
exponent of the distribution.

When α = 2, the distribution is a Gaussian. When α < 2, the distribution does not have a
second order moment. The lower α is, the heavier the tail of the distribution is: in Fig. 5.17 we
compare a random draw of n = 104 points from a mixture of k = 3 components in dimension
d = 10 (used in Section 5.6.3 as a toy example), either with all characteristic exponents put to
αl = 2 (i.e. it is a GMM) or with lower characteristic exponents. It is indeed seen that the data
are much more spread in the second case. In particular, we outline the norm of the sample that
is furthest from the origin maxi ‖zi‖. In the Gaussian case this maximal radius is of the order
of 8.5, while in the stable distribution case this radius is approximately 2.9 · 108.

5.6.1 Implementation of CL-OMP(R)

Given randomly drawn frequencies ω1, . . . ,ωm ∈ Rd, the feature function f is a sampling of
the characteristic function of an elliptic stable distribution (3.41):

f(θ) :=

eiω>j µ exp

−(1

2

d∑
i=1

ω2
j,iσ

2
i

)α
2

m
j=1

(5.21)
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Similar to the two previous cases, we give convenient expressions to implement CL-OMPR
in practice. The function f itself is

f(θ) = ρim.
(
W>µ

)
� ρre.

(
−
(

1

2
W>

2 σ

)�(α/2)
)

(5.22)

where W2 = W �W, x�α = [xαi ] is the element-by-element power operation, ρim. (·) is the
point wise application of x 7→ eix and ρre. (·) is the pointwise application of x 7→ ex.

The function g(θ,x) is expressed here:

g(θ,x) =


W
(
− Im (f(θ))� Re (x) + Re (f(θ))� Im (x)

)
−α4 W2

[ (
s�(α2−1)

)
�
(

Re (f(θ))� Re (x) + Im (f(θ))� Im (x)
)]

− 1
2

(
log(s)� s�α/2

)> (
Re (f(θ))� Re (x) + Im (f(θ))� Im (x)

)

}

size d}
size d}
size 1

(5.23)

where s = 1
2W>

2 σ ∈ Rm. Hence, like in the GMM case one can hope to leverage fast trans-
forms if both W and W �W can be replaced with efficient structured matrices.

5.6.2 Setup

We mainly test our approach on synthetic data.

Generating the parameters. For tests on synthetic data, we generate the parameters of a mix-
ture as such: we first draw the parameters of a k-GMM (ξl,µl,σl)

k
l=1 in dimension d exactly as

in Section 5.4.3, but with a parameter c = 1.5 (instead of c = 1) for the drawing of the means6

µl ∼ N
(

0, ck
1
d I
)

, then draw the parameters αl uniformly in [0.5, 2].

6Since we expect each component to be more heavy tailed, we spread their means a little more.
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Drawing samples. Drawing a sample z from a multivariate elliptic stable distribution Sα (µ,Σ)
is not immediate, unlike Gaussians for which many routines exist. Following the method de-
scribed in [Nol13], a sample z can be drawn by being defined as:

z = µ+
√
y/2Σ

1
2 x (5.24)

where x ∼ N (0, I), and y is drawn according to an univariate general α/2-stable distribution
with mean µ = 0, so-called “skewness” parameter β = 1 (such that it is asymmetric and non-
negative) and “scale” parameter γ = 2 cos

(
πα
4

)2/α (se [Nol13] for details). In practice we draw
y using the stbl toolbox [Vei12].

Computing the sketch. The sketch is computed as in Section 5.4.3, by first designing the
frequency distribution Λ = Λ

(Ar)
σ̄2I with EstimMeanSigma, drawing m frequencies then com-

puting the sketch with (5.3) and (5.5).

CL-OMPR. For these experiments we only test the CL-OMPR algorithm. During the execu-
tion we enforce σ2

l,i ≥ 10−15 and αl ≥ 10−2 for numerical stability. For the initialization of
the gradient descent of Step 1 the parameters (µ,σ) are randomly drawn as in the GMM case
(Section 5.4.3), and the parameter α is initialized at α = 1.5.

Evaluation distance. In general the likelihood of stable distributions is not explicitely com-
putable, it is therefore impossible to use a traditional distance measure like the KL-divergence
as we did for GMMs. In the first toy example (next section), we directly look at the values
of each recovered parameter and compare it to their true values, as is usually done in the lit-
erature [Cas04]. For the experiments of Section 5.6.4, we use an approximation of the MMD
‖·‖κ using its expression (1.28): given the true parameters (Θ?, ξ?) and recovered parameters
(Θ̃, ξ̃), we draw m′ = 2 · 105 frequencies ω′j i.i.d. from Λ (distinct from the first draw of m
frequencies used to compute the sketch) and compute

∥∥∥πΘ?,ξ? − πΘ̃,ξ̃

∥∥∥
κ
≈

 1

m′

m′∑
j=1

∣∣∣ψπΘ?,ξ?
(ω′j)− ψπΘ̃,ξ̃

(ω′j)
∣∣∣2
 1

2

(5.25)

As usual results are averaged over 50 experiments.

5.6.3 Toy example: parameter recovery

The most powerful feature of our algorithm is arguably the ability to precisely estimate the
different characteristic exponents αl of each component. As said earlier there are not many
evaluation distances available to measure the quality of the estimation, and furthermore when
using a global distance between the true πΘ?,ξ? and the estimated πΘ̃,ξ̃ it does not necessarily
guarantee that the parameters are precisely recovered.

Hence we test our algorithm against a toy example and evaluate the estimation error of
each individual parameter, as is often done in the literature [Cas04]. For this experiment we
generate a mixture of k = 3 components in dimension d = 10 illustrated in Fig. 5.17. In
particular, the randomly drawn characteristic exponents are α1 = 0.63, α2 = 1.9 and α3 = 1.2
in this example. When evaluating the recovery of the parameters of each component, we solve
the permutation indeterminacy between components by comparing the parameters of each
true components θ?l with those of the recovered component θ̃p that has the mean µ̃p closest to
µ?l .

In Fig. 5.18 we examine the recovery of the parameters with respect to the relative sketch
size m/(kd). It is seen that for a sketch size of approximately m = 10kd all parameters are
precisely recovered, including the characteristic exponents αl with an absolute precision of
10−2, which is significantly more precise than other results reported in the literature [Cas04;
SGKR09].
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FIGURE 5.18: Estimation error of each individual parameter of a mixture of
stable distributions with k = 3 components with respect to sketch size m, in

dimension d = 10, on a database with n = 5 · 105 vectors.

In Fig. 5.19 we fix the sketch size at m = 15kd and report the precision of the recovery with
respect to the number of items n in the database. As expected, as the database size increases
the recovery becomes more and more precise.

5.6.4 Empirically sufficient sketch size

Like in the previous cases, we examine the sketch size required by the method. In Fig. 5.20
we draw transition diagrams, measuring our approximation of the MMD 5.25 with respect to
the relative sketch size m/(kd) for many number of components k and dimension d. As in
the two previous applications with mixtures of Diracs and GMMs, it is seen that a sketch size
m ≈ O (kd) is sufficient for successful estimation.

Once again, the theoretical results obtained in Chapter 3 for mixtures of elliptic stable dis-
tributions indeed seem to be sub-optimal compared to what is observed in practice.
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FIGURE 5.19: Estimation error of each individual parameter of a mixture of sta-
ble distributions with k = 3 components with respect to the size of the database

n, in dimension d = 10, with a sketch size m = 15kd.

5.6.5 Comparison with GMMs

The model of mixtures of Gaussians with diagonal covariance is strictly included in the model
of mixtures of elliptic stable distributions with diagonal precision matrix. Hence the optimal
value of the cost function 5.4 is theoretically lower when the model over which it is minimized
is the set of mixtures of stable distributions than when it is the set of GMMs.

Experiment. We verify this fact by performing an experiment in Fig. 5.21, on two types of
data: either MFCCs coming from the speaker verification experiment performed in Section
5.4.6, or synthetic data drawn from a true mixture of stable distributions. For the speech data,
the cost function is indeed slightly lower when minimized on mixtures of stable distributions
than when minimized on the set of GMMs. The discrepancy is however very small, which
shows than GMMs are already well-adapted to speech data. On synthetic data drawn from
stable distributions however, the cost function is as expected far more minimized when using
the adapted model of mixtures of stable distributions rather than GMMs.
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FIGURE 5.20: Log-MMD result for CL-OMPR for the estimation of mixtures of
elliptic stable distributions, with respect to the relative sketch size m/(kd). On

the left, d = 10, on the right k = 10.
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FIGURE 5.21: Comparison of the value of the cost function 5.4 after being min-
imized with CL-OMPR to recover either a GMM or a mixture of stable distri-
butions, on n = 2 · 105 MFCCs (d = 12) randomly selected from the NIST05
database used in the speaker verification experiment of Section 5.4.6, or syn-

thetic data drawn from a mixture of stable distribution in dimension d = 10.

5.6.6 Conclusion on mixtures of stable distributions

In this application we have shown that CL-OMPR is capable of precisely recovering the pa-
rameters of a mixture of multivariate elliptic stable distributions, where each component has a
different characteristic exponent. We performed experiments on synthetic data, for which CL-
OMPR was observed to be orders of magnitude faster and more precise than results reported
in the literature (for methods that are only available for the univariate case), by avoiding use
of heavy tools such as MCMC simulations. A more extensive comparison with these methods
on real data will be done in the future.

Mixtures of stable distributions have been very scarcely used in the past, due to the lack
of estimators that were both efficient and able to handle multivariate data. The CL-OMPR
algorithm may well be one of the first algorithm for this task, and we hope that it will open the
way for a new class of methods that use mixtures of stable distributions in real life situations.

5.7 General conclusion

We started this chapter by describing a light unsupervised method to learn an appropriate
frequency distribution for the sketching method, when the sketching operator is a random
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sampling of the characteristic function of distributions. Although our underlying assumption
was that data were drawn from a GMM, the proposed method also proved to be efficient for
speech data and for data drawn from a mixture of elliptic stable distributions, while being
faster than traditional supervised learning methods. Future work will aim at generalizing this
strategy to other types of data (including the MNIST data for spectral clustering for which we
have seen that choosing the frequency by hand was more effective).

Then the sketching method was applied to the compressive estimation of three mixture
models.

First for mixtures of Diracs, it was shown to yield a clustering method that attains the pre-
cision of k-means while being more efficient on large databases. The CL-OMP(R) was shown
to be more stable than k-means between runs and less sensitive to the initialization method.

The sketching method was then applied to the estimation of GMMs with diagonal covari-
ances. A hierarchical algorithm faster than CL-OMPR for large number of components was de-
fined, and observed to perform well on certain tasks such as speaker verification with MFCCs.
Again, the CL-OMPR algorithm was seen to reach the precision of EM while being more effi-
cient on large databases.

Finally, the sketching method was applied to the estimation of mixtures of multivariate
elliptic stable distributions, for which no algorithm existed in the literature in the multivariate
case. The proposed method was observed to be able to precisely estimate the parameters of a
mixture, even for significantly different characteristic exponents αl between components. As
expected, the cost function reached a lower value when minimized on the set of mixtures of
stable distributions rather than the set of GMMs, since the former includes the latter.

In each three cases an empirically sufficient sketch size inm ≈ O (kd) was observed, which
confirms that the preliminary theoretical results obtained in Chapter 3 for GMMs and mixtures
of stable distributions were probably pessimistic.

Finally the proposed method was also briefly compared on a simple coreset approach,
for k-means and GMM estimation. It was observed that, when the sketch size is insufficient
(i.e. before the phase transition empirically observed in O (kd)), a coreset of the same size
outperforms the proposed method, however after the phase transition the proposed approach
significantly outperforms coresets.

In the next chapter, we go back to the theoretical analysis of the method and provide guar-
antees for sufficient sketch size that only depends on k, d.
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Chapter 6

Sketching and Statistical Learning

Context. In Chapter 3, we introduced generic conditions under which a sketching operatorA
satisfies the Lower Restricted Isometry Property (LRIP) with high probability, leading to guar-
antees of robust reconstruction of a low-complexity model S. We showed that the distance
between sketches approximates the MMD defined by a kernel, through the use of Random
Feature expansions. Two assumptions were at the core of our analysis:

i) an admissibility condition (Def. 3.2.1), that formulates a certain domination property be-
tween two norms, with a possible additional error η ≥ 0;

ii) finiteness of the covering numbers of the non-uniform normalized secant set of the model,
with a possible “extrusion” at level η ≥ 0.

These hypotheses are in general difficult to prove. We nevertheless showed at the end of
Chapter 3 that they can be satisfied for many models as soon as the model itself has finite cov-
ering numbers, and gave two examples. However, the recovery results obtained with this first
approach exhibited two main problems:

– the precision of the recovery was expressed with respect to the MMD. Ideally, one would
like to obtain guarantees of success for more traditional problems in machine learning;

– more importantly, in these results the error level were as η = O (1/
√
m), which yields a

sufficient sketch size on par with that of the original database to attain a given error level
(as we have seen this is largely pessimistic compared to what is observed in practice).

This chapter. In this chapter we address these problems. The outline is the following.

– In Section 6.1 we recall the main objective of statistical learning. Replacing the MMD by
metrics linked to classic statistical learning tasks is the first goal of this chapter.

– In Section 6.2 we introduce a general analysis strategy for the estimation of mixture mod-
els. Given a certain separation assumption and some hypotheses on the kernel, we are
able to provide results with no additional error η = 0.

– In Section 6.3 and 6.4, we apply this analysis strategy to two cases. First we show that
recovering mixtures of Diracs can be done with a sketch size that only depends on k, d,
and that guarantees can be obtained with respect to the traditional costs for k-means
and k-medians. Second we show that recovery of Gaussian Mixture Models with fixed
known covariance can also be done efficiently, and provide guarantees with respect to
traditional log-likelihood.

This work is the result of a collaboration with Rémi Gribonval, Gilles Blanchard and Yann
Traonmilin, where each author contributed equally1. It resulted in a paper [Gri+17] where we
introduce a framework slightly more general than that described in this thesis.

1My own contributions include: the original framework of [Ker+17b] that introduces kernel mean embedding
and random features for analyzing the sketching method, a simplification of the proof, and the application of the
framework to GMMs.
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6.1 Statistical learning

Statistical Learning consists in deriving a hypothesis h ∈ H from training data z1, . . . , zn ∈ Z. A
learning task is a pair (`,H) whereH is a class of hypotheses and ` : Z×H 7→ R is a loss function.
Denote

L(H) := {`(·, h) | h ∈ H} (6.1)

the family of loss functions.

Expected risk minimization. Assuming the training samples z1, . . . , zn are drawn i.i.d. from
a distribution π?, to ensure good generalization property one usually aims at finding the hy-
pothesis h? that minimizes the expected risk:

Rπ?(h) := Ez∼π?`(z, h) (6.2)
h? ∈ arg min

h∈H
Rπ?(h) (6.3)

Empirical risk minimization. Of course, in practice one does not have access to the true risk
function Rπ? , but only to the training data. Hence what is traditionally done is to simply
replace the expectation by the empirical average over the training data, to obtain the empirical
risk:

Rπ̂n(h) =
1

n

n∑
i=1

`(zi, h) (6.4)

Finding the hypothesis that minimizes the empirical risk is referred to as Empirical Risk Min-
imization (ERM) and is one of the foundation of statistical learning [Vap95]. ERM is naturally
challenged when the number of elements in the database is large, and we hope to prove that
the sketching method is more efficient than ERM in this context.

Sketching and risk minimization. Recall the sketching method introduced in Chapter 3.
Given a model S and a RF expansion (FR,Λ), it consists in the following:

1. Drawm frequenciesω1, . . . ,ωm
i.i.d.∼ Λ, define the sketching function Φ(z) := 1√

m

[
φωj (z)

]m
j=1

and the sketching operator Aµ := 〈µ,Φ〉;

2. Given a database z1, . . . , zn
i.i.d.∼ π? compute the sketch

ŷ = Aπ̂n =
1

n

n∑
i=1

Φ(zi)

3. Recover a probability distribution in the model from the sketch with:

π̃ := ∆ι(A, ŷ) = arg min
π∈S, error ι

‖Aπ − ŷ‖2

In Chapter 3 we showed that, under hypotheses, with high probability the decoder ∆ι is
instance-optimal and the recovered distribution π̃ is close to the true distribution π? with re-
spect to some metric dL. Can we leverage this kind of result in the context of statistical learn-
ing?

For that we define the notion of acceptable models S.

Definition 6.1.1 (Acceptability). The model S is acceptable for the learning task (`,H) if for
all πS ∈ S one has a closed-form expression to derive:

hS ∈ arg min
h∈H

RπS
(h) . (6.5)
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Remark 6.1.2. Acceptability is not a precise mathematical notion. It expresses the fact that, for the
sketching method to be computationally efficient, it should be easier to recover a hypothesis from a
distribution in the model (itself estimated using sketches), than from the original empirical distribution
π̂n.

A simple but frequent case is when the recovered probability distribution is directly parameterized
by the hypothesis that satisfies (6.5), which will be the case in the two examples developed afterward in
this chapter. In these examples, the model will be a parametric set of distributions S = {πθ | θ ∈ T },
the class of hypotheses h a set of parameters θ, and the loss function such that: if the recovered distri-
bution is denoted by πS = πθ, equation (6.5) yields hS = θ. In that case acceptability is immediate.

From sketch recovery to excess risk control. Now, recall the notation

‖µ‖L(H) = sup
h∈H
|〈µ, `(·, h)〉| (6.6)

where L(H) is defined by (6.1). It is a case of Integral Probability Metric as we defined in (3.4).
Given a distribution π̃ = ∆(A, ŷ) ∈ S estimated from the sketch, using acceptability of the

model we can compute
h̃ = arg min

h∈H
Rπ̃(h) . (6.7)

Then, if we are able to control

‖π? − π̃‖L(H) = sup
h∈H
|Rπ?(h)−Rπ̃(h)| ≤ ϕ , (6.8)

for a small ϕ, we can control the excess risk:

Rπ?
(
h̃
)
−Rπ? (h?) =Rπ?

(
h̃
)
−Rπ̃

(
h̃
)

+Rπ̃
(
h̃
)
−Rπ? (h?)

(6.7)
≤ Rπ?

(
h̃
)
−Rπ̃

(
h̃
)

+Rπ̃ (h?)−Rπ? (h?)

≤ 2 ‖π? − π̃‖L(H)

(6.8)
≤ 2ϕ (6.9)

which is the guarantee we want to obtain. Therefore:

We aim at providing information-preservation guarantees (Theorem 3.2.7) with the norm
dL := ‖·‖L(H), to obtain a bound of the type (6.8).

For that, we need to replace the MMD ‖·‖κ with the metric dL = ‖·‖L(H) in the LRIP (i.e. in
hypothesis iii of Theorem 3.2.5). We formalize this property with the notion of compatible
kernel.

Definition 6.1.3 (Compatibility). A kernel κ is compatible for the learning task (`,H) and
model S with compatibility constant WL > 0 if for all πS, π′S ∈ S we have

‖πS − π′S‖L(H) ≤WL ‖πS − π
′
S‖κ . (6.10)

One can see that this condition is somewhat similar to the admissibility condition (Def. 3.2.1).
It is essentially the same supposition that

‖πS − π′S‖F . ‖πS − π′S‖κ

with F = FR for the admissibility condition and F = L(H) for the compatibility condition.
As we will see, the strategy developed in this chapter is to derive a generic analysis to treat
both at once.

Summary. Hence, given a learning task, our analysis strategy lies on the definition of the
following objects and their respective properties:
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1: Learning task
(`,H)

2: Model
S

3: Kernel
κ

4: RF expansion
(FR,Λ)

Acceptability
(Def. 6.1.1)

Compatibility
(Def. 6.1.3)

- Admissibility,
(Def. 3.2.1)

- Finite cover-
ing numbers

satisfies

w.r.t.

satisfies

w.r.t.

satisfies

w.r.t.

FIGURE 6.1: Illustration of our approach for sketched statistical learning. Our
analysis lies on the definition of four objects that satisfies different relations
between them: a learning task (H, `), a model set S that is acceptable for the
learning task, a kernel that is compatible with the model and the learning task,
and an RF expansion of this kernel that is admissible for the model and such

that the covering numbers of the normalized secant sets are finite.

1. a model S acceptable for the learning task;

– In the two examples developed at the end of the chapter, it arises naturally from the
definition of the problem.

2. a kernel κ compatible with the model and the learning task;

– This is similar to admissibility but with an IPM ‖·‖F = ‖·‖L(H) that corresponds to
the learning task, and somewhat of equal difficulty to prove.

3. a RF expansion of the kernel (FR,Λ) admissible for the model, such that the normalized
secant sets have finite covering numbers.

– This is often the most substantial part of the proof.

We schematically illustrate the relations between these objects in Fig. 6.1.

Rest of the chapter. In this chapter, we are going to examine the k-means (and k-medians)
problem by recovering mixtures of Diracs, as implemented in Chapter 5, and the problem of
estimating GMMs with known covariance, which was the original empirical framework of
Bourrier et al. [BGP13]. We will obtain results with no additive error in the LRIP (η = 0). In
Chapter 5, we have seen that the sketching method is also experimentally efficient with richer
models, however the analysis presented in the present chapter does not seem to apply, and we
have not yet been able to improve the results obtained at the end of Chapter 3.

