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Abstract - Modelling of Transport in Homogeneous Turbulence

Modelling is essential to understand and reproduce the dominant physical mechanisms occurring in
natural turbulent flows such as atmospheric and oceanic ones. Indeed, the dynamics of geophysical flows
results of multiple complex processes interacting with each others, at various scales, intensities, and
on different characteristic times. The fine description of such flows is currently out of reach of direct

numerical simulations, notably because of Reynolds numbers limitations.

Consequently, we address in this thesis the modelling of homogeneous turbulence, using the spectral
formalism of the eddy-damped quasi-normal Markovian (EDQNM) approximation. This first allows
us to obtain results rapidly in terms of computational resources at very large Reynolds numbers, and
thus to investigate separately some of the fundamental mechanisms at stake in natural turbulent flows,
namely shear, mean temperature gradient, stratification, helicity, and combinations of these processes.
In this framework, a two-step approach is considered: first, EDQNM is used to close the non-linear terms
in the second-order moments equations, and anisotropy is then modelled through spherically-averaged
tensors. This methodology is applied to the various configurations mentioned above, permits to propose
new theoretical results, and to assess them numerically at large Reynolds numbers. Among the most
important findings, we focused on (i) the prediction of the decay and growth laws of crucial one-point
statistics such as the kinetic energy, the scalar variance, and helicity; (ii) the determination of spectral

scalings; and (iii) the scale by scale distribution of anisotropy.

Key words: Spectral Modelling, EDQNM, Transport and Mixing, Homogeneous Turbulence

Résumé - Modélisation du Transport en Turbulence Homogeéne

La modélisation est essentielle pour comprendre et reproduire les phénomenes physiques dominants ayant
lieu dans des écoulements turbulents naturels (atmosphériques, océaniques). En effet, la dynamique des
écoulements géophysiques résulte d’interactions complexes a des échelles et intensités variées, et sur des
temps différents. La description précise de tels écoulements est pour le moment hors de portée des

simulations numériques directes, surtout a cause des limitations en nombre de Reynolds.

C’est pourquoi dans cette these on s’attaque a la modélisation de la turbulence homogene avec le for-
malisme spectral de 'approximation EDQNM. Ceci nous permet d’obtenir des résultats rapidement en
termes de ressources numériques a tres grands nombres de Reynolds, et ainsi d’étudier séparément la
plupart des mécanismes en jeu dans les écoulements turbulents naturels, a savoir le cisaillement, le gra-
dient de température, la stratification, ’hélicité, et des combinaisons de ces éléments. On procede en
deux étapes: tout d’abord, 'EDQNM permet de fermer les équations des moments d’ordre 2, et ensuite
I'anisotropie est modélisée grace a des tenseurs moyennés sphériquement. Cette méthode est appliquée
aux différentes configurations mentionnées ci-dessus, nous permet de proposer de nouveaux résultats et
de les valider numériquement a grands nombres de Reynolds. Parmi les points les plus importants, nous
nous sommes concentrés sur (i) la prédiction des lois de croissance et décroissance de quantités telles que
Dénergie cinétique, la variance scalaire et 1’hélicité; (ii) la détermination des comportements spectraux;

et (iii) la distribution d’anisotropie échelle par échelle.
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Introduction

"When you have eliminated the impossible, whatever remains, however improbable,
must be the truth.”

— Conan Doyle, Sherlock Holmes

The understanding of turbulence is a complex task of crucial importance since turbulent flows
can be found in many natural flows, such as atmospheric or oceanic ones, and in various in-
dustrial applications as well. The complexity of turbulence arises from the fact that it gathers
multiple scales, from the largest which contain the energetic eddies and the signature of pro-
duction mechanisms, to the smallest dissipative scales. These different scales notably interact
with each other in an intricate way because of the non-linearity of the Navier-Stokes equation.
This non-linearity constitutes both the richness and the challenge of turbulence since it makes
it at the same time incredibly varied and complicated to predict. Though the prediction of
turbulence is still extremely difficult, it is of practical interest for various applications, with me-
teorology among them. It is worth noting that proving the existence and uniqueness of a general
solution to the three-dimensional Navier-Stokes equations remains one of the six problems of
the millennium.

Even by assuming that the turbulence is homogeneous, the objective to fully master the
distinct features of natural turbulent flows is rather ambitious. Indeed, the understanding of
the impact of large scales anisotropic production mechanisms on the global dynamics is made
difficult by the numerous interactions and energy transfers between scales that exist in developed
turbulence. Moreover, turbulence is also known to considerably improve mixing properties, so
that the transport of a scalar field, such as concentration or temperature fluctuations, is
a relevant feature to address and comprehend, for both theoretical and practical purposes. If
one considers for instance an unbounded atmospheric flow, it may be subjected to rotation
and shear, while the advected scalar field can additionally experience stratification through a
mean temperature or concentration gradient. Even with the homogeneity assumption, the task
of disentangling the dominant mechanisms remains complex since they all contribute diversely
in the dynamics, at various scales and during characteristic times which may be distinct for the
velocity and scalar fields.

Thus, a relevant method would be to investigate separately some of these mechanisms, to accu-
rately determine their dominant properties. In this spirit, some authors have brought insightful
answers with pioneering experiments and Direct Numerical Simulations (DNS): Warhaft & Lum-
ley (1978) studied the decay of a passive scalar field in grid turbulence, without any production
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mechanisms, showing that the algebraic decay rate of the scalar variance < 6% > strongly de-
pends on the initial conditions. Later on, Warhaft (1980) proved experimentally as well that the
presence of a mean strain caused by an axisymmetric contraction was accelerating the decay of
the scalar field. On the contrary, Sirivat & Warhaft (1983) added a mean temperature gradient
by several means - heated grid, a mandoline (screen of heated wires), a toaster - to analyze the
dynamics of a passive scalar when the fluctuations are sustained. In their famous experiment,
Tavoularis & Corrsin (1981) (T'C81) combined both shear and a mean temperature gradient and
studied mixed velocity-scalar statistics, along with some crucial one-point quantities for mod-
elling, such the turbulent Prandtl number and diffusivity tensor. Regarding early DNS, Rogers
& Moin (1987) analyzed the properties of a shear flow and the resulting global anisotropy be-
tween the streamwise and transverse directions, and later Rogers et al. (1989) added a mean
scalar gradient, which is the same configuration as TC81, that nevertheless exhibited some
significant quantitative discrepancies.

An exhaustive list of the first DNS and experiments which greatly participated into our general
understanding of homogeneous turbulence would be tedious, nevertheless the previous refer-
ences illustrate that the idea of addressing separately the various fundamental mechanisms at
stake in natural turbulent flows is not new. The review of such works reveals that there is a
large discrepancy between quantities of primary importance, which goes against the ”universal
principles” postulated in Kolmogorov (1941b,a), which could be briefly reformulated as follows:
at asymptotically large Reynolds numbers, small scales of a turbulent flow should be locally
isotropic whatever the large scales anisotropic forcing mechanisms are. These small scales are
uniquely determined by the kinematic viscosity v and the kinetic energy dissipation rate e. And
finally, at any scale [ larger than the dissipative scales, but smaller than anisotropic ones, the
statistics of the velocity field are only given by [ and e.

To illustrate the breakdown of these universality assumptions, one can mention for instance the
values of the velocity derivative skewness S, recently reported in Antonia et al. (2015), which
are quite dispersed for various turbulent flows. The reasons for this scattering are very likely
multiple and complex, but some of them are obvious: first of all, if the Reynolds number based on
the Taylor scale Re) is not large enough, the small scales do not ”forget” the large scales forcing
mechanisms. Thus, one has persistent small scales anisotropy, which consequently renders
the results flow-dependent. Other reasons can be proposed, such as the strong variations from
one experimental apparatus to another, or low resolution of small scales in DNS. This suggests
an essential requirement for the ”mechanism by mechanism” investigation mentioned above: one
should use the same consistent approach to accurately compare the results and draw relevant
conclusions. We will come back to this later, and now return to the idea of anisotropic small
scales, which is one of the reasons why some authors in the turbulence community question the
local isotropy hypothesis of Kolmogorov. This makes the return to isotropy (RTI) of small
scales a crucial point of interest, and it is required to first distinguish the turbulent velocity and
scalar fields.

Indeed, it seems that the persistence of anisotropy at small scales for the scalar field is even
more complicated than for the velocity field, as reviewed by Warhaft (2000). For the velocity
field, it is more or less admitted that the small scales of the second-order moments return to
isotropy, whereas higher order moments do not systematically, as observed in Pumir (1996). Of
particular interest is the (third-order moment) velocity derivative skewness in shear flows, which
should be zero if small scales were completely isotropic. The review by Antonia et al. (2015)
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= 2.35341

Figure 1: The ramp-cliff structures of a turbulent advected scalar field § or mean field © forced

by a mean scalar gradient g (from Holzer & Siggia (1994)). The velocity field of integral scale L

is sustained by a Gaussian forcing. The curves at right represent horizontal slices of the plane
at left.

clearly illustrates that it is not the case for various kinds of turbulent flows, not necessarily
homogeneous. Nevertheless, S is generally found to decrease with increasing Re) in shear flows,
even if the exponent is an open question: in the DNS of Schumacher et al. (2003a), S ~ Re;1 is
reported, whereas S ~ Re;o'6 in the experiment by Garg & Warhaft (1998), and S ~ Re;0'5 in
Shen & Warhaft (2000). In the latter reference, higher-order moments are either independent of
Re) or increase with it. The issue is even more sensitive regarding the small-scales of a passive
scalar field: indeed, in a presence of a mean scalar gradient only, both second and third-order
moments were found to have persistent anisotropic small scales by Tong & Warhaft (1994):
therein, the scalar derivative skewness Sy, in the direction of the mean scalar gradient, is larger
than unity instead of zero, and does not reduce with larger Rey: comparable observations are
made for the second-order moments, very likely due to ”ramp-cliff” structures, displayed in Fig.
1. Similar conclusions are drawn for higher-order moments of the scalar field in Pumir (1994).
In addition, Sreenivasan & Tavoularis (1980) measured non-zero values for Sy in shear flows,
with no decreasing tendency with larger Reynolds numbers. On the contrary, local isotropy
features were reported in Danaila et al. (1999b) where shear and mean temperature gradient
are created by two-counter rotating cold and hot disks.

These different observations may be summarized by the conclusions of Sreenivasan (1991), who
states that scalar small scales are very likely not universal, and that a necessary condition, but
not sufficient, for local isotropy at the scalar level is that the small scales of the velocity field are
isotropic. It is also reported that in more than a few works, some findings are misrepresented
by the lack of data or convergence, with for instance inertial slopes of spectra far from the
theoretical expectations with no justifications. Hence, persistent small scales anisotropy, among
other issues, is responsible for the non-universality of some complex turbulent flows, and the
Reynolds number has a critical role in it. Would these conclusions be different if one had
the possibility of running DNS at very large Reynolds numbers and designing experiments with
extremely long wind tunnels? This is an open question of great theoretical interest which is
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the primary motivation of the thesis: indeed, it appears to be crucial to determine clearly the
asymptotic behaviours of turbulence, in the Kolmogorov’s paradigm of large Reynolds numbers.

Even though this if out of reach of DNS for now !, the idea is not absurd if one thinks of mod-
elling. The developments of multiple models in the past decades was not only an alternative to
DNS great need of computational resources, but also a way to identify and deeply understand
the dominant mechanisms of turbulence. As sketched in Fig. 2, there are roughly three methods
available to address complex anisotropic flows: Reynolds-Averaged Navier-Stokes (RANS)
models, which require the tuning of multiple constants and do not contain much information
about small scales and details of the flow. Large-Eddy Simulations (LES), which necessitate
the calibration of a turbulent viscosity and subgrid models to reflect the effects of the filtered
small scales, very likely different depending of the flow considered. And finally DNS, which
have all the information possible, as illustrated by the schematic signal, but which is the most
limited in terms of Reynolds numbers.

Increasing Reynolds

< -

EDQNM RANS

/0

Isotropic
Turbulenc

Q—) (Complex Anisotropic Flows)

Figure 2: Schematic view of the different methods available to study turbulence. The Reynolds

numbers reachable by simulations roughly increases from DNS to LES, RANS and EDQNM.

The complexity of a three-part signal, corresponding to RANS, LES and DNS; is also presented

for illustration purposes. Illustrations for RANS and DNS were taken online, whereas the one
for LES if from Chollet & Lesieur (1981).

This figure also shows that there exists an alternative to these three approaches, namely the
Eddy-Damped Quasi-Normal Markovian (EDQNM) closure, which is a one-time two-point
model. Other spectral models were developed more or less in the same period as EDQNM:
we do not wish to establish here an exhaustive list, but rather to point out some of them

Tt is worth noting at this point the recent DNS by Ishihara et al. (2016) where Rey =~ 2300 is reached with
resolution 122883,
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for informative purposes, and state why EDQNM is chosen among the collection of existing
models. First, one can start with Kraichnan (1959), who developed the Direct Interaction
Approximation (DIA). The DIA is a two-point two-time model, with rather complex analytical
expressions due to the presence of equations for response-functions. Unfortunately, the DIA

does not respect the Galilean Invariance and does not recover the k=%/3

inertial scaling of the
kinetic energy spectrum derived from the Kolmogorov (1941b) phenomenology. These defects
were further corrected in the Lagrangian version of the DIA, namely the Lagrangian History
DIA (LHDIA) (Kraichnan, 1965): in the LHDIA framework, Lagrangian correlation times are
notably used to restore the build-up of triple correlations. However, the analytical complexity
is increased by the additional presence of Lagrangian equations. Finally, let’s mention the
Test-Field Model (Kraichnan, 1971) which is perhaps the closest to EDQNM: basically, an
additional transport equation of a compressible test-field is used to determine the characteristic
time of the triple correlations, instead of prescribing it in EDQNM. Of course, other models
exist, and variations of the previous ones as well, but for the sake of clarity, we choose to not

go further in this description.

As illustrated in Fig. 2, EDQNM permits to reach large Reynolds numbers, but is mainly
limited to HIT. It will be explained throughout the manuscript that even though EDQNM does
not contain as much information as DNS, it nevertheless permits to have a statistical description
of all scales for physical quantities of importance, unlike RANS and LES. For this reason, we
choose the EDQNM as a good candidate to investigate and model homogeneous anisotropic
turbulence, rather than LHDIA and TFM, which are most costly in terms of computational
resources, and regarding the former, much more complex analytically even in HIT.

The complete EDQNM approximation was first developed for hydrodynamics homogeneous
isotropic turbulence, notably by Orszag (1970); Leith (1971); Orszag (1977) (see also Lesieur
(2008) and references therein for a more precise overview). Basically, it consists of three ingre-
dients: a quasi-normal procedure to close the non-linear term in the evolution equation of the
one-time two-point second-order spectral velocity-velocity correlation; an eddy-damping term
which reflects the departure of statistics from normal laws; and finally a Markovianization
step to ensure the realizability of the kinetic energy spectrum FE(k,t), which further strongly
simplifies the time-integration. The EDQNM approximation has proven many times since its
creation to be relevant and accurate in HIT (Lesieur & Schertzer, 1978; Métais & Lesieur, 1986;
Lesieur & Ossia, 2000; Meldi & Sagaut, 2012). The EDQNM framework was also extended to
the transport of passive scalar, which is relevant with regard to our problematic, by Herring
et al. (1982), and then further applied to investigate the decay of the scalar variance in Lesieur
et al. (1987). In addition, the EDQNM results were used to develop and improve subgrid-models
for LES, for instance in Chollet & Lesieur (1981).

Furthermore, it is appealing to remember that EDQNM was also extended to more complex
cases than HIT to explore configurations unreachable by DNS at this time: after the discovery
that helicity, the scalar product between velocity and vorticity < w;w; >, is an inviscid invariant
of the three-dimensional Navier-Stokes equations by Moffatt (1969), EDQNM was successfully
used by André & Lesieur (1977) to show that the helical spectrum H (k,t) scales in k~°/3 in the
inertial range, similarly to the kinetic energy spectrum. More or less at the same time, Pouquet
et al. (1976) broadened the reach of EDQNM to magnetohydrodynamics (MHD) turbulence
by additionally considering the magnetic energy and magnetic helicity spectra. For both helical
and MHD turbulence, EDQNM was exploited for subgrid modelling (Baerenzung et al., 2008b,a)
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as well. In a different framework, more sophisticated methods involving EDQNM were also
used to significantly improve RANS mixing models in stratified turbulence (Gréa et al., 2016b).
Moreover, it is important to stress that at some points, the EDQNM approximation inherited
from particular DIA techniques. Three examples can be emphasized: first, in the framework of
weakly compressible turbulence, Bertoglio et al. (2001) greatly enhanced the Markovianisation
step of the EDQNM approximation by using the DIA equations of the response functions,
in order to better take into account the time-history of the compressible part of the velocity
field. Secondly, Bos & Bertoglio (2006) proposed an elegant way to get ride of the adjustable
constant in the eddy-damping part of the EDQNM approximation, by using an additional field,
namely the velocity-displacement correlation, which recalls the idea of the TFM. Thirdly, some
information can be learnt thanks to the TFM regarding the characteristic time 6y, of the triple
correlations in EDQNM (Herring et al., 1982).

What about shear-driven flows? The first attempt to extend EDQNM to strongly anisotropic
turbulence dates back to the pioneering work of Cambon et al. (1981): the concept relies on a
two-step approach. The classical EDQNM is applied to close the non-linear transfer terms as in
HIT, but the general tensorial equation of the spectral two-point velocity-velocity correlation is
kept. The resulting expressions are then combined with an appropriate modelling for anisotropy.
In 1981, this second step involved the choice of an arbitrary constant, an issue which was solved
recently in Mons et al. (2016) (MCS). In the latter reference, the modelling of anisotropy is done
through a truncated expansion into spherical harmonics of the spectral second-order moments,
where part of the anisotropic angular information is restored thanks to deviatoric spherically-
averaged tensors. As such, MCS is the starting point of this thesis, from which we aim at
extending the anisotropic EDQNM modelling to the transport of a passive scalar field in
shear-driven turbulence, to active scalar dynamics as well with stratification, and also to helical
turbulence.

Upstream to practical considerations such as the development of subgrid-models for shear flows
(Germano et al., 1991), the principal objective of this thesis is to tackle various configurations
partially representative of atmospheric turbulence with the same consistent approach: by this,
we mean that the anisotropic EDQNM model aims at being valid in multiple cases, without
changing any constants. The only constant is the eddy-damping one, which will be set once
and for all on the well-known and accepted isotropic value. This is fundamentally different
from RANS and LES models which require to tune some adjustable constants depending on the
flow, or from earlier spectral models as well (Clark & Zemach, 1995; Bos & Bertoglio, 2007). In
order to get ride of one significant issue mentioned above, the study will be performed in the
framework of large Reynolds numbers. Addressing with the same method shear flows, passive
scalar transport with a mean temperature gradient, and unstable stratification, is an important
contribution in terms of modelling. The idea is the following one: if our model is reliable and
accurate enough by comparisons with DNS and experiments at moderate Reynolds numbers, we
can have confidence in the predictions we will make at larger Reynolds numbers while combining
various mechanisms such as shear and mean scalar gradient. This is inherently distinct from
what is usually done in DNS, LES and RANS models for instance, where different codes and
settings are used depending on the flow considered.
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Among the numerous features listed above, our purposes are rather fundamental, and the dif-
ferent aspects and method of the thesis could be listed as follows:

e Development of the model with analytical calculations and algebra specific to
the spectral formalism.

e Assessment of the model by comparisons of the numerical results with DNS
and experiments, implying a link between spectral and physical quantities.

e Establishment of theoretical predictions based on physical arguments, such as
inertial scaling of spectra and time evolution of one-point statistics.

e Numerical simulations to test the predictions, and to investigate complex in-
teractions, such as the scale by scale distribution of anisotropy resulting from non-
linear exchanges and production at large scales.

e Deduction of the most important and relevant mechanisms for a given configu-
ration, and propose explanations for some specific issues, such as the impact of
moderate Reynolds numbers effects.

By going through all these points, we wish to constitute a ”database” of both high Reynolds
numbers simulations for homogeneous anisotropic turbulence, and a detailed form gathering the
main analytical calculations in the spectral formalism which might be used for other purposes
than EDQNM as well.

The manuscript is organized in three parts, as follows. In Part 1, we expose the two essential
components of the thesis, namely the transport of a passive scalar field in HIT, and the spectral
anisotropic model for the velocity field. More precisely, in Chapter 1, the transport of a passive
scalar field in decaying HIT is addressed, along with effects of strong and weak diffusivity.
Secondly, in Chapter 2, the anisotropic EDQNM modelling for the velocity field in homogeneous
turbulence is presented, along with the main evolution equations and the spectral formalism.
Various applications of this model are gathered in Chapter 3, where both sustained shear flows
and freely decaying turbulence initially submitted to shear are tackled.

In Part 2, the anisotropic model is extended to deal with the transport of a scalar field. In
particular, in Chapter 4, the modelling is consistently broadened to include passive scalar dy-
namics. Applications such as shear flows with a mean temperature gradient are gathered in
Chapter 5, along with multiple successful comparisons with experimental and numerical stud-
ies. These different configurations are revisited in Chapter 6 for weakly and highly diffusive
scalar, with the emphasis put on isotropic turbulence with a mean scalar gradient. Afterwards,
the spectral modelling is further extended to the case of active scalar dynamics to deal with
unstably stratified turbulence in Chapter 7. Homogeneous isotropic turbulence with helicity is
the subject of Chapter 8, with some considerations about the additional presence of a mean
scalar gradient.

Finally, all the appendices mainly contain details about the lengthy calculations necessary to
develop the model, along with some additional theoretical considerations.



Part 1

Passive Scalar in Isotropic
Turbulence & Velocity Field in
Anisotropic Turbulence



Chapter 1

Passive Scalar Mixing in
Homogeneous Isotropic Turbulence

”Anyone who has never made a mistake has never tried anything new.”

— Albert Einstein (or Theodore Roosevelt)

In this chapter, we begin the study of mixing and transport in homogeneous turbulence with
the classical case where a passive scalar field is advected by a turbulent isotropic field, meaning
that statistics are invariant under any translations, rotations and mirror symmetries. Since the
objective of the thesis is to investigate and model the transport of a scalar field in homogeneous
anisotropic turbulence (HAT), it makes sense to start with Homogeneous Isotropic Turbulence
(HIT). The results of this chapter will serve as a point of comparison throughout the manuscript.

1.1 The equations of homogeneous isotropic turbulence

In homogeneous decaying isotropic turbulence, the kinetic energy K =< w;u; > /2 and scalar
variance K7 =< 62 > of the fluctuating velocity and scalar fields u; and @ respectively, where
< - > is an ensemble average, evolve according to

dK dKr

e —€(t), T —er(t), (1.1)

where € and er are the kinetic energy and scalar variance dissipation rates. These two equations
come from the Navier-Stokes and scalar transport equations (2.1) and (4.2) for fluctuations,
which will be detailed in the next chapters. These four quantities, K, K7, € and ep are obtained
by integrating the kinetic energy and scalar variance spectra over the whole wavenumber space

K(T)(t)—/o Ery(k, t)dk, e(t)—21//0 K*E(k,t)dk, eT(t)—Qa/O k> Er(k,t)dk, (1.2)

where v is the kinematic viscosity and a the scalar diffusivity. Since Kolmogorov (1941b),
the inertial scaling of the kinetic energy spectrum is known, and more recent studies have
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investigated the large scales scaling, so that

A(t) k° for k < kr,
E(k,t) = 1.3
(k) { Ky €23 k=53 for ki <k < ky, (13)

where the Kolmogorov constant is found to be Ky ~ 1.3 with the EDQNM simulations, and

where /4
ky = (i) (1.4)

3

is the Kolmogorov wavenumber beyond which dissipation effects are dominant with regard to
inertial ones, and kj, is the integral wavenumber, corresponding to the scale that contains most
of the energy in decaying turbulence. The shape at large scales (k < kr) is referred to as
the infrared range, and is not part of Kolmogorov pioneering work. The scaling E ~ k7 is
given by theoretical arguments which relate spectra and correlation functions in physical space
(George, 1992a). Some important features should be mentioned about the infrared scaling:
initial conditions with an infrared slope ¢ > 5, such as a sharply peaked energy spectrum
around kr, result in k%, the so-called Batchelor turbulence, because of non-local interactions
(Lesieur & Schertzer, 1978; Lesieur & Ossia, 2000). A k2 infrared scaling is predicted by Lumley
(1970) with energy equipartition arguments. These two configurations have physical meanings
since they refer to the conservation of linear and angular momentum respectively. According
to Llor & Soulard (2013), all real positive values of o < 4 are possible, and o = 2 might be
the most probable value for experiments. Furthermore, only the slope near the peak of energy
kr, (and not for kK — 0) is important and leads the decay (Meldi & Sagaut, 2012; Mons et al.,
2014a).

When Batchelor turbulence is mentioned, it is important to clearly define the Perma-
nence of Large Eddies (PLE) (Eyink & Thomson, 2000; Meldi & Sagaut, 2012): the
infrared range of the kinetic energy spectrum is given by E(k < kp,t) = Ak°. The PLE
is said to hold in decaying turbulence if both A and ¢ remain constant throughout the
decay. Consequently, in HIT, PLE holds for Saffman turbulence, whereas it is broken for
Batchelor turbulence, because of strong non-linear transfers from small to large scales.

The crucial assumption behind the scaling of the kinetic spectrum in the inertial range (k €
[kL; ky)) is the local isotropy of small scales, even if large scales are made anisotropic by various
production mechanisms. This is discussed for instance in Sreenivasan et al. (1979); Sreenivasan
(1991); Warhaft (2000) and will be investigated in this thesis, at the level of second-order
moments, in the next chapters. A large inertial zone, and thus a clear separation of scales,
requires a high Reynolds number. The integral Reynolds number is defined as
2
Rej, = i, (1.5)

Ve
which is linked to the integral and Kolmogorov wavenumbers through

ky = Re¥ ey (1.6)
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Kind of anisotropy | Re)(t = 0) Pr Emin/kr(t = 0) kmax
HSRT (High Pr) 5.103 1(>1) 1077 10k, (10kp)
HSRT Low Pr 5.10% <1 1077 10k,
HST (Low Pr) 5(100) land >1 (< 1) 10-10 105k,
HITSG (High Pr) 5.10° 1(>1) 1077 10k, (10kp)
HITSG Low Pr 5.10* <1 1077 10k,
HSTSG 5 < 1,1and > 1 1010 105k,
HHT and HHTSG 5.10% 1 1077 10k,
USHT 5 1 10710 10°k,,

Table 1.1: Main numerical parameters used for the simulations: when low Reynolds numbers are

reached in decaying turbulence, k = 10716k (0). Some simulations, especially for comparisons,

have different initial parameters. The meaning of the labels for the different kinds of anisotropy

can be found in the Abbreviations list in page x: the conditions for HSRT and HIT are the
same.

An additional Reynolds number is defined, based on the Taylor microscale

20
Rey = \/?ReL. (1.7)

Finally, the evolution equations of the kinetic energy and scalar variance spectra, known as the
kinetic and scalar Lin equations, read

(Oat + 2uk2) E(k,t) = SNMO) (k. 1), <aat + 2ak32> Er(k,t) = ST (1), (1.8)

where SNL(is0) apnd ST:NL(s0) are conservative spherically-averaged isotropic non-linear transfers.
For the sake of brevity and generality, the EDQNM procedure to obtain the explicit analytical
expressions of these terms is detailed in Chapter 2 in the more general framework of HAT.

When it comes to the inertial scaling of the scalar variance spectrum FEr(k,t), this is more
complicated than for E(k,t): indeed, depending on the value of the Prandtl number Pr = v/a,
different scalings can be observed. For a unit Prandtl number, Ep(k,t) scales in k=5/3 in
the inertial-convective range (ICR) between the scalar integral wavenumber k7 and the
Kolmogorov wavenumber k), similarly to the kinetic energy spectrum (Obukhov, 1949; Corrsin,
1951a,b), so that

Erp(k,t) = Kcoepe /3 k753, (1.9)

where the Corrsin-Obukhov constant is found to be, with EDQNM simulations, Kco ~ 0.74.
Within the EDQNM framework, it is possible to obtain other values for Ky and Kco by changing
the eddy-damping constants presented later in Chapters 2 and 4.

In what follows, the transport of a passive scalar field in HIT for Pr < 1 is firstly addressed.
Then, the framework of Pr > 1 is considered and some new fundamental features are exposed
regarding third-order statistics. Finally, the Pr impact on the time evolution of scalar integrated
quantities is investigated, with in particular the transition from large to low Reynolds numbers.
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Numerical set-up

At this point, we briefly present the numerical set-up of the simulations. Since the
conditions are always more or less the same in the different configurations that will be
addressed, the main elements are gathered here and in Table 1.1.
A third order Runge-Kutta scheme with implicit viscous term is used. The wavenumber
space is discretized using a logarithmic mesh k;1 1 = rk; for ¢ = 1,...,n where n is the
number of modes in the discretization. Typically, r = 10"/ where f is the number of
discrete points per decade. Simulations have shown that in most of the cases, statistics
are not modified within more than 1% from f = 15: for security, we nevertheless choose
f = 17. This mesh extends from kmin to kmax = 10k, with &, = \/ﬁkn if Pr>1or
kyy = ky if Pr < 1. The time step At is controlled by defining a constant CFL number.
Moreover, the time step is obtained by considering the characteristic time scales of scalar
and kinetic dynamics at large and small scales. In the presence of a mean-velocity or
scalar gradient, the intensity of the mean-field is also taken into account. The values
of the physical and numerical parameters for simulations at large and small Reynolds
numbers are gathered in Table 1.1.
If not mentioned otherwise, the initial kinetic energy and scalar variance spectra E(k,t)
and Er(k,t) are isotropic and the expression is borrowed from Pope (2000); Meyers &
Meneveau (2008)

Bkt = 0) = Ko k=53 3y (kL) f, (kn) (1.10)

where f7, and f; are shape functions for large and small scales respectively

T
(' +15—-0/4

fr(z) = ( )2/3) o , fo(m) = exp ( — 5.3((z* + 0.44)7 — 0.4)). (1.11)

This corresponds to an initial energy spectrum with energy already at all scales.

1.2 The inertial scaling of E; for Pr <1

In this part, the emphasis is put on the scaling of Ep in the case of a highly diffusive passive
scalar Pr < 1.

The contents of this section were published in:
Briard & Gomez, ”Passive scalar convective-diffusive subrange for low Prandtl numbers
in isotropic turbulence”, Physical Review E, 91, 011001(R) (2015)

The dynamics of a highly diffusive passive scalar is a very controversial topic. There are four
different theories regarding the scaling of the inertial-diffusive range (IDR) of the scalar
variance spectrum Ep. Batchelor (1959) proposed that in the IDR, for k& > kco where the
Corrsin-Obukhov wavenumber reads kco = Prd/ 4kn> one has

K,
Er(k,t) = ?0 era BB, (1.12)
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Whereas Chasnov et al. (1989) found Ep ~ k=13 for a very rapidly stirred fluid. Moreover,
Gibson (1968) derived a Er ~ k=3 scaling by considering convection effects when scalar gradients
are very weak at small scales. Finally, Granatstein & Buchsbaum (1966) established a Ep ~
k~13/3 range based on experimental data in a plasma. Thanks to EDQNM simulations, a large
range of Prandtl numbers can be explored at high Reynolds numbers. First, it allows to explain
directly how the k~'3/3 could have been obtained experimentally before: this subrange was
observed for fluids with 0.01 < Pr < 0.1 and Rey ~ 160. However, there is no IDR for Pr = 0.1
as revealed in Fig. 1.la. And for Pr = 1072, the IDR is not completely established: this is
probably the reason why k~17/3 is not observed in Granatstein & Buchsbaum (1966).

10
k53 |- Pr=1
10 — |—Pr=10"
10 + _10 ' ) Viscous-
10 L H . diffusive 4
1 Inertial-
1 convective
= = ! Range .
f& 20 L : %10_20’ : . v
Q10 7 ‘Decreasing Pr: M ' ' ! '
- ol o L b\
; 0% B ETHAY
30 ' ' ! Range ' i
10 kT, kco ke 7 , kr . kco tkep vk
— —— — . 2 o 2
107 107 120 10° 10* 10 10 10

(a) (b)

Figure 1.1: Scalar variance spectrum Ep(k,t) for small Prandtl numbers in Saffman tur-
bulence (o = 2), along with the scalar integral, Corrsin-Obukhov, Convective-Diffusive,
and Kolmogorov wavenumbers k7, kco, kcp, and k,. The wavenumber kcp is defined
in (1.13). (a) Pr =10"", n = [0,...,6]; (b) Pr =1 and Pr = 10~ with the different
ranges; (c) Characteristic time n_! of the IBR, defined in (1.18), for Pr = 1074,

The first thing to remark in Fig. 1.1a is that the £~17/3 IDR only clearly appears for Pr < 1073.
Then, for Pr = 1075, the ICR has almost disappeared, which is expected from a physical point
of view since the Péclet number Pey = Reyv/Pr is rather small. Furthermore, there is clearly a
third subrange, located between the IDR and k,, where E7 decreases much slower. This effect
can be understood as a transfer lack toward small scales while approaching the Kolmogorov
wavenumber k;. Indeed, in the IDR, the diffusive effects are stronger than the dissipative ones.
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On the contrary, the new range is generated by small-scales convection, that was neglected
in Batchelor (1959), as mentioned by Gibson (1968). From this point, we defined kgp) as the
characteristic length scale at which this new range starts, where CD stands for convective-
diffusive.

In Fig. 1.1b, one can observe three distinct ranges between k;, and k, for Pr < 1: (i) for
k € [kL, kcol, the k~5/3 ICR, dominated by large scales convection: the designation ”inertial”
comes from the cascade of kinetic energy. Then, (ii) for k € [kco, kcp), the k~17/3 IDR, where
diffusive effects drive the dynamics, and convection by large scales is negligible. Finally, for k €
[kcp, ky), convection from small scales, and more precisely from the Kolmogorov wavenumber
k;, dominates. There, the kinetic field creates small scalar fluctuations that balance diffusion
of the IDR. Consequently, this new range is called the inertial-balanced range (IBR), where
”balanced” stands for an equilibrium between diffusion and convection by small scales.

From Fig.1.1a, it is clear that the IBR grows in size with the IDR. Numerically, a good agreement
with a k~/3 range for Pr < 10~4 is obtained by a least square fit. In Fig.1.1b, the convective-
diffusive wavenumber kcp is consistently located between koo and k), and clearly separates
the k—17/3 scaling from the k=11/3 one. Let us take a closer look at kcp. Since we have a
competition between diffusion and convection mechanisms in the IBR, a length scale taking
into account these two effects is built. To this end, the characteristic diffusion time ¢* = kég /a
is considered, based on Corrsin-Obukhov wavenumber and the diffusivity. Then, the convective
length scale is obtained using Kolmogorov characteristic velocity u, = (v 6)1/ 4 and t*. This
eventually yields

(1.13)

The latter relation is similar to the one for the Batchelor wavenumber kg with Pr > 1 (see next
section). This clearly underlines that convection effects are at the origin of the £~ '/3 IBR.

The new k~11/3 IBR can be seen as the reconciliation of Batchelor and Chasnov theories. While
Batchelor claims that for a strongly diffusive passive scalar, Ep ~ k~17/3 Chasnov predicts
a k~1/3 gcaling in particular conditions where the fluid is rapidly stirred. What we observe
here is that the two ranges coexist when the Reynolds and Prandtl numbers are respectively
large and small enough, and that we can find physical and theoretical arguments to explain it.
Firstly, let’s introduce an eddy conductivity a; (Chasnov et al., 1989; Batchelor, 1959)

ar(t) = /koo mdk (1.14)

1

where n_ " is a local characteristic time which depends on k. Using the eddy conductivity ay,

the scalar dissipation rate er reads

k

er(t) = 2(a + ar(t)) / K2Ep(k, t)dk. (1.15)
0

The integral from 0 to k& takes into account the main contribution of dissipation since k > 1.

The influence of small scales dynamics on er is modelled through the eddy conductivity a.

Consequently, one can assume that deyp/dk = 0 (Chasnov et al., 1989). If we derive (1.15) with
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respect to k and consider that E(k — oco) = 0, one gets
K,
Er(k,t) = ?0 er €313 (q + ay) 2071 (1.16)

In Batchelor (1959), a; is introduced differently and the characteristic time n_ ! is the diffusion
time (ak?)~'. This makes sense when diffusion dominates in the k~'7/3 IDR. With (1.16), it is
obvious that if n, does not depend on k, then E7 ~ k~1/3, In Chasnov et al. (1989), it is justified
that for a rapidly stirred fluid (fluctuations at all scales) n. is constant. A physical and general
interpretation of a constant n. could be the following one: in the IDR, the characteristic time
(ak?®)~! decreases at small scales because the fluctuations produced by the kinetic field become
weaker while approaching £,,. At a certain point, when £ > kcp, small-scales convection plays a
non-negligible role and thus balances small-scales convection and diffusion, so that n_ ! becomes

—1.

constant. We have two candidates to determine the characteristic time n_": the Kolmogorov

time scale 7, = \/v/€e and the characteristic time based on w, and kcp, namely

a
Tcp = (uy k?CD)_l = \/: = TnPT_l/Q. (1.17)

If we use the common assumption verified numerically that a > ar, one can write (1.16)

differently
1 T\, 2 2
k,t) = ———= k“a”. 1.18
fle ( ’ ) E(k‘,t) €7 (t) ( )

In Fig.1.1c, it is clear that in the IBR, for k > kcp, one has n_! constant. In other words, the
prediction of Chasnov et al. (1989) is recovered. The other point of interest is that the constant
reached by n_! is really close to the Kolmogorov time scale 7y. This result is consistent with the
characteristic time of the convection being given by 7, close to k;. Moreover, one can observe
that in the IDR, n; ! is proportional to k=2, in agreement with Batchelor (1959). Finally, the
scalar variance spectrum in the inertial-balanced range scales like

K
Er(k,t) = ?OET /N Pra=3/? 113, (1.19)

1.3 Mixed-derivative skewness Sr for Pr > 1

In this part, the case of a weakly diffusive passive scalar Pr > 1 is addressed, and we focus on
scalar third-order statistics with the mixed-derivative skewness.

The contents of this section were published in:
Briard & Gomez, ” Mixed-derivative skewness for high Prandtl and Reynolds numbers in
homogeneous isotropic turbulence”, Physics of Fluids, 28 (8), 081703 (2016)

The case Pr > 1 is of particular interest for various reasons. It specifically corresponds to
the framework of biological fluids (Scalo et al., 2012) (low temperature dissolved oxygen where
Se¢ ~ 1000, crucial for marine ecosystems), of chemical reactions (reduction of ferricyanide
for instance, where Sc can exceed 10%) and of experiments with tracers (such as disodium
fluorescein where Sc ~ 2000, or sulforhodamine 101 where Sc ~ 5000). Beyond these practical
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considerations, the case of weakly diffusive passive scalars is challenging as it presents some
difficulties in DNS when it comes to solve the very small scales of the scalar field beyond the
Kolmogorov wavenumber k,. These small scales experience friction by the Kolmogorov scale
velocity field, up to the Batchelor wavenumber kg = \/ﬁk’wr This continuous friction creates
the viscous-convective range (VCR) where the scalar variance spectrum Er(k,t) scales as

K
ET(]C,t) = OET\/Zk_l, k‘n <k < kg. (120)

3

The framework of HIT (with or without a mean scalar gradient) with Pr > 1 has already
received some attention, especially numerically (Yeung et al., 2002; Schumacher et al., 2003b;
Yeung et al., 2004; Borgas et al., 2004), and the k~! viscous-convective range has been as-
sessed numerous times. However in DNS, with an increasing Pr comes a diminishing Rej.
Furthermore, at moderate Reynolds numbers, the spatial resolution beyond the Kolmogorov
wavenumber can be questioned. Notably, it has been pointed out in a recent work of forced
isotropic turbulence (Donzis & Yeung, 2010) that both the Reynolds number and the resolution
are of great importance: especially, at a given Reynolds number, a better spatial resolution,
of order kg ! improves local isotropy. The same conclusion is made at constant resolution for
an increasing Rey. A scalar field with a low diffusivity has also been studied experimentally
(Buch & Dahm, 1996; Miller & Dimotakis, 1996; Lavertu et al., 2008), often with dye where
Sc ~ 103, at higher Reynolds numbers, but the framework is hardly homogeneous and isotropic
(jets, shear flows, ...). Therefore, the present study is performed in HIT with EDQNM, which
has been used recently (Bos et al., 2012; Meldi & Sagaut, 2013a) to study third-order moments
of the velocity field, especially the velocity derivative skewness S. Here, the emphasis is put on
the mixed-derivative skewness S, which is of great theoretical interest since it directly appears
in the equation of the scalar variance dissipation rate (Ristorcelli, 2006).

The evolution equations of the kinetic and scalar dissipation rates can be obtained by multiplying
(1.8) by 2vk? and 2ak? respectively, and then integrating over k

% _ 21// k2SNL(iso)(k,t)dk _ 4y2/ EYE(k,t)dk, (1.21)
0 0
a(;tT _ 2a/ k2ST’NL(iSO)(k,t)dk . 4@2/ k4ET(k7t)dkj (122)
0 0

Using classical algebra, which can be found in Kerr (1985); Ristorcelli (2006) and which is
detailed in Appendix A, yields

2

(t)V/Rer + 5 G ) = —115 (;S(t)Re,\ + G(t)) % (1.23)

Oe

a <3\F

where S(t) and G(t) are the velocity derivative skewness and palinstrophy respectively

B < (au/ax)B > _ 3\/7‘[ stNL iso (k,t)

S(t) = < (Oujox)? >32 14 U 2B ) (1.24)
0%u/0x%)? 301/K K*E(k,t

Gl === <<((8u//8w)2)>> ST e ﬁ kQEE ,t; (1.25)
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Similarly, for the passive scalar field, one gets

0 5
% - (\[ \/RTLH Gr(t ) 6;<T ( Sr(t )Re,\—i—rgGT(t)) “?T (1.26)

where 7 is the kinetic to scalar time scales ratio r = (K ep) /(K €). These evolution equations
(1.23) and (1.26) have already been obtained in previous works (Zhou et al., 2000; Ristorcelli,
2006; Meldi & Sagaut, 2013a) in a similar manner. This numerical study focuses on the mixed-
derivative skewness

< (0u/0x)(00/0x)? o7 k2STNLGsO) (k) dke
Sp(t) = ,/ ,
0= e > < (89/89: 0 /15 k2E B )k ( f5° KBk t)dk)

(1.27)
which directly appears in (1.26). Note that we obtain a factor 1/3/10, instead of 2/+4/15 proposed
by Antonia & Orlandi (2004). The scalar palinstrophy reads

< (0%0/02%)? > 18a Kr [y k*Er(k,t)dk
< (00/0x)? >2 er [y k2Er(k,t)dk’

Gr(t) =< 6% > (1.28)
The kinetic and scalar palinstrophy G and Gr can be interpreted as the dissipation of the
gradients of the velocity and scalar fields respectively (Kerr, 1985), and more specifically, G
represents the dissipation of enstrophy < w? >= ¢/v.

Now that the theoretical aspects have been recalled, numerical results are presented at various
Prandtl and Reynolds numbers. The use of EDQNM to study third-order statistics is validated
by comparisons with a moderate Re) experiment (Zhou et al., 2000) in Fig. 1.2a and with
a DNS of forced HIT (Gotoh et al., 2002) at higher Rey in Fig. 1.4b. In the experiment,
Re) ~ 50 and the decay exponents K ~ t* and Ky ~ t*T are @ ~ ar ~ —1.33. As a first
approximation, this corresponds to infrared exponents o = o = 3 (see next section for more
details). The comparison between experiment and EDQNM is presented in Fig. 1.2a where the
velocity derivative and mixed-derivative skewnesses S and St are displayed. The agreement is
better for St than for S, whose values obtained experimentally are more dispersed. At higher
Reynolds numbers (38 < Rey < 460), the agreement for S between EDQNM and the DNS
of Gotoh et al. (2002) of forced HIT is rather good, as revealed in Fig. 1.4b: the velocity
derivative skewness is quantitatively recovered within 5% on a broad range of Rey. Finally, Fig.
1.2b gathers various values of St obtained in DNS and experiments for Pr > 1, and illustrates
the noteworthy dispersion, probably due to the different kinds of forcing, whose consequences
are amplified at moderate Reynolds numbers: furthermore, the DNS of Kerr (1985) suffers from
a very low resolution. EDQNM results that will be discussed later are also displayed.

Now, the impact of a high Prandtl number on the mixed-derivative skewness St is investigated.
Such a framework has been studied, notably in DNS. However, this has been done only at
moderate (or low) Reynolds numbers. Indeed, the more Pr increases, the more additional
points are necessary to describe the very small scales of the scalar spectrum which behave as
k! beyond k, and up to kg. Thanks to EDQNM, it is possible to reach high Reynolds and
Prandt]l numbers, as illustrated in Fig. 1.3a, where the viscous-convective range predicted by
Batchelor (1959) grows in size with increasing Pr and spans on two decades for Pr = 10°.
Nevertheless, because of the logarithmic discretization, elongated triads are not taken into
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Figure 1.2: (a) Comparison of S and St between EDQNM (lines) and experiment of
Zhou et al. (2000) (symbols) at Rey ~ 50 and Pr = 0.7. (b) Review of different values
for |St| obtained in DNS (Kerr, 1985; Yeung et al., 2002; Antonia & Orlandi, 2004)
and experiments (Zhou et al., 2000): thick lines for EDQNM at Pr = 1 and Pr = 10%.
(——) indicates the asymptotic Pr-state S° at very large Rey and Pr. For Yeung et al.
(2002) (x): the values of St presented are in the plane perpendicular to the mean scalar
gradient, the Prandtl number is 1 < Pr < 64, and the Pr = 1 results are linked by a
dash-dot (—-) line.

account. Consequently, it is necessary to add non-local contributions to the scalar non-linear
transfers of (1.8). For the sake of clarity, non-local considerations are gathered and detailed in
Appendix B.

The Pr-dependence of the mixed-derivative skewness St is investigated in Fig. 1.3b in the
high Reynolds numbers regime to avoid transitional effects towards low Reynolds numbers. It
is revealed that |S7| increases from Pr = 1 to a critical Prandtl number Pr. = 10 and then
slightly decreases up to Pr = 10%. Such variations of |St| for 1 < Pr < 10% have already been
observed in DNS (Yeung et al., 2002, 2004). The latter works, at moderate Reynolds numbers,
indicate that the decrease of |Sr| happens from Pr. ~ 1, which is smaller than in our high
Reynolds numbers simulations where the decrease starts around Pr. ~ 10. Consequently, these
observations suggest that the decay threshold for |Sr| is Reynolds dependent, with Pr. € [1,10].

The remarkable feature is that for Pr > 10% at high Reynolds numbers, the mixed-derivative
skewness saturates to a constant value |S2°| ~ 0.435, which does not depend on the Prandtl
number anymore. The oo symbol refers to the saturated Pr-state Pr > 103. DNS performed at
higher values of Pr would be useful to confirm (or not) the saturation of Sy from Pr ~ 103. It
is worth noting that in HIT, when the scalar field is forced with a mean scalar gradient, values
of S%‘ (in the direction perpendicular to the gradient) are close to the present S° = —0.435:
values of Yeung et al. (2002) are gathered in Fig. 1.2b, and one can note that at Pr = 1, S%‘
increases with Rey (— - x line) similarly to the present EDQNM results.

Physically, this saturation of the mixed-derivative skewness means that the statistical mixing
properties of the flow do not evolve anymore at a sufficiently high Prandtl number, for high
Reynolds numbers. This can be interpreted in terms of small scales equilibrium (k > k), if one
considers the spectral definition (1.27) of the mixed-derivative skewness S7. Indeed, considering
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Figure 1.3: (a) Scalar spectrum Er(k, t) for various Prandtl numbers Pr = 1, 10® and 10°,
at Rey = 10% in Saffman turbulence. The inertial convective k~5/3 and viscous-convective
k~! ranges are displayed as well, along with the integral, Kolmogorov and Batchelor
wavenumbers kr, k, and kg for Pr = 10°. (b) Absolute value of the mixed-derivative
skewness St for various Prandtl numbers from 1 to 10° in Saffman turbulence. Because
of the high- Pr saturation, the Pr = 10* and Pr = 10° curves are hardly distinguishable.

a given Reynolds number, or equivalently a given dissipation rate e of kinetic energy, increasing
Pr leads to an indefinite extension of the VCR of Er toward small scales, whereas its ICR
remains unchanged. Therefore, the variations of S when Pr increases are mainly due to
the variations of the two functions appearing in the scalar integrated terms of Sr, namely
k2STNL(so) and k2Ep for k € [kn; kB]. These quantities represent respectively the production
rate of mean-square temperature gradients and scalar dissipation at wavenumber k. Moreover,
Fig. B.2 shows that the production is mainly a non-local mechanism unlike the scalar dissipation.
For a sufficiently high Prandtl number, Pr > 103, these two integrals evolve similarly so that
they balance each other. Therefore, for high Reynolds numbers, the convergence of St to a
constant value S7° for increasing Prandtl numbers reflects an equilibrium, occurring in the
viscous-convective range, between non-local production of mean-square temperature gradients
and scalar dissipation by diffusion.

A similar independence with regard to Pr can be found for the scalar palinstrophy Gr: injecting
classical scaling for Fp in the spectral definition (1.28) of G, and assuming that Rey > 1 and
Pr > 1, yields rGp ~ Rey. Such a result was also found in Ristorcelli (2006). Numerical
simulations and experiments have shown that r ~ ar/«a is a relevant approximation for the
time scale ratio when the turbulence decay is algebraic. Therefore, one has » ~ 1 when the
kinetic energy and scalar variance decay similarly, i.e. when o = op for the initial spectra
considered here: this is relevant since it will be shown in the next section that Pr does not
affect the asymptotic decay of scalar integrated quantities. Qualitatively, the independence of
Gt with regard to Pr provides the same physical information as our numerical results on St:
there is an asymptotic convergence of the mixing properties of the passive scalar field only for
a sufficiently high Pr. As said before, a dependance on Pr for moderate Prandtl numbers, say
1 < Pr <103, is in agreement with DNS (Yeung et al., 2002, 2004).

Finally, the decay of the derivative skewness S(¢) and mixed-derivative skewness Sp(t) from
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high to low Reynolds numbers is investigated in Fig. 1.4a for Saffman (0 = o = 2) and
Batchelor (0 = o = 4) turbulence. The main results are the following ones: (i) Both S and
St are constant for high Reynolds and Prandtl numbers, and independent of large scales initial
conditions: indeed, the curves are identical for Saffman and Batchelor turbulence, except in the
transition zone between the high and low Reynolds numbers regimes where a slight difference is
observed. (ii) The transition toward the low Reynolds numbers regime for the scalar field starts
after the one for the velocity field, which is expected since the Péclet number Pey = v/ PrRe, is
much larger than Re) in the case Pr > 1. (iii) For very low Reynolds numbers, both derivative
skewnesses S and St are zero, consistently with the fact that for Rey < 1, the flow is not
turbulent anymore and thus there is no turbulent mixing at all.
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Figure 1.4: Velocity derivative and mixed-derivative skewnesses S and Sp from high to

low Reynolds numbers in the saturated Pr-state at Pr = 10*. (a) In black for Saffman

turbulence 0 = o = 2, and in grey for Batchelor turbulence o = o = 4. (b) Batchelor

turbulence, along with correlations in grey that capture well the high Reynolds numbers

regime and the beginning of the transition zone. x: values of S from forced turbulence
DNS of Gotoh et al. (2002).

One also has to point out that both S and St increase during the decay, i.e. when the Reynolds
number decreases, in agreement with George (1992a). Moreover, it is stated in the latter
work that at some point during the decay, S should behave as Re;1 according to dimensional
considerations. Assuming that the Taylor micro-scale A is the relevant similarity length scale,
and using self-preserving functions E(k,t) = E*(t)f(n), SN0 (k 1) = §%(t)g(n), and n = kX,

one obtains . o )
AT d
Sty ~ v Jtgndn
( /\_2u2)3/2 ) 3/
(f 7 f (n)dn>
But this scaling is not always clearly observed. We believe this might be the consequence of

too low Reynolds numbers in DNS. A low Reynolds defect is in agreement with Schumacher

et al. (2003a), where Figure 1 herein clearly shows that the ReXl scaling is achieved for high
Reynolds numbers only (102 < Rey < 10%).

5~ Rey. (1.29)

In Fig. 1.4b, relevant correlations are presented (with constants determined by least square fit,
set to match with the beginning of the transition) with a clear Re;1 dependency for both the
velocity derivative and mixed-derivative skewnesses. These correlations S(t) = S+ 2.145Re;1



Chapter 1. Passive Scalar Mixing in Homogeneous Isotropic Turbulence 21

and S7(t) = S +0.735R6;1, where §°° = —0.569 and S7¥ = —0.435, capture well the beginning
of the transition zone. Hence, the scaling S ~ Re)fl seems relevant mainly for high Reynolds
numbers. Moreover, an interesting result, never confirmed previously to our knowledge, is
that the mixed-derivative skewness St scales in Re;1 as well. This scaling is in agreement with
George (1992b) where similarity assumptions were used for temperature fluctuations: Ep(k,t) =
E5.(t) fr(n), STNMO) (| ¢) = S5.(t)gr(n), and nr = kAr. Using a classical result (George,
1992b; Zhou et al., 2000) linking the ratio of the kinetic and scalar Taylor lengths A and Ay =

V6aKr /e yields

<)‘>2 — §Tpr S (1) ~ a [ g7 (nr)dnr
AT ’

T
0 A2 o2 f () [ fr(nr)dnr

~rRey . (1.30)

1.4 Time evolution of scalar integrated quantities

In this final part, the effects of a Prandtl number different from unity on the time evolution of
scalar integrated quantities such as Kp, er and Ly, is addressed.

The contents of this section were published in:
Briard, Gomez, Sagaut, & Memari, ”Passive scalar decay laws in isotropic turbulence:
Prandt]l number effects”, Journal of Fluid Mechanics, 784, 274-303 (2015)

A crucial step toward the understanding of the passive scalar dynamics is the study of decay
laws at very high or very small Prandtl numbers. Firstly, the decay permits to get ride of
the forcing parameter, and secondly, dimensional analysis can provide theoretical results and
boundaries regarding time exponents of one-point statistics. Thus, for the passive scalar field,
the comparison between the experimental and numerical decay exponents of integrated quan-
tities - such as the scalar variance Kp(t), integral scale Lp(t), and dissipation rate ep(t) - and
the Comte-Bellot and Corrsin (CBC) theory could give interesting information on what are the
main phenomena which drive the scalar decay.

Multiple experimental works and DNS (Lin & Lin, 1973; Warhaft & Lumley, 1978; Sreenivasan
& Tavoularis, 1980; Danaila et al., 2000; Zhou et al., 2000, 2002; Antonia & Orlandi, 2004;
Lee et al., 2012; Antonia et al., 2013) have focused on scalar decay exponents. However, these
scalar decay exponents exhibit a significant dispersion, as shown in Fig. 1.5, whereas the
experimental setups are designed to produce a very similar turbulent dynamics. There is up
to 20% of discrepancy for similar Reynolds numbers and a fixed Prandtl number (Pr ~ 0.7 ).
This scattering between the measured scalar decay exponents may be due to transitional effects
towards low Reynolds numbers, as studied in the kinetic case in Meldi & Sagaut (2013a), and
also probably to the experimental production mechanisms which do not permit to obtain a
universal decay. A supplementary potential explanation for the scattering might be that the
flow is not fully isotropic.

It is worth noting that the decay of the passive scalar has only been studied in experimental
works and DNS in a small region of the (Re,Pr) map given in Fig. 1.5. In this region (the small
grey zone), the Prandtl number is close to unity (0.7 for air which is the most used fluid) and
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Figure 1.5: Schematic view of the (Rey, Pr) combinations used for the passive scalar decay

analysis. On the main figure, triangles, squares, crosses and circles respectively refer to works

of Rust & Sesonske (1966); Granatstein & Buchsbaum (1966); Yeung et al. (2002, 2004). On

the zoom of the small grey region at Pr ~ 1, experimental scalar decay exponents of Fig. 1.7

are reported: dots, squares, stars, circles, triangles and crosses represent respectively works of

Antonia et al. (2013); Lee et al. (2012); Antonia et al. (2013); Zhou et al. (2000); Antonia &
Orlandi (2004); Danaila et al. (2000).

the Reynolds number based on Taylor scale is Rey < 70. The values of the decay exponents
obtained in these works will be reported later on along with our numerical simulations. Other
experiments and DNS performed for Prandtl numbers different from one, spanning from 1072 to
10% in Fig. 1.5 (Rust & Sesonske, 1966; Granatstein & Buchsbaum, 1966; Watanabe & Gotoh,
2004; Yeung et al., 2004) mainly focus on the inertial scaling of the scalar spectrum Ep(k,t) and
not on the decay of the passive scalar itself. Therefore, they cannot be exploited for comparison
purpose in the present study.

When the Prandtl number departs from unity, as described in Tennekes & Lumley (1972), var-
ious theoretical arguments show that at large or small Pr, the shape of the scalar spectrum
Er(k,t) is significantly modified at small scales. Nevertheless, as illustrated in Fig. 1.5, the
regions where Pr <« 1 and Pr > 1 have not been much explored for the passive scalar decay
issue. Hence, an interesting question could be: does the Prandtl number, in addition to the
Reynolds number and initial conditions, modify the decay laws of scalar integrated quantities
such as Kp(t) and ep(t)? This study aims at answering this question of interest for the under-
standing of the passive scalar dynamics, and at providing an explanation to the scattering of
experimental scalar decay exponents.

To this end, this part focuses on two main approaches. The first one is based on the CBC
dimensional analysis that is extended to the more general case of passive scalar transport,
following the work of Meldi & Sagaut (2012) in the kinetic case. The second approach relies
on the EDQNM closure to perform numerical simulations of the turbulent mixing. The main
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Reynolds | Cases a, ar s e nr, NLp NRej, T Rey
High | Kinetic ~—22-2H —3 s = S
Scalar -2 Uﬁiiﬁrl - U_p+a5j§i§_2pT 0—?)-&-3
Low | Kinetic —otl — o3 : —od —zd
Scalar —oztl —t3 3

Table 1.2: Kinetic and scalar exponents for the extended CBC analysis. K and K are the

kinetic energy and scalar variance, € and ep the kinetic and scalar dissipation rates, and L and

L7 the kinetic and scalar integral scales. ¢ and op are the kinetic and scalar infrared slopes,
and p and pr the kinetic and scalar backscatter parameters.

advantage of this method is its accuracy and low cost in investigating the turbulent dynamics
for a broad range of Reynolds and Prandtl numbers. EDQNM simulations have already been
used to study kinetic decay exponents (Lesieur & Ossia, 2000; Meldi & Sagaut, 2012, 2013a)
and passive scalar dynamics (Lesieur et al., 1987). Moreover, this method also allows to recover
theoretical results regarding the scalar spectrum scaling when Pr < 1 and Pr > 1 that have
been obtained experimentally and numerically (see the two previous sections). Hereafter, new
theoretical and numerical arguments are proposed to understand how the decay of a passive
scalar field is affected by a Prandtl number strongly different from unity.

1.4.1 The basics of the CBC dimensional analysis

In the CBC theory, the kinetic energy spectrum is given by (1.3). The original method of CBC
is based on the concept of invariance of very large scale eddies (PLE) corresponding to k < kr,
which is notably valid for infrared slopes ¢ = 1, 2 and 3. In fact in the kinetic case, the value of
the infrared spectral slope o is time-independent and remains constant for o = 1, 2 (Saffman),
3 and 4 (Batchelor). As for the coefficient A(t) of the infrared spectrum, it remains constant
for values of o € [1,2,3], and evolves in time as A(t) ~ L(¢)? in the case 0 = 4, where p is
the backscatter parameter. In the case of high Reynolds numbers, when there is an inertial
zone, one obtains

(c+1-—p)

(c+3—p)’
in which p =0 if 0 < 3 and p ~ 0.55 if 0 = 4 as computed in Lesieur et al. (1987); Eyink &
Thomson (2000); Meldi & Sagaut (2012). Other kinetic exponents such as ne and ny, can also
be determined using (1.31) and are gathered in Table 1.2.

alo,p) = =2 K(t) ~t* (1.31)

The relevant parameter to study the dynamics of the passive scalar is not only the Reynolds
number, but also the (Taylor) Péclet number Pey = Reyv/Pr. In this section, the emphasis
is put on the case o7 = 4. Numerical simulations show that the scalar variance also decreases
with time following a power law K7 ~ t®T. Furthermore, after a transient relaxation phase, the
kinetic and scalar integral scales L and Ly exhibit the same behaviour and their decay exponents
nr, and nr,. converge toward the same value. Consequently, we consider that ny, = nr,,.

The scalar variance spectrum Ep(k,t) scales similarly to E(k,t) in the infrared range, namely

ET(]C < k‘T,t) = AT(t)k‘UT, oT € [1,4] s (1.32)
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Infrared slope 0 | Pr=10"% Pr=10"2 Pr=1 Pr=10 Pr=10> Pr=10°
0.5746 0.5745  0.5745
0.4285 0.4254  0.4269
0.2961 0.2842  0.2904

0.3275 0.2814 0.2652  0.2754 0.3125 0.3495

=W N =

Table 1.3: Some values of pr for various Pr and o with o7 = 4.

where kp ~ 1/Lp is the peak of Ep. Proceeding similarly to the kinetic case, the coefficient
Aqp(t) is assumed to vary as LY, where pr is the scalar backscatter parameter. By writing
the continuity of the scalar spectrum in k = kp, one can use the expressions given in Table 1.2
of ny, and n. to conclude that

_o—p+5+2(or —pr)
oc—p+3 .

€T ~ tnETa Ner (07 JT7p7pT> = (133)

Moreover, since e is the time derivative of K7, the exponent of the scalar variance reads

- 1
_ 0T = PT ¥

. 1.34
c—p+3 (1:34)

aT(UJ or,p, pT) ==
From the theoretical decay exponents a and ar, it seems that a decay in K7y ~ t~1 (Ristorcelli,
2006) occurs only for 0 = op = 1 and corresponds to a constant Reynolds number.

All extended exponents (with p and pr) for both the kinetic and scalar fields are gathered
in Table 1.2. It will be shown later in Chapters 3 and 5 that these exponents are still
valid when the turbulence is initially submitted to a mean-velocity gradient, and then
freely decaying, as summarized in Table 5.1. However, when a mean scalar gradient is
added, the continuous production of scalar fluctuations significantly modifies ar.

Furthermore, simulations indicate that Ap(t) varies with time when o7 = 4. More precisely, pr
decreases when o increases at a fixed Pr, and increases when Pr departs from unity: values are
gathered in Table 1.3.

Finally, the emphasis is put on the dynamics at small Reynolds numbers. In this case, the inertial
effects are rather small, and so inertial zone contributions to the kinetic and scalar spectra
become negligible. Thus, the kinetic energy behaviour is assumed to be mainly determined by
the contribution of the spectrum at large scales. By dimensional analysis L(t) ~ /vt and so
nr, = 1/2 . This leads to

00 kr, A
K(t) = / E(k,t)dk ~ / AkCdk = ——— (@ +D/2=(041)/2, (1.35)
0 0 o+1
From the kinetic energy K, the other important kinetic decay exponents can be deduced, all
gathered in Table 1.2. Omne obtains the exponent of the scalar variance using the relation
Lr(t) ~ v/at. Then, proceeding similarly, one gets
kT

A
Kr(t) ~ ApkoTdk = UT%CL—(UT“)/%—(”T“)/?. (1.36)
0
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The other scalar decay exponents derived from a7 are also presented in Table 1.2. For instance,
Ney is simply computed using dK7/dt = —ep. In what follows, all exponents are calculated
using the EDQNM simulations for both o and o7 in the set [1,2,3,4]. For the kinetic and scalar
cases, there is an excellent agreement between the EDQNM results and the predictions of the
extended CBC analysis.

1.4.2 Validation at large Reynolds numbers for Pr # 1

The emphasis is now put on the case where the initial Reynolds number is sufficiently large
to allow the kinetic and scalar spectra F and Ep to decrease according to the extended CBC
exponents given on the two first lines of Table 1.2. For the sake of brevity, only the case Pr < 1
is presented here since the results for Pr > 1 are very similar (for more details, see the complete
paper). The initial Reynolds number is Rey(0) ~ 2.10%, high enough to ensure a large Péclet
number, so that there is a clear separation of scales. Since Er(k,t) is located "under” E(k,1),
local energy transfers dominate, unlike the case Pr > 1 where the viscous-convective range
is "outside” the kinetic energy spectrum. Time exponents of er, Lt and Kr are investigated
in Fig. 1.6 for 0 = op = 2 and ¢ = o = 4. The scalar decay exponents clearly follow the
extended CBC theory. The result is the same for any Pr < 1 as soon as the Péclet number is
large enough. Hence, the extended scalar CBC exponents are valid at large Reynolds numbers
for both Pr < 1 and Pr > 1.
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Figure 1.6: Exponents ar (a)-(c), ne, (b)-(d) and ng, (c)-(f) for Pr = 10%. Top line, 0 =
or = 2; Bottom line ¢ = o = 4. Symbols for the CBC predictions: [J high Reynolds numbers;
o: low Reynolds numbers.
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1.4.3 Transition to low Reynolds and Péclet numbers

In this section, the transition from high to low Reynolds numbers with various Prandtl numbers
is investigated. A detailed comparison with experimental results is performed to provide some
explanations about the scattering between existing measured scalar decay exponents.

Validation of decay exponents for Pr = 1: The numerical method based on EDQNM anal-
ysis allows to illustrate the transition from high to low Reynolds numbers. Several simulations
are made until very low Reynolds numbers Rey ~ 107!, starting from Rey(t = 0) = 240. This
Reynolds number is high enough to capture the beginning of the transition and all the previous
decay exponents are accurately recovered. According to the theory for the case o = 1, the same
exponents for both large and small Reynolds numbers are found. It is only from the shape of the
spectrum that these two cases can be distinguished. For infrared exponents ¢ > 2 and o > 2,
the Reynolds number decreases over time and inertial ranges of both spectra disappear. This
is the low Reynolds numbers regime and the decay exponents a and a7 converge to the values
expected by the extended CBC analysis given in Table 1.2. This transition grows more rapidly
for higher values of the infrared spectral slopes.

CBC High Re (Kinetic)

Figure 1.7: Experimental scalar decay exponents at Pr ~ 1 in comparison with high

Reynolds CBC theory and EDQNM simulations at Pr = 1. List of symbols: o Zhou

et al. (2000, 2002) ; < Antonia & Orlandi (2004); O Lee et al. (2012) Sq35; x Danaila

et al. (2000); Y Antonia et al. (2013) Sq35 and Rd44w; * Lee et al. (2012); Antonia et al.
(2013) Rd35. (a) c = o1 =2; (b) 0 =op = 4.

Transitions are shown for Saffman and Batchelor turbulence in Fig. 1.7 along with experimental
results. The case ¢ = op = 3, similar to ¢ = o7 = 2, is not presented. The small peak that
appears around Rey = 5 is due to the disappearance of the inertial range in both £ and Er.
This corresponds to a transition between a regime dominated by inertial effects to a regime
dominated by viscous ones. The horizontal lines correspond to theoretical predictions coming
from the CBC theory. If one chooses a different initial Reynolds number, higher or lower, the
resulting curve would collapse with the present one after a few turn-over times 79 ~ K (0)/€(0).
Similarly, if different initial spectra E and FEr are prescribed, there is only a slight change
during the transition. Hence, the present curves for o and ag in the transition zone seem
quite robust. Nevertheless, there is no clear power law for the decay exponent in the transition.
Two critical Reynolds numbers, at which the transition to the low Reynolds regime begins, are
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observed for different kinetic and scalar cases, with infrared slope o = o € [2, 3, 4]. The critical
Reynolds number for the kinetic case Re§ decreases when o increases. Transitions happen at
Re§ (0 = 2) = 38, Re§(0 = 3) = 20, and Re§(0 = 4) ~ 17. Whereas the transition for the
scalar field happens always around Re§  ~ 12. Other scalar exponents such as ne, and ng,
also follow the CBC theory for low Reynolds and Péclet regimes.

Review of experimental results: In experiments for the passive scalar, the fluid is often air
with Pr ~ 0.7. In Fig. 1.7, several experimental results regarding the scalar decay exponent
oz?,f(p are gathered in order to compare them to experiments (Danaila et al., 2000; Zhou et al.,
2000, 2002; Lee et al., 2012; Antonia et al., 2013), and DNS Antonia & Orlandi (2004). Firstly,
it is important here to stress that in these experiments, the Reynolds number is rather low
Rey < 70. EDQNM simulations show that such Reynolds numbers correspond to the beginning
of the transition zone, between high and low Reynolds regimes. This could explain the large
scattering of scalar decay exponents that have been measured in the past years. The Re) is
not high enough to completely match with the high Reynolds and Péclet regimes, and thus the
a” measured could be misrepresented by the transitional Rey-state. Even with DNS, Antonia
& Orlandi (2004) found a ap which is not the one predicted by the CBC theory. Once again,
this might be because of the moderate Rey and a too low resolution of large scales, which are
determinant for the decay exponents. In addition to this, the infrared initial slopes ¢ and o
cannot be fixed in grid turbulence: hence, it is impossible to compare rigorously o> with the

CBC theory.

Nevertheless, interesting results have been obtained experimentally that deserve to be empha-
sized. First, the scattering of the measured scalar decay exponents cr is more important than
for the kinetic ones « (Lavoie et al., 2007; Antonia et al., 2013). In addition to the two facts

mentioned earlier (low Rey and undefined infrared slopes), ag”

varies a lot depending on how
the temperature fluctuations are generated. It has been shown (Warhaft & Lumley, 1978;
Sreenivasan & Tavoularis, 1980; Zhou et al., 2000) that the measured value of a.” varies sig-
nificantly depending on the experimental apparatus: the power used to create the temperature
fluctuations or the influence of the measurements origin (for example the grid, corresponding to
the kinetic integral scale L, or the heated screen, corresponding to the scalar one Ly). Recent
experimental works (Zhou et al., 2000, 2002; Lee et al., 2012; Antonia et al., 2013) have been
performed on the scalar decay using similar parameters, which allows to make useful compar-
isons. Most of these experiments were done with a mesh size M = 24.76mm, an input speed
U ~ 6m.s~ !, a mandoline (screen of heated wires) located at z7 = 1.5M and heated with 2kW
that generates temperature fluctuations T' € [2K, 3K]. Scalar quantities are measured with the
cold wires technique and the Reynolds number is such that Rey € [30,70]. However, as soon as
Re) remains low, there is an uncertainty due to the transient phase from large to low Reynolds
numbers. Finally, since the temperature is a passive scalar, it is still submitted to the variations
of the kinetic field induced by the kind of grid chosen for experiments (square, round, solidity,
active, passive, ...). Therefore, in addition to the moderate Re) effect, the various techniques
used to create the turbulent kinetic and scalar fluctuations may be responsible for the scattering.

1.4.4 Transition for Pr # 1

In the previous high Reynolds and Péclet numbers cases, it has been shown numerically that the
Prandtl number does not affect the scalar decay exponents predicted by the CBC theory. The
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relevant question is now to determine if this is still valid for low Reynolds and Péclet numbers.
It is worth noting that if the Reynolds number is low, it implies a low Péclet regime. In other
words, the case of a kinetic field in low Reynolds regime with a scalar field in large Péclet regime
does not exist, in terms of the CBC theory.
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Figure 1.8: Evolution of the kinetic and scalar decay exponents for Rey(t = 0) = 240 at
Pr=10% and Pr =10°. (a) 0 =or =2; (b) 0 = o = 4.

Case Pr > 1: The transition towards low Reynolds numbers begins when the inertial k—5/3

range of E(k,t) tends to disappear. From this point, the scalar spectrum FEp still contains a
k~! VCR where the scalar destruction is fairly weak. At the beginning of the transition, with
the disappearance of the inertial range, the production of small vortices stops but the friction
between small scales creates some temperature fluctuations. Because of this production of scalar
variance, the scalar decay slows down and a7 increases. Then with the disappearance of the
viscous-convective zone, the destruction of scalar variance accelerates under the accumulated
effects of diffusive and dissipative processes. Hence, K7 decreases more rapidly. Such a be-
haviour is recovered in Fig. 1.8 where ar is investigated for Saffman and Batchelor turbulence
at Pr = 103 and Pr = 10°. Moreover, two critical Reynolds numbers are observed for the scalar
field: a first one from which a7 increases, and a second one from which it decreases, correspond-
ing respectively to the disappearance of the ICR and VCR. The second one is smaller than the
one found in the case Pr = 1 which was Ref§, ~ 12 in Fig. 1.7. Indeed, reaching a low Péclet
regime with a large Prandtl number is longer than with Pr = 1, because Re) has to decrease
more.

Case Pr < 1: In Fig. 1.9, scalar decay exponents follow, once again, the extended CBC theory.
There is no particular behaviour of ap during the decay: indeed, all scales of the scalar spectrum
Er are fully controlled by the kinetic one. In the case Pr < 1, the main difference with regard
to the case Pr =1 in Fig. 1.7 is that the transition happens earlier: the scalar critical Reynolds
number Re§_(Pr < 1) is higher than Re§_ (Pr = 1). Since the Prandtl number is very small,
the Péclet number Pey = Rey v/ Pr tends faster to the low Péclet regime, and so the critical
Reynolds number ReS_ is larger than with Pr>> 1.
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Figure 1.9: Evolution of the kinetic and scalar decay exponents for Rey(t = 0) = 1620 at
Pr=10"2and Pr=10"% (a) o =07 =2; (b) 0 = o7 = 4.

The conclusion is that the scalar time exponents provided by the extended CBC theory are still
valid in the cases Pr < 1 and Pr > 1 for small Reynolds numbers and all values of ¢ and or.
Only ar, before reaching its asymptotic limit, is temporarily modified when Pr > 1.

1.4.5 Study of the integral scales L and Ly

The emphasis is now put on the kinetic and scalar integral scales L and Ly, defined as

3T

L) = 4K (t)

T 2K7(1)

o0 oo
/ k1E(k,t)dk,  Lp(t) / k= Ep(k,t)dk. (1.37)
0 0
Evolution of Lp: The aim of this part is to show that whatever the Prandtl number is, the
relative initial position of the kinetic and scalar integral scales L(¢t = 0) and Lp(t = 0) does not
change the asymptotic dynamics of the decay. The law provided by Lesieur et al. (1987) gives
the temporal evolution of the scalar integral scale

a \%? a—2
Lp(t) = <aT> L(t)(1+Bt™5 )32 (1.38)

where B is a constant close to —1 evaluated thanks to initial conditions. At first approximation,

/2 Such an equation is obtained by dimensional

at large times, one has Lp/L = (a/ar)
analysis, assuming that in the inertial ranges, € and ep scale like € = 2K ¢'/3L72/3 and ep =
2Ky /3 [
and inertial-convective ranges. Therefore (1.38) is only valid when Re > 1 and Pe > 1. In
Lesieur et al. (1987), it is claimed that (1.38) is only valid in the case Lp(t = 0) < L(t = 0),
meaning that the scalar variance is injected at smaller scales than kinetic energy. Hereafter, it
is shown that all the three different cases Ly(t = 0) = L(t = 0), Ly(t = 0) > L(t = 0) and
Ly(t =0) < L(t = 0) collapse into the same evolution after a transient phase. The cases where
Lr(t = 0) = 10% and 1072, for Pr = 102 and Pr = 10? with L(t = 0) = 1 are investigated in
Fig 1.10. Despite the large final turn-over time (¢ ~ 10*'7g), the Reynolds number is still high

. However, in the low Reynolds and Péclet regimes, there are no longer inertial
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enough to make sure that there is a clear inertial range (Rey > 300). Results before t = 107
are not shown for the sake of clarity as L/Lp is too high. The first conclusion is that Pr does
not affect the asymptotic time evolution of Ly, as predicted by Lesieur et al. (1987).
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Figure 1.10: Evolution of L/Ly for the three different cases Lp(t = 0) = L(¢
Lr(t=0)> L(t =0) and Lp(t = 0) < L(t = 0). (a) Pr=10"2; (b) Pr =102

This is an asymptotic result since L and Ly collapse for very large turn-over times only. Such
large turn-over times are never reached in practice in experiments. Nevertheless, the three
cases L(0) > Lp(0), L(0) < Lp(0) and L(0) = Lr(0) are physically meaningful: the first
case correspond to the apparatus where the velocity fluctuations are heated after the grid by
a mandoline for instance. The second case correspond to a toaster: the laminar field before
the grid is heated. The comparison of these two settings has been done by Sirivat & Warhaft
(1983). The latter case correspond to the heated grid (Warhaft & Lumley, 1978).

