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"Ever tried. Ever failed. No matter. Try Again. Fail again. Fail better."

— Samuel Beckett



UNIVERSITE DE RENNES 1

Résumé étendu

Ecole Doctorale MATISSE

Université de Rennes 1

Docteur en Philosophie

Amélioration des Performances de Supervision de Charges Non Intrusive à

l’Aide de Capteurs Sans Fil Faible Coût

par Xuan-Chien LE

xuan-chien.le@irisa.fr


Dans un futur proche, il sera intéressant de surveiller la consommation électrique des

différents équipements d’une maison ou d’un bâtiment dans un but d’optimisation et

de réduction de l’énergie, tout en assurant une qualité de confort à l’utilisateur. Idéale-

ment, l’intervention humaine doit être limitée au maximum avec un système qui s’adapte

automatiquement à son environnement.

La réalisation d’un tel système demande de récupérer et de centraliser régulièrement des

informations sur l’environnement comme la présence de personnes, la température, le

taux d’humidité, la luminosité, etc.

Il est facile de récolter et d’observer ces informations grâce à des capteurs. Cependant,

la surveillance de la charge électrique est plus compliquée à réaliser. Des solutions intru-

sives consistent à superviser individuellement les différents appareils avec un wattmètre,

nécessitant une coupure de l’alimentation puis le déploiement à tous les appareils et en-

fin un entretien régulier ensuite. La solution intrusive n’est pas envisageable pour des

raisons pratiques.

Au lieu d’intercaler un wattmètre, le coût de déploiement peut être réduit en utilisant des

capteurs indirects pour observer l’environnement et estimer la consommation électrique.

Cependant, cette solution demande encore un nombre important de capteurs engeandrant

des interventions techniques régulières.
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Figure 1: Système de monitoring non intrusif d’appareil ou NILM.



C’est pourquoi G. Hart [1] a introduit le concept de monitoring non intrusif d’appareils,

NIALM (Non-Intrusive Appliance Load Monitoring) ou NILM (Non Intrusive Load Mon-

itoring), représenté sur la Figure 1, où le fonctionnement d’un appareil est estimé à partir

de la puissance totale issue de l’aggrégation des consommations d’un panel d’appareils.

Les résultats issus d’un relvé de mesures unique sont encourageants.

Les algorithmes utilisés dépendent de la fréquence d’échantillonnage des informations

données par le wattmètre. Concrètement, une solution matérielle à faible fréquence

pourra se baser sur des valeurs moyennes ou des échelons de variations alors qu’une

fréquence élevée exploitera les variations transitoires ou une analyse fréquentielle issue

de la transformée de Fourier.

Néanmoins, la principale raison d’erreur de cette approche provient de l’ambiguïté créée

par les appareils possédant des caractéristiques électriques très proches.

Pour relever ce défi, les travaux de cette thèse proposent d’associer au NILM une infor-

mation extérieure pour améliorer les performances des algorithmes.

La première proposition allie une solution basée sur la transition entre l’état précédent et

l’état actuel de chaque appareil. La meilleure combinaison d’états des appareils est alors

sélectionnée en résolvant la minimisation de la norme l1 avec une recherche exhaustive.

L’information extérieure exploitée est la probabilité de l’état de l’appareil fournie par

un réseau de capteurs sans fil. Positionné entre le NILM non intrusif et les solutions

intrusives, ce système est dénommé SmartSense et peut ne superviser qu’une partie des

appareils á l’aide du réseau de capteurs.

Approche de la norme l1 : une approche naïve du NILM pour déterminer les états

des appareils est d’appliquer une résolution exhaustive (brute force) pour minimiser le

problème de norme l1 défini comme

min
s
∥ x(t) −

N

∑
i=1

mi

∑
j=1

sij(t) ×wij ∥

sujet à sij(t) ∈ {0,1}, i = 1, . . . ,N, j = 1, . . . ,mi

mi

∑
j=1

sij(t) ∈ {0,1}, i = 1, . . . ,N,

où x(t) est la puissance agrégée à l’instant t, N est le nombre d’appareils, mi est le

nombre d’états de l’appareil i, wij et sij(t) représentent la puissance consommée et

la variable booléenne de l’état j de l’appareil i. Dans la résolution par force brute,

toutes les combinaisons possibles des états des appareils sont appliquées successivement

au problème de minimisation en calculant les erreurs entre la puissance agrégée et la



puissance totale correspondante à la combinaison considérée. La solution correspond à

la combinaison donnant la plus petite erreur.

En conditions réelles, la consommation d’un appareil n’est pas stable et considérée comme

bruitée. Il faut alors éviter que la bonne combinaison ne soit éliminée et pour cela, nous

avons proposé de retenir un lot de combinaisons dont l’erreur est proche du minimum.

À ce moment, le choix final utilise l’information extérieure et exploite les relations entre

l’état présent et l’état précédent selon deux critères proposés. Le premier est la distance

de Hamming puisque nous avons des vecteurs binaires dans notre modèle. La combinaison

donnant la plus petite distance de Hamming avec le vecteur état précédent sera solution

de l’algorithme.

Le second critère propose de considérer la probabilité de transition entre l’état précédent

et les combinaisons canditates. La solution sera la combinaison avec la probabilité la

plus élevée. La probabilité est estimée durant une période d’apprentissage.

Pour évaluer les performances de ces nouvelles solutions, nous avons une base de données

de consommation issue d’un déploiement interne au laboratoire. Les simulations à l’aide

de Matlab montrent que la précision, considérée comme la fiabilité de détection, est

améliorée de 7% avec la distance de Hamming et de 19% avec la probabilité de transition.

Les améliorations en considérant le rappel, représentatif de la sensibilité des algorithmes

à l’événement, sont de 2% et 18%.

Le système SmartSense : le principe repose sur l’estimation de la probabilité de

fonctionnement des appareils comme information extérieure. Un réseau de capteurs

sans fil faible coût et faible consommation permet de remonter l’information, comme

représenté sur la Figure 2. Cependant, l’intrusion doit être limitée, contrairement aux

systèmes intrusifs décrits précédemment, en créant une diversité de types de capteurs

non dédiéé à une cible et la possibilité de restreindre la surveillance à seulement certains

appareils.

Les équipements non supervisés ont alors des états considérés équiprobables. Cepen-

dant, l’information partielle concernant les appareils supervisés permet d’améliorer les

performances globales des algorithmes de désaggrégation. Pour en estimer le gain, deux

approches sont appliquées sur trois bases de données différentes (notre base de données

et deux autres mises en partage).

La première approche considère les algorithmes basés sur les détections de variations

(Edge Detection ED) [1] et la déformation temporelle dynamique (Dynamic Time Warp-

ing DTW) [2]. Un détecteur de variations est basé sur une reconnaissance d’une paire de
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Figure 2: Le système SmartSense associe un NILM classique utilisant la puissance
globale avec un réseau de capteurs sans fil permettant l’apport d’une information ex-

térieure (ici la probabilité de fonctionnement d’équipements).

fronts montant et descendant correspondant à l’activation d’une charge dans la consom-

mation totale. Une base de données est alors utilisée pour la reconnaissance de l’appareil.

Pour ce faire, le motif formé par les deux fronts est comparé à l’aide d’une distance aux

éléments de la bibliothèque obtenue à partir de la période d’apprentissage. L’appareil

sélectionné est celui correspondant à la plus petite distance.

La difficulté rencontrée par cette solution est liée au fait que beaucoup d’appareils pos-

sédant les mêmes fronts sont présents dans les maisons et les immeubles, ayant comme

conséquence directe de détériorer les performances de désagrégation. Ainsi, SmartSense

exploite l’information extérieure de probabilité de mise en route ou d’extinction d’un

appareil au même instant qu’une détection de fronts.

La seconde possibilité basée sur le DTW considère toutes les valeurs comprises dans la

fenêtre temporelle formée par les fronts montant et descendant. Comme les longueurs de

motifs dependent de la durée d’activation de l’appareil, la distance cumulée est utilisée

lors de la recherche et la comparaison avec les éléments de la bibliothèque. Lorsque Smart-

Sense utilise l’algorithme de DTW, la probabilité de mise en route de chaque appareil

est intégrée dans le calcul de la distance cumulée comme un paramètre de régularistation.

L’autre approche appliquée à SmartSense est la formulation du problème de minimisation

de la norme l1 du NILM comme un problème de sac à dos, puis d’utiliser soit une solu-

tion heuristique (Compositional Pareto-algebraic Heuristic CPH) [3], soit un algorithme



de programme dynamique (Dynamic Program DP). Dans cette modélisation, chaque ap-

pareil est considéré comme un élément d’un groupe avec son propre poids (puissance

démandée) et le profit calculé à partir du logarithme de la probabilité et de la demande

de puissance. Il faut alors sélectionner les éléments de chaque groupe afin de maximiser

le profit sous la contrainte de la capacité du sac à doc, c’est-à-dire la puissance aggrégée.

Comme précédemment, la probablité des appareils supervisés est estimée grâce à un

réseau de capteurs sans fil et les appareils restants ont des états équiprobables.

L’algorithme CPH a une forme récursive. À chaque itération, toutes les combinaisons

possibles de deux appareils sont appairées puis les poids et profits sont calculés. Une

partie des solutions est éliminée si leurs poids dépassent la capacité du sac à dos ou si

elles sont moins intéressantes, c’est-à-dire qu’elles consomment plus mais avec une valeur

de profit inférieure. Quand tous les appareils ont été pris en compte et les solutions

possibles listées, la combinaison offrant le plus grand profit est choisie comme solution

finale. En outre, la procédure est récursive et est basée sur la relation entre le meilleur

profit d’un sous ensemble d’appareils en sélectionnant ou rejetant le dernier élément con-

sidéré depuis ceux restants à intégrer. Pour ce faire, une table de profit est construite

afin d’établir cette relation de récurrence entre chaque ligne qui represente un appareil

et les colonnes qui representent le remplissage du sac avec des valeurs croissantes de 0

à la capacité maximale. La valeur de chaque cellule est calculée grâce à la relation de

récurrence et le meilleur profit de la dernière cellule. La liste finale des appareils est alors

construite en remontant la table des profits.

Les simulations obtenues avec Matlab et plusieurs bases de données montrent que les per-

formances des algorithmes sont significativement améliorées lorsqu’ils utilisent la prob-

abilité des états d’un appareil. Concrètement, comme représenté sur la Figure 3, dans

le cas de la maison 1 des relevés de REDD [4], la surveillance d’un réfrigirateur et d’un

lave-vaisselle entraîne une augmentation de la précision de 20% et du rappel de 15%.

À titre de comparaisons, l’ED améliore de 6% et 4,5% et le DTW de 4% et 2,75%.

Ces dernières performances sont limitées et dépendent directement des possibilités du

détecteur de front. Pour SmartSense, plus le nombre d’appareils supervisés augmente

et meilleures sont les performances. Cependant, certains appareils n’auront qu’une aide

limitée et il faut cibler ceux qui entraînent des ambiguïtés et qui ont une fréquence élevée

de fonctionnement.

Dans cette thèse, nous montrons le potentiel de la combinaison d’une information ex-

térieure avec les algorithmes de NILM proposés dans la littérature. Malgré quelques

limitations comme un apprentissage et une complexité encore trop élevée, SmartSense
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Figure 3: Performances des algorithmes dans le cas de la maison 1 des relevés de
REDD [4]. L’indice suivant les algorithmes indique le nombre de dispositifs surveillés :
0 correspond à un NILM classique, 1 et 2 correspondent à la surveillance des appareils

offrant les meilleurs résultats.

est développé et deployé en ce moment et des travaux futurs pourront intégrer des ap-

proches plus efficaces comme les modèles de Markov cachés ou l’apprentissage profond

de réseaux de neurones.
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Chapter 1

Introduction

1.1 Smart Grid and Smart Building Automation

Natural resource nowadays is the motivation for many researches on energy manage-

ment in buildings and homes. Energy management is not only the reduction of energy

consumption but also the balance between energy consumption and energy generation.

Smart Grid (SG) and Smart Building Automation (SBA) are the approaches that have

the main impact on energy saving issues.

The concept of SG is associated with the energy production side [23]. Concretely, the grid

refers to the electric grid or a network of transmission lines, substations, transformers and

other components that deliver the electricity from the power plants to the consumers.

Meanwhile, modern energy management techniques and communication infrastructures

such as Internet, wireless communications or Power-Line Communications (PLC) make

the grid smart with the possibility of automated monitoring, computing, controlling

without human intervention [24–27]. In addition, the purpose of SG also includes the

integration of large-scale renewable energy systems such as wind power along the farms

or solar power on the top of buildings in order to protect the environment and ecosystem,

instead of using only the energy generated by the traditional power plants, e.g. hydro

power, thermal power or nuclear power.

In contrast, in SBA as in Figure 1.1, the principle problem is how to reduce the en-

ergy consumption inside homes or buildings. A smart building can be achieved by the

1
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Figure 1.1: Principle components of a SBA system.

generation and efficient usage of energy. The modality of energy usage comes from sub-

systems such as lighting system, office equipment, Heating, Ventilation and Air Con-

ditioning (HVAC), etc. Therefore, the energy waste elimination effort can concentrate

on these systems by sensing and automatically fluctuating their power to adapt to the

environment condition. In a smart system, human intervention must be restricted, the

automation system automatically control the equipment through such a Energy Man-

agement System (EMS). Similar to SG, in SBA, the communication infrastructure plays

an important role in exchanging the information among the components inside the EMS.

That is the reason why PLC and Wireless Sensor Networks (WSN) can be considered

as potential solutions for environment monitoring and subsystem fluctuation, but WSN

is more promising because of its flexibility and low cost. With WSN, the sensors cap-

ture the environmental parameters and report data to the EMS center through wireless

transceivers. The control center, with the information about the state of subsystems,

then fluctuates their power consumption to adapt to the environmental variation.

The monitored environmental parameters can be occupancy, light intensity, tempera-

ture, moisture, sound, etc. Detecting and analyzing these information allows the system

to automatically regulate the equipment to comfort the users, especially with the devices

requiring time to start up such as HVAC system, and to regulate the power consump-

tion. Except for occupancy, other types of environment can be easily monitored by the

corresponding sensors such as light sensors, temperature sensors, humidity sensors, mi-

crophones, etc. Meanwhile, the occupancy detection is an interesting subject for many
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Figure 1.2: Variation on the power signal when the occupant turns on some devices [5].

recent researches [28–31]. The occupancy can be detected directly by a Passive Infrared

Sensor (PIR) or camera [28–30], or indirectly by analyzing the events happening inside

house or building, e.g. door state, variation on the total power signal [5], abnormally

increase of the CO2 concentration [32]. For example, a couple of magnetic Reed Switch

(RS) door sensor and PIR sensor can be used to detect the occupancy in offices or

rooms [28, 29]. Although PIR sensors are the most ubiquitous form for motion sens-

ing, it is not enough for occupancy detection because people inside rooms/offices tend

to maintain their posture when working in front of a computer, watching television or

sleeping. To overcome this challenge, combining with an RS door sensor, which can de-

termine if the door is open or closed, is more efficient. Another example of occupancy

monitoring is to detect the large changes on the aggregate power signal and infer the

occupancy [5]. As shown in Figure 1.2, the background load frequently appears and does

not imply the occupancy. This load is derived from the presence of the devices driven

by an automated controller such as fridge or HVAC system. When having the presence

of the occupants, their physical interactions with loads such as switching on the lamp,

turning on the television, etc., will imply changes on the power signal. The large changes

can be detected by comparing the average power, standard deviation or power range

in a sliding window of signal with corresponding thresholds. Obviously, the accuracy of

this monitoring system strongly depends on the survey of background load due to the

variation of this parameter according to the time of day and year such as day or night,

spring or winter. Besides, the state transition of some types of devices can also provide

the interaction of users [33]. For example, a washing machine has five states including

off, wash, rinse, spin and maintenance wash, the user interaction can make the transition

from the first to the second state.

In SBA, besides the environment monitoring, the power consumption of the equipment
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also needs to be measured and reported so that the control center can make a suitable

fluctuation to adapt to the environmental variation.

1.2 Load Monitoring

1.2.1 Intrusive Load Monitoring

Similar to the environment monitoring sensors, power measurement units also require a

wireless protocol to communicate with the control center. Power metering can be imple-

mented by two ways: intrusive and non-intrusive. In intrusive approach, the measurement

is deployed at each individual equipment. In contrast, the Non-Intrusive Load Monitoring

(NILM) 1 can detect and estimate the power consumption of all devices on the moni-

tored branch circuit with only one power meter installed on the main power entry [1].

Intuitively, non-intrusive approach helps to reduce the deployment cost but requires a

long period of observation to analyze the power characteristics of each device.

As shown in Figure 1.3, an Intrusive Load Monitoring (ILM) system can be implemented

in a direct of indirect method. The direct one attaches a power meter to each device.

Therefore, direct ILM obviously performs with high accuracy but has some disadvantages

such as high cost and interruption on the power supply to install the meters. In contrast,

the indirect method uses low-cost sensors to detect the measurable signals emitted by

the device to estimate the power consumption. For example, a light sensor can detect

the power state of a television and infer the corresponding consumed energy, an acoustic

sensor can be applied to recognize the operation of the fridge compressor [6].

1.2.2 Non-Intrusive Load Monitoring

In contrast with intrusive approaches, the non-intrusive ones rely on only one power meter

at the main power supply. An NILM algorithm tries to extract some specific features from

the aggregate power signal to identify the corresponding devices. Assuming there are N

devices connected to a unique power meter, each device i ∈ {1, . . . ,N} can operate at

one state j of mi modes, which consumes a power of wij , j ∈ {1, . . . ,mi}. Denote sij(t)

1sometimes also referred as NIALM (Non-Intrusive Appliance Load Monitoring) or Electrical Load
Disaggregation
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Figure 1.3: Direct and indirect power measurement [6].

as the Boolean indicator of state j of device i at time t:

sij(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if device i operates at state j

0 otherwise.

The aggregate power consumption can be represented as follows:

x(t) =
N

∑
i=1

mi

∑
j=1

sij(t) ×wij + e(t), (1.1)

where e(t) is a noise or error term. From this model, the vector s containing all state

indicators sij , i = 1, . . . ,N, j = 1, . . . ,mi of the devices from 1 to N can be determined by

solving the following minimization problem:

ŝ(t) = argmin
s(t)

∥ x(t) −
N

∑
i=1

mi

∑
j=1

sij(t) ×wij ∥d, (1.2)

where ∥ . ∥d denotes the ld distance. In the context of NILM, we can use some distance

metrics such as l1, l2. This problem is computationally intractable and impractical to be

exactly solved by exhaustive techniques unless N is small. Instead, heuristic algorithms

might be considered. There are three principles for any NILM algorithm, including:

• Select and mathematically characterize the specific features or signatures.

• Deploy the suitable hardware to measure the desired signal.
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Figure 1.4: Different categories of load based on energy patterns [7].

• Develop an algorithm to detect those features/signatures from the signal.

The characterization of features and signatures needs the knowledge on the operation

states of the devices, which can be categorized into four types, as surveyed in [7], includ-

ing:

• Type-I: devices with two states (ON/OFF) such as lamp, toaster, etc.

• Type-II: finite state machines with a finite number of operation states, e.g. washing

machine, stove, etc.

• Type-III: continuously varying devices with variable power consumption such as

power drill or dimmer lights.

• Type-IV: devices that remain active throughout days or weeks and consume a

constant level of power such as smoke detector, internet modem, etc.

The three first categories are proposed by [1] and shown in Figure 1.4, while the last one

is highlighted in [34, 35]. Besides, the selection of features/signatures also depends on the

sampling frequency of meters and can be divided into two groups: low frequency and high

frequency. Algorithms based on low-frequency signal focus on detecting the steady-state

features such as average power, step-changes, etc., while high-frequency hardware allows

us to identify the devices from the transient phase and harmonics.
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1.2.3 Hybrid Load Monitoring

A hybrid approach between intrusive and non-intrusive load monitoring, called Hybrid

Load Monitoring (HLM), was proposed in recent years [21, 22, 36–38]. In this approach,

a sensor network is deployed in homes to monitor the environmental parameters such as

acoustic noise, light intensity, occupancy, etc., to detect the operation of some specific

devices. The difference between the hybrid and intrusive approaches is that the sensors

are only installed to monitor a part of all devices while the others are still identified by

an NILM algorithm with aggregate power measurement. Therefore, HLM allows for a

reduction of the cost of the intrusive approach and an increase of the detection accuracy

of the non-intrusive one. In the context of this thesis, we will focus on hybrid methods

in order to improve the performance of the existing NILM algorithms.

1.3 Thesis Outline and Contributions

Chapter 2: State of the art

This chapter reviews the techniques and approaches used in load monitoring, from in-

trusive to non-intrusive and from low frequency to high frequency sampling hardware.

In intrusive approach, each device is attached to a set of sensors, which detect the en-

vironmental variation generated by the device and infer its power state. Although this

approach shows a high accuracy, it is difficult to deploy in smart homes and buildings

because of high cost and too much technical intervention on the infrastructure. Instead,

by using only one power meter at the main entry of electricity, non-intrusive approach

is more promising to study. In this approach, the electrical features of each device are

characterized and an algorithm is developed to extract the features from the aggregate

power load and therefore to identify the corresponding device. The selection of electrical

characteristics depends on the sampling frequency of hardware. Concretely, low frequency

hardware is suitable for the stable loads with the features related to the average power

demand, rising step-changes, falling step-changes, etc., while high frequency hardware is

more efficient to identify the devices based on the transient signal and harmonics analy-

sis. In recent years, a hybrid approach of intrusive and non-intrusive is studied, in which

the sensors can be deployed to detect the state of several devices, while the rest is still

recognized by a non-intrusive algorithm.
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Chapter 3: l1-norm minimization based algorithms for NILM

In this chapter, the minimization problem in NILM is solved by directly using the brute

force method to determine the state of each device. In this method, all possible combi-

nations of operating devices are in turn applied to calculate the absolute error between

their total power demand and the measured aggregate power. The set of devices giving

the minimum error are identified as running. However, if there is more than one device

having the same power demand, the detection is no more accurate. The main contribu-

tion of this chapter is to propose two solutions to overcome this challenge and to improve

detection accuracy, including:

• Difference-based algorithm to compare the difference between the current state and

the previous state of each device.

• Probability-based algorithm to use the state transition probability to decide the

operating devices.

An experiment is also implemented with a small set of devices installed our laboratory.

Chapter 4: SmartSense: Sensor-Aided NILM

The main contribution of this thesis, SmartSense system, is presented in this chapter.

To improve performance of NILM algorithms, we propose to use the operating proba-

bility of each device as an external information. The probability can be estimated from

a sensor network. Different from the intrusive approach, only a small subset of some

devices are selected to be monitored by the sensors while the others are assumed to be

equiprobable among the states. Although it could be perceived as similar to a hybrid

approach, however, instead of identifying the state of devices from the sensor signals, we

transform this state to a probability and an NILM algorithm can still be applied to all

devices combined with this external information. Therefore, monitoring a set of devices

can help to improve the detection of the others. The algorithms applied to SmartSense

in this thesis include:

• Compositional Pareto-algebraic Heuristic.

• Dynamic Programming.

• Edge Detection.



Introduction 9

• Dynamic Time Warping.

These proposed algorithms are applied to both our own dataset as well as publicly

available dataset. The evaluation of performance improvement is given in Chapter 5:

Experimental results. Meanwhile, the conclusions and perspectives of this thesis will

be presented in Chapter 6: Conclusions and perspectives.



