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“Simplicity is a great virtue but it requires hard work to achieve it and education to

appreciate it. And to make matters worse: complexity sells better.”

Edsger W. Dijkstra
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Ecole Normale Supérieure de Lyon

Abstract
Laboratoire de l’Informatique du Parallélisme

Institut Rhônalpin des Systèmes Complexes

Doctor of Philosophy

Tools for Understanding

the Dynamics of Social Networks

by Matteo MORINI

This thesis provides the reader with a compendium of applications of net-

work theory; tailor-made tools suited for the purpose have been devised and

implemented in a data-driven fashion.

In the first part, a novel centrality metric, aptly named “bridgeness”, is

presented, based on a decomposition of the standard betweenness centrality.

One component, local connectivity, roughly corresponding to the degree of

a node, is set apart from the other, which evaluates longer-range structural

properties. Indeed, the latter provides a measure of the relevance of each

node in “bridging” weakly connected parts of a network; a prominent fea-

ture of the metric is its agnosticism with regard to the eventual ground truth

community structure.

A second application is aimed at describing dynamic features of tempo-

ral graphs which are apparent at the mesoscopic level. The dataset of choice

includes 40 years of selected scientific publications. The appearance and evo-

lution in time of a specific field of study (“wavelets”) is captured, discrimi-

nating persistent features from transient artifacts, which result from the in-

trinsically noisy community detection process, independently performed on

http://www.ens-lyon.fr
http://www.ens-lyon.fr/LIP/
http://www.ixxi.fr
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successive static snapshots. The concept of “laminar stream”, on which the

“complexity score” we seek to optimize is based, is introduced. In a sim-

ilar vein, a network of Japanese investors has been constructed, based on

a dataset which includes (indirect) information on co-owned overseas sub-

sidiaries. A hotly debated issue in the field of industrial economics, the

Miwa-Ramseyer hypothesis, has been conclusively shown to be false, at least

in its weak form.
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Résumé en français

Cette thèse fournit au lecteur un recueil d’applications de la théorie des

graphes ; à ce but, des outils sur mesure, adaptés aux applications consid-

erées, ont été conçus et mis en œuvre de manière inspirée par les données.

Dans la première partie, une nouvelle métrique de centralité, nommée

“bridgeness”, est présentée, basée sur une décomposition de la centralité in-

termédiaire (“betweenness centrality”) standard. Une composante, la “con-

nectivité locale”, correspondante approximativement au degré d’un noeud,

est différenciée de l’autre, qui, en revanche, évalue les propriétés structurelles

à longue distance. En effet, cette dernière fournit une mesure de l’efficacité

de chaque noeud à “rélayer” parties faiblement connectées d’un réseau ; une

caractéristique importante de cette métrique est son agnosticisme en ce qui

concerne la structure de la communauté sous jacente éventuelle.

Une deuxième application vise à décrire les caractéristiques dynamiques

des graphes temporels qui apparaissent au niveau mésoscopique. L’ensemble

de données de choix comprend 40 ans de publications scientifiques sélection-

nées. L’apparition et l’évolution dans le temps d’un domaine d’étude spéci-

fique (les ondelettes) sont capturées, en discriminant les caractéristiques per-

sistantes des artefacts transitoires résultants du processus de détection des

communautés, intrinsèquement bruité, effectué indépendemment sur des in-

stantanées statiques successives. La notion de “flux laminaire”, sur laquelle

repose le “score de complexité” que nous cherchons à optimiser, est présen-

tée.

Dans le même ordre d’idées, un réseau d’investisseurs japonais a été con-

struit, sur la base d’un ensemble de données qui comprend des informations

(indirectes) sur les filiales étrangères en copropriété. Une question très dé-

battue dans le domaine de l’économie industrielle, l’hypothèse de Miwa-

Ramseyer, a été démontrée de manière concluante comme fausse, du moins

sous sa forme forte.
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1

Introduction

The unifying thread of this thesis is the approach taken towards a few, seem-

ingly unrelated, problems. On the one hand, data is what drives this research;

on the other hand, the tool of choice to gain insight of such input is network

analysis.

The fil rouge of this work is the elusive concept of communities, which

appears in different incarnations throughout the thesis, tailored to suit the

peculiarities of the specific problems we tackled.

Advances in this sense are presented for both the graph theoretical and

applied empirical approaches, often in a combined fashion.

It may be worth spending a few words on the “behind the scenes” events

which happened all along the study process, normally invisible in the final

draft of a piece of research. False starts and mishaps are sometimes an object

of interest per se, providing a different perspective and shedding a different

light on the final, polished results.

Our first angle of attack with respect to the “communities issue” has been

devising a robust centrality metric capable to capture the concept of “bridg-

ing”, initially for nodes, and conveniently extended to edges. This process

went through several incremental steps. Building upon the standard be-

tweenness centrality (BC) was a matter of common sense, both for its wide

diffusion, its well-known properties and the existence of a fast algorithm,

capable to scale up to sizeable networks, the kind used in real-world social

applications, and going beyond small toy models. The need to untangle the
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local and the global components of any given centrality metric was immedi-

ately obvious, but before taking its final form, a series of experiments were

carried on with a slightly different - and intuitively promising - definition. In

particular, the shortest paths (σ) computed, per the definition ofBC, between

any two nodes, were originally differentiated between long- and short-range,

according to a tunable parameter whose value could be sensibly adjusted to

any integer value Pl ≥ 3. According to this intuition, later discarded, only σ

at least Pl long were to be included in the sum at the numerator of the stan-

dard BC(j) =
∑

i 6=j 6=k
σik(j)
σik

formula, where every shortest path σ going from

node i to k through j is taken into account, regardless of its length.

This alternate implementation (MSP, Minimum Shortest Path) can be tested

against the published one (EXN, EXcluding Neighbors) in the Gephi plugin

published at: https://github.com/mmorini/gephi-plugins. Simi-

lar results were attained, although at the cost of additional complexity: the

“minimum Pl length” being an unwanted degree of freedom, it needs to be

tuned ad-hoc according to the characteristics of the graph considered; what’s

more, a fast algorithm à la Brandes (2001) was not easy to implement.

This concept of weak, albeit relevant bridging links, providing a network

with connectivity, was instrumental to the development of the subsequent

part, centered on the concept of communities of investors involved in a com-

mon, although indirect and sometimes convoluted, business. This has been

long debated in the Japanese industrial economics literature, and the techni-

cal term used in the specialists’ lingo is “keiretsu”. Loosely speaking, it refers

to a group of business partners sharing a common interest.

A brief historical digression is on order: such organizations of investors

were deemed to exert their control in the style of a family-owned cartel, lead-

ing, beyond a certain degree, to quasi-monopolistic or monopolistic closed

markets. Such concentration of power had been common in pre-WWII Japan;

however, after 1945, the occupying forces approached this as a problem, and

https://github.com/mmorini/gephi-plugins
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attempted to disband those financial cliques.

Our a priori intuition, in the original approach, was that historical busi-

ness partners were able to re-enact and disguise their pre-existing ties, even

after their ex lege dissolution, by means of indirect and circuitous links, pos-

sibly through small intermediaries.

Intriguingly, despite years of controversy, the persistence of keiretsu orga-

nizations has been hard to prove or disprove, even by resorting to advanced

econometric tools. On the other hand, through the graph-theoretical lens,

a novelty in this specific field, we brought into light evidence on this phe-

nomenon, which turned out not to be so subtle.

In this work, both unweighted and weighted networks built according to

the economic ties existing between investors exhibit a well laid out structure;

the visual intuition is amply confirmed by large modularity values. Looking

for proof of clusterization within same-keiretsu members proved to be an al-

most effortless task: statistically significant evidence has been systematically

found both in the expected geographical areas and manufacturing sectors.

As a third and concluding attempt, we looked again at the concept of com-

munities, but this time with an additional dimension included: the stress, in

this case, goes beyond static graphs, and is more focused on the temporal

dimension. In this context, we succesfully managed to uncover a consistent

description of the communities evolution through time, an intrinsically noisy

process and, therefore, rather hard to deal with.

More specifically, a dynamic stream of events, the appearance and accu-

mulation of paper citations, is examined, and presented in a readily intelligi-

ble form, given the appropriate scale.

The mesoscopic level mentioned is suggestive of the underlying idea:

data are lumped together in consecutive temporal subsets (“time slices”), se-

curing an idea of temporal continuity, yet preserving enough instantaneous

information as to render local disaggregation feasible. In other words, static
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snapshots of the system of interest are sampled out of the dataset; in this case,

networks of journal papers linked by a co-citation measure (bibliographic

coupling), which are split into homogeneous communities including similar

research.

Detecting communities “locally” in the temporal sense, however, requires

corrective measures in order to guarantee continuity. To make for this draw-

back, information from adjacent snapshots is taken into account and used to

smooth out spurious transients.

Coming to the very structure of this thesis, in Chapter 1, we introduced

yet another one into the already sizeable group of established centrality mea-

sures.

Despite the apparent redundancy, the added value of our contribution

lies, however, in the successful effort to quantify the elusive but pivotal con-

cept of “bridging”, i.e. the effectiveness of a node in operating as a link (in

the Granovetterian sense, a weak link) between homogeneous and densely

connected and distinct regions of a network. In its ultimate, parsimonious

incarnation, its effectiveness has been amply put to the test, both on syn-

thetic networks expressly conceived to thwart it, and graphs obtained from

real-world data; in particular, commercial flights and scientific publications.

As aforementioned, Chapter 2 consists of a novel application of existing,

consolidated, yet - within the research domain in case - mostly neglected

techniques, to a data panel of Japanese business entities. The main purpose,

in this case, is to demonstrate how new insights, brought in from a seemingly

tangential discipline, can be offered with the purpose of advancing a dispute

which has been stalling over a several decades time frame.

Indirect business ties between shareholders are put to evidence by recon-

structing a network of co-investments, and by detecting existing akin com-

munities through standard modularity optimization. This provides the re-

search with an economically sound argument to argue for the existence of
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multiple centers of interest, built around investors co-owning subsidiaries.

Finally, the closing chapter, Chapter 3, approaches the problem of describ-

ing, at the appropriate mesoscopic observational level, dynamic networks,

going beyond both time-agnostic community detection methods.

A set of co-citing articles within an aptly chosen research domain, wavelets,

has been employed as the benchmark for testing the methodology proposed.

An independent, inevitably noisy, detection process is put into place for

successive time spans; transient noise is detected, accounted for and can-

celled by means of a backward- and forward-looking algorithm capable to

spot “continuous structural streams”.

The result is a clean, robust representation of the communities (in this

case, research disciplines) evolving along the data time span.

As concluding remarks, what emerges from this heterogeneous body of

work is that the concept itself of community is inherently prone to the appli-

cation and the scope of the specific case under scrutiny.

Therefore, the quest for a “silver bullet” solution, in our opinion, might be

viewed as reductive; on the other hand, the power of network analysis lies in

its very flexibility, that allowed us to tailor different tools for different situa-

tions, and which has been instrumental in shaping the undisputable success

of network sciences over the last decades.
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Chapter 1

Detecting global bridges in

networks

1.1 Introduction

Although the history of graphs as scientific objects begins with Euler’s (Eu-

ler, 1736) famous walk across Königsberg bridges, the notion of ’bridge’ has

rarely been tackled by network theorists1. Among the few articles that took

bridges seriously, the most famous is probably Mark Granovetter’s 1973 pa-

per on The Strength of Weak Ties. Despite the huge influence of this paper,

few works have remarked that its most original insights concern precisely

the notion of ’bridge’ in social networks. Granovetter suggested that there

might be a fundamental functional difference between strong and weak ties.

