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Spécialité : Mécanique des Fluides
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Abstract - Modelling of Transport in Homogeneous Turbulence

Modelling is essential to understand and reproduce the dominant physical mechanisms occurring in

natural turbulent flows such as atmospheric and oceanic ones. Indeed, the dynamics of geophysical flows

results of multiple complex processes interacting with each others, at various scales, intensities, and

on different characteristic times. The fine description of such flows is currently out of reach of direct

numerical simulations, notably because of Reynolds numbers limitations.

Consequently, we address in this thesis the modelling of homogeneous turbulence, using the spectral

formalism of the eddy-damped quasi-normal Markovian (EDQNM) approximation. This first allows

us to obtain results rapidly in terms of computational resources at very large Reynolds numbers, and

thus to investigate separately some of the fundamental mechanisms at stake in natural turbulent flows,

namely shear, mean temperature gradient, stratification, helicity, and combinations of these processes.

In this framework, a two-step approach is considered: first, EDQNM is used to close the non-linear terms

in the second-order moments equations, and anisotropy is then modelled through spherically-averaged

tensors. This methodology is applied to the various configurations mentioned above, permits to propose

new theoretical results, and to assess them numerically at large Reynolds numbers. Among the most

important findings, we focused on (i) the prediction of the decay and growth laws of crucial one-point

statistics such as the kinetic energy, the scalar variance, and helicity; (ii) the determination of spectral

scalings; and (iii) the scale by scale distribution of anisotropy.
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Résumé - Modélisation du Transport en Turbulence Homogène

La modélisation est essentielle pour comprendre et reproduire les phénomènes physiques dominants ayant

lieu dans des écoulements turbulents naturels (atmosphériques, océaniques). En effet, la dynamique des

écoulements géophysiques résulte d’interactions complexes à des échelles et intensités variées, et sur des

temps différents. La description précise de tels écoulements est pour le moment hors de portée des

simulations numériques directes, surtout à cause des limitations en nombre de Reynolds.

C’est pourquoi dans cette thèse on s’attaque à la modélisation de la turbulence homogène avec le for-

malisme spectral de l’approximation EDQNM. Ceci nous permet d’obtenir des résultats rapidement en

termes de ressources numériques à très grands nombres de Reynolds, et ainsi d’étudier séparément la

plupart des mécanismes en jeu dans les écoulements turbulents naturels, à savoir le cisaillement, le gra-

dient de température, la stratification, l’hélicité, et des combinaisons de ces éléments. On procède en

deux étapes: tout d’abord, l’EDQNM permet de fermer les équations des moments d’ordre 2, et ensuite

l’anisotropie est modélisée grâce à des tenseurs moyennés sphériquement. Cette méthode est appliquée

aux différentes configurations mentionnées ci-dessus, nous permet de proposer de nouveaux résultats et

de les valider numériquement à grands nombres de Reynolds. Parmi les points les plus importants, nous

nous sommes concentrés sur (i) la prédiction des lois de croissance et décroissance de quantités telles que

l’énergie cinétique, la variance scalaire et l’hélicité; (ii) la détermination des comportements spectraux;

et (iii) la distribution d’anisotropie échelle par échelle.
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d’un café pour discuter turbulence, de mes derniers travaux, et de la rédaction des articles que
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passé le relais, et sans ton temps et ta bienveillance, j’aurais probablement mis beaucoup plus
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http://www.sciencedirect.com/science/article/pii/S0377025715000543
http://www.sciencedirect.com/science/article/pii/S0377025715000543
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.011001
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.011001
http://dx.doi.org/10.1017/jfm.2015.575
http://dx.doi.org/10.1017/jfm.2015.575
http://dx.doi.org/10.1017/jfm.2016.362
http://dx.doi.org/10.1017/jfm.2016.362
http://www.tandfonline.com/doi/full/10.1080/14685248.2016.1191641
http://scitation.aip.org/content/aip/journal/pof2/28/8/10.1063/1.4961255
http://scitation.aip.org/content/aip/journal/pof2/28/8/10.1063/1.4961255
http://www.tandfonline.com/doi/full/10.1080/14685248.2017.1294253
http://www.tandfonline.com/doi/full/10.1080/14685248.2017.1294253
https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.2.044604
https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.2.044604
https://doi.org/10.1017/jfm.2017.260
http://hdl.handle.net/2042/57414
http://turbulence-cascades.ec-lille.fr/Documents/booklet.pdf


Contents

Abstract i

Acknowledgement ii

Publications and conferences iv

Contents v

Abbreviations x

Symbols xi

Introduction 1

I Passive Scalar in Isotropic Turbulence & Velocity Field in Anisotropic
Turbulence 8

1 Passive Scalar Mixing in Homogeneous Isotropic Turbulence 9

1.1 The equations of homogeneous isotropic turbulence . . . . . . . . . . . . . . . . . 9

1.2 The inertial scaling of ET for Pr � 1 . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Mixed-derivative skewness ST for Pr � 1 . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Time evolution of scalar integrated quantities . . . . . . . . . . . . . . . . . . . . 21

1.4.1 The basics of the CBC dimensional analysis . . . . . . . . . . . . . . . . . 23

1.4.2 Validation at large Reynolds numbers for Pr 6= 1 . . . . . . . . . . . . . . 25

1.4.3 Transition to low Reynolds and Péclet numbers . . . . . . . . . . . . . . . 26

1.4.4 Transition for Pr 6= 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4.5 Study of the integral scales L and LT . . . . . . . . . . . . . . . . . . . . 29

1.5 Conclusions for a passive scalar field in HIT . . . . . . . . . . . . . . . . . . . . . 31

2 Spectral Modelling of the Velocity Field in Homogeneous Turbulence 33

2.1 Equations in physical space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Spectral equations and transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 Craya equation for R̂ij . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.2 Craya-Herring frame - E − Z decomposition . . . . . . . . . . . . . . . . . 36

2.2.3 Generalized Lin equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 The closure problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.1 The EDQNM approximation . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.2 Directional and Polarization transfers TE and TZ . . . . . . . . . . . . . . 40

v



Contents vi

2.4 Spherically-averaged equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.1 Spherically-averaged descriptors . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.2 Spherically-averaged final Lin equations . . . . . . . . . . . . . . . . . . . 43

2.4.3 Return to isotropy - Spectral tensor . . . . . . . . . . . . . . . . . . . . . 44

3 Dynamics of the Velocity Field in Shear-driven Turbulence 46

3.1 Homogeneous Shear-Released Turbulence (HSRT) . . . . . . . . . . . . . . . . . 48

3.1.1 Validation of HSRT with Rapid Distortion Theory . . . . . . . . . . . . . 49

3.1.2 Kinetic energy spectrum E(k, t) and spectral tensor φij(k, t) . . . . . . . . 49

3.1.3 Anisotropy descriptors bij(t) and H
()
ij (k, t) . . . . . . . . . . . . . . . . . . 50

3.1.4 Modelling of the pressure-strain tensor Π
(s)
ij . . . . . . . . . . . . . . . . . 51

3.1.5 Additional remarks on HSRT . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Decay of K(t) and R13(t) in Saffman and Batchelor HSRT . . . . . . . . . . . . . 55

3.3 Homogeneous Shear Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 Exponential growth of the kinetic energy K(t) . . . . . . . . . . . . . . . 58

3.3.2 Non-linear transfers and the shear wavenumber . . . . . . . . . . . . . . . 61

3.3.3 Discussion on the scattering of integrated quantities in HST . . . . . . . . 62

3.4 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.1 Conclusions on HST and HSRT . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.2 Exponential growth rate γ . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

II Transport and Mixing in Homogeneous Anisotropic Turbulence 75

4 Spectral Modelling of a Passive Scalar in Homogeneous Turbulence 76

4.1 Scalar and scalar flux generalized Lin equations . . . . . . . . . . . . . . . . . . . 77

4.2 EDQNM closure for ET and Fi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Final spherically-averaged scalar Lin equations . . . . . . . . . . . . . . . . . . . 80

4.3.1 Modelling of ET and Fi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.2 Spherical average of the passive scalar and scalar flux . . . . . . . . . . . 81

4.4 Cospectrum for an uniform mean scalar gradient . . . . . . . . . . . . . . . . . . 84

5 Dynamics of a Passive Scalar in Homogeneous Turbulence 86

5.1 Homogeneous shear-driven turbulence . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1.1 Scalar spectrum ET (k, t) and non-linear transfers . . . . . . . . . . . . . . 88

5.1.2 Scalar decay laws and RTI in HSRT . . . . . . . . . . . . . . . . . . . . . 89

5.1.3 Sustained shear (HST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1.4 Decay and growth laws for the passive scalar in HSRT and HST . . . . . 92

5.2 Isotropic Turbulence with a mean Scalar Gradient . . . . . . . . . . . . . . . . . 92

5.2.1 Spectra and transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.2 Comparisons with experimental and numerical results . . . . . . . . . . . 94

5.2.3 Decay and growth laws for the cospectrum and passive scalar . . . . . . . 96

5.2.4 Return to isotropy in HITSG . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Homogeneous Shear Turbulence with Scalar Gradient . . . . . . . . . . . . . . . 102

5.3.1 Definitions and transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3.2 Comparisons with experimental and numerical results . . . . . . . . . . . 103

5.3.3 Growth of K, KT , KF and KS
F . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3.4 Streamwise flux spectrum FS(k, t) . . . . . . . . . . . . . . . . . . . . . . 109



Contents vii

5.3.5 Return to isotropy in HSTSG . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Conclusions for the passive scalar at Pr = 1 . . . . . . . . . . . . . . . . . . . . . 110

6 Prandtl Number Effects on Passive Scalar Dynamics 113

6.1 Prandtl number effects in HITSG . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1.1 Inertial scalings for ET (k, t) and F(k, t) - Comparisons . . . . . . . . . . . 114

6.1.1.1 Highly diffusive passive scalar Pr � 1 . . . . . . . . . . . . . . . 115

6.1.1.2 Weakly diffusive passive scalar Pr � 1 . . . . . . . . . . . . . . 117

6.1.1.3 Spectral transfers and conclusions for the inertial scalings . . . . 118

6.1.2 Numerical results - Time evolution and anisotropy . . . . . . . . . . . . . 119

6.1.2.1 Prandtl effects on the decay and growth of < u3θ > and < θ2 > 119

6.1.2.2 Cospectrum correlation ρwθ, pressure-scalar correlation ΠF , and
Nusselt number Nu . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.1.2.3 Return to isotropy of small scales . . . . . . . . . . . . . . . . . 123

6.1.3 Conclusions for Pr 6= 1 in HITSG . . . . . . . . . . . . . . . . . . . . . . 124

6.2 Prandtl number effects in shear-driven turbulence . . . . . . . . . . . . . . . . . . 125

6.2.1 Homogeneous shear-released turbulence . . . . . . . . . . . . . . . . . . . 126

6.2.2 Sustained shear flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2.3 Homogeneous Shear Turbulence with a mean Scalar Gradient . . . . . . . 129

6.2.4 Conclusions about shear-driven turbulence for Pr 6= 1 . . . . . . . . . . . 130

7 Spectral Modelling for Unstably Stratified Homogeneous Turbulence 131

7.1 Evolution equations in USHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.1.1 Additional coupling terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.1.2 Spherically-averaged Lin equations for USHT . . . . . . . . . . . . . . . . 133

7.2 Spectral scaling and infrared dynamics . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2.1 Spectral scaling of E, ET and F . . . . . . . . . . . . . . . . . . . . . . . 135

7.2.2 Infrared dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.3 One-point statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.3.1 The Froude number Fr . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.3.2 The mixing intensity Λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.3.3 Growth of the kinetic energy K(t) . . . . . . . . . . . . . . . . . . . . . . 140

7.3.4 Global anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.3.5 Comparison with Burlot et al. (2015b) . . . . . . . . . . . . . . . . . . . . 143

7.3.6 Conclusions on one-point statistics . . . . . . . . . . . . . . . . . . . . . . 144

7.3.7 Eddy-damping constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.4 Scale by scale anisotropy and structure of the flow . . . . . . . . . . . . . . . . . 146

7.5 Pressure spectra and high Schmidt numbers . . . . . . . . . . . . . . . . . . . . . 148

7.5.1 Pressure spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.5.2 Cospectrum at high Schmidt numbers . . . . . . . . . . . . . . . . . . . . 150

7.6 Conclusion on USHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.7 Perspective - Variable stratification N(t) . . . . . . . . . . . . . . . . . . . . . . . 154

7.7.1 Evolution equations with variable stratification . . . . . . . . . . . . . . . 154

7.7.2 Prediction of the growth rate αRT . . . . . . . . . . . . . . . . . . . . . . 156

7.7.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8 Dynamics of Helicity in Skew-Isotropic Turbulence 160

8.1 Spectral modelling of helicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.1.1 The E-H decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162



Contents viii

8.1.2 Spherically-averaged helical Lin equations for E(k, t) and H(k, t) . . . . . 164

8.2 Numerical results on the helical and kinetic fields . . . . . . . . . . . . . . . . . . 165

8.2.1 The importance of initial conditions H(k, t = 0) . . . . . . . . . . . . . . 165

8.2.2 Helical spectrum H(k, t) and non-linear transfers . . . . . . . . . . . . . . 166

8.2.3 Infrared dynamics and non-local transfers . . . . . . . . . . . . . . . . . . 168

8.2.4 Decay laws in helical flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8.2.5 Robustness of the decay exponents - Altered infrared dynamics . . . . . . 174

8.3 Structure functions in helical turbulence . . . . . . . . . . . . . . . . . . . . . . . 175

8.3.1 Inertial scaling for S(r) and D(uuω)(r) . . . . . . . . . . . . . . . . . . . . 176

8.3.2 Evolution equation of εH . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

8.4 Effect of helicity on the scalar flux . . . . . . . . . . . . . . . . . . . . . . . . . . 182

8.4.1 Modelling of the quadrature spectrum . . . . . . . . . . . . . . . . . . . . 183

8.4.2 Decay of < ω3θ > and inertial scaling of Q(k, t) . . . . . . . . . . . . . . . 184

8.5 Conclusion on homogeneous skew-isotropic turbulence . . . . . . . . . . . . . . . 187

9 General Conclusions and Perspectives 189

A Statistics and Structure Functions 192

A.1 Evolution equations and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 192

A.2 Tensorial relations for homogeneous turbulence . . . . . . . . . . . . . . . . . . . 193

A.2.1 Dissipation ε and enstrophy < ω2 > . . . . . . . . . . . . . . . . . . . . . 193

A.2.2 Identities for the velocity field . . . . . . . . . . . . . . . . . . . . . . . . . 193

A.2.3 Evolution equations of Wij and < ω2 > . . . . . . . . . . . . . . . . . . . 195

A.2.4 Evolution equation of εij . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

A.2.5 Evolution equations of < ξiξj > and < ξ2 > . . . . . . . . . . . . . . . . . 197

A.2.6 Cospectrum in isotropic turbulence with mean scalar gradient . . . . . . . 197

A.3 Homogeneous isotropic turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . 198

A.3.1 Spectral formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

A.3.2 Second and third-order statistics . . . . . . . . . . . . . . . . . . . . . . . 199

A.3.3 Results for the velocity field . . . . . . . . . . . . . . . . . . . . . . . . . . 201

A.3.4 Results for the passive scalar field . . . . . . . . . . . . . . . . . . . . . . 202

A.4 Structure functions and auto-correlations . . . . . . . . . . . . . . . . . . . . . . 203

A.4.1 Second-order longitudinal correlation and structure function . . . . . . . . 203

A.4.2 Third-order longitudinal correlation and structure function . . . . . . . . 205
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Introduction

”When you have eliminated the impossible, whatever remains, however improbable,

must be the truth.”

– Conan Doyle, Sherlock Holmes

The understanding of turbulence is a complex task of crucial importance since turbulent flows

can be found in many natural flows, such as atmospheric or oceanic ones, and in various in-

dustrial applications as well. The complexity of turbulence arises from the fact that it gathers

multiple scales, from the largest which contain the energetic eddies and the signature of pro-

duction mechanisms, to the smallest dissipative scales. These different scales notably interact

with each other in an intricate way because of the non-linearity of the Navier-Stokes equation.

This non-linearity constitutes both the richness and the challenge of turbulence since it makes

it at the same time incredibly varied and complicated to predict. Though the prediction of

turbulence is still extremely difficult, it is of practical interest for various applications, with me-

teorology among them. It is worth noting that proving the existence and uniqueness of a general

solution to the three-dimensional Navier-Stokes equations remains one of the six problems of

the millennium.

Even by assuming that the turbulence is homogeneous, the objective to fully master the

distinct features of natural turbulent flows is rather ambitious. Indeed, the understanding of

the impact of large scales anisotropic production mechanisms on the global dynamics is made

difficult by the numerous interactions and energy transfers between scales that exist in developed

turbulence. Moreover, turbulence is also known to considerably improve mixing properties, so

that the transport of a scalar field, such as concentration or temperature fluctuations, is

a relevant feature to address and comprehend, for both theoretical and practical purposes. If

one considers for instance an unbounded atmospheric flow, it may be subjected to rotation

and shear, while the advected scalar field can additionally experience stratification through a

mean temperature or concentration gradient. Even with the homogeneity assumption, the task

of disentangling the dominant mechanisms remains complex since they all contribute diversely

in the dynamics, at various scales and during characteristic times which may be distinct for the

velocity and scalar fields.

Thus, a relevant method would be to investigate separately some of these mechanisms, to accu-

rately determine their dominant properties. In this spirit, some authors have brought insightful

answers with pioneering experiments and Direct Numerical Simulations (DNS): Warhaft & Lum-

ley (1978) studied the decay of a passive scalar field in grid turbulence, without any production

1
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mechanisms, showing that the algebraic decay rate of the scalar variance < θ2 > strongly de-

pends on the initial conditions. Later on, Warhaft (1980) proved experimentally as well that the

presence of a mean strain caused by an axisymmetric contraction was accelerating the decay of

the scalar field. On the contrary, Sirivat & Warhaft (1983) added a mean temperature gradient

by several means - heated grid, a mandoline (screen of heated wires), a toaster - to analyze the

dynamics of a passive scalar when the fluctuations are sustained. In their famous experiment,

Tavoularis & Corrsin (1981) (TC81) combined both shear and a mean temperature gradient and

studied mixed velocity-scalar statistics, along with some crucial one-point quantities for mod-

elling, such the turbulent Prandtl number and diffusivity tensor. Regarding early DNS, Rogers

& Moin (1987) analyzed the properties of a shear flow and the resulting global anisotropy be-

tween the streamwise and transverse directions, and later Rogers et al. (1989) added a mean

scalar gradient, which is the same configuration as TC81, that nevertheless exhibited some

significant quantitative discrepancies.

An exhaustive list of the first DNS and experiments which greatly participated into our general

understanding of homogeneous turbulence would be tedious, nevertheless the previous refer-

ences illustrate that the idea of addressing separately the various fundamental mechanisms at

stake in natural turbulent flows is not new. The review of such works reveals that there is a

large discrepancy between quantities of primary importance, which goes against the ”universal

principles” postulated in Kolmogorov (1941b,a), which could be briefly reformulated as follows:

at asymptotically large Reynolds numbers, small scales of a turbulent flow should be locally

isotropic whatever the large scales anisotropic forcing mechanisms are. These small scales are

uniquely determined by the kinematic viscosity ν and the kinetic energy dissipation rate ε. And

finally, at any scale l larger than the dissipative scales, but smaller than anisotropic ones, the

statistics of the velocity field are only given by l and ε.

To illustrate the breakdown of these universality assumptions, one can mention for instance the

values of the velocity derivative skewness S, recently reported in Antonia et al. (2015), which

are quite dispersed for various turbulent flows. The reasons for this scattering are very likely

multiple and complex, but some of them are obvious: first of all, if the Reynolds number based on

the Taylor scale Reλ is not large enough, the small scales do not ”forget” the large scales forcing

mechanisms. Thus, one has persistent small scales anisotropy, which consequently renders

the results flow-dependent. Other reasons can be proposed, such as the strong variations from

one experimental apparatus to another, or low resolution of small scales in DNS. This suggests

an essential requirement for the ”mechanism by mechanism” investigation mentioned above: one

should use the same consistent approach to accurately compare the results and draw relevant

conclusions. We will come back to this later, and now return to the idea of anisotropic small

scales, which is one of the reasons why some authors in the turbulence community question the

local isotropy hypothesis of Kolmogorov. This makes the return to isotropy (RTI) of small

scales a crucial point of interest, and it is required to first distinguish the turbulent velocity and

scalar fields.

Indeed, it seems that the persistence of anisotropy at small scales for the scalar field is even

more complicated than for the velocity field, as reviewed by Warhaft (2000). For the velocity

field, it is more or less admitted that the small scales of the second-order moments return to

isotropy, whereas higher order moments do not systematically, as observed in Pumir (1996). Of

particular interest is the (third-order moment) velocity derivative skewness in shear flows, which

should be zero if small scales were completely isotropic. The review by Antonia et al. (2015)
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Figure 1: The ramp-cliff structures of a turbulent advected scalar field θ or mean field Θ forced
by a mean scalar gradient g (from Holzer & Siggia (1994)). The velocity field of integral scale L
is sustained by a Gaussian forcing. The curves at right represent horizontal slices of the plane

at left.

clearly illustrates that it is not the case for various kinds of turbulent flows, not necessarily

homogeneous. Nevertheless, S is generally found to decrease with increasing Reλ in shear flows,

even if the exponent is an open question: in the DNS of Schumacher et al. (2003a), S ∼ Re−1
λ is

reported, whereas S ∼ Re−0.6
λ in the experiment by Garg & Warhaft (1998), and S ∼ Re−0.5

λ in

Shen & Warhaft (2000). In the latter reference, higher-order moments are either independent of

Reλ or increase with it. The issue is even more sensitive regarding the small-scales of a passive

scalar field: indeed, in a presence of a mean scalar gradient only, both second and third-order

moments were found to have persistent anisotropic small scales by Tong & Warhaft (1994):

therein, the scalar derivative skewness Sθ, in the direction of the mean scalar gradient, is larger

than unity instead of zero, and does not reduce with larger Reλ: comparable observations are

made for the second-order moments, very likely due to ”ramp-cliff” structures, displayed in Fig.

1. Similar conclusions are drawn for higher-order moments of the scalar field in Pumir (1994).

In addition, Sreenivasan & Tavoularis (1980) measured non-zero values for Sθ in shear flows,

with no decreasing tendency with larger Reynolds numbers. On the contrary, local isotropy

features were reported in Danaila et al. (1999b) where shear and mean temperature gradient

are created by two-counter rotating cold and hot disks.

These different observations may be summarized by the conclusions of Sreenivasan (1991), who

states that scalar small scales are very likely not universal, and that a necessary condition, but

not sufficient, for local isotropy at the scalar level is that the small scales of the velocity field are

isotropic. It is also reported that in more than a few works, some findings are misrepresented

by the lack of data or convergence, with for instance inertial slopes of spectra far from the

theoretical expectations with no justifications. Hence, persistent small scales anisotropy, among

other issues, is responsible for the non-universality of some complex turbulent flows, and the

Reynolds number has a critical role in it. Would these conclusions be different if one had

the possibility of running DNS at very large Reynolds numbers and designing experiments with

extremely long wind tunnels? This is an open question of great theoretical interest which is
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the primary motivation of the thesis: indeed, it appears to be crucial to determine clearly the

asymptotic behaviours of turbulence, in the Kolmogorov’s paradigm of large Reynolds numbers.

Even though this if out of reach of DNS for now 1, the idea is not absurd if one thinks of mod-

elling. The developments of multiple models in the past decades was not only an alternative to

DNS great need of computational resources, but also a way to identify and deeply understand

the dominant mechanisms of turbulence. As sketched in Fig. 2, there are roughly three methods

available to address complex anisotropic flows: Reynolds-Averaged Navier-Stokes (RANS)

models, which require the tuning of multiple constants and do not contain much information

about small scales and details of the flow. Large-Eddy Simulations (LES), which necessitate

the calibration of a turbulent viscosity and subgrid models to reflect the effects of the filtered

small scales, very likely different depending of the flow considered. And finally DNS, which

have all the information possible, as illustrated by the schematic signal, but which is the most

limited in terms of Reynolds numbers.

Figure 2: Schematic view of the different methods available to study turbulence. The Reynolds
numbers reachable by simulations roughly increases from DNS to LES, RANS and EDQNM.
The complexity of a three-part signal, corresponding to RANS, LES and DNS, is also presented
for illustration purposes. Illustrations for RANS and DNS were taken online, whereas the one

for LES if from Chollet & Lesieur (1981).

This figure also shows that there exists an alternative to these three approaches, namely the

Eddy-Damped Quasi-Normal Markovian (EDQNM) closure, which is a one-time two-point

model. Other spectral models were developed more or less in the same period as EDQNM:

we do not wish to establish here an exhaustive list, but rather to point out some of them

1It is worth noting at this point the recent DNS by Ishihara et al. (2016) where Reλ ' 2300 is reached with
resolution 122883.
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for informative purposes, and state why EDQNM is chosen among the collection of existing

models. First, one can start with Kraichnan (1959), who developed the Direct Interaction

Approximation (DIA). The DIA is a two-point two-time model, with rather complex analytical

expressions due to the presence of equations for response-functions. Unfortunately, the DIA

does not respect the Galilean Invariance and does not recover the k−5/3 inertial scaling of the

kinetic energy spectrum derived from the Kolmogorov (1941b) phenomenology. These defects

were further corrected in the Lagrangian version of the DIA, namely the Lagrangian History

DIA (LHDIA) (Kraichnan, 1965): in the LHDIA framework, Lagrangian correlation times are

notably used to restore the build-up of triple correlations. However, the analytical complexity

is increased by the additional presence of Lagrangian equations. Finally, let’s mention the

Test-Field Model (Kraichnan, 1971) which is perhaps the closest to EDQNM: basically, an

additional transport equation of a compressible test-field is used to determine the characteristic

time of the triple correlations, instead of prescribing it in EDQNM. Of course, other models

exist, and variations of the previous ones as well, but for the sake of clarity, we choose to not

go further in this description.

As illustrated in Fig. 2, EDQNM permits to reach large Reynolds numbers, but is mainly

limited to HIT. It will be explained throughout the manuscript that even though EDQNM does

not contain as much information as DNS, it nevertheless permits to have a statistical description

of all scales for physical quantities of importance, unlike RANS and LES. For this reason, we

choose the EDQNM as a good candidate to investigate and model homogeneous anisotropic

turbulence, rather than LHDIA and TFM, which are most costly in terms of computational

resources, and regarding the former, much more complex analytically even in HIT.

The complete EDQNM approximation was first developed for hydrodynamics homogeneous

isotropic turbulence, notably by Orszag (1970); Leith (1971); Orszag (1977) (see also Lesieur

(2008) and references therein for a more precise overview). Basically, it consists of three ingre-

dients: a quasi-normal procedure to close the non-linear term in the evolution equation of the

one-time two-point second-order spectral velocity-velocity correlation; an eddy-damping term

which reflects the departure of statistics from normal laws; and finally a Markovianization

step to ensure the realizability of the kinetic energy spectrum E(k, t), which further strongly

simplifies the time-integration. The EDQNM approximation has proven many times since its

creation to be relevant and accurate in HIT (Lesieur & Schertzer, 1978; Métais & Lesieur, 1986;

Lesieur & Ossia, 2000; Meldi & Sagaut, 2012). The EDQNM framework was also extended to

the transport of passive scalar, which is relevant with regard to our problematic, by Herring

et al. (1982), and then further applied to investigate the decay of the scalar variance in Lesieur

et al. (1987). In addition, the EDQNM results were used to develop and improve subgrid-models

for LES, for instance in Chollet & Lesieur (1981).

Furthermore, it is appealing to remember that EDQNM was also extended to more complex

cases than HIT to explore configurations unreachable by DNS at this time: after the discovery

that helicity, the scalar product between velocity and vorticity < uiωi >, is an inviscid invariant

of the three-dimensional Navier-Stokes equations by Moffatt (1969), EDQNM was successfully

used by André & Lesieur (1977) to show that the helical spectrum H(k, t) scales in k−5/3 in the

inertial range, similarly to the kinetic energy spectrum. More or less at the same time, Pouquet

et al. (1976) broadened the reach of EDQNM to magnetohydrodynamics (MHD) turbulence

by additionally considering the magnetic energy and magnetic helicity spectra. For both helical

and MHD turbulence, EDQNM was exploited for subgrid modelling (Baerenzung et al., 2008b,a)
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as well. In a different framework, more sophisticated methods involving EDQNM were also

used to significantly improve RANS mixing models in stratified turbulence (Gréa et al., 2016b).

Moreover, it is important to stress that at some points, the EDQNM approximation inherited

from particular DIA techniques. Three examples can be emphasized: first, in the framework of

weakly compressible turbulence, Bertoglio et al. (2001) greatly enhanced the Markovianisation

step of the EDQNM approximation by using the DIA equations of the response functions,

in order to better take into account the time-history of the compressible part of the velocity

field. Secondly, Bos & Bertoglio (2006) proposed an elegant way to get ride of the adjustable

constant in the eddy-damping part of the EDQNM approximation, by using an additional field,

namely the velocity-displacement correlation, which recalls the idea of the TFM. Thirdly, some

information can be learnt thanks to the TFM regarding the characteristic time θkpq of the triple

correlations in EDQNM (Herring et al., 1982).

What about shear-driven flows? The first attempt to extend EDQNM to strongly anisotropic

turbulence dates back to the pioneering work of Cambon et al. (1981): the concept relies on a

two-step approach. The classical EDQNM is applied to close the non-linear transfer terms as in

HIT, but the general tensorial equation of the spectral two-point velocity-velocity correlation is

kept. The resulting expressions are then combined with an appropriate modelling for anisotropy.

In 1981, this second step involved the choice of an arbitrary constant, an issue which was solved

recently in Mons et al. (2016) (MCS). In the latter reference, the modelling of anisotropy is done

through a truncated expansion into spherical harmonics of the spectral second-order moments,

where part of the anisotropic angular information is restored thanks to deviatoric spherically-

averaged tensors. As such, MCS is the starting point of this thesis, from which we aim at

extending the anisotropic EDQNM modelling to the transport of a passive scalar field in

shear-driven turbulence, to active scalar dynamics as well with stratification, and also to helical

turbulence.

Upstream to practical considerations such as the development of subgrid-models for shear flows

(Germano et al., 1991), the principal objective of this thesis is to tackle various configurations

partially representative of atmospheric turbulence with the same consistent approach: by this,

we mean that the anisotropic EDQNM model aims at being valid in multiple cases, without

changing any constants. The only constant is the eddy-damping one, which will be set once

and for all on the well-known and accepted isotropic value. This is fundamentally different

from RANS and LES models which require to tune some adjustable constants depending on the

flow, or from earlier spectral models as well (Clark & Zemach, 1995; Bos & Bertoglio, 2007). In

order to get ride of one significant issue mentioned above, the study will be performed in the

framework of large Reynolds numbers. Addressing with the same method shear flows, passive

scalar transport with a mean temperature gradient, and unstable stratification, is an important

contribution in terms of modelling. The idea is the following one: if our model is reliable and

accurate enough by comparisons with DNS and experiments at moderate Reynolds numbers, we

can have confidence in the predictions we will make at larger Reynolds numbers while combining

various mechanisms such as shear and mean scalar gradient. This is inherently distinct from

what is usually done in DNS, LES and RANS models for instance, where different codes and

settings are used depending on the flow considered.
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Among the numerous features listed above, our purposes are rather fundamental, and the dif-

ferent aspects and method of the thesis could be listed as follows:

• Development of the model with analytical calculations and algebra specific to

the spectral formalism.

• Assessment of the model by comparisons of the numerical results with DNS

and experiments, implying a link between spectral and physical quantities.

• Establishment of theoretical predictions based on physical arguments, such as

inertial scaling of spectra and time evolution of one-point statistics.

• Numerical simulations to test the predictions, and to investigate complex in-

teractions, such as the scale by scale distribution of anisotropy resulting from non-

linear exchanges and production at large scales.

• Deduction of the most important and relevant mechanisms for a given configu-

ration, and propose explanations for some specific issues, such as the impact of

moderate Reynolds numbers effects.

By going through all these points, we wish to constitute a ”database” of both high Reynolds

numbers simulations for homogeneous anisotropic turbulence, and a detailed form gathering the

main analytical calculations in the spectral formalism which might be used for other purposes

than EDQNM as well.

The manuscript is organized in three parts, as follows. In Part 1, we expose the two essential

components of the thesis, namely the transport of a passive scalar field in HIT, and the spectral

anisotropic model for the velocity field. More precisely, in Chapter 1, the transport of a passive

scalar field in decaying HIT is addressed, along with effects of strong and weak diffusivity.

Secondly, in Chapter 2, the anisotropic EDQNM modelling for the velocity field in homogeneous

turbulence is presented, along with the main evolution equations and the spectral formalism.

Various applications of this model are gathered in Chapter 3, where both sustained shear flows

and freely decaying turbulence initially submitted to shear are tackled.

In Part 2, the anisotropic model is extended to deal with the transport of a scalar field. In

particular, in Chapter 4, the modelling is consistently broadened to include passive scalar dy-

namics. Applications such as shear flows with a mean temperature gradient are gathered in

Chapter 5, along with multiple successful comparisons with experimental and numerical stud-

ies. These different configurations are revisited in Chapter 6 for weakly and highly diffusive

scalar, with the emphasis put on isotropic turbulence with a mean scalar gradient. Afterwards,

the spectral modelling is further extended to the case of active scalar dynamics to deal with

unstably stratified turbulence in Chapter 7. Homogeneous isotropic turbulence with helicity is

the subject of Chapter 8, with some considerations about the additional presence of a mean

scalar gradient.

Finally, all the appendices mainly contain details about the lengthy calculations necessary to

develop the model, along with some additional theoretical considerations.
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Chapter 1

Passive Scalar Mixing in

Homogeneous Isotropic Turbulence

”Anyone who has never made a mistake has never tried anything new.”

– Albert Einstein (or Theodore Roosevelt)

In this chapter, we begin the study of mixing and transport in homogeneous turbulence with

the classical case where a passive scalar field is advected by a turbulent isotropic field, meaning

that statistics are invariant under any translations, rotations and mirror symmetries. Since the

objective of the thesis is to investigate and model the transport of a scalar field in homogeneous

anisotropic turbulence (HAT), it makes sense to start with Homogeneous Isotropic Turbulence

(HIT). The results of this chapter will serve as a point of comparison throughout the manuscript.

1.1 The equations of homogeneous isotropic turbulence

In homogeneous decaying isotropic turbulence, the kinetic energy K =< uiui > /2 and scalar

variance KT =< θ2 > of the fluctuating velocity and scalar fields ui and θ respectively, where

< · > is an ensemble average, evolve according to

dK

dt
= −ε(t), dKT

dt
= −εT (t), (1.1)

where ε and εT are the kinetic energy and scalar variance dissipation rates. These two equations

come from the Navier-Stokes and scalar transport equations (2.1) and (4.2) for fluctuations,

which will be detailed in the next chapters. These four quantities, K, KT , ε and εT are obtained

by integrating the kinetic energy and scalar variance spectra over the whole wavenumber space

K(T )(t) =

∫ ∞
0

E(T )(k, t)dk, ε(t) = 2ν

∫ ∞
0

k2E(k, t)dk, εT (t) = 2a

∫ ∞
0

k2ET (k, t)dk, (1.2)

where ν is the kinematic viscosity and a the scalar diffusivity. Since Kolmogorov (1941b),

the inertial scaling of the kinetic energy spectrum is known, and more recent studies have

9
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investigated the large scales scaling, so that

E(k, t) =

{
A(t) kσ for k < kL,

K0 ε
2/3 k−5/3 for kL < k < kη,

(1.3)

where the Kolmogorov constant is found to be K0 ' 1.3 with the EDQNM simulations, and

where

kη =
( ε
ν3

)1/4
(1.4)

is the Kolmogorov wavenumber beyond which dissipation effects are dominant with regard to

inertial ones, and kL is the integral wavenumber, corresponding to the scale that contains most

of the energy in decaying turbulence. The shape at large scales (k < kL) is referred to as

the infrared range, and is not part of Kolmogorov pioneering work. The scaling E ∼ kσ is

given by theoretical arguments which relate spectra and correlation functions in physical space

(George, 1992a). Some important features should be mentioned about the infrared scaling:

initial conditions with an infrared slope σ > 5, such as a sharply peaked energy spectrum

around kL, result in k4, the so-called Batchelor turbulence, because of non-local interactions

(Lesieur & Schertzer, 1978; Lesieur & Ossia, 2000). A k2 infrared scaling is predicted by Lumley

(1970) with energy equipartition arguments. These two configurations have physical meanings

since they refer to the conservation of linear and angular momentum respectively. According

to Llor & Soulard (2013), all real positive values of σ ≤ 4 are possible, and σ = 2 might be

the most probable value for experiments. Furthermore, only the slope near the peak of energy

kL (and not for k → 0) is important and leads the decay (Meldi & Sagaut, 2012; Mons et al.,

2014a).

When Batchelor turbulence is mentioned, it is important to clearly define the Perma-

nence of Large Eddies (PLE) (Eyink & Thomson, 2000; Meldi & Sagaut, 2012): the

infrared range of the kinetic energy spectrum is given by E(k < kL, t) = Akσ. The PLE

is said to hold in decaying turbulence if both A and σ remain constant throughout the

decay. Consequently, in HIT, PLE holds for Saffman turbulence, whereas it is broken for

Batchelor turbulence, because of strong non-linear transfers from small to large scales.

The crucial assumption behind the scaling of the kinetic spectrum in the inertial range (k ∈
[kL; kη]) is the local isotropy of small scales, even if large scales are made anisotropic by various

production mechanisms. This is discussed for instance in Sreenivasan et al. (1979); Sreenivasan

(1991); Warhaft (2000) and will be investigated in this thesis, at the level of second-order

moments, in the next chapters. A large inertial zone, and thus a clear separation of scales,

requires a high Reynolds number. The integral Reynolds number is defined as

ReL =
K2

νε
, (1.5)

which is linked to the integral and Kolmogorov wavenumbers through

kη = Re
3/4
L kL. (1.6)
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Kind of anisotropy Reλ(t = 0) Pr kmin/kL(t = 0) kmax

HSRT (High Pr) 5.103 1 (� 1) 10−7 10kη (10kB)
HSRT Low Pr 5.104 � 1 10−7 10kη
HST (Low Pr) 5 (100) 1 and � 1 (� 1) 10−10 105kη

HITSG (High Pr) 5.103 1 (� 1) 10−7 10kη (10kB)
HITSG Low Pr 5.104 � 1 10−7 10kη

HSTSG 5 � 1, 1 and � 1 10−10 105kη
HHT and HHTSG 5.104 1 10−7 10kη

USHT 5 1 10−10 105kη

Table 1.1: Main numerical parameters used for the simulations: when low Reynolds numbers are
reached in decaying turbulence, k = 10−16kL(0). Some simulations, especially for comparisons,
have different initial parameters. The meaning of the labels for the different kinds of anisotropy
can be found in the Abbreviations list in page x: the conditions for HSRT and HIT are the

same.

An additional Reynolds number is defined, based on the Taylor microscale

Reλ =

√
20

3
ReL. (1.7)

Finally, the evolution equations of the kinetic energy and scalar variance spectra, known as the

kinetic and scalar Lin equations, read(
∂

∂t
+ 2νk2

)
E(k, t) = SNL(iso)(k, t),

(
∂

∂t
+ 2ak2

)
ET (k, t) = ST,NL(iso)(k, t), (1.8)

where SNL(iso) and ST,NL(iso) are conservative spherically-averaged isotropic non-linear transfers.

For the sake of brevity and generality, the EDQNM procedure to obtain the explicit analytical

expressions of these terms is detailed in Chapter 2 in the more general framework of HAT.

When it comes to the inertial scaling of the scalar variance spectrum ET (k, t), this is more

complicated than for E(k, t): indeed, depending on the value of the Prandtl number Pr = ν/a,

different scalings can be observed. For a unit Prandtl number, ET (k, t) scales in k−5/3 in

the inertial-convective range (ICR) between the scalar integral wavenumber kT and the

Kolmogorov wavenumber kη, similarly to the kinetic energy spectrum (Obukhov, 1949; Corrsin,

1951a,b), so that

ET (k, t) = KCO εT ε
−1/3 k−5/3, (1.9)

where the Corrsin-Obukhov constant is found to be, with EDQNM simulations, KCO ' 0.74.

Within the EDQNM framework, it is possible to obtain other values for K0 and KCO by changing

the eddy-damping constants presented later in Chapters 2 and 4.

In what follows, the transport of a passive scalar field in HIT for Pr � 1 is firstly addressed.

Then, the framework of Pr � 1 is considered and some new fundamental features are exposed

regarding third-order statistics. Finally, the Pr impact on the time evolution of scalar integrated

quantities is investigated, with in particular the transition from large to low Reynolds numbers.
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Numerical set-up

At this point, we briefly present the numerical set-up of the simulations. Since the

conditions are always more or less the same in the different configurations that will be

addressed, the main elements are gathered here and in Table 1.1.

A third order Runge-Kutta scheme with implicit viscous term is used. The wavenumber

space is discretized using a logarithmic mesh ki+1 = rki for i = 1, . . . , n where n is the

number of modes in the discretization. Typically, r = 101/f where f is the number of

discrete points per decade. Simulations have shown that in most of the cases, statistics

are not modified within more than 1% from f = 15: for security, we nevertheless choose

f = 17. This mesh extends from kmin to kmax = 10kηT with kηT =
√
Prkη if Pr ≥ 1 or

kηT = kη if Pr ≤ 1. The time step ∆t is controlled by defining a constant CFL number.

Moreover, the time step is obtained by considering the characteristic time scales of scalar

and kinetic dynamics at large and small scales. In the presence of a mean-velocity or

scalar gradient, the intensity of the mean-field is also taken into account. The values

of the physical and numerical parameters for simulations at large and small Reynolds

numbers are gathered in Table 1.1.

If not mentioned otherwise, the initial kinetic energy and scalar variance spectra E(k, t)

and ET (k, t) are isotropic and the expression is borrowed from Pope (2000); Meyers &

Meneveau (2008)

E(k, t = 0) = K0 k
−5/3 ε2/3fL(kL) fη(kη) (1.10)

where fL and fη are shape functions for large and small scales respectively

fL(x) =

(
x

(x1.5 + 1.5− σ/4)2/3

) 5
3

+σ

, fη(x) = exp
(
− 5.3((x4 + 0.44)

1
4 − 0.4)

)
. (1.11)

This corresponds to an initial energy spectrum with energy already at all scales.

1.2 The inertial scaling of ET for Pr � 1

In this part, the emphasis is put on the scaling of ET in the case of a highly diffusive passive

scalar Pr � 1.

The contents of this section were published in:

Briard & Gomez, ”Passive scalar convective-diffusive subrange for low Prandtl numbers

in isotropic turbulence”, Physical Review E, 91, 011001(R) (2015)

The dynamics of a highly diffusive passive scalar is a very controversial topic. There are four

different theories regarding the scaling of the inertial-diffusive range (IDR) of the scalar

variance spectrum ET . Batchelor (1959) proposed that in the IDR, for k > kCO where the

Corrsin-Obukhov wavenumber reads kCO = Pr3/4kη, one has

ET (k, t) =
K0

3
εT a

−3 ε2/3 k−17/3. (1.12)
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Whereas Chasnov et al. (1989) found ET ∼ k−11/3 for a very rapidly stirred fluid. Moreover,

Gibson (1968) derived a ET ∼ k−3 scaling by considering convection effects when scalar gradients

are very weak at small scales. Finally, Granatstein & Buchsbaum (1966) established a ET ∼
k−13/3 range based on experimental data in a plasma. Thanks to EDQNM simulations, a large

range of Prandtl numbers can be explored at high Reynolds numbers. First, it allows to explain

directly how the k−13/3 could have been obtained experimentally before: this subrange was

observed for fluids with 0.01 ≤ Pr ≤ 0.1 and Reλ ∼ 160. However, there is no IDR for Pr = 0.1

as revealed in Fig. 1.1a. And for Pr = 10−2, the IDR is not completely established: this is

probably the reason why k−17/3 is not observed in Granatstein & Buchsbaum (1966).
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Figure 1.1: Scalar variance spectrum ET (k, t) for small Prandtl numbers in Saffman tur-
bulence (σ = 2), along with the scalar integral, Corrsin-Obukhov, Convective-Diffusive,
and Kolmogorov wavenumbers kT , kCO, kCD, and kη. The wavenumber kCD is defined
in (1.13). (a) Pr = 10−n, n = [0, . . . , 6]; (b) Pr = 1 and Pr = 10−4 with the different

ranges; (c) Characteristic time n−1
c of the IBR, defined in (1.18), for Pr = 10−4.

The first thing to remark in Fig. 1.1a is that the k−17/3 IDR only clearly appears for Pr ≤ 10−3.

Then, for Pr = 10−6, the ICR has almost disappeared, which is expected from a physical point

of view since the Péclet number Peλ = Reλ
√
Pr is rather small. Furthermore, there is clearly a

third subrange, located between the IDR and kη, where ET decreases much slower. This effect

can be understood as a transfer lack toward small scales while approaching the Kolmogorov

wavenumber kη. Indeed, in the IDR, the diffusive effects are stronger than the dissipative ones.
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On the contrary, the new range is generated by small-scales convection, that was neglected

in Batchelor (1959), as mentioned by Gibson (1968). From this point, we defined k−1
CD as the

characteristic length scale at which this new range starts, where CD stands for convective-

diffusive.

In Fig. 1.1b, one can observe three distinct ranges between kL and kη for Pr � 1: (i) for

k ∈ [kL, kCO], the k−5/3 ICR, dominated by large scales convection: the designation ”inertial”

comes from the cascade of kinetic energy. Then, (ii) for k ∈ [kCO, kCD], the k−17/3 IDR, where

diffusive effects drive the dynamics, and convection by large scales is negligible. Finally, for k ∈
[kCD, kη], convection from small scales, and more precisely from the Kolmogorov wavenumber

kη, dominates. There, the kinetic field creates small scalar fluctuations that balance diffusion

of the IDR. Consequently, this new range is called the inertial-balanced range (IBR), where

”balanced” stands for an equilibrium between diffusion and convection by small scales.

From Fig.1.1a, it is clear that the IBR grows in size with the IDR. Numerically, a good agreement

with a k−11/3 range for Pr ≤ 10−4 is obtained by a least square fit. In Fig.1.1b, the convective-

diffusive wavenumber kCD is consistently located between kCO and kη, and clearly separates

the k−17/3 scaling from the k−11/3 one. Let us take a closer look at kCD. Since we have a

competition between diffusion and convection mechanisms in the IBR, a length scale taking

into account these two effects is built. To this end, the characteristic diffusion time t∗ = k−2
CO/a

is considered, based on Corrsin-Obukhov wavenumber and the diffusivity. Then, the convective

length scale is obtained using Kolmogorov characteristic velocity uη = (ν ε)1/4 and t∗. This

eventually yields

kCD = (t∗ uη)
−1 = a−1/2

(ν
ε

)−1/4
=
√
Pr kη. (1.13)

The latter relation is similar to the one for the Batchelor wavenumber kB with Pr � 1 (see next

section). This clearly underlines that convection effects are at the origin of the k−11/3 IBR.

The new k−11/3 IBR can be seen as the reconciliation of Batchelor and Chasnov theories. While

Batchelor claims that for a strongly diffusive passive scalar, ET ∼ k−17/3, Chasnov predicts

a k−11/3 scaling in particular conditions where the fluid is rapidly stirred. What we observe

here is that the two ranges coexist when the Reynolds and Prandtl numbers are respectively

large and small enough, and that we can find physical and theoretical arguments to explain it.

Firstly, let’s introduce an eddy conductivity at (Chasnov et al., 1989; Batchelor, 1959)

at(t) =

∫ ∞
k

2E(k, t)

3nc(k, t)
dk (1.14)

where n−1
c is a local characteristic time which depends on k. Using the eddy conductivity at,

the scalar dissipation rate εT reads

εT (t) = 2(a+ at(t))

∫ k

0
k2ET (k, t)dk. (1.15)

The integral from 0 to k takes into account the main contribution of dissipation since k � 1.

The influence of small scales dynamics on εT is modelled through the eddy conductivity at.

Consequently, one can assume that dεT /dk = 0 (Chasnov et al., 1989). If we derive (1.15) with
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respect to k and consider that E(k →∞) = 0, one gets

ET (k, t) =
K0

3
εT ε

2/3k−11/3(a+ at)
−2n−1

c . (1.16)

In Batchelor (1959), at is introduced differently and the characteristic time n−1
c is the diffusion

time (ak2)−1. This makes sense when diffusion dominates in the k−17/3 IDR. With (1.16), it is

obvious that if nc does not depend on k, then ET ∼ k−11/3. In Chasnov et al. (1989), it is justified

that for a rapidly stirred fluid (fluctuations at all scales) nc is constant. A physical and general

interpretation of a constant nc could be the following one: in the IDR, the characteristic time

(ak2)−1 decreases at small scales because the fluctuations produced by the kinetic field become

weaker while approaching kη. At a certain point, when k ≥ kCD, small-scales convection plays a

non-negligible role and thus balances small-scales convection and diffusion, so that n−1
c becomes

constant. We have two candidates to determine the characteristic time n−1
c : the Kolmogorov

time scale τη =
√
ν/ε and the characteristic time based on uη and kCD, namely

τCD = (uη kCD)−1 =

√
a

ε
= τηPr

−1/2. (1.17)

If we use the common assumption verified numerically that a � aT , one can write (1.16)

differently

n−1
c (k, t) =

ET (k, t)

E(k, t)

3

εT (t)
k2a2. (1.18)

In Fig.1.1c, it is clear that in the IBR, for k ≥ kCD, one has n−1
c constant. In other words, the

prediction of Chasnov et al. (1989) is recovered. The other point of interest is that the constant

reached by n−1
c is really close to the Kolmogorov time scale τη. This result is consistent with the

characteristic time of the convection being given by τη close to kη. Moreover, one can observe

that in the IDR, n−1
c is proportional to k−2, in agreement with Batchelor (1959). Finally, the

scalar variance spectrum in the inertial-balanced range scales like

ET (k, t) =
K0

3
εT ε

1/6
√
Pr a−3/2 k−11/3. (1.19)

1.3 Mixed-derivative skewness ST for Pr � 1

In this part, the case of a weakly diffusive passive scalar Pr � 1 is addressed, and we focus on

scalar third-order statistics with the mixed-derivative skewness.

The contents of this section were published in:

Briard & Gomez, ”Mixed-derivative skewness for high Prandtl and Reynolds numbers in

homogeneous isotropic turbulence”, Physics of Fluids, 28 (8), 081703 (2016)

The case Pr � 1 is of particular interest for various reasons. It specifically corresponds to

the framework of biological fluids (Scalo et al., 2012) (low temperature dissolved oxygen where

Sc ' 1000, crucial for marine ecosystems), of chemical reactions (reduction of ferricyanide

for instance, where Sc can exceed 104) and of experiments with tracers (such as disodium

fluorescein where Sc ' 2000, or sulforhodamine 101 where Sc ' 5000). Beyond these practical
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considerations, the case of weakly diffusive passive scalars is challenging as it presents some

difficulties in DNS when it comes to solve the very small scales of the scalar field beyond the

Kolmogorov wavenumber kη. These small scales experience friction by the Kolmogorov scale

velocity field, up to the Batchelor wavenumber kB =
√
Prkη. This continuous friction creates

the viscous-convective range (VCR) where the scalar variance spectrum ET (k, t) scales as

ET (k, t) =
K0

3
εT

√
ν

ε
k−1, kη < k < kB. (1.20)

The framework of HIT (with or without a mean scalar gradient) with Pr � 1 has already

received some attention, especially numerically (Yeung et al., 2002; Schumacher et al., 2003b;

Yeung et al., 2004; Borgas et al., 2004), and the k−1 viscous-convective range has been as-

sessed numerous times. However in DNS, with an increasing Pr comes a diminishing Reλ.

Furthermore, at moderate Reynolds numbers, the spatial resolution beyond the Kolmogorov

wavenumber can be questioned. Notably, it has been pointed out in a recent work of forced

isotropic turbulence (Donzis & Yeung, 2010) that both the Reynolds number and the resolution

are of great importance: especially, at a given Reynolds number, a better spatial resolution,

of order k−1
B , improves local isotropy. The same conclusion is made at constant resolution for

an increasing Reλ. A scalar field with a low diffusivity has also been studied experimentally

(Buch & Dahm, 1996; Miller & Dimotakis, 1996; Lavertu et al., 2008), often with dye where

Sc ∼ 103, at higher Reynolds numbers, but the framework is hardly homogeneous and isotropic

(jets, shear flows, ...). Therefore, the present study is performed in HIT with EDQNM, which

has been used recently (Bos et al., 2012; Meldi & Sagaut, 2013a) to study third-order moments

of the velocity field, especially the velocity derivative skewness S. Here, the emphasis is put on

the mixed-derivative skewness ST , which is of great theoretical interest since it directly appears

in the equation of the scalar variance dissipation rate (Ristorcelli, 2006).

The evolution equations of the kinetic and scalar dissipation rates can be obtained by multiplying

(1.8) by 2νk2 and 2ak2 respectively, and then integrating over k

∂ε

∂t
= 2ν

∫ ∞
0

k2SNL(iso)(k, t)dk − 4ν2

∫ ∞
0

k4E(k, t)dk, (1.21)

∂εT
∂t

= 2a

∫ ∞
0

k2ST,NL(iso)(k, t)dk − 4a2

∫ ∞
0

k4ET (k, t)dk. (1.22)

Using classical algebra, which can be found in Kerr (1985); Ristorcelli (2006) and which is

detailed in Appendix A, yields

∂ε

∂t
= −

(
7

3
√

15
S(t)

√
ReL +

7

15
G(t)

)
ε2

K
= − 7

15

(
1

2
S(t)Reλ +G(t)

)
ε2

K
, (1.23)

where S(t) and G(t) are the velocity derivative skewness and palinstrophy respectively

S(t) =
< (∂u/∂x)3 >

< (∂u/∂x)2 >3/2
= −3

√
30

14

∫∞
0 k2SNL(iso)(k, t)dk(∫∞

0 k2E(k, t)dk
)3/2 , (1.24)

G(t) =< u2 >
< (∂2u/∂x2)2 >

< (∂u/∂x)2 >2
=

30ν

7

K

ε

∫∞
0 k4E(k, t)dk∫∞
0 k2E(k, t)dk

. (1.25)
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Similarly, for the passive scalar field, one gets

∂εT
∂t

= −

(√
5

3
ST (t)

√
ReL + r

5

9
GT (t)

)
εεT
K

= −
(

1

2
ST (t)Reλ + r

5

9
GT (t)

)
εεT
K
, (1.26)

where r is the kinetic to scalar time scales ratio r = (K εT )/(KT ε). These evolution equations

(1.23) and (1.26) have already been obtained in previous works (Zhou et al., 2000; Ristorcelli,

2006; Meldi & Sagaut, 2013a) in a similar manner. This numerical study focuses on the mixed-

derivative skewness

ST (t) =
< (∂u/∂x)(∂θ/∂x)2 >√

< (∂u/∂x)2 > < (∂θ/∂x)2 >
= −

√
3

10

∫∞
0 k2ST,NL(iso)(k, t)dk√∫∞

0 k2E(k, t)dk
( ∫∞

0 k2ET (k, t)dk
) ,
(1.27)

which directly appears in (1.26). Note that we obtain a factor
√

3/10, instead of 2/
√

15 proposed

by Antonia & Orlandi (2004). The scalar palinstrophy reads

GT (t) =< θ2 >
< (∂2θ/∂x2)2 >

< (∂θ/∂x)2 >2
=

18a

5

KT

εT

∫∞
0 k4ET (k, t)dk∫∞
0 k2ET (k, t)dk

. (1.28)

The kinetic and scalar palinstrophy G and GT can be interpreted as the dissipation of the

gradients of the velocity and scalar fields respectively (Kerr, 1985), and more specifically, G

represents the dissipation of enstrophy < ω2 >= ε/ν.

Now that the theoretical aspects have been recalled, numerical results are presented at various

Prandtl and Reynolds numbers. The use of EDQNM to study third-order statistics is validated

by comparisons with a moderate Reλ experiment (Zhou et al., 2000) in Fig. 1.2a and with

a DNS of forced HIT (Gotoh et al., 2002) at higher Reλ in Fig. 1.4b. In the experiment,

Reλ ∼ 50 and the decay exponents K ∼ tα and KT ∼ tαT are α ' αT ' −1.33. As a first

approximation, this corresponds to infrared exponents σ = σT = 3 (see next section for more

details). The comparison between experiment and EDQNM is presented in Fig. 1.2a where the

velocity derivative and mixed-derivative skewnesses S and ST are displayed. The agreement is

better for ST than for S, whose values obtained experimentally are more dispersed. At higher

Reynolds numbers (38 ≤ Reλ ≤ 460), the agreement for S between EDQNM and the DNS

of Gotoh et al. (2002) of forced HIT is rather good, as revealed in Fig. 1.4b: the velocity

derivative skewness is quantitatively recovered within 5% on a broad range of Reλ. Finally, Fig.

1.2b gathers various values of ST obtained in DNS and experiments for Pr ≥ 1, and illustrates

the noteworthy dispersion, probably due to the different kinds of forcing, whose consequences

are amplified at moderate Reynolds numbers: furthermore, the DNS of Kerr (1985) suffers from

a very low resolution. EDQNM results that will be discussed later are also displayed.

Now, the impact of a high Prandtl number on the mixed-derivative skewness ST is investigated.

Such a framework has been studied, notably in DNS. However, this has been done only at

moderate (or low) Reynolds numbers. Indeed, the more Pr increases, the more additional

points are necessary to describe the very small scales of the scalar spectrum which behave as

k−1 beyond kη and up to kB. Thanks to EDQNM, it is possible to reach high Reynolds and

Prandtl numbers, as illustrated in Fig. 1.3a, where the viscous-convective range predicted by

Batchelor (1959) grows in size with increasing Pr and spans on two decades for Pr = 105.

Nevertheless, because of the logarithmic discretization, elongated triads are not taken into
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Figure 1.2: (a) Comparison of S and ST between EDQNM (lines) and experiment of
Zhou et al. (2000) (symbols) at Reλ ' 50 and Pr = 0.7. (b) Review of different values
for |ST | obtained in DNS (Kerr, 1985; Yeung et al., 2002; Antonia & Orlandi, 2004)
and experiments (Zhou et al., 2000): thick lines for EDQNM at Pr = 1 and Pr = 104.
(−−) indicates the asymptotic Pr-state S∞T at very large Reλ and Pr. For Yeung et al.
(2002) (×): the values of ST presented are in the plane perpendicular to the mean scalar
gradient, the Prandtl number is 1 ≤ Pr ≤ 64, and the Pr = 1 results are linked by a

dash-dot (−·) line.

account. Consequently, it is necessary to add non-local contributions to the scalar non-linear

transfers of (1.8). For the sake of clarity, non-local considerations are gathered and detailed in

Appendix B.

The Pr-dependence of the mixed-derivative skewness ST is investigated in Fig. 1.3b in the

high Reynolds numbers regime to avoid transitional effects towards low Reynolds numbers. It

is revealed that |ST | increases from Pr = 1 to a critical Prandtl number Prc = 10 and then

slightly decreases up to Pr = 103. Such variations of |ST | for 1 ≤ Pr ≤ 103 have already been

observed in DNS (Yeung et al., 2002, 2004). The latter works, at moderate Reynolds numbers,

indicate that the decrease of |ST | happens from Prc ' 1, which is smaller than in our high

Reynolds numbers simulations where the decrease starts around Prc ' 10. Consequently, these

observations suggest that the decay threshold for |ST | is Reynolds dependent, with Prc ∈ [1, 10].

The remarkable feature is that for Pr ≥ 103 at high Reynolds numbers, the mixed-derivative

skewness saturates to a constant value |S∞T | ' 0.435, which does not depend on the Prandtl

number anymore. The ∞ symbol refers to the saturated Pr-state Pr ≥ 103. DNS performed at

higher values of Pr would be useful to confirm (or not) the saturation of ST from Pr ∼ 103. It

is worth noting that in HIT, when the scalar field is forced with a mean scalar gradient, values

of S⊥T (in the direction perpendicular to the gradient) are close to the present S∞T = −0.435:

values of Yeung et al. (2002) are gathered in Fig. 1.2b, and one can note that at Pr = 1, S⊥T
increases with Reλ (− · × line) similarly to the present EDQNM results.

Physically, this saturation of the mixed-derivative skewness means that the statistical mixing

properties of the flow do not evolve anymore at a sufficiently high Prandtl number, for high

Reynolds numbers. This can be interpreted in terms of small scales equilibrium (k > kη), if one

considers the spectral definition (1.27) of the mixed-derivative skewness ST . Indeed, considering
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Figure 1.3: (a) Scalar spectrum ET (k, t) for various Prandtl numbers Pr = 1, 103 and 105,
at Reλ = 103 in Saffman turbulence. The inertial convective k−5/3 and viscous-convective
k−1 ranges are displayed as well, along with the integral, Kolmogorov and Batchelor
wavenumbers kT , kη and kB for Pr = 105. (b) Absolute value of the mixed-derivative
skewness ST for various Prandtl numbers from 1 to 105 in Saffman turbulence. Because
of the high-Pr saturation, the Pr = 104 and Pr = 105 curves are hardly distinguishable.

a given Reynolds number, or equivalently a given dissipation rate ε of kinetic energy, increasing

Pr leads to an indefinite extension of the VCR of ET toward small scales, whereas its ICR

remains unchanged. Therefore, the variations of ST when Pr increases are mainly due to

the variations of the two functions appearing in the scalar integrated terms of ST , namely

k2ST,NL(iso) and k2ET for k ∈ [kη; kB]. These quantities represent respectively the production

rate of mean-square temperature gradients and scalar dissipation at wavenumber k. Moreover,

Fig. B.2 shows that the production is mainly a non-local mechanism unlike the scalar dissipation.

For a sufficiently high Prandtl number, Pr ≥ 103, these two integrals evolve similarly so that

they balance each other. Therefore, for high Reynolds numbers, the convergence of ST to a

constant value S∞T for increasing Prandtl numbers reflects an equilibrium, occurring in the

viscous-convective range, between non-local production of mean-square temperature gradients

and scalar dissipation by diffusion.

A similar independence with regard to Pr can be found for the scalar palinstrophy GT : injecting

classical scaling for ET in the spectral definition (1.28) of GT , and assuming that Reλ � 1 and

Pr � 1, yields rGT ∼ Reλ. Such a result was also found in Ristorcelli (2006). Numerical

simulations and experiments have shown that r ∼ αT /α is a relevant approximation for the

time scale ratio when the turbulence decay is algebraic. Therefore, one has r ' 1 when the

kinetic energy and scalar variance decay similarly, i.e. when σ = σT for the initial spectra

considered here: this is relevant since it will be shown in the next section that Pr does not

affect the asymptotic decay of scalar integrated quantities. Qualitatively, the independence of

GT with regard to Pr provides the same physical information as our numerical results on ST :

there is an asymptotic convergence of the mixing properties of the passive scalar field only for

a sufficiently high Pr. As said before, a dependance on Pr for moderate Prandtl numbers, say

1 ≤ Pr ≤ 103, is in agreement with DNS (Yeung et al., 2002, 2004).

Finally, the decay of the derivative skewness S(t) and mixed-derivative skewness ST (t) from
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high to low Reynolds numbers is investigated in Fig. 1.4a for Saffman (σ = σT = 2) and

Batchelor (σ = σT = 4) turbulence. The main results are the following ones: (i) Both S and

ST are constant for high Reynolds and Prandtl numbers, and independent of large scales initial

conditions: indeed, the curves are identical for Saffman and Batchelor turbulence, except in the

transition zone between the high and low Reynolds numbers regimes where a slight difference is

observed. (ii) The transition toward the low Reynolds numbers regime for the scalar field starts

after the one for the velocity field, which is expected since the Péclet number Peλ =
√
PrReλ is

much larger than Reλ in the case Pr � 1. (iii) For very low Reynolds numbers, both derivative

skewnesses S and ST are zero, consistently with the fact that for Reλ < 1, the flow is not

turbulent anymore and thus there is no turbulent mixing at all.
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Figure 1.4: Velocity derivative and mixed-derivative skewnesses S and ST from high to
low Reynolds numbers in the saturated Pr-state at Pr = 104. (a) In black for Saffman
turbulence σ = σT = 2, and in grey for Batchelor turbulence σ = σT = 4. (b) Batchelor
turbulence, along with correlations in grey that capture well the high Reynolds numbers
regime and the beginning of the transition zone. ×: values of S from forced turbulence

DNS of Gotoh et al. (2002).

One also has to point out that both S and ST increase during the decay, i.e. when the Reynolds

number decreases, in agreement with George (1992a). Moreover, it is stated in the latter

work that at some point during the decay, S should behave as Re−1
λ according to dimensional

considerations. Assuming that the Taylor micro-scale λ is the relevant similarity length scale,

and using self-preserving functions E(k, t) = Es(t)f(η), SNL(iso)(k, t) = Ss(t)g(η), and η = kλ,

one obtains

S(t) ∼ λ−4νu2

(λ−2u2)3/2

∫
η2g(η)dη( ∫
η2f(η)dη

)3/2
∼ Re−1

λ . (1.29)

But this scaling is not always clearly observed. We believe this might be the consequence of

too low Reynolds numbers in DNS. A low Reynolds defect is in agreement with Schumacher

et al. (2003a), where Figure 1 herein clearly shows that the Re−1
λ scaling is achieved for high

Reynolds numbers only (102 ≤ Reλ ≤ 103).

In Fig. 1.4b, relevant correlations are presented (with constants determined by least square fit,

set to match with the beginning of the transition) with a clear Re−1
λ dependency for both the

velocity derivative and mixed-derivative skewnesses. These correlations S(t) = S∞+2.145Re−1
λ
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and ST (t) = S∞T +0.735Re−1
λ , where S∞ = −0.569 and S∞T = −0.435, capture well the beginning

of the transition zone. Hence, the scaling S ∼ Re−1
λ seems relevant mainly for high Reynolds

numbers. Moreover, an interesting result, never confirmed previously to our knowledge, is

that the mixed-derivative skewness ST scales in Re−1
λ as well. This scaling is in agreement with

George (1992b) where similarity assumptions were used for temperature fluctuations: ET (k, t) =

EsT (t)fT (η), ST,NL(iso)(k, t) = SsT (t)gT (η), and ηT = kλT . Using a classical result (George,

1992b; Zhou et al., 2000) linking the ratio of the kinetic and scalar Taylor lengths λ and λT =√
6aKT /εT yields(

λ

λT

)2

=
5

6
rPr, ST (t) ∼ aλ

λ2
Tu

∫
η2
T gT (ηT )dηT√∫

η2f(η)dη
∫
η2
T fT (ηT )dηT

∼ rRe−1
λ . (1.30)

1.4 Time evolution of scalar integrated quantities

In this final part, the effects of a Prandtl number different from unity on the time evolution of

scalar integrated quantities such as KT , εT and LT , is addressed.

The contents of this section were published in:

Briard, Gomez, Sagaut, & Memari, ”Passive scalar decay laws in isotropic turbulence:

Prandtl number effects”, Journal of Fluid Mechanics, 784, 274-303 (2015)

A crucial step toward the understanding of the passive scalar dynamics is the study of decay

laws at very high or very small Prandtl numbers. Firstly, the decay permits to get ride of

the forcing parameter, and secondly, dimensional analysis can provide theoretical results and

boundaries regarding time exponents of one-point statistics. Thus, for the passive scalar field,

the comparison between the experimental and numerical decay exponents of integrated quan-

tities - such as the scalar variance KT (t), integral scale LT (t), and dissipation rate εT (t) - and

the Comte-Bellot and Corrsin (CBC) theory could give interesting information on what are the

main phenomena which drive the scalar decay.

Multiple experimental works and DNS (Lin & Lin, 1973; Warhaft & Lumley, 1978; Sreenivasan

& Tavoularis, 1980; Danaila et al., 2000; Zhou et al., 2000, 2002; Antonia & Orlandi, 2004;

Lee et al., 2012; Antonia et al., 2013) have focused on scalar decay exponents. However, these

scalar decay exponents exhibit a significant dispersion, as shown in Fig. 1.5, whereas the

experimental setups are designed to produce a very similar turbulent dynamics. There is up

to 20% of discrepancy for similar Reynolds numbers and a fixed Prandtl number (Pr ∼ 0.7 ).

This scattering between the measured scalar decay exponents may be due to transitional effects

towards low Reynolds numbers, as studied in the kinetic case in Meldi & Sagaut (2013a), and

also probably to the experimental production mechanisms which do not permit to obtain a

universal decay. A supplementary potential explanation for the scattering might be that the

flow is not fully isotropic.

It is worth noting that the decay of the passive scalar has only been studied in experimental

works and DNS in a small region of the (Re,Pr) map given in Fig. 1.5. In this region (the small

grey zone), the Prandtl number is close to unity (0.7 for air which is the most used fluid) and
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Figure 1.5: Schematic view of the (Reλ, Pr) combinations used for the passive scalar decay
analysis. On the main figure, triangles, squares, crosses and circles respectively refer to works
of Rust & Sesonske (1966); Granatstein & Buchsbaum (1966); Yeung et al. (2002, 2004). On
the zoom of the small grey region at Pr ∼ 1, experimental scalar decay exponents of Fig. 1.7
are reported: dots, squares, stars, circles, triangles and crosses represent respectively works of
Antonia et al. (2013); Lee et al. (2012); Antonia et al. (2013); Zhou et al. (2000); Antonia &

Orlandi (2004); Danaila et al. (2000).

the Reynolds number based on Taylor scale is Reλ ≤ 70. The values of the decay exponents

obtained in these works will be reported later on along with our numerical simulations. Other

experiments and DNS performed for Prandtl numbers different from one, spanning from 10−2 to

102 in Fig. 1.5 (Rust & Sesonske, 1966; Granatstein & Buchsbaum, 1966; Watanabe & Gotoh,

2004; Yeung et al., 2004) mainly focus on the inertial scaling of the scalar spectrum ET (k, t) and

not on the decay of the passive scalar itself. Therefore, they cannot be exploited for comparison

purpose in the present study.

When the Prandtl number departs from unity, as described in Tennekes & Lumley (1972), var-

ious theoretical arguments show that at large or small Pr, the shape of the scalar spectrum

ET (k, t) is significantly modified at small scales. Nevertheless, as illustrated in Fig. 1.5, the

regions where Pr � 1 and Pr � 1 have not been much explored for the passive scalar decay

issue. Hence, an interesting question could be: does the Prandtl number, in addition to the

Reynolds number and initial conditions, modify the decay laws of scalar integrated quantities

such as KT (t) and εT (t)? This study aims at answering this question of interest for the under-

standing of the passive scalar dynamics, and at providing an explanation to the scattering of

experimental scalar decay exponents.

To this end, this part focuses on two main approaches. The first one is based on the CBC

dimensional analysis that is extended to the more general case of passive scalar transport,

following the work of Meldi & Sagaut (2012) in the kinetic case. The second approach relies

on the EDQNM closure to perform numerical simulations of the turbulent mixing. The main
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Reynolds Cases α, αT nε, nεT nL, nLT nReL nReλ
High Kinetic −2σ−p+1

σ−p+3 −3σ−p+5/3
σ−p+3

2
σ−p+3 −σ−p−1

σ−p+3 −1
2
σ−p−1
σ−p+3

Scalar −2σT−pT+1
σ−p+3 −σ−p+5+2σT−2pT

σ−p+3
2

σ−p+3

Low Kinetic −σ+1
2 −σ+3

2
1
2 −σ−1

4 −σ−1
8

Scalar −σT+1
2 −σ+3

2
1
2

Table 1.2: Kinetic and scalar exponents for the extended CBC analysis. K and KT are the
kinetic energy and scalar variance, ε and εT the kinetic and scalar dissipation rates, and L and
LT the kinetic and scalar integral scales. σ and σT are the kinetic and scalar infrared slopes,

and p and pT the kinetic and scalar backscatter parameters.

advantage of this method is its accuracy and low cost in investigating the turbulent dynamics

for a broad range of Reynolds and Prandtl numbers. EDQNM simulations have already been

used to study kinetic decay exponents (Lesieur & Ossia, 2000; Meldi & Sagaut, 2012, 2013a)

and passive scalar dynamics (Lesieur et al., 1987). Moreover, this method also allows to recover

theoretical results regarding the scalar spectrum scaling when Pr ≤ 1 and Pr ≥ 1 that have

been obtained experimentally and numerically (see the two previous sections). Hereafter, new

theoretical and numerical arguments are proposed to understand how the decay of a passive

scalar field is affected by a Prandtl number strongly different from unity.

1.4.1 The basics of the CBC dimensional analysis

In the CBC theory, the kinetic energy spectrum is given by (1.3). The original method of CBC

is based on the concept of invariance of very large scale eddies (PLE) corresponding to k < kL
which is notably valid for infrared slopes σ = 1, 2 and 3. In fact in the kinetic case, the value of

the infrared spectral slope σ is time-independent and remains constant for σ = 1, 2 (Saffman),

3 and 4 (Batchelor). As for the coefficient A(t) of the infrared spectrum, it remains constant

for values of σ ∈ [1, 2, 3], and evolves in time as A(t) ∼ L(t)p in the case σ = 4, where p is

the backscatter parameter. In the case of high Reynolds numbers, when there is an inertial

zone, one obtains

α(σ, p) = −2
(σ + 1− p)
(σ + 3− p)

, K(t) ∼ tα (1.31)

in which p = 0 if σ ≤ 3 and p ∼ 0.55 if σ = 4 as computed in Lesieur et al. (1987); Eyink &

Thomson (2000); Meldi & Sagaut (2012). Other kinetic exponents such as nε and nL can also

be determined using (1.31) and are gathered in Table 1.2.

The relevant parameter to study the dynamics of the passive scalar is not only the Reynolds

number, but also the (Taylor) Péclet number Peλ = Reλ
√
Pr. In this section, the emphasis

is put on the case σT = 4. Numerical simulations show that the scalar variance also decreases

with time following a power law KT ∼ tαT . Furthermore, after a transient relaxation phase, the

kinetic and scalar integral scales L and LT exhibit the same behaviour and their decay exponents

nL and nLT converge toward the same value. Consequently, we consider that nL = nLT .

The scalar variance spectrum ET (k, t) scales similarly to E(k, t) in the infrared range, namely

ET (k < kT , t) = AT (t)kσT , σT ∈ [1, 4] , (1.32)
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Infrared slope σ Pr = 10−4 Pr = 10−2 Pr = 1 Pr = 10 Pr = 102 Pr = 105

1 0.5746 0.5745 0.5745
2 0.4285 0.4254 0.4269
3 0.2961 0.2842 0.2904
4 0.3275 0.2814 0.2652 0.2754 0.3125 0.3495

Table 1.3: Some values of pT for various Pr and σ with σT = 4.

where kT ' 1/LT is the peak of ET . Proceeding similarly to the kinetic case, the coefficient

AT (t) is assumed to vary as LpTT , where pT is the scalar backscatter parameter. By writing

the continuity of the scalar spectrum in k = kT , one can use the expressions given in Table 1.2

of nL and nε to conclude that

εT ∼ tnεT , nεT (σ, σT , p, pT ) = −σ − p+ 5 + 2(σT − pT )

σ − p+ 3
. (1.33)

Moreover, since εT is the time derivative of KT , the exponent of the scalar variance reads

αT (σ, σT , p, pT ) = −2
σT − pT + 1

σ − p+ 3
. (1.34)

From the theoretical decay exponents α and αT , it seems that a decay in K(T ) ∼ t−1 (Ristorcelli,

2006) occurs only for σ = σT = 1 and corresponds to a constant Reynolds number.

All extended exponents (with p and pT ) for both the kinetic and scalar fields are gathered

in Table 1.2. It will be shown later in Chapters 3 and 5 that these exponents are still

valid when the turbulence is initially submitted to a mean-velocity gradient, and then

freely decaying, as summarized in Table 5.1. However, when a mean scalar gradient is

added, the continuous production of scalar fluctuations significantly modifies αT .

Furthermore, simulations indicate that AT (t) varies with time when σT = 4. More precisely, pT
decreases when σ increases at a fixed Pr, and increases when Pr departs from unity: values are

gathered in Table 1.3.

Finally, the emphasis is put on the dynamics at small Reynolds numbers. In this case, the inertial

effects are rather small, and so inertial zone contributions to the kinetic and scalar spectra

become negligible. Thus, the kinetic energy behaviour is assumed to be mainly determined by

the contribution of the spectrum at large scales. By dimensional analysis L(t) ∼
√
νt and so

nL = 1/2 . This leads to

K(t) =

∫ ∞
0

E(k, t)dk '
∫ kL

0
Akσdk =

A

σ + 1
ν−(σ+1)/2t−(σ+1)/2. (1.35)

From the kinetic energy K, the other important kinetic decay exponents can be deduced, all

gathered in Table 1.2. One obtains the exponent of the scalar variance using the relation

LT (t) ∼
√
at. Then, proceeding similarly, one gets

KT (t) '
∫ kT

0
ATk

σT dk =
AT

σT + 1
a−(σT+1)/2t−(σT+1)/2. (1.36)
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The other scalar decay exponents derived from αT are also presented in Table 1.2. For instance,

nεT is simply computed using dKT /dt = −εT . In what follows, all exponents are calculated

using the EDQNM simulations for both σ and σT in the set [1, 2, 3, 4]. For the kinetic and scalar

cases, there is an excellent agreement between the EDQNM results and the predictions of the

extended CBC analysis.

1.4.2 Validation at large Reynolds numbers for Pr 6= 1

The emphasis is now put on the case where the initial Reynolds number is sufficiently large

to allow the kinetic and scalar spectra E and ET to decrease according to the extended CBC

exponents given on the two first lines of Table 1.2. For the sake of brevity, only the case Pr � 1

is presented here since the results for Pr � 1 are very similar (for more details, see the complete

paper). The initial Reynolds number is Reλ(0) ' 2.104, high enough to ensure a large Péclet

number, so that there is a clear separation of scales. Since ET (k, t) is located ”under” E(k, t),

local energy transfers dominate, unlike the case Pr � 1 where the viscous-convective range

is ”outside” the kinetic energy spectrum. Time exponents of εT , LT and KT are investigated

in Fig. 1.6 for σ = σT = 2 and σ = σT = 4. The scalar decay exponents clearly follow the

extended CBC theory. The result is the same for any Pr ≤ 1 as soon as the Péclet number is

large enough. Hence, the extended scalar CBC exponents are valid at large Reynolds numbers

for both Pr � 1 and Pr � 1.
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Figure 1.6: Exponents αT (a)-(c), nεT (b)-(d) and nLT
(c)-(f) for Pr = 10−4. Top line, σ =

σT = 2; Bottom line σ = σT = 4. Symbols for the CBC predictions: � high Reynolds numbers;
◦: low Reynolds numbers.
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1.4.3 Transition to low Reynolds and Péclet numbers

In this section, the transition from high to low Reynolds numbers with various Prandtl numbers

is investigated. A detailed comparison with experimental results is performed to provide some

explanations about the scattering between existing measured scalar decay exponents.

Validation of decay exponents for Pr = 1: The numerical method based on EDQNM anal-

ysis allows to illustrate the transition from high to low Reynolds numbers. Several simulations

are made until very low Reynolds numbers Reλ ∼ 10−1, starting from Reλ(t = 0) = 240. This

Reynolds number is high enough to capture the beginning of the transition and all the previous

decay exponents are accurately recovered. According to the theory for the case σ = 1, the same

exponents for both large and small Reynolds numbers are found. It is only from the shape of the

spectrum that these two cases can be distinguished. For infrared exponents σ ≥ 2 and σT ≥ 2,

the Reynolds number decreases over time and inertial ranges of both spectra disappear. This

is the low Reynolds numbers regime and the decay exponents α and αT converge to the values

expected by the extended CBC analysis given in Table 1.2. This transition grows more rapidly

for higher values of the infrared spectral slopes.
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Figure 1.7: Experimental scalar decay exponents at Pr ∼ 1 in comparison with high
Reynolds CBC theory and EDQNM simulations at Pr = 1. List of symbols: ◦ Zhou
et al. (2000, 2002) ; C Antonia & Orlandi (2004); � Lee et al. (2012) Sq35; × Danaila
et al. (2000);

`
Antonia et al. (2013) Sq35 and Rd44w; ∗ Lee et al. (2012); Antonia et al.

(2013) Rd35. (a) σ = σT = 2; (b) σ = σT = 4.

Transitions are shown for Saffman and Batchelor turbulence in Fig. 1.7 along with experimental

results. The case σ = σT = 3, similar to σ = σT = 2, is not presented. The small peak that

appears around Reλ = 5 is due to the disappearance of the inertial range in both E and ET .

This corresponds to a transition between a regime dominated by inertial effects to a regime

dominated by viscous ones. The horizontal lines correspond to theoretical predictions coming

from the CBC theory. If one chooses a different initial Reynolds number, higher or lower, the

resulting curve would collapse with the present one after a few turn-over times τ0 ' K(0)/ε(0).

Similarly, if different initial spectra E and ET are prescribed, there is only a slight change

during the transition. Hence, the present curves for α and αT in the transition zone seem

quite robust. Nevertheless, there is no clear power law for the decay exponent in the transition.

Two critical Reynolds numbers, at which the transition to the low Reynolds regime begins, are
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observed for different kinetic and scalar cases, with infrared slope σ = σT ∈ [2, 3, 4]. The critical

Reynolds number for the kinetic case Recλ decreases when σ increases. Transitions happen at

Recλ(σ = 2) ≈ 38, Recλ(σ = 3) ≈ 20, and Recλ(σ = 4) ≈ 17. Whereas the transition for the

scalar field happens always around RecλT ≈ 12. Other scalar exponents such as nεT and nLT
also follow the CBC theory for low Reynolds and Péclet regimes.

Review of experimental results: In experiments for the passive scalar, the fluid is often air

with Pr ' 0.7. In Fig. 1.7, several experimental results regarding the scalar decay exponent

αexp
T are gathered in order to compare them to experiments (Danaila et al., 2000; Zhou et al.,

2000, 2002; Lee et al., 2012; Antonia et al., 2013), and DNS Antonia & Orlandi (2004). Firstly,

it is important here to stress that in these experiments, the Reynolds number is rather low

Reλ ≤ 70. EDQNM simulations show that such Reynolds numbers correspond to the beginning

of the transition zone, between high and low Reynolds regimes. This could explain the large

scattering of scalar decay exponents that have been measured in the past years. The Reλ is

not high enough to completely match with the high Reynolds and Péclet regimes, and thus the

αexp
T measured could be misrepresented by the transitional Reλ-state. Even with DNS, Antonia

& Orlandi (2004) found a αT which is not the one predicted by the CBC theory. Once again,

this might be because of the moderate Reλ and a too low resolution of large scales, which are

determinant for the decay exponents. In addition to this, the infrared initial slopes σ and σT
cannot be fixed in grid turbulence: hence, it is impossible to compare rigorously αexp

T with the

CBC theory.

Nevertheless, interesting results have been obtained experimentally that deserve to be empha-

sized. First, the scattering of the measured scalar decay exponents αT is more important than

for the kinetic ones α (Lavoie et al., 2007; Antonia et al., 2013). In addition to the two facts

mentioned earlier (low Reλ and undefined infrared slopes), αexp
T varies a lot depending on how

the temperature fluctuations are generated. It has been shown (Warhaft & Lumley, 1978;

Sreenivasan & Tavoularis, 1980; Zhou et al., 2000) that the measured value of αexp
T varies sig-

nificantly depending on the experimental apparatus: the power used to create the temperature

fluctuations or the influence of the measurements origin (for example the grid, corresponding to

the kinetic integral scale L, or the heated screen, corresponding to the scalar one LT ). Recent

experimental works (Zhou et al., 2000, 2002; Lee et al., 2012; Antonia et al., 2013) have been

performed on the scalar decay using similar parameters, which allows to make useful compar-

isons. Most of these experiments were done with a mesh size M = 24.76mm, an input speed

U ' 6m.s−1, a mandoline (screen of heated wires) located at xT = 1.5M and heated with 2kW

that generates temperature fluctuations T ∈ [2K, 3K]. Scalar quantities are measured with the

cold wires technique and the Reynolds number is such that Reλ ∈ [30, 70]. However, as soon as

Reλ remains low, there is an uncertainty due to the transient phase from large to low Reynolds

numbers. Finally, since the temperature is a passive scalar, it is still submitted to the variations

of the kinetic field induced by the kind of grid chosen for experiments (square, round, solidity,

active, passive, ...). Therefore, in addition to the moderate Reλ effect, the various techniques

used to create the turbulent kinetic and scalar fluctuations may be responsible for the scattering.

1.4.4 Transition for Pr 6= 1

In the previous high Reynolds and Péclet numbers cases, it has been shown numerically that the

Prandtl number does not affect the scalar decay exponents predicted by the CBC theory. The
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relevant question is now to determine if this is still valid for low Reynolds and Péclet numbers.

It is worth noting that if the Reynolds number is low, it implies a low Péclet regime. In other

words, the case of a kinetic field in low Reynolds regime with a scalar field in large Péclet regime

does not exist, in terms of the CBC theory.
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Figure 1.8: Evolution of the kinetic and scalar decay exponents for Reλ(t = 0) = 240 at
Pr = 103 and Pr = 105. (a) σ = σT = 2; (b) σ = σT = 4.

Case Pr � 1: The transition towards low Reynolds numbers begins when the inertial k−5/3

range of E(k, t) tends to disappear. From this point, the scalar spectrum ET still contains a

k−1 VCR where the scalar destruction is fairly weak. At the beginning of the transition, with

the disappearance of the inertial range, the production of small vortices stops but the friction

between small scales creates some temperature fluctuations. Because of this production of scalar

variance, the scalar decay slows down and αT increases. Then with the disappearance of the

viscous-convective zone, the destruction of scalar variance accelerates under the accumulated

effects of diffusive and dissipative processes. Hence, KT decreases more rapidly. Such a be-

haviour is recovered in Fig. 1.8 where αT is investigated for Saffman and Batchelor turbulence

at Pr = 103 and Pr = 105. Moreover, two critical Reynolds numbers are observed for the scalar

field: a first one from which αT increases, and a second one from which it decreases, correspond-

ing respectively to the disappearance of the ICR and VCR. The second one is smaller than the

one found in the case Pr = 1 which was RecλT ' 12 in Fig. 1.7. Indeed, reaching a low Péclet

regime with a large Prandtl number is longer than with Pr = 1, because Reλ has to decrease

more.

Case Pr � 1: In Fig. 1.9, scalar decay exponents follow, once again, the extended CBC theory.

There is no particular behaviour of αT during the decay: indeed, all scales of the scalar spectrum

ET are fully controlled by the kinetic one. In the case Pr � 1, the main difference with regard

to the case Pr = 1 in Fig. 1.7 is that the transition happens earlier: the scalar critical Reynolds

number RecλT (Pr � 1) is higher than RecλT (Pr = 1). Since the Prandtl number is very small,

the Péclet number Peλ = Reλ
√
Pr tends faster to the low Péclet regime, and so the critical

Reynolds number RecλT is larger than with Pr � 1.
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Figure 1.9: Evolution of the kinetic and scalar decay exponents for Reλ(t = 0) = 1620 at
Pr = 10−3 and Pr = 10−4. (a) σ = σT = 2; (b) σ = σT = 4.

The conclusion is that the scalar time exponents provided by the extended CBC theory are still

valid in the cases Pr � 1 and Pr � 1 for small Reynolds numbers and all values of σ and σT .

Only αT , before reaching its asymptotic limit, is temporarily modified when Pr � 1.

