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All models are wrong. Some are useful.
George E. P. Box,

Professor of Statistics,
University of Wisconsin
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INTRODUCTION

Nowadays the world counts more than 1.2 billion cars. This figure is likely to double
and reach 2.5 billion by the year 2050. This large fleet has an enormous impact on the
environment. It is the main user of energy in the world. In fact, it consumes the most
of world’s petroleum which leads to air pollution creation and makes the fleet of cars a
significant contributor to the global warming phenomena due to the high emissions
of CO2. Indeed, the transportation has the fastest growing carbon emissions of any
economic sector.

The estimation of engine breathing is the step towards a cost effective emission re-
duction. The trapped mass in the cylinder is the major factor in combustion control,
and hence its products. For this reason, the scope of this work is the estimation of the
gas dynamics along the engine air system with the aim of a better modeling engine
breathing.

Several models and tools have been developed for internal combustion engines mod-
eling. Figure I summaries the current state of art in terms of accuracy, computation
time and number of states, taking into consideration a maximum of only one space
dimension.

At one hand, full 1D models considers mass, energy and momentum conservation
in both time and space to determine the system states at every instant. Commer-
cial softwares are based on these models, with a dedicated solver, and the need to a
minimum amount of experience to build and to calibrate a full model. On the other
hand, real-time ECU functions are based on lumped parameter models. They use
mass and enthalpy conservation to estimate pressure and temperature in plenums and
then coupled to orifices to estimate a mass and energy flow. These require a very low
computational power but neglect inherently important phenomena such as waves and
gas dynamics.

To bridge the gap between the two approaches, several reduced order models have
been developed [1, 2, 3, 4, 5, 6].
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The work presented in [7] have shown that the Quasi-Propagatory Model is a very
promising approach. It offers a good compromise between accuracy and computa-
tional power. This modeling principal relies on the observation of pressure oscillations
at a given point along the duct. The pressure will oscillate according to the boundary
condition across the duct until steady state is reached. This can be simulated using
simple ordinary differential equations, thus, avoiding the fine space discretization.

Fig. I.: Modeling state of the Art

Unfortunately, the reduced order models are still not real-time. Some tools such as
Wave-RT R© have been developed [8] which require a dedicated hardware and mathe-
matical libraries to speed up the calculations.

This work focuses on building a hybrid model for the air-system taking into consid-
eration only 0D and quasi-1D models. This will lead to a better accuracy (compared
to lumped parameter models)since gas dynamics will be taken into consideration. At
the same time, the calculation time will be decreased compared to 1D models, as the
quasi-1D models will be used only along ducts observing very apparent phenomena
such as the intake manifold. For the exhaust manifold, it will be shown that filling and
emptying effects are dominant, and lumped models are sufficient.

To illustrate the existing trade-offs, various criterion are used such as accuracy, calibra-
tion effort and computation time.

The present document is structured as follows:

• Chapter 1 will go briefly through the evolution of diesel and gasoline emissions
and their control strategies progression. Then, two important test drive cycles,
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namely the NEDC and its successor the WLTC are compared to each other.

• Chapter 2 will go through the full 1D modeling of gas dynamics, and will analyze
some numerical schemes to solve the conservative partial differential equations.
Boundary conditions treatment is briefly stated, and coupled with duct models.
Based on the accuracy and the minimum calculation effort compromise, a refer-
ence scheme is selected to serve later for the first numerical validation of the low
order models. For comparison and validation, the shock tube and the acoustic
test benches are used.

• Chapter 3 will present the quasi-propagation modeling approach. This modeling
methodology, despite its simplicity, manages to take momentum phenomena
resulting from the gas movement inside engine ducts due to valves movement.
Numerical validation is presented taking results from the previous chapter as a
reference.

• Chapter 4 will present remaining component in the air system to be used later in
an overall air system simulation.

• To provide accurate boost pressure estimation, chapter 5 presents an extended
approach to compress data-maps modeling to provide reliable denser look up
tables.

• Chapter 6 combines the models from the previous chapters to perform an overall
air-path simulation. A combination of quasy-1D and lumped parameter models
was then used based on system characteristics to efficiently model gas dynamics.

This offered an even faster simulation, while taking wave phenomena at the entry
of the intake valves into consideration. The over all simulation is validated with
respect to measurements for the complete engine operation points.

Publications

• Meddahi, F., Charlet, A., Chamaillard, Y., Fleck, C., and Groedde, S. ”Modeling
waves in ICE ducts: Comparison of 1D and Low OrderModels”. SAE International,
(2015-24-2386), 2015. doi: 10.4271/2015-24-2386.

• Meddahi, F., Charlet, A., Chamaillard, Y., Fleck, C. ”Incorporating Thermo- and
Aerodynamic Losses into Compressor Models for Real-Time Applications”. SAE
International, (2015-01-1715), 2015. doi: 10.4271/2015-01-1715.

Patent(submitted)

• Meddahi, F., Groedde, S., Fischer, W., Gaenzle, D., and Bleile, T. ”Frischluft-
massenbestimmung mit schnellem Temperatursensor nach Verdichter”.
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INTRODUCTION(FRENCH)

De nos jours, le nombre de voiture présente dans le parc roulant mondial est estimé à
1,2 milliard de voitures. Ce chiffre, même très important devra doubler pour attein-
dre les 2,5 milliard d’ici 2050. Cette augmentation est loin d’être sans danger pour
l’environnement et les êtres vivants, en effet, cela conduit à l’augmentation de la con-
sommation des énergies fossiles par le secteur des transports et du coup conduits
à l’explosion des émissions polluantes responsable de la dégradation de la santé du
réchauffement climatique par le biais des émissions de CO2.

L’estimation de la quantité d’air admise dans le moteur est une étape cruciale pour la
course à la diminution des émissions polluantes et à moindre coûts. En effet, la masse
de l’air emprisonnée dans le cylindre est un facteur important pour le contrôle de la
combustion et par ce biais sur les produits de cette réaction chimique (polluants). À
l’ombre de ce qui a été présenté ci-dessus, ce travail de thèse se focalise sur l’estimation
de la dynamique de l’air dans la conduite d’admission afin de mieux modéliser le
processus d’admission dans le moteur automobile.

Plusieurs outils et modèles de simulation numérique ont été développés afin de
modéliser au mieux le comportement du moteur à combustion interne. La figure
II représente un résumé de l’évolution de la modélisation 1D en termes de précision,
temps de calcul et nombre d’étapes. D’après la figure II, on peut remarquer que d’une
part, la modélisation 1D dite "complète" tient compte de la conservation de la masse,
de l’énergie et du moment en fonction du temps et de l’espace pour déterminer l’état
du système à chaque instant. Ceci est le cas des logiciels de simulation commerci-
aux qui incluent un solveur dédié et aussi demande une certaine connaissance de
l’utilisateur pour la construction et la calibration des modèles.

D’autre part, la modélisation temps réel est basée sur des modèles à paramètres
concentrés. Ces modèles utilisent la conservation de la masse et d’enthalpie pour
estimer la pression et la température dans les plénums, puis les couplent à des orifices
afin d’estimer le flux de masse et d’énergie. ils exigent très peu de puissance de
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calcul mais négligent intrinsèquement des phénomènes importants tels que les ondes
et la dynamique des gaz. Pour combler l’écart entre les deux approches, plusieurs
modèles Ainsi les deux approches énoncées précédemment démontrent les avantages
à combiner les deux concepts. Pour se faire, plusieurs modèles ont été développés avec
comme caractéristique des ordres de complexité moins important [1, 2, 3, 4, 5, 6].

L’étude faite par Meddahi et al. [7] a montré que le modèle "Quasi-Propagatif" représente
une approche prometteuse en offrant un bon compromis entre précision et puissance
de calcul. Le principe de ce modèle repose sur l’observation des variations (oscillations)
de la pression à un point donné sur la ligne d’admission. En effet, la pression subit
des oscillations en fonction des conditions aux limites présentent dans la conduite
d’admission jusqu’à atteindre l’équilibre. Ce comportement peut être simulé à l’aide
d’équations différentielles ordinaires toute en évitant la discrétisation de l’espace.

Fig. II.: Modélisaation de l’état de l’art

Malheureusement, les modèles à ordre réduit sont limités par le faite qu’ils ne sont
pas des modèles "temps réelles", Cette limitation peut être contournée avec une
certaine configuration comme dans le cas de Wave-RT R© [8] mais nécessite un hardware
spécifique et des bibliothèques mathématiques dédiées.

Ce travail de thèse présente le développement d’un modèle "hybride" 0D et quasi
1D pour le système d’admission. Cette approche permet l’obtention d’une meilleure
précision puisque la dynamique des gaz est prise en compte. Et ceci, tout en réduisant
le temps de calcul par rapport aux modèles 1D ; rendu possible en utilisant les modèles
quasi-1D uniquement pour l’étude des phénomènes très spécifiques tel que sur le
collecteur d’admission. Pour ce dernier, il sera démontré que les effets de décharge
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et remplissage sont dominants, et que les modèles à paramètres concentrés sont
suffisants. Afin d’illustrer les compromis existant dans ce type d’approche, diffèrents
critères de sélection ont été utilisés comme par l’exemple la précision, la complexité
de l’effort de calibration et le temps de calcul.

À l’ombre de ce qui a été énoncé précédemment, ce rapport de thèse sera structuré
comme suite

• Chapitre 1 : Présente une brève introduction de l’évolution de la réglemen-
tation des émissions polluantes des moteurs à allumage par compression et
commandé et les améliorations apportées aux stratégies de control mises en
place afin d’épouser ces limites d’émissions. Ensuite deux cycles de conduite
seront présentés à savoir le NEDC et son successeur, le WLTC ainsi que leur
comparaison.

• Chapitre 2 : Décrit la modélisation 1D de la dynamique des gaz, et l’analyse
de certains schémas numériques afin de résoudre les équations aux dérivées
partielles. Le traitement des conditions limites y sera mentionné, et couplé avec
des modèles de la conduite d’admission. Un schéma de référence y est choisi
en se basant sur les critères de sélection mentionnés dans le chapitre 1 (haute
précision et minimum de calcul). Un modèle de référence y est sélectionné pour
les pré-essais de validation numérique, et cela par le biais d’un tube à choc et un
banc d’essais acoustique.

• Chapitre 3 : Ce chapitre est consacré à l’approche du modèle "quasi-préparative",
il y sera présenté la méthodologie associée à ce modèle, mais aussi les points
forts ; tel que son aptitude à prendre en considération les phénoménes d’inertie,
résultants du mouvement des gaz à l’intérieur des conduites du moteur (mouve-
ments des soupapes). La validation numérique est aussi incluse dans ce chapitre
en prenant comme référence les résultats obtenus dans le chapitre précédent.

• Chapitre 4 : Présente les composants résiduels qui seront utilisés plus tard dans
une simulation globale du système d’air.

• chapitre 5 : Fournit une estimation précise de la pression de suralimentation, il y
est aussi présenté une approche étendue pour modéliser le compresseur afin de
fournir des cartographies fiables et plus complètes.

• Chapitre 6 : Ce dernier chapitre combine les résultats des chapitres précédents
pour effectuer une simulation "globale" de la chaine d’air. Il y sera montré que
pour la configuration du moteur à allumage par compression utilisée, les effets
1D sont plus présents le long de la conduite et du collecteur d’admission. D’après
ce résultat, le QPM sera choisi pour modéliser le sous système précèdent.
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CHAPTER 1

MOTIVATION

The main objectives of car manufacturers nowadays are more performing, cost effective
and clean autos. On one hand, emissions regulations are mandatory and imposed by
major governments of countries and regions. On the other hand, fuel economy and
better performing engines are the crucial criteria for drivers.

Enhancements in engine design as well as more sophisticated management have con-
tinuously contributed to the progress of engine performance and reduction of exhaust
gas toxicity. However, advances in engine technology have been proved insufficient
and automotive engines were and still are a major source of urban air pollution. Neces-
sitating thus the introduction of exhaust gas after-treatment systems and exhaust gas
recirculation.

To highlight the upcoming challenges, we will first see how emissions regulations and
fuel economy evolved during the last two decades.

1. Emissions

Emissions are being regulated by several governments with large auto markets which
cover around 80 % of global passenger vehicles. These regulations set quantitative
limits on specific air pollutants. They consist of emissions proven to be harmful for
public health such as nitrogen dioxide (NO2), partially burned hydrocarbon (HC) and
carbon monoxide (CO). The following chart in fig. 1.1, summarizes the European
emissions standards.
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Fig. 1.1.: History of diesel and gasoline EU emissions standards[9]

The low operating costs, efficiency and durability made diesel engines have a wide
range of applicability. At the same time, compression ignition engines have signifi-
cant impact on environmental pollution problems. Figure 1.1a gives a history of the
changing landscape of European diesel emission legislations over the past twenty
years.

Euro 1 limited CO, HC and NOx. Back then engines were certified on the assembly
line before being mounted on the vehicle. Starting from Euro 2 (1996), all engines
were required to meet the same limit levels immediately after production and the
certification was no longer based on individual test samples. Technologies such as the
rotary injection pump, IDI combustion, low pressure injection (700-800 bar) and low
pressure EGR (Exhaust Gas Recirculation) were used to comply with the regulations [10].
In 2001, Euro 3, a test cycle was introduced to mimic on-road operations. Common
rail systems, 1D combustion, and Diesel Oxidation Catalyst (DOC) for PM reduction
were used. Five years later, Euro 4 made mandatory exhaust after treatment systems.
On Board Diagnostics (OBD) was also introduced to monitor the engine’s emission
control. Euro 4 also introduced Air to Fuel ratio (A/F) management, electric control of
fuel injection, engine tuning and turbocharger with inter-cooler. Euro 5 (2009) further
reduced NOX and PM levels. At that time, improved versions of previous technologies,
variable geometry turbine, Diesel Particulate Filter (DPF) and variable valve timing
made it possible to fulfill the regulations while maintaining fuel consumption levels. In
2014, Euro 6 set the lowest emission levels for diesel engines. In this case, the exhaust
after-treatment system was augmented with a rail pressure higher than 2100 bar to
fulfill the regulations.

As shown in fig. 1.1b, gasoline engines were exempted from PM standards until Euro
5. At the same time, diesel engines are allowed more NOx emissions, but require
producing less CO (starting from Euro 2).
These regulations dealt specifically with gaseous emissions like NOX , HC and CO. CO2

emissions are on the other hand, defined according to vehicle mass and manufacturers
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sales. For example, Those selling less than a 1000 car/year or special vehicles can be
excluded from the legislation. Manufacturers selling between 1000 and 10000 cars/year
can propose their own reduction targets whereas those selling between 10 and 300
thousand cars/year, can apply to a given percentage reduction. For larger OEMs, If the
average manufacturer’s fleet exceeds the limits, the latter have to pay excess emissions
penalties for each car registered (From 2019, 95 efrom the first gram of exceedance)
[10].

2. Fuel Economy

CO2 emissions are directly proportional to fuel consumption. They both have known
a large decrease in the last two decades. Figure 1.2 gives the historical fleet CO2

emissions performance and current or proposed passenger vehicle standards. The
data is obtained from The International Council On Clean Transportation [11] where
differences between the test cycles1 have already been accounted for.

Fig. 1.2.: Passenger car CO2 emissions and fuel consumption, normalized to NEDC Global
passenger vehicle standards[12]

For comparison reasons, all the regulations have been converted to the New European
Driving Cycle (NEDC). The EU passenger car standard of 95 g/km for 2020 (effectively
2021) can be compared to similar targets for the US (93 g/km for 2025 passenger cars),
Japan (105 g/km by 2020), and China (117 g/km by 2020). The chart does not take
into account any credits (such as super-credits or Eco-innovations) or differences in
(real-world) enforcement.

Despite the tremendous reduction in fuel consumption, further cut is still to be
achieved.

1Specific tests conducted to ensure adherence to emissions standards. See section 4
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3. Overall and Annual Required Fuel and CO2 Reduction

Figure 1.3 gives the overall and annual required fuel economy and CO2 improvements.
Significant and more challenging stringent regulations will be soon effective. Hence,
improvements are still required by automobile car makers.
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Fig. 1.3.: Overall (O) and annual(A) required(R) fuel and CO2 reduction [12]

The challenges are not only in the emissions legislations, but also in the test cycles
defined to quantify the emissions. These have been criticized for not being really
representative for Real Driving Emissions (RDE). The following section gives a brief
comparison between the current NEDC and the new proposed WLTC test cycles.

4. Test Drive Cycles- A Comparison Between the NEDC and WLTC

During the last decade, several harmonized engine dynamo-meter cycles have been
developed for emissions certification for heavy and light duty engines, non-road en-
gines as well as motorcycles. If for instance, we consider Light-Duty Vehicles (LDVs),
governments have developed their own test cycles such as the European (NEDC), the
American Federal Test Procedure (FTP-75) and the Japanese Cycle (JC 08). These cycles
differ mainly in their representativeness and completeness, or in other words, in their
ability to represent statistically real-world conditions.

Despite the tremendous reduction in cars emissions, Light-Duty vehicles remain an
important source of nitrogen oxides and carbon monoxide and play a major role in
the persisting air quality problems in many urban areas. Weiss et al. [13] have shown
that the NEDC used for Type Approval (TA) fails to reproduce Real Driving Emissions
(RDE). The result is higher emissions under real driving conditions. Although nitrogen
oxides for gasoline vehicles, carbon monoxide and total hydrocarbon emissions for
both diesel and gasoline engines generally remain below the threshold limit, nitrogen
oxides for diesel engines, including modern Euro 5 cars exceed emissions limit by
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320±90 %. At the same time, on-road carbon dioxide emissions surpass laboratory
emissions by 21±9%.

Emission measurements are conducted in laboratories for a good reason that is the abil-
ity to control influencing variables in such environment. However, not only emissions
were different from real world ones, but even fuel consumption. ICCT has reported
that differences between official laboratories and real-world fuel consumption and
CO2 values were around 7% in 2011 and 30% in 2013 [14].

These discrepancies not only affect society due to emissions health related issues and
consumers who will spend more on fuel, but also governments and manufacturers
who are losing credibility.

This motivated the development of new test cycles such as the WLTC. The main differ-
ence is the dynamics contained in the WLTC compared to its predecessor, the NEDC,
as it is shown in fig. 1.4.
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Fig. 1.4.: Velocity and acceleration profiles for the NEDC and WLTC test cycles

In contrast to the NEDC, the WLTC covers a wider band of acceleration, speed com-
binations and is more dynamic. It has denser data in regions less than 80 km/hr as it
covers more short trips which occur in real world conditions.

Figure 1.5 shows that the NEDC clearly has only some constant accelerations and
decelerations. The WLTC, on the other hand, covers a wider range of combinations but
there are some zones left at very low speeds around 70-110 km/hrs.
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Fig. 1.5.: Comparison between NEDC and WLTC cycles: Acceleration-Speed Combinations

Essentially, the main difference between the two cycles is the amount of higher dynam-
ics considered in the WLTC as shown in fig. 1.6. This will make transient phenomena
in engines more apparent and stationary maps less effective when it comes to engine
transient performance and transient emissions. More accurate models will be required
to complete slow sensors and support engine management strategies.
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Fig. 1.6.: Comparison between NEDC and WLTC cycles: Acceleration Histogram

In the next section, current modeling and control strategies will be generically ex-
plained. The impact of the new emission regulations will be then highlighted, and the
role of this thesis is underlined.
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5. Key Factors for Legislations Achievement

The fulfillment of the legislations requires improvement in both engine actuators and
ECU-functions. Both the vehicle body, components design as well as estimation and
control of key system states (such as gas concentrations) are crucial corner stones.

Figure 1.7 summaries the interaction of estimation and control functions on the ECU
with the air and combustion systems as a reaction to driver demand while satisfying sys-
tem and emission constraints. System states are estimated by means of implemented
models or measured using series sensors. Along with driver request, actuators such
as throttle valve, EGR and waste valves, injectors are actuated to attain the required
response.

Combustion

Air System

Feed

Forward

Control

Feed

Back

Control

Air System

Fig. 1.7.: Simplified Control structure

As shown in fig. 1.7, there are many operating variables that affect engine performance,
efficiency and emissions. The air system is the first set of actuators which will induce the
proper amount of air into the combustion chamber to respond to the driver’s demand
and provide the required power output while staying within emissions limitations.

Hence, the first step consists of inducing the necessary mass (fresh air + recirculated
exhaust gas) into the cylinders to provide the required power output with the minimum
fuel consumption, consistent with smooth reliable operation. This being not always
possible, it is then necessary to inject the proper fuel quantity depending on the actual
trapped mass. For the time being, there are no available techniques to measure the
trapped mass and species proportions on series engines. It is thus necessary to estimate
them.

However constraints from the emissions legislations may dictate different air/fuel ratio
values as it is indicated in fig. 1.8.
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Fig. 1.8.: Fuel/Air impact on emissions and performance[15]

Diesel and gasoline engines differ in resulting emissions. These discrepancies are due
to the differences in the combustion process (excess air, concentration, compression
ratio, fuel,...). Diesel engines have high particulate and nitrogen dioxide (NOx) emis-
sions, whereas spark-ignition engines have higher oxides of nitrogen(NO), carbon
monoxide (CO) and partially burned hydrocarbons (HC) emissions.

Figure 1.8 shows qualitatively how NOx, CO and HC vary for diesel and gasoline engines
as a function of the air/fuel ratio. Spark-ignition engines are generally operated close
to stoichiometric for lower emissions, under a rich mixture for a maximum power and
under lean mixture for a minimum consumption. Leaner mixtures in gasoline engines
give fewer emissions until misfire takes place which eventually results in higher HC
emissions.

Figure 1.8 clearly shows that there is no optimum A/F ratio for minimum emissions.
This is the main reason for exhaust gas after-treatment systems such as The Three Way
Catalyst (TWC) which also requires a precise control of the A/F ratio for maximum
conversion efficiency as shown in fig. 1.9

On the other hand, compression ignition engines always operate under lean mixtures
approaching stoichiometric conditions. However, lean mixtures degrade the DOC
efficiency and result in higher particulates emissions.
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Fig. 1.9.: Effect of Fuel/Air on catalyst efficiency (left) and sensitivity of NO emissions on EGR
concentrations (right)
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6. Scope of the Thesis: Why Air System Modeling

It is clear that both trapped mass and fuel play a role in the combustion process.
However, common rail injection systems can be set very accurately for every working
cycle. Which means the main difficulty is to estimate and control species flowing in
and out from the cylinder.

In addition, and as highlighted earlier, test cycles will contain more dynamics and
less steady-state operation. This means the steady or quasy-steady hypothesis errors
will be more apparent. Gas dynamics effects (inertia, mixture, transport) will have a
higher impact, and data based models will require denser maps (which means more
measurements costs) or result in higher dynamic errors.

Gas dynamics have a great influence on the emissions and performances of an engine.
For example, engine volumetric efficiency is mainly dependent on the instantaneous
pressure across the intake and exhaust valves. When both intake and exhaust valves
are open, instantaneous pressure differences will control the internal EGR flow, which
is very difficult to take into consideration using simple steady state maps, especially
with complex technologies such as Variable Valve Timing (VVT).
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CHAPTER 2

1D FLOW MODELING IN INTERNAL COMBUSTION ENGINES

As long as the transient operation of Internal Combustion Engines (ICE) is concerned,
the 1D1 Flow Simulation Models will be, for many coming years, the only useful ap-
plicable tool, which can provide a good compromise between accurate information,
computational power and complexity [16].

In addition, the prediction of transient phenomena in ICE manifolds is also of cru-
cial importance for real-time application. Many relevant aspects influencing engine
performance (especially during transient) such as the estimated trapped mass and
air-to-fuel ratio (A/F) control can be optimized if pressure waves are considered. For
this purpose, several reduced models have been developed [1, 2, 3, 17, 18, 4, 5, 6] to
overcome the high computational cost of 1D models. These issues will be discussed in
the next chapter. In this chapter, we will discuss several full 1D modeling approaches
of flow through engine ducts and their qualities will be assessed. Accuracy and stability
are also briefly discussed. Methods under the scoop are the Graphical and Numerical
Method of Characteristics, the Lax-Wendroff based-schemes and the recent Conserva-
tion Element-Solution Element (CE-SE) method.

The goal behind using these methods, is to provide a reliable reference for model
reduction methods presented in the next chapter. They also offer access to unmeasured
quantities such as local concentrations, or overcome slow measurements such as
temperature sensors.

1. Introduction

It is clear that the Internal combustion Engine (ICE) emissions have known a massive
reduction, as they become a major political and research topic. On the other hand, the

1Only one space dimension is considered
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performance of ICE is being made better through the use of turbochargers and more
sophisticated control strategies. Yet, the efficiency of ICE used in passenger cars is no
more than 40% [19]. In addition, emissions’ legislations will always become stricter,
hence the need to a further improvement will always exist.

The flow in the ICE intake manifold determines the flow in the cylinder prior to the
combustion, which helps to better control the combustion through a better estimation
of reactants taking part in the combustion process, hence a control of emissions. Simi-
larly, the flow in the exhaust manifold determines the flow into the turbine, and thereby
the efficiency of the turbo-charging system. This simply highlights the importance of
an understanding and modeling of flow along the engine ducts, as this is one of the key
factors to a better performance and lower emissions.

The most detailed models of fluid and gas flow are based on the first principles, such
as the conservation of mass, momentum and energy2. Arnau et al. [21] Classified the
calculation models on the basis of their complexity as mean value(MV) or quasi-steady
models, filling and emptying models, one dimensional (1D) wave-action models and
the three dimensional calculation codes.

Mean Value Engine Models (MVEM)offer dynamic and steady information within a
given accuracy, and have to be corrected to overcome the simplifications’ error. They
however offer a good compromise between simplicity and accuracy. These models
have been widely used for controllers design [22, 23].

The reasonable computational cost of 1D codes allows the calculation of whole internal
combustion engines with all their components, and play a major role in engine design
and development. 1D wave action models simplify the engine by means of ducts, where
only one dimension is considered and plenum, where the gas is stopped and their
properties are constant in the entire element. Finally, quasi-steady models are used
to solve the junctions between the different elements. Many professional tools have
been developed based on this modeling approach such as Gt-Power R© from GTISoft
and Wave from Riccardo.

CFD codes, which consider the three spatial dimensions, are only used to model single
engine components in spite of their accuracy in compared to 1D codes. They are
mainly used in co-simulation with 1D tools to increase the overall model accuracy
along given components such as the combustion chamber.

Figure 2.1 shows the hierarchy of simulation models. In this section, we restrict our
selves to inviscid flows with a focus on the nonlinear Euler Equation.

2A set of conservation laws is a collection of statements of flux conservation in space-time. Mathemati-
cally, these laws are represented by a set of integral equations. The differential form of these laws is
obtained from the integral form, with the assumption that the physical solution is smooth[20]
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k − ǫ models Reynolds stress modelsMixing-length modelsInviscid models

U-F: Euler eqSteady flow

NL eqLinear eq

NH FlowHomentropic flow

3D Flow

2D Flow

1D Flow

0D Flow

Legend :

N-S: Navier Stokes

eq: Equations

LES: Large-eddy simulation

NH: Non-homentropic flow

NL: Non-linear

Fig. 2.1.: Hierarchy of simulation methods[24]

Figure 2.2a shows the viscous stress components applied to the faces of a control
volume by the surrounding fluid. In ICE ducts, we make the assumption that variations
in the y- and z- axis can be neglected, and we end up with a 1-D fluid representation.
Figure 2.2b shows conservative quantities’ variation along a variable area duct.
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(b) Control volume for a variable area

Fig. 2.2.: Comparison between 3D and 1D Modeling
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In the following, the 1D flow Equations (also called as Euler Equation when the source
terms are neglected) will be developed in accordance with fig. 2.2b.

1.1. Mass Conservation Equation

The mass conservation states that the rate of variation of mass within the closed control
volume, is equal to the net mass flow. This can be written in the following integral form:

ˆ

V

∂ρ

∂t
dV +

ˆ

A
ρþud þA = 0 (2.1)

In term of a one-dimensional flow, the velocity þu can be substituted by the average
velocity at the cross-section A.

∂ρ

∂t
Adx + (ρ +

∂ρ

∂x
dx)(u +

∂u

∂x
dx)(A +

∂A

∂x
dx) − ρuA = 0 (2.2)

Neglecting all 2nd or much higher-order terms of dx, then the continuity equation is
expressed in form of:

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= −

ρu

A

dA

dx
(2.3)

or equivalently

∂ρ

∂t
+

∂(ρu)

∂x
+

ρu

A

dA

dx
= 0 (2.4)

•
∂ρ
∂t Adx: the rate of variation of the mass within the control volume.

•
∂ρuA

∂x : variation of the mass flow rate per unit length

• or ∂ρuA
∂x dx: the net mass flow rate across the volume

1.2. Momentum Equation

The momentum equation imposes the Newton’s second law on the control volume,
which states that any change in momentum of the fluid within a control volume must
result from the net flow of fluid into the volume and the action of external forces on
the fluid within the volume. The one-dimensional integral form of the momentum
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equation is:

ˆ

V

∂(ρþu)

∂t
dV +

ˆ

A
þu · (ρþu) · d þA =

ˆ

A
pd þA + þFf (2.5)

The magnitude of shear forces þFf on the control volume should be proportional to the
shear stress τw as well as the area of the contact surface πDdx (in case of a cylindrical
tube).

Ff = −
u

|u|
τwπDdx (2.6)

With respect to the friction factor f , the shear stress τw can be expressed as:

τw =
1

2
ρu2f (2.7)

In the meanwhile, the area of the contact surface πDdx is equivalent to (by multiplying
and dividing by (D/4)

πDdx =
1

4
πD2 4

D
dx =

4

D
Adx (2.8)

Hence, the shear forces Ff will become

Ff = −
u

|u|

1

2
ρu2fπDdx = −

u

|u|

4f

D

ρu2

2
Adx (2.9)

Integrating the eq. (2.5) over the control volume:

∂(ρu)

∂t
Adx + (ρ +

∂ρ

∂x
dx)(u +

∂u

∂x
dx)2(A +

∂A

∂x
dx) − ρu2A =

[p − (p +
∂p

∂x
dx)]A −

u

|u|

4f

D

ρu2

2
Adx

(2.10)

Similarly, neglecting all 2nd or higher-order terms of dx and using eq. (2.4), eq. (2.10)
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becomes:

ρ
∂u

∂t
+ ρu

∂u

∂x
+

∂p

∂x
+

ρu2

A

dA

dx
+ sgn(u)

4f

D

ρu2

2
= 0 (2.11)

The symbol sgn(u) denotes the sign of the velocity. It implies that the resistance force
is unconditionally opposite to the direction of the flow. Defining the coefficient of
frictional resistance G,

G = sgn(u)
4f

D

u2

2
(2.12)

the momentum equation can now be written as:

∂(ρu)

∂t
+

∂(ρu2 + p)

∂x
+

ρu2

A

dA

dx
+ ρG = 0 (2.13)

1.3. Energy Equation

The equation of energy applies the first law of thermodynamics. It states that the
variation in the internal energy of the control volume is equal to the amount of the
external heat supplied to it, subtracting the amount of work done on its surroundings.
The mathematical description for the integral of the energy conservation is:

−δQ̇ +

ˆ

V

∂

∂t
[ρ(h −

p

ρ
+

v2

2
+ gz)]dV +

ˆ

A
(h +

v2

2
+ gz)(ρþv · d þA) = 0 (2.14)

where δQ̇ indicates the heat inflow per unit time through the borders of the control
volume. The value of gz equals the potential energy per unit mass initiated by the
volume force. Supposing the contribution of volume force is relatively smaller than the
other terms, integrate the eq. (2.14) and neglecting the term gz:

−δQ̇ +
∂

∂t
[ρA(h −

p

ρ
+

u2

2
)dx] + ρuA(h +

u2

2
)+

∂

∂x
[(ρuA(h +

u2

2
)]dx − ρuA(h +

u2

2
) = 0

(2.15)

Equation (2.4), (??),and (2.15) contain four unknowns (ρ, u, p, and h) thus the set of
equations is not enough for solving.
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In the theory of fluid dynamics, an additional relation among the gas states is required
for building a completely closed system of governing equations together. A proper
supplement for closing this system is based on the hypothesis of a perfect gas, which
is on one hand subjected to the law of ideal gas, and on the other hand, indicates the
specific heat cv and cp can be considered as constant. Along with the definition of a
perfect gas, there are





p = ρRspecT

h = cpT

e = cvT

and





Rspec = cp − cv

γ =
cp

cv

(2.16)

where the variable p, T , ρ, h and e stand for respectively the pressure, temperature,
density, specific enthalpy and specific internal energy of the gas. Besides that, the
parameters Rspec, cp, cv and γ gained from the gas properties, denote separately the
specific gas constant, specific heat capacity at constant pressure, specific heat capacity
at constant volume and specific heat capacity ratio, remaining invariable during the
flow process.