To treat the k-means and GMM problems, we will develop a general analysis for mixture
models, described in the next section.
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FIGURE 6.2: Illustration of our strategy with separation. Red circles represent
a first mixture, blues squares a second one. Suppose the norm between the
two mixtures goes to zero. Without separation hypothesis (left) the situation is
difficult to describe accurately. With the assumption that all circles are pairwise
separated and all squares are pairwise separated, each circle is close to at most
one square and separated from all other circles and squares. We witness the

apparition of dipoles pairwise separated, which is the basis for our analysis.

6.2 Generic analysis of Mixture Models

In this section, we develop a generic analysis of the problem when the model is that of mixtures
of parametric distributions in T = {πθ | θ ∈ T }, denoted by

Sk (T) :=

{
k∑
l=1

ξlπθl

∣∣∣ θl ∈ T , ξl ≥ 0,

k∑
l=1

ξl = 1

}

Acceptability of mixture models will be proven on a case-by-case basis, we focus on the other
hypotheses: finding a compatible kernel and an admissible RF expansion such that the nor-
malized secant sets have finite covering numbers.

Analysis strategy: ε-separation. Noting the similarity between admissibility ‖π − π′‖FR .
‖π − π′‖κ (Def. 3.2.1) and compatibility ‖π − π′‖L(H) . ‖π − π′‖κ (Def. 6.1.3), we treat them
with the same set of mathematical tools. We have seen that all hypotheses, including finiteness
of the covering numbers of the normalized secant sets, can be handled when ‖π − π′‖κ ≥ η >
0. Intuitively, the main technical difficulty is therefore to analyze the behavior of ‖π − π′‖κ
when π, π′ ∈ S get “close” to each other: are the other norms ‖·‖ sufficiently regular so that
‖π − π′‖ / ‖π − π′‖κ is bounded when ‖π − π′‖κ → 0 ?

Proving these hypotheses is often feasible when k = 1 and the model S := S1 (T) =
T is formed by simple single distributions (Gaussians, Diracs...), by obtaining closed-form
expressions for all norms with respect to the parameters θ,θ′. However, it becomes much
more complicated when the model is that of mixtures of distributions with k > 1.

Our strategy to treat mixtures of distributions is to impose that all the components of a
mixture are pairwise sufficiently separated. By doing so, we can ensure that each component
πθl of π is close to at most one component πθ′p of π′, and sufficiently separated from all other
components. This is illustrated in Fig. 6.2, where the components of π are represented by red
circles and these of π′ by blue squares. In the left schematic picture, no hypothesis is made,
and when the two mixtures get close to each other it is difficult to control the behavior of each
of their individual components. In the right picture, the red circles are pairwise separated from
each other, and so are the blue squares. Therefore, when the mixtures get close to each other
each red circle is paired with one blue square, and these pairs are separated from each other.

A pair of two components close to each other will be called a dipole. We can then make sure
that the kernel κ has the ability to “distinguish” dipoles that are sufficiently separated, and
obtain the desired results.

All proofs are in Appendix C.
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6.2.1 Framework

Consider T = {πθ | θ ∈ T } ⊂ P a parametric family of probability distributions, and assume
that the parameter space T is equipped with some metric

%(θ,θ′) := ‖χ(θ)− χ(θ′)‖2 (6.11)

where χ(·) denotes an (implicit) feature mapping. A pair of distributions whose parameters
are close with respect to this metric is called a dipole.

Definition 6.2.1 (Dipoles, separation of dipoles). A measure µ is called a dipole with respect
to the metric % if it can be decomposed as µ = ξ1πθ1

− ξ2πθ2
where %(θ1,θ2) ≤ 1 and 0 ≤ ξi ≤ 1.

Note that the ξi’s are not normalized to 1 here, and that they can be put to 0 to characterize single
distributions.

Two dipoles µ = ξ1πθ1− ξ2πθ2 and µ′ = ξ′1πθ′1− ξ
′
2πθ′2 are said 1-separated if %(θi,θ

′
j) ≥ 1

for all i, j ∈ {1, 2}.

The model of ε-separated mixtures Sk,ε,% (T) is defined as

Sk,ε,% (T) :=

{
k∑
l=1

ξlπθl

∣∣∣ ξ ∈ Sk−1, πθl ∈ T, %(θl,θp) ≥ ε ∀l 6= p

}
(6.12)

Depending on the context, it can be denoted Sk,ε (T) or even Sk,ε when there is no ambiguity.

Remark 6.2.2. In the following, we will impose a constant 2-separation and work with Sk,2,% (T).
Then it is easy to note that by defining %̃ = ε%/2 we have Sk,2,% (T) = Sk,ε,%̃ (T), with adjustable
ε-separation of components.

In this chapter we consider real-valued kernels κ such that the mean kernel is expressed
as2:

κ(πθ, πθ′) = K(%(θ,θ′)), ∀θ,θ′ ∈ T (6.13)

where K : R+ → R+.
We will see that the kernel will be able to “distinguish” separated dipoles if K decays

sufficiently fast. More precisely, we will impose that the function K belongs to the following
family of functions.

Definition 6.2.3. The class E(A,B,C, γ) are functions K : R+ → R+ that satisfy

i) over the interval [0, 1]:

– K(0) = 1 ;

– K(u) ≤ 1− γu2

2 for all u ≤ 1 ;

ii) over the interval [1,∞):

– K is bounded: 0 ≤ K(u) ≤ A, for all u ≥ 1 ;

– K is differentiable with bounded derivative: |K ′(u)| ≤ B, for all u ≥ 1 ;

– K ′ is C-Lipschitz: |K ′(u)−K ′(v)| ≤ C |u− v|, for all u, v ≥ 1 .

6.2.2 Incoherence of dipoles

We first show that for the right choice of kernel, the coherence between any two 1-separated
dipoles is bounded for the inner product that corresponds to the kernel κ, in the sense that
their product is small compared to the product of their norms.

2Such kernels may not always exist!
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Lemma 6.2.4. Consider a kernel κ(πθ, πθ′) = K(%(θ,θ′)), with a pseudo metric % of the form
(6.11) and a function K ∈ E(A,B,C, γ).

Then, for two dipoles that are 1-separated µ, µ′, we have

|κ(µ, µ′)| ≤ 8 max(A, 2(B + C))

γ
‖µ‖κ ‖µ

′‖κ . (6.14)

Such an incoherence property is a classic tool in Compressive Sensing (see [FR13] Chap. 5),
although it is expressed here under an original form between dipoles instead of vectors, and
with the inner product materialized by the kernel κ.

It naturally leads to the following Theorem which is somehow interpreted as similar to
Pythagore’s theorem, in the sense that the sum of the squared norm of separated dipoles is
upper bounded by the squared norm of their sum.

Theorem 6.2.5. Consider a kernel κ(πθ, πθ′) = K(%(θ,θ′)), with a pseudo metric % of the form
(6.11) and a function K ∈ E(A,B,C, γ). Consider k such that

1 ≤ k ≤ 3γ

32 max(A, 2(B + C))
(6.15)

For k dipoles µi that are pairwise 1-separated, the following holds:

k∑
i=1

‖µi‖2κ ≤ 4

∥∥∥∥∥
k∑
i=1

µi

∥∥∥∥∥
2

κ

. (6.16)

Proof. We have∣∣∣∣∣∣
∥∥∥∥∥
k∑
i=1

µi

∥∥∥∥∥
2

κ

−
k∑
i=1

‖µi‖2κ

∣∣∣∣∣∣ ≤
∑
i

∑
j, j 6=i

|κ(µi, µj)| ≤
8 max(A, 2(B + C))

γ

∑
i

∑
j, j 6=i

‖µi‖κ ‖µj‖κ

≤ 8 max(A, 2(B + C))

γ

(
k∑
i=1

‖µi‖κ

)
√
k

√√√√ k∑
j=1

‖µj‖2κ

≤ 3

4

k∑
i=1

‖µi‖2κ

Therefore
∣∣∣∣‖∑k

i=1 µi‖2κ∑k
i=1‖µi‖

2
κ

− 1

∣∣∣∣ ≤ 3/4, which proves the desired property.

As we will see, Theorem 6.2.5 is one of the main tool that will allow us to handle sums of
separated dipoles.

6.2.3 Admissibility, compatibility

We now turn to proving admissibility and compatibility, which both can be summarized as:
for a certain class of functionsQ, a model S and a kernel κ, there exists a constant W > 0 such
that for all all π, π′ ∈ S:

‖π − π′‖Q ≤W ‖π − π
′‖κ (6.17)

We will treat both properties in the same fashion, by proving this property for the family
of feature functions Q = FR, and the family of loss functions Q = L(H). For that we define
the following class of functions.
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Definition 6.2.6 (“Bounded and Lipschitz in expectation” functions). A function f : Z →
C is “bounded and Lipschitz (with respect to the metric %(·, ·)) in expectation” on the basic set
T = {πθ,θ ∈ T } if there exists D,L <∞ such that for all θ,θ′ ∈ T ,

|〈πθ, f〉| ≤ D, (6.18)
|〈πθ, f〉 − 〈πθ′ , f〉| ≤ L%(θ,θ′). (6.19)

We denote byQ(D,L, T , %) (or in shortQ(D,L)) the set of all functions satisfying (6.18)-(6.19).

Let us begin by treating one dipole and prove the desired property.

Lemma 6.2.7. Consider a kernel κ(πθ, πθ′) = K(%(θ,θ′)), with a pseudo metric % of the form
(6.11) and a function K ∈ E(A,B,C, γ).

For all dipoles µ, we have
‖µ‖Q(D,L) ≤W0 ‖µ‖κ (6.20)

with W0 =
(
L2/γ + 2D2

) 1
2 .

Using incoherence between separated dipoles, we can then go from one dipole to proving
the result for differences of mixtures with separation assumption (which is a sum of separated
dipoles, see Fig. 1.3), which is the desired property for admissibility and compatibility.

Theorem 6.2.8. Consider a kernel κ(πθ, πθ′) = K(%(θ,θ′)), with a pseudo metric % of the form
(6.11) and a function K ∈ E(A,B,C, γ). Consider k such that

1 ≤ k ≤ 3γ

64 max(A, 2(B + C))
(6.21)

Then, for all π, π′ ∈ Sk,2,% (T) the following holds:

‖π − π′‖Q(D,L) ≤ 2W0

√
2k ‖π − π′‖κ (6.22)

with W0 =
(
L2/γ + 2D2

) 1
2 .

Proof. Since π and π′ are mixtures of distributions that are 2-separated, we can decompose:

π − π′ =

2k∑
l=1

µl

where µl are dipoles that are pairwise 1-separated, with some dipoles that are single distri-
butions, and some that are zero.

Then we get we get

‖π − π′‖Q(D,L) =

∥∥∥∥∥
2k∑
l=1

µl

∥∥∥∥∥
Q(D,L)

≤
2k∑
l=1

‖µl‖Q(D,L)

Lem. 6.2.7
≤ W0

2k∑
l=1

‖µl‖κ ≤W0

√
2k

√√√√ 2k∑
l=1

‖µl‖2κ

Thm. 6.2.5
≤ 2W0

√
2k

∥∥∥∥∥
2k∑
l=1

µl

∥∥∥∥∥
κ

= 2W0

√
2k ‖π − π′‖κ ,

which is the desired result.

To summarize, assuming that the kernel has the right form and the model is that of mix-
tures that are sufficiently separated: if the feature functions in the set FR are bounded and
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Lipschitz “in expectation” (respectively, if the loss functions in the set L are bounded and Lip-
schitz in expectation), then the admissibility condition is satisfied with no error η = 0 and
an admissibility constant that only depends on the smoothness of the features in FR and the
number of components k (respectively, the compatibility condition is satisfied with a constant
expressed in a similar way).

6.2.4 Covering numbers of the secant set

Let us now prove that, under some additional hypotheses, when the model S is included in
the set of 2-separated mixtures, for any π ∈ S the covering numbers of the normalized secant
set S0(π,S) are finite.

For ξ ∈ [0, 1] and πθ ∈ T, denote the non-uniform set of normalized dipoles:

D(ξπθ) :=

{
ξπθ − ξ′πθ′
‖ξπθ − ξ′πθ′‖κ

∣∣∣ ξ′ ∈ [0; 1], θ′ ∈ T , %(θ,θ′) ≤ 1, ‖ξπθ − ξ′πθ′‖κ > 0

}
(6.23)

Then, again using incoherence between dipoles, elements of the normalized secant set can
be decomposed into a sum of normalized dipoles.

Lemma 6.2.9. Consider a kernel κ(πθ, πθ′) = K(%(θ,θ′)), with a pseudo metric % of the form
(6.11) and a function K ∈ E(A,B,C, γ). Consider k such that (6.21) is satisfied. Define a model
S ⊂ Sk,2,% (T). Let (FR,Λ) be a RF expansion of the kernel κ such that FR ⊂ Q(D,L).

Consider π =
∑k
l=1 ξlπθl ∈ S. Then we have

N
(
‖·‖FR ,S

0(π,S), δ
)
≤ max

((
16W0r

δ

)2k

, 1

)
N k

(
‖·‖FR ,T,

δ

4r

)
k∏
l=1

N
(
‖·‖FR ,D(ξlπθl),

δ

4r

)
(6.24)

where W0 = (L2/γ + 2D2)
1
2 and r = 2

√
2k.

As we have seen it is often relatively immediate to prove that the set of basic distributions T
has finite covering numbers, therefore the only thing left to prove is that the normalized sets of
dipolesD(·) have finite covering numbers. We can further decompose them into an “extruded”
part and a tangent part, the latter is then approached by a set of tempered distributions with
controllable covering numbers.

Lemma 6.2.10. Consider a kernel κ(πθ, πθ′) = K(%(θ,θ′)), with a pseudo metric % of the form
(6.11) and a function K ∈ E(A,B,C, γ). Let (FR,Λ) be a RF expansion of the kernel κ such that
FR ⊂ Q(D,L).

Consider πθ ∈ T. Assume that there exists a set Vθ of tempered distributions(we assume
that the random features are smooth) and two constants M > 0, ηmax > 0 such that for all
0 < η ≤ ηmax and all non-zero dipoles µ of the form µ = πθ − aπθ′ or µ = aπθ − πθ′ with
a ∈ [0; 1] and θ′ ∈ T (such that %(θ,θ′) ≤ 1 since µ is a dipole) and ‖µ‖κ ≤ η, there exists
ν ∈ Vθ such that ∥∥∥∥ µ

‖µ‖κ
− ν
∥∥∥∥
FR
≤Mη. (6.25)

Then for any weight ξ ∈ [0; 1] and all δ ≤ 4Mηmax

N
(
‖·‖FR ,D(ξπθ), δ

)
≤ max

(
96MW0D

δ2
,

3

2

)
· N

(
%,BT ,%(θ, 1),

δ2

64MW0L

)
+N

(
‖·‖FR ,Vθ,

δ

4

)
(6.26)
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6.2.5 Choice of kernel

Before summarizing our findings and closing this section, we give the expression of a kernel
that we are going to use in the instantiation of the analysis. The reasoning is here backward:
we fix a given k, and design a function K ∈ E(A,B,C, γ) such that (6.21) is satisfied. We base
our results on the Gaussian kernel for simplicity.

Lemma 6.2.11. Define

σ2
k =

1

2.4(ln k + 10)
(6.27)

Then K : x 7→ e
− x2

2σ2
k ∈ E(A,B,C, γ = 1) with A,B,C such that (6.21) is satisfied.

6.2.6 Summary: Main result

Let us now combine this analysis with the results from Chapter 3. The following theorem is
the main result of the chapter.
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Theorem 6.2.12. Consider a learning task (`,H), a set of basic distributions T = {πθ | θ ∈ T },
a kernel κ(πθ, πθ′) = K(%(θ,θ′)), with a pseudo metric % of the form (6.11), with a random
feature expansion (FR,Λ). Consider k > 1 and define the model as S ⊂ Sk,2,% (T).

Assume that:

i) the model S is acceptable for the learning task;

ii) the kernel is such that K ∈ E(A,B,C, γ) such that (6.21) is satisfied;

iii) the family of loss functions L(H) = {`(·, h) | h ∈ H} is such that L(H) ⊂ Q(D`, L`) ;

iv) the features are such that FR ⊂ Q(DFR , LFR) ;

v) the basic set T has finite covering numbers for the norm ‖·‖FR ;

vi) there are constants M > 0 and ηmax > 0, and for all θ ∈ T a tangent set Vθ with finite
covering numbers with respect to ‖·‖FR , such that the hypotheses of Lemma 6.2.10 are
satisfied. Suppose Mηmax ≥ 1/128 and M ≥ 1 for simplicity.

Define W0 =
(
L2
FR/γ + 2D2

FR
) 1

2 , WΛ = 2
√

2kW0 and WL = 2
√

2k
(
L2
`/γ + 2D2

`

) 1
2 .

Consider a distribution π? ∈ P, denote

R? := min
h∈H
Rπ?(h)

the minimum of the expected risk.
Let πS ∈ S be an approximation of π? in the model, denote the (ideally small) bias term

τ := ‖π? − πS‖L(H) + 4WL ‖π? − πS‖FR . (6.28)

Let m be a sketch size that satisfies

m ≥ cW 2
Λ log(N/ρ) (6.29)

for some ρ > 0, where c = 1760/147 is a universal constant and

N :=

(
214kW 2

0N
(
‖·‖FR ,T,

1

32
√

2k

))k
k∏
l=1

(
3 · 216kMW0DFRN

(
%,BT ,%(θl, 1),

1

217kMW0LFR

)
+N

(
‖·‖FR ,Vθl ,

1

128
√

2k

))
(6.30)

Consider items z1, ..., zn ∈ Z drawn i.i.d. from π? and frequencies ω1, ...,ωm ∈ Ω drawn
i.i.d. from Λ, which define the sketching operator A by (3.7). Denote π̃ = ∆ι(A,Aπ̂n) ∈ S the
probability distribution recovered from the empirical sketch and

h̃ = arg min
h∈H

Rπ̃(h)

which requires no computation since the model is acceptable for the learning task.
Then, with probability at least 1− (ρ+ ρ′) on the drawing of the zi’s and ωj ’s, the excess risk

satisfies
Rπ?

(
h̃
)
−R? ≤ 2ϕ

where

ϕ = τ +
4WLBFR

(
1 +

√
2 log(1/ρ′)

)
√
n

+ 2WLι . (6.31)
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Proof. Our goal is to prove that the hypotheses necessary to apply Theorem 3.2.7 hold with
η = 0.

– Admissibility: by assumption ii) the feature functions are bounded and Lipschitz in
expectation. We can therefore apply Theorem 6.2.8 to prove that the RF expansion is

admissible with constant WΛ = 2
√

2k
(
L2
FR/γ + 2D2

FR
) 1

2 .

– Compatibility: by assumption iii) the loss functions are bounded and Lipschitz in ex-
pectation. We apply Theorem 6.2.8 to prove that the kernel is compatible with constant

WL = 2
√

2k
(
L2
`/γ + 2D2

`

) 1
2 .

– Covering numbers: given assumptions iv) and v) we can apply Lemma 6.2.10 to prove
finiteness of the covering numbers of the set of normalized dipoles (and it is applied
with δ := 1/(32

√
2k) that indeed satisfies δ ≤ 4Mηmax since we assumed Mηmax ≥

1/128), then Lemma 6.2.9 to bound the covering numbers of the normalized secant set.
Note that during these computations all the max(C, 1) are resolved as max(C, 1) = C

(recalling that necessarily W0 = WΛ/(2
√

2k) ≥ 1/(2
√

2k) ).

– Boundedness property: we just use Lemma 3.1.5 to prove boundedness property with
respect to dG := ‖·‖FR and probability 1.

We can therefore apply Theorem 3.2.7 and obtain a bound with high probability on ‖π? − π̃‖L(H).
Then, using (6.9) we can control the excess risk with the desired quantity.

Theorem 6.2.12 indeed address the problems that the first results obtained at the end of
Chapter 3 exhibited. It yields a direct bound on the excess risk of the sketching method instead
of the MMD between true and recovered distribution, and eliminates the additional error η
from the bound, which now only includes the bias τ and the empirical error in O (1/

√
n).

Remark 6.2.13. The bias term (6.28) is crucial, and by no mean “always” small. To make it as small
as possible, one must choose the model S as large as possible (with consequences on the required sketch
size), since it reduces the distance between the true distribution and the model, but also the class of
hypotheses H as small as possible (while of course keeping the learning task meaningful), since the
norm ‖·‖L(H) is increasing withH.

In particular, one may wrongly think that as long as the model is acceptable for the learning task,
the hypothesis class H can be as large as desired, which reduces the optimal risk R?, while keeping the
excess risk small. This is of course not true, since by increasing the hypothesis class the bias may become
large, and the excess risk as well.

Remark 6.2.14. As in Chapter, 3 the lower bound on the sufficient sketch size involves two terms,
the admissibility constant WΛ that reflects our use of Bernstein’s inequality, and the logarithm of the
covering numbers of the normalized secant set that reflects the dimensionality of the problem. Unlike
the widely applicable but sub-optimal results derived at the end of Chapter 3 that were quite generic,
here our analysis makes large use of the properties of each of the various objects involved in the method.
It is reflected in the presence of, e.g. , the Lipschitz constant of the random features in the admissibility
constant, or the covering numbers of the “tangent” set of dipoles V in the covering numbers of the
normalized secant set. We believe that the approach described in this chapter, that uses separation of
components of mixture models and controlled smoothness of the kernel and feature functions, is but
one example of the kind of analysis that can be done to prove the initial and more general conditions of
admissibility and finite covering numbers described in Chapter 3.