1.4.5 Study of the integral scales L and LT

The emphasis is now put on the kinetic and scalar integral scales L and LT , defined as

L(t) =
3π

4K(t)

∫ ∞
0

k−1E(k, t)dk, LT (t) =
π

2KT (t)

∫ ∞
0

k−1ET (k, t)dk. (1.37)

Evolution of LT : The aim of this part is to show that whatever the Prandtl number is, the

relative initial position of the kinetic and scalar integral scales L(t = 0) and LT (t = 0) does not

change the asymptotic dynamics of the decay. The law provided by Lesieur et al. (1987) gives

the temporal evolution of the scalar integral scale

LT (t) =

(
α

αT

)3/2

L(t) (1 +B t
α−2

3 )3/2, (1.38)

where B is a constant close to −1 evaluated thanks to initial conditions. At first approximation,

at large times, one has LT /L = (α/αT )3/2. Such an equation is obtained by dimensional

analysis, assuming that in the inertial ranges, ε and εT scale like ε = 2K ε1/3L−2/3 and εT =

2KT ε
1/3 L

−2/3
T . However, in the low Reynolds and Péclet regimes, there are no longer inertial

and inertial-convective ranges. Therefore (1.38) is only valid when Re � 1 and Pe � 1. In

Lesieur et al. (1987), it is claimed that (1.38) is only valid in the case LT (t = 0) < L(t = 0),

meaning that the scalar variance is injected at smaller scales than kinetic energy. Hereafter, it

is shown that all the three different cases LT (t = 0) = L(t = 0), LT (t = 0) > L(t = 0) and

LT (t = 0) < L(t = 0) collapse into the same evolution after a transient phase. The cases where

LT (t = 0) = 102 and 10−2, for Pr = 10−2 and Pr = 102 with L(t = 0) = 1 are investigated in

Fig 1.10. Despite the large final turn-over time (t ∼ 1011τ0), the Reynolds number is still high
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enough to make sure that there is a clear inertial range (Reλ ≥ 300). Results before t = 10τ0

are not shown for the sake of clarity as L/LT is too high. The first conclusion is that Pr does

not affect the asymptotic time evolution of LT , as predicted by Lesieur et al. (1987).
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Figure 1.10: Evolution of L/LT for the three different cases LT (t = 0) = L(t = 0),
LT (t = 0) > L(t = 0) and LT (t = 0) < L(t = 0). (a) Pr = 10−2; (b) Pr = 102.

This is an asymptotic result since L and LT collapse for very large turn-over times only. Such

large turn-over times are never reached in practice in experiments. Nevertheless, the three

cases L(0) > LT (0), L(0) < LT (0) and L(0) = LT (0) are physically meaningful: the first

case correspond to the apparatus where the velocity fluctuations are heated after the grid by

a mandoline for instance. The second case correspond to a toaster : the laminar field before

the grid is heated. The comparison of these two settings has been done by Sirivat & Warhaft

(1983). The latter case correspond to the heated grid (Warhaft & Lumley, 1978).

Prediction of kL and kT : Here, a law able to predict the relative position of the peaks of

both kinetic and scalar spectra, respectively kL and kT , is derived. This law is valid in high

Reynolds and Péclet regimes, as soon as kinetic and scalar integrated quantities decay according

to the CBC theory. We define the ratio βL = kT /kL. Even though the assumption βL = 1 is

commonly made, simulations reveal that it is not exactly verified. Moreover, the fact that

kT 6= kL has already been observed in experiments: Warhaft & Lumley (1978); Sreenivasan &

Tavoularis (1980) noted that there was a link between the scalar decay exponent αT and the

ratio βL. Furthermore, Zhou et al. (2000) also made the observation and proposed a correlation.

Nevertheless, since the infrared exponents are unknown in experiments, it is impossible to make

relevant comparisons. This is the reason why an analytical law linking βL and αT in the high

Reynolds and Péclet regimes is proposed here. Piecewise spectra are used

E =

{
A(t)kσ, k < kL,

K0 k
−5/3ε2/3, kL < k < kη,

ET =


AT (t)kσT , k < kT
KCOεT ε

−1/3k−5/3, kT < k < kT,max

KBεT
√

ν
ε k
−1, kη < k < kB,

K0/3 εT a
−3 ε2/3 k−17/3 kCO < k < kη,

(1.39)

where kT,max is either kCO for Pr ≤ 1 or kη for Pr ≥ 1. The computation of the ratio L/LT
yields L/LT = (3βLC

′CT )/(2C C ′T ), where C = 1/(1+σ−p)+3/2, CT = 1/(1+σT −pT )+3/2,
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Cases βth βnum Error (%) Cases βth βnum Error (%)

σ = σT = 1 2/3 0.6684 0.26 σ = 2, σT = 3 0.9104 0.8744 3.95
σ = σT = 2 2/3 0.6684 0.26 σ = 2, σT = 4 1.07 1 6.64
σ = σT = 3 2/3 0.6684 0.26 σ = 3, σT = 2 0.4882 0.5110 4.46
σ = σT = 4 0.7165 0.7645 6.2 σ = 4, σT = 1 0.31 0.299 3.5
σ = 1, σT = 4 1.418 1.496 5.21 σ = 4, σT = 2 0.430 0.4468 3.76

Table 1.4: Values of the ratio βL = kT /kL and relative errors given for several simulations with
σ = σT and σ 6= σT : the values are almost the same for all Pr in [10−5; 105].

C ′ = 1/(σ− p) + 3/5, and C ′ = 1/(σT − pT ) + 3/5. Then, using L/LT = (αT /α)3/2, an explicit

law for βL is obtained

βL =
2

3

(
σ − p
σT − pT

) (
1 + σT − pT

1 + σ − p

) (αT
α

)3/2
. (1.40)

The law (1.40) is valid as soon as there are inertial and inertial-convective ranges for E and ET .

In order to show the relevance of this formula, βL is computed in several cases with σ = σT and

with σ 6= σT . All results are gathered in Table 1.4 where βnum refers to the numerical results

and βth to the theoretical ones coming from (1.40). This formula provides less than 1% error

when σ = σT ≤ 3 and a maximum of 6.64% when σT = 4. Finally, (1.40) does not depend on

Pr: all cases in Table 1.4 give similar values for various Pr, consistently with the fact that Pr

does not affect large scales.

Th βL-law (1.40) completes the work of Ristorcelli (2006) regarding the time scale ratio r:

indeed in the latter reference, the ratio kT /kL is introduced in the analytical computation

of r, but no explicit formula is provided.

1.5 Conclusions for a passive scalar field in HIT

In this first chapter dedicated to the transport of a passive scalar field in homogeneous isotropic

turbulence, several results regarding the impact of a Prandtl number different from unity were

proposed. There are summarized hereafter. It is recalled at this point that the next step is to

extend the EDQNM approach to HAT in Chapter 2, in order to further combine anisotropic

mechanisms and scalar transport from Chapter 4.

First, it has been shown that both theories of Chasnov et al. (1989) and Batchelor (1959) can

be merged into a single one: for a highly diffusive scalar, a new k−11/3 inertial-balanced range

appears for k ∈ [kCD, kη], where kCD =
√
Pr kη is the characteristic wavenumber based on

diffusion and small-scales convection. This new range appears thanks to small-scales convection

that balances diffusion from the k−17/3 inertial-diffusive range. This small-scales convection

predicted by Gibson (1968) comes from small scales eddies of order k−1
η . This new range

appears conjointly with the k−17/3 scaling when both the Reynolds and the Prandtl numbers

are respectively high enough (Reλ ≥ 2.104) and small enough (Pr ≤ 10−3). Finally, both the k

and Pr dependence of the scaling ET ∼
√
Pr k−11/3 were assessed numerically.
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Secondly, the mixed-derivative skewness ST has been investigated. The main results of this

study are twofold. (i) At high Reynolds numbers and for Pr ≥ 103, ST saturates to a constant

value S∞T = −0.435, independent of the large scales initial conditions σ and σT , which means

that statistical properties of the scalar mixing are converged, and can be interpreted as a small

scales equilibrium in the viscous-convective range. (ii) The Re−1
λ scaling for ST (and S), coming

from self-similarity theory, was numerically assessed. These numerical and theoretical results

exhibit some robust asymptotic states at very large Reynolds and Prandtl numbers for scalar

third-order statistics.

Finally, we characterized the decay of a passive scalar field in HIT by extending the Comte-

Bellot and Corrsin (CBC) analysis and comparing it to EDQNM simulations. Namely, a scalar

backscatter parameter pT was defined to take into account strong scalar inverse non-linear

transfers when σT = 4: pT is found to depend much more on σ than on Pr. The important

result is that the theoretical scalar decay exponents of the extended CBC theory are valid

whatever the Prandtl number is in high and low Reynolds and Péclet regimes: indeed, a broad

range of Prandtl numbers (10−5 ≤ Pr ≤ 105) was investigated. The main finding of this

study is that the Prandtl number only affects small scales of the scalar spectrum ET , but not

the asymptotic time evolution of scalar one-point statistics: indeed, the large scales (k < kL)

depend only on the infrared slopes σ and σT . In addition, it was shown numerically that neither

the Prandtl number nor the initial position of LT (t = 0) affect the asymptotic dynamics of the

passive scalar decay as soon as the Reynolds and Péclet numbers are large enough. In other

words, the problem of the passive scalar decay in HIT has been simplified, reducing the relevant

parameters from (Re, Pr, σ, σT , LT (t = 0)) to (Pe, σ, σT ) at large Reynolds numbers. In the

continuity of this study, a law able to predict the relative position of the peaks of both kinetic

and scalar spectra kL and kT was proposed. The consistency of the results over a wide range of

Prandtl and Reynolds numbers shows that the decay of the passive scalar is driven only by the

most energetic large scales of the initial spectra.



Chapter 2

Spectral Modelling of the Velocity

Field in Homogeneous Turbulence

In the previous chapter, the transport of a passive scalar field in HIT was investigated using

classical EDQNM. The scalar field is left aside for now, and we focus on the modelling of HAT

for the velocity field, in order to later combine both anisotropic features and scalar mixing.

The anisotropic EDQNM modelling for the velocity field, introduced in Cambon et al.

(1981), and recently improved in Mons et al. (2016), is presented: details about calculations are

gathered in Appendix C. The model consists in two steps: first, a classical EDQNM procedure is

used to close the non-linear terms of the exact evolution equations of the spectral second-order

moments. Secondly, anisotropy is modelled through spherically-averaged descriptors, following

an expansion into spherical harmonics of the spectral Reynolds tensor R̂ij , further truncated at

the second-order for the sake of simplicity.

The spectral formalism is presented here, along with the main evolution equations, the basics

of EDQNM, and the detailed expressions of the spherically averaged production terms and non-

linear transfers. New theoretical considerations with respect to Mons et al. (2016) are proposed

as well regarding the expansion of R̂ij . In what follows, non-rotating flows are considered.

Direct applications of the anisotropic EDQNM modelling for the velocity field are proposed in

Chapter 3.

2.1 Equations in physical space

In turbulence, the Reynolds decomposition is used to represent a field as the sum of a mean

value and a fluctuating one. Thus, the velocity field vi = ui + Ui, where ui is the fluctuating

velocity, verifies the Navier-Stokes equation with a non-zero mean field Ui(
∂

∂t
+ uj

∂

∂xj

)
ui + Uj

∂ui
∂xj

+ uj
∂Ui
∂xj

= − ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

, (2.1)

where p is the fluctuating pressure and ν the kinematic viscosity. For the sake of clarity, the

time dependence was omitted. The two-point velocity correlation, or Reynolds stress tensor,

33
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Rij is now introduced

Rij(x, r, t) =< ui(x, t)uj(x+ r, t) >, (2.2)

where r is the distance between two points and < . > an ensemble average. In homogeneous

turbulence, Rij only depends on the separation vector r, and all spatial derivatives of second-

order moments (and higher) are zero. Hence, the evolution equation of the one-point correlation

Rij(0, t) is
∂Rij
∂t

= Pij(t) + Πij(t)− εij(t), (2.3)

where Pij is the production tensor

Pij(t) = −∂Ui
∂xk

Rkj(t)−
∂Uj
∂xk

Rki(t), (2.4)

which arises directly from velocity gradients, Πij is the pressure strain tensor given by

Πij(t) =< p(t)

(
∂ui
∂xj

+
∂uj
∂xi

)
>, (2.5)

which will be investigated in the next chapter, and εij is the dissipation tensor

εij(t) = 2ν <
∂ui
∂xk

∂uj
∂xk

> . (2.6)

Surprisingly, the evolution equation of εij is not often investigated, as pointed out in Piquet

(2001). Its equation is consequently derived and simplified in (A.21) for homogeneous turbulence

in Appendix A. The mean velocity gradients are represented by the space-uniform matrix Aij

Aij =
dUi
dxj

. (2.7)

Then, one can develop Ui(x, t) = Aij(t)xj + u0
i where u0

i expresses the effect of a solid-body

motion. The kinetic energy K(t) is defined as

K(t) =
1

2
< uiui >=

1

2
Rii(r = 0, t), (2.8)

and its evolution can be obtained from (2.3)

∂K

∂t
=

Pii

2
− εii

2
. (2.9)

The evolution equation of Rii(r 6= 0), the so-called von Kármán-Howarth equation (von

Karman & Howarth, 1938), is addressed in Appendix A. Consistently, the kinetic energy

dissipation rate is then defined as ε = εii/2. Finally, to follow the time evolution of global

anisotropy, one uses the anisotropy indicator

bij(t) =
Rij(t)

2K(t)
− δij

3
, (2.10)

which is the normalized deviatoric part of Rij . It will be shown hereafter that bij contains in

fact two types of anisotropy.
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2.2 Spectral equations and transfers

In this section, the exact evolution equation of the spectral Reynolds tensor R̂ij is derived, and

a decomposition in terms of directional and polarization anisotropies is presented. There are no

assumptions, except homogeneity, in this part: the modelling begins in the next section.

2.2.1 Craya equation for R̂ij

The counterpart of (2.1) in Fourier space is(
∂

∂t
−Alnkl

∂

∂kn
+ νk2

)
ûi(k) +Aij ûj(k) + ikj ûiuj(k) = −ikip̂(k), (2.11)

where ûi is the Fourier transform of ui and k is the wavenumber: ûi, and most of the spectral

quantities studied in this work, verifies the Hermitian symmetry, i.e. û∗i (k) = ûi(−k), where ()∗

is the complex conjugate. For the sake of clarity, the time-dependence was omitted; ûmun(k)

is the convolution product that can be written as

ûmun(k) =

∫
k=p+q

ûi(p)ûm(q)d3p. (2.12)

Thanks to the incompressibility condition ûiki = 0 in Fourier space, the pressure term can be

erased by projecting (2.11) on the plane perpendicular to p̂. This further yields the so-called

Craya equation for R̂ij(
∂

∂t
−Alnkl

∂

∂kn
+ 2νk2

)
R̂ij(k) +Min(k)R̂nj(k) +Mjn(k)R̂ni(k) = TNL

ij (k), (2.13)

where R̂ij in Fourier space is given by

R̂ij(k, t)δ(k − p) =< û∗i (p, t)ûj(k, t) >=

(
1

2π

)3

δ(k − p)

∫
e−ikprpRij(r)d3r, (2.14)

and where Mij(k) = (δin − 2αiαn)Anj with αi = ki/k. The total non-linear transfer reads

TNL
ij (k, t) = Pimn(k)

∫
Snjm(k,p, t)d3p+ Pjmn(k)

∫
S∗nim(k,p, t)d3p, (2.15)

where Pimn(k) is the Kraichnan’s operator, and Pij the projector

2Pimn(k) = kmPin(k) + knPim(k), Pij(k) = δij − αiαj , (2.16)

with Sijn is the spectral three-point third-order correlation

Sijn(k,p, t)δ(k + p+ q) = i < ûi(q, t)ûj(k, t)ûn(p, t) > . (2.17)

The non-linear total transfer TNL
ij can be written in a form that includes a conservative part with

zero integral over k, and a ”slow pressure” term that is responsible for a return to isotropy



Chapter 2. Spectral Modelling of the Velocity Field in Homogeneous Turbulence 36

(RTI) mechanism and interactions between components

TNL
ij (k, t) = τij(k, t) + τ∗ji(k, t)︸ ︷︷ ︸

Conservative transfer

+ Wij(k, t)︸ ︷︷ ︸
Return to isotropy

= Pinτnj(k, t) + Pjnτ
∗
ni(k, t), (2.18)

where

τij(k, t) = kn

∫
Sijn(k,p, t)d3p, (2.19)

and

Wij = −αiαnτnj(k, t)− αjαnτ∗ni(k, t), (2.20)

with Wii = 0 (because kjτij = 0, but kiτij 6= 0). The conservative part is τij(k, t) + τ∗ji(k, t),

meaning that its integral over k is 0. However, integral over k for Wij is different from 0 since

it is the spectral counterpart of the slow-part of the pressure-strain tensor Πij .

2.2.2 Craya-Herring frame - E − Z decomposition

An optimal decomposition of R̂ij results from a trace-deviator splitting on the plane perpendic-

ular to the wavevector k (Cambon & Rubinstein, 2006; Cambon et al., 2013). Without helicity,

which is the topic of Chapter 8, the spectral Reynolds tensor can be written as follows

R̂ij(k, t) =
E(k, t)

4πk2
Pij(k)︸ ︷︷ ︸

Isotropic

+

(
E(k, t)− E(k, t)

4πk2

)
Pij(k)︸ ︷︷ ︸

Directional anisotropy

+<
(
Z(k, t)Ni(k)Nj(k)

)
︸ ︷︷ ︸

Polarization anisotropy

, (2.21)

where E is the kinetic energy density

E(k, t) =
R̂ii(k, t)

2
, (2.22)

linked to the kinetic energy spectrum E through a surface integral on a spherical shell Sk
of radius k

E(k, t) =

∫
Sk

E(k, t)d2k. (2.23)

The energy density E is the distribution of energy along the wavevector k, and E − E/(4πk2)

reflects the directional anisotropy, i.e. the difference between energy in one direction and

the spherical average. Then, Z represents polarization anisotropy and reflects the difference

of anisotropy between two components of the spectral Reynolds tensor

Z(k, t) =
R̂ij(k, t)

2
N∗i (k)N∗j (k). (2.24)

Both E and Z must verify the realizability condition

|Z(k, t)| ≤ E(k, t), ∀(k, t). (2.25)

Without helicity, R̂ij is real and thus R̂ij(k) = R̂ij(−k). In the isotropic case, Z = 0 and

E = E0 = E/(4πk2). Finally, Nj are the helical modes (Cambon & Jacquin, 1989; Waleffe,
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1992), perpendicular to kj , and linked to the Craya-Herring frame (e(1), e(2), e(3)) and to the

fixed reference direction n, illustrated in Fig. 2.1, through

e
(3)
i =

ki
k
, e

(2)
i = εijle

(3)
j e

(1)
l , e

(1)
i = εijl

kjnl
|k × n|

= εijl
kjnl
k⊥

, (2.26)

Nj(k) = e
(2)
j (k)− ie(1)

j (k). (2.27)

In the Craya-Herring frame, the fluctuating spectral velocity ûi is contained in the plane

(e(1), e(2)) and can be decomposed into toroidal and poloidal components according to

ûi(k) = û(toro)(k)e
(1)
i (k) + û(polo)(k)e

(2)
i (k). (2.28)

Note that unlike other spectral classical quantities, the toroidal component does not verify the

Hermitian symmetry since e
(1)
i (−k) = −e(1)

i (k), so that û(toro)∗(k) = −û(toro)(−k). The toroidal

and poloidal potentials E(toro) and E(polo) are simply linked to E and Z through{
E(toro)(k)δ(k − p) =< û(toro)(k)û(toro)∗(p) >

E(polo)(k)δ(k − p) =< û(polo)(k)û(polo)∗(p) >
,

{
E(k) = E(polo)(k) + E(toro)(k)

Z(k) = E(polo)(k)− E(toro)(k).

(2.29)

Figure 2.1: Craya-Herring frame (e(1), e(2), e(3)) in blue, defined in (2.26); in red the wavevector
k. The fluctuating spectral velocity û is contained in the plane (e(1), e(2)).

At this point, it is of interest to mention that the general decomposition (2.21) could

also be applied in magnetohydrodynamics (MHD): indeed, the magnetic spectral tensor,

defined as B̂ij(k)δ(k−p) =< b̂∗i (p)b̂j(k) >, is also real, symmetric, and solenoidal. This

might be interesting to apply this spectral anisotropic formalism to strong MHD turbu-

lence where a mean magnetic field makes the conductive flow axisymmetric (Boldyrev

et al., 2011).

2.2.3 Generalized Lin equations

Let’s now write the evolution equations for E and Z, called here the generalized Lin equations.

One can rewrite (2.21) as

R̂ij(k, t) = E(k, t)Pij(k) + <
(
Z(k, t)Ni(k)Nj(k)

)
. (2.30)
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With this decomposition and the definition of E , the E-Lin equation reads(
∂

∂t
−Alnkl

∂

∂kn
+ 2νk2

)
E −A+

mnαnαmE +A+
mn<(ZNnNm) = TE , (2.31)

where A+
ij is the symmetric part of Aij , and where the directional transfer TE , is

TE(k, t) =
TNL
ii (k, t)

2
=

1

2

(
τii(k, t) + τ∗ii(k, t)

)
. (2.32)

Similarly, the Z-Lin equation reads(
∂

∂t
−Alnkl

∂

∂kn
+ 2νk2

)
Z + 2iZΩCH +AinN

∗
i (EN∗n + ZNn) = TZ , (2.33)

where ΩCH, linked to both the frame and the velocity gradients, is computed in Appendix C,

and where the polarization transfer TZ is

TZ(k, t) =
TNL
ij (k, t)

2
N∗i (k)N∗j (k) =

1

2

(
τij(k, t) + τ∗ji(k, t)

)
N∗i (k)N∗j (k). (2.34)

The effects of a mean rotation on these equations are considered in Appendix C.

2.3 The closure problem

In this section, the eddy-damped quasi-normal Markovian (EDQNM) approach is briefly re-

called: since details on the procedure can be found in many references, only the main steps are

presented here, and all the calculations specific to homogeneous anisotropic turbulence are de-

tailed in the appendices. The EDQNM procedure is applied to close the Craya equation and to

compute analytically the directional and polarization non-linear transfers TE and TZ . This step

is then combined in the next section with a modelling of anisotropy, so that the k-dependence

of the spectral second-order moments is transformed into a k-one.

2.3.1 The EDQNM approximation

Similarly to HIT, there is here a need to model the transfer term TNL
ij . In order to do so, the

evolution equation of the three-point third-order velocity correlation Sijn, defined in (2.17), is

investigated. After some algebra, one gets(
∂

∂t
+ ν(k2 + p2 + q2)−Alm

(
kl

∂

∂km
+ pl

∂

∂pm

))
Sijn(k,p, t) +Mim(q)Smjn(k,p, t)

+Mjm(k)Simn(k,p, t) +Mnm(p)Sijm(k,p, t) = Tijn(k,p, t), (2.35)

where Tijn will be submitted to the EDQNM approximation. So far, previous equations were

exact. From this point, the modelling begins. Fluctuating velocity probability distributions

are assumed to be close to normal distributions. Hence, one can express Tijn as the sum of a
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quasi-normal part, and a modelled departure from normal laws part, namely

Tijn(k,p, t) = TQN
ijn (k,p, t)−

(
µ1(k, t) + µ1(p, t) + µ1(q, t)

)
Sijn(k,p, t). (2.36)

The quasi-normal part TQN
ijn is expressed as a function of R̂ij according to

TQN
ijl (k,p, t) = 2

(
Pimn(q)R̂mj(k, t)R̂nl(p, t)

+ Pjmn(k)R̂ml(p, t)R̂ni(q, t) + Plmn(p)R̂mi(q, t)R̂nj(k, t)
)
. (2.37)

The second part
(
µ1(k, t) + µ1(p, t) + µ1(q, t)

)
Sijn(k,p, t) takes into account and models the

departure from a normal law: this is the eddy-damping contribution where

µ1(k, t) = A1

√∫ k

0
x2E(x, t)dx, (2.38)

as defined in Pouquet et al. (1975); Orszag (1970). The constant A1 was originally chosen to

be A1 = 0.355 and we keep this value, which provides a Kolmogorov constant so that K0 ' 1.4.

Choosing a different value, such as A1 = 0.49, yields K0 ' 1.6 (Bos et al., 2012).

Now, the evolution equation of Sijn (2.35) with (2.36) can be solved. The resulting expression

of Sijn is then simplified using the Markovianisation step: the characteristic time of the eddy-

damping is very small with respect to the turbulence characteristic time. This constitutes the

classical EDQNM closure. In the homogeneous isotropic turbulence (HIT) framework, the

expression of R̂ij is rather straightforward so that the analytical expression of (2.37) remains

quite simple. In homogeneous anisotropic turbulence, the quasi-normal expression TQN
ijl is further

combined with the decomposition (2.21) and with the modelling of anisotropy for E and Z, so

that the full anisotropic EDQNM modelling contains more complex features than in HIT.

Indeed, in HIT, there is only one EDQNM formalism (Lesieur, 2008). In HAT on the contrary,

three versions can be found (Sagaut & Cambon, 2008), so called EDQNM-1,2,3. For non-

rotating turbulence and in the presence of strong production mechanisms, the present EDQNM1

(Cambon et al., 1981), in terms of spherically-averaged spectra, is relevant enough. However,

rotating turbulence, among other configurations such as stably stratified turbulence for example,

requires the use of the EDQNM2 or EDQNM3, which is out of the scope of the present work,

and models the effects of interacting inertial dispersive waves on the dynamics of the three-point

third-order correlations.

More precisely, the Green’s tensor of the rapid distortion regime is used to solve the linear

operator in the equation for the three-point third-order correlations (Cambon & Jacquin, 1989).

As a consequence, in the EDQNM2 framework, the modelled non-linear transfers contain linear

terms (with respect to the mean-velocity gradient) coming from the third-order correlations

equations. This is at variance with EDQNM1, where these terms are discarded: a review of

various models of turbulence can be found in Cambon & Scott (1999). Then, for a complete

match in the asymptotic case of vanishing non-linearity between wave turbulence theory and

EDQNM, the EDQNM3 was derived, which only slightly differs from EDQNM2 (Cambon et al.,

1997, 2004): the separation of rapid and slow variables is refined in the quasi-normal procedure,

so that E is treated as a slow variable, and the rapid phase of Z is accounted for. These different
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approaches were recently discussed in Cambon et al. (2017) where it is for instance shown how

to move from EDQNM2 to EDQNM1 for stratified turbulence.

In what follows, since rotation is not considered, only the EDQNM1 approximation is used.

Thanks to the whole EDQNM procedure, it is possible to express τij , coming from (2.18), as

function of the second-order moments and of the characteristic time θkpq containing the eddy-

damping term:

τij(k, t) = kl

∫
θkpqT

QN
ijl (k,p, t)d3p, (2.39)

where θkpq is the characteristic relaxation time of the third-order correlations

θkpq =
1− e−µkpqt

µkpq
, µkpq = ν(k2 + p2 + q2) + µ1(k, t) + µ1(p, t) + µ1(q, t). (2.40)

Even for HAT and for consistency with previous studies, an isotropic eddy-damping term is

kept, meaning in particular that each component of R̂ij has the same θkpq. Also, this avoids the

introduction of arbitrary constants at this level of the modelling.

It is worth noting that within the EDQNM1 framework, the characteristic time θkpq can

be tuned to take into account different effects. For unstably stratified turbulence, ad-

dressed later in Chapter 7, the stratification frequency N(t) was added to the viscous and

inertial terms to match better with DNS in Burlot et al. (2015a): θ
(USHT)
kpq = θkpq+a1N(t),

where a1 is a constant, of order 0.25, which depends on the flow. In isotropic magnetohy-

drodynamics turbulence, a magnetic correction was added in Pouquet et al. (1976) to take

into account the propagation of Alfvèn waves: θ
(MHD)
kpq = θkpq +

√
2/3k

√∫ k
0 EB(x, t)dx,

where EB is the magnetic energy spectrum.

2.3.2 Directional and Polarization transfers TE and TZ

The aim of the EDQNM1 approximation is to provide an explicit formula for both the directional

and polarization transfers TE and TZ given in (2.32) and (2.34). For this purpose, a more

convenient frame (β,γ,α) must be used, attached to the planed formed by the triad k+p+q = 0,

where γ is perpendicular to this plane. From now, the following notations are used: ′ and ′′

refer to quantities expressed in p and q respectively. Useful vectors and angles are gathered

in Fig. 2.2. a, b and c are the angles formed by p and q, q and k, and k and p. Finally,

x = cos a, y = cos b and z = cos c. The new frame (β,γ,α) is obtained from Craya frame

(e(1), e(2), e(3) = α) by rotations of angles λ, λ′ and λ′′ around k, p and q. All the details of the

computation of τij from (2.18) are given in Appendix C. The final results for the polarization

and the directional transfers are

TE(k, t) = 2

∫
θkpqkp

[
(E ′′ + <X ′′)

(
(xy + z3)(E ′ − E)− z(1− z2)(<X ′ −<X)

)
+ =X ′′(1− z2)(x=X − y=X ′)

]
d3p, (2.41)

TZ(k, t) = 2

∫
θkpqkpe

−2iλ
[
(E ′′ + <X ′′)

(
(xy + z3)(<X ′ −X)− z(1− z2)(E ′ − E)

+ i(y2 − z2)=X ′
)

+ i=X ′′(1− z2)
(
x(E +X)− iy=X ′

)]
d3p, (2.42)
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with E(k, t) = E , E(p, t) = E ′, E(q, t) = E ′′, X = Z(k, t)e2iλ, X ′ = Z(p, t)e2iλ′ and X ′′ =

Z(q, t)e2iλ′′ . The expressions of TE and TZ can also be found in Cambon et al. (1997); Mons

et al. (2016).

Figure 2.2: The triad k + p+ q = 0 and useful vectors and angles

2.4 Spherically-averaged equations

The generalized E-Lin and Z-Lin equations, along with explicit directional and polarization

transfers TE and TZ , can be solved. In order to considerably reduce computational time,

spherically-averaged descriptors are used, which depend only on the modulus k of the wavevec-

tor k. The procedure is to integrate analytically the generalized Lin equations over a sphere of

radius k. To do so, the expansion of R̂ij into spherical harmonics is truncated at the second-

order.

2.4.1 Spherically-averaged descriptors

The decomposition of R̂ij provided by Cambon & Rubinstein (2006) is now used. As seen in

(2.21), one has

R̂ij(k) = R̂
(iso)
ij (k) + R̂

(dir)
ij (k) + R̂

(pol)
ij (k) =

(
E0(k) + E(dir)(k)

)
Pij(k) + <

(
Z(k)Ni(k)Nj(k)

)
,

(2.43)

where E0 = E/(4πk2) and E(dir) = E − E0. The complete expansion of E and Z into spherical

harmonics at the second-order was done in Mons et al. (2016), and all the details and technical

steps are gathered in Appendix C. Here, for theoretical considerations, the fourth-order is briefly

presented, even though only the second-order will be used in the numerical simulations. After

some algebra, one gets the fourth-order expansion of R̂ij into spherical harmonics

E(k, t) = E0

(
1− 15H

(dir)
ij (k, t)αiαj +

945

12
H

(dir)
ijpq (k, t)αiαjαpαq

)
,

Z(k, t) =
1

2
E0

(
5H

(pol)
ij (k, t) +

21

2
H

(pol)
ijpq (k, t)αpαq

)
N∗i (k)N∗j (k).

(2.44)

(2.45)

The possibility of a third-order contribution in the expansion of Z is only discussed in the

next chapter in section 3.4.3, since the results are not satisfactory for the time being. At this
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point, some words need to be said about the new fourth-order tensors. One can remark that at

the fourth-order, the polarization part H
(pol)
ijpq is contracted with both normalized wavevectors

αpαq and helical modes N∗i N
∗
j , unlike the directional part H

(dir)
ijpq which is only contracted with

αiαjαpαq, and is therefore fully symmetric in its indices, as reported in Rubinstein et al. (2015).

The latter property of full-symmetry is thus a priori not verified by H
(pol)
ijpq , but we nonetheless

make this assumption. Indeed, the analytical calculations are already very complex and lengthy,

and this approximation renders the developments a bit easier. In addition, we assume that both

H
(dir)
ijpq and H

(pol)
ijpq are trace-free, meaning that any contraction of two indices yields zero. For

H
(dir)
ijpq , this is verified according to Rubinstein et al. (2015), but for H

(pol)
ijpq this is a supplementary

assumption, again for the sake of simplicity. All these spectral anisotropy descriptors are defined

as

2E(k, t)H
(dir)
ij (k, t) =

∫
Sk

R̂
(dir)
ij (k, t)d2k, 2E(k, t)H

(pol)
ij (k, t) =

∫
Sk

R̂
(pol)
ij (k, t)d2k, (2.46)

2E(k, t)H
(dir)
ijpq (k, t) =

∫
Sk

E(k, t)Pijpq(k) d2k, (2.47)

2E(k, t)H
(pol)
ijpq (k, t) =

∫
Sk

<
(
Z(k, t)Nijpq(k)

)
d2k, (2.48)

where Sk is the sphere of radius k, and where Pijpq and Nijpq are generalized operators

Pijpq = αiαjαpαq −
1

7
(δijαpαq + 5 perm.) +

1

35
(δijδpq + δipδjq + δiqδjp), (2.49)

Nijpq = (NiNjαpαq +NpNqαiαj + 4 perm.)− 1

7
(δijNpNq + δpqNiNj + 4 perm.). (2.50)

Additional details about the fourth-order expansion, such as the evolution equations of H
(dir)
ijpq ,

and H
(pol)
ijpq , their linear and non-linear transfers, can be found in Appendix C.

Obviously, the truncation of the expansion into spherical harmonics of the exact de-

composition (2.21) provokes a loss of angular information about the anisotropy of the

flow. Part of this information is nevertheless restored thanks to the spherically averaged-

descriptors H
()
ij and H

()
ijpq. However, it is complicated to quantify what is lost because of

this truncation. It will be shown in Chapter 3 that a consequence is that the exponential

growth rate of the kinetic energy in shear flows is too large compared to values obtained

in DNS and experiments, and that taking into account the fourth-order expansion tends

to reduce this exponential growth rate. On the contrary, the second-order expansion

seems to be sufficient for quantitative comparisons in multiple configurations involving

the transport of a passive (Chapter 5) and active (Chapter 7) scalar field.

From now, in the context of moderate anisotropy, only the second order expansion

of R̂ij is kept. In this framework, all quadratic contributions H
()
ijH

()
ij are discarded: neverthe-

less, these second-order contributions in anisotropy have been computed in Appendix C and it is

shown that they are negligible, at least in shear flows. Note that the same kind of second-order

truncations will be performed for the modelling of a scalar field in Chapter 4.
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The indicator of anisotropy defined in (2.10) can be expanded into bij = b
(dir)
ij + b

(pol)
ij thanks to

the previous decomposition

b
(dir)
ij (t) =

1

K(t)

∫ ∞
0

E(k, t)H
(dir)
ij (k, t)dk, b

(pol)
ij (t) =

1

K(t)

∫ ∞
0

E(k, t)H
(pol)
ij (k, t)dk.

(2.51)

Finally, a limit can be derived from the realizability condition (2.25)

max
i

(Li) ≤
1

15
, (2.52)

where Li are eigenvalues of H
(dir)
ij . This condition, obviously valid when only the second-order

expansion is considered, was shown to hold true in multiple configurations in Mons et al. (2016).

2.4.2 Spherically-averaged final Lin equations

In this part, the final spherically-averaged Lin equations of the main spectra, namely E, EH
(dir)
ij ,

and EH
(pol)
ij , are derived: details of the calculations are given in Appendix C. It is recalled that

only the second-order expansion of R̂ij is considered, and that quadratic anisotropic contribu-

tions in the non-linear transfers are discarded. The following compact equations were derived

in Mons et al. (2016), and read(
∂

∂t
+ 2νk2

)
E(k, t) = SL(iso)(k, t) + SNL(iso)(k, t),(

∂

∂t
+ 2νk2

)
E(k, t)H

(dir)
ij (k, t) = S

L(dir)
ij (k, t) + S

NL(dir)
ij (k, t),(

∂

∂t
+ 2νk2

)
E(k, t)H

(pol)
ij (k, t) = S

L(pol)
ij (k, t) + S

NL(pol)
ij (k, t),

(2.53)

(2.54)

(2.55)

where SNL(iso)(k, t) is the classical non-linear spherically-averaged isotropic transfer term

SNL(iso)(k, t) =

∫
Sk

TE(k, t)d
2k (2.56)

= 16π2

∫
∆k

θkpqk
2p2q(xy + z3)E ′′0 (E ′0 − E0)dpdq, (2.57)

with ∆k the domain where k, p and q are the lengths of the sides of the triangle formed by the

triad. The non-linear spherically-averaged directional transfer S
NL(dir)
ij (k, t) is

S
NL(dir)
ij (k, t) =

1

2

∫
Sk

TE(k, t)Pij(k) d2k − δij
3
SNL(iso)(k, t) (2.58)

= 4π2

∫
∆k

θkpqk
2p2qE ′′0

[
(y2 − 1)(xy + z3)(E ′0 − E0)H

(pol)′′

ij + z(1− z2)2E ′0H
(pol)′

ij

]
dpdq

+ 8π2

∫
∆k

θkpqk
2p2q(xy + z3)E ′′0

[
(3y2 − 1)(E ′0 − E0)H

(dir)′′

ij + (3z2 − 1)E ′0H
(dir)′

ij − 2E0H
(dir)
ij

]
dpdq.

(2.59)
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And S
NL(pol)
ij (k, t) is the non-linear spherically-averaged polarization transfer

S
NL(pol)
ij (k, t) =

1

2

∫
Sk

<
(
TZ(k, t)Ni(k)Nj(k)

)
d2k (2.60)

= 4π2

∫
∆k

θkpqk
2p2qE ′′0

[
(xy + z3)

(
(1 + z2)E ′0H

(pol)′

ij − 4E0H
(pol)
ij

)
+ z(z2 − 1)(1 + y2)(E ′0 − E0)H

(pol)′′

ij + 2z(z2 − y2)E ′0H
(pol)′

ij + 2xy(z2 − 1)E0H
(pol)′′

ij

]
dpdq

+ 24π2

∫
∆k

θkpqk
2p2qz(z2 − 1)E ′′0

[
(y2 − 1)(E ′0 − E0)H

(dir)′′

ij + (z2 − 1)E ′0H
(dir)′

ij

]
dpdq. (2.61)

For the linear production terms, A+
ij and A−ij are respectively the symmetric and antisymmetric

parts of Aij . First, SL(iso)(k, t) is the linear spherically-averaged isotropic transfer

SL(iso)(k, t) =
1

2

∫
Sk

(
Alnkl

∂R̂ii
∂kn

− 2MinR̂ni

)
d2k (2.62)

= −2A+
lm

(
∂

∂k
(kEH

(dir)
lm ) + E(H

(dir)
lm +H

(pol)
lm )

)
. (2.63)

Then, S
L(dir)
ij (k, t) is the linear spherically-averaged directional transfer

S
L(dir)
ij (k, t) =

1

4

∫
Sk

(
Alnkl

∂R̂mm
∂kn

− 2Mmn(k)R̂nm(k)

)
Pij(k)d2k − δij

3
SL(iso)(k, t) (2.64)

=
2

15
A+
ijE −

2

7
E
(
A+
ljH

(pol)
il +A+

liH
(pol)
jl − 2

3
A+
lnδijH

(pol)
ln

)
− 1

15
A+
ij

∂(kE)

∂k

+
2

7

(
A+
il

∂

∂k
(kEH

(dir)
jl ) +A+

jl

∂

∂k
(kEH

(dir)
il )− 2

3
A+
lmδij

∂

∂k
(kEH

(dir)
lm )

)
− 1

7
E

(
A+
jlH

(dir)
il +A+

ilH
(dir)
jl − 2

3
A+
lmH

(dir)
lm δij

)
+ E

(
A−jnH

(dir)
ni +A−inH

(dir)
nj

)
. (2.65)

Finally, S
L(pol)
ij (k, t) is the linear spherically-averaged polarization transfer

S
L(pol)
ij (k, t) =

1

4

∫
Sk

<

[(
Alnkl

∂R̂rs
∂kn

− 2Mrn(k)R̂ns(k)

)
N∗r (k)N∗s (k)Ni(k)Nj(k)

]
d2k (2.66)

= −2

5
A+
ijE −

12

7
E

(
A+
jlH

(dir)
il +A+

ilH
(dir)
jl − 2

3
A+
lmH

(dir)
lm δij

)
− 2

7

(
A+
il

∂

∂k
(kEH

(pol)
lj ) +A+

jl

∂

∂k
(kEH

(pol)
li )− 2

3
δijA

+
lm

∂

∂k
(kEH

(pol)
lm )

)
+

1

7
E
(
A+
ljH

(pol)
il +A+

liH
(pol)
jl − 2

3
A+
lmH

(pol)
lm δij

)
− 1

3
E
(
A−jlH

(pol)
li +A−ilH

(pol)
lj

)
. (2.67)

2.4.3 Return to isotropy - Spectral tensor

In order to investigate more precisely the return to isotropy (RTI) mechanism, a specific transfer

term T (RTI) was introduced in Mons et al. (2016): the slow-pressure terms (contained in the

pressure-strain tensor Πij) are at the origin of the return to isotropy and drive this mechanism.
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Thus, the non-conservative transfer term Wij can be linked to the RTI mechanism as follows

Wij(k, t) = −<
(
T (RTI)(k, t)[αiNj(k) + αjNi(k)]

)
, T (RTI)(k, t) = αiτij(k, t)N

∗
j (k), (2.68)

so that

T (RTI)(k, t) =2

∫
θkpqe

−iλp(xy + z)
√

1− z2(E ′′ + <X ′′)[
(E +X)(zk − qx)− k(z(E ′ + <X ′)− i=X ′)

]
d3p, (2.69)

with details given at the end of Appendix C. Regarding the spherically-averaged RTI trans-

fer, defined as follows

S
(RTI)
ij (k, t) = −

∫
Sk

<
(
T (RTI)(k, t)[αiNj(k) + αjNi(k)]

)
d2k, (2.70)

similar calculations yield

S
(RTI)
ij (k, t) = 16π2

∫
∆k

θkpqk
2p2q(x+ yz)E ′′0

[
− y(z2 − x2)E0(6H

(dir)′′

ij +H
(pol)′′

ij )

+ E ′0
(
y(z2 − y2)(6H

(dir)′′

ij +H
(pol)′′

ij )− (xz + y)H
(pol)′′

ij

)]
dpdq. (2.71)

Now that all transfer terms have been defined, and that the formalism has been presented, it is

convenient to introduce the spherically-averaged spectral tensor

φij(k, t) =

∫
Sk

R̂ij(k, t)d
2k = 2E(k, t)

(
δij
3

+H
(dir)
ij (k, t) +H

(pol)
ij (k, t)

)
. (2.72)

Because of the spherical-average, even if the fourth-order expansion was considered in R̂ij , the

equation would be the same since the H
()
ijpq contributions vanish. The evolution equation of φij

is then (
∂

∂t
+ 2νk2

)
φij(k, t) = S

NL(tot)
ij + S

L(tot)
ij = SNL

ij + S
(RTI)
ij + S

L(tot)
ij . (2.73)

The total non-linear spherically-averaged transfer and can be expressed as

S
NL(tot)
ij (k, t) =

∫
Sk

TNL
ij (k, t)d2k = SNL

ij (k, t) + S
(RTI)
ij (k, t) (2.74)

= 2

(
δij
3
SNL(iso)(k, t) + S

NL(dir)
ij (k, t) + S

NL(pol)
ij (k, t)

)
, (2.75)

with
∫∞

0 SNL
ij (k, t)dk = 0. The total linear spherically-averaged transfer, which depends

linearly on the mean-velocity gradient matrix, is

S
L(tot)
ij (k, t) =

∫
Sk

TL
ij(k, t)d

2k (2.76)

= 2

(
δij
3
SL(iso)(k, t) + S

L(dir)
ij (k, t) + S

L(pol)
ij (k, t)

)
. (2.77)

If one considers the fourth-order expansion: S
L(tot)
ij contains both contributions from the second

and fourth orders, whereas S
NL(tot)
ij contains only second-order contributions.



Chapter 3

Dynamics of the Velocity Field in

Shear-driven Turbulence

The spectral modelling for anisotropy presented in Chapter 2 is now applied. Validation of the

model, by comparisons with DNS and experiments, can be found both in Mons et al. (2016)

and hereafter. This chapter mainly focuses on shear flows: nevertheless, others configurations

such as axisymmetric contractions, expansions, and plane distortion, are presented in Appendix

D, along with pressure spectra.

Most of the contents presented in this chapter were published in:

Briard, Gomez, Mons, & Sagaut, ”Decay and growth laws in homogeneous shear turbu-

lence”, Journal of Turbulence, 17 (07), 699-726 (2016)

The study of homogeneous anisotropic turbulence is of great interest for a deeper understanding

of the different mechanisms that occur in anisotropic turbulent flows. The specific case of ho-

mogeneous shear flows has been particularly investigated since it exhibits different fundamental

physical processes: anisotropic production of turbulent kinetic energy, interaction between linear

and non-linear mechanisms, return to isotropy process... Since Kolmogorov (1941b), it is known

that small scales should return to an isotropic state, meaning that even with a mean shear

applied on large scales that strongly modifies their properties, there is a return to isotropy

(RTI) mechanism of the small scales. This RTI process and the modelling of the so-called slow-

part of the pressure-strain tensor Π
(s)
ij is a challenging issue. The total pressure strain tensor

Πij =< p(∂jui +∂iuj) >, where p and ui are the fluctuating pressure and velocity, intervenes in

the evolution equation (2.3) of the Reynolds stress tensor Rij =< uiuj >. Several models were

proposed for the slow part Π
(s)
ij and have been improved in the past decades. The most popular

are the LRR model (Launder et al., 1975), the one of Shih & Lumley (1985), the SSG model

(Sarkar & Speziale, 1990), and an improved version of the SSG model by Warrior et al. (2014).

These models rely on a Taylor series expansion around the isotropic state of the dimensionless

tensor Π
(s)
ij /ε, where ε is the kinetic energy dissipation rate. The small parameter in this ex-

pansion is the anisotropy tensor bij , defined in (2.10). These models yield good results in the

early times of the flow dynamics. Indeed the arbitrary parameters introduced in these models

are tuned in order to fit experimental data. However, a weakness of these models is their lack

46
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of universality: values of their parameters strongly depend on the choice of the experimental

data, often obtained at moderate Reynolds numbers. Consequently, the analysis of long-time

behaviour of bij in the RTI process remains an interesting and open question. In the asymptotic

case of high Reynolds numbers, this mechanism should be universal and thus should not require

any adjustable constants.

In addition to the modelling of Π
(s)
ij and the RTI mechanism, a fundamental feature to investigate

is the influence of anisotropy on the decay of integrated quantities such as the kinetic energy

K(t). It follows, from the pioneering work of Corrsin (1951a); Comte-Bellot & Corrsin (1966)

(CBC) relying on dimensional analysis, and self-preservation analysis George (1992a), that the

kinetic energy decays in power laws in the isotropic framework, K(t) ∼ tα. This has been

recovered recently for very large Reynolds numbers with a classical EDQNM closure for HIT

(Meldi & Sagaut (2012, 2013a) and Chapter 1).

To quantify the impact of anisotropy on the decay regime, comparisons are usually made with

HIT. Moreover, the case of axisymmetric contraction (or expansion), which is representative of

grid turbulence, has already received some attention. Notably, it has been shown (Chasnov,

1995; Davidson et al., 2012; Mons et al., 2014b) for this configuration that an initial axisymmetry

does not modify the decay exponent in the asymptotic regime, i.e. for Saffman turbulence

K(t) ∼ t−6/5.

An original configuration to explore, which has not been investigated yet in direct numerical

simulations (DNS) nor in experiments, is the case of a mean shear which is suddenly released.

This case could be physically interpreted as a volume of fluid that experiences an intense shear,

and which is then convected in an almost shearless region. Characteristic time scales in these

two different phases are of great importance, as shown later on. Is the decay of kinetic energy

modified in such a homogeneous shear-released turbulence (HSRT), with respect to HIT? This

fundamental question is of theoretical interest, since HSRT, unlike axisymmetric turbulence,

creates a purely anisotropic correlation R13 =< u1u3 >. The understanding of such a correlation

dynamics could provide relevant information on anisotropy.

Another relevant case to focus on is the homogeneous shear turbulence (HST) where the mean

velocity gradient is maintained throughout the evolution of the flow. In this configuration,

partially representative of atmospheric flows, kinetic energy is continuously produced by the

mean shear. This framework is commonly studied in experiments (Tavoularis & Corrsin, 1981;

Tavoularis & Karnik, 1989; De Souza et al., 1995) and in DNS (Pumir & Shraiman, 1995;

Pumir, 1996; Gualtieri et al., 2002; Brethouwer, 2005). Notably, it is found that the small scales

of the velocity field second-order moments return to isotropy, and that kinetic energy grows

exponentially (Tavoularis, 1985; George, 1992a; Sagaut & Cambon, 2008) when the anisotropy

indicators bij have reached an asymptotic state. Despite all these works, some discrepancies still

remain, whose origin is not completely understood. For instance, in the DNS of Brethouwer

(2005), the anisotropy tensor bij does not reach an asymptotic state as required by theory

(Sagaut & Cambon, 2008) when the exponential growth rate γ of the kinetic energy is evaluated.

Indeed, the dimensionless time St, or accumulated anisotropy, where S is the shear rate, is

not high enough (St ' 12 only). The issue is similar in most of the DNS and experiments, thus

leading to a large dispersion of the growth rates (from γ = 0.07 to 0.33, see Table 3.1). Moreover,

especially in experimental works, the question of homogeneity can be raised: inhomogeneous

flows are not studied in the present chapter, but their influence on the growth rate of the kinetic
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energy is an open question and deserves further investigations. In addition, the mean velocity

gradient strongly varies near the boundaries, possibly inducing a different phenomenology in the

growth of the kinetic energy. Finally, in DNS, the finite size of the box could alter the kinetic

energy growth rate in a manner difficult to quantify. These aspects could explain the current

dispersion of growth rates.

In both HST and HSRT, the mean-velocity gradient matrix reads

Aij =
dUi
dxj

, Aij = −Sδ1iδ3j , (3.1)

with S expressed in units of τ−1
0 , where τ0 is the eddy turn-over time K(0)/ε(0), so that

S = Sτ−1
0 , where S is the dimensionless mean velocity gradient. The evolution equation of the

kinetic energy in homogeneous shear turbulence reads

dK

dt
= SR13(t)− ε(t) = 2SK(t)b13(t)− ε(t), (3.2)

where K and its dissipation rate ε are linked to the kinetic energy spectrum E through

K(t) =

∫ ∞
0

E(k, t)dk, ε(t) = 2ν

∫ ∞
0

k2E(k, t)dk. (3.3)

The chapter is structured as follows. The case of homogeneous shear-released turbulence (HSRT)

is firstly investigated: the return to isotropy, the modelling of the slow part of the pressure

strain tensor and decay laws are addressed. Then, the emphasis is put on sustained shear flows

(HST). In this part, the results of the present anisotropic modelling are discussed and put into

perspective with review of various DNS and experiments. Finally, the most important points

developed in this chapter are recalled in the concluding section, and some considerations about

the fourth-order expansion are discussed.

3.1 Homogeneous Shear-Released Turbulence (HSRT)

In this section, the emphasis is put on HSRT: this is an original configuration where the shear S

is non zero only in the early times. During this phase, linear transfers defined in (2.76) increase

the anisotropy and produce kinetic energy. Then, after the release of the velocity gradients, the

velocity field freely decays and there is a RTI mechanism: non-linear transfers defined in (2.74)

tend to isotropize small scales, decreasing as a consequence both K(t) and R13(t).

This framework, firstly presented in Mons et al. (2016), has never been investigated in DNS nor

in experiments. This section is divided into five parts. Firstly, rapid distortion theory (RDT) is

used to validate the model at short times, when the linear effects are dominant. Then, classical

scalings for the different spectra involved in shear-driven turbulence are addressed. Afterwards,

the RTI mechanism, once the shear is released, is investigated, with a particular attention on

the difference between Saffman and Batchelor turbulence. Then, a model is proposed for the

slow-part of the pressure-strain tensor in the RTI phase. Finally, effects of infrared exponent σ

and shear rate S, along with the case of anisotropy at low Reynolds numbers, are discussed.
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3.1.1 Validation of HSRT with Rapid Distortion Theory

In this part, the anisotropic EDQNM modelling is assessed by comparisons with RDT as done in

(Mons et al., 2016). The main calculations coming from RDT are given in Appendix D. In RDT,

non-linear terms are discarded: this theory is valid for short times only, when linear processes

dominate the flow. Moreover, at short times (for large Reynolds numbers), viscous effects are

also negligible with respect to inertial ones. Two different simulations are presented in Fig. 3.1:

one with an initial isotropic kinetic spectrum E(k, t) in which linear transfers produce energy

and anisotropy. And a second one where these linear transfers are set to zero and the initial

spectral tensor φij is analytically determined thanks to RDT. It is clear that the two different

initial conditions collapse into the same behaviour when the shear is released, for both σ = 2

and σ = 4. This validates our spectral transfers. Another point of interest is that with RDT,

φ13 displays an inertial k−5/3 range instead of an inertial anisotropic k−7/3 range, which proves

that non-linear transfers are responsible for the anisotropic range.
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Figure 3.1: Comparison of b13 with RDT initial conditions (S
L(tot)
ij = 0) and with isotropic

initial conditions with St = 0.1. (a) For σ = 2. (b) For σ = 4.

3.1.2 Kinetic energy spectrum E(k, t) and spectral tensor φij(k, t)

In Fig. 3.2a, diagonal components of the spectral tensor φij(k, t) (only φ11 is shown) display a

k−5/3 scaling in the inertial range, as in the purely isotropic case, from the integral wavenumber

kL(t) ' 1/L(t) to the Kolmogorov wavenumber kη, where L(t) is the kinetic integral scale.

The cross-tensor φ13(k, t) is also presented, and exhibits a k−7/3 scaling in the inertial range.

This scaling comes from E(k, t)H
()
ij (k, t) spectra exclusively since Eδ13 = 0. The spectral scaling

of the cross-tensor can be found by dimensional analysis, assuming that φ13(k, t) depends on

the k, ε, and linearly on the shear rate S

φ13(k, t) ∼ Sε1/3k−7/3. (3.4)

This result was firstly found by Lumley (1967) and derived in a different way by Ishihara et al.

(2002). The k−7/3 slope has also been obtained in DNS (Shen & Warhaft, 2000; Ishihara et al.,

2002; Sukheswalla et al., 2013).
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Figure 3.2: (a) Spectral tensors φ13(k, t) and φ11(k, t). (b) Total non-linear flux and RTI
flux. Both for σ = 2 with St = 1.

The total non-linear and RTI transfers are now investigated in Fig. 3.2b, and more precisely

their corresponding flux, computed according to

Π
NL()
ij (k, t) = −

∫ k

0
S

NL()
ij (u, t)du. (3.5)

The total non-linear flux is not conservative (meaning that Πij(k = ∞) 6= 0) because of the

RTI mechanism, originating from ”slow pressure” terms. Nevertheless, when the RTI flux is

subtracted, a conservative non-linear flux is recovered, as illustrated in Fig. 3.2b. Such a

test case is an accurate validation of the previous analytical calculations of Chapter 2 for the

non-linear transfers.

3.1.3 Anisotropy descriptors bij(t) and H
()
ij (k, t)

In this part, the emphasis is put on the RTI mechanism in HSRT. The case of Saffman turbulence

has been presented in Mons et al. (2016), and is compared here with Batchelor turbulence.

Conclusions with regard to the permanence of large eddies are drawn.

The shear is maintained during a small number of turn-over times and is then released. For

high Reynolds numbers, it is well known that the anisotropy tensor bij defined in (2.10) reaches

an asymptotic anisotropic state in the RTI process. This has already been observed in DNS

(Sarkar & Speziale, 1990) and is recovered here in Fig. 3.3a for Saffman turbulence. The initial

spectrum E(k, t = 0) being isotropic, one has bij(t = 0) = 0. Because of linear shear effects, a

strong departure from the isotropic state is observed: the |bij | increase up to the shear release,

and then reach constant values. The interesting result here at high Reynolds numbers is that

the final state of the anisotropy tensor b∞ij , reached from t = 103τ0, is not zero. This means

that there is still some anisotropy left in the flow. The anisotropy tensor bij(t) being an average

in space, it hides where the remaining anisotropy is. Therefore, spectral anisotropy descriptors

H
()
ij (k, t) are used to provide information on the localization of anisotropy in wavenumber space:

Fig. 3.3b reveals that H
()
ij = 0 only at small scales. This shows that there is a complete RTI of

small scales in Saffman turbulence, whereas large scales keep their anisotropy. This behaviour
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is in agreement with Kolmogorov (1941b) local isotropy theory and with results of DNS (Sarkar

& Speziale, 1990) as well.
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Figure 3.3: Anisotropy for σ = 2 with S = 0.1τ−1
0 and St = 1. (a) Anisotropy tensor

bij(t). (b) Various spectral anisotropy indicators H
()
ij (k, t) at t = 100τ0, along with the

integral and Kolmogorov wavenumbers kL and kη.

Batchelor turbulence is now addressed. Simulations show that the bij continuously return to

zero, as illustrated in Fig. 3.4a: this means that anisotropy globally decreases over time, unlike

Saffman turbulence. Spatial information about the localization of anisotropy is available in Fig.

3.4b: the spectral anisotropy descriptor H
(pol)
13 (k, t) reveals that large scales anisotropy decreases

with time for Batchelor turbulence, whereas it remains constant for Saffman turbulence. Other

components of H
(pol)
ij and H

(dir)
ij behave similarly. Therefore, because of this continuous loss of

anisotropy in Batchelor turbulence, a complete RTI of all scales is theoretically possible, even

though physically unreachable. Indeed, it would require an infinite Reynolds number in order

to stay in the high Reynolds numbers regime: with a larger Reynolds number comes a greater

quantity of anisotropy to evacuate.

The large scales loss of anisotropy in Batchelor HSRT is due to the classical backscatter of energy

that already occurs in Batchelor HIT (Eyink & Thomson, 2000; Lesieur & Ossia, 2000; Meldi

& Sagaut, 2012). Indeed, strong inverse non-linear transfers, from small scales to large ones,

tend to isotropize the large scales, which causes the anisotropy to decrease. This is consistent

with non-linear mechanisms being responsible for the return-to-isotropy process. Moreover,

these strong inverse non-linear transfers result into the breakdown of the PLE in Batchelor

turbulence.

3.1.4 Modelling of the pressure-strain tensor Π
(s)
ij

The modelling of the pressure-strain tensor Πij , which directly intervenes in the evolution

equation (2.3) of Rij , is a challenging topic. Indeed, the velocity-pressure correlation is complex,

and its prediction is of particular interest for the development of RANS models. This term is

commonly divided into two parts: a slow one Π
(s)
ij , responsible for the redistribution of energy

between components, and a rapid one Π
(r)
ij , linked to the linear effects of mean-velocity gradients.

The latter part is rigorously zero when the shear is released. This is why the emphasis is put
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Figure 3.4: (a) Anisotropy tensor bij(t) for σ = 4. (b) Spectral anisotropy indicator

H
(pol)
13 (k, t) for σ = 2 (grey lines) and σ = 4 (black lines), at t = 10τ0 and t = 106τ0.

Both with S = 0.1τ−1
0 and an injected anisotropy St = 1.

on the slow-part Π
(s)
ij which is at the origin of the RTI mechanism highlighted in the previous

part.

The slow part of the pressure-strain tensor can be written (Sarkar & Speziale, 1990)

Π
(s)
ij (t) = −ε(t)

(
C

(1)
RTIbij(t) + C

(2)
RTI

(
bil(t)blj(t)−

1

3
bkl(t)bkl(t)δij

))
. (3.6)

EDQNM simulations at high Reynolds numbers show that powers of bij are much lower than

bij alone. This would imply, at first order in anisotropy, that Π
(s)
ij /ε = −C(1)

RTIbij . Such a linear

relation between the normalized pressure-strain tensor and the anisotropy indicator bij can be

recovered starting from the evolution equation of Rij . Replacing Rij by its expression as a

function of bij , given in (2.10), yields

dbij
dt

= −2

3
A+
ij −Aikbkj −Ajkbki + 2Aklblk

(
δij
3

+ bij

)
+

Πij

2K
+

ε

K
bij , (3.7)

which can be found as well in Sarkar & Speziale (1990); Warrior et al. (2014). The dissipation

tensor εij was assumed to be isotropic, i.e. 3εij = 2εδij . This is a reasonable assumption for

moderately anisotropic flows: indeed, simulations at high Reynolds numbers show that the non-

diagonal components of εij are negligible with respect to diagonal ones. Moreover, when the

shear is released, Aij = 0 and only the slow part of the velocity-pressure correlation remains,

Πij = Π
(s)
ij . In addition, it has been shown in the previous part that the bij reach an asymptotic

state when the PLE is verified: this implies that dbij/dt = 0. Thus, the evolution equation (3.7)

of bij becomes

Π
(s)
ij (t) = −2ε(t)bij(t) = −CRTIε(t)bij(t). (3.8)

Consequently, for large times, large Reynolds numbers, an initial moderate mean-velocity gra-

dient which is then released, and when the PLE is verified, this model predicts CRTI = 2 as an

- universal - constant of the RTI mechanism. CRTI will be shown hereafter to be independent
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of both the large scales initial conditions and of the mean flow gradient Aij . The case of pure

rotation is not considered here, and this will be briefly justified later.

Existing models (Shih & Lumley, 1985; Sarkar & Speziale, 1990; Warrior et al., 2014) are in-

trinsically different since there are designed to capture the short time dynamics of the flow

when the mean-velocity gradients are active, i.e. when Aij 6= 0 and Π
(r)
ij 6= 0, whereas the

emphasis in this work is put on a freely decaying turbulence initially submitted to mean-

velocity gradients, at large times and Reynolds numbers. For instance, in the strongly non-

linear model of Shih & Lumley (1985), CRTI is not constant and depends on bij through

CRTI = 2+(terms in bijbij and bikbkjbij), and in Sarkar & Speziale (1990); Warrior et al. (2014),

one has 3.1 ≤ CRTI ≤ 3.4. The modelling for Π
(s)
ij proposed here is consequently complementary

to existing models, and investigates the asymptotic RTI mechanism when the mean-velocity

gradients are released.
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Figure 3.5: Constant of the Π
(s)
ij model for different shear rate S, infrared exponents σ, compo-

nents ()ij and kinds of anisotropy. The asymptotic value at t = 106τ0 is CRTI = 1.9.

In Fig. 3.5, the time evolution of CRTI(t), computed thanks to (3.8), is displayed. Π
(s)
ij is the

integral over k of the RTI non-linear transfer S
(RTI)
ij defined in (2.71). To assess the relevance of

the value CRTI = 2, several cases are presented. CRTI is evaluated with different mean velocity

gradient intensities S, for infrared slopes σ = 1, 2 and 3, for various components of the tensor

Π
(s)
ij , and several kinds of anisotropy: shear, axisymmetry (A11 = A22 = −A33/2) and distortion

(A13 = A31). The main result is that in all these cases CRTI(t) → 1.9 which is very close to

the theoretical value CRTI = 2 expected from the previous development. Hence, the model

Π
(s)
ij (t) = −2ε(t)bij(t) is assessed numerically. Moreover, this model seems to be robust since it

holds for various initial parameters and kinds of anisotropy. The case of Batchelor turbulence is

not presented in Fig. 3.5 since dbij/dt 6= 0 which is an assumption of the model. Consequently,

in Batchelor HSRT, CRTI continuously decreases. But, on a strictly quantitative point on view,

the value obtained at t = 106τ0 is CRTI = 1.87, which is close to 2 as well.

The slight difference between the expected value 2 and the 1.9 obtained numerically for CRTI

could be, at least partially, attributed to the isotropic approximation for the dissipation rate

tensor εij . Such large times (t = 106τ0) are never reached in practice in experimental works,

even though they are essential at high Reynolds numbers to make sure that the decay follows

completely the theoretical decay exponents of the CBC theory. Nevertheless, CRTI = 2 remains a
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relevant value as all our different curves in Fig. 3.5, corresponding to various initial parameters,

are almost equal to CRTI = 2 within 5% from t = 102τ0, which is a reasonable time.

This model mainly relies on two aspects: (i) The isotropic shape of the dissipation tensor εij ,

which is well assessed numerically: indeed, εij strongly depends on small scales, see equation

(3.12), which return to isotropy according to Fig. 3.3b, meaning that extra-diagonal components

are very small with respect to diagonal ones. (ii) The asymptotic behaviour of the bij which

become constant for large times, which implies dbij/dt = 0. Numerically, constant values at

large times for the bij seem to be strongly associated to cases where the PLE is verified. It is

worth noting that these two hypothesis are independent of the mean-velocity gradient intensity

S and of the mean flow shape (shear, axisymmetry, distortion), which explains the consistency

of the results of Fig. 3.5.

These hypothesis are notably satisfied for any flows dominated by production mechanisms, such

as shear flows. Consequently, there is no guarantee that this model would work for rotating mean

flows for instance: indeed, such a configuration involves turbulent waves which alter the third-

order correlations dynamics (Cambon et al., 2013). Therefore, further investigations are needed

to fully understand the impact of rotation on the eddy-damping terms and its consequences on

the RTI process.

3.1.5 Additional remarks on HSRT

Effects of infrared exponent σ and shear rate S: it has been shown that the global

indicators bij reach asymptotic anisotropic values for large times, except in the case of Batchelor

turbulence σ = 4 where they continuously decrease. In Fig. 3.6a, the emphasis is put on b13.

The first obvious remark is that the stronger the anisotropy, i.e. the larger the shear rate S (at

constant accumulated anisotropy), the more the asymptotic value blimij is far from zero. This

is expected: if the initial anisotropy is strong, the residues will be important. Finally, in Fig.

3.6b, one can note that the rapider the decay, i.e. the larger σ, the more blimij is close to zero.

Once again, this is consistent with the fact that when the decay is faster, small scales have a

more efficient RTI process.
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Figure 3.6: Asymptotic anisotropic state for b13. (a) With σ = 2 for various shear rates
S at constant St = 10. (b) With S = 1τ−1

0 , St = 10 for various σ.
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Anisotropy at low Reynolds numbers: an interesting behaviour is illustrated in Fig. 3.7a

where anisotropy increases at low Reynolds numbers. This is expected since the kinetic energy

spectrum E(k, t) no longer displays an inertial range when Reλ → 0: indeed, all anisotropy is

gathered at large scales, and bij being an integral over k, it eventually represents the initial

anisotropy injected in the flow: at low Reynolds numbers, the asymptotic values of bij and

H
(dir)
ij + H

(pol)
ij coincide. The increase of bij at low Reλ is in agreement with Davidson et al.

(2012) where axisymmetric anisotropic Saffman turbulence is considered. And one can note that

in Figure 1.e) therein, for the low Reynolds simulation (Run 5), anisotropy (observed through

u2
⊥/u

2
‖) slightly increases. There is no explanation in the paper but this phenomenon is in good

agreement with our simulations: anisotropy increases with diminishing Reynolds number. In

Batchelor turbulence, because of the continuous loss of anisotropy, a complete return to isotropy

is possible at low Reynolds numbers as revealed in Fig. 3.7b where H
(dir)
13 +H

(pol)
13 → 0.
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Figure 3.7: (a) bij : transition towards low Reynolds numbers for σ = 2 with St = 1. (b)

H
()
13 for different Reynolds numbers with σ = 4.

3.2 Decay of K(t) and R13(t) in Saffman and Batchelor HSRT

In this section, the general decay exponent for the anisotropic correlation R13 in Batchelor

HSRT is investigated. First, it is recalled that in HIT, following the Comte-Bellot and Corrsin

(CBC) theory (Comte-Bellot & Corrsin, 1966; Corrsin, 1951a), the kinetic energy and integral

scale decay as

K(t) ∼ tα, α = −2
σ − p+ 1

σ − p+ 3
, L(t) ∼ tnL , nL =

2

σ − p+ 3
, (3.9)

where the backscatter parameter p(σ = 4) = 0.55 and p(σ ≤ 3) = 0 takes into account the

classical Batchelor breakdown of the PLE (Eyink & Thomson, 2000; Meldi & Sagaut, 2012).

In Fig. 3.8, the theoretical decay exponent α of the kinetic energy is still valid in Saffman

HSRT at high Reynolds numbers (and low Reynolds numbers as well, even though it is not

presented). The fact that the kinetic energy decay exponent is not affected by anisotropy in

Saffman turbulence has already been found in DNS in the case of homogeneous axisymmetric

turbulence (Davidson et al., 2012). In the case of Batchelor HSRT, α is also recovered thanks to
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the parameter p, as in HIT. However, when it comes to the decay exponent α13 of the correlation

R13 =< u1u3 >, one has α13 = α only in the case of Saffman HSRT. Indeed, in Batchelor HSRT,

one has α13(σ = 4) 6= α(σ = 4).
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Figure 3.8: Decay exponents ofK(t) and R13(t) for various shear intensity S. ©: Classical
CBC exponents; �: Extended CBC exponents. (a) Saffman HSRT: α = α13 = −6/5.
(b) Batchelor HSRT: α = −1.38 is recovered. α13 = −1.464 with pS = 0.279. The grey

dash-dot curve −· corresponds to a distortion simulation with S = 1τ−1
0 .

This difference is due to anisotropy which modifies the classical back transfer of energy through

non-linear transfers. Because of strong inverse non-linear transfers which tend to isotropize large

scales, there is a global loss of anisotropy. Thus, the decay of R13 is accelerated in Batchelor

HSRT: the correlation R13 experiences pressure effects in addition of viscous dissipation, and

consequently |α13| > |α|, as revealed in Fig. 3.8. It is proposed to model this phenomenon very

specific to Batchelor HSRT.

A wise approach is to adopt the same method as in the isotropic case: in HIT, the parameter

p is introduced to take into account the breaking of the PLE. This allows to recover the kinetic

energy decay exponent α(σ = 4) = −1.38 obtained numerically (see Fig. 3.8). Without p, the

analytical expression gives α(σ = 4, p = 0) = −10/7. A similar idea is to modify this parameter

p into a new one pS that additionally takes into account effects of initial anisotropy for purely

anisotropic quantities.

The kinetic energy K(t) and the anisotropic correlation R13(t) follow the evolution equations

dK

dt
= SR13(t)− ε(t), dR13

dt
= SR33 + Π13 − ε13. (3.10)

When the shear is released, S = 0 and only the slow-part of Π13 remains. It is clear that ε13 is

very weak because of the small scales return to isotropy: consequently, unlike K whose decay

is driven by ε, the destruction of R13 is led by the slow part of Π13, i.e. pressure effects. Purely

anisotropic quantities

R13(t) =

∫ ∞
0

φ13(k, t)dk ∼ tα13 , (3.11)

ε13(t) = 2ν

∫ ∞
0

k2φ13(k, t)dk, (3.12)
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Π
(s)
13 (t) =

∫ ∞
0

S
(RTI)
13 (k, t)dk, (3.13)

have different decay exponents in Batchelor HSRT than the classical ones of HIT. To determine

the theoretical expression of α13, the continuity of φ13(k, t) at the integral wavenumber is used,

similarly to what is done to obtain α. The first assumption is that the integral scale L(t) is the

same for all components of φij(k, t), which is reasonable as they all depend on E(k, t). Then, one

has to determine the new scaling of φ13 once the shear is released. Indeed, when S = 0 one has

φ13 6= 0, which is in contradiction with (3.4). Nevertheless, the k−7/3 scaling is still observed

after the shear release. The solution to reconcile the persistence of φ13(k, t) and the k−7/3

scaling is to replace S−1 by another time scale: S being a large scale quantity, the intuitive time

scale is the non-linear one τ(kL) = (k2
Lε)
−1/3 evaluated at the integral wavenumber kL. Then,

numerical simulations show that the destruction mechanism for φ13(k, t) is the pressure rather

than viscosity. This is notably illustrated in Fig. 3.9 where the budget terms of the evolution

equations of φ11 and φ13 are displayed after the release of the shear, at t = 10τ0, so that small

scales have already returned to isotropy. This explains why kS
(RTI)
11 is very small compared

to the other contributions. Moreover, it appears that the viscous dissipation −2νk3φ11 is the

destruction mechanism for φ11, whereas it is pressure through kS
(RTI)
13 for φ13. Indeed, the

viscous term −2νk3φ13 is negligible compared to kS
(RTI)
13 . This also confirms that neglecting

ε13 in the previous part was a reasonable assumption. Hence, ε is accordingly replaced by Π
(s)
13

which has the same dimension.
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Figure 3.9: Budget terms of the evolution equation of the spectral tensor after the release

of the shear: ∂tφij = −2νk2φij + S
(NL)
ij + S

(RTI)
ij , at t = 10τ0 for Saffman HSRT, where

Reλ = 7.103. S
(NL)
ij is the conservative part of the non-linear transfers, with zero integral

over k, and S
(RTI)
ij is the remaining part, responsible for the RTI mechanism. (a) For φ11.

(b) For φ13.

This finally yields

φ13(k, t) ∼ Π
(s)
13

2/3
k

2/3
L k−7/3. (3.14)

Then, a new coefficient pS is introduced for the purely anisotropic quantities in Batchelor HSRT,

to reflect the effect of anisotropy on the backscatter of energy. Consequently, the continuity of
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φ13 at the integral wavenumber kL yields kσ−pS
L ∼ Π

(s)
13

2/3
k
−5/3
L . Hence, one obtains straight-

forwardly the theoretical decay exponent of Π
(s)
13 . The resulting expression for the anisotropic

decay exponent is then

R13(t) ∼ tα13 , α13 = −2
σ − pS + 1

σ − p+ 3
, pS =

{
0 , σ ≤ 3

0.279 , σ = 4.
(3.15)

Simulations show that α13 does not depend on the initial shear rate S in Fig. 3.8, from

S = 10−2τ−1
0 to S = 10τ−1

0 . This anisotropic decay exponent is found numerically to be

α13 = −1.464. This implies the strong result that pS does not depend on the shear intensity.

The corresponding value of pS is deduced using (3.15): pS = 0.279. Moreover, pS is not only

independent of S, but also independent of the kind of anisotropy considered. Indeed, for dis-

tortion, α13 = −1.464 as well (grey dash-dot line in Fig. 3.8). All these decay exponents are

gathered in Table 5.1.

The value pS = 0.279 is close to the value of the backscatter parameter of a passive scalar

field in decaying Batchelor HIT (see Chapter 1). This could be interpreted as φ13 being

almost passively convected by the turbulent velocity field, which is consistent with the

production terms being zero once the shear is released.

In conclusion, pS must be seen as a supplementary parameter for purely anisotropic quantities

when the PLE is not verified, as in Batchelor turbulence. pS is valid in the general case where

the mean-gradient matrix Aij has non-diagonal components. From a physical point of view, it

has been shown that in Batchelor HSRT, purely anisotropic quantities, such as the correlation

R13(t), decay faster than the isotropic ones, such as the kinetic energy K(t). This is because

of the continuous loss of large scales anisotropy, induced by strong inverse non-linear transfers.

Moreover, the decay of R13 is driven by pressure effects rather than viscous ones.

3.3 Homogeneous Shear Turbulence

In this part, the case of homogeneous shear turbulence (HST) is addressed, where the shear is

maintained throughout the simulation.

3.3.1 Exponential growth of the kinetic energy K(t)

In sustained shear flows, the kinetic energy grows exponentially (Sagaut & Cambon, 2008) as a

consequence of anisotropy production and non-linear redistribution. Because of the exponential

growth of the integral scale L(t), DNS are quite limited in accumulated anisotropy St. The

evolution equation of K(t) in HST is given by (3.2). The dimensionless shear rapidity is now

introduced

SR(t) =
ε(t)

SK(t)
, (3.16)
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which is the ratio of shear and non-linear characteristic times. The evolution equation of K can

be written
1

KS

dK

dt
= 2b13 −

ε

KS︸ ︷︷ ︸
Constant for St� 1.

= γ. (3.17)

For St � 1, anisotropy indicators bij and SR reach an asymptotic anisotropic state, as in the

case of HSRT. So, for large St (St ≥ 25), the quantity 2b13 − ε/KS = γ becomes constant,

as revealed in Fig. 3.10a. The existence of a transient regime of order St ' 30 has already

been found in DNS (Pumir & Shraiman, 1995; Pumir, 1996; Gualtieri et al., 2002). From the

previous equation, the exponential growth of kinetic energy

K(t) = K(0) exp(γSt), (3.18)

is assessed by the present anisotropic EDQNM modelling in Fig. 3.10b. The growth exponent

is γ = 0.33. However, asymptotic values of bij and SR are different from those of reported

in Sagaut & Cambon (2008), certainly because St was not high enough and thus anisotropy

indicators were not constant yet. This will be discussed later. The exponential growth of K(t)

has also been assessed in the DNS of Brethouwer (2005), where Stmax = 12 only, and so the

γ is different from ours, probably because once again bij is not constant yet; in experiments

(Tavoularis, 1985; De Souza et al., 1995); and in another spectral modelling (Clark & Zemach,

1995), where γ = 0.332 is found as well.
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Figure 3.10: (a) Anisotropy indicators bij and SR in Saffman HST with S = 1τ−1
0 . (b)

Evolution of K(t) for various S and σ. The grey line indicates exp(0.33St). From top to
bottom, the different cases are: σ = 2 and S = 10τ−1

0 ; σ = 4 and S = 1τ−1
0 ; σ = 1 and

S = 0.1τ−1
0 ; σ = 2 and S = 0.1τ−1

0 ; σ = 3 and S = 10−2τ−1
0 .

It is argued in Pumir & Shraiman (1995); Pumir (1996); Gualtieri et al. (2002) that for a

finite domain, i.e. wall-bounded shear flows, there are kinetic energy bursts since the kinetic

energy cannot grow exponentially for very large St. These bursts are periodic (every St ' 20)

and result from the cyclic deformation and stretching of elongated structures in the flow. In

our simulations, the shear applies on an infinite length, meaning that there are no boundaries,

theoretically allowing K(t) to become infinite. It has been shown by Lee et al. (1990) that a

very high shear rate creates streaks in the flow, as would do physical boundaries at a more
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moderate shear rate. However, high shear rates are not reachable with the present anisotropic

EDQNM modelling, in the assumption of moderate anisotropy.

In Fig. 3.10b, it is also revealed that the growth rate exponent γ seems to be quite robust

within the present EDQNM modelling: indeed, it appears that γ = 0.33 is both independent of

the shear rate S and the infrared slope σ. In particular, the kinetic energy grows exponentially

at the same rate in Saffman and Batchelor turbulence. Moreover, the bij in Batchelor HST are

very similar to those in Saffman HST.

In addition to the exponential growth of K(t), the behaviour of the dissipation rate ε(t), the

integral scale L(t) and the anisotropic component R13(t) are investigated. They also grow

exponentially as revealed in Fig. 3.11a. In addition to the exponential growth, it is possible

to determine the growth rate γε and γL. From the main equation (3.2), ε and K are linked

through a time-derivative, then γε = γ. Finally, from the dimensional analysis L ∼ K3/2/ε,

γL = γ/2 is straightforward. This is recovered numerically in Fig. 3.11a. Finally, ε13 strongly

decreases, which is expected: indeed, at high Reynolds number, isotropization of small scales

tend to strongly reduce ε13.

0 10 20 30 40 50

10
0

10
2

10
4

10
6

10
8

St

In
te
g
ra
te
d
q
u
a
n
ti
ti
es

 

 

K(t)

R13(t)

ǫ(t)

L(t)

e0.33St

ǫ13(t)

e0.165St

(a)

10
−2

10
0

10
2

10
4

10
6

−0.04

−0.02

0

0.02

0.04

0.06

0.08

k/kL

H
(d
ir
)

ij
(k
,t
)

 

 

H
(dir)
11

H
(dir)
13

H
(dir)
33

kηkL kS

(b)

Figure 3.11: (a) Time evolution of K(t), ε(t), L(t), R13(t) and ε13(t) for σ = 4 with
S = 1τ−1

0 . For clarity, L(t) has been increased by a factor 1000. (b) Anisotropy descriptors

H
(dir)
ij for σ = 2 at St = 50.

In Fig. 3.11b, small scales of the velocity second-order moments have completely returned to

isotropy, as in HSRT. Hence, our results are in agreement with Pumir & Shraiman (1995); Pumir

(1996); Shen & Warhaft (2000); Gualtieri et al. (2002) where velocity second-order moments

are found to be isotropic at small scales. This is consistent with the fact that at small scales

non-linear processes dominate the dynamics. This also explains why ε13 is destroyed instead

of growing exponentially, as illustrated in Fig. 3.11a. Following the definition (3.12), k2φ13 is

larger at small scales: but ε13 is a purely anisotropic quantity and since small scales return to

isotropy, it is continuously destroyed.

A brief comparison with the DNS of Isaza & Collins (2009) for a sustained shear flow is presented

in Fig. 3.12. The evolution of the shear parameter S∗ = 2/SR is investigated for various initial

values S∗0 = [3; 15; 27]. This is of particular interest since this parameter is discussed later on.

The initial Reynolds number is Reλ(0) ' 20. An initial isotropic field is considered, and the
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infrared slope of the kinetic energy spectrum is E(k < kL, t = 0) ∼ k2. It is revealed in Fig. 3.12

that the evolution of S∗(t) at moderate St and Reλ, which is the domain of accurate DNS, is

well-captured in all of the three cases by the present anisotropic EDQNM modelling. A slightly

higher final value for the case S∗0 = 3 is obtained here, but not significant.
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Figure 3.12: Evolution of the shear parameter S∗(t): comparison to the sustained shear flow
DNS of Isaza & Collins (2009) with three different initial values S∗0 . Lines and symbols represent
respectively the present EDQNM simulations and DNS: +, S∗0 = 3; ◦, S∗0 = 15; and 4, S∗0 = 27.

3.3.2 Non-linear transfers and the shear wavenumber

The shear wavenumber, or Corrsin wavenumber, is defined as

kS =

√
S3

ε
. (3.19)

For wavenumbers k ≤ kS, linear effects dominate, meaning that production processes lead the

dynamics. In the opposite case, for k ≥ kS, non-linear processes become significant, distribute

energy from the main direction to other components through the spectral tensor φ13, thus par-

ticipating into the restoration of isotropy at small scales. Note that other similar wavenumbers

exist which indicate the beginning of an efficient RTI, for instance the Zeman wavenumber in

rotating turbulence, or the Ozmidov one in USHT, where S is accordingly replaced by the mean

rotation or the mean stratification respectively.

In Fig. 3.13, budget terms at St = 50 are displayed, when the anisotropic asymptotic state

is reached, along with kS. Before kS, linear transfers S
L(tot)
13 dominates whereas for k ≥ kS

pressure strain and non-linear transfers become strong. From the evolution equations of K(t)

(3.2) and R13(t) (3.10), the exponential growth of the kinetic energy can be understood thanks

to transfer terms. The flow is heading toward the main direction ()11 : thus φ33 do not receive

as much energy as φ11. But S
(RTI)
33 being positive, it takes energy from φ11 and φ22, allowing φ33

to grow. The growth of φ33 implies the growth of φ13 and thus the growth of K(t). Hence, the

exponential growth of the kinetic energy is the result of non-linear processes and redistribution

of energy between components. Moreover, there is a non-negligible dissipation effect for φ33 in

Fig. 3.13. Similar dissipation processes are obtained for φ11 and φ22 whereas it does not appear

for φ13. It justifies a posteriori the assumption that the dissipation is nearly isotropic.
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Figure 3.13: Budget terms with the shear wavenumber kS at St = 50 with σ = 2. S
(NL)
ij

represents the conservative part of the total non-linear transfer. (a) For φ13. (b) For φ33.

3.3.3 Discussion on the scattering of integrated quantities in HST

In this section, explanations to the scattering of quantities measured in DNS and experiments

in shear flows are proposed. The quantitative discrepancy between the γ = 0.33 obtained with

the present anisotropic EDQNM modelling and the smaller common values is also discussed.

One can note that EDQNM simulations are able to reach St = 50, which is much higher than

DNS, even the most recent ones. This is one of the strength of the current modelling, i.e.

investigating the asymptotic states of shear-driven flows.

As mentioned previously, weaker values of γ (roughly between 0.07 and 0.20) are found in DNS

and experiments, with a noteworthy dispersion, which is now addressed. This could be, for

some of these works, the consequence of a too low final St for which the bij and ε/(KS) are not

constant yet, resulting in a value of γ not converged, that reflects transitional effects of initial

conditions. Indeed, in the numerical work of Brethouwer (2005), the last dimensionless time is

St = 12 which is not enough to ensure that bij and SR are constant. Other low values of St

are reported by Sagaut & Cambon (2008), along with various values of the bij and γ coming

from DNS and experiments. Therefore, moderate values of the final St could be an explanation

for the scattering of the experimental and numerical measured γ. It is also argued in Isaza &

Collins (2009) that re-meshing, in older DNS, led to loss of kinetic energy and dissipation rate:

this could be an explanation as well, rather difficult to quantify.

Several relevant quantities such as γ, b13, Reλ(0), (St)max, S∗(0) and S∗end, coming from different

DNS and experiments, are gathered in Table 3.1 to illustrate the noteworthy dispersion of

integrated quantities. Qualitatively, it is interesting to point out that for small initial S∗(0),

the final value of |b13| is higher, whereas for high initial S∗(0), the final value of γ is higher:

this is expected since it corresponds to a strong initial production of kinetic energy, which is

recovered with our anisotropic EDQNM modelling in Fig. 3.10b. There is also a slight tendency

to increasing |b13| and γ in average in more recent DNS, very likely because of the better spatial

resolution of small scales. Nevertheless, the maximum values are γ = 0.18, still much lower

than our γ = 0.33, and |b13| = 0.19, close to our 0.21.
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Authors Kind Reλ(0) S∗(0) S∗end b13 γ (St)max

Tavoularis & Corrsin (1981) Exp 245 12.5 / −0.14 0.12 11.6
Shirani et al. (1981) DNS 20 3.3 16.328 −0.147 / 7

Tavoularis & Karnik (1989) Exp 160 5.6 / −0.149 0.08 8
Tavoularis & Karnik (1989) Exp 310 8.4 / −0.165 0.09 8

Lee et al. (1990) DNS 40 33.5 36.2 −0.1 / 12
De Souza et al. (1995) Exp 1050 11.9 / −0.121 0.07 12
De Souza et al. (1995) Exp 1010 21.8 / −0.093 0.10 9

Ferchihi & Tavoularis (2002) Exp 253 / / / 0.0846 23
Schumacher (2004) DNS 55 0.8 8.2 / / 10
Brethouwer (2005) DNS 32 36 / −0.14 0.178 12

Isaza & Collins (2009) DNS 26 3 26.6 −0.165 0.10 9
Isaza & Collins (2009) DNS 26 27 10.3 −0.126 0.18 9

Sukheswalla et al. (2013) DNS 50 3 7.14 −0.19 0.12 20
Sukheswalla et al. (2013) DNS 50 27 21.43 −0.135 0.13 20

Average 17.11 −0.139 0.114
Standard deviation 10.55 0.027 0.037

Table 3.1: Summary of measured global quantities in existing DNS and experiments for shear
flows, classified by date. For experiments, Reλ(0) and S∗(0) refer to estimated values throughout
the measurements. The cases presented for Sukheswalla et al. (2013) correspond to filtered
simulations (see text). When two results from the same work are presented, they correspond to

lowest shear and highest shear cases.

Recent DNS studies have focused on the influence of initial parameters, such as the Reynolds

numberReλ(0) or the shear parameter S∗(0), on the final state of the flow. Notably, it is reported

that there is a tendency toward an almost independence with regard to Reλ(0) and a noteworthy

sensitivity to S∗(0). Hereafter, possible explanations for this dependence on initial conditions

are proposed. Let’s mention that in numerical works, the infrared slope σ is a supplementary

initial condition that defines large scales. However, the infrared slopes are not often investigated

nor reported, which makes the comparisons and discussions complicated. EDQNM simulations

revealed in Fig. 3.10b that the growth rate γ does not depend on σ: therefore in what follows

σ = 2 is chosen.

In Schumacher et al. (2003a); Schumacher (2004); Isaza & Collins (2009); Sukheswalla et al.

(2013), the final value of S∗ seems to depend on the initial conditions. This is not necessarily in

contradiction with our EDQNM results, as revealed in Fig. 3.14a, where the shear parameter

S∗ = 2/SR is displayed for various initial S∗(0). Indeed for St ≤ 30, S∗ strongly depends on its

initial value for both DNS (see the standard deviation in Table 3.1) and EDQNM. Incidentally,

the dispersion of the S∗ computed with EDQNM at moderate St (≤ 20) is comparable to the

dispersion obtained in DNS and experiments. Then, for sufficiently high St ≥ 30, S∗ becomes

independent of initial conditions. Therefore, one could conclude that an universal asymptotic

state could be reached only for sufficiently high St, or equivalently at very high Reynolds

numbers. Similar assessments are made in Isaza & Collins (2009). At moderate St and Reλ,

the comparison of the present anisotropic model to the recent DNS in Fig. 3.12 shows that the

early dynamics of S∗ is well captured.