Substituting the expression of gas states in eq. (2.15) with eq. (2.16):

∂

∂t
[ρA(cvT +

u2

2
)dx] +

∂

∂x
[ρuA(cvT + RspecT +

u2

2
)]dx = δQ̇ (2.17)

Introducing the rule of perfect gas from eq. (2.16) gives

∂(ρuARspecT )

∂x
=

∂(puA)

∂x
(2.18)

Expanding the equation and eliminating the terms involving the partial derivative
∂A/∂t:

ρuA
∂

∂x
(cvT +

u2

2
) +

∂(puA)

∂x
+ (cvT +

u2

2
)
∂(ρuA)

∂x

+Aρ
∂

∂t
(cvT +

u2

2
) + (cvT +

u2

2
)A

∂ρ

∂t
= δQ̇

(2.19)

Without doubt, the derivation based on the energy equation must be always in com-
pliance with the law of mass conversation. On the basis of this continuity equation,
which is referred in eq. (2.3), the 3rd and 5th terms from eq. (2.19) can vanish together.
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After elimination, the equation turns out to be

∂

∂t
(cvT +

u2

2
) + u

∂

∂x
(cvT +

u2

2
) =

δQ̇

ρAδx
−

1

ρA

∂(pAu)

∂x
(2.20)

The mathematical statement for total derivative of the stagnation internal energy
cvT + u2/2 can be proposed in this case intending to simplify the expression above

d

dt
(cvT +

u2

2
) =

∂

∂t
(cvT +

u2

2
) + u

∂

∂x
(cvT +

u2

2
)

=
δQ̇

ρAδx
−

1

ρA

∂(pAu)

∂x

=
δQ̇

ρAδx
−

u

ρ

∂p

∂x
−

p

ρA

∂(Au)

∂x

(2.21)

To be obedient to the law of ideal gas, the derivative of stagnation internal energy can
be expressed as:

d(cvT )

dt
=

d

dt
(

cv

Rspec

p

ρ
)

=
d

dt
(

1

(γ − 1)

p

ρ
)

=
1

(γ − 1)ρ
[(

∂p

∂t
+ u

∂p

∂x
) −

p

ρ
(
∂ρ

∂t
+ u

∂ρ

∂x
)]

(2.22)

Manipulating the other partial differential of stagnation internal energy with the mo-
mentum ??, the total derivative of the kinetic energy can be reformulated as follows:

d

dt
(
u2

2
) = u

du

dt

= u(
∂u

∂t
+ u

∂u

∂x
)

= u(−
1

ρ

∂p

∂x
− G)

(2.23)

On the other hand, the term ∂(Au)/∂(x) in eq. (2.20) can be extracted from the conti-
nuity eq. (2.4):

∂(Au)

∂x
= −

A

ρ
(
∂ρ

∂t
+ u

∂ρ

∂x
) (2.24)
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Manipulating the eq. (2.20) by replacing the corresponding terms with the equations
from (2.21) to (2.23) and multiplying by (γ − 1)ρ:

∂p

∂t
+ u

∂p

∂x
−

p

ρ

(
∂ρ

∂t
+ u

∂ρ

∂x

)
+ (γ − 1) ρu

(
−

1

ρ

∂p

∂x
− G

)

= (γ − 1)ρ

[
δQ̇

ρAδx
−

u

ρ

∂p

∂x
−

p

ρA

(
−

A

ρ

) (
∂ρ

∂t
+ u

∂ρ

∂x

)] (2.25)

Rearranging the statement of the equation gives:

∂p

∂t
+ u

∂p

∂x
− γ

p

ρ

(
∂ρ

∂t
+ u

∂ρ

∂x

)
= (γ − 1) ρ

(
δQ̇

ρAδx
+ uG

)
(2.26)

The speed of sound for an ideal gas is given as:

a2 = γ
p

ρ
(2.27)

Furthermore, representing the heat transfer term on the right side of eq. (2.26) and
defining q̇ as being the heat flux density across the boundary of the control volume.

q̇ =
δQ̇

ρAδx
(2.28)

Consequently, all the simplifications above lead to the final form of energy conserva-
tion:

∂p

∂t
+ u

∂p

∂x
− a2(

∂ρ

∂t
+ u

∂ρ

∂t
) = (γ − 1)ρ(q̇ + uG) (2.29)

Introducing the stagnation internal energy and stagnation enthalpy of the fluid as:

e0 = e +
u2

2
= h −

p

ρ
+

u2

2

h0 = h +
u2

2

(2.30)
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Then the energy equation in (2.17) can be reformulated as:

∂(ρe0)

∂t
+

∂(ρuh0)

∂x
+

ρuh0

A

dA

dx
− ρq̇ = 0 (2.31)




Rate of change
of internal

energy


 = −




Net
Energy

Flow


 +




Net
heat
flux




Gathering the previous non-conservative equations (2.3), (??) and (2.29) for mass,
momentum and energy for a one-dimensional, unsteady, compressible, variable-cross-

section-area and viscous flow can give rise to a new tightly coupled system of partial
differential equations:





∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
+

ρu

A

dA

dx
= 0

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
+ G = 0

∂p

∂t
+ u

∂p

∂x
− a2

(
∂ρ

∂t
+ u

∂ρ

∂x

)
− (γ − 1) ρ (q̇ + uG) = 0

(2.32)

Commonly, the governing equations are written in terms of conserved quantities ρ, ρu,
ρe0:





∂ρ

∂t
+

∂(ρu)

∂x
+

ρu

A

dA

dx
= 0

∂(ρu)

∂t
+

∂(ρu2 + p)

∂x
+

ρu2

A

∂A

∂x
+ ρG = 0

∂(ρe0)

∂t
+

∂(ρuh0)

∂x
+

ρuh0

A

dA

dx
− ρq̇ = 0

(2.33)

Thus, the governing equations (2.33) can be considered as an algebraic sum of the
unsteady term ∂/∂t, the convection term ∂/∂x and the source term, which contain all
the rest terms that cannot be integrated into the first two terms.

With respect to the theory of partial differential equations, the complete characteri-
zation eq. (2.32) or eq. (2.33) for the dynamics of the investigated flow can be mathe-
matically identified as a system of quasi-linear non-homogeneous hyperbolic partial
differential equations (abbr. H-PDEs).

Since this system contains three independent governing equations and an identical
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number of independent variables, the closure condition of this problem has been fully
satisfied. In this sense, the uniqueness and certainty of the solution for this H-PDEs
can be mathematically guaranteed.

Equation (2.33) is known as the Euler Equation. This is a system of three equations
with four unknowns p,u,ρ,T . The system is most of the time written in vector notation,
which makes it easier to carry the equations set.

W =




ρ
ρu
ρe0


 , F(W) =




ρu
(ρu2 + p)

ρuho


 , S(W) =




ρu
ρu2

ρuh0




d (lnA)

dx
+




0
ρG
−ρq̇


 (2.34)

∂W

∂t
+

∂F(W)

∂x
+ S(W) = 0 (2.35)

Thus, when dealing with an ideal gas, which can be true almost always in the case
of ICE, the system can be augmented using ideal gas law, which enables to solve for
the unknown variables. Any other flow property such as enthalpy, energy and speed
of sound can be calculated using the independent state variables. As no analytical
solution exist, the flow properties at every node of the duct and time instant can be
obtained by means of different numerical methods. Additionally, it is possible to
consider the inclusion of the chemical species transport, by augmenting the system of
equations. Serrano et al. [25] stated that this later action will not cause any changes,
neither in the solution procedure, nor in the order of accuracy of the numerical method.

For a homentropic flow (constant cross section, no heat transfer or friction), eq. (2.33)
can also be written as follows:

∂W

∂t
+ A

∂W

∂x
= 0 (2.36)

where W is a vector whose components, say m in number, are the independent vari-
ables and A is an m x m matrix, whose elements depend generally on the components
of U and on x and t.The system is called hyperbolic 3 if A has all real eigenvalues and m
linearly independent eigenvectors. A is not usually a symmetric matrix.

3The system is called hyperbolic if A in the PDE ∂W

∂t
+ A

∂W

∂x
= 0 has all real eigenvalues and m linearly

independent eigenvectors. For proof see appendix A.
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2. Solution of the Conservation Equations

2.1. Initial and Boundary Conditions

The system of equations, eq. (2.35) can be applied to gas flowing into or from the duct,
initially moving or stationary gas. Hence, initial and boundary conditions are required
to have a defined problem. In practical applications, the processes to be investigated
take place in a concrete geometry (e.g., in turbines, exhaust and intake manifolds, after
treatment systems etc.) during a finite interval of time. Once the geometry is specified,
boundary conditions can then be properly taken into consideration. These are usually
modeled using steady state models as the variation in space is considered to be more
apparent with respect to states variation with respect to time. A summary of boundary
conditions treatment in I.C.E is given in section 7.

The choice of the time interval to be considered is dictated by the nature of the problem
at hand (for example gas temperature, concentrations and duct geometry), by the
objectives of the analytical or numerical study, and by the available computational
power.

2.2. Numerical Constraints

The continuous conservation equations can be said to be practically worthless without
numerical methods. This is a branch of applied mathematics that deals with numerical
simulation of fluid flow. Discretization schemes play a crucial role in the implementa-
tion of flow models, but they, themselves, cause many problems, and are not always
straightforward implementable. A deep understanding is necessary to be able to avoid
any instabilities and numerical errors which will make the solution drift away from the
real one (or appear as non-physical simulation results).

Symmetric or upwind shock capturing numerical schemes have overtaken in the last
decade the Method of Characteristics (MOC) [26] to model transport phenomena in
engine ducts. However, they still rely on the MOC when it comes to quasi-steady
boundary conditions. Upwind time marching schemes use the flow characteristics
to define the time step size (for a fixed space mesh), whereas symmetric schemes are
independent of the flow characteristics.

Consistency, stability4, and convergence are the three cornerstones of numerical ap-
proximation. A discretization that meets all of these requirements is guaranteed to
produce an accurate solution provided that ∆x and ∆T are sufficiently small. However,
the definition of sufficiently small is highly problem-dependent. If a numerical scheme
fails to resolve a small-scale feature properly on a given mesh, it typically reacts by gen-
erating large numerical errors and/or nonphysical side effects, such as a spontaneous
loss or gain of mass or spurious oscillations, also known as ’wiggles’. Discontinuities

4A numerical method is said to be stable if numerical errors, e.g., due to round off, are not amplified,
and the approximate solution remains bounded.
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such as shocks and intra-pipe boundaries are the main source of violation of physical
constraints. Sometimes, very small discontinuities can be neglected, such as very
small pressure or temperature differences but there are cases, where they result in
completely wrong unstable calculations. Therefore, certain physical constraints, such
as conservation and boundedness, may need to be enforced at the discrete level [27].

In the case of 1D flow simulation, the system is most of the time subject to the well-
known stability condition observed by Courant, Friedrichs, and Lewy in [28] , which
takes the form

c∆T

∆x
< 1 (2.37)

and says that the distance traveled by a sound wave relative to the fluid must not
exceed the distance xj+l − xj = ∆x between neighboring points. In other words, waves
or perturbations cannot travel more than one mesh length in one calculation time
increment. Otherwise, the gas dynamics will not be captured by the numerical scheme
continuously which leads to wrong calculations and even instabilities.

2.3. Physical Constraints

They are conservation, boundedness and causality. Conservation dictates that the
diffusive or convective numerical effect resulting from the discretization cannot create
or destroy the mass inside the duct. They can alter the local density for example, but
at most distribute the mass improperly. Finite volume and discontinuous Galerkin
methods are conservative by construction, both globally and locally. The continuous
Galerkin FEM provides global conservation and is claimed to be locally conservative
by some authors [29, 30]. Conservation may be lost if inaccurate quadrature rules or
nonstandard approximations are employed [27].

3. Schemes for Hyperbolic Systems in One Space Variables

Unsteady flows with ICE ducts can be considered to be essentially one-dimensional in
the inlet and exhaust systems [31]. Hence, in this document, we will restrict our selves
only to one dimensional models. On the other hand, The 0D elements are those which
are able to accumulate flow. In this case, flow conditions are constant over the volume
at each calculation instant. This is the case of the cylinders, turbine or other volumes
in inter-coolers, after-treatment devices, etc. These kinds of elements are solved by
means of a filling and emptying model that include the mass and energy conservation
equations for open systems combined with the ideal gas state equation. The chemical
species transport across 0D elements involves the addition of n − 1 mass conservation
equations to calculate the mass fraction of n chemical species [25].
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The basic methods of modeling one-dimensional compressible flow in inlet and ex-
haust systems can be classified into four major groups; namely wave theory, method
of characteristics, finite difference and finite volume techniques [24]:

3.1. Wave Theroy

In some references, also called linear wave theory. It can only be applied to short pipes
with neglected friction or heat transfer (homentropic5 flows.), or to naturally aspirated
engines, which have small pressure disturbances.

3.2. Method of Characteristics

This approach has been already used for the solution of partial differential equations.
Benson [26] has then applied this method graphically for the simulation of homen-
tropic and non-homentropic flow in the ICE ducts using a graphical approach. He
then soon noticed the complexity even for very simple cases such as single cylinder
engines and developed a numerical approach.

3.3. Finite Difference and Finite Volume Methods

In these methods, the duct is subdivided into small increments of length by a computa-
tional mesh whose nodes define the location at which the flow variables are calculated.
Their values are obtained by algebraic equations which approximate the differential
equations and connect the node variables to each other.

Various techniques are used in the discretization and solution stages [32].

In the following, we will present briefly the MOC and some finite difference methods.
The MOC will be used later as a base for boundary conditions treatment, whereas finite
difference methods, will be evaluated in terms of accuracy and calculation effort to be
used later as reference for reduced order models.

4. The Method of Characteristics

The first contribution to the calculation of the one-dimensional non-stationary flow
in the ducts of the combustion engines are derived from the graphical and numerical
applications of the classical method of characteristics [33, 34]. This approach has the
merit of reproducing numerically wave propagation that is at the basis of phenomena
of non-stationary flow, and to allow a simple and natural treatment of all types of
boundary conditions of practical interest.

5Homentropic flow is a flow without temperature discontinuities such as those occurring in exhaust
pipes, which involve changes of entropy level and produce non-homentropic flow fields [26]
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Starting from the Euler Equation, and considering6 a homentropic flow (no friction, no
heat transfer), and no section variation:

Continuity

∂ (ρu)

∂x
= −

∂ρ

∂t
⇒

1

ρ

∂ρ

∂t
+

u

ρ

∂ρ

∂x
+

∂u

∂x
= 0 (2.38)

Momentum

∂ (ρ)

∂x
= ρ

Dρ

Dt
⇒

1

ρ

∂p

∂t
+

∂u

∂t
+ u

∂u

∂x
= 0 (2.39)

Assuming a reference state, the Third conservation equation. i.e. constant entropy
(isentropic flow) is expressed as:

p

pref
=

(
a

aref

)2γ/(γ−1)

(2.40)

or

ρ

ρref
=

(
a

aref

)2/(γ−1)

(2.41)

For isentropic flow ρref , pref and aref are constant, hence, equations 2.40 and 2.41 can
be written in differential form as:

dp

p
=

2γ

γ − 1

da

a
(2.42)

dρ

ρ
=

2

γ − 1

da

a
(2.43)

Writting in terms of partial derivatives in x and t yields:

1

p

∂p

∂x
=

2γ

γ − 1

1

a

∂a

∂x
(2.44)

1

ρ

∂ρ

∂t
=

2

γ − 1

1

a

∂a

∂t
(2.45)

6The same approach can be used for non-homentropic flow [26]
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1

ρ

∂ρ

∂x
=

2

γ − 1

1

a

∂a

∂x
(2.46)

Substituting eq. (2.45) and eq. (2.46) into the original continuity equation 2.38 yields:

2

γ − 1

∂a

∂x
+

2

γ − 1
u

∂a

∂x
+ a

∂u

∂x
= 0 (2.47)

Similarly, using eq. (2.44) , the momentum equation can be rewritten as:

2

γ − 1
a

∂a

∂x
+

∂u

∂t
+ u

∂u

∂x
= 0 (2.48)

Hence, two conservation equations were obtained in terms of the local speed of sound
a and the particle velocity u for the special case of constant entropy throughout the
whole fluid flow. The objective now is to evaluate a and u for ∀x and t

eq. (2.47) and eq. (2.48) are manipulated as follows:

eq. (2.47)+γ−1
2 eq. (2.48)

⇒

[
∂a

∂t
+ (u + a)

∂a

∂x

]
+

γ − 1

2

[
∂u

∂t
+ (u + a)

∂u

∂x

]
= 0 (2.49)

eq. (2.47)−γ−1
2 eq. (2.48)

⇒

[
∂a

∂t
+ (u + a)

∂a

∂x

]
−

γ − 1

2

[
∂u

∂t
+ (u + a)

∂u

∂x

]
= 0 (2.50)

In order to obtain the characteristic equations, it is assumed that a and u are uniquely
related by the expression c = c(a, u).

Hence, the solution of eq. (2.49) and eq. (2.50) will be of the form

c = c(x, t) (2.51)

Thus,

(da)char =

(
∂a

∂t
dt +

∂a

∂x
dx

)

char

(du)char =

(
∂u

∂t
dt +

∂u

∂x
dx

)

char

the total derivatives along a characteristic are then:
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(
da

dt

)

char
=

(
∂a

∂t
+

∂a

∂x

dx

dt

)

char(
du

dt

)

char
=

(
∂u

∂t
+

∂u

∂x

dx

dt

)

char

or
(

da

dt

)

char
=

(
∂a

∂t
+ c

dx

dt

)

char(
du

dt

)

char
=

(
∂u

∂t
+ c

dx

dt

)

char

then, the following conditions are then hold along a characteristic:

(
dx

dt

)

char
= c (2.52)

(
da

dt

)

char
=

∂a

∂t
+ c

∂a

∂x
(2.53)

(
du

dt

)

char
=

∂u

∂t
+ c

∂u

∂x
(2.54)

These equations represent the changes in a and u with respect to x and t along specif-
ically defined curves called the characteristics. The function c = c(a, u) now has to
be determined to satisfy, along the characteristics, the last equations as well as basic
equations 2.49 and 2.50

Now, we will see how equations 2.52,2.53 and 2.54 or combinations will produce normal
differential equations.

c =
dx

dt
= u + a (2.55)

da

dt
+

γ − 1

2

du

dt
= 0 ⇒

da

du
= −

γ − 1

2
(2.56)

and

c =
dx

dt
= u − a (2.57)
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da

dt
−

γ − 1

2

du

dt
= 0 ⇒

da

du
=

γ − 1

2
(2.58)

eqs. (2.55) and (2.56) and eqs. (2.57) and (2.58) can be grouped and written as:

dx

dt
= u ± a

da

du
= ∓

γ − 1

2

and the Riemann Invariants are:

λ = a +
γ − 1

2
u (2.59)

β = a −
γ − 1

2
u (2.60)

The method of characteristics is a first order method. It is not able to identify and
correctly propagate the discontinuities of flow, whether they are shock waves or contact
discontinuities 7. A first order accurate numerical scheme is inadequate to meet the
needs of current applications, because it generates an excessive amount of numerical
viscosity, which has the effect to reduce significantly the resolution of steep gradients
and high frequency disturbances that characterize the non-stationary flow in the ducts
of the fast motors. The inability to capture discontinuity in flow is a serious limitation,
since the contact surfaces 8 are always present in persistent intake and exhaust of
engines, while the bumps may occur sometimes in the diverging sections of the ducts
[35].

4.1. Illustrating Example

Consider two volumes with different pressures attached to a duct. The high-pressure
border of the duct is assumed as upstream boundary, whereas the other one is consid-
ered as downstream boundary.The duct is initially open to the downstream volume as
shown in the following figure.

7Contact discontinuity is the interface of two gases of different composition, or different temperature:an
example is the intake valve, forward and back flow of combustion products in the exhaust and intake
paths respectively

8Contact surfaces also occur in systems of constant composition in the form of abrupt changes in density
and temperature–negative density values are the main danger in this case.
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Fig. 2.3.: A generic QPM Branch

Simulating this situation using the full 1D CE-SE scheme (validated in the previous
chapter using the shock tube numerical test), and the open boundary condition (given
in section 7), the following pressure and gas velocity profiles at position (L/2) is ob-
tained:
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Fig. 2.4.: Pressure and Gas Velocity Mid-Point the Tube

• If the duct has initially the downstream conditions, the pressure at the mid-point
will oscillate until stationarity. Similarly, the flow velocity will gradually increase
until a constant velocity is reached. This is represented in fig. 2.4. The first
increase in the mid-point pressure is due to the compression wave moving from
left to right (pU > pD). When this compression wave reaches the downstream
open end, it will be reflected and inverted, which appears as a decrease in the
pressure signal.

• When the flow reaches stationarity, the duct will act as a simple restriction be-
tween the two volumes. Hence, regardless of the initial state of the duct, the
steady state velocity u∞, is a function of the boundary conditions and the geom-
etry only. Even if in the case of an ICE, stationary states are not reached due to
the continuous opening and closure of the valves, this approach remains valid as
steady states are calculated at the beginning of each iteration.

To explain this behavior in terms of the characteristics, consider the position diagram
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shown in fig. 2.5b and the state diagram in fig. 2.5a.

The position diagram gives the possibility to track waves propagation, whereas the
state diagram is used to calculate particles velocity and sound speed at a given position.
These two diagrams can be used solely to calculate a full solution (also known as the
graphical solution [26]), except that the procedure will become a tedious task even for
simple problems.

According to fig. 2.3:

• Initially, the tube has the same downstream conditions. The gas is at rest, hence
u0 = 0, and p = p0 or a0

• These are shown in the state diagram as an initial state.

• Both λ0 (eq. (2.59)) and β0 (eq. (2.60)) are shown on the position and state dia-
gram.

• Once the separation is removed, there is a perturbation which will travel from
left to right.

• This perturbation is the λ1 characteristic. It is drawn in the position diagram
automatically. In the state diagram, we know that the fluid velocity will increase,
which means λ1 will be drawn to the right of λ0.

• The transition between (0, a0) to (u1, a1) is done along the β0 characteristic. This
will lead to an increase in both local fluid velocity and speed of sound.

• Once the perturbation will reach the right boundary condition, a β1 characteristic
will be generated.

• a1 speed of sound will now decrease along λ1, and the fluid velocity will increase.

• The process will continue until stationarity is reached.

(a) The state diagram (b) The position diagram

Fig. 2.5.: Illustration of the QPM idea using characteristics (The initial characteristics are shown
in gray)
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Physically, the characteristic curves can propagate from the upstream boundary with
speed c+ = a + u and from the downstream boundary with speed c− = u − a. Thus, it
takes respectively ∆t+ = L/(a + u) and ∆t− = L/(a − u) for the propagation from one
end of the pipe to the other, if the variation of the velocity c can be neglected in these
short periods. The trace of the characteristics is recorded in the t − x plane.

5. Finite Difference Discretization Schemes

As an alternative to the method of characteristics, Winterbone and Pearson [36] pro-
pose the use of a finite difference scheme accurate to the second order [37] for the
calculation of the evolution of non-stationary flow in the engine ducts. The finite dif-
ference methods are generally much more efficient than the method of characteristics.

Because these numerical schemes use the conservative form of the equations, they
allow building the shock-capturing schemes, which can be taken into account in a
natural discontinuity. The limit of such an approach, is the spurious oscillations which
will corrupt the numerical solution of order higher than two. These oscillations are
only removed by means of an artificial viscosity.

The Lax-wendroff Scheme with one and two steps is presented for the case of home-
ntropic flow with no cross section variation. These two assumptions do not alter the
algorithm, and are here avoided for clarification sake.

5.1. Lax-Wendroff 1-Step

The simplest scheme is the one known as the Lax-Wendroff 1 step [37]. It basically
states that the new state at a given position depends on the previous state at that same
position and also the first adjacent positions.

The equations are simple to derive and straightforward to implement. Figure 2.6a
shows a representation of the Lax-wendroff scheme with one step in the x-t plane.

W n+1
i = W n

i −
∆T

2∆x

[
A

(
W n

i+1 − A
(
W n

i−1

))]
(2.61)
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Fig. 2.6.: The Lax-Wendroff schemes

5.2. Lax-Wendroff 2-Steps

The second scheme, was an extension of the Lax-wendroff one step. This time, the new
state is based on information from two steps backward (or one extra intermediate step
is used), and it involves four adjacent cells. Figure 2.6b shows a representation of this
scheme in the x-t domain.

The new state at instant (n + 1) and position (i) can be calculated as:

W
n+1/2
i+1/2 =

1

2

(
W n

i+1 + W n
i

)
−

∆t

2∆x

(
Fn

i+1 − Fn
i

)

W
n+1/2
i−1/2 =

1

2

(
W n

i + W n
i−1

)
−

∆t

2∆x

(
Fn

i − Fn
i−1

)

W n+1
i = W n

i −
∆t

∆x

(
F

n+1/2
i+1/2 − F

n+1/2
i−1/2

)
(2.62)

5.3. Conclusion on Difference Methods

For a physical solution in a region of rapid change, the smoothness assumption is
difficult to realize by a numerical approximation that can use only a limited set of
discrete variables. This difficulty becomes even worst in the presence of discontinuities,
such as shocks. [20]

Onorati et al. [38] have compared the results obtained with symmetric finite difference
schemes and with a discontinuous finite-element method in the solution of classical
test cases for one-dimensional unsteady flows in ducts. They have considered the
second-order accurate two-step Lax-Wendroff method and the MacCormack predictor-
corrector method with the addition of the FCT (Flux-Corrected Transport) or the TVD
(Total Variation Diminishing) techniques, and a second- and third-order accurate
discontinuous Galerkin finite-element method. The shock-tube calculations show
that the second-order accurate finite-difference and finite element results have a very
similar accuracy, whilst the third-order accurate FEM gives significant improvements
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in the resolution of the discontinuities. In the case of the shock-turbulence interaction
problem, in which the solution is characterized by shocks as well as by high-frequency
oscillations, the gain in accuracy of the third-order FEM was more evident. It was found
that the FEM is computationally more demanding than finite difference schemes. In
addition, the FEM is well suited to model flow regions characterized by strong variation
of the cross-sectional area and of friction and heat transfer at duct walls, since this
method allows a more flexible local refinement of the mesh. This makes adjacent ducts
with very different mesh size may be easily treated. Moreover, hybrid FEM models
coupling 1D calculations of flows in ducts with 3D direct modeling of flow boundary
regions could be naturally developed. In fact, the greater geometrical flexibility and
the straightforward treatment of boundary conditions allowed by the FEM could be
crucial advantage in these cases over the more commonly adopted finite-difference
techniques. This is especially true in multidimensional applications since the FEM is
ideally suited to be used on unstructured grids.

Corberán and Gascón [39] have tried to adapt the FCT techniques and the original
TVD scheme proposed by Harten [40] to the calculation of cases with variable cross
section. The most serious difficulty has been found in the treatment of the differences
expressed on the variation of the conserved state variables W. The terms concerning
those W differences always led to excessive diffusion in the points in which the rate of
cross-section variation is high, or even to problems in the global conservation along
the pipe. This difficulty disappears when all the differences in the scheme can be
expressed as flux differences. The proposed scheme has been derived following this
idea, but this has been only possible for a TVD scheme and not for the FCT techniques.

6. The Conservation Element-Solution Element Scheme

Chang and To [41] described a new numerical method for solving conservation laws.
lt is much simpler than a typical high resolution method. No flux limiter or any
characteristics based technique is involved. No artificial viscosity or smoothing is
introduced, and no moving mesh is used. Yet this method is capable of generating
highly accurate shock tube solutions.

The idea is to divide the x-t space into two types of regions: A region where an approx-
imation of the solution is to be used, through a Fourier transform, the new approx-
imation is to be used within a region where the solution is said to be conservative:
Which means , that for this numerical scheme, a condition is set from the beginning to
impose conservation.

This scheme has a stencil containing only two points. This minimization of stencil
has the effect of reducing numerical diffusion. It is achieved by including αj and βj as
numerical variables. The fluxes at an interface separating two Conservation Elements
(CE) are evaluated with no interpolation or extrapolation. Accuracy of flux evaluation is
enhanced by requiring that the solution given in eq. (2.67) satisfies the Euler equations
at the center of every Solution Element (SE). This makes all use of characteristics-based
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techniques less necessary. The above key features can contribute to the simplicity,
generality and accuracy of the current scheme. They all owe their existence to the use
of staggered SEs and CEs [41].

The first step of the numerical scheme used is the approximation of the solution in
each SE (j, n) by a Taylor series expansion of 2.35 truncated after the terms of the 1st

order:

w̃m (x, t; j, n) = (σm)n
j + (αm)n

j (x − xj) + (βm)n
j (t − tn) (2.63)

where:

(σm)n
j = (wm)n

j (2.64)

(αm)n
j =

(
∂w̃m

∂x

)n

j
(2.65)

(βm)n
j =

(
∂w̃m

∂t

)n

j
(2.66)

and the subscript m refers to the mth element of the vector. Similarly:

f̃m (x, t; j, n) = (fm)n
j +

(
∂f̃m

∂x

)n

j

(x − xj) +

(
∂f̃m

∂t

)n

j

(t − tn) (2.67)

We may denote the approximation vectors of f and S, in each SE(j, n), by f̃ and S̃,
respectively and are calculated as follows:

f̃m = [f̃1, f̃2, f̃3, ....f̃L+3]

s̃ = [s̃1, s̃2, s̃3, ..., s̃L+3]

such that

f̃(x, t; j, n) ≈ f(w̃(x, t; j, n)) s̃(x, t; j, n) ≈ s(w̃(x, t; j, n)) (2.68)

Where the subscript L referes to the number of species to be considered.

To obtain the numerical solution, it is necessary to know the coefficients (σm)n
j , (αm)n

j ,
(βm)n

j , ∀j, n.

Assuming that these coefficients at the time step n are known and we seek to compute
the coefficients of the next step, n + 1/2.