Prediction of k; and kp: Here, a law able to predict the relative position of the peaks of
both kinetic and scalar spectra, respectively k7, and kp, is derived. This law is valid in high
Reynolds and Péclet regimes, as soon as kinetic and scalar integrated quantities decay according
to the CBC theory. We define the ratio 51, = ky/kr. Even though the assumption 57 = 1 is
commonly made, simulations reveal that it is not exactly verified. Moreover, the fact that
kr # ki has already been observed in experiments: Warhaft & Lumley (1978); Sreenivasan &
Tavoularis (1980) noted that there was a link between the scalar decay exponent ap and the
ratio Br. Furthermore, Zhou et al. (2000) also made the observation and proposed a correlation.
Nevertheless, since the infrared exponents are unknown in experiments, it is impossible to make
relevant comparisons. This is the reason why an analytical law linking 7, and cp in the high
Reynolds and Péclet regimes is proposed here. Piecewise spectra are used

AT(t)kUT, k < kp
b { A(t)ke, k< kg, 5 _ ) Ecoere Pk, kr < k < kTomax
Ky k‘_5/362/3, kp < k< k77’ r KBGT\/gk_l, k77 < k < kg,
Ko/3epa=3e/3 k—17/3 kco < k < ky,

(1.39)
where kT max is either koo for Pr < 1 or k,, for Pr > 1. The computation of the ratio L/Lp

yields L/ Ly = (38, C' Cr)/(2C C}), where C = 1/(1+0—p)+3/2, Cr = 1/(1+or—pr)+3/2,
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Cases Bin Boum  Error (%) Cases Bin Boum  Error (%)
oc=or=1 2/3 0.6684 0.26 oc=2,0or=3 | 09104 0.8744 3.95
c=or =2 2/3 0.6684 0.26 c=2,0or=4 1.07 1 6.64
oc=o0r =3 2/3 0.6684 0.26 o=3,0or=2| 04882 0.5110 4.46
c=or =4 0.7165 0.7645 6.2 c=4,0pr=1 0.31 0.299 3.5

oc=1,0op=4| 1418 1.496 5.21 oc=4,0or =2 | 0430 0.4468 3.76

Table 1.4: Values of the ratio 8, = kr/kr and relative errors given for several simulations with
o = o7 and o # or: the values are almost the same for all Pr in [1075;105].

C'=1/(oc —p)+3/5,and C' = 1/(or — pr) + 3/5. Then, using L/Lr = (ap/a)?/?, an explicit
law for (;, is obtained

2 o—0p 1+or—pr ar\3/2
== — . 1.4
o 3<UT—pT><1+0—p><O<) (140)

The law (1.40) is valid as soon as there are inertial and inertial-convective ranges for E and Er.
In order to show the relevance of this formula, 3, is computed in several cases with o = o and
with o # op. All results are gathered in Table 1.4 where Bhum refers to the numerical results
and Sy, to the theoretical ones coming from (1.40). This formula provides less than 1% error
when ¢ = o < 3 and a maximum of 6.64% when o7 = 4. Finally, (1.40) does not depend on
Pr: all cases in Table 1.4 give similar values for various Pr, consistently with the fact that Pr
does not affect large scales.

Th Br-law (1.40) completes the work of Ristorcelli (2006) regarding the time scale ratio r:
indeed in the latter reference, the ratio kp/kz, is introduced in the analytical computation
of r, but no explicit formula is provided.

1.5 Conclusions for a passive scalar field in HIT

In this first chapter dedicated to the transport of a passive scalar field in homogeneous isotropic
turbulence, several results regarding the impact of a Prandtl number different from unity were
proposed. There are summarized hereafter. It is recalled at this point that the next step is to
extend the EDQNM approach to HAT in Chapter 2, in order to further combine anisotropic
mechanisms and scalar transport from Chapter 4.

First, it has been shown that both theories of Chasnov et al. (1989) and Batchelor (1959) can
be merged into a single one: for a highly diffusive scalar, a new k~'1/3 inertial-balanced range
appears for k € [kcp, ky], where kcp = \/ﬁk}7 is the characteristic wavenumber based on
diffusion and small-scales convection. This new range appears thanks to small-scales convection
17/3

that balances diffusion from the &~ inertial-diffusive range. This small-scales convection

predicted by Gibson (1968) comes from small scales eddies of order K,y 1 This new range
appears conjointly with the k~17/3 scaling when both the Reynolds and the Prandtl numbers
are respectively high enough (Rey > 2.10%) and small enough (Pr < 1073). Finally, both the k

and Pr dependence of the scaling Fp ~ v/ Pr k=113 were assessed numerically.
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Secondly, the mixed-derivative skewness St has been investigated. The main results of this
study are twofold. (i) At high Reynolds numbers and for Pr > 103, Sy saturates to a constant
value S = —0.435, independent of the large scales initial conditions o and o7, which means
that statistical properties of the scalar mixing are converged, and can be interpreted as a small
scales equilibrium in the viscous-convective range. (ii) The Re; ' scaling for St (and S), coming
from self-similarity theory, was numerically assessed. These numerical and theoretical results
exhibit some robust asymptotic states at very large Reynolds and Prandtl numbers for scalar
third-order statistics.

Finally, we characterized the decay of a passive scalar field in HIT by extending the Comte-
Bellot and Corrsin (CBC) analysis and comparing it to EDQNM simulations. Namely, a scalar
backscatter parameter pr was defined to take into account strong scalar inverse non-linear
transfers when op = 4: pr is found to depend much more on ¢ than on Pr. The important
result is that the theoretical scalar decay exponents of the extended CBC theory are valid
whatever the Prandtl number is in high and low Reynolds and Péclet regimes: indeed, a broad
range of Prandtl numbers (107° < Pr < 10°) was investigated. The main finding of this
study is that the Prandtl number only affects small scales of the scalar spectrum FEp, but not
the asymptotic time evolution of scalar one-point statistics: indeed, the large scales (k < kr,)
depend only on the infrared slopes o and o7. In addition, it was shown numerically that neither
the Prandtl number nor the initial position of Ly (t = 0) affect the asymptotic dynamics of the
passive scalar decay as soon as the Reynolds and Péclet numbers are large enough. In other
words, the problem of the passive scalar decay in HIT has been simplified, reducing the relevant
parameters from (Re, Pr, o, or, L7(t = 0)) to (Pe, o, or) at large Reynolds numbers. In the
continuity of this study, a law able to predict the relative position of the peaks of both kinetic
and scalar spectra k;, and kr was proposed. The consistency of the results over a wide range of
Prandtl and Reynolds numbers shows that the decay of the passive scalar is driven only by the
most energetic large scales of the initial spectra.



Chapter 2

Spectral Modelling of the Velocity
Field in Homogeneous Turbulence

In the previous chapter, the transport of a passive scalar field in HIT was investigated using
classical EDQNM. The scalar field is left aside for now, and we focus on the modelling of HAT
for the velocity field, in order to later combine both anisotropic features and scalar mixing.

The anisotropic EDQNM modelling for the velocity field, introduced in Cambon et al.
(1981), and recently improved in Mons et al. (2016), is presented: details about calculations are
gathered in Appendix C. The model consists in two steps: first, a classical EDQNM procedure is
used to close the non-linear terms of the exact evolution equations of the spectral second-order
moments. Secondly, anisotropy is modelled through spherically-averaged descriptors, following
an expansion into spherical harmonics of the spectral Reynolds tensor Rij, further truncated at
the second-order for the sake of simplicity.

The spectral formalism is presented here, along with the main evolution equations, the basics
of EDQNM, and the detailed expressions of the spherically averaged production terms and non-
linear transfers. New theoretical considerations with respect to Mons et al. (2016) are proposed
as well regarding the expansion of ]%Z] In what follows, non-rotating flows are considered.
Direct applications of the anisotropic EDQNM modelling for the velocity field are proposed in
Chapter 3.

2.1 Equations in physical space

In turbulence, the Reynolds decomposition is used to represent a field as the sum of a mean
value and a fluctuating one. Thus, the velocity field v; = u; + U;, where u; is the fluctuating

velocity, verifies the Navier-Stokes equation with a non-zero mean field U;

il N 7S T ) _ , 21
<at T axj> Ut e, T Y 0m, = 0w TV 00, (21)

where p is the fluctuating pressure and v the kinematic viscosity. For the sake of clarity, the

time dependence was omitted. The two-point velocity correlation, or Reynolds stress tensor,

33
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R;; is now introduced
Rij(x,r,t) =< ui(x, t)uj(x +r,t) >, (2.2)

where 7 is the distance between two points and < . > an ensemble average. In homogeneous
turbulence, I;; only depends on the separation vector r, and all spatial derivatives of second-
order moments (and higher) are zero. Hence, the evolution equation of the one-point correlation
Rij (0, t) is

8Rij

% Pij(t) + 1L (t) — €i5(2), (2.3)
where 3;; is the production tensor
oU; oU;

(1) = ———Ryj(t) — —L Ri(t 2.4
(BZJ( ) Dy k]( ) oz, kZ( )’ ( )

which arises directly from velocity gradients, II;; is the pressure strain tensor given by
IL;;(t) =< p(t 2> 2.5
50 =< 200 (G + a2 ) > (25)

which will be investigated in the next chapter, and ¢;; is the dissipation tensor

Ou; Ou;

elj(t) v < amk axk

(2.6)

Surprisingly, the evolution equation of €;; is not often investigated, as pointed out in Piquet
(2001). Its equation is consequently derived and simplified in (A.21) for homogeneous turbulence
in Appendix A. The mean velocity gradients are represented by the space-uniform matrix A;;

dU;

A = .
J dxj

(2.7)

Then, one can develop U;(x,t) = A;j(t)z; + u) where u) expresses the effect of a solid-body
motion. The kinetic energy K(t) is defined as

1 1
K(t) = 5 <wu; >= S Rii(r = 0,1), (2.8)

and its evolution can be obtained from (2.3)

OK _ P €
o2 2 (29)

The evolution equation of R (r # 0), the so-called von Karmén-Howarth equation (von
Karman & Howarth, 1938), is addressed in Appendix A. Consistently, the kinetic energy
dissipation rate is then defined as € = ¢;;/2. Finally, to follow the time evolution of global
anisotropy, one uses the anisotropy indicator

bis(6) = ot — 2. (2.10)

which is the normalized deviatoric part of R;;. It will be shown hereafter that b;; contains in
fact two types of anisotropy.
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2.2 Spectral equations and transfers

In this section, the exact evolution equation of the spectral Reynolds tensor Rij is derived, and
a decomposition in terms of directional and polarization anisotropies is presented. There are no
assumptions, except homogeneity, in this part: the modelling begins in the next section.

2.2.1 Craya equation for Rij
The counterpart of (2.1) in Fourier space is

(57— A + 02 ) 6(h) + Ay (06) + gy ) = —ikip(l). (21)

where w; is the Fourier transform of u; and k is the wavenumber: 4;, and most of the spectral
quantities studied in this work, verifies the Hermitian symmetry, i.e. @} (k) = u,(—k), where ()*
is the complex conjugate. For the sake of clarity, the time-dependence was omitted; Uy, u, (k)
is the convolution product that can be written as

(k) = [ ®)ina)’p (2.12)

Thanks to the incompressibility condition %;k; = 0 in Fourier space, the pressure term can be
erased by projecting (2.11) on the plane perpendicular to p. This further yields the so-called
Craya equation for Rij

(gt — Ald{?z% + 2uk2> Rij(Kk) + My (k) Ry;(k) + Mj, (k) Ryi(k) = T3 (k), (2.13)

where R;; in Fourier space is given by

3
Rij(k,t)o(k — p) =< @ (p, t)ii;(k, 1) >= (;ﬂ) Sk — p)/eikPrPRij(r)d?’T, (2.14)

and where M;;(k) = (0in — 2a;000) Apj with o; = k;/k. The total non-linear transfer reads

)= Pann(k) [ S0 o0, 08D + Prn(k) [ Sk, p, 08P, (215)
where Py, (k) is the Kraichnan’s operator, and P;; the projector
QPZ‘mn(k) = kmpm(k) + k‘nPZ‘m(kﬁ), P, (k) = 6ij — Q) (2.16)
with S;j, is the spectral three-point third-order correlation
Sijn(k,p,t)é(k +p +q) =1 < (g, t)u;(k,t)in(p,t) > . (2.17)

The non-linear total transfer Tij can be written in a form that includes a conservative part with
zero integral over k, and a ”slow pressure” term that is responsible for a return to isotropy
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(RTI) mechanism and interactions between components

T (k,t) = 1y (ko t) + 75i(Ry )+ Wig(kyt) = PinTug(Kst) + Pjarri(k, 1), (2.18)
~——
Conservative transfer Return to isotropy
where
t) = b [ Silk,p )P, (2.19)
and
Wij = —aiantnj(k,t) — ajanty;(k, 1), (2.20)

with W;; = 0 (because k;7;; = 0, but k;7;; # 0). The conservative part is 7;;(k,t) + 77;(k, 1),
meaning that its integral over k is 0. However, integral over k for W;; is different from 0 since
it is the spectral counterpart of the slow-part of the pressure-strain tensor II;;.

2.2.2 Craya-Herring frame - £ — 7 decomposition

An optimal decomposition of ]Eiij results from a trace-deviator splitting on the plane perpendic-
ular to the wavevector k (Cambon & Rubinstein, 2006; Cambon et al., 2013). Without helicity,
which is the topic of Chapter 8, the spectral Reynolds tensor can be written as follows

.  B(k,t) E(k,1)
Rij (k1) = = =2 Py (k) + <8(k,t) - =) Pak) +§R<Z(kz,t)NZ(k)N](k)), (2.21)
Isotropic Directional anisotropy Polarization anisotropy
where £ is the kinetic energy density
Rii(ke, t
Elk,t) = R(2>, (2.22)

linked to the kinetic energy spectrum F through a surface integral on a spherical shell S

of radius k
E(k,t)= | E(k,t)d%k. (2.23)
Sk
The energy density £ is the distribution of energy along the wavevector k, and £ — E/(47k?)
reflects the directional anisotropy, i.e. the difference between energy in one direction and
the spherical average. Then, Z represents polarization anisotropy and reflects the difference
of anisotropy between two components of the spectral Reynolds tensor

(2.24)

Both £ and Z must verify the realizability condition
Z(k,t)| < E(k,t), V(1) (2.25)

Without helicity, R;; is real and thus R;j(k) = Ri;(—k). In the isotropic case, Z = 0 and
& = & = E/(4rk?). Finally, N, are the helical modes (Cambon & Jacquin, 1989; Waleffe,
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1992), perpendicular to k;, and linked to the Craya-Herring frame (eM,e?) e3) and to the
fixed reference direction n, illustrated in Fig. 2.1, through

@3) _ ki @ _ (3 1) w_ kuo ki
e; 2 e =e€jie; e, e, = € Txn] €ijl o (2.26)
2 . (1
N;(k) = e (k) —iel! (k). (2.27)

In the Craya-Herring frame, the fluctuating spectral velocity 4; is contained in the plane
(e(l), 8(2)) and can be decomposed into toroidal and poloidal components according to

(k) = 2 (k)elM (k) + a9 (k)el®) (k). (2.28)

Note that unlike other spectral classical quantities, the toroidal component does not verify the
Hermitian symmetry since egl)(—kz) = —ez(-l)(k:), so that 4(t7)* (k) = —a(tr) (—k). The toroidal

and poloidal potentials £t and £(P°1°) are simply linked to £ and Z through

{ﬂmmww%—pw:

a(toro) (k)ﬁ(toro)*(p) > g(k) — g(polo) (ki) + g(toro) (k)
£ (k) (k — p) =

,[L(polo)(k),&(polo)*(p) > Z(k) — g(polo)(k) _ g(toro) (k)
(2.29)

Figure 2.1: Craya-Herring frame (e, e(®), e(®) in blue, defined in (2.26); in red the wavevector
k. The fluctuating spectral velocity 4 is contained in the plane (e, e(®).

At this point, it is of interest to mention that the general decomposition (2.21) could
also be applied in magnetohydrodynamics (MHD): indeed, the magnetic spectral tensor,
defined as B;j(k)d(k —p) =< b’ (p)b;(k) >, is also real, symmetric, and solenoidal. This
might be interesting to apply this spectral anisotropic formalism to strong MHD turbu-
lence where a mean magnetic field makes the conductive flow axisymmetric (Boldyrev
et al., 2011).

2.2.3 Generalized Lin equations

Let’s now write the evolution equations for £ and Z, called here the generalized Lin equations.
One can rewrite (2.21) as

Ris (k) = E(k, )Py (k) + R(Z (K, )N; (k)N (K)). (2.30)



Chapter 2. Spectral Modelling of the Velocity Field in Homogeneous Turbulence 38

With this decomposition and the definition of £, the £-Lin equation reads

<§t Ak 82 + 2yk2) E— Al anan€ + AL R(ZN,N,,) = Tg, (2.31)

where A;; is the symmetric part of A;;, and where the directional transfer T, is

THU(k,t) 1
Te(k,t) = L) _ 5(7“-(/@,75) + T;;(k,t)). (2.32)
Similarly, the Z-Lin equation reads
a 8 2 . * *
8t — A k= ok, + 2vk* | Z 4+ 2iZQcH + AmNi (ENn + ZNn) =Ty, (2.33)

where Qcyp, linked to both the frame and the velocity gradients, is computed in Appendix C,
and where the polarization transfer T is

Ty(k,t) =~ == N; (k)N; (k) = %(Tij(k,t) ik, 1)) N7 ()N (R). (2.34)

The effects of a mean rotation on these equations are considered in Appendix C.

2.3 The closure problem

In this section, the eddy-damped quasi-normal Markovian (EDQNM) approach is briefly re-
called: since details on the procedure can be found in many references, only the main steps are
presented here, and all the calculations specific to homogeneous anisotropic turbulence are de-
tailed in the appendices. The EDQNM procedure is applied to close the Craya equation and to
compute analytically the directional and polarization non-linear transfers T¢ and 7. This step
is then combined in the next section with a modelling of anisotropy, so that the k-dependence
of the spectral second-order moments is transformed into a k-one.

2.3.1 The EDQNM approximation

Similarly to HIT, there is here a need to model the transfer term TgL In order to do so, the
evolution equation of the three-point third-order velocity correlation Sj;y,, defined in (2.17), is
investigated. After some algebra, one gets

3
+ M (k) Simn (K, P, t) + Mnm(p)sz]m(k P, ) Tijn(k, D, 1), (2.35)

where %;;, will be submitted to the EDQNM approximation. So far, previous equations were
exact. From this point, the modelling begins. Fluctuating velocity probability distributions
are assumed to be close to normal distributions. Hence, one can express T;j, as the sum of a
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quasi-normal part, and a modelled departure from normal laws part, namely
N
The quasi-normal part ‘3317\5 is expressed as a function of ]%Z-j according to

T .2, 1) = 2( Paran (@) Bon (K. ) Fea (p, )

o+ Pioun (B) Bt (9, ) Ri(@,8) + P () Rini(a, ) Rk, 1) ). (237)

The second part (ul(k‘,t) + i (p,t) + 1 (q,t))Sijn(k,p,t) takes into account and models the
departure from a normal law: this is the eddy-damping contribution where

k
pi(k,t) = Al\//o 22E(z,t)dz, (2.38)

as defined in Pouquet et al. (1975); Orszag (1970). The constant A; was originally chosen to
be A; = 0.355 and we keep this value, which provides a Kolmogorov constant so that Kg ~ 1.4.
Choosing a different value, such as A; = 0.49, yields Ky ~ 1.6 (Bos et al., 2012).

Now, the evolution equation of S;;, (2.35) with (2.36) can be solved. The resulting expression
of S;jp is then simplified using the Markovianisation step: the characteristic time of the eddy-
damping is very small with respect to the turbulence characteristic time. This constitutes the
classical EDQNM closure. In the homogeneous isotropic turbulence (HIT) framework, the
expression of Rij is rather straightforward so that the analytical expression of (2.37) remains
quite simple. In homogeneous anisotropic turbulence, the quasi-normal expression ‘IS?I is further
combined with the decomposition (2.21) and with the modelling of anisotropy for £ and Z, so
that the full anisotropic EDQNM modelling contains more complex features than in HIT.

Indeed, in HIT, there is only one EDQNM formalism (Lesieur, 2008). In HAT on the contrary,
three versions can be found (Sagaut & Cambon, 2008), so called EDQNM-1,2,3. For non-
rotating turbulence and in the presence of strong production mechanisms, the present EDQNM1
(Cambon et al., 1981), in terms of spherically-averaged spectra, is relevant enough. However,
rotating turbulence, among other configurations such as stably stratified turbulence for example,
requires the use of the EDQNM2 or EDQNMS3, which is out of the scope of the present work,
and models the effects of interacting inertial dispersive waves on the dynamics of the three-point
third-order correlations.

More precisely, the Green’s tensor of the rapid distortion regime is used to solve the linear
operator in the equation for the three-point third-order correlations (Cambon & Jacquin, 1989).
As a consequence, in the EDQNM2 framework, the modelled non-linear transfers contain linear
terms (with respect to the mean-velocity gradient) coming from the third-order correlations
equations. This is at variance with EDQNM1, where these terms are discarded: a review of
various models of turbulence can be found in Cambon & Scott (1999). Then, for a complete
match in the asymptotic case of vanishing non-linearity between wave turbulence theory and
EDQNM, the EDQNM3 was derived, which only slightly differs from EDQNM2 (Cambon et al.,
1997, 2004): the separation of rapid and slow variables is refined in the quasi-normal procedure,
so that £ is treated as a slow variable, and the rapid phase of Z is accounted for. These different
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approaches were recently discussed in Cambon et al. (2017) where it is for instance shown how
to move from EDQNM?2 to EDQNM1 for stratified turbulence.

In what follows, since rotation is not considered, only the EDQNM1 approximation is used.
Thanks to the whole EDQNM procedure, it is possible to express 7;;, coming from (2.18), as
function of the second-order moments and of the characteristic time 0y,, containing the eddy-

damping term:
N
i t) =i [ 0T ., 0P, (2.39)
where 0y, is the characteristic relaxation time of the third-order correlations

1 — e Hhwal 2, .2, 2
ekpq = ,Ufk ) Nkpq = V(k +p +q ) +M1(k7t) +H1(p7t) +,Ufl(Q7 t) (240)
Pq
Even for HAT and for consistency with previous studies, an isotropic eddy-damping term is
kept, meaning in particular that each component of Rij has the same 0,,,. Also, this avoids the
introduction of arbitrary constants at this level of the modelling.

It is worth noting that within the EDQNMI1 framework, the characteristic time 0y, can
be tuned to take into account different effects. For unstably stratified turbulence, ad-
dressed later in Chapter 7, the stratification frequency N (t) was added to the viscous and
inertial terms to match better with DNS in Burlot et al. (2015a): O,EEIJSHT) = Orpg+a1 N (),
where a; is a constant, of order 0.25, which depends on the flow. In isotropic magnetohy-

drodynamics turbulence, a magnetic correction was added in Pouquet et al. (1976) to take

into account the propagation of Alfven waves: Gl(cl;/quD) = Oppg + 1/2/3k+/ fok Ep(z,t)dz,

where Ep is the magnetic energy spectrum.

2.3.2 Directional and Polarization transfers 7: and T

The aim of the EDQNM1 approximation is to provide an explicit formula for both the directional
and polarization transfers Tg and Tz given in (2.32) and (2.34). For this purpose, a more
convenient frame (3,7,a) must be used, attached to the planed formed by the triad k+p+q = 0,
where « is perpendicular to this plane. From now, the following notations are used: ’ and ”
refer to quantities expressed in p and q respectively. Useful vectors and angles are gathered
in Fig. 2.2. a, b and c are the angles formed by p and q, g and k, and k and p. Finally,
x = cosa, y = cosb and z = cosc. The new frame (3,7v,a) is obtained from Craya frame
(e, e® e = a) by rotations of angles A, X' and X\ around k, p and q. All the details of the
computation of 7;; from (2.18) are given in Appendix C. The final results for the polarization
and the directional transfers are

Te(k, ) = 2 / gk [(€7 + RX") ((2y + 2)(E' — €) — 2(1 — 2)(RX' — RX))
FOX"(1— 22) (23X — ysx')} &p, (2.41)
Ty, t) = 2 / Onpakpe A [(€7 4 RX") ((ay + )R~ X) = 2(1— 2)(€ — €)

iy — 22)8X’) FiSX(1 - 2?) (g;(s +X) - iygx')} &p, (2.42)
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with E(k,t) = &, E(p,t) = &', E(q,t) = £, X = Z(k,t)e*, X' = Z(p,t)e*™ and X" =
Z(q,t)e*". The expressions of Tz and Tz can also be found in Cambon et al. (1997); Mons
et al. (2016).

=

@T

Figure 2.2: The triad k + p + ¢ = 0 and useful vectors and angles

2.4 Spherically-averaged equations

The generalized £-Lin and Z-Lin equations, along with explicit directional and polarization
transfers Te and Tz, can be solved. In order to considerably reduce computational time,
spherically-averaged descriptors are used, which depend only on the modulus & of the wavevec-
tor k. The procedure is to integrate analytically the generalized Lin equations over a sphere of
radius k. To do so, the expansion of Rij into spherical harmonics is truncated at the second-
order.

2.4.1 Spherically-averaged descriptors

The decomposition of ]:Eij provided by Cambon & Rubinstein (2006) is now used. As seen in
(2.21), one has

Rij (k) = R (k) + RS (k) + REY (k) = (k) + £ (k) ) Py (k) + R ( Z (k)N (R)N; () ).

(2.43)
where & = E/(4nk?) and £ = £ — &. The complete expansion of £ and Z into spherical
harmonics at the second-order was done in Mons et al. (2016), and all the details and technical
steps are gathered in Appendix C. Here, for theoretical considerations, the fourth-order is briefly
presented, even though only the second-order will be used in the numerical simulations. After
some algebra, one gets the fourth-order expansion of Ri]- into spherical harmonics

dir 945 __(dir
E(k,t) = 50(1 ~ 15H (k, Haza; + Eﬂfqu)(k,t)aiajapaq), (2.44)
]- Ol 21 Ol * *
Z(k,1) = 5& <5H§f (k1) + Eﬂfﬁ,q)(k,t)apaq) N (k)N (k). (2.45)

The possibility of a third-order contribution in the expansion of Z is only discussed in the
next chapter in section 3.4.3, since the results are not satisfactory for the time being. At this
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point, some words need to be said about the new fourth-order tensors. One can remark that at

(pol)
Hiqu
apag and helical modes NN/, unlike the directional part

is contracted with both normalized wavevectors
(dir)
ijpq
oo, and is therefore fully symmetric in its indices, as reported in Rubinstein et al. (2015).

the fourth-order, the polarization part

which is only contracted with

The latter property of full-symmetry is thus a priori not verified by H g;oql), but we nonetheless

make this assumption. Indeed, the analytical calculations are already very complex and lengthy,
and this approximation renders the developments a bit easier. In addition, we assume that both

H,L»(;i;;) and Hi(ij(;l) are trace-free, meaning that any contraction of two indices yields zero. For
H ,L.(f;;) , this is verified according to Rubinstein et al. (2015), but for H i(;)pO;) this is a supplementary
assumption, again for the sake of simplicity. All these spectral anisotropy descriptors are defined

as
2B(k, ) HS W (k,t) = [ R (k,t)d%k, 2Bk, ) HP (k,t) = / RV (k, t)d%k, (2.46)
Sk Sk
(dir) o - 2
2B (k, ) H ) (k,t) = Ské’(k:,t) Pyjpq(k) 2k, (2.47)
(pol) _ . 2
2E(k, t)H (k, 1) = /S k %(Z(k,t)prq(k)> a2k, (2.48)

where S}, is the sphere of radius k, and where P;j,, and Njjp, are generalized operators

1 1
Pijpq = aiajopoyg — ;(&japaq + 5 perm.) + %(@jépq + Gipdjq + Gigdjp), (2.49)

1
Niqu = (N,-Njapaq + NquOéiOéj + 4 perm.) - ?((5iijNq + 6quiNj + 4 perm.). (250)

H'(dir)

Additional details about the fourth-order expansion, such as the evolution equations of H; ipg

and H @'(]I')pcg)7 their linear and non-linear transfers, can be found in Appendix C.

Obviously, the truncation of the expansion into spherical harmonics of the exact de-
composition (2.21) provokes a loss of angular information about the anisotropy of the
flow. Part of this information is nevertheless restored thanks to the spherically averaged-
descriptors HZ(]) and Hi(}p
this truncation. It will be shown in Chapter 3 that a consequence is that the exponential

» However, it is complicated to quantify what is lost because of

growth rate of the kinetic energy in shear flows is too large compared to values obtained
in DNS and experiments, and that taking into account the fourth-order expansion tends
to reduce this exponential growth rate. On the contrary, the second-order expansion
seems to be sufficient for quantitative comparisons in multiple configurations involving
the transport of a passive (Chapter 5) and active (Chapter 7) scalar field.

From now, in the context of moderate anisotropy, only the second order expansion
of ]A%Z-j is kept. In this framework, all quadratic contributions HZ(]) HZ(]) are discarded: neverthe-
less, these second-order contributions in anisotropy have been computed in Appendix C and it is
shown that they are negligible, at least in shear flows. Note that the same kind of second-order
truncations will be performed for the modelling of a scalar field in Chapter 4.
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The indicator of anisotropy defined in (2.10) can be expanded into b;; = b(dlr) + b(pOD thanks to
the previous decomposition

b (1) / E(k, ) HS (k,t)dk, — o*(1) / E(k, t)HF" (k, t)dk.
(2.51)

Finally, a limit can be derived from the realizability condition (2.25)

max(L;) <

1
2.52
i ~ 15’ ( )

where L; are eigenvalues of H i(;hr) . This condition, obviously valid when only the second-order

expansion is considered, was shown to hold true in multiple configurations in Mons et al. (2016).

2.4.2 Spherically-averaged final Lin equations

In this part, the final spherically-averaged Lin equations of the main spectra, namely £, EH (dlr),
and FH i(j ), are derived: details of the calculations are given in Appendix C. It is recalled that
only the second-order expansion of R;; is considered, and that quadratic anisotropic contribu-
tions in the non-linear transfers are discarded. The following compact equations were derived
in Mons et al. (2016), and read

(gt + 2yk2> E(k,t) = S1050) (s £) + SNH00) (1, 1), (2:53)

<8at + 2yk2> Bk, ) HS (e, t) = S5O (1, 1) 4+ SHAD (1 ), (2.54)
0 ) (pol) L(pol) NL(pol)

(8t +2vk ) E(k, ) 5 (k,t) = S (k1) + 5 (k,2), (2.55)

where SNU(0) (k1) is the classical non-linear spherically-averaged isotropic transfer term
SNLGE) (1 4) — / Te (k, £)d2k (2.56)
Sk
=167 [ oty + S ED - E0)pea (2.57)
Ay

with Ay the domain where k, p and ¢ are the lengths of the sides of the triangle formed by the

triad. The non-linear spherically-averaged directional transfer SNL(dlr)(k,t) is

SN k) = o / Te (k, )Py (k) d°k — ?SNL(iS‘))(k,t) (2.58)
Sk

= 47 /A Orpak®p2a€8 | (42 — D(wy + 2°)(€6 — E)HFY" + 2(1 — 222650 P | dpdg

ij
k
+ 872 /A ekqu2p2q<a:y + 2:3)56/ [(33/2 - 1)(5[/) - €0>Hz(jdlr) + (32 )50 (du“) 280Hi(jdir)} dpdq.
k
(2.59)
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And SEL(pOl)(k, t) is the non-linear spherically-averaged polarization transfer

S (1 1) = ;/S %(Tz(k,t)Ni(k)Nj(k))ko (2.60)

= 4r? Orpgk*D?qE]

: ol)’ ol
N (zy + 2°) ((1 + 22)€6H1.(]P )y _ 450HZ-(JI.D )>

+2(22 = 1)1+ y2)(E) — EVHEY +22(22 — ) HTY 4 22y (22 — 1>eoH§;’°””] dpdq

dir)”’ dir)’
+ 24n? /Ak Oppak2p2qz(22 — 1)EY [(y2 —1)(& - E)HS 4 (22— g™ ]dpdq. (2.61)

For the linear production terms, A;»; and A;j are respectively the symmetric and antisymmetric
parts of A;;. First, SL(iSO)(k,t) is the linear spherically-averaged isotropic transfer

i 1 Rii ~
SL(ISO)(k,t) = / Ak OR — 2M;, Ry d’k (2.62)
2 Jsg, Okn,
0 dir dir ol
= 24} <8k(k:EHl(m N+ BE(HYY 1 B> >)> . (2.63)
Then, SiLj(dir)(k,t) is the linear spherically-averaged directional transfer
ir 1 Amm A (51 :
SzI;(d )(k,t) = 4/ (Alnkl 8§k - 2an<k>an(k)> F’ij(k)d2k - ?]SL(ISO)(kat) (2'64)
Sk n
_ 2 44 2 + pr(pol) 4ol 2 44 (pol) 1 L O(kE)
= 6 E - 7E<Azg’Hiz + A Hy ™ — A0 Hyy, ) ~ A
2(,+0 (dir) + 0 (din)y 2,44 ¢ 0O (dir)
+ - <A”6k(kEHﬂ )+ Aﬂ%(kEHd ) — §Alm6ij%(kEHlm )

1 ir ir 2 ir — ir — ir
~-E (A;H“‘ Db ATH - S AL >5ij> + B( A5, G + AL HGY (2.65)

7 il lm JnTni in- T ng >

Finally, SZ.Lj(pOD(k,t) is the linear spherically-averaged polarization transfer

L(pol) . 1
s (k,t)—4/Sk§R e

(Alnkl ORys 2Mm(k)Rn5(k)> Nf(k)N:(k)Ni(k)Nj(k)] 4%k (2.66)

2 12 (dir) (dir) 2 (dir)
= _gAij -=E <A;§Hﬂ +AGHG Y — gA;;nfflm 8ij

2/ ,0 ol 5 oy, 2 9 ol
— = (Af - RBHT) + Al (kBHT) = 26,47, - (kEA))
1 ol ol 2 ol 1 — ol — ol
+ = B(AGHTY + AFHPY — S Af HEYs,) - B (AGHPY + A7HPY). (2.67)

2.4.3 Return to isotropy - Spectral tensor

In order to investigate more precisely the return to isotropy (RTT) mechanism, a specific transfer

(RTT)

term T was introduced in Mons et al. (2016): the slow-pressure terms (contained in the

pressure-strain tensor II;;) are at the origin of the return to isotropy and drive this mechanism.
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Thus, the non-conservative transfer term W;; can be linked to the RTI mechanism as follows
Wik, t) = ;R(T<RTI>(1<; )N, (k) + a; N; (k)]), TR (e, 1) = qiry (k, )N (K),  (2.68)
so that
T 1 1) <2 [ Gpge oy +2)V/T = 2(E" + RX)
[(5 4 X)(2k — qz) — k(2(E + RX') — z’%X’)} d3p, (2.69)

with details given at the end of Appendix C. Regarding the spherically-averaged RTI trans-
fer, defined as follows

RTI
ST (k1) = — /S R(TED ke, 1) 0N (R) + a; Ni (k)] ) 4k, (2.70)
k
similar calculations yield

S (ke 1) = 16772/ Orpak®p*q(x + y2)EF [ —y(2? — ) E(GHS" + HIP)

A

+&(u ) ou ™+ 1) @z P ) apdg. @7

Now that all transfer terms have been defined, and that the formalism has been presented, it is
convenient to introduce the spherically-averaged spectral tensor

Giglhit) = | Rij(k, t)%k = 2E(k, 1) (53 + S (k, 1) + HZ.(JPOI)(k,t)) . (2.72)
k

Because of the spherical-average, even if the fourth-order expansion was considered in Rij, the

0

equation would be the same since the H; ~contributions vanish. The evolution equation of ¢;;

ijpq
is then 5
(m +21/k2> e ) — SNL(tot) T st Litot) SNL+S(RTI) t sk Ltot). (2.73)
The total non-linear spherically-averaged transfer and can be expressed as
NL(tot) NL 27, _ oNL (RTT)
SN (1 ) = /S TN (k, 1) %k = SYE (k. ) + S (k1) (2.74)
k
dij iso NL(dir NL(pol
=2 <3JSNL< V(k,t) + S5 (k1) + S50 )(k:,t)>, (2.75)

with fo SgL (k,t)dk = 0. The total linear spherically-averaged transfer, which depends

linearly on the mean-velocity gradient matrix, is

SHY (k, t) = / T (k, t)d%k (2.76)
Sk
61' i ; ir
=2 (;SL(lso)(k, £) + SE (k1) + S (&, t)) . (2.77)
If one considers the fourth-order expansion: Sg“j(wt) contains both contributions from the second

NL(tot)

and fourth orders, whereas S contains only second-order contributions.



Chapter 3

Dynamics of the Velocity Field in
Shear-driven Turbulence

The spectral modelling for anisotropy presented in Chapter 2 is now applied. Validation of the
model, by comparisons with DNS and experiments, can be found both in Mons et al. (2016)
and hereafter. This chapter mainly focuses on shear flows: nevertheless, others configurations
such as axisymmetric contractions, expansions, and plane distortion, are presented in Appendix
D, along with pressure spectra.

Most of the contents presented in this chapter were published in:
Briard, Gomez, Mons, & Sagaut, ”Decay and growth laws in homogeneous shear turbu-
lence”, Journal of Turbulence, 17 (07), 699-726 (2016)

The study of homogeneous anisotropic turbulence is of great interest for a deeper understanding
of the different mechanisms that occur in anisotropic turbulent flows. The specific case of ho-
mogeneous shear flows has been particularly investigated since it exhibits different fundamental
physical processes: anisotropic production of turbulent kinetic energy, interaction between linear
and non-linear mechanisms, return to isotropy process... Since Kolmogorov (1941b), it is known
that small scales should return to an isotropic state, meaning that even with a mean shear
applied on large scales that strongly modifies their properties, there is a return to isotropy

(RTT) mechanism of the small scales. This RTT process and the modelling of the so-called slow-
(s)
I1;; =< p(0ju; + Oju;) >, where p and w; are the fluctuating pressure and velocity, intervenes in

part of the pressure-strain tensor II;. is a challenging issue. The total pressure strain tensor

the evolution equation (2.3) of the Reynolds stress tensor R;; =< u;u; >. Several models were
proposed for the slow part HS) and have been improved in the past decades. The most popular
are the LRR model (Launder et al., 1975), the one of Shih & Lumley (1985), the SSG model
(Sarkar & Speziale, 1990), and an improved version of the SSG model by Warrior et al. (2014).
These models rely on a Taylor series expansion around the isotropic state of the dimensionless
tensor HS) /€, where € is the kinetic energy dissipation rate. The small parameter in this ex-
pansion is the anisotropy tensor b;;, defined in (2.10). These models yield good results in the
early times of the flow dynamics. Indeed the arbitrary parameters introduced in these models

are tuned in order to fit experimental data. However, a weakness of these models is their lack

46
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of universality: values of their parameters strongly depend on the choice of the experimental
data, often obtained at moderate Reynolds numbers. Consequently, the analysis of long-time
behaviour of b;; in the RTT process remains an interesting and open question. In the asymptotic
case of high Reynolds numbers, this mechanism should be universal and thus should not require
any adjustable constants.

In addition to the modelling of Hg;) and the RTT mechanism, a fundamental feature to investigate
is the influence of anisotropy on the decay of integrated quantities such as the kinetic energy
K(t). It follows, from the pioneering work of Corrsin (1951a); Comte-Bellot & Corrsin (1966)
(CBC) relying on dimensional analysis, and self-preservation analysis George (1992a), that the
kinetic energy decays in power laws in the isotropic framework, K (t) ~ t*. This has been
recovered recently for very large Reynolds numbers with a classical EDQNM closure for HIT
(Meldi & Sagaut (2012, 2013a) and Chapter 1).

To quantify the impact of anisotropy on the decay regime, comparisons are usually made with
HIT. Moreover, the case of axisymmetric contraction (or expansion), which is representative of
grid turbulence, has already received some attention. Notably, it has been shown (Chasnov,
1995; Davidson et al., 2012; Mons et al., 2014b) for this configuration that an initial axisymmetry
does not modify the decay exponent in the asymptotic regime, i.e. for Saffman turbulence
K(t) ~ t5/5,

An original configuration to explore, which has not been investigated yet in direct numerical
simulations (DNS) nor in experiments, is the case of a mean shear which is suddenly released.
This case could be physically interpreted as a volume of fluid that experiences an intense shear,
and which is then convected in an almost shearless region. Characteristic time scales in these
two different phases are of great importance, as shown later on. Is the decay of kinetic energy
modified in such a homogeneous shear-released turbulence (HSRT), with respect to HIT? This
fundamental question is of theoretical interest, since HSRT, unlike axisymmetric turbulence,
creates a purely anisotropic correlation Rj3 =< wjus >. The understanding of such a correlation

dynamics could provide relevant information on anisotropy.

Another relevant case to focus on is the homogeneous shear turbulence (HST) where the mean
velocity gradient is maintained throughout the evolution of the flow. In this configuration,
partially representative of atmospheric flows, kinetic energy is continuously produced by the
mean shear. This framework is commonly studied in experiments (Tavoularis & Corrsin, 1981;
Tavoularis & Karnik, 1989; De Souza et al., 1995) and in DNS (Pumir & Shraiman, 1995;
Pumir, 1996; Gualtieri et al., 2002; Brethouwer, 2005). Notably, it is found that the small scales
of the velocity field second-order moments return to isotropy, and that kinetic energy grows
exponentially (Tavoularis, 1985; George, 1992a; Sagaut & Cambon, 2008) when the anisotropy
indicators b;; have reached an asymptotic state. Despite all these works, some discrepancies still
remain, whose origin is not completely understood. For instance, in the DNS of Brethouwer
(2005), the anisotropy tensor b;; does not reach an asymptotic state as required by theory
(Sagaut & Cambon, 2008) when the exponential growth rate « of the kinetic energy is evaluated.
Indeed, the dimensionless time St, or accumulated anisotropy, where S is the shear rate, is
not high enough (St ~ 12 only). The issue is similar in most of the DNS and experiments, thus
leading to a large dispersion of the growth rates (from = 0.07 to 0.33, see Table 3.1). Moreover,
especially in experimental works, the question of homogeneity can be raised: inhomogeneous
flows are not studied in the present chapter, but their influence on the growth rate of the kinetic
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energy is an open question and deserves further investigations. In addition, the mean velocity
gradient strongly varies near the boundaries, possibly inducing a different phenomenology in the
growth of the kinetic energy. Finally, in DNS, the finite size of the box could alter the kinetic
energy growth rate in a manner difficult to quantify. These aspects could explain the current
dispersion of growth rates.

In both HST and HSRT, the mean-velocity gradient matrix reads

dU;
d{L‘j ’

with S expressed in units of 7, ', where 7y is the eddy turn-over time K(0)/e(0), so that
S =381, ! where S is the dimensionless mean velocity gradient. The evolution equation of the
kinetic energy in homogeneous shear turbulence reads

% = SRys(t) — e(t) = 25K (t)bis(t) — e(t), (3:2)

where K and its dissipation rate e are linked to the kinetic energy spectrum F through
o o
K(t) = / E(k,t)dk,  €(t) = 2u/ k2E(k, t)dk. (3.3)
0 0

The chapter is structured as follows. The case of homogeneous shear-released turbulence (HSRT)
is firstly investigated: the return to isotropy, the modelling of the slow part of the pressure
strain tensor and decay laws are addressed. Then, the emphasis is put on sustained shear flows
(HST). In this part, the results of the present anisotropic modelling are discussed and put into
perspective with review of various DNS and experiments. Finally, the most important points
developed in this chapter are recalled in the concluding section, and some considerations about
the fourth-order expansion are discussed.

3.1 Homogeneous Shear-Released Turbulence (HSRT)

In this section, the emphasis is put on HSRT: this is an original configuration where the shear S
is non zero only in the early times. During this phase, linear transfers defined in (2.76) increase
the anisotropy and produce kinetic energy. Then, after the release of the velocity gradients, the
velocity field freely decays and there is a RTT mechanism: non-linear transfers defined in (2.74)
tend to isotropize small scales, decreasing as a consequence both K (t) and Ry3(t).

This framework, firstly presented in Mons et al. (2016), has never been investigated in DNS nor
in experiments. This section is divided into five parts. Firstly, rapid distortion theory (RDT) is
used to validate the model at short times, when the linear effects are dominant. Then, classical
scalings for the different spectra involved in shear-driven turbulence are addressed. Afterwards,
the RTI mechanism, once the shear is released, is investigated, with a particular attention on
the difference between Saffman and Batchelor turbulence. Then, a model is proposed for the
slow-part of the pressure-strain tensor in the RTI phase. Finally, effects of infrared exponent o

and shear rate .S, along with the case of anisotropy at low Reynolds numbers, are discussed.



Chapter 3. Dynamics of the Velocity Field in Shear-driven Turbulence 49

3.1.1 Validation of HSRT with Rapid Distortion Theory

In this part, the anisotropic EDQNM modelling is assessed by comparisons with RDT as done in
(Mons et al., 2016). The main calculations coming from RDT are given in Appendix D. In RDT,
non-linear terms are discarded: this theory is valid for short times only, when linear processes
dominate the flow. Moreover, at short times (for large Reynolds numbers), viscous effects are
also negligible with respect to inertial ones. Two different simulations are presented in Fig. 3.1:
one with an initial isotropic kinetic spectrum E(k,t) in which linear transfers produce energy
and anisotropy. And a second one where these linear transfers are set to zero and the initial
spectral tensor ¢;; is analytically determined thanks to RDT. It is clear that the two different
initial conditions collapse into the same behaviour when the shear is released, for both ¢ = 2
and o = 4. This validates our spectral transfers. Another point of interest is that with RDT,
é13 displays an inertial k~%/3 range instead of an inertial anisotropic k~7/3 range, which proves
that non-linear transfers are responsible for the anisotropic range.

—EDQNM with k() —EDQNM with SV
0.08| ~--RDT with St = 0.5 | | 0.08 .. RDT with St = 0.5

10° 10
t/To t/To

(a) (b)

10°

Figure 3.1: Comparison of by3 with RDT initial conditions (S};**" = 0) and with isotropic

initial conditions with St = 0.1. (a) For o = 2. (b) For o = 4.

3.1.2 Kinetic energy spectrum E(k,t) and spectral tensor ¢;;(k,?)

In Fig. 3.2a, diagonal components of the spectral tensor ¢;;(k,t) (only ¢1; is shown) display a
k~5/3 scaling in the inertial range, as in the purely isotropic case, from the integral wavenumber
kr(t) ~ 1/L(t) to the Kolmogorov wavenumber k,, where L(t) is the kinetic integral scale.

The cross-tensor ¢13(k,t) is also presented, and exhibits a k—7/3

scaling in the inertial range.
This scaling comes from E(k,t)H. 8 (k,t) spectra exclusively since Ed13 = 0. The spectral scaling
of the cross-tensor can be found by dimensional analysis, assuming that ¢13(k,t) depends on

the k, €, and linearly on the shear rate S
13k, t) ~ Se' PR/, (3.4)

This result was firstly found by Lumley (1967) and derived in a different way by Ishihara et al.
(2002). The k~7/3 slope has also been obtained in DNS (Shen & Warhaft, 2000; Ishihara et al.,
2002; Sukheswalla et al., 2013).
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Figure 3.2: (a) Spectral tensors ¢15(k,t) and ¢11(k,t). (b) Total non-linear flux and RTIT
flux. Both for o = 2 with St = 1.

The total non-linear and RTT transfers are now investigated in Fig. 3.2b, and more precisely
their corresponding flux, computed according to

NL() k NL()
IL;; (k:,t):/o Sy (u, t)du. (3.5)

The total non-linear flux is not conservative (meaning that II;;(k = oo) # 0) because of the
RTI mechanism, originating from ”slow pressure” terms. Nevertheless, when the RTI flux is
subtracted, a conservative non-linear flux is recovered, as illustrated in Fig. 3.2b. Such a
test case is an accurate validation of the previous analytical calculations of Chapter 2 for the

non-linear transfers.

3.1.3 Anisotropy descriptors b;;(¢t) and Hi(j)(k,t)

In this part, the emphasis is put on the RTT mechanism in HSRT. The case of Saffman turbulence
has been presented in Mons et al. (2016), and is compared here with Batchelor turbulence.
Conclusions with regard to the permanence of large eddies are drawn.

The shear is maintained during a small number of turn-over times and is then released. For
high Reynolds numbers, it is well known that the anisotropy tensor b;; defined in (2.10) reaches
an asymptotic anisotropic state in the RTI process. This has already been observed in DNS
(Sarkar & Speziale, 1990) and is recovered here in Fig. 3.3a for Saffman turbulence. The initial
spectrum FE(k,t = 0) being isotropic, one has b;;(t = 0) = 0. Because of linear shear effects, a
strong departure from the isotropic state is observed: the |b;;| increase up to the shear release,

and then reach constant values. The interesting result here at high Reynolds numbers is that
e,
that there is still some anisotropy left in the flow. The anisotropy tensor b;;(t) being an average

the final state of the anisotropy tensor b%°, reached from ¢t = 1037, is not zero. This means

in space, it hides where the remaining anisotropy is. Therefore, spectral anisotropy descriptors
H i(j)(k, t) are used to provide information on the localization of anisotropy in wavenumber space:
Fig. 3.3b reveals that H Z(]) = 0 only at small scales. This shows that there is a complete RTI of
small scales in Saffman turbulence, whereas large scales keep their anisotropy. This behaviour
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is in agreement with Kolmogorov (1941b6) local isotropy theory and with results of DNS (Sarkar
& Speziale, 1990) as well.
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Figure 3.3: Anisotropy for ¢ = 2 with S = 0.170_1 and St = 1. (a) Anisotropy tensor

b;j(t). (b) Various spectral anisotropy indicators Hi(;(k:,t) at t = 10079, along with the

integral and Kolmogorov wavenumbers k;, and k.

Batchelor turbulence is now addressed. Simulations show that the b;; continuously return to
zero, as illustrated in Fig. 3.4a: this means that anisotropy globally decreases over time, unlike
Saffman turbulence. Spatial information about the localization of anisotropy is available in Fig.
3.4b: the spectral anisotropy descriptor H- 1(201) (k,t) reveals that large scales anisotropy decreases
with time for Batchelor turbulence, whereas it remains constant for Saffman turbulence. Other
components of H i(]pol) and Hl(]d ) hehave similarly. Therefore, because of this continuous loss of
anisotropy in Batchelor turbulence, a complete RTT of all scales is theoretically possible, even
though physically unreachable. Indeed, it would require an infinite Reynolds number in order
to stay in the high Reynolds numbers regime: with a larger Reynolds number comes a greater

quantity of anisotropy to evacuate.

The large scales loss of anisotropy in Batchelor HSRT is due to the classical backscatter of energy
that already occurs in Batchelor HIT (Eyink & Thomson, 2000; Lesieur & Ossia, 2000; Meldi
& Sagaut, 2012). Indeed, strong inverse non-linear transfers, from small scales to large ones,
tend to isotropize the large scales, which causes the anisotropy to decrease. This is consistent
with non-linear mechanisms being responsible for the return-to-isotropy process. Moreover,
these strong inverse non-linear transfers result into the breakdown of the PLE in Batchelor

turbulence.

3.1.4 Modelling of the pressure-strain tensor HS)

The modelling of the pressure-strain tensor II;;, which directly intervenes in the evolution
equation (2.3) of R;;, is a challenging topic. Indeed, the velocity-pressure correlation is complex,
and its prediction is of particular interest for the development of RANS models. This term is
commonly divided into two parts: a slow one HS;), responsible for the redistribution of energy
between components, and a rapid one Hg-), linked to the linear effects of mean-velocity gradients.
The latter part is rigorously zero when the shear is released. This is why the emphasis is put
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Figure 3.4: (a) Anisotropy tensor b;;(t) for 0 = 4. (b) Spectral anisotropy indicator
H1(§01)(k,t) for 0 = 2 (grey lines) and o = 4 (black lines), at t = 107 and ¢ = 10%7.
Both with S = 0.17'(;1 and an injected anisotropy St = 1.

)

on the slow-part HS which is at the origin of the RTI mechanism highlighted in the previous

part.

The slow part of the pressure-strain tensor can be written (Sarkar & Speziale, 1990)

Hz('as‘) (t) = —e(t) (CST)IbiJ'(t) + Ol (bil(t)blj(t) - ;’bkl(t)bkl(t)(sij)> : (3.6)

EDQNM simulations at high Reynolds numbers show that powers of b;; are much lower than
b;; alone. This would imply, at first order in anisotropy, that HE;)/ €= — }(Q%Ibij' Such a linear
relation between the normalized pressure-strain tensor and the anisotropy indicator b;; can be
recovered starting from the evolution equation of R;;. Replacing R;; by its expression as a

function of b;;, given in (2.10), yields

Hij_i_i
2K K

dbi' 2 (51
L= DAL — Aibij — Ajrbri + 2Aby, (J + bij) + bij (3.7)

dt 3 3
which can be found as well in Sarkar & Speziale (1990); Warrior et al. (2014). The dissipation
tensor €;; was assumed to be isotropic, i.e. 3¢;; = 2€d;;. This is a reasonable assumption for
moderately anisotropic flows: indeed, simulations at high Reynolds numbers show that the non-
diagonal components of ¢;; are negligible with respect to diagonal ones. Moreover, when the
shear is released, A;; = 0 and only the slow part of the velocity-pressure correlation remains,
IL;; = HZ(;). In addition, it has been shown in the previous part that the b;; reach an asymptotic
state when the PLE is verified: this implies that db;;/dt = 0. Thus, the evolution equation (3.7)
of b;; becomes

Consequently, for large times, large Reynolds numbers, an initial moderate mean-velocity gra-
dient which is then released, and when the PLE is verified, this model predicts Crrr = 2 as an
- universal - constant of the RTI mechanism. Cgpr will be shown hereafter to be independent
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of both the large scales initial conditions and of the mean flow gradient A;;. The case of pure
rotation is not considered here, and this will be briefly justified later.

Existing models (Shih & Lumley, 1985; Sarkar & Speziale, 1990; Warrior et al., 2014) are in-
trinsically different since there are designed to capture the short time dynamics of the flow
when the mean-velocity gradients are active, i.e. when A;; # 0 and Hg) # 0, whereas the
emphasis in this work is put on a freely decaying turbulence initially submitted to mean-
velocity gradients, at large times and Reynolds numbers. For instance, in the strongly non-
linear model of Shih & Lumley (1985), Crrr is not constant and depends on b;; through
Crr1 = 2+ (terms in b;;b;; and b;by;b;;), and in Sarkar & Speziale (1990); Warrior et al. (2014),
one has 3.1 < Cgrrr < 3.4. The modelling for HS) proposed here is consequently complementary
to existing models, and investigates the asymptotic RTI mechanism when the mean-velocity
gradients are released.
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Figure 3.5: Constant of the HZ(-;) model for different shear rate S, infrared exponents o, compo-
nents ();; and kinds of anisotropy. The asymptotic value at ¢t = 1097y is Cror = 1.9.

In Fig. 3.5, the time evolution of Crri(t), computed thanks to (3.8), is displayed. HS) is the

integral over k of the RTI non-linear transfer Si(jR T defined in (2.71). To assess the relevance of
the value Crr1 = 2, several cases are presented. Crrr is evaluated with different mean velocity
gradient intensities .S, for infrared slopes ¢ = 1, 2 and 3, for various components of the tensor

(s)
1L,
(A13 = Asz1). The main result is that in all these cases Crri(t) — 1.9 which is very close to

and several kinds of anisotropy: shear, axisymmetry (Ay; = Ay = —A33/2) and distortion

the theoretical value Crrr = 2 expected from the previous development. Hence, the model
HE;) (t) = —2¢(t)bsj(t) is assessed numerically. Moreover, this model seems to be robust since it
holds for various initial parameters and kinds of anisotropy. The case of Batchelor turbulence is
not presented in Fig. 3.5 since db;;/dt # 0 which is an assumption of the model. Consequently,
in Batchelor HSRT, Crrr continuously decreases. But, on a strictly quantitative point on view,
the value obtained at t = 1097y is Crr = 1.87, which is close to 2 as well.

The slight difference between the expected value 2 and the 1.9 obtained numerically for Crry
could be, at least partially, attributed to the isotropic approximation for the dissipation rate
tensor €;;. Such large times (¢ = 10%79) are never reached in practice in experimental works,
even though they are essential at high Reynolds numbers to make sure that the decay follows
completely the theoretical decay exponents of the CBC theory. Nevertheless, Crr1 = 2 remains a
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relevant value as all our different curves in Fig. 3.5, corresponding to various initial parameters,
are almost equal to Crrr = 2 within 5% from ¢t = 10?7y, which is a reasonable time.

This model mainly relies on two aspects: (i) The isotropic shape of the dissipation tensor e;;,
which is well assessed numerically: indeed, €;; strongly depends on small scales, see equation
(3.12), which return to isotropy according to Fig. 3.3b, meaning that extra-diagonal components
are very small with respect to diagonal ones. (ii) The asymptotic behaviour of the b;; which
become constant for large times, which implies db;;/dt = 0. Numerically, constant values at
large times for the b;; seem to be strongly associated to cases where the PLE is verified. It is
worth noting that these two hypothesis are independent of the mean-velocity gradient intensity
S and of the mean flow shape (shear, axisymmetry, distortion), which explains the consistency

of the results of Fig. 3.5.

These hypothesis are notably satisfied for any flows dominated by production mechanisms, such
as shear flows. Consequently, there is no guarantee that this model would work for rotating mean
flows for instance: indeed, such a configuration involves turbulent waves which alter the third-
order correlations dynamics (Cambon et al., 2013). Therefore, further investigations are needed
to fully understand the impact of rotation on the eddy-damping terms and its consequences on

the RTT process.

3.1.5 Additional remarks on HSRT

Effects of infrared exponent o and shear rate S: it has been shown that the global
indicators b;; reach asymptotic anisotropic values for large times, except in the case of Batchelor
turbulence o = 4 where they continuously decrease. In Fig. 3.6a, the emphasis is put on bq3.
The first obvious remark is that the stronger the anisotropy, i.e. the larger the shear rate S (at
constant accumulated anisotropy), the more the asymptotic value biljm is far from zero. This
is expected: if the initial anisotropy is strong, the residues will be important. Finally, in Fig.
3.6b, one can note that the rapider the decay, i.e. the larger o, the more biljm is close to zero.
Once again, this is consistent with the fact that when the decay is faster, small scales have a

more efficient RTT process.
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Figure 3.6: Asymptotic anisotropic state for byz. (a) With o = 2 for various shear rates
S at constant St = 10. (b) With S = 17!, St = 10 for various o.
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Anisotropy at low Reynolds numbers: an interesting behaviour is illustrated in Fig. 3.7a
where anisotropy increases at low Reynolds numbers. This is expected since the kinetic energy
spectrum F(k,t) no longer displays an inertial range when Rey — 0: indeed, all anisotropy is
gathered at large scales, and b;; being an integral over k, it eventually represents the initial
anisotropy injected in the flow: at low Reynolds numbers, the asymptotic values of b;; and
J2 e + H (pol) coincide. The increase of b;; at low Rey is in agreement with Davidson et al.
(2012) where axisymmetric anisotropic Saffman turbulence is considered. And one can note that
in Figure 1.e) therein, for the low Reynolds simulation (Run 5), anisotropy (observed through
ui / uﬁ) slightly increases. There is no explanation in the paper but this phenomenon is in good
agreement with our simulations: anisotropy increases with diminishing Reynolds number. In
Batchelor turbulence, because of the continuous loss of anisotropy, a complete return to isotropy

is possible at low Reynolds numbers as revealed in Fig. 3.7b where H fgir) + Hl(gol) — 0.

bij(Rey)

Figure 3.7: (a) b;;: transition towards low Reynolds numbers for o = 2 with St = 1. (b)
H 93 for different Reynolds numbers with o = 4.

3.2 Decay of K(t) and Rj3(t) in Saffman and Batchelor HSRT

In this section, the general decay exponent for the anisotropic correlation R;3 in Batchelor
HSRT is investigated. First, it is recalled that in HIT, following the Comte-Bellot and Corrsin
(CBC) theory (Comte-Bellot & Corrsin, 1966; Corrsin, 1951a), the kinetic energy and integral
scale decay as

_2a—p—|—1 2

Kt Nta7 = s Lt NtnL’ = —,
®) “ oco—p+3 ®) e oc—p+3

(3.9)
where the backscatter parameter p(oc = 4) = 0.55 and p(c < 3) = 0 takes into account the
classical Batchelor breakdown of the PLE (Eyink & Thomson, 2000; Meldi & Sagaut, 2012).

In Fig. 3.8, the theoretical decay exponent « of the kinetic energy is still valid in Saffman
HSRT at high Reynolds numbers (and low Reynolds numbers as well, even though it is not
presented). The fact that the kinetic energy decay exponent is not affected by anisotropy in
Saffman turbulence has already been found in DNS in the case of homogeneous axisymmetric
turbulence (Davidson et al., 2012). In the case of Batchelor HSRT, « is also recovered thanks to



Chapter 3. Dynamics of the Velocity Field in Shear-driven Turbulence 56

the parameter p, as in HIT. However, when it comes to the decay exponent ;3 of the correlation
R13 =< wjug >, one has a3 = « only in the case of Saffman HSRT. Indeed, in Batchelor HSRT,
one has ai3(oc =4) # a(o = 4).
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Figure 3.8: Decay exponents of K (t) and Ri3(t) for various shear intensity S. (O: Classical

CBC exponents; [J: Extended CBC exponents. (a) Saffman HSRT: o = ay3 = —6/5.

(b) Batchelor HSRT: o = —1.38 is recovered. ajz = —1.464 with ps = 0.279. The grey
dash-dot curve —- corresponds to a distortion simulation with S = 175 L

This difference is due to anisotropy which modifies the classical back transfer of energy through
non-linear transfers. Because of strong inverse non-linear transfers which tend to isotropize large
scales, there is a global loss of anisotropy. Thus, the decay of Ri3 is accelerated in Batchelor
HSRT: the correlation Rj3 experiences pressure effects in addition of viscous dissipation, and
consequently |a13| > |al, as revealed in Fig. 3.8. It is proposed to model this phenomenon very
specific to Batchelor HSRT.

A wise approach is to adopt the same method as in the isotropic case: in HIT, the parameter
p is introduced to take into account the breaking of the PLE. This allows to recover the kinetic
energy decay exponent «(o = 4) = —1.38 obtained numerically (see Fig. 3.8). Without p, the
analytical expression gives a(oc = 4,p = 0) = —10/7. A similar idea is to modify this parameter
p into a new one pg that additionally takes into account effects of initial anisotropy for purely
anisotropic quantities.

The kinetic energy K (t) and the anisotropic correlation Ri3(t) follow the evolution equations

dK dRi3
H = Sng(t) G(t), dt

= SR33 + 1113 — €13. (310)

When the shear is released, S = 0 and only the slow-part of I3 remains. It is clear that €13 is
very weak because of the small scales return to isotropy: consequently, unlike K whose decay
is driven by e, the destruction of Ry3 is led by the slow part of I3, i.e. pressure effects. Purely
anisotropic quantities

Ruaft) = [ onallthak ~ 100, (3.11)

613(t) =2v /OOO k‘2¢13(k,t)dk’, (3.12)
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() = /0 SE (1. 1)k, (3.13)

have different decay exponents in Batchelor HSRT than the classical ones of HIT. To determine
the theoretical expression of a3, the continuity of ¢13(k,t) at the integral wavenumber is used,
similarly to what is done to obtain «. The first assumption is that the integral scale L(t) is the
same for all components of ¢;;(k,t), which is reasonable as they all depend on E(k,t). Then, one
has to determine the new scaling of ¢13 once the shear is released. Indeed, when S = 0 one has
$13 # 0, which is in contradiction with (3.4). Nevertheless, the k~7/3 scaling is still observed
after the shear release. The solution to reconcile the persistence of ¢13(k,t) and the k=7/3
scaling is to replace S~! by another time scale: S being a large scale quantity, the intuitive time
scale is the non-linear one 7(kz) = (k2¢)~/? evaluated at the integral wavenumber k. Then,
numerical simulations show that the destruction mechanism for ¢13(k,t) is the pressure rather
than viscosity. This is notably illustrated in Fig. 3.9 where the budget terms of the evolution
equations of ¢11 and ¢13 are displayed after the release of the shear, at ¢t = 1079, so that small
scales have already returned to isotropy. This explains why kSS{TI) is very small compared
to the other contributions. Moreover, it appears that the viscous dissipation —2vk3¢q; is the
destruction mechanism for ¢;;, whereas it is pressure through kSg}TI) for ¢13. Indeed, the

viscous term —2vk3¢;3 is negligible compared to kSS}TI). This also confirms that neglecting

€13 in the previous part was a reasonable assumption. Hence, € is accordingly replaced by Hgsg)

which has the same dimension.
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Figure 3.9: Budget terms of the evolution equation of the spectral tensor after the release
of the shear: Oy¢;; = —2vk>¢;; + SS\IL) + Si(fTI), at ¢ = 107y for Saffman HSRT, where

Rey = 7.103. S’Z-(JI-\IL) is the conservative part of the non-linear transfers, with zero integral

over k, and Si(jRTI) is the remaining part, responsible for the RTT mechanism. (a) For ¢1;.
(b) For ¢r3.
This finally yields
2/3
dra(k, t) ~ I KB 713, (3.14)

Then, a new coefficient pg is introduced for the purely anisotropic quantities in Batchelor HSRT,
to reflect the effect of anisotropy on the backscatter of energy. Consequently, the continuity of
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_ 2/3  _
¢13 at the integral wavenumber ky, yields k7 75 ~ H%) k:LS/ ®. Hence, one obtains straight-
forwardly the theoretical decay exponent of Hg?. The resulting expression for the anisotropic

decay exponent is then

ng(t) ~ ta13, 13 = -2 (315)

oc—ps+1 ~J 0 ,o0 <3
o—p+3’ BTV 0219 o=4a

Simulations show that 13 does not depend on the initial shear rate S in Fig. 3.8, from
S = 10727 Lo § = 107y 1. This anisotropic decay exponent is found numerically to be
a3 = —1.464. This implies the strong result that pg does not depend on the shear intensity.
The corresponding value of pg is deduced using (3.15): pg = 0.279. Moreover, pg is not only
independent of S, but also independent of the kind of anisotropy considered. Indeed, for dis-
tortion, ayg = —1.464 as well (grey dash-dot line in Fig. 3.8). All these decay exponents are
gathered in Table 5.1.

The value pg = 0.279 is close to the value of the backscatter parameter of a passive scalar
field in decaying Batchelor HIT (see Chapter 1). This could be interpreted as ¢13 being
almost passively convected by the turbulent velocity field, which is consistent with the
production terms being zero once the shear is released.

In conclusion, pg must be seen as a supplementary parameter for purely anisotropic quantities
when the PLE is not verified, as in Batchelor turbulence. pg is valid in the general case where
the mean-gradient matrix A;; has non-diagonal components. From a physical point of view, it
has been shown that in Batchelor HSRT, purely anisotropic quantities, such as the correlation
R13(t), decay faster than the isotropic ones, such as the kinetic energy K(t). This is because
of the continuous loss of large scales anisotropy, induced by strong inverse non-linear transfers.
Moreover, the decay of Ri3 is driven by pressure effects rather than viscous ones.

3.3 Homogeneous Shear Turbulence

In this part, the case of homogeneous shear turbulence (HST) is addressed, where the shear is
maintained throughout the simulation.

3.3.1 Exponential growth of the kinetic energy K (t)

In sustained shear flows, the kinetic energy grows exponentially (Sagaut & Cambon, 2008) as a
consequence of anisotropy production and non-linear redistribution. Because of the exponential
growth of the integral scale L(t), DNS are quite limited in accumulated anisotropy St. The
evolution equation of K (t) in HST is given by (3.2). The dimensionless shear rapidity is now
introduced

Sr(t) = (3.16)
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which is the ratio of shear and non-linear characteristic times. The evolution equation of K can
be written | dK
€
—— = 2b15—— =7. 3.17
KS dt BT ks 7 (3.17)

—_—
Constant for St > 1.

For St >> 1, anisotropy indicators b;; and Sg reach an asymptotic anisotropic state, as in the
case of HSRT. So, for large St (St > 25), the quantity 2b;3 — ¢/KS = 7 becomes constant,
as revealed in Fig. 3.10a. The existence of a transient regime of order St ~ 30 has already
been found in DNS (Pumir & Shraiman, 1995; Pumir, 1996; Gualtieri et al., 2002). From the
previous equation, the exponential growth of kinetic energy

K(t) = K(0) exp(ySt), (3.18)

is assessed by the present anisotropic EDQNM modelling in Fig. 3.10b. The growth exponent
is v = 0.33. However, asymptotic values of b;; and Sr are different from those of reported
in Sagaut & Cambon (2008), certainly because St was not high enough and thus anisotropy
indicators were not constant yet. This will be discussed later. The exponential growth of K (t)
has also been assessed in the DNS of Brethouwer (2005), where Stmax = 12 only, and so the
«v is different from ours, probably because once again b;; is not constant yet; in experiments
(Tavoularis, 1985; De Souza et al., 1995); and in another spectral modelling (Clark & Zemach,
1995), where v = 0.332 is found as well.
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Figure 3.10: (a) Anisotropy indicators b;; and Sg in Saffman HST with S = 17,7, (b)

Evolution of K (t) for various S and o. The grey line indicates exp(0.33S5t). From top to

bottom, the different cases are: ¢ = 2 and S = 107'(;1; oc=4and S = 17'(;1; o =1 and
S=01r; 0=2and S=0.17,'; 0 =3 and S = 107275 .

It is argued in Pumir & Shraiman (1995); Pumir (1996); Gualtieri et al. (2002) that for a
finite domain, i.e. wall-bounded shear flows, there are kinetic energy bursts since the kinetic
energy cannot grow exponentially for very large St. These bursts are periodic (every St ~ 20)
and result from the cyclic deformation and stretching of elongated structures in the flow. In
our simulations, the shear applies on an infinite length, meaning that there are no boundaries,
theoretically allowing K (¢) to become infinite. It has been shown by Lee et al. (1990) that a
very high shear rate creates streaks in the flow, as would do physical boundaries at a more
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moderate shear rate. However, high shear rates are not reachable with the present anisotropic
EDQNM modelling, in the assumption of moderate anisotropy.

In Fig. 3.10b, it is also revealed that the growth rate exponent v seems to be quite robust
within the present EDQNM modelling: indeed, it appears that v = 0.33 is both independent of
the shear rate S and the infrared slope ¢. In particular, the kinetic energy grows exponentially
at the same rate in Saffman and Batchelor turbulence. Moreover, the b;; in Batchelor HST are
very similar to those in Saffman HST.

In addition to the exponential growth of K(t), the behaviour of the dissipation rate €(t), the
integral scale L(t) and the anisotropic component Rj3(t) are investigated. They also grow
exponentially as revealed in Fig. 3.11a. In addition to the exponential growth, it is possible
to determine the growth rate . and 7. From the main equation (3.2), ¢ and K are linked
through a time-derivative, then v, = ~. Finally, from the dimensional analysis L ~ K32 /e,
v = /2 is straightforward. This is recovered numerically in Fig. 3.11a. Finally, €;3 strongly
decreases, which is expected: indeed, at high Reynolds number, isotropization of small scales
tend to strongly reduce €3.
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Figure 3.11: (a) Time evolution of K(t), €(t), L(t), Ri3(t) and €13(¢) for o0 = 4 with
S =175 ", For clarity, L(t) has been increased by a factor 1000. (b) Anisotropy descriptors

Hi(;iir) for o = 2 at St = 50.

In Fig. 3.11b, small scales of the velocity second-order moments have completely returned to
isotropy, as in HSRT. Hence, our results are in agreement with Pumir & Shraiman (1995); Pumir
(1996); Shen & Warhaft (2000); Gualtieri et al. (2002) where velocity second-order moments
are found to be isotropic at small scales. This is consistent with the fact that at small scales
non-linear processes dominate the dynamics. This also explains why €13 is destroyed instead
of growing exponentially, as illustrated in Fig. 3.11a. Following the definition (3.12), k2¢13 is
larger at small scales: but €13 is a purely anisotropic quantity and since small scales return to
isotropy, it is continuously destroyed.

A brief comparison with the DNS of Isaza & Collins (2009) for a sustained shear flow is presented
in Fig. 3.12. The evolution of the shear parameter S* = 2/Sg is investigated for various initial
values S§ = [3;15;27]. This is of particular interest since this parameter is discussed later on.
The initial Reynolds number is Re)(0) ~ 20. An initial isotropic field is considered, and the
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infrared slope of the kinetic energy spectrum is F(k < kr,t = 0) ~ k2. It is revealed in Fig. 3.12
that the evolution of S*(¢) at moderate St and Rey, which is the domain of accurate DNS; is
well-captured in all of the three cases by the present anisotropic EDQNM modelling. A slightly
higher final value for the case S; = 3 is obtained here, but not significant.
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Figure 3.12: Evolution of the shear parameter S*(¢): comparison to the sustained shear flow
DNS of Isaza & Collins (2009) with three different initial values S§. Lines and symbols represent
respectively the present EDQNM simulations and DNS: +, 5§ = 3; o, S; = 15; and A, S§ = 27.

3.3.2 Non-linear transfers and the shear wavenumber

The shear wavenumber, or Corrsin wavenumber, is defined as

SS

€

ks = (3.19)
For wavenumbers k& < kg, linear effects dominate, meaning that production processes lead the
dynamics. In the opposite case, for k > kg, non-linear processes become significant, distribute
energy from the main direction to other components through the spectral tensor ¢13, thus par-
ticipating into the restoration of isotropy at small scales. Note that other similar wavenumbers
exist which indicate the beginning of an efficient RTI, for instance the Zeman wavenumber in
rotating turbulence, or the Ozmidov one in USHT, where S is accordingly replaced by the mean
rotation or the mean stratification respectively.

In Fig. 3.13, budget terms at St = 50 are displayed, when the anisotropic asymptotic state
is reached, along with ks. Before kg, linear transfers Si,)(mt) dominates whereas for k > kg
pressure strain and non-linear transfers become strong. From the evolution equations of K (t)
(3.2) and Ry3(t) (3.10), the exponential growth of the kinetic energy can be understood thanks
to transfer terms. The flow is heading toward the main direction ()11 : thus ¢33 do not receive
as much energy as ¢11. But S:gl;TI) being positive, it takes energy from ¢11 and ¢o9, allowing ¢33
to grow. The growth of ¢33 implies the growth of ¢13 and thus the growth of K (t). Hence, the
exponential growth of the kinetic energy is the result of non-linear processes and redistribution
of energy between components. Moreover, there is a non-negligible dissipation effect for ¢33 in
Fig. 3.13. Similar dissipation processes are obtained for ¢11 and ¢22 whereas it does not appear

for ¢13. It justifies a posteriori the assumption that the dissipation is nearly isotropic.



Chapter 3. Dynamics of the Velocity Field in Shear-driven Turbulence 62

x 10° 7 X 10°
4 O 2k T N\ e —2vk3p33
= [\ 7 |- kSiy =4 [\ |- kSHY
< - (RTT) < L . (RTT)
3 kSiy 5 3 kS3;
S .
5 2 —gktot) o . GL(tot)
g 33 g 2r kSss
3 o ki3 3 o kOibss KA
g 0f B —— g 1r A
E = 0 :
M ) M '
-2t ‘ : 1t :
Nt - ks
10° 107 10 10’ 10° 10 107 10° 10°
k k
(a) (b)

Figure 3.13: Budget terms with the shear wavenumber kg at St = 50 with o = 2. Si(jNL)

represents the conservative part of the total non-linear transfer. (a) For ¢13. (b) For ¢33.

3.3.3 Discussion on the scattering of integrated quantities in HST

In this section, explanations to the scattering of quantities measured in DNS and experiments
in shear flows are proposed. The quantitative discrepancy between the v = 0.33 obtained with
the present anisotropic EDQNM modelling and the smaller common values is also discussed.
One can note that EDQNM simulations are able to reach St = 50, which is much higher than
DNS, even the most recent ones. This is one of the strength of the current modelling, i.e.

investigating the asymptotic states of shear-driven flows.

As mentioned previously, weaker values of v (roughly between 0.07 and 0.20) are found in DNS
and experiments, with a noteworthy dispersion, which is now addressed. This could be, for
some of these works, the consequence of a too low final St for which the b;; and €/(KS) are not
constant yet, resulting in a value of v not converged, that reflects transitional effects of initial
conditions. Indeed, in the numerical work of Brethouwer (2005), the last dimensionless time is
St = 12 which is not enough to ensure that b;; and Sg are constant. Other low values of St
are reported by Sagaut & Cambon (2008), along with various values of the b;; and v coming
from DNS and experiments. Therefore, moderate values of the final St could be an explanation
for the scattering of the experimental and numerical measured . It is also argued in Isaza &
Collins (2009) that re-meshing, in older DNS, led to loss of kinetic energy and dissipation rate:
this could be an explanation as well, rather difficult to quantify.