Another point of interest in Isaza & Collins (2009); Sukheswalla et al. (2013) is that the average

value of the measured γ seems slightly higher (with a maximum of 0.18) than older ones, very

likely because of the better spatial resolution. In Sukheswalla et al. (2013), small scales had to be
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filtered. But, from the present study and Clark & Zemach (1995), it appears that large scales are

not determinant in the final value of γ (γ is found to be independent of σ). This directly means

that the inertial range scales have a preponderant influence on γ. Hence, the low resolution of

small scales in some DNS could result in slightly imprecise values for γ, partially responsible for

the scattering. This interpretation is confirmed in Figure 18.a of Sukheswalla et al. (2013) where

the non-filtered kinetic energy is displayed and evolves with a growth rate somewhat higher to

those of filtered kinetic energies. In addition, one can note that the unfiltered value of S∗ from

Sukheswalla et al. (2013) reported in Fig. 3.14a would give a value not far from ours (S∗ → 20)

at a higher St. For the other S∗ reported in Schumacher (2004); Isaza & Collins (2009), the

(St)max is to low to conclude.
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Figure 3.14: (a) Evolution of the shear parameter S∗ = 2/SR for various S with σ = 2.
The lines correspond to EDQNM simulations with Reλ(0) = 1 and symbols to DNS.
Crosses refer to Sukheswalla et al. (2013), run 256 30 without filtering; triangles to Isaza
& Collins (2009); squares to Schumacher (2004), run 4. (b) Evolution of the kinetic energy
exponential growth rate γ for various shear intensity S. The initial Reynolds number is
either Reλ(0) = 10 or Reλ(0) = 100 and σ = 2. The average exponential growth rate is

γav = 0.114.

The influence of the initial Reynolds number Reλ(0) is now discussed. It has been reported in

Sukheswalla et al. (2013) that Reλ(0) had not much impact on the final state of the flow. This

is recovered in Fig. 3.14b where the kinetic energy exponential growth rate γ is displayed at

Reλ(0) = 10 and Reλ(0) = 100 for various initial shear intensities S. The important result is

that a different initial Reynolds number changes very slightly the final growth rate exponent

γ: indeed, γ ' 0.33 was obtained previously for Reλ(0) = 1. Here, for S ≤ 1τ−1
0 and both

Reλ(0) = 10 and Reλ(0) = 100, one has γ ' 0.330, whereas γ ' 0.334 for S = 10τ−1
0 and

Reλ(0) = 100. This underlines that for sufficiently high final St, or equivalently sufficiently

high Reynolds numbers, an asymptotic state independent of initial conditions is obtained. This

result is consistent with what is observed in DNS, i.e. the independence with regard to Reλ(0).

Let’s mention that the Reλ(0) = 100 chosen here is higher than common initial Reynolds

numbers for DNS, as revealed in Table 3.1. Moreover, Fig. 3.14b reveals that at comparable

St, our γ is much higher than common ones and almost constant. Hence, it is very likely that γ

in DNS and experiments would not increase for higher St. Therefore, the moderate St reached

in DNS and experiments can only explain the scattering around the average value γav = 0.114.
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The results of this discussion, summarized hereafter, are twofold. Firstly, Fig. 3.14a and 3.14b

exhibited interesting behaviours: firstly, an unique asymptotic value for the shear parameter

S∗ = 2KS/ε is obtained only at high values of St. For typical final values of DNS and ex-

periments (St ≤ 20) at an initial moderate Reynolds number Reλ(0), it appears that S∗ still

depends on initial conditions. Furthermore, in agreement with existing works, an independence

with regard to the initial Reynolds number has been obtained. Thus, high St can limit the

dispersion of the results by erasing effects of initial conditions. Secondly, it has been pointed

out that the present anisotropic EDQNM modelling provides higher values for the growth rate

γ than DNS and experiments do. Even though similar values are found in the spectral model

of Clark & Zemach (1995), our numerical γ = 0.33 is much higher than common ones, gathered

around γav = 0.114.

The practical input of this numerical work is notably indications for future DNS. According to

the previous discussion and Table 3.1, it seems crucial to reach final values of the accumulated

anisotropy 25 ≤ (St)max ≤ 30 to limit the scattering of the results and transitional effects

from initial conditions, and to systematically investigate the dependence in (Reλ(0), S∗(0)), as

reported in Schumacher et al. (2003a).

3.4 Conclusion and perspectives

Firstly, the main features of this chapter are recalled hereafter: results regarding decay and

growth laws in shear-driven flows are gathered in Table 5.1, along with similar results for the

passive scalar field addressed in the next chapters. Secondly, we come back on the value of

the kinetic energy exponential growth rate γ = 0.33. Finally, some perspectives are drawn for

future works.

3.4.1 Conclusions on HST and HSRT

Homogeneous anisotropic turbulence has been investigated with the anisotropic EDQNM mod-

elling in the particular case of shear flows, when mean-velocity gradients are both released

(HSRT) and sustained (HST). In this framework, we have revisited classical phenomena and

provided results obtained at high Reynolds numbers, qualitatively in agreement with existing

ones in DNS and experiments.

In the shear-released turbulence configuration, a model was derived for the slow-part of the pres-

sure strain-tensor Π
(s)
ij , which is responsible for the return to isotropy mechanism, valid once the

mean-velocity gradients are released. This model is in agreement with our simulations and must

be seen as complementary to existing ones, since it focuses on the asymptotic anisotropic state

at large times for high Reynolds numbers. Then, the present model allows to understand deeply

the RTI mechanism: spectral descriptors show that small scales of the velocity second-order

moments completely return to isotropy in both Saffman and Batchelor turbulence, leading to

a global partial return to isotropy, which is in agreement with experiments and DNS. Regard-

ing large scales, they keep their anisotropy in Saffman turbulence, whereas they continuously

evacuate anisotropy in Batchelor turbulence, because of strong inverse non-linear transfers. In
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addition, the decay of the kinetic energy K(t) and of the anisotropic correlation R13 was inves-

tigated in both Saffman and Batchelor HSRT. The decay of the kinetic energy is not modified

by the initial shear, whereas R13, which also decays in t−6/5 in Saffman HSRT, decays faster

than K(t) in Batchelor HSRT, because of the RTI mechanism driven by pressure effects.

At last, the case of the sustained shear turbulence was addressed. The original aspect high-

lighted here is that with the present modelling the growth rate γ seems to not depend on large

scales initial condition (the infrared slope σ) nor on the shear rate intensity S, provided a suf-

ficiently high accumulated anisotropy St, or equivalently a high Reynolds numbers, is reached.

Quantitative differences have been exhibited, especially for the exponential growth rate γ of the

kinetic energy, which is found to be two to three times higher than existing values. Nonetheless,

as for the shear parameter S∗, its dynamics seems to be well described by the present model.

The dispersion of integrated quantities obtained in DNS and experiments has been discussed,

and the main result of this work regarding sustained shear flows lies in the explanations pro-

posed: it has been shown notably that moderate values of the final accumulated anisotropy St

may be responsible for the scattering of integrated quantities, reported in Table 3.1, and that

higher values of St, or higher Reynolds numbers, could limit this dispersion by erasing initial

conditions effects. Another parameter that could be of importance is the nature of the initial

flow, that we choose to be isotropic for simplicity reasons. In experiments for instance, the

initial condition is clearly not isotropic. EDQNM simulations with an initial condition slightly

anisotropic, as in Davidson et al. (2012), show that for instance γ slightly varies by ±5%. This

indicates a small dependence on initial anisotropy, but not significant.

3.4.2 Exponential growth rate γ

This part aims at answering two questions of fundamental interest for the modelling of shear

flows: (i) Why is the exponential growth rate γ of the kinetic energy not depending on the

infrared slope σ whereas it strongly does in unstably stratified homogeneous turbulence (see

Chapter 7) ? (ii) Is the value γ = 0.33 predictable? Theoretical considerations about shear flows

which were found after the publication of the contents of this chapter in Journal of Turbulence

are thus presented here.

The independence of γ with σ in HST is not a consequence of the modelling of anisotropy,

since in Chapter 7, the kinetic energy exponential growth rate in USHT strongly depends on σ.

Assuming self-similarity of the kinetic energy spectrum and a linear dynamics of large scales in

both HST and USHT, one has K ∼ exp(γSt), L ∼ exp(γSt/2), so that

E(k, t) ∼ kσ exp
[σ + 3

2
γSt

]
. (3.20)

Following the method proposed in Poujade & Peybernes (2010); Soulard et al. (2014), the time

evolution of E is also given at large scales by the largest eigenvalue of the linear operator of the

generalized Lin equations system (2.53)-(2.55). The linear operator of HST verifies, dropping
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the non-linear and viscous terms,
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(3.21)

It is worth noting that the linear operator, because of the space-derivative ∂/∂k production

terms, depends explicitly on σ, unlike the linear operator of USHT, whose maximum eigenvalue

is 4/
√

5. Consequently, the largest eigenvalue of the linear operator in HST almost balances the

self-similar expression (3.20) for E(k, t), thus strongly reducing the dependence of γ with σ.

The maximum real eigenvalue Γmax(σ) of the linear operator being a rather lengthy expression,

only the final growth rate is given here, obtained by equalizing (3.20) and E ∼ exp(ΓmaxSt), so

that

γ =


0.358 for σ = 1,

0.339 for σ = 2,

0.346 for σ = 3,

0.367 for σ = 4.

(3.22)

This result answers the two questions (i) and (ii) of the beginning of this part. First, the numer-

ical simulations presented so far recover a value around 0.33 ≤ γ ≤ 0.34 for all σ, which is close

to the linear prediction (3.22): this means that the non-linear redistribution of energy through

scales permits to maintain this exponential growth rate, obtained by self-similar arguments and

the linear dynamics of large scales where anisotropic mechanisms dominate. Secondly, the fact

that the maximum eigenvalue of the linear operator depends on σ explains why γ hardly varies

with σ in HST, unlike USHT where the maximum eigenvalue is independent of the large scales

initial conditions, so that the exponential growth rate in USHT (7.26) varies a lot with σ.

3.4.3 Perspectives

In this section, two perspectives for future works regarding shear flows are proposed. The first

one, already introduced in Chapter 2, is the consideration of the fourth-order expansion for E
and Z. The second one is to consider that the mean-shear intensity S(t) can vary with time, i.e.

to model the retro-action of the fluctuating turbulent quantities on the mean-field, similarly to

what is done at the end of Chapter 7 for a variable stratification frequency N(t).

Fourth-order expansion: In Chapter 2, the formalism of the fourth-order expansion into

spherical harmonics has been presented, with details in Appendix C. The fourth-order con-

tributions EH
(dir)
ijpq and EH

(pol)
ijpq have their own evolution equations (C.59) and (C.60): their

non-linear transfers depend only on fourth-order contributions, whereas their linear production

terms are modified by the second-order ones. The impact of EH
(dir)
ijpq and EH

(pol)
ijpq on the second-

order spectra EH
(dir)
ij and EH

(pol)
ij is uniquely done through the linear transfers S

L(dir4)
ij and

S
L(pol4)
ij , which add to the previous ones (2.65) and (2.65), now written S

L(dir2)
ij and S

L(pol2)
ij . In
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the end, the total linear directional and polarization transfers with the fourth-order expansions

are S
L(dir)
ij = S

L(dir2)
ij + S

L(dir4)
ij , and S

L(pol)
ij = S

L(pol2)
ij + S

L(pol4)
ij .

The main consequence of the fourth-order contributions is that the kinetic energy exponential

growth rate is decreased in Fig. 3.15 from γ = 0.33 to γ = 0.28. Even though the value of

γ remains rather large, the significant decrease by 15% with the fourth-order expansion of E
and Z perfectly illustrates that taking into account more spherical harmonics goes into the

good direction, i.e. diminishes γ towards smaller values obtained in DNS, as reported in Table

3.1. The joint result is, in Fig. 3.15 as well, the decrease of b13 from 0.215 to 0.18, which is

a noteworthy feature as well. One can further remark that on the contrary, the fourth-order

contributions increase |b11| and |b33|, which is expected. Indeed, taking into account more

harmonics reduces the loss of information due to the spherical integration by restoring part of

the anisotropic angular information. As a consequence, the strong anisotropy of the shear flow

between the streamwise and transverse directions is better captured.
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Figure 3.15: Effects of the fourth-order expansion on the growth of the kinetic energy
K(t) and the anisotropy tensor bij . (a) K(t) for σ = 2 and σ = 4. (b) bij for σ = 2.

To better illustrate the impact of the fourth-order contributions, we investigate the detailed

linear transfers in Figure 3.16, with the directional and polarization parts of the streamwise,

transverse and cross components in Saffman turbulence. In the this figure, the black curves

represent simulations with the fourth-order contributions, at Reλ = 9.103. Whereas the grey

curves indicate simulations with only the second-order expansion, as in MCS. Since the Reynolds

number increases faster in the latter case, the results are presented at St = 43 where Reλ ' 9.103

as well.

One can remark that the effects are different for the directional and polarization parts: indeed,

the fourth-order contributions tend to decrease the intensity of the directional linear transfers for

the streamwise ()11 and transverse ()33 components, while increasing it for the ()13 component.

The opposite happens for the linear polarization transfers. In particular, the strongest difference

is observed for the transverse directional transfer S
L(dir)
33 , which is positive without the fourth-

order contributions, and becomes mostly negative with them.

The practical input of this section in terms of modelling is that it is much more important

to improve the linear production terms through the fourth-order expansion than considering
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Figure 3.16: Effects of the fourth-order expansion on the linear transfers of EH
(dir)
ij and EH

(pol)
ij ,

for σ = 2, at Reλ(St = 50) = 9.103. The terms S
L(dir2)
ij and S

L(pol2)
ij contain the second-order

contributions, and the terms S
L(dir4)
ij and S

L(pol4)
ij the fourth-order contributions. (a) S

L(dir)
11 ,

(b) S
L(dir)
13 , (c) S

L(dir)
33 , (d) S

L(pol)
11 , (e) S

L(pol)
13 , and (f) S

L(pol)
33 . In each case, the grey curves

indicate simulations without the fourth-order contributions at Reλ(St = 43) = 9.103.

the quadratic anisotropic contributions in the classical non-linear transfers (see Appendix C).

Another approach could be to solve directly the evolution equations of E(k, t) and Z(k, t) with

the exact linear terms, and to keep the modelled non-linear transfers with the second-order

expansion: this is currently the topic of a PhD under the direction of Claude Cambon.

Third-order expansion: Some considerations are now presented about the third-order ex-

pansion of Z: even though they are not conclusive right now, they could be of interest for

future works. There are two reasons why we wish to further consider odd-order terms in the

expansion of Z: (i) Odd-order expansions could improve the modelling of the 2iZΩCH term

in the evolution equation (2.33) of Z; (ii) Recent results by Claude Cambon show that the

main difference between the MCS model with an exact treatment of linear terms lies in the

polarization anisotropy.

Up to the fourth-order, the expansion of Z can be written

Z(k, t) =
1

2
E0

(
5H

(pol)
ij (k, t) + 7iH

(pol)
ijk αk +

21

2
H

(pol)
ijpq (k, t)αpαq

)
N∗i (k)N∗j (k), (3.23)

where H
(pol)
ijk is a tensor which verifies, for simplicity reasons as before, full symmetry under

any change of indices, and is zero when two indices are equal. Note that the expression of the

third-order contribution differs from the one in Mons et al. (2016) because of the imaginary
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number i. The latter is crucial, otherwise it can be shown that the third-order of Z never

contributes. Two features are needed to prove this statement. First, one requires the following

equation when computing the polarization part R̂
(pol)
ij = <[ZNiNj ]:

NiNjN
∗
pN
∗
q =

[
PipPjq + PiqPjp − PijPpq

]
− 1

2
iαa

[
Pjqεipa + Pipεjqa + Piqεjpa + Pjpεiqa

]
,

where εijk is the Levi-Civita permutation tensor. The second one is that the spherical average

of an odd number of normalized wavevectors αi is zero, as explained for instance in Pope (2000).

Consequently, without the i, <[ZNiNj ] has an odd number of αi so that it vanishes with the

spherical-average. Therefore, the present expansion of Z (3.23) corrects the equation (3.15) of

Mons et al. (2016).

Then, as for the second and fourth-order terms, one needs an operator which gives only the third-

order contribution and erases the others. This operator is Nijk = αkNiNj +αjNiNk +αiNjNk,

and we further define H
(pol)
ijk as

2E(k, t)H
(pol)
ijk (k, t) =

∫
Sk

=
[
Z(k, t)Nijk(k)

]
d2k. (3.24)

Similarly to the fourth-order expansion, the third-order expansion of Z does not modify the

spectral tensor φij , which is still expressed as function of H
(dir)
ij and H

(pol)
ij only.

Finally, the third-order expansion of Z gives a new contribution in the modelled spectral

Reynolds tensor R̂ij , which reads

R̂z3
ij (k, t) =

7

2
E0(k, t)H

(pol)
pql (k, t)αlαn

(
εipnPjq(k) + εjqnPip(k)

)
. (3.25)

Remark: It is worth noting that the third-order expansion of polarization can be related to the

stropholysis tensor of Kassinos et al. (2001), defined as

Qijk = εipq

∫
αpαkR̂jq(k)d3k = −

∫
εijpαpαkE(k)d3k+

∫
αk=

(
Z(k)Ni(k)Nj(k)

)
d3k. (3.26)

The final expression ofQijk using the second-order expansions can be found in Mons et al. (2016).

Interestingly, the symmetric stropholysis Q∗ijk = (Qijk+Qikj +4 perm.)/6 erases the directional

anisotropy and depends only on polarization. More specifically, only odd-order terms of the Z

expansion can contribute in Q∗ijk, which further justifies the interest of odd-order contributions.

Now, we determine the explicit expressions of the production terms linked to the third-order

contributions in the expansion (3.23) of Z. As before, there are three different kinds of terms:

the third-order contributions in the equations of EH
(dir)
ij and EH

(pol)
ij and in the equation of

EH
(pol)
ijk , and finally the second-order contributions in the equations of EH

(pol)
ijk . There are

no third-order contributions in the Lin equation for E, and for simplicity reasons, we further

discard the third-order contributions in the evolution equations of EH
(dir)
ijpq and EH

(pol)
ijpq , and

the fourth-order contributions in the equation of EH
(pol)
ijk : thus there is no direct linear coupling

between the third and fourth orders.
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First, the contributions of the third-order expansion in the equations of EH
(dir)
ij and EH

(pol)
ij

are, after some algebra,

S
L(dir3)
ij (k, t) =

1

6
A+
lnE
(
εilpH

(pol)
jnp + εjlpH

(pol)
inp

)
, (3.27)

S
L(pol3)
ij (k, t) =

1

3
A−lnE

(
εlnpH

(pol)
ijp − εilpH

(pol)
jnp − εjlpH

(pol)
inp

)
− 1

6
A+
ln

( ∂
∂k

[
kE(εilpH

(pol)
jnp + εjlpH

(pol)
inp )

]
+ E(εilpH

(pol)
jnp + εjlpH

(pol)
inp )

)
. (3.28)

Note that unlike S
L(dir4)
ij and S

L(pol4)
ij , S

L(dir3)
ij and S

L(pol3)
ij depend on the antisymmetric part

A−ln of the mean-velocity gradient. The linear polarization transfer S
L(pol)
ijk of EH

(pol)
ijk is defined

as

S
L(pol)
ijk (k) =

1

4

∫
Sk

=

[(
Alnkl

∂R̂rs
∂kn

− 2Mrn(k)R̂ns(k)

)
N∗r (k)N∗s (k)Nijk(k)

]
d2k. (3.29)

This production term is divided into two contributions resulting from the second and third

order expansions. First, we determine the impact of the second-order contributions EH
(dir)
ij and

EH
(pol)
ij on the linear transfer of EH

(pol)
ijk . For this purpose, we introduce two trace-free and

symmetric operators, namely

H2,+
ijk [EH()] = 5E

[
A+
il

(
εjlnH

()
nk + εklnH

()
nj

)
+A+

jl

(
εilnH

()
nk + εklnH

()
ni

)
+A+

kl

(
εilnH

()
nj + εjlnH

()
ni

)]
− 2EA+

lnH
()
npE

[
δijεklp + δikεjlp + δjkεilp

]
(3.30)

H2,−
ijk [EH()] = 5E

[
A−il

(
εjlnH

()
nk + εklnH

()
nj

)
+A−jl

(
εilnH

()
nk + εklnH

()
ni

)
+A−kl

(
εilnH

()
nj + εjlnH

()
ni

)
−A−ln

(
εilnH

()
jk + εjlnH

()
ik + εklnH

()
ij

)]
+ 2EA−lnH

()
npE

[
δijεklp + δikεjlp + δjkεilp

]
. (3.31)

After complex calculations, one gets

S
L(pol2)
ijk = −1

7
H(2,+)
ijk [EH(dir)] +

1

21

[
H(2,−)
ijk [EH(pol)]−H(2,+)

ijk [EH(pol)]
]

+
1

42
H(2,+)
ijk [∂k(kEH

(pol))].

(3.32)

Now, we proceed similarly to determine the impact of the third-order expansion on the linear

transfers of EH
(pol)
ijk . After some algebra, one gets

S
L(pol3)
ijk =

1

3

[
A−ilH

(pol)
jlk +A−jlH

(pol)
ilk +A−klH

(pol)
ijl

]
, (3.33)

where notably the symmetric part of the mean-velocity gradient matrix does not intervene. The

third-order polarization non-linear transfer is defined as

S
NL(pol)
ijk (k, t) =

1

2

∫
Sk

=
(
TZ(k, t)Nijk(k, t)

)
d2k. (3.34)

For the sake of simplicity, quadratic anisotropic contributions are discarded, as for the second

and fourth orders: therefore, only the third-order terms contribute in S
NL(pol)
ijk . Furthermore,

because H
(pol)
ijk is symmetric and trace-free, it follows that third-order expansions vanish in
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S
NL(dir)
ij and S

NL(pol)
ij . Eventually, injecting the third-order expansion into the expression (2.42)

of TZ gives the spherically-averaged non-linear polarization transfer

S
NL(pol)
ijk = 4π2

∫
∆k

θkpqk
2p2qE ′′0

[
H

(pol)′′

ijk (1− z2)
(

2z(1− 2y2)(E ′0 − E0) + xy(1− 3y2)E0

)
− 4(xy + z3)E0H

(pol)
ijk +H

(pol)′

ijk E ′0
(

2(xy + z3)(2z2 − 1)− z(3z2 − 1)(y2 − z2)
)]

dpdq. (3.35)

The evolution equation of the third-order anisotropic descriptor EH
(pol)
ijk reads(

∂

∂t
+ 2νk2

)
E(k)H

(pol)
ijk (k) = S

L(pol2)
ijk (k) + S

L(pol3)
ijk (k) + S

NL(pol)
ijk (k). (3.36)

Moreover, the Lin equations of EH
(dir)
ij and EH

(pol)
ij derived are modified accordingly into(

∂

∂t
+ 2νk2

)
E(k, t)H

(dir)
ij (k) = S

L(dir2)
ij (k) + S

L(dir3)
ij (k) + S

NL(dir)
ij (k), (3.37)(

∂

∂t
+ 2νk2

)
E(k)H

(pol)
ij (k) = S

L(pol2)
ij (k) + S

L(pol3)
ij (k) + S

NL(pol)
ij (k). (3.38)

Note that the retro-action of the third-order contributions on the second-order ones is uniquely

done through the linear transfers S
L(dir3)
ij and S

L(pol3)
ij , and that inversely, the impact of the

second-order contributions on the third-order ones is uniquely done through the linear transfers

S
L(dir2)
ijk and S

L(pol2)
ijk .

Variable shear: We consider a free-shear mixing layer created by two parallel streams of

different uniform speeds Uh and Ul in the direction x1, with Uh > Ul, both independent of time

and space. The notations of Dimotakis (1991) are used: the characteristic mean velocity is

∆U = Uh −Ul, and the mean velocity at the center of the mixing layer is Uc = (Uh +Ul)/2. In

the turbulent mixing layer, the mean flow is in the streamwise x1-direction and varies along the

vertical x3-direction, from Ul to Uh according to

U1(x3, t) =
∆U

LS(t)
x3 + Ul = S(t)x3 + Ul, (3.39)

where LS is the free-shear layer length. The total turbulent velocity field can be decomposed,

in the shear layer, as

u
(tot)
i (x, t) = U1(x3, t)δ1i + ui(x, t). (3.40)

One can further define the dimensionless mean streamwise velocity as Ũ1 = U1/∆U , so that

∂3Ũ1 = 1/LS , and the definition of LS is analogous to the one of the mixing length L of an

unstably stratified flow (see the end of Chapter 7)

LS(t) =
6

∆U2

+∞∫
−∞

(U1 − Ul)(Uh − U1)dx3, (3.41)
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and is proportional to the momentum thickness θ, with LS = 6θ. The evolution equation of the

streamwise mean velocity reads

∂U1

∂t
= − ∂P

∂x1
− ∂R11

∂x1
− ∂R13

∂x3
+ ν

∂2U1

∂xl∂xl
. (3.42)

Assuming that the viscous term is negligible at large Reynolds numbers, that there is no hori-

zontal mean pressure gradient, and that the variations along x3 are stronger than along x1, one

gets
∂U1

∂t
' −∂R13

∂x3
, (3.43)

which was also obtained in Galmiche & Hunt (2002). Further using (3.43) in the time derivative

of (3.41), one gets

dLS
dt

= − 12

∆U2

[
(Uc − U1)R13

]+∞

−∞
− 12

∆U2

+∞∫
−∞

R13
∂U1

∂x3
dx3 = − 12

LS∆U

+∞∫
−∞

R13 dx3, (3.44)

The first term is zero since it is assumed that there is no turbulent fluctuations outside the

shear layer of extent LS(t). Then, choosing a parabolic shape for the Reynolds stress tensor

R13, with x3 ∈ [−LS/2;LS/2], one gets

dLS
dt

= − 8

∆U
< u1u3 >= − 8

SLS
< u1u3 > . (3.45)

Finally, since ∆U = −S(t)LS(t) is constant, one gets

dS

dt
= −S

L

dLS
dt

=
8

L2
S

< u1u3 >= −∂
2R13

∂x2
3

. (3.46)

Since most of the experimental studies investigate the development of a spatial free-shear layer,

it is worth noting that the spatial extent LS can be obtained with a Taylor frozen-flow

assumption, which transforms the streamwise spatial coordinate into a temporal one, according

to

x1 → Uc t, Uc
∂

∂x1
→ ∂

∂t
. (3.47)

The local spatial extent δ(x1) of the shear layer could be assimilated to LS with a Taylor frozen-

flow hypothesis, i.e. δ(x1) ∼ LS(t). In Dimotakis (1991), the growth rate of the mixing layer

region, for two fluids of equal density ρh = ρl = ρ0, is given by

δ(x1)

x1
=

1− r
1 + r

Cδ, (3.48)

with the ratio r = Ul/Uh, and Cδ is a constant. In the latter reference, a noteworthy scattering

of the values of Cδ are reported, 0.25 ≤ Cδ ≤ 0.45, with possible values outside these bounds.

Further, one gets

Cδ =
1 + r

1− r
δ(x1)

x1
=

2Uc
∆U

LS
Uc t

=
2

S(t) t
. (3.49)

Here, we choose to define the self-similar free-shear layer length as

LS(t) = αS ∆U t. (3.50)
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Figure 3.17: (a) Shear length LS(t) and shear rate S(t) for Saffman turbulence (σ = 2). (b) Cδ,
defined in (3.49), for σ = 2 (black), LS(0) = 1 and various S(0); and for σ = 4 (grey).

The linear dependence in time of the free-shear layer length LS is assessed in Fig. 3.17a, for

Saffman turbulence (Batchelor turbulence can be hardly distinguished from Saffman turbulence,

thus it is not presented). The mean velocity gradient S(t) = ∆U/LS(t) is also presented and

obviously evolves in t−1.

The parameter Cδ is presented in Fig. 3.17b for various initial values of the shear intensity S(0).

It seems that at sufficiently large Reynolds numbers, in the self-similar regime where LS ∼ t, Cδ
does not depend on S(0): a similar conclusion is obtained if LS(0) is varied instead of S(0). The

values of Cδ are such that 0.5 ≤ Cδ ≤ 0.6, higher than what is reported in Dimotakis (1991).

Finally, the growth rate αS can be simply evaluated as

αS =
L̇S
∆U

= − 8R13

(SLS)2
, (3.51)

and is presented in Fig. 3.17c for both Saffman and Batchelor turbulence. It appears that there

is a slight dependance of the free-shear layer length LS on the infrared slope σ: indeed, it is

slightly larger for σ = 2 (αL = 0.29) than for σ = 4 (αL = 0.265).
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Chapter 4

Spectral Modelling of a Passive

Scalar in Homogeneous Turbulence

”I am among those who think that science has great beauty.”

– Marie Curie

This chapter aims at modelling the transport of a passive scalar field and its associated scalar

flux in homogeneous anisotropic turbulence (HAT), in order to address two configurations: ho-

mogeneous isotropic turbulence with a mean scalar gradient (HITSG), and homogeneous shear

turbulent with a mean scalar gradient (HSTSG). Cases of shear-driven turbulence without a

mean scalar gradient will also be studied. This part is an extension of the previous mod-

elling dedicated to the velocity field. A similar two-step approach, called anisotropic EDQNM

modelling, is consistently applied here. Firstly, dynamical equations that govern the passive

scalar and scalar flux fields are closed using a quasi-normal approximation and an isotropic

eddy-damping procedure without any assumption regarding anisotropy. Then, for moderately

anisotropic flows, scalar spherically-averaged descriptors that depend only on the wavenumber

modulus k are defined. In the end, the dynamics of the velocity, passive scalar and scalar flux

fields is described by six generalized spherically-averaged Lin equations: three for the veloc-

ity field, two for the passive scalar, and one for the scalar flux. These equations are valid for

arbitrary mean velocity and scalar gradients of moderate intensity.

The contents of this chapter and the following one were published in:

Briard, Gomez, & Cambon, ”Spectral modelling for passive scalar dynamics in homoge-

neous anisotropic turbulence”, Journal of Fluid Mechanics, 799, 159-199 (2016)

Details on the calculations are provided in Appendix E along with additional considerations

about the modelling of the scalar flux, and basic results about passive scalar dynamics in HIT

framework are recalled in Chapter 1.
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4.1 Scalar and scalar flux generalized Lin equations

The Reynolds decomposition for the scalar field T reads

T = Θ + θ, < θ >= 0. (4.1)

The mean-scalar gradient vector is written λi = ∂iΘ so that Θ = λixi. In physical space, the

evolution equation of the scalar fluctuation θ in the homogeneous framework is

∂θ

∂t
+Ajlxl

∂θ

∂xj
+ ujλj +

∂

∂xj
(θuj) = a

∂2θ

∂xj∂xj
. (4.2)

The Fourier transform of the previous equation gives(
∂

∂t
−Ajlkj

∂

∂kl
+ ak2

)
θ̂(k) + λj ûj(k) = −ikj θ̂uj(k), (4.3)

with the convolution product

θ̂uj(k) =

∫
k=p+q

θ̂(p)ûj(q)d3p. (4.4)

The spectral scalar-scalar correlation ET is defined as

< θ̂∗(p)θ̂(k) >= ET (k)δ(k − p), (4.5)

which corresponds to the two-point correlation RT (r) =< θ(x)θ(x+ r) > in physical space.

Its evolution is given by the Yaglom equation (A.97), firstly derived in Yaglom (1949), and

recovered in Appendix A. The correlation ET is real, satisfies ET (k) = ET (−k), and verifies the

scalar Craya equation(
∂

∂t
−Ajlkj

∂

∂kl
+ 2ak2

)
ET (k, t) + 2λjFj(k, t) = TT,NL(k, t). (4.6)

The total non-linear scalar transfer TT,NL reads

TT,NL(k, t) = 2ki<
(∫

STi (k,p, t)d3p

)
. (4.7)

where STi (k,p, t) is the three-point third-order spectral velocity-scalar-scalar correlation

STi (k,p, t)δ(k + p+ q) = i < ûi(q)θ̂(k)θ̂(p) > . (4.8)

The spectral scalar-velocity correlation Fi - or the scalar flux - is defined as

< û∗i (p)θ̂(k) >= Fi(k)δ(k − p), (4.9)

which corresponds to the two-point correlation RFi (r) =< ui(x)θ(x + r) > in physical space.

The scalar flux Fi is solenoidal and verifies the scalar flux Craya equation(
∂

∂t
−Ajlkj

∂

∂kl
+ (ν + a)k2

)
Fi(k, t) +Mij(k)Fj(k, t) + λjR̂ij(k, t) = TF,NL

i (k, t). (4.10)
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The non-linear scalar flux transfer TT,NL
F reads

TF,NL
i (k, t) = Pinm(k)

∫
SFnm(k,p, t)d3p+ kj

∫
SF∗ji (p,k, t)d3p, (4.11)

where SFnm(k,p, t) is the three-point third-order spectral velocity-velocity-scalar correlation

SFnm(k,p, t)δ(k + p+ q) = i < ûn(q)θ̂(k)ûm(p) > . (4.12)

The expression of the non-linear scalar flux transfer (4.11) has also been obtained in recent

study for active scalar dynamics (Burlot et al., 2015a). Furthermore, TF,NL
i can be written in

a way similar to τij for the kinetic case, namely

τFi (k,p, t) = kn

∫
SFni(k,p, t)d

3p, (4.13)

so that the non-linear scalar flux transfer is

TF,NL
i (k, t) = τFi (k,p, t) + τ∗Fi (p,k, t)︸ ︷︷ ︸

True transfer

+ WF
i (k, t)︸ ︷︷ ︸

Pressure effects

. (4.14)

The term WF
i (k, t) = −αiαmτFm(k,p, t) is responsible for the return to isotropy of the cross-

correlation Fi, i.e. the destruction of the scalar flux since it does not exist in the isotropic

framework. The generalized Lin equations for the passive scalar and scalar flux are then(
∂

∂t
+ 2ak2

)
ET (k, t) = TT,NL(k, t) + TT,L(k, t), (4.15)(

∂

∂t
+ (ν + a)k2

)
Fi(k, t) = TF,NL

i (k, t) + TF,L
i (k, t), (4.16)

where TT,L is the linear scalar transfer and TF,L
i the linear scalar flux transfer

TT,L(k, t) = Ajlkj
∂ET (k, t)

∂kl
− 2λlFl(k, t), (4.17)

TF,L
i (k, t) = Ajlkj

∂Fi(k, t)

∂kl
−Mij(k)Fj(k, t)− λjR̂ij(k, t). (4.18)

4.2 EDQNM closure for ET and Fi

Now that the evolution equations of ET and Fi have been derived, the next step is to close

the non-linear terms with the EDQNM procedure described in Chapter 2. Then, in the fol-

lowing section, the resulting closed expressions of the non-linear terms will be combined with a

consistent modelling for anisotropy.

The quasi-normal expressions for the passive scalar and scalar flux non-linear transfers TT,NL

and TF,NL
i are

TT,NL(k, t) = 2ki

∫
θTkpqT

T,QN
i (k, t)d3p, (4.19)
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TF,NL
i (k,p, t) = Pimn(k)

∫
θFkpqT

F,QN
nm (k,p, t)d3p+ kj

∫
θF,QN
kpq T∗Fji (p,k, t)d3p, (4.20)

where θTkpq and θFkpq are the characteristic times of the third-order scalar and scalar flux corre-

lations respectively

θTkpq =
1− exp

[
−(a(k2 + p2) + νq2 + µ2(k) + µ2(p) + µ3(q))t

]
a(k2 + p2) + νq2 + µ2(k) + µ2(p) + µ3(q)

, (4.21)

θFkpq =
1− exp

[
−(ak2 + ν(p2 + q2) + µ2(k) + µ3(p) + µ3(q))t

]
ak2 + ν(p2 + q2) + µ2(k) + µ3(p) + µ3(q)

. (4.22)

Both θTkpq and θFkpq are obtained by writing the evolution equation of the passive scalar and scalar

flux third-order correlations defined in (4.8) and (4.12) respectively. Such an approach for the

scalar case has already been performed by Bos et al. (2005) in the framework of homogeneous

isotropic turbulence with a mean scalar gradient (HITSG). The eddy-damping terms µ2 and µ3

reflect departure from normal laws according to

µi(k) = Ai

√∫ k

0
u2E(u, t)du, i = 2, 3, (4.23)

with A2 = 0 and A3 = 1.3. The setting of A2 and A3 is discussed in Herring et al. (1982); Lesieur

(2008), along with the choice of the eddy-damping terms µ2 and µ3. These two constants,

also based on experimental considerations, are set to recover the Corrsin-Obukhov constant

KCO ' 0.75, and no new constants are necessary for the scalar flux. Nevertheless, a different

choice, for instance the setting A1 = A2 = A3 which will be addressed in Chapter 7 for USHT,

would lead to similar results; an alternative configuration is discussed by Bos (2005) to account

for pressure effects in the damping. But here, with the present definition of the scalar flux

third-order correlation (4.12), pressure effects are already taken into account: A2 = 0 affects

the equation involving ui(x3)uj(x2)∂1θ(x1) which does not contain the fluctuating pressure. As

a result of the quasi-normal approximation, TT,QN
i and TF,QN

ij can be written

TT,QN
i (k,p, t) = 2Pimn(q)Fn(k, t)Fm(p, t)

+ F ∗i (q, t)
(
knFn(p, t) + pnFn(k, t)

)
− knR̂ni(q, t)

(
ET (k, t)− ET (p, t)

)
, (4.24)

TF,QN
ij (k,p, t) = kn

(
R̂ni(q, t)F

∗
j (p, t) + R̂nj(p, t)F

∗
i (q, t)

)
+ 2Fm(k, t)

(
Pimn(q)R̂nj(p, t) + Pjmn(p)R̂ni(q, t)

)
. (4.25)

With this closure, and using calculations similar to the kinetic case detailed in Appendix E, the

non-linear scalar transfer becomes

TT,NL(k, t) = 2

∫
θTkpqkp(xy + z)(E ′′ + <X ′′)(ET ′ − ET )d3p

+ 2

∫
θTkpq

(
knF

′′∗
n (pmFm + kmF

′
m) + pmFmknF

′
n

ky − px
q

)
d3p. (4.26)

Since the contributions of the velocity-scalar correlation Fi are quadratic in anisotropy, they are

neglected in what follows in the moderate anisotropy framework. These quadratic contributions

of anisotropy in the non-linear transfers for the scalar and the scalar flux are nevertheless cal-

culated in Appendix E. The modelling of Fi(k) is developed with an appropriate decomposition
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in the following section.

4.3 Final spherically-averaged scalar Lin equations

This section presents the final step of the modelling: combining the modelling of anisotropy

with the closed expressions of the transfers obtained by EDQNM. Spherically averaged evolution

equations for the scalar variance spectrum, the scalar directional anisotropy and the scalar flux

are derived from the previous generalized scalar Lin equations: these final scalar equations

depend only on the modulus k of the wavevector k.

4.3.1 Modelling of ET and Fi

A decomposition similar to the one of E in the kinetic case is used for the scalar correlation ET
since both E and ET verify the same properties

ET (k, t) =
ET (k, t)

4πk2

(
1− 15H

(T )
ij (k, t)αiαj

)
= ET0 + E(T,dir), (4.27)

with E(T,dir) = −15ET0 H
(T )
ij αiαj and ET0 = ET /(4πk

2). One can remark that the fourth-order

expansion of ET would be similar to the one of E . The following expansion is chosen for the

scalar flux

Fi(k, t) =
3

2
EFj (k, t)Pij(k) + (Antisymmetric contribution). (4.28)

This decomposition is consistent with the scalar flux being a solenoidal field (kiFi = 0). Hermi-

tian symmetry for the scalar flux, Fi(−k) = F ∗i (k), is straightforward from the decomposition

of a vector into helical modes. Notably, it implies that the vector EFj is purely real and that the

antisymmetric contribution is purely imaginary. The antisymmetric part brings an imaginary

contribution to the scalar flux, which is zero in isotropic turbulence with or without mean scalar

gradient, and which will be discussed in Chapter 8. Consequently, without helicity, only the

projection part of (4.28) is considered here. Using a helical decomposition for Fi shows that (see

Appendix E) the scalar flux has a poloidal structure. Moreover, one can derive a realizability

condition for the scalar field, starting from the decomposition (4.27) of ET , analogous to (2.52)

for the kinetic field

max
i

(LTi ) ≤ 1

15
, (4.29)

where LTi are eigenvalues of H
(T )
ij .

The decompositions (4.27) and (4.28) are exact in the framework of homogeneous

isotropic turbulence with a mean scalar gradient (Herr et al., 1996). Whereas they

are truncations at the the second order of the scalar correlation ET and scalar flux Fi
expansions in shear-driven turbulence, consistently with the modelling for the velocity

field of E and Z done in (2.44) and (2.45).
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About the distinction between directional and polarization anisotropies: scalars admit direc-

tional anisotropy only. Consequently, H
(T )
ij , which appears in the expansion of ET , reflects

directional anisotropy, as H
(dir)
ij in the decomposition (2.44) of E . Then, since Fi is a vector, EFj

represents polarization anisotropy. Finally, a solenoidal second-order tensor such as R̂ij admits

both contributions. This classification is summarized in Table 4.1.

The scalar variance spectrum is given by

ET (k, t) =

∫
Sk

ET (k, t)d2k. (4.30)

The spectral scalar directional anisotropy descriptor H
(T )
ij and the spherically-averaged scalar

flux EFi verify

2ET (k, t)H
(T )
ij (k, t) =

∫
Sk

E(T,dir)(k, t)Pij(k)d2k, (4.31)

EFi (k, t) =

∫
Sk

Fi(k, t)d
2k, (4.32)

where 4πk2EFi = EFi (k, t). The scalar anisotropy tensor bTij is defined as

bTij(t) =
1

KT (t)

∫ ∞
0

ET (k, t)H
(T )
ij (k, t)dk, (4.33)

where KT is the scalar variance,

KT (t) =< θ2 >=

∫ ∞
0

ET (k, t)dk. (4.34)

The global anisotropy indicators bTij have a function analogous to the kinetic ones bij . Similar

anisotropy descriptors were introduced by Kassinos et al. (2007) with a different convention.

Finally, the second-order spectral scalar tensor φTij can then be written

φTij(k, t) = 2ET (k, t)

(
δij
3

+H
(T )
ij (k, t)

)
. (4.35)

One can note that these definitions for the passive scalar field are very similar to the kinetic

one.

4.3.2 Spherical average of the passive scalar and scalar flux

The spherically-averaged scalar and scalar flux Lin equations are then(
∂

∂t
+ 2ak2

)
ET (k, t) = ST,L(iso)(k, t) + ST,NL(iso)(k, t),(

∂

∂t
+ 2ak2

)
ET (k, t)H

(T )
ij (k, t) = S

T,L(dir)
ij (k, t) + S

T,NL(dir)
ij (k, t),(

∂

∂t
+ (a+ ν)k2

)
EFi (k, t) = SF,L

i (k, t) + SF,NL
i (k, t).

(4.36)

(4.37)

(4.38)
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The usual non-linear spherically-averaged isotropic scalar transfer term ST,NL(iso) is

ST,NL(iso)(k, t) =

∫
Sk

TT,NL(k, t)d2k (4.39)

= 16π2

∫
∆k

θTkpqk
2p2q(xy + z)E ′′0 (ET ′0 − ET0 )dpdq, (4.40)

in agreement with Lesieur (2008). The non-linear spherically-averaged directional scalar

transfer term S
T,NL(dir)
ij reads

S
T,NL(dir)
ij (k, t) =

1

2

∫
Sk

TT,NL(k, t)Pij(k) d2k − δij
3
ST,NL(iso)(k, t) (4.41)

= 4π2

∫
∆k

θTkpqk
2p2q(xy + z)(y2 − 1)E ′′0 (ET ′0 − ET0 )H

(pol)′′

ij dpdq

+ 8π2

∫
∆k

θTkpqk
2p2q(xy + z)(3y2 − 1)E ′′0 (ET ′0 − ET0 )H

(dir)′′

ij dpdq

+ 8π2

∫
∆k

θTkpqk
2p2q(xy + z)E ′′0

(
(3z2 − 1)ET ′0 H

(T )′

ij − 2ET0 H
(T )
ij

)
dpdq. (4.42)

The isotropic term ST,NL(iso) is a conservative transfer, meaning that its integral over k is zero.

However, the integral of S
T,NL(dir)
ij is different from zero, as the directional transfer in the kinetic

case. This means that there is a return to isotropy of the passive scalar. Nevertheless, it is

not possible to extract an explicit RTI term from S
T,NL(dir)
ij , since this mechanism is led by the

pressure field which is absent of the scalar equations. This means that the RTI of the scalar

field is driven by the velocity field. The production terms depend linearly both on the mean

velocity and scalar gradients: the linear spherically-averaged isotropic scalar transfer

ST,L(iso) is

ST,L(iso)(k, t) =

∫
Sk

TT,L(k, t)d2k (4.43)

= −2A+
ln

∂

∂k
(kETH

(T )
ln )− 2λlE

F
l . (4.44)

The linear spherically-averaged directional scalar transfer S
T,L(dir)
ij is

S
T,L(dir)
ij (k, t) =

1

2

∫
Sk

TT,L(k, t)Pij(k)d2k − δij
3
ST,L(iso)(k, t) (4.45)

= −3

7
ET

(
A+
ljH

(T )
il +A+

liH
(T )
jl −

2

3
A+
lnδijH

(T )
ln

)
+

1

5
A+
ijET

− 1

15
A+
ij

∂

∂k
(kET )− ET

(
A−ljH

(T )
il +A−liH

(T )
jl

)
− 1

10

(
λiE

F
j + λjE

F
i −

2

3
λlE

F
l δij

)
+

2

7

(
A+
il

∂

∂k
(kETH

(T )
jl ) +A+

jl

∂

∂k
(kETH

(T )
il )− 2

3
A+
lmδij

∂

∂k
(kETH

(T )
lm )

)
. (4.46)

At first order in anisotropy, with the decomposition (4.28), the non-linear scalar flux transfer

becomes

TF,NL
i (k, t) =

3

2

∫
θFkpqkE ′0

[
EFj

(
2px(αi + zα′i)(α

′′
j + yαj)
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+ q(y + xz)
(

2α′′i (α
′′
j + yαj)− Pij

))
+ kEF ′′j

(
(1− z2)P ′′ij + (αi + zα′i)(αj + yα′′j )

)]
d3p

+
3

2

∫
θFpkqk

[
qE0EF

′
j (α′′i + yαi)

(
αj + zα′j + 2y(α′′j + xα′j)

)
+ kE ′′0 EF

′
j

(
(αi + yα′′i )(αj + zα′j) + (1− y2)

(
P ′ij − 2αi(αj + zα′j)

))

+ p

(
E0EF

′′
j (α′i + zαi)(αj + yα′′j )− (xy + z)E ′′0 EFj Pij

)]
d3p

− 3

∫
θFkpqkαi

[
k(1− y2)E ′′0 EF

′
j (αj + zα′j) + qE ′0EFj (1− z2 − 2y(y + xz))(α′′j + yαj)

]
d3p.

(4.47)

Since quadratic contributions of anisotropy are discarded, but nevertheless computed in Ap-

pendix E, only the isotropic part of the kinetic field appears. The non-linear spherically-

averaged scalar flux transfer is thus

SF,NL
i (k, t) =

∫
Sk

TF,NL
i (k, t)d2k (4.48)

= 4π2

∫
∆k

θFkpqk
2pqE ′0

[
kEF ′′i (1 + y2 − z2 − xyz − 2y2z2)− 2q(y3 + xz)EFi

]
dpdq

+ 4π2

∫
∆k

θFpkqk
2pq

[
E0

(
qz(2xy2 + yz − x)EF ′i − py(x+ yz)EF ′′i

)

+ kE ′′0

(
(1− y2 + z2 − xyz − 2y2z2)EF ′i − 2(1− y2)EFi

)]
dpdq. (4.49)

One can extract from the non-linear scalar-flux transfer the spherically-averaged scalar flux

RTI transfer

SF,RTI
i (k, t) = −8

∫
∆k

π2θFkpqk
3pqE ′0EF

′′
i (1− y2)(1− z2)dpdq. (4.50)

The linear spherically-averaged scalar flux transfer reads

SF,L
i (k, t) =

∫
Sk

TF,L
i (k, t)d2k (4.51)

= −2λjE
(1

3
δij +H

(dir)
ij +H

(pol)
ij

)
− 1

5
A+
ij

(
2EFj +

∂

∂k
(kEFj )

)
. (4.52)

As a conclusion, the whole dynamics of a passive scalar field in homogeneous anisotropic tur-

bulence is driven by six spherically-averaged compact equations. Three for the velocity field

coming from Chapter 2, two for the passive scalar and one for the scalar flux. The last three

ones are original results of the present work. The different anisotropy descriptors are gathered

in Table 4.1.
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Spherically averaged descriptors
k-vectors descriptors Isotropy Directional anisotropy Polarization anisotropy

E(k, t) E(k, t) H
(dir)
ij (k, t) 0

Z(k, t) 0 0 H
(pol)
ij (k, t)

ET (k, t) ET (k, t) H
(T )
ij (k, t) 0

Fi(k, t) 0 0 EFi (k, t)

Table 4.1: Description of anisotropy at the velocity, passive scalar and scalar flux levels, using
k-vectors descriptors and their corresponding spherically-averaged contributions.

4.4 Cospectrum for an uniform mean scalar gradient

In this section, the emphasis is put on homogeneous isotropic turbulence with a mean scalar

gradient (HITSG). The scalar flux is created by an uniform mean gradient

λ = (0, 0,−Λ), Λ > 0, (4.53)

whereas the kinetic field remains fully isotropic, and thus decays with time. In this framework,

which has been widely investigated notably by Bos and coworkers, turbulent eddies bring the

hot fluid to the cooler parts of the flow (and the opposite), thus creating a heat flux. Some

definitions are given before starting the numerical study in the next chapter. Firstly, when the

kinetic field is isotropic, it tends to destroy the scalar flux, created by the scalar gradient. Given

the expression of the production term SF,L
i , only the third component of EFi is non-zero, and

its sign is opposite to the one of Λ. Thus, the cospectrum is defined as

F(k, t) = EF3 (k, t), (4.54)

the mixed velocity-scalar correlation as

KF (t) =< u3θ >=

∫ ∞
0
F(k, t)dk, (4.55)

and the cospectrum dissipation rate as

εF (t) = (ν + a)

∫ ∞
0

k2F(k, t)dk. (4.56)

Finally, the time evolution of the velocity-scalar correlation RFi (t) =< ui(t)θ(t) >, for r = 0, is

given by

dRFi
dt

+Rijλj +AijR
F
j =< p

∂θ

∂xi
> −2εFi − a < θ

∂2ui
∂xl∂xl

> −ν < ui
∂2θ

∂xl∂xl
>,

with

εFi (t) = (ν + a) <
∂ui
∂xl

∂θ

∂xl
> . (4.57)

The last three rhs terms of the equation for RFi simplify into −εFi using homogeneity. The

evolution equation of εFi has not received much attention, and is therefore derived and simplified

for homogeneous turbulence in Appendix A, and then for HITSG in (A.34). In the classical case
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of a (vertical) mean scalar gradient, RF3 = KF and the previous evolution equation simplifies

into
dKF

dt
= PF (t)− εF (t) + ΠF (t), (4.58)

where

ΠF (t) =

∫ ∞
0

SF,NL
3 (k, t)dk (4.59)

is the cospectrum destruction, or cospectrum pseudo return to isotropy, driven by the kinetic

field. And PF is the cospectrum production term

PF (t) =

∫ ∞
0

SF,L
3 (k, t)dk =

2

3
ΛK(t), (4.60)

which decays with time along with the kinetic energy.



Chapter 5

Dynamics of a Passive Scalar in

Homogeneous Turbulence

In this chapter, the complete anisotropic EDQNM modelling is used to investigate the dynamics

of a scalar field and its flux, passively advected by the homogeneous turbulent flow. The Prandtl

number Pr is set to unity, and cases of Pr � 1 and Pr � 1 are addressed in Chapter 6. The

extension to active scalar dynamics in homogeneous unstably stratified turbulence is presented

in Chapter 7.

The contents of this chapter and the previous one were published in:

Briard, Gomez, & Cambon, ”Spectral modelling for passive scalar dynamics in homoge-

neous anisotropic turbulence”, Journal of Fluid Mechanics, 799, 159-199 (2016)

The study of a passive scalar, such as small temperature fluctuations θ, convected by a turbulent

velocity field ui, is of interest for several reasons. From a fundamental point of view: though

HAT has been at the center of many theoretical, numerical and experimental works for almost

40 years, numerous questions still remain without clear answers. How does the energy, mainly

produced at large scales by mean velocity and scalar gradients, affect the small scales dynamics?

Is there a complete return to isotropy of small scales? Is the growth or decay of integrated

quantities, such as the kinetic energy and the scalar variance, predictable?

Upstream to these fundamental questions, there are practical reasons to the investigation of

HAT. Indeed, taking into account anisotropy created by non-zero mean fields is an important

feature to describe real flows by comparison to the classical case of HIT. Notably, the deep

understanding of homogeneous turbulence dynamics could provide further insights into the

analysis of high Reynolds numbers natural flows such as atmospheric and oceanic ones. Such

flows are complex for multiple reasons, one being that their Reynolds numbers are much higher

than the ones currently reachable in DNS and experiments. For instance, Reλ can be of order

104 in atmospheric flows. Such large Reynolds numbers simulations without modelling would

require huge computational resources to capture only the early stage of the dynamics, and would

need a fine description of all scales, from the most energetic ones to the dissipative ones at the

level of the Kolmogorov wavenumber kη. In addition to very high Reynolds numbers involved

in atmospheric flows, the nature itself of such flows is complex since it contains many different

86
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physical phenomena. Indeed, a fine description of atmospheric dynamics would require to take

into account rotation, helicity, stratification, shear, and mean scalar gradient from the ground

to high altitude (Wyngaard & Coté, 1972).

Mean velocity and scalar gradients are also deeply associated to production mechanisms in the

turbulence dynamics regardless of the flow type. Indeed, they play a fundamental role in the

energy transfers through scales. Therefore, insights concerning the role of mean velocity and

scalar gradients are of great interest for turbulent flows, and specifically the ones where departure

from isotropy is generated by anisotropic forces or by solid walls giving rise to shearing stresses.

Moreover, a better understanding of all these anisotropic turbulent flows could be obtained by

making separate investigations of isolated mechanisms at high Reynolds numbers, which are

still quite unreachable using DNS. This is the approach followed in this study. In order to

achieve this objective, the dynamics of a passive scalar field θ and its flux < uiθ > in HAT

is addressed with the use of the anisotropic EDQNM modelling developed in Chapters 2 and

4. It is worth noting that the present model is developed for arbitrary mean velocity gradients

that produce energy: consequently it is not adapted to the case of purely rotating turbulence

in which there is no energy production and where the dynamics is dominated by dispersive

inertial waves interacting non-linearly, requiring even more complex tools (Cambon & Jacquin,

1989; Sagaut & Cambon, 2008). The emphasis is thus put on three different configurations:

Homogeneous Isotropic Turbulence with a mean Scalar Gradient (HITSG), Homogeneous Shear

Turbulence (HST), and finally, these two frameworks are combined into Homogeneous Shear

Turbulence with mean Scalar Gradient (HSTSG) as notably encountered in atmospheric flows.

In HITSG, the mean scalar gradient produces scalar fluctuations so that the scalar variance

< θ2 > can increase whereas the isotropic velocity field is decaying. This mean scalar gradient

creates an anisotropic flux < u3θ >, called the cospectrum in spectral space, which has received

a lot of attention: with spectral closures (Herr et al., 1996; Bos et al., 2004, 2005; O’Gorman &

Pullin, 2005), with DNS (Pumir, 1994; Overholt & Pope, 1996), theoretically (Lumley, 1967),

and experimentally (Venkataramani & Chevray, 1978; Warhaft, 1980; Sirivat & Warhaft, 1983;

Mydlarski & Warhaft, 1998; Mydlarski, 2003). In all these studies, the scaling of the cospectrum

is uncertain in the inertial range, k−7/3 or k−2: this point is addressed hereafter.

The case of a mean velocity gradient without mean scalar gradient, has been less studied: a rapid

decrease of KT =< θ2 > was observed experimentally (Warhaft, 1980; Karnik & Tavoularis,

1989), and this has been confirmed theoretically (Gonzalez, 2000). Interestingly, in such a

configuration, the evolution of the passive scalar field is completely different from the one of the

velocity field.

Finally, when both mean velocity and scalar gradients are applied, there is a continuous produc-

tion of kinetic energy K(t) which grows exponentially for large dimensionless times St. Conse-

quently, thanks to interactions with the scalar flux, KT grows exponentially as well. The HSTSG

configuration has been at the center of many works as well: with a classical EDQNM approach

(Bos & Bertoglio, 2007), with DNS (Shirani et al., 1981; Rogers et al., 1989; Brethouwer, 2005;

Kassinos et al., 2007) and experimentally (Tavoularis & Corrsin, 1981; Danaila et al., 1999b;

Ferchihi & Tavoularis, 2002). Even without rotation, the HSTSG configuration remains quite

representative of atmospheric flows (Wyngaard & Coté, 1972). Another configuration where

the kinetic energy, the scalar variance and the mixed-correlation grow exponentially conjointly

is analyzed in Chapter 7 for active scalar dynamics.
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Besides, the small scales RTI for each of the three cases presented is of primary importance:

indeed, according to Kolmogorov (1941b), small scales of the flow should return to isotropy

whatever the large scales are. While the small scales RTI of second-order moments of the velocity

field is well-admitted (Sarkar & Speziale, 1990; Pumir, 1996; Garg & Warhaft, 1998; Shen &

Warhaft, 2000), the case of third-order moments - such as the velocity derivative skewness

in shear flows - is still an open question. Some considerations about statistics in HST are

proposed in A. Moreover, it appeared that the scalar case is even more complicated, since the

conclusion is not clear regarding second-order moments: departure from isotropy are observed

experimentally and numerically at small scales with a mean scalar gradient only, in shear-driven

flows, in boundary layers and in jets (Sreenivasan et al., 1979; Sreenivasan & Tavoularis, 1980;

Sreenivasan, 1991; Pumir, 1994; Danaila et al., 1999b).

Consequently, and in order to clarify the RTI of the scalar small scales, high Reynolds numbers

anisotropic flows are investigated thanks to the present anisotropic EDQNM modelling. For the

different configurations (HST, HITSG, HSTSG, HSRT), comparisons with DNS and experiments

are proposed in order to validate the model. Then, new numerical and theoretical results at

very high Reynolds numbers are presented. The evolution equation of the scalar variance KT (t)

in homogeneous turbulence reads

dKT

dt
= −2λjR

F
j (t)− εT (t), (5.1)

where the scalar variance dissipation rate εT is

εT (t) = 2a

∫ ∞
0

k2ET (k, t)dk = 2a <
∂θ

∂xl

∂θ

∂xl
> . (5.2)

The evolution equation of εT in homogeneous turbulence is derived in Appendix A.

5.1 Homogeneous shear-driven turbulence

In this section, the effects of a mean shear on the passive scalar dynamics are studied. Firstly, the

scalar variance spectrum ET (k, t) is briefly investigated. Then, HSRT is addressed. Finally, the

emphasis is put on HST, which presents an interesting result regarding the different behaviours

of the kinetic energy and the scalar variance. All results regarding the passive scalar decay and

growth laws in HSRT and HST are gathered in Table 5.1.

5.1.1 Scalar spectrum ET (k, t) and non-linear transfers

It can be shown by dimensional analysis that the scalar spectral tensor linked to the shear

extra-diagonal component φT13 also evolves as k−7/3 in the inertial range between the scalar

integral wavenumber kT = 1/LT and the Kolmogorov wavenumber kη. One has to assume that

φT13 depends on the kinetic energy dissipation rate ε, the scalar variance dissipation rate εT , the

wavenumber k and the shear rate S. Since the transport equation of a passive scalar is linear

with ui, it is assumed that φT13(ka, εb, εcT , S
d) = φT13(ka, εb, εcT , S). Dimension analysis yields

φT13(k, t) ∼ Sε−2/3εTk
−7/3. (5.3)
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This k−7/3 range is recovered both in HSRT and HST. Only the case of HSRT is presented in

Fig. 5.1a. It has been said in Chapter 4 that the spherically-averaged non-linear directional

scalar transfer S
T,NL(dir)
ij has a non-zero integral over k because the RTI process is driven by

the kinetic field only. This is illustrated in Fig. 5.1b along with the isotropic scalar transfer

ST,NL(iso) which has zero integral over k.
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Figure 5.1: (a) Scalar variance spectrum ET (k, t) and spectral tensors φT13(k, t) and

φT33(k, t) for σ = 2 with St = 1. (b) Fluxes of S
T,NL(dir)
13 and ST,NL(iso).

5.1.2 Scalar decay laws and RTI in HSRT

The scalar decay exponent αT of the scalar variance KT is well-known thanks to the CBC theory.

This decay exponent has been extended to the case of Batchelor HIT for a passive scalar field

in Chapter 1, using a scalar backscatter parameter pT similar to p for the kinetic field

KT (t) ∼ tαT , αT = −2
σT − pT + 1

σ − p+ 3
, (5.4)

where pT (σ = σT = 4) = 0.27 and pT (σ = σT ≤ 3) = 0. This parameter pT slightly depends on

the Prandtl number and much more on the kinetic infrared slope σ. In Fig. 5.2, both low and

large Reynolds numbers scalar decay exponents are recovered for Saffman and Batchelor HSRT.

Then, the return to isotropy of the scalar field is driven by the kinetic one: the consequence of

this is that no explicit scalar RTI transfer term can be derived. Nevertheless, the RTI mechanism

can be observed thanks to the anisotropy indicators bTij in Fig. 5.3a for Saffman turbulence. An

asymptotic anisotropic state is reached, similar to the kinetic one. The final non-zero values of

bTij indicate that there is still anisotropy left after the release of the velocity gradients. Batchelor

turbulence is not presented, but the bTij are found to continuously decrease, like the kinetic case

in Chapter 3.

As revealed in Fig. 5.3b, the anisotropy of the scalar field is mostly contained in large scales

around the scalar integral wavenumber kT . Small scales have almost returned to isotropy

(H
(T )
ij ' 0), but not completely for the extra-diagonal component, as revealed by the zoom

near kη. The kinetic indicator H
()
ij are zero at small scales, whereas there is some anisotropy left
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Figure 5.2: Scalar and kinetic decay exponents αT and α in both high and low Reynolds
regimes, with St = 1, where symbols represent theoretical predictions. (a) σ = 2; (b)

σ = 4.

here in the scalar small scales. This is consistent with most of the numerical and experimental

observations, as it will be discussed later on. A deeper investigation of local isotropy is proposed

at the end of this chapter for HSTSG.
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Figure 5.3: Scalar anisotropy indicators for σ = 2 with St = 1. (a) bTij(t). (b) H
(T )
ij (k, t)

at t = 106τ0 (Reλ = 800).

The case of an axisymmetric contraction was studied by Gylfason & Warhaft (2009), where the

temperature fluctuations are created by a mean gradient that increases during the effective con-

traction. Although no quantitative comparison is possible because of the ”moderate anisotropy”

limitation of the present model, interesting qualitative facts can be reported. The measure of

anisotropy is done using the fluctuating covariance Cij(t) =< ξiξj >, where ξi = ∂iθ, which

brings comparable information as the bTij . During the contraction, |Cij | increases, and at the

exit of the contraction, it converges to a constant value, different from zero. This behaviour is

similar to the one of bTij , and the authors concluded that there is a partial return to isotropy,
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which is in agreement with the presents results: however, there is no spectral information in

Gylfason & Warhaft (2009) to locate the remaining anisotropy.

5.1.3 Sustained shear (HST)

In this part, the shear is maintained. It has been shown in Chapter 3 that there is an exponential

growth of the kinetic energy K(t) due to non-linear transfers. Is there a similar growth of the

scalar variance? In the evolution equation of KT (5.1), there are no production terms unlike the

evolution equation of K(t). This means that anisotropy only produces energy for the kinetic

field. Hence, there should be no growth of KT (t) even if the shear is maintained. Fig. 5.4a

exhibits a remarkable behaviour: bTij and the scalar shear rapidity

STR(t) =
εT (t)

SKT (t)
(5.5)

reach constant values for St ≥ 30, as in the kinetic case. Moreover, it is revealed that the scalar

variance KT decreases exponentially in Fig. 5.4b, with a decay rate γT ' −0.52. Let’s replace

KT and εT in (5.1) (with Λ = 0) by

KT (t) = K∞T exp(γTSt), εT (t) = ε∞T exp(γTSt).

An analytical expression for γT is obtained

γT = − εT
SKT

= −0.52, KT (t) ∼ KT (0) exp(γTSt). (5.6)

The scalar exponential exponent found by plotting KT is in good agreement with the asymptotic

value of STR , which gives γT = −0.52. The important result is that the value of γT does not

depend on the shear rate S nor on the infrared exponents σ and σT (and neither does γ for the

exponential growth of K(t)). The scalar dissipation εT , also displayed in Fig. 5.4b, exponentially

decreases with the same rate γT = −0.52, which is consistent with the evolution equation (5.1).
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Figure 5.4: (a) Scalar anisotropy indicators bTij along with STR for σ = 2. (b) Kinetic
energy K, scalar variance KT , and scalar dissipation rate εT , for σ = 2 and σ = 4.
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/ Algebraic exponents ∀S in HSRT Exp. rates ∀(S, σ, σT , P r) in HST

K(t) α = −2σ−p+1
σ−p+3 , p =

{
0 , σ ≤ 3
0.55 , σ = 4

γ = 2b13 − ε/KS

ε(t) nε = −3σ−p+5/3
σ−p+3 γ

L(t) nL = 2
σ−p+3 γ/2

R13(t) α13 = −2σ−pS+1
σ−p+3 , pS =

{
0 , σ ≤ 3
0.279 , σ = 4

γ

ε13(t) nε13 = α13 − 1 Destruction

KT (t) αT = −2σT−pT+1
σ−p+3 γT = −εT /KTS = −0.52

εT (t) nεT = −σ−p+5+2σT−2pT
σ−p+3 γT

LT (t) nLT = nL γ/2

Table 5.1: Decay and growth laws of kinetic and scalar integrated quantities in HSRT and HST.
Note that the time exponents for K, ε, L, KT , εT and LT of HSRT are also valid in HIT.

The fact that anisotropy accelerates the decay of the scalar field has been observed experimen-

tally by Warhaft (1980) with a contraction. Moreover, such an exponential decrease of < θ2 >

has been found theoretically by Pierrehumbert (1994); Gonzalez (2000) using a self-preservation

analysis. In the latter reference, the decay rate of Karnik & Tavoularis (1989) is computed by

fitting the experimental data Kexp
T ∼ exp(−0.037xθ/M). From this, it is possible to determine

the associated γexp
T according to

Kexp
T (t) ∼ exp(γexp

T St), γexp
T =

−0.037Uc
MdU1/dx2

.

The parameters are Uc = 13m.s−1 , M = 0.0254m and dU1/dx2 = ksUc = 8.06s−1 with the shear

generator parameter kS = 0.62m−1. Hence γexp
T = −2.35. This value seems very large and may

come from a too low dU1/dx2. Indeed, details about the shear generation are provided in Karnik

& Tavoularis (1987) where velocity gradients dU1/dx2 from 43.5s−1 to 84s−1 are reported, which

would respectively give γexp
T = −0.435, closer to the present value, and γexp

T = −0.235. Whatever

it be, |γexp
T | < |γT |.

5.1.4 Decay and growth laws for the passive scalar in HSRT and HST

The decay and growth laws of the kinetic and scalar fields, obtained theoretically and assessed

numerically, valid not only in HSRT and HST, but also in HIT, are gathered in the following

Table 5.1.

5.2 Isotropic Turbulence with a mean Scalar Gradient

The cospectrum F(k, t) is now investigated in the case of homogeneous turbulence submitted

to a mean scalar gradient λ3 = −Λ with an isotropic kinetic field (HITSG). The scalar gradient

accounts for a production term of scalar fluctuations, and initially the cospectrum F = 0. In
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these conditions, the study of the cospectrum, the only non-zero component of the scalar flux,

amounts to the investigation of another passive scalar.

5.2.1 Spectra and transfers

The inertial scaling of the cospectrum can be found by dimensional analysis (Lumley, 1967).

One has to assume that F only depends on the scalar gradient Λ, the wavenumber k and the

kinetic energy dissipation rate ε so that

F(k, t) = CFΛε1/3k−7/3, (5.7)

where CF is the cospectrum constant, found to be CF ' 3 in the present work. Bos (2005)

reported CF ' 1.5 whereas O’Gorman & Pullin (2005) computed CF = 3.5 with their model.

The k−7/3 dependence is similar to the fully anisotropic spectral tensor φ13 in shear-driven

turbulence. If one assumes that F depends on ε, k and its dissipation rate εF , then F ∼
ε−1/3εFk

−5/3, like a passive scalar. This would imply that εF is conserved throughout the

cascade and this cannot be satisfied due to the pressure effects.

In what follows for numerical simulations, one needs to define a dimensionless mean scalar

gradient Sθ. There are different possibilities to define a reference mean scalar gradient Λref,

unlike the mean velocity gradient which is unambiguously defined (De Souza et al., 1995). We

choose

Sθ =
Λ

Λref
. (5.8)

The reference mean scalar gradient Λref is defined explicitly in the following comparisons. If not

mentioned otherwise, Sθ = 1 is chosen.

In Fig. 5.5a, the k−7/3 scaling clearly appears for the cospectrum. However, it requires a very

high Reynolds number (Reλ ≥ 104 here). Without it, it is hard to distinguish the theoretical

power law k−7/3 from k−2, as revealed in figure 5.5b for the moderate Reynolds number case

Reλ = 100, where the inertial range is rather narrow. The k−7/3 scaling has also been obtained

experimentally by Mydlarski (2003), in DNS by O’Gorman & Pullin (2005); Watanabe & Gotoh

(2007) or with EDQNM by Bos et al. (2005).

An interesting point to mention that has not been reported so far is the infrared range of the

cospectrum; indeed, since F = 0 in the initial isotropic flow, one can wonder how it evolves

at very large scales. The result is displayed in Fig. 5.6a: the cospectrum infrared exponent is

the same as the kinetic one σ. Moreover, the k−7/3 scaling is recovered for all the σ presented.

Finally, the linear and non-linear transfers associated to the cospectrum are presented in Fig.

5.6b: SF,NL
3 − SF,RTI

3 represents the conservative non-linear transfer with zero integral over k.

SF,RTI
3 is the RTI term associated with the pressure effects. SF,NL

3 is the total non-linear transfer

that corresponds to a non-conservative flux. Finally, SF,L
3 is the linear transfer responsible for

production of anisotropy through the scalar gradient, that decreases along time with the kinetic

spectrum E(k, t). This is in agreement with similar results presented in Bos et al. (2005).
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Figure 5.5: (a) Cospectrum, kinetic energy and scalar variance spectra F , E and ET for
Reλ = 2.105, along with the integral and Kolmogorov wavenumbers kL and kη. (b) Effect
of low Reynolds numbers on the scaling of F , with a zoom on the narrow inertial range

for the case Reλ = 100. Both for σ = 2.
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Figure 5.6: (a) Large scales behaviour of the cospectrum F for different infrared kinetic
exponents σ. (b) Linear and non-linear transfers of the cospectrum for σ = 2, at Reλ =

2.105.

5.2.2 Comparisons with experimental and numerical results

This section aims at assessing the anisotropic EDQNM modelling in the HITSG framework by

comparisons with one DNS and one experiment.

Overholt and Pope (1996): in this part, the emphasis it put on the ratio of the cospectrum

dissipation εF and cospectrum production PF defined in (4.56) and (4.60). In the DNS of

Overholt & Pope (1996), it is shown that the cospectrum dissipation is not negligible at low

Reynolds numbers even though it decreases with Reλ. The following power law is found(
εF
PF

)DNS

= 4.61Re−0.769
λ ,
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reported in Fig. 5.7, from Reλ = 28 to 185. Results coming from EDQNM simulations are also

presented for comparison purposes(
εF
PF

)EDQNM

= 11.6Re−0.760
λ .

The ratio is evaluated for Reynolds numbers such that the kinetic field decreases according to

CBC theory. It is observed that for Reλ = 28 the kinetic field is in the transition towards low

Reynolds numbers regime. This is why here the minimum value for the ratio is at Reλ = 40. This

agreement with DNS regarding the Reλ power law in low Reynolds numbers regime partially

validates the model for the cospectrum. The discrepancy for the numerical factor arises from

the fact that initial conditions are different, and mainly because in the DNS the velocity field

is forced, whereas it is freely decaying here. Nevertheless, the Reλ power law is recovered.
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Figure 5.7: Comparison of the ratio of cospectrum dissipation and production with the DNS of
Overholt & Pope (1996) for σ = 2 in high and low Reynolds numbers regimes.

As for the high Reynolds numbers regime, the Re−1
λ predicted by Bos et al. (2005) is recovered

numerically in Fig. 5.7 as well. This scaling law can be obtained analytically, assuming that in

high Reynolds numbers regime the dominant region of the kinetic spectrum and cospectrum is

the inertial range

εF (t)

PF (t)
=

3(ν + a)

2Λ

∫∞
0 k2F(k, t)dk∫∞

0 E(k, t)dk
∼
∫ kη
kL
ε1/3k−1/3dk∫ kη

kL
ε2/3k−5/3dk

. (5.9)

Then, using classical relations such as (kη/kL) = Re
3/4
L where ReL is the integral Reynolds

number so that
√
ReL ∼ Reλ, and νk

4/3
η = ε1/3, one finds εF/PF ∼ Re−1

λ .

Sirivat and Warhaft (1983): in this part, the results provided by the current model are

compared with the experimental work of Sirivat & Warhaft (1983). The case where the scalar

gradient is created with a mandoline (a screen of thin heated wires) is chosen. The parameters

of the experiment are the following ones: the input speed is U = 3.4m.s−1 and the meshsize

M = 0.024m. For this configuration, the initial Reynolds number is Reλ(0) = 26.4 and the

turn-over time τexp = 1.14s. The scalar dissipation rate, written εθ for the experiment, is

εθ ' 10−2 ◦C2.s−1 for a scalar gradient β = 1.78◦C.m−1. Assuming that for this experiment the



Chapter 5. Dynamics of a Passive Scalar in Homogeneous Turbulence 96

Prandtl number is about 0.7, a reference fluctuating scalar gradient is computed as(
∂θ

∂x

)
ref

= Λref =

√
εθ
3a
,

so that the dimensionless scalar gradient is Sθ = β/Λref = 0.152. Temporal results are trans-

posed to spatial ones through
x

M
=

t

τ0

Uτexp

M
,

where τ0 is the kinetic characteristic time K/ε evaluated numerically after two turn-over times,

so that transition effects from the initial conditions are erased. The experimental decay rate of

the kinetic field being αexp = −1.3, Saffman turbulence (σ = 2) is an appropriate large scales

initial condition for the simulations. The cospectrum correlation

ρuiθ =
< uiθ >√

< u2
i >< θ2 >

, ρu3θ = ρwθ, (5.10)

is well recovered in Fig. 5.8a, and ρwθ → −0.7. The ratio of scalar production −ΛKF and

dissipation εT is also in agreement with the present results in Fig. 5.8c. The final value of the

characteristic times ratio

RT =
K εT
KT ε

(5.11)

matches quite well experimental data in Fig. 5.8d. However, there is a slight discrepancy in

Fig. 5.8b for the ratio of integral scales LT /L defined in (1.37) (' 0.7 with EDQNM, and ' 0.9

experimentally). Since no definitions are given in the experiment, there could be a difference

in the definitions. Nevertheless, the fact that LT < L is recovered. Let’s underline that initial

conditions are isotropic, which is not the case in the experiment: as mentioned by Sirivat &

Warhaft (1983), the initial fluctuating temperature field is slightly inhomogeneous, and because

of the grid itself the kinetic field contains some anisotropy. But still, the ”early times” of ρwθ
and −ΛKF/εT are well captured by the anisotropic EDQNM modelling.

About the cospectrum correlation ρwθ, it has to be pointed out that there exists a large scat-

ter, since measured values span from ' −0.19 to ' −0.8, with an average around ' −0.65

(Venkataramani & Chevray, 1978; Sirivat & Warhaft, 1983; Overholt & Pope, 1996; Mydlarski,

2003). It appears in EDQNM simulations that ρwθ strongly varies for 5 ≤ Reλ ≤ 300, roughly

from 0.6 to ' 0.71 for decreasing Reynolds numbers. This is the classical range of Reynolds

numbers covered by experiments and DNS. Consequently, the reason for the scattering of ρwθ
could be moderate Reynolds numbers, where it becomes more sensitive to the intensity of the

mean-scalar gradient. Another explanation is proposed in Chapter 6.

5.2.3 Decay and growth laws for the cospectrum and passive scalar

In this section, the anisotropic EDQNM modelling is used to address the high Reynolds numbers

regimes of HAT. The satisfactory agreements obtained at moderate Reynolds numbers in the

previous comparisons give confidence in the following investigation. The main contribution of

this chapter is the new results presented in HITSG, which aim at predicting the decay and

growth of the mixed-correlation and scalar variance. These results, gathered in Table 5.2, also

exhibit the dominant mechanisms during the decay.
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Figure 5.8: Comparisons with the experiment of Sirivat & Warhaft (1983) with the man-
doline configuration, for σ = 2 and Sθ = 0.152. (a) Cospectrum correlation ρwθ defined
in (5.10). (b) Scalar to kinetic integral scales ratio LT /L. (c) Ratio of production and
dissipation of the passive scalar −ΛKF/εT . (d) Kinetic to scalar time scales ratio RT

defined in (5.11).

Decay of KF (t) and εF (t): the scalar flux F is destroyed by the classical decay of the kinetic

field and consequently experiences a decay itself. Is it possible to derive theoretical decay

exponents based on CBC theory for < u3θ >? Two assumptions based on physical arguments

for high Reynolds numbers regime need to be made: (i) It has been shown in Fig. 5.6a that

the cospectrum does not have a specific infrared exponent and is completely controlled by the

kinetic field. Therefore, only the inertial k−7/3 range, starting at the integral wavenumber kL,

should be taken into account into the cospectrum decay process. (ii) In the case of Batchelor

turbulence, backscatter parameters p and pT are introduced for the kinetic and scalar fields

respectively. Since the cospectrum F is the spectral counterpart of the velocity-scalar cross

correlation, its backscatter parameter pF should contain both effects. Hence, the simplest form

is chosen: pF = (p+ pT )/2 for σ = 4, which gives pF = 0.4075 with Pr = 1.

With these reasonable assumptions, one can write

KF (t) =

∫ ∞
kL

F(k, t)dk ∼ k−4/3
L ε1/3. (5.12)
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Injecting in this equation decay exponents of kinetic integrated quantities recalled in Table 5.1,

and using pF , one finds

KF (t) ∼ tαF , αF = −σ − pF − 1

σ − p+ 3
. (5.13)

It can be deduced from the scaling (5.12) that the dominant mechanism in the decay of F at high

Reynolds numbers is not production, but inertial effects of the velocity field. This is not true

anymore in the low Reynolds numbers regime, where the production term PF leads the dynamics.

From the evolution equation (4.58) of the mixed-correlation, only dKF/dt ∼ PF = 2ΛK/3

remains. The return to isotropy term ΠF , or cospectrum destruction, is weak and εF is also

negligible: indeed, given the shape of the cospectrum dissipation (4.56), this term is strong in

the inertial range, which does not exist anymore in the low Reynolds regime. This immediately

yields

αF = −σ − 1

2
. (5.14)

These decay exponents do not depend on the scalar gradient Λ, and are assessed numerically

in Fig. 5.9a in the high and low Reynolds numbers regimes. The agreement is excellent even

for the particular case of Batchelor turbulence. This is the first time such a result is presented:

indeed, in existing DNS, the kinetic field is forced or artificially frozen so that no decay can

occur. From (5.13) and (5.14), it follows that KF does not decay for σ = 1. In this case, the

Reynolds number Reλ remains constant and so the dynamics of the inertial range, on which is

based αF , remains unchanged. These theoretical decay exponents, assessed numerically, give

further insights into the prediction of high Reynolds numbers decay in HITSG: this is also an

extension of an analysis previously applied to the passive scalar in HIT in Chapter 1.

Regarding the cospectrum dissipation rate: since the scalar flux is a purely anisotropic quantity,

εF is not a conserved quantity unlike ε and εT . Therefore, it is not possible to express it under

the shape of a power law. Nevertheless, as the inertial range disappears in the low Reynolds

numbers regime, it is possible to compute the decay exponent nεF of εF from the evolution

equation (4.58) so that

εF (t) ∼ tnεF , nεF = αF − 1 = −σ + 1

2
. (5.15)

The agreement between this theoretical result and numerical simulations is displayed in Fig.

5.9b.

Growth of KT (t) and εT (t): the effect of the mean scalar gradient Λ on the passive scalar

itself is now addressed. Such a study was not performed in previous references. The scalar

spectrum still displays a k−5/3 inertial-convective range despite the mean gradient, as obtained

experimentally by Mydlarski & Warhaft (1998). In the HITSG framework, the evolution equa-

tion (5.1) of KT is driven by both dissipation and production. In the presence of a mean scalar

gradient Λ, the production term leads the dynamics of the passive scalar field. Using the pre-

vious results regarding the decay exponents of KF , one can compute the exponent of KT in

presence of a mean scalar gradient αΛ
T . One gets in high and low Reynolds numbers regimes
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Figure 5.9: Decay exponents for the scalar flux for various σ; Symbols represent theo-
retical predictions, � for large Reynolds numbers and ◦ for low Reynolds numbers. (a)
Mixed-correlation decay exponent αF in high and low Reynolds numbers regimes. (b)
Cospectrum dissipation rate decay exponent nεF in the low Reynolds numbers regime.

respectively

KT (t) ∼ tαΛ
T , αΛ

T =
4 + pF − p
σ − p+ 3

,

KT (t) ∼ tαΛ
T , αΛ

T = −σ − 3

2
.

(5.16)

(5.17)

The agreement between these theoretical expressions of αΛ
T and numerical simulations is pre-

sented in Fig. 5.10a for both high and low Reynolds numbers regimes. The exponents do not

depend on the scalar gradient Λ. For high Reynolds numbers, the scalar variance grows in time

whatever σ is, whereas for low Reynolds numbers, it decays for σ = 4. This can be explained

with the following arguments. The theoretical prediction (5.17) of αΛ
T is based on the fact that

the dynamics of KT is driven by the production term 2ΛKF , and KF is stronger for smaller σ.

Consequently, for a large infrared slope such as σ = 4, the spectrum E(k, t), and thus F(k, t),

has less energy in large scales, resulting into a weak production term for the scalar variance that

does not balance dissipation. This is consistent with HITSG experimental results at moderate

Reλ, where the scalar variance can grow or decay depending on the intensity of Λ: with a weak

Λ, KT still decays (nevertheless more slowly than in HIT). Therefore, there is a link between

physical and spectral spaces: a strong mean scalar gradient Λ corresponds to a small infrared

slope σ, or equivalently to energetic large scales.

Moreover, in the particular case of Saffman turbulence (σ = 2), the value αΛ
T = 4/5 was already

found by Chasnov (1995). Therein, the decay and growth laws of passive and active scalar

fields, with and without mean gradient, are studied. Power laws for the active scalar fields were

assessed by Large Eddy Simulations (LES). Hence, the present EDQNM simulations valid the

power laws for the passive scalar field, with an explicit dependence on the initial large scales

conditions σ. Consequently, this result can be seen as an extension of Chasnov (1995) on the

passive scalar.
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Finally, the dissipation rate of the passive scalar field is investigated. From the scalar variance

evolution equation (5.1), it can be deduced that εT should evolve as KF , meaning

εT (t) ∼ tn
Λ
εT , nΛ

εT
= αF (5.18)

in both high and low Reynolds numbers regimes. This is assessed in Fig. 5.10b.

10
−2

10
−1

10
0

10
1

10
2

−0.5

0

0.5

1

1.5

2

Reλ

α
Λ T

 

 CBC Scalar with Λ High Re

CBC Scalar with Λ Low Re
σ = 1

σ = 2

σ = 3

σ = 4

(a)

10
−2

10
−1

10
0

10
1

10
2

−1.5

−1

−0.5

0

0.5

Reλ

n
Λ ǫ
T

 

 

CBC Scalar with Λ High Re

CBC Scalar with Λ Low Re σ = 1

σ = 2

σ = 3

σ = 4

(b)

Figure 5.10: Time exponents for the scalar field for various σ; Symbols represent theo-
retical predictions, � for large Reynolds numbers and ◦ for low Reynolds numbers. (a)

Scalar variance growth exponent αΛ
T . (b) Scalar dissipation rate decay exponent nΛ

εT .

All these new and partially new results regarding decay and growth exponents for KT and KF
and their dissipation rates are gathered in Table 5.2. They notably permit to explain why the

cospectrum correlation (5.10) does not depend on σ in both high and low Reynolds numbers

regimes: indeed, the computation using the previous exponents shows that the time evolution

of ρwθ does not depend on σ anymore for very large or small Reynolds numbers.

When a passive scalar is forced with a mean gradient, it is fully dominated by the

decaying isotropic velocity field which completely leads the dynamics of the flow. Indeed,

the infrared scalar exponent σT has no influence on the decay and growth exponents.

A similar result was obtained by De Marinis et al. (2013) in HIT where the passive

scalar field experiences a Joule heat production. Therefore, it can be concluded that in a

presence of a production mechanism, the velocity field completely dominates the passive

scalar dynamics. This will not be true anymore for an active scalar in Chapter 7.

High Reynolds regime ∀(Λ, σT , P r) Low Reynolds regime ∀(Λ, σT , P r)

KT (t) αΛ
T = 4+pF−p

σ−p+3 , pF =

{
0 , σ ≤ 3
1
2(p+ pT ) , σ = 4

αΛ
T = −σ−3

2

εT (t) nΛ
εT

= αF = −σ−pF−1
σ−p+3 nΛ

εT
= αF = −σ−1

2

KF (t) αF = −σ−pF−1
σ−p+3 αF = −σ−1

2

εF (t) not defined nεF = −σ+1
2

Table 5.2: Decay and growth exponents of integrated quantities in HITSG for the cospectrum
and scalar fields.
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Remark on the scalar large scales in HITSG: the mean scalar gradient Λ results in a

production term in the passive scalar equation. This scalar production is linked to the cospec-

trum, itself linked to the kinetic energy spectrum. Hence, the ”minimum of energy” of the flow

is imposed by the infrared range of the kinetic spectrum, i.e. imposed by σ. So, the scalar in-

frared exponent σT changes if initially different from σ. There are two cases: (i) σT (t = 0) > σ

rapidly results into σT = σ. Indeed, σT > σ means KT < K: since the kinetic field imposes

the minimum of energy, σT decreases. For instance, if one has σT (t = 0) = 4 and σ = 2, the

self-similar regime is σ = σT = 2. (ii) For σT < σ, then σT = σ but it takes more time, as

revealed in Fig. 5.11. Without the scalar gradient, the scalar variance would decrease more

slowly than the kinetic energy. The production term being proportional to K(t), it forces the

scalar field to grow with the infrared slope σT = σ.
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Figure 5.11: Evolution of the scalar infrared slope σT with Λ = −1. (a) σT (t = 0) = 4
and σ = 2. (b) σT (t = 0) = 2 and σ = 4.

5.2.4 Return to isotropy in HITSG

The small scales RTI is briefly addressed for HITSG at the level of scalar second-order moments.

Since only the third component of the mean scalar gradient is non-zero, this is an axisymmetric

configuration, meaning that the scalar anisotropy indicators verify 2H
(T )
11 = 2H

(T )
22 = −H(T )

33 .

In Fig. 5.12a, the bTij are presented: they become constant both in Saffman and Batchelor

turbulence. This is qualitatively the same behaviour as the bij in a sustained shear flow. Then,

in the low Reynolds numbers regime, the bTij increase and reach a constant asymptotic value,

meaning that there is anisotropy left in the flow. The fact that anisotropy increases in the low

Reynolds numbers regime has already been observed for the velocity field in Chapter 3. The

spectral anisotropy tensor H
(T )
ij reveals that small scales of the scalar second-order moments

completely return to isotropy in Fig. 5.12b. Moreover, it has been pointed in experiments

and DNS (Pumir, 1994; Danaila et al., 1999b) that at the level of scalar third-order moments,

anisotropy remains in the small scales. This is not incompatible with small-scales isotropic

second-order moments as shown recently by Bos (2014).
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Figure 5.12: (a) Scalar anisotropy indicators bTii (no summation) from high to low
Reynolds numbers regimes, for both Saffman (black) and Batchelor (grey) turbulence.

(b) H
(T )
ii (no summation) at Reλ = 103 for σ = 2, along with the Kolmogorov and scalar

integral wavenumbers kη and kT .