Chapter 2

State of the Art

2.1 Intrusive Load Monitoring

A naive, intrusive and costly method to measure the power consumption of each device is

to connect it to a power meter. Apparently, this approach is practically unfeasible because

of high cost and too much technical intervention on the power supply. Therefore, Kim

et al. [6] propose a so-called ViridiScope system to replace part of the power meters by

indirect sensors to detect the environmental parameters around the monitored devices

and deduce their power state. In this monitoring system, devices with stable loads can

be monitored by indirect sensors such as light intensity sensors, acoustic sensors, etc.,

while devices with variable loads are attached to a magnetometer or a direct power

meter. A power meter is also installed at the main power line to measure the aggregate

power consumption and an algorithm is developed to disaggregate this power to the

corresponding devices. An overview on the power estimation based on sensors and meters

is presented in the following.

Magnetometer: The magnetic field around device i is sampled at 100 Hz and the

signal si(t) is formed from the standard deviation over one second sliding window. The

corresponding power consumption correlated to this signal is estimated as:

xi(t) = αisi(t) + βi, (2.1)

10
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Figure 2.1: Electromagnetic field waveform. Top: Overhead fan is powered up at
point (a), switched on at point (b) and switched off at point (c). Bottom: Variations in

magnetic field near by a desktop computer [8].

where αi, βi are the calibration parameters. The magnetic field analysis method is also

applied in [8], but combined with electric field, as illustrated in Figure 2.1. The elec-

tric field is generated from the difference of voltages, i.e. a strong electric field may be

generated even when the device does not draw current, while magnetic field variations

correspond to the changes in power consumption. Therefore, the electric field can be used

to determine if the device is powered or not.

Environment monitoring sensors: To estimate the power consumption of the devices

with a limit number of power states, environment monitoring sensors, such as light or

acoustic sensors, can be deployed. Denote sij(t) a boolean indicator of the internal state

j of device i, the power consumption is estimated by:

xi(t) =
Mi

∑
j=1

wij .sij(t), (2.2)

where Mi is the number of internal states of device i and wij the average power demand

of state j.

Direct power meter: There are still other devices monitored by a direct power meter

and their power consumption is directly read from the meter. For device i,

xi(t) = x̃i(t), (2.3)

where x̃i(t) is the signal from the meter connected to device i.
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Uninstrumented devices: Because of a large number of electrical loads in homes and

buildings, some of them cannot be monitored by any meter or sensor. They are called

uninstrumented devices. Their total power consumption can be considered as consumed

by a unique device. Denote wi as the total power demand of these devices, their power

consumption is estimated from the operating state as

xi(t) = wisi(t), (2.4)

where si(t) indicates if the uninstrumented devices are present in the configuration or

not.

Obviously, the total power consumption in home or building is the sum of the power

consumption of all devices plus some noise and is defined as

x(t) =
N

∑
i=1

xi(t) + n(t)

where

xi(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αisi(t) + βi: magnetometers

∑Mi

j=1wijsij(t): light/acoustic sensors

wisi(t): uninstrumented

x̃i(t): direct meter input

(2.5)

where N is the number of devices and n(t) is a noise. To estimate the power demand

of each device, i.e. wij if monitored by sensors and wi if uninstrumented, as well as the

calibration parameters αi, βi, the following numerical optimization problem formulated

from equations (2.1), (2.2), (2.3), (2.4) needs to be solved:

min
θ
∥ x(t) −

N

∑
i=1

xi(t) ∥, (2.6)

where θ is a vector containing all variables of power demand and calibration parameters,

∥ . ∥ denotes the l1-norm or least absolute value regression solving for the median value.

An example of power disaggregation in ViridiScope is represented in Figure 2.2.

Despite showing a high accuracy (> 90%) in the experiment [6], ViridiScope still has some

drawbacks. The first one is that the uninstrumented devices are assumed to consume a

constant power, while this power can vary depending on the type of devices. The second
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Figure 2.2: The ViridiScope system considers the total power consumption, magnetic
field signal and internal power state information to estimate the power consumption of

each device by solving an l1-norm minimization problem [6].

limitation relates to the large amount of sensors necessary for deployment to reduce the

number of uninstrumented devices and increase the accuracy of the system.

Similar to ViridiScope, in [9, 39], the authors propose to use binary sensors to detect the

on/off state of the energy consumers inside the buildings and then disaggregate the total

power consumption to each one. The fundamental difference between this method and

ViridiScope is to use the binary sensors providing the on/off state instead of raw data.

All devices are assumed to consume a stable power level during their operation. That is

the reason why the power consumption of the variable loads or multi-state devices cannot

be accurately estimated. To increase the accuracy, the length of observation window used

to estimate the power consumption of each device needs to be short enough. Besides, if

the on/off sequences of more than two devices are synchronized, the power cannot be

disaggregated. In this case, to reach a desired accuracy, some additional power meters

are placed to the necessary electrical circuit branches, as illustrated in Figure 2.3. In

this example, because the on/off sequences of devices x2 and x5 are synchronized, their

power is impossible to estimate if they are connected to the same power meter as in the
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Figure 2.3: Power meter topology. The left topology uses only one power meter (dark
node) at the main power supply while topology 1 and 2 use two additional power meters

at the electrical circuit branches [9].

left topology and topology 2. In contrast, in topology 1, these devices are connected to

different circuit power meters, the disaggregation process can give a better performance.

A shortcoming of the research in [9, 39] is to ignore the presence of the ghost power coming

from the uninstrumented devices, that has strong effect on the performance when Beckel

et al. [40] apply this method to the Reference Energy Disaggregation Dataset (REDD) [4].

To overcome this problem, they assume to add an always-on virtual ghost power consumer

to the set of monitored devices. They also assume that all devices are perfectly monitored

by the binary sensors. By this way, the disaggregation can play a better performance,

defined by the difference between the estimated power and real power consumption of

each device.

2.2 Non-Intrusive Load Monitoring

Although direct power meters can be replaced by indirect sensors to reduce the deploy-

ment cost [6, 9, 39], a large amount of sensors as well as technical intervention is still

required. To radically decrease the implementation cost, the presence of sensors needs to

be eliminated or reduced as much as possible and the state of devices needs to be deter-

mined based on the aggregate power measured at the main power supply. This approach

is called Non-Intrusive Load Monitoring or NILM and firstly proposed by G. Hart [1] in

the early 1990s. In recent years, there are several industrial solutions hit to the market
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such as Wattseeker [41], Smart Analyzer [42]. In NILM, an algorithm is developed to

detect some specific features to identify the operating devices. The features are selected

depending on the sampling frequency of the meters and can be classified into two classes:

low frequency and high frequency.

2.2.1 Low frequency approaches

In the low frequency approach, the promising features relate to the real and reactive

power such as average power and step-changes when switching on/off or changing the

power state of a device [1, 43]. The step-change analysis method was firstly introduced

by G.Hart [1], in which the large changes on the power signal, as shown in Figure 2.4,

are detected by an edge detector. The edge detector firstly segments the power signal

into steady periods, defined as a set of consecutive instants in which the power does not

vary greater than a threshold. The samples in each period are then averaged and the

difference between two consecutive steady periods is called step-size. Denote x(t) as the

measured power at time instant t, x(t) is then expressed as

x(t) =
N

∑
i=1

xi(t) + n(t), (2.7)

where N is the number of devices, xi(t) ≥ 0 is the power consumption of device i and

n(t) is a noise at instant t. A step-change is detected if ∣x(t)−x(t−1)∣ ≥ γ, with threshold

γ. An event is determined as started at time ts and ended at time te if:

∣(x(ts) − x(ts − 1)) + (x(te) − x(te − 1))∣ ≤ α, (2.8)

where α is a practical estimated parameter. A cluster analysis maps the detected step-

changes to a two-dimensional space of real and reactive power. The rising edge (positive

step-change) and falling edge (negative step-change) of an event (device activation) are

then paired together and compared with the existing clusters from the training procedure

to identify the corresponding load using maximum likelihood algorithm. Figure 2.5 shows

the position of some devices on the P-Q plane.

The edge detector based method proposed in [1] is suitable to detect and identify the

on/off events on the power signal. However, it cannot detect the variable loads such as

computers, whose power consumption depends on the tasks. In addition, as illustrated
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Figure 2.4: Step-changes on the aggregate power signal [1].

Figure 2.5: Load distribution in P-Q plane [10].

in Figure 2.5, the devices with overlapped clusters on the P-Q plane cannot be discrim-

inated.

To improve the performance of edge detection, some later researches are developed with

some additional features. For example, in [44, 45], a median filter is applied to remove

the meaningless abrupt peaks in the raw signal, while in [46], edges and slopes, defined as

the slow variations after an initial spike in the power signal when switching on a device,

are simultaneously used as a feature to detect the devices necessary for a starting time

before reaching the steady state such as heat pumps, dish washers, fridges, etc.
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Similar to [1], the authors of [2] try to detect and pair the rising and falling edges of an

event and construct a decision tree to identify the corresponding device. In the training

phase, for each device, only edges with maximum and minimum height are saved instead

of all possible ones. Thus, there are only 2N values in the library. The decision tree

includes a root, several nodes and leaves relating to known or undefined devices. At each

node, a split point value V (node) calculated from the training data is used to decide

the child node, i.e. left or right. The splitting procedure iterates until any leaf node is

reached, i.e. the event is matched to a corresponding device.

Besides decision tree, another so-called Dynamic Time Warping (DTW) algorithm is also

presented in [2]. In this method, all active power values of an event from the rising edge to

the falling edge are extracted and saved in a vector to create a pattern instead of only two

edges. Because the lengths of the events are different, a pattern matching procedure via

dynamic programming is proposed to apply. When a pattern is detected, the accumulated

distance between it and all existing patterns in the library is calculated by Algorithm 1.

The pattern giving the smallest distance is selected to identify the corresponding device.

Algorithm 1 Accumulated distance between two vectors with different lengths [2].

1: function DTW(p, q)
2: n = length(p)
3: m = length(q)
4: D(0,0) = 0, D(i,0) =D(0, i) = ∞
5: for i = 1, . . . , n do
6: for j = 1, . . . ,m do
7: d(i, j) = ∣p(i) − q(j)∣
8: D(i, j) = d(i, j) +min{D(i − 1, j),D(i − 1, j − 1),D(i, j − 1)}
9: end for

10: end for
11: end for
12: end for
13: Output D(n,m)
14: end function
15: end function

The simulation results with REDD dataset [2], as shown in Table 2.1, point out that the

DTW algorithm outperforms the Hidden Markov Model (HMM) approach 1 in terms of

detection reliability as well as sensibility to the events.

The active power values can also be used to compute the load distribution [47]. Whenever

an event is detected on the aggregate power signal, the corresponding load distribution

1presented later in this chapter
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Table 2.1: Performance comparison between DTW and HMM approaches [2].

Reliability (%) Sensibility (%)
House DTW HMM DTW HMM

House 1 85.01 79.29 79.72 62.72
House 2 89.86 51.80 84.39 62.79
House 6 98.86 99.30 81.22 74.74

will be calculated and compared with the library to identify the device. To get the load

distribution when two or more devices operate at the same time, the convolution is

applied to the distribution of the corresponding devices. Meanwhile, the authors of [48]

apply the edge detector to each phase of electric power supply. This division helps to

reduce the state space from KN down to KNp if each device has K states and each phase

supplies the power for Np devices. Obviously, this method is efficient when applied in

large buildings with more than one phase of electric power.

In another research, to identify large loads such as water heaters, the authors of [49]

propose a so-called top-bottom rule-based algorithm comprised of many decision rules

applied to each detected pattern such as step-change, average power, total power, number

of data points, etc. After comparing each component with the library, a final score is

calculated to make a final decision about the operation of the corresponding device.

Each type of devices is recognized by a different set of rules, which implies that this

method need an excessive training and makes it difficult to be widely implemented.

Instead of detecting the events on the aggregate power signal, the raw power data can

also be directly used in sparse coding [50, 51]. In this method, the training data of each

device is contained in matrix Wi ∈ RT×m in which each column corresponds to the data of

one week. The aggregate power consumption is then W = ∑N
i=1Wi. Applying the sparse

coding, the following approximation is considered:

Wi =Bi ×Ai, (2.9)

where Bi ∈ R
T×n contains n basis functions or dictionary, and Ai ∈ R

n×m contains

the activations of basis functions. In the training period, the values of Bi and Ai are

estimated by the following minimization:

min
Ai≥0,Bi≥0

1

2
∥Wi −Bi ×Ai ∥2F +λ∑

p,q

(Ai)pq subject to ∥ b(j)i ∥2≤ 1, j = 1, . . . , n, (2.10)
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where ∥ Y ∥F≡ (∑p,q Ypq)1/2 denotes the Frobenius norm, and ∥ y ∥2≡ (∑p y
2
p)

1/2 is the

l2-norm. To disaggregate a new set of data X ∈ RT×m′ , the value of Ai is recalculated as

Â1∶N =argmin
A1∶N≥0

∥X − [B1⋯BN ]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1

⋮

AN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∥2F +λ ∑

i,p,q

(Ai)pq

≡ argmin
A1∶N≥0

F (X,B1∶N ,A1∶N).
(2.11)

Finally, the power is disaggregated to each device by

X̂i =Bi × Âi. (2.12)

Obviously, the sparse coding based disaggregation algorithm needs an excessive amount

of training data. Additionally, this method is only used in off-line mode and not suitable

for the real-time detection.

To recognize the large loads as in [49], Prudenzi [11] applies Artificial Neural Networks

(ANN) to determine the time of use of three different loads from two groups including

water heater (group H) and washing machine/dish washer (group W), as illustrated in

Figure 2.6. In the preprocessing stage, the daily data is sampled every 15 minutes and

segmented into six 8-hour patterns with 4-hour overlapped interval. Then, to classify

these patterns into two clusters with and without power activation (cluster P and cluster

A, respectively), three parameters including maximum power, average power and max-

imum power change in each pattern are applied to a Self-Organizing Map (SOM). The

patterns in cluster P are then sent to the identification stage comprising two supervised

Back-Propagation neural Networks (BPN) with 32 inputs, 24 hidden neurons and 32 out-

puts. The first net (BPN1) tries to detect the instants with energy usage in each pattern

and fills in a 6 × 32-cell output table. After that, the output is filtered by multiplying

by the output of the preprocessing stage and sent to the second net (BPN2), where the

patterns of group H will be discriminated from group W by applying the moving average

operation. The output of this net will only contain the power usage indicators of the

water heater. Combining the outputs of two neuron nets, the time of use of both groups

will be determined in the post-processing stage. Although this research only considered

two groups of devices, it contributes a new promising approach for pattern identification

by applying ANN.
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Figure 2.6: ANN to identify the water heater (group H) and washing machine/dish
washer (group W) [11].

Similarly, an ANN architecture is also applied in a system called real-time RECognition

of electrical Appliances and Profiling (RECAP) [52–54], where the current and voltage

waveforms are analyzed to extract the peak and Root Mean Square (RMS) values of

both current and voltage, phase difference and power factor to define a profile of device.

Besides, two other factors including signature length and sampling frequency are also

captured to standardize the signatures from dissimilar types of energy meters. Although

the RECAP system can profile and recognize the devices under a single framework and

show a good performance when identifying the kitchen devices, it is not suitable for the

multi-state devices.

In another research, deep neural networks are constructed to disaggregate the domestic

energy [12] and applied to the UK Domestic Appliance-Level Electricity (UK-DALE)

dataset [55]. The input of the network is a window of aggregate data with length de-

termined by the maximum operating duration of the target device, while the output

contains the information to reconstruct its power consumption. Before to be fed to the



State of the Art 21

network, the input sequence in each data window is normalized by subtracting by the

mean of sequence and by dividing by the standard deviation. The device activations used

as the targets in training the networks are extracted based on some arguments such as

maximum power, on-power threshold, minimum on-duration, minimum off-duration [56].

The authors of [12] propose three deep learning architectures to reconstruct the power

consumption of target devices. The first one is a Recurrent Neural Network (RNN),

which allows the output from each neuron in a layer at time step t to be fed via weighted

connections to all neurons of that layer at time step (t + 1). This makes RNNs suitable

for the sequential data. To enhance the performance of RNNs in term of memory, the

Long Short-Term Memory (LSTM) architecture [57], using the memory cells with a gated

input, gated output and gated feedback loop, is applied. Besides, a bidirectional RNN,

which is composed of two parallel RNNs, one for the input sequence forwards and one

for the input sequence backwards, is also applied. The concrete architecture with type

of each layer is as follows: Input → CONVolutional layer (CONV) → Bidirectional RNN

layer (BiRNN) → BiRNN → Fully Connected layer (FC) → FC (Output). Examples of

neural networks using CONV, BiRNN and FC are given in Figure 2.7.

The second deep learning architecture is Denoising Autoencoder (DAE) [58]. The role

of this architecture is to recover the power consumption of the target devices from the

background noise. To do that, the DAEs at first try to encode the input to a compact

vector with a coding layer and then decode it to reconstruct the input. The proposed

architecture of DAEs includes six layers, in which the first convolutional layer can be

considered as an encoder and the last one is a decoder, as follows: Input → CONV → FC

→ FC → FC → CONV (Output).

Meanwhile, in the last architecture, the power activation in each data window can be

reconstructed by detecting the start time, end time and average power consumption. In

other words, they want to draw a rectangle around each activation in which the left side

is the start time, right side is the end time and the height is the average power. Therefore,

the output layer of this network includes three neurons and the output data are encoded

to be in the range [0,1]. The exact architecture consists of eight layers: Input → CONV

→ CONV → FC → FC → FC → FC → FC (Output).

Figure 2.8 illustrates the outputs produced by three deep neural networks in [12]. Appar-

ently, the DAE architecture performs a good estimation for the varying power consumers
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such as washing machine, while the third architecture (Rectangles) is suitable for the sta-

ble loads such as kettle, fridge. In addition, the RNN using LSTM architecture gives a

worse estimation than DAE but better than Rectangles with variable loads.

Besides ANN, HMM is also applied to find the state of devices in NILM [4, 13, 14, 59–63].

The state of each device can be considered as a hidden variable, while the observations

relate to the aggregate power consumption. In [13], the aggregate power consumption

x as well as the difference on the power between two consecutive time slices, denoted

as y = xi − xi−1, are considered as the observations of a so-called difference HMM, as

represented in Figure 2.9, to find the state sequence s of the devices. The correlation of

the variables in this model are defined by a set θ of three parameters learned from the

training dataset

θ = {π,A, φ}, (2.13)

where π denotes the probability of the initial state, A the transition probability matrix

from a state at time (t−1) to another at time t and φ the emission probability generated

by a state and assumed to follow the Gaussian distribution. Besides, a constraint that

a device is only in on-state if the aggregate power is larger than its own power demand

is also necessary to be imposed. The state of each device is determined by applying the

extension of Viterbi algorithm through two steps. In the first step, a filter is applied to

suppress the observations whose joint probability does not excess the predefined threshold

and the second step evaluates the joint probability of all sequences x, y, s to identify the

state of devices is defined as

p(x, y, s∣θ) = p(s1∣π) T∏
t=2

p(st∣st−1,A) T∏
t=1

P (wst ≤ xt∣st, φ)∏
t∈S

p(yt∣st, st−1, φ), (2.14)

where S is the set of filtered observations and T is the length of observation sequence.

Meanwhile, in [14], only the aggregate power consumption is considered as observation

sequence. In this research, the on-duration of home devices can be modeled as following

the gamma distribution with a couple of parameters κ(i), θ(i) for each device i. This as-

sumption is drawn from the on-duration histogram of some popular electrical devices such

as television, laptop, monitor, etc. as shown in Figure 2.10. Moreover, some additional

features such as time of day, day of week and environment information from a monitoring

sensors network are also taken into account. Considering K additional conditions with
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corresponding sequences c(1), . . . , c(K) in HMM creates a Conditional Factorial Hidden

Semi-Markov Model (CFHSMM) and is illustrated by the graphical model in Figure 2.11.

The hidden variables s∗ of this model can be found by applying the Maximum Likelihood

Estimation (MLE) after training the set of parameters λ,

s∗ = argmax
s

P (X,s∣λ), (2.15)

where P (X,s∣λ) is the joint probability computed by the product of the initial prob-

ability ψin(X,s∣λ), the emission probability ψe(X,s∣λ), and the transition probability

ψt(X,s∣λ), i.e.,

P (X,s∣λ) = ψin(X,s∣λ) × ψe(X,s∣λ) × ψt(X,s∣λ). (2.16)

The difference of this model compared to other HMMs is the consideration of external

information in estimating the transition probability, as follows:

ψt(X,s∣λ) = N∏
i=1
∏

t∶s
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(2.17)

where m(i)
kjl
= P (s(i)t = k∣s(j)t−1 = l) is the conditional probability for device j of state l,

f
(i)
kjl
= P (s(i)t = k∣c(j)t−1 = l) is the conditional probability for external feature j of value l, d

is the on-duration length and l(i)t is the length of on-duration of device i beginning from

time t.

Another less complex model of CFHSMM also applied in NILM is the Factorial Hidden

Markov Model (FHMM) [4, 59–62], in which the states of each device are considered as a

hidden sequence and the external information is ignored. In those researches, we can find a

Nonparametric Factorial Hidden Markov Model [62], which helps to eliminate the need of

sub-metered data to train the model or the prior knowledge about the number of devices.

Nevertheless, detecting the devices with many levels of power demand is a challenge.

Constructing the problem in the context of NILM as an HMM can give an effective state
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determination approach for low-frequency power measurement. It helps to improve the

accuracy and opens many perspectives to develop in future work. The accuracy of this

method varies depending on the type and number of devices. Nevertheless, this approach

has some limitations such as excessive training period to consider the distribution of the

variables as well as complexity computation.

2.2.2 High frequency approaches

In many cases, low-frequency based algorithms cannot discern the devices with the same

power characteristics such as power demand, operating duration, rising and falling edges,

etc. Besides, if a device consumes a variable energy over time, the steady state does not

exist and the detection algorithm cannot accurately execute. Therefore, studies on other

algorithms based on a higher sampling frequency are necessary. These algorithms will fo-

cus on harmonics and especially transient phase, which contains much useful information

about the devices.

In [15, 64–68], the authors propose to use the Fourier transform to determine the current

harmonics. In [15], the indistinguishable problem of the devices consuming the same

power in [1] is solved by using the third harmonic obtained from the phase-locked short-

time Fourier transform of current waveform collected at 8000 Hz and higher sampling

frequency. As shown in Figure 2.12, an incandescent light bulb and a computer cannot be

discriminated by the first harmonics, i.e. real and reactive power, but can be distinguished

by analyzing the third harmonics. Additionally, as presented in [15], the operating devices

can also be detected by matching the events on the transient phase with the predefined

signatures obtained from the training period. For example, the transient phases of a

computer and an incandescent lamp are distinguishable because heating a lamp filament

is different from charging the power supply or the batteries of a computer. Furthermore,

transient-based recognition also allows near-real-time identification of energy consumers.

That is the reason why the transient signal is studied in many other researches [16, 69–

77].