For the calculation of (σm)
n+1/2
j , m = 1, 2, 3, ..., L + 3 we use the resolution of the
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integral form of the system of eq. (2.33), in each CE(j, n + 1/2) with reference to
figs. 2.7a and 2.7b

¨

CE(j,n+1/2)

∂w̃m

∂t
+

∂f̃m

∂x
dxdt

︸ ︷︷ ︸
I

+

¨

CE(j,n+1/2)

s̃mdxdt

︸ ︷︷ ︸
II

= 0, k = 1, 2, ..., L + 3. (2.69)
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Fig. 2.7.: The CE-SE Method

Applying Green’s theorem to eq. (2.69), we obtain the following path integral defined
along the boundary of CE(j, n + 1/2) for m = 1, 2, 3, .., L + 3:

(σm)
n+1/2
j =

(σm)n
j−1/2 + σm)n

j+1/2

2
+ gm(j − 1/2, n) − gm(j + 1/2, n)

−
∆t

4
[s̃m(j − 1/2, n) + s̃(j + 1/2, n)]

(2.70)

where,
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g1 =
∆x

8
α1 +

∆t

2∆x
(σ2 +

∆t

4
β2) (2.71)

g2 =
∆x

8
α2 +

∆t

2∆x
σ2[(γ − 1)

σ3

σ2

+
3 − γ

2

σ2

σ1
] +

∆t2

8∆x
[(γ − 1)β3 +

3 − γ

2

σ2
2

σ1
(2

β2

σ2
−

β1

σ1
)]

(2.72)

g3 =
∆x

8
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∆t

2∆x

σ2
2

σ1
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(2.73)

...

gL+3 =
∆x

4
αL+3 +

∆t

2∆x
[
σL+3σ2

σ1
] +

∆t2

8∆x
[
σL+3

σ1
β2 +

σ2

σ1
βL+3 −

σL+3σ2

σ2
1

β1] (2.74)

with L, being the number of species considered and σm = (σ)n
j+1/2, αm = (αm)n

j+1/2

and βm = (βm)n
j+1/2 for m = 1, 2, 3, ..., L + 3.

To obtain gm(xj−1/2, t; j − 1/2, n), σm is replaced in eqs. (2.71) to (2.74) by (σ)n
j−1/2,

αm = (αm)n
j−1/2 and βm = (βm)n

j−1/2

We now decompose the integral source terms II in eq. (2.69) as the sum of three
integrals defined in each SE, (refer to fig. 2.7) and approximate each one of these
integrals using the mean value theorem for integrals, using the value of the integrand
in the center of the rhombus,

¨

CE(j,n+1/2)

s̃mdxdt ∼=
(∆x)(∆t)

4
[
s̃m(j + 1/2, n) + s̃m(j − 1/2, n)

2
+ s̃m(j, n + 1/2)]

(2.75)

where,

S̃1(j, n + 1/2) = δjσ2 (2.76a)

S̃2(j, n + 1/2) =
σ2

2

σ1
(
2f

dj

σ2

|σ2|
+ δj) (2.76b)

s̃3(j, n + 1/2) =
σ2

2

σ1
(γ

σ3

σ2
−

γ − 1

2

σ2

σ1
)δj −

4qn
j

dj
(2.76c)

...

˜SL+3(j, n + 1/2) = δj
σL+3σ2

σ1
(2.76d)
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For σm = (σm)
n+1/2
j , m = 1, 2, 3, ..., L + 3 With the following approximation:

s̃m(j, n + 1/2) =
s̃m(j − 1/2, n) + s̃m(j + 1/2, n)

2
, m = 1, 2, 3..L + 3, (2.77)

Which is an explicit system.

In order to obtain the coefficients (α)
n+1/2
j , m = 1, 2, 3, ...L + 3 we define 3 points

in CE(j, n + 1/2), P+, P and P−, corresponding to the coordinates (xj+1/2, tn+1/2)

(xj , tn+1/2) and (xj−1/2, tn+1/2), respectively as shown in fig. 2.7.

Since A± does not belong to SE(j ± 1/2, n) the value of w̃m(A±) is calculated in the
point that is below A+ and P− in each corresponding SE. In case that a discontinuity
of solution occurs between A+ and P but not between A and A−, one would expect
that |(αk+)

n+1/2
j | ≫ |(αk−)

n+1/2
j |, where

(αm±)
n+1/2
j = ±

w̃m(P±) − σm
n+1/2
j

(∆x/2)
(2.78)

are the lateral differences. As P and P− are on the same side of the discontinu-
ity, (αm)

n+1/2
j should be closer to (αm−)

n+1/2
j than (αm+)

n+1/2
j . This suggests that

(αm)
n+1/2
j should be a weighted average between (αm+)

n+1/2
j and (αk−)

n+1/2
j , which

gives more weight to the term with the smallest module,

αm± =





|αm+|cαm−+|αm−|cαm+

|αm+|c+|αm−|c , |αm+|c + |αm−|c Ó= 0,

0, |αm+|c + |αm−|c = 0, m = 1, 2, 3, ..., L + 3
(2.79)

where c is positive real constant. In the boundary of the domain we calculate the
(αm)

n+1/2
0 using forward differences, (αm+)

n+1/2
0 , and (αm)

n+1/2
M by means of backward

differences, (αm−)
n+1/2
0 , both defined in eq. (2.78). Finally, the coefficients, (βm)

n+1/2
j ,
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m = 1, 2, 3, ..., L + 3 are obtained by replacing ∂f̃m

∂x (j, n + 1/2) and eq. (2.76) in eq. (2.35)

(β1)
n+1/2
j = −α2 − δjσ2 (2.80a)

(β2)
n+1/2
j = −(γ − 1)α3

+
σ2

2

σ1
[
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2
(
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− 2
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) −

2f

dj
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|σ2|
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(2.80b)
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2
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2
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2
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1
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(2.80c)
...

(βL+3)
n+1/2
j = −[

σL+3

σ1
α2 +

σ2

σ1
αL+3 −

σL+3σ2

σ2
1

α1] − δj
σL+3σ2

σ1
(2.80d)

Onorati and Ferrari [42] applied this method to the tracking of the chemical species
along the intake and exhaust duct systems, introducing the species continuity equa-
tions in the numerical model. In particular, the back-flow of combustion products in
the intake pipe and the through-flow of air in the exhaust duct during the valve overlap
have been simulated.The fluid dynamic model is based on the numerical solution of
the fundamental conservation equations for one-dimensional, unsteady, compressible
flows in ducts with variable cross-sectional area. Three approaches can be considered
when taking gas concentration into consideration:

• Perfect gas with constant specific heats

• Ideal gas with specific heats depending on the gas chemical composition

• The specific heats depend on the gas chemical composition and temperature

In CE SE, parameters and their derivatives are considered as independent variables
and are computed simultaneously at each time-step that leads to local and global flux
conservation [43]. It also proved its efficiency for multi-dimensional problems [44].

Earlier in this chapter, several methods for solving unsteady compressible 1-D flow
were discussed, and their qualities assessed. The next chapter will explain some
boundary conditions treatment. Finally, simulation results for both duct simulations
and boundary conditions will be presented.

7. Boundary Conditions Treatment

The numerical methods applied to know the fluid conditions in 1D elements allow
obtaining them only in the internal nodes. Hence, one can say that these models
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and numerical methods previously discussed are worthless if they are not coupled to
accurate models of boundary conditions. The boundary conditions in the ICE field
include turbines, compressors, throttle valves, EGR-valves, intake and exhaust valves
and any other restriction or complex geometry. The Method of Characteristics is the
most used in the treatment of these boundaries.

Different boundaries can be encountered on an ICE such as, open and closed ends,
throttle valves, compressors, turbines ... The similarity between the models for these
boundaries is the quasy-steady assumption. This hypothesis can be less true for a
turbine (the wave can propagate through the turbine large volume) compared to a
simple boundary such as a closed end.

Until 1982, Boundary conditions and jump conditions should be applied by fitting
procedures of second-order accuracy on all surfaces of singularity (shocks, interfaces,
slip surfaces, contact discontinuities, and boundaries of rarefaction fans) [45]. Later
on, Benson [26] presented a detailed approach on how to use the Riemann Variables9

to treat boundary Conditions in an appropriate way.

Onorati et al. [46] stated that the simple junction boundary condition assuming negligi-
ble pressure losses (constant pressure models by Benson [26], Winterbone and Pearson
[24] is generally not satisfactory in the case of complex junctions of high performances
engines, since it can provide misleading predictions of pressure pulses reaching the
cylinder intake and exhaust valves, with unreliable prediction of the engine volumetric
efficiency. The required junction model in this case must account for pressure losses
and directionality effects. Onorati et al. [46] developed then a new model which allow
estimating the pressure loss coefficients by means of analytical expressions.

7.1. Modeling Principal

Typical boundaries for which models exist are open and closed ends, in flow bound-
aries, valve boundaries, junctions, orifices, throttle valves, turbines and compressors.

Mainly the following hypothesis are the corner stones for the various models:

• Quasi Static Models [Winterbone and Pearson [24]]

• Use of Mass and energy conservation

• The system can be augmented using the momentum equation

• Use of different hypotheses (depending also on flow nature) to solve the system

• The flow is considered compressible

Despite the above assumptions, singularities modeling within the ICE remains chal-
lenging, as the propagation of pressure waves through junctions are inherently multi-
dimensional phenomenon [47].

For this reason, mass and energy balance are made considering that the flow is sta-
tionary at each time step [31], which justifies the first hypothesis. However, the flow is

9The reader is invited to refer to the Appendix D for a detailed treatment of the boundaries.
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continuously distributed by valves opening and closing, which contradicts the same
hypothesis. Some authors justify the quasy-stationarity choice by the fact that the
variation in space is more dominant as the one in time, and hence, the PDE will reduce
to an ODE in space, thus the quasy-stationarity assumption.

7.2. Typical Boundary Conditions in the ICE

The basic boundary conditions for ICE are:

• Completely closed end such as a closed valve

• A partially open end, such as an open intake valve

• A completely open end, such as ducts ending up to the atmosphere

Any other boundary condition, can be modeled as a combination or based on the
previous boundaries. Figure 2.10 gives a representation of the boundaries stated above,
with a superposition of the CIR’s stencil.
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(d) Flow through valves in ICE

Fig. 2.8.: Typical boundary conditions with C.I.R10

10CIR: is a finite difference method named after Courant, Isaacson and Rees. It is a direct discretization in
an upwind manner of the characteristic computability equations.
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7.3. Main Modeling Approaches for Boundary Conditions

The gas flows in ICE are non-steady and changes in the fluid properties take place in
space, x, and time, t. However, for the boundary conditions, the spatial rates of change
of fluid properties are far greater then the temporal one. These conditions are known
as quasi-steady flow conditions and steady flow gas relationships maybe used in this
case [26].

As earlier stated, the MOC is the corner stone in the boundary conditions treatment.
Zuecrow and Hoffman [48] on the concept of MOC said that it can be introduced from
several points of view:

• From a physical point of view, a characteristic is defined as the path of propaga-
tion of a physical disturbance. An example is when disturbances for a supersonic
flow propagate on the Mach lines, which are the characteristics for the supersonic
flow

• From a purely heuristic point of view, a characteristic is defined as a curve along
which the governing partial differential equations can be manipulated into total
differential equations.

• From a more rigorous mathematical point of view, a characteristic is a curve
across which the derivatives of a physical property may be discontinuous, while
the property itself remains continuous.

• From the most rigorous mathematical point of view, a characteristic is defined
as a curve along which the governing partial differential equations reduce to an
interior operator, that is, a total differential equation. That interior operator is
known as the compatibility equation.

A brief resume on how to obtain the characteristics equations is available in the Ap-
pendix. In the following, we shall present a very basic explanation, on how the MOC
can be extremely useful to visually track the waves.

7.3.1. Graphical Example with the MOC

The idea behind this subsection, is to bring in front the beauty of the MOC. However,
in real applications, other numerical methods are more efficient.
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Fig. 2.9.: Closed end boundary condition

Consider the pipe content to be ini-
tially at rest. A disturbance is then
initialized at the left end of the
pipe, this will cause the pressure,
sound speed as well as the flow
speed change values. The first ini-
tialization of the disturbance will
be represented by the right moving
characteristic.

• The black line is drawn first, as the disturbance is at the lower left corner. We know
that due to the transport phenomena, the initial condition 0 will be transported
along the line.

• At t = t1, the blue line is drawn parallel to the first line. The lines are parallel
as the characteristic will be conserved. However, the new state 1 will be now
transported along the new characteristic.

• At t = t2, the same procedure is repeated.

• One has to keep in mind that the states (represented as 0, 1, 2... in the graph) have
to propagate on the characteristic line. this will enable the reconstruction of the
pressure profile all along the duct, at any instant, and so is the propagation of the
waves visualized.

7.3.2. Flow Interaction at Standard Boundary Conditions

Whether for the closed end or the open end boundary conditions, calculate the Rie-
mann Invariants along the neighboring characteristics to the boundary condition.
Once these are available, the C.I.R is used to calculate the new characteristics at the
boundary conditions. To calculate the flow properties, the system of equations is then
closed by considering extra hypothesis depending on the flow and boundary nature.

In fig. 2.10a, a 3-D plot to illustrate an initialized wave transported towards to the
closed end.

When the wave is initialized with moving speed toward the closed end, it can suffer
some decay in amplitude due to friction and heat transfer. In this simulation, we
discarded both effects to consider a homentropic flow. The wave arrives at the closed
end and then mounts on itself, to get back. This is actually due to momentum and
mass conservation. Since the end is closed, the flow will have to get back in the other
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Fig. 2.10.: Isometric illustration of standard boundary conditions in the time-distance plane

direction, but first, come to rest first due to continuity. This will cause an increase
in the local pressure and hence, the wave looks like it’s mounting on itself. For the
closed end boundary conditions, a straightforward simplification is taking the local
fluid speed at the boundary to be zero, hence one unknown state is directly estimated.

For an open end, the behavior is completely different, and relatively more complex.
Pressure changes due to interaction with an open end are driven by the pressure
gradient itself, and hence the flow nature. The main property of the open end, is the
phase shift of the wave, which we see in fig. 2.10b. In the considered example, the
positive wave approaches the open end, and gets inverted there. The reason for this,
is that once the wave arrives to the open end, it will see a different pressure (in this
case, it was the ambient pressure, which was smaller), particles flow will be accelerated
instantly, whereas flow still in the tube will have a lower speed, and hence the fall
in pressure magnitude. This pressure wave now will naturally travel in the negative
direction.

The partially open end modeling resembles to the open end boundary condition
modeling, but augmented through the use of a loss factor which characterizes the
section variation.

7.4. Chemical Species Transport in Boundary Conditions and 0D Elements

The inclusion of the chemical species transport does not affect the solution procedure
of the MOC but can modify the value of the Riemann variables and the entropy level.
The transport of chemical species in 1D elements can be performed by solving the
governing equations system by means of finite difference numerical methods. However,
wave action models consider other types of elements that can be found in internal
combustion engine: cylinders, turbine, compressor, diesel particulate filters, inter-
coolers, volumes, etc. All this kind of systems are modeled as boundary conditions, 0D
elements or a combination of these with 1D elements [25].
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7.5. Conclusion on Boundary Condition Modeling

The above models where developed for homentropic flows, to simplify explanation
and implementation. However, the entropy levels in the various parts of the flow may
have significant effects. The entropy levels may not be uniform, and the flow will then
be non-homentropic. In this case, special care has to be taken to correct the above
algorithms. The idea is based on correcting the Riemann Invariants , which will be
called, for the non-homentropic flow, Riemann Variants, as they change value along
the characteristic line. Unfortunately, there is no analytic expression to calculate the
amount of variation, and the problem can only be solved iteratively

8. Validation

8.1. Validation Using Numerical Shock Tube Test Bench

For the sake of an intuitive illustration of the importance of a good and proper choice
of the numerical scheme, a 1D flow simulation using the different stencils seen earlier
is performed.

8.1.1. The Shock Tube Test

The Sod shock tube problem, named after Gary A. Sod, is a common test for the
accuracy of computational fluid codes . The test form a discontinuity of the pressure
and density. For this special case, an analytical solution has also been developed and is
used as a reference for comparison and validation of 1D numerical schemes.

Fig. 2.11.: Initial conditions of the shock tube experiment

A duct of length 1 m and a diameter of 0.04 m with both ends being closed is considered.
The tube is divided into two tubes having the same length and different gas conditions
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as shown in fig. 2.11. Since the purpose of this section is the comparison of 1D numeri-
cal schemes, boundary conditions are kept out of the scope. It will be noticed from the
simulation results that no wave interaction with boundaries is presented.
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Fig. 2.12.: Shock tube comparison results

Initially, the two tubes are separated. The gas is stationary and has initial states (1 bar,
1 kg/m3) to the right whereas the conditions to the left are (0.1 bar and 0.125 kg/m3).

To avoid any complex flow, we assume that the separation is completely removed in
∆T = 0 seconds. This will initiate a flow from the left to the right and a shock wave
traveling in the same direction.

For this simulation, the space discretization was the same for all methods and taken as
∆ x = 0.005

Then, at the end of every iteration, the CFL condition is used to calculate the maxi-
mum time step size. This way, it is possible to assess and compare the accuracy and
computational performance of the schemes.

Figure 2.12 and 2.13 shows the simulated fluid states using the analytical approach as
well as the finite difference methods seen earlier in this chapter.

It is clear that severe oscillations have corrupted the shock tube simulation results
using the Lax-Wendroff one and two steps. The two schemes lead to a better accuracy
on the rarefaction waves as on the compression wave. Notice also that the amplitude
of the oscillations is continuously increasing.
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Fig. 2.13.: Shock tube at t=0.0475 s
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Fig. 2.14.: Effect of space discretization size

These oscillations are successfully removed using the symmetrical Total Variation
Diminishing (TVD) method. In addition, then discontinuities are also well resolved.

It is also noticeable that the CE-SE handles properly the discontinuities and that the
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simulated gas states are accurate and oscillations free.

This makes the two last schemes represent the best candidates simulating gas dynamics
in ICE ducts. However, fig. 2.14 shows that the calculation time of the Lax-Wendroff
with TVD increases exponentially as the space discretization decreases. This is of
course expected as the CE-SE by nature requires no additional flux limiters or artificial
viscosity.

In addition, the conservation of physical quantities is often altered as it suffers from
the inevitable numerical errors due to discretization. The next figure shows an inves-
tigation of mass conservation during the shock tube simulation. According to mass
conservation, the total amount of mass inside the tube is supposed to be constant over
the simulation, as the system is considered to be completely closed.
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Fig. 2.15.: Mass relative error of shock tube simulation

Once again, the CE-SE outperforms the other numerical stencils as shown on the
figure. The CE-SE owes its conservation to the use of the integral form of conservation
equations, which completes the PDE. The main advantage of the integral form is its
validity even across discontinuities. The remaining numerical schemes are based on
the PDE only which lose validity across discontinuities.

8.1.2. Concentrations Transport

Once again, the shock tube test has been used to test the transport of different concen-
trations. If we assume the left and right parts of the tube have different concentrations
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of the species X1, X2 and X3, the following concentrations transport is obtained.
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Fig. 2.16.: Concentrations Transport at different instants

Concentrations transport is defined by the gas velocity. This is why the compression
and rarefaction waves are not apparent on fig. 2.16.

It can be seen that using this two test cases, the validation of the CE-SE open and
closed end as well as moving valve boundary conditions has been performed

8.2. Validation at the Acoustic Test Bench

Before validating the models on a real ICE air system, it was decided to assess the
accuracy of these schemes and boundary conditions on the acoustics test bench
available at the PRISME laboratory. The test bench fig. 2.17 gives the possibility to
decouple transport phenomena along the ducts and wave interaction at complex
boundaries. This is a very useful advantage as it helps better understand the physics
behind and validate the signal models.

8.2.1. Experimental Set Up

The shock tube in fig. 2.17 is a widely used experiment to validate transport models
for engine ducts. It offers the possibility to isolate the effect of ducts and restrictions
on wave propagation. This gives a possibility to understand phenomena and validate
specific model parts.

The test bench consists of a real engine cylinder head with a valve actuated to generate
one pressure pulse. The valve connected to a variable length pipe ( 1m to 12 m) which
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can be open to the atmosphere or a 50 L volume. The pressures in the cylinder and
the volume can be controlled up to values of 20 and 4 bars respectively. The pressure
difference across the valve will then define the flow direction (inflow or outflow) as
well as flow nature (subsonic or sonic). The valve is actuated by a simple mechanical
system instead of the actual camshaft. Using a free sliding weight moving vertically
with respect to the valve which is brought to a given height, then left free to hit the
valve. After the carriage bounces back away from the valve, it is held to prevent further
successive valve openings. The momentum transfer from the weight to the valve will
push the valve down to a certain opening position, then the valve spring will bring it
back to its closed position.

The amount of momentum transfer is only controlled by the mass height (always starts
with zero velocity). This gives a good repeatability of the experiments in terms of valve
opening profile and initial mass height.

Fast-response pressure transducers dispersed along the duct have been used to record
the wave propagation. A no-contact transducer based on Foucault currents is used
to measure the valve opening. If the pipe is long enough, the first wave will pass
completely the first sensors before the reflected wave reaches the same sensors.

Kg

Pressure sensor

Valve lift sensor

Fig. 2.17.: Acoustic Test Bench
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Sensor Type Manufacturer Model Scale
Pipe pressure Bosch 0-261-230-049 0-2.5 bar

Cylinder pressure Kistler 4045A5 0-10 bar
Valve lift Gefran P212A25 -

Acquisition Card National Instruments NI DAQPad-6070E

Table 2.1.: Test Bench Specifications

8.2.2. Results

Using an atmospheric pressure in the cylinder and a 1.5 bar in the tube, it was possible
to generate a rarefaction wave through the tube and a flow into the cylinder. This
rarefaction wave is transported from the left to the right in an opposite direction with
respect to mass flow. This case hase been simulated using the CE-SE and boundary
conditions.Results are given in 2.19.
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Fig. 2.18.: Waves and sensors distribution

The time delays between the three
sensors are due to their distribu-
tion. Sensor at position 1 lies
closer to the valve. This is why the
perturbation (wave #1 in fig. 2.18)
is first sensed by sensor #1, sensor
#2 then #3.

Once the rarefaction wave arrives at the left open end, it will be inverted and reflected.
Now, the wave travels from the right to the left. This inverted wave is now seen first by
sensor #3, #2 and then #1. Because the valve is now completely closed, it will behave
as a closed end. As seen previously, the wave will be reflected only. This wave will
pass through sensor 1 while the rarefaction wave is still not completely through. The
superposition of these two waves results in the second peak at sensor # 1. The same
phenomena will also happen but at the trailing edge of the previous wave. Thus, the
very small peak is measured at sensor #2. The same behavior of the open end boundary
is observed at sensor #3, but now inverting the compression wave and generating a
rarefaction wave.
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Fig. 2.19.: Intake At the Acoustic Test Bench

To simulate an exhaust case (flow from the cylinder to the pipe), we increased the
pressure in the cylinder and kept the pressure in the tube equal to the atmospheric
pressure. In this case, a compression wave is generated due to the valve opening
fig. 2.20.
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Fig. 2.20.: Exhaust At the Acoustic Test Bench

For both the intake and the exhaust cases, the simulation matches well with the experi-
ment. Waves reflection is properly reproduced, and waves superposition is respected.

Some differences between the measurements and the simulation can be observed, and
are mainly due to the boundary conditions modeling.
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9. Conclusion

In this chapter, the governing equations of 1D gas dynamics have been stated. After-
wards, a detailed investigation of existing 1D numerical schemes for the simulation of
gas dynamics within the engine ducts have been performed.

Four numerical schemes that differs in complexity have been considered. The Lax-
Wendeoff with one and two steps have proved to be very simple but became quickly
inefficient in a region of rapid change or discontinuities. This can be improved using
the Total Variation Diminishing (TVD) treatment. However, this extra treatment results
in an additional computational penalty.

The CE-SE proved to be the candidate offering the best compromise between accuracy
and computational effort.

In the second part of this chapter, standard boundary conditions have been presented.
Without going into a detailed modeling, the boundary conditions were used to feed
the duct model for the sake of validation under the acoustic test bench. This special
test bench gave the possibility to isolate wave propagation phenomena for a better
understanding.

As mentioned earlier, the achievement of an efficient calculation and sufficient accu-
racy are of great importance. Unfortunately, the CE-SE is still far from being imple-
mentable on current ECUs.

In the next chapter, we will see how some reduced models can be used to model wave
phenomena in engine ducts.
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CHAPTER 3

REDUCED ORDER MODELS

The simulation of flow dynamics has been an essential stone in the design and develop-
ment of engines. The appropriate solution of the 1D-Euler Equations simulates waves
propagation in the ICE ducts, which is then used to evaluate their impact on engine
efficiency. Various schemes have been formulated based on the Method of Character-
istics (MOC) [49, 26], upwind and symmetric finite-difference schemes [41, 35, 50, 38]
or finite volume shock-capturing methods [32]. In the previous chapter, discrepancies
in the accuracy, stability and calculation time have been discussed, to shed the light on
the importance of the numerical scheme choice.

These models (also called 1D codes) offer an accurate description of the gas dynamics
in intake and exhaust paths. This plays a dominant role in the cylinder filling esti-
mation which is a major factor for emissions, performance and fuel consumption
optimization. However, they are still not real-time compatible for current ECUs due to
their calculation costs.

The computational power required by the 1D models is the major obstacle in front
of their boarding on series ECUs. The numerical speed in the simulation of internal
combustion engine ducts, is mainly restricted by the amount of calculation required
per cell as well as the number of cells.

To overcome this problem, considerable work has been done to develop models which
bridge the gap between the 1D and pure lumped parameter models. Mainly two
approaches can be noticed:

• Up-Down Approach: are reduced order models derived from the conservation
laws without oversimplifying the topology of the engine air-path system [1, 2, 3]

• A Bottom-Up Approach: are models obtained through an input-output relation-
ship [17, 18] or an extension of the lumped parameters [4, 5, 6]

In this work, we will concentrate on the quasi-propagatory modeling approach.
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1. The Quasi Propagatory Model

Lumped parameter models pattern the mass flow as a function of the pressure differ-
ence only. This will result in an error in the transient phenomena inside the intake
and exhaust manifolds, which is crucial for the model-based air-fuel ratio control.
On the other hand, 1D models consider inertial effects by means of the momentum
conservation law, but are computationally expensive due to the space discretization
and the numerical treatment.

To bridge the gap between the lumped parameter and 1D models, Cipollone and
Sciarretta [4] presented a novel relationship obtained by observing the solution offered
by the MOC for a duct branch connecting two reservoirs at different pressures.

The basic idea is to separate the inertial properties of the fluid from the capacitive
ones. Because the final model is an ordinary differential equation, the calculation
along the complete duct is no more explicitly required, which reduces intrinsically the
calculation time.

The partial differential over space and time are always coupled in the three governing
equations. If one of these two differentials can be mathematically decoupled from the
other one, the equation can be easily reformulated into a couple of ordinary partial
differential equations, which significantly reduces the complexity and expense by
solving only the differential equations.

In the following, the MOC is used to transform the conservation partial differential
equations into ordinary differential equations. Afterwards, an illustration example and
the development of the QPM dynamic model are established.

The three governing conservation equations from eq. (2.32) are restated here:

∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
+

ρu

A

dA

dx
= 0 (3.1)

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
+ G = 0 (3.2)

∂p

∂t
+ u

∂p

∂x
− a2

(
∂ρ

∂t
+ u

∂ρ

∂x

)
− (γ − 1) ρ (q̇ + uG) = 0 (3.3)

with

G = sgn(u)
4f

D

u2

2

Manipulating eqs. (3.1) to (3.3) as follows:
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a2 · eq. (3.1) + ρa · eq. (3.2) + eq. (3.3) ⇒

[
∂p

∂t
+ (u + a)

∂p

∂x

]
+ ρa

[
∂u

∂t
+ (u + a)

∂u

∂x

]

− (γ − 1)ρ(q̇ + uG) +
ρua2

A

dA

dx
+ ρaG = 0

(3.4)

a2 · eq. (3.1) − ρa · eq. (3.2) + eq. (3.3) ⇒

[
∂p

∂t
+ (u − a)

∂p

∂x

]
+ ρa

[
∂u

∂t
+ (u − a)

∂u

∂x

]

− (γ − 1)ρ(q̇ + uG) +
ρua2

A

dA

dx
+ ρaG = 0

(3.5)

Along the particular characteristic given by eq. (2.55) which involves the condition

dx

dt
= u + a (3.6)

the total derivative of the pressure p and the fluid velocity u can be rewritten as





dp

dt
=

∂p

∂t
+

dx

dt

∂p

∂x
⇒

dp

dt
=

∂p

∂t
+ (u + a)

∂p

∂x
du

dt
=

∂u

∂t
+

dx

dt

∂u

∂x
⇒

du

dt
=

∂u

∂t
+ (u + a)

∂u

∂x

(3.7)

Substituting (3.7) into (3.4) and rearranging:

1

ρa

dp

dt
+

du

dt
−

γ − 1

a
(q̇ + uG) +

au

A

dA

dx
+ G = 0 (3.8)

Similarly, along the regressive characteristic eq. (2.57)

dx

dt
= u − a (3.9)
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The total derivatives can be written as:





dp

dt
=

∂p

∂t
+

dx

dt

∂p

∂x
⇒

dp

dt
=

∂p

∂t
+ (u − a)

∂p

∂x
du

dt
=

∂u

∂t
+

dx

dt

∂u

∂x
⇒

du

dt
=

∂u

∂t
+ (u − a)

∂u

∂x

(3.10)

Substituting into (3.5) and rearranging:

1

ρa

dp

dt
−

du

dt
−

γ − 1

a
(q̇ + uG) +

au

A

dA

dx
− G = 0 (3.11)

Equations (3.8) and (3.11) are said to be mathematically equivalent , along the charac-

teristic curves eqs. (3.6) and (3.9) to the partial differential equations set of eqs. (3.1)
to (3.3).

It is evident that along the curves defined by eq. (3.6) and eq. (3.9), the set of PDEs in
eqs. (3.4) and (3.5) can be formally reduced to a set of ODEs. Mathematically, these
curves are called Characteristics or Characteristic Curves and the set of reduced ODEs
are named as Compatibility Conditions1.

For a homentropic flow, the non-homentropic terms (q̇, G, dA
dx ) in eqs. (3.8) and (3.11)

are ought to disappear, hence:

dp

dt
= −ρa

du

dt
along c+ :

dx

dt
= u + a (3.12a)

dp

dt
= ρa

du

dt
along c− :

dx

dt
= u − a (3.12b)

These two expressions state that along the characteristic given by eq. (3.12a) , the ve-
locity is increasing while the pressure is decreasing. At the same time, along eq. (3.12b),
both the velocity and pressure are increasing.

To visualize this, consider a homentropic flow exists in a duct connecting two volumes,
there will be eventually a steady state at which the velocity and pressure will not vary
anymore (see figure 3.1) depending on the duct initialization.

1Compatibility conditions state that p (or a) and u cannot change arbitrarily, but have to satisfy eqs. (3.8)
and (3.11)
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(a) Right traveling perturbation (b) Left traveling perturbation

Fig. 3.1.: Illustration of the QPM using characteristics2

Considering that the left volume has a higher pressure compared to the right volume,
the gas is flowing from left to right. Perturbations are also initiated first at the left
boundary then transported across the duct.

Depending on whether the tube has initially right or left conditions, Figures 3.1a and
3.1b are used respectively to visualize the gas state at a given point until the gas reaches
stationarity. The case in fig. 3.1a will be next illustrated in detail. The same holds for
fig. 3.1b.