An interesting analogy can be made between the velocity field in a sustained shear flow

and the scalar field in HITSG. For both fields, (i) there is a complete return to isotropy

of small scales; (ii) there are no significant differences between Saffman and Batchelor

turbulence: in both cases bij and bTij reach constant values (see Fig. 5.12a for the bTij and

Fig. 3.10a for the bij). (iii) Anisotropy fills large scales and does not remain around the

integral wavenumber as in HSRT.

5.3 Homogeneous Shear Turbulence with Scalar Gradient

This final part focuses on homogeneous shear turbulence with a mean scalar gradient (HSTSG).

The emphasis is put on the impact of both mean velocity and scalar gradients on the scalar flux

and the passive scalar.

5.3.1 Definitions and transfers

Previously, it has been shown that with a mean scalar gradient Λ, only the third component

of the scalar flux is non-zero, namely the cospectrum F . With a mean velocity gradient only,

no scalar flux appears at all, and the scalar variance decays exponentially. With both mean

velocity and scalar gradients, the first component of the scalar flux is also non-zero. Thus, the

streamwise flux is defined as

EF1 (k, t) = FS(k, t), (5.19)



Chapter 5. Dynamics of a Passive Scalar in Homogeneous Turbulence 103

and arises only due to the combined presence of a both mean velocity and scalar gradients. The

streamwise mixed-correlation reads

KS
F (t) =

∫ ∞
0
FS(k, t)dk. (5.20)

In Fig. 5.13, both linear and non-linear spherically averaged transfers are presented for the

cospectrum and the streamwise flux in HSTSG. One can note that they are very similar and

slightly differ in intensity.
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Figure 5.13: Transfers for the cospectrum (grey) and streamwise flux (black) for σ = 2
at St = 50 where Reλ = 2.104. (a) Linear transfers. (b) Non-linear transfers.

5.3.2 Comparisons with experimental and numerical results

This part aims at assessing the anisotropic EDQNM modelling in HSTSG - a configuration

which combines various mechanisms at stake in atmospheric flows - by comparisons to two DNS

and one experiment.

Tavoularis and Corrsin (1981): EDQNM simulations are compared to the experiment of

Tavoularis & Corrsin (1981). Such a comparison has also been performed by Bos (2005) and

the conclusions will be discussed. The mean speed is Uc = 12.4m.s−1 and the characteristic

length is the shear generator one h = 0.305m. The mean velocity and scalar gradients are

dU1/dx2 = 46.8m.s−1 and dT/dx2 = 9.5◦C.m−1. From the data of the kinetic characteristic

time written τu = 2τ0 = 0.26s, one has S = 6.19τ−1
0 . Then, from the scalar characteristic time τθ

and < θ2 >, it is possible to evaluate the scalar dissipation rate εθ = 0.128◦C2.s−1 at x1/h = 7.5,

and thus to compute the reference scalar gradient (∂θ/∂x)ref =
√
εθ/(2a) = 52.1◦C.m−1 so that

Sθ = 0.1823. It is worth noting that initial isotropic conditions are used here, which is clearly

not the case in the experiment. Two final Reynolds numbers are given in (Tavoularis & Corrsin,

1981): Rλg = 160 scaled for an isotropic framework, and Rλ11 = 266 for inhomogeneous flows.

The comparisons are presented in Fig. 5.14a to 5.14d. Data is available at three locations:

x1/h = 7.5, 9.5 and 11. Using the appropriate conversion in dimensionless time, written τ in
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(Tavoularis & Corrsin, 1981; De Souza et al., 1995), one has

τ = St =
x1

Uc

dU1

dx2
,

which provides experimental information at St = 8.63, 10.94 and 12.66. There are satisfactory

agreements in Fig. 5.14a for the cospectrum and streamwise flux correlations ρuθ and ρvθ.

Similar values for ρuθ and ρvθ are reported in Ferchihi & Tavoularis (2002) which once again

confirms the relevance of the present EDQNM closure for the passive scalar and scalar flux. A

satisfactory agreement is also obtained in Fig 5.14b for the characteristic times ratio RT defined

in (5.11). A first discrepancy is observed for

B(t) =
Λ

S

√
2K

KT
, (5.21)

which is underestimated in Fig. 5.14d, whereas it is overestimated in Bos (2005). B(t) seems

to be very dependent on initial conditions, which could explain the discrepancy. One has to

keep in mind that here initial conditions are isotropic, whereas in the experiment there is initial

anisotropy in the flow, difficult to model. Finally, in Fig. 5.14c a difference is observed for the

turbulent Prandtl number

PrT (t) =
Λ

S

R12(t)

KF (t)
, (5.22)

where Prexp
T ' 1.1 and PrEDQNM

T ' 0.74. The value obtained experimentally seems quite

large: indeed, atmospheric data and theoretical considerations suggest that one should obtain

0.6 ≤ PrT ≤ 0.8 (Herring et al., 1982; Lesieur, 2008), in agreement with existing values (Shirani

et al., 1981; Rogers et al., 1989). The comparison with the results of Bos & Bertoglio (2007) is

not relevant here because a constant of their model for linear transfers is set so that PrT = 1.1

is recovered.

Rogers, Mansour and Reynolds (1989): The comparison is made with the DNS of Rogers

et al. (1989). There, the mean velocity gradient dU1/dx2 = S = Sτ−1
0 is such that the dimen-

sionless shear is S = 14.142. Three cases for the scalar gradient are performed, one in each

direction x1, x2 and x3, with Sθ = 2.5. Comparisons are made with the diffusivity tensor

defined as

Dij(t) = − < θui >

(
dT

dxj

)−1

. (5.23)

Each column of Dij refers to a different simulation where the direction of the scalar gradient

changes. For instance, D13 refers to the third case. The agreement between EDQNM simulations

and DNS is revealed in Fig. 5.15a where Dij is normalized by D22. A difference is observed

along the flow direction for D11/D22 where DNS predicts a higher value. This discrepancy may

come from the limited DNS resolution that alters the dynamics in the streamwise direction. For

each simulation, the turbulent Prandtl number is defined by

PrT (t) = − R12(t)

SDii(t)
, (5.24)

where Dii (no summation) is the turbulent diffusivity, with i = 1, 2 or 3 depending on the

case considered. The agreement is rather good in Fig. 5.15b: the classical asymptotic value of

PrT = 0.8 is recovered in the second case, whereas the general behaviour is captured for the
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Figure 5.14: Comparisons with the experiment of Tavoularis & Corrsin (1981), for σ = 2,
S = 6.19τ−1

0 and Sθ = 0.1823. (a) Scalar flux correlations ρuiθ defined in (5.10). (b)
Inverse of the time scales ratio defined in (5.11). (c) Turbulent Prandtl number PrT

defined in (5.22). (d) Relative strength of the fluctuations B defined in (5.21).

first and third cases: Pr
(1)
T < Pr

(3)
T < Pr

(2)
T . Nevertheless, the present simulations seem less

sensitive to the mean scalar gradient intensity than experiments. Moreover, for larger St, Pr
(2)
T

would be quite smaller, which indicates that the present anisotropic EDQNM modelling slightly

underestimates the turbulent Prandtl number. A possibility to correct these lower values of

PrT is to set the eddy-damping constants as A1 = A2 = A3 = 0.355.

Kassinos, Knaepen and Carati (2007): a last comparison is performed with the DNS of

Kassinos et al. (2007). This work deals about MHD but the validation is made in the purely

hydrodynamic case with the data of Brethouwer (2005). Hence, only the case where the magnetic

field is zero and where there is no rotation is considered. The mean velocity and scalar gradients

are along x2 such that S = 8.95 and Sθ = 1. The kinetic field is allowed to decay without any

forcing before velocity and scalar gradients are applied at t0. There, the Reynolds number is

Reλ = 45 with SK/ε(t = t0) = 18. The scalar fluctuations are set to 0 at t = t0: this is why

initially ρvθ(t = t0) = −1. For EDQNM simulations, S and Λ are applied after two turn-over

times and there SK/ε = 13 and Reλ = 50. The two correlations ρuθ and ρvθ are presented in

Fig. 5.16a along with

β =
S

Λ

√
3KT

2K
, (5.25)
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Figure 5.15: Comparisons with the DNS of Rogers et al. (1989), with σ = 2, S =
14.142 and Sθ = 2.5. (a) Normalized diffusivity tensor, defined in (5.23), for the three
orientations of the mean scalar gradient. (b) Turbulent Prandtl number PrT , defined in

(5.24), for these three cases.

which characterizes the relative strengths of the velocity and scalar fluctuations. There is a good

agreement for the asymptotic values of ρuθ and ρvθ. Our weaker value for ρuθ at moderate St

may be the consequence of a slightly too strong growth of R11 =< u2
1 >. This does not prevent

to reach the correct value at larger St in the asymptotic state. As for β, EDQNM simulations

slightly differ from the DNS in Fig. 5.16b, where β is over-estimated and has almost reached

a constant value whereas it slightly decreases in Kassinos et al. (2007). Nevertheless, in both

cases β ∼ 1 at large St, which indicates that the velocity and scalar fluctuations have a similar

contribution to the anisotropic asymptotic state.
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Figure 5.16: Comparisons with the DNS of Kassinos et al. (2007), for σ = 2, S = 8.95
and Sθ = 1. (a) ρuθ and ρwθ, defined in (5.10). (b) β defined in (5.25).
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5.3.3 Growth of K, KT , KF and KS
F

In this part, the emphasis is put on the growth of the scalar variance and its interactions with the

scalar flux. Some additional results about the passive scalar and the scalar flux are presented,

which may be of interest for one-point modelling, such as negligible quantities at high shear

rates. The scalar anisotropy tensors bTij are presented in Fig. 5.17 along with the scalar flux

shear rapidities

SFR (t) =
εF
KFS

, SF ,SR (t) =
εSF
KS
FS

. (5.26)

As in the HST framework without mean scalar gradient, the scalar indicators reach constant

values for large St, and the ratio Sθ/S impacts only the short time dynamics without modifying

the asymptotic state. There is a noteworthy similarity with the behaviour of bij in shear flows.
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Figure 5.17: (a) Scalar anisotropy indicators bTij and scalar shear rapidity STR . (b) Scalar

flux shear rapidities SFR and SF,SR . Both for σ = 2 and S = 10−2τ−1
0 .

An interesting feature is that SFR and SF ,SR tend to zero for large St, whereas their kinetic and

scalar counterparts do not. This means that the linear effects of shear are preponderant over

non-linear exchanges: this is in agreement with figure 5.13, where the scalar flux transfers of

energy are gathered at large scales, dominated by linear mechanisms. The evolution of the

scalar variance and mixed-correlations are given by

dKT

dt
= 2ΛKF −εT (5.27)

dKF
dt

= ΛR33 +ΠF −εF (5.28)

dKS
F

dt
= ΛR13 +SKF +ΠS

F −εSF , (5.29)

Here is what happens simultaneously: the cross-correlation R13 produces KS
F through the mean

scalar gradient Λ. Then, R13 brings energy to the transverse component R33 thanks to non-

linear redistribution, which causes KF to grow as well through Λ. Finally, KF provokes the

growth of KT . It is possible to compute the rapid pressure parts of the scalar flux ΠF and

ΠS
F . Details are given in Appendix E. This gives for the cospectrum 5Πr

F (t) = SKS
F . The
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numerical factor 0.08 obtained by Bos & Bertoglio (2007) is far from the present 0.2. However,

the streamwise part, 5Πr,S
F (t) = −4SKF , is closer from 0.62 of the latter reference.

The main result here is that the scalar variance KT , which was exponentially decreasing in HST,

now grows exponentially in HSTSG, as revealed in Fig. 5.18a. Its scalar exponential growth

rate γT is identical to the kinetic one γ so that γT = γ = 0.34. This is qualitatively in agreement

with the experimental work of Ferchihi & Tavoularis (2002): they found that K and KT grow

with the same rate in the presence of scalar and velocity gradients (with γexp ' 0.085, which is

far inferior to γ = 0.34, and lower than common experimental ones). Moreover, both KF and

KS
F grow exponentially with the rate γ as well. Growths of the mixed-correlations have been

obtained numerically by Rogers (1991), even though it is complicated to determine if the growth

is algebraic or exponential due to the DNS limitation. The fact that all these correlations grow

exponentially with the same rate is consistent with the constant scalar flux correlations ρuiθ
obtained experimentally and in DNS for sufficiently high St.

0 20 40 60

10
0

10
5

10
10

St

K
,
K

T
,
K

F
a
n
d
K

S F

 

 

K

KT

KF and ǫF

KS

F
and ǫ

S

F

e0.34St

(a)

0 20 40 60
0

0.2

0.4

0.6

0.8

1

St

E
x
p
o
n
en
ti
a
l
g
ro
w
th

ra
te
s

 

 

γ
S

F
(t)

γF (t)

γT (t)

(b)

Figure 5.18: (a) Exponential growth of the kinetic, scalar, cospectrum and streamwise
flux correlations. The cospectrum and streamwise flux dissipation rates εF and εSF are
displayed in grey. (b) Exponential growth rates γF , γSF and γT . Both for σ = 2 and

S = 10−2τ−1
0 .

From the equations (5.27)-(5.29), it is possible to determine the expression of the cospec-

trum, streamwise flux and scalar exponential growth rates γF , γSF and γT . Using the fact

that εF/(KFS)→ 0 and εSF/(K
S
FS)→ 0, one has

1

KFS

dKF
dt

=
Λ

S

R33

KF
+

ΠF
KFS︸ ︷︷ ︸

Constant for St� 1

= γF , (5.30)

1

KS
FS

dKS
F

dt
=

KF

KS
F

(1 + PrT ) +
ΠS
F

KS
FS︸ ︷︷ ︸

Constant for St� 1

= γSF , (5.31)

1

KTS

dKT

dt
= 2

Λ

S

KF
KT
− εT
KTS︸ ︷︷ ︸

Constant for St� 1

= γT . (5.32)

The agreement between the asymptotic values of these quantities and the 0.34 expected are

presented in Fig. 5.18b. Moreover, simulations show that γF , γSF and γT do not depend on
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large scales initial conditions σ, as for the kinetic rate γ. The definitions (5.30) and (5.31) are

not convenient for calculations since the slow-part of Π
(S)
F cannot be expressed explicitly. One

could want to use one-point modelling, such as the ones proposed by Wikström et al. (2000).

The simplest model that can be found is

ΠF,slow
i (t)− εFi (t) = −c1

ε

K
< uiθ >, (5.33)

where c1 = 3.2 is calibrated on experimental data. Injecting this model in (5.30) and (5.31),

and using the previous explicit calculations of the rapid contribution, yields

γF =
Λ

S

R33

KF
+

1

5

KS
F

KF
− 3.2

ε

KS
' 0.2827 (5.34)

γSF =
KF

KS
F

(
1

5
+ PrT

)
− 3.2

ε

KS
' 0.2122. (5.35)

The obtained values of γF and γSF are not too far from 0.34. However, γF 6= γSF , which shows

that the simplest models cannot handle such complex flows.

5.3.4 Streamwise flux spectrum FS(k, t)

The inertial scaling of the streamwise flux FS has not received much attention yet. Wyngaard &

Coté (1972) proposed a scaling in k−3. However such a slope did not agree well with atmospheric

data and they concluded that a k−5/2 range would be more appropriate. The k−3 slope is

obtained by assuming that FS depends on ε, k, S and Λ, so that

FS(k, t) ∼ ΛSk−3. (5.36)

This expression can also be found starting from FS ∼ Λε1/3k−7/3 and replacing ε1/3 by its

expression as a function of the shear scale defined in (3.19), ε1/3 ∼ k−2/3S. Bos & Bertoglio

(2007) derived a k−23/9 range both analytically and numerically based on tensorial arguments.

ε1/3 is replaced by ε
1/3
ij (k) so that the scalar flux is written

Fi(k, t) ∼ λjε1/3ij k−7/3, (5.37)

with εij(k)E(k) = 3φij(k)ε. This recovers the classical scaling for F and yields

FS(k, t) = CSF ΛS1/3 ε2/9 k−23/9. (5.38)

In a recent paper, Knaus & Pantano (2009) studied reactive and non-reactive scalar flux spectra

with DNS and found that a k−7/3 range was a satisfactory scaling. Such a spectral behaviour

can be recovered assuming that FS depends on ε, k, S and εSF

FS(k, t) ∼ Sε−2/3εFk
−7/3. (5.39)

But this is not consistent with the fact that εFi is not conserved (and consequently that the scalar

flux does not exist in the isotropic framework). Older atmospheric measurements reported a

k−5/3 scaling (Antonia & Zhu, 1994). Numerically, it is revealed in Fig. 5.19 that there is a
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good agreement for the streamwise flux FS with the k−23/9 scaling predicted by Bos & Bertoglio

(2007). Numerically, the constant is found to be CSF ' 1.5.
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Figure 5.19: (a) Scalar variance, cospectrum and streamwise flux spectra ET , F and FS .
(b) Associated spectral scalings: the horizontal dashed lines correspond to −5/3, −7/3,

−23/9. Both at St = 60 with σ = 2 and Reλ = 4.104.

5.3.5 Return to isotropy in HSTSG

The small scales RTI is finally addressed for HSTSG at the level of the scalar second-order

moments. In Fig. 5.20, the scalar anisotropy tensors H
(T )
ij are presented at large St for HSTSG,

at two different Reynolds numbers: local isotropy is almost respected for second-order moments

of the scalar field as in the inertial range one has H
(T )
ij (k → kη, t) → 0. Nevertheless, H

(T )
ij

is not rigorously zero at small scales, especially the extra-diagonal component H
(T )
13 . This

shows that in the presence of shear, and in agreement with most of the DNS and experiments,

some anisotropy persists at the scalar small scales, even at the second-order moments level.

Furthermore, the Reynolds number is found to have a non-negligible impact on the small scales

anisotropy: indeed, small scales anisotropy reduces from Reλ = 2400, which is slightly higher

than Reynolds numbers reached in DNS, to Reλ = 1, 5.104. The shear wavenumber kS =
√
S3/ε

is displayed as well: for wavenumbers k > kS , non-linear effects are dominant, consistent with

the RTI of small scales, whereas for k < kS , linear effects are stronger are carry most of the

anisotropy. A last remark is that the presence of a mean scalar gradient seems to smooth

the scalar large scales anisotropy: indeed, for shear-driven flows without mean scalar gradient,

anisotropy is gathered around the scalar peak of energy kT and is weaker in the infrared range

(see Fig. 5.3b). Whereas for HSTSG, anisotropy progressively increases from moderate to large

scales.

5.4 Conclusions for the passive scalar at Pr = 1

This chapter was an application of the anisotropic EDQNM modelling. Three different con-

figurations were considered, whose comprehension is crucial to understand the dynamics of

complex flows such as atmospheric ones: isotropic turbulence with a mean scalar gradient
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Figure 5.20: Scalar anisotropy tensors H
(T )
ij with Kolmogorov, shear and scalar integral

wavenumbers kη, kS and kT for σ = 2 at two different Reynolds numbers. (a) St = 40
where Reλ = 2400. (b) St = 50 where Reλ = 2.104. The zoom represents the small scales

before kη where the persistence of anisotropy is clear.

(HITSG), shear turbulence (HST) and shear turbulence with a scalar gradient (HSTSG). The

anisotropic EDQNM modelling was assessed by detailed comparisons with several DNS and

experiments at moderate Reynolds numbers in HITSG and HSTSG: asymptotic values of scalar

flux correlations, turbulent Prandtl numbers and diffusivity tensors are well recovered, and the

agreement at short time is satisfactory as well. Then, the model was used to address high

Reynolds numbers flows which are not accessible by DNS yet.

In HITSG, the scalar flux along the mean scalar gradient, the cospectrum F(k, t), is found

to scale as k−7/3 in the inertial range for very large Reynolds numbers Reλ ≥ 104. New

results are proposed regarding the decay and growth of < u3θ > and < θ2 >, gathered in

Table 5.2: theoretical exponents are derived using physical arguments, and are then assessed

numerically. Such results were not provided before and complete the work of Chasnov (1995).

This theoretical contribution provides further insights into the prediction of high Reynolds

numbers decaying turbulence. In HST, the exponential decrease of the scalar variance was

recovered, and furthermore, algebraic decay laws for KT were provided in HSRT, unchanged

with respect to HIT. All these results for shear-driven flows without a mean scalar gradient are

gathered in Table 5.1. In HSTSG, the inertial scaling of the streamwise flux FS(k, t) in k−23/9 is

recovered (Bos & Bertoglio, 2007), and alternative scalings are briefly discussed. The interesting

result of this part is the exponential growth of the scalar variance and mixed-correlations <

u1θ > and < u3θ >, at a rate equal to the one of the kinetic energy.

In these three configurations, the small scales RTI of scalar second-order moments was investi-

gated, and the conclusions are threefold. (i) Scalar small scales return completely to isotropy in

HITSG, which is not surprising since the velocity field remains isotropic. (ii) On the contrary,

when there is a mean velocity gradient (with or without an additional mean scalar gradient),

some anisotropy persists in the scalar small scales even at high Reynolds numbers, which is

consistent with DNS and experiments. This persistent small scale anisotropy for the passive

scalar is nevertheless found to diminish with an increasing Reynolds number. (iii) When the

anisotropy consists of velocity gradients only, anisotropy is gathered around the scalar integral
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wavenumber kT , whereas when a mean scalar gradient is present, anisotropy fills more the large

scales.

Rotation was not investigated in this work, because its effects on triple correlations are not

clear, and as mentioned earlier, interacting waves require additional theoretical tools, such as

EDQNM2 (Cambon & Jacquin, 1989; Sagaut & Cambon, 2008), to be properly captured. It

is nevertheless a necessary step to the deep understanding of atmospheric flows: the DNS by

Brethouwer (2005) suggests that the effects of a rotating shear on the passive scalar transport

and its flux are multiple and rather complex. Finally, the present modelling is further extended

to unstably stratified homogeneous turbulence in Chapter 7, since stratification amounts only

to additional linear transfers, much simpler than the ones induced by mean-velocity gradients.

In conclusion, the anisotropic EDQNM modelling seems promising since it recovers quite well

previous experimental and numerical results, and additionally permits to explore large Reynolds

numbers. It can predict the velocity and scalar fields dynamics for various kinds of anisotropy

with the same consistent method and does not rely on adjustable constants, except the classical

ones used in the eddy-damping terms.



Chapter 6

Prandtl Number Effects on Passive

Scalar Dynamics

Here, the anisotropic EDQNM modelling assessed and used for Pr = 1 in Chapter 5 is applied

to the case of a Prandtl number different from unity: the frameworks of a highly diffusive scalar

Pr � 1, and of a weakly diffusive scalar Pr � 1, are investigated. For these two configurations,

the scalar variance spectrum ET (k, t) is known to scale differently at small scales in HIT (see

Chapter 1). Consequently, one can wonder if these scalings for the scalar variance spectrum are

modified when anisotropy appears at the velocity and scalar levels, and what happens for the

scalar flux as well.

This chapter is divided into two parts: section 6.1 focuses on the HITSG framework, whereas

section 6.2 addresses shear-driven flows. The first section is the main contribution of this

chapter. For shear-driven turbulence, varying the Prandtl number while adding a shear seems

to be a limit of the present spectral modelling, especially when Pr � 1. Nevertheless, some

cases with mean velocity gradients in HST, HSRT and HSTSG are briefly presented afterwards.

The contents of this chapter for HITSG were published in:

Briard & Gomez, ”Prandtl number effects in decaying homogeneous isotropic turbulence

with a mean scalar gradient”, Journal of Turbulence, 18 (5), 418-442 (2017)

For Pr � 1, it is recalled that the inertial-diffusive range (IDR) spans from kCO = Pr3/4kη,

where diffusion effects become dominant, to kη. One can define kCD =
√
Prkη from which

convection from small scales balances diffusion effects (see Chapter 1). And for Pr � 1,

the viscous-convective range (VCR) spans from kη, the smallest active turbulent scale for the

velocity field, to kB =
√
Prkη. In this region, small scalar fluctuations are advected by the

velocity field of the Kolmogorov scale. Then, beyond kB, scalar fluctuations are destroyed

by diffusive processes. Interactions that are at the origin of the VCR are strongly non-local:

indeed, the cascade of energy computed with EDQNM does not reach scales much smaller than

kη because of the logarithmic discretization of the wavenumber space. Non-local transfers have

been studied notably by Lesieur & Schertzer (1978); Métais & Lesieur (1986); Lesieur (2008),

and the derivation of the non-local fluxes for the velocity and passive scalar fields is proposed

in Appendix B.

113
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6.1 Prandtl number effects in HITSG

Most of the papers dealing with a Prandtl number different from unity in HITSG were done at

moderate Reynolds numbers, and focused on its effects on (i) high-order scalar statistics, and

on (ii) the cospectrum F(k, t) and scalar variance spectrum ET (k, t) spectral scalings (Chasnov,

1991; Yeung et al., 2002; O’Gorman & Pullin, 2005; Bos et al., 2009; Yeung & Sreenivasan, 2014).

The aim of the present study is to explore asymptotic regimes of HITSG, at very large Reynolds

numbers and either very high or small Prandtl numbers, in order to predict the growth and

decay rates of the scalar variance < θ2 > and mixed-correlation < u3θ > of highly and weakly

diffusive scalars, which is a new feature, and to verify the proposed spectral scalings as well.

This is of theoretical interest since these regimes cannot be reached experimentally nor in DNS

yet. In addition, this permits to analyze the combined effects of anisotropy that mainly affect

large scales, and Pr which dominantly modifies small scales of the spectra. Furthermore, it has

been shown numerically in Chapter 1 that the Prandtl number did not affect the theoretical

decay exponent of the scalar variance in HIT at large Reynolds numbers. Consequently, a

natural extension of this work is to address effects of Prandtl numbers on the time evolution of

< θ2 > and < u3θ > in an anisotropic framework such as HITSG at large Reynolds numbers.

In the previous Chapter 5, only the case Pr = 1 was addressed: theoretical decay and growth

exponents for < u3θ > and < θ2 > respectively were derived for HITSG, and assessed numeri-

cally. Therefore, the present work is an application of the anisotropic EDQNM modelling when

the Prandtl number strongly departs from unity, basically from 10−5 to 104. Investigating an

anisotropic configuration such as HITSG at large Reynolds numbers, with either very large or

small Prandtl numbers, with an approach previously validated in more complex configurations

such as shear-driven flows, is an important contribution in terms of modelling.

First, the theoretical spectral scalings of the cospectrum and scalar variance spectrum are

derived in HITSG for Pr � 1 and Pr � 1, and four comparisons are performed to assess the

relevance of the model when the Prandtl number strongly departs from unity: this part serves

as a new and additional validation of the present anisotropic EDQNM modelling. Then, original

numerical results are exposed. Effects of both very large and very small Prandtl numbers on

the time evolution of < θ2 > and < u3θ > are investigated. Afterwards, the normalized mixed

correlation ρwθ is studied as a function of the Reynolds and Prandtl numbers, and compared

to results obtained in DNS. Furthermore, the effects of varying the Prandtl number on the

small scales return to isotropy of the scalar second-order moments are analyzed. Finally, these

different features are discussed in the concluding section.

6.1.1 Inertial scalings for ET (k, t) and F(k, t) - Comparisons

The emphasis is put on the inertial scaling of the scalar variance spectrum ET (k, t) and cospec-

trum F(k, t) when the Prandtl number is either very low or very large. These theoretical scalings

are recovered analytically and numerically, and are then compared with recent numerical stud-

ies, such as DNS, LES and other spectral models. The fact that the present results are not

always compared with DNS is because in most of the DNS, either the Reynolds number is not

high enough, or the Prandtl number is too close to unity.
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6.1.1.1 Highly diffusive passive scalar Pr � 1

Scaling of the scalar spectrum ET (k, t): in the inertial-diffusive range for HIT, the scalar

spectrum scales as

ET (k, t) =
K0

3
εT a

−3 ε2/3 k−17/3. (6.1)

It has been shown by Chasnov (1991) that with a mean scalar gradient Λ, the scalar dissipation

rate εT should take into account this production effect, thus leading to

εT → εT + 2aΛ2, (6.2)

where 2aΛ2 is a pseudo scalar dissipation rate arising from the mean gradient. The HIT scaling

for ET given in (6.1) is thus modified in HITSG into

ET (k, t) =
K0

3
εT a

−3 ε2/3 k−17/3

(
1 + 2

aΛ2

εT

)
. (6.3)

Such a result was recovered analytically by O’Gorman & Pullin (2005) with their Sparse Direct-

Interaction Perturbation (SDIP) model. Here, an alternative method is proposed, based on

dimensional analysis and physical arguments that will be consistent with further developments.

In the HITSG framework, the integration of the scalar Lin equation (4.36) yields

∂KT

∂t
= −εT − 2λ3KF = −εT

(
1 +

2λ3KF
εT

)
.

The whole rhs term can be seen as a general scalar dissipation rate. Moreover, dimensional

analysis gives KF ∼ λ3a which results into (6.2). The present simulations, at very low Prandtl

numbers and very large Reynolds numbers, show that 2aΛ2/εT � 1, so that the classical scaling

(6.1) is still relevant. This is consistent with the RTI of small scales in the IDR: this feature

will be illustrated later on. However, when a moderate Reynolds number is combined with a

very small Pr, this ratio becomes greater than unity, so that the isotropic scaling is modified

into

ET (k, t) ∼ Λ2 a−2 ε2/3 k−17/3, (6.4)

derived in Bos et al. (2009); Yeung & Sreenivasan (2014), and is notably obtained by neglecting

the non-linear contribution in the scalar Lin equation with respect to production and dissipation.

It is worth noting that in Yeung & Sreenivasan (2014), the Prandtl number is very low, and

the Reynolds number moderate, so that very likely small scales are still anisotropic due to

production mechanisms. Consequently, the general expression (6.3) should be kept.

The k−17/3 scaling of the scalar spectrum in low Pr HITSG has been assessed recently in a

DNS by Yeung & Sreenivasan (2014). Present results are compared with the latter DNS in

Fig. 6.1a. The final Reynolds number is Reλ = 240 after ten turn-over times. The Prandtl

number is Pr = 1/2048 and the initial integral scales are L(0) = 1.346 and LT (0) = 3.468.

ET (k, t = 0) = 0 and scalar fluctuations arise from a unit mean scalar gradient. A good

agreement is found for the scalar spectrum. Near the Kolmogorov wavenumber (kη = 1), the

scalar spectrum slightly increases: this is due to small scale convection, as discussed in Chapter

1. This phenomenon increases with higher Reynolds numbers and lower Prandtl numbers. This

does not happen in the DNS result, may be because small scales are not completely resolved

beyond kη. Nevertheless, the k−17/3 is well recovered.
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Figure 6.1: (a) Scalar spectrum ET obtained with EDQNM compared to Yeung & Sreeni-
vasan (2014): with Pr = 1/2048 and σ = 2 at Reλ = 240. (b) Cospectrum F compared

with O’Gorman & Pullin (2005), with Pr = 2.10−4, Reλ = 1500 and σ = 2.

Scaling of the cospectrum F(k, t): the starting point to determine the cospectrum scaling

is the scalar flux Lin equation(
∂

∂t
+ (a+ ν)k2

)
F(k, t) =

2

3
ΛE(k, t) + SF,NL

3 (k, t). (6.5)

A reasonable assumption is to say that the diffusive timescale (ak2)−1 is much smaller than the

non linear time scale defined as

τ(k) =
(
k3E(k)

)−1/2
=
(
k2ε
)−1/3

=
kE(k)

ε
. (6.6)

This is obvious at large k for high thermal diffusivity a. Therefore, non-linear contributions can

be neglected, as previously mentioned for the scalar spectrum. Then, for scaling considerations,

the time derivative is dropped off, so that

ak2F(k, t) =
2

3
ΛE(k, t),

which yields the IDR scaling for the cospectrum

F(k, t) =
2

3
K0Λa−1ε2/3k−11/3. (6.7)

A similar process was performed by Bos et al. (2009); Yeung & Sreenivasan (2014). O’Gorman

& Pullin (2005) obtained this result with other analytical considerations. The key point being

to neglect the non-linear transfers in both cases. Another approach is possible. Thanks to the

previous work performed in Chapter 5, let’s assume that the spectral cospectrum correlation

is constant in the inertial range

ρwθ(k) ' ρwθ =
F(k)√

E(k)ET (k)
. (6.8)



Chapter 6. Prandtl Number Effects on Passive Scalar Dynamics 117

Hence, using Kolmogorov scaling for E, and Batchelor (1959) scaling (6.1) for ET , one gets

F(k, t) ∼ a−3/2ε
1/2
T ε2/3k−11/3. (6.9)

Moreover, since the scalar field as no retro-action on the velocity one, εT should not appear

in (6.9). Consequently, equalizing (6.7) and (6.9) gives εT ∼ aΛ2. This is consistent with the

additional scalar dissipation rate coming from mean scalar gradient effect explained previously

in (6.2).

The k−11/3 inertial-diffusive scaling of the cospectrum for Pr � 1 is assessed in Fig. 6.1b: our

EDQNM simulation is compared to the LES of O’Gorman & Pullin (2005) where Pr = 2.10−4

and Reλ = 1500 (after 10 turn-over times for EDQNM). The agreement with the k−11/3 scaling is

rather good at this Reynolds number, and the agreement between EDQNM and LES is excellent

in the inertial-diffusive range.

6.1.1.2 Weakly diffusive passive scalar Pr � 1

The case Pr � 1 is now considered: small scales of the scalar variance spectrum experience

convection from the velocity field of the Kolmogorov scale, which results in a viscous-convective

range from kη, the smallest active turbulent scale for the velocity field, to the Batchelor wave-

number kB =
√
Prkη, where ET scales as (Batchelor, 1959)

ET (k, t) = KBεT

√
ν

ε
k−1, (6.10)

where KB is the Batchelor constant, found to be ' 2.5 in the present simulations. This value

is close to the first proposal KB = 2 by Batchelor (1959), and in agreement with predictions

of Gibson (1968):
√

3 ≤ KB ≤ 2
√

3 for HIT. Other values measured in the ocean are slightly

higher (see Qian (1995) and values reported therein) even though other mechanisms may play

a non-negligible role in the ocean. Values obtained in DNS at moderate Reλ are also higher

(Yeung et al., 2002).

The scaling of the cospectrum F(k, t) for a weakly diffusive passive scalar field has been discussed

notably in O’Gorman & Pullin (2005) and it has been found that the spectral velocity-scalar

correlation is not strongly modified in the framework Pr � 1, unlike the case Pr � 1. This is

expected if one compares the cospectrum Lin equations (6.5) for Pr = 1 where a = ν, so that

the dissipative term is 2νk2F , and for Pr � 1, where a � ν, which yields for the dissipative

term only νk2F . Hence, for a weakly diffusive scalar, the cospectrum still scales in k−7/3 in the

inertial-convective range.

Finally, two comparisons are proposed hereafter. Since in DNS when the Prandtl number

increases the Reynolds number conjointly decreases for numerical resolution issues, we first

propose a large Reynolds number comparison with the SDIP model (O’Gorman & Pullin, 2005)

at Pr = 100 in Fig. 6.2a. However, since the SDIP is an asymptotic model, the Reynolds number

is unknown. The agreement is acceptable, and the slight discrepancy may be attributed to the

uncertainty for the Reynolds numbers, which is Reλ = 2.104 here with the present anisotropic

EDQNM modelling.
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Then, in Fig. 6.2b, the compensated scalar variance spectrum is compared with the low Reynolds

number DNS of Yeung et al. (2004), where Reλ ' 8 and Pr = 1024. Initially, the scalar variance

spectrum is zero, and the Reynolds number is chosen so that after ten turnover times the

Reynolds number is Reλ = 10. Our minimum wavenumber was decreased on purpose to match

with the DNS configuration, and the reason for the slight discrepancy at large wavenumbers

could be that the DNS is forced at large scales, whereas here we have a freely decaying Saffman

turbulence. This does not prevent us from getting a very good agreement, both in the viscous

convective range and further in the viscous-dissipative range, which validates our approach,

even at low Reynolds numbers.
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Figure 6.2: (a) Compensated cospectrum compared with the SDIP model (O’Gorman &
Pullin, 2005) at Reλ = 2.104 and Pr = 100. (b) Compensated scalar variance spectrum

compared with the DNS of Yeung et al. (2004) at Reλ ' 8 and Pr = 1024.

6.1.1.3 Spectral transfers and conclusions for the inertial scalings

The inertial scalings of the cospectrum F(k, t) and scalar variance spectrum ET (k, t) were in-

vestigated for both low and large Prandtl numbers in subsections 6.1.1.1 and 6.1.1.2, where a

mean scalar gradient Λ sustains the fluctuations in a homogeneous isotropic decaying turbu-

lence. The theoretical predictions were recovered analytically, and more importantly, assessed

numerically over a wide range of Reynolds and Prandtl numbers, which illustrates the relevance

of our anisotropic EDQNM modelling.

Finally, the budget terms of the evolution equation of ET (k, t) are analyzed in Fig. 6.4, for large

(left column) and low (right column) Reynolds numbers, at high (top line) and small (bottom

line) Prandtl numbers. The first observation is that for all four cases, the linear production

term is more intense than the non-linear transfer at large scales, and then is negligible at smaller

scales, meaning that production of scalar fluctuations through the mean gradient is dominant

at large scales, where anisotropy is consistently gathered. In the very large Péclet number case

(a) where Peλ = Reλ
√
Pr = 1.8.105, there is a clear separation of three domains, in agreement

with Yeung & Sreenivasan (2014), even though freely decaying turbulence is considered here:

at low wavenumbers, one has almost −ST,NL(iso) ' 2ΛF , and the difference is due to the term

∂tET 6= 0; at intermediate wavenumbers, all three contributions are very small and of the

same order; finally, at large wavenumbers, there is a balance between non-linear transfer and
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Figure 6.3: Scalar variance spectrum ET (k, t) and cospectrum F(k, t) at large Reynolds
numbers for σ = 2. (a) Reλ = 2.105 and Pr = 10−5, along with the integral, Corrsin-
Obukhov and Kolmogorov wavenumbers kL, kCO and kη. (b) Reλ = 104 and Pr = 104,
along with the integral, Kolmogorov and Batchelor wavenumbers kL, kη and kB. The

cospectrum at Pr = 1 at the same Reynolds numbers is displayed in grey as well.

dissipation ST,NL(iso) ' 2ak2ET . In the opposite case (d) where Peλ → 0, non-linear transfers

are small and production balances well dissipation, in agreement with the prediction of Yeung

& Sreenivasan (2014). Furthermore, in the two low Prandtl number cases (c) and (d), the insets

show that the dissipation term is always more intense that non-linear transfers, even in the high

Reλ configuration, in accord with the latter reference. For the two high Prandtl number cases

(a) and (b), non-linear transfers are more intense around kη, and then dissipation takes over

while approaching kB at larger wavenumbers.

6.1.2 Numerical results - Time evolution and anisotropy

In the previous section, the anisotropic EDQNM modelling was assessed for small and large

Prandtl numbers in HITSG by investigating the inertial scalings of the scalar variance spectrum

ET (k, t) and cospectrum F(k, t). In this part, effects of the Prandtl number Pr on the time

evolution of the scalar variance KT , the mixed-correlation KF , the normalized cospectrum

correlation ρwθ, and the Nusselt number Nu, are analyzed, along with the small scales return

to isotropy of the flow.

6.1.2.1 Prandtl effects on the decay and growth of < u3θ > and < θ2 >

The growth of KT =< θ2 > and decay of KF =< u3θ > are addressed for both highly and

weakly diffusive passive scalars. In Cahpter 5, for Pr = 1, one had pF = 0.4075. Here, for

Pr � 1 and Pr � 1, it is found that pF slightly increases to pF ' 0.42 when Pr departs from

unity, consistently with the variations of the scalar backscatter parameter pT in HIT with Pr.

It makes sense that pF varies less with Pr than pT since < u3θ > is a mixed correlation where

the velocity field is not affected at all by a change in Pr.
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Figure 6.4: Budget terms of the evolution equation (4.36) of the scalar variance spectrum
ET (k, t), along with the previous characteristic wavenumbers, for σ = 2. − Non-linear
term kST,NL(iso); −− Production term 2kΛF ; −· Dissipation term −2ak3ET . The insets
represent the ratio ST,NL(iso)/2ak2ET . (a) Reλ = 1800 and Pr = 104, (b) Reλ = 23 and

Pr = 102, (c) Reλ = 2.104 and Pr = 10−4, and (d)Reλ = 400 and Pr = 10−4.

In Fig. 6.5a and 6.5b, both theoretical predictions for αF and αΛ
T given in (5.13) and (5.16)

are recovered numerically. The Reynolds number Reλ is much higher for Pr � 1 than for

Pr � 1 in order to keep a sufficiently high Péclet number. One can say from Fig. 6.5a and 6.5b

that the respective decay and growth of KF and KT in HITSG is not affected by high or small

Prandtl numbers at large Reynolds numbers. A similar result was obtained for scalar integrated

quantities such as KT in decaying HIT in Chapter 1.

In addition, αΛ
T is presented in Fig. 6.5c at moderate Reynolds numbers, typical of DNS

and experiments, for various Prandtl numbers. This figure should be compared to the case

Pr = 1 presented in Chapter 5, where a monotonic decrease of αΛ
T was observed from the high

Reynolds to the low Reynolds predictions (recalled in grey in Fig. 6.5c for Batchelor turbulence).

Therefore, this figure clearly illustrates that even though a Pr strongly different from unity

does not modify the asymptotic theoretical predictions at very large Reynolds numbers, it

significantly alters the decay of the scalar variance KT at moderate ones. For Pr � 1, the

growth exponent αΛ
T slightly increases before diminishing toward the low Reynolds numbers
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Figure 6.5: Scalar decay exponent αΛ
T defined in (5.16) (black lines), and cospectrum decay

exponent αF defined in (5.13) (grey lines). Simulations σ = 2 (-) and σ = 4 (- -), with � the
theoretical predictions, for (a) Pr = 10−4, and (b) Pr = 104. (c) αΛ

T at intermediate Reynolds
numbers, for both σ = 2 and σ = 4 and various Pr (in black); the case σ = 4 and Pr = 1 is

recalled in grey.

(Reλ ≤ 1) predictions of Chapter 5: this is because when Reλ decreases, the k−5/3 inertial

range vanishes. However, the k−1 viscous range survives, thus slightly slowing down the decay.

Whereas for Pr � 1, the decrease of αΛ
T starts at quite high Reynolds numbers, because the

Péclet number is very small. The same observations are made for the decay exponent αF of the

mixed-correlation.

Consequently, one could conclude from Fig. 6.5a, 6.5b and 6.5c that the Prandtl number does

not affect the time exponent at very large Reynolds numbers, but at moderate ones. This is of

importance because it could explain why in DNS there is a significant scatter of the normalized

mixed-correlation ρwθ.

6.1.2.2 Cospectrum correlation ρwθ, pressure-scalar correlation ΠF , and Nusselt

number Nu

The normalized correlation ρwθ, defined in (5.10), is addressed in Fig. 6.6a. Some values of

this quantity at Pr = 1 were reported in Chapter 5: therefore, the emphasis is put here on

the influence of Pr on ρwθ. The first feature to point out is that at large Reynolds numbers,

either with a small or large Prandtl number, ρwθ is constant: this can be obtained analytically

by considering the expressions of the exponents α, αΛ
T and αF . Then, ρwθ diminishes with

decreasing Reynolds numbers because of the joint decay of < u3θ > and growth of the scalar

variance, both studied in the previous part. It is worth noting that the magnitude of ρwθ
strongly depends on Pr at moderate Reλ, because the Prandtl number affects decay exponents

in this region of moderate Reynolds numbers, as revealed previously in Fig. 6.5c.

In addition, several low Pr values from Yeung & Sreenivasan (2014) are included in Fig. 6.6a,

and there is a good quantitative agreement with the present anisotropic EDQNM modelling:

the three simulations of Yeung & Sreenivasan (2014), for Pr = 1/2048, Pr = 1/512, and Pr =

1/128, are almost all consistently contained within our EDQNM simulations at Pr = 10−4 and

Pr = 10−2. Moreover, at these moderate Reλ, it is recovered that ρwθ increases in magnitude

with the Reynolds number at a given Pr. Furthermore, an interesting behaviour is recovered,
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which is the decrease in magnitude of ρwθ when Pr departs from unity, either for Pr � 1

or Pr � 1, at a fixed moderate Reλ: this notably confirms the DNS results of Yeung et al.

(2002); Yeung & Sreenivasan (2014), and can be interpreted in terms of loss of phase alignment

between spectral velocity and scalar fluctuations: indeed, for both Pr � 1 and Pr � 1, there

exists a subrange in wavenumber space (the inertial-diffusive and viscous-convective ranges

respectively) where the scalar variance spectrum strongly depart from the kinetic energy one.

This phenomenon is much more visible for Pr � 1.

This decrease in magnitude of ρwθ with a Prandtl number different from unity is of practical

interest since it happens at moderate Reynolds numbers only, and this might be the reason

for the scattering of the obtained values of the cospectrum normalized correlation, as already

mentioned in Chapter 5.
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Figure 6.6: (a) Normalized correlation ρwθ for σ = 4 at various Prandtl numbers as a function
of Reλ. Symbols correspond to the DNS of Yeung & Sreenivasan (2014): � Pr = 1/2048;
© Pr = 1/512; × Pr = 1/128. Black and grey lines are respectively for small and large
Prandtl numbers. (b) Pressure-scalar correlation ΠF for σ = 2 at various Prandtl numbers.
The grey dashed line corresponds to the theoretical prediction. The zoom focuses on small
times to illustrate the difference with varying Pr. (c) Nusselt number Nu, defined in (6.11), as

a function of the Péclet number Pe, for various Pr.

Furthermore, the scalar-pressure correlation ΠF =< p∂3θ > is investigated: this correlation has

not received much attention, even though it is the destruction mechanism of the scalar flux, and

was not addressed in Chapter 5. There, it was shown that one cannot define a decay rate for

the dissipation εF at large Reynolds numbers, because it is not conserved in the inertial range

unlike ε and εT . But it is possible for ΠF : indeed, according to the evolution equation (4.58)

of < u3θ >, ΠF should evolve as the production mechanism, proportional to the kinetic energy

K(t). This is confirmed numerically in Fig. 6.6b for Saffman turbulence: ΠF is found to decay

in t−6/5, similarly to the kinetic energy. Furthermore, Fig. 6.6b once more illustrates that the

theoretical decay rate does not depend on the Prandtl number.

Finally, the Nusselt number, defined as

Nu = −< u3θ >

aΛ
, (6.11)

is investigated for various Prandtl numbers. Nu is in fact another normalization of the mixed-

correlation < u3θ > which is of practical interest for heat transfers. The theoretical prediction

for the Nusselt number, detailed and assessed in Gotoh & Watanabe (2012), is that it should
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vary as Nu ∼ Pe, where the Péclet number is Pe = PrReT , with the turbulent Reynolds

number ReT = 3Re2
λ/20. This scaling is successfully recovered in Fig. 6.6c for a wide range of

Péclet and Prandtl numbers.

6.1.2.3 Return to isotropy of small scales

The anisotropy of the flow is briefly investigated here, at the level of the scalar second-order

moments: it is recalled that in Chapter 4, it was shown that small scales completely returned to

isotropy, which was expected since the velocity field remains isotropic in HITSG. Consequently,

one can wonder if the Prandtl number has an influence on the scalar small scales return to

isotropy. Not surprisingly, it is found that the impact of the Prandtl number on the global

anisotropy is comparable to moderate Reynolds numbers effects for the kinetic field: indeed,

the relevant dimensionless parameter for the scalar is not only Reλ, but the product Reλ
√
Pr,

which could be called a Taylor Péclet number Peλ.

Thus, even with a large Reλ, if the Prandtl number is as small as 10−4, Peλ will be moderately

small, so that scalar small scales may not be not completely isotropic, in addition to other issues,

such as the lack of scale separation in the spectra (Yeung & Sreenivasan, 2014). Consequently,

very large Reλ are required for highly diffusive passive scalars. This is illustrated in Fig. 6.7a,

where the Taylor Reynolds number is very large Reλ ∼ 105, so that even at small Prandtl

numbers of order ∼ 10−4, the Péclet number based on the Taylor scale is still sufficiently high

Peλ ∼ 103: this is an important condition for weakly diffusive passive scalars to obtain clear

scalings, as underlined in Yeung & Sreenivasan (2014). This allows to observe in Fig. 6.7a that

there is a complete return to isotropy of scalar second-order moments small scales. It is worth

noting that from the Corrsin-Obukhov wavenumber kCO, i.e. in the inertial-diffusive range,

there is no more anisotropy: the non-linearity being much stronger in the inertial-convective

range, for kL < k < kCO, the return to isotropy mechanism occurs dominantly in this region of

the wavenumber space.
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Figure 6.7: Effects of Pr on H
(T )
33 for σ = 2 along with the integral, Kolmogorov, Corrsin-

Obukhov and Batchelor wavenumbers kL, kη, kCO and kB. (a) Pr = 10−4 and Reλ =
2, 1.105 so that Peλ = 2, 1.103. (b) Pr = 1 in black and Pr = 104 in grey, both at

Reλ = 100, so that the Péclet number varies from Peλ = 102 to 104.
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For weakly diffusive scalar, analogous assessments leading to a similar conclusion are made in

Yeung et al. (2002), where it is shown numerically that even with a moderate Reλ, increasing

the Pr - which amounts to increase Peλ - allows to recover scalar isotropic small scales. It is

proposed to illustrate this feature in Fig. 6.7b, where H
(T )
33 is displayed for Saffman turbulence

at Reλ = 100, for Pr = 1 and Pr = 104. It is clear, notably with the zoom around the

Kolmogorov wavenumber kη, that increasing the Prandtl number at a fixed Reynolds number

participates into restoring isotropy at small scales.

Finally, it is worth noting that within our modelling, according to Fig. 6.7a and 6.7b, the large

scales level of anisotropy seems to be independent of the Prandtl number in Saffman turbulence,

and always very close to 1/15, with 1/15 ≥ H(T )
33 . This value of 1/15 is interesting because it is

the maximum level of anisotropy that the scalar field can handle according to the realizability

condition (4.29). Using the axisymmetric relations H
(T )
11 = H

(T )
22 = −H(T )

33 /2, one obtains that

the largest eigenvalue is H
(T )
33 . Thus, in HITSG, the realizability condition is verified (otherwise

one would get negative scalar spectra) and the important feature is that the anisotropy reaches

its maximal value at large scales in Saffman turbulence.
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Figure 6.8: Zoom at large scales for H
(T )
33 in Batchelor turbulence (σ = 4) for Pr = 10−4, along

with the integral wavenumber kL. The four different curves are at Peλ = 193, 87, 36 and 15.

The case of Batchelor turbulence is a bit different: indeed, because of classical backscatter of

energy, strong inverse transfers initiate a return to isotropy mechanism at large scales (Eyink

& Thomson, 2000), so that the large scales level of anisotropy can decrease with time (or

equivalently can decrease when Reλ decreases). This is more visible in the case Pr � 1 because

the Péclet number is in general lower than in the case Pr � 1, as illustrated in Fig. 6.8.

There, H
(T )
33 for Pr = 10−4 is displayed at different times during the decay, or equivalently at

various decreasing Reynolds numbers, so that the Péclet number goes from Peλ = 193 down to

Peλ = 15. Even though the large scales level of anisotropy remains close to 1/15, it nevertheless

slightly diminishes.

6.1.3 Conclusions for Pr 6= 1 in HITSG

Decaying homogeneous isotropic turbulence with a mean scalar gradient (HITSG) that sustains

scalar fluctuations has been investigated numerically at large Reynolds numbers with the aniso-

tropic EDQNM modelling. The present work is a direct application of Chapter 5 for a Prandtl
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number either very small or very large: first, four quantitative comparisons are proposed. The

good agreement between the present results and DNS, LES and other models, permits to assess

the relevance of the model at Pr � 1 and Pr � 1 over a wide range of Reynolds numbers.

This notably confirms numerically theoretical spectral scalings for the scalar variance spec-

trum ET (k, t) and the cospectrum F(k, t). Hence, in HITSG, at large Reynolds numbers, it

is notably recovered that for Pr � 1, ET and F scale respectively in k−5/3 and k−7/3 in the

inertial-convective range, and then, from the Corrsin-Obukhov wavenumber kCO, in k−17/3 and

k−11/3 in the inertial-diffusive range. Moreover, when Pr � 1, the k−1 viscous convective range

beyond kη for ET is not modified with the presence of a mean scalar gradient. For both low

and large Prandtl numbers, budget terms of the evolution equation of ET (k, t) were analyzed

as well: it was shown that at large scales, the production is always stronger than non-linear

transfers. At small scales for Pr � 1, even at large Reλ, dissipation is stronger than non-linear

transfers: in the limit where the Péclet number tends to zero, dissipation balances production.

Secondly, the time evolution of the scalar variance < θ2 > and the mixed-correlation < u3θ >

was investigated at large Reynolds numbers: it was shown numerically that the theoretical

predictions of Chapter 5 for the algebraic time exponents are still valid for Pr � 1 and Pr � 1,

consistently with a similar result for the scalar variance decay in HIT: the Prandtl number does

not affect the asymptotic time evolution of < θ2 > and < u3θ > at large Reynolds numbers, only

at moderate ones. In addition, it was shown numerically that the pressure-scalar correlation

< p∂3θ >, which is responsible for the destruction of the scalar flux, decays with the same rate

as the kinetic energy, independently of the Prandtl number.

Afterwards, the Reynolds and Prandtl numbers dependence of the normalized cospectrum cor-

relation ρwθ was addressed as well: the present spectral modelling provides good quantitative

results with respect to DNS. Notably, it was found that at a fixed moderate Reynolds number,

say Reλ ∼ 100, ρwθ decreases in magnitude when the Prandtl number either increases or de-

creases, in agreement with the prediction of Yeung & Sreenivasan (2014). The linear dependence

of the Nusselt number with the Péclet number is also recovered.

Finally, it was shown numerically that the small scales of the scalar second-order moments return

to isotropy, provided the Péclet number is large enough. This notably implies, for highly diffusive

passive scalars, the need to reach very high Taylor Reynolds numbers Reλ when one wants to

obtain a clear k−17/3 inertial-diffusive scaling, which numerically requires that Pr ≤ 10−3.

6.2 Prandtl number effects in shear-driven turbulence

In this section, HSRT, HST and HSTSG are addressed. The results regarding the impact of a

Prandtl number strongly different from unity are less conclusive than in the previous section

dedicated to HITSG. There are mainly two reasons for this: (i) First, for Pr � 1, huge initial

Reynolds numbers are needed, which make the simulations really long when St increases. This

is particularly true when there is no mean scalar gradient, i.e. in HST, since KT decreases

exponentially whereas K increases exponentially. Nevertheless, a new result regarding the

inertial-diffusive scaling of FS is proposed for HSTSG when Pr � 1. (ii) Secondly, when

Pr � 1, it is not clear if the use of non-local transfers, detailed in Appendix B, to sustain the

k−1 viscous-convective range remains appropriate when a sustained shear is applied. Indeed,
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the non-local transfers were first derived for isotropic turbulence: since in HITSG the velocity

field remains isotropic, it seemed relevant enough to use the non-local expansions in the previous

section. But a sustained shear is the most anisotropic case. Hence, it is not straightforward

to quantify how the anisotropic non-linear transfers ”disturb” the isotropic scalar non-local

transfer in the presence of shear.

Whatever framework is considered, HSRT, HST, or HSTSG, the k−17/3 inertial-diffusive scaling

when Pr � 1 and the k−1 viscous convective scaling when Pr � 1 for ET (k, t) are not modified

by the presence of shear. For the cospectrum F(k, t), the k−11/3 inertial-diffusive scaling when

Pr � 1 is also not modified by the presence of shear.

6.2.1 Homogeneous shear-released turbulence

In this section, the decay of KT in HSRT is addressed when either Pr � 1 or Pr � 1. It is

revealed in Fig. 6.9 that the Prandtl number does not affect the decay of the scalar variance KT

in HSRT, as previously shown in HIT in Chapter 1 for asymptotically large or small Reynolds

numbers. Saffman and Batchelor turbulence are presented. It is notably found that KT decays

faster with Pr = 10−4 than with Pr = 1, which is consistent with a moderate Péclet number:

the low Reynolds numbers regime is reached more rapidly than with Pr ≥ 1.

10
4

10
2

10
0

−3

−2.5

−2

−1.5

−1

Reλ

α
T

 

 

σ = 2

σ = 4

Low Re CBC

High Re CBC

(a)

10
2

10
3

−2

−1.5

−1

−0.5

Reλ

α
T

σ = 2

σ = 4

High Re CBC

(b)

Figure 6.9: Scalar variance decay exponent αT , with σ = 2 in black and σ = 4 in grey,
with St = 1; �: high Reynolds predictions; ◦: low Reynolds predictions. (a) From high

to low Reynolds numbers regimes for Pr = 10−4. (b) For Pr = 104.

The scalar global anisotropy indicators bTij are then displayed in Fig. 6.10 for both very large

and very small Prandtl numbers, and they have the same behaviour as in the case Pr = 1, i.e.

an asymptotic state different from zero, meaning that there is still anisotropy left in the flow,

gathered at large scales.

6.2.2 Sustained shear flow

The case of sustained shear flows is now addressed. It is revealed in Fig. 6.11 that even with

Pr � 1 or Pr � 1, the scalar variance KT still decays exponentially with γT = −0.52. This is
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Figure 6.10: bTij for σ = 2 and St = 1. (a) Pr = 10−4. (b) Pr = 104.

consistent with the Prandtl number dominantly affecting the small scales of the scalar variance

spectrum. Nevertheless, for Pr � 1, with an initial Reλ(0) = 1, the associated Péclet number

would be too small and consequently the transitional state before reaching the asymptotic

anisotropic state would be rather large: furthermore, a too low Reλ(0) causes some numerical

issues. Therefore, for a sustained shear flow and Pr � 1, the initial Reynolds number is

chosen much higher (Reλ(0) = 100) to ensure an initial moderate Péclet number. Whereas

in the configuration Pr � 1, the initial Péclet number is sufficiently large so that no specific

precautions have to be taken.
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Figure 6.11: Scalar variance KT in Saffman HST. (a) For S = 10−2τ−1
0 , Reλ(0) = 100

and Pr = 10−4. (b) For S = 1τ−1
0 and Pr = 104.

Afterwards, the time evolution of the bTij and of the scalar shear rapidity STR = εT /(KTS) are

displayed in Fig. 6.12 for Saffman HST, for both Pr = 10−4 and Pr = 104. They all reach the

same asymptotic anisotropic state, independently of the value of the Prandtl number, which is

similar to the previous findings about anisotropy in HITSG.
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Figure 6.12: Scalar global anisotropy indicators bTij(t) and scalar shear rapidity STR(t).

(a) For S = 10−2τ−1
0 , Reλ(0) = 100 and Pr = 10−4. (b) For S = 1τ−1

0 and Pr = 104.

Finally, for illustration purposes in the high Prandtl case, the scalar variance spectrum ET is

presented in Fig. 6.13a at St = 50 and displays a clear k−1 scaling in the VCR. This scaling

is obviously not modified by anisotropy, because mean velocity gradients mainly apply on large

scales. In addition, the scalar fluxes are displayed in Fig 6.13b: the impact of the direct non-

local part T+
T of the non-linear scalar transfer, which results in the non-local flux Π+

T after

integration, is clear on the scalar non-linear isotropic flux Π
NL(iso)
T : energy is brought beyond

the Kolmogorov wavenumber and the total resulting flux is found to be constant through kη.

This non-local transfer allows to maintain, as in HIT, the k−1 viscous-convective range.
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Figure 6.13: (a) Normalized kinetic energy and scalar variance spectra E(k, t) and

ET (k, t). (b) Scalar fluxes: non-linear isotropic Π
NL(iso)
T and non-local (direct) Π+

T contri-
butions. Both with the Kolmogorov and Batchelor wavenumbers kη and kB, at Pr = 104,

σ = 2 and at St = 50 (Reλ ∼ 104).
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6.2.3 Homogeneous Shear Turbulence with a mean Scalar Gradient

The HSTSG framework is now studied. For Pr � 1, the scaling of the streamwise flux spectrum

EF1 = FS in the inertial range can be easily predicted using arguments similar to the ones of

Bos & Bertoglio (2007) in the case Pr = 1. Starting from the scaling of the cospectrum for

a highly conductive passive scalar field (6.7), and replacing ε by εij , which is justified by the

presence of the main shear dU1/dx3, yields

EFi (k, t) =
2

3
K0a

−1λjε
2/3
ij (k)k−11/3. (6.12)

Then, the scaling of the spectral tensor is used εij(k)E(k) = 3φij(k)ε, where εii = 2ε. This gives

in the inertial range εij(k) ∼ Sε2/3k−2/3. Finally, for very low Prandtl numbers, the streamwise

scalar flux is, in the inertial-diffusive range,

FS(k, t) = −CSFΛa−1ε4/9k−37/9. (6.13)

In Fig. 6.14a, the k−37/9 scaling for the streamwise flux FS is assessed over two decades in the

IDR (the two components of the scalar flux have been decreased for readability reasons), and

the k−23/9 slope in the ICR is recovered as well. The scalar spectrum ET and cospectrum F
display the same scaling as in HITSG and are not modified by shear, similarly to the case of

Pr = 1. For weakly diffusive passive scalars Pr � 1, ET still displays a k−1 slope in the VCR,

whereas F and FS scale similarly to the case Pr = 1 in HSTSG. This is also illustrated in Fig.

6.14b.
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Figure 6.14: Scalar variance, cospectrum and streamwise flux spectra ET , F and FS in
Saffman HSTSG. (a) For Pr = 10−5 and S = 1τ−1

0 , at Reλ = 2.105, along with the
Corrsin-Obukhov and Kolmogorov wavenumbers kCO and kη. (b) For Pr = 104 and

S = 10−2τ−1
0 , along with the Kolmogorov and Batchelor wavenumbers kη and kB.

Finally, the exponential growth of K, KT , KF and KS
F at the rate γ = 0.34 is presented in

Fig. 6.15. In the latter figure, KF and KS
F can hardly be distinguished. There is no strong

differences with the case Pr = 1, except that the transitory state for the scalar variance and

mixed correlations < u1θ > and < u3θ > is longer for the case Pr � 1, as noted previously
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in HST for KT . One can nevertheless remark that either in the case Pr � 1 or Pr � 1, the

kinetic energy is always less intense than KT , KF and KS
F , as in the case Pr = 1.
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Figure 6.15: Kinetic energy K, scalar variance KT , and mixed-correlations KF and KS
F , in

Saffman HSTSG. (a) For Pr = 10−5 and S = 1τ−1
0 . (b) For Pr = 104 and S = 10−2τ−1

0 .

6.2.4 Conclusions about shear-driven turbulence for Pr 6= 1

As specified at the beginning of this chapter, the results for highly and weakly diffusive passive

scalars in shear-driven turbulence are less conclusive than in HITSG. The lack of accurate data

for these regimes is flagrant since it was impossible to perform quantitative comparisons against

DNS and experiments.

Therefore, this section should be considered as a guide for future works, and may be some of

the results presented here will be of use. Nevertheless, the noteworthy findings are twofold: (i)

the Prandtl number does not affect the exponential rate of the scalar and scalar flux fields in

HST and HSTSG. (ii) For Pr � 1, a new IDR scaling was derived for the streamwise flux FS
based on the arguments of Bos & Bertoglio (2007) for Pr = 1, which reads FS ∼ k−37/9.

On a theoretical point of view, as mentioned earlier, it is not clear if the use of isotropic non-

local transfers for the scalar field in the case Pr � 1 remains relevant in the presence of shear.

Anisotropic non-local transfers were derived (but not presented in Appendix B) following the

methodology of Lesieur & Schertzer (1978), but they proved to be completely negligible with

respect to the scalar isotropic transfer. What are the reasons for doubting of these non-local

transfers? First, the direct non-local transfer T+
T brings strongly ”anisotropic scalar variance”

from large scales to almost isotropic small scales, and this transfer only depends on E and ET ,

not on the anisotropic descriptors H
()
ij . Secondly, in some configurations, the inverse non-local

scalar transfers T−T caused some numerical issue, probably because it only affects the isotropic

spectrum ET at larges scales (by bringing small scales ”isotropic scalar variance”) and not

ETH
(T )
ij .



Chapter 7

Spectral Modelling for Unstably

Stratified Homogeneous Turbulence

In this section, the anisotropic EDQNM modelling is extended to the case of active scalar

dynamics.

The contents of this chapter, except the variable stratification part, were published in:

Briard, Iyer & Gomez, ”Anisotropic spectral modeling for unstably stratified homoge-

neous turbulence”, Physical Review Fluids, 2 (4), 044604 (2017)

Unstably Stratified Homogeneous Turbulence (USHT) can be seen as a simplified approach for

Rayleigh-Taylor instability (Soulard & Griffond, 2012; Gréa, 2013; Soulard et al., 2016), which

is a phenomenon occurring for fluid of variable density. This instability can be found in various

areas, such as geophysical, astrophysical and confined industrial flows: more specifically, the

Rayleigh-Taylor instability can happen in natural flows such as atmospheric ones because of the

mean vertical temperature gradient, when the heavy fluid, located above the lighter one, pushes

it downward due to gravitational acceleration, which creates a mixing zone.

To investigate both numerically and theoretically a mechanism as complex as Rayleigh-Taylor

instability, it is convenient to work in the framework of USHT, which notably discards inhomo-

geneity, uses the Boussinesq approximation to reflect the retro-action of the convected buoyant

field on the velocity one, and assumes that the mixing length L is constant in time, and larger

than the turbulent integral scale (Soulard et al., 2014; Burlot et al., 2015a,b; Gréa et al., 2016a).

It follows that the stratification frequency N is constant as well. One has to point out that

frameworks different from USHT can be considered as well, for instance variable-density flows

where the Boussinesq approximation is not used anymore (Livescu & Ristorcelli, 2007; Chung

& Pullin, 2010).

The USHT framework has been addressed recently, thanks to the axisymmetric EDQNM model

(Burlot et al., 2015a,b; Gréa et al., 2016a) to analyze the large Reynolds numbers regimes. As

specified by its name, this spectral approach is dedicated to axisymmetric configurations and

permits an accurate investigation of the scale-by-scale anisotropy distribution, and of the time

evolution of one-point statistics such as the Froude number Fr and the mixing intensity Λ,

131
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which will be defined later on. The strength of the axisymmetric EDQNM is that production

terms, linear with N , are exactly treated, whereas the non-linear transfers are closed by a

classical EDQNM procedure, which is the most costly step in terms of computational resources.

However, this approach cannot handle, at least in the present form, shear flows, where there is

no particular symmetry, unlike the present anisotropic EDQNM modelling. For this reason, the

latter model is extended here to the case of active scalar dynamics, and compared to the results

obtained with the axisymmetric EDQNM of Burlot and coworkers. Furthermore, throughout

this chapter, USHT is qualitatively compared to results obtained with the anisotropic EDQNM

modelling in the frameworks of HST and HITSG (Chapters 3 and 5). In addition, both the

effects of large Schmidt numbers Sc on the inertial scaling of the scalar flux spectrum, and

pressure spectra, are addressed on a fundamental point of view.

The extension of the anisotropic EDQNM modelling to unstable stratification is a step further

towards the modelling and understanding of high Reynolds geophysical flows, such as atmo-

spheric and oceanic ones. Indeed, under the assumption of homogeneity, such flows contain

effects of shear, temperature and concentration gradients, stratification, rotation, and helicity.

Shear and mean scalar gradient mechanisms have already been addressed with our model, and

helicity is the topic of Chapter 8, so that stratification appears to be an natural extension,

whereas effects of rotation were addressed independently with EDQNM2 (Cambon et al., 2013).

Then, a step further toward the modelling of Rayleigh-Taylor instability is crossed by allow-

ing the stratification frequency N(t) to vary with time, with a retro-action of the fluctuating

quantities on the mean field. In such a configuration, the dynamics is completely different, and

the mixing length L(t) is known to evolve in t2 (Soulard & Griffond, 2012; Gréa, 2013; Soulard

et al., 2016).

7.1 Evolution equations in USHT

In this section, the spectral anisotropic modelling developed in Chapters 2 and 4 for passive

scalar dynamics is extended to the case of unstably stratified turbulence: the additional linear

transfers linked to the Boussinesq approximation are presented hereafter.

7.1.1 Additional coupling terms

As commonly done for USHT, one has to scale the scalar fluctuations θ, which is usually a

concentration, as a buoyant velocity v (Soulard et al., 2014) according to

v =
2Agθ
N

, (7.1)

where N is the stratification characteristic time, or buoyancy frequency

N =

√
2Ag dV

dx3
, (7.2)

where V is the mean buoyant field, g the gravitational acceleration, A the Atwood number

A = (ρ1 − ρ2)/(ρ1 + ρ2), assumed to be small or the Boussinesq approximation, with ρ1 and ρ2
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the densities of the heavy and light fluid respectively. The evolution equations of the fluctuating

velocity and scalar fields are then

∂v

∂t
+ uj

∂v

∂xj
= a

∂2v

∂xj∂xj
+Nu3, (7.3)

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+Nv δi3. (7.4)

The spectral counterpart of these equations are straightforward (see Appendices C and E). In

what follows, one has to replace θ̂ by v̂ in the definitions of the spectral quantities introduced

in Chapter 4. The evolution equations of the two-point second-order correlations R̂ij , Fi and

ET are then(
∂

∂t
+ 2νk2

)
R̂ij(k, t) = TNL

ij (k, t) +N
(
Pj3(k)Fi(k, t) + Pi3(k)Fj(k, t)

)
︸ ︷︷ ︸

Additional stratification coupling

, (7.5)

(
∂

∂t
+ (ν + a)k2

)
Fi(k, t) = TF,NL

i (k, t) +NR̂i3(k, t) +NPi3(k) ET (k, t)︸ ︷︷ ︸
Additional coupling

, (7.6)

(
∂

∂t
+ 2ak2

)
ET (k, t) = TT,NL(k, t) + 2NF3(k, t). (7.7)

7.1.2 Spherically-averaged Lin equations for USHT

The computation of the new linear transfers linked to the buoyancy frequency N amounts to only

two additional production terms with respect to HITSG, as seen just before: the retro-action of

the scalar field on the cospectrum, and the retro-action of the scalar flux on the kinetic energy

spectrum. The resulting four new linear spherically-averaged transfers for unstably stratified

turbulence are, for a vertical scalar gradient (along x3),

SL,USHT(iso)(k) = N

∫
Sk

Pi3(k)Fi(k)d2k = NF(k), (7.8)

S
L,USHT(dir)
ij (k) =

N

2

∫
Sk

Pl3(k)Fl(k)Pij(k)d2k − δij
3
NF(k)

=
N

20

(
EFi (k)δj3 + EFj (k)δi3 −

2

3
F(k)δij

)
, (7.9)

S
L,USHT(pol)
ij (k) =

N

4

∫
Sk

(
Pl3(k)Fn(k) + Pn3(k)Fl(k)

)
N∗l (k)N∗n(k)Ni(k)Nj(k)d2k

=
3N

10

(
EFi (k)δj3 + EFj (k)δi3 −

2

3
F(k)δij

)
, (7.10)

SF,L,USHT
i (k) = N

∫
Sk

ET (k)Pi3(k)d2k = 2NET (k, t)
(1

3
δi3 +H

(T )
i3 (k)

)
. (7.11)

Consequently, the spherically-averaged Lin equations for USHT are(
∂

∂t
+ 2νk2

)
E(k, t) = SNL(iso)(k, t) +NF(k, t), (7.12)(

∂

∂t
+ 2νk2

)
E(k, t)H

(dir)
33 (k, t) = S

NL(dir)
33 (k, t) +

N

15
F(k, t), (7.13)
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(
∂

∂t
+ 2νk2

)
E(k, t)H

(pol)
33 (k, t) = S

NL(pol)
33 (k, t) +

2N

5
F(k, t), (7.14)(

∂

∂t
+ 2ak2

)
ET (k, t) = ST,NL(iso)(k, t) + 2NF(k, t), (7.15)(

∂

∂t
+ 2ak2

)
ET (k, t)H

(T )
33 (k, t) = S

T,NL(dir)
33 (k, t) +

2

15
NF(k, t), (7.16)(

∂

∂t
+ (ν + a)k2

)
F(k, t) = SF,NL

3 (k, t) +Nφ33(k, t) + 2NET (k, t)
(1

3
+H

(T )
33 (k, t)

)
.

(7.17)

The non-linear transfers are the same as in passive scalar dynamics, since the linear operators

of the three-point third-order correlations equations are not taken into account in the non-

linear closure. Quadratic anisotropic contributions in the non-linear transfers for the scalar and

cospectrum can be found in Appendix E along with some illustrations for USHT.

In the following sections, high Reynolds USHT is investigated and results are qualitatively

compared with the axisymmetric EDQNM developed in Burlot et al. (2015a,b). Only the

component along the mean gradient ()33 will be presented since one has ()11 = ()22 = −()33/2

because of axisymmetry. Furthermore, to be consistent with the development of the present

spectral modelling, the same set of eddy-damping constants is kept: A1 = 0.355, A2 = 0 and

A3 = 1.3. Differences between this set of constants, and A1 = A2 = A3 = 0.355 used in Burlot

et al. (2015a), are illustrated hereafter in section 7.3.7.

First, inertial scaling of the kinetic energy, scalar variance and scalar flux spectra are addressed,

along with some considerations about the large scales initial conditions σ and σT . Then, the

time evolution of one-point statistics is studied, such as the kinetic energy and its exponential

growth rate, the Froude number, the mixing parameter, and global anisotropy indicators. In-

fluence of large scales initial conditions σ and of the intensity of the stratification N on the

asymptotic anisotropic states of the previous quantities is also analyzed. Afterwards, a quanti-

tative comparison with Burlot et al. (2015b) is proposed, to illustrate that our model is able to

recover, with satisfactory quantitative agreement, some features obtained by a model without

any truncation of the expansion in spherical harmonics specific for axisymmetric turbulence.

The scale-by-scale repartition of anisotropy in spectral space is then addressed and some con-

siderations on the structure of the flow are proposed. These different parts constitute a complete

validation of our anisotropic EDQNM modelling. Furthermore, qualitative comparisons with

the cases of passive scalar dynamics and shear flows, which have been addressed with the same

consistent closure, are proposed. Finally, in section 7.5, two new applications are presented:

first, the pressure spectrum, and more specifically its anisotropic part resulting from stratifica-

tion, is investigated. Then, effects of large Schmidt numbers, notably on the inertial scaling of

the cospectrum F , are revealed.

7.2 Spectral scaling and infrared dynamics

In this part, the emphasis is put on on the three main spectra of USHT: the kinetic energy

spectrum E(k, t), the scalar variance spectrum ET (k, t) and the cospectrum F(k, t), which are

investigated at large Reynolds numbers. First, the inertial scaling is discussed, and then, we

focus on the infrared dynamics.
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7.2.1 Spectral scaling of E, ET and F

Firstly, the scaling of the main spectra is investigated. As in HITSG, E and ET scale in k−5/3

in the inertial range, and F in k−7/3, as revealed in Fig. 7.1. Moreover, the peaks of the three

spectra evolve in k−3 with increasing Nt, as assessed in Figure 11 of Burlot et al. (2015a). This

can be shown easily, and the idea of the proof is inspired from a Rayleigh-Taylor analysis by

Poujade (2006). Let’s call Emax the maximum of the kinetic energy spectrum. Dimensional

arguments yield Emax(t) ∼ L(t)K(t). Using the self-similar exponential growth of integrated

quantities gives Emax(t) ∼ exp(3βNt/2), where β is the exponential growth rate of the kinetic

energy. Then, at high Reynolds numbers, one can assume that kmax(t) ∼ kL(t) so that the time

t can be expressed as follows: t ∼ −2 ln(kL)/(βN). Injecting this formula into Emax finally

provides

Emax(t) ∼ k−3
L , (7.18)

in agreement with numerical simulations.
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Figure 7.1: Evolution of the spectra in Saffman USHT. The @ denotes the peak of the spectra,
which are represented at three dimensionless times Nt = 19, Nt = 22 and Nt = 25, and
Reλ(Nt = 25) = 3.104. (a) Kinetic energy spectrum E(k, t); (b) Scalar variance spectrum

ET (k, t); (c) Cospectrum F(k, t).

Furthermore, the possibility of an anisotropic correction to the Kolmogorov spectra is discussed

in Burlot et al. (2015b), and it is shown numerically in the latter reference that the anisotropic

part of φ33(k, t) scales in k−3 (mostly at the beginning of the inertial range). Nevertheless, if

one zooms in in the corresponding Figure 12, it appears that k−3 is steeper than the real inertial

range slope. This is in agreement with our numerical simulations displayed in Fig. 7.2a, where

the isotropic, directional and polarization parts of φ33(k, t) are presented. Clearly, the isotropic

part φ
(iso)
33 scales in k−5/3. Whereas one has for φ

(pol)
33 (and φ

(dir)
33 ) a spectral slope steeper than

k−7/3, but not as sharp as k−3. Numerically, k−2.52 is found here, in good agreement with the

recent DNS of Gréa et al. (2016a), where the spectral scaling of φ
(pol)
33 is also closer to k−7/3 than

k−3. Furthermore, it is recovered, in agreement with Burlot et al. (2015b), that the polarization

part is more intense at large scales than the directional one.

In Fig. 7.2b, for illustration purposes, the linear and non-linear transfers of kinetic energy

are displayed for Saffman turbulence. It is revealed that at large scales, linear production

mechanisms dominate over non-linear transfers which take energy from these large scales and

bring it to smaller scales. This feature, that production is strong at large scales and thus that

anisotropy is dominant at large scales, will be used later on.



Chapter 7. Spectral Modelling for Unstably Stratified Homogeneous Turbulence 136

−6 −4 −2 0 2
−4

−3

−2

−1

0

1

2

3

log(k)

lo
g
φ
3
3
/
lo
g
k

 

 

φ
(iso)
33

φ
(pol)
33

φ
(dir)
33

-3

-7/3

(a)

10
−6

10
−3

10
0

10
3

−0.5

0

0.5

1

k

K
in
et
ic

en
er
g
y
tr
a
n
sf
er
s

 

 

kSNL(iso)/ǫ

kSL,USHT(iso)/ǫ

kL kη

(b)

Figure 7.2: (a) Spectral slope of the isotropic, directional and polarization parts of the
spectral tensor φ33(k, t). (b) Normalized linear and non-linear transfers of kinetic energy.

Both in Saffman USHT at Nt = 25 where Reλ = 3.104.

Now, we investigate in detail the inertial scaling of E(k, t), ET (k, t) and F(k, t), and more

precisely the value of the Kolmogorov and Corrsin-Obukhov constants K0 and KCO respectively.

These constants are obtained by compensating the spectra with an adapted scaling. For the

kinetic energy and buoyancy spectra, it is shown in Fig. 7.3a that the usual isotropic inertial

scalings

Einertial(k, t) = E(k, t) ε−2/3 k5/3, (7.19)

ET,inertial(k, t) = ET (k, t) ε−1
T ε1/3 k5/3, (7.20)

are relevant and allow to recover classical values for the constants, K0 = 1.31 and KCO = 0.76,

similar to what is obtained for passive scalar dynamics. This is completely different when it

comes to the cospectrum F . First, let’s point out that there exist two different inertial scalings:

the classical one proposed by Lumley (1967) which was shown to work nicely for passive scalar

dynamics in HITSG in Chapter 5, with a constant CF ' 3, and a more recent one, derived by

Burlot et al. (2015b), which unlike Lumley’s, takes into account the scalar dissipation rate εT ,

which seems a priori relevant for an active scalar field

FLumley
inertial (k, t) = F(k, t)N−1ε−1/3 k7/3, (7.21)

FBurlot
inertial(k, t) = F(k, t)N−1

(
K0ε

1/3 +KCOεT ε
−2/3

)−1
k7/3. (7.22)

The inertial scaling FBurlot
inertial, first derived in Soulard & Griffond (2012), is presented in Fig.

7.3b: the plateau of the compensated cospectrum only starts appearing at Reynolds numbers

as large as Reλ ∼ 3.106. Whereas for the passive scalar case, at a similar Reynolds number, F
was displaying a clear plateau around CF ' 3 in the inertial range. Nevertheless, the scaling

proposed by Burlot and coworkers FBurlot
inertial seems to be more relevant than Lumley’s: indeed,

for FBurlot
inertial, a plateau seems to appear around 3.7, whereas FLumley

inertial settles around 12, which

is too high, and consequently not displayed in Fig. 7.3b. The fact the scaling (7.22) is better

than FLumley
inertial is very likely because it takes the scalar dissipation rate εT into account.
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Figure 7.3: Compensated spectra in the inertial range for Saffman USHT, with the integral
and Kolmogorov wavenumbers kL and kη. (a) Compensated kinetic energy spectrum
(7.19) and scalar variance spectrum (7.20) at Reλ = 3.104, along with the Kolmogorov
constant K0 = 1.31 and Corrsin-Obukhov constant KCO = 0.76. (b) Compensated
cospectrum with Burlot scaling (7.22) at Reλ = 3.106. The Lumley scaling (7.21) is not

displayed since the curve is similar, but the plateau is located around 12.

7.2.2 Infrared dynamics

Now that the inertial range of the spectra has been investigated, the infrared dynamics is

considered. It is recalled that in HITSG for a passive scalar, if initially σT is different from

σ, greater or lesser it does not matter, it always results in σT = σ after a few turnover times

(see Chapter 5). In USHT, it is fundamentally different since because of stratification, all of the

three main spectra E, ET and F are coupled through the linear production terms at large scales.

Hence, the most energetic initial spectrum, the one with the smallest infrared slope, imposes

the minimum of energy to the others, so that in the end one has always σ = σT = min(σ(t =

0), σT (t = 0)). This is completely different from HITSG where the passive scalar field has no

effect on the kinetic field. Two examples are presented. First, in Fig. 7.4a, one has σ(t = 0) = 2

and σT (t = 0) = 4. The minimum of energy is thus imposed by E so that the scalar infrared

slope results very rapidly, within one dimensionless time Nt, in σT = 2. This is identical to

what happens in HITSG. In the opposite case illustrated in Fig. 7.4b, one has σ(t = 0) = 4 and

σT (t = 0) = 2: the minimum of energy is this time imposed by ET so that after one Nt, σ = 2.

This case is completely different from HITSG where σT would have changed to 4.

A last aspect is presented in Fig. 7.4c: because of strong backscatter of energy towards large

scales when σ ≥ 4, if the slope is initially σ = 5, it eventually becomes σ = 4 in a few

dimensionless times Nt. The same mechanism of strong inverse transfers of energy occurs in

decaying isotropic turbulence (Lesieur & Ossia, 2000).

From this analysis, one can choose, without any loss of generality, σ = σT ≤ 4. This result

for USHT infrared dynamics notably simplifies the study of asymptotic anisotropic states of

the flow: in particular, we choose to investigate only integer values of the infrared slopes:

σ = σT = {1; 2; 3; 4}.
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Figure 7.4: Infrared dynamics of E(k, t) and ET (k, t) with N = 1τ−1
0 . (a) σ(t = 0) = 2 and

σT (t = 0) = 4: black curves at Nt = 0 and grey ones at Nt = 1. (b) σ(t = 0) = 4 and
σT (t = 0) = 2: black curves at Nt = 0 and grey ones at Nt = 1. (c) Initially σ(t = 0) = 5, and

then σ varies from Nt = 0 to Nt = 4.

7.3 One-point statistics

Here, two important quantities of unstably stratified turbulence are firstly addressed, namely

the Froude number

Fr(t) =
ε(t)

K(t)N
, (7.23)

which is the ratio of the stratification characteristic time 1/N on the inertial one K/ε, and the

mixing parameter

Λ(t) =
KT (t)

K(t)
, (7.24)

which is the ratio of the scalar variance to kinetic energy. Since the scalar field is scaled as a

buoyant velocity, Λ is dimensionless. Then, the exponential growth rate β of the kinetic energy

K =< uiui > /2 is analyzed, along with the time evolution of global anisotropy using the

normalized deviatoric Reynolds stress tensor bij . More precisely, the influence of N and σ on

the asymptotic values reached by Fr, Λ, β and b33 at large Nt and Reλ is studied. Finally,

a quantitative comparison with the axisymmetric EDQNM (Burlot et al., 2015b) is proposed.

Additional considerations about the modelling are also briefly presented.

7.3.1 The Froude number Fr

The Froude number can be interpreted as a ratio of characteristic time scales. As such, it could

be qualitatively compared to the shear rapidity SR = ε/(KS) in shear flows, notably addressed

with the same anisotropic EDQNM modelling in Chapter 3. In Fig. 7.5a it is revealed that Fr,

unlike SR, depends on σ in the asymptotic anisotropic state. Final values of Fr spans from

0.44 for σ = 1 to 0.66 for σ = 4. The smaller σ, the smaller Fr: this is expected since for

small σ, large scales contain more energy and consequently are more anisotropic, because of the

production terms which act dominantly at large scales, as illustrated in Fig. 7.2b. With the

production terms being dynamically dominant with a small σ, the characteristic time scale 1/N

diminishes, thus making Fr decrease. Nevertheless, the values reached here by Fr are slightly

higher than the values obtained in Burlot et al. (2015b) (Fr = 0.3 for σ = 1). This means that
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the flow within the present approach is less sensitive to stratification than with the axisymmetric

EDQNM. It is shown in section 7.3.7 that by changing the eddy damping constants, we can

increase the impact of stratification and thus reduce the Froude number: asymptotic values of

Fr are gathered in Table 7.2.

However, in Fig. 7.5b it is shown that Fr, similarly to SR, does not depend on the intensity of

the mean gradient N , except at small Nt in the transitory regime. At short times, the larger

N , the smaller Fr: this is consistent with a strong stratification intensity making production of

buoyant fluctuations dominant initially.
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Figure 7.5: Influence of initial parameters σ and N on the Froude number Fr = ε/(KN).
(a) Various σ at N = 1τ−1

0 . (b) Various N for σ = 2.

7.3.2 The mixing intensity Λ

Now, the mixing intensity Λ is addressed. Similarly to Fr, its asymptotic value depends on σ,

but not on its initial value, except for short times of course, as revealed in Fig. 7.6a and 7.6b.

The dependence with N is not presented since it is very similar to what happens for Fr, i.e. a

dependence on N only at short times. The final values of Λ are contained between 1.6 for σ = 1

and 1.4 for σ = 4, which is quantitatively in agreement with Burlot et al. (2015b): asymptotic

values of Λ are gathered in Table 7.2.

One can remark that KT /K depends strongly on initial conditions at a fixed σ, such as the

initial Reynolds number Reλ(0) and the stratification frequency N . Indeed, Λ initially decreases

in Burlot et al. (2015b), whereas it initially increases here. The reason is the following: here,

Reλ(0) ' 5 implies that linear production mechanisms dominate whatever the value of N is,

roughly for N ≥ 0.1τ−1
0 . For the axisymmetric EDQNM, Reλ(0) ' 70, which requires at least

N = 1τ−1
0 to make Λ increase initially, meaning that linear production overcomes non-linearity.

This is illustrated in Fig. 7.6c.
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Figure 7.6: Mixing intensity Λ = KT /K for: (a) various σ at N = 1τ−1
0 ; (b) various initial

values Λ(0) for σ = 2 and N = 1τ−1
0 ; (c) various N and Reλ(0) with σ = 2: Reλ(0) = 70 in

black and Reλ(0) = 5 in grey.

7.3.3 Growth of the kinetic energy K(t)

The emphasis is now put on the exponential growth rate β of the kinetic energy K(t) in USHT.

It was assessed by Burlot et al. (2015b) that this growth rate strongly depends on the large

scales initial condition σ, according to the theoretical prediction

K(t) ∼ K(0) exp(βBurlotNt), βBurlot =
4

σ + 3
, (7.25)

which comes from the more general work of Soulard et al. (2014) where the stratification fre-

quency N can vary: (7.25) corresponds to the specific case where N is constant. Furthermore,

(7.25) relies on the fact that the largest eigenvalue of the linear operator of the evolution equa-

tions of the axisymmetric EDQNM is 2N : indeed, equalizing the growth rate of the linear limit

E ∼ exp(2Nt) with the one coming from self-similar analysis E ∼ KL ∼ exp((σ + 3)βNt/2)

directly yields (7.25). In our case, because of the anisotropy modelling through a truncated

expansion into spherical harmonics, our evolution equations (7.12) to (7.17) are different from

those of Burlot and coworkers. The largest eigenvalue of the linear operator associated to (7.12)-

(7.17) is 4N/
√

5 here, against 2N for Burlot et al. (2015a,b); Gréa et al. (2016a). This leads to

a different theoretical prediction for the exponential growth rate of the kinetic energy

K(t) ∼ K(0) exp(βthNt), βth =
8√

5(σ + 3)
. (7.26)

The present theoretical predictions and those of Burlot et al. (2015a) are gathered in Table 7.1,

and it is worth noting that for a given large scales initial condition σ, our predictions yield a

smaller growth rate than in the axisymmetric EDQNM: this is very likely due to our truncated

expansion into spherical harmonics of the spectral correlations. Moreover, this is consistent with

our flow being less anisotropic. We could conjecture that taking into account more spherical

harmonics would increase the exponential growth rate of the kinetic energy up to the limit

βBurlot.
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Large scales initial condition σ = 1 σ = 2 σ = 3 σ = 4

Present prediction : βth 0.894 0.716 0.596 0.511
Present EDQNM : β 0.893 0.715 0.596 0.540

Burlot’s prediction : βBurlot 1 4/5 2/3 4/7

Table 7.1: Comparison between the theoretical prediction βth for the kinetic energy exponential
growth rate, and the numerical result β obtained with our anisotropic EDQNM modelling.
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Figure 7.7: (a) Kinetic energy exponential growth rate β for σ = 1, 2, 3 and 4. Straight
lines indicate the numerical results, and � the theoretical prediction (7.26), without the

correction pUSHT. (b) Exponential growth of K, KT and KF for σ = 2.