While strong ties promote homogeneous and isolated communities, weak

ties foster heterogeneity and crossbreeding. Or, to use the old tönnesian

cliché, strong ties generate Gemeinshaft, while weak ties generates Gesell-

shaft (Coser, 1975). Although Granovetter does realize that bridging is the

phenomenon he is looking after, two major difficulties prevented him from

a direct operationalization of such concept: “We have had neither the the-

ory nor the measurement and sampling techniques to move sociometry from

1We refer to the common use of the word ’bridge’, and not to the technical meaning in
graph theory as ’an edge whose deletion increases its number of connected components’.
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the usual small-group level to that of larger structures” (Id., p. 1360). Let’s

start from “the measurement and sampling techniques”. In order to com-

pute the bridging force of a given node or link, one needs to be able to draw

a sufficiently comprehensive graph of the system under investigation. Net-

works constructed with traditional ego-centered and sampling techniques

are too biased to compute bridging forces. Exhaustive graphs of small social

groups will not work either, since such groups are, by definition, dominated

by bounding relations. Since the essence of bridges is to connect individuals

across distant social regions, they can only be computed in large and com-

plete social graphs. Hopeless until a few years ago, such endeavor seems

more and more reasonable as digital media spread through society. Thanks

to digital traceability it is now possible to draw large and even huge social

networks (Vespignani, 2009; Lazer et al., 2009; Venturini and Latour, 2010).

Let’s discuss now the second point, the “theory” needed to measure the

bridging force of different edges or nodes2. Being able to identify bounding

and bridging nodes has a clear interest for any type of network. In social

networks, bounding and bridging measures (or ”closure” and “brokerage”,

as per Burt, 2005) tell us which nodes build social territories and which al-

low items (ideas, pieces of information, opinions, money...) to travel through

them. In scientometrics’ networks, these notions tell us which authors define

disciplines and paradigms and which breed interdisciplinarity. In ecological

networks, they identify relations, which create specific ecological communi-

ties and the ones connecting them to larger habitats.

In all these contexts, it is the very same question that we wish to ask: do

nodes or edges reinforce the density of a cluster of nodes (bounding) or do

they connect two separated clusters (bridging)? Formulated in this way, the

bridging/bounding question seems easy to answer. After having identified

2In this chapter, we will focus on defining the bridgeness of nodes, but our definition can
straightforwardly be extended to edges, just as the betweenness of edges is derived from
that of nodes.
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the clusters of a network, one should simply observe if a node connects nodes

of the same cluster (bounding) or of different clusters (bridging). However,

the intra-cluster/inter-cluster approach is both too dependent on the method

used to detect communities and flawed by its inherent circular logic: it uses

clustering to define bridging and bounding ties when it is precisely the bal-

ance of bridges and bounds that determines clusters. Remark that, far from

being a mathematical subtlety, this question is a key problem in social the-

ory. Defining internal (Gemeinschaft) and external (Gesellschaft) relations by

presupposing the existence and the composition of social groups is absurd as

groups are themselves defined by social relations.

In this chapter, we introduce a measure of bridgeness of nodes that is in-

dependent on the community structure and thus escapes this vicious circle,

contrary to other proposals (Nepusz et al., 2008; Cheng et al., 2010). More-

over, since the computation of bridgeness is straightforwardly related to that

of the usual betweenness, Brandes’ algorithm (Brandes, 2001) can be used to

compute it efficiently3. To demonstrate the power of our method and iden-

tify nodes acting as local or global bridges, we apply it on a synthetic network

and two real ones: the world airport network and a scientometric network.

1.2 Measuring bridgeness

Identifying important nodes in a network structure is crucial for the under-

standing of the associated real-world system (Bonacich, 1987; Borgatti, 2005;

Estrada and Rodriguez-Velazquez, 2005), for a review see Newman (2010).

The most common measure of centrality of a node for network connections

on a global scale is betweenness centrality (BC), which “measures the extent

3A plug-in for Gephi (Bastian, Heymann, and Jacomy, 2009) that computes this measure
on large graphs has been developed. See Appendix A for a pseudo-algorithm useful for both
node and edge bridgeness.
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to which a vertex lies on paths between other vertices” (Freeman, 1977; Free-

man, 1979). We show in the following that, when trying to identify specif-

ically global bridges, BC has some limitations as it assigns the same impor-

tance to paths between the immediate neighbours of a node as to paths be-

tween further nodes in the network. In other words BC is built to capture the

overall centrality of a node, and is not specific enough to distinguish between

two types of centralities: local (center of a community) and global (bridge

between communities). Instead, our measure of bridging is more specific, as

it gives a higher score to global bridges. The fact that BC may attribute a

higher score to local centers than to global bridges is easy to see in a simple

network (Figure 1.1). The logics is that a “star” node with degree k, i.e. a node

without links between all its first neighbors (clustering coefficient 0) receives

automatically a BC = k(k − 1)/2 arising from paths of length 2 connecting

the node’s first neighbors and crossing the central node. More generally, if

there exist nodes with high degree but connected only locally (to nodes of

the same community), their betweenness may be of the order of that mea-

sured for more globally connected nodes. Consistent with this observation,

it is well-known that for many networks, BC is highly correlated with de-

gree (Nakao, 1990; Goh et al., 2003; Newman, 2005). A recent scientometrics

study tried to use betweenness centrality as “an indicator of the interdisci-

plinarity of journals” but noted that this idea only worked “in local citation

environments and after normalization because otherwise the influence of de-

gree centrality dominated the betweenness centrality measure (Leydesdorff,

2007).

To avoid this problem and specifically spot out global centers, we decom-

pose BC into a local and a global term, the latter being called ’bridgeness’

centrality. Since we want to distinguish global bridges from local ones, the

simplest approach is to discard shortest paths, which either start or end at

a node’s first neighbors from the summation to compute BC (Eq. 1.1). This
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FIGURE 1.1: The figures show the betweenness (a) and bridge-
ness (b) scores for a simple graph. Betweenness does not dis-
tinguish centers from bridges, as it attributes a slightly higher
score (Figure a, scores = 27) to high-degree nodes, which are lo-
cal centers, than to the global bridge (Figure a, score = 25). In
contrast, bridgeness rightly spots out the node (Figure b, score

= 16) that plays the role of a global bridge.

completely removes the paths that connect two non connected neighbors for

’star nodes’ (see Figure 1.1) and greatly diminishes the effect of high degrees,

while keeping those paths that connect more distant regions of the network.

More formally in a graph G = (V,E), where V assigns the set of nodes

and E the set of links, the definition of the betweenness centrality for a node

j ∈ V stands as:

BC(j) = Bri(j) + local(j), (1.1)

where

BC(j) =
∑
i 6=j 6=k

σik(j)

σik

Bri(j) =
∑

i 6∈NG(j)∧k 6∈NG(j)

σik(j)

σik

local(j) =
∑

i∈NG(j)∨k∈NG(j)

σik(j)

σik
.

(1.2)

Here the summation runs over any distinct node pairs i and k; σik represents

the number of shortest paths between i and k; while σik(j) is the number

of such shortest paths running through j. Decomposing BC into two parts
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(right hand side) the first term defines actually the global term, bridgeness cen-

trality, where we consider shortest paths between nodes not in the neighbour-

hood of j (NG(j)), while the second local term considers the shortest paths

starting or ending in the neighbourhood of j. This definition also demon-

strates that the bridgeness centrality value of a node j is always smaller or

equal to the corresponding BC value and they only differ by the local con-

tribution of the first neighbours. Fig. 1.1 illustrates the ability of bridgeness

to specifically highlight nodes that connect different regions of a graph. Here

the BC, Fig. 1.1(a), and bridgeness centrality values, Fig. 1.1(b), calculated

for nodes of the same network demonstrate that bridgeness centrality gives

the highest score to the node which is central globally (green), whileBC does

not distinguish among local or global centers, and actually assigns the high-

est score to nodes with high degrees (red).

In the following, to further explore the differences between these mea-

sures we define an independent reference measure of bridgeness using a

known partitioning of the network. This measure provides us an indepen-

dent ranking of the bridging power of nodes, that we correlate with the cor-

responding rankings using the BC and bridgeness values. In addition we

demonstrate via three example networks that bridgeness centrality is always

more specific than BC to identify global bridges.

1.3 Computing global bridges from a community

structure

To identify the global bridges independently from their score in BC or brid-

geness, we use a simple indicator inspired by the well-known Rao-Stirling

index (Rao, 1982; Stirling, 2007; Rafols, 2014; Jensen and Lutkouskaya, 2014),

as this indicator is known to quantify the ability of nodes to connect different
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communities. Moreover, it includes the notion of “distance”, which is im-

portant for distinguishing local and global connections. However, we note

that this index needs as input a prior categorization of the nodes into distinct

communities. Our global indicator G for node i is defined as:

G(i) =
∑

J∈communities

lIJδi,J (1.3)

where the sum runs over communities J (different from the community of

node i, taken as I), δi,J being 1 if there is a link between node i and com-

munity J and 0 otherwise. Finally, lIJ corresponds to the ’distance’ between

communities I and J , as measured by the inverse of the number of links be-

tween them: the more links connect two communities, the closer they are.

Nodes that are only linked to nodes of their own community have G = 0,

while nodes that connect two (or more) communities have a strictly positive

indicator. Those nodes that bridge distant communities, for example those

that are the only link between two communities, have high G values.

As a next step we use this reference measure (i.e. the global indicator)

to rank nodes and compare it to the rankings obtained by the two tentative

characteristics of bridging (BC and bridgeness) in three large networks.

1.4 Synthetic network: unbiased LFR

We start with a synthetic network obtained by a method similar to that of

Lancichinetti, Fortunato, and Radicchi (2008). This method leads to the so-

called ’LFR’ networks with a clear community structure, which allows to

easily identify bridges between communities. We have modified the algo-

rithm to obtain bridges without the degree bias which arises from the orig-

inal method. Indeed, LFR first creates unconnected communities and then

chooses randomly internal links that are reconnected outside the community.



14 Chapter 1. Detecting global bridges in networks

/&.%

"'&+

21

@:::

9(:E

.-4

' .7

+"20

FIGURE 1.2: Artificial network with a clear community
structure using Lancichinetti, Fortunato, and Radicchi (2008)
method. For clarity, we show here a smaller network containing
1.000 nodes, 30 communities, 7.539 links (20% inter- and 80%
intra-community links). Each color corresponds to a commu-
nity as detected by modularity optimization (Newman, 2010;

Blondel et al., 2008).

This leads to bridges, i.e. nodes connected to multiple communities, which

have a degree distribution biased towards high degrees. In our method, we

avoid this bias by randomly choosing nodes, and then one of their internal

links, which we reconnect outside its community as in LFR. As reference,

we use the global indicator defined above. As explained, this indicator de-

pends on the community structure, which is not too problematic here since,

by construction, communities are clearly defined in this synthetic network.

Fig. 1.3(a) shows that bridgeness provides a ranking that is closer to that

of the global indicator than BC. Indeed, we observe that the ratio for brid-

geness is higher than for BC. This means that ordering nodes by their de-

creasing bridgeness leads to a better ranking of the ’global’ scores - as mea-

sured by G - than the corresponding ordering by their decreasing BC values.

As shown in the simpler example of a 1000-node network (demonstrated in

Fig. 1.2), BC fails because it ranks too high some nodes that have no exter-

nal connection but have a high degree. A detailed analysis of the nodes of a
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cluster is given in Supplementaty Information.

In addition we directly measured the average relative contribution of the

local term (Eq. 1.4) in BC for nodes of the same degree, see Fig. 1.3(b).

〈locterm〉i(k) = 〈(BC(i, k)−Bri(i, k))/BC(i, k)〉i (1.4)

We observe a negative correlation, which means that the local term is

dominating for low degree nodes, while high degree nodes have higher brid-

geness value as they have a higher chance to connect to different communi-

ties.

1.5 Real network 1: airport’s network

Proving the adequacy of bridgeness to spot out global bridges on real net-

works is more difficult, because generally communities are not unambigu-

ously defined, therefore neither are global bridges. Then, it is difficult to

show conclusively that bridgeness is able to specifically spot these nodes. To

answer this challenge, our strategy is the following:

(i) We use flight itinerary data providing origin-destination pairs between

commercial airports in the world (International Air Transport Association).

The network collects 47,161 transportation connections between 7,733 air-

ports. Each airport is assigned to its country.

