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une approche à base de fouille de motifs fréquents

préparée au laboratoire Hubert Curien

la commission d’examen du 17 juillet 2014:

Rapporteurs : Bruno Crémilleux - Professeur, Université de Basse-Normandie, Caen
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Abstract

This thesis presents a new system for video auto tagging which aims at

correcting the tags provided by users for videos uploaded on the Internet.

Most existing auto-tagging systems rely mainly on the textual information

and learn a great number of classifiers (on per possible tag) to tag new

videos. However, the existing user-provided video annotations are often in-

correct and incomplete. Indeed, users uploading videos might often want to

rapidly increase their video’s number-of-view by tagging them with popular

tags which are irrelevant to the video. They can also forget an obvious

tag which might greatly help an indexing process. In this thesis, we limit

the use this questionable textual information and do not build a supervised

model to perform the tag propagation. We propose to compare directly the

visual content of the videos described by different sets of features such as

SIFT-based Bag-Of-visual-Words or frequent patterns built from them. We

then propose an original tag correction strategy based on the frequency of

the tags in the visual neighborhood of the videos. We have also introduced a

number of strategies and datasets to evaluate our system. The experiments

show that our method can effectively improve the existing tags and that

frequent patterns build from Bag-Of-visual-Words are useful to construct

accurate visual features.



Résumé

Nous présentons dans cette thèse un système de correction automatique

d’annotations (tags) fournies par des utilisateurs qui téléversent des vidéos

sur des sites de partage de documents multimédia sur Internet. La plupart

des systèmes d’annotation automatique existants se servent principalement

de l’information textuelle fournie en plus de la vidéo par les utilisateurs et

apprennent un grand nombre de “classifieurs” (potentiellement un par tag)

pour étiqueter une nouvelle vidéo. Cependant, les annotations fournies par

les utilisateurs sont souvent incomplètes et incorrectes. En effet, un util-

isateur peut vouloir augmenter artificiellement le nombre de “vues” d’une

vidéo en rajoutant des tags non pertinents ou peut simplement oublier une

annotation évidente qui aurait pu être utilisée efficacement par un système

d’indexation. Dans cette thèse, nous limitons l’utilisation de cette informa-

tion textuelle contestable et nous n’apprenons pas de modèle pour propager

des annotations entre vidéos. Nous proposons de comparer directement

le contenu visuel des vidéos par différents ensembles d’attributs comme les

sacs de mots visuels basés sur des descripteurs SIFT ou des motifs fréquents

construits à partir de ces sacs. Nous proposons ensuite une stratégie origi-

nale de correction des annotations basées sur la fréquence des annotations

des vidéos visuellement proches de la vidéo que nous cherchons à corriger.

Nous avons également proposé des stratégies d’évaluation et des jeux de

données pour évaluer notre approche. Nos expériences montrent que notre

système peut effectivement améliorer la qualité des annotations fournies et

que les motifs fréquents construits à partir des sacs de motifs fréquents sont

des attributs visuels pertinents.
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Introduction

It’s now commonplace to say that the digital universe is rapidly growing. In fact, ac-

cording to a market survey performed by IDC1, between 2009 and 2020 the amount

of digital information will grow by a factor of 44. In the case of digital multimedia

content, that trend is confirmed by the fact that video-sharing websites are growing

very quickly. If we consider for example the particular case of YouTube, the statistics

provided by that company2 say that ”over 6 billion hours of video are watched each

month on YouTube — that’s almost an hour for every person on Earth, and 100 hours

of video are uploaded to YouTube every minute”. Concerning the users of such ser-

vices, YouTube says more than 1 billion unique users visit their servers each month,

that shows there is a huge demand for such resources.

How can users retrieve interesting videos on the Web among this huge amount of

data? This is a more and more difficult issue to handle. Multimedia content indexing

has been a very active field of research in recent years as the benefits of such a research

will have a strong impact on the usage which may be done by ordinary people of

the internet tomorrow. The famous survey on visual content-based video indexing

and retrieval from Weiming Hu [46] reflects the intensive research in this field. The

difficulty of the task may be easily understood. Working on videos means dealing with

huge quantities of keyframes (generally at least 24 per second) made up of hundreds of

thousands pixels. Even if image indexing techniques begin to be efficient, there is still

work to do to get such results with videos. In fact, textual document indexing is a far

more mature domain and efficient algorithms have been provided for years in the field

of information retrieval that were dedicated primarily to textual document retrieval

[76]. The most efficient tool available for ordinary people is without no doubt Google

that allows to instantly find relevant documents from a huge set of documents stored

1J. Gantz and D. Reinsel, “The Digital Universe Decade, Are You Ready?,” 2011.
http://www.emc.com/digital universe

2http://www.youtube.com/yt/press/statistics.html
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on Google’s servers. Even if many efforts are still needed to improve search engines

such as Google to better search for textual documents, textual document indexing is

far more advanced that video indexing at the moment.

Thus, the approach based on combining textual information and video resources

has began to provide promising results [77] and is widely used in most commercial

video-sharing websites such as YouTube, DailyMotion, Wat TV, etc. The users of

such websites generally have to manually annotate the videos while uploading them

providing a small textual description or a set of keywords that are generally called

tags. Those tags are then used to index the videos and make them available for the

other users.

However, to allow the search engines underlying these websites to accurately index

the extensive resource of online videos, each video has to be carefully annotated. Un-

fortunately these annotations are often incorrect. Indeed, users uploading videos might

often want to rapidly increase their video’s number-of-view by tagging them with popu-

lar tags such as “Harry Potter”, even if those videos have nothing to do with this famous

book series. Moreover the set of tags attached to a video is also generally incomplete

that is, it is not sufficient to correctly characterize the video. The poor quality of the

tags leads to a poor quality of video indexing and many videos are hidden to people

just because their tags are not accurate.

To solve this problem, video-sharing websites might consider recruiting people whose

job would be to annotate videos all day long. Given the amount of data, it would be

very expensive, but this is not even the main issue. In fact, in the market survey

performed by IDC presented previously, it was not only given facts about the growth

of the digital information between 2009 and 2020, but also that, in the same time,

the staffing and investment to manage it will grow by a factor of only 1.4. Given the

growth of digital storage, there would never be enough human resources to annotate

the uploaded videos and the resulting cost.

In fact, a major issue to make professional people annotate videos is that the an-

notation task is in essence subjective. This may result in a tag quality that may be

dependent of the tagger, of his personal knowledge about the videos he has to tag, of

the moment of the day he performs his task, etc. To solve this problem we may think

about an automatic process to help people tagging videos. The first step would consist

in manually tagging a not so huge quantity of videos, and the second step would be

done by the machine that could learn (with supervised machine learning techniques)

a classifier for each tag that has been used. Nevertheless this approach is not realistic

2



because the number of tags used in websites like youtube may reach millions. Training

millions of classifiers is not a solution.

In this thesis, in order to address these problems, we focus on improving the an-

notation of videos provided by users of video-sharing websites. There have been many

efforts to design algorithms to automatically annotate videos (see for example [77] and

[62]). However, most of the current approaches are based on supervised learning tech-

niques which is not acceptable for scalability reasons.

Thus, we want to propose an unsupervised data mining approach based on the

comparison of the visual content of the videos to propagate the tags of the most similar

videos. There are two motivations for applying data mining techniques to design an

unsupervised video tagging system. The first one is that despite the drawbacks of the

user-provided annotations we previously talked about, these millions of tags result from

the annotation of millions of videos by millions of users all around the world and it

would be a pity not to use such a great source of information. Indeed, adequately

processing the (eventually noisy) tags will certainly help a lot the video indexing task.

The idea we want to implement is that if people upload videos about a topic T, most

people will tag that video with a tag ”T”. Then, if a new video about T is uploaded

without that tag, and if we may find many similar videos with tag ”T”, that new video

should automatically be tagged with ”T”.

The second motivation for applying data mining techniques in this thesis is that

many success stories have been told about data mining techniques in the area of busi-

ness and science. Many papers have also been published about using data mining

techniques in the context of image/video processing in order to extract discriminative

patterns. Applying data mining techniques in our context is just a natural step since

we have large amount of data and we want to discover interesting information in it,

that is knowledge about the way particular videos are associated to particular tags.

Of course, the problem we want to tackle is not simple because it confronts us with a

number of challenges. The first one is related to the classical problem of computational

cost while mining huge datasets. That cost becomes even higher with video datasets.

Indeed, as any video segment can be a candidate for a “good pattern”, performing

exhaustive search on all possible candidates at various locations (space) and lengths

(time) will involve extremely huge computational cost. Of course, a second challenge is

related to the fact that (pre-)processing videos is far more difficult than (pre-)processing
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transactional data stored into a relational database. Another important challenge is the

classical problem of overwhelming amount of patterns resulting from the data mining

step. As we said previously, other researches about automatic tagging of videos often

rely on supervised approaches thus they can use supervised information (the class of

the video) to post-process the extracted patterns and only keep those one that are dis-

criminative for a given class. However, in our case, there is no such information, thus

post-processing becomes a very important issue. Finally, another challenge is that we

have some video datasets without any proper ground truth. This makes our approach

difficult to compare with other state-of-the-art approaches.