In fact, the evolution equations (7.5) to (7.7) of R̂ij , ET , and Fi reveal that contributions

of the fourth order expansion for E , Z and ET bring no contribution in (7.6). A higher-

order expansion for the scalar flux Fi is required to modify the production terms and

thus get closer to the exact value 2N of the maximal eigenvalue of the linear operator.

The predictions for the exponential growth rate of the kinetic energy are compared to our

numerical results in Fig. 7.7a. The agreement is excellent: for σ = 1, 2, 3, the prediction βth

is recovered within 1%. There is a slight difference in the case of Batchelor turbulence, where

the numerical result is 5% higher than the prediction: this is very likely because of the strong

inverse non-linear transfers which naturally occur in Batchelor turbulence (Lesieur & Ossia,

2000). One could add a backscatter parameter, i.e. a correction for Batchelor turbulence, to

the prediction (7.26) in the specific case σ = 4, as usually done for decaying HIT. Here for

USHT, in order to adapt the theoretical prediction in Batchelor turbulence to our numerical

result, a least square fit leads to the backscatter parameter pUSHT = 0.37, so that

βth =
8√

5(σ − pUSHT + 3)
,

{
pUSHT = 0 for σ ≤ 3,

pUSHT = 0.37 for σ = 4.
(7.27)

It is revealed in Fig. 7.7b that the scalar variance KT and the mixed correlation KF both grow
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at the same rate β, in agreement with Burlot et al. (2015a,b); Gréa et al. (2016a). This can

be qualitatively compared with the case of a passive scalar field advected by a turbulent shear

flow with an imposed mean scalar gradient, where KT and KF also grow exponentially with the

same rate as K, as revealed in Chapter 5.

In conclusion, the kinetic energy exponential growth rate strongly depends on the large scales

initial conditions σ in the asymptotic states of USHT. This is interesting, since for shear flows,

K(t) was growing at the same rate independently of σ, at least within the same anisotropic

EDQNM modelling (further explanations were provided at the end of Chapter 3). This illus-

trates two intrinsically different mechanisms of kinetic energy production in shear flows and

USHT.

7.3.4 Global anisotropy

The time evolution of global anisotropy is now addressed: the scale-by-scale distribution of

anisotropy is the subject of the next part. In Fig. 7.8a to 7.8d, b33 and bT33 first increase,

which shows the departure from the isotropic state, and then decrease and reach a final non-

zero value. This decrease is the signature of a return to isotropy of the small scales when the

Reynolds number increases. More specifically, it is revealed that polarization anisotropy for

b33 is stronger than the directional one, in agreement with Burlot et al. (2015b). The strong

anisotropy in the component ()33 furthermore shows that turbulent structures mainly align with

the mean scalar gradient. In addition, the values reached by bT33 are quite similar to the ones

reached by b
(dir)
33 . Another important feature is to study the influence of initial conditions, such

as σ and N , on the final state of anisotropy. The same conclusions as for Fr and Λ are drawn

for b33 and bT33: as shown in Fig. 7.8d, varying N affects only the short time dynamics of b33 and

bT33, whereas increasing σ decreases the asymptotic values of the velocity and scalar anisotropy

indicators. The latter feature is expected because by decreasing σ, one diminishes the large

scales energy and consequently the amount of anisotropy of the flow. The results obtained

here are quite different from shear flows, where the asymptotic anisotropic state of bij does not

depend anymore on σ. Whereas for both shear flows and USHT, varying the mean gradient

intensity impacts only short times of bij .

Hence, the main difference with the axisymmetric EDQNM is that the present anisotropic

EDQNM modelling under-estimates the global anisotropy of the flow, so that asymptotic ani-

sotropic states of b33 are lower in our case: values are reported in Table 7.2. It is shown

in part 7.3.7 that we can slightly increase the global anisotropy of the flow by changing the

eddy-damping constants.

Finally, in addition to these global anisotropy indicators, the pressure-velocity Π33 and pressure-

scalar ΠF correlations are presented in Fig. 7.8e, whose definitions are respectively

ΠF (t) =< p
∂v

∂x3
>=

∫ ∞
0

SF,NL
3 (k, t)dk, (7.28)

Π33(t) =< 2p
∂u3

∂x3
>= 2

∫ ∞
0

(1

3
SNL(iso) + S

NL(dir)
33 + S

NL(pol)
33

)
dk. (7.29)

The return to isotropy at the level of the scalar flux is found to be more intense than the one

of the velocity field: this is expected since the cospectrum is a purely anisotropic quantity,
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Figure 7.8: Global anisotropy indicators for the velocity and scalar fields. (a) Polarization and
directional anisotropy parts of b33 for N = 1τ−1

0 and σ = 2. (b) b33 at N = 1τ−1
0 for various

σ. (c) bT33 at N = 1τ−1
0 for various σ. (d) b33 at σ = 2 for various N (the same behaviour is

observed for bT33). (e) Return to isotropy: normalized pressure-velocity Π33 and pressure-scalar
ΠF correlations in Saffman (black) and Batchelor (grey) turbulence.

for which pressure is the destructive mechanism. Furthermore, in agreement with previous

statements, the return to isotropy mechanism is stronger for Saffman turbulence than Batchelor

turbulence, because large scales are less anisotropic in the latter case than in the former.

7.3.5 Comparison with Burlot et al. (2015b)

In this part, we compare quantitatively the results of our anisotropic EDQNM modelling to the

axisymmetric EDQNM (Burlot et al., 2015a,b) specifically for two one-point statistics investi-

gated in the previous sections: the Froude number Fr, defined in (7.23), and the mixing inten-

sity Λ defined in (7.24). First, it was observed previously that the asymptotic anisotropic states

obtained with the present anisotropic EDQNM modelling are less anisotropic than the ones ob-

tained in Burlot et al. (2015b): this was notably seen through Fr and b33 which were higher and

smaller respectively. In order to provide here a meaningful comparison, and only for this part,

we use the eddy-damping constants of the axisymmetric EDQNM, i.e. A1 = A2 = A3 = 0.355.

The impact on USHT dynamics of the two different settings of eddy-damping constants ([EDC1]:

A1 = 0.355, A2 = 0, A3 = 1.3; [EDC2]: A1 = A2 = A3 = 0.355) is discussed in section 7.3.7.

So, for the comparison, we use the setting [EDC2] in Saffman turbulence (σ = 2), an initial

turbulent Reynolds number close to ReT = 833, with Reλ =
√

20ReT /3, and the initial peak

of energy is kpeak = 40kL(0). Even though it is stated in Burlot et al. (2015a) that the initial
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Froude number is Fr = 1.2, it seems to not be the case in Figure 1(a) therein. Consequently,

we choose the stratification frequency N = 4τ−1
0 so that the initial behaviour of Fr is recovered:

taking N = 1τ−1
0 would not have changed much.

The results are presented in Fig. 7.9. For the Froude number, the overall agreement is excellent:

the transient regime is correctly captured and notably the strong decrease; the asymptotic value

of Fr is quite well recovered. For the mixing ratio Λ, the initial behaviour is quite well captured,

with a very good agreement for the asymptotic value. In conclusion, there is a satisfactory

agreement with the axisymmetric EDQNM if one changes the eddy-damping constants from

[EDC1] to [EDC2]. The drawback is that, as illustrated in section 7.3.7, by doing so the

Corrsin-Obukhov constant decreases.
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Figure 7.9: Comparison of the present anisotropic EDQNM modelling with the ax-
isymmetric EDQNM of Burlot et al. (2015b): σ = 2, Reλ(0) ' 70, N = 4τ−1

0 , and
kpeak = 40kL(0). (a) Froude number Fr. (b) Mixing intensity Λ.

7.3.6 Conclusions on one-point statistics

In this part, various one-point statistics of crucial importance in unstably stratified turbulence

have been studied: the Froude number Fr, the mixing intensity Λ, the growth rate β of the

kinetic energy, scalar variance and scalar flux, and the velocity and scalar global anisotropy

indicators b33 and bT33. The different results could be summarized as follows: (i) All these

quantities strongly depend on σ in the asymptotic anisotropic state at large Nt, or equivalently

at large Reynolds numbers. When σ increases, the large scales energy diminishes along with the

quantity of anisotropy injected in the flow, so that Fr increases, and Λ, β, b33 and bT33 decrease.

(ii) On the contrary, the asymptotic anisotropic state does not depend on N : changing the

intensity of the mean scalar gradient only impacts the short time dynamics.

Finally, the main difference between the two approaches is that the flow is less anisotropic in our

case, probably due to the truncation of the spherical harmonics expansion of spectral correlations

for the modelling of anisotropy. The principal consequences are (i) an exponential growth rate

of the kinetic energy 10% lower than in Burlot et al. (2015a), but nevertheless in agreement with

our new theoretical prediction, and (ii) smaller values for b33 as well. Asymptotic values of the
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Froude number Fr Mixing intensity Λ Growth rate β Global anisotropy b33

σ Present Burlot Present Burlot Present Burlot Present Burlot

1 0.443-0.265 0.306 1.607-1.580 1.56 0.893 1 0.265-0.287 0.410
2 0.551-0.337 0.385 1.508-1.466 1.45 0.715 4/5 0.239-0.260 0.375
3 0.624-0.387 0.435 1.440-1.387 1.37 0.596 2/3 0.224-0.242 0.346
4 0.659-0.412 0.460 1.407-1.347 1.31 0.540 4/7 0.217-0.234 0.323

Table 7.2: Comparisons of the asymptotic values at large Reλ of one-point statistics, obtained
with the present anisotropic EDQNM modelling, and with the axisymmetric EDQNM. For the
present modelling, values at left correspond to the setting of eddy-damping constants [EDC1],

and at right to [EDC2] (see section 7.3.7 for details).

one-point statistics analyzed so far, and obtained with both the present anisotropic EDQNM

modelling and the axisymmetric EDQNM, are gathered in Table 7.2.

Furthermore, throughout this part, qualitative comparisons were made with the cases of passive

scalar dynamics (HITSG) and shear flows. It notably appeared that the asymptotic anisotropic

states in USHT and shear flows strongly differ: indeed, in shear flows, at least within the

same anisotropic EDQNM modelling, the asymptotic anisotropic state does not depend on the

mean-field gradient intensity, nor on the large scales initial conditions σ.

7.3.7 Eddy-damping constants

In this section, we briefly discuss the impact of changing the eddy-damping constants on the

dynamics of USHT. First, we recall that for consistency with the development of the present ani-

sotropic EDQNM modelling, the same eddy-damping constants are kept here for the extension

to the case of active scalar dynamics, i.e. A1 = 0.355, A2 = 0, A3 = 1.3 [EDC1], where A1 is for

the velocity field, and A2 and A3 for the scalar field. The setting [EDC1] was consequently kept

so far, except for the quantitative comparison against the axisymmetric EDQNM: indeed, in the

latter work, a different choice of eddy-damping constants was made, i.e. A1 = A2 = A3 = 0.355

[EDC2]. Furthermore, in Burlot et al. (2015a), a correction to the eddy-damping term is added

to match with DNS: this is not considered here, since it only slightly affects the early dynamics.

With the present setting [EDC1], the Kolmogorov and Corrsin-Obukhov constants are consistent

with those obtained for passive scalar dynamics, K0 = 1.31 and KCO = 0.76, as presented before.

Choosing [EDC2] as in Burlot et al. (2015a,b), tends first to decrease KCO to values smaller than

usual ones (KCO = 0.6), as revealed in Fig. 7.10a, whereasK0 remains unchanged. Furthermore,

with [EDC2], the flow is slightly more anisotropic in Fig. 7.10b: indeed, b33 increases a bit from

[EDC1] to [EDC2]. The main difference is observed on Fr, which is reduced with [EDC2]: this

means that the latter choice of eddy-damping constants enhance the importance of stratification

in the dynamics, without increasing significantly the global anisotropy. Hence, changing the

eddy-damping constants from [EDC1] to [EDC2] slightly increases the global anisotropy of

the flow, and reduces Fr, which makes our results closer to Burlot et al. (2015a,b). But the

counterpart is a decrease of the Corrsin-Obukhov constant, which is another reason why [EDC1]

is preferred here. Moreover, whether [EDC1] or [EDC2] is chosen, it does not improve the plateau

for the cospectrum F nor change the exponential growth rate β of the kinetic energy.
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Figure 7.10: Comparisons of the eddy-damping constants settings in Saffman turbulence:
A1 = 0.355, A2 = 0 and A3 = 1.3 [EDC1] (black lines) and A1 = A2 = A3 = 0.355 [EDC2]
(grey lines). (a) Kinetic energy and scalar variance compensated spectra with Reλ(Nt =
20) = 3.104. Straight line (−) for Ek5/3ε−2/3, dashed line (−−) for ET k

5/3ε−1
T ε1/3. (b)

Fr, Λ and b33.

7.4 Scale by scale anisotropy and structure of the flow

In this part, the scale by scale distribution of anisotropy is investigated for the velocity and scalar

fields, at the level of the second-order moments, thanks to H
(dir)
33 (k, t), H

(pol)
33 (k, t) and H

(T )
33 (k, t).

More precisely, we use, instead of H
(T )
33 , the scale-by-scale dimensionality parameter,

another indicator of anisotropy often used

sin2 γT (k, t) =
1

ET (k, t)

∫
Sk

sin2 θk(k) ET (k, t)d2k = 2H
(T )
33 (k, t) +

2

3
, (7.30)

where θk(k) is the angle between the vertical axis and the wavevector k. When the considered

scales are isotropic, the value of sin2 γT is 2/3, whereas it is 0 for H
(T )
ij .

It was shown in Fig. 7.8a to Fig. 7.8d that in the asymptotic anisotropic state, the global

anisotropy indicators b33 and bT33 are non-zero, meaning that there is anisotropy in the flow.

First, it is revealed in Fig. 7.11a, that anisotropy is mainly gathered at large scales for the

velocity field, where H
(dir)
33 and H

(pol)
33 are different from zero, unlike small scales which have

returned to isotropy. One can remark that, as previously, polarization anisotropy is much

stronger that directional one at large scales. An interpretation of this is provided a bit later.

Similarly, for the scalar field in Fig. 7.11b, small scales have returned to isotropy (sin2 γT = 2/3),

whereas anisotropy is gathered at large scales. This figure additionally illustrates further that

Saffman turbulence is globally more anisotropic than Batchelor turbulence, because the linear

production at large scales is stronger in Saffman than in Batchelor turbulence. Interestingly,

for both the velocity and scalar fields, Fig. 7.11a and 7.11b show that from the longitudinal

Taylor scale λ =
√

20νK/ε, the scales have completely returned to isotropy: in particular, this

indicates that even in USHT, isotropic statistics could be used for scales smaller than λ. The

Ozmidov wavenumber, defined in Gréa et al. (2016a) kO = 2π
√
N3/ε, is displayed as well: it is
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Figure 7.11: Spectral anisotropy indicators, along with the integral, Ozmidov, and Kol-

mogorov wavenumbers kL, kO, kη; the Taylor scale λ is displayed as well. (a) H
(dir)
33 and

H
(pol)
33 for σ = 2 at Reλ(Nt = 25) = 3.104. (b) sin2 γT for σ = 2 and σ = 4 at different

Nt so that for both Reλ = 3500.

−0.02 0 0.02 0.04 0.06 0.08

0

0.1

0.2

0.3

0.4

III(t)

−
I
I
(t
)

Axi.2C

1C

Axi.

2C

Isotropic
Axi.

(a)

0 1 2 3
−1

0

1

2

3

θk

E
(p
o
lo
) (
θ
k
)
a
n
d
E
(t
o
ro
) (
θ
k
)

 

 

E (polo)/E0

E (toro)/E0

π/2

(b)

Figure 7.12: (a) Lumley triangle: grey lines correspond to the boundaries between the
isotropic, two-components axisymmetric (Axi.2C) and one-component (1C) configura-
tions, and the black line to a EDQNM simulation. (b) Normalized potentials E(toro)/E0

and E(polo)/E0, for σ = 2, at a wavenumber located in the infrared range.

clear that for scales larger than kO, stratification and anisotropy dominate, whereas for scales

smaller, non-linear transfers drive the return to isotropy mechanism.

It is possible to obtain some qualitative information about the spatial structure of anisotropy.

If one considers the Lumley triangle (Simonsen & Krogstad, 2005) which displays the second

invariant of bij , −2II = bijbij , as a function of the third one, 3III = bijbilbjl, one obtains the

grey curves of Fig. 7.12a. In our simulation (black curve), the flow evolves from an isotropic state

toward a one component state (poloidal component) following an axisymmetric configuration,

and tends to be 2D (invariance along the direction of the mean scalar gradient): accordingly,

the Reynolds stresses have a rod-like shape.
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Another possibility is to investigate the energy contained in the toroidal and poloidal modes,

defined in (2.28), using the Craya-Herring frame illustrated in Fig. 2.1. First thing to do is to

link the spherically-averaged spectra EH
(dir)
33 and EH

(pol)
33 to θk, the angle between the vertical

axis (the mean scalar gradient direction) and the wavevector k. After some algebra, one gets a

relation between directional and polarization anisotropies E(dir) and Z, and θk

E(dir)(k, θk) = −15

2
E0(k)H

(dir)
33 (k)(3 cos2 θk − 1), Z(k, θk) =

15

2
E0(k)H

(pol)
33 (k) sin2 θk.

(7.31)

Finally, this permits to obtain E(toro) and E(polo), defined in (2.29), as functions of the spherically

averaged spectra

E(toro)(k, θk) =
E0(k)

2

[
1− 15

2

(
H

(pol)
33 (k) sin2 θk +H

(dir)
33 (k)(3 cos2 θk − 1)

)]
, (7.32)

E(polo)(k, θk) =
E0(k)

2

[
1 +

15

2

(
H

(pol)
33 (k) sin2 θk −H

(dir)
33 (k)(3 cos2 θk − 1)

)]
. (7.33)

At this point, it is of interest to point out that in Burlot et al. (2015a), instead of considering

the equations of E and Z, the equations of E(toro) and E(polo) are solved, along with those of

ET and F3. The variations of both E(toro) and E(polo) as functions of θk are displayed in Fig.

7.12b for a wavenumber located in the infrared range: this is where the anisotropy is gathered,

as shown in Fig. 7.11a. For 0 ≤ θk ≤ π, one has E(polo) > E(toro), and the poloidal and toroidal

potentials are maximum for θk = π/2. The poloidal mode being more intense, this means that

in the configuration θk = π/2, spectral velocity fluctuations are preferentially aligned in the

mean scalar gradient direction. This is an interesting feature: indeed, in the previous sections it

was underlined that polarization anisotropy is stronger than directional one at large scales. This

is assessed in Fig. 7.12b, where in the infrared range one has clearly Z > E(dir). Consequently,

the present results show that in USHT, a dominant polarization anisotropy corresponds to

spectral velocity fluctuations mainly aligned with the mean scalar gradient, so that the principal

component is the poloidal one, in agreement with Fig. 7.12a, where our simulation goes toward

the (1C) state. Also, for θk = 0 or θk = π, in a plane perpendicular to the mean scalar gradient,

E(toro) = E(polo) so that there is no polarization anisotropy.

7.5 Pressure spectra and high Schmidt numbers

So far, the dynamics of USHT at a unit Schmidt number Sc = 1 was addressed at large Reynolds

numbers, and the strong dependence of the asymptotic anisotropic state on the infrared slope

σ was recovered, with a good overall agreement with the axisymmetric EDQNM. In the present

section, the anisotropic EDQNM modelling is applied to two new cases: first, the pressure

spectrum is studied, and in particular its anisotropic part resulting from stratification, with a

qualitative comparison to the pressure spectrum in shear flows. Then, the case of very large

Schmidt numbers Sc� 1, corresponding for instance to saltwater, is analyzed on a fundamental

point of view, with the emphasis put on the scaling of the cospectrum.
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7.5.1 Pressure spectra

The emphasis is put on the pressure spectra, which have not been investigated in USHT in

previous references. This study is done in the spirit of the work by George et al. (1984) who

analyzed the anisotropic part of the pressure spectrum for shear flows. This is notably presented,

within the present anisotropic EDQNM modelling, in Appendix D. The same method is applied

here for USHT. The Poisson equation in USHT is obtained by taking the divergence of (7.4),

which yields

−∆p =
∂2uiuj
∂xi∂xj

+ λi
∂v

∂xi
. (7.34)

Then, with the definition of the two-point second-order pressure correlation (D.19), one gets

EP (k, t) = 2αiαjαpαq

∫
k=p+q

R̂iq(p, t)R̂jp(q, t)d
3p+

αiαj
k2

λiλjET (k, t). (7.35)

The isotropic part remains unchanged with respect to HST, only the anisotropic part is different.

The spherical average of this equation eventually gives

EP (k, t) = 16π2

∫
∆k

kpq(1− y2)(1− z2)E ′0E ′′0 dpdq +
ET
k2
λiλj

(
δij
3
− 2H

(T )
ij

)
, (7.36)

where we call the second-contribution E
(USHT)
P the turbulence-unstable-stratification interac-

tion. One can note that the total pressure spectrum EP (k, t) for USHT is similar, in its struc-

ture, to the one in HST.

First, in Fig. 7.13a, the scaling of the isotropic and anisotropic parts of EP are presented. The

turbulence-turbulence interaction spectrum scales in E
(iso)
P ∼ k−7/3: the constant CP = 2.3 in

Fig. 7.13b is close to the value obtained in shear flows which indicates some universality of the

isotropic pressure spectrum. Then, the anisotropic part resulting from stratification is presented

in Fig. 7.13a and scales in E
(USHT)
P ∼ k−11/3. The k−11/3, analogous to the anisotropic part

in shear flow, is expected from the expression (7.36), because ET ∼ k−5/3 in the inertial range.

And similarly to shear flows, the anisotropic part has a quadratic dependence on the mean-

field gradient, given its expression (7.36). Thus, only the dependence on the dissipation rates

remains to be determined. Since the scalar field is rescaled as a buoyant velocity, there are

infinite possibilities of the form εaεbT , with a + b = 2/3, by dimensional analysis. One could

choose the inertial scaling of ET , i.e. a = −1/3 and b = 1, but this yields in Fig. 7.13b (in grey)

a constant quite small of order 0.25: this is not satisfactory since for shear flows the constant

was very close to Kolmogorov. Given the similarities pointed out so far, we choose a = 2/3

and b = 0, as for E
(S)
P , which provides in Fig. 7.13b (in black) a constant C

(USHT)
P ' 0.7. This

seems convenient because it is close to the Corrsin-Obukhov constant, consistently with E
(USHT)
P

depending on ET . In the end, the scaling of the anisotropic part of the pressure spectrum in

USHT reads

E
(USHT)
P (k, t) = C

(USHT)
P N2ε2/3k−11/3, C

(USHT)
P ' 0.7. (7.37)

This scaling is a new fundamental result, interesting for two reasons: first, it is strongly anal-

ogous to the inertial scaling of the anisotropic part of the pressure spectrum in shear flows
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(ε2/3k−11/3); secondly, C
(USHT)
P is close to the Corrsin-Obukhov constant, similarly to C

(S)
P

being close to the Kolmogorov one (see Appendix D).

Finally, the time evolution of the isotropic and anisotropic parts K
(iso)
P and K

(USHT)
P of the

pressure variance are displayed in Fig. 7.13c: it is found, similarly to shear flows, that the

pressure variances grow exponentially at a rate 2β, where β is the exponential growth rate

of the kinetic energy. Interestingly, the exponential growth rate of the pressure variance still

depends on the infrared slope σ of the kinetic energy spectrum, even though the infrared slope

of the isotropic pressure spectrum is E
(iso)
P ∼ k2.
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Figure 7.13: Pressure spectra in USHT, for σ = 2 at Reλ = 2.104. (a) Isotropic and anisotropic

pressure spectra E
(iso)
P and E

(USHT)
P , along with the pressure integral wavenumber kP and the

Kolmogorov wavenumber kη, at Reλ ' 3.104. (b) Compensated pressure spectra E
(iso)
P k7/3ε−4/3

and E
(USHT)
P k11/3ε−2/3/N2 in black, and E

(USHT)
P k11/3ε1/3/(εTN

2) in grey. (c) Isotropic and

anisotropic parts K
(iso)
P and K

(USHT)
P of the pressure variance, along with the kinetic energy K:

the grey lines indicate exp (βNt) and exp (2βNt).

7.5.2 Cospectrum at high Schmidt numbers

In this section, the case of a weakly diffusive active scalar with Sc � 1 is addressed (instead

of considering the Prandtl number, the Schmidt number Sc is used, which is equivalent for a

being the molecular diffusivity). This configuration is representative of unstably stratified water

columns in the ocean generated by double diffusion mechanisms: at the ocean surface, hot salty

water is on top of cooler and saltier water, so that the stratification is stable. But when the

temperature drops off in the air layer above the ocean, the upper salty water cools down very

rapidly, because heat transfers are much more efficient than mass transfers. In the end, one has

a heavier fluid on top, causing unstably stratified water columns (Sigman et al., 2004).

For Sc� 1, the scalar flux F was found to decrease sharply after kη in Chapter 6, similarly to

the kinetic energy spectrum. It appears that in USHT, the behaviour of the cospectrum beyond

kη is completely different, as revealed in figure 7.14a: indeed, unlike passive scalar dynamics,

the scalar flux survives in the viscous-convective range. The buoyant spectrum ET still scales

in k−1, and there are also small scales fluctuations for E beyond kη, but they are much less

intense than for ET and F , and are therefore neglected.

The scaling of F in the viscous-convective range is not clear, but it seems to be close to k−1,

slightly steeper, as revealed in the zoom in Fig. 7.14b. Around kη, the cospectrum seems
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Figure 7.14: Saffman USHT for Sc = 105 at Reλ = 104, along with the integral, Kol-
mogorov and Batchelor wavenumbers kL, kη and kB . (a) E, ET and F , along with the
k−5/3 inertial scaling for E and ET , the k−7/3 inertial scaling for F , and the k−1 viscous-
convective scaling for ET . (b) Zoom in the viscous-convective range for ET and F , with

different scalings explained in the text.

to scale in k−3, but this is very likely just a transition toward the viscous-convective scaling.

Nevertheless, both the k−1 and k−3 scalings are briefly justified using classical arguments.

The k−3 scaling can be obtained by assuming that at small scales, there is a balance between

dissipation and production of buoyant fluctuations in (7.17), so that

(ν + a)k2F ∼ 2

3
NET ⇔ F(k, t) ∼ N εT√

νε
k−3. (7.38)

In this expression, ETH
(T )
33 was neglected compared to ET . For reasons which are explained

hereafter, it is preferred to express this new scaling as follows

F(k, t) ∼ N
√
ε

ν

εT
ε
k−3, (7.39)

where the inverse of the Kolmogorov time scale
√
ν/ε appears, consistently with the dynamics

of the viscous-convective range. Then, after kη, the scaling is slightly steeper than k−1, but

nevertheless the Batchelor scaling seems relevant if one assumes, as for ET , that the character-

istic time scale of F in the viscous-convective range is also independent of k: since this new

range exists only thanks to the small scales coupling through N , it makes sense to assume that

it depends linearly on N , and also on ε and ν: this provides Nν/ε as the characteristic time

scale of the cospectrum in the viscous-convective range. Further assuming that F depends only

on this time scale, k and εT , yields

F(k, t) ∼
√
ν

ε
εTk

−1. (7.40)

It is worth noting that, unlike ET for which non-local transfers are at the origin of the viscous
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convective range, the new range for F beyond kη is created by local production of buoyant

fluctuations through the term NET . Direct non-local expansions (q � k ∼ p) were performed

for the non-linear transfers of F but they are negligible.

The change from the scaling in k−3, around kη, to k−1, just after kη, can be understood in terms

of characteristic time scales: for the scaling (7.39), the characteristic time is
√
ν/ε, which is

the classical characteristic time of the Kolmogorov scale. For smaller scales, viscous dissipation

becomes more and more important, so that the characteristic time evolves from
√
ν/ε toward

(νk2)−1, which directly yields (7.40). Then, the characteristic time scale saturates to Nν/ε.

These two scalings and their characteristic times are consistent with the Kolmogorov scale being

the wavenumber around which the cospectrum changes from k−3 to k−1: indeed, equating (7.39)

and (7.40) yields k = kη.

About the one-point statistics: obviously, even with high Schmidt numbers, simulations show

that the asymptotic anisotropic state still depend on σ and not on N , and the exponential

growth rate β is not modified with respect to the case Sc = 1. Nevertheless, it is proposed to

illustrate in figure 7.15 the impact of a large Sc on the early dynamics of the scalar anisotropy

indicator bT33 and the mixing parameter Λ (the effects are negligible for Fr and b33). The main

result is that a large Sc does not change the asymptotic values with respect to the case Sc = 1.

However, specifically for bT33 and Λ which depend explicitly on the scalar field unlike b33 and

Fr, a large Schmidt number strongly impacts the transient regime as well: Λ initially increases

much more with Sc = 104 than with Sc = 1, whereas on the contrary, bT33 is always smaller at

Sc = 104.
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Figure 7.15: Saffman USHT for Sc = 1 and Sc = 104. (a) Scalar anisotropy indicator
bT33. (b) Mixing intensity Λ.

At Sc = 104, even if there is no inertial range initially for ET , the viscous convective range

spans almost two decades: this is completely different from the case Sc = 1. This initial

viscous-convective range thus contributes greatly to Λ because it gives large initial values of KT ,

which explains the strong increase at small Nt. Then, when the Reynolds number increases, the

inertial ranges of E and ET become dominant in the integrals for K and KT , so that eventually,

the same asymptotic value as for Sc = 1 is recovered. Whereas for bT33, the viscous-convective

range initially adds isotropic small scales, thus reducing the early global anisotropy over the

whole wavenumber space.
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As a conclusion, unlike passive scalar dynamics, the cospectrum survives in the viscous-convective

range for USHT for large Schmidt numbers, and scales in k−1, similarly to the scalar variance

spectrum, after a transient k−3 subrange around the Kolmogorov wavenumber. Finally, large

Schmidt numbers strongly affect the early dynamics of bT33 and Λ, nevertheless without changing

the asymptotic state.

7.6 Conclusion on USHT

Unstably stratified homogeneous turbulence (USHT) was investigated at large Reynolds num-

bers with the anisotropic EDQNM modelling extended to the case of active scalar dynamics.

Moreover, since the present modelling was applied previously for different configurations - no-

tably transport of passive scalar in an isotropic turbulence with a mean scalar gradient and shear

flows - qualitative comparisons are also made with these cases and some interesting differences

and similarities were found between shear-driven flows and unstably stratified turbulence.

The time evolution of the kinetic energy, scalar variance (or buoyancy) and scalar flux spectra

E(k, t), ET (k, t) and F(k, t) were first addressed: the k−5/3 inertial scaling of E and ET was

recovered, along with the k−7/3 inertial scaling of the cospectrum F . For the latter compensated

spectrum, a plateau starts appearing at the highest Reynolds numbers reached here (Reλ ∼ 106).

The k−3 time evolution of the peak of the three previous spectra was also recovered and justified

analytically. For the infrared dynamics, it is found that because of the strong coupling between

E, ET and F due to stratification, the spectrum with initially the smallest infrared slope σ

imposes the minimum of energy to the others, which significantly differs from passive scalar

dynamics.

Then, the effects of varying the stratification frequency N and the infrared slope σ on the

asymptotic anisotropic states of one-point statistics in USHT were studied, specifically the

Froude number Fr, the mixing intensity Λ, global anisotropy indicators for the velocity and

scalar fields b33 and bT33, and the exponential growth rate β of the kinetic energy, scalar variance

and mixed-correlation. The conclusion is, in agreement with Burlot and coworkers, that the

asymptotic states of these quantities strongly depend on σ. This feature is completely different

from shear flows where one-point statistics do not depend anymore on σ asymptotically, at

least within the same modelling. However, for both shear flows and USHT, varying the mean

gradient intensity impacts only short times. In particular, it is recovered that the more energy

initially in large scales, i.e. the smaller σ, the more anisotropic the flow: furthermore, at large

Reynolds numbers, anisotropy is gathered at large scales whereas small scales return to isotropy

for both the velocity and buoyancy fields (at least at the level of second-order moments). A

satisfactory agreement is found in the quantitative comparison with the axisymmetric EDQNM,

but nevertheless one can point out some differences between the two approaches: (i) with our

anisotropic EDQNM modelling, the flow is less anisotropic than in Burlot et al. (2015a,b); Gréa

et al. (2016a), meaning notably that our anisotropy indicator b33 is slightly smaller; (ii) a new

theoretical prediction for the exponential growth rate β of kinetic energy is proposed, based

on the linear operator of our evolutions equations, and assessed numerically. Whatever the

large scales initial conditions σ are, our growth rate is 10% smaller than the one of Burlot and

coworkers, consistently with our flow being less anisotropic; (iii) the Froude number is higher
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with the anisotropic EDQNM modelling, but can be decreased by changing the eddy-damping

constants, as exposed in section 7.3.7.

To recover the exact theoretical prediction (7.25) for β, it is possible to multiply the

production terms of the anisotropic EDQNM modelling for USHT, in equations (7.12)-

(7.17), by
√

5/2, so that the maximal eigenvalue 2N of the linear operator is recovered.

This procedure artificially corrects the exponential growth rate of the kinetic energy,

nevertheless without increasing the global anisotropy of the flow since it is already max-

imal.

Finally, two applications of our anisotropic EDQNM modelling were proposed, which constitute

new fundamental results. First, pressure spectra in USHT were investigated, and it was found

that the anisotropic part, resulting from stratification, scales in k−11/3 in the inertial range,

whereas the isotropic part scales in k−7/3: these scalings are completely similar to pressure

spectra in shear flows, investigated in Appendix D. It is also shown that the pressure variance

grows exponentially at a rate 2β, where β is the growth rate of the kinetic energy. Then, high

Schmidt numbers were considered: the scalar variance spectrum still scales in k−1 in the viscous-

convective range beyond the Kolmogorov wavenumber, as in HIT. The main result here is that

the cospectrum, which was strongly decreasing in passive scalar dynamics, now also displays a

viscous-convective range with a scaling close to k−1, after a transient k−3 subrange around kη.

It is worth noting that large Schmidt numbers do not affect the asymptotic values of one-point

statistics, nor the exponential growth rate β, but only the transient regime of Λ and bT33.

7.7 Perspective - Variable stratification N(t)

In this section, the mixing length L(t) is not fixed anymore, unlike USHT, which causes the

stratification frequency N(t) to vary as well. The active scalar field is now a dimensionless con-

centration c, and we do not consider anymore the rescaled buoyant-velocity v. This part is thus

a step further toward the modelling of Rayleigh-Taylor instability: the fluctuating quantities

now impact the dynamics of the mean dimensionless concentration field C according to

∂C

∂t
= −∂ < u3c >

∂x3
+ a

∂2C

∂x2
3

'︸︷︷︸
Reλ�1

−∂ < u3c >

∂x3
. (7.41)

It is assumed that the Reynolds number is large enough to neglect diffusion effects, and in

addition inside the mixing zone, one has ∂3C = −1/L. Hereafter, a new prediction for the

growth rate of the mixing length is derived within the anisotropic EDQNM modelling framework.

7.7.1 Evolution equations with variable stratification

In what follows, the Boussinesq approximation is still considered. In the self-similar state, the

mixing length evolves according to (Poujade, 2006; Gréa, 2013)

L(t) = 2αRTAgt2, (7.42)
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where αRT is the Rayleigh-Taylor growth rate, whose theoretical prediction was derived by

Poujade & Peybernes (2010) in the limit of small Atwood number A � 1,

αRT
th =

1

(σ + 2)(σ + 3)
. (7.43)

In what follows, it will be shown that this prediction relies on two crucial features and needs to

be adapted to the anisotropic EDQNM modelling. The mixing length is defined as

L(t) = 6

+∞∫
−∞

C(1− C)dx3. (7.44)

Assuming that x3 = 0 is at the center of the mixing zone, and that < u3θ > has a parabolic

evolution from −L/2 to L/2 (Soulard et al., 2014), the time derivative of this equation becomes,

with the equation of the mean field (7.41),

dL

dt
= L̇(t) = 8 < u3c > . (7.45)

There exists another possibility, proposed in Soulard et al. (2016) for instance, where L̇ =

12<̃ u3θ >, with .̃ referring to the average along the inhomogeneous direction x3. In what

follows, the first equation (7.45) is kept. Then, since the mixing length L(t) and the stratification

frequency N(t) are linked through

N(t) =

√
2Ag(t)

L(t)
,

Ṅ

N
=

1

2

(
ġ

g
− L̇

L

)
. (7.46)

If the gravitational acceleration is assumed to be constant, one further gets

Ṅ(t) = −4N(t)

L(t)
< u3c >, (7.47)

so that the growth rate of the mixing zone can be computed according to

αRT =
(L̇)2

8AgL(t)
=

(
4 < u3c >

N(t)L(t)

)2

. (7.48)

The evolution equations, in physical space, of the fluctuating velocity and concentration ui and

c are

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ 2Agcδi3, (7.49)

∂c

∂t
+ uj

∂c

∂xj
= a

∂2c

∂xj∂xj
+

1

L(t)
u3. (7.50)

If one wants to work with the buoyant velocity v, the equations becomes more complex because

an additional term, linked to the variable stratification, appears

∂v

∂t
+ uj

∂v

∂xj
= a

∂2v

∂xj∂xj
+Nu3 − v

(
Ṅ

N
− ġ

g

)
. (7.51)
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7.7.2 Prediction of the growth rate αRT

In this section, a new prediction for the growth rate αRT is derived, like what was done before

for USHT, where a theoretical exponential growth rate βth for the kinetic energy was proposed,

based on the linear operator of our equations within the anisotropic EDQNM modelling. The

prediction (7.43) by Poujade & Peybernes (2010) relies on two crucial features: (i) foliated

average in the inhomogeneous direction. This foliated average notably causes the scalar variance

< c2 > to evolve in t2, like the mixing length L(t), whereas the classical scalar variance is

constant in the self-similar regime of Rayleigh-Taylor turbulence, since it is bounded by 0 (light

fluid) and 1 (heavy fluid); (ii) the fact that at large scales F2/(φ33ET ) = 1. This result is

essential to link αRT to the infrared slope σ (in Poujade & Peybernes (2010), one has for the

vertical foliated averaged spectrum 2Ez ∼ φ33). This ratio F2/(φ33ET ) = 1 is recovered in the

present simulations.

Here are the main steps to derive a new prediction for the Rayleigh-Taylor growth rate. First,

at large scales, the self-similar spectra can be written

φ33(k, t) = E0kσtnE , ET (k, t) = E0
Tk

σtnT , F(k, t) = F 0kσtnF , (7.52)

where E0, E0
T and F 0 are independent of time and space. At large scales, the evolution equations

of φ33 and ET (7.12) and (7.15) read, neglecting the non-linear transfers,

∂φ33

∂t
' 16

5
AgF(k, t),

∂ET
∂t
' 2

L(t)
F(k, t), (7.53)

which directly yields nE = nF + 1 and nF = nT + 1, since E0, E0
T and F 0 do not depend on

time. The equation of F cannot be used similarly since the production terms depend on both

the kinetic and scalar variance spectra. From these equations, one obtains

E0

E0
T

=
16

5
(Ag)2αRT nT

nE
. (7.54)

The exponent nT is determined using the fact that < c2 > is eventually constant in time

< c2 >=

∞∫
0

ET (k, t)dk '
1/L(t)∫

0

E0
Tk

σtnT dk =
E0
T

σ + 1
tnT−2(σ+1), (7.55)

which provides nT = 2(σ+1), and consequently nE = 2(σ+2) and 2nF = nE +nT . Afterwards,

from (7.53), one gets at large scales

F2(k, t)

φ33(k, t)ET (k, t)
=

5

16
αRTnE nT . (7.56)

This finally yields a new theoretical prediction for the growth rate

αRT
th =

4

5(σ + 1− pUSHT)(σ + 2− pUSHT)
, (7.57)
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which gives values 33.3% higher than the expression of Poujade & Peybernes (2010). One

can remark that unlike the original prediction of the latter reference, a backscatter parameter

was added here, in order to take into account strong inverse non-linear transfers in Batchelor

turbulence. The noteworthy feature is that numerically pUSHT = 0.37 is obtained, meaning that

the intensity of the back transfers in Batchelor turbulence is similar between fixed (USHT) and

variable stratification frequency. This new prediction (7.57) relies on < c2 > being constant in

the self-similar regime, unlike Poujade & Peybernes (2010) where < c2 >∼ t2 with the foliated

average, and F2/(φ33ET ) = 1 at large scales.

The theoretical prediction (7.43) for αRT
th by Poujade & Peybernes (2010) becomes, with-

out the foliated-average,

αRT
th =

1

(σ + 1)(σ + 2)
, (7.58)

as in Soulard et al. (2014); Griffond et al. (2015). This prediction can be recovered by

multiplying the linear production terms by
√

5/2 in the Lin equations of USHT obtained

with the anisotropic EDQNM modelling, as mentioned earlier for USHT.

7.7.3 Numerical results

In what follows, if not mentioned otherwise, the initial Reynolds number is Reλ(0) = 10, the

mixing parameter is Λ(0) = 1, N(0) = N0 = 1τ−1
0 and L(0) = L0 = 1, so that A = 5, 1.10−2, in

agreement with the assumption of small Atwood numbers. First, spectral scalings are addressed

and are compared with the results obtained with the anisotropic EDQNM modelling for USHT.

Then, one-point statistics are investigated.

Spectral scalings: The inertial scalings of the three main spectra E(k, t), ET (k, t), and F(k, t),

are firstly addressed. It has been shown that for USHT, the classical inertial scalings for E and

ET , (7.19) and (7.20) respectively, are relevant, and this is still the case for variable N(t), as

revealed in Fig. 7.16a. For the scalar flux, as for USHT, the scaling initially proposed by Lumley

(7.21) is not well-suited, because in particular it does not take into account the concentration

dissipation rate εT . On the other hand, the scaling derived for Rayleigh-Taylor turbulence in

Soulard & Griffond (2012), and used in Burlot et al. (2015b) with the buoyant velocity (7.22)

was shown to be satisfactory for USHT, and this is still valid for variable N(t), as revealed

in Fig. 7.16b. To obtain this compensated cospectrum, the inertial scaling (7.22) is adapted

because the scalar field is now a dimensionless concentration: in Soulard & Griffond (2012),

the square of the stratification velocity V 2
N appears; here, instead of VN =

√
gL, VN = NL is

chosen, so that the Rayleigh-Taylor inertial scaling becomes

FSoulard
inertial (k, t) = F(k, t)L

(
K0ε

1/3 +KCO(NL)2εT ε
−2/3

)−1
k7/3. (7.59)

Simulations also show in Fig. 7.16b that a simpler expression for the inertial scaling of F can

also be considered, namely

FRT
inertial(k, t) = F(k, t)N−2 L−1ε−1

T ε2/3k7/3. (7.60)
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Figure 7.16: Compensated spectra at Reλ(N0t = 104) = 1, 6.105 for σ = 2. (a) Com-
pensated kinetic energy and scalar variance spectra, given by (7.19) and (7.20). (b)

Compensated cospectrum, given by (7.59) and (7.60).

Since for FSoulard
inertial the plateau approaches a value closer to the one obtained in USHT, this

inertial scaling is kept for consistency.

One-point statistics: It is shown in Fig. 7.17a for Saffman turbulence that the mixing length

reaches the self-similar state L ∼ t2 after a transient regime of about N0t ' 100. From the same

point, the stratification frequency evolves as N ∼ t−1, which is straightforward using (7.46).

Moreover, it is shown that in the self-similar regime, the scalar variance < c2 > is constant,

in agreement with what was discussed earlier. In Fig. 7.17b, the prediction (7.57) is assessed

numerically for various infrared slopes σ. It is worth noting that for σ = 4, the backscatter

parameter pUSHT = 0.37, previously introduced for USHT, is still relevant, which shows that

unstably stratified turbulence and the variable stratification case share some infrared dynamics

properties.
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Figure 7.17: (a) Stratification frequency N , mixing length L, and concentration variance
KT =< c2 > for σ = 2, and Reλ(N0t = 103) = 5.103. (b) Growth rate αRT for various σ:

− computed with (7.48); � prediction (7.57).
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The emphasis is now put on the kinetic energy K, the scalar variance KT and the mixed-

correlation KF =< u3c >, whose evolution equations are

∂KT

∂t
= −εT +

2

L
< u3c >, (7.61)

∂K

∂t
= −ε+ 2Ag < u3c >, (7.62)

∂ < u3c >

∂t
= −εF + 2AgKT +

R33

L
. (7.63)

Since the scalar variance becomes eventually constant in the asymptotic state, it means that

dissipation balances production, so that εT = 2 < u3c > /L, and < u3c >∼ t. It then follows

that the kinetic energy evolves in K ∼ t2 similarly to L(t). These different time-dependencies

are assessed in Fig. 7.18a.
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Figure 7.18: One-point statistics for σ = 2. (a) Time dependence of K and KF ; NL <
u3c > is displayed as well in a grey dash-dot line. (b) Fr, b33 and bT33: bT33 is increased

by a factor 10 for readability.

Consequently, because of the continuous production of kinetic energy, it is reasonable to assume

that ∂tK ' 2Ag < u3c >. Furthermore, in agreement with Fig. 7.18b where Fr is displayed,

stratification dominates over turbulence in the self-similar regime, so that with a rough approx-

imation, ∂tK ∼ KN . This provides an approximation of the kinetic energy in the self-similar

regime

K(t) ∼ N(t)L(t) < u3c > . (7.64)

This approximation, which involves the characteristic stratification velocity VN = NL, is well

assessed in Fig. 7.18a in grey. In addition, it is revealed in Fig. 7.18b that both b33 and bT33, like

Fr, become constant at large Reynolds numbers. The asymptotic value of the global anisotropy

for σ = 2 with variable N(t) is b∞33 = 0.223, slightly lower than in USHT where b∞33 = 0.239,

meaning that the variable stratification tends to decrease the global anisotropy. This is expected

since the mixing length grows in time, thus reducing the intensity of the mean concentration

gradient, which is the source term of anisotropy in the equations.



Chapter 8

Dynamics of Helicity in

Skew-Isotropic Turbulence

In this chapter, the transport of a scalar field is put aside to investigate the dynamics of helicity:

this is of fundamental interest since helicity can be considered as the ”smoothest” kind of

anisotropy, since it breaks only mirror-symmetry with respect to HIT.

The contents of this chapter were published in:

Briard & Gomez, ”Dynamics of helicity in homogeneous skew-isotropic turbulence ”,

Journal of Fluid Mechanics, 821, 539-581 (2017)

Helicity is a quantity of interest since it is an invariant of the 3D inviscid Navier-Stokes equa-

tions (Moffatt, 1969) and has been consequently at the center of a great amount of theoretical

(Brissaud et al., 1973; Moffatt & Tsinober, 1992; Chkhetiani, 1996; Gomez et al., 2000; Ditlevsen

& Giuliani, 2001) and numerical (André & Lesieur, 1977; Polifke & Shtilman, 1989; Borue &

Orszag, 1997; Chen et al., 2003; Baerenzung et al., 2008b; Biferale et al., 2012) studies. Nev-

ertheless, despite all the attention helicity has received for more than forty years, it remains

a quantity quite complex, whose effects on the transfers of energy are not completely under-

stood, as stated in Chen et al. (2003): indeed, helicity KH =< uiωi > /2, unlike kinetic energy

K(t) =< uiui > /2, is not positive definite since it is the scalar product of the fluctuating

velocity ui and vorticity ωi = εijk∂juk, so that it can be either positive or negative. It is worth

noting that inviscid 3D turbulence has two invariants, kinetic energy and helicity, and 2D tur-

bulence has two as well, kinetic energy and enstrophy < ωiωi >. Therefore, some authors have

evoked the possibility of interpreting helicity as a 3D analogous of enstrophy, despite the fact

that the latter quantity is positive definite. Since enstrophy is responsible for an inverse cascade

of energy in 2D (Kraichnan, 1967), it has been concluded that helicity could also be associated

to inverse cascade mechanisms in 3D (Brissaud et al., 1973; Chen et al., 2003).

Consequently, since the pioneering work of Brissaud et al. (1973), the possibility of inverse

energy cascades has been a crucial point of discussion. At this time, two different scenarios

were proposed: (i) Joint cascades of helicity and energy towards small scales with non zero

kinetic and helical dissipation rates, respectively ε and εH , so that the kinetic and helical

spectra scale in E(k) ∼ ε2/3k−5/3 and H(k) ∼ εHε
−1/3k−5/3. (ii) A pure helicity cascade, with

160
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no energy transfer ε = 0, so that the kinetic and helical spectra scale in E(k) ∼ ε
2/3
H k−7/3

and H(k) ∼ ε
2/3
H k−4/3 in the forward cascade. In such a configuration, there would be an

inverse cascade of kinetic energy in k−5/3. This second scenario was proven to be impossible

in decaying turbulence by André & Lesieur (1977) in the EDQNM framework. However, for

instance in rotating turbulence with a non-vanishing helical forcing, and in other very specific

configurations, an inverse energy cascade is observed (Biferale et al., 2013). Furthermore, one

must point out that recently, it was shown that the Navier-Stokes equations intrinsically contain

this inverse energy cascade mechanism (Biferale et al., 2012): indeed, when considering specific

triadic interactions between only positive (or negative) helical modes, there is an inverse kinetic

energy cascade E(k) ∼ ε2/3k−5/3. Still, as soon as there is a single helical mode of opposite

sign, this inverse cascade vanishes.

On a practical point of view, large Reynolds numbers helical flows can be found notably in

atmospheric turbulence, where helicity is naturally present and may be the reason for the

persistence of tornadoes (Moffatt & Tsinober, 1992; Lesieur, 2008). On a theoretical point of

view, the high Reynolds numbers regime is of interest since the classical scalings, phenomenology

and mechanisms of turbulence were developed in this framework, where small scales should

always be isotropic and forget the effects of large scales (Kolmogorov, 1941b). The review

of the different studies involving helicity shows that, except the early and pioneering work of

André & Lesieur (1977), there were no further attempts to investigate the dynamics of the

helical spectrum H(k, t) at very large Reynolds numbers (Reλ ≥ 103). In addition, it appears

that the long-time decay of helicity has not been addressed. Yet, the knowledge of the decay

rate of integrated quantities, such as the inviscid invariants, is crucial for the understanding

and prediction of the turbulence dynamics in asymptotic regimes at large Reynolds numbers.

Therefore, it could be interesting to have clear decay exponents for helicity: indeed, there

were no studies providing decay exponents for helicity, except the theoretical one by Levshin

& Chkhetiani (2013), which is not fully satisfactory as explained later on. Consequently, this

chapter first focuses on two fundamental questions: is the decay of helicity predictable? How

does helicity modify non-linear transfers and the decay of kinetic energy?

Since mean helicity can be created in homogeneous turbulence, from non-zero spectral helical

modes (André & Lesieur, 1977), the knowledge of its decay law is of great interest when it is

initially present in the flow. This is why the authors choose to focus on a classical configuration

at large Reynolds numbers, namely Homogeneous Helical Turbulence (HHT), which is basically

a skew-isotropic turbulence, i.e. HIT without mirror symmetry. In particular, there are no

magnetic fields, so that only the kinetic helicity is considered: this is precisely the framework

addressed by André & Lesieur (1977), and unlike recent studies, no distinctions are made here

between positive and negative helical modes (Biferale et al., 2013).

In such a fundamental configuration, several crucial theoretical results in physical space were

derived regarding two-point third-order correlations: notably, Chkhetiani (1996) proposed an

inertial scaling for the triple velocity correlation S(r) =< uLu2u
′
3 >, where r is the distance

between two points located in x and x′ = x + r, the prime ′ refers to quantities expressed

in x′, and the ()L to the component along r: S(r) appears in the evolution equation of the

antisymmetric part of < uiu
′
j >, and is found to scale, neglecting the temporal and viscous

dissipation terms, as S(r) ∼ εHr
2/30. In addition, mixed velocity-velocity-vorticity structure

functions were analyzed in Gomez et al. (2000), and it was found that < δuLδuiδωi > − <

δωLδuiδui > /2 = −4rεH/3 in the inertial range, where δui = u′i − ui. These two laws are
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equivalent, and result from the conservation of helicity in inviscid flows. This is why the second

law is analogous to the ”four-thirds” laws for the kinetic energy and scalar variance, which

both come from conservation laws as well (Antonia et al., 1997). Whereas an equivalent of

the first law for S(r) has been assessed in DNS (Kurien et al., 2004), it is not the case for the

helical ”four-thirds” law. Both these fundamental relations are assessed numerically here at

high Reynolds numbers, and statistics of helical flows will be further investigated, notably the

evolution equation of the helical dissipation rate εH and derivatives of skew-isotropic tensors.

Finally, a new configuration is addressed, combining both a mean scalar gradient and helicity.

This case, which could be of interest for the modelling of atmospheric turbulence where these

two features may be present, permits to illustrate the subtle effects of helicity on the scalar

flux. Indeed, unlike a passive scalar field where there is no explicit contributions of helicity in

its evolution equations, the coupling of helicity and mean scalar gradient creates the quadrature

spectrum Q(k, t), linked to the imaginary antisymmetric part of the scalar flux. The appearance

of this additional contribution parallel to the cospectrum is called ”skew-diffusion” by Moffatt

& Tsinober (1992).

8.1 Spectral modelling of helicity

In this part, the evolution equations of the kinetic and helical spectra are derived starting from

the spectral counterpart of the Navier-Stokes equation. The EDQNM approach is presented

as well. In the following, helicity is injected initially at large scales along with kinetic energy

so that both decay freely: there is no forcing mechanism nor rotation, and no magnetic field.

Historically, this is the framework investigated by Brissaud et al. (1973) and it will be shown

that even in such a classical case, there are still some important open questions which are tackled

in the following sections, such as the prediction of the helicity decay and its impact on kinetic

energy transfers.

8.1.1 The E-H decomposition

With helicity, the spectral Reynolds tensor R̂ij has an imaginary part, and is consequently not

symmetric anymore. In the framework of homogeneous helical turbulence (HHT), R̂ij can be

decomposed as

R̂ij(k, t) = E(k, t)Pij + <(Z(k, t)NiNj) + iεijkαk
H(k, t)

k
, (8.1)

following the formalism of Cambon & Jacquin (1989). For simplicity reasons, mean velocity gra-

dients are not considered, which simplifies the previous expression into the E-H decomposition

which reads

R̂ij(k, t) = R̂
(iso)
ij (k, t) + R̂

(hel)
ij (k, t) = E0(k, t)Pij + iεijkαk

H(k, t)

k
(8.2)
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where H is a pseudo-scalar, real, not positive-definite, and reflects the density of helicity,

defined as

H(k, t)δ(k − p) =
1

2
< û∗i (p, t)ω̂i(k, t) > (8.3)

where ωi = εijk∂juk is the vorticity. Similar E-H decompositions were used by Borue &

Orszag (1997); Chen et al. (2003). The inverse relation for the energy density is straightforward,

E0 = R̂ii/2, whereas the one for the helical density is more complex (Moffatt, 1983; Cambon

et al., 2013)

H(k, t) = −1

2
ikmεijmR̂ij(k, t). (8.4)

The E-H decomposition could also be applied in isotropic MHD to the spectral second-

order magnetic correlation RMij (k)δ(k − p) =< â∗i (p, t)âj(k, t) >, with âi the magnetic

potential, where the antisymmetric part would be linked to the magnetic helicity HM ,

related to RMij through an equation analogous to (8.4).

Using the equations of the fluctuating spectral velocity and vorticity given in Appendix D, one

obtains the helical Craya equation

∂H
∂t

+ 2νk2H(k, t) = TH(k, t). (8.5)

The non-linear helical transfer TH can be expressed as a function of the τij , defined in (2.39),

using the relation (8.4) so that

TH(k, t) = −1

2
iεijlkl

(
τij(k, t) + τ∗ji(k, t)

)
. (8.6)

This expression (8.6) links the helical transfer to the total non-linear one defined in (2.18), similar

to what was done for TE and TZ in (2.32) and (2.34) respectively. The helical spectrum is

further defined as

H(k, t) =

∫
Sk

H(k, t)d2k = 4πk2H(k, t), (8.7)

and is linked to helicity and the helical dissipation rate through

KH(t) =
1

2
< uiωi >=

∫ ∞
0

H(k, t)dk, (8.8)

εH(t) = ν <
∂ui
∂xj

∂ωi
∂xj

>= 2ν

∫ ∞
0

k2H(k, t)dk. (8.9)

The time evolution of helicity is thus given by

dKH

dt
=

1

2
Aij

(
< uiωj > − < ujωi >

)
− εH . (8.10)

Without mean-velocity gradients, Aij = 0 and consequently the helicity follows the same evo-

lution equation as the kinetic energy in HIT.
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8.1.2 Spherically-averaged helical Lin equations for E(k, t) and H(k, t)

In this part, the explicit spherically-averaged transfer terms for HHT are derived within the

EDQNM framework, as in André & Lesieur (1977). Using (8.6) and the details provided in

Appendix D, the non-linear spherically-averaged helical transfer reads

SNL
H (k, t) =

∫
Sk

TH(k, t)d2k = SNL
H1 (k, t) + SNL

H2 (k, t), (8.11)

with

SNL
H1 (k, t) = 16π2

∫
∆k

θHkpqk
2p2q(xy + z3)E ′′0 (H′ −H)dpdq

SNL
H2 (k, t) = −16π2

∫
∆k

θHkpqk
2pz(x+ yz)H′′(p2E ′0 − k2E0)dpdq. (8.12)

Moreover, from the E-H decomposition, the kinetic non-linear transfers now contain a helical

part coming from products of R̂
(hel)
ij : details of the calculations are given in Appendix D. The

non-linear spherically averaged purely helical transfer is

SNL(hel)(k, t) =

∫
Sk

TE(k, t)d
2k − SNL(iso)(k, t) (8.13)

= −16π2

∫
∆k

θkpqk
2pz(x+ yz)H′′(H′ −H)dpdq, (8.14)

with SNL(iso) given by (2.57). These three new transfer terms, SNL
H1 , SNL

H2 , and SNL(hel), are

independently conservative. The characteristic time of the third-order correlations is the same

for the kinetic and helical fields: it is shown later on that such an assumption is consistent with

joint cascades for the kinetic and helical spectra, and can be a posteriori justified with physical

arguments. Beyond these physical justifications, it seems relevant to choose θkpq for both the

kinetic and helical fields since the closure comes from the same evolution equation, which is the

one of the spectral velocity third-order correlation (2.17). One can further remark that the form

of SNL
H1 is similar to the scalar non-linear transfer ST,NL(iso). It will be shown numerically that

SNL
H1 corresponds in fact to a direct transfer, whereas both SNL

H2 and SNL(hel) to inverse ones.

The spherically-averaged Lin equations for the kinetic and helical spectra are(
∂

∂t
+ 2νk2

)
H(k, t) = SNL

H (k, t),(
∂

∂t
+ 2νk2

)
E(k, t) = SNL(iso)(k, t) + SNL(hel)(k, t) = SNL

E (k, t).

(8.15)

(8.16)

Finally, the helical spectrum H(k, t) must satisfy the realizability condition

|H(k, t)| ≤ kE(k, t), (8.17)

which was derived by Kraichnan (1973). When this equation is an equality, this condition is

called the maximal helicity condition.
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8.2 Numerical results on the helical and kinetic fields

In this part, the kinetic energy and helical spectra E(k, t) and H(k, t) are investigated nu-

merically at very large Reynolds numbers thanks to the EDQNM modelling presented in the

previous section. After a short discussion on initial conditions, basic properties of homogeneous

skew-isotropic flows are recovered and some features regarding inverse transfers are addressed.

Then, non-local interactions are considered in the infrared range of the spectra (for wavenum-

bers smaller than the integral one kL) and non-local expansions are made in order to study the

large scales dynamics. These results are directly used to predict the decay of kinetic energy and

helicity in homogeneous turbulence.

8.2.1 The importance of initial conditions H(k, t = 0)

The initial condition for the helical spectrum is (8.17). One has to be careful with this initial

condition, which increases the infrared slope σH of the helical spectrum, and thus accelerates

the decay of helicity. Indeed, in Saffman HHT for instance, at large scales H(k < kH , t) ∼ k3

whereas E(k < kL, t) ∼ k2, where kH is the helical integral wavenumber, defined similarly

to the kinetic one

LH(t) =
1

kH
=

3π

4KH(t)

∫ ∞
0

k−1H(k, t)dk. (8.18)

The last point to define is the shape of E(k, t = 0), which is of primary importance. So far, the

initial condition (1.10) was used, called (IC1) from now, which corresponds to a spectrum with

energy at all scales at t = 0. In particular, (IC1) implies that helicity is initially present at all

scales as well: this strongly minimizes the impact of helicity on the kinetic energy cascade and

decay. Hence, the initial condition (IC2) is used instead

(IC2) : E(k, t = 0) = kσ exp
(
− σ

2

(
k

kL

)2 )
. (8.19)

One can wonder if H(k, t = 0) = E(k, t = 0) is an acceptable initial condition, even if for k ≥ kL
this breaks (8.17). Fig. 8.1a reveals that the latter initial condition is physically unacceptable:

indeed, after a hundred turn-over times, one has kE −H ≤ 0 around the integral wavenumber

kL. Whereas for the maximal helicity condition, for all k one has kE −H ≥ 0, for both (IC1)

and (IC2). Consequently, from this point, all the computations presented are initialized with

the maximal helicity condition.

Unlike the kinetic energy spectrum E(k, t), the helical spectrum H(k, t) is not restricted to posi-

tive values: it was notably found by André & Lesieur (1977) that negative values appeared at the

beginning of the dissipative range near kη. This is also observed here with the present EDQNM

simulations in Fig. 8.1b, where the helical spectrum has negative values while approaching

kη. Positive and negative values for H(k, t) were reported in DNS (Polifke & Shtilman, 1989;

Polifke, 1991).
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Figure 8.1: (a) kE −H for three different initial conditions, with σ = 4 at Reλ = 1400.
(b) Kinetic and helical spectra E(k, t) and H(k, t) with σ = 2 at Reλ = 2.104. kHη is
defined in (8.22). Both along with the kinetic and helical integral wavenumbers kL and

kH , and the Kolmogorov wavenumber kη.

8.2.2 Helical spectrum H(k, t) and non-linear transfers

In this section, the inertial scaling of H(k, t) and the non-linear helical transfers are addressed.

Fig. 8.1b reveals that after a few turn-over times the helical spectrum scales in k−5/3 in the

inertial range. This scaling assesses the joint cascades mentioned earlier for kinetic energy and

helicity. The k−5/3 scaling can be deduced from dimensional analysis. The main hypothesis is

that the characteristic time in the inertial range τ(k, t) = (k2ε(t))−1/3 is the same for both the

kinetic and helical spectra. From this assumption results an ”Obukhov-like” scaling, εH(t) =

kH(k, t)/τ(k, t), which directly yields in the inertial range

H(k, t) = CH εH ε
−1/3 k−5/3. (8.20)

The constant CH = 2 is obtained by investigated the compensated spectra in Fig. 8.2a at high

Reynolds number Reλ = 2.104. The Kolmogorov constant K0 = 1.3 remains unchanged with

respect to HIT. It is worth noting that similarly to K0, the value of CH depends on the choice

of the eddy-damping constant. The present value CH ' 2 is in agreement with André & Lesieur

(1977), somehow higher that CH ' 1 obtained in Borue & Orszag (1997).

One can remark that the inertial scaling (8.20) of H(k, t) is similar to the one of a passive

scalar convected by a turbulent velocity field; this is the reason why it is often said that helicity

cascades linearly with the kinetic energy. Such a scaling can also be obtained by considering

that non-linear transfers in the inertial range are mainly local: k ∼ p ∼ q. By dimensional

analysis and dropping all geometric factors in (8.11), this yields for the fluxes Π(k) ∼ θ E(k)2 k4

and ΠH(k) ∼ θ E(k)H(k) k4, where θkkk = θ is the same for E and H, as assumed earlier.

Then, for high Reynolds numbers, one has in the inertial range Π ' ε and ΠH ' εH , which is

well assessed in Fig. 8.2b. Thus, one has θ = ε/(k4E2) = τ(k) so that

ε(t)H(k, t) ∼ E(k, t)εH(t) →
∫ ∞

0
dk → ε(t)KH(t) ∼ K(t)εH(t). (8.21)
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Figure 8.2: (a) Compensated kinetic and helical spectra. (b) Normalized kinetic and
helical fluxes. Both with σ = 2, at Reλ = 2.104, and along with the integral and

Kolmogorov wavenumbers kL and kη.

In addition, a specific wavenumber kHη is displayed in Fig. 8.1b. This wavenumber was derived

theoretically by Ditlevsen & Giuliani (2001)

kHη =

(
ε3H
ν3ε2

)1/7

, (8.22)

and is supposed to mark the end of the helical inertial range, which is clearly not the case here.

The helical inertial range spans from the helical integral wavenumber kH ∼ kL to kη, similarly

to the kinetic energy spectrum. This was also assessed both numerically and theoretically by

Chen et al. (2003). A different interpretation of kHη is proposed in Appendix D.

The total non-linear kinetic and helical transfers SNL
E and SNL

H are now investigated in Fig. 8.3a

to 8.3c for Batchelor turbulence (results are similar for Saffman turbulence). In the previous

part, SNL
E was decomposed into the sum of a purely kinetic contribution SNL(iso), identical to the

non-linear transfer in HIT, and a purely helical contribution SNL(hel). It is found in the EDQNM

simulations that the latter part corresponds in fact to a transfer of energy from small to large

scales. This inverse transfer is nevertheless less intense than the direct one, so that the total

kinetic transfer SNL
E is direct, as observed in Fig. 8.3b. Moreover, whereas the direct non-linear

transfer SNL(iso) spans all scales of the wavenumber space, the inverse transfer SNL(hel) is very

localized at large scales, which creates a small region where SNL(iso) is positive at large scales,

which is different from HIT. Nevertheless, the total kinetic energy transfer SNL
E is completely

similar to the one in HIT.

Similarly, SNL
H was decomposed into two contributions SNL

H1 and SNL
H2 , which both span the entire

inertial range. It is revealed in Fig. 8.3a that these two parts correspond to direct and inverse

transfers respectively. Once again, the inverse transfer is weaker than the direct one, so that the

total transfer of helicity SNL
H goes from large to small scales. One can observe in Fig. 8.3c that

SNL
H is negative around kη, and this explains the negative values of the helical spectrum H(k, t)

at the dissipative scales observed in Fig. 8.1b: this can be interpreted as viscous production of

helicity, since −2νk3H(k) is positive in this region. The fact that inverse transfers of kinetic
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Figure 8.3: (a) Helical non-linear transfers SNL
H1 and SNL

H2 . (b) Purely helical and isotropic non-
linear transfers SNL(hel) and SNL(iso). (c) Non-linear kinetic and helical transfers SNL

E and SNL
H .

All for σ = 4 at Reλ = 5.103, along with the integral and Kolmogorov wavenumbers kL and kη.

energy and helicity are hidden in the total direct cascade is in agreement with the recent results

of Alexakis (2017).

In this part, it was recovered that in freely decaying HHT, there is a joint cascade of kinetic

energy and helicity towards small scales. The main assumption behind the k−5/3 inertial scaling

is that the kinetic and helical fields have the same inertial characteristic time. Finally, it was

shown numerically that despite a direct cascade of kinetic energy and helicity, some inverse

non-linear transfers occur, less intense than direct ones.

8.2.3 Infrared dynamics and non-local transfers

This section focuses on the permanence of large eddies (PLE) in the presence of helicity, and

on non-local interactions between small and large scales. The starting point is Fig. 8.4a and

8.4b, where the time evolution of the kinetic energy and helical spectra E(k, t) and H(k, t) is

displayed for Batchelor turbulence. Two features need to be underlined: firstly, it appears that

H experiences no backscatter in Fig. 8.4b, so that the PLE hypothesis is verified in Batchelor

HHT for the helical spectrum, unlike E. Secondly, the backscatter for E in Fig. 8.4a is weaker

in presence of helicity than in HIT, as revealed by the grey curve corresponding to a HIT

simulation for E, at the same time and Reynolds number. These two features can be explained

analytically, using non-local expansions. These important results, and especially the fact that

the PLE hypothesis is verified for H even in Batchelor turbulence, are applied in the next section

to determine theoretical decay exponents for K(t) and KH(t).

Firstly, Lesieur (2008) showed that the kinetic non-local transfers acting in the infrared range

are

T (iso)−(k, t) =
14

15
k4

∫ ∞
kL

θ0pp
E(p)2

p2
dp− 2

15
k2E(k)

∫ ∞
kL

θ0pp

(
5E(p) + p

∂E

∂p

)
dp. (8.23)

These terms come from the space derivative ∂Π−/∂k, with Π(iso)− = Π− defined in (B.17),

evaluated at the lowest order in k/kL, with the non-local parameter a = k/kL. The first rhs

term is responsible for the backscatter of energy that breaks the PLE hypothesis. The second

rhs term can be written under the eddy-viscous form −2νtk
2E, and represents a pseudo kinetic



Chapter 8. Dynamics of Helicity in Skew-Isotropic Turbulence 169

10
−4

10
−2

10
0

10
2

10
−20

10
−15

10
−10

10
−5

10
0

k

E
(k
,
t)

 

 

t = 0
t = τ0

t = 103τ0

t = 106τ0

t = 106τ0 (iso)

(a)

10
−4

10
−2

10
0

10
2

10
−20

10
−15

10
−10

10
−5

10
0

k

H
(k
,
t)

 

 

t = 0
t = τ0

t = 103τ0

t = 106τ0

(b)

Figure 8.4: Decaying spectra in Batchelor turbulence with Reλ(0) = 3400. (a) Kinetic
energy spectrum E(k, t): at t = 106τ0, E(k, t) for HIT is displayed as well in grey. (b)

Helical spectrum H(k, t).

energy dissipation, i.e. the damping of large scales by turbulence. To understand why back

transfers of energy on E(k, t) are decreased with helicity, one has to expand SNL(hel) when

k � p ∼ q, using calculations similar to those presented in Appendix B. This gives

Π(hel)−(k, t) = −14

15

∫ k

0
k′4

∞∫
sup(k,k′/a)

θk′pp
H(p)2

p4
dpdk′ (8.24)

+
2

15

∫ k

0
k′2H(k′)

∞∫
sup(k,k′/a)

θk′pp
p2

(
9H(p)− p∂H

∂p

)
dpdk′. (8.25)

The spatial derivative of Π(hel)−, with the same assumptions, yields

T (hel)−(k, t) = −14

15
k4

∫ ∞
kL

θ0pp
H(p)2

p4
dp+

2

15
k2H(k)

∫ ∞
kL

θ0pp

p2

(
9H(p)− p∂H

∂p

)
dp. (8.26)

The first rhs term modifies the backscatter of energy whereas the second one can also be inter-

preted as a pseudo helical dissipation term in −2νHt k
2H. Combining this expression with (8.23)

reveals the impact of helicity on the total inverse non-local kinetic transfer in HHT

T−E (k, t) =
14

15
k4

∫ ∞
kL

θ0pp
E(p)2

p2

(
1−

(
H(p)

pE(p)

)2 )
dp︸ ︷︷ ︸

k4 backscatter

−2νtk
2E(k)− 2νHt k

2H(k)︸ ︷︷ ︸
damping of large scales

. (8.27)

The second term indicates a change in the effects of viscous damping on large-scales, difficult

to quantify. However, for the first rhs term, using the realizability condition 0 ≤ |H|/kE ≤ 1,

one has
14

15
k4

∫ ∞
kL

θ0pp
E(p)2

p2

(
1−

(
H(p)

pE(p)

)2 )
︸ ︷︷ ︸

≤1

dp ≤ 14

15
k4

∫ ∞
kL

θ0pp
E(p)2

p2
dp︸ ︷︷ ︸

Non-local transfer in HIT

. (8.28)
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Consequently, the k4 backscatter of energy of E(k, t) is decreased by helicity, with respect to

HIT. Then, similar expansions of SNL
H give

Π−H(k, t) = Π−H1(k, t) + Π−H2(k, t)

=
14

15

∫ k

0
k′4

∞∫
sup(k,k′/a)

θk′pp
H(p)E(p)

p4
dpdk′ − 2

15

∫ k

0
k′2H(k′)

∞∫
sup(k,k′/a)

θk′pp

(
5E(p) + p

∂E

∂p

)
dpdk′

− 14

15

∫ k

0
k′4

∞∫
sup(k,k′/a)

θk′pp
H(p)E(p)

p4
dpdk′ +

14

15

∫ k

0
k′4E(k′)

∞∫
sup(k,k′/a)

θk′pp
H(p)

p2
dpdk′. (8.29)

The two terms responsible for the k4 backscatter cancel, which explains that in the end, H(k, t)

does not experience any strong back transfer of energy, so that the PLE hypothesis holds true

for the helical spectrum. The space derivative of the inverse non-local helical flux yields

T−H (k, t) = − 2

15
k2H(k)

∫ ∞
kL

θ0pp

(
5E(p) + p

∂E

∂p

)
dp+

14

15
k4E(k)

∫ ∞
kL

θ0pp
H(p)

p2
dp. (8.30)

This inverse non-local helical transfer T−H indicates that there is no strong k4 backscatter.

The first term can be written −2νtk
2H (and was found also in Baerenzung et al. (2008b)), and

the second one is quite original since it makes intervene a pseudo-enstrophy dissipation and

could consequently be written −2νωt k
4E.

The method used now to describe analytically the infrared dynamics of the kinetic energy

and helical spectra in HHT - at first order - is inspired from Lesieur (2008), where a similar

reasoning is performed for HIT. When the turbulence is fully developed, both spectra scale

in E(k, t) ∼ A(t)kσ and H(k, t) ∼ AH(t)kσH at large scales. In this infrared range, viscous

dissipation is negligible, and inverse non-local transfers T−E and T−H dominate with respect to

local ones SNL
E and SNL

H . Thus, the simplified Lin equations in the infrared range are ∂tE = T−E
and ∂tH = T−H , which yields

dA

dt
=

14

15
k4−σ

∫ ∞
kL

(...)dp− 2νtk
2A(t)− 2νHt k

2+σH−σAH(t) (8.31)

dAH
dt

= − 2

15
k2AH(t)

∫ ∞
kL

(...)dp+
14

15
k4+σ−σHA(t)

∫ ∞
kL

(...)dp. (8.32)

With the present initial conditions (8.19), one has σH = σ + 1, but one could think of different

initial conditions that would result in a more complex infrared dynamics for E and B: this

is the object of section 8.2.5. For now, one has σH = σ + 1, and in this case, whatever the

infrared slope σ is, the dissipation terms involving the turbulent eddy viscosities νt, ν
ω
t and νHt

are negligible because k � 1, so that

∀σ, dAH
dt
' 0. (8.33)

dAH/dt is not rigorously zero since the non-local expansion is kept at the lowest order in

k/p � 1 in the infrared range, as done in Lesieur & Schertzer (1978), but is equal to some

subdominant terms for the dynamics of AH , as assessed by Fig. 8.4b. This means that whatever

the large scales initial conditions σ are, the PLE hypothesis holds for the helical spectrum
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Expression Physical meaning Appears in eqs for ...

15νt =
∫∞
kL
θ0pp(5E(p) + p∂E∂p )dp Dissip. of K(t) and KH(t) E(k, t) and H(k, t)

15νHt =
∫∞
kL

θ0pp
p2 (p∂H∂p − 9H(p))dp Dissip. of KH(t) E(k, t)

15νωt = −7
∫∞
kL
θ0pp

H(p)
p2 dp Dissip. of enstrophy H(k, t)

Table 8.1: Summary of the different eddy-viscosities νt, ν
H
t , and νωt , that intervene in the

non-local expansions k � p ∼ q of the non-linear transfers SNL
E and SNL

H in HHT.

H(k, t). Regarding E(k, t), for σ ≤ 3, the rhs terms of (8.31) are negligible, meaning that the

PLE hypothesis holds true, whereas for σ = 4, A(t) truly depends on time since the first rhs

term is stronger than the two others −2νtk
2A and −2νHt k

3AH , so that

dA

dt
' 0, ∀σ ≤ 3,

dA

dt
' 14

15

∫ ∞
kL

θ0pp
E(p)2

p2

(
1−

(
H(p)

pE(p)

)2 )
dp, for σ = 4.

(8.34)

(8.35)

The latter result contains the fact that helicity decreases the backscatter of E(k, t) in Batchelor

HHT. The different turbulent spectral viscosity introduced previously are summarized in Table

8.1.

8.2.4 Decay laws in helical flows

In this part, the emphasis is put on both the impact of helicity on the kinetic energy decay, and

on the decay of the helicity KH itself. It is obvious that KH will decay faster than the kinetic

energy, because of the large scales initial condition (8.19) σH = σ + 1.

Remarks about the decay of helicity and kinetic energy: it has been said in the in-

troduction that helicity is known to slow down transfers. This result comes from André &

Lesieur (1977), and was also observed in DNS (Polifke & Shtilman, 1989; Polifke, 1991; Moffatt

& Tsinober, 1992). One must be precise to characterize this phenomenon: indeed, this does not

concern the theoretical decay exponent α of the kinetic energy K(t), but only the cascade of

kinetic energy: with helicity, it takes more time for the non-linear transfers to fill in the small

scales of the kinetic spectrum with energy coming from larger ones. This phenomenon, which

cannot be observed with (IC1) since all scales already contained energy initially, is illustrated

with (IC2) in Fig. 8.5 for Batchelor turbulence (the result is identical for Saffman turbulence).

The kinetic energy is constant during the first turn-over times with and without helicity, which

corresponds to the filling of the small scales. It is then clear that the filling of small scales is

slightly longer in presence of helicity.

EDQNM has been intensively used to determine theoretical decay exponents in different con-

figurations, at high Reynolds numbers and after a large number of turnover times: the decay of

kinetic integrated quantities in HIT (Meldi & Sagaut, 2013a), the decay of the scalar variance

in HIT (Lesieur et al., 1987) and other scalar quantities in Chapter 1, the decay of the kinetic

energy in a turbulence initially submitted to mean-velocity gradients (see Chapter 3), and fi-

nally the decay of the velocity-scalar correlation in an isotropic turbulence with a mean scalar
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KH(t) for σ = 4.

gradient (see Chapter 5). The study of the helical case is therefore a natural extension, and our

predictions are compared to those of Levshin & Chkhetiani (2013) later on.

Impact of helicity on the decay of K(t): The effects of helicity on the kinetic energy decay

are firstly addressed. Simulations show that the decay exponent α of the kinetic energy, where

K(t) ∼ tα, is not modified by helicity, except in the case of Batchelor turbulence because of the

reduction of the non-local inverse transfers analyzed in the previous section. Hence, one would

expect the decay of K(t) to be rapider in Batchelor HHT than in Batchelor HIT: indeed, the

non-local inverse transfers bring back less energy to the large scales. This is recovered in Fig.

8.6b.

To analytically take into account the breakdown of the PLE hypothesis, the backscatter parame-

ter p usually introduced in HIT is modified. In HIT, one has p(σ = 4) = 0.55 and p(σ ≤ 3) = 0:

in particular, in Batchelor HIT K(t) ∼ t−1.38. Here, in Batchelor HHT, K(t) ∼ t−1.417 is

obtained, and a least-square fit provides a new backscatter parameter pH = 0.14 for HHT.

Consequently, with respect to HIT, only the backscatter parameter changes from p to pH in

HHT for the decay of kinetic energy

α = −2
σ − pH + 1

σ − pH + 3
,

{
pH(σ = 4) = 0.14

pH(σ ≤ 3) = 0
. (8.36)

These decay exponents for the kinetic energy are assessed in Fig 8.6b in Saffman and Batchelor

turbulence: only the case σ = 4 differs from HIT, where here in HHT the decay of K(t) is

slightly rapider. The fact that helicity does not influence much the energy cascade once the

turbulence is fully developed is in good agreement with conclusions drawn by Polifke (1991);

Borue & Orszag (1997).

Decay of helicity: Helicity was shown to impact the kinetic energy decay only in Batchelor

turbulence. The emphasis is now put on the decay of KH itself. The method to predict the decay

of helicity is similar to the one of an advected passive scalar, and even more simple. Indeed,

as revealed in Fig. 8.4b, the helical spectrum H(k, t) experiences no strong back transfers, so

that the PLE hypothesis holds even in Batchelor turbulence. Therefore, there is no need to
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Figure 8.6: Algebraic laws for the kinetic (−) and helical (−−) fields, in Saffman (black)
and Batchelor (grey) turbulence. Symbols refer to the theoretical predictions: (8.36)
for α, (8.38) for αH , and (8.37) for L and LH . (a) Growth exponents of the kinetic
and helical integral scales L and LH . At a given σ, the kinetic and helical theoretical
exponents cannot be distinguished. (b) Decay exponents of the kinetic energy and helicity

K and KH , where ◦ and � refer to kinetic and helical theoretical exponents.

introduce a helical backscatter parameter. Then, it is reasonable to assume that the kinetic and

helical integral scales L(t) and LH(t) decay similarly, so that their algebraic exponents nL and

nLH are equal

LH(t) ∼ tnLH , nLH =
2

σ + 3
' nL =

2

σ − pH + 3
. (8.37)

This assumption is completely assessed in Fig. 8.6a. Then, using either the continuity of H(k, t)

in k = kH to determine the decay law for εH , or dimensional analysis with KH ∼ K/LH , or

(8.21), one finds

αH = −2
σ + 2

σ + 3
. (8.38)

Theoretical values of this expression for αH , gathered in the last line of Table 8.2, are in excel-

lent agreement with simulations presented in Fig. 8.6b for Saffman and Batchelor turbulence.

Interestingly, αH is equivalent to αT in HIT with σT = σ + 1 without backscatter. The decay

exponent of εH is then simply αH − 1. Moreover, Fig. 8.6b shows that the more σ increases,

the more KH decays rapidly, similarly to K(t).

Comparison with Levshin & Chkhetiani (2013): Our results for the decay of kinetic

energy and helicity are now compared with the predictions of Levshin & Chkhetiani (2013)

(LC13): this work contains vagueness since the initial conditions are not defined, and it is

well-known that they are crucial since large scales are determinant for the decay rate. Indeed,

in LC13, for a given decay exponent α of the kinetic energy, two different decay exponents

αH of the helicity are proposed, which makes no sense (Tables 1 and 2 therein). The present

theoretical predictions for the decay of helicity are gathered in Table 8.2, along with the two

propositions made by LC13. To fill in Table 8.2, a very reasonable assumption is made: as

pointed out earlier, initial conditions are not defined in LC13, so that there is no infrared slope

σ. Hence, when in LC13 a decay exponent for the kinetic energy is proposed, it is associated
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Decay exponent of helicity αH

σ = 1 σ = 2 σ = 3 σ = 4

LC13 Table 1 / −3/2 −8/5 −5/3
LC13 Table 2 −8/5 −5/3 −12/7 /

(8.38) assessed by EDQNM −3/2 −8/5 −5/3 −12/7

Table 8.2: Comparison of the different decay exponents αH obtained by EDQNM with (IC2)
and by Levshin & Chkhetiani (2013) (LC13).

here with its corresponding infrared slope according to the CBC theory: K ∼ t−1 → σ = 1,

K ∼ t−6/5 → σ = 2, K ∼ t−4/3 → σ = 3, and K ∼ t−10/7 → σ = 4 (backscatter is not

taken into account in LC13). The values of αH from LC13 are the same as the ones coming

from (8.38) (−3/2, −8/5, −5/3 and −12/7), but there are not associated with the correct

infrared slopes. For instance in Saffman turbulence, two laws are proposed in LC13 for helicity:

KLC13
H (t) ∼ t−3/2 and KLC13

H (t) ∼ t−5/3. This is impossible: using our theoretical prediction

(8.38), KLC13
H (t) ∼ t−3/2 implies that σ = 1, and KLC13

H (t) ∼ t−5/3 implies that σ = 3, whereas

σ = 2 in Saffman turbulence. In conclusion, it seems that the results of Levshin & Chkhetiani

(2013) correspond to infrared slopes of E and H chosen independently, without respecting the

realizability condition (8.17) which fixes σH once and for all as soon as σ is chosen for E: (8.17)

forbids initial conditions such as σH = σ and σH = σ − 1. In addition, helical decay exponents

gathered in LC13 seems to be erroneously reported.

8.2.5 Robustness of the decay exponents - Altered infrared dynamics

In the previous section, for kinetic energy and helical spectra scaling in E = Akσ and H =

AHk
σH in fully developed turbulence, the evolution equations of A(t) and AH(t) were derived

in (8.31)-(8.32) in the infrared range, assuming the dominance of inverse non-local transfers T−E
and T−H on local ones. For the initial conditions (8.19) where σH = σ + 1, it was notably found

that the permanence of large eddies holds for Batchelor turbulence (σ = 4).

Nevertheless, one can wonder if other initial conditions would produce a different infrared dy-

namics, and this could be relevant to test the robustness of the decay exponents α and αH
derived in the previous sections. One can remark that in (8.31), the term responsible for the

backscatter of E is the one where the k() factor vanishes. Thus, it is legitimate to wonder if in

(8.32) one could have 4 + σ − σH = 0 in order to obtain dtAH 6= 0, and consequently to create

backscatter for the helical spectrum. It is worth noting that 2 + σH − σ = 0 is impossible in

(8.31) because of the realizability condition (8.17).

In order to simplify this study and to point out one original case, the maximal helicity condition

H = kE is kept, but the initial kinetic energy spectrum is now changed into a sharply peaked

Gaussian one

E(k, t = 0) = C1 exp

(
− 1

(C2)2

[
ln

(
k

kL

)]2
)
, (8.39)

with C1 so that one has a unit initial kinetic energy, and C2 = 0.1. After a few turnover times,

the kinetic energy spectrum scales in E ∼ Ak4 in the infrared range (Lesieur & Ossia, 2000).

Unlike (8.19), the helical infrared slope σH is now different from σ + 1. As a consequence of
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(8.32), it follows that σH = σ + 4 = 8, and that the helical spectrum experiences backscatter

with

σ = 4,
dAH

dt
=

14

15
A(t)

∫ ∞
kL

θ0pp
H(p)

p2
dp. (8.40)

The theoretical infrared scaling prediction H ∼ k8 is assessed in figure 8.7a, along with the k4

infrared scaling of E(k, t): in this case, the permanence of large eddies is not verified anymore

for H(k, t) for the initial conditions (8.39). Nevertheless, it is shown in figure 8.7b as well that

the previous theoretical decay exponents for kinetic energy and helicity are still valid, which

implies that the backscatter of H(k, t) is negligible in the decay. This case further illustrates

the robustness of the theoretical predictions for the decay exponents.
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Figure 8.7: (a) Helical spectrum H(k, t) (black) for the initial condition (8.39) (−−) at
various times t/τ0 = 10, 103 and 105; the kinetic energy spectrum E(k, t) is displayed as
well (grey) at t/τ0 = 105. (b) Decay exponents α (−) and αH (−−), where ◦ and @ refer

to the kinetic and helical theoretical predictions (8.36) and (8.38) respectively.

Simulations not presented here show that for Saffman turbulence (E ∼ k2), a k6 infrared scaling

for H could be created, but this is out of the maximal helicity framework: indeed, H(k, t = 0)

should be Gaussian with E(k, t = 0) ∼ k2 exp(−k2), and the theoretical decay exponents are

still verified.

8.3 Structure functions in helical turbulence

In the introduction, the main theoretical results for high Reynolds numbers HHT in physical

space were recalled: notably two equivalent laws, found independently, which result from the

conservation of helicity in inviscid flows. These two laws are the inertial scaling for the two-point

triple velocity correlation (Chkhetiani, 1996)

S(r) =< uLu2u
′
3 >=

r2

30
εH , (8.41)
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and the inertial scaling for the third-order velocity-velocity-vorticity structure function (Gomez

et al., 2000)

D(uuω)(r) =< δuLδuiδωi > −
1

2
< δuiδuiδωL >= −4

3
rεH . (8.42)

The formalism of structure functions is detailed in Appendix A: the separation vector between

two points located in x and x′ is written r = x′ − x, and x′j and xj are independent variables.

