
HAL Id: tel-01622349
https://theses.hal.science/tel-01622349v2

Submitted on 23 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards federated social infrastructures for plug-based
decentralized social networks

Resmi Ariyattu

To cite this version:
Resmi Ariyattu. Towards federated social infrastructures for plug-based decentralized social net-
works. Networking and Internet Architecture [cs.NI]. Université de Rennes, 2017. English. �NNT :
2017REN1S031�. �tel-01622349v2�

https://theses.hal.science/tel-01622349v2
https://hal.archives-ouvertes.fr

ANNÉE 2017

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Bretagne Loire

En Cotutelle Internationale avec

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

École doctorale Matisse

présentée par

Resmi ARIYATTU

préparée à l’unité de recherche INRIA

Institut National de Recherche en Informatique et Automatique

Université de Rennes 1

Towards federated

social infrastructures

for plug-based

decentralized

social networks

Thèse soutenue à Rennes
l05 July 2017

devant le jury composé de :

David BROMBERG
Professeur des Universités, U. Rennes 1 / Président

Fabrice HUET
Maı̂tre de Conférence, Université de Nice / Rapporteur

Sara BOUCHENAK
Professeur des Universités, INSA de Lyon / Rapporteuse

Barry PORTER
Lecturer, University of Lancaster, UK / Examinateur

Anne Cécile ORGERIE
Chargée de Recherche, CNRS, IRISA / Examinatrice

François TAIANI
Professeur des Universités, U. Rennes 1 /
Directeur de thèse

If you save now you might benefit later.

Acknowledgement

With immense pleasure and deep respect, I place on record my heartfelt gratitude
and unforgettable indebtedness to my thesis director François Taiani for the inspiring
guidance and supervision as well as the unfailing help and support throughout the
course of PhD work.

I express my deep sense of gratitude to Anne-Marie Kermarrec for providing me
the opportunity to work in the ASAP team.

I am extremely thankful to the esteemed members of jury for having agreed to
examine my work.

I also express my thanks to all the members of ASAP team as well as all employees
of INRIA/IRISA for providing me a favourable atmosphere for completing my thesis
work.

I acknowledge all people who contributed in different ways to this thesis.

On a personal note, no words sustain my heartfelt thanks to my husband Arjun
Suresh, my parents and my friends for their love, moral support, personal sacrifices
and constant prayers which helped me to complete this venture successfully. This
thesis is dedicated to them.

Above all I humbly bow my head before the Almighty who blessed me with energy
and enthusiasm to complete this endeavour successfully.

Contents

Table of Contents 1

Résumé 5

Introduction 11

1.1 Context . 11

1.2 Motivations and Objectives . 13

1.3 Contributions . 14

1.4 Outline . 15

2 Self Organization in Large Distributed Systems 17

2.1 Distributed Systems . 17

2.2 Large Scale Systems: P2P systems and Cloud 19

2.2.1 Peer to Peer systems . 20

2.2.2 Cloud Computing . 22

2.3 Self Organization . 25

2.3.1 Overlay Maintenance . 25

2.3.2 Network Aware Overlays . 30

2.3.3 Content Placement, Search and Distribution 31

2.4 Summary . 33

3 Fluidify: Decentralized Overlay Deployment in a Multi-Cloud World 35

1

2 Contents

3.1 Background and Problem Statement . 36

3.1.1 The problem: building network-aware overlays 36

3.1.2 Existing approaches to building network-aware overlays 37

3.2 Our intuition: a dual approach . 40

3.3 The Fluidify algorithm . 42

3.3.1 System model . 42

3.3.2 Fluidify . 43

3.4 Evaluation . 45

3.4.1 Experimental Setting and Metrics 45

3.4.2 Baselines . 45

3.4.3 Results . 46

3.4.3.1 Evaluation of Fluidify (SA) 47

3.4.3.2 Effects of variants . 51

3.5 Summary . 52

4 Filament: A Cohort Construction Service for Decentralized Collaborative Edit-
ing Platforms 55

4.1 Background and Problem Statement . 56

4.1.1 The problem: collaborative editing and cohort construction . . . 56

4.1.2 Existing approaches to cohort construction and decentralized search 57

4.2 Our intuition: self-organizing overlays 59

4.3 The Filament algorithm . 61

4.3.1 System model . 61

4.3.2 Filament . 62

4.4 Evaluation . 65

4.4.1 Experimental Setting and Metrics 65

4.4.2 Baselines . 67

4.4.3 Results . 67

4.4.3.1 Evaluation of Filament 67

Contents 3

4.4.3.2 Effects of variants . 70

4.5 Summary . 72

5 Conclusion 73

5.1 Summary of Contributions . 73

5.2 Discussion and Future Work . 74

5.2.1 Limitations . 74

5.2.2 Further Extensions . 75

Appendix 77

Glossaire 79

Bibliography 79

List of Figures 93

List of Tables 95

List of Algorithms 97

4 Contents

Résumé

Contexte

Notre société produit, diffuse et consomme une quantité croissante de données numériques.
Cette croissante s’accompagne d’une augmentation considérable de l’adoption de ser-
vices en ligne (courrier électronique, sites web, jeux en ligne, vidéos à la demande,
et partage pair-à-pair). Par ailleurs, les appareils tels que les consoles de jeux, les
téléphones cellulaires, les tablettes, les ordinateurs portables et les ordinateurs de bu-
reau peuvent aujourd’hui participer au stockage ainsi qu’au traitement des données
produites en ligne. L’arrivée d’ordinateurs à faible coût comme les plug computers
(tels que le Raspberry Pi) permet d’envisager une augmentation supplémentaires du
nombre d’utilisateurs capables de fournir des capacités de calcul et de stockage. Cepen-
dant, la plupart du temps, bon nombre des ressources à la disposition des utilisateurs
restent sous-utilisées. Cette sous–utilisation offre une opportunités considérable: il est
possible d’imaginer des systèmes construits à partir des ressources informatiques rendus
disponibles par leurs utilisateurs, ouvrant la voie à la généralisation de systèmes infor-
matiques distribués décentralisés complexes, sur le modèle des systèmes pair-à-pair.

Les systèmes distribués décentralisés, et notamment les systèmes pair-à-pair ont
suscité une attention considérable dans le passé comme solution alternative au contrôle
plus centralisé des données et des services. Les approches distribuées décentralisées sont
capables d’offrir de fortes capacités de passage à l’échelle, une haute disponibilité, fia-
bilité et évolutivité. Elles facilitent le partage des données, tout en facilitant le contrôle
des données partagées localement. Une forme d’architecture distribuée décentralisée,
auto–organisée et dynamique sont les systèmes pair-à-pair (Peer-to-Peer ou P2P en
anglais). Un système pair-à-pair répartit de façon équitable les tâches et la charge
entre les participants (les pairs) d’un système. Les pairs jouent par défaut des rôles
symétriques, et sont à la fois client et serveur du système. Chaque pair (ou noeud)
fournit une partie de ses ressources, telles que sa puissance de calcul, sa capacité de
stockage sur disque, ou sa bande passante réseau, et les rend accessibles aux autres

5

6 Résumé

participants du système, sans aucune coordination centrale. Les systèmes P2P sont
capables d’offrir des services et d’exécuter des tâches qui vont au-delà de celles qui peu-
vent être accomplies par des pairs individuels isolés. Bien que les systèmes P2P aient
été largement étudiés depuis les années 90, ils ont progressivement perdu de leur attrait
au cours de la dernière décennie. Les technologies émergentes comme l’informatique
diffuse (fog computing), l’informatique de proximité (edge computing), et la disponi-
bilité d’ordinateurs de connexion à faible coût ont suscité un regain d’intérêt pour les
systèmes P2P, et plus généralement les architectures décentralisées.

Dans le contexte, cette thèse s’est plus particulièrement penchée sur la mâıtrise de
la topologie de tels systèmes à grande échelle, une capacité clé pour permettre leur
démocratisation et leur programmabilité.

Topologie des systèmes décentralisés à grande échelle

Les systèmes décentralisés à grande échelle et les protocoles sur lesquels ils sont con-
struits fonctionnent typiquement en échangeant des messages point-à-point de façon
décentralisés. À l’heure actuelle, plusieurs mécanismes hautement efficaces sont fournis
pour transférer des unités de données sous toutes ses formes (vidéos, son, texte, im-
ages) entre des machines géographiquement distantes. Le mécanisme de communication
point-à-point communément adopté par ces systèmes distribués est communément ap-
pelé passage de message. Les chemins de routage traversés par ces messages peuvent
être analysés selon deux topologies: physique et applicative. La topologie physique
fait référence à l’ensemble des liens et des routeurs Internet qui relient physiquement
les machines qui constituent le système distribué. Cette topologie physique permet de
transporter les octets des messages entre les participants du système, en utilisant des
protocoles comme TCP / IP. La topologie logique capture, elle, l’organisation logique
des noeuds au sein de l’application qu’ils réalisent. Ces deux types de topologie se
chevauchent, et le contrôle de leur superposition constitue une question de recherche
essentielle pour la conception des systèmes décentralisés.

Ces deux couches de topologie jouent en effet un rôle clé dans la performance d’un
système décentralisé à grande échelle. Ces performances sont limitées d’une part par
les latences et la bande passante disponible des liens de la topologie physique. D’autre
part, la topologie virtuelle détermine en grande partie les flux de messages entre noeuds.
La topologie virtuelle doit donc être idéalement choisie pour faire face à l’équilibrage de
charge sur les noeuds impliqués dans les échanges de messages et empêcher les goulots
d’étranglement éventuels résultant de noeuds surchargés. Par ailleurs, des précautions
appropriées doivent être prises pour faire face à la dynamique inhérente d’un réseau
large-échelle, en particulier lors de défaillances de machines ou de liens réseau.

Résumé 7

Motivations et objectifs

Les paragraphes précédents ont passé en revue quelques tendances actuelles des systèmes
distribués à grande échelle. Les systèmes en ligne, tels que certaines applications
P2P, ou les services de vidéo à la demande ont fortement contribué à l’augmentation
constante du trafic Internet mondial. Dans cette thèse nous nous intéressons par-
ticulièrement aux réseaux logiques (overlay networks en anglais), une forme partic-
ulièrement populaire de systèmes large échelle décentralisés. Nous avons déjà discuté
du rôle essentiel des topologies physique et logique de tels systèmes, et de leur impact
sur les performances de ces systèmes. En particulier, l’alignement (ou non) de ces
deux topologies peut avoir une influence drastique sur les performances et la latence du
système résultant. La recherche présentée dans cette thèse est principalement motivée
par la nécessité de contrôler les différentes topologies des systèmes décentralisés large
échelle, notamment en optimisant la proximité physique d’entités logiques proches, et
en facilitant le placement et la recherche de contenu. Notre objectif est ainsi de faciliter
l’émergence de réseaux logiques auto-organisés efficaces. Nous nous sommes concentrés
en particulier sur deux aspects principaux: l’alignement des réseaux logiques avec leur
infrastructure physique, et l’édition collaborative distribuée.

Alignement des réseaux logique et physique Les réseaux logiques se retrouvent
dans un nombre important de systèmes distribués, tels que les réseaux pair-à-pair ou
certaines applications client-serveur. Leur principal avantage est de fournir des services
additionnels qui ne sont à l’origine pas disponibles sur le réseau physique sous-jacent
sur lequel ils s’exécutent. Il existe cependant de nombreux défis liés à l’utilisation effi-
cace des réseaux logiques, et plus particulièrement liés aux réseaux logiques structurés.
Il est très difficile de maintenir des propriétés souhaitables comme la disponibilité et la
qualité de service (Quality of Service, QoS) dans la topologie d’un réseau logique struc-
turé, malgré les défaillances et les surcharges. Ce problème peut être résolu par des
protocoles de construction de topologie décentralisée évolutifs, robustes et généralement
applicables à une large gamme de systèmes et de topologies de réseaux logiques. Mal-
heureusement, de nombreux protocoles de construction de réseaux logiques ne tiennent
pas compte du réseau physique sous-jacent sur lequel un réseau logique est déployé. Ceci
est particulièrement problématique pour les systèmes dématérialisés (ou “en nuage”,
Cloud Computing en anglais), dans lesquels la latence peut varier considérablement. Ig-
norer cette hétérogénéité de performance peut avoir de profondes implications en termes
de performance et de latence du système global. De par le passé, plusieurs travaux ont
cherché à prendre en compte la topologie de l’infrastructure sous-jacente pour réaliser
des réseaux logiques prenant en compte le réseau physique (network-aware overlays en
anglais). Cependant, la plupart des solutions proposées sont spécifiques à certains ser-

8 Résumé

vices ou protocoles, et sont difficilement adaptables à d’autres réseaux logiques. Dans
ce contetxe, le premier objectif de cette thèse a été de fournir une solution efficace,
robuste, et générique pour résoudre ce problème.

Édition collaborative distribuée Collaborer est essentiel pour permettre à des
gens ou des organisations de réaliser un objectif commun. À l’ère d’Internet, les éditeurs
collaboratifs distribués sont de plus en plus utilisés. Ces éditeurs permettent à plusieurs
utilisateurs distants de contribuer simultanément au même document. La plupart des
éditeurs collaboratifs distribués existant sont cependant centralisés et hébergés dans
des environnements étroitement intégrés (comme des clouds publics, ou des centres
de traitement). Ils passent mal à l’échelle, et tolèrent mal les pannes. Ces limita-
tions peuvent être surmontées en utilisant des architectures décentralisées pair-à-pair.
Cependant, la plupart des éditeurs collaboratifs décentralisés font l’hypothèse que tous
leurs utilisateurs modifient le même ensemble de documents et ne passent pas très
bien à l’échelle. Dans ces systèmes, propager les changements de chaque document à
l’ensemble du système surcharge rapidement la bande passante, ce que nous souhaitons
éviter. Une option consiste à utiliser un DHT, pour permettre aux éditeurs d’un même
document de se retrouver rapidement. Cette option est cependant sous-optimale car
elle ajoute un niveau d’indirection supplémentaire dans la procédure d’appariement
entre documents et utilisateur et crée des points chauds potentiels pour les noeuds qui
traitent des documents très populaires. Nous proposons dans une thèse une approche
qui permet aux utilisateurs qui éditent le même document de se localiser les uns les
autres afin d’échanger leurs mises à jour entre eux uniquement. Notre procédure de
recherche est efficace, réactive aux changements et robuste aux pannes.

Contributions

Cette thèse propose deux contributions, l’une (Fluidify) portant sur le déploiement de
réseaux logiques, et l’autre (Filament) sur l’appariement d’utilisateurs dans les éditeurs
collaboratifs.

Fluidify Le chapitre 3 présente Fluidify, un nouveau mécanisme décentralisé pour le
déploiement d’un réseau logique au-dessus d’une infrastructure physique qui maximise
la proximité physique des noeuds logiques. Fluidify utilise une stratégie double qui
exploite à la fois les liaisons logiques d’un réseau logique et la topologie physique de
l’infrastructure sur laquelle le réseau logique s’exécute pour aligner progressivement
l’une avec l’autre. Notre approche est entièrement décentralisée et n’assume aucune
connaissance globale ou autre forme centrale de coordination. Le protocole résultant

Résumé 9

est générique, efficace et passe fortement à l’échelle.

Ce travail a été publié et présenté dans les publications suivantes:

• Full paper - Ariyattu C. Resmi, François Täıani: Fluidify: Decentralized Overlay
Deployment in a Multi-cloud World. In: 15th IFIP International Conference
on Distributed Applications and Interoperable Systems (DAIS 2015), held as
part of the 10th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2015, Grenoble, France, June 2015, Springer, pp. 1–15, 15
pages.

• Poster - In: EIT Digital Symposium on Future Cloud Computing, INRIA Rennes,
France, 19-20 October 2015.

Filament La second contribution de cette thèse, présentée au chapitre 4, est Fila-
ment, une nouvelle approche de construction de cohorte d’utilisateurs dans les éditeurs
collaboratifs décentralisés qui permet aux utilisateurs éditant les mêmes documents
de se retrouver facilement entre eux. Filament élimine la nécessité de toute DHT in-
termédiaire, et permet ainsi aux noeuds éditant le même document de se retrouver
d’une manière rapide, efficace et robuste en générant un champ de routage évolutif
autour d’eux-mêmes. L’architecture de Filament repose sur un ensemble de réseaux
logiques auto-organisés coopérant entre eux, qui exploitent une nouvelle métrique de
similarité entre jeux de documents. En plus de ses mérites intrinsèques, la conception
de Filament démontre par ailleurs comment la composition horizontale de plusieurs
réseaux logiques auto-organisés peut permettre de réaliser des services de plus haut
niveau de façon très efficace.

Ce travail a été publié et présenté dans les publications suivantes:

• Short paper - Ariyattu C. Resmi, François Täıani: Filament: a cohort con-
struction service for decentralized collaborative editing platforms In: Conférence
d’informatique en Parallélisme, Architecture et Système(Compas) in July 2016,
Lorient, France.

• Full paper - Ariyattu C. Resmi, François Täıani: Filament: a cohort construc-
tion service for decentralized collaborative editing platforms. Accepted and will
be presented in the 17th IFIP International Conference on Distributed Appli-
cations and Interoperable Systems (DAIS 2017), held as part of the 12th Inter-
national Federated Conference on Distributed Computing Techniques, DisCoTec
2017, June 2017, Neuchâtel, Switzerland.

10 Résumé

Introduction

1.1 Context

Our modern society produces, disseminates and consumes increasingly large amounts
of data. This growth is, among other thing fueled by the wide-spread adoption and
growth of web-based services including on-line social networks, online gaming, video
streaming and peer-to-peer file-sharing. This deluge of data has been accompanied by
a multiplication of personal devices such as game consoles, cell phones, tablets, laptops
and desktops, which can participate in the storage as well as processing of on-line
data. This trend has been compounded by the arrival of low cost plug computers (such
as the Raspberry Pi), opening the prospect of many users being able to contribute
computing and storage resources. Most of the time, however, much of these user-
bound resources remain idle. This under-utilisation raises the possibility of building
up systems able to thrive on the available, but yet untapped computational resources
made available by users over the Internet. Such a revolution would democratize large-
scale fully decentralized systems, shifting the predominant computing paradigm away
from centralized cloud services, and thus fulfilling the original promises of peer-to-peer
systems.

Decentralized distributed systems have attracted considerable attention in the past
as an alternative to the more centralized control of data and services. Decentralized
distributed approaches have been shown to deliver high levels of performance, availabil-
ity, reliability and scalability. They are attractive because they offer an alternative to
cloud-hosted and centralized solutions, in which users must typically surrender control
of their data to a central entity. Decentralized solutions make it possible for users to
retain control of their data, a growing concern in today’s digital society. A form of
distributed architecture which is decentralized, self-organized and dynamic are Peer-
to-Peer (P2P) systems. P2P systems partition tasks or workloads between the nodes
of a distributed system (known as peers). Peers act both as client and server and are
equally privileged and equipotent. Peers make a portion of their resources, such as

11

12 Introduction

processing power, disk storage or network bandwidth, directly available to other peers,
without any central coordination. P2P systems are able to provide capabilities that
go well beyond those that can be accomplished by individual peers, yet that are ben-
eficial to all peers. Although P2P systems have been extensively studied during the
90’s and the first decade of this century, researchers have gradually turned away from
them over the last ten years. The recent rise of decentralized technologies such as fog
computing [datc] and edge computing [datb], and the broad availability of low-cost plug
computers have paved the way for P2P systems to regain their lost significance, and to
trigger a renewed interest in decentralized architectures.

In this context, this PhD thesis focuses more precisely on the control of the topology
of large scale decentralized systems, a key concern to insure their wide-spread adoption
and their programmability.

Topology of large scale decentralized systems

The large scale decentralized systems and the protocols upon which they are built,
typically rely on point-to-point message passing channels to communicate. Currently,
several highly efficient mechanisms can be relied on to transfer data in all its forms
(video, audio, text) across geographically remote machines. The routing paths traversed
by the corresponding messages can be understood according to two topologies: the
physical topology, and the logical topology. The physical topology represents the set
of links and Internet routers that physically connect the machines that constitute a
distributed system. The links in the physical topology transport the message bytes
from one end to the other using protocols such as TCP/IP. Conversely, the logical
(or application-level) topology captures the logical organization of nodes within the
application they implement. The two topology layers exist one on top of another, and
the control of their coupling and interaction is a key research question when designing
large-scale decentralized systems [ALCR+10].

These two topology layers play a key role in the performance of large-scale de-
centralized systems. This performance is constrained on one hand by the bandwidth
available on the links of the physical topology. On the other hand, the virtual topology
determines to a large extent the flows of messages between nodes. The virtual topology
must therefore be picked to ensure load balancing across nodes and prevent bottle-
necks arising from nodes being excessively loaded. Moreover, appropriate precautions
must be taken to withstand the inherent dynamism of large-scale distributed systems,
especially in order to tolerate machines and network link failures.

Motivations and Objectives 13

1.2 Motivations and Objectives

The previous sections have discussed some of the current trends in large-scale dis-
tributed systems research. Online systems, such as some P2P applications, Internet
based TV or Internet-based video-on-demand services have become some of the main
contributors to world-wide Internet traffic [data, datd]. The work presented in this
thesis focuses more specifically on overlay networks, a popular type of decentralized
large-scale system. We have already discussed how the physical and logical topologies
of these systems could have a key impact on their efficiency. In particular, the align-
ment (or misalignment) between these two kinds of topology can have a drastic effect
on the performance of the resulting system. The research presented in this manuscript
is mainly motivated by the need to control these two topologies, in particular by placing
entities that are close logically on physically-close machines, and by facilitating con-
tent search. Our overall objective in doing so is to help create powerful self-organizing
overlay networks. We have focused more precisely on two main aspects in our work:
the coupling between the physical and logical topologies of decentralized systems, and
distributed collaborative editing.