1.1. The Dynamic Model

The fundamental physics of QPM is based on the MOC theory, which has been illus-
trated in the previous section and is restated here for clarity:

1

C

dp

dt
+

du

dt
+ σ1 + σ2 + σ3 = 0 at

dx

dt
= u + a (3.13a)

1

C

dp

dt
−

du

dt
+ σ1 + σ2 − σ3 = 0 at

dx

dt
= u − a (3.13b)

where in the equations, C = ρa denotes the characteristic slope of p−u curves (fig. 3.2),

2In this case, the boundary conditions steady states coincide because it is a homentropic flow.
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while the non-homentropic terms σi are:





σ1 = −
γ − 1

a
(q̇ + uG)

σ2 =
au

A

dA

dx
σ3 = G

(3.14)

The theory of MOC can now be applied to analyze the flow in the duct. Integrating the
corresponding conditions eqs. (3.13a) and (3.13b) respectively over the time interval
∆t+, during which the characteristics propagates with the velocity c+ as well as over
the ∆t−, during which it propagates with the velocity c−:

pU

p

uu∞

pD

pu,i

pd,i

pu,i+1

uu,i ud,i
uu,i+1

x = 0 x = Lx = L/2

t = 0

tn

tn+1

tn+2

∆t− =
L

a−u

∆t+ =
L

a+u

c=a+u

c=a-u

C+

C−

C+

C−

T ime

Fig. 3.2.: The Quasi-Propagatory Model

Integrating eq. (3.13a) between two successive time instants tn and tn+1 for the pro-
gressive wave as shown in fig. 3.2:

ˆ tn+1

tn

[
1

C

dp

dt
+

du

dt
+ σ1 + σ2 + σ3

]
dt = 0 Along C+ (3.15)

where (∆t+ = tn+1 − tn) is the time required by the progressive wave to travel from
one pipe end to the other:

pd,i − pu,i + Cud,i − Cuu,i + α1 = 0 (3.16)

with:

α1 = (σ1 + σ2 + σ3)C∆t+ (3.17)
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Similarly, integrating eq. (3.13b) between two successive time instants tn + 1 and tn+2

for the regressive wave:

ˆ tn+2

tn+1

[
1

C

dp

dt
−

du

dt
+ σ1 + σ2 − σ3

]
dt = 0 Along C− (3.18)

pu,i+1 − pd,i − Cuu,i+1 + Cud,i + α2 = 0 (3.19)

Where α2 denote

α2 = (σ1 + σ2 − σ3)C∆t− (3.20)

To supply proper exact boundary conditions, non-linear physical models are required,
which results in the high calculation effort. To avoid this, a linearization of the bound-
aries profile can be considered as shown in the p − u plane in fig. 3.3.

Using a homentropic flow, the boundary conditions will converge to the same steady
state value:

Fig. 3.3.: Linearized p-u plane

Suppose the pressure variation at a given boundary is given as:

p = f(u)

where f is a nonlinear function.
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Linearizing around a given fluid velocity u∗

p = f(u∗) +
df

du

∣∣∣∣
u∗

(u − u∗) (3.21)

Thus, applying the previous approximation in accordance with fig. 3.3:

pu,i = puo − Auu,i (3.22a)

pd,i = pdo + Bud,i (3.22b)

Such that puo and pdo can be regarded as the pressures on the borders of the duct, where
the fluid is stationary, i.e.





puo = pu,j |uu,j=0

pdo = pd,j |ud,j=0

(3.23)

A and B are the coefficients representing the slope of the straight lines between the
stationary state (u = 0) and steady state (u = u∞)

Substituting eq. (3.22a) into eq. (3.16):

(pd,0 + B · ud,i) − (pu,0 − A · uu,i) + C (ud,i − uu,i) + α1 = 0 (3.24)

Solving for ud,i, yields:

ud,i =
−1

C + B
[(pd,0 − pu,0) + (A − C) · uu,i + α1] (3.25)

Similarly, Substituting eq. (3.22b) into eq. (3.19):

(pu,0 − A · uu,i+1) − (pd,0 + B · ud,i) − C (uu,i+1 − ud,i) + α2 = 0 (3.26)

Solving for uu,i+1, yields:

uu,i+1 =
1

C + A
[(pu,0 − pd,0) + (C − B) · ud,i + α2] (3.27)
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Substitution of eq. (3.25) into eq. (3.27), yields:

uu,i+1 =
(C − B)(C − A)

(C + B)(C + A)
uu,i +

2C

(C + B)(C + A)
(puo − pdo)

−
1

C + A

(
α1

C − B

C + B
− α2

) (3.28)

and equivalently:

ud,i+1 =
(C − B)(C − A)

(C + B)(C + A)
ud,i +

2C

(C + B)(C + A)
(puo − pdo)

−
1

C + B

(
α1 − α2

C − A

C + A

) (3.29)

The velocities at the upstream and downstream boundaries reach a steady state as long
as no variation with time can be seen, i.e. uu,i+1 = uu,i and ud,i+1 = ud,i. Thus, one can
write:

{
uu,∞ = uu,i = uu,i+1

ud,∞ = ud,i = ud,i+1

Hence, solving eqs. (3.28) and (3.29) with the above constraints yields the explicit
expressions for uu,∞ and ud,∞ as follows:





uu,∞ =
puo − pdo

A + B
−

C + B

2C(A + B)

(
α1

C − B

C + B
− α2

)

ud,∞ =
puo − pdo

A + B
−

C + A

2C(A + B)

(
α1 − α2

C − A

C + A

) (3.30)

Notice that uu,∞ = ud,∞ in the case of homoentropic flow, where the assumption
α1 = α2 = 0 is given.

Thus, eqs. (3.28) and (3.29) can be simplified in terms of the steady values of both
velocities:

{
uu,i+1 = λuu,i + (1 − λ)uu,∞

ud,i+1 = λud,i + (1 − λ)ud,∞

(3.31)
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where the coefficient λ denotes

λ =
(C − B)(C − A)

(C + B)(C + A)
(3.32)

The QPM approximates gas dynamics while taking inertial effects in a lumped parame-
ter way. To ease the calculation, solely the gas states at the midpoint of the duct are
desired to be investigated. Approximating the value of velocity at the midpoint with
their averages of them from upstream and downstream gives

ui+1 = λui + (1 − λ)u∞ (3.33)

where

ui =
1

2
(uu,i + ud,i) and u∞ =

1

2
(uu,∞ + ud,∞) (3.34)

Because these equations are obtained using the integral along ∆t+ and ∆t−, this
recursive scheme requires a fixed time step dependent on the wave speed and gas
velocity. To overcome this, a dynamic model is obtained as follows:

eq. (3.33) ⇒

{
ui+1 = λui + (1 − λ)u∞

ui = λui−1 + (1 − λ)u∞
⇒

{
ui+1 − λui = (1 − λ)u∞

ui − λui−1 = (1 − λ)u∞

Subtracting the previous two equations yields:

ui+1 − (λ + 1)ui + λui−1 = 0 ⇒ ui+1 = (λ + 1)ui − λui−1 (3.35)

using eqs. (3.33) and (3.35), the following vector equation is obtained:

[
ui+1

ui

]
=

[
λ + 1 −1

1 0

]
·

[
ui

ui−1

]
(3.36)
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For i = 1:
[
u2

u1

]
=

[
λ + 1 −1

1 0

]
·

[
u1

u0

]

Similarly, for i = 2:

[
u3

u2

]
=

[
λ + 1 −1

1 0

]
·

[
u2

u1

]
=

[
λ + 1 −1

1 0

]
·

[
u2

u1

]

︷ ︸︸ ︷[
λ + 1 −1

1 0

]
·

[
u1

u0

]
=

[
λ + 1 −1

1 0

]2

·

[
u1

u0

]

Which iteratively leads to:

[
ui+1

ui

]
=

[
λ + 1 −1

1 0

]i

·

[
u1

u0

]
= M i ·

[
u1

u0

]

the matrix M can be diagonalized as:

M =

[
1 1

1/λ 1

]
·

[
λ 0
0 λ

]
·

[
1 1

1/λ 1

]−1

=

[
1 1

1/λ 1

]
·

[
λ 0
0 1

]
·

λ − 1

λ

[
1 −1

−1/λ 1

]

Finally,

[
ui+1

ui

]
=

λ − 1

λ
·

[
1 1

1/λ 1

]
·

[
λi 0
0 1

]
·

[
1 −1

−1/λ 1

]
·

[
u1

u0

]
(3.37)

Simplifying and keeping the second raw only:

ui =
1

λ − 1
λi (u1 − u0) − u1 + λu0

Knowing that

u1 = λu0 + (1 − λ) u∞
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Thus:

ui =
(
1 − λi

)
u∞ + λiu0 =

(
1 − λi

)
u∞ (3.38)

The model stability depends on the parameter λ as follows 3:

• if |λ| > 1

⇒ lim
i→+∞

λi = +∞

⇒ lim
i→+∞

ui = +∞

• if λ = −1

⇒ ui =

{
0 i = 0, 2, 4, 6, ...

2u∞ i = 1, 3, 5, 7, ...

• if λ = 1 ⇒ ui = 0 ∀i

• if λ = 0, the system has reached stationarity

• The system is stable elsewhere

Using the change of variable τ = −∆T
lnλ or λ = e

−∆T
τ for 0 < λ < 1:

eq. (3.38) ⇒ ui =
(
1 − e

−i∆T
τ

)
u∞ (3.39)

or, for a general time instant:

u = u∞(1 − e−t/τ ) (3.40)

where the time constant τ is

τ = −
∆T

ln λ
(3.41)

where ∆t denotes the time interval between the emergence of two successive velocity

3This analysis hold in case different boundary conditions are applied
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states. According to the t − x plane of characteristics curve, it can be calculated as:

∆t =
L

a + u
+

L

a − u
(3.42)

In case −1 < λ < 0, the change of variable τ = −∆T
ln(−λ) or λ = −e

−∆T
τ is used:

eq. (3.38) ⇒ ui =
(
1 − (−1)ie

−i∆T
τ

)
u∞ =

(
1 − cos(iπ) · e

−i∆T
τ

)
u∞ (3.43)

Or:

u = u∞(1 − cos(ωt) · e−t/τ ) (3.44)

where the subscript i has been removed and:





τ = −
∆Ts

ln λ

ω = −
π

∆t

(3.45)

Although eqs. (3.40) and (3.44) supply a simple approach to calculate the midpoint
velocity explicitly, the involved coefficients such as ∆tmid, τ and ω are, however, time-
dependent values. Additionally, a plausible prediction for the steady velocity is often
not available except for some specific cases. Last but not least, this discrete model
is not a fixed-time-step approach so that the specification of the variable time step
∆t,mid is necessary for every iteration. A more effective way to use these deductions is
to transform the explicit equations into a continuous-time model constructed on the
non-linear ODEs.

Differentiating eq. (3.40):

du

dt
= u∞ ·

1

τ
· e−t/τ

= u∞ ·
1

τ
·

(
1 −

umid

u∞

)
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Or:

du

dt
+

u − u∞

τ
= 0 forλ > 0 (3.46)

Similarly, differentiating eq. (3.44) twice, yields:

du

dt
= u∞e−t/τ

(
cos(ωt)

τ
+ ωsin(ωt)

)
(3.47a)

d2u

dt2
= u∞e−t/τ

[(
ω2 −

1

τ2

)
cos(ωt) −

2ω

τ
sin(ωt)

]
(3.47b)

Or:

d2u

dt2
+

2

τ

du

dt
+

(
ω2 +

1

τ2

)
(u − u∞) = 0 forλ < 0 (3.48)

Otherwise, when λ = 0, the current midpoint velocity will be equalized to the one in
the steady state.

λ = 0 : umid,i+1 = u∞ (3.49)

After the reformulation of the solutions, it is possible to convert the continuous model
back into a discrete one with assigning a new uniform iteration step ∆T . The explicit
discretization for the both derivatives stated in eqs. (3.40) and (3.44) is expressed as:





du

dt
=

ui+1 − ui

∆T

d2u

dt2
=

ui+1 + ui−1 − 2ui

∆T 2

(3.50)

Then, eq. (3.50) can be reformulated into:





λ > 0 :
ui+1 − ui

∆T
+

ui − u∞

τ
= 0

λ < 0 :
ui+1 + ui−1 − 2ui

∆T 2
+

2

τ

ui+1 − ui

∆T
+

(
ω2 +

1

τ2

)
(ui − u∞) = 0

(3.51)
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Reorganizing the equations gives





λ > 0 : ui+1 =

(
1 −

∆T

τ

)
ui +

∆T

τ
u∞

λ < 0 : ui+1 =
(2 − ω2)τ2 + 2∆Tτ − 1

τ2 + 2∆Tτ
ui −

τ

τ + 2∆T
ui−1 +

ω2τ2 + 1

τ2 + 2∆Tτ
u∞

(3.52)

thus presenting a method to solve the velocity field at the midpoint iteratively.

2. Boundary Conditions Treatment

So far, both the characteristic slopes A and B as well as the pressure constant puo

and pdo have not been specified. These parameters are dependent on the boundary
condition, geometry and the current gas state in the pipe.

Different models are used to treat the boundary conditions, depending on the geometry
and flow nature (sonic or subsonic). Thus, to derive these parameters, the different flow
situations has to be treated separately. Once again, the MOC is used for the boundary
treatment.

In computational fluid dynamics, two boundary conditions exist referred as static or
stagnation pressure conditions. In terms of numerical simulation, stagnation condition
assumes a zero velocity at the boundary (atmosphere). A Pressure drop is required for
the fluid to enter the computational region.

On the other hand, static conditions are used in the case of a continuous pressure
profile across the boundary (such as simulation within one single pipe).

Based on this, the following cases exist for the simulation of the air system path:

• Either the gas is entering the tube from the atmosphere, which means uatm = 0,
and only stagnation conditions are existent at upstream

• The gas is entering the tube from an adjacent volume and static conditions are
considered

• For downstream conditions, static conditions are considered for capacities within
adjacent pipes. For the exhaust case, it is found to be a common assumption
to consider that kinetic energy after the end throttle is not recovered. Hence,
exhaust pressure is equal to static pressure.

Every single branch will comprise half of the adjacent capacities. This makes the
boundary conditions of the branch set by the lumped parameters of the capacities (i.e
p,T).
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Fig. 3.4.: Illustration of the QPM boundary conditions combinations

Hence, the following two combinations can take place:

• Total-Static

• Static-Static

To calculate now the slopes A and B defined by eqs. (3.22a) and (3.22b), an explicit
expression of pu,i as a function of uu,i and pd,i as a function of ud,i has to be obtained.
This represents the variation of the boundary pressure as a function of the local flow
speed and is to be detailed in the following.

2.1. Situation 1: Total-Static

In this case, flow is considered to be flowing from a reservoir at stagnation conditions
to a capacity at static conditions through a restriction defined by ψ which represents
the ratio of the partially open end diameter to the pipe diameter.

2.1.1. Flow Leaving the Branch to the Reservoir i.e u < 0

In this case, the pressure at the upstream boundary conditions is by definition equal to
the outside pressure, i.e pu,i = pext ∀uu,i.

Hence,

∂pu,i

∂uu,i
= 0 ∀u ⇒ A = 0 ∀uu,i (3.53)

puo = pu,i + A · uu,i ⇒ puo = pu,i (3.54)

As for the downstream boundary, the downstream pressure will always be equivalent
to the given boundary conditions, thus:

pd,i = pd,0 = pd ∀t ⇒ B = 0 (3.55)
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2.1.2. Subsonic Flow Entering the Branch From the Reservoir i.e 0 < u < u∗
d

In this case, the upstream boundary pressure is not anymore defined only by the
external pressure, but also by the branch mid-point velocity.

First, we calculate the critical flow speed, to differentiate a chocked flow.

when the flow is chocked downstream, we have:

ad

au
=

pd

pu

2γ
γ−1

⇒
u∗

d

au
=

pd

pu

2γ
γ−1

⇒ u∗
d = au ·

pd

pu

2γ
γ−1 (3.56)

With the superscript ∗ referring to the critical flow speed.

Enthalpy conservation between the reservoir and the duct entry can be written as:

cpTu +
u2

u

2
= cpTu,i +

u2
u,i

2
(3.57)

The reservoir is considered to be large enough (such that the contribution of the kinetic
energy to the total pressure can be neglected), eq. (3.57) can be rewritten as:

cp · (Tu,i − Tu) =
1

2

(
u2

u − u2
u,i

)
≈ −

1

2
u2

u,i (3.58)

Or:

Tu,i − Tu

Tu
=

−u2
u,i

2cpTu
= −

(γ − 1)u2
u,i

2γRspecTu
= −

(γ − 1)u2
u,i

2a2
u

⇒
Tu,i

Tu
= 1 −

(γ − 1)u2
u,i

2a2
u

(3.59)

Using the conservation of volumetric flow (or mass flow, since the density is considered
to be constant) between the pipe entry and pipe mid-point:

A1 · uu,i = Apipe · ui ⇒ uu,i =
Apipe

A1
· ui =

ui

ψ
(3.60)
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Assuming an isentropic expansion between the reservoir and the throat, one can write:

pu,i

pu
=

(
Tu,i

Tu

) γ
γ−1

⇒ pu,i = pu ·

(
Tu,i

Tu

) γ
γ−1

(3.61)

Then, substituting eq. (3.59) and eq. (3.60) into eq. (3.61)

pu,i = pu

(
1 −

(γ − 1)u2
u,i

2a2
u

) γ
γ−1

= pu

(
1 −

(γ − 1)u2
i

2ψa2
u

) γ
γ−1

(3.62)

Using the definition of the parameter A from eq. (3.22a):

A = lim
∆uu,i→0

∆pu,i

∆uu,i
=

∂pu,i

∂uu,i
=

γpuuu,i

a2
u

(
1 −

(γ − 1)u2
u,i

2a2
u

) 1
γ−1

=
γpuui

ψa2
u

(
1 −

(γ − 1)u2
i

2ψ2a2
u

) 1
γ−1

(3.63)

Substituting eq. (3.62) into eq. (3.22a):

puo = pu,i + Auu,i = pu

(
1 −

(γ − 1)u2
i

2ψa2
u

) γ
γ−1

+ Auu,i (3.64)

The downstream pressure will always be consistent with the downstream pressure,
thus B = 0.

2.1.3. Sonic Flow Entering the Branch from the Reservoir i.e u > u∗
d

For the upstream condition, the parameters A and pu0 are the same as for the subsonic
case, and are given by eqs. (3.64) and (3.65) respectively.

A =
γpuui

ψa2
u

(
1 −

(γ − 1)u2
i

2ψ2a2
u

) 1
γ−1

(3.65)
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and

puo = pu

(
1 −

(γ − 1)u2
i

2ψa2
u

) γ
γ−1

+ Auu,i

For a sonic flow in a convergent duct, the maximum velocity achieved in the duct is
exactly the local sonic speed.

ui = ud,i = ad,i (3.66)

Considering an isentropic process between the two capacities enclosing the branch:

pd,i = pu

(
ad,i

au

) 2γ
γ−1

= pu

(
ui

au

) 2γ
γ−1

(3.67)

The parameter B can be evaluated as:

B =
∂pd,i

∂ud,i
=

2γ

γ − 1

pu

au

(
ud,i

au

) γ+1
γ−1

=
2γ

γ − 1

pu

au

(
ui

au

) γ+1
γ−1

(3.68)

Eventually, the pressure parameter from the downstream end pdo will take the form

pdo = pu

(
ad0

au

) 2γ
γ−1

= pu

(
ui

au

) 2γ
γ−1

(3.69)

2.2. Situation 2: Static-Static

This is mainly for the simulation of a pipe section, where the convergence or divergence
exist only at the downstream boundary.

Thus, independently of the flow nature and direction, because there exist no contrac-
tion or enlargement, the static upstream conditions will result in:

A = 0 ⇒ pu0 = pu ∀u (3.70)

For the downstream conditions, three cases has to be differentiated because kinetic
energy after the restriction is not recovered, thus pd0 Ó= pd.
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2.2.1. Negative Flow i.e u < 0

For a back flow, the downstream condition be similar to the previous downstream case
for a back flow, thus:

B = 0 (3.71)

2.2.2. Subsonic Flow i.e 0 < u < a

2.2.2.1 pu/pd < πcrit

To obtain an expression of B following the definition given by eq. (3.22b), an expression
relating the downstream pressure to the downstream boundary velocity is required.
However, below the critical pressure ratio (upstream to downstream), the flow is sub-
sonic and is defined by the upstream conditions as well as the downstream conditions.

In this case, such an explicit relation cannot be defined, and B is simply approximated
as:

B =
pu − pd

ud
(3.72)

Where ui is the current gas velocity at the branch mid-point.

To calculate the throat velocity, consider the enthalpy conservation and continuity
between the upstream and downstream branch boundaries given by:

ρuuuAu = ρdudAd (3.73a)

cpTu +
u2

u

2
= cpTd +

u2
d

2
(3.73b)

Considering an isentropic process along the downstream restriction:

pd

pu
=

(
ρd

ρu

) 1
γ

=

(
Td

Tu

) γ
γ−1

(3.74)

then:
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eq. (3.73b) ⇒
1

2
u2

d = cp (Tu − Td) +
u2

u

2

= cpTu

(
1 −

Td

Tu

)
+

u2
u

2

= cpTu

(
1 −

(
pd

pu

) γ−1
γ

)
+

u2
u

2
(3.75)

at the same time:

eq. (3.73a) ⇒ uu =
ρd

ρu
·

Fd

Fu
· ud

=
ρd

ρu
· φ · ud (3.76)

Substituting into eq. (3.75) yields:

1

2
u2

d = cpTu

(
1 −

(
pd

pu

) γ−1
γ

)
+

1

2

[
ρd

ρu
·

1

φ
· ud

]2

Solving for ud:

u2
d = 2 ·

a2
u

γ − 1

[
1 −

(
pd

pu

) γ−1
γ

] [
1 −

1

φ

(
pd

pu

)2/γ
]−1

(3.77)

and the downstream boundary slope B can be calculated as:

B =
pu − pd

ud
=

pu − pd

auφ

√√√√√√√√

(γ − 1)

(
1 − 1

φ

(
pd

pu

)2/γ
)

2

[
1 −

(
pd

pu

) γ−1
γ

] (3.78)

2.2.2.2 Case pu/pd > πcrit

This case demonstrates the specific condition for a flow phenomenon in a convergent
duct, in which a transition process from the subsonic flow to sonic flow can take place,
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whereas the branch velocity still did not reach the sound speed, the throat flow can
reach the sonic speed.

From a physical point of view, with the gradual contraction of the flow cross-section
area, the pressure of the fluid falls considerably. The loss of static pressure head is
mostly converted to the accumulation of fluid kinetic energy. Thus, if the pressure drop
happens to exceed the critical case, i.e. the pressure ratio is greater than the critical
value, the fluid flowing with a subsonic speed can be eventually accelerated to the local
sonic speed at the outlet profile of the duct. Nevertheless, owing to the geometrical
constraint4, the fluid is not capable of traveling beyond the sonic limit.

It is now necessary to calculate the critical pressure where the transition to sonic flow
takes place:

The critical pressure p∗
u is defined as:

p∗
u

pd
=

(
au

ad

) 2γ
γ−1

⇒ p∗
u = pd ·

(
au

ad

) 2γ
γ−1

(3.79)

Using the ellipse of energy and considering sonic flow downstream the restriction only:

a2
u +

γ − 1

2
u2

u = a2
d +

γ − 1

2
u2

d =
γ + 1

2
a2

d

⇒

(
au

ad

)2

+
γ − 1

2

(
uu

ad

)2

=
γ + 1

2

(3.80)

Combining the mass conservation and isentropic process between the upstream and
downstream, one can write:

ρu · Au · uu = ρd · Ad · ud ⇒ uu =
Ad

Au
·

ρd

ρu
· ud

⇒ uu = φ ·

(
au

ad

) −2
γ−1

· ad ⇒
uu

ad
= φ ·

(
au

ad

) −2
γ−1

(3.81)

4According to the differential form of continuum equation, i.e. dρ

ρ
+

du
u

+
dA
A

= 0, and the definition

of sonic speed, i.e. a = dp/dρ, it can be inferred that du
dA

=
u

A(Ma2−1)
. If the fluid accelerates over

the sound speed, i.e. du > 0 and Mach number Ma > 1, then there must exist dA>0 to satisfy the
conservation of mass. However, it does not conform to the geometry of a convergent pipe
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Substituting into eq. (3.80) yields:

(
au

ad

)2

+
γ − 1

2
φ

(
au

ad

) −4
γ−1

=
γ + 1

2
(3.82)

which using the change of variable α = au

ad
, can be written as:

α2 +
γ − 1

2
φ2α

−4
γ−1 −

γ + 1

2
= 0 (3.83)

The evaluation of α involves the solution of a high-order polynomial5. To ease the

solution process, the first-order Taylor series is used to expand the term α
−4

γ−1 at the
point α = 1:

α
−4

γ−1 = 1 +
−4

γ − 1
(α − 1) (3.84)

Imposing the expansion back to the equation (3.83) gives the approximate solution of
a second-order equation for α

α = 1 ±
γ − 1

4

√
1 − φ2 (3.85)

thus verifying the prerequisite for transition from subsonic to sonic flow mathemati-
cally, which is φ < 1. However, the solution α = 1 − γ−1

4

√
1 − φ2 is not consistent with

the condition α = au

ad
=

(
p∗

u

pd

) γ−1
2γ > 1 .

Hence, the critical downstream pressure at the sonic state will be:

p∗
u = pd

(
1 +

γ − 1

4

√
1 − φ2

) 2γ
γ−1

(3.86)

Thus, the flow velocity at the upstream end u∗
u can be calculated using the mass

conservation as:

5For example, an ideal diatom gas, such as N2, O2, owns the specific gas ratio γ = 7/5 = 1.4, which
makes the function become α2

+ 0.2φ2α−10
− 1.2 = 0. Which can be solved only numerically.
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u∗
u =

ρd

ρu
·

Fd

Fu
· ud ⇒ u∗

u =

(
pd

p∗
u

) γ−1
2γ

· φ · α · au

u∗
u =

(
pd

p∗
u

) γ−1
2γ

· φ ·

(
1 +

γ − 1

4

√
1 − φ2

) −2
γ−1

· au (3.87)

and the parameter B can be approximated as:

B =
p∗

u − pd

u∗
(3.88)

2.2.3. Sonic Flow at the Throat i.e ut = at

The critical pressure ratio can now be written as:

(
pd

pt

)

cr

=

(
pd

pt

) 2γ
γ−1

cr

⇒

(
pd

pt

)

cr

=

(
pd

pt

) γ−1
2γ

cr

(3.89)

The mass conservation between the upstream and the throat will result into:

ρd · Ad · ud = ρt · At · ut ⇒ ud =

(
at

ad

) 2
γ−1

· φ · ut (3.90)

Because the throat is chocked, ut = at, hence:

ud =

(
at

ad

) 2
γ−1

· φ · at ⇒ ud =

(
at

ad

) 2
γ−1

· φ ·
at

ad
· ad

⇒ ud =

(
at

ad

) γ+1
γ−1

· φ · ad

(3.91)

Or:

ad = α
+ γ+1

γ−1 ·
ud

φ
(3.92)
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Then, the pressure at the downstream end pd,i will be

pd,i = pu

(
ad,i

au

) 2γ
γ−1

= pu


ui · α

γ+1
γ−1

φ · au




2γ
γ−1

(3.93)

According to the definition of B and pdo:

B =
∂pd,i

∂ud,i
=

2γ

γ − 1
pu


α

γ+1
γ−1

φau




2γ
γ−1

u
γ+1
γ−1

i

pdo = pu


uiα

γ+1
γ−1

φau




2γ
γ−1

− Bui

(3.94)

3. Emptying-Filling Model

As discussed from the previous section, the dynamics of the duct flow inside the
engine intake and exhaust manifold is associated with the upstream and downstream
boundary conditions imposed on its borders.

By using a lumped-parameter model, these flow behaviors are only concerned and
recorded at the midpoint of the pipe. However, in most cases of investigation, it is
also desired to gather these significant flow characteristics in other places of the duct.
In order to obtain the data from those positions, the duct must be subdivided into
a limited number of branches. It ensures the midpoints of some of them are exactly
located on the positions which needs to be investigated. Then, gas states in those
places are calculable by applying the midpoint Quasi-Propagatory method.

Fig. 3.5.: Connection of the Branch Models and Capacity Models in a Duct
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However, the couple of boundary conditions pu and pd from each branch are not
available. Thus, an intermediate flow model, the so-called Empty-Filling Capacity

Model, is introduced to supply the missing information. The model connects the
branches by means of involving the half volume of each branch so that the midpoints
of them are exactly the boundaries of the capacity (see figure 3.5). Considering the
mass and energy equilibrium for the control volume of the capacity gives





dmcap

dt
=

N∑

i=1

ṁi

dEcap

dt
=

N∑

i=1

ṁihi + q̇

(3.95)

where the left side of equality denotes the time variation of mass and energy in the
capacity whereas the right side refers to the sum of net mass and energy flux from the
branch i−1 and i into the capacity. For a fixed-geometry capacity i, its volume remains
unchanged during the flow process so that

dmcap

dt
=

d(ρcapVcap)

dt
= Vcap

dρcap

dt
+ ρcap

dVcap

dt
= Vcap

dρcap

dt
dEcap

dt
=

d(mcapecap)

dt
=

d(ρcapVcapcvTcap)

dt
= Vcap

cv

Rspec

dpcap

dt
=

Vcap

γ − 1

dpcap

dt

(3.96)

Combing the equation (3.95) and (3.96) and discretizing it explicitly in time interval
∆T obtains the new gas state of the fluid in capacity





ρn+1
cap = ρn

cap +

(
1

Vcap

N∑

i=1

ṁn
i

)
∆T

pn+1
cap = pn

cap +

(
γ − 1

Vcap

N∑

i=1

ṁn
i hn

i + q̇n

)
∆T

T n+1
cap =

pn+1
cap

Rspecρ
n+1
cap

(3.97)

For a lumped-parameter model, the gas states at the midpoint of the capacity can be
represented by these unified values, i.e. ρn+1

cap , pn+1
cap and T n+1

cap . Thus, since the midpoint
of the capacity lies on either the upstream or the downstream end of the involved
branches, their boundary conditions pu, Tu or pd, Td can be determined.

4. Numerical Validation

Before validating the QPM approach on an ICE air system, it will first be compared to
the full 1D CE-SE. The CE-SE was already validated and proved being advantageous
from an accuracy and calculation point of view compared to other numerical schemes.
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We will consider the flow scenario given by fig. 2.3 for an upstream pressure equal
to 1 bar and downstream pressure equal to 0.9 bar. The tube having initially the
downstream conditions.
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Fig. 3.6.: QPM Vs 1D Modeling

It is clear that, despite its simplicity, the QPM captures properly the pressure and mass
flow profiles. Taking into consideration that only geometrical characteristics are used
to parameterize the QPM, the amplitude accuracy is considered satisfactory since the
reference in this case are also simulation results.
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Fig. 3.7.: QPM Idea
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5. Conclusion

This chapter presented the Quasi-Propagatory Model to model the unsteady-one
dimensional gas flow using a low order modeling principle. As it is clearly seen in
section 1, this approach overcomes the schemes from previous chapter due to the
smaller number of states and the reduced amount of calculation effort.

The QPM is based on observing waves propagation in a duct connecting two large
volumes. it is then noticed that the pressure and the velocity profiles can be related
to duct boundary conditions directly without necessarily considering explicitly direct
adjust modes.

Using initial and approximated steady states, the envelop enclosing the pressure profile
can be approximated. The Method of Characteristics can then be used to provide
progressive and regressive waves speeds, which will be used to calculate pressure and
velocity profiles at every time steps.

For the numerical validation of the QPM, the CE-SE was considered as a reference.
Without any complex tuning, the QPM produced accurate results with respect to the
reference while offering a huge reduction in the calculation effort.

In the following chapter, the remaining components of the air system will be presented,
to be used for an overall system simulation in chapter 6. Chapter 4 will present an
amelioration of the compressor data-based modeling algorithm, to ensure a good
estimation of the boost pressure.
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CHAPTER 4

0D ENGINE MODELING

The air system is mainly a network of volumes such as the intake and exhaust manifolds
interconnected using valves, turbine, compressor, filters and coolers.

0D Engines models have essentially evolved as emissions and On-Board Diagnosis1

evolved [51]. They are also known as control-oriented models as they provide an
input-output relationship with reasonable precision and affordable computational
complexity [22].

This chapter will present briefly the common equations used to model the air system
components. The reader is referred to [22] for detailed analysis.

1. Manifolds

Volume along the engine air system are modeled as open thermodynamic systems.
These have already been discussed in the capacity sub model of the QPM, and the
states equations based on the governing equations of mass and energy are restated
here.