The prime ′ refers to quantities expressed in x′, which should not be misunderstood with the

prime of correlations functions, such as f ′(r), h′(r), which is the spatial derivative ∂/∂r.

For HIT, the Kármán-Howarth and Yaglom equations for the third-order structure functions

DLLL =< δu3
L > and DLTT =< δuLδθ

2 > are recovered analytically in Appendix A, along with

the equations that permit to compute DLLL and DLTT from spectral non-linear transfers. These

two equations, and their multiple formulations, are very well-known and have been assessed

numerous times, mostly in DNS (Yeung et al., 2002; Watanabe & Gotoh, 2004; Yeung et al.,

2005; Bos et al., 2012; Gotoh & Watanabe, 2015). A numerical validation using high Reynolds

EDQNM simulations is proposed as well in Appendix A. The helical ”four-thirds” law (8.42) is

similar to the ”four-thirds” laws for the kinetic energy and scalar variance in HIT, since they

all come from conservation laws (Antonia et al., 1997).

In this section, formula that allow to compute helical structure functions from spectral quanti-

ties are derived, similarly to what is usually done for velocity and scalar statistics in HIT (Monin

& Yaglom, 1971). This further permits, using the EDQNM model presented in the previous

sections, to assess numerically at high Reynolds numbers the two laws (8.41) and (8.42). In

continuity of these developments in physical space, the evolution equation of the helical dissi-

pation rate εH is addressed: εH itself and its production term are simplified, similarly to what

is usually done for the kinetic energy dissipation rate in HIT. These analytical considerations

provide further insights on the derivatives of helical correlations and skew-isotropic tensors, and

leads to the definition of a helical Taylor scale and a helical derivative skewness.

8.3.1 Inertial scaling for S(r) and D(uuω)(r)

This part aims at recalling the main steps of the derivation of the laws (8.41) and (8.42), linking

S(r) and D(uuω)(r), and finally assessing their inertial scalings at large Reynolds numbers.

The law of Chkhetiani (1996): The Reynolds tensor reads

Rij(r) =< uiu
′
j >= u2

[
f(r)δij +

r

2
f ′(r)

(
δij −

rirj
r2

) ]
+
h(r)

r
εijlrl, (8.43)

where f =< uLu
′
L > /u2 is the second-order longitudinal correlation (see Appendix A for

details), with u2 = 2K/3, and h(r) = R23. The mixed velocity-vorticity correlation is

defined as

RHij =< uiω
′
j >= εjln

∂Rin
∂x′l

= u2εijl

(rl
r
f ′ +

rl
2
f ′′
)
− 2δij

h

r
+

(
h

r
− h′

)(
δij −

rirj
r2

)
, (8.44)



Chapter 8. Dynamics of Helicity in Skew-Isotropic Turbulence 177

with < uiωi >= 2KH . Also,

RHii (r) = −4
h

r
− 2h′, h(r) = −1

3
rKH . (8.45)

The latter expression shows that h(0) = 0. The two-point third-order velocity correlation

contains an additional antisymmetric part with respect to HIT, so that

< uiuju
′
k >=

k − rk′

2r3
rirjrk− δij

k

2r
rk +

2k + rk′

4r
(δikrj + δjkri) +S(r)

rl
r2

(εiklrj + εjklri), (8.46)

where k(r) =< uLuLu
′
L > and S(r) =< uLu2u

′
3 >: in particular, < u2u3uL

′ >= 0 and <

uLu3u
′
2 >= −S(r), which gives S(0) = 0. Thus, from the evolution equation (A.75) of Rij(r), it

is possible to compute the evolution equation of the antisymmetric part (Rij−Rji)/2 = hεijlrl/r

linked to helicity. The spatial derivative ∂rj erases the part which contains the third-order

longitudinal correlation k(r), so that, after some algebra and using dtKH = −εH , one gets

r

3
εH =

2

r3

∂

∂r
(r3S) + 2ν

(
− 2

r2
h(r) +

2

r

∂h

∂r
+
∂2h

∂r2

)
. (8.47)

Further neglecting the viscous effects in the inertial range and integrating over r, one obtains

(8.41).

The law of Gomez et al. (2000): The equation for < δωi > is derived analogously to the

one for δui (A.85), starting from (D.27):

∂tδωi + δuj
∂

∂rj
(δωi) = δωj

∂

∂rj
(δui) + 2ν

∂2

∂rj∂rj
(δui). (8.48)

Combining (A.85) and (D.27) yields

∂ < δuiδωi >

∂t
+

∂

∂rj

(
< δujδuiδωi > −

1

2
< δuiδuiδωj >

)
= 2ν

∂2 < δuiδωi >

∂rj∂rj
−4 ν <

∂δui
∂rj

∂δωi
∂rj

>︸ ︷︷ ︸
=εH

.

(8.49)

Then, < δujδuiδωi >= rj < δuLδuiδωi > /r, and ∂rj (D
(uuω)rj/r) = ∂r(r

2D(uuω))/r2. Further

neglecting the time dependance and the viscous term in the inertial range, integration over r

yields (8.42). Interestingly, the Gomez and Chkhetiani laws can be linked. Remarking that

< δuiδωi >= 2 < uiωi > −2 < uiω
′
i >, ∂tR

H
11 = −2εH/3, with RH11 = −2h/r, this provides

1

r2

∂

∂r
(r3RH11) =< uiω

′
i >= RHii ,

1

r

∂

∂r

(
1

r2

∂(r3RH11)

∂r

)
=

1

r4

∂

∂r

(
r4∂R

H
11

∂r

)
,

one gets by identification

D(uuω) =< δuLδuiδωi > −
1

2
< δuiδuiδωL >= − 8

r3

∂

∂r
(r3S(r)), (8.50)

from which (8.41) immediately follows using (8.42).

Link between spectral and physical space: The equations to compute DLLL and DLTT

from spectral quantities are well known, even-though the second-one is much less documented:

see for instance Monin & Yaglom (1971) and Appendix A for details. Here, the equations to
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obtain both S(r) and D(uuω) from SNL
H are presented. First, one needs to derive the evolution

equations of < uiω
′
i > /2: this is done starting from (8.47). Since

< uiω
′
i >

2
= − 1

r2

∂(r2h)

∂r
,

rεH
3

=
∂h

∂t
, (8.51)

one obtains
∂

∂t

(
< uiω

′
i >

2

)
= − 2

r2

∂

∂r

(
1

r

∂

∂r
(r3S)

)
− 2ν

r4

∂

∂r

(
r4∂

2h

∂r2

)
. (8.52)

This equations needs to be identified with the helical Lin equation (8.15), so that

− 2

r2

∂

∂r

(
1

r

∂

∂r
(r3S(r))

)
=

∫ ∞
0

SNL
H (k)

sin(kr)

kr
dk.

This yields, after some algebra,

S(r) =
1

2

∫ ∞
0

SNL
H

k2

[sin(kr)

kr
− 3

sin(kr)

(kr)3
+ 3

cos(kr)

(kr)2

]
dk,

D(uuω)(r) = 4

∫ ∞
0

SNL
H

k

[sin(kr)

(kr)2
− cos(kr)

kr

]
dk.

(8.53)

(8.54)

The formula for D(uuω) is very similar to the ones for < δuLδq
2 > and DLTT, which is expected

since they all refer to conservation laws. The relevance of the two previous formula is illustrated

in Fig. 8.8a and 8.8b, where the compensated helical third-order correlations −D(uuω)/(rεH)

and S/(r2εH) are displayed at high Reynolds numbers. The theoretical values 4/3 and 1/30

are almost recovered at Reλ = 3.104: the slight difference is comparable to the difference

observed for the −4/5 law in decaying turbulence (Bos et al., 2012; Tchoufag et al., 2012).

Interestingly, D(uuω) is closer to 4/3 than < δuLδq
2 > in HHT. Let’s mention that an equivalent

scaling for S (the 2/15 law) was already assessed in DNS (Kurien et al., 2004). But so far, to

our knowledge, the scaling for D(uuω) was not verified numerically, at least for freely decaying

turbulence: the present simulations show a very good agreement between EDQNM results and

the theoretical expectations. Finally, it is revealed in Fig. 8.8c that S ∼ r4 at small scales,

which is straightforward using (8.50), unlike < δu3
L >, < δuLδq

2 >, < δuLδθ
2 > and D(uuω)

which scale in r3.

8.3.2 Evolution equation of εH

In this part, the evolution equation of the helical dissipation rate is addressed. The objective

is to simplify its equation, in a manner similar to what is usually done for the kinetic energy

dissipation rate ε in HIT (Pope, 2000). More precisely, εH itself and its production term are

greatly simplified, and expressed as functions of the derivatives of the fluctuating velocity and

vorticity fields. The final expressions (8.58) and (8.67) constitute one of the main new theoretical

contributions of the present work, and applications are proposed as well. The calculations being

rather lengthy, the intermediate steps are gathered in Appendix D for the sake of clarity. The

evolution equation of εH reads

∂

∂t

(εH
ν

)
+D[u, ω] = −2ν <

∂2ui
∂xj∂xl

∂2ωi
∂xj∂xl

>, (8.55)
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Figure 8.8: Third-order helical correlations D(uuω) and S, for σ = 2 at Reλ = 3.104, along
with the integral and Kolmogorov scales L and η. (a) −D(uuω)/(rεH) and − < δuLδq

2 >
/(rε). (b) S/(r2εH). (c) The different scalings of D(uuω) and S.

D[u, ω] =<
∂ui
∂xj

∂ul
∂xj

∂ωi
∂xl

> + <
∂ui
∂xl

∂ul
∂xj

∂ωi
∂xj

> − < ∂ui
∂xj

∂ui
∂xl

∂ωl
∂xj

>, (8.56)

where the production term D[u, ω] contains contributions from spatial derivatives of skew-

isotropic tensors such as < uiujω
′
l > and < ωiuju

′
l >. In what follows, both εH and D[u, ω] are

simplified. This procedure consists into two steps: first, expressing εH and D[u, ω] as functions

of the derivatives of h(r) and S(r) respectively, and then expressing these derivatives as functions

of particular components of the fluctuating velocity and vorticity fields. Obviously, this is much

more lengthy for D[u, ω] since it is a third-order moment, composed of three different terms.

Derivatives of RHij (r): The first step to simplify εH consists into expressing it as a function of

the derivatives of h(r). To do so, one first needs to know the derivatives of RHij , analogously to

what George & Hussein (1991) did for ε in axisymmetric turbulence. One has

∂2RHij
∂rp∂rq

= − < ∂ui
∂xp

∂ω′j
∂x′q

>,
εH
ν

= −
(
∂2RHii
∂rj∂rj

)
r=0

=<
∂ui
∂xj

∂ωi
∂xj

> . (8.57)

After some algebra gathered in Appendix D, one gets the general expression of ∂2
pqR

H
ij , from
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which one can obtain some relations between the derivatives of h(r). Then, using a Taylor

expansion of h(r) for r → 0 (with h(0) = 0) yields the important theoretical result

εH = 10νh′′′(0) = 15ν <
∂u1

∂x1

∂ω1

∂x1
> . (8.58)

This expression permits to determine the helicity dissipation rate with one term instead of nine,

and is equivalent to ε = 15ν < (∂1u1)2 > for the kinetic energy dissipation rate in HIT.

The natural extension of the previous calculations for εH is the definition of a helical Taylor

scale λH . Its expression is found analogously to what is usually done for the longitudinal Taylor

scale λ (Pope, 2000), i.e. considering the osculating curve PH(r) of h(r) in r = 0, which reads

PH(r) = h(0) + rh′(0) +
r2

2
h′′(0) +

r3

6
h′′′(0) = −rKH

3
+ r3 εH

60ν
, (8.59)

and λH is further defined by PH(λH) = 0 and λH 6= 0, which yields

λH =

√
20νKH

εH
. (8.60)

It is worth noting that this new expression is completely equivalent to the classical one for

the velocity λ =
√

20νK/ε. The relevance of this formula is illustrated in Fig. 8.9. Both λ

and λH are displayed, at large and moderate Reynolds numbers for Saffman turbulence. Both

scales indicate the beginning of a region where viscous dissipation balances non-linear transfers.

At high Reynolds numbers, λ and λH cannot be distinguished, whereas λH is a bit smaller at

moderate Reynolds numbers. The wavenumber kHη , defined in (8.22) and proposed by Ditlevsen

& Giuliani (2001), is presented as well: it seems to have a similar physical meaning as λH , at

least at large Reynolds numbers, and some explanations are provided in Appendix D. Moreover,

Fig. 8.9 illustrates the viscous production of helicity, already observed in Fig. 8.1b where the

helical spectrum was negative around kη: indeed, −2νk3H is positive near kη here.

A secondary application of these calculations is to express analytically the impact of helicity on

the second-order longitudinal correlation f(r → 0). Indeed, unlike HIT where all odd derivatives

of f(r) for r = 0 are zero, one can show that f ′′′(0) is a priori different from zero in HHT (one

has always f ′(0) = 0 because of homogeneity). Expressing ∂2
11R

H
23 and ∂2

33R
H
23 thanks to (D.33)

yields

f ′′′(0) = −1

2
<
∂u2

∂x1

∂ω3

∂x1
>= − < ∂u2

∂x3

∂ω3

∂x3
>, (8.61)

so that the Taylor expansion of f(r) reads

f(r) = 1− r2

2

ε

15νu2
+
r3

6
f ′′′(0)︸ ︷︷ ︸

Additional HHT term

+
r4

24

2

35u2

∫ ∞
0

k4E(k)dk. (8.62)

Determination of the production term D[u, ω]: The procedure used to determine εH is

now applied to the production term D[u, ω]: since this term is complex and involves derivatives

of two different tensors < uiujω
′
l > and < ωiuju

′
l >, the determination is divided into two steps.

First, D[u, ω] is expressed as a function of the derivatives of S(r), and it will be shown that only
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Figure 8.9: Taylor scales for kinetic energy and helicity λ and λH , along with the corre-
sponding spectral viscous fluxes −2νk3E and −2νk3H and the non-linear transfers kSNL

E

and kSNL
H for σ = 2. The wavenumbers kHη (8.22) and kη are displayed as well. The black

curves are for the kinetic field, and the grey ones for the helical one. (a) Reλ = 104. (b)
Reλ = 400.

S(iv)(0) remains. Then, S(iv)(0) is expressed as a function of the derivatives of the fluctuating

velocity and vorticity fields.

As pointed out in Gomez et al. (2000), the tensor < ωiuju
′
l > is much more complicated to

handle than < uiujω
′
l >, which can be linked easily to < uiuju

′
l > given in (8.46)

φ
(uuω)
ijl =< uiujω

′
l >= εlpq

∂ < uiuju
′
q >

∂rp
, φ

(ωuu)
ijl =< ωiuju

′
l > . (8.63)

Calculations detailed in Appendix D first permit to link derivatives of φ
(uuω)
ijl and φ

(ωuu)
ijl to

D[u, ω] according to

D[u, ω] =
( ∂3

∂rj∂rj∂rl

[
φ

(uuω)
ili + φ

(ωuu)
ili − φ(ωuu)

lii

])
r=0

, (8.64)

where the derivatives of φ
(uuω)
ijl and φ

(ωuu)
ijl contain derivatives of S(r). Taylor expansions of S(r)

for r → 0 further give

D[u, ω] =<
∂ui
∂xj

∂ul
∂xj

∂ωi
∂xl

> + <
∂ui
∂xl

∂ul
∂xj

∂ωi
∂xj

> − < ∂ui
∂xj

∂ui
∂xl

∂ωl
∂xj

>= −35S(iv)(0). (8.65)

Now that D[u, ω] has been linked to S(iv)(0), the final step is to express the fourth derivative

of S(r) as derivatives of the fluctuating velocity and vorticity fields, so that D[u, ω] can be

evaluated in DNS for instance. For this purpose, the explicit sixth-order tensor ∂3
npqφ

(uuω)
ijl is

needed, and given in Appendix D. From this lengthy expression, one notably gets(
∂3φ

(uuω)
111

∂r3
1

)
r=0

= −S(iv)(0), (8.66)
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from which one finally obtains the second important result of this section

D[u, ω] = −35S(iv)(0) = 35 <
∂2u2

1

∂x2
1

∂ω1

∂x1
>, (8.67)

which permits notably to compute D[u, ω] with only one term, instead of eighty-one. Further

proceeding as in Kerr (1985), i.e. identifying (8.55) with the spectral evolution equation of εH

∂εH
∂t

= 2ν

∫ ∞
0

k2SNL
H (k, t)dk − 4ν2

∫ ∞
0

k4H(k, t)dk, (8.68)

provides

S(iv)(0) =
2

35

∫ ∞
0

k2SNL
H (k, t)dk. (8.69)

Hence, one can define, analogously to the mixed-derivative skewness of a passive scalar in HIT,

a helical derivative skewness as

Suuω =<
∂2u2

1

∂x2
1

∂ω1

∂x1
>
/(

<
∂u1

∂x1

∂ω1

∂x1
>

√
<

(
∂u1

∂x1

)2

>

)

= −3
√

30

14

∫∞
0 k2SNL

H dk√∫∞
0 k2Edk

∫∞
0 k2Hdk

.

(8.70)

(8.71)

Interestingly, the numerical factor 3
√

30/14 is identical to the one of the velocity derivative

skewness in HIT.

The helical derivative skewness Suuω is displayed in Fig. 8.10 as a function of the Reynolds

number Reλ. Only Saffman turbulence is presented, because the curve for Batchelor turbulence

is identical at high Reynolds numbers, similarly to the velocity and mixed derivative skewnesses

in HIT (see Chapter 1 and Appendix A). The initial oscillations at large Reλ correspond to the

first turnover times of the simulation, when the turbulence is not fully developed yet. As for the

velocity and mixed derivative skewnesses, Suuω is negative and reaches an asymptotic value at

large Reynolds numbers S∞uuω = −0.141. This value S∞uuω is lower in magnitude than asymptotic

values for the velocity and mixed derivative skewnesses in HIT which are around ' −0.5. The

knowledge of the helical derivative skewness is of importance, for two reasons: it is of theoretical

interest since it permits to have a strong analogy between the evolution equations of ε in HIT

and εH in HHT. On a more practical point of view, the previous developments which led to

Suuω show that there exists, in homogeneous helical turbulence, a quantity which is constant at

large Reynolds numbers: such a result could be used to improve RANS models for helical flows,

where the production term would be linked to Suuω.

8.4 Effect of helicity on the scalar flux

In this section, the transport of a passive scalar field θ is addressed. However, since there are

no explicit contributions of helicity in its evolution equation, a vertical mean scalar gradient
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Figure 8.10: Helical derivative skewness Suuω(t) in HHT for σ = 2.

λ = (0, 0,−Λ) is added. In purely isotropic turbulence with a mean scalar gradient, the well-

known cospectrum F is created (see Chapter 5). When both helicity and a mean scalar gradient

are combined, a second spectrum is created, called the quadrature spectrumQ(k, t), linked to the

imaginary antisymmetric part of the scalar flux Fi(k). This quadrature spectrum was reported

in Mydlarski & Warhaft (1998), and shown to be zero in non-helical turbulence with a mean

scalar gradient in O’Gorman & Pullin (2005). Consequently, we choose here the framework of

Helical Homogeneous Turbulence with a mean Scalar Sradient (HHTSG) in order to create this

quadrature spectrum and analyze its properties. In the two next parts, it is first proposed to

derive the evolution equation of Q(k, t) and its non-linear transfer terms within the EDQNM

framework, and secondly to investigate its inertial scaling. Analogies with the effects of helicity

on the kinetic energy spectrum are pointed out, and the decay exponent of helicity along with

the helical Taylor scale given previously are used. A unit Prandtl number is considered, and

simulations not presented here have revealed that the scalar variance spectrum still scales in

k−5/3 in the inertial range despite the presence of helicity.

8.4.1 Modelling of the quadrature spectrum

When the decomposition of the scalar flux (4.28) was introduced in Chapter 4, it was mentioned

that in presence of helicity there could be an additional antisymmetric contribution. Thus,

without mirror symmetry, the new decomposition of the scalar flux reads

Fi(k, t) =
3

2
EFj (k, t)Pij(k) +

3

2
iεijnαn

EQj (k, t)

k
, (8.72)

which is quite similar to the decomposition (8.2) of R̂ij . Both EQj and EFj are real vectors. The

imaginary antisymmetric part is linked to the quadrature spectrum Q(k, t), which is zero in

HITSG and arises only with the additional presence of helicity, and is defined as

Q(k, t) = 4πk2EQ3 (k, t) =

∫
Sk

iε3jlklFj(k, t)d
2k. (8.73)

It appears that the quadrature spectrum was never analytically investigated, and is only reported

to be zero in HIT and HITSG by Mydlarski (2003); O’Gorman & Pullin (2005). The mechanism
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which creates an additional contribution to the scalar flux, parallel to the mean gradient in

the presence of helicity, is called skew-diffusion by Moffatt & Tsinober (1992). It is worth

noting that from the decomposition (8.72) and (8.73), imaginary components of the scalar flux,

perpendicular to the mean scalar gradient, are non-zero. Nevertheless, these components vanish

after spherical averaging. Hence, in HHTSG, the evolution equation of the cospectrum given in

(4.38) is modified into(
∂

∂t
+ (a+ ν)k2

)
F(k, t) =

2

3
ΛE(k, t) + SF,NL

3 (k, t) + S
F,NL(hel)
3 (k, t)︸ ︷︷ ︸

SNL
F (k,t)

, (8.74)

where S
F,NL(hel)
i is the additional contribution arising from the presence of helicity, the non-

linear spherically-averaged helical scalar flux transfer

S
F,NL(hel)
i (k, t) = 4π2

∫
∆k

θFkpqk
2(x+ yz)H′′

(
2pzEQi − kE

Q′

i

)
dpdq

+ 4π2

∫
∆k

θFpkqk(x+ yz)
[
H
(
p2EQ

′′

i − q(q − 2ky)EQ
′

i

)
− k2H′′EQ

′

i

]
dpdq. (8.75)

The remarkable feature about S
F,NL(hel)
i is that, unlike SF,NL

i which contains a RTI part, it is a

conservative transfer, with zero integral over the whole wavenumber space. Then, the evolution

equation of the quadrature spectrum reads(
∂

∂t
+ (a+ ν)k2

)
Q(k, t) =

2

3
ΛH(k, t) + SNL

Q (k, t), (8.76)

where the production term is linked to helicity, and SNL
Q = SQ,NL

3 is the non-linear spherically-

averaged quadrature transfer

SQ,NL
i (k, t) = 4π2

∫
∆k

θFkpqk
3pq
[
E ′′0
(
EQ
′

i (xyz + 2z2 − y2)− 2z(xy + z)EQi
)

+ z(xy + z)H′′(2EFi − EF
′

i )
]
dpdq

+ 4π2

∫
∆k

θFpkqk
2q
[
kpE ′′0

(
EQ
′

i (xyz + 2z2 − y2)− 2(1− y2)EQi
)
− kpz(xy + z)H′′EF ′i

+ kE0

(
EQ
′′

i p(1− y2)− EQ
′

i q(x− yz − 2xy2)
)

− pqH
(
EF ′′i y(1− y2) + EF ′i (xz + y3 − y(1− x2))

)]
dpdq. (8.77)

Similarly to SF,NL
3 , SNL

Q is not a conservative transfer. Some details are provided in Appendix

E for S
F,NL(hel)
i and SQ,NL

i .

8.4.2 Decay of < ω3θ > and inertial scaling of Q(k, t)

For these numerical simulations, one has initially Q = F = ET = 0, E is given by (8.19), and

H = kE. First, let’s consider the evolution equation in physical space of the one-point mixed
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vorticity-scalar correlation

KQ(t) =< ω3θ >=

∫ ∞
0

Q(k, t)dk, εQ(t) = (ν + a) <
∂ω3

∂xl

∂θ

∂xl
>= 2(ν + a)

∫ ∞
0

k2Q(k, t)dk,

(8.78)

which reads
∂ < ω3θ >

∂t
=

2

3
ΛKH+ < θωj

∂u3

∂xj
> −(ν + a) <

∂θ

∂xj

∂ω3

∂xj
>, (8.79)

where < θωl∂lu3 > is the destruction term of < ω3θ >, and is given by the integral of SNL
Q

over the whole wavenumber space. From this evolution equation, it directly follows that the

decay exponent of KQ is αQ = αH + 1, because the production term linked to helicity is the

one responsible for the creation of the quadrature spectrum. This yields

KQ(t) ∼ tαQ , αQ = −σ + 1

σ + 3
, (8.80)

which is assessed, for both Saffman and Batchelor turbulence, in Fig. 8.11a. The decay exponent

αF , derived in (5.13) for HITSG is still valid, using the helical backscatter parameter pH = 0.14.

For a given infrared slope σ, the decay of < ω3θ > is faster than < u3θ >, similarly to the decay

of KH being faster than K.

Regarding the non-linear transfers: the impact of the quadrature spectrum on the cospectrum

can be observed through the conservative non-linear transfer S
F,NL(hel)
3 . This transfer is linked

to an inverse cascade of < u3θ >, localized at large scales, between the integral and the helical

Taylor scales. This can be qualitatively compared to the impact of helicity on the kinetic

energy spectrum dynamics through SNL(hel) in Fig. 8.3b. One could conclude that helicity only

slightly reduces the non-linear transfers of the cospectrum at large scales. Then, the quadrature

non-linear transfer SNL
Q itself is similar to the cospectrum one SF,NL

3 , but less intense.

Finally, in Fig. 8.11c, the quadrature spectrum is presented. In the infrared range, it scales in

Q ∼ k3 for Saffman turbulence, because the helical spectrum itself evolves in H ∼ k3: indeed,

helicity, through the mean scalar gradient, is the production term of the quadrature spectrum.

In the inertial range, Q(k, t) is first positive for scales larger than the helical Taylor scale λH ,

and scales in k−7/3 similarly to F . Whereas for scales smaller than λH , the spectral slope is

close to k−5/3 and the quadrature spectrum is negative: it is recalled that around kη, H(k, t) is

also negative.

One can propose a theoretical inertial scaling for the positive region of the quadrature spectrum:

assuming in (8.76) that ∂tQ ∼ ΛH, with the characteristic inertial time (k2ε)−1/3, this gives

Q(k, t) ∼ Λ εH ε
−2/3 k−7/3, kL < k < λ−1

H . (8.81)

For the negative region of Q(k, t), the quadrature spectrum should only depend on εH , and not

anymore on ε, since this is the negative small scales of H(k, t) which are responsible for this

inertial-helical range of Q(k, t). Thus, one gets

Q(k, t) ∼ Λ ε
1/3
H k−5/3, λ−1

H < k < kη. (8.82)
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Figure 8.11: (a) Decay exponents αQ and αF of < ω3θ > (−−) and < u3θ > (−)
respectively, for σ = 2 (black) and σ = 4 (grey); theoretical predictions, � for αQ (8.80),
and ◦ for αF (5.13). (b) Cospectrum and quadrature non-linear transfers, for σ = 2
at Reλ = 5.103, along with the integral, helical Taylor and Kolmogorov wavenumbers
kL, 1/λH and kη. (c) Cospectrum F(k, t) and quadrature spectrum Q(k, t); −Q(k, t) is

displayed in grey. Same configuration as (b).

This change of slope, from k−7/3 for kλH < 1, to k−5/3 for kλH > 1, observed in figure 8.11c,

and justified with dimensional and physical arguments, can also be interpreted in terms of a

change in characteristic time scales, from τ = (k2ε)−1/3 to τH = (kεH)−1/3. The latter time

scale was notably proposed by Kurien et al. (2004) for an alternative scaling of H(k, t) at small

scales. This characteristic time scale τH is relevant for the inertial-helical scaling of Q when it

is negative: indeed, for kλH > 1, the equation (8.76) of Q can be written ∂tQ ∼ SNL
Q . Using

the characteristic time scale τH , the classical inertial scaling (8.20) of H and F , one gets for the

non-linear quadrature transfer SNL
Q ∼ Λk−4/3ε

2/3
H , so that (8.82) is recovered.
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8.5 Conclusion on homogeneous skew-isotropic turbulence

The classical framework of decaying homogeneous helical turbulence (HHT) where mirror sym-

metry is broken at large Reynolds numbers was addressed using the anisotropic EDQNM mod-

elling.

Some existing results were recovered here for decaying skew-isotropic turbulence, in order to

validate the use of EDQNM for HHT, which could be summarized in three features. First,

when helicity is initially present at large scales, helicity cascades towards small scales along

with the kinetic energy, creating a k−5/3 inertial range that extends up to the Kolmogorov

wavenumber kη. The k−5/3 scaling of the helical spectrum H(k, t) is similar to the one of an

advected passive scalar, also obtained with dimensional analysis by assuming that the inertial

characteristic time τ(k) = (k2ε)−1/3 is identical for both the kinetic and helical fields. Secondly,

in the early stage of the decay, helicity slows down the filling of the kinetic energy spectrum

at small scales. Consequently, there is an initial reduction of the kinetic energy transfers: this

is a transitory effect, since once the turbulence is fully developed, the effects of helicity on the

kinetic energy decay are rather weak. Finally, two-point third-order helical correlations were

investigated: notably, the ”four-thirds” law for helical structure functions, and the 1/30 law

for the helical correlation S(r), were assessed with EDQNM at very high Reynolds numbers

in decaying turbulence. It is worth noting that the two formula linking helical correlations in

physical space and spectral non-linear helical transfers are new results of this work.

Then, EDQNM simulations were used to assess some new theoretical predictions of fundamental

interest for helical turbulence. First, the infrared dynamics of the kinetic energy and helical

spectra was investigated theoretically using non-local expansions in the non-linear transfers. It

clearly appears that in Batchelor HHT, helicity reduces the back transfers of kinetic energy

with respect to HIT: consequently, inverse non-local transfers are weakened and bring back less

energy to large scales. Furthermore, the permanence of large eddies is shown to be verified

for H(k, t), even in Batchelor turbulence, with classical initial conditions such that the kinetic

and helical infrared slopes are σH = σ + 1. These two features are assessed numerically with

EDQNM. An original configuration, with different initial conditions, also exhibited a k8 infrared

scaling for H(k, t), along with some helical backscatter.

Secondly, as a direct application of the previous infrared dynamics analysis, the impact of

helicity on the long-time kinetic energy decay was shown to be quite subtle: indeed, the decay

of K(t) is not modified with regard to HIT, except in the case of Batchelor turbulence where

it is slightly accelerated, because of the less-intense inverse transfers. In addition, in agreement

with dimensional analysis, theoretical decay exponents for helicity were derived, and assessed

numerically at large Reynolds numbers: in particular, it is found that helicity decays faster than

the kinetic energy.

Thirdly, the evolution equation of the helicity dissipation rate εH was studied, with a particular

attention on the derivatives of second and third order skew-isotropic tensors such as < uiω
′
j >,

< uiujω
′
l > and < ωiuju

′
l >. As an important result of these analytical developments, εH itself

is expressed as a function of h′′′(0) only, where h = R23(r), and its production term D[u, ω]

as a function of S(iv)(0) only, where S =< uLu2u
′
3 >. It follows that εH and D[u, ω] can be

expressed with only one term, instead of nine and eighty-one respectively.
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Fourthly, as a direct application of these fundamental results, a helical Taylor scale was defined

λH =
√

20νKH/εH , whose expression is analogous to the longitudinal Taylor scale λ for kinetic

energy. Such a scale is new for the helical field, and its relevance was illustrated numerically: λH
is the scale from which viscous dissipation of helicity becomes dynamically important, and at

large Reynolds numbers, it is very close to λ. Moreover, a helical derivative skewness was defined

and is negative and constant at large Reynolds numbers, similarly to the velocity derivative and

mixed-derivative skewnesses in HIT.

Finally, it was shown that combining a mean scalar gradient and helicity produces the quadra-

ture spectrum Q(k, t), linked to the imaginary antisymmetric part of the scalar flux. As a con-

sequence, the large scales non-linear transfers of the cospectrum are slightly reduced. The main

result is that Q(k, t) has two different scalings in the inertial range: for kλH < 1, Q ∼ k−7/3,

and then for kλH > 1, Q ∼ k−5/3: this change in the spectral slope can be interpreted as the

characteristic time evolving from (k2ε)−1/3 to (kεH)−1/3 at smaller scales.



Chapter 9

General Conclusions and

Perspectives

”Do. Or do not. There is no try.”

– Master Yoda, Star Wars V

The main objective of this thesis was to understand the fundamental turbulent mechanisms

occurring in natural flows at large Reynolds numbers, such as atmospheric and oceanic ones.

For this purpose, we established a methodology which could be summarized as follows: we

worked in the framework of homogeneous turbulence, with the spectral formalism, and aimed

at modelling the various processes at stake in turbulent anisotropic flows. The resulting model,

called anisotropic EDQNM modelling throughout the manuscript, was assessed by multiple

comparisons against DNS and experiments. Then, theoretical predictions were derived, based

on both physical arguments and analytical calculations, which were successfully verified by the

model.

The starting point of this complex task was the pioneering study of Cambon et al. (1981), further

developed and improved in Mons et al. (2016). The general concept of the spectral modelling

relies on two steps: (i) a classical EDQNM procedure to close the non-linear terms in the

evolution equations of the two-point second-order moments; and (ii) a modelling of anisotropy

through truncated expansions in spherical harmonics of the spectral second-order moments.

The final model is not an end in itself, but rather a general and robust method to address

complex flows, which eventually requires no more adjustable constants than the eddy-damping

one, chosen once and for all on the well-known and accepted isotropic value. Consequently, the

model is relevant to explore configurations unreachable by DNS and experiments.

Since detailed conclusions were provided at the end of each chapter, it would be redundant to

recall them here. Instead, we prefer to briefly put the emphasis on the main findings of the thesis.

In the eight previous chapters, we tackled isotropic turbulence (HIT), isotropic turbulence with

a mean scalar gradient (HITSG), isotropic helical turbulence (HHT), helical turbulence with

a mean scalar gradient (HHTSG), turbulence initially submitted to shear (HSRT), sustained

shear flows (HST), shear flows with a mean scalar gradient (HSTSG), and unstably stratified

turbulence (USHT). For each of these configurations:

189
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• Lengthy and complex analytical calculations have been performed to determine the non-

linear transfers and production terms of the anisotropic EDQNM model...

• ... which was compared, when possible, to DNS, experiments and other models.

• The infrared and inertial scalings of the main spectra were accurately investigated.

• The scale-by-scale distribution of anisotropy was analyzed.

• Theoretical time exponents, assessed numerically, were derived for one-point statistics

such as the kinetic energy, the scalar variance, the mixed velocity-scalar correlation, and

the helicity.

Among these numerous features, the three most important findings would be, very likely:

• The new algebraic decay exponents for < θ2 > and < u3θ > in HITSG, and

for < uiωi > in HHT, and when combining both, the creation of the quadrature

spectrum.

• The profound difference between the asymptotic anisotropic states of shear flows

and unstably stratified turbulence: the former is almost independent of large scales

initial conditions σ, whereas the latter strongly depend on them, and this was

justified analytically.

• The effects of moderate Reynolds numbers on the scattering of global quantities

in shear flows and on persistent small scales anisotropy at the level of the scalar

second-order moments.

In addition to all the points mentioned above, detailed appendices are provided which contain all

the calculations needed to understand the anisotropy modelling, the establishment of the quasi-

normal normal expressions of the non-linear transfers within the EDQNM procedure (along with

all the tricky but essential geometrical relations), the spherical and λ integrations, the non-local

expansions, and statistics of second and third order moments in homogeneous turbulence. These

appendices are rather long on purpose, in order to allow this work to be continued conveniently.

Further theoretical considerations were also proposed, such as the pressure spectra, quadratic

anisotropic contributions in the non-linear transfers, and last but not least, the third and fourth

orders expansions of E and Z for the kinetic field. This last remark makes the transition with

the possible perspectives that I can imagine:

• Pursue the work, started Chapter 2 and Appendix C, about the third and fourth orders

expansions of E and Z for the velocity field, and find some configurations, in addition to

the sustained shear flow, where it could be of of importance. This is a promising track since

first results in Chapter 3 indicate that fourth-order contributions tend to reduce the kinetic

energy exponential growth rate γ. The extension to the scalar field through ET would be

rather straightforward. But more interestingly, some work needs to be done regarding the

higher-order expansion of the scalar flux. Indeed, given the equations of USHT, it could

improve the theoretical linear prediction for the kinetic energy exponential growth rate β,

and consequently makes it closer to the exact value 2N .
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• Since shear was already combined to a mean scalar gradient for passive scalar dynamics in

Chapter 5, and helicity to a mean scalar gradient in Chapter 8, a natural extension could

be to combine both shear and USHT. First results tend to indicate that stratification

overcomes shear, with an exponential growth rate for K which depends on σ. At a

comparable level, it would be interesting to go further with the variable mean-fields S(t)

and N(t), with some details and equations already provided at the end of Chapters 3 and

7. This could extend the reach of the anisotropic EDQNM modelling to address mixing

and free-shear layers within a homogeneous framework.

• For the long-term perspective, it would be of great theoretical interest to extend the

concept of the modelled anisotropy through spherical harmonics expansion to EDQNM2,

in order to deal with rotating turbulence. Of course, this is a complex task which would

require significant analytical developments to take into account the linear operators of the

third-order correlations into the non-linear transfers. But it could permit to model more

accurately geophysical flows by combining shear, stratification and rotation.

• Finally, the case of MHD turbulence could be addressed again thanks to the present ani-

sotropic EDQNM modelling, in line with the pioneering works of Pouquet et al. (1976);

Grappin et al. (1982). Indeed, the spectral two-point magnetic-magnetic correlation veri-

fies the same properties as R̂ij , and thus can be decomposed as well into directional and

polarization parts, which could be of use to address strong MHD, where a mean magnetic

field breaks the isotropy of the flow. Before that, it appears to be essential to focus first

on isotropic MHD, with the effects of kinetic helicity, magnetic helicity, and cross-helicity

combined. In the last months of this thesis, I started studying isotropic MHD in presence

of cross-helicity, without a mean magnetic field, and despite some analogies with the ki-

netic helicity in hydrodynamics turbulence, it is much more complex and there is still a

great amount of work to be done.



Appendix A

Statistics and Structure Functions

The first objective of this appendix is to gather equivalences between physical and spectral for-

mulations, in order to compute third-order statistical quantities with EDQNM, such as deriva-

tive skewnesses, in homogeneous turbulence. Equivalences in homogeneous isotropic turbulence

(HIT) are not that straightforward, and thus deserve some details, since errors are found in

reference papers (Pope, 2000; Antonia & Orlandi, 2004; Ristorcelli, 2006). In the following

sections, as many details as possible are given, that could be used for other purposes as well.

Extensions to homogeneous turbulence without any particular symmetries are proposed. The

second objective is to recall some basic results about structure functions.

A.1 Evolution equations and definitions

The fluctuating vorticity ωi is divergence-free and the vorticity tensor is defined as

Wij =< ωiωj > . (A.1)

The enstrophy Wii =< ω2 > is linked to the kinetic energy dissipation rate through

< ωiωi >=< ω2 >=
ε

ν
. (A.2)

This is always valid in homogeneous turbulence, as shown hereafter. The evolution equations

of the fluctuating velocity and vorticity are given in (2.1) and (D.27). Let’s define as well the

two useful symmetric and antisymmetric tensors

sij =
∂ui
∂xj

+
∂uj
∂xi

, aij =
∂ui
∂xj
− ∂uj
∂xi

. (A.3)

For the scalar field, the evolution equation of the fluctuating part is given in (4.2). Let’s define

as well the scalar covariance tensor < ∂iθ ∂jθ >=< ξiξj > and the derivative scalar variance

< ξiξi >=< ξ2 >=
εT
a
, ξi =

∂θ

∂xi
. (A.4)

The evolution equations of the enstrophy < ω2 > and < ξ2 > are detailed for homogeneous

flows in section A.2, and then for HIT in section A.3.
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A.2 Tensorial relations for homogeneous turbulence

In this part, the emphasis is put on homogeneous turbulence to provide general relations between

sixth order tensors involving second and third order moments of the fluctuating velocity and

scalar fields. In what follows, only homogeneity is assumed.

A.2.1 Dissipation ε and enstrophy < ω2 >

Expanding < ∂l(ui ∂kuj) = 0 > and < ∂k(ui ∂luj) = 0 > yields the important result detailed in

George & Hussein (1991)

<
∂ui
∂xl

∂uj
∂xk

>=<
∂ui
∂xk

∂uj
∂xl

> . (A.5)

Let’s call this result the 2nd order law, since it involves second-order moments of the velocity

field through a rank-4 tensor. Then, multiplying the incompressibility condition ∂iui = 0 by

∂1u1, ∂2u2 and ∂3u3 provides, after ensemble average,

< ∂2u1 ∂1u2 > + < ∂3u1 ∂1u3 >= − < (∂1u1)2 >,

< ∂2u1 ∂1u2 > + < ∂3u2 ∂2u3 >= − < (∂2u2)2 >,

< ∂3u1 ∂1u3 > + < ∂3u2 ∂2u3 >= − < (∂3u3)2 > .

This gives the relation always valid in homogeneous turbulence

<
∂u1

∂x2

∂u2

∂x1
> + <

∂u1

∂x3

∂u3

∂x1
> + <

∂u2

∂x3

∂u3

∂x2
>= −1

2

(
<

(
∂u1

∂x1

)2

> + <

(
∂u2

∂x2

)2

> + <

(
∂u3

∂x3

)2

>

)
,

(A.6)

so that

< ω2 >=
ε

ν
=<

∂ui
∂xj

∂ui
∂xj

>=
1

2
<

(
∂ui
∂xj

+
∂uj
∂xi

)(
∂ui
∂xj

+
∂uj
∂xi

)
>=

1

2
< sijsij > . (A.7)

A.2.2 Identities for the velocity field

Let’s define the sixth order tensor

Bijkpqr =<
∂ui
∂xp

∂uj
∂xq

∂uk
∂xr

> . (A.8)

This tensor appears notably in the numerator of the velocity derivative skewness S(t), and on

the evolution equation of the dissipation rate ε(t). In a manner similar to George & Hussein

(1991) with the 2nd order law (A.5), there is a need to find different relations involving Bijkpqr.

Firstly, the use of homogeneity, through the difference of < ∂j(ui ∂qup ∂qup) >= 0 and <

∂j(ui ∂qup ∂puq) >= 0, gives

<
∂ui
∂xj

∂uq
∂xp

∂uq
∂xp

>=<
∂ui
∂xj

∂uq
∂xp

∂up
∂xq

> . (A.9)
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This is similar to (A.5), but for third-order moments of the velocity field, and thus this result is

called the 3rd order first law. One can also derive a second relation for third-order moments

of the velocity field: < ∂p(uiuq ∂
2
jqup) >= 0 and < ∂q(uq ∂pui ∂jup) >= 0 yield

< uq
∂ui
∂xp

∂2up
∂xj∂xq

>= − < ui
∂up
∂xq

∂2uq
∂xj∂xp

>= − < uq
∂up
∂xj

∂2ui
∂xp∂xq

>,

which allows, from < ∂2
pq(uiup∂juq) >= 0, to obtain

<
∂ui
∂xp

∂uq
∂xj

∂up
∂xq

> + < uq
∂up
∂xj

∂2ui
∂xp∂xq

>= 0.

Injecting the two previous equations into the development of < ∂q(up ∂jui ∂puq) >= 0, and

using the fact that < ∂j(uq ∂pui ∂puq) >= 0, yields the 3rd order second law

<
∂ui
∂xj

∂uq
∂xp

∂uq
∂xp

>= 2 <
∂ui
∂xp

∂up
∂xq

∂uq
∂xj

> . (A.10)

Then, combining < ∂i(uk ∂jui ∂kuj) >= 0 and < ∂3
ijk(uiujuk) >= 0 = 4 < uk ∂jui ∂

2
ikuj >,

provides

<
∂ui
∂xj

∂uj
∂xk

∂uk
∂xi

>= 0, (A.11)

which is consistent with (A.10). This result is often used in the isotropic framework. Finally, it

is possible to derive one more relation for Bijkpqr : let’s consider the following system

[1] < ∂p(ui ∂quj ∂ruk) >= 0, [2] < ∂p(ui ∂ruj ∂quk) >= 0, [3] < ∂q(ui ∂puj ∂ruk) >= 0,

[4] < ∂q(ui ∂ruj ∂puk) >= 0, [5] < ∂r(ui ∂quj ∂puk) >= 0, [6] < ∂r(ui ∂puj ∂quk) >= 0.

Each equation creates three terms, with one involving a particular permutation of Bijkpqr. Com-

bining these six equations, in the specific order [2]+[3]+[5]-[1]-[4]-[6], yields the permutation

law

Bijkpqr +Bijkqrp +Bijkrpq = Bijkprq +Bijkqpr +Bijkrqp. (A.12)

Let’s now define another sixth order tensor

Cijkpqr =<
∂2ui

∂xk∂xp

∂2uj
∂xq∂xr

> . (A.13)

This tensor appears notably in the numerator of the kinetic palinstrophy G(t), and on the

evolution equation of the dissipation rate ε(t). Firstly, the equations < ∂2
jk(ui ∂

2
jkui) >= 0 and

< ∂2
jj(ui ∂

2
kkui) >= 0 provide

<
∂2ui
∂xj∂xj

∂2ui
∂xk∂xk

>=<
∂2ui
∂xj∂xk

∂2ui
∂xj∂xk

>, (A.14)

Then, < ∂2
ij(∂kui ∂kuj) >= 0 gives

<
∂2ui
∂xk∂xj

∂2uj
∂xk∂xi

>= 0. (A.15)
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These two equations will be used in the HIT framework. Finally, with the difference of <

∂2
kk(uj ∂

2
ppui) >= 0 and < ∂2

kp(uj ∂
2
kpui) >= 0, a more general result can be obtained

<
∂2ui

∂xk∂xp

∂2uj
∂xk∂xp

>=<
∂2ui

∂xk∂xk

∂2uj
∂xp∂xp

> . (A.16)

A.2.3 Evolution equations of Wij and < ω2 >

In the homogeneous framework, the vorticity tensor Wij evolution equation reads

∂Wij

∂t
=WilAjl +WjlAil+ < ωl

(
ωj
∂ui
∂xl

+ ωi
∂uj
∂xl

)
> −εωij , (A.17)

where the vorticity dissipation rate is εωij = 2ν < ∂lωi∂lωj >. Using (A.5), one obtains directly

Wij = δij <
∂uq
∂xp

∂uq
∂xp

> − < ∂uq
∂xi

∂uq
∂xj

> −εij
2ν
. (A.18)

It is possible to simplify < ωlωj∂lui >. Firstly, the expansion of this term yields

< ωlωj
∂ui
∂xl

>=<
∂ui
∂xp

aqpajq > + <
∂ui
∂uj

∂uq
∂xp

aqp >,

and the second rhs term is zero thanks to (A.9). Finally, one obtains using (A.10)

< ωl

(
ωj
∂ui
∂xl

+ ωi
∂uj
∂xl

)
>=<

∂ui
∂xp

∂uq
∂xj

∂up
∂xq

> + <
∂uq
∂xi

∂uj
∂xp

∂up
∂xq

> − < ∂ui
∂xp

∂uq
∂xj

∂uq
∂xp

>

= − < ∂uq
∂xi

∂uj
∂xp

∂uq
∂xp

> +
1

2
<
∂up
∂xq

∂up
∂xq

sij > − <
∂ui
∂xp

∂uq
∂xj

∂uq
∂xp

> − < ∂uq
∂xi

∂uj
∂xp

∂uq
∂xp

> . (A.19)

Furthermore, using (A.11) and (A.14), one has

< ωiωj
∂ui
∂xj

>=< ajqaqi
∂ui
∂xj

>= − < ∂ui
∂xj

∂uj
∂xk

∂ui
∂xk

>,

1

2ν
εωii =<

∂ωi
∂xj

∂ωi
∂xj

>=<
∂2ui
∂xp∂xp

∂2ui
∂xq∂xq

>,

so that the enstrophy evolution equation in homogeneous turbulence reads

∂ < ω2 >

∂t
= 2WijA

+
ij − 2 <

∂ui
∂xj

∂uj
∂xk

∂ui
∂xk

> −2ν <
∂2ui
∂xp∂xp

∂2ui
∂xq∂xq

> . (A.20)

A.2.4 Evolution equation of εij

The evolution equation of the dissipation tensor εij is not often investigated, as pointed out in

Piquet (2001). The starting point to compute the evolution equation of εij = 2ν < ∂kui ∂kuj >

is to derive the evolution equation (2.1) of ui with respect to xk, and to multiply it by ∂kuj .

The same process is done for the evolution equation of uj and the two resulting expressions

are summed. Finally, the ensemble average is applied. Some terms are not straightforward to
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simplify, and details are provided hereafter: this yields the evolution equation of the dissipation

tensor in the homogeneous framework

∂

∂t

(εij
2ν

)
= − < ∂ui

∂xk

∂uj
∂xp

∂up
∂xk

> − < ∂uj
∂xk

∂ui
∂xp

∂up
∂xk

> + <
∂p

∂xk

∂sij
∂xk

> −2ν <
∂2ui

∂xk∂xk

∂2uj
∂xp∂xp

>

− 2 < Apk
∂ui
∂xp

∂uj
∂xk

> − < Aip
∂up
∂xk

∂uj
∂xk

> − < Ajp
∂up
∂xk

∂ui
∂xk

> . (A.21)

The term arising from the non-linearity:

<
∂ui
∂xk

∂2ujup
∂xp∂xk

> + <
∂uj
∂xk

∂2uiup
∂xp∂xk

>=(
<
∂ui
∂xk

∂uj
∂xp

∂up
∂xk

> + < up
∂ui
∂xk

∂2uj
∂xk∂xp

>
)

+
(
<
∂uj
∂xk

∂ui
∂xp

∂up
∂xk

> + < up
∂uj
∂xk

∂2ui
∂xk∂xp

>
)
.

(A.22)

Considering < up∂p(∂kui ∂kuj) >= 0 by virtue of homogeneity and incompressibility yields

< up
∂uj
∂xk

∂2ui
∂xk∂xp

>= − < up
∂ui
∂xk

∂2uj
∂xk∂xp

>, (A.23)

which simplifies (A.22) into

<
∂ui
∂xk

∂2ujup
∂xp∂xk

> + <
∂uj
∂xk

∂2uiup
∂xp∂xk

>=<
∂ui
∂xk

∂uj
∂xp

∂up
∂xk

> + <
∂uj
∂xk

∂ui
∂xp

∂up
∂xk

> . (A.24)

The mean-gradient terms: the terms involving the mean-velocity gradient can be grouped

together thanks to (A.5), which yields

− < Apk
∂ui
∂xp

∂uj
∂xk

> − < Apk
∂uj
∂xp

∂ui
∂xk

> − < Aip
∂up
∂xk

∂uj
∂xk

> − < Ajp
∂up
∂xk

∂ui
∂xk

>

= −2 < Apk
∂ui
∂xp

∂uj
∂xk

> − < Aip
∂up
∂xk

∂uj
∂xk

> − < Ajp
∂up
∂xk

∂ui
∂xk

>,

and the terms involving only the mean velocity are zero due to (A.23)

− < Up
∂uj
∂xk

∂2ui
∂xp∂xk

> − < Up
∂ui
∂xk

∂2uj
∂xp∂xk

>= 0.

The pressure terms: there are several steps: expanding < ∂3
jkk(pui) >= 0 and using <

∂k(∂kui ∂kp) >= 0, < ∂k(∂jui ∂kp) >= 0, and < ∂j(∂kui ∂kp) >= 0, gives

< p
∂3ui

∂xj∂xk∂xk
> + < ui

∂3p

∂xj∂xk∂xk
>= 0. (A.25)

Then, the sum of < ∂2
kk(ui∂jp) >= 0 and < ∂2

kk(∂jui p) >= 0 provides, using (A.25)

<
∂p

∂xk

∂2ui
∂xj∂xk

> + <
∂ui
∂xk

∂2p

∂xj∂xk
>= 0. (A.26)
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Finally, summing the previous equation with (i↔ j) yields the simplification

− < ∂uj
∂xk

∂2p

∂xi∂xk
> − < ∂ui

∂xk

∂2p

∂xj∂xk
>=<

∂p

∂xk

∂sij
∂xk

> . (A.27)

The viscous terms: expanding < ∂2
kp(∂kuj ∂pui) >= 0 and using (A.16) yields

ν <
∂ui
∂xk

∂3uj
∂xp∂xp∂xk

> +ν <
∂uj
∂xk

∂3ui
∂xp∂xp∂xk

>= −2ν <
∂2ui

∂xk∂xk

∂2uj
∂xp∂xp

> (A.28)

A.2.5 Evolution equations of < ξiξj > and < ξ2 >

The starting point to compute the evolution equation of the scalar covariance tensor < ξiξj > is

to derive the evolution equation (4.2) of θ with respect to xi, and to multiply it by ∂jθ. Finally,

the ensemble average is applied, which yields the evolution equation of the scalar covariance

tensor < ξiξj > in the homogeneous framework

∂ < ξiξj >

∂t
+ λl

(
<
∂ul
∂xi

∂θ

∂xj
> + <

∂ul
∂xj

∂θ

∂xi
>
)

+ <
∂θ

∂xj

∂2θul
∂xl∂xi

> + <
∂θ

∂xi

∂2θul
∂xl∂xj

>

+ < Ali
∂θ

∂xl

∂θ

∂xj
> + < Alj

∂θ

∂xl

∂θ

∂xi
> + < Ul

∂θ

∂xj

∂2θ

∂xi∂xl
> + < Ul

∂θ

∂xi

∂2θ

∂xj∂xl
>

= a
[
<

∂θ

∂xj

∂3θ

∂xi∂xl∂xl
> + <

∂θ

∂xi

∂3θ

∂xj∂xl∂xl
>
]
. (A.29)

This equation can be simplified in an analogous manner to what was done for εij . First,

< ∂l(Ul ξi ξj) >= 0 which simplifies the two terms in Ul. Then, using < ∂l(ul ξi ξj) >= 0

simplifies the fourth and fifth terms. Finally, the diffusion terms can be grouped remarking that

< ∂2
ll(ξiξj) >= 0. This yields

∂ < ξiξj >

∂t
+ λl

(
<
∂ul
∂xi

∂θ

∂xj
> + <

∂ul
∂xj

∂θ

∂xi
>
)

+ <
∂θ

∂xj

∂ul
∂xi

∂θ

∂xl
> + <

∂θ

∂xi

∂ul
∂xj

∂θ

∂xl
>

+ < Ali
∂θ

∂xl

∂θ

∂xj
> + < Alj

∂θ

∂xl

∂θ

∂xi
>= −2a <

∂2θ

∂xj∂xl

∂2θ

∂xi∂xl
> . (A.30)

This is notably recovered in Gylfason & Warhaft (2009). In the end, the evolution equation of

< ξ2 > in homogeneous turbulence reads

∂ < ξ2 >

∂t
+ 2λj <

∂uj
∂xi

∂θ

∂xi
> +2 <

∂θ

∂xi

∂uj
∂xi

∂θ

∂xj
> +2 < A+

ij

∂θ

∂xi

∂θ

∂xj
>

= −2a <
∂2θ

∂xi∂xj

∂2θ

∂xi∂xj
> . (A.31)

A.2.6 Cospectrum in isotropic turbulence with mean scalar gradient

Another quantity which has not been investigated and deserves some interest is the dissipation

rate of the scalar flux< u3θ > in HITSG. The evolution equation of the derivative scalar variance

in HITSG can be obtained from (A.31) by taking Aij = 0 and λ3 = −Λ. The procedure to
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derive the evolution equation of < ∂jui ∂jθ > is similar to what was done previously: one needs

to derive the evolution equation (4.2) of θ with respect to xj , to multiply it by ∂jui, and to sum

it with the equation (2.1) of ui derived by xj and multiplied by ∂jθ. This yields

∂

∂t
<
∂ui
∂xj

∂θ

∂xj
> +λj <

∂uj
∂xl

∂ui
∂xl

> +Aij <
∂uj
∂xl

∂θ

∂xl
> +Ajl

(
<

∂θ

∂xl

∂ui
∂xj

> + <
∂θ

∂xj

∂ui
∂xl

>
)

+ < uj
∂θ

∂xl

∂2ui
∂xj∂xl

> + < uj
∂ui
∂xl

∂2θ

∂xj∂xl
> + <

∂ui
∂xj

∂θ

∂xl

∂uj
∂xl

> + <
∂ui
∂xl

∂θ

∂xj

∂uj
∂xl

>

+ < Uj
∂θ

∂xl

∂2ui
∂xj∂xl

> + < Ul
∂ui
∂xl

∂2θ

∂xj∂xl
>

= − < ∂θ

∂xl

∂2p

∂xi∂xl
> +a <

∂ui
∂xl

∂3θ

∂xj∂xj∂xl
> +ν <

∂θ

∂xl

∂3ui
∂xj∂xj∂xl

> . (A.32)

This equation simplifies using < ∂j(uj∂lθ ∂lui) >= 0 and < ∂l(∂lui ∂
2
jjθ) >= 0, and reads

∂

∂t
<
∂ui
∂xj

∂θ

∂xj
> +λj <

∂uj
∂xl

∂ui
∂xl

> +Aij <
∂uj
∂xl

∂θ

∂xl
> +Ajl

(
<

∂θ

∂xl

∂ui
∂xj

> + <
∂θ

∂xj

∂ui
∂xl

>
)

+ <
∂ui
∂xj

∂θ

∂xl

∂uj
∂xl

> + <
∂ui
∂xl

∂θ

∂xj

∂uj
∂xl

>= − < ∂θ

∂xl

∂2p

∂xi∂xl
> −(ν + a) <

∂2ui
∂xl∂xl

∂2θ

∂xj∂xj
> .

(A.33)

In HITSG, this equation further simplifies into

∂

∂t

( εF
ν + a

)
= Λ

ε

3ν
− < ∂u3

∂xj

∂θ

∂xl
sjl > + <

∂p

∂x3

∂2θ

∂xl∂xl
> −(ν + a) <

∂2u3

∂xl∂xl

∂2θ

∂xj∂xj
> .

(A.34)

These considerations on the evolution equations of εT and εF were added in the Journal of

Turbulence of 2017.

A.3 Homogeneous isotropic turbulence

The previous equations and tensorial relations are simplified when the homogeneous turbulence

is in addition considered isotropic. This notably yields important results for the second and

third order moments of the fluctuating velocity and scalar gradients. From now and for clarity,

the non-linear transfers SNL(iso) and ST,NL(iso) are called T and TT respectively. Some of the

results of this section were used in 1.

A.3.1 Spectral formalism

In HIT, the enstrophy evolution equation is

∂ < ω2 >

∂t
= 2 < ωjωi

∂ui
∂xj

> −2ν <
∂ωi
∂xj

∂ωi
∂xj

>, (A.35)
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which is (A.20) without the mean velocity gradient. This expression for HIT has been found and

developed in Wyngaard (1971); Piquet (2001); Lesieur (2008) notably. The spectral counterpart

is
1

ν

∂ε

∂t
= 2

∫ ∞
0

k2T (k, t)dk − 4ν

∫ ∞
0

k4E(k, t)dk. (A.36)

Identification between (A.20) and (A.36) provides straightforward equivalences that are detailed

hereafter. In an analogous manner, one can write the evolution equation of the derivative scalar

variance < ∂iθ∂iθ > in the HIT framework

∂ < ξ2 >

∂t
= −2 <

∂θ

∂xi

∂θ

∂xj

∂ui
∂xj

> −2a <
∂2θ

∂xi∂xj

∂2θ

∂xi∂xj
>, (A.37)

which is (A.31) without the mean velocity and scalar gradients. This equation has been found

in Wyngaard (1971), and has to be identified with its spectral counterpart

1

a

∂εT
∂t

= 2

∫ ∞
0

k2TT (k, t)dk − 4a

∫ ∞
0

k4ET (k, t)dk, (A.38)

A.3.2 Second and third-order statistics

In what follows, second-order statistics, such as dissipation rates, and third-order statistics,

such as skewnesses, are computed and simplified within the HIT framework. First, the velocity

derivative skewness and kinetic palinstrophy are defined as

S(t) =
< (∂u1/∂x1)3 >

< (∂u1/∂x1)2 >3/2
, G(t) =< u2 >

< (∂2u1/∂x
2
1)2 >

< (∂u1/∂x1)2 >2
. (A.39)

The aim of the previous calculations is to express Bijkpqr and Cijkpqr, which appear in the

evolution equation of the enstrophy, as a function of B111111 and C111111 only. One can proceed

similarly for the passive scalar field. The mixed-derivative skewness and scalar palinstrophy are

defined as

ST (t) =
< (∂u1/∂x1)(∂θ/∂x1)2 >√

< (∂u1/∂x1)2 > < (∂θ/∂x1)2 >
, GT (t) =< θ2 >

< (∂2θ/∂x2
1)2 >

< (∂θ/∂x1)2 >2
. (A.40)

Dissipation rate ε and enstrophy < ω2 >: the fourth order tensor

Bijkl =<
∂ui
∂xj

∂uk
∂xl

> (A.41)

is used to simplify the expression of ε = ν < ω2 >. Bijkl can be expanded as

Bijkl = a1δijδkl + a2δikδjl + a3δilδjk.

Then, the incompressibility Biikl = 0 gives 3a1 + a2 + a3 = 0. In addition, < ∂j(ui ∂iuj) >= 0

and < ∂2
ij(uiuj) >= 0 yield Bijji = 0 which provides a1 + a2 + 3a3. Hence

Bijkl = a2

(
− 1

4
δijδkl + δikδjl −

1

4
δilδjk

)
. (A.42)
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Finally, B1111 =< (∂u1/∂x1)2 >= a2/2 and Bijij =< ω2 >= 15a2/2. This calculation is

detailed in Pope (2000) and reported in Ristorcelli (2006); Piquet (2001).

Velocity derivative skewness S: the sixth order tensor Bijkpqr defined in (A.8) is considered

to compute the numerator of the derivative skewness. In the isotropic framework, this tensor is

the sum of 15 terms, which are products of 3 δ-functions. Nevertheless, with symmetries, some

of these terms can be grouped together, which eventually gives

Bijkpqr = a1δipδjqδkr + a2

(
δipδjkδqr + δikδjqδpr + δijδkrδpq

)
+ a3

(
δipδjrδqk + δirδjqδpk + δiqδpjδkr

)
+ a4

(
δiqδjrδpk + δirδjpδkq

)
+ a5

(
δijδkpδqr + δijδkqδpr + δikδjpδrq + δikδjrδqp + δiqδjkδpr + δirδjkδpq

)
Then, the incompressibility Bijkiqr = 0 gives a set of three equations: 3a1 + 2a2 + 2a3 = 0,

3a2 + 4a5 = 0 and 3a3 + 2a4 + 2a5 = 0. In addition, equation (A.11) for the homogeneity yields

a1 + 3a2 + 9a3 + 10a4 + 12a5 = 0, so that

Bijkpqr = a1

[
δipδjqδkr −

4

3

(
δipδjkδqr + δikδjqδpr + δijδkrδpq

)
− 1

6

(
δipδjrδqk + δirδjqδpk + δiqδpjδkr

)
− 3

4

(
δiqδjrδpk + δirδjpδkq

)
+
(
δijδkpδqr + δijδkqδpr + δikδjpδrq + δikδjrδqp + δiqδjkδpr + δirδjkδpq

)]
. (A.43)

Finally B111111 =< (∂u1/∂x1)3 >= a1 and Biijjll = 35a1/2. This calculation was done in

Pope (2000) (without the details regarding the homogeneity simplifications) and is reported

in Ristorcelli (2006); Wyngaard (1971); Piquet (2001). The final expression of Bijkpqr yields

results in agreement with the recent work of Vreman & Kuerten (2014).

Kinetic palinstrophy G: the sixth order tensor Cijkpqr defined in (A.13) is now used to

compute the numerator of the kinetic palinstrophy. As previously, symmetries allow to group

some of the 15 products of δ-functions, which gives

Cijkpqr = a1δijδkpδqr + a2

(
δijδkqδpr + δijδkrδpq

)
+ a3

(
δikδjpδqr + δipδjkδqr + δiqδjrδkp + δirδjqδkp

)
+ a4

(
δiqδjkδpr + δiqδjpδkr + δirδjkδpq + δirδjpδkq

)
+ a5

(
δikδjqδpr + δikδjrδpq + δipδjqδkr + δipδjrδkq

)
Then, the incompressibility Cijipqr = 0 gives two equations: a1 + 4a3 + 2a4 = 0, and a2 + a3 +

a4 + 4a5 = 0. In addition, the homogeneity relations (A.14) and (A.15) provide respectively

6a1 − 6a2 + 8a3 − 4a4 − 4a5 = 0 and a1 + 4a2 + 8a3 + 16a4 + 6a5 = 0, so that

Cijkpqr = a5

[
− 6δijδkpδqr − 6

(
δijδkqδpr + δijδkrδpq

)
+
(
δikδjpδqr + δipδjkδqr + δiqδjrδkp + δirδjqδkp

)
+
(
δiqδjkδpr + δiqδjpδkr + δirδjkδpq + δirδjpδkq

)
+
(
δikδjqδpr + δikδjrδpq + δipδjqδkr + δipδjrδkq

)]
.

(A.44)
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Finally C111111 =< (∂2u1/∂x
2
1)2 >= −6a5 and Ciijkjk = −210a5. This result was used (and

misreported) in Ristorcelli (2006) without any details. The final expression of Cijkpqr yields

results in agreement with the recent work of Vreman & Kuerten (2014).

Mixed-derivative skewness ST : the tensor

BT
ijkl =<

∂θ

∂xi

∂θ

∂xj

∂uk
∂xl

> (A.45)

is used to compute the numerator of the mixed-derivative skewness. Similarly, BT
ijkl can be

expressed as

BT
ijkl = a1δijδkl + a2δikδjl + a3δilδjk,

and symmetry BT
ijkl = BT

jikl directly yields a2 = a3. Then, with incompressibility BT
ijll = 0,

one has 2a2 = −3a1. Finally, BT
1111 =< (∂θ/∂x1)2(∂u1/∂x1) >= 4a2/3 and BT

ijij = 10a2. This

relation was used in Wyngaard (1971) without any details.

Scalar palinstrophy GT (t): the tensor

CTijkl =<
∂2θ

∂xi∂xj

∂2θ

∂xk∂xl
> (A.46)

is introduced to compute the numerator of the scalar palinstrophy. CTijkl can be expressed as

CTijkl = a1δijδkl + a2δikδjl + a3δilδjk,

and symmetry directly yields a2 = a3. Then, with homogeneity, < ∂2
ij(∂iθ ∂jθ) >= 0 and

< ∂2
ii(∂jθ ∂jθ) >= 0 which provides CTiijj = CTijij and thus a1 = a2. Finally, CT1111 =<

(∂2θ/∂x2
1)2 >= 3a1 and CTijij = 15a1. This result was used in Ristorcelli (2006); Wyngaard

(1971) without any details.

A.3.3 Results for the velocity field

Using the results for Bijkpqr and Cijkpqr, along with (A.11), (A.14) and (A.15), gives

< ωiωi > =<
∂ui
∂xj

∂ui
∂xj

> − < ∂ui
∂xj

∂uj
∂xi

>=
(

15− 0
)
<

(
∂u1

∂x1

)2

>= 15 <

(
∂u1

∂x1

)2

>,

(A.47)

<
∂ωi
∂xj

∂ωi
∂xj

> =<
∂2ui
∂xj∂xk

∂2ui
∂xj∂xk

> − < ∂2ui
∂xj∂xk

∂2uj
∂xi∂xk

>= 35 <

(
∂2u1

∂x2
1

)2

>, (A.48)

< ωiωj
∂ui
∂xj

> =<
∂ui
∂xj

∂ul
∂xi

∂uj
∂xl

> − < ∂ui
∂xj

∂ul
∂xi

∂ul
∂xj

> − < ∂ui
∂xj

∂ui
∂xl

∂uj
∂xl

> + <
∂ui
∂xj

∂ui
∂xl

∂ul
∂xj

>

=
(

0− 35

2
− 35

2
+

35

2

)
<

(
∂u1

∂x1

)3

>= −35

2
<

(
∂u1

∂x1

)3

> . (A.49)

The following identification process is more or less done in Piquet (2001). The present results

are in agreement with Kerr (1985). Identifying (A.20) and (A.36) yields

<

(
∂u1

∂x1

)3

>= − 2

35

∫ ∞
0

k2T (k, t)dk, <

(
∂2u1

∂x2
1

)2

>=
2

35

∫ ∞
0

k4E(k, t)dk. (A.50)
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Using the previous calculations gives

<

(
∂u1

∂x1

)3

>= S
( ε

15ν

)3/2
, <

(
∂2u1

∂x2
1

)2

>
2K

3
= G

( ε

15ν

)2
,

where K = 3 < u2
1 > /2 is the kinetic energy. This results in

S(t) = −3
√

30

14

∫∞
0 k2T (k, t)dk(∫∞

0 k2E(k, t)dk
)3/2 , G(t) =

30ν

7

K

ε

∫∞
0 k4E(k, t)dk∫∞
0 k2E(k, t)dk

. (A.51)

Finally, one can write the spectral evolution equation of the kinetic energy dissipation rate as

∂ε

∂t
= −

(
7

3
√

15
S(t)

√
ReT +

7

15
G(t)

)
ε2

K
= − 7

15

(
1

2
S(t)Reλ +G(t)

)
ε2

K
, (A.52)

where the turbulent (or integral) Reynolds number is ReT was defined in (1.7). The normalized

palinstrophy G can be interpreted as the dissipation of enstrophy, and interestingly can be linked

to the dissipation skewness Sε of Kerr (1985) through G = ReλSε/2 so that (A.52) becomes

∂ε

∂t
= − 7

30
Reλ

(
S(t) + Sε(t)

) ε2
K
. (A.53)

A.3.4 Results for the passive scalar field

Using the results for BT
ijkl and CTijkl gives

εT = a <
∂θ

∂xi

∂θ

∂xi
>= 3a <

(
∂θ

∂x1

)2

>, <
∂2θ

∂xi∂xj

∂2θ

∂xi∂xj
>= 5 <

(
∂2θ

∂x1∂x1

)2

>,

<
∂θ

∂xi

∂θ

∂xj

∂ui
∂xj

>=
15

2
<

∂θ

∂x1

∂θ

∂x1

∂u1

∂x1
> .

The following identification process is done in Kerr (1985). Identifying (A.37) and (A.38) yields

<
∂u1

∂x1

(
∂θ

∂x1

)2

>= − 2

15

∫ ∞
0

k2TT (k, t)dk, <

(
∂2θ

∂x2
1

)2

>=
2

5

∫ ∞
0

k4ET (k, t)dk. (A.54)

Using the previous calculations gives

<
∂u1

∂x1

(
∂θ

∂x1

)2

>= ST

√
ε

15ν

(εT
3a

)
, <

(
∂2θ

∂x2
1

)2

> 2KT = GT

(εT
3a

)2
,

where KT =< θ2 > /2 is the scalar variance 1. This results in

ST (t) = −
√

3

10

∫∞
0 k2TT (k, t)dk√∫∞

0 k2E(k, t)dk
( ∫∞

0 k2ET (k, t)dk
) , GT (t) =

18a

5

KT

εT

∫∞
0 k4ET (k, t)dk∫∞
0 k2ET (k, t)dk

.

(A.55)

There is an error in Antonia & Orlandi (2004) regarding the numerical factor of ST . The

present result is in agreement with Kerr (1985). Finally, one can write the spectral evolution

1For this section only, we choose KT =< θ2 > /2 instead of KT =< θ2 > for consistency with some of the
reference papers



Appendix A. Statistics and Structure Functions 203

equation of the scalar variance dissipation rate, with r the kinetic to scalar time scales ratio

r = (K εT )/(KT ε).

∂εT
∂t

= −

(√
5

3
ST (t)

√
ReT + r

5

9
GT (t)

)
εεT
K

= −
(

1

2
ST (t)Reλ + r

5

9
GT (t)

)
εεT
K
. (A.56)

A.4 Structure functions and auto-correlations

This section is dedicated to the investigation of structure functions in HIT. So far, the spectral

formalism was preferred, for convenience with EDQNM. Nevertheless, correlation and structure

functions which depend on r, the separation vector between two points located in x and x′ so

that r = x′−x, are another fundamental aspect of the turbulence theory. For this reason, and

to extend a bit the range if this thesis, basic results are recovered: notably, the von Karman &

Howarth (1938) equation is derived, and then the famous 4/5th law of Kolmogorov (1941a) is

recovered. In what follows, the prime refers to a quantity expressed in x′, the time dependence

is sometimes omitted for clarity, and u refers to the rms of the fluctuating velocity. Part of the

results of this appendix, notably the 4/3rd laws for the structure functions inertial scalings ,

were included in the Journal of Fluid Mechanics for helicity.

A.4.1 Second-order longitudinal correlation and structure function

The Reynolds stress tensor, defined in (2.2), can be written

Rij(r, t) = u2 f(r, t)− g(r, t)

r2
rirj + u2g(r, t)δij , (A.57)

where f and g are the longitudinal and transverse correlations functions, linked to Rij(r), if one

chooses r along the x1 direction for instance (Pope, 2000), as

f(r, t) =
R11(r, t)

u2
, g(r, t) =

R22(r, t)

u2
=
R33(r, t)

u2
. (A.58)

The expression of Rij being symmetric, f and g are even functions of r, so that a Taylor

expansion yields

f(r) = 1 + f ′′(0)
r2

2
+ f (iv)(0)

r4

4!
+ . . . , (A.59)

and similarly for g. The second and fourth derivatives of f for r → 0 can be linked to quantities

previously investigated:

−u2f ′′(0) = − lim
r→0

∂2

∂r2
< u1u

′
1 >= − < u1∂

2
11u1 >= −

[
< ∂1(u1∂1u1) >︸ ︷︷ ︸

=0

− < (∂1u1)2 >
]

=< (∂1u1)2 >,

where ∂1 = ∂/∂x1. This gives, following the results of section A.3, f ′′(0) = −ε/(15νu2). Then,

for f (iv)(0), one needs to use < ∂1(u1∂
3
111u1) >= 0, which gives

u2f (iv)(0) = lim
r→0

∂4

∂r4
< u1u

′
1 >=< u1∂

4
1111u1 >= < ∂2

11(u1∂
2
11u1) >︸ ︷︷ ︸

=0

− < (∂2
11u1)2 > −2< ∂1u1∂

3
111u1 >︸ ︷︷ ︸

=−<u1∂4
1111u1>

.
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Using the results of section A.3, < (∂2
11u1)2 >= 2P/35, where P =

∫
k4E(k)dk, so that

u2f (iv)(0) = 2P/35. Hence, the longitudinal correlation can be expanded in HIT as

f(r, t) ∼r→0 1− ε(t)

30νu2
r2 +

P (t)

420u2
r4. (A.60)

The definition of Bos et al. (2012) is used for the two-point second-order longitudinal

structure function

DLL(r, t) =< δu2
L >= 2

rirj
r2

(Rij(0)−Rij(r)), δuL =
u′iri
r
− uiri

r
, (A.61)

where δuL is the longitudinal velocity increment. It is obviously possible to link DLL and

f(r, t), and this deserves some details. Considering xi and x′i as independent variables, using

∂r/∂ri = ri/r, and expending the incompressibility condition ∂Rji/∂ri = 0, one gets (von

Karman & Howarth, 1938)

2f(r, t)− 2g(r, t) = −r∂f
∂r
, (A.62)

so that the Reynolds stress tensor can be expressed only as a function of f :

Rij(r) = u2

(
f(r) +

r

2

∂f

∂r

)
δij −

u2

2r

∂f

∂r
rirj . (A.63)

Half the trace, R(r) = Rii(r)/2, is important since it was used by Saffman (1967) to demonstrate

some invariant properties which will be detailed hereafter. In agreement with Davidson et al.

(2012), one can write

< uiu
′
i >= 2R(r) =

1

r2

∂

∂r
(r3u2f) = u2(3f + r∂rf). (A.64)

Injecting (A.63) into (A.61) gives

DLL(r, t) = 2u2(1− f(r, t)), (A.65)

in agreement with Saffman & Pullin (1996). Finally, following Kolmogorov (1941b), the second-

order longitudinal structure function scales in the inertial range as (εr)2/3. Furthermore, since

f(r → ∞) = 0, one has also, at large scales, DLL ∼ 2u2. And at small r, typically near the

Kolmogorov scale η, δuL ∼ r∂1u1, so that DLL ∼ r2ε/(15ν). This yields

DLL(r, t) =


2u2 for r > L,

C2(εr)2/3 for L > r � η,

r2ε/(15ν) for r ∼ η.
(A.66)

Finally, it is possible to compute f (and thus DLL) from the kinetic energy spectrum. Details

are given for DLL in Bos et al. (2012), and one has

DLL(r, t) = 4

∫ ∞
0

E(k, t)
[1

3
− sin(kr)

(kr)3
+

cos(kr)

(kr)2

]
dk, R(r, t) =

∫ ∞
0

E(k, t)
sin(kr)

kr
dk,

(A.67)

consistent with another expression in Saffman & Pullin (1996). This relation allows to determine

the structure functions from the high Reynolds numbers kinetic energy spectra obtained with

EDQNM, as revealed in Fig. A.1a: the r2 and r2/3 scalings for the inertial range are recovered,
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and the value DLL(∞) = 2u2 at large scales as well. Furthermore, the constant of DLL is found

to be C2 = 1.73 in Fig. A.1b, which is a bit less than in Bos et al. (2012).
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Figure A.1: Longitudinal structure function DLL(r, t) for σ = 2 at Reλ = 2.104. (a) The
different scalings. (b) Compensated DLL to obtain C2 = 1.73.

A.4.2 Third-order longitudinal correlation and structure function

The two-point third-order correlation reads (von Karman & Howarth, 1938)

< uiuju
′
k >= − < u′iu

′
juk >= Tijk = rirjrk

k(r)− h(r)− 2q(r)

r3
+δij

rkh(r)

r
+
q(r)

r
(δikrj+δjkri),

(A.68)

and the incompressibility condition ∂Tijk/∂rk = 0 yields

k(r) = −2h(r), q(r) = −h(r)− r

2

∂h

∂r
, (A.69)

so that Tijk can only be expressed as a function of k or h. Of particular interest, k can be

expanded, for r → 0, as

k(r) = k′′′(0)
r3

6
+ . . . , (A.70)

and k′′′(0) is linked to the mixed-derivative skewness S(t) analyzed earlier, using< ∂1(u1∂1u1∂1u1) >=

0:

k′′′(0) = lim
r→0

∂3

∂r3
< u1u1u

′
1 >=< u1u1∂

3
111u1 >= < ∂1(u2

1∂
2
11u1) >︸ ︷︷ ︸

=0

− 2 < u1∂1u1∂
2
11u1 >︸ ︷︷ ︸

=−<(∂1u1)3>

,

so that

k′′′(0) =<

(
∂u1

∂x1

)3

>= S(t)
( ε

15ν

)3/2
. (A.71)

Then, the two-point third-order longitudinal structure function DLLL can be linked to

the third-order correlation k through

DLLL(r, t) =< δu3
L >= 6

rirjrk
r3

Tijk(r) = 6k(r). (A.72)
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Interestingly, the velocity derivative skewness can be expressed as

S(t) = lim
r→0

DLLL

D
3/2
LL

. (A.73)

Finally, DLLL(r, t) can be computed from the non-linear kinetic energy transfers T (k, t), and

details are provided in Bos et al. (2012)

DLLL(r, t) = 12r

∫ ∞
0

T (k, t)
[3(sin(kr)− (kr) cos(kr))− (kr)2 sin(kr)

(kr)5

]
dk. (A.74)

A.4.3 Towards the Kármán-Howarth equation

All the ingredients to obtain the evolution equation of u2f , or equivalently DLL, have been

presented. Starting from (2.1), without mean-velocity gradients, and multiplying by u′k, and

then combining it with (2.1) written for u′k multiplied by ui yields

∂Rik
∂t

=
∂

∂rj
(Tijk + Tkji) + 2ν

∂2Rik
∂rj∂rj

. (A.75)

Here are some details:

1

u2

∂Rik
∂t

=
rirk
r2

[
∂f

∂t
− ∂g

∂t

]
+ δik

∂g

∂t
,

1

u2

∂2Rik
∂rj∂rj

=
rirk
r2

[
−6

r2
(f − g) +

2

r

(
∂f

∂r
− ∂g

∂r

)
+

(
∂2f

∂r2
− ∂2g

∂r2

)]
+ δik

[
2

r2
(f − g) +

2

r

∂g

∂r
+
∂2g

∂r2

]
,

∂

∂rj
(Tijk + Tkji) =

rirk
r2

[
−4

r
h+ 4

∂h

∂r
+ r

∂2h

∂r2

]
+ δik

[
−4

r
h− 6

∂h

∂r
− r∂

2h

∂r2

]
.

The equation with δik allows to determine ∂tg, and further using (A.62) allows to recover the

Kármán-Howarth equation

∂(u2f)

∂t
− 1

r4

∂r4k

∂r
= 2ν

u2

r4

∂

∂r

(
r4∂f

∂r

)
. (A.76)

From this, it is possible to express the evolution equation of R(r), defined in (A.64), in agreement

with Davidson (2010)

∂R

∂t
− 1

2r2

∂

∂r

(
1

r

∂

∂r
(r4k)

)
= 2ν

1

r2

∂

∂r

(
r2∂R

∂r

)
. (A.77)

Using the relations between f , k and DLL, DLLL, and dtu
2 = −2ε/3, one obtains the Kármán-

Howarth-Kolmogorov equation

∂DLL

∂t
+

1

3r4

∂

∂r
(r4DLLL) =

2ν

r4

∂

∂r

(
r4∂DLL

∂r

)
− 4

3
ε. (A.78)

Multiplying (A.78) by r4, and integrating from 0 to r yields (Saffman & Pullin, 1996)

3

r4

∫ r

0
s4∂DLL

∂t
ds+DLLL = 6ν

∂DLL

∂r
− 4

5
εr. (A.79)
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Neglecting the time derivative and viscous dissipation at high Reynolds numbers in the inertial

range yields the 4/5th law

DLLL(r, t) = −4

5
εr. (A.80)

This relation is assessed in Fig. A.2b, along with the scaling for < δuLδq
2 > derived hereafter.

Even at Reynolds numbers such as 2.104, the theoretical expectation 4/5 is not rigorously

reached, as in Bos et al. (2012) for freely decaying turbulence. It is noteworthy to remark that

unlike DLL, the integration for DLLL requires quadruple precision, otherwise one gets strong

oscillations as in Tchoufag et al. (2012). Furthermore, the small scale r3 scaling for both

< δuLδq
2 > and < δu3

L > is recovered in Fig. A.2a, followed by the linear dependence in r.
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Figure A.2: Kinetic third-order structure functions < δu3
L > and < δuLδq

2 > for σ = 2
at Reλ = 2.104. (a) The different scalings. (b) Compensated kinetic structures functions.

Invariants: Saffman and Batchelor turbulence are now briefly discussed in terms of invari-

ants, as done in Davidson (2010). The expansion of the kinetic energy spectrum for very low

wavenumbers yields

E(k → 0) = L
k2

4π2
+ I

k4

24π2
, (A.81)

where L and I are the Saffman and Loitsiansky integrals respectively. For the Saffman integral

L, associated to the conservation of linear momentum, one has

L =

∫
< uiu

′
i > dr = 4π

∫ ∞
0

2r2R(r)dr = 4π[r3u2f ]∞, (A.82)

meaning that when L 6= 0 initially (i.e. E(k → 0) ∼ k2), the longitudinal function should de-

crease as f ∼ r−3 when r →∞. Furthermore, it was shown by Saffman (1967) that
∫
r2Rdr, and

so L, is an invariant of motion in freely decaying turbulence: this can be shown by integration

of (A.77) multiplied by r2,
1

8π

dL

dt
− 1

2r

∂

∂r
(r4k) = 2νr2∂R

∂r
,

and further neglecting the viscous term for high Reynolds numbers, so that

dL

dt
= 4π

[
1

r

∂

∂r
(r4k)

]
. (A.83)
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Since k ∼ r−4, L is independent of time and is consequently an invariant of motion. For the

Loitsiansky integral, linked to the conservation of angular momentum,

I = −
∫
r2 < uiu

′
i > dr = −4π

∫ ∞
0

2r4R(r)dr = −4π

∫ ∞
0

r2 ∂

∂r
(r3u2f)dr ∼ −4π[r5u2f ],

(A.84)

meaning that when L = 0 initially (i.e. E(k → 0) ∼ k4), the longitudinal function should

decrease as f ∼ r−5 when r →∞.

Kármán-Howarth 4/3rd equation: the Kármán-Howarth-Kolmogorov equation (A.78) can

be written differently: instead of considering the longitudinal second-order structure function

δu2
L, the emphasis is put on the kinetic energy increment δq2 = δuiδui. The method to derive

this equation is detailed in Antonia et al. (1997), and the procedure is very similar to the 4/3rd

law derived in Yaglom (1949) for passive scalar structure function, developed in the next section.

For clarity, ∂′j = ∂/∂x′j and ∂j = ∂/∂xj . Subtracting the evolution equation of u′i to the one of

ui, one gets

∂tδui + δuj
∂

∂rj
(δui) + uj(∂

′
j + ∂j)(δui) = −(∂′i + ∂i)(δp) + ν(∂′jj + ∂jj)(δui), (A.85)

where δuj∂rjδui +uj(∂
′
j + ∂j)(δui) = ∂′j(u

′
iu
′
j)− ∂j(uiuj). Multiplying the previous equation by

2δui and using ensemble average yields

∂

∂t
< δq2 > +

∂

∂rj
< δujδq

2 >= 2ν
∂2

∂rj∂rj
< δq2 > −4 ν <

∂δui
∂rj

∂δui
∂rj

>︸ ︷︷ ︸
=ε

. (A.86)

Both the uj(∂
′
j + ∂j) and pressure terms are zero because ∂′j = ∂rj = −∂j . Further neglecting

the time derivative and writing −4ε = −4/3∂rj (εrj), one gets

< δujδq
2 >= 2ν

∂

∂rj
< δq2 > −4

3
εrj , (A.87)

where the result of von Karman & Howarth (1938) has been used: 2f/r + f ′ = 0 ↔ f = 0,

combined with ∂2/(∂rj∂rj) = (2/r∂r + ∂2
rr). At high Reynolds numbers in the inertial range,

this eventually gives after the use of the divergence theorem

< δuLδq
2 > (r, t) = −4

3
εr. (A.88)

It is possible to make a link between (A.80) and (A.88): using < δq2 >= 4K − 4R and further

identifying the evolution equations of < δq2 > and R yields

3r3 < δuLδq
2 >=

∂

∂r
(r4 < δuL

3 >). (A.89)

A similar reasoning is proposed in Chapter 8 for HHT. Using the previous relation, one gets

< δuLδq
2 > (r, t) = 4

∫ ∞
0

T (k, t)

k

(
sin(kr)

(kr)2
− cos(kr)

kr

)
dk, (A.90)

which is very similar to the formula for DLTT derived hereafter. Finally, (A.88) is assessed in
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Fig. A.2b, along with the r3 small scale scaling of < δuLδq
2 > in Fig. A.2a. As remarked

before, even at Reλ = 2.104, the 4/3 is not exactly recovered. Interestingly, double precision is

enough to compute < δuLδq
2 >, unlike DLLL.

A.4.4 Yaglom and Corrsin equations

The Yaglom (1949) equation can be obtained in a completely analogous manner, by defining the

scalar increment, and the scalar two-points second and third order structure functions

δθ = θ′ − θ, DTT =< δθδθ >, DLTT =< δuLδθδθ > . (A.91)

Interestingly, the mixed derivative skewness can be expressed as

Suθ(t) = lim
r→0

DLTT

DTTD
1/2
LL

, (A.92)

and simple dimensional arguments give

DTT(r, t) =


2θ2 for r > L,

CT2 r
2/3 εT ε

−1/3 for L > r � η,

r2εT /(3a) for r ∼ η,
(A.93)

and this is illustrated in Fig. A.3, where the three different scalings are recovered. The constant

CT2 = 1.88 is slightly higher than C2, qualitatively in agreement with Watanabe & Gotoh (2004),

despite the much highers constant in the latter reference. The present CT2 is in reasonable

agreement with Yeung et al. (2002).
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Figure A.3: Structure function DTT(r, t) for σ = 2 at Reλ = 2.104. (a) The different
scalings. (b) Compensated DTT to obtain CT2 = 1.88.