Network aware overlays

Overlay networks play an important role in many distributed systems, such as peer-
to-peer networks and some client-server applications. Their main advantage is that they
provide several diverse services which are otherwise not available from the underlying
network. The efficient use of overlays networks raises, however, many challenges, in par-
ticular when considering structured overlays. It is very difficult to maintain some desir-
able properties, such as availability and Quality-of-Service (QoS) within the topology
of structured overlay networks faced with failures and churn. This difficulty can be ad-
dressed through decentralized topology construction protocols [JMB09,VS05,BFG+10]
that are scalable, robust, and in general applicable to a wide range of systems and
overlay topologies. Unfortunately, many popular overlay construction protocols do not
usually take into account the underlying network infrastructure on which an overlay
is deployed [DEF13, JMB09, VS05], and those that do tend to be limited to a narrow
family of applications or overlays [ZZZ+06, XTZ03]. This is particularly problematic
for systems running in multiple clouds, in which latency may vary greatly, and ignoring
this heterogeneity can have stark implications in terms of performance and latency. In
the past, several works have sought to take into account the topology of the underly-
ing infrastructure to realise network-aware overlays [ZZZ+06,XTZ03,WR03,RHKS02].
However, most of the proposed solutions are service-specific and they do not translate
easily to other overlays. In this context, the first objective of this thesis is to provide
a sound solution to solve this problem, i.e. to create an overlay construction protocol

14 Introduction

that considers the underlying network infrastructure on which an overlay is deployed,
and that does not tend to be limited to a narrow family of applications or overlays.

Distributed collaborative editing

Collaboration is essential for people or organization to realize or achieve a common
objective successfully. In the present Internet era, distributed collaborative editors are
now wide-spread and regularly used. These online editors allow several remote users
to contribute concurrently to the same document. Most of the currently deployed dis-
tributed collaborative editors [DSM+15, WUM10, OMMD10, LM10, GSAA04] are cen-
tralized and hosted in tightly integrated environments. They show poor scalability as
well as poor fault tolerance. One way of overcoming such limitations is to host collabo-
rative editing platforms in decentralized peer-to-peer architectures [RFH+01,SMK+01,
RD01, ZKJ01, FH10]. However, most of these approaches assume that all users in a
system edit the same set of documents, and are not very scalable. If we propagate the
changes about every document to the entire system, then the system will be overloaded
with messages, which is something we wish to avoid. Another option is to use a DHT.
This option is, however, sub-optimal as it adds an extra level of indirection in the doc-
ument peering procedure, and creates potential hot-spots for the DHT nodes handling
highly popular documents. Instead, we argue that users editing the same document
should be able to locate each other as directly as possible in order to exchange updates
between themselves. To fulfill this vision, this thesis proposes a novel decentralized
service that connects together the users interested in the same document in order to
exchange updates regarding the documents they edit. This new procedure is efficient,
reactive to changes, and robust to failures.

1.3 Contributions

This thesis contributes to overlay deployment and collaborative editing:

Fluidify - Chapter 3 presents Fluidify, a novel decentralized mechanism for deploy-
ing an overlay network on top of a physical infrastructure while maximizing network
locality. Fluidify uses a dual strategy that exploits both the logical links of an overlay
and the physical topology of its underlying infrastructure to progressively align one
with the other. Our approach is fully decentralized and does not assume any global
knowledge or central form of co-ordination. The resulting protocol is generic, efficient,
and scalable.

This work was published and presented in the following publications:

• Full paper - Ariyattu C. Resmi, François Täıani : Fluidify: Decentralized Overlay

Outline 15

Deployment in a Multi-cloud World. In: 15th IFIP International Conference
on Distributed Applications and Interoperable Systems (DAIS 2015), held as
part of the 10th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2015, Grenoble, France, June 2015, Springer, pp. 1–15, 15
pages.

• Poster - In: EIT Digital Symposium on Future Cloud Computing, INRIA Rennes,
France, 19-20 October 2015.

Filament - The second contribution of this thesis, introduced in Chapter 4, presents
Filament, a novel cohort-construction approach that allows users editing the same doc-
uments to rapidly find each other. Filament eliminates the need for any intermediate
DHT, as well as allows the nodes editing the same document to find each other in
a rapid, efficient, and robust manner by generating an adaptive routing field around
themselves. Filament’s architecture hinges around a set of collaborating self-organizing
overlays exploiting a novel document-based similarity metric. Besides its intrinsic mer-
its, Filament’s design further demonstrates how the horizontal composition of several
self-organizing overlays can lead to richer and more efficient services.

This work was published and presented in the following publications:

• Short paper - Ariyattu C. Resmi, François Täıani : Filament: a cohort con-
struction service for decentralized collaborative editing platforms In: Conférence
d’informatique en Parallélisme, Architecture et Système(Compas) in July 2016,
Lorient, France.

• Full paper - Ariyattu C. Resmi, François Täıani : Filament: a cohort construc-
tion service for decentralized collaborative editing platforms. In: 17th IFIP In-
ternational Conference on Distributed Applications and Interoperable Systems
(DAIS 2017), held as part of the 12th International Federated Conference on Dis-
tributed Computing Techniques, DisCoTec 2017, June 2017, Neuchâtel, Switzer-
land, Springer, pp. 146–160, 15 pages.

1.4 Outline

The remainder of this thesis is organized as follows. Chapter 2 provides the back-
ground information needed for clearly understanding the relevance of this work. A
brief overview of the current scenario of distributed systems and the motivation behind
this work are presented in this chapter. Chapter 3 presents Fluidify - a novel decen-
tralized mechanism for deploying an overlay network on top of a physical infrastructure

16 Introduction

while maximizing network locality. This chapter introduces the problem and some of
the theoretical concepts that we employ in designing the presented algorithm before
going into a detailed description of the Fluidify algorithm. It also summarizes the ex-
perimental evaluation and highlights some of the important works in this area. Chapter
4 introduces Filament, a novel cohort-construction approach that allow users editing
the same documents to rapidly find each other. This chapter discusses the problem
and intuition behind the work before giving an elaborate explanation of Filament algo-
rithm. It also provides a summary of experimental evaluation and an overview of the
important works done in this area. Chapter 5 concludes this work by summarizing the
main contributions, discussing their implications and sketching out possible directions
for future work.

Chapter 2

Self Organization in Large

Distributed Systems

This chapter mainly provides the background essential for understanding the details
and importance of the remainder of this manuscript. The initial part of this chapter
presents an overview of some emblematic large-scale distributed systems and decentral-
ized distributed systems. In the later sections, we provide a brief introduction to P2P
systems, cloud computing and overlay networks. We also discuss the problems in this
area and the ones we concentrated on.

2.1 Distributed Systems

A distributed system [And00, CDKB11] is a collection of loosely coupled machines
interconnected by a communication network. The actions of these components are
typically coordinated via message passing. All these interactions are aimed at achieving
a common goal which is usually to run an application or a service, so that the users
perceive them as a single coherent system.

During the past decades, there has been significant increase in data production and
consumption. This has resulted in an increase in the number of large distributed sys-
tems which are geo-distributed and geo-replicated. Some well known examples include
the systems provided by Google, Facebook and Amazon. Google has more than 13 data
centres and 900,000 servers processing data [ds3]. Facebook for instance has around 1
billion users, process around 750 TB of data everyday and has a data worth over 100
PB capacities in its facility. Similarly, Amazon which has more than 7 data centres has

17

18 Chapter 2

Network	Stack	

TCP,	UDP,	HTTP,	….(Low	Level	Communica=on	Interfaces)	

Applica'ons	
Gmail,	Facebook,	Mobile	apps	

files, dirs

DFS	

GFS,	HDFS,	NFS	

tasks

Distributed	

Compu'ng	

Map	reduce,	Hadoob	

enq, deq

Message	

	Queue	

Amazon	SQS	

acquire, release

Distributed		

Locking	

System	

Chubby,	Zoo	keeper	

put, get

Key/Value	

	Store	

Dynamo,	Cassandra	

Figure 2.1: Distributed System Architecture

dedicated more than 50,000 servers to its cloud customers.

There are many reasons behind the popularity of distributed systems.

• Location transparency - It means that the user is not concerned about the
actual location of data/services. E.g. the browser does not know which Google
servers are serving the gmail to them right then. Depending on the network struc-
ture, users can easily obtain files that reside in another computer connected to a
particular network. This means that the actual location of the resource doesn’t
matter to either the software developer or the end users. It creates the illusion of
a single entity, like the entire system is located in a single computer. This simpli-
fies the software development process greatly. It also makes the system flexible,
as the system resources can be moved around at any time without disrupting any
software systems running on them. In addition to location transparency we have
access, migration, relocation, replication, concurrency and failure transparency.

• Availability - It helps to build a reliable system out of unreliable parts. Failures
can happen in many ways : hardware failures, power outrage, disk failures, mem-
ory corruption, network switch failure, software failures, bugs, misconfiguration,
etc. To achieve high availability, we need to replicate data/computation on many
computers.

• Scalable Capacity - A typical data centre has around 200K machines and each
service runs on more than 20K machines [ds3]. Load distribution helps in achiev-
ing enhanced system performance. Distribution makes it possible for the system

Large Scale Systems: P2P systems and Cloud 19

to have incremental growth and modular expandability as the computation power
can be added in small increments rather than replacing the system components
fully.

• Resource Sharing and Openness - Users can easily access remote resources or
share their resources with others. A resource sharing service can be easily added
and can be made available for use by a variety of client programs.

Distributed systems are usually built around complex middleware stacks [Ber96].
These stacks make the application building process easier by hiding the many complex-
ities involved in a system and raising the level of abstraction at the implementation
level. For modular functionality, an application is split into many simpler parts which
may already exist or are easier to implement like authentication, indexing, locking, etc.
Just by clicking on our Gmail inbox we are accessing a lot of components like load bal-
ance, authentication service, Gmail front end, storage service and ads service. Figure
2.1 illustrates this situation. The applications we use in our day-to-day life make use
of distributed file systems, distributed locking systems and distributed computing each
of which is contributing to the level of abstraction.

Peer-to-peer systems, SOA based systems and massively multiplayer online games
are some of the currently well-known distributed systems. There are many challenges
involved in designing a distributed system like finding the right interface, finding the
optimal partitioning of the system, deciding how to co-ordinate machines, finding ways
to authenticate clients and servers, deciding on how to protect the system in case of
network and machine failures and make the system available at all times, exploring ways
to maximize concurrency and reduce resource bottlenecks. Thus, distributed systems
have always been an interesting area of research. The next section briefly describes
some of the distributed systems like peer-to-peer systems and cloud.

2.2 Large Scale Systems: P2P systems and Cloud

Distributed systems that we know can be roughly categorized into two main categories
- centralized and decentralized. Client-server systems and multi-tiered applications are
examples of centralized distributed systems. They are hierarchical in nature with some
nodes having higher importance compared to others. In contrast, P2P communication
systems are decentralized distributed systems as all the nodes are of equal importance.
These systems try to avoid single point of failure. In the following sections we dis-
cuss two of the large scale systems: P2P systems (Section 2.2.1) and cloud computing
(Section 2.2.2).

20 Chapter 2

2.2.1 Peer to Peer systems

Client-server architecture rose to pre-eminence during the early 1980’s, but with the
increase in the number of Internet users and the ever increasing demand for bandwidth
it became difficult to cater to the application requirements with client-server archi-
tectures as it can lead to bottlenecks of resources. This gave rise to the development
of P2P applications. In simpler terms, it is a system consisting of equal autonomous
entities [RD10,SW05,BYL08]. The main aim is the shared use of distributed resources
by partitioning tasks or workloads between peers.

Although the concept of P2P technology was explored since the early days, it was
not widely known to the general public. The advantage of a P2P communication model
became widely known in the late 1990s with the appearance of P2P music-sharing
application Napster1. Napster allows its users to download music directly from other
users in the network. The operating cost of Napster was low as the bandwidth-intensive
music download was done in a distributed manner. With the widespread use of Napster,
P2P systems caught the interest of industrial and research communities. Following this,
many other applications were developed using the idea of cooperative resource sharing.
With the addition of P2P applications like Gnutella [Rip01] and BitTorrent2 [PGES05],
P2P systems are now enjoying significant research attention and are being widely used
in open software communities and industries.

P2P applications are being used in a multitude of areas as shown below :

• Public File sharing - File sharing helps to share information with a large num-
ber of users. Napster was one such application used for P2P file sharing. Napster
was mainly used to share music among the peers and it also had an embedded
search application. Napster had centralized control but gnutella which came later
does not have any centralized component and is completely distributed. Tribler3

is another example of P2P file sharing application.

• Private file sharing - Provides a simple and secure means of file transfer between
peers using passwords and cryptographic keys. Pando [Gib] was an application
used for private file sharing.

• Data distribution - BitTorrent is a well known P2P application used for data
distribution. It helps to download large files quickly and efficiently by making
use of the spare bandwidth of its peers.

1www.napster.com
2www.bittorrent.org
3www.tribler.org

Large Scale Systems: P2P systems and Cloud 21

• Streaming media - We can greatly reduce network costs by making use of
the additional bandwidth of the participating peers. But, the main problem with
streaming media is the strict timing requirements as the data needs to be delivered
within a deadline. Freecast4 is one such application.

• Telephony - Telephony applications help to make audio and video calls by using
the unused resources of its participating peers. P2P telephony applications like
Skype5 help to provide audio visual connectivity for its users regardless of their
geographical location and the type of internet connection.

• Web search engines and Web crawler - P2P web search engines and web
crawlers are mainly used for searching peers in a P2P network for a desired
content. FAROO6 is an example.

• Volunteer computing - Here users donate their spare CPU cycles to scien-
tific computations, mainly in fields such as astrophysics, biology, or climatology.
BOINC7 is a software platform for volunteer computing. SETI@home8 was one
BOINC application. When the users are inactive, their resources will be used for
scientific data processing.

• P2P Web content distribution networks (CDNs) - CDNs helps to reduce
the load associated with the server hosting the data. Participating nodes help
to form web caches and also do content replication to reduce access delays and
transport costs. BBC iPlayer9 is an example of such a service.

Peer-to-peer systems have five very important features [RD10, SW05] that con-
tribute to their widespread usage: decentralization, scalability, self-organization, fault
tolerance, abundant and diverse resources.

Decentralization - The peers are considered equal autonomous entities that can act
as both client and server at the same time. As the storage, processing and sharing of
information is performed in a distributed manner, the system has higher availability,
increased extensibility and improved resilience. Though decentralization is advanta-
geous as we mentioned above, it also cause some difficulties. It is difficult to get and
maintain a global view of the system state at any given time. Moreover, problems

4www.freecast.org
5www.skype.com
6www.faroo.com
7https://boinc.berkeley.edu
8http://setiathome.berkeley.edu
9www.bbc.co.uk/iplayer

22 Chapter 2

arise when heterogeneous systems that have different characteristics, interfaces or use
different protocols inter-operate.

Scalability - For the system to scale efficiently, bottlenecks must be identified and
avoided at an early stage. Scalability is usually restricted by the amount of centralized
operations. But, as a P2P system does not have any central servers they are inherently
scalable. However, we still need to limit the number of control messages and use efficient
search and distribution techniques to avoid flooding as it can increase the system load,
leading to reduced scalability.

Self-organization - When a new node joins the system, little or no manual configura-
tion should be needed for system maintenance. Even without any central management,
the system is able to adapt to dynamic conditions like node heterogeneity and dynamic
membership.

Fault-tolerance - The structure and organization of peer-to-peer systems are such
as to make them inherently fault-tolerant. There is no central point of failure. System
will be operational unless a large proportion of the nodes fails simultaneously. The loss
of a peer or even a number of peers might decrease overall system performance but it
can be easily remedied and the system will still be functional.

Abundant and diverse resources - P2P systems have an abundance of resources that
are diverse in terms of their geographic location and hardware and software architec-
ture. This diversity makes the system resilient to correlated failure, attack, and even
censorship. The initial deployment cost of a P2P service is very low as it has little or
no dedicated infrastructure. Resources can be easily added to the system as and when
needed. We can also reduce the infrastructure up-gradation cost.

P2P technology faces many challenges. Due to the ad-hoc nature of P2P systems,
nodes can join and leave the network at any point of time causing the availability of
peers to vary considerably (known as churn). These fluctuating resources can affect the
system performance. The lack of network bandwidth can also reduce the overall system
performance. Therefore, the development of efficient replication and caching techniques
which can provide high availability and performance are needed. Thus, various aspects
of P2P systems like structure of overlay network, routing strategies, resource location
and allocation, query processing, replication, and caching are still studied extensively.

2.2.2 Cloud Computing

Cloud computing [WAB+09,VRMCL08,BYV+09,MG+11] is a pay-for-use service pro-
vided over the internet. Cloud users can access a shared pool of computing resources
(virtual machines, storage, applications, etc) on-demand. Clouds are used for a multi-

Large Scale Systems: P2P systems and Cloud 23

tude of purposes like storage, backup and recovery of data, hosting websites and blogs,
streaming audio and video contents, launching new apps and services. Thus, we are
making use of cloud computing on a daily basis without even knowing it, like while
sending email, editing documents, watching movies, playing games and storing pictures.

Cloud computing has several attractive benefits that contribute to its widespread
use in the industry [MG+11, VRMCL08]. The main benefits of cloud computing are
pay-for-use model, elasticity and self-service provisioning.

Pay-for-use model - Cloud users can avoid the upfront infrastructure costs with
the help of cloud computing. Users need to pay only for the resources and workloads
they use. It also helps to avoid the cost of purchasing the infrastructure that may not
be active all the time. Since none of the infrastructure is purchased, users do not have
to worry about maintenance and other recurring costs.

Elasticity - Cloud computing services are able to scale elastically. The required
amount of compute resources (computing power, storage, bandwidth) can be acquired
as and when needed from a preferred geographic location. Cloud computing infras-
tructures can also cater for sudden workload spikes effectively. The worldwide network
of secure data-centers that run the cloud services are usually equipped with the latest
generation of computing resources. The developers can deliver applications in a faster
manner as they do not need to worry about the cost and complexity of buying and
managing the infrastructure required for the application development and provision-
ing.

Self-service provisioning - Cloud users can acquire compute resources, such as
server time and network storage, for all types of workload on demand. There is no
need for human interaction with any of the cloud service providers. The self-service
feature of cloud provides a lot more business flexibility and it also eliminates the need
for IT administrators to provision and manage computing resources. Cloud computing
makes data backup, disaster recovery, and business continuity easier and less expensive,
because data can be replicated at multiple sites on the cloud network.

Cloud computing services can be divided into three broad categories: infrastructure
as a service (IaaS), platform as a service (PaaS) and software as a service (SaaS).
They are referred to as the cloud computing stack and are built on top of one another.

• Infrastructure-as-a-service (IaaS) provides users with IT infrastructure(servers,
networking, storage and data center space) on a pay-per-use basis, e.g. Xen10,
Oracle VM Virtual Box11.

10https://www.xenproject.org
11https://www.virtualbox.org

24 Chapter 2

• Platform as a service (PaaS) provides an on-demand cloud-based environment
for developing, testing, delivering, and managing web-based applications, e.g.
Microsoft Azure12, Google App Engine13.

• Software as a service (SaaS) - Users can use the cloud based applications that
are in the cloud owned and operated by the cloud providers, via the internet, e.g.
Office 36514, Cisco WebEx15.

Cloud computing resources can be deployed in three different ways:

Public cloud - In a public cloud, all hardware, software, and other supporting
infrastructure are owned and operated by a third-party cloud service provider and
services are rendered over this network for general public. Some well known public
cloud service providers are Amazon Web Services (AWS), Microsoft and Google.

Private cloud - In a private cloud, all infrastructure is operated solely for a single
business or organization. The infrastructure can be hosted in either an on-site data-
center or a third-party cloud provider. Private cloud provides more control over the
resources and there is no problems involving multi-tenancy.

Hybrid cloud - Hybrid clouds integrate the public and private clouds. The private
cloud co-exist with public cloud by sharing data and applications between them, thereby
providing greater flexibility as well as more deployment options.

Cloud computing adopts the features of many of the existing technologies and
paradigms like grid computing and utility computing. But, we can say the starting
of it was from virtualization. Virtualization isolates hardware from software, making
it easier to reallocate the resources across servers based on demand. With the release
of Amazon Elastic Compute Cloud (EC2) in 2006 and Microsoft Azure in 2008, clouds
gained popularity. It also helps to broaden the horizons across organizational bound-
aries. Even though cloud computing provides so many features, there are so many
challenges that need to be overcome for its smooth functioning. One of the main chal-
lenge is providing data protection and confidentiality. Since third parties are involved
in the usage of cloud, strict measures are taken to provide privacy for each user. There
are also some management issues that deal with the placement of data like how to
provide load balancing, where the data should be placed to provide replication and
availability, how to migrate the data to a different cloud provider and how to resolve
software compatibility issues.