(ii) We consider each country to be a distinct ’community’ and compute

a global indicator based on this partitioning, as it allows for an objective

(and arguably relevant) partition, independent from any community detec-

tion methods. Then we show that bridgeness offers a better ranking than

BC to identify airports that act as global bridges, i.e. that connect countries

internationally.
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FIGURE 1.3: (a) Ability of BC or bridgeness to reproduce the
ranking of bridging nodes, taking as reference the global indi-
cator (Eq2). For each of the three networks, we first compute the
cumulative sums for the global measure G, according to three
sorting options: the G measure itself and the two centrality met-
rics, namely BC and bridgeness. By construction, sorting by G
leads to the highest possible sum, since we rank the nodes start-
ing by the highest G score and ending by the lowest. Then we
test the ability of BC or bridgeness to reproduce the ranking
of bridging nodes by computing the respective ratios of their
cumulative sum, ranking by the respective metric (BC or Bri),
to the cumulative obtained by the G ranking. A perfect match
would therefore lead to a ratio equal to 1. Since we observe that
the ratio for bridgeness is higher than for BC, this means that
ordering nodes by their decreasing bridgeness leads to a better
ranking of the ’global’ scores as measured by G. To smooth the
curves, we have averaged over 200 points. Curves correspond-
ing to different networks are colorised as LFR (red), Airports
(blue), ENS (green). (b, c, d): average relative local terms as
function of node degree for the three investigated networks (for

definition see text).
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FIGURE 1.4: Example of the two largest Argentinean airports,
Ezeiza (EZE) and Aeroparque (AEP). Both have a similar de-
gree (54 and 45 respectively), but while the first connects Ar-
gentina to the rest of the world (85% of international connec-
tions, average distance 2,848 miles, G=2,327.2), Aeroparque is
only a local center (18% of international connections, average
distance 570 miles, G=9.0). However, as in the simple graph
(Figure 1), BC gives the same score to both (BCEZE=79,000 and
BCAEP = 82,000), while bridgeness clearly distinguishes the lo-
cal center and the bridge to the rest of the world, by attributing
to the global bridge a score 250 times higher (BriEZE=46,000
and BriAEP = 174). Red nodes represent international airports

while blue nodes are domestic.
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As an example, in Fig. 1.4 we show the two largest airports of Argentina,

Ezeiza (EZE) and Aeroparque (AEP). Both have a similar degree (54 and 45

respectively), but while the first connects Argentina to the rest of the world,

Aeroparque mostly handles domestic flights, thus functioning as a local cen-

ter. This is confirmed by the respective G values: 2,327.2 (EZE) and 9.0 (AEP).

However, just like in our simple example in Fig. 1.1, BC gives the same score

to both, while bridgeness clearly distinguishes between the local domestic

center and the global international bridge by attributing to the global bridge

a score 250 times higher (see Fig. 1.4). This can partly be explained by the

fact that AEP is a ’star’ node (low clustering coefficient: 0.072), connected to

12 very small airports, for which it is the only link to the whole network. All

the paths starting from those small airports are cancelled in the computation

of the bridgeness (they belong to the local term in Eq. 1.1), while BC counts

them equally as any other path.

More generally, Fig. 1.3 shows that, as for the Airport network, bridgeness

provides again a ranking that is closer to that of the global indicator. Indeed,

ordering nodes by their decreasing bridgeness leads to a ranking that is closer

to the ranking obtained by the global score than the ranking by decreasing

BC. In addition, we found again negative correlations between the average

relative local term and node degrees, see Fig. 1.3(c), assigning similar roles

for low and high degree nodes as in case of the synthetic network.

1.6 Real network 2: scientometric network of ENS

Lyon

The second example of a real network is a scientometric graph of a scien-

tific institution (Grauwin and Jensen, 2011), the “Ecole normale supérieure
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de Lyon” (ENS, see Figure 1.5). This networks adds authors to the usual co-

citation network, as we want to understand which authors connect different

sub-fields and act as global, interdisciplinary bridges. To identify the differ-

ent communities, we rely on modularity optimization (Blondel et al., 2008),

which leads to a relevant community partition because scientific networks

are highly structured by disciplinary boundaries. This is confirmed by the

high value of modularity generated by this partition (0.89). In Figure 1.5,

the authors of different communities are shown with different colors, and

their size corresponds to their betweenness (left) or bridgeness (right) cen-

trality, which clearly leads to highlight different authors as the main global

bridges, which connect different subfields. We compute the Stirling indicator

(Eq. 1.1) based on the modularity structure to identify the global bridges. As

for the previous networks, Fig. 3 shows that bridgeness ranks the nodes in

a closer way than BC to the ranking provided by the global measure based

on community partition. On the other hand the corresponding 〈locterm〉(k)

function, see Fig. 1.3(d), suggests a slightly different picture in this case. Here

nodes with large but moderate degrees (smaller than ~200) have high local

terms suggesting that they act as local centres, while nodes with higher de-

grees have somewhat smaller local terms assigning their role to act as global

bridges.

1.7 Discussion

In this chapter, we introduced a measure to identify nodes acting as global

bridges in complex network structures. Our proposed methodology is based

on the decomposition of BC into a local and global term, where the local

term considers shortest paths that start or end at one of the node’s neighbors,

while the global term, what we call bridgeness, is more specific to identify

nodes which are globally central. We have shown, on both synthetic and real
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FIGURE 1.5: Co-citation and co-author network of articles pub-
lished by scientists at ENS de Lyon. Nodes represent the au-
thors of references appearing in the articles, while links repre-
sent co-appearances of these features in the same article. The
color of the nodes corresponds to the modularity partition and
their size is proportional to their BC (left) or to their bridge-
ness (right), which clearly leads to different rankings (refer-
ences cited are used in the computations of the centrality mea-
sures but appear as dots to simplify the picture). We only keep
nodes - authors - that appear on at least four articles and links
that correspond to at least 2 co-appearances in the same paper.
After applying these thresholds, the 8,000 articles lead to 8,883
nodes (author or references cited in the articles) and 347,644
links. The average degree is 78, the density 0.009 and the av-
erage clustering coefficient is 0.633. Special care was paid to
avoid artifacts due to homonyms. Weights are attributed to the
links depending on the frequency of co-appearances (as cosine

distance, see Grauwin and Jensen, 2011).
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networks, that the proposed bridgeness measure improves the capacity to

specifically find out global bridges as it is able to distinguish them from local

centers. One crucial advantage of our measure of bridgeness over former

propositions is that it is independent of the definition of communities.

However, the advantage in using bridgeness depends the precise topol-

ogy of the network, and mainly on the degree distribution of bridges as com-

pared to that of all the nodes in the network. When bridges are high-degree

nodes, BC and bridgeness give an equally good approximation, since high-

degree bias do not play an important role in this case. Instead, when some

bridges have low degrees, while some high-degree nodes act like local cen-

ters of their own community, bridgeness is more effective to identify bridges

as BC gives equally high rank to nodes with high degree, even if they are

not connected to nodes outside of their community. We demonstrated that

bridgeness is systematically more specific to spot out global bridges in all

the networks we have studied here. Although the improvement was small

on average, typically 5 to 10%, even a small amelioration of a widely used

measure is in itself an interesting result.

We should also note that, except on simple graphs, comparing these two

measures is difficult since there is no clear way to identify, independently, the

’real’ global bridges. We have used community structure when communities

seem clear-cut, but then we fall into the circularity problems stressed in the

introduction. Using metadata on the nodes (i.e. countries for the airports)

may solve this problem but raises others, as metadata do not necessarily cor-

respond to structures obtained from the topology of the network, as shown

recently on a variety of networks (Hric, Darst, and Fortunato, 2014). Another

possible extension would be to identify overlapping communities to identify

independently global bridges, as nodes involved in multiple communities,

and correlate them with the actual measure, which provides a direction for

future studies. However, in any case identifying global bridges remains a
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difficult problem as it is tightly linked to another difficult problem, that of

community detection. Decomposing BC into a local and a global term helps

to improve the solution, but many questions remain still open for further

inquiry.
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Chapter 2

The evolution of Japanese business

networks in ASEAN countries

since the 1960s

2.1 Introduction

Network analysis techniques remain rarely used for understanding interna-

tional management strategies. This chapter highlights their value as research

tool in this field of social science using a large set of micro-data (> 20.000) to

investigate the presence of networks of subsidiaries overseas. The research

question is the following: to what extent did/do global Japanese business

networks mirror organizational models existing in Japan?

In particular, we would like to assess how much the links building such

business networks are shaped by the structure of big-size industrial conglom-

erates of firms headquartered in Japan described, sometimes imprecisely, as

horizontal keirestsu (HK).

As per Lawrence’s (1993) factual definition, these are groups which “typi-

cally include a lead bank, a trust bank, life and casualty insurance companies,

and a general trading company”. He adds, “members of the group exchange

shares, have interlocking directorates, jointly appoint officers and other key
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personnel, hold regular meetings of company presidents and engage in joint

investment undertakings in new industries”. Finally, concerning credit ac-

cess, characteristically “lead banks may provide group members with loans

at preferential rates and with implicit assurances to stand behind them in

times of trouble”.

The major part of the academic community in the fields of management

and industrial organization considers that formal links can be identified among

firms belonging to HK. Miwa and Ramseyer (Miwa and Ramseyer, 2002;

Miwa and Ramseyer, 2006) challenge this claim and argue that the evidence

supporting the existence of HK is weak.

So far, quantitative empirical investigation has been conducted exclu-

sively using data for firms incorporated in Japan. Our study tests the Miwa-

Ramseyer hypothesis (MRH) at the global level using information on the net-

work of Japanese subsidiaries overseas. We identify linkages among Japanese

subsidiaries overseas using an objective criterion: the subsidiaries share at

least two Japanese co-investors (firms headquartered in Japan). The results

obtained lead us to reject the MRH for the global dataset, as well as for sub-

sets restricted to the two main regions/countries of destination of Japanese

foreign investment: China (broadly defined as to include Hong Kong and

Taiwan), and Southeast Asia. The results are robust to the weighting of the

links, with different specifications, and are observed in most industrial sec-

tors; the main exception is the automotive industry for which a straightfor-

ward explanation (unrelated to the MRH) exists. The global Japanese net-

work became increasingly complex during the late 20th century as a conse-

quence of increase in the number of Japanese subsidiaries overseas but the

key features of the structure remained rather stable. We draw implications

of these findings for academic research in international business and for pro-

fessionals involved in corporate strategy.

The heuristic and explanatory power of network analysis techniques is
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widely acknowledged in various disciplines of social science (Scott, 1999;

Padgett and Powell, 2012). They remain however rarely used for the empir-

ical analysis of international management strategies, except in a few recent

studies based on relatively small samples (e.g. Shi et al., 2014; for a review,

see Hoang and Yi, 2015). This remark applies also to academic research in

management but also, surprisingly, to professional strategic consulting and

business auditing activities. The results presented in the volume edited by

David and Westerhuis (2014) demonstrate that a strong interest is emerg-

ing for studies with country-level historical perspective, including on Japan

(Koibuchi and Okazaki, 2014).

This chapter brings into such context network analysis tools with a study

using a large sample of micro-data for the global network of Japanese sub-

sidiaries overseas and, through our analysis, we practically demonstrate the

interest and the still untapped potential of network techniques in interna-

tional business.

The topic we investigate is related to an unsettled issue in Japanese busi-

ness history that remains entirely relevant for analyzing present-day Japanese

business strategies at home and abroad.

Specifically, we investigate if the structure of Japanese business networks

is reminiscent of the corresponding horizontal conglomerates (HK). The ma-

jority of the academic community in the fields of management and industrial

organization considers that the links between firms belonging to these HK

can be identified through information on main-bank, cross-ownership, and

transactions (e.g. Gerlach, 1992; Aoki and Saxonhouse, 2000). Notably, the

very existence of HK is cast into question by Miwa and Ramseyer (Miwa and

Ramseyer, 2002; Miwa and Ramseyer, 2006) who criticize the weakness of the

evidence proving it.

Alternatively, they interpret it as an ideological construct that was firstly
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devised by Japanese Marxists in the 1950s to be, later on, adopted by the Dod-

well, a marketing company, and which was finally endorsed by non-Marxist

scholars as well. As a concluding remark, it is worth stressing that quanti-

tative empirical investigation have been conducted, up to now, exclusively

using data for firms incorporated in Japan.