A procedure similar to the one done for the equation of < δq2 > yields

∂

∂t
< δθδθ > +

∂

∂rj
< δujδθδθ >= 2a

∂2

∂rj∂rj
< δθδθ > −4a <

∂δθ

∂rj

∂δθ

∂rj
>︸ ︷︷ ︸

=−4/3∂rj (εT rj)

. (A.94)



Appendix A. Statistics and Structure Functions 210

Neglecting the time derivative and using the previous result of von Karman & Howarth (1938)

yields the Yaglom equation

< δujδθδθ >= 2a
∂

∂rj
< δθδθ > −4

3
εT rj , (A.95)

which reduces, in the inertial range, along r, to the 4/3rd law

< δuLδθδθ > (r, t) = −4

3
εT r. (A.96)
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Figure A.4: Scalar structure function DLTT(r, t) for σ = 2 at Reλ = 2.104. (a) The
different scalings. (b) Compensated scalar structure function DLTT.

This result can also be obtained in a way much more similar to von Karman & Howarth (1938),

as detailed in Danaila et al. (1999a). First, one starts with the Corrsin equation (Corrsin,

1951a)

∂

∂t
< θθ′ >= 2

(
2

r
+

∂

∂r

)[
< uLθθ

′ > +a
∂

∂r
< θθ′ >

]
, (A.97)

The links between correlations and structure functions are

RT (r, t) =< θθ′ >=< θ2 > −DTT/2, DLTT = 4 < uLθθ
′ >, (A.98)

and rj < uLθθ
′ > /r =< ujθθ

′ >. Let’s point out that

−RT ′′(0) = − lim
r→0

∂2

∂r2
< θθ′ >= − < θ∂2

11θ >=< (∂1θ)
2 >=

εT
3a
.

Then, since r2(2/r + ∂r)[f ] = ∂r(r
2f), (A.97) can be simplified: multiplying by r2, integrating,

and then dividing by r2, with ∂tθ
2 = −2εT yields

1

r2

∫ r

0
s2∂DTT

∂t
ds = −DLTT + 2a

∂DTT

∂r
− 4

3
rεT . (A.99)
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Finally, the links between structure functions and scalar variance spectra, even though less

documented, are simply

< θθ′ > (r, t) =

∫ ∞
0

ET (k, t)
sin(kr)

kr
dk, DTT(r, t) = 2

∫ ∞
0

ET (k, t)

(
1− sin(kr)

kr

)
dk.

(A.100)

As for the scalar non-linear transfer, it can be found starting from the Corrsin equation (A.97)

and identifying with (1.8)

2

r2

∂

∂r
(r2 < uLθθ

′ >) =

∫ ∞
0

TT (k)
sin(kr)

kr
dk,

so that eventually

DLTT(r, t) = 2

∫ ∞
0

TT (k, t)

k

(
sin(kr)

(kr)2
− cos(kr)

kr

)
dk. (A.101)

It is revealed in Fig. A.4 that −DLTT/(εT r) closely approaches 2/3 at very large Reynolds num-

bers (the constant is 2/3 in the present simulations because εT = 2a < (∂iθ)
2 >). Furthermore,

the linear scaling in r in the inertial range is recovered, along with the r3 scaling at small scales.



Appendix B

Non-local Expansions of the

Non-Linear Transfers

In this part, details on the calculation of non-local expansions of the non-linear transfers are

given. These non-local expansions are crucial for the scalar field when the Prandtl number

is such that Pr � 1. These expansions where extensively discussed for the velocity field by

Lesieur & Schertzer (1978); Métais & Lesieur (1986). The main elements of the computation are

gathered here. The need to evaluate these non-local contributions arises from the logarithmic

discretization of the wavenumber space that cannot take into account the elongated triads. The

criterion to quantify the non-local transfer is

inf(k, p, q)

sup(k, p, q)
≤ a, (B.1)

where a is the non-local parameter. Numerically, a = r− 1 where ki+1 = rki, r = 101/f with

f is the number of discrete points per decade. The regions of the plane (p, q) corresponding to

the non-local interactions are displayed in grey in Fig. B.1. For simplicity reasons, only the

isotropic parts of the non-linear transfers are firstly expanded, and the third-order correlations

characteristic time θ
(T )
kpq is always expanded at the lowest order.

Figure B.1: Non-local interactions (in grey) in the plane (p, q).
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B.1 Non-local fluxes

It is recalled that

SNL(iso)(k, t) =

∫
∆k

θkpq
(xy + z3)

q
E(q)

(
k2E(p)− p2E(k)

)
dpdq =

∫
∆k

S(k, p, q)dpdq, (B.2)

S
NL(iso)
T (k, t) =

∫
∆k

θTkpq
(xy + z)

q
E(q)

(
k2ET (p)− p2ET (k)

)
dpdq =

∫
∆k

ST (k, p, q)dpdq. (B.3)

The non-local transfers from large scales to very small ones are such that q � k ∼ p. They are

referred to as T+(k, t) and T+
T (k, t), for the velocity and scalar fields respectively. The non-local

transfers in the opposite direction are such that k � p ∼ q and are referred to as T−(k, t)

and T−T (k, t). For convenience, these non-local transfers are computed through their associated

energy-conservative non-local fluxes, so that

ΠNon-Local
(T ) (k, t) =

∫ ∞
k

TNon-Local
(T ) (k′, t)dk′, (B.4)

T±(T )(k, t) = −
∂Π±(T )(k, t)

∂k
= − ∂

∂k

(
Π+

(T )(k, t)−Π−(T )(k, t)
)
, (B.5)

where the derivation is done numerically. Therefore, the non-local fluxes read (Lesieur &

Schertzer, 1978)

Π+
(T )(k, t) = 2

∫ ak

0
dq

∫ k+q

k
dk′
∫ k

k′−q
S(T )(k

′, p, q)dp,

Π−(T )(k, t) = 2

∫ k

0
dk′
∫ ∞

sup(k,k′/a)
dp

∫ p

p−k′
S(T )(k

′, p, q)dq. (B.6)

The region of non-local transfers is the grey part of the rectangle ∆k delimited by q = p + k

and q = p − k in Fig. B.1. These regions being symmetric with respect to q = p, this justifies

the factor 2. The condition (B.1) yields

Π+
(T ) :

{
q < ap

q < ak,
Π−(T ) :

{
p > k/a

q > k/a.

Since k′ < k for Π−(T ), it could happen that k > k′/a. This is the reason why sup(k, k′/a) is

chosen in the bound. Then, it has been shown (Lesieur & Schertzer, 1978) that

S(T )(k, p, q) + S(T )(p, q, k) + S(T )(q, k, p) = 0. (B.7)

Because of (p, q) symmetry, one has S(T )(p, q, k) = 0. This allows to compute the non-local flux

in a symmetric way

S(T )(k, p, q) =
1

2

(
S(T )(k, p, q)− S(T )(q, k, p)

)
. (B.8)

The final expressions are gathered in Lesieur (2008), and in what follows, these expressions are

recovered. Before that, let’s discuss the conservation property (B.7), which relies on the
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(p, q) symmetry: starting from (2.15) for TNL
ij , one has

TNL
ii (k) = kn

∫
Snii(k,p)d3p+ km

∫
S∗iim(k,p)d3p =

∫
s(k,p, q)d3p,

with

s(k,p, q) = kn < û′′nûiû
′
i > +km < û′mûiû

′′
i > . (B.9)

Further using kn + qn = −pn and incompressibility so that pnu
′
n = 0 yields

s(k,p, q) + s(q,k,p) + s(p, q,k) = 0. (B.10)

A similar property can be written for the scalar field. Using (p, q) symmetry, one can write the

term under the integral in (4.7) as

sT (k,p, q) = 2kj < û′j θ̂θ̂
′′ > +kj < û′′j θ̂θ̂

′ >, (B.11)

so that for the same reasons

sT (k,p, q) + sT (q,k,p) + sT (p, q,k) = 0. (B.12)

B.2 Expansions for q � k ∼ p

The small parameter of the expansion is ζ = q/k. Firstly, p is expanded as

p = k

(
1− yζ +

1

2
(1− y2)ζ2

)
, and p−1 = k−1

(
1 + yζ +

1

2
(3y2 − 1)ζ2

)
.

Then, geometrical relations yield

z = 1− 1

2
(1− y2)ζ2, and x =

−k2 + p2 + q2

2pq
= −y + (1− y2)ζ +

3

2
y(1− y2)ζ2.

This gives

xy + z3 = (1− y2)

(
1 + yζ − 3

2
(1− y2)ζ2

)
, xy + z = (1− y2)

(
1 + yζ +

1

2
(3y2 − 1)ζ2

)
,

xz + y3 = (1− y2)
(
−y + ζ + 2yζ2

)
, xz + y = (1− y2)ζ(1 + 2yζ).

Then, a Taylor expansion provides

E(T )(p) = E(T )(k)− qy
∂E(T )

∂k
+

1

2
ζ2

(
(1− y2)k

∂E(T )

∂k
+ y2k2∂

2E(T )

∂k2

)
.

The method is the following one: the different quantities are expressed as a function of y (the

cosine of the angle in front of p) and the small parameter ζ = q/k. Then, the p-integration is

done by using y and the variable

y′ =
k
′2 − k2 + q2

2k′q



Appendix B. Non-local Expansions of the Non-Linear Transfers 215

so that ∫ k

k′−p
S(T )(k

′, p, q)dp =

∫ 1

y′

k′q

p
S(T )(k

′, p, q)dy.

Finally, the last integration, assuming that θ
(T )
k′k′q ' θ

(T )
kkq, is done according to

∫ k+q

k
(. . .)dk′ = q

∫ 1

0
(. . .)dy′, (B.13)

and one has in particular∫ 1

0

∫ 1

y′
y(1− y2)dydy′ =

2

15
,

∫ 1

0

∫ 1

y′
(1− y2)dydy′ =

1

4
,

Computation of Π+(k, t): firstly, one has

k2E(p)− p2E(k) = k2
[
yζ

(
2E(k)− k∂E

∂k

)
+ ζ2

(
−E(k) +

1− y2

2
k
∂E

∂k
+
y2

2
k2∂

2E

∂k2

)]
,

kq

p

(xy + z3)

q
= (1− y2)

(
1 + 2yζ + 2(2y2 − 1)ζ2

)
,

kq

p
S(k, p, q) = θkkq(1− y2)E(q)

[
ykq

(
2E(k)− k∂E

∂k

)

+ q2

(
(4y2 − 1)E(k) +

1

2
(1− 5y2)k

∂E

∂k
+
y2

2
k2∂

2E

∂k2

)]
.

At the lowest order in q, only the first rhs term remains. Secondly,

kq

p

(xz + y3)

p
= ζ(1− y2)(−y + (1− 2y2)ζ + y(5− 4y2)ζ2),

kq(xz + y3)

p2
q2E(p)E(k) = (1− y2)E(k)

(
−yq2ζE(k) + q2ζ2

[
(1− 2y2)E(k) + y2k

∂E

∂k

])
,

kq(xz + y3)

p2
k2E(p)E(q) = (1− y2)E(q)

(
− kqy

(
E(k)− qy∂E

∂k

)

+ q2
[
(1− 2y2)E(k) +

1

2
qy(5y2 − 3)

∂E

∂k
− 1

2
qky3∂

2E

∂k2

])
.

Using equation (B.8), this yields

2
kq

p
S(k, p, q) = θkkq(1− y2)

[
E(k)

[
yq2ζE(k)− q2ζ2

(
(1− 2y2)E(k) + y2k

∂E

∂k

)]
+ E(q)

[
kqy

(
E(k)− k∂E

∂k

)
+ q2

(
2y2E(k) +

1

2
(1− 3y2)k

∂E

∂k
+

1

2
y2k2∂

2E

∂k2

)]]
.

At the lowest order

2
kq

p
S(k, p, q) = θkkqy(1− y2)

[
E(k)2q2ζ + kqE(q)

(
E(k)− k∂E

∂k

)]
.
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Hence, the direct non-local kinetic flux is

Π+(k, t) =
2

15
k

(
E(k)− k∂E

∂k

)∫ ak

0
θkkqq

2E(q)dq +
2

15

E(k)2

k

∫ ak

0
θkkqq

4dq. (B.14)

Computation of Π+
T (k, t): the calculation is very similar to the previous one. One has

kq

p

(xy + z)

q
= (1− y2)

(
1 + 2yζ + (4y2 − 1)ζ2

)
,

so that

kq

p

(xy + z)

q
E(q)(k2ET (p)− p2ET (k)) = (1− y2)

[
kqy

(
2ET (k)− k∂ET

∂k

)

+ q2

(
(4y2 − 1)ET (k) +

1− 5y2

2
k
∂ET
∂k

+
1

2
y2k2∂

2ET
∂k2

)]
. (B.15)

Then

kq

p

(xz + y)

p
E(p)(q2ET (k)− k2ET (q)) = (1− y2)(1 + 4yζ)q2E(k)

[
ET (k)ζ2 − ET (q)

]
.

Using (B.8), one obtains the direct non-local scalar flux at the lowest order

Π+
T (k, t) =

2

15
k

(
2ET (k)− k∂ET

∂k

)∫ ak

0
θTkkqq

2E(q)dq

+
1

4
E(k)

∫ ak

0
θTkkqq

3ET (q)dq − 1

4

E(k)ET (k)

k2

∫ ak

0
θTkkqq

5dq. (B.16)

The non-local fluxes are displayed in Fig. B.2 at Pr = 104. It is clear that they bring energy

beyond Kolmogorov wavenumber kη to sustain the k−1 viscous-convective range.
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Figure B.2: (a) Non-local fluxes Π+ and Π+
T . (b) Slopes of the kinetic and scalar spectra E

and ET . Both with the Kolmogorov and Batchelor wavenumbers kη and kB , at Pr = 104

and σ = 2 at Reλ = 103.
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B.3 Expansions for k � p ∼ q

The small parameter of the expansion is ζ = k/p. Firstly, q is expanded as

q = p

(
1− zζ +

1

2
(1− z2)ζ2

)
, and q−1 = p−1

(
1 + zζ +

1

2
(3z2 − 1)ζ2

)
.

Then, geometrical relations yield

x = 1− 1

2
(1− z2)ζ2, and y =

k2 − p2 + q2

2kq
= −z + (1− z2)ζ − 3

2
z(z2 − 1)ζ2.

This gives

xy + z3 = (1− z2)
(
−z + ζ + 2zζ2

)
, xy + z = (1− z2)ζ(1 + 2zζ),

xz + y3 = z(1− z2)

(
1 + 3zζ +

1

2
(15z2 − 7)ζ2

)
, xz + y = (1− z2)ζ (1 + zζ) .

Then, a Taylor expansion provides

E(T )(q) = E(T )(p)− kz
∂E(T )

∂p
+

1

2
ζ2

(
(1− z2)p

∂E(T )

∂p
+ z2p2∂

2E(T )

∂p2

)
.

The method is almost the same: the different quantities are expressed as a function of z (the

cosine of the angle in front of q) and the small parameter ζ = k/p. Then, the q-integration is

done by using z, which simplifies, at the first order, into∫ p

p−k′
S(T )(k

′, p, q)dq =

∫ 1

0

k′p

q
S(T )(k

′, p, q)dz.

As previously, it is assumed that θ
(T )
k′pp ' θ

(T )
kpp.

Computation of Π−(k, t): firstly,

kp

q

(xy + z3)

q
= ζ(1− z2)(−z + (1− 2z2)ζ + z(5− 4z2)ζ2),

kp

q

(xz + y3)

p
= ζz(1− z2)(1 + 4zζ + 8(3z2 − 1)ζ2).

In all the following calculations, the lowest order always simplifies. Hence

2
kp

q
S(k, p, q) = θkpp(1− z2)

[
(1 + 2z2)k2ζ2E(p)2 − k2E(k)E(p)− z2k2E(k)p

∂E

∂p

]
.

Then, using∫ 1

0
(1− z2)(1 + 2z2)dz =

14

15
,

∫ 1

0
(1− z2)dz =

2

3
,

∫ 1

0
z2(1− z2)dz =

2

15
,
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one finds the inverse non-local kinetic flux

Π−(k, t) =
14

15

∫ k

0
k′4

[ ∞∫
sup(k,k′/a)

θk′pp
E(p)2

p2
dp

]
dk′

− 2

15

∫ k

0
k′2E(k′)

[ ∞∫
sup(k,k′/a)

θk′pp

(
5E(p) + p

∂E

∂p

)
dp

]
dk′. (B.17)

Computation of Π−T (k, t): firstly,

kp

q

(xy + z)

q
= ζ2(1− z2)(1 + 4zζ),

kp

q

(xz + y)

p
= ζ2(1− z2)(1 + 2zζ).

This directly yields the inverse non-local scalar flux

Π−T (k, t) = −4

3

∫ k

0
k′2ET (k′)

[ ∞∫
sup(k,k′/a)

θTk′ppE(p)dp

]
dk′ +

4

3

∫ k

0
k′4

[ ∞∫
sup(k,k′/a)

θTk′pp
ET (p)E(p)

p2
dp

]
dk′.

B.4 Applications of the isotropic non-local transfers

In this section, two brief applications of the non-local transfers, in addition to the classical case

for weakly diffusive scalars, are presented.

Spatial resolution: in Fig. B.3, the number of points per decade f is changed. With a better

spatial resolution in wavenumbers, a = 101/f − 1 decreases and thus, according to (B.1), the

influence of the non-local transfers should decrease: this is assessed in Fig. B.3 where three

different resolutions are tested, with the quantity ∆[kSNL(iso)](k, t) referring to the difference

between a simulation with the non-local expansions and the same simulation without them. This

quantity ∆[kSNL(iso)](k, t) decreases in intensity with a better spatial resolution. In addition, it

appears that the non-local expansions are more important around the integral and Kolmogorov

wavenumbers than in the inertial range, which is expected.
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Figure B.3: Influence of the spatial resolution on the non-local transfers in HIT at Pr = 1,
σ = 2 and Reλ = 2.103.
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Homogeneous Shear Flows: it is revealed in Fig. B.4 that the isotropic non-local transfers

T±(k, t) are negligible with respect to the local ones for high Reynolds numbers shear flows (Π−

is very small compared to Π+), where ΠNL(iso) is the flux of SNL(iso), following

ΠNL(iso)(k, t) = −
∫ k

0
SNL(iso)(k, t)dk.

This justifies a posteriori why the non-local developments are used only for HIT and more

specifically for a scalar field with Pr � 1.
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Figure B.4: Influence of the isotropic non-local transfers in shear flows at St = 50 (Reλ =
104) with S = 0.1 and σ = 2. (a) Budget terms for the isotropic part and the component

()33. (b) Associated fluxes.

In addition to the usual kinetic and scalar isotropic non-local fluxes presented in this

appendix, non-local fluxes were also computed for the non-linear transfers of Fi, and for

the non-linear directional and polarization kinetic transfers. These three contributions

revealed to be completely negligible with respect to the local ones, and much less intense

than the isotropic non-local contributions.



Appendix C

Details on the Spherically-Averaged

Lin Equations

Here, all the calculations yielding to the spherically-averaged Lin equations of the velocity field of Chapter

2 are fully detailed. It includes notably the computation of the non-linear and linear transfers, and the

complete spherical and λ integrations. Moreover, additional theoretical considerations are developed: (i)

quadratic contributions of anisotropy in the non-linear transfers, (ii) the modelling of anisotropy resulting

from a truncation at the fourth-order of the expansion into spherical harmonics of the spectral Reynolds

tensor.

C.1 Spectral evolution equations

C.1.1 Craya equation

The evolution equation of the fluctuating field in the presence of both mean velocity gradients and

rotation is (
∂

∂t
+ uj

∂

∂xj

)
ui + Uj

∂ui
∂xj

+ ujAij +2εinjΩnuj︸ ︷︷ ︸
Solid body rotation

= − ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

. (C.1)

The counterpart of (2.1) in Fourier space, using Ui = Aijxj and x̂jul = i∂j ûl, is(
∂

∂t
−Alnkl

∂

∂kn
+ νk2

)
ûi(k) +Aij ûj(k) + 2εinjΩnûj + ikj ûiuj(k) = −ikip̂(k), (C.2)

where ûi is the Fourier transform of ui, Aij = djUi is a space uniform gradient matrix, k is the wave-

number modulus, and ûmun(k) is the convolution product

ûium(k) =

∫
k=p+q

ûi(p)ûm(q)d3p.

Thanks to the incompressibility condition ûiki = 0 in Fourier space, the pressure term can be erased by

projecting (C.2) on the plane perpendicular to kip̂. Using the operator Pij = δij − αiαj one finds(
∂

∂t
−Alnkl

∂

∂kn
+ νk2

)
ûi(k) +Mij(k)ûj(k) + iPimn(k)ûmun(k) = 0, (C.3)

220
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where Pimn(k) is the Kraichnan operator 2Pimn = kmPin(k) + knPim(k) and

Mij(k) = (δin − 2αiαn)Anj
+PinεnljΩl︸ ︷︷ ︸
Rotation effect

, (C.4)

where αi = ki/k. Writing (C.3) for ûj(k), multiplying it by û∗i (p), summing it to (C.3) written for

û∗i (p) and multiplied by ûj(k), and finally taking the ensemble average, one obtains the equation of the

second-order spectral tensor R̂ij , which is, in Fourier space

R̂ij(k, t)δ(k − p) =< û∗i (p, t)ûj(k, t) > . (C.5)

The previous equation for R̂ij is finally integrated over the whole domain (which simplifies the Dirac

function δ(k − p)) to obtain the Craya equation. The total derivative reads dt = ∂t −Aijki∂j so that

dR̂ij
dt

+ 2νk2R̂ij(k) +Min(k)R̂nj(k) +Mjn(k)R̂ni(k) = TNL
ij (k). (C.6)

C.1.2 Generalized Lin equations for E and Z

The helical modes

Nj(k) = e
(2)
j (k)− ie

(1)
j (k). (C.7)

are linked to the Craya-Herring frame (e(1), e(2), e(3)) through

e
(3)
i =

ki
k
, e

(2)
i = εijne

(3)
j e(1)

n , e
(1)
i = εijl

kjnl
|k × n|

= εijl
kjnl
k⊥

, (C.8)

where n is a fixed reference vector. By definition of these helical modes, one has Njkj = 0, NjNj = 0,

NjN
∗
j = 2 and NiN

∗
j = Pij − iεijnαn. The generalized E-Lin equation is obtained by taking half the

trace of (2.13) and replacing R̂ij by the E − Z decomposition (2.30), so that

dE
dt

+ 2νk2E +Min

(
EPin + <(Z(k, t)Ni(k)Nj(k))

)
=
TNL
ii

2
. (C.9)

Using the incompressibility condition Aii = 0, the E-Lin equation presented in (2.31) is recovered. One

can remark that rotation does not intervene directly in the evolution equation of E . The calculation

for the Z-Lin equation is more complicated: (2.13) is firstly multiplied by N∗i (k)N∗j (k)/2. One has to

compute R̂njN
∗
j and MinN

∗
i which can be done by using the previous relations on Nj and the fact that

∀z ∈ C,<(z) = (z + z∗)/2. One finds R̂njN
∗
j = EN∗n + ZNn and MinN

∗
i = AinN

∗
i . This yields

dZ

dt
+ 2νk2Z − R̂ij

2

d

dt
(N∗i N

∗
j ) +AinN

∗
i (EN∗n + ZNn) = TZ , (C.10)

where the non-linear transfer linked to the polarization anisotropy TZ is defined in (2.34). Some detailed

calculations yields

<(ZNnNj)MinN
∗
i N
∗
j = −A+

lnαlαnZ − 2iZ

(
2αlΩl +

1

2
εlpqαlA

−
pq

)
EPnjMinN

∗
i N
∗
j = A+

lnN
∗
l N
∗
nE

Since the Craya-Herring frame is moving in space with time, the term dt(N
∗
i N
∗
j ) in (C.10) is evaluated

using (2.30) and the previous remark on R̂njN
∗
j , so that

R̂ij
d

dt
(N∗i N

∗
j ) = −ZNj

dN∗j
dt

.
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Finally, to compute dN∗j /dt, one has to use

d

dt
=

∂

∂t
−Aijki

∂

∂kj
,

dki
dt

= −Ajikj .

Moreover, similar calculations yield

∂αi
∂kj

=
Pij
k
,

∂k

∂ki
= αi.

Finally,

Nj
dN∗j
dt

= 2ie(1)
p Alp

(
e

(2)
l +

nlk

k⊥

)
= −2iΩCH, (C.11)

where ΩCH expresses the rotation of the Craya-Herring frame. The Z-Lin equation, accounting for

rotation, is then(
d

dt
+ 2νk2

)
Z −A+

lnαlαnZ +A+
lnN

∗
l N
∗
nE − 2iZ

(
2Ωlαl︸ ︷︷ ︸

Rotation part

+
1

2
εlpqαlA

−
pq − ΩCH

)
= TZ , (C.12)

in agreement with Cambon et al. (2013); Mons et al. (2016). One can simplify this expression a bit,

using a previous relation that gives

AlnNnN
∗
l Z = −αlαnA+

lnZ − iεjnlαjA
−
nl,

so that (2.33) is recovered.

C.1.3 Evolution equation of Sijk(k,p, t)

From (C.3), the evolution equation of the third-order tensor Sijk, defined in (2.17), is obtained by writing

(C.3) for ûj , û
′
i and û′′k , and summing these three equations, previously multiplied by û′iû

′′
k , ûj û

′′
k and

û′iûj respectively. Since Sijk(k,p, t) does not depend on q, the term ql
∂
∂qn

has to be erased. This is done

by using ql = −kl − pl and k and p being independent variables. Hence,

u′iu
′′
k

∂uj
∂kn

= u′′k
∂uju

′
i

∂kn
, uju

′′
k

∂u′i
∂pn

= u′′k
∂uju

′
i

∂pn
,

∂

∂qn
= − ∂

∂pn
= − ∂

∂kn
.

Averaging and integrating to erase Dirac functions yields(
∂

∂t
+ ν(k2 + p2 + q2)−Alm

(
kl

∂

∂km
+ pl

∂

∂pm

))
Sijn(k,p, t) +Mim(q)Smjn(k,p, t)

+Mjm(k)Simn(k,p, t) +Mnm(p)Sijm(k,p, t) = Tijn(k,p, t).

Here, some details on the quasi-normal closure TQN
ijn (2.37) are provided. For this purpose, the correlation

that intervenes in the previous equation is defined as

Tijn(k,p)δ(k + p+ q) = i < si(q)ûj(k)ûn(p) >, (C.13)

where

sj(k) = −Pjpq(k)

∫
k=r+s

ûp(r)ûq(s)d
3r. (C.14)

Thus, the previous equation becomes(
∂

∂t
+ ν(k2 + p2 + q2)

)
Sijn(k,p, t) + ... = Tijn(k,p, t) + Tjni(p, q, t) + Tnij(q,k, t). (C.15)



Appendix C. Details on the Spherically-Averaged Lin Equations 223

Each of the three rhs terms can be written

Tijn(k,p)δ(k + p+ q) = Pipq(q)

∫
q=r+s

< ûp(r)ûq(s)ûj(k)ûn(p) > d3r.

The quasi-normal approximation consists into neglecting the fourth order cumulants, which gives

TQN
ijn (k,p)δ(k + p+ q) = Pipq(0)R̂jn(k)R̂pq(−s)δ(k + p)

+ Pipq(q)R̂jp(k)R̂nq(p)δ(k + p+ q) + Pipq(q)R̂np(p)R̂jq(k)δ(k + p+ q),

and simplifies into

TQN
ijn (k,p) = 2Pipq(q)R̂jp(k)R̂nq(p).

The quasi-normal term TQN
ijn is finally recovered since

TQN
ijn(k,p, t) = TQN

ijn (k,p, t) + TQN
jni (p, q, t) + TQN

nij (q,k, t).

C.2 Calculations of TE and TZ

C.2.1 Relations between frameworks

In Fig. 2.2, a new frame (β,γ,α) has been presented, attached to the plane of the triad. The new frame

(β,γ,α) is obtained from the Craya frame (e(1), e(2), e(3) = α) by rotations of angles λ, λ′ and λ′′

around k, p and q. Hence, one has

N(k) = N = e(2) − ie(1) = eiλ (β + iγ)︸ ︷︷ ︸
W

, (C.16)

N(p) = N ′ = e(2)
′
− ie(1)

′
= eiλ′ (β′ + iγ)︸ ︷︷ ︸

W’

, (C.17)

N(q) = N ′′ = e(2)
′′
− ie(1)

′′
= eiλ′′ (β′′ + iγ)︸ ︷︷ ︸

W”

, (C.18)

where γ is normal to the plane of the triad

γ =
k × p
|k × p|

. (C.19)

The vectors β, β′ and β′′ are perpendicular to k, p and q but still in the plane of the triad

β =
k × γ
|k × γ|

, β′ =
p× γ
|p× γ|

, β′′ =
q × γ
|q × γ|

. (C.20)

With these definitions, one gets

α′ = −zα−
√

1− z2β, α′′ = −yα+
√

1− y2β,

β′ = −zβ +
√

1− z2α, β′′ = −yβ −
√

1− y2α,

W ′ =
√

1− z2α+
1− z

2
Ne−iλ − 1 + z

2
N∗eiλ, W ′′ = −

√
1− y2α+

1− y
2
Ne−iλ − 1 + y

2
N∗eiλ,

with x = cos a, y = cos b, and z = cos c. To perform the following calculations, one has to keep in mind

fundamental geometrical relations valid in any triangles

k = pz + qy, p = kz + qx, q = px+ ky,
k

sin a
=

p

sin b
=

q

sin c
. (C.21)
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Finally, since p and q have symmetric behaviours, one has both∫
e2iλF (k,p, q)d3p =

∫
e2iλF (k, q,p)d3p,

∫
f(p)d3p =

∫
1

2
(f(p) + f(q))d3p. (C.22)

C.2.2 Computation of TQN
ijn

Starting from (2.39), the main term to compute is klT
QN
ijl , divided into two parts

kl
2
TQN
ijl (k,p, t) = R̂mj

(
P ′imnR̂

′′
nlkl + klP

′
lmnR̂

′′
ni

)
︸ ︷︷ ︸

τ−ij

+
1

2
Pjmnkl

(
R̂′′niR̂

′
ml + R̂′niR̂

′′
ml

)
︸ ︷︷ ︸

τ+
ij

, (C.23)

such that

τ−ij + τ+
ij = R̂′′nl(klδip + kpδil)

(
P ′pmnR̂mj +

1

2
PjmnR̂

′
mp

)
.

Computation of τ−ij : starting from the expression of τ−ij given in (C.23) and using the fact that

pmR̂
′′
ml = −kmR̂′′ml thanks to the incompressibility condition, and that kmR̂mj = 0, one finds

τ−ij =
1

2
kl

[
knR̂

′′
ln

(
2α′iα

′
mR̂mj − R̂ij

)
+ 2α′mqxR̂mjR̂

′′
li

]
. (C.24)

Using (2.30), geometrical relations and equalities such as Wiβi = 1 and βiγi = 0, one has

klR̂
′′
lnkn = k2(1− y2)

(
E ′′ + <X ′′

)
= kp(xy + z)

(
E ′′ + <X ′′

)
,

klR̂
′′
lnNn = eiλk sin b

(
E ′′y +

y + 1

2
X ′′ − 1− y

2
X ′′∗

)
= eiλk sin b

(
y(E ′′ + <X ′′) + i=X ′′

)
,

where X = Ze2iλ, X ′ = Z ′e2iλ′ and X ′′ = Z ′′e2iλ′′ . Similarly,

klR̂
′′
lnN

∗
n = e−iλk sin b

(
y(E ′′ + <X ′′)− i=X ′′

)
.

Then, using pmNm = pα′mNm = −peiλ sin c,

pmR̂mjNj = −p sin c
(
Eeiλ + Z∗e−iλ

)
, pmR̂mjN

∗
j = −p sin c

(
Ee−iλ + Zeiλ

)
.

↪→ Now, the contribution of τ−ij to the polarization transfer is evaluated. Using q sin b sin c = p(1 − z2),

this yields

1

2
τ−ijN

∗
i N
∗
j =

i

2
kpx(1− z2)(Ee−2iλ + Z)=X ′′

+
1

2
kp
(
E ′′ + <X ′′

)(
z(1− z2)Ee−2iλ − Z(xy + z3)

)
. (C.25)

↪→ Finally, the contribution of τ−ij to the directional transfer is computed. Using R̂ijNiN
∗
j = R̂ijN

∗
i Nj =

Rii = 2E and 2τ−ii = (NiN
∗
j +N∗i Nj)τ

−
ij , this gives

1

2
τ−ii =

1

2
kp
(
E ′′ + <X ′′

)(
z(1 − z2)<X − (xy + z3)E

)
+

1

2
kpx(1 − z2)=X=X ′′. (C.26)

Computation of τ+
ij : starting from

τ+
ij = klPjmnR̂

′
mlR̂

′′
ni =

1

2
αlαmR̂

′
lm(k2R̂′′ji − 2kjknR̂

′′
ni) +

1

2
knklR̂

′′
niR̂
′
jl,
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and using the facts that αiα
′
i = −z, αiN ′i = eiλ′

√
1− z2 and αiN

′∗
i = e−iλ′

√
1− z2 one finds

αmαlR̂
′
ml = (1− z2)(E ′ + <X ′).

Similar calculations, with α′′iW
∗
i =

√
1− y2 and WiWi = 0, yield

N∗i N
∗
j R̂
′′
ij = e−2iλ

(
(1 + y2)(E ′′ + <X ′′)− 2E ′′ − 2iy=X ′′

)
,

knN
∗
i R̂
′
ni = −k

√
1− z2e−iλ

(
z(E ′ + <X ′)− i=X ′

)
.

↪→ Now, the contribution of τ+
ij to the polarization transfer is evaluated. Using the previous calculations

and a symmetric writing, one finds

τ+
ijN

∗
i N
∗
j =

1

4
k2e−2iλ(1− z2)(E ′ + <X ′)

(
(1 + y2)(E ′′ + <X ′′)− 2E ′′ − 2iy=X ′′

)
+

1

4
k2e−2iλ(1− y2)(E ′′ + <X ′′)

(
(1 + z2)(E ′ + <X ′)− 2E ′ − 2iz=X ′

)
− 1

2
k2e−2iλ(x+ yz)(y(E ′′ + <X ′′)− i=X ′′)(z(E ′ + <X ′)− i=X ′). (C.27)

Let’s simplify the geometric factor that affects (E ′′ + <X ′′)(E ′ + <X ′). Using the following relations

(1− z2) =
q

p
(x+ yz) =

q2

p2
(1− y2), k(2yz + x) = qz + py, 2xyz = 1− x2 − y2 − z2,

one finds

k2(1− 2y2z2 − xyz) = kp(xy + z3) + kq(xz + y3). (C.28)

Thus, with p↔ q symmetry

k2e−2iλ

2
(1− 2y2z2 − xyz)(E ′′ + <X ′′)(E ′ + <X ′)

=
e−2iλ

2

(
kp(xy + z3) + kq(xz + y3)

)
(E ′′ + <X ′′)(E ′ + <X ′)

= e−2iλkp(xy + z3)(E ′′ + <X ′′)(E ′ + <X ′). (C.29)

The term

−k
2e−2iλ

4

(
(1− z2)(E ′ + <X ′)2E ′′ + (1− y2)(E ′′ + <X ′′)2E ′

)
simplifies using k(1− z2) = q(xz + y) and k(1− y2) = p(xy + z), into

− k2e−2iλ

4

(
(1− z2)(E ′ + <X ′)2E ′′ + (1− y2)(E ′′ + <X ′′)2E ′

)
= −kpe−2iλ(xy + z)(E ′′ + <X ′′)E ′. (C.30)

The remaining imaginary term

ik2e−2iλ

2

[
=X ′′(E ′ + <X ′)(z(x + yz) − y(1 − z2)) + =X ′(E ′′ + <X ′′)(y(x + yz) − z(1 − y2))

]
can be simplified using p↔ q symmetry and the following relations

k(1− z2) = q(xz + y), k(1− y2) = p(xy + z), k(x+ yz) = p(y + xz) = q(z + xy).

Therefore

ik2e−2iλ

2

[
=X ′′(E ′ + <X ′)(z(x+ yz)− y(1− z2)) + =X ′(E ′′ + <X ′′)(y(x+ yz)− z(1− y2))

]
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= ikp(y2 − z2)e−2iλ=X ′(E ′′ + <X ′′). (C.31)

The last term is
k2e−2iλ

2
(x+ yz)=X ′=X ′′ = kpye−2iλ(1− z2)=X ′=X ′′ (C.32)

due to kpy(1− z2) + kqz(1− y2) = k2(x+ yz). The final contribution of τ+
ij to TZ is

τ+
ijN

∗
i N
∗
j = kpe−2iλ

[
y(1− z2)=X ′=X ′′

+ (E ′′ + <X ′′)
(

(xy + z3)(E ′ + <X ′)− (xy + z)E ′ + i(y2 − z2)=X ′
)]
.

↪→ Let’s now consider the contribution of τ+
ij to TE . As before, τ+

ij (NiN
∗
j +N∗i Nj) = 2Pijτ

+
ij is computed.

One has

R̂′′ijPij = E ′′(1 + y2)−<X ′′(1− y2), knR̂
′′
niNi = k sin beiλ(y(E ′′ + <X ′′) + i=X ′′).

All other useful quantities have already been detailed. Thus, under a symmetric form

2τ+
ij (NiN

∗
j +N∗i Nj) = k2(E ′′ + <X ′′)

(
(E ′ + <X ′)(z2 − 2y2z2 − xyz) + (1− y2)(E ′ −<X ′)

)
− k2(x+ yz)=X ′=X ′′ + k2(E ′ + <X ′)

(
(E ′′ + <X ′′)(y2 − 2y2z2 − xyz) + (1− z2)(E ′′ −<X ′′)

)
.

(C.33)

Using previous geometric relations, the total contribution of τ+
ij to TE becomes

τ+
ij (NiN

∗
j +N∗i Nj) = 2kp

[
(xy + z3)(E ′′ + <X ′′)(E ′ + <X ′)

− (xy + z)(E ′′ + <X ′′)<X ′ − y(1− z2)=X ′=X ′′
]
. (C.34)

Final step: The equation for τij is

τij(k, t) = kl

∫
θkpqT

QN
ijl (k,p, t)d3p. (C.35)

With the definitions of τ−ij and τ+
ij given in (C.23), and using the fact that τij is real (because there is

no helicity), one finds

τij(k, t) = 2

∫
k+p+q=0

θkpq(τ
−
ij + τ+

ij + τ−∗ij + τ+∗
ij )d3p = 4

∫
k+p+q=0

θkpq(τ
−
ij + τ+

ij )d3p. (C.36)

Consequently, (2.41) and (2.42) are obtained.

Return to isotropy: some details to obtain T (RTI) in equation (2.69) are given. Using previous

relations, one gets

αiτ
−
ijN

∗
j = k(1− y2)

√
1− z2(zk − qx)e−iλ(E ′′ + <X ′′)(E +X)

and, with p↔ q symmetry

αiτ
+
ijN

∗
j = −k2(1− y2)

√
1− z2e−iλ(E ′′ + <X ′′)(z(E ′ + <X ′)− i=X ′),

so that (2.69) is recovered.
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C.3 Spherically-averaged non-linear transfers

C.3.1 λ-integration

In the anisotropic framework, the difficulty is to solve the integral that depends on the orientation of the

plane of the triad. Triple integrals simplify using the change of variable∫ ∫ ∫
f1(k,p, t)d3p =

∫ ∫
∆k

pq

k

(∫ 2π

0

f2(k, p, q, λ)dλ

)
dpdq, (C.37)

where λ as been defined in (C.16). ∆k is the domain where k, p and q are the lengths of the sides of

the triangle formed by the triad. In the isotropic case, the λ-integral amounts to a multiplication by 2π

which is not true anymore in the anisotropic case. In this part, the main integrals that are useful for the

calculations are∫ 2π

0

α′iα
′
jdλ = π[(1− z2)δij + (3z2 − 1)αiαj ],

∫ 2π

0

e−2iλα′iα
′
jdλ = π

1− z2

2
N∗i N

∗
j ,

∫ 2π

0

W ′iW
′
jdλ =

∫ 2π

0

W ′∗i W
′∗
j dλ = π(z2 − 1)(δij − 3αiαj),∫ 2π

0

e−2iλW ′iW
′
jdλ = π

(z + 1)2

2
N∗i N

∗
j ,

∫ 2π

0

e−2iλW ′∗i W
′∗
j dλ = π

(1− z)2

2
N∗i N

∗
j .

Similar results regarding ′′ quantities are obtained by changing z to y. Then, λ-integrations of E and Z

give ∫ 2π

0

E(dir)′dλ = 15πE ′0H
(dir)′

ij (1− 3z2)αiαj ,

∫ 2π

0

E(dir)dλ = −30πE0H(dir)
ij αiαj ,∫ 2π

0

e−2iλE(dir)′dλ =
15

2
πE ′0H

(dir)′

ij (z2 − 1)N∗i N
∗
j ,

∫ 2π

0

e−2iλE(dir)dλ = 0,

∫ 2π

0

<X ′dλ =
15

2
πE ′0H

(pol)′

ij (1− z2)αiαj ,

∫ 2π

0

<Xdλ = 0,

∫ 2π

0

e−2iλ<X ′dλ =
5

4
πE ′0H

(pol)′

ij (1 + z2)N∗i N
∗
j ,

∫ 2π

0

e−2iλ<Xdλ =
5

2
πE0H(pol)

ij N∗i N
∗
j ,∫ 2π

0

e−2iλ=X ′dλ = −5

2
πE ′0H

(pol)′

ij zN∗i N
∗
j ,

∫ 2π

0

e−2iλXdλ = 5πE0H(pol)
ij N∗i N

∗
j .

C.3.2 Spherical integration

In the context of moderate anisotropy, only the second order of the R̂ij expansion is kept. This means

that all quadratic contributions H
()
ijH

()
mn can be simplified, because there are negligible with respect to

H
()
ij . Remembering that H

()
ii = 0 and H

()
ij = H

()
ji , and using the following relations∫

Sk

αiαjd
2k =

4πk2

3
δij ,

∫
Sk

αiαjαmαnd2k =
4πk2

15
(δijδmn + δimδjn + δinδjm),

∫
Sk

αid
2k =

∫
Sk

αiαjαnd2k = 0,∫
Sk

H()
mnαmαnPijd

2k = − 8

15
πk2H

()
ij ,

∫
Sk

H()
mnN

∗
mN

∗
nNiNjd

2k =
16

5
πk2H

()
ij ,
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it is possible to integrate spherically the directional and polarization transfer terms TE and TZ given by

(2.41) and (2.42). Let’s define SNL(iso), the non-linear spherically-averaged isotropic transfer is obtained

by spherically averaging TE as defined in (2.56). One can note that∫
Sk

αiαjH
()
ijd

2k = 0,

and thus the classical isotropic transfer term (2.57) is recovered. For the anisotropic transfer terms,

the first thing to do is to discard terms such as E(dir)′E(dir)′′ or E(dir)′<X ′′ and so on, because they are

quadratic in H
()
ij . Using the previous relations for λ-integration and spherical averaging, expressions

(2.59) and (2.61) are recovered.

C.4 Spherically-averaged linear transfers

Now, the emphasis is put on the linear terms that contribute to the total transfer. It is possible to write

the Craya equation (2.13) as

∂R̂ij
∂t

+ 2νk2R̂ij = TNL
ij + TL

ij , (C.38)

with the linear transfer being (starting from E-Lin and Z-Lin equations is more complicated)

TL
ij = 2Alnαl(αiR̂nj + αjR̂ni) +Alnkl

∂R̂ij
∂kn

− (AilR̂lj +AjlR̂il). (C.39)

C.4.1 Spherical integration

The previous relations are still verified. The following ones are used as well

Aln

∫
Sk

αiαjαlαnd2k =
8πk2

15
A+
ij ,

∫
Sk

Alnkl
∂E0αiαj
∂kn

d2k =
8πk2

15
A+
ij

(
3E0 + k

∂E0
∂k

)
,

∫
Sk

Alnkl
∂H

()
pqαpαq
∂kn

d2k =
8πk2

15
A+
ln

(
k
∂H

()
ln

∂k
+ 3H

()
ln

)
,

AlnH
()
pq

∫
Sk

αiαjαlαnαpαqd
2k =

8πk2

105

(
2A+

ilH
()
jl + 2A+

jlH
()
il +A+

lnH
()
lnδij

)
,

∫
Sk

Alnkl
∂H

()
pqαpαqαiαj
∂kn

d2k =
8πk2

105

(
(Ali +Ail)

(
k
∂H

()
lj

∂k
+ 3H

()
lj

)

+ (Alj +Ajl)

(
k
∂H

()
li

∂k
+ 3H

()
li

)
+Aln

(
k
∂H

()
ln

∂k
+ 3H

()
ln

)
δij

)
,

k
∂

∂k
(E0H()

ij ) + 3H
()
ijE0 =

1

4πk2

∂

∂k
(kEH

()
ij ).

C.4.2 Computation of T L
ij

The method to compute the linear transfers is the following one: firstly, the linear isotropic term SL(k, t)

is evaluated. Then, the total linear term, defined in (2.77), is computed. The linear directional transfer

S
L(dir)
ij (k, t), without the isotropic part, is calculated. Finally, both the isotropic and directional parts
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are subtracted from the total linear transfer to obtain the polarization one S
L(pol)
ij (k, t). This process is

easier than computing directly the polarization transfer. Hence, one has

S
L(tot)
ij (k, t) =

∫
Sk

TL
ij(k, t)d

2k = 2
(δij

3
SL(iso)(k, t) + S

L(dir)
ij (k, t) + S

L(pol)
ij (k, t)

)
.

A convenient expression of R̂ij is used

R̂ij = R̂e
ij + R̂z

ij = E0Pij
(

1− 15H(dir)
pq αpαq

)
+ 5E0

(
PinPjmH

(pol)
mn +

1

2
PijH

(pol)
pq αpαq

)
, (C.40)

where R̂e
ij accounts for isotropy and directivity, and R̂z

ij for polarization. In the following calculations,

the velocity gradient Aij is decomposed into symmetric and antisymmetric matrices

A+
ij =

Aij +Aji
2

, A−ij =
Aij −Aji

2
.

Computation of SL(iso) and S
L(tot)
ij : Using Pii = 2 and R̂z

ii = 0, one recovers easily (2.63) for SL(iso).

To compute the total linear transfer, three contributions of (C.39) have to be calculated for R̂e
ij and R̂z

ij ,

namely∫
Sk

2Alnαl(αiR̂
e
nj + αjR̂

e
ni)d

2k =

4

5
EA+

ij −
12

7
E
(
A+
ljH

(dir)
li +A+

liH
(dir)
lj − 2

3
δijA

+
lmH

(dir)
lm

)
+ 4E

(
A−jlH

(dir)
il +A−ilH

(dir)
jl

)
,∫

Sk

2Alnαl(αiR̂
z
nj + αjR̂

z
ni)d

2k =

12

7
E
(
A+
ljH

(pol)
li +A+

liH
(pol)
lj − 2

3
δijA

+
lmH

(pol)
lm

)
+

4

3
E
(
A−jlH

(pol)
il +A−ilH

(pol)
jl

)
∫
Sk

Alnkl
∂R̂e

ij

∂kn
d2k = − 2

15
A+
ij

∂kE

∂k

+
4

7

(
A+
il

∂

∂k
(kEH

(dir)
lj ) +A+

jl

∂

∂k
(kEH

(dir)
li )− 3δijA

+
lm

∂

∂k
(kEH

(dir)
lm )

)
,∫

Sk

Alnkl
∂R̂z

ij

∂kn
d2k = −4

7

(
A+
il

∂

∂k
(kEH

(pol)
lj ) +A+

jl

∂

∂k
(kEH

(pol)
li )− 2

3
δijA

+
lm

∂

∂k
(kEH

(pol)
lm )

)
,∫

Sk

(AilR̂
e
lj +AjlR̂

e
il)d

2k =
4

3
EA+

ij + 2E
(
A+
ilH

(dir)
jl +A+

jlH
(dir)
il +A−ilH

(dir)
jl +A−jlH

(dir)
il

)
,∫

Sk

(AilR̂
z
lj +AjlR̂

z
il)d

2k = 2E
(
A+
ilH

(pol)
jl +A+

jlH
(pol)
il +A−ilH

(pol)
jl +A−jlH

(pol)
il

)
.

Computation of S
L(dir)
ij and S

L(pol)
ij : the definition of S

L(dir)
ij is given in (2.64). Firstly,

1

4
Aln

∫
Sk

kl
∂R̂e

mm

∂kn
Pijd

2k = − 1

15
A+
ij

∂

∂k
(kE) +

1

5
A+
ijE + E

(
A−jnH

(dir)
ni +A−inH

(dir)
nj

)
+

2

7

(
A+
il

∂

∂k
(kEH

(dir)
jl ) +A+

jl

∂

∂k
(kEH

(dir)
il )− 3A+

lmδij
∂

∂k
(kEH

(dir)
lm )

)
− 3

7
E

(
A+
jlH

(dir)
il +A+

ilH
(dir)
jl − 2

3
A+
lmH

(dir)
lm δij

)
,

and R̂z
mm = 0. Similarly,

1

2
Aln

∫
Sk

R̂e
lnPijd

2k =
1

15
EA+

ij −
2

7
E
(
A+
ljH

(dir)
il +A+

liH
(dir)
jl − 3A+

lnδijH
(dir)
ln

)
,
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1

2
Aln

∫
Sk

R̂z
lnPijd

2k =
2

7
E
(
A+
ljH

(pol)
il +A+

liH
(pol)
jl +

5

3
A+
lnδijH

(pol)
ln

)
.

Summing the three previous terms and removing the isotropic part δijS
L(iso)/3 gives (2.65). The linear

polarization transfer is obtained by removing the directional and isotropic linear transfers from half of

the total contribution, according to (2.77). Equation (2.67) is then recovered.

C.4.3 Return to isotropy

The following relations for the λ-integration and spherical integration are needed∫ 2π

0

α′′i α
′′
j e
−iλdλ = −πy

√
1− y2(αiN

∗
j + αjN

∗
i ),

∫ 2π

0

W ′′i W
′′
j e
−iλdλ = π(1 + y)

√
1− y2(αiN

∗
j + αjN

∗
i ),

∫ 2π

0

W ∗
′′

i W ∗
′′

j e−iλdλ = π(y − 1)
√

1− y2(αiN
∗
j + αjN

∗
i ),

∫ 2π

0

E(dir)′′e−iλdλ = 30πy
√

1− y2E ′′0H
(dir)′′

ij αiN
∗
j ,∫ 2π

0

<X ′′e−iλdλ = 5πy
√

1− y2E ′′0H
(pol)′′

ij αiN
∗
j ,∫ 2π

0

i=X ′′e−iλdλ = −5π
√

1− y2E ′′0H
(pol)′′

ij αiN
∗
j .

The p quantities (with ′) are obtained by multiplying by −1 the rhs term and replacing y by z. Here,

the useful relation for spherical integration is

<
(
H()
mnαmαiN

∗
nNj

)
d2k =

4πk2

5
H

()
ij .

Then, from the definition of S
(RTI)
ij given in (2.70), it is possible to integrate spherically Wij using the

previous relations, and to find equation (2.71).

C.4.4 Rotation

The effect of rotation on the velocity field was detailed in section C.1. It was revealed that the evolution

equation of Z only was affected by rotation. Rotation was already taken into account in the Craya

equation through the tensor Mij , accordingly modified in (C.4). We call M̃ij the rotating part of this

tensor. One has first to evaluate the corresponding total linear transfer

S̃
L(tot)
ij = −

∫
Sk

(M̃inR̂nj + M̃jnR̂ni)d
2k.

There are no contributions from R̂e
ij : all terms like εlmnαlαn are zero which tremendously simplify the

calculations. In the end, the polarization transfer is simply half the total contribution, which yields

S̃
L(pol)
ij =

1

2
S̃

L(tot)
ij = −1

2

∫
Sk

(M̃inR̂nj + M̃jnR̂ni)d
2k (C.41)

= −4

3
E(k, t)Ωm

(
εimpH

(pol)
jp + εjmpH

(pol)
ip

)
.
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C.5 Kinetic quadratic anisotropic contributions

In this part, some details are given about the calculations of the second-order spherically-averaged non-

linear transfer terms, which take into account quadratic contributions of anisotropy. The convenient

notation is used

H
(dir)′′

li H
(dir)′

lj +H
(dir)′′

lj H
(dir)′

li − 2

3
H

(dir)′′

ln H
(dir)′

ln δij =

{
H(dir)′′ , H(dir)′

}
ij

.

Here are some useful relations√
1− y2

√
1− z2 = (x+ yz), 2xyz = 1− x2 − y2 − z2,∫

Sk

H ′′lnH
′
pqαlαnαpαqPijd

2k = −16πk2

105

(
H ′′liH

′
lj +H ′′ljH

′
li − 3H ′′lnH

′
lnδij

)
,∫

Sk

H ′′lnH
′
pq

(
αnαpδlq + αnαqδlp + αlαpδnq + αlαqδnp

)
Pijd

2k

= −16πk2

15

(
H ′′liH

′
lj +H ′′ljH

′
li − 4H ′′lnH

′
lnδij

)
,∫

Sk

H ′′lnH
′
pq

(
δipδjq + δiqδjp − αnαpδlq − αnαqδlp − αlαpδnq − αlαqδnp

)
Pijd

2k,

=
16πk2

15

(
H ′′liH

′
lj +H ′′ljH

′
li +H ′′lnH

′
lnδij

)
,∫

Sk

H ′′lnH
′
pqαlαnN

∗
pN
∗
qNiNjd

2k = −32πk2

35

(
H ′′liH

′
lj +H ′′ljH

′
li −

2

3
H ′′lnH

′
lnδij

)
,∫

Sk

H ′′lnH
′
pq(αnN

∗
l + αlN

∗
n)(αpN

∗
q + αqN

∗
p )NiNjd

2k =
96πk2

35

(
H ′′liH

′
lj +H ′′ljH

′
li −

2

3
H ′′lnH

′
lnδij

)
,

−<
(∫

Sk

H ′′lnH
′
pqN

∗
l N
∗
n(αpNq + αqNp)(αjNi + αiNj)d

2k
)

= −96πk2

35

(
H ′′liH

′
lj +H ′′ljH

′
li −

2

3
H ′′lnH

′
lnδij

)
,

−<
(∫

Sk

H ′′lnH
′
pqαlαn(αpN

∗
q + αqN

∗
p )(αjNi + αiNj)d

2k
)

= −16πk2

35

(
H ′′liH

′
lj +H ′′ljH

′
li −

2

3
H ′′lnH

′
lnδij

)
.

Since H
()
ln and H

()
pq are deviatoric tensors, terms in δln and δpq do not bring any contributions.

Non-linear directional and isotropic transfers: the three main parts to compute of the directional

transfer (2.41) are

T 1
E = E ′′0

(
H

(dir)′′

ij α′′i α
′′
j + <(H

(pol)′′

ij W ∗
′′

i W ∗
′′

j )
)(
E ′0H(dir)′

pq α′pα
′
q − E0H(dir)

pq αpαq

)
,

T 2
E = E ′′0

(
H

(dir)′′

ij α′′i α
′′
j + <(H

(pol)′′

ij W ∗
′′

i W ∗
′′

j )
)
<
(
E ′0H(pol)′

pq W ∗
′

p W
∗′
q − E0H(pol)

pq W ∗pW
∗
q

)
,

T 3
E = E ′′0=(H

(pol)′′

ij W ∗
′′

i W ∗
′′

j )=
(
xE0H(pol)

pq W ∗pW
∗
q − yE ′0H(pol)′

pq W ∗
′

p W
∗′
q

)
.

For the λ-integration and spherical integration, here are some useful expressions∫ 2π

0

α′′i α
′′
jα
′
pα
′
qdλ = −yzπ(x+ yz)(αiαpδjq + αiαqδjp + αjαpδiq + αjαqδip)

+ αiαjαpαqπ
[
2y2z2 +

3

4
(1− y2)(1− z2)− y2(1− z2)− z2(1− y2) + 4yz(x+ yz)

]
+
π

4
(1− y2)(1− z2)

[
δipδjq + δiqδjp − αiαpδjq − αiαqδjp − αjαpδiq − αjαqδip

]
,∫ 2π

0

α′′i α
′′
jαpαqdλ = π(3y2 − 1)αiαjαpαq,∫ 2π

0

<(W ∗
′′

i W ∗
′′

j )α′pα
′
qdλ = yzπ(x+ yz)(αiαpδjq + αiαqδjp + αjαpδiq + αjαqδip)
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+ αiαjαpαqπ
[
3z2(1− y2) +

1

4
(1 + y2)(1− z2)− 3

2
(1− y2)(1− z2)− 4yz(x+ yz)

]
+
π

4
(1 + y2)(1− z2)

[
δipδjq + δiqδjp − αiαpδjq − αiαqδjp − αjαpδiq − αjαqδip

]
,∫ 2π

0

<(W ∗
′′

i W ∗
′′

j )αpαqdλ = 3π(1− y2)αiαjαpαq,∫
Sk

(∫ 2π

0

T 1
Edλ

)(
Pij −

δij
3

)
d2k =

16π2k2

105
E ′′0

[

E ′0(1 + 3xyz)
(
H

(dir)′′

li H
(dir)′

lj +H
(dir)′′

lj H
(dir)′

li − 2

3
H

(dir)′′

ln H
(dir)′

ln δij

)
+ E0(3y2 − 1)

(
H

(dir)′′

li H
(dir)
lj +H

(dir)′′

lj H
(dir)
li − 2

3
H

(dir)′′

ln H
(dir)
ln δij

)
+ E ′0(3− 6z2 − 3xyz)

(
H

(pol)′′

li H
(dir)′

lj +H
(pol)′′

lj H
(dir)′

li − 2

3
H

(pol)′′

ln H
(dir)′

ln δij

)
+ 3E0(1− y2)

(
H

(pol)′′

li H
(dir)
lj +H

(pol)′′

lj H
(dir)
li − 2

3
H

(pol)′′

ln H
(dir)
ln δij

)]
,

∫
Sk

(∫ 2π

0

T 1
Edλ

)
d2k =

16π2k2

15
E ′′0
[
(3x2 − 1)E ′0H

(dir)′′

ln H
(dir)′

ln + (3− 3x2)E ′0H
(pol)′′

ln H
(dir)′

ln

− (3y2 − 1)E0H(dir)′′

ln H
(dir)
ln − 3(1− y2)E0H(pol)′′

ln H
(dir)
ln

]
,∫ 2π

0

α′′pα
′′
q<(W ∗i W

∗
j )dλ = 2π(1− y2)(

αiαjαpαq + δipδjq + δiqδjp − αiαpδjq − αiαqδjp − αjαpδiq − αjαqδip
)
,∫ 2π

0

<(W ∗
′′

i W ∗
′′

j )<(W
′∗
p W

′∗
q )dλ = −πyz(x+ yz)(αiαpδjq + αiαqδjp + αjαpδiq + αjαqδip)

+ 2παiαjαpαq

[9

4
(1− y2)(1− z2) + 2yz(x+ yz) +

1

8
(1 + y2)(1 + z2)

]
+
π

4
(1 + y2)(1 + z2)

[
δipδjq + δiqδjp − αiαpδjq − αiαqδjp − αjαpδiq − αjαqδip

]
,∫ 2π

0

<(W ∗
′′

i W ∗
′′

j )<(W ∗pW
∗
q )dλ =

π

2
(1 + y2)(

αiαjαpαq + δipδjq + δiqδjp − αiαpδjq − αiαqδjp − αjαpδiq − αjαqδip
)
,∫

Sk

(∫ 2π

0

T 2
Edλ

)(
Pij −

δij
3

)
d2k =

16π2k2

105
E ′′0

[

+ E ′0(3− 6y2 − 3xyz)
(
H

(dir)′′

li H
(pol)′

lj +H
(dir)′′

lj H
(pol)′

li − 2

3
H

(dir)′′

ln H
(pol)′

ln δij

)
− 3E0(1− y2)

(
H

(dir)′′

li H
(pol)
lj +H

(dir)′′

lj H
(pol)
li − 2

3
H

(dir)′′

ln H
(pol)
ln δij

)
+ E ′0(3− 6x2 − 9xyz)

(
H

(pol)′′

li H
(pol)′

lj +H
(pol)′′

lj H
(pol)′

li − 2

3
H

(pol)′′

ln H
(pol)′

ln δij

)
− 3E0(1 + y2)

(
H

(pol)′′

li H
(pol)
lj +H

(pol)′′

lj H
(pol)
li − 2

3
H

(pol)′′

ln H
(pol)
ln δij

)]
,

∫
Sk

(∫ 2π

0

T 2
Edλ

)
d2k =

16π2k2

15
E ′′0

[
E ′0(3x2 + 3)H

(pol)′′

ln H
(pol)′

ln + (3− 3x2)E ′0H
(dir)′′

ln H
(pol)′

ln

− 3(1− y2)E0H(dir)′′

ln H
(pol)
ln − 3E0(1 + y2)H

(pol)′′

ln H
(pol)
ln

]
,∫ 2π

0

=(W ∗
′′

i W ∗
′′

j )=(W ∗
′

p W
∗′
q )dλ = −π(x+ yz)(αiαpδjq + αiαqδjp + αjαpδiq + αjαqδip)



Appendix C. Details on the Spherically-Averaged Lin Equations 233

+ παiαjαpαq

[
4(x+ yz) + yz

]
+ πyz

[
δipδjq + δiqδjp − αiαpδjq − αiαqδjp − αjαpδiq − αjαqδip

]
,∫ 2π

0

=(W ∗
′′

i W ∗
′′

j )=(W ∗pW
∗
q )dλ =

− πy(αiαjαpαq + δipδjq + δiqδjp − αiαpδjq − αiαqδjp − αjαpδiq − αjαqδip),∫
Sk

(∫ 2π

0

T 3
Edλ

)(
Pij −

δij
3

)
d2k =

16π2k2

105
E ′′0

[
− 6xyE0

(
H

(pol)′′

li H
(pol)
lj +H

(pol)′′

lj H
(pol)
li − 2

3
H

(pol)′′

ln H
(pol)
ln δij

)
− yE ′0(3x+ 9yz)

(
H

(pol)′′

li H
(pol)′

lj +H
(pol)′′

lj H
(pol)′

li − 2

3
H

(pol)′′

ln H
(pol)′

ln δij

)]
,

∫
Sk

(∫ 2π

0

T 3
Edλ

)
d2k =

16π2k2

15
E ′′0

[
− 6xyE0H(pol)′′

ln H
(pol)
ln − yE ′0(−6x)H

(pol)′′

ln H
(pol)′

ln

]
.

Non-linear polarization transfer: the three main parts to compute of the polarization transfer (2.42)

are

T 1
Z = E ′′0

(
H

(dir)′′

ij α′′i α
′′
j + <(H

(pol)′′

ij W ∗
′′

i W ∗
′′

j )
)(
<(E ′0H(pol)′

pq W ∗
′

p W
∗′
q )− E0H(pol)

pq W ∗pW
∗
q

)
,

T 2
Z = E ′′0

(
H

(dir)′′

ij α′′i α
′′
j + <(H

(pol)′′

ij W ∗
′′

i W ∗
′′

j )
)(
E ′0H(dir)′

pq α′pα
′
q − E0H(dir)

pq αpαq

)
,

T 3
Z = iE ′′0

(
H

(dir)′′

ij α′′i α
′′
j + <(H

(pol)′′

ij W ∗
′′

i W ∗
′′

j )
)
=(H(pol)′

pq W ∗
′

p W
∗′
q ),

T 4
Z = iE ′′0=(H

(pol)′′

ij W ∗
′′

i W ∗
′′

j )
(
xE0(H(dir)

pq αpαq +H(pol)
pq W ∗pW

∗
q )− iyE ′0=(H(pol)′

pq W ∗
′

p W
∗′
q )
)
.

For the λ-integration and spherical integration, here are some useful expressions∫ 2π

0

e−2iλα′′i α
′′
j<(W ∗

′

p W
∗′
q )dλ =

π

2
yz(x+ yz)(αiN

∗
j + αjN

∗
i )(αpN

∗
q + αqN

∗
p )

+ παiαjN
∗
pN
∗
q

(
− 1

4
(1− y2)(1 + z2) +

1

2
y2(1 + z2)

)
+

3π

4
(1− y2)(1− z2)αpαqN

∗
i N
∗
j ,∫ 2π

0

e−2iλ<(W ∗
′′

i W ∗
′′

j )<(W ∗
′

p W
∗′
q )dλ = −π

2
yz(x+ yz)(αiN

∗
j + αjN

∗
i )(αpN

∗
q + αqN

∗
p )

+
3π

4
(1− y2)(1 + z2)αiαjN

∗
pN
∗
q +

3π

4
(1 + y2)(1− z2)αpαqN

∗
i N
∗
j ,∫ 2π

0

e−2iλα′′i α
′′
jN
∗
pN
∗
q dλ = π(3y2 − 1)αiαjN

∗
pN
∗
q ,∫ 2π

0

e−2iλ<(W ∗
′′

i W ∗
′′

j )W ∗pW
∗
q dλ = 3π(1− y2)αiαjN

∗
pN
∗
q ,∫

Sk

(∫ 2π

0

T 1
Zdλ

)
N∗i N

∗
j d2k =

16π2k2

35
E ′′0

[

E ′0(3xyz + 2z2 − 1)

{
H(dir)′′ , H(pol)′

}
ij

− 3(xyz + 1)E ′0
{
H(pol)′′ , H(pol)′

}
ij

+ 2(3y2 − 1)E0
{
H(dir)′′ , H(pol)

}
ij

+ 6(1− y2)E0
{
H(pol)′′ , H(pol)

}
ij

]
,∫ 2π

0

e−2iλα′′i α
′′
jα
′
pα
′
qdλ = −π

2
yz(x+ yz)(αiN

∗
j + αjN

∗
i )(αpN

∗
q + αqN

∗
p )

+ παiαjN
∗
pN
∗
q

(
− 1

4
(1− y2)(1− z2) +

1

2
y2(1− z2)

)
+ παpαqN

∗
i N
∗
j

(
− 1

4
(1− y2)(1− z2) +

1

2
z2(1− y2)

)
,
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∫ 2π

0

e−2iλα′′i α
′′
jαpαqdλ =

π

2
(1− y2)αpαqN

∗
i N
∗
j ,∫ 2π

0

e−2iλ<(W ∗
′′

i W ∗
′′

j )αpαqdλ =
π

2
(1 + y2)αpαqN

∗
i N
∗
j ,∫

Sk

(∫ 2π

0

T 2
Zdλ

)
N∗i N

∗
j d2k =

16π2k2

35
E ′′0

[
E ′0(xyz + 2x2 − 1)

{
H(dir)′′ , H(dir)′

}
ij

+ (1 + y2)E0
{
H(pol)′′ , H(dir)

}
ij

+ E ′0(3xyz + 2y2 − 1)

{
H(pol)′′ , H(dir)′

}
ij

+ (1− y2)E0
{
H(dir)′′ , H(dir)

}
ij

]
,∫ 2π

0

ie−2iλα′′i α
′′
j=(W ∗

′

p W
∗′
q )dλ = −π

2
y(x+ yz)(αiN

∗
j + αjN

∗
i )(αpN

∗
q + αqN

∗
p )

+
π

2
z(1− 3y2)αiαjN

∗
pN
∗
q ,∫ 2π

0

ie−2iλ<(W ∗
′′

i W ∗
′′

j )=(W ∗
′

p W
∗′
q )dλ =

π

2
y(x+ yz)(αiN

∗
j + αjN

∗
i )(αpN

∗
q + αqN

∗
p )

− 3π

2
z(1− y2)αiαjN

∗
pN
∗
q ,∫

Sk

(∫ 2π

0

T 3
Zdλ

)
N∗i N

∗
j d2k =

16π2k2

35
E ′′0

[
3(xy + z)E ′0

{
H(pol)′′ , H(pol)′

}
ij

− (3xy + z)E ′0
{
H(dir)′′ , H(pol)′

}
ij

]
,∫ 2π

0

ie−2iλ=(W ∗
′′

i W ∗
′′

j )αpαqdλ = −πyαpαqN∗i N∗j ,
∫ 2π

0

ie−2iλ=(W ∗
′′

i W ∗
′′

j )N∗pN
∗
q dλ = 0,∫ 2π

0

e−2iλ=(W ∗
′′

i W ∗
′′

j )=(W ∗
′

p W
∗′
q )dλ =

π

2
(x+ yz)(αiN

∗
j + αjN

∗
i )(αpN

∗
q + αqN

∗
p ),∫

Sk

(∫ 2π

0

T 4
Zdλ

)
N∗i N

∗
j d2k =

16π2k2

35
E ′′0

[
2xyE0

{
H(pol)′′ , H(dir)

}
ij

+ 3y(x+ yz)E ′0
{
H(pol)′′ , H(pol)′

}
ij

]
.

Non-linear return to isotropy transfer: the three main parts to compute of the non-linear return

to isotropy transfer (2.69) are

T 1
RTI = E ′′0 E0

(
H

(dir)′′

ij α′′i α
′′
j + <(H

(pol)′′

ij W ∗
′′

i W ∗
′′

j )
)(
H(dir)
pq αpαq +H(pol)

pq W ∗pW
∗
q

)
,

T 2
RTI = E ′′0 E ′0

(
H

(dir)′′

ij α′′i α
′′
j + <(H

(pol)′′

ij W ∗
′′

i W ∗
′′

j )
)(
H(dir)′

pq α′pα
′
q + <(H(pol)′

pq W ∗
′

p W
∗′
q )
)
,

T 3
RTI = iE ′′0 E ′0

(
H

(dir)′′

ij α′′i α
′′
j + <(H

(pol)′′

ij W ∗
′′

i W ∗
′′

j )
)
=(H(pol)′

pq W ∗
′

p W
∗′
q ).

For the λ-integration and spherical integration, here are some useful expressions∫ 2π

0

e−iλα′′i α
′′
jαpαqdλ = −πy

√
1− y2αpαq(αiN

∗
j + αjN

∗
i ),∫ 2π

0

e−iλα′′i α
′′
jW

∗
pW

∗
q dλ = −πy

√
1− y2N∗pN

∗
q (αiNj + αjNi),∫ 2π

0

e−iλ<(W ′′∗i W ′′∗j )αpαqdλ = πy
√

1− y2αpαq(αiN
∗
j + αjN

∗
i ),∫ 2π

0

e−iλ<(W ′′∗i W ′′∗j )W ∗pW
∗
q dλ = πy

√
1− y2N∗pN

∗
q (αiNj + αjNi),

−<
∫
Sk

(∫ 2π

0

T 1
RTIdλ

)
(αiNj + αjNi)d

2k =
16π2k2

35
E ′′0 E0y

√
1− y2

[
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{
H(dir)′′ , H(dir)

}
ij

+ 6

{
H(dir)′′ , H(pol)

}
ij

−
{
H(pol)′′ , H(dir)

}
ij

− 6

{
H(pol)′′ , H(pol)

}
ij

]
,∫ 2π

0

e−iλα′′i α
′′
jα
′
pα
′
qdλ = 2π[

3y2 − 1

4
z
√

1− z2αiαj(αpN
∗
q + αqN

∗
p ) +

1− 3z2

4
y
√

1− y2αpαq(αiN
∗
j + αjN

∗
i )

+
1− y2

8
z
√

1− z2N∗i N
∗
j (αpNq + αqNp)−

1− z2

8
y
√

1− y2N∗pN
∗
q (αiNj + αjNi)

]
,∫ 2π

0

e−iλα′′i α
′′
j<(W ′∗p W

′∗
q )dλ = 2π[

1− 3y2

4
z
√

1− z2αiαj(αpN
∗
q + αqN

∗
p )− 3

4
y
√

1− y2(1− z2)αpαq(αiN
∗
j + αjN

∗
i )

− 1− y2

8
z
√

1− z2N∗i N
∗
j (αpNq + αqNp)−

1 + z2

8
y
√

1− y2N∗pN
∗
q (αiNj + αjNi)

]
,∫ 2π

0

e−iλ<(W ′′∗i W ′′∗j )<(W ′∗p W
′∗
q )dλ = 2π[

1 + z2

8
y
√

1− y2N∗pN
∗
q (αiNj + αjNi) +

3

4
y
√

1− y2(1− z2)αpαq(αiN
∗
j + αjN

∗
i )

− 1

8
z
√

1− z2
(

6(1− y2)αiαj(αpN
∗
q + αqN

∗
p ) + (1 + y2)N∗i N

∗
j (αpNq + αqNp)

)]
,

−<
∫
Sk

(∫ 2π

0

T 2
RTIdλ

)
(αiNj + αjNi)d

2k =
16π2k2

35
E ′′0 E ′0[

(y
√

1− y2 − z
√

1− z2)

{
H(dir)′′ , H(dir)′

}
ij

+ (3y
√

1− y2 + z
√

1− z2)

{
H(dir)′′ , H(pol)′

}
ij

− (y
√

1− y2 + 3z
√

1− z2)

{
H(pol)′′ , H(dir)′

}
ij

+ 3(z
√

1− z2 − y
√

1− y2)

{
H(pol)′′ , H(pol)′

}
ij

]
,

∫ 2π

0

ie−iλα′′i α
′′
j=(W ′∗p W

′∗
q )dλ = 2π

[
y2 − 1

8

√
1− z2N∗i N

∗
j (αpNq + αqNp)

3y2 − 1

4

√
1− z2αiαj(αpN

∗
q + αqN

∗
p ) +

1

4
yz
√

1− y2N∗pN
∗
q (αiNj + αjNi)

]
,

∫ 2π

0

ie−iλ<(W ′′∗i W ′′∗j )=(W ′∗p W
′∗
q )dλ = 2π

[
− 1 + y2

8

√
1− z2N∗i N

∗
j (αpNq + αqNp)

3

4
(1− y2)

√
1− z2αiαj(αpN

∗
q + αqN

∗
p )− 1

4
yz
√

1− y2N∗pN
∗
q (αiNj + αjNi)

]
,

−<
∫
Sk

(∫ 2π

0

T 3
RTIdλ

)
(αiNj + αjNi)d

2k =
16π2k2

35
E ′′0 E ′0[

((2− 3y2)
√

1− z2 − 3yz
√

1− y2)

{
H(dir)′′ , H(pol)′

}
ij

+ 3(y2
√

1− z2 + yz
√

1− y2)

{
H(pol)′′ , H(pol)′

}
ij

]
,
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Final quadratic anisotropic non-linear transfers: the quadratic anisotropic isotropic transfer term

is conservative and reads

QNL(iso)(k, t) = 20

∫
∆k

θkpqπ
2k2p2qE ′′0

[
2xy(1− z2)H

(pol)′′

ln

(
E ′0H

(pol)′

ln − E0H(pol)
ln

)
+ 6(xy + z3)

(
2H

(dir)′′

ln

(
(3x2 − 1)E ′0H

(dir)′

ln − (3y2 − 1)E0H(dir)
ln

)
−H(pol)′′

ln

(
(1− x2)E ′0H

(dir)′

ln − (1− y2)E0H(dir)
ln

))

+ z(z2 − 1)

(
H

(pol)′′

ln

(
(1 + x2)E ′0H

(pol)′

ln − (1 + y2)E0H(pol)
ln

)
− 6H

(dir)′′

ln

(
(1− x2)E ′0H

(pol)′

ln − (1− y2)E0H(pol)
ln

))]
dpdq. (C.42)

The quadratic anisotropic directional transfer term is

Q
NL(dir)
ij (k, t) =

20

7

∫
∆k

θkpqπ
2k2p2qE ′′0

[

12(xy + z3)
[
(1 + 3xyz)E ′0

{
H(dir)′′ , H(dir)′

}
ij

+ (3y2 − 1)E0
{
H(dir)′′ , H(dir)

}
ij

]
− 6(xy + z3)

[
(1− 2z2 − xyz)E ′0

{
H(pol)′′ , H(dir)′

}
ij

+ (1− y2)E0
{
H(pol)′′ , H(dir)

}
ij

]
+ 6z(1− z2)

[
(1− 2y2 − xyz)E ′0

{
H(dir)′′ , H(pol)′

}
ij

− (1− y2)E0
{
H(dir)′′ , H(pol)

}
ij

]
+ z(z2 − 1)

[
(1− 2x2 − 3xyz)E ′0

{
H(pol)′′ , H(pol)′

}
ij

− (1 + y2)E0
{
H(pol)′′ , H(pol)

}
ij

]
− y(1− z2)

[
(x+ 3yz)E ′0

{
H(pol)′′ , H(pol)′

}
ij

+ 2xE0
{
H(pol)′′ , H(pol)

}
ij

]]
dpdq. (C.43)

The quadratic anisotropic polarization transfer term is

Q
NL(pol)
ij (k, t) =

60

7

∫
∆k

θkpqπ
2k2p2qE ′′0

[

− (xy + z3)
[
2(3xyz + 2z2 − 1)E ′0

{
H(dir)′′ , H(pol)′

}
ij

+ (1 + xyz)E ′0
{
H(pol)′′ , H(pol)′

}
ij

]
+ 2(xy + z3)

[
2(1− 3y2)E0

{
H(dir)′′ , H(pol)

}
ij

+ (1− y2)E0
{
H(pol)′′ , H(pol)

}
ij

]
− 2z(1− z2)

[
6(xyz + 2x2 − 1)E ′0

{
H(dir)′′ , H(dir)′

}
ij

− (3xyz + 2y2 − 1)E ′0
{
H(pol)′′ , H(dir)′

}
ij

+ 6(1− y2)E0
{
H(dir)′′ , H(dir)

}
ij

− (1 + y2)E0
{
H(pol)′′ , H(dir)

}
ij

]
+ (y2 − z2)

[
(xy + z)E ′0

{
H(pol)′′ , H(pol)′

}
ij

+ 2(3xy + z)E ′0
{
H(dir)′′ , H(pol)′

}
ij

]
− y(1− z2)

[
4xE0

{
H(pol)′′ , H(dir)

}
ij

− (x+ yz)E ′0
{
H(pol)′′ , H(pol)′

}
ij

]]
dpdq. (C.44)



Appendix C. Details on the Spherically-Averaged Lin Equations 237

The quadratic anisotropic RTI transfer term is

Q
NL(RTI)
ij (k, t) =

120

7

∫
∆k

θkpqπ
2kp2qE ′′0

[
2y(x+ yz)(xy + z)(zk − qx)E0(

6

{
H(dir)′′ , H(dir)

}
ij

− 6

{
H(dir)′′ , H(pol)

}
ij

+

{
H(pol)′′ , H(dir)

}
ij

−
{
H(pol)′′ , H(pol)

}
ij

)

− kz(xy + z)E ′0

(
12(y(x+ yz)− z(1− z2))

{
H(dir)′′ , H(dir)′

}
ij

− (6y(x+ yz) + 2z(1− z2))

{
H(dir)′′ , H(pol)′

}
ij

+ (2y(x+ yz) + 6z(1− z2))

{
H(pol)′′ , H(dir)′

}
ij

+ (z(1− z2)− y(x+ yz))

{
H(pol)′′ , H(pol)′

}
ij

)
+ k(xy + z)E ′0(

(6y(y + xz)− 4(1− z2))

{
H(dir)′′ , H(pol)′

}
ij

+ y(y + xz)

{
H(pol)′′ , H(pol)′

}
ij

)]
dpdq. (C.45)

The impact of quadratic anisotropic contributions on the non-linear transfers is revealed in Fig. C.1a.

One can note that the global shape of the transfers is preserved and that there is a rather small change

in intensity, mainly at large scales which is expected since this is where anisotropy is dominant. The

isotropic and polarization parts of the transverse component ()33 are more affected by the quadratic

contributions than the directional part. This might also be the consequence of the Reλ which is slightly

higher, at St = 50, for the simulation with the quadratic anisotropic contributions than the one without.

Regarding the bij in Fig. C.1b: the asymptotic values are almost the same with and without the quadratic

anisotropic contributions. One can observe a slight increase of the streamwise anisotropy and decrease

of the transverse one. Moreover, the kinetic spectra scalings and the exponential growth rate of the

kinetic energy are not displayed since the difference when adding the second-order contributions is not

distinguishable. In conclusion, the quite heavy analytical calculations, which led to the second-order

anisotropic contributions in the non-linear transfers, do not provide significant changes with regard to

the first order developed in Chapter 3: this is why they are not used.
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Figure C.1: Quadratic anisotropic contributions in the non-linear transfers at St = 50,
with σ = 2. (a) Budget terms along with the integral and Kolmogorov wavenumbers
kL and kη: grey curves represent the classical transfers without the quadratic anisotro-
pic contributions. (b) bij and shear rapidity ε/KS, where grey curves are without the

quadratic anisotropic contributions.
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C.6 Fourth-order expansion for E and Z

Here, some details are given about the method to obtain the fourth order expansions of E and Z (2.44)

and (2.45). Starting from

E(k, t) = E0
(

1− 15H
(dir)
ij (k, t)αiαj + U

(dir)4
ijpq (k, t)αiαjαpαq + . . .

)
, (C.46)

Z(k, t) =
1

2
E0
(

5H
(pol)
ij (k, t) + U

(pol)4
ijpq (k, t)αpαq + . . .

)
N∗i (k)N∗j (k), (C.47)

and using the definitions of the generalized operators Pijpq and Nijpq given in (2.49) and (2.50), one gets∫
Sk

E(k)Pijpq(k) d2k =
24

945
E(k)U

(dir)
ijpq (k),

∫
Sk

<
(
Z(k)Nijpq(k)

)
d2k =

4

21
E(k)U

(pol)
ijpq (k).

The tensors U
()4
ijpq have the same properties as H

()
ijpq. Combining these two equations with the definitions

of H
(dir)
ijpq and H

(pol)
ijpq given in (2.47) and (2.48) yields the fourth order-expansions (2.44) and (2.45).

Finally, the expansion of the spectral Reynolds tensor in terms of the deviatoric tensors H
(dir)
ij , H

(pol)
ij ,

H
(dir)
ijpq and H

(pol)
ijpq reads

R̂ij = E0Pij
(

1− 15H(dir)
pq αpαq +

945

12
H(dir)
rspqαrαsαpαq

)
︸ ︷︷ ︸

R̂e2
ij +R̂e4

ij

+
1

2
E0
(

5H(pol)
pq +

21

2
H(pol)
pqrs αrαs

)(
2PipPjq + Pijαpαq

)
︸ ︷︷ ︸

R̂z2
ij +R̂z4

ij

. (C.48)

C.6.1 Fourth order linear transfers

In this part, we aim at computing the linear directional and polarization transfers TL
E and TL

Z associated

with the evolution equations of E and Z. The linear spherically-averaged directional and polarization

transfers at the fourth-order are defined by

S
L(dir)
ijpq (k) =

1

2

∫
Sk

TL
E (k)Pijpq(k) d2k, S

L(pol)
ijpq (k) =

1

2

∫
Sk

<
(
TL
Z (k)Nijpq(k)

)
d2k. (C.49)

Contributions of H
(dir)
ijpq and H

(pol)
ijpq in S

L(dir)
ij and S

L(pol)
ij : here are some useful formula for the

spherical integration:∫
Sk

αlαpαrαsAlnH
()
rspnd2k = 0,

∫
Sk

αiαjαpαqαmαnαrαsH
()
mnrsd

2k =
24

945
4πk2H

()
ijpq,

∫
Sk

αiαjαpαlαrαsAlnH
()
rspnd2k =

6

105
4πk2H

()
ijlnA

+
ln,

∫
Sk

αiαjαpαqαlαnAlnH
()
ijpqd

2k = 0.∫
Sk

αiαjαpαqαlαnαrαsH
()
pqrsAlnd2k =

24

945
4πk2H

()
ijlnA

+
ln,

∫
Sk

AljαrαsαpαqαiαlH
()
rspqd

2k = 0.

Consequently, one has for the directional transfer

Aln

∫
Sk

R̂e4
lnPijd

2k = 2A+
lnEH

(dir)
ijln , Aln

∫
Sk

kl
∂R̂e4

mm

∂kn
Pijd

2k = −4A+
ln

(
2EH

(dir)
lnij +

∂(kEH
(dir)
ijln )

∂k

)
,

Aln

∫
Sk

R̂z4
lnPijd

2k = −1

3
A+
lnEH

(pol)
ijln , Aln

∫
Sk

kl
∂R̂z4

mm

∂kn
Pijd

2k = 0.
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For the total transfer, one gets

2Aln

∫
Sk

αiαl(R̂
e4
nj + R̂z4

nj)d
2k = −4A+

lnEH
(dir)
ijln +

2

3
A+
lnEH

(pol)
ijln ,

Aln

∫
Sk

kl
∂(R̂e4

ij + R̂z4
ij )

∂kn
d2k = −2A+

ln

∂(kEH
(dir)
ijln )

∂k
+

1

3
A+
ln

∂(kEH
(pol)
ijln )

∂k
.

One can then compute S
L(pol4)
ij = S

L(tot4)
ij /2 − SL(dir4)

ij . Finally, the additional contributions to S
L(dir)
ij

and S
L(pol)
ij resulting from the expansions of E and Z at the fourth order are

S
L(dir4)
ij (k, t) = −3A+

lnEH
(dir)
ijln −A

+
ln

∂(kEH
(dir)
ijln )

∂k
+

1

6
A+
lnEH

(pol)
ijln , (C.50)

S
L(pol4)
ij (k, t) = −A+

lnEH
(dir)
ijln +

1

2
A+
lnEH

(pol)
ijln +

1

6
A+
ln

∂(kEH
(pol)
ijln )

∂k
. (C.51)

Contributions of H
(dir)
ij and H

(pol)
ij in S

L(dir)
ijpq : here are some useful formula for the spherical integra-

tion: ∫
Sk

Pijpqd
2k = 0,

∫
Sk

H()
rsαrαsPijpqd

2k = 0,∫
Sk

AlnαlαnPijpqd
2k = 0,

∫
Sk

AlnH
()
lsαsαnPijpqd

2k = 0.

Furthermore, a complex and lengthy calculation yields∫
Sk

E0AlnH()
rsαlαnαrαsPijpqd

2k =
2

6615
E

[
8

5
A+
lnH

()
ln

(
δijδpq + δipδjq + δiqδjp

)
− 4
[
δij(A

+
lpH

()
lq +A+

lqH
()
lp) + δpq(A

+
liH

()
lj +A+

ljH
()
li ) +A+

lp(H
()
lj δiq +H

()
li δjq) +A+

lq(H
()
lj δip +H

()
li δjp)

+H
()
lp(A+

jlδiq +A+
ilδjq) +H

()
lq (A+

jlδip +A+
ilδjp)

]
+ 14

(
A+
ijH

()
pq +A+

pqH
()
ij +A+

ipH
()
jq +A+

iqH
()
jp

+A+
jpH

()
iq +A+

jqH
()
ip

)]
=

2

6615
H(2,e)
ijpq [EH()].

Then, one obtains

Aln

∫
Sk

R̂e2
lnPijpqd

2k =
30

6615
H(2,e)
ijpq [EH(dir)], Aln

∫
Sk

R̂z2
lnPijpqd

2k =
5

6615
H(2,e)
ijpq [EH(pol)],

Aln

∫
Sk

kl
∂R̂e2

mm

∂kn
Pijpqd

2k =
60

6615

(
5H(2,e)

ijpq [EH(dir)]−H(2,e)
ijpq [∂k(kEH(dir))]

)
.