In the next two sections we instantiate this analysis for the k-means (and k-medians) and
GMM with known covariance problems. In each case we will prove that:

1. the model S ⊂ Sk,2,% (T) is acceptable for the learning task;

2. the kernel has the right form based on Lemma 6.2.11: κ(πθ, πθ′) = exp
(
−%(θ,θ

′)2

2σ2
k

)
;
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3. the loss functions are bounded and Lipschitz in expectation;

4. the random features are bounded and Lipschitz in expectation;

5. the basic set has finite covering numbers;

6. there exist tangent sets with finite covering numbers.

In the k-means and k-medians cases, we will also prove an additional bound on the bias term.
We illustrate the proof of Theorem 6.2.12 with these hypotheses in Fig. 6.3.

6.3 Application to Mixture of Diracs

We now apply the framework of the previous section to the k-medians and k-means prob-
lems. As we will see, the results obtained will be somehow more satisfying and require less
assumptions in the k-medians problem compared to k-means, although in the experiments
we compared our method to the classic Lloyd’s algorithm for k-means. The proofs are in
Appendix D.

6.3.1 Framework

Fix the sample space Z ⊂ Rd, and the number of components k > 0. Let us define all the
following objects.

Learning task. In the k-means (or k-medians) problem, a hypothesis is a set of centroids:
h := (c1, . . . , ck) ∈ (Rd)k. We assume that the hypothesis class is such that centroids are
bounded:

H ⊂
{
h = (c1, . . . , ck)

∣∣∣ ‖cl‖2 ≤ Rc

}
(6.32)

Note that we do not suppose that the samples themselves are bounded, only the centroids with
which we are going to approach them. Also, note that the sets of centroids in the hypothesis
class are not necessarily ε-separated, unlike the mixture of Diracs in the model that we will
consider (see below).

The loss function is defined as

`(z, h) := min
1≤l≤k

‖z− cl‖b2 (6.33)

where b = 2 for the k-means problem and b = 1 for the k-medians problem. In the k-means
case, one recognizes the SSE defined in the previous chapter as the empirical risk: Rπ̂n(h) =
SSE(h).

Basic set of individual components. The basic set of distributions is that of Diracs whose
location is a bounded vector (with the same radius Rc than the hypothesis class):

T := {πθ = δθ | θ ∈ T } (6.34)

where T = BRd,‖·‖2(0, Rc) is the ball of radius Rc > 0.

Kernel. We define the kernel as

κ(z, z′) := exp

(
−
‖z− z′‖22

2λ2

)
, (6.35)

for some adjustable scale parameter λ > 0.



110 Chapter 6. Sketching and Statistical Learning

Finite cover-
ing numbers
of Sη(S, πS)

Admissibility
of (FR,Λ)
(Def. 3.2.1)

Non-uniform LRIP
(Def. 2.3.2)

Thm. 3.2.5

BP
(Def. 2.3.1)

(here Lem. 3.1.5)

Non-uniform IOP
(Def. 2.3.4)

Thm. 2.3.6

Compatibility
(Def. 6.1.3)

Acceptability
(Def. 6.1.1)

Theorem 6.2.12
(main result)

- the model is included in the set of sufficiently separated mixtures;
- the kernel has the right form: K ∈ E(. . .);
- the loss functions are bounded and Lipschitz in expectation;
- the random features are bounded and Lipschitz in expectation;
- the basic set has finite covering numbers;
- there exist tangent sets with finite covering numbers.

Thm. 6.2.8

Thm. 6.2.8Lem. 6.2.9, Lem. 6.2.10

+ Lem. 3.2.6

FIGURE 6.3: Illustration of the proof of Theorem 6.2.12. We use a set of hy-
potheses to prove admissibility and finiteness of the covering numbers of the
secant sets, and therefore LRIP and IOP. The notions of compatibility of the
kernel and acceptability of the model allow to relate the sketching method to

statistical learning.
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Metric. Define the metric % as

%(θ,θ′) :=
σk
λ
‖θ − θ′‖2 (6.36)

where σk is defined by (6.27).

Model. The considered model is that of mixture of Diracs whose set of parameters Θ is in the
hypothesis classH (as we will see, this is necessary for acceptability), with the additional separation
hypothesis. Denote the separation:

ελ :=
2λ

σk
(6.37)

such that Sk,2,% (T) = Sk,ελ,‖·‖2 (T). The model is:

S := SH,ελ =

{
πΘ,ξ =

k∑
l=1

ξlπθl

∣∣∣ Θ ∈ H, ‖θl − θp‖2 ≥ ελ, ξ ∈ Sk−1

}
⊂ Sk,2,% (T) . (6.38)

Note that, to avoid an empty model, we assume λ is selected such that ελ ≤ 2Rc.

Random Feature expansion. The chosen RF expansion of the kernel is based on a re-weighting
of traditional Fourier Features

{
z 7→ eiω>z | ω ∈ Rd

}
, as described in Example 3.1.3. It basi-

cally weights down the high frequencies, while shifting the distribution of the frequencies
toward high frequencies to compensate. Early experiments with the CL-OMPR algorithm
showed this re-weighting to have little visible effect, and we leave more thorough experi-
mentations with such modified Random Features for future work.

For the kernel (6.35), the distribution of frequencies for the random Fourier features is a
Gaussian Λ0 = N (0, λ−2I). We define the re-weighting coefficients as

c (ω) :=

√
2 +

λ2

d
‖ω‖22 +

λ4

d(d+ 2)
‖ω‖44 (6.39)

and in that case the constant CΛ0
is

CΛ0
:=

√
Eω∼Λ0

c (ω)
2

=
√

2 + 1 + 1 = 2 , (6.40)

using the moments of the χ2-distribution. Then, the considered RF expansion (FR,Λ) of the
kernel is defined as:

FR :=

{
φω(z) =

2

c (ω)
eiz>ω | ω ∈ Rd

}
dΛ(ω) :=

c (ω)
2

4
N
(
ω; 0, λ−2I

)
. (6.41)

Of course all these definitions are not the only possible ones, and we have tailored the
different expressions to simplify the calculations.

6.3.2 Main properties

Let us now prove the six properties required by our analysis. All proofs that are not given here
are in Appendix D.

Step 1: the model is acceptable for the learning task.

Given a mixture of Diracs πΘ,ξ =
∑k
l=1 ξlδθl in the model, by definition of the model we have

Θ ∈ H. For both k-means and k-medians the expected risk RπΘ,ξ
(h) can be put to zero by

choosing h = Θ, which is obviously its minimal value since the loss function is positive.
Hence the model is acceptable for the learning task, and as expected the locations of the

Diracs in the recovered mixture are the desired centroids.
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Step 2: the kernel has the right form.

Given the definition of the kernel (6.35) and metric (6.36), it is immediate that we have

κ(δθ, δθ′) = exp

(
−
‖θ − θ′‖22

2λ2

)
= exp

(
−%(θ,θ′)2

2σ2
k

)
which is the desired kernel κ(πθ, πθ′) = K(%(θ,θ′)) where, by Lemma 6.2.11,K ∈ E(A,B,C, 1)
such that (6.21) is satisfied.

Step 3: the loss functions are bounded and Lipschitz

Lemma 6.3.1. The loss class L satisfies

L ⊂ Q(D`, L`, T , %) (6.42)

whereD` = (2Rc)b and L` = (λ/σk)(4Rc)b−1, with b = 2 for k-means and b = 1 for k-medians.

Proof. For all h ∈ H and θ ∈ T , by triangular inequality it is immediate that Ez∼δθ`(z, h) ≤
(2Rc)b, where b = 2 for k-means and b = 1 for k-medians.

Consider θ1,θ2 ∈ Z. Consider h = (c1, . . . , ck) ∈ H, and let l? be an index such that
`(θ2, h) = min1≤l≤k `(θ2, {cl}) = `(θ2, {cl?}). By definition of `(θ1, h) we have

Ez∼δθ1 `(z, h)− Ez∼δθ2 `(z, h) = `(θ1, h)− `(θ2, h) ≤ `(θ1, {cl?})− `(θ2, h)

= `(θ1, {cl?})− `(θ2, {cl?})
≤ (4Rc)b−1 ‖θ1 − θ2‖2 = (4Rc)b−1(λ/σk)%(θ1,θ2)

where in the case of k-means we have used

‖θ1 − cl?‖22 − ‖θ2 − cl?‖22 = (‖θ1 − cl?‖2 + ‖θ2 − cl?‖2)(‖θ1 − cl?‖2 − ‖θ2 − cl?‖2)

≤ 4Rc ‖θ1 − θ2‖2 .

By symmetry we obtain
∣∣Ez∼δθ1 `(z, h)− Ez∼δθ2 `(z, h)

∣∣ ≤ (4Rc)b−1(λ/σk)%(θ1,θ2).

Step 4: the random features are bounded and Lipschitz

Lemma 6.3.2. We have FR ⊂ Q(DFR , LFR , T , %) where DFR =
√

2 and LFR = 2
√
d/σk.

Proof. It is immediate that

|Ez∼δθφω(z)| = |φω(θ)| =
2
∣∣∣eiω>θ

∣∣∣
c (ω)

≤ 2/
√

2 =
√

2

and by a simple Taylor expansion∣∣Ez∼δθφω(z)− Ez∼δθ′φω(z)
∣∣ =

2

c (ω)

∣∣∣eiω>θ − eiω>θ′
∣∣∣

c(ω)≥λ‖ω‖2√
d

≤ 2
√
d

λ ‖ω‖2
‖ω‖2 ‖θ − θ

′‖2 =
2
√
d

σk
%(θ,θ′)

which proves the result.

Step 5: the basic set has finite covering numbers
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Lemma 6.3.3. For all δ > 0 we have

N
(
‖·‖FR ,T, δ

)
≤ max

((
B

δ

)d
, 1

)
(6.43)

where B = 8Rc

√
d/λ.

The proof is in Appendix D.

Step 6: there exist tangent sets with finite covering numbers

Lemma 6.3.4. For all θ ∈ T , there exists a set Vθ that satisfies the requirements of Lemma 6.2.10

with M =
2
√
d(d+2)

σ2
k

, ηmax = 1/2 such that for all 0 < δ ≤ 1 (where the r.h.s. bound is here for
simplicity)

N
(
‖·‖FR ,Vθ, δ

)
≤ 6
√

2Bd

δ2d+1
(6.44)

where B = 3227d
√
d+ 2/σ3

k.

The proof can be found in Appendix D.

6.3.3 Summary and main result for mixtures of Diracs

Combining all these properties, we get the following result.

Theorem 6.3.5. Adopt the definitions of Section 6.3.1.
Consider a distribution π? ∈ P, denote

R? := min
h∈H
Rπ?(h)

Define

WL := 2

√
2k

(
2(2Rc)2b +

λ2

σ2
k

(4Rc)2(b−1)

)
= O

(√
kRbc

)
(6.45)

Let πS ∈ S = SH,ελ be an approximation of π? in the model, denote the bias term

τ := ‖π? − πS‖L(H) + 4WL ‖π? − πS‖FR . (6.46)

Let m be a sketch size that satisfies

m ≥ O
(
k2d2polylog

(
k, d,

Rc

ελ
,

1

ρ

))
(6.47)

where polylog is a polynomial expression containing only logarithmic terms (see proof in Ap-
pendix D for detailed expression).

Consider items z1, ..., zn ∈ Z drawn i.i.d. from π? and frequencies ω1, ...,ωm ∈ Rd drawn
i.i.d. from Λ, which define the sketching operator A by (3.7). Denote πΘ̃,ξ̃ = ∆ι(A,Aπ̂n) ∈ S

the probability distribution recovered from the empirical sketch and h̃ = Θ̃.
Then, with probability at least 1− (ρ+ ρ′) on the drawing of the zi’s and ωj ’s, the excess risk

satisfies
Rπ?

(
h̃
)
−R? ≤ 2ϕ

where

ϕ = τ +
4
√

2WL

(
1 +

√
2 log(1/ρ′)

)
√
n

+ 2WLι . (6.48)
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Discussion. Up to logarithmic terms, the sketch size scales as m ≥ O
(
k2d2

)
, which, un-

like the results obtained in Chapter 3 for other mixture models, does not depend on the size
of the original database but only on the complexity of the problem, which was the desired
property. However it is still sub-optimal compared to the m ≈ O (kd) observed in practice.
When examining our proof in details, it is seen that the logarithm of the covering numbers is
as log(N) = O (kd) (with additional logarithmic terms), which is to be expected since this is
the dimensionality of the parametric model. Hence the spurious additional kd comes from the
admissibility constant W 2

Λ, and its use in Bernstein’s inequality. A path to improve our result
would thus be to either tighten the admissibility constant, or use more refined concentration
inequalities.

By definition, the recovered set of centroids h̃ has ελ-separation, while this is not neces-
sarily the case of the optimal set of centroids h? = arg minh∈HRπ?(h), depending on the true
distribution π? and the hypothesis classH. As mentioned before, this “gap” is materialized in
the bias term τ , that we further control in the next section.

6.3.4 Bounding the bias

In density fitting cases such as GMM estimation, it is intuitive that π? may be close to the
model, or even in the model as is often assumed in Generalized Method of Moments for in-
stance, which naturally yields a small bias τ . Here however the model is formed by mixtures
of Diracs, and it is of course implausible that π? is exactly, or even approximately, a mixture of
Diracs.

In the following Lemma, we are in fact able to relate the bias term τ to the optimal riskR?,
by defining an appropriate distribution πS in the model. Two cases are to be distinguished: if
the optimal sets of centroids h? ∈ H is already such that centroids are ελ-separated (either by
assumption on the distribution π? or by restricting the hypothesis class H), then the bias can
be directly bounded by the optimal risk , if not then we get an additional error ελ.

Lemma 6.3.6. Consider a distribution π?. Define WL as in Theorem 6.3.5. We have the follow-
ing.

– k-medians: Denote h? = arg minh∈HRπ?(h) and R? = Rπ?(h?). There exists a distri-
bution πS ∈ S = SH,ελ in the model such that the bias term τ defined by (6.28) satisfies

τ ≤ L(R? + ε′) (6.49)

where L = 1 + 8WL
√
d

σk
and

– ε′ = 0 if h? = (c?1, . . . , c
?
k) is such that

∥∥c?l − c?p
∥∥

2
≥ ελ;

– ε′ = ελ otherwise.

– k-means: Assume that the sample space is restricted so that ‖z‖2 ≤ Rc. Denote
h? = arg minh∈HRπ?(h) and R? = Rπ?(h?). There exists a distribution πS ∈ S in the
model such that the bias term τ defined by (6.28) satisfies

τ ≤ L(
√
R? + ε′) (6.50)

where L = 4Rc + 8WL
√
d

σk
and ε′ is defined as in the k-medians case.

Remark 6.3.7. The k-means framework is seen to be somehow less convenient than the k-medians one
in our analysis: not only we obtain a bound

√
R? instead of directlyR?, it seems that we must assume

that the sample space itself is bounded, while this is not the case in the k-medians case where the
sample space is unrestricted.

Discussion. By Lemma 6.3.6 we obtain a distribution-free version of Theorem 6.3.5, where
the bias τ = d(π?, πS) does not need to be optimized with respect to πS ∈ S but is directly
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bounded by the optimal risk. In particular, for k-medians we obtain an oracle bound of the
form

Rπ?(h̃) . R? + . . .

with a non-tight constant. Note that it is possible to tighten a bit further the constant L in
the expression of the bias term by using matrix concentration inequalities, as is written in our
publication [Gri+17]. As this result is not crucial for the theory and not one of my personal
contribution, I elected to exclude it from the present manuscript. In any case, further tighten-
ing of the multiplicative constant will have to be envisioned in the future.

Consequence for super resolution Our results have interesting consequences for super-
resolution [CFG12; DeC+15; DP15], which is the problem of recovering linear combinations
of Diracs from noisy Fourier measurements, which is exactly the framework of this section3,
using a convex cost function however.

One of the main difference is that we draw the frequencies randomly, in a Compressive
Sensing spirit, while usually in super-resolution the frequencies are deterministic (they stem
from the use of an ideal low-pass filter on the torus). In this spirit, the most interesting fea-
ture in our results is that the sketch size is as m = O (log(1/ε)) with respect to the separation,
while most results in super-resolution consider m = O (1/ε) equally spaced Fourier measure-
ments, to reach the Shannon-Nyquist cutoff frequency. Or course, since our frequencies are
drawn from a Gaussian, technically speaking they can be infinitely high, which may not be
feasible with practical acquisition devices. Nevertheless, to our knowledge the incorporation
or random Fourier measurements in a super-resolution context is fairly new, as is our analysis
inspired by a Compressive Sensing strategy.

6.4 Gaussian Mixture Model

We now turn to GMM estimation with known covariance, which is the original framework by
Bourrier et al. [BGP13]. All proofs are in Appendix E.

6.4.1 Framework

Consider the sample space Z = Rd, and a fixed, known positive definite covariance matrix
Σ ∈ Rd×d. Recall the Mahalanobis norm:

‖x‖Σ =
√

x>Σ−1x

Fix the number of components k > 0.

Learning task. In the context of GMM with known covariance a hypothesis is a set of means
and weights h = ((µ1, . . . ,µk) , ξ), whereµl ∈ Rd are the means of the Gaussians and ξ ∈ Sk−1

are the weights. The hypothesis class is such that means are bounded for the Mahalanobis
norm:

H ⊂
{
h = ((µ1, . . . ,µk) , ξ)

∣∣∣ ‖µl‖Σ ≤ Rµ, ξ ∈ Sk−1
}

(6.51)

Once again we outline that we do not make any assumption on the samples zi or their distri-
bution π?, only on the GMMs that we are going to fit on them.

For a hypothesis h, denote the GMM

πh =

k∑
l=1

ξlN (µl,Σ) .

For density fitting the usual loss function is the negative log-likelihood:

`(z, h) = − log πh(z) . (6.52)
3Where we used a reweighting on the features however.
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Basic set of individual components. The basic set of distribution πθ is naturally that of Gaus-
sians with mean µ = θ, also bounded, and covariance Σ:

T = {πθ = N (θ,Σ) | θ ∈ T } (6.53)

where T = BRd,‖·‖Σ(0, Rµ) is the ball of radius Rµ > 0 for the Mahalanobis norm.

Kernel. We define the kernel as a gaussian kernel κ ∝ N
(
0, λ2Σ

)
with covariance propor-

tional to Σ. As we will see, to satisfy the conditions required by our analysis we need to
normalize this kernel by a constant Cλ:

κ(z, z′) := C2
λ exp

(
−
‖z− z′‖2Σ

2λ2

)
, (6.54)

for some adjustable scale parameter λ > 0. The constant Cλ is defined as

Cλ :=

(
2

λ2
+ 1

) d
4

= O
(
e

d
2λ2

)
(6.55)

Metric. Define the metric % as

%(θ,θ′) :=

(
σ2
k

2 + λ2

) 1
2

‖θ − θ′‖Σ (6.56)

where σk is defined by (6.27).

Model. The considered model is that of GMMs whose parameters (Θ, ξ) are in the hypothe-
sis classH, with the additional separation hypothesis. Denote the separation:

ελ := 2

√
2 + λ2

σ2
k

= O
(√

(1 + λ2) log k
)

(6.57)

such that Sk,2,% (T) = Sk,ελ,‖·‖Σ (T). The model is:

S := SH,ελ =

{
πΘ,ξ =

k∑
l=1

ξlπθl

∣∣∣ (Θ, ξ) ∈ H, ‖θl − θp‖Σ ≥ ελ

}
⊂ Sk,2,% (T) . (6.58)

Unlike the Dirac case, the separation ελ of the means of the GMMs in the model cannot be
chosen as small as desired by adjusting λ, its minimal value scales in ελ ≥ ε0 = O

(√
log k

)
.

As we will see, a “small” separation will induce a large sketch size, and vice-versa. This is
naturally expected to have consequence on the bias: in particular if π? is exactly a ε-separated
GMM the bias can be zero only if ελ ≤ ε.

Like in the Dirac case, we assume that the radius Rµ is big enough and λ is set such that
ελ ≤ 2Rµ, so that the model is not empty.

Random Feature expansion. The chosen features are directly the classic Random Fourier
features [RR07] for the Gaussian kernel κ (unlike the mixture of Diracs case we do not need to
reweight them):

FR =
{
φω(z) = Cλe

iz>ω
∣∣∣ ω ∈ Rd

}
Λ = N

(
0, λ−2Σ−1

)
. (6.59)

6.4.2 Main properties

Let us now turn to proving the six properties required for our analysis.
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Step 1: the model is acceptable

For any pair of distributions π, π′ ∈ P, the log-likelihood has the following property

Ez∼π (− log π′(z)) = Ez∼π log

(
π(z)

π′(z)

)
− Ez∼π log π(z) = DKL (π||π′) + H (π) (6.60)

where DKL (·||·) is the Kullback Leibler divergence and H (π) = Ez∼π (− log π(z)) is the differ-
ential entropy of π.

It is well-known that the KL divergence DKL (π||π′) is non-negative, and zero if and only if
π = π′. Hence for πΘ,ξ ∈ S = SH,ελ the expected risk

RπΘ,ξ
(h) = DKL (πΘ,ξ||πh) + H (πh)

is indeed minimized by choosing h = (Θ, ξ), which is in the hypothesis classH by definition of
the model. Thus the model is acceptable for the learning task, and as expected the parameters
of the GMM recovered from the sketch are directly the desired hypothesis.

Step 2: the kernel has the right form

The expression of the kernel is based on the following generic lemma.