In this chapter the Miwa-Ramseyer hypothesis (MRH) is tested globally,

using information on Japanese subsidiaries overseas. The data are obtained

from a nearly exhaustive global survey of Japanese overseas subsidiaries

conducted by a private company, the Toyo Keizai Shinposha. Their dataset

(henceforth TKZ) includes more than 20,000 firms in total, of which around

6,000 in the manufacturing sector, the one relevant to our analysis. The cov-

erage is global and includes all recipient countries of Japanese foreign direct

investment. The TKZ database reports information for wholly owned com-

panies or joint ventures with local partners. Available information enables

identifying Japanese and non-Japanese investors, and the shares owned by

each firm. Membership of Japanese parent companies in one of the HK is

defined on the basis of two indicators also supplied by TKZ: involvement

regular meetings and equity ownership by firms identified core members of

the HK. We use community detection techniques with different specifications

and subsets of data in order to assess robustness of our results. Although

with some caveats, the results obtained lead us to reject the MRH.

The remainder of the chapter is organized as follows: section 2.2 offers an

overview of the state of the art in business network analysis, and identifies

some major gaps in the literature; section 2.3 describes the TKZ dataset; sec-

tion 2.4 describes the hypotheses under investigation; section 2.5 describes

the strategy adopted to test the MRH and discusses the results; section 2.6

summarizes the findings and elaborates on their implications for scholars

and managers.
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2.2 Non-Japanese and Japanese business networks:

state of the art and gaps in the literature

The major part of the studies on business networks remain focused on the

analysis of relatively simple networks, either of centered on one particular

firm, or using a small sample of observations.

What are the reasons for this limited development of complex network

analysis in management, compared to other fields of social science, in par-

ticular economics or sociology? The three major intertwined explanations

seems related to the strong focus typical of studies in management: (a) qual-

itative techniques (Harvard Business School type case studies), (b) intra-firm

networks, and (c) directed networks (as opposed to undirected networks that

are usually the more complex ones).

First, qualitative techniques enable analyzing extremely complex condi-

tions, structures and strategies, but usually for one particular firm or, at best

(from the viewpoint of network analysis), for a relatively small group of firms

(e.g. Forsgren and Johanson, 1992). In some minority cases, the scope is a lit-

tle wider since the interactions of financial holdings and other investors are

taken into account on the basis of information of equity holding.

The focus on intra-firm networks is a legacy of a tradition in management

going back to Chandler (1962, 1977) that analyses the firm structural changes

in response to the top management decisions meant to adjust corporate busi-

ness strategies.

Finally, the focus on directed networks is also perfectly understandable:

business networks are viewed essentially as centered on a group of top man-

agers. The types of inter-firms networks considered are mostly hierarchical

pyramids of firms linked by equity ownership relations with different tiers

corresponding to subsidiaries of first, second, third, or Nth rank. An inter-

est for studies taking into account both strong and weak business ties using



28 Chapter 2. Japanese business networks in ASEAN countries

network analysis is however emerging recently (Kilkenny and Fuller-Love,

2014).

In this context, the specialized sub-field of studies on Japanese business

networks stands aside. The theory of the Japanese firm as a nexus of treaties

formulated by Aoki (1984a, 1984b) emerged at the time when Japanese busi-

ness networks were barely discussed (the book by Kono, 1984, on the strat-

egy and structure of Japanese enterprises, one of the most widely circulated

in English around that period, does not mention business networks at all).

Aoki’s game-theoretical approach, although concentrated on intra-firm as-

pects, was very influential, as it provided an analytical framework applica-

ble to undirected inter-firm networks. This solid conceptual bases enabled

the development of an empirical stream of research that was later identified

as keiretsu studies (in particular Gerlach, 1992; Lincoln, Gerlach, and Taka-

hashi, 1992; Lincoln, Gerlach, and Ahmadjian, 1996; Weinstein and Yafeh,

1995; Aoki and Saxonhouse, 2000; Nakamura, 2002; Lincoln and Gerlach,

2004. McGuire and Dow (2009) provides the most extensive recent survey of

this stream of research.

The Japanese term keiretsu, which is usually translated as ‘alignment’,

indicates that a firm has a set of preferential cooperations with another firm,

generally bigger and in that case the relation is clearly hierarchical, or with

a group of firms. The relation of the firm with this group can be either

hierarchical, as aforementioned, or not hierarchical, in this latter case the

firm is a member of an undirected network. In the case of hierarchical rela-

tions between firms, the structure is the same as in vertically organised busi-

ness groups that exist in all regions of the world. This pattern is described

in Japanese business studies as vertical keiretsu (VK), while the undirected

network is described as horizontal keiretsu (HK). It should be noted, how-

ever, that there are overlaps between VK and HK. Specialized manufacturing

groups sur as Toyota and Mitsubishi are vertically organized and, at the same
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time, they are part of an HK (Mitsui and Mitsubishi keiretsu, respectively.)

The development of the keiretsu studies led, among other consequences,

to revive the interest in Japanese business history studies investigating the

strategies and structures of prewar groups owned by kinship networks, i.e.

zaibatsu such as Mitsui, Mitsubishi, Sumitomo, and Yasuda, dissolved in

1946 upon request of the U.S. occupation authorities. An obvious issue was

assessing the strength of post- war links between companies that belonged to

these pre-war groups and that morphed in the 1950s into HK type conglom-

erates whose membership was somehow different from the Zaibatsu’s (see

also Ramseyer and Miwa, 2007) for a discussion on the dissolution of pre-

war zaibatsu). Ironically, the expansion of the literature on HK accelerated

in the 1990s and 2000s, precisely at the time when the ties were becoming in-

creasingly informal and weak. What is more, the description of the structure

of HK became obsolete as a consequence of waves of mega-mergers of the

major Japanese banks that took place in 2006. This led some of the key fig-

ures in the keiretsu studies to reflect on their demise (“why they are gone?”)

and the future of Japanese business groups (e.g. Lincoln and Shimotani, 2009;

see also McGuire and Dow, 2009 for a similar discussion).

Looking at studies concerning Japanese business network overseas, we

can observe that a number of papers are explicitly referring to keiretsu mem-

bership for investigating various issues such investment overseas (Belderbos

and Sleuwaegen, 1996), as spatial location decision and agglomeration ef-

fects (e.g. Belderbos and Carree, 2002; Yamashita, Matsuura, and Nakajima,

2014; Zhang, 2015). A few papers also discuss the importance of keiretsu in

shaping Japanese business networks overseas, in some case using the large

datasets such as the TKZ database (e.g. Zhang, 2015). However, to the best

of our knowledge, there has been no attempt so far to use standard network

analysis techniques to unravel the structure of Japanese networks overseas

and our study aims at filling this gap.
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2.3 Dataset and descriptive statistics

The TKZ dataset we use actually is composed by two datasets, both pro-

duced by the Toyo Keizai Shinposha, a private company whose denomina-

tion in English is Oriental Economist (http://corp.toyokeizai.net/

en/). One of the attractive features of this database is that it has not been

constructed by the Japanese government or a not-for-profit semi-public body,

but rather by a private company: henceforth, their quality and accuracy was

meant to generate a positive return on investment. Thus, that these vol-

umes are rather best sellers than confidential publications is indicative of

such quality and of the trust the public had in the information supplied. The

surveys have been repeated yearly since more than 50 years on the basis of

voluntary participation.

The first database reports micro-data resulting from a yearly survey ad-

ministered in 2005 to Japanese subsidiaries based overseas (a sizeable 20,700),

circulated in the 2006 TKZ edition that we use for reasons explained below.

The firms respond on a voluntary basis, and some piece of information is

sporadically missing in the returned forms, collected and processed by Toyo

Keizai. The sampling rate is not disclosed by the Toyo Keizai, but the con-

sensus is that coverage is extremely high because the respondents are not

expected to report confidential information. The list of data requested is lim-

ited to the denomination, address, industrial sector, paid-up capital, name

and share of each Japanese equity owner, and share of local investors, when

joint ventures are established with local foreign partners; notably, the respon-

dents are not required to disclose the identity of the local partners. Toyo

Keizai processes the information as to include a unique code for each sub-

sidiary and, more importantly, for equity owners (companies headquartered

in Japan; no code for local investor). The equity owners univocal coding sys-

tem aptly implemented by Toyo Keizai prevents any risk of confusion due

http://corp.toyokeizai.net/en/
http://corp.toyokeizai.net/en/
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to mislabelling: the local subsidiaries managers responding to the survey are

held back from using possibly inconsistent textual denominations. Since we

had the chance to access the electronic version of the 2006 database (more of-

ten than not, the printed version is used), there is no risk of error or omission

(at least not by our research team).

We process the information available in the database to identify conglom-

erates of Japanese overseas businesses, by defining a quantitative and ob-

jective criterion: two Japanese investors (firms headquartered in Japan) are

considered to be linked (as nodes connected by an edge on the graph) if they

co-invest in, i.e. they co-own, one or more overseas subsidiaries.

These co-ownership relations are of utmost relevance since they are mea-

surable in stark contrast with relations between firms only of informal coop-

eration and/or repeated transactions, without any equity ownership tie.

As side note, a subsidiary may be involved in more than one business net-

work. Thus, such shared subsidiaries heuristically play the role of “bridges”

between two networks, therefore they contribute to the network cohesion.

For the interested reader, such links are related to the concept of weak ties

(Granovetter, 1973).

Furthermore, the advantage, among others, of the TKZ dataset is to in-

clude information on mid-size groups. However, after 2006, the mega-mergers

of some Japanese banks disrupted such fine scale structure and for this rea-

son we focus our analysis on the pre-2006 networks. The implications of our

results on pre-2006 networks for analyzing present day conditions are dis-

cussed in section 2.6.

The second Toyo Keizai database we use, much smaller, has been ob-

tained from the last issue (published in 2000) of the Toyo Keizai “Keiretsu

Survey” (a distinct product from the Toyo Keizai yearbook on industrial

groups, published yearly). It provides very valuable information on the 6 big
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HK: Mitsui, Mitsubishi, Sumitomo, Sanwa, Fuyo, and Ikkan, that can be con-

sidered as the indirect heirs of kinship-based zaibatsu (“financial cliques”)

such as Mitsubishi, Mitsui, and Sumitomo, that were dissolved in 1947. Re-

lying on information obtained from Toyo Keizai Shinposha (2000), we retain

two criteria for membership in one of the 6 HK: (i.) the firm is a member

of one of the 6 Chief Executive Officers “clubs” (one per HK) meeting on

a weekly/monthly basis; (ii.) the firm is among the top 50 companies by

share of equity ownership of companies members of one of the 6 “clubs”.

To the best of our knowledge, the Toyo Keizai did not officially explain why

the “Keiretsu Survey” has been discontinued, the 2000 issue being the last

one. Two alternative interpretations can be considered. The first one, which

can be considered consistent with the Miwa-Ramseyer view, is that the Toyo

Keizai finally acknowledged the fallacy in the keiretsu existence nowadays.

The second one, which we tend to favor, is that drastic changes in the or-

ganizational structure of Japanese business networks (in Japan, and - pre-

sumably and consequently - abroad) resulted in a dying out of the prefer-

ential links and cooperation networks that had been identified earlier. The

information reported in the keiretsu volume was therefore becoming less rel-

evant and, at any rate, redundant with the one provided in the separate Toyo

Keizai volume on business groups, more focused on the concept of vertical

keiretsu. In particular, as aforementioned, the 2006 mega mergers of a num-

ber of Japanese banks rendered less and less relevant keeping a list of firm

memberships in a “club”.

Nevertheless, the 2000 database provided by the latest issue of the “Keiretsu

Survey” is valuable to our study as it provided us with the backbone under-

lying the keiretsu web we test our hypothesis against.

Thus, summing up, the two dataset together concur to build a coherent

perspective: from the first dataset we extract with network analysis tools,

described in Sec. 2.5, the granularity of the Japanese business network, i.e.,
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its communities structure; on the other hand, we compare this empirical ev-

idence of communities against the “Keiretsu Survey” dataset to infer if such

communities mirror the HK organization.