Considering the system shown in fig. 6.12, the pressure inside the intake manifold,
exhaust manifold (with high pressure EGR) and a simple volume can be calculated as
follows:

1OBD should detect any malfunctioning in engine system or if any exhaust emissions are beyond the
standard limits
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(a) General volume (b) Intake manifold (c) Exhaust manifold

Fig. 4.1.: Volumes representation

dp

dt
=

γR

V
· (ṁinTin − ṁoutT ) (4.1)

dpim

dt
=

γR

Vim
· (ṁT V TdnAC + ṁEGRV Tem − ṁout,imTim) (4.2)

dpem

dt
=

γR

Vem
· (ṁin,emTCyl − (ṁEGRV + ṁT urb) · Tem) (4.3)

as for the temperatures, the following differential equations hold:

dT

dt
=

T · R

p · V · cv
[cp · ṁin · Tin − cp · ṁout · T − cv (ṁin − ṁout)] (4.4a)

dTim

dt
=

Tim · R

pim · Vim · cv
[cp · ṁT V · TdnAC + cp · ṁEGRsV · TdnEGRC

−cp · ṁout,im · Tim − cv (ṁT V − ṁout,im)]

(4.4b)

dTem

dt
=

Tem · R

pem · Vem · cv
[cp · ṁin,em · TCyl

−cp · (ṁEGRV + ṁT rbn) · Tem − cv (ṁin,em − ṁEGRV − ṁT rbn)]

(4.4c)

The differential equations have to be adapted in case of back flow.

2. Throttle Valve

This element allows controlling mass and thus enthalpy flow based on the pressure
and temperature differences across the valve. The modeling for the control has been
well established and can be found in details [22]. It will be here briefly stated.

Considering an ideal gas flowing adiabatically across the valve, the internal energy
conservation can be written as:
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ṁ = cd · Agoe
pup√
RTup

·





√
γ ·

(
2

γ+1

) γ+1
γ−1 for pdn

pup
>

(
pdn

pup

)

cr

(
pdn

pup

) 1
γ ·

√√√√ 2γ
γ−1 ·

(
1 −

(
pdn

pup

) γ−1
γ

)
for pdn

pup
<

(
pdn

pup

)

cr

(4.5)

Where
(

pdn

pup

)

cr
represents the critical ratio for which the flow reaches sonic conditions

(in the narrowest part).

fig. 4.2 shows the variation of geometrical area of the valve as a function of the angle
α (right) and the variation of the flow function Ψ as a function of the pressure ratio
across the valve (left).
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Fig. 4.2.: Throttle Valve

3. EGR Valve

The idea of the Exhaust-Gas Recirculation (EGR) is to reintroduce a portion of the ex-
haust gases into the cylinder. This will decrease the amount of oxygen available in the
cylinder and increase the heat capacity due to the larger quantity of CO2. This will re-
duce the flame temperature which will slow down the NOx formation mechanism [15].
Nevertheless, an excess EGR can have a detrimental effect on engine breathing, since
less exhaust gas flowing through the turbine means instantly a slower turbocharger
speed, and hence, less bossing pressure. Simultaneously, exhaust gas recirculation can
deteriorate the Air/Fuel Ratio which have a direct impact on tail-pipe emissions.
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4. Thermal Exchangers

Compressors are used to increase the boosting pressure, but also lead to a higher fresh
air temperature. Which will decrease the air density and affect the engine breathing.
Heat exchangers are used to have a lower temperature with the same pressure, which
will increase even more the density.

Heat exchangers are also used in with high and low pressure EGRs.

To obtain the temperature downstream the heat exchanger, a simple effectiveness
coefficient is considered, such that:

Tdn = ηhe · Tcoolant + (1 − ηhe) · Tup (4.6)

5. Turbocharger

Fig. 4.3.: Turbocharger

The exhaust enthalpy is used to power the turbine
which drive the compressor through the shaft.
This will help increase the intake manifold pres-
sure. This will result in a higher air density within
the cylinders allowing for more fuel injection and
engine downsizing.

The waste-gate and variable geometry turbines
are the two actuators attached to the turbocharger
to provide a fast dynamic air flow response and/or
avoid over-boosting.

The modeling of the turbocharger is common for
all modeling approached (distributed and lumped
parameters models). It is base on the manu-
facturer data maps obtained from hot-gas test
benches.

5.1. Turbine

Whether for 0D or 1D models, the turbine and compressor are usually modeled based
on the manufacturer data maps obtained on a stationary hot gas stand. These data
maps relate four variables which are the mass flow, pressure ratio (or temperature),
rotational speed and efficiency. Depending on the application, and whether it is an
off-line simulation or series engine with available sensors, the input/output sets may
differ. For an off-line simulation, the variable geometry turbine is:
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ṁt,corr =

(
pos, Nt,corr,

pup

pdn

)
(4.7)

ηt =

(
pos, Nt,corr,

pup

pdn

)
(4.8)

The turbine mass flow will then contribute into the mass and enthalpy conservation of
exhaust manifold, whereas the efficiency is used to calculate the turbine real power
used to drive the compressor. The pos variable represents the nozzle position.

Usually, the data map of each fixed position is approximated using any of the available
algorithms [52, 53, 54, 55, 56], and then the resulting model parameters are interpolated
as a function of the valves geometry.

It is also necessary that temperature and pressure corrected quantities are used. This
correction accounts for ambient differences between the hot gas test bench and the
real engine operation conditions. Corrected quantities are calculated as:

Nt,corr =

√
Tref√
Tup

˙mt,corr = ṁ ·

√
Tup√
Tref

·
pref

pup
(4.9)

Once these quantities are available, the available power from the turbine can be calcu-
lated as:

Pt = ṁt · Tup · ηT

[
1 −

(
pdn

pup

)γ]
(4.10)

The turbine discharge temperature can then be calculated as:

Tdn = Tup −
Pt

cp · ṁt
(4.11)
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Fig. 4.4.: NEDC On turbine data map

Figure 4.4 shows a superposition of measured quantities and manufacturer data map
of Mass Flow Parameter (MFP) and pressure ratio across the turbine. It is clear that
data maps are not sufficient, and that it is necessary to interpolate and extrapolate
these data maps. The following figure shows a possible interpolation and extrapolation
using the algorithm proposed by Jensen et al. [52].
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Fig. 4.5.: Turbine data maps inter- and extrapolation

5.2. Turbocharger Shaft

The turbocharger shaft is defined by the power difference between the turbine, the
compressor and any other mechanical and thermal losses. These losses are usually
very difficult to account for using physical models and are taken into consideration
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through an efficiency variable.

The turbocharger rotation speed is thus calculated as:

dNtc

dt
= KI

ηtc · Pt − Pc

Jtc · Ntc
(4.12)

Where KI is a constant, and Jtc turbocharger inertia.

5.3. Compressor
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Fig. 4.6.: NEDC On compressor data map

The compressor is a very crucial component in engine modeling, as it provides one
boundary which will define engine breathing efficiency. It is a very complicated com-
ponent due to the complexity of the compression process taking place along the com-
pressor stages. Hence, the compressor data maps has been widely used to model the
compressor as full physical accurate model can only be obtained using 3D modeling.

Most of engine simulation models are based on performance maps provided by the
manufacturer. These maps cover only a limited TC operating range by:
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• The central area is the stable operating zone. This area is separated from the
unstable area on its left by the surge line. When the mass flow rate through a
compressor is reduced while maintaining a constant pressure ratio, a point arises
at which local flow reversal occurs in the boundary layers. This should result in a
low efficiency but not necessary in instability. If the flow rate is further reduced,
complete reversal occurs. This will relieve the adverse pressure gradient until a
new flow regime at a lower pressure ratio is established. The flow will then build
up again to the initial condition and thus flow instability will continue at a fixed
frequency.

• Surge line at low flow rate: this line represents the limits of the compressor stable
operation. This limit depends on the compressor and its ducting

• Minimum measurable rotational speed: which is governed by poor measuring
accuracy at low rotational speed. This is because compressor total pressure ratio,
temperature difference and compressor mass flow rate decrease with decreasing
rotational flow rate. This results in an increase in the measuring error

• Maximum measurable rotational speed which is restricted by the TC maximum
allowable speed.

• Test rig resistance curve and/or compressor choking at high flow rate: repre-
sents the characteristics of the compressor ducting with a fully opened throttle
valve.The area to the right of the compressor map is associated with the very high
gas velocity. It is the result of shocking of the limiting flow area in the machine.
Extra mass flow through the compressor can only be gained by higher speeds.
This additional mass flow will certainly be limited by the ability of the diffuser
area to accept the flow. When diffuser choking occurs, compressor speed may
rise substantially with little increase in mass flow rate.

• The area of maximum efficiency naturally falls in the central stable operating
zone. In practice, it tends to lie in an area roughly parallel to the surge line with
vaneless-type diffusers and very close to the surge line in the case of vaned-type
diffusers.

Similar to the turbine, the compressor modeling is also based on manufacturer data
maps. This will be treated in detail in the next chapter.
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Fig. 4.7.: Compressor data maps inter- and extrapolation

6. Conclusion

In this chapter, various components of two air system have been presented and their
models described. These models have been used for controllers design and on-line
engine breathing estimation [52, 57, 53, 51]. These models are based on a decomposi-
tion of the engine air system into a network of control volumes (Lumped parameters
models), modeled based on a mass and energy conservation. Due to this inherently
simplistic approach, the high-frequency wave dynamics are neglected. Except the
Manifold model, the remaining models are common between 0D and 1D modeling
approaches.

These models will be assembled to provide an overall air system simulation in chapter
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CHAPTER 5

COMPRESSOR MODEL OPTIMIZATION

Compressor models play a major role as they define the boost pressure in the intake
manifold. These models have to be suitable for real-time applications such as con-
trol and diagnosis and for that, they need to be both accurate and computationally
inexpensive. However, the models available in the literature usually fulfill only one of
these two competing requirements. On the one hand, physics-based models are often
too complex to be evaluated on line. On the other hand, data-based models generally
suffer insufficient extrapolation features.

To combine the merits of these two types of models, this chapter presents an extended
approach to compressor modeling with respect to thermo- and aerodynamic losses.
In particular, the model developed by Martin et al. [55] is augmented to explicitly
incorporate friction, incidence and heat transfer losses. The resulting model surpasses
the extrapolation properties of data-based models and facilitates the generation of
extended lookup tables.

In conclusion, the three main advantages of the developed approach are first, a high
fitting quality resulting in accurate lookup tables for the real-time application, second,
little measurement data are required and third, the identification process supports the
high model accuracy.

1. Literature Overview

In the automotive industry, there is a certain consciousness that downsizing the in-
ternal combustion engine is one of the most effective means for reducing its carbon
dioxide emissions and boost fuel efficiency. Downsized engines with a lower number
of cylinders and displacement are lighter and have a low fuel consumption.

Legislation must be satisfied, but not at the expense of engine performance. Hence,
with a lower displacement, the performance of the engine can be maintained by making
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sure that more air will be aspirated into the combustion chamber to burn additional
fuel. This is made possible by the turbocharger.

The overall engine modeling has evolved all along the engine development. Grondin
et al. [51] presented a resume explaining that evolution. In order to understand, design
and control the turbocharger, several models have been developed with different
complexities. The turbocharger models can vary from simple data maps, up to 1D, 2D
and 3D models, which can be heuristic or data-driven physical models [58, 59, 60, 61,
62, 63, 64]. In this paper, we focus on models dedicated to control design.

In Mean Value Engine Models (MVEM) as well as commercial 1D simulation tools, the
compressor and turbine models rely basically on data maps supplied by the manu-
facturer. These data maps are used by interpolation and extrapolation algorithms, to
generate more condense lookup tables by means of fitting either pure mathematical
or physics based models. In the case of control strategies design, the turbocharger
model is incorporated into a mean value engine model which have shown a great
compromise between system dynamics prediction, computation complexity as well as
memory costs. In [52], a complete MVEM is developed for a small Turbocharged Diesel
Engine. Eight years later, Moraal and Kolmanovsky [54] presented a new interpolation
technique which can be used to interpolate and extrapolate the manufacturer lookup
tables. Dowell and Akehurst [65] suggested a faster mapping approach through the
combination of spline and parametric methods.

In a recent work, Martin et al. [55] and then El Hadef et al. [66] incorporated the physics
of the turbocharger into the modeling, as well as the interpolation/extrapolation
methods. This is supposed to give a better guarantee for the quality of the fitted
data, likewise the extrapolated one. However, and based on the measurements, it is
observed that the fitting quality is not at its optimum due to the model linearity. Also,
the treatment of the iso-speed lines is done individually (during model identification),
and then, the identified parameters are interpolated. This identification strategy will
automatically reduce the model accuracy.

The work presented here, will basically rely on Martin et al. [55] results and extend
the current model, to also consider the main losses taking place over the compressor
stages, mainly the inducer and the volute. This will result in a nonlinear model and a
one-step identification for all iso-speed lines, which will enhance model fidelity.

This chapter is organized as follows: First, a brief explanation of compressor back-
ground is given, then reference compressor modeling algorithms are summarized. The
new modeling approach is then explained, and finally comparison results between the
reference and new model are stated.

2. Compressor Background

Compressor data maps usually come in the form of maps. The characteristics are
often mapped at far greater speeds than would be run on engines (fig. 5.1: colored
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region). The data are also taken at constant speeds. This implies that the data has to
be extrapolated, to calculate the low speeds data (blue triangles), and interpolated, to
calculate the non-supplied speeds (red circles). Figure 5.1 is a standard compressor
data map, with real data from engine test bench superimposed.
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Fig. 5.1.: Superposition of two operating points measurements from a 2-cylinder diesel engine
on the compressor data map

The transition between the engine operation points will automatically bring the need
to interpolation, as the measured iso-speed lines are not dense enough. In addition,
the overall volume between the compressor and the engine (valves, ducts and the
intake manifold) is often not sufficient to damp the pressure fluctuations resulting
from the intake valves movement. As for the low speed extrapolation, the mass flow
and turbocharger speed will always start from zero to reach the measured zone. The
lowest measured speed is imposed by the poor measuring accuracy as the mass flow,
pressure ratio and temperature decrease as the rotational speed decreases [67], hence
the need to extrapolation.

The ideal compression process is usually taken as a reversible adiabatic compression,
whereas, in real compressors, the process is neither reversible nor adiabatic. This can
be noticed through the compressor power (eq. (5.1) and eq. (5.2)), and is mainly due to
the losses.
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− Ẇc =
ṁccpT01

ηc

[(
p02

p01

) γ−1
γ

− 1

]
(5.1)

ηc =

(
p02

p01

) γ−1
γ − 1

T02
T01

− 1
(5.2)

3. Compressor Reference Modeling

In this section, the compressor fitting algorithm from Jensen et al. [52] and El Hadef
et al. [66] are restated, as it will be used as a reference for comparison.

For the pressure ratio, the same model presented in [52] is used, where the modeling
principle is as follows:

• The compressor work is expressed in terms of a dimensionless head parameter
which is the ratio of the energy required to raise the pressure, and the kinetic
energy of the compressor

ψc =
cp · T01 ·

(
(p02/p01)

γ−1
γ − 1

)

1/2u2
c

(5.3)

• A dimensionless flow rate is calculated from the measured mass flow and a
theoretical flow rate through the compressor

φc =
ṁc,corr

ρaπr2
c uc

(5.4)

• Equation (5.5) is used to relate the above two dimensionless parameters:

ψc =
A + B · φc

C − φc
(5.5)

• The models can be improved when the parameters in eq. (5.5) are taken function
of the rotational speed.

• Once the parameters in eq. (5.5) are fitted, it can be interpolated and extrapolated
to get the pressure ratio as a function of mass flow and rotational speed.

Simulation results for the pressure fitting are given in this section in fig. 5.2 as no
comparison is performed for the pressure ratio, and the same model is partially used by
the improved and base algorithms. Simulation results for the enthalpy and efficiency
are presented in the Results section.
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3.1. Discussion
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ṁc,corr [kg/s]

Π
[-
]

Model Result
Data used for Validation
Data used for Identification

(a) Compressor 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
·10−2

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4
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Fig. 5.2.: Pressure ratio approximation

• The model accuracy degrades for high speeds in the extrapolated area. This can
be due to the fact that eq. (5.5) is based on observation and the lack of physics.

• The current work scope is the enthalpy model. Hence, this pressure ratio method
is kept as it is used by Martin et al. [55] as well.

The efficiency fitting algorithm is resumed in fig. 5.3
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Fig. 5.3.: Compressor efficiency algorithm from [66]

In ∆h calculation, it is suggested in [66] that the parameters a and b are second order
polynomials function of the turbocharger speed:

a, b = k2N2
tc + k1Ntc + k0 (5.6)

One can also notice that the flowchart in fig. 5.3 is based on an iterative procedure to
identify the enthalpy model parameters. This will be overcome in the new algorithm.

The reader is referred to [52, 66] for details on the previous algorithms and to section 5
for the linear enthalpy model.
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4. Euler Equation for Turbo-machines
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Fig. 5.4.: Euler equation for turbo-machines

With reference to Fig. 5.4, Hanlon [68] consider a rotor belonging to a generic turbo-
machine, taking into examination the conditions existing in section 1 (inlet) and section
2 (discharge). Utilizing the equation of balance of momentum for the stationary flow
between two sections, it is possible to obtain:

τ = m (r2 · V2 − r1 · V1) (5.7)

The work transferred through the blades per mass unit of fluid processed is thus given
by:

W = τω/m = ω (r2 · V2 − r1 · V1) (5.8)

The 1st principle of thermodynamics establishes that the work per mass unit is equal
to, for an adiabatic flow, the variation in total enthalpy.

∆h0,1−2 = h2 − h1

= ω (r2 · V2 − r1 · V1)

= U2 · V2 − U1 · V1

5. Enthalpy Linear Model

Using the vector triangle equality, we get:

∆h = U2
2 − U2Vr2cot (β2) (5.9)
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and since

Vr2 =
ṁc

ρ · Srot
(5.10)

with Srot being the effective area through which mass flows.

Then:

∆h = U2
2 − U2

ṁc

ρ · Srot
cotan (β2)

= U2
2

[
1 −

ṁc

ρ · Srot · U2
cotan (β2)

]

= U2
2

[
a′ + b′ · ṁc

]

hence, for a constant rotational speed, one can write:

∆h = a + b · ṁc (5.11)

6. New Model Basic Equations

In this section, the main hypothesis and development steps of the extended model are
presented. As previously mentioned, the main extension is based on losses. Hanlon
[68] stated that the dominant losses for the compressor are those due to friction and
incidence. These are the main losses taken into consideration in the developed new
model and are stated in the following subsections.

6.1. Pressure Drop Due to Friction

Hanlon [68] defines it as being the dissipation terms associated with friction phe-
nomena between the walls of the machine ports (both rotor and stationary) and fluid
flowing through it. In general, the flow in compressors is characterized by turbulence,
so it can be considered that the energy dissipated is proportional, in first approxima-
tion, to the square of the fluid velocity and thus to the square of the volume flow in
inlet conditions. This energy is not transferred to the gas under the form of potential
energy, but only as heat. In [68], Hanlon stated that the work per mass unit associated
with dissipation due to friction can be given by:

Wf = kf ṁc
2 (5.12)
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where kf represents a suitable constant that takes account of the specific fluid dynamic
characteristics.

In [69], the friction work is given by:

Wf = 4f
l

D

ṁc
2

2
(5.13)

which reduces to eq. (5.12) if one defines a hydraulic diameter and an equivalent
length.

In [63], Bozza and De Bellis developed a 1D model to simulate the compressor. The
authors took into account the friction losses directly in the flow equation through the
definition of a friction coefficient f , depending on the local velocity based Reynolds
Number. The factor f is calculated as:

f = xf · 0.01 ·

(
1.8e5

ReL

)0.2

(5.14)

xf being a tuning constant, and Re the Reynolds Number.

The use of the above expression requires local Re estimation, and hence the considera-
tion of the space dimension. In our case, we can only use a global expression, as we do
not have access to any local flow characteristics, and so, we will be using eq. (5.12):

∆hf = kf ṁc
2 (5.15)

6.2. Pressure Drop Due to Incidence

In [68], Hanlon stated that pressure losses due to incidence depend merely on the
geometry of the blade, and on the speed triangle immediately upstream of the blade
leading edge. These losses can be approximated by eq. (5.16).

∆hI = k2 (ṁc − ṁc
∗)2 + k0 (5.16)

where the constants k2 and k0 are once again related to the particular problem treated.

6.3. Heat Losses

If we consider the overall compressor as a simple pipe then, the convective heat transfer
between the gas and the compressor material can be approximated in stationary state
using :

q̇ = ṁc · cp · dT = α · π · D (Tgas,init − Twall) dx (5.17)
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Integrating and solving for the gas exit temperature:

Tgas,out = Twall + (Tgas,init − Twall) · e−(α·π·D·L)/(cp·ṁc) (5.18)

Setting:





Cst = −α·π·D·L
cp

x = 1
ṁc

(Tgas,init − Twall) = ∆Tinit

yields:

Tgas,out (x) = Twall + ∆Tinit · eCst·x (5.19)

A Taylor’s series expansion around x = 0 of the eq. (5.19) is:

T̃gas,out (x) = Twall +
+∞∑

n=1

T
(n)
gas (x)

n!
xn

= Twall + Cst · ∆Tinit · x + Cst2 ·
∆Tinit

2
· x2 + ...

= Twall + Cst · ∆Tinit ·
1

ṁc
+ Cst2 ·

∆Tinit

2
·

1

ṁ2
c

+ ...

Since the overall enthalpy variation due to heat transfer is given by:

∆hHL = cp · ∆THL (5.20)

where the subscript HL stands for Heat Loss, the change in enthalpy due to heat
transfer is approximated as:

∆hHL = cp ·

[
Twall − Tgas,Init + Cst · ∆Tinit ·

1

ṁc

+Cst2 ·
∆Tinit

2
·

1

ṁ2
c

+ ...

] (5.21)

It will be shown in the Results section that truncating eq. (5.21) at 1
ṁc

is sufficient for
model accuracy within the compressor operating range. Thus, we suggest to take the
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heat transfer into account using eq. (5.22)

∆hHL = kHL,0 + kHL,−1 ·
1

ṁc
(5.22)

The term 1
ṁc

can be explained through the entropy-enthalpy diagram as well. This
diagram is given in fig. 5.5 where the contribution of each stage in the centrifugal
compressor to the pressure raise is shown. The stages numbering is given in fig. 5.6.
Along the impeller stage, kinetic energy is added to the air by means of the work
performed. This energy will then be partially converted to pressure by decelerating
the air along the volute and collector. The amount of energy transfer by the impeller
wheels to the air will depend on the rotational speed, however, the pressure raise along
the volute and collector will merely depend on the flow nature. Ideally, one aims at a
minimum entropy variation ∆s so the ∆h is higher, and so is the exit pressure. This is
shown in fig. 5.5.

00

1

2

4

5

h

s

Fig. 5.5.: h-s diagram for a centrifugal compressor.The stages numbering is given in fig. 5.6.

6.3.1. Note on Losses Consideration

The Euler Turbo-machinery Equation is given in eq. (5.23).

∆h = U2Vθ2 − U1Vθ1 (5.23)

Equation (5.23) considers the fluid states at the entry and exit of the impeller. It gives an
estimation of the work done on the fluid by the shaft in an ideal situation without any
losses. For automotive turbocharger compressor, it can be seen that the dimensions of
diffuser and the volute are greater then the impeller size. This can be seen in the fig. 5.6
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Fig. 5.6.: Main compressor stations

This makes the contribution of the two last stages (diffuser and volute) also significant
in the final air state at the compressor exit. In addition, the developed model is an
overall model comprising all compressor stages; hence, it is not very sensitive to local
phenomena as long as the overall compressor behavior is simulated correctly.

7. Overall Model

The overall losses model can be obtained by summing eqs. (5.12), (5.16) and (5.22) and
it resumes to :

∆hOL = ∆hf + ∆hI + ∆hHL

= kAṁc
2 + kU (ṁc − ṁc

∗)2 + k0

+ kHL,0 + kHL,−1 ·
1

ṁc

(5.24)

Where ∆hOL represents the enthalpy variation due to the overall losses. Regrouping
terms, yields:

⇒ ∆hOL = k2ṁc
2 + k1ṁc + k0 + k−1 ·

1

ṁc
(5.25)

hence, the real specific enthalpy can be obtained through the combination of equations
5.11 and 5.25 and is given by:

∆h = a2 · ṁc
2 + a1 · ṁc + a0 + a−1 ·

1

ṁc
(5.26)

The parameters a2 , a1 , a0 , a−1 are given by:
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a2 = a12N2
tc + a11Ntc (5.27)

a1 = a23N3
tc + a22N2

tc + a21Ntc (5.28)

a0 = a32N2
tc + a31Ntc (5.29)

a−1 = a42N2
tc + a41Ntc + a40 (5.30)

The above parameters dependency on the rotational speed is pure data-based. The
polynomials order is obtained using trial and error from one compressor data, and then
kept constant for all compressors. It is very important to consider this dependency, as
the rotational speed defines the flow nature and vector triangles as well. The advantage
of physics-based models with respect to data based model is the accuracy even for
extrapolation. This can be seen in the results in the comparison between the model
from [66] and the new model in fig. 5.7.

7.1. Note on the Model Identification

The parameters aij in the model can be identified using any optimization algorithm for
a least square method. If we consider P the vector of parameters aij and X the vector
with entries

(
N i

tc · ṁj
c

)
, we can formulate the model as:

∆h = X · P ⇒ P =
(
XT · X

)−1
· XT · ∆h (5.31)

Care must be taken to avoid the use of badly conditioned matrices.

8. Results

A comparison between the new and old models is presented in fig. 5.7. For the model
identification and validation, three different compressors have been used for the model
validation. The main compressors characteristics are given in table 5.1

Table 5.1.: Geometric characteristics of the compressors used for model identification and
validation

Blades # diameter [mm] Engine
Compressor 1 12 38 Diesel
Compressor 2 8 37 Gasoline
Compressor 3 12 40 Gasoline

Compressor 1 will be used as an example to study the dependency of the model on the
selected iso-speed lines for the parameters identification, where different combina-
tions are selected.
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Fig. 5.7.: Comparison between the new and old models approximation: despite the use of a
partial set of the measurements for the identification, the new model shows a better
fitting quality for both interpolation and extrapolation



8.1. Remark

It is important to point out that less then half of the available data was used for the
parameters identification (≈ 30%_only) (scattered data in red circles). Data in the lower
speeds are completely extrapolated and validated as well as interpolated data (filled
blue triangles). This can be considered as an additional constraint to test the model
validity, as pure-data based models will most of the time give a wrong approximation
once tested outside the data used for identification, whereas for physics-based models,
they can still be accurate in the extrapolation area, as long as the physics used in the
model development is still applicable.

8.2. Discussion

The model parameters were identified for the available compressors and are given in
the following table:

Table 5.2.: Identified model parameters for the three test case compressors

Parameter Compressor 1 Compressor 2 Compressor 3
a12 −2.2527e − 07 −0.0018 −0.0063

a11 −0.2256 −4.3208 16.3108

a23 −7.9340e − 12 −1.9912e − 06 7.6284e − 07

a22 7.3315e − 06 0.0304 0.0068

a21 −0.7406 −46.2380 −34.4675

a32 −1.5237e − 06 −0.0191 0.0049

a31 0.5127 54.6206 13.5556

a42 1.6221e − 06 0.0205 0.0020

a41 −0.2766 −60.3805 −5.4679

a40 1.3629e + 04 4.6175e + 04 5.0907e + 03

eqs. (5.27) to (5.30)are restated here for clarity:

a2 = a12N2
tc + a11Ntc (5.32)

a1 = a23N3
tc + a22N2

tc + a21Ntc (5.33)

a0 = a32N2
tc + a31Ntc (5.34)

a−1 = a42N2
tc + a41Ntc + a40 (5.35)

It can be seen that the parameters of compressors 2 and 3 can be considered close to
each other, however, parameters from compressor 1 are very different. This can be due
to the fact that both compressors 2 and 3 are for a gasoline engine; however, compressor
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1 is for a diesel. This similarity is also observed in fig. 5.7.The main comparison results
are listed below:

• By taking a minimum amount of data for the model parameters identification, it
is clear that the extended model shows a higher flexibility and a better fitting.

• Once the mass flow tends towards zero, there is an increase in the extrapolated
enthalpy. The same behavior was obtained by a 1D simulation performed by
Bozza and De Bellis [64] and published in 2011. This can be, in this current
work, due to the truncation of the Taylor Series approximation of the exponential
term in the gas temperature variation due to heat transfer between the gas and
the material. An increase of the enthalpy variation can still be expected, as the
residence time will increase due to the decrease of the mass flow. This will allow
a maximum heat transfer between the gas and the material.

• The enthalpy variation for higher mass flows tends toward zero. This can be
due to choking where the maximum mass flow is reached and a rapid, abrupt
decrease in the performance of the compressor will take place.

• The main difference between the two models and algorithms lies in the model
structure as well as the parameters identification. In the algorithm presented
by El Hadef et al. [66], the iso-speeds are treated separately, and then the model
parameters are identified. If a minimum amount of data is selected, it can be
insufficient to capture the shape of the measured iso-speed data. In the new
algorithm however, the model parameters are identified once and only once, for
the complete data set.

• It is known that heat flux from the turbine to the compressor can be negligible
for high compressor speeds. This makes heat losses along the compressor domi-
nating for those speeds, and this can be seen through the nonlinear shape of the
high iso-speed enthalpy lines.

9. Overall Algorithm

The final algorithm is resumed in the flowchart in fig. 5.8 and the simulation results are
shown in fig. 5.9

9.1. Discussion

• Because the pressure ratio estimation is the same for both algorithms, all dif-
ferences between the models simulation results are reported to the enthalpy
estimation models.

• Results based on the new model show a minimum error compared to the model
from El Hadef et al. [66] especially for the low speeds.
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Fig. 5.8.: Overall Interpolation and Extrapolation Algorithm

• Although the new model showed a good fitting for the enthalpy estimation, one
can still notice an error in the efficiency (this error is present in both models).
This is mainly due to the pressure estimation, as the model used by Jensen et al.
[52] is not physically based, but rather on observation.
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ṁc,corr [kg/s]

η
C

(b) Compressor 2

0 1 2 3 4 5 6 7 8 9 10
·10−2

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80
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Fig. 5.9.: Comparison between the new and old models approximation: Manufacturer data is
split into data used for identification (circles), and the rest for model validation (filled
triangles). Left: New Model, Right: Linear Model



10. Conclusion

A new enthalpy model for the turbocharger compressor has been developed and
validated in the current work. The model showed a better accuracy, even when strict
constraints are imposed on the parameters’ identification. The model can predict data
outside the identification field, provide more accuracy for control models and reduce
the measurements time. Sensitivity analysis was also performed to show the model
dependency on the data considered for identification.

Slight deviations are still observed, and are reported to the following aspects:

• Lack of physics in the pressure estimation model.

• The mathematical approximation of the enthalpy variation due to heat transfer.

• The use of simple polynomials to consider the parameters’ dependency on the
rotational speed.
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CHAPTER 6

EXPERIMENTAL VALIDATION

The previous chapters have presented the full 1D continuous models, some numerical
schemes as well as low order models. The 1D models have been validated using the
numerical shock tube test bench and the acoustics test bench. They then were used as
a reference for the validation of the low order models.

It is now necessary to test the validity and accuracy of these models on the combustion
engine. To test under engine-like conditions, the intake path of a virtual one cylinder
engine implemented in GT-Power R© and a production two cylinder engine are used.

Before performing a complete air system simulation, only a duct along the intake path
will be implemented using the different approaches. This will give the possibility to
correlate all the differences to these models. Based on the results, the air-system is
completely simulated and compared finally to reference measurements.

The difference in the geometry of the two engines and the different number of cylinders
will result in different acoustic effects. This will give the possibility to better assess the
modeling approaches.

1. Validation on the Virtual 1-Cylinder Engine

First, a virtual engine implemented using GT-Power R© was used to assess the previous
models in the modeling of the air flow in the intake path. The simple geometry will
enable a better assessment for the capacitive and inertial properties of the different
approaches.