Lemma 6.4.1. Define a Gaussian kernel κ(z, z′) = exp
(
− 1

2 ‖z− z′‖2Σκ
)

.
For two Gaussians π1 = N (µ1,Σ1) , π2 = N (µ2,Σ2), the mean kernel κ(π1, π2) =

Ez1∼π1
Ez2∼π2

κ(z1, z2) expresses

κ(π1, π2) =
|Σκ|

1
2

|Σ1 + Σ2 + Σκ|
1
2

exp

(
−1

2
‖µ1 − µ2‖2Σ1+Σ2+Σκ

)
(6.61)

where |·| denotes the determinant of matrices.

Using this closed-form expression on the kernel (6.54) we get here:

κ(πθ, πθ′) = C2
λ

∣∣λ2Σ
∣∣ 1

2

|(2 + λ2)Σ|
1
2

exp

(
−1

2
· 1

2 + λ2
‖θ − θ′‖2Σ

)

= C2
λ

(
λ2

2 + λ2

)d/2
exp

(
− 1

2σ2
k

· σ2
k

2 + λ2
‖θ − θ′‖2Σ

)
= K(%(θ,θ′))

with K(x) = e
− x2

2σ2
k , which is the desired expression K ∈ E(A,B,C, 1).

Step 3: the loss functions are bounded and Lipschitz

Lemma 6.4.2. The loss class L satisfies

L ⊂ Q(D`, L`, T , %) (6.62)

where D` = 2R2
µ + 1

2 |log |2πeΣ|| and L` = 2Rµελ.

Step 4: the random features are Bounded Lipschitz

Lemma 6.4.3. We have FR ⊂ Q(DFR , LFR , T , %) with DFR = Cλ and LFR = Cλ
√

2+λ2

σ2
k

.
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Proof. It is immediate that
Ez∼πθ |φω(z)| ≤ Cλ

and

|〈πθ − πθ′ , φω〉| ≤ Cλ ‖πθ − πθ′‖TV

Lem. 3.3.4
≤ Cλ ‖θ − θ′‖Σ ≤ Cλ

√
2 + λ2

σ2
k

%(θ,θ′)

which proves the result.

Step 5: the basic set has finite covering numbers

Lemma 6.4.4. For all δ > 0, we have

N
(
‖·‖FR ,T, δ

)
≤ max

((
B

δ

)d
, 1

)
. (6.63)

with B = 4CλRµ.

Proof. Consider the embedding ϕ : T → T defined as ϕ(θ) = πθ, which is surjective by
definition of T.

Consider θ,θ′ ∈ T . By Lemma 3.3.4 we have ‖πθ − πθ′‖FR ≤ Cλ ‖θ − θ
′‖Σ. Therefore ϕ

is Cλ-Lipschitz. Then, we have

N
(
‖·‖FR ,T, δ

) Lem. A.3.2
≤ N

(
‖·‖Σ , T ,

δ

Cλ

)
Lem. A.3.4
≤ max

((
4CλRµ

δ

)d
, 1

)
. (6.64)

Step 6: there exist tangent sets with finite covering numbers

Let us prove the existence of tangent sets V with finite covering numbers.

Lemma 6.4.5. For all θ ∈ T , there exists a set Vθ that satisfies the requirements of Lemma 6.2.10
with M = 2Cλ(2+λ2)

eσ2
k

, ηmax = 1/2 such that for all 0 < δ ≤ 1 we have

N
(
‖·‖FR ,Vθ, δ

)
≤ 6CλB

d

δ2d+1
(6.65)

where B = 3226C2
λ

(
2+λ2

eσ2
k

) 3
2

.

6.4.3 Summary and main result for mixtures of Gaussians

Combining all these properties, we get the following result.
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Theorem 6.4.6. Adopt the definitions of Section 6.4.1.
Consider a distribution π? ∈ P, denote

R? := min
h∈H
Rπ?(h)

Define

WL := 2
√

2k (2D2
` + L2

`) (6.66)

where D`, L` are defined as in Lemma 6.4.2.
Let πS ∈ S be an approximation of π? in the model, denote the bias

τ := ‖π? − πS‖L(H) + 4WL ‖π? − πS‖FR (6.67)

Let m be a sketch size that satisfies

m ≥ O
(
e
d
λ2 k2d2polylog

(
k, d,Rµ,

1

ρ

))
(6.68)

where polylog is a polynomial expression containing only logarithmic terms (see proof in Ap-
pendix E for detailed expression).

Consider items z1, ..., zn ∈ Z drawn i.i.d. from π? and frequencies ω1, ...,ωm ∈ Rd drawn
i.i.d. from Λ, which define the sketching operator A by (3.7). Denote πΘ̃,ξ̃ = ∆ι(A,Aπ̂n) ∈ S

the probability distribution recovered from the empirical sketch and h̃ = Θ̃.
Then, with probability at least 1− (ρ+ ρ′) on the drawing of the zi’s and ωj ’s, the excess risk

satisfies
Rπ?

(
h̃
)
−R? ≤ 2ϕ

where

ϕ = τ +
4CλWL

(
1 +

√
2 log(1/ρ′)

)
√
n

+ 2WLι . (6.69)

Bias. Unlike the k-means and k-medians case, we do not have further control on the bias
term yet. One term uses the norm ‖·‖FR , which can be bounded by the TV-norm (Lemma
3.1.5) then by Pinsker’s inequality [FHT03] by the square root of the Kullback-Leibler diver-
gence for instance, however the second term with the norm ‖·‖L(H) may be technical to relate
to other quantities without additional assumptions on the true distribution of the data π?. Let
us nevertheless note that, unlike the previous case where the true distribution of the data was
obviously not a mixture of Diracs, here it is plausible that the true distribution π? is exactly or
“close” to a GMM in the model (i.e. with ελ-separation of means). We leave further control of
the bias for future work.

Separation and sketch size. Similar to the Dirac case, by adjusting the parameter λ one can
see a trade-off between the required sketch size (6.68) and the separation ελ (6.57) of compo-
nents in the model: as λ decreases, the kernel κ is more “precise”, higher frequencies are sam-
pled (but more of them are required) and the separation in the model can be smaller. However,
as mentioned before, while still adjustable by λ, unlike the Dirac case the separation ελ cannot
go to zero. At one end of the spectrum, it scales in O

(√
log k

)
, which compares favorably to

existing literature4 [AM05; VW04] but the sketch size is polynomial in k and exponential in d,
while at the other end the sketch size is polynomial in k and d but the required separation is
in O

(√
d log k

)
. A few values are summarized in Table 6.1.

4Recent works make use of more complex conditions that theoretically permits arbitrary separation [BS10b], how-
ever all these approaches use the full data while we consider a compressive approach that uses only a sketch of the
data.
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λ2 Cλ ελ m

O (1) O
(
ed/2

)
O
(√

log k
)

O
(
edk2d2polylog

(
k, d,Rµ,

1
ρ

))
O
(√

d/ log k
)

O
(√

k
)
O
(√
d+ log k

)
O
(
k3d2polylog

(
k, d,Rµ,

1
ρ

))
O
(√

d
)

O (1) O
(√
d log k

)
O
(
k2d2polylog

(
k, d,Rµ,

1
ρ

))
TABLE 6.1: Trade-off between separation ελ of means in the model and required
sketch size m. The sketch size does not seem to be improved by choosing λ

greater than
√
d.

6.5 Conclusion

In this chapter, we derive an advanced analysis of mixture models to fully exploit the results
of Chapter 3. Our goal was to prove strong conditions to obtain information-preservation
guarantees with no additive error (η = 0), and relate the guarantees to usual learning and
expected risk control. Our analysis of mixture models includes a key assumption of separation
of components, from which we can decompose a difference of mixtures into a sum of separated
dipoles, controlled independently with usual tools such as incoherence. The link with risk
control was made through the definition of appropriate metrics (notion of compatibility of the
kernel) and low-dimensional models that are directly related to the hypothesis class (notion of
acceptable model).

This set of results was applied to two mixture learning problems. The first was to relate
the recovery of mixtures of Diracs from the sketch with the k-means and k-medians problems.
It was seen that separation of Diracs can be controlled by directly tuning the precision of the
kernel. The sketch size resulting from our analysis is somehow better than usual results in
super-resolution5 with respect to this separation, which is certainly due to the introduction of
randomness in the design of the measurement operator, as is done in Compressive Sensing.

The second case was that of GMM estimation with known covariance, which is the original
framework that was the starting point of this thesis. We provided guarantees with usual log-
likelihood, and observed an interesting trade-off between required separation of means and
sketch size. The remaining bias term was not subject to the same analysis than in the case of
mixtures of Diracs and will be the subject of future investigations.

In both applications a sketch size at least quadratic in the number of components and di-
mension of the data was obtained, which is polynomial, but still seem to be sub-optimal com-
pared to the linear dependence observed in practice. Since our control of covering numbers
reflects the right dimensionality of the problem, we conjectured that potential sub-optimality
was due to our current strategy for concentration of measure.

5Although, once again, the frameworks and guarantees are fairly different.
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Conclusion

This thesis work focused on the theoretical analysis and practical implementation of a sketch-
ing method for efficient learning of mixture models. The notion of linear sketches was revisited
under the lens of Compressive Sensing and inverse problems, based on the idea that any linear
sketch is a collection of generalized moments with respect to the underlying probability dis-
tribution of the data. The method was analyzed by drawing innovative connections between
generalized Compressive Sensing, kernel mean embedding and Random Feature expansions.
A versatile greedy algorithm was developed and applied to three different problems on syn-
thetic and real data.

7.1 Summary of the contributions

We summarize our main contributions below.

7.1.1 Theoretical contributions

In Chapter 2, we described a first contribution independent of sketching. We extended pre-
vious results for linear inverse problems that stated that the existence of a decoder that is
instance optimal with respect to a low-dimensional model is equivalent to the measurement
process satisfying a certain Lower Restricted Isometry Property on this model. We proved
that this result holds for non-linear measurement operators in any metric set, and extended
the formulation to guarantees that are non-uniform in probability.

In Chapter 3, we described the main framework for the proposed sketching method. We
defined the sketching operator as a collection of generalized moments with respect to a finite
measure. These moments were defined using Random Feature expansions of positive definite
kernels, and the resulting operator was shown to approximate the infinite-dimensional map-
ping induced by the kernel mean embedding methodology. We used this mathematical frame-
work to provide conditions under which this operator satisfies the non-uniform LRIP with
high probability. Then, using results from the previous chapter, we provided information-
preservation guarantees for the sketching method.

In a second part of the chapter, we relaxed most of the technical assumptions used to prove
the LRIP and provided preliminary guarantees that are only meaningful when the sketch is
as large as the original database (fortunately theses results are seen in Chapter 5 to be largely
pessimistic in practice). We showed that this analysis applies to a large class of models with
no difficulty. We provided two examples: GMMs with diagonal covariance and mixtures of el-
liptic stable distributions. The latter is the most interesting, since despite the sub-optimality of
the sketch size it is the only known estimator for mixtures of multivariate stable distributions.
In the course of these first proofs, we manipulated several useful tools on covering numbers
and provided intermediary results on Gaussians and stable distributions.

This analysis was greatly extended in Chapter 6, with two purposes: improving over the
sub-optimal preliminary guarantees obtained at the end of Chapter 3 and relating the ob-
tained information-preservation guarantees to more traditional learning metrics. We analyzed
generic mixture models based on the key assumptions that the components of a mixture are
pairwise sufficiently separated and that the mean kernel between two components is suffi-
ciently decreasing around the origin. Under these assumptions, the difference between two



122 Chapter 7. Conclusion

mixtures can be decomposed into a sum of incoherent “dipoles”. We instantiated this frame-
work on two examples. First mixtures of Diracs, for which we provided guarantees with
respect to the classic k-means and k-medians loss functions. And second GMMs with fixed
known covariance, where an interesting trade-off between sketch size and required separation
of components was observed. In both cases the required sketch size is at least m ≥ O

(
k2d2

)
,

where k is the number of components and d is the dimension, which is indeed independent of
the size of the original database but still sub-optimal compared to the m ≈ O (kd) observed in
practice.

7.1.2 Algorithmic contributions

Chapter 4 was devoted to defining a greedy heuristic to estimate a mixture model from a
sketch. We first analyzed the cost function and showed in a simple case that it may be convex
by block with respect to each component when the residual signal is sufficiently close to zero.
A block coordinate gradient descent was indeed observed to perform well when initialized
close to the optimum, but to fail in the absence of prior knowledge. We then introduced the
proposed greedy strategy. Inspired by Orthogonal Matching Pursuit, it alternates between
adding a component and performing non-convex updates. In its variant with Replacement, it
performs more iterations than the desired number of components and suppress some of them
with Hard Thresholding. Although it requires no prior knowledge, this algorithm was shown
to perform on par with the block coordinate descent algorithm initialized close to the optimum.
Finally, we outlined the simplicity of its implementation and possibility for optimization at
key steps of the algorithm.

In Chapter 5 we applied the proposed greedy strategy to the sketched mixture model esti-
mation problem. We first described an unsupervised method to learn an appropriate kernel,
that requires only a fraction of training data. Although relatively simple compared to existing
literature on the matter, it was shown to be extremely fast compared to a supervised approach
and to perform well on a wide range of problems.

The sketch mixture model estimation method was then instantiated on three problems.
The first consists in recovering a mixture of Diracs from the sketch. We showed that it

compares favorably with the classic k-means algorithm. The sketching method was observed
to be much more efficient on large databases, and we showed that unlike k-means it does
not necessitate several replicates with random initializations. The method was applied to a
spectral clustering problem for handwritten digits recognition.

Then the sketching method was applied to the estimation of GMMs with unknown diag-
onal covariances. In this specific case we defined an additional algorithm that has a better
cost than the greedy approaches with respect to the number of components, although it was
sometimes seen to yield results that are less precise than the ones obtained with CL-OMPR.
The latter was observed to reach the precision of EM even when EM is repeated 10 times with
random initializations, while being faster and more memory efficient on large databases. The
method was applied to a speaker verification problem on a database comprising hundreds of
millions of elements.

Finally the proposed method was instantiated for the estimation of mixtures of multivari-
ate elliptic stable distributions. It was shown to be orders of magnitudes faster and more pre-
cise than the few results reported in the literature for the univariate case. To our knowledge,
this is the first algorithm capable of handling the multivariate case.

In all applications the sketch size required to obtain good estimation results was approx-
imately observed to scale as m ≈ O (kd), which is intuitively an optimal rate since it is the
number of parameters.

7.2 Perspectives

Let us now outline some interesting perspectives that arise from our work, some of which
have already been evoked in the course of the manuscript.
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7.2.1 Short-term perspectives

Extension of CL-OMPR. Many immediate extensions can be envisioned to the CL-OMPR
algorithm. In case where the number of atoms is unknown , integrating a stopping condition
when the residual falls below a threshold requires no effort, and model selection is somehow
made even easier than with classic algorithms like k-means or EM for which it is known to
be a difficult problem. A remaining issue with the greedy approach is its quadratic cost in
the number of components. In the specific case of GMMs, we defined a hierarchical algorithm
that is faster at large k, and it would be interesting to generalize such a strategy to any mixture
model.

In [BSR15] Boyd an al. use an algorithm similar to CL-OMP for many problems other than
mixture model estimation, hence the CL-OMPR (with Replacement) can also be applied to
these problems and may improve over CL-OMP without Replacement.

Use of fast transforms. All throughout our description of the implementation of the sketch-
ing method, we have outlined the possibility to use fast transforms to accelerate some com-
putations (see Section 4.3.3). The most prominent example is that of mixture of Diracs, where
both the computation of the sketch with complex exponentials and the CL-OMPR algorithm
can directly benefit from replacing the matrix of frequencies W by a structured fast version.
Other models such as GMMs with diagonal covariance require fast versions of W�W, which
is a less common but interesting challenge.

A paramount question is then to examine the possible integration of such transforms into
theoretical proofs. Indeed, many structured transforms are shown to have similar properties
as e.g. random Gaussian matrix, and are already integrated in fast versions of RF expansions of
kernels [LSS13; Yan+15]. Hence if we were able to define an admissible RF expansion (i.e. such
that ‖·‖FR . ‖·‖κ on differences of distributions in the model) that integrates such structures,
our theoretical analysis would apply.

Combination with dimension-reduction. As we advocated in the introduction of the thesis,
the proposed sketching method is tailored for databases with a large number of elements n,
and not so much for element that have a high dimension d. In particular, we observe empir-
ically that the sketch has a size that is linear in d, and provided theoretical guarantees with a
sketch size at least quadratic in d. However, in the introduction we also mentioned a number
of existing methods that reduce the dimension of each individual data point while retaining
the ability to perform the learning task, like k-means [BZD10] or GMM estimation [Das99].

It would be feasible to combine these approaches with the sketching method: first reduce
the dimension of the data, then sketch them and learn. Implementing such a scheme is imme-
diate, and it may very well be possible to simply “plug” the theoretical guarantees of these di-
mension reduction methods in our RIP analysis. Hence we hope to develop more “complete”
compression methods in the future, that would handle data that are both large in number and
high-dimensional.

Practical extension to other mixture models and sketching operators. In Chapters 4 and 5
we observed the CL-OMPR algorithm to be extremely versatile and outlined that it is applica-
ble as long as θ 7→ Aπθ is differentiable. It could therefore be applied to many other models of
distributions πθ or sketching operators A.

Preliminary experiments with Gaussian Locally Linear Mapping (GLLiM) [DFH14], which
is another restriction of the full GMM framework whose purpose is to perform high-dimensional
regression, are very encouraging. The CL-OMPR algorithm also opens the way for estimating
more exotic mixture models that could not be envisioned until now [Das+05] just by providing
the expression of their characteristic functions (when using the Fourier sketch), as we did for
mixtures of stable distributions. In these cases practical applications may still be scarce due to
the lack of estimators, but we hope that our work, among others, opens the way to a new class
of methods that use such mixture models.

Other sketching operators can also be envisioned. An interesting idea is to replace the
complex exponential used in the experiments with other non-linearities ρim. (·), more attuned
to physical devices, or comparable to classic non-linearities used e.g. in the Neural Networks
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literature. Based on our work, the method described in [Sch17] replaces the complex exponen-
tial by the binary output of a periodic universal quantifier, and shows that the performance of
the k-means method can be preserved for sketches comprising more measurements, but stored
more efficiently in memory. We expect more sketching operators to emerge in the future.

7.2.2 Mid-term perspectives

Bridging the gap between theory and practice. As mentioned before, the sketch size ob-
tained in theory m ≈ O

(
k2d2

)
does not match that observed in practice m ≈ O (kd), which

may be due to an artifact of the proof. As described in Chapter 6, the size of the sketch arises
from two factors: the logarithm of the covering numbers of normalized secant sets, which
represents the “dimensionality” of the problem, and the admissibility constant, which is used
in Bernstein’s concentration inequality. In the two considered cases the covering numbers are
probably optimal: we indeed show that the normalized secant sets have an upper box count-
ing dimension in O (kd), which is the number of parameters in the problem. Hence it is most
probable that the sub-optimality of the results comes from the way we exploited Bernstein’s
inequality. With the technique employed, that controls dipoles by bounding their coherence, it
seems at least difficult to avoid the factor

√
k that appears in Theorem 6.2.5 and in the admis-

sibility constant. Thus a potential solution would probably come by using a more powerful
tool than Bernstein’s inequality, or changing our analysis strategy completely.

Extension of the analysis to other mixtures of separated components. In Chapter 6 we de-
rived sufficient conditions for the sketched estimation of generic mixture models, based on a
separation assumption. In our analysis, the mean kernel must be as κ(πθ, πθ′) = K(%(θ,θ′)),
where % is some metric andK is sufficiently decreasing around the origin (in order to distinguish
separated components). We showed that the Fourier sketch was well-adapted for mixtures of
components that are localized in space (mixtures of Diracs and GMMs with known covariance),
which is intuitive. A paramount question is to define other sketching operators and mixture
models that yield appropriate expressions of the kernel.

As an illustration, consider a particular case of GMM with unknown covariance: mixtures
of two-dimensional centered Gaussians with “flat” covariance, defined as a diagonal matrix
rotated by an angle θ (Fig. 7.1, left): πθ = N

(
0,Rθdiag

(
[σ2

1 , σ
2
2 ]
)
R>θ
)

where

Rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)

In that case, it is possible to show that with a Gaussian kernel κ(z, z′) = e−
1
2‖z−z′‖2

2 the mean
kernel expresses

κ(πθ, πθ′) =
1√

A+B sin2(θ − θ′)
(7.1)

whereA = (1+2σ2
1)(1+2σ2

2) andB = (σ2
1−σ2

2)2 (proof in Appendix E). This kernel, illustrated
in Fig. 7.1, seems to have the desired shape to apply our analysis: it is translation-invariant
with respect to θ, with a decrease around the origin that becomes sharper as the Gaussians
become “flatter” andB = (σ2

1−σ2
2)2 increases. Therefore we could potentially apply the results

of Chapter 6 to learn mixtures of flat rotated Gaussians, although we have not completed the
proof. Interestingly, learning such flat Gaussians is similar to learning the directions of several
subspaces, which can be related to dictionary learning. Hence we expect other mixture models
and non-linearities to emerge such that an analysis similar to ours applies.

Necessary conditions. Traditional Fourier analysis includes proofs of necessity of various
conditions, such as the Shannon-Nyquist universal threshold. We have seen that our analysis
of mixture models in Chapter 6 rests on an assumption of separation of components, and
of sufficient precision of the kernel. It would be interesting to determine which proportion of
these conditions is necessary. Such a study could also help us design other kernels, by realizing
that the present conditions are either too strong or somewhat tight.
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FIGURE 7.1: Left: illustration of two 2-dimensional centered Gaussians with
different rotated covariances (with shared eigenvalues σ2

1 = 5, σ2
2 = 0.1, and

respective angles of rotation θ = 0, θ′ = π/5). Right: corresponding mean
kernel with respect to the difference in angles of rotation θ−θ′, with a Gaussian

kernel.