Several contributions are presented in this thesis. First we look at the various fea-

tures that could be used to design an efficient comparison function between videos.

Besides, we evaluate our approach and compare it with state-of-the-art techniques.

Then we propose a simple but effective tag propagation process and finally evaluate

the entire system.

The remaining of the thesis is organized as follows. Chapter 1 describes the state of

the art techniques that are useful for our research. It first describes the basic concepts in

the image processing field and more specifically goes into more details about a classical

visual feature called SIFT-BoW. It then presents some popular data mining techniques

as well as how to apply them in the context of videos. The last section is about the

tagging process and presents some current techniques. Chapter 2 presents an overview

of our framework that aims to automatically tag videos. In that context, there are many

parameters that need to be tuned, thus, extensive experiments with image datasets are

performed to evaluate the impact of each one. Chapter 3 presents some experiments

on various datasets in order to demonstrate the effectiveness of our approach. The two

first datasets are quite simple with a limited number of videos or tags, the third one

has nearly 700 videos with 150 tags. Finally we will conclude and propose some future

developments.
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Chapter 1

State-of-the-Art

Figure 1.1: Knowledge Discovery in Databases (KDD) Process

As explain in the introduction, our aim is to automatically correct and complete

tags on large video datasets such as, for example, the Youtube dataset. To tackle this

problem, we will follow a process very similar to the traditional knowledge discovery

from databases (KDD) process as shown in Figure 1.1. In the first step, the video

dataset undergoes a series of pre-processing substeps: selection and cleaning. For

example the cleaning step could consist in filtering out the videos with a resolution

too low to be processed, in cropping all videos to get a dataset of videos of the same

size, in dividing the dataset into batches of manageable size, etc. These steps are not

developed in this chapter and we will assume that the dataset we are using can undergo

the subsequent processes (more details about our specific pre-processing steps are given

in Chapter 4). Once done these first substeps, one has to convert the video dataset into

a suitable format for the data mining process, this is the transformation step. In our
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case, the data mining step is then used to produce a set of Mid-level features that are,

hopefully, more suitable than the low-level features that can be directly extracted by

image processing algorithms. Then, a knowledge extraction step is performed. In our

case, it is a tag propagation step based on the comparison of the videos described by

the newly found mid-level features. This chapter focuses on the these three last steps.

1.1 Transformation Step

We call transformation step the process of extracting sets of features from a clean video

dataset. To do that, one first needs to analyze the structure of the video and then,

extract some features to describe it. The structure analysis consists in splitting the

video into multiple frames. On the other hand, the feature extraction process aims at

representing a frame (i.e an image) as a vector of visual features. However, since the

structure analysis is also performed based on some features extracted from the frames,

we start this section with a review of the different common features used in image and

video analysis and we will then explain how the structure analysis is performed.

1.1.1 Video Features

This section will cover some visual features that are often used for video analysis.

Auditory features and text features are not considered here although they are combined

with other features in some articles related to automatic tagging of videos [86]. Different

features are usually best suited for different tasks so the current trend is to concatenate

all kinds of low level features and obtain a very high dimensional vector that will be used

for video comparison. Another very popular technique is to construct a Bag-of-visual

words [102] (BOW) from the original low-level feature vectors. In this document, we

will mainly rely on local features called SIFT (for Scale Invariant Feature Transform)

[55] and SIFT-Bag-of-words. The name SIFT applies both to an interest point detector

method and a local feature used in image processing. It is robust and can be used to

identify the same features in different images, even with large changes in scale and

rotation. In this section, we will first classify the different group of video features then

briefly explain how they can be extracted. We will focus on the particular case of the

SIFT descriptors and SIFT bag-of-words since they are the ones used in the remainder

of this document.
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1.1.1.1 Feature Classification

Since a video is composed of frames (i.e. images), most of the traditional image features

can also be used for video analysis. Features can be roughly classified as color-based,

texture-based and shaped-based. For the specific case of videos, we add the motion

features.

Color-Based Features. They include color histograms [6], color moment [100], color

correlograms, etc. These features depend on color spaces such as RGB (Red-Green-

Blue), HSV (Hue-Saturation-Value, which is a representation of points in an RGB color

model), YCbCr (this is another way of encoding RGB information: Y is luminance, Cb

and Cr represent the chrominance i.e. differences between the luminance and the blue

(resp. red) color channels), etc. The choice of color spaces depends on applications.

Color features can be extracted from the whole frame or from an image block. They

are very simple but still efficient. Figure 1.2 shows an example of a color histogram. In

the specific context of automatic tagging, color moment (together with other features)

is used in [63], background features (8x8 Hue-Saturation) are used in [86] and in [62],

frame features include LAB and HSV global color histograms.

Figure 1.2: An example of color histogram in RGB space. (source: [34])

Texture-Based Features. Similar to color, texture is an important part of human

visual perception and is another essential feature. Unlike color, texture spreads over

a region instead of at a point. It is normally defined solely by grey levels and thus

is orthogonal to color. Texture features contain important information about object

surfaces as well as their correlations with the surrounding area. The most common

7



texture features include Tamura feature [84], co-occurrence matrix [40], and wavelet

transformation-based features [88]. For example, Amir et al. [6] use Tamura and co-

occurrence features for a video retrieval task in TRECViD-2003, Hauptmann et al. [44]

use Gabor wavelet filters for a video search engine. In the specific context of tagging,

Haar and Gabor wavelets are, for example used in [62] and in [86].

Shape-Based Features. Shape-based features describe object shapes, and they can

be extracted from object contours. A common approach is to detect edges in keyframes,

and then use a histogram to describe the edges distribution. For example, Hauptmann

et al. [44] use edge histogram descriptor in TREViD-2005 for the video search task. At

local level, Foley et al. [31] divide an image into 4 x 4 blocks, and then extract a edge

histogram for each block. Shape-based features are much more difficult to extract than

color and texture-based features. Yang et al. [103] provide a survey about shape-based

features for interested readers. SIFT (for Scale Invariant Feature Transform)[55] is a

very popular descriptor considered as a shape-based feature. This descriptor, firstly

proposed by Lowe [55], is scale rotation, illumination and viewpoint invariant. It is

robust and can be used to identify the same features in different images, even with

large changes in scale and rotation. It is presented in more details in the following

subsection. In the specific context of tag propagation, edge distribution histograms

are used in [63] whereas Yang and Toderici [104] use HOG (Histograms of Oriented

Gradient)[20].

Motion Features. The previous features do not take into account the spatial-temporal

relationship between video frames, which is the crucial property that distinguish videos

from still images. Motion features fill this gap by presenting the temporal information.

In general, there are two types of motions: background motion caused by the camera

movement, and foreground motion caused by moving objects. Thus motion features

can be divided into 2 categories: camera-based and object-based. Within camera-based

features, there are different camera motions such as “zooming in and out”, “ tilting up

and down”etc. These features can not capture the motion of the important objects.

Object-based motion features are more interesting and thus more studied. A first

approach consist in trying to model the distribution of global or local motions in videos.

For instance, Ma and Zhang [57] convert the classic motion vectors into a number of

directional slices, these slices in turn are used to create a multidimensional vector which

is called motion texture. This approach has low computational complexity, but it lacks

an accuracy representation for object actions. The second approach is modeling the
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motion trajectories of objects in videos [21]. In [9], each trajectory is represented as

temporal orderings of sub trajectories which are represented by their principle com-

ponent analysis (PCA) coefficients. Su et al. [81] construct motion flow from motion

vectors to create continual motion information in the form of a trajectory. With a given

query as a trajectory, the system retrieves trajectories that are similar to it. Even this

method can describe object actions, it depends on many difficult factors: correct object

tracking, automatic recording of trajectories. . . The third approach describes spatial

relationship between objects. Nakanishi et al. [64] construct the spatio-temporal rela-

tionships between objects by putting objects’ traces across a time line. The limitation

of this approach is the difficulty of labeling each objects and its position.

Features Fusion Fusion is a step of combining different objects, for example, con-

catenating visual features is called early fusion. Combing multiple features is not simply

put one feature next to another, for example, if the former ranges [0, 1] while the latter

ranges within [0, 1000], a normalization term is required before concatenating them.

1.1.1.2 Feature Extraction

Local features are usually extracted by Interest Point detectors. An interest point is

a point in the image which, in general, is rich in terms of local information contents.

Corner detectors (for example, [61] or [41]) and blob detectors are the two most common

types of interest point detectors. In 2004, Lowe [55] proposed the SIFT interest point

detector, to identify potential interest points by selecting the local extrema of an image

filtered with differences of Gaussian. The output of a sift detector is a point, a scale

which generates a patch around the point (depending on the scale of the image) and an

orientation which corresponds to the dominant gradient in the patch. The orientation

will provide rotation-invariance properties to the descriptors.