2.3.1 Worldwide waves of investment

Japanese foreign direct investment (FDI) did not took place in parallel in

all regions of the world, but rather in successive waves. Japanese investors

were first attracted in the 1960s and 1970s by the comparative advantages of

ASEAN countries, Hong Kong and Taiwan, and the possibility to gain access

to these emerging markets. From the 1970s, and especially during the 1980s,

North America and Europe also became important destinations. Finally, the

gradual opening of the People’s Republic of China to international trade and

foreign investors in the 1980s resulted in a reorientation of Japanese foreign

direct investment that accelerated in the 2000s; China became the main target

country in terms of flows, and - after some time lag - also in terms of stock.

Evidence from the TKZ is presented in Figure 2.1.

2.3.2 Heterogeneity in ownership and prevalence of manu-

facturing

The ratio of TKZ subsidiaries which are included and used in reconstructing

the Japanese investors business networks vary manifestly by country. This

is both because of the overall quota of manufacturing enterprises (very low

in the EU, high in ASEAN countries, cfr. Figure 2.2), and the ratio of sin-

gle owned subsidiaries (very high in the EU, lower in ASEAN countries, cfr.

Tables 2.4, 2.5, below).

As mentioned previously, non-manufacturing businesses are not included.

This is ostensibly visible in the most extreme cases, the Netherlands and In-

donesia respectively (cfr. Table 2.1).
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FIGURE 2.1: Japanese co-investment overseas (number of firms
in the Toyo Keizai database for 1965, 1975, 1985, 1995, and 2005;

log scale)

Note: The 10 countries of the ASEAN (Association of South-
east Asian Nations) are: Brunei, Cambodia, Indonesia, Laos,
Malaysia, Myanmar, the Philippines, Singapore, Thailand, and
Vietnam; NAFTA: North America Free Trade Agreement area

(Canada, Mexico, United States).

FIGURE 2.2: % of Japanese FDI in USD (source: TKZ), by
macroarea, all sectors vs. manufacturing only
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Country TOT INCL DIFF%

China 4.414 3.497 -21%
USA 3.419 1.194 -65%
Thailand 1.534 1.116 -27%
Hong Kong 1.109 254 -77%
Singapore 1.036 276 -73%
Taiwan 907 520 -43%
United Kingdom 806 188 -77%
Malaysia 774 516 -33%
Korea 682 453 -34%
Indonesia 673 571 -15%
Germany 637 126 -80%
Philippines 453 274 -40%
Australia 402 69 -83%
France 380 123 -68%
Netherlands 358 56 -84%
Canada 266 91 -66%
Brazil 261 137 -48%
Viet Nam 250 200 -20%
Mexico 219 124 -43%
India 199 157 -21%
(61 more countries omitted) . . . . . . . . .

TOT 20.488 10.481 -49%

TABLE 2.1: Frequencies of firms by country: full TKZ dataset
(TOT), firms included (INCL), % difference; first 20 countries

sorted by decreasing TOT



36 Chapter 2. Japanese business networks in ASEAN countries

Area NUMEMPL K

ASEAN 518 21.980
China and Taiwan 366 12.204
EU 331 20.191
Northern America 401 37.900

TABLE 2.2: Average number of employees (NEMPL) and capi-
talization in USD (K), disaggregated by macroarea

Industrial sector Code NUMEMPL K

Food 600 346 24.781
Textiles 700 380 5.117
Wood and Furniture 800 323 12.252
Pulp and Paper 900 246 31.144
Publishing and Printing 1000 159 28.300
Chemicals and Pharma 1100 167 18.894
Petroleum and Coal (incl. Plastics) 1200 55 66.326
Rubber and Leather 1300 258 6.185
Refractories and Glass 1400 477 6.859
Steel 1500 313 140.409
Non-ferrous Metals 1600 545 37.619
Metal Products 1700 218 11.905
Machinery 1800 236 11.244
Electric/Electronic Devices 1900 832 27.436
Transp. Mach. and Shipbuilding 2000 308 28.089
Automobiles and Parts 2100 563 31.848
Precision Machinery 2200 541 11.677
Miscellaneous Manufacturing 2300 253 4.531

TABLE 2.3: Average number of employees (NEMPL) and capi-
talization in USD (K), disaggregated by industrial sector

2.3.3 Heterogeneity in subsidiaries size and capitalization

As it will become noticeable in the analysis, geographical and sectoral pe-

culiarities are evident in the dataset, and play a relevant role in shaping the

topological features of networks built from disaggregated data. In Tables 2.2,

2.3, descriptive data are shown over both dimensions.
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Area Avg 1 2 3 4 5 (%) 2+

ASEAN 1.66 1530 553 259 99 58 39%
China and Taiwan 1.52 2190 774 281 86 37 35%
EU 1.21 648 102 20 6 1 17%
Northern America 1.28 967 189 55 8 3 21%

TABLE 2.4: Co-investors per subsidiary, disaggregated by geo-
graphical area

Industrial sector Code Avg 1 2 3 4 5 (%) 2+

Food 600 1.59 306 101 48 18 7 36%
Textiles 700 1.83 252 151 74 30 7 51%
Wood and Furniture 800 1.57 52 14 5 1 4 32%
Pulp and Paper 900 1.81 47 34 15 1 3 53%
Publishing and Printing 1000 1.11 50 4 1 0 0 9%
Chemicals and Pharma 1100 1.52 995 343 120 40 18 34%
Petroleum and Coal (incl. Plastics) 1200 2.05 9 3 4 3 0 53%
Rubber and Leather 1300 1.41 177 42 24 4 0 28%
Refractories and Glass 1400 1.42 174 53 17 5 1 30%
Steel 1500 2.27 74 50 39 15 16 62%
Non-ferrous Metals 1600 1.59 155 43 21 10 5 34%
Metal Products 1700 1.63 261 112 40 22 5 41%
Machinery 1800 1.38 803 194 55 16 13 26%
Electric/Electronic Devices 1900 1.26 1518 272 68 14 8 19%
Transp. Mach. and Shipbuilding 2000 1.54 43 20 8 1 0 40%
Automobiles and Parts 2100 1.64 767 339 135 42 20 41%
Precision Machinery 2200 1.15 224 30 2 0 1 13%
Miscellaneous Manufacturing 2300 1.23 279 41 10 3 1 16%

TABLE 2.5: Co-investors per subsidiary, disaggregated by in-
dustrial sector

2.3.4 Co-investments

Globally, every subsidiary is owned by approximately one and a half (1.48)

investors, unevenly split between Japanese (1.31) and local (0.17). In Table

2.4, this information is disaggregated by geographical macro-area; the Euro-

pean Union, where less than one fifth (17%) of the subsidiaries are owned by

two or more investors, appears to be the area with the least average number

of investors, closely followed by Northern America.
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2.4 Hypotheses

Before starting our analysis, we would like to briefly sketch the underlying

hypotheses to our approach that guided us and which were, as we explain

in the following, mostly driven by the available information provided by

the dataset, as in the case of the geographical distribution of the Japanese

foreign investments, and by sensible insightful observations on the nature of

the dataset.

Hypothesis 1: considering the manufacturing firms included in the TKZ

dataset in all countries for 2005, we reject the strong form of the Miwa-

Ramseyer hypothesis.

With regard to the Miwa-Ramseyer Hypothesis (MRH), we adopt an ag-

nostic view. Indeed, we accept their claim that the empirical evidence sup-

porting the existence of HK is rather weak. These business groups would

be particularly difficult to identify should the affiliations be informal, imply-

ing that they would not require any kind of binding and irreversible com-

mitment. Moreover, anecdotal evidence indicates that a number of firms

that were identified as informal members of one HK gradually shifted to

an equally informal affiliation with another HK. What is more, a number of

firms loosely related to a HK eventually moved to a position of dual affilia-

tion.

Therefore, it is not surprising that the evidence obtained using panel data

analysis or similar econometric techniques could be disappointing. How-

ever, we do not reject the possibility that a nexus of bilateral or multilateral

treaties and repeated transactions between firms, as well as information ex-

changes, involvement in joint R&D projects, and cooperation in joint ven-

tures at home and abroad could result in the formation of an indirect busi-

ness network involving tightly knit clusters of firms. Furthermore, one of

the main advantages of network analysis in this context is to be consistent
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with the possibility of informal affiliation and/or changes in affiliation. Our

first hypothesis is that Japanese business networks overseas tend to replicate

familiar structures already in place in Japan when HK had very few foreign

subsidiaries, that is in the 1960s and 1970s. Accordingly, what we would de-

scribe as a strong form of MRH (“[...] at root, the keiretsu do not exist.” in

Miwa and Ramseyer prose), can be rejected.

Hypothesis 2: the structure of Japanese business networks overseas is

becoming gradually more complex but the identified key-players remained

essentially the same ones during the period 1975-2005.

To what extent did the structure of Japanese business networks overseas

evolved over time? The firms setting up foreign subsidiaries in the 1960s and

1970s have been overwhelmingly the biggest players in their industry, and

in their respective HK, if we believe the proponents of the strong form of the

horizontal keiretsu hypothesis (HKH). It is only with the dramatic increase in

volume of foreign direct investment that mid-size firms (or Japanese-based

firms situated in the periphery of the HK, according to the the strong form

of HKH proponents) became present as parent companies of foreign sub-

sidiaries. Since our measure of involvement in a Japanese business network

overseas is defined precisely as the co-investment in foreign subsidiaries with

other Japanese investors, we expect to find a high level of stability in the

structure observed using information successive benchmark years. We se-

lected four benchmark years with a 10-year interval between them: 1975,

1985, 1995, and 2005.

Hypothesis 3: consistent results are expected with or without weighting.

Weighted networks may provide an alternative insight as to the business

links used to identify groups of firms on the network. Instead of mere binary

yes/no relationships, a metric can be put in place to define the links between

any two investors, in terms of a continuum measuring the strength of their

economic ties. For instance, when considering the shared set of subsidiaries
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common to two investors, as an example of the weight, both the capitaliza-

tion and the owned share must be taken into consideration. See section 2.5.3

for details.

Hypothesis 4: Similar results (rejection of the MRH) are expected, even

when considered separately, for three out of the four main (in terms of desti-

nation of Japanese foreign investment) world macro-regions: ASEAN, China

(including Hong Kong and Taiwan), and North America. Not enough ob-

servations are available for Europe, on the other hand, in order to present

conclusive results.

As observed in Section 2.3.1, foreign investments for Japanese firms his-

torically proceeded by successive waves, first hitting ASEAN countries, to

then spread to North America and Europe and, finally, to China. However, if

the architecture of the Japanese business networks in these different regions

of the world was determined by characteristics of the links between Japanese

parent companies, we would expect to find similar results.

Hypothesis 5: When considering the peculiar structure of some industrial

sectors, similar results may not be observed in all of them.

The investors and subsidiaries involved in the Japanese business net-

works overseas specialised in different lines of business. That is also the case

of the big conglomerates (HK). However, the major part of the co-investments

are likely to associate firms of the same industrial sectors, in particular in the

manufacturing sector. Depending on the number of potential partners and

the advantages derived from co-investments in foreign subsidiaries in terms

of information sharing and risk mitigation, it is conceivable that firms that

would be normally competitors may decide to cooperate in order to pene-

trate a foreign market. It is therefore plausible that such a specific pattern,

contradicting the general trend, is observed in some sectors, e.g. automotive,

food and textile.
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2.5 Methodology

2.5.1 Community detection on inferred business network

We test the MRH using a standard network community detection technique

(Blondel et al., 2008) on the reconstructed co-investment graph described in

Sec. 2.3, matching the communities each node (firm) is assigned to, and infor-

mation on real-world business conglomerates (keiretsu), in order to evaluate

to what extent the communities detected in the networks correspond to com-

munities defined by at least one of the criteria of membership of one of the 6

big HK obtained from Toyo Keizai Shinposha, 2000.

The results are tested against networks which are equivalent, degree-

wise, but with randomized structure (Configuration Models, see Newman,

2003, as null hypotheses). Absence of significant correlation between com-

munities and keiretsu is consistently shown in the latter case.