*

Several relevant quantities such as v, b13, Rex(0), (St)max, S*(0) and S7 4, coming from different
DNS and experiments, are gathered in Table 3.1 to illustrate the noteworthy dispersion of
integrated quantities. Qualitatively, it is interesting to point out that for small initial S*(0),
the final value of |b3| is higher, whereas for high initial S*(0), the final value of v is higher:
this is expected since it corresponds to a strong initial production of kinetic energy, which is
recovered with our anisotropic EDQNM modelling in Fig. 3.10b. There is also a slight tendency
to increasing |by3| and 7 in average in more recent DNS, very likely because of the better spatial
resolution of small scales. Nevertheless, the maximum values are v = 0.18, still much lower
than our v = 0.33, and |by3| = 0.19, close to our 0.21.
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Authors Kind Rey(0) S*(0) Sk, bi3 vy (5
Tavoularis & Corrsin (1981) | Exp 245 12.5 / —0.14 0.12 11.6
Shirani et al. (1981) DNS 20 3.3 16.328 —0.147 / 7
Tavoularis & Karnik (1989) | Exp 160 5.6 / —0.149  0.08 8
Tavoularis & Karnik (1989) | Exp 310 8.4 / —0.165  0.09 8
Lee et al. (1990) DNS 40 33.5  36.2 —0.1 / 12
De Souza et al. (1995) Exp 1050 11.9 / —-0.121  0.07 12
De Souza et al. (1995) Exp 1010  21.8 / —0.093  0.10 9
Ferchihi & Tavoularis (2002) | Exp 253 / / / 0.0846 23
Schumacher (2004) DNS 55 0.8 8.2 / / 10
Brethouwer (2005) DNS 32 36 / —0.14  0.178 12
Isaza & Collins (2009) DNS 26 3 266 —0.165 0.10 9
Isaza & Collins (2009) DNS 26 27 10.3  —0.126  0.18 9
Sukheswalla et al. (2013) DNS 50 3 7.14 -0.19 0.12 20
Sukheswalla et al. (2013) DNS 50 27 2143 -0.135 0.13 20
Average 17.11  —-0.139 0.114
Standard deviation 10.55  0.027  0.037

Table 3.1: Summary of measured global quantities in existing DNS and experiments for shear

flows, classified by date. For experiments, Rex(0) and S*(0) refer to estimated values throughout

the measurements. The cases presented for Sukheswalla et al. (2013) correspond to filtered

simulations (see text). When two results from the same work are presented, they correspond to
lowest shear and highest shear cases.

Recent DNS studies have focused on the influence of initial parameters, such as the Reynolds
number Re) (0) or the shear parameter S*(0), on the final state of the flow. Notably, it is reported
that there is a tendency toward an almost independence with regard to Re)(0) and a noteworthy
sensitivity to S*(0). Hereafter, possible explanations for this dependence on initial conditions
are proposed. Let’s mention that in numerical works, the infrared slope o is a supplementary
initial condition that defines large scales. However, the infrared slopes are not often investigated
nor reported, which makes the comparisons and discussions complicated. EDQNM simulations
revealed in Fig. 3.10b that the growth rate « does not depend on o: therefore in what follows
o = 2 is chosen.

In Schumacher et al. (2003a); Schumacher (2004); Isaza & Collins (2009); Sukheswalla et al.
(2013), the final value of S* seems to depend on the initial conditions. This is not necessarily in
contradiction with our EDQNM results, as revealed in Fig. 3.14a, where the shear parameter
S* = 2/8g is displayed for various initial S*(0). Indeed for St < 30, S* strongly depends on its
initial value for both DNS (see the standard deviation in Table 3.1) and EDQNM. Incidentally,
the dispersion of the S* computed with EDQNM at moderate St (< 20) is comparable to the
dispersion obtained in DNS and experiments. Then, for sufficiently high St > 30, S* becomes
independent of initial conditions. Therefore, one could conclude that an universal asymptotic
state could be reached only for sufficiently high St, or equivalently at very high Reynolds
numbers. Similar assessments are made in Isaza & Collins (2009). At moderate St and Rey,
the comparison of the present anisotropic model to the recent DNS in Fig. 3.12 shows that the
early dynamics of S* is well captured.

Another point of interest in Isaza & Collins (2009); Sukheswalla et al. (2013) is that the average
value of the measured v seems slightly higher (with a maximum of 0.18) than older ones, very
likely because of the better spatial resolution. In Sukheswalla et al. (2013), small scales had to be



Chapter 3. Dynamics of the Velocity Field in Shear-driven Turbulence 64

filtered. But, from the present study and Clark & Zemach (1995), it appears that large scales are
not determinant in the final value of 7 (y is found to be independent of o). This directly means
that the inertial range scales have a preponderant influence on . Hence, the low resolution of
small scales in some DNS could result in slightly imprecise values for «, partially responsible for
the scattering. This interpretation is confirmed in Figure 18.a of Sukheswalla et al. (2013) where
the non-filtered kinetic energy is displayed and evolves with a growth rate somewhat higher to
those of filtered kinetic energies. In addition, one can note that the unfiltered value of S* from
Sukheswalla et al. (2013) reported in Fig. 3.14a would give a value not far from ours (S* — 20)
at a higher St. For the other S* reported in Schumacher (2004); Isaza & Collins (2009), the
(St)max 1s to low to conclude.
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Figure 3.14: (a) Evolution of the shear parameter S* = 2/Sg for various S with o = 2.

The lines correspond to EDQNM simulations with Rex(0) = 1 and symbols to DNS.

Crosses refer to Sukheswalla et al. (2013), run 256_30 without filtering; triangles to Isaza

& Collins (2009); squares to Schumacher (2004), run 4. (b) Evolution of the kinetic energy

exponential growth rate  for various shear intensity S. The initial Reynolds number is

either Rey(0) = 10 or Rex(0) = 100 and o = 2. The average exponential growth rate is
Yoy = 0.114.

The influence of the initial Reynolds number Rey(0) is now discussed. It has been reported in
Sukheswalla et al. (2013) that Rey(0) had not much impact on the final state of the flow. This
is recovered in Fig. 3.14b where the kinetic energy exponential growth rate v is displayed at
Re)(0) = 10 and Rey(0) = 100 for various initial shear intensities S. The important result is
that a different initial Reynolds number changes very slightly the final growth rate exponent
v: indeed, v ~ 0.33 was obtained previously for Re)(0) = 1. Here, for S < 170_1 and both
Rex(0) = 10 and Rey(0) = 100, one has v ~ 0.330, whereas v ~ 0.334 for S = 107, and
Rex(0) = 100. This underlines that for sufficiently high final St, or equivalently sufficiently
high Reynolds numbers, an asymptotic state independent of initial conditions is obtained. This
result is consistent with what is observed in DNS, i.e. the independence with regard to Rey(0).
Let’s mention that the Re)(0) = 100 chosen here is higher than common initial Reynolds
numbers for DNS, as revealed in Table 3.1. Moreover, Fig. 3.14b reveals that at comparable
St, our v is much higher than common ones and almost constant. Hence, it is very likely that v
in DNS and experiments would not increase for higher St. Therefore, the moderate St reached
in DNS and experiments can only explain the scattering around the average value v,, = 0.114.
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The results of this discussion, summarized hereafter, are twofold. Firstly, Fig. 3.14a and 3.14b
exhibited interesting behaviours: firstly, an unique asymptotic value for the shear parameter
S* = 2K S/e is obtained only at high values of St. For typical final values of DNS and ex-
periments (St < 20) at an initial moderate Reynolds number Re,(0), it appears that S* still
depends on initial conditions. Furthermore, in agreement with existing works, an independence
with regard to the initial Reynolds number has been obtained. Thus, high St can limit the
dispersion of the results by erasing effects of initial conditions. Secondly, it has been pointed
out that the present anisotropic EDQNM modelling provides higher values for the growth rate
~ than DNS and experiments do. Even though similar values are found in the spectral model
of Clark & Zemach (1995), our numerical 7 = 0.33 is much higher than common ones, gathered
around vay = 0.114.

The practical input of this numerical work is notably indications for future DNS. According to
the previous discussion and Table 3.1, it seems crucial to reach final values of the accumulated
anisotropy 25 < (St)max < 30 to limit the scattering of the results and transitional effects
from initial conditions, and to systematically investigate the dependence in (Rey(0), S*(0)), as
reported in Schumacher et al. (2003a).

3.4 Conclusion and perspectives

Firstly, the main features of this chapter are recalled hereafter: results regarding decay and
growth laws in shear-driven flows are gathered in Table 5.1, along with similar results for the
passive scalar field addressed in the next chapters. Secondly, we come back on the value of
the kinetic energy exponential growth rate v = 0.33. Finally, some perspectives are drawn for
future works.

3.4.1 Conclusions on HST and HSRT

Homogeneous anisotropic turbulence has been investigated with the anisotropic EDQNM mod-
elling in the particular case of shear flows, when mean-velocity gradients are both released
(HSRT) and sustained (HST). In this framework, we have revisited classical phenomena and
provided results obtained at high Reynolds numbers, qualitatively in agreement with existing
ones in DNS and experiments.

In the shear-released turbulence configuration, a model was derived for the slow-part of the pres-
(s)
]
mean-velocity gradients are released. This model is in agreement with our simulations and must

sure strain-tensor II;”, which is responsible for the return to isotropy mechanism, valid once the
be seen as complementary to existing ones, since it focuses on the asymptotic anisotropic state
at large times for high Reynolds numbers. Then, the present model allows to understand deeply
the RTT mechanism: spectral descriptors show that small scales of the velocity second-order
moments completely return to isotropy in both Saffman and Batchelor turbulence, leading to
a global partial return to isotropy, which is in agreement with experiments and DNS. Regard-
ing large scales, they keep their anisotropy in Saffman turbulence, whereas they continuously
evacuate anisotropy in Batchelor turbulence, because of strong inverse non-linear transfers. In
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addition, the decay of the kinetic energy K (¢) and of the anisotropic correlation R;3 was inves-
tigated in both Saffman and Batchelor HSRT. The decay of the kinetic energy is not modified
by the initial shear, whereas Ri3, which also decays in =%/ in Saffman HSRT, decays faster
than K (¢) in Batchelor HSRT, because of the RTT mechanism driven by pressure effects.

At last, the case of the sustained shear turbulence was addressed. The original aspect high-
lighted here is that with the present modelling the growth rate v seems to not depend on large
scales initial condition (the infrared slope o) nor on the shear rate intensity S, provided a suf-
ficiently high accumulated anisotropy St, or equivalently a high Reynolds numbers, is reached.
Quantitative differences have been exhibited, especially for the exponential growth rate v of the
kinetic energy, which is found to be two to three times higher than existing values. Nonetheless,
as for the shear parameter S*, its dynamics seems to be well described by the present model.
The dispersion of integrated quantities obtained in DNS and experiments has been discussed,
and the main result of this work regarding sustained shear flows lies in the explanations pro-
posed: it has been shown notably that moderate values of the final accumulated anisotropy St
may be responsible for the scattering of integrated quantities, reported in Table 3.1, and that
higher values of St, or higher Reynolds numbers, could limit this dispersion by erasing initial
conditions effects. Another parameter that could be of importance is the nature of the initial
flow, that we choose to be isotropic for simplicity reasons. In experiments for instance, the
initial condition is clearly not isotropic. EDQNM simulations with an initial condition slightly
anisotropic, as in Davidson et al. (2012), show that for instance 7 slightly varies by +£5%. This
indicates a small dependence on initial anisotropy, but not significant.

3.4.2 Exponential growth rate vy

This part aims at answering two questions of fundamental interest for the modelling of shear
flows: (i) Why is the exponential growth rate 7 of the kinetic energy not depending on the
infrared slope o whereas it strongly does in unstably stratified homogeneous turbulence (see
Chapter 7) ? (ii) Is the value v = 0.33 predictable? Theoretical considerations about shear flows
which were found after the publication of the contents of this chapter in Journal of Turbulence
are thus presented here.

The independence of v with ¢ in HST is not a consequence of the modelling of anisotropy,
since in Chapter 7, the kinetic energy exponential growth rate in USHT strongly depends on o.
Assuming self-similarity of the kinetic energy spectrum and a linear dynamics of large scales in
both HST and USHT, one has K ~ exp(vSt), L ~ exp(ySt/2), so that

E(k,t) ~ k% exp [UT%vSt}. (3.20)
Following the method proposed in Poujade & Peybernes (2010); Soulard et al. (2014), the time

evolution of FE is also given at large scales by the largest eigenvalue of the linear operator of the
generalized Lin equations system (2.53)-(2.55). The linear operator of HST verifies, dropping
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the non-linear and viscous terms,
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(3.21)
It is worth noting that the linear operator, because of the space-derivative 9/0k production
terms, depends explicitly on o, unlike the linear operator of USHT, whose maximum eigenvalue
is 4//5. Consequently, the largest eigenvalue of the linear operator in HST almost balances the
self-similar expression (3.20) for E(k,t), thus strongly reducing the dependence of v with o.

The maximum real eigenvalue I'j ax(0) of the linear operator being a rather lengthy expression,
only the final growth rate is given here, obtained by equalizing (3.20) and E ~ exp(I'naxSt), so

that
0.358 for o=1,

0.339 for o =2,
0.346 for o=3,
0.367 for o =4.

(3.22)

This result answers the two questions (i) and (ii) of the beginning of this part. First, the numer-
ical simulations presented so far recover a value around 0.33 < v < 0.34 for all o, which is close
to the linear prediction (3.22): this means that the non-linear redistribution of energy through
scales permits to maintain this exponential growth rate, obtained by self-similar arguments and
the linear dynamics of large scales where anisotropic mechanisms dominate. Secondly, the fact
that the maximum eigenvalue of the linear operator depends on ¢ explains why ~ hardly varies
with ¢ in HST, unlike USHT where the maximum eigenvalue is independent of the large scales
initial conditions, so that the exponential growth rate in USHT (7.26) varies a lot with o.

3.4.3 Perspectives

In this section, two perspectives for future works regarding shear flows are proposed. The first
one, already introduced in Chapter 2, is the consideration of the fourth-order expansion for £
and Z. The second one is to consider that the mean-shear intensity S(¢) can vary with time, i.e.
to model the retro-action of the fluctuating turbulent quantities on the mean-field, similarly to
what is done at the end of Chapter 7 for a variable stratification frequency N (t).

Fourth-order expansion: In Chapter 2, the formalism of the fourth-order expansion into
spherical harmonics has been presented, with details in Appendix C. The fourth-order con-

tributions EHZ(]dI;;) and EHZ(;;;D have their own evolution equations (C.59) and (C.60): their

non-linear transfers depend only on fourth-order contributions, whereas their linear production
(i) 2nd EHPY on the second-

ijpq ijpq
and EHZ(j °D i uniquely done through the linear transfers S Ldird) 4nd

S}j(p 014), which add to the previous ones (2.65) and (2.65), now written SL(dm) nd S L(pol2)

terms are modified by the second-order ones. The impact of FH,

order spectra EH (dir)
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the end, the total linear directional and polarization transfers with the fourth-order expansions
(dlr) S L(dir2) + S (d1r4)’ and SﬁLj(pol) _ S L(pol2) + S (pol4)'

are S
The main consequence of the fourth-order contributions is that the kinetic energy exponential
growth rate is decreased in Fig. 3.15 from v = 0.33 to v = 0.28. Even though the value of
~ remains rather large, the significant decrease by 15% with the fourth-order expansion of &
and Z perfectly illustrates that taking into account more spherical harmonics goes into the
good direction, i.e. diminishes v towards smaller values obtained in DNS, as reported in Table
3.1. The joint result is, in Fig. 3.15 as well, the decrease of b3 from 0.215 to 0.18, which is
a noteworthy feature as well. One can further remark that on the contrary, the fourth-order
contributions increase |bj;| and |bss|, which is expected. Indeed, taking into account more
harmonics reduces the loss of information due to the spherical integration by restoring part of
the anisotropic angular information. As a consequence, the strong anisotropy of the shear flow
between the streamwise and transverse directions is better captured.
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Figure 3.15: Effects of the fourth-order expansion on the growth of the kinetic energy
K (t) and the anisotropy tensor b;;. (a) K(t) for 0 =2 and 0 =4. (b) b;; for 0 = 2.

To better illustrate the impact of the fourth-order contributions, we investigate the detailed
linear transfers in Figure 3.16, with the directional and polarization parts of the streamwise,
transverse and cross components in Saffman turbulence. In the this figure, the black curves
represent simulations with the fourth-order contributions, at Rey = 9.103. Whereas the grey
curves indicate simulations with only the second-order expansion, as in MCS. Since the Reynolds
number increases faster in the latter case, the results are presented at St = 43 where Rey ~ 9.103
as well.

One can remark that the effects are different for the directional and polarization parts: indeed,
the fourth-order contributions tend to decrease the intensity of the directional linear transfers for
the streamwise ()11 and transverse ()33 components, while increasing it for the ();3 component.
The opposite happens for the linear polarization transfers. In particular, the strongest difference

ir)

is observed for the transverse directional transfer 83( , which is positive without the fourth-

order contributions, and becomes mostly negative with them.

The practical input of this section in terms of modelling is that it is much more important
to improve the linear production terms through the fourth-order expansion than considering
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Figure 3.16: Effects of the fourth-order expansion on the linear transfers of EH i(;hr) and FH. i(JPOl),
for o = 2, at Rey(St = 50) = 9.103. The terms S’ (42) nd Sg“j(pom contain the second-order
contributions, and the terms SL(dM) nd SlL -(p014) the fourth-order contributions. (a) Sh(dlr),
(b) ST () SEID () S{“l(p()l), (e) SHPV and (f) S5V, In each case, the grey curves
indicate simulations without the fourth-order contributions at Rey (St = 43) = 9.103.

the quadratic anisotropic contributions in the classical non-linear transfers (see Appendix C).
Another approach could be to solve directly the evolution equations of £(k,t) and Z(k,t) with
the exact linear terms, and to keep the modelled non-linear transfers with the second-order
expansion: this is currently the topic of a PhD under the direction of Claude Cambon.

Third-order expansion: Some considerations are now presented about the third-order ex-
pansion of Z: even though they are not conclusive right now, they could be of interest for
future works. There are two reasons why we wish to further consider odd-order terms in the
expansion of Z: (i) Odd-order expansions could improve the modelling of the 2iZQcy term
in the evolution equation (2.33) of Z; (ii) Recent results by Claude Cambon show that the
main difference between the MCS model with an exact treatment of linear terms lies in the

polarization anisotropy.

Up to the fourth-order, the expansion of Z can be written

Z(k,t) = 75 (5H(P°”(k t)+ TiH 0 o, + Hffp"q“(k t)apozq>Ni*(k)N;(k), (3.23)

where H Z.(;)kd) is a tensor which verifies, for simplicity reasons as before, full symmetry under
any change of indices, and is zero when two indices are equal. Note that the expression of the

third-order contribution differs from the one in Mons et al. (2016) because of the imaginary
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number i. The latter is crucial, otherwise it can be shown that the third-order of Z never
contributes. Two features are needed to prove this statement. First, one requires the following
equation when computing the polarization part R%)Ol) = R[ZN;N;]:

NiN;jN, Ny = [Pipqu + PigPjp — Piijq} gl [ijfipa + Pip€jga + Pigejpa + Pjp€iga|,

where €;;;, is the Levi-Civita permutation tensor. The second one is that the spherical average
of an odd number of normalized wavevectors «; is zero, as explained for instance in Pope (2000).
Consequently, without the i, R[ZN;N;] has an odd number of «; so that it vanishes with the
spherical-average. Therefore, the present expansion of Z (3.23) corrects the equation (3.15) of
Mons et al. (2016).

Then, as for the second and fourth-order terms, one needs an operator which gives only the third-
order contribution and erases the others. This operator is IV;j; = apN;N; + a; N;Ni + o; Nj Ny,

and we further define H fﬁf ) as

2B (k, ) H (k1) = /S C5[Z(k;,t)J\Q-jk(k) a2k. (3.24)
k

Similarly to the fourth-order expansion, the third-order expansion of Z does not modify the

spectral tensor ¢;;, which is still expressed as function of HZ(]d ) and Hz(]p ol only.

Finally, the third-order expansion of Z gives a new contribution in the modelled spectral
Reynolds tensor Rij, which reads

. 7 .
R (e, 1) = 5 E0(ks VHE (b, )i (ciom Pig () + €j0n P () ). (3.25)

Remark: It is worth noting that the third-order expansion of polarization can be related to the
stropholysis tensor of Kassinos et al. (2001), defined as

Qiik = €ipg / apap Rjq (k) A%k = — / €10l (k) A%k + / ak%(Z(k)Ni(k)Nj(k)>d3k. (3.26)

The final expression of @, using the second-order expansions can be found in Mons et al. (2016).
Interestingly, the symmetric stropholysis ij p = (Qijr+Qirj+4 perm.)/6 erases the directional
anisotropy and depends only on polarization. More specifically, only odd-order terms of the Z
expansion can contribute in Q;‘j i» Which further justifies the interest of odd-order contributions.

Now, we determine the explicit expressions of the production terms linked to the third-order

contributions in the expansion (3.23) of Z. As before, there are three different kinds of terms:
the third-order contributions in the equations of FH (i) 4nd EHZ_(]POD and in the equation of

ij
E HZ,(ijOI), and finally the second-order contributions in the equations of EHi(]P,: . There are

no third-order contributions in the Lin equation for F, and for simplicity reasons, we further

discard the third-order contributions in the evolution equations of EH (i) ond EHPY | and

1jpq ijpq
the fourth-order contributions in the equation of EH i(kaOI): thus there is no direct linear coupling
between the third and fourth orders.
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(dir)

First, the contributions of the third-order expansion in the equations of EH;;" " and EHZ»(JPOD

are, after some algebra,

S (1 1) = éATnE(eupH( )+6ij~(p°”), (3.27)

v Jjnp mp

v Jjnp mp

o 1 o o o.
SL(p 13)(k t) = 3A E(elan.(Jl.)p D _ EilpH(p b _ EjlpH-(p l))

_,A ( [kE €ilp jnp)+ ]pH(pol))] +E(€ilpH( )+ ]pH(pol)>>‘ (3.28)

inp jnp np

Note that unlike SL(dir4) nd SL(p°14) SL(dirg) nd SL(pOB) depend on the antisymmetric part

A, of the mean-velocity gradient. The linear polarization transfer S (pOI) of EFH Z(;)kol) is defined
as

L(pol) _ 1 oY
Sijk (k)—4/sk‘9

This production term is divided into two contributions resulting from the second and third
(dir)
and

EHZ,(;’OI) on the linear transfer of EH};’kOI). For this purpose, we introduce two trace—free and

(Am %f; - sz<k>Rns<k>> N:<k>N:<k>Nz-jk<k>] k. (329

order expansions. First, we determine the impact of the second-order contributions EH

symmetric operators, namely

12 EHO] = 5E [A (eﬂnHok + €tin 0) + A7 (W Y + eklnHo>

ijk n
-+ A;:l <€il"Hr(L)j + ejlnHr(L)i>] — QEAZ—;HT%E [5ij€klp + 5ik5jlp + 5jk€ilp] (3.30)

12 [EHV] = 5E [A (e]lank + eklnHO) + A; (ezlank n eklnHO>

ijk nj ni

+ Al;l (anHT(L)J + ejlnHy(L)i> - Aln (anH(]Z; + €jlnH(]2 =+ lenHl(])>]

+2F A, HV)E [5236]@[;) + (5¢k6ﬂp + 5jk€ilp:| . (3.31)

In""np
After complex calculations, one gets

1 1
o [HED B - 1D BN ¢ LD 0y (kEH )

ijk ijk 21 ijk ijk
(3.32)

S'L.(POIQ) — —%H(Q ) [EH(dlr)]

Now, we proceed similarly to determine the impact of the third-order expansion on the linear
transfers of EH (pOD After some algebra, one gets

L(pol3 ol ol ol
P = 3[A H + A HEY + A HED |, (3.33)

where notably the symmetric part of the mean-velocity gradient matrix does not intervene. The
third-order polarization non-linear transfer is defined as

SNLwOD (g ) — ; /S S (T (k. )N 1)) k. (3.34)

For the sake of simplicity, quadratic anisotropic contributions are discarded, as for the second

NL(pol)

and fourth orders: therefore, only the third-order terms contribute in S . Furthermore,

because Hz(]pk D g symmetric and trace-free, it follows that third-order expansions vanish in
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SgL(dir)
of Tz gives the spherically-averaged non-linear polarization transfer

and SEL(pOI). Eventually, injecting the third-order expansion into the expression (2.42)

Sy " = 4’ /A Oupok*p €l [Hé%f””(l — %) (221 = 2)(E — &) + zy(1 - 3y7)&0)
k

1

—dzy + 2)EHEY + HEV €] (2(:Uy + 28222 — 1) — 2(322 — 1)(1? — 22))] dpdg.  (3.35)

The evolution equation of the third-order anisotropic descriptor EH Z(;)kol) reads
0
(8t + 21/k2> E(kR)HED (k) = SEP (k) + SEE (k) + S5 (k). (3.36)

Moreover, the Lin equations of EH (dir)

(pol) | . : . .
i and EHi]P °/ derived are modified accordingly into

8 ir ir ir ir
(61& + m?) E(k, ) HS™ (k) = S (k) + S (k) + SEH (), (3.37)

8 O. 0. (0] 0.
<8t + 2yk2> E(k)HLE (k) = S (k) + 570 (k) + S50 (k). (3.38)

Note that the retro-action of the third-order contributions on the second-order ones is uniquely
done through the linear transfers S}j(dlrg) and S}j(pc’l?’)

second-order contributions on the third-order ones is uniquely done through the linear transfers

S’L'Lj(kdir2) and SiI_Aj(prIZ)'

, and that inversely, the impact of the

Variable shear: We consider a free-shear mixing layer created by two parallel streams of
different uniform speeds U, and Uj in the direction x1, with U, > U;, both independent of time
and space. The notations of Dimotakis (1991) are used: the characteristic mean velocity is
AU = Uy, — Up, and the mean velocity at the center of the mixing layer is U, = (U, 4+ U;)/2. In
the turbulent mixing layer, the mean flow is in the streamwise x1-direction and varies along the
vertical x3-direction, from U; to Uy according to

AU

U1(:E3, t) = m

x3+ U = S(t)zs + Uy, (3.39)
where Lg is the free-shear layer length. The total turbulent velocity field can be decomposed,
in the shear layer, as

ugtot)

(a:,t) = Ul(.fvg,t)(sh‘ —i—ui(w,t). (340)

One can further define the dimensionless mean streamwise velocity as (71 = U1 /AU, so that
d3U, = 1/Lg, and the definition of Lg is analogous to the one of the mixing length L of an
unstably stratified flow (see the end of Chapter 7)

+o0
/ (Ur = U)(Up, — Ur)das, (3.41)

—0o0

6

Ls(t) = A2
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and is proportional to the momentum thickness 6, with Lg = 66. The evolution equation of the
streamwise mean velocity reads

8U1 oP 8R11 8R13 I 82U1

W N 81‘1 8$1 81‘3 Vax18$l '

(3.42)

Assuming that the viscous term is negligible at large Reynolds numbers, that there is no hori-
zontal mean pressure gradient, and that the variations along x3 are stronger than along x1, one

gets
8U1 - 8R13

ot~ Oxy’
which was also obtained in Galmiche & Hunt (2002). Further using (3.43) in the time derivative
of (3.41), one gets

(3.43)

+oo +00
dLS 12 +o00 12 6U1 192
TN 37 c T A 770 —_ _ — , 44
at A2 (Ve = V1) s ISNVNIE / s 70 = T ToAT / Rig day,— (3.44)

The first term is zero since it is assumed that there is no turbulent fluctuations outside the
shear layer of extent Lg(t). Then, choosing a parabolic shape for the Reynolds stress tensor
Ry3, with x3 € [-Lg/2; Ls/2], one gets

dLs

8
= =—— . A4
1 AU <uijug > SLs <uiusz > (3 5)
Finally, since AU = —S(t)Lg(t) is constant, one gets
ds SdLsg 8 0?Ry3
o _ 2 - = S ) 3.46
at ~ Lat L% M TT T a2 (3.46)

Since most of the experimental studies investigate the development of a spatial free-shear layer,
it is worth noting that the spatial extent Lg can be obtained with a Taylor frozen-flow
assumption, which transforms the streamwise spatial coordinate into a temporal one, according
to

9 .9
8:(}1 8t'

The local spatial extent §(z1) of the shear layer could be assimilated to Lg with a Taylor frozen-

r1 — Uct, Ue (3.47)

flow hypothesis, i.e. §(x1) ~ Lg(t). In Dimotakis (1991), the growth rate of the mixing layer
region, for two fluids of equal density pn, = p; = po, is given by

6(ry) 1-—r
. 147

Cs, (3.48)

with the ratio r = U; /Uy, and Cy is a constant. In the latter reference, a noteworthy scattering
of the values of Cy are reported, 0.25 < Cs < 0.45, with possible values outside these bounds.

Further, one gets
_1+7"(5(33‘1)_2UCL5_ 2

Cl—r 2y AUU.t St

Here, we choose to define the self-similar free-shear layer length as

Cs (3.49)

Ls(t) = ag AU t. (3.50)
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—Ls(t)
2| |---S(t)

Growth rate ag

Figure 3.17: (a) Shear length Lg(t) and shear rate S(¢) for Saffman turbulence (o = 2). (b) Cs,
defined in (3.49), for o = 2 (black), Ls(0) = 1 and various S(0); and for o = 4 (grey).

The linear dependence in time of the free-shear layer length Lg is assessed in Fig. 3.17a, for
Saffman turbulence (Batchelor turbulence can be hardly distinguished from Saffman turbulence,
thus it is not presented). The mean velocity gradient S(¢t) = AU/Lg(t) is also presented and

obviously evolves in ¢t 1.

The parameter Cj is presented in Fig. 3.17b for various initial values of the shear intensity S(0).
It seems that at sufficiently large Reynolds numbers, in the self-similar regime where Lg ~ t, Cs
does not depend on S(0): a similar conclusion is obtained if Lg(0) is varied instead of S(0). The
values of Cj are such that 0.5 < Cs < 0.6, higher than what is reported in Dimotakis (1991).

Finally, the growth rate ag can be simply evaluated as

_Ls S8Ry
as =45 = Lo (3.51)

and is presented in Fig. 3.17c for both Saffman and Batchelor turbulence. It appears that there
is a slight dependance of the free-shear layer length Lg on the infrared slope o: indeed, it is
slightly larger for 0 =2 (o, = 0.29) than for o0 =4 (o, = 0.265).
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Chapter 4

Spectral Modelling of a Passive
Scalar in Homogeneous Turbulence

”I am among those who think that science has great beauty.”

— Marie Curie

This chapter aims at modelling the transport of a passive scalar field and its associated scalar
flux in homogeneous anisotropic turbulence (HAT), in order to address two configurations: ho-
mogeneous isotropic turbulence with a mean scalar gradient (HITSG), and homogeneous shear
turbulent with a mean scalar gradient (HSTSG). Cases of shear-driven turbulence without a
mean scalar gradient will also be studied. This part is an extension of the previous mod-
elling dedicated to the velocity field. A similar two-step approach, called anisotropic EDQNM
modelling, is consistently applied here. Firstly, dynamical equations that govern the passive
scalar and scalar flux fields are closed using a quasi-normal approximation and an isotropic
eddy-damping procedure without any assumption regarding anisotropy. Then, for moderately
anisotropic flows, scalar spherically-averaged descriptors that depend only on the wavenumber
modulus k£ are defined. In the end, the dynamics of the velocity, passive scalar and scalar flux
fields is described by six generalized spherically-averaged Lin equations: three for the veloc-
ity field, two for the passive scalar, and one for the scalar flux. These equations are valid for
arbitrary mean velocity and scalar gradients of moderate intensity.

The contents of this chapter and the following one were published in:
Briard, Gomez, & Cambon, ”Spectral modelling for passive scalar dynamics in homoge-
neous anisotropic turbulence”, Journal of Fluid Mechanics, 799, 159-199 (2016)

Details on the calculations are provided in Appendix E along with additional considerations
about the modelling of the scalar flux, and basic results about passive scalar dynamics in HIT
framework are recalled in Chapter 1.

76
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4.1 Scalar and scalar flux generalized Lin equations

The Reynolds decomposition for the scalar field T' reads
T=0+40, <6>=0. (4.1)

The mean-scalar gradient vector is written A\; = 9;0 so that ©® = A\;z;. In physical space, the
evolution equation of the scalar fluctuation € in the homogeneous framework is

00 00 0 0%0

En + Ajm%j +uiAj + @(ﬁuj) = am. (4.2)

The Fourier transform of the previous equation gives

0 0 2\ A . o
((% — Ajlk:ja—kl + ak ) 0(k) + \ju;(k) = —ik;0u;(k), (4.3)
with the convolution product
B = [ op)is(a)dp (1.4
k=p+q

The spectral scalar-scalar correlation £7 is defined as

< 0*(p)i(k) >= T (k)5(k — p), (4.5)

which corresponds to the two-point correlation R (r) =< 6(x)0(x + r) > in physical space.
Its evolution is given by the Yaglom equation (A.97), firstly derived in Yaglom (1949), and
recovered in Appendix A. The correlation £7 is real, satisfies £ (k) = £T(—k), and verifies the

scalar Craya equation

<§t — Ajlkj% + 2ak2> ET (K, t) + 20\ Fj(k,t) = TVNU (K, t). (4.6)
l
The total non-linear scalar transfer 77N reads
TN (R, t) = 2k R < / ST (k,p,t)d3p> : (4.7)

where SZ-T (k,p,t) is the three-point third-order spectral velocity-scalar-scalar correlation
ST (k. p,0)3(k +p+q) =1 < @(q)0(k)0(p) > . (4.8)
The spectral scalar-velocity correlation F; - or the scalar flux - is defined as
< @ (p)0(k) >= Fy(k)d(k — p), (4.9)

which corresponds to the two-point correlation RF (r) =< wu;(x)0(z + r) > in physical space.
The scalar flux F; is solenoidal and verifies the scalar flux Craya equation

(i Akt (vt a)k2> Fi(k ) + Miy(k)Fy(k,£) + A Rig s, £) = TN (). (4.10)
l
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The non-linear scalar flux transfer TZ’FTJ\IL reads

(4.11)

TENE (K t) = Pin( / (k,p,t)d°p + k; /SF* (p, k, t)d°p

where SI (k,p,t) is the three-point third-order spectral velocity-velocity-scalar correlation
S (kP )0k +p + q) = i < ()0 (k)i (p) > . (4.12)

The expression of the non-linear scalar flux transfer (4.11) has also been obtained in recent
study for active scalar dynamics (Burlot et al., 2015a). Furthermore, TiF’NL can be written in
a way similar to 7;; for the kinetic case, namely

F(k,p,t) = ky / SE(k,p,t)d3p, (4.13)

so that the non-linear scalar flux transfer is

TN (k) = 7 (k,p, t) + 77 (0, K, t) + W (K, 1) (4.14)
——
True transfer Pressure effects
The term W' (k,t) = —aja,7k (k,p,t) is responsible for the return to isotropy of the cross-

correlation Fj;, i.e. the destruction of the scalar flux since it does not exist in the isotropic
framework. The generalized Lin equations for the passive scalar and scalar flux are then

(gt + 2ak2> €7 (k1) = TONE (k. 1) + TTE (ke 1), (4.15)

<§t (v + a)k2> Fy(k,t) = T7 N (ko t) + T " (K, 1), (4.16)

where TTF is the linear scalar transfer and TZ.F’L the linear scalar flux transfer

T
TT’L(k:, t) = Ajlkjaga(kf:’t) - 2)‘lﬂ(k7 t), (417)
1
Fi(k, 2
TP (ke t) = Ajlkjaa(:w = My (k) (k, t) = X R (e, 1). (4.18)
1

4.2 EDQNM closure for &7 and F;

Now that the evolution equations of £7 and F; have been derived, the next step is to close
the non-linear terms with the EDQNM procedure described in Chapter 2. Then, in the fol-
lowing section, the resulting closed expressions of the non-linear terms will be combined with a

consistent modelling for anisotropy.

The quasi-normal expressions for the passive scalar and scalar flux non-linear transfers 71NV
F,NL
and T, are

TTNV (ke t) = 2k; / 0L, 50 (k,t)dp, (4.19)



Chapter 4. Spectral Modelling of a Passive Scalar in Homogeneous Turbulence 79

TP N (K, p, t) = Pin (k) / Ot TN (e, p, t)dPp + k; / O T (p ke, t)d p, (4.20)
where Qgpq and Hf;q are the characteristic times of the third-order scalar and scalar flux corre-

lations respectively

gr _ Lo oxp[—(alk? +p°) +va® + pa(k) + p2(p) + 13(a))t] (4.21)
kpg = a(k:2 + %) + v@® + pa(k) + p2(p) + p3(q) ’ '

gr Lo exp[~(ak + v + @) + (k) + ps(p) + ps(0))1] (4.22)
kpg = ak? + v(p? + ¢2) + pa(k) + pa(p) + pa(q) ‘

Both ngq and 9,5;7[] are obtained by writing the evolution equation of the passive scalar and scalar
flux third-order correlations defined in (4.8) and (4.12) respectively. Such an approach for the
scalar case has already been performed by Bos et al. (2005) in the framework of homogeneous
isotropic turbulence with a mean scalar gradient (HITSG). The eddy-damping terms po and pus
reflect departure from normal laws according to

k
= AZ\// u?E(u, t)du, i=2,3, (4.23)
0

with Ay = 0 and A3 = 1.3. The setting of Ay and Aj is discussed in Herring et al. (1982); Lesieur
(2008), along with the choice of the eddy-damping terms pe and pus. These two constants,

also based on experimental considerations, are set to recover the Corrsin-Obukhov constant
Koo ~ 0.75, and no new constants are necessary for the scalar flux. Nevertheless, a different
choice, for instance the setting A; = Ay = As which will be addressed in Chapter 7 for USHT,
would lead to similar results; an alternative configuration is discussed by Bos (2005) to account
for pressure effects in the damping. But here, with the present definition of the scalar flux
third-order correlation (4.12), pressure effects are already taken into account: As = 0 affects
the equation involving u;(z3)u;(22)016(x1) which does not contain the fluctuating pressure. As

T,QN andgFQN

a result of the quasi-normal approximation, T, can be written

TNk, p,1) = 2P (@) Fu(k, ) Fou (P, )

+ F(g:8) (B Fu(Prt) + puFulk, 1)) = kuBtui(a.0) (€7 (k,t) = £7(p,1) ), (4.20)
QF QN(k P, ) - kn <an(qa t)F;'k (pa t) + an (pa t)Fi*(q, t))

+ 2B (K, ) ( Pann(@) R (P, 1) + Pionn (p) Fri(a, 1) ). (4.25)

With this closure, and using calculations similar to the kinetic case detailed in Appendix E, the
non-linear scalar transfer becomes

TTNL (k1) = 2 / 07 kp(ay + 2)(E" + RX")(ET — £T)d%p

42 / o (/-gnF,’;* (P Fom + ke F") + P Pk F, &p. (4.26)

ky — px)
q
Since the contributions of the velocity-scalar correlation F; are quadratic in anisotropy, they are
neglected in what follows in the moderate anisotropy framework. These quadratic contributions
of anisotropy in the non-linear transfers for the scalar and the scalar flux are nevertheless cal-
culated in Appendix E. The modelling of F;(k) is developed with an appropriate decomposition
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in the following section.

4.3 Final spherically-averaged scalar Lin equations

This section presents the final step of the modelling: combining the modelling of anisotropy
with the closed expressions of the transfers obtained by EDQNM. Spherically averaged evolution
equations for the scalar variance spectrum, the scalar directional anisotropy and the scalar flux
are derived from the previous generalized scalar Lin equations: these final scalar equations
depend only on the modulus k of the wavevector k.

4.3.1 Modelling of £7 and F;

A decomposition similar to the one of £ in the kinetic case is used for the scalar correlation Ep
since both £ and &7 verify the same properties

ET(k,t) = (4.27)

v

Ep(k,t) (

W 1-— 15H(T) (k‘,t)oziaj> = gg + E(T,dir)’

with £(Tdir) = —155{H1(f)aiaj and & = Er/(47k?). One can remark that the fourth-order
expansion of €7 would be similar to the one of £. The following expansion is chosen for the
scalar flux

Fi(k,t) = gSJF(k, t)Pi;(k) + (Antisymmetric contribution). (4.28)

This decomposition is consistent with the scalar flux being a solenoidal field (k;F; = 0). Hermi-
tian symmetry for the scalar flux, F;(—k) = F}(k), is straightforward from the decomposition
of a vector into helical modes. Notably, it implies that the vector EJF is purely real and that the
antisymmetric contribution is purely imaginary. The antisymmetric part brings an imaginary
contribution to the scalar flux, which is zero in isotropic turbulence with or without mean scalar
gradient, and which will be discussed in Chapter 8. Consequently, without helicity, only the
projection part of (4.28) is considered here. Using a helical decomposition for F; shows that (see
Appendix E) the scalar flux has a poloidal structure. Moreover, one can derive a realizability
condition for the scalar field, starting from the decomposition (4.27) of £7, analogous to (2.52)
for the kinetic field

max(L!) < (4.29)

1
— 15’

where L;TF are eigenvalues of HZ(]T)

The decompositions (4.27) and (4.28) are exact in the framework of homogeneous
isotropic turbulence with a mean scalar gradient (Herr et al., 1996). Whereas they
are truncations at the the second order of the scalar correlation £ and scalar flux Fj
expansions in shear-driven turbulence, consistently with the modelling for the velocity

field of £ and Z done in (2.44) and (2.45).
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About the distinction between directional and polarization anisotropies: scalars admit direc-
i

iy
in the decomposition (2.44) of £. Then, since Fj is a vector, SJF

tional anisotropy only. Consequently, H which appears in the expansion of T, reflects

r) .

directional anisotropy, as HZ(]d
represents polarization anisotropy. Finally, a solenoidal second-order tensor such as Rij admits
both contributions. This classification is summarized in Table 4.1.

The scalar variance spectrum is given by
Er(k,t)= | &T(k,t)d%k. (4.30)
Sk

(T)

The spectral scalar directional anisotropy descriptor H;; and the spherically-averaged scalar

flux ElF verify
T ir
2B (k,t)H, (k,t) = /S M) (k)P (k)d2k, (4.31)
k
EF(k,t) —/ Fi(k,t)d%E, (4.32)
Sk
where 47k?El = EF (k,t). The scalar anisotropy tensor b;fg- is defined as
bI(t) = / Er(k,)H (k, t)dk, (4.33)
J KT
where Kr is the scalar variance,
Krp(t) =< 6% > / Er(k,t)d (4.34)

The global anisotropy indicators biTj have a function analogous to the kinetic ones b;;. Similar
anisotropy descriptors were introduced by Kassinos et al. (2007) with a different convention.
Finally, the second-order spectral scalar tensor qbg;- can then be written

8L (k,t) = 2E7(k, 1) (533 +H(k, t)) . (4.35)

One can note that these definitions for the passive scalar field are very similar to the kinetic

one.

4.3.2 Spherical average of the passive scalar and scalar flux

The spherically-averaged scalar and scalar flux Lin equations are then

< gt + 2ak2> Er(k,t) = §TLOO) (k. 1) 4 §TNLGs0) (g 4y, (4.36)

0 dir dir
( 5T 2ak2> Br(k, )H (k1) = S5 (k1) + S5 (1, 1), (4.37)
< gt + (a+ Z/)k2> EF (k,t) = SPV(k, t) + SPNE (k). (4.38)
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The usual non-linear spherically-averaged isotropic scalar transfer term ST-N(s0) jg

STNLGs0) (g 4) = / TTNL (ke t)d2k (4.39)
Sk
— 1672 / o7 KpPq(ay + 2L (ET — £T)dpda, (4.40)
Ag
in agreement with Lesieur (2008). The non-linear spherically-averaged directional scalar
T,NL(dir)
transfer term S;; reads
ir 1 7 .

S£7NL(d )(k‘, t) 2 / TT NL(k t) (k) d2k _ %ST’NL(ISO)(R‘, t) (441)

= 4r? / kaqkszq zy+2)(y° — )ENET - SOT)HZ.(JPOI) dpdg

(dlr)

+ 872 / Ok’ a(zy + 2)(3y* — VEYEY — N HS™ dpdg

+ 8 / o k2p2q(ay + 2)5{)’((322 ~)EFH] 28l HZgT))dpdq. (4.42)

ST:NL(is0) i5 5 conservative transfer, meaning that its integral over k is zero.

T,NL(dir) .

The isotropic term

However, the integral of S is different from zero, as the directional transfer in the kinetic

case. This means that there is a return to isotropy of the passive scalar. Nevertheless, it is

T.NL(dir) , since this mechanism is led by the

not possible to extract an explicit RTI term from S
pressure field which is absent of the scalar equatlons T his means that the RTT of the scalar
field is driven by the velocity field. The production terms depend linearly both on the mean
velocity and scalar gradients: the linear spherically-averaged isotropic scalar transfer

ST,L(iso) is

STLG50) () 4) — / T (k, £)d2k (4.43)
Sk
0
— 24 8k(kETHl§’{)) —oNEF. (4.44)
The linear spherically-averaged directional scalar transfer ST Ldir) 5
ir 1 dij -
ST (k1) = 3 / T (K, t) Py (k)d%k — JST’L(ISO)(k,t) (4.45)
Sk
__3 +77(1) A+ (D) 45 @Y Ly
= —?ET(Aleil + A H gAlnchH D)+ s AL B
o) o (T) | g (T) 1 F F_ 2\ oF
- *A;; 6k(kET) ET(Aleil + A, Hj ) - *<)‘ZE' + A B — g)\lEl 52’]’)
0 T 0 T 0 T
(A;; ap WETH ) + Al (kErH) - A;naw ak(szTHl(m))> . (4.46)

At first order in anisotropy, with the decomposition (4.28), the non-linear scalar flux transfer
becomes

TF NE (k1) /Hkqug() [€F (2;03:(04@ + za) (af + yay)
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+q(y + x2) (Qaél(a}’ +yoj) — P”)) - kng'/ ((1 — 22)PJi + (v + zaj) (a; + ya;’))] d’p
3 F F'r n / " /
+ 5 O gk | 4€0E; (o + yay) (aj + zaj + 2y(aj + :Caj)>

+ kegel (<ai + ya)ay + zaf) + (1= ) (Pl = 204(a + za;>)>

+p (505}?"(% +z0) (o + yaf) — (vy + 2)86’5f3j> d’p
- 3/9,€;qkai k(1 — y2)56'5]F/ (o + zar) + qé’égf(l — 22 =2y + xz))(af + yoy) d3p.
(4.47)

Since quadratic contributions of anisotropy are discarded, but nevertheless computed in Ap-
pendix E, only the isotropic part of the kinetic field appears. The non-linear spherically-
averaged scalar flux transfer is thus

SENE (k1) = / TN (K, 1) A%k (4.48)
Sk

= 472 / Gﬁ;qupqEé [kzgiF"(l + 9% — 22 —zyz — 2227 — 2q(y° + mz)SzF] dpdgq
AVS
+4r? /A gk Pa [50 <q2(2wy2 +yz — 2)& - py(z + y2)Ef )
k

+ kE] ((1 — 422 —myz — 222N —2(1 - y2)8iF> ] dpdg. (4.49)

One can extract from the non-linear scalar-flux transfer the spherically-averaged scalar flux
RTI transfer

SZ-F’RTI(k,t) = —8/ 7r29,quk3pq865f"(1 —3?)(1 — 2%)dpdg. (4.50)

k

The linear spherically-averaged scalar flux transfer reads

SFL(, 1) = /S T (k, 1) d2k (4.51)
k
_ ! (@) | o)) _ L, i(opr O F
= —2AjE(§5ij + H 4 gPY) - A (2BF + - (kE] ). (@52)

As a conclusion, the whole dynamics of a passive scalar field in homogeneous anisotropic tur-
bulence is driven by six spherically-averaged compact equations. Three for the velocity field
coming from Chapter 2, two for the passive scalar and one for the scalar flux. The last three

ones are original results of the present work. The different anisotropy descriptors are gathered
in Table 4.1.
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Spherically averaged descriptors
k-vectors descriptors | Isotropy Directional anisotropy Polarization anisotropy
E(k,t) B(k,t) H™ (k, 1) 0
Z(k,t) 0 0 HP (k1)
ET(k,t) Br(k,t) HD (k1) 0
Fy(k,t) 0 0 EF(k,t)

Table 4.1: Description of anisotropy at the velocity, passive scalar and scalar flux levels, using
k-vectors descriptors and their corresponding spherically-averaged contributions.

4.4 Cospectrum for an uniform mean scalar gradient

In this section, the emphasis is put on homogeneous isotropic turbulence with a mean scalar
gradient (HITSG). The scalar flux is created by an uniform mean gradient

A=(0,0,—A), A>0, (4.53)

whereas the kinetic field remains fully isotropic, and thus decays with time. In this framework,
which has been widely investigated notably by Bos and coworkers, turbulent eddies bring the
hot fluid to the cooler parts of the flow (and the opposite), thus creating a heat flux. Some
definitions are given before starting the numerical study in the next chapter. Firstly, when the
kinetic field is isotropic, it tends to destroy the scalar flux, created by the scalar gradient. Given
the expression of the production term SZ-F ’L, only the third component of Ef" is non-zero, and
its sign is opposite to the one of A. Thus, the cospectrum is defined as

F(k,t) = E5 (), (4.54)
the mixed velocity-scalar correlation as

Kr(t) =< ugh >— /0  F ke, t)dk, (4.55)

and the cospectrum dissipation rate as

er(t) = (v+a) / k2 F(k, t)dk. (4.56)
0
Finally, the time evolution of the velocity-scalar correlation RI'(t) =< u;(t)(t) >, for » = 0, is
given by
dRF 06 0%u; 020
i N+ A RE = —9¢l 0 ¢ — ———
T + RijAj + AijR; <p8$i> € —a< Bxlé):vl> V<u8xl8$l
with S 90
F Ui
) = — 4.
€ (t)=(wv+a)< 9, 02 > (4.57)

The last three ths terms of the equation for RI" simplify into —e!” using homogeneity. The
evolution equation of ezF has not received much attention, and is therefore derived and simplified

for homogeneous turbulence in Appendix A, and then for HITSG in (A.34). In the classical case
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of a (vertical) mean scalar gradient, Rg = Kr and the previous evolution equation simplifies

into dK
th = Pr(t) —er(t) + ILx(1), (4.58)
where ~
T (t) = / SENL(L 1)k (4.59)
0

is the cospectrum destruction, or cospectrum pseudo return to isotropy, driven by the kinetic
field. And Pz is the cospectrum production term

Pr(t) = /0 " SEE (e )k gAK(t), (4.60)

which decays with time along with the kinetic energy.



Chapter 5

Dynamics of a Passive Scalar in
Homogeneous Turbulence

In this chapter, the complete anisotropic EDQNM modelling is used to investigate the dynamics
of a scalar field and its flux, passively advected by the homogeneous turbulent flow. The Prandtl
number Pr is set to unity, and cases of Pr < 1 and Pr > 1 are addressed in Chapter 6. The
extension to active scalar dynamics in homogeneous unstably stratified turbulence is presented
in Chapter 7.

The contents of this chapter and the previous one were published in:
Briard, Gomez, & Cambon, ”Spectral modelling for passive scalar dynamics in homoge-
neous anisotropic turbulence”, Journal of Fluid Mechanics, 799, 159-199 (2016)

The study of a passive scalar, such as small temperature fluctuations 6, convected by a turbulent
velocity field wu;, is of interest for several reasons. From a fundamental point of view: though
HAT has been at the center of many theoretical, numerical and experimental works for almost
40 years, numerous questions still remain without clear answers. How does the energy, mainly
produced at large scales by mean velocity and scalar gradients, affect the small scales dynamics?
Is there a complete return to isotropy of small scales? Is the growth or decay of integrated
quantities, such as the kinetic energy and the scalar variance, predictable?

Upstream to these fundamental questions, there are practical reasons to the investigation of
HAT. Indeed, taking into account anisotropy created by non-zero mean fields is an important
feature to describe real flows by comparison to the classical case of HIT. Notably, the deep
understanding of homogeneous turbulence dynamics could provide further insights into the
analysis of high Reynolds numbers natural flows such as atmospheric and oceanic ones. Such
flows are complex for multiple reasons, one being that their Reynolds numbers are much higher
than the ones currently reachable in DNS and experiments. For instance, Re) can be of order
10* in atmospheric flows. Such large Reynolds numbers simulations without modelling would
require huge computational resources to capture only the early stage of the dynamics, and would
need a fine description of all scales, from the most energetic ones to the dissipative ones at the
level of the Kolmogorov wavenumber k,. In addition to very high Reynolds numbers involved
in atmospheric flows, the nature itself of such flows is complex since it contains many different

86
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physical phenomena. Indeed, a fine description of atmospheric dynamics would require to take
into account rotation, helicity, stratification, shear, and mean scalar gradient from the ground
to high altitude (Wyngaard & Coté, 1972).

Mean velocity and scalar gradients are also deeply associated to production mechanisms in the
turbulence dynamics regardless of the flow type. Indeed, they play a fundamental role in the
energy transfers through scales. Therefore, insights concerning the role of mean velocity and
scalar gradients are of great interest for turbulent flows, and specifically the ones where departure
from isotropy is generated by anisotropic forces or by solid walls giving rise to shearing stresses.
Moreover, a better understanding of all these anisotropic turbulent flows could be obtained by
making separate investigations of isolated mechanisms at high Reynolds numbers, which are
still quite unreachable using DNS. This is the approach followed in this study. In order to
achieve this objective, the dynamics of a passive scalar field 6 and its flux < ;0 > in HAT
is addressed with the use of the anisotropic EDQNM modelling developed in Chapters 2 and
4. Tt is worth noting that the present model is developed for arbitrary mean velocity gradients
that produce energy: consequently it is not adapted to the case of purely rotating turbulence
in which there is no energy production and where the dynamics is dominated by dispersive
inertial waves interacting non-linearly, requiring even more complex tools (Cambon & Jacquin,
1989; Sagaut & Cambon, 2008). The emphasis is thus put on three different configurations:
Homogeneous Isotropic Turbulence with a mean Scalar Gradient (HITSG), Homogeneous Shear
Turbulence (HST), and finally, these two frameworks are combined into Homogeneous Shear
Turbulence with mean Scalar Gradient (HSTSG) as notably encountered in atmospheric flows.

In HITSG, the mean scalar gradient produces scalar fluctuations so that the scalar variance
< 62 > can increase whereas the isotropic velocity field is decaying. This mean scalar gradient
creates an anisotropic flux < ugf >, called the cospectrum in spectral space, which has received
a lot of attention: with spectral closures (Herr et al., 1996; Bos et al., 2004, 2005; O’Gorman &
Pullin, 2005), with DNS (Pumir, 1994; Overholt & Pope, 1996), theoretically (Lumley, 1967),
and experimentally (Venkataramani & Chevray, 1978; Warhaft, 1980; Sirivat & Warhaft, 1983;
Mydlarski & Warhaft, 1998; Mydlarski, 2003). In all these studies, the scaling of the cospectrum
is uncertain in the inertial range, k~7/3 or k~2: this point is addressed hereafter.

The case of a mean velocity gradient without mean scalar gradient, has been less studied: a rapid
decrease of K7 =< 6? > was observed experimentally (Warhaft, 1980; Karnik & Tavoularis,
1989), and this has been confirmed theoretically (Gonzalez, 2000). Interestingly, in such a
configuration, the evolution of the passive scalar field is completely different from the one of the
velocity field.

Finally, when both mean velocity and scalar gradients are applied, there is a continuous produc-
tion of kinetic energy K (t) which grows exponentially for large dimensionless times St. Conse-
quently, thanks to interactions with the scalar flux, Kt grows exponentially as well. The HSTSG
configuration has been at the center of many works as well: with a classical EDQNM approach
(Bos & Bertoglio, 2007), with DNS (Shirani et al., 1981; Rogers et al., 1989; Brethouwer, 2005;
Kassinos et al., 2007) and experimentally (Tavoularis & Corrsin, 1981; Danaila et al., 1999b;
Ferchihi & Tavoularis, 2002). Even without rotation, the HSTSG configuration remains quite
representative of atmospheric flows (Wyngaard & Coté, 1972). Another configuration where
the kinetic energy, the scalar variance and the mixed-correlation grow exponentially conjointly
is analyzed in Chapter 7 for active scalar dynamics.
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Besides, the small scales RTT for each of the three cases presented is of primary importance:
indeed, according to Kolmogorov (1941b), small scales of the flow should return to isotropy
whatever the large scales are. While the small scales RTT of second-order moments of the velocity
field is well-admitted (Sarkar & Speziale, 1990; Pumir, 1996; Garg & Warhaft, 1998; Shen &
Warhaft, 2000), the case of third-order moments - such as the velocity derivative skewness
in shear flows - is still an open question. Some considerations about statistics in HST are
proposed in A. Moreover, it appeared that the scalar case is even more complicated, since the
conclusion is not clear regarding second-order moments: departure from isotropy are observed
experimentally and numerically at small scales with a mean scalar gradient only, in shear-driven
flows, in boundary layers and in jets (Sreenivasan et al., 1979; Sreenivasan & Tavoularis, 1980;
Sreenivasan, 1991; Pumir, 1994; Danaila et al., 19990).

Consequently, and in order to clarify the RTI of the scalar small scales, high Reynolds numbers
anisotropic flows are investigated thanks to the present anisotropic EDQNM modelling. For the
different configurations (HST, HITSG, HSTSG, HSRT), comparisons with DNS and experiments
are proposed in order to validate the model. Then, new numerical and theoretical results at
very high Reynolds numbers are presented. The evolution equation of the scalar variance K (t)
in homogeneous turbulence reads

dK
= 2RI —er(t), (5.1)

where the scalar variance dissipation rate er is

a6 00
2 _
GT(t) = 2@/0 k ET(k‘,t)dk =2a < o1, 0z > . (5.2)

The evolution equation of er in homogeneous turbulence is derived in Appendix A.

5.1 Homogeneous shear-driven turbulence

In this section, the effects of a mean shear on the passive scalar dynamics are studied. Firstly, the
scalar variance spectrum Ep(k,t) is briefly investigated. Then, HSRT is addressed. Finally, the
emphasis is put on HST, which presents an interesting result regarding the different behaviours
of the kinetic energy and the scalar variance. All results regarding the passive scalar decay and
growth laws in HSRT and HST are gathered in Table 5.1.

5.1.1 Scalar spectrum Er(k,t) and non-linear transfers

It can be shown by dimensional analysis that the scalar spectral tensor linked to the shear
extra-diagonal component qﬁ% also evolves as k~7/3 in the inertial range between the scalar
integral wavenumber k7 = 1/L7 and the Kolmogorov wavenumber k. One has to assume that
1T3 depends on the kinetic energy dissipation rate €, the scalar variance dissipation rate e, the
wavenumber k£ and the shear rate S. Since the transport equation of a passive scalar is linear
with u;, it is assumed that ¢Z,(k?, e, €7, Sy = L (ke e, €7, 5). Dimension analysis yields

Gla(k,t) ~ Se 2 Bepk™7/3, (5.3)
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This k~7/3 range is recovered both in HSRT and HST. Only the case of HSRT is presented in

Fig. 5.1a. It has been said in Chapter 4 that the spherically-averaged non-linear directional
scalar transfer S};’NL(dlr) has a non-zero integral over k because the RTT process is driven by

the kinetic field only. This is illustrated in Fig. 5.1b along with the isotropic scalar transfer

STNL(is0) which has zero integral over k.

T — | |
—Flux of SN/ max (SN
== Flux of STNL0) / max(GTNL(s0) )
< | 7 s
i g S
8 :
& E l‘
g p
= :
o E él
k- T
_4 ) 5 .
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Figure 5.1: (a) Scalar variance spectrum Er(k,t) and spectral tensors %5 (k,t) and
¢Ly(k,t) for o = 2 with St = 1. (b) Fluxes of Sj3" /") and §TNL(iso),

5.1.2 Scalar decay laws and RTT in HSRT

The scalar decay exponent a of the scalar variance K is well-known thanks to the CBC theory.
This decay exponent has been extended to the case of Batchelor HIT for a passive scalar field
in Chapter 1, using a scalar backscatter parameter pr similar to p for the kinetic field

_2UT—pT+1

Krp(t) ~ o7 =
r(®) ’ o oc—p+3

, (5.4)
where pr(oc = op =4) = 0.27 and pr(c = op < 3) = 0. This parameter pr slightly depends on
the Prandtl number and much more on the kinetic infrared slope o. In Fig. 5.2, both low and
large Reynolds numbers scalar decay exponents are recovered for Saffman and Batchelor HSRT.

Then, the return to isotropy of the scalar field is driven by the kinetic one: the consequence of
this is that no explicit scalar RTT transfer term can be derived. Nevertheless, the RTI mechanism
can be observed thanks to the anisotropy indicators bz;- in Fig. 5.3a for Saffman turbulence. An
asymptotic anisotropic state is reached, similar to the kinetic one. The final non-zero values of
bg;- indicate that there is still anisotropy left after the release of the velocity gradients. Batchelor
turbulence is not presented, but the bg} are found to continuously decrease, like the kinetic case
in Chapter 3.

As revealed in Fig. 5.3b, the anisotropy of the scalar field is mostly contained in large scales
around the scalar integral wavenumber kp. Small scales have almost returned to isotropy
(Hi(;‘r) ~ 0), but not completely for the extra-diagonal component, as revealed by the zoom

near k;. The kinetic indicator H, l(J) are zero at small scales, whereas there is some anisotropy left
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Figure 5.2: Scalar and kinetic decay exponents ar and « in both high and low Reynolds
regimes, with St = 1, where symbols represent theoretical predictions. (a) o = 2; (b)
o=4.

here in the scalar small scales. This is consistent with most of the numerical and experimental
observations, as it will be discussed later on. A deeper investigation of local isotropy is proposed
at the end of this chapter for HSTSG.
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Figure 5.3: Scalar anisotropy indicators for o = 2 with St = 1. (a) b/;(t). (b) HZ.(J.T)(k,t)
at t = 107 (Rey = 800).

The case of an axisymmetric contraction was studied by Gylfason & Warhaft (2009), where the
temperature fluctuations are created by a mean gradient that increases during the effective con-
traction. Although no quantitative comparison is possible because of the "moderate anisotropy”
limitation of the present model, interesting qualitative facts can be reported. The measure of
anisotropy is done using the fluctuating covariance Cj;(t) =< &;&; >, where & = 0,6, which
brings comparable information as the bg During the contraction, |Cy;| increases, and at the
exit of the contraction, it converges to a constant value, different from zero. This behaviour is

similar to the one of bg;, and the authors concluded that there is a partial return to isotropy,
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which is in agreement with the presents results: however, there is no spectral information in
Gylfason & Warhaft (2009) to locate the remaining anisotropy.

5.1.3 Sustained shear (HST)

In this part, the shear is maintained. It has been shown in Chapter 3 that there is an exponential
growth of the kinetic energy K(¢) due to non-linear transfers. Is there a similar growth of the
scalar variance? In the evolution equation of K7 (5.1), there are no production terms unlike the
evolution equation of K (t). This means that anisotropy only produces energy for the kinetic
field. Hence, there should be no growth of Kp(t) even if the shear is maintained. Fig. 5.4a
exhibits a remarkable behaviour: biTj and the scalar shear rapidity

SE(t) = ;;;t()t) (5.5)

reach constant values for St > 30, as in the kinetic case. Moreover, it is revealed that the scalar
variance K decreases exponentially in Fig. 5.4b, with a decay rate vy ~ —0.52. Let’s replace
K7 and er in (5.1) (with A = 0) by

Kp(t) = K7 exp(yrSt),  er(t) = e exp(yrSt).

An analytical expression for yr is obtained

— 6T
Yr = SKr

=052,  Krp(t) ~ Kp(0) exp(yrSt). (5.6)

The scalar exponential exponent found by plotting K is in good agreement with the asymptotic
value of S%{, which gives y7 = —0.52. The important result is that the value of v7 does not
depend on the shear rate S nor on the infrared exponents o and op (and neither does ~ for the
exponential growth of K(t)). The scalar dissipation e, also displayed in Fig. 5.4b, exponentially
decreases with the same rate yp = —0.52, which is consistent with the evolution equation (5.1).

o 1010
~
5 041 —bf 15
E - b, % 40°
= 0.2F - = by Q
E‘Q: . T -~
Sk 4
= 107%
0 10 20 30 40
St

Figure 5.4: (a) Scalar anisotropy indicators b}, along with S§ for o = 2. (b) Kinetic
energy K, scalar variance K, and scalar dissipation rate e, for 0 = 2 and o = 4.
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/ Algebraic exponents VS in HSRT Exp. rates V(S, 0,07, Pr) in HST
o 0 ,0 <3
K(t) a:—QU_IZ;ié, p:{ 0.55 70_:4 ")/:2()13—6/1{5
_ —p+5/3
e(t) ne = =355 v
L(t) nr = U_§+3 v/2
_ o—ps+1 _ 0 ,0<3
€13(t) Neys = 13 — 1 Destruction
KT(t) aT = —207;:7?:,;1 Yr = —ET/KTS = —0.52
er(t) O r
Lr(t) NLy = N[ v/2

Table 5.1: Decay and growth laws of kinetic and scalar integrated quantities in HSRT and HST.
Note that the time exponents for K, ¢, L, K7, er and L of HSRT are also valid in HIT.

The fact that anisotropy accelerates the decay of the scalar field has been observed experimen-
tally by Warhaft (1980) with a contraction. Moreover, such an exponential decrease of < 62 >
has been found theoretically by Pierrehumbert (1994); Gonzalez (2000) using a self-preservation
analysis. In the latter reference, the decay rate of Karnik & Tavoularis (1989) is computed by
fitting the experimental data K" ~ exp(—0.037z¢/M). From this, it is possible to determine
the associated 77" according to

KypP(t) ~exp(yptSt),  yp+ = J\M‘
The parameters are U, = 13m.s~! | M = 0.0254m and dU; /dxs = kU, = 8.06s! with the shear
generator parameter kg = 0.62m~'. Hence ¥ = —2.35. This value seems very large and may
come from a too low dU; /dzs. Indeed, details about the shear generation are provided in Karnik
& Tavoularis (1987) where velocity gradients dU; /das from 43.5571 to 84s~! are reported, which
would respectively give v = —0.435, closer to the present value, and 75" = —0.235. Whatever
it be, [y "] < [yrl-

5.1.4 Decay and growth laws for the passive scalar in HSRT and HST

The decay and growth laws of the kinetic and scalar fields, obtained theoretically and assessed
numerically, valid not only in HSRT and HST, but also in HIT, are gathered in the following
Table 5.1.

5.2 Isotropic Turbulence with a mean Scalar Gradient

The cospectrum F(k,t) is now investigated in the case of homogeneous turbulence submitted
to a mean scalar gradient A3 = —A with an isotropic kinetic field (HITSG). The scalar gradient
accounts for a production term of scalar fluctuations, and initially the cospectrum F = 0. In
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these conditions, the study of the cospectrum, the only non-zero component of the scalar flux,
amounts to the investigation of another passive scalar.

5.2.1 Spectra and transfers

The inertial scaling of the cospectrum can be found by dimensional analysis (Lumley, 1967).
One has to assume that F only depends on the scalar gradient A, the wavenumber k and the
kinetic energy dissipation rate e so that

F(k,t) = CrAe PR3, (5.7)

where C'r is the cospectrum constant, found to be Cr ~ 3 in the present work. Bos (2005)
reported Cr ~ 1.5 whereas O’Gorman & Pullin (2005) computed Cr = 3.5 with their model.
The k~7/3 dependence is similar to the fully anisotropic spectral tensor ¢ in shear-driven
turbulence. If one assumes that F depends on €, k£ and its dissipation rate ez, then F ~
e 1/3e¢xk=/3 like a passive scalar. This would imply that er is conserved throughout the
cascade and this cannot be satisfied due to the pressure effects.

In what follows for numerical simulations, one needs to define a dimensionless mean scalar
gradient Sy. There are different possibilities to define a reference mean scalar gradient A,ef,
unlike the mean velocity gradient which is unambiguously defined (De Souza et al., 1995). We
choose

A

Sy = Ar (5.8)

The reference mean scalar gradient A,qf is defined explicitly in the following comparisons. If not

mentioned otherwise, Sy = 1 is chosen.

In Fig. 5.5a, the k7/3 scaling clearly appears for the cospectrum. However, it requires a very
high Reynolds number (Rey > 10* here). Without it, it is hard to distinguish the theoretical
power law k~7/3 from k~2, as revealed in figure 5.5b for the moderate Reynolds number case
Rey = 100, where the inertial range is rather narrow. The k~7/3 scaling has also been obtained
experimentally by Mydlarski (2003), in DNS by O’Gorman & Pullin (2005); Watanabe & Gotoh
(2007) or with EDQNM by Bos et al. (2005).

An interesting point to mention that has not been reported so far is the infrared range of the
cospectrum; indeed, since F = 0 in the initial isotropic flow, one can wonder how it evolves
at very large scales. The result is displayed in Fig. 5.6a: the cospectrum infrared exponent is
the same as the kinetic one o. Moreover, the k~7/3 scaling is recovered for all the ¢ presented.
Finally, the linear and non-linear transfers associated to the cospectrum are presented in Fig.
5.6b: 53F NL_ Sg RTL represents the conservative non-linear transfer with zero integral over k.
Sg RT1ig the RTI term associated with the pressure effects. Sg NI is the total non-linear transfer
that corresponds to a non-conservative flux. Finally, S:Ij L is the linear transfer responsible for
production of anisotropy through the scalar gradient, that decreases along time with the kinetic

spectrum E(k,t). This is in agreement with similar results presented in Bos et al. (2005).
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Figure 5.5: (a) Cospectrum, kinetic energy and scalar variance spectra F, E and Er for

Rey = 2.10°, along with the integral and Kolmogorov wavenumbers ky, and k,,. (b) Effect

of low Reynolds numbers on the scaling of F, with a zoom on the narrow inertial range
for the case Rey = 100. Both for o = 2.

E(k,t) and F(k,t)
Cospectrum transfers

Figure 5.6: (a) Large scales behaviour of the cospectrum F for different infrared kinetic
exponents o. (b) Linear and non-linear transfers of the cospectrum for o = 2, at Rey =
2.10°.

5.2.2 Comparisons with experimental and numerical results

This section aims at assessing the anisotropic EDQNM modelling in the HITSG framework by
comparisons with one DNS and one experiment.

Overholt and Pope (1996): in this part, the emphasis it put on the ratio of the cospectrum
dissipation er and cospectrum production Pr defined in (4.56) and (4.60). In the DNS of
Overholt & Pope (1996), it is shown that the cospectrum dissipation is not negligible at low
Reynolds numbers even though it decreases with Rey. The following power law is found

DNS
) = 461Re; 0™
Pr P
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reported in Fig. 5.7, from Re) = 28 to 185. Results coming from EDQNM simulations are also
presented for comparison purposes

€F BEDQNM —0.760

The ratio is evaluated for Reynolds numbers such that the kinetic field decreases according to
CBC theory. It is observed that for Rey = 28 the kinetic field is in the transition towards low
Reynolds numbers regime. This is why here the minimum value for the ratio is at Rey = 40. This
agreement with DNS regarding the Re) power law in low Reynolds numbers regime partially
validates the model for the cospectrum. The discrepancy for the numerical factor arises from
the fact that initial conditions are different, and mainly because in the DNS the velocity field
is forced, whereas it is freely decaying here. Nevertheless, the Rey power law is recovered.

o DNS of Overholt and Pope
x EDQNM

§;10“‘R;TE;QS\EL\\Sk\ReAQWO

N B8

w

10 Re; 1072 \\ |

10’ 10° 10° 10*
Re)\

Figure 5.7: Comparison of the ratio of cospectrum dissipation and production with the DNS of
Overholt & Pope (1996) for o = 2 in high and low Reynolds numbers regimes.

As for the high Reynolds numbers regime, the Re;1 predicted by Bos et al. (2005) is recovered
numerically in Fig. 5.7 as well. This scaling law can be obtained analytically, assuming that in
high Reynolds numbers regime the dominant region of the kinetic spectrum and cospectrum is
the inertial range

er(t)  3(w+a) [CRF(R AL [ EPE3dk

! . 5.9
Pr(t) 20 [T Bk AR fE2/sgs/aa (59)

Then, using classical relations such as (k,/kr) = Rei/ * where Rey, is the integral Reynolds

number so that v/ Rej, ~ Rey, and I/ké/g = ¢!/3 one finds er/Pr ~ Regl.

Sirivat and Warhaft (1983): in this part, the results provided by the current model are
compared with the experimental work of Sirivat & Warhaft (1983). The case where the scalar
gradient is created with a mandoline (a screen of thin heated wires) is chosen. The parameters
of the experiment are the following ones: the input speed is U = 3.4m.s~! and the meshsize
M = 0.024m. For this configuration, the initial Reynolds number is Rey(0) = 26.4 and the
turn-over time 7o, = 1.14s. The scalar dissipation rate, written €y for the experiment, is
€g ~ 1072°C2%.s7! for a scalar gradient 8 = 1.78°C.m~!. Assuming that for this experiment the
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Prandtl number is about 0.7, a reference fluctuating scalar gradient is computed as

o0 €
ad A= ]
< Ox ) ref ref 3a’

so that the dimensionless scalar gradient is Sy = /Ayt = 0.152. Temporal results are trans-
posed to spatial ones through

T t UTexp

M 1 M’

where 79 is the kinetic characteristic time K /e evaluated numerically after two turn-over times,

so that transition effects from the initial conditions are erased. The experimental decay rate of
the kinetic field being aexp = —1.3, Saffman turbulence (¢ = 2) is an appropriate large scales
initial condition for the simulations. The cospectrum correlation

< u;0 >

Pu;60 = ) Puzd = Pwb, (510)
\<u?><6%>

is well recovered in Fig. 5.8a, and p,9 — —0.7. The ratio of scalar production —AKr and

dissipation er is also in agreement with the present results in Fig. 5.8c. The final value of the

characteristic times ratio
Kep

- Kre
matches quite well experimental data in Fig. 5.8d. However, there is a slight discrepancy in
Fig. 5.8Db for the ratio of integral scales Ly /L defined in (1.37) (~ 0.7 with EDQNM, and ~ 0.9
experimentally). Since no definitions are given in the experiment, there could be a difference

Ry (5.11)

in the definitions. Nevertheless, the fact that Ly < L is recovered. Let’s underline that initial
conditions are isotropic, which is not the case in the experiment: as mentioned by Sirivat &
Warhaft (1983), the initial fluctuating temperature field is slightly inhomogeneous, and because
of the grid itself the kinetic field contains some anisotropy. But still, the "early times” of pyg
and —AKr/ep are well captured by the anisotropic EDQNM modelling.

About the cospectrum correlation p,g, it has to be pointed out that there exists a large scat-
ter, since measured values span from ~ —0.19 to ~ —0.8, with an average around ~ —0.65
(Venkataramani & Chevray, 1978; Sirivat & Warhaft, 1983; Overholt & Pope, 1996; Mydlarski,
2003). It appears in EDQNM simulations that p,g strongly varies for 5 < Rey < 300, roughly
from 0.6 to ~ 0.71 for decreasing Reynolds numbers. This is the classical range of Reynolds
numbers covered by experiments and DNS. Consequently, the reason for the scattering of p,g
could be moderate Reynolds numbers, where it becomes more sensitive to the intensity of the
mean-scalar gradient. Another explanation is proposed in Chapter 6.

5.2.3 Decay and growth laws for the cospectrum and passive scalar

In this section, the anisotropic EDQNM modelling is used to address the high Reynolds numbers
regimes of HAT. The satisfactory agreements obtained at moderate Reynolds numbers in the
previous comparisons give confidence in the following investigation. The main contribution of
this chapter is the new results presented in HITSG, which aim at predicting the decay and
growth of the mixed-correlation and scalar variance. These results, gathered in Table 5.2, also
exhibit the dominant mechanisms during the decay.
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Figure 5.8: Comparisons with the experiment of Sirivat & Warhaft (1983) with the man-

doline configuration, for ¢ = 2 and Sy = 0.152. (a) Cospectrum correlation p,s defined

in (5.10). (b) Scalar to kinetic integral scales ratio Ly /L. (c) Ratio of production and

dissipation of the passive scalar —AKz/er. (d) Kinetic to scalar time scales ratio Ryp
defined in (5.11).

Decay of Kr(t) and ex(t): the scalar flux F is destroyed by the classical decay of the kinetic
field and consequently experiences a decay itself. Is it possible to derive theoretical decay
exponents based on CBC theory for < uzf >?7 Two assumptions based on physical arguments
for high Reynolds numbers regime need to be made: (i) It has been shown in Fig. 5.6a that
the cospectrum does not have a specific infrared exponent and is completely controlled by the

kinetic field. Therefore, only the inertial k~7/3

range, starting at the integral wavenumber kr,,
should be taken into account into the cospectrum decay process. (ii) In the case of Batchelor
turbulence, backscatter parameters p and pr are introduced for the kinetic and scalar fields
respectively. Since the cospectrum JF is the spectral counterpart of the velocity-scalar cross
correlation, its backscatter parameter pr should contain both effects. Hence, the simplest form

is chosen: pr = (p + pr)/2 for o = 4, which gives pr = 0.4075 with Pr = 1.
With these reasonable assumptions, one can write
o

Kr(t) = | F(k,t)dk ~ k33, (5.12)
L
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Injecting in this equation decay exponents of kinetic integrated quantities recalled in Table 5.1,
and using pr, one finds

(5.13)

It can be deduced from the scaling (5.12) that the dominant mechanism in the decay of F at high
Reynolds numbers is not production, but inertial effects of the velocity field. This is not true
anymore in the low Reynolds numbers regime, where the production term Pz leads the dynamics.
From the evolution equation (4.58) of the mixed-correlation, only dKr/dt ~ Pr = 2AK/3
remains. The return to isotropy term Ilx, or cospectrum destruction, is weak and er is also
negligible: indeed, given the shape of the cospectrum dissipation (4.56), this term is strong in
the inertial range, which does not exist anymore in the low Reynolds regime. This immediately
yields

o—1

5 (5.14)

aF = —
These decay exponents do not depend on the scalar gradient A, and are assessed numerically
in Fig. 5.9a in the high and low Reynolds numbers regimes. The agreement is excellent even
for the particular case of Batchelor turbulence. This is the first time such a result is presented:
indeed, in existing DNS, the kinetic field is forced or artificially frozen so that no decay can
occur. From (5.13) and (5.14), it follows that Kz does not decay for o = 1. In this case, the
Reynolds number Re) remains constant and so the dynamics of the inertial range, on which is
based ar, remains unchanged. These theoretical decay exponents, assessed numerically, give
further insights into the prediction of high Reynolds numbers decay in HITSG: this is also an
extension of an analysis previously applied to the passive scalar in HIT in Chapter 1.