The key-points extracted from these detectors are then described (with some de-

scriptors) and used as input for any image/video analysis tools. However, extracting

a large number of interest points can be expensive and, not necessarily reliable if the

images/videos are especially diverse. In 2006, [66] showed that for description purposes,

one could use a simpler strategy that obtain comparable performance as detecting a

set of interest points. This strategy is called dense sampling. It consists in uniformly

selecting points in the image, for example on a regular grid, instead of focusing on

particularly interesting ones. An example of these two methods are shown in figure

1.3. In the special case were the targeted descriptors are SIFT features, [89] proposed
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a very efficient dense sampling implementation written to avoid the computations of

overlapping regions.

Figure 1.3: Interest points (left) and dense sampling points (right).

1.1.1.3 SIFT Descriptor

We will now focus on the particular case of the SIFT descriptors as they are the main

features used in this thesis. A SIFT descriptor is a 128-Dimensional vector which

describes weighted gradient information around a given point. To construct such a

descriptor, one has to identify a neighborhood region (a patch) around a point given by

a scale parameter and an orientation for this patch. These parameters are provided by

a sift detector and should be chosen arbitrarily when using a dense sampling method

[43].

To compute the SIFT descriptor, the patch is encapsulated inside a 16x16 window

(as in Figure 1.6) broken into sixteen 4x4 windows. Within each small window, gradient

magnitudes and orientations are calculated. The gradient magnitude and orientation

of a point (x, y) (see Figure 1.4) can be computed by:

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2

θ(x, y) = tan−1
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)

These gradients are computed for all points (x, y) within the window. Then, a

histogram is created for the orientations. By default, the 360 degrees are divided into

36 bins (each bin has 10 degrees): the first bin is from 0 to 9 degrees, the second bin
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Figure 1.4: Gradient magnitude and orientation of a patch.

Figure 1.5: 8-bin orientation. Figure 1.6: 128-D vector.

is from 10 to 19 degrees, and so on. A weight is associated to each bin. This weight is

proportional to the magnitude of gradient at that point, and to a Gaussian window or

a Gaussian weighting function which encodes the distance towards the original interest

point.Then, these orientations are again split into an 8-bin histogram (instead of the

original 36 bins): the first bin is from 0 to 44 degrees, the second bin is from 45 to

89 degrees, and so on (see Figure 1.5). The weights computed before guarantee that

gradients far away from the interest point will add smaller values to the histogram.

As a result, one 4x4 window is equivalent to a 8-bin histogram or a 8-dimensional

vector. The whole 16x16 window can now be presented as a (4 x 4 x 8 =) 128 dimen-

sional vector. To make this feature rotation independent, the interest point’s prominent

rotation (the original orientation) is subtracted from each and every orientation (i.e.

all 128 values). A normalization step is done by dividing each bin by the root of the

sum of the squared vector.
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1.1.1.4 Bag-of-Word Construction

The bag-of-words model is a representation originally used in natural language pro-

cessing [42]. In this model, a text (such as a sentence or a document) is represented

as an unordered collection of words, disregarding grammar and word order. Recently,

the bag-of-words model has also been adopted for computer vision. Thus some prefer

calling this Bag-of-Visual-Word (BOW) instead, to emphasize that this technique is

used in image processing, and the “word” is a “visual word” instead of a “text word”.

Figure 1.7: Building bag of visual word2.

We will now illustrate the construction of BOW from SIFT features. At this stage,

each interest point is represented by a 128-D vector, or a point in a 128-D space (called

key point feature space in figure 1.7). A dataset consists of several hundred images,

and an image may also consists of several hundreds interest points, thus the whole data

set can be described as a huge set of points in this 128-D space. In this space, a large

amount of those points might be close and could be described as an unique “point” (i.e

a unique visual word) to obtain a description less sensitive to small variations.

Specifically, a clustering algorithm (e.g. K-means) is used to cluster the total

amount of descriptors described in the SIFT 128-D space. The number of clusters

2http://www.ifp.illinois.edu/∼yuhuang/samsung/bagofwords.jpg
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determines the size of the visual vocabulary (i.e. the number of visual words), which

can vary from hundreds to over tens of thousands. Each cluster has a prototype (typi-

cally its center points) called the visual word. All the points that belong to this cluster

will be mapped to this prototype.

Finally, within an image, replacing all interest points with their corresponding vi-

sual words produces a set of visual words called the bag of visual words. This BOW

representation can be converted into a visual-word vector by counting the number of

appearance of each visual word within the image (or within the bag).

Figure 1.8: Building local BOW features.

This popular BOW construction has been originally used at a global scale, i.e. one

image is usually represented as a single histogram of visual words. There is another

approach called local BOW in which histograms are built from multiple small patches

within the image (Figure 1.8). Each patch is the spatial neighborhood of a certain

interest point. Consequently, applying local BOW, one image is represented as multiple

histograms. An advantage of this approach lies within the local information captured

by local BOW [10].

1.1.2 Structure Analysis

The building blocks of a video, at a primitive level, are frames which are still images. At

the intermediate level, there are 3 main notions : shot, scene and clip. A shot is a series

of frames taken by a single camera without breaks. A scene is a shot or series of shots

constituting a continuous action (for example, a scene of a dialog between two people

might contain many shots of talkers). Clip is used to mentioned a short video, usually

part of a longer recording. When dealing with videos, it is uncommon to process all

the frames (there are about 1500 frames per minute), thus researchers have decided to
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work with a smaller portion of frames, called keyframes which are still discriminative

enough to represent videos. In the following we focus on state-of-the-arts methods to

perform this structure analysis and, in particular shot boundary detection, keyframe

extraction, and scene segmentation. In the rest of this document, we will rely on some

of these methods (we do not make contributions on them) to tackle our problem.

1.1.2.1 Shot Boundary Detection

A shot is defined as a consecutive sequence of frames from the start to the end of

a recording. It often displays a continuous action, thus there are strong correlations

between frames within a shot. The start and the end of a shot are called shot bound-

aries. The task is then to detect these shot boundaries in the original video. Generally,

shot boundaries can be classified into two types: discontinuous and continuous. If the

boundary shows a sudden change between two successive shots, it is an instantaneous

boundary and often called a “cut”. Vice versa, if the change is gradual and stretches

over several frames, it is the continuous one, and often includes fade, dissolve, wipe,

etc. Detecting a cut is typically easier than detecting a gradual boundary. There are

different approaches to solve this problem [108] but they all contain these three steps:

extracting the visual features from the frames, measuring the similarities between them,

and detecting boundaries based on the dissimilarities.

Since the number of frames is often large (at least 24 frames per second) within

a shot, the low-level features extracted should be simple and efficiently computable.

They often include color histogram [38], [45], motion vectors [72], etc. Some authors

even tried with more complex features such as SIFT features [14] or other descriptors

extracted with an interest points detector [32]. However, in general, all these more

complicated features can not outperform the basic color histogram [108].

The similarities between the frame features can be measured using for example

[11, 18, 56]:

• the classic Euclidean distance:

d(q,p) =

√√√√ n∑
i=1

(qi − pi)2

• the intersection kernel:

k(q,p) =

n∑
i=1

min(qi, pi)
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• the chi-squared metric:

d(q,p) =
n∑
i=1

(qi − pi)2

2(qi + pi)

The techniques include pair-wise measuring (compare successive frames) and window

measuring (compare frames within a window). The window-based one is more effective

but also more computational than the pair-wise one.

Then, once computed the features and their similarities, one has to detect the shot

boundaries. Current approaches can be roughly divided into two types: threshold-based

and learning-based approaches.

• Threshold-based Approach: the threshold can be global [13], adaptive [99], or

combination of both [75]. The global threshold is used for the entire video, and

the adaptive threshold is calculated locally with a sliding window. The adaptive

threshold often returns better performance compared to the global one. However,

estimating the parameters for the adaptive threshold is more difficult.

• Learning-based Approach: the boundary detection problem is converted into a

binary classification task in which frames are classified as boundary or not. Both

supervised and unsupervised learning are used. Support Vector Machine (SVM)

[15], [118] and Adaboost [117] are the two most commonly used supervised clas-

sifiers.

1.1.2.2 Keyframe Extraction

The next step after detecting shots is trying to succinctly represent each shot as one

or several most informative frames. These frames are called keyframes. According to

[87], there are many categories of keyframe extraction techniques.

The simplest technique consists in extracting the keyframes by evenly sampling the

video (two keyframes a second, or two keyframes a shot [62], for instance).

Another commonly used technique consists in iteratively comparing each and every

frame with the most recent keyframe until finding a frame that is very different. That

frame then is selected as the next keyframe. Simple feature such as color histogram can

be used with this technique [116]. Another similar technique is constructing a reference

frame for each shot, it can be an average histogram [29], or a maximum occurrence

frame [83]. Then, a distance is calculated between each frame in the shot and the

constructed/reference frame. Keyframes are extracted using the distance curve (at

the peaks, for example). Some researchers even consider both keyframe extraction and

15



object detection to make sure that the keyframes will contain information about objects

[48]. Clustering-based approach [119] is another method to extract keyframes. After

all frames are clustered, one representative frame is then extracted from each cluster

to become the keyframe. The similarity function of clustering algorithm is calculated

as the overlapping of two color histograms (i.e. using an intersection kernel).

