
École doctorale ED072 "Sciences pour l’Ingénieur"




Task driven representation learning

Thèse préparée par

Pauline WAUQUIER

Pour l’obtention du grade de

Docteur de l’Université de Lille
Domaine: Informatique

soutenue le 29 mai 2017

Centre de Recherche en Informatique, Signal et Automatique de Lille
(CRIStAL - UMR CNRS 9189)

Composition du jury:

Denoyer Ludovic Professeur à l’Université Pierre et Marie
Curie

Rapporteur

Fromont Elisa Maître de conférences HDR en
informatique à université de Saint

Etienne

Examinatrice

Jourdan Laetitia Professeur à l’Université de Lille 1 Examinatrice
Viennet Emmanuel Professeur à l’Université Paris 13 Rapporteur
Keller Mikaela Maître de conférences à l’Université Lille

3
Examinatrice,
Co-directrice

Tommasi Marc Professeur à l’Université Lille 3 Examinateur,
Co-directeur

Grigolato Frédérique Dirigeante de Clic and Walk Invitée

THESIS: Learning adaptively a graph allows us to more efficiently solve
semi-supervised tasks.

Summary: Machine learning propose numerous algorithms to solve the dif-
ferent tasks that can be extracted from real world prediction problems. To
solve the different concerned tasks, most Machine learning algorithms some-
how rely on relationships between instances. Pairwise instances relationships
can be obtained by computing a distance between the vectorial represent-
ations of the instances. Considering the available vectorial representation
of the data, none of the commonly used distances is ensured to be repres-
entative of the task that aims at being solved. In this work, we investigate
the gain of tuning the vectorial representation of the data to the distance to
more optimally solve the task.

We more particularly focus on the graph-based algorithm introduced in
[Zhu and Ghahramani, 2002] for classification task. An algorithm to learn
a mapping of the data in a representation space which allows an optimal
graph-based classification is first introduced. By projecting the data in a
representation space in which the predefined distance is representative of the
task, we aim at outperforming the initial vectorial representation of the data
when solving the task. A theoretical analysis of the introduced algorithm
is performed to define the conditions ensuring an optimal classification. A
set of empirical experiments allows us to evaluate the gain of the introduced
approach and to temper the theoretical analysis.

Résumé: De nombreux algorithmes d’Apprentissage automatique ont été
proposés afin de résoudre les différentes tâches pouvant être extraites des
problèmes de prédiction issus d’un contexte réel. Pour résoudre les différentes
tâches pouvant être extraites, la plupart des algorithmes d’Apprentissage
automatique se basent d’une manière ou d’une autre sur des relations liant
les instances. Les relations entre paires d’instances peuvent être définies en
calculant une distance entre les représentations vectorielles des instances. En
se basant sur la représentation vectorielle des données, aucune des distances
parmi celles communément utilisées n’est assurée d’être représentative de la
tâche à résoudre. Dans ce document, nous étudions l’intérêt d’adapter la re-
présentation vectorielle des données à la distance utilisée pour une meilleure
résolution de la tâche.

Nous nous concentrons plus précisément sur l’algorithme introduit dans
[Zhu and Ghahramani, 2002], résolvant une tâche de classification en se bas-
ant sur un graphe. Nous décrivons d’abord un algorithme apprenant une
projection des données dans un espace de représentation permettant une
résolution, basée sur un graphe, optimale de la classification. En projetant
les données dans un espace de représentation dans lequel une distance préal-
ablement définie est représentative de la tâche, nous pouvons surpasser la

i

représentation vectorielle des données lors de la résolution de la tâche. Une
analyse théorique de l’algorithme décrit est développée afin de définir les con-
ditions assurant une classification optimale. Un ensemble d’expériences nous
permet finalement d’évaluer l’intérêt de l’approche introduite et de nuancer
l’analyse théorique.

ii

Contents

1 Introduction 1

2 Semi-supervised machine learning 8
2.1 From real world problems to Machine learning tasks 8
2.2 Supervised classification . 11
2.3 Semi-supervised classification 12
2.4 Metric learning & representation learning 14

3 Graph-based semi-supervised learning 21
3.1 Graph representation . 21
3.2 Graph construction methods 23
3.3 Semi-supervised graph-based algorithms 28
3.4 Graph construction relevance 35

4 A metric driven representation learning for graph-based label propaga-
tion 37
4.1 Representation learning for graph-based classification 38
4.2 Constrained representation space learning 40
4.3 Non-linear neural network learning 43
4.4 Graph-based classification . 50
4.5 Related work . 51

5 Bounds on the classification error 53
5.1 Motivations . 53
5.2 Theoretical guarantees . 60
5.3 Proof . 64

6 Empirical analysis 70
6.1 MDRL - Triplet based neural network learning 71
6.2 Datasets . 72
6.3 Comparative settings . 79
6.4 Representation learning . 81
6.5 Empirical evaluation of the theoretical assumptions 85
6.6 Label propagation classification evaluation 89

iii

6.7 Do we need a graph? . 92

7 Conclusion & future work 97
7.1 Conclusion . 97
7.2 Open questions . 98
7.3 Clic and Walk case study . 101

iv

Chapter 1

Introduction

The thesis that led to the present work was performed in partnership with
the Clic and Walk start-up (CIFRE industrial agreement), which is a com-
pany that performs market surveys and collects customers opinions for others
companies. Upon request of the companies, missions, composed by a set of
questions and pictures, are sent to the Clic and Walk users, which get a re-
muneration in return for their answers. Time and cost constraints have lead
to a need for a better policy for missions allocation among the users.

During the thesis, I had the opportunity to perform theoretical researchs
with the aim of deploying a users recommendation within the framework of
the company. The following work presents the theoretical researchs that have
been performed during the present thesis on task driven representation learn-
ing.

There are various real world problems that are solved by predicting an
information from a dataset. For illustration purposes, let us consider a com-
mercial website and some associated marketing problems. Let us suppose
that once registered, customers can buy and grade the numerous products
that are available on the website. Employees of the commercial website have
access to the profile of their customers, their ratings and their purchase re-
cords. To increase the number of transactions, employees want to encourage
customers to buy more items. They hence need to propose customers in-
teresting products to purchase. Interest of a specific customer for an item
needs to be predicted based on the available information, i.e. the profile of
the customer and of the item. Another marketing improvement is to be able
to partition the set of customers for market segmentation, either based on
the profile of the customers or on their purchase records. A last problem
for commercial websites that will be highlighted is the budget forecast. The
amount a customer is prone to spend on the website needs to be predicted,
depending on its profile.

Among the different prediction tasks that can be extracted from real

1

world problems, let us cite:

• Classification: the problem is to associate a label with each instance
(for example the interest of a customer for an item)

• Regression: a continuous value musts be associated with each instance
(for example the expense of the customers)

• Clustering: the objective is to define a partition of the instances set
(for example the market segmentation)

The introduced prediction problems can be solved by asking domain ex-
perts to analyse the collected data in order to detect a pattern, to define
rules or to extract the required information. A commercial website can for
instance employ someone in order to create associations between items and
customers information. Manually creating every association is however time
and money costly as the website needs someone to treat a growing set of
items and customers. Automatically predict the interest a user can have for
an item based on the user and item information is a more profitable solution
for the commercial website. Considering the expense of the set of customers
prediction problem, previous years expenses of each customer jointly to its
profile should be analysed by a dedicated employee to predict next year ex-
penses. Being able to automatically predict the amount of money a customer
will spend based on his profile, purchase records and other customers would
be a better solution than manually solving the task.

Defining rules and discovering pattern manually is not only time con-
suming and expensive. It can also be too complex for a human to complete.
Notably because of the data amount and complexity, some problems are too
arduous to be optimally solved by hand. Manually solving the marketing
segmentation problem for example requires someone to explore and analyse
the behaviour and information of a set of users in order to extract groups.
Due to the number of customers and variables associated with each user,
market segmentation problem quickly becomes too complex.

Machine learning algorithms propose several approaches in order to an-
swer the several introduced issues. Machine learning methods aim at op-
timally solving real world tasks. They are developed to automatically solve
the task based on an input dataset, without requiring review from experts
during the learning process.

A dataset is the set of information from which reason Machine learning
algorithms to solve the task. Datasets are commonly composed of the set of
instances the algorithm either learns from or for which it aims at solving the
task. Supplementary information are sometimes available during the data
collection process. The task related label of an instance can be available

2

during the data creation process or may have been proposed by an expert.
The label that aims at being predicted for a specific task may thus be ac-
cessible for some instances. The commercial websites for example has access
to the set of items their customers purchased during previous years and can
easily compute the money spent by a customer. For the items recommend-
ation problem, interest of customers can be induced for items they already
marked or bought, based on their purchase records.

Algorithms can take advantage of the existence of such additional in-
formation. Depending on the fact that Machine learning algorithms exploit
the available additional information or not, they can be grouped in different
categories. Let us highlight the following ones:

• supervised learning: a label is associated with each instance of the
dataset available at training time. Supervised algorithms aim at learn-
ing a model that is able to predict a label for any instance generated
from the same distribution.

• semi-supervised learning: the data from which reason semi-supervised
algorithms is composed of set of labeled instances and a set of un-
labeled instances. A semi-supervised algorithm exploits the whole set
of instances — labeled and unlabeled one — to predict a label for any
instances drawn from the same distribution.

• unsupervised learning: unsupervised algorithms are trained from a set
of unlabeled instances. They indeed learn a model based on the vec-
torial representation of the whole training set without having any label.
The task is solved only based on the distribution and the vectorial rep-
resentation of the data.

Machine learning algorithms are applied on datasets in order to learn a
model or to extract the needed information. Data first needs to be collected
from the problem real world context, for the task to be solved. For the
commercial website examples, the real world data related to the different
problems can for example be the customers, the information collected during
their registration process or their purchase records. Most Machine learning
algorithms expect a vectorial representation of the data. Applying Machine
learning algorithms requires to define a modelling of the real world data into
a description vector.

Considering the problem of predicting the expense of each customer, the
registration and purchases records information of the customers can be used
to solve the task. The vectorial representation of the data can for example be
composed by the age, the gender, the seniority, the hair colour, the previous
year expenses or the city the customers live in. The different features that
can be extracted from real world data are from different types. The vectorial

3

representation of a dataset can be composed of continuous and discrete fea-
tures. For example, the previous year expenses information for a customer
is a real positive number and consequently a continuous feature. Other at-
tributes are discrete, for example the age of a customer or the numerical
transformation of categorical features like the gender of a customer. Among
the several attributes that are available in the real world context, some may
be useless in order to solve the task. The hair colour of the customer can
for example be neglected to solve the expense prediction task. The set of at-
tributes that will composed the vectorial representation of the dataset musts
first be selected. Among the selected features, some are categorical inform-
ation. In our example, the gender of a customer and its ZIP code are two
categorical information. Categorical information are hardly directly usable
in a vectorial representation. It consequently needs to be expressed either
as a continuous or as a discrete numerical features. An expert can be asked
to propose a vectorial representation of the data based on the available in-
formation. Numerous vectorial representations of a dataset can be computed
based on the several choices made by the expert. The results of an algorithm
are dependent on the vectorial representation on which the algorithm is ap-
plied and can vary for the different available vectorial representation of the
data. The vectorial modelling of the dataset is consequently an important
step to solve the targeted task.

Most Machine learning algorithms compute a distance or a similarity
between the vectorial representations of the data. Several general distances
and similarities have been classically defined and are commonly used. For
the remainder of this work, let us focus on distances. It should however be
pointed that equivalent statements about similarities could be easily reached
by inverting the scale. Small (respectively large) distances should be replaced
by large (respectively small) similarities.

Classical distances give equal prominence to all the features of the vec-
torial representation of the data. Because of arbitrary choices during the
processes leading to the vectorial representation of the data, all the features
of a vectorial representation of an instance do however not have equal in-
fluence considering the task to solve. The assumption of equal influence
of all features on which distances are based being unsatisfied, any classical
distance between the vectorial representation of two instances may thus be
sub-optimal considering the target task.

The computation of an algorithm for a real world problem is dependent
on the distance applied to the vectorial representation of the data. The cap-
ability to solve the task thus depends on the choices made for the vectorial
representation and the distance. Depending on the fact that either the rep-
resentation of the dataset or the distance between instances are prominent
for the algorithm, either the representation or the similarities between in-
stances can be learned.

4

In the literature, a body of work is dedicated to the problem of mutually
adapting the vectorial representation and the metric. Numerous approaches
have been proposed to either adapt the distance to the selected vectorial
representation (metric learning) or to adapt the vectorial representation to
the set distance (representation learning, features selection, dimensionality
reduction).

Once a vectorial representation of the dataset and a distance are set,
a graph representation of the dataset can be built to solve the targeted
task. A subset of semi-supervised algorithms indeed takes advantage of graph
structured datasets to solve the different tasks.

Graphs are composed by a set of vertices which are linked by a set of
weighted edges. The weights used to characterize the edges represent a re-
lationship between the vertices linked by the edges. Links between pairs of
instances from a dataset may for example be created based on a distance
between the vectorial representations of the instances. Several graph repres-
entations can be computed from a vectorial dataset.

Graph-based semi-supervised algorithms decisions rely on the relation-
ships between instances. Graph-based algorithms assume that the graph is
a homophilic structure, i.e. that close instances in the graph are similar,
considering the target task. As previously seen, the vectorial representation
of a dataset and the distance may have no adequacy for the task to be solved.
The graph representation of a dataset based on the set distance and vectorial
representation may not satisfy the smoothness assumption and graph-based
algorithms can perform poorly.

The main question underlying this work is related to the method to use
to tune at best the vectorial representation of the data and its associated
distance. How can the representation space and the distance associated with
it be learned such that the distance on the representation space is meaningful
considering the task to be solved? Metric and representation learning ap-
proaches are interrelated. In this work, considering a set distance, we study
representation learning approaches for graph-based resolution of the targeted
task. We claim that a task-driven representation learning algorithm allows
graph-based semi-supervised algorithms to outperformed the initial repres-
entation space of the data.

The outline of the thesis will be as follows:

• Chapter 2: we introduce the need for metric learning and representa-
tion learning for semi-supervised tasks. After introducing main tasks
of Machine learning, we present supervised and semi-supervised learn-
ing. Some of supervised and semi-supervised learning algorithms are

5

reviewed. We discuss the influence of the representation space of the in-
stances and the influence of the distance that is used by the algorithm.
Some metric learning and representation learning approaches, along
with their limitations are then reviewed.

• Chapter 3: we present graph-based semi-supervised learning. We first
review graphs description, characteristics and properties. Based on a
dataset, different graph representation construction methods are intro-
duced. Semi-supervised algorithms exploiting a graph representation
of a dataset are then reviewed. We finally discuss the influence of the
construction methods on graph-based algorithms computation.

• Chapter 4:we introduce our metric driven representation learning al-
gorithm for graph-based classification. For an efficient graph-based al-
gorithm computation, the data aims at being projected in a represent-
ation space that satisfies some smoothness related constraints. Based
on the constraints the representation space is required to satisfy, the
cost function being optimized is introduced. An algorithm to learn a
mapping from the initial space to a representation space that satisfies
some constraints is described. Due to some of their properties, neural
networks are interesting models for representation learning. The neural
network function that is optimized and the siamese architecture used
to learn our mapping function are then introduced. Finally, we see
how the representation space learned by the introduced algorithm is
exploited in order to apply a label propagation algorithm on the built
graph.

• Chapter 5: theoretical guarantees on the classification accuracy in our
framework are introduced. We show that if a representation space is
learned such that it satisfies a specific set of relative constraints and if
the data satisfies some initial distribution constraints, we can build a
graph for an optimal graph-based classification. The distance between
two instances in the representation space learned by the introduced
algorithm can indeed be bounded depending on their distance in the
initial space. We define theoretical conditions such that some relat-
ive constraints are satisfied in the representation space instances are
projected in. We then show that a threshold can be defined in the
representation space instances are projected in such that two instances
can be linked to each other if and only if they are similarly labeled,
allowing to perform an optimal classification.

• Chapter 6: capabilities of our framework for classification on artificial
and real datasets are empirically evaluated. The introduced representa-
tion learning algorithm is driven by a set of constraints. The capability
of our algorithm to learn a representation space that respects the spe-

6

cified constraints is first evaluated, by verifying if the constraints are
respected in the representation space and how it generalizes. A theor-
etical analysis has defined the conditions under which the introduced
representation learning algorithm allows an optimal classification. The
theoretical analysis being based on two strong assumptions, satisfaction
of the assumptions on the several datasets is being empirically evalu-
ated. The gain of introduced representation learning algorithm for the
classification task musts itself be empirically evaluated. The gain of the
representation learning on the classification accuracy is consequently
analysed, by comparing the classification error obtained on a ε-graph
built in the representation space proposed by the introduced algorithm
to the error obtained on graphs obtained with other metric and repres-
entation learning algorithms. We finally explore possible extensions of
this work by comparing the graph-based classification algorithm with
other classification algorithms in the representation space learned by
our introduced representation learning algorithm.

• Chapter 7: We contrast our claim with the theoretical analysis and the
empirical experiments. We discuss some open questions that emerged
from exploratory works and some prospects are introduced.

7

Chapter 2

Semi-supervised machine learning

To optimally and automatically solve some real world problems, Machine
learning algorithms reason from datasets created from real world context.
Labels may be accessible for some instances, leading to have labeled ex-
amples. Supervised learning algorithms take advantage of labeled examples
to solve the targeted task. After a more precise review of real world predic-
tion problems and Machine learning tasks that can be extracted from them,
we will briefly introduce supervised learning. In real world context, unlabeled
data are more easily accessible than labeled examples. While supervised al-
gorithms can only learn from labeled examples, semi-supervised algorithms
reason from both labeled and unlabeled examples to learn a model. We
will consequently discuss semi-supervised learning, along with some semi-
supervised algorithms.

Machine learning algorithms are highly dependent on the relevance of
the used metric and the representation space in which the data lies. On
one hand, representation learning approaches propose to tackle the intro-
duced problem by learning a new vectorial representation of the data. On
the other hand, considering a set vectorial representation, the pairwise rela-
tionships between instances can be learned through metric learning. We will
consequently finally discuss metric and representation learning, along with a
brief review of representation and metric learning algorithms.

2.1 From real world problems to Machine learning tasks

A common task in real world problems is to be able to associate a continu-
ous real value with an instance. Let us consider for example a commercial
website budget forecast. Predicting the customers expenses for next year
would probably entail the analysis of every customer purchase record from
previous years and the similarities between customers. Attempting to do
that manually would be very time consuming. Automatically predicting the

8

expenses of a customer based on his profile and purchase records would thus
be a great improvement.

Another similar task that often needs to be solved in a real world context
is to characterize some data with a predefined label. A nominal numeric
label needs to be associated with an instance. Let us for example consider a
commercial website that aims at proposing to a customer a set of interesting
items. A solution is to automatically define if an item is likely to interest a
customer and to associate with the item a label depending on the adequacy
of the item with the customer without needing an expert review on items
and customer.

Another common problem that needs to be solved is to define a parti-
tion of a set of instances. For example, a commercial website could seek at
automatically creating groups of users based on their behaviours or common
descriptors for market segmentation.

The various real world prediction problems that need to be solved auto-
matically can be grouped under different categories depending on the Ma-
chine learning tasks that can be extracted from them. Among the different
tasks introduced in Chapter 1 that can be extracted from real world prob-
lems, let us cite:

• Clustering: in clustering, problems are about defining a partition either
over a set of instances or over the space in which lie the instances.

• Classification: the aim is to learn a function for classifying a set of
instances by assigning them a label from a predefined set.

• Regression: in regression context, the aim is to learn a function quali-
fying the data, i.e. instances are associated with a quantitative value.

In our previously introduced commercial website recommendation ex-
ample, the objective is to define the interest of a customer for a set of items.
The dataset can be composed of a set of items. Labels in the recommend-
ation problem should reflect the interest, or not, of the customer for the
different items and can be defined as the binary set {0, 1}. The described
real world problem can thus be transposed as a classification task.

For the budget forecast example, the dataset would be composed of a set
of customers. The goal of the task is to associate a real value — amount
of money — with each customer. The label set for the expenses prediction
problem is the subset of positive real numbers {a ∈ R|a ≥ 0}. The customers
expenses prediction problem can hence be considered as a regression task.

The market segmentation problem is to define a partition of the set of
customers. The dataset being also defined as the set of customers, no a priori
information is available for the market segmentation problem as there is no
ground truth. The market segmentation problem can be seen as a clustering

9

task, where the set of customers aims at being partitioned.

In this work, we focus on classification task. An approach to solve a
classification task is to take advantage of the available labeled examples to
learn a classification function. Approaches reasoning from the set of available
labeled examples lie in the domain of supervised classification. In supervised
classification, by supposing a distribution P over the data representation
space and the label set, a classification function g based on the information
contained in the available labeled examples is aimed at being learned. The
classification function g is learned to minimize the error on the available
data used for training, ie. to satisfy at most the labeling on the available
examples, and to minimize the generalization error, i.e. to generalize well to
unseen instances.

Labels may originate directly from the real world problem context. In the
commercial website budget forecast example, the expenses of the different
customers during the previous years are indeed easily available from the
website database.

More complex labels can be defined and such an information may not
be directly available. In such cases, an expert can be asked to propose a
review during or after the data collection process. Considering the problem of
items recommendation for customers, the expert can analyse that a customer
bought several books from an author. Based on the knowledge about the user
the expert has extracted from the purchase records, the expert can indicate
that the customer is likely to be interested for the latest book from the same
author.

Real world data labeling can be expensive and non trivial. Due to la-
beling constraints, the amount of labeled data is often small compared to
the whole set of available data. Real world dataset are often only partially
labeled or not labeled at all.

Let us define our global notation for classification problems. Let X be
a vectorial space and Y be a set of discrete labels {0, ..., c − 1}. Let P be
a distribution over X × Y . Let {(x0, y0), ..., (xl−1, yl−1)} be a set of labeled
examples and {xl, ..., xl+u−1} a set of unlabeled examples, where xi ∈ X and
yi ∈ Y. We assume examples in both sets to be independent and identically
distributed. Let us define L = {x0, ...xl−1} and U = {xl, ..., xl+u−1}. Let
us define the dataset X to be the union X = L ∪ U . We assume examples
in X were sampled according to P . Let us finally define yL = [y0, ..., yl−1]
the labels vector of instances from L and yU = [yl, ..., yl+u−1] the vector
of label predicted for instances from U . The vector y, which is the concat-
enation of yL and yU is then the labels vector associated with the dataset X.

Supervised classification consequently aims at learning a function g based

10

on X = L (U = ∅) and yL. The classification function can then be used
to predict the labels of unseen instances sampled from P . It has however
been highlighted that real world datasets can be only partially labeled, i.e.
X = L∪U . Supervised classification algorithms do not take advantage of the
available unlabeled data to solve the task. With the growing amount of data,
taking advantage of unlabeled instances could improve the task resolution.

Transductive learning approaches take advantage of both labeled ex-
amples and unlabeled instances to predict labels yU of unlabeled instances.
They however aim at solving the task only for unlabeled instances that are
available at training time. Transductive learning does not seek at learning a
general hypothesis on the instances domain and cannot predict any labels for
unseen instances that were not available at training time. The classification
function learned in transductive learning is consequently learned to minimize
the error on unlabeled instances from U .

Semi-supervised classification algorithms also take advantage of unlabeled
instances to solve the task. The learned semi-supervised classification func-
tion g does however not only focus on unlabeled instances available at train-
ing time as it aims at associating a label with any unseen instances from
the distribution P . Based on X = L ∪ U , semi-supervised classification al-
gorithms, similarly at supervised learning, aim at learning g to minimize the
error on the examples used for training and to minimize the generalization
error.

2.2 Supervised classification

A dataset X is composed of either a labeled set L, a unlabeled set U or both
L and U . Labels of instances from L are either computed directly from the
dataset creation process or based on an expert review. Based on a dataset
X, inductive supervised and semi-supervised classification algorithms seek
at learning a model for predicting a label for any instance drawn from the
distribution P . The targeted task can be solved for potential unlabeled
instances U or unseen instances sampled from P . This work focusing on
semi-supervised classification, we only give a brief overview of the supervised
classification domain

Supervised learning algorithms aim at retrieving the labels distribution
of the dataset X = L by producing hypothesis on the underlying probability
distribution P of the instances. The produced hypothesis can be used to
make prediction for unseen instances in X drawn from P . Supervised learn-
ing classification algorithms learn a model mapping each instance of the
domain X drawn from P to a label from the predefined label set Y . Hypo-
thesis are evaluated on unseen instances drawn from P . More precise states
of art of supervised learning can be found, notably in [Kotsiantis, 2007].

11

Many inductive supervised learning algorithms aim at learning the gen-
erative process explaining the labeled set L and are called generative. To
cite some, naïve Bayes approaches ([Cestnik et al., 1987]), mixture models
([Dempster et al., 1977]), restricted Boltzmann machines ([Fischer and Igel, 2012])
or linear discriminant analysis ([Fisher, 1938, Fukunaga, 1990]) can be high-
lighted. Non generative algorithms are called discriminative. Some of dis-
crimininative algorithms aim at learning a linear separator, among which
Support vector machines ([Burges, 1998]) and perceptron-based algorithms
([Rosenblatt, 1962]) can be cited. Other algorithms, like kernelized version of
linear separators, neural networks ([Zhang, 2000]), or logic based algorithms
([Murthy, 1998, Fürnkranz, 1999]) however aim at learning a non-linear sep-
arator for more complex datasets classification.

2.3 Semi-supervised classification

Supervised learning proposes various approaches in order to be able to pre-
dict a label for unseen instances sampled following the distribution P , based
on the available labeled data X. Learning process of supervised algorithms
is exclusively based on the labeled instances that were available during the
dataset creation. Due to real world constraints, including the labeling dif-
ficulty and cost, it has been highlighted that the proportion of labeled in-
stances is often small considering the available data during the real world
dataset creation. Supervised learning algorithms thus leave out most of
the available instances during the training stage. This way, they do not en-
hance themselves with the information carried by unlabeled instances. Semi-
supervised algorithms address the described issue by reasoning from datasets
X composed of both labeled and unlabeled instances for the learning phase.

In order to efficiently exploit the unlabeled data U during the training,
semi-supervised learning assumes that the underlying distribution of the data
is somehow structured. Data is supposed to satisfy either the smoothness
assumption or the cluster assumption ([Chapelle et al., 2006]).

In real world graphs, closely related entities are more likely to share com-
mon characteristics than distant ones. People are indeed more likely to be
friends with people with similar tastes or opinions. The homophily assump-
tion is the hypothesis that close instances are likely to be somehow similar.
The real world based hypothesis of homophily was in particular discussed in
[McPherson et al., 2001]. Based on the real world hypothesis, the Machine
learning smoothness assumption is that two close instances are likely to be
close considering the label, i.e. are likely to share a common label. Assuming
as well that close instances are more likely to be similar in a way, the cluster
assumption however supposes that data may tend to be spread in multiple

12

groups of approximately homogeneous labels.

Considering that at least one of the previous assumptions is satisfied,
semi-supervised classification algorithms solve classification tasks by exploit-
ing both labeled and unlabeled data. Semi-supervised learning is an import-
ant research field and many approaches have been proposed. In this work,
we focus on a graph-based semi-supervised algorithm to solve the classific-
ation task. To place our work, let us briefly discuss semi-supervised clas-
sification approaches. Several surveys discuss about the numerous semi-
supervised classification algorithms. Readers are referred to [Zhu, 2005,
Chapelle et al., 2006] for more detailed discussion about semi-supervised learn-
ing.

Unlike supervised learning, semi-supervised learning takes advantage of
the available unlabeled examples. There are various manners to exploit
unlabeled data U to solve the task. On one hand, unlabeled instances,
separated from the labeled ones, can be used as an informative bias for
a supervised classification algorithm training. Unlabeled instances can on
the other hand be considered as training instances and be used jointly with
labeled examples during training stage.

Far from the algorithm we will focus on, a first part of semi-supervised
classification algorithms use unlabeled data U of a dataset X to regulate
the training step of a supervised classifier. Unlabeled instances can indeed
exclusively be used to learn either a vectorial representation of the data,
a kernel or a distance on the data. A supervised classifier can then be
trained based on the newly learned component. Unlabeled instances can
also be seen as potential future labeled examples. They can indeed be used
to incrementally reinforce the labeled set used to train any supervised clas-
sifier or to evaluate the agreement between different learned models. Many
co-training ([Blum and Mitchell, 1998]), self-training ([Yarowsky, 1995]) and
multi-view algorithms ([de Sa, 1994]) hence exploit unlabeled data to influ-
ence the training phase of any supervised model.

Others semi-supervised classification algorithms jointly exploit labeled
and unlabeled data to learn a model. Among them, generative algorithms,
among which expectation maximization ([Dempster et al., 1977]), exploit the
whole dataset, regardless of the existing labels, to estimate the conditional
density underlying the dataset. Labels knowledge of instances from L are
used to classify unlabeled instances sampled following P , including instances
from U .

Similarly to supervised learning, another group of approaches aims at
learning a discriminative classifier. Discriminative algorithms aim at learn-
ing a decision boundary between the different classes based on labeled and
unlabeled instances. Among the most known discriminative classification al-
gorithms, let us cite transductive support vector machines ([Joachims, 1999]).

13

Part of semi-supervised algorithms reason from the relation between in-
stances more than their vectorial representation. A graph representation
of a dataset is a way to represent instances similarities relationships of a
dataset as a set of instances and weighted edges. In such a representation,
vectorial representations of the instances are ignored. A graph representa-
tion of a dataset can easily be built and many semi-supervised algorithms
take advantage of that graph representation to solve the classification task.
Algorithms taking advantage of the graph representation of a dataset are
referred as graph-based methods. A more precise review of graph-based ap-
proaches will be given in Section 3.3.

2.4 Metric learning & representation learning

Problems like items recommendation can be expressed as a classification
task where a label needs to be associated with a set of instances. A vectorial
representation of the instances is defined on the real world problem context.
The dataset is completed by associating labels with some or all the available
instances. Numerous supervised and semi-supervised algorithms, assuming
that the data satisfies either the smoothness or the cluster assumption, have
been developed to solve the classification task associated with such a dataset.

Execution of classification algorithms are based at some point on the
relationships between pairs of instances, which can be expressed through a
distance their vectorial representations. Considering a dataset, algorithms
are dependent either on the vectorial representation the data lies in and
the distance associated with the vectorial space or on the pairwise relation-
ships between instances. Pairwise relationships between two instances are
commonly based on a distance between the vectorial representations of the
instances. The distance associated with the representation space of the in-
stance is supposed to be meaningful considering the task to solve. Distances
are however generally chosen from a set of classical distances. Among them
we can highlight the Euclidean distance which is the one most often used.

Depending on the targeted task, the relationship between two instances
can vary. Classical distances were defined with the hypothesis that all fea-
tures from the vectorial representation of an instance are equally relevant
considering the relationship that aims at being expressed. The hypothesis of
features equal influence cannot be ensured for all datasets and task combina-
tions. Because of arbitrary choices during the dataset creation and vectorial
representation creation, like the information selection or the numerical trans-
position for example, every feature is not ensured to have the same influence
on the label than the others. As an example, several features of the repres-
entation may refer to the same initial information. For example, two features

14

extracted from the profile of a customer could be related to his gender: the
gender — woman or man — and civility — M., Mrs. or Ms— features. We
will refer to the presented phenomena as redundancy. Vectorial represent-
ation of a dataset can also be composed by features that are unrelated to
the task, which will be called noise. Any information about one of the em-
ployees of the commercial website would for example probably be unrelated
to the expenses of any customer and such an information in the vectorial
representation of a customer will not help to solve the task. Due to noise
and redundancy for example, an imbalance in the influence of the features
on the label can be created, yielding to an inappropriate distance. There
is thus no guarantees that the distance associated with the representation
space — selected from the set of classical distances — is able to represent
the similarity between the vectorial representations of two instances from
the dataset for the task.