The network is built using Japanese investors appear as nodes, which are

linked if they share investments in at least N subsidiaries. Figure 2.3 offers an

insight of the role of subsidiaries in structuring clusters of Japanese investors.

Both parent companies in Japan and subsidiaries overseas are reliably

identified by unambiguous Toyo Keizai codes. Data on foreign local part-

ners is also available, but their identification is hardly consistent due to the

absence of unique identifiers; many generic “anonymous” nodes also appear.

At any rate, their contribution to the network structure appears negligible

(cfr. Sec. 2.3.4), which led us to finally omit this information in order to avoid

unpredictable bias.

The main purpose of representing TKZ microdata as a network of co-

investments is to look for “more densely connected” sets of firms which are,

by definition, communities. Firms tend to cluster together in the network

structure if there are prevalent and privileged economic links between them.

If we observe a non-random distribution (systematic overrepresentation) of
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FIGURE 2.3: Heterogeneous network, including Japanese in-
vestors and overseas subsidiaries, ASEAN countries only
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Note: red and grey nodes represent, respectively, Japanese in-
vestors and subsidiaries; sizes are arbitrary and equal within
each category, in order to better reveal the underlying network
structure. Zoomable version available at http://perso.
ens-lyon.fr/matteo.morini/jpbusnet/Het_ic.pdf ;
industrial codes (see Table 2.5) are readable as labels in the on-

line version.

http://perso.ens-lyon.fr/matteo.morini/jpbusnet/Het_ic.pdf
http://perso.ens-lyon.fr/matteo.morini/jpbusnet/Het_ic.pdf
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firms known to belong to a keiretsu across communities, we can conclude

that the economic structure revealed by the network topology is driven by

keiretsu-type inter-firm bonds.

Our hypothesis can be tested by contrasting two different characteristics

of every firm: on the one hand, a firm can be a member of either one of the Big

6 keiretsu groups; on the other, it belongs to one of the communities derived

from the network structure. We seek to verify the independence (or lack

thereof) between the economic network, as resulting from the community

detection method described above, and the keiretsu structure.

Figure 2.4 displays the bivariate joint frequencies of firms on both keiretsu

and community categories as a heatmap, for the global dataset, including

manufacturing firms worldwide. Hints of a non-random distribution of firms

across the two categories, to be validated statistically (see sec. 2.5.2), are vis-

ible in the image. Mitsubishi- and Sumitomo-bound investors, for instance,

are ostensibly concentrated in two communities.

2.5.2 Independence test

An associative measure must be put to use; since we are dealing with cate-

gorical data, the Pearson Chi-Square test, including some case-specific safe-

guards, have been deemed as appropriate. It has been applied to the result-

ing two way table, to assess whether there is any interdependence between

the two attributes (this being the alternative hypothesis Ha, if the null hy-

pothesis of independence H0 can be rejected).

Moving on to assess the test validity, we observe that the population is

fairly large, and lends itself to an in-depth analysis of subsets of interest.

However, in a few specific instances (e.g. “Europe” macro-region, “Food in-

dustry” industrial sector) the number of selected observations is barely ade-

quate. For the sake of robustness, a double line of defense has been put into
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FIGURE 2.4: Bivariate joint frequencies of Japanese investors;
worldwide, manufacturing sector
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place: first, a key characteristic of the Louvain community detection method

has been leveraged in order to increase the number of observations: being

based on a stochastic algorithm, repeated runs (1.000 iterations, in this case)

return slightly different partitions, which can be accumulated into a richer

dataset (and averaged out, to keep from artificially inflating the sample size,

biasing the test); second, the Chi-Square p-values have been computed by

Monte Carlo simulation (Tate and Hyer, 1973; Bradley and Cutcomb, 1977).

2.5.3 Business ties as weighted links

The strength of business ties, in weighted networks, is measured as Cosine

Similarity (Salton and McGill, 1983). CS compares the distribution of the

capital invested by pairs of co-owners into subsidiaries: a perfect match (e.g.

Ka,1 = Kb,1;Ka,2 = Kb,2; . . . Ka,n = Kb,n, whereKPC,S is the capitalK invested
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by the parent company PC in subsidiary S) corresponds to a CS = 1; as the

allocation choices diverge, CS approaches zero. Technically, it is a measure of

the angle between the two vectors, and its purpose is to offer a proportional

representation of the connection between investing firms going beyond the

binary idea of connected vs. unconnected.

2.6 Results and discussion

Timewise, it appears that, after the first, sparsely populated 1975 snapshot,

a period of strong correlation (rejection of the MRH), ensues, encompassing

the following decades (1985 and 1995 snapshots). In 2005, right before the

mega-mergers occur, evidence starts to wane.

Geographically, an indisputable difference is observable between macro-

areas with medium to strong significance (Asean countries, China and Tai-

wan, Northern America) and one area where there is no evidence for the

persistence of HK structures at all (Europe).

When a disaggregated analysis is performed by industrial activity, the

only, albeit extremely sizeable, sector with unambiguously strong correlation

is “chemical”; “textile” does not offer a strong enough evidence for the exis-

tence of HK (there appears to be a very weak correlation for the unweighted

network case); the independence hypothesis cannot be rejected for “food”

either, since the small number of observations keeps us from achieving ro-

bust and conclusive results. Automotive yields ambiguous results (corre-

lated when weighted, uncorrelated when unweighted); a tentative explana-

tion, which would require a more in-depth analysis out of the scope of this

chapter, may lie in the presence of numerous “smaller” partners, playing a

minor role. Links implying these partners are weaker, and a more clear-cut

HK structure appears when considering the most economically important

subsidiaries only, connected by stronger links. The root of this discrepancy
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UNWEIGHTED WEIGHTED
MRH Rej? ChiSq p-val MRH Rej? ChiSq p-val

Overall YES * 72.15 0.013 NO 56.18 0.080
1975 YES * 45.65 0.039 NO 56.10 0.140
1985 YES *** 61.07 0.001 YES *** 96.70 0.000
1995 YES *** 92.77 0.000 YES *** 91.64 0.000
2005 YES * 72.15 0.013 NO 56.18 0.080
ASEAN YES * 52.68 0.030 YES *** 67.83 0.000
China and Taiwan YES *** 77.51 0.000 YES *** 57.37 0.000
Northern America YES * 78.96 0.011 YES *** 77.50 0.000
EU NO 41.55 0.254 NO 49.11 0.150
Automobiles and Parts NO 70.39 0.982 YES *** 91.10 0.000
Food NO 45.67 0.320 NO 45.67 0.310
Chemicals and Pharma YES *** 73.36 0.000 YES *** 63.43 0.000
Textiles NO 23.32 0.080 NO 28.77 1.000

TABLE 2.6: Hypotheses tests results, unweighted (left) and
weighted (right) columns

Note: ***= p < .001; **= p < .01; *= p < .05

might be traced back in the bulk of smaller partners whose importance is

correctly rescaled through the links’ weight, thus evidencing the correlation

with the HK.

In order to assess the validity of our findings, the results for every hy-

pothesis tested have been contrasted to an alternative network Configura-

tion Model (Newman, 2003), where the network structure is destroyed, while

preserving the degree for single nodes, through a random rewiring process.

Intuitively, this procedure is equivalent to blindly creating economic part-

nerships. In every single instance, any hint of significance disappears com-

pletely, showing p-values very close to 1.

2.7 Conclusions

In this work, we have presented an analysis of the TKZ dataset, using com-

munity detection tools, that led us to reject the MRH in the strong form.
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FIGURE 2.5: Worldwide Japanese investors network: business
ties and Big-6 membership. Highlighted: Mitsubishi and Mit-

sui clusters
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Indeed, we were able to display quantitative evidence that the communi-

ties embedded in Japanese business networks strongly correlate with the HK

structure described in the 2000 “Keiretsu Survey” dataset.

To give a brief summarizing overview, as a first step, we obtained from

the 2006 TKZ dataset a “co-ownership graph”, so that two firms are linked

in our approach if they both invest in an overseas subsidiary. Through com-

munity detection algorithms, the taxonomy of high-density clusters emerged

from this graph so that each firm is classified into a given cluster, as described

in Sec. 2.5. This classification, purely arising from explicit business ties (the

co-ownership), was then compared to the keiretsu one, described in the 2000

TKZ dataset.

Our results, summarized in Table 2.6 strongly point to a clear correlation

between the intrinsic network organization and the HK, albeit with some

fluctuations when one considers more specific subsets, eventually flawed by

the lack of statistics, as for the investments in Europe and the food Iindus-

try. Another interesting point unveiled by the analysis is, in the automotive

sector, the discrepancy between the clear correlation shown by the weighted

network with respect to the unweighted configuration. Finally, to test the

soundness of our findings, we provided, as a comparison, a null model by

shuffling the links and destroying the existing correlations with the Configu-

ration Model. This test, disrupting any network structure, leads to p values

near to 1 and, thus, further proves that the Japanese business network bears

a strong intrinsic mark in its organization.
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Chapter 3

Revealing evolutions in dynamical

networks

3.1 Introduction

The description of large temporal graphs requires effective methods giving

an appropriate mesoscopic partition. Many approaches exist today to detect

“communities”, i.e. groups of nodes that are densely connected (Fortunato,

2010), in static graphs. However, many networks are intrinsically dynamical,

and need a dynamic mesoscale description, as interpreting them as static

networks would cause loss of important information (Holme and Saramäki,

2012; Holme, 2015). For example, dynamic processes such as the emergence

of new scientific disciplines, their fusion, split or death need a mesoscopic

description of the evolving network of scientific articles.

There are two straightforward approaches to describe an evolving net-

work using methods developed for static networks. The first finds the com-

munity structure of the aggregated network, i.e. the network found by aggre-

gating the nodes and their links at all times. However, this approach discards

most temporal information, and may lead to inappropriate descriptions, as

very different dynamic data can give rise to the identical static graphs (Berger-

Wolf and Saia, 2006). To avoid this problem, the opposite approach closely
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follows the evolutions and builds networks for successive time slices by se-

lecting the relevant nodes and edges. Then, the mesoscopic structure of each

of these slices is found independently and the structures are connected in

various ways to obtain a temporal description (Berger-Wolf and Saia, 2006;

Palla, Barabási, and Vicsek, 2007; Rosvall and Bergstrom, 2010; Chavalarias

and Cointet, 2013). By using an optimal structural description at each time

slice, this method avoids the inertia of the aggregated approach. Its main

drawback lies in the inherent fuzziness of the communities, which leads to

“noise” and artificial mesoscopic evolutions, with no counterpart in the real

evolutions of the data. For example, rather different partitions have a very

close modularity (Good, Montjoye, and Clauset, 2010), and minor changes in

the network may lead to quite different partitions in successive time slices,

which would be inadequately interpreted as major structural changes.

Several methods have been proposed to overcome the problems of these

two extreme approaches (Gauvin et al., 2015; Peel and Clauset, 2015; Mucha

et al., 2010; Kawadia and Sreenivasan, 2012). Here, we present a new ap-

proach that distinguishes real trends and noise in the mesoscopic description

of social data using the continuity of social evolutions. To be able to follow

the dynamics, we compute partitions for each time slice, but to avoid tran-

sients generated by noise, we modify the community description at time t

using the structures found at times t − 1 and t + 1. We show the relevance

of our method on the analysis of a scientific network showing the birth of a

new subfield, wavelet analysis. This field represents a difficult test because

it has arisen out of the collaboration of several disciplines, producing a rich

history, made by many entangled streams.

3.2 Method description

Our method consists in four steps:
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Time

wΔt

FIGURE 3.1: Sliding temporal windows

1. The dataset is first divided into temporal windows of w years, trans-

lated by ∆t years (Fig. 3.1).

2. In the second step, community detection is carried out independently

for each window by any method. This leads to a structure that follows

as closely as possible the real mesoscale dynamics, at the price of some

noise. To selectively delete the noise, while keeping the real evolutions,

one has to split or merge communities at each slice, depending on the

relations between the successive communities on longer time scales.