7.2.3 Long-term perspectives

Algorithmic guarantees, convex relaxation. A paramount question is of course to obtain an
algorithm with provable guarantees. In this thesis we focused on proving that minimizing
the cost function indeed permits recovery (as we have seen, a somewhat technical question),
and providing a good heuristic algorithm which was thoroughly tested in practical situations.
However we are still missing an algorithm with guarantees. Existing analyses for similar
methods [BSR15] guarantee that when the number of components k grows to infinity, the true
signal is approximated. However they do not really apply in our context, where we are looking
for a mixture of exactly k components, else our theoretical analysis fails. We have quickly
shown in simple situations that local block convexity sometimes occurs when close to the
optimum, a possibility would be to see if under some assumptions the CL-OMPR algorithm
(or any other algorithm) indeed falls into this basin of attraction with high probability.

A long-term perspective would be to examine the potential implications of the LRIP or
even a full RIP on the cost function itself: can it be used to prove stronger convexity properties?
A final possibility would then be to define convex relaxations of the cost function, as is done in
Compressive Sensing in a finite-dimensional framework. In the context of mixtures of Diracs,
such convex relaxation is performed in recent advances in super-resolution [DP15; DeC+15].
Their analysis however does not use RIP-like conditions, it is intriguing to see if some of our
results can be integrated in this context.

Extension to other learning tasks. By drawing connections with inverse problems, we have
designed a mixture estimation method from a sketch. This is by no mean the only envisioned
use of sketches. As mentioned before such mean kernel embeddings (with or without random
features) have been used for two-sample tests, classification of distributions, independence
testing, and so on. A particularity of our analysis is that we prove that with a limited number
of random features the sketch contains approximately all the information on the probability
distribution of the data for certain learning tasks. It would be extremely interesting to see if
this potentially applies to performing other learning tasks with sketches1.

Existence of non-uniform problems. We formulated a non-uniform version of the LRIP that
is entirely new. Although we elected to prove the non-uniform version of the LRIP for the
sketch problem in this manuscript, it is possible to show that the uniform version also holds2,

1In particular, in the two cases studied in Chapter 6 the link between the model S and the learning task at hand
was almost tautological: the notion of acceptability of the model was trivial to prove and not really exploited. Other
learning tasks that are fundamentally different might ask for a redefinition of the notion of low-dimensional model
and/or non-trivial acceptability proofs.

2We chose the non-uniform version in this thesis in the interest of avoiding redundancy with our paper [Gri+17]
and introducing slightly different mathematical tools. The interested reader can read the uniform version in our paper.
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as we do in [Gri+17]. To the best of our knowledge it is still an open question to prove the exis-
tence of cases where the non-uniform version holds and the uniform version does not. Note that
it is already known that uniform results are impossible to meet for certain practical algorithms
[Rau08].

Link with Neural Networks. In Chapter 5 we outlined the computational similarity between
the linear sketch and a one-layer Neural Network (NN). Deep Neural Networks are now state-
of-the-art in a large number of learning tasks but it is well-known that they still await a thor-
ough mathematical explanation of these surprisingly good results. A great effort is dedicated
today to providing such an analysis. It may be possible to draw further connections between
some of the tools described in this thesis work and the methodology of neural networks.

It has already been noted that a network with random weights may give rise to a well-
behaved embedding of data points [GSB15], which can be analyzed in terms of kernels and
RF expansions [RR09]. For instance, define as usual the sketching operator Aµ such that
‖Aµ‖2 ≈ ‖µ‖κ for some kernel κ. Then, consider the realization of a RF expansion of another
translation-invariant kernel such that K(‖y − y′‖2) ≈ 〈Φ(y),Φ(y′)〉 where y ∈ Cm. We can de-
fine the “level-2” mapping as Φ2(µ) = Φ(Aµ). It corresponds to defining a finite-dimensional
approximate mapping for a “level-2” kernel [Mua+12; OSS15]:

〈Φ2(π),Φ2(π′)〉 ≈ K(‖Aπ −Aπ′‖2) ≈ K(‖π − π′‖κ) = κ2(π, π′)

Using such a kernel, the “sketch” of a database Φ2(π̂n) (which is no longer a linear sketch)
may be more powerful than traditional linear sketches to perform complex tasks. The atten-
tive reader would have recognized that such a sketch is often a two-layer NN: for instance,
in the case of Random Fourier features, it is built by multiplying the matrix of data by the
matrix of frequencies, taking pointwise complex exponential, pooling the columns (which at
this point is the normal linear sketch), but then again multiplying by some frequencies and
taking pointwise complex exponentials. Such intricate operators may be analyzed using the
results of Chapter 2, which provide information-preservation guarantees even when the mea-
surement operator is non-linear. These guarantees for finite or infinite-dimensional objects
such as distributions would be useful to further understand the behavior of these networks.
Proving (or disproving!) the LRIP for such constructions can no longer rely on normalized
secant sets, which are useful only when the measurement operator is linear, and it is probable
that an entirely new set of tools will have to be defined.
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Appendix A

Definitions, Preliminary results

In this first Appendix we group some definitions, notations, and preliminary results that will
be useful.

A.1 Notations, definitions

A.1.1 Metrics and covering numbers

Definition A.1.1. A pseudometric d over a set X satisfies all the axioms of a metric, except that
d(x, y) = 0 does not necessarily imply x = y. Similarly, a seminorm ‖·‖ over a vector space X
satisfies the axioms of a norm except that ‖x‖ = 0 does not necessarily imply x = 0.

The radius of a seminormed vector space (X, ‖·‖) is denoted rad‖·‖ (X) = supx∈X ‖x‖. The
diameter of a pseudometric set (X, d) is denoted diamd (X) = supx,x′∈X d(x, x′).

Definition A.1.2 (Ball, δ-covering, covering number). Let (X, d) be a pseudometric space.
For any δ > 0 and x ∈ X , we denote BX,d(x, δ) the ball of radius δ centered at the point x:

BX,d(x, δ) = {y ∈ X, d(x, y) ≤ δ} .

Let Y ⊂ X be a subset of X . A subset Z ⊂ Y is a δ-covering of Y if Y ⊂
⋃
z∈Z BX,d(z, δ).

The covering numberN (d, Y, δ) ∈ N∪ {+∞} is the smallest number of points yi ∈ Y such
that the set {yi} is a δ-covering of Y .

Remark A.1.3. Our definition of covering numbers is that of internal covering numbers, meaning
that the centers of the covering balls are required to be included in the set being covered. Somehow
counter-intuitively these covering numbers (for a fixed radius δ) are not necessarily increasing with the
inclusion of sets: for instance, consider a setA formed by two points, included in setB which is a ball of
radius δ. Suppose those two points diametrically opposed inB. We haveA ⊂ B, but two balls of radius
δ are required to cover A (since their centers have to be in A), while only one such ball is sufficient to
cover B. See Lemma A.3.1.

A.1.2 Measures

Definition A.1.4 (Nonnegative measure). A measure µ over a measurable space (X,B) is said
to be nonnegative if:

∀B ∈ B, µ(B) ≥ 0.

Most often, a measure is by definition nonnegative, and called signed measure when it is
not. However to avoid confusion we sometimes specify that a measure is indeed nonneg-
ative.
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Definition A.1.5 (Support of a measure). The support of a signed measure µ over a measur-
able, topological space X is defined to be the closed set,

supp(µ) := X\
⋃
{U ⊂ X : U is open, µ(U) = 0} .

Definition A.1.6 (Total variation norm, Finite measure). Let µ be a signed measure over a
measurable space (X,B). Define the Jordan decomposition (µ−, µ+) of µ where µ+ and µ− are
positive measures (see [Fis12] and [Rud87] Chap. 6 for more details). Denote |µ| = µ+ +µ−. The
total variation norm of µ is defined as:

‖µ‖TV = |µ| (X) =

∫
X

d |µ| (x).

The measure µ is said finite if ‖µ‖ <∞.
Note that if µ is totally continuous with respect to the Lebesgue measure, i.e. if there exists

an integrable function f such that dµ(x) = f(x)dx, then the total variation norm is the classic
L1-norm of this function: ‖µ‖ = ‖f‖L1 .

Definition A.1.7 (Kullback-Leibler divergence [KL51]). Let π, π̃ be two probability measures
(i.e. nonnegative and such that their total variation norm is equal to 1) over a measurable space
(X,B). Provided π is absolutely continuous with respect to π̃, the Kullback-Leibler divergence
from π̃ to π is defined as

DKL (π||π′) =

∫
X

log
dπ

dπ̃
dπ . (A.1)

If π and π′ are both continuous with respect to e.g. the Lebesgue measure, with density f and
f̃ , then

DKL (π||π′) =

∫
X

log
f(x)

f̃(x)
f(x)dx . (A.2)

A.1.3 Sets and models

Consider (X, ‖·‖) a seminormed real vector space.
Given an integer k > 0, sets Yl ⊂ X , l = 1, ..., k, and a setW ⊂ Rk, we define

Y
(k)
W :=

{
k∑
l=1

ξlyl

∣∣∣ ξ = (ξl)
k
l=1 ∈ W, yl ∈ Yl

}
(A.3)

In particular, when Y1 = ... = Yk = Y , we obtain a mixture set denoted YW .
Given η ≥ 0 and y ∈ Y , the normalized secant set Sη‖·‖(y, Y ) is defined as

Sη‖·‖(y, Y ) :=

{
y − y′

‖y − y′‖

∣∣∣ y′ ∈ Y, ‖y − y′‖ > η

}
(A.4)

When η > 0, we say that the normalized secant set is extruded. These definitions are general-
izations of those used in the core of the thesis.

A.2 Measure concentration

In Theorem 3.2.5 we use Bernstein’s inequality in the following simple version [Sri02]:
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Lemma A.2.1 (Bernstein’s inequality ([Sri02], Thm. 6)). Let x1, . . . , xn ∈ R be i.i.d. bounded
random variables such that Exi = 0, |xi| ≤M and V ar(xi) ≤ σ2 for all i’s.

Then for all t > 0 we have

P

(
1

n

n∑
i=1

xi ≥ t

)
≤ exp

(
− nt2

2σ2 + 2Mt/3

)
. (A.5)

We also report a concentration result in Hilbert spaces from [RR09].

Lemma A.2.2 ([RR09], Lemma 4). Let zi, . . . , zn ∈ H be i.i.d. random variables in a Hilbert
Space (H, ‖·‖) such that ‖zi‖ ≤ M with probability one. Denote z̄ their empirical average z̄ =
(
∑n
i=1 zi) /n. Then for any ρ > 0, with probability at least 1− ρ,

‖z̄− Ez̄‖ ≤ M√
n

(
1 +

√
2 log

1

ρ

)
. (A.6)

A.3 Generalities on covering numbers

In this section we formulate generic results on covering numbers.

A.3.1 Basic properties

Lemma A.3.1. Let A ⊂ B ⊂ X be subsets of a pseudometric set (X, d), and δ > 0. Then,

N (d,A, δ) ≤ N (d,B, δ/2) . (A.7)

Proof. Let b1, ..., bN be a δ/2-covering ofB. We construct a δ-covering ai ofA in the following
way. Each bi is either: a) in the set A, in which case we take ai = bi, b) at distance less than
δ/2 of a point a ∈ A, in which case we take ai = a and note that the ball centered on ai covers
at least as much as the ball centered in bi, i.e. BX,d(bi, δ/2) ⊂ BX,d(ai, δ), c) in none of these
cases and we discard it. There are less ai’s than bi’s, and the union of balls of radius δ with
centers ai covers at least as much as the balls of radius δ/2 with centers bi, and therefore the
set of ai’s is a δ-covering of B and of A.

Lemma A.3.2. Let (X, d) and (X ′, d′) be two pseudometric sets, and Y ⊂ X , Y ′ ⊂ X ′. If there
exists a surjective function f : Y → Y ′ which is L-Lipschitz with L > 0, i.e. such that

∀x, y ∈ Y, d′(f(x), f(y)) ≤ Ld(x, y),

then for all δ > 0 we have
N (d′, Y ′, δ) ≤ N (d, Y, δ/L) . (A.8)

Proof. Define δ2 = δ/L, denote N = N (d, Y, δ2), and let yi ∈ Y , i = 1, ..., N be a δ2-covering
of Y . Consider any y′ ∈ Y ′. There exists y ∈ Y such that f(y) = y′ since f is surjective. For
some 1 ≤ i ≤ N we have d(y, yi) ≤ δ2, hence we have

d′(y′, f(yi)) = d′(f(y), f(yi)) ≤ Ld(y, yi) ≤ Lδ2 = δ.

Thus {f(yi)}i=1,...,N is an δ-covering of Y ′, and we have N (d′, Y ′, δ) ≤ N .
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Lemma A.3.3. Let Y,Z be two subsets of a pseudometric set (X, d) such that the following holds:

∀z ∈ Z, ∃y ∈ Y, d(z, y) ≤ η (A.9)

where η ≥ 0.
Then for all δ > 0

N (d, Z, 2(δ + η)) ≤ N (d, Y, δ) . (A.10)

Proof. Denote N = N (d, Y, δ) and let y1, ..., yN ∈ Y be an δ-covering of Y .
For all z ∈ Z, given (A.9) there is a y ∈ Y such that d(z, y) ≤ η, and subsequently a yi

such that
d(z, yi) ≤ d(z, y) + d(y, yi) ≤ δ + η

Hence Z ⊂
⋃N
i=1 BX,d(yi, δ + η) and applying Lemma A.3.1 yields

N (d, Z, 2(δ + η)) ≤ N

(
d,

N⋃
i=1

BX,d(yi, δ + η), δ + η

)
≤ N.

Lemma A.3.4 ([CS02], Prop. 5). Let (X, ‖·‖) be a Banach space of finite dimension d. Then for
any δ > 0, x ∈ X and R > 0 we have

N
(
‖·‖ ,BX,‖·‖(x,R), δ

)
≤ max

((
4R

δ

)d
, 1

)
(A.11)

In all applications we will consider for simplicity that δ is sufficiently small so that
(

4R
δ

)d ≥ 1.

A.3.2 Extruded Secant set

The covering numbers of the extruded normalized secant set of a set Y can be controlled by
those of Y itself when η > 0. It is based on the following Lemma.

Lemma A.3.5. Let X be a vector space and consider two subset Y,Z ⊂ X and two seminorms
‖·‖a , ‖·‖b such that, for some constants 0 < A ≤ B <∞,

∀v, v′ ∈ V where V = Y or V = Z, A ‖v − v′‖b ≤ ‖v − v
′‖a (A.12)

∀y ∈ Y , z ∈ Z s.t. ‖y − z‖b > η, ‖y − z‖a ≤ B ‖y − z‖b (A.13)

Consider η > 0, and a set

S ⊂
{

y − z
‖y − z‖b

∣∣∣ y ∈ Y, z ∈ Z, ‖y − z‖b > η

}
(A.14)

For any δ > 0 we have

N (‖·‖a ,S, δ) ≤ N (‖·‖a , Y, δ
′) · N (‖·‖a , Z, δ

′) (A.15)

with δ′ = δη
4(1+B/A) .

Proof. Define the (semi)norm on Y × Z:

‖(y, z)− (y′, z′)‖a = ‖y − y′‖a + ‖z − z′‖a
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and note that we have N (‖·‖a , Y × Z, δ) ≤ N (‖·‖a , Y, δ/2)N (‖·‖a , Z, δ/2). Consider the
set:

V =

{
(y, z) ∈ Y × Z, y − z

‖y − z‖b
∈ S

}
⊂ Y × Z, (A.16)

and the function f : V → S defined by f(y, z) = y−z
‖y−z‖b

, which is by definition surjective.
Let us show that f is Lipschitz continuous for the norm ‖·‖a, and conclude with Lemma
A.3.2.

For any (y, z), (y′, z′) ∈ V , we have

‖f(y, z)− f(y′, z′)‖a =

∥∥∥∥ y − z
‖y − z‖b

− y′ − z′

‖y′ − z′‖b

∥∥∥∥
a

,

≤
∥∥∥∥ y − z
‖y − z‖b

− y′ − z′

‖y − z‖b

∥∥∥∥
a

+

∥∥∥∥ y′ − z′

‖y − z‖b
− y′ − z′

‖y′ − z′‖b

∥∥∥∥
a

.

Since ‖y − z‖b > η, the first term is bounded by

1

η

(
‖y − y′‖a + ‖z − z′‖a

)
=

1

η
‖(y, z)− (y′, z′)‖a ,

while the second term is bounded by

‖y′ − z′‖a

∣∣∣∣ 1

‖y − z‖b
− 1

‖y′ − z′‖b

∣∣∣∣ ≤‖y′ − z′‖a‖y′ − z′‖b
1

‖y − z‖b

∣∣∣ ‖y′ − z′‖b − ‖y − z‖b ∣∣∣,
(A.13)
≤ B

η

∣∣∣ ‖y′ − z′‖b − ‖y − z‖b ∣∣∣,
≤B
η

(
‖y − y′‖b + ‖z − z′‖b

)
,

(A.12)
≤ B

Aη
(‖y − y′‖a + ‖z − z′‖a) ,

=
B

Aη
‖(y, z)− (y′, z′)‖a .

Hence we have

‖f(y, z)− f(y′, z′)‖a ≤
1 +B/A

η
‖(y, z)− (y′, z′)‖a .

The function f is Lipschitz continuous with constant L = (1 +B/A)/η, and therefore for
all δ > 0:

N (‖·‖a ,S, δ)
Lem. A.3.2
≤ N (‖·‖a , V, δ/L)

Lem. A.3.1
≤ N

(
‖·‖a , Y × Z,

δ

2L

)
≤ N

(
‖·‖a , Y,

δ

4L

)
· N

(
‖·‖a , Z,

δ

4L

)
.

A.3.3 Mixture set

Let (X, ‖·‖) be a (semi)normed vector space and Y1, ..., Yk ⊂ X non-empty subsets of X . Con-
siderW ⊂ Rk.

Lemma A.3.6. For all δ > 0 the set Y (k)
W satisfies

N
(
‖·‖ , Y (k)

W , δ
)
≤ N

(
‖·‖1 ,W,

δ

2 maxl rad‖·‖ (Yl)

)
·
k∏
l=1

N

(
‖·‖ , Yl,

δ

2 rad‖·‖1 (W)

)
(A.17)



132 Appendix A. Definitions, Preliminary results

Proof. Consider δ > 0. Denote δY = τδ/ rad‖·‖1 (W) and δW = (1 − τ)δ/ rad‖·‖ (Y ). For
l = 1, ..., k denote Nl = N (‖·‖ , Yl, δY ) and let Cl = {yl,1, ..., yl,N1} be a δY -covering of Yl.
Similarly, denote NW = N (‖·‖1 ,W, δW), let CW = {ξ1, ..., ξNW} be a δW -covering ofW .

Define the set

Z =

{
k∑
l=1

ξlyl

∣∣∣ yl ∈ Cl, ξ ∈ CW} (A.18)

The cardinality of this set verifies |Z| ≤ |CW |
∏k
l=1 |Cl| = NW

∏k
l=1Nl.

Let us show that Z is a δ-covering of YW . Consider y =
∑k
l=1 ξlyl ∈ YW . For all l = 1...k,

let ȳl ∈ Cl be a element in Cl which is closest to yl, and ξ̄ ∈ CW be a vector in CW which is
closest to ξ for the norm ‖·‖1. Denote ȳ =

∑k
l=1 ξ̄lȳl ∈ Z. We have, using ‖yl − ȳl‖ ≤ δY and∥∥ξ − ξ̄∥∥

1
≤ δW ,

‖y − ȳ‖ =

∥∥∥∥∥
k∑
l=1

ξlyl −
k∑
l=1

ξ̄lȳl

∥∥∥∥∥ ,
≤

∥∥∥∥∥
k∑
l=1

ξlyl −
k∑
l=1

ξlȳl

∥∥∥∥∥+

∥∥∥∥∥
k∑
l=1

ξlȳl −
k∑
l=1

ξ̄lȳl

∥∥∥∥∥ ,
≤

k∑
l=1

|ξl| ‖yl − ȳl‖+

k∑
l=1

∣∣ξl − ξ̄l∣∣ ‖ȳl‖ , (A.19)

≤‖ξ‖1 δY +
∥∥ξ − ξ̄∥∥

1
rad‖·‖ (Y ) ≤ rad‖·‖1 (W) δY + δW rad‖·‖ (Y ) = δ,

and Z is indeed a δ-covering of Y (k)
W . Therefore, we have the bound (for all τ )

N
(
‖·‖ , Y (k)

W , δ
)
≤ |Z| ≤ NW

k∏
l=1

Nl
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Appendix B

Proof of Chapter 3

In this appendix we group the proofs of the results found in Chapter 3.