To overcome the highlighted shortcomings, many approaches have been
developed in order to tune the vectorial representation of the data and the
distance used to represent instances pairwise similarity. In the classification
context, two instances are considered to be similar if their associated labels
are identical. Adjusting the vectorial space of the dataset and the distance
associated with it can be reached by either adapting the metric to the data-
set representation (metric learning) or adapting the dataset representation
to the metric (representation learning). In practice, the two approaches are
closely related and metric learning is often fostered by a representation learn-
ing step. The algorithm that will be introduced in the Chapter 4 of this work
aims at adapting the representation space of the data to a selected distance.
Let us consequently briefly discuss about metric learning and representation
learning algorithms.

To ensure that the used distance reflects the relationship required for the
task, a first solution could be to set the vectorial representation of the data-
set and to adapt the distance used to express instances similarity considering
the targeted task. Some algorithms also neglect the vectorial representation
by only considering the relationships between instances and the structure
underlying the dataset. The objective is consequently to learn the most ad-
apted distance, i.e. the pairwise relationship between instances, to reflect the
similarity between instances, based on the fixed representation space. The
introduced aim is in the scope of metric learning. Several algorithms have
been proposed to learn a distance which is representative of the instances
considering a specific task. Metric learning algorithms aim at learning pair-
wise relationships and consequently consider couples of instances. To learn
the relationship between instances, they mainly reason based on a set of con-
straints that aims at being satisfied. A first group of guiding constraints are
the must-link (respectively cannot-link) constraints that concern pairs of in-

15

stances. The must-link constraints (respectively cannot-link) reflect the fact
that the selected pair of instances has to be considered as similar (respect-
ively dissimilar) through the learned metric. Another kind of constraints are
triplets relative constraints. A triplet relative constraint, commonly refered
through the triplet (xi, xj , xj), either simultaneously expresses a must-link
constraint between xi and xj and a cannot-link constraint between xi and
xk or expresses a partial ranking of the similarities between the pairs (xi, xj)
and (xi, xk), i.e. that xi has to be closer from xj than from xk. The set of
constraints used to learn a metric can either be computed based the domain
knowledge, on an expert review, or based on the task related supervision.
Different detailed surveys discussing about metric learning have been pro-
posed ([Yang, 2006, Kulis, 2012, Bellet et al., 2013]). Readers are referred
to the introduced surveys for more detailed works about metric learning al-
gorithms. Let us briefly discuss some metric learning algorithms.

Metrics can be learned either on the whole domain the dataset belongs
to or on local patches. They are thus said to be either global or local. Global
metrics may not be appropriate to represent heterogeneous data. Some
algorithms were thus proposed in order to simultaneously learn multiple
local metrics across the representation space of the data ([Frome et al., 2007,
Ramanan and Baker, 2011]). A local metric can be learned either for each
instance xi from the training dataset or on local patches of the representa-
tion space of the data which can be defined based on the dataset.

All the datasets are not heterogeneous and learning multiple local metrics
can be expensive for big scale datasets. Many metric learning algorithms
rather seek at learning a global metric over the representation space of the
dataset. Global metric learning algorithms can either learn a linear or a
non-linear metric based on the previously introduced constraints.

Most commonly studied, numerous linear metric learning algorithms have
been developed. Linear metric learning is however mainly about learning the
matrix M parametrizing the Mahalanobis distance dM (xi, xj) between two
instances xi and xj ∈ X such that dM (xi, xj) =

√
(xi − xj)TM(xi − xj).

Numerous approaches aiming at learning a Mahalanobis distance or a variant
have been developed. A well known algorithm for Mahalanobis distance
learning is the one introduced in [Weinberger and Saul, 2009]. In this work,
authors introduce the LMNN algorithm which learns a Mahalanobis distance
based on two different sets of constraints S and R. The set S, similar to a
set of must-link constraints, is composed of pairs (xi, xj) of instances xi and
xj ∈ X such that xj is in the k-neighborhood of xi and R, which can be
seen as a set of relative constraints, is composed of triplets (xi, xj , xk) such
that (xi, xj) ∈ S and that the labels yi and yk associated with xi and xk
components of the triplet are different. The algorithm thus seeks at learning
a Mahalanobis distance dM that minimizes the distance between each pairs

16

(xi, xj) ∈ S while maximizing the margin between the pair of distances
dM (xi, xk) and dM (xi, xj) of any triplet (xi, xj , xk) ∈ R.

Although linear metrics are convenient to optimize, they are not able to
capture the non-linear structure of the data. Some approaches have been
developed to learn non-linear metric. A first approach that has been applied
for non-linear metric learning is the kernelization of linear metric learning
algorithms. A linear metric learning algorithm is applied in a non-linear
representation space induced by a kernel function ([Schölkopf et al., 1998,
Scholkopf and Smola, 2001]). Such approaches are dependent on the choice
of the kernel. Another group of approaches aims at directly learning a non-
linear metric of the form dφ(xi, xj) = d(φ(xi), φ(xj)), where φ is a learned
transformation function. The non-linearity is introduced by either learning
a non-linear transformation φ with d being any selected classical distance or
learning a linear transformation φ with d being a set non-linear distance. Let
us for example cite the work introduced in [Kedem et al., 2012], where au-
thors proposed two non-linear extensions of the previously introduced LMNN
algorithm. The first approach they propose is to optimize the LMNN object-
ive function for a non-linear distance. They secondly propose an approach
seeking at learning a non-linear transformation of the data on which will be
learned the Mahalanobis distance.

In order to learn a non-linear transformation function φ, φ can also be
defined to be a neural network. For example, authors in [Chopra et al., 2005],
in the LSMD algorithm, propose an approach to learn a non-linear transform-
ation of the dataset. The approach aims at learning a convolutional neural
network φ such that dφ(xi, xj) is maximized for any pair (xi, xj) ∈ S the set
of similar instances and dφ(xi, xk) is minimized for any pair (xi, xk) ∈ D the
set of dissimilar instances.

Defined as metric learning algorithms, previous approaches, in particu-
lar non-linear ones, can also be seen as mapping the data from the initial
vectorial space to a representation space in which a distance satisfies some
constraints. They are hence related to representation learning. Instead of
trying to adapt the distance to the representation space, representation learn-
ing algorithms aim at directly mapping the dataset to a vectorial space in
which the set distance is representative of the task similarity. Representation
learning algorithms can be grouped depending on the set of features they aim
at proposing.

First led by the objective to dispense with the expert review, feature se-
lection algorithms propose to define subset of most relevant existing features
of a dataset. The initial set of features may be irrelevant for the targeted
task and a set of new features may need to be built by transforming the ini-
tial set of features. Among the representation learning algorithms aiming at
building a set of more relevant features, dimensionality reduction algorithms
constrain the number of created features to reduce the dimensionality of the

17

new vectorial representation, as many real world datasets have high dimen-
sionality.

Our work being related to representation learning, let us briefly review
some representation learning algorithms, in order to place our approach in
a broader context. Several surveys detailing representation learning ap-
proaches are available ([Bengio et al., 2013, Guyon and Elisseeff, 2003]). In-
terested readers are referred to the two introduced surveys.

Based on the assumption that only a subset of features describing the
instances are representative, reducing the dimensionality of our dataset or
selecting the most representative features of the vectorial representation of
our dataset could allow us to have a more adapted representation of our
data. Such approaches are in the scope of dimensionality reduction.

Among the dimensionality reduction algorithms, feature selection ap-
proaches aim at keeping the most relevant variables describing the data, con-
sidering the targeted task. Part of feature selection algorithms aim at ranking
the features describing the data by evaluating the individual influence of each
feature on the labels. For example, authors in [Geurts et al., 2006], propose
a classification algorithm growing a set of decision trees that can be used as
a feature selection approach, which will be used in Section 6. A decision tree
is a structure such that its several internal nodes correspond to a threshold,
called the cut value, applied on an attribute. An unseen instance is classi-
fied by traversing the tree depending on the value of its features. The label
associated with the instance is the label of the leaf the instance reaches. At
each step of the tree learning, a set of attributes, and their associated cut
values, are randomly sampled from the set of available attributes. The split
performing the highest score, considering a fixed information gain measure,
is defined as the new splitting node. Once the trees are growth, a score
reflecting the importance of each feature depending on the information gain
measure can be computed. A threshold can be applied on the computed
scores for extracting the more relevant features of a dataset considering the
specific task.

Some features may have a poor individual predictive power but may
have a high predictive power when combined to some other features. As
combining different distinct features can result to a set of features with a
higher predictive power, several feature selection approaches aim at defining
a subset of features have been developed.

The definition of a subset of relevant features can either be a prepro-
cessing step unrelated to a given machine learning algorithm or be led by
a given machine learning algorithm. When a specific machine learning al-
gorithm is considered, the final subset of variables is selected either depend-
ing on its predicting power for the given algorithm — by evaluating the
accuracy of solution — or its influence on the objective function optimized
by the algorithm. More detailed works about feature selection can be found

18

in different surveys ([Guyon and Elisseeff, 2003]).

Other dimensionality reduction approaches, that can be grouped as fea-
ture extraction methods, aim at defining a smaller set of variables containing
the same information than the input data for the task by transforming the
initial features of the data. The features transformation can be either linear
or non-linear. A subset of dimensionality reduction approaches are somehow
related to the eigendecomposition of specific matrices computed based on
the initial vectorial representation of the data. A well known spectral di-
mensionality reduction algorithm is the Principal Component Analysis (also
known as PCA). The PCA algorithm aims at projecting the data in a new
orthonormal basis and the new features describing the instances are the co-
ordinate of the instances in the new system. The new basis is based on the
eigenvector with the highest variance extracted from the matrix composed
of the vectorial representation of the data. Neural networks are also used
in dimensionality reduction. Well known neural networks for dimensionality
reduction, are auto-encoders. An auto-encoder, and its associated auto-
decoder, are networks that are learned simultaneously. An auto-encoder
learns a smaller set of variables describing the data while the auto-decoder
is learned to reconstruct the initial instance based on the representation
learned by the auto-encoder, by minimizing the reconstruction error. Before
solving a classification task, authors of [Rifai et al., 2011] propose to learn a
vectorial representation of the data by learning an auto-encoder. They seek
at learning an unsupervised representation which is robust to small input
variations. For that purpose, a regularization term based on the sensitivity
of the representation to the input, i.e. its derivative, is added to the usual
objective function for auto-encoder.

Many other representation learning algorithms aim at learning a set of
new features without dimensionality reduction constraints. Closely related
to the approach that will be introduced in Chapter 4, remaining representa-
tion learning algorithms seeks at mapping our instances in a representation
space by applying a transformation on the initial vectorial representation.
Although some probabilistic approaches have been proposed, most of the rep-
resentation algorithms without dimensionality reduction constraints handle
neural networks to learn a vectorial representation of the data. By leav-
ing out auto-encoders that were already discussed, neural networks based
mapping functions can be learned based on similarity and dissimilarity con-
straints.

Among such approaches, let us for example cite the work proposed in
[J. Weston, 2008]. The authors propose an algorithm to learn a multi-layered
embedding based on a partially labeled dataset. They aim at learning the
network by alternatively minimizing the loss between the embedding of two
instances that are neighbours and maximizing the loss between the embed-

19

ding of a pair of instances where one is a labeled example and one is an
unlabeled example. Work in [Hoffer and Ailon, 2014] can also be highlighted
as the authors propose an algorithm seeking at learning an embedding of the
data such that similarly labeled instances are pulled together when dissim-
ilarly labeled instances are pushed away from each other. Both those works
aim at learning a mapping neural network by minimizing a loss based on the
embedding of different instances. They are consequently closely related to
the algorithm that will be introduced in Chapter 4. The relationship and
similarities between the different approaches are detailed in Section 4.5.

In the remainder of this work, we will discuss representation learning. A
representation learning algorithm for graph-based semi-supervised classific-
ation algorithms will be introduced. The introduced representation learning
algorithm will take advantage of neural networks to propose a representation
of the dataset satisfying some metric related constraints.

20

Chapter 3

Graph-based semi-supervised
learning

To solve the targetedMachine learning tasks, some of the semi-supervised al-
gorithms neglect the vectorial representation of the dataset and reason from
pairwise relationships between instances. Composed by a set of nodes and
a set of weighted edges, a graph representation of a dataset is a representa-
tion of the dataset highlighting the pairwise relationships between instances.
In a graph representation of a dataset, the vectorial representations of the
instances are neglected. We will first discuss about graph characteristics.
A general method to build a graph representation from a dataset is then
introduced.

A subset of semi-supervised algorithms reasoning from pairwise relation-
ships between instances directly learn from a graph representation of a data-
set to solve the targeted task. The so-called graph-based algorithms assume
that the graph they reason from at least satisfies the smoothness assumption,
as introduced in Section 2.3. Properties graph-based algorithms expect from
graphs and some graph-based semi-supervised algorithms are consequently
reviewed. As we are going to see in the Section 3.2, given a dataset, several
graph representations can be built. The smoothness assumption is not ne-
cessarily satisfied for the different available graph representations of a same
dataset. We will finally discuss the influence of the construction methods on
the execution of graph-based learning.

3.1 Graph representation

A graph is composed of a set of vertices that may be connected together by
a set of edges. Let us formally define a graph:

Definition 1. A graph G is a pair (V,E) where V = {v0, .., vn−1} is the set
of vertices and E ⊆ V × V is the set of edges linking the vertices.

Let us call eij the edge in E linking the vertices vi and vj ∈ V .

21

Edges are used to express relationships between the vertices they are
linking. They can express a set of different reciprocal relationships. An edge
existing between two vertices can for example express either a symmetric
similarity or dissimilarity between the two vertices. Edges can also be used
to express a non reciprocal relationship. An edge from a vertex vi to another
vertex vj can for example express the fact that the user represented by the
first vertex vi trusts the user represented by the second vertex vj . The second
user does not necessarily trust the first user and there can be no edge from
vj to vi. Depending on the reciprocity of the edges, the graph is said to be
directed or not.

For a set of nodes V , if the relationships reflected by the set of defined
edges E are non-reciprocal, the associated graph representation G = (V,E)
is said to be directed and the edges are said to be oriented. In a directed
graph G = (V,E), if there is an edge eij starting from a vertex vi ∈ V to a
vertex vj ∈ V , the reciprocal edge eji starting from vj to vi may not belong
to the set of edges E. On the opposite, the graph representation associated
with a set of nodes V and a set of edges E reflecting reciprocal relationships
between nodes is said to be undirected. In a undirected graph G, an edge
starting from a vi ∈ V to vj ∈ V equates to an edge from vj to vi. For the
remainder of this work, we will focus on undirected graphs.

Let us consider an undirected graph G = (V,E). Let (vi, vj) and (vk, vl)
be pairs of vertices from V ×V . Let eij and ekl ∈ E be the edges respectively
linking each pair. A weight may be associated with every edges from E, al-
lowing the relationships between instances to be qualified and/or quantified.
In order to be somehow representative of the instances similarity, or dissim-
ilarity, the weights associated with every edge are obtained by applying a
function f : V × V �→ R on the pair of instances being characterized.

Definition 2. A weighted graph G is a graph G = (V,E) where a real number
wij is associated with each edge eij ∈ E.

The real number wij = f(vi, vj) is called the weight of the edge eij ∈ E.

Based on the introduced definition, a non-weighted graph is basically
a graph for which the weights are identical for all edges. Non-identically
weighted edges are able to express more complex relationships between in-
stances by differently qualifying the relationship expressed by the edge asso-
ciated with each pair of instances. For the rest of this work, let us consider
all graphs to be weighted graphs.

Several matrix representations of a graph G = (V,E) can be defined.
Among the matrices that can be computed based on E and the weighting
function f associated with G, let us consider the adjacency matrix repres-
entation of G. The adjacency matrix is a square matrix which rows and
columns are indexed by the set of vertices V . The set of edges E linking

22

pairs of vertices from V can then be represented by weighting the entry as-
sociated with every pair of linked vertices of the graph. An entry on the
i − th row and the j − th column in the adjacency matrix thus represents
the weight of the edge linking the i− th and j − th vertices.

Definition 3. Let G = (V,E) be a graph such that |V | = n.
The adjacency matrix W ∈ Rn×n is the matrix such that

∀i, j ∈ {0, ..n− 1},Wij =

{
wij if eij ∈ E,

0 otherwise.

In an undirected graph G = (V,E), if two vertices vi and vj ∈ V are
linked then both edges eij and eji belongs to E and wij = wji. The adja-
cency matrix of an undirected graph is a symmetric matrix.

3.2 Graph construction methods

Some real world data are already structured as graphs with explicit links
between instances like for example datasets extracted from social networks.
In such cases, it can be said that the graph representation is provided by the
real world context. A lot of datasets however lack explicit graph represent-
ations.

In order to solve a task for a dataset through graph-based semi-supervised
algorithms, an undirected graph representation of the dataset can be built.
In the following, a classical methodology that can be applied to build an un-
directed graph representation of a dataset from its vectorial representation is
provided in details. Different approaches to highlight the structure are then
being discussed. The available results studying the introduced construction
methods are discussed in Section 3.4.

A graph is by definition composed by a set of instances which are, at
least, partially linked together by a set of edges. Let us consider a dataset
X. To compute the graph representation G = (V,E) of X, the set of vertices
V and the set of edges E linking the vertices from V need to be defined. As
G is the graph representation of X, the set of vertices V can be trivially
defined as the set of instances X.

Graph representation of a dataset is built to reflect the pairwise rela-
tionships between the instances. The set of edges composing the graph
representation associated with a dataset is constituted at most by the set of
edges linking all the possible pairs of instances. The relationship expresses
by an edge can be qualified by associating a weight with the edge. Based
on a dataset, the most commonly available information about instances are
their vectorial representations. The relationship between two instances can

23

be quantified, i.e. the edge linking two instances can be weighted, by ap-
plying a weighting function on the pair of their vectorial representations.
Graphs being most of the time built to reflect relationships between the
instances, the weighting function is commonly selected from the set of clas-
sical pairwise distance or similarity measures, like the Euclidean distance. A
common function used as weighting function for the graph construction is
the gaussian radial basis function kernel, based on the Euclidean distance,
f(xi, xj) = exp

(
−d(xi,xj)

2

σ

)
. Among the property of the gaussian kernel, the

obtained weighted adjancy matrix is a similarity matrix, which is more likely
to be handled by graph-based algorithms, as we will see in Section 3.3.

The previoulsy introduced gaussian kernel weighting function also dis-
plays a pruning advantage. Depending on the parameter σ, the value of the
gaussian kernel for close instances, i.e. with a small pairwise distance, will
be high while the weight associated with distant instances, i.e. with a high
pairwise distance, will tend to 0. This way, negligible edges, i.e. relation-
ships, are removed. The defined weighting function simultaneously performs
a pruning of the built graph, by minimizing the importance, or removing,
edges linking distant instances.

Let us now consider a distance f used to weight the graph representation
G = (X,E) of a dataset to be such that it does not prune the graph. We are
interested in the relationships expressed in the graph representation of the
data. Some edges may be negligible considering their weights compared to
the other edges. Relative proximity of pairs of instances can also be drowned
by the outnumbering quantity of other edges. The structure highlighted in
the graph representation of the data should be emphasized. To stress the
structure of the data, the edges that are the more representative of the
instances relationships or the strongest relationships must be kept. Part of
the created edges need to be removed in order to keep the more informative
edges of G.

Pruning the graph G allows us to remove irrelevant or negligible edges.
The pruning phase is consequently as crucial to the graph creation process
as the weighting stage. The criterion reflecting if an edge is relevant or not
is however not unique and may depend on a local or on a global approach.
There are several methods in order to remove edges.

The weights associated with the edges of a graph somehow characterize
the similarity between instances. Depending on the range of the weighting
function f , the information carried by some weights is negligible. For ex-
ample, considering a distance f : V ×V �→ [0, 1], all weights close to 1 express
little variation of a high dissimilarity between the characterized instances.
Smallest variations can be neglected. Depending on the distribution of the

24

weights of the graph, a threshold separating the relevant information from
the negligible one can be defined.

An approach to remove the poorly informative edges is the ε-simplification.
ε simplification is a global pruning method where edges are kept depending
on a threshold ε. An edge eij ∈ E with a weight wij higher than ε is indeed
removed from the set E. The distance between neighbours in such a pruned
graph are ensured to be bounded by the threshold. The edges that are kept
are consequently meaningful considering the absolute closeness of linked in-
stances in the graph. As the edge removing policy does not depend on the
connectivity of each vertex, there is no explicit knowledge about the obtained
graph connectivity. The ε simplification method can lead to isolation of some
instances which are distant from the whole dataset. The resulting graph can
be composed of several small connected components.

With the previous approach, edges eij were neglected depending on the
absolute value of their weights and a threshold. A weight which is negligible
in a specific neighbourhood can be relevant considering the neighbourhood
of another instance. A neglected edge eij can however be informative when
compared to the set of edges associated with an instance xi. Edges relevance
can be analysed from a local approach.

Let us consider a graph G = (X,E). The k-neighbourhood of each
instance xi ∈ X can be defined as the set of k closest vertices that are linked
to xi by edges from E in G. The k-nn simplification is a local approach
which reasons from the k-neighborhood of each instance of the graph. The
importance of an edge depends on the mutual closeness of instances. An
edge eij is informative if the instance xj is in the k-neighbourhood of xi. On
the opposite, an edge eij is removed if xj is not in the k-neighbourhood of
xi. For illustration purposes, let us consider the simple following graph G
(Figure 3.1).

0.1

0.7

0.2

0.5

0.2

0.4

x1x0

x3 x2

Figure 3.1 – Graph representation of a toy dataset

Let X = {x0, x1, x2, x3} be a dataset and G = (X,E) (Figure 3.1) be the
undirected graph representation of X with a distance as weighting function.

25

Let knn : X,G, k �→ Xk be the function associating with an instance xi
the set of k instances composing its k-neighbourhood in G. Let us consider
k = 2 and let us compute the 2-neighbourhood of each instance:




knn(x0, G, 2) = {x1, x3}
knn(x1, G, 2) = {x0, x3}
knn(x2, G, 2) = {x1, x3}
knn(x3, G, 2) = {x1, x2}

Applying the k-nn simplification of the graph G leads to a non-symmetric
case where the edge e03 should be kept because x3 ∈ knn(x0) but should be
removed because x0 /∈ knn(x3). A similar non-symmetry appears consider-
ing x2.

The graph representation obtained with the k-nn simplification in the
previous example is a directed graph. To obtain an undirected graph, which
are most commonly handled by graph-based algorithms, let us introduce
two variants of the k-nn simplification leading to undirected pruned graph
representations of a dataset.

The first variant is the mutual k-nn simplification. In the mutual vari-
ant of the k-nn simplification, an edge eij ∈ E is kept if and only if the
relation is meaningful for both instances, i.e. if and only if both xi and xj
mutually belong to the k-neighbourhood of the other instance. In the toy
example introduced in Figure 3.1, the resulting set of edges is defined as
E = {e01, e13, e2,3}. The introduced pruning method only keeps the edges
that are the more meaningful considering pair of instances. Even if there is
no explicit knowledge about the weight of the kept edges and their absolute
importance, connectivity of each instance is ensured to be at most k. The
minimal connectivity of the graph can not be ensured as the considered prun-
ing method can lead to disconnected instances as both concerned instances
have to be in the set of the closest instances from the other. Similarly to the
ε-simplification, some instances can be disconnected and the obtained graph
can be composed of several small connected components.

The second variant, the symmetric k-nn simplification, can be seen as
a relaxation of the mutual one. With the symmetric k-nn simplification,
an edge eij ∈ E between instances xi and xj ∈ V is indeed kept whenever
the relation expressed by the edge is meaningful for at least one of the two
concerned instances, i.e. if one of the instances is in the k-neighbourhood of
the other instance. Considering our toy example, the resulting set of edges
would be E = {e01, e03, e12, e13, e23}. Although the weights of the edges
are not explicitly constrained, symmetric k-nn simplification ensures that
there is no isolated instance as every instance will be connected to at least
k other instances. Let us define the floor function �· � : R �→ N such that

26

∀z ∈ [a, a+1[, �z� = a. With the symmetric k-nn simplification, the result-
ing graph is ensured to have at most � |X|

k � connected components.

Finally, the common graph creation process where the pruning step is
processed after the weighting function is summarized as in Algorithm 1.
The described graph creation method is a general proposition, which iterat-
ively performs each step.

Algorithm 1: Graph creation process
Data: the set of instances X
a weighting function f
a pruning method simplify
Result: G = (V,E), W
// Initialization

1 V = X;
2 E = {};
3 W = R|V |×|V |;
// Edges creation, weighting and pruning

4 for ∀xi, xj ∈ X do
5 E = E ∪ eij ;
6 Wij ← f(xi, xj);
7 end
8 E ← simplify(V,E,W);
9 G = (V,E), W ;

The graph creation process summarized in Algorithm 1 performs the
graph simplification once the whole set of possible edges is created and
weighted. The described graph creation process is however not necessar-
ily optimal, considering the memory and time needed. Depending on the
pruning methods, the memory and time cost can be minimized.

An iterative process is mandatory for the mutual k-nn simplification, as
all the edges related to instances xi and xj are needed in order to decide
wether the edge eij is discarded or not. The mutual k-nn pruning method
can only be applied once all the edges have been created and weighted.

On the opposite, ε-simplification keeps and removes edges depending on
their absolute weights and on a set threshold. The ε-simplification can con-
sequently be processed simultaneously to the edges creation and weighting
step. In the symmetric k-nn simplification, the whole set of edges is not
needed in order to prune the neighbourhood of an instance xi. The sym-
metric k-nn pruning step can consequently be processed during the edges
creation step. Such an iteratively created matrix needs to be symmetrized
once all the instances neighbourhood have been processed.

Performing one of the two last pruning, ε or symmetric k-nn simplifica-

27

tion, jointly to the edges creation and weighting step allows us to minimize
our memory needs. In those cases, the graph creation process is summarized
differently.

3.3 Semi-supervised graph-based algorithms

A graph representation G of a datasetX can be built by choosing a weighting
function f and a pruning method simplify. Some of the semi-supervised
algorithms take advantage of the available graph representation G to solve
the task associated with X. Let us assume f to be set, and W to be the
adjacency matrix obtained based on G and f . As we will see in the present
section, graph-based algorithms handle similarity matrices. If f is a distance,
i.e. if its value is small for two similar instances, let us consider that a
transformation was applied to map it into a similarity value. To transform
the distance into a similarity value, several decreasing function, like the
gaussian kernel can be applied. To tackle the targeted task, graph-based
algorithms assume that G satisfies the following properties: smoothness and
sparseness.

The main hypothesis graph-based semi-supervised algorithms rely on is
that the smoothness assumption is satisfied on the considered graph. As
introduced in Section 2.3, the smoothness assumption assumes that two close
instances are likely to be close considering their labels. In a graph, two
vertices are considered to be close if they are highly connected, i.e. the
weight of the edge linking them is small (when f is a distance). Assuming
that a graph satisfies the smoothness assumption leads to the assumption
that vertices that are highly connected in a graph are similar considering the
task. In a graph context, smoothness assumption is thus often considered
as the fact that the labels are homogeneous, i.e. smooth, according to the
graph structure. A graph G is consequently said to satisfy the smoothness
assumption if two close instances in the graph are similar considering the
labeling function, i.e. if the labeling function is smooth over G.

Real world graphs are usually not fully connected. In general their adja-
cency matrix is sparse. A pruned graph is also not fully connected and its
adjacency matrix can be sparse. Graph-based semi-supervised algorithms
assume that the sparsity property is shared by most of the graphs. They
consequently exploit the sparse structure underlying the dataset to solve the
task.

Let us recall some notations for the remainder of the present chapter. A
set of instances {(x0, y0), ..., (xl−1, yl−1)} where xi ∈ Rd with their associ-
ated labels yi ∈ Y is available. The targeted task being the classification,
Y = {0, ..., c− 1} is a set of predefined labels. Let xl, ...xl+u−1 be a set of

28

unlabeled instances. Let G = (X,E) be the graph representation of the
dataset X = L ∪ U where L = {x0, ..xl−1} and U = {xl, ..., xl+u−1}. Let
W be the weighted adjacency matrix associated with G. Let us assume W
to be a similarity matrix, i.e. Wij is high for two similar instances xi and
xj and small for two dissimilar instances xi and xj . Let yL = [y0, ...yl−1]
be the labels vector of the labeled instances of L. The aim of graph-based
classification task is to be able to define a vector of labels yU = [yl, ...yl+u−1]
which associates a label yi ∈ Y with each instance xi ∈ U . Based on yL and
yU, let us define the vector y ∈ Y l+u the vector which associates a label of
Y with each instance from X.
Let us introduce, in a binary classification context1, the quadratic function

H(y) =
∑
i,j

Wij(yi − yj)
2

The introduced function reflects how smooth the labels vector y is along
the graph structure encoded in W . The quadratic function H for a labeling
vector y where close instances in the graph have similar labels will tend to
0. A null value of the quadratic function for y indicates that every neigh-
bouring instances have the same label so the labels vector y is optimally
smooth along G. On the opposite, a high value reflects the fact that close
instances have dissimilar labels depending on the labeling vector y. Graphs
are supposed to be homophilic structures. Labels along a graph are thus
supposed to be smooth. The quadratic function of the labels of a dataset
depending on its graph representation is supposed to tend to 0.

Led by the smoothness assumption, the objective of graph-based classific-
ation algorithms is to define a labeling such that it minimizes the interaction
between dissimilarly labeled instances. Authors in [Blum and Chawla, 2001]
propose a graph-based algorithm for binary classification, i.e. Y = {0, 1}.
Their aim is to define a partition of the set of instances X, based on a graph
representation of X. Labeling is performed depending on the component
instances belong to. They propose a specific graph construction in order to
ideally partition the graph. Authors define G = (X,E) to be the complete
graph built fromX. There are multiple ways to define the weighting function
that is used to compute the graph. They discuss the influence of the chosen
weighting function on the expected error. Based on the dataset X = L ∪U ,
they defined L+ (respectively L−) to be the set of labeled instances xi ∈ L
such that y1 = 1 (respectively yi = 0). Two artificial nodes v+ and v− are
added to the graph G. Each labeled instance xi ∈ L is linked to one of
the two artificial vertices depending on its associated class, i.e. all instances

1It can be generalized to multi-classes problems as H(y) =
∑
i,j

WijI[yi �= yj] where I is

the indicator function, i.e. I[true] = 1 .

29

from L+ are linked to v+ and L− are linked to v−. The lastly created edges
are added to E and weighted with an infinite weight.

A (xi, xj) cut of a graph G is a partition of the vertices of G such that the
nodes xi and xj are in different subsets. By computing a minimum (v+, v−)
cut on G through the max-flow algorithm, the authors can define a set of
edges which disconnects v+ and v− if removed. By doing so, a two non-
empty sets partition of the graph is obtained. The two sets contain either
v+ or v− and are respectively called V+ or V− depending on the membership
of either v+ or v−. Labels assignation is simply done by associating the class
0 with each instance contained in V− and class 1 with each instance in V+.

Even if the work presented in [Blum and Chawla, 2001] is not explicitly
about optimizing the quadratic function, the function is still somehow min-
imized as each unlabeled instance xi is assigned to the class set which is
the most connected to xi. The proposed approach indeed labels instances
such that interactions between instances of the two different classes are min-
imized. The quadratic function of the initial G is thus minimized by the
algorithm introduced by the authors.