Regarding the cospectrum dissipation rate: since the scalar flux is a purely anisotropic quantity,
€r is not a conserved quantity unlike € and ep. Therefore, it is not possible to express it under
the shape of a power law. Nevertheless, as the inertial range disappears in the low Reynolds
numbers regime, it is possible to compute the decay exponent n., of ex from the evolution
equation (4.58) so that

(5.15)

The agreement between this theoretical result and numerical simulations is displayed in Fig.
5.9b.

Growth of Kp(t) and er(t): the effect of the mean scalar gradient A on the passive scalar
itself is now addressed. Such a study was not performed in previous references. The scalar
spectrum still displays a k~5/3 inertial-convective range despite the mean gradient, as obtained
experimentally by Mydlarski & Warhaft (1998). In the HITSG framework, the evolution equa-
tion (5.1) of K is driven by both dissipation and production. In the presence of a mean scalar
gradient A, the production term leads the dynamics of the passive scalar field. Using the pre-
vious results regarding the decay exponents of K, one can compute the exponent of K in

presence of a mean scalar gradient a%. One gets in high and low Reynolds numbers regimes
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Figure 5.9: Decay exponents for the scalar flux for various o; Symbols represent theo-
retical predictions, O for large Reynolds numbers and o for low Reynolds numbers. (a)
Mixed-correlation decay exponent ax in high and low Reynolds numbers regimes. (b)
Cospectrum dissipation rate decay exponent n., in the low Reynolds numbers regime.

respectively

(5.16)

(5.17)

The agreement between these theoretical expressions of a% and numerical simulations is pre-
sented in Fig. 5.10a for both high and low Reynolds numbers regimes. The exponents do not
depend on the scalar gradient A. For high Reynolds numbers, the scalar variance grows in time
whatever o is, whereas for low Reynolds numbers, it decays for ¢ = 4. This can be explained
with the following arguments. The theoretical prediction (5.17) of a% is based on the fact that
the dynamics of K is driven by the production term 2AK z, and K is stronger for smaller o.
Consequently, for a large infrared slope such as o = 4, the spectrum E(k,t), and thus F(k,t),
has less energy in large scales, resulting into a weak production term for the scalar variance that
does not balance dissipation. This is consistent with HITSG experimental results at moderate
Re), where the scalar variance can grow or decay depending on the intensity of A: with a weak
A, Krp still decays (nevertheless more slowly than in HIT). Therefore, there is a link between
physical and spectral spaces: a strong mean scalar gradient A corresponds to a small infrared
slope o, or equivalently to energetic large scales.

Moreover, in the particular case of Saffman turbulence (o = 2), the value a% = 4/5 was already
found by Chasnov (1995). Therein, the decay and growth laws of passive and active scalar
fields, with and without mean gradient, are studied. Power laws for the active scalar fields were
assessed by Large Eddy Simulations (LES). Hence, the present EDQNM simulations valid the
power laws for the passive scalar field, with an explicit dependence on the initial large scales
conditions o. Consequently, this result can be seen as an extension of Chasnov (1995) on the
passive scalar.
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Finally, the dissipation rate of the passive scalar field is investigated. From the scalar variance
evolution equation (5.1), it can be deduced that ep should evolve as K r, meaning

er(t) ~ ", nd —ag (5.18)

in both high and low Reynolds numbers regimes. This is assessed in Fig. 5.10b.

o CBC Scalar with A High Re 0.51 | o CBC Scalar with A High Re
1.5/ | 0 CBC Scalar with A Low Re 1 O CBC Scalar with A Low Re o=1

10 10 10° 10" 107 10 10 10

Figure 5.10: Time exponents for the scalar field for various o; Symbols represent theo-
retical predictions, O for large Reynolds numbers and o for low Reynolds numbers. (a)
Scalar variance growth exponent a4. (b) Scalar dissipation rate decay exponent n?T.

All these new and partially new results regarding decay and growth exponents for K and Kr
and their dissipation rates are gathered in Table 5.2. They notably permit to explain why the
cospectrum correlation (5.10) does not depend on o in both high and low Reynolds numbers
regimes: indeed, the computation using the previous exponents shows that the time evolution
of pywy does not depend on o anymore for very large or small Reynolds numbers.

When a passive scalar is forced with a mean gradient, it is fully dominated by the
decaying isotropic velocity field which completely leads the dynamics of the flow. Indeed,
the infrared scalar exponent op has no influence on the decay and growth exponents.
A similar result was obtained by De Marinis et al. (2013) in HIT where the passive
scalar field experiences a Joule heat production. Therefore, it can be concluded that in a
presence of a production mechanism, the velocity field completely dominates the passive
scalar dynamics. This will not be true anymore for an active scalar in Chapter 7.

High Reynolds regime V(A, o7, Pr) Low Reynolds regime Y(A, op, Pr)
- 0 oc<3
Kr(t) | ol = &pE=p = &= Qd — _o=3
T( ) T o—p+3 PF %(p +pT) o=4 2 -
er(!) ey = or =~ nl, = ap = —75t
e ar = —GH ar =75t
ex(t) not defined Ny = _O'T-‘rl

Table 5.2: Decay and growth exponents of integrated quantities in HITSG for the cospectrum
and scalar fields.
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Remark on the scalar large scales in HITSG: the mean scalar gradient A results in a
production term in the passive scalar equation. This scalar production is linked to the cospec-
trum, itself linked to the kinetic energy spectrum. Hence, the "minimum of energy” of the flow
is imposed by the infrared range of the kinetic spectrum, i.e. imposed by o. So, the scalar in-
frared exponent o changes if initially different from o. There are two cases: (i) op(t =0) > o
rapidly results into o7 = ¢. Indeed, or > o means K7 < K: since the kinetic field imposes
the minimum of energy, or decreases. For instance, if one has or(t = 0) = 4 and o = 2, the
self-similar regime is ¢ = o = 2. (ii) For or < o, then o = o but it takes more time, as
revealed in Fig. 5.11. Without the scalar gradient, the scalar variance would decrease more

slowly than the kinetic energy. The production term being proportional to K (t), it forces the
scalar field to grow with the infrared slope o7 = o.

0t=0.1

log Er/logk
log B/ logk
o

—2f ==t =10 1
==t =10° : “.
—4f : "
““““ t=10° H
0 " 2 0 2
logk log k
(a) (b)

Figure 5.11: Evolution of the scalar infrared slope o with A = —1. (a) or(t = 0) = 4
and 0 =2. (b) or(t=0)=2and o = 4.

5.2.4 Return to isotropy in HITSG

The small scales RT1T is briefly addressed for HITSG at the level of scalar second-order moments.
Since only the third component of the mean scalar gradient is non-zero, this is an axisymmetric
configuration, meaning that the scalar anisotropy indicators verify 2H1(1T) = 2H§2T) = —H§3T).
In Fig. 5.12a, the bg;- are presented: they become constant both in Saffman and Batchelor
turbulence. This is qualitatively the same behaviour as the b;; in a sustained shear flow. Then,
in the low Reynolds numbers regime, the bg; increase and reach a constant asymptotic value,
meaning that there is anisotropy left in the flow. The fact that anisotropy increases in the low
Reynolds numbers regime has already been observed for the velocity field in Chapter 3. The
spectral anisotropy tensor HZ-(]-T) reveals that small scales of the scalar second-order moments
completely return to isotropy in Fig. 5.12b. Moreover, it has been pointed in experiments
and DNS (Pumir, 1994; Danaila et al., 1999b) that at the level of scalar third-order moments,
anisotropy remains in the small scales. This is not incompatible with small-scales isotropic
second-order moments as shown recently by Bos (2014).
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An interesting analogy can be made between the velocity field in a sustained shear flow
and the scalar field in HITSG. For both fields, (i) there is a complete return to isotropy
of small scales; (ii) there are no significant differences between Saffman and Batchelor
turbulence: in both cases b;; and bg; reach constant values (see Fig. 5.12a for the bz; and
Fig. 3.10a for the b;;). (iii) Anisotropy fills large scales and does not remain around the
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Figure 5.12: (a) Scalar anisotropy indicators b5 (no summation) from high to low
Reynolds numbers regimes, for both Saffman (black) and Batchelor (grey) turbulence.

(b) Hl(ZT) (no summation) at Rey = 103 for o = 2, along with the Kolmogorov and scalar
integral wavenumbers £, and kr.

integral wavenumber as in HSRT.

5.3 Homogeneous Shear Turbulence with Scalar Gradient

This final part focuses on homogeneous shear turbulence with a mean scalar gradient (HSTSG).

The emphasis is put on the impact of both mean velocity and scalar gradients on the scalar flux

and the passive scalar.

5.3.1 Definitions and transfers

Previously, it has been shown that with a mean scalar gradient A, only the third component

of the scalar flux is non-zero, namely the cospectrum F. With a mean velocity gradient only,

no scalar flux appears at all, and the scalar variance decays exponentially. With both mean

velocity and scalar gradients, the first component of the scalar flux is also non-zero. Thus, the

streamwise flux is defined as

Ef(k7t) = fS(kvt)v

(5.19)
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and arises only due to the combined presence of a both mean velocity and scalar gradients. The
streamwise mixed-correlation reads

K2(t) = /OOO Fs(k,t)dk. (5.20)

In Fig. 5.13, both linear and non-linear spherically averaged transfers are presented for the
cospectrum and the streamwise flux in HSTSG. One can note that they are very similar and
slightly differ in intensity.
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Figure 5.13: Transfers for the cospectrum (grey) and streamwise flux (black) for o = 2
at St = 50 where Rey = 2.10%. (a) Linear transfers. (b) Non-linear transfers.

5.3.2 Comparisons with experimental and numerical results

This part aims at assessing the anisotropic EDQNM modelling in HSTSG - a configuration
which combines various mechanisms at stake in atmospheric flows - by comparisons to two DNS
and one experiment.

Tavoularis and Corrsin (1981): EDQNM simulations are compared to the experiment of
Tavoularis & Corrsin (1981). Such a comparison has also been performed by Bos (2005) and
the conclusions will be discussed. The mean speed is U, = 12.4m.s~! and the characteristic
length is the shear generator one h = 0.305m. The mean velocity and scalar gradients are
dU; /dze = 46.8m.s7! and dT'/dzy = 9.5°C.m~!. From the data of the kinetic characteristic
time written 7, = 279 = 0.26s, one has S = 6.197 L Then, from the scalar characteristic time 7y
and < #% >, it is possible to evaluate the scalar dissipation rate ey = 0.128°C2.s~! at z1/h = 7.5,
and thus to compute the reference scalar gradient (960/0z).et = v/€9/(2a) = 52.1°C.m™! so that
Sy = 0.1823. It is worth noting that initial isotropic conditions are used here, which is clearly
not the case in the experiment. Two final Reynolds numbers are given in (Tavoularis & Corrsin,
1981): Ry, = 160 scaled for an isotropic framework, and Ry,, = 266 for inhomogeneous flows.
The comparisons are presented in Fig. 5.14a to 5.14d. Data is available at three locations:
x1/h = 7.5, 9.5 and 11. Using the appropriate conversion in dimensionless time, written 7 in
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(Tavoularis & Corrsin, 1981; De Souza et al., 1995), one has

I dU: 1

T=5t= ﬁcd—@,

which provides experimental information at St = 8.63, 10.94 and 12.66. There are satisfactory
agreements in Fig. 5.14a for the cospectrum and streamwise flux correlations p,9 and pyg.
Similar values for p,s and p,g are reported in Ferchihi & Tavoularis (2002) which once again
confirms the relevance of the present EDQNM closure for the passive scalar and scalar flux. A
satisfactory agreement is also obtained in Fig 5.14b for the characteristic times ratio Ry defined
in (5.11). A first discrepancy is observed for

B(t) = /S\w /ig, (5.21)

which is underestimated in Fig. 5.14d, whereas it is overestimated in Bos (2005). B(t) seems
to be very dependent on initial conditions, which could explain the discrepancy. One has to
keep in mind that here initial conditions are isotropic, whereas in the experiment there is initial
anisotropy in the flow, difficult to model. Finally, in Fig. 5.14c a difference is observed for the

turbulent Prandtl number
B A Ryo(t)

C SKx(t)

Pro(t) (5.22)
where Pri® ~ 1.1 and PTFEDQNM ~ 0.74. The value obtained experimentally seems quite
large: indeed, atmospheric data and theoretical considerations suggest that one should obtain
0.6 < Prp < 0.8 (Herring et al., 1982; Lesieur, 2008), in agreement with existing values (Shirani
et al., 1981; Rogers et al., 1989). The comparison with the results of Bos & Bertoglio (2007) is
not relevant here because a constant of their model for linear transfers is set so that Prp = 1.1
is recovered.

Rogers, Mansour and Reynolds (1989): The comparison is made with the DNS of Rogers
et al. (1989). There, the mean velocity gradient dU; /dzg = S = S7;! is such that the dimen-
sionless shear is & = 14.142. Three cases for the scalar gradient are performed, one in each
direction x1, xo and x3, with Sy = 2.5. Comparisons are made with the diffusivity tensor
defined as .

Dij(t) =—< G'LLZ > (i;z;) . (523)
Each column of D;; refers to a different simulation where the direction of the scalar gradient
changes. For instance, D13 refers to the third case. The agreement between EDQNM simulations
and DNS is revealed in Fig. 5.15a where D;; is normalized by Dss. A difference is observed
along the flow direction for Dj;/Dgo where DNS predicts a higher value. This discrepancy may
come from the limited DNS resolution that alters the dynamics in the streamwise direction. For
each simulation, the turbulent Prandtl number is defined by

Rys(t)
SD;i(t)’

Prop(t) = — (5.24)
where Dj; (no summation) is the turbulent diffusivity, with i = 1, 2 or 3 depending on the
case considered. The agreement is rather good in Fig. 5.15b: the classical asymptotic value of
Prp = 0.8 is recovered in the second case, whereas the general behaviour is captured for the
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Figure 5.14: Comparisons with the experiment of Tavoularis & Corrsin (1981), for o = 2,

S = 6.197," and Sp = 0.1823. (a) Scalar flux correlations p,,¢ defined in (5.10). (b)

Inverse of the time scales ratio defined in (5.11). (c) Turbulent Prandtl number Prp
defined in (5.22). (d) Relative strength of the fluctuations B defined in (5.21).

first and third cases: Pr(Tl ) < Pr? ) < Pr;z ), Nevertheless, the present simulations seem less
sensitive to the mean scalar gradient intensity than experiments. Moreover, for larger St, Pré? )
would be quite smaller, which indicates that the present anisotropic EDQNM modelling slightly
underestimates the turbulent Prandtl number. A possibility to correct these lower values of

Pro is to set the eddy-damping constants as A1 = A = Az = 0.355.

Kassinos, Knaepen and Carati (2007): a last comparison is performed with the DNS of
Kassinos et al. (2007). This work deals about MHD but the validation is made in the purely
hydrodynamic case with the data of Brethouwer (2005). Hence, only the case where the magnetic
field is zero and where there is no rotation is considered. The mean velocity and scalar gradients
are along x5 such that & = 8.95 and Sy = 1. The kinetic field is allowed to decay without any
forcing before velocity and scalar gradients are applied at to. There, the Reynolds number is
Rey = 45 with SK/e(t = tg) = 18. The scalar fluctuations are set to 0 at ¢t = to: this is why
initially p,g(t = tg) = —1. For EDQNM simulations, S and A are applied after two turn-over
times and there SK/e = 13 and Rey = 50. The two correlations p,y and p,g are presented in

Fig. 5.16a along with
S [3Kr
P A\/;’ (5.25)
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Figure 5.15: Comparisons with the DNS of Rogers et al. (1989), with ¢ = 2, § =
14.142 and Sp = 2.5. (a) Normalized diffusivity tensor, defined in (5.23), for the three
orientations of the mean scalar gradient. (b) Turbulent Prandtl number Prp, defined in
(5.24), for these three cases.

which characterizes the relative strengths of the velocity and scalar fluctuations. There is a good

agreement for the asymptotic values of p,9 and p,9. Our weaker value for p,9 at moderate St

may be the consequence of a slightly too strong growth of Ry; =< u? >. This does not prevent

to reach the correct value at larger St in the asymptotic state. As for 5, EDQNM simulations
slightly differ from the DNS in Fig. 5.16b, where g is over-estimated and has almost reached
a constant value whereas it slightly decreases in Kassinos et al. (2007). Nevertheless, in both

cases # ~ 1 at large St, which indicates that the velocity and scalar fluctuations have a similar

contribution to the anisotropic asymptotic state.
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Figure 5.16: Comparisons with the DNS of Kassinos et al. (2007), for 0 = 2, S = 8.95
and Sp = 1. (a) pue and pye, defined in (5.10). (b) S defined in (5.25).



Chapter 5. Dynamics of a Passive Scalar in Homogeneous Turbulence 107

5.3.3 Growth of K, Ky, Kr and K%

In this part, the emphasis is put on the growth of the scalar variance and its interactions with the
scalar flux. Some additional results about the passive scalar and the scalar flux are presented,
which may be of interest for one-point modelling, such as negligible quantities at high shear
rates. The scalar anisotropy tensors bg; are presented in Fig. 5.17 along with the scalar flux
shear rapidities

S
S F,S €r
SE(t) = 5 Sp7(t) = : 5.26
F0=glg  SOO=g4 (5.26)
As in the HST framework without mean scalar gradient, the scalar indicators reach constant
values for large St, and the ratio Sp/S impacts only the short time dynamics without modifying
the asymptotic state. There is a noteworthy similarity with the behaviour of b;; in shear flows.

0.4 ‘
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Figure 5.17: (a) Scalar anisotropy indicators bz; and scalar shear rapidity Sﬁ . (b) Scalar
flux shear rapidities SP]; and Sg’s. Both for o =2 and S = 10*270_1.

An interesting feature is that S% and Sl];’s tend to zero for large St, whereas their kinetic and
scalar counterparts do not. This means that the linear effects of shear are preponderant over
non-linear exchanges: this is in agreement with figure 5.13, where the scalar flux transfers of
energy are gathered at large scales, dominated by linear mechanisms. The evolution of the
scalar variance and mixed-correlations are given by

dKr

= 2AK - 5.27
dt F °r (5.27)
dK
d—tf =  ARss +r  —er (5.28)
dK%
th =  ARiz  +SKr 4115 —€%, (5.29)

Here is what happens simultaneously: the cross-correlation R;3 produces K JST through the mean
scalar gradient A. Then, Ri3 brings energy to the transverse component Rs3 thanks to non-
linear redistribution, which causes K to grow as well through A. Finally, K provokes the
growth of Kp. It is possible to compute the rapid pressure parts of the scalar flux Il and
H*]g_-. Details are given in Appendix E. This gives for the cospectrum 5II%-(t) = SK }j The
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numerical factor 0.08 obtained by Bos & Bertoglio (2007) is far from the present 0.2. However,
the streamwise part, 5H3}S(t) = —4SK 7, is closer from 0.62 of the latter reference.

The main result here is that the scalar variance K7, which was exponentially decreasing in HST,
now grows exponentially in HSTSG, as revealed in Fig. 5.18a. Its scalar exponential growth
rate yr is identical to the kinetic one v so that vr = v = 0.34. This is qualitatively in agreement
with the experimental work of Ferchihi & Tavoularis (2002): they found that K and Kr grow
with the same rate in the presence of scalar and velocity gradients (with v**P ~ 0.085, which is
far inferior to v = 0.34, and lower than common experimental ones). Moreover, both Kr and
K ;i grow exponentially with the rate v as well. Growths of the mixed-correlations have been
obtained numerically by Rogers (1991), even though it is complicated to determine if the growth
is algebraic or exponential due to the DNS limitation. The fact that all these correlations grow
exponentially with the same rate is consistent with the constant scalar flux correlations p,,¢
obtained experimentally and in DNS for sufficiently high St.

10—
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Figure 5.18: (a) Exponential growth of the kinetic, scalar, cospectrum and streamwise

flux correlations. The cospectrum and streamwise flux dissipation rates e and eg_- are

displayed in grey. (b) Exponential growth rates yr, 75_— and vyr. Both for ¢ = 2 and
S =10"27".

From the equations (5.27)-(5.29), it is possible to determine the expression of the cospec-
trum, streamwise flux and scalar exponential growth rates vr, ’y}i and yr. Using the fact
that ex/(KxS) — 0 and €%/(K2S) — 0, one has

1 dK AR 1I
1 dKr Al Hr L (5.30)
KrS dt SKr ' KrS
—_————
Constant for St > 1
1 dK% Kr 5

—=—L = 1+ Pry) + = 73 (5.31)

S s( T S Fo
K$S di K3 K59

Constant for St > 1

1 dK AK
77T g 2—7]: — GT = ’yT, (532)
KrS dt S Kr KrpS

—_———

Constant for St > 1

The agreement between the asymptotic values of these quantities and the 0.34 expected are
presented in Fig. 5.18b. Moreover, simulations show that vz, ’y]SE and 7 do not depend on
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large scales initial conditions o, as for the kinetic rate . The definitions (5.30) and (5.31) are
not convenient for calculations since the slow-part of Hgf) cannot be expressed explicitly. One
could want to use one-point modelling, such as the ones proposed by Wikstrom et al. (2000).

The simplest model that can be found is

0% (1) — e (1) = —cl% < uf >, (5.33)

where ¢; = 3.2 is calibrated on experimental data. Injecting this model in (5.30) and (5.31),
and using the previous explicit calculations of the rapid contribution, yields

A R33 1 st; €
_ 23 C2F 39 % 92827 5.34
F SKr 5Kr KS (5:34)
K 1 €
S F
= (i Prp) —32-5 ~0.2122. 5.35
¥ - 5 (5+7m) 32555 (5.35)

The obtained values of v and fng_- are not too far from 0.34. However, vr # 739_-, which shows
that the simplest models cannot handle such complex flows.

5.3.4 Streamwise flux spectrum Fg(k,1)

The inertial scaling of the streamwise flux Fg has not received much attention yet. Wyngaard &
Coté (1972) proposed a scaling in k~3. However such a slope did not agree well with atmospheric
data and they concluded that a k=52 range would be more appropriate. The k3 slope is
obtained by assuming that Fg depends on €, k, S and A, so that

Fs(k,t) ~ ASE™3. (5.36)

This expression can also be found starting from Fg ~ Ae'/3k~7/3 and replacing €'/® by its
expression as a function of the shear scale defined in (3.19), €'/3 ~ k=2/38. Bos & Bertoglio

(2007) derived a k~23/9 range both analytically and numerically based on tensorial arguments.
€'/3 is replaced by 61'1]-/3(k‘) so that the scalar flux is written

Fi(k,t) ~ A/ k7, (5.37)

with €;;(k)E(k) = 3¢i;(k)e. This recovers the classical scaling for F and yields

Fs(k,t) = C3 A SY3 O p=23/9, (5.38)

In a recent paper, Knaus & Pantano (2009) studied reactive and non-reactive scalar flux spectra
with DNS and found that a k~7/3 range was a satisfactory scaling. Such a spectral behaviour
can be recovered assuming that Fg depends on €, k, S and EJSE

Fs(k,t) ~ Se 2Berk™/3, (5.39)

But this is not consistent with the fact that eiF is not conserved (and consequently that the scalar
flux does not exist in the isotropic framework). Older atmospheric measurements reported a
k=%/3 scaling (Antonia & Zhu, 1994). Numerically, it is revealed in Fig. 5.19 that there is a
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23/9

good agreement for the streamwise flux Fg with the k~ scaling predicted by Bos & Bertoglio

(2007). Numerically, the constant is found to be C% ~ 1.5.
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Figure 5.19: (a) Scalar variance, cospectrum and streamwise flux spectra Ep, F and Fg.
(b) Associated spectral scalings: the horizontal dashed lines correspond to —5/3, —7/3,
—23/9. Both at St = 60 with 0 = 2 and Re, = 4.10%.

5.3.5 Return to isotropy in HSTSG

The small scales RTI is finally addressed for HSTSG at the level of the scalar second-order
moments. In Fig. 5.20, the scalar anisotropy tensors H, i(jT) are presented at large St for HSTSG,
at two different Reynolds numbers: local isotropy is almost respected for second-order moments
of the scalar field as in the inertial range one has HZ(]T )(k: — ky,t) — 0. Nevertheless, Hl(]T )

is not rigorously zero at small scales, especially the extra-diagonal component Hg) This
shows that in the presence of shear, and in agreement with most of the DNS and experiments,
some anisotropy persists at the scalar small scales, even at the second-order moments level.
Furthermore, the Reynolds number is found to have a non-negligible impact on the small scales
anisotropy: indeed, small scales anisotropy reduces from Re) = 2400, which is slightly higher
than Reynolds numbers reached in DNS, to Rey = 1,5.10%. The shear wavenumber kg = /53 /¢
is displayed as well: for wavenumbers k > kg, non-linear effects are dominant, consistent with
the RTT of small scales, whereas for k < kg, linear effects are stronger are carry most of the
anisotropy. A last remark is that the presence of a mean scalar gradient seems to smooth
the scalar large scales anisotropy: indeed, for shear-driven flows without mean scalar gradient,
anisotropy is gathered around the scalar peak of energy kr and is weaker in the infrared range
(see Fig. 5.3b). Whereas for HSTSG, anisotropy progressively increases from moderate to large
scales.

5.4 Conclusions for the passive scalar at Pr =1

This chapter was an application of the anisotropic EDQNM modelling. Three different con-
figurations were considered, whose comprehension is crucial to understand the dynamics of
complex flows such as atmospheric ones: isotropic turbulence with a mean scalar gradient
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Figure 5.20: Scalar anisotropy tensors Hl(JT ) with Kolmogorov, shear and scalar integral

wavenumbers ky, kg and kr for ¢ = 2 at two different Reynolds numbers. (a) St = 40

where Rey = 2400. (b) St = 50 where Re) = 2.10%. The zoom represents the small scales
before k,, where the persistence of anisotropy is clear.

(HITSG), shear turbulence (HST) and shear turbulence with a scalar gradient (HSTSG). The
anisotropic EDQNM modelling was assessed by detailed comparisons with several DNS and
experiments at moderate Reynolds numbers in HITSG and HSTSG: asymptotic values of scalar
flux correlations, turbulent Prandtl numbers and diffusivity tensors are well recovered, and the
agreement at short time is satisfactory as well. Then, the model was used to address high
Reynolds numbers flows which are not accessible by DNS yet.

In HITSG, the scalar flux along the mean scalar gradient, the cospectrum F(k,t), is found

7/3 in the inertial range for very large Reynolds numbers Rey, > 10*. New

to scale as k~
results are proposed regarding the decay and growth of < u3f > and < #? >, gathered in
Table 5.2: theoretical exponents are derived using physical arguments, and are then assessed
numerically. Such results were not provided before and complete the work of Chasnov (1995).
This theoretical contribution provides further insights into the prediction of high Reynolds
numbers decaying turbulence. In HST, the exponential decrease of the scalar variance was
recovered, and furthermore, algebraic decay laws for K7 were provided in HSRT, unchanged
with respect to HIT. All these results for shear-driven flows without a mean scalar gradient are
gathered in Table 5.1. In HSTSG, the inertial scaling of the streamwise flux Fg(k,t) in k—23/9 is
recovered (Bos & Bertoglio, 2007), and alternative scalings are briefly discussed. The interesting
result of this part is the exponential growth of the scalar variance and mixed-correlations <
u10 > and < ugf >, at a rate equal to the one of the kinetic energy.

In these three configurations, the small scales RTT of scalar second-order moments was investi-
gated, and the conclusions are threefold. (i) Scalar small scales return completely to isotropy in
HITSG, which is not surprising since the velocity field remains isotropic. (ii) On the contrary,
when there is a mean velocity gradient (with or without an additional mean scalar gradient),
some anisotropy persists in the scalar small scales even at high Reynolds numbers, which is
consistent with DNS and experiments. This persistent small scale anisotropy for the passive
scalar is nevertheless found to diminish with an increasing Reynolds number. (iii) When the
anisotropy consists of velocity gradients only, anisotropy is gathered around the scalar integral
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wavenumber k7, whereas when a mean scalar gradient is present, anisotropy fills more the large
scales.

Rotation was not investigated in this work, because its effects on triple correlations are not
clear, and as mentioned earlier, interacting waves require additional theoretical tools, such as
EDQNM2 (Cambon & Jacquin, 1989; Sagaut & Cambon, 2008), to be properly captured. It
is nevertheless a necessary step to the deep understanding of atmospheric flows: the DNS by
Brethouwer (2005) suggests that the effects of a rotating shear on the passive scalar transport
and its flux are multiple and rather complex. Finally, the present modelling is further extended
to unstably stratified homogeneous turbulence in Chapter 7, since stratification amounts only
to additional linear transfers, much simpler than the ones induced by mean-velocity gradients.

In conclusion, the anisotropic EDQNM modelling seems promising since it recovers quite well
previous experimental and numerical results, and additionally permits to explore large Reynolds
numbers. It can predict the velocity and scalar fields dynamics for various kinds of anisotropy
with the same consistent method and does not rely on adjustable constants, except the classical
ones used in the eddy-damping terms.



Chapter 6

Prandtl Number Effects on Passive
Scalar Dynamics

Here, the anisotropic EDQNM modelling assessed and used for Pr = 1 in Chapter 5 is applied
to the case of a Prandtl number different from unity: the frameworks of a highly diffusive scalar
Pr < 1, and of a weakly diffusive scalar Pr > 1, are investigated. For these two configurations,
the scalar variance spectrum Ep(k,t) is known to scale differently at small scales in HIT (see
Chapter 1). Consequently, one can wonder if these scalings for the scalar variance spectrum are
modified when anisotropy appears at the velocity and scalar levels, and what happens for the
scalar flux as well.

This chapter is divided into two parts: section 6.1 focuses on the HITSG framework, whereas
section 6.2 addresses shear-driven flows. The first section is the main contribution of this
chapter. For shear-driven turbulence, varying the Prandtl number while adding a shear seems
to be a limit of the present spectral modelling, especially when Pr < 1. Nevertheless, some
cases with mean velocity gradients in HST, HSRT and HSTSG are briefly presented afterwards.

The contents of this chapter for HITSG were published in:
Briard & Gomez, ” Prandtl number effects in decaying homogeneous isotropic turbulence
with a mean scalar gradient”, Journal of Turbulence, 18 (5), 418-442 (2017)

For Pr < 1, it is recalled that the inertial-diffusive range (IDR) spans from kco = Pr3/ 4k77,
where diffusion effects become dominant, to k,. One can define kcp = \/FTT/%] from which
convection from small scales balances diffusion effects (see Chapter 1). And for Pr > 1,
the viscous-convective range (VCR) spans from k,,, the smallest active turbulent scale for the
velocity field, to kg = \/ﬁkn. In this region, small scalar fluctuations are advected by the
velocity field of the Kolmogorov scale. Then, beyond kg, scalar fluctuations are destroyed
by diffusive processes. Interactions that are at the origin of the VCR are strongly non-local:
indeed, the cascade of energy computed with EDQNM does not reach scales much smaller than
k;, because of the logarithmic discretization of the wavenumber space. Non-local transfers have
been studied notably by Lesieur & Schertzer (1978); Métais & Lesieur (1986); Lesieur (2008),
and the derivation of the non-local fluxes for the velocity and passive scalar fields is proposed
in Appendix B.

113
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6.1 Prandtl number effects in HITSG

Most of the papers dealing with a Prandtl number different from unity in HITSG were done at
moderate Reynolds numbers, and focused on its effects on (i) high-order scalar statistics, and
on (ii) the cospectrum F(k, t) and scalar variance spectrum Ep(k,t) spectral scalings (Chasnov,
1991; Yeung et al., 2002; O’Gorman & Pullin, 2005; Bos et al., 2009; Yeung & Sreenivasan, 2014).
The aim of the present study is to explore asymptotic regimes of HITSG, at very large Reynolds
numbers and either very high or small Prandtl numbers, in order to predict the growth and
decay rates of the scalar variance < 62 > and mixed-correlation < u3f > of highly and weakly
diffusive scalars, which is a new feature, and to verify the proposed spectral scalings as well.
This is of theoretical interest since these regimes cannot be reached experimentally nor in DNS
yet. In addition, this permits to analyze the combined effects of anisotropy that mainly affect
large scales, and Pr which dominantly modifies small scales of the spectra. Furthermore, it has
been shown numerically in Chapter 1 that the Prandtl number did not affect the theoretical
decay exponent of the scalar variance in HIT at large Reynolds numbers. Consequently, a
natural extension of this work is to address effects of Prandtl numbers on the time evolution of
< 0? > and < uzf > in an anisotropic framework such as HITSG at large Reynolds numbers.

In the previous Chapter 5, only the case Pr = 1 was addressed: theoretical decay and growth
exponents for < uzf > and < 62 > respectively were derived for HITSG, and assessed numeri-
cally. Therefore, the present work is an application of the anisotropic EDQNM modelling when
the Prandtl number strongly departs from unity, basically from 107 to 10%. Investigating an
anisotropic configuration such as HITSG at large Reynolds numbers, with either very large or
small Prandtl numbers, with an approach previously validated in more complex configurations
such as shear-driven flows, is an important contribution in terms of modelling.

First, the theoretical spectral scalings of the cospectrum and scalar variance spectrum are
derived in HITSG for Pr < 1 and Pr > 1, and four comparisons are performed to assess the
relevance of the model when the Prandtl number strongly departs from unity: this part serves
as a new and additional validation of the present anisotropic EDQNM modelling. Then, original
numerical results are exposed. Effects of both very large and very small Prandtl numbers on
the time evolution of < #%? > and < u3f > are investigated. Afterwards, the normalized mixed
correlation py,g is studied as a function of the Reynolds and Prandtl numbers, and compared
to results obtained in DNS. Furthermore, the effects of varying the Prandtl number on the
small scales return to isotropy of the scalar second-order moments are analyzed. Finally, these
different features are discussed in the concluding section.

6.1.1 Inertial scalings for Er(k,t) and F(k,t) - Comparisons

The emphasis is put on the inertial scaling of the scalar variance spectrum Ep(k,t) and cospec-
trum F(k, t) when the Prandtl number is either very low or very large. These theoretical scalings
are recovered analytically and numerically, and are then compared with recent numerical stud-
ies, such as DNS, LES and other spectral models. The fact that the present results are not
always compared with DNS is because in most of the DNS, either the Reynolds number is not
high enough, or the Prandtl number is too close to unity.
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6.1.1.1 Highly diffusive passive scalar Pr < 1

Scaling of the scalar spectrum FEr(k,t): in the inertial-diffusive range for HIT, the scalar
spectrum scales as

K,
Er(k,t) = ?0 era 3 e2/3 173, (6.1)

It has been shown by Chasnov (1991) that with a mean scalar gradient A, the scalar dissipation
rate er should take into account this production effect, thus leading to

er — e + 2aA?, (6.2)
where 2aA? is a pseudo scalar dissipation rate arising from the mean gradient. The HIT scaling
for Er given in (6.1) is thus modified in HITSG into

K A?
Er(k,t) = ?0 era S BRI/ (1 + 2‘L€T> : (6.3)

Such a result was recovered analytically by O’Gorman & Pullin (2005) with their Sparse Direct-
Interaction Perturbation (SDIP) model. Here, an alternative method is proposed, based on
dimensional analysis and physical arguments that will be consistent with further developments.
In the HITSG framework, the integration of the scalar Lin equation (4.36) yields

N K+
€T ’

OKr
ot

= —er — 203KF = —er (1 +

The whole rhs term can be seen as a general scalar dissipation rate. Moreover, dimensional
analysis gives Kr ~ Aga which results into (6.2). The present simulations, at very low Prandtl
numbers and very large Reynolds numbers, show that 2aA%/er < 1, so that the classical scaling
(6.1) is still relevant. This is consistent with the RTI of small scales in the IDR: this feature
will be illustrated later on. However, when a moderate Reynolds number is combined with a
very small Pr, this ratio becomes greater than unity, so that the isotropic scaling is modified
into

Er(k,t) ~ A2a 23 k1773, (6.4)

derived in Bos et al. (2009); Yeung & Sreenivasan (2014), and is notably obtained by neglecting
the non-linear contribution in the scalar Lin equation with respect to production and dissipation.
It is worth noting that in Yeung & Sreenivasan (2014), the Prandtl number is very low, and
the Reynolds number moderate, so that very likely small scales are still anisotropic due to
production mechanisms. Consequently, the general expression (6.3) should be kept.

The k~17/3 scaling of the scalar spectrum in low Pr HITSG has been assessed recently in a
DNS by Yeung & Sreenivasan (2014). Present results are compared with the latter DNS in
Fig. 6.1a. The final Reynolds number is Re) = 240 after ten turn-over times. The Prandtl
number is Pr = 1/2048 and the initial integral scales are L(0) = 1.346 and Lr(0) = 3.468.
Er(k,t = 0) = 0 and scalar fluctuations arise from a unit mean scalar gradient. A good
agreement is found for the scalar spectrum. Near the Kolmogorov wavenumber (kn = 1), the
scalar spectrum slightly increases: this is due to small scale convection, as discussed in Chapter
1. This phenomenon increases with higher Reynolds numbers and lower Prandtl numbers. This
does not happen in the DNS result, may be because small scales are not completely resolved
beyond k;,. Nevertheless, the k~17/3 is well recovered.



Chapter 6. Prandtl Number Effects on Passive Scalar Dynamics 116

10° .
—EDQNM 107
; x DNS I
Q10' ---)17/3 ;;
< %
& n 10°%
BN w —EDQNM
10 | x LES
. ___k—11/3
< 4
10-15 ; ; XA s 107} :
10°  10% 10" 10" 10’ 107 10”7 107
kn k/k,

(a) (b)

Figure 6.1: (a) Scalar spectrum Er obtained with EDQNM compared to Yeung & Sreeni-
vasan (2014): with Pr = 1/2048 and o = 2 at Rey = 240. (b) Cospectrum F compared
with O’Gorman & Pullin (2005), with Pr = 2.107%, Rey = 1500 and o = 2.

Scaling of the cospectrum F(k,t): the starting point to determine the cospectrum scaling
is the scalar flux Lin equation

(8875 +(a+ v>’f2> Fk,t) = %AEU@ £) + 85" (k). (6.5)

A reasonable assumption is to say that the diffusive timescale (ak?)~! is much smaller than the
non linear time scale defined as

(k) = (k3E(k)>71/ g (k%)*l/ P RE(R) (6.6)

€

This is obvious at large k for high thermal diffusivity a. Therefore, non-linear contributions can
be neglected, as previously mentioned for the scalar spectrum. Then, for scaling considerations,
the time derivative is dropped off, so that

k2 F(k, t) = %AE(k:,t),

which yields the IDR scaling for the cospectrum

2
F(k,t) = gKoAa_leQ/?’k_H/?’. (6.7)

A similar process was performed by Bos et al. (2009); Yeung & Sreenivasan (2014). O’Gorman
& Pullin (2005) obtained this result with other analytical considerations. The key point being
to neglect the non-linear transfers in both cases. Another approach is possible. Thanks to the
previous work performed in Chapter 5, let’s assume that the spectral cospectrum correlation
is constant in the inertial range

F (k)

puwo (k) = puwo = m (6.8)
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Hence, using Kolmogorov scaling for E, and Batchelor (1959) scaling (6.1) for E7, one gets
F(k,t) ~ a=3/2el?e2/3~11/3, (6.9)

Moreover, since the scalar field as no retro-action on the velocity one, er should not appear
n (6.9). Consequently, equalizing (6.7) and (6.9) gives e ~ aA?. This is consistent with the
additional scalar dissipation rate coming from mean scalar gradient effect explained previously
in (6.2).

The k~1/3 inertial-diffusive scaling of the cospectrum for Pr < 1 is assessed in Fig. 6.1b: our
EDQNM simulation is compared to the LES of O’Gorman & Pullin (2005) where Pr = 2.10~%
and Rey = 1500 (after 10 turn-over times for EDQNM). The agreement with the k~!'/3 scaling is
rather good at this Reynolds number, and the agreement between EDQNM and LES is excellent
in the inertial-diffusive range.

6.1.1.2 Weakly diffusive passive scalar Pr > 1

The case Pr > 1 is now considered: small scales of the scalar variance spectrum experience
convection from the velocity field of the Kolmogorov scale, which results in a viscous-convective
range from £k, the smallest active turbulent scale for the velocity field, to the Batchelor wave-
number kg = /Prk,, where Er scales as (Batchelor, 1959)

ET(ki,t) = KBET\/Z/{?_I, (6.10)

where Kp is the Batchelor constant, found to be ~ 2.5 in the present simulations. This value
is close to the first proposal K = 2 by Batchelor (1959), and in agreement with predictions
of Gibson (1968): V3 < Kg < 2v/3 for HIT. Other values measured in the ocean are slightly
higher (see Qian (1995) and values reported therein) even though other mechanisms may play
a non-negligible role in the ocean. Values obtained in DNS at moderate Re) are also higher
(Yeung et al., 2002).

The scaling of the cospectrum F(k, t) for a weakly diffusive passive scalar field has been discussed
notably in O’Gorman & Pullin (2005) and it has been found that the spectral velocity-scalar
correlation is not strongly modified in the framework Pr > 1, unlike the case Pr < 1. This is
expected if one compares the cospectrum Lin equations (6.5) for Pr = 1 where a = v, so that
the dissipative term is 2vk%F, and for Pr > 1, where a < v, which yields for the dissipative
term only vk2F. Hence, for a weakly diffusive scalar, the cospectrum still scales in k~7/ in the

inertial-convective range.

Finally, two comparisons are proposed hereafter. Since in DNS when the Prandtl number
increases the Reynolds number conjointly decreases for numerical resolution issues, we first
propose a large Reynolds number comparison with the SDIP model (O’Gorman & Pullin, 2005)
at Pr = 100 in Fig. 6.2a. However, since the SDIP is an asymptotic model, the Reynolds number
is unknown. The agreement is acceptable, and the slight discrepancy may be attributed to the
uncertainty for the Reynolds numbers, which is Rey = 2.10% here with the present anisotropic
EDQNM modelling.
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Then, in Fig. 6.2b, the compensated scalar variance spectrum is compared with the low Reynolds
number DNS of Yeung et al. (2004), where Rey ~ 8 and Pr = 1024. Initially, the scalar variance
spectrum is zero, and the Reynolds number is chosen so that after ten turnover times the
Reynolds number is Rey = 10. Our minimum wavenumber was decreased on purpose to match
with the DNS configuration, and the reason for the slight discrepancy at large wavenumbers
could be that the DNS is forced at large scales, whereas here we have a freely decaying Saffman
turbulence. This does not prevent us from getting a very good agreement, both in the viscous
convective range and further in the viscous-dissipative range, which validates our approach,
even at low Reynolds numbers.
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Figure 6.2: (a) Compensated cospectrum compared with the SDIP model (O’Gorman &
Pullin, 2005) at Rey = 2.10* and Pr = 100. (b) Compensated scalar variance spectrum
compared with the DNS of Yeung et al. (2004) at Rey ~ 8 and Pr = 1024.

6.1.1.3 Spectral transfers and conclusions for the inertial scalings

The inertial scalings of the cospectrum F(k,t) and scalar variance spectrum Er(k,t) were in-
vestigated for both low and large Prandtl numbers in subsections 6.1.1.1 and 6.1.1.2, where a
mean scalar gradient A sustains the fluctuations in a homogeneous isotropic decaying turbu-
lence. The theoretical predictions were recovered analytically, and more importantly, assessed
numerically over a wide range of Reynolds and Prandtl numbers, which illustrates the relevance
of our anisotropic EDQNM modelling.

Finally, the budget terms of the evolution equation of Er(k,t) are analyzed in Fig. 6.4, for large
(left column) and low (right column) Reynolds numbers, at high (top line) and small (bottom
line) Prandtl numbers. The first observation is that for all four cases, the linear production
term is more intense than the non-linear transfer at large scales, and then is negligible at smaller
scales, meaning that production of scalar fluctuations through the mean gradient is dominant
at large scales, where anisotropy is consistently gathered. In the very large Péclet number case
(a) where Pey = Rexv/Pr = 1.8.10°, there is a clear separation of three domains, in agreement
with Yeung & Sreenivasan (2014), even though freely decaying turbulence is considered here:
at low wavenumbers, one has almost —ST-NL(s0) ~ 9A . and the difference is due to the term
OsEr # 0; at intermediate wavenumbers, all three contributions are very small and of the
same order; finally, at large wavenumbers, there is a balance between non-linear transfer and
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(k,t)

T(k’t)v

Figure 6.3: Scalar variance spectrum Er(k,t) and cospectrum F(k,t) at large Reynolds
numbers for ¢ = 2. (a) Rey = 2.10° and Pr = 107°, along with the integral, Corrsin-
Obukhov and Kolmogorov wavenumbers kr, kco and k,. (b) Rey = 10* and Pr = 104,
along with the integral, Kolmogorov and Batchelor wavenumbers &z, k, and kg. The
cospectrum at Pr =1 at the same Reynolds numbers is displayed in grey as well.

dissipation ST-NL(s0) ~ 94k2Er. In the opposite case (d) where Pey — 0, non-linear transfers
are small and production balances well dissipation, in agreement with the prediction of Yeung
& Sreenivasan (2014). Furthermore, in the two low Prandtl number cases (c) and (d), the insets
show that the dissipation term is always more intense that non-linear transfers, even in the high
Re) configuration, in accord with the latter reference. For the two high Prandtl number cases
(a) and (b), non-linear transfers are more intense around k,, and then dissipation takes over
while approaching kp at larger wavenumbers.

6.1.2 Numerical results - Time evolution and anisotropy

In the previous section, the anisotropic EDQNM modelling was assessed for small and large
Prandtl numbers in HITSG by investigating the inertial scalings of the scalar variance spectrum
Er(k,t) and cospectrum F(k,t). In this part, effects of the Prandtl number Pr on the time
evolution of the scalar variance Kp, the mixed-correlation Kr, the normalized cospectrum
correlation p,g, and the Nusselt number Nu, are analyzed, along with the small scales return
to isotropy of the flow.

6.1.2.1 Prandtl effects on the decay and growth of < uzf > and < 62 >

The growth of K7 =< #? > and decay of Kz =< ugf > are addressed for both highly and
weakly diffusive passive scalars. In Cahpter 5, for Pr = 1, one had pr = 0.4075. Here, for
Pr <« 1 and Pr > 1, it is found that pr slightly increases to pr ~ 0.42 when Pr departs from
unity, consistently with the variations of the scalar backscatter parameter py in HIT with Pr.
It makes sense that pr varies less with Pr than pr since < usf > is a mixed correlation where
the velocity field is not affected at all by a change in Pr.
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Figure 6.4: Budget terms of the evolution equation (4.36) of the scalar variance spectrum

Ep(k,t), along with the previous characteristic wavenumbers, for 0 = 2. — Non-linear

term kST-NL(s0): __ Production term 2kAF; — Dissipation term —2ak®Er. The insets

represent the ratio ST-NM(150) /2qk2Er. (a) Rey = 1800 and Pr = 10%, (b) Rey = 23 and
Pr =102 (c) Rey = 2.10* and Pr = 1074, and (d)Rey = 400 and Pr = 10~%.

In Fig. 6.5a and 6.5b, both theoretical predictions for ar and a% given in (5.13) and (5.16)
are recovered numerically. The Reynolds number Rey is much higher for Pr < 1 than for
Pr > 1 in order to keep a sufficiently high Péclet number. One can say from Fig. 6.5a and 6.5b
that the respective decay and growth of Kr and Kr in HITSG is not affected by high or small
Prandtl numbers at large Reynolds numbers. A similar result was obtained for scalar integrated
quantities such as Kr in decaying HIT in Chapter 1.

In addition, a% is presented in Fig. 6.5c¢ at moderate Reynolds numbers, typical of DNS
and experiments, for various Prandtl numbers. This figure should be compared to the case
Pr =1 presented in Chapter 5, where a monotonic decrease of a% was observed from the high
Reynolds to the low Reynolds predictions (recalled in grey in Fig. 6.5¢ for Batchelor turbulence).
Therefore, this figure clearly illustrates that even though a Pr strongly different from unity
does not modify the asymptotic theoretical predictions at very large Reynolds numbers, it
significantly alters the decay of the scalar variance Kp at moderate ones. For Pr > 1, the

growth exponent a% slightly increases before diminishing toward the low Reynolds numbers
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Figure 6.5: Scalar decay exponent a% defined in (5.16) (black lines), and cospectrum decay

exponent ar defined in (5.13) (grey lines). Simulations ¢ = 2 (-) and 0 = 4 (- -), with O the

theoretical predictions, for (a) Pr = 1074, and (b) Pr = 10%. (c) o4 at intermediate Reynolds

numbers, for both ¢ = 2 and ¢ = 4 and various Pr (in black); the case 0 = 4 and Pr = 1 is
recalled in grey.

5/3 inertial

(Rey < 1) predictions of Chapter 5: this is because when Re) decreases, the k~
range vanishes. However, the k~! viscous range survives, thus slightly slowing down the decay.
Whereas for Pr < 1, the decrease of a% starts at quite high Reynolds numbers, because the
Péclet number is very small. The same observations are made for the decay exponent ar of the

mixed-correlation.

Consequently, one could conclude from Fig. 6.5a, 6.5b and 6.5¢ that the Prandtl number does
not affect the time exponent at very large Reynolds numbers, but at moderate ones. This is of
importance because it could explain why in DNS there is a significant scatter of the normalized

mixed-correlation pyg.

6.1.2.2 Cospectrum correlation p,y, pressure-scalar correlation IIr, and Nusselt

number Nu

The normalized correlation p,p, defined in (5.10), is addressed in Fig. 6.6a. Some values of
this quantity at Pr = 1 were reported in Chapter 5: therefore, the emphasis is put here on
the influence of Pr on p,9. The first feature to point out is that at large Reynolds numbers,
either with a small or large Prandtl number, p,¢ is constant: this can be obtained analytically
by considering the expressions of the exponents «, a% and ar. Then, p,y diminishes with
decreasing Reynolds numbers because of the joint decay of < uzfl > and growth of the scalar
variance, both studied in the previous part. It is worth noting that the magnitude of pyug
strongly depends on Pr at moderate Re), because the Prandtl number affects decay exponents
in this region of moderate Reynolds numbers, as revealed previously in Fig. 6.5c.

In addition, several low Pr values from Yeung & Sreenivasan (2014) are included in Fig. 6.6a,
and there is a good quantitative agreement with the present anisotropic EDQNM modelling;:
the three simulations of Yeung & Sreenivasan (2014), for Pr = 1/2048, Pr = 1/512, and Pr =
1/128, are almost all consistently contained within our EDQNM simulations at Pr = 10~* and
Pr = 1072, Moreover, at these moderate Re,, it is recovered that p,g increases in magnitude
with the Reynolds number at a given Pr. Furthermore, an interesting behaviour is recovered,
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which is the decrease in magnitude of p,9 when Pr departs from unity, either for Pr <« 1
or Pr > 1, at a fixed moderate Re): this notably confirms the DNS results of Yeung et al.
(2002); Yeung & Sreenivasan (2014), and can be interpreted in terms of loss of phase alignment
between spectral velocity and scalar fluctuations: indeed, for both Pr < 1 and Pr > 1, there
exists a subrange in wavenumber space (the inertial-diffusive and viscous-convective ranges
respectively) where the scalar variance spectrum strongly depart from the kinetic energy one.
This phenomenon is much more visible for Pr < 1.

This decrease in magnitude of p, with a Prandtl number different from unity is of practical
interest since it happens at moderate Reynolds numbers only, and this might be the reason
for the scattering of the obtained values of the cospectrum normalized correlation, as already
mentioned in Chapter 5.

—Pr=10*

Figure 6.6: (a) Normalized correlation p,g for o = 4 at various Prandtl numbers as a function

of Rey. Symbols correspond to the DNS of Yeung & Sreenivasan (2014): O Pr = 1/2048;

O Pr = 1/512; x Pr = 1/128. Black and grey lines are respectively for small and large

Prandtl numbers. (b) Pressure-scalar correlation IIx for ¢ = 2 at various Prandtl numbers.

The grey dashed line corresponds to the theoretical prediction. The zoom focuses on small

times to illustrate the difference with varying Pr. (c) Nusselt number Nu, defined in (6.11), as
a function of the Péclet number Pe, for various Pr.

Furthermore, the scalar-pressure correlation Il =< pdsf > is investigated: this correlation has
not received much attention, even though it is the destruction mechanism of the scalar flux, and
was not addressed in Chapter 5. There, it was shown that one cannot define a decay rate for
the dissipation er at large Reynolds numbers, because it is not conserved in the inertial range
unlike € and ep. But it is possible for IIx: indeed, according to the evolution equation (4.58)
of < ugf >, IlF should evolve as the production mechanism, proportional to the kinetic energy
K(t). This is confirmed numerically in Fig. 6.6b for Saffman turbulence: IIx is found to decay
6/5

in ¢t7%/°, similarly to the kinetic energy. Furthermore, Fig. 6.6b once more illustrates that the

theoretical decay rate does not depend on the Prandtl number.
Finally, the Nusselt number, defined as

< ugf >

Nu —
Y ah

(6.11)
is investigated for various Prandtl numbers. Nwu is in fact another normalization of the mixed-
correlation < ugf > which is of practical interest for heat transfers. The theoretical prediction
for the Nusselt number, detailed and assessed in Gotoh & Watanabe (2012), is that it should
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vary as Nu ~ Pe, where the Péclet number is Pe = PrRep, with the turbulent Reynolds
number Rer = 3Re§\ /20. This scaling is successfully recovered in Fig. 6.6¢ for a wide range of
Péclet and Prandtl numbers.

6.1.2.3 Return to isotropy of small scales

The anisotropy of the flow is briefly investigated here, at the level of the scalar second-order
moments: it is recalled that in Chapter 4, it was shown that small scales completely returned to
isotropy, which was expected since the velocity field remains isotropic in HITSG. Consequently,
one can wonder if the Prandtl number has an influence on the scalar small scales return to
isotropy. Not surprisingly, it is found that the impact of the Prandtl number on the global
anisotropy is comparable to moderate Reynolds numbers effects for the kinetic field: indeed,
the relevant dimensionless parameter for the scalar is not only Rey, but the product Reyv/Pr,
which could be called a Taylor Péclet number Pe).

Thus, even with a large Re,, if the Prandtl number is as small as 1074, Pey will be moderately
small, so that scalar small scales may not be not completely isotropic, in addition to other issues,
such as the lack of scale separation in the spectra (Yeung & Sreenivasan, 2014). Consequently,
very large Re) are required for highly diffusive passive scalars. This is illustrated in Fig. 6.7a,
where the Taylor Reynolds number is very large Rey ~ 10°, so that even at small Prandtl
numbers of order ~ 1074, the Péclet number based on the Taylor scale is still sufficiently high
Pey ~ 103: this is an important condition for weakly diffusive passive scalars to obtain clear
scalings, as underlined in Yeung & Sreenivasan (2014). This allows to observe in Fig. 6.7a that
there is a complete return to isotropy of scalar second-order moments small scales. It is worth
noting that from the Corrsin-Obukhov wavenumber kco, i.e. in the inertial-diffusive range,
there is no more anisotropy: the non-linearity being much stronger in the inertial-convective
range, for k;, < k < kco, the return to isotropy mechanism occurs dominantly in this region of
the wavenumber space.
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Figure 6.7: Effects of Pr on H ég) for o = 2 along with the integral, Kolmogorov, Corrsin-

Obukhov and Batchelor wavenumbers kr,, k;, kco and kg. (a) Pr = 107* and Rey =

2,1.10° so that Pey = 2,1.103. (b) Pr = 1 in black and Pr = 10% in grey, both at
Rey = 100, so that the Péclet number varies from Pey = 102 to 10
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For weakly diffusive scalar, analogous assessments leading to a similar conclusion are made in
Yeung et al. (2002), where it is shown numerically that even with a moderate Re), increasing
the Pr - which amounts to increase Pe) - allows to recover scalar isotropic small scales. It is
proposed to illustrate this feature in Fig. 6.7b, where Hg) is displayed for Saffman turbulence
at Rey = 100, for Pr = 1 and Pr = 10%* It is clear, notably with the zoom around the
Kolmogorov wavenumber k,, that increasing the Prandtl number at a fixed Reynolds number

participates into restoring isotropy at small scales.

Finally, it is worth noting that within our modelling, according to Fig. 6.7a and 6.7b, the large
scales level of anisotropy seems to be independent of the Prandtl number in Saffman turbulence,
and always very close to 1/15, with 1/15 > H:,(,g) This value of 1/15 is interesting because it is
the maximum level of anisotropy that the scalar field can handle according to the realizability
condition (4.29). Using the axisymmetric relations Hg) = Hg) = —H:g) /2, one obtains that
the largest eigenvalue is H§3T) Thus, in HITSG, the realizability condition is verified (otherwise
one would get negative scalar spectra) and the important feature is that the anisotropy reaches

its maximal value at large scales in Saffman turbulence.
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Figure 6.8: Zoom at large scales for H?g) in Batchelor turbulence (o = 4) for Pr = 10~*, along
with the integral wavenumber k7. The four different curves are at Pey = 193, 87, 36 and 15.

The case of Batchelor turbulence is a bit different: indeed, because of classical backscatter of
energy, strong inverse transfers initiate a return to isotropy mechanism at large scales (Eyink
& Thomson, 2000), so that the large scales level of anisotropy can decrease with time (or
equivalently can decrease when Re) decreases). This is more visible in the case Pr < 1 because
the Péclet number is in general lower than in the case Pr > 1, as illustrated in Fig. 6.8.
There, HéST) for Pr = 107* is displayed at different times during the decay, or equivalently at
various decreasing Reynolds numbers, so that the Péclet number goes from Pey) = 193 down to
Pey = 15. Even though the large scales level of anisotropy remains close to 1/15, it nevertheless

slightly diminishes.

6.1.3 Conclusions for Pr # 1 in HITSG

Decaying homogeneous isotropic turbulence with a mean scalar gradient (HITSG) that sustains
scalar fluctuations has been investigated numerically at large Reynolds numbers with the aniso-
tropic EDQNM modelling. The present work is a direct application of Chapter 5 for a Prandtl
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number either very small or very large: first, four quantitative comparisons are proposed. The
good agreement between the present results and DNS, LES and other models, permits to assess
the relevance of the model at Pr < 1 and Pr > 1 over a wide range of Reynolds numbers.
This notably confirms numerically theoretical spectral scalings for the scalar variance spec-
trum Ep(k,t) and the cospectrum F(k,t). Hence, in HITSG, at large Reynolds numbers, it
is notably recovered that for Pr < 1, Ep and F scale respectively in k=5/3 and k~7/3 in the

17/3 and

inertial-convective range, and then, from the Corrsin-Obukhov wavenumber kco, in k~
k~11/3 in the inertial-diffusive range. Moreover, when Pr > 1, the k! viscous convective range
beyond k, for Er is not modified with the presence of a mean scalar gradient. For both low
and large Prandtl numbers, budget terms of the evolution equation of Er(k,t) were analyzed
as well: it was shown that at large scales, the production is always stronger than non-linear
transfers. At small scales for Pr < 1, even at large Re), dissipation is stronger than non-linear

transfers: in the limit where the Péclet number tends to zero, dissipation balances production.

Secondly, the time evolution of the scalar variance < #? > and the mixed-correlation < ugf >
was investigated at large Reynolds numbers: it was shown numerically that the theoretical
predictions of Chapter 5 for the algebraic time exponents are still valid for Pr < 1 and Pr > 1,
consistently with a similar result for the scalar variance decay in HIT: the Prandtl number does
not affect the asymptotic time evolution of < #? > and < u3f > at large Reynolds numbers, only
at moderate ones. In addition, it was shown numerically that the pressure-scalar correlation
< p0sf >, which is responsible for the destruction of the scalar flux, decays with the same rate
as the kinetic energy, independently of the Prandtl number.

Afterwards, the Reynolds and Prandtl numbers dependence of the normalized cospectrum cor-
relation p,g was addressed as well: the present spectral modelling provides good quantitative
results with respect to DNS. Notably, it was found that at a fixed moderate Reynolds number,
say Rey ~ 100, p,g decreases in magnitude when the Prandtl number either increases or de-
creases, in agreement with the prediction of Yeung & Sreenivasan (2014). The linear dependence
of the Nusselt number with the Péclet number is also recovered.

Finally, it was shown numerically that the small scales of the scalar second-order moments return
to isotropy, provided the Péclet number is large enough. This notably implies, for highly diffusive
passive scalars, the need to reach very high Taylor Reynolds numbers Rey when one wants to
obtain a clear k~17/3 inertial-diffusive scaling, which numerically requires that Pr < 1073.

6.2 Prandtl number effects in shear-driven turbulence

In this section, HSRT, HST and HSTSG are addressed. The results regarding the impact of a
Prandtl number strongly different from unity are less conclusive than in the previous section
dedicated to HITSG. There are mainly two reasons for this: (i) First, for Pr < 1, huge initial
Reynolds numbers are needed, which make the simulations really long when St increases. This
is particularly true when there is no mean scalar gradient, i.e. in HST, since K decreases
exponentially whereas K increases exponentially. Nevertheless, a new result regarding the
inertial-diffusive scaling of Fg is proposed for HSTSG when Pr < 1. (ii) Secondly, when
Pr > 1, it is not clear if the use of non-local transfers, detailed in Appendix B, to sustain the

k~! viscous-convective range remains appropriate when a sustained shear is applied. Indeed,
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the non-local transfers were first derived for isotropic turbulence: since in HITSG the velocity
field remains isotropic, it seemed relevant enough to use the non-local expansions in the previous
section. But a sustained shear is the most anisotropic case. Hence, it is not straightforward
to quantify how the anisotropic non-linear transfers ”disturb” the isotropic scalar non-local
transfer in the presence of shear.

Whatever framework is considered, HSRT, HST, or HSTSG, the k~17/3 inertial-diffusive scaling
when Pr < 1 and the k! viscous convective scaling when Pr > 1 for Ep(k,t) are not modified
by the presence of shear. For the cospectrum F(k,t), the k—11/3 inertial-diffusive scaling when
Pr <« 1 is also not modified by the presence of shear.

6.2.1 Homogeneous shear-released turbulence

In this section, the decay of Kr in HSRT is addressed when either Pr < 1 or Pr > 1. It is
revealed in Fig. 6.9 that the Prandtl number does not affect the decay of the scalar variance K
in HSRT, as previously shown in HIT in Chapter 1 for asymptotically large or small Reynolds
numbers. Saffman and Batchelor turbulence are presented. It is notably found that K¢ decays
faster with Pr = 10~* than with Pr = 1, which is consistent with a moderate Péclet number:
the low Reynolds numbers regime is reached more rapidly than with Pr > 1.
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Figure 6.9: Scalar variance decay exponent ag, with ¢ = 2 in black and o = 4 in grey,
with St = 1; O: high Reynolds predictions; o: low Reynolds predictions. (a) From high
to low Reynolds numbers regimes for Pr = 10~%. (b) For Pr = 10%.

The scalar global anisotropy indicators b;fg are then displayed in Fig. 6.10 for both very large
and very small Prandtl numbers, and they have the same behaviour as in the case Pr =1, i.e.
an asymptotic state different from zero, meaning that there is still anisotropy left in the flow,
gathered at large scales.

6.2.2 Sustained shear flow

The case of sustained shear flows is now addressed. It is revealed in Fig. 6.11 that even with
Pr <« 1 or Pr > 1, the scalar variance K still decays exponentially with v = —0.52. This is
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Figure 6.10: biTj for 0 =2 and St = 1. (a) Pr=10"%. (b) Pr = 10*.

consistent with the Prandtl number dominantly affecting the small scales of the scalar variance
spectrum. Nevertheless, for Pr < 1, with an initial Rey(0) = 1, the associated Péclet number
would be too small and consequently the transitional state before reaching the asymptotic
anisotropic state would be rather large: furthermore, a too low Rey(0) causes some numerical
issues. Therefore, for a sustained shear flow and Pr < 1, the initial Reynolds number is
chosen much higher (Rey(0) = 100) to ensure an initial moderate Péclet number. Whereas
in the configuration Pr > 1, the initial Péclet number is sufficiently large so that no specific

precautions have to be taken.

K(t) and Kr(t)

0 10 20 30 40 50

Figure 6.11: Scalar variance K7 in Saffman HST. (a) For S = 10727, ", Re,(0) = 100
and Pr = 10"%. (b) For S = 17, ' and Pr = 10%.

Afterwards, the time evolution of the bg; and of the scalar shear rapidity S§ = er/(KrS) are
displayed in Fig. 6.12 for Saffman HST, for both Pr = 10~* and Pr = 10%. They all reach the
same asymptotic anisotropic state, independently of the value of the Prandtl number, which is
similar to the previous findings about anisotropy in HITSG.
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Figure 6.12: Scalar global anisotropy indicators b/ (t) and scalar shear rapidity S{ (t).
(a) For S = 107275 ", Rex(0) = 100 and Pr = 10~*. (b) For S = 17, * and Pr = 10%.

Finally, for illustration purposes in the high Prandtl case, the scalar variance spectrum E7p is
presented in Fig. 6.13a at St = 50 and displays a clear k~! scaling in the VCR. This scaling
is obviously not modified by anisotropy, because mean velocity gradients mainly apply on large
scales. In addition, the scalar fluxes are displayed in Fig 6.13b: the impact of the direct non-
local part T;f of the non-linear scalar transfer, which results in the non-local flux H; after
integration, is clear on the scalar non-linear isotropic flux HgL(iso): energy is brought beyond
the Kolmogorov wavenumber and the total resulting flux is found to be constant through k.

This non-local transfer allows to maintain, as in HIT, the k! viscous-convective range.
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Figure 6.13: (a) Normalized kinetic energy and scalar variance spectra FE(k,t) and
Er(k,t). (b) Scalar fluxes: non-linear isotropic ITy“%**) and non-local (direct) IIf: contri-
butions. Both with the Kolmogorov and Batchelor wavenumbers k, and kg, at Pr = 10%,

o =2 and at St =50 (Rey ~ 10%).
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6.2.3 Homogeneous Shear Turbulence with a mean Scalar Gradient

The HSTSG framework is now studied. For Pr < 1, the scaling of the streamwise flux spectrum
Ef = Fg in the inertial range can be easily predicted using arguments similar to the ones of
Bos & Bertoglio (2007) in the case Pr = 1. Starting from the scaling of the cospectrum for
a highly conductive passive scalar field (6.7), and replacing € by €;;, which is justified by the
presence of the main shear dU; /dzs, yields
2 1y 23,0

Bl (k.t) = S Koa el (k)k 17, (6.12)
Then, the scaling of the spectral tensor is used €;;(k)E(k) = 3¢;j(k)e, where €;; = 2e. This gives
in the inertial range €;;(k) ~ Se2/3=2/3 Finally, for very low Prandtl numbers, the streamwise
scalar flux is, in the inertial-diffusive range,

Fs(k,t) = —CEAa e OR37/9, (6.13)

In Fig. 6.14a, the k—37/9 scaling for the streamwise flux Fg is assessed over two decades in the
IDR (the two components of the scalar flux have been decreased for readability reasons), and
the k~23/9 slope in the ICR is recovered as well. The scalar spectrum Ep and cospectrum F
display the same scaling as in HITSG and are not modified by shear, similarly to the case of
Pr = 1. For weakly diffusive passive scalars Pr > 1, E7 still displays a k~! slope in the VCR,
whereas F and Fg scale similarly to the case Pr =1 in HSTSG. This is also illustrated in Fig.
6.14b.
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W W
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= " g
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Figure 6.14: Scalar variance, cospectrum and streamwise flux spectra Ep, F and Fg in

Saffman HSTSG. (a) For Pr = 107° and S = 17; ', at Rey = 2.10°, along with the

Corrsin-Obukhov and Kolmogorov wavenumbers kco and k;,. (b) For Pr = 10* and
S=10"27, ! along with the Kolmogorov and Batchelor wavenumbers k, and kg.

Finally, the exponential growth of K, K7, Kr and K f_- at the rate v = 0.34 is presented in
Fig. 6.15. In the latter figure, Kr and K]S_- can hardly be distinguished. There is no strong
differences with the case Pr = 1, except that the transitory state for the scalar variance and
mixed correlations < u16 > and < ugf > is longer for the case Pr < 1, as noted previously
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in HST for Kp. One can nevertheless remark that either in the case Pr < 1 or Pr > 1, the
kinetic energy is always less intense than K7, Kr and K f_-, as in the case Pr = 1.

Figure 6.15: Kinetic energy K, scalar variance K7, and mixed-correlations K and K}g_-, in
Saffman HSTSG. (a) For Pr = 107 and S = 17, . (b) For Pr = 10* and S = 1027, ".

6.2.4 Conclusions about shear-driven turbulence for Pr # 1

As specified at the beginning of this chapter, the results for highly and weakly diffusive passive
scalars in shear-driven turbulence are less conclusive than in HITSG. The lack of accurate data
for these regimes is flagrant since it was impossible to perform quantitative comparisons against
DNS and experiments.

Therefore, this section should be considered as a guide for future works, and may be some of
the results presented here will be of use. Nevertheless, the noteworthy findings are twofold: (i)
the Prandtl number does not affect the exponential rate of the scalar and scalar flux fields in
HST and HSTSG. (ii) For Pr < 1, a new IDR scaling was derived for the streamwise flux Fg
based on the arguments of Bos & Bertoglio (2007) for Pr = 1, which reads Fg ~ k3779,

On a theoretical point of view, as mentioned earlier, it is not clear if the use of isotropic non-
local transfers for the scalar field in the case Pr > 1 remains relevant in the presence of shear.
Anisotropic non-local transfers were derived (but not presented in Appendix B) following the
methodology of Lesieur & Schertzer (1978), but they proved to be completely negligible with
respect to the scalar isotropic transfer. What are the reasons for doubting of these non-local
transfers? First, the direct non-local transfer Ti,f brings strongly ”anisotropic scalar variance”
from large scales to almost isotropic small scales, and this transfer only depends on F and Er,
not on the anisotropic descriptors HZ(J) Secondly, in some configurations, the inverse non-local
scalar transfers 7', caused some numerical issue, probably because it only affects the isotropic
spectrum FEp at larges scales (by bringing small scales ”isotropic scalar variance”) and not

(T)
ErH.



Chapter 7

Spectral Modelling for Unstably
Stratified Homogeneous Turbulence

In this section, the anisotropic EDQNM modelling is extended to the case of active scalar

dynamics.

The contents of this chapter, except the variable stratification part, were published in:
Briard, Iyer & Gomez, ” Anisotropic spectral modeling for unstably stratified homoge-
neous turbulence”, Physical Review Fluids, 2 (4), 044604 (2017)

Unstably Stratified Homogeneous Turbulence (USHT) can be seen as a simplified approach for
Rayleigh-Taylor instability (Soulard & Griffond, 2012; Gréa, 2013; Soulard et al., 2016), which
is a phenomenon occurring for fluid of variable density. This instability can be found in various
areas, such as geophysical, astrophysical and confined industrial flows: more specifically, the
Rayleigh-Taylor instability can happen in natural flows such as atmospheric ones because of the
mean vertical temperature gradient, when the heavy fluid, located above the lighter one, pushes
it downward due to gravitational acceleration, which creates a mixing zone.

To investigate both numerically and theoretically a mechanism as complex as Rayleigh-Taylor
instability, it is convenient to work in the framework of USHT, which notably discards inhomo-
geneity, uses the Boussinesq approximation to reflect the retro-action of the convected buoyant
field on the velocity one, and assumes that the mixing length L is constant in time, and larger
than the turbulent integral scale (Soulard et al., 2014; Burlot et al., 2015a,b; Gréa et al., 2016a).
It follows that the stratification frequency N is constant as well. One has to point out that
frameworks different from USHT can be considered as well, for instance variable-density flows
where the Boussinesq approximation is not used anymore (Livescu & Ristorcelli, 2007; Chung
& Pullin, 2010).

The USHT framework has been addressed recently, thanks to the azisymmetric EDQNM model
(Burlot et al., 2015a,b; Gréa et al., 2016a) to analyze the large Reynolds numbers regimes. As
specified by its name, this spectral approach is dedicated to axisymmetric configurations and
permits an accurate investigation of the scale-by-scale anisotropy distribution, and of the time
evolution of one-point statistics such as the Froude number Fr and the mixing intensity A,
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which will be defined later on. The strength of the axisymmetric EDQNM is that production
terms, linear with N, are exactly treated, whereas the non-linear transfers are closed by a
classical EDQNM procedure, which is the most costly step in terms of computational resources.
However, this approach cannot handle, at least in the present form, shear flows, where there is
no particular symmetry, unlike the present anisotropic EDQNM modelling. For this reason, the
latter model is extended here to the case of active scalar dynamics, and compared to the results
obtained with the axisymmetric EDQNM of Burlot and coworkers. Furthermore, throughout
this chapter, USHT is qualitatively compared to results obtained with the anisotropic EDQNM
modelling in the frameworks of HST and HITSG (Chapters 3 and 5). In addition, both the
effects of large Schmidt numbers Sc on the inertial scaling of the scalar flux spectrum, and
pressure spectra, are addressed on a fundamental point of view.

The extension of the anisotropic EDQNM modelling to unstable stratification is a step further
towards the modelling and understanding of high Reynolds geophysical flows, such as atmo-
spheric and oceanic ones. Indeed, under the assumption of homogeneity, such flows contain
effects of shear, temperature and concentration gradients, stratification, rotation, and helicity.
Shear and mean scalar gradient mechanisms have already been addressed with our model, and
helicity is the topic of Chapter 8, so that stratification appears to be an natural extension,
whereas effects of rotation were addressed independently with EDQNM2 (Cambon et al., 2013).

Then, a step further toward the modelling of Rayleigh-Taylor instability is crossed by allow-
ing the stratification frequency N () to vary with time, with a retro-action of the fluctuating
quantities on the mean field. In such a configuration, the dynamics is completely different, and
the mixing length L(t) is known to evolve in ¢? (Soulard & Griffond, 2012; Gréa, 2013; Soulard
et al., 2016).

7.1 Evolution equations in USHT

In this section, the spectral anisotropic modelling developed in Chapters 2 and 4 for passive
scalar dynamics is extended to the case of unstably stratified turbulence: the additional linear
transfers linked to the Boussinesq approximation are presented hereafter.

7.1.1 Additional coupling terms

As commonly done for USHT, one has to scale the scalar fluctuations 6, which is usually a
concentration, as a buoyant velocity v (Soulard et al., 2014) according to

2
b Agb

N (7.1)

where N is the stratification characteristic time, or buoyancy frequency

N = 1/2,49312, (7.2)

where U is the mean buoyant field, g the gravitational acceleration, A the Atwood number
A = (p1 — p2)/(p1 + p2), assumed to be small or the Boussinesq approximation, with p; and ps
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the densities of the heavy and light fluid respectively. The evolution equations of the fluctuating
velocity and scalar fields are then

o oo 0%

O Au; dp &u;
L tu— = — No dj3. 4
8t + u] &T]‘ 8.% + Va:rja:lij + v 513 (7 )

The spectral counterpart of these equations are straightforward (see Appendices C and E). In
what follows, one has to replace 6 by 0 in the definitions of the spectral quantities introduced
in Chapter 4. The evolution equations of the two-point second-order correlations f%,-j, F; and
ET are then

<§t + 2uk2> Rij(hk,t) = T (k, t) + N (Pia(k) Fi(k, 1) + P () F (k1) ). (7.5)
Additional stratification coupling

(gt + v+ a)k:2> Fy(k,t) = T, N"(k,t) + N Ris(k, t) + NPig(k)ng(k, t), (7.6)
Additional coupling

(gt + 2ak2> ET(k,t) =TT NN (k,t) + 2N F3(k, t). (7.7)

7.1.2 Spherically-averaged Lin equations for USHT

The computation of the new linear transfers linked to the buoyancy frequency N amounts to only
two additional production terms with respect to HITSG, as seen just before: the retro-action of
the scalar field on the cospectrum, and the retro-action of the scalar flux on the kinetic energy
spectrum. The resulting four new linear spherically-averaged transfers for unstably stratified
turbulence are, for a vertical scalar gradient (along x3),

SL,USHT(iso) (k‘) - N PzS(k)Fz(k)ko — N}—(k), (7.8)
Sk
SﬁLj,USHT(dH) (k) _ g Pl3(k)ﬂ(k)Pij(k)d2k _ (S;)JN}—(]{:)
Sk
= 5o (BF (0)0j3 + B (0)5:3 = SF (k)35 (7.9)
o N
Sy (k) = j (Piae) Fu (k) + o () Fy(k) ) NY* (k) N () Ny () N (k) a2
k
_ 3N (oF s BE (VG 2 3
= TO(EZ (k)dj3 + Ej (k)diz — 3}_(7‘3)%)7 (7.10)
SPLUSHT 1y [ €T (k) Py (k) %k = 2N Er(k, t) (éas +HD(8)). (7.11)
Sk

Consequently, the spherically-averaged Lin equations for USHT are

(; + 21/k2> BE(k,t) = SNV (| #) + NF(k, 1), (7.12)

ir ir N
(gt + 21/k2> B(k, )35 (k,t) = S35 (k,0) + T2 F(k, 1), (7.13)
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a 0. le) 2N
(at + 21/k2> E(k,t) HE (k, t) = S50 (1, ¢) + = F k1), (7.14)
(aat + 2ak2> Er(k,t) = STNUO) (B ¢) 4 2N F(k, t), (7.15)

0 i 2
((‘% + 2ak2> Er(k, ) HSE (k) = SN (1) + VT (k. 1), (7.16)

((,ft F a)k2> Flk,t) = S5 (b 1) + Nesa(k,0) + 2N Bk, 0) (5 + HE (5,1)).
(7.17)

The non-linear transfers are the same as in passive scalar dynamics, since the linear operators
of the three-point third-order correlations equations are not taken into account in the non-
linear closure. Quadratic anisotropic contributions in the non-linear transfers for the scalar and
cospectrum can be found in Appendix E along with some illustrations for USHT.