Since the definition of a keyframe is subjective, there is no consistent method to

evaluate the quality of these keyframes. However, the error rate and the video com-

pression ratio are two popular measures that can be used as evaluations. In general,

given a video and a set of keyframes, a compromise between low error rate and high

compression ratio is often taken.

1.2 Pattern Mining

The features presented before were the core of the research in computer vision for many

years. However, many recent papers [2, 50, 82] have shown that global features (such

as a single histogram per images), very local features such as SIFT descriptors or even

BOW are not discriminative enough to tackle very challenging image or video analysis

problems such as the ones provided for example in the PASCAL VOC challenges [27]

and in the TRECVid competition [79]. In particular, there has been a very recent focus

on making use of pattern mining techniques to obtain more discriminative features from

the BOW representation of images and videos (see Section 1.2.4).

In this section, we will start with a general introduction on pattern mining. Then,

we will focus on two recent heuristic pattern mining algorithms based on the “minimum

description length” principle: KRIMP and SLIM. The latter is the main algorithm that

we will use in the following chapters. Finally, we will conclude with a bibliography on

the pattern mining methods currently used in computer vision.

1.2.1 Overview

Pattern mining is a subfield of data mining which aims at finding regularities (patterns)

in some given data. Depending on the type of data, these patterns can be sets (item-

sets), sequences or graphs. We first provide the basic vocabulary used in the pattern

mining field and we present in more details different itemset mining algorithms and

their characteristics. Three of them are extensively used in the rest of this thesis.
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Transaction ID Attributes

Beer Bread Soda Diaper Milk

1 0 1 1 0 1

2 1 1 0 0 0

3 1 0 1 1 1

4 1 1 0 1 1

5 0 0 1 1 1

Table 1.1: A market basket record dataset.

1.2.1.1 Generalities over Pattern Mining Datasets

A dataset can be considered as a collection of data objects. There are many other

names for data object, depending on the context: record, point, vector, pattern, event,

sample, observation to name a few. Each data object, in turn, is described by multiple

attributes such as the mass, or the availability of an object.Attributes are also named

variables, characteristics, features or dimensions. Datasets can be roughly divided into

three categories: record data, graph-based data, and ordered data.

Attributes An attribute is a property of an object that may vary from one object

to another, or from one time to another. It can have a small number of possible

values (categorical attributes) or unlimited ones. For example, the attribute “eye color”

has a limited number of possible values that change from person to person, and the

attribute “temperature” of an object has unlimited possible values that change over

time. With the same dataset, there are many options to choose appropriate attributes.

For example, in table 1.2, the attributes are “the first item in the basket” etc. and the

possible values are “Beer, Bread, Soda. . . ” However, that dataset can be represented as

in table 1.1, the attributes then are “whether Beer is bought or not”, “whether Bread

is bought or not”. . . and the corresponding values are binary: “1” means yes and “0”

means no.

Record and Transactional Data In the standard setting, the data set is a collection

of records, each record contains a fix number of attributes. The data can thus be

represented as m × n matrix where m is the set of objects or examples and n is the

set of attributes. Figure 1.1 gives an example of such record data in the special case
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Transaction ID ITEMS

1 Bread, Soda, Milk

2 Beer, Bread

3 Beer, Soda, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Soda, Diaper, Milk

Table 1.2: The transactional dataset corresponding to the record dataset shown in
Table 1.1.

where the data contains information about some customer purchases in a supermarket

(we call it market basket data).

In the case of market basket data, the number of possible items that a customer can

purchase (the attributes of the table) is often much larger than the actual number of

items in his/her basket. A Transaction table is a more “compact” representation of the

record table where only the non-zero values are kept. In our market basket example,

the products purchased by a customer constitutes a transaction, while each individual

product is an item. Table 1.2 shows a sample transaction data set. Each row represents

the purchases of a certain customer at a certain time. Note that to make it even more

compact, the attributes name can be re-encoded using numbers.

1.2.1.2 Frequency and Apriori Principle

In the seminal SIGMOD paper of Agrawal et.al. ([3] which introduced the first pattern

mining algorithm, the patterns were used to create association rules. This first algo-

rithm mined singleton patterns called itemsets (i.e. sets of items). An association rule

is a rule I → J where both I and J are itemsets and which means that there is an “as-

sociation” between the occurrence of an itemset I and of an itemset J in the database.

The number of transactions that include a particular itemset in a database is called

the support of this itemset (written sup(I)). The frequency of an itemset (freq(I))

is its support divided by the number of transactions in the database. In the original

paper, the authors were interested in mining association of products that were often

bought together in a market basket database. They were thus interested in frequent

association rules. The frequency of an association rule is defined as freq(I ∪ J). The

association rule search problem boils down to finding the set of patterns I ∪ J that are

frequent enough (according to a minsup or minfreq threshold). Note that the size of
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an itemset is the number of items it contains: a 1-length itemset is a single item.

A brute-force approach to find the frequent patterns (and then the association

rules) would be to enumerate them all and test their frequency over the given dataset.

However, this approach is exponential in the number of possible items (i.e attributes)

in the database: with only 20 unique items, there are 220 ≈ 106 possible candidates

frequent patterns for which a support must be computed. Besides introducing the

first frequent itemset mining algorithm called APRIORI, the authors of [3] also used

a simple anti-monotonic principle over the frequency of the itemsets which has been

used subsequently in all other pattern mining algorithm. This principle (also known as

the Apriori principle) states that if an itemset is frequent, then all of its subsets must

also be frequent. In other words, if an itemset if found infrequent, all its supersets can

not be frequent. This principle, illustrated in Figure 1.9 in the case of APRIORI, is

used to drastically reduce the number of frequent candidates during a frequent pattern

search and thus reduce the computation time of all algorithms. Besides, if the dataset

is divided into several partitions, an itemset can be frequent only if it is frequent in

at least one partition. This property opens the door to divide-and-conquer algorithms

[39, 114] for finding frequent patterns.

Figure 1.9: An example of apriori principle based pruning. (source: [69])
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1.2.1.3 Itemset Mining Algorithms

In general, pattern mining search algorithms can be roughly categorized into two ap-

proaches: breadth-first search and depth-first search (see Figure 1.10). The most pop-

ular example for breadth-first approach is the Apriori algorithm [3], and FP-Growth

[39] is a representation for depth-first approach. Besides the search strategies, these

algorithms also differ in the way they compute the support of an itemset.

Figure 1.10: Breadth-first search vs Depth-first search approaches. (source: [69])

The breadth-first Apriori algorithm [4] starts by considering all individual items

(which can be viewed as itemsets with length 1) and taking out 1-length frequent

patterns. The 2-length frequent patterns are chosen from a set of candidates, which are

obtained by combining every item to each 1-length frequent pattern. Let Dk the set of

frequent patterns of size k. Apriori algorithm computes candidates for Dk+1 from Dk

using the same technique: combining each k-length frequent patterns. Then the Apriori

principle is used to ensure that all candidates containing subsets of length k that are

infrequent are pruned. Counting the support of each remaining candidate by scanning

through the whole dataset, and eliminating candidates that are infrequent result in the

frequent patterns of length k + 1. The progress continues iteratively until Dk = ∅ and

stops at such k (notice that if Dk = ∅, then Dk′ = ∅ for any k′ > k). Apriori uses a hash

structure to reduce the number of comparison when scanning dataset, thus reducing

the complexity of checking supports for candidates.

Apriori generates candidates and tests if they are frequent: both steps are expensive.

If there are 104 frequent 1-itemsets, the Apriori algorithm will need to generate more

than 107 2-itemsets and test their frequencies. FP-Growth [39] is proposed with these

20



difficulties in mind: it allows discovering frequent patterns without explicit candidate

generation. The crux of FP-Growth lies within a special representation of the dataset

called a FP-Tree (for Frequent Pattern Tree). Once an FP-tree has been constructed,

the algorithm uses a recursive divide-and-conquer approach to mine the frequent pat-

terns.

The standard frequent pattern algorithms find all frequent patterns. Besides, if

there is a frequent pattern of size k, then according to the Apriori principle, all its

2k − 2 subsets are frequent. In many cases, only the frequent patterns that have the

maximum number of items are needed, thus an exponential number of subsets are

wastefully generated. Such frequent patterns are called maximal frequent patterns. By

definition, a pattern is maximal frequent if none of its supersets is frequent. The one

downside of a maximal frequent pattern is that, even though all the subsets are frequent,

the actual support of those are not available. That is how the closed frequent patterns

came into picture: a pattern is closed if none of its supersets has the same support as

the itself. Closed frequent patterns are more widely used than maximal ones because

they contain the support of the subsets, so no additional information is needed to find

the support of all frequent patterns.