B.1 Proof of Lemma 3.3.3
Proof of Lemma 3.3.3. This is a particular case of Lemma A.3.6, which handles more general
mixture sets. We apply it with the weight setW = Sk−1 ⊂ BRk,‖·‖1(0, 1) the k−1 dimensional
simplex and for l = 1...k the sets Yl = T. We obtain:

N
(
‖·‖FR ,Sk (T) , δ

)
≤ N

(
‖·‖1 ,S

k−1,
δ

2BFR

)(
N
(
‖·‖FR ,T, δ/2

))k
We then use Lemma A.3.1 to bound the covering numbers of Sk−1 by those of BRk,‖·‖1(0, 1):

N
(
‖·‖1 ,S

k−1, δ
)
≤ N

(
‖·‖1 ,BRk,‖·‖1(0, 1), δ/2

)
,

then Lemma A.3.4 to bound the covering numbers of BRk,‖·‖1(0, 1):

N
(
‖·‖1 ,BRk,‖·‖1(0, 1), δ

)
≤ max

((
4

δ

)k
, 1

)

such that N
(
‖·‖1 ,Sk−1, δ

2BFR

)
≤ max

((
16BFR

δ

)k
, 1

)
=
(

16BFR
δ

)k
since δ ≤ 16BFR . We

obtain the desired result.

B.2 Gaussian distributions
Proof of Lemma 3.3.4. We begin by Pinsker’s inequality [FHT03]:

‖π1 − π2‖TV ≤
√

2DKL (π1||π2), (B.1)

where DKL is the Kullback-Leibler divergence. By symmetry, we get

‖π1 − π2‖2TV ≤ DKL (π1||π2) +DKL (π2||π1) (B.2)

The Kullback-Leibler divergence has a closed form expression in the case of multivariate
Gaussians [Duc07]:

DKL (π1||π2) =
1

2

[
log
|Σ2|
|Σ1|

+ tr
(
Σ−1

2 Σ1

)
− d+ (µ1 − µ2)

>
Σ−1

2 (µ1 − µ2)

]
. (B.3)
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and therefore

‖π1 − π2‖TV ≤

 tr
(
Σ−1

2 Σ1

)
+ tr

(
Σ−1

1 Σ2

)
− 2d

2
+ ‖µ1 − µ2‖2(

Σ
−1
1 +Σ

−1
2

2

)−1


1
2

≤

(
tr
(
Σ−1

2 Σ1

)
+ tr

(
Σ−1

1 Σ2

)
− 2d

2

) 1
2

+ ‖µ1 − µ2‖(
Σ

−1
1 +Σ

−1
2

2

)−1

We have

tr
(
Σ−1

2 Σ1

)
+ tr

(
Σ−1

1 Σ2

)
− 2d = tr

((
Σ−1

2 −Σ−1
1

)
(Σ1 −Σ2)

)
≤
∥∥Σ−1

2 −Σ−1
1

∥∥
F ‖Σ1 −Σ2‖F

by Cauchy-Schwartz inequality.

Proof of Lemma 3.3.5. Consider θ1,θ2 ∈ T = Dµ×Dσ . Denote σ2
min the minimum eigenvalue

of σ1 and σ2. Note that we have

∥∥∥diag (σ1)
−1 − diag (σ2)

−1
∥∥∥

F
=

 d∑
i=1

(
1

σ2
1,i

− 1

σ2
2,i

)2
 1

2

=

 d∑
i=1

(
σ2

2,i − σ2
1,i

σ2
2,iσ

2
1,i

)2
 1

2

≤ 1

σ4
min

‖σ1 − σ2‖F

By Lemma 3.1.5 we have ‖·‖FR ≤ BFR ‖·‖TV, hence by Lemma 3.3.4 we have

‖πθ1
− πθ2

‖FR ≤ BFR

√√√√(µ1 − µ2)
>

(
diag (σ1)

−1
+ diag (σ2)

−1

2

)
(µ1 − µ2)

+
BFR

σ2
min

√
2
‖diag (σ1 − σ2)‖F

≤ BFR
σmin

‖µ1 − µ2‖2 +
BFR

σ2
min

√
2
‖σ1 − σ2‖2 . (B.4)

Consider δ > 0. Define Cµ a δσmin

2BFR
-covering of Dµ = BRd,‖·‖2(0, Rµ) and Cσ a δσ2

min√
2BFR

-

covering of Dσ ⊂ BRd,‖·‖2(0, Rσ), both with respect to the Euclidean norm. Given (B.4), for
all θ ∈ Dµ ×Dσ there is θ̄ ∈ Cµ × Cσ such that ‖πθ − πθ̄‖FR ≤ δ. Thus

N
(
‖·‖FR ,T, δ

)
≤ |Cµ| · |Cσ| .

Then, we conclude with

|Cµ|
Lem. A.3.4
≤ max

((
8BFRRµ
σminδ

)d
, 1

)

and

|Cσ|
Lem. A.3.1
≤ N

(
‖·‖2 ,BRd,‖·‖2(0, Rσ),

δσ2
min

2
√

2BFR

)
Lem. A.3.4
≤ max

(8
√

2BFRRσ
σ2

minδ

)d
, 1



B.3 Stable distributions
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Proof of Lemma 3.3.8. For πθ1 , πθ2 ∈ T, denote Σj = diag (σj). Given (3.41) we have

‖πθ1
− πθ2

‖FR = sup
ω∈Rd

∣∣∣eiµ>1 ωe−( 1
2ω
>Σ1ω)

α1/2

− eiµ>2 ωe−( 1
2ω
>Σ2ω)

α2/2
∣∣∣

≤ sup
ω∈Rd, ω 6=0

e−a1(ω)
∣∣∣eiµ>1 ω − eiµ>2 ω

∣∣∣+ sup
ω∈Rd, ω 6=0

∣∣∣e−a1(ω) − e−a2(ω)
∣∣∣

where aj(ω) =
(

1
2ω
>Σjω

)αj/2 for j = 1, 2. Since ψπθ1 (0) − ψπθ2 (0) = 0 we consider only
ω 6= 0 in the following for simplicity.

By a simple Taylor expansion the first term is bounded by

sup
ω
e−a1(ω)

∣∣∣eiµ>1 ω − eiµ>2 ω
∣∣∣ ≤ sup

ω
e
−
(
σ2

min
2 ‖ω‖22

)α1/2

‖ω‖2 ‖µ1 − µ2‖2 ≤ L1 ‖µ1 − µ2‖2
(B.5)

where

L1 = sup
x>0, α∈[αmin,2]

xe
−
(
σ2

min
2 x2

)α/2

Without lost of generality, we suppose that a1 ≥ a2 and bound the second term

sup
ω

∣∣e−a1 − e−a2
∣∣ = sup

ω
e−a2(e−(a1−a2) − 1) ≤ sup

ω
e
−
(
σ2

min
2 ‖ω‖22

)α1/2

|a1 − a2|

We decompose

|a1 − a2| ≤

∣∣∣∣∣
(

1

2
ω>Σ1ω

)α1/2

−
(

1

2
ω>Σ2ω

)α1/2
∣∣∣∣∣+

∣∣∣∣∣
(

1

2
ω>Σ2ω

)α1/2

−
(

1

2
ω>Σ2ω

)α2/2
∣∣∣∣∣

and by Taylor expansion we have∣∣∣∣∣
(

1

2
ω>Σ1ω

)α1/2

−
(

1

2
ω>Σ2ω

)α1/2
∣∣∣∣∣ ≤ α1

2

(
σ2

min

2
‖ω‖22

)α1/2−1 ∣∣∣∣12ω>diag (σ1 − σ2)ω

∣∣∣∣
≤ α1

2

(
σ2

min

2
‖ω‖22

)α1/2−1
1

2
‖ω‖24 ‖σ1 − σ2‖2

≤ α1

2(σ2
min)1−α1/2

(
‖ω‖2√

2

)α1

‖σ1 − σ2‖2

since ‖·‖4 ≤ ‖·‖2. Finally (recall that we consider only ω 6= 0), again by Taylor expansion∣∣∣∣∣
(

1

2
ω>Σ2ω

)α1/2

−
(

1

2
ω>Σ2ω

)α2/2
∣∣∣∣∣ =

∣∣∣∣log
ω>Σ2ω

2

∣∣∣∣ (1

2
ω>Σ2ω

)α′/2
1

2
|α1 − α2|

≤
∣∣∣∣log

(
Rσ
2
‖ω‖24

)∣∣∣∣ (Rσ2 ‖ω‖24
)α′/2

1

2
|α1 − α2|

=

∣∣∣∣log

(√
Rσ
‖ω‖2√

2

)∣∣∣∣ (√Rσ ‖ω‖2√
2

)α′
|α1 − α2|

where α′ is between α1 and α2.
Therefore we have

sup
ω

∣∣e−a1 − e−a2
∣∣ ≤ L2 ‖σ1 − σ2‖2 + L3 |α1 − α2| (B.6)
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where

L2 = sup
x>0, α∈[αmin,2]

α

2(σ2
min)1−α/2x

αe−(xσmin)α

L3 = sup
x>0, α,α′∈[αmin,2]

∣∣∣log
(√

Rσx
)∣∣∣ (√Rσx)α′ e−(xσmin)α

which is the desired result.

Proof of Lemma 3.3.9. Consider δ > 0. Define Cµ a δ/(3L1)-covering of Dµ = BRd,‖·‖2(0, Rµ)
and Cσ a δ/(3L2)-covering ofDσ ⊂ BRd,‖·‖2(0, Rσ), both with respect to the Euclidean norm,
and Cα a δ/(3L3)-covering of [αmin, 2] for |·|. Given (B.4), for all θ ∈ Dµ × Dσ × Dα there is
θ̄ ∈ Cµ × Cσ × Cα such that ‖πθ − πθ̄‖FR ≤ δ. Thus

N
(
‖·‖FR ,T, δ

)
≤ |Cµ| · |Cσ| · |Cα| .

Then, we conclude with the same arguments that Lemma 3.3.5:

|Cµ| ≤ max

((
12RµL1

δ

)d
, 1

)
, |Cσ| ≤ max

((
12RσL2

δ

)d
, 1

)
, |Cα| ≤ max

(
3L3(2− αmin)

δ
, 1

)
.

where the last inequality comes simply from the covering of a one-dimensional interval in
R.
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Appendix C

Generic Mixture Models

In this section, we give the proofs of Section 6.2 Chapter 6 on generic mixture models with
ε-separation.

C.1 Proof of Lemma 6.2.4

To prove, Lemma 6.2.4, we will need the following intermediary results.

Lemma C.1.1. Assume h : R+ → R is differentiable and that h′(x) is C-Lipschitz. Then for any
δ, ν ≥ 0:

|h(0)− h(δ)− h(ν) + h(δ + ν)| ≤ 2δνC .

Proof. Assume without loss of generality that δ = min(δ, ν). Write h(δ)− h(0) = h′(c1)δ for
some c1 ∈ [0, δ] and h(δ + ν)− h(ν) = h′(c2)δ for some c2 ∈ [ν, δ + ν] , thus

|h(0)− h(δ)− h(ν) + h(δ + ν)| = |δ(h′(c2)− h′(c1))| ≤ Cδ |c2 − c1| ,

bounded in absolute value by 2δνC , since |c1 − c2| ≤ δ + ν ≤ 2ν.

Lemma C.1.2. Let µ = πθ1
−πθ2

and µ′ = πθ3
−πθ4

be two dipoles that are 1-separated, denote
dij = %(θi,θj). Consider K ∈ E(A,B,C, γ). Then we have:

K(d13)− f(d23)−K(d14) + f(d24) ≤ 2(B + C)d12d34 (C.1)

Proof. Assume without loss of generality that d13 = min(d13, d23, d14, d24) and write

|K(d13)−K(d23)−K(d14) +K(d24)| = |K(d13)−K(d23)−K(d14) +K(d23 + d14 − d13)|
+ |K(d24)−K(d23 + d14 − d13)| . (C.2)

To bound the first term in (C.2) in absolute value, since we assumed without loss of
generality that d13 = min(d13, d23, d14, d24), we can apply Lemma C.1.2 with h(x) := K(d13+
x), δ := d23 − d13 ≥ 0, ν := d14 − d13 ≥ 0, leading to

|K(d13)−K(d23)−K(d14) +K(d23 + d14 − d13)| ≤ 2C |(d23 − d13)(d14 − d13)| ≤ 2Cd12d34 .

To bound the second term in (C.2), put g(u) := K(
√
u), and note that g′(u) = K ′(

√
u)/2
√
u,

implying sinceK ∈ E(A,B,C, γ) that g′(u2) ≤ B/2 for u ≥ 1. Since d23 +d14−d13 ≥ d23 ≥ 1
and d24 ≥ 1, we first write

(K(d24)−K(d23 + d14 − d13)) =
(
g(d2

24)− g((d23 + d14 − d13)2)
)

≤ B
2

∣∣d2
24 − (d23 + d14 − d13)2

∣∣ .
Now, it holds

d2
24 − (d23 + d14 − d13)2 = d2

24 − d2
23 − d2

14 + d2
13 − 2(d13 − d23)(d13 − d14) ,
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the last product is bounded in absolute value by 2d12d34 , and it is easy to check by expand-
ing the squared norms d2

ij = ‖χ(θi)− χ(θj)‖22 that∣∣d2
24 − d2

23 − d2
14 + d2

13

∣∣ = 2 |〈χ(θ1)− χ(θ2), χ(θ3)− χ(θ4)〉| ≤ 2d12d34 .

Gathering everything we get the desired result.

We can now prove Lemma 6.2.4.

Proof of Lemma 6.2.4. Denote µ = ξ1πθ1 − ξ2πθ2 and µ′ = ξ3πθ3 − ξ4πθ4 two dipoles that are
1-separated, and without lost of generality suppose that ξ1 = ξ3 = 1, ξ2 = a ≤ 1, ξ4 = b ≤ 1.

Our goal is to prove that |κ(µ,µ′)|
‖µ‖κ‖µ′‖κ

is bounded.
Denote dij = %(θi,θj) and Kij = K(dij) = κ(πθi , πθj ). We have

|κ(µ, µ′)|
‖µ‖κ ‖µ′‖κ

=
|K13 − aK23 − bK14 + abK24|√
1− 2aK12 + a2

√
1− 2bK34 + b2

≤ |K13 −K23 −K14 +K24|+ |(1− a)(K23 −K24)|+ |(1− b)(K14 −K24)|+ |(a− 1)(b− 1)K24|√
(1− a)2 + 2a(1−K12)

√
(1− b)2 + 2b(1−K34)

Applying Lemma C.1.2 we get:

|K13 −K23 −K14 +K24| ≤2(B + C)d12d34

as well as

|K23 −K24| ≤ Bd34 (since d23 ≥ 1 and d24 ≥ 1)
|K14 −K24| ≤ Bd12 (since d14 ≥ 1)

|K24| ≤ A
2(1−K12) ≥ γd2

12 (since d12 ≤ 1)

2(1−K34) ≥ γd2
34 (since d34 ≤ 1)

Therefore, if we denote D = max(2(B + C), A), we have

|κ(µ, µ′)|
‖µ‖κ ‖µ′‖κ

≤ D · d12d34 + (1− a)d34 + (1− b)d12 + (1− a)(1− b)√
(1− a)2 + aγd2

12

√
(1− b)2 + bγd2

34

≤ D · d12 + 1− a√
(1− a)2 + aγd2

12

· d34 + 1− b√
(1− b)2 + bγd2

34

≤ D

γ
g(1− a, d12)g(1− b, d34)

where g is defined on [0, 1]2 by g(x, y) = x+y√
x2+(1−x)y2

. We have

g(x, y) =
x+ y√

x2 + (1− x)y2
≤
√

2 · x+ y

x+
√

(1− x)y
≤
√

2 · x+ y

x+ (1− x)y

≤
√

2

(
1 +

xy

x+ y − xy

)
≤
√

2

(
1 +

1

1/y + 1/x− 1

)
≤ 2
√

2

Gathering everything, we have

|κ(µ, µ′)|
‖µ‖κ ‖µ′‖κ

≤ 8D

γ

C.2 Admissibility, compatibility
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Proof of Lemma 6.2.7. Let µ = ξ1πθ1
− ξ2πθ2

be a dipole, with %(θ,θ′) ≤ 1. Let ` ∈ Q(D,L) be
any function.

Writing w = [ξ, ξ′]
T , K a 2 × 2 matrix such that Kij = κ(πθ1

, πθ2
) = f(d12) where

d12 = %(θ1,θ2), and L a matrix with Lij = `i`j with `i = 〈`, πθi〉. For any W ≥ 0 we have

W 2 ‖µ‖2κ − |〈`, µ〉|
2

= wT (W 2K− L)w.

Therefore it is sufficient to prove that there is W , that does not depend on the choice of
function `, such that Q = W 2K−L is a positive semi-definite matrix. It is the case if its trace
and determinant are non-negative. We have tr(Q) = 2W 2− |`1|2− |`2|2 ≥ 2(W 2−D2) since
` ∈ Q(D,L). A sufficient condition for tr(Q) ≥ 0 is therefore

W ≥ D (C.3)

Then, we have:

det(Q) =
(
W 2 − |`1|2

)(
W 2 − |`2|2

)
−
∣∣W 2f(d12)− `1`2

∣∣2
= W 4 −W 2

(
|`1|2 + |`2|2

)
+ |`1|2 |`2|2 −

(
W 2f(d12)− Re

(
`1`2

))2 − (Im (`1`2))2 .
Using |`1|2 |`2|2 = 1

4

((
|`1|2 + |`2|2

)2

−
(
|`1|2 − |`2|2

)2
)

, we get

det(Q) =

(
W 2 − 1

2

(
|`1|2 + |`2|2

))2

−
(
W 2f(d12)− Re

(
`1`2

))2
− 1

4

[(
|`1|2 − |`2|2

)2

+ 4
(
Im
(
`1`2

))2]
.

On the one hand, we have(
W 2 − 1

2

(
|`1|2 + |`2|2

))2

−
(
W 2f(d12)− Re

(
`1`2

))2
=

(
W 2 − 1

2

(
|`1|2 + |`2|2

)
−W 2f(d12) + Re

(
`1`2

))
×
(
W 2 − 1

2

(
|`1|2 + |`2|2

)
+W 2f(d12)− Re

(
`1`2

))
≥
(
W 2 (1− f(d12))− 1

2
|`1 − `2|2

)(
2W 2 − 4D2

)
≥ d2

12

(
W 2γ − L2

) (
W 2 − 2D2

)
given the hypotheses on f , ` and the fact that d12 ≤ 1. On the other hand,(
|`1|2 − |`2|2

)2

+ 4
(
Im
(
`1`2

))2
=
(
|`1|2 − |`2|2

)2

+ 4 |`1|2 |`2|2 − 4
(
Re
(
`1`2

))2
=
(
|`1|2 + |`2|2

)2

− 4
(
Re
(
`1`2

))2
=
(
|`1|2 + |`2|2 − 2Re

(
`1`2

))(
|`1|2 + |`2|2 + 2Re

(
`1`2

))
= |`1 − `2|2 |`1 + `2|2 ≤ 4D2L2d2

12.

Gathering everything, we have

det(Q) ≥ d2
12

((
W 2γ − L2

) (
W 2 − 2D2

)
−D2L2

)
≥ d2

12W
2γ
(
W 2 − L2/γ − 2D2

)
and therefore it is sufficient that

W ≥
(
L2/γ + 2D2

) 1
2 (C.4)
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C.3 Covering numbers of the secant set
Proof of Lemma 6.2.9. Recall that S ⊂ Sk,2,% (T). Consider π, π′ ∈ S. We can decompose

π − π′ =

2k∑
l=1

µl (C.5)

where:

– for l = 1, ..., k, if there is an index p ≤ k such that %(θl,θ
′
p) ≤ 1, we put µl = ξlπθl −

ξ′pπθ′p , if not we put µl = ξlπθl

– for l = k + 1, ..., 2k, if πθ′l−k is already selected as part of a dipole we put µl = 0, if not
we put µl = −ξ′l−kπθ′l−k .

Overall, the µl are 1-dipoles that are pairwise 1-separated.
Let S ⊂ {1, ..., 2k} be the set of indexes such that µl 6= 0. Since the kernel is characteristic,

for l ∈ S we have ‖µl‖κ 6= 0. We have

π − π′

‖π − π′‖κ
=

∑
l∈S µl∥∥∑
l∈S µ

∥∥
κ

=
∑
l∈S

‖µl‖κ∥∥∑
l∈S µl

∥∥
κ

· µl
‖µl‖κ

=

2k∑
l=1

αlνl

where αl = 0 for all l /∈ S and αl =
‖µl‖κ

‖∑l∈S µl‖κ
otherwise. The νl are defined:

– for l = 1, ..., k, if l ∈ S then νl = µl/ ‖µl‖κ ∈ D(ξlπθl), else νl is any distribution in
D(ξlπθl) (which has no influence since αl = 0 in that case);

– for l = k + 1, ..., 2k, if l ∈ S then νl = ξ′l−kπθ′l−k/
∥∥∥ξ′l−kπθ′l−k∥∥∥κ = πθ′l−k since ‖πθ‖κ =√

K(0) = 1, else νl is any distribution in T.

By Lemma 6.2.5 we have
∑2k
l=1 α

2
l =

∑
l∈S‖µl‖

2
κ

‖∑l∈S µl‖2κ
≤ 4 from which ‖α‖1 ≤ 2

√
2k = r which

proves the following inclusion:

S0(π,S) ⊂

{
k∑
l=1

αlµl +

k∑
l=1

αl+kπl

∣∣∣ µl ∈ D(ξlπθl), πl ∈ T, ‖α‖1 ≤ r

}
(C.6)

We then apply Lemma A.3.6 to bound the covering numbers of this 2k-mixture set, with
W = BR2k,‖·‖1 (0, r), using Lemma A.3.4 to express the covering numbers ofW and Lemma
6.2.7 to bound rad‖·‖FR

(D(·)) ≤W0 = (L2/γ+ 2D2)
1
2 and rad‖·‖FR

(T) ≤ D ≤W0 (since the
Lemma the maximum of these radii). Then using Lemma A.3.1 since the normalized secant
set is included in the mixture set we get the result.