In the following sections, high Reynolds USHT is investigated and results are qualitatively
compared with the axisymmetric EDQNM developed in Burlot et al. (2015a,b). Only the
component along the mean gradient ()33 will be presented since one has ()11 = ()22 = —()33/2
because of axisymmetry. Furthermore, to be consistent with the development of the present
spectral modelling, the same set of eddy-damping constants is kept: A; = 0.355, A3 = 0 and
A3 = 1.3. Differences between this set of constants, and A; = As = A3 = 0.355 used in Burlot
et al. (2015a), are illustrated hereafter in section 7.3.7.

First, inertial scaling of the kinetic energy, scalar variance and scalar flux spectra are addressed,
along with some considerations about the large scales initial conditions ¢ and op. Then, the
time evolution of one-point statistics is studied, such as the kinetic energy and its exponential
growth rate, the Froude number, the mixing parameter, and global anisotropy indicators. In-
fluence of large scales initial conditions ¢ and of the intensity of the stratification IV on the
asymptotic anisotropic states of the previous quantities is also analyzed. Afterwards, a quanti-
tative comparison with Burlot et al. (2015b) is proposed, to illustrate that our model is able to
recover, with satisfactory quantitative agreement, some features obtained by a model without
any truncation of the expansion in spherical harmonics specific for axisymmetric turbulence.
The scale-by-scale repartition of anisotropy in spectral space is then addressed and some con-
siderations on the structure of the flow are proposed. These different parts constitute a complete
validation of our anisotropic EDQNM modelling. Furthermore, qualitative comparisons with
the cases of passive scalar dynamics and shear flows, which have been addressed with the same
consistent closure, are proposed. Finally, in section 7.5, two new applications are presented:
first, the pressure spectrum, and more specifically its anisotropic part resulting from stratifica-
tion, is investigated. Then, effects of large Schmidt numbers, notably on the inertial scaling of
the cospectrum F, are revealed.

7.2 Spectral scaling and infrared dynamics

In this part, the emphasis is put on on the three main spectra of USHT: the kinetic energy
spectrum E(k,t), the scalar variance spectrum Ep(k,t) and the cospectrum F(k,t), which are
investigated at large Reynolds numbers. First, the inertial scaling is discussed, and then, we
focus on the infrared dynamics.
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7.2.1 Spectral scaling of F, Fr and F
Firstly, the scaling of the main spectra is investigated. As in HITSG, E and Er scale in k=%/3
in the inertial range, and F in k~7/3, as revealed in Fig. 7.1. Moreover, the peaks of the three
spectra evolve in k~3 with increasing Nt, as assessed in Figure 11 of Burlot et al. (2015a). This
can be shown easily, and the idea of the proof is inspired from a Rayleigh-Taylor analysis by
Poujade (2006). Let’s call Epax the maximum of the kinetic energy spectrum. Dimensional
arguments yield Emax(t) ~ L(t)K(t). Using the self-similar exponential growth of integrated
quantities gives FEpax(t) ~ exp(35Nt/2), where [ is the exponential growth rate of the kinetic
energy. Then, at high Reynolds numbers, one can assume that kpyax(t) ~ kr(t) so that the time
t can be expressed as follows: t ~ —2In(ky)/(BN). Injecting this formula into Fi.x finally
provides

Ernax(t) ~ k2, (7.18)

VR Y
TN =% == Nt =25
O max 0 max By

Figure 7.1: Evolution of the spectra in Saffman USHT. The O denotes the peak of the spectra,

which are represented at three dimensionless times Nt = 19, Nt = 22 and Nt = 25, and

Re)(Nt = 25) = 3.10%*. (a) Kinetic energy spectrum E(k,t); (b) Scalar variance spectrum
Er(k,t); (c) Cospectrum F(k,t).

Furthermore, the possibility of an anisotropic correction to the Kolmogorov spectra is discussed
in Burlot et al. (2015b), and it is shown numerically in the latter reference that the anisotropic
part of ¢33(k,t) scales in k=2 (mostly at the beginning of the inertial range). Nevertheless, if
one zooms in in the corresponding Figure 12, it appears that k=3 is steeper than the real inertial
range slope. This is in agreement with our numerical simulations displayed in Fig. 7.2a, where
the isotropic, directional and polarization parts of ¢33(k,t) are presented. Clearly, the isotropic

part ¢§i§o) scales in k~5/3. Whereas one has for ¢g§01) (and ¢g§ir)) a spectral slope steeper than

k~7/3, but not as sharp as k3. Numerically, k722 is found here, in good agreement with the
recent DNS of Gréa et al. (2016a), where the spectral scaling of ¢:(§01) is also closer to k~7/3 than
k~3. Furthermore, it is recovered, in agreement with Burlot et al. (2015b), that the polarization

part is more intense at large scales than the directional one.

In Fig. 7.2b, for illustration purposes, the linear and non-linear transfers of kinetic energy
are displayed for Saffman turbulence. It is revealed that at large scales, linear production
mechanisms dominate over non-linear transfers which take energy from these large scales and
bring it to smaller scales. This feature, that production is strong at large scales and thus that
anisotropy is dominant at large scales, will be used later on.
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Figure 7.2: (a) Spectral slope of the isotropic, directional and polarization parts of the
spectral tensor ¢33(k,t). (b) Normalized linear and non-linear transfers of kinetic energy.
Both in Saffman USHT at Nt = 25 where Rey = 3.10%.

Now, we investigate in detail the inertial scaling of E(k,t), Er(k,t) and F(k,t), and more
precisely the value of the Kolmogorov and Corrsin-Obukhov constants Ky and Ko respectively.
These constants are obtained by compensating the spectra with an adapted scaling. For the
kinetic energy and buoyancy spectra, it is shown in Fig. 7.3a that the usual isotropic inertial
scalings

_ . _ —2/3 1.5/3
inertia 9 - 3 ) .
Eierial(k, 1) = E(k,t) e 23k (7.19)
ET,inertial(ka t) = ET(ka t) 6;1 61/3 k5/3? (720)

are relevant and allow to recover classical values for the constants, Ko = 1.31 and Kco = 0.76,
similar to what is obtained for passive scalar dynamics. This is completely different when it
comes to the cospectrum F. First, let’s point out that there exist two different inertial scalings:
the classical one proposed by Lumley (1967) which was shown to work nicely for passive scalar
dynamics in HITSG in Chapter 5, with a constant Cr ~ 3, and a more recent one, derived by
Burlot et al. (2015b), which unlike Lumley’s, takes into account the scalar dissipation rate ep,
which seems a priori relevant for an active scalar field

Frneni (k,8) = Flk, () ™12 KT, (7.21)
-1
FRakik,t) = Fk ) N7 (Koe' + Keoere ™) k. (7.22)

The inertial scaling FEwlot = first derived in Soulard & Griffond (2012), is presented in Fig.

inertial’
7.3b: the plateau of the compensated cospectrum only starts appearing at Reynolds numbers

as large as Rey ~ 3.105. Whereas for the passive scalar case, at a similar Reynolds number, F

was displaying a clear plateau around Cr ~ 3 in the inertial range. Nevertheless, the scaling

proposed by Burlot and coworkers FPWIL seems to be more relevant than Lumley’s: indeed,

inertial
Lumley

Burlot :
for Fouioy, a plateau seems to appear around 3.7, whereas F, .7 settles around 12, which

is too high, and consequently not displayed in Fig. 7.3b. The fact the scaling (7.22) is better

than .7-"11;12?;113 is very likely because it takes the scalar dissipation rate e7 into account.
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Figure 7.3: Compensated spectra in the inertial range for Saffman USHT, with the integral
and Kolmogorov wavenumbers ky and k,. (a) Compensated kinetic energy spectrum
(7.19) and scalar variance spectrum (7.20) at Rey = 3.10%, along with the Kolmogorov
constant Ky = 1.31 and Corrsin-Obukhov constant Kco = 0.76. (b) Compensated
cospectrum with Burlot scaling (7.22) at Rey = 3.10%. The Lumley scaling (7.21) is not
displayed since the curve is similar, but the plateau is located around 12.

7.2.2 Infrared dynamics

Now that the inertial range of the spectra has been investigated, the infrared dynamics is
considered. It is recalled that in HITSG for a passive scalar, if initially op is different from
o, greater or lesser it does not matter, it always results in o = o after a few turnover times
(see Chapter 5). In USHT, it is fundamentally different since because of stratification, all of the
three main spectra E/, Er and F are coupled through the linear production terms at large scales.
Hence, the most energetic initial spectrum, the one with the smallest infrared slope, imposes
the minimum of energy to the others, so that in the end one has always ¢ = op = min(o(t =
0),or(t = 0)). This is completely different from HITSG where the passive scalar field has no
effect on the kinetic field. Two examples are presented. First, in Fig. 7.4a, one has o(t = 0) = 2
and op(t = 0) = 4. The minimum of energy is thus imposed by F so that the scalar infrared
slope results very rapidly, within one dimensionless time Nt, in o7 = 2. This is identical to
what happens in HITSG. In the opposite case illustrated in Fig. 7.4b, one has o(t = 0) = 4 and
or(t = 0) = 2: the minimum of energy is this time imposed by Er so that after one Nt, o = 2.
This case is completely different from HITSG where o would have changed to 4.

A last aspect is presented in Fig. 7.4c: because of strong backscatter of energy towards large
scales when o > 4, if the slope is initially ¢ = 5, it eventually becomes ¢ = 4 in a few
dimensionless times Nt. The same mechanism of strong inverse transfers of energy occurs in
decaying isotropic turbulence (Lesieur & Ossia, 2000).

From this analysis, one can choose, without any loss of generality, 0 = opr < 4. This result
for USHT infrared dynamics notably simplifies the study of asymptotic anisotropic states of
the flow: in particular, we choose to investigate only integer values of the infrared slopes:
o=op=1{1;2;3;4}.
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Figure 7.4: Infrared dynamics of E(k,t) and Er(k,t) with N = 17;'. (a) o(t = 0) = 2 and

or(t = 0) = 4: black curves at Nt = 0 and grey ones at Nt = 1. (b) o(t = 0) = 4 and

or(t = 0) = 2: black curves at Nt = 0 and grey ones at Nt = 1. (c) Initially o(t = 0) = 5, and
then o varies from Nt =0 to Nt = 4.

7.3 Omne-point statistics

Here, two important quantities of unstably stratified turbulence are firstly addressed, namely
the Froude number

Fr(t) = -0 (7.23)

which is the ratio of the stratification characteristic time 1/N on the inertial one K /e, and the
mixing parameter

A(t) = I;Té’“;) (7.24)

which is the ratio of the scalar variance to kinetic energy. Since the scalar field is scaled as a
buoyant velocity, A is dimensionless. Then, the exponential growth rate S8 of the kinetic energy
K =< w;u; > /2 is analyzed, along with the time evolution of global anisotropy using the
normalized deviatoric Reynolds stress tensor b;;. More precisely, the influence of N and o on
the asymptotic values reached by Fr, A, 8 and b33 at large Nt and Re) is studied. Finally,
a quantitative comparison with the axisymmetric EDQNM (Burlot et al., 2015b) is proposed.
Additional considerations about the modelling are also briefly presented.

7.3.1 The Froude number Fr

The Froude number can be interpreted as a ratio of characteristic time scales. As such, it could
be qualitatively compared to the shear rapidity Sg = ¢/(K.S) in shear flows, notably addressed
with the same anisotropic EDQNM modelling in Chapter 3. In Fig. 7.5a it is revealed that F'r,
unlike Sy, depends on ¢ in the asymptotic anisotropic state. Final values of Fr spans from
0.44 for ¢ = 1 to 0.66 for ¢ = 4. The smaller o, the smaller Fr: this is expected since for
small o, large scales contain more energy and consequently are more anisotropic, because of the
production terms which act dominantly at large scales, as illustrated in Fig. 7.2b. With the
production terms being dynamically dominant with a small o, the characteristic time scale 1/N
diminishes, thus making F'r decrease. Nevertheless, the values reached here by F'r are slightly
higher than the values obtained in Burlot et al. (2015b) (F'r = 0.3 for ¢ = 1). This means that
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the flow within the present approach is less sensitive to stratification than with the axisymmetric
EDQNM. It is shown in section 7.3.7 that by changing the eddy damping constants, we can
increase the impact of stratification and thus reduce the Froude number: asymptotic values of
Fr are gathered in Table 7.2.

However, in Fig. 7.5b it is shown that F'r, similarly to Sg, does not depend on the intensity of
the mean gradient N, except at small Nt in the transitory regime. At short times, the larger
N, the smaller F'r: this is consistent with a strong stratification intensity making production of
buoyant fluctuations dominant initially.

—N=0.17"
---N =17,
-=N =275
““““ N =57t
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Figure 7.5: Influence of initial parameters o and N on the Froude number Fr = ¢/(KN).
(a) Various o at N = 17, . (b) Various N for o = 2.

7.3.2 The mixing intensity A

Now, the mixing intensity A is addressed. Similarly to F'r, its asymptotic value depends on o,
but not on its initial value, except for short times of course, as revealed in Fig. 7.6a and 7.6b.
The dependence with N is not presented since it is very similar to what happens for Fr, i.e. a
dependence on N only at short times. The final values of A are contained between 1.6 for o = 1
and 1.4 for o = 4, which is quantitatively in agreement with Burlot et al. (2015b): asymptotic
values of A are gathered in Table 7.2.

One can remark that Kp/K depends strongly on initial conditions at a fixed o, such as the
initial Reynolds number Re)(0) and the stratification frequency N. Indeed, A initially decreases
in Burlot et al. (2015b), whereas it initially increases here. The reason is the following: here,
Rex(0) ~ 5 implies that linear production mechanisms dominate whatever the value of N is,
roughly for N > 0.17, . For the axisymmetric EDQNM, Rey(0) ~ 70, which requires at least
N =17, ! to make A increase initially, meaning that linear production overcomes non-linearity.
This is illustrated in Fig. 7.6c.
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Figure 7.6: Mixing intensity A = Kp/K for: (a) various o at N = 17;*; (b) various initial
values A(0) for o0 = 2 and N = 175 *; (c) various N and Rex(0) with 0 = 2: Rey(0) = 70 in
black and Rey(0) =5 in grey.

7.3.3 Growth of the kinetic energy K (t)

The emphasis is now put on the exponential growth rate 5 of the kinetic energy K (t) in USHT.
It was assessed by Burlot et al. (2015b) that this growth rate strongly depends on the large
scales initial condition o, according to the theoretical prediction

4

K(t) ~ K(O) exp(ﬁBurlotNt)v ﬁBurlot = 0'7+3’ (725)

which comes from the more general work of Soulard et al. (2014) where the stratification fre-
quency N can vary: (7.25) corresponds to the specific case where N is constant. Furthermore,
(7.25) relies on the fact that the largest eigenvalue of the linear operator of the evolution equa-
tions of the axisymmetric EDQNM is 2V: indeed, equalizing the growth rate of the linear limit
E ~ exp(2Nt) with the one coming from self-similar analysis E ~ KL ~ exp((o + 3)8Nt/2)
directly yields (7.25). In our case, because of the anisotropy modelling through a truncated
expansion into spherical harmonics, our evolution equations (7.12) to (7.17) are different from
those of Burlot and coworkers. The largest eigenvalue of the linear operator associated to (7.12)-
(7.17) is 4N/+/5 here, against 2N for Burlot et al. (2015a,b); Gréa et al. (2016a). This leads to
a different theoretical prediction for the exponential growth rate of the kinetic energy

8

K(t) ~ K(0) exp(BinNt), Bin = m~

(7.26)
The present theoretical predictions and those of Burlot et al. (2015a) are gathered in Table 7.1,
and it is worth noting that for a given large scales initial condition o, our predictions yield a
smaller growth rate than in the axisymmetric EDQNM: this is very likely due to our truncated
expansion into spherical harmonics of the spectral correlations. Moreover, this is consistent with
our flow being less anisotropic. We could conjecture that taking into account more spherical

harmonics would increase the exponential growth rate of the kinetic energy up to the limit

ﬁ Burlot -
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Large scales initial condition | c =1 o=2 06=3 oc=4
Present prediction : By 0.894 0.716 0.596 0.511

Present EDQNM : 5 0.893 0.715 0.596 0.540
Burlot’s prediction : Sgurlot 1 4/5 2/3 4/7

Table 7.1: Comparison between the theoretical prediction Sy, for the kinetic energy exponential
growth rate, and the numerical result § obtained with our anisotropic EDQNM modelling.

10

5
107 1
20.TI5Nt

/6 and /ch

Exponential growth

(a) (b)

Figure 7.7: (a) Kinetic energy exponential growth rate § for o = 1, 2, 3 and 4. Straight
lines indicate the numerical results, and [J the theoretical prediction (7.26), without the
correction pyspr. (b) Exponential growth of K, Kt and Kz for o = 2.

In fact, the evolution equations (7.5) to (7.7) of R;j, ET, and F; reveal that contributions
of the fourth order expansion for £, Z and €T bring no contribution in (7.6). A higher-
order expansion for the scalar flux F; is required to modify the production terms and
thus get closer to the exact value 2N of the maximal eigenvalue of the linear operator.

The predictions for the exponential growth rate of the kinetic energy are compared to our
numerical results in Fig. 7.7a. The agreement is excellent: for ¢ = 1,2, 3, the prediction By,
is recovered within 1%. There is a slight difference in the case of Batchelor turbulence, where
the numerical result is 5% higher than the prediction: this is very likely because of the strong
inverse non-linear transfers which naturally occur in Batchelor turbulence (Lesieur & Ossia,
2000). One could add a backscatter parameter, i.e. a correction for Batchelor turbulence, to
the prediction (7.26) in the specific case ¢ = 4, as usually done for decaying HIT. Here for
USHT, in order to adapt the theoretical prediction in Batchelor turbulence to our numerical
result, a least square fit leads to the backscatter parameter pyspr = 0.37, so that

(7.27)

8 { pusut = 0 for o <3,
Bin =

\/5(0’ — pusHT + 3)’ pusut = 0.37 for o =4.

It is revealed in Fig. 7.7b that the scalar variance K7 and the mixed correlation K both grow
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at the same rate §, in agreement with Burlot et al. (2015a,b); Gréa et al. (2016a). This can
be qualitatively compared with the case of a passive scalar field advected by a turbulent shear
flow with an imposed mean scalar gradient, where K7 and Kz also grow exponentially with the
same rate as K, as revealed in Chapter 5.

In conclusion, the kinetic energy exponential growth rate strongly depends on the large scales
initial conditions ¢ in the asymptotic states of USHT. This is interesting, since for shear flows,
K(t) was growing at the same rate independently of o, at least within the same anisotropic
EDQNM modelling (further explanations were provided at the end of Chapter 3). This illus-
trates two intrinsically different mechanisms of kinetic energy production in shear flows and
USHT.

7.3.4 Global anisotropy

The time evolution of global anisotropy is now addressed: the scale-by-scale distribution of
anisotropy is the subject of the next part. In Fig. 7.8a to 7.8d, b33 and bg3 first increase,
which shows the departure from the isotropic state, and then decrease and reach a final non-
zero value. This decrease is the signature of a return to isotropy of the small scales when the
Reynolds number increases. More specifically, it is revealed that polarization anisotropy for
b33 is stronger than the directional one, in agreement with Burlot et al. (2015b). The strong
anisotropy in the component ()33 furthermore shows that turbulent structures mainly align with
the mean scalar gradient. In addition, the values reached by b3T3 are quite similar to the ones
reached by b(dlr) Another important feature is to study the influence of initial conditions, such
as o and NN, on the final state of anisotropy. The same conclusions as for F'r and A are drawn
for b3z and bi;: as shown in Fig. 7.8d, varying N affects only the short time dynamics of b33 and
b3TS, whereas increasing o decreases the asymptotic values of the velocity and scalar anisotropy
indicators. The latter feature is expected because by decreasing o, one diminishes the large
scales energy and consequently the amount of anisotropy of the flow. The results obtained
here are quite different from shear flows, where the asymptotic anisotropic state of b;; does not
depend anymore on . Whereas for both shear flows and USHT, varying the mean gradient
intensity impacts only short times of b;;.

Hence, the main difference with the axisymmetric EDQNM is that the present anisotropic
EDQNM modelling under-estimates the global anisotropy of the flow, so that asymptotic ani-
sotropic states of bgz are lower in our case: values are reported in Table 7.2. It is shown
in part 7.3.7 that we can slightly increase the global anisotropy of the flow by changing the
eddy-damping constants.

Finally, in addition to these global anisotropy indicators, the pressure-velocity 133 and pressure-
scalar IIr correlations are presented in Fig. 7.8e, whose definitions are respectively

ILr(t) <p— >= / S5 NE(k, t)dk, (7.28)
61'3

Mgy (1) =< 2p2%3 5= 9 / ( GNL(iso) 1 gNL(dir) 4 SNL(pOD)dk. (7.29)
8333 0

The return to isotropy at the level of the scalar flux is found to be more intense than the one
of the velocity field: this is expected since the cospectrum is a purely anisotropic quantity,
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Figure 7.8: Global anisotropy indicators for the velocity and scalar fields. (a) Polarization and

directional anisotropy parts of bg3 for N = 17'(;1 and 0 = 2. (b) bsz at N = 17'(;1 for various

o. (c) bly at N = 175" for various 0. (d) bsz at o = 2 for various N (the same behaviour is

observed for b1;). (e) Return to isotropy: normalized pressure-velocity 133 and pressure-scalar
ITx correlations in Saffman (black) and Batchelor (grey) turbulence.

for which pressure is the destructive mechanism. Furthermore, in agreement with previous
statements, the return to isotropy mechanism is stronger for Saffman turbulence than Batchelor
turbulence, because large scales are less anisotropic in the latter case than in the former.

7.3.5 Comparison with Burlot et al. (2015b)

In this part, we compare quantitatively the results of our anisotropic EDQNM modelling to the
axisymmetric EDQNM (Burlot et al., 2015a,b) specifically for two one-point statistics investi-
gated in the previous sections: the Froude number F'r, defined in (7.23), and the mixing inten-
sity A defined in (7.24). First, it was observed previously that the asymptotic anisotropic states
obtained with the present anisotropic EDQNM modelling are less anisotropic than the ones ob-
tained in Burlot et al. (2015b): this was notably seen through F'r and b33 which were higher and
smaller respectively. In order to provide here a meaningful comparison, and only for this part,
we use the eddy-damping constants of the axisymmetric EDQNM, i.e. A} = Ay = A3z = 0.355.
The impact on USHT dynamics of the two different settings of eddy-damping constants ([EDC1]:
A1 =0.355, Ay =0, A3 = 1.3; [EDC2]: A} = Ay = A3 = 0.355) is discussed in section 7.3.7.

So, for the comparison, we use the setting [EDC2]| in Saffman turbulence (¢ = 2), an initial
turbulent Reynolds number close to Rep = 833, with Rey = /20Rer/3, and the initial peak
of energy is kpeax = 40k (0). Even though it is stated in Burlot et al. (2015a) that the initial
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Froude number is Fr = 1.2, it seems to not be the case in Figure 1(a) therein. Consequently,
we choose the stratification frequency N = 473 ! so that the initial behaviour of Fr is recovered:
taking N = 17, ! would not have changed much.

The results are presented in Fig. 7.9. For the Froude number, the overall agreement is excellent:
the transient regime is correctly captured and notably the strong decrease; the asymptotic value
of F'r is quite well recovered. For the mixing ratio A, the initial behaviour is quite well captured,
with a very good agreement for the asymptotic value. In conclusion, there is a satisfactory
agreement with the axisymmetric EDQNM if one changes the eddy-damping constants from
[EDCI1] to [EDC2]. The drawback is that, as illustrated in section 7.3.7, by doing so the
Corrsin-Obukhov constant decreases.

1.5 ‘ ‘ 2
—Present modelling -
= < 1.5¢ —=-.
R 1 ---Burlot et al. (2015) .
g g
& 2 —Present modelling
= <
= g ---Burlot et al. (2015)
205 g
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Figure 7.9: Comparison of the present anisotropic EDQNM modelling with the ax-
isymmetric EDQNM of Burlot et al. (2015b): o = 2, Rex(0) ~ 70, N = 47;,*, and
kpeak = 40k(0). (a) Froude number Fr. (b) Mixing intensity A.

7.3.6 Conclusions on one-point statistics

In this part, various one-point statistics of crucial importance in unstably stratified turbulence
have been studied: the Froude number F'r, the mixing intensity A, the growth rate § of the
kinetic energy, scalar variance and scalar flux, and the velocity and scalar global anisotropy
indicators bz and bl;. The different results could be summarized as follows: (i) All these
quantities strongly depend on ¢ in the asymptotic anisotropic state at large Nt, or equivalently
at large Reynolds numbers. When o increases, the large scales energy diminishes along with the
quantity of anisotropy injected in the flow, so that F'r increases, and A, 3, bss and bgg decrease.
(ii) On the contrary, the asymptotic anisotropic state does not depend on N: changing the
intensity of the mean scalar gradient only impacts the short time dynamics.

Finally, the main difference between the two approaches is that the flow is less anisotropic in our
case, probably due to the truncation of the spherical harmonics expansion of spectral correlations
for the modelling of anisotropy. The principal consequences are (i) an exponential growth rate
of the kinetic energy 10% lower than in Burlot et al. (2015a), but nevertheless in agreement with
our new theoretical prediction, and (ii) smaller values for b33 as well. Asymptotic values of the
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Froude number Fr | Mixing intensity A Growth rate § | Global anisotropy b33

Present Burlot Present Burlot | Present Burlot Present Burlot

0.443-0.265 0.306 | 1.607-1.580  1.56 0.893 1 0.265-0.287  0.410
0.551-0.337  0.385 | 1.508-1.466  1.45 0.715 4/5 0.239-0.260 0.375
0.624-0.387  0.435 | 1.440-1.387  1.37 0.596 2/3 0.224-0.242 0.346
0.659-0.412 0.460 | 1.407-1.347 1.31 0.540 4/7 | 0.217-0.234 0.323

w9

Table 7.2: Comparisons of the asymptotic values at large Re) of one-point statistics, obtained

with the present anisotropic EDQNM modelling, and with the axisymmetric EDQNM. For the

present modelling, values at left correspond to the setting of eddy-damping constants [EDC1],
and at right to [EDC2] (see section 7.3.7 for details).

one-point statistics analyzed so far, and obtained with both the present anisotropic EDQNM
modelling and the axisymmetric EDQNM, are gathered in Table 7.2.

Furthermore, throughout this part, qualitative comparisons were made with the cases of passive
scalar dynamics (HITSG) and shear flows. It notably appeared that the asymptotic anisotropic
states in USHT and shear flows strongly differ: indeed, in shear flows, at least within the
same anisotropic EDQNM modelling, the asymptotic anisotropic state does not depend on the
mean-field gradient intensity, nor on the large scales initial conditions o.

7.3.7 Eddy-damping constants

In this section, we briefly discuss the impact of changing the eddy-damping constants on the
dynamics of USHT. First, we recall that for consistency with the development of the present ani-
sotropic EDQNM modelling, the same eddy-damping constants are kept here for the extension
to the case of active scalar dynamics, i.e. A; = 0.355, As =0, A3 = 1.3 [EDC1], where A; is for
the velocity field, and Ay and As for the scalar field. The setting [EDC1] was consequently kept
so far, except for the quantitative comparison against the axisymmetric EDQNM: indeed, in the
latter work, a different choice of eddy-damping constants was made, i.e. A1 = As = A3 = 0.355
[EDC2]. Furthermore, in Burlot et al. (2015a), a correction to the eddy-damping term is added
to match with DNS: this is not considered here, since it only slightly affects the early dynamics.

With the present setting [EDC1], the Kolmogorov and Corrsin-Obukhov constants are consistent
with those obtained for passive scalar dynamics, Ky = 1.31 and Kco = 0.76, as presented before.
Choosing [EDC2] as in Burlot et al. (2015a,b), tends first to decrease Ko to values smaller than
usual ones (Koo = 0.6), as revealed in Fig. 7.10a, whereas K remains unchanged. Furthermore,
with [EDC2], the flow is slightly more anisotropic in Fig. 7.10b: indeed, bss increases a bit from
[EDCI1] to [EDC2]. The main difference is observed on F'r, which is reduced with [EDC2]: this
means that the latter choice of eddy-damping constants enhance the importance of stratification
in the dynamics, without increasing significantly the global anisotropy. Hence, changing the
eddy-damping constants from [EDC1]| to [EDC2] slightly increases the global anisotropy of
the flow, and reduces Fr, which makes our results closer to Burlot et al. (2015a,b). But the
counterpart is a decrease of the Corrsin-Obukhov constant, which is another reason why [EDC1]
is preferred here. Moreover, whether [EDC1] or [EDC2] is chosen, it does not improve the plateau
for the cospectrum F nor change the exponential growth rate 5 of the kinetic energy.
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Figure 7.10: Comparisons of the eddy-damping constants settings in Saffman turbulence:

A; =0.355, A; = 0 and A3 = 1.3 [EDC1] (black lines) and 4; = Ay = A3 = 0.355 [EDC2]

(grey lines). (a) Kinetic energy and scalar variance compensated spectra with Rey (Nt =

20) = 3.10*. Straight line (—) for Ek®3¢=2/3 dashed line (——) for Epk®/3e;'el/3. (b)
Fr, A and bs3.

7.4 Scale by scale anisotropy and structure of the flow

In this part, the scale by scale distribution of anisotropy is investigated for the velocity and scalar
fields, at the level of the second-order moments, thanks to H. églr) (k,t), égon (k,t) and H. ?Eg) (k,t).
More precisely, we use, instead of H. g), the scale-by-scale dimensionality parameter,

another indicator of anisotropy often used

1 2
) _ .9 T 27, _ (T) i
sin® yp(k,t) = ki) /Sk sin” 0y (k) £ (k,t)d“k = 2Hg5 " (k,t) + 3 (7.30)

where 6 (k) is the angle between the vertical axis and the wavevector k. When the considered

scales are isotropic, the value of sin® vz is 2 /3, whereas it is 0 for HZ»(JT).

It was shown in Fig. 7.8a to Fig. 7.8d that in the asymptotic anisotropic state, the global
anisotropy indicators bsz and bgg are non-zero, meaning that there is anisotropy in the flow.

First, it is revealed in Fig. 7.11a, that anisotropy is mainly gathered at large scales for the

velocity field, where Hégir) and H?EgOl) are different from zero, unlike small scales which have

returned to isotropy. Omne can remark that, as previously, polarization anisotropy is much
stronger that directional one at large scales. An interpretation of this is provided a bit later.
Similarly, for the scalar field in Fig. 7.11b, small scales have returned to isotropy (sin®yz = 2/3),
whereas anisotropy is gathered at large scales. This figure additionally illustrates further that
Saffman turbulence is globally more anisotropic than Batchelor turbulence, because the linear
production at large scales is stronger in Saffman than in Batchelor turbulence. Interestingly,
for both the velocity and scalar fields, Fig. 7.11a and 7.11b show that from the longitudinal
Taylor scale A = /200K /e, the scales have completely returned to isotropy: in particular, this
indicates that even in USHT, isotropic statistics could be used for scales smaller than A. The
Ozmidov wavenumber, defined in Gréa et al. (2016a) ko = 27/ N3 /e, is displayed as well: it is
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Figure 7.11: Spectral anisotropy indicators, along with the integral, Ozmidov, and Kol-
mogorov wavenumbers kr, ko, ky; the Taylor scale X is displayed as well. (a) Hégir) and
Hégol) for o = 2 at Rey(Nt = 25) = 3.10*. (b) sin? 47 for 0 = 2 and o = 4 at different
Nt so that for both Rey = 3500.
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Figure 7.12: (a) Lumley triangle: grey lines correspond to the boundaries between the

isotropic, two-components axisymmetric (Axi.2C) and one-component (1C) configura-

tions, and the black line to a EDQNM simulation. (b) Normalized potentials £(t°°) /&,
and &Polo) /&o, for o = 2, at a wavenumber located in the infrared range.

clear that for scales larger than ko, stratification and anisotropy dominate, whereas for scales

smaller, non-linear transfers drive the return to isotropy mechanism.

It is possible to obtain some qualitative information about the spatial structure of anisotropy.
If one considers the Lumley triangle (Simonsen & Krogstad, 2005) which displays the second
invariant of b;;, —211 = b;jb;j, as a function of the third one, 3I11 = b;;b;bj;, one obtains the
grey curves of Fig. 7.12a. In our simulation (black curve), the flow evolves from an isotropic state
toward a one component state (poloidal component) following an axisymmetric configuration,
and tends to be 2D (invariance along the direction of the mean scalar gradient): accordingly,
the Reynolds stresses have a rod-like shape.
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Another possibility is to investigate the energy contained in the toroidal and poloidal modes,

defined in (2.28), using the Craya-Herring frame illustrated in Fig. 2.1. First thing to do is to

link the spherically-averaged spectra EH. égir) and EH?ESOD to 0, the angle between the vertical

axis (the mean scalar gradient direction) and the wavevector k. After some algebra, one gets a

relation between directional and polarization anisotropies £ and Z, and 6,

E@0) (1 0,) = — D g0 () HED (1) (300520 — 1), Z(k, 04) = &0 (k) HE (k) sin? 0
s Vk 2 0 33 k ; » Vk 9 0 33 k-

(7.31)

Finally, this permits to obtain £t and £(P°°) defined in (2.29), as functions of the spherically

averaged spectra

1 o) . ir

gltoro) () = 50;k) [1 - ?5 (H§§ D (k) sin® 0, + HSS™ (k) (3 cos? 0, — 1))}, (7.32)
k ]. Ie) . ir

£®ol) (f g,y = 50; ) [1 n ; (H§§ D (k) sin2 0 — H3 (k) (3 cos? 0y, — 1))] (7.33)

At this point, it is of interest to point out that in Burlot et al. (2015a), instead of considering
the equations of € and Z, the equations of £t and £(P°) are solved, along with those of
ET and F3. The variations of both £t) and £(®P°) a5 functions of 6, are displayed in Fig.
7.12b for a wavenumber located in the infrared range: this is where the anisotropy is gathered,
as shown in Fig. 7.11a. For 0 < 6 < 7, one has £Pol0) > g(toro) an( the poloidal and toroidal
potentials are maximum for §; = 7/2. The poloidal mode being more intense, this means that
in the configuration §; = m/2, spectral velocity fluctuations are preferentially aligned in the
mean scalar gradient direction. This is an interesting feature: indeed, in the previous sections it
was underlined that polarization anisotropy is stronger than directional one at large scales. This
is assessed in Fig. 7.12b, where in the infrared range one has clearly Z > £ Consequently,
the present results show that in USHT, a dominant polarization anisotropy corresponds to
spectral velocity fluctuations mainly aligned with the mean scalar gradient, so that the principal
component is the poloidal one, in agreement with Fig. 7.12a, where our simulation goes toward
the (1C) state. Also, for 6, = 0 or §; = m, in a plane perpendicular to the mean scalar gradient,
gltoro) — £(polo) 54 that there is no polarization anisotropy.

7.5 Pressure spectra and high Schmidt numbers

So far, the dynamics of USHT at a unit Schmidt number Sc¢ = 1 was addressed at large Reynolds
numbers, and the strong dependence of the asymptotic anisotropic state on the infrared slope
o was recovered, with a good overall agreement with the axisymmetric EDQNM. In the present
section, the anisotropic EDQNM modelling is applied to two new cases: first, the pressure
spectrum is studied, and in particular its anisotropic part resulting from stratification, with a
qualitative comparison to the pressure spectrum in shear flows. Then, the case of very large
Schmidt numbers Sc¢ > 1, corresponding for instance to saltwater, is analyzed on a fundamental
point of view, with the emphasis put on the scaling of the cospectrum.
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7.5.1 Pressure spectra

The emphasis is put on the pressure spectra, which have not been investigated in USHT in
previous references. This study is done in the spirit of the work by George et al. (1984) who
analyzed the anisotropic part of the pressure spectrum for shear flows. This is notably presented,
within the present anisotropic EDQNM modelling, in Appendix D. The same method is applied
here for USHT. The Poisson equation in USHT is obtained by taking the divergence of (7.4),
which yields ,

D= 0 Ui U5 +)\i80‘

(7.34)

Then, with the definition of the two-point second-order pressure correlation (D.19), one gets

gP(kat) = 2aiajapaq/ qu(p’t)R]p(q’ t)d3p + Q04

ANNET (K, t).
k=p+q k? !

(7.35)

The isotropic part remains unchanged with respect to HST, only the anisotropic part is different.
The spherical average of this equation eventually gives

E 5i;
Ep(k,t) = 167r2/ kpg(1 — y?)(1 — 22)E)ENdpdq + k—;”AiAj (; - 2H§f)> : (7.36)
Ay

where we call the second-contribution E;USHT) the turbulence-unstable-stratification interac-
tion. One can note that the total pressure spectrum Ep(k,t) for USHT is similar, in its struc-
ture, to the one in HST.

First, in Fig. 7.13a, the scaling of the isotropic and anisotropic parts of Ep are presented. The
turbulence-turbulence interaction spectrum scales in E](Diso) ~ k~7/3: the constant Cp = 2.3 in
Fig. 7.13b is close to the value obtained in shear flows which indicates some universality of the
isotropic pressure spectrum. Then, the anisotropic part resulting from stratification is presented
in Fig. 7.13a and scales in E}USHT) ~ k13 The k—11/3, analogous to the anisotropic part
in shear flow, is expected from the expression (7.36), because Ep ~ k=5/3 in the inertial range.
And similarly to shear flows, the anisotropic part has a quadratic dependence on the mean-
field gradient, given its expression (7.36). Thus, only the dependence on the dissipation rates
remains to be determined. Since the scalar field is rescaled as a buoyant velocity, there are
infinite possibilities of the form eaegp, with a + b = 2/3, by dimensional analysis. One could
choose the inertial scaling of Ep, i.e. a = —1/3 and b = 1, but this yields in Fig. 7.13b (in grey)
a constant quite small of order 0.25: this is not satisfactory since for shear flows the constant
was very close to Kolmogorov. Given the similarities pointed out so far, we choose a = 2/3

and b = 0, as for Eg), which provides in Fig. 7.13b (in black) a constant C](JUSHT) ~ (.7. This

seems convenient because it is close to the Corrsin-Obukhov constant, consistently with E](DUSHT)
depending on Ep. In the end, the scaling of the anisotropic part of the pressure spectrum in

USHT reads

E(USHT)(k7t) _ CI(DUSHT)N262/3]€711/37 C}USHT) ~0.7.

P (7.37)

This scaling is a new fundamental result, interesting for two reasons: first, it is strongly anal-
ogous to the inertial scaling of the anisotropic part of the pressure spectrum in shear flows
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(€2/3k=11/3); secondly, CI(DUSHT) is close to the Corrsin-Obukhov constant, similarly to C’I(DS)
being close to the Kolmogorov one (see Appendix D).

Finally, the time evolution of the isotropic and anisotropic parts KI(;SO) and K of the
pressure variance are displayed in Fig. 7.13c: it is found, similarly to shear flows, that the
pressure variances grow exponentially at a rate 25, where § is the exponential growth rate
of the kinetic energy. Interestingly, the exponential growth rate of the pressure variance still
depends on the infrared slope o of the kinetic energy spectrum, even though the infrared slope

of the isotropic pressure spectrum is Egso) ~ k2.
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Figure 7.13: Pressure spectra in USHT, for 0 = 2 at Rey = 2.10*. (a) Isotropic and anisotropic

pressure spectra Egso) and E](DUSHT), along with the pressure integral wavenumber kp and the
Kolmogorov wavenumber k,, at Rey ~ 3.10%. (b) Compensated pressure spectra Egso)kj/ 3e—4/3
and E](DUSHT)1611/3:5_2/3/N2 in black, and EJ(DUSHT)IC“/%U:S/(GTNQ) in grey. (c) Isotropic and
anisotropic parts K I()iso) and K I(:,USHT) of the pressure variance, along with the kinetic energy K:

the grey lines indicate exp (8Nt) and exp (26Nt).

7.5.2 Cospectrum at high Schmidt numbers

In this section, the case of a weakly diffusive active scalar with Sc > 1 is addressed (instead
of considering the Prandtl number, the Schmidt number Sc is used, which is equivalent for a
being the molecular diffusivity). This configuration is representative of unstably stratified water
columns in the ocean generated by double diffusion mechanisms: at the ocean surface, hot salty
water is on top of cooler and saltier water, so that the stratification is stable. But when the
temperature drops off in the air layer above the ocean, the upper salty water cools down very
rapidly, because heat transfers are much more efficient than mass transfers. In the end, one has
a heavier fluid on top, causing unstably stratified water columns (Sigman et al., 2004).

For Sc > 1, the scalar flux F was found to decrease sharply after k;, in Chapter 6, similarly to
the kinetic energy spectrum. It appears that in USHT, the behaviour of the cospectrum beyond
K, is completely different, as revealed in figure 7.14a: indeed, unlike passive scalar dynamics,
the scalar flux survives in the viscous-convective range. The buoyant spectrum FEp still scales
in k7!, and there are also small scales fluctuations for E beyond k,, but they are much less
intense than for Fr and F, and are therefore neglected.

The scaling of F in the viscous-convective range is not clear, but it seems to be close to k™1,
slightly steeper, as revealed in the zoom in Fig. 7.14b. Around k,, the cospectrum seems
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Er and F

Figure 7.14: Saffman USHT for Sc = 10° at Rey = 10%, along with the integral, Kol-

mogorov and Batchelor wavenumbers ky,, k, and kg. (a) E, Er and F, along with the

k—5/3 inertial scaling for E and Erp, the k~7/3 inertial scaling for F, and the k~! viscous-

convective scaling for Ep. (b) Zoom in the viscous-convective range for Ep and F, with
different scalings explained in the text.

to scale in k73, but this is very likely just a transition toward the viscous-convective scaling.
Nevertheless, both the k= and k3 scalings are briefly justified using classical arguments.
The k=3 scaling can be obtained by assuming that at small scales, there is a balance between
dissipation and production of buoyant fluctuations in (7.17), so that

2 €T, _
KF~Z=-NE Flk,t) ~ N—Fk 3. 7.38
(v+a) g VEr & (k,t) N (7.38)

rve

In this expression, ETH?E? was neglected compared to Ep. For reasons which are explained
hereafter, it is preferred to express this new scaling as follows

(7.39)

where the inverse of the Kolmogorov time scale \/7/6 appears, consistently with the dynamics
of the viscous-convective range. Then, after k,, the scaling is slightly steeper than k=1, but
nevertheless the Batchelor scaling seems relevant if one assumes, as for Er, that the character-
istic time scale of F in the viscous-convective range is also independent of k: since this new
range exists only thanks to the small scales coupling through N, it makes sense to assume that
it depends linearly on N, and also on € and v: this provides Nv/e as the characteristic time
scale of the cospectrum in the viscous-convective range. Further assuming that F depends only
on this time scale, k and ep, yields

(7.40)

It is worth noting that, unlike Ep for which non-local transfers are at the origin of the viscous
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convective range, the new range for F beyond k, is created by local production of buoyant
fluctuations through the term N E7p. Direct non-local expansions (¢ < k ~ p) were performed
for the non-linear transfers of F but they are negligible.

The change from the scaling in k3, around ky, to k=1, just after k;, can be understood in terms
of characteristic time scales: for the scaling (7.39), the characteristic time is \/7/6, which is
the classical characteristic time of the Kolmogorov scale. For smaller scales, viscous dissipation
becomes more and more important, so that the characteristic time evolves from \/T/e toward
(vk?)~!, which directly yields (7.40). Then, the characteristic time scale saturates to Nv/e.
These two scalings and their characteristic times are consistent with the Kolmogorov scale being
the wavenumber around which the cospectrum changes from k=3 to k~!: indeed, equating (7.39)

and (7.40) yields k = k,,.

About the one-point statistics: obviously, even with high Schmidt numbers, simulations show
that the asymptotic anisotropic state still depend on ¢ and not on N, and the exponential
growth rate 8 is not modified with respect to the case S¢ = 1. Nevertheless, it is proposed to
illustrate in figure 7.15 the impact of a large Sc on the early dynamics of the scalar anisotropy
indicator bg3 and the mixing parameter A (the effects are negligible for F'r and bs3). The main
result is that a large Sc does not change the asymptotic values with respect to the case Sc = 1.
However, specifically for b3T3 and A which depend explicitly on the scalar field unlike b33 and
Fr, alarge Schmidt number strongly impacts the transient regime as well: A initially increases
much more with Sc¢ = 10* than with Sc = 1, whereas on the contrary, b3T3 is always smaller at

Sc = 10%.
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Figure 7.15: Saffman USHT for Sc = 1 and Sc = 10%. (a) Scalar anisotropy indicator
bl,. (b) Mixing intensity A.

At Sc = 10%, even if there is no inertial range initially for E7, the viscous convective range
spans almost two decades: this is completely different from the case Sc¢ = 1. This initial
viscous-convective range thus contributes greatly to A because it gives large initial values of K,
which explains the strong increase at small Nt. Then, when the Reynolds number increases, the
inertial ranges of E and Er become dominant in the integrals for K and Kr, so that eventually,
the same asymptotic value as for Sc = 1 is recovered. Whereas for bi;, the viscous-convective
range initially adds isotropic small scales, thus reducing the early global anisotropy over the

whole wavenumber space.
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As a conclusion, unlike passive scalar dynamics, the cospectrum survives in the viscous-convective
range for USHT for large Schmidt numbers, and scales in k~!, similarly to the scalar variance
spectrum, after a transient k2 subrange around the Kolmogorov wavenumber. Finally, large
Schmidt numbers strongly affect the early dynamics of b;{?) and A, nevertheless without changing
the asymptotic state.

7.6 Conclusion on USHT

Unstably stratified homogeneous turbulence (USHT) was investigated at large Reynolds num-
bers with the anisotropic EDQNM modelling extended to the case of active scalar dynamics.
Moreover, since the present modelling was applied previously for different configurations - no-
tably transport of passive scalar in an isotropic turbulence with a mean scalar gradient and shear
flows - qualitative comparisons are also made with these cases and some interesting differences
and similarities were found between shear-driven flows and unstably stratified turbulence.

The time evolution of the kinetic energy, scalar variance (or buoyancy) and scalar flux spectra

E(k,t), BEp(k,t) and F(k,t) were first addressed: the k~%/3 inertial scaling of E and Er was

7/3 inertial scaling of the cospectrum F. For the latter compensated

recovered, along with the £~
spectrum, a plateau starts appearing at the highest Reynolds numbers reached here (Rey ~ 10°).
The k3 time evolution of the peak of the three previous spectra was also recovered and justified
analytically. For the infrared dynamics, it is found that because of the strong coupling between
E, Er and F due to stratification, the spectrum with initially the smallest infrared slope o
imposes the minimum of energy to the others, which significantly differs from passive scalar

dynamics.

Then, the effects of varying the stratification frequency N and the infrared slope o on the
asymptotic anisotropic states of one-point statistics in USHT were studied, specifically the
Froude number Fr, the mixing intensity A, global anisotropy indicators for the velocity and
scalar fields b33 and b3T3, and the exponential growth rate 5 of the kinetic energy, scalar variance
and mixed-correlation. The conclusion is, in agreement with Burlot and coworkers, that the
asymptotic states of these quantities strongly depend on o. This feature is completely different
from shear flows where one-point statistics do not depend anymore on o asymptotically, at
least within the same modelling. However, for both shear flows and USHT, varying the mean
gradient intensity impacts only short times. In particular, it is recovered that the more energy
initially in large scales, i.e. the smaller o, the more anisotropic the flow: furthermore, at large
Reynolds numbers, anisotropy is gathered at large scales whereas small scales return to isotropy
for both the velocity and buoyancy fields (at least at the level of second-order moments). A
satisfactory agreement is found in the quantitative comparison with the axisymmetric EDQNM,
but nevertheless one can point out some differences between the two approaches: (i) with our
anisotropic EDQNM modelling, the flow is less anisotropic than in Burlot et al. (2015a,b); Gréa
et al. (2016a), meaning notably that our anisotropy indicator bss is slightly smaller; (ii) a new
theoretical prediction for the exponential growth rate 8 of kinetic energy is proposed, based
on the linear operator of our evolutions equations, and assessed numerically. Whatever the
large scales initial conditions o are, our growth rate is 10% smaller than the one of Burlot and
coworkers, consistently with our flow being less anisotropic; (iii) the Froude number is higher
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with the anisotropic EDQNM modelling, but can be decreased by changing the eddy-damping
constants, as exposed in section 7.3.7.

To recover the exact theoretical prediction (7.25) for (3, it is possible to multiply the
production terms of the anisotropic EDQNM modelling for USHT, in equations (7.12)-
(7.17), by v/5/2, so that the maximal eigenvalue 2N of the linear operator is recovered.
This procedure artificially corrects the exponential growth rate of the kinetic energy,
nevertheless without increasing the global anisotropy of the flow since it is already max-

imal.

Finally, two applications of our anisotropic EDQNM modelling were proposed, which constitute
new fundamental results. First, pressure spectra in USHT were investigated, and it was found
that the anisotropic part, resulting from stratification, scales in k13 in the inertial range,
whereas the isotropic part scales in k= 7/3: these scalings are completely similar to pressure
spectra in shear flows, investigated in Appendix D. It is also shown that the pressure variance
grows exponentially at a rate 28, where [ is the growth rate of the kinetic energy. Then, high
Schmidt numbers were considered: the scalar variance spectrum still scales in k! in the viscous-
convective range beyond the Kolmogorov wavenumber, as in HIT. The main result here is that
the cospectrum, which was strongly decreasing in passive scalar dynamics, now also displays a
viscous-convective range with a scaling close to k~!, after a transient k~3 subrange around ky.
It is worth noting that large Schmidt numbers do not affect the asymptotic values of one-point
statistics, nor the exponential growth rate 8, but only the transient regime of A and bgg.

7.7 Perspective - Variable stratification N(t)

In this section, the mixing length L(t) is not fixed anymore, unlike USHT, which causes the
stratification frequency N (t) to vary as well. The active scalar field is now a dimensionless con-
centration ¢, and we do not consider anymore the rescaled buoyant-velocity v. This part is thus
a step further toward the modelling of Rayleigh-Taylor instability: the fluctuating quantities
now impact the dynamics of the mean dimensionless concentration field C' according to

(90__8<U3c>+ 0%C N _3<U3c>

—_ = a ~
ot Oxs 856% ~~ 03
Rey>1

(7.41)

It is assumed that the Reynolds number is large enough to neglect diffusion effects, and in
addition inside the mixing zone, one has 935C = —1/L. Hereafter, a new prediction for the
growth rate of the mixing length is derived within the anisotropic EDQNM modelling framework.

7.7.1 Evolution equations with variable stratification

In what follows, the Boussinesq approximation is still considered. In the self-similar state, the
mixing length evolves according to (Poujade, 2006; Gréa, 2013)

L(t) = 2aRT Agt?, (7.42)
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where ofT is the Rayleigh-Taylor growth rate, whose theoretical prediction was derived by

Poujade & Peybernes (2010) in the limit of small Atwood number A < 1,

ol — (a+2)1(a+3) (7.43)

In what follows, it will be shown that this prediction relies on two crucial features and needs to
be adapted to the anisotropic EDQNM modelling. The mixing length is defined as

t) =6 / C(1 — C)dus. (7.44)

Assuming that 3 = 0 is at the center of the mixing zone, and that < uzf > has a parabolic
evolution from —L/2 to L/2 (Soulard et al., 2014), the time derivative of this equation becomes,
with the equation of the mean field (7.41),

dL

e L(t) = 8 < ugc > . (7.45)

There exists another possibility, proposed in Soulard et al. (2016) for instance, where L =

12< ugh >, with 7 referring to the average along the inhomogeneous direction z3. In what
follows, the first equation (7.45) is kept. Then, since the mixing length L(¢) and the stratification
frequency N(t) are linked through

N(t) = 2“2?;;), % = % (3 - é) . (7.46)

If the gravitational acceleration is assumed to be constant, one further gets

AN(t)
L(t)

N(t) = — < uge >, (7.47)

so that the growth rate of the mixing zone can be computed according to

(L)2 4 < ugc >
= AL (N(t)L(t)) ' (7.48)

The evolution equations, in physical space, of the fluctuating velocity and concentration u; and
c are
ou; ou; Op 0%u;
— — = — 2Agcd;s, 7.49
at + 'LL] 81,‘]' 81), T + §coas ( )
dc N dc 0%
==
ot 7 895] 8% Oz

Y 0u;0z;
1
Tk (7.50)

If one wants to work with the buoyant velocity v, the equations becomes more complex because
an additional term, linked to the variable stratification, appears

v v 92 N g
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7.7.2 Prediction of the growth rate of"

In this section, a new prediction for the growth rate o is derived, like what was done before
for USHT, where a theoretical exponential growth rate i1, for the kinetic energy was proposed,
based on the linear operator of our equations within the anisotropic EDQNM modelling. The
prediction (7.43) by Poujade & Peybernes (2010) relies on two crucial features: (i) foliated
average in the inhomogeneous direction. This foliated average notably causes the scalar variance
< c?
constant in the self-similar regime of Rayleigh-Taylor turbulence, since it is bounded by 0 (light
fluid) and 1 (heavy fluid); (ii) the fact that at large scales F2/(¢33E7) = 1. This result is
essential to link af" to the infrared slope o (in Poujade & Peybernes (2010), one has for the

> to evolve in t2, like the mixing length L(t), whereas the classical scalar variance is

vertical foliated averaged spectrum 2&, ~ ¢s33). This ratio F2/(¢33E7) = 1 is recovered in the
present simulations.

Here are the main steps to derive a new prediction for the Rayleigh-Taylor growth rate. First,
at large scales, the self-similar spectra can be written

¢33(k,t) = E°k°t"E,  Ep(k,t) = EQE°t"T,  F(k,t) = FOEOt"F, (7.52)

where E°, E% and F° are independent of time and space. At large scales, the evolution equations
of ¢33 and Ep (7.12) and (7.15) read, neglecting the non-linear transfers,
033 OEr = 2

16
— o~ EAg]-"(k,t), ~

= 5 = T k), (7.53)

which directly yields ng = nr + 1 and np = ny + 1, since EY, E% and F° do not depend on
time. The equation of F cannot be used similarly since the production terms depend on both
the kinetic and scalar variance spectra. From these equations, one obtains

Eo 16 2 RT T
= A o . 7.54

The exponent ny is determined using the fact that < ¢? > is eventually constant in time

o0 1/L(t)
EO
< >= / Er(k,t)dk ~ / EY kot dk = —L_gnr—2(o+1) (7.55)
0 0

oc+1

which provides np = 2(o+1), and consequently ngp = 2(c +2) and 2np = ng+np. Afterwards,
from (7.53), one gets at large scales
F2(k,t) 5 RT

s (k, ) Er(k,t) 160 T (7.56)

This finally yields a new theoretical prediction for the growth rate

4
RT
= , 7.57
" 5(0 + 1 — pusat) (0 + 2 — pusaT) (7.57)
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which gives values 33.3% higher than the expression of Poujade & Peybernes (2010). One
can remark that unlike the original prediction of the latter reference, a backscatter parameter
was added here, in order to take into account strong inverse non-linear transfers in Batchelor
turbulence. The noteworthy feature is that numerically pysgyr = 0.37 is obtained, meaning that
the intensity of the back transfers in Batchelor turbulence is similar between fixed (USHT) and
variable stratification frequency. This new prediction (7.57) relies on < ¢? > being constant in
the self-similar regime, unlike Poujade & Peybernes (2010) where < ¢? >~ t? with the foliated
average, and F2/(¢33Er) = 1 at large scales.

The theoretical prediction (7.43) for alil by Poujade & Peybernes (2010) becomes, with-
out the foliated-average,

o = (a+1)1(a+2) (7.58)

as in Soulard et al. (2014); Griffond et al. (2015). This prediction can be recovered by
multiplying the linear production terms by v/5/2 in the Lin equations of USHT obtained
with the anisotropic EDQNM modelling, as mentioned earlier for USHT.

7.7.3 Numerical results

In what follows, if not mentioned otherwise, the initial Reynolds number is Re)(0) = 10, the
mixing parameter is A(0) = 1, N(0) = Ng = 175! and L(0) = Lo = 1, so that A = 5,1.1072, in
agreement with the assumption of small Atwood numbers. First, spectral scalings are addressed
and are compared with the results obtained with the anisotropic EDQNM modelling for USHT.
Then, one-point statistics are investigated.

Spectral scalings: The inertial scalings of the three main spectra E(k,t), Er(k,t), and F(k,t),
are firstly addressed. It has been shown that for USHT, the classical inertial scalings for £ and
Erp, (7.19) and (7.20) respectively, are relevant, and this is still the case for variable N(t), as
revealed in Fig. 7.16a. For the scalar flux, as for USHT, the scaling initially proposed by Lumley
(7.21) is not well-suited, because in particular it does not take into account the concentration
dissipation rate er. On the other hand, the scaling derived for Rayleigh-Taylor turbulence in
Soulard & Griffond (2012), and used in Burlot et al. (2015b) with the buoyant velocity (7.22)
was shown to be satisfactory for USHT, and this is still valid for variable N(t), as revealed
in Fig. 7.16b. To obtain this compensated cospectrum, the inertial scaling (7.22) is adapted
because the scalar field is now a dimensionless concentration: in Soulard & Griffond (2012),
the square of the stratification velocity Vﬁ, appears; here, instead of Viy = /gL, Vy = NL is
chosen, so that the Rayleigh-Taylor inertial scaling becomes

inertial

-1
FSoulard g, 4y — F (k. ) L(K061/3 n KCO(NL)26T6_2/3> K73, (7.59)
Simulations also show in Fig. 7.16b that a simpler expression for the inertial scaling of F can
also be considered, namely

FRL (ke t) = F(k,t) N~2 L™ e te23E7/3. (7.60)

inertial
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Figure 7.16: Compensated spectra at Rey(Not = 10*) = 1,6.10° for 0 = 2. (a) Com-
pensated kinetic energy and scalar variance spectra, given by (7.19) and (7.20). (b)
Compensated cospectrum, given by (7.59) and (7.60).

Since for }'1%%‘;%‘;";{1 the plateau approaches a value closer to the one obtained in USHT, this

inertial scaling is kept for consistency.

One-point statistics: It is shown in Fig. 7.17a for Saffman turbulence that the mixing length
reaches the self-similar state L ~ t? after a transient regime of about Nyt ~ 100. From the same
point, the stratification frequency evolves as N ~ t~1, which is straightforward using (7.46).
Moreover, it is shown that in the self-similar regime, the scalar variance < ¢? > is constant,
in agreement with what was discussed earlier. In Fig. 7.17b, the prediction (7.57) is assessed
numerically for various infrared slopes o. It is worth noting that for ¢ = 4, the backscatter
parameter pysur = 0.37, previously introduced for USHT, is still relevant, which shows that
unstably stratified turbulence and the variable stratification case share some infrared dynamics

properties.
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Figure 7.17: (a) Stratification frequency N, mixing length L, and concentration variance
Kr =< 2 > for 0 = 2, and Rey(Not = 10%) = 5.103. (b) Growth rate o for various o:
— computed with (7.48); O prediction (7.57).
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The emphasis is now put on the kinetic energy K, the scalar variance K7 and the mixed-
correlation Kr =< ugc >, whose evolution equations are

0K 2
T ey 2 61
En 6T+L<U3C>, (7.61)
oK
E = —€ + 2./49 < usc >7 (762)
0 <wuge> Rs3

Since the scalar variance becomes eventually constant in the asymptotic state, it means that
dissipation balances production, so that ep = 2 < uzc > /L, and < ugc >~ t. It then follows
that the kinetic energy evolves in K ~ t2 similarly to L(¢). These different time-dependencies

are assessed in Fig. 7.18a.

—K
107 f{---< uge >

K and < usze >

Figure 7.18: One-point statistics for o = 2. (a) Time dependence of K and Kr; NL <
usc > is displayed as well in a grey dash-dot line. (b) Fr, b3z and bl;: bl is increased
by a factor 10 for readability.

Consequently, because of the continuous production of kinetic energy, it is reasonable to assume
that 0; K ~ 2Ag < usgc >. Furthermore, in agreement with Fig. 7.18b where F'r is displayed,
stratification dominates over turbulence in the self-similar regime, so that with a rough approx-
imation, ;K ~ K N. This provides an approximation of the kinetic energy in the self-similar
regime

K(t) ~ N(t)L(t) < uge > . (7.64)

This approximation, which involves the characteristic stratification velocity Vy = NL, is well
assessed in Fig. 7.18a in grey. In addition, it is revealed in Fig. 7.18b that both b33 and bg?), like
Fr, become constant at large Reynolds numbers. The asymptotic value of the global anisotropy
for o = 2 with variable N(t) is b53 = 0.223, slightly lower than in USHT where b33 = 0.239,
meaning that the variable stratification tends to decrease the global anisotropy. This is expected
since the mixing length grows in time, thus reducing the intensity of the mean concentration
gradient, which is the source term of anisotropy in the equations.



Chapter 8

Dynamics of Helicity in
Skew-Isotropic Turbulence

In this chapter, the transport of a scalar field is put aside to investigate the dynamics of helicity:
this is of fundamental interest since helicity can be considered as the ”smoothest” kind of
anisotropy, since it breaks only mirror-symmetry with respect to HIT.

The contents of this chapter were published in:

Briard & Gomez, ”Dynamics of helicity in homogeneous skew-isotropic turbulence 7,
Journal of Fluid Mechanics, 821, 539-581 (2017)

Helicity is a quantity of interest since it is an invariant of the 3D inviscid Navier-Stokes equa-
tions (Moffatt, 1969) and has been consequently at the center of a great amount of theoretical
(Brissaud et al., 1973; Moffatt & Tsinober, 1992; Chkhetiani, 1996; Gomez et al., 2000; Ditlevsen
& Giuliani, 2001) and numerical (André & Lesieur, 1977; Polifke & Shtilman, 1989; Borue &
Orszag, 1997; Chen et al., 2003; Baerenzung et al., 2008b; Biferale et al., 2012) studies. Nev-
ertheless, despite all the attention helicity has received for more than forty years, it remains
a quantity quite complex, whose effects on the transfers of energy are not completely under-
stood, as stated in Chen et al. (2003): indeed, helicity Ky =< u;w; > /2, unlike kinetic energy
K(t) =< uju; > /2, is not positive definite since it is the scalar product of the fluctuating
velocity u; and vorticity w; = €;j,0;uy, so that it can be either positive or negative. It is worth
noting that inviscid 3D turbulence has two invariants, kinetic energy and helicity, and 2D tur-
bulence has two as well, kinetic energy and enstrophy < w;w; >. Therefore, some authors have
evoked the possibility of interpreting helicity as a 3D analogous of enstrophy, despite the fact
that the latter quantity is positive definite. Since enstrophy is responsible for an inverse cascade
of energy in 2D (Kraichnan, 1967), it has been concluded that helicity could also be associated
to inverse cascade mechanisms in 3D (Brissaud et al., 1973; Chen et al., 2003).

Consequently, since the pioneering work of Brissaud et al. (1973), the possibility of inverse
energy cascades has been a crucial point of discussion. At this time, two different scenarios
were proposed: (i) Joint cascades of helicity and energy towards small scales with non zero
kinetic and helical dissipation rates, respectively € and ey, so that the kinetic and helical
spectra scale in E(k) ~ €2/3k=5/3 and H (k) ~ ege '/3k=5/3. (ii) A pure helicity cascade, with

160
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no energy transfer ¢ = 0, so that the kinetic and helical spectra scale in E(k) ~ e?fk:‘” 3
and H(k) ~ 62/316*4/ 3 in the forward cascade. In such a configuration, there would be an
inverse cascade of kinetic energy in k~5/3. This second scenario was proven to be impossible
in decaying turbulence by André & Lesieur (1977) in the EDQNM framework. However, for
instance in rotating turbulence with a non-vanishing helical forcing, and in other very specific
configurations, an inverse energy cascade is observed (Biferale et al., 2013). Furthermore, one
must point out that recently, it was shown that the Navier-Stokes equations intrinsically contain
this inverse energy cascade mechanism (Biferale et al., 2012): indeed, when considering specific
triadic interactions between only positive (or negative) helical modes, there is an inverse kinetic
energy cascade E(k) ~ €2/3:=5/3_ Still, as soon as there is a single helical mode of opposite
sign, this inverse cascade vanishes.

On a practical point of view, large Reynolds numbers helical flows can be found notably in
atmospheric turbulence, where helicity is naturally present and may be the reason for the
persistence of tornadoes (Moffatt & Tsinober, 1992; Lesieur, 2008). On a theoretical point of
view, the high Reynolds numbers regime is of interest since the classical scalings, phenomenology
and mechanisms of turbulence were developed in this framework, where small scales should
always be isotropic and forget the effects of large scales (Kolmogorov, 1941b). The review
of the different studies involving helicity shows that, except the early and pioneering work of
André & Lesieur (1977), there were no further attempts to investigate the dynamics of the
helical spectrum H(k,t) at very large Reynolds numbers (Rey > 10%). In addition, it appears
that the long-time decay of helicity has not been addressed. Yet, the knowledge of the decay
rate of integrated quantities, such as the inviscid invariants, is crucial for the understanding
and prediction of the turbulence dynamics in asymptotic regimes at large Reynolds numbers.
Therefore, it could be interesting to have clear decay exponents for helicity: indeed, there
were no studies providing decay exponents for helicity, except the theoretical one by Levshin
& Chkhetiani (2013), which is not fully satisfactory as explained later on. Consequently, this
chapter first focuses on two fundamental questions: is the decay of helicity predictable? How
does helicity modify non-linear transfers and the decay of kinetic energy?

Since mean helicity can be created in homogeneous turbulence, from non-zero spectral helical
modes (André & Lesieur, 1977), the knowledge of its decay law is of great interest when it is
initially present in the flow. This is why the authors choose to focus on a classical configuration
at large Reynolds numbers, namely Homogeneous Helical Turbulence (HHT), which is basically
a skew-isotropic turbulence, i.e. HIT without mirror symmetry. In particular, there are no
magnetic fields, so that only the kinetic helicity is considered: this is precisely the framework
addressed by André & Lesieur (1977), and unlike recent studies, no distinctions are made here
between positive and negative helical modes (Biferale et al., 2013).

In such a fundamental configuration, several crucial theoretical results in physical space were
derived regarding two-point third-order correlations: notably, Chkhetiani (1996) proposed an
inertial scaling for the triple velocity correlation S(r) =< upugufy >, where r is the distance

between two points located in x and &’ = x + 7, the prime ’

refers to quantities expressed
in ’, and the ();, to the component along r: S(r) appears in the evolution equation of the
antisymmetric part of < ulu; >, and is found to scale, neglecting the temporal and viscous
dissipation terms, as S(r) ~ egr?/30. In addition, mixed velocity-velocity-vorticity structure
functions were analyzed in Gomez et al. (2000), and it was found that < dupdu;dw; > — <

dwrdu;du; > /2 = —4rey/3 in the inertial range, where du; = u, — u;. These two laws are
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equivalent, and result from the conservation of helicity in inviscid flows. This is why the second
law is analogous to the ”four-thirds” laws for the kinetic energy and scalar variance, which
both come from conservation laws as well (Antonia et al., 1997). Whereas an equivalent of
the first law for S(r) has been assessed in DNS (Kurien et al., 2004), it is not the case for the
helical ”four-thirds” law. Both these fundamental relations are assessed numerically here at
high Reynolds numbers, and statistics of helical flows will be further investigated, notably the
evolution equation of the helical dissipation rate ey and derivatives of skew-isotropic tensors.

Finally, a new configuration is addressed, combining both a mean scalar gradient and helicity.
This case, which could be of interest for the modelling of atmospheric turbulence where these
two features may be present, permits to illustrate the subtle effects of helicity on the scalar
flux. Indeed, unlike a passive scalar field where there is no explicit contributions of helicity in
its evolution equations, the coupling of helicity and mean scalar gradient creates the quadrature
spectrum Q(k, t), linked to the imaginary antisymmetric part of the scalar flux. The appearance
of this additional contribution parallel to the cospectrum is called ”skew-diffusion” by Moffatt
& Tsinober (1992).

8.1 Spectral modelling of helicity

In this part, the evolution equations of the kinetic and helical spectra are derived starting from
the spectral counterpart of the Navier-Stokes equation. The EDQNM approach is presented
as well. In the following, helicity is injected initially at large scales along with kinetic energy
so that both decay freely: there is no forcing mechanism nor rotation, and no magnetic field.
Historically, this is the framework investigated by Brissaud et al. (1973) and it will be shown
that even in such a classical case, there are still some important open questions which are tackled
in the following sections, such as the prediction of the helicity decay and its impact on kinetic
energy transfers.

8.1.1 The £-H decomposition

With helicity, the spectral Reynolds tensor Rij has an imaginary part, and is consequently not
symmetric anymore. In the framework of homogeneous helical turbulence (HHT), Rij can be
decomposed as

: kot
By, t) = £k, )Py + RZ(DNN;) +ieggpan o)

(8.1)
following the formalism of Cambon & Jacquin (1989). For simplicity reasons, mean velocity gra-
dients are not considered, which simplifies the previous expression into the £-H decomposition
which reads

A~

Rij(k.t) = R (k,t) + RUV (K, t) = Eo(k, )Py + iesjnan

ij

H(k,t)
k

(8.2)
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where H is a pseudo-scalar, real, not positive-definite, and reflects the density of helicity,
defined as

H(k, )5k — p) = % < @ (p, )i (e, 1) > (8.3)

where w; = €;;,0ju;, is the vorticity. Similar £-H decompositions were used by Borue &
Orszag (1997); Chen et al. (2003). The inverse relation for the energy density is straightforward,
& = Ru/ 2, whereas the one for the helical density is more complex (Moffatt, 1983; Cambon
et al., 2013)

H(k, 1) = —%ikmeiijij(k,t). (8.4)

The £-H decomposition could also be applied in isotropic MHD to the spectral second-
order magnetic correlation Rf‘;f(k:)é(k —p) =< a’(p,t)a;(k,t) >, with a; the magnetic
potential, where the antisymmetric part would be linked to the magnetic helicity H,
related to Rf\f through an equation analogous to (8.4).

Using the equations of the fluctuating spectral velocity and vorticity given in Appendix D, one
obtains the helical Craya equation

%—7: + 2vk*H (K, t) = Tr(k, t). (8.5)

The non-linear helical transfer Ty can be expressed as a function of the 7;;, defined in (2.39),
using the relation (8.4) so that

L ‘
T (k) = —iesuh (735, 8) + 75:0k,1)). (8.6)

This expression (8.6) links the helical transfer to the total non-linear one defined in (2.18), similar
to what was done for T¢ and T in (2.32) and (2.34) respectively. The helical spectrum is
further defined as
H(k,t)= [ H(k,t)d’k = 4nk*H (k, 1), (8.7)
Sk

and is linked to helicity and the helical dissipation rate through

KH(t) = % < Ujw; >= / H(k‘,t)dk‘, (8.8)
0
ou; Ow; o0
egt) =v < — Z>:2u/ k> H (k,t)dk. 8.9
a(t) Oz, O, ; (k, 1) (8.9)

The time evolution of helicity is thus given by

dK 1

J:fA,-j(<uiwj>—<ujwi>)—6H. (810)
dt 2

Without mean-velocity gradients, A;; = 0 and consequently the helicity follows the same evo-

lution equation as the kinetic energy in HIT.
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8.1.2 Spherically-averaged helical Lin equations for F(k,t) and H (k,t)

In this part, the explicit spherically-averaged transfer terms for HHT are derived within the
EDQNM framework, as in André & Lesieur (1977). Using (8.6) and the details provided in
Appendix D, the non-linear spherically-averaged helical transfer reads

i) = [ Ttk = St 1) + S, (s.11)
k
with
St (k,t) = 167 /A Oipgk?p*a(zy + =)&) (1 — H)dpdg
k
SNL(k, ) = —1672 /A 01 K2pz(x + y2)H" (0%E) — K2E0)dpdy. (8.12)
k

Moreover, from the £-H decomposition, the kinetic non-linear transfers now contain a helical

part coming from products of Rglel)

non-linear spherically averaged purely helical transfer is

: details of the calculations are given in Appendix D. The

SNLChel) ( 4) = / Te(k, t)d%k — SNUO%) (| 1) (8.13)
Sk
= —1672 /A Orpk*pz(x + y2)H" (H' — H)dpdg, (8.14)
k

with SNL(s0) given by (2.57). These three new transfer terms, SNL. SNL. and GNL(hel) *are
independently conservative. The characteristic time of the third-order correlations is the same
for the kinetic and helical fields: it is shown later on that such an assumption is consistent with
joint cascades for the kinetic and helical spectra, and can be a posteriori justified with physical
arguments. Beyond these physical justifications, it seems relevant to choose 0y, for both the
kinetic and helical fields since the closure comes from the same evolution equation, which is the
one of the spectral velocity third-order correlation (2.17). One can further remark that the form
of Sg% is similar to the scalar non-linear transfer ST-NL(s0) Tt will be shown numerically that
SNL corresponds in fact to a direct transfer, whereas both SNy and SNE(®eD) to inverse ones.

The spherically-averaged Lin equations for the kinetic and helical spectra are

(gt + 2uk2> H(k,t) = S (k, 1), (8.15)
0 .
(m + 2z/l<:2> E(k,t) = SNHO0) (k1) 4 SNE(el) (g 4y — SRE(f; ¢). (8.16)
Finally, the helical spectrum H(k,t) must satisfy the realizability condition
H(k,t)] < KE(k,t), (8.17)

which was derived by Kraichnan (1973). When this equation is an equality, this condition is
called the maximal helicity condition.
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8.2 Numerical results on the helical and kinetic fields

In this part, the kinetic energy and helical spectra E(k,t) and H(k,t) are investigated nu-
merically at very large Reynolds numbers thanks to the EDQNM modelling presented in the
previous section. After a short discussion on initial conditions, basic properties of homogeneous
skew-isotropic flows are recovered and some features regarding inverse transfers are addressed.
Then, non-local interactions are considered in the infrared range of the spectra (for wavenum-
bers smaller than the integral one kj) and non-local expansions are made in order to study the
large scales dynamics. These results are directly used to predict the decay of kinetic energy and
helicity in homogeneous turbulence.

8.2.1 The importance of initial conditions H(k,t = 0)

The initial condition for the helical spectrum is (8.17). One has to be careful with this initial
condition, which increases the infrared slope op of the helical spectrum, and thus accelerates
the decay of helicity. Indeed, in Saffman HHT for instance, at large scales H(k < kg,t) ~ k3
whereas E(k < kp,t) ~ k%, where ky is the helical integral wavenumber, defined similarly
to the kinetic one

1 3

Lg(t) = Ty = K () /Ooo k= H (k,t)dE. (8.18)

The last point to define is the shape of E(k,t = 0), which is of primary importance. So far, the
initial condition (1.10) was used, called (IC1) from now, which corresponds to a spectrum with
energy at all scales at ¢t = 0. In particular, (IC1) implies that helicity is initially present at all
scales as well: this strongly minimizes the impact of helicity on the kinetic energy cascade and
decay. Hence, the initial condition (IC2) is used instead

2
(IC2):  B(k,t=0) = k" exp ( . (k) ) (8.19)
2 \ kL

One can wonder if H(k,t = 0) = E(k,t = 0) is an acceptable initial condition, even if for k£ > kr,
this breaks (8.17). Fig. 8.1a reveals that the latter initial condition is physically unacceptable:
indeed, after a hundred turn-over times, one has kE — H < 0 around the integral wavenumber
kr. Whereas for the maximal helicity condition, for all & one has kE' — H > 0, for both (IC1)
and (IC2). Consequently, from this point, all the computations presented are initialized with
the maximal helicity condition.