LCM [91] stands for Linear time Closed itemset Miner is one of the fastest imple-

mentations to mine closed frequent patterns. There are also LCMfreq and LCMmax

implementations for mining normal frequent patterns and maximal frequent patterns,

respectively. For the sake of simplicity, the term LCM is used to indicate all these

three algorithms. Theoretically, the complexity of LCM is bounded by a linear func-

tion with respect to the number of closed frequent patterns, thus it is called Linear

time Miner. LCM uses a prefix preserving closure extension to completely enumerate

closed itemsets. This allows counting the support of an itemset efficiently during the

mining process. It includes a strong pruning method to further reduce the computa-

tion time when the number of large frequent itemsets is small. It also generates closed

itemsets with no duplication. For all these reasons, we will use this very efficient and

fast implementation when mining itemsets during this thesis.

1.2.1.4 Sequence Mining Algorithms

Subsequences are another very popular type of pattern. The sequential pattern mining

problem was first stated by Agrawal and Srikant [5]. Each transaction is a set of items,

and each sequence is a list of ordered transactions. A frequent sequential pattern is a se-

quence whose appearance in the dataset is greater than a pre-defined threshold. There
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are many applications involving sequence data such as temporal market basket analy-

sis, telephone calling patterns, events in networking environment, biological sequences,

time series analysis etc. A number of algorithms to tackle the problem of extracting

the complete set of frequent sequences in a dataset has been developed over the years.

For example, SPADE (Sequential PAttern Discovery using Equivalence classes) [113]

is based on the principles developed for the ECLAT algorithm [112] for frequent item-

set mining. It adopts a divide and conquer strategy using tidlist for support counts.

SPAM [7], PrefixSpan [70, 71] and Clospan (Closed Sequential pattern mining) [101]

are other well known depth-first search sequential mining algorithms. They all try to

implement smart strategies to enumerate the candidate subsequences while storing as

few information as possible into main memory. The last one even limits the output of

the algorithm to the closed sequences which are the sequences with no super-sequence

with the same support. More information on those algorithms can be found in [60]. The

problem of mining sequential patterns using a heuristic such as the compression-based

principle described in the next section has been tackle in [85]. However, to the best

of our knowledge, this method is limited to a restricted case of episodes (sequences of

items) and it cannot tackle sequences of itemsets.

1.2.2 KRIMP and SLIM Heuristic Algorithms

The output of standard frequent pattern miners is often a very large number of highly

redundant patterns. This leads to one of the major problems with the classic frequent

pattern mining: it is difficult to find a small but good and informative set of patterns

from such a huge number of output. The MDL principle is a criterion to select a good

subset of the complete set of patterns. MDL stands for “minimum description length”,

and its principle is that “the best set of frequent patterns is that set that compresses

the database best”.

1.2.2.1 Minimum Description Length (MDL)

MDL [35] is a practical version of Kolmogorov Complexity [51]. They all follow the

Induction by Compression philosophy. The principle of MDL can be described roughly

as the following:

Given a set of model M, the best model M ∈M is the one that minimizes

L(M) + L(D|M) (1.1)

in which L(M) is the length of the description of M , and L(D|M) is the length of
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the description of the data D when encoded with M . Both are measured in bits.

In order to apply MDL to the pattern mining scenario, three questions need to be

clarified: what the models M are (and in particular a model M ∈ M), how can M

describe a database, and how can M and D be encoded in bits. These 3 questions can

be paraphrased as: what is M , what is D|M , and how are L(M), L(D|M) calculated.

Note that with MDL, the main concern is the code lengths, not the semantics of the

code words.

The key idea of the MDL-based pattern mining approach proposed by Siebes et. al.

[96] is the use of a code table. A code table is a simple two-column dictionary with item

sets on the left-hand side and corresponding codes on the right-hand side (see Figure

1.11). The itemsets in the code table are ordered first descending on length, second

descending on support, and third following alphabet order. And the code table must

contain at least all single items constructing the whole database. As mentioned before,

the actual codes in the right-hand side are not important, their lengths are. To explain

how these lengths are computed, the second question must be answered first: how is a

database encoded by using the code table?

Figure 1.11: Code table example (from [96]). The widths of the codes indicate lengths.
The usage column is here only to demonstrate the more a code is used, the shorter it
is.

Take an arbitrary transaction t as an example to be encoded by a code table. The

first step is searching for the first item X in the code table such that X ⊆ t, the search

order is the order of itemsets of the code table. The code of X then becomes a part of

the encoding of t. If t\X 6= ∅, the search is repeated to encode t\X. The process keeps

going on until t\X = ∅, and the set of itemsets that are used to encode transaction t

is called its cover. Since the code table contains all singletons, this algorithm always

guarantees returning an encoding to any transaction. Figure 1.12 gives an example of

a database and its corresponding cover as well as encoded length.
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Figure 1.12: A database example with its cover and encoded length derived from the
code table shown in Figure 1.11. (source: [96])

With this encoding knowledge is at hand, we can cover all transactions in the

database, and computing code lengths becomes a feasible task. The concept is that:

the more often a code is used, the smaller its length should be.

The usage of an itemset X in the code table CT is the total number of transactions

which contain X in the encoding process. Thus the relative usage of X is the probability

that X is used to encode an arbitrary transaction t. Borrowing from information theory

field, the Shannon entropy [19] provides the length of optimal code for X:

L(X|D) = − logPr(X|D)

where

Pr(X|D) =
usage(X)∑

Y ∈CT usage(Y )

These optimal values help forming the right-hand side column of the code table,

thus we can use L(X|CT ) and L(X|D) interchangeably. Note that the above model M

is now become the code table CT . From this information, the length of the encoding

of a transaction can be easily calculated as the sum:

L(t|CT ) =
∑
X∈t

L(X|CT )

And thus, the second element of equation 1.1, or the size of the encoded database
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is:

L(D|CT ) =
∑
t∈D

L(t|CT ) (1.2)

Figure 1.13: A example of Standard Code Table with its cover and encoded length
derived from the database shown in Figure 1.12. (source: [96])

To use the MDL principle, we still need to know what L(CT ) is, i.e. the encoded

size of a code table. Recall that a code table is a two-column table consisting of itemsets

and codes. The simplest code table is the one that contains only the single items, and it

is called Standard Code Table, or ST for short. Figure 1.13 demonstrate an example

of ST in action. This definition is needed to encode the first column of the code table:

all itemsets of the left-hand side column are encoded by the code table ST . Taking the

sum of all these encodings results in the size of the first column of the code table. The

size of the second column is just the sum of all the code lengths. Basically, the size of

the code table CT is given by:

L(CT |D) =
∑
X∈CT

(L(X|ST ) + L(X|CT )) (1.3)

With results from equation 1.2 and 1.3 the total size of the encoded database can

be calculated: it is simply the size of the encoded database plus the size of the code

table. That is, the criteria 1.1 can be rewritten as:

L(D, CT ) = L(CT |D) + L(D|CT )

The optimal set of item is the one that its corresponding code table minimize above

criteria.
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However, searching for this optimal set of items is not a simple task. First of all, the

search space is too large to be considered exhaustively. Secondly, there is not a simple

way to know what the effect will be on the compression before adding an element to

a code table [96]. Thus, making use of heuristics is a realistic option. Two following

sections will devote to two prominent heuristic approaches to solve MDL problem:

KRIMP and SLIM. KRIMP is Dutch for to shrink, and SLIM means smart.

1.2.2.2 KRIMP Algorithm

The KRIMP algorithm [96] needs a set of frequent patterns to be able to start with.

The main task of KRIMP is filtering a pre-mined set of candidates, trying to select the

best set of itemsets which compress the original database well. The pre-mined set can

be a set of classic frequent patterns, like closed frequent patterns or maximal frequent

patterns.

The basic greedy heuristic strategy is following:

• Start with the standard code table ST which consists of all the single itemsets.

• Add the itemsets from the pre-defined set one by one into the code table. With

each itemset, if the newly added code table produce a better compression, the

itemset is kept. Otherwise, discard the itemset.

Algorithm 1 The KRIMP Algorithm

Input: Database D, candidate set F

Output: A heuristic optimal code table CT
1: CT ← ST
2: for each candidate F ∈ F do
3: CTc ← (CT ⊕ F )
4: if L(D, CTc) < L(D, CT ) then
5: CT ← post-prune(CTc)
6: end if
7: end for
8: return CT

The pseudo code of KRIMP is shown in Algorithm 1. It takes as input the database

D and a set of pre-mined candidates F at a given support minsup, and the expected

output is a heuristically optimal code table. The first step is assigning the Standard

Code Table ST, which contains only singletons, to the code table (line 1). Then, each

candidate F is considered one by one (line 2) by putting it into the code table CT
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(line 3). Two questions are raised here: in which order the candidate F ∈ F should be

considered, and in which order the candidate F should be put in the code table CT?

To answer the first question: the candidates are ordered first descending on support,

second descending on length, and third in alphabet order (for line 2). The reasoning for

it is that: long, frequently occurring itemsets should be given high priority. Itemsets

with the highest support, those with potentially the shortest ones, end up at the top

of the list. Of those, the longest sets are preferred, as they will be able to replace as

many items as possible.