12https://azure.microsoft.com/
13https://cloud.google.com/appengine/
14https://www.office.com
15https://www.webex.com

Self Organization 25

Overlay network

Physical network

Figure 2.2: Overlay Network

2.3 Self Organization

In the previous section we discussed decentralized distributed systems and their impor-
tance. Most decentralized distributed systems rely on overlay networks for providing
their services [RD01, SW05, LM10]. The structure of the underlying overlay network
can greatly affect the performance of these systems. The characteristics of the environ-
ment and the application requirements can change over time. An overlay network has
to take these into consideration and adapt/organize itself dynamically at run time. In
this section we discuss the importance of overlay maintenance, content placement and
distribution in the context of network aware self-organizing overlay network.

2.3.1 Overlay Maintenance

An overlay network [LXQ+08,FGK+09,GSAA04,KT13,RFH+01,SMK+01,LM10] is a
virtual network of nodes and logical links, built on top of an existing physical network.
Figure 2.2 shows an example of such an overlay network. Nodes in the overlay are
usually a subset of nodes in the physical network and are able to communicate with each
other via the logical overlay links. It is clear from the figure that nodes can be logical
neighbours even if they are not neighbours in the underlying physical network. Overlays
are used to implement a network service that is not available in the underlying physical
network like mobility, addressing, customized routing, security and multicast. Thus,
overlay networks play a particularly interesting role in modern distributed systems and
care must be taken to make it secure, scalable and load balanced. We can broadly
classify overlay networks as unstructured and structured based on how the nodes are
linked to each other and how the resources are indexed and located.

Unstructured overlays

26 Chapter 2

In an unstructured overlay [Rip01,FH10,JVG+07,PGES05], peers are connected by
loose rules (e.g. stochastic rules), thereby forming a random graph. Gnutella [Rip01],
Gossip [JVG+07] and BitTorrent [PGES05] are some of the well-known unstructured
P2P protocols. The lack of structure makes it highly robust and easier to build an
unstructured overlay. A new node typically joins the network via random walks. A
node degree which helps to maintain the connectivity in the graph is chosen. The node
degree is carefully chosen so that it does not cause any significant overlay maintenance
overhead. The nodes connect randomly among themselves based on this degree. But
there are certain limitations for the unstructured networks, one of which is inefficient
and unreliable searching. In order to search for a desired content, the search query
must be flooded through the whole network. This can lead to excessive use of network
bandwidth and there is no guarantee that the search query will be resolved.

Structured overlays

Structured overlay networks [CDHR02,RFH+01,SMK+01,RD01,ZKJ01] reduce the
search cost by constraining overlay structure and the placement of data. DHT (Dis-
tributed Hash Table)-based protocols make use of this structured approach. Each node
is given a uniform random node identifier (NodeId) from a large id space, for example
the set of 160-bit integers. Data items are also assigned unique identifiers known as
keys, chosen from the same ID space. The node identifier determines the node’s position
in the overlay structure. Each key is mapped to a live peer in the system, usually to
the one with a NodeId corresponding to the unique key. Even though we need to spend
some additional resources to maintain the structure of the overlay, structured overlays
makes storage and retrieval of data very efficient. A store operation (put(key,value))
and retrieval operation (value=get(key)) can be invoked for the storage and retrieval
of the data item corresponding to the key. This also involves key-based routing. If a
node n0 initiates a search for a key k in the network, the key-based routing protocol
KBR(n0, k) helps to find a path from node n0 to the node responsible for k. Each peer
maintains a small routing table consisting of its neighbouring peers NodeIds and IP
addresses. A lookup query is usually forwarded through the network in a progressive
manner, each time getting more and more closer to the NodeId corresponding to the
key. DHT-based systems may differ in their routing strategies, data organization, key
space selection. However, it usually provides a deterministic guarantee that a data ob-
ject can be located in O(logN) overlay hops on average, where N is the number of nodes
in the system. If we require the benefits provided by key-based routing like efficient
and fault tolerant routing, data location and load balancing, it might not be bad to
pay the cost associated with maintaining the overlay structure.

Some of the well known self-organizing P2P overlay networks such as CAN, Chord,
Pastry and Tapestry are briefly discussed below. An understanding about the working

Self Organization 27

of topology construction algorithms like Chord will be helpful while discussing the two
contributions of this thesis - Fluidify (Section 3) and Filament (Section 4).

• CAN - CAN [RFH+01] is a distributed decentralized P2P infrastructure. It
provides hash table functionality for large scale systems. The architecture of
CAN is a virtual d-dimensional Cartesian coordinate space on a multi-torus.
This completely logical d-dimensional space is partitioned dynamically among all
the nodes in the system so that each node has its own distinct individual zone
within the space. The architecture of CAN makes it self-organizing, scalable
and fault tolerant. Each CAN node has a routing table associated with it which
holds the IP address and virtual coordinate zone of each of its neighbors. When
routing a message, each node checks the destination coordinates associated with
the message and forwards the message to the neighbouring peer that is closest to
the destination coordinates. The routing table entries are constricted in the sense
that it contains only specific neighbouring nodes in each dimension. Unlike other
DHT based protocols, the network size does not affect the routing table size but
it can increase the hop count associated with routing. When a new node joins
the system, it picks a random coordinate point and sends a join request. This
join request is routed through the network and received by the node owning the
destined region in the coordinate space. The node then splits its zone in half,
keeping a half for itself and giving a half to the newly joined peer. The routing
tables associated with the neighbouring peers are updated after this. When a
node departs, its zone is either merged to a neighbouring zone or taken over.
The routing complexity of a CAN network is O(d.N1/d). We can increasing the
routing performance of CAN in many ways like increasing the dimensionality
of the hypercube, by having multiple peers managing the same zone and by
performing network aware routing (Section 2.3.2). CAN is mainly used in large
storage management systems.

• Chord - Like CAN, Chord [SMK+01] also provides DHT functionality thereby
making it useful for combinatorial searches, distributed indexes and time shared
storage. Chord uses a unidirectional and circular NodeId space. Peers and data
keys are assigned an m-bit identifier. These identifiers are obtained by hashing
the IP address and the data key correspondingly. The value of m must be large
enough to avoid collisions. Data keys and peers are mapped to a circular identifier
ring which can be thought of as a circle of numbers from 0 to 2m − 1. Key k is
assigned to the first peer whose identifier is equal to or follows k in the identifier
space. This peer is called the successor node of key k, denoted by successor(k).
In the circular identifier ring, also called the Chord ring, it will be the first peer
clockwise from k. Consistent hashing is used to assign keys to the peers. This

28 Chapter 2

0	

1	

2	

3	

4	

5	

6	

7	

6	

1	

2	

successor(1)	=	1	

successor(2)	=	3	successor(6)	=	0	

Figure 2.3: An Chord ring consisting of the three nodes 0, 1 and 3

supports the dynamic nature of the network and also helps in load balancing since
each peer will be receiving nearly the same number of keys. Figure 2.3 shows a
chord ring with m = 3 and having three nodes 0,1 and 3. Key 1 would be located
at node 1 as the successor of identifier 1 is node 1. Similarly, key 2 would be
located at node 3 and key 6 at node 0. In each routing step, the Chord protocol
forwards the message to a node that is numerically closer to the key. It forwards
messages only in clock-wise direction in the circular id space. Each peer knows
how to contact its successor. To provide fault tolerance, a node can store its
first r successors instead of just one. For a key lookup, the lookup message is
forwarded in a circular manner from the initiating node until it reaches the node
that stores the information corresponding to the key. The query visits every node
in the path of initiating node and the node matching the key. To easily forward
the messages, each node maintains routing state information of about O(logN)
other peers, referred to as the finger table. The i-th entry in the finger table of
node n refers to peer with the smallest NodeId that succeeds n by at least 2i−1

in the circular id space. The first entry in the finger table of node n points to
its successor while the subsequent entries points to nodes at repeatedly doubling
distance from n. Chord guarantees a query response in logarithmic number of
hops. It also ensures logarithmic update for node join/leave. When a new node
n joins the system, some of the keys initially assigned to successor of n needs to
be reassigned to n. Similarly, when a node n leaves the network, all the keys in
it are reassigned to its successor. A background process maintains the overlay
structure.

• Pastry - Pastry [RD01] is mainly used for application level routing and object
location in a potentially large overlay network. The architecture of Pastry is a
Plaxton-style global mesh network. The NodeIds are 128-bit unsigned integers
and it represents a position in a circular id-space. The NodeIds are assigned

Self Organization 29

randomly and they are uniformly distributed. The NodeIds and keys are usually
hexadecimal numbers. Hence the routing table associated with each node has
approximately log16N rows and 16 columns. Each row has 15 entries. The 15
entries in row n of the routing table refers to a peer whose NodeId shares the
first n digits with the current peer’s NodeId, but whose (n + 1)-th digit is m if
it is in column m. The entry with the same digit as the current NodeId is left
empty. At each routing step, a node forwards the routing message to a node,
whose nodeId shares with the key a prefix that is at least one digit longer than
the prefix that the key shares with the current node’s Id. If no such node is there,
the message is forwarded to a node whose Id is numerically closer to the key than
the current node’s Id. In addition to the routing table each node also maintains
a neighbourhood list and a list of leaf nodes. The neighbourhood list M contains
the NodeIds and IP addresses of the |M | closest peers of the current node and
helps to maintain locality. A suitable proximity metric can be chosen to increase
the performance. The leaf set L contains a set of |L|/2 numerically closest peers
in both direction of the circular id space in relation to the current node’s Id.
Therefore, deterministic delivery guarantees can be ensured with good reliability
and fault tolerance, unless all the |L| peers in the leaf set fail simultaneously. Since
the routing overlay is built on top of the DHT we can switch the routing metric
to one with highest bandwidth, lowest latency or shortest hop count. Pastry
provides logarithmic routing complexity.

• Tapestry - Tapestry [ZKJ01] provides DHT functionality and can also be used
for application level routing and multicasting. Tapestry also uses a variant of
Plaxton-style mesh network. Though it looks similar to Pastry in first glance,
the way of handling network locality and data replication is entirely different.
Tapestry constructs locally optimal routing tables in order to achieve load dis-
tribution and routing locality. Tapestry also facilitates multicasting and data
distribution based on application requirement. Each node is assigned a unique
NodeId uniformly distributed in a 160-bit identifier space. Usually a data object
is connected to a single root node but Tapestry provides scalability, availability
and fault tolerance by assigning multiple root nodes to each data object. Routing
is based on suffix matching in NodeId. Routing map has multiple levels where
each level contains pointers to the closest peers that match the NodeId suffix cor-
responding to that level. This ensures logarithmic routing capacity. Each peer
also maintains a neighbour list in addition to the routing table. In case of data
replication, as the pointers to all nodes containing the same data object is main-
tained we can select one based on a suitable selection criteria based on latency
or locality.

30 Chapter 2

2.3.2 Network Aware Overlays

Overlay networks have been repeatedly proposed as a promising technology for network-
sensitive applications such as content dissemination [GSAA04,KT13], distributed web
caching [RS04, LGB03, SMB02] and stream processing [LXQ+08, FGK+09]. A crucial
requirement when constructing overlay networks for such purposes is self-organization
[MKG03, AB05]. It means that the system should be adaptable to dynamic changes
such as node heterogeneity and dynamic memberships. Self-organization also helps
to make the system fault tolerant, easily manageable and efficient. Gossip-based
paradigms [FGK+09, JMB09, LM99] are typically used to implement self-organizing
distributed protocols and services. Gossip-based protocols rely on periodic exchange
of information between pairs of peers and the ability of a node to make local deci-
sions. These protocols help to implement a variety of overlay network services such as
membership management, dissemination, overlay structure management and key-based
routing.

P2P systems are typically built on top of overlay networks. Unless specific mea-
sures are taken, the topology of application-level / logical overlays is independent of
the underlying physical network in most situations. In an unstructured system, a new
node randomly chooses some existing nodes in the system as its logical neighbors; while
in a structured one, a new node will get an identifier and forms connections with other
nodes according to some specific rules based on their identifier values. Thus, the prox-
imity of two nodes in the logical overlay does not inherently reflect proximity in the
underlying physical network. A message routing path with a small number of logical
hops may have a long delay as it may have large number of physical hops. In order
to build an effective large-scale overlay network, we need to overcome the topology
mismatch between the logical overlay and physical network [MKG03,WR03,CDHR03].
The topology mismatch can also lead to a large amount of unnecessary traffic as the
same message may traverse the same physical link multiple times. The efficiency and
scalability of the designed overlay can be increased by having some network aware-
ness [RHKS02, ZZZ+06, XTZ03]. A network-aware overlay (NAO) exploits locality for
effective routing [CDHR03]. Applications make use of network-aware overlays to op-
timize network metrics such as latency, bandwidth and packet loss by reducing the
number of routing hops. Maintaining network-awareness in spite of failures and churn
is the main challenge when building such applications.

The main aim of DHT is to provide uniform data and load distribution. Therefore
they are usually network-oblivious. Systems like CAN, Chord, Pastry and Tapestry
provide scalable and fault tolerant DHTs, thereby forming self-organizing overlay net-
works. These systems differ in the approach they take to exploit locality in the under-
lying network. Both Tapestry [ZKJ01] and Pastry [RD01] measure a proximity metric

Self Organization 31

among pairs of nodes and fill their routing tables with nearby nodes to exploit network
locality. Thus, the average total distance traveled by a message in Tapestry or Pastry
is only a constant factor larger than the actual distance between source and destination
in the underlying network. The main disadvantage of proximity based routing is that
they require an expensive overlay maintenance protocol and may also compromise the
load balance in the overlay network. The original design of Chord does not consider
network proximity. But an extension to Chord [SMK+01] replaces its distant finger
table entries with closer ones thereby providing locality. In CAN [RFH+01], each node
measures its network delay to a set of landmark nodes. These measures are then used
to determine the relative position of nodes in the network and construct a topology
aware overlay.

In this subsection, we are only providing a brief overview of network-aware overlays.
In chapter 3, we discuss our approach to creating network-aware overlays.

2.3.3 Content Placement, Search and Distribution

The rate of production, dissemination and consumption of data is steadily increasing in
this digital era. Significant research is being done to conceive efficient and robust data
dissemination systems providing high storage capacity, data availability and good per-
formance [BHO+99, CDK+03, CDKR02, EGH+03]. P2P content distribution systems
rely on data replication on more than one node to improve the content availability and
performance [IN04]. If every node maintains a copy, then the read operation will be fast
but insert and delete will be expensive. Moreover, it also has high storage overhead.
So the content distribution algorithms should be efficient with respect to both time
and space. There are many simple solutions for the scalable distribution of quasi-static
contents while only very few scalable and consistent approaches are there in the case
of highly dynamic content such as wikis.

P2P techniques for content distribution can be categorized as tree-based or epi-
demic protocols. In tree-based techniques [CDKR02, CDK+03], information is spread
using distribution trees that are formed either with the aid of a structured overlay
or embedded in an unstructured overlay. These techniques are highly efficient due
to the rigid structure of the tree, but need to be rebuilt constantly under failure
and churn. This constant rebuilding can affect the robust dissemination and con-
tinuity of service. Only the interior nodes in the tree contribute to data dissemi-
nation, which can lead to poor load balancing, as most of the leaf node resources
remain unused. Brisa [MSF+13] is an efficient, robust and scalable data dissemi-
nation system. Some other well-known dissemination services that combine a tree
structure for dissemination with an epidemic-based service for optimization are Scribe

32 Chapter 2

[CDKR02] , SplitStream [CDK+03], Chunkyspread [VYF06], Bullet [KRAV03], Rap-
pel [PRGK09], MON [LKGN05], GoCast [TCW05]. On the other hand, epidemic
techniques usually form unstructured overlays where information is spread via multi-
cast [BHO+99,HJB+09]. These techniques make use of redundancy to achieve guaran-
teed delivery. The main problem is the increased bandwidth and processor usage due
to the transmission/processing of duplicates.

Resource discovery is another challenging issue in peer-to-peer networks. Resource
discovery schemes can be broadly classified into three main categories: forwarding-
based, cache-based and overlay optimization. In forwarding-based mechanisms, a peer
forwards the message to a subset of neighbors rather than sending it to all its neigh-
bors. An example is k-random walk mechanism [LCC+02] where the querying node
forwards the query to k of its neighbors. After the initial step, the query is forwarded
to a randomly selected neighbor. Blind search techniques like random walks are non-
deterministic as the success rate greatly depends on the random choice of neighbors
the query is forwarded to [OO06, YGM02]. By making use of some additional infor-
mation obtained from the previous queries we can reduce the traffic overhead but the
query coverage is limited. Combinations of flooding [LCC+02,DP06] and random walks
[LCC+02, GMS06] were also tried to increase the search efficiency [GMS05, DLOP07].
Using blind flooding alone is not scalable because of its high communication cost.
Works like [DNV06, LQGL06] are examples of cache based resource discovery tech-
nique. Some solutions that take advantage of the network topology are GUESS [DF02]
and Gnutella2 [Sto02]. Plaxton routing schemes [RD01, ZKJ01] also come under this
category.

Gnutella [Rip01] and Freenet [CSWH01] are two well known distributed search
techniques. Though both of them have similar architecture (random DHT), the re-
source discovery mechanisms employed by both are different - Gnutella uses broadcast
while Freenet uses chain routing. The main drawbacks of these techniques are slow
information discovery and high communication cost. Gnutella faces serious scaling and
reliability problems with very large network size [DLOP07]. Freenet has better scala-
bility but search efficiency is low because of long query traversal paths. [FH10] improve
the search performance in unstructured peer-to-peer networks. It employs a caching
technique along with a dynamic Time-To-Live (TTL) to redirect queries towards the
right direction and to reliably discover rare resources.

In this subsection, we are only providing a brief overview of content placement,
search and distribution techniques. In chapter 4, we discuss our approach to peer
clustering in collaborative editing.

Summary 33

2.4 Summary

In this chapter we presented some of the essential background needed for the clear
understanding of the rest of the thesis. The significant increase in the data production
and consumption during the past decades has resulted in an increase in the number
of large distributed systems. They are geo-distributed and geo-replicated. P2P com-
munication systems are an example of decentralized distributed systems with all nodes
having equal importance. The study of large scale systems like P2P systems and cloud
holds great importance. Most of the decentralized distributed systems rely on overlay
networks for providing their services. The structure of the underlying overlay network
can greatly influence the performance of these systems. Thus, a network aware self-
organizing overlay can be very helpful for decentralized distributed systems. So there
is a need for efficient overlay maintenance techniques and care must be given to content
placement, search and distribution.

34 Chapter 2

Chapter 3

Fluidify: Decentralized Overlay

Deployment in a Multi-Cloud

World

In the previous chapter we have mentioned the importance of network aware over-
lays and the general lack of awareness of the underlying physical network topology by
decentralized overlay based systems. In this chapter we are presenting our approach
to address this problem. As overlays get deployed in large, heterogeneous systems
with stringent performance constraints, their logical topology must exploit the locality
present in the underlying physical network. In this chapter, we propose a novel decen-
tralized mechanism—Fluidify—for deploying an overlay network on top of a physical
infrastructure while maximizing network locality. Fluidify uses a dual strategy that
exploits both the logical links of an overlay and the physical topology of its underlying
network to progressively align one with the other. The resulting protocol is generic,
in the sense that it does not make any assumptions regarding the logical topology
to be deployed, or the underlying physical topology on which the deployment occurs.
Fluidify is efficient, scalable and can substantially improve network overheads and la-
tency in overlay based-systems. Simulation results show that in a network of 25,600
nodes, Fluidify is able to produce an overlay with links that are on average 94% shorter
than that produced by a standard decentralized approach based on slicing and 97%
shorter compared to that produced by a decentralized approach based on PROP-G,
while demonstrating a sub-linear time complexity.

Section 3.1 introduces the problem and some important works in this area. Section
3.2 presents our intuition. Section 3.3 presents the Fluidify algorithm. Section 3.4 sum-

35

36 Chapter 3

marizes the experimental evaluations of Fluidify in terms of proximity and convergence
time.

3.1 Background and Problem Statement

As discussed in chapter 2, overlays are increasingly used as a fundamental building
block of modern distributed systems. Overlay networks organize peers in logical topolo-
gies on top of an existing network to extend its capabilities, with application to stor-
age [RFH+01, SMK+01], routing [GSAA04, KT13], recommendation [VS05, BFG+10],
and streaming [LXQ+08,FGK+09]. Although overlays were originally proposed in the
context of peer-to-peer (P2P) systems, their application today encompasses wireless
sensor networks [GHP+08] and cloud computing [DHJ+07,LM10].

3.1.1 The problem: building network-aware overlays

One of the challenges when using overlays, in particular structured ones, is to maintain
desirable properties within the topology, in spite of failures and churn. This challenge
can be addressed through decentralized topology construction protocols [JMB09,VS05,
MJB05, LPR07], which are scalable and highly flexible. Unfortunately, such topology
construction solutions are not usually designed to take into account the infrastruc-
ture on which an overlay is deployed. This brings clear advantages in terms of fault-
tolerance, but is problematic from a performance perspective, as overlay links may in
fact connect hosts that are far away in the physical topology. This is particularly likely
to happen in heterogeneous systems, such as multi-cloud deployment, in which latency
values might vary greatly depending on the location of individual nodes.

Cloud infrastructures, with its inherent elasticity and scalability, help to process
large amounts of scientific data. Cloud resources for computation and storage are
spread among globally distributed datacenters. This distribution provides redundancy
and ensures reliability in case of site failures. In order to optimally use the full com-
putation power of clouds, we have to exploit locality across multiple sites as there are
frequent large-scale data movements between them. Inefficient data management across
geographically distributed datacenters can cause high and variable latencies among sites
which is costly. To achieve reasonable QoS and optimize the cost-performance in a fed-
erated cloud setting it is critical to effectively use the underlying storage and network
resources.