Some approaches however tackle the classification problem through the
direct optimization of the quadratic function H. Graphs are supposed to sat-
isfy the smoothness assumption, considering the labels associated with the
instances composing the graph. The unknown labels of unlabeled instances
in the graph are also supposed to be smooth considering the graph and the
labeled instances. The quadratic function H associated with the graph rep-
resentation of a dataset is consequently supposed to be small. Graph-based
classification algorithms hence propose a labeling y which minimizes the
quadratic function H(y) of the graph based on a matrix representation W
of the graph and the known labels yL

The quadratic function H can be seen as the sum of the labeling dis-
similarity between neighbouring instances, weighted by how close the pairs
of instances are in the graph. An approach to directly minimize the quad-
ratic function is to define labels for each unlabeled instance such that its
neighbourhood disagreement on labels is minimized. The label propagation
algorithm introduced in [Zhu and Ghahramani, 2002] computes a labeling of
unlabeled instances by smoothing the labeling difference between neighbours
instances. In their work, authors describe a method to iteratively minimize
the quadratic function H of the graph representation of the input data. The
idea of the algorithm is more precisely to associate with unlabeled instances
of the graph a label which is based on the instance neighbourhoods. Labeling
is done by propagating the available labels yi ∈ yL over the graph until labels
for instances from U are stabilized. The final computed yU, which globally
minimizes the quadratic function of the graph, thus tends to satisfy at best
the smoothness assumption of the graph.

30

In the presented paper, considering the set of all the possible edges,
authors assume that the weight wij of an edge eij is the gaussian kernel of
the Euclidean distance between instances xi and xj . The adjacency matrix
W associated with the graph representation of the data is a similarity matrix.
Based on W , the authors compute a probabilistic transition matrix Q which
is obtained by column-normalizing W , i.e. Qij = Wij/

∑
k Wkj . The matrix

Q is then itself row-normalized. Assuming a c classes classification problem,
authors also introduce a (l+ u)× c labels probabilities matrix F 0 such that
for each labeled instance xi ∈ L,

F 0
ij =

{
1 if Yi = j

0 otherwise

Initialization of F 0 for unlabeled instances is not important as long as
∀i ∈ {0, l + u− 1},

∑
k F

0
ik = 1. At each iteration, the matrix F t is com-

puted by propagating the labels probabilities distributions of the instances
F t−1 along the matrix Q by computing the dot product F t = QF t−1. The
probability of an unlabeled instance to belong to each class, at each itera-
tion, is the mean of its neighbours probabilities distributions. Not to let the
known labels yL for labeled instances fade, the initial probabilities vectors
of labeled instances are reset after each iteration. Let us define F ∗ to be
the final probability matrix obtained. For any instance xi ∈ U , the label
associated with it is the class k with the highest probability F ∗

ik. The several
steps are summarized in Algorithm 2.

The authors show that, when t tends to infinity, the probabilities matrix
F t converges to a fixed limit which only depends on the known labels and
the matrix Q. Let us define F t

L to be the l × c matrix composed of the
l first row of F t which is the labels probabilities distributions matrix of
labeled instances at iteration t. Let us similarly define F t

U to be the labels
probabilities distributions matrix of unlabeled instances. Q can similarly be
decomposed as [

QLL QLU

QUL QUU

]

The authors show that the solution can be obtained with the following matrix
formulation

F ∗
U = (I −QUU)

−1QULF
0
L

Several variants of the work introduced in [Zhu and Ghahramani, 2002]
have been developed. In [Zhu et al., 2003], restraining the task to a binary
classification problem, the same authors extend their works to take advantage
of external classifiers. They assume that an external classifier h is available

31

Algorithm 2: Pseudo-code of the label propagation algorithm
Data: G = (X,E) the graph representation of the dataset X = L ∪ U ,
yL the labels vector of labeled instances,
W the adjacency similarity matrix,
ε a convergence threshold
Result: y the predicted labels vector
// Initialization

1 Q ← Qij =
Wij∑
k
Wkj

2 Q ← Qij =
Qij∑
k

Qik

3 F 0 ← F 0
ik =

{
1 if xi ∈ X and yi = k

0 if xi ∈ X and yi
= k

4 Randomly initialise F 0 for xi ∈ U such that
∑
k

F 0
ik = 1

// Label propagation
5 while |F t − F t−1| > ε do
6 F t ← QF t−1;
7 ∀xi ∈ L, ∀k ∈ Y, F t

ik ← F 0
ik;

8 end
9 y ← yi = max

k
F∞
ik

for unlabeled instances. To take advantage of the supplementary knowledge,
they proposed to add an artificial node for each unlabeled instance xi ∈ U
in the graph, carrying the label computed by the external classifier h for xi.
The edge linking each unlabeled instance to its associated artificial node is
weighted by a selected parameter η. The hyper-parameter η expresses the
importance given to the external classifier labeling. Let us define hU to be
the set of labels computed by h for the set of unlabeled instances. The label
propagation algorithm can be applied on the augmented graph. The final
solution is consequently of the form

F ∗
U = (I − (1− η)QUU)

−1[(1− η)QULFL + ηhU]

Another variant of the label propagation algorithm aiming at computing
yU such that the labels y are smooth over the graph representation of the
data, called label spreading, has been developed in [Zhou et al., 2004]. A
first difference between the work from [Zhou et al., 2004] and the initially
introduced label propagation algorithm lies in the definition of the matrix
Q, which is defined such that Q = D− 1

2WD− 1
2 , where D is the diagonal

matrix such that Dii =
∑

j Wij . The main difference however lies in the

32

operation computed during each iteration. In the introduced work, authors
propose to update the probabilities matrix F t depending both on the actual
probabilities of each instance neighbourhood and on the initial probabilit-
ies of the labeled instances, by computing F t = αQF t−1 + (1− α)F 0. The
parameter α ∈ [0, 1] allows the authors to define the freedom the algorithm
has to modify the labels of initially labeled instances. The last difference
of the work from [Zhou et al., 2004] compared to the label propagation al-
gorithm is that the introduced algorithm does not force the labels of labeled
instances to stay at their initial values. The labels probability distributions
of the initially labeled instances are prone to change during the several itera-
tions. Initial labeling has a lower influence and the algorithm is more robust
against error in the set of labeled instances. It should also be highlighted
that the relaxation of the labeled instances labels allows more flexibility to
minimize the quadratic function H of the graph. More flexibility on the
labeling vector allows the graph to better satisfy the smoothness assump-
tion, considering the labels of the instances. The authors then show that
F t converges to a fixed limit which can be written under the following form
F ∗ = (I − αQ)−1F 0, which is pretty similar to the convergence limit of the
label propagation algorithm.

The authors also propose a regularization framework for the described
algorithm. They defined that the cost function C(F) associated with their
problem can be formulated as

C(F) =
1

2

l+u∑
i,j=1

Wij ||
Fi√
Dii

− Fj√
Djj

||2 + µ

l+u∑
i=1

||Fi − F 0
i ||2

where µ is a trade-off parameters to combine the smoothness related term
and the fitting constraint. They show that C(F) is minimized for

F =
µ

1 + µ
(I − 1

1 + µ
Q)−1F 0

Close from graph-based classification, a similar regularization framework
has been defined for graph-based regression in [Belkin et al., 2004]. Authors
define Q to be the Laplacian matrix of W at any power, i.e. Q = (D−W)p

where p ∈ N and Dii =
∑

j Wij . Supposing that the labels yL of instances
from L can be noisy, the authors aim at solving the task with the Tikhonov
regularization. More precisely, they aim at learning F ∗ ∈ Rl+u such that F ∗

minimizes the following cost

C(F) =
1

l

∑
i

(Fi − yLi
)2 + γF tQF

where γ ∈ R. Similarly to the previous paper, the cost is composed of
a fitting constraint, which aims at retrieving the known labels, and of a

33

smoothness term which aims at minimizing the quadratic function H of the
graph. Authors define 1 = [1, 1, ..., 1] the one vector and I the diagonal
matrix of multiplicity of each instance, i.e. Iii is the number of occurrences
of the instance xi in the labeled set. They show that the problem has a
solution with

F ∗ = (lγQ+ I)−1(yL + µ1)

where µ is a parameter to be chosen such that F ∗ is orthogonal to 1.
Considering that the labels of yL have no noise, the only goal to achieve is

the smoothness assumption. Authors propose a second regularization frame-
work to solve the task by minimizing the quadratic function. The solution
vector F ∗ can thus be defined as

F ∗ = argmin
F=(y0,y1,..,yl−1,F l,..,F l+u−1)

F TQF

and can be obtained by

F ∗ = Q−1
UUQ

T
UL(yL

T + µ1)

All the previously introduced graph-based algorithms take advantage of
the graph structure and the supposed smoothness assumption to solved the
targeted task by somehow minimizing the variation of the labels along the
edges. Based on an available graph representation of the dataset, some
approaches take advantage of the graph in order to project the data in a
representation space allowing the authors to perform a classical supervised or
semi-supervised classification algorithm based on the vectorial representation
of the data.

In [Perozzi et al., 2014], based on an input graph representation of the
data, the authors propose an approach aiming at projecting the data in
a representation space preserving neighbourhood properties of the graph.
Based on random walks performed on the input graph, they aim at learning,
for each instance in each random walk, the representation maximizing the
probability of the instance to be in the specific random walk. They seek
at taking advantage of the preserved smoothness assumption to perform a
usual classification in the representation space.

A similar work is found in [Grover and Leskovec, 2016], where authors
aim at learning data features such that the neighbourhoods of instances
found in the network are preserved. Based on random walks over the graph
to define a neighbourhood for each instance, the embedding of each instance
are learned by minimizing a neighbourhood preserving objective function. A
usual classification algorithm is then applied in the representation space of
the data.

34

3.4 Graph construction relevance

Multiple graph representations of a dataset can be built to solve a real world
problem, depending on some arbitrary choices that are made during the data-
set or the graph creation processes. Considering a selected dataset for a real
world problem, significantly different graphs can be obtained by choosing the
vectorial representation of the data, the weighting function and the pruning
method used for the graph construction step. Some of the built graphs are
not ensured to satisfy the smoothness assumption considering the task. Such
graphs are not meaningful considering the task to solve.

Graph-based algorithms take advantage of the proposed graph represent-
ation of the data and the supposed smoothness assumption to solve the task.
The computation and the result of graph-based algorithms consequently de-
pends on the relevance of the input graph. The arbitrary choices leading
to the particular graph-representation of a dataset do have an influence on
the task to be solved. Graph representation of a dataset is consequently a
crucial point in graph-based semi-supervised learning.

In [Maier, Markus et al., 2013], authors make a theoretical study of the
influence of graph construction methods on some graph-based algorithms
computation. They more particularly work in a graph-based clustering con-
text by analysing the behaviour of some clustering related quantities, like the
normalized cut of a graph or some of its variants. For a partition of the graph
G = (X,E) in two sets of nodes A and X\A, the cut value of the partition is
the sum of the weights of the edges linking the instances from the different
sets. The normalized cut, and its variants, are cost based on the cut value
compared to the set of edges of the graph. The authors compare the conver-
gence of the introduced measures on several graph representations of a same
dataset. Clustering measures are compared for the k-nn simplification —
regardless of the mutual or symmetric approach —, the ε simplification and
the complete graph. Authors show that the differently built graphs lead to
significantly different limits of the introduced cut quantities. The solution of
a same task on different graphs built from the same dataset are consequently
different.

Authors of [de Sousa et al., 2013] also work on the influence of graph con-
struction for graph-based algorithms. They make an empirical study on the
influence of the different arbitrary choices made during the graph construc-
tion. Accuracy of several graph-based semi-supervised learning algorithms
are compared for different combinations of weighting functions and pruning
methods. They also show that significantly different results are obtained
from several graph representations of a same dataset.

Graph-based Machine learning algorithms rely on empirical graph con-
struction methods for which few theoretical works have been performed.

35

Theoretical analysis of the influence of graph construction on algorithms ex-
ecution are sparsely available. In the following of this work, a representation
learning algorithm for graph-based classification is introduced. A theoretical
analysis is performed to evaluate the interest of representation learning for
graph-based classification. The work presented in this thesis take part to
the objective of comprehending the influence of graph construction on task
resolution.

In the next chapter, we introduce an algorithm to learn a more optimal
representation space for graph-based classification algorithms. More pre-
cisely, the algorithm aims at learning a representation in which a targeted
distance is representative of the task similarity. The graph built in the repres-
entation space learned with the the introduced algorithm with the targeted
distance consequently should satisfy the smoothness assumption.

36

Chapter 4

A metric driven representation
learning for graph-based label
propagation

Any supervised and semi-supervised classification algorithm is somehow de-
pendent on a distance applied on the vectorial representation of the data.
Accuracy of supervised and semi-supervised algorithms is consequently de-
pendent on the capability of the distance associated with the representation
space of the data to reflect task similarity between instances. Can the vec-
torial representation of the data and the distance associated with it be tuned
such that the distance on the representation space is meaningful considering
the task to be solved?

Taking advantage of the relationships expressed by the graph repres-
entation, graph-based algorithms are a subset of semi-supervised algorithms
([Zhu, 2005]) that are particularly dependent on the adequacy of the distance
to the vectorial representation of the data, as seen in Section 3.4. Graph-
based semi-supervised algorithms, among which the algorithms introduced in
Section 3.3, assume that the graph is a homophilic structure. As seen in Sec-
tion 3.2, many graph representations can be built from a dataset. The graph
representation of a dataset depends on choices made on the vectorial rep-
resentation and the graph construction, notably the distance used to qualify
the relationships between instances. Due to the numerous choices leading to
a graph representation of a dataset, the smoothness assumption can hardly
be ensured for any of the several graph representation that can be obtained
for a dataset.

Trying to achieve the smoothness assumption on a graph equates to mak-
ing each instance lies in a homogeneous neighbourhood considering the task.
Smoothness assumption can be satisfied if the graph representation of a data-
set is such that each instance is closer to similarly labeled instances than to

37

any dissimilarly labeled instance. In a graph, instances closeness depends on
the distance used to weight the edges. The used distance should be repres-
entative of the task.

In the present chapter, we consequently aim at learning a distance dφ
on the instances such that it satisfies some relative constraints related to
the smoothness assumption. In the following, we will first introduce a gen-
eric method to learn such a distance dφ. For the distance dφ to satisfy
some constraints, the method we introduced aims at projecting the dataset
in a representation space in which a predefined distance satisfied the set of
constraints. More precisely, we will describe a method to learn a repres-
entation space of the dataset such that some relative constraints — related
to the smoothness assumption — are satisfied. In a second step, we will
describe how we implemented the generic approach by instantiating the rep-
resentation that is learned. We choose artificial neural networks to learn
a projection of the initial data. Artificial neural networks are increasingly
used for representation learning. As graph-based classification requires to
learn relationships between instances, a siamese architecture is necessary to
learn our mapping function. We will consequently discuss about neural net-
works and the siamese architecture. The final goal is to solve a classification
task through a graph-based algorithm. A graph representation of the data
needs to be built in the representation space learned through the introduced
algorithm. Let us consequently described the exploitation of the represent-
ation space for the graph-based classification. Several similar approaches
have already been developed. Relationships of our approach to some similar
algorithms are finally being discussed.

4.1 Representation learning for graph-based classification

The objective of the present chapter is to efficiently apply a graph-based
classification algorithm on a graph representation of the dataset. The labels
vector of the instances is consequently required to be smooth over the graph
representation of the dataset. To build a graph representation of a dataset
which satisfies the smoothness assumption, we aim at learning a distance dφ
on the instances such that similarly labeled instances are closer from each
other than from dissimilarly labeled instances. More precisely, the distance
dφ is aimed at being learned such that dφ(xi, xj) < dφ(xi, xk) for as many
triplets of instances (xi, xj , xk) ∈ X × X × X such that yi = yj
= yk as
possible.

Learning a distance dφ satisfying a set of constraints can be seen as learn-
ing a new vectorial representation φ of the instances such that a set distance
d satisfies the introduced constraints in the representation space associated
with φ. In this work, we consequently aim at learning a mapping function

38

φ projecting a dataset in a representation space such that a predefined dis-
tance d satisfies d(φ(xi), φ(xj)) < d(φ(xi), φ(xk)) for most of the triplets
(xi, xj , xk) such that yi = yj
= yk.

To learn such a mapping function φ, several optimization problems and
loss functions can be defined. As the objective is to learn a distance between
instances to build a graph, the loss function needed to learn the mapping
function φ can be seen as a metric learning loss function. More precisely, the
objective will be to learn φ to maximize the margin between d(φ(xi), φ(xj))
and d(φ(xi), φ(xk)) for as many triplets (xi, xj , xk) such that yi = yj
= yk
as possible.

As artificial neural networks learn an internal representation of the data
to solve prediction tasks, they are increasingly used to solve representation
learning problems. Neural networks are also convenient due to their efficient
optimization method called error-backpropagation. As the function φ that
aims at being learned is a mapping function, let us focus on the subset
of neural networks which can be seen as a direct mapping of the initial
representation space.

Neural networks consider a single instance while we are interested in
learning relationships between instances, i.e. we focus on tuples of instances.
A siamese architecture provides a tool to handle multiple variables for a
single neural network, allowing us to learn relations between instances by
optimizing φ for a metric learning cost function. A siamese architecture is
consequently developed in order to learn a neural network φ such that it
minimizes the metric learning cost function.

The objective of this work is to outperform the initial vectorial repres-
entation of the data for a graph-based classification task. Once the mapping
function φ is learned such that the data is projected in a representation
space satisfying the more constraints as possible, a graph representation of
the data is built in the presentation space mapped by φ, following one of the
methods introduced in Section 3.2. A graph representation of the data being
available, the classification task can be solved by applying the label propaga-
tion algorithm ([Zhu and Ghahramani, 2002]) described in Section 3.3.

The global approach we introduce for graph-based classification is sum-
marized in Algorithm 3. We called it MDRL for Metric Driven Representa-

39

tion Learning.
Algorithm 3: MDRL: Representation learning algorithm for graph-
based classification
Data: (L, yL) a set of labeled examples and their associated labels
U a set of unlabeled instances
d a distance
Result: yU a vector of predictions for instances from U

1 φ ← MDRL(L, yL, d) // Representation learning
2 X̂ ← φ(X) // Projection of the dataset in the new

representation space
3 G,W ← Graph Construction(X̂, d) // Graph representation

construction in the new representation space
4 yU ← Label Propagation(W, yL) // Unlabeled instances

classification

4.2 Constrained representation space learning

Before discussing our approach in more details, let us recall some notations.
Let us recall Y = {1, ..., c} to be the set of predefined labels and X ∈ Rp be
a vectorial space. Let (x0, y0), ..., (xn−1, yn−1) be a set of labeled examples,
where ∀i ∈ {0, ..., n− 1}, xi ∈ X and yi ∈ Y. Let X = {x0, ..., xn−1} be the
set of instances and let y = [y0, ..., yn−1] be the labels vector of instances
from X. Two instances xi and xj are said to belong to the same class if their
labels yi and yj are equals. Let us finally introduce the Euclidean distance
dφ on Rp.

To optimally perform a graph-based classification algorithm, the built
graph representation of the dataset should be a homophilic structure. Our
objective is consequently to learn the distance dφ that allows us to build
a graph representation of the dataset along which the instances labels are
smooth. Labels are smooth considering a graph G if close instances in the
graph are similarly labeled. We want to learn a distance dφ such that for
two instances xi and xj , if dφ(xi, xj) is small (respectively large), the two
instances are similarly (respectively dissimilarly) labeled. The distance dφ
used to build the graph representation of the dataset could be learned such
that similarly labeled instances are closest from each other than from dis-
similarly labeled instances. Considering (xi, yi), (xj , yj), (xk, yk) ∈ X × Y
such that yi = yj
= yk, dφ should consequently be learned such that
dφ(xi, xj) < dφ(xi, xk).

Learning such a distance dφ equates to learn a new vectorial repres-
entation φ(xi) ∈ Rq of instance xi ∈ X such that a defined distance d
on Rq satisfies the smoothness related constraint for previously introduced
instances xi, xj and xk, i.e. d(φ(xi), φ(xj)) < d(φ(xi), φ(xk)). To learn

40

the new vectorial representation of the dataset, let us define φ to be a
mapping function from the initial representation space Rp to a new rep-
resentation space Rq. Satisfaction of the relative constraint on the dis-
tances d(φ(xi), φ(xj)) and d(φ(xi), φ(xk) can be achieved by learning φ such
that the distance between dissimilarly labeled instances — d(φ(xi), φ(xk))
— is maximized and the distance between similarly labeled instances —
d(φ(xi), φ(xj)) — is minimized. Maximizing an element while minimizing
another one can be seen as maximizing the gap between the two elements.
The mapping function φ can be learned such that, for the previously in-
troduced instances (xi, yi), (xj , yj) and (xk, yk), the difference between the
two distances is positive, i.e. d(φ(xi), φ(xk))− d(φ(xi), φ(xj)) > 0. Our goal
can consequently be achieved by learning φ that maximizes the difference
d(φ(xi), φ(xk))− d(φ(xi), φ(xj)), i.e. margin between d(φ(xi), φ(xk)) and
d(φ(xi), φ(xj)).

The dataset is however not only composed of the three introduced in-
stances xi, xj and xk. For the labels to be as smooth as possible over the
graph, the objective is to satisfy the relative constraint on the distances
d(φ(xi), φ(xj)) < d(φ(xi), φ(xk)) for as many triplets of labeled examples
(xi, yi), (xj , yj), (xk, yk) ∈ X × Y such that yi = yj
= yk as possible. To
fulfil as many relative constraints as possible for the dataset, the objective
function to maximize could be

∑
(xi,yi),(xj ,yj),(xk,yk)∈X×Y|yi=yj �=yk

d(φ(xi), φ(xk))− d(φ(xi), φ(xj)) (4.1)

Maximization of the Equation 4.1 can allow us to maximize the distance
of the negative pair and minimize the distance of the positive pair for each
triplet that needs to satisfy the relative constraint. Such an optimization
can however lead to inappropriate results. Maximization of such a sum can
be achieved by highly maximizing some components of the sum and neg-
lecting the other components. In our context, an extreme maximization of
d(φ(xi), φ(xk))− d(φ(xi), φ(xj)) can be reached for some triplets at the ex-
pense of other triplets. The difference between the distances for the neglected
triplets could then be negative and the associated constraints would not be
satisfied. Part of the relative constraints can be unsatisfied. The distance
would be relevant only for part of the instances in the representation space.
The graph would consequently not satisfy the smoothness assumption, likely
to deteriorate the label propagation results.

To avoid a representation space satisfying only a small subset of the
relative constraints, φ learning should be regulated not to encourage ex-
treme cases. More precisely, φ should not be learned to radically maximize
the difference d(φ(xi), φ(xk))− d(φ(xi), φ(xj)) for any triplet of examples
(xi, yi), (xj , yj), (xk, yk) ∈ X × Y such that yi = yj
= yk. As the difference

41

between the negative and positive distances is only required to be positive,
let us learn φ such that for any triplet of instances xi, xj and xk as previ-
ously introduced, the difference between the negative and positive distances
is bounded up to a selected margin µ ∈ R. Maximizing a difference up
to a set margin equates to minimize the positive gap between the margin
and the considered difference. In our context, for any triplet of examples
(xi, yi), (xj , yj), (xk, yk) ∈ X × Y such that yi = yj
= yk, we aim at minim-
izing the loss

µ− [d(φ(xi), φ(xj)− d(φ(xi), φ(xk))] (4.2)

A difference between the positive and the negative distances higher than
the margin must be prevented. Not to exceed the defined margin, by min-
imizing the loss at extreme, let us consider the following hinge loss for any
triplet of instances as previously defined:

max(0, µ− [d(φ(xi), φ(xj)− d(φ(xi), φ(xk))]) (4.3)

A hinge loss is a surrogate convex upper bound of the initial loss. The loss
introduced in Equation 4.3 is clearly a hinge loss associated with the previous
loss defined in Equation 4.2. The two losses are indeed equivalent for any
instances xi, xj and xj such that d(φ(xi), φ(xj) − d(φ(xi), φ(xk)) ≤ µ. For
any instances xi, xj and xj such that d(φ(xi), φ(xj)− d(φ(xi), φ(xk)) > µ,
the value of the loss from Equation 4.2 is negative, which is lower than the
value of the loss from Equation 4.3. In the defined hinge loss, the difference
between d(φ(xi), φ(xk) and d(φ(xi), φ(xj) can be maximized while it is lower
than the margin µ. Whenever the margin is reached, the loss returns a zero
score, indicating that the triplet does not need to be considered.

To satisfy the relative constraints associated with as many triplets of
examples (xi, yi), (xj , yj), (xk, yk) ∈ X×Y such that yi = yj
= yk as possible,
the loss from Equation 4.3 aims at being optimized for all the possible triplets
of instances (xi, xj , xk) ∈ X satisfying the introduced equality constraint on
their labels. The relative constraints on which is based the representation
learning are computed on a set of triplets (xi, xj , xk). A specific semantic
is associated with the order of the instances described by a triplet. The
first component of the triplet can be considered as a pivot point, the second
component is more similar to the pivot than the last component. More
precisely, in the representation space that aims at being learned, the first
component xi of a triplet (xi, xj , xk) is expected to be closer from xj than
to xk, considering the distance d.

Definition 4. Let us define T to be a set of triplets of instances such that for
all triplets (xi, xj , xk) ∈ T , xi is expected to be closer to xj, in the new space,
than to xk:

T = {(xi, xj , xk)|xi, xj , xk ∈ X}

42

The set of triplet T as defined in Definition 4 can be obtained from
various methods. Such triplets can for example be gathered from the data
collection process itself. For temporal videos, two successive images have
high probability to be more similar than two non-successive images. Easily
accessible triplets could be computed from a temporal video dataset. The set
of triplets could also be based on domain and experts knowledge. Experts
could indicate specifics similarity and dissimilarity rules.

In our context, the set of triplets can be based on the labels of the
instances and our set T can be computed directly based on the task. Relative
constraints that aims at being satisfied will consequently be directly based
on the set of triplets composed of two instances from a same class and an
instance from a different class. From a dataset X and the associated labels y
as initially introduced, one can always compute the following set of triplets

T = {(xi, xj , xk)|xi, xj , xk ∈ X ∧ yi = yj
= yk} (4.4)

To satisfy as many constraints as possible based on the whole set of
triplets T , the loss from Equation 4.3 is optimized for all the triplets from
the set T . The mapping function φ is consequently learned by minimizing
the following cost function:

C(φ|T) =
∑

(xi,xj ,xk)∈T

max(0, µ− [d(φ(xi), φ(xj)− d(φ(xi), φ(xk))]) (4.5)

where µ is the margin.

Minimization of the sum of bounded distances differences between pairs
of instances cannot lead to extreme maximization of some of the terms.
The distance is consequently more homogeneously representative of the task
similarity in the mapped representation space. To project our data in a
representation space allowing us to build a graph satisfying the smoothness
assumption, the mapping function φ is learned to minimize the introduced
cost. More precisely, considering a datasetX and its associated set of triplets
T , φ is learned such that

φ = arg min
f :Rp �→Rq

C(f |T)

4.3 Non-linear neural network learning

The aim of the approach is to learn a new vectorial representation of the data.
Artificial neural networks are increasingly used for representation learning
due to their internal representation learning and their efficient optimization
method. Some neural network architectures are more related to represent-
ation learning as they can be seen as a direct mapping function from the

43

initial vectorial representation to a new representation space. Let us first
describe the subset of neural networks we are interested in and let us assume
for the remainder of the work that φ belongs to the introduced subset.

Neural networks only consider one instance as input, while our approach
aims at learning a relation between instances. To handle several instances,
and more precisely triplets of instances, let us introduce the siamese archi-
tecture.

Multi-layers perceptrons

A neural network can be seen as a function mapping an input variable to an
output variable. Among the set of existing neural networks, multi-layers per-
ceptrons, or multi-layered perceptrons, are processing structures commonly
used for supervised learning. They are composed by different successive lay-
ers, the first and the last layers being respectively named the input and the
output layers. Intermediate layers are called the hidden layers. Also called
feed-forward neural networks, multi-layers perceptrons constitute a subset of
neural networks where each layer is connected to the previous and the next
layers. There is consequently no cycle in such neural networks.

The layers of a neural network are themselves composed by a set of
units, called neurons. A perceptron ([Rosenblatt, 1958]) is a unit which
produces a binary output by applying a threshold on a weighted combination
of its inputs. As a generalization of the perceptron, neuron (Figure 4.1) is
a unit producing a continuous value by applying a (commonly) non-linear
function, called activation function, on a weighted linear combination of its
inputs. The activation functions that are commonly used are the sigmoid
or the hyperbolic tangent. Successive layers of multi-layers perceptrons are

output

...

input n

input 0

input 1

unit

∑
a0

a1

an

Figure 4.1 – Example of a neuron

connected through their units. The inputs of any neuron of such a multi-
layers perceptron is the set — or a subset — of the outputs produced by the
units from previous layer. Similarly, the output of any neuron is duplicated
to be one of the inputs of each neuron — or a subset of neurons — from the
next layer.

44

Let us consider a multi-layers perceptron composed of l successive layers,
where each layer h is composed of kh units. Layers 0 and l−1 are respectively
the input and output layers. Let us define uhi the i − th unit from layer h.
Let Ah

i be the vector of weights associated with the unit uhi and let ghi be
the activation function associated with each unit uhi . Let [x0, ..., xk0] ∈ Rk0

be an input variable. Based on the introduced notation, the output of any
unit i from the input layer 0 is u0i ([x0, ..., xk0]) = g0i (xi). More generally, the
output of each unit i from layer h can consequently recursively be defined as

uhi ([x0, ..., xk0]) = ghi




k(h−1)−1∑
j=0

Ah
iju

h−1
j ([x0, ..., xk0])




Figure 4.2 is an example of a fully connected multi-layers perceptron.
The output of each unit can be expressed as a function of the initial inputs
and the weights of the network. Such a neural network consequently cor-
responds to a non-linear projection from an initial representation space to a
new representation space. Multi-layers perceptrons can reasonably be used
as mapping functions from an initial representation space to a new vectorial
representation.

...

...

...

...

...

...
variable

Input

layer
Input

layer
Output

variable

Output

u0
0

u1
0

u2
j

u0
k0−1

u1
k1−1

u1
j

u2
0

u2
k2−1

u3
k3−1

u3
0

Figure 4.2 – Example of a fully connected multi-layers perceptron

Various theorems have stated about the powerful representational capab-
ilities of non-linear feed-forward neural networks ([Hornik et al., 1989]). Let
Ah = [Ah

0 , ..., A
h
kh−1] ∈ Rkh−1×kh be the matrix composed of the vectors of

weights of each unit from layer h. A multi-layers perceptron is parametrized
by its depth and width hyperparameters — the number l of layers and the
number of units kh composing each layer h — and the set of weights matrices
{A1, ..., Al−1} associated with its several layers. For the rest of this work, let
Φ be the set of multi-layers perceptrons with a fixed architecture. Learning
the mapping function φ through our algorithm equates to learn the optimum
set of weights matrices {A1, ..., Al−1} for the fixed architecture.

45

Learning

A neural network φ associates a new variable φ(x) to an input variable x.
Depending on the goal driving the neural network learning, a cost function
C(φ(x)|x) can be defined to evaluate the relevance of the neural network
output. The objective is to learn the network φ to minimize the value of the
cost function. In addition to being able to handle complex datasets, a power-
ful and computationally efficient method for neural networks optimization
has been defined.