About the order in code table CT , the elements are ordered first descending on

length, second descending on support, and third in alphabet order (for line 3). The

reasoning is as follows. To obtain a good compression ratio it is desired to replace as

many individual items as possible, using as few as possible codes. The above order

gives priority to long itemsets, as these can replace as many as possible items by just

one code. Also we prefer those itemsets that occur frequently in the database to be

used as often as possible.

The next step is calculating the new compressed size, and the candidate is only

accepted if the compression improves (line 4). Lastly, all elements X ∈ CTc are recon-

sidered to remove elements which are not improve the total compression (line 5).

Pruning itemsets from the code table CT is an important step. If the total encoded

size decreases by pruning an itemset, that itemset is permanently removed from the

code table. It help controlling the size of the code table, and retaining only the best

set of items by removing not-useful itemsets. Its net result is a speed-up as code table

is kept smaller and the whole process thus needs to consider fewer itemsets. Since the

pruning process only apply if the candidate F is accepted, and only few candidates

are, this effectively reduces the pruning search space. Also, not all subsets of CT is

considered for pruning, only itemset whose usage decreases is considered for removal.

The rationale is that for itemsets whose code lengths have increased, there is a high

chance that these sets now harm the compression.

The algorithm is simple and straightforward. It provides a solution to the well-

known explosion in the size of frequent patterns in pattern mining field. It reduces

the huge number of highly redundant frequent patterns to only a small number of

high-quality patterns.

However, KRIMP has some drawbacks originated from its simplicity. The first one

is its input: the pre-mined set of candidates. This candidate set is often very large

(millions of patterns), thus merely mining, sorting, storing them takes lots of time

and effort, even before KRIMP can start its duty. Secondly, almost all of patterns
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will be rejected, very few patterns (out of millions) will be selected. Thus spending

time checking a pattern while knowing the pattern is rejected with 99% probability is

somehow irony. Lastly, KRIMP is a rough greedy heuristic approach, it considers each

candidate only once, in a static order thus it sometime rejects candidates that could

be useful later.

1.2.2.3 SLIM Algorithm

Unlike KRIMP, SLIM [80] does not need to start with a set of itemsets. Instead, SLIM

adopts a bottom-up approach: it slowly add new itemset, which is a combination of

current itemsets of the code table.

Algorithm 2 The SLIM Algorithm

Input: A database D

Output: A heuristic optimal code table CT
1: CT ← ST
2: for each candidate F ∈ {X ∪ Y : X,Y ∈ CT} do
3: CTc ← (CT ⊕ F )
4: if L(D, CTc) < L(D, CT ) then
5: CT ← post-prune(CTc)
6: end if
7: end for
8: return CT

The pseudo code of SLIM is shown in Algorithm 2. It is very similar to the pseudo

code of KRIMP in Algorithm 1 with some slight differences. It takes only one input: the

database D (it does not need candidate set), and the expected output is a heuristically

optimal code table. SLIM start by assigning the Standard Code Table ST, which

contains only singletons, to the code table (line 1). Then, every iteration, all pairwise

combination of X,Y ∈ CT is considered as candidate (line 2) by putting it into the

code table CT (line 3). The next step is calculating the new compressed size, and the

candidate is only accepted if the compression improves (line 4). Lastly, all elements X ∈
CTc are reconsidered to remove elements which are not improve the total compression

(line 5).

The order of inserting candidate into the code table CT is exactly the same as with

KRIMP case: first descending on length, second descending on support, and third in

alphabet order. But the order of considered candidates is different, since there is not

set of candidates in SLIM algorithm. This order is determined based on the gain in

bits of the newly created code table: whatever pair X,Y ∈ CT that gives the highest
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gain when putting in the code table will be considered first. The most straightforward

tactic is to calculate all gains for every possible candidates, and just select the best

one. However, this approach is computationally expensive, since to compute the gain

for a certain candidate, the whole database must be scanned.

One approach to partly solve this difficulty is to roughly estimate all the gains of all

candidates first, and only calculate the exact gains for top-k candidates. The priority

is finding an easily calculable estimate. Let X and Y be itemsets in CT , CT ′ be the

code table after adding X and Y (i.e. CT ′ = CT ⊕ X ∪ Y ), ∆L be the difference in

encoded size between CT and CT ′:

∆L = ∆L(CT ⊕X ∪ Y,D)

= L(CT,D)− L(CT ⊕X ∪ Y,D)

= [L(CT |D) + L(D|CT )]− [L(CT ⊕X ∪ Y |D) + L(D|CT ⊕X ∪ Y )]

= ∆L(CT ⊕X ∪ Y |D) + ∆L(D|CT ⊕X ∪ Y )

Before developing this equation into details, several brief notations need to be de-

fined for the sake of simplicity. Lower case, x, of an item X is used to indicates

usage(X) in the code table CT , x′ is usage(X) in the code table CT ′(= CT ⊕X ∪Y ).

s is the sum of all usages in CT , i.e. s =
∑

X∈CT x. Similarly, s′ is the sum of all

usages in the code table CT ′.

Applying equation 1.3 into the first element, and performing suitable transforma-

tions, we end up with:

∆L(CT ⊕X ∪ Y |D) = log xy′ − L(X ∪ Y |ST ) +
∑
C∈CT

log
c

c′

+ |CT | log s− |CT ′| log s′

Likewise, applying equation 1.2 into the second element, we have:

∆L(D|CT ⊕X ∪ Y ) =s log s− s′ log s′ + xy′ log xy′

−
∑
C∈CT

(c log c− c′ log c′)

Calculating exact values for these equations is not an easy task. Besides, the cur-

rent essential task is finding an effective technique to estimate values. The authors of

SLIM then made an assumption that only the usage of X, Y , and X ∪ Y will change.

Consequently, many elements in two above equations will eliminated themselves, the
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rest can easily be shorten using following relations: x′ = x − xy′, y′ = y − xy′, and

s′ = s− xy′. In the end, a very easily calculable estimate is obtained by making use of

a simple assumption.

The most attractive feature of SLIM is that it doesn’t need a pre-mined set of

candidates. This feature alone saves lots of time for mining, storing. . . patterns. Con-

sidering the same dataset, the number of candidates examined by SLIM is often much

smaller than the size of the candidate set of KRIMP. Sometimes, SLIM might scan

more candidates than KRIMP, and the reason usually is SLIM considers itemsets at

lower support than KRIMP can handle.

SLIM doest not work well with sparse database. Both KRIMP and SLIM prefer

dense data, in which finding structure seems easier.

1.2.3 Converting Image Descriptors into Binary Vectors

As explained before, our aim is to use existing pattern mining techniques on video

datasets. Our first problem is thus to convert the original image representation into

a suitable transactional or binary dataset usable by a pattern mining algorithm. In

the rest of this document, we will mainly use SIFT-BOW histograms to describe the

frames of our videos. We thus focus on the methods to convert such histograms into

binary datasets. A SIFT-BOW histogram can be seen as a vector where the dimension

is the number of visual words chosen during the BOW construction (see 1.1.1.4) and the

value of each vector element (or bin) is the number of occurrences of the corresponding

visual word in the considered image region.

The most naive way to do this conversion is to turn all different-from-0 values into

ones, and keep the “0” values untouched. This discretization technique is denoted

Simple-Binarization (SBin) in the rest of this manuscript. One variant is fixing the

number of “1” by converting only top-K values into “1”, and the remaining values

into “0” [95]. However, we can notice that this procedure remove a lot of information.

There are several ways to overcome this limitation. The first one is to improve this

simple method by discretizing the values in each histogram bin into multiple intervals

(also called bins). For example, if the number of interval chosen for the discretization

process is “4”, one can represent each interval by one binary code: 00, 01, 10, 11. The

discretization thresholds (that are used to create the bounds of the intervals) can be

uniformly chosen (for example, [0− 2], [2− 4], [4− 6], [6− 8] if, for example, the values

in the original bins can get up to 8 or depend on the distribution of the values that fall

into each bin.
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Figure 1.14: Examples of different binarization techniques. From top to bottom: SBin,
multiple uniform intervals, non-uniform intervals and B2S.

The B2S (Bag-to-Set) representation [49], in which all the frequency information

of the histograms is kept, is another approach. Its name comes from the initial idea:

converting a histogram-based bag representation (i.e. bag-of-word original principle)

into a set representation. For instance, we want to convert the following histogram

into a binary form: A = [3 1 4 0 2]. And suppose that C = [3 2 4 3 4] are the

maximum values at each position over all histograms. Each value of A is replaced

by consecutive values “1” with “0” ending (if applicable, so that the total number of

binary digits is equal to the value of C at the corresponding location), for example,

A[5] = 2 and C[5] = 4 then A[5]binary = [1100]. Applying this step for all values, we

have AB2S = [111 10 1111 000 1100].