In [69, 70], short-time Fourier transform is used to compute the spectral envelope co-

efficients of the transient signal when starting a device. The electrical load transients

detected by the system will be classified by comparing with the existing transient signa-

tures in the library. In contrast, the authors of [71–73] try to apply an ANN to process
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the transient signal. In [71], the transient period is segmented into windows and a wavelet

transform is applied to each one. Meanwhile, the load current acquisition can be mea-

sured instead of power consumption to reduce the complexity and computation [72]. ANN

can also be combined with a genetic algorithm to identify load demands and improve

recognition accuracy of NILM results [73].

However, detecting complete transient shapes is sometimes a waste of memory and not

necessary. That is the reason why in [16], the authors introduce a new time pattern

called v-shape, which is the periods containing the significant changes during the transient

phase. Figure 2.13 shows an example of the v-shapes in the transient signal of an induction

motor. The principle of v-shape-based identification is to search for the precise time

pattern of v-shape and compare with the existing patterns in the library.

A limitation of the transient-based algorithms relates to the simultaneous operation in

which two or more devices are switched on at the same time. To overcome this restriction,

in [17], Fast Fourier Transform (FFT) is applied to analyze the harmonics of the incoming

current waveform. Both real and imaginary parts of the harmonics are the inputs of an

ANN, in which the number of inputs depends on the effectiveness of the additional

harmonics, while the number of outputs relates to the number of classes, i.e. number

of known devices. Figure 2.14 represents the mean value and standard deviation of the

harmonics of some typical devices.

Besides analyzing the spectral and harmonic content, a novel method using V-I trajectory

to categorize the groups of devices is also proposed in [18, 78]. The V-I trajectory is

plotted for each device using the normalized current and voltage values. Figure 2.15

illustrates an example of the voltage and current waveforms of a television and the

corresponding V-I trajectory. This method can form a high performance due to the

distinctive V-I curves of devices. However, it is sensitive to the operation scenario of

the multi-state loads. Moreover, the trajectory patterns of small loads are difficult to be

distinguished.

In another research, the authors of [19] introduce a new approach to identify the run-

ning devices by detecting the noise created on the monitored power line, based on a

high frequency hardware and 2048-point FFT. In homes and buildings, there are some

devices running on background and their power waveform is detected and saved on the

memory. Whenever a new device is turned on, a noise is created on the background and
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the respective new device can be identified by analyzing the frequency components of

the measured signal. For example, Figure 2.16 shows the new signal appearing on the

background noise and its extracted frequency components.

Similarly, a system called Detecting Operating States of Electronic devices (DOSE) [20]

tries to detect the variation on the electromagnetic field to identify the corresponding

devices. The Electromagnetic Interference (EMI), generated when an electronic device

operates, is coupled to the power line and its form is picked up by a sensing hardware

attached to the outlet. As shown in Figure 2.17, the time-varying EMI of a laptop is

different and distinguishable at idle, medium load and high load.

Although high-frequency based methods show a perspective to significantly improve de-

vice identification, the most important drawback preventing it from being widely imple-

mented is the deployment cost, which increases along with the frequency of hardware.

2.3 Hybrid Load Monitoring

Instead of deploying a WSN to monitor all devices in home as in ILM, a hybrid system

uses less sensors to detect the environmental parameters and infer the state of some

specific devices, while the others are still identified by an NILM algorithm. In order to

reduce the computational complexity while still ensuring the accuracy for load moni-

toring, in [21], the occupancy is considered as a significant external feature because a

part of devices operates during occupied periods. Figure 2.18 illustrates the correlation

between the operation of some devices and the occupancy in home. Therefore, the NILM

algorithms can be applied only when the occupancy monitoring system, as introduced

in Chapter 1, detects an occupancy. By cutting out the unoccupied periods, the com-

putational complexity can significantly decrease, particularly if the unoccupied periods

are dominating. Obviously, the detection accuracy also decreases if there are too many

background loads or automatically fluctuated devices such as fridge, washing machine,

dish washer, heater, etc. Meanwhile, in [22, 36, 37], the environmental parameters such

as light intensity or audio signal are analyzed to give conclusion on the operation of

some specific devices, e.g. the variations in acoustic signal relate to the operation of an

air blower and a refrigerator as shown in Figure 2.19. Instead of installing new sensors,

the embedded sensors of mobile phones can also be used to fingerprint the profile of each
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device [38]. Although the hybrid approach allows to increase the performance of load

monitoring systems, more algorithms must be studied for sensors signal processing.

2.4 Conclusions

In this chapter, we have an overview on the load monitoring including intrusive, non-

intrusive and hybrid approaches. ILM is the most accurate approach, but it needs very

large amount of sensors to monitor all electrical consumers and therefore it is impossible

to be widely applied. Meanwhile, non-intrusive approaches help to significantly reduce

the deployment cost as well as technical intervention on the power supply. Nevertheless,

ambiguity in the power characteristics of the devices is the most important problem in

an NILM system and prevents the system from increasing the performance. As a con-

sequence, HLM can be considered as a compromise between two approaches, which can

reduce the deployment cost of ILM and increase the performance of NILM. In this thesis,

we will study on hybrid methods, which use external information such as state transi-

tion probability or operating probability of each device to improve the performance of

existing NILM algorithms. Concretely, in Chapter 3, we propose to use the state transi-

tion of each device from previous instant to current instant as an external information

and combine it to the minimization problem in Eq. (1.2). Meanwhile, in Chapter 4, we

introduce SmartSense model, in which a WSN is deployed to monitor the operation of a

subset of all devices. Sensor detection is then transformed to the operating probability of

corresponding devices. Disaggregation algorithms use this probability along with other

specific features extracted from the global power signal to determine the state of each

device.
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(a) Convolutional neural network
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Figure 2.7: Examples of convolutional neural network, bidirectional RNN and fully
connected neural network.
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Figure 2.8: Outputs produced by three deep neural networks [12].
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Figure 2.9: Difference HMM [13]. Shaded nodes represent the observations and un-
shaded nodes represent the hidden variables.
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Figure 2.10: On-duration histogram of some devices [14].
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Figure 2.11: Graphical representation of CFHSMM with the additional conditions
c(1), c(2) [14].
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Figure 2.12: A computer and an incandescent light bulb cannot be discriminated
by the real and reactive power but can be distinguished by analyzing the third har-

monic [15].

v-shapes 

Figure 2.13: v-shapes on the transient of an induction motor [16].
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Figure 2.14: Harmonic signatures of typical devices [17].

Figure 2.15: (a) Current and voltage waveforms of a television. (b) Corresponding
V-I trajectory [18].
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Figure 2.16: New noise feature extracted from the background noise [19].

Figure 2.17: Time-varying EMI of a laptop at idle, medium load and high load [20].

Occupancy 

Figure 2.18: Power consumption with and without the occupants [21].
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Figure 2.19: Aggregate power consumption and the variation of audio signal in a
living room [22].



Chapter 3

Algorithms for NILM based on

l1-norm Minimization

In this chapter, we try to solve the l1-norm minimization problem in Eq. (1.2) defined

in Section 1.2.2 by brute force approach, also called Least Absolute Error (LAE) based

algorithm. Thereby, all possible combinations of states will be sequentially tested and

the most suitable one will be selected as solution. However, because of the ambiguity on

power demand of different devices, many combinations can give the same or near results,

which reduces the algorithm accuracy. To improve performance, we propose to apply an

additional information to select the solution among all possible combinations. This is a

contribution to research on NILM. Two new methods are studied and introduced in this

chapter. The first one, state difference-based algorithm, uses the Hamming distance be-

tween the possible combinations and the previous state of devices to find the solution for

the l1-norm minimization problem, as introduced in Section 3.2. Meanwhile, the second

one, called state transition probability-based algorithm and introduced in Section 3.3,

considers the state transition probability from previous state to current state to deter-

mine the most suitable combination. The three proposed algorithms will be simulated

in Matlab with data retrieved from a set of devices in our laboratory. Simulation results

will be then compared with edge detection algorithm [1].

35
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3.1 Least Absolute Error based Algorithm

The l1-norm minimization problem for Equation (1.2) is presented as follows:

min
s
∥ x(t) − N∑

i=1

mi∑
j=1

sij(t) ×wij ∥ (3.1)

subject to: sij(t) ∈ {0,1}, i = 1, . . . ,N, j = 1, . . . ,mi

mi∑
j=1

sij(t) ∈ {0,1}, i = 1, . . . ,N.

To find the solution for problem (3.1), the conditions are at first processed by presenting

all possible combinations of state vector s in matrix S. Each row of S corresponds to a

combination. For example, if there are two devices and each of them has two operation

states, the state matrix S is defined as

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 1

0 1 0 1

0 1 0 0

0 1 1 0

0 0 1 0

1 0 1 0

1 0 0 0

1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Then, all combinations will be sequentially applied to the following equation to calculate

the absolute error between the aggregate power and the total power demand of devices

with corresponding state defined as

e(k) = ∣x(t) − s(k) ×wT ∣, (3.2)

where e(k) is the absolute error corresponding to the combination s(k) in row k of matrix

S. The combination giving the least value of e(k) is selected as the solution. Therefore,

this method is also called Least Absolute Error (LAE) based algorithm and presented in

Algorithm 2. Obviously, the LAE based algorithm is exponentially complex and may be
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intractable with a large number of devices. However, it is considered in this chapter to

study the performance improvement with the extrinsic information.

Algorithm 2 LAE-based algorithm for l1-norm minimization problem.

1: function LAEsolve(x,w)
2: Find all possible combinations of s and save in matrix S

3: l = length(x), x(0) = 0
4: for t = 1, . . . , l do
5: s = argmin

s(k)∈S ∣x(t) − s(k) ×wT ∣
6: Sout(t) = s
7: end for
8: output = matrix Sout

9: end function

3.2 State Difference based Algorithm

In real condition, power consumption of a device is not stable. It can vary around an

average value due to noise. In order not to leave out the true combination, it is necessary

to retain the combinations giving an error close to the least absolute error value and

apply an additional constraint to select the solution: among all possible combinations,

the final solution gives the smallest Hamming distance with the previous state. Hamming

distance between two binary vectors is defined as the number of positions at which the

corresponding values are different. A combination at row k of S is retained if it satisfies

the following condition: ∣e(k) − eLAE ∣
eLAE

≤ γ, (3.3)

where eLAE denotes the least absolute error and γ is an empirically chosen threshold. If

this value is too small, the true solution of state vector s may be left out, while large value

increases the number of retained combinations and the risk of error detection. Therefore,

the selection of γ needs to consider the standard deviation of the power consumption of

devices as well as the difference between their power demand. Other combinations not

satisfying condition (3.3) will be ignored. Finally, the combination having the smallest

distance to the previous state is selected as the current state of devices, i.e.,

s = argmin
s∈SC

∣s⊕ s(t − 1)∣, (3.4)

where SC is the set of combinations satisfying condition (3.3). The step-by-step proce-

dure for state difference based method for l1-norm minimization problem is presented in
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Algorithm 3. The retention of the combinations giving an absolute error close to the least

one can prevent the algorithm from rejecting the accurate solution. However, this also

increases the amount of computations to process the retained combinations, depending

on the ambiguity level of the set of devices.

Algorithm 3 State difference based algorithm for l1-norm minimization problem.

1: function DIFFsolve(x,w,γ)
2: Find all possible combinations of s and save in matrix S

3: l = length(x), x(0) = 0,K = length(S)
4: for t = 1, . . . , l do
5: for k = 1, . . . ,K do
6: e(k) = ∣x(t) − s(k) ×wT ∣
7: end for
8: eLAE =min{e(i)∣i = 1, . . . ,K}
9: Find SC ⊂ S ∶ ∀s(i) ∈ SC, ∣e(i) − eLAE ∣ ≤ γ × eLAE

10: s = argmin
s(i)∈SC

{∣s(i) ⊕ s(t − 1)∣}
11: Sout(t) = s
12: end for
13: output = matrix Sout

14: end function

3.3 State Transition Probability based Algorithm

Different from the previous algorithm, this method considers the state transition proba-

bility of each device to determine the current state instead of calculating the Hamming

distance from all suitable combinations to the previous state of devices. Transition proba-

bility of each device, as shown in Figure 3.1, is obtained from the training period. Based

on condition (3.3), a subset of suitable combinations is retained and the coincidence

probability for each one is calculated by the product of state transition probability of

each element device, i.e.,

Pr(s(t)∣s(t − 1)) = N∏
i=1

p((si(t)∣si(t − 1)), (3.5)

where p((si(t)∣si(t − 1)) denotes the state transition probability of device i. The com-

bination giving the largest probability will be selected to determine the current state of

devices. Algorithm 4 details the state determination in l1-norm minimization problem

based on the state transition probability. Similar to the state difference based algorithm,

this method also needs more computations to calculate the coincidence transition prob-

ability of the retained combinations.
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Figure 3.1: State transition probability of some devices in Athemium dataset obtained
from a training period by attaching each of them to a power meter.

Algorithm 4 State transition probability based algorithm for l1-norm minimization
problem.

1: function PROBsolve(x,w,γ)
2: Find possible combinations of s and save in matrix S

3: l = length(x), x(0) = 0,K = length(S)
4: for t = 1, . . . , l do
5: for k = 1, . . . ,K do
6: e(k) = ∣x(t) − s(k) ×wT ∣
7: end for
8: eLAE =min{e(i)∣i = 1, . . . ,K}
9: Find SC ⊂ S ∶ ∀s(i) ∈ SC, ∣e(i) − eLAE ∣ ≤ γ × eLAE

10: s = argmax
s(i)∈SC

{Pr(s(i)∣s(t − 1))}
11: Sout(t) = s
12: end for
13: output = matrix Sout

14: end function
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3.4 Experimental Results

In this section, the three proposed algorithms for l1-norm minimization problem will be

applied to our Athemium dataset retrieved from a monitoring system presented in the

next section. The performance of these algorithms will then be compared with the edge

detection one [1] to evaluate the improvement. Besides, they are also applied to detect

the state of devices in the Reference Energy Disaggregation Dataset (REDD) [4], one

of the biggest publicly available dataset for NILM research community. In REDD, the

power consumption in two main phases of electricity in six households in the USA is

measured every second during many days and the power consumption of some typical

devices is retrieved every 3-4 seconds.

3.4.1 Athemium data collection

Server 

Power line 

Load 

Power 

meter 

Load 

Gateway Web 
Internet 

Load 

Power 

meter 

Power 

meter 

Power 

meter 

Figure 3.2: Smart meters network to retrieve the Athemium data.

To retrieve the Athemium data, a meter network supporting Zigbee wireless commu-

nications provided by Athemium company [79] is deployed in the coffee room of our

laboratory. The smart meter network is illustrated in Figure 3.2, in which each device

is attached to an individual meter. Data provided by these meters are used to learn

the characteristics of each device as well as considered as ground truth data to evalu-

ate performance of disaggregation algorithms. Additionally, a global power meter is also

installed at the main circuit to measure the aggregate power consumption, which will

be used to detect the operating states of each device. These power meters, fabricated
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by Netvox Technology Company [80], support wireless communication to send the power

measurement to a gateway, which will forward it to an Athemium server through Internet

connection. A web interface allows users to observe and download data. This interface

lists all deployed power meters and sensors as well as their detailed parameters such as

name, position, label, MAC address, as illustrated in Figure 3.3. Besides, users can also

display the power consumption of each device during hours, days, weeks, months and

years.

(a) List of deployed meters and sensors

(b) Meters configuration (c) Power measurement display

Figure 3.3: Athemium web interface.

In this experiment, six devices including fridge, coffee machine, kettle, microwave, tele-

vision and screen monitor are connected to power meters, as shown in Figure 3.4. Other

loads such as lamps, telephone chargers, Internet modem, outlets, etc., are considered as

noise sources. Table 3.1 shows the power demand of each device, while an example of their

daily power consumption as well as aggregate power is illustrated in Figure 3.5. Based



Algorithms for NILM based on l1-norm Minimization 42

NOISE 

Global power meter 

Submeters 

Figure 3.4: Athemium power measurement: a global power meter measures the aggre-
gate power consumption and some sub-meters provide training data and ground truth

data of each device.

Table 3.1: Power demand of devices in Athemium dataset.

Power demand (Watt) State 1 State 2 State 3

Fridge 75
Coffee machine 823 797 214

Kettle 1667 1692 1635
Microwave 1350 1316 1290
Television 203 29

Screen monitor 72.7

on these retrieved data, state transition probability of each device can be calculated as

presented in Figure 3.1.

3.4.2 Results and Evaluation

To evaluate the algorithms, three metrics are used including precision (pr), recall (rc)

and F-measure (Fm) [81], which are theoretically defined as:

pr =
TP

TP + FP , (3.6)

rc =
TP

TP + FN , (3.7)

Fm =
2 × pr × rc
pr + rc , (3.8)
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(a) Aggregate power consumption

Kettle 

(b) Power consumption of each individual device

Figure 3.5: Power measurement of the devices in Athemium dataset during one day.

where TP , FP and FN are the number of true positives, false positives and false nega-

tives, respectively. A true positive is a true detection of an event, while a false positive

(false negative) means a non-event (event) being not correctly detected. As a conse-

quence, the precision can be considered as the reliability of a detected event and the

recall is the sensibility to the events of algorithms. Meanwhile, F-measure is interpreted

as a weighted average of the precision and recall, which reaches its best value at 1 and

worst at 0. For example, if there are 1500 of 2000 time instants that a fridge operates are

correctly detected, we have TP = 1500 and FN = 500. Similarly, FP = 200 if 200 instants

that the device is turned off are detected as on. As a consequence, we can obtain:
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Figure 3.6: Performance of the proposed algorithms including LAE, state difference
based (DIFF) and transition probability based (PROBA) compared with edge detection

algorithm (ED) applied to Athemium data.

pr =
1500

1500 + 200 = 0.88,
rc =

1500

1500 + 500 = 0.75,
Fm =

2 × 0.88 × 0.75
0.88 + 0.75 = 0.81.

In our Matlab simulation, 30% of data are used to learn the parameters while state

detection algorithms are applied to the remaining. In Figure 3.6, performance of the

three proposed algorithms with Athemium dataset is shown in comparison with the

edge detection algorithm. Apparently, the brute force algorithm without any additional

information shows a worse performance than the edge detection approach. While the edge

detection algorithm can detect the devices with an overall precision of 89.58% and recall

of 74.65%, the LAE based algorithm only shows a poor performance of 60% and 69%,

respectively. This result comes from the fact that there are some devices consuming

a close power level, e.g. coffee machine (214W) and television (203W). Nevertheless,

because the coffee machine has three states, the detection based on the edges height is

more effective. This is also the reason why considering the state transition of the devices,

executed by selecting a subset of suitable combinations giving an error closed to the least

value and applying the difference between each combination with the previous state as a

criterion to select the solution, can increase the performance of the brute force algorithm.

Concretely, the precision can be improved from 60% to 67% and the recall from 69% to
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Table 3.2: Detailed performance of the three proposed algorithms including LAE
based, state difference based (DIFF) and state transition probability based (PROBA)
to detect each device: fridge (FR), coffee machine (CF), kettle (TE), microwave (MW),

television (TV) and monitor (MO).

Precision (%) Recall (%) F-measure (%)
LAE DIFF PROBA LAE DIFF PROBA LAE DIFF PROBA

FR 43.08 44.24 63.80 80.88 73.95 91.86 56.22 55.36 75.30
CM 76.64 80.25 76.34 99.05 98.94 98.90 86.42 86.62 86.17
TE 96.89 98.97 98.98 44.01 62.88 73.61 60.53 76.90 84.43
MW 44.30 47.01 57.63 76.22 81.55 81.55 56.03 59.64 67.53
TV 78.25 86.99 83.05 95.74 95.44 95.79 86.12 91.02 89.97
MO 55.52 57.80 89.83 54.99 59.86 70.71 55.25 56.67 79.13

71%. Especially, the performance improvement is more significant if the state transition

probability is applied instead of the Hamming distance between the state combinations.

Although performing a lower precision (79% vs. 89.58%), the probability based algorithm

shows a better recall (87%) than the edge detection one (74.65%), which results in a close

F-measure (81.8% vs. 81.43%) for both algorithms.

Table 3.2 details the performance of the proposed algorithms correlated to each indi-

vidual device. Apparently, the LAE based algorithm shows a high precision in detecting

the kettle (pr = 96.89%) while it is sensible to the operation of the coffee machine

(rc = 99.05%) and television (rc = 95.74%). The fridge and microwave with many spikes

on the power signal are identified with a lower precision than other devices (pr = 43.08%

and pr = 44.30%, respectively). Meanwhile, the state difference based algorithm al-

lows to significantly improve the performance of the television (F-measure from 86.12%

to 91.02%) and kettle (60.53% to 76.9%). With the transition probability based algo-

rithm, the remarkable increase of the performance corresponds to the fridge (56.22% to

75.30%), kettle (60.53% to 84.43%), microwave (56.03% to 67.53%) and monitor (55.25%

to 79.13%).

As mentioned in the previous section, an important parameter affecting the performance

of the state difference based and state transition probability based algorithms for l1-

norm minimization problem is the threshold γ to select the retained combinations. If

this threshold is too small, the true combination may be left out. In contrast, if it is

too high, too many combinations are maintained and that may cause the decrease of the

performance as well as the increase of the execution time. Figure 3.7 shows the effect
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Figure 3.7: Effect of threshold γ on the performance of state transition probability
based algorithm simulated with Athemium dataset.

of the threshold γ on the performance of the algorithm based on the state transition

probability with the best result obtainable at γ = 3.

Although the additional subroutines significantly improve the performance of LAE based

algorithm with Athemium data, it is still less effective when applied to other dataset with

more confusions among combinations as well as too much ghost power consumed by un-

monitored devices such as REDD House 1 [4], as illustrated in Figure 3.8. In this dataset,

besides the devices connected to an individual power meter, the total power consumption

of other unmonitored devices can be considered as consumed by a unique unknown de-

vice. Though there are over 20 channels, we use only nine channels as shown in Table 3.3,

because the others have no activation of devices. Besides, two main phases of electricity

are combined to have a unique main power signal. As shown in Figure 3.8, the precision

of l1-norm minimization based algorithm can be improved from 58.63% to 60.75% and

the recall from 64.62% to 70.43% with state transition probability. Nevertheless, they are

still lower than the performance given by the edge detection one, with pr = 80.95% and

rc = 70.58%, respectively. Therefore, in the next chapter, a new monitoring system will be

used to significantly improve the performance of NILM algorithms based on probability

information of each device provided by an additional sensor network.
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Table 3.3: Power demand of devices in REDD dataset House 1.

Power demand (watt) State 1 State 2 State 3

Oven 4140 4075 3377
Fridge 193 423

Dish washer 214 1107
Lighting 169 275 345

Microwave 1531 1571 1396
gfi bathroom 1595

Outlet 1056
Outlet 1521

Washer dryer 5097 5250 5008
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Figure 3.8: Performance of the proposed algorithms including LAE, state difference
based (DIFF) and transition probability based (PROBA) compared with the edge de-

tection (ED) algorithm applied to REDD House 1.

3.5 Conclusions

In this chapter, we directly solve the l1-norm minimization problem in NILM by applying

three proposed algorithms, including:

• LAE-based algorithm: this algorithm is a brute force method to apply all possible

combinations of states to calculate the absolute error between the aggregate power

and the total power demand corresponding to each combination. The combination

giving the least value of error is selected to determine the state of devices;
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• State difference based algorithm: instead of selecting the least absolute error, this al-

gorithm finds all possible combinations giving an error around it and then compares

with the previous state to to select one having the smallest Hamming distance;

• State transition probability based algorithm: the solution is selected among suitable

combinations by considering the state transition probability from the previous state

to the current state of each device.