We have seen that a multi-layers perceptron with l layers is paramet-
rized by its set of weights {A1, ..., Al−1}. The influence of each of the
weights on the cost function can be defined. To minimize the value of
the cost function, the weights of the network can be updated depending
on their impact on the obtained error. An optimization method to update
the weights of the network is called the error backpropagation, mainly in-
troduced in [Lecun, 1985, Rumelhart et al., 1986, Le Cun, 1986]. The error
backpropagation optimization method is an iterative approach, where the
weights of the network are updated depending on the error obtained con-
sidering the input instance. During the learning phase, each weight of the
network is adjusted by subtracting a proportionate rate of its associated de-
rivative depending on a learning rate α ∈ R, i.e. Ah

ij = Ah
ij − α∆h

ij . The
learning rate is defined in order to adjust how fast the parameters are up-
dated at each step. ∆h

ij corresponds to the influence of each weights Ah
ij on

the obtained cost and can be computed as

∆h
ij =

∂C(φ(x)|x)
∂Ah

ij

The term ∂C(φ(x)|x)
∂Ah

ij

can itself be decomposed as

∂C(φ(x)|x)
∂Ah

ij

=
∂C(φ(x)|x)

∂
kh∑

m=0
Ah

mju
h−1
m (x)

×
∂

kh∑
m=0

Ah
mju

h−1
m (x)

∂Ah
ij

=
∂C(φ(x)|x)

∂
kh∑

m=0
Ah

mju
h−1
m (x)

× uh−1
i (x)

Let us define, for a layer h, δhj = ∂C(φ(x)|x)

∂
kh∑

m=0
Ah

mju
h−1
m (x)

. ∆h
ij can consequently

be expressed as
∆h

ij = δhj u
h−1
i (x)

46

To define the influence ∆h
ij of each weight Ah

ij from hidden layer h, the
expression of the term δhj must be defined for all the hidden layers. Each
unit j from layer h influences the final error as an input for units from next
layer. Each derivative δhj for unit j from hidden layer h can consequently be
recursively defined depending on the next layer. The term δh−1

i associated
to the i − th unit from layer h − 1 partially depends on the influence of its
successor units, among which the unit uhj . Based on the chain rule for partial
derivative, considering a specific successor unit uhi :

∂C(φ(x)|x)

∂
kh∑

m=0
Ah

mju
h−1
m (x)

=
∂C(φ(x)|x)

∂
kh∑

m=0
Ah

miu
h−1
m (x)

×
∂

kh∑
m=0

Ah
miu

h−1
m (x)

∂u
(h−1)
i (x)

×
∂u

(h−1)
i (x)

∂
kh−1∑
m=0

Ah−1
mj uh−2

m (x)

(4.6)

To incorporate the influence of each unit uhi from the next layer, the quantity
defined in Equation 4.6 is summed over all the units of the successor layer:

δ
(h−1)
j =

kh∑
i=0




∂C(φ(x)|x)

∂
kh∑

m=0
Ah

miu
h−1
m (x)

×
∂

kh∑
m=0

Ah
miu

h−1
m (x)

∂u
(h−1)
i (x)

×
∂u

(h−1)
i (x)

∂
kh−1∑
m=0

Ah−1
mj uh−2

m (x)




which can be simplified as follows:

δh−1
j =

∂u
(h−1)
i (x)

∂
kh−1∑
m=0

Ah−1
mj uh−2

m (x)

kh∑
j=1

δhj ×W h
ij

Each weightAh
ij parametrizing the multi-layers perceptron can consequently

be updated by computing Ah
ij = Ah

ij − αδhj u
h
i (x).

In our setting, let us consider a dataset X ⊂ Rp. The feed-forward neural
network that aims at being optimized in order to map our data into a repres-
entation space Rq satisfying some relative constraints will be characterized
by an input layer with p units, i.e. k0 = p, and an output layer with q
units, i.e. kl−1 = q. The depth of the neural networks, i.e. the number of
hidden layers, and the width of each layers, i.e. the number of units, will be
empirically chosen.

47

Siamese neural network architecture

In this work, we are interested in learning a relationship between instances,
and more precisely a distance between the vectorial representations of two in-
stances. To learn the appropriate mapping function, the cost function that
aims at being minimized handles the projection of a triplets of instances.
The introduced cost function handles the output provided by φ for three
distinct input variables. To optimize such a loss, a specific neuronal ar-
chitecture needs to be defined. In [Bromley et al., 1994], an architecture is
introduced to simultaneously manage the application of a same network on
distinct inputs. A siamese neural network is an architecture composed of as
many similar sub-networks as distinct inputs. A comparator is added on top
of the dupplicated networks to compare the output obtained from each of
them in order to evaluate the final cost function. Figure 4.3 illustrates the
architecture with a small example.

...

...

...

... ...

...

...

.........

...

Input variable 2

Comparator

network
neural
Shared

Input variable 1

Output

Figure 4.3 – Example of a siamese neural network

In our setting, our cost function is composed of a comparator, the hinge
loss which compares two inputs a and b: max(0, µ−(a−b)). The comparator
layer composing our global network takes as inputs the pairwise distances
d(φ(xi), φ(xj) and d(φ(xi), φ(xk)). The compared distances correspond to
the distance between two instances in the representation space mapped by
φ. In order to compute the distance between two instances in the new
representation space, two copies of the feed-forward network representing
the mapping function φ are needed, complemented by a distance layer. The
previously defined module can itself be seen as a siamese neural network with
two inputs, xi and xj ∈ Rp, and a unique output d(φ(xi), φ(xj) (Figure 4.4).

48

...

...

...

... ...

...

...

.........

...

Shared

Output

Figure 4.4 – Example of a siamese architecture for a pairwise distance.

The comparator layer computing the hinge loss takes as inputs the out-
put of two copies of the previous module. The siamese network needed
to compute the loss in performance associated with a triplet of instances
(xi, xj , xk) ∈ T is thus composed of two copies of a smaller siamese network.
The sub-network composing the siamese architecture is composed of a dis-
tance layer on top of two copies of the feed-forward network corresponding
to the mapping function. The whole siamese network is consequently com-
posed of four copies of the feed-forward neural network φ.

The instance xi is shared by the two pairwise distances that are being
compared in the final loss function. The inputs of our siamese architecture
are consequently two pairs of instances, one being shared. The output of the
described network is the loss function evaluated on a triplet (xi, xj , xk) ∈ T ,
aiming at being minimized in order to learn φ. The global siamese network
that is defined to learn the mapping function φ can be summarized in Fig-
ure 4.5.

Optimization of the mapping function φ by backpropagation in a siamese
architecture.
The siamese architecture previously introduced allows us to evaluate the

loss from Equation 4.3 for a triplet (xi, xj , xk) ∈ T considering the actual
mapping function φ. To learn φ such that it minimizes C(φ|T), weights of
φ must be modified depending on the error obtained for a specific input.
In our setting, the input is constituted of three distinct instances. Each
feed-forward neural network projecting one of the instances in the new rep-
resentation space needs to be updated depending on its influence on the

49

...

Figure 4.5 – Siamese neural network framework for a mapping function φ, a
distance d, a margin µ and a triplet (xi, xj , xk) ∈ T

error. All the several sub-network are however the same shared feed-forward
network. To update φ depending on the impact of each instance of a triplet,
the derivative of the error depending on each weight of φ is iteratively back-
propagated for each instance of the triplet.

4.4 Graph-based classification

Stochastic gradient descent on the siamese neural network for the loss eval-
uated on triplets of instances from T allows us to update parameters to
minimize the cost function C. The only tunable weights of the introduced
siamese architecture are carried by the feed-forward neural network corres-
ponding to our mapping function φ. The iterative backpropagation of the
cost function evaluated on random triplets (xi, xj , xk) from T allows us to
obtain a mapping function φ that minimized our global cost function C(φ|T).

Considering the learned function φ, mapping a dataset X = L ∪ U from
Rp to Rq, and a label vector yL, let us described how classification of un-
labeled instances from U is performed, i.e. how the vector yU is computed.

This work focuses on graph-based classification algorithm and more par-
ticularly on the algorithm introduced in [Zhu and Ghahramani, 2002]1. As
seen in Section 3.3, the set algorithm iteratively propagates the label of each

1implemented in Scikit-learn (Python module, [Pedregosa et al., 2011])

50

instance to his neighbourhood until stabilisation. Neighbourhood is defined
depending on the structure of the graph the algorithm is applied on. A
graph representation of the dataset first needs to be built before being able
to classify unlabeled instances from U .

As seen in Section 3.2, a common graph representation G construction
method is to weight all the pairs of instances from the dataset X. Weighting
is commonly done by applying a distance on the vectorial representation of
the considered pair of instances. In our setting, the representation space
of the data has been learned to outperform the initial representation. The
graph representation is computed in the representation space the dataset is
projected in. The mapping function φ has moreover been learned depending
on a fixed distance, the Euclidean distance in our setting. The weighting
function used to weight the graph representation of the dataset in the rep-
resentation space mapped by φ is consequently the Euclidean distance.

In the same section, we have seen that several pruning methods can be
applied to keep the most relevant edges of a graph. An intuition about our
approach is that the representation space is learned such that an instance
is closer, depending on the Euclidean distance, to any similarly labeled in-
stance than to dissimilarly labeled instances. A threshold can be assumed
such that two instances with a distance beyond the defined threshold have
a high probability to be dissimilarly labeled. Let us consequently focus on
the ε-simplification in our setting.

Once such a graph-representation of the dataset X is built, the label
propagation algorithm can be applied to predict the labels vector yU for
instances from U . The process starting from the initial space of the data
and leading to the classification of instances from U has already been sum-
marized in previously introduced Algorithm 3.

4.5 Related work

Among the metric learning and representation learning algorithms that have
been developed (cf Section 2.4), some of them are driven by a supervised
or semi-supervised task. The targeted task supervision can be variable. In
[Rifai et al., 2011], authors propose an unsupervised representation learning
based on auto-encoder neural networks. After the auto-encoder training,
a classification layer is added. The whole network, among which the rep-
resentation layers, is fine-tuned before a supervised classifier training. The
representation learning is poorly supervised by the targeted task. Authors of
[J. Weston, 2008] also perform a representation learning in order to solve the
targeted task. They attempt a direct learning of both the representation and

51

the classifier. The representation is learned to improve the model used for
classification. Representation learning is either treated as an auxiliary task
of a classifier training or is performed simultaneously to the classification
training.

Some approaches, close to the algorithm that will be introduced, directly
bias the learning phase with task related constraints. For example, authors in
[Chopra et al., 2005] propose a task driven representation learning in order
to solve a supervised classification. They project the data in a new represent-
ation space by learning a convolutional network. The weights of the networks
are learned based on pairwise similarity and dissimilarity constraints defined
based on the classification task. The classification task is solved by directly
comparing the vectorial representation of two pictures. The pairwise con-
straints being computed directly from the task labeling, the supervision of
the representation learning algorithm is directly related to the targeted task.
Similarly to the described appproach, authors of [Hoffer and Ailon, 2014]
also proposed a supervised representation learning for a classification task.
More precisely, they train a neural network, through triplet constraints, to
project the data in a new representation space. They finally train a one-
layer network on top of the representation to solve the classification task.
The representation is also learned with task related supervision.

Algorithms proposed in [Rifai et al., 2011] and [J. Weston, 2008] are, sim-
ilarly to our work, learning a representation before solving the task. The
representation is however fine-tuned during the supervised classifier training,
while the representation learned by ourMDRL algorithm is not modified dur-
ing semi-supervised classification. Another difference of [Rifai et al., 2011]
and [J. Weston, 2008] with our approach is that, in their works, the classifier
is parametric while we rely on a non-parametric classifier on which we give
guarantees. In [J. Weston, 2008], they proposed an approach attempting a
task driven representation learning by learning both the representation and
the classifier, which is pretty different from our work. [Chopra et al., 2005]
and [Hoffer and Ailon, 2014] also learn the representation of the data before
solving the supervised task. Work proposed in [Hoffer and Ailon, 2014] how-
ever differ from our work by also proposing a parametric classifier, on the
opposite to our non-parametric classifier. Finally, the main difference of our
approach with that of [Chopra et al., 2005], is the shape of their representa-
tion function (convolutionnal network vs multi-layers perceptron) and their
exact learning criterion (pairwise comparison vs relative comparison).

52

Chapter 5

Bounds on the classification error

The representation learning algorithm introduced in Chapter 4 seeks at pro-
jecting the data in a representation space satisfying some labels and metric
dependent constraints. The graph representation of the data built in the
representation space learned by the introduced MDRL algorithm, following
the method defined in Section 4.4, is expected to be a homophilic structure.
If the graph is homophilic, graph-based classification algorithms are expec-
ted to perform optimally. In this chapter, we first show that a homophilic
graph does not necessarily lead to an optimal classification through the label
propagation algorithm introduced in Section 3.3. Non-triviality of linking
a graph-based classification error to the data representation space or to a
graph structure is consequently discussed.

Considering a mapping function learned via the introduced representa-
tion learning algorithm, to which extent the graph-based classification op-
timality can be ensured? In the following, some theoretical guarantees on
the graph-based classification performance are to be defined, determined by
the representation learned through our metric driven representation learning
algorithm. Different lemmas and theorems will then be stated in order to
perform a theoretical analysis of the classification framework introduced in
the present thesis. Each of the theoretical elements will finally be proved in
a last part.

5.1 Motivations

Based on the vectorial representation of the data learned by the MDRL al-
gorithm, the objective is to bound the label propagation classification error
that can be expected. Let d be a distance, X = L∪U be the dataset, yL be
the labels vector of instances from L and let us define T as in Equation 4.4.
To apply the label propagation algorithm, a graph representation G of the
data is built in the representation space mapped by φ. With our algorithm,
the representation φ(xi) of an instance xi ∈ X is learned to satisfy smooth-

53

ness related constraints, i.e. for each triplet (xi, xj , xk) ∈ T , i.e. such that
yi = yj
= yk, d(φ(xi), φ(xj)) < d(φ(xi), φ(xk)). Considering a perfectly
learned representation space, each instance of X is supposed to be closer to
each similarly labeled instance than to any dissimilarly labeled instances. In
such a representation space, instances are grouped in as many dense clusters
as there are different labels, allowing classification algorithms to optimally
solve the task. Building a graph representation of the dataset allows us to
relax the strong constraints on the representation space, as graph-based al-
gorithms take advantage of the highlighted structure to solve the task. In
graph-based algorithms, each instance does not need to be closer to each
similarly labeled instances than dissimilarly labeled instances. Graph-based
algorithms only require each instance to be locally closer to some similarly
labeled instances than dissimilarly labeled instances. It intuitively seems
that a graph-based classification algorithm applied on a graph built in a per-
fectly separated representation space will perform optimally and a zero error
classification is expected from graphs built in such a representation space. It
however appears that a a graph satisfying all the defined smoothness related
constraints can lead to an inaccurate classification.

Despite our intuition, a graph representation of a dataset built in a rep-
resentation space satisfying the smoothness related constraints can lead to an
incorrect classification. In the following, we illustrate the fact that an incor-
rect classification can be obtained from a homophilic graph by introducing
a simple example.

Let us consider a binary classification problem and the set of labeled ex-
amples (x0, 0), (x1, 0), (x2, 0), (x3, 1), (x4, 1). Let us hide the label of instance
x4 and let us defineX = L∪U to be the dataset such that L = {x0, x1, x2, x3}
and U = {x4}. The objective is thus to classify x4, i.e. to predict the label
associated with x4. Based on Definition 4.4, let T be the set of triplets of in-
stances expected to satisfy relative distances constraints based on L and yL.
T is consequently composed of triplets (xi, xj , xk) such that yi = yj
= yk.
In the introduced context, the label set is only composed of two labels 0
and 1. The triplets (x3, x4, x0) and (x4, x3, x0) thus belongs to the triplet
set T as well as all the possible compositions of the pair (x3, x4) with in-
stances from class 0 and all the triplets (xi, xj , xk) that can be computed
where yi = yj = 0 and xk ∈ {x3, x4}. The triplets (x0, x1, x3) or (x2, x0, x4)
are other examples of the triplets composing T . Let us assume that from
the representation of the instances, the following similarity matrix W was
obtained:

54

0 0.8 0.7 0.1 0.3

0.8 0 0.8 0.2 0.3

0.7 0.8 0 0.3 0.4

0.1 0.2 0.3 0 0.9

0.3 0.3 0.4 0.9 0







0.3

0.3

0.4

0.9

0.90.3 0.3 0.4


0

In the defined matrix, the red square wraps the links between the in-
stances from the class 0 and the blue square surrounds the edges between
the instances from the class 1. The row and columns highlighted in green
correspond to the set of edges linking the testing instance x4 to the rest of
the graph. The weighted adjacency matrix W results in the graph represen-
ted in Figure 5.1. In Figure 5.1, width of the edges is representative of the
instances closeness defined by the distance.

0.1
0.9

0.4

0.3

0.3

0.3

0.8

0.7

0.8

0.2 x4

x1
x2

x0

x3

Figure 5.1 – Graph representation of the toy dataset

The matrix W can be seen as the adjacency matrix of a complete graph
computed from X. To apply the label propagation algorithm introduced in
Section 3.3, let us compute a transition matrix Q from G by row-normalizing
W :

0 0.42 0.37 0.05 0.16

0.38 0 0.38 0.1 0.14

0.32 0.36 0 0.14 0.18

0.07 0.13 0.2 0 0.6

0.16 0.16 0.21 0.47 0







0.16

0.14

0.18

0.6

0.16 0.16 0.21 0.47


0

It can be seen that in both the initial similarity matrix W or its row-
normalized version, all the relative constraints associated with triplets from
set T are satisfied. The complete graph underlying W consequently satisfies
the smoothness assumption.

55

Based on the defined setting, let us unfold the label propagation al-
gorithm computation introduced in Section 3.3 in order to classify x4. Let
us define the initial classes probabilities matrix

F 0 =




1 0
1 0
1 0
0 1
0.5 0.5




At each step of the label propagation algorithm, the probabilities distri-
butions are updated through the update rule F t+1 = QF t. In our case, the
probabilities distributions are updated as follows:

F 1 =




0.87 0.13
0.83 0.17
0.77 0.23
0.7 0.3
0.53 0.47




On the introduced simple problem with only one unlabeled instance, the
label propagation algorithm converges in one iteration. The label c predicted
by the label propagation algorithm is given by

c = arg max
k∈{0,1}

F 1
4k

From F 1, the label predicted by the algorithm for x4 is consequently 0, which
is incorrect.

Let us try to understand why the label propagation gets the wrong answer
even though similarly labeled instances are closer from each other than to
dissimilarly labeled instances, i.e. the graph satisfies the smoothness assump-
tion. A first observation that can be made is that the classes distribution
of our labeled set is imbalance, and the class 0 is over-represented compared
to the other class. A second observation that can be made concerns the
adjacency matrix W . It can indeed be noticed that the global connectivity
of x4 to instances of the class 0 is higher than its connectivity to the class 1.
The imbalance of the classes in the labeled set is thus not counterbalanced
by the connectivity of x4 to its true class.

It can be observed that the relevant information, i.e. connectivity of x4 to
similarly labeled instance x3, was drowned by the numerous influences of dis-
similarly labeled instances. From the introduced example, it can be seen that
even if a graph satisfies the smoothness assumption, where similarly labeled
instances are closer together than to dissimilarly labeled instances, the label
propagation algorithm is not guaranteed to perform optimally. Satisfying
the smoothness assumption does not ensure an optimal label propagation.

56

It should be noted that the latest observation is similar when the learned
representation of the dataset not only satisfies the set of relative constraint
but secures a fixed margin µ within the constraint, i.e. ∀(xi, xj , xk) ∈ T ,
d(φ(xi), φ(xj)) + µ < d(φ(xi), φ(xk)). The margin only postpones the issue
contrasting the class imbalance and the connectivity influence problems.

Is pruning a solution?

Our previous example considered a complete graph representation of the
dataset. It can be suggested that ignoring a few edges may solve the con-
nectivity problem, by removing irrelevant edges between the two different
classes. As seen in Section 3.2, neglecting some edges is the objective of
pruning methods. Depending on the semantic of an edge, different simplific-
ation methods have been defined and can be applied. The different pruning
methods can lead to various graph representations. Due to the various graph
representations that can be obtained, the used pruning method influences the
task computation (cf Section 3.4).

Let us recall the previously introduced adjacency matrix W of the com-
plete graph from X and let us compare different graph representations that
can be obtained by pruning it.

0 0.8 0.7 0.1 0.3

0.8 0 0.8 0.2 0.3

0.7 0.8 0 0.3 0.4

0.1 0.2 0.3 0 0.9

0.3 0.3 0.4 0.9 0







0.3

0.3

0.4

0.9

0.90.3 0.3 0.4


0

Let us first compare different ε simplification, depending on the threshold
ε (Table 5.1). With an ε simplification, the instances connected together
through the remaining edges are ensured to have a minimum proximity de-
pending on the threshold, as edges are kept depending on the set threshold.
The ε simplification cannot guarantee anything about instances connectivity
and can lead to disconnected instances. The main drawback of the ε simpli-
fication is the ε threshold tuning, which has a high influence on the obtained
graph structure. When the chosen ε is too small (ε ∈]0.2, 0.3[in our ex-
ample), the risk is to keep most of the unwanted edges, which do not allows
us to solve our class imbalance versus connectivity influence problem. On the
opposite, relevant edges can be removed with a too restrictive ε (ε > 0.9. in
our example), which can lead to numerous disconnected instances. Discon-
nected instances can only be classified at random by the label propagation
algorithm.

57

ε ∈]0.2, 0.3[ε ∈]0.4, 0.7[ε > 0.9

0 0.8 0.7 0 0.3

0.8 0 0.8 0 0.3

0.7 0.8 0 0.3 0.4

0 0 0.3 0 0.9

0.3 0.3 0.4 0.9 0







0.3

0.3

0.4

0.9

0.90.3 0.3 0.4


0

0 0.8 0.7 0 0

0.8 0 0.8 0 0

0.7 0.8 0 0 0

0 0 0 0 0.9

0 0 0 0.9 0







0

0

0

0.9

0.90 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0







0

0

0

0

0 0 0 0
 

0

Table 5.1 – Possible obtained adjacency matrices W depending on the ε
choice.

While the ε simplification removes edges depending on the absolute im-
portance of each edge, k-nn simplification policy involves the relative im-
portance of each edge of the neighbourhood of each instance. Mutual and
symmetric simplifications lead to different guarantees on the graph. Due
to its reciprocity constraint, the mutual k-nn simplification gives an upper
bound on the neighbourhood size of each instance, while the symmetric k-
nn simplification ensures a lower bound on the instances neighbourhood size.
For our toy dataset, the graphs obtained through the two methods are a bit
different but would lead to the same classification result based on the label
propagation algorithm (Table 5.2).

k = 1 k = 2

symmetric k-nn

0 0.8 0 0 0

0.8 0 0.8 0 0

0 0.8 0 0 0

0 0 0 0 0.9

0 0 0 0.9 0







0

0

0

0.9

0.90 0 0 0

0 0.8 0.7 0 0

0.8 0 0.8 0 0

0.7 0.8 0 0.3 0.4

0 0 0.3 0 0.9

0 0 0.4 0.9 0







0

0

0.4

0.9

0.90 0 0.4 0

mutual k-nn

0 0.8 0 0 0

0.8 0 0 0 0

0 0 0 0 0

0 0 0 0 0.9

0 0 0 0.9 0







0

0

0

0.9

0 0 0 0.9 0

0 0.8 0.7 0 0

0.8 0 0.8 0 0

0.7 0.8 0 0 0

0 0 0 0 0.9

0 0 0 0.9 0







0

0

0

0.9

0.90 0 0 0

Table 5.2 – Possible obtained adjacency matrices W depending on the k-nn
simplification.

On the toy example, some of the different graphs obtained from various
pruning methods allow the label propagation algorithm to perform optim-
ally. While some of the pruned graphs do not perfectly separate the different
classes, the other do. Different graph structures and properties can thus lead

58

to a similar classification. Pruning methods that are optimal for some data-
sets can be sub-optimal for others datasets. Depending on the initial graph,
and a specified parameter, pruning can remove or keep too many edges. A
common drawback shared by all the introduced pruning methods is that few
properties of the graph can be ensured, in particular the graph connectivity.
The label propagation final results being dependent on the graph structure
and intern connectivity, defining some theoretical guarantees on the clas-
sification error obtained following the representation learning algorithm is
difficult.

In this work, a classification task is aimed at being solved by applying
the label propagation algorithm (cf Section 3.3) on a graph representation of
the data. The graph representation used to solve the task is built in a rep-
resentation space learned through our metric driven representation learning
algorithm (cf Section 4.2). One of our goal is to bound the label propagation
error that can be expected in the obtained graph representation.

Considering the influence of the pruning methods on the graph-based
classification algorithms, being able to evaluate the classification errors calls
for being able to characterized the pruned graph. The obtained graph is
dependent on both the pruning method and the initial graph that has been
simplified. The impact of the simplification step on the graph properties and
structure can be difficult to characterize. The initial graph characteristics
are subordinated to the representation space of the data and the function
used to weight the edges. Due to all the defined uncertainties, a bound on
the accuracy of the label propagation algorithm introduced in Section 3.3
depending on the representation of the data is not necessarly ensured.

Label propagation error can hardly be evaluated based on a specified
graph. Label propagation is however guaranteed to be optimal if there are
no edges between instances from different classes. All unlabeled instances
must also be connected to labeled instances. Optimal label propagation can
be obtained if the classes are well separated in the graph. A graph composed
of as many connected components, homogeneous considering the instances
labels, as classes will thus ensure an optimal label propagation.

Based on the latest observation, our theoretical analysis will not aim
at bounding the classification error based on the representation learning al-
gorithm error but at defining an initial context which provides an optimal
label propagation. More precisely, we will seek at defining an initial con-
text such that the graph build in the representation space learned by our
representation learning algorithm separates the different classes. We claim
that under some initial assumptions, the algorithm described in Section 4.2
provides a graph representation of the data that is optimal for classification
through the label propagation algorithm.

59

5.2 Theoretical guarantees

In the following, we substantiate our claim by showing that a specific graph
composed of c connected components homogeneous in class can be built.
More precisely, a specific value of ε will be defined to apply an ε simpli-
fication on the complete graph representation of the dataset built in the
representation space learned through our representation learning algorithm.
We show that the existence of such an ε can be ensured by supposing that
each unlabeled instance lies in a close neighourhood of at least one simil-
arly labeled instance. The radius of the unlabeled instances neighbourhood
will be defined depending on the representation space mapped by φ and the
labeled instances.

To prove the existence of such an ε, the distance between two instances in
the representation space mapped by φ is first shown to be bounded depend-
ing on their distance in the initial space and the learned mapping function
(Lemma 1). It can simultaneously be shown that the relative constraint as-
sociated with a triplet of instances is satisfied if each of the triplets instances
is sufficiently close, through the φ mapping, to a similarly labeled instance of
any triplet satisfying its associated constraint (Lemma 2). The combination
of the two previous lemmas allows us to define the necessary conditions such
that non-labeled triplets respect their associated relative constraints in the
representation space mapped by φ (Lemma 3). Based on Lemma 3, an ε al-
lowing us to compute an optimal ε-graph for the label propagation algorithm
can finally be exhibited (Proposition 1 and Theorem 1).

To introduce our propositions, let us first introduce some notations. Let
us consider a multi-class classification context with the predefined set of
labels Y = {1, ..., c}. Let D = {(x0, y0), ..., (xn, yn)} be a set of labeled
examples, such that ∀i ∈ {0, ..., n}, xi ∈ Rp and yi ∈ Y. From the initial
set of labeled examples, let us define T as the set of triplets as defined in
Equation 4.4. Let us define L = {x0, ..., xl−1} the set of labeled instances
and U = {xl, ..., xn} the set of unlabeled instances. The dataset X is the
set of instances X = L ∪ U . From L, the subset TL ⊂ T of triplets can
be defined as TL = {(xi, xj , xk)|(xi, xj , xk) ∈ T ∧ xi, xj , xk ∈ L}. Let TU be
defined as the other triplets, i.e. such that T = TL ∪ TU .

Let Φ be the class of multi-layered perceptrons with a defined architecture
such that ∀φm ∈ Φ, ∀m ∈ N, it can be recursively defined succh that

∀h ∈ {0..m}, φ̃h(x) = Bh tanh(Ahφ̃h−1(x) + αh) + βh

where for each layer h, Ah and Bh are the weights matrices parametrizing
the neural network and αh and βh are the bias vectors associated with the
layer.

60

Let φm be such that

φm = arg min
φ̃m

C(φ̃m|TL)

as defined in Equation 4.5. φm is the mapping function from Rp to a new rep-
resentation space Rq, learned through our representation learning algorithm
based on the set of triplets TL (cf Section 4.2). Let us define the distance d to
be either the Euclidean distance on Rp or on Rq, depending on the context.
Let us finally define W to be the adjacency matrix based on the pairwise
Euclidean distance between the instances from X in the representation space
mapped by φ, i.e. ∀xi, xj ∈ X,Wij = d(φm(xi), φ

m(xj)). For the rest of the

paper, for a matrix A ∈ Ru×v, let us define Ai: =
v∑

j=1
Aij and ‖A‖1 =

∑
i
Aji

is the l1-norm of the matrix A.

Let us now suppose that φm is learned such that C(φm|TL) = 0. The
learned φ is a mapping function to a representation space in which the re-
lative constraint associated with each triplet from TL is satisfied. In the
representation space mapped by φ, each labeled intance is closer to any sim-
ilarly labeled instance than to any dissimilarly labeled instance. The different
classes are pushed away from each other. Let us define

∆+
φm = max

(xi,xj ,xk)∈TL

d(φm(xi), φ
m(xj))

(respectively ∆−
φm = min

(xi,xj ,xk)∈TL

d(φm(xi), φ
m(xk)))

the largest distance between two similarly labeled intances in the new rep-
resentation space (respectively the smallest distance between dissimilarly
labeled instances through the learned mapping function).

Now the notations and notions are defined, let us introduce our first
lemma. The intent of the next lemma is to bound the distance between two
instances in the representation space associated with φ depending on the
distance between the two instances in the initial representation space.

Lemma 1. Let us consider η > 0 and xi, xj ∈ X. If d(xi, xj) < η, then

d(φm(xi), φ
m(xj)) < η

√√√√Πm
h=0

[∑
i

(∑
j

|Bh
ij |‖Ah

j:‖1
)2]

The proof for the lemma (cf Section 5.3) simply bounds the effect of the
various layers of the multi-layered perceptron.

61

For the next lemma, let us consider the instances in the new representa-
tion space. Lemma 2 shows that if the components of a triplet t from T lie
in a sufficiently small radius around similarly labeled components of a triplet
from TL, the relative constraint associated with the triplet t is satisfied.

Lemma 2. Let us consider ρ > 0. Let also consider (xi, xj , xk) ∈ TL and
(xt, xu, xv) ∈ T such that d(φm(xi), φ

m(xt)) < ρ, d(φm(xj), φ
m(xu)) < ρ,

d(φm(xk), φ
m(xv)) < ρ and yi = yt, yj = yu and yk = yv.

If d(φm(xi), φ
m(xk))− d(φm(xi), φ

m(xj)) > 4ρ then

d(φm(xt), φ
m(xv)) > d(φm(xt), φ

m(xu))

The introduced lemma can be proved (cf Section 5.3) by bounding the dis-
tances between the instances of triplet (xt, xu, xv) ∈ T — d(φm(xt), φ

m(xu))
and d(φm(xt), φ

m(xv)) — based on the distances between the components
of the labeled triplet — d(φm(xi), φ

m(xj)) and d(φm(xi), φ
m(xk)) —, in the

representation space mapped by φ. A condition on ρ, depending on the dis-
tances between the components of the labeled triplet in the representation
space mapped by φ, can then be expressed.

By combining the two first lemmas, let us introduce a lemma on the
generalization properties of our representation learning algorithm:

Lemma 3. Let us consider (xi, xj , xk) ∈ TL. ∃η > 0 such that ∀(xt, xu, xv) ∈ TU

such that yi = yt, yj = yu, yk = yv, d(xi, xt) < η, d(xj , xu) < η and
d(xk, xv) < η, then

d(φm(xt), φ
m(xv)) > d(φm(xt), φ

m(xu))

The lemma shows that the learning constraint is satisfied for all the
triplets that are close enough from labeled instances. Its proof (cf Sec-
tion 5.3) is based on the combination of Lemmas 1 and 2. It is shown that
if the corresponding components of two triplets are close enough in the ini-
tial space and if components of one of the two considered triplets are well
separated depending on their labels in the representation space mapped by
φ, then components of the other triplets will also be well separated in the
projection space considering their labels.