Results in this section will compare reference results using GT-Power R© to the CE-SE,
QPM and MTF (Method of Transfer Function) methods. The latter is presented in the
Appendix.
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Intake Path Exhaust Path

Fig. 6.1.: Schematic of the virtual 1-cylinder engine

To properly assess the previous ducts models, we will simulate only the intake duct
using the previous methods. The rest of the system (intake valve + cylinder+ Exhaust
path) will be simulated using GT-Power R©.

A Co-simulation is performed where the intake path will be simulated by the previous
methods under Simulink R©. In the case of the CE-SE, a routine is implemented to drive
the Simulink R© solver according to the CFL condition. The pressure, temperature and
mass flow at 0.14 m before intake valve are given in figs. 6.2 to 6.4

1.1. Results

Results are shown in figs. 6.2 to 6.4 for speeds of 2000, 4000 and 6000 RPM. As previously
mentioned, GT-Power is used to get the theoretical reference results.

The valve’s opening will initiate a mass flow towards the cylinder and a decrease in the
local pressure. After the valve’s closure, the initiated wave will travel back and forth
until the next valve opening. Due to the simplicity of the system, all differences will be
linked to the models analyzed.

There is an over estimation in the mass flow and pressure for both CE-SE (∆x = 40 mm,
α = 2 and CFL = 0.8) and MTF (∆x = 40 mm). The main reason is primarily the
treatment of the boundary conditions and the interface with GT-Power. The numerical
scheme CE-SE has been shown to be mass conservative using shock-tube simulations,
but can have a small off-set relative to the real mass content.
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Fig. 6.2.: Predicted pressure, temperature and mass flow rate for 2000 RPM for the 1-Cylinder
engine

The main differences observed are in the temperature, which has an impact on the
wave propagation speed. This difference is constant for the MTF regardless of the
rotational speed. This can be expected, since the MTF is based on the conservation
of mass and momentum only, hence the effect of the non-homentropic flow is more
apparent. Although in this case no geometry variations were considered, friction and
heat transfer were present.
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Fig. 6.3.: Predicted pressure, temperature and mass flow rate for 4000 RPM for the 1-Cylinder
engine

This over estimation is also observed in the pulsation frequency. An over estimated
temperature results in an overestimated speed of sound. This will result in a higher
pulsating frequency.

Despite its simplicity, the quasi-propagatory model reproduces almost the same results
as the full models, except for high frequency pressure fluctuations. The pulsation
frequency seems to be well fitted using the QPM. However, in this case the duct length
has been multiplied by a coefficient to obtain the correct pulsating frequency and
optimized for higher speeds. This virtual length is dependent on the operational speed,
and for this reason, for a speed of 2000 RPM, this length is smaller than the effective
length, which results in higher frequencies when the intake valve is closed. Only one
branch has been used.
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Fig. 6.4.: Predicted pressure, temperature and mass flow rate for 6000 RPM for the 1-Cylinder
engine

All three methods show a good accuracy for the different operation points considered
which will be confirmed within the next section as well. Using a space discretization of
40 mm for the CE-SE and MTF, and one branch for the QPM, the calculation time of
the different approaches has been normalized with respect to CE-SE and is given in
fig. 6.5.
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2. Validation of Ducts Models on the 2-Cylinder Engine

Similar to the previous test case, the former models have been applied using Simulink
/ GT-Power co-simulation in order to simulate a test made upon the intake system of a
two cylinder turbocharged engine.

The complex geometry between the compressor and air cooler (fig. 6.7) has been
modeled in Simulink. This geometry contains different bends and materials but has
been approximated as one single pipe to reduce the computational time. For an
accurate reference, the detailed geometry has been considered in GT-Power. In this
work, two types of test benches have been used, and are briefly described in the
following:

2.1. The Experimental Setup

Model validation tests were performed at the Robert Bosch GmbH engine test cells. The
experiments were conducted on a 2 cylinder 1.2 liter standard production turbocharged
diesel engine. A dynamometer coupled to the engine using a compliant shaft can be
controlled to impose a specific load torque on the engine.

Both crank angle resolved measurements of pressure, temperature, mass flow and
rotational speeds.

Fig. 6.6.: Engine test bench
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Table 6.1.: Geometric characteristics of the two cylinder diesel engine
Cylinders 2 Inline
Displacement 1.2L
Bore x Stroke 87x101mm
Compression 17.5:1
Valves 4/Cylinder
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Fig. 6.7.: Schematic of the air system
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2.2. Results

Fig. 6.8.: Predicted pressure, temperature and mass flow rate for 1500 RPM for the 2-Cylinder
Diesel engine

In this case, results from three rotational engine speeds will be compared in detail and
the filling estimation error is then presented for the different speeds up to 4500 RPM
(maximum allowed speed) and constant injection.

• The wave motion in the intake path has been predicted fairly well by CE-SE
(α = 2 and CFL=0.95) and QPM (one branch). The MTF still suffers the energy
conservation which results in a difference of ≈ 20◦C and 0.15 bar by 4500 RPM.

• Despite the fact that the geometry was taken as a straight pipe, the QPM does not
lack any accuracy compared to the one dimensional models. In this case, only
one branch has been used.
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Fig. 6.9.: Predicted pressure, temperature and mass flow rate for 3000 RPM for the 2-Cylinder
Diesel engine

Fig. 6.10.: Predicted pressure, temperature and mass flow rate for 4500 RPM for the 2-Cylinder
Diesel engine
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• Considering the results shown in figs. 6.8 to 6.10, the integrated mass flow error
given in fig. 6.11 and taking into consideration that no calibration has been used,
both CE-SE and QPM provide relative error less than ±10% except for rotational
speed equal to 1500 RPM

Fig. 6.11.: Measured and predicted mass flow rate

This can be due to several reasons such as the non-predictive combustion model or
even the calibration at this specific rotational speed.

It is clear that the QPM, being a lumped parameter model requires a higher calibration
effort, while neglecting the energy conservation in the MTF results in important errors
in the estimation of the mass flow rate.

In order to validate an overall air system simulation, the previously presented modeling
approaches are used to simulate the flow in an entire air system of the 2-cylinder diesel
engine. In general, a modern diesel engine will consist of these essential components:
cylinders, intake- and exhaust manifold, turbocharger (including compressor and
turbine), exhaust gas recirculation system, inter-cooler, catalytic converter and diesel
particulate filter.
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Fig. 6.12.: Air system and exhaust gas after-treatment for a two-cylinder in-line diesel engine

As shown in fig. 6.12, the filtered ambient air is, at first, aspired into the radial com-
pressor of the turbocharger, and leaves with an increased pressure. Afterwards, the
compressed air is cooled through the inter-cooler and then pumped into the intake
manifold, where its mass flow rate is manipulated by a throttle valve. In the intake
manifold, the fresh air is mixed with the recirculated exhausted gas (in case of an
open EGR valve or a back flow through the intake valve). After that, the mixture is
aspired through diverse manifold branches into the individual cylinders, burned in the
combustion chamber, and discharged into the exhaust manifold. Besides the part of
recirculated gas, the rest of the burned gas enters the turbine, impelling the continuous
rotation of the entire turbocharger. Eventually, after a series of post-processing in the
catalytic converter and DPF, gas is discharged back to the environment.

In current ECUs, the model for the pipe flow between arbitrary two components was
established on the basis of a null-dimensional, or in other words, lumped-parameter
approach. In fact, a common Emptying-Filling Capacity Model was implemented
which could only calculate approximately the lumped variation of the gas state of a
duct, but it is not able to reflect the variations of gas states in different spatial positions
of the duct. Furthermore, this model can concentrate on holding the conservation
of mass and energy, nevertheless, neglecting inevitably the other conservation law of
momentum. As a consequence, the wave actions of engine flow, or more specifically,
the propagation of the pressure, and temperature waves between the boundaries of
the duct could not be effectively captured by this Emptying-Filling Model.

3. Waves in the Intake and Exhaust Manifolds

In the previous section, the different modeling approaches have been compared to
measurements and reference results from a virtual engine. It was clear that the model
accuracy is proportional to model complexity. Filling and Emptying models are not
capable of building waves effects. On the other hand, they required minimum compu-
tational power. This can be used if waves effects can be neglected at specific engine
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Fig. 6.13.: Schematic diagram of gas system modeling in engine simulation

ducts. It is thus necessary to investigate the necessity of modeling waves based on the
measurements.

Keeping the cylinder breathing as final aim, let us observe pressure profiles at the
intake and exhaust manifold.

Figure 6.15 shows the pressure and valves opening profiles at the manifold for three
different engine operation points.

Fig. 6.14.: Pressure sensitivity at exhaust manifold
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Consider the upper left subplot at 1250 RPM and 25 mg/cylinder. At around -270
CA, the exhaust valve of cylinder 1 opens. This will lead to an increase in the exhaust
manifold pressure until the pressure reaches its maximum at -180 CA. Due to the high
pressure difference across the exhaust valves (pcyl >> pexh), the flow across the exhaust
valves reaches quickly a high speed. Combined to the increasing cylinder volume, this
will lead to sharp decrease in cylinder pressure.

Starting from -180, the cylinder volume will decrease, leading to an increase in cylinder
pressure, some local back flow will take place across the exhaust valve. Due to this
and/or gas flowing through the turbine and EGR-valve, the pressure in the exhaust
manifold will decrease almost until next opening of the exhaust valve in the following
working cycle. It is clear that in this case, no waves phenomena (such as reflections) can
be observed and pressure profile is defined simply through the Filling and Emptying (f
& E) of the exhaust manifold.

Operation point at 1250 RPM and 5 mg/cylinder confirms that the F& E is dominant
along the exhaust manifold. The same behavior is observed between -270 CA and -180
CA. However, due to the lower injection quantity compared to the previous operation
point, the flow will reach a lower maximum leading to more remaining gas quantity in
the cylinder. The piston upward movement starting from -180 CA, will generate a new
positive pressure difference across the exhaust valve. This will trigger a positive mass
flow leading to the second peak pressure signal (around -45 CA). Afterwards, most of
the mass is released from the cylinder and the exhaust manifold pressure will decrease
until the next exhaust phase. Once again, the F& E phenomena is dominant.

Without injection (third operation point), a very low in-cylinder pressure is observed
leading to a small positive mass flow across the exhaust valve. This later is not high
enough to compensate the flow leaving the exhaust manifold (mainly due to turbine
rotation) leading to a first decrease in exhaust manifold pressure.

Starting from -180 CA, the decreasing cylinder valve will lead to a higher mass flow and
hence the observed increase in exhaust pressure manifolds.

These three operation points can be said to represent the different exhaust pressure
behavior for the complete engine operation map.

It will be shown in the Overall Simulation Section that modeling the exhaust manifold
using only concentrated parameter models will be enough to simulate the previous
effects while keeping the calculation power to its minimum.

The pressure profile at the intake manifold, on the other hand, observes more dominant
wave effects. Figure 6.14 shows the intake manifold pressure at three different operation
points. It is clear that in addition to the F& E effects, reflected waves are super-imposed
on the main pressure wave. Even if the air charge cooler and EGR coolers act as filters,
reflections from throttle valve (sudden area changes), moving intake valves (partially
open or closed ends) and the intake manifold geometry generate apparent reflected
waves.
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Fig. 6.15.: Pressure sensitivity at intake manifold

4. Intake Manifold Modeling Using the QPM

In this context, the one-dimensional duct flow model or Quasi-Propagatory-Model
seems to be a necessary supplement for the engine simulation, because they not only
specify the spatial differences of the gas state over the duct, but also theoretically take
all the conservation laws into account.

The number of branches (or capacities) for the QPM can only be defined iteratively
based on the required accuracy. For the flow in the intake manifold, the flow is usually
separated by more than one manifold branch. As to evaluate the boundary conditions
at the common border of the branches, i.e. at the duct junction, a generic capacity
model is introduced. For the intake manifold, the capacity model is capable of speci-
fying the upstream conditions of the QPM. The composition of branch and capacity
models is illustrated in fig. 6.16.

121



Intake Manifold Exhaust Manifold

...

...

...

Cylinders

...

...

...

Computational Zone of Branch Model  (QPM)

Computational Zone of Capacity Model

Upstream BCs

Upstream BCsDownstream BCs

Downstream BCs

Flow Direction

Fig. 6.16.: Modeling of the intake and exhaust manifolds by branches and capacities

In order to reveal this withdraw evidently, a simulation was made where a single
capacity model was imposed at the place of the intake and exhaust manifolds, as well
as the other ducts in the engine (see fig. 6.13).

4.1. Single Operation Point Test

In this simulation, all the existing capacity models in the simulation have been re-
placed with the implemented 1D CE-SE, quasi Quasi-Propagatory and F&E Models.
An identical configuration of simulation parameters has been conducted in order to
guarantee a proper comparison.

For the 1D numerical model, the CE-SE scheme is applied to the simulation in order to
ensure simultaneously the accuracy and stability of the solution. On the other hand, for
the Quasi-Propagatory-Model, the branch and capacity models are properly combined
with the adjacent valves in order to reflect the real geometry of the pipes or the sections
of pipe junction.

In this case, no variable valve timing was considered. Thus the inlet and exhaust valves
would open and close at a fixed sequence. Hence, the effective flow area of both the
inlet and exhaust valves would vary as a function the crank angle1. For the engine in
hand, the dynamics of the effective valve orifice area is shown in fig. 6.17.

1The crank angle refers to the angle of rotation of a crankshaft. It is measured from the highest position
of a piston (or named as top dead center). When the piston reaches its lowest position (or known as
bottom dead center), the crank angle will be ±180 deg
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Fig. 6.17.: The dynamics of the orifice area of inlet and exhaust valves

The results for the experimental validation of different numerical models are shown in
figs. 6.18 to 6.21
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Fig. 6.18.: Experimental validation of different numerical models: Pressure in engine intake
manifold (2000 rpm)
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Fig. 6.19.: Experimental validation of different numerical models: Pressure in engine intake
manifold (2500 rpm)
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Fig. 6.20.: Experimental validation of different numerical models: Pressure in engine intake
manifold (3000 rpm)
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Fig. 6.21.: Experimental validation of different numerical models: Pressure in engine intake
manifold (3500 rpm)

Clearly, the single capacity model shows a smooth approximation in following the
pressure variation arising from the dynamics of the valves. This phenomenon was pre-
sented as the main resonance of pressure profile. But, it was not capable of capturing
the high-frequency pressure pulsations, which is caused by the specific wave actions
such as reflection at the boundaries, superposition of successive waves. This confirms
the analysis presented previously in section 3.

As shown in the figures, compared to the E&F model, the results of 1D numerical model
and the QPM presented a much more satisfactory correspondence with the measured
data. The pulsation phenomena in the pressure profiles resulting from the propagation
and reflection of the pressure waves are acceptably reproduced in the simulation.
However, the magnitudes of these pulsations, especially the high-frequency ones, are
sometimes not precisely represented by either of them. The pressures in the intake
manifold are often underestimated by means or overestimated by means of QPM. The
possible reasons are as follows:

1. There may exist deviation in estimating the geometrical parameters of the mani-
fold branches (Length, Variation of Cross-section area, ...) from the real situation.

2. The bent section and the sudden-flow-area-variation section in the intake mani-
fold can particularly lead to an energy loss and a local wave reflection. Since the
geometry of the model is assumed as a straight duct, possibly with a gentle flow-
area-change, this phenomenon can not be well simulated without considering
much more complicated models.

3. Complicated aspiration processes from the intake manifold can not be entirely
translated into the one-dimensional flow problem. The local eddies have a
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considerable influence on the flow, which can be only evaluated in a higher-
dimensional flow analysis.

In contrast with the 1D numerical models, the most attractive highlight brought by the
QPM is that it enormously shortens the calculation time without sacrificing too much
precision in pressure prediction. For example, a single replacement of 1D numerical
model with the QPM will accelerate the computation in at least six times, which only
loses an ignorable accuracy of about 0.2%. The comprehensive comparison between
the 1D duct flow models is given as follows:

Models
Average Relative

Computation Time [-]

Average Relative

Computation Errors [%]

Emptying and Filling
Capacity Model

1 7.1

CE-SE
(v = 0.9)

13.9 3.3

Quasi-Propagatory Model 2.1 3.5

5. Over All Engine Map Validation

It is clear that the QPM provides a good compromise between accuracy and com-
putational complexity. We will assess this modeling approach over an entire engine
operation range. The engine operation points are given in fig. 6.22.

1,000 1,500 2,000 2,500 3,000 3,500 4,000
0

10

20

30

40

50

60

RPM

In
je
cc
ti
on

[m
g/
C
y
li
n
d
er
]

Fig. 6.22.: Engine operation points

Even for a single operation point, the engine can be considered in steady-state (in terms
of mean energy and injection), gas dynamics will remain apparent. This dynamics (due
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to valves movement) if modeled properly will lead to a proper estimation of engine
breathing also during transients.

To correlate the operation points to the set of the subplots, the later in fig. 6.23 and
fig. 6.24 is mapped one-to-one.
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Fig. 6.23.: Simulation (blue) Vs measurements (red) of the intake manifold pressure



Fig. 6.24.: Simulation (blue) Vs measurements (red) of the exhaust manifold pressure



For the intake manifold, the model accuracy varies depending on the injection and
engine speed. The model reaches a very good accuracy for operation points higher
than 25 mg/cylinder. However, some phase shifts are observed at some operation
points such as (1750 RPM).

The accuracy is very reduced for low speeds and injections. This is due to the number
of branches considered. Ideally, the number of branches/capacities is calibrated to
match gas dynamics. For this simulation, only one branch has been considered. Due
to the low injection, the turbocharger speed is reduced (waste gate position always
open), leading to a low mass flow. The QPM capacities will observe a slow filling and
emptying flow which will dominate the gas momentum modeled using the branch
sub-model.

Generally speaking, it is clear that the mean simulated pressure matches well the
measured one.

The trapped mass per cylinder is now considered to evaluate the simulation accuracy.
Because no direct measurement of this quantity is available, we will consider measured
mass flow at the air system entry with a hypothesis of equal distribution between the
two cylinders.
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Fig. 6.25.: Comparison between measured and trapped mass per cylinder

It is important to note that no specific calibration has been performed to match the
measurements. Flow through valves such as the throttle valve, EGR-valve, intake and
exhaust valves have been measured on dedicated test benches and used to calculate
flow coefficients. This helped avoid the use of volumetric efficiency for the cylinders.

130



6. Conclusion

To complete the simple numerical validation in chapters , thus chapter presented the
validation of flow models under engine like conditions

First, a virtual single cylinder engine was used to assess the accuracy of the models.
Only the intake path was simulated whereas the rest of the system was modeled using
the commercial tool GT-Power. This gave the possibility to relate all differences to
the simulated intake path. The simulation accuracy was proportional to the models
complexity. However, the QPM gave the best compromise between precision and
calculation effort. These results have been confirmed again on a 2-cylinder diesel
engine using the same simulation principle.

The measurements were then used to extract some knowledge on flow complexity
along intake and exhaust paths. It was deduced that filling and emptying phenomena
are dominant along the exhaust path. On the other hand, wave phenomena are crucial
for flow simulation. This motivated the use of a hybrid model based on the QPM along
the intake path and F&E along the exhaust ducts.

This was used to build a complete air system and compared to measurements. Pressure
pulsations were reproduced with varying accuracy for the complete engine operation
map.

131



CONCLUSION

Gas flow impact on air system dynamics and hence on combustion products, i.e.
emissions, has imposed itself strongly due to the dynamics content in new test drive
cycles such as the WLTC. This makes current real-time 0D models less reliable as they
rely on stationary measured look up tables. In addition, wave phenomena and gas
inertial effects are inherently neglected. This makes the estimation of the flow into and
from the cylinder inaccurate.

A methodology to proposed reproduce wave effects along the internal combustion
engine ducts was presented in this work. The idea relies on combining both lumped
parameter and quasi-one-dimensional models.

This combination gives the possibility to take inertial effects of gas dynamics while
avoiding the heavy computational cost of the 1D modeling approach.

The first part investigated one-dimensional numerical schemes, with the aim of evalu-
ating them with respect to real-time applications. Four different numerical schemes
have been tested and have shown clear discrepancies in accuracy and stability. Even
though the augmented Lax-Wandroff with total variation diminishing algorithm was
able to produce accurate simulation results, it suffered from a very high calculation
effort.

As long as 1D models are concerned, the Conservation Element-Solution Element
scheme was found to be the best in terms of compromise between accuracy and
computational power. However, being still too slow for a real-time application, it
was necessary to use a reduced order model. Thus, the CE-SE has served as a good
reference for further numerical validations.

The Quasi-Propagatory model was the best candidate to model waves with less com-
putational power. It was found to be able to reduce the calculation effort by 80% with a
penalty of only 0.2% on the accuracy for some investigated engine operation points.

For the sake of a complete air system simulation, it was necessary to address valves,
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turbochargers and coolers modeling. To have an accurate boost pressure estimation,
more focus was put on the compressor to provide a better extinction of manufacturer
data maps. A physics based model was presented based on [55]. Results have also
shown a better interpretation and extrapolation ability.

To assess the overall simulation, a complete air system of a diesel engine was simulated
for every single operation point. The QPM was used along the intake path whereas
the lumped parameters (filling and emptying) models, along the exhaust path. This
configuration was chosen based on the analysis of pressure profiles at the intake and
exhaust manifolds, and proved to be satisfactory in terms of accuracy and calculation
effort.

Future Developments

The following future work directions have been identified:

• The QPM has proved to be efficient in terms of accuracy and calculation effort
for simple engine ducts. The natural extension is to investigate this approach
for complex geometries such as compressors and turbines. This will give the
possibility to detect surge phenomena without complex CFD simulations.

• Future ECUs will provide the possibility to resolve sub-problems simultaneously
on different cores. It is thus necessary to investigate the parallelization of the
CE-SE and QPM approaches.

• The Taylor approximation of the heat transfer model used in the compressor
modeling in chapter 5 produces some inaccuracies when the mass flow tends
towards zero. This approximation was used to simplify the model but has to be
extended to increase model accuracy.
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CONCLUSION (FRENCH)

L’impact de la dynamique des gaz sur la chaine d’air et de ce faite sur les produits de
combustion (les émissions polluantes) s’est fortement imposé, en raison de l’impact
de la dynamique des gaz dans les nouveaux cycles d’essais d’homologation automobile
tels que le WLTC.

En effet, les modèles temps réel 0D actuels sont moins fiables car ils reposent sur les
cartographies mesurées sur des points de fonctionnements stationnaires. En outre, les
phénomènes d’onde et les effets inertiels des gaz sont intrinsèquement négligés. Ce qui
rend l’estimation des flux entrant et sortant du cylindre imprécise. Une méthodologie
pour reproduire efficacement les effets d’ondes le long des conduites de moteurs à
combustion interne a été présentée dans ce travail.

L’idée est basée sur la combinaison des modèles à paramètres concentrés et les mod-
èles quasi unidimensionnels. Cette combinaison donne la possibilité de prendre en
considération les effets d’inertie et la dynamique des gaz, tout en évitant un coÃ»t
plus élevé en temps de calcul du à l’approche de modélisation 1D. La première partie
de ce travail été consacrée aux schémas numériques à une dimension, dans le but
de les évaluer par rapport à des applications temps réel. Par la suite, quatre schémas
numériques différents ont été testés et ont montrés des différences majeures dans la
précision et la stabilité. MÃame si le schéma Lax-Wandroff étendu par le correcteur
de flux "Variation Total décroissante, TVD" était capable de produire des résultats de
simulation précis, il était malheureusement caractérisé par un temps de calcul plus
lourd. Le schéma Conservation Elément-Solution Elément (CE-SE) a prouvé Ãatre
le meilleur en termes de compromis précision et puissance de calcul. Cependant, il
souffrait d’une importante lenteur pour les applications temps réel, il était nécessaire
ainsi d’utiliser un modèle à ordre réduit. Ainsi le CE-SE a servi comme une bonne
référence pour plus de validations numériques.

Le modèle "Quasi-Propagatory" était le meilleur candidat pour modéliser les ondes
avec une plus grande économie en ce qui concerne la puissance de calcul. Il a été
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remarqué que ce modèle est capable de réduire les efforts de calcul de 80

Pour avoir un traitement de conditions aux limites plus représentif, divers cas ont
également été présentés brièvement. Et pour avoir une meilleure estimation de la pres-
sion de suralimentation, on s’est intéressé plus particulièrement au compresseur. Un
modèle physique a été présenté en se basant sur les travaux de Martin et al. [55]. Les ré-
sultats ont également montré une meilleure capacité d’interpolation et d’extrapolation.
Pour évaluer la simulation globale, un système d’air complet d’un moteur diesel a
été simulé pour chaque point opérationnel. Le QPM a été utilisé le long de la voie
d’admission, tandis que les modèles à paramètres concentrés, ont été utilisés le long
du trajet d’échappement.

Cette configuration a été choisie sur la base d’une analyse des profils de pression
dans les collecteurs d’admission et d’échappement, elle a prouvée Ãatre satisfaisante
en termes de précisions et le temps de calcul. Il a été remarqué que l’application
des modèles à paramètres concentrés produit des résultats satisfaisant le long de la
conduite d’échappement, tout en réduisant le temps de calcul et en décrivant les
phénomènes d’ondes à l’entrée des soupapes d’admission.

Perspective et voies de développements :

Des pistes pour l’amélioration de ce travail de thèse ont été identifiées afin d’améliorer
et de généraliser l’utilisation des méthodes développées dans cette thèse :

• Le QPM a prouvé son efficacité en termes d’exactitude et de temps de calcul
par rapport aux modèles 1D, en ce qui concerne la simulation d’une simple
tubulure. L’extension de cette méthode consiste à son utilisation pour décrire des
géométries complexes telles que le compresseur. Ce qui permettra la possibilité
de prendre les ondes en considération et de détecter le retour de flux sans Ãatre
obligé d’utiliser les modèles 3D.

• Les nouvelles générations de calculateurs donneront la possibilité de résoudre
les problèmes sous-jacents en utilisant différents noyaux de processeurs. La
continuité logique de ce travail conduira à la parallélisation du QPM et la CE-SE
dans le cas des moteurs à combustion.

• L’approximation de Taylor des pertes de chaleurs dans le chapitre 5 produit des
erreurs numériques quand le débit de masse traversant le compresseur tend vers
zéro. Il est donc important d’étudier d’autres modèles pour améliorer l’exactitude
de l’algorithme.
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APPENDIX A

HYPERBOLICITY

Definition 0.1. The following is a system of s first order partial differential equations
for s unknown þu = (u1, . . . , us), þu = þu(þx, t), where þx ∈ R

d:

:(∗) ∂þu
∂t +

∑d
j=1

∂
∂xj

þf j(þu) = 0,

where þf j ∈ C1(Rs,Rs), j = 1, . . . , d are once continuously differentiable functions,
nonlinear in general.

Next, for each þf j a matrix s × s is defined

Aj :=




∂fj
1

∂u1
· · ·

∂fj
1

∂us

...
. . .

...
∂fj

s

∂u1
· · · ∂fj

s

∂us


 , for j = 1, . . . , d.

The system (∗) is ”’hyperbolic”’ if for all α1, . . . , αd ∈ R the matrix A := α1A1+· · ·+αdAd

has only real eigenvalues and is diagonalizable.

If the matrix A has ”n” ”distinct” real eigenvalues, it follows that it’s diagonalizable. In
this case the system (∗) is called ”’strictly hyperbolic”’.

If the matrix A is symmetric, it follows that it’s diagonalizable and the eigenvalues are
real. In this case the system (∗) is called ”’symmetric hyperbolic”’.

The homogeneous portion of the governing equations 2.35, is

∂W

∂t
+

∂F(W)

∂x
= 0 (A.1)

This system of equations can be written as
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∂W

∂t
+ A

∂W

∂x
= 0 (A.2)

where A is a 3x3 matrix. The equations can be expressed more explicitly as

∂W1

∂t
+ A11

∂W1

∂x
+ A12

∂W2

∂x
+ A13

∂W3

∂x
= 0 (A.3)

∂W1

∂t
+ A21

∂W1

∂x
+ A22

∂W2

∂x
+ A23

∂W3

∂x
= 0 (A.4)

∂W1

∂t
+ A31

∂W1

∂x
+ 32

∂W2

∂x
+ 33

∂W3

∂x
= 0 (A.5)

A =




0 1 0

(γ − 3)u2

3 (3 − γ)u γ − 1

(γ − 1)u3

2 − ua2

γ−1
a2

γ−1 − u2

2 (2γ − 3) γu


 (A.6)

The eigen valuues, λk, and corresponding right eigen vectors, ek, of A are:

λ1 = u + a, e1 =




1
u + a

a2

γ−1 + u2

2 + ua


 (A.7)

λ2 = u − a, e2 =




1
u − a

a2

γ−1 + u2

2 − ua


 (A.8)

λ3 = u, e3 =




1
u
u2

2


 (A.9)

Since the eigen values are real and the eigen vectors are linearly independent (none
of the vectors can be represented as a linear combination of the others) the system of
equations given in equation A.2 is said to be hyperbolic. A hyperbolic set of equations
associated with propagating waves so the behavior of a physical system described by
such as equation set will be dominated by wave-like phenomena; the eigen values, λk,
of the system are the propagation speeds of the waves.
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1. Lax-Wendroff Schemes

Since the 1950s, a lot of investigations have been done in the field of FDM for the simula-
tion of one-dimensional unsteady flow. The most famous and significant achievements
were made by Lax and Friedrich in [70] and [71] as well as their colleague Wendroff in
[37] and [72], who developed a number of discretization techniques for the finite dif-
ference method in their cooperation, such as Lax-Friedrich method and Lax-Wendroff
method, and brought them successfully into the computation of fluid dynamics for
pipes.

Reformulating the equation (2.33) with these three symbolic vectors,

W =




ρ
ρu
ρe0


 , F(W) =




ρu
ρu2 + p

ρuh0


 , C(W) =




ρu
ρu2

ρuh0




d(ln F )

dx
+




0
ρG
−ρq


 (A.10)

it becomes

∂W

∂t
+

∂F(W)

∂x
+ C(W) = 0 (A.11)

The integral form of the equation over the time and space will be then:
ˆ

t

ˆ

x

(
∂W

∂t
+

∂F(W)

∂x
+ C(W)

)
dxdt = 0 (A.12)

Significantly, the symbolic vector for flux F is a function of the fluid properties vector
W, which can be described as the algebraic operation of the elements in F:

F1 = ρu = W2

F2 = ρu2 + p =
(ρu)2

ρ
+ ρRspec ·

e0 − 1
2u2

cv
=

W
2
2

W1
+ (γ − 1)

(
W3 −

1

2

W
2
2

W1

)

F3 = ρuh0 = u(ρe0 + ρ ·
p

ρ
) =

W2

W1

(
W3 + (γ − 1)

(
W3 −

1

2

W
2
2

W1

))
(A.13)

Eventually, the simplification leads to:

F1 = W2

F2 =
3 − γ

2

W2W3

W1
+ (γ − 1)W3

F3 = γ
W2W3

W1
−

γ − 1

2

W
3
2

W2
1

(A.14)

where the subscripts 1, 2, 3 refer to the 1st, 2nd and 3rd component of the vector W, F
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or C Likewise, it is also possible to express the vector of non-homogeneous terms C

with W

C1 = W2 ·
d(lnF )

dx

C2 =
W

2
2

W1
·

d(lnF )

dx
+

2f

D
· W2 ·

∣∣∣∣
W2

W1

∣∣∣∣

C3 =

(
γ

W2W3

W1
−

γ − 1

2

W
3
2

W2
1

)
·

d(lnF )

dx
−

δQ̇

F

(A.15)

The proposed equation (A.14) manifests no dependence on geometrical factors but
only on the properties of the fluid, when the investigated fluid behaves like an ideal
gas. However, in contrast to the evaluation of F, the non-homogeneous term involves
several relevant properties from geometry and boundary of the control volume, such
as the variation of cross-section area and friction factor. Since this function establishes
a unique and determined relationship between F and W as well as C and W , it is
always possible to calculate F(x0, t0) and C(x0, t0) after obtaining the vector of fluid
property W(x0, t0) at the same point.