For instance, Fig. 3.1(a) depicts a randomly connected overlay deployed over two
cloud providers (rounded rectangles). All overlay links cross the two providers, which

Background and Problem Statement 37

3"

2"

1"

6"

4"

5"

3"

5"

1"

6"

4"

2"

(a) Randomly connected overlay (b) Locality aware overlay

Geographical Area Physical Machine Logical Data

Figure 3.1: Illustration of a randomly connected overlay and a network-aware overlay

is highly inefficient. By contrast, in Fig. 3.1(b), the same logical overlay only uses two
distant links, and thus minimizes latency and network costs.

This problem has been explored in the past [ZZZ+06, XTZ03, WR03, RHKS02,
QCY+07], but most of the proposed solutions are either tied to a particular service
or topology, or limited to unstructured overlays, and therefore cannot translate to the
type of systems we have just mentioned, which is exactly where the work we present in
this chapter comes in.

3.1.2 Existing approaches to building network-aware overlays

Fully decentralized systems have been extensively studied by many researchers. This
also led to the study of network aware overlays and ways to create them. Some of the
important works in this field are discussed below. We first give a brief overview of the
types of network aware overlays. Then we discuss how locality awareness is provided
for P2P systems - approaches specific to structured overlays, generic approaches and
those specific to unstructured overlays. The last part is about making use of topology
aware protocols for routing and data dissemination.

Network aware overlays can be either reactive or proactive. Reactive overlays initi-
ate network measurements to determine node distances when routing a message. This
can cause a large overhead when overlay usage is high. An example of a reactive net-
work aware overlay is Meridian [WSS05]. Each Meridian node organizes a fixed set of
neighbours into exponentially increasing rings according to network distance. Routing
is done based on the current latency measurements but each query has a large mea-

38 Chapter 3

surement overhead. Meanwhile, proactive overlays periodically perform measurements
in the background to maintain up-to-date routing state. Even though it can reduce
the measurement overhead associated with overlay usage, it can suffer heavily from
stale information. Tulip [ABB+05] is an example of proactive network aware two hop
routing overlay. Each node selects a random color and maintains a color list with all
nodes of its color and a vicinity list containing one node of every other color. A node
routes a message by sending it to the node in the vicinity list of the target’s color. That
node routes the message directly to the target using its color list. Tulip makes use of
gossip and direct node-to-node measurements to ensure locality of its vicinity list. This
results in a large maintenance overhead.

Studies were performed to provide locality awareness for P2P systems. We know
that P2P systems can be structured or unstructured. Structured P2P overlays, such as
CAN [RFH+01], Chord [SMK+01], Pastry [RD01], and Tapestry [ZKJ01], are designed
to enhance search performance by giving some importance to node placement. But,
as pointed out in [RS02], structured designs are likely to be less resilient, because
it is hard to maintain the structure required for routing to function efficiently when
hosts are joining and leaving at a high rate. A detailed description of all the four
protocols is given in Sec. 2.3.1. The original design of Chord does not consider network
proximity at all. CAN, Pastry, and Tapestry proposed some mechanisms to provide
locality to some extent. In CAN, a landmark based similarity is used to find the relative
position of a node in the Internet. Tapestry and Pastry exploit locality by measuring
the proximity between pairs of nodes, and adding the closest ones to the corresponding
routing tables. However, these mechanisms are typically specific to the overlay in which
they are employed and come at the expense of a significantly more expensive overlay
maintenance protocol. It also compromises the load balance in the overlay network.

Some of the approaches are generic in nature. They can be used for both structured
and unstructured overlays. One such approach to creating network aware overlays is
to use network coordinates (NC) [PLMS06]. They provide a decentralized construction
mechanism for adaptive network aware overlays. Each node calculates its position in
a virtual coordinate space using a small number of inter-node network latency mea-
surements. Nodes then continuously adjust their NCs to adapt to the changes in the
underlying network. NCs have many attractive properties like low run-time overhead,
low embedding error and they also provide geometric primitives for solving problems
like nearest cache selection, content distribution and resource placement. But the
main problem is that they have too low accuracy and too high measurement over-
head [PLMS06].

Another approach used to bridge the gap between physical and overlay node proxim-
ity is landmark clustering. Peers measure the latency between them and a set of stable

Background and Problem Statement 39

internet servers called landmarks and use these measured latencies to determine prox-
imity. It can be used in combination with both structured and unstructured overlays.
Ratnasamy et al. [RHKS02] use landmark clustering in an approach to build a topology-
aware CAN [RFH+01] overlay network. Although the efficiency can be improved, this
solution needs extra deployment of landmarks and produces some hotspots in the un-
derlying network when the overlay is heterogeneous and large. Some [ZZZ+06] [XTZ03]
have proposed methods to fine-tune the landmark clustering for overlay creation. The
main disadvantage with landmark systems is that there needs to be a reliable infras-
tructure to offer these landmarks with a high availability.

Proximity neighbour selection [CDHR03] which is similar to landmark clustering
was proposed to organise and maintain the overlay network with improved routing
speed and load balancing. Waldvogel and Rinaldi [WR03] proposed an overlay network
(Mithos) that focuses on reducing routing table sizes for structured overlays. Here the
addresses are directly mapped into a subspace of IPv6 address space thereby making it
suitable for native deployment and efficient forwarding. To maximize the accuracy and
efficiency without the use of multi-dimensional coordinate space and full mesh probing,
it uses every node in the network as a topology landmark. It is a bit expensive and
only very small overlay networks are used for simulations and the impact of network
digression is not considered. As the routing tables do not contain long distance links,
the hop count is also high.

Many approaches were proposed solely for unstructured overlays. Application layer
multicast algorithms construct a special overlay network that exploits network proxim-
ity. The protocol they use are often based on a tree or mesh structure. Mesh structures
such as Narada [CRSZ02] are suitable for small overlays but are often not scalable. The
mesh (an unstructured overlay) that is constructed in a decentalized manner is later
optimized according to several network metrics (load, distance, node capacity). Narada
requires each node to maintain a global membership information and to update it as
nodes leaves and join the system. In a tree structure such as NICE [BBK02], a new
node who wants to join the overlay will first contact the highest level host. This will
create a hot spot. If by any chance higher-level hosts fail, the system becomes unstable
and might need a rather long time to recover. This also limits the scalability of the
approach.

In [KW00, KW01] authors use the concept of topology-awareness. However, their
method directly uses the border gateway protocol (BGP) to route information. For
an overlay network which is built on top of an application layer, it might not be prac-
tical to use that kind of information. Zhang et al. [ZZZ+06] construct a network
aware overlay by using the group concept. They use dynamic landmarks to avoid hot
spots and to achieve load balance. Another method known as Locality aware Topology

40 Chapter 3

Matching (LTM) which aims to alleviate the mismatch problem was proposed by Liu
et al. [ZLX+05]. In LTM, each peer issues a detector (a control message) so that the
peers receiving the detector can record relative delay information. Based on the delay
information, a node can detect and cut most of the inefficient and redundant logical
links and add closer nodes as its direct neighbors.

Works like [MSF+13] and [DEF13] combines the robustness of epidemics with the
efficiency of structured approaches in order to improve the data dissemination capa-
bilities of the system. Gossip protocols which are scalable and inherent to network
dynamics can do efficient data dissemination. Frey et al. [FGK+09] uses gossip proto-
cols to create a system where nodes dynamically adapt their contribution to the gossip
dissemination according to the network characteristics like bandwidth and delay. Di-
rectional Gossip [LM99] creates an overlay targeting wide-area networks. It computes
a weight for each neighbour which reflects the connectivity and the network topology.
But, this can lead to a static hierarchy sensitive to failures. Kermarrec et al. [GKW13]
use gossip protocols for renaming and sorting. Here nodes are given id values and nu-
merical input values. Nodes exchange these input values so that in the end the input
of rank k is located at the node with id k. This slicing method [PMRS14] [JK06] was
used in resource allocation. Specific attributes of network (memory, bandwidth, com-
putation power) are taken into account to partition the network into slices. Network
aware overlays can be used in cloud infrastructure [TCW+14] to provide efficient data
dissemination.

Most of the works on topology aware overlays are aimed at improving a particular
service such as routing, resource allocation or data dissemination. What we are propos-
ing is a generalized approach for overlay creation giving importance to data placement
in the system. Our approach is scalable, robust and has very low maintenance cost.
The simulated annealing, slicing approach and PROP-G that we used as baselines is
motivated mainly by the works [PMRS14], [GKW13], [JK06], [QCY+07]. But these
works concentrated mainly on improving a single network service while we concentrate
on a generalized solution that can significantly improve all the network services.

3.2 Our intuition: a dual approach

Our proposal, Fluidify, uses a dual strategy that exploits both an overlay’s logical links
and its physical topology to incrementally optimize its deployment.

We model a deployed overlay as follows: each node possesses a physical index,
representing the physical machine on which it runs, and a logical index, representing its
logical position in the overlay. Each node also has a physical and logical neighbourhood:

Our intuition: a dual approach 41

(a) Initial overlay (b) After round 1 (c) After round 2

3

1

2

4

0

5

(0)

(1) (2)

(3)

(4) (5)

n

q

p 3

2

1

4

0

5

(0)

(1) (2)

(3)

(4) (5)

n

q

p 3

2

1

4

5

0

(0)

(1) (2)

(3)

(4) (5)

Figure 3.2: Example of basic Fluidify approach on a system with n=6 and d=2

the physical neighbors of a node are its d closest neighbors in the physical infrastructure,
according to some distance function dnet() that captures the cost of communication
between nodes. The logical neighbors of a node are the node’s neighbors in the overlay
being deployed. For simplicity sake, we model the physical topology as an explicit
undirected graph between nodes, with a fixed degree. We take d to be the fixed degree
of the graph, and the distance function to be the number of hops in this topology.

This model is illustrated in Fig. 3.2. Logical indices are shown inside the nodes,
and physical indices outside. The physical infrastructure is modelled as a ring (not
shown) in which the physical index i is connected to the indices (i − 1) mod 6 and
(i+1) mod 6. The logical overlay being deployed is also a ring (solid lines). Fig. 3.2(a)
shows an initial configuration in which the overlay has been deployed without taking
into account the underlying physical infrastructure. The two logical indices 0 and 1 are
neighbors in the overlay, but are diametrically placed in the underlying infrastructure.
By contrast Fig. 3.2(c) shows an optimal deployment in which the logical and physical
links overlap.

(0)

(1)

(9)

(3) (2)

(7) (8)

(4)

(5)

(6)

2 3

4

7

8

1

0

9 6

5

Figure 3.3: Example of local minimum of a system with n=10 and d=2

42 Chapter 3

Our intuition, in Fluidify, consists of exploiting both the logical and physical neigh-
bors of individual nodes, in a manner inspired from epidemic protocols, to move from
the configuration of Fig. 3.2(a) to that of Fig. 3.2(c). Our basic algorithm is organized
in asynchronous rounds, and implements a greedy approach as follows: in each round,
each node n randomly selects one of its logical neighbors (noted p), and considers the
physical neighbor of p (noted q) that is closest to itself. n evaluates the overall benefit of
exchanging its logical index with that of q. If positive, the exchange occurs (Fig. 3.2(b),
and then Fig. 3.2(c)).

Being a greedy algorithm, this basic strategy carries the risk of ending in a local
minimum (Fig.3.3). To mitigate such situations, we use simulated annealing (taking in-
spiration from recent works on epidemic slicing [PMRS14]), resulting in a decentralized
protocol for the deployment of overlay networks that is generic, efficient, and scalable.

3.3 The Fluidify algorithm

We now present in more detail how we realize the intuition we have just sketched, by
precising our system model (Sec. 3.3.1) before moving on to the algorithm implementing
Fluidify (Sec. 3.3.2).

3.3.1 System model

We consider a set of nodes N = {n1, n2, .., nN} in a message passing system. Each node
n possesses a physical index(n.net) and a logical index (n.data). n.net represents the
machine on which a node is deployed. n.data represents the role n plays in the overlay,
e.g. a starting key in a Chord ring [MJB05,SMK+01].

Table 3.1 summarizes the notations we use. We model the physical infrastructure
as an undirected graph Gnet = (N,Enet) and capture the proximity of nodes in this
physical infrastructure through the distance function dnet(). Similarly, we model the
overlay being deployed as an undirected graph Gdata = (N,Edata) over the nodes N . In
a first approximation, we use the hop distance between two nodes in Gnet for dnet(), but
any other distance would work. The hop distance is clearly a simplified view of a real
network, in which latency and bandwidth depend on many other variables, and might
not behave symmetrically between a pair of nodes. However, this simplification fits
our aim, which is to demonstrate the principles of our approach, rather than propose
a detailed modelling of current networks which is a highly complex task. Let us note
however, that our approach would continue to apply to any distance metric.

Our algorithms use the k-NN neighborhood of a node n in a graph Gx, i.e. the

The Fluidify algorithm 43

Table 3.1: Notations and Entities
n.net physical index of node n
n.data logical index of node n
dnet distance function to calculate the distance between two nodes in physical

space
Gnet the physical graph (N,Enet)
Gdata the logical graph (N,Edata)
Γk
net(n) k closest nodes to n in Gnet, in hop distance

Γk

data
(n) k closest nodes to n in Gdata, in hop distance

Table 3.2: Parameters of Fluidify
knet size of the physical neighborhood explored by Fluidify
kdata size of the logical neighborhood explored by Fluidify
K0 initial threshold value for simulated annealing
rmax fade-off period for simulated annealing (# rounds)

k nodes closest to n in hop distance in Gx, which we note as Γk
x(n). In case of a tie,

nodes are chosen randomly. We assume that these k-NN neighborhoods are maintained
with the help of a topology construction protocol [JMB09,VS05,BFG+10]. In the rest
of the chapter, we discuss and evaluate our approach independently of the topology
construction used, to clearly isolate its workings and benefits. Under the above model,
finding a good deployment of Gdata onto Gnet can be seen as a graph mapping problem,
in which one seeks to optimize the cost function

∑

(n,m)∈Edata
dnet(n,m).

3.3.2 Fluidify

The basic version of Fluidify (termed Fluidify (basic)) directly implements the ideas
discussed in Sec. 3.2 (Algorithm. 1): each node n first chooses a random logical neighbor
(noted p, line 2), and then searches for the physical neighbor of p (noted q) that offers
the best reduction in cost (arg min operator at line 3)1. The code shown slightly
generalises the principles presented in Sec. 3.1, in that the nodes p and q are chosen
beyond the 1-hop neighborhood of n and p (lines 2 and 3), and consider nodes that are
kdata and knet hops away, respectively.

The potential cost reduction is computed by the procedure ∆(n, u) (lines 5-8),
which returns the cost variation if n and u were to exchange their roles in the overlay.
The decision whether to swap is made in conditional swap(n, q, δlim) (with δlim = 0 in
Fluidify Basic).

1argmin
x∈S

(

f(x)
)

returns one of the x in S that minimizes f(x).

44 Chapter 3

Algorithm 1 Fluidify (basic)

1: In round(r) do
2: p ← random node from Γkdata

data (n)
3: q ← arg min

u∈Γ
knet
net

(p)
∆(n, u)

4: conditional swap(n, q, 0)

5: Procedure ∆(n, u)
6: δn ←

∑

(n,r)∈Edata
dnet(u, r)−

∑

(n,r)∈Edata
dnet(n, r)

7: δu ←
∑

(u,r)∈Edata
dnet(n, r)−

∑

(u,r)∈Edata
dnet(u, r)

8: return δn + δu

9: Procedure conditional swap(n, q, δlim)
10: if ∆(n, q) < δlim then
11: swap n.data and q.data
12: swap Γkdata

data (n) and Γkdata
data (q)

13: end if

To mitigate the risk of local minima, we extend it with simulated annealing [PMRS14],
which allows two nodes to be swapped even if there is an increase in the cost function.
We call the resulting protocol Fluidify (SA), shown in Algorithm 2. In this version,
we swap nodes if the change in the cost function is less than a limit, ∆limit(r), that
gradually decreases to zero as the rounds progress (line 4). ∆limit(r) is controlled by
two parameters, K0 which is the initial threshold value, and rmax which is the number
of rounds in which it is decreased to 0. In the remainder of this thesis, we use Fluidify
to mean Fluidify (SA).

Algorithm 2 Fluidify (SA)

1: In round(r) do
2: p ← random node from Γkdata

data (n)
3: q ← arg min

u∈Γ
knet
net

(p)
∆(n, u)

4: conditional swap(n, q,∆limit(r))

5: Procedure ∆limit(r)
6: return max

(

0,K0 × (1− r/rmax)
)

Evaluation 45

3.4 Evaluation

3.4.1 Experimental Setting and Metrics

Unless otherwise indicated, we use rings for both the infrastructure graph Gnet and
overlay graph Gdata. We assume that the system has converged when the system remains
stable for 10 rounds.

The default simulation scenario is one in which the system consists of 3200 nodes,
and use 16-NN logical and physical neighborhoods (knet = kdata = 16) when selecting
p and q. The initial threshold value for simulated annealing (K0) is taken as |N |. rmax

is taken as |N |0.6 where 0.6 was chosen based on the analysis of the number of rounds
Fluidify (basic) takes to converge.

We assess the protocols using two metrics:

• Proximity captures the quality of the overlay constructed by the topology con-
struction algorithm. Lower values denote a better quality.

• Convergence time measures the number of rounds taken by the system to
converge.

Proximity is defined as the average network distance of logical links normalized by
the diameter of the network graph Gnet:

proximity =

E
(n,m)∈Edata

dnet(n,m)

diameter(Gnet)
(3.1)

where E represents the expectation operator, i.e. the mean of a value over a given
domain, and diameter() returns the longest shortest path between pairs of vertices in
a graph, i.e. its diameter. In a ring, it is equal to N/2.

3.4.2 Baselines

The performance of our approach is compared against three other approaches. One is
Randomized (SA) (Algorithm. 3), where each node considers a set of random nodes from
N for a possible swap. The other is inspired from epidemic slicing [PMRS14,JK06], and
only considers the physical neighbors of a node n for a possible swap (Slicing (SA), in
Algorithm. 4). The third approach is similar to PROP-G [QCY+07], and only considers
logical neighbours of a node n for a possible swap (PROP-G (SA), in Algorithm. 5).

46 Chapter 3

In all these approaches simulated annealing is used as indicated by (SA). The only
difference between the above four approaches is the way in which the swap candidates
are selected.

Algorithm 3 Randomized (SA)

1: In round(r) do
2: S ← knet random nodes from N
3: q ← arg minu∈S ∆(n, u)
4: conditional swap

(

n, q,∆limit(r)
)

Algorithm 4 Slicing (SA)

1: In round(r) do
2: q ← arg min

u∈Γ
knet
net

(n)

∆(n, u)

3: conditional swap
(

n, q,∆limit(r)
)

Algorithm 5 PROP-G

1: In round(r) do
2: S ← Γkdata

data (n)
3: q ← arg minu∈S ∆(n, u)
4: conditional swap(n, q, 0)

To provide further comparison points, we also experimented with some combina-
tions of the above approaches. Algorithm. 6 (termed Data-Net & Net) is a combina-
tion of Fluidify (basic) with Slicing (SA). Algorithm. 7 (termed Data-Net & R) is a
combination of Fluidify (basic) with Randomized (SA). We also tried a final variant,
combination-R, in which once the system has converged using Fluidify (basic) (no more
changes are detected for a pre-determined number of rounds), nodes look for random
swap candidates like we did in Algorithm. 3.

3.4.3 Results

All the results (Figs. 3.4-3.11 and Tables 3.3-3.5) are computed with Peersim [MJ09] and
are averaged over 30 experiments. When shown, intervals of confidence are computed
at a 95% confidence level using a student t-distribution. The source code is made
available in http://armi.in/resmi/fluidify.zip.