Let us recall the notation

∆+
φm = max

(xi,xj ,xk)∈TL

d(φm(xi), φ
m(xj))

(respectively ∆−
φm = min

(xi,xj ,xk)∈TL

d(φm(xi), φ
m(xk)))

the largest distance between training instances of the same class in the pro-
jection space (respectively the smallest distance between training examples

62

of different classes in the projection space). From learning constraints, we
know that ∆−

φm > ∆+
φm . Let us define Ŵ , the ε-graph simplification of W

Ŵij =

{
Wij if Wij < ε

0 otherwise

with ε =
∆−

φm+∆+
φm

2 .
Based on the previous lemmas, we state that the connected components

of Ŵ correspond to the different classes under some conditions on the initial
space:

Proposition 1. We can define η > 0 such that if ∀(xt, xu, xv) ∈ TU , ∃(xi, xj , xk) ∈
TL such that d(xi, xt) < η, d(xj , xu) < η, d(xk, xv) < η, yi = yt, yj = yu
and yk = yv, then :

∀xi, xj ∈ X, then

Ŵij =

{
Wij if yi = yj

0 if yi
= yj

The proof of the proposition (cf Section 5.3) is two folds. Concerning pair
of instances seen during the training step, the proof is based on the definition
of ε and on the definition of φ. For other pairs of instances, the proposition
is based on Lemma 1. By bounding Wij depending on d(φm(xi), φ

m(xj))
(or d(φm(xi), φ

m(xk)) if yi
= yj), η can indeed be defined depending on the
non-linear transformation, ∆+

φm and on ∆−
φm such that Ŵ is composed of c

connected components homogeneously labeled.

Let LP (xi) be the predicted label for instance xi through the label
propagation algorithm. Our main theorem can finally be introduced. The
theorem claims the relevance of the representation space learned by the
MDRL algorithm for the label propagation algorithm:

Theorem 1. We can define η > 0 such that if ∀(xt, xu, xv) ∈ TU , ∃(xi, xj , xk) ∈
TL such that d(xi, xt) < η, d(xj , xu) < η, d(xk, xv) < η, yi = yt, yj = yu
and yk = yv then

∀(xi, yi) ∈ D|xi ∈ U,LP (xi) = yi

Based on the strong assumption that each unlabeled instance is close
from a distance η of at least one similarly labeled instance, the introduced
theorem claims that in the representation space mapped by φ, a graph can be
built such that the label propagation is optimal. The proof of the theorem is
based on the Proposition 1 which allows us to build an ε-graph representation
Ŵ of X where the connected components are homogeneous considering the
instances labels (cf Section 5.3).

63

5.3 Proof

For the following, we first need to introduce a first lemma:

Lemma 4. Let us define u,v ∈ R and ν > 0. If |u− v| < ν then

| tanh(u)− tanh(v)| < ν

Proof. Let us define u,v ∈ R and ν > 0 such that |u − v| < ν. Let us
suppose that u > 0 and v < 0, then tanh(u) < u and tanh(v) > v. Thus
| tanh(u)− tanh(v)| < |u− v|.

Now suppose that u > 0 and v > 0 such that u ≤ v. As tanh is concave
for x > 0, then tanh(v) ≤ tanh

′
(u)(v − u) + tanh(u). Then we have:

| tanh(u)− tanh(v)| ≤ | − tanh
′
(u)(v − u)|

≤ |u− v|
< ν

The case where u > 0, v > 0 and u ≥ v can be shown similarly, like the
cases where u < 0 and v < 0.

Thus,

∀u, v such that |u− v| < ν then | tanh(u)− tanh(v)| < ν

Lemma 1

Proof. Let us prove the lemma by recursion.
Let xu and xv be such that d(xu, xv) < η. Obviously ∀i ∈ [1, d]|xvi − xvi | < η.

Let us evaluate d(φ0(xu), φ
0(xv)).

d(φ0(xu), φ
0(xv)) = d(B0 tanh(A0xu + α0) + β0, B0 tanh(A0xv + α0) + β0)

=

√∑
i

((B0 tanh(A0xu + α0)))i − (B0 tanh(A0xv + α0)))i)2 (definition of d)

=

√∑
i

(
∑
j

B0
ij(tanh(A

0xu + α0)j − tanh(A0xv + α0)j))2

≤
√∑

i

(
∑
j

|B0
ij(tanh(A

0xu + α0)j − tanh(A0xv + α0)j)|)2

By definition of the absolute value, the following inequation holds:

d(φ0(xu), φ
0(xv)) ≤

√∑
i

(
∑
j

|B0
ij ||(tanh(A0xu + α0)j − tanh(A0xv + α0)j)|)2

64

It can also be stated that

|(A0xu + α)j − (A0xv + α)j | = |
∑
i

A0
ji(xui − xvi)|

≤
∑
i

|A0
ji||xui − xvi |

< η
∑
i

|A0
ji|

Using Lemma 4,

| tanh((A0xu + α)j)− tanh((A0xv + α)j)| < η
∑
i

|A0
ji|

< η‖A0
j:‖1

The distance d(φ0(xu), φ
0(xv)) can consequently be bounded as follows:

d(φ0(xu), φ
0(xv)) <

√∑
i

(
∑
j

|B0
ij |η‖A0

j:‖1)2

< η

√∑
i

(
∑
j

|B0
ij |‖A0

j:‖1)2

Let us now suppose that ∃δ ∈ R such that d(φm(xu), φ
m(xv)) < δ. Let

us show that d(φm+1(xu), φ
m+1(xv)) < δ

√∑
i
(
∑
j
|Bm+1

ij |‖Am+1
j: ‖1)2.

d(φm+1(xu),φ
m+1(xv)) =

√∑
i

(φm+1(xu)i − φm+1(xv)i)2

=

√∑
i

(
∑
j

Bm+1
ij (tanh(Am+1φm(xu) + αm+1)j − tanh(Am+1φm(xv) + αm+1)j)2

≤
√∑

i

(
∑
j

|Bm+1
ij ||tanh(Am+1φm(xu) + αm+1)j − tanh(Am+1φm(xv) + αm+1)j |)2

≤
√∑

i

(
∑
j

|Bm+1
ij ||(Am+1φm(xu) + αm+1)j − (Am+1φm(xv) + αm+1)j |)2

≤
√∑

i

(
∑
j

|Bm+1
ij |‖Am+1

j: ‖1|φm(xu)j − φm(xv)j |)2

It has been seen that if d(φm(xu), φ
m(xv)) < δ then ∀j ∈ [1, qm],

|φm(xu)j − φm(xv)j | < δ.

65

It follows that

d(φm+1(xu),φ
m+1(xv)) ≤ δ

√∑
i

(
∑
j

|Bm+1
ij |‖Am+1

j: ‖1)2

The recursion is consequently proved and so does the lemma.

Lemma 2

Proof. Let us consider three instances xi, xj , xk ∈ X. From the triangular
inequality, we have that d(xi, xj) ≤ d(xi, xk) + d(xk, xj).

Applied on our triplets of instances:

d(φm(xi), φ
m(xk)) ≤ d(φm(xi), φ

m(xt)) + d(φm(xt), φ
m(xk))

≤ d(φm(xi), φ
m(xt)) + d(φm(xt), φ

m(xv)) + d(φm(xk), φ
m(xv))

and

d(φm(xt), φ
m(xv)) ≥ d(φm(xi), φ

m(xk))− (d(φm(xt), φ
m(xi)) + d(φm(xk), φ

m(xv)))

> d(φm(xi), φ
m(xk))− 2ρ

Similarly, we know that

d(φm(xt), φ
m(xu)) ≤ d(φm(xi), φ

m(xt)) + d(φm(xi), φ
m(xu))

≤ d(φm(xi), φ
m(xt)) + d(φm(xi), φ

m(xj)) + d(φm(xj), φ
m(xu))

< d(φm(xi), φ
m(xj)) + 2ρ

Consequently

d(φm(xt), φ
m(xv))− d(φm(xt), φ

m(xu)) > [d(φm(xi), φ
m(xk))− d(φm(xi), φ

m(xj))]− 4ρ

From the previous analysis, for d(φm(xi), φ
m(xk))− d(φm(xi), φ

m(xj)) ≥ 4ρ,
we have that d(φm(xt), φ

m(xv)) > d(φm(xt), φ
m(xu)).

Lemma 3

Proof. Let us consider η > 0 and a triplet (xt, xu, xv) ∈ TU such that
yi = yt = yj = yu
= yk = yv and d(xi, xt), d(xj , xu), d(xk, xv) < η. By Lemma 1,
we have that



d(φm(xi), φ
m(xt)) < η

√
Πm

h=1[
∑
i
(
∑
j
|Bh

ij |‖Ah
j:‖1)2]

d(φm(xj), φ
m(xu)) < η

√
Πm

h=1[
∑
i
(
∑
j
|Bh

ij |‖Ah
j:‖1)2]

d(φm(xk), φ
m(xv)) < η

√
Πm

h=1[
∑
i
(
∑
j
|Bh

ij |‖Ah
j:‖1)2]

66

By Lemma 2, if η is such that

d(φm(xi), φ
m(xk))− d(φm(xi), φ

m(xj)) ≥ 4η

√
Πm

h=1[
∑
i

(
∑
j

|Bh
ij |‖Ah

j:‖1)2]

we have that
d(φm(xt), φ

m(xv)) > d(φm(xt), φ
m(xu))

Consequently for

η ≤ d(φm(xi), φ
m(xk))− d(φm(xi), φ

m(xj))

4
√

Πm
h=1[

∑
i
(
∑
j
|Bh

ij |‖Ah
j:‖1)2]

if d(xi, xt), d(xj , xu), d(xk, xv) < η, then

d(φm(xt), φ
m(xv)) > d(φm(xt), φ

m(xu))

Proposition 1

Let us define Ŵ , the ε-graph simplification of W

Ŵij =

{
Wij if Wij < ε

0 otherwise

where ε =
∆−

φm+∆+
φm

2 .

Proof. Let us first consider the case where xi and xj ∈ L and let us suppose
yi = yj . By definition of ∆+

φm , d(φm(xi), φ
m(xj)) ≤ ∆+

φm .

By definition of ε, ε =
∆+

φm+∆−
φm

2 . Consequently ε >
∆+

φm+∆+
φm

2 and
ε > d(φm(xi), φ

m(xj)). We obtain that Ŵij = Wij .
Let us now suppose that yi
= yj . By definition of ∆−

φm , ε < ∆−
φm

and d(φm(xi), φ
m(xj)) ≥ ∆−

φm . It follows that d(φm(xi), φ
m(xj)) > ε and

Ŵij = 0.

Let us now consider the case where either xi or xj ∈ U . Let us first
suppose that yi = yj . Let xl ∈ X be such that yl
= yi. Let us consider
(x, x+, x−) ∈ TL such that d(xi, x) < η, d(xj , x+)η, d(xl, x−) < η, y = yi
and y− = yl.

Thus by the triangular inequality:

Wij = d(φm(xi), φ
m(xj))

≤ d(φm(xi), φ
m(x)) + d(φm(x), φm(xj)

≤ d(φm(xi), φ
m(x)) + d(φm(x), φm(x+) + d(φm(xj), φ

m(x+)) (5.1)

67

By Lemma 1, d(φm(xi), φ
m(x)) < η

√
Πm

h=0[
∑
i
(
∑
j
|Bh

ij |‖Ah
j:‖1)2]

and d(φm(xj), φ
m(x+)) < η

√
Πm

h=0[
∑
i
(
∑
j
|Bh

ij |‖Ah
j:‖1)2].

From Inequality 5.1, Wij can thus be bounded as follows:

Wij < d(φm(x), φm(x+)) + 2η

√
Πm

h=0[
∑
i

(
∑
j

|Bh
ij |‖Ah

j:‖1)2]

< ∆+
φm + 2η

√
Πm

h=0[
∑
i

(
∑
j

|Bh
ij |‖Ah

j:‖1)2]

Similarly, let us suppose that yi
= yj . Let xl ∈ X be such that yl = yi
and let us consider (x, x+, x−) ∈ TL such that d(xi, x) < η, d(xj , x−) < η,
d(xl, x+) < η, y = yi and y− = yl. Thus by the triangular inequality:

d(φm(x), φm(x−)) ≤ d(φm(x), φm(xi)) + d(φm(xi), φ
m(x−))

≤ d(φm(x), φm(xi)) + d(φm(xi), φ
m(xj)) + d(φm(xj), φ

m(x−))

and

Wij = d(φm(xi), φ
m(xj))

≥ d(φm(x), φm(x−))− (d(φm(xj), φ
m(x−)) + d(φm(x), φm(xi)))

Based on Lemma 1, a lower bound for Wij can be defined

Wij > d(φ(x), φ(x−))− 2η

√
Πm

h=0[
∑
i

(
∑
j

|Bh
ij |‖Ah

j:‖1)2]

> ∆−
φ − 2η

√
Πm

h=0[
∑
i

(
∑
j

|Bh
ij |‖Ah

j:‖1)2]

Consequently, by defining η ≤
∆−

φm−∆+
φm

4
√

Πm
h=1[

∑
i
(
∑
j
|Bh

ij |‖Ah
j:‖1)2]

W is characterized as follows

Wij



< ∆+

φm +
∆−

φm−∆+
φm

2 = ε if yi = yj

> ∆−
φm −

∆−
φm−∆+

φm

2 = ε if yi
= yj

which concludes our proof.

68

Theorem 1

Based on the Proposition 1, Theorem 1 claims that a threshold η can be
defined such that the ε-graph built in the representation space mapped by φ
with the threshold ε = η allows the label propagation algorithm to perform
optimally.

Proof. Let us consider the ε-graph Ŵ with ε =
∆−

φm+∆+
φm

2 . According to
Proposition 1, the weight Wij of every edge eij such that yi
= yj will be
reduced to 0 and the weight of every intra-class edge remains non-negative.
Thus the connected components remaining in the graph are only composed
of similarly labeled instances and the label propagation algorithm will be
optimal.

69

Chapter 6

Empirical analysis

The objective of the introduced representation learning algorithm is to pro-
ject the data in a representation space in which the classification task can be
more optimally solved, compared to the initial representation space. More
precisely, the data is projected in a representation space such that two sim-
ilarly labeled instances are closer from each other than from a dissimilarly
labeled instance. For the remainder of the present chapter, let us consider
closeness to be expressed through the Euclidean distance. In this chapter,
we aim at empirically evaluate the gain of the introduced representation al-
gorithm. We first describe more precisely how the mapping function φ is
learned by optimizing the cost function introduced in Section 4.2. The sev-
eral datasets on which the experiments will be performed and the several
(representation, distance) settings that will be compared in the experiments
are then successively introduced.

As a first step of the empirical evaluation, capability of the proposed
representation learning algorithm to meet the metric related constraints will
first be empirically evaluated. More precisely, the satisfaction of the guiding
constraints is being empirically evaluated for the different datasets in the
different settings. A theoretical analysis has been performed in Chapter 5
and some theoretical guarantees on the classification task have been defined,
based on strong assumptions on the initial representation space. In a second
phase, satisfaction of the introduced assumptions is evaluated. Let us then
focus on the evaluation of the empirical gain of the MDRL algorithm for
classification task. A third step is consequently to analyse the influence of
the representation space in which the data is projected by evaluating the
improvement of the classification task compared to other approaches. Some
open questions emerged from the theoretical and the empirical analysis. We
will discuss them by empirically exploring some possible extensions of the
work introduced in the present thesis.

70

6.1 MDRL - Triplet based neural network learning

Let us assume the same notation as previously introduced and let T be the
set of triplets as introduced in Equation 4.4 based on L. To map the dataset
X in a representation space satisfying a set of relative constraints based on
the triplets set T and related to the smoothness assumption, the mapping
function φ is learned to minimize the cost function C(φ|T) as defined in
Equation 4.5:

C(φ|T) =
∑

(xi,xj ,xk)∈T

max(0, µ− [d(φ(xi), φ(xj)− d(φ(xi), φ(xk))])

where µ is a set margin. In order to learn the multi-layered perceptron φ, a
siamese neural network is created based on φ, computing the loss introduced
in Equation 4.3 for any triplet (xi, xj , xk) ∈ T :

max(0, µ− [d(φ(xi), φ(xj)− d(φ(xi), φ(xk))])

The loss function is minimized by backpropagating the cost obtained for each
triplet that is given in input to the siamese network. The weights updates
due to backpropagation can be seen as part of an iterative gradient descent.
A criterion musts be defined to stop the gradient descent. The gradient
descent algorithm is usually stopped when the model converges. A model is
said to be convergent when the cost function used to evaluate the model is
stable, i.e. has a low variation from an epoch to another.

Gradient descent aims at minimizing the expected risk of the model
through the minimization of the empirical risk. The empirical risk is min-
imized by updating the model depending on a selected example. Such a
learning algorithm is however prone to overfitting. A model is said to overfit
when it performs great on instances used for learning but has a bad general-
ization performance on unseen instances. The model can notably memorize
some of the examples. Several solutions can be applied to avoid overfitting
([Bottou, 2012]).

The model can be given in input the same sequence of instances. To avoid
overfitting, having predictible inputs musts be averted. To prevent cycles
that can occur during the learning phase by selecting examples depending
on a defined ranking, the set of triplets T is randomly browsed. Our cost
function C(φ|T) is consequently minimized by stochastic gradient descent.

Model overfitting can be detected when the cost function evaluated on
training instances is minimized but its value on unseen instances increases.
To detect the simultaneous decrease of the objective function value on train-
ing examples and the increase of its value on unseen instances, let us split
the set of instances used to train the model into two sets. One of the two
created sets, called the validation set, is used as a sanity check, the other

71

set being named the training set. The increase of the cost function value on
the validation set on the opposite to a decrease of the same value for the
training set will consequently be the criterion used to stop the stochastic
gradient descent used to learn our model.

Algorithm 4 summarises our approach, which we refer to as the MDRL
algorithm, to learn an optimal representation for graph based classification.
Algorithm 4: MDRL: Representation learning algorithm for graph-
based classification
Data: X = L ∪ U the dataset
yL the labels vector for instances from L
φ a multi-layered perceptron
µ the margin > 0
d a distance
α the learning rate > 0
Result: φ the learned transformation function
// Initialization

1 Lt, Lv ← the split of instances from L ;
2 T ← the set of triplets based on L as defined in Equation 4.4;
3 Tt ← the subset of triplets from T where instances are in Lt;
4 Tv ← the subset of triplets from T where instances are in Lv;
// Stochastic gradient descent

5 while not convergence of C(φ|Tt) & not increase of C(φ|Tv) do
6 (xi, xj , xk) ← random triplet sampled from TT ;
7 error ← max(0, µ− [d(φ(xi), φ(xj)− d(φ(xi), φ(xk))]);
8 for layer h ∈ {0..m} do
9 for weight Ah

ij in the parameters set of layer h do
10 Ah

ij ← Ah
ij + λ δerror

δAh
ij

;

11 end
12 end
13 end

6.2 Datasets

Let us first introduce the different datasets on which the several experiments
will be performed. All datasets characteristics are summarized in Table 6.1.

A first set of experiments are performed on variations of the artificial
dataset circle.

The circle dataset is used to compare the targeted algorithms on a data-
set where a classical distance like the Euclidean distance is at least locally
representative of the task. The circle dataset is composed of two dimensional

72

Name type size features classes
circle artificial 500 2 2

perturbedCircle1 artificial 500 4 2
perturbedCircle2 artificial 500 4 2
perturbedCircle3 artificial 500 6 2

cancer real 683 9 2
ionosphere real 351 33 2
vehicle real 596 18 4
digit real 1797 64 10

Table 6.1 – Summary of the different datasets characteristics

points x = (a, b) that are sampled from two concentric circles (Figure 6.5a).
For simplicity, let us assume that the circles are centered on the (0, 0) point.
The two features a and b of each point x of the dataset correspond to its
euclidean coordinates. Each circle is associated with a class. The class of
each point is consequently defined depending on the circle the point belongs
to, i.e. on the value of a2 + b2. The two features characterizing an instance
have an equal influence on the label, as the label of each instance x is defined
depending on a2 + b2. Among all the possible combinations, the radius of
the two circles were chosen such that for each instance, there exists instances
lying on the same circle that are closer, considering a classical distance like
the Euclidean distance, than any instance from the other circle. Considering
both an ε-neighborhood or a k-nn neighbourhood, a close neighbourhood
can be defined for each instance from the circle dataset such that it contains
a majority of similarly labeled instances. The classical Euclidean distance,
the distance considered in our setting, locally reflects the task similarity in
the initial vectorial representation.

As previously seen, due to the dataset construction process, the Euclidean
distance is locally representative of the task similarity for the circle dataset.
The objective is to evaluate our algorithm for a dataset for which its initial
vectorial representation is not representative of the task, considering the
Euclidean distance. The following dataset aims at evaluating the ability
of the several compared algorithms that will be introduced in Section 6.3 to
extract the features related to the task while ignoring the irrelevant features.

In order to have a dataset for which the Euclidean distance is not rep-
resentative of the task in its initial representation space, let us introduce
some perturbations in the circle dataset. Let the dataset perturbedCircle1
(Figure 6.5b) be a first perturbed version of the circle dataset. The vectorial
representation of the dataset instances is composed of four numerical fea-
tures, i.e. x = (a, b, c, d). The two first features a and b of an instance x are
sampled likewise to the circle dataset and the two added features c and d are

73

sampled from a two-dimensional gaussian. Similarly to circle dataset, the
label of an instance from perturbedCircle1 is defined depending on a2+b2, i.e.
on the circle it lies on considering the two first features. Depending on the
sign of b, the added features c and d are sampled from one of two well separ-
ated two-dimensional gaussian distributions. The relationships between the
two groups of features are illustrated in Figure 6.1.

(a) The two first features (a, b) (b) The two last features (c, d)

Figure 6.1 – Visualisation of the relation between the two groups of features
(a, b) and (c, d) of the perturbedCircle1 dataset.

As the two first features and the label of any instance from perturbed-
Circle1 dataset are based on the circle dataset, the Euclidean distance is still
locally representative of the task similarity considering only the first two fea-
tures a and b. Two close instances on a same circle but with opposite sign
on the b-axis will be pretty different considering the c and d features. On
the opposite, two instances lying on the two different circles but sharing the
same sign on the b-axis will be considered as close depending on their c and
d features. It can be observed in Figure 6.2 that instances of both classes
are mixed considering the second group of features. The added two features
c and d act as a kind of structured noise. As the Euclidean distance gives
equal influence to all the features, closeness of two instances will equally de-
pend on the circle they lie on and their memberships to the same gaussian,
i.e. their signs on the b-axis. The addition of a structured noise can weaken
the relevance of a classical distance, which gives equal importance to all the
features. It can also be observed in the two-dimensional PCA projection of
Figure 6.5b that the two classes are not well separated and the two initial
circles are blured. The objective of the introduced dataset is to evaluate the
ability of our algorithm to extract the relevant features for the task and to
ignore irrelevant features.

74

(a) The two first features (a, b) (b) The two last features (c, d)

Figure 6.2 – Visualisation of the classes distribution of perturbedCircle1 data-
set depending on the two groups of features (a, b) and (c, d).

In the previous dataset, the added features are not related to the task.
The perturbedCircle2 dataset that is now introduced aims at evaluating the
ability of the several compared algorithms to take advantage of the labeling
information contained in the different features. The perturbedCircle2 dataset
(Figure 6.5c) is another perturbed version of the circle dataset. Each instance
of the perturbedCircle2 dataset is composed of four numerical features, x =
(a, b, c, d), which are sampled following the perturbedCircle1 dataset creation
process. The described dataset is similar to perturbedCircle1 dataset and
only varies on the labeling process. Each instance label depends either on
the circle it lies on if a ≥ 0, or on the sign of b if a < 0 (Figure 6.3).

The perturbedCircle2 dataset features are obtained from the same con-
struction process than the perturbedCircle1 dataset. Each feature thus has
the same influence on the computed Euclidean distance. Both pairs of fea-
tures are however not similarly related to the labeling of the perturbedCircle2
dataset. Due to the labeling process change, the Euclidean distance may not
be as locally representative of the task similarity than for the previous data-
sets. The added two features act as a competing explanation of the labels.
The Euclidean distance relevance for the task has weakened with respect to
the circle dataset, but not necessarily with respect to the perturbedCircle1
dataset as the added features are somehow related to the task (Figure 6.3b),
on the opposite to the structured noise added in the perturbedCircle1 dataset
(Figure 6.2b). The two gaussian distributions of the perturbedCircle2 data-
set are indeed more homogeneous, considering the classes of the instances,
(Figure 6.3b) than the gaussian distributions from the perturbedCircle1 data-
set (Figure 6.2b). The objective of perturbedCircle2 dataset is consequently

75

(a) The two first features (a, b) (b) The two last features (c, d)

Figure 6.3 – Visualisation of the classes distribution of the perturbedCircle2
dataset depending on the two groups of features (a, b) and (c, d).

to evaluate the ability of our algorithm to extract the labeling information
contained in the different features.

The last perturbed variant of the circle dataset that will be introduced is
the perturbedCircle3 dataset. Empirical experiments on the perturbedCircle3
dataset aim at evaluating how the different algorithms take advantage of the
informative features that are drown in a higher dimensional vectorial rep-
resentation. More precisely, the perturbedCircle3 dataset (Figure 6.5d) is a
six-dimensional dataset, x = (a, b, c, d, e, f), based on the perturbedCircle1
dataset. The four first features sampling and the labeling processes are sim-
ilar to the processes described for the perturbedCircle1 dataset. The two last
features, e and f , are sampled from two other well separated two-dimensional
gaussian distributions depending on the sign of the feature a.

As it is based on the perturbedCircle1 dataset, the Euclidean distance is
relevant for the task considering only the two first features of any instance
(Figure 6.4a). The four other features are pairs of coordinates sampled from
different gaussian distributions, depending on the sign of either the first or
the second feature. With the added two dimensional gaussian coordinates
compared to the perturbedCircle1 dataset, another structured perturbation
which does not bring any information about the labeling is introduced (Fig-
ures 6.4b and 6.4c). The described dataset is a more perturbed version of the
perturbedCircle1 dataset. The introduced perturbation makes the Euclidean
distance unable to represent the task similarity considering the four last fea-
tures (Figure 6.5d). The relevant features carrying the labeling information
are drowned in the pool of unrelated features, as the Euclidean distance gives

76

(a) The first pair of
features (a, b)

(b) The second pair of
features (c, d)

(c) The last pair of
features (e, f)

Figure 6.4 – Visualisation of the classes distribution of perturbedCircle3 data-
set depending on the three groups of features (a, b), (c, d) and (e, f).

equal importance to all the features. The objective of the perturbedCircle3
dataset is to evaluate the capability of our algorithm to extract the inform-
ative features in the bigger set of irrelevant features.

A main objective of the experimental section is to evaluate the applicab-
ility of the introduced approach for real world problems. Let us empirically
evaluate our algorithm on real world datasets. As for artificial datasets, the
objective is to evaluate the several algorithms on datasets with increasing
complexity, considering the representation space complexity or the number
of classes. Let us introduce the real world datasets on which experiments
will be performed.

A first real world based dataset that will be used is the cancer data-
set. The cancer dataset1 is a dataset that associates with each instance a
label indicating if a tumour is malignant or benign. Cancer dataset features
are numerical attributes based on biological cell related measures. Instances
with missing values have been removed. Based on the two-dimensional PCA
projection of the dataset (Figure 6.7a), we can observe that the two classes
of the cancer dataset seems almost separated. The Euclidean distance is
probably representative of the task similarity in the initial representation
space.

Ionosphere dataset2 is another real world dataset that will be targeted,
characterized by more features. The ionosphere dataset is composed of con-
tinuous features based on some physical measurements, with no missing val-

1http://archive.ics.uci.edu/ml/index.html, Breast Cancer Wisconsin (Original) Data
Set

2http://archive.ics.uci.edu/ml/index.html, Ionosphere Data Set

77

(a) 2D PCA of
circle dataset

(b) 2D PCA of
perturbedCircle1 dataset

(c) 2D PCA of
perturbedCircle2 dataset

(d) 2D PCA of
perturbedCircle3 dataset

Figure 6.5 – Two-dimensional PCA projections of the artifical datasets

ues. The binary labeling refers to the presence, or not, of some structures
in the ionosphere. The task is consequently to predict the presence, or not,
of those structures depending on new physical measurements. The two-
dimensional PCA projection of the two classes of the dataset (Figure 6.7b)
is less structured than the cancer dataset. The Euclidean distance in the ini-
tial representation space seems to be less relevant to solve the classification
task than for the cancer dataset.

Either artificial or real, the datasets that were introduced until now were
divided in two classes. Real world problems can however be more complex,

78

needing more than two classes. Let us introduce datasets with more classes.

The vehicle dataset3 is a real world dataset composed of instances grouped
into four different classes, corresponding to a type of vehicle the instance can
be related to. Each instance is characterized by a set of numerical features
based on the processing of a picture of a vehicle. Entries with missing values
were removed. From the analysis of the two-dimensional PCA projection
of the dataset (Figure 6.7c), the different classes do not appear to be well
separated. Consequently, there is a concern about the Euclidean distance
not being representative of the task similarity in the initial representation
space of the vehicle dataset.

The last real world dataset that will be introduced is the digit dataset4.
The digit dataset is composed of the flat vectorial representation of 8 × 8
images of hand-written digits. The label of each instance corresponds to the
digit represented by the associated image, i.e. an integer from 0 to 9. In the
two-dimensional PCA projection of the digit dataset (Figure 6.7d), most of
the different classes seem to be grouped in dense area, although some are
entirely overlapped by another class. There are also some overlaps between
the borders of different classes. Even if the Euclidean distance seems to be
mostly locally representative of the labels similarity, it do not seems to be
globally adapted to the task.

6.3 Comparative settings

The objective is to evaluate the representation learning algorithm and the
gain that can be expected for the classification task resolution. The set-
ting that will be considered when evaluating our algorithm is the applica-
tion of the Euclidean distance in the representation space mapped by the
learned function φ. Let us refer to the described setting under the name
MDRL. In order to empirically evaluate the adequacy of the Euclidean dis-
tance to the representation space in which the data is projected, let us com-
pare the MDRL setting to other settings. Let us define the different pairs
(representation space, distance) that will be applied on the different datasets
in the present chapter. The several settings that will be compared are sum-
marized in Table 6.2.

The first trivial baseline the setting MDRL will be compared to is the
simple application of the Euclidean distance in the initial representation
space of the considered dataset. The baseline setting will be refered as the

3http://archive.ics.uci.edu/ml/index.html, Statlog (Vehicle Silhouettes) Data Set
4The digit dataset from Scikit-learn, [Pedregosa et al., 2011]

79

(a) 2D PCA of
cancer dataset

(b) 2D PCA of
ionosphere dataset

(c) 2D PCA of
vehicle dataset

(d) 2D PCA of
digits dataset

Figure 6.6 – Two-dimensional PCA projections of the real world datasets

Setting Representation space distance
Initial space X Euclidean

MDRL φ(X) Euclidean
Feature selection FS(X) Euclidean

LMNN X LMNN

Table 6.2 – Summary of the different settings characteristics

initial space setting.
The Euclidean distance can be irrelevant for solving the task for a dataset

80

because of some features composing the vectorial representation of the data
that are unrelated to the task. Extracting the most relevant features of the
dataset can consequently be helpful to solve the task. The second setting to
which MDRL will be compared is a setting where the representation space
is learned to be the more representative of the labeling. More specifically,
the Euclidean distance will be applied on the vectorial representation com-
puted from the more representative subset of the initial features. In the new
vectorial representation of the data, only the most representative features of
the initial representation space will be kept. By applying the tree construc-
tion method of the Extra tree classifier algorithm5 ([Geurts et al., 2006], cf
Section 2.4), a score is associated with each feature. A threshold is fixed and
the subset of features with a score higher or equal than the threshold are
kept to constitute the new vectorial representation of the instances. In our
framework context, the threshold applied on the computed score to extract
the most relevant features is the mean of all scores. The introduced setting
will be refered as the feature selection setting.