The experimental results show that by applying the state difference and state transition

probability to select suitable combination of state, performance of the brute force algo-

rithm is improved and outperforms the edge detection one. Nevertheless, these proposed

algorithms show an exponential complexity and may be intractable with larger number

of devices. In addition, an excessive training data is necessary to learn the characteristics

of each device such as power demand and state transition probability.



Chapter 4

SmartSense: Sensor-Aided

Non-Intrusive Load Monitoring

4.1 SmartSense Principle and Model

In NILM, the disaggregation algorithms always try to extract the features from the

overall electrical load signal to identify the devices. However, how can we discern the

devices with the same power characteristics? For example [15], if the algorithms use the

features related to the average power consumption such as power level, length of steady

state, step-change, etc., to discriminate the devices, it can lead to a false detection when

separating an incandescent light bulb and a desktop computer, which consume the same

power of 150W.

To overcome this restriction and improve the performance of the detection algorithms,

we propose to use the operating probability of each device as an additional feature. A

low-cost and low-power WSN is proposed to be deployed in homes and buildings to

monitor the operation of some specific devices. A system combining NILM with such a

WSN, called SmartSense, is shown in Figure 4.1. However, different from ViridiScope [6]

which is fully intrusive, our approach only monitors a subset of all devices, which makes

it less intrusive. On the other hand, the purpose of the WSN is not to directly provide

the state of devices but to estimate their state probability to improve the performance

of NILM algorithms. Depending on the type of monitored devices, the corresponding

sensors are deployed. For example, the operation of light-emitting devices such as screens,

49
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Figure 4.1: SmartSense system model: an NILM system combining with a sensor
network providing the operating probability of some specific devices.

televisions, lamps can be detected by using the light intensity sensors, while the motor-

based devices such as washing machine, fridge can be identified with a vibration sensor.

Besides, other types of sensors can also be used to monitor other electrical equipment such

as microphones, magnetometers, etc. A local algorithm in the WSN is then constructed

to transform the detection of sensors to the probability of the corresponding devices. The

probability estimation is executed based on the performance evaluation metrics including

precision and negative predictive value, calculated by

pr =
TP

TP + FP (4.1)

npv =
TN

TN + FN , (4.2)

where pr, TP , FP and FN are defined in Chapter 3 on page 42, while npv and TN

denote the negative predictive value and the number of true negatives, respectively. A

true negative is defined as a true detection of non-event. Therefore, the negative predictive

value can be considered as the reliability of a detected non-event. As a consequence, when

a device is determined as running, the probability of on-state and off-state are equal to

pr and (1−pr), respectively. In contrast, when not running, they correspond to (1−npv)
and npv. For other unmonitored devices, all states can occur with the same probability.

To prove the efficiency of the operating probability in improving the performance of
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NILM, in this research, we propose two main approaches for the state detection. In the

first approach, the minimization problem (3.1) of NILM can be modeled as a Knap-

sack problem and solved by two proposed algorithms including Compositional Pareto-

algebraic Heuristic (CPH) and Dynamic Programming (DP). Meanwhile, the second one

applies the probability to two existing algorithms including Edge Detection (ED) [1] and

Dynamic Time Warping (DTW) [2]. In the rest of this chapter, the word event is used

to denote an on-state in the CPH, DP and DTW algorithms and an edge in the ED one.

4.2 Approach 1: Formulation as a Knapsack problem

Let consider again the l1-norm minimization problem (3.1) of NILM:

min
s
E(s) = RRRRRRRRRRR

N∑
i=1

mi∑
j=1

wijsij − x
RRRRRRRRRRR (4.3)

subject to sij ∈ {0,1}, i = 1, . . . ,N, j = 1, . . . ,mi

mi∑
j=1

sij ∈ {0,1}, i = 1, . . . ,N,

where E(s) can be interpreted as the absolute error between the measured aggregate

power consumption and the total power demand of all operating devices. Solving Eq. (4.3)

is equivalent to find a vector s comprising all state indicators sij , i = 1, . . . ,N, j = 1, . . . ,mi

of all devices, i.e., s = {s11, . . . , s1m1
, s21, . . . , s2m2

, . . . , sN1, . . . , sNmN
}. In Chapter 3, this

problem is solved by applying three proposed methods including least absolute error,

state difference and state transition probability. However, in the SmartSense system, by

using an additional parameter related to the operating probability, a new problem is

formulated from (4.3) and two methods are proposed to solve it including CPH and DP.

The on/off state probability of each device is estimated as mentioned in Section 4.1.

Nevertheless, as the sensors can only detect if a device is on or off but cannot distinguish

its different power states, the operating probability will then be equally divided to all

states, i.e. pij = pi/mi, j = 1, . . . ,mi. Let consider the problem formulation in the case

that each device has only two states, on or off, and in a general case in which each device

has a finish number of power states.
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4.2.1 Problem formulation

One-state devices Firstly, let consider the simplest case in which each device can

only operate at a unique stable state with a corresponding power demand wi. Denote si

as the state indicator of device i and notation (1) for one-state using case, problem (4.3)

becomes:

min
s
E1(s) = ∣ N∑

i=1

wisi − x∣ (4.4)

subject to si ∈ {0,1}, i = 1, . . . ,N,

where s = {s1, s2, . . . , sN}. Assuming device i is in on-state with probability of pi,0 ≤ pi ≤

1, the probability mass function is then:

Pr(si) = psii (1 − pi)(1−si). (4.5)

Because the operation of N devices is assumed to be independent, the coincidence prob-

ability, the probability that all events happen simultaneously, is as follows:

Pr(s) = N∏
i=1

Pr(si)
=

N∏
i=1

psii (1 − pi)(1−si). (4.6)

To reduce the computational complexity, the log-linear form can be applied to transform

the multiplication in (4.6) to an addition, which gives:

L1(s) = − log (Pr (s))
= − log( N∏

i=1

psii (1 − pi)(1−si))
= − N∑

i=1

(si log pi + (1 − si) log (1 − pi)). (4.7)

Denote L1(si) = (1 − si)l1i0 + sil1i1 with l1i0 = − log (1 − pi) and l1i1 = − log pi, Eq. (4.7) can

be written as

L1(s) = N∑
i=1

L1(si). (4.8)
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By this transformation, the increase of Pr(s) corresponds to the decrease of L1(s). The

problem is now to find a combination of operating devices not only giving the least

absolute error E1(s) but also having the maximum probability, i.e. the minimum value

of L1(s). Therefore, the problem (4.4) is developed to a co-optimization problem as

follows:

min
s
[P 1(s) = E1(s) + λ ×L1(s)] (4.9)

subject to
N∑
i=1

wisi ≤ x + ǫ
si ∈ {0,1}, i = 1, . . . ,N,

where λ is a regularization parameter and empirically chosen, ǫ corresponds to the stan-

dard deviation of the aggregate power consumption. The problem (4.9) is a kind of 0-1

Knapsack problem, in which the aim is to fill the knapsack by selecting among various

objects, each of which having a particular weight and giving a particular profit [82]. The

optimization problem is then to choose the objects in order to obtain the maximum profit

while respecting the knapsack capacity.

Multi-state devices Return to the general case where each device has a finite number

of states, the following condition needs to be satisfied:

mi∑
j=1

sij ≤ 1, sij ∈ {0,1}, i = 1, . . . ,N, (4.10)

where mi is the number of states of device i. Therefore, the operating probability of

device i, denoted as Pr(si), si = {si1, si2, . . . , simi
}, is

Pr(si) = p∏
mi
j=1 (1−sij)

i0 × mi∏
k=1

p
∏

mi
j=1,j≠k

sik(1−sij)

ik
, (4.11)

where pi0 = p(sij = 0, j = 1, . . . ,mi) is the probability of off-state of device i and pik =

p(sik = 1, sij = 0,∀j ≠ k) is the probability of operating at state k. Intuitively, we have
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∑mi

j=0 pij = 1. Transforming Eq. (4.11) to log-linear form gives

LM(si) = − logPr(si)
= − mi∏

j=1

(1 − sij) log pi0

− mi∑
k=1

⎧⎪⎪⎨⎪⎪⎩
mi∏

j=1,j≠k

sik(1 − sij) log pik
⎫⎪⎪⎬⎪⎪⎭
. (4.12)

Denoting lMik = − log pik, k = 0, . . . ,mi, Eq. (4.12) can be rewritten as

LM(si) =
mi∏
j=1

(1 − sij)lMi0 +
mi∑
k=1

⎧⎪⎪⎨⎪⎪⎩

mi∏
j=1,j≠k

sik(1 − sij)lMik
⎫⎪⎪⎬⎪⎪⎭
. (4.13)

Similarly to the case of one-state devices, the concincidence probability Pr(s), s =

{s1, . . . , sN}, and its respective log-linear form LM(s) can be formulated as

Pr(s) =
N∏
i=1

Pr(si) (4.14)

LM(s) =
N∑
i=1

LM(si). (4.15)

As a consequence, the co-optimization problem to minimize the least absolute error in

problem (4.3) and maximize the coincidence probability in Eq. (4.14) is modified to

min
s
[PM(s) = EM(s) + λ ×LM(s)] (4.16)

subject to
N∑
i=1

mi∑
j=1

wijsij ≤ x + ǫ
mi∑
j=1

sij ≤ 1, j = 1, . . . ,N

sij ∈ {0,1}, i = 1, . . . ,N, j = 1, . . . ,mi.

Considering the state of devices as objects and the aggregate power consumption as

the knapsack capacity, Eq. (4.14) is equivalent to the Knapsack problem. The state

detection is apparently similar to dividing the available objects into groups and selecting

a maximum of one object from each group to fill the knapsack. Hence, the problem (4.16)

can be considered as a so-called Multiple-Choice Knapsack (MCK) problem [83].

In SmartSense, at each data point, an algorithm will be applied to solve the co-optimization
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problem to find the corresponding state of each device. To solve the Knapsack prob-

lem, the naive and straightforward approach is brute force, as introduced in Chapter 3.

However, the exponential complexity makes it intractable with large number of devices.

Besides, there are several other approaches such as branch and bound [84–86], genetic

algorithm [87–90], dynamic programming (DP) [83, 91], compositional Pareto-algebraic

heuristic (CPH) [3, 92–97], or combining DP with branch and bound [98].

In this study, we focus on CPH and DP, two most effective approaches in Knapsack

problem, to apply in the context of SmartSense. These algorithms have some driving

parameters allowing to reduce the computational complexity.

4.2.2 Algorithms to solve the SmartSense problem

4.2.2.1 Compositional Pareto-Algebraic Heuristic (CPH)

The CPH algorithm is selected to solve the knapsack problem because it provides a fast

and scalable method to solve combinatorial optimization problems. It is based on Pareto

algebra principles, where we want to determine which set of solutions is better than the

rest. CPH computes solutions in incremental fashion while discarding partial solutions

which will not lead to optimal solutions.

CPH is based on a recursive relation and illustrated by an example in Figure 4.2. Fig-

ure 4.2(a) presents a set of three devices with different operation states. Each state

consumes a stable power with a corresponding probability. Assuming at time instant t,

the aggregate power consumption x is equal to 150 W. With the standard deviation ǫ of

5 W, the total power demand of any set of operating devices cannot exceed the bound

R = x+ǫ = 155 W. Figure 4.2(b) shows how the CPH algorithm operates. In the first step,

each device is represented as a set of tuples, each corresponding to a state. For example,

deviceD1 comprises three tuples: (0,23.03,173.03), (50,2.23,102.23), (150,23.03,23.03).
The first element d1 of each tuple represents the power demand, the second one d2 con-

tains the product of the operating probability in log-linear form and the regularization

parameter λ, equal to 10 in this example, and the third one d3 is calculated from two
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first elements d1 and d2 as follows:

d1 = w (4.17)

d2 = −λ × log p (4.18)

d3 = ∣x − d1∣ + d2. (4.19)

α=0, p=0.1 

α=50, p=0.8 

α=150, p=0.1 

D
1
 

α=0, p=0.7 

α=100, p=0.3 

D
2
 

α=0, p=0.1 

α=50, p=0.2 

α=100, p=0.7 

D
3
 

Aggregate power: 

x = 150 

σ = 5 

R = x + σ = 155 

(a)

          D1 
(0, 23.03, 173.03) 

(50, 2.23, 102.23) 

(150, 23.03, 23.03) 

          D2 
(0, 3.57, 153.57) 

(100, 12.04, 62.04) 

(0, 26.6, 176.6) 

(100, 35.07, 85.07) 

(50, 5.8, 105.8) 

(150, 14.27, 14.27) 

(150, 26.6, 26.6) 

(250, 35.07, 135.07) 

C = min ((D1 ⊗D2) \ S)

    

          D3 
(0, 23.03, 173.03) 

(50, 16.09, 116.09) 

(100, 3.57, 53.57) 

(0, 49.63, 199.63) 

(100, 58.1, 108.1) 

(50, 28.83, 128.83) 

(150, 37.3, 37.3) 

(50, 42.69, 142.69) 

(150, 51.16, 51.16) 

(100, 21.89, 71.89) 

(200, 30.36, 80.36) 

(100, 30.17, 80.17) 

(200, 38.64, 88.64) 

(150, 9.37, 9.37) 

(250, 17.84, 117.84) 

min ((C ⊗D3) \ S)

S = {(c1, c2, c3) 2 R
3|c1 ≤ R}

D = {(d1, d2, d3) 2 R
3|d1 = α, d2 = −10 log p, d3 = |x− d1|+ d2}

          rule 1 

          rule 2 

(b)

Figure 4.2: Running example of CPH. (a) Three devices with corresponding power
demand and probability of each state as well as the aggregate power consumption.
(b) Each device is represented as a set of tuples, each tuple corresponds to a state. At
each iteration, a partial solution can be discarded if its first element (power consump-
tion) exceeds the bound R (rule 1), or its third element is greater than another solution
while consuming larger or same power (rule 2). After all sets are combined, the tuple

giving the smallest value of the third element is selected as the final solution.

In the second step, the sets of tuples are pairwise and iteratively combined by a so-called

product-sum operation ⊗, which takes all possible combinations from two sets, sums

their first and second elements per dimension and then calculates the third element
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Figure 4.3: CPH algorithm flowchart. All sets of tuples are saved in cell D. After the
last iteration, the solution is extracted by selecting a tuple in C with the least value of

the third dimension.

by Eq. (4.19). Some of the partial solutions will be discarded in the third step by two

criteria. The first criterion to reject a tuple is that its power demand violates the bound

R (rule 1), denoted by the operation (D1 ⊗ D2) ∩ S, and the second one is that this

tuple is dominated, i.e. it has a greater third value but the same or larger first value

than another tuple (rule 2). This process is called Pareto minimization [3] and denoted

by the operation C = min ((D1 ⊗D2) ∩ S), where C contains the remaining solutions

called Pareto points. In the final step, after all sets are combined and the Pareto points

are found, the point giving the smallest value in the third element is selected as the

final solution. The CPH algorithm always finds all feasible solutions after the final step.

Therefore, the results are not affected by the order of load selection at each step.

Figure 4.3 resumes the operation of CPH algorithm with the procedure to combine

two sets of tuples presented in Algorithm 5 and the Pareto minimization illustrated in

Algorithm 6. The notations D1 ⪯D2 and D1 ≺D2 mean that the tuple D1 is dominated

and strictly dominated, respectively, by D2.
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Algorithm 5 Combine two sets of tuples.

1: function AllComb(D1,D2, x)
2: l1 = length(D1)
3: l2 = length(D2)
4: for i = 1, . . . , l1 do
5: for j = 1, . . . , l2 do
6: D{(i − 1)l1 + j}(1) =D1{i}(1) +D2{j}(1)
7: D{(i − 1)l1 + j}(2) =D1{i}(2) +D2{j}(2)
8: D{(i − 1)l1 + j}(3) = ∣D{(i − 1)l1 + j}(1) − x∣ +D{(i − 1)l1 + j}(2)
9: end for

10: end for
11: output = D

12: end function

Algorithm 6 Pareto minimization.

1: function ParetoMin(D,R)
2: l = length(D)
3: reject = zeros(l,1)
4: for i = 1, . . . , l do
5: if D{i}(1) > R then
6: reject(i) = 1
7: end if
8: end for
9: Ind = find(reject ≠ 1)

10: D1 =D{Ind}
11: l1 = length(D1)
12: reject1 = zeros(l1,1)
13: for i = 1, . . . , l1 − 1 do
14: for j = i + 1, . . . , l1 do
15: if reject(j) ≠ 1 and D1{i} ≺D1{j} then
16: reject(i) = 1
17: else if reject(j) ≠ 1 and D1{j} ⪯D1{i} then
18: reject(j) = 1
19: end if
20: end for
21: end for
22: Ind1 = find(reject1 ≠ 1)
23: D2 =D1{Ind1}
24: output = D2
25: end function
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4.2.2.2 Dynamic Programming (DP)

The principle of the DP algorithm to solve the Knapsack problem is that, if the last

item is rejected, the best profit will only depend on the remaining items with the full

capacity of the knapsack. In contrast, if it is selected, the best profit includes the profit

of this item and the best profit obtainable from the remaining items with the remaining

capacity of knapsack after subtracting the weight of the last item.

Therefore, the DP procedure is to construct a profit table with each row corresponding

to an item and the number of columns depending on the knapsack capacity with unit

step. The profit value of each cell will be calculated based on the current capacity, the

corresponding item as well as the recursive relation with the previous cells, which can

be explained as follows. At any cell corresponding to an item and a value of capacity, if

the item is heavier than the available capacity, it will be rejected and the profit value of

the cell is obtained from the previous items. In contrast, it is necessary to compare the

profit obtainable with and without that item. The set of the previous items must ensure

enough capacity if new item is selected.

One-state devices In the context of one-state devices, each device is considered as

an item with its power demand as weight, while the profit is computed from the power

demand as well as the operating probability. Although the absolute error between the

aggregate power and the total power demand of the identified devices is a criterion to

identify the operating devices, it does not satisfy the recursive relation. Concretely,

RRRRRRRRRRR
i∑

j=1

wjsj − x
RRRRRRRRRRR ≠ wisi +

RRRRRRRRRRR
i−1∑
j=1

wjsj − x
RRRRRRRRRRR (4.20)

if wisi × ⎛⎝
i−1∑
j=1

wjsj − x⎞⎠ < 0.

To overcome this restriction, we construct two separated tables, P 1
e and P 1

l , for the power

and the probability parameters, respectively. Each table is composed of N rows and R

columns with R = ⌈x + ǫ⌉, where ⌈.⌉ is the rounding up operator. The entry of the first

table P 1
e (i, β) = ∑i

j=1wjsj − x and second table P 1

l (i, β) = λ ×∑i
j=1L

1(sj) are calculated

by Algorithm 7. A flag table F is also constructed to mark if a device is running or not.

In Algorithm 7, because the weight of an item is not an integer number, the notation ⌊.⌋
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Algorithm 7 Entry calculation for profit tables in case of one-state devices.

Ensure: P 1
e (i, β), P 1

l (i, β)
1: a1

1
= P 1

e (i − 1, ⌊β −wi⌋) +wi

2: a1
2
= P 1

l (i − 1, ⌊β −wi⌋) + λ × l1i1
3: b1

1
= P 1

e (i − 1, β)
4: b1

2
= P 1

l (i − 1, β) + λ × l1i0
5: A1 = ∣a1

1
∣ + a1

2

6: B1 = ∣b1
1
∣ + b1

2

7: F (i, β) = 0
8: if wi ≤ β and A1 ≤ B1 then
9: P 1

e (i, β) = a11
10: P 1

l (i, β) = a12
11: F (i, β) = 1
12: else
13: P 1

e (i, β) = b11
14: P 1

l (i, β) = b12
15: end if

is used to round down the value of (β −wi). The values of A1 and B1 denote the profit

obtainable with and without new device in the list of operating ones, respectively. The

case that gives better profit is then selected and the respective values are filled in the

tables. The initial conditions of each tables are

P 1

e (0, β) = −x, β = 0, . . . ,R
P 1

l (0, β) = 0, β = 0, . . . ,R

P 1

e (i,0) = −x, i = 1, . . . ,N
P 1

l (i,0) =
i∑

j=1

λ × l1j0, i = 1, . . . ,N.

After calculating all entries of the profit tables, a backtracking procedure, illustrated in

Algorithm 8, is used to backtrack through the tables from the last cell to obtain the set

of running devices with aid of the flag table F .

Let consider an example for three devices with the respective weight and operating

probability: (w1, p1) = (2,0.8), (w2, p2) = (5,0.3), (w3, p3) = (3.5,0.9). With P = 10,

x = 5, ǫ = 0.5, the log-linear form of the operating probability of each device, i.e.

li0 = − log (1 − pi) and li1 = − log pi, i = 1, . . . ,3, are (l10, l11) = (0.7,0.1), (l20, l21) =
(0.15,0.52), (l30, l31) = (1,0.05), respectively, and the boundary of total power R is

equal to 6.

The entries of the profit tables are calculated by Algorithm 7 and filled in Table 4.1.
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Algorithm 8 Backtracking algorithm in case of one-state devices.

Ensure: State indicator vector s = {s1, . . . , sN}
1: i = N
2: β = R
3: while i > 0 and β > 0 do
4: if P 1

e (i, β) ≠ P 1
e (i − 1, β) or F (i, β) = 1 then

5: si = 1
6: β = β − ⌈wi⌉
7: i = i − 1
8: else
9: si = 0

10: i = i − 1
11: end if
12: end while

Table 4.1: Running example of DP in SmartSense for one-state devices

P 1
e (i, β)

(i, β) 0 1 2 3 4 5 6
0 -5 -5 -5 -5 -5 -5 -5
1 -5 -5 -3 -3 -3 -3 -3
2 -5 -5 -3 -3 -3 -3 -3
3 -5 -5 -3 -3 -1.5 -1.5 -0.5

P 1

l (i, β)
(i, β) 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 7 7 1 1 1 1 1
2 8.5 8.5 2.5 2.5 2.5 2.5 2.5
3 18.5 18.5 12.5 12.5 9 9 3

The best profit is obtained at (i, β) = (N,R). From this optimal point, the respective

combination of running devices can be determined by backtracking through the table by

applying Algorithm 8. As a result, s = (1,0,1), i.e. the first and third devices are operating

while the second one is turned off. Apparently, this combination of devices gives the least

absolute error on the power as well as the maximum operating probability.

Multi-state devices Each multi-state device is considered as a group of items, in

which each state is an item with individual weight and profit. Similar to the case of

one-state devices, two tables, PM
e and PM

l , are also constructed to contain the power

and probability parameters of the profit. The algorithm to calculate the entries of the

first table, PM
e (i, β) = ∑i

j=1∑mi

m=1 (wjmsjm − x), and the second one, PM
l (i, β) = P ×

∑i
j=1L

M(sj), i = 1, . . . ,N, β = 1, . . . ,R, is detailed in Algorithm 9.
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Figure 4.4: DP algorithm flowchart. When all entries are filled, the corresponding
state vector is obtained by backtracking through the profit tables from the last cell

(optimal value).

In other words, the value of each entry when considering a new device is determined by

comparing the obtainable profit in two cases: the device is turned off, with profit AM

and the device is operating at a state satisfying the capacity β, with profit BM . The

initial conditions of the profit tables are

PM
e (0, β) = −x, β = 0, . . . ,R

PM
l (0, β) = 0, β = 0, . . . ,R

PM
e (i,0) = −x, i = 1, . . . ,N

PM
l (i,0) =

i∑
j=1

lMj0 , i = 1, . . . ,N.