Unlike the kinetic energy spectrum E(k, t), the helical spectrum H (k,t) is not restricted to posi-
tive values: it was notably found by André & Lesieur (1977) that negative values appeared at the
beginning of the dissipative range near k;. This is also observed here with the present EDQNM
simulations in Fig. 8.1b, where the helical spectrum has negative values while approaching
ky. Positive and negative values for H(k,t) were reported in DNS (Polifke & Shtilman, 1989;
Polifke, 1991).
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kE(k,t) — H(k,t)

Figure 8.1: (a) kE — H for three different initial conditions, with ¢ = 4 at Rey = 1400.

(b) Kinetic and helical spectra E(k,t) and H(k,t) with 0 = 2 at Rey = 2.10%. k[l is

defined in (8.22). Both along with the kinetic and helical integral wavenumbers k;, and
kp, and the Kolmogorov wavenumber k.

8.2.2 Helical spectrum H(k,t) and non-linear transfers

In this section, the inertial scaling of H(k,t) and the non-linear helical transfers are addressed.
Fig. 8.1b reveals that after a few turn-over times the helical spectrum scales in k~%/3 in the
inertial range. This scaling assesses the joint cascades mentioned earlier for kinetic energy and
helicity. The k~5/3 scaling can be deduced from dimensional analysis. The main hypothesis is
that the characteristic time in the inertial range 7(k,t) = (k2e(t))~'/3 is the same for both the
kinetic and helical spectra. From this assumption results an ”Obukhov-like” scaling, ey (t) =
kH (k,t)/7(k,t), which directly yields in the inertial range

H(k,t) = Crege V3 k53, (8.20)

The constant C'iy = 2 is obtained by investigated the compensated spectra in Fig. 8.2a at high
Reynolds number Rey = 2.10*. The Kolmogorov constant Ky = 1.3 remains unchanged with
respect to HIT. It is worth noting that similarly to Ky, the value of C'y depends on the choice
of the eddy-damping constant. The present value Cy ~ 2 is in agreement with André & Lesieur
(1977), somehow higher that Cy ~ 1 obtained in Borue & Orszag (1997).

One can remark that the inertial scaling (8.20) of H(k,t) is similar to the one of a passive
scalar convected by a turbulent velocity field; this is the reason why it is often said that helicity
cascades linearly with the kinetic energy. Such a scaling can also be obtained by considering
that non-linear transfers in the inertial range are mainly local: k& ~ p ~ ¢. By dimensional
analysis and dropping all geometric factors in (8.11), this yields for the fluxes IT1(k) ~ 0 E(k)? k*
and Iy (k) ~ 0 E(k) H(k) k*, where Ogpr = 6 is the same for E and H, as assumed earlier.
Then, for high Reynolds numbers, one has in the inertial range II ~ € and Il ~ ey, which is
well assessed in Fig. 8.2b. Thus, one has § = ¢/(k*E?) = 7(k) so that

e(t) H(k,t) ~ E(k, e (t)  — /0 Tdk o ) Knlt) ~ K(en(t). (8.21)
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Figure 8.2: (a) Compensated kinetic and helical spectra. (b) Normalized kinetic and
helical fluxes. Both with o = 2, at Rey = 2.10%, and along with the integral and
Kolmogorov wavenumbers k7, and k.

In addition, a specific wavenumber k:f is displayed in Fig. 8.1b. This wavenumber was derived
theoretically by Ditlevsen & Giuliani (2001)

3 1/7
H __ H
K = ( ) , (8.22)

p3e2

and is supposed to mark the end of the helical inertial range, which is clearly not the case here.
The helical inertial range spans from the helical integral wavenumber ky ~ ki, to ky, similarly
to the kinetic energy spectrum. This was also assessed both numerically and theoretically by
Chen et al. (2003). A different interpretation of kf is proposed in Appendix D.

The total non-linear kinetic and helical transfers SgL and SII\{IL are now investigated in Fig. 8.3a
to 8.3¢ for Batchelor turbulence (results are similar for Saffman turbulence). In the previous
part, SEL was decomposed into the sum of a purely kinetic contribution SN“(5°) identical to the
non-linear transfer in HIT, and a purely helical contribution S NL(hel) Tt is found in the EDQNM
simulations that the latter part corresponds in fact to a transfer of energy from small to large
scales. This inverse transfer is nevertheless less intense than the direct one, so that the total
kinetic transfer SgL is direct, as observed in Fig. 8.3b. Moreover, whereas the direct non-linear
transfer SNL050) gpans all scales of the wavenumber space, the inverse transfer SN-() i very
localized at large scales, which creates a small region where SN0 is positive at large scales,
which is different from HIT. Nevertheless, the total kinetic energy transfer SgL is completely
similar to the one in HIT.

Similarly, SII\}L was decomposed into two contributions Sg% and Sg%, which both span the entire
inertial range. It is revealed in Fig. 8.3a that these two parts correspond to direct and inverse
transfers respectively. Once again, the inverse transfer is weaker than the direct one, so that the
total transfer of helicity SEL goes from large to small scales. One can observe in Fig. 8.3c that
S}NIL is negative around k,, and this explains the negative values of the helical spectrum H (k,?)
at the dissipative scales observed in Fig. 8.1b: this can be interpreted as viscous production of
helicity, since —2vk3H (k) is positive in this region. The fact that inverse transfers of kinetic
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Figure 8.3: (a) Helical non-linear transfers Shy° and S§&. (b) Purely helical and isotropic non-
linear transfers SNU(heD) and SNL(s0) - (c) Non-linear kinetic and helical transfers Sy“ and SR
All for 0 = 4 at Rey = 5.103, along with the integral and Kolmogorov wavenumbers k;, and ky.

energy and helicity are hidden in the total direct cascade is in agreement with the recent results

of Alexakis (2017).

In this part, it was recovered that in freely decaying HHT, there is a joint cascade of kinetic
energy and helicity towards small scales. The main assumption behind the £~%/3 inertial scaling
is that the kinetic and helical fields have the same inertial characteristic time. Finally, it was
shown numerically that despite a direct cascade of kinetic energy and helicity, some inverse
non-linear transfers occur, less intense than direct ones.

8.2.3 Infrared dynamics and non-local transfers

This section focuses on the permanence of large eddies (PLE) in the presence of helicity, and
on non-local interactions between small and large scales. The starting point is Fig. 8.4a and
8.4b, where the time evolution of the kinetic energy and helical spectra E(k,t) and H (k,t) is
displayed for Batchelor turbulence. Two features need to be underlined: firstly, it appears that
H experiences no backscatter in Fig. 8.4b, so that the PLE hypothesis is verified in Batchelor
HHT for the helical spectrum, unlike . Secondly, the backscatter for F in Fig. 8.4a is weaker
in presence of helicity than in HIT, as revealed by the grey curve corresponding to a HIT
simulation for F, at the same time and Reynolds number. These two features can be explained
analytically, using non-local expansions. These important results, and especially the fact that
the PLE hypothesis is verified for H even in Batchelor turbulence, are applied in the next section
to determine theoretical decay exponents for K (t) and K (t).

Firstly, Lesieur (2008) showed that the kinetic non-local transfers acting in the infrared range
are

o) 14 ~ = E(p)? 2 > oF
T(ISO) (k,t) — 7]?4 60}7}7 (p) dp o 15k2E<k')/ 90pp <5E<p) —|—pap> dp (823)

15 Jry p? ki

These terms come from the space derivative OII~ /0k, with 11059~ = I~ defined in (B.17),
evaluated at the lowest order in k/kr, with the non-local parameter a = k/kr. The first rhs
term is responsible for the backscatter of energy that breaks the PLE hypothesis. The second
rhs term can be written under the eddy-viscous form —21;k%E, and represents a pseudo kinetic
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Figure 8.4: Decaying spectra in Batchelor turbulence with Rex(0) = 3400

i 0) = . (a) Kinetic
energy spectrum E(k,t): at t = 1057, E(k,t) for HIT is displayed as well in grey. (b)
Helical spectrum H (k, t).

energy dissipation, i.e

the damping of large scales by turbulence. To understand why back
transfers of energy on FE(k,t) are decreased with helicity, one has to expand SNL(hel) when

k < p ~ q, using calculations similar to those presented in Appendix B. This gives
11D = (&, ) = _ 4

H(p)2
k4 / Orrpy ———dpdk’
15 Jo K'pp pt P

(8.24)
sup(k,k’'/a)
2 [ [ o L
= k:’2H % / w (o -
+ 15 (k") pe (p) — ap »
sup(k,k’/a)
The spatial derivative of H(hel)—’

(8.25)

with the same assumptions, yields
14 < H(p)?
(hel) (k‘ t) X 0o ( )
15 & pp
L

0 H
dp + —k2H (k) / Yo (or1(p) - p°
15 kD

p— | dp. 8.26
p dp ) (8:26)
The first rhs term modifies the backscatter of energy whereas the second one can also be inter-

preted as a pseudo helical dissipation term in —2u/7k? H. Combining this expression with (8.23)
reveals the impact of helicity on the total inverse non-local kinetic transfer in HHT

14, (% Ep)?
E(k,t) = 15]{4/ ngp
kr,

-~
k* backscatter

N~

—wHK?H(E). (8.27)
damping of large scales

The second term indicates a change in the effects of viscous damping on large-scales, difficult
)
one has

to quantify. However, for the first rhs term, using the realizability condition 0 < |H|/kE < 1
14
— K / Oopp

2 2
15 E;];) <1_ (pffg(g);)) = 15'“4/ 60”3
<1

(8.28)

Non-local transfer in HIT
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Consequently, the k* backscatter of energy of E(k,t) is decreased by helicity, with respect to

HIT. Then, similar expansions of SEL give

Iy (k,t) = Wy (k1) + HI_JQ(k t)

2 [k T E
/ K / 9k/pp ()d dk' — — / K2H(K) / Ok pp 5E(p)+p8— dpdk’
15 0 3p

sup(k,k’/a) sup(k,k’/a)
14 T H
/ K / T ( HPE®P) 41 4 = / KAE(K) / O p(f)dpdk:’. (8.29)
sup(k,k’/a) sup(k,k’ /a)

The two terms responsible for the k* backscatter cancel, which explains that in the end, H(k,t)
does not experience any strong back transfer of energy, so that the PLE hypothesis holds true
for the helical spectrum. The space derivative of the inverse non-local helical flux yields

_ 2 o0 OF 0 H
Ti(kot) = =35k ) [ by <5E<p> ap) o+ 5B [ o . (8:30)
L L

This inverse non-local helical transfer 7%, indicates that there is no strong k* backscatter.
The first term can be written —214k?H (and was found also in Baerenzung et al. (2008b)), and
the second one is quite original since it makes intervene a pseudo-enstrophy dissipation and
could consequently be written —2v¢k*E.

The method used now to describe analytically the infrared dynamics of the kinetic energy
and helical spectra in HHT - at first order - is inspired from Lesieur (2008), where a similar
reasoning is performed for HIT. When the turbulence is fully developed, both spectra scale
in E(k,t) ~ A(t)k? and H(k,t) ~ Ag(t)k°H at large scales. In this infrared range, viscous
dissipation is negligible, and inverse non-local transfers T and Tj; dominate with respect to
local ones SEL and S}NIL. Thus, the simplified Lin equations in the infrared range are O;F = T},
and O;H = Ty, which yields

dA 14 =
da _ 1,4 / (o )dp — 20k A(E) — 20/ k210 Ay (1) (8.31)
a5,

dAy 2, /00 4 /oo

— = ——k*Ay(t L)dp + kT At ...)dp. .32
=t [ e 0 [ o (832

With the present initial conditions (8.19), one has o = o + 1, but one could think of different
initial conditions that would result in a more complex infrared dynamics for £ and B: this
is the object of section 8.2.5. For now, one has oy = ¢ + 1, and in this case, whatever the
infrared slope o is, the dissipation terms involving the turbulent eddy viscosities v, v and I/fl
are negligible because k < 1, so that

dAg
N — ~0. 8.33
o (333

dAg/dt is not rigorously zero since the non-local expansion is kept at the lowest order in
k/p < 1 in the infrared range, as done in Lesieur & Schertzer (1978), but is equal to some
subdominant terms for the dynamics of A, as assessed by Fig. 8.4b. This means that whatever
the large scales initial conditions o are, the PLE hypothesis holds for the helical spectrum
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Expression

Physical meaning

Appears in eqgs for ...

15y = fkoLO Oopp (DE(p) + p%%)dp

Dissip. of K(t) and K (t)

E(k,t) and H(k,t)

9 . .
15VtH — kOLO %(p%% —9H(p))dp Dissip. of Ky (t) E(k,t)
15vy = =7 fko; HOPP%dp Dissip. of enstrophy H(k,1)

Table 8.1: Summary of the different eddy-viscosities vy, vf1, and v¥, that intervene in the
non-local expansions k < p ~ ¢ of the non-linear transfers SEL and SEIL in HHT.

H(k,t). Regarding E(k,t), for 0 < 3, the rhs terms of (8.31) are negligible, meaning that the
PLE hypothesis holds true, whereas for o = 4, A(t) truly depends on time since the first rhs
term is stronger than the two others —21,k?A and —2l/tHkZ3AH, so that

0, Vo<3 8.34
at 7= (8.34)
dA 14 [~ E(p)’ H(p) \?

—_—~ — Oopp——(1— | ——= d f =4. 8.35
dt 15 Ji, Orp p? ( pE(p) > p; ore (8.35)

The latter result contains the fact that helicity decreases the backscatter of E(k,t) in Batchelor
HHT. The different turbulent spectral viscosity introduced previously are summarized in Table
8.1.

8.2.4 Decay laws in helical flows

In this part, the emphasis is put on both the impact of helicity on the kinetic energy decay, and
on the decay of the helicity K itself. It is obvious that Ky will decay faster than the kinetic
energy, because of the large scales initial condition (8.19) oy = o + 1.

Remarks about the decay of helicity and kinetic energy: it has been said in the in-
troduction that helicity is known to slow down transfers. This result comes from André &
Lesieur (1977), and was also observed in DNS (Polifke & Shtilman, 1989; Polifke, 1991; Moffatt
& Tsinober, 1992). One must be precise to characterize this phenomenon: indeed, this does not
concern the theoretical decay exponent « of the kinetic energy K (¢), but only the cascade of
kinetic energy: with helicity, it takes more time for the non-linear transfers to fill in the small
scales of the kinetic spectrum with energy coming from larger ones. This phenomenon, which
cannot be observed with (IC1) since all scales already contained energy initially, is illustrated
with (IC2) in Fig. 8.5 for Batchelor turbulence (the result is identical for Saffman turbulence).
The kinetic energy is constant during the first turn-over times with and without helicity, which
corresponds to the filling of the small scales. It is then clear that the filling of small scales is
slightly longer in presence of helicity.

EDQNM has been intensively used to determine theoretical decay exponents in different con-
figurations, at high Reynolds numbers and after a large number of turnover times: the decay of
kinetic integrated quantities in HIT (Meldi & Sagaut, 2013a), the decay of the scalar variance
in HIT (Lesieur et al., 1987) and other scalar quantities in Chapter 1, the decay of the kinetic
energy in a turbulence initially submitted to mean-velocity gradients (see Chapter 3), and fi-
nally the decay of the velocity-scalar correlation in an isotropic turbulence with a mean scalar
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Figure 8.5: Kinetic energy K(¢) in HIT (grey line) and in HHT (black line) along with helicity
Ky (t) for o = 4.

gradient (see Chapter 5). The study of the helical case is therefore a natural extension, and our
predictions are compared to those of Levshin & Chkhetiani (2013) later on.

Impact of helicity on the decay of K(t): The effects of helicity on the kinetic energy decay
are firstly addressed. Simulations show that the decay exponent « of the kinetic energy, where
K(t) ~ t“, is not modified by helicity, except in the case of Batchelor turbulence because of the
reduction of the non-local inverse transfers analyzed in the previous section. Hence, one would
expect the decay of K(t) to be rapider in Batchelor HHT than in Batchelor HIT: indeed, the
non-local inverse transfers bring back less energy to the large scales. This is recovered in Fig.
8.6b.

To analytically take into account the breakdown of the PLE hypothesis, the backscatter parame-
ter p usually introduced in HIT is modified. In HIT, one has p(c = 4) = 0.55 and p(c < 3) = 0:
in particular, in Batchelor HIT K(t) ~ t~13%. Here, in Batchelor HHT, K(t) ~ t~147 is
obtained, and a least-square fit provides a new backscatter parameter py = 0.14 for HHT.
Consequently, with respect to HIT, only the backscatter parameter changes from p to py in
HHT for the decay of kinetic energy

(8.36)

These decay exponents for the kinetic energy are assessed in Fig 8.6b in Saffman and Batchelor
turbulence: only the case o0 = 4 differs from HIT, where here in HHT the decay of K(t) is
slightly rapider. The fact that helicity does not influence much the energy cascade once the
turbulence is fully developed is in good agreement with conclusions drawn by Polifke (1991);
Borue & Orszag (1997).

Decay of helicity: Helicity was shown to impact the kinetic energy decay only in Batchelor
turbulence. The emphasis is now put on the decay of K itself. The method to predict the decay
of helicity is similar to the one of an advected passive scalar, and even more simple. Indeed,
as revealed in Fig. 8.4b, the helical spectrum H(k,t) experiences no strong back transfers, so
that the PLE hypothesis holds even in Batchelor turbulence. Therefore, there is no need to
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Figure 8.6: Algebraic laws for the kinetic (—) and helical (——) fields, in Saffman (black)

and Batchelor (grey) turbulence. Symbols refer to the theoretical predictions: (8.36)

for «, (8.38) for ay, and (8.37) for L and Ly. (a) Growth exponents of the kinetic

and helical integral scales L and Ly. At a given o, the kinetic and helical theoretical

exponents cannot be distinguished. (b) Decay exponents of the kinetic energy and helicity
K and Ky, where o and [ refer to kinetic and helical theoretical exponents.

introduce a helical backscatter parameter. Then, it is reasonable to assume that the kinetic and
helical integral scales L(t) and Ly (t) decay similarly, so that their algebraic exponents ny, and

nr, are equal
2 2

o3 T o —pp+3

Ly (t) ~t"tn, NL, = (8.37)

This assumption is completely assessed in Fig. 8.6a. Then, using either the continuity of H(k,t)
in k = kg to determine the decay law for e, or dimensional analysis with Ky ~ K/Lg, or
(8.21), one finds

20+2

= o+3

(8.38)
Theoretical values of this expression for ay, gathered in the last line of Table 8.2, are in excel-
lent agreement with simulations presented in Fig. 8.6b for Saffman and Batchelor turbulence.
Interestingly, ay is equivalent to o in HIT with o = o + 1 without backscatter. The decay
exponent of ey is then simply ay — 1. Moreover, Fig. 8.6b shows that the more ¢ increases,
the more Ky decays rapidly, similarly to K ().

Comparison with Levshin & Chkhetiani (2013): Our results for the decay of kinetic
energy and helicity are now compared with the predictions of Levshin & Chkhetiani (2013)
(LC13): this work contains vagueness since the initial conditions are not defined, and it is
well-known that they are crucial since large scales are determinant for the decay rate. Indeed,
in LC13, for a given decay exponent « of the kinetic energy, two different decay exponents
ag of the helicity are proposed, which makes no sense (Tables 1 and 2 therein). The present
theoretical predictions for the decay of helicity are gathered in Table 8.2, along with the two
propositions made by LC13. To fill in Table 8.2, a very reasonable assumption is made: as
pointed out earlier, initial conditions are not defined in LC13, so that there is no infrared slope
o. Hence, when in LC13 a decay exponent for the kinetic energy is proposed, it is associated
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Decay exponent of helicity ap

c=1 0=2 o0=3 o=4
LC13 Table 1 /  —3/2 -8/5 -5/3
LC13 Table 2 -8/5 —=5/3 —12/7 /

(8.38) assessed by EDQNM | —-3/2 —-8/5 —5/3 —12/7

Table 8.2: Comparison of the different decay exponents oy obtained by EDQNM with (IC2)
and by Levshin & Chkhetiani (2013) (LC13).

here with its corresponding infrared slope according to the CBC theory: K ~ t™!1 — o =1,
Kn~nt % 5 656=2K~t* 55=3and K ~t07 5 45=14 (backscatter is not
taken into account in LC13). The values of oy from LC13 are the same as the ones coming
from (8.38) (—3/2, —8/5, —5/3 and —12/7), but there are not associated with the correct
infrared slopes. For instance in Saffman turbulence, two laws are proposed in LC13 for helicity:
KECB (1) ~ t73/2 and KECB(t) ~ t~5/3. This is impossible: using our theoretical prediction
(8.38), KEC13(t) ~ t~3/2 implies that o = 1, and KE13(t) ~ t7°/3 implies that o = 3, whereas
o = 2 in Saffman turbulence. In conclusion, it seems that the results of Levshin & Chkhetiani
(2013) correspond to infrared slopes of F and H chosen independently, without respecting the
realizability condition (8.17) which fixes oy once and for all as soon as o is chosen for E: (8.17)
forbids initial conditions such as oy = ¢ and o = 0 — 1. In addition, helical decay exponents
gathered in LC13 seems to be erroneously reported.

8.2.5 Robustness of the decay exponents - Altered infrared dynamics

In the previous section, for kinetic energy and helical spectra scaling in F = Ak and H =
Apk?H in fully developed turbulence, the evolution equations of A(t) and Ay (t) were derived
in (8.31)-(8.32) in the infrared range, assuming the dominance of inverse non-local transfers T,
and T, on local ones. For the initial conditions (8.19) where oy = o + 1, it was notably found
that the permanence of large eddies holds for Batchelor turbulence (o = 4).

Nevertheless, one can wonder if other initial conditions would produce a different infrared dy-
namics, and this could be relevant to test the robustness of the decay exponents a and ap
derived in the previous sections. One can remark that in (8.31), the term responsible for the
backscatter of E is the one where the k0 factor vanishes. Thus, it is legitimate to wonder if in
(8.32) one could have 4 + o — o = 0 in order to obtain d; Ay # 0, and consequently to create
backscatter for the helical spectrum. It is worth noting that 2 4+ oy — ¢ = 0 is impossible in
(8.31) because of the realizability condition (8.17).

In order to simplify this study and to point out one original case, the maximal helicity condition
H = kFE is kept, but the initial kinetic energy spectrum is now changed into a sharply peaked

Bkt = 0) = Cy exp (‘(012)2 [m <:L>] 2) , (8.39)

with C; so that one has a unit initial kinetic energy, and Co = 0.1. After a few turnover times,

Gaussian one

the kinetic energy spectrum scales in E ~ Ak? in the infrared range (Lesieur & Ossia, 2000).
Unlike (8.19), the helical infrared slope o is now different from o + 1. As a consequence of
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(8.32), it follows that oy = 0 + 4 = 8, and that the helical spectrum experiences backscatter

with dAy 14 ~  H(p)
H p
=4 — = — At 00pp——dp. 8.40
o=t S = A0 [t P (8.40)
The theoretical infrared scaling prediction H ~ k® is assessed in figure 8.7a, along with the k%
infrared scaling of E(k,t): in this case, the permanence of large eddies is not verified anymore
for H(k,t) for the initial conditions (8.39). Nevertheless, it is shown in figure 8.7b as well that
the previous theoretical decay exponents for kinetic energy and helicity are still valid, which
implies that the backscatter of H(k,t) is negligible in the decay. This case further illustrates
the robustness of the theoretical predictions for the decay exponents.
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Figure 8.7: (a) Helical spectrum H(k,t) (black) for the initial condition (8.39) (——) at

various times /79 = 10, 103 and 10%; the kinetic energy spectrum E(k,t) is displayed as

well (grey) at t/79 = 105. (b) Decay exponents o (—) and ag (——), where o and O refer
to the kinetic and helical theoretical predictions (8.36) and (8.38) respectively.

Simulations not presented here show that for Saffman turbulence (E ~ k?), a k® infrared scaling
for H could be created, but this is out of the maximal helicity framework: indeed, H(k,t = 0)
should be Gaussian with E(k,t = 0) ~ k?exp(—k?), and the theoretical decay exponents are
still verified.

8.3 Structure functions in helical turbulence

In the introduction, the main theoretical results for high Reynolds numbers HHT in physical
space were recalled: notably two equivalent laws, found independently, which result from the
conservation of helicity in inviscid flows. These two laws are the inertial scaling for the two-point
triple velocity correlation (Chkhetiani, 1996)

2

S(r) =< upuguly >= ;—OGH, (8.41)
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and the inertial scaling for the third-order velocity-velocity-vorticity structure function (Gomez
et al., 2000)

1 4
D(“uw)(r) =< dur,0u;dw; > —3 < du;0u;dwy, >= —gTEH- (8.42)
The formalism of structure functions is detailed in Appendix A: the separation vector between
two points located in @ and z’ is written r = #’ — x, and #/; and z; are independent variables.
The prime ’ refers to quantities expressed in @/, which should not be misunderstood with the
prime of correlations functions, such as f’(r), h'(r), which is the spatial derivative 9/0r.

For HIT, the Karmén-Howarth and Yaglom equations for the third-order structure functions
Di11, =< (5u% > and Dypr =< 6ur,d0? > are recovered analytically in Appendix A, along with
the equations that permit to compute Dy, and Dy from spectral non-linear transfers. These
two equations, and their multiple formulations, are very well-known and have been assessed
numerous times, mostly in DNS (Yeung et al., 2002; Watanabe & Gotoh, 2004; Yeung et al.,
2005; Bos et al., 2012; Gotoh & Watanabe, 2015). A numerical validation using high Reynolds
EDQNM simulations is proposed as well in Appendix A. The helical ”four-thirds” law (8.42) is
similar to the ”four-thirds” laws for the kinetic energy and scalar variance in HIT, since they
all come from conservation laws (Antonia et al., 1997).

In this section, formula that allow to compute helical structure functions from spectral quanti-
ties are derived, similarly to what is usually done for velocity and scalar statistics in HIT (Monin
& Yaglom, 1971). This further permits, using the EDQNM model presented in the previous
sections, to assess numerically at high Reynolds numbers the two laws (8.41) and (8.42). In
continuity of these developments in physical space, the evolution equation of the helical dissi-
pation rate ey is addressed: ep itself and its production term are simplified, similarly to what
is usually done for the kinetic energy dissipation rate in HIT. These analytical considerations
provide further insights on the derivatives of helical correlations and skew-isotropic tensors, and
leads to the definition of a helical Taylor scale and a helical derivative skewness.

8.3.1 Inertial scaling for S(r) and D(wuw) (r)

This part aims at recalling the main steps of the derivation of the laws (8.41) and (8.42), linking
S(r) and D) (1), and finally assessing their inertial scalings at large Reynolds numbers.

The law of Chkhetiani (1996): The Reynolds tensor reads

r 7T h(r
Rij(r) =< uzu; >= u2 f(r)éw -+ if,(T') (61J — TQJ) } + Sa)eijlrl’ (8.43)

where f =< wupuj > /u® is the second-order longitudinal correlation (see Appendix A for
details), with u?> = 2K/3, and h(r) = Rs3. The mixed velocity-vorticity correlation is
defined as

OR; r r h h P
H o n 2 l l AN
RU =< uzw; >— €jln67x2 =u €ijl (?f/ + 5f/l) — 2(513; + (T — h/) <57,] — rQ ) s (844)
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with < u;w; >= 2Kpg. Also,

h 1
RH(ry=—4= 21,  h(r)= —37Kn. (8.45)
r
The latter expression shows that h(0) = 0. The two-point third-order velocity correlation
contains an additional antisymmetric part with respect to HIT, so that

k—rk k 2k + rk’ r
5,3 Tk ij o Tk T(@m +65mi) + S(?")ré(éimj +€jmri), (8.46)

< uiujugc >=
where k(r) =< upuruj > and S(r) =< upuguf >: in particular, < wougur’ >= 0 and <
uruzubh, >= —S(r), which gives S(0) = 0. Thus, from the evolution equation (A.75) of R;;(r), it
is possible to compute the evolution equation of the antisymmetric part (R;; — Rj;)/2 = hegjry /v
linked to helicity. The spatial derivative 0, erases the part which contains the third-order
longitudinal correlation k(r), so that, after some algebra and using d; K = —epy, one gets

r 2 0

20, 2 20 ot
3= 39, '

3
S)+2v|—=h — 8.47
rS) + y( 72 (T)+7'87"+6r2 (8.47)
Further neglecting the viscous effects in the inertial range and integrating over r, one obtains

(8.41).

The law of Gomez et al. (2000): The equation for < dw; > is derived analogously to the
one for du; (A.85), starting from (D.27):

0 d 2
Opdw; + du o) (dw;) = dw; o (0ui) + Varj(?rj (O0u;) (8.48)
Combining (A.85) and (D.27) yields
0 < du;dw; > O 1 0? < Suibw; > Odu; 00w;
St S~ Sar Sy _ _4
D +87"j ( < dujoudw; > 5 < duiduidw; > > 2v ar;0r,; V< or; or;
=€y
(8.49)

Then, < du;du;dw; >= r; < durdu;éw; > /r, and 8rj(D(“““’)rj/r) = 0,(r?D)) /r2. Further
neglecting the time dependance and the viscous term in the inertial range, integration over r
yields (8.42). Interestingly, the Gomez and Chkhetiani laws can be linked. Remarking that
< duidw; >= 2 < wjw; > —2 < ww; >, ORI = —2¢y/3, with RIl = —2h/r, this provides

LD spiy o 1O (LOUPRE)Y 10 ( 0Rf
r287~(r ) =< ww; >= Ry, ror \r> Oor “rtor " Tar )

one gets by identification

8 0

UUW 1 3
D( ) =< 5uL5ui§wi > —5 < 5ui5ui(5wL >= —EE(T S(?”)), (850)

from which (8.41) immediately follows using (8.42).

Link between spectral and physical space: The equations to compute Dirr, and Dyrr
from spectral quantities are well known, even-though the second-one is much less documented:
see for instance Monin & Yaglom (1971) and Appendix A for details. Here, the equations to
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obtain both S(r) and D®*) from SN are presented. First, one needs to derive the evolution
equations of < w;w] > /2: this is done starting from (8.47). Since

<ww,>  19(r*h) reg  Oh
2 TR e 3 o (8:51)
one obtains 5 , 5 5 5 o
<UZOJ,L> __37 }7 3 _27V7 407
ot ( 2 > - r2or <r or (r S)> r4 or <7“ 8r2> ' (8:52)
This equations needs to be identified with the helical Lin equation (8.15), so that
20 (10,4 © NL,sin(kr)
_ 22 [ 22X (39 = St (k dk.
S (Fantson) = [ im0
This yields, after some algebra,
1 [ SNE rsin(kr) sin(kr) cos(kr)
S(r)y == " -3 dk 8.53
(=3 /0 k2 [ or (kr)? (kr)2 ] ’ (8:53)
oo SN rsin(kr)  cos(kr)
Dluww) :4/ a —~ dk. 54
A [ (kr)2 — kr ) (8:54)

The formula for D) ig very similar to the ones for < duy,d¢?> > and Dryr, which is expected
since they all refer to conservation laws. The relevance of the two previous formula is illustrated
in Fig. 8.8a and 8.8b, where the compensated helical third-order correlations — D) /(reg)
and S/(r%ey) are displayed at high Reynolds numbers. The theoretical values 4/3 and 1/30
are almost recovered at Rey = 3.10%: the slight difference is comparable to the difference
observed for the —4/5 law in decaying turbulence (Bos et al., 2012; Tchoufag et al., 2012).
Interestingly, D) is closer to 4/3 than < dur,d¢?> > in HHT. Let’s mention that an equivalent
scaling for S (the 2/15 law) was already assessed in DNS (Kurien et al., 2004). But so far, to

uuw) was not verified numerically, at least for freely decaying

our knowledge, the scaling for D(
turbulence: the present simulations show a very good agreement between EDQNM results and
the theoretical expectations. Finally, it is revealed in Fig. 8.8c that S ~ r* at small scales,
which is straightforward using (8.50), unlike < du} >, < dupdq® >, < duré6? > and D(wuw)

which scale in 3.

8.3.2 Evolution equation of ey

In this part, the evolution equation of the helical dissipation rate is addressed. The objective
is to simplify its equation, in a manner similar to what is usually done for the kinetic energy
dissipation rate € in HIT (Pope, 2000). More precisely, €z itself and its production term are
greatly simplified, and expressed as functions of the derivatives of the fluctuating velocity and
vorticity fields. The final expressions (8.58) and (8.67) constitute one of the main new theoretical
contributions of the present work, and applications are proposed as well. The calculations being
rather lengthy, the intermediate steps are gathered in Appendix D for the sake of clarity. The
evolution equation of ey reads

82’&1 62(,01' >
69@-8@ 8$jal‘l ’

gt <€7H) + Dlu,w] = —2v <

(8.55)
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Figure 8.8: Third-order helical correlations D(*““) and S, for ¢ = 2 at Rey = 3.10%, along
with the integral and Kolmogorov scales L and 7. (a) —D®"“) /(rey) and — < dur,dg® >
/(re). (b) S/(r?ex). (c) The different scalings of D(**) and S.

Ou; Ouy Ow; ou; Ouy Ow; Ou; Ou; Owy
Dlu,w] = au au . o '
[, ] =< dxj Ox; Oy > t< dx; Oz Ox; S dxj Ox; O > (8.56)

where the production term D[u,w| contains contributions from spatial derivatives of skew-
isotropic tensors such as < wjujw; > and < w;uju; >. In what follows, both ¢z and D[u,w] are
simplified. This procedure consists into two steps: first, expressing ey and Dlu,w] as functions
of the derivatives of h(r) and S(r) respectively, and then expressing these derivatives as functions
of particular components of the fluctuating velocity and vorticity fields. Obviously, this is much
more lengthy for D[u,w] since it is a third-order moment, composed of three different terms.

Derivatives of Rg- (r): The first step to simplify ey consists into expressing it as a function of
the derivatives of h(r). To do so, one first needs to know the derivatives of Rg , analogously to

what George & Hussein (1991) did for € in axisymmetric turbulence. One has

Orp0rg - Oz, Oz, ’ v

82R5 B ou; 30{; €H 82R5 _ Ou; Ow; 857
— \or.or; =< 8x-(9:z->‘ (8.57)
3975 /) r=0 j O

H from

After some algebra gathered in Appendix D, one gets the general expression of 8§quj,
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which one can obtain some relations between the derivatives of h(r). Then, using a Taylor
expansion of h(r) for r — 0 (with ~(0) = 0) yields the important theoretical result

8u1 6(.4)1

=10vh"(0) =15r < — — > .
H v () v 8.1‘1833‘1

(8.58)

This expression permits to determine the helicity dissipation rate with one term instead of nine,
and is equivalent to € = 15v < (01u1)? > for the kinetic energy dissipation rate in HIT.

The natural extension of the previous calculations for ey is the definition of a helical Taylor
scale Apy. Its expression is found analogously to what is usually done for the longitudinal Taylor
scale A (Pope, 2000), i.e. considering the osculating curve Py (r) of h(r) in r = 0, which reads

Pua(r) = h(0) + rH/(0) + (0 + "o h(0) = —r TH | sl (8.59)
H 2 6 3 601’ ‘

and Ay is further defined by Py (Ag) =0 and Ay # 0, which yields

= 2B (8.60)
€H

It is worth noting that this new expression is completely equivalent to the classical one for
the velocity A\ = y/20vK/e. The relevance of this formula is illustrated in Fig. 8.9. Both A
and Ay are displayed, at large and moderate Reynolds numbers for Saffman turbulence. Both

scales indicate the beginning of a region where viscous dissipation balances non-linear transfers.
At high Reynolds numbers, A and Ag cannot be distinguished, whereas Ap is a bit smaller at
moderate Reynolds numbers. The wavenumber k# , defined in (8.22) and proposed by Ditlevsen
& Giuliani (2001), is presented as well: it seems to have a similar physical meaning as Ag, at
least at large Reynolds numbers, and some explanations are provided in Appendix D. Moreover,
Fig. 8.9 illustrates the viscous production of helicity, already observed in Fig. 8.1b where the
helical spectrum was negative around k,;: indeed, —2vk3H is positive near Ky here.

A secondary application of these calculations is to express analytically the impact of helicity on
the second-order longitudinal correlation f(r — 0). Indeed, unlike HIT where all odd derivatives
of f(r) for r = 0 are zero, one can show that f”/(0) is a priori different from zero in HHT (one
has always f/(0) = 0 because of homogeneity). Expressing 9% R, and 02, RIL thanks to (D.33)

yields
1 Oug Ows Oug Ows

" __ 1 _OWwdws _ _ OJuzows
S0 = 5 Oz Oxy ” < Ox3 O3 . (8.61)

so that the Taylor expansion of f(r) reads

fry=1- ﬁ ¢ +ff”’(0) Jrﬁi /Oo EYE(k)dk (8.62)
— T Y s 6 24 35u2 J, ' '

Additional HHT term

Determination of the production term D[u,w|: The procedure used to determine ep is
now applied to the production term D|u,w]: since this term is complex and involves derivatives
of two different tensors < w;u;w; > and < wyu;u; >, the determination is divided into two steps.
First, D]u,w] is expressed as a function of the derivatives of S(r), and it will be shown that only



Chapter 8. Dynamics of Helicity in Skew-Isotropic Turbulence 181

Normalized budget terms
Normalized budget terms

Figure 8.9: Taylor scales for kinetic energy and helicity A and Ag, along with the corre-

sponding spectral viscous fluxes —2vk3E and —2vk3H and the non-linear transfers kSX"

and kSRL for ¢ = 2. The wavenumbers kH (8.22) and k,, are displayed as well. The black

curves are for the kinetic field, and the grey ones for the helical one. (a) Rey = 10%. (b)
Rey = 400.

S()(0) remains. Then, S)(0) is expressed as a function of the derivatives of the fluctuating
velocity and vorticity fields.

As pointed out in Gomez et al. (2000), the tensor < w;uju; > is much more complicated to
handle than < wjujw] >, which can be linked easily to < w;uju; > given in (8.46)

/
0 < ujujug >
oryp ’

gb(uuw)

iji ) =< s > (8.63)

_ U AN
=< UjUjW] >= €]pq ijl

(wuu) t

Calculations detailed in Appendix D first permit to link derivatives of d)%uw) and gzbijl
DJu,w] according to

63 w w
D] = (aaa i + ol - i),y (8.64)
where the derivatives of gi)l(;LlU and (;5 ) contain derivatives of S (r). Taylor expansions of S(r)
for r — 0 further give
Oou; Ouy Ow; Ou; Ouy Ow; Ou; Ou; Owy

Dlu,w] = >=—3550)(0).  (8.65)

— >+ < — > =<
Oxj Oxj Ox; * O0x; Oxj Ox; dxj Ox; Ox;
Now that D[u,w] has been linked to S)(0), the final step is to express the fourth derivative
of S(r) as derivatives of the fluctuating velocity and vorticity fields, so that D[u,w] can be

(vuw) .

evaluated in DNS for instance. For this purpose, the explicit sixth-order tensor O pquwl is

needed, and given in Appendix D. From this lengthy expression, one notably gets

a3¢ uUuUwW iv
( o ) = —5)(0), (8.66)
1 r=0
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from which one finally obtains the second important result of this section

aQU% 6w1

— —3558)(0) =
Dlu,w] 355V (0) =35 < 922 Oy >,

(8.67)

which permits notably to compute D]u,w] with only one term, instead of eighty-one. Further
proceeding as in Kerr (1985), i.e. identifying (8.55) with the spectral evolution equation of ey

S~ [T ak - 0 [ k(b (8.68)
0 0
provides
. 9 [
$09(0) = 2 /0 2SN (&, £)dk. (8.69)

Hence, one can define, analogously to the mixed-derivative skewness of a passive scalar in HIT,
a helical derivative skewness as

82u% Oowy Ou1 Owy ouy 2
Suuw =< e e >/ < 92, 021 >3/ < <8xl> > (8.70)

_3V30 Jo© k2SHdk

(8.71)

W S 2Bdk [ k2 HdkE

Interestingly, the numerical factor 31/30/14 is identical to the one of the velocity derivative
skewness in HIT.

The helical derivative skewness Sy, is displayed in Fig. 8.10 as a function of the Reynolds
number Rey. Only Saffman turbulence is presented, because the curve for Batchelor turbulence
is identical at high Reynolds numbers, similarly to the velocity and mixed derivative skewnesses
in HIT (see Chapter 1 and Appendix A). The initial oscillations at large Re) correspond to the
first turnover times of the simulation, when the turbulence is not fully developed yet. As for the
velocity and mixed derivative skewnesses, Sy, is negative and reaches an asymptotic value at
large Reynolds numbers Sp;,,, = —0.141. This value S, , is lower in magnitude than asymptotic
values for the velocity and mixed derivative skewnesses in HIT which are around ~ —0.5. The
knowledge of the helical derivative skewness is of importance, for two reasons: it is of theoretical
interest since it permits to have a strong analogy between the evolution equations of ¢ in HIT
and ex in HHT. On a more practical point of view, the previous developments which led to
Suuw show that there exists, in homogeneous helical turbulence, a quantity which is constant at
large Reynolds numbers: such a result could be used to improve RANS models for helical flows,
where the production term would be linked to Sy -

8.4 Effect of helicity on the scalar flux

In this section, the transport of a passive scalar field 0 is addressed. However, since there are

no explicit contributions of helicity in its evolution equation, a vertical mean scalar gradient
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Figure 8.10: Helical derivative skewness Sy (t) in HHT for o = 2.

A =(0,0,—A) is added. In purely isotropic turbulence with a mean scalar gradient, the well-
known cospectrum F is created (see Chapter 5). When both helicity and a mean scalar gradient
are combined, a second spectrum is created, called the quadrature spectrum Q(k, t), linked to the
imaginary antisymmetric part of the scalar flux F;(k). This quadrature spectrum was reported
in Mydlarski & Warhaft (1998), and shown to be zero in non-helical turbulence with a mean
scalar gradient in O’Gorman & Pullin (2005). Consequently, we choose here the framework of
Helical Homogeneous Turbulence with a mean Scalar Sradient (HHTSG) in order to create this
quadrature spectrum and analyze its properties. In the two next parts, it is first proposed to
derive the evolution equation of Q(k,t) and its non-linear transfer terms within the EDQNM
framework, and secondly to investigate its inertial scaling. Analogies with the effects of helicity
on the kinetic energy spectrum are pointed out, and the decay exponent of helicity along with
the helical Taylor scale given previously are used. A unit Prandtl number is considered, and
simulations not presented here have revealed that the scalar variance spectrum still scales in
k~5/3 in the inertial range despite the presence of helicity.

8.4.1 Modelling of the quadrature spectrum

When the decomposition of the scalar flux (4.28) was introduced in Chapter 4, it was mentioned
that in presence of helicity there could be an additional antisymmetric contribution. Thus,
without mirror symmetry, the new decomposition of the scalar flux reads

Q
Fi(k,t) = §5JF (k,t)Pij (k) + §lgijnanfT, (8.72)
which is quite similar to the decomposition (8.2) of R;;. Both ng and SJF are real vectors. The
imaginary antisymmetric part is linked to the quadrature spectrum Q(k,t), which is zero in

HITSG and arises only with the additional presence of helicity, and is defined as
QUk, 1) = 4mk2EQ (i, ) = / ieg ik (R, £) A2k, (8.73)
Sk

It appears that the quadrature spectrum was never analytically investigated, and is only reported
to be zero in HIT and HITSG by Mydlarski (2003); O’Gorman & Pullin (2005). The mechanism
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which creates an additional contribution to the scalar flux, parallel to the mean gradient in
the presence of helicity, is called skew-diffusion by Moffatt & Tsinober (1992). It is worth
noting that from the decomposition (8.72) and (8.73), imaginary components of the scalar flux,
perpendicular to the mean scalar gradient, are non-zero. Nevertheless, these components vanish
after spherical averaging. Hence, in HHTSG, the evolution equation of the cospectrum given in
(4.38) is modified into

2 e
(gt +(a+ V)k‘2> F(k,t) = SAB(k, ) + 55 (k) + 550D (h,0), (8.74)

/

SEF(k,t)

F,NL(hel) .

where S is the additional contribution arising from the presence of helicity, the non-

i
linear spherically-averaged helical scalar flux transfer

SiF’NL(hel)(k, t) = 4n? H,qu:Q(x + yz)H" <2pz€iQ - l{:é’?)dpdq
Ay

4 dr? /A k(e +y2) M (€2 = ala — 2kp)e?) — *H"EX |apdg. (3.75)
k

F NL(hel) . F,NL

The remarkable feature about .S is that, unlike S; which contains a RTI part, it is a

i
conservative transfer, with zero integral over the whole wavenumber space. Then, the evolution
equation of the quadrature spectrum reads

(;’t ot y>k2> QUi 1) = SAH (k1) + S (k. ), (8.76)

_ S?(’Q7NL

where the production term is linked to helicity, and SgL is the non-linear spherically-

averaged quadrature transfer
SZQ’NL(k:, t) = 4 /A 9,quk3pq [56’ (EZ-Q/ (zyz + 22° — 9?) — 2z(zy + z)é’?)
k
+ 2(ay + )M (26 - )| dpdg
+ 47? /A fqu2q [k:pc‘,'(’]’ (SIQI (xyz + 222 — yz) —-2(1- y2)5iQ> — kpz(zy + Z)H/'Ef/
k

+ k& (5?”19(1 — ) — €2 q(x —yz - 2xy2))

— pgH (&F”y(l — )+ & w2+ P —y(1 - :vQ)))} dpdq. (8.77)
Similarly to Sg ’NL, SgL is not a conservative transfer. Some details are provided in Appendix

E for 5] NP0 and SN

8.4.2 Decay of < w3l > and inertial scaling of Q(k,t)

For these numerical simulations, one has initially Q = F = Ep = 0, F is given by (8.19), and
H = EE. First, let’s consider the evolution equation in physical space of the one-point mixed
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vorticity-scalar correlation

o Ows 00 o
Kq(t) =< wsf >= / Qkt)dk,  eq(t) = (v+a) < S22 >=2(v+a) / KQ(k,t)dk,
0 Oz Oz 0
(8.78)
which reads 9 9 ) 9 99 o
< wsl > U3 w3
IS 2 P Kyt < 0w, 28 s IV s .
ot 3 H+ < Ow; oz, > —(v+a)< 9z, O, >, (8.79)

where < Ow;0jug > is the destruction term of < wsf >, and is given by the integral of SgL
over the whole wavenumber space. From this evolution equation, it directly follows that the
decay exponent of Kq is ag = apy + 1, because the production term linked to helicity is the
one responsible for the creation of the quadrature spectrum. This yields

oc+1

KQ(t)NtaQ7 aQ = o+3

(8.80)
which is assessed, for both Saffman and Batchelor turbulence, in Fig. 8.11a. The decay exponent
ar, derived in (5.13) for HITSG is still valid, using the helical backscatter parameter py = 0.14.
For a given infrared slope o, the decay of < wsf > is faster than < u3f >, similarly to the decay
of Ky being faster than K.

Regarding the non-linear transfers: the impact of the quadrature spectrum on the cospectrum
can be observed through the conservative non-linear transfer S3F NL(hel) - hig transfer is linked
to an inverse cascade of < uzf >, localized at large scales, between the integral and the helical
Taylor scales. This can be qualitatively compared to the impact of helicity on the kinetic

energy spectrum dynamics through SNE(hel)

in Fig. 8.3b. One could conclude that helicity only
slightly reduces the non-linear transfers of the cospectrum at large scales. Then, the quadrature

non-linear transfer SgL itself is similar to the cospectrum one Sg ’NL, but less intense.

Finally, in Fig. 8.11c, the quadrature spectrum is presented. In the infrared range, it scales in
Q ~ k3 for Saffman turbulence, because the helical spectrum itself evolves in H ~ k3: indeed,
helicity, through the mean scalar gradient, is the production term of the quadrature spectrum.
In the inertial range, Q(k,t) is first positive for scales larger than the helical Taylor scale Ag,
and scales in k~7/3 similarly to F. Whereas for scales smaller than Az, the spectral slope is
close to k%3 and the quadrature spectrum is negative: it is recalled that around ky, H(k,t) is
also negative.

One can propose a theoretical inertial scaling for the positive region of the quadrature spectrum:
assuming in (8.76) that 9,Q ~ AH, with the characteristic inertial time (k2e)~1/3, this gives

Qk,t) ~ Neg e 23K/, kr <k <G (8.81)

For the negative region of Q(k,t), the quadrature spectrum should only depend on e, and not
anymore on e, since this is the negative small scales of H(k,t) which are responsible for this
inertial-helical range of Q(k,t). Thus, one gets

QUk,t) ~ Aesl® 573, A < k< . (8.82)
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Figure 8.11: (a) Decay exponents ag and ar of < wzf > (——) and < uzf > (—)

respectively, for o = 2 (black) and o = 4 (grey); theoretical predictions, O for g (8.80),

and o for ar (5.13). (b) Cospectrum and quadrature non-linear transfers, for o = 2

at Rey = 5.10%, along with the integral, helical Taylor and Kolmogorov wavenumbers

kr, 1/Ag and k,. (c) Cospectrum F(k,t) and quadrature spectrum Q(k,t); —Q(k,t) is
displayed in grey. Same configuration as (b).

This change of slope, from k~7/3 for kAy < 1, to k=5/3 for kAg > 1, observed in figure 8.11c,
and justified with dimensional and physical arguments, can also be interpreted in terms of a
change in characteristic time scales, from 7 = (k%¢)~'/3 to 77 = (key)~'/3. The latter time
scale was notably proposed by Kurien et al. (2004) for an alternative scaling of H(k,t) at small
scales. This characteristic time scale 7y is relevant for the inertial-helical scaling of () when it
is negative: indeed, for kAy > 1, the equation (8.76) of @) can be written 9;Q ~ SgL. Using
the characteristic time scale 777, the classical inertial scaling (8.20) of H and F, one gets for the
non-linear quadrature transfer SgL ~ Ak 361211/3, so that (8.82) is recovered.
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8.5 Conclusion on homogeneous skew-isotropic turbulence

The classical framework of decaying homogeneous helical turbulence (HHT) where mirror sym-
metry is broken at large Reynolds numbers was addressed using the anisotropic EDQNM mod-
elling.

Some existing results were recovered here for decaying skew-isotropic turbulence, in order to
validate the use of EDQNM for HHT, which could be summarized in three features. First,
when helicity is initially present at large scales, helicity cascades towards small scales along
with the kinetic energy, creating a k~5/3 inertial range that extends up to the Kolmogorov
wavenumber k,. The k~%3 scaling of the helical spectrum H(k,t) is similar to the one of an
advected passive scalar, also obtained with dimensional analysis by assuming that the inertial
characteristic time 7(k) = (k?¢)~'/3 is identical for both the kinetic and helical fields. Secondly,
in the early stage of the decay, helicity slows down the filling of the kinetic energy spectrum
at small scales. Consequently, there is an initial reduction of the kinetic energy transfers: this
is a transitory effect, since once the turbulence is fully developed, the effects of helicity on the
kinetic energy decay are rather weak. Finally, two-point third-order helical correlations were
investigated: notably, the ”four-thirds” law for helical structure functions, and the 1/30 law
for the helical correlation S(r), were assessed with EDQNM at very high Reynolds numbers
in decaying turbulence. It is worth noting that the two formula linking helical correlations in
physical space and spectral non-linear helical transfers are new results of this work.

Then, EDQNM simulations were used to assess some new theoretical predictions of fundamental
interest for helical turbulence. First, the infrared dynamics of the kinetic energy and helical
spectra was investigated theoretically using non-local expansions in the non-linear transfers. It
clearly appears that in Batchelor HHT, helicity reduces the back transfers of kinetic energy
with respect to HIT: consequently, inverse non-local transfers are weakened and bring back less
energy to large scales. Furthermore, the permanence of large eddies is shown to be verified
for H(k,t), even in Batchelor turbulence, with classical initial conditions such that the kinetic
and helical infrared slopes are oy = 0 4+ 1. These two features are assessed numerically with
EDQNM. An original configuration, with different initial conditions, also exhibited a k® infrared
scaling for H(k,t), along with some helical backscatter.

Secondly, as a direct application of the previous infrared dynamics analysis, the impact of
helicity on the long-time kinetic energy decay was shown to be quite subtle: indeed, the decay
of K(t) is not modified with regard to HIT, except in the case of Batchelor turbulence where
it is slightly accelerated, because of the less-intense inverse transfers. In addition, in agreement
with dimensional analysis, theoretical decay exponents for helicity were derived, and assessed
numerically at large Reynolds numbers: in particular, it is found that helicity decays faster than
the kinetic energy.

Thirdly, the evolution equation of the helicity dissipation rate ey was studied, with a particular
attention on the derivatives of second and third order skew-isotropic tensors such as < uiw; >,
< uujw; > and < wyu;u; >. As an important result of these analytical developments, eg itself
is expressed as a function of h”/(0) only, where h = Ry3(r), and its production term D[u,w]
as a function of S)(0) only, where S =< upugu >. It follows that eg and D[u,w] can be
expressed with only one term, instead of nine and eighty-one respectively.
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Fourthly, as a direct application of these fundamental results, a helical Taylor scale was defined
A = /20vK g /e, whose expression is analogous to the longitudinal Taylor scale A for kinetic
energy. Such a scale is new for the helical field, and its relevance was illustrated numerically: Ap
is the scale from which viscous dissipation of helicity becomes dynamically important, and at
large Reynolds numbers, it is very close to A. Moreover, a helical derivative skewness was defined
and is negative and constant at large Reynolds numbers, similarly to the velocity derivative and
mixed-derivative skewnesses in HIT.

Finally, it was shown that combining a mean scalar gradient and helicity produces the quadra-
ture spectrum Q(k,t), linked to the imaginary antisymmetric part of the scalar flux. As a con-
sequence, the large scales non-linear transfers of the cospectrum are slightly reduced. The main
result is that Q(k,t) has two different scalings in the inertial range: for kAy < 1, Q ~ k~7/3,
and then for Ay > 1, Q ~ k~5/3: this change in the spectral slope can be interpreted as the
characteristic time evolving from (k%¢)~'/3 to (key) 1/ at smaller scales.



Chapter 9

(General Conclusions and
Perspectives

”Do. Or do not. There is no try.”

— Master Yoda, Star Wars V

The main objective of this thesis was to understand the fundamental turbulent mechanisms
occurring in natural flows at large Reynolds numbers, such as atmospheric and oceanic ones.
For this purpose, we established a methodology which could be summarized as follows: we
worked in the framework of homogeneous turbulence, with the spectral formalism, and aimed
at modelling the various processes at stake in turbulent anisotropic flows. The resulting model,
called anisotropic EDQNM modelling throughout the manuscript, was assessed by multiple
comparisons against DNS and experiments. Then, theoretical predictions were derived, based
on both physical arguments and analytical calculations, which were successfully verified by the

model.

The starting point of this complex task was the pioneering study of Cambon et al. (1981), further
developed and improved in Mons et al. (2016). The general concept of the spectral modelling
relies on two steps: (i) a classical EDQNM procedure to close the non-linear terms in the
evolution equations of the two-point second-order moments; and (ii) a modelling of anisotropy
through truncated expansions in spherical harmonics of the spectral second-order moments.
The final model is not an end in itself, but rather a general and robust method to address
complex flows, which eventually requires no more adjustable constants than the eddy-damping
one, chosen once and for all on the well-known and accepted isotropic value. Consequently, the
model is relevant to explore configurations unreachable by DNS and experiments.

Since detailed conclusions were provided at the end of each chapter, it would be redundant to
recall them here. Instead, we prefer to briefly put the emphasis on the main findings of the thesis.
In the eight previous chapters, we tackled isotropic turbulence (HIT), isotropic turbulence with
a mean scalar gradient (HITSG), isotropic helical turbulence (HHT'), helical turbulence with
a mean scalar gradient (HHTSG), turbulence initially submitted to shear (HSRT), sustained
shear flows (HST), shear flows with a mean scalar gradient (HSTSG), and unstably stratified
turbulence (USHT). For each of these configurations:

189
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e Lengthy and complex analytical calculations have been performed to determine the non-
linear transfers and production terms of the anisotropic EDQNM model...

e ... which was compared, when possible, to DNS, experiments and other models.

The infrared and inertial scalings of the main spectra were accurately investigated.

The scale-by-scale distribution of anisotropy was analyzed.

Theoretical time exponents, assessed numerically, were derived for one-point statistics
such as the kinetic energy, the scalar variance, the mixed velocity-scalar correlation, and
the helicity.

Among these numerous features, the three most important findings would be, very likely:

e The new algebraic decay exponents for < 62 > and < wuzf > in HITSG, and
for < w;w; > in HHT, and when combining both, the creation of the quadrature
spectrum.

e The profound difference between the asymptotic anisotropic states of shear flows
and unstably stratified turbulence: the former is almost independent of large scales
initial conditions o, whereas the latter strongly depend on them, and this was
justified analytically.

e The effects of moderate Reynolds numbers on the scattering of global quantities
in shear flows and on persistent small scales anisotropy at the level of the scalar
second-order moments.

In addition to all the points mentioned above, detailed appendices are provided which contain all
the calculations needed to understand the anisotropy modelling, the establishment of the quasi-
normal normal expressions of the non-linear transfers within the EDQNM procedure (along with
all the tricky but essential geometrical relations), the spherical and A integrations, the non-local
expansions, and statistics of second and third order moments in homogeneous turbulence. These
appendices are rather long on purpose, in order to allow this work to be continued conveniently.

Further theoretical considerations were also proposed, such as the pressure spectra, quadratic
anisotropic contributions in the non-linear transfers, and last but not least, the third and fourth
orders expansions of £ and Z for the kinetic field. This last remark makes the transition with
the possible perspectives that I can imagine:

e Pursue the work, started Chapter 2 and Appendix C, about the third and fourth orders
expansions of £ and Z for the velocity field, and find some configurations, in addition to
the sustained shear flow, where it could be of of importance. This is a promising track since
first results in Chapter 3 indicate that fourth-order contributions tend to reduce the kinetic
energy exponential growth rate v. The extension to the scalar field through £ would be
rather straightforward. But more interestingly, some work needs to be done regarding the
higher-order expansion of the scalar flux. Indeed, given the equations of USHT, it could
improve the theoretical linear prediction for the kinetic energy exponential growth rate 5,
and consequently makes it closer to the exact value 2/N.
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e Since shear was already combined to a mean scalar gradient for passive scalar dynamics in
Chapter 5, and helicity to a mean scalar gradient in Chapter 8, a natural extension could
be to combine both shear and USHT. First results tend to indicate that stratification
overcomes shear, with an exponential growth rate for K which depends on o. At a
comparable level, it would be interesting to go further with the variable mean-fields S(t)
and N (t), with some details and equations already provided at the end of Chapters 3 and
7. This could extend the reach of the anisotropic EDQNM modelling to address mixing
and free-shear layers within a homogeneous framework.

e For the long-term perspective, it would be of great theoretical interest to extend the
concept of the modelled anisotropy through spherical harmonics expansion to EDQNM2,
in order to deal with rotating turbulence. Of course, this is a complex task which would
require significant analytical developments to take into account the linear operators of the
third-order correlations into the non-linear transfers. But it could permit to model more
accurately geophysical flows by combining shear, stratification and rotation.

e Finally, the case of MHD turbulence could be addressed again thanks to the present ani-
sotropic EDQNM modelling, in line with the pioneering works of Pouquet et al. (1976);
Grappin et al. (1982). Indeed, the spectral two-point magnetic-magnetic correlation veri-
fies the same properties as Rij, and thus can be decomposed as well into directional and
polarization parts, which could be of use to address strong MHD, where a mean magnetic
field breaks the isotropy of the flow. Before that, it appears to be essential to focus first
on isotropic MHD, with the effects of kinetic helicity, magnetic helicity, and cross-helicity
combined. In the last months of this thesis, I started studying isotropic MHD in presence
of cross-helicity, without a mean magnetic field, and despite some analogies with the ki-
netic helicity in hydrodynamics turbulence, it is much more complex and there is still a
great amount of work to be done.



Appendix A

Statistics and Structure Functions

The first objective of this appendix is to gather equivalences between physical and spectral for-
mulations, in order to compute third-order statistical quantities with EDQNM, such as deriva-
tive skewnesses, in homogeneous turbulence. Equivalences in homogeneous isotropic turbulence
(HIT) are not that straightforward, and thus deserve some details, since errors are found in
reference papers (Pope, 2000; Antonia & Orlandi, 2004; Ristorcelli, 2006). In the following
sections, as many details as possible are given, that could be used for other purposes as well.
Extensions to homogeneous turbulence without any particular symmetries are proposed. The
second objective is to recall some basic results about structure functions.

A.1 Evolution equations and definitions

The fluctuating vorticity w; is divergence-free and the vorticity tensor is defined as
Wij =< wiwj > . (A.l)
The enstrophy W;; =< w? > is linked to the kinetic energy dissipation rate through
9 €
<wiw; >=<w” >= . (A.2)

This is always valid in homogeneous turbulence, as shown hereafter. The evolution equations
of the fluctuating velocity and vorticity are given in (2.1) and (D.27). Let’s define as well the
two useful symmetric and antisymmetric tensors

8ui 8’LL]' 8’11,@ 6uj

i = ;A= — 2 A.
y J 8iL‘j 8$Z “ J al‘j 8952 ( 3)

For the scalar field, the evolution equation of the fluctuating part is given in (4.2). Let’s define
as well the scalar covariance tensor < 9;0 0;0 >=< &¢; > and the derivative scalar variance

T

00
< &g >=< & >= %, & =

N 821?1

(A4)

2

The evolution equations of the enstrophy < w? > and < ¢? > are detailed for homogeneous

flows in section A.2, and then for HIT in section A.3.

192
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A.2 Tensorial relations for homogeneous turbulence

In this part, the emphasis is put on homogeneous turbulence to provide general relations between
sixth order tensors involving second and third order moments of the fluctuating velocity and
scalar fields. In what follows, only homogeneity is assumed.

A.2.1 Dissipation ¢ and enstrophy < w? >

Expanding < 9j(u; Opuj) = 0 > and < Ok (u; Qqu;) = 0 > yields the important result detailed in
George & Hussein (1991)
Ou; Ou; Ou; Ouj
— >=< —_— >.
(‘)xl 8$k 8:Ek 8:61

(A.5)

Let’s call this result the 2"* order law, since it involves second-order moments of the velocity
field through a rank-4 tensor. Then, multiplying the incompressibility condition d;u; = 0 by
O1u1, Oxus and Osug provides, after ensemble average,

< Oy Orug > + < O3ug jug >= — < (81U1)2 >,

< Ooug O1ug > + < O3ug Doug >= — < (82u2)2 >,
< O3uq Ohug > + < O3ug Oqug >= — < ((93U3)2 > .

This gives the relation always valid in homogeneous turbulence

2 2
<8u18u2>+<8u18u3>+<6u28u3>——1<< <8u1> >+<<6Zz) >+<<OU3

87@8931 871'361'1 871‘38:22 a 2 83:1 8 2 (31’3
(A.6)
so that
2 € 8u, 811,1 1 8’&1 8Uj 6uz 6uj 1
= — = = — —_— = — 3iSii . A7
Sw e v <3xj8xj> 2<<8xj+6a:i 8xj+8mi > 2<8]83> (A7)
A.2.2 Identities for the velocity field
Let’s define the sixth order tensor
Ou; Ou; Ou
Bz‘jkpqr =< ! i (A8)

0z, Oz Oxy

This tensor appears notably in the numerator of the velocity derivative skewness S(t), and on
the evolution equation of the dissipation rate €(¢). In a manner similar to George & Hussein
(1991) with the 2"? order law (A.5), there is a need to find different relations involving B;jkpgr-

Firstly, the use of homogeneity, through the difference of < 0;(u; Oqup Oqup) >= 0 and <
0;(u; Oquyp Opug) >= 0, gives

Ou; OQug % o Ou; OQuyg %

— = — . A.
Ox; Oxp Oxyp Ox; Oz, Oxg (4.9)



Appendix A. Statistics and Structure Functions 194

This is similar to (A.5), but for third-order moments of the velocity field, and thus this result is
called the 3" order first law. One can also derive a second relation for third-order moments
of the velocity field: < 0, (u;uq 0quup) >=0 and < 04(uq Opu; Oju,) >= 0 yield

" ou; 82up B Ouy, azuq B Ouy, 0%u;
19w, Ox;0x,

- <u—L >= - <UL >,
'Oxy Ox;0x) 10x; Ox,0x,
which allows, from < 92 (usup0;jug) >= 0, to obtain

Ou; g Dup
O0xp O 0x4

o, Qi O
10x; 0x,0x

< >4+ < >=0.
Injecting the two previous equations into the development of < 9,(up Oju; Opug) >= 0, and

using the fact that < 0;(u, Opu; Opu,) >= 0, yields the 3" order second law

Ou; Oug Oug Ou; Ouyp Ouy
“0 g 2R
Oxj Oxp Oxyp O0xp Oxq Ox;

(A.10)

Then, combining < 0;(u 0ju; Opuj) >= 0 and < ('313]k(ulu]uk) >=0 =4 < uy Oju; 03u; >,
provides

8ui 8Uj 8uk
— =0 A1l
< al‘j 8xk 8.75% - ’ ( )

which is consistent with (A.10). This result is often used in the isotropic framework. Finally, it
is possible to derive one more relation for Bjj,e- : let’s consider the following system

[1] < 8p(uz 8qu]' 87«uk) >=0, [2] < 8p(u2 Gruj aquk) >=0, [3] < 8q(u2 Gpuj 8Tuk) >=0,
[4] < Og(u; Oruj Opuy) >=0, [5] < O (u; Oquj Opuy) >=0, [6] < Op(u; Opuj Oquy) >=0.

Each equation creates three terms, with one involving a particular permutation of B;jzpq. Com-
bining these six equations, in the specific order [2]+[3]+[5]-[1]-[4]-[6], yields the permutation
law

Bijkpgr + Bijkqrp + Bijkrpq = Bijkprq + Bijkqpr + Bijkrqp- (A.12)

Let’s now define another sixth order tensor

C —< 82u1- 82Uj >
TR T OOy, Oy,

(A.13)

This tensor appears notably in the numerator of the kinetic palinstrophy G(¢), and on the
evolution equation of the dissipation rate €(¢). Firstly, the equations < 8]2-k (u; 8]2,6%) >= 0 and
< 8% (u; 02, u;) >= 0 provide

aQUi qui N 82Ui 62“2‘ >
Or;0x; Oxpdxy, ~  Oxj0z) Oxj0T)

(A.14)

Then, < 82-2]. (Oru; Opuy) >= 0 gives

82uz~ 32Uj
=0. Al
< 8$k8.%‘j 837]49331 >=0 ( 5)
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These two equations will be used in the HIT framework. Finally, with the difference of <
02, (uj 02 ui) >= 0 and < 8,%p(uj azpui) >= 0, a more general result can be obtained
82u, 82% 8211,1‘ 82u]‘

= . Al
ﬁxkaxp O0x0x, -7 Oz 0xy, 0xp0xy ~ (4.16)

A.2.3 Evolution equations of W,;; and < w? >

In the homogeneous framework, the vorticity tensor W;; evolution equation reads

8Wij
ot

ou; ou;
= WZ‘[A]‘Z + WjAg+ < wy (wj% + w 8.1“]1

) > —e, (A.17)

where the vorticity dissipation rate is €%

n=2w< Ow;Oiw; >. Using (A.5), one obtains directly

Oug Ou Oug Ou €ij
Wij =08 < —2—-12 s A.18
" Oxp Oxyp Ox; Ox; 2u ( )
It is possible to simplify < wjw;0u; >. Firstly, the expansion of this term yields
< ou; - ou; . ou; 8uq >
WWj—=—— >=< ——Agpa;
™9 0y Oz, P Ou; O, ’
and the second rhs term is zero thanks to (A.9). Finally, one obtains using (A.10)
< E)ui 6u] . ou; 8uq Bup o< Ouy % % o< ou; 8uq Buq
0z, 7] 83:1 O0xp 0 Oxy Ox; Oxp Oxg Oxp Oxj Oxp
B dug Ou; Oug - +1 < Oup duy Qup s < Ou; dug dugy o dug Ou; Oug (A.19)
Ox; Oy Oxyp Oxq Oxq Oxp Ox; Oxy Ox; Oxp Oxyp
Furthermore, using (A.11) and (A.14), one has
< WiWj u> <GG8Ui>*—<an%an>
R 8 4 ‘”8 &€ - 81‘j al'k 8$k
ie% 8wZ ow; . ?u;  O%u; -
2v 81‘3 Ox; 0x,0x), 024024
so that the enstrophy evolution equation in homogeneous turbulence reads
0 < w?> Ou; Ouj Ouy; 0u; 0%
— T =W AL —2< 11> 9y : > A.20
ot R Oxj Oxy, Oxp, Ba:pﬁa:p 0z 40z, ( )

A.2.4 Evolution equation of ¢;;

The evolution equation of the dissipation tensor ¢;; is not often investigated, as pointed out in
Piquet (2001). The starting point to compute the evolution equation of €;; = 2v < Opu; Opu; >
is to derive the evolution equation (2.1) of w; with respect to zj, and to multiply it by Opu;.
The same process is done for the evolution equation of u; and the two resulting expressions
are summed. Finally, the ensemble average is applied. Some terms are not straightforward to
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simplify, and details are provided hereafter: this yields the evolution equation of the dissipation
tensor in the homogeneous framework

0 [€j ou; 8u3 8up Ouj Ou; Ouy, Op 0s;j Pu; 02 u;j
() = 27 7P It —9
5 (50) =~ < Oy, 0zp Oz~ Oxy Ozy Oz, | - Ozp Oz . " Ozxdar Ozydc,
ou; Ou; ou, Ou; ou, Ou;
) PP, Wi s Ry i e RSP P il A.21
< Pk 8xp (%k - < p@xk 8a:k < P aﬁk a:L‘k ( )
The term arising from the non-linearity:
Ou; P*ujuy Ou; O%ujuy
Oxy, 00Ty, Oxy, 00z, N
Ou; Ouj Ouy ou; 0? u;j Ou; Ou; Ouy, Ou, 0%u;
( Dy, 0z, 0z, | POy Ozpd, )+ ( Dy, 0z, 0z~ T POy Oxn0sz, ):

(A.22)

Considering < u,0p(0ku; Opuj) >= 0 by virtue of homogeneity and incompressibility yields

ou; 0y ou;  0%uj
- _ A2
p@xk O0zx0x, - < p@mk O0zx0x, > (A.23)
which simplifies (A.22) into
ou; 82ujup Ou; 82uiup Ou; Ouj Ouy Ouj Ou; Quy
Z e = = e e e B R S A.24
Oxy, 00y, Oxy, 0,0y, =< Oxy, Oz Oy, >+ < Oxy, 0z Oy, o ( )

The mean-gradient terms: the terms involving the mean-velocity gradient can be grouped
together thanks to (A.5), which yields

Oou; Ou; ou; Ou; ou, Ou,; ou, Ouy;

— < App— e/ S e R P G o ooy O O

< 8$p oxy Z TS Aok Oxp, Oxy, < p@xk oxy < v oxy Bxk
Ou; Ou; ou, Ou; ou, Ou;
= _9 A 1) o ; P J o A P 1
< pk@xp al‘k = < pal‘k 8:Ek < ]pal‘k 8:%

and the terms involving only the mean velocity are zero due to (A.23)

8uj 821% 811,, aQUj
Pa,. > —< P,
Oxy, 0,01, Oz, 0,01y,

The pressure terms: there are several steps: expanding < 0; kk(puz) >= 0 and using <
Ok (Okui Opp) >= 0, < Ok(0;u; Okp) >= 0, and < 0;(Oku; Okp) >= 0 gives

03u; p
—— >+ < Uuyy—F— >=0. A.25
8x]8xk8xk + < 0z 0z, 0z ( )
Then, the sum of < 92, (u;0;p) >= 0 and < 92, (d;u; p) >= 0 provides, using (A.25)

@ 82% ou; 62}7
axk 8%8176 8xk 8.1’3(93%

>= 0. (A.26)
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Finally, summing the previous equation with (i <+ j) yields the simplification

ou; 9% ou; 0?p Op 0s;j
— =< A.27
The viscous terms: expanding < 8,%p(8kuj Opu;) >= 0 and using (A.16) yields
8ui 63uj 8Uj 83ui 8211,1' 82u j
> 4v < >=—2v < > A28
v Oz, 0xp0xp0xy, v Oz, 0xp0xp0xy, Y 0,0y, 0xp0xy ( )

A.2.5 Evolution equations of < ¢ > and < &2 >

The starting point to compute the evolution equation of the scalar covariance tensor < §;§; > is
to derive the evolution equation (4.2) of # with respect to x;, and to multiply it by 0;6. Finally,
the ensemble average is applied, which yields the evolution equation of the scalar covariance
tensor < &;§; > in the homogeneous framework

0 <& >
ot

+/\<<3ulﬁ>+<%89>) <ﬁ820ul>+<89 0%0uy
! 8%2‘ 8a:j 8£Uj 8%2‘ 8x]~ 81:18.731‘ 8:61‘ 8xlax]~
00 00 00 00 06 0% 06 9%0

<A _gv
0z, 0x; 9w 0~ T~ Vow; dmom - T < Yow vnyom
y e .
N 0z 0x;0x10) O0x; 00107

+ < Al’L
(A.29)

This equation can be simplified in an analogous manner to what was done for ¢;;. First,
< 0)(U1 & &) >= 0 which simplifies the two terms in U;. Then, using < 0j(w; & &) >= 0
simplifies the fourth and fifth terms. Finally, the diffusion terms can be grouped remarking that
< 9%(&¢&;) >= 0. This yields

0< fzfj > A ( oy ﬁ - 1< ou; 00 >> 00 Ou; 00 - 1< 00 du; 00 S
ot ! Ox; Ox; 8CU] ox; 695] o0x; 8351 ox; 8% ax,
00 00 00 00 0%0  9%0
Apy—— <A =-2 — > A.
< igman; T T S Mg o, 0T " 9u;00 00w (4.30)

This is notably recovered in Gylfason & Warhaft (2009). In the end, the evolution equation of
< &2 > in homogeneous turbulence reads

du; 00 96 0u; 00 96 00
—— 4+ 2\ J 2 ] < AT

ot NS Gmtm T 2 By 0wy 0wy 2 g, by
20 0%

@< 6:31690] 89518:5] - (A.31)

A.2.6 Cospectrum in isotropic turbulence with mean scalar gradient

Another quantity which has not been investigated and deserves some interest is the dissipation
rate of the scalar flux < ugf > in HITSG. The evolution equation of the derivative scalar variance
in HITSG can be obtained from (A.31) by taking A;; = 0 and A3 = —A. The procedure to
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derive the evolution equation of < d;u; 0;0 > is similar to what was done previously: one needs
to derive the evolution equation (4.2) of 6 with respect to z;, to multiply it by d;u;, and to sum
it with the equation (2.1) of u; derived by x; and multiplied by 9;6. This yields

O Dw 0 Oyt Ou0 0 0u 000wy
ot = Ox; Ox; 1™ Oay Oy 9 0wy Oy I\ Oy O Oz O
+<u~% 0%, >+<u‘% %0 >+<8u18«98u]>+<8uz008u]
70z 0x,;0x; 70z 0z ;01 Oz Ox; Ox; O0x; Ox; Oz
06 0%u; ou; 0%
t< Uj% &chaxl >t < Ul 8561 8xj8xl =
08 0*p ou; 0% 00  Buy
__ Y 7 A S A.32
< Ox; 0x;0xy > ta< O0x; Oxj0x;0x > < O0x; O j0x;0x; - (A-32)

This equation simplifies using < 0;(u;0,0 Oju;) >= 0 and < 0;(Jju; 8 ,0) >=0, and reads

8<6u189 ny Gujaui>+ Ou](%?> 4(<ﬁ8ui>+<ﬁ6ui>>
ot = Ox; Ox; 7= B, 0y oy Oy I\ Oy O Oz O
aul 00 ({)uj Ou; 00 Ou 06 9%p %u;  0%0
— = —(v+a) <

0x10x; 0,0 -
(A.33)

83:] Oz, 01, > < O0x; Oz ox; S=Ts z; 0z;01; =

In HITSG, this equation further simplifies into

d%us 0% -
axlaxl 8xj8:::j

>—(v+a)<

0/ €r € Oug 00 op 00
el O R .
8t(u+a> 30" S0z 0m " T T Oy 002,

(A.34)

These considerations on the evolution equations of ey and er were added in the Journal of
Turbulence of 2017.

A.3 Homogeneous isotropic turbulence

The previous equations and tensorial relations are simplified when the homogeneous turbulence
is in addition considered isotropic. This notably yields important results for the second and
third order moments of the fluctuating velocity and scalar gradients. From now and for clarity,
the non-linear transfers SNU(s0) and STNL(s0) are called T' and Tr respectively. Some of the
results of this section were used in 1.