On one hand, as previously discussed, the representation can be learned
to be more adapted to the used distance. On the other hand, the repres-
entation can be fixed and an adapted distance for the representation space
can be learned. The MDRL setting will be compared to a Mahalanobis
distance learned through the well known LMNN metric learning algorithm6

([Weinberger and Saul, 2009], cf Section 2.4) applied in the initial represent-
ation space. Let us refer to the described setting as the LMNN setting.

6.4 Representation learning

The objective of the introduced representation learning algorithm is to learn
a function φ mapping instances from the initial representation space to a
representation space in which similarly labeled instances are close, depending
on the selected metric, and dissimilarly labeled instances are pushed away.
The mapping φ is learned in order to satisfy some triplet relative constraints.

More precisely, from one of the previously introduced datasets, let us
consider to have a set of labeled examples {(x0, y0), ..., (xn−1, yn−1)} such
that ∀i ∈ {0, ..., n− 1}, xi ∈ Rp and yi ∈ Y. Let us artificially create a set of
unlabeled instances. We split the dataset into the subset L = {x0, ..., xl−1}
labeled instances and U = {xl, ..., xn−1} the remaining instances for which
the label is hidden. For the remainder of this work, let us assume that
several random splits have been performed such that the labeled set corres-
ponds to 20% of the whole dataset. Let us define X = L ∪ U the dataset
that will be manipulated. Based on L, the set of triplets T as defined in
Definition 4 can be computed. Let us recall the distance d to be the Euc-

5implemented in the Scikit-learn python package ([Pedregosa et al., 2011])
6Implemented in the pytonh package metric-learn

81

http://all-umass.github.io/metric-learn/

lidean distance on Rp. The objective is to learn a function φ mapping Rp to
a representation space Rq such that the Euclidean distance satisfies the con-
straint d(φ(xi), φ(xj)) < d(φ(xi), φ(xk)) for as many triplets (xi, xj , xk) ∈ T
as possible. Let us learn the mapping function φ by minimizing the cost
function C(φ|T) introduced in Equation 4.5.

To handle complex non-linearly separable datasets, we aim at learning
a neural network based mapping function φ. In order to minimize the cost
function C(φ|T), let us implement a siamese neural network, having φ as
core network, as introduced in Section 4.3.The siamese neural network used
to learn φ is implemented with the Torch library ([Collobert et al., 2011]).
The mapping function φ is a neural network and is consequently composed
by a set of layers and activations function. For simplicity, let us assume that
each neuron composing the neural network, except from the output layer,
has the hyperbolic tangent tanh(x) = ex−e−x

ex+e−x for activation function. The
neural network φ is characterized by the set of weights composing its layers.
The set of weights depends on the width of each layer. The number of layers
and the width of each layer is chosen among a set of architecture by using a
validation set. The function φ is learned by upgrading the weights paramet-
rizing the neural network for each triplet of instances.

Once the mapping function φ is learned, let us analyse the representation
space the data is projected in. To first have an intuition on the representation
space in which the dataset is projected through φ, let us first analyse the
two-dimensional PCA projection of the dataset in the representation space
mapped by φ.

Figure 6.7 illustrates some of the projections of datasets in the repres-
entation space obtained through the MDRL algorithm. It can be observed
that for some datasets, the algorithm clearly manages to separate the dif-
ferent classes, like for the perturbedCircle3 dataset. For datasets that were
originally somehow separated, like the cancer dataset, we can see that the
instances from similar classes are grouped in more dense regions. Let us now
consider datasets where classes are bit mixed, like the vehicle or the digits
datasets. It can be observed that, even if in the representation space mapped
by φ the different classes are not totally separated, classes are more dense
and inter-classes boundaries are more clear through the PCA projection.

The proposed algorithm seems to be able to learn a mapping function
projecting the data in a representation space which is more adapted to sep-
arate the different classes.

The first intuitions extracted from Figure 6.7 are based on visual obser-
vations. More than a visual analysis and confirmation of the capability of
the algorithm to project the data into a more adapted representation space,
let us more precisely analyse the representation space in which each data-

82

(a) 2D PCA of
perturbedCircle3 dataset

(b) 2D PCA of
cancer dataset

(c) 2D PCA of
vehicle dataset

(d) 2D PCA of
digits dataset

Figure 6.7 – Two-dimensional PCA projections of the vectorial representa-
tion learned through the MDRL representation learning algorithm of some
datasets

set is projected through the percentage of triplets satisfying their associated
relative constraints. Let us compare the percentage of unsatisfied triplets
constraints in the representation space of the different settings that will be
manipulated for each dataset (Table 6.4). The number of possible triplets
from a set of instances X increases with the size of the dataset. In order to
practically evaluate the percentage of unsatisfied triplets constraints, let us
sample a finite subset T ∗ ⊆ T of the whole set of possible triplets. The num-
ber of triplets constituting T ∗ for each dataset is summarized in Table 6.3.

83

Dataset Number of triplets
circle 1557

perturbedCircle1 1557
perturbedCircle2 1557
perturbedCircle3 1557

cancer 3606
ionosphere 495
vehicle 1970
digits 25972

Table 6.3 – Size of the set of triplets T ∗ for the different datasets

The percentage of non satisfied constraints is computed on the subset T ∗

of triplets. To neglect random samplings influence, the scores compiled in
Table 6.4 are the mean of multiple iterations. Results compiled in Table 6.4
confirm the intuition based on the PCA projection of our datasets. It can
be seen that globally, the representation space learned through our MDRL
algorithm satisfies more constraints than the others settings. Let us focus
on artificial datasets. A first observation that can be made is that our al-
gorithm is able to satisfy most of the triplets based constraints for the circle,
perturbedCircle1 and perturbedCircle3 datasets, while only half of the relative
constraints are satisfied in the other settings. The percentages of unsatisfied
constraints in the other settings for the perturbedCircle2 are lower than for
the other artificial datasets. An intuition that could explain the lower per-
centage for the perturbedCircle2 dataset is that, due to the dataset creation
and labeling processes, for half of the instances, the Euclidean distance on
the last two features is representative of the task similarity and the Euclidean
distance is globally more relevant than for the circle dataset. Simultaneously,
it can be observed that although there are more unsatisfied constraints in
the representation space learned by our algorithm for the perturbedCircle2
dataset than for the other artificial datasets, the percentage of unsatisfied
constraints for the perturbedCircle2 in the MDRL setting is much lower than
the percentage for the other settings.

Let us now consider the real world datasets. From Table 6.4, it can be
seen that the cancer and the digits datasets are the most well separated
real world datasets, regardless to the settings. Although the percentage of
unsatisfied constraints in the initial, feature selection and LMNN settings
are much lower than for the artificial datasets, it can highlighted that the
MDRL setting allows us to have even less unsatisfied relative constraints.

In the worth cases, for the ionosphere and the vehicle datasets, the initial
representation space satisfies more relative constraints than for the artificial

84

Dataset MDRL Initial Feature selection LMNN
circle 0.0 48.79 (± 1.98) 48.43 (± 1.43) 48.45 (± 1.9)

perturbedCircle1 0.0 50.63 (± 1.0) 50.31 (± 0.9) 50.52 (± 1.1)
perturbedCircle2 3.52 (± 2.9) 40.08 (± 2.0) 41.43 (± 2.2) 41.21 (± 2.0)
perturbedCircle3 0.23 (± 0.4) 49.62 (± 1.0) 48.86 (± 0.4) 49.45 (± 0.6)

cancer 4.37 (± 1.1) 7.16 (± 0.2) 7.26 (± 0.4) 8.22 (± 4.0)
ionosphere 16.36 (± 3.0) 39.19 (± 0.6) 36.75 (± 1.5) 35.89 (± 3.2)
vehicle 12.25 (± 2.4) 42.34 (± 1.5) 41.89 (± 1.0) 34.50 (± 1.8)
digits 1.48 (± 0.2) 12.16 (± 0.1) 11.30 (± 3.6) 11.41 (± 1.2)

Table 6.4 – Percentage of non satisfied relative constraints (± standard de-
viation) for the different datasets depending on the settings

datasets, except for the perturbedCircle3 dataset that performs similar res-
ults. For both ionosphere and vehicle datasets, it can be observed that the
feature selection and the LMNN settings gradually decrease the number of
unsatisfied relative constraints, by proposing a better pair of vectorial rep-
resentation and distance. Even if the percentage of unsatisfied triplets is
higher for the two real world datasets with the MDRL setting than for the
other real world datasets, the MDRL setting satisfies much more constraints
than the other settings, with a decrease around 50% of the number of un-
satisfied triplets compared to the initial, feature selection or LMNN settings.
The higher percentage of unsatisfied constraints can be explained by the fact
that due to the dataset size — less than 600 instances —, a small overlap
between two different classes in the representation spaces proportionally im-
pacts more triplets than the same overlap in a bigger dataset, like the digits
dataset. Percentage of triplets satisfaction in such datasets is consequently
highly influenced by blurry boundaries between classes.

From the described results, it appears that our algorithm allows us to
project the data in a representation space where similarly labeled instances
are globally closer from each other than from dissimilarly labeled instances.

6.5 Empirical evaluation of the theoretical assumptions

The theoretical analysis has shown that an optimal label propagation can
be ensured if some assumptions are satisfied. The first assumption on which
relies the theoretical analysis is related to the instances distribution in the
initial vectorial representation space. The theoretical analysis also relies on
the supposed capability of the representation learning algorithm to learn a
vectorial representation of the data that minimizes the following cost func-

85

tion:

C(φ|T) =
∑

(xi,xj ,xk)∈T

max(0, µ− [d(φ(xi), φ(xj)− d(φ(xi), φ(xk))])

where µ is the margin. The introduced assumptions are strong hypo-
thesis. To evaluate the adequacy of the theoretical analysis to the real data-
sets, let us stress the two main assumptions of the theoretical analysis for
the different datasets.

Let us first focus on the assumption that the vectorial representation
is optimally learned. The mapping function φ is supposed to be learned
such that all the relative constraints are satisfied at least from a margin
µ. Let us split the set of labeled examples L into two sets, the training
set, on which φ is learned and an evaluation set. Let us consider the value
of the cost function for the two introduced sets for the different datasets
(Table 6.5), while considering the percentage of unsatisfying constraints in
the representation space obtained through the mapping function φ.

Dataset constraints (%) Training set Evaluation set
circle 0.0 2.75e-5 (± 3.48e-5) 0

perturbedCircle1 0.0 1.01e-4 (± 1.4e-4) 0
perturbedCircle2 3.52 (± 2.9) 0.07 (± 0.14) 0.076 (± 0.15)
perturbedCircle3 0.23 (± 0.4) 0.02 (± 0.04) 0.027 (± 0.05)

cancer 4.37 (±1.1) 8.85e-4 (± 8.29e-4) 0
ionosphere 16.36 (±3.0) 4.46e-4 (± 3.42e-4) 0
vehicle 12.25 (±2.4) 1.3e-3 (± 5.65e-4) 0
digits 1.48 (± 0.2) 1.55e-3 (± 1.51e-3) 0

Table 6.5 – Cost function values (± standard deviation) obtained on the dif-
ferent sets of instances for the different datasets compared to the percentage
of unsatisfied constraints with the MDRL algorithm

From Table 6.5, we can observe that the value of the cost function on the
whole set of triplets computed on the training set if comparable to zero for
most of the datasets, regardless to the considered random split, except for
perturbedCircle2 and perturbedCircle3 datasets. Let us focus on perturbed-
Circle2 and perturnedCircle3 datasets. The value of the cost function for
the evaluation set is, very close to the train set, non-zero. From previous
experiments, the perturbedCircle2 and perturnedCircle3 datasets are the only
two artificial datasets for which some constraints remain unsatisfied.

Let us now focus on the real world datasets. We can observe that the
value of the cost function for the evaluation set is zero for the real world
datasets and small for the training set. From previous experiments, it has

86

however been highlighted that part of the relative constraints are not sat-
isfied, notably for the ionosphere and the vehicle datasets. It appears that
most of the unsatisfied constraints must belong to the testing set.

For a triplet (xi, xj , xk), the loss function as defined in Equation 4.3 can
be non-zero even if the related constraint d(φ(xi), φ(xj)) < d(φ(xi), φ(xk))
is satisfied, due to the margin. The loss function is consequently non-zero
whenever the margin µ is not satisfied. The percentage of unsatisfied con-
straints can not be related to the value of the cost function, as it appears in
Table 6.5. On the opposite, a zero value of the cost function corresponds to
the fact that the margin is achieved for the considered set of triplets, result-
ing in the satisfaction of their associated relative constraints.

The other strong assumption on which is based the theoretical analysis
is related to the unlabeled instances distribution. Unlabeled instances are
supposed to be close enough from at least one similarly labeled instance.
More precisely, the algorithm assumes that the smallest distance between
an unlabeled instance and a similarly labeled instance is smaller than a

computable threshold η. η is defined as η =
∆−

φm−∆+
φm

4γ(φ) , where γ(φ) is a value
depending on the parameters of φ (cf proof of Lemma 3 in Section 5.3). The
term ∆+

φm (respectively ∆−
φm) is the largest (respectively smallest) distance

between training instances of the same class (respectively different classes)
in the representation space mapped by φ. The threshold η consequently
depends on the learned φ, on the specified distance d and on the set of
labeled instances XL. Its value varies for each dataset depending on the
representation learning computation. The value of η is related to how well
separated the different classes are in the representation space mapped by φ,
depending on the complexity of the mapping function. By definition, η is
computed if and only if the largest distance between similarly labeled training
instances is smaller than the smallest distance between dissimilarly labeled
training instances. For some datasets, the threshold η can be undefined,
notably if there exists at least one pair of similarly labeled training instances
that are more distant than one of the pair of dissimilarly labeled training
instances. In our experiments, the threshold η can for example not be defined
for some runs on the vehicle and the digits dataset. For the two datasets,
the MDRL algorithm did not manage to separate the training instances
depending on their classes.

Let us analyse how much unlabeled instances satisfy the assumption that
they have a similarly labeled instances which is distant of at most η, consid-
ering the Euclidean distance in the initial representation space. Among the
datasets and training/testing splits for which the threshold η is defined, let
us for example focus on the circle and the ionosphere datasets. For the circle
dataset, an average of 47.98% of the unlabeled instances, with a standard
deviation of 32%, do not satisfy the assumption. Considering the ionosphere

87

dataset, the assumption is not satisfied for 98.69% of the unlabeled instances
in average (±2.44). For part of unlabeled instances of both ionosphere and
circle datasets, the minimal distance to a similarly labeled instance is con-
sequently greater than the computed η. Let us consider the distribution
of the distances between the unlabeled instances and their closest similarly
labeled instances (Figure 6.8).

(a) circle dataset (b) ionosphere dataset

Figure 6.8 – Distribution of the minimal distance between each unlabeled
instance and a similarly labeled instance, compared to the threshold η (red
line)

In Figure 6.8, we can observe the distribution of the distance between
each unlabeled instance and its closest similarly labeled instance in the ini-
tial representation space, for one of the training and testing splits. The red
vertical line corresponds to the associated value of η. For the circle dataset,
we can observe that most of the minimal distances related to unlabeled in-
stances are close to the η threshold. More precisely, when most of them are
below the threshold, it can be observed that fewer instances are concerned as
the distance to the closest similarly labeled instance increase. A similar ob-
servation concerning the number of increasing distances can be made for the
ionosphere dataset. For the ionosphere dataset, it can be highlighted that
even if most of the pairwise distances are greater than η, many of them are
located near to η. For both those datasets, the assumption on the instances
distribution in the initial representation space is not satisfied.

From the introduced experiments, it seems that the two assumptions on
which the theoretical analysis is based are not satisfied for some datasets.
Let us empirically evaluate how the classification is performed, regardless of
the theoretical assumptions being met or not.

88

6.6 Label propagation classification evaluation

The main goal of our work is to project the data in a representation space
allowing us to perform an optimal graph-based classification. Let us assume
that φ is learned such that it minimizes the cost C(φ|T) for a dataset X.
Let us now evaluate the influence of the representation learning step on the
classification solution. To evaluate the improvement due to our algorithm,
let us compare the classification accuracy obtained with the MBLR setting
to the other settings previously introduced.

The classification task is solved by applying the label propagation al-
gorithm introduced in Section 3.3. To apply the label propagation algorithm,
a graph representation of our dataset needs to be built. In each represent-
ation space, an ε-graph is built from the dataset X. The parameter ε is
chosen on a validation set with a dichotomous approach. The label propaga-
tion algorithm introduced in Section 3.3 is then applied in order to classify
unlabeled instances from U .

Figure 6.9 – Classification accuracy depending on the datasets and the set-
tings

Classification results for the different datasets and (metric, representation
space) settings are grouped in Figure 6.9.

Let us consider the artificial datasets. As the perturbations introduced

89

in the dataset increase, we can observe that the classification accuracy ob-
tained with the different settings decreases. The highlighted behaviour is
less pronounced for the MDRL setting than for the other.

As expected, the Euclidean distance in the initial space and LMNN set-
ting perform ideally for the circle dataset, as the initial space is locally repres-
entative of the labeling similarity. We can also see that our MDRL algorithm
achieves the same result. The poor performance of the label propagation al-
gorithm applied on the feature selection setting, compared to the initial rep-
resentation space, can be explained by the feature selection algorithm which
kept features with a importance score equal or higher to a specific threshold.
In our framework, the threshold is set to be the mean of all the scores. For
the circle dataset, only one of the two features is kept if both features do not
have exactly the same score, which is unlikely to happen due to the random
nature of the representation learning algorithm.

In the perturbedCircle1 dataset, the initial circle is blurred by uniform
noise and, as expected, the Euclidean distance in the initial space and LMNN
setting performances decrease compared to the circle dataset. We can ob-
serve that the feature selection setting gets better result in perturbedCircle1
dataset than in circle, as it more easily extracts the two representatives fea-
tures. When the feature selection setting is able to extract the circle-based
feature, it performs similarly as the Euclidean distance did in the circle data-
set. Finally, we can see that our MDRL algorithm manages to extract a good
representation out of the initial space for the label propagation algorithm.

In the perturbedCircle2 dataset, the initial circle features are blurred with
features containing a structured noise. Results achieved in the initial space,
LMNN and feature selection settings are similar to each others. Even if
a structured noise is introduced, the Euclidean distance is locally pretty
representative of the task similarity, allowing the label propagation algorithm
to perform better classification in the initial space and the LMNN settings
than for the perturbedCircle1 dataset. Our MDRL algorithm still performs
very good results on the perturbedCircle2 dataset, learning a representation
that separates well our dataset.

For the last artificial dataset, the label propagation algorithm in the
initial space and the LMNN settings achieve poorer results than for other
artificial datasets. The Euclidean distance not being representative of the
task similarity, they are not able to extract the needed information. The
feature selection setting performs similar results than for the previous data-
sets as the more representative features of the representation can easily be
extracted by the feature selection algorithm, ignoring most of the introduced
perturbations. On the other side, our MDRL algorithm was able to learn an
appropriate representation space, allowing the label propagation to perform
better results.

Let us now analyse the classification results obtained for on the real world

90

datasets.
Concerning the real dataset cancer, we can observe that the LMNN and

our MDRL settings were able to modify the pair (representation, distance)
such that the classification is quite well performed. Even if a linear trans-
formation of the description space was sufficient to obtain pretty much good
results, our non-linear representation learning algorithm was able to learn an
efficient projection of the data. The other algorithm seems to face difficulties
extracting the representative informations for classification.

For the ionosphere dataset, we can see that our MDRL algorithm per-
forms better than the three others, each of them having similar results. It
can be seen that the representation learned by our algorithm is much more
adapted for the graph-based classification than that of the others algorithms.
It can be explained by the initial distribution of the data, which seems to
be blurred. Our non-linear representation learning is more adapted for sep-
arating the different classes.

Considering the vehicule dataset, we can see the interest of learning a
representation space to obtain a better label propagation. Both LMNN and
MDRL settings perform better results that the initial space or the feature
selection settings. The initial blurred distribution of the dataset can explain
the difficulty of the Euclidean distance to represent the task similarity. The
non-linear projection seems more adapted to the dataset complexity.

A final observation can be made concerning the digits dataset, for which
all settings performed well. It can be seen that, on the opposite to previous
datasets, the best results are performed by the initial space and the feature
selection settings. For the digits dataset, our algorithm, although performing
pretty well, performs a lower accuracy than the LMNN setting. From previ-
ous experiments, it has been highlighted that the MDRL setting was the one
minimizing the number of unsatisfied constraints. The described counter-
intuitive result can be explained by the fact that even if less constraints are
unsatisfied, the boundaries between some classes may be more blurry due
to the projection. It has also be seen in Section 5.1 that satisfaction of the
smoothness related constraints does not ensure a label propagation to op-
timally solve the task. Using only 20% of the dataset as a training set with
much more classes than the other datasets may have been detrimental to
learn the most adapted representation space.

Considering results compiled in Figure 6.9, it can be seen that a satisfy-
ing graph-based label propagation can be obtained by applying the MDRL
algorithm, even if the theoretical assumptions are not met, as seen in Sec-
tion 6.5. From the analysis of the empirical applicability of the theoretical
analysis assumption and their impact on the label propagation algorithm
accuracy, it seems that the assumptions on which is based the theoretical
analysis are not always required to ensure an optimal classification. Relax-
ation of the initial conditions as required in the theoretical analysis may be

91

defined. The results obtained on the several experiments show that a more
general theoretical analysis can be performed in order to define a relationship
between the MDRL representation space learning and the label propagation
accuracy.

6.7 Do we need a graph?

In this work, we focused on solving a classification task through a label
propagation algorithm applied on an ε-graph. The use of an ε-graph is justi-
fied in the theoretical analysis, as we have demonstrated to have an optimal
graph for label propagation. The defined ε-graph is however not the unique
possible graph representation that can be obtained from a dataset. Similarly,
other classification algorithms that do not reason from a graph representa-
tion of the data can be used to solve the targeted task. In the present section,
we discuss about the need for a ε-graph representation of the dataset to solve
the task based on the vectorial representation of the data learned through
the MDRL. We more generally evaluate the need of a graph-based classific-
ation algorithm.

The question of the generalization of the theoretical work to k-nn graph
representation can be asked. Let us focus on the empirical analysis of the
application of the label propagation algorithm on a symmetric k-nn graph
representation of each dataset. Similarly to the ε tuning, the optimal k is
chosen through a validation set. The classification accuracy obtained based
on a k-nn graph (Figure 6.10) is compared through the different settings.

Let us first briefly focus on comparing the label propagation classification
that can be obtained on a k-nn graph built in the different settings. Similarly
to the ε-graph, it can be highlighted that the k-nn simplification of the graph
representation of each dataset built in the representation space proposed by
the MDRL algorithm allows us to obtain a satisfying classification through
the label propagation algorithm. More precisely, we can observe that our
MDRL setting is among the settings performing at best the classification on
most of the dataset, except for the digit dataset. For other settings, results
are globally similar to the results obtained by applying an ε simplification
on the graph representations of the datasets (Figure 6.9).

Let us now more precisely focus on comparing the label propagation
accuracy obtained on an ε or a k-nn graph in the MDRL setting.

It can be seen in Table 6.6 that the results obtained on the k-nn graph
representation of the datasets are very similar to the results obtained with
the ε-simplification. This can be explained by the fact that depending on the
parameters tuning, ε simplification and k-nn simplification can lead to pretty
similar neighbourhood for each instance of the graph. With very similar

92

Figure 6.10 – Classification accuracy on a symmetric k-nn graph depending
on the datasets and the settings

Dataset ε-graph k-nn graph
circle 1.0 (± 0.0) 1.0 (± 0.0)

perturbedCircle1 1.0 (± 0.0) 0.99 (± 0.01)
perturbedCircle2 0.95 (± 0.05) 0.96 (± 0.04)
perturbedCircle3 0.98 (± 0.02) 0.98 (± 0.02)

cancer 0.94 (± 0.01) 0.94 (± 0.01)
ionosphere 0.81 (± 0.01) 0.83 (± 0.02)
vehicle 0.70 (± 0.02) 0.71 (± 0.02)
digits 0.85 (± 0.01) 0.85 (± 0.01)

Table 6.6 – Label propagation accuracy (± standard deviation) depending
on the datasets and the graph construction methods for the MDRL setting

graph structure, the label propagation behaviour is similar. More precisely,
if we are able to define the parameter k and ε allowing each simplification
methods to be as close as possible to the optimal graph, the highlighted graph
structure would be similar and so would the label propagation classification
results.

Based on a symmetric k-nn graph, label propagation algorithm is able to

93

reasonably classify unlabeled instances based on few labeled examples. From
the experimental results obtained with the k-nn simplification, it seems that
neither the ε simplification or the k-nn simplification can be preferred to
apply the label propagation algorithm. The previous observation allows us
to work on generalization of the theoretical analysis to k-nn simplification.

This work focused on the resolution of the classification task through a
graph-based label propagation algorithm. The representation space of the
dataset is consequently learned such that similarly instances are closer from
each other than to dissimilarly labeled instances. The property of the repres-
entation space, related to the smoothness assumption, has already been high-
lighted. In the representation space learned through the MDRL algorithm,
the instances are distributed to be, at least non-linearly, separable. Some
other semi-supervised classification algorithm take advantage of the classes
separability assumption to solve the task. The representation space learned
to satisfy the separability property may consequently by advantageous for
other classical classification algorithms. Let us compare the application of
some other classification algorithms for the different settings (Figure 6.11).
More precisely, let focus on two non graph-based classification algorithms7,
a multi-class SVM-based classifier (Figure 6.11a) and a tree-based classifier
(Figure 6.11b). In a "one-against-one" approach, the SVM-based classifier
trains multiple binary classifiers ([Guyon et al., 1993]). The tree-based clas-
sifier ([Geurts et al., 2006], cf Section 2.4) aims at classifying the dataset by
splitting the data depending on the value of the different variables. A set of
rules can be extracted from the trees in order to predict the label of unseen
instances.

From Figure 6.11, it can be seen that results obtained with the tree-
based classifier are quite homogeneous. The results obtained for each dataset
are not significantly different regarding the setting on which the classifier is
learned and applied. It can be highlighted that the MDRL setting is among
the best settings considering the accuracy. The observation about settings
homogeneity is not verified for the SVM based classifier. For the SVM based
algorithm, the classification accuracy obtained for each dataset is more de-
pendent on the selected setting. It can be seen that the SVM based classifier
best results are globally obtained in the LMNN or the MDRL settings, ex-
cept for the ionosphere dataset.

Let us now compare the resolution of the classification task in the MDRL
setting through the application of the two non graph-based algorithms to the
label propagation algorithm applied on an ε-graph (Table 6.7).

7Both algorithms are implemented in the Python Scikit learn module
([Pedregosa et al., 2011])

94

(a) SVM based classifier

(b) Tree based classifier

Figure 6.11 – Classification accuracy depending on the datasets and the
settings obtained with an SVM based classifier and a tree based classifier

In Table 6.7, it can be seen that the SVM based classifier and the tree
based classifier performances are very similar to the results obtained with
the label propagation algorithm in the MDRL setting, for all the datasets.
The representation space learned by the introduced MDRL algorithm allows

95

Dataset Label propagation SVM classifier Tree classifier
circle 1.0 (± 0.0) 1.0 (± 0.0) 0.99 (± 0.003)

perturbedCircle1 1.0 (± 0.0) 1.0 (± 0.0) 1.0 (± 0.0)
perturbedCircle2 0.95 (± 0.05) 0.95 (± 0.05) 0.96 (± 0.04)
perturbedCircle3 0.98 (± 0.02) 0.99 (± 0.01) 0.99 (± 0.01)

cancer 0.94 (± 0.01) 0.94 (± 0.01) 0.94 (± 0.01)
ionosphere 0.81 (± 0.01) 0.80 (± 0.03) 0.83 (± 0.03)
vehicle 0.70 (± 0.02) 0.71 (± 0.02) 0.69 (± 0.03)
digits 0.85 (± 0.01) 0.85 (± 0.01) 0.83 (± 0.01)

Table 6.7 – Classification accuracy (± standard deviation) depending on
the datasets and the classification algorithms in the MDRL setting

us to efficiently apply different classification algorithms. Several questions
emerge from the brief analysis of the obtained results. The introduced res-
ults first allow us to question the generalization of the theoretical analysis
to other graph construction methods and classification algorithms. Among
the questions that can arise, the need for a graph representation to optim-
ally solve the targeted task in the representation space learned through the
MDRL algorithm is questionable.

96

Chapter 7

Conclusion & future work

7.1 Conclusion

The objective of the present work was to answer the question of the interest
of a task driven representation learning for the targeted task resolution. It
has indeed been highlighted that the resolution of a supervised and semi-
supervised Machine learning task is highly influenced by the adequacy of
the representation space and the distance used. In the literature, numerous
approaches have been developed in order to tune the representation space
and the distance together, such that the application of the distance in the
representation space is representative of the task similarity. The developed
methods can be unsupervised but many of them are driven by a set of con-
straints, which can be related to the task.

This work more particularly focused on the classification task, solved by a
graph-based algorithm. To apply the label propagation algorithm introduced
in Section 3.3, a graph representation of the data needs to be built. Graph-
based algorithms usually assume that the graph is a homophilic structure.
The objective is thus to build a graph such that it satisfies the smoothness
assumption. We proposed a representation learning algorithm such that an
ε-graph or a k-nn graph built in the representation space proposed by the
algorithm can satisfy the smoothness assumption.

A first theoretical analysis has been performed in order to have guaran-
tees on the classification that needs to be performed on the obtained ε-graph.
Several empirical evaluations have been performed to evaluate the interest
of such an approach. Although the theoretical analysis and empirical evalu-
ations have shown the interest of such method for classification improvement,
it has also been highlighted that the theoretical analysis can be relaxed, ex-
tended. In the following, we provide some insights on directions to explore
that might achieve more general guarantees.

97

7.2 Open questions

Theoretical guarantees and several experiments have shown the interest of
the introduced MDRL algorithm to outperform the initial representation
space for graph-based label propagation algorithm. Several questions and
possible extensions however emerged from the experiments that have been
performed.

A first drawback of our theoretical analysis is that the analysis is built
such that we define the conditions needed in order to have a specific result.
No guarantees are thus available if one of the initial conditions is not satisfied,
which may be common as our assumptions are pretty strong, as seen in
Section 6.5. An improvement of the theoretical analysis would be to bound
the classification error that can be expected depending on the representation
learning cost that is achieved. Let us introduce some leads for new bounds
and theoretical guarantees.

Bounding the classification error depending on the representation learn-
ing algorithm can be achieved in two main steps, which are not trivial. At
first, properties of the graph representation that can be obtained must be
linked to the representation learning phase. The expected classification error
can then be bounded depending on the graph structure. The two frameworks
have been briefly initiated.