3. For this, the third step systematically computes all the similarities be-

tween communities at times t − 2, t − 1, t, t + 1 and t + 2. For each

community at time t, we keep only the most similar communities at

times t − 2 through t + 2, thus defining its “ancestor” (most similar

community at t − 2) Pt−2, “predecessor” (at t − 1) Pt−1, “successor” (at

t+1) St+1, and “grandchild” (at t+2) St+2. These strong long-term links

allow to discriminate real evolutions from noise, by taking advantage

of the relative continuity and stability of social evolutions on appropri-

ate time scales. For example, and with regard to the dataset used, a new

scientific field does not appear and disappear in a single year.

4. The fourth (and final) step then uses this long-term information to iter-

atively select all the time windows and optimize the complexity score
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(Equation 1). For this, we merge communities that appear to be unduly

split by the independent community detection (Figure 2a), and split

communities that appear to be artificial merges (Figure 2c). In practice,

we identify artificial merges at time t by the links between the “prede-

cessor” communities (at t-1) and the “successor” ones (at t+1). If these

two are linked (as in Figure 2c), then we assume that these two trends

represent the real evolution, and the merge at time t arises out of noise

in the community detection. We then split the community, attributing

the nodes to each of the trends by a simple intersection procedure (for

details, see SI, par. 1). In any other case, when there are missing links

between the communities (as in Figure 2d), we assume that a real merge

has been detected, which is then followed by a split between two dif-

ferent streams. The same procedure is applied to distinguish between

real and artificial splits (Figure 2a-b). This procedure goes on as long as

there exists an artificial split or merge.

5. At the end of the procedure, we obtain a description of the network

evolution at the mesoscale, the unit of description being now several

streams of connected communities. Note, however, that the final de-

scription may depend on the set of initial partitions. To render our

method robust, we compute a “complexity” score (Equation 1) for dif-

ferent final descriptions and use the one with the highest score, leading

to the “richer” story that can be told avoiding noise. The merit of our

approach is, by eliminating most of the noise, to limit these complex

turbulent regions to the real transformations that should not be dis-

carded: things should be made simple, but not too simple. This score is

computed as (eq. 3.1):

Cs =

∑
u∈(us∪um) su −

∑
u∈(ur∪ux) su∑

u∈G su
(3.1)
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(a) (b) (c)

(d) (e) (f)

FIGURE 3.2: Ephemeral (artificial) versus structural (real)
events

Where:

u = nodes in G

su = size of node u

us = resulting split nodes in “structural” (real) splits

um = resulting merged node in “structural” (real) merges

ur = resulting split nodes in ephemeral (noise) splits

ux = resulting merged node in ephemeral (noise) merges

To visualize the output, we align the communities that belong to the same

“laminar stream”, defined as a succession of communities that are all con-

nected, by both t ± 1 and t ± 2 links. More formally, a laminar stream LS is

defined as an ensemble of communities Ci such as:
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Ci ∈ LS ⇔ Pt−2(Ci) ∈ LS ∧ Pt−1(Ci) ∈ LS ∧ St+1(Ci) ∈ LS ∧ St+2(Ci) ∈ LS

(3.2)

where Pt−1(Ci) is the predecessor of Ci at t − 1, etc. In general, real sys-

tems are not only composed of laminar streams: there are some “turbulent

regions”, where real splits produce new streams, flows become intermingled

and new subfields are generated. This turns out to be the case in the real case

application we describe below.

3.3 Emergence and evolution of a new scientific

field: wavelet analysis

We test the method on an evolving network of scientific articles related to

the emergence of a new field: wavelets analysis. This technique, developed

through collaborations among mathematicians, physicists and electrical en-

gineers, has been fundamental for signal/image processing, leading for ex-

ample to the well-known jpeg compression format. Wavelets history is in-

teresting as a test case because it is a recently born subfield (seminal paper

in 1984), for which robust scientometrics records are available. To define the

relevant set of publications, we identified 83 key actors of the early devel-

opments of the field (see A.5). The list was established using expert advice

(one of the authors, PF) and bibliographic searches. We then retrieved all

their publications (from 1970 to 2012), obtaining 6,500 records from Web of

Science. We used 4-years wide time slices (w = 4), separated by one year

(∆t = 1). For each slice, we first defined a network using the articles as

nodes, linked by their common references (bibliographic coupling, Kessler

(1963)), articles sharing less than 2 references are not linked). We then fol-

low the method described above, using maximization of modularity for each
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FIGURE 3.3: Overview of the history of wavelets

Note: streams are labelled according to the subfield within
wavelets development (see text for details). Each com-
munity is positioned according to year (x-axis), aligned
according to streams (y-axis) Zoomable version available
at http://perso.ens-lyon.fr/matteo.morini/

wavelets/flows/disciplines.pdf

slice and the Jaccard similarity index (Jaccard, 1901) to compute the similar-

ities between the successive communities. The final result is represented in

Figure 3.3.

We can now address two important points:

1. What have we learnt about wavelets evolutions using our method?

2. Methodological: what do we learn about our method from this ex-

ample? How important are artificial splits/merges, quantitatively and

qualitatively, i.e. to understand the history of wavelets?

http://perso.ens-lyon.fr/matteo.morini/wavelets/flows/disciplines.pdf
http://perso.ens-lyon.fr/matteo.morini/wavelets/flows/disciplines.pdf
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3.4 Automatic wavelets history

A first idea about wavelets evolutions can be derived from the evolution

of modularity (Fig. 3.5). Roughly speaking, a high modularity value corre-

sponds to isolated clusters, while low values point to highly interconnected

networks. The analysis shows that there are three main stages. In an ini-

tial phase (before 1985), researchers work in different, quite unrelated fields

and modularity is high (the network of all articles in this period is shown in

Fig. S5). Then, in the 1990s, wavelets appear as a common topic whose use

gains momentum, defining a new, specific field that interlinks the publica-

tions of our set of authors, leading to a minimum in modularity. After this,

modularity increases again, pointing to a new, softer divergence, as the initial

levels are not reached. Wavelets become a mature tool, that are less an ob-

ject of interest per se, serving instead a more ancillary role within specialized

communities and paving the way for new avenues of research, by devel-

oping new tools (as “compressed sensing”) or applying wavelets to specific

domains, such as Astrophysics images.

Our approach reveals the major structural flows that define the subfields

within wavelets development (Fig. 3.3). For each stream, we indicate its

name, the main author and the initial/ending dates.

• The stream “Foundations of wavelets” (1983-2006) starts in 1983 with

foundational articles by mathematician Alexis Grossmann. Most wavelets

research streams emerge from it, as “Time-frequency analysis” (Flan-

drin, 1989-2009) and “Component separation” (wavelets without or-

thonormal bases, Szu, 1989-2009). Starting from mathematical physics,

this streams builds wavelets as a rigorous mathematical formalism (80%

of its articles are published in Mathematics journals), but adapted to

Engineering concerns.
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• In 1990, a central stream, the stem from which most of the subsequent

streams will emerge (“Engineering applications”, 1990-2009), is created

by the fusion of Vetterli’s research with a split of the founding stream.

This subfield is less concerned by theoretical developments than by

practical applications, and most of its articles are published in Engi-

neering journals. The stream “Representation” (Unser, 1986-1992) joins

it in 1993, leading to a focus on design. The most important subfields

originating in “Applications” are:

– “Inverse problems & sparsity in image analysis” (Starck, 1993-2009),

which after focusing on applications on astrophysics images, deals

with more general problems in image analysis. It will lead to an-

other important stream, “Compressed sensing” (Baraniuk, 2004-

2009)

– “Structural models” (Wilsky, 1994-2009)

– “Image coding”, building the theoretical foundations of image cod-

ing (Vetterli, 1998-2006)

– “Data hiding” (Ramchandran, 1998-2009)

• Note that there are also some “laminar flows”, that interact only pe-

ripherally with other lines of research, leading to a linear, simple se-

quence of communities. Examples of these relatively independent lines

of research are the group lead by Alain Arneodo (“Multifractal”, 1985-

2009), “Frames” (Gröchenig, 2000-2009), “Video quality” (Bovik, 1999-

2009). These laminar flows represent subfields that apply wavelets to

specific objects, without contributing much to the methodological de-

velopments.
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Finally, it is instructive to look for the position of Yves Meyer, the 2017

prestigious Abel prize for “his pivotal role in the development of the math-

ematical theory of wavelets”. As the number of his publications is not very

high, he does not appear explicitly as the main author of any stream. How-

ever, his publications are highly cited in the stream “foundations of wavelets”,

revealing his importance for the mathematical developments. His “pivotal

role” of connecting ideas and people, notably in conferences, cannot be seen

in our network only made from publications.

3.5 Test of the method

Overall, our method has lead to the split (12) and merge (12) of 24 communi-

ties, representing 10% of all the articles in the database. An example of an im-

portant artificial merge detected by our method, similar to the one sketched

in Fig. 3.2(d), is given in Fig. 3.4. Even if it is clear, looking at the overall

history, that there existed two distinct streams of research for 20 years, the

independent initial partition merged the communities from these two trends

in 1994. Since there exist links (i.e. shared references) among the articles of

the two communities (see the articles’ network in Fig. S4), there is a signif-

icant probability that an independent partition algorithm will gather them

in a single community. Our method allows to avoid this artificial merge of

two distinct streams of research, which belong to different disciplinary tradi-

tions, as one subfield is focused on Mathematics, while the other privileges

Engineering.

More generally, Fig. 3.5 shows that the rearrangements of partitions de-

manded by the maintenance of the streams flows leads to negligible losses in

the quality of the instantaneous partitions as quantified by modularity. This

is important, as it shows that we maintain a close adaptation to the temporal

variations, while choosing the partition that best fits the overall evolution.
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(a) (b) (c)

FIGURE 3.4: Detail of 1994 split. From left to right, the unduly
merged communities are split and assigned to their respective

streams.

FIGURE 3.5: Modularity evolution, pre- and post-filtering.

There is a clear minimum in modularity for the year 1991, pointing to

a homogeneous network without much structure, which results from the

effective mixing of different disciplinary traditions around the new object

(wavelets).

3.6 Comparison to other methods

Our approach offers decisive advantages over existing methods:

• It handles naturally networks in which nodes appear or disappear at

each time step, which is impossible or cumbersome for other methods.

• Contrary to generative models (Jacobs and Clauset, 2014; Peixoto and

Rosvall, 2016; Xu, Kliger, and Hero III, 2014), we do not need to define
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an a priori network community structure (for example, a block model)

which may be unadapted to the data.

• Claveau and Gingras (2016) have studied the history of economics us-

ing scientometrics data and an approach quite similar to ours. How-

ever, to determine the partition at time t, they initialize the Louvain al-

gorithm with the partition obtained for the preceding time step. Their

approach is therefore limited to partitioning by this algorithm. More-

over, the authors do not justify why their approach represents a sound

way of adding some inertia to real-time partitioning.

3.7 Concluding remarks and future work

To make sense of transformations, we need evolving categories that can, at

the same time, readily adapt to the changes and maintain the continuity of

the description. Our method starts from the idea that the unity of an evolv-

ing social process rests on the continuity of its transformations, and uses

the available mid-term temporal information to reveal structural trends from

noisy data, without the assumption of an a priori community structure. It

can be adapted to any partitioning method and to any similarity measure be-

tween communities at different times. Used on scientific data, our method

automatically produces a rich historical account, an objective raw material to

be discussed by science historians.