A.3.1 Spectral formalism

In HIT, the enstrophy evolution equation is

78<w2> —2<w~w-%>—21/< Owi Qi >
8t a J Z(‘):cj 8x]~ &rj ’

(A.35)
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which is (A.20) without the mean velocity gradient. This expression for HIT has been found and
developed in Wyngaard (1971); Piquet (2001); Lesieur (2008) notably. The spectral counterpart
is

—— =2 kT (k,t)dk — 4v k*E(k,t)dk. (A.36)
v Ot 0 0

Identification between (A.20) and (A.36) provides straightforward equivalences that are detailed
hereafter. In an analogous manner, one can write the evolution equation of the derivative scalar

variance < 0;600;0 > in the HIT framework

d<g> 00 96 Ou 0% 0%

) 7 9 .
ot < 0z 0z;0z; " Bz:0z; 0z:0z;

(A.37)

which is (A.31) without the mean velocity and scalar gradients. This equation has been found
in Wyngaard (1971), and has to be identified with its spectral counterpart
1 Oer

= 2/ k:QTT(k:,t)dk:—éla/ E*Er(k,t)dk, (A.38)
a 3t 0 0

A.3.2 Second and third-order statistics

In what follows, second-order statistics, such as dissipation rates, and third-order statistics,

such as skewnesses, are computed and simplified within the HIT framework. First, the velocity

derivative skewness and kinetic palinstrophy are defined as
< (Ouy/0x1)3 >

<
S(t) = G(t) =< u?
() < (8u1/8$1)2 >3/27 () <u” > <

(0%uy/0z3)? >
(8u1/8:c1)2 >27

(A.39)

The aim of the previous calculations is to express Bjjrpgr and Cjjrper, Which appear in the
evolution equation of the enstrophy, as a function of By11111 and Cq11111 only. One can proceed
similarly for the passive scalar field. The mixed-derivative skewness and scalar palinstrophy are
defined as

< (Ouy/0z1)(00/0x1)* > < (0%0/02%)* >

Sr(t) = , Gr(t) =< 6* > . (A.40

r) V< Ou1/011)2 > < (00/0z1)% > r(?) < @0jom)2 2 A0
Dissipation rate ¢ and enstrophy < w? >: the fourth order tensor

B =< — A4l

gkl 8$j 8xl ( )

is used to simplify the expression of € = v < w? >. B;jii can be expanded as
Biji = a10;0k + a20;105; + a30;10 .

Then, the incompressibility Bj;jx = 0 gives 3a; + a2 + az = 0. In addition, < 9;(u; Qju;) >=0
and < 3%- (uju;) >= 0 yield Bj;j; = 0 which provides a; + as + 3a3. Hence

1 1
Bijr = aQ( - 15@'5/@1 + 051 — Zéilfsjk)- (A.42)
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Finally, Bi111 =< (0u1/0x1)? >= a2/2 and B,j;; =< w? >= 15a3/2. This calculation is
detailed in Pope (2000) and reported in Ristorcelli (2006); Piquet (2001).

Velocity derivative skewness S: the sixth order tensor Bjjper defined in (A.8) is considered
to compute the numerator of the derivative skewness. In the isotropic framework, this tensor is
the sum of 15 terms, which are products of 3 §-functions. Nevertheless, with symmetries, some
of these terms can be grouped together, which eventually gives

Bz’jkpqr = aléipéjqékr + as (5ip5jk5qr + 5ik5jq5p7“ + 5ij5k7“5pq)
o a3 (8ip0e Dok + BirdjaBph + Siaps e ) + a4 (Giasr Gy + 0115300y )
+ as <6ij5kp5qr + 5z‘j5kq5pr + 5ik5jp5rq + 5ik5jr5qp + 5iq5jk5pr + 5iT5jk:5pq)

Then, the incompressibility Bjjriqr = 0 gives a set of three equations: 3a; + 2a2 + 2a3 = 0,
3ag + 4as = 0 and 3a3 + 2a4 + 2a5 = 0. In addition, equation (A.11) for the homogeneity yields
a1 + 3as + 9az + 10a4 + 12a5 = 0, so that

4
Bijkpgr = a1 [5ip5jq5kr —3 (5ip5jk5qr + 0510 jq0pr + 5ij5kr5pq)

3

1
= (Gip 0k + BiriaBph + OiaBpider ) — - (Sia8ir0n + 8ir iy )

+ <5z'j5kp5qr + 0ijOkqOpr + 0ikOjpdrq + ik jrOgp + OigdjkOpr + 5ir5jk5pq>] - (A4

Finally Biii111 =< (Qu1/0x1)® >= a1 and Biijju = 35a1/2. This calculation was done in
Pope (2000) (without the details regarding the homogeneity simplifications) and is reported
in Ristorcelli (2006); Wyngaard (1971); Piquet (2001). The final expression of Bjjgper vields
results in agreement with the recent work of Vreman & Kuerten (2014).

Kinetic palinstrophy G: the sixth order tensor Cjjiper defined in (A.13) is now used to
compute the numerator of the kinetic palinstrophy. As previously, symmetries allow to group
some of the 15 products of d-functions, which gives

Cijkpqr = aléij(;k:p(sqr + ag (6ij5kq6pr + 5ij6kr5pq> + a3 <6ik6jp5qr + 5ip5jk6qr + 5iq6jr5kp + 5ir5jq5kp)

o+ a1 (8igiabpr + gt + Sir O3k + 6iripdea ) + a5 (SikGiadpr + Oikdirdpa + Gipadir + Dipdjn O

Then, the incompressibility Cjjipgr = 0 gives two equations: ai + 4a3 + 2a4 = 0, and a2 + a3 +
as + 4as = 0. In addition, the homogeneity relations (A.14) and (A.15) provide respectively
6a; — 6as + 8az — 4ay — 4as = 0 and a1 + 4as + 8ag + 16a4 + 6as = 0, so that

Cijtpar = 5| = 63i0kp0ar — 6(0i50kgpr + 0ig0kr0q ) + (8ikdipar + SipSidar + Bigdir Dby + Gin 8300 )

+ (5iq5jk6p7" + 5iq5jp5kr + 5ir5jk5pq + 5i7"5jp5kq> + <5ik(5jq5pr + 5ik5j7"5pq + 5ip5jq5kr + 5ip5jr5kq>] .

(A.44)
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Finally Ci11111 =< (0%u;1/02%)? >= —6as and Ciijkjk = —210as. This result was used (and
misreported) in Ristorcelli (2006) without any details. The final expression of Cjjrpgr yields
results in agreement with the recent work of Vreman & Kuerten (2014).

Mixed-derivative skewness S7: the tensor

39 00 Ouy,

8.751 (9x] Oy - (A-45)

szkl

is used to compute the numerator of the mixed-derivative skewness. Similarly, Bg}kl can be
expressed as
ngl = a10;0k1 + 20,0, + azdydjp,

and symmetry Bg;-kl = Bﬂkl directly yields as = as. Then, with incompressibility Bg;” =0,
one has 2as = —3ay. Finally, BL};; =< (00/0x1)?(0u1/0z1) >= 4as/3 and Bzm = 10ay. This
relation was used in Wyngaard (1971) without any details.
Scalar palinstrophy Gr(¢): the tensor
0%0  0%0
o - A.46
igkl = 8;1:1-63@ Oz,0x; ( )

is introduced to compute the numerator of the scalar palinstrophy. C ikl CAN be expressed as
CE}M = 0100k + a20;k05 + a30;0;k,
and symmetry directly yields as = a3. Then, with homogeneity, < 8%((%9 0;0) >= 0 and

< 0%(9; 98 ;0) >= 0 which provides CL.. = CL.. and thus a1 = as. Finally, C;; =<

5] ijij
0%0/0x2)? >= 3a; and CL.. = 15a;. This result was used in Ristorcelli (2006); Wyngaard
1 1J1]
(1971) without any details.

A.3.3 Results for the velocity field

Using the results for Bjjrpgr and Cjjkpgr, along with (A.11), (A.14) and (A.15), gives

. . . . 2 2

Oxj Ox;j Oz Ox; o0x1 o0x1
(A.47)
Ow; Ow; Pu; 0%, O%u; 82uj 9%uy 2
: A.4

S 0w, 00, " Ouy0m 0n,0m - Ow;0wy dmiday S <a 2 ) ’ (A.48)

<w~w-%> Ou; Ouy 8uj .- ou; 8ul%> - ou; 8ul8uj . ou; 8ui%

B 890]- 8$] 8561 a$l 8$]’ C{)SUZ 89@ 81‘] 8xl aﬁl 8x]~ 83:1 833j

35 35 35 dui\® 35 (0w

(0_2_2+2><<8m1) >__2<<8m1> > . (A.49)

The following identification process is more or less done in Piquet (2001). The present results
are in agreement with Kerr (1985). Identifying (A.20) and (A.36) yields

ouy\ > 2 [, 02uy \ 2 4
oW A 2k Dk u R R
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Using the previous calculations gives

ouq 3 B € \3/2 9%uy 2 2K € \2
<<ax1> >=5(35) <(ax§> > =6(35)

where K = 3 < u? > /2 is the kinetic energy. This results in

3v30 [T K*T(k,t)dk
(22 k2E(k, t)dk)**

30qu”0 K*E(k, t)dk
€ Jo° K2E(k, t)dk’

S(t) = — G(t) = (A.51)

Finally, one can write the spectral evolution equation of the kinetic energy dissipation rate as

2

oc () Fer + a) & (3sorarcn) L @

a <3f

where the turbulent (or integral) Reynolds number is Rer was defined in (1.7). The normalized

15

palinstrophy G can be interpreted as the dissipation of enstrophy, and interestingly can be linked
to the dissipation skewness S, of Kerr (1985) through G = Re)S,/2 so that (A.52) becomes

€ €2
% _ —%Re,\ (56 +5:0)) % (A.53)

A.3.4 Results for the passive scalar field

Using the results for B;‘;kl and C ik 81ves

= <6989 >=3a < ﬁ2> < A 7829 >=5< i 2>
‘r=a a’L‘l 81‘1 - a:El ’ 81‘1815‘] axlal‘] N 8$18:E1

69 00 Ou; 15 00 00 Oouq

(91‘2 Gx] Ox;j -= 2 83:1 Oox1 0x1 =

The following identification process is done in Kerr (1985). Identifying (A.37) and (A.38) yields

_ Ou (08 2 2 [, 20\> 2 [® ,
o) >=— | KTr(kt)dk — ) >== [ K'Ep(kt)dk. (A.54
8961 <3:1:1> ” 15 Jo r(k, t)dk, <(8x%> > 5/0 (k1) (A.54)

Using the previous calculations gives

8u1 69 2 . €T 62(9 2 o €T 2
<aml<azl> =51/ 15, A (axg) > 2Ky =Gr (5.)

where K7 =< 62 > /2 is the scalar variance !. This results in

/ Jo° K*Tr(k, t)dk Cr(t) = 18a Kr [ k*Br(k,t)dk
) T
10 JJ5 W2E(k, 1 dk:(fo k?ET(k,t)dk) er [ K2Er(k, t)dk

(A.55)
There is an error in Antonia & Orlandi (2004) regarding the numerical factor of Sp. The

present result is in agreement with Kerr (1985). Finally, one can write the spectral evolution

'For this section only, we choose Kr =< 6% > /2 instead of Kr =< 6% > for consistency with some of the
reference papers
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equation of the scalar variance dissipation rate, with r the kinetic to scalar time scales ratio
r= (Kep)/(Kre).

88% =— (ﬁST(t)@+ rZG:r(ﬂ) &?T =- <;ST(t)R€)\ + rgGT(t)> &?T (A.56)

A.4 Structure functions and auto-correlations

This section is dedicated to the investigation of structure functions in HIT. So far, the spectral
formalism was preferred, for convenience with EDQNM. Nevertheless, correlation and structure
functions which depend on 7, the separation vector between two points located in & and x’ so
that » = &’ — @, are another fundamental aspect of the turbulence theory. For this reason, and
to extend a bit the range if this thesis, basic results are recovered: notably, the von Karman &
Howarth (1938) equation is derived, and then the famous 4/5'" law of Kolmogorov (1941a) is
recovered. In what follows, the prime refers to a quantity expressed in ’, the time dependence
is sometimes omitted for clarity, and u refers to the rms of the fluctuating velocity. Part of the
results of this appendix, notably the 4/3'% laws for the structure functions inertial scalings ,
were included in the Journal of Fluid Mechanics for helicity.

A.4.1 Second-order longitudinal correlation and structure function

The Reynolds stress tensor, defined in (2.2), can be written

21ij + g, 1)y, (A.57)

Rij (7", t) =Uu
where f and g are the longitudinal and transverse correlations functions, linked to R;;(r), if one
chooses r along the x; direction for instance (Pope, 2000), as

fry =D

u2

_ Roo(r,t) _ Rss(r,t)

u? u?

. (A.58)

The expression of R;; being symmetric, f and g are even functions of r, so that a Taylor
expansion yields

r? : r
fry=1+ f”(O)E + f@v)(o@ +..., (A.59)

and similarly for g. The second and fourth derivatives of f for r — 0 can be linked to quantities
previously investigated:
82
—u2f”(0) = — hH%)? < ulull >=— << ula%ﬂﬂ >= —[< al(ulalul) >— < (81u1)2 > | =< (81U1)2 >,
r— —_——
=0
where 0y = 0/0x1. This gives, following the results of section A.3, f”(0) = —¢/(15vu?). Then,
for f()(0), one needs to use < 91 (u193,,u1) >= 0, which gives

4
u f0(0) = lim FI uu) >=< u10fju1 >= < 0% (103 u1) > — < (0Hu1)? > —2 < dyu1 83 u1 >
|

=0

— 4
=—<u107,,u1>
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Using the results of section A.3, < (8%,u1)? >= 2P/35, where P = [k'E(k)dk, so that
u? f()(0) = 2P/35. Hence, the longitudinal correlation can be expanded in HIT as

e(t) 2, PO 1 (A.60)

£) ~oryo 1 —
Frt) ~rso 1= 20705+ 0wz

The definition of Bos et al. (2012) is used for the two-point second-order longitudinal
structure function

rirj
,,,2

ulry oy
(Rij(0) = Rij(r)),  dur, = == — ==, (A.61)

DLL(’I”, t) =<< 5U% >=2

where dug, is the longitudinal velocity increment. It is obviously possible to link Dry, and
f(r,t), and this deserves some details. Considering z; and x as independent variables, using
Or/0r; = r;/r, and expending the incompressibility condition dRj;/0r; = 0, one gets (von
Karman & Howarth, 1938)

2f(r,t) — 2g(r,t) = —rgf, (A.62)
r
so that the Reynolds stress tensor can be expressed only as a function of f:
) = a2 rofy\s _uof
RZJ (T) =u <f(7“) + 9 87“> ij o Or rirj. (A.63)

Half the trace, R(r) = R;;(r)/2, is important since it was used by Saffman (1967) to demonstrate
some invariant properties which will be detailed hereafter. In agreement with Davidson et al.
(2012), one can write

(r3u?f) = u*(3f + o, f). (A.64)

0
<wup >=2R(r) = 25,

Injecting (A.63) into (A.61) gives
Dyi(r,t) =2u*(1 — f(r,t)), (A.65)

in agreement with Saffman & Pullin (1996). Finally, following Kolmogorov (1941b), the second-
order longitudinal structure function scales in the inertial range as (er)?/3. Furthermore, since
f(r — 00) = 0, one has also, at large scales, D, ~ 2u?. And at small 7, typically near the
Kolmogorov scale 7, duy, ~ rdius, so that Dyy, ~ r2¢/(15v). This yields

2u? for r> 1L,
Dip(r,t) =< Cy(er)?/®  for L>r>n, (A.66)
r?e/(15v) for T~

Finally, it is possible to compute f (and thus Dyy,) from the kinetic energy spectrum. Details
are given for Dry, in Bos et al. (2012), and one has

o0 1 sin(kr)  cos(kr) /OO sin(kr)
Din(rt) =4 [ Bkt [f— ]dk, Rirt)= | E(kt dk,
ity =4 [ BGn 5 - T )= [ BT
(A.67)
consistent with another expression in Saffman & Pullin (1996). This relation allows to determine

the structure functions from the high Reynolds numbers kinetic energy spectra obtained with
EDQNM, as revealed in Fig. A.la: the 2 and r2/3 scalings for the inertial range are recovered,
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and the value Dy (00) = 2u? at large scales as well. Furthermore, the constant of Dy, is found
to be Cy = 1.73 in Fig. A.1b, which is a bit less than in Bos et al. (2012).

2.5

LT P .|
20 = 4K/3 ;

DLL (7‘, t)

Figure A.1: Longitudinal structure function Dyy,(r,t) for o = 2 at Rey = 2.10%. (a) The
different scalings. (b) Compensated Dy, to obtain Cy = 1.73.

A.4.2 Third-order longitudinal correlation and structure function

The two-point third-order correlation reads (von Karman & Howarth, 1938)

reh(r r
+65 T( )+Q(r ) (Giar+Sr0),

(A.68)

k(r) = h(r) — 24(r)

r3

<wujuy >=— < u;uzuk >=Tjjp = rirjT)

and the incompressibility condition 0T}, /0r; = 0 yields

By = =20(),alr) = —hr) — L0, (A.69)

so that Tj;; can only be expressed as a function of k£ or h. Of particular interest, k& can be

expanded, for » — 0, as

3
r
6

and k™ (0) is linked to the mixed-derivative skewness S(t) analyzed earlier, using < 9y (u;01u101u1) >=

k(r) = K"(0)— + ..., (A.70)

83
]{:///(0) = }1;% % < ululull >=< ulula%nul >= < 0 (u%&%lul) >—-2< ulﬁlulaflul >,
=0 :7<(5:u1)3>
so that 5
8’11,1 € 3/2
"0) = — = — . A.71
K" (0) =< ((%1) > S(t)(15y> (A.71)

Then, the two-point third-order longitudinal structure function Dy, can be linked to
the third-order correlation k through

’I"i’l“jT‘k

Drrn(r,t) =< 6uj >= 6T73Tijk(r) = 6k(r). (A.72)
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Interestingly, the velocity derivative skewness can be expressed as
D
S(t) = lim =22 (A.73)

11 .
r—0 13/2
DLL

Finally, Dyyr(r,t) can be computed from the non-linear kinetic energy transfers T'(k,t), and
details are provided in Bos et al. (2012)

Dypi(rt) = 12r /0 Tty [3<sin<kr> — (kr)

cos(kr)) — (kr)?sin(kr)

(kr)?

A.4.3 Towards the Karman-Howarth equation

(A.74)

All the ingredients to obtain the evolution equation of u2f, or equivalently Dy, have been

presented. Starting from (2.1), without mean-velocity gradients, and multiplying by ), and

then combining it with (2.1) written for «) multiplied by w; yields

Here are some details:

1 ORy
u? ot
1 0°Ry,

ﬁaTjaT'j

0
87j(Tijk + Thji) =

TiTk

2

TiTk

OR;,
ot

[9f g

ot o
[—6
Tg(f—

[—4
—h+4
|

oh

0

- (97‘]'

|

g) +

2

r

7_'_1»7

or

O?R;.
T:; Ty 2 .
( Z]k’+ ka)+ Vé?rjarj
99
ot’
oF o9\ (7 _
or Or Or?
0%h —4 oh 02%h
I I N S
872]+52k[r 667" T8r2

82
(%g)} + dik Li(f—g)‘f‘

|

(A.75)

The equation with d;; allows to determine d;g, and further using (A.62) allows to recover the

Karman-Howarth equation

O(u*f)

2 ().

(A.76)

From this, it is possible to express the evolution equation of R(r), defined in (A.64), in agreement
with Davidson (2010)

OR 1 0 (10,, 1 0 ( 40R
— — —— | —=("k) | =2v—5— — . AT
ot 2r29r \ror (r )> Y2 or (T or > ( )
Using the relations between f, k and Dy, Drir, and dyu® = —2¢/3, one obtains the Karman-
Howarth-Kolmogorov equation
——(r*D = —— — —e€. A.
ot 3rd 8r( L) Aor \" or 3 (A.78)
Multiplying (A.78) by 74, and integrating from 0 to r yields (Saffman & Pullin, 1996)
3 46DLL 8l)LL 4
— ds+ Dy, =6 - - A.79
r Jo ST + L Y or 5 ( )
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Neglecting the time derivative and viscous dissipation at high Reynolds numbers in the inertial

5th

range yields the 4/5"" law

4
DLLL (7", t) = —56')“. (A.80)

This relation is assessed in Fig. A.2b, along with the scaling for < dur,dg® > derived hereafter.
Even at Reynolds numbers such as 2.10%, the theoretical expectation 4/5 is not rigorously
reached, as in Bos et al. (2012) for freely decaying turbulence. It is noteworthy to remark that
unlike Dry,, the integration for Dy, requires quadruple precision, otherwise one gets strong
oscillations as in Tchoufag et al. (2012). Furthermore, the small scale 73 scaling for both
< Sup,dg® > and < 5u?ﬁ > is recovered in Fig. A.2a, followed by the linear dependence in r.

(=]

10 1.5
, T e
2] fw, ] : , Q‘
g b% 1’ :’ \‘
g (,g : ‘\‘

\/ il ettt el I-=-==-=="
v - 4/5
E g
< —— < u} > N 0.5/
AN
N e < bude? > g
(gq uroq . € : — D/ (er)
N L 0 T ---— < Supdg® > /(er) L
10° 10° 10° 10° 10° 10* 10°
r/n r/n

Figure A.2: Kinetic third-order structure functions < du? > and < dup,dqg? > for o = 2
at Rey = 2.10%. (a) The different scalings. (b) Compensated kinetic structures functions.

Invariants: Saffman and Batchelor turbulence are now briefly discussed in terms of invari-
ants, as done in Davidson (2010). The expansion of the kinetic energy spectrum for very low
wavenumbers yields
k2 I
Ek—-0)=L—+1—
( ) 472 + 2472’

where L and I are the Saffman and Loitsiansky integrals respectively. For the Saffman integral

(A.81)

L, associated to the conservation of linear momentum, one has
oo
L= / < wu > dr = 471'/ 2r2R(r)dr = 47 [r3u? f oo, (A.82)
0

meaning that when L # 0 initially (i.e. E(k — 0) ~ k?), the longitudinal function should de-
crease as f ~ r~3 when r — oo. Furthermore, it was shown by Saffman (1967) that [ r?Rdr, and
so L, is an invariant of motion in freely decaying turbulence: this can be shown by integration

of (A.77) multiplied by 72,

1dL 10, ,.. . ,0R
sedat ol BTG

and further neglecting the viscous term for high Reynolds numbers, so that

% _4r {ig(r4k)] | (A.83)
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Since k ~ r~4, L is independent of time and is consequently an invariant of motion. For the
Loitsiansky integral, linked to the conservation of angular momentum,

o0 oo a
I= —/7‘2 < ugu, > dr = —47r/ 2rtR(r)dr = —477/ TZE(r?’qu)dr ~ —Ar[rSu? f],
0 0
(A.84)
meaning that when L = 0 initially (i.e. E(k — 0) ~ k%), the longitudinal function should
decrease as f ~ r~® when r — oo.

Karmén-Howarth 4/3'® equation: the Kérman-Howarth-Kolmogorov equation (A.78) can
be written differently: instead of considering the longitudinal second-order structure function
(5u%, the emphasis is put on the kinetic energy increment §¢> = du;6u;. The method to derive
this equation is detailed in Antonia et al. (1997), and the procedure is very similar to the 4/3™
law derived in Yaglom (1949) for passive scalar structure function, developed in the next section.
For clarity, 0; = 0/0x’; and 0; = 9/0x;. Subtracting the evolution equation of u to the one of
ui, one gets

0
Orou; + 5uj877“j(5ui) + uj(a; + 6j)(6u2-) = —(8{ + ai)((Sp) + u((?;»j + Ojj)(éui), (A.85)

where du;0y;0u; + u;(0; + 0;)(du;) = 0} (uju}) — 9;(usuy). Multiplying the previous equation by

20u; and using ensemble average yields

0 0 0? dou; Odu;
— <0 > ++— < dujdg® >=2 <0¢* > —dv < ——— A.86
gt <01 = T, SOWOT 2= g o, < 'S o, or (4.86)
Bl
Both the uj((?;» + 0;) and pressure terms are zero because 8;- = 0, = —0;. Further neglecting
the time derivative and writing —4e = —4/30, (er;), one gets
T — 21/i <0¢* > —%er‘ (A.87)
J 87“]‘ 3 77 ’

where the result of von Karman & Howarth (1938) has been used: 2f/r + f' = 0 « f =0,
combined with 92/(9r;0r;) = (2/r0, + 02.). At high Reynolds numbers in the inertial range,
this eventually gives after the use of the divergence theorem

4
< Sur,dq® > (r,t) = — g€ (A.88)

It is possible to make a link between (A.80) and (A.88): using < §¢*> >= 4K — 4R and further
identifying the evolution equations of < d¢? > and R yields

3r3 < Supdg® >= %(T4 < dur® >). (A.89)

A similar reasoning is proposed in Chapter 8 for HHT. Using the previous relation, one gets

< SuLdg® > (r,t) = 4 /0 - T(’Z’ 2 (Sﬁi’;@ _ COS}‘ff”) dk, (A.90)

which is very similar to the formula for Dypr derived hereafter. Finally, (A.88) is assessed in



Appendix A. Statistics and Structure Functions 209

Fig. A.2b, along with the r3 small scale scaling of < durdg® > in Fig. A.2a. As remarked
before, even at Rey = 2.10%, the 4/3 is not exactly recovered. Interestingly, double precision is
enough to compute < dur,d¢g? >, unlike Dy,

A.4.4 Yaglom and Corrsin equations

The Yaglom (1949) equation can be obtained in a completely analogous manner, by defining the
scalar increment, and the scalar two-points second and third order structure functions

00 =0 — 0, D11 =< 0600 >, Dirr =< dur,d666 > . (Agl)
Interestingly, the mixed derivative skewness can be expressed as

D
Suo(t) = lim LTW (A.92)
r—0 DTTDLL

and simple dimensional arguments give

262 for r> 1L,
Drr(r,t) = CTr2Bepe /3 for L>r>n, (A.93)
r?er/(3a) for roe~n,

and this is illustrated in Fig. A.3, where the three different scalings are recovered. The constant
CT = 1.88 is slightly higher than Cy, qualitatively in agreement with Watanabe & Gotoh (2004),
despite the much highers constant in the latter reference. The present CQT is in reasonable
agreement with Yeung et al. (2002).

DTT(T’, t)

Figure A.3: Structure function Dpr(r,t) for o = 2 at Rey = 2.10%. (a) The different
scalings. (b) Compensated Dt to obtain C = 1.88.

A procedure similar to the one done for the equation of < g% > yields

2
4 <6959>—4a<@@>.
aTja’l”j 8T‘j 87"]'

:—4/38Tj (erry)

9 < 0060 > +i < 060080 >= 2a

815 8rj (A94)
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Neglecting the time derivative and using the previous result of von Karman & Howarth (1938)
yields the Yaglom equation

< Ju;6060 >= 20-2- < 5050 > —éem, (A.95)
87"]‘ 3

which reduces, in the inertial range, along 7, to the 4/ 3rd law

< dup,00060 > (r,t) = —%eTT. (A.96)

10 11—
0.8t -
2/3:
= T ey
. — & 0.6f
=10 <
g g
a Qf 0.4
02f - :
107% n I
00— : : 3
10° 10° 10* 10° 10°
T/

(b)

Figure A.4: Scalar structure function Dppr(r,t) for ¢ = 2 at Rey = 2.10*. (a) The
different scalings. (b) Compensated scalar structure function Dyrr.

This result can also be obtained in a way much more similar to von Karman & Howarth (1938),
as detailed in Danaila et al. (1999a). First, one starts with the Corrsin equation (Corrsin,
1951a)

% <09 >=2 <i + aar) [< u00' > +a£ < 0¢ >] , (A.97)
The links between correlations and structure functions are
RT(r,t) =< 00’ >=< 6% > —Dyy/2, Dirr =4 < up,00' >, (A.98)
and r; < ur,0’ > /r =< u;00' >. Let’s point out that
~RT"(0) = — lim P e — < 0020 >=< (0,0)% >= L.
r—0 Or?2 3a

Then, since 72(2/r + 0,)[f] = 0,(r2f), (A.97) can be simplified: multiplying by 72, integrating,
and then dividing by 2, with 8,0? = —2er yields
1 T 28DTT ODTT 4

2 S 5 ds = =Dyt + 20 5 §T€T- (A.99)
0
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Finally, the links between structure functions and scalar variance spectra, even though less
documented, are simply

<00 > (r,t) :/ ET(k;,t)SlnkEfr)dk, Drr(r,t) = 2/ Er(k,t) (1 - Smk(k’")) dk.
0 0

-

(A.100)
As for the scalar non-linear transfer, it can be found starting from the Corrsin equation (A.97)
and identifying with (1.8)

9, 4 Y A sin(kr)
S0 < o >)_/O Tr (k) 25 g,
so that eventually
© Tr(k,t) (sin(kr)  cos(kr)
DLTT(mf):2/O 2 ((kr)2 - ) dk. (A.101)

It is revealed in Fig. A.4 that —Dyppr/(epr) closely approaches 2/3 at very large Reynolds num-
bers (the constant is 2/3 in the present simulations because ez = 2a < (9;0)? >). Furthermore,
the linear scaling in 7 in the inertial range is recovered, along with the r® scaling at small scales.
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Non-local Expansions of the
Non-Linear Transfers

In this part, details on the calculation of non-local expansions of the non-linear transfers are
given. These non-local expansions are crucial for the scalar field when the Prandtl number
is such that Pr > 1. These expansions where extensively discussed for the velocity field by
Lesieur & Schertzer (1978); Métais & Lesieur (1986). The main elements of the computation are
gathered here. The need to evaluate these non-local contributions arises from the logarithmic
discretization of the wavenumber space that cannot take into account the elongated triads. The
criterion to quantify the non-local transfer is

inf(k, p, q)

< a, B.1
sup(k,p,q) — (B

where @ is the non-local parameter. Numerically, a = r — 1 where ki1, = rk;, r = 101/7 with
f is the number of discrete points per decade. The regions of the plane (p,q) corresponding to
the non-local interactions are displayed in grey in Fig. B.1. For simplicity reasons, only the

isotropic parts of the non-linear transfers are firstly expanded, and the third-order correlations
(T)

characteristic time Gk iy

is always expanded at the lowest order.

q

k/a

ak

ak k i/

Figure B.1: Non-local interactions (in grey) in the plane (p, q).

212
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B.1 Non-local fluxes

It is recalled that

x 23
S8 0,0) = [0 ) Bl (REG) - PEW))apda = [ S(hpadnde, (B2)

Sy 0 (k1) = /A 9£pq7(xy 2 pg) (kZET(p) - p2ET(k))dpdq = | Sr(k.p.q)dpdg. (B3)
k

The non-local transfers from large scales to very small ones are such that ¢ < k ~ p. They are

referred to as T (k, t) and T;f (k, t), for the velocity and scalar fields respectively. The non-local

transfers in the opposite direction are such that k& < p ~ ¢ and are referred to as T (k,t)

and T (k,t). For convenience, these non-local transfers are computed through their associated

energy-conservative non-local fluxes, so that

Hl(\fzg))n—Local(k’t) :/k Tg%n_Local(k}/,t)dk‘,, (B4)
oI, (K, t) 9
T 9 —
Ti) (k,t) = —— 0= = = (I (k,t) = T (k) ). (B.5)

where the derivation is done numerically. Therefore, the non-local fluxes read (Lesieur &
Schertzer, 1978)

k+q
/ dQ/ d’ b S(T)(k,’p7 Q)dp7
P
T (kyt) =2 / ax’ / ap [ Sk p.a)dg. (B.6)
0 sup(k,k’/a —K'

The region of non-local transfers is the grey part of the rectangle Ay delimited by ¢ = p + k
and ¢ = p — k in Fig. B.1. These regions being symmetric with respect to ¢ = p, this justifies
the factor 2. The condition (B.1) yields

:{q<ap - :{p>k/a

H-‘r
q < ak, @) q>k/a.

(T)

Since k' < k for H( 7> it could happen that k& > k’/a. This is the reason why sup(k,k’/a) is
chosen in the bound. Then, it has been shown (Lesieur & Schertzer, 1978) that

Sery(k,p,q) + Sery(p, 4, k) + Sy (g, k,p) = 0. (B.7)

Because of (p, ¢) symmetry, one has Si7)(p, ¢, k) = 0. This allows to compute the non-local flux
in a symmetric way

1

The final expressions are gathered in Lesieur (2008), and in what follows, these expressions are
recovered. Before that, let’s discuss the conservation property (B.7), which relies on the
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(p, q) symmetry: starting from (2.15) for TgL, one has

TN (k) = ki / Spii (s D)Ap + o / St (k,p)d®p = / s(k.p, q)d°p,

with
s(k,p,q) = ky < Una;0; > +ky, < 4,0;0] > . (B.9)
Further using k,, + ¢, = —p, and incompressibility so that p,u,, = 0 yields

s(k,p,q) + s(q, k,p) + s(p,q,k) = 0. (B.10)

A similar property can be written for the scalar field. Using (p, q) symmetry, one can write the
term under the integral in (4.7) as

sT(k,p,q) = 2k; < W;00" > +k; < 000’ >, (B.11)
so that for the same reasons

sT(k,p,q) + s*(q,k,p) + 5" (p,q, k) = 0. (B.12)

B.2 Expansions for ¢ < k ~p

The small parameter of the expansion is ( = ¢/k. Firstly, p is expanded as

b=k <1 51— y2><2) cand  ple=pt (1 byt (3 1)@) .

Then, geometrical relations yield

1 _k? 2 2 3
p=1-(1-¢) and  @= ;}ﬁ’q*q = —y+ (1= )0+ Syl — )
This gives
oyt 2 = (=) (1400 502 ) et e = (=9 (1 507 - 03
zz+yd =1 -y?) (~y+¢+2y?), wz+y=(1-y)C+2y0).

Then, a Taylor expansion provides

a‘E(T) 1 9 9 8E(T) 9 282E(T)
Er(p) = By (k) —ay—,— + 5 | (1= y)h— = + 07k — 5= |

The method is the following one: the different quantities are expressed as a function of y (the
cosine of the angle in front of p) and the small parameter ( = ¢/k. Then, the p-integration is
done by using y and the variable

, k’2 — k2 + q2

v = 2k'q
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so that

k 1 k/q
S (', p, q)dp =/ — Sk, p, q)dy.
k'—p y’ p

(1) oD

wirg ~ Oprg» 1s done according to

/km(. K = q/ol(. L)dy,

Finally, the last integration, assuming that

(B.13)

and one has in particular

1 1 ) , ) 1 1
y(1—y7)dydy = —, / /
/0 /y/ ( ) 15 0 y

!

1
(1= y*)dydy’ = 7,

Computation of II"(k,t): firstly, one has

K E(p) — p*E(k) = k? [yC <2E(k) - l-caE> + (2 (—E(k) L1y, 08

2 2
OE  y~,,0°F
ok 2 k6k+2k3k2>}7
kq (zy + 22
pq(%) = (1—y%) (1+2y¢ +2(2y° — 1)¢?) ,
k
?qs(kap, q) = Oreq(1 = y*)E(q)

ykq <2E(k) - k%f)

ok T 2" a2

At the lowest order in ¢, only the first rhs term remains. Secondly,

2 2
+ ¢ <(4y2 —~1DE(k) + %(1 - 5y2)k8E yk28E>

i 3
) G- )y (- 2026+ 005 — 406,

kq(xz + 9°)

T

¢ E(p)E(k) = (1 - y*)E(k) (—quCE(k) +¢2¢? [(1 —2?)E(k) + kaaE]) ,
Tz 3
M) 2 () ()

(1-y*)E(q) ( — kqy (E(k) - qyaE>

ok
ok

1 oF 1 0’E
2 2 2 3
rla-2)ER) + 2 S R Y Kl )
q [( y°)E(k) 2‘]3/(53/ 3) ok 2‘] Y 8k‘2]>
Using equation (B.8), this yields

k
2§S<k,p, q) = Og(1 — 1)

ok
N T SR T W
+ E(q) [kay (E(k:) k8k>—|—q <2y B(k) + 5(1 = 3y2)k G0 + 5y 5 ) |
At the lowest order

B ) = 2 (1= 2780 + 45 )]

k——

2?5(&197 q) = Orrqy(1 — y°) [E(k)2q2C +kqE(q) (E(k) - gf) }
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Hence, the direct non-local kinetic flux is
2 OE\ [ 2 E(k)? [k
It (k,t) = —k | E(k) — k— Orega”E(q)dg + — Oriqq*dg. B.14
o) = 2k (B0 - 157 ) [ a0+ ZEE [T ougtar (e
Computation of HJT“(/@, t): the calculation is very similar to the previous one. One has
kq (xy + 2
RV EE) (1) (10 20+ (- 1)),
p q
so that
kq (xy + 2 OF
) )02 Erl) — P Er() = (1 - 17) [qu (2800 - 6557
1-5y% 0FEr 1 O?Er
2 2 2.2
dy* — 1)Ep(k k——+ -y“k B.15
wa (@02 = 0B + TR 4 L (B.15)
Then
kq (zz 4+ y) 2 2 _ 2 2 2
> P Erk) =k Er(q) = (1 —y)(1 +49Q)q E(k) | Er (k)" = Br(g)]
Using (B.8), one obtains the direct non-local scalar flux at the lowest order
Ih(k,t) = 25 (28 (k) _ 9% /akeT 2E(q)d
1 ak 1 E(k)Ep(k) [
+4E(k7)/ 671:5!@(;(13JET(q)dq— 4( )kQT( )/ Hgqu‘r’dq. (B.16)
0 0

The non-local fluxes are displayed in Fig. B.2 at Pr = 10*. It is clear that they bring energy
beyond Kolmogorov wavenumber k; to sustain the k1 viscous-convective range.

X 10_7 ‘ S A | o
—II* (k,t) ky, . kB —logE/logk | kK, kp
2f ---1L5(k, ) :,' “‘ e 5 ‘ ---log Ey/ logk :
=15 Lo E
= ;oo =
E P =
10° 10" 10° 10’ log 4 6
k ogk
(a) (b)

Figure B.2: (a) Non-local fluxes II* and IT}. (b) Slopes of the kinetic and scalar spectra E
and Er. Both with the Kolmogorov and Batchelor wavenumbers k,, and kg, at Pr = 104
and 0 = 2 at Rey = 103.
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B.3 Expansions for k < p ~q

The small parameter of the expansion is ¢ = k/p. Firstly, ¢ is expanded as

g=rp <1 —z(+ %(1 — 22)C2> , and g l=pt <1 +z( + %(322 — 1)§2> )

Then, geometrical relations yield

2,2, 2
r=1- %(1 —2%)¢?, and Yy = k2€<:c_[+q =24+ (1-2%¢ -~ gz(z2 —1)¢2
This gives
ay+2°=(1-2%) (—2+(+22%),  ay+z=(1-2")((1+22(),
zz+ 1% =2(1 - 2?) (1 +3z¢ + %(1522 - 7)C2> ) zz4+y=(1-22)C(1+20).

Then, a Taylor expansion provides

OB | 1 OB, 0B
Ery(q) = Er)(p) — k=2 9 4+ §<2 ((1 _ 22)pr n Z2P2Tp2 ‘

The method is almost the same: the different quantities are expressed as a function of z (the
cosine of the angle in front of q) and the small parameter ( = k/p. Then, the g-integration is
done by using z, which simplifies, at the first order, into

/

P 1
. S(T)(k/,p,q)dqz/o %S(T)(k’ynq)dz'

p—

(1) p(T)

As previously, it is assumed that Hk,pp kpp-

Computation of 117 (k,t): firstly,

kqp = ;r ) ((1—2%) (=2 + (1 —22°)¢ + 2(5 — 42%)(?),
kqp . ; v) - Cz(1— 2%)(1 4 42¢ + 8(32* — 1)¢?).

In all the following calculations, the lowest order always simplifies. Hence

OFE

2]‘395(/-c,p, q) = Orpp(1 — 22) | (1 + 222)K2CPE(p)? — K*E(k)E(p) — 2*k*E(k)p—— |-

Then, using

/1(1 — 2 (1 +22%)dz = " /1(1 — 2% dz = 2 /1 22(1—2%)dz = —
: 15’ A 3 : 15’
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one finds the inverse non-local kinetic flux

14 [* E(p)?
O (k,t)=— [ k4 Oprpp —5—dp | A/
(k,t) 15/0 Kop ™3 P
sup(k,k’/a)
o [k T OE
- — | K*E®F / Oprpp | BE — | dp|dk. B.17
2 [emw o (580) + 557 ) o (B.17
sup(k,k’/a)
Computation of I (k,t): firstly,
k k
;)(xy;- Z) _ CQ(l _ 2:2)(1 +4Z<), qp(l'Z;- y) _ 42(1 N 22)(1 +2ZC)'

This directly yields the inverse non-local scalar flux

o0

B 4 [k yi 4 [k Er(p)E(p
I (k,t) = -3 /O k’QET(k’)[ / 0rppE(p)dp dk’+§ /0 k/‘*[ / e,if,pp(pl()dp dk’.
sup(k,k’/a) sup(k,k’/a)

B.4 Applications of the isotropic non-local transfers

In this section, two brief applications of the non-local transfers, in addition to the classical case
for weakly diffusive scalars, are presented.

Spatial resolution: in Fig. B.3, the number of points per decade f is changed. With a better
spatial resolution in wavenumbers, a = 10/f — 1 decreases and thus, according to (B.1), the
influence of the non-local transfers should decrease: this is assessed in Fig. B.3 where three
different resolutions are tested, with the quantity A[kSNF50)](k, ¢) referring to the difference
between a simulation with the non-local expansions and the same simulation without them. This
quantity A[kSNF050)](k,t) decreases in intensity with a better spatial resolution. In addition, it
appears that the non-local expansions are more important around the integral and Kolmogorov
wavenumbers than in the inertial range, which is expected.

X 10_‘5

| |—10 points per decade

A[kSNL(iSO)} (/C, t)

‘‘‘‘‘ 15 points per decade

-1.5r |.--20 points per decade

107 1o°k 10° 10*

Figure B.3: Influence of the spatial resolution on the non-local transfers in HIT at Pr = 1,
o =2 and Re, = 2.103.



Appendix B. Non-local Expansions of the Non-Linear Transfers 219

Homogeneous Shear Flows: it is revealed in Fig. B.4 that the isotropic non-local transfers
T*(k,t) are negligible with respect to the local ones for high Reynolds numbers shear flows (IT~
is very small compared to IT"), where IINLG50) s the flux of SNE(s0)  following

k
TINLG0) (7, 4y — _/ SNL(SO) (e 4)dk.
0

This justifies a posteriori why the non-local developments are used only for HIT and more
specifically for a scalar field with Pr > 1.

oX 10‘4 o ‘ _ ‘ ar 10 B ‘ I
ki Ry kr - .. : ky
1t 2r
5 =
io g0 :
\g — J: NL(iso) g — [T NL(iso)
N - = = (SNLs0) 4 7% = - - = T[NLGs0) 4 TE
-1 _kS;;L(t(‘t) -2 —Hg{?(m)
- - = R(SNHOY 9T /3) - - =TItV 4 o113 :
_2 ‘7 H ‘7 - _4 L I L
10° 10" 10%  10°  10° 10° 10" 10% 10° 10
k k
(a) (b)

Figure B.4: Influence of the isotropic non-local transfers in shear flows at St = 50 (Re) =
10*) with S = 0.1 and o = 2. (a) Budget terms for the isotropic part and the component
()s3. (b) Associated fluxes.

In addition to the usual kinetic and scalar isotropic non-local fluxes presented in this
appendix, non-local fluxes were also computed for the non-linear transfers of F;, and for
the non-linear directional and polarization kinetic transfers. These three contributions
revealed to be completely negligible with respect to the local ones, and much less intense
than the isotropic non-local contributions.



Appendix C

Details on the Spherically-Averaged
Lin Equations

Here, all the calculations yielding to the spherically-averaged Lin equations of the velocity field of Chapter
2 are fully detailed. It includes notably the computation of the non-linear and linear transfers, and the
complete spherical and A integrations. Moreover, additional theoretical considerations are developed: (i)
quadratic contributions of anisotropy in the non-linear transfers, (ii) the modelling of anisotropy resulting
from a truncation at the fourth-order of the expansion into spherical harmonics of the spectral Reynolds
tensor.

C.1 Spectral evolution equations

C.1.1 Craya equation

The evolution equation of the fluctuating field in the presence of both mean velocity gradients and
rotation is

0 0 ou; dp 0%u;
LAY DY A 42em Q= — . C.1
<8t +“Jaxj) Wit Vigy, TUid Gty =y Vo o, (G-
Solid body rotation
The counterpart of (2.1) in Fourier space, using U; = A;;x; and ;u; = 10;1y, is
0 0 2\ - . N .
& - Alnkl% + vk Uz(k) + Aij’u]‘(k) + 2€iannt + lkjuin(k) = —lkip(k), (02)

where @; is the Fourier transform of u;, A;; = d;U; is a space uniform gradient matrix, k is the wave-
number modulus, and ,,u, (k) is the convolution product

G (k) = /k )i

Thanks to the incompressibility condition 4;k; = 0 in Fourier space, the pressure term can be erased by
projecting (C.2) on the plane perpendicular to k;p. Using the operator P;; = d;; — a;aj one finds

(;1 ~ Aukis+ k) it () + My (k)ity (k) + 1Py ()it (k) = 0, (C.3)

220
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where P, (k) is the Kraichnan operator 2P;,,,, = ku, Pin (k) + kn P (k) and

M;j(k) = (8in — 2000) An; +Pin€nij (C.4)

———
Rotation effect

where o; = k;/k. Writing (C.3) for ¢;(k), multiplying it by 4} (p), summing it to (C.3) written for

*

@} (p) and multiplied by @;(k), and finally taking the ensemble average, one obtains the equation of the

K3
second-order spectral tensor R;;, which is, in Fourier space

Rij(k,t)0(k — p) =< 4; (p,t)u;(k,t) > . (C.5)

The previous equation for RZJ is finally integrated over the whole domain (which simplifies the Dirac
function 6(k — p)) to obtain the Craya equation. The total derivative reads d; = 0y — A;;k;0; so that

dR;;
dt

+ 20k Rij (k) + Min (k) Ry (k) + My (k) Ry (k) = TH" (k). (C.6)

C.1.2 Generalized Lin equations for £ and Z

The helical modes
Nj(k) = e (k) — el (k). (C.7)

are linked to the Craya-Herring frame (e(!), e, e(®)) through

6(1) kjnl kjnl

ki
6(,3) = — 67(;2) = Eijneg‘g)e(l) (CS)

n 7 ZEijl|an|_eijl kJ_’
where n is a fixed reference vector. By definition of these helical modes, one has N;k; = 0, N;N; = 0,
N;N7 =2 and NiN; = P;; — i€;jnay,. The generalized &-Lin equation is obtained by taking half the
trace of (2.13) and replacing R;; by the £ — Z decomposition (2.30), so that

d&

T+ WK + My (5P,;n +R(Z(E, t)Ni(k)Nj(k)))

NL
_ T

: (C.9)

Using the incompressibility condition A;; = 0, the £-Lin equation presented in (2.31) is recovered. One
can remark that rotation does not intervene directly in the evolution equation of £. The calculation
for the Z-Lin equation is more complicated: (2.13) is firstly multiplied by N; (k)N (k)/2. One has to
compute R,;N; and M;, N which can be done by using the previous relations on N; and the fact that
Vz € C,R(z) = (2 + 27)/2. One finds R,;N; = EN;; + ZN,, and M;, N = A, N;. This yields

az Ry

= +wk?Z —
a T 2

|

(N}N}) + AinN{ (EN}; + ZN,) = Tz, (C.10)

=y

t
where the non-linear transfer linked to the polarization anisotropy Tz is defined in (2.34). Some detailed
calculations yields
. 1 _
%(ZNnNJ)MlnN:N; = —A;:LO(ZO[TLZ —2i7 <20llQl + 2€lpqOélqu>

EPjM;n NN} = Al NN:E

n

Since the Craya-Herring frame is moving in space with time, the term d;(N;N7) in (C.10) is evaluated
using (2.30) and the previous remark on anN;, so that

) dN;
Rij= (N7 Nj) = —ZN;—".
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Finally, to compute dN} /dt, one has to use

d 0 0 dk;
il — Ak, — = —Aik;.
dt — ot J Ok;’ dt T

Moreover, similar calculations yield

8ai - .Pij ok — o
Ok; ok ok; "
Finally,
dN* . 2y mk .
Nyt = 2iel) Ay ( @ P ) = —2iQcH, (C.11)

where Qcp expresses the rotation of the Craya-Herring frame. The Z-Lin equation, accounting for
rotation, is then

d 1
(dt + 2uk2) Z — Af o Z + AF NFNZE — 212( 2000y +3etpquAn, — QCH> — Ty, (C.12)

Rotation part

in agreement with Cambon et al. (2013); Mons et al. (2016). One can simplify this expression a bit,
using a previous relation that gives

ANy N Z = —alanAlJ;Z — e A

nl’

so that (2.33) is recovered.

C.1.3 Evolution equation of S, (k,p,t)

From (C.3), the evolution equation of the third-order tensor S;;i, defined in (2.17), is obtained by writing
(C.3) for 4;, 4 and @), and summing these three equations, previously multiplied by @4}, 4;4) and
@, respectively. Since S;jji(k,p,t) does not depend on g, the term g; 5°— 8 has to be erased. This is done
by using q; = —k; — p; and k and p being independent variables. Hence,

o au] _ // auj ! au/ " au] 0 0 _ 0

ik ek, T R ok, 0 e T % Tap T Bgn Opn | Oky

Averaging and integrating to erase Dirac functions yields

0
(61) + V(k2 +p +q ) Alm ( 8]€ +pl )) zgn k P, +Mzm( )Smjn(kvpv t)
+ Mjm(k)simn(kypa t) + Mnm(p)smm(k p, ) Szyn(k p, )

Here, some details on the quasi-normal closure TN (2.37) are provided. For this purpose, the correlation

wn
that intervenes in the previous equation is defined as

Tijn(k, p)o(k +p + q) =i < s;(q)i; (k)i (p) >, (C.13)

where
() = ~Pi(®) [ aylm)ig(a)a. (C14)

Thus, the previous equation becomes

9
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Each of the three rhs terms can be written
Ton(kep)3(k 9+ @) = Pagla) [ < (1) (5)is () (p) > -
g=7r+s

The quasi-normal approximation consists into neglecting the fourth order cumulants, which gives

T (k, p)3(k +p + q) = Pipg(0) Ry (K) Rpo(—5)5(k + p)
+ Pipg(q) Rjp(k) Rng(p)3(k + p + @) + Pipg(q) Ryp(p) Rjq(k)S(k + p + q),
and simplifies into
T3 (k. p) = 2Piny () Ry (k) Ry (P)-

The quasi-normal term Tgi] is finally recovered since

T (k,p,t) = T (k,p,t) + T (p,q. 1) + Tos) (g, K, t).

C.2 Calculations of T and Ty

C.2.1 Relations between frameworks

In Fig. 2.2, a new frame (3,v,a) has been presented, attached to the plane of the triad. The new frame
(B,y,a) is obtained from the Craya frame (e e(® e() = a) by rotations of angles A, X and \’
around k, p and q. Hence, one has

N(kk)=N=e® —ieM = (8 +iv), (C.16)
W

N(p) — N’/ = 6(2)/ . ie(l)/ _ ei)\' (ﬁ, + 17)7 (C.17)
——
w7
N(g) = N" = e®" _ie®” — N (8" 4 i), (C.18)
———

WwW?»

where ~ is normal to the plane of the triad

kxp
y= C.19
[k x p (C.19)
The vectors 3, 3’ and 3’ are perpendicular to k, p and g but still in the plane of the triad
k<~ P Xy n_ 94X
B = ,  B'= ,  B'= : C.20
L] lp x| lg x 7| (G20)

With these definitions, one gets

o = —za— /1 — 2213, o = —ya+ /1 — 1423,
/6,:72/6+\/1722a5 ﬁll:iyﬁi\/liy2aa

1- . 1 . 1-— . 1 .
W' =+1-22a+ 5 ENe - %N*e”‘, W" = /1 -y2a + TyNeﬂ)‘ - %N*e“\7

with x = cosa, y = cosb, and z = cosc. To perform the following calculations, one has to keep in mind
fundamental geometrical relations valid in any triangles

k
k=pz+qy, p==kz+qx, q = pr + ky, - _ 1 (C.21)

sina sinb sinc



Appendix C. Details on the Spherically-Averaged Lin Equations 224

Finally, since p and q have symmetric behaviours, one has both

[ Fepads= [ Fhrante. [ o= [0 f@)ds  (c22)

g

ign

C.2.2 Computation of

Starting from (2.39), the main term to compute is kli?jll\l, divided into two parts

k ~ 1

lTlell\I( » P 7t) = Rm]( imn nlkl + kl'lenRgz) + ipjmnkl (R” R/ ml + R )7 (023)

T 7t

ij ij

such that )
7 7 = Rl (i + Fepa) (P s + 5 Pimn 2, )
Computation of 7,;: starting from the expression of 7;; given in (C.23) and using the fact that
RZLZ = —k:m}?;fn ; thanks to the incompressibility condition, and that kzmémj = 0, one finds
1 - P

5 = 5k |kafi, <2a o Ry — Rij) + 20/, g R RYL. (C.24)

Using (2.30), geometrical relations and equalities such as W;; = 1 and B;7y; = 0, one has

kR K = K2 (1 — y2) (5” n §RX”) = kp(zy + 2) (5” + %X”),

1 1-— )
y; X" _ 5 yX//*) _ elAkSinb<y(£” +RX) + ic\\YX”),

kiR N, = e’k smb(E”y +
where X = Ze2*| X/ = 7/¢%X and X" = Z"eN’. Similarly,
kR N* = e*“ksmb(y(s” FRX) - i%X”).

Then, using p,, Ny, = pal, Ny = —pe? sine,

memJN] = —p sinc(EeD‘ + Z*Gii)\), mem]N; =-p sin C(Eefi)‘ + Zei/\).

— Now, the contribution of 7,; to the polarization transfer is evaluated. Using gsinbsinc = p(1 — 2?),
this yields

| i 9
37 NP Ny = Shpa(1 = 2%)(Ee™ + Z2)3X"

1 )
+ §kp<5" + ?RX") (z(l —2%)Ee BN — Z(xy + 23)) (C.25)
— Finally, the contribution of 7,;; to the directional transfer is computed. Using Rij N;N. ;‘ = RijNi*N =

Ri; = 2€ and 27;; = (N;N} + N/ Nj)7;2, this gives

’LJ’

1 _

1 1
3T = ik:p(é'” + ?RX”) (z(l — 22)RX — (zy + 23)5) + §kpac(1 — 2)IXIX”. (C.26)

Computation of T;;Z starting from

~ ~ 1 ~ N ~ 1 AL A
7’;; = klemnR;n[in = ialangm(kQR;’/i _ 2kjknRZi) + §knk‘l Zi ;‘l’
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and using the facts that ;o = —z, ay N/ = e /1T — 22 and a; N/* = e~ *'/T — 22 one finds
amoq R, (1—2*) (& +RX").

ml =
Similar calculations, with o/ W = /1 — y? and W;W; = 0, yield
N NG R = e (14 ) (" + RX") - 28" - 23X,
ko NiR,, = —k\/1— 2272 (z(é” + RX') — i%X').

— Now, the contribution of 7';; to the polarization transfer is evaluated. Using the previous calculations
and a symmetric writing, one finds

T NFNF = ik%—m(l — 23 (&' + RX) ((1 +42)(E" + RX") — 28" — 2iy%X”)
1 .
+ Zk?e—m(l — ) (E" +RX") ((1 + 22) (& + RX') — 28" — 2iz£§X’>

- %kzefzv‘(x +y2)(y( " + RX") —iSX")(2(E" + RX') —iIX). (C.27)

Let’s simplify the geometric factor that affects (£ + RX")(E' + RNX’). Using the following relations

2
2

(1—22): (x+yz):;%(1—y2), k(2yz + ) = gz + py, 2eyz =1 — 2% — y? — 22,

hSEES

one finds
E*(1 — 2y%2% — wyz) = kp(xy + 2°) + kq(zz + °). (C.28)
Thus, with p <+ ¢ symmetry
k2672i)\
5 (1 —2y%2% — 2y2)(E" + RX")(E' + RX')
o—2iA

== (kp(my 423 1 kq(zz + y3)) (E" + RX")(E + RX')

= e M kp(zy + 22) (" + RX")(E + RX'). (C.29)

The term
E2e—2A

4
simplifies using k(1 — 22) = q(xz + ) and k(1 — 3?) = p(zy + 2), into

((1 ~ ) (E +RXN2E" + (1 — ) (E" + §RX”)2E’)

k2€72i)\
- ((1 ) (E +RXN2E" + (1 — ) (E" + §RX”)2€’)
= —kpe A (wy + 2) (" + RX")E'. (C.30)

The remaining imaginary term

ik.Qe—Qi/\

IX"(E + RX)(2(x + y2) — y(1 — 2%)) + SX'(E" + RX")(y(z + y2) — 2(1 — %))
can be simplified using p <+ ¢ symmetry and the following relations
k(1=2%) =q(zz+y), k(l—y*)=play+2), k(z+yz) =ply+22) = q(z + 2y).

Therefore

ik2e—2iA
2

[sx”(s’ FRX) (22 + y2) — y(1 — 22)) + SX(E" + RX") (y(x + yz) — 2(1 — y2))}
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= ikp(y® — 22)e " PAIX' (" + RX"). (C.31)
The last term is )
k2e—21)\ .
5 (z +y2)SX'SX" = kpye 22 (1 — 22)IX'IX” (C.32)

due to kpy(1 — 2%) + kqz(1 — y*) = k*(2 + yz). The final contribution of 7,5 to T is
Q‘;N;‘N; = kpe 2 [y(l — 22)3X'3X”
+ (& +RX") ((my +3Y(E +RX) — (wy + 2)E +i(y? — ZQ)sX/)] .

— Let’s now consider the contribution of 7;% to Te. As before, 7.5 (N;N*+N*N,) = 2P;;7.% is computed.
9 1] J ) J g
One has
RIPy=€&"(1+y*) —RX"(1—9?), ko RIN; = ksinbe™(y(£” + RX") +iSX").
All other useful quantities have already been detailed. Thus, under a symmetric form
27 (NN} + Ni ;) = K2(£” + RX") ((5’ FRX) (22— 2227 — ayz) + (1 — )& — m'))

— Rz + y2)SXISX” 4 K2(E + RX) ((s" FRX)(y? — 20222 — ay2) + (1 — 22)(E" — %X”)).

(C.33)
Using previous geometric relations, the total contribution of T{; to Te becomes
T (NiNF + N N;) = 2kp | (zy + 2°) (£" + RX") (£ + RX')
— (zy+2)(E" + RX")RX —y(1 — zz)SX’%X”] . (C.39)
Final step: The equation for 7;; is
(ks t) = Ky / 01 T2 (k, p, 1)d%p. (C.35)

With the definitions of 7;; and Tg given in (C.23), and using the fact that 7;; is real (because there is
no helicity), one finds

7 (k,t) = 2/ kaq(ri; + Ti-; + Ti;* + TZT;*)d3p = 4/ Okpq(Ti; + Ti‘;)diap. (C.36)
k+p+q=0 k+p+q=0

Consequently, (2.41) and (2.42) are obtained.

(RTT)

Return to isotropy: some details to obtain T in equation (2.69) are given. Using previous

relations, one gets
QTG N = k(1 —y?)V/1 = 22(zk — qr)e NE" + RX")(E + X)
and, with p <> ¢ symmetry
aTENT = k21— y?)V/1 = 22e7NE + RX")(2(€ + RX') —iSX"),

so that (2.69) is recovered.
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C.3 Spherically-averaged non-linear transfers

C.3.1 )-integration

In the anisotropic framework, the difficulty is to solve the integral that depends on the orientation of the
plane of the triad. Triple integrals simplify using the change of variable

fi(k,p,t)d*p = P9 (™ by g, AN ) dpda, (C.37)
A b Uy

where A\ as been defined in (C.16). Ay is the domain where k, p and ¢ are the lengths of the sides of
the triangle formed by the triad. In the isotropic case, the A-integral amounts to a multiplication by 27
which is not true anymore in the anisotropic case. In this part, the main integrals that are useful for the
calculations are

27 27 2
1—
/ ajafd) = w[(1 - 2%)6;; + (32° — Dayay), / e ajaldh = 22 N; N7,
0 0

2m 2m
W/WidA = WIWEdA = (2% = 1)(8;; — 3aiaj),
0
2 2 27 2
. 1 : 1-—
/ e PAWIWIdA = WLZ ) NN, / e PAWIWAN = =2 22) N;N:.
0 0
Similar results regarding " quantities are obtained by changing z to y. Then, A-integrations of £ and Z
give

2m 2
/ W QN = 157 H dlr) (1-32%)aj, / EMIAN = —30mEo H Ve,
0 0

2T 2m
/ e_Qi)‘g(dir)/d)\ 50H(dlr ( 2 1)]\7]\7;7 / e—2iz\g(dir)d)\ =0
0 0
2w 2

1 /
RX'd)\ = ng' HPY' (1~ 22005, RXd\ =0,
0 2 0 (] J 0

2m 2m
o —2i 5 o * N\T*
/ e PARXdN = 71'50 eV (1 1 22)NF N, / e P RX AN = §7T50Hi(]P VNN,
0 0

27 27
/ e PAGX AN = —450 (bl NF N7, / e Xd\ = 5nE H PV N/ N
0 0

C.3.2 Spherical integration

In the context of moderate anisotropy, only the second order of the Rij expansion is kept. This means
that all quadratic contributions H l(]) Hf,)m can be simplified, because there are negligible with respect to

Hfj) Remembering that HZ(B =0 and H;; O—H 3(2: and using the following relations

Ark? Amk?
/ Oliajd2k = Léija / aiozjozmoznd2k: = L((Smgmn + 5””(5]” + 5in6jm)7
Sk 3 S 15
/ a;d%k = / aiajanko: =0,
Sk Sk
0 2 8 2470 * 2 6 2770
Hy ooy, Pd“k = T —nk HU, HmnNmNnNN d°k = —7k H”,



Appendix C. Details on the Spherically-Averaged Lin Equations 228

it is possible to integrate spherically the directional and polarization transfer terms Te and T given by
(2.41) and (2.42). Let’s define SN“(5°) the non-linear spherically-averaged isotropic transfer is obtained
by spherically averaging Tg as defined in (2.56). One can note that

/ i H)d%k = 0,
Sk

and thus the classical isotropic transfer term (2.57) is recovered. For the anisotropic transfer terms,
the first thing to do is to discard terms such as g’ e(din” op £(@din)' R X7 and so on, because they are
quadratic in Hfj) Using the previous relations for A-integration and spherical averaging, expressions
(2.59) and (2.61) are recovered.

C.4 Spherically-averaged linear transfers

Now, the emphasis is put on the linear terms that contribute to the total transfer. It is possible to write
the Craya equation (2.13) as

OR;; -
o 2k Ry = T + T, (C.38)
with the linear transfer being (starting from &-Lin and Z-Lin equations is more complicated)
L A A ORi; A A
T = 2Amai(o Ryj + ajRni) + Ak — (AuRi; + AjRy). (C.39)

Okn,

C.4.1 Spherical integration

The previous relations are still verified. The following ones are used as well

v 2
/ Ayl 2200105 g2y, _ 8T (350 + ka‘%) ,
s, 15

k2 i
A Ok, ok

15 ~ W

2
Aln/ ajajoqandik =
Sk

8H()aa {1k? 8H()
Ay by P17 g2p, Ar [ EZ2m 30
/Sk T 15 “m\ " T )

8mk?
AI”HIQJ/S oziozjoqanozpaquk = 17?? <2A$Hj(l) + QA;EHZ.(; + A;Hl(r)ﬁij),
k

OHS) oy cgviar; 8mk? 3HZQ
A o, CHPIOD Qg Qi QG oy Aan [ 1225 350
/sk. TS T ((4a + 4a) (k o T3y
OH] 0 OH, 0
+(Alj+Ajl) kT;+3Hll + A, I{/’Tén +3Hln (Sij)7

9 0 0 1 0 0
k—(&H)) +3HYE, = —— 2 (kEHY).
ak (50 7,]) + 3 1]80 47Tk2 ak( ’Lj)

C.4.2 Computation of T};

The method to compute the linear transfers is the following one: firstly, the linear isotropic term S (k,t)

is evaluated. Then, the total linear term, defined in (2.77), is computed. The linear directional transfer
SL(dir)

i (k,t), without the isotropic part, is calculated. Finally, both the isotropic and directional parts
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are subtracted from the total linear transfer to obtain the polarization one Sg“j(pon(h t). This process is

easier than computing directly the polarization transfer. Hence, one has

L(tot) o
SHEN (1 1) = /

Sk

T (k. 0k = 2( 51880 (k1) + S, 0) £ SV (k,1)).

A convenient expression of R;; is used

A A - . 1

Ri = ey + B = &Py (1= 150 a0, ) + 560 (Pon Py HIES + > GHE  opa,), (CA40)
where Rfj accounts for isotropy and directivity, and Rfj for polarization. In the following calculations,
the velocity gradient A;; is decomposed into symmetric and antisymmetric matrices

Aij + Aji

Aij — Aji
2 ’ '

Al = 5

A=

Computation of S™(%) and SZLj(tOt): Using P;; = 2 and R% = 0, one recovers easily (2.63) for Sh(s0),
To compute the total linear transfer, three contributions of (C.39) have to be calculated for R;’j and Rfj,
namely
/ 2Aln04l(OéiR$Lj + o RS,)d%k =
Sk

4 12 (dir) (dir) 2 (dir) — 7(dir) — o (dir)
Al = ZB(afHS - ArHE — Soal, B ) + 4B (AR HE + A H),

/ 2Alnal(ainLj +a;Ry)dk =
Sk

12 ol ol 2 ol 4 — ol — ol
7E(Al+jH;§ D+ ALHPY - S6, AL H ) +§E(AﬂH§ZP VA HP)
ORs; 2, OkE
A 2 — 24+ 9N
s bt o, R = T o
4 0 dir 0 dir 0 dir
= (A RBH™) + Af (EH™) — 36, A7, = (REH{) )
OR?; 4/ .0 1 0 Dy 2 9 1
Apki—2d%k = —= (A} = (kEHYY) + AY — (kEHPY) — 26, A} — (kEH >
/Sk T 7 (Al gp RBHS™) + Aligp RBH™) = 38, A%, e RBH™)).

fe he 4 dir dir — oy (dir — y(dir
/S (Aukt; + Aufe)ak = SBAG +28(ATHG™ + ALHG + A7 a4 A7H™),
k
/S (Aulf; + AR @k = 2B (AT HEY + AZHEY + ATHTY + A7),
.

Computation of S}j(dir) and S}j(p()l): the definition of S}j(dir) is given in (2.64). Firstly,

1 ORS o oy 1,0 Lo _ L (dir) _ L (dir)
74m /Sk klaTnPijd k= _ﬁAij%(kE) +oAGE+ E(AjnHm' + Ain Hy )
2 0 ; 0 ; 0 ;
+ (dir) + (dir) + 5 9 (dir)
Tz (Au %(k’Esz )+ Ajl%U{;EHil ) — 347,04 3k(kEHzm ))
3 (dir) (dir) 2 (dir)
3 (A;Hu FALH 2 ar s,

and R% = 0. Similarly,

% in

1 ~ 1 2 ir ir ir
§Am/s P’k = TEAS - ?E(A;Hgi Vb AFHGY — 3Af 6 HLY >),
k
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1 . 2 o o) .
iAln/ lZnPijd2k = ?E(A;;Hi(lp D4 A*H pol) A+5 H(p 1))
Sk

Summing the three previous terms and removing the isotropic part 5ijSL(iS°) /3 gives (2.65). The linear
polarization transfer is obtained by removing the directional and isotropic linear transfers from half of
the total contribution, according to (2.77). Equation (2.67) is then recovered.

C.4.3 Return to isotropy
The following relations for the A-integration and spherical integration are needed

2m
/ afoffe” AN = —my\/1 — y2(o; N + a;N}),
0

27
/0 W/W/e X = m(1+ y)/1 — y2(u N} + a; N},

27

; Wi W e AN =n(y — 1)1 — y? (N + a;NJ),
27 s
g0 =N\ = 30my /1 — 2 HI™
0
2m
RX"e A = 5ryy/1— g2 B a
0

2m
/0 iSX"e NN = —5my/T - 2EYHEY ;N

The p quantities (with ') are obtained by multiplying by —1 the rhs term and replacing y by z. Here,
the useful relation for spherical integration is

4rk?

0
—HJ).

%(H,(,)mamaiN;Nj)ko -

Then, from the definition of S glven in (2.70), it is possible to integrate spherically W;; using the
previous relations, and to find equatlon (2.71).

C.4.4 Rotation

The effect of rotation on the velocity field was detailed in section C.1. It was revealed that the evolution
equation of Z only was affected by rotation. Rotation was already taken into account in the Craya
equation through the tensor M;;, accordingly modified in (C.4). We call M;; the rotating part of this
tensor. One has first to evaluate the corresponding total linear transfer
SL(tot) VI B 42
Sk
There are no contributions from jo: all terms like €, qv, are zero which tremendously simplify the
calculations. In the end, the polarization transfer is simply half the total contribution, which yields
1

&L(pol 1 oL(to ~ ~ ~ -

4
=~ Bk, ) (empH(p"” + ejm,,H@O”)
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C.5 Kinetic quadratic anisotropic contributions

In this part, some details are given about the calculations of the second-order spherically-averaged non-
linear transfer terms, which take into account quadratic contributions of anisotropy. The convenient
notation is used

H(dlr) H(dlr) + Hl(fiir)” Hl(qir)’ _ 2 g (din)” g (din)’ 5y = { Fy(din)”’ H(dir)/}
J ? ’ :
ij

Here are some useful relations

V1—y2V1—22 = (z+y2), 2ryz =1 — 2% — y? — 22,

167k?
H! H oqoim oo Pryd2k = — ——

s 105 (H Hij + HigHi = 3H;, Hln‘;”)

/ H;,H,, <anap51q + gl + pong + alaqénp> P;;d%k
Sk

Lt (H 'Hj, + H{,H]; — AH]! Hlnéw)
/ H H (§ip0 + GiaSip — anaipdiy = Onigdiy — 010p0ng — Aitgdny ) Pk,

 167k?
- 1”5 (H H, + Hj\H}, + H}, Hlnéw)
9 32mk?
5 HYj Hyon0 NN N Njdk = == (H H, + H}}H}, — H Hlndm)
* * * % 2 967Tk
Hln pq(aan +aan)(aqu +0‘qu)Nide k= (H Hlj +H le - 3H Hln(sw)
Sk
PR 9 967Tl<:2 2

_39< | HGH NN 0Ny + Ny (Vi sl k) i (H Hi; + HijHf, — SH, Hln(sw)

k

167rk

7§R / H H/ alan(apN;+an;)(a]NZ+azNj)d2k) = (H Hlj+H lef H Hln(sl])

35

Since H and Hpq are deviatoric tensors, terms in d;,, and d,4 do not bring any contributions.