Evaluation 47

Algorithm 6 Data-Net & Net

1: In round(r) do
2: p ← random node from Γkdata

data (n)

3: S ← Γ
knet

2

net (p) ∪ Γ
knet

2

net (n)
4: q ← arg minu∈S ∆(n, u)
5: conditional swap(n, q, 0)

Algorithm 7 Data-Net & R

1: In round(r) do
2: p ← random node from Γkdata

data (n)

3: S ← Γ
knet

2

net (p) ∪
{

knet
2 rand. nodes ∈ N \ Γ

knet

2

net (p)
}

4: q ← arg minu∈S ∆(n, u)
5: conditional swap(n, q, 0)

3.4.3.1 Evaluation of Fluidify (SA)

The results obtained by Fluidify (SA) and the three baselines on a ring/ring topology
are given in Table 3.3 and charted in Figs. 3.5 and 3.6. In addition, Fig. 3.4 illustrates
some of the rounds that Fluidify (SA) and Slicing (SA) perform. Fig. 3.5 shows that
Fluidify clearly outperforms the other three approaches in terms of proximity over a
wide range of network sizes. For Fluidify, varying the network size from 100 to 25,600
results in the reduction of proximity from 4% to 0.43%. But the reduction is from 7.7%
to 1.79% and 10.46% to 6.99% respectively, for Randomized (SA) and Slicing (SA).
But for the PROP-G (SA) approach, increasing the network size is not showing much
of an effect. In the case of Fluidify, the converged proximity value for network sizes
above 6400 is around 0.5% and does not show much of a variation thereafter.

round 5 round 25 round 52

(a) Fluidify (SA)

round 5 round 25 round 49

(b) Slicing (SA)

Figure 3.4: Illustrating the convergence of Fluidify (SA) & Slicing (SA) on a ring/ring
topology. The converged state is on the right. (N = K0 = 400, knet = kdata = 16)

48 Chapter 3

Table 3.3: Performance of Fluidify against various baselines(with simulated annealing)

Nodes
Proximity(%) Convergence (rounds)

Fluidify Slicing Random PROP-G Fluidify Slicing Random PROP-G

100 4.06 10.46 7.70 13.88 18.10 17.16 23.80 17.03
200 2.70 10.12 6.27 12.99 28.50 26.33 43.43 25.13
400 1.71 9.76 5.35 12.65 42.50 39.20 85.36 38.06
800 1.26 9.34 4.83 12.14 64.13 58.93 136.76 57.16

1,600 0.86 8.80 4.41 11.57 96.80 90.56 198.03 85.13
3,200 0.69 8.47 3.82 11.31 144.40 138.20 274.80 128.14
6,400 0.51 8.13 3.07 11.27 216.10 203.40 382.10 198.24

12,800 0.46 7.66 2.28 11.01 324.00 292.10 533.67 263.32
25,600 0.43 6.99 1.79 10.02 485.00 418.60 762.13 392.81

Fig 3.6 charts the convergence time against network size in loglog scale for Fluidify
and its competitors. Interestingly all approaches show a polynomial convergence time
with a sub linear slope, of which Randomized (SA) taking clearly longer than the
others. This shows the scalability of Fluidify even for very large networks. If we turn
to Tab. 3.3, it is evident that as the network size increases, the time taken for the system
to converge also increases. Both Fluidify and Slicing (SA) converges around the same
time with Slicing (SA) converging a bit faster than Fluidify. Randomized (SA) takes
much longer (almost twice as many rounds). PROP-G (SA) converges faster compared
than all other approaches.

The better convergence of PROP-G (SA) and Slicing (SA) can be explained by the
fact that both approaches run out of interesting swap candidates more rapidly than
Fluidify. It is important to note here that all approaches are calibrated to consider
the same number of candidates per round. This suggests that PROP-G (SA) and
Slicing (SA) runs out of potential swap candidates because they consider candidates of
lesser quality, rather than considering more candidates faster.

Fig. 3.7 shows how the proximity varies with round for our default system settings.
Initial avg. link distance was around N/4 where N is the network size and this is
expected as the input graphs are randomly generated. So the initial proximity was
approximately equal to 50%. Fluidify was able to bring down the proximity from 50%
to 0.7%. A steep decrease in proximity was observed in initial rounds and later it
decreases at a lower pace and finally settles to a proximity value of 0.7% as shown in
Fig 3.7. The randomized version was also able to perform well in the initial stages but
later on the gain in proximity decreases and converges to a proximity value of 3.8%
after a very long time. Slicing (SA) is unable to get much gain in proximity from the
start itself and converges to a proximity value of 8.4%. PROP-G (SA) performs really
well in the initial rounds but after a while the performance becomes worse compared

Evaluation 49

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

100 200 400 800 1600 3200 6400 12800 25600

P
ro

x
im

it
y
 (

 i
n
 %

)

Network size

Fluidify (SA)
Slicing (SA)

Randomized (SA)
PROP-G (SA)

Figure 3.5: Proximity. Lower is bet-
ter. Fluidify (SA) clearly outperforms the
baselines in terms of deployment quality.

 10

 100

 1000

 100 1000 10000 100000

C
o
n
v
e
rg

e
n
c
e
 t
im

e
 (

#
R

o
u
n
d
s
)

Network size

Fluidify (SA)
Slicing (SA)

Randomized (SA)
PROP-G (SA)

Figure 3.6: Convergence time. All three
approaches have a sublinear convergence
(≈ 1.237× |N |0.589 for Fluidify).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200 250 300

P
ro

x
im

it
y
 (

 i
n
 %

)

Round

Fluidify (SA)
Slicing (SA)

Randomized (SA)
PROP-G (SA)

Figure 3.7: Proximity over time (N =
K0 = 3200, knet = kdata = 16). Fluid-
ify (SA)’s optimization is more aggres-
sive compared to other baselines.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400

C
u
m

u
la

ti
v
e
 f
re

q
u
e
n
c
y
 o

f
n
o
d
e
s
(%

)

Avg_link_ distance

Fluidify (SA)
Slicing (SA)

Randomized (SA)
PROP-G (SA)

Figure 3.8: Average link distances in
converged state (N = K0 = 3200,
knet = kdata = 16). Fluidify (SA)’s
links are both shorter and more homo-
geneous.

to Randomized (SA) and Fluidify (SA). The cumulative distribution of nodes based on
the average link distance in a converged system for all the three approaches is depicted
in Fig. 3.8. It is interesting to see that nearly 83% of the nodes are having an average
link distance less than 10 and 37% of the nodes are having an average link distance of
1 in the case of Fluidify. But for Slicing (SA) even after convergence, a lot of nodes are
having an average link distance greater than 200. Slicing (SA) clearly fails in improving
the system beyond a limit.

The maximum, minimum and the mean gain obtained per swap in a default sys-

50 Chapter 3

-6000

-4000

-2000

 0

 2000

 4000

 0 20 40 60 80 100 120 140 160

C
o
s
t
v
a
ri
a
ti
o
n
 p

e
r

s
w

a
p

Round

Minimum

Mean

Maximum

(a) Fluidify (SA)

-6000

-4000

-2000

 0

 2000

 4000

 0 50 100 150 200 250

C
o
s
t
v
a
ri
a
ti
o
n
 p

e
r

s
w

a
p

Round

Minimum

Mean

Maximum

(b) Randomized (SA)

-40

-30

-20

-10

 0

 10

 20

 30

 40

 0 20 40 60 80 100 120 140

C
o
s
t
v
a
ri
a
ti
o
n
 p

e
r

s
w

a
p

Round

Minimum

Mean

Maximum

(c) Slicing (SA)

Figure 3.9: Variation of the cost function per swap over time. Lower is better. (N =
K0 = 3200, knet = kdata = 16, note the different scales) Fluidify (SA) shows the highest
amplitude of variations, and fully exploits simulated annealing, which is less the case
for Randomized (SA), and not at all for slicing.

tem setting using Fluidify is shown in Fig. 3.9(a). As the simulation progresses the
maximum, minimum and the mean value of the cost function per swap in each round
starts getting closer and closer and finally becomes equal on convergence. The highest
gains per swap (negative cost) are obtained in the initial rounds of the simulation. The
maximum value obtained by the cost function is expected to gradually decrease from
a value less than or equal to 3200, which is the initial threshold value for simulated
annealing, to 0. From Fig. 3.9(b) it is clear that the variation of the cost function for
Randomized (SA) also shows a similar behaviour. Here the system progresses with a
very small gain for a long period of time. As shown in Fig.3.9(c), the most interesting
behaviour is that of Slicing (SA). It does not benefit much with the use of simulated
annealing. The maximum gain that can be obtained per swap is 32 and the maximum
negative gain is 2. This is because only the physically closer nodes of a given node are
considered for a swap and the swap is done with the best possible candidate.

The message cost per round per node is equal to the amount of data that a node
exchanges with another node. In our approach the nodes exchange their logical index
and the logical neighbourhood. We assume that each index value amounts to 1 unit
of data. So the message cost will be 1+kdata which will be 17 in default case. The
communication overhead in the network per cycle will be equal to the average number
of swaps occurring per round times the amount of data exchanged per swap. A single
message costs 17 units. So a swap will cost 34 units. In our default setting, an average
of 2819 swaps happen per round and this amounts to around 95846 units of data per
round.

All the four approaches that we presented here are generic and can be used for any
topology. Table. 3.4 shows how the four approaches fares for various topologies in a

Evaluation 51

Table 3.4: Performance on various topologies
Physical topology Logical topology Approach Proximity(%) Convergence(#Rounds)

torus torus Fluidify(SA) 2.4(±0.05) 162(±2.34)
torus torus Slicing(SA) 4.5(±0.05) 130(±2.16)
torus torus Randomized(SA) 3.82(±0.08) 423(±2.41)
torus torus PROP-G(SA) 4.6(±0.05) 132(±2.34)
torus ring Fluidify(SA) 2.6(±0.03) 171(±3.6)
torus ring Slicing(SA) 5.2(±0.02) 128(±3.26)
torus ring Randomized(SA) 4.05(±0.04) 464(±3.28)
torus ring PROP-G(SA) 5.6(±0.03) 130(±3.6)
ring torus Fluidify(SA) 1.8(±0.06) 156(±2.36)
ring torus Slicing(SA) 9.5(±0.08) 143(±4.1)
ring torus Randomized(SA) 2.7(±0.05) 442(±3.82)
ring torus PROP-G(SA) 10.1(±0.06) 128(±2.36)

 0

 2

 4

 6

 8

 10

 12

100 200 400 800 1600 3200 6400 12800 25600

P
ro

x
im

it
y
 (

 i
n
 %

)

Network Size

Fluidify (SA)
Fluidify (basic)

Data-Net & Net
Data-Net & R

Combination-R

Figure 3.10: Comparison of different
variants of Fluidify - Proximity

 0

 100

 200

 300

 400

 500

 600

100 200 400 800 1600 3200 6400 12800 25600

C
o
n
v
e
rg

e
n
c
e
 t
im

e
 (

#
R

o
u
n
d
s
)

Network Size

Fluidify (SA)
Fluidify (basic)

Data-Net & Net
Data-Net & R

Combination-R

Figure 3.11: Comparison of different
variants of Fluidify - Convergence

default setting. Fluidify clearly outperforms the other approaches in terms of proximity.

3.4.3.2 Effects of variants

Figure. 3.10 shows that compared to its variants like Fluidify (basic), combination-R,
Data-Net & Net (Algorithm. 6) and Data-Net & R (Algorithm. 7), Fluidify (SA) is
far ahead in quality of convergence. Here also, we consider a ring/ring topology with
default setting. The convergence time taken by Fluidify is slightly higher compared to
its variants as shown in Fig. 3.11.

Table 3.5 shows, how varying the initial threshold value for Fluidify affects its
performance. From the table, it is clear that as the initial threshold value increases the

52 Chapter 3

Table 3.5: Impact of K0 on Fluidify (SA)
K0 Proximity (%) Convergence (rounds)

320 2.4 156
640 1.6 145
1600 1.1 146
3200 0.7 144

 0

 2

 4

 6

 8

 10

 12

2 4 8 16

P
ro

x
im

it
y
 (

 i
n
 %

)

knet

kdata = 2

kdata = 4

kdata = 8

kdata = 16

(a) Proximity(lower the better)

 0

 50

 100

 150

 200

 250

 300

 350

 400

2 4 8 16

C
o
n
v
e
rg

e
n
c
e
 t
im

e
 (

#
R

o
u
n
d
s
)

knet

kdata = 2
kdata = 4
kdata = 8

kdata = 16

(b) Convergence time

Figure 3.12: Comparison of performance with varying knet and kdata values

proximity that we obtain also improves. With a higher threshold value, more swaps will
occur and therefore there is a higher chance of getting closer to the global minimum.
The threshold value that gives the best performance is used for all our simulations.

Fig. 3.12 shows the performance of Fluidify (basic) with varying knet and kdata
values. Proximity improves slightly as we improve the search space from 4 to 16 which
is clear from the Fig. 3.12(a). We conjecture that the rise in proximity from 2 to 4
is due to the creation of new local minima. As the value of knet grows, we consider
more potential swaps in each round, improving our choice, so the convergence speed
increases which is evident from Fig. 3.12(b). When kdata grows beyond 2, we no longer
optimize 1-hop links in Gdata which slows down the convergence. The best performance
is obtained for the combination where knet and kdata are taken as 16.

3.5 Summary

In this chapter, we presented Fluidify, a novel decentralized mechanism for network
aware overlay deployment. Fluidify works by exploiting both the logical links of an
overlay and the physical topology of its underlying network to progressively align one

Summary 53

with the other and thereby maximizing the network locality. The proposed approach
can be used in combination with any topology construction algorithm. The resulting
protocol is generic, efficient, scalable and can substantially improve network overheads
and latency in overlay based-systems. Simulation results show that in a ring/ring
network of 25,600 nodes, Fluidify is able to produce an overlay with links that are on
average 94% shorter than those produced by a standard decentralized approach based
on slicing and 97% shorter compared to that produced by a decentralized approach
based on PROP-G.

54 Chapter 3

Chapter 4

Filament: A Cohort Construction

Service for Decentralized

Collaborative Editing Platforms

In chapter 2 we discussed the need for efficient content placement, search and distribu-
tion techniques. In this chapter we concentrate on decentralized collaborative editing
platforms and present an approach to increase their efficiency. Distributed collaborative
editors allow several remote users to contribute concurrently to the same document.
Only a limited number of concurrent users can be supported by most of the currently
deployed editors. A number of peer-to-peer solutions have therefore been proposed to
remove this limitation and allow a large number of users to work collaboratively. These
approaches however, tend to assume that all users edit the same set of documents,
which is unlikely to be the case if such systems should become widely used and ubiq-
uitous. To avoid flooding the system with updates that most users are not interested
in, such decentralized collaborative editors therefore need to implement a form of user
peering procedure in order to connect together users editing the same documents.

To realize this peering procedure, we propose in this chapter a novel cohort construc-
tion approach—Filament—that allows users editing the same documents to rapidly
find each other. Our proposal utilizes the semantic relations between the sets of docu-
ments edited by individual peers to construct a set of self-organizing overlays to route
search requests. The resulting protocol is efficient, scalable and provides beneficial load-
balancing properties over the involved peers. We evaluate our approach and compare
it against a standard Chord-based DHT approach. Our approach performs as well as
a DHT-based approach, but provides better load balancing. Simulation results show

55

56 Chapter 4

that in a network of 212 nodes, Filament is able to reduce the document latency by
around 20% compared to a Chord-based DHT approach.

Section 4.1 introduces the problem and some important works in this area. Sec-
tion 4.2 presents our intuition. Section 4.3 presents the Filament algorithm. Section 4.4
summarizes the experimental evaluations of Filament in terms of document latency and
load per node. Section 4.5 concludes the chapter.

4.1 Background and Problem Statement

A new generation of low-cost computers known as plug computers have recently ap-
peared, offering users the possibility to create cheap nano-clusters of domestic servers,
host data and services and federate these resources with other users. These nano-
clusters of autonomous users brings closer the vision of self-hosted on-line social ser-
vices, as promoted by initiatives such as ownCloud [own] or diaspora [dia]. But, the
initiatives so far are primarily focused on the sharing and diffusion of immutable data
(pictures, posts, chat messages) and offer much less in terms of real-time collaborative
tools such as collaborative editors. In order to fill this gap, several researchers have
proposed promising approaches [DSM+15,WUM10,OMMD10] to realize decentralized
peer-to-peer collaborative editors.

In the following we discuss decentralized collaborative editors and introduce the
problem of decentralized cohort construction (Section 4.1.1). We then review existing
works related to this problem, such as P2P pub-sub and search systems (Section 4.1.2).

4.1.1 The problem: collaborative editing and cohort construction

Distributed collaborative editors allow several remote users to contribute concurrently
to the same document. Most of the currently deployed distributed collaborative edi-
tors are centralized, hosted in tightly integrated environments and show poor scalabil-
ity [Gdo,Eth] as well as poor fault tolerance. For instance, typical collaborative editors
such as Google Doc [Gdo] or Etherpad [Eth] are limited in the number of users they
can support concurrently.

To overcome this limitation, researchers have been looking into P2P collabora-
tive editing platforms [DSM+15,OUMI06,WUM10,IN04,OMMD10,UPVS07] for some
time. Deploying a collaborative editing framework on a P2P network provides sev-
eral advantages like high availability, performance enhancement and censorship re-
silience [OMMD10]. Some of the existing approaches that deploy a collaborative system
on a distributed network include Wooki [WUM07], DistriWiki [Mor07], Piki [MLS08],

Background and Problem Statement 57

Scalaris [SSR08], DTWiki [DB08], Distributed Version Control Systems like Git [git].
The collaboration can be synchronous or asynchronous [IN04]. In synchronous collab-
oration, the same documents are being edited by the group members and all the mod-
ifications can be seen in real-time by other members. In asynchronous collaboration,
the copies of the documents are modified in isolation and synchronized afterwards to
reestablish a common view. This led to the study of consistency and conflict resolution
during object replication [OUMI06,SJZ+98].

Most of the approaches in decentralized peer-to-peer collaborative editing assume,
however, that all users in a system are editing the same set of documents which may
not be the case in most systems. If these systems become widely used, this is unlikely
to be the case, and most users will only be editing a small subset of all the documents
that exist in the system. Ideally, in order to limit communication costs and band-
width consumption, only the users editing a particular document should be involved in
the synchronization of changes to this document, precluding the use of indiscriminate
flooding techniques. Instead, a user contributing for the first time to an existing docu-
ment should be able to rapidly locate the group (or cohort) of other users editing this
same document, a cohort construction problem linked to decentralized search which we
discuss in the next section.

4.1.2 Existing approaches to cohort construction and decentralized

search

Finding other users editing the same set of documents to construct an editing cohort is
a particular case of peer-to-peer search, which has been extensively researched in the
past both in unstructured [LCC+02,GMS06,OO06,DLOP07] and structured systems,
in particular in DHT [RFH+01,SMK+01,RD01,ZKJ01]. Unstructured approaches have
probabilistic guarantees: a resource might be present in the system, but it may not get
found unless a flooding or exhaustive multicast strategy [FH10,CSWH01] is used, which
might be very costly in massive systems.

A straightforward choice to realize such a cohort-construction mechanism consists
of using a DHT (Distributed Hash Table) [ZKJ01, RFH+01, SMK+01] to act as an
intermediate rendezvous point between nodes editing the same document. This choice
is however sub-optimal. DHTs typically have deterministic guaranties in the sense that
they are correct and complete, but they assume that the number of items to be stored
is much higher than the number of storage nodes available. This is in stark contrast to
distributed collaborative platforms, in which the number of documents being edited is
smaller than the number of users. Furthermore, these systems use consistent hashing
techniques in which a node’s role in the system is independent of this node’s particular

58 Chapter 4

interests (in our case here documents), thus adding an additional layer of redirection.
In case of a highly requested resource, DHTs use load-balancing techniques [RLS+03,
KR04] that typically use virtual nodes or modified hash function [DHJ+07] to spread
the load more evenly. These functions are however reactive, and well suited for content
that is mostly read, but less suitable when interest in a document might vary rapidly.
This is exactly where the work we present in this chapter comes in.

Our problem is also very similar to peer clustering seen in publish/subscribe sys-
tems. Publish/subscribe systems are mainly used for content distribution and selective
content delivery. In pub/sub systems, subscribers express their interest by register-
ing subscriptions and are then notified of any events (issued by publishers) which
match their subscription. Pub/sub systems may be either topic-based or content-
based. In topic based pub/sub systems, a topic name is used to represent a category
of event and subscriptions occur against a particular topic. By contrast, in content
based pub/sub systems, arbitrary predicates on attributes are used express subscrip-
tions [CMTV07b, ASS+99]. P2P architectures are natural candidates for large scale
pub/sub systems due to their scalability and self organizing properties. Structured P2P
overlays [RFH+01,SMK+01,ZKJ01,RD01] are often used to implement content based
pub/sub systems. This is made possible by mapping the attribute space of the latter
to the identifier space of the former. Associating an attribute with one specific peer
provides efficient routing but the peers hosting popular attributes unfortunately tend
to become overloaded. Meghdoot [GSAA04], SCRIBE [CDKR02] and Bayeux [ZZJ+01]
are examples of pub/sub systems built on top of DHT overlays.

A trivial alternative to the use of a structured overlay consists of flooding each new
event in the system and then filtering out events that do not match local subscriptions
at each single node. Flooding reaches all potential subscribers, but at a very high
communication cost. Instead, it is more efficient to confine the dissemination of each
event to the set of matching subscribers (Interest Clustering). If clusters are formed
by subscribers having common interests then once an event reaches a member of the
cluster, its dissemination can be limited to that cluster by following a simple flooding
scheme or more sophisticated routing techniques. This helps to reduce the involvement
of non interested subscribers.

Voulgaris et al. [VS05] for instance have proposed an epidemic protocol that clus-
ters peers with similar content. The work [VRKS06] similarly proposes Sub-2-Sub, a
solution to implement a content based pub/sub system on an unstructured overlay net-
work. Subscribers sharing the same interests are clustered to form a ring-shaped overlay
network which is updated continuously by analyzing the interests of users. The publish-
ers are also slowly navigated to clusters of matching subscriptions. This work mainly
focuses on interest clustering and the content dissemination. Some other P2P-based

Our intuition: self-organizing overlays 59

RPS layer providing

random sampling

clustering layer

gossip-based

similarity clustering

similarity link random link

Alice
Bob

Carl

Dave

Ellie

Alice
Bob

Carl

Dave

Ellie

node

Figure 4.1: Overlay Architecture

implementations of content-based pub/sub are DPS [AGD+06] and GosSkip [GHK04].
Starting from this initial trend, several other papers [CT15] have appeared in this line
of research.