Proof of Lemma 6.2.10. We start by decomposing D(ξπθ) = S1 ∪ S2 where

S1 =

{
ξπθ − ξ′πθ′
‖ξπθ − ξ′πθ′‖κ

∣∣∣ θ′ ∈ BT ,%(θ, 1), ξ′ ∈ [0; 1], ‖ξπθ − ξ′πθ′‖κ > 0, ξ′ ≤ ξ
}

=

{
πθ − aπθ′
‖πθ − aπθ′‖κ

∣∣∣ θ′ ∈ BT ,%(θ, 1), ‖πθ − aπθ′‖κ > 0, a ∈ [0; 1]

}
S2 =

{
ξπθ − ξ′πθ′
‖ξπθ − ξ′πθ′‖κ

∣∣∣ θ′ ∈ BT ,%(θ, 1), ξ′ ∈ [0; 1], ‖ξπθ − ξ′πθ′‖κ > 0, ξ′ ≥ ξ
}

=

{
aπθ − πθ′
‖aπθ − πθ′‖κ

∣∣∣ θ′ ∈ BT ,%(θ, 1), ‖aπθ − πθ′‖κ > 0, a ∈ [ξ; 1]

}
.
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Next, for a given η > 0 that will be defined later, we decompose each of these sets into
an extruded and non-extruded part: S1 = S>η1 ∪ S≤η1 and S2 = S>η2 ∪ S≤η2 , where

S>η1 =

{
πθ − aπθ′
‖πθ − aπθ′‖κ

∈ S1

∣∣∣ ‖πθ − aπθ′‖κ > η

}
S≤η1 =

{
πθ − aπθ′
‖πθ − aπθ′‖κ

∈ S1

∣∣∣ ‖πθ − aπθ′‖κ ≤ η}
S>η2 =

{
aπθ − πθ′
‖aπθ − πθ′‖κ

∈ S2

∣∣∣ ‖aπθ − πθ′‖κ > η

}
S≤η2 =

{
aπθ − πθ′
‖aπθ − πθ′‖κ

∈ S2

∣∣∣ ‖aπθ − πθ′‖κ ≤ η}
We then bound the covering numbers:

N
(
‖·‖FR ,D(ξπθ), δ

)
≤ N

(
‖·‖FR , S

>η
1 , δ

)
+N

(
‖·‖FR , S

>η
2 , δ

)
+N

(
‖·‖FR , S

≤η
1 ∪ S≤η2 , δ

)
.

(C.7)
We have:

– applying Lemma A.3.5 with the sets Y = {πθ} a singleton andZ =
{
aπθ′

∣∣∣ %(θ′,θ) ≤ 1, a ∈ [0; 1]
}

,
the norms ‖·‖a = ‖·‖FR and ‖·‖b = ‖·‖κ and the constants A = 1 and B = W0 ≥ 1, and
using Lemma A.3.6 with rad‖·‖FR

(T) ≤ D for the covering numbers of Z, and using
Lemma A.3.2 with the fact that ‖πθ − πθ′‖FR ≤ L%(θ,θ′), we get

N
(
‖·‖FR , S

>η
1 , δ

)
≤ max

(
16W0D

δη
, 1

)
N
(
%,BT ,%(θ, 1),

δη

16W0L

)
; (C.8)

– again, applying Lemma A.3.5 with the sets Y =
{
aπθ

∣∣∣ a ∈ [ξ; 1]
}

andZ =
{
πθ′

∣∣∣ θ′ ∈ BT ,%(θ, 1)
}

,
the same norms and constants, we get

N
(
‖·‖FR , S

>η
2 , δ

)
≤ max

(
8W0D(1− ξ)

δη
, 1

)
N
(
%,BT ,%(θ, 1),

δη

8W0L

)
≤ 1

2
N
(
‖·‖FR , S

>η
1 , δ

)
(C.9)

where we bound the covering numbers of S>η2 by that of S>η1 for simplicity.

– finally, applying the hypotheses on the set Vθ with Lemma A.3.3 (placed in a set X of
tampered distributions, assuming the random features are smooth), we get

N
(
‖·‖FR , S

≤η
1 ∪ S≤η2 , 2(δ +Mη)

)
≤ N

(
‖·‖FR ,Vθ, δ

)
,

meaning that for all δ ≤ 4Mηmax,

N
(
‖·‖FR , S

≤δ/(4M)
1 ∪ S≤δ/(4M)

2 , δ
)
≤ N

(
‖·‖FR ,Vθ,

δ

4

)
. (C.10)

Finally, combining (C.7), (C.8), (C.9) and (C.10) with η := δ
4M we get the result.

C.4 Choice of kernel
Proof of Lemma 6.2.11. Let us search for σ2

k under the form σ2
k = [2(a ln k + b)]−1.

Define K(x) = e−
x2

2σ2 , suppose that σ2 ≤ 1/3 (which will be indeed the case). An easy
function study of h(t) := (1− t/2) exp( t

2σ2 ) shows that, when σ2 ≤ 1/2, h is non-decreasing
on [0, 1] with h(0) = 1, implying that 1 − u2/2 ≥ f(u) for 0 ≤ u ≤ 1. This verifies (i) in the
definition of E(A,B,C, γ) (Def. 6.2.3), with γ = 1.

By an easy study of K ′′, K ′ is negative and increasing for u2 ≥ σ2. Thus |K ′(u)| is
decreasing for u ≥ 1 and we can set B = |K ′(1)| = exp(− 1

2σ2 )/σ2. Note that we have
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B > A = K(1) and therefore max(A, 2(C +B)) = 2(C +B).
Similarly, an easy study of K(3) shows that K ′′ is positive and decreasing for u2 ≥

3σ2. Since σ2 ≤ 1/3, K ′′ is positive decreasing for u ≥ 1 and we can set C = K ′′(1) =
1
σ2

(
1
σ2 − 1

)
exp(− 1

2σ2 ). As a result (B+C) = exp(−1/2σ2)/σ4 and the condition 2(B+C) ≤
3/(64k) reads as:

exp(− 1
2σ2 )/σ4 ≤ 3/(128k).

With the definition of σ2
k, the desired property holds if

σ4
ke

1/2σ2
k ≥ 128k/3

kaeb

4(a ln k + b)2
≥ 128k/3

ka−1

(a ln k + b)2
≥ 512e−b/3

Consider K(k) := ln
(
ka−1/(a ln k + b)2

)
= (a − 1) ln k − 2 ln(a ln k + b). A quick function

study shows that its derivative is positive if ln k ≥ 2/(a−1)−b/a. As soon as 2/(a−1)−b/a ≤
0, i.e.,

a ≥ b

b− 2
, (C.11)

the function K is therefore increasing for k ≥ 1, its minimum is at k = 1, and the desired
property holds if 1/b2 ≥ 512e−b/3, i.e.,

b− 2 ln b− ln
512

3
≥ 0.

The latter holds true for, e.g., b = 12, (C.11) holds as soon as a ≥ b/(b − 2) = 1.2, which
proves the result.
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Appendix D

Application to Mixtures of Diracs

D.1 Proof of Lemma 6.3.3
Proof of Lemma 6.3.3. Consider the embedding ϕ : T → T defined as ϕ(θ) = δθ, which is
surjective by definition of T.

Consider θ,θ′ ∈ T . We have

‖δθ − δθ′‖FR = sup
ω

2

c (ω)

∣∣∣eiω>θ − eiω>θ′
∣∣∣

≤ sup
ω

2
√
d

λ ‖ω‖2
‖ω‖2 ‖θ − θ

′‖2 = L ‖θ − θ′‖2

where L = 2
√
d/λ. Hence ϕ is L-Lipschitz.

Finally, we have

N
(
‖·‖FR ,T, δ

) Lem. A.3.2
≤ N

(
‖·‖2 , T ,

δ

L

)
Lem. A.3.4
≤ max

((
4LRc

δ

)d
, 1

)
. (D.1)

D.2 Proof of Lemma 6.3.4
Proof of Lemma 6.3.4. Consider θ ∈ T , and η ≤ 1/2. We must build a set Vθ that is close to
two sets:

S1 =

{
πθ − aπθ′
‖πθ − aπθ′‖κ

∣∣∣ θ′ ∈ T , %(θ,θ′) ≤ 1, a ∈ [0; 1], ‖πθ − aπθ′‖κ ≤ η
}

(D.2)

S2 =

{
aπθ − πθ′
‖aπθ − πθ′‖κ

∣∣∣ θ′ ∈ T , %(θ,θ′) ≤ 1, a ∈ [0; 1], ‖aπθ − πθ′‖κ ≤ η
}

(D.3)

Consider any θ1,θ2 ∈ T and a ∈ [0; 1] such that %(θ1,θ2) ≤ 1 and ‖πθ1
− aπθ2

‖κ ≤ η. We
are going to approach µ =

πθ1−aπθ2
‖πθ1−aπθ2‖κ

with some tempered distribution ν. We have

‖µ− ν‖FR = sup
ω

2

c (ω)

∣∣∣∣∣eiω>θ1 − aeiω>θ2

‖πθ1
− aπθ2

‖κ
− ψν(ω)

∣∣∣∣∣ (D.4)

where ψν is the characteristic function of ν.
Denote ∆θ = θ2 − θ1, b = 1 − a and α = ‖πθ1

− aπθ2
‖κ. Also denote ∆0 = ∆θ/α and

b0 = b/α, and finally K12 = K(%(θ1,θ2)) ≤ K(0) = 1.
With these notations, the first term in (D.4) reads

eiω>θ1 − aeiω>θ2

‖πθ1
− aπθ2

‖κ
= eiω>θ1

(
1− eiαω>∆0

α

)
+ b0e

iω>θ2
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The parameters ∆0 and b0 can be controlled: we have

α2 = 1− 2(1− b)K12 + 1 + b2 − 2b = 2(1− b)(1−K12) + b2

meaning that b2 ≤ α2 and thus b0 ≤ 1. Furthermore we have:

‖∆0‖22 =
λ2%2(θ1,θ2)

α2σ2
k

K∈E(A,B,C,1)

≤ λ2

σ2
k

· 2(1−K12)

2(1− b)(1−K12) + b2

hence either 1−K12 = 0 and ‖∆0‖ = 0, either

‖∆0‖22 ≤
λ2

(1− b)σ2
k

≤ 2λ2

σ2
k

= r2
∆. (D.5)

using the fact that −b ≥ −η ≥ −1/2.
By Taylor expansion, we have∣∣∣∣∣1− eiαω>∆0

α
+ iω>∆0

∣∣∣∣∣ ≤ sup
α∈[0, η]

∣∣∣∣ ∂2

∂2α
(1− e−iαω>∆0)

∣∣∣∣ α2 =
∣∣ω>∆0

∣∣2 α
2
≤ ‖ω‖22

λ2η

σ2
k

(D.6)

since α ≤ η.
Hence, if we define ν = −δ′θ1,∆0

+ b0δθ2
a tampered distribution where δ′θ1,∆0

is the
derivative of the Dirac function at position θ1 along direction ∆0, i.e. such that ψν(ω) =

−iω>∆0e
iω>θ1 + b0e

iω>θ2 , we have

‖µ− ν‖FR = sup
ω

2

c (ω)

∣∣∣∣∣1− eiαω>∆0

α
+ iω>∆0

∣∣∣∣∣ ≤ 2
√
d(d+ 2)

‖ω‖22 λ2

‖ω‖22 λ2η

σ2
k

=
2η
√
d(d+ 2)

σ2
k

= Mη.

Using this property with θ1 = θ and θ2 = θ′, for all µ ∈ S1 there is ν in

V1 =
{
−δ′θ,∆ + bδθ′

∣∣∣ θ′ ∈ BT ,%(θ, 1), ∆ ∈ BRd,‖·‖2(0, r∆), b ∈ [0; 1]
}

such that ‖µ− ν‖FR ≤ Mη. Similarly, by taking θ1 = θ′ and θ2 = θ, by symmetry for all
µ ∈ S2 there is ν in

V2 =
{
δ′θ′,∆ − bδθ

∣∣∣ θ′ ∈ BT ,%(θ, 1), ∆ ∈ BRd,‖·‖2(0, r∆), b ∈ [0; 1]
}

such that ‖µ− ν‖FR ≤Mη. Hence we define Vθ = V1 ∪ V2 the set of tempered distributions
that satisfies the desired property, and must now bound its covering numbers.

Consider the product space X = BRd,‖·‖2(0, r∆)× BT ,%(θ, 1)× [0; 1].
Let us begin with V1. Given x = (∆,θ′, b) ∈ X , define the function ϕ : X 7→ V1 by

ϕ(x) = −δ′∆,θ + bδθ′ .
For x1 = (∆1,θ1, b1) and x2 = (∆2,θ2, b2) in X , we have

‖ϕ(x1)− ϕ(x2)‖FR =
∥∥−δ′∆1,θ + b1δθ1

+ δ′∆2,θ − b2δθ2

∥∥
FR

≤
∥∥δ′∆1,θ − δ

′
∆2,θ

∥∥
FR

+ ‖b1δθ1 − b1δθ2‖FR + ‖b1δθ2 − b2δθ2‖FR

We bound each of those terms. First,∥∥δ′∆1,θ − δ
′
∆2,θ

∥∥
FR

= sup
ω

2

c (ω)

∣∣ω>(∆1 −∆2)
∣∣

≤ sup
ω

2
√
d ‖ω‖2

λ ‖ω‖2
‖∆1 −∆2‖2 = L1 ‖∆1 −∆2‖2
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where L1 = 2
√
d/λ. Then we have

‖b1δθ1
− b1δθ2

‖FR ≤ ‖δθ1
− δθ2

‖FR = sup
ω

2

c (ω)

∣∣∣eiω>θ1 − eiω>θ2

∣∣∣
≤ sup

ω

2
√
d ‖ω‖2

λ ‖ω‖2
‖θ1 − θ2‖2 = L2%(θ1,θ2).

where L2 = 2
√
d

σk
. Finally, we have

‖b1δθ2 − b2δθ2‖FR ≤ ‖δθ2‖FR |b1 − b2| ≤ L3 |b1 − b2|

with L3 =
√

2.
Therefore if we denote C1 a δ

3L1
-covering ofBRd,‖·‖2(0, r∆), C2 a δ

3L2
-covering ofBT ,%(θ, 1)

and C3 a δ
3L3

-covering of [0; 1], for any x ∈ X there exists an element x̄ ∈ C1 × C2 × C3 such
that ‖ϕ(x)− ϕ(x′)‖FR ≤ δ. Thus we have

N
(
‖·‖FR ,V1, δ

)
≤ |C1| · |C2| · |C3|

≤ N
(
‖·‖2 ,BRd,‖·‖2(0, r∆),

δ

3L1

)
· N

(
%,BT ,%(θ, 1),

δ

3L2

)
· N

(
‖·‖1 , [0; 1],

δ

3L3

)
≤ max

((
12r∆L1

δ

)d
, 1

)
·max

((
12L2

δ

)d
, 1

)
·max

(
3L3

δ
, 1

)
All the max(·, 1) are resolved since 12r∆L1, 12L2, 3L3 are all greater than 1, and we assumed
δ ≤ 1 for simplicity.

We now turn to V2. Given x = (∆,θ′, b) ∈ X , define the function ϕ : X 7→ V2 by
ϕ(x) = δ′∆,θ′ − bδθ.

For x1 = (∆1,θ1, b1) and x2 = (∆2,θ2, b2) in X , we have

‖ϕ(x1)− ϕ(x2)‖FR =
∥∥δ′∆1,θ1

− b1δθ − δ′∆2,θ2
+ b2δθ

∥∥
FR

≤
∥∥δ′∆1,θ1

− δ′∆2,θ1

∥∥
FR

+
∥∥δ′∆2,θ1

− δ′∆2,θ2

∥∥
FR

+ ‖b1δθ − b2δθ‖FR

Similar to the previous case, we bound each of those terms:∥∥δ′∆1,θ1
− δ′∆2,θ1

∥∥
FR
≤ L1 ‖∆1 −∆2‖2 .

Then ∥∥δ′∆2,θ1
− δ′∆2,θ2

∥∥
FR

= sup
ω

2

c (ω)

∣∣ω>∆2

∣∣ ∣∣∣eiω>θ1 − eiω>θ2

∣∣∣
≤ sup

ω

2
√
d(d+ 2)

λ2 ‖ω‖22
‖ω‖22 ‖∆‖2 ‖θ1 − θ2‖2

≤ L4%(θ1,θ2)

where L4 =
2r∆
√
d(d+2)

λσk
=

2
√

2d(d+2)

σ2
k

. Finally,

‖b1δθ − b2δθ‖FR ≤ ‖δθ‖FR |b1 − b2| ≤ L3 |b1 − b2| .
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Therefore if we denote C1 a δ
3L1

-covering ofBRd,‖·‖2(0, r∆), C2 a δ
3L4

-covering ofBT ,%(θ, 1)

and C3 a δ
3L3

-covering of [0; 1], similar to the previous case we have

N
(
‖·‖FR ,V1, δ

)
≤ |C1| · |C2| · |C3|

≤ N
(
‖·‖2 ,BRd,‖·‖2(0, r∆),

δ

3L1

)
· N

(
%,BT ,%(θ, 1),

δ

3L4

)
· N

(
‖·‖1 , [0; 1],

δ

3L3

)
≤ max

((
12r∆L1

δ

)d
, 1

)
·max

((
12L4

δ

)d
, 1

)
·max

(
3L3

δ
, 1

)
Since L4 > L2, this bound is greater than the bound for the covering numbers of V1, and

we bound the covering numbers of Vθ by twice that of V2 to obtain the final result.

D.3 Proof of Theorem 6.3.5
Proof. Applying all the Lemmas of Section 6.3.2, all the hypotheses necessary to apply The-
orem 6.2.12 hold. We obtain the following constants:

– Compatibility constant: given in equation (6.45);

– Admissibility constant: we have

W0 = 2

√
d

σ2
k

+ 1 = O
(√

d log k
)

and the admissibility constant

WΛ = 4

√
2k

(
d

σ2
k

+ 1

)
= O

(√
kd log k

)
– Finally, according to Lemma 6.3.4 there exist tangent sets Vθ such that their cover-

ing numbers have a common bound independent of θ. Combining this bound with
Lemma 6.3.3 and equation (6.30), we get:

N = N
(
‖·‖FR ,S

0(·,S),
1

4

)
≤
[
A1A

d
2 +A3A

d
4

]k
with

A1 = 3 · 232
√

2k2W 3
0

√
d(d+ 2)σ−2

k

A2 = 229kd
√

2k(d+ 2)σ−2
k

Rc

ελ

A3 = 3 · 223k
√
kW 2

0

A4 = 32230d
√

2kd(d+ 2)σ−2
k

Rc

ελ

and the sketch size (6.47) indeed scales as

m ≥ cW 2
Λ log

(
N

ρ

)
= O

(
k2d2polylog

(
k, d,

Rc

ε
,

1

ρ

))

D.4 Proof of Lemma 6.3.6

We will use the two following lemmas.
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Lemma D.4.1. Define F(L) the family of functions f : Z 7→ C that are L-Lipschitz for some
L > 0 (with respect to the norm ‖·‖2), and F ⊂ F(L). For any probability distribution π? and
any set of centroids h = {c1, . . . , ck} ⊂ Rd, there exists a weight vector ξ ∈ Sk−1 such that∥∥∥∥∥π? −

k∑
l=1

ξlδcl

∥∥∥∥∥
F

≤ L (Rπ?(h))
1
b (D.7)

where b = 2 for k-means and b = 1 for k-medians.

Proof. It is well-known ( see, e.g., [Sri+10]) that the Wasserstein distance between two dis-
tributions can be defined in terms of transport (so-called “earth mover’s distance”) but also
equivalently as

‖π − π′‖Wasserstein = ‖π − π′‖F(1) = sup
f∈F(1)

|〈π − π′, f〉| = 1

L
‖π − π′‖F(L) ,

Let π? be a probability distribution and h = {c1, . . . , ck} ⊂ Rd be a set of centroids. De-
note Vl :=

{
z ∈ Z | l = arg minp ‖z− cp‖2

}
the Voronoi cell associated to ci (ties are breaked

arbitrarily to ensure this constitutes a partition of Z), define ξl = π?(Vl). Then by using
the transport characterization of the Wasserstein distance, considering the transport plan
consisting in sending all points of Vl to cl, we conclude∥∥∥∥∥π −

k∑
l=1

ξlδcl

∥∥∥∥∥
Wasserstein

≤
k∑
l=1

ξlEz∼π? [‖z− cl‖2 |z ∈ Vl] = Ez∼π? min
l
‖z− cl‖ = Rk−med.

π? (h) .

This yields the result for k-medians. The result for k-means is an immediate consequence of
Jensen’s inequality:

Rk−med.
π? (h) = Ez∼π? min

l
‖z− cl‖2 ≤

(
Ez∼π? min

l
‖z− cl‖22

) 1
2

=

√
Rk−means
π? (h).

Lemma D.4.2. Consider F ⊂ F(L). Consider any mixture of Diracs πΘ,ξ =
∑k
l=1 ξlδθl .

Then, there exists a function σ : (1 : k) 7→ (1 : k) such that: for all σ(l) 6= σ(p) we have∥∥θσ(l) − θσ(p)

∥∥
2
≥ ε and ∥∥∥∥∥

k∑
l=1

ξlδθl −
k∑
l=1

ξlδθσ(l)

∥∥∥∥∥
F

≤ Lε (D.8)

In other words, we transform the original sum of Diracs by suppressing some of them and repeating
others (which just results into Diracs with higher weight), such that all remaining Diracs are ε-
separated and the resulting mixture is a good approximation of the first one.