Non-linear directional and isotropic transfers: the three main parts to compute of the directional
transfer (2.41) are

Tl _ 56’ (H.(‘.iir)//a;'a’,' n §):E(I_I'(Pol)// W,*”Wfk”)) (50 dlr) OL;DOé; EOHgggir)apaq>7

T2 = &l ( " gt 4 RED W W ))éR(SOH<P°1 W W — &HEDW W*)
ol *! *! O * * */ *
= ESHPY W WS (a8 HE DWW, — yEHEY W W),
For the A-integration and spherical integration, here are some useful expressions
2
/ o o agandN = —yzm(x + yz) (iapdjg + gy + ajogdig + ajagdip)
0
3
+ aiajapaqﬂ{QyzzZ + 1(1 — ) (1 = 2%) —y2(1 = 2%) — 22(1 — y?) + dyz(x + yz)}
T
+ Z(l —y*)(1—2%) [5ip6jq + 0ig0jp — Qtipljq — Qirgdjp — vjapdiq — O‘jaqaip} )

27
" _ 2 P
/ o o aporgd\ = 3y — Daojapay,
0

2

RW" W;‘”)a;agd)\ = yem(x + yz)(iapdjq + aiagdjp + aaybiq + aagdip)
0
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3

— S =y =27 — dys(a + )|
T
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+ T a0y [4(x +yz) + yz} + myz {&-péjq +0iq0p — iapdiq — g0y — Cjapliq — ajaqéip} ,
2m

/ SV W )S(WEW,)dA =
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Non-linear polarization transfer: the three main parts to compute of the polarization transfer (2.42)
are

T = &y (HS™ ol + REE W W) (RE G W W)~ & HEWW),
T =& (H;;hr)”ag’a;' + §R(HZ_(]P01)” Wi*”Wj*N)> (Séngf]iir)/a’pa; - SOHzggir)apaq),

TS =i (B oo + RO W W) S W W),

T =g SHE W W) (eEo (B ayay + HEWW,) — i€ S(HED W, W, ).
For the A-integration and spherical integration, here are some useful expressions
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Non-linear return to isotropy transfer: the three main parts to compute of the non-linear return

+ 3y(z + yz)ié{H(pOI)N7 H(p"l)/} 1 .
ij ij

to isotropy transfer (2.69) are
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For the A-integration and spherical integration, here are some useful expressions
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Final quadratic anisotropic non-linear transfers: the quadratic anisotropic isotropic transfer term
is conservative and reads

QNL(iSO)(k}, t) _ 20/
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The quadratic anisotropic directional transfer term is
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ij 1j

— 6(zy + 2°) [(1 — 227 — xyz)é’é{H(pOI)”, H(dir)/} +(1- )So{H(pOI)” H(d“)} }

ij

N A

ij

ij
+62(1 — 22) [(1 — 22 — xyz)é’(’){H(dir)”, H(pOI)/}
ij

(22— 1) [(1 — 222 — 3xyz)55{H<P°””, H<P°1>'} —(1+ yQ)EO{H<P°1>",H “”"”} ]
ij

ij
—y(1-2?) [(x + 3yz)8{){H(p°1)”, H(POU'} + 2x€0{H(P°1)”7 H<P°1>}

ij ij

” dpdg. (C.43)

The quadratic anisotropic polarization transfer term is

o 60
QZ‘L(p D(k t) = = A 9kpq7r2k2p2q8{)’[
k

— (zy +2°) [2(3xyz +222 - 1)86{}1(‘“””, H“’O”’} +(1+ :cyz)S{,{H<P°””, H<P°1>'} }

+2(zy + 2°) [2(1 - 3y2)50{H<d“>”, H<P°‘)} +(1- yz)eo{H@O”’ﬂ H (P"“} ]
ij

ij

—22(1 - 2%) [6(.1‘:(/2’ +22% — 1)86{H(dir)”7H(dir)’} — (3zyz + 2y — 1)86{H(p01)”’ H(dir)'}

ij 1j

61— yz)go{H(dir)”yH(dir)} 0+ y2)go{H(P01)”7 H(dir)} }

ij

+ 2(3zy + Z)gé{[_[(dir)”’ H(pol)'} }

ij

1j
+ 2 = ) |(ey + z)c%{H ol 11 ““’”'}

ij

—y(1 - 2% [49080{H(p°1)”, H(dir)} —(z+ yz)E{){H(pOl)”, H(pOI)/} H dpdq. (C.44)
ij ij
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The quadratic anisotropic RTI transfer term is

120

QNL(RTI) (k‘, t) _ 7 9kpq7T2kp2q56/

Ag

(6{1{(dir)”7 H(dir)} _ 6{H(dir)”’ H(pol)}

— kz(zy + 2)& (12(y(a: +yz)—2(1— 22)){H(dir>/” H(dir)’}

2y(z +y2)(zy + 2)(2k — qz)&o

_ { o) H(pol)} )

ij

+ {H(pol)”’ H(dir)}

ij

— (6y(x + yz) +22(1 — ZQ)){H@“)”, H<P°U’} + (2y(x +yz) + 62(1 — z2)){H<P°1>”, H<dir>’}

i i

+(z(1-2%) —y(z + yZ)){H(p"”//7 H(P“)} ) + k(zy + 2)&)

j

+yly + $Z){H(pol)/'7 H(pol)’} )] dpdgq.
. i

ij

<<6y<y +22) —4(1 - z2>>{H<d“>’Z H“’O‘V} (C.45)

The impact of quadratic anisotropic contributions on the non-linear transfers is revealed in Fig. C.la.
One can note that the global shape of the transfers is preserved and that there is a rather small change
in intensity, mainly at large scales which is expected since this is where anisotropy is dominant. The
isotropic and polarization parts of the transverse component ()33 are more affected by the quadratic
contributions than the directional part. This might also be the consequence of the Rey which is slightly
higher, at St = 50, for the simulation with the quadratic anisotropic contributions than the one without.
Regarding the b;; in Fig. C.1b: the asymptotic values are almost the same with and without the quadratic
anisotropic contributions. One can observe a slight increase of the streamwise anisotropy and decrease
of the transverse one. Moreover, the kinetic spectra scalings and the exponential growth rate of the
kinetic energy are not displayed since the difference when adding the second-order contributions is not
distinguishable. In conclusion, the quite heavy analytical calculations, which led to the second-order
anisotropic contributions in the non-linear transfers, do not provide significant changes with regard to
the first order developed in Chapter 3: this is why they are not used.
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Figure C.1: Quadratic anisotropic contributions in the non-linear transfers at St = 50,
with ¢ = 2. (a) Budget terms along with the integral and Kolmogorov wavenumbers
kr and k,: grey curves represent the classical transfers without the quadratic anisotro-
pic contributions. (b) b;; and shear rapidity e/K S, where grey curves are without the
quadratic anisotropic contributions.
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C.6 Fourth-order expansion for £ and 7

Here, some details are given about the method to obtain the fourth order expansions of £ and Z (2.44)
and (2.45). Starting from

Elk,t) = & (1 —15H (k, iy + U (k, tasazapaq + . . ) (C.46)
1 (pol) (pol)4 . .
Z(k,1) = 5 <5Hij (ko) + UL (e, D apag + ... )Ni (k)N (k) (C.47)

and using the definitions of the generalized operators P,j,, and N;j,, given in (2.49) and (2.50), one gets

24 dir 4 ol
E(k) Pijpg (k) &k = S B(R)US) (K), / R(2 (k) Nijpg (k) &%k = E(R)US) (k).
Sk Sk
The tensors Ui(};lq have the same properties as H i(;pq. Combining these two equations with the definitions
of Hi(;-i;;) and Hi(;);;) given in (2.47) and (2.48) yields the fourth order-expansions (2.44) and (2.45).
Finally, the expansion of the spectral Reynolds tensor in terms of the deviatoric tensors Hl_(;_iir)7 HZ(Jp 01),
Hi(f;;) and Hi(;’;;) reads
R . 945 ~
Rij = &Py (1 — ISH&;“)QPO@ + ﬁHﬁS;fq)arasapao
RS+ Ry
Leo (50D 4 2 e P,,Pj, + P, C4
+ § 0(5 pq + ? pqrs aTaS) (2 iptjq + ijapa(J) . ( . 8)
R+ Ry

C.6.1 Fourth order linear transfers

In this part, we aim at computing the linear directional and polarization transfers T and T% associated
with the evolution equations of £ and Z. The linear spherically-averaged directional and polarization
transfers at the fourth-order are defined by

Sk =5 [ TP @k SEE 0 =5 [ R(THENG) P (9
Sk Sk

1jpq 2 ijpq

Contributions of Hi(;-i;fi) and Hg’;;) in S;-(dir) and S’}j(ponz here are some useful formula for the

spherical integration:

24
/ alapaTaSAlnH() d’k = 0, / aiajapaqamanarasHﬁ,gms&k = %477']{}2];[()
Sk Sk

rspn ijpq’

ijln* " ln> ijpq

6
/ oziajapalarasAlanpnkoz = ﬁ47rk2HO AfF / aiajapaqalanAlnH-() d’k =0.
Sk Sk

2
AljarasapaqaialHr(;pqd k=0.
Sk

24
/aiajapaqalanarasH() Alnd2k2—4ﬁk2HQ AfF
Sk

pqrs 945 ijln* " ln>

Consequently, one has for the directional transfer

. . e o O(KEHY
A / RiiP;d%k = 247, EHSY Ay, / ki ag“]:’m P’k = —4A) (2EH{§;;) + %)
Sk Sk n

. 1 Dz4
A, / RiAP;%k = —— A EHYY Ay, oy OB p_g2p, — g,
5. 3 Ok,

ijln <
k
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For the total transfer, one gets

ijln ijln

> ® ir 2 o
2Amn /S aiag (RS + R A%k = —4A EHUY + gA;EHKP D
k

—Af
ke ok 3T ok
L(pol4)
ij
and Sg“j(pon resulting from the expansions of £ and Z at the fourth order are

O(Rg} + Rz OKEHDY 1 a(kEHPY
Aln/ kszQk — fQA;;L(i”l") M
Sk

= Sfj(tom)/ 2 — Sg}(dm). Finally, the additional contributions to S=(4)

One can then compute S ”,(

. . O(kEH!IMY
L(dir4) o + (dir) + ijln + (pol)
Sij (k,t) - _3AlnEHijln - AlnT + EAlnEHijln ) (C~50)
(pol)
L(pol4 dir 1 ol 1 8(kEHzln )
Sy (ko t) = AL EH) + S AL EHJD + c A —— (C:51)

Contributions of Hl(Jd ") and Hl(]lD Y in SiLj(p(i;r): here are some useful formula for the spherical integra-

tion:
/ P,jpgd?k = 0, / HY)a,a,Pijp,d*k =0,
Sk Sk

Apn o, Pijpgd?k = 0, A H g0, Pijpgd®k = 0.
Sk Sk )

Furthermore, a complex and lengthy calculation yields

2
EOAlanalanaraSR-qudzk = —

= E
Sk 6615

8
gAltlHl(T)L <5ij6pq + 5ip5jq + 5iq5jp)

—4 [Jij(Al; HY) + AL HD) + 0pg (AL H) + ALHY)) + Af (H)8ig + HY)054) + A (HY) 8 + H{)55)
+ Hy) (A%8iq + Af850) + H) (A0, + Ajl(sjp)} +14 (A;SHZQI + AL HY) + ADHY + ALHY)

2

(2.¢)
= G615 Hura P )

+ 770 + 770
+ Aijiq + quHip)]
Then, one obtains

; 30 (2 , ) 5
Aln/ R?T%Piqud2k = 7%(21 )[E‘]q(dlr)]7 Aln/ RIZZPiqud2k — 77_{(21 )[EH(pOI)L
Sk S

6615 P4 n 6615 iira
Ok, 2 60 (2,¢) dir (2,¢) dir
A | g Pk = e (SHEUBH ) 1o kEH ) ).
Hence, the contribution of Hi(;hr) and Hz(jp  to S}jgjf;“ is
L@i2) g L1 ee ol (2.)( p py(dir (2.€) dir
St k1) = 17 (= SHG EHCD) + 4y [BHOD) - 13O (REH)]). (C52)
Contributions of Hl(]d ") and HZ(Jp ° in S}j(pp;ol): here are some useful formula for the spherical integra-
tion:
/S H{N;} N Nijpgd®k = 0, . A H) N N? Nijpad®k = 0, . Af NP N} Nijpqd®k =0,
k k k

and moreover, lengthy calculations yield

/ Eo A} HO) aya, NI NI Nijpad®k = / EoAmHY s N N Nyjpadk
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2205 E

A (H) i + HY)85q) + A (H) 6 + HY)85) + H) (AN 03 + A5850) + H{) (AL + A;.;ajp)}

AAE D (815850 + ipdia + a0 — 10 (055 (AL HE) + AL HE) + 0, (AL HY) + AFHY)

4

+ + + () + + 770 T _ (2,2)
+85( AL HY, + AJ HO) + ALH, + AL H, + AL H) + AF, )] = s i (BHO).
Then, one obtains
2 (2 z) ol
Ay S, RP2N!N!Nyjp,d®k = —meq[ EH®],
Rz 0EH 2
Aln k‘l akTSN N? szpqd2k:—5/s [A;N:N:Oqa koaik —2Alnala550HTsNr*N:;}Niqude
k
4 (2,2) ol) (2,2) ol
- M( — SHEDEHPD] 4 HED (0 (kEH® >)]),
8R$§ 2 (2,2) (dir)
Aln/ k; ok NXN; Nlqud k=0, A g R IN*N? Nijpgd“k = _EHZ“"I [EH'Y).
k
Hence, the contribution of H(dlr) and H(pOI) to S}J(IZOI)
L(pol2 2,z) ir 2,z 0. 2,z 0.
SZJEDIZI )(k t) = 441 <6HZ(JP(I [EH(d )] 4Hz(qu) [EH(p 1)] +H§qu) [ak(kEH(p 1))])' (C.53)
(dir) (pol) in L(dir) L(pol) ,
Contributions of H;; ' and H;;, .’ in S5~ and S *: lengthy calculations provide the following
compact formula
| ol O s Qa0 0 s P Ak = %E AFH 4+ AGHG + ALHD, + A HD,
205 (5,10 w680 1 50H0 w6.H5) 15, H) 46,00 Y| = 2 y@ (pHO
7? in (U ln;oq+ Pq lm,]+ ip lnjq+ iq ln]p+ Jjp lnzq+ Jjq l'mp) 34657{1””1[ ]
* NTH 4
gOA;;LH(g)rle NnaaabarasNiquko = 7ﬁ7_[§]2}q[ ()L
Sk
EoA HY  N*N*agap0ian Nijpgd®k = ’Hﬁj;q [EHO)].
Sk 1155
Antisymmetric contributions arise from
50Alnalabaraer(L)mequdzk: =
Sk
2 (1 1BHO) + E|AZHY)  + AGH)  + ASHD + ADH
6615\’ “iipa Jpql ql ijlg Ulp )
s E0Amaaay Ny NI HY,, Nijpgd?k =
k
2 (1, 0 0 70 - 70 0
21 (Hiqu [EHY] + [A Hipq + A Hipa + Aleijlq + 4, szlpD
/ Eo A anasaq,apNy N*HabbeUqu k=
Sk
2 @) 0 0 0
35( HOEHO) + B[ATH,, + AGHY, + AyH, + A HY, ).

Then, one gets

1jpq

A?’;L/ R szpquk - _77'[ 4) [EH(dlr)] A?;L/ R Pmpquk - _7Hzgpq[EH(pOl)]a
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108 (4 o
Ant | RGN N Nijpad®he = — g Mgl EH ),
k
P74 AT NT* (4) o (pol) (pol) (pol) (pol)
AN/S leNrNsNiqud%f7—Hl]pq[EH(P D E{A Hpol + AGH ) + A H Y + A H Y },
k
aR%Lm 2 (4) (dir) (dir)
A [ b5 P b= S [ REH)] — 20 (BE )
k
(dir) (dir) (dir) (dir)
+4E(A 7O oA g oA g A )
8Rff§ * 4 o 4 o
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so that the contributions of Hf]d;f]) and HZ;’;; to SZ];(;(Z") nd SUPI;OI are
L(dir4 4 ir 4) ir 4 o
S, 0) = 17 (2HD OB R )] = 1D [EH) 4 200 (EHO))
dir dir dir) dir
+E(A B AL A H 4 A Hf]lp>), (C.54)
ol4 1 /4 o 4 0. (4 ir
St (k1) = 7 (S [0k (kBHD)] - 5HEJ;Q[EH(" U]+ 54 [EH )
+5E<A11H;g;ll)+z4 P+ A HT + ALHT ). (C.55)

C.6.2 Fourth order non-linear transfers

The non-linear spherically-averaged directional and polarization transfers at the fourth-order are defined
by

dir 1 ol 1
Sh >(k)=5 /S Te (k) Pijpq(k) %k, ShnP >(k):5 /S %(Tz(k)Nim(kz)) k. (C.56)
k k

There are no contributions from the fourth order tensors Hl(]pq) and H, l(]p;q) in the isotropic, directional and

NL( NL(d NT.(pol
polarization non-linear transfers .S;; ISO), Sij (dir) and Sij (pol)

from Hfjd " and Hi(;’Ol) Sg;;d”) nd SSI;SPOI because

, and similarly there are no contributions

ijpq

/S PrsiajapaqHY) A2k =0, /S ;o NEN;N,N.H,), 4%k = 0.
k k

NL(dir)

For the A-integration to compute 5;;,,~ ', one needs
2m , -
/O alafapal B, AN = TasajapaqH),, (352" — 3027 +3),
2m "
/ o off R(W, )Hfj)pqd)\ = (1 — ) (1y? - l)aiajapaqu(J)-pq.
0

This yields, after spherical-integration,

NL(dir (dir
Siipy " (k,t) =2 A Opgm kP q(zy + 2°) & [50( H' (3524 — 3022 + 3)
k

+ 1 (359" — 30y° +3)) — & (SH, + HSw (359" — 304 +3))

1jpq 1jpq
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(y + 2% (1= y?)(Ty? = 1)(E — E)H I +2(1 = 22)2(1 = 722G H P | dpdg.

2
+§/ Orpg 2k D?qEY
Ay

(C.57)

For the A-integration to compute SNL(pO one needs

1Jpq

(]‘ - 6y2 + 7y4)7

”’Spq 2 rspq

2
/ e A IR(W, W, Y H Y AN = Sa,a NEN:HO,
0

rqu

27
/ ie™ L ol S(W W HO dX = garasN N:HO, (5 —T27),
0
2
/ e_QIAa"a"a”a"H,(,lpqd)\ = —§aTasN N*Hr(lpq(l —8y* + 1y,
0
and for the spherical integration

rsln 1pq”

/ g0y N NEN;N;HY 42k = - Ry K2H) . / ar s Nf NI Nyjpg HY, d%k = o S gk n)
Sk Sk

This gives

2(5 — 722) (g% — 2)EHTY 1 ay(5 — Ty?) (1 — 22)EHPY”

NL(pol) _ 272 2
S PO (K t) =4 Okpgm kD q&Y iing iiva

ijpq
Ay
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Ay

(C.58)

C.6.3 Fourth-order final spherically-averaged equations

The evolution equations of the fourth-order anisotropic descriptors H, (i) and HPY are then simply

ijpq ijpq

(gt * 2”’“2> Bk, t)Hgpe (k1) = Spis™ (k,£) + St (k, 1), (C.59)

(gt +2”k2) Bk, ) H e (k,t) = S (kyt) + S (k, 1), (C.60)

where Szngﬂjr) = SZ'I}(,,(;HQ + S;;(i(llr4)7 and similarly for the polarization. The direct retro-action of the

fourth-order terms on the second-order ones is done through the additional linear transfers SL(dlr4) nd

S; j(p°14) so that

(gt + 21/k2> E(k, ) HS™ (k,t) = SH (k1) + S (k, 1) +.55 ) (k, 1), (C.61)
S (k)
<§t + 2yk2) E(k, ) HYY (k, 1) = ;P (k, 1) + SHP (k, ) +S5 PV (k, 1), (C.62)

S;(Pﬂl) (k,t)

(dir2)

where S and SZ-Lj(pom) are the linear transfers computed with the second-order expansions.



Appendix D

Additional Results for the Velocity
Field in Homogeneous Turbulence

In this appendix, additional results, with respect to the ones presented in Chapter 3 which focused on
shear flows, are proposed. Notably, (i) rapid distortion theory (RDT) is briefly addressed; (ii) some
calculations about axisymmetric turbulence and plane distortion are presented; (iii) the pressure fluctu-
ations are investigated to derive the equation for the pressure spectrum; and finally, (iv) some details
about the helical field in skew-isotropic turbulence are given.

D.1 Rapid Distortion Theory

In this part, some details about the Rapid Distortion Theory (RDT) are given, in order to derive
initial conditions for anisotropic flows and a solution for short times as well. This section is inspired by
Townsend (1976). Firstly, the non-linear terms from Navier-Stokes equation (2.1) in physical space are
discarded 9 5 5
Us P
— + A — + Ajju = — + vAu;. D.1
ot I g, T T T g ' (D-1)
In RDT, solutions valid for short times only are derived: indeed, non-linear terms are negligible only
at the beginning of the simulation, when anisotropy grows thanks to production terms. In the early
times of the flow, the Reynolds number is important, and thus viscous effects are small with respect to
inertial ones. For this reason, vAu; is neglected as well. Then, the following Fourier decomposition for

the fluctuating velocity and pressure fields is used
ui(x,t) = a;(t) exp (ik.x) p(x,t) = b(t) exp (ik.x). (D.2)

Then, with dk;/dt = —Aj;k;, equation (D.1) becomes, after projecting on the plane perpendicular to

kip7
dai

dt

Thanks to the previous linearity assumption, it is possible to compute at each time the fluctuating

+ (0in — 2000,) Arja; = 0. (D.3)

velocity
a,(t) = Gij(t,tg)aj(to), (D4)

where G;; is the Green’s function and ¢ the initial time (chosen to be 0 in the simulations). The
wavenumber at each time is given by

Kilt) = Fj; (o) ky fo), (D.5)

243
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where Fj; is the Cauchy matrix, or the displacement matrix, which depends on the kind of anisotropy.
The initial Green’s function is
Gij(to, to) = bij — aiaj = Pyj(to),

so that at each time k;G;; = 0. Finally, the second order spectral tensor is given by
¢ij (ka t) = Gﬂl(ka t? tO)Gjm (ka tv t0)¢ﬂm(k(t0)7 tO)' (D6)
For the sake of clarity, the following notations are used

K; =ki(ty), Ki=Ki+K>+K;,  K}=K}+K;j.

Turbulent shear flows: For a pure shear flow with gradient matrix A;;, the associated Cauchy matrix

R

FijiS
00 S 1 0 =St
Agy=10 0 0|, F;=101 0
0 0 0 0 0 1

where S is the shear rate. The wavenumbers are k1 (t) = K1, ka(t) = Ka, and k3(t) = K3 — StK;, with
k? = k? + k2 + k2. The three coupled equations to solve are consequently

da; @ das

7dt = 5(2011041 — 1)0,3(15) dt = 250&10&2&3@) E = 250(10&3@3@). (D?)
After some algebra, one gets
K2
t) = to)- D.8
as(t) K2 + (K3 — Klst)Z“?’( ) (D.-8)

Then, using the change of variable T' = (K3—StK1)/K | and arctan a—arctan b = arctan ((a — b)/(1 + ab)),

one finds
K2

ay(t) = ﬁ@l(ﬂ%(%) + ai(to), (D.9)
1
K\ K.
a(t) = > Qa(t)as(to) + ax(to), (D.10)
1
with
K2 StK | StK?(Kg —2K2 + StK 1 K3)
t) =— t D.11
Qult) = =g arctan (Kg - StKlKg) K2K2(t) ’ (D-11)
K2 StK | St(Kg — 2K2 + StK1K3)
t) = t D.12
@(t) = g7 g arctan (Kg — StK1K3> k2(t) (D.12)
Then, ¢;; is computed thanks to (D.6) with the Green’s function
1 0 WK§/K?
G=|0 1 QK1Ky/K? (D.13)
0 0 K2 /K>
and with the initial value (k. to)
s L0
¢ij(k<t0)7t0) = Ak PZJ

D.2 Homogeneous Axisymmetric Turbulence

In this part, homogeneous axisymmetric turbulence (HAxT) is briefly addressed. Axisymmetric expan-
sions (or contraction) are quite representative of grid turbulence: this is why this configuration has
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received some interest. Furthermore, the axisymmetric case is less restrictive than the isotropic one, but
still presents some interesting symmetries for tensorial developments: see for instant the local axisymme-
try theory of George & Hussein (1991). The case of a maintained axisymmetric turbulence is nevertheless
not addressed: indeed, as discussed in Sagaut & Cambon (2008), when this kind of anisotropy is forced,
the turbulence becomes 1D or 2D (depending on the compression or dilatation case), and the present 3D
modelling cannot handle such singular flows. In general, the flow experiences a contraction (or expan-
sion) and then freely decays, thus progressively returning to isotropy. In the expansion case, the mean
velocity gradient matrix is

S 0 0
A =10 5 0
0 0 -—-2S8
For the contraction, A" = —A7*". The kinetic energy K (t) follows the evolution equation
dK
E = 72S(R11 + RQQ - 2R33) — €. (D14)

Firstly, the anisotropy tensors b;; are investigated in Fig. D.1, in the cases of Saffman and Batchelor
turbulence. In both cases, one has bi1 = baa = —bs3/2. For o = 2, the b;; reach an asymptotic anisotropic
state, as in HSRT, whereas it continuously decreases for ¢ = 4. Thus, as in HSRT, there is only a RTI
of small scales, consequently leading to a global partial return to isotropy.

0.3 0.3

—bn and bzg * Release _bll and bQQ

- Release
2

== b33

10* 10° 108 10 10 10 10 10
t/TU t/TO

(a) (b)

Figure D.1: Anisotropy tensor b;; with St = 0.1: (a) 0 = 2; (b) 0 = 4.

10°

Since A;; is diagonal, the only way to observe a k~7/3 slope for the kinetic spectrum is to look at ¢;; (no
summation) without the isotropic part, i.e. E(k,t)H;;(k,t)0, as shown in Fig. D.2. Furthermore, it is
recovered that the decay exponent of kinetic energy is still valid in HAxT.

Since axisymmetric turbulence is rather a classical configuration, it is proposed in Fig. D.3 to compare the
results of the present anisotropic EDQNM modelling to the DNS of Davidson et al. (2012) in Saffman
HAXT (this comparison was included in the first publication in Journal of Turbulence). The initial
conditions are detailed in the appendix of Davidson et al. (2012): runs 11 and 12 and considered here
(initial isotropic turbulence submitted to a contraction and expansion respectively). The streamwise
direction is ()33: Ras is noted uﬁ and Ry; = Rgs = u? . The initial Reynolds number Re (0) is based on
the integral scale [ , and the corresponding Taylor Reynolds number is computed with Rey = 1/20Re /3:
simulations show that a slightly higher or lower Rey(0) has no significant influence on the results. The
characteristic time is defined as T = 1/(1/q2k(0)). Firstly, the ratio uﬁ/ui is presented in both cases
of expansion and contraction. A good agreement is obtained in the transition zone ¢t < 507", and for the
asymptotic values as well, where the relative error is ~ 3.5%. Then, the decay of the streamwise and
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Figure D.2: (a) Spectral tensor ¢s3. (b) Decay exponent . Both for St = 0.1 and o = 2
in HAXT.

spanwise energies uﬁ and u? is investigated for the expansion: despite a slight discrepancy at small ¢/T,
the t=%/5 decay of Saffman turbulence is well-recovered.

2.5 w w 10
—EDNQM - Expansion
2r|—DNS - Expansion
---EDQNM - Contraction 107"
~- 1.5 |---DNS - Contraction -
Ni: ......... sems=z==s==s==sssmsz=ss==s N:; —Uﬁ‘EDQNNI
S s 102l |77t - EDQNM
—u? - DNS
0.5t I Expansion
' --u? - DNS
-3
‘ ‘ ‘ 10 ‘ ‘
% 50 100 150 10 10' 10°
t/T t/T
(a) (b)

Figure D.3: Comparison with Davidson et al. (2012): grey lines correspond to the DNS

and black ones to EDQNM. For the expansion, Rex(0) = 36 and for the contraction

Rey(0) = 25. (a) Ratio uﬁ /u? in axisymmetric expansion (plain line) and contraction

(dashed line). (b) uﬁ (plain line) and u? (dashed line) decay in axisymmetric expansion
only.

D.3 Homogeneous Plane Distortion

Here, the case homogeneous distortion-released turbulence (HDRT) is highlighted. In this framework,
the mean-velocity gradient matrix reads

0o 0 =S
A=|0 0 ©0
-S 0 0
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and the kinetic energy K(t) follows the evolution equation

dK
— = QSng — €,

o (D.15)

which is formally equivalent to the one in shear flows. The evolution equation of the non-diagonal

component is
dRi3

dt
In such a configuration, one has bss = —2b;; = —2b33. The anisotropy tensor b;;, displayed in Fig.
D.4a for Saffman turbulence, reaches an asymptotic anisotropic after the release of the mean velocity
gradients. The decay exponents « and ay3 of K(t) and Rj3(t) respectively are presented in Fig. D.4b:
classical CBC theoretical decay exponents are recovered.

= S(Ri1 + Rs3) + 113 — 3. (D.16)
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Figure D.4: (a) Anisotropy tensor b;; with St = 10. (b) Decay exponents of K(t) and
ng(t). Both for o = 2.

Finally, in Fig. D.5, a and a3 are presented in Batchelor HDRT. The strong result is that the extended
coefficient pg introduced in Chapter 3 for HSRT is still valid here for an initial plane distortion. Hence,
ps does not depend on the shear rate S, nor on the kind of anisotropy.
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Figure D.5: Decay exponents of K (t) and R;3(t) for 0 = 4 and various S in HDRT.
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D.4 Pressure fluctuations in HAT

In this section, the pressure field is investigated. The main equations are derived in spectral space, and
then applied in both HIT and HST. The contents of this part were included in the publication in Physical
Review Fluids.

D.4.1 Evolution equation of the pressure correlation £p

The pressure fluctuations satisfy the Poisson equation obtained by taking the divergence of the Navier-
Stokes equation (2.1)

(D.17)
The Fourier transform yields
" _ 2i .
p(k, t) = —O[Z'ijuiu]'(k?, t) + EAijaiuj (k, t) (Dlg)
The spectral two-point second-order pressure correlation is defined as
Ep (k. t)5(k — p) =< p(k, )P (p.1) > (D.19)
so that the pressure spectrum reads
Ep(k,t) = | Ep(k,t)d*k. (D.20)

Sk

The spectral pressure correlation is computed according to
le%1e’
A Al — /% 7
PP = iajonag iy + 4 pA Al U
/
« —
. P A% . e *
+2i (pquuq QiU — A”ujapaqupuq > .

The latter term will bring no contribution during the spherical integration and is thus discarded from
here. Ensemble average gives

aia; .
kp Aijququ‘s(k - D)

+ a;o a0 //// <t (r)ay(s)ag (v)a; (w) > §(k — 7 — 8)5(p — v — w)d’rd*vd®sd’w

Ep(k)o(k —p) =4

The quasi-normal procedure is then used: the integral gives three terms that are products of two spectral
Reynolds tensors. After integration over r and p (the latter erases the Dirac functions) only two terms
remain that are equal, so that

sp(k,t):miajapaq/ Rig(p,t)Rjp(q,t)d%p + 4%S2 A A R (R, ).

(D.21)
k=p+q k?

For the A-integration, relations of Appendix C are used. At first order in anisotropy, five terms remain
from the integration. Four of them are like ;o H;; 0 and thus bring no contribution to the spherical
average. The explicit expression of the pressure spectrum is then

Bp(et) = 167 [ kpa(1 = 7)(1 - )56 dpag
k
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E /1 1 i) [6
+ 4+ —A- (dir) + A+ —(A— +
+a (5AijAZ.j S AGAG — HUW [ZALAS + 24547 + 2Alj)D
E oo [3 44+ 4+ — (4 _ 24+
+ 8 H| [?AijAlj + 45 (A - 54 | (D.22)

The first contribution is purely isotropic and is therefore referred to as ESSO) (also called the turbulence-
turbulence interaction). Whereas the second contribution Eg) arises from velocity gradients and is
quadratic in A;; (also called turbulence-mean-shear interaction). Egso) is in agreement with the one

derived by George et al. (19_84). There may be a factor 2 missing in the more recent work of Meldi &
Sagaut (2013b) regarding EW™

D.4.2 Spectrum and pressure variance

First, the case of HIT is addressed. From the expression of Eggo), or dimensional analysis, it directly
follows that

EW) (k,t) = Cpe'/3k7T7/3, (D.23)

and the k~7/3 scaling is recovered numerically in Fig. D.6a. The value of Cp is discussed hereafter for
shear flows and USHT. Then, from the Poisson equation (D.17), it is clear that the fluctuating pressure
evolves as p ~ u2. This directly means that the decay exponent of the pressure variance is

Kp(t) ~ tap, ap = 20, (D24)

This is verified in Fig. D.6b for both high and low Reynolds numbers regimes and for Saffman and
Batchelor turbulence. Regarding the pressure spectrum infrared slope, it is obtained in Fig. D.6c that
it does not depend on o and always results in k2, as predicted by Batchelor (1951); Lesieur et al. (1999).
Indeed, for an initial k% infrared range, the pressure spectrum Ep(k,t) changes very rapidly into k2.

-2
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_3 2 —-et/m =107
N . = 2[ ©0-0-04 .0 o t/my=10"2
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g & <
,E S —o=2 ) 0
m o=4 X g

-5 [Eeasaciceccece:] -2
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10 10 10 -4 -2 6
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(b) (c)

Figure D.6: (a) Pressure spectrum Ep(k,t) in isotropic Saffman turbulence. (b) Decay of the
pressure variance K p in Saffman and Batchelor turbulence: o high Reynolds predictions, OJ low
Reynolds predictions. (c) Infrared slope of the pressure spectrum Ep with initial o = 4.

The framework of a turbulent shear flow is now investigated; pressure spectra in unstably stratified ho-
mogeneous turbulence are studied in Chapter 7. The scaling of the turbulence-turbulence interaction
spectrum Egso) remains unchanged compared to HIT, whereas the turbulence-mean-shear interaction
spectrum EI(DS) arises with non-zero mean velocity gradients. Given its expression (D.22), it is straight-

forward that it evolves in £~'*/3 in the inertial range. Dimensional analysis yields
ED) (k,t) = O 5223~ 11/3, (D.25)

as given in George et al. (1984). The k~11/3 scaling is recovered in Fig. D.7a. The total pressure spectrum
Ep(k,t) evolves in k~7/3 in the inertial range, and is not presented since it cannot be distinguished
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from ESSO). In Fig. D.7b, the compensated EI(DS) indicates that C’](DS) ~ 1.44, which is close to the
Kolmogorov constant, and this is expected since EI(,S) scales in E/k? in (D.22). Furthermore, the value
CI(DS) ~ 1.44 is in good agreement with the prediction (George et al., 1984), where the constant would be
) = 16Ky/15 = 1.40.

The compensated isotropic pressure spectra EI(;SO)IJ/ 3¢=4/3 for shear flows and USHT are presented in
Fig. D.7b and 7.13b: the plateau settles around 2.5 for shear and 2.3 for USHT, which is quite close
and proves some universality of the isotropic pressure spectrum between two completely different flows.
Furthermore, these values are in good agreement with the prediction of George et al. (1984), where the
constant would be Cp = 1.32K¢ = 2.27, close to our result.

Finally, the pressure variance
> i s
Kp(t) = / Ep(k,t)dk = K3 (1) + K (1), (D.26)
0

can be divided into isotropic and anisotropic parts. Both the isotropic KSSO) and shear KI(DS) parts of
the total pressure variance Kp grow exponentially at a rate yp = 27 as revealed in Fig. D.7c, and in
agreement with theoretical predictions by George et al. (1984) (Kp and KI()S) cannot be distinguished).

4 - 10
— : —K(1)
= g : o gr(iso)
s B K1)
KE mmmdim e e e T —e e &
= 2.5 =
S IR PRSP M | <
%1 1.44 i
) : '
o f
0 = ul
10" 107 10° 10% 0 10 20 30 40 50
k St
(b) (c)
Figure D.7: Pressure spectra in shear flows for ¢ = 2 at Rey, = 2.10%. (a) Isotropic and

anisotropic pressure spectra Egso) and EJ(DS), along with the integral and Kolmogorov wavenum-

bers kr, ~ kp and k;, at Rey ~ 10%. (b) Compensated pressure spectra El(;sc)k”?’e"‘/?’ and

Efps)kll/?’e_z/?’/S?. (¢) Isotropic and anisotropic parts Kgso) and K}(;S) of the pressure variance

Kp, along with the kinetic energy K for comparison: grey lines indicate the curves exp (y.St)
and exp (27.5t).

D.5 Details on helical turbulence

In this section, details are provided regarding (i) the computation of the non-linear transfers involving
the helical spectrum, (ii) the simplification of the evolution equation of the helical dissipation rate eg,
and (iii) the wavenumber kf defined in (8.22). Before that, the equation of the physical and spectral
fluctuating vorticity are given explicitly. One has

ow; ow; Oow; ou; 0w,
! 24U =+ A L D.27
ot + a’El +U 8xl wi 8931 * i+ Vaxlaajl ( )
and the spectral counterpart is thus
O A2 ok ) Gilk) = Agan(k) + ik (uwl/f\ulw-) (k) (D.28)
ot J Ok; ! ! ! ! ’ '
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From this equation and (C.3), the helical Craya equation (8.5) is obtained (without mean velocity gradi-
ents). Regarding the evolution equation of Ky =< u;w; > /2 in physical space, the solenoidal property
of w; provides < w;0;p >= 0 in the homogeneous framework.

D.5.1 Non-linear helical transfer Ty

The non-linear helical transfer is computed using (8.6). This expression can be simplified considering
the real and imaginary contributions of 7;; into

TH(k,t) = —ieijlleij(k7t). (D.29)

Using the quasi-normal closure already detailed in Chapter 2 and Appendix C, there are three terms to
compute

eijikimiy = 2kiknein (Pi’;qujR;n + PR, R+ P;qu;,’quj). (D.30)
A careful attention has to be given to the order of the index for the spectral Reynolds tensor which is
not symmetric anymore. Then, the products of Reynolds tensors generate imaginary and real parts.
Only the imaginary part is computed here since the other terms bring no contributions to the spherical
integration. The different contributions are

2kkne; P! RR. = ik? 5’@ 21— 3 5H—H
1kn€ijiPipg Bpj ey, = 1k7p( &g k(Z(w ) — (vy +2°)) + & . (x+yz)),
i

Dtk €iji Pypg Ry Ry = 2ik35{)’% (z(l — o) — asy)

"
2kikneii Py Ry Ry = iszp(S(’)’%(z(l —2%) — (zy + 23)) + 80%(96(2;22 -1)+ yz))

npq-'pi

The different relations used intensively to obtain these compact forms, in addition to the ones presented
in Appendix C, are

/ 2 IV >V 2 " n 2
o Py, =0, €1P; =0, oo Py, =1 — 27, a0, Py, =1 —x7, o ap Py =1 —19y7,

ana Pl = —(y+x2), ajay, Py, = —(x+y2), aiag P, = —(z+zy), 2eyz = 1 —a® —y? — 2%

Finally, the key relation to use in order to obtain helical transfers similar to the classical isotropic kinetic
ones, is for the EfH'/p term. One can show that

E*(y —xz — 2y2%) = ¢*(zz + %) — pP2(z + y2). (D.31)

This allows, combined with p <> ¢ symmetrization, to gather the three contributions. For a skew-isotropic
flow, the A and spherical integrations reduce to

2 pq
/ / (..)dAd%k — (...)2n 2 4nk?,
Sk 0 k

which immediately yields the expression (8.12).

D.5.2 Non-linear purely helical transfer

Helicity creates a purely helical transfer in the evolution equation of E(k,t), coming exclusively from

products of Rglel) (products of RSSO) and R%lel) have zero contribution to the spherical integration).

Then, transfers are computed with the spherical-integration of 27¢ = 7;; + 7;;. Considering only the
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products of imaginary parts, one has 7;; = 7;5. The three terms to compute are then
i = 201 (Plpu B Rt + Pran R Rl + Pl B )

This gives
2k P/l RyiRL, = %H?—U(x +yz) = g?—l?—l”(x +yz),

141

2k Py R, R = —kz%(az +yz), 2k P, R Ry = —S’HH”(JS —yz —2x2%).

The key relations to use are

17241

k k
y+zz=—(x+y2), k2 (z +y2) =2H'H" —2(z + y2) (using p +» ¢ symmetry).
p q

pq

This results into (8.14).

D.5.3 Details on the evolution equation of ey
In this part, details about the calculations and algebra used in section 8.3.2 are gathered. The evolution

equation of ey is obtained starting from the equations of w; and w; (2.1) and (D.27) in HHT, so that

Q < Ou; Ow; — 0%uw; Ou; o< 0%uu; Ow; o< 0%u;w; % -
ot &rj 83:]- 8.’Ejal'l 8xj 8xj8xl 8(Ej &Tjaxl 8£Ej

Dlu,w]
——<762p Qi o 1y <783wi %>+<7asui Qi
B 0z;0z; Oz ; 0z ;07102 Ox; 0z ;0x,0x; Oz '

To simplify the dissipative term, one uses < 93(9;u; djw;) >= 0. The pressure term is zero since w; is
solenoidal and < 0;(9jw; 0jp) >= 0. The term D[u,w]|, arising from the non-linearity, is the production
term of €. One needs to expand < 9;(w; dju;0;w;) >= 0 and < 9;(w; O;u;05u;) >= 0, which gives

8ui 820.11' awi 82ui 8“2 82’U,i

<uy——" > f<y——"">=0, <wp— ="
laxj O0x;0x N l@mj O0x ;01 l@xj O0x;0x;

>=0, (D.32)
and yields (8.55).

Simplification of ey: the explicit derivation of Rg gives

i W h W' K h
iy
8rp37“q = (5@5]'(1 + 52’(153'17) <7,,2 - rg) - 5ij5pq <r + 2 rg) +

r

N TiTj0pq + TiTp0jq + Tirq0jp + 1jTp0ig + TjTq0ip <h// _ 3h/ h )
r

— 4+ 3—
r2 r2 r3

_ a0 (e GM g R\ miniterg (e (BT B
r2 r2 r3 r4 r T T
T10pq + Tp0ig + T0lp (fm f" f’) n TITpTq

+6ijl[ T 2 +7_r7 273

i f// f/
Gjm0+fm—6+62>}, (D.33)
r r
where the prime ’ denotes the spatial derivative 9/0r. From this general equation, one notably obtains

the quantity of interest here

Ou; Ow, h"

< Ujg w} ~—9 (h/// +4) , (D.34)
Oxj Oz’ r
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where h' and I’ can be expressed as specific components of the velocity and vorticity fields thanks to
various relations coming from (D.33): one gets

Ouy Ows 1 Ouj Ow;

R"0) =< ——">——- < —— D.
0) 0xy 0r1 - 2 < 0xy 01 (D-35)
83 83U3
" / —
r"(0) = Thr% 5,3 < uguy >=< U 03 >, (D.36)

where the two expressions are linked using homogeneity and the definition of w;. Then, a Taylor expansion
of h(r) for r — 0 in (D.34) gives eg = 10vh™(0), with h”(0) = 0 since ey is finite. Finally, Taylor
expansions in (D.35) give, using only h(0) = 0 since the h/(0) and A" (0) terms vanish,

Oug O 4y gy — o o 911 0w
0z, 9 >= 3h (0)=2< D2, 021 >, (D.37)

which eventually yields (8.58).

Simplification of D[u,w]: Classical algebra yields

uUw €l €
¢z(’jl ) = ﬁ(k‘ — rk/)((sip’rjrq + (Sjp’l“iTq) + ﬁ [(Qk‘ + rk’)(éiqéjp + 5jq5ip)

—2k + 2rk! + r2k" - r -
+ 2 (5iqrjrp + 5jq’/‘i’l“p):| +5 {2% — 5”73 - jlf
S oririm i
SR PAE LY 527 5-4}. D.38
> b+ oy (D.38)
From this expression, one notably obtains
¢LNN) =-5"- P ¢LLL = —4;, (LLN) = 2;7 ¢LNL) =0, (D.39)

where L is the longitudinal component, i.e. 71 = r, and N is either the second or third component, with
ro = r3 = 0 as usual. The second tensor used in Gomez et al. (2000) reads

Tz fr] 7 TITm

(wuu)
6 o,

ijl + B(Sjli + 05117 + D(Slj + Eezlm + Fe Jlm + Gﬁzﬂn (D40)

where A, B, C, D, E, F and G are functions of r only. Unlike QSE?ZW) which is expressed as a function

of k(r) and S(r), qﬁlﬁuu) depends on unknown functions, and is not symmetric in is two first indices.

Nevertheless, some words can be said about qﬁgﬁuu): using incompressibility 0, gi)l(.;;u“) = 0 and some
algebra given in von Karman & Howarth (1938), one obtains A+ B+ C'+ 3D = 0, which notably implies

that

o =0, ot = Lﬁ“)~ (D.41)

Combining this with relations such as < upujwf, >= — < urwruf, >, one obtains an expression already
given in Gomez et al. (2000),

D) = 4880+ 20(38 + agle) — 4oy (0.42)

Using the results (8.50) and (D.39), one gets

wuu wuu S
Ap = ¢1(\ILN) - £NN) =-5'- 3?~ (D.43)
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This expression of A¢ is essential since it links gb(fmu)

it t0 S(r). Now, let’s express D[u,w] as a function
of the derivatives of qbl(-;lw) and @(_;;luu). One has

83(;52;;“‘*’) Ou; auj 800[/ ou; 5'uj 6(.0[/
=< — >4 < ——2L—L
Or,0rp0r, O0xq Oxp, O!, O0x, Oxq Ozl
&ul/ 82uj a“’z azuz
i D.44
T Ox!, 0x,0x, s Ox}, 0x,0x, ( )
83@;)1% Ouy Ouj Ow; Ouy duj Ow;
=g LI s o S LD
Orp0ryp0rg 0z, Oxq 0z ox!, Oz Oy
8’&; 0%w; 8&}2 62’U,j
Y i D.4
T ox!, dx,0z, Zh s ox!, Ox,0z, ” (D-45)

Using (D.32), one obtains (8.64), with ¢\ — (") = 2/ A¢/r. The explicit calculation of the above

ili lii
expression yields

ok (uuw) (wuw) (wuw)
67"]' 3rj8rl |:¢1lz + ¢1l1 - ¢lii :|

_ ;£<r2;[ (S”+SS +3S> +2 (A¢’+§A¢>D

Ory ¢£7iuw> Or (AT /T)
474 (iv) 3 9 anr , 3¢ll1zuw
:f—[rS + 738" 4 328" — 6rS +65]:2 (D.46)
! (97“]87"]87“1

It is worth noting, afterwards, that only derivatives of d)g;lw)

conclude the first step, i.e. expressing D[u,w] as a function of the derivatives of S(r), one uses a Taylor
expansion for S(r) when r — 0, remembering that S(0) = 0,

are necessary to compute D[u,w]. To

Dlu,w] = _3725’"(0) _ 3550 (0) + O(r). (D.47)

Since D[u,w] is finite, because ey is, one has S”/(0) = 0. In the end, one recovers (8.65), where only
S(0) = S"”(0) = 0 was used.

The general expression of 8ﬁpq¢”uluw) is now derived to obtain the explicit expression of S(*)(0): this is a
lengthy calculation. Nevertheless, since we search for derivatives of S(r), only the corresponding part is
considered in (D.38): the part with derivatives of k(r) vanishes with the appropriate indices contractions.

This yields

&3l 4 . } , N
aq;iﬂa = (25(“)) 5 1745— 558i + 1768 S) Ty
TnOTpOTq .
1 S/// S// Sl S
+3 <2r - 1874—2+66r—3 —96T4) [(5mrmrprq+6jn...+6ln...+6pn...+6qn...+

i+ Gig oo iy g G Ot + Byt + Gy

1 S/// S// S/ S
o (S( v) 5* + 6 >+ 18 — 487“4) {5ilrjrnrprq + §jlrirnrprq}

1 /.58 S’ S
+ = 2 (2 10— +16— ) [rlrJP( ) i PP —|—7‘1er( ) —i—rquP(B)

ijng z;np

—|—7"JrlP( )

Inpg Jjnpq inpq

rlran(Jp)q +1i7p(0jn01g + S1ndjiq) + 1i7¢(8jndip + Oinbjp) + 757p(8indig + Gindiq)+
7i7¢(8indip + Oinbip) + 13 (8jp01g + 81p05q) + 157n (8ipdig + di1pdiq)+

33 (rprnbig + TqTn 01 + rprqéln)}
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r2 \ r

1 /8™ g g S
— ( — 27_7 — 27?3 + 87_4) [rnrp(éiléjq + 5j15iq) + Tan((Sil(Sjp + 6jl6ip)+

TpTq(0it0jn + 6j10in) + 750 (Tnpg + TpOgn + rq0pn) + 1051 (rndpg + rpdgn + Tq(sm)]

S’ S 3
* <2r3 B 47‘4> [5i”(5jq‘slp + 6jpdig) + jn(digtp + diplig) + 0ij(d1g0pn + Si1pdgn) + 51”P‘(' ) }

ijpg
S S

- (rz - 2r4> [5i1P;§;q + 8P, |, (D.48)

where R(fp)q = 0i;0pqg + Oipljq + 0iq0jp. With this equation, one can obviously recover (D.46). Even

though this would be tedious, this equation (D.48), combined with (D.44), can determine each non-zero

component of 8§pq¢§;ﬁw)

result and could be used for further theoretical developments. One gets in particular

as a function of derivatives of S(r). This expression is of course an important

53 ¢giﬁtw) g I g S
— = 4— 4+ 12— - 24— +24—. D.49
or3 r + r2 r3 + r4 ( )

Using as before a Taylor expansion of S(r) when r — 0, the S’(0), S”(0) and S”(0) terms vanish, and
with S(0) = 0, this yields (8.66). Furthermore, using (D.44), one obtains

3
ory

— 2 = D.50
0, >+2<u >=< > ( )

0x1 1817%871:1 o 817%87@ '

(a?’qsy;;‘“’)) . (8u1)2 duwn 0%uy Ow, 02u? duw,
The two previous equations give (8.67).

D.5.4 Re-interpretation of the helical viscous cutoff k:;?

In this section, another interpretation of the wavenumber sz , defined in (8.22), is proposed. This
wavenumber was originally derived by Ditlevsen & Giuliani (2001) as a helical viscous cutoff. However,
it was revealed in Fig. 8.1b that k:f,{ is not a wavenumber equivalent to k,, for the helical spectrum, since
both E and H have a k~5/3 inertial range which extends up to ky.

Here are some elements, based on the demonstration of Ditlevsen & Giuliani (2001), to explain why
kf cannot be a helical viscous cutoff. First, it is assumed in the latter reference that H(k,t) scales as
kE(k,t) in the spectral definition of e, and that the dominant contribution of the integral comes from
the largest wavenumber, which gives

e = 21// K2H (k, t)dk ~ vk B 1) = vk 273, (D.51)
0

2/3 in the inertial

and thus recovers (8.22). However, a scaling like H ~ kE would imply that H ~ k~
range, which is not the case as illustrated in Fig. 8.1b. Hence, the assumption H ~ kFE in the inertial
range is wrong, and moreover, it is worth noting that if the scaling (8.20) is used in the previous integral,

ole Tecovers kf = ky,, as shown by Chen et al. (2003).

Instead, it is shown hereafter analytically that k:f]I can be seen as the wavenumber at which viscous
dissipation of helicity balances non-linear helical transfers. In the kinetic and helical Lin evolution
equations (8.15) and (8.16), writing that at k = kf there is a balance between convection and viscous

dissipation yields ukaE(kf) ~ Ok H(ET)?, where 6 = .. With the relation (8.21), one further has

E/H ~ €/ey. Then, for the characteristic time, 6 ~ 1/(vk} 2) is chosen, in agreement with dissipation
being dynamically important at large wavenumbers in the definition (2.40) of 8xp,. Finally, the classical
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inertial scaling (8.20) is used for H, so that

E(kH 1 - :
vkl 2H((k:}i)) T k? kH (eHe*I/?’kf 5/3) R AR Tl (D.52)
n v n

from which one recovers (8.22). Here, the evolution equation of E has been used: the final result can also
be obtained starting from the evolution equation of H(k), and writing Vk,’;ﬂH(kf) ~ 9kf3E(kf)H(kf)
The wavenumber kff is shown to be quite relevant in Fig. 8.9 at large Reynolds numbers: indeed, from
kff , there is a balance between —2vk®H and kSNY. However, this is much less relevant at moderate
Reynolds numbers: this is expected since in the previous demonstration, inertial scalings were used,
which are valid only at large Reynolds numbers.

As a conclusion, the original helical viscous cutoff kf proposed by Ditlevsen & Giuliani (2001) was re-
interpreted in terms of high Reynolds numbers balance between the viscous dissipation of helicity and
non-linear helical transfers.



Appendix E

Details on Spherically-Averaged
Scalar Lin Equations

In this appendix, all the calculations yielding to the scalar spherically-averaged Lin equations of the
passive scalar field and scalar flux are fully detailed. Additional theoretical results are presented as well,
such as the quadratic anisotropic contributions in the non-linear transfers with illustrations in USHT,
and an alternative modelling for the scalar flux.

E.1 Scalar-scalar correlation

In this section, the spectral scalar-scalar correlation is first addressed: the quasi-normal procedure along
with the calculations of the linear and non-linear transfers are detailed.

E.1.1 Scalar Craya equation

The scalar-scalar correlation £7 is defined in (4.5). Its evolution equation is obtained by multiplying
(4.3) by 0*(p) and summing it to the evolution equation of 6*(p) multiplied by 6(k). Ensemble average
and integration over the whole domain gives the scalar Craya equation (4.6). The calculation of the scalar
non-linear transfer 77N deserves some additional details. Firstly, one has to use Hermitian symmetry
for the scalar fluctuation §(k)* = 6(—k) so that the scalar potential satisfies ET (k)* = £T(—k).

Before using ensemble average, (4.6) reads, with the use of Hermitian symmetry

96(k)6" (p)

e =ik /k o 0*(p)8(r)i; (s)dr + ip, / 0(k)0* (r)is (s)dr,

p=r+s

ik /k AR +ip /,, 6 (— k)" ()it (s)dr

=r+s

Then, ensemble average gives

9ETS(k — p)

e +..= —kj/ SjT(—p,r)(S(r-i-s—p)dr—pj/ ST*(—k,7)8(r + s — k)dr.
k=r+s p=r+s

257
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One has to integrate over p

85(;(16) 4+ .= —/ (kj /k_H_S SJ-T(—p,r)é(k —p)dfr)dp

- / (pj /pm ST (—k,r)5(p — k)dr)dp.

Using the fact that the Dirac function is even, one obtains

9ET (k)
ot

+.. = *’fj/SjT(*k,p)dp*kj/Sf*(*k,p)dp: *Qkﬂ?(/sf(*k,p)dp)-

This equation implies that the scalar correlation £7 is real, as the Reynolds stress tensor (without
helicity), and thus follows the property £7 (k) = £7(—k), which leads to

85;t(k> .= 2kj%(/sf(k,p)dp).

E.1.2 EDQNM closure for £

Some details about how to obtain the closure (4.24) for TiT’QN(k, p) are given. Firstly, the fourth-order
correlation is defined

T3 (k,p,t)d(k +p +q+v) = —i < 4;(q)0(k)0(p)iu(v) > . (E.1)

The process is slightly different from the purely kinetic one since the relation is not symmetric. The
third-order scalar correlation S]T(k:, p) evolution equation can be written as

(; +a(k* +p*) + uq2> 0(k)0(p)i;(q) + ... = —i
(kz /k: N 0(r)0(p)iu(s)a,(q)d>r +Pz/: . O0(r)0(k)ay(s)a;(q)dr
+ P]’mn(q) /q_TJrS e(k)e(p) ('I") (S)d ’I")

which becomes, after ensemble average and convolution rules

9
(at + a(k? + p*) + uq2> ST (k,p,t)5(k+p+q)+..=

b TRk et adren [ THGnsp @i
k=r+s p=r+s

T Pon(a) / T (k. p)i(k +p + @)d’r.

q=r+s

There is no need to go further for the evolution equation. Then, the quasi-normal approximation is used,
consisting into neglecting the fourth order cumulants. The first rhs term gives

/ Fy(r) 5 (p)5(r + 8)6(p + q)d®r + / E7(p) Rys(q)3(r + p)S(s + q)d’r
k=r+s k=r+s

+ [ B@RET e+ d° = ik p+ o) (7P Rila) + F (@) Fi(p)).
k=r+s
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The second term yields
/ s Fy(r)Fj(k)d(r + 8)0(k + q)d®r + /p_m ET(k)Rji(q)d(r + k)d(s + q)d>r
+ / s Fi(r)Fy(k)o(r + q)d(k + s)d*r = p;d(k +p + q) (5T(k)}?ﬂ(q) + F;(q)ﬂ(k)).
The last term gives
/q . Fo(K)E, (p)d(r + k)d(s + p)d3r + / ET (k)R (r)8(r + 8)5(k + p)d®r

g=7r-+s

+ /_  Pn®)Fu(R)5(r -+ )3k + 8)d3r = 2P} (q)5(k + P + @) Fon () Fa (K).

Finally, using relations such as p;R”, = —k;R",, one recovers the previous expression of TT QN k,p).
Y, g p jl

T.QN

Jl’

The main term to compute is then k;T; To do so, the same method as in the purely kinetic case is

applied: using
klfﬁ’"kn = kp(zy + 2) (5" + §RX”),

and relations such as k;of = —ky, ¢, F,, = —ppF, and ¢, F) = —k, F),, one gets

kTN = 2kp(ay + 2)(E7 + RX)(ET - ET)
ky — px

+ kn F" (pm Fo + ki F.

m

) + memknF»,/L

The non-linear scalar transfer 77N (k, ) of (4.26) is thus recovered.

E.1.3 Spherically-averaged scalar Lin equations

Now, as in the kinetic case, spherical integrations are performed on this non-linear scalar transfer term to
transform the (k,t) dependence into a (k,t) one. All quadratic contributions such as £"&p, RX"Er, ...
are discarded in the moderate anisotropy framework. Finally, products of the cospectrum flux in (4.26)
like F/"*F; and F]F; are neglected as well: indeed, since F; is zero in the isotropic case, it is a purely
anisotropic quantity and thus quadratic contributions can be neglected.

The definition of the non-linear isotropic scalar transfer is given by (4.39). From (4.26), only six terms

remain after the A-integration. The two relations of use are

8

——nk?HY).
i

"

/ a;a;HY)d%k = 0, HY), aman, Pyd%k =
Sk Sk

There is only one term left from the A-integration. The non-linear isotropic scalar transfer (4.40) is
recovered with the first of this formula. The non-linear directional scalar transfer is defined by (4.41).
The A-integration also gives six terms: one of them is simplified when the isotropic part is subtracted.
One has to use the second formula of spherical average to obtain (4.42).

The linear isotropic scalar transfer ST-(5°) defined in (4.43) is computed using previous relations of
Appendix C such as

TH( ) 2 H(T) T
/ Ay 26 030 g2y BTR 1 OH &9 gpener )
Sk

Ok, 15 Ok



Appendix E. Details on Spherically-Averaged Scalar Lin Fquations 260

which yields (4.44). The linear spherically-averaged directional scalar transfer is defined by (4.45).
Equation (4.46) is recovered using

8mk?
AlnHZ(,qT)/ aiajalanapaquk— 17;5 ( A+H (7) 2A;§Hi(lT) —l—AlnHln 0; )
Sk
QHST 8k? oH!”
e T g]’;o‘qo"% d*k = = (24] (kz“ +3m
k

oH" oH")
+ 24 (k it 3HI(Z.T)> + A, (ka;: +3H" 5ij).

E.1.4 Scalar quadratic anisotropic contributions

The quadratic anisotropic contributions in the non linear scalar transfer (4.26) are computed analytically.
The calculations involve expressions given in Appendix C for the kinetic case. After some algebra, one
gets the scalar second-order isotropic term

QNI (k. ) = 12 /A Opam kpa(x + y2) [&F " (ka&l" — pyel) + 2€] €L (hy — px)} dpdg

k

272 2 (dir)”’ 2 T ¢7(T)
+ 120 N 9kpq k*p*q(zy + 2)&] [QHU— (80 i (333 —1) =& H;; ' (3y 1))

—HyY (50 Sra-a?) —efufa- yQ))] dpdg, (E.2)

and the scalar second-order directional term

1r 3 ’ "
QN (k1) = 5/A Orpg™ K pg(z + y2) [Z(kypx){EF,EF }pr{EF,SF }
k ¥ )

— k(2z + 3yz){€F/,5F”} }dpdq

ij

120
/ Hkpq w2k p2q(xy + 2)EY

2(1 + 3myz)gg/ {H(dir)”’ H(T)'} + 2(33}2 - 1)Sg{H(dir)”,H(T)}
ij

ij
—(1—2yz— 2z2)5'g/{]17(p°1)”7 H(T)l} —(1- yQ)EE{H(pOI)N, H(T)}

ij

] dpdg, (E.3)

j

where

’ ! ’ 2 ’
{SF,SF } =gfef +efel - ggnglF Sij-
%]

E.2 Scalar-velocity correlation F

In this section, the spectral velocity-scalar correlation is addressed: the quasi-normal procedure along
with the calculations of the linear and non-linear transfers are detailed. An alternative modelling for the
scalar flux is proposed as well, and details are provided for the additional contributions linked to helicity
in HHTSG.
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E.2.1 Craya equation for the cospectrum flux

The scalar-velocity correlation is defined in (4.9). Its evolution equation is obtained by multiplying (4.3)
by @ (p) and summing it to the evolution equation of @} (p) multiplied by 0(k). After ensemble average
and integration over the whole domain to simplify §(k — p), one has

) 9 OR;;
= Agki—— k2 ) Fy + My Fj — kjh——2 =T, N
(at itk g + (v +a) ) + Mg ok, i

Moreover, since kj]:lij = 0, one recovers the scalar flux Craya equation (4.10). Additional details on how

F,NL . . . . .
T, " is obtained are now provided. Before spherical-averaging, one has

OB iy [ i ()5 o)+ Pannl) [ 095, )5 o)
ot k=r+s

= —ik; / / 0(r)a;(s)ii (p)d(k — 7 — s)d*rd’s

+ iPin (D) / / O(k)az,(r)is (s)o(p — r — s)d®rd®s,
= —ik; //9 a*(s)a; (p)d(k +r + s)d*rd’s
+ 1Pinn(p //9 (8)6(p + 7 + s)d*rd’s.

Ensemble average further gives

OF,(k,1)5(k — p
ot

) +..= kj//Sﬁ*(r,p)é(err+s)5(k+r+s)d3rd3s
+ Pin(p // )o(p + 7+ 8)d(k + 7 + s)d3rd3s.

Integration over p simplify the first Dirac function, and integration over s in the rhs term of the equation
erase the second one

OF;(k,t)

9 =k //SF* r,—r —8)5(k +r + s)d>rd®s

+ P r—s// k:+7'+s)d3rd3

% + .= kj/SjFi‘*(r7k)d3'r' +szn(k)/55m(k r d3r

E.2.2 Quasi-normal approximation for F;

Some details on how the closure (4.25) is obtained are given. Firstly, the fourth-order correlation is
defined as

TE (k,p,t)8(k +p +q +v) = —i < 4;(q)0(K)ii; (p)iu(v) > . (E.4)

The process is similar to the scalar one. The third-order scalar flux correlation Sf; (k,p) evolution
equation can be written as

(8875 +ak® +v(p® + q2)> 0(k)i;(p)is(q) + ... = —i

([ ) E)a@)n@dr + Pon(p) [ 6(R)in(s)in(r)s( @)
k=r+s p=
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+Poal@) [ O) () () ()T ),

q=r+s

which becomes, after ensemble average and convolution rules

0
(at +ak® +v(p* + q2)> Shk.p,t)s(k+p+q) + ... =

kl / TE (r, p)o(k + p + QT + P (p) / TE, (k,7)S(k + p+ @)+
k=r+s p=r+s

& Pon(a) / T (k. p)o(k +p + q)dr.

q=r+s

The quasi-normal approximation yields calculations very similar to the scalar case. The three terms are
respectively

E.2.3 Computation of the non-linear transfers of F;

The non-linear scalar flux transfer is defined by (4.14). The following calculations allow to recover (4.47).

Computation of 7{'(k,p): the starting point is

7 (ks p) = bk (R L+ R F)™ ) + 2Bk (Pl B + P

jmn*ing imn

R ) (E.5)

nj

F :9F

kpq kap- Useful relations are

Symmetry for the second rhs term can be used thanks to 6
Ky R) Ky = kp(zy + 2) (5" + §RX”), ko R, = k& (a; + zal), q—ky = pz,
I/ T—gP/1— 22 = %(1 — ) = k(e +y2) =qley+2),  aanR, = (1-2)(E +RX).
The terms to compute are, at first order in anisotropy

- 3 / - 3 "
ke B B = Shp(ay + 2)E0 €] P ke B B} = SR Eq (e + 200)E]7 (0 + yas),

R

3
kjF’fﬂP_]/’;nani - 1]4156(041 + Za;)g]F(a;/ + yaj)(q - 2ky)7
) 3
kj Pl Ry = qu&ﬁEf ((O&i + zag) (o + yoy) + (y + x2) (2042'(@}' + yay) — Pij)) :

Computation of 7/*(p, k): the starting point is
7 (b, ) = pukey (RU,F + RosF) ) + 2855 (Pl R + P 2.
Useful relations are
pnf%;:jkj = —kp(zy + 2) (5” + %X”), Rl = p&o(al + zay), anon = —.
The terms to compute are

Pk Ry F = —ik:p(xy +2)E/EF Py, pakiRuF) = §k;p50(a; +20:)E (o] + yal),
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» - 3 /
28 P Pl B = S kaSo(a + yar) &l (a5 + za) + 2y(af + 20)) ),

* N 3 4
2k Fyy Pimn Ry, = 5/6286’5;7 ((ai +yoi ) (e + zaj) + (1 - yQ)(Pi’j —2a;(0j + zaQ)))

Computation of W (k,p): one has W} = —a;a;7]

. The two first terms can be grouped together
a;akn ko ( AZZF;* + ]A%;ljFl”*) = 3K%(1 — yz)E{)’Ef/ai(aj + zaf}).

With symmetrization, there is only one term left to compute

jmn

- 3
20,0 F ki Pl Ry = Ekqgéé'fai (1 — 22 = 2y(y + :z:z)) (o +yay).

E.2.4 Spherically-averaged cospectrum Lin equations
The useful parts of the A-integration are the following ones

27 2
/ aia;d/\ = —21zau0y, / aia;-’d)\ = —21youay,
0 0

27 2m
/ i dX = mleag(x + 3yz) — 0i(x + y2)], PldX = 7(1 4 2%)6;; — ma;a(32° — 1).
0 0
The term in 865}7 of WF brings no contribution to the A-integration. For the spherical integration, the
different terms are the following ones

2 OF; 1 0 8k?
M;;F;d°k = ZALET Ajk;—d’k = —— Al — (kET / P EF Pk = ——¢f.
/Sk J=J 51] VR Ss ]ljakl 5”8]{3( _])7 Si 1% 3 7
The ”rapid-pressure” part is given by
3
27, + pF — F
/Sk 200, A Fyd°k = gAijEj + A E;.
E.2.5 Alternative modelling for F
The modelling for the scalar flux is now based on a helical decomposition and reads
Fz(ka t) = ng(kv t)Pij(kv t) - ¢+(ka t)Nz(ka t) + - (ka t)Nz*(k7 t)' (EG)
The scalar flux is solenoidal so that the ¢ functions read
1 . 1
¢+(k7t) = ing(kvt)Nj (kvt)a ¢*(kvt) = §ggF(k’t)N](kvt) (E7)
Convenient notations are used for computation
Y+(k’ t) = ¢+(k7 t)eu + ¢— (kv t)e_i)\a Y—(k7 t) = ¢+(ka t)ei)\ - ¢—(k7 t)e_v\' (ES)

The pressure part of the non-linear transfer has no contribution with the present helical decomposition
(E.6) because a; N; = 0. The non-linear transfers associated with ¢, and ¢_ are consequently

1 1
TF (k,t) = §EF7NL(k,t)Ni*(k7t), T (k,t) = §TiF’NL(k,t)Ni(k,t), (E.9)
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so that
TN (ko t) = Py (k)TN (ke t) = T (k, t)Ni(k, t) + T (k, 1) N7 (K, ). (E.10)

Computation of 7;(k,p): in this case, a symmetric expression of the closure (2.36) is used, more
convenient for calculations

Tk, p) = b (Rni (@)F; (B) + R ()F; (@) + 2P () (P (@) B (B) + Pjn(@) Ri() ).
Additional useful results are

\/1—7\/@ (x 4+ yz), kx —qz = y(qx — k=), dkyz + 2kx — 29z = 2py,
The different parts of the computation are the following ones
knk; RLFN; = —k*(1— )&l e MY+ 2Y["),  kakjRL,F*N; = k*(1 — y?)Ef e (Y — 2Y"),
knk; R FI" NG = K2 2(x +y2)Ehe YL, kakj Ry F" N = kz(x + y2) 5 e Y,
2F ki R Pl N = Kk(2ky — q)z(x + y2)Ehe Y,
2F kiR, Pl Ni = k(2ky — q)z(z + y2)E)e Y,

2F kiR, Pl NF = —K2(1— 2%)Efe MYy + V) + k(%(x +yz) — qz) (z + y2)Ehe MY,

2F kiR, Pl Ny = —E2(1 — 22)&e™N YL — Y. ) + k(?k(z +yz) — qz) (x4 y2)E,eMYy.

nj+t imn

9F

Hence, the p ++ ¢ symmetry for the & part - valid thanks to 0 kap

kpq - gives

)

N} = kEpe [k‘( — (=22 Yy 4+ YY)+ Y (@2 +2yz> —y) — (1 - zQ)Y”*> + 2py(z + y2)Yy

= k&)™ [ ( —(1=22)(Yy —Yo) + Y (w2 + 2y —y) + (1 - zQ)Y”*> + 2py(x + y2)Ys4

Computation of 7/(p,k): here, no symmetry can be performed because of the kaq. The different
parts of the computation are the following ones

Puk; R NG = =k (1 —y2)E)e MYy +Y2),  pukjRILEN; = —k*(1 — y?)E) MYy — Y0),
pnk‘j]%ij{’Ni* = kp(z + yz)Ee MY/, pnk‘j]%ij{’Ni = kp(x + y2) &Y,

2F kiR Pl Ni = kpSoe Y[ (2% — o), 2F kiR, P!

" v Ni = kpEoe YT (2 — ),
2F$k‘jRZjPimnNi* = kQSge—” ((xy —z+ 2y2,z)Y+/* + (y* — 1)Yl*),
2F} ke iy Poma Ny = K26 €™ ((wy — 2+ 222) Y] + (1= y2)Y"").
Hence
NS = k2 e ™ [(my + 2297 — )V — (1 — ) (Y + Y, + Y_)}
+ kpEge A [(x +y2)Y] + (2® — yQ)YL*], (E.11)
TI*N; = k2E[ e {(my + 2297 — )Y+ (1 — )Y =Y, + Y,)}

+ kp&oe? [(I +y2)Y] + (2* - yz)Yf} : (E.12)
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M-integration: useful results are the following ones
2 . 27 )
/ e MYy +Y)d\ = 21Ef N7, / MYy 4+ Y )dA = 2rEF N,
0 0
27 . , 27 . , 27 . ,
/ e YA\ = —n& N7, / MY A\ = n&f N, / eFAY AN = —2ng] N,
0 0 0
2m . 2m ) iy 27 ) .
/ YA\ = / e YA\ = —yrEl Ny, / e YA\ = —n&FT N,
0 0 0
2r 2m . 2r .,
/ YA\ = / MYV AN = —yrElT N, / Y dN =&l N;.
0 0 0
This yields the following equations which have to be multiplied by pq/k:
2 .
/0 (75 + 7" )N;dX = mkEGN; [k (2(1 - zQ)SJF + (1 +y? =22 —ayz — 2y222)5f ) + 2py(z + yz)SJF
— 7kN [ksg{ ((xyz + 29222 = 22)EX 4+ (1 —y?)(26) — sf“’))
2T
+p& (y(x +y2)EF + (2 — 2 + 2wyz + 2y222)5f/)} - 2/ TFdn, (E.13)
0
2w
/0 (15 + 777 )N;dX = wk&GN; [k (2(1 - ZQ)EJF + (1 +y? =22 —ayz — 2y222)€f ) + 2py(x + yz)SJF
— mkN, [kf{,’ ((xyz 42222 = 22)EX 4+ (1 —y?)(26F — 5}”’))
27
+p& (y(:c +y2)Ef" + (2 — 2 + 2ayz + 222t )} =2 / TEdx. (E.14)
0
Spherical integration: the useful relation is

k2
NyN;EFd?k = SR g (E.15)

Sk 3
Then, (E.13) is contracted with N; and (E.14) with N;*. This yields the spherically averaged non-linear
transfer of the scalar flux, and one can note that the ()1 and ()— components are equal

2
SEN = [ [ (T e Nl t) + 2 (k)N (k) N
Sk JO

8 "
= /A §w29,€qu2pqé’6 [k‘( —-2(1 - ZQ)Sf +(1+y*— 2% —ayz — 2y222)5iF ) + 2py(x + yz)é‘f] dpdg
k

8 /
+ /A 3™ Opgk*Pa [k‘gé’((l —y’ 42 —ayz — 29727 E] —2(1 - yz)é’f)
k
—p& (y(w + yz)E,-F” + z(x2 — yQ)Sf/)] dpdg. (E.16)

Moreover, k(1 — 22) = q(y + xz) and p(z + yz) = q(1 — y?) so that —2k(1 — 22)EF + 2py(z + y2)EF =
—2q(zz +y*)ELF. In addition, p(x? — y?) comes from p(1 — 22 — 2(y?(1 — 22) + yz(x + yz))) which can be
written ¢(z —yz —22y?). Consequently, the non-linear transfer (4.49) computed directly with F; ~ PijSJF
is recovered. Here are some remarks on this modelling:

e The helical decomposition is not sufficient to completely compute the scalar flux non-linear transfer:

indeed, a model is required for ¢4 and ¢_.

e The calculations are more complicated since they involve helical modes instead of projectors.
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e All calculations are made twice (once for T4 and once for T¥ which are eventually equal) whereas
only a single process is needed when directly injecting F; = Pijé'f in the closure.

e The helical decomposition does not permit to compute easily the pressure part of the non-linear
transfers.

e It brings information on the toroidal-poloidal structure of the scalar flux: any solenoidal field,
such as the scalar flux, can be decomposed, in the Craya-Herring frame (e%7 e?)7 into toroidal and
poloidal parts

Fi(k,t) = Fior(k,t)e; (k,t) + Fpor(k, t)e: (K, t). (E.17)

Thus, using (E.6) and the definition (2.27) of the helical modes, the scalar flux helical decomposi-
tion reads

Fill,t) = i(6- (k1) = 0.0k 1) ) e} (s, ) + (4 (, 1) + 6- (k) ) €2k ). (E.18)

Fior(k,t) Froi(k,t)

The previous calculations showed that ¢, and ¢_ led the same contribution to the non-linear
transfer (Tf N; + TENy = 2Tf N;). Consequently, one can conclude that the scalar flux has a
poloidal structure only. Finally, since & ~ (toroidal) + (poloidal) and Z ~ (poloidal) — (toroidal),
a single quantity only is needed to describe anisotropy at the scalar flux level.

E.2.6 Scalar flux quadratic anisotropic contributions

Here, the second-order contributions in anisotropy of the non linear scalar flux transfer are computed
analytically. The calculations are quite lengthy and involve some expressions gathered in Appendix C
for the kinetic case. Afterwards, some illustrations for USHT are proposed. Here are some additional
useful formula for the A-integration:

27
/ ala;a;a;Hg]d)\ = aialapoquZ%z(3 — 5z2) +22(2% — 1)aiapH2,
0

2
/ ala;a;a;/HZ%d)\ = aialapaqHZ()Zl( —5yz? +y — 2xz> +2z(x + yz)aiapHI()g,
0

4yz —Zyz—l—sz —Za:

2m
35 15 15 3
/0 ajalahal HY) A\ = ajonapa,HY) (— 3 2 )

1
+ aiapHI()g( — 5yz3 4 3yz — 3x2% + x) + §Hi(l) (3322 +y2d —x— yz),

27
A anaga;a;/HT(L)pd)\ = CkialOtpCYqHz()gl( — 5y22 + Yy — 2.272:) + aiasz()g ( -y +xz + 2yz2)7
27
?R(W;/Wé/)alagHr(L)pdA = OzialapaqHZ()zl (5y;;2 — 324+ Qxy) — 2yaiapH1()g (:17 + yz)
0

The total second-order transfer for the scalar flux can be divided into two parts according to
QI Nk, t) = QIS (e, 1) + QU Rk, 1), (E.19)

with the conservative part,

QZF,COIIS(k’t) _ 6/A 05pqﬂ2k2p2q56/ (xy + Z)EZF/ |:2(3£L’2 N 1)Hi(ldir)// I (SEQ i 1)Hi(lp01)//:|
k

+ & HEY [ay(z2 = 0%) + 21— )] - 26T ™ (g + 2) + (02 = 22) 3oy + 22)| | dpdg
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+12 / oF w2 ke (H™ + HP)
Ay

ka(z +y2)&F —q [w(xy +2) +yly® - 1)] 5ZF‘| dpdg,

+6 /A Oreamkpa | ploy + 2)ELET | = 28y = VEG 4+ (1 =y HP" |
k

=28 (H™ + HP™) (py(w + y2)&F + 0 [2(oy + 2) + y(* - 1)])

+kepel” (205" [o@ +y2) + (1= y)Ey? = )| + HEY [20(@ +y2) - 1 -y @2 -y - 22)] )] dpdg,
(E.20)

and the return to isotropy part

Qi (k,1) = 12 / O mk2pasy | play + )& (2[3yly + w2) + (22 = V| HE = w(w + y2) HP")
Ay

+(p— 2k2)y(1 — ) (x + y2)&F (6HS™" + Hi(zpd)”)] dpdg. (E.21)

The influence of the quadratic contributions of anisotropy in the non-linear transfers is illustrated for
USHT. Their impact is comparable to the case of sustained shear flows, illustrated in Appendix C. The
scalar quadratic contributions are numerically the most intense ones in USHT, compared to the scalar
flux and kinetic ones.

(iso

First, the fluxes Il

QNLGs0) and QNI-T(59) are shown to be conservative in Fig. E.1a. The flux Hg(cons) of the conservative
F(cons)
3

) and Hg(iso) of the isotropic part of the quadratic kinetic and scalar transfers

part of the cospectrum quadratic transfer @) is presented as well, along with the flux Hg(m) of the

total cospectrum quadratic transfer Qg’NL. One can remark that these anisotropic contributions mainly
act at large scales. It is worth noting that the flux of the (first-order in anisotropy) isotropic scalar
transfer ST-NL(s0) s more than ten times higher than Hg(iso). Secondly, the impact of the quadratic
contributions on the one-point statistics is revealed in Fig. E.1b: they slightly increase the global level
of anisotropy of the flow. The main difference with the case without these quadratic contributions (in
grey) is observed for the Froude number. Nevertheless, this is has less impact than changing the eddy-
damping constants, as seen before in section 7.3.7. Finally, the inclusion in the simulations of these
quadratic contributions does not change at all the growth rate g of the kinetic energy, nor the scalings

of the spectra.

E.2.7 Scalar flux in HHTSG

In this section, the framework of homogeneous helical turbulence with a mean scalar gradient (HHTSG)
is considered, and some details about how to obtain SiF’NL(hel) and SiQ’NL, given in (8.75) and (8.77), are

provided.

Computation of 7/ (k,p): one can use p <+ ¢ symmetry here, and k(z + yz) = p(y + x2) = q(z + zy)
as well, so that

knkj Rl F* =0,

"

R / 3 k2 " "
knk; Ry, F; " = ipfq’}-[/ [ - SiQ (x +yz) + aiSIQ (ray — yai) — a;’EIQ (zay + a;)},

jmn

- 3
2F ki Pl R = —527{” [EZQ(m —yz — 222%) — &R (woy + 2z20) + 20])
q

+ agé'lQ(yal + 2yza) + (1 — 222)a2’)},
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Figure E.1: Effects of quadratic contributions of anisotropy in the non-linear transfers.

(a) Quadratic anisotropic fluxes along with the integral and Kolmogorov wavenumbers

kr, and k,. Grey curves correspond to the cospectrum. (b) Time evolution of Fr, A and
b3z without (black) and with (grey) the quadratic anisotropic contributions.

nj —

- 3
2F,. ki P, R —527-{,” — (x4 y2) + &R (voy + yo — 2za))

+ 2oz;£lQ (zzaq + (x +y2)a) — 2%a)) + a;'é'lQ (zay + ozg)] .

Computation of 7/*(p,k): no p <+ ¢ symmetry is used here

A 11 3 k
ok Fi = 5 2 o (o ) — alef (you + af) + ol (s + )]
px 11’ 3 F" F” ’ 1"eF" /
puki Ry Fy = ipH [& (x4 yz) + @& (—zaqg +yop) + & (za; + al)},
’ A~ 3 ’ ’
ZFkaPJ{;nnR:n = —qu {&F (x —yz — 2a9%) + Oéing (—zaq + zay)
+ el (—yan + (1= 2%)af) + 290l €l (~wau + 2af)]
"% D'’ * 3 kz "\ oF’ F’ " 1 oF’ "
2F, ki Pipn R, = —5;7{ [Ei (x4 yz) + @& (—rag + za) ) + & (yay + o )}

Computation of ieijlkﬂf(k,p)

. A ’ 3 kg ’ ’
i€ijikiknkp I, ;" = 5;(1 — )Y (& +2E7),

"EZQH (zay + af))

. A " 3 kg ” "
iegjikiknky Ry, F, " = 5?25{) (aié’lQ (—ya) + zey) — EC (z +yz) — o

3 kg "
+ 5;7{/511? (ar +ya)) (zei + a),
. 3
2ieijikiky Frn Ry, Py = —§kqé’6 (€ZQ (rz —y +ya® +9°) + Oéié’lQ(oq(Qy —zz — 22%y)
+aj(yz + 20y%) + 270])) + o €2 (au(1 — 2® + ) + o) (2xy + 2) + 2ya2'))
§k72q I1oF . " " " ! " 2
35 H'E (zai(yay + af ) + 2yzaf (you + off) + o (yau + o) (1 = 2y7) ),

- 3
2eijikikr En Ry, Py, = —§k:p56’ (EZQ(—acy — 2z —z2® + 2%) + &2 (ulay + 22)
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+ aj2z(wy + 2) + yzaf) + Al (1 — 2% + %) + af2(ay + ) + yay) )
§@ 1o F . / " X " /
+ 5 PHE (= 2zauly + 02) + iy + 202) + 20f) = (g + o) of + 2au)

+ o (au(y — 222 — 2y2°) + 0g2(x + yz) + of) + o (z(22* — 3) + (1 — 222)))
Computation of ie;;iki7/*(p, k)

. "z 3
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3 k%p
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3 k2 1 p
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For W¥ (k,p): there is no contribution after the A-integration for SZ-F ’NL(hel), and the RTT transfer vanishes
for SZQ’NL. Finally, all the formula for the A and spherical integrations have been previously given so that

the final steps are straightforward. One useful relation is kpg?(x — yz — 22y?) = kpq(x + yz)(q — 2yk).
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