To get the state of each device, a backtracking procedure is also constructed as illustrated

in Algorithm 10, in which an additional table Sol with the same size as the profit tables

is used to mark the state of devices corresponding to each cell of profit tables.

Figure 4.4 illustrates the flowchart of the proposed DP algorithm in the general case

with multi-state devices. Meanwhile, Table 4.2 shows the profit tables relating to the

DP algorithm for three multi-state devices with the individual power demand w11 = 2,

(w21,w22) = (1,4), (w31,w32) = (3,5) and the respective operating probability p11 = 0.8,
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Algorithm 9 Entry calculation for profit tables in case of multi-state devices.

Ensure: PM
e (i, β), PM

l (i, β)
1: Sol(i, β) = 0
2: aM

1
= PM

e (i − 1, β)
3: aM

2
= PM

l (i − 1, β) + λ × lMi0
4: AM = ∣aM

1
∣ + aM

2

5: for j = 1, . . . ,mi do
6: if wij ≤ β then
7: bMj1 = P

M
e (i − 1, ⌊β −wij⌋) +wij

8: bMj2 = P
M
l (i − 1, ⌊β −wij⌋) + λ × lMij

9: bMj = ∣bMj1 ∣ + bMj2
10: else
11: bMj = +∞
12: end if
13: end for
14: k =minj {bMj }; BM = bMk
15: if minj {wij} ≤ β and AM ≤ BM then
16: PM

e (i, β) = aM1
17: PM

l (i, β) = aM2
18: else
19: PM

e (i, β) = bMk1
20: PM

l (i, β) = bMk2
21: Sol(i, β) = k
22: end if

Algorithm 10 Backtracking algorithm in case of multi-state devices.

Ensure: State indicator vector s = {s1, . . . , sN}
1: i = N
2: β = R
3: while i > 0 and β > 0 do
4: if Sol(i, β) > 0 then
5: k = Sol(i, β)
6: si = k
7: β = β − ⌈wik⌉
8: i = i − 1
9: else

10: si = 0 i = i − 1
11: end if
12: end while
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Table 4.2: Running example of DP in SmartSense for multi-state devices

PM
e (i, β)(i, β) 0 1 2 3 4 5 6

0 -6 -6 -6 -6 -6 -6 -6
1 -6 -6 -4 -4 -4 -4 -4
2 -6 -5 -5 -3 -3 -3 -3
3 -6 -5 -5 -3 -3 -3 0

PM
l (i, β)(i, β) 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 7 7 1 1 1 1 1
2 17 8.5 8.5 2.5 2.5 2.5 2.5
3 24 15.5 15.5 9.5 9.5 9.5 4.7

(p21, p22) = (0.7,0.2), (p31, p32) = (0.6,0.2). The aggregate power consumption x in this

example is equal to 6 with standard deviation ǫ = 0 and the respective total power

boundary R = ⌈x+ǫ⌉ = 6. The regularization parameter P is set to be of 10. Applying the

log-linear form to the operating probability, i.e. lij = − log pij , i = 1, . . . ,3, j = 0, . . . ,mi, the

corresponding results are (l10, l11) = (0.7,0.1), (l20, l21, l22) = (1,0.15,0.7), (l30, l31, l32) =
(0.7,0.22,0.7). Each entry of these tables is calculated by Algorithm 9 and the set of

operating state of each device is backtracked through the tables from the optimal point,

i.e. (i, β) = (N,R), by applying Algorithm 10 is then s = (1,1,1). This result means

that all three devices are operating at the first power state. This determination also

satisfies the requirement on the least absolute error on the power consumption and the

maximum coincidence operating probability. Presenting vector s as in Eq. 4.16, we have

s = {1,1,0,1,0}.

4.3 Approach 2: Edge Detector Algorithms

The edge detector was firstly proposed in [1] to detect the step-changes on the power

signal. Both ED and DTW algorithms at first try to detect the rising edge and falling

edge of a device activation and pair them together. Denote ∆x(t) = x(t) − x(t − 1), a

rising edge is detected at time t if ∆x(t) ≥ γ, where γ is empirically chosen so that it is

small enough not to miss the edges, but large enough to ignore the variations in a stable

period. In contrast, a falling edge is detected at time (t− 1) if ∆x(t) ≤ −γ. A rising edge

and a falling edge are paired together if the difference between their height is lower than
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a threshold α, i.e.,

∣∆x(ts) − ∣∆x(te)∣∣ ≤ α. (4.21)

In the case of multi-state devices, it appears more than one consecutive rising edges or

falling edges in an activation. These edges will be grouped together if

∣ns∑
i=1

∆x(tis) − ∣
ne∑
i=1

∆x(tie)∣∣ ≤ α, (4.22)

where ns, ne are the number of consecutive rising edges and falling edges, respectively.

In the ED algorithm, a feature is composed of the first rising edge and the last falling

edge, while all active power values between them are used in DTW feature. To improve

the performance of the edge detector, a median filter can also be applied to remove the

peaks [44, 45].

4.3.1 Edge Detection (ED)

In training period, all possible patterns of each device are extracted and saved in the

library EDlib, in which pattern j of device i is denoted as

f ed
ij = {∆xRij ,∆xFij}, (4.23)

with notation R for rising edge and F for falling edge. If the edge detector detects an

event switched on at time ts and switched off at time te, the corresponding feature is

f ed = {∆x(t1s),∆x(tne
e )}. (4.24)

The distance between two patterns f ed
ij and f ed can be calculated as

δedij = d(f ed, f ed
ij )

= ∣∆x(t1s) −∆xRij ∣ + ∣∆x(tne
e ) −∆xFij ∣. (4.25)

In the ED algorithm, the detected event will be matched with the device having a pattern

with the minimum distance. Nevertheless, in homes and buildings, there are several

devices with the same edge height, which decreases the load disaggregation performance.

To overcome this challenge, in the SmartSense system, the probability that each device
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i, i = 1, . . . ,N , is turned on and off at the same time as the detected event, denoted as

pRi (t1s) and pFi (tne
e ), respectively, is estimated as in Section 4.1. This means, pRi (t1s) =

(1−npv) if a rising edge of device i is detected at time t1s and pRi (t1s) = (1−npv) on the

contrary. Similarly, pFi (tne
e ) = pr if device i has a falling edge at time tne

e and pFi (tne
e ) =

(1 − npv) on the contrary. In the case of unsupervised devices, pRi (t1s) = pFi (tne
e ) = 0.5.

The coincidence probability that both edges appear is then

Predi = p
R
i (t1s) × pFi (tne

e ). (4.26)

To reduce the computational complexity, the multiplication in Eq. (4.26) can be trans-

formed to an addition by applying the log-linear form, which gives

φed
i = − logPredi

= − log pRi (t1s) − log pFi (tne
e ). (4.27)

The identified device does not only have a pattern with the minimum distance δedij ,

but also has the maximum probability Predi , i.e. the minimum log-linear form φed
i . In

other words, the ED algorithm will try to find the pattern giving the minimum modified

distance, calculated as

dedij = δ
ed
ij + λ1 × φed

i , (4.28)

where λ1 is a regularization parameter. The load identification procedure for each de-

tected pattern is presented in Algorithm 11, where Φed contains the probability in log-

linear form of all devices and mi denotes the number of patterns of device i in EDlib.

The procedure is illustrated by a flowchart in Figure 4.5.

4.3.2 Dynamic Time Warping (DTW)

Different from the ED algorithm, in DTW, all active power values between the first rising

edge and the last falling edge are extracted to comprise a pattern, i.e. fdtw = {fdtw(k)∣k =
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Figure 4.5: Load disaggregation based on the ED algorithm.

1, . . . , tne
e − t1s + 1}, which

fdtw(k) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

his, zis ≤ k < z
i+1
s ,1 ≤ i ≤ ns − 1

hns
s + h1

e−h
ns
s

z1e−z
ns
s
(k − zns

s ) , zns
s ≤ k ≤ z

1
e

hi+1s , zie < k ≤ z
i+1
e ,1 < i ≤ ne − 1

(4.29)

where his = ∑i
j=1∆x(tjs), hie = ∣∑ne

j=i∆x(tje)∣, zis = tis − t1s + 1, and zie = t
i
e − t1s + 1. Figure 4.6

illustrates a DTW pattern with two rising edges and two falling edges. All possible

patterns of each device are extracted and saved in library DTWlib from the training

period. Because the length of patterns is different, the accumulated distance between

the detected pattern fdtw and a pattern j of device i in the library is calculated by

Algorithm 12. Concretely,

δdtwij = AccDistance(fdtw, fdtw
ij ). (4.30)
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Algorithm 11 Matching detected event in ED.

1: function EDiden(f ed,Φed,EDlib)
2: MIN = +∞
3: k = 0
4: for i = 1, . . . ,N do
5: φed

i = Φ
ed(i)

6: for j = 1, . . . ,mi do
7: f ed

ij = EDlib{i, j}
8: δedij = ∣∆x(t1s) −∆xRij ∣ + ∣∆x(tne

e ) −∆xFij ∣
9: dedij = δ

ed
ij + λ1 × φed

i

10: if dedij ≤MIN then

11: MIN = dedij
12: k = i
13: end if
14: end for
15: end for
16: output = k

17: end function

∆x(t1
s
)

∆x(t2
s
)

∆x(t1
e
)

∆x(t2
e
)

k = 1 k = t2
s
− t1

s
+ 1

k = t1
e
− t1

s
+ 1
k = t2

e
− t1

s
+ 1

Figure 4.6: DTW pattern.

In [2], the detected pattern will be matched to the device having a pattern with minimum

accumulated distance calculated by Eq. (4.30). However, in SmartSense, in order to

improve the performance, the operating probability of each device during the same period

as the detected event will also be used in log-linear form, and is defined as

Prdtwi =
t
ne
e∏

t=t1s

pi(t) (4.31)

φdtw
i = − logPrdtwi

= − t
ne
e∑

t=t1s

log pi(t), (4.32)

where pi(t) is the on-state probability of device i at time instant t, estimated as in
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Algorithm 12 Accumulated distance between two different length vectors [2].

1: function AccDistance(f1, f2)
2: l1 = length(f1)
3: l2 = length(f2)
4: δ(0,0) = 0; δ(i,0) = δ(0, i) = +∞
5: for i = 1, . . . , l1 do
6: for j = 1, . . . , l2 do
7: d(i, j) = ∣f1(i) − f2(j)∣
8: δ(i, j) = d(i, j) +min{δ(i − 1, j), δ(i − 1, j − 1), δ(i, j − 1)}
9: end for

10: end for
11: output = δ(l1, l2)
12: end function

Section 4.1, i.e. pi(t) = pr if device i is detected as on and pi(t) = (1−npv) if detected as

off. In the case of unsupervised devices, pi(t) = 0.5. The load identification, as presented

in Algorithm 13, is not only based on the accumulated distance as in Eq. (4.30), but

also considers the operating probability of each device in Eq. (4.32). The probability

in log-linear form of all devices is contained in vector Φdtw. A modified distance then

combines these two parameters with a regularization parameter λ2, which gives

ddtwij = δ
dtw
ij + λs × φdtw

i . (4.33)

The pattern giving the minimum distance will be selected to identify the corresponding

device. Because the length of patterns strongly affects the accumulated distance, the

DTW algorithm is only suitable for devices with fixed on-duration, such as fridge, washing

machine, dish washer. Other devices controlled by the human intervention, e.g. lamp,

computer, etc., cannot be exactly identified. Therefore, we propose to combine DTW

with ED, in which DTWlib only contains the patterns of fixed on-duration devices

and EDlib saves the edge patterns of the others. The flowchart of the proposed DTW

algorithm is shown in Figure 4.7. A threshold β is used to reject a DTW pattern if it does

not match with any one in DTWlib. The detected pattern will be then extracted based

only on the first rising edge and the last falling edge, by applying the ED procedure.
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Algorithm 13 Matching detected event in DTW.

1: function DTWiden(fdtw,Φdtw,DTWlib)
2: MIN = +∞
3: k = 0
4: for i = 1, . . . ,N do
5: φdtw

i = Φdtw(i)
6: for j = 1, . . . ,mi do
7: fdtw

ij =DTWlib{i, j}
8: δdtwij = AccDistance(fdtw, fdtw

ij )
9: ddtwij = δ

dtw
ij + λ2 × φdtw

i

10: if ddtwij ≤ β and ddtwij ≤MIN then

11: MIN = ddtwij

12: k = i
13: end if
14: end for
15: end for
16: output = k

17: end function
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Figure 4.7: Combination of DTW and ED algorithms. A threshold β is used to reject
a pattern if it does not match with any one in DTWlib



Chapter 5

Experimental Results on

SmartSense

5.1 Dataset and Metrics

In the context of this thesis, the sensor signal processing to extract the state of devices

is not studied nor implemented. We just focus on how to transform this information to

probability feature to help the existing NILM algorithms to improve their performance.

Therefore, with each dataset applied to the simulation in Matlab, we assume a WSN

monitoring some specific devices. The operation of these devices can be detected with

a certain accuracy. To evaluate the WSN performance, besides the precision, recall, F-

measure introduced in Chapter 3 and negative predictive value as in Section 4.1, another

metric called true negative rate (tnr) is also used and calculated as follows:

tnr =
TN

TN + FP
. (5.1)

Denote r as the ratio between the total events and total non-events of the data, the true

negative rate and negative predictive value are calculated as functions of precision and

recall, such as:

tnr = 1 − rc × r × (1 − pr)
pr

(5.2)

npv = 1 − pr × r × (1 − rc)
pr × (1 + r) − rc × r . (5.3)

71
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Table 5.1: List of devices in REDD 1 and their characteristics.

Label Device Number of uses Using rate (%) Power (watts)
1 Oven 153 0.24 {4140,4075,3377}
2 Fridge 1695 24.94 {193,423}
3 Dish washer 383 3.80 {214,1107}
4 Lighting 67 48.99 {169,275,345}
5 Microwave 522 1.94 {1531,1571,1396}
6 Outlet bathroom 226 0.39 1595
7 Outlet 189 0.38 1056
8 Outlet 90 0.2 1521
9 Washer dryer 234 0.76 {5097,5250,5008}

Knowing the characteristics of the sensor network, the data of individual circuits can be

modified to apply in SmartSense. Whereby, (1− rc) of events are randomly selected and

changed to non-events, and in contrast, (1 − tnr) of non-events are randomly selected

and changed to events. At these instants, the corresponding devices are assumed to be

incorrectly detected. As a consequence, the operating probability of each device will be

determined from the modified data based on the precision and negative predictive value

as presented in Section 4.1.

In the simulation, the proposed algorithms are applied to four datasets: UK-DALE

House 5 (UK-DALE 5) [55], REDD House 1 (REDD 1) and House 2 (REDD 2) [4],

and our Athemium dataset retrieved from the coffee room as introduced in Chapter 3.

The devices as well as their characteristics in each dataset are detailed in Tables 5.1, 5.2,

5.3 and 5.4, respectively. Both UK-DALE and REDD public datasets are retrieved by

measuring the power consumption at the main power line and of several typical devices

in home sampled every 3-4 seconds. Although there are over 20 channels in each dataset,

we use only a part of them because the others have no activation and the variable loads

are ignored. In addition, the data from two main phases in REDD dataset are also com-

bined to have a unique main power signal. The data in each dataset are divided into two

parts: the first one (30%) to train the power characteristics of each device and the second

one (70%) to test the algorithms. During the training period, the ghost power, coming

from the unsupervised devices, is assumed to be consumed by a virtual device.

The simulation with the training data also allows to empirically choose the value of the

regularization parameters, as shown in Table 5.5. The training dataset is divided into two
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Table 5.2: List of devices in REDD 2 and their characteristics.

Label Device Number of uses Using rate (%) Power (watts)
1 Outlet 180 0.25 779
2 Lighting 275 12.67 {153,71}
3 Stove 63 0.22 406
4 Microwave 120 0.69 {1887,1778}
5 Outlet 126 0.86 1058

6 Fridge 2715 44.40 {163,426}
7 Dish washer 207 1.19 {244,1214}

Table 5.3: List of devices in UK-DALE 5 and their characteristics.

Label Device Number of uses Using rate (%) Power (watts)
1 Toaster 162 0.06 1088
2 Kettle 1013 0.37 {2826,2960}
3 Fridge 8312 36.48 109.5
4 Oven 4268 22.56 {110.6,2119,2933}
5 Electric hob 2260 0.52 {961,1878,1611}
6 Dish washer 365 2.38 {1660,96.3,57.4}
7 Microwave 186 68.40 {1496,1258,49.8}
8 Washer dryer 5942 2.89 {61.7,1492,290.6}

Table 5.4: List of devices in Athemium dataset and their characteristics.

Label Device Number of uses Using rate (%) Power (watts)
1 Fridge 3040 17.79 75
2 Coffee machine 1345 1.57 {823,798,234}
3 Teapot 640 0.94 {1635,1692}
4 Microwave 250 0.24 {1290,1349}
5 Television 70 35.76 {203,29}
6 Monitor 110 27.35 73

parts: the first part (80%) is applied to learn the power characteristics of each device and

the second part, also called developing set, is used to train the regularization parameters.



Experimental Results on SmartSense 74

Table 5.5: Regularization parameters.

α β γ δ λ ǫ L

CPH 60 20 128
DP 10 60 20

DTW 500 60 2
ED 30 60 10

Table 5.6: Performance of the algorithms without monitored device (%).

REDD 1 REDD 2
pr0 rc0 Fm0 pr0 rc0 Fm0

CPH 61.09 65.12 63.04 66.64 74.21 70.22
DP 61.34 65.11 63.17 67.18 73.49 70.19

DTW 83.53 76.48 79.85 83.77 76.50 79.97
ED 80.95 70.58 75.41 83.71 68.32 75.24

UK-DALE 5 Athemium
pr0 rc0 Fm0 pr0 rc0 Fm0

CPH 66.88 59.19 62.80 65.51 71.25 68.26
DP 68.67 59.48 63.74 65.92 71.10 68.41

5.2 Results and Evaluation of Probability Information in

SmartSense

5.2.1 Performance without probability information

To evaluate the effect of the probability information on the performance improvement of

NILM algorithms, we consider the gain obtained by comparing the overall performance

of each algorithm without monitored device. The performance of the algorithms without

probability information are provided in Table 5.6. In an original NILM system, both

DTW and ED algorithms show a better performance than the CPH and DP ones. Not

only that, in [2], DTW is proved to outperform other state-of-the-art approaches when

applied to REDD dataset.

Additionally, the performance per device is also considered and compared with the tradi-

tional NILM system given in Tables 5.7, 5.8, 5.9 and 5.10. Apparently, the performance of

the DTW algorithm in terms of F-measure related to the devices with fixed on-duration

is improved compared with the ED one. For example in REDD 1, the fridge (device 2) is
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Table 5.7: Performance per device in REDD 1 without monitored device (%).

Device 1 2 3 4 5 6 7 8 9

CPH
pr0 26.49 62.13 23.83 77.02 26.01 19.16 13.14 24.46 80.25
rc0 49.71 57.78 69.28 71.86 16.07 20.52 21.57 18.14 70.67
Fm0 34.57 59.88 35.48 74.35 19.86 19.82 16.33 20.83 75.16

DP
pr0 48.27 58.62 24.09 73.49 25.87 15.84 18.22 13.82 90.31
rc0 35.61 34.80 70.23 71.85 40.51 24.19 23.17 35.71 71.17
Fm0 40.99 43.67 35.87 72.66 31.58 19.14 20.40 19.92 79.61

ED
pr0 42.88 89.70 79.47 34.85 28.85 40.52 49.27 19.16 90.75
rc0 59.66 78.32 51.48 25.05 58.01 61.90 43.21 17.45 54.18
Fm0 49.89 83.62 62.48 29.15 38.53 48.98 46.04 18.26 67.85

DTW
pr0 47.54 85.39 78.85 68.81 34.17 39.74 49.27 21.46 99.36
rc0 74.95 83.49 56.19 25.05 68.01 61.90 43.21 20.45 67.61
Fm0 58.18 84.43 65.62 36.73 45.48 48.40 46.04 20.94 80.47

Table 5.8: Performance per device in REDD 2 without monitored devices (%).

Device 1 2 3 4 5 6 7

CPH
pr0 19.72 26.07 26.17 90.98 29.05 82.40 25.64
rc0 22.63 37.09 50.87 16.13 25.62 90.46 51.05
Fm0 21.08 30.62 34.56 27.40 27.23 86.24 34.14

DP
pr0 17.86 26.94 23.93 90.52 24.86 89.06 24.43
rc0 18.37 25.06 57.10 11.46 23.08 80.64 48.07
Fm0 18.11 25.97 33.73 20.34 23.94 84.64 32.40

ED
pr0 80.65 93.81 21.55 98.65 60.09 67.60 21.08
rc0 19.65 40.04 95.13 17.62 75.12 83.96 45.66
Fm0 31.60 56.12 35.15 29.90 68.67 71.54 28.83

DTW
pr0 80.65 94.17 21.55 52.80 63.09 80.57 27.82
rc0 19.65 39.01 93.13 39.04 85.12 84.11 55.15
Fm0 31.60 55.17 35.01 44.89 72.47 82.30 36.98

Table 5.9: Performance per device in UK-DALE 5 without monitored device (%).

Device 1 2 3 4 5 6 7 8

CPH
pr0 11.76 32.82 73.26 26.39 14.67 6.10 86.61 75.25
rc0 51.02 38.87 27.04 21.04 44.28 54.05 65.34 62.82
Fm0 19.11 35.59 39.50 23.41 22.04 10.97 74.49 68.48

DP
pr0 6.23 39.96 82.27 24.17 14.91 3.85 83.76 88.50
rc0 23.62 53.23 82.42 7.30 52.20 50.40 53.90 65.02
Fm0 9.86 45.65 82.34 11.22 23.20 7.16 65.59 74.97
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Table 5.10: Performance per device in Athemium without monitored device (%).

Device 1 2 3 4 5 6

CPH
pr0 48.30 79.78 96.95 54.51 83.84 72.32
rc0 94.09 99.05 44.92 76.22 97.24 52.47
Fm0 63.83 88.38 61.39 63.56 90.04 60.82

DP
pr0 47.75 89.34 99.44 47.02 82.29 85.40
rc0 97.11 98.98 62.22 83.99 97.26 57.78
Fm0 64.02 93.91 76.55 60.29 89.15 68.93

detected with a precision of 89.7% and recall of 78.32% by the ED algorithm. Although

the DTW method can only identify it with a lower precision (85.39%), the significant

improvement of the recall (from 78.32% to 83.49%) allows to increase the F-measure

from 83.62% to 84.43%. Meanwhile, the performance related to the washer dryer (9) is

improved from 90.75% of precision and 54.18% of recall by ED algorithm to 99.36% and

67.61%, respectively, by the DTW algorithm. Similarly, the detection of the fridge (6)

in REDD 2 increases from the precision of 67.6% and recall of 83.96% up to 80.57%

and 84.11%, respectively. In Knapsack approach, because of directly using the power

consumption as feature, the performance of the corresponding algorithms is strongly af-

fected by the power demand of each device. The devices with confusion on the power

consumption with the others, especially one-state devices, are detected with low accu-

racy. For example, the device connected to the outlet 8 (1521W) in REDD 1 has a very

closed power demand to the microwave (1531W) and the outlet bathroom (1595W). This

is the reason why the algorithms detect its operation with a precision and recall lower

than 35%. Similarly, in REDD 2, the power consumption of the dish washer (1214W) is

incorrectly disaggregated to the combination of outlet 1 (779W) and stove (406W). Ob-

viously, if one of these devices is monitored, not only this device but also other confused

devices will be more correctly identified and the overall performance can be improved. In

the next section, we will analyze the elements affecting the performance of the proposed

algorithms in the two proposed approaches: knapsack and edge detector.
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(d) Athemium

Figure 5.1: Effect of the type of monitored devices on the performance improvement
of the CPH and DP algorithms. The values of pr0, rc0, Fm0 correspond to the case

without any monitored device, given in Table 5.6.