The TERA system (Topic-based Event Routing for p2p Architectures) [BBQ+07]
was designed with a general overlay (similar to Filament’s helper overlay, which we
discuss below) that is used to keep track of given topic ids used to maintain topic-
overlays and perform topic based routing. Spidercast [CMTV07a], a decentralized
topic-based pub/sub communication system also uses a similar clustering technique.
In this case, a single overlay is built but the connectivity between users interested in
the same topic is guaranteed (the overlay is topic-connected). Each SpiderCast node
has some knowledge on the interests of other nodes in the system. Based on this, each
node tries to locally determine to which nodes to connect in order to achieve topic
connectivity. The routing and communication overheads can be reduced as the nodes
that are not interested in a certain topic need not take part in routing messages of that
topic. Generally, a separate overlay is maintained for each topic [BEG04, CDKR02].
Although such systems scale well with the number of nodes, they might not scale with
the number of subscriptions per-node. Many of these search and routing techniques
can be adapted for collaborative editing systems but this adaptation is likely to be sub-
optimal because of the structural difference between collaborative editing and pub/sub
systems.

4.2 Our intuition: self-organizing overlays

We propose a novel decentralized service called Filament, that connects together users
interested in the same document without relying on the additional indirection implied
by DHTs, while delivering deterministic guarantees, contrary to unstructured networks.
Our solution exploits self-organizing overlays with a novel document based similarity

60 Chapter 4

exchange of

neighbors lists

neighborhood

optimization
1 2

Alice Bob

Carl

Dave Ellie

Frank

Figure 4.2: P2P neighborhood optimization

measure and is proactively load balancing, in that nodes working on the same docu-
ments naturally add their resources to help route their requests to the corresponding
document editing community (which we call a document cohort) and more generally
illustrate how an advanced behaviour can be obtained by combining several sub self-
organizing overlays to create a routing structure that matches both the expected load
and document interests of individual nodes. In this section, we discuss our intuition
behind Filament (Sec. 4.2).

Our proposal, called Filament, composes together several self-organizing overlay
networks to deliver its service. Overlay networks connect computers (aka nodes or
peers) on top of a standard point-to-point network (e.g. TCP/IP) in order to add
additional properties and services to this underlying network [RFH+01,SMK+01,RD01,
DSM+15,WUM10]. A self-organizing overlay [VS05,JMB09] seeks to organize its nodes
so that each node is eventually connected to its k closest other nodes, according to some
similarity function.

A self-organizing overlay typically uses a two-layer structure to organize peers (Fig-
ure 4.1). Each layer provides a peer-to-peer overlay, in which users (or peers) maintain
a fixed list of neighbors (or views). For instance, in Figure 4.1, Alice is connected to
Bob, Carl, and Dave in the bottom RPS (Random Peer Sampling) layer, and to Carl
and Bob in the upper layer (clustering). Periodically, each peer selects one or more
users from its view and exchanges information about its neighbors with the final goal
of converging to an optimal topology of similar users in the top layer (clustering).

The bottom RPS layers allows each peer to periodically obtain a random sample of
the rest of the network and thus guaranties the convergence of the second layer (clus-
tering), while making the overall system highly resilient against churn and partitions.
This is achieved by having peers exchange and shuffling their neighbors list in periodic
gossip rounds to maximise the randomness of the RPS graph over time [JVG+07]. For
reason of efficiency, each peer does not however communicate with all its neighbors in
each round, but instead randomly selects one of its neighbors in its RPS view to inter-

The Filament algorithm 61

act with. Alice might for instance request Carl’s list of RPS neighbors (which includes
Ellie), and randomly decide to replace Dave by Ellie (received from Carl) in her RPS
view.

The clustering layer sits on top of the RPS layers, and implements a local greedy
optimisation procedure that leverages both neighbors returned by the RPS, and current
neighbors from the clustering views [JMB09, VS05]. A peer (say Alice in Figure 4.1)
will periodically update its list of similar neighbors with new neighbors found to be
more similar to her in the RPS layer. This guarantees convergence under stable con-
ditions, but can be particularly slow in large systems. This mechanism therefore is
complemented by a swap mechanism in the clustering layer (Figure 4.2), whereby two
neighboring peers (here Alice and Bob) exchange their neighbors lists (so peers that
are already close to them, Step 1), and seek to construct a better neighborhood based
on the other peer’s information (Step 2 in Figure 4.2).

In Figure 4.2(1) for instance the interests of each user is shown as a symbol asso-
ciated with them. As we can see Frank, Alice, Bob and Carl share the same interests.
So instead of a communication link to Ellie as shown in the random network, it is
beneficial for Alice to have a communication link to Carl who shares the same interest
as shown in Figure 4.2(2). Bob applies a similar procedure, and decides to drops Alice
for Ellie.

4.3 The Filament algorithm

In a large CE system, users editing the same document need to find each other in
order to propagate modifications between themselves. Our approach Filament relies
on a novel similarity measure, and exploits self-organizing overlays to allow the rapid,
efficient, and robust discovery of document communities in large scale decentralized
collaborative editing platforms. Each node in the system further maintains a specific
view for each document it is currently editing, in order to rapidly propagate the edits:
the aim of Filament is to fill this view as rapidly as possible. In addition to this we
also need mechanisms that help the system react to changes, and reconnect nodes as
required i.e. in cases where a new node joins the system or in cases where a new
document is added to a node in the system.

4.3.1 System model

We consider a network consisting of a large number of nodes representing users N =
{n1, n2, .., nN}. The network is dynamic: nodes may join or leave at anytime. Nodes are

62 Chapter 4

D1	
helper	overlay	

document	view	

(cohort)	

fingers	

	node	

	

	

Alice	

B	

C	

D	

E	

F	

G	

Figure 4.3: Overlay view

User	n	-	n.id	

helper	overlay	

list	of	documents	

1	

1	

kn	

lh	

1	

lf	

finger	list	
1	 l	 Individual	document	

view	

Figure 4.4: Illustration of the system model

assigned unique identifiers and communicate using messages over an existing network,
such as the Internet, allowing every node to potentially communicate with any other
node as long as it knows the other node’s identifier. Nodes are organized in a set
of interdependent overlay networks (termed suboverlays in the following). For each
suboverlay, each individual node knows the identifiers of a set of other nodes, which
forms its neighbourhood (or view) in this suboverlay. This neighbourhood can change
over time to fulfil the overlay network’s objectives. Each node/user n is editing a set of
zero or more documents (noted n.D) at any given time according to its interests. For
the sake of uniformity, both the node ids and document ids are taken from the same id
space.

4.3.2 Filament

As mentioned previously, our approach makes use of a hierarchy of self-organizing over-
lays in order to allow the rapid, efficient and robust discovery of document communities.
All the nodes in the system are part of several suboverlays as shown in Fig. 4.3. A
helper overlay (H) is associated with each node. This helper overlay provides short

The Filament algorithm 63

Table 4.1: Notations and Entities
n.id node identifier of node n

kn number of documents being edited by node n

n.D list of documents edited by node n depicted as {dn1 , d
n
2 , ..., d

n

kn

}
n.H helper overlay associated with node n

n.F fingers of node n

n.view(d) set of collaborators for document d contained in node n

Fn[i] node which is the ith finger of node n

l maximum size of the collaborators list associated with each document
lh size of helper overlay
lf size of finger list

distance routing links within the system and it relies on a document-based similarity
function, i.e. a similarity function that uses the set of documents edited by individual
nodes in order to compute whether two nodes are close or far. The helper overlay view
is initially filled using random peers taken from Random Peer Sampling layer (RPS).
As the system executes, n.H is progressively filled with nodes that are similar to but
not identical to node n in terms of the documents they edit.

Each node in the system further maintains a specific view for each document it is
currently editing, in order to rapidly propagate new edits on these documents (These
views can then be used to maintain a converged document state at each interested node
using existing algorithms [DSM+15, WUM10, OMMD10]). In Fig. 4.3, nodes Alice, B
and C will form a document cohort as all of them are editing document D1. Likewise,
the system should insure that a node takes part in all the document cohorts pertaining
to the documents it is currently editing.

In addition to the above helper and document overlays, each node maintains a set
of fingers (F), which act as long distance links within the system, in order to create
a small world topology and provide fast routing. Similar to a traditional ring-based
DHT, these links also help to rapidly locate collaborating nodes, and to avoid disjoint
partitions. A simplified view of the system model is shown in Fig. 4.4. It shows
the overlays (helper overlay, document overlays,fingers) that are associated with any
given node in the system. Table 4.1 summarizes the notations that we use to describe
Filament.

The basic working of our approach is shown using Alg. 8 and Alg. 9. Algorithm 8
shows how the system is initialized while Alg. 9 shows how the system proceeds after
initialization and what it does in each round.

The proposed approach hinges on a novel similarity measure based on document
ids. This similarity measure is described in procedure ∆(n, u) in Alg. 9. Each node n
has a list of documents n.D associated with it. This list contains the set of documents

64 Chapter 4

for which node n is a collaborator.

Given two nodes and the list of documents being edited by those nodes, the simi-
larity measure in our approach is the smallest distance between the non-identical doc-
uments contained by it. For example, suppose node A is editing documents 5, 3 and
8, while node B is editing documents 3, 11 and 9, then the similarity between them
is taken as 1 which is the difference between 8 and 9. The identical documents being
edited by them are not taken into consideration. The key to the faster convergence
of our system is the novel similarity measure which helps in finding nodes which are
similar but not identical in their interests.

Algorithm 8 Initialization

1: System initialization
2: n.H ← R.P.S of size lh
3: for all d ∈ n.D : n.view(d) ← n.H
4: Update Overlay(F [0],∆, n.H, 1, 1, 1)
5: for i from 1 to log ∆(F [0], n)
6: Update Overlay(F [i],∆, n.H, 1, 1,∆(F [0], n)/2i)

The initialization stage is pretty straightforward. The helper overlay associated
with each node is filled randomly using Random Peer Sampling. The number of nodes
in the helper overlay is truncated to lh. The documents are uniformly distributed
throughout the system. In the initial stage, as we don’t know the collaborators, the
helper overlay is used to fill all the document views associated with a node. The node
which is the farthest in the helper overlay forms the first entry of the finger list. Based
on how far this node is, the other finger list entries are also filled.

Algorithm 9 shows how our system progresses after initialization. All the sub over-
lays contained in the system follow the same generic procedure. In each cycle, all the
sub overlays get updated so as to reach an optimal stage. Procedure Update Overlay
(O, dist, c, s, so, base) (lines 27-28) is used for updating the overlay networks. Six argu-
ments are passed to this function. Here, O represents the overlay being updated. dist
is the function used for calculating the similarity measure. s is the size of the resulting
overlay. so is the sort order. base is used to remove identical nodes and to give priority
to the nodes which are similar but non-identical (like a threshold; 0 represents identical
nodes). The argument c is the candidate list of nodes that is used to update the overlay.
For generality, we are truncating the candidate list to the desired size(s) of the resulting
overlay. A good set of candidate nodes can significantly affect the convergence speed
of the system. Thus Update Overlay() returns a set of nodes sorted in ascending or
descending order on the basis of similarity measure.

Evaluation 65

In each round, node n randomly selects a node p from its helper overlay and gets the
neighbourhood information of p (lines 2). p.H along with one randomly selected node
in the system is used as the candidate list for the updation of helper overlay associated
with node n (line 3). A random entry is added with the hope that the system converges
faster. Measures are taken to remove n from the candidate list of nodes associated with
the updation of overlays associated with node n. The randomly filled helper overlay
of node n gets modified as the simulation progresses to include nodes similar to n but
non-identical. Likewise, the finger list is also updated with a set of carefully selected
candidate list (lines 5-7). Fingers help in providing links to non-similar nodes; in other
words they provide long distance routing links to nodes further away. They also help
in preventing disjoint clusters. The finger lists are used mainly in cases where a node
needs to find collaborators for a newly added document. A node can look in its finger
list in order to find someone editing the newly added document or to find some one
who might be editing a document similar to the newly added document. Individual
document views are also updated in each round (lines 8-13). If the current document
view already has a node with that document, then that node’s document view is used
to update the document overlay or else a randomly selected node is made use of.

After a certain number of rounds, the system ”kind of” stabilizes i.e., all the docu-
ment views get filled. Procedure δ(d, n, u) helps when a new document gets added to a
node or when a new node is added to the system. When a new document d gets added
to a node n, what we aim to do is to find its collaborators in a fast manner. Procedure
δ(d, n, u) checks whether the document d which is newly added to node n is present in
node u. If it is present then n uses the document view of u to find collaborators for d.
We can use Update Overlay(n.view(d), δ(d,−,−), n.F ∪ n.H, l, 1, 0) for this purpose.
If none of the nodes in the candidate list contains document d, then node n makes use
of the similarity measure ∆ to find collaborators.

4.4 Evaluation

4.4.1 Experimental Setting and Metrics

Unless otherwise indicated, the default network size is taken as 212. We assume that the
system has converged when all the document sub-overlays are filled i.e. all the nodes
have successfully found collaborators for the documents they are currently editing. For
generality, the value of l (document view) and lh (size of the help overlay) is taken
as 10 in all the experiments. For all the network sizes, we assume that a total of 10
documents are there in the system. It is also assumed that each document is being
edited by 10% of the network size number of nodes. The results obtained during the

66 Chapter 4

Algorithm 9 Filament

1: In round(r) do
2: p ← random node from n.H
3: ch ← p.H ∪ {one random R.P.S} \ {n}
4: Update Overlay(n.H,∆, ch, lh,−1, 1)
5: for i from 1 to lf
6: cf ← F [i].F ∪ F [i].H∪ {one random R.P.S} \ {n}
7: Update Overlay(F [i],∆, cf , 1, 1, 1)
8: for all d from n.D
9: if ∃p ∈ n.view(d) so that d ∈ p.D

10: select p ; c ← p.view(d)
11: else select a random node p from n.view(d)
12: c ← p.H ∪ p.F∪ {one random R.P.S} \ {n}
13: Update Overlay(n.view(d),∆, c, l,−1, 0)

14: Procedure ∆(n, u)
15: S1 ← n.D \ u.D
16: if S1=∅ then S1 ← n.id
17: S2 ← u.D \ n.D
18: if S2=∅ then S2 ← u.id
19: S3 ← S1 × S2

20: m← min(|x− y|)∀(x, y) ∈ S3

21: return m

22: Procedure δ(d, n, u)
23: if d ∈ n.D ∩ q.D
24: return 0
25: else
26: return ∆(n, u)

27: Procedure Update Overlay(O, dist, c, s, so, base)
28: return argmax sp∈c(dist(n, p)− base) ∗ so

evaluation are shown in this section.

We assess the performance of our approach along two metrics:

• Document latency - captures the number of rounds it takes for the system to
find l collaborators for a newly added document.

• Load per node - measures the load associated with each node based on the
communication cost associated with them. This is directly related to the number

Evaluation 67

of times a node is accessed during simulation.

4.4.2 Baselines

The performance of our approach is compared against a chord-based DHT approach.
The main reason for this is that a DHT is commonly used in similar applications and
they perform really well providing deterministic guaranties. The document id is hashed
and based on the hash value obtained, a node gets selected. The collaborators list for
that document gets stored in the selected node. So in order to find the collaborators
for a document all we have to do is hash the document id and send a message to the
corresponding node for the collaborators list. The main delay here is to find a node
given its node id. Chord based topology helps in this by providing faster routing. Node
ids are ordered in an ID space modulo 2t. We say that id a follows id b in the ring,
if (a − b + 2t) mod 2t < 2t−1; otherwise a precedes b. Given an id a, its successor
is defined as the nearest node whose id is equal to a or follows a in the ring. The
notion of predecessor is defined in a symmetric way. Each node maintains two sets of
neighbors, called leaves and fingers. Leaves of node n are its lh nearest successors. For
each node n, its jth finger is defined as successor(n+ 2j), with j ∈ [0, t− 1]. Routing in
Chord works by forwarding messages in the ring following the successor direction; when
receiving a message targeted at node k, node n forwards it to its furthest leaf or finger
that precedes successor(k). Fingers help in reducing the number of nodes traversed to
reach the destination node.

4.4.3 Results

All the results (Figures 4.5 - 4.10 and Tables 4.2 - 4.3) are computed with Peer-
sim [MJ09] and are averaged over 10 experiments. The comparison to the baseline
is done with the help of a base case setting. When shown, intervals of confidence are
computed at a 95% confidence level using a student t-distribution. The source code is
made available in http://armi.in/resmi/ce1.zip.

4.4.3.1 Evaluation of Filament

Figure 4.5 shows the convergence time of Filament with varying network sizes. As the
network size increases the time taken for the system to converge also increases. We
assume that the system is converged when all the document overlays are completely
filled. From the graph it is clear that Filament works well for very large network sizes.
Figure 4.6 shows the cumulative frequency distribution of converged nodes for Filament

68 Chapter 4

 0

 5

 10

 15

 20

2
10

2
11

2
12

2
13

2
14

2
15

C
o
n
v
e
rg

e
n
c
e
 t
im

e
 (

#
R

o
u
n
d
s
)

Network size

Figure 4.5: Convergence time of Filament for varying network sizes

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12

C
F

D
 o

f
c
o
n
v
e
rg

e
d
 n

o
d
e
s
(i
n
 %

)

Round

Figure 4.6: Cumulative frequency distribution of converged nodes for Filament in the
base case

in the base case. A small number of converged nodes causes a chain effect causing a
larger number of nodes to converge in the following rounds. Thus once the nodes start
converging, the system progresses towards convergence in a faster manner. Figure 4.7
shows the number of nodes in the document view of n when a new document is added
to n and it tries to find l collaborators.

Figure 4.8 and Table 4.2 show how our approach fares compared to a chord based
DHT approach. Our approach has lower document latency compared to a DHT. The
document latency varies from 4.8 to 8.1 as the network size grows from 210 to 215 for

Evaluation 69

 0

 2

 4

 6

 8

 10

 12

11 12 13 14 15 16 17

#
n
o
d
e
s
 i
n
 t
h
e
 d

o
c
u
m

e
n
t
v
ie

w
 o

f
n

Round

Figure 4.7: No: of nodes in the document view of n for Filament in the base case

 0

 2

 4

 6

 8

 10

 12

 14

2
10

2
11

2
12

2
13

2
14

2
15

D
o
c
u
m

e
n
t
la

te
n
c
y

Network size

Filament

DHT

Figure 4.8: Filament vs DHT based on document latency

Filament while it varies from 5.2 to 11.1 for DHT. DHT provides an additional level of
indirection. The document id is used for hashing and the collaborator list associated
with a document might be stored in a node which is not editing that document at all.
Moreover DHT is not exactly an optimal solution in this scenario as the number of
documents being edited is significantly smaller compared to the number of nodes in the
system. The latency in the case of DHT is mainly associated with routing to the node
with the collaborators list. Compared to DHT, Filament shows a better performance
with the help of document sub-overlays and finger list.

The Table 4.3 shows the maximum, minimum and mean load associated with a node
for both Filament and DHT when a new document is added to a converged system.

70 Chapter 4

Table 4.2: Filament vs DHT based on document latency

Network Size Filament DHT

210 4.8(±1.3) 5.2(±1.4)
211 5.6(±1.2) 6.7(±1.3)
212 6.2(±1.1) 8.1(±1.2)
213 6.9(±1.1) 9.3(±1.1)
214 7.6(±1.1) 10.2(±1.1)
215 8.1(±0.9) 11.1(±0.9)

Table 4.3: Load associated with nodes for Filament and DHT

Approach Minimum (bytes) Mean (bytes) Maximum (bytes)

Filament 8 64 176
DHT 8 96 880

When a new document is added to a node, the node tries to find l collaborators for that
document. In order to do that, it has to exchange messages with other nodes. Here,
we assume that a single message has a size of 8 bytes which is the size of node id. The
results show the case when a document d is added to a node that doesn’t contain it
and 10 experiments are conducted with the same document id. The cumulative result
is shown in the table. In the case of DHT the same node is getting accessed multiple
times for the collaborators list of d while in the case of Filament the load is divided as
all the nodes editing the document will have collaborators list in them. The average
load associated with a node is slightly lesser for Filament. The maximum load of DHT
is very high which can lead to bottle necks in the network.

4.4.3.2 Effects of variants

Figure 4.9 shows the effect of varying the number of documents in the system. As we
can see, increasing the number of documents in the system helps it to converge in a
faster manner. This is to be expected as the number of sub-overlays associated with
each node increases with the increased number of documents. Making use of these
additional sub-overlays, a node can optimize its neighbourhood and finger list. But
there is also a disadvantage associated with this; the amount of overlays to be managed
in each round increases leading to an increased load for the nodes.

Figure 4.10 shows the effect of varying the number of nodes editing a document
or in other words the size of collaborators in the system. From the graph it is clear
that as the number of nodes editing a given document increases it helps the system to

Evaluation 71

 0

 5

 10

 15

 20

2
10

2
11

2
12

2
13

2
14

2
15

D
o
c
u
m

e
n
t
L
a
te

n
c
y
 (

#
R

o
u
n
d
s
)

Network size

D = 1

D = 5

D = 10

D = 20

Figure 4.9: Effect of varying the number of documents for Filament

 0

 5

 10

 15

 20

2
10

2
11

2
12

2
13

2
14

2
15

D
o
c
u
m

e
n
t
L
a
te

n
c
y
 (

#
R

o
u
n
d
s
)

Network size

r = 2 %

r = 5 %

r = 10 %

r = 20 %

Figure 4.10: Effect of varying the number of nodes editing a document

converge faster. This is mainly because we can easily get the information about the
collaborators if more and more nodes are editing the same document.