There is much room for improvement. The relevant time scales (w, ∆t)

have to be chosen from expert knowledge, and we cannot deal with real-time

data, as we use the future to infer the best present partition. We now work to

introduce, through a hidden Markov model, an explicit meso temporal scale

at which transformations (splits/merges) are supposed to happen for a pair

of streams.
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A.1 Modified Brandes algorithm

Bridgeness algorithm, inspired by Brandes’ “faster algorithm” (Brandes, 2001)

SP[s,t]←precompute all shortest distances matrix/dictionary

CB[v]← 0, v ∈ V ;

for s ∈ V do

S← empty stack;

P[w]← empty list, w ∈ V ;

σ[t]← 0, t ∈ V ; σ[s]← 1;

d[t]←−1, t ∈ V ; d[s]← 0;

Q← empty queue;

enqueue s→ Q;

while Q not empty do

dequeue v← Q;

push v→ S;

foreach neighbor w of v do

// w found for the first time?

if d[w] < 0 then

enqueue w→ Q;

d[w]← d[v] + 1;
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end

// shortest path to w via v?

if d[w] = d[v] + 1 then

σ[w]← σ[w] + σ[v];

append v→ P[w];

end

end

end

δ[v]← 0, v ∈ V ;

// S returns vertices in order of non-increasing distance from s

while S not empty do

pop w← S;

for v ∈ P[w] do δ[v]← δ[v] + σ[v]/σ[w] · (1 + δ[w]);

if SP[w,s]>1 then CB[w]← CB[w] + δ[w];

end

end

A.2 Case study on a synthetic network community

The specificity of bridgeness and the influence of the degree, which prevents

BC from identifying correctly the most important bridges, can be exempli-

fied by examining the scores of nodes in cluster 5 of the synthetic network.

This cluster is linked to cluster 13 by 5 connections (through nodes 248, 861,

471, 576 and 758) and to cluster 1 by a single connection (through node 232).

BC gives roughly the same score to nodes 232 and 248, while bridgeness at-

tributes a score almost 4 times higher to node 232, correctly pointing out the

importance of this single bridge between clusters 5 and 1. This is because

BC is confused by the high degree of node 248 (41) as compared to node 232

low degree (20). Therefore, by counting all the shortest paths, BC attributes
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FIGURE S1: Zoom on cluster 5 of the synthetic network. The
numbers represent labels, while the size of the nodes is propor-

tional to their BC score.

too high a bridging score to node 248. Second problem with BC, it gives a

high score to nodes that are not connected to other communities, merely be-

cause they are local centers, i.e. they have a high degree. For example, node

515 obtains a higher BC score than node 758 (Table S1), even if node 515 has

no connection to other communities (but degree 49), contrary to node 758

(connected to cluster 5, but degree 23). Bridgeness never ranks higher local

centers than global bridges: here, it correctly assigns a 5 times higher score

to node 758 than to node 515.

A.3 Japanese co-investment network facts

The global network, complete with data from every industrial sector, once

partitioned in communities (keeping into account the links weight), is com-

posed by clearly defined clusters (as expected, given the high modularity

value shown earlier), the most important five, containing at least 5% of the

total number of nodes, total almost half of the nodes (298, or 49.42%).
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TABLE S1: Nodes in community 5 of the synthetic network,
ranked by decreasing BC (see text)

Id Stirling Modularity Class Betweenness Bridgeness Degree
542 0.0222 5 9173.71 2644.62 44
422 0.0278 5 7714.27 3855.62 35
232 0.0950 5 7551.22 5846.86 20
804 0.0285 5 6995.63 2824.64 34
248 0.0082 5 6588.65 1624.30 48
734 0.0907 5 6410.31 4373.72 21
273 0.0322 5 5698.28 2631.59 30
75 0.0868 5 5349.47 3558.31 22
962 0.0399 5 4989.66 2951.45 24
292 0.0399 5 4377.77 1939.06 24
481 0.0256 5 4305.68 1796.92 25
781 0.0475 5 4257.93 2200.21 20
304 0.0434 5 4221.64 2467.65 22
625 0.0202 5 3964.21 1314.62 32
861 0.0108 5 3295.01 714.44 36
132 0.0200 5 2985.45 1157.49 24
471 0.0154 5 2865.07 1296.38 25
79 0.0302 5 2256.02 1004.28 21
205 0.0208 5 1921.65 788.51 23
515 0.0000 5 1884.07 86.45 49
758 0.0166 5 1791.80 435.66 23
608 0.0200 5 1777.54 522.75 24

Each node has a “size” representing the total shares worth (expressed in

2009 constant US$) owned by the investor.

Graph metrics

• # Nodes: 603

• # Edges: 972

• Average Degree: 3.224

• Average Weighted Degree: 0.232

• Graph Density: 5.0e−3

• Modularity: 0.93
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• Average Path Length: 3.92

Main communities and salient nodes A few salient firms are selected from

each community, and identified by their TKZ code.

id 19 97 nodes (16.09%) 805300 803100 540300

(Sumitomo Corp.; Mitsui and Co. Ltd.; JFE Steel Corporation)

id 32 77 nodes (12.77%) 805800

(Mitsubishi Corp.)

id 62 46 nodes ( 7.63%) 800100 400500

(Itochu Corp.; Sumitomo Chemical Co. Ltd.)

id 53 46 nodes ( 7.63%) 801500

(Toyota Tsusho Corp.)

id 35 32 nodes ( 5.13%) 800200

(Marubeni Corp.)

A.3.1 A small digression on Bridgeness Centrality (Jensen et

al., 2016):

Looking for nodes acting as bridges between distant communities, 520100

(Asahi Glass Co., Ltd., Mitsubishi group, Sanwa Keiretsu) appears the most

interesting, being sited between the central part of the global network and

the small cluster organized around 808800 (Iwatani International Corp., a

trading company investing mainly in China, but also Singapore, Thailand,

Malaysia, USA, Australia and Germany), including gas and other goods.
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FIGURE S2: Northern America (incl. U.S. and Canada) network
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A.4 Geographical analysis

A.4.1 Northern America (incl. U.S. and Canada)

The Northern-American network, composed of 112 nodes, is disconnected

(44 nodes only belong to the main connected component ). Community 7

only includes 6 nodes, but includes the three the top (by worth) enterprises,

all belonging to Sumitomo Corporation; community 15 is detached from the

main component.

Graph metrics

• # Nodes: 112

• # Edges: 116

• Average Degree: 2.071

• Average Weighted Degree: 0.400

• Graph Density: 1.9e−2
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• Modularity: 0.95

• Average Path Length: 3.62

Main communities and salient nodes

id 14 13 nodes (11.61%) 805800 571100 831500 840200

(Mitsubishi Corp.; Mitsubishi Materials Corp.; Bank of Tokyo–Mitsubishi

UFJ, Ltd.; Mitsubishi UFJ Trust and Banking Corporation)

id 16 9 nodes (8.04%) 803100 404100 631300 542300

(Mitsui and Co. Ltd.; Nippon Soda Co, Ltd.; Kioritz Corp. (agricultural

machinery); Tokyo Steel Mfg.Co.,Ltd.)

id 13 8 nodes (7.14%) 801200 418300 787100

(Nagase & Co., Ltd.; Mitsui Chemicals, Inc.; Fukuvi Chemical Industry

Co. Ltd.)

id 7 6 nodes (5.36%) 805300 545700 540500

(Sumitomo Corp.; Sumitomo Pipe & Tube Co., Ltd.; Sumitomo Metal

Industries, Ltd.)

id 15 5 nodes (4.46%) 800200 2196 594900

(Marubeni Corp.; Marubeni-Itochu Steel Inc.; Unipres Corp.)

A.4.2 ASEAN Countries

The Southest Asian Nations network, composed of 415 nodes, is discon-

nected (240 nodes belong to the main connected component ).

The first and second largest communities include almost one third of the

nodes.



68 Appendix A. Supplementary Information

FIGURE S3: ASEAN Network
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Graph metrics

• # Nodes: 415

• # Edges: 468

• Average Degree: 2.255

• Average Weighted Degree: 0.340

• Graph Density: 5.0e−3

• Modularity: 0.97

• Average Path Length: 3.79

Main communities and salient nodes

id 23 95 nodes (22.89%) 540300 803100 805300 801500 811000

(JFE Steel Corp.; Mitsui & Co., Ltd.; Sumitomo Corp.; Toyota Tsusho

Corp.; JFE Shoji Trade Corp.)
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id 22 36 nodes (8.67%) 276800 805800 721100 701200

(Sojitz Corp.; Mitsubishi Corp.; Mitsubishi Motors Corp.; Kawasaki

Heavy Industries, Ltd.)

id 94 14 nodes (3.37%) 800100 12118 260700

(Itochu Corp.; Kyoei Steel Ltd.; Fuji Oil Co., Ltd.)

A.4.3 China

The Chinese network, composed of 466 nodes, is disconnected (256 nodes

belong to the main connected component ).

Community 16: steel;

Graph metrics

• # Nodes: 466

• # Edges: 534

• Average Degree: 2.292

• Average Weighted Degree: 0.350

• Graph Density: 5.0e−3

• Modularity: 0.98

• Average Path Length: 4.35

Main communities and salient nodes

id 16 39 nodes (8.37%) 803100 805300 807800 540700 540100

(Mitsui & Co., Ltd; Sumitomo Corp.; Hanwa Co., Ltd.; Nisshin Steel

Co., Ltd.; Nippon Steel Corp.)
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id 96 38 nodes (8.15%) 800100 as Sōgō shōsha; the rest are minor, 260700,

701200, 359700. . .

(Itochu Corp.; Fuji Oil Co., Ltd.; Kawasaki Heavy Industries, Ltd.; Ji-

chodo Co., Ltd.)

A.5 List of WLTC selected authors

Aldroubi, A; Antoine, JP; Antonini, M; Argoul, F; Arneodo, A; Auscher, P;

Bacry, E; Baraniuk, RG; Barlaud, M; Battle, GA; Benveniste, A; Beylkin, G;

Bijaoui, A; Boudreaux-Bartels, GF; Bovik, AC; Burrus, CS; Chui, CK; Co-

hen, A; Coifman, RR; Compo, GP; Dahmen, W; Daubechies, I; Devore, RA;

Donoho, DL; Elezgaray, J; Escudie, B; Farge, M; Feauveau, JC; Feichtinger,

HG; Flandrin, P; Frisch, U; Froment, J; Gopinath, RA; Grochenig, K; Gross-

mann, A; Guillemain, P; Haar, A; Healy, DM; Heil, C; Herley, C; Holschnei-

der, M; Jaffard, S; Jawerth, B; Johnstone, IM; Jones, DL; Kadambe, S; Kaiser,

JF; Kerkyacharian, G; Kronland-Martinet, R; Lawton, W; Lemarie-Rieusset,

PG; Lu, J; Lucier, BJ; Mallat, S; Mendlovic, D; Meyer, Y; Micchelli, CA; Mor-

let, J; Murenzi, R; Muschietti, MA; Muzy, JF; Paul, T; Perrier, V; Picard, D;

Ramchandran, K; Resnikoff, HL; Rioul, O; Saracco, G; Shao, XG; Shapiro, JM;

Slezak, E; Starck, JL; Szu, HH; Tchamitchian, P; Torresani, B; Unser, M; Vai-

enti, S; Vetterli, M; Walter, GG; Weaver, JB; Wickerhauser, MV; Willsky, AS;

Wornell, GW.

A.6 Re-splitting unduly merged communities

Occasionally, and because of the inherently noisy community detection pro-

cess, groups of nodes (articles) of a time window can assigned to either two

distinct communities or a single, larger community. When we weigh in the
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additional temporal information from t−1 and t+1, and observe that the am-

biguity can be resolved, for example when two consistently distinct streams

have been merged for a single step. We then assume that the unduly merged

communities have to be split back. In order to preserve continuity, each ar-

ticle belonging to the wrongly merged community C0 is assigned to one of

two new communities, C01, C02. We define two sets of articles, Ua and Ub,

one for each of the two streams, Sa and Sb, which correspond to the union

of nodes appearing within each couple of predecessor/successor: Pa,t−1 and

Pa,t+1, and Pb,t−1 and Pb,t+1 respectively. Nodes from C0 which belong to the

set Ua are assigned to C01; similarly, nodes belonging to Ub end up into C02.

Because of the fuzziness of communities, a node can appear both in Pa,t−1

and Pb,t+1; in this case, we assign it to the stream to which it is connected

more strongly (or randomly if both weights are equal).

A.7 Network structure examples, colors according

to community
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FIGURE S4: Year 1994: an ambiguous group of nodes, can be
either split in two or merged in one single community, colored

in green and orange; see also main text, section 3.5
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FIGURE S5: Full articles network, time window 1994–1997
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FIGURE S6: Full articles network, up to year 1982
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