5.2.2 Impact of type and number of monitored devices in the Knapsack

approach

In SmartSense, only several specific devices are selected to be monitored, but a relevant

question is: Which type of devices can help to improve the performance of the algo-

rithms? In the first experiment, sequentially each device is selected to monitor, the main

characteristics of the devices giving the best performance are then analyzed to generalize
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the criteria to select the monitored devices. The precision and recall of the sensors detec-

tion are assumed to be equal to 0.9. Figure 5.1 shows the performance of the CPH and

DP algorithms with different monitored devices in four dataset, in which the labels are

respectively noted in Tables 5.1, 5.2, 5.3 and 5.4. Because both CPH and DP are search-

ing for the optimal solution, they give similar results. Table 5.11 lists two devices with

the best performance in each dataset. In REDD 1, as shown in Figure 5.1(a), the best

performance corresponds to the fridge with the gain of both precision and recall around

12%. From Table 5.1, it can be seen that the fridge has a high using rate (24.94%) and

its power demand is confused with the dish washer (193W vs. 214W). Two other de-

vices also giving a high gain are the dish washer and the lighting system. The lighting

system has the largest using rate (48.99%). Although unusually operating, monitoring

the dish washer also gives a high performance gain because it consumes a power similar

to the fridge. Meanwhile, other devices show a very small gain (<2%) if monitored. In

Figure 5.1(b), except for the fridge with the performance improvement over 12% for all

evaluation metrics, deploying the sensors to monitor other devices in REDD 2 can only

obtain a gain lower than 5%. This result can be explained from Table 5.2 that besides

the most used device (44.40%), the fridge consumes a power very close to the lighting

system (163W vs. 153W) and stove (426W vs. 406W).

Therefore, we can come to a conclusion that the most effective devices to be monitored

with CPH and DP algorithms have two main characteristics that are: high using rate and

confusion on the power demand with other devices. This conclusion is also consolidated by

the results from the UK-DALE 5 and Athemium dataset. As shown in Figure 5.1(c), the

most effective devices in UK-DALE 5 are the microwave and fridge, which both have high

using ratio (68.4% and 36.48% respectively) and their power demand is also confused with

others. Concretely, the microwave consumes a power close to the washer dryer (1496W

and 1492W) and dish washer (49.8W and 57.4W), while the power demand of the fridge

is near to the dish washer (109.5W and 96.3W). Meanwhile, in Figure 5.1(d), the most

effective devices in Athemium dataset are fridge and monitor, which are frequently used

(17.79% and 27.35% respectively) and their power consumption is also similar (75W and

73W).

Besides the type, the number of monitored devices is also a parameter strongly affecting

on the performance improvement of the algorithms. Apparently, monitoring more devices

allows to obtain a better performance. However, the deployment cost also increases along



Experimental Results on SmartSense 79

Table 5.11: Most effective devices with the CPH and DP algorithms.

CPH DP

REDD 1
2-fridge 2-fridge

3-dish washer 3-dish washer

REDD 2
6-fridge 6-fridge

2-lighting 2-lighting

UK-DALE 5
7-microwave 7-microwave

3-fridge 3-fridge

Athemium
1-fridge 1-fridge

6-monitor 6-monitor

with the size of the monitoring sensors network and the non-intrusive requirement is

violated. Therefore, it is necessary to make a trade-off between the size of the WSN

and the desired performance when selecting the monitored devices. Figure 5.2 shows the

performance improvement when increasing the number of monitored devices. In each

case, the devices are selected based on their performance in Figure 5.1. Obviously, there

are some devices showing less effectiveness when monitored and adding them to the

monitoring list cannot help to significantly improve the performance. Thus, these devices

can be ignored when deploying the sensors network. Concretely, in REDD 1, three devices

giving the best performance are fridge, dish washer and lighting system. Thus, adding

these devices to the monitoring list allows to significantly improve the performance of

the algorithms. This phenomenon can be illustrated by the slope from one to three

devices in Figure 5.2(a). The corresponding precision gain increases from 12% to 30%

and the recall from 11% to 19% in this interval. However, other devices are less effective,

which results in a slow increase of the performance gain with more than three monitored

devices (from 30% to 37% with precision and 19% to 23% with recall when increasing the

number of devices from three to nine). Similarly, in REDD 2, as shown in Figure 5.2(b),

the performance is improved very slowly. After monitoring the first device (fridge) and

obtaining the precision gain of 13% and recall gain of 12%, we can only improve the

recall around 3% (from 12% to 15%) with other six devices added to the monitoring

list. Therefore, the F-measure is still insignificant (11% improved) although the precision

gain can be improved from 13% up to 31%. Meanwhile, in UK-DALE 5, there are two

devices giving a remarkable increase of the performance when monitored including the

microwave and fridge, as shown in Figure 5.1(c). This is the reason why the performance

is significantly improved with the number of monitored devices from one to two, and
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(d) Athemium

Figure 5.2: Effect of the number of monitored devices on the performance improve-
ment of the CPH and DP algorithms. The values of pr0, rc0, Fm0 correspond to the

case without any monitored device, given in Table 5.6.

slowly increased with more other devices. In contrast, in Athemium dataset, because the

fridge and the monitor have only one power state and their power demand are confused

together, the performance can be significantly improved by monitoring one of them and it

cannot increase anymore if another remaining device is also monitored. This results in the

nearly horizontal line from one to two devices in Figure 5.2(d). Besides, the performance

gain cannot be improved too much when monitoring more other devices.
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Figure 5.3: Performance improvement of the CPH algorithm when modifying WSN
precision.
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Figure 5.4: Dependence of the abnormally changing point on the number of states.

5.2.3 Impact of WSN detection on the performance of the Knapsack

approach

In the experiments above, the WSN is assumed with a detection precision of 0.9. How-

ever, in real condition, this value can vary depending on the quality of the sensors.

Therefore, we will consider the effect of the sensor detection on the overall performance

of SmartSense algorithms by tuning the precision from 0.6 to 0.9 with two monitored
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devices (fridge and dish washer) for REDD 1 and REDD 2. Figure 5.3 shows the per-

formance gain of the CPH algorithm according to the increase of the WSN precision.

In Figure 5.3(a), with monitored devices, the performance of the algorithm in REDD 1

decreases significantly if the precision of the sensors is lower than 0.66. This is illus-

trated by the negative gain of both precision and recall. Meanwhile, when increasing this

value from 0.66 to 0.68, the performance abnormally increases with the precision gain

from 9% to 16.5% and the recall from 1% to 9%. After this interval, the performance

is slowly improved to 20% of precision gain and 15% of recall gain at a WSN preci-

sion of 0.9. Similarly, with REDD 2, as shown in Figure 5.3(b), the performance gain is

also negative with the WSN precision less than 0.6 and there also exists an abnormally

changing interval between 0.66 and 0.68, in which the precision gain increases from -7.5%

to 12.5% and the recall from -12% to 8%. Beyond this interval, the performance slowly

increases along with the WSN precision. To find the reason of the abnormally increasing

interval, let return to Section 4.2. If an m-state device is detected as switched on, the

corresponding probability of each power state is equal to pr/m and off-state is (1 − pr).
Thus, with pr < m/(m + 1), the probability of the off-state is greater than any on-state

although the device is operating and that makes the decrease of performance. In con-

trast, if pr > m/(m + 1), the probability of any on-state is larger than off-state and the

probability information allows to improve the detection accuracy. In both REDD 1 and

REDD 2 dataset, the monitored devices are fridge and dish washer, each of which has

two operation states, which creates a changing point at pr ≈ 0.67. Obviously, with the

edge detector approach, this phenomenon always happens at pr = 0.5. The dependence of

the changing point pr = m
m+1 on the number of states of devices is presented in Figure 5.4.

As a consequence, the precision of the WSN needs to ensure to stay on the upper plane

discriminated by the changing curve in order to allow the algorithm to reach a better

performance.

5.2.4 Impact of monitored devices on the performance of the edge

detector approach

Similar to CPH and DP algorithms, the performance of the DTW and ED algorithms in

SmartSense also depends on the type of monitored devices. To analyze the main charac-

teristics of the most effective devices, each device in REDD 1 and REDD 2 is sequentially
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Figure 5.5: Effect of the type of monitored devices on the performance improvement
of the DTW and ED algorithms. The values of pr0, rc0, Fm0 correspond to the case

without any monitored device, given in Table 5.6.

selected to monitored. The performance gain compared with the original algorithms in

NILM, given in Table 5.6, is shown in Figure 5.5. Two devices in each dataset giving

the best gain are listed in Table 5.12. As shown in Figure 5.5(a), the fridge is the best

effective device to be monitored in REDD 1. By applying the ED algorithm, monitoring

the fridge can achieve a precision gain of 4% and recall gain of 4.2%. Comparing with Ta-

ble 5.2, because the fridge has the confusion on the power demand with the dish washer,

both devices have a near value of edge height, which reduces the performance of the edge

detector based algorithms in a traditional NILM system. By monitoring one of them,

the ambiguity can be overcome. Besides, the fridge also has a high number of activations

during the observation period (1695 times). Obviously, monitoring the devices with high

number of uses allows to increase the overall performance of the algorithms. The second

largest gain in REDD 1 corresponds to the dish washer with 3% and 2% for the gain of

precision and recall, respectively. Besides confused with the fridge on the edges height,

this device is also frequently switched on/off. Meanwhile, the performance improvement

given by the DTW algorithm is lower then the ED one with only 2% of precision gain

and 1.4% of recall gain when monitoring the fridge. The respective results for the dish

washer are 1.9% and 0.25%. The small gain of the DTW algorithm with this dataset can

be explained by the fact that it shows a good performance without any monitored device
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Table 5.12: Most effective devices with DTW and ED algorithms.

DTW ED

REDD 1
2-fridge 2-fridge

3-dish washer 3-dish washer

REDD 2
6-fridge 6-fridge

7-dish washer 7-dish washer

(pr = 83.53%, rc = 76.48%) and it is difficult to improve its performance. In REDD 2, as

shown in Figure 5.5(b), the best gain also corresponds to the fridge with 3.9% of preci-

sion and 6.9% of recall with ED algorithm. The respective values with DTW method are

4.05% and 3.9%. Similar to REDD 1, the fridge in REDD 2 is also the most frequently

used device and its edges are also ambiguous with the lighting system (153W) and dish

washer (426W) when it changes the state from 163W to 426W with a rising edge of

263W. This is also the reason why the dish washer is the second effective device in this

dataset. From the results in Figure 5.5, it can be concluded that the edge detector based

algorithms are sensible with the devices more frequently switched on/off and having the

confusion on the edges height (correlated to the power demand) with the others. There-

fore, it is necessary to analyze these two characteristics to select the effective monitored

devices.
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Figure 5.6: Effect of the number of monitored devices on the performance improve-
ment of the DTW and ED algorithms. The values of pr0, rc0, Fm0 correspond to the

case without any monitored device, given in Table 5.6.
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The performance gain also slowly increases when adding more devices to the monitoring

list, as illustrated in Figure 5.6. In this results, the monitored devices are selected based

on their performance in Figure 5.5. In Figure 5.6(a), with two monitored devices (fridge

and dish washer) in REDD 1, the precision of the ED algorithm can be improved by

6% and the recall by 5%. Meanwhile, with other additional devices, the precision can

only increase by 2.8% (from 6% to 8.8%) and the recall by 1.5% (from 5% to 6.5%).

Similarly, in REDD 2 as shown in Figure 5.6(b), the performance gain obtainable with

the ED algorithm is 5% of precision and 8.5% of recall with only fridge and dish washer

monitored. Then, it increases very slowly when adding more devices to the monitoring

list. Concretely, the precision gain increases from 5% to 6.5% and the recall from 8.5% to

9% with the number of devices from two to seven. Therefore, it is necessary to evaluate

the efficiency of each device in improving the overall performance before deploying the

monitoring sensors.
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Figure 5.7: Performance improvement of the ED algorithm versus the WSN precision.

Similar to CPH and DP, the performance of the edge detector based algorithms also

increases along with the increase of the WSN detection precision, as illustrated by the
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simulation results of ED one with REDD 1 and REDD 2 in Figure 5.7. Because the

operating probability of each device is not divided by the number of states, there is

only one abnormally changing point at pr = 0.5 for these algorithms. This point is not

presented in Figure 5.7 because the value of WSN precision is only tuned from 0.6 to

0.9. Moreover, a WSN precision of 0.5 is equivalent to a random selection of the state,

which is not relevant in our case.

5.2.5 Performance comparison between the two approaches
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Figure 5.8: Performance comparison of the proposed algorithms with two monitored
devices.

Comparing with the CPH and DP methods, it can be noticed that the improvement of

the DTW and ED algorithms is much lower. As presented in Table 5.6, these algorithms

show high performance without monitored device. Concretely, the F-measure of the ED
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Table 5.13: Performance per device in REDD 1 (%).

Device 1 2 3 4 5 6 7 8 9

CPH
pr 65.08 97.66 86.64 78.55 41.69 19.23 22.77 30.14 97.16
rc 36.80 88.95 87.66 79.28 46.53 45.17 35.11 29.46 69.22
Fm 47.01 93.10 87.15 78.91 43.97 26.98 27.63 29.79 80.84

DP
pr 63.94 99.16 96.50 76.55 43.79 22.50 20.63 19.91 94.68
rc 35.84 91.59 92.13 76.00 41.20 46.26 42.84 25.71 73.34
Fm 45.93 95.23 94.26 76.27 42.45 30.28 27.85 22.44 82.66

ED
pr 42.88 93.65 95.81 61.91 31.33 40.52 49.27 21.17 99.75
rc 59.66 80.43 83.88 61.35 68.01 61.91 43.21 19.12 54.18
Fm 49.89 86.54 89.45 61.63 42.90 48.98 46.04 20.09 70.72

DTW
pr 47.54 89.35 80.85 68.81 34.17 87.41 94.36 21.46 99.36
rc 74.95 85.90 86.19 25.05 68.01 65.17 60.77 20.45 67.61
Fm 58.18 87.59 83.43 36.73 45.48 74.67 73.93 20.94 40.47

algorithm is greater than 75% and the DTW one over 79%. Meanwhile, the CPH and DP

algorithms can only show an F-measure lower than 70%. Obviously, high performance

prevents the edge detector based algorithms from giving a high gain. In addition, the

results also come from the fact that performance of these algorithms also depends on

the edge detector capacity. Therefore, despite outperforming the algorithms with the

knapsack approach in a traditional NILM system, both DTW and ED algorithms can

only show a near performance in term of F-measure with two monitored devices, as

illustrated in Figure 5.8. Of course, comparing the increase of the gain in Figures 5.2 and

5.6, the CPH and DP algorithms can show a better performance than the ED and DTW

ones with more than two monitored devices in home. Besides the overall performance, the

performance per device of each proposed algorithms with two monitored devices for each

dataset (selected by the results in Figure 5.1 for CPH and DP algorithms and Figure 5.5

for ED and DTW ones) is also presented in Tables 5.13, 5.14, 5.15 and 5.16, respectively.

Apparently, the detection of the monitored devices is significantly improved. For example

in REDD 1, as in Table 5.13, both fridge (2) and dish washer (3) are identified with the

precision and recall greater than 85% by the CPH and DP algorithms and over 80% by the

edge detector ones. Concretely, without sensors, the performance of the CPH algorithm

with the fridge is only 62.13% of precision and 57.78% of recall as shown in Table 5.7, but

they are significantly improved up to 97.66% and 88.95%, respectively, in SmartSense.

Similarly, the precision of detecting the dish washer also increases from 23.83% to 81.64%

and the recall increases from 69.28% to 87.66%. Meanwhile, the precision of the DTW
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Table 5.14: Performance per device in REDD 2 (%).

Device 1 2 3 4 5 6 7

CPH
pr 23.10 91.60 27.17 99.25 62.23 99.92 27.42
rc 24.20 86.62 85.80 30.73 56.47 92.86 55.58
Fm 23.64 89.04 41.27 46.94 59.21 96.26 36.72

DP
pr 27.18 95.53 26.02 97.33 48.57 99.95 26.82
rc 43.19 90.49 86.80 21.84 38.09 88.44 57.10
Fm 33.36 92.94 40.04 35.67 42.70 93.85 36.50

ED
pr 80.65 94.05 21.55 100 63.09 85.60 82.71
rc 19.65 41.75 99.13 17.62 85.12 85.96 84.43
Fm 31.60 57.82 35.40 29.96 72.47 85.78 83.56

DTW
pr 81.56 95.07 21.55 52.71 63.09 84.37 80.54
rc 29.46 43.19 93.13 39.64 85.12 90.27 83.92
Fm 43.29 59.40 35.01 45.62 72.47 87.22 82.19

Table 5.15: Performance per device in UK-DALE 5 (%).

Device 1 2 3 4 5 6 7 8

CPH
pr 22.83 36.99 91.24 40.35 17.48 22.15 97.46 87.10
rc 69.10 55.31 89.88 24.74 52.20 67.68 85.72 75.84
Fm 34.32 44.33 90.55 30.67 26.19 33.38 91.21 81.08

DP
pr 23.57 40.77 90.57 37.47 25.81 23.08 98.31 88.52
rc 58.02 80.19 89.15 22.66 53.18 72.60 87.45 65.03
Fm 33.52 54.08 89.86 28.24 34.75 35.02 92.56 74.98

Table 5.16: Performance per device in Athemium dataset (%).

Device 1 2 3 4 5 6

CPH
pr 93.55 86.17 98.91 65.31 85.73 99.16
rc 99.14 99.16 81.69 80.41 98.61 95.01
Fm 96.27 92.21 89.48 72.08 91.72 97.04

DP
pr 86.43 89.73 100 65.60 82.63 99.41
rc 99.46 99.16 91.09 87.80 98.89 87.92
Fm 92.49 94.21 95.34 75.09 90.03 93.31
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Table 5.17: Number of computations.

REDD 1 REDD 2
Multiplications Additions Multiplications Additions

CPH 3.36 × 105 3.64 × 107 1.10 × 105 9.20 × 106
DP 1.27 × 105 3.69 × 107 6.69 × 104 3.60 × 106
ED 3.14 × 103 1.68 × 105 2.45 × 103 1.05 × 105

DTW 4.60 × 103 1.47 × 107 3.71 × 103 3.80 × 106
UK-DALE 5 Athemium

Multiplications Additions Multiplications Additions
CPH 7.93 × 106 9.21 × 108 1.02 × 105 6.53 × 106
DP 1.55 × 106 3.58 × 108 7.62 × 104 2.94 × 106

approach increases from 85.39% to 89.35% when detecting the fridge and from 78.85%

to 80.85% when detecting the dish washer. The respective recall is from 83.49% to 85.9%

and from 56.19% to 86.19%. The performance improvement of the monitored devices in

other dataset is similar. In SmartSense, not only the detection of the monitored devices

but the identification of other loads is also improved. It comes from the fact that in

each dataset, these loads have confusions on the power demand with the monitored ones

and the additional information in SmartSense helps to overcome this ambiguity. For

example in REDD 2, referring to Tables 5.8 and 5.14, the performance of the DTW

algorithm when detecting the lighting system can be improved from 94.17% to 95.07%

with precision and from 39.01% to 43.19% with recall because the fridge, which has

one power state ambiguous with the lighting, is monitored by the sensors. Therefore, by

monitoring only a subset of all devices, the overall performance of the NILM algorithms

can be improved using the SmartSense approach.

5.2.6 Complexity analysis

Algorithmic complexity, expressed through the number of multiplications and additions

to process each dataset, is given in Table 5.17 for the proposed algorithms. These param-

eters do not depend on the number of monitored devices. Apparently, the CPH algorithm

is the most complex because it requires a large number of multiplications and additions

to calculate the elements of each tuple. From Section 4.2.2.1, the CPH algorithm has an

exponential complexity in the worst case. If each device has m states and if all possible

combinations are Pareto points, there are mN tuples after the last iteration and the
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Pareto minimization process has the complexity of m2N . Nevertheless, if only L solu-

tions are retained instead of all Pareto points at each iteration, there are only L2 tuples

appearing after combining two input sets. Hence, an L4-complex process is necessary

to search for the Pareto points and that results in a complexity of NL4 for the CPH

algorithm. The selection of L best tuples can be executed as in [3]. Denote r = d1 and

v = −d3, the Pareto points satisfy the following characteristic:

∀i, j ∶ vi ≤ vj ↔ ri ≤ rj . (5.4)

At first, two Pareto points (rmax, vmax) and (rmin, vmin) are selected, which results in

two constant product values cmax = vmax × rmax and cmin = vmin × rmin. To select the

(L − 2) remaining points, the range cmin..cmax will be divided into (L − 1) parts equally

discriminated by (L − 2) boundary points c. For each of (L − 2) values c, a Pareto

point giving the product of v × r closest to c will be kept. The decrease of L allows to

reduce the computational complexity. However, this increases the risk of rejecting the

true combination from the final set of tuples and the decrease of the load disaggregation

performance, as illustrated in Figure 5.9. In Figure 5.9(a), with two monitored devices in

REDD 1, the performance gain can be obtained with 20% of precision and 14.5% of recall

if there are 125 partial solutions retained after each iteration. This selection of L leads

to a large number of multiplications (3.36 × 105) and additions (3.64 × 107) to execute

the dataset. By reducing the value of L, the number of computations can significantly

decrease, e.g. 1.81×105 of multiplications and 4.06×106 of additions with L = 25. However,

the performance of the CPH algorithm also simultaneously decreases down to 17.5% of

precision gain and 12% of recall gain. If keeping only 5 partial solutions, i.e. L = 5, the

number of multiplications and additions decreases to 1.37×105 and 8.49×105, respectively.

Nevertheless, the corresponding obtainable precision and recall gain are only 15.5% and

3%. Similarly, in REDD 2 as shown in Figure 5.9(b), the number of multiplications and

additions reduce from 1.10× 105 and 9.20× 106 to 7.55× 104 and 5.18× 105, respectively,

when changing the value of L from 125 to 5. The performance gain also decreases from

17.5% to 12.22% and 14% to 4.5% for the precision and recall, respectively. Therefore,

driving the value of L rises the need to make a trade-off between the complexity and the

desired performance.

Similar to CPH method, the DP algorithm also needs a large amount of computations.
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Figure 5.9: Effect of the number of Pareto points on the performance and complexity
of the CPH algorithm.

The principle of DP is based on the construction of profit tables. Therefore, the com-

putational complexity depends on the size of each table, correlating to the number of

devices, the aggregate power and the number of computations in each cell, decided by

the number of states of current device. As a consequence, the complexity reduction ef-

fort can be executed by decreasing the number of columns with a scale factor δ, e.g.

wij = wij/δ, i = 1, . . . ,N, j = 1, . . . ,mi, R = R/δ. If possible, the best choice of δ is the

common divisor of R and wij . However, this condition is unrealistic and the effect of the

rounding down operation makes the performance decrease, as shown in Figure 5.10. In

the DP algorithm, the construction of the profit tables is only based on the addition.