The Table 4.4 shows the effect of finger list and document views on the overall
system performance. The document latency in the presence and absence of each of
the feature is shown. As we can see, the effect of finger list is much less compared
to the effect of document views. The document views clearly have a high impact on
latency as we can get all the needed collaborators with the help of a document view. In
the absence of it, all the needed collaborators are to be found with the help of helper

72 Chapter 4

Table 4.4: Document latency in the presence and absence of document views and finger
list

Feature #Rounds (with) #Rounds (without)

Document views 6.2 11.8
Finger list 6.2 7.1

overlay. But finger list mainly helps for routing, so the effect of it is less compared to
document views.

4.5 Summary

In this chapter, we presented Filament, a decentralized cohort-construction protocol
adapted to the needs of large-scale collaborative editors. Filament eliminates the need
for any intermediate DHT, and allows nodes editing the same document to find each
other in a rapid, efficient and robust manner by generating an adaptive routing field
around themselves. Filament’s architecture hinges around a set of collaborating self-
organizing overlays exploiting a novel document-based similarity measure. Beyond its
intrinsic merits, Filament’s design further demonstrates how the horizontal composi-
tion of several self-organizing overlays can lead to richer and more efficient services.
Simulation results show that in a network of 212 nodes, Filament is able to reduce the
document latency by around 20% compared to a Chord-based DHT approach.

Chapter 5

Conclusion

5.1 Summary of Contributions

We presented two contributions in this thesis. Both contributions aim at solving prob-
lems in the area of decentralized distributed systems. One problem concentrates on
network aware overlays while the other concentrates on collaborative editing systems.

In Chapter 3, we presented Fluidify, an approach to incorporate network awareness
in overlay networks. Overlay networks play a central role in the deployment of complex
distributed systems on a global scale. They provide some diverse services which are not
available from the network mainly in the areas of storage, routing, recommendation and
streaming. The design of an overlay and the role each node plays in the network can
significantly impact the system performance and latency. Unfortunately, many popular
overlay construction protocols do not usually take into account the underlying network
infrastructure on which an overlay is deployed and those that do, tend to be limited to
a narrow family of applications or overlays. Our first objective was to provide a sound
solution to this problem.

Our proposal, Fluidify, is a novel decentralized mechanism for overlay deployment
which enhances network awareness. Fluidify works by exploiting both the logical links
of an overlay and the physical topology of its underlying network to progressively align
one with the other and thereby maximizing the network locality. Fluidify can be used
in combination with any topology construction algorithm. The resulting protocol is
generic, efficient and scalable. It can also substantially reduce network overheads and
latency in overlay based systems. From our simulation results, it can be shown that in a
network of 25,600 nodes, Fluidify is able to produce an overlay with links that are on an
average 94% shorter than that produced by a standard decentralized approach based

73

74 Chapter 5

on slicing and 97% shorter compared to that produced by a decentralized approach
based on PROP-G, while demonstrating a sub-linear time complexity.

In chapter 4, we presented Filament, an approach to increase the efficiency of dis-
tributed collaborative editing platforms. Collaborative editors allow several remote
users to contribute concurrently to the same document. Most of the currently de-
ployed collaborative editors are centralized, hosted in tightly integrated environments
and show poor scalability and poor fault tolerance. A number of peer-to-peer solutions
have therefore been proposed to overcome this limitation and allow a large number of
users to work collaboratively. However, most of these works, generally assume that
all nodes in the system edit the same document or the same set of documents which
is unlikely to be the case in very large systems. As these systems typically propagate
updates using a uniform broadcast primitive there is a chance of overloading the sys-
tem. Another option is to use a DHT. This option sub-optimal as it adds an extra level
of indirection in the document peering procedure and creates potential hot spots for
nodes handling highly popular documents. We argue that users editing the same doc-
ument should be able to first locate each other in a manner which is efficient, reactive
to changes and robust to failures. Our second objective was to suggest a solution to
this problem.

To solve this problem, we proposed Filament, a decentralized cohort-construction
protocol adapted to the needs of large-scale collaborative editors. Filament’s archi-
tecture hinges around a set of collaborating self-organizing overlays exploiting a novel
document-based similarity measure. Filament allows the nodes editing the same doc-
ument to find each other in a rapid, efficient and robust manner by generating an
adaptive routing field around themselves. This mechanism is also proactively load bal-
ancing, in that, nodes working on the same documents naturally add their resources to
help route their requests to the corresponding document editing community (which we
call a document cohort). Filament’s design demonstrates how the horizontal compo-
sition of several self-organizing overlays can lead to richer and more efficient services.
Simulation results show that in a network of 212 nodes, Filament is able to reduce the
document latency by around 20% compared to a Chord-based DHT approach.

5.2 Discussion and Future Work

5.2.1 Limitations

In our study we mainly concentrated on experimental results for both Fluidify and
Filament. Our simulations were mainly performed on synthetic data sets. We have
made the synthetic data sets as generic as possible so as to resemble a real data set,

Discussion and Future Work 75

but the experimental results might not always reflect how the system would behave
under a real workload. An experimental study of how the system behaves when given
real data sets will be useful in finding the flaws in our system. A thorough analytical
study is also needed for better validation of our system. Moreover it might be nice if
we could deploy both Fluidify and Filament on a decentralized distributed system like
a P2P network formed by connecting a group of plug computers.

5.2.2 Further Extensions

We now discuss some future works to improve both our contributions. In Fluidify
we concentrated on creating network aware overlays by aligning both the logical and
physical overlays. We can extend this by trying out several variations to the Fluidify
algorithm like mapping more than one logical node to a physical node and trying out
some other techniques to overcome the problem of local minima. Filament deals with
finding collaborators in a collaborative editing environment. We can extend it further
to deal with all the dynamicity in the network – like the nodes and the documents
being active and passive. The performance of the system can also be calculated for
some other similarity measures. In addition to all these extensions, using some real
data traces to test the system and deploying the above two systems on a plug based
P2P system or some other decentralized distributed system would bring additional and
useful insights into the strengths and weaknesses of both systems.

We also envision future works that can extend our contributions instead of just
overcoming the limitations they have. To effectively deploy overlay networks on a
cloud infrastructure and to ensure network awareness we need to take in to account
the features of a cloud. Moreover in a collaborative editing environment an effective
consistency technique is needed to ensure that no concurrent edits are lost. Like this
both our contributions can be extended to deal with problems in their corresponding
areas.

76 Chapter 5

Appendix

Publications

The contributions in this thesis led to the following publications :

• Full paper - Ariyattu C. Resmi, François Täıani : Fluidify: Decentralized Overlay
Deployment in a Multi-cloud World. In: 15th IFIP International Conference
on Distributed Applications and Interoperable Systems (DAIS 2015), held as
part of the 10th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2015, Grenoble, France, June 2015, Springer, pp. 1–15, 15
pages.

• Full paper - Ariyattu C. Resmi, François Täıani : Filament: a cohort construc-
tion service for decentralized collaborative editing platforms. Accepted and will
be presented in the 17th IFIP International Conference on Distributed Appli-
cations and Interoperable Systems (DAIS 2017), held as part of the 12th Inter-
national Federated Conference on Distributed Computing Techniques, DisCoTec
2017, June 2017, Neuchâtel, Switzerland.

• Short paper - Ariyattu C. Resmi, François Täıani : Filament: a cohort con-
struction service for decentralized collaborative editing platforms In: Conférence
d’informatique en Parallélisme, Architecture et Système(Compas) in July 2016,
Lorient, France.

• Poster - In: EIT Digital Symposium on Future Cloud Computing, INRIA Rennes,
France, 19-20 October 2015.

77

78 Appendix

Glossaire

DHT : Distributed Hash Table
CE : Collaborative Editing
IP : Internet Protocol
TCP : Transmission Control Protocol
NC : Network Coordinates
BGP : Border Gateway Protocol
P2P : Peer to Peer
SOA : Service Oriented Architecture
CDN : Content Distribution Network
IT : Information Technology
VM : Virtual Machine
RPS : Random Peer Sampling
QoS : Quality of Service.

79

80 Glossaire

Bibliography

[AB05] Sven Apel and Klemens Bohm. Self-organization in overlay networks. In
In Proceedings of 1st CAISE’05 Workshop on Adaptive and Self-Managing
Enterprise Applications, 2005.

[ABB+05] Ittai Abraham, Ankur Badola, Danny Bickson, Dahlia Malkhi, Sharad
Maloo, and Saar Ron. Practical locality-awareness for large scale infor-
mation sharing. In 4th Annual International Workshop on Peer-To-Peer
Systems (IPTPS ’05), 2005.

[AGD+06] Emmanuelle Anceaume, Maria Gradinariu, Ajoy Kumar Datta, Gwendal
Simon, and Antonino Virgillito. A semantic overlay for self-peer-to-peer
publish/subscribe. In Distributed Computing Systems, 2006. ICDCS 2006.
26th IEEE International Conference on, pages 22–22. IEEE, 2006.

[ALCR+10] Hussam Abu-Libdeh, Paolo Costa, Antony Rowstron, Greg O’Shea, and
Austin Donnelly. Symbiotic routing in future data centers. ACM SIG-
COMM Computer Communication Review, 40(4):51–62, 2010.

[And00] Gregory R. Andrews. Foundations of multithreaded, parallel, and dis-
tributed programming. Addison-Wesley, Reading (Mass.), Menlo Park
(Calif.), New York, 2000.

[ASS+99] Marcos K Aguilera, Robert E Strom, Daniel C Sturman, Mark Astley,
and Tushar D Chandra. Matching events in a content-based subscrip-
tion system. In Proceedings of the eighteenth annual ACM symposium on
Principles of distributed computing, pages 53–61. ACM, 1999.

[BBK02] Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy.
Scalable application layer multicast. In Proceedings of the 2002 Conference
on Applications, Technologies, Architectures, and Protocols for Computer
Communications, ACM SIGCOMM ’02, pages 205–217, 2002.

81

82 Bibliography

[BBQ+07] Roberto Baldoni, Roberto Beraldi, Vivien Quema, Leonardo Querzoni,
and Sara Tucci-Piergiovanni. Tera: Topic-based event routing for peer-
to-peer architectures. In Proceedings of the 2007 Inaugural International
Conference on Distributed Event-based Systems, DEBS ’07, pages 2–13,
2007.

[BEG04] Sébastien Baehni, Patrick Th Eugster, and Rachid Guerraoui. Data-aware
multicast. In Dependable Systems and Networks, 2004 International Con-
ference on, pages 233–242. IEEE, 2004.

[Ber96] Philip A. Bernstein. Middleware: A model for distributed system services.
Commun. ACM, 39(2):86–98, February 1996.

[BFG+10] Marin Bertier, Davide Frey, Rachid Guerraoui, Anne-Marie Kermarrec,
and Vincent Leroy. The gossple anonymous social network. In Middle-
ware’10, 2010.

[BHO+99] Kenneth P Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai
Budiu, and Yaron Minsky. Bimodal multicast. ACM Transactions on
Computer Systems (TOCS), 17(2):41–88, 1999.

[BYL08] John Buford, Heather Yu, and Eng Keong Lua. P2P Networking and Ap-
plications. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2008.

[BYV+09] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg,
and Ivona Brandic. Cloud computing and emerging {IT} platforms: Vi-
sion, hype, and reality for delivering computing as the 5th utility. Future
Generation Computer Systems, 25(6):599 – 616, 2009.

[CDHR02] Miguel Castro, Peter Druschel, Y Charlie Hu, and Antony Rowstron.
Exploiting network proximity in distributed hash tables. In Interna-
tional Workshop on Future Directions in Distributed Computing (Fu-
DiCo), pages 52–55, 2002.

[CDHR03] Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony Rowstron.
Topology-aware routing in structured peer-to-peer overlay networks. In
Future Directions in Distributed Computing, pages 103–107. Springer-
Verlag, 2003.

[CDK+03] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi,
Antony Rowstron, and Atul Singh. Splitstream: high-bandwidth multi-
cast in cooperative environments. In ACM SIGOPS Operating Systems
Review, volume 37, pages 298–313. ACM, 2003.

Bibliography 83

[CDKB11] G.F. Coulouris, J. Dollimore, T. Kindberg, and G. Blair. Distributed
Systems: Concepts and Design. International computer science series.
Addison-Wesley, 2011.

[CDKR02] Miguel Castro, Peter Druschel, A-M Kermarrec, and Antony IT Row-
stron. Scribe: A large-scale and decentralized application-level multi-
cast infrastructure. IEEE Journal on Selected Areas in communications,
20(8):1489–1499, 2002.

[CMTV07a] Gregory Chockler, Roie Melamed, Yoav Tock, and Roman Vitenberg. Spi-
dercast: A scalable interest-aware overlay for topic-based pub/sub com-
munication. In Proceedings of the 2007 Inaugural International Confer-
ence on Distributed Event-based Systems, DEBS ’07, pages 14–25, 2007.

[CMTV07b] Gregory V. Chockler, Roie Melamed, Yoav Tock, and Roman Vitenberg.
Constructing scalable overlays for pub-sub with many topics. In Pro-
ceedings of the Twenty-Sixth Annual ACM Symposium on Principles of
Distributed Computing, PODC 2007, Portland, Oregon, USA, August 12-
15, 2007, pages 109–118, 2007.

[CRSZ02] Yang-Hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang. A
case for end system multicast. IEEE Journal on Selected Areas in Com-
munications, 20(8):1456–1471, 2002.

[CSWH01] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong.
Freenet: A distributed anonymous information storage and retrieval sys-
tem. In International Workshop on Designing Privacy Enhancing Tech-
nologies: Design Issues in Anonymity and Unobservability, pages 46–66,
2001.

[CT15] Chen Chen and Yoav Tock. Design of routing protocols and overlay
topologies for topic-based publish/subscribe on small-world networks. In
Proceedings of the Industrial Track of the 16th International Middleware
Conference, Middleware Industry ’15, 2015.

[data] Cisco - trends and analysis. URL: http://www.cisco.com/c/en/
us/solutions/collateral/service-provider/visual-networking-index-vni/
vni-hyperconnectivity-wp.html.

[datb] Wikipedia - edge computing. URL: https://en.wikipedia.org/wiki/Edge
computing.

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://en.wikipedia.org/wiki/Edge_computing
https://en.wikipedia.org/wiki/Edge_computing

84 Bibliography

[datc] Wikipedia - fog computing. URL: https://en.wikipedia.org/wiki/Fog
computing.

[datd] Wikipedia - internet traffic. URL: https://en.wikipedia.org/wiki/
Internet traffic.

[DB08] Bowei Du and Eric A Brewer. Dtwiki: a disconnection and intermittency
tolerant wiki. In Proceedings of the 17th international conference on World
Wide Web, pages 945–952. ACM, 2008.

[DEF13] Benjamin Doerr, Robert Elsässer, and Pierre Fraigniaud. Epidemic al-
gorithms and processes: From theory to applications. Dagstuhl Reports,
3(1):94–110, 2013.

[DF02] Susheel Daswani and A Fisk. Gnutella udp extension for scalable searches
(guess) v0. 1, 2002.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly
available key-value store. In SOSP ’07, 2007.

[dia] diaspora. URL: https://en.wikipedia.org/wiki/Diaspora (software).

[DLOP07] Reza Dorrigiv, Alejandro Lopez-Ortiz, and Pawe l Pra lat. Search algo-
rithms for unstructured peer-to-peer networks. In 32nd IEEE Conference
on Local Computer Networks, pages 343–352. IEEE, 2007.

[DNV06] Christos Doulkeridis, Kjetil Norvag, and Michalis Vazirgiannis. Schema
caching for improved xml query processing in p2p systems. In Peer-to-
Peer Computing, 2006. P2P 2006. Sixth IEEE International Conference
on, pages 73–74. IEEE, 2006.

[DP06] Vassilios V Dimakopoulos and Evaggelia Pitoura. On the performance
of flooding-based resource discovery. IEEE Transactions on Parallel and
Distributed Systems, 17(11):1242–1252, 2006.

[ds3] Storage servers. URL: https://storageservers.wordpress.com/2013/07/
17/facts-and-stats-of-worlds-largest-data-centers/.

[DSM+15] Alan Davoust, Hala Skaf-Molli, Pascal Molli, Babak Esfandiari, and
Khaled Aslan. Distributed wikis: a survey. Concurrency and Compu-
tation: Practice and Experience, 27(11):2751–2777, 2015.

https://en.wikipedia.org/wiki/Fog_computing
https://en.wikipedia.org/wiki/Fog_computing
https://en.wikipedia.org/wiki/Internet_traffic
https://en.wikipedia.org/wiki/Internet_traffic
https://en.wikipedia.org/wiki/Diaspora_(software)
https://storageservers.wordpress.com/2013/07/17/facts-and-stats-of-worlds-largest-data-centers/
https://storageservers.wordpress.com/2013/07/17/facts-and-stats-of-worlds-largest-data-centers/

Bibliography 85

[EGH+03] P Th Eugster, Rachid Guerraoui, Sidath B Handurukande, Petr
Kouznetsov, and A-M Kermarrec. Lightweight probabilistic broadcast.
ACM Transactions on Computer Systems (TOCS), 21(4):341–374, 2003.

[Eth] Etherpad. URL: https://en.wikipedia.org/wiki/Etherpad.

[FGK+09] Davide Frey, Rachid Guerraoui, Anne-Marie Kermarrec, Boris Koldehofe,
Martin Mogensen, Maxime Monod, and Vivien Quéma. Heterogeneous
gossip. In Middleware, pages 42–61, 2009.

[FH10] Imen Filali and Fabrice Huet. Dynamic ttl-based search in unstructured
peer-to-peer networks. In Cluster, Cloud and Grid Computing (CCGrid),
10th IEEE/ACM International Conference on, pages 438–447. IEEE,
2010.

[Gdo] Google docs. URL: https://en.wikipedia.org/wiki/Google Docs, Sheets,
and Slides.

[GHK04] Rachid Guerraoui, SB Handurukande, and A-M Kermarrec. Gosskip: a
gossip-based structured overlay network for efficient content-based filter-
ing. Technical report, 2004.

[GHP+08] Paul Grace, Danny Hughes, Barry Porter, Gordon S. Blair, Geoff Coul-
son, and Francois Taiani. Experiences with open overlays: A middleware
approach to network heterogeneity. In Eurosys’08, 2008.

[Gib] Mark Gibbs. Pando makes light work of big files. URL:
http://www.networkworld.com/article/2296312/software/
pando-makes-light-work-of-big-files.html.

[git] Git. URL: https://git-scm.com.

[GKW13] George Giakkoupis, Anne-Marie Kermarrec, and Philipp Woelfel. Gossip
protocols for renaming and sorting. In DISC, pages 194–208, October 14–
18 2013.

[GMS05] Christos Gkantsidis, Milena Mihail, and Amin Saberi. Hybrid search
schemes for unstructured peer-to-peer networks. In INFOCOM 2005. 24th
Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings IEEE, volume 3, pages 1526–1537. IEEE, 2005.

[GMS06] Christos Gkantsidis, Milena Mihail, and Amin Saberi. Random walks
in peer-to-peer networks: Algorithms and evaluation. Perform. Eval.,
63(3):241–263, March 2006.

https://en.wikipedia.org/wiki/Etherpad
https://en.wikipedia.org/wiki/Google_Docs,_Sheets,_and_Slides
https://en.wikipedia.org/wiki/Google_Docs,_Sheets,_and_Slides
http://www.networkworld.com/article/2296312/software/pando-makes-light-work-of-big-files.html
http://www.networkworld.com/article/2296312/software/pando-makes-light-work-of-big-files.html
https://git-scm.com

86 Bibliography

[GSAA04] Abhishek Gupta, Ozgur D Sahin, Divyakant Agrawal, and Amr El Ab-
badi. Meghdoot: content-based publish/subscribe over p2p networks. In
Middleware’04, 2004.

[HJB+09] Kenneth Hopkinson, Kate Jenkins, Kenneth Birman, James Thorp, Gre-
gory Toussaint, and Manu Parashar. Adaptive gravitational gossip: A
gossip-based communication protocol with user-selectable rates. IEEE
Transactions on Parallel and Distributed Systems, 20(12):1830–1843,
2009.

[IN04] Claudia-Lavinia Ignat and Moira C. Norrie. CoDoc: Multi-mode Collab-
oration over Documents. In Proceedings of the 16th International Confer-
ence on Advanced Information Systems Engineering (CAiSE’04), pages
580–594, June 2004.

[JK06] Mark Jelasity and Anne-Marie Kermarrec. Ordered slicing of very large-
scale overlay networks. In P2P 2006, 2006.

[JMB09] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. T-man: Gossip-
based fast overlay topology construction. Comput. Netw., 53(13):2321–
2339, August 2009.

[JVG+07] Márk Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie Kermar-
rec, and Maarten van Steen. Gossip-based peer sampling. ACM Trans.
Comput. Syst., 25, August 2007.

[KR04] David R Karger and Matthias Ruhl. Simple efficient load balancing al-
gorithms for peer-to-peer systems. In Proceedings of the sixteenth annual
ACM symposium on Parallelism in algorithms and architectures, pages
36–43. ACM, 2004.

[KRAV03] Dejan Kostić, Adolfo Rodriguez, Jeannie Albrecht, and Amin Vahdat.
Bullet: High bandwidth data dissemination using an overlay mesh. In
ACM SIGOPS Operating Systems Review, volume 37, pages 282–297.
ACM, 2003.