In [30] the authors chose another approach that we call Sparse-B2S (or SB2S) which

is quite similar to B2S, but instead of using consecutive values “1” with “0” endings,

they use only one value “1” and the rests are “0” for one bin. With the same example

as above, the corresponding binary code is [001 10 0001 000 0100]. Moreover, if, for

a given location, a value is never used in any histogram, the corresponding digit will

always be a 0. It can thus be removed. For instance, if there is no histogram with value
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3 at position 3, then the binary code is finally ASB2S = [001 10 001 000 0100].

The different approaches are shown in Figure 1.14.

1.2.4 Pattern Mining applied to Computer Vision

Even though frequent itemset mining techniques and variants thereof are well-established

in the data-mining community [91], they are, to date, not commonly used in state-of-

the-art image classification methods. This is surprising, since it has been shown that

these mining methods allow the construction of high-level sets of compound features

which can, in many cases, capture more discriminative information [17].

Frequent pattern mining techniques have been used to tackle a variety of computer

vision problems, including image classification [65, 110, 111], action recognition [33, 74],

scene understanding [107], object recognition and object-part detection [73].

In the context of pattern mining-based image classification, local bag-of-words are

usually preferred (e.g. in [49, 74, 78]), since they result in sparse representations, a bet-

ter signal-to-noise ratio, an increased robustness to image clutter and some low level

spatial information (proximity). Spatial configuration mining based on local BOW was

first shown by Quack et al. [73]. More structured patterns such as sequences and

graphs capturing the spatial distribution of visual words have been used by [65], while

[109] uses boosting on top of binary sets of visual words discovered by pattern mining.

Voravuthikunchai et al. [94] make use of closed frequent patterns to detect duplicate

images in a very large dataset of one million images. Gilbert et al. [33] have applied

itemset mining to action recognition using rather primitive features like corners, while

in [111] high level features such as attributes [28] are successfully used with mining tech-

niques. In [107], Yao et al. present a structured image representation called group-lets.

To find discriminative group-lets, they mine for class-based association rules [3]. Re-

cently, [95] has used random projection to produce transactions from BoW histograms,

and proposed an image presentation based on pattern sets instead of individual pat-

terns. This HoPS (Histograms of Pattern Sets) representation is efficiently used for

image classification and objection recognition tasks. Jain and Jawahar [47] represent a

shot as a transaction of frames and perform frequent pattern mining to find frequent

frames. Based on that information, they are able to extract characteristic scenes from

movies.
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1.3 Current Tagging Methods

As explained in the introduction, our aim in this thesis is to automatically complete

and correct tags provided by users for a given video uploaded on the Internet (e.g. on

Youtube). According to [98], automatic tagging methods in which a computer provides

or helps a user to provide tags for some given multimedia content can be referred to as

assistive tagging methods. The authors of [98] divide the tagging tasks into 3 categories:

1) tagging with data selection and organization, which consists in organizing the data

in such a way that only a small subset of it should be manually tagged to get some

global information; (2) tag recommendation, which consists in suggesting relevant tags

to a user while he is tagging his/her own video; and (3) tag processing, which consists

in refining human-provided tags or adding more information to them. Our tagging

problem relates to this last category.

Besides, the authors of the previously mentioned survey ([98]) are covering several

types of multimedia content ranging from images to videos through music and speech.

In this thesis, we focus on the video tagging problem. A video in itself (as opposed

to images) contains multiple sources of information such as its metadata (i.e. texts

embedded in videos which generally consist of a title, a list of authors, a copyright, etc.),

an audio channel, sometimes a transcript (which can be obtained by speech recognition

or by optical character recognition from caption texts) and the visual content included

in the frames themselves which is temporally structured. In this thesis, we will only

rely on the visual content of the frames and on the tags provided with the video. In this

context, algorithms used on images and on videos mostly differ in the feature extraction

and representation stages since both videos and images are often ultimately represented

as feature vectors. Consequently, most tagging techniques in images processing can be

safely applied to video tagging.

Assistive tagging methods are at the crossroad between automatic tagging and

manual tagging methods. In the following, we thus first focus on automatic tagging

methods and then on specific assistive ones in Section 1.3.3.

1.3.1 Comparing Videos

Even though a video is considered as a sequence of images, video comparison is a

completely different problem from the image comparison one. Because each video has

a different length, and also because the length of each scene/shot is different, the

representations of different videos are usually not comparable. For example, when one

wants to classify videos using a SVM classifier or cluster them using e.g. a k-means
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clustering algorithm, the inputs of the algorithms must have the same dimensions.

Whenever one wants to process videos, comparing videos is a mandatory step. Taking

the average of the characteristics of the keyframes, comparing pairs of keyframes and

make use of the identical frames are the three main trends to compare videos.

1.3.1.1 Averaging

Figure 1.15: A video is represented as an average of all its keyframes.

The first naive method to compare videos is to average the descriptors of each

keyframe extracted from the video (see Section 1.1.2 for the keyframe extraction) to

produce a single representation for the whole video. This method is used, for example,

in [86] and [104] where a single bag-of-word histogram is produced and thresholded to

remove potential noise in the video. In all cases, classical distance function such as

the L1 or L2 distances can be used to estimate the similarity between videos. Even

if this method is computationally effective, one loses a lot of the available information

by averaging all the frames as can be seen in Figure 1.15. We nonetheless tried this

method in our framework.

1.3.1.2 Pairwise

The second most used method consist in measuring the similarity between two videos

as the maximum of the pairwise similarity between two key-frames of those two videos

(see e.g. [63]). In other words, this method uses the similarity between the two most

similar frames of two videos to represent the similarity between the videos themselves.

Again, the comparison of the two videos is made using a unique pair of frame and no

sequential information is taken into account.

1.3.2 Automatic Tagging

Video annotation (and in particular tagging) and video classification are two very

popular problems in video analysis. They are related to each other (so they are often

described interchangeably) even if the video annotation problem can be considered more
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Figure 1.16: The distance between two videos equals to the distance between two most
similar keyframes (the red line in this example).

general than the second one. The video classification problem consists in assigning to

videos some pre-defined categories or classes (e.g. news or football). Video annotation

consists in assigning to shots or video segments some pre-defined more general semantic

concepts, such as person, sky, people running. Both problems share similar solving

approaches: first, one needs to extract low-level features and then train some classifiers

to map the features to the categories/concepts. The two problems of video indexing

and video retrieval are also related to the above problems. In the video retrieval task,

a query is given by a user and the retrieval system must effectively and accurately

return the videos that match the query. To get this effective retrieval, a good indexing

is needed which makes the two tasks dependent on one another. Besides, to match

the results with the query, the retrieval system needs to compare the query with the

meta-data of the already stored videos. This comparison is often made using distance

functions which are also at the core of the machine learning methods used to solve the

first two problems mentions. The methods presented in this section will thus cover all

these different applications.

1.3.2.1 Automatic Tagging Benchmarks for Videos

The most common benchmarks used to evaluate automatic tagging methods (for video

annotation, classification, retrieval or indexing) come from the TRECViD (Text Re-
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trieval Conference specialized on Video Retrieval Evaluation) competition [79]. The

TRECViD campaign, sponsored by NIST (National Institute of Standards and Tech-

nology) since 2001, focuses on research related to videos. During each year competition,

a large number of video collections is provided together with a number of tasks. These

tasks are proposed by both NIST and participants and they are gradually changing

over time depending on the needs of community: tasks with very few participants are

eliminated, and tasks attracted to video researchers are added. TRECViD 2013 [68]

had 5 main tasks: semantic indexing, interactive surveillance event detection, instance

search, multimedia event detection, multimedia event recounting. As explained before,

most algorithms used to tackle these tasks are relevant for our auto-tagging problem.

Note that there are many more benchmarks available in the context of image clas-

sification and retrieval but, as they do not consider videos, they are not specifically

presented in this chapter.

1.3.2.2 Model-based methods

One of the most widely applied method for automatic tagging consists in learning a

model for each tag (or learn a multi-class classifier) based on a trustworthy training

set and use these models to predict the tags of new data. It is thus seen as a bi-

nary classification problem. The model can be learned using any learning algorithm.

However, most state-of-the-art papers claim a better accuracy using the well known

Support Vector Machines (SVM) [26] learning algorithm. For example, Amir et .al [6]

train SVM classifiers buy using various primitive visual features (color histogram, color

correlogram, edge histogram. . . ). Beo et .al [8] use a special technique called spatial

pyramid matching to represent low-level visual features like SIFT. These visual features

are then provided to SVM classifiers for classifying concepts in TRECVID Multimedia

Event Detection MED dataset. Sun and Nevatia [82] use Fisher Vector instead of BOW

model to encode multiple visual features (such as histogram of gradients (HoG), his-

togram of optical flow (HoF)), then construct SVM classifiers to carry out experiments

on the TRECVID MED dataset.

Recent methods [105, 106] have also studied how information learned from images

(that are often easier to label) could be transferred to videos using a transfer learn-

ing algorithm. Using the same approaches, one can also detect events (i.e. series of

concepts) in videos [25, 90]. This problem is called Concept-based event detection .