Experimental Results on SmartSense 92

5 10 15 20 25 30 35 40 45
Scale factor

0

10

20

30

P
e
rf

o
rm

a
n
c
e
 i
m

p
ro

v
e
m

e
n
t

0

2.5

5

7.5

N
u
m

b
e
r 

o
f 
c
o
m

p
u
ta

ti
o
n
s

#10
7

Precision
Recall
F-measure
Mult
Add

(a) REDD 1

5 10 15 20 25 30 35 40 45
Scale factor

0

6

12

18

P
e

rf
o

rm
a

n
c
e

 i
m

p
ro

v
e

m
e

n
t

0

2.5

5

7.5

N
u

m
b

e
r 

o
f 

c
o

m
p

u
ta

ti
o

n
s

#10
6

Precision
Recall
F-measure
Mult
Add

(b) REDD 2

Figure 5.10: Effect of the scale factor on the performance and complexity of the DP
algorithm.

This is the reason why the scale factor only affects the number of additions and does not

change the number of multiplications, as illustrated in Figure 5.10(a). The results with

REDD 1 in case with two monitored devices show a decrease of the number of additions

from 7.35 × 107 to 8.43 × 106 when increasing the scale factor from 5 to 45. The perfor-

mance of the algorithm also attenuates respectively by the precision gain from 24.5%

to 19% and the recall gain from 15.2% to 5.5%. Meanwhile, Figure 5.10(b) presents the

attenuation of the performance gain from 15% to 12.7% of precision and from 12.2% to

7.2% of recall when the value of δ increases from 5 to 45 in REDD 2. This tuning also

allows to significantly decrease the number of computations. Concretely, the additions
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reduce from 7.08 × 106 to 9 × 105.
Different from the algorithms in the knapsack approach, both ED and DTW are less

complex. Apparently, the computational complexity of the ED algorithm depends on

the number of patterns in the library. If each of the N devices has m patterns, the

device identification procedure needs to browse Nm times to find the minimum distance.

Meanwhile, because taking all power values in a pattern into account, besides the number

of patterns in the library, the complexity of the DTW algorithm is also decided by the

length of each one. If each pattern has an average length of l, the accumulated distance

calculation has a complexity of l2, which makes the DTW become an Nml2-complex

algorithm. Despite less complexity, both ED and DTW algorithms are not suitable for

the real-time application. They need to detect the falling edge before pairing with the

rising one and identifying the corresponding device during this period. On the contrary,

when applied to real-time energy disaggregation, the complexity of the CPH and DP one

is compatible for implementation in an NILM system, since the algorithm is applied on

the main system measuring the global energy consumption.

5.3 Conclusions

In this chapter, we introduce a new load monitoring system, which uses a WSN to de-

tect and provide the operating probability of some devices to help the NILM algorithms

in improving their performance. This system is called sensor-aided non-intrusive load

monitoring (SmartSense). Although deploying a sensors network, SmartSense is less in-

trusive than other intrusive load monitoring systems such as ViridiScope [6], because

only a subset of all devices is selected to attach with the sensors and the identification

is still based on an NILM algorithm. The operation probability is used as a feature and

combined with the traditional features of NILM by a regularization parameter to create

a new one. In this chapter, two approaches are proposed:

• Knapsack approach: the l1-norm minimization problem in [1] is modeled as a

knapsack problem and solved by two proposed algorithms including compositional

Pareto-algebraic heuristic, which is based on a recursive relation, and dynamic

programming, based the the construction of profit tables.
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• Edge detector approach: an edge detector is applied to detect the rising edge and

falling edge of an activation on the aggregate power signal and to compare them

with the existing ones in the library. The rising edge and falling edge can be directly

used as a feature (as in edge detection algorithm) or combined with other active

power values between them (as in dynamic time warping algorithm).

By simulating all four proposed algorithms with four dataset including UK-DALE 5,

REDD 1, REDD 2 and our Athemium data, the performance of the load detection can

be significantly improved with some monitored devices in comparison with traditional

NILM systems. To obtain a good improvement, the devices selected to be monitored

need to satisfy some criteria. In the knapsack approach, selected devices are the one with

high using rate and confusion on the power demand with other devices. Meanwhile, the

edge detector approach needs to monitor the devices more frequently switched on/off and

ambiguous with the others on the edges height. As a consequence, only several devices in

home or building are selected, satisfying these requirements and allowing to significantly

improve the overall performance when monitored. The others are less effective and need

to be ignored when deploying the monitoring sensor network to reduce the cost. In a

practical situation, we have an existing installation to monitor, and all we have is limited

information about it. Users can therefore choose a priori some loads to be monitored

based on their anticipation on the using frequency of each device.

Besides, comparing the performance of the proposed approaches shows that the CPH

and DP algorithms outperform the ED and DTW ones with more than two monitored

devices in each dataset, although in normal NILM system, they are less effective. This

result comes from the fact that the performance of the ED and DTW algorithms also

depends on the edge detector capacity.

However, the algorithms of the knapsack approach show a high complexity presented by

the large amount of multiplications and additions. To reduce the computational com-

plexity, we can drive some parameters such as the number of Pareto points retained

after each iteration in CPH or the scale factor in DP. Nevertheless, it also causes the

attenuation of the performance.



Chapter 6

Conclusions and Perspectives

6.1 Conclusions

In this thesis, we considered state detection and load disaggregation, which can be im-

plemented by three main approaches:

• Intrusive load monitoring: the sensors (including the power meters and the envi-

ronment monitoring sensors) are attached to each individual device. This approach

obviously shows a high accuracy, but requires a high cost as well as too much

technical intervention on the power supply to deploy the sensors.

• Non-intrusive load monitoring: this approach is promising to study because it re-

quires only one power meter installed at the main power entry to measure the

power consumption of all devices. The aggregate power signal is then analyzed to

extract the specific features to identify the operation of the corresponding devices.

The selection of features depends on the sampling frequency of the meters, divided

into two groups:

– High frequency: the features relate to the transient signal waveform, e.g. v-

shape, or the Fourier transform of the stable signal, e.g. harmonics.

– Low frequency: basically corresponding to the power signal of the steady state

such as average power, step-changes of length of each steady duration.
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Apparently, high-frequency based methods can benefit from more characteristics

of the devices and show a higher quality of detection than the low frequency ap-

proaches. However, the price of the hardware also increases along with the frequency

and the identification is more complex. For example, it is necessary to transform

the signal before applying the algorithms.

• Hybrid load monitoring: to improve the performance of the NILM algorithms, some

additional information such as acoustic noise, light intensity, occupancy can be used

to detect the operation of some specific devices. Obviously, this approach leads to

a high cost than NILM, but it is still less intrusive.

In our work, in Chapter 3, we firstly try to solve the l1-norm minimization problem in

NILM by a brute force algorithm. This method sequentially tests all combinations of

states to find one giving the minimum absolute error between the aggregate power and

total power demand of the identified devices. Obviously, this algorithm cannot show a

good performance if there are devices with the same or near power demand. Therefore,

instead of selecting the combination with the least error, we proposed to keep all com-

binations giving an error around the least value and compare with the previous state of

the devices to determine the final solution. The comparison can be based on the distance

from the previous state and the current state or the state transition probability between

them. The simulation results with the Athemium data, retrieved by monitoring some

devices in our coffee room, show that the performance can be significantly improved by

these two versions of the brute force algorithm.

The main contribution of this thesis is presented in Chapter 4 with a hybrid load moni-

toring system called SmartSense, in which a WSN is deployed to monitor some specific

devices and provide their operating probability. There are two approaches proposed to

combine the probability feature with the NILM algorithms, including:

• Knapsack approach: formulated by combining the probability of the devices with

the minimization problem in NILM. The Knapsack problem is then solved by a

compositional Pareto-algebraic heuristic (CPH) or a dynamic programming (DP)

algorithm.

• Edge detector approach: an edge detector is applied to detect the rising edges

and falling edges of an activation on the power signal to create the features. The
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probability information of each device is then combined with these features by a

regularization parameter to form new more effective ones. If the ED algorithm is

applied, the features comprise only the rising edge and falling edge, while in the

DTW one, all active power values between these edges are retained.

In Chapter 5, the proposed algorithms are simulated with four dataset including two

houses from REDD, one house in UK-DALE and our Athemium data. The results show

that the performance can be significantly improved by monitoring a part of devices.

Besides, there are several parameters affecting the performance of the algorithms in

SmartSense, such as type and number of monitored devices or the precision of the sensor

network. The selection of these parameters needs to make balance between the desired

performance and the cost of WSN deployment. Besides, the computational complexity

is also necessary to be considered. Despite performing a higher performance with more

than two monitored devices, the CPH and DP algorithms require a larger amount of

computations than the ED and DTW ones.
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Figure 6.1: Performance of all proposed algorithms with REDD dataset House 1. The
index following the algorithms denotes the number of monitored devices.

In Figure 6.1, performance of all proposed algorithms in this thesis with REDD dataset

House 1 is presented. The least absolute error based algorithm (LAE), state difference
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based algorithm (DIFF) and state transition probability based algorithm (PROBA) are

introduced in Chapter 3. Meanwhile, the four proposed algorithms in SmartSense with

one monitored device (DP1, CPH1, ED1, DTW1) and two monitored devices (DP2,

CPH2, ED2, DTW2) are compared with the corresponding algorithms in state of the art

(DP0, CPH0, ED0, DTW0). The three l1-norm minimization based algorithms intro-

duced in Chapter 3 (LAE, DIFF, PROBA) show the worst detection. Meanwhile, in the

SmartSense system, although CPH and DP show a worse performance when applied in

traditional NILM, the algorithms used in the knapsack approach are more significantly

improved than the edge detector algorithms (DTW1, DTW2, ED1, ED2) when several

devices in home are monitored by the WSN (DP1, DP2, CPH1, CPH2). In addition,

they also outperform other algorithms in term of recall with more than one monitored

devices.

6.2 Perspectives

Along with the development of smart homes and smart buildings, load monitoring be-

comes one of the most important issues, in which non-intrusive approach is the more

promising because of less technical intervention on the power supply. Sensor-aided NILM

or SmartSense, can become an efficient model for NILM researches because it can signifi-

cantly improve performance of existing NILM algorithms with the deployment of several

low-cost, low-power and less complicated sensors to monitor a subset of all devices in

home or building. For example, the operation of the fridge compressor can be easily

detected by a vibration sensor, while the lighting system can be monitored by a light

sensor. These sensors do not require too much technical intervention and the users can

easily install the sensors by themselves. As a consequence, the intrusive requirement is

still respected, which is quite different from the intrusive load monitoring such as ViridiS-

cope [6]. In addition, because the detection of sensors is used to estimate the operating

probability of corresponding devices and used as an additional information in NILM

algorithms, effect of false detection can be reduced.

Using sensors to monitor the operation of electrical devices has been developed for many

decades. Moreover, the appearance of the electrical devices with embedded sensors such

as smart televisions, smart lamps, etc., allows the SmartSense model to be deployed

more conveniently. The opportunities for extending the scope of this thesis correspond
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to the development of disaggregation algorithms as well as the improvement of probability

estimation.

The most significant advantage of the SmartSense model is the reuse of existing NILM al-

gorithms. In this thesis, we applied the SmartSense idea to the edge detector algorithms,

which is the first approach of NILM proposed by G. Hart [1], and the proposed knapsack

approach to solve the l1-norm minimization problem in NILM. The SmartSense model

shows results with significant improvements thanks to the different proposed algorithms.

Of course, other approaches can also be applied in SmartSense such as HMM, ANN, deep

learning neural networks, etc. Concretely, in any HMM, emission probability and transi-

tion probability are two of the most important parameters to be learned. When applied

in SmartSense, the emission probability corresponding to each state can be studied to be

replaced by the operating probability estimated by the WSN. Meanwhile, with ANN or

deep learning neural network, the operating probability of each device can be considered

as an input, along with the aggregate power measurement, to determine the state of

devices at the output. The number of hidden layers and the structure of the network are

principal issues to be studied in future work. Besides, we also need to study self-training

algorithms, which are able to automatically learn the parameters by an adaptive process

without training data. Algorithm which can be applied to the devices with variable loads

is also an important issue.

In the knapsack approach of this thesis, the operating probability of each state strongly

depends on the number of states of each device. This becomes a problem if a device

has too many operating states. Because of being divided by the number of states, the

operating probability of each state becomes very low although the corresponding device

is detected as being switched on with high precision. Therefore, developing an algorithm

for probability estimation in order to eliminate the effect of the number of states also

needs to be studied in future work. Besides, the operating probability of cycling loads

such as fridge can also be reported from the history of data series. This allows to increase

the precision of the detection. Additionally, we also need to deploy a WSN in certain

rooms to verify the operation of SmartSense in real condition instead of simulating with

publicly dataset. This will be done during 2017 in the context of the SmartSense platform

deployment funded by INRIA and the "Region Bretagne" in the context of the CPER

SmartSense funding.



Personal Publications

• X.-C. Le, B. Vrigneau, O. Sentieys. l1-norm Minimization based Algorithm for

Non-Intrusive Load Monitoring. IEEE International Conference on Pervasive Com-

puting and Communication Workshops (PerCom Workshops), IEEE Workshop on

Pervasive Energy Services, Mar 2015, St. Louis, United States. pp.299 - 304.

• X.-C. Le, B. Vrigneau, O. Sentieys. Operating Probability in Improving Perfor-

mance of Non-Intrusive Load Monitoring Algorithms. Submitted on IEEE Trans-

actions on Smart Grid.

• X.-C. Le, B. Vrigneau, O. Sentieys. Dynamic Programming in Sensor-aided Non-

Intrusive Load Monitoring. Submitted on ACM Transactions on Sensor Networks.

100



Bibliography

[1] G.W. Hart. Nonintrusive appliance load monitoring. Proceedings of the IEEE, 80

(12):1870–1891, Dec 1992. ISSN 0018-9219. doi: 10.1109/5.192069.

[2] Jing Liao, Georgia Elafoudi, Lina Stankovic, and Vladimir Stankovic. Non-intrusive

appliance load monitoring using low-resolution smart meter data. In In Proceedings

of the 5th Annual IEEE International Conference on Smart Grid Communications,

pages 541–546, Venice, Italy, 2014.

[3] H. Shojaei, T. Basten, M. Geilen, and A. Davoodi. A fast and scalable multidimen-

sional multiple-choice knapsack heuristic. ACM Transactions on Design Automation

of Electronic Systems, 18(4), Oct. 2013.

[4] J. Zico Kolter and Matthew J. Johnson. REDD: A public data set for energy

disaggregation research. In in SustKDD, 2011.

[5] Dong Chen, Sean Barker, Adarsh Subbaswamy, David Irwin, and Prashant Shenoy.

Non-intrusive occupancy monitoring using smart meters. In Proceedings of the 5th

ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building,

pages 1–8, New York, NY, USA, 2013.

[6] Younghun Kim, Thomas Schmid, Zainul M. Charbiwala, and Mani B. Srivastava.

Viridiscope: Design and implementation of a fine grained power monitoring system

for homes. In Proc. Ubicomp09, pages 245–254, 2009.

[7] Ahmed Zoha, Alexander Gluhak, Muhammad Ali Imran, and Sutharshan Ra-

jasegarar. Non-intrusive load monitoring approaches for disaggregated energy

sensing: A survey. Sensors, 12(12):16838, 2012. ISSN 1424-8220. doi: 10.3390/

s121216838. URL http://www.mdpi.com/1424-8220/12/12/16838.

101

http://www.mdpi.com/1424-8220/12/12/16838


Bibliography 102

[8] Anthony Rowe, Mario Berges, and Raj Rajkumar. Contactless sensing of appli-

ance state transitions through variations in electromagnetic fields. In Proceedings

of the 2Nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in

Building, BuildSys ’10, pages 19–24, New York, NY, USA, 2010. ACM. ISBN 978-1-

4503-0458-0. doi: 10.1145/1878431.1878437. URL http://doi.acm.org/10.1145/

1878431.1878437.

[9] Deokwoo Jung and Andreas Savvides. Estimating building consumption breakdowns

using on/off state sensing and incremental sub-meter deployment. In Proceedings

of the 8th ACM Conference on Embedded Networked Sensor Systems, SenSys ’10,

pages 225–238, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0344-6. doi:

10.1145/1869983.1870006. URL http://doi.acm.org/10.1145/1869983.1870006.

[10] M. Hazas, A. Friday, and J. Scott. Look back before leaping forward: Four decades

of domestic energy inquiry. IEEE Pervasive Computing, 10(1):13–19, Jan. 2011.

ISSN 1536-1268. doi: 10.1109/MPRV.2010.89.

[11] A. Prudenzi. A neuron nets based procedure for identifying domestic appliances

pattern-of-use from energy recordings at meter panel. In Power Engineering Society

Winter Meeting, 2002. IEEE, volume 2, pages 941–946 vol.2, 2002. doi: 10.1109/

PESW.2002.985144.

[12] Jack Kelly and William Knottenbelt. Neural nilm: Deep neural networks applied

to energy disaggregation. In Proceedings of the 2Nd ACM International Conference

on Embedded Systems for Energy-Efficient Built Environments, BuildSys’15, pages

55–64, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3981-0. doi: 10.1145/

2821650.2821672. URL http://doi.acm.org/10.1145/2821650.2821672.

[13] Oliver Parson, Siddhartha Ghosh, Mark Weal, and Alex Rogers. Non-intrusive

load monitoring using prior models of general appliance types. In 1st International

Workshop on Non-Intrusive Load Monitoring, pages 356–362, Pittsburgh, PA, USA,

2012.

[14] Hyungsul Kim, Manish Marwah, Martin Arlitt, Geoff Lyon, and Jiawei Han. Unsu-

pervised disaggregation of low frequency power measurements. In 11th International

Conference on Data Mining, pages 747–758, Arizona, USA, 2011.

http://doi.acm.org/10.1145/1878431.1878437
http://doi.acm.org/10.1145/1878431.1878437
http://doi.acm.org/10.1145/1869983.1870006
http://doi.acm.org/10.1145/2821650.2821672


Bibliography 103

[15] C. Laughman, Kwangduk Lee, R. Cox, S. Shaw, S. Leeb, L. Norford, and P. Arm-

strong. Power signature analysis. Power and Energy Magazine, IEEE, 1(2):56–63,

Mar 2003. ISSN 1540-7977. doi: 10.1109/MPAE.2003.1192027.

[16] S.B. Leeb, S.R. Shaw, and Jr. Kirtley, J.L. Transient event detection in spectral

envelope estimates for nonintrusive load monitoring. Power Delivery, IEEE Trans-

actions on, 10(3):1200–1210, Jul 1995. ISSN 0885-8977. doi: 10.1109/61.400897.

[17] D. Srinivasan, W. S. Ng, and A.C. Liew. Neural-network-based signature recognition

for harmonic source identification. Power Delivery, IEEE Transactions on, 21(1):

398–405, Jan 2006. ISSN 0885-8977. doi: 10.1109/TPWRD.2005.852370.

[18] H. Y. Lam, G. S. K. Fung, and W. K. Lee. A novel method to construct taxonomy

electrical appliances based on load signaturesof. IEEE Transactions on Consumer

Electronics, 53(2):653–660, May 2007. ISSN 0098-3063. doi: 10.1109/TCE.2007.

381742.

[19] Sidhant Gupta, Matthew S. Reynolds, and Shwetak N. Patel. Electrisense: Single-

point sensing using emi for electrical event detection and classification in the home.

In In Proceedings of the 12th ACM International Conference on Ubiquitous Com-

puting, pages 139–148, Copenhagen, Denmark, 2010.

[20] K. Y. Chen, S. Gupta, E. C. Larson, and S. Patel. Dose: Detecting user-driven

operating states of electronic devices from a single sensing point. In Pervasive

Computing and Communications (PerCom), 2015 IEEE International Conference

on, pages 46–54, Mar. 2015. doi: 10.1109/PERCOM.2015.7146508.

[21] Guoming Tang and Kui Wu. A framework for occupancy-aided energy disaggre-

gation. In Proceedings of the Seventh International Conference on Future Energy

Systems, Waterloo, ON, Canada, June 21 - 24, 2016 - Poster Sessions, pages 2:1–

2:2, 2016. doi: 10.1145/2939912.2939914. URL http://doi.acm.org/10.1145/

2939912.2939914.

[22] Mario Berges, Lucio Soibelman, and H. Scott Matthews. Leveraging data from

environmental sensors to enhance electrical load disaggregation algorithms. In Pro-

ceedings of the 13th International Conference on Computing in Civil and Build-

ing Engineering, Nottingham, UK, jun 2010. URL http://www.marioberges.com/

pubs/2010_berges_icccbe.pdf.

http://doi.acm.org/10.1145/2939912.2939914
http://doi.acm.org/10.1145/2939912.2939914
http://www.marioberges.com/pubs/2010_berges_icccbe.pdf
http://www.marioberges.com/pubs/2010_berges_icccbe.pdf


Bibliography 104

[23] https://www.smartgrid.gov/, .

[24] S. Galli, A. Scaglione, and Zhifang Wang. Power line communications and the

smart grid. In Smart Grid Communications (SmartGridComm), 2010 First IEEE

International Conference on, pages 303–308, Oct 2010. doi: 10.1109/SMARTGRID.

2010.5622060.

[25] S. Galli, A. Scaglione, and Zhifang Wang. For the grid and through the grid: The

role of power line communications in the smart grid. Proceedings of the IEEE, 99

(6):998–1027, June 2011. ISSN 0018-9219. doi: 10.1109/JPROC.2011.2109670.

[26] V.C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G.P. Hancke.

Smart grid technologies: Communication technologies and standards. Industrial

Informatics, IEEE Transactions on, 7(4):529–539, Nov 2011. ISSN 1551-3203. doi:

10.1109/TII.2011.2166794.

[27] L.T. Berger, A. Schwager, and J.J. Escudero-Garzas. Power line communications

for smart grid applications. Journal of Electrical and Computer Engineering, 2013,

2013. URL http://dx.doi.org/10.1155/2013/712376.

[28] Yuvraj Agarwal, Rajesh Gupta, Thomas Weng, and Bharathan Balaji, Bharathan

andx Dutta. Duty-cycling buildings aggressively: The next frontier in HVAC control.

In IEEE/ACM Information Processor in Sensor Networks, pages 246–257, Chicago,

IL, USA, April 2011.

[29] T. Weng and Y. Agarwal. From buildings to smart buildings-sensing and actuation

to improve energy efficiency. Design Test of Computers, IEEE, 29(4):36–44, 2012.

ISSN 0740-7475. doi: 10.1109/MDT.2012.2211855.

[30] Yuvraj Agarwal, Bharathan Balaji, Rajesh Gupta, Jacob Lyles, Michael Wei, and

Thomas Weng. Occupancy-driven energy management for smart building automa-

tion. In Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for

Energy-Efficiency in Building, pages 1–6, New York, NY, USA, 2010.