Hence, the contribution of H
(dir)
ij and H

(pol)
ij to S

L(dir)
ijpq is

S
L(dir2)
ijpq (k, t) =

1

441

(
− 1

6
H(2,e)
ijpq [EH(pol)] + 4H(2,e)

ijpq [EH(dir)]−H(2,e)
ijpq [∂k(kEH(dir))]

)
. (C.52)

Contributions of H
(dir)
ij and H

(pol)
ij in S

L(pol)
ijpq : here are some useful formula for the spherical integra-

tion:∫
Sk

H()
rsN

∗
rN
∗
sNijpqd

2k = 0,

∫
Sk

AnlH
()
lsN

∗
nN
∗
sNijpqd

2k = 0,

∫
Sk

A+
lnN

∗
l N
∗
nNijpqd

2k = 0,

and moreover, lengthy calculations yield∫
Sk

E0A+
lnH

()
rsαlαnN

∗
rN
∗
sNijpqd

2k =

∫
Sk

E0AlnH()
rsαlαsN

∗
rN
∗
nNijpqd

2k
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=
4

2205
E

[
4A+

lnH
()
ln

(
δijδpq + δipδjq + δiqδjp

)
− 10

[
δij(A

+
lpH

()
lq +A+

lqH
()
lp) + δpq(A

+
liH

()
lj +A+

ljH
()
li )

+A+
lp(H

()
lj δiq +H

()
li δjq) +A+

lq(H
()
lj δip +H

()
li δjp) +H

()
lp(A+

jlδiq +A+
ilδjq) +H

()
lq (A+

jlδip +A+
ilδjp)

]
+ 35

(
A+
ijH

()
pq +A+

pqH
()
ij +A+

ipH
()
jq +A+

iqH
()
jp +A+

jpH
()
iq +A+

jqH
()
ip

)]
=

4

2205
H(2,z)
ijpq [EH()].

Then, one obtains

Arl

∫
Sk

R̂z2
lsN

∗
rN
∗
sNijpqd

2k = − 2

441
H(2,z)
ijpq [EH(pol)],

Aln

∫
Sk

kl
∂R̂z2

rs

∂kn
N∗rN

∗
sNijpqd

2k = 5

∫
Sk

[
A+
lnN

∗
rN
∗
sαlαnk

∂E0H(pol)
rs

∂k
− 2AlnαlαsE0HrsN

∗
rN
∗
n

]
Nijpqd

2k

=
4

441

(
− 5H(2,z)

ijpq [EH(pol)] +H(2,z)
ijpq [∂k(kEH(pol))]

)
,

Aln

∫
Sk

kl
∂R̂e2

rs

∂kn
N∗rN

∗
sNijpqd

2k = 0, Arl

∫
Sk

R̂e2
lsN

∗
rN
∗
sNijpqd

2k = − 12

441
H(2,z)
ijpq [EH(dir)].

Hence, the contribution of H
(dir)
ij and H

(pol)
ij to S

L(pol)
ijpq is

S
L(pol2)
ijpq (k, t) =

1

441

(
6H(2,z)

ijpq [EH(dir)]− 4H(2,z)
ijpq [EH(pol)] +H(2,z)

ijpq [∂k(kEH(pol))]
)
. (C.53)

Contributions of H
(dir)
ijpq and H

(pol)
ijpq in S

L(dir)
ijpq and S

L(pol)
ijpq : lengthy calculations provide the following

compact formula∫
Sk

E0A+
lnH

()
abrsαaαbαlαnαrαsPijpqd

2k =
16

3465
E

[
A+
liH

()
jlpq +A+

ljH
()
ilpq +A+

lpH
()
ijlq +A+

lqH
()
ijlp

− 2

7
A+
ln

(
δijH

()
lnpq + δpqH

()
lnij + δipH

()
lnjq + δiqH

()
lnjp + δjpH

()
lniq + δjqH

()
lnip

)]
=

16

3465
H(4)
ijpq[EH

()],∫
Sk

E0A+
lnH

()
abrsN

∗
l N
∗
nαaαbαrαsNijpqd

2k = − 48

385
H(4)
ijpq[EH

()],∫
Sk

E0A+
lnH

()
abrsN

∗
rN
∗
sαaαbαlαnNijpqd

2k =
32

1155
H(4)
ijpq[EH

()].

Antisymmetric contributions arise from∫
Sk

E0AlnαlαbαrαsH()
nbrsPijpqd

2k =

42

6615

(
H(4)
ijpq[EH

()] + E
[
A−ilH

()
jpql +A−jlH

()
ipql +A−plH

()
ijlq +A−qlH

()
ijlp

])
,∫

Sk

E0AlnαaαbN∗l N∗sH
()
abnsNijpqd

2k =

2

21

(
H(4)
ijpq[EH

()] + E
[
A−ilH

()
jpql +A−jlH

()
ipql +A−plH

()
ijlq +A−qlH

()
ijlp

])
,∫

Sk

E0AlnαnαsαaαbN∗l N∗rH
()
abrsNijpqd

2k =

2

35

( 9

11
H(4)
ijpq[EH

()] + E
[
A−ilH

()
jpql +A−jlH

()
ipql +A−plH

()
ijlq +A−qlH

()
ijlp

])
.

Then, one gets

A+
ln

∫
Sk

R̂e4
lnPijpqd

2k = − 4

11
H(4)
ijpq[EH

(dir)], A+
ln

∫
Sk

R̂z4
lnPijpqd

2k = − 6

55
H(4)
ijpq[EH

(pol)],
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Arl

∫
Sk

R̂e4
lsN

∗
rN
∗
sNijpqd

2k = −108

11
H(4)
ijpq[EH

(dir)],

Arl

∫
Sk

R̂z4
lsN

∗
rN
∗
sNijpqd

2k = − 8

55
H(4)
ijpq[EH

(pol)] +
2

5
E
[
A−ilH

(pol)
jpql +A−jlH

(pol)
ipql +A−plH

(pol)
ijlq +A−qlH

(pol)
ijlp

]
,

Aln

∫
Sk

kl
∂R̂e4

mm

∂kn
Pijpqd

2k =
8

11
H(4)
ijpq[∂k(kEH(dir))]− 12

11
H(4)
ijpq[EH

(dir)]

+ 4E
(
A−ilH

(dir)
jpql +A−jlH

(dir)
ipql +A−plH

(dir)
ijlq +A−qlH

(dir)
ijlp

)
,

Aln

∫
Sk

kl
∂R̂z4

rs

∂kn
N∗rN

∗
sNijpqd

2k =
8

5

[
2

11
H(4)
ijpq[∂k(kEH(pol))]− 3

11
H(4)
ijpq[EH

(pol)]

+ 2E
(
A−ilH

(pol)
jpql +A−jlH

(pol)
ipql +A−plH

(pol)
ijlq +A−qlH

(pol)
ijlp

)]
,

so that the contributions of H
(dir)
ijpq and H

(pol)
ijpq to S

L(dir)
ijpq and S

L(pol)
ijpq are

S
L(dir4)
ijpq (k, t) =

1

11

(
2H(4)

ijpq[∂k(kEH(dir))]−H(4)
ijpq[EH

(dir)] +
3

5
H(4)
ijpq[EH

(pol)]
)

+ E
(
A−ilH

(dir)
jpql +A−jlH

(dir)
ipql +A−plH

(dir)
ijlq +A−qlH

(dir)
ijlp

)
, (C.54)

S
L(pol4)
ijpq (k, t) =

1

11

(4

5
H(4)
ijpq[∂k(kEH(pol))]− 2

5
H(4)
ijpq[EH

(pol)] + 54H(4)
ijpq[EH

(dir)]
)

+
3

5
E
(
A−ilH

(pol)
jpql +A−jlH

(pol)
ipql +A−plH

(pol)
ijlq +A−qlH

(pol)
ijlp

)
. (C.55)

C.6.2 Fourth order non-linear transfers

The non-linear spherically-averaged directional and polarization transfers at the fourth-order are defined

by

S
NL(dir)
ijpq (k) =

1

2

∫
Sk

TE(k)Pijpq(k) d2k, S
NL(pol)
ijpq (k) =

1

2

∫
Sk

<
(
TZ(k)Nijpq(k)

)
d2k. (C.56)

There are no contributions from the fourth order tensors H
(dir)
ijpq and H

(pol)
ijpq in the isotropic, directional and

polarization non-linear transfers S
NL(iso)
ij , S

NL(dir)
ij and S

NL(pol)
ij , and similarly there are no contributions

from H
(dir)
ij and H

(pol)
ij in S

NL(dir)
ijpq and S

NL(pol)
ijpq , because∫

Sk

PrsαiαjαpαqH
()
ijpqd

2k = 0,

∫
Sk

αiαjN
∗
pN
∗
qNrNsH

()
ijpqd

2k = 0.

For the λ-integration to compute S
NL(dir)
ijpq , one needs∫ 2π

0

α′iα
′
jα
′
pα
′
qH

()′

ijpqdλ =
π

4
αiαjαpαqH

()′

ijpq(35z4 − 30z2 + 3),

∫ 2π

0

α′′i α
′′
j <(W

′′∗
p W

′′∗
q )H

()′′

ijpqdλ =
5π

4
(1− y2)(7y2 − 1)αiαjαpαqH

()′′

ijpq.

This yields, after spherical-integration,

S
NL(dir)
ijpq (k, t) = 2

∫
∆k

θkpqπ
2k2p2q(xy + z3)E ′′0

[
E ′0
(
H

(dir)′

ijpq (35z4 − 30z2 + 3)

+H
(dir)′′

ijpq (35y4 − 30y2 + 3)
)
− E0

(
8H

(dir)
ijpq +H

(dir)′′

ijpq (35y4 − 30y2 + 3)
)]

dpdq



Appendix C. Details on the Spherically-Averaged Lin Equations 242

+
2

3

∫
∆k

θkpqπ
2k2p2qE ′′0

[
(xy + z3)(1− y2)(7y2 − 1)(E ′0 − E0)H

(pol)′′

ijpq + z(1− z2)2(1− 7z2)E ′0H
(pol)′

ijpq

]
dpdq.

(C.57)

For the λ-integration to compute S
NL(pol)
ijpq , one needs∫ 2π

0

e−2iλα′′rα
′′
s<(W

′′∗
p W

′′∗
q )H()′′

rspqdλ =
π

2
αrαsN

∗
pN
∗
qH

()′′

rspq(1− 6y2 + 7y4),∫ 2π

0

ie−2iλα′rα
′
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′∗
p W

′∗
q )H()′

rspqdλ =
π

2
αrαsN

∗
pN
∗
qH

()′
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0
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′′
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′′
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′′
qH

()′′

rspqdλ = −π
2
αrαsN

∗
pN
∗
qH

()′′

rspq(1− 8y2 + 7y4),

and for the spherical integration∫
Sk

αrαsαpαqN
∗
l N
∗
nNiNjH

()
rslnd2k =

4
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4πk2H

()
ijpq,

∫
Sk

αrαsN
∗
l N
∗
nNijpqH

()
rslnd2k =

8
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4πk2H

()
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This gives

S
NL(pol)
ijpq (k, t) = 4

∫
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θkpqπ
2k2p2qE ′′0
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z(5− 7z2)(y2 − z2)E ′0H

(pol)′
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+ (E ′0 − E0)H
(pol)′′

ijpq z(z2 − 1)(1− 6y2 + 7y4) + (xy + z3)
(
E ′0H

(pol)′

ijpq (1− 6z2 + 7z4)− 4E0H(pol)
ijpq

)]
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+ 60

∫
∆k

θkpqπ
2k2p2qE ′′0 z(1− z2)

[
(1− 8y2 + 7y4)(E ′0 − E0)H

(dir)′′

ijpq + (1− 8z2 + 7z4)E ′0H
(dir)′

ijpq

]
dpdq.

(C.58)

C.6.3 Fourth-order final spherically-averaged equations

The evolution equations of the fourth-order anisotropic descriptors H
(dir)
ijpq and H

(pol)
ijpq are then simply(

∂

∂t
+ 2νk2

)
E(k, t)H

(dir)
ijpq (k, t) = S

L(dir)
ijpq (k, t) + S

NL(dir)
ijpq (k, t), (C.59)(

∂

∂t
+ 2νk2

)
E(k, t)H

(pol)
ijpq (k, t) = S

L(pol)
ijpq (k, t) + S

NL(pol)
ijpq (k, t), (C.60)

where S
L(dir)
ijpq = S

L(dir2)
ijpq + S

L(dir4)
ijpq , and similarly for the polarization. The direct retro-action of the

fourth-order terms on the second-order ones is done through the additional linear transfers S
L(dir4)
ij and

S
L(pol4)
ij so that(

∂

∂t
+ 2νk2

)
E(k, t)H

(dir)
ij (k, t) = S

L(dir2)
ij (k, t) + S

L(dir4)
ij (k, t)︸ ︷︷ ︸

S
L(dir)
ij (k,t)

+S
NL(dir)
ij (k, t), (C.61)

(
∂

∂t
+ 2νk2

)
E(k, t)H

(pol)
ij (k, t) = S

L(pol2)
ij (k, t) + S

L(pol4)
ij (k, t)︸ ︷︷ ︸

S
L(pol)
ij (k,t)

+S
NL(pol)
ij (k, t), (C.62)

where S
L(dir2)
ij and S

L(pol2)
ij are the linear transfers computed with the second-order expansions.



Appendix D

Additional Results for the Velocity

Field in Homogeneous Turbulence

In this appendix, additional results, with respect to the ones presented in Chapter 3 which focused on

shear flows, are proposed. Notably, (i) rapid distortion theory (RDT) is briefly addressed; (ii) some

calculations about axisymmetric turbulence and plane distortion are presented; (iii) the pressure fluctu-

ations are investigated to derive the equation for the pressure spectrum; and finally, (iv) some details

about the helical field in skew-isotropic turbulence are given.

D.1 Rapid Distortion Theory

In this part, some details about the Rapid Distortion Theory (RDT) are given, in order to derive

initial conditions for anisotropic flows and a solution for short times as well. This section is inspired by

Townsend (1976). Firstly, the non-linear terms from Navier-Stokes equation (2.1) in physical space are

discarded
∂

∂t
+Ajlxl

∂ui
∂xj

+Aijul = − ∂p

∂xi
+ ν∆ui. (D.1)

In RDT, solutions valid for short times only are derived: indeed, non-linear terms are negligible only

at the beginning of the simulation, when anisotropy grows thanks to production terms. In the early

times of the flow, the Reynolds number is important, and thus viscous effects are small with respect to

inertial ones. For this reason, ν∆ui is neglected as well. Then, the following Fourier decomposition for

the fluctuating velocity and pressure fields is used

ui(x, t) = ai(t) exp (ik.x) p(x, t) = b(t) exp (ik.x). (D.2)

Then, with dki/dt = −Ajikj , equation (D.1) becomes, after projecting on the plane perpendicular to

kip,
dai
dt

+ (δin − 2αiαn)Anjaj = 0. (D.3)

Thanks to the previous linearity assumption, it is possible to compute at each time the fluctuating

velocity

ai(t) = Gij(t, t0)aj(t0), (D.4)

where Gij is the Green’s function and t0 the initial time (chosen to be 0 in the simulations). The

wavenumber at each time is given by

ki(t) = F−1
ji (t, t0)kj(t0), (D.5)

243
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where Fij is the Cauchy matrix, or the displacement matrix, which depends on the kind of anisotropy.

The initial Green’s function is

Gij(t0, t0) = δij − αiαj = Pij(t0),

so that at each time kiGij = 0. Finally, the second order spectral tensor is given by

φij(k, t) = Gin(k, t, t0)Gjm(k, t, t0)φnm(k(t0), t0). (D.6)

For the sake of clarity, the following notations are used

Ki = ki(t0), K2
0 = K2

1 +K2
2 +K2

3 , K2
⊥ = K2

1 +K2
2 .

Turbulent shear flows: For a pure shear flow with gradient matrix Aij , the associated Cauchy matrix

Fij is

Aij =

0 0 S

0 0 0

0 0 0

 , Fij =

1 0 −St
0 1 0

0 0 1


where S is the shear rate. The wavenumbers are k1(t) = K1, k2(t) = K2, and k3(t) = K3 − StK1, with

k2 = k2
1 + k2

2 + k2
3. The three coupled equations to solve are consequently

da1

dt
= S(2α1α1 − 1)a3(t)

da2

dt
= 2Sα1α2a3(t)

da3

dt
= 2Sα1α3a3(t). (D.7)

After some algebra, one gets

a3(t) =
K2

0

K2
⊥ + (K3 −K1St)2

a3(t0). (D.8)

Then, using the change of variable T = (K3−StK1)/K⊥ and arctan a−arctan b = arctan ((a− b)/(1 + ab)),

one finds

a1(t) =
K2

0

K2
⊥
Q1(t)a3(t0) + a1(t0), (D.9)

a2(t) =
K1K2

K2
⊥

Q2(t)a3(t0) + a2(t0), (D.10)

with

Q1(t) = − K2
2

K1K⊥
arctan

(
StK⊥

K2
0 − StK1K3

)
+
StK2

1 (K2
0 − 2K2

3 + StK1K3)

K2
0k

2(t)
, (D.11)

Q2(t) =
K2

0

K1K⊥
arctan

(
StK⊥

K2
0 − StK1K3

)
+
St(K2

0 − 2K2
3 + StK1K3)

k2(t)
. (D.12)

Then, φij is computed thanks to (D.6) with the Green’s function

G =

1 0 Q1K
2
0/K

2
⊥

0 1 Q2K1K2/K
2
⊥

0 0 K2
0/k

2

 (D.13)

and with the initial value

φij(k(t0), t0) =
E(k, t0)

4πk2
Pij .

D.2 Homogeneous Axisymmetric Turbulence

In this part, homogeneous axisymmetric turbulence (HAxT) is briefly addressed. Axisymmetric expan-

sions (or contraction) are quite representative of grid turbulence: this is why this configuration has
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received some interest. Furthermore, the axisymmetric case is less restrictive than the isotropic one, but

still presents some interesting symmetries for tensorial developments: see for instant the local axisymme-

try theory of George & Hussein (1991). The case of a maintained axisymmetric turbulence is nevertheless

not addressed: indeed, as discussed in Sagaut & Cambon (2008), when this kind of anisotropy is forced,

the turbulence becomes 1D or 2D (depending on the compression or dilatation case), and the present 3D

modelling cannot handle such singular flows. In general, the flow experiences a contraction (or expan-

sion) and then freely decays, thus progressively returning to isotropy. In the expansion case, the mean

velocity gradient matrix is

Aexp
ij =

S 0 0

0 S 0

0 0 −2S

 .
For the contraction, Acon

ij = −Aexp
ij . The kinetic energy K(t) follows the evolution equation

dK

dt
= −2S(R11 +R22 − 2R33)− ε. (D.14)

Firstly, the anisotropy tensors bij are investigated in Fig. D.1, in the cases of Saffman and Batchelor

turbulence. In both cases, one has b11 = b22 = −b33/2. For σ = 2, the bij reach an asymptotic anisotropic

state, as in HSRT, whereas it continuously decreases for σ = 4. Thus, as in HSRT, there is only a RTI

of small scales, consequently leading to a global partial return to isotropy.
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Figure D.1: Anisotropy tensor bij with St = 0.1: (a) σ = 2; (b) σ = 4.

Since Aij is diagonal, the only way to observe a k−7/3 slope for the kinetic spectrum is to look at φii (no

summation) without the isotropic part, i.e. E(k, t)Hii(k, t)
(), as shown in Fig. D.2. Furthermore, it is

recovered that the decay exponent of kinetic energy is still valid in HAxT.

Since axisymmetric turbulence is rather a classical configuration, it is proposed in Fig. D.3 to compare the

results of the present anisotropic EDQNM modelling to the DNS of Davidson et al. (2012) in Saffman

HAxT (this comparison was included in the first publication in Journal of Turbulence). The initial

conditions are detailed in the appendix of Davidson et al. (2012): runs 11 and 12 and considered here

(initial isotropic turbulence submitted to a contraction and expansion respectively). The streamwise

direction is ()33: R33 is noted u2
‖ and R11 = R22 = u2

⊥. The initial Reynolds number Re⊥(0) is based on

the integral scale l⊥, and the corresponding Taylor Reynolds number is computed withReλ =
√

20Re⊥/3:

simulations show that a slightly higher or lower Reλ(0) has no significant influence on the results. The

characteristic time is defined as T = 1/(
√
q2kL(0)). Firstly, the ratio u2

‖/u
2
⊥ is presented in both cases

of expansion and contraction. A good agreement is obtained in the transition zone t < 50T , and for the

asymptotic values as well, where the relative error is ' 3.5%. Then, the decay of the streamwise and
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Figure D.2: (a) Spectral tensor φ33. (b) Decay exponent α. Both for St = 0.1 and σ = 2
in HAxT.

spanwise energies u2
‖ and u2

⊥ is investigated for the expansion: despite a slight discrepancy at small t/T ,

the t−6/5 decay of Saffman turbulence is well-recovered.
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Figure D.3: Comparison with Davidson et al. (2012): grey lines correspond to the DNS
and black ones to EDQNM. For the expansion, Reλ(0) = 36 and for the contraction
Reλ(0) = 25. (a) Ratio u2

‖/u
2
⊥ in axisymmetric expansion (plain line) and contraction

(dashed line). (b) u2
‖ (plain line) and u2

⊥ (dashed line) decay in axisymmetric expansion
only.

D.3 Homogeneous Plane Distortion

Here, the case homogeneous distortion-released turbulence (HDRT) is highlighted. In this framework,

the mean-velocity gradient matrix reads

A =

 0 0 −S
0 0 0

−S 0 0





Appendix D. Additional Results for the Velocity Field in Homogeneous Turbulence 247

and the kinetic energy K(t) follows the evolution equation

dK

dt
= 2SR13 − ε, (D.15)

which is formally equivalent to the one in shear flows. The evolution equation of the non-diagonal

component is
dR13

dt
= S(R11 +R33) + Π13 − ε13. (D.16)

In such a configuration, one has b22 = −2b11 = −2b33. The anisotropy tensor bij , displayed in Fig.

D.4a for Saffman turbulence, reaches an asymptotic anisotropic after the release of the mean velocity

gradients. The decay exponents α and α13 of K(t) and R13(t) respectively are presented in Fig. D.4b:

classical CBC theoretical decay exponents are recovered.
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Figure D.4: (a) Anisotropy tensor bij with St = 10. (b) Decay exponents of K(t) and
R13(t). Both for σ = 2.

Finally, in Fig. D.5, α and α13 are presented in Batchelor HDRT. The strong result is that the extended

coefficient pS introduced in Chapter 3 for HSRT is still valid here for an initial plane distortion. Hence,

pS does not depend on the shear rate S, nor on the kind of anisotropy.
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Figure D.5: Decay exponents of K(t) and R13(t) for σ = 4 and various S in HDRT.
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D.4 Pressure fluctuations in HAT

In this section, the pressure field is investigated. The main equations are derived in spectral space, and

then applied in both HIT and HST. The contents of this part were included in the publication in Physical

Review Fluids.

D.4.1 Evolution equation of the pressure correlation EP

The pressure fluctuations satisfy the Poisson equation obtained by taking the divergence of the Navier-

Stokes equation (2.1)

−∆p =
∂2uiuj
∂xi∂xj

+ 2Aij
∂uj
∂xi

. (D.17)

The Fourier transform yields

p̂(k, t) = −αiαj ûiuj(k, t) +
2i

k
Aijαiûj(k, t). (D.18)

The spectral two-point second-order pressure correlation is defined as

EP (k, t)δ(k − p) =< p̂(k, t)p̂∗(p, t) > (D.19)

so that the pressure spectrum reads

EP (k, t) =

∫
Sk

EP (k, t)d2k. (D.20)

The spectral pressure correlation is computed according to

p̂p̂′∗ = αiαjα
′
pα
′
qûiuj ûpuq

′∗
+ 4

αiα
′
p

kp
AijApqûj û

′∗
q

+ 2i

(
α′p
p
Apqû

′∗
q αiαj ûiuj −

αi
k
Aij ûjα

′
pα
′
qûpuq

′∗
)
.

The latter term will bring no contribution during the spherical integration and is thus discarded from

here. Ensemble average gives

EP (k)δ(k − p) = 4
αiα

′
p

kp
AijApqR̂jqδ(k − p)

+ αiαjα
′
pα
′
q

∫ ∫ ∫ ∫
< ûi(r)ûj(s)û

∗
p(v)û∗q(w) > δ(k − r − s)δ(p− v −w)d3rd3vd3sd3w.

The quasi-normal procedure is then used: the integral gives three terms that are products of two spectral

Reynolds tensors. After integration over r and p (the latter erases the Dirac functions) only two terms

remain that are equal, so that

EP (k, t) = 2αiαjαpαq

∫
k=p+q

R̂iq(p, t)R̂jp(q, t)d
3p+ 4

αiαp
k2

AijApqR̂jq(k, t). (D.21)

For the λ-integration, relations of Appendix C are used. At first order in anisotropy, five terms remain

from the integration. Four of them are like αiαjH
()
ij and thus bring no contribution to the spherical

average. The explicit expression of the pressure spectrum is then

EP (k, t) = 16π2

∫
∆k

kpq(1− y2)(1− z2)E ′0E ′′0 dpdq
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+ 4
E

k2

(
1

5
A+
ijA

+
ij +

1

3
A−ijA

−
ij −H

(dir)
il

[6

7
A+
ijA

+
jl + 2A−ij(A

−
lj + 2A+

lj)
])

+ 8
E

k2
H

(pol)
il

[3

7
A+
ijA

+
lj +A−ij

(
A−lj −

2

3
A+
lj

)]
. (D.22)

The first contribution is purely isotropic and is therefore referred to as E
(iso)
P (also called the turbulence-

turbulence interaction). Whereas the second contribution E
(S)
P arises from velocity gradients and is

quadratic in Aij (also called turbulence-mean-shear interaction). E
(iso)
P is in agreement with the one

derived by George et al. (1984). There may be a factor 2 missing in the more recent work of Meldi &

Sagaut (2013b) regarding E
(iso)
P .

D.4.2 Spectrum and pressure variance

First, the case of HIT is addressed. From the expression of E
(iso)
P , or dimensional analysis, it directly

follows that

E
(iso)
P (k, t) = CP ε

4/3k−7/3, (D.23)

and the k−7/3 scaling is recovered numerically in Fig. D.6a. The value of CP is discussed hereafter for

shear flows and USHT. Then, from the Poisson equation (D.17), it is clear that the fluctuating pressure

evolves as p ∼ u2. This directly means that the decay exponent of the pressure variance is

KP (t) ∼ tαP , αP = 2α. (D.24)

This is verified in Fig. D.6b for both high and low Reynolds numbers regimes and for Saffman and

Batchelor turbulence. Regarding the pressure spectrum infrared slope, it is obtained in Fig. D.6c that

it does not depend on σ and always results in k2, as predicted by Batchelor (1951); Lesieur et al. (1999).

Indeed, for an initial k4 infrared range, the pressure spectrum EP (k, t) changes very rapidly into k2.
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Figure D.6: (a) Pressure spectrum EP (k, t) in isotropic Saffman turbulence. (b) Decay of the
pressure variance KP in Saffman and Batchelor turbulence: ◦ high Reynolds predictions, � low

Reynolds predictions. (c) Infrared slope of the pressure spectrum EP with initial σ = 4.

The framework of a turbulent shear flow is now investigated; pressure spectra in unstably stratified ho-

mogeneous turbulence are studied in Chapter 7. The scaling of the turbulence-turbulence interaction

spectrum E
(iso)
P remains unchanged compared to HIT, whereas the turbulence-mean-shear interaction

spectrum E
(S)
P arises with non-zero mean velocity gradients. Given its expression (D.22), it is straight-

forward that it evolves in k−11/3 in the inertial range. Dimensional analysis yields

E
(S)
P (k, t) = C

(S)
P S2ε2/3k−11/3, (D.25)

as given in George et al. (1984). The k−11/3 scaling is recovered in Fig. D.7a. The total pressure spectrum

EP (k, t) evolves in k−7/3 in the inertial range, and is not presented since it cannot be distinguished
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from E
(iso)
P . In Fig. D.7b, the compensated E

(S)
P indicates that C

(S)
P ' 1.44, which is close to the

Kolmogorov constant, and this is expected since E
(S)
P scales in E/k2 in (D.22). Furthermore, the value

C
(S)
P ' 1.44 is in good agreement with the prediction (George et al., 1984), where the constant would be

C
(S)
P = 16K0/15 = 1.40.

The compensated isotropic pressure spectra E
(iso)
P k7/3ε−4/3 for shear flows and USHT are presented in

Fig. D.7b and 7.13b: the plateau settles around 2.5 for shear and 2.3 for USHT, which is quite close

and proves some universality of the isotropic pressure spectrum between two completely different flows.

Furthermore, these values are in good agreement with the prediction of George et al. (1984), where the

constant would be CP = 1.32K2
0 = 2.27, close to our result.

Finally, the pressure variance

KP (t) =

∫ ∞
0

EP (k, t)dk = K
(iso)
P (t) +K

(S)
P (t), (D.26)

can be divided into isotropic and anisotropic parts. Both the isotropic K
(iso)
P and shear K

(S)
P parts of

the total pressure variance KP grow exponentially at a rate γP = 2γ as revealed in Fig. D.7c, and in

agreement with theoretical predictions by George et al. (1984) (KP and K
(S)
P cannot be distinguished).
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Figure D.7: Pressure spectra in shear flows for σ = 2 at Reλ = 2.104. (a) Isotropic and

anisotropic pressure spectra E
(iso)
P and E

(S)
P , along with the integral and Kolmogorov wavenum-

bers kL ∼ kP and kη, at Reλ ' 104. (b) Compensated pressure spectra E
(iso)
P k7/3ε−4/3 and

E
(S)
P k11/3ε−2/3/S2. (c) Isotropic and anisotropic parts K

(iso)
P and K

(S)
P of the pressure variance

KP , along with the kinetic energy K for comparison: grey lines indicate the curves exp (γSt)
and exp (2γSt).

D.5 Details on helical turbulence

In this section, details are provided regarding (i) the computation of the non-linear transfers involving

the helical spectrum, (ii) the simplification of the evolution equation of the helical dissipation rate εH ,

and (iii) the wavenumber kHη defined in (8.22). Before that, the equation of the physical and spectral

fluctuating vorticity are given explicitly. One has

∂ωi
∂t

+ ul
∂ωi
∂xl

+ Ul
∂ωi
∂xl

= ωl
∂ui
∂xl

+Ailωl + ν
∂2ωi
∂xl∂xl

, (D.27)

and the spectral counterpart is thus(
∂

∂t
−Aljkl

∂

∂kj
+ νk2

)
ω̂i(k) = Ailω̂l(k) + ikl

(
̂uiωl − ulωi

)
(k). (D.28)
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From this equation and (C.3), the helical Craya equation (8.5) is obtained (without mean velocity gradi-

ents). Regarding the evolution equation of KH =< uiωi > /2 in physical space, the solenoidal property

of ωi provides < ωi∂ip >= 0 in the homogeneous framework.

D.5.1 Non-linear helical transfer TH

The non-linear helical transfer is computed using (8.6). This expression can be simplified considering

the real and imaginary contributions of τij into

TH(k, t) = −iεijlklτij(k, t). (D.29)

Using the quasi-normal closure already detailed in Chapter 2 and Appendix C, there are three terms to

compute

εijlklτij = 2klknεijl

(
P ′′ipqRpjR

′
qn + PjpqR

′
pnR

′′
qi + P ′npqR

′′
piRqj

)
. (D.30)

A careful attention has to be given to the order of the index for the spectral Reynolds tensor which is

not symmetric anymore. Then, the products of Reynolds tensors generate imaginary and real parts.

Only the imaginary part is computed here since the other terms bring no contributions to the spherical

integration. The different contributions are

2klknεijlP
′′
ipqRpjR

′
qn = ik2p

(
E ′′0
H
k

(z(x2 − 1)− (xy + z3)) + E0
H′′

q
(x+ yz)

)
,

2klknεijlPjpqR
′
pnR

′′
qi = 2ik3E ′′0

H′

p

(
z(1− 2y2)− xy

)
,

2klknεijlP
′
npqR

′′
piRqj = ik2p

(
E ′′0
H
k

(z(1− x2)− (xy + z3)) + E0
H′′

q
(x(2z2 − 1) + yz)

)
.

The different relations used intensively to obtain these compact forms, in addition to the ones presented

in Appendix C, are

αjPjp = 0, εijlPij = 0, αiαnP
′
in = 1− z2, α′iα

′
pP
′′
in = 1− x2, α′′i α

′′
nPin = 1− y2,

αnα
′′
i P
′
in = −(y+xz), αjα

′′
pPjp = −(x+ yz), αiαqP

′′
iq = −(z+xy), 2xyz = 1−x2− y2− z2.

Finally, the key relation to use in order to obtain helical transfers similar to the classical isotropic kinetic

ones, is for the E ′′0H′/p term. One can show that

k2(y − xz − 2yz2) = q2(xz + y3)− p2z(x+ yz). (D.31)

This allows, combined with p↔ q symmetrization, to gather the three contributions. For a skew-isotropic

flow, the λ and spherical integrations reduce to∫
Sk

∫ 2π

0

(...) dλ d2k→ (...)2π
pq

k
4πk2,

which immediately yields the expression (8.12).

D.5.2 Non-linear purely helical transfer

Helicity creates a purely helical transfer in the evolution equation of E(k, t), coming exclusively from

products of R̂
(hel)
ij (products of R̂

(iso)
ij and R̂

(hel)
ij have zero contribution to the spherical integration).

Then, transfers are computed with the spherical-integration of 2TE = τii + τ∗ii. Considering only the
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products of imaginary parts, one has τii = τ∗ii. The three terms to compute are then

klτii = 2kl

(
P ′′imnRmiR

′
nl + PimnR

′
mlR

′′
ni + P ′lmnR

′′
miRni

)
.

This gives

2klP
′′
imnRmiR

′
nl =

q

p
HH′(x+ yz) =

p

q
HH′′(x+ yz),

2klPimnR
′
mlR

′′
ni = −k2H′H′′

pq
(x+ yz), 2klP

′
lmnR

′′
miRni = −p

q
HH′′(x− yz − 2xz2).

The key relations to use are

y + xz =
k

p
(x+ yz), k2H′H′′

pq
(x+ yz) = 2H′H′′ k

q
z(x+ yz) (using p↔ q symmetry).

This results into (8.14).

D.5.3 Details on the evolution equation of εH

In this part, details about the calculations and algebra used in section 8.3.2 are gathered. The evolution

equation of εH is obtained starting from the equations of ui and ωi (2.1) and (D.27) in HHT, so that

∂

∂t
<
∂ui
∂xj

∂ωi
∂xj

> +<
∂2ulωi
∂xj∂xl

∂ui
∂xj

> + <
∂2ului
∂xj∂xl

∂ωi
∂xj

> − < ∂2uiωl
∂xj∂xl

∂ui
∂xj

>︸ ︷︷ ︸
D[u,ω]

= − < ∂2p

∂xi∂xj

∂ωi
∂xj

> +ν

(
<

∂3ωi
∂xj∂xl∂xl

∂ui
∂xj

> + <
∂3ui

∂xj∂xl∂xl

∂ωi
∂xj

>

)
.

To simplify the dissipative term, one uses < ∂2
ll(∂jui ∂jωi) >= 0. The pressure term is zero since ωi is

solenoidal and < ∂i(∂jωi ∂jp) >= 0. The term D[u, ω], arising from the non-linearity, is the production

term of εH . One needs to expand < ∂l(ul ∂jui∂jωi) >= 0 and < ∂l(ωl ∂jui∂jui) >= 0, which gives

< ul
∂ui
∂xj

∂2ωi
∂xj∂xl

> + < ul
∂ωi
∂xj

∂2ui
∂xj∂xl

>= 0, < ωl
∂ui
∂xj

∂2ui
∂xj∂xl

>= 0, (D.32)

and yields (8.55).

Simplification of εH : the explicit derivation of RHij gives

∂2RHij
∂rp∂rq

= (δipδjq + δiqδjp)

(
h′

r2
− h

r3

)
− δijδpq

(
h′′

r
+
h′

r2
− h

r3

)
+

+
rirjδpq + rirpδjq + rirqδjp + rjrpδiq + rjrqδip

r2

(
h′′

r
− 3

h′

r2
+ 3

h

r3

)
− rprqδij

r2

(
h′′′ − 3

h′

r2
+ 3

h

r3

)
+
rirjrprq
r4

(
h′′′ − 6

h′′

r
+ 15

h′

r
− 15

h

r

)
+ εijl

[rlδpq + rpδlq + rqδlp
r

(
f ′′′

2
+
f ′′

r
− f ′

r2

)
+
rlrprq

2r3

(
rf (iv) + f ′′′ − 6

f ′′

r
+ 6

f ′

r2

)]
, (D.33)

where the prime ′ denotes the spatial derivative ∂/∂r. From this general equation, one notably obtains

the quantity of interest here

<
∂ui
∂xj

∂ω′i
∂x′j

>= 2

(
h′′′ + 4

h′′

r

)
, (D.34)
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where h′′ and h′′′ can be expressed as specific components of the velocity and vorticity fields thanks to

various relations coming from (D.33): one gets

h′′′(0) =<
∂u2

∂x1

∂ω2

∂x1
> −1

2
<
∂u1

∂x1

∂ω1

∂x1
>, (D.35)

h′′′(0) = lim
r→0

∂3

∂r3
< u2u

′
3 >=< u2

∂3u3

∂x3
1

>, (D.36)

where the two expressions are linked using homogeneity and the definition of ωi. Then, a Taylor expansion

of h(r) for r → 0 in (D.34) gives εH = 10νh′′′(0), with h′′(0) = 0 since εH is finite. Finally, Taylor

expansions in (D.35) give, using only h(0) = 0 since the h′(0) and h′′(0) terms vanish,

<
∂u2

∂x1

∂ω2

∂x1
>=

4

3
h′′′(0) = 2 <

∂u1

∂x1

∂ω1

∂x1
>, (D.37)

which eventually yields (8.58).

Simplification of D[u, ω]: Classical algebra yields

φ
(uuω)
ijl =

εlpq
2r3

(k − rk′)(δiprjrq + δjprirq) +
εlpq
4r

[
(2k + rk′)(δiqδjp + δjqδip)

+
−2k + 2rk′ + r2k′′

r2
(δiqrjrp + δjqrirp)

]
+ S′

[
2
rirjrl
r3

− δil
rj
r
− δjl

ri
r

]
− S

r

[
4
rirjrl
r3

− 2δij
rl
r

+ δil
rj
r

+ δjl
ri
r

]
. (D.38)

From this expression, one notably obtains

φ
(uuω)
LNN = −S′ − S

r
, φ

(uuω)
LLL = −4

S

r
, φ

(uuω)
LLN = 2

S

r
, φ

(uuω)
LNL = 0, (D.39)

where L is the longitudinal component, i.e. r1 = r, and N is either the second or third component, with

r2 = r3 = 0 as usual. The second tensor used in Gomez et al. (2000) reads

φ
(ωuu)
ijl = A

rirjrl
r3

+Bδjl
ri
r

+ Cδil
rj
r

+Dδij
rl
r

+ Eεilm
rjrm
r2

+ Fεjlm
rirm
r2

+Gεijm
rlrm
r2

, (D.40)

where A, B, C, D, E, F and G are functions of r only. Unlike φ
(uuω)
ijl which is expressed as a function

of k(r) and S(r), φ
(ωuu)
ijl depends on unknown functions, and is not symmetric in is two first indices.

Nevertheless, some words can be said about φ
(ωuu)
ijl : using incompressibility ∂rlφ

(ωuu)
iil = 0 and some

algebra given in von Karman & Howarth (1938), one obtains A+B+C+ 3D = 0, which notably implies

that

φ
(ωuu)
iiL = 0, φ

(ωuu)
NNL = −1

2
φ

(ωuu)
LLL . (D.41)

Combining this with relations such as < uLu
′
Lω
′
L >= − < uLωLu

′
L >, one obtains an expression already

given in Gomez et al. (2000),

D(uuω) = 4φ
(uuω)
LNN + 2φ

(uuω)
LLL + 4φ

(ωuu)
NLN − 4φ

(ωuu)
LNN . (D.42)

Using the results (8.50) and (D.39), one gets

∆φ = φ
(ωuu)
NLN − φ

(ωuu)
LNN = −S′ − 3

S

r
. (D.43)
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This expression of ∆φ is essential since it links φ
(ωuu)
ijl to S(r). Now, let’s express D[u, ω] as a function

of the derivatives of φ
(uuω)
ijl and φ

(ωuu)
ijl . One has

∂3φ
(uuω)
ijl

∂rn∂rp∂rq
=<

∂ui
∂xq

∂uj
∂xp

∂ω′l
∂x′n

> + <
∂ui
∂xp

∂uj
∂xq

∂ω′l
∂x′n

>

+ < ui
∂ω′l
∂x′n

∂2uj
∂xp∂xq

> + < uj
∂ω′l
∂x′n

∂2ui
∂xp∂xq

>, (D.44)

∂3φ
(ωuu)
ijl

∂rn∂rp∂rq
=<

∂u′l
∂x′n

∂uj
∂xq

∂ωi
∂xp

> + <
∂u′l
∂x′n

∂uj
∂xp

∂ωi
∂xq

>

+ < uj
∂u′l
∂x′n

∂2ωi
∂xp∂xq

> + < ωi
∂ω′l
∂x′n

∂2uj
∂xp∂xq

> . (D.45)

Using (D.32), one obtains (8.64), with φ
(ωuu)
ili − φ(ωuu)

lii = 2rl∆φ/r. The explicit calculation of the above

expression yields

∂3

∂rj∂rj∂rl

[
φ

(uuω)
ili + φ

(ωuu)
ili − φ(ωuu)

lii

]
=

1

r2

∂

∂r

(
r2 ∂

∂r

[
−2

(
S′′ + 5

S′

r
+ 3

S

r2

)
︸ ︷︷ ︸

∂rlφ
(uuω)
ili

+2

(
∆φ′ +

2

r
∆φ

)
︸ ︷︷ ︸
∂rl (∆φ rl/r)

])

= − 4

r4

[
r4S(iv) + 7r3S′′′ + 3r2S′′ − 6rS′ + 6S

]
= 2

∂3φ
(uuω)
ili

∂rj∂rj∂rl
. (D.46)

It is worth noting, afterwards, that only derivatives of φ
(uuω)
ijl are necessary to compute D[u, ω]. To

conclude the first step, i.e. expressing D[u, ω] as a function of the derivatives of S(r), one uses a Taylor

expansion for S(r) when r → 0, remembering that S(0) = 0,

D[u, ω] = −32

r
S′′′(0)− 35S(iv)(0) +O(r). (D.47)

Since D[u, ω] is finite, because εH is, one has S′′′(0) = 0. In the end, one recovers (8.65), where only

S(0) = S′′′(0) = 0 was used.

The general expression of ∂3
npqφ

(uuω)
ijl is now derived to obtain the explicit expression of S(iv)(0): this is a

lengthy calculation. Nevertheless, since we search for derivatives of S(r), only the corresponding part is

considered in (D.38): the part with derivatives of k(r) vanishes with the appropriate indices contractions.

This yields

∂3φ
(uuω)
ijl

∂rn∂rp∂rq
=

(
2S(iv) − 28

S′′′

r
+ 174

S′′

r2
− 558

S′

r3
+ 768

S

r4

)
rirjrlrnrprq

r6

+
1

r4

(
2
S′′′

r
− 18

S′′

r2
+ 66

S′

r3
− 96

S

r4

)[
δinrjrlrprq + δjn . . .+ δln . . .+ δpn . . .+ δqn . . .+

δip . . .+ δiq . . .+ δjp . . .+ δjq . . .+ δij . . .+ δpl . . .+ δql . . .+ δpq . . .
]

− 1

r4

(
S(iv) − 5

S′′′

r
+ 6

S′′

r2
+ 18

S′

r3
− 48

S

r4

)[
δilrjrnrprq + δjlrirnrprq

]
+

1

r2

(
2
S′′

r2
− 10

S′

r3
+ 16

S

r4

)[
rirjP

(3)
lnpq + rirlP

(3)
jnpq + rjrlP

(3)
inpq + rlrpP

(3)
ijnq + rlrqP

(3)
ijnp+

rlrnP
(3)
ijpq + rirp(δjnδlq + δlnδjq) + rirq(δjnδlp + δlnδjp) + rjrp(δinδlq + δlnδiq)+

rjrq(δinδlp + δlnδip) + rirn(δjpδlq + δlpδjq) + rjrn(δipδlq + δlpδiq)+

δij(rprnδlq + rqrnδlp + rprqδln)
]
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− 1

r2

(
S′′′

r
− 2

S′′

r2
− 2

S′

r3
+ 8

S

r4

)[
rnrp(δilδjq + δjlδiq) + rnrq(δilδjp + δjlδip)+

rprq(δilδjn + δjlδin) + rjδil(rnδpq + rpδqn + rqδpn) + riδjl(rnδpq + rpδqn + rqδpn)
]

+

(
2
S′

r3
− 4

S

r4

)[
δin(δjqδlp + δjpδlq) + δjn(δiqδlp + δipδlq) + δij(δlqδpn + δlpδqn) + δlnP

(3)
ijpq

]
−
(
S′′

r2
− 2

S

r4

)[
δilP

(3)
jnpq + δjlP

(3)
inpq

]
, (D.48)

where P
(3)
ijpq = δijδpq + δipδjq + δiqδjp. With this equation, one can obviously recover (D.46). Even

though this would be tedious, this equation (D.48), combined with (D.44), can determine each non-zero

component of ∂3
npqφ

(uuω)
ijl as a function of derivatives of S(r). This expression is of course an important

result and could be used for further theoretical developments. One gets in particular

∂3φ
(uuω)
111

∂r3
1

= −4
S′′′

r
+ 12

S′′

r2
− 24

S′

r3
+ 24

S

r4
. (D.49)

Using as before a Taylor expansion of S(r) when r → 0, the S′(0), S′′(0) and S′′′(0) terms vanish, and

with S(0) = 0, this yields (8.66). Furthermore, using (D.44), one obtains(
∂3φ

(uuω)
111

∂r3
1

)
r=0

= 2 <

(
∂u1

∂x1

)2
∂ω1

∂x1
> +2 < u1

∂2u1

∂x2
1

∂ω1

∂x1
>=<

∂2u2
1

∂x2
1

∂ω1

∂x1
> . (D.50)

The two previous equations give (8.67).

D.5.4 Re-interpretation of the helical viscous cutoff kHη

In this section, another interpretation of the wavenumber kHη , defined in (8.22), is proposed. This

wavenumber was originally derived by Ditlevsen & Giuliani (2001) as a helical viscous cutoff. However,

it was revealed in Fig. 8.1b that kHη is not a wavenumber equivalent to kη for the helical spectrum, since

both E and H have a k−5/3 inertial range which extends up to kη.

Here are some elements, based on the demonstration of Ditlevsen & Giuliani (2001), to explain why

kHη cannot be a helical viscous cutoff. First, it is assumed in the latter reference that H(k, t) scales as

kE(k, t) in the spectral definition of εH , and that the dominant contribution of the integral comes from

the largest wavenumber, which gives

εH = 2ν

∫ ∞
0

k2H(k, t)dk ∼ νkHη
4
E(kHη , t) = νkHη

7/3
ε2/3, (D.51)

and thus recovers (8.22). However, a scaling like H ∼ kE would imply that H ∼ k−2/3 in the inertial

range, which is not the case as illustrated in Fig. 8.1b. Hence, the assumption H ∼ kE in the inertial

range is wrong, and moreover, it is worth noting that if the scaling (8.20) is used in the previous integral,

one recovers kHη = kη, as shown by Chen et al. (2003).

Instead, it is shown hereafter analytically that kHη can be seen as the wavenumber at which viscous

dissipation of helicity balances non-linear helical transfers. In the kinetic and helical Lin evolution

equations (8.15) and (8.16), writing that at k = kHη there is a balance between convection and viscous

dissipation yields νkHη
2
E(kHη ) ∼ θkHη H(kHη )2, where θ = θkkk. With the relation (8.21), one further has

E/H ∼ ε/εH . Then, for the characteristic time, θ ∼ 1/(νkHη
2
) is chosen, in agreement with dissipation

being dynamically important at large wavenumbers in the definition (2.40) of θkpq. Finally, the classical
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inertial scaling (8.20) is used for H, so that

νkHη
2 E(kHη )

H(kHη )
∼ 1

νkHη
2 k

H
η

(
εHε
−1/3kHη

−5/3
)

⇔ kHη
14/3 ∼ ε2Hε−4/3ν−2, (D.52)

from which one recovers (8.22). Here, the evolution equation of E has been used: the final result can also

be obtained starting from the evolution equation of H(k), and writing νkHη
2
H(kHη ) ∼ θkHη

3
E(kHη )H(kHη ).

The wavenumber kHη is shown to be quite relevant in Fig. 8.9 at large Reynolds numbers: indeed, from

kHη , there is a balance between −2νk3H and kSNL
H . However, this is much less relevant at moderate

Reynolds numbers: this is expected since in the previous demonstration, inertial scalings were used,

which are valid only at large Reynolds numbers.

As a conclusion, the original helical viscous cutoff kHη proposed by Ditlevsen & Giuliani (2001) was re-

interpreted in terms of high Reynolds numbers balance between the viscous dissipation of helicity and

non-linear helical transfers.



Appendix E

Details on Spherically-Averaged

Scalar Lin Equations

In this appendix, all the calculations yielding to the scalar spherically-averaged Lin equations of the

passive scalar field and scalar flux are fully detailed. Additional theoretical results are presented as well,

such as the quadratic anisotropic contributions in the non-linear transfers with illustrations in USHT,

and an alternative modelling for the scalar flux.

E.1 Scalar-scalar correlation

In this section, the spectral scalar-scalar correlation is first addressed: the quasi-normal procedure along

with the calculations of the linear and non-linear transfers are detailed.

E.1.1 Scalar Craya equation

The scalar-scalar correlation ET is defined in (4.5). Its evolution equation is obtained by multiplying

(4.3) by θ̂∗(p) and summing it to the evolution equation of θ̂∗(p) multiplied by θ̂(k). Ensemble average

and integration over the whole domain gives the scalar Craya equation (4.6). The calculation of the scalar

non-linear transfer TT,NL deserves some additional details. Firstly, one has to use Hermitian symmetry

for the scalar fluctuation θ(k)∗ = θ(−k) so that the scalar potential satisfies ET (k)∗ = ET (−k).

Before using ensemble average, (4.6) reads, with the use of Hermitian symmetry

∂θ̂(k)θ̂∗(p)

∂t
+ ... = −ikj

∫
k=r+s

θ̂∗(p)θ̂(r)ûj(s)dr + ipj

∫
p=r+s

θ̂(k)θ̂∗(r)û∗j (s)dr,

= −ikj

∫
k=r+s

θ̂(−p)θ̂(r)ûj(s)dr + ipj

∫
p=r+s

θ̂∗(−k)θ̂∗(r)û∗j (s)dr.

Then, ensemble average gives

∂ET δ(k − p)

∂t
+ ... = −kj

∫
k=r+s

STj (−p, r)δ(r + s− p)dr − pj
∫
p=r+s

ST∗j (−k, r)δ(r + s− k)dr.

257
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One has to integrate over p

∂ET (k)

∂t
+ ... = −

∫ (
kj

∫
k=r+s

STj (−p, r)δ(k − p)dr
)

dp

−
∫ (

pj

∫
p=r+s

ST∗j (−k, r)δ(p− k)dr
)

dp.

Using the fact that the Dirac function is even, one obtains

∂ET (k)

∂t
+ ... = −kj

∫
STj (−k,p)dp− kj

∫
ST∗j (−k,p)dp = −2kj<

(∫
STj (−k,p)dp

)
.

This equation implies that the scalar correlation ET is real, as the Reynolds stress tensor (without

helicity), and thus follows the property ET (k) = ET (−k), which leads to

∂ET (k)

∂t
+ ... = 2kj<

(∫
STj (k,p)dp

)
.

E.1.2 EDQNM closure for ET

Some details about how to obtain the closure (4.24) for TT,QN
i (k,p) are given. Firstly, the fourth-order

correlation is defined

TTjl (k,p, t)δ(k + p+ q + v) = −i < ûj(q)θ̂(k)θ̂(p)ûl(v) > . (E.1)

The process is slightly different from the purely kinetic one since the relation is not symmetric. The

third-order scalar correlation STj (k,p) evolution equation can be written as(
∂

∂t
+ a(k2 + p2) + νq2

)
θ̂(k)θ̂(p)ûj(q) + ... = −i(

kl

∫
k=r+s

θ̂(r)θ̂(p)ûl(s)ûj(q)d3r + pl

∫
p=r+s

θ̂(r)θ̂(k)ûl(s)ûj(q)d3r

+ Pjmn(q)

∫
q=r+s

θ̂(k)θ̂(p)ûm(r)ûn(s)d3r
)
,

which becomes, after ensemble average and convolution rules(
∂

∂t
+ a(k2 + p2) + νq2

)
STj (k,p, t)δ(k + p+ q) + ... =

kl

∫
k=r+s

TTjl (r,p)δ(k + p+ q)d3r + pl

∫
p=r+s

TTjl (k, r)δ(k + p+ q)d3r+

+ Pjmn(q)

∫
q=r+s

TTmn(k,p)δ(k + p+ q)d3r.

There is no need to go further for the evolution equation. Then, the quasi-normal approximation is used,

consisting into neglecting the fourth order cumulants. The first rhs term gives∫
k=r+s

Fl(r)Fj(p)δ(r + s)δ(p+ q)d3r +

∫
k=r+s

ET (p)R̂jl(q)δ(r + p)δ(s+ q)d3r

+

∫
k=r+s

Fj(r)Fl(p)δ(r + q)δ(p+ s)d3r = klδ(k + p+ q)
(
ET (p)R̂jl(q) + F ∗j (q)Fl(p)

)
.
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The second term yields∫
p=r+s

Fl(r)Fj(k)δ(r + s)δ(k + q)d3r +

∫
p=r+s

ET (k)R̂jl(q)δ(r + k)δ(s+ q)d3r

+

∫
p=r+s

Fj(r)Fl(k)δ(r + q)δ(k + s)d3r = plδ(k + p+ q)
(
ET (k)R̂jl(q) + F ∗j (q)Fl(k)

)
.

The last term gives∫
q=r+s

Fm(k)Fn(p)δ(r + k)δ(s+ p)d3r +

∫
q=r+s

ET (k)R̂mn(r)δ(r + s)δ(k + p)d3r

+

∫
q=r+s

Fm(p)Fn(k)δ(r + p)δ(k + s)d3r = 2Pjmn(q)δ(k + p+ q)Fm(p)Fn(k).

Finally, using relations such as plR̂
′′
jl = −klR̂′′jl, one recovers the previous expression of TT,QN

i (k,p).

The main term to compute is then kiT
T,QN
i . To do so, the same method as in the purely kinetic case is

applied: using

klR̂
′′
lnkn = kp(xy + z)

(
E ′′ + <X ′′

)
,

and relations such as kiα
′′
i = −ky, qnFn = −pnFn and qnF

′
n = −knF ′n, one gets

kiT
T,QN
i = 2kp(xy + z)(E ′′ + <X ′′)(E ′T − ET )

+ knF
′′∗
n (pmFm + kmF

′
m) + pmFmknF

′
n

ky − px
q

.

The non-linear scalar transfer TT,NL(k, t) of (4.26) is thus recovered.

E.1.3 Spherically-averaged scalar Lin equations

Now, as in the kinetic case, spherical integrations are performed on this non-linear scalar transfer term to

transform the (k, t) dependence into a (k, t) one. All quadratic contributions such as E ′′ET , <X ′′ET , ...

are discarded in the moderate anisotropy framework. Finally, products of the cospectrum flux in (4.26)

like F ′′∗i Fj and F ′iFj are neglected as well: indeed, since Fi is zero in the isotropic case, it is a purely

anisotropic quantity and thus quadratic contributions can be neglected.

The definition of the non-linear isotropic scalar transfer is given by (4.39). From (4.26), only six terms

remain after the λ-integration. The two relations of use are∫
Sk

αiαjH
()
ijd

2k = 0,

∫
Sk

H()
mnαmαnPijd

2k = − 8

15
πk2H

()
ij .

There is only one term left from the λ-integration. The non-linear isotropic scalar transfer (4.40) is

recovered with the first of this formula. The non-linear directional scalar transfer is defined by (4.41).

The λ-integration also gives six terms: one of them is simplified when the isotropic part is subtracted.

One has to use the second formula of spherical average to obtain (4.42).

The linear isotropic scalar transfer ST,L(iso) defined in (4.43) is computed using previous relations of

Appendix C such as∫
Sk

Alnkl
∂ETH(T )

pq αpαq
∂kn

d2k =
8πk2

15
Aln

(
k
∂H

(T )
ln ET0
∂k

+ 3H
(T )
ln E

T
0

)
,
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which yields (4.44). The linear spherically-averaged directional scalar transfer is defined by (4.45).

Equation (4.46) is recovered using

AlnH
(T )
pq

∫
Sk

αiαjαlαnαpαqd
2k =

8πk2

105

(
2A+

liH
(T )
jl + 2A+

ljH
(T )
il +AlnH

(T )
ln δij

)
,

∫
Sk

Alnkl
∂H

(T )
pq αpαqαiαj
∂kn

d2k =
8πk2

105

(
2A+

li

(
k
∂H

(T )
lj

∂k
+ 3H

(T )
lj

)

+ 2A+
lj

(
k
∂H

(T )
li

∂k
+ 3H

(T )
li

)
+Aln

(
k
∂H

(T )
ln

∂k
+ 3H

(T )
ln

)
δij

)
.

E.1.4 Scalar quadratic anisotropic contributions

The quadratic anisotropic contributions in the non linear scalar transfer (4.26) are computed analytically.

The calculations involve expressions given in Appendix C for the kinetic case. After some algebra, one

gets the scalar second-order isotropic term

QT,NL(iso)(k, t) = 12

∫
∆k

θTkpqπ
2k2pq(x+ yz)

[
EF
′′

i (kxEF
′

i − pyEFi ) + zEF
′

i EFi (ky − px)
]
dpdq

+ 120

∫
∆k

θTkpqπ
2k2p2q(xy + z)E ′′0

[
2H

(dir)′′

ij

(
ET
′

0 H
(T )′

ij (3x2 − 1)− ET0 H
(T )
ij (3y2 − 1)

)
−H(pol)′′

ij

(
ET
′

0 H
(T )′

ij (1− x2)− ET0 H
(T )
ij (1− y2)

)]
dpdq, (E.2)

and the scalar second-order directional term

Q
T,NL(dir)
ij (k, t) =

3

5

∫
∆k

θTkpqπ
2k2pq(x+ yz)

[
z(ky − px)

{
EF , EF

′
}
ij

− py
{
EF , EF

′′
}
ij

− k(2x+ 3yz)

{
EF
′
, EF

′′
}
ij

]
dpdq

+
120

7

∫
∆k

θTkpqπ
2k2p2q(xy + z)E ′′0

[
2(1 + 3xyz)ET

′

0

{
H(dir)′′ , H(T )′

}
ij

+ 2(3y2 − 1)ET0
{
H(dir)′′ , H(T )

}
ij

− (1− xyz − 2z2)ET
′

0

{
H(pol)′′ , H(T )′

}
ij

− (1− y2)ET0
{
H(pol)′′ , H(T )

}
ij

]
dpdq, (E.3)

where {
EF , EF

′
}
ij

= EFi EF
′

j + EFj EF
′

i −
2

3
EFl EF

′

l δij .

E.2 Scalar-velocity correlation F

In this section, the spectral velocity-scalar correlation is addressed: the quasi-normal procedure along

with the calculations of the linear and non-linear transfers are detailed. An alternative modelling for the

scalar flux is proposed as well, and details are provided for the additional contributions linked to helicity

in HHTSG.
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E.2.1 Craya equation for the cospectrum flux

The scalar-velocity correlation is defined in (4.9). Its evolution equation is obtained by multiplying (4.3)

by û∗i (p) and summing it to the evolution equation of û∗i (p) multiplied by θ̂(k). After ensemble average

and integration over the whole domain to simplify δ(k − p), one has(
∂

∂t
−Ajlkj

∂

∂kl
+ (ν + a)k2

)
Fi +MijFj − kjλl

∂R̂ij
∂kl

= TF,NL
i .

Moreover, since kjR̂ij = 0, one recovers the scalar flux Craya equation (4.10). Additional details on how

TF,NL
i is obtained are now provided. Before spherical-averaging, one has

∂û∗i (p)θ̂(k)

∂t
+ ... = −ikj

∫
k=r+s

θ̂(r)ûj(s)û
∗
i (p)d3r + iPimn(p)

∫
p=r+s

θ̂(k)û∗m(r)û∗n(s)d3r,

= −ikj

∫ ∫
θ̂(r)ûj(s)û

∗
i (p)δ(k − r − s)d3rd3s

+ iPimn(p)

∫ ∫
θ̂(k)û∗m(r)û∗n(s)δ(p− r − s)d3rd3s,

= −ikj

∫ ∫
θ̂∗(r)û∗j (s)û

∗
i (p)δ(k + r + s)d3rd3s

+ iPimn(p)

∫ ∫
θ̂(k)ûm(r)ûn(s)δ(p+ r + s)d3rd3s.

Ensemble average further gives

∂Fi(k, t)δ(k − p)

∂t
+ ... = kj

∫ ∫
SF∗ji (r,p)δ(p+ r + s)δ(k + r + s)d3rd3s

+ Pimn(p)

∫ ∫
SFnm(k, r)δ(p+ r + s)δ(k + r + s)d3rd3s.

Integration over p simplify the first Dirac function, and integration over s in the rhs term of the equation

erase the second one

∂Fi(k, t)

∂t
+ ... = kj

∫ ∫
SF∗ji (r,−r − s)δ(k + r + s)d3rd3s

+ Pimn(−r − s)
∫ ∫

SFnm(k, r)δ(k + r + s)d3rd3s,

∂Fi(k, t)

∂t
+ ... = kj

∫
SF∗ji (r,k)d3r + Pimn(k)

∫
SFnm(k, r)d3r.

E.2.2 Quasi-normal approximation for Fi

Some details on how the closure (4.25) is obtained are given. Firstly, the fourth-order correlation is

defined as

TFijl(k,p, t)δ(k + p+ q + v) = −i < ûi(q)θ̂(k)ûj(p)ûl(v) > . (E.4)

The process is similar to the scalar one. The third-order scalar flux correlation SFij(k,p) evolution

equation can be written as(
∂

∂t
+ ak2 + ν(p2 + q2)

)
θ̂(k)ûj(p)ûi(q) + ... = −i(

kl

∫
k=r+s

θ̂(r)ûj(p)ûl(s)ûi(q)d3r + Pjmn(p)

∫
p=r+s

θ̂(k)ûn(s)ûm(r)ûi(q)d3r
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+ Pimn(q)

∫
q=r+s

θ̂(k)ûm(r)ûn(s)ûj(p)d3r
)
,

which becomes, after ensemble average and convolution rules(
∂

∂t
+ ak2 + ν(p2 + q2)

)
SFij(k,p, t)δ(k + p+ q) + ... =

kl

∫
k=r+s

TFijl(r,p)δ(k + p+ q)d3r + Pjmn(p)

∫
p=r+s

TFimn(k, r)δ(k + p+ q)d3r+

+ Pimn(q)

∫
q=r+s

TTmjn(k,p)δ(k + p+ q)d3r.

The quasi-normal approximation yields calculations very similar to the scalar case. The three terms are

respectively

δ(k + p+ q)

[
kl

(
F ∗j (p)R̂il(q) + F ∗i (q)R̂jl(p)

)
+ 2Pjmn(p)R̂in(q)Fm(k) + 2Pimn(q)R̂jn(p)Fm(k)

]
.

E.2.3 Computation of the non-linear transfers of Fi

The non-linear scalar flux transfer is defined by (4.14). The following calculations allow to recover (4.47).

Computation of τFi (k,p): the starting point is

τFi (k,p) = knkj

(
R̂′′njF

′∗
i + R̂′niF

′′∗
j

)
+ 2Fmkj

(
P ′′jmnR̂

′
ni + P ′imnR̂

′′
nj

)
. (E.5)

Symmetry for the second rhs term can be used thanks to θFkpq = θFkqp. Useful relations are

klR̂
′′
lnkn = kp(xy + z)

(
E ′′ + <X ′′

)
, knR̂

′
ni = kE ′0(αi + zα′i), q − ky = px,

k
√

1− y2
√

1− z2 =
kq

p
(1− y2) = k(x+ yz) = q(xy + z), αlαnR̂

′
ln = (1− z2)(E ′ + <X ′).

The terms to compute are, at first order in anisotropy

knkjR̂
′′
njF

′∗
i =

3

2
kp(xy + z)E ′′0 EF

′

j P ′ij , knkjR̂
′
niF

′′∗
j =

3

2
k2E ′0(αi + zα′i)EF

′′

j (αj + yα′′j ),

kjFmP
′′
jmnR̂

′
ni =

3

4
kE ′0(αi + zα′i)EFj (α′′j + yαj)(q − 2ky),

kjFmP
′′
imnR̂

′
nj =

3

4
kqE ′0EFj

(
(αi + zα′i)(α

′′
j + yαj) + (y + xz)

(
2α′′i (α′′j + yαj)− Pij

))
.

Computation of τF∗i (p,k): the starting point is

τF∗i (p,k) = pnkj

(
R̂′′njFi + R̂niF

′′
j

)
+ 2kjF

′∗
m

(
P ′′jmnR̂ni + PimnR̂

′′
nj

)
.

Useful relations are

pnR̂
′′
njkj = −kp(xy + z)

(
E ′′ + <X ′′

)
, pnR̂

′
ni = pE0(α′i + zαi), α′nα

′′
n = −x.

The terms to compute are

pnkjR̂
′′
njFi = −3

2
kp(xy + z)E ′′0 EFj Pij , pnkjR̂niF

′′
j =

3

2
kpE0(α′i + zαi)EF

′′

j (α′′j + yα′′j ),
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2kjF
′∗
mP

′′
jmnR̂ni =

3

2
kqE0(α′′i + yαi)EF

′

j

(
αj + zα′j + 2y(α′′j + xα′j)

)
,

2kjF
′∗
mPimnR̂

′′
nj =

3

2
k2E ′′0 EF

′

j

(
(αi + yα′′i )(αj + zα′j) + (1− y2)

(
P ′ij − 2αi(αj + zα′j)

))
.

Computation of WF
i (k,p): one has WF

i = −αiαjτFj . The two first terms can be grouped together

αiαjknkl(R̂
′′
nlF
′∗
j + R̂′njF

′′∗
l ) = 3k2(1− y2)E ′′0 EF

′

j αi(αj + zα′j).

With symmetrization, there is only one term left to compute

2αiαjFmklP
′′
jmnR̂

′
nl =

3

2
kqE ′0EFj αi

(
1− z2 − 2y(y + xz)

)
(α′′j + yαj).

E.2.4 Spherically-averaged cospectrum Lin equations

The useful parts of the λ-integration are the following ones∫ 2π

0

αiα
′
jdλ = −2πzαiαj ,

∫ 2π

0

αiα
′′
j dλ = −2πyαiαj ,

∫ 2π

0

α′iα
′′
j dλ = π[αiαj(x+ 3yz)− δij(x+ yz)],

∫ 2π

0

P ′ijdλ = π(1 + z2)δij − παiαj(3z2 − 1).

The term in E ′0EFj of WF
i brings no contribution to the λ-integration. For the spherical integration, the

different terms are the following ones∫
Sk

MijFjd
2k =

2

5
A+
ijE

F
j ,

∫
Sk

Ajlkj
∂Fi
∂kl

d2k = −1

5
A+
ij

∂

∂k
(kEFj ),

∫
Sk

PijEFj d2k =
8πk2

3
EFi .

The ”rapid-pressure” part is given by∫
Sk

2αiαnAnjFjd
2k =

3

5
A+
ijE

F
j +A−ijE

F
j .

E.2.5 Alternative modelling for F

The modelling for the scalar flux is now based on a helical decomposition and reads

Fi(k, t) = EFj (k, t)Pij(k, t) = φ+(k, t)Ni(k, t) + φ−(k, t)N∗i (k, t). (E.6)

The scalar flux is solenoidal so that the φ± functions read

φ+(k, t) =
1

2
EFj (k, t)N∗j (k, t), φ−(k, t) =

1

2
EFj (k, t)Nj(k, t). (E.7)

Convenient notations are used for computation

Y+(k, t) = φ+(k, t)eiλ + φ−(k, t)e−iλ, Y−(k, t) = φ+(k, t)eiλ − φ−(k, t)e−iλ. (E.8)

The pressure part of the non-linear transfer has no contribution with the present helical decomposition

(E.6) because αiNi = 0. The non-linear transfers associated with φ+ and φ− are consequently

TF+ (k, t) =
1

2
TF,NL
i (k, t)N∗i (k, t), TF− (k, t) =

1

2
TF,NL
i (k, t)Ni(k, t), (E.9)
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so that

TF,NL
i (k, t) = Pij(k, t)T

F,NL
j (k, t) = TF+ (k, t)Ni(k, t) + TF− (k, t)N∗i (k, t). (E.10)

Computation of τi(k,p): in this case, a symmetric expression of the closure (2.36) is used, more

convenient for calculations

TF,QN
ij (k,p) = kn

(
R̂ni(q)F ∗j (p) + R̂nj(p)F ∗i (q)

)
+ 2Fm(k)

(
Pimn(q)R̂nj(p) + Pjmn(q)R̂ni(p)

)
.

Additional useful results are√
1− y2

√
1− z2 = (x+ yz), kx− qz = y(qx− kz), 4kyz + 2kx− 2qz = 2py,

The different parts of the computation are the following ones

knkjR̂
′′
njF

′∗
i N

∗
i = −k2(1− y2)E ′′0 e−iλ(Y ′∗− + zY ′∗+ ), knkjR̂

′′
njF

′∗
i Ni = k2(1− y2)E ′′0 eiλ(Y ′∗− − zY ′∗+ ),

knkjR̂
′
niF

′′∗
j N∗i = k2z(x+ yz)E ′0e−iλY ′′∗+ , knkjR̂

′
niF

′′∗
j Ni = k2z(x+ yz)E ′0eiλY ′′∗+ ,

2FmkjR̂
′
niP

′′
jmnN

∗
i = k(2ky − q)z(x+ yz)E ′0e−iλY+,

2FmkjR̂
′
niP

′′
jmnNi = k(2ky − q)z(x+ yz)E ′0eiλY+,

2FmkjR̂
′
njP

′′
imnN

∗
i = −k2(1− z2)E ′0e−iλ(Y+ + Y−) + k

(
2k(x+ yz)− qz

)
(x+ yz)E ′0e−iλY+,

2FmkjR̂
′
njP

′′
imnNi = −k2(1− z2)E ′0eiλ(Y+ − Y−) + k

(
2k(x+ yz)− qz

)
(x+ yz)E ′0eiλY+.

Hence, the p↔ q symmetry for the E ′′0 part - valid thanks to θFkpq = θFkqp - gives

τiN
∗
i = kE ′0e−iλ

[
k

(
− (1− z2)(Y+ + Y−) + Y ′′∗+ (xz + 2yz2 − y)− (1− z2)Y ′′∗−

)
+ 2py(x+ yz)Y+

]
,

τiNi = kE ′0eiλ

[
k

(
− (1− z2)(Y+ − Y−) + Y ′′∗+ (xz + 2yz2 − y) + (1− z2)Y ′′∗−

)
+ 2py(x+ yz)Y+

]
.

Computation of τ∗i (p,k): here, no symmetry can be performed because of the θFpkq. The different

parts of the computation are the following ones

pnkjR̂
′′
njFiN

∗
i = −k2(1− y2)E ′′0 e−iλ(Y+ + Y−), pnkjR̂

′′
njFiNi = −k2(1− y2)E ′′0 eiλ(Y+ − Y−),

pnkjR̂niF
′′
j N
∗
i = kp(x+ yz)E0e−iλY ′′+ , pnkjR̂niF

′′
j Ni = kp(x+ yz)E0eiλY ′′+ ,

2F ′∗mkjR̂niP
′′
jmnN

∗
i = kpE0e−iλY ′∗+ (x2 − y2), 2F ′∗mkjR̂niP

′′
jmnNi = kpE0eiλY ′∗+ (x2 − y2),

2F ′∗mkjR̂
′′
njPimnN

∗
i = k2E ′′0 e−iλ

(
(xy − z + 2y2z)Y ′∗+ + (y2 − 1)Y ′∗−

)
,

2F ′∗mkjR̂
′′
njPimnNi = k2E ′′0 eiλ

(
(xy − z + 2y2z)Y ′∗+ + (1− y2)Y ′∗−

)
.

Hence

τ ′∗i N
∗
i = k2E ′′0 e−iλ

[
(xy + 2zy2 − z)Y ′∗+ − (1− y2)(Y ′∗− + Y+ + Y−)

]
+ kpE0e−iλ

[
(x+ yz)Y ′′+ + (x2 − y2)Y ′∗+

]
, (E.11)

τ ′∗i Ni = k2E ′′0 eiλ
[
(xy + 2zy2 − z)Y ′∗+ + (1− y2)(Y ′∗− − Y+ + Y−)

]
+ kpE0eiλ

[
(x+ yz)Y ′′+ + (x2 − y2)Y ′∗+

]
. (E.12)
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λ-integration: useful results are the following ones∫ 2π

0

e−iλ(Y+ + Y−)dλ = 2πEFi N∗i ,
∫ 2π

0

eiλ(Y+ + Y−)dλ = 2πEFi Ni,∫ 2π

0

e−iλY ′∗− dλ = −πEF
′

i N∗i ,

∫ 2π

0

eiλY ′∗− dλ = πEF
′

i Ni,

∫ 2π

0

e±iλY ′∗+ dλ = −zπEF
′

i Ni,∫ 2π

0

eiλY ′′∗+ dλ =

∫ 2π

0

e−iλY ′′+dλ = −yπEF
′′

i N∗i ,

∫ 2π

0

e−iλY ′′∗− dλ = −πEF
′′

i N∗i ,∫ 2π

0

eiλY ′′∗+ dλ =

∫ 2π

0

eiλY ′′+dλ = −yπEF
′′

i Ni,

∫ 2π

0

eiλY ′′∗− dλ = πEF
′′

i Ni.

This yields the following equations which have to be multiplied by pq/k:∫ 2π

0

(τj + τ ′∗j )N∗j dλ = πkE ′0N∗j
[
k
(

2(1− z2)EFj + (1 + y2 − z2 − xyz − 2y2z2)EF
′′

j

)
+ 2py(x+ yz)EFj

]
− πkN∗j

[
kE ′′0

(
(xyz + 2y2z2 − z2)EF

′

j + (1− y2)(2EFj − EF
′

j )
)

+ pE0
(
y(x+ yz)EF

′′

j + (z − z3 + 2xyz + 2y2z2)EF
′

j

)]
= 2

∫ 2π

0

TF+ dλ, (E.13)∫ 2π

0

(τj + τ ′∗j )Njdλ = πkE ′0Nj
[
k
(

2(1− z2)EFj + (1 + y2 − z2 − xyz − 2y2z2)EF
′′

j

)
+ 2py(x+ yz)EFj

]
− πkNj

[
kE ′′0

(
(xyz + 2y2z2 − z2)EF

′

j + (1− y2)(2EFj − EF
′

j )
)

+ pE0
(
y(x+ yz)EF

′′

j + (z − z3 + 2xyz + 2y2z2)EF
′

j

)]
= 2

∫ 2π

0

TF− dλ. (E.14)

Spherical integration: the useful relation is∫
Sk

N∗i NjEFj d2k =
8πk2

3
EFi . (E.15)

Then, (E.13) is contracted with Ni and (E.14) with N∗i . This yields the spherically averaged non-linear

transfer of the scalar flux, and one can note that the ()+ and ()− components are equal

SF,NL
i =

∫
Sk

∫ 2π

0

(
TF+ (k, t)Ni(k, t) + TF− (k, t)N∗i (k, t)

)
dλd2k

=

∫
∆k

8

3
π2θFkpqk

2pqE ′0

[
k
(
− 2(1− z2)EFi + (1 + y2 − z2 − xyz − 2y2z2)EF

′′

i

)
+ 2py(x+ yz)EFi

]
dpdq

+

∫
∆k

8

3
π2θFpkqk

2pq

[
kE ′′0

(
(1− y2 + z2 − xyz − 2y2z2)EF

′

i − 2(1− y2)EFi
)

− pE0
(
y(x+ yz)EF

′′

i + z(x2 − y2)EF
′

i

)]
dpdq. (E.16)

Moreover, k(1 − z2) = q(y + xz) and p(x + yz) = q(1 − y2) so that −2k(1 − z2)EFi + 2py(x + yz)EFi =

−2q(xz+ y3)EFi . In addition, p(x2− y2) comes from p(1− z2− 2(y2(1− z2) + yz(x+ yz))) which can be

written q(x−yz−2xy2). Consequently, the non-linear transfer (4.49) computed directly with Fi ∼ PijEFj
is recovered. Here are some remarks on this modelling:

• The helical decomposition is not sufficient to completely compute the scalar flux non-linear transfer:

indeed, a model is required for φ+ and φ−.

• The calculations are more complicated since they involve helical modes instead of projectors.
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• All calculations are made twice (once for TF+ and once for TF− which are eventually equal) whereas

only a single process is needed when directly injecting Fi = PijEFj in the closure.

• The helical decomposition does not permit to compute easily the pressure part of the non-linear

transfers.

• It brings information on the toroidal-poloidal structure of the scalar flux: any solenoidal field,

such as the scalar flux, can be decomposed, in the Craya-Herring frame (e1
i , e

2
i ), into toroidal and

poloidal parts

Fi(k, t) = Ftor(k, t)e
1
i (k, t) + Fpol(k, t)e

2
i (k, t). (E.17)

Thus, using (E.6) and the definition (2.27) of the helical modes, the scalar flux helical decomposi-

tion reads

Fi(k, t) = i
(
φ−(k, t)− φ+(k, t)

)
︸ ︷︷ ︸

Ftor(k,t)

e1
i (k, t) +

(
φ+(k, t) + φ−(k, t)

)
︸ ︷︷ ︸

Fpol(k,t)

e2
i (k, t). (E.18)

The previous calculations showed that φ+ and φ− led the same contribution to the non-linear

transfer (TF+Ni + TF−N
∗
i = 2TF+Ni). Consequently, one can conclude that the scalar flux has a

poloidal structure only. Finally, since E ∼ (toroidal) + (poloidal) and Z ∼ (poloidal)− (toroidal),

a single quantity only is needed to describe anisotropy at the scalar flux level.

E.2.6 Scalar flux quadratic anisotropic contributions

Here, the second-order contributions in anisotropy of the non linear scalar flux transfer are computed

analytically. The calculations are quite lengthy and involve some expressions gathered in Appendix C

for the kinetic case. Afterwards, some illustrations for USHT are proposed. Here are some additional

useful formula for the λ-integration:∫ 2π

0

αlα
′
pα
′
qα
′
iH

()
pqdλ = αiαlαpαqH

()
pqz
(

3− 5z2
)

+ 2z(z2 − 1)αiαpH
()
pl ,∫ 2π

0

αlα
′
pα
′
qα
′′
iH

()
pqdλ = αiαlαpαqH

()
pq

(
− 5yz2 + y − 2xz

)
+ 2z(x+ yz)αiαpH

()
pl ,∫ 2π

0

α′iα
′
pα
′
qα
′′
l H

()
pqdλ = αiαlαpαqH

()
pq

(35

4
yz3 − 15

4
yz +

15

4
xz2 − 3

4
x
)

+ αiαpH
()
pl

(
− 5yz3 + 3yz − 3xz2 + x

)
+

1

2
H

()
il

(
xz2 + yz3 − x− yz

)
,∫ 2π

0

αnα
′
iα
′
pα
′′
l H

()
npdλ = αiαlαpαqH

()
pq

(
− 5yz2 + y − 2xz

)
+ αiαpH

()
pl

(
− y + xz + 2yz2

)
,∫ 2π

0

<(W ′′pW
′′
q )αlα

′
iH

()
npdλ = αiαlαpαqH

()
pq

(
5yz2 − 3z + 2xy

)
− 2yαiαpH

()
pl

(
x+ yz

)
.

The total second-order transfer for the scalar flux can be divided into two parts according to

QF,NL
i (k, t) = QF,cons

i (k, t) +QF,RTI
i (k, t), (E.19)

with the conservative part,

QF,cons
i (k, t) = 6

∫
∆k

θFkpqπ
2k2p2qE ′′0

[
(xy + z)EF

′

l

[
2(3x2 − 1)H

(dir)′′

il + (x2 − 1)H
(pol)′′

il

]
+ EFl H

(pol)′′

il

[
xy(z2 − x2) + z(1− y2)

]
− 2EFl H

(dir)′′

il

[
(xy + z) + (x2 − z2)(3xy + 2z)

]]
dpdq
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+ 12

∫
∆k

θFkpqπ
2k2pqE ′0(H

(dir)′

il +H
(pol)′

il )

[
kx(x+ yz)EF

′′

l − q
[
x(xy + z) + y(y2 − 1)

]
EFl

]
dpdq,

+ 6

∫
∆k

θFpkqπ
2k2pq

[
p(xy + z)E ′′0 EFl

[
− 2(3y2 − 1)H

(dir)′′

il + (1− y2)H
(pol)′′

il

]
− 2E0(H

(dir)
il +H

(pol)
il )

(
py(x+ yz)EF

′′

l + qEF
′

l

[
x(xy + z) + y(y2 − 1)

])
+ kE ′′0 EF

′

l

(
2H

(dir)′′

il

[
x(x+ yz) + (1− y2)(3y2 − z2)

]
+H

(pol)′′

il

[
2x(x+ yz)− (1− y2)(2− y2 − z2)

])]
dpdq,

(E.20)

and the return to isotropy part

QF,RTI
i (k, t) = 12

∫
∆k

θFkpqπ
2k2pqE ′′0

[
p(xy + z)EF

′

l

(
2
[
3y(y + xz) + (z2 − 1)

]
H

(dir)′′

il − x(x+ yz)H
(pol)′′

il

)
+ (p− 2kz)y(1− y2)(x+ yz)EFl (6H

(dir)′′

il +H
(pol)′′

il )

]
dpdq. (E.21)

The influence of the quadratic contributions of anisotropy in the non-linear transfers is illustrated for

USHT. Their impact is comparable to the case of sustained shear flows, illustrated in Appendix C. The

scalar quadratic contributions are numerically the most intense ones in USHT, compared to the scalar

flux and kinetic ones.

First, the fluxes Π
(iso)
Q and Π

T(iso)
Q of the isotropic part of the quadratic kinetic and scalar transfers

QNL(iso) and QNL,T(iso) are shown to be conservative in Fig. E.1a. The flux Π
F(cons)
Q of the conservative

part of the cospectrum quadratic transfer Q
F(cons)
3 is presented as well, along with the flux Π

F(tot)
Q of the

total cospectrum quadratic transfer QF,NL
3 . One can remark that these anisotropic contributions mainly

act at large scales. It is worth noting that the flux of the (first-order in anisotropy) isotropic scalar

transfer ST,NL(iso) is more than ten times higher than Π
T(iso)
Q . Secondly, the impact of the quadratic

contributions on the one-point statistics is revealed in Fig. E.1b: they slightly increase the global level

of anisotropy of the flow. The main difference with the case without these quadratic contributions (in

grey) is observed for the Froude number. Nevertheless, this is has less impact than changing the eddy-

damping constants, as seen before in section 7.3.7. Finally, the inclusion in the simulations of these

quadratic contributions does not change at all the growth rate β of the kinetic energy, nor the scalings

of the spectra.

E.2.7 Scalar flux in HHTSG

In this section, the framework of homogeneous helical turbulence with a mean scalar gradient (HHTSG)

is considered, and some details about how to obtain S
F,NL(hel)
i and SQ,NL

i , given in (8.75) and (8.77), are

provided.

Computation of τFi (k,p): one can use p↔ q symmetry here, and k(x+ yz) = p(y + xz) = q(z + xy)

as well, so that

knkjR̂
′′
njF

′∗
i = 0,

knkjR̂
′
niF

′′∗
j =

3

2

k2

pq
H′
[
− EQ

′′

i (x+ yz) + αiEQ
′′

l (xαl − yα′l)− α′′i E
Q′′

l (zαl + α′l)
]
,

2FmkjP
′′
jmnR̂

′
ni = −3

2

p

q
H′′
[
EQi (x− yz − 2xz2)− αiEQl (xαl + 2xzα′l + zα′′l )

+ α′iE
Q
l (yαl + 2yzα′l + (1− 2z2)α′′l )

]
,
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Figure E.1: Effects of quadratic contributions of anisotropy in the non-linear transfers.
(a) Quadratic anisotropic fluxes along with the integral and Kolmogorov wavenumbers
kL and kη. Grey curves correspond to the cospectrum. (b) Time evolution of Fr, Λ and

b33 without (black) and with (grey) the quadratic anisotropic contributions.

2FmkjP
′
imnR̂

′′
nj = −3

2

p

q
H′′
[
− EQi (x+ yz) + αiEQl (xαl + yα′l − 2zα′′l )

+ 2α′iE
Q
l (xzαl + (x+ yz)α′l − z2α′′l ) + α′′i E

Q
l (zαl + α′l)

]
.

Computation of τF∗i (p,k): no p↔ q symmetry is used here

pnkjR̂
∗′′
njFi =

3

2

kp

q
H′′
[
αiEFl (yα′l − zα′′l )− α′iEFl (yαl + α′′l ) + α′′i EFl (zαl + α′l)

]
,

pnkjR̂
∗
niF

′′

j =
3

2
pH
[
EF
′′

i (x+ yz) + αiEF
′′

l (−xαl + yα′l) + α′′i EF
′′

l (zαl + α′l)
]
,

2F
′∗
m kjP

′′
jmnR̂

∗
ni = −3

2
qH
[
EF
′

i (x− yz − 2xy2) + αiEF
′

l (−xαl + zα′′l )

+ α′iEF
′

l (−yαl + (1− 2y2)α′′l ) + 2yα′′i EF
′

l (−xαl + zα′′l )
]
,

2F
′∗
m kjPimnR̂

′′∗
nj = −3

2

k2

q
H′′
[
EF
′

i (x+ yz) + αiEF
′

l (−xαl + zα′′l ) + α′iEF
′

l (yαl + α′′l )
]
.

Computation of iεijlklτ
F
j (k,p)

iεijlklknkpR̂
′′
npF

′∗
j =

3

2

k3

p
(1− y2)E ′′0 (α′iαlE

Q′

l + zEQ
′

i ),

iεijlklknkpR̂
′
njF

′′∗
p =

3

2

k3

q
zE ′0
(
αiEQ

′′

l (−yα′l + xαl)− EQ
′′

i (x+ yz)− α′′i E
Q′′

l (zαl + α′l)
)

+
3

2

k3

p
H′EF

′′

l (αl + yα′′l )(zαi + α′i),

2iεijlklkrFmR̂
′
njP

′′
rmn = −3

2
kqE ′0

(
EQi (xz − y + yx2 + y3) + αiEQl (αl(2y − xz − 2x2y)

+ α′l(yz + 2xy2) + 2y2α′′l ) + α′′i E
Q
l (αl(1− x2 + y2) + α′l(2xy + z) + 2yα′′l )

)
+

3

2

k2q

p
H′EFl

(
zαi(yαl + α′′l ) + 2yzα′′i (yαl + α′′l ) + α′i(yαl + α′′l )(1− 2y2)

)
,

2iεijlklkrFmR̂
′′
nrP

′
jmn = −3

2
kpE ′′0

(
EQi (−xy − z − zx2 + z3) + αiEQl (αl(xy + 2z)
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+ α′l2z(xy + z) + yzα′′l ) + α′iE
Q
l (αl(1− x2 + z2) + α′l2(xy + z) + yα′′l )

)
+

3

2

k2p

q
H′′EFl

(
αi(−2zαl(y + xz) + α′l(y + 2xz) + zα′′l )− (yαi + α′′i )(α′l + zαl)

+ α′i(αl(y − 2xz − 2yz2) + α′l2(x+ yz) + α′′l ) + α′′i (αlz(2z
2 − 3) + α′l(1− 2z2))

)

Computation of iεijlklτ
F∗
j (p,k)

iεijlklpnkpR̂
∗′′
npFj =

3

2
kp(xy + z)E ′′0 (αiαlEQl − E

Q
i )

+
3

2

k2p

q
H′′EFl

(
αi(yα

′
l − zα′′l )− α′i(yαl + α′′l ) + α′′i (zαl + α′l)

)
,

iεijlklpnkpR̂
∗
njF

′′

p =
3

2
kpHEF

′′

l (αi + zα′i)(αl + yα′′l )

− 3

2

k2p

q
E0
(
αiEQ

′′

l (xαl − yα′l)− α′′i E
Q′′

l (zαl + α′l)− E
Q′′

i (x+ yz)
)
,

2iεijlklkpF
∗′
m R̂

∗
njP

′′
pmn =

3

2
kqHEF

′

l (yαi + α′′i )(αl + (2xy + z)α′l + 2yα′′l )

+
3

2

k2q

p
E0
(
αiEQ

′

l (xαl − zα′′l ) + α′iE
Q′

l (yαl + (2y2 − 1)α′′l )

+ α′′i (2xyαl − 2yzα′′l ) + EQ
′

i (−x+ yz + 2xy2)
)
,

2iεijlklkpF
∗′
m R̂

∗′′
npPjmn =

3

2

k3

q
H′′EF

′

l (yαi + α′′i )(αl + zα′l) +
3

2

k3

p
E ′′0
(

(1− y2)(zEQ
′

i + α′iαlE
Q′

l )

+ y(αiEQ
′

l (xαl − zα′′l )− α′iE
Q′

l (yαl + α′′l )− EQ
′

i (x+ yz)
)
.

ForWF
i (k,p): there is no contribution after the λ-integration for S

F,NL(hel)
i , and the RTI transfer vanishes

for SQ,NL
i . Finally, all the formula for the λ and spherical integrations have been previously given so that

the final steps are straightforward. One useful relation is kpq2(x− yz − 2xy2) = kpq(x+ yz)(q − 2yk).
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