1.1. Lax-Wendroff Two-Step Scheme

Another numerical scheme involving the algebraic operation from only two levels
of time tn, tn+1 is introduced to take charge of the primary calculation. At the very
beginning of the iterations, as long as the value of W

2 is calculated by a primary-step
scheme with regard to the initial condition W

1, the mid-point leapfrog method can be
applied to obtain the W

3 with a review of W
1 and W

2.

A simplest prototype of such a numerical approach is called two-step Lax-Wendroff
(Richtmyer) method [73], which processes a second-order precision. The Lax-Friedrichs
method is responsible for the primary step of the two-step approach by establishing a
space-centered difference about the gird point [i∆x, n∆t], while the mid-point leapfrog
scheme is in charge of the subsequent step of every iteration with building a time-
centered difference about the grid point [i∆x, (n + 1)∆t]. Applying the Lax-Friedrichs
method to evaluate the half mesh points

[
(i ± 1

2)∆x, (n + 1
2)∆t

]
gives:





W
n+1/2
i+1/2 =

1

2

[
W

n
i+1 + W

n
i

]
−

∆t

2∆x

[
F

n
i+1 − F

n
i

]
+ C

n
i+1/2∆t

W
n+1/2
i−1/2 =

1

2

[
W

n
i + W

n
i−1

]
−

∆t

2∆x

[
F

n
i − F

n
i−1

]
+ C

n
i−1/2∆t

(A.16)

The vector of flux F at the point
[
(i ± 1

2)∆x, (n + 1
2)∆t

]
can be exactly evaluated from

the corresponding vector W with respect to the explicit relationship which has been
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demonstrated in equation (A.14).





F
n+1/2
i+1/2 = F(W

n+1/2
i+1/2 )

F
n+1/2
i−1/2 = F(W

n+1/2
i−1/2 )

(A.17)

However, as described in equation (A.16), the evaluation for W requires additionally
a reliable estimate of source terms C

n
i+1/2, C

n
i−1/2, which is located at the half mesh

points. A common manipulation for that is replacing the term by the average of
the surrounding points. Expanding C(x + ∆x, t) and C(x, t) in form of the Taylor
Polynomial respectively about the mesh point [x − 1

2∆x, t] and [x + 1
2∆x, t] results in:

C(x + ∆x, t) = C(x +
1

2
∆x, t) +

∂C

∂x
(x +

1

2
∆x, t) ·

1

2
∆x

+
1

2

∂2
C

∂x2
·

(
1

2
∆x

)2

+ O(∆x3)

C(x, t) = C(x +
1

2
∆x, t) −

∂C

∂x
(x +

1

2
∆x, t) ·

1

2
∆x

+
1

2

∂2
C

∂x2
·

(
1

2
∆x

)2

+ O(∆x3)

(A.18)

Apparently, C(x + 1
2∆x, t) can be approximated by averaging C(x + ∆x, t) and C(x −

∆x, t) and ignoring the high-order term of ∆x:

C
n
i+1/2 = C(x +

1

2
∆x, t) =

1

2
[C(x + ∆x, t) + C(x, t)] + O(∆x2) (A.19)

Likewise,

C
n
i−1/2 = C(x −

1

2
∆x, t) =

1

2
[C(x, t) + C(x − ∆x, t)] + O(∆x2) (A.20)

Subsequently, as the second step of two-step Lax-Wendroff scheme, the leapfrog
method is utilized over another half-mesh interval to present the advance of the vector
W from n + 1

2 to n + 1.

W
n+1
i = W

n
i −

∆t

∆x

(
F

n+1/2
i+1/2 − F

n+1/2
i−1/2

)
+

1

2
C

n+1/2
i ∆t + O(∆x2) (A.21)

where C
n+1/2
i is estimated as

C
n+1/2
i =

1

2
(C

n+1/2
i+1/2 + C

n+1/2
i−1/2 ) (A.22)

Imposing this scheme on the linear advection equation enables an integration of two
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steps

wn+1
i = wn

i −
v

2

(
wn

i+1 − wn
i−1

)
+

v2

2

(
wn

i+1 − 2wn
i + wn

i−1

)
(A.23)

Assuming ∆wn
i+1/2 = wn

i+1 − wn
i and ∆wn

i−1/2 = wn
i − wn

i−1 leads to

wn+1
i = wn

i −
v

2

(
∆wn

i+1/2 + ∆wn
i−1/2

)
+

v2

2

(
∆wn

i+1/2 − ∆wn
i−1/2

)
(A.24)

A schematic of the computational stencil in shown in figure A.1.

Fig. A.1.: Computational stencil of two-step Lax-Wendroff scheme

1.2. Lax-Wendroff 2-step with TVD

It is well-known, and as a consequence of Godunov’s theorem, that finite difference
schemes which have constant coefficients and are greater than first-order accuracy,
such as the Lax-Wendroff method, produce local instabilities around shock waves
and contact surfaces. This oscillatory behavior is nonphysical and is known as the
Gibbs phenomenon. The classical approach to preventing oscillations was to introduce
artificial viscosity into the solution, so called because it was added explicitly to the
"viscosity" which is inherent in the numerical schemes. This palliative tended to smear
the shocks and contact surfaces and, with large discontinuities, often failed completely.
In addition, the same amount of damping, usually problem dependent, was applied
indiscriminately across the whole solution domain.In the 1970s the Flux-Corrected
Transport (FCT) technique was developed by Boris and Book [74, 75]. This approach
attempts to apply sufficient global diffusion to the solution to eradicate nonphysical
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oscillations, and then cancels it out with equal anti-diffusion in locations where it is not
required. The criterion for this selectivity is incorporated in the nonlinear flux limiter;
the magnitude of the anti-diffusion depends on the values of the solution from point
to point. The total variation of the solution is then bounded by that of the initial data.
It can be shown that the Lax-Wendroff scheme, as defined in Equation 2.62, is not TVD
Sweby [76]. Harten [40] established criteria for three-point difference schemes to be
TVD, and Sweby [76] used the concept of the "flux limiter" to construct TVD schemes
which are second-order accurate. Davis [77] took the general form of the upwind TVD
schemes analysed by Sweby and modified it in such a way as to render it independent
of the direction of wave propagation. This approach essentially involved appending
to the Lax-Wendroff scheme a nonlinear term which discerns precisely the correct
amount of artificial viscosity required at each mesh point to prevent the occurrence
of spurious oscillations. The resulting five-point scheme has the simplification of not
being upwind biased, and is therefore easily implemented in existing Lax-Wendroff or
MacCormack codes. A brief prescription of the method is given below. The two-step
Lax-Wendroff method can be rendered in TVD form by appending, after the second
step[50], the term:[50]

2. Total Diminishing Variation Scheme

The classical Two-Step Lax-Wendroff method, which is mentioned in section 1.1, can-
not match the expectation of well-resolved solutions because it may raise oscillatory
profiles at discontinuities.

As the forerunners, Godunov [78], Toro [79] and Roe [80] proposed a diversity of non-
oscillatory solutions for the governing equations. The only flaw of these schemes
is that the spatial accuracy is confined within the first-order. In this context, it is
desired to introduce the so-called high-resolution scheme which is able to retain a
satisfactory resolution without generating a spurious oscillation at discontinuities.
Toro [79] interpreted the criterion of such numerical schemes in his work:

• No new local extremum is created as the time advances.

• The absolute value of the local extrema (including the minimal and maximal)
must not decrease as the time advances.

In this context, Sweby has suggested a mathematical limitation for wn+1
i which is

sufficient to fulfill the both properties described above. This criterion, taking into
account the values of the center cells wn

i and the surrounding ones wn
i−1 and wn

i+1,
artificially gives rise to preventing the scheme from producing of a new local peak and
suppressing the magnitude of any existing local peaks.

min{wn
i−1, wn

i , wn
i+1} ≤ wn+1

i ≤ max{wn
i−1, wn

i , wn
i+1} (A.25)

The other criterion raised by Sweby follows the principle of monotonicity preservation.
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Assume a scheme can be written as:

wn+1
i = Gn (

wn
i−k, · · · , wn

i , · · · , wn
i+l

)
(A.26)

where wn
i−k, ... , wn

i+l are the values of the surrounding cells from wn
i . The scheme is

called monotone if and only if it is an increasing function of all its arguments, which
means mathematically

∂G

∂wj
≥ 0, j = i − k, · · · , i, · · · , i + l (A.27)

Moreover, in case the wn is monotonic, the scheme remains monotonicity preserving
if and only if wn+1

i inherits the monotonic property from wn
i as well. Unquestionably,

the artificial oscillations fails to agree with anyone of these criteria. However, it was
declared by Sweby [81] that it is not always simple and unconditional to recognize
immediately if a numerical scheme can meet the requirements of criteria above.

A generally acceptable approach to defining these limitations mathematically was
conceptually introduced by Ami Harten [82]. It was named as Total Variation Dimin-

ishing (abbr. TVD) Scheme. In the discrete case, the total variation refers to the sum of
all the absolute differences between the adjacent cells in the calculation domain.

TV(wn) =
∑

i

∣∣wn
i+1 − wn

i

∣∣ (A.28)

It can be also described in a continuous form:

TV(w) =

ˆ L

0

∣∣∣∣
∂w

∂x

∣∣∣∣ dx (A.29)

where L is the length of pipe. As the time advances, the total variation TV (w) will
increase in case either a new local peak is brought into the solutions, which gives rise
to the spurious oscillations, or the absolute value of the current extrema grows. Thus,
the only criterion from the TVD Scheme is that, for the discrete case, the new total
variation of the solutions TV(wn+1) must be diminished as time advances

TVD Criterion: TV(wn+1) ≤ TV(wn) (A.30)

The characteristic of TVD assures the maintenance of the monotonicity as well, satisfy-
ing validly the third rule of non-oscillatory solutions which is mentioned previously.
In addition, it was also implied by Winterbone’s work [24] that a non-linear scheme,
which consists of a series of variable coefficients, is second-order accurate when the
TVD condition is achieved. Therefore, it creates the necessity for numerical schemes
to be non-linear to prevent the production of local oscillations at discontinuities. Con-
sidering the general form of a non-linear scheme for the linear advection equation:
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wn+1
i = wn

i − Cn
i−1/2∆wn

i−1/2 + Dn
i+1/2∆wn

i+1/2 (A.31)

where the values of coefficients Cn
i−1/2 and Dn

i+1/2 rely respectively on the values of
wn

i−1/2 and wn
i+1/2. As defined in equation (A.28), the total variation at the time level

n + 1 will be

TV (wn+1
i ) =

∑

i

∣∣wn
i+1 − wn

i

∣∣

≤
∑

i

∣∣∣(1 − Cn
i+1/2 − Dn

i+1/2)∆wn
i+1/2

∣∣∣ +
∣∣∣Cn

i−1/2∆wn
i−1/2

∣∣∣ +
∣∣∣Dn

i+3/2∆wn
i+3/2

∣∣∣

(A.32)

where i = 0, 1, 2..., I − 1. If the following conditions for the coefficients can be simulta-
neously guaranteed

Cn
i−1/2 ≥ 0

Dn
i+3/2 ≥ 0

1 − Cn
i+1/2 − Dn

i+1/2 ≥ 0

Cn
−1/2 = Dn

I+1/2 = 0

(A.33)

Then the inequality (A.32) is developed further

TV (wn+1
i ) ≤

∑

i

∣∣∣(1 − Cn
i+1/2 − Dn

i+1/2)∆wn
i+1/2

∣∣∣ +
∣∣∣Cn

i−1/2∆wn
i−1/2

∣∣∣ +
∣∣∣Dn

i+3/2∆wn
i+1/2

∣∣∣

=
∑

i

(1 − Cn
i+1/2 − Dn

i+1/2)
∣∣∣∆wn

i+1/2

∣∣∣ + Cn
i−1/2

∣∣∣∆wn
i−1/2

∣∣∣ + Dn
i+3/2

∣∣∣∆wn
i+3/2

∣∣∣

= (1 − Cn
1/2 − Dn

1/2)
∣∣∣∆wn

1/2

∣∣∣ + Cn
−1/2

∣∣∣∆wn
−1/2

∣∣∣ + Dn
3/2

∣∣∣∆wn
3/2

∣∣∣

+ (1 − Cn
3/2 − Dn

3/2)
∣∣∣∆wn

3/2

∣∣∣ + Cn
1/2

∣∣∣∆wn
1/2

∣∣∣ + Dn
5/2

∣∣∣∆wn
5/2

∣∣∣

+ (1 − Cn
5/2 − Dn

5/2)
∣∣∣∆wn

5/2

∣∣∣ + Cn
3/2

∣∣∣∆wn
3/2

∣∣∣ + Dn
7/2

∣∣∣∆wn
7/2

∣∣∣

· · · · · ·

+ (1 − Cn
I−3/2 − Dn

I−3/2)
∣∣∣∆wn

I−3/2

∣∣∣ + Cn
I−5/2

∣∣∣∆wn
I−5/2

∣∣∣ + Dn
I−1/2

∣∣∣∆wn
I−1/2

∣∣∣

+ (1 − Cn
I−1/2 − Dn

I−1/2)
∣∣∣∆wn

I−1/2

∣∣∣ + Cn
I−3/2

∣∣∣∆wn
I−3/2

∣∣∣ + Dn
I+1/2

∣∣∣∆wn
I+1/2

∣∣∣

=

(
∑

i

∣∣wn
i+1 − wn

i

∣∣
)

− Dn
1/2

∣∣∣∆wn
1/2

∣∣∣ − Cn
I−1/2

∣∣∣∆wn
I−1/2

∣∣∣ ≤
∑

i

∣∣wn
i+1 − wn

i

∣∣ = TV (wn
i )

(A.34)

Therefore, the essential restrictions for achieving total variation diminishing are exactly
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the ones enumerated in (A.33). It must be emphasized that supposing the coefficients
Cn

i−1/2 and Dn
i+1/2 are totally independent from the physical quantity w, the statement

will be reduced to a linear scheme, giving rise to an artificial oscillation again.

The TVD criteria are also capable of determining whether an existing scheme may solve
the numerical problems without oscillation. As a representative example, a test is made
for the two-step Lax-Wendroff scheme. Reshaping the linear advection equations of
the method (A.23) into the form of (A.31) gives

wn+1
i = wn

i − (
1

2
v +

1

2
v2) · ∆wn

i−1/2 + (−
1

2
v +

1

2
v2) · ∆wn

i+1/2 (A.35)

where the restrictions for Ci−1/2 and Di+1/2 embody in:

Ci−1/2 =
1

2
v +

1

2
v2 ≥ 0

Di+1/2 = −
1

2
v +

1

2
v2 ≥ 0

Ci−1/2 + Di+1/2 =
1

2
v +

1

2
v2 −

1

2
v +

1

2
v2 ≤ 1

(A.36)

the solution of which is exclusively

v = 1 (A.37)

which consequently causes the invariability of physical quantity w.

wn+1
i = wn

i (A.38)

In this critical case, although the scheme obviously keeps the iteration from generation
or growth of a local extremum, the convection resulting from the relative motion
of the fluid particles will be restricted to zero in the global flow domain, which is
unfortunately not in accord with the actual case.

In this context, several recent approaches from Chakravarthy and Osher[83], Harten[82],
van Leer[84] and etc., were oriented to reconstruct the scheme of two-step Lax-Wendroff
by means of redefining and non-linearizing its coefficients with respect to the TVD
criteria. Besides that, Toro[79] and LeVeque[85] involved the theory into the system of
non-linear equations, more specifically, the Euler Equations.

2.1. TVD scheme in a single direction

Of a great significance, Sweby [76] has introduced a basic approach of flux limiter to
restraint the magnitude of the anti-diffusive flux term. The complete evolution of the
function for flux limiter was implemented upon the linear advection equation in a
single direction of propagation (c > 0). Reconstructing Lax-Wendroff scheme (A.24) in
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the following expression

wn+1
i = wn

i − v∆wn
i−1/2 −

1

2
v(1 − v)∆−(∆wn

i+1/2) (A.39)

where ∆− symbolizes

∆−(∆wn
i+1/2) = (∆wn

i+1/2 − ∆wn
i−1/2) = (wn

i+1 − wn
i ) − (wn

i − wn
i−1) (A.40)

Sweby [76] pointed out the scheme (A.39) can be thought as a combination of the
first-order upwind scheme for the positive propagation (c > 0)

wn+1
i = wn

i − v∆wn
i−1/2 (A.41)

and the rest term:

−
1

2
v(1 − v)∆−(∆wn

i+1/2) (A.42)

Godunov has proved in his thesis [78] that the first-order upwind scheme (A.41), which
refers equivalently to the first part of the equation (A.39), behaves unconditionally
robustly, no matter what data for w is given. That reveals evidently that the occurrence
of the spurious oscillation will not be the outcome from the first-order upwind scheme,
but only from the term (A.42). This term was designated as an anti-diffusive one since
it acts as a resistance to the diffusion of the quantity w. Apparently, the essential
treatment to prevent the scheme from oscillation is to constraint the contribution of
the anti-diffusive term. A so-called flux limiter φ is designed to fulfill the mission. The
application of the flux limiter is found at

wn+1
i = wn

i − v∆wn
i−1/2 −

1

2
v(1 − v)∆−(φi∆wn

i+1/2) (A.43)

Unlike the coefficient of a linear scheme, the flux limiter φ is a data-dependent function,
which forces the scheme to be non-linear. Moreover, the evaluation of every limiter
φi must be closely associated with the profiles of local solutions. If a continuous
profile is obtained around the cell i∆x, it means the solved data in that surroundings
is smooth enough so that a factitious interfere for limiting the anti-diffusive term will
be less necessary, thus, a close-to-one flux limiter is supposed to be predicted in order
to approach a quasi-second-order-accurate two-step Lax-Wendroff scheme. On the
contrary, if a high-discontinuous data is detected, a close-to-zero flux limiter has to be
employed for approaching a quasi-first-order-accurate upwind-like scheme in order to
yield a non-oscillatory profile by introducing a sufficient dissipation. The prediction of
φi for the data profiles between extreme smoothness and extreme roughness ranges
logically from (0, 1).

Significantly, van Leer suggested that a non-negative flux limiter is supposed to be a
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function of the ratio of consecutive gradients of the data ri.

φi = φ(ri) = φ(
∆n

i−1/2

∆n
i+1/2

) (A.44)

As revealed previously, shrinking the flux limiter will although help stabilize the scheme,
it sacrifices the numerical accuracy in the meanwhile. An optimal approach to evaluat-
ing the limiter function φi is, thereby, to achieve a large limiter as possible, where the
constraint of TVD conditions is valid. Then the full expansion for the equation is:

wn+1
i = wn

i − v∆wn
i−1/2 −

1

2
v(1 − v)(φi∆wn

i+1/2 − φi−1∆wn
i−1/2) (A.45)

The equation (A.45) can be rearranged as a statement agreeing with the first-order
upwind scheme, in order to make up a stable form in terms of the principle of TVD.

wn+1
i = wn

i −

[
v +

1

2
v(1 − v)

φi∆wn
i+1/2 − φi−1∆wn

i−1/2

∆wi−1/2

]
· ∆wn

i−1/2 (A.46)

With respect to the description of ri, the equation (A.46) is reduced to

wn+1
i = wn

i −

[
v +

1

2
v(1 − v)

(
φi

ri
− φi−1

)]
· ∆wn

i−1/2 (A.47)

If expressing the coefficient Cn
i−1/2 as

Cn
i−1/2 = v +

1

2
v(1 − v)

(
φi

ri
− φi−1

)
, (A.48)

the other one Dn
i+1/2 can simply vanish

Dn
i+1/2 = 0 (A.49)

According to the limitation for Cn
i−1/2 and Dn

i+1/2 from (A.33),

0 ≤ v +
1

2
v(1 − v)

(
φi

ri
− φi−1

)
≤ 1 (A.50)

With regard to the CFL condition which states |v| ≤ 1 should be satisfied,

−
2

1 − v
≤

φi

ri
− φi−1 ≤

2

v
(A.51)

Furthermore, a full validity of the inequality can be obtained only if
∣∣∣∣
φi

ri
− φi−1

∣∣∣∣ ≤ 2 (A.52)
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Fig. A.2.: Valid zone of flux limiter indicated by the TVD criterion

since the flux limiter is defined as a non-negative number, separate constraints can be

imposed for estimating
φ(r)

r
and φ(r)

φ(r) ∈ [0, 2],
φ(r)

r
∈ [0, 2] (A.53)

The valid region for evaluating the relationship between the data-dependent parameter
ri and the limiter function φ(r) is shown in figure A.2 and table A.1.

Flux Limiter Function

Davis Limiter
φ < 1

2 , r < 1
2

φ = 1, r ≥ 1
2

Upwind Scheme φ = r

Lax Wendroff Scheme φ = 1

Table A.1.: Mathematical expressions of different flux limiters

2.2. Symmetric TVD scheme

In the previous discussion for evaluating the flux limiters, only the situation for positive
linear advection (c > 0) was taken into account. Obviously, if the propagation speed
remains negative (c < 0), the evolution of the flux limiter function must be reorganized
to adapt to the new upwind direction. Instead of (A.39), the Lax Wendroff scheme in
this circumstance will be then transformed into:

wn+1
i = wn

i − v∆wn
i+1/2 −

1

2
v(1 + v)∆+(∆wn

i−1/2) (A.54)
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where comparably, the first part of the expression, wn+1
i = wn

i − v∆wn
i+1/2 is equivalent

to upwind scheme of negative propagation (c < 0). The symbolic term ∆+(∆wn
i−1/2)

refers to the difference between the local variations of the consecutive cells, formally,

∆+(∆wn
i−1/2) = ∆wn

i−1/2 − ∆wn
i+1/2 (A.55)

Analogically, adding a flux limiter into the scheme to prevent it from any possible
oscillations at discontinuities

wn+1
i = wn

i − v∆wn
i+1/2 −

1

2
v(1 + v)∆+

(
φi(ri)∆wn

i−1/2

)
(A.56)

The flux limiter is conventionally defined as a function of the ratio ri between the
upwind gradient (numerator) and downwind one (denominator) of the solutions.
Thereby, the formulation of ri for the advection equation in a negative propagation
speed must distinguish from the one in a positive propagation speed.

ri =
∆wn

i+1/2

∆wn
i−1/2

(A.57)

Regarding the general form of a non-linear scheme (A.31) and , the two coefficients
Cn

i−1/2 and Dn
i+1/2 will currently represent

Cn
i−1/2 = 0

Dn
i+1/2 = −v −

1

2
v(1 + v)

∆+(∆wn
i−1/2)

∆wn
i+1/2

= −v

{
1 +

1

2
(1 + v)

φi∆wn
i−1/2 − φi+1∆wn

i+1/2

∆wn
i+1/2

}

= −v

{
1 +

1

2
(1 + v)

[
φi

ri
− φi+1

]}

(A.58)

Fortunately, the valid range of φ obtained from the TVD criteria remains the same
as the one in case of c < 0, which is stated in equation (A.53). However, it can be
noticed that some differences have appeared in implementing the TVD scheme on
positive- and negative-traveling-speed advection equations, such as in formulating the
coefficient Cn

i−1/2 and Dn
i+1/2. Therefore, two distinguished statements for TVD scheme

have to be given to cover all the possibilities (c > 0 and c < 0). Undoubtedly, it will
arise the inconveniences of determining the direction of upwind before conducting a
numerical calculation.

In 1987, Davis [86] put forward a symmetric TVD approach Lax-Wendroff scheme as to
remove the necessity for ascertaining the propagating direction. In addition, a term
generating a local artificial dissipation is appended to the Lax-Wendroff scheme in
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order to ensure the nonoccurence of the local spurious oscillations at discontinuities.
The magnitude of the artificial dissipation is yet precisely controlled so that the scheme
will not scarifies too much accuracy for holding the TVD criteria.

Davis suggested the dissipative term should take the forms




G+
i+1/2(r+

i )∆wn
i+1/2 − G+

i−1/2(r+
i−1)∆wn

i−1/2 , c > 0

G−
i+1/2(r−

i+1)∆wn
i+1/2 − G−

i−1/2(r−
i )∆wn

i−1/2, c < 0
(A.59)

The script "+" refers to the appended term for c > 0, while conversely "-" refers to the
one for c < 0. The ratio of consecutive gradients for these two situation is

r+
i =

∆wn
i−1/2

∆wn
i+1/2

, r−
i =

∆wn
i−1/2

∆wn
i+1/2

(A.60)

Adding them respectively into the (A.24) gives

wn+1
i =





wn
i −



v

[
1 +

1

2
(1 − v)

(
1

r+
i

− 1

)]
−




G+
i+1/2

r+
i

− G+
i−1/2






 ∆wn

i−1/2, c > 0

wn
i +



−v

[
1 +

1

2
(1 + v)

(
1

r−
i

− 1

)]
−




G−
i−1/2

r−
i

− G−
i+1/2






 ∆wn

i+1/2, c < 0

(A.61)

Evidently, the coefficients Cn
i−1/2 and Dn

i+1/2 can be indicated from these relationships
above.

c > 0 :





(
Cn

i−1/2

)+
= v

[
1 +

1

2
(1 − v)

(
1

r+
i

− 1

)]
−




G+
i+1/2

r+
i

− G+
i−1/2




(
Dn

i+1/2

)+
= 0

(A.62)

c < 0 :





(
Cn

i−1/2

)−
= 0

(
Dn

i+1/2

)−
= −v

[
1 +

1

2
(1 + v)

(
1

r−
i

− 1

)]
−




G−
i−1/2

r−
i

− G−
i+1/2




(A.63)

Making a comparison between the specified coefficients Cn
i−1/2 and Dn

i+1/2 by the TVD
criteria in (A.48), (A.49) and (A.58) with those from the assumptions of Davis in (A.62)
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and (A.63), the coefficients G+ and G− included in the dissipative terms will denote

c > 0 :





G+
i+1/2(r+

i ) =
v

2
(1 − v)[1 − φ(r+

i )]

G+
i−1/2(r+

i−1) =
v

2
(1 − v)[1 − φ(r+

i−1)]
(A.64)

c < 0 :





G−
i+1/2(r−

i+1) = −
v

2
(1 + v)[1 − φ(r−

i+1)]

G−
i−1/2(r−

i ) = −
v

2
(1 + v)[1 − φ(r−

i )]
(A.65)

These two statements can be patched together into the equation (A.24),

wn+1
i = wn

i −
v

2

(
∆wn

i+1/2 + ∆wn
i−1/2

)
+

v2

2

(
∆wn

i+1/2 − ∆wn
i−1/2

)

+
(
G+

i+1/2(r+
i ) + G−

i+1/2(r−
i+1)

)
∆wn

i+1/2

−
(
G+

i−1/2(r+
i−1) + G−

i−1/2(r−
i )

)
∆wn

i−1/2

(A.66)

if only the G+ terms vanish when propagation speed is negative a < 0, and so do the
G− terms under a > 0.

G+
i+1/2(r+

i ) =





v

2
(1 − v)[1 − φ(r+

i )] c > 0

0 c < 0
(A.67)

G+
i−1/2(r+

i−1) =





v

2
(1 − v)[1 − φ(r+

i−1)] c > 0

0 c < 0
(A.68)

G−
i+1/2(r−

i+1) =





0 c > 0

−
v

2
(1 + v)[1 − φ(r−

i+1)] c < 0
(A.69)

G−
i−1/2(r−

i ) =





0 c > 0

−
v

2
(1 + v)[1 − φ(r−

i )] c < 0
(A.70)

Obviously, the coefficient functions (A.67) and (A.69) are symmetrical about the axis
c = 0, and so are the functions (A.68) and (A.70). Therefore, it is very reasonable to
introduce simply a uniform expression for the G+

i+1/2 and G−
i+1/2 as well as for G+

i−1/2

and G−
i−1/2, so that it will be not required anymore to determinate whether a > 0 or

a < 0 and then select appropriate expressions for G from (A.67) to (A.70). The approach

151



is implemented in [77].

Assuming G±
i+1/2 and G±

i−1/2 have the following forms

G±
i+1/2 =

|v|

2
(1 − |v|)[1 − φ(r±

i )]

G±
i−1/2 =

|v|

2
(1 − |v|)[1 − φ(r±

i+1)]

(A.71)

where some additional restrictions for the flux limiter φ(r±) are required to guarantee
the validity of the transition from (A.67) ∼ (A.70) to (A.71)

{
φ(r−

i ) = 1 for c > 0

φ(r+
i ) = 1 for c < 0

(A.72)

2.3. Application of TVD Scheme on Vectorized H-PDE

The evolution of single-direction or symmetric TVD scheme based on the linear advec-
tion equation can both be applied to the vectorized non-linear hyperbolic equation,
which is stated in (A.11). Removing the source term C(W) from the equation gives:

∂W

∂t
+

∂F(W)

∂x
= 0 (A.73)

Considering the chain rule of partial derivative brings about

∂W

∂t
+

dF(W)

dW
·

∂W

∂x
= 0 (A.74)

If proposing a Jacobian matrix A which represents

A(W) =
dF(W)

dW
(A.75)

then the equation (A.73) becomes

∂W

∂t
+ A

∂W

∂x
= 0 (A.76)

Expanding the vector W in form of second-order-accurate Taylor series gives

W
n+1 = W

n +
∂W

∂t
∆t +

1

2

∂2
W

∂t2
(∆t)2 (A.77)

As shown in the equation above, it is necessary to specify the involved partial derivatives
∂W

∂t
and

∂2
W

∂t2
before evaluating W

n+1. If the matrix A is given as a constant, the
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equation (A.76) implies

∂W

∂t
= −A

∂W

∂x
(A.78)

and

∂2
W

∂t2
=

∂

∂t

(
∂W

∂t

)
=

∂

∂t

(
−A

∂W

∂x

)
= −A

∂

∂x

(
∂W

∂t

)
= A

2 ∂2
W

∂x
(A.79)

Then, the issue is converted into the determination of the derivatives
∂W

∂x
and

∂2
W

∂x2
.

Expanding the W at (n∆t, (i + 1)∆x) and (n∆t, (i − 1)∆x) with regard to Taylor series
gives

W(x + ∆x) = W(x) +
∂W

∂x
∆x +

1

2

∂W
2

∂2x
∆x2 + O(∆x3) · · · · · · (1)

W(x − ∆x) = W(x) −
∂W

∂x
∆x +

1

2

∂W
2

∂2x
∆x2 + O(∆x3) · · · · · · (2)

(A.80)

Omitting the high-order terms of ∆x, then
∂W

∂x
is derived by (1) − (2), while the other

one
∂2

W

∂x2
can be calculated from (1) + (2).

∂W

∂x
=

W(x + ∆x) − W(x − ∆x)

2∆x

∂2
W

∂x2
=

W(x + ∆x) − 2W(x) + W(x − ∆x)

∆x

(A.81)

Substituting these partial derivatives into (A.77) with regard to the evolutions (A.78),
(A.79) and (A.81) gives rise to the vectorized Lax-Wendroff method:

W
n+1
i = W

n
i −

1

2

∆t

∆x
A

(
W

n
i+1 − W

n
i−1

)
+

1

2

(
∆t

∆x

)2

A
2 (

W
n
i+1 − 2W

n
i + W

n
i−1

)
(A.82)

In case the physical quantity W equals a null vector, then in view of (A.13), the flux
term will be forced to be a zero vector as well.