Let us first focus on linking the graph-based classification algorithm
behaviour and results to the graph structure. As previously discussed in
Section 3.4, authors of [Maier, Markus et al., 2013] studied the influence of
graph construction methods on a measure of clustering quality. In their work,
they link the NCut and the Cheeger Cut measures, which are two normal-
ized variants of the cut measure, to the structure of a graph and some of its
properties, depending on its construction method. The introduced paper has
numerous interesting points. The main advantage their framework has over
ours is that their approach compares different graph construction methods
and extract some graph properties depending on the construction method.
Although the work presented in [Maier, Markus et al., 2013] is close to our
objective, it is not directly applicable to our context. They indeed consider
some clustering related quantities when we are concerned by classification
problems. The set of assumptions that are supposed to be satisfied in their
work is another element which does not match our concerns. They indeed
assume some strong hypothesis on the instances distribution and separabil-
ity. Despite the introduced drawbacks, there are some interesting theoretical
considerations on which could be based a new theoretical analysis to extend
the one proposed in the present thesis.

Instead of directly linking a graph construction method to a Machine
learning related quantity, some works propose to link the structure of a graph

98

to classification related quantity. Authors of [Guillory and Bilmes, 2009]
thus propose different bounds for graph-based classification depending on
the graph structure, considered as fixed, and the classification algorithm.
Considering a fixed graph representation of a dataset, they indeed aim at
choosing the set of labeled instances allowing to perform the most optimal
classification, while the set of labeled instances is fixed in our framework.
To choose the best set of labeled instances, they express a first general
bound for the classification error. They bound the classification error de-
pending on the connectivity of the unlabeled instances to the remainder of
the graph, the labeling and the structure of the graph. The more the la-
bels are smooth over the graph and the fewer isolated unlabeled instances
there are, the smaller the classification error is. More precisely, they assume
that each unlabeled instance is connected to the set of labeled instances
from at least a specific threshold, regardless of their labels. The more re-
laxed distribution assumption of the data and the bounds that are defined
in [Guillory and Bilmes, 2009] are interesting for a new work on a generaliz-
ation of our theoretical analysis. Some questions can however be highlighted
concerning the usefulness and applicability of the defined bound. Another
drawback of the work from [Guillory and Bilmes, 2009] is that the authors
considered the graph fixed but in our framework, we do not have any guar-
antees about the graph structure and thus the final bound we can obtain.

Let us assume that the classification error can be bounded depending on
the graph structure. A second main step is to define the graph structure and
properties depending on the representation learning step. More precisely,
we first seek at bounding the objective function C depending on the initial
space. Based on the value of C, the objective would then be to define the
structure and properties of the graphs that can be obtained.

An approach in order to solve the introduced problems could be based
on works found in [Clémençon et al., 2008]. In the introduced paper, au-
thors aim at defining a statistical framework for ranking problems. In their
work, they define theoretical bounds and results for U -statistics. As they are
able to express the ranking problems as U -statistics, they define theoretical
bounds on the empirical risk of ranking problems. A guideline in order to
link the graph structure to the representation learning step and to base a
more general theoretical analysis can consequently pass through reformulat-
ing part of our problem as U -statistics. This way, generalization bound for
the representation learning algorithm may be defined.

Due to other drawbacks of our theoretical analysis, some relaxations and
extensions of the theoretical work introduced in the present thesis are pos-
sible. The theoretical analysis that we performed is based on two strong
assumptions on the initial data distribution and on the optimally learned
mapping function. From experiments, it indeed appears that for some data-

99

sets, a nearly optimal classification can be obtained in our working context
although the theoretical assumptions are not satisfied. Some relaxation of
the strong introduced assumptions may thus be possible and the theoretical
analysis may be extended.

Another point that has been highlighted by the experiments concern-
ing our theoretical analysis is related to the inherent methods involved in
our working context. The theoretical analysis has been performed for a
specific graph construction method — the ε simplification — and a set
classification algorithm — the label propagation algorithm introduced by
[Zhu and Ghahramani, 2002] —. Even if the assumptions of the theoretical
guarantees can be relaxed, the present thesis did not provide any theoretical
elements for graphs obtained with other graph construction methods or for
other classification algorithms, graph-based or not. Performed experiments
has shown that a k-nn simplification of the graph representation of datasets
allows us to obtain similar classification results than results obtained with
the ε simplification. We also observed the interest of such a representation
learning algorithm for classification through some other classical classifica-
tion algorithms. Similar classification results are obtained in the vectorial
representation learning through the MDRL algorithm regardless of the sim-
plification method applied during the graph construction process or of the
classification algorithm used to solve the task. An extension of the the-
oretical guarantees for other graph construction methods and classification
algorithms could be considered.

A question arises from the fact that similar results are obtained regard-
less the classification algorithm used to solve the task is graph-based or
not. Graph-representations of a dataset allow graph-based classification al-
gorithms to relax the need for a representation space where the different
classes are clearly separated in dense clusters. For datasets where similarly
labeled instances are not grouped in a unique cluster but in smaller dense and
homogeneous clusters which can be closer from clusters from other classes
than from similarly labeled clusters, a graph-representation of a dataset al-
lows to extract the local structure useful to solve the targeted task.

From the several experiments performed in Chapter 6 on the introduced
datasets, the representation space learned through the MDRL algorithm
seems to separate the different classes in well separated unique clusters. In
a representation space where the different classes are separated in dense
clusters, graph-representation of the dataset and graph-based algorithms are
not useful to solve the task. Classification algorithms that do not reason from
a graph-representation of the dataset performing similar results that graph-
based algorithms, it empirically appears that a graph representation of the
data is not required to take advantage of the learned vectorial representation.

100

TheMDRL algorithm aims at mapping the data in a representation space
where similarly labeled instances all lie in the same dense cluster based on
relative constraints defined on the whole set of instances. It has already
been highlighted that graph-representations allow to relax the assumptions
on how separated the instances from different classes are. Instances are
consequently only required to be closer from a subset of similarly labeled
instances. Another work direction based on the theoretical work presented
in the thesis could be to train the MDRL algorithm with triplets of instances
sampled such that only the local relative constraints aim at being satisfied.
More precisely, triplets of instances (xi, xj , xk) could be sampled such that xi
and xj are closest than a set threshold. A mapping function should be more
easily learned with such a variant of the MDRL algorithm as the represent-
ation space is less constrained. A graph-based classification algorithm could
take advantage of the structure highlighted by the graph-representation built
in the less constrained representation space to solve the task and may then
outperform classical non graph-based classification algorithms.

7.3 Clic and Walk case study

The present work was initially lead by the needs of the Clic and Walk com-
pany. Clic and Walk is a start-up which proposes to perform market surveys
and to collect customers opinions for other companies. Through a smart-
phone application, users, i.e. the customers, received a mission they have to
completed in return for a remuneration. A mission is usually composed by
a set of questions and a set of pictures they have to take. Due to the lim-
ited number of answers they can pay and the limited time available to give
results back to the companies, the objective of Clic and Walk is to propose
missions first and foremost to the most appropriate users. The introduced
need can be transposed as a classification task, where users are associated
with a binary label, appropriate or not.

The empirical intuition is that all the missions are not similarly fulfilled
due to their inner characteristics. Some missions requiring more commit-
ments from the user to be completed, some kind of missions are prone to be
less easily answered. The various missions are consequently grouped together
depending on their difficulties, for example the place they are required to be
performed. The objective is then to associate with each user a label, for each
type of mission.

Another objective the company has is to understand the users behaviour
and characteristics. There is thus a need to structure the set of users and
to analyse the obtained structure. An efficient approach to solve the latest
issue is to build a graph representation of the set of users and then to analyse
the structure of the obtained graph.

As the two described tasks are somehow related, we aim at solving them

101

conjointly. The objective is consequently to build a graph from the set of
users. The obtained graph can be used for a graph-based classification, for
example the label propagation algorithm, and for a clustering analysis. Due
to the real world context and the available information about the users, the
Euclidean distance, that can be used to build the graph, is poorly represent-
ative of the task in the initial representation space of the users. Inadequacy
of classical distances for real world problems led our work.

During the algorithm definition, the theoretical analysis of the algorithm
and the implementation in the company context, a first protocol has been
performed to answer the recommendation issue. The classification step was
performed with a decision tree based classifier from Scikit. A mission was
then proposed to the limited set of users positively labeled. After a few days,
the access of the mission was finally granted to all the users. The developed
protocol was evaluated by comparing some measures like the percentage of
persons accepting the mission, failing it or doing it right to the previous
mission, without selection. The quality of the answers sent by the users was
also compared. The preliminary results were encouraging and showed an
improvement in the quality of the answers as well as the number of answers.

102

Bibliography

[Belkin et al., 2004] Belkin, M., Matveeva, I., and Niyogi, P. (2004). Reg-
ularization and semi-supervised learning on large graphs. In In COLT,
pages 624–638. Springer.

[Bellet et al., 2013] Bellet, A., Habrard, A., and Sebban, M. (2013). A Sur-
vey on Metric Learning for Feature Vectors and Structured Data. ArXiv
e-prints.

[Bengio et al., 2013] Bengio, Y., Courville, A., and Vincent, P. (2013). Rep-
resentation learning: A review and new perspectives. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35(8):1798–1828.

[Blum and Chawla, 2001] Blum, A. and Chawla, S. (2001). Learning from
labeled and unlabeled data using graph mincuts. In Proceedings of the
Eighteenth International Conference on Machine Learning, ICML ’01,
pages 19–26, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

[Blum and Mitchell, 1998] Blum, A. and Mitchell, T. (1998). Combining
labeled and unlabeled data with co-training. In Proceedings of the Eleventh
Annual Conference on Computational Learning Theory, COLT’ 98, pages
92–100, New York, NY, USA. ACM.

[Bottou, 2012] Bottou, L. (2012). Stochastic Gradient Descent Tricks, pages
421–436. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Bromley et al., 1994] Bromley, J., Guyon, I., Lecun, Y., Säckinger, E., and
Shah, R. (1994). Signature verification using a "siamese" time delay neural
network. In In NIPS Proc.

[Burges, 1998] Burges, C. J. (1998). A tutorial on support vector machines
for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121–
167.

[Cestnik et al., 1987] Cestnik, G., Konenenko, I., and Bratko, I. (1987).
Assistant-86: A knowledge-elicitation tool for sophisticated users. In
Bratko, I. and Lavrac, N., editors, Progress in Machine Learning, pages
31–45. Sigma Press, Ljubljana.

103

[Chapelle et al., 2006] Chapelle, O., Schlkopf, B., and Zien, A. (2006). Semi-
Supervised Learning. The MIT Press, 1st edition.

[Chopra et al., 2005] Chopra, S., Hadsell, R., and LeCun, Y. (2005). Learn-
ing a similarity metric discriminatively, with application to face verific-
ation. In Proceedings of the 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05) - Volume 1 -
Volume 01, CVPR ’05, pages 539–546, Washington, DC, USA. IEEE Com-
puter Society.

[Clémençon et al., 2008] Clémençon, S., Lugosi, G., and Vayatis, N. (2008).
Ranking and Empirical Minimization of U-statistics. Annals of Statistics,
36(2):844–874.

[Collobert et al., 2011] Collobert, R., Kavukcuoglu, K., and Farabet, C.
(2011). Torch7: A Matlab-like Environment for Machine Learning. In
BigLearn NIPS Workshop.

[de Sa, 1994] de Sa, V. R. (1994). Learning classification with unlabeled
data. Advances in neural information processing systems, pages 112–112.

[de Sousa et al., 2013] de Sousa, C. A. R., Rezende, S. O., and Batista, G.
E. A. P. A. (2013). Influence of graph construction on semi-supervised
learning. In Blockeel, H., Kersting, K., Nijssen, S., and Zelezný, F., editors,
ECML/PKDD (3), volume 8190 of Lecture Notes in Computer Science,
pages 160–175. Springer.

[Dempster et al., 1977] Dempster, A. P., Laird, N. M., and Rubin, D. B.
(1977). Maximum likelihood from incomplete data via the em algorithm.
JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B,
39(1):1–38.

[Fischer and Igel, 2012] Fischer, A. and Igel, C. (2012). An Introduction to
Restricted Boltzmann Machines, pages 14–36. Springer Berlin Heidelberg,
Berlin, Heidelberg.

[Fisher, 1938] Fisher, R. A. (1938). The statistical utilization of multiple
measurements. Annals of Eugenics, 8(4):376–386.

[Frome et al., 2007] Frome, A., Singer, Y., Sha, F., and Malik, J. (2007).
Learning globally-consistent local distance functions for shape-based im-
age retrieval and classification. In IEEE 11th International Conference
on Computer Vision, ICCV 2007, Rio de Janeiro, Brazil, October 14-20,
2007, pages 1–8.

[Fukunaga, 1990] Fukunaga, K. (1990). Introduction to Statistical Pattern
Recognition (2Nd Ed.). Academic Press Professional, Inc., San Diego, CA,
USA.

104

[Fürnkranz, 1999] Fürnkranz, J. (1999). Separate-and-conquer rule learning.
Artificial Intelligence Review, 13(1):3–54.

[Geurts et al., 2006] Geurts, P., Ernst, D., and Wehenkel, L. (2006). Ex-
tremely randomized trees. Mach. Learn., 63(1):3–42.

[Grover and Leskovec, 2016] Grover, A. and Leskovec, J. (2016). node2vec:
Scalable feature learning for networks. CoRR, abs/1607.00653.

[Guillory and Bilmes, 2009] Guillory, A. and Bilmes, J. A. (2009). Label
selection on graphs. In Bengio, Y., Schuurmans, D., Lafferty, J. D., Wil-
liams, C. K. I., and Culotta, A., editors, Advances in Neural Information
Processing Systems 22, pages 691–699. Curran Associates, Inc.

[Guyon et al., 1993] Guyon, I., Boser, B. E., and Vapnik, V. (1993). Auto-
matic capacity tuning of very large vc-dimension classifiers. In Advances
in Neural Information Processing Systems 5, [NIPS Conference], pages
147–155, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

[Guyon and Elisseeff, 2003] Guyon, I. and Elisseeff, A. (2003). An intro-
duction to variable and feature selection. Journal of Machine Learning
Research, 3:1157–1182.

[Hoffer and Ailon, 2014] Hoffer, E. and Ailon, N. (2014). Deep metric learn-
ing using triplet network. CoRR, abs/1412.6622.

[Hornik et al., 1989] Hornik, K., Stinchcombe, M., and White, H. (1989).
Multilayer feedforward networks are universal approximators. Neural
Netw., 2(5):359–366.

[J. Weston, 2008] J. Weston, F. Rattle, R. C. (2008). Deep learning via semi-
supervised embedding. In International Conference on Machine Learning.

[Joachims, 1999] Joachims, T. (1999). Transductive inference for text clas-
sification using support vector machines. In Proceedings of the Sixteenth
International Conference on Machine Learning, ICML ’99, pages 200–209,
San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

[Kedem et al., 2012] Kedem, D., Tyree, S., Weinberger, K., Sha, F., and
Lanckriet, G. (2012). Non-linear metric learning. In Bartlett, P., Pereira,
F., Burges, C., Bottou, L., and Weinberger, K., editors, Advances in
Neural Information Processing Systems 25, pages 2582–2590.

[Kotsiantis, 2007] Kotsiantis, S. B. (2007). Supervised machine learning: A
review of classification techniques. Informatica (Slovenia), 31(3):249–268.

[Kulis, 2012] Kulis, B. (2012). Metric learning: A survey. Foundations and
Trends in Machine Learning, 5(4):287–364.

105

[Le Cun, 1986] Le Cun, Y. (1986). Learning Process in an Asymmetric
Threshold Network, pages 233–240. Springer Berlin Heidelberg, Berlin,
Heidelberg.

[Lecun, 1985] Lecun, Y. (1985). Une procedure d’apprentissage pour reseau
a seuil asymmetrique (A learning scheme for asymmetric threshold net-
works), pages 599–604.

[Maier, Markus et al., 2013] Maier, Markus, von Luxburg, Ulrike, and Hein,
Matthias (2013). How the result of graph clustering methods depends on
the construction of the graph. ESAIM: PS, 17:370–418.

[McPherson et al., 2001] McPherson, M., Smith-Lovin, L., and Cook, J. M.
(2001). Birds of a feather: Homophily in social networks. Annual Review
of Sociology, 27(1):415–444.

[Murthy, 1998] Murthy, S. K. (1998). Automatic construction of decision
trees from data: A multi-disciplinary survey. Data Mining and Knowledge
Discovery, 2(4):345–389.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A.,
Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss,
R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830.

[Perozzi et al., 2014] Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). Deep-
walk: Online learning of social representations. CoRR, abs/1403.6652.

[Ramanan and Baker, 2011] Ramanan, D. and Baker, S. (2011). Local dis-
tance functions: A taxonomy, new algorithms, and an evaluation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 33(4):794–
806.

[Rifai et al., 2011] Rifai, S., Dauphin, Y., Vincent, P., Bengio, Y., and
Muller, X. (2011). The manifold tangent classifier. In Advances in Neural
Information Processing Systems 24: 25th Annual Conference on Neural
Information Processing Systems 2011. Proceedings of a meeting held 12-
14 December 2011, Granada, Spain., pages 2294–2302.

[Rosenblatt, 1958] Rosenblatt, F. (1958). The perceptron: A probabilistic
model for information storage and organization in the brain. Psychological
Review, pages 65–386.

[Rosenblatt, 1962] Rosenblatt, F. (1962). Principles of Neurodynamics: Per-
ceptrons and the Theory of Brain Mechanisms. Spartan Books, Washing-
ton. it Early work on what would now be referred to as a “connectionist”
model.

106

[Rumelhart et al., 1986] Rumelhart, D. E., Hinton, G. E., and Williams,
R. J. (1986). Parallel distributed processing: Explorations in the micro-
structure of cognition, vol. 1. chapter Learning Internal Representations
by Error Propagation, pages 318–362. MIT Press, Cambridge, MA, USA.

[Schölkopf et al., 1998] Schölkopf, B., Smola, A., and Müller, K.-R. (1998).
Nonlinear component analysis as a kernel eigenvalue problem. Neural
Comput., 10(5):1299–1319.

[Scholkopf and Smola, 2001] Scholkopf, B. and Smola, A. J. (2001). Learn-
ing with Kernels: Support Vector Machines, Regularization, Optimization,
and Beyond. MIT Press, Cambridge, MA, USA.

[Weinberger and Saul, 2009] Weinberger, K. Q. and Saul, L. K. (2009). Dis-
tance metric learning for large margin nearest neighbor classification.
Journal of Machine Learning Research (JMLR), 10:207–244.

[Yang, 2006] Yang, L. (2006). Distance metric learning: A comprehensive
survey.

[Yarowsky, 1995] Yarowsky, D. (1995). Unsupervised word sense disambig-
uation rivaling supervised methods. In Proceedings of the 33rd Annual
Meeting on Association for Computational Linguistics, ACL ’95, pages
189–196, Stroudsburg, PA, USA. Association for Computational Linguist-
ics.

[Zhang, 2000] Zhang, G. P. (2000). Neural networks for classification: a
survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 30(4):451–462.

[Zhou et al., 2004] Zhou, D., Bousquet, O., Lal, T. N., Weston, J., and
Schölkopf, B. (2004). Learning with local and global consistency. In Thrun,
S., Saul, L., and Schölkopf, B., editors, Advances in Neural Information
Processing Systems 16, pages 321–328. MIT Press.

[Zhu, 2005] Zhu, X. (2005). Semi-supervised learning literature survey. Tech-
nical Report 1530, Computer Sciences, University of Wisconsin-Madison.

[Zhu and Ghahramani, 2002] Zhu, X. and Ghahramani, Z. (2002). Learning
from labeled and unlabeled data with label propagation. Technical report,
Carnegie Mellon University.

[Zhu et al., 2003] Zhu, X., Ghahramani, Z., and Lafferty, J. D. (2003). Semi-
supervised learning using gaussian fields and harmonic functions. In Ma-
chine Learning, Proceedings of the Twentieth International Conference
(ICML 2003), August 21-24, 2003, Washington, DC, USA, pages 912–
919.

107

Task driven representation learning
Apprentissage de représentation dirigé par la tâche

Pauline Wauquier

Le doctorat durant lequel les travaux présentés dans ce document ont été
menés s’est déroulé en collaboration avec la start-up Clic and Walk (con-
vention CIFRE). Cette entreprise effectue des études de marchés et collecte
les avis des clients pour différentes entreprises. A la demande des entre-
prises mandatrices, des missions, composées par un ensemble de questions
et de photos, sont envoyées aux utilisateurs de l’application Clic and Walk,
qui perçoivent une rémunération en échange de leurs réponses. Différentes
contraintes de temps et de coûts nécessitent de mettre en place une meilleure
stratégie de distribution des missions aux différents utilisateurs.

Au cours de ce doctorat, j’ai pu effectuer des recherches théoriques dans
le but de mettre en place une recommandation des utilisateurs. Ce docu-
ment présente les travaux théoriques qui ont été menés durant le doctorat
sur l’apprentissage de représentation dirigé par une tâche.

De nombreux problèmes peuvent être résolus en prédisant une inform-
ation à partir d’un ensemble de données. Afin d’illustrer nos propos, in-
téressons nous à un site de vente en ligne et quelques problèmes market-
ing pouvant lui être associés. Une fois inscrit, un utilisateur du site peut
acheter et noter les différents produits qui sont disponibles. Les employés
du site marchand peuvent accéder au profil des utilisateur, les notes que ces
derniers ont donnés aux différents produits et leurs achats. Afin d’augmenter
le nombre de ventes, les employés souhaitent inciter les clients à acheter plus
de produits. Ils doivent donc pouvoir proposer à chaque client des produits
susceptibles de l’intéresser. L’intérêt d’un utilisateur pour un produit spéci-
fique doit donc être prédit à partir des informations disponibles, notamment
le profil de l’utilisateur et les caractéristiques du produit. Une autre amélior-
ation marketing serait de segmenter l’ensemble des utilisateurs dans le cadre
d’une segmentation de marché, en se basant sur le profil des utilisateurs ou
leurs historiques d’achats. Le site de commerce en ligne pourrait également
souhaiter établir un budget prévisionnel. La somme qu’un client est suscept-
ible de dépenser dans un intervalle de temps donné sur le site doit donc être
prédite, en fonction des informations disponibles à propos du client.

Parmi les différentes tâches de prédiction qui peuvent être extraites des
problèmes rencontrés en contexte réel, citons:

• Classification: une étiquette doit être associée à chaque entité (l’intérêt
d’un client pour un objet par exemple)

• Régression: une valeur continue doit être associée à chaque entité (la
somme qu’un client est susceptible de dépenser dans un intervalle de
temps donné par exemple)

• Clustering: l’objectif est de définir une partition sur l’ensemble des
entités (segmentation de marché par exemple)

1

Les problèmes de prédiction précédemment introduits peuvent être résolus
en demandant à des experts du domaine d’analyser les données collectées
afin d’extraire un schéma, de définir des règles ou d’extraire l’information
voulue. Quelqu’un peut ainsi être employé par le site de commerce en ligne
afin de créer des associations entre les différents produits et clients. Le site
marchand traitant des ensembles toujours croissant de produits et de clients,
créer chaque association à la main est chronophage et coûteux. Une meil-
leure solution pour le site est de pouvoir prédire automatiquement l’intérêt
qu’un client peut avoir pour un produit spécifique en se basant sur les in-
formations disponibles concernant l’utilisateur et le produit. De même, pour
le problème de prédiction des dépenses des clients, un employé doit être as-
signé à l’analyse des dépenses des années précédentes de chaque clients ainsi
que de leurs informations de profils. Plutôt que de résoudre manuellement
cette tâche, le site marchand pourrait chercher à automatiquement prédire
la somme qu’un client est susceptible de dépenser durant l’année courante
en se basant sur son profil, son historique d’achats ainsi que sur l’ensemble
des informations concernant les autres clients.

La définition manuelle d’un ensemble de règles et la recherche manuelle de
schémas ne sont pas seulement coûteuses en temps et en argent. Les tâches
ciblées peuvent aussi être trop complexes pour être résolues par un humain.
Certains problèmes peuvent être trop compliqués, ou les données disponibles
trop nombreuses, pour être résolus de manière optimale à la main. Résoudre
manuellement un problème de segmentation de marché nécessite qu’un em-
ployé explore et analyse le comportement et les informations d’un ensemble
de clients pour extraire des groupes cohérents. A cause du nombre de clients
et des variables associées à chacun des clients, la segmentation de marché est
un problème qui peut rapidement devenir trop complexe pour être résolu à
la main.

Les algorithmes d’apprentissage automatique proposent de nombreuses
approches répondant aux problématiques précédemment abordées. Les méthodes
d’apprentissage automatique cherchent à résoudre de manière optimale les
problèmes issus de contextes réels. Elles sont développées pour résoudre
automatique une tâche en se basant sur un jeu de données, sans nécessiter
l’implication d’aucun expert durant l’étape d’apprentissage.

Un jeu de données est un ensemble d’information à partir duquel les al-
gorithmes d’apprentissage automatique traitent la tâche. Les jeux de données
sont communément composés d’un ensemble d’entités à partir desquels un
algorithme apprend ou pour lesquels il cherche à résoudre la tâche. Des in-
formations supplémentaires sont parfois disponibles pendant le processus de
création du jeu de données. L’étiquette d’une instance, associée à la tâche
ciblée, peut ainsi être disponible pendant l’étape de création du jeu de don-
nées ou a pu être proposée par un expert. L’étiquette devant être prédite

2

dans le cadre de la tâche ciblée peut donc être disponible pour certaines en-
tités. Le site marchand a par exemple accès à l’ensemble des produits que
les clients ont acheté les années précédentes et peut donc facilement calculer
le montant dépensé par les différents clients. Pour la recommandation de
produits, l’intérêt des clients peut être déduits pour l’ensemble des produits
ayant précédemment été notés ou achetés, à partir des historiques d’achats.

Les algorithmes d’apprentissage automatique peuvent exploiter ces in-
formations supplémentaires. Selon l’utilisation ou non de cet information
complémentaire, les algorithmes d’apprentissage automatique peuvent être
regroupés en différentes catégories, parmi lesquelles nous pouvons citer les
suivantes:

• apprentissage supervisé: une étiquette est disponible pour chaque en-
tité du jeu données étant disponible durant l’entraînement. Les al-
gorithmes supervisés cherchent à apprendre un modèle pouvant prédire
une étiquette pour toute entité issue de la même distribution.

• apprentissage semi-supervisé: les jeux de données sur lesquels se basent
les algorithmes semi-supervisés sont composés d’un ensemble d’entités
étiquetées et d’un ensemble d’entités non-étiquetées. Un algorithme
semi-supervisé exploite l’ensemble des entités disponibles, étiquetées
ou non, pour prédire l’étiquette de toute entité issue de la même dis-
tribution.

• apprentissage non-supervisé: les algorithmes non-supervisés sont en-
traînés à partir de données non-étiquetées. Ils apprennent un modèle
à partir de la représentation vectorielle de l’ensemble du jeu de don-
nées sans avoir accès à aucune étiquette. La tâche est résolue en se
basant uniquement sur la distribution et la représentation vectorielle
des données.

Dans ces travaux, nous nous concentrons sur la tâche de classification.
Pour la suite, définissons les notations associées à la tâche de classific-
ation. Soit X un espace vectoriel et soit Y l’ensemble d’étiquettes dis-
crètes {0, ..., c − 1}. P est la distribution des données dans X × Y. Soit
{(x0, y0), ..., (xl−1, yl−1)} (respectivement {xl, ..., xl+u−1}) un ensemble d’exemples
étiquetés (respectivement un ensemble d’entités non étiquetées), tels que
xi ∈ X et yi ∈ Y. On suppose que les exemples de chaque ensemble sont
des variables indépendantes et identiquement distribuées. Les ensembles L
et U sont définis tels que L = {x0, ...xl−1} et U = {xl, ..., xl+u−1}. Un jeu de
données X est défini comme étant l’union X = L ∪ U . On suppose que les
exemples dans X sont tirés selon la distribution P. Nous définissons finale-
ment yL = [y0, ..., yl−1] le vecteur d’étiquettes associé aux entités composant
L et yU = [yl, ..., yl+u−1] le vecteur d’étiquettes que l’on cherche à prédire

3

pour les entités composant U . Le vecteur y, issu de la concaténation de yL

et yU, et le vecteur d’étiquettes associé au jeu de données X.

Les algorithmes supervisé cherchent à retrouver la distribution des don-
nées et de leurs étiquettes sous-jacent au jeu de données, afin de prédire
l’étiquette d’entités issue de la même distribution. Les algorithmes de clas-
sification supervisé apprennent un modèle associant une étiquette dans Y à
chaque entité de X tiré selon la probabilité P.

De nombreux algorithmes supervisés, dits génératifs, cherchent à appren-
dre un processus génératif permettant d’expliquer l’ensemble de données L,
parmi lesquels on retrouve les approches de classification naïve Bayesienne
([Cestnik et al., 1987]), les modèles de mixtures ([Dempster et al., 1977]),
les machines de Boltzmann restreintes ([Fischer and Igel, 2012]) ou l’analyse
linéaire discriminante ([Fisher, 1938, Fukunaga, 1990]). Les algorithmes su-
pervisés non génératifs sont dits discriminants. Parmi ces algorithmes, cer-
tains cherchent à apprendre un séparateur linéaire, tels que les machines
à vecteurs de support ([Burges, 1998]) et les algorithmes basés sur des per-
ceptrons ([Rosenblatt, 1962]). Les autres algorithmes supervisés, tels que
les versions kernalisées des séparateurs linéaires, les réseaux de neurones
([Zhang, 2000]), ou les algorithmes basés sur la logique ([Murthy, 1998],
[Fürnkranz, 1999]) cherchent eux à apprendre un séparateur non-linéaire
pour la classification de jeu de données plus complexes. Des états de l’art
plus complets l’apprentissage supervisé peuvent être trouvés, notamment
[Kotsiantis, 2007].

Les algorithmes de classification supervisés basent leur apprentissage sur
les données étiquetées disponibles. Or notamment à cause des contraintes
de coûts et de difficulté d’étiquetage, les données non-étiquetées sont plus
facilement accessible que les données étiquetées et la proportion d’entités
étiquetées est souvent faible par rapport à l’ensemble des données dispon-
ibles. Les algorithmes supervisés ignorent donc un nombre non-négligeable
de données dans le processus d’apprentissage et n’exploitent pas les informa-
tions portées par ces entités non-étiquetées. Les algorithmes transductifs ex-
ploitent les données étiquetées et non-étiquetées afin de prédire les étiquettes
yU des entités de U . La tâche n’est cependant résolue que pour les entités
non-étiquetées disponibles pendant l’entraînement et le modèle ne peut pas
être généralisé à de nouvelles entités. Les algorithmes semi-supervisés, induc-
tifs, de classification exploitent quant à eux l’ensemble des données dispon-
ibles pendant l’entraînement, étiquetées et non-étiquetées, afin d’apprendre
un modèle pour prédire l’étiquette de n’importe quelle entité dans X tirée
selon la probabilité P. Pour efficacement exploiter les données non-étiquetées
disponibles, les algorithmes semi-supervisés supposent que la distribution
sous-jacente aux données est structurée. Dans des contextes réels, deux
entités proches sont plus susceptibles de partager des caractéristiques com-

4

munes que deux entités lointaines. L’hypothèse selon laquelle deux entités
proches sont probablement semblables, l’hypotèse d’homophilie, est notam-
ment introduite dans [McPherson et al., 2001]. Dans le cadre de l’apprentissage
automatique, les hypothèses de smoothness et de cluster sont deux hypo-
thèses sur la répartition des données basées sur l’hypothèse d’homophilie.
Pour résoudre la tâche de classification, les algorithmes semi-supervisés sup-
posent que les données manipulées satisfont l’une de ces hypothèses (comme
décrit dans [Chapelle et al., 2006]).