Proof. Define Θ′ = {θi1 , . . . ,θis} a subset of Θ of maximal size s ≤ k such that the θil are
ε-separated. Then, for all θl ∈ Θ, either it is included in Θ′, either it is ε-close to a point in
Θ′, otherwise it could have been included in Θ′ while retaining ε-separation, and Θ′ would
not be maximal. Then for all l ∈ (1 : k), if θl is included in Θ′ we define σ(l) = l, if not we
pick one θil ∈ Θ′ such that ‖θl − θil‖ ≤ ε and define σ(l) = il. At the end of the day, we
have either θl = θσ(l), either

∥∥θl − θσ(l)

∥∥
2
≤ ε, and therefore∥∥∥∥∥

k∑
l=1

ξlδθl −
k∑
l=1

ξlδθσ(l)

∥∥∥∥∥
F

≤
k∑
l=1

ξl sup
f∈F

∣∣f(θl)− f(θσ(l))
∣∣ ≤ L k∑

l=1

ξl
∥∥θl − θσ(l)

∥∥
2
≤ Lε
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Proof of Lemma 6.3.6. For either k-means or k-medians denote h? = {c?1, . . . , c?k} = arg minh∈HRπ?(h).
Using Lemma D.4.1, there is a set of weights ξ such that for F ⊂ F(L), denoting π =∑k
l=1 ξlδc?l :

‖π? − π‖F ≤ L (Rπ?(h))
1
b

Now, if the c?l are ε-separated (i.e. π is in the model), we define π = πS ∈ S and ε′ = 0.
Otherwise, using Lemma D.4.2, we can define π′ a k′-mixture (with k′ ≤ k) of ε-separated
Diracs such that ‖π − π′‖F ≤ Lε. We fill π′ with dummy Diracs ε-separated from the others
with weight 0 to obtain πS = π′ ∈ S (technically, assuming the hypothesis class is suffi-
ciently large to contain such dummy Diracs, which we suppose for simplicity), and in that
case ε′ = ε. In both cases we have

‖π? − πS‖F ≤ ‖π
? − π‖F + ‖π − πS‖F ≤ L

(
(Rπ?(h))

1
b + ε′

)
We now have to prove that ‖·‖L(H) +4WL ‖·‖FR ≤ ‖·‖F(L) for some L, i.e. that both L(H)

and FR are families of Lipschitz functions.
In the proof of Lemma 6.3.2 we showed that the features φω(z) are 2

√
d

λ -Lipschitz with
respect to the Euclidean norm.

Finally, in the proof of Lemma 6.3.1 we showed that in the k-medians case the loss func-
tions are 1-Lipschitz, while in the k-means case the loss functions are 4Rc-Lipschitz on a
Rc-bounded domain, which is why we have to restrain the sample space in this case. This
concludes the proof.
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Appendix E

Application to Gaussian mixture
models

E.1 Proof of Lemma 6.4.1
Proof of Lemma 6.4.1. We use a property from [Ahr05] on product of Gaussians:∫

π1(z)π2(z)dz =
1

(2π)d/2 |Σ1 + Σ2|
1
2

exp

(
−1

2
‖µ1 − µ2‖2Σ1+Σ2

)
(E.1)

We can write the kernel

κ(z, z′) = exp

(
−1

2
‖z− z′‖2Σκ

)
= (2π)d/2 |Σκ|

1
2 πκ(z− z′)

where πκ = N (0,Σκ). Hence we have

κ(π1, π2) =(2π)d/2 |Σκ|
1
2

∫
z

π1(z)

(∫
z′
π2(z′)πκ(z− z′)dz′

)
dz

=(2π)d/2 |Σκ|
1
2

∫
z

π1(z)π2,κ(z)dz,

by convolution, where π2,κ = N (µ2,Σ2 + Σκ). Using (E.1) we get the desired result.

E.2 Proof of Lemma 6.4.2
Proof of Lemma 6.4.2. Consider h = ((µ1, . . . ,µk) , ξ) ∈ H, recall that `(z, h) = − log πh(z)

where πh =
∑k
l=1 ξlN (µl,Σ). For all θ ∈ T , we have

Ez∼πθ`(z, h) = DKL (πθ||πh) + H (πθ) ≥ H (πθ) =
1

2

[
log |2πΣ|+ Ez∼πθ ‖z− θ‖

2
Σ

]
=

1

2

[
log |2πΣ|+ Ez∼N (0,I) ‖z‖

2
2

]
=

1

2
[log |2πΣ|+ d] =

1

2
log |2πeΣ|

where e = e1. Then by concavity of the logarithm we have

Ez∼πθ`(z, h) = Ez∼πθ

[
− log

k∑
l=1

ξlπµl(z)

]
≤

k∑
l=1

ξlEz∼πθ [− log πµl(z)]

=

k∑
l=1

ξlEz∼πθ [− log πµl(z)] =

k∑
l=1

ξl (DKL (πθ||πµl) + H (πθ))

Lem. 3.3.4
=

k∑
l=1

ξl
1

2
‖θ − µl‖2Σ + H (πθ) ≤ 2R2

µ +
1

2
log |2πeΣ|
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Hence
|Ez∼πθ`(z, h)| ≤ 2R2

µ +
1

2
|log |2πeΣ||

For the Lipschitz part, we write f(θ) = Ez∼πθ`(z, h) and

∇θf(θ) =∇θEz∼πθ`(z, h) = ∇θEz∼π0
`(z + θ, h) = Ez∼π0

∇θ`(z + θ, h)

We have

∇`(z, h) = −∇ log πh(z) = −∇πh(z)

πh(z)
= −

∑k
l=1 ξl∇πµl(z)

πh(z)

= −
k∑
l=1

ξlπµl(z)

πh(z)
· ∇πµl(z)

πµl(z)
=

k∑
l=1

βl(z)∇ [− log πµl(z)]

where βl(z) =
ξlπµl (z)

πh(z) ≥ 0,
∑k
l=1 βl(z) = 1. Since ∇ [− log πµ(z)] = Σ−1(z− µl) we have

∇`(z, h) = Σ−1

(
z−

k∑
l=1

βl(z)µl

)

and thus

∇θf(θ) = Ez∼π0
Σ−1

(
z + θ −

k∑
l=1

βl(z + θ)µl

)
= Σ−1

(
θ −

k∑
l=1

γlµl

)

where γl = Ez∼π0
βl(z + θ) ≥ 0,

∑k
l=1 γl = 1. Given θ,θ′ ∈ T we have

|f(θ)− f(θ′)| ≤ sup
θ′′∈T

|〈∇θf(θ′′),θ − θ′〉| ≤ sup
θ′′∈T

‖∇θf(θ′′)‖Σ−1 ‖θ − θ′‖Σ

≤

∥∥∥∥∥Σ−1

(
θ −

k∑
l=1

γlµl

)∥∥∥∥∥
Σ−1

‖θ − θ′‖Σ

=

∥∥∥∥∥θ −
k∑
l=1

γlµl

∥∥∥∥∥
Σ

ελ%(θ,θ′) ≤ 2Rµελ%(θ,θ′)

E.3 Proof of Lemma 6.4.5
Proof of Lemma 6.4.5. The proof is extremely similar to the Dirac case, with different con-
stants and bounds.

Consider θ ∈ T , and η ≤ 1/2. As in the Dirac case we must build a set Vθ that is close to
two sets:

S1 =

{
πθ − aπθ′
‖πθ − aπθ′‖κ

∣∣∣ θ′ ∈ T , %(θ,θ′) ≤ 1, a ∈ [0; 1], ‖πθ − aπθ′‖κ ≤ η
}

(E.2)

S2 =

{
aπθ − πθ′
‖aπθ − πθ′‖κ

∣∣∣ θ′ ∈ T , %(θ,θ′) ≤ 1, a ∈ [0; 1], ‖aπθ − πθ′‖κ ≤ η
}

(E.3)

Consider any θ1,θ2 ∈ T and a ∈ [0; 1] such that %(θ1,θ2) ≤ 1 and ‖πθ1 − aπθ2‖κ ≤ η. We
are going to approach µ =

πθ1−aπθ2
‖πθ1−aπθ2‖κ

with some tampered distribution ν. We have

‖µ− ν‖FR = sup
ω
Cλ

∣∣∣∣∣eiω>θ1 − aeiω>θ2

‖πθ1
− aπθ2

‖κ
· e− 1

2ω
>Σω − ψν(ω)

∣∣∣∣∣ (E.4)

where ψν is the characteristic function of ν.
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Denote ∆θ = θ2 − θ1, b = 1 − a and α = ‖πθ1
− aπθ2

‖κ. Also denote ∆0 = ∆θ/α and
b0 = b/α, and finally f12 = f(%(θ1,θ2)).

With these notations, the first term in (E.4) reads

eiω>θ1 − aeiω>θ2

‖πθ1
− aπθ2

‖κ
· e− 1

2ω
>Σω =

[
eiω>θ1

(
1− eiαω>∆0

α

)
+ b0e

iω>θ2

]
e−

1
2ω
>Σω

With the same computations than the proof of Lemma 6.3.4, it holds that b0 ≤ 1 and
‖∆0‖Σ ≤ r∆ with

r∆ = 2

√
1 + λ2/2

σ2
k

(E.5)

And by Taylor expansion∣∣∣∣∣1− eiαω>∆0

α
+ iω>∆0

∣∣∣∣∣ ≤ ∣∣ω>∆0

∣∣2 α
2
≤ ‖ω‖2Σ−1 ‖∆0‖2Σ

α

2
≤ ‖ω‖2Σ−1 η

2 + λ2

σ2
k

.

Hence, if we define ν = −π′θ1,∆0
+ b0πθ2

where π′θ1,∆0
is the derivative of the Gaus-

sian distribution with mean θ1 and covariance Σ along direction ∆0, i.e. such that ψν(ω) =(
−iω>∆0e

iω>θ1 + b0e
iω>θ2

)
e−

1
2ωΣω , we have

‖µ− ν‖FR = sup
ω
Cλ

∣∣∣∣∣1− eiαω>∆0

α
+ iω>∆0

∣∣∣∣∣ e− 1
2ω
>Σω ≤ Cλ(2 + λ2)η

σ2
k

sup
ω
‖ω‖2Σ−1 e

− 1
2‖ω‖

2

Σ−1

≤ Cλ(2 + λ2)η

σ2
k

sup
R∈R+

Re−
1
2R =

2Cλ(2 + λ2)η

eσ2
k

= Mη .

by a quick study of the function R 7→ Re−
1
2R, where e = e1.

Using this property with θ1 = θ and θ2 = θ, for all µ ∈ S1 there is ν in

V1 =
{
−π′θ,∆ + bπθ′

∣∣∣ θ′ ∈ BT ,%(θ, 1), ∆ ∈ BRd,‖·‖Σ(0, r∆), b ∈ [0; 1]
}

such that ‖µ− ν‖FR ≤Mη. Similarly, by symmetry for all µ ∈ S2 there is ν in

V2 =
{
π′θ′,∆ − bπθ

∣∣∣ θ′ ∈ BT ,%(θ, 1), ∆ ∈ BRd,‖·‖Σ(0, r∆), b ∈ [0; 1]
}

such that ‖µ− ν‖FR ≤Mη. Hence we define Vθ = V1 ∪ V2 the set of tampered distributions
satisfies the desired property, and must now bound its covering numbers.

Consider the product space X = BRd,‖·‖Σ(0, r∆)× BT ,%(θ, 1)× [0; 1].
Let us begin with V1. Given x = (∆,θ′, b) ∈ X , define the function ϕ : X 7→ V1 by

ϕ(x) = −π′∆,θ + bπθ′ . For x1 = (∆1,θ1, b1) and x2 = (∆2,θ2, b2) in X , we have

‖ϕ(x1)− ϕ(x2)‖FR =
∥∥−π′∆1,θ + b1πθ1

+ π′∆2,θ − b2πθ2

∥∥
FR

≤
∥∥π′∆1,θ − π

′
∆2,θ

∥∥
FR

+ ‖b1πθ1
− b1πθ2

‖FR + ‖b1πθ2
− b2πθ2

‖FR

We bound each of those terms. First,∥∥π′∆1,θ − π
′
∆2,θ

∥∥
FR

= sup
ω
Cλ
∣∣ω>(∆1 −∆2)

∣∣ e− 1
2ω
>Σω

≤ Cλ ‖∆1 −∆2‖Σ sup
ω
‖ω‖Σ−1 e

− 1
2‖ω‖

2

Σ−1 = L1 ‖∆1 −∆2‖Σ
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where L1 = Cλ/
√
e, since supR∈R+

Re−
1
2R

2

= e−
1
2 . Then we have

‖b1πθ1
− b1πθ2

‖FR ≤ ‖πθ1
− πθ2

‖FR = sup
ω
Cλ

∣∣∣eiω>θ1 − eiω>θ2

∣∣∣ e− 1
2ω
>Σω

≤ Cλ ‖θ1 − θ2‖Σ sup
ω
‖ω‖Σ−1 e

− 1
2‖ω‖

2

Σ−1 ≤ L2%(θ1,θ2)

with L2 = Cλσ
−1
k

√
2 + λ2. Finally,

‖b1πθ2 − b2πθ2‖FR ≤ ‖πθ2‖FR |b1 − b2| ≤ Cλ |b1 − b2| .

Therefore if we denote C1 a δ
3L1

-covering of BRd,‖·‖Σ(0, r∆) for the norm ‖·‖Σ and C2 a
δ

3L2
-covering of BT ,%(θ, 1) for the metric % and C3 a δ

3Cλ
-covering of [0; 1], for any x ∈ X

there exists an element x̄ ∈ C1 × C2 × C3 such that ‖ϕ(x)− ϕ(x′)‖FR ≤ δ. Thus we have

N
(
‖·‖FR ,V1, δ

)
≤ |C1| · |C2| · |C3|

≤ N
(
‖·‖Σ ,BRd,‖·‖Σ(0, r∆),

δ

3L1

)
· N

(
%,BT ,%(θ, 1),

δ

3L2

)
· N

(
‖·‖1 , [0; 1],

δ

3Cλ

)
≤ max

((
12r∆L1

δ

)d
, 1

)
·max

((
12L2

δ

)d
, 1

)
·max

(
3Cλ
δ
, 1

)

Then the max(·, 1) are resolved by using the fact that δ ≤ 1.
We now turn to V2. Given x = (∆,θ′, b) ∈ X , define the function ϕ : X 7→ V2 by

ϕ(x) = π′∆,θ′ − bπθ. For x1 = (∆1,θ1, b1) and x2 = (∆2,θ2, b2) in X , we have

‖ϕ(x1)− ϕ(x2)‖FR =
∥∥π′∆1,θ1

− b1πθ − π′∆2,θ2
+ b2πθ

∥∥
FR

≤
∥∥π′∆1,θ1

− π′∆2,θ1

∥∥
FR

+
∥∥π′∆2,θ1

− π′∆2,θ2

∥∥
FR

+ ‖b1πθ − b2πθ‖FR

Again, we bound each of those terms. Similar to the previous case, we have∥∥π′∆1,θ1
− π′∆2,θ1

∥∥
FR
≤ L1 ‖∆1 −∆2‖Σ .

Then ∥∥π′∆2,θ1
− π′∆2,θ2

∥∥
FR

= sup
ω
Cλ
∣∣ω>∆2

∣∣ ∣∣∣eiω>θ1 − eiω>θ2

∣∣∣ e− 1
2ω
>Σω

≤ sup
ω
Cλ
∣∣ω>∆2

∣∣ ∣∣ω>(θ1 − θ2)
∣∣ e− 1

2‖ω‖
2

Σ−1

≤ sup
ω
Cλ ‖ω‖2Σ−1 ‖∆2‖Σ ‖θ1 − θ2‖Σ e

− 1
2‖ω‖

2

Σ−1

≤ Cr∆ ‖θ1 − θ1‖Σ sup
R∈R+

Re−
1
2R = L3%(θ1,θ2)

where L3 = 2Cλr∆
√

2+λ2

eσk
= 2
√

2Cλ(2+λ2)
eσ2
k

. And finally,

‖b1πθ − b2πθ‖FR ≤ ‖πθ‖FR |b1 − b2| ≤ Cλ |b1 − b2| .
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Therefore if we denote C1 a δ
3L1

-covering ofBRd,‖·‖Σ(0, r∆), C2 a δ
3L3

-covering ofBT ,%(θ, 1)

and C3 a δ
3Cλ

-covering of [0, 1], similar to the previous case we have

N
(
‖·‖FR ,V1, δ

)
≤ |C1| · |C2| · |C3|

≤ N
(
‖·‖Σ ,BRd,‖·‖Σ(0, r∆),

δ

3L1

)
· N

(
%,BT ,%(θ, 1),

δ

3L3

)
· N

(
‖·‖1 , [0, 1],

δ

3Cλ

)
≤ max

((
12r∆L1

δ

)d
, 1

)
·max

((
12L3

δ

)d
, 1

)
·max

(
3Cλ
δ
, 1

)
Since we have L3 ≥ L2, we bound the covering numbers of S1 by those of S2 and obtain

the desired expression.

E.4 Proof of Theorem 6.4.6
Proof of Theorem 6.4.6. Applying all the Lemmas of Section 6.4.2, all the hypotheses neces-
sary to apply Theorem 6.2.12 hold. We obtain the following constants:

– Compatibility constant: given in equation (6.66);

– Admissibility constant: we have

W0 = Cλ

(
2 +

2 + λ2

σ2
k

) 1
2

= O
(
e

d
2λ2

√
log(k)(1 + λ2)

)
and the admissibility constant

WΛ = 4Cλ
√
k

(
1 +

1 + λ2/2

σ2
k

) 1
2

= O
(
e

d
2λ2

√
k log(k)(1 + λ2)

)
– Finally, according to Lemma 6.4.5 there exist tangent sets Vθ such that their cover-

ing numbers have a common bound independent of θ. Combining this bound with
Lemma 6.4.4 and equation (6.30), we get:

N = N
(
‖·‖FR ,S

0(·,S),
1

4

)
≤
[
A1A

d
2 +A3A

d
4

]k
with

A1 = 3 · 231k2W 3
0C

2
λ

2 + λ2

eσ2
k

A2 = 227e−1k
√

2kC3
λW0Rµ

(
2 + λ2

σ2
k

) 3
2

A3 = 3 · 222k
√

2kCλW
2
0

A4 = 32232
√

2kC3
λRµ

(
2 + λ2

eσ2
k

) 3
2

and the sketch size (6.68) indeed scales as

m ≥ cW 2
Λ log

(
N

ρ

)
= O

(
e
d
λ2 (1 + λ2)k2d log(Cλ)polylog

(
k, d,Rµ,

1

ρ

))
= O

(
e
d
λ2 (1 + λ2)k2d

d

λ2
polylog

(
k, d,Rµ,

1

ρ

))
= O

(
e
d
λ2 k2d2polylog

(
k, d,Rµ,

1

ρ

))
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E.5 Kernel for rotated 2-dimensional Gaussians

In this last section we prove the expression of the mean kernel 7.1 given in the outlooks of
the thesis in Chapter 7. in future investigations we will aim at proving that this mean kernel
satisfies (or not) the conditions of Chapter 6.

Recall that we consider 2-dimensional gaussians with “flat” rotated covariance, defined as
πθ = N

(
0,Rθdiag

(
[σ2

1 , σ
2
2 ]
)
R>θ
)

where

Rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
such that

Σθ = RθΣR
>
θ =

[
σ2

1C
2
θ + σ2

2S
2
θ (σ2

1 − σ2
2)CθSθ

(σ2
1 − σ2

2)CθSθ σ2
1S

2
θ + σ2

2C
2
θ

]
(E.6)

where Cθ = cos(θ) and Sθ = sin(θ). We consider a Gaussian kernel κ(z, z′) = e−
1
2‖z−z′‖2

2 .
In that case, using Lemma 6.4.1 the mean kernel expresses κ(πθ, πθ′) = 1/ |I + Σθ + Σθ|

1
2 .

Denote C = cos(θ) and C ′ = cos(θ′) (resp. S = sin(θ) and S′ = sin(θ′)), C+ = cos(θ + θ′) (resp.
S+ = sin(θ+θ′)) andC− = cos(θ−θ′). Simple trigonometry yields thatC2+(C ′)2 = 1+C+C−,
S2 + (S′)2 = 1− C+C− and SC + S′C ′ = S+C−. From here we can derive

|I + Σθ + Σθ′ | =
(

1 + σ2
1(C2 + (C ′)2) + σ2

2(S2 + (S′)2)
)(

1 + σ2
1(S2 + (S′)2) + σ2

2(C2 + (C ′)2)
)

− (σ2
1 − σ2

2)2(SC ′ + S′C)2

=
(

1 + σ2
1 + σ2

2 + (σ2
1 − σ2

2)C+C−

)(
1 + σ2

1 + σ2
2 − (σ2

1 − σ2
2)C+C−

)
− (σ2

1 − σ2
2)2S2

+C
2
−

=(1 + σ2
1 + σ2

2)2 − (σ2
1 − σ2

2)2(C2
+C

2
− + S2

+C
2
−)

=(1 + σ2
1 + σ2

2)2 − (σ2
1 − σ2

2)2C2
−

=(1 + σ2
1 + σ2

2)2 − (σ2
1 − σ2

2)2 + (σ2
1 − σ2

2)2S2
−

which is the desired result.
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