[31] Jiakang Lu, Tamim Sookoor, Vijay Srinivasan, Ge Gao, Brian Holben, John

Stankovic, Eric Field, and Kamin Whitehouse. The smart thermostat: Using occu-

pancy sensors to save energy in homes. In Proceedings of the 8th ACM Conference

on Embedded Networked Sensor Systems, SenSys ’10, pages 211–224, New York, NY,

USA, 2010. ACM. ISBN 978-1-4503-0344-6. doi: 10.1145/1869983.1870005.

https://www.smartgrid.gov/
http://dx.doi.org/10.1155/2013/712376


Bibliography 105

[32] Shengwei Wang, John Burnett, and Hoishing Chong. Experimental validation of

co2-based occupancy detection for demand-controlled ventilation. Indoor and Built

Environment, 8(6):377–391, 1999. doi: 10.1177/1420326X9900800605. URL http:

//ibe.sagepub.com/content/8/6/377.abstract.

[33] A. Ridi, C. Gisler, and J. Hennebert. User interaction event detection in the context

of appliance monitoring. In Pervasive Computing and Communication Workshops

(PerCom Workshops), 2015 IEEE International Conference on, pages 323–328, Mar.

2015. doi: 10.1109/PERCOMW.2015.7134056.

[34] M. Zeifman and K. Roth. Nonintrusive appliance load monitoring: Review and

outlook. IEEE Transactions on Consumer Electronics, 57(1):76–84, 2011. ISSN

0098-3063. doi: 10.1109/TCE.2011.5735484.

[35] M. Baranski and Voss J. Nonintrusive appliance load monitoring based on an optical

sensor. In Power Tech Conference Proceedings, 2003 IEEE Bologna, volume 4, pages

8 pp. Vol.4–, Jun. 2003. doi: 10.1109/PTC.2003.1304732.

[36] Mario Berges and Anthony Rowe. Appliance classification and energy manage-

ment using multi-modal sensing. In Proceedings of the Third ACM Workshop

on Embedded Sensing Systems for Energy-Efficiency in Buildings, BuildSys ’11,

pages 51–52, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0749-9. doi:

10.1145/2434020.2434037. URL http://doi.acm.org/10.1145/2434020.2434037.

[37] M. Amac Guvensan, Z. Cihan Taysi, and Tommaso Melodia. Energy monitor-

ing in residential spaces with audio sensor nodes: TinyEARS. Ad Hoc Net-

works, 11(5):1539 – 1555, 2013. ISSN 1570-8705. doi: http://dx.doi.org/10.1016/j.

adhoc.2012.10.002. URL http://www.sciencedirect.com/science/article/pii/

S1570870512001898.

[38] M. Uddin and T. Nadeem. Energysniffer: Home energy monitoring system using

smart phones. In 2012 8th International Wireless Communications and Mobile Com-

puting Conference (IWCMC), pages 159–164, Aug. 2012.

[39] Deokwoo Jung and Andreas Savvides. Theory and algorithm of estimating energy

consumption breakdowns using on/off state sensing. ACM Trans. Sen. Netw., 11

(1):5:1–5:36, sep 2014. ISSN 1550-4859. doi: 10.1145/2630880. URL http://doi.

acm.org/10.1145/2630880.

http://ibe.sagepub.com/content/8/6/377.abstract
http://ibe.sagepub.com/content/8/6/377.abstract
http://doi.acm.org/10.1145/2434020.2434037
http://www.sciencedirect.com/science/article/pii/S1570870512001898
http://www.sciencedirect.com/science/article/pii/S1570870512001898
http://doi.acm.org/10.1145/2630880
http://doi.acm.org/10.1145/2630880


Bibliography 106

[40] Christian Beckel, Wilhelm Kleiminger, Thorsten Staake, and Silvia Santini. Im-

proving device-level electricity consumption breakdowns in private households us-

ing on/off events. SIGBED Rev., 9(3):32–38, July 2012. ISSN 1551-3688. doi:

10.1145/2367580.2367586. URL http://doi.acm.org/10.1145/2367580.2367586.

[41] http://qualisteo.com/.

[42] http://smart-impulse.com/, .

[43] Steven Drenker and Ab Kader. Nonintrusive monitoring of electric loads. IEEE

Computer Applications in Power, 12(4):47–51, 1999.

[44] Leslie K. Norford and Steven B. Leeb. Non-intrusive electrical load monitoring in

commercial buildings based on steady-state and transient load-detection algorithms.

Energy and Buildings, 24(1):51 – 64, 1996. ISSN 0378-7788. doi: http://dx.doi.org/

10.1016/0378-7788(95)00958-2.

[45] M.L. Marceau and R. Zmeureanu. Nonintrusive load disaggregation computer pro-

gram to estimate the energy consumption of major end uses in residential buildings.

Energy Conversion and Management, 41(13):1389 – 1403, 2000. ISSN 0196-8904.

doi: http://dx.doi.org/10.1016/S0196-8904(99)00173-9.

[46] A.I. Cole and A. Albicki. Data extraction for effective non-intrusive identification

of residential power loads. In Instrumentation and Measurement Technology Con-

ference, 1998. IMTC/98. Conference Proceedings. IEEE, volume 2, pages 812–815

vol.2, May 1998. doi: 10.1109/IMTC.1998.676838.

[47] C.-C. Chuang, T. J. T. Sung, G.-Y. Lin, J. Y. C. Wen, and R.-I Chang. Non-intrusive

appliance monitoring now: Effective data, generative modelling and LETE. In EN-

ERGY 2011: The First International Conference on Smart Grids, Green Communi-

cations and IT Energy-aware Technologies, pages 81–86, Venice/Mestre, Italy, May

2011.

[48] N. Batra, H. Dutta, and A. Singh. Indic: Improved non-intrusive load monitoring

using load division and calibration. In Machine Learning and Applications (ICMLA),

2013 12th International Conference on, volume 1, pages 79–84, Dec 2013. doi:

10.1109/ICMLA.2013.21.

http://doi.acm.org/10.1145/2367580.2367586
http://qualisteo.com/
http://smart-impulse.com/


Bibliography 107

[49] Linda Farinaccio and Radu Zmeureanu. Using a pattern recognition approach

to disaggregate the total electricity consumption in a house into the major end-

uses. Energy and Buildings, 30(3):245 – 259, 1999. ISSN 0378-7788. doi: http:

//dx.doi.org/10.1016/S0378-7788(99)00007-9. URL http://www.sciencedirect.

com/science/article/pii/S0378778899000079.

[50] J. Z. Kolter, Siddharth Batra, and Andrew Y. Ng. Energy disaggregation via dis-

criminative sparse coding. In J.D. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R.S.

Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems

23, pages 1153–1161. Curran Associates, Inc., 2010. URL http://papers.nips.

cc/paper/4054-energy-disaggregation-via-discriminative-sparse-coding.

pdf.

[51] N. Pathak, N. Roy, and A. Biswas. Iterative signal separation assisted en-

ergy disaggregation. In Green Computing Conference and Sustainable Comput-

ing Conference (IGSC), 2015 Sixth International, pages 1–8, Dec. 2015. doi:

10.1109/IGCC.2015.7393701.

[52] A. G. Ruzzelli, C. Nicolas, A. Schoofs, and G. M. P. O’Hare. Real-time recognition

and profiling of appliances through a single electricity sensor. In 2010 7th Annual

IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communi-

cations and Networks (SECON), pages 1–9, Jun. 2010. doi: 10.1109/SECON.2010.

5508244.

[53] H. Najmeddine, K. El Khamlichi Drissi, C. Pasquier, C. Faure, K. Kerroum, A. Diop,

T. Jouannet, and M. Michou. State of art on load monitoring methods. In Power and

Energy Conference, 2008. PECon 2008. IEEE 2nd International, pages 1256–1258,

Dec. 2008. doi: 10.1109/PECON.2008.4762669.

[54] B. Ribeiro M. Figueiredo, A. de Almeida. An experimental study on electrical

signature identification of non-intrusive load monitoring (NILM) systems. Adaptive

and Natural Computing Algorithms, pages 31–40. ISSN 0302-9743. doi: 10.1007/

978-3-642-20267-4_4.

[55] Jack Kelly and William Knottenbelt. The UK-DALE dataset, domestic appliance-

level electricity demand and whole-house demand from five UK homes. Scientific

Data, 2(150007), 2015. doi: 10.1038/sdata.2015.7.

http://www.sciencedirect.com/science/article/pii/S0378778899000079
http://www.sciencedirect.com/science/article/pii/S0378778899000079
http://papers.nips.cc/paper/4054-energy-disaggregation-via-discriminative-sparse-coding.pdf
http://papers.nips.cc/paper/4054-energy-disaggregation-via-discriminative-sparse-coding.pdf
http://papers.nips.cc/paper/4054-energy-disaggregation-via-discriminative-sparse-coding.pdf


Bibliography 108

[56] N. Batra, J. Kelly, O. Parson, H. Dutta, W. Knottenbelt, A. Rogers, A. Singh, and

M. Srivastava. NILMTK: An open source toolkit for non-intrusive load monitoring.

ArXiv e-prints, Apr. 2014.

[57] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Com-

put., 9(8):1735–1780, Nov. 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.

URL http://dx.doi.org/10.1162/neco.1997.9.8.1735.

[58] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.

Extracting and composing robust features with denoising autoencoders. In Pro-

ceedings of the 25th International Conference on Machine Learning, ICML ’08,

pages 1096–1103, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-205-4. doi:

10.1145/1390156.1390294. URL http://doi.acm.org/10.1145/1390156.1390294.

[59] S. N. Akshay Uttama Nambi, T. G. Papaioannou, D. Chakraborty, and K. Aberer.

Sustainable energy consumption monitoring in residential settings. In Computer

Communications Workshops (INFOCOM WKSHPS), 2013 IEEE Conference on,

pages 1–6, Apr. 2013. doi: 10.1109/INFCOMW.2013.6562866.

[60] R. Lukaszewski, K. Liszewski, and W. Winiecki. Methods of electrical appli-

ances identification in systems monitoring electrical energy consumption. In In-

telligent Data Acquisition and Advanced Computing Systems (IDAACS), 2013

IEEE 7th International Conference on, volume 01, pages 10–14, Sep. 2013. doi:

10.1109/IDAACS.2013.6662630.

[61] A. Zoha, A. Gluhak, M. Nati, and M. A. Imran. Low-power appliance monitoring

using factorial hidden markov models. In Intelligent Sensors, Sensor Networks and

Information Processing, 2013 IEEE Eighth International Conference on, pages 527–

532, Apr. 2013. doi: 10.1109/ISSNIP.2013.6529845.

[62] R. Jia, Y. Gao, and C. J. Spanos. A fully unsupervised non-intrusive load monitoring

framework. In 2015 IEEE International Conference on Smart Grid Communications

(SmartGridComm), pages 872–878, Nov. 2015. doi: 10.1109/SmartGridComm.2015.

7436411.

[63] A. Ridi, C. Gisler, and J. Hennebert. Appliance and state recognition using hidden

markov models. In Data Science and Advanced Analytics (DSAA), 2014 Interna-

tional Conference on, pages 270–276, Oct. 2014. doi: 10.1109/DSAA.2014.7058084.

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://doi.acm.org/10.1145/1390156.1390294


Bibliography 109

[64] J. Liang, S. K. K. Ng, G. Kendall, and J. W. M. Cheng. Load signature study part i:

Basic concept, structure, and methodology. IEEE Transactions on Power Delivery,

25(2):551–560, Apr. 2010. ISSN 0885-8977.

[65] J. Liang, S. K. K. Ng, G. Kendall, and J. W. M. Cheng. Load signature study part

ii: Disaggregation framework, simulation, and applications. IEEE Transactions on

Power Delivery, 25(2):561–569, Apr. 2010. ISSN 0885-8977. doi: 10.1109/TPWRD.

2009.2033800.

[66] A. Cole and A. Albicki. Nonintrusive identification of electrical loads in a three-phase

environment based on harmonic content. In Instrumentation and Measurement Tech-

nology Conference, 2000. IMTC 2000. Proceedings of the 17th IEEE, volume 1, pages

24–29 vol.1, May 2000. doi: 10.1109/IMTC.2000.846806.

[67] Kosuke Suzuki, Shinkichi Inagaki, Tatsuya Suzuki, Hisahide Nakamura, and Koichi

Ito. Nonintrusive appliance load monitoring based on integer programming. In

SICE Annual Conference, 2008, pages 2742–2747, Aug. 2008. doi: 10.1109/SICE.

2008.4655131.

[68] J. Li, S. West, and G. Platt. Power decomposition based on svm regression. In

Modelling, Identification Control (ICMIC), 2012 Proceedings of International Con-

ference on, pages 1195–1199, Jun. 2012.

[69] S. R. Shaw, S. B. Leeb, L. K. Norford, and R. W. Cox. Nonintrusive load

monitoring and diagnostics in power systems. IEEE Transactions on Instru-

mentation and Measurement, 57(7):1445–1454, Jul. 2008. ISSN 0018-9456. doi:

10.1109/TIM.2008.917179.

[70] R. Cox, S. B. Leeb, S. R. Shaw, and L. K. Norford. Transient event detection for non-

intrusive load monitoring and demand side management using voltage distortion. In

Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition,

2006. APEC ’06., pages 1751–1757, Mar. 2006. doi: 10.1109/APEC.2006.1620777.

[71] H. T. Yang, H. H. Chang, and C. L. Lin. Design a neural network for features

selection in non-intrusive monitoring of industrial electrical loads. In 2007 11th

International Conference on Computer Supported Cooperative Work in Design, pages

1022–1027, Apr. 2007. doi: 10.1109/CSCWD.2007.4281579.



Bibliography 110

[72] Y. H. Lin and M. S. Tsai. A novel feature extraction method for the development of

nonintrusive load monitoring system based on bp-ann. In 2010 International Sym-

posium on Computer, Communication, Control and Automation (3CA), volume 2,

pages 215–218, May 2010. doi: 10.1109/3CA.2010.5533571.

[73] H. H. Chang, P. C. Chien, L. S. Lin, and N. Chen. Feature extraction of non-

intrusive load-monitoring system using genetic algorithm in smart meters. In e-

Business Engineering (ICEBE), 2011 IEEE 8th International Conference on, pages

299–304, Oct. 2011. doi: 10.1109/ICEBE.2011.48.

[74] Hsueh-Hsien Chang, Hong-Tzer Yang, and Ching-Lung Lin. Load Identification

in Neural Networks for a Non-intrusive Monitoring of Industrial Electrical Loads,

pages 664–674. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-

3-540-92719-8. doi: 10.1007/978-3-540-92719-8_60. URL http://dx.doi.org/10.

1007/978-3-540-92719-8_60.

[75] K. D. Lee, S. B. Leeb, L. K. Norford, P. R. Armstrong, J. Holloway, and S. R. Shaw.

Estimation of variable-speed-drive power consumption from harmonic content. IEEE

Transactions on Energy Conversion, 20(3):566–574, Sep. 2005. ISSN 0885-8969. doi:

10.1109/TEC.2005.852963.

[76] W. Wichakool, A. T. Avestruz, R. W. Cox, and S. B. Leeb. Modeling and estimating

current harmonics of variable electronic loads. IEEE Transactions on Power Elec-

tronics, 24(12):2803–2811, Dec. 2009. ISSN 0885-8993. doi: 10.1109/TPEL.2009.

2029231.

[77] Hsueh-Hsien Chang. Non-intrusive demand monitoring and load identification for

energy management systems based on transient feature analyses. Energies, 5(11):

4569, 2012. ISSN 1996-1073. doi: 10.3390/en5114569. URL http://www.mdpi.com/

1996-1073/5/11/4569.

[78] H. Y. Lam F. H. Y. Chan M. Lucente W. K. Lee, G. S. K. Fung. Exploration on

load signatures. In Proceeding of International Conference on Electrical Engineering

(ICEE), pages 1–5, Sapporo, Japan, Jul. 2004.

[79] http://athemium.org/.

[80] http://www.netvox.com.tw/Z-800.asp.

http://dx.doi.org/10.1007/978-3-540-92719-8_60
http://dx.doi.org/10.1007/978-3-540-92719-8_60
http://www.mdpi.com/1996-1073/5/11/4569
http://www.mdpi.com/1996-1073/5/11/4569
http://athemium.org/
http://www.netvox.com.tw/Z-800.asp


Bibliography 111

[81] D.L. Olson and D. Delen. Advanced Data Mining Techniques. Springer, 2008.

[82] Michail G. Lagoudakis. The 0-1 knapsack problem – an introductory survey. Tech-

nical report, 1996.

[83] James C. Bean. Multiple choice Knapsack functions. Technical report, Department

of Industrial and Operations Engineering, The University of Michigan, Ann, Arbor,

MI 48109-2117, January 1988.

[84] Silvano Martello and Paolo Toth. Solution of the zero-one multiple knapsack

problem. European Journal of Operational Research, 4(4):276 – 283, 1980. ISSN

0377-2217. doi: http://dx.doi.org/10.1016/0377-2217(80)90112-5. URL http:

//www.sciencedirect.com/science/article/pii/0377221780901125. Combina-

tional Optimization.

[85] M.E. Dyer, N. Kayal, and J. Walker. A branch and bound algorithm for solving

the multiple-choice knapsack problem. Journal of Computational and Applied Math-

ematics, 11(2):231 – 249, 1984. ISSN 0377-0427. doi: http://dx.doi.org/10.1016/

0377-0427(84)90023-2. URL http://www.sciencedirect.com/science/article/

pii/0377042784900232.

[86] Ulungu-Ekunda Lukata and Jacques Teghem. Solving Multi-Objective Knap-

sack Problem by a Branch-and-Bound Procedure, pages 269–278. Springer Berlin

Heidelberg, Berlin, Heidelberg, 1997. ISBN 978-3-642-60667-0. doi: 10.1007/

978-3-642-60667-0_26.

[87] A. S. Anagun and T. Sarac. Optimization of Performance of Genetic Algorithm for

0-1 Knapsack Problems Using Taguchi Method, pages 678–687. Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2006. ISBN 978-3-540-34076-8. doi: 10.1007/11751595_

72. URL http://dx.doi.org/10.1007/11751595_72.

[88] Alok Singh and Anurag Singh Baghel. A new grouping genetic algorithm for the

quadratic multiple knapsack problem. In Proceedings of the 7th European Conference

on Evolutionary Computation in Combinatorial Optimization, EvoCOP’07, pages

210–218, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 978-3-540-71614-3. URL

http://dl.acm.org/citation.cfm?id=1761927.1761946.

[89] A. S. Fukunaga. A new grouping genetic algorithm for the multiple knapsack prob-

lem. In 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress

http://www.sciencedirect.com/science/article/pii/0377221780901125
http://www.sciencedirect.com/science/article/pii/0377221780901125
http://www.sciencedirect.com/science/article/pii/0377042784900232
http://www.sciencedirect.com/science/article/pii/0377042784900232
http://dx.doi.org/10.1007/11751595_72
http://dl.acm.org/citation.cfm?id=1761927.1761946


Bibliography 112

on Computational Intelligence), pages 2225–2232, Jun. 2008. doi: 10.1109/CEC.

2008.4631094.

[90] W. Shen, B. Xu, and J. p. Huang. An improved genetic algorithm for 0-1 knapsack

problems. In 2011 Second International Conference on Networking and Distributed

Computing, pages 32–35, Sept 2011. doi: 10.1109/ICNDC.2011.14.

[91] P. Toth. Dynamic programming algorithms for the zero-one knapsack problem.

Computing, 25(1):29–45. ISSN 1436-5057. doi: 10.1007/BF02243880. URL http:

//dx.doi.org/10.1007/BF02243880.

[92] H. Shojaei, A. Ghamarian, T. Basten, M. Geilen, S. Stuijk, and R. Hoes. A pa-

rameterized compositional multi-dimensional multiple-choice knapsack heuristic for

CMP run-time management. In 46th ACM/IEEE Design Automation Conference

(DAC ’09), pages 917–922, Jul. 2009. doi: 10.1145/1629911.1630147.

[93] M. Geilen and T. Basten. A calculator for pareto points. In 2007 Design, Automation

Test in Europe Conference Exhibition, pages 1–6, Apr. 2007. doi: 10.1109/DATE.

2007.364605.

[94] Marc Geilen, Twan Basten, Bart D. Theelen, and Ralph Otten. An Algebra of Pareto

Points. In Int. Conf. on Application of Concurrency to System Design, pages 88–97,

2005. doi: 10.1109/ACSD.2005.2.

[95] Marc Geilen, Twan Basten, Bart D. Theelen, and Ralph Otten. An algebra of pareto

points. Fundamenta Informaticae, 78:35–74, Sep. 2007.

[96] A. Sbihi M. Hifi, M. Michrafy. Heuristic algorithms for the multiple-choice multidi-

mensional knapsack problem. The Journal of the Operational Research Society, 55

(12):1323–1332, 2004. ISSN 01605682, 14769360.

[97] Michael A. Yukish. Algorithms to Identify Pareto Points in Multi-dimensional Data

Sets. PhD thesis, 2004. AAI3148694.

[98] Silvano Martello, David Pisinger, and Paolo Toth. Dynamic programming and strong

bounds for the 0-1 knapsack problem. Management Science, 45(3):414–424, 1999.

doi: 10.1287/mnsc.45.3.414. URL http://dx.doi.org/10.1287/mnsc.45.3.414.

http://dx.doi.org/10.1007/BF02243880
http://dx.doi.org/10.1007/BF02243880
http://dx.doi.org/10.1287/mnsc.45.3.414

	Résumé étendu
	Acknowledgements
	Abbreviations
	List of Figures
	List of Tables
	1 Introduction
	1.1 Smart Grid and Smart Building Automation
	1.2 Load Monitoring
	1.2.1 Intrusive Load Monitoring
	1.2.2 Non-Intrusive Load Monitoring
	1.2.3 Hybrid Load Monitoring

	1.3 Thesis Outline and Contributions

	2 State of the Art
	2.1 Intrusive Load Monitoring
	2.2 Non-Intrusive Load Monitoring
	2.2.1 Low frequency approaches
	2.2.2 High frequency approaches

	2.3 Hybrid Load Monitoring
	2.4 Conclusions

	3 Algorithms for NILM based on l1-norm Minimization 
	3.1 Least Absolute Error based Algorithm
	3.2 State Difference based Algorithm
	3.3 State Transition Probability based Algorithm
	3.4 Experimental Results
	3.4.1 Athemium data collection
	3.4.2 Results and Evaluation

	3.5 Conclusions

	4 SmartSense: Sensor-Aided Non-Intrusive Load Monitoring
	4.1 SmartSense Principle and Model
	4.2 Approach 1: Formulation as a Knapsack problem
	4.2.1 Problem formulation
	4.2.2 Algorithms to solve the SmartSense problem
	4.2.2.1 Compositional Pareto-Algebraic Heuristic (CPH)
	4.2.2.2 Dynamic Programming (DP)


	4.3 Approach 2: Edge Detector Algorithms
	4.3.1 Edge Detection (ED)
	4.3.2 Dynamic Time Warping (DTW)


	5 Experimental Results on SmartSense
	5.1 Dataset and Metrics
	5.2 Results and Evaluation of Probability Information in SmartSense
	5.2.1 Performance without probability information
	5.2.2 Impact of type and number of monitored devices in the Knapsack approach
	5.2.3 Impact of WSN detection on the performance of the Knapsack approach
	5.2.4 Impact of monitored devices on the performance of the edge detector approach
	5.2.5 Performance comparison between the two approaches
	5.2.6 Complexity analysis

	5.3 Conclusions

	6 Conclusions and Perspectives
	6.1 Conclusions
	6.2 Perspectives