De nombreuses approches semi-supervisées ont été proposées afin de ré-
soudre la tâche de classification. Certains algorithmes utilisent les données
non-étiquetées pour biaiser l’entraînement d’un algorithme de classification
supervisé, parmi lesquels les algorithmes de co-training ([Blum and Mitchell, 1998]),
de self-training ([Yarowsky, 1995]) et de multi-view ([de Sa, 1994]). Une
partie des autres algorithmes semi-supervisés de classification peuvent être
structurés similairement aux algorithmes supervisés. On retrouve donc des
algorithmes semi-supervisés génératifs, tels que l’algorithme espérance-maximisation
([Dempster et al., 1977]), exploitant l’ensemble du jeu de données, sans con-
sidération pour l’étiquetage, pour estimer la densité sous-jacente des don-
nées, avant de prédire les étiquettes inconnues en fonction des étiquettes
connues. De la même manière, les algorithmes semi-supervisés disrimin-
ants se basent sur l’ensemble des données pour apprendre un séparateur
entre les classes, tels que dans les machines à vecteur de support trans-
ductifs ([Joachims, 1999]). Un dernier groupe d’algorithmes semi-supervisés
résolvent la tâche en se basant sur les relations entre les entités plus que
sur leur représentations vectorielles. Un graphe, composé par un ensemble
d’entités et de lien, peut être utilisé pour représenter les entités d’un jeu de
données et leurs relations. Une telle représentation d’un jeu de données peut
facilement être construite et de nombreux algorithmes semi-supervisés, dit
basés sur les graphes, exploitent la représentation d’un jeu de données sous
forme de graphe pour résoudre la tâche. Une revue plus précise des graphes et
d’algorithmes semi-supervisés basés sur les graphes est faite dans ces travaux.
Des travaux plus complets sur l’apprentissage semi-supervisé sont disponibles
dans différentes études, notamment [Zhu, 2005, Chapelle et al., 2006].

Les algorithmes d’apprentissage automatique sont appliqués sur des jeux
de données afin d’apprendre un modèle ou d’extraire l’information voulue.
Les données doivent donc d’abord être collectée à partir du contexte réel dans
lequel le problème est étudié. Concernant les exemples tirés du site de com-
merce en ligne, les jeux de données peuvent par exemple être composés des
clients, des informations collectées lors de leur inscription ou de leurs achats.
La majorité des algorithmes d’apprentissage automatique se basent sur une
représentation vectorielle des données. L’application de ces algorithmes né-
cessite donc la modélisation des données réelles au travers d’un vecteur de

5

description. A cause de la sélection des attributs par un expert et des trans-
formations qui peuvent leur être appliquées, de nombreuses représentations
vectorielles des données peuvent construites à partir des informations réelles
disponibles. Que l’algorithme utilisé pour résoudre la tâche se base sur la
représentation des données et les relations entre les entités, le résultat d’un
algorithme dépend de la représentation vectorielle des données disponible
sur laquelle se base directement ou indirectement l’algorithme et peut donc
varier pour les différentes représentations vectorielles disponibles pour un
même jeu de données. La modélisation vectorielle d’un jeu de données est
donc une étape importante pour la résolution de la tâche ciblée.

La majorité des algorithmes d’apprentissage automatique calcule une dis-
tance ou une similarité entre les représentations vectorielles des données.
Plusieurs distances et similarités classiques ont été définies et sont commun-
ément utilisées telles que la distance euclidienne ou la similarité cosinus. Pour
le reste de ces travaux, nous considérerons des distances. Il faut cepend-
ant noter que les propos concernant les distance peuvent facilement être
transposés pour les similarités en inversant l’échelle: de faibles (respective-
ment larges) distances peuvent être remplacées par de larges (respectivement
faibles) similarités. Les distances classiquement utilisées considèrent que les
différents attributs ont la même influence sur la tâche ciblée et les différents
attributs participent donc de manière égale dans la proximité entre deux
entités. A cause des choix arbitraires effectués lors des étapes menant à
la représentation vectorielle des données, tous les attributs de la représent-
ation vectorielle d’une entité n’ont pas la même influence pour la tâche à
résoudre. L’hypothèse d’égale influence des attributs sur laquelle se basent
les distances n’étant pas nécessairement satisfaite, les distances classique-
ment utilisées peuvent être sous-optimale pour la tâche considérée.

L’exécution d’un algorithme est dépendant de l’application de la distance
sur la représentation vectorielle des données. La capacité de résolution d’un
algorithme dépend donc du choix de la représentation vectorielle et de la
distance. Dans la littérature, un ensemble de travaux cherchent à mutuelle-
ment adapter la représentation des données et la distance utilisée. Selon que
l’algorithme se base sur la représentation vectorielle des données ou sur les
relations, i.e. les distances, entre les entités, la représentation des données ou
la distance entre les entités peuvent être appris. De nombreuses approches
ont été proposées pour adapter la distance à la représentation vectorielle fixée
des données (apprentissage de métrique) ou pour adapter la représentation
vectorielle des données à la distance sélectionnée (apprentissage de représent-
ation,sélection d’attributs,réduction de dimension).

Afin d’apprendre la distance reflétant au mieux la similarité entre les en-
tités dans la représentation vectorielle disponible, la majorité des algorithmes
d’apprentissage de métrique cherchent à apprendre les relations entre paires
d’entités à partir d’un ensemble de contraintes. Bien que la majorité des

6

algorithmes d’apprentissage de métrique cherchent à apprendre une distance
linéaire entre les entités, telle qu’une distance Mahalanobis dans [Weinberger and Saul, 2009],
un certain nombres d’approches proposent d’apprendre une distance non-
linéaire. Une distance non-linéaire peut être indirectement apprise en appli-
quant un algorithme d’apprentissage de métrique linéaire dans un espace de
représentation non-linéaire ([Schölkopf et al., 1998, Scholkopf and Smola, 2001]).
D’autres travaux, tels [Kedem et al., 2012] ou [Chopra et al., 2005], proposent
des approches pour apprendre une distance non-linéaire en apprenant une
nouvelle représentation des données. La non-linéarité peut être introduite
dans la distance fixée ou dans la fonction de mapping apprise.

Ces métriques peuvent être apprises soit sur le domaine entier dans le-
quel les données sont tirées ou sur des patches locaux ([Frome et al., 2007,
Ramanan and Baker, 2011]), afin de s’adapter à des données hétérogènes.
Différentes études plus complètes sur l’apprentissage de métrique sont dispon-
ibles, notamment [Yang, 2006, Kulis, 2012, Bellet et al., 2013].

Bien que considérées comme des méthodes d’apprentissage de métrique,
les algorithmes non-linéaires introduits précédemment peuvent être vus comme
des algorithmes où les données sont projetées dans un nouvel espace dans le-
quel une distance fixée satisfait un ensemble de contraintes. Ces algorithmes
peuvent donc être associés à l’apprentissage de représentation, qui cherche à
projeter les données dans un espace de représentation dans lequel une dis-
tance est représentative de la tâche à résoudre. Selon le nouvel ensemble
d’attributs qu’ils proposent, les algorithmes d’apprentissages peuvent être
regroupés en différentes catégories.

Les premiers, appelés algorithmes de sélection d’attributs ([Guyon and Elisseeff, 2003]),
choisissent un sous-ensemble des attributs initiaux, selon leurs capacités de
prédiction individuelles ou combinées, tels que les algorithmes basés sur les
arbres ([Geurts et al., 2006]). Les attributs initialement disponibles pouv-
ant être peu adaptés à la tâche ciblée, les autres algorithmes d’apprentissage
de représentation proposent de construire un ensemble d’attributs en trans-
formant les attributs initialement disponibles, tout en réduisant le nombre
d’attributs décrivant les données. Ces approches sont dans le domaine de la
réduction de dimensionnalité, parmi lesquels on retrouve l’Analyse en Com-
posantes Principales, ou les auto-encoders ([Rifai et al., 2011]). Un dernier
groupe d’algorithmes d’apprentissage de représentation proposent un nouvel
ensemble d’attributs sans contraintes sur la dimension. Avec ces méthodes,
les données sont projetées dans un nouvel espace de représentation en ap-
pliquant des transformations sur l’ensemble initial d’attributs. Parmi ces al-
gorithmes et proches de l’approche proposée dans ces travaux, les algorithmes
développés dans [J. Weston, 2008] et [Hoffer and Ailon, 2014] apprennent un
réseau de neurones pour projeter les données dasn un espace de représenta-
tion satisfaisant certaines contraintes liées à une distance.

Différentes études traitant de manière plus précise l’apprentissage de re-

7

présentation sont disponibles, notamment [Bengio et al., 2013, Guyon and Elisseeff, 2003].

Une fois que la représentation vectorielle du jeu de données et la distance
ont été fixées, un graphe peut être construit à partir du jeu de données
pour résoudre la tâche ciblée. Une partie des algorithmes semi-supervisés se
basent sur des données structurées en graphes pour résoudre les différentes
tâches.

Un graphe G = (V,E) est composé d’un ensemble de nœuds V qui sont
liés par un ensemble de liens E qui peuvent être pondérés. Les poids utilisés
pour caractériser les liens permettent de représenter une relation entre les
nœuds liés par les liens. Un graphe G = (X,E) peut être construit à partir
d’un jeu de données X. Les liens de E entre les paires d’entités de X peuvent
par exemple être créés en calculant la distance entre les représentations vec-
torielles des entités.

La représentation sous forme d’un graphe d’un jeu de données permet
de faire ressortir une structure au sein des données, par l’ensemble des rela-
tions entre les entités qui sont représentées. Certains liens présents dans le
graphe sont associés à des poids faibles ou ne portent que peu d’information
par rapport aux autres liens. Or nous cherchons à renforcer la structure au
sein des données que le graphe a fait ressortir. L’objectif est donc de ne
conserver que les liens les plus représentatifs des relations entre les instances
ou les liens les plus forts. Les liens négligeables d’un graphe doivent donc
être supprimés. Un lien peut être considéré négligeable si le poids qui lui est
associé est négligeable par rapport à l’ensemble du graphe. Un seuil est donc
appliqué sur l’ensemble des liens pour définir si les liens sont conservés ou
non, i.e. la simplification ε. Un lien peut au contraire être considéré comme
négligeable comparé à l’ensemble des liens associés aux entité communes.
Pour une entité donnée du graphe, seuls les k liens les plus forts sont con-
servés, i.e. la simplification k-nn. A partir d’un même jeu de données X, de
nombreux graphes peuvent donc être construits selon le choix de la distance
pour pondérer les liens et de la méthode pour simplifier le graphe.

Différents algorithmes semi-supervisés ont été développés pour résoudre
une tâche de classification en exploitant des données représentées sous forme
d’un graphe. Parmi ces algorithmes, les auteurs de [Zhu and Ghahramani, 2002]
proposent un algorithme itératif pour résoudre la tâche de classification en
se basant sur le graphe représentant le jeu de données. A chaque étape de
l’algorithme, chaque nœud propage son étiquette actuelle à l’ensemble de ces
voisins. L’étiquette d’une entité initialement non-étiquetée est donc la moy-
enne des étiquettes de ses voisins, pondérées par leur proximité. Plusieurs
variations de cet algorithme et approches proches peuvent également être
trouvées ([Zhu et al., 2003, Zhou et al., 2004, Belkin et al., 2004]).

Ces algorithmes sont cependant dépendant du graphe disponible et plus
précisément sur les choix effectué lors de la construction du graphe, not-
amment le choix de la distance pour pondérer les liens. Différents travaux

8

ont été menés pour étudier l’influence de la méthode de construction du
graphe sur des algorithmes d’apprentissage automatique, notamment dans
[Maier, Markus et al., 2013] et [de Sousa et al., 2013].

L’exécution, et donc le résultat, des algorithmes de classification dépendent
de l’adéquation entre la représentation vectorielle des données et la distance
utilisée. La question principale sous-jacente à ces travaux est donc liée à
la méthode à utiliser pour adapter au mieux la représentation vectorielle
des données et la distance associée. Comment la représentation vectorielle
et la distance associée peutvent être apprise de sorte à ce que la distance
soit représentative de la tâche à résoudre? Les approches d’apprentissage de
métrique et de représentation sont liées. Dans ces travaux, en considérant
une distance prédéfinie, nous étudions les méthodes d’apprentissage de re-
présentation pour la résolution de tâche en se basant sur des graphes, en ap-
pliquant l’algorithme de propagation d’étiquettes introduit dans [Zhu and Ghahramani, 2002].
Nous affirmons qu’un algorithme d’apprentissage de représentation guidé par
la tâche permet aux algorithmes semi-supervisés basés sur les graphes de ré-
soudre la tâche de manière plus optimale qu’avec la représentation initiale
des données.

Dans ces travaux, nous cherchons à construire un graphe sur lequel
l’algorithme de propagation d’étiquettes peut être appliqué de manière op-
timal. Cet algorithme de classification est optimal si les entités proches
dans le graphe sont similaires au regard de la tâche à résoudre. Afin de
construire un graphe à partir d’un jeu de données X tel que les entités
proches ont une étiquette similaire, une distance dφ doit être apprise telle
que deux entités avec la même étiquette sont plus proches l’une de l’autre
que d’une entité étiquetée différement. Plus formellement, la distance dφ
doit être apprise telle que dφ(xi, xj) < dφ(xi, xk) pour le plus de triplets
d’entités (xi, xj , xk) ∈ X × X × X tels que yi = yj 6= yk possible. Pour
apprendre une telle distance, nous proposons d’apprendre une nouvelle re-
présentation φ(x) des entités x ∈ X telle que pour une distance d fixée,
d(φ(xi), φ(xj)) < d(φ(xi), φ(xk)) pour le plus grand nombre de triplets
(xi, xj , xk) tels que yi = yj 6= yk possible. Définissons T comme étant
l’ensemble des triplets:

T = {(xi, xj , xk)|xi, xj , xk ∈ X ∧ yi = yj 6= yk}

La nouvelle représentation φ des données peut être apprise en minimisant la
fonction suivante

C(φ|T) =
∑

(xi,xj ,xk)∈T

max(0, µ− [d(φ(xi), φ(xj)− d(φ(xi), φ(xk))]) (1)

9

Les réseaux de neurones artificiels, de par leur fortes capacités de re-
présentation ([Hornik et al., 1989]), sont de plus en plus fréquemment util-
isés pour des problèmes d’apprentissage de représentation.

Un réseau de neurones est composé d’un ensemble de couches, elles même
composée d’un ensemble d’unités appelées neurones. Un neurone est une
unité produisant une valeur continue obtenue en appliquant une fonction
non-linéaire, dite d’activation, sur une combinaison pondérée de ses entrées.
C’est une généralisation du concept de perceptron ([Rosenblatt, 1958]) qui
produit une sortie binaire par application d’un seuil sur une combinaison
pondérée de ses entrées. Les entrées de n’importe quel neurone d’un per-
ceptron multi-couches est l’ensemble, ou un sous-ensemble, des sorties produites
par les unités de la couche précédente. Les perceptrons multi-couches sont
donc un sous-ensemble des réseaux de neurones tels que chaque couche d’un
perceptron multi-couche n’est connecté qu’à la couche précédente et suivante,
sans cycle dans le réseau. Un perceptron multi-couches associe donc une
nouvelle description φ(x) à une entité donnée x. Les réseaux de neurones
peuvent être facilement optimiser grâce à la méthode de rétro-propagation
de l’erreur ([Lecun, 1985, Rumelhart et al., 1986, Le Cun, 1986]) qui mod-
ifie chacun des poids du réseau en fonction de son influence relative sur la
sortie produite. La représentation φ apprise par notre algorithme sera donc
un perceptron multi-couches. De tels réseaux de neurones ne considèrent
cependant que des entités seules, quand nous nous intéressons à des rela-
tions entre entités. Afin de travailler sur des relations entre les entités,
une architecture siamoise est construite à partir de φ pour optimiser notre
fonction de coûts. Initialement proposé dans [Bromley et al., 1994], les ar-
chitectures siamoises permettent d’appliquer simultanément le même réseau
de neurones sur différentes entités distinctes données en entrée. Un réseau
de neurones siamois est une architecture composée d’autant de sous-réseaux
clones qu’il y a d’entrée distinctes. Un comparateur est ajouté au dessus des
réseaux dupliqués pour comparer la sortie obtenue de chacun d’entre eux,
afin d’évaluer la fonction de coût finale.

Nous appellerons l’algorithme d’apprentissage de représentation introduit
ici MDRL pour Metric Driven Representation Learning. Une fois que la
nouvelle représentation des données est apprise en optimisant la fonction in-
troduite dans l’équation 1, un graphe peut être construit afin de résoudre la
tâche de classification en appliquant l’algorithme de propagation d’étiquettes.
Le processus global pour la résolution de la tâche de classification est résumé

10

dans l’algorithme 1.
Algorithm 1: MDRL: Processus global pour la classification basé sur
l’apprentissage de représentation
Data: (L, yL) un ensemble d’exemples étiquetés et de leurs étiquettes

associées
U un ensemble d’entités non-étiquetées
d une distance
Result: yU un vecteur de prédictions pour les entités dans U

1 φ← MDRL(L, yL, d) // Apprentissage de la représentation
2 X̂ ← φ(X) // Projection du jeu de données dans le nouvel

espace de représentation
3 G,W ← Graph Construction(X̂, d) // Construction du graphe

dans le nouvel espace de représentation
4 yU ← Label Propagation(W, yL) // Classification des entités

non-étiquetées

Dans la suite de cette thèse, nous prouvant notre affirmation en montrant
qu’un graphe tel que seules les entités similairement étiquetées sont liées peut
être construit. L’application de l’algorithme de propagation d’étiquette sur
un tel graphe est assuré de résoudre la tâche de manière optimale. Dans
l’analyse théorique, nous prouvons qu’une valeur spécifique d’ε peut être
définie afin d’appliquer une simplification ε sur le graphe construit dans la
nouvelle représentation des données grâce à l’algorithme MDRL. L’existence
de cet ε est assurée si les entités non-étiquetées se trouvent dans un voisinage
suffisamment proche d’au moins une entité similairement étiquetées. La taille
du voisinage peut être défini en fonction de la représentation φ apprise par
l’algorithme MDRL et les exemples étiquetées du jeu de données.

Pour prouver l’existence d’un tel ε, un premier lemme montre que la dis-
tance entre deux entités dans l’espace de représentation associé à φ est bornée
en fonction de leur distance dans l’espace initial et de la fonction φ. Un deux-
ième lemme permet de prouver que si les entités d’un premier triplet sont
dans le voisinage des entités étiquetées similairement composant un deux-
ième triplet satisfaisant la contrainte relative associée, alors le premier triplet
satisfait la contrainte relative qui lui est associée. En combinant ces premi-
ers lemmes, un troisième lemme définit les conditions nécessaires pour qu’un
triplet d’entités non-étiquetées puisse satisfaire la contrainte relative associée
dans le nouvel espace de représentation associée à φ. En se basant sur ce
troisième lemme, une proposition définit la valeur d’ε permettant d’obtenir
un graphe tel que seules les entités identiquement étiquetées sont liées. Notre
théorème principal permet donc d’assurer une classification optimale.

L’objectif de l’algorithme d’apprentissage de représentation introduit est
de projeter les données dans un espace vectoriel dans lequel la tâche de clas-

11

sification peut être résolue de manière plus optimale que dans l’espace de
représentation initial. Afin d’évaluer la pertinence de l’algorithme proposé
dans ces travaux, différentes expériences ont été menés sur divers jeux de don-
nées artificiels et réels. Les résultats obtenus sont comparés à ceux obtenus
pour d’autres algorithmes d’apprentissage de métrique ou de représentations.

Dans une première étape, la satisfaction des contraintes associées à la
distance suite à l’application de l’algorithme d’apprentissage de représenta-
tion MDRL est évaluée sur différents jeux de données en calculant le pour-
centage de triplets pour lesquels la contrainte associée est satisfaite. A
l’issue de cette expérience, on a pu observer que la représentation apprise par
l’algorithmeMDRL permet de minimiser le nombre de triplets pour lesquelles
la contrainte associée est non-satisfaite par rapport aux autres algorithmes.
Dans un second temps, la satisfaction des hypothèses sur lesquelles se base
l’analyse théorique est empiriquement évaluée. On a ainsi pu observer em-
piriquement que les hypothèses ne sont pas nécessairement satisfaites pour
les différents jeux de données. Nous évaluons empiriquement ensuite le gain
de l’algorithme MDRL pour la résolution de la tâche de classification. Pour
se faire l’erreur de classification est comparée pour les différents paires de
représentation vectorielle et de distance. Il ressort de ces expériences que
l’erreur de classification obtenue dans l’espace appris par l’algorithme MDRL
est parmi les plus faibles pour les différents jeux de données. L’analyse
théorique se concentre sur une seule méthode de construction de graphe et
un seul algorithme de classification. Différentes expériences ont donc été réal-
isées afin d’évaluer la pertinence de l’algorithme MDRL pour ces différents
cadres de résolution de la classification. Dans ce contexte également, l’erreur
de classification obtenue dans l’espace appris par l’algorithme MDRL est
parmi les plus faibles pour les différents jeux de données.

Dans ces travaux, nous nous sommes intéressé à la résolution d’une tâche
de classification par une approche basée sur des graphes. Afin d’appliquer
l’algorithme de propagation d’étiquettes, un graphe doit être construit à
partir de la représentation vectorielle des données. Nous avons proposé
l’algorithme MDRL afin de projeter les données dans un espace permet-
tant la construction d’un graphe le plus adapté possible à la propagation
d’étiquettes. Une première analyse théorique a permis de définir des condi-
tions initiales sur les données telles qu’une classification optimale peut être
assurée. Les différentes évaluations empiriques qui ont été faites ont montré
l’intérêt d’une telle approche pour améliorer les résultats de la classifica-
tion, malgré le fait que les hypothèses théoriques ne soient pas nécessaire-
ment satisfaites. La non-satisfaction de hypothèses théoriques et l’intérêt
de l’algorithme MDRL pour la résolution de la tâche de classification pour
d’autres méthodes de construction de graphes et de classification nous per-
met d’envisager une relaxation ou une extension de l’analyse théorique menée
dans ces travaux. Dans cette optique, différents axes de travail sont proposés,

12

afin de proposer des garanties plus générales.

13

Bibliography

[Belkin et al., 2004] Belkin, M., Matveeva, I., and Niyogi, P. (2004). Reg-
ularization and semi-supervised learning on large graphs. In In COLT,
pages 624–638. Springer.

[Bellet et al., 2013] Bellet, A., Habrard, A., and Sebban, M. (2013). A Sur-
vey on Metric Learning for Feature Vectors and Structured Data. ArXiv
e-prints.

[Bengio et al., 2013] Bengio, Y., Courville, A., and Vincent, P. (2013). Rep-
resentation learning: A review and new perspectives. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35(8):1798–1828.

[Blum and Mitchell, 1998] Blum, A. and Mitchell, T. (1998). Combining
labeled and unlabeled data with co-training. In Proceedings of the Eleventh
Annual Conference on Computational Learning Theory, COLT’ 98, pages
92–100, New York, NY, USA. ACM.

[Bromley et al., 1994] Bromley, J., Guyon, I., Lecun, Y., Säckinger, E., and
Shah, R. (1994). Signature verification using a "siamese" time delay neural
network. In In NIPS Proc.

[Burges, 1998] Burges, C. J. (1998). A tutorial on support vector machines
for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121–
167.

[Cestnik et al., 1987] Cestnik, G., Konenenko, I., and Bratko, I. (1987).
Assistant-86: A knowledge-elicitation tool for sophisticated users. In
Bratko, I. and Lavrac, N., editors, Progress in Machine Learning, pages
31–45. Sigma Press, Ljubljana.

[Chapelle et al., 2006] Chapelle, O., Schlkopf, B., and Zien, A. (2006). Semi-
Supervised Learning. The MIT Press, 1st edition.

[Chopra et al., 2005] Chopra, S., Hadsell, R., and LeCun, Y. (2005). Learn-
ing a similarity metric discriminatively, with application to face verific-
ation. In Proceedings of the 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05) - Volume 1 -

14

Volume 01, CVPR ’05, pages 539–546, Washington, DC, USA. IEEE Com-
puter Society.

[de Sa, 1994] de Sa, V. R. (1994). Learning classification with unlabeled
data. Advances in neural information processing systems, pages 112–112.

[de Sousa et al., 2013] de Sousa, C. A. R., Rezende, S. O., and Batista, G.
E. A. P. A. (2013). Influence of graph construction on semi-supervised
learning. In Blockeel, H., Kersting, K., Nijssen, S., and Zelezný, F., editors,
ECML/PKDD (3), volume 8190 of Lecture Notes in Computer Science,
pages 160–175. Springer.

[Dempster et al., 1977] Dempster, A. P., Laird, N. M., and Rubin, D. B.
(1977). Maximum likelihood from incomplete data via the em algorithm.
JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B,
39(1):1–38.

[Fischer and Igel, 2012] Fischer, A. and Igel, C. (2012). An Introduction to
Restricted Boltzmann Machines, pages 14–36. Springer Berlin Heidelberg,
Berlin, Heidelberg.

[Fisher, 1938] Fisher, R. A. (1938). The statistical utilization of multiple
measurements. Annals of Eugenics, 8(4):376–386.

[Frome et al., 2007] Frome, A., Singer, Y., Sha, F., and Malik, J. (2007).
Learning globally-consistent local distance functions for shape-based im-
age retrieval and classification. In IEEE 11th International Conference
on Computer Vision, ICCV 2007, Rio de Janeiro, Brazil, October 14-20,
2007, pages 1–8.

[Fukunaga, 1990] Fukunaga, K. (1990). Introduction to Statistical Pattern
Recognition (2Nd Ed.). Academic Press Professional, Inc., San Diego, CA,
USA.

[Fürnkranz, 1999] Fürnkranz, J. (1999). Separate-and-conquer rule learning.
Artificial Intelligence Review, 13(1):3–54.

[Geurts et al., 2006] Geurts, P., Ernst, D., and Wehenkel, L. (2006). Ex-
tremely randomized trees. Mach. Learn., 63(1):3–42.

[Guyon and Elisseeff, 2003] Guyon, I. and Elisseeff, A. (2003). An intro-
duction to variable and feature selection. Journal of Machine Learning
Research, 3:1157–1182.

[Hoffer and Ailon, 2014] Hoffer, E. and Ailon, N. (2014). Deep metric learn-
ing using triplet network. CoRR, abs/1412.6622.

15

[Hornik et al., 1989] Hornik, K., Stinchcombe, M., and White, H. (1989).
Multilayer feedforward networks are universal approximators. Neural
Netw., 2(5):359–366.

[J. Weston, 2008] J. Weston, F. Rattle, R. C. (2008). Deep learning via semi-
supervised embedding. In International Conference on Machine Learning.

[Joachims, 1999] Joachims, T. (1999). Transductive inference for text clas-
sification using support vector machines. In Proceedings of the Sixteenth
International Conference on Machine Learning, ICML ’99, pages 200–209,
San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

[Kedem et al., 2012] Kedem, D., Tyree, S., Weinberger, K., Sha, F., and
Lanckriet, G. (2012). Non-linear metric learning. In Bartlett, P., Pereira,
F., Burges, C., Bottou, L., and Weinberger, K., editors, Advances in
Neural Information Processing Systems 25, pages 2582–2590.

[Kotsiantis, 2007] Kotsiantis, S. B. (2007). Supervised machine learning: A
review of classification techniques. Informatica (Slovenia), 31(3):249–268.

[Kulis, 2012] Kulis, B. (2012). Metric learning: A survey. Foundations and
Trends in Machine Learning, 5(4):287–364.

[Le Cun, 1986] Le Cun, Y. (1986). Learning Process in an Asymmetric
Threshold Network, pages 233–240. Springer Berlin Heidelberg, Berlin,
Heidelberg.

[Lecun, 1985] Lecun, Y. (1985). Une procedure d’apprentissage pour reseau
a seuil asymmetrique (A learning scheme for asymmetric threshold net-
works), pages 599–604.

[Maier, Markus et al., 2013] Maier, Markus, von Luxburg, Ulrike, and Hein,
Matthias (2013). How the result of graph clustering methods depends on
the construction of the graph. ESAIM: PS, 17:370–418.

[McPherson et al., 2001] McPherson, M., Smith-Lovin, L., and Cook, J. M.
(2001). Birds of a feather: Homophily in social networks. Annual Review
of Sociology, 27(1):415–444.

[Murthy, 1998] Murthy, S. K. (1998). Automatic construction of decision
trees from data: A multi-disciplinary survey. Data Mining and Knowledge
Discovery, 2(4):345–389.

[Ramanan and Baker, 2011] Ramanan, D. and Baker, S. (2011). Local dis-
tance functions: A taxonomy, new algorithms, and an evaluation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 33(4):794–
806.

16

[Rifai et al., 2011] Rifai, S., Dauphin, Y., Vincent, P., Bengio, Y., and
Muller, X. (2011). The manifold tangent classifier. In Advances in Neural
Information Processing Systems 24: 25th Annual Conference on Neural
Information Processing Systems 2011. Proceedings of a meeting held 12-
14 December 2011, Granada, Spain., pages 2294–2302.

[Rosenblatt, 1958] Rosenblatt, F. (1958). The perceptron: A probabilistic
model for information storage and organization in the brain. Psychological
Review, pages 65–386.

[Rosenblatt, 1962] Rosenblatt, F. (1962). Principles of Neurodynamics: Per-
ceptrons and the Theory of Brain Mechanisms. Spartan Books, Washing-
ton. it Early work on what would now be referred to as a “connectionist”
model.

[Rumelhart et al., 1986] Rumelhart, D. E., Hinton, G. E., and Williams,
R. J. (1986). Parallel distributed processing: Explorations in the micro-
structure of cognition, vol. 1. chapter Learning Internal Representations
by Error Propagation, pages 318–362. MIT Press, Cambridge, MA, USA.

[Schölkopf et al., 1998] Schölkopf, B., Smola, A., and Müller, K.-R. (1998).
Nonlinear component analysis as a kernel eigenvalue problem. Neural
Comput., 10(5):1299–1319.

[Scholkopf and Smola, 2001] Scholkopf, B. and Smola, A. J. (2001). Learn-
ing with Kernels: Support Vector Machines, Regularization, Optimization,
and Beyond. MIT Press, Cambridge, MA, USA.

[Weinberger and Saul, 2009] Weinberger, K. Q. and Saul, L. K. (2009). Dis-
tance metric learning for large margin nearest neighbor classification.
Journal of Machine Learning Research (JMLR), 10:207–244.

[Yang, 2006] Yang, L. (2006). Distance metric learning: A comprehensive
survey.

[Yarowsky, 1995] Yarowsky, D. (1995). Unsupervised word sense disambig-
uation rivaling supervised methods. In Proceedings of the 33rd Annual
Meeting on Association for Computational Linguistics, ACL ’95, pages
189–196, Stroudsburg, PA, USA. Association for Computational Linguist-
ics.

[Zhang, 2000] Zhang, G. P. (2000). Neural networks for classification: a
survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 30(4):451–462.

[Zhou et al., 2004] Zhou, D., Bousquet, O., Lal, T. N., Weston, J., and
Schölkopf, B. (2004). Learning with local and global consistency. In Thrun,

17

S., Saul, L., and Schölkopf, B., editors, Advances in Neural Information
Processing Systems 16, pages 321–328. MIT Press.

[Zhu, 2005] Zhu, X. (2005). Semi-supervised learning literature survey. Tech-
nical Report 1530, Computer Sciences, University of Wisconsin-Madison.

[Zhu and Ghahramani, 2002] Zhu, X. and Ghahramani, Z. (2002). Learning
from labeled and unlabeled data with label propagation. Technical report,
Carnegie Mellon University.

[Zhu et al., 2003] Zhu, X., Ghahramani, Z., and Lafferty, J. D. (2003). Semi-
supervised learning using gaussian fields and harmonic functions. In Ma-
chine Learning, Proceedings of the Twentieth International Conference
(ICML 2003), August 21-24, 2003, Washington, DC, USA, pages 912–
919.

18