W = [0, 0, 0]T ⇒ F(W) = [0, 0, 0]T (A.83)

On the other hand, since the Jacobin matrix A =
dF

dW
is assumed to be invariable, it

can be inferred from the particular condition (A.83) that the F should be proportional
to the W

F(W) = AW (A.84)
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Replacing this proportional correlation (A.84) into (A.82), the equation can be simpli-
fied to

W
n+1
i = W

n
i −

∆t

∆x
A

{
1

2

[
W

n
i+1 − W

n
i−1

]
−

1

2

∆t

∆x

[
F

n
i+1 − 2F

n
i + F

n
i−1

]}
(A.85)

Applying the Lax-Friedrichs scheme over half-cell intervals on the equation (A.85) gives
(see (A.16) but neglect the source term C),

W
n+1
i = W

n
i −

∆t

∆x
A

(
W

n+1/2
i+1/2 − W

n+1/2
i−1/2

)

= W
n
i −

∆t

∆x

(
F

n+1/2
i+1/2 − F

n+1/2
i−1/2

) (A.86)

Therefore, the equation (A.82) is mathematically in accord with the the Two-Step
Lax-Wendroff scheme described in the previous section, where a constant matrix A

needs to be premised. Based on the vectorization of Lax-Wendroff scheme, Davis
developed a Lax-Wendroff-method-based TVD scheme in a vectorial form. As long as
the square matrix Am×m possesses real eigenvalues and correspondingly a full set of
right eigenvectors, one of which is linearly independent from one another, then there
exists a matrix Pm×m containing all the right eigenvectors of A: λ1, λ2 · · · λm, which
enables the transformation

P
−1

AP = E (A.87)

where E is a diagonal matrix involving all the eigenvalues of the matrix A.

E =




λ1 0 · · · 0

0 λ2
...

...
. . . 0

0 · · · 0 λm




(A.88)

Multiplying the hyperbolic equation (A.78) by the P on the left side:

P
−1 ∂W

∂x
+ P

−1
A

∂W

∂x
= 0

⇒
∂

(
P

−1
W

)

∂x
+ P

−1
AP

∂
(
P

−1
W

)

∂x
= 0

⇒
∂V

∂x
+ E

∂V

∂x
= 0

(A.89)
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where the matrix Vm×m represents

V = P
−1

W (A.90)

Applying the scalar TVD scheme from (A.66) to (A.90) and replacing the variable w,
Courant number v and the coefficients G± respectively with the matrices V, v, G yields

V
n+1
i = V

n
i −

v

2

(
V

n
i+1 − V

n
i−1

)
+

v
2

2

(
V

n
i+1 − 2V

n
i + V

n
i−1

)

+
(
G

+
i+1/2(r+

i ) + G
−
i+1/2(r−

i+1)
)

∆V
n
i+1/2

−
(
G

+
i−1/2(r+

i−1) + G
−
i−1/2(r−

i )
)

∆V
n
i−1/2

(A.91)

where the matrix v denotes

v = E
∆t

∆x
= P

−1
AP

∆t

∆x
(A.92)

With regard to the definition of V, there exists

PV = P(P−1
W) = W (A.93)

Hence, multiply equation (A.91) by P and substitute v with (A.92), gaining the equation
in terms of the original variables.

W
n+1
i = W

n
i −

1

2

∆t

∆x
A

(
W

n
i+1 − W

n
i−1

)
+

1

2

(
∆t

∆x

)2

A
2 (

W
n
i+1 − 2W

n
i + W

n
i−1

)

+P

(
G

+
i+1/2(r+

i ) + G
−
i+1/2(r−

i+1)
)

P
−1∆W

n
i+1/2

−P

(
G

+
i−1/2(r+

i−1) + G
−
i−1/2(r−

i )
)

P
−1∆W

n
i−1/2

(A.94)

Obviously, the first row of equation (A.94) is exactly in accord with the vectorized Lax-
Wendroff scheme in (A.82). The only remaining problem of this scheme is to cope with
the complicated coefficients in the dissipative terms.

P

(
G

+
i+1/2(r+

i ) + G
−
i+1/2(r−

i+1)
)

P
−1 , P

(
G

+
i−1/2(r+

i−1) + G
−
i−1/2(r−

i )
)

P
−1 (A.95)

The calculation of these terms requires the determination of the matrices P and P
−1

as well as the direction of upwind in advance. Davis [77] provided a simplified ap-
proach of this scheme in order to remove these demands. The G

± can be evaluated
approximately as the product of the diagonal matrices Ḡ

± and the unit matrix I:

G
±(r) = Ḡ

±(r)I (A.96)
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then

PG
±(r)P−1 = P

(
Ḡ

±(r)I
)

P
−1 = Ḡ

±(r)
(
PIP

−1
)

= Ḡ
±(r) (A.97)

Hence, the dissipative terms in equation (A.94) are reduced to
(
Ḡ

+
i+1/2(r+

i ) + Ḡ
−
i+1/2(r−

i+1)
)

∆W
n
i+1/2−

(
Ḡ

+
i−1/2(r+

i−1) + Ḡ
−
i−1/2(r−

i )
)

∆W
n
i−1/2 (A.98)

The scalar ratio of consecutive gradients r± is defined as




r+
i =

[∆W
n
i−1/2, ∆W

n
i+1/2]

[∆Wn
i+1/2, ∆Wn

i+1/2]

r−
i =

[∆W
n
i−1/2, ∆W

n
i+1/2]

[∆Wn
i−1/2, ∆Wn

i−1/2]

(A.99)

where the [· · · , · · · ] denotes the usual inner product. To give a more intuitive image of
the expressions for r±, expanding one of them r+

i as an instance:

r+
i =

∆W
n
i−1/2 {1} ∆W

n
i+1/2 {1} + ∆W

n
i−1/2 {2} ∆W

n
i+1/2 {2} + ∆W

n
i−1/2 {3} ∆W

n
i+1/2 {3}

[
∆Wn

i−1/2 {1}
]2

+
[
∆Wn

i−1/2 {2}
]2

+
[
∆Wn

i−1/2 {3}
]2

=
r+

i {1}
[
∆W

n
i−1/2 {1}

]2
+ r+

i {2}
[
∆W

n
i−1/2 {2}

]2
+ r+

i {3}
[
∆W

n
i−1/2 {3}

]2

[
∆Wn

i−1/2 {1}
]2

+
[
∆Wn

i−1/2 {2}
]2

+
[
∆Wn

i−1/2 {3}
]2

(A.100)

where ∆W
+
i {k} refers to the kth element (k = 1, 2, 3) in the ∆W

+
i . Similarly to the

definition of r± for linear advection equations, the parameter r+
i {k} represents

r+
i {k} =

W
n
i−1/2 {k}

Wn
i+1/2 {k}

(A.101)

Thereby, these definitions for r±
i in (A.100) can be explained as the weighted averages of

the ratio r±
i {1}, r±

i {2} and r±
i {3}. In addition, the scalar functions of Ḡ are specified

as

Ḡ
±(r±) =

1

2
C(v)[1 − φ(r±)] (A.102)

where the Courant number v is suggested to be data-dependent

v = max {|λ1| , |λ2| , · · · , |λn|} ·
∆t

∆x
(A.103)
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Davis indicated the non-negative function C(v) can be chosen as follows

C(v) =

{
v(1 − v), v < 0.5

0.25, v ≥ 0.5
(A.104)

Assuming the W is a 1×1 matrix, or more precisely, a scalar, then the issue is downsized
to be one-dimensional. In that case, comparing the equation (A.76) with the linear
advection equation, the main coefficients A, P and E can be scaled as:

A = a, P = P
−1 = 1, E = λ1 = P

−1
AP = A (A.105)

The relationship λ1 = a can be inferred from the evolutions above. Particularly for
v < 0.5, it makes the Ḡ

± takes the same form as G± provided by (A.71). But instead
of a unified modeling for G± in (A.71), this scheme specifies a constant value for C(v)
for v > 0.5 in order to avoid an extraordinarily large Courant number v evaluated by
(A.103). For instance, a extreme case v > 1 will lead to the appearance of a negative
C(v), when keeping on using the expression of C(v) for v < 0.5.

At last, the flux limiter occurred in equation (A.102), which was selected by Davis in
[77], takes the form

φ(r) =

{
min {2r, 1} , r ≥ 0

0, r < 0
(A.106)

Owing to the equivalence of vectorized Lax-Wendroff scheme (A.82) and Two-Step
Lax-Wendroff scheme (A.86), the symmetrical TVD scheme derived from the former
can be simply applied to the latter as well. By attaching the artificial dissipative terms
to the second-step calculation of Two-Step Lax-Wendroff method, a new algorithm
holding the TVD property is obtained.

W
n+1
i = W

n
i −

∆t

∆x

(
F

n+1/2
i+1/2 − F

n+1/2
i−1/2

)

+
(
Ḡ

+
i+1/2(r+

i ) + Ḡ
−
i+1/2(r−

i+1)
)

∆W
n
i+1/2

−
(
Ḡ

+
i−1/2(r+

i−1) + Ḡ
−
i−1/2(r−

i )
)

∆W
n
i−1/2

(A.107)

The spurious oscillations generated by the Lax-Wendroff scheme are caused by nu-
merical dispersion which arises from the presence of third-order derivatives in the
truncation error of the scheme. This dispersion causes high-frequency components
to travel slower than the main component of a waveform. Discontinuities contain
a significant contribution from high-frequency components and these separate out
(disperse) from the main wave as it propagates, thus forming spurious oscillations.
The addition of the term A.98 to the Lax-Wendroff algorithm represents an attempt to
introduce sufficient local nonlinear dissipation to eradicate any oscillations where they
occur. It is clear that the term A.98 is dissipative since it constitutes a second difference
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with positive coefficients; essentially it is a dissipation term based on the theory of
TVD schemes and it does not contain any free parameters

Consequently, TVD schemes for the computation of weak solutions of the nonlinear
problem 2.36 have been developed according to the following guidelines:

• Design a scheme so that its linearized version is L2-stable.

• Add numerical dissipation to damp oscillations and to control "nonlinear insta-
bilities".

Since the addition of numerical dissipation brings about loss of information, the
designer of such numerical schemes finds himself in a position where he has to com-
promise accuracy to achieve stability, or vice versa[87].

3. Stability Analysis of the Numerical Schemes

In the previous sections, the derivation of diverse numerical approaches in the frame-
work of FDM have been discussed. As mentioned at the beginning of this chapter, the
stability of the numerical schemes is subject to the numerical errors, among which
the round-off errors play a dominant role. Generically, a finite difference scheme is
stable only if the round-off errors originated at one time level of the computation will
not lead to the enlargement of them at the following time levels. If they attenuate with
time and finally dissolve, the finite difference scheme is considered as a stable one.
Otherwise, it is deemed to be unstable.

It is possible to check the stability of numerical methods through a simple but effec-
tive tool: von Neumann Stability Analysis (abbr. VNSA). The basic assumptions for
performing this method are as followed[88]:

• The influences of the boundaries are not involved into consideration.

• The coefficients included in the difference equations vary so slowly with space
and time that they can be treated as constants. Hence, the linear equations are
preferable to this method.

To illustrate the procedure intuitively, take the 1D FTCS linear advection equation as
instance

wn+1
i = wn

i −
v

2
(wn

i+1 − wn
i−1) (A.108)

If the exact solutions of the PDE is assumed as ŵ, then the equality is still valid for ŵ.

ŵn+1
i = ŵn

i −
v

2
(ŵn

i+1 − ŵn
i−1) (A.109)

Subtracting (A.109) from (A.108) obtains:

ǫn+1
i = ǫn

i −
v

2
(ǫn

i+1 − ǫn
i−1) (A.110)
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where ǫn
i is defined as the error between the calculated approximation of the number

wn
i and its exact mathematical value ŵn

i .

ǫn+1
i = wn

i − ŵn
i (A.111)

It is suggested that the variation of the error in space can be expanded in a Fouries
series which contains a limited number of terms. The errors in the interval L at the
time level n can be interpreted as the superposition of its components from every grid
point, which is formally expressed as:

ǫn(x) =
M∑

m=1

An
meikmx (A.112)

where M is the total amount of the cells distributed in the interval L and the Am

denotes the amplitude of the error component from the cell m, which is a complex
number. km is named as the wave number referring to

km =
πm

L
(A.113)

The error component from the cell m is specified as

ǫm = An
meikmx (A.114)

Mathematically, if the error ǫn(x) decays in the next time level n + 1, it leads to the
inequality

|ǫn(x)| <
∣∣∣ǫn+1(x)

∣∣∣ (A.115)

hence, according to (A.112) and (A.114)

∣∣∣∣∣

M∑

m=1

ǫm

∣∣∣∣∣ <

∣∣∣∣∣

M∑

m=1

ǫn+1
m

∣∣∣∣∣ (A.116)

Then the sufficient condition for the validity of the inequality is that each error compo-
nent from cell m = 1, 2, 3..., M must be diminished at the following calculation step.

|ǫn
m| <

∣∣∣ǫn+1
m

∣∣∣ ⇔
∣∣∣An

meikmx
∣∣∣ <

∣∣∣An+1
m eikmx

∣∣∣ ⇔ |An
m| <

∣∣∣An+1
m

∣∣∣ (A.117)

or in a brief criterion

|ξm| < 1 (A.118)

where the complex number ξm is called amplification factor indicating the ratio of the
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errors from two successive time levels n, n + 1 at the cell m.

ξm =
An+1

m

An
m

(A.119)

Formulating the error term for the FTCS difference equation (A.110) with equation
(A.114) gives

An+1
m = An

meikmx −
v

2

[
An

meikm(x+∆x) − An
meikm(x−∆x)

]
(A.120)

After rearrangement

ξm = 1 −
v

2

[
eikm(x+∆x) − eikm(x−∆x)

]

= 1 − iv sin(km∆x),
(A.121)

the modulus |ξm| is then

|ξm| =
√

|ξm|2 =
√

ξmξ̄m =
√

1 + v2 sin2(km∆x) ≥ 1 (A.122)

Therefore, the FTCS scheme is proved to be unstable in any condition. By reason of this
property, the scheme will not generate acceptable results so that it is scarcely employed
in the numerical calculation of flow problems.

Such a criterion from von Neumann stability analysis is also applicable for the stability
investigation of other numerical schemes. The amplification factor ξm of the Lax-
Friedrichs scheme is expressed as:

|ξm| =
√

1 − (1 − v2) sin2(km∆x) (A.123)

Obviously, the equation (A.117) can be completely satisfied only if the condition

|v| ≤ 1 (A.124)

is guaranteed. This criterion is called Courant-Friedrichs-Lewy stability condition

(abbr. CFL condition), which is obedient to the constraints imposed by VNSA. From
the angle of mathematics, the CFL condition does not allow the dependence area of
the solution from numerical calculation smaller than the one from physics (see figure
A.3).

From the other viewing point, it ensures the information of physical quantities cannot
be transmitted longer than the interval of a cell ∆x in a single time step ∆t. On the
contrary, when the propagation distance of the physical information in ∆t exceeds the
mesh length ∆x ,

|c| ∆t > ∆x (A.125)
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Fig. A.3.: Stencil of CFL stable and unstable selection of Courant Number v

the stability of the scheme must be damaged since the numerical error ǫ will grow with
time. However, it must be underlined that the CFL condition is only a necessary but
not sufficient criterion for the stability of the numerical schemes. As demonstrated in
the evolution of the amplification factor ξm for the FTCS scheme, even if the Courant
number v is less than the unity, the scheme still remains unstable.

Performing the VNSA on the Leapfrog scheme yields

An+1
m eikmx = An−1

m eikmx − v
[
Ameikm(x+∆x) − Ameikm(x−∆x)

]
(A.126)

If a homogenous amplification of consecutive errors over two time levels is assumed,

An+1
m

An
m

=
An

m

An+1
m

(A.127)

then for any |v| < 1, the value of the amplification factor ξm is

ξm = ±
√

1 − v2 sin2(km∆x) − iv sin(km∆x) (A.128)

and thus,

|ξm| =
√

1 − v2 sin2(km∆x) + (v sin(km∆x))2 = 1 (A.129)

Therefore, since neither the dissipation or the enlargement of the amplitude can be
observed in this case, the Leapfrog scheme can achieve a neutral stability as long as the
CFL condition is satisfied. However, this scheme may suffer from the stability problems
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when the amplification is not equally distributed over the two time level.

Applying VNSA to the Lax-Wendroff scheme obtains

ξm = 1 − v2(1 − cos(km∆x)) − iv sin(km∆x) (A.130)

so that the modulus of the amplification factor is

|ξm| =
√

1 − v2(1 − v2) sin2(km∆x) (A.131)

From the expression it is inferred that the valid zone of Courant number for the stability
of scheme is |v| ≤ 1 as well.

With respect to the general expression of TVD schemes in (A.31), the error equation
will take the form as

ǫn+1
m = (1 − C − D)ǫn

m + Cǫn
m+1 + Dǫn

m−1 (A.132)

where the coefficients C and D must satisfy




0 ≤C ≤ 1

0 ≤D ≤ 1

0 ≤ C + D ≤ 1

(A.133)

as to hold the TVD properties permanently. The amplification factor ξm of the scheme
will be then:

ξm = (1 − C − D) + Ce−ikm∆x + Deikm∆x (A.134)

According to constraints in equation (A.133), the squared modulus of ξm will be

|ξm|2 ≤ |1 − C − D|2 + |C|2 + |D|2

≤ (1 − C − D) + C + D = 1
(A.135)

thus proving the numerical stability of any TVD schemes.
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APPENDIX B

BOUNDARY CONDITIONS

1. Standard Boundary Conditions

0.5

1

1.5

2

A
i

Standard Boundary Conditions

0 0.5 1 1.5 2
−1

0

1

2

λin

U
i

Fig. B.1.: Nondimensional sound of speed and fluid velocity for closed and open ends
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Standard Boundary Conditions

Closed Tube Open Tube

Flow Entering Flow Leaving

Sonic Subsonic Sonic Subsonic
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(
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2γ
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√
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3−γ
2

√

2

γ+1
<

λin < 1

An+1

i =
2λin

2
γ−1

√

4[ 2
γ−1 (1−λ2

in)+1]
2(1+ 2

γ−1 )

Un+1

i = γ−1

2

(

λin −An+1

i

)

pn+1

i = pextA
n+1

i

CIR

Space

Time

n+1

n

i-1 i
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L
δxL

Ext

C0

δxs

δxL, δxS , a
n
L, u

n
L, ps, ρs, λ

n
L

λin >
γ+1

2

an+1

i = un+1

i = 2

γ+1
λn
L

CIR

Space

Time

n+1

n

i-1 i

C+

L
δxL

Ext

C0

δxs

λn
L =⇒ λin

1 <

λin <
γ+1

2

un+1

i = 2

γ−1
(λin − 1)

ρn+1

i = ρext
pn+1

i = pext

Isentropic Flow Hypothesis :

• No friction
• No heat transfer
• External and internal gases have the same entropy

Isentropic Flow Hypothesis :

• No friction
• No heat transfer

No dep. on external gases=⇒
Isentropic hyp. is respected=⇒
No need to any detection or

entropy correction

Fig. B.2.: Standard boundary conditions Treatement algorithm

2. Partially Open Boundary

The way in which waves are transmitted by, or reflected from, a partially open boundary
is a function of the area ratio of the hole to the pipe: the nozzle area ratio is denoted by

φ =
Ft

F
(B.1)

The main parameters defining flow through a partially open end to a reservoir are
shown in the Fig. B.3, both on a physical and a speed of sound-entropy (a − s) diagram.
The flow can be either sonic or subsonic, and in the latter case the pressure pb (no
allowance is made for the pressure recovery). The effective area ratio of the nozzle
should be used and account must be taken of the coefficient of discharge, Cd, when
evaluating φ.

The continuity and energy equations can be applied to the nozzle arrangement and a
relationship between the non-dimensional speed of sound A and the non-dimensional
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particle velocity in the pipe, U , and the area ratio, φ, is derived: the derivation is base
on Benson. For non-homentropic flow, the non-dimensional parameters are defined
as

A =
a

aref
, U =

u

aref
, At =

at

aref
, φ =

Ft

F
, Ut =

ut

aref
(B.2)

where the suffix t refers to the throat. However aref need no longer be on the same
isentrope as the general speed of sound, a, and the reference is not necessarily pt, the
throat pressure for subsonic flwo. The entropy diagrams for the subsonic and sonic
flow are shown in Fig. B.3.

The basic conservation equations for the flow through the nozzle are :
energy

a2
0 = a2 +

γ − 1

2
u2 = a2

t +
γ − 1

2
u2

t (B.3)

continuity

ρuF = ρtutFt (B.4)

isentropic flow

ρ

ρt
= (

a

at
)

2
γ−1 = (

A

At
)

2
γ−1 (B.5)

Space

Time

n+1

n

i-1 i

C+

L
δxL

ExtT

Fig. B.3.: The sudden area change with CIR
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Fig. B.4.: Boundary charts for flow trough a partially open end

Dividing equation B.3 by aref gives the following non-dimensional energy equation:

A2
0 = A2 +

γ − 1

2
U2 = A2

t +
γ − 1

2
U2

t (B.6)

and combining equations B.4, B.5, and B.6 gives, after rearrangement,

(
U

At
)2 =

2
γ−1(( A

At
)2 − 1)

( 1
φ2 ( A

At
)

4
γ−1 − 1)

(B.7)

From this equation it is possible to evaluate the non-dimensional particle velocity
based on the instantaneous speed of sound and the nozzle area ratio. To use this
information in a computer program it is better to relate λin and λout, and this can be
achieved by manipulating the equation defining the boundary. The development of
these equations may be referred to in Benson [26].
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Momentum Based Boundary Conditions
Also known asSudden Area Change
SEE ALSO BENSON section 3.5

Flow Entering Flow Leaving

Sonic Subsonic Sonic:6theq is ut = at Subsonic:6theq is pt = pext

Set φ and φchoc with 1 ≤ φchoc ≤ φ
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√
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√
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(
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We keep only the negative solution
Then calculate Ai as mentionned above
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Sub
Sonic

Leaving Flow :

• Riemann Invariant(CIR)
• Insentropy along C0

• Mass conservation from i → t
• Energy conservation from i → t
• Isentropy from i → t

This leaves us with 6unknowns

6theq depends on flow nature

Fig. B.5.: An example of BC Solution
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APPENDIX C

THE METHOD OF TRANSFER FUNCTION

Following an electrical analogy between voltage-speed of sound, and current-fluid
velocity, Cipollone and Pinamonti [5] developed a new formulation for the solution of
the 1-D advected wave equation in the Laplace Domain and is known as the Method of
Transfer Function(MTF).

The combination of the mass and momentum equations gives.

∂2a(x,t)
∂t2 + 2u(x, t)∂2a(x,t)

∂x∂t +
[
u2(x, t) − a2(x, t))

] ∂2a(x,t)
∂2x2 = 0

∂2u(x,t)
∂t2 + 2u(x, t)∂2u(x,t)

∂x∂t +
[
u2(x, t) − a2(x, t))

] ∂2u(x,t)
∂2x2 = 0

(C.1)

Equation C.1 solely is applied if source terms are neglected. This can be overcome
through the introduction of a third state variable (entropy) which introduces a correc-
tion for the estimated progressive and regressive speed of sound taking into account
friction and heat transfer effects.

Solving and linearizing for the progressive and regressive speed of sound a± in the
Laplace Domain gives the following solution:

a±(x, s) = a±(x, s)e− s∆x

c± + ∆a±
s + ∆a±

Ω (C.2)

Where ∆a±
s and ∆a±

Ω represent the correction for a non-homentropic flow and area
variation respectively. The entropy was taken as the summation of the transported
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entropy and produced one and is calculated as follows:

S(x, s) =S(s ± ∆x, s)e
−s ∆x

u0

+
γR

a2
0

(q0 + u0F0)
1

s

(
1 − e

−s ∆x
u0

) (C.3)

To overcome the time delay operators which depend on the local value of the speed of
sound and fluid velocity, a fixed step solution can be obtained through linear interpo-
lations of adjacent nodes based on the zone of influence as shown in fig. C.1.

i-2 ii-1 i+1 i+2x

t

(a) Zone of influence

i-2 ii-1 i+1 i+2x

t

(b) Zone of influence 2

Fig. C.1.: Zone of influence of the method of transfer function

If the point (i, n + 1) lies within the zone of influence of the adjacent nodes (i − 1, n)
and (i + 1, n) (fig. C.1a), then:

a+|n+1
i = K+|ni · a+|ni + K+|ni−1 · a+|ni−1 (C.4)

a−|n+1
i = K−|ni · a−|ni + K−|ni+1 · a|ni+1 (C.5)

If the point (i, n + 1) lies outside the zone of influence of the adjacent nodes (n, i ± ∆x),
the second adjacent nodes are to be used (fig. C.1b), and eqs. (C.4) and (C.5) become:

a+|n+1
i = K+|ni−1 · a+|ni−1 + K+|ni−2 · a+|ni−2 (C.6)

a−|n+1
i = K−|ni+1 · a−|ni+1 + K−|ni+2 · a|ni+2 (C.7)

This will improve the range of validity but will not reduce the computational time,
as numerical speed will have to satisfy the strictest CFL condition and will remain
unchanged over simulation time.
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The correction terms in eq. (C.2) can then be calculated as:

∆a±
s = [S(x, t) − S(x, t − ∆t)] ·

(
−

aB

4cv

)

+
S(x, t) − S(x ± ∆x, t)

∆x
·

(
±

a2
B

4cv
−

aB · uB

4cv

)
∆t

∓
γ − 1

4
F∆t

(C.8)

∆a±
Ω = −aBuB

γ − 1

4

1

Ωm

ΩA − ΩB

∆x
∆t (C.9)

It will be observed in the results and experimental validation section, that neglecting
the energy conservation will result in a error in the calculated temperature, which will
affect the wave transport.
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NOMENCLATURE

Abbreviations

1,2,3D One,Two,Three Dimensional Models

1D One Dimensional

A/F Air-to-Fuel ratio

CE-SE Conservation Element-Solution Element

CFD Computational Fluid Dynamics

CO Carbon Monoxide

DOC HydroCarbon

DPF Diesel Particulate Filter

ECU Electronic Control Unit

EGR Exhaust Gas Recirculation

FCT Flux-Corrected Transport

FEM Finite Element Method

H-PDEs Hyperbolic Partial Differential Equations

HC Hydrocarbon

ICCT International Council on Clean Transportation

ICE Internal Combustion Engine
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IDI Combustion Indirect Combustion

LDVs Light-Duty Vehicles

MOC Method of characteristics

MV Mean Value

MVEM Mean Value Engine Model

NEDC New European Driving Cycle

NO2 Nitrogen Oxide

OBD On Board Diagnostics

ODE Ordinary Differential Equation

OEM Original Equipment Manufacturer

PDE Partial Differential Equation

QPM Quasi Propagatory Model

RDE Real Driving Emission

SCR Selective Catalytic Reduction

TA Type Approval

TVD Total Variation Diminishing

TWC Three Way Catalyst

VVT Variable Valve Timing

WLTC Worldwide harmonized Light vehicles Test Cycle

Greek Symbols

α Heat transfer coefficient W/m2 K

β Riemann Invariant -

β2 Geometrical blade angle deg

∆ Variation -

η Efficiency -

γ Heat capacity ratio -

λ Riemann Invariant -
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φ Dimensionless flow rate -

Π Compressor pressure ratio -

ψ Dimensionless head parameter -

ρ Density kg/m3

σ Tuning parameter -

τ Torque Nm

τw Shear stress Pa

τij Viscous stress component perpendicular to i-axis, and parallel to j-axis Pa

Mathematical Symbols

ṁ Mass flow rate kg/s

Ẇc Compressor power W

Πcrit Critical pressure ratio

A Tuning parameter -

a Local speed of sounds m/s

ai Tuning parameter -

AP ipe Pipe cross section m2

B Tuning parameter -

bi Tuning parameter -

C Tuning parameter -

cp Heat capacity at constant pressure J/kg K

cv Heat capacity at constant speed

Cst Constant kg/s

D Pipe diameter m

e specific internal energy J/Kg K

f Friction coefficient -

h specific enthalpy J/Kg K

k Tuning parameter -
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N Rotational speed RPM

p Pressure bar

r Radius m

Rspec Specific gas constant JKg-K-

ReL Reynolds number -

s Entropy J/kg K

Srot Outflow cross section m2

T Temperature K

u Particle velocity m/s

u Tangential speed m/s

u fluid speed m/s

V Volume m3

Vr2 Radial flow velocity m/s

W Work J

xf Tuning parameter -

MFR Mass Flow Rate g/s

Subscripts

01 Total conditions at compressor entry

02 Total condition at compressor exit

1 Stagnation conditions at compressor entry

2 Stagnation condition at compressor exit

Cyl Cylinder

d0 Initial condition downstream

em Exhaust manifold

f Work/parameter related to friction

HL Heat Losses

I Incidence
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im Intake manifold

OL Overall losses

out Compressor output

ref Reference Value

u0 Initial condition upstream

a Air

c Compressor

c,corr Compressor, Corrected value

Superscripts

∗ At minimum incidence losses

+ Progressive wave

− Regressive wave
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Farouq Meddahi 

 
Contribution à la Modélisation Temps-Réel de la Chaîne d’Air 

dédiée à l’Estimation du Remplissage 
L'impact de la dynamique des gaz sur la chaine d’air s'est imposé fortement en raison du contenu de la 
dynamique dans les nouveaux cycles de test automobile tels que le WLTC. Cela rend les modèles 0D 

actuels moins fiables car ils reposent sur plusieurs positions sur les cartographies mesurées sur des points 
de fonctionnements stationnaires. En outre, les phénomènes d'onde et les effets inertiels des gaz sont 
intrinsèquement négligés.  

Une méthodologie pour reproduire efficacement les effets d'ondes le long des conduites de moteurs à 
combustion interne a été présentée dans ce travail. L'idée est basée sur la combinaison des modèles à 
paramètres concentrés et les modèles quasi-unidimensionnels. Cette combinaison donne la possibilité de 

prendre les effets d'inertie de la dynamique des gaz tout en évitant le coût lourd de calcul de l'approche de 
modélisation 1D. 

La première partie s'est intéressée aux schémas numériques à une dimension, dans le but de les évaluer 

par rapport aux temps de calcul, d’exactitude et de définir une bonne référence pour davantage validations 
numériques pour les modèles réduits. Le modèle « quasi-Propagatory » était le meilleur candidat pour 
modéliser les ondes avec moins de puissance de calcul.  

Pour  avoir une propre estimation de la pression de suralimentation, on s'est intéressé plus particulièrement 
au compresseur. Un modèle physique a été présenté on se basant sur les travaux de Martin et al. [55]. 
Finalement, les développements sont validés expérimentalement sur tous les points de fonctionnement du 

moteur. 

Mots clés : Moteur, Simulation et Modélisation, Turbocompresseur 

Contribution to Real-Time Air System Modeling Dedicated to 
Trapped Mass Estimation 

 

Gas dynamics impact on air system dynamics and   hence on combustion products , i.e.  emissions, has 
imposed itself strongly due to the dynamics content in new test drive cycles  such as the WLTC. This makes 
current real-time 0D models less reliable as they rely on stationary measured look up tables. In addition, 

wave phenomena and gas inertial effects are inherently neglected. This makes the estimation of the flow into 
and from the cylinder inaccurate. 

A methodology to efficiently reproduce wave effects along the internal combustion engine ducts was 

presented in this work. The idea relies on combining both lumped parameter and quasi-one-dimensional 
models. This combination gives the possibility to take inertial effects of gas dynamics while avoiding the 
heavy computational cost of the 1D modeling approach.  

The first part investigated one-dimensional numerical schemes, with the aim of evaluating them with respect 
to real-time applications and defining a good reference for further numerical validations for the low order 
models. The Quasi-Propagatory model was the best candidate to model waves with less computational 

power.  

To have a proper boost pressure estimation, more focus was on the compressor. A physics based model 
was presented based on [55]. Results have also shown a better interpretation and extrapolation ability.  

Finally, the developments have been validated experimentally using the complete engine operation map.  

Keywords: Engine, Simulation and Modeling, Turbocharger. 
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