[KT13] Anne-Marie Kermarrec and Peter Triantafillou. Xl peer-to-peer pub/sub
systems. ACM Computing Surveys (CSUR), 46(2), 2013.

[KW00] Balachander Krishnamurthy and Jia Wang. On network-aware clustering
of web clients. In SIGCOMM ’00, pages 97–110. ACM, 2000.

Bibliography 87

[KW01] Balachander Krishnamurthy and Jia Wang. Topology modeling via cluster
graphs. In Proceedings of the 1st ACM SIGCOMM Workshop on Internet
Measurement, IMW ’01, pages 19–23, 2001.

[LCC+02] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and
replication in unstructured peer-to-peer networks. In Proceedings of the
16th international conference on Supercomputing, pages 84–95. ACM,
2002.

[LGB03] Prakash Linga, Indranil Gupta, and Ken Birman. A churn-resistant peer-
to-peer web caching system. In Proceedings of the 2003 ACM Workshop on
Survivable and Self-regenerative Systems: In Association with 10th ACM
Conference on Computer and Communications Security, SSRS, pages 1–
10, 2003.

[LKGN05] Jin Liang, Steven Y Ko, Indranil Gupta, and Klara Nahrstedt. Mon:
On-demand overlays for distributed system management. In WORLDS,
volume 5, pages 13–18, 2005.

[LM99] Meng-Jang Lin and Keith Marzullo. Directional gossip: Gossip in a wide
area network. In Proceedings of the Third European Dependable Com-
puting Conference on Dependable Computing, EDCC-3, pages 364–379,
1999.

[LM10] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized struc-
tured storage system. SIGOPS Oper. Syst. Rev., 44(2), 2010.

[LPR07] Joao Leitao, Jose Pereira, and Luis Rodrigues. Epidemic broadcast trees.
In SRDS’07, pages 301–310, October 2007.

[LQGL06] Xucheng Luo Xucheng Luo, Zhiguang Qin Zhiguang Qin, Ji Geng Ji Geng,
and Jiaqing Luo Jiaqing Luo. Iac: Interest-aware caching for unstructured
p2p. In Semantics, Knowledge and Grid, 2006. SKG’06. Second Interna-
tional Conference on, pages 58–58. IEEE, 2006.

[LXQ+08] Bo Li, Susu Xie, Yang Qu, Gabriel Y Keung, Chuang Lin, Jiangchuan Liu,
and Xinyan Zhang. Inside the new coolstreaming: Principles, measure-
ments and performance implications. In IEEE INFOCOM 2008, 2008.

[MG+11] Peter Mell, Tim Grance, et al. The nist definition of cloud computing.
2011.

[MJ09] Alberto Montresor and Márk Jelasity. Peersim: A scalable p2p simulator.
In P2P 2009, 2009.

88 Bibliography

[MJB05] Alberto Montresor, Márk Jelasity, and Ozalp Babaoglu. Chord on de-
mand. In P2P’2005, 2005.

[MKG03] Laurent Massoulié, A-M Kermarrec, and Ayalvadi J Ganesh. Network
awareness and failure resilience in self-organizing overlay networks. In
Reliable Distributed Systems, 2003. Proceedings. 22nd International Sym-
posium on, pages 47–55. IEEE, 2003.

[MLS08] Patrick Mukherjee, Christof Leng, and Andy Schürr. Piki-a peer-to-peer
based wiki engine. In Peer-to-Peer Computing, 2008. P2P’08. Eighth
International Conference on, pages 185–186. IEEE, 2008.

[Mor07] Joseph C Morris. Distriwiki:: a distributed peer-to-peer wiki network. In
Proceedings of the 2007 international symposium on Wikis, pages 69–74.
ACM, 2007.

[MSF+13] Miguel Matos, Valerio Schiavoni, Pascal Felber, Rui Oliveira, and Etienne
Rivière. Lightweight, efficient, robust epidemic dissemination. J. Parallel
Distrib. Comput., 73(7):987–999, 2013.

[OMMD10] Gérald Oster, Rubén Mondéjar, Pascal Molli, and Sergiu Dumitriu. Build-
ing a collaborative peer-to-peer wiki system on a structured overlay. Com-
puter Networks, 54(12):1939–1952, 2010.

[OO06] Francis Otto and Song Ouyang. Improving search in unstructured p2p
systems: Intelligent walks (i-walks). In Proceedings of the 7th Interna-
tional Conference on Intelligent Data Engineering and Automated Learn-
ing (IDEAL’06), volume 4224 of Lecture Notes in Computer Science,
pages 1312–1319. Springer, September 2006.

[OUMI06] Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine. Data
consistency for p2p collaborative editing. In Proceedings of the 2006 20th
anniversary conference on Computer supported cooperative work, pages
259–268. ACM, 2006.

[own] owncloud. URL: https://owncloud.org/.

[PGES05] Johan Pouwelse, Pawe l Garbacki, Dick Epema, and Henk Sips. The bittor-
rent p2p file-sharing system: Measurements and analysis. In International
Workshop on Peer-to-Peer Systems, pages 205–216. Springer, 2005.

https://owncloud.org/

Bibliography 89

[PLMS06] Peter R. Pietzuch, Jonathan Ledlie, Michael Mitzenmacher, and Margo I.
Seltzer. Network-aware overlays with network coordinates. In 26th In-
ternational Conference on Distributed Computing Systems Workshops
(ICDCS 2006 Workshops), 4-7 July 2006, Lisboa, Portugal, page 12, 2006.

[PMRS14] Mathieu Pasquet, Francisco Maia, Etienne Rivière, and Valerio Schiavoni.
Autonomous multi-dimensional slicing for large-scale distributed systems.
In DAIS, pages 141–155, 2014.

[PRGK09] Jay A Patel, Étienne Rivière, Indranil Gupta, and Anne-Marie Kermarrec.
Rappel: Exploiting interest and network locality to improve fairness in
publish-subscribe systems. Computer Networks, 53(13):2304–2320, 2009.

[QCY+07] Tongqing Qiu, Guihai Chen, Mao Ye, Edward Chan, and Ben Y. Zhao.
Towards location-aware topology in both unstructured and structured p2p
systems. In ICPP, page 30. IEEE Computer Society, 2007.

[RD01] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer systems. In
Middleware, pages 329–350, 2001.

[RD10] Rodrigo Rodrigues and Peter Druschel. Peer-to-peer systems. Communi-
cations of the ACM, 53(10):72–82, 2010.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A scalable content-addressable network. SIGCOMM Comput.
Commun. Rev., 31(4):161–172, 2001.

[RHKS02] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Topologically-aware
overlay construction and server selection. In INFOCOM’02, volume 3,
pages 1190– 1199. IEEE, 2002.

[Rip01] Matei Ripeanu. Peer-to-peer architecture case study: Gnutella network.
In Peer-to-Peer Computing, 2001. Proceedings. First International Con-
ference on, pages 99–100. IEEE, 2001.

[RLS+03] Ananth Rao, Karthik Lakshminarayanan, Sonesh Surana, Richard Karp,
and Ion Stoica. Load balancing in structured p2p systems. In Peer-to-Peer
Systems II, pages 68–79. Springer, 2003.

[RS02] Sylvia Ratnasamy and Scott Shenker. Can heterogeneity make gnutella
scalable? In IPTPS’02, 2002.

90 Bibliography

[RS04] Venugopalan Ramasubramanian and Emin Gün Sirer. Beehive: O (1)
lookup performance for power-law query distributions in peer-to-peer
overlays. In Nsdi, volume 4, pages 8–8, 2004.

[SJZ+98] Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun Yang, and David
Chen. Achieving convergence, causality preservation, and intention preser-
vation in real-time cooperative editing systems. ACM Transactions on
Computer-Human Interaction (TOCHI), 5(1):63–108, 1998.

[SMB02] Tyron Stading, Petros Maniatis, and Mary Baker. Peer-to-peer caching
schemes to address flash crowds. In International Workshop on Peer-to-
Peer Systems, pages 203–213. Springer, 2002.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. In SIGCOMM ’01. ACM, 2001.

[SSR08] Thorsten Schütt, Florian Schintke, and Alexander Reinefeld. Scalaris:
reliable transactional p2p key/value store. In Proceedings of the 7th ACM
SIGPLAN workshop on ERLANG, pages 41–48. ACM, 2008.

[Sto02] M Stokes. Gnutella2 specifications part one. Rapport technique, 2002.

[SW05] Ralf Steinmetz and Klaus Wehrle. 2. what is this “peer-to-peer” about?
In Peer-to-peer systems and applications, pages 9–16. Springer, 2005.

[TCW05] Chunqiang Tang, Rong N Chang, and Christopher Ward. Gocast: Gossip-
enhanced overlay multicast for fast and dependable group communication.
In Dependable Systems and Networks, 2005. DSN 2005. Proceedings. In-
ternational Conference on, pages 140–149. IEEE, 2005.

[TCW+14] Radu Tudoran, Alexandru Costan, Rui Wang, Luc Bougé, and Gabriel
Antoniu. Bridging Data in the Clouds: An Environment-Aware System
for Geographically Distributed Data Transfers. In IEEE/ACM CCGrid,
Chicago, May 2014.

[UPVS07] Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen. A decen-
tralized wiki engine for collaborative wikipedia hosting. In WEBIST (1),
pages 156–163, 2007.

[VRKS06] Spyros Voulgaris, Etienne Rivière, Anne-Marie Kermarrec, and
Maarten Van Steen. Sub-2-sub: Self-organizing content-based publish
subscribe for dynamic large scale collaborative networks. In In IPTPS’06:
the fifth International Workshop on Peer-to-Peer Systems, 2006.

Bibliography 91

[VRMCL08] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner.
A break in the clouds: Towards a cloud definition. SIGCOMM Comput.
Commun. Rev., 39(1):50–55, December 2008.

[VS05] S. Voulgaris and M. v. Steen. Epidemic-style management of semantic
overlays for content-based searching. In Euro-Par’05, 2005.

[VYF06] Vidhyashankar Venkataraman, Kaouru Yoshida, and Paul Francis.
Chunkyspread: Heterogeneous unstructured tree-based peer-to-peer mul-
ticast. In Network Protocols, 2006. ICNP’06. Proceedings of the 2006 14th
IEEE International Conference on, pages 2–11. IEEE, 2006.

[WAB+09] Christof Weinhardt, Arun Anandasivam, Benjamin Blau, Nikolay
Borissov, Thomas Meinl, Wibke Michalk, and Jochen Stößer. Cloud com-
puting – a classification, business models, and research directions. Busi-
ness and Information Systems Engineering, 1(5):391–399, 2009.

[WR03] M. Waldvogel and R. Rinaldi. Efficient topology-aware overlay network.
In SIGCOMM/CCR’03, 2003.

[WSS05] Bernard Wong, Alex Slivkins, and Emin Gun Sirer. Meridian: A
lightweight network location service without virtual coordinates. In ACM
SIGCOMM, August 2005.

[WUM07] Stéphane Weiss, Pascal Urso, and Pascal Molli. Wooki: a p2p wiki-based
collaborative writing tool. In International Conference on Web Informa-
tion Systems Engineering, pages 503–512. Springer, 2007.

[WUM10] Stéphane Weiss, Pascal Urso, and Pascal Molli. Logoot-undo: Distributed
collaborative editing system on P2P networks. IEEE Transactions on
Parallel and Distributed Systems, 21(8):1162–1174, 2010.

[XTZ03] Z. Xu, C. Tang, and Z. Zhang. Building topology-aware overlays using
global soft-state. In ICDSC’03, May 2003.

[YGM02] Beverly Yang and Hector Garcia-Molina. Improving search in peer-to-
peer networks. In Distributed Computing Systems, 2002. Proceedings.
22nd International Conference on, pages 5–14. IEEE, 2002.

[ZKJ01] B.Y. Zhao, J. Kubiatowicz, and A.D. Joseph. Tapestry: An infrastructure
for fault-tolerant wide-area location and routing. Computer, 74, 2001.

92 Bibliography

[ZLX+05] Xiaodong Zhang, Yunhao Liu, Li Xiao, Xiaomei Liu, and Lionel M. Ni.
Location awareness in unstructured peer-to-peer systems. IEEE Transac-
tions on Parallel and Distributed Systems, 16:163–174, 2005.

[ZZJ+01] Shelley Q Zhuang, Ben Y Zhao, Anthony D Joseph, Randy H Katz, and
John D Kubiatowicz. Bayeux: An architecture for scalable and fault-
tolerant wide-area data dissemination. In Proceedings of the 11th inter-
national workshop on Network and operating systems support for digital
audio and video, pages 11–20. ACM, 2001.

[ZZZ+06] Xin Yan Zhang, Qian Zhang, Zhensheng Zhang, Gang Song, and Wenwu
Zhu. A construction of locality-aware overlay network: moverlay and its
performance. IEEE J.Sel. A. Commun., 22(1):18–28, September 2006.

List of Figures

2.1 Distributed System Architecture . 18

2.2 Overlay Network . 25

2.3 An Chord ring consisting of the three nodes 0, 1 and 3 28

3.1 Illustration of a randomly connected overlay and a network-aware overlay 37

3.2 Example of basic Fluidify approach on a system with n=6 and d=2 . . . 41

3.3 Example of local minimum of a system with n=10 and d=2 41

3.4 Illustrating the convergence of Fluidify (SA) & Slicing (SA) on a ring/ring
topology. The converged state is on the right. (N = K0 = 400,
knet = kdata = 16) . 47

3.5 Proximity. Lower is better. Fluidify (SA) clearly outperforms the base-
lines in terms of deployment quality. 49

3.6 Convergence time. All three approaches have a sublinear convergence
(≈ 1.237× |N |0.589 for Fluidify). 49

3.7 Proximity over time (N = K0 = 3200, knet = kdata = 16). Fluid-
ify (SA)’s optimization is more aggressive compared to other baselines. . 49

3.8 Average link distances in converged state (N = K0 = 3200, knet =
kdata = 16). Fluidify (SA)’s links are both shorter and more homogeneous. 49

3.9 Variation of the cost function per swap over time. Lower is better. (N =
K0 = 3200, knet = kdata = 16, note the different scales) Fluidify (SA)
shows the highest amplitude of variations, and fully exploits simulated
annealing, which is less the case for Randomized (SA), and not at all for
slicing. 50

93

94 List of Figures

3.10 Comparison of different variants of Fluidify - Proximity 51

3.11 Comparison of different variants of Fluidify - Convergence 51

3.12 Comparison of performance with varying knet and kdata values 52

4.1 Overlay Architecture . 59

4.2 P2P neighborhood optimization . 60

4.3 Overlay view . 62

4.4 Illustration of the system model . 62

4.5 Convergence time of Filament for varying network sizes 68

4.6 Cumulative frequency distribution of converged nodes for Filament in
the base case . 68

4.7 No: of nodes in the document view of n for Filament in the base case . 69

4.8 Filament vs DHT based on document latency 69

4.9 Effect of varying the number of documents for Filament 71

4.10 Effect of varying the number of nodes editing a document 71

List of Tables

3.1 Notations and Entities . 43

3.2 Parameters of Fluidify . 43

3.3 Performance of Fluidify against various baselines(with simulated anneal-
ing) . 48

3.4 Performance on various topologies . 51

3.5 Impact of K0 on Fluidify (SA) . 52

4.1 Notations and Entities . 63

4.2 Filament vs DHT based on document latency 70

4.3 Load associated with nodes for Filament and DHT 70

4.4 Document latency in the presence and absence of document views and
finger list . 72

95

96 List of Tables

List of Algorithms

1 Fluidify (basic) . 44
2 Fluidify (SA) . 44
3 Randomized (SA) . 46
4 Slicing (SA) . 46
5 PROP-G . 46
6 Data-Net & Net . 47
7 Data-Net & R . 47
8 Initialization . 64
9 Filament . 66

97

Résumé

Dans cette thèse, nous abordons deux problèmes soulevés par les systèmes distribués
décentralisés - le placement de réseaux logiques de façon compatible avec le réseau
physique sous-jacent et la construction de cohortes d’éditeurs pour dans les systèmes
d’édition collaborative.

Bien que les réseaux logiques (overlay networks) été largement étudiés, la plupart
des systèmes existant ne prennent pas ou prennent mal en compte la topologie du
réseau physique sous-jacent, alors que la performance de ces systèmes dépend dans une
grande mesure de la manière dont leur topologie logique exploite la localité présente
dans le réseau physique sur lequel ils s’exécutent. Pour résoudre ce problème, nous
proposons dans cette thèse Fluidify, un mécanisme décentralisé pour le déploiement
d’un réseau logique sur une infrastructure physique qui cherche à maximiser la localité
du déploiement. Fluidify utilise une stratégie double qui exploite à la fois les liaisons
logiques d’un réseau applicatif et la topologie physique de son réseau sous-jacent pour
aligner progressivement l’une avec l’autre. Le protocole résultant est générique, efficace,
évolutif et peut améliorer considérablement les performances de l’ensemble.

La deuxième question que nous abordons traite des plates-formes d’édition collab-
orative. Ces plates-formes permettent à plusieurs utilisateurs distants de contribuer
simultanément au même document. Seuls un nombre limité d’utilisateurs simultanés
peuvent être pris en charge par les éditeurs actuellement déployés. Un certain nom-
bre de solutions pair-à-pair ont donc été proposées pour supprimer cette limitation et
permettre à un grand nombre d’utilisateurs de collaborer sur un même document sans
aucune coordination centrale. Ces plates-formes supposent cependant que tous les util-
isateurs d’un système éditent le même jeu de document, ce qui est peu vraisemblable.
Pour ouvrir la voie à des systèmes plus flexibles, nous présentons, Filament, un pro-
tocole décentralisé de construction de cohorte adapté aux besoins des grands éditeurs
collaboratifs. Filament élimine la nécessité de toute table de hachage distribuée (DHT)
intermédiaire et permet aux utilisateurs travaillant sur le même document de se retrou-
ver d’une manière rapide, efficace et robuste en générant un champ de routage adaptatif
autour d’eux-mêmes. L’architecture de Filament repose sur un ensemble de réseaux
logiques auto-organisées qui exploitent les similarités entre jeux de documents édités
par les utilisateurs. Le protocole résultant est efficace, évolutif et fournit des propriétés
bénéfiques d’équilibrage de charge sur les pairs impliqués.

Abstract

In this thesis, we address two issues in the area of decentralized distributed systems:
network-aware overlays and collaborative editing.

Even though network overlays have been extensively studied, most solutions either
ignores the underlying physical network topology, or uses mechanisms that are specific
to a given platform or applications. This is problematic, as the performance of an
overlay network strongly depends on the way its logical topology exploits the under-
lying physical network. To address this problem, we propose Fluidify, a decentralized
mechanism for deploying an overlay network on top of a physical infrastructure while
maximizing network locality. Fluidify uses a dual strategy that exploits both the logical
links of an overlay and the physical topology of its underlying network to progressively
align one with the other. The resulting protocol is generic, efficient, scalable and can
substantially improve network overheads and latency in overlay based systems.

The second issue that we address focuses on collaborative editing platforms. Dis-
tributed collaborative editors allow several remote users to contribute concurrently to
the same document. Only a limited number of concurrent users can be supported by
the currently deployed editors. A number of peer-to-peer solutions have therefore been
proposed to remove this limitation and allow a large number of users to work collab-
oratively. These decentralized solution assume however that all users are editing the
same set of documents, which is unlikely to be the case. To open the path towards
more flexible decentralized collaborative editors, we present Filament, a decentralized
cohort-construction protocol adapted to the needs of large-scale collaborative editors.
Filament eliminates the need for any intermediate DHT, and allows nodes editing the
same document to find each other in a rapid, efficient and robust manner by generating
an adaptive routing field around themselves. Filament’s architecture hinges around a
set of collaborating self-organizing overlays that utilizes the semantic relations between
peers. The resulting protocol is efficient, scalable and provides beneficial load-balancing
properties over the involved peers.

	Table of Contents
	Résumé
	Introduction
	Context
	Motivations and Objectives
	Contributions
	Outline

	Self Organization in Large Distributed Systems
	Distributed Systems
	Large Scale Systems: P2P systems and Cloud
	Peer to Peer systems
	Cloud Computing

	Self Organization
	Overlay Maintenance
	Network Aware Overlays
	Content Placement, Search and Distribution

	Summary

	Fluidify: Decentralized Overlay Deployment in a Multi-Cloud World
	Background and Problem Statement
	The problem: building network-aware overlays
	Existing approaches to building network-aware overlays

	Our intuition: a dual approach
	The Fluidify algorithm
	System model
	Fluidify

	Evaluation
	Experimental Setting and Metrics
	Baselines
	Results
	Evaluation of Fluidify (SA)
	Effects of variants

	Summary

	Filament: A Cohort Construction Service for Decentralized Collaborative Editing Platforms
	Background and Problem Statement
	The problem: collaborative editing and cohort construction
	Existing approaches to cohort construction and decentralized search

	Our intuition: self-organizing overlays
	The Filament algorithm
	System model
	Filament

	Evaluation
	Experimental Setting and Metrics
	Baselines
	Results
	Evaluation of Filament
	Effects of variants

	Summary

	Conclusion
	Summary of Contributions
	Discussion and Future Work
	Limitations
	Further Extensions

	Appendix
	Glossaire
	Bibliography
	List of Figures
	List of Tables
	List of Algorithms