In the same context, Merler et .al [59] introduced semantic model vectors which is an

intermediate semantic representation between low-level features (SIFT) and high-level
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events (playing football). The authors propose to train hundreds of concept detectors

from a collection of thousands of labeled web images represented by a concept vector.

A linear SVM classifier is then trained to recognize events from these concept vectors.

[37] focuses on the relationship between concepts and events, it studies to find a way

to create an effective vocabulary (list of concepts) for event detection task.

Note that these methods suffer for one essential drawback: the number and the

name of each tag has to be known in advance and one has to obtain a sufficient amount

of tagged videos to train a classifier with each of these tag.

1.3.2.3 Nearest neighbors-based methods

Nearest neighbors-based methods predict the tags of a new example by comparing it

to its nearest neighbors (NN) in the training sample. For example, Makadia et .al [58]

pioneered this approach by constructing a NN-based baseline for image classification

task. They introduced a simple method to propagate n tags to a test image from its

visual neighbors: taking almost all tags from the closest image, and if there is still not

enough n tags, they rank tags of the remaining neighbors and select top-ranked tags.

Later, Guillaumin et .al [36] learned a weighted nearest neighbor model where a weigh

πij denotes the relevance of image j for predicting the tags of image i. These weights

can be rank-based (πij depends on the order of image j in neighborhood of image i) or

distance-based (πij depends on the distance between image j and i).

Again, all aforementioned methods need a training set with a sound ground truth

i.e. the tags are not questioned and thus do not need any refinement. The main

advantage of these approaches is that one does not need to know the tags in advance

nor learn a particular model for each tag.

1.3.3 Tag Processing

As explained before, this section is devoted to techniques that are at the crossroad

between automatic tagging and manual tagging methods. Our work relies on the fact

that even if tags are often associate with web videos, or large-scale video collections,

they are still often incomplete and incorrect. However, by refining noisy tags, adding

new ones and removing irrelevant ones, the performance of tag-based search can be

greatly improved according to [54]. For example, associating a tag with some informa-

tion about the shot it refers to in the video (and thus have sequential information over

the tags) can be of great value to improve retrieval tasks as shown in [97].

Another strategy consists in applying the automatic-tagging strategies mentioned
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above without relying entirely on the existing labels of the images/videos. For example,

in [16], each SVM classifier is trained for each tag from the loosely labeled samples.

These classifiers return an initial relevance score of the tags with respect to a picture.

The score is later refined based on the similarity between images and semantic relations

of tags. For example, Liu et .al [52] use a nearest neighbor algorithm (voting system)

in the visual neighborhood of an image to predict the relevance scores of some tags.

They later extend their work to multiple visual feature spaces (i.e. global features, local

features. . . ) in [53]. Another example can be found in [92] where the author evaluates

multiple nearest-neighbor approaches for tag refinement tasks.

Our aim is to take advantage of the nearest neighbor-based method and of the tags

manually provided by users to improve the relevance of the tags in a video dataset. The

method proposed in the following chapters can be seen as a nearest neighbors-based

method on the visual content of the videos which take into account the uncertainty on

the tags to propagate tags from the neighborhood videos.
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Chapter 2

Our Tagging Framework

Figure 2.1: The Overall Framework

In this chapter we detail the tagging framework that we propose to tackle our

automatic video tag correction task. The overall scheme can be divided into four

steps as shown in Figure 2.1. The first step consists in extracting relevant keyframes

from our target videos to be able to analyze them. The number of keyframes that

should be extracted generally depends on the length and on the movement speed of

the objects in each video. This has been discussed in details in Section 1.1.2.1. Since

we do not present any contribution on this particular step, we rely on some existing

keyframe extraction algorithms (e.g. [22]) or on the data provided by the authors for

some benchmark datasets. In the second step, some classical visual features (in our

case we rely on SIFT-BoW) are computed to describe the keyframes. We then propose
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to build more discriminant mid-level features from the SIFT-BOW using some itemset

mining techniques. In step 3, the new mid-level features are used to compare the videos

for the auto-tagging problem. The most relevant distance functions are discussed in

this chapter. Finally, in step 4, tags are propagated from one video to others based on

the visual similarity computed between the videos and the overall distributions of the

tags in the dataset.

2.1 Parameters Evaluation

As explained in the previous chapter, one of the difficult part of this thesis is the lack

of ground truth labels for the video datasets. This is especially true when the aim is

not to classify a video with a single label but to tag it, i.e. to give all the tags that

are entirely relevant for the video. To carry on with the entire video tagging process

we thus choose to validate a number of hypotheses on a simpler, well defined and well

studied problem: the image classification problem. In particular we would like to assess

if:

1. (in step 2) the frequent patterns (FP) are truly interesting features compared to

simple bag-of-words if they are carefully chosen;

2. (in step 2) a standard Principle Component Analysis (PCA) can help reducing

the number of frequent patterns used to describe each images (which is often

huge if no post-processing step is carried on) without damaging the classification

accuracy;

3. (in step 3) we can already choose a good distance function to compare two high

dimensional vectors describing a video (or some video frames);

2.1.1 Image Dataset

To validate our hypotheses, we use two well-known image datasets for which supervised

label information is provided: the GRAZ dataset [67] and the Oxford-Flower17 [65]

(some examples are shown in Figure 2.2). The GRAZ dataset is used to solve two

binary classification problems: one to classify images which contain a bike (with 200

positive and 200 negative images) and one to classify images which contain a person

(with the same number of images). For this dataset, 200 visual words are built on

SIFT descriptors (this is what is commonly used for this dataset in the literature).

The Oxford-Flower17 is more challenging with 17 classes of flowers (each class has 80
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Daffodil flowers

Snowdrop flowers

Tulip flowers

Figure 2.2: Class examples of Oxford-Flower17.

images). Example images for 3 classes of this dataset are shown in Figure 2.2. For

this one, 100 visual words are built from color descriptors, more precisely ColorName

[93] (CN) descriptors, again because this is a common practice in the computer vision

literature for this dataset.

2.2 Step 2: Feature Construction

As explained above, this step aims at constructing mid-level features from SIFT-BOW

(see Section 1.1.1.3 for a description of SIFT and Section 1.1.1.4 for a description of local

and global BoW). To be able to use itemset mining techniques on these histograms, one

has to convert the histograms into a transactional or a binary dataset. We used three

41



binarization methods (see Section 1.2.3) for experiments: Simple-Binarization (SBin),

B2S and Sparse-B2S. As explained in Section 1.2, the main problem with pattern

mining algorithms is the size of the output. Since our plan is to encode an image using

those patterns, the number of kept patterns should not be too large not to suffer from

the curse of dimensionality [24]. In the following, we will first show how to use patterns

to represent images. After that, we rely on an existing method to chose some good

patterns to answer the questions 1 and 3 asked in the previous section. This method

is not usable for our target application since we cannot completely rely on the tag to

post-process the patterns. We thus propose some unsupervised alternatives to do this

post-processing step.

2.2.1 Encoding Images Using Frequent Patterns

Figure 2.3: Image representation from global histogram (global BoW) using frequent
patterns

Figure 2.3 shows the encoding process of an image with frequent patterns starting

from a representation with a global histogram of visual words. After converting the

histograms for all images into binary formats, a set of frequent patterns is mined from

the set of all histograms (this process will be discussed in details later). At the end of

the process, each image is encoded with a histogram of patterns. Notice that starting

from a global histogram, this final representation is a binary vector (a pattern either

appears or not in a given image).
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Figure 2.4: Image representation from local histograms (local BoW) using frequent
patterns

The process is slightly more complex using local histograms (also called local BoW).

In this case, one image consists of multiple local histograms (see Figure 2.4). As in

the previous case, each local histogram is also converted into a binary format and

all histograms are used during the mining phase. However, in this case, an image

is represented as a non binary histogram of frequent patterns since one pattern can

happen multiple time in the local histograms representing the original image.

2.2.2 Classification Using Supervised Mined Patterns (FLH Patterns)

When dealing with an image classification problem, we can use the class information

(for e.g. the class entropy) associated to the training examples to select the most

meaningful patterns. Similarly to what has been done in [30], we use the exhaustive

LCM algorithm [91] (see Section 1.2.1.3) to compute closed frequent patterns from the

set of local BoW (binarized using the Sparse-B2S technique). We then post-process

with a greedy method the patterns extracted using the relevance criteria proposed in
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Dict. SVM with Intersection Kernel 1-NN with L1 Dist. Function

Size Local BoW FLH Local BoW FLH

GRAZ-Person 200 79.4± 1.1 83.5± 1.8 79.7± 3.2 88.0± 2.1

GRAZ-Bike 200 76.8± 2.5 81.3± 2.4 82.0± 1.0 80.5± 2.8

Flower-CN 100 59.4± 1.7 69.5± 2.5 50.8± 12.2 56.4± 14.1

Table 2.1: Accuracy of the SVM and the 1-NN classifiers on the image datasets.

[30]. At the end of the process 6000 patterns are kept to describe the images of the

GRAZ dataset and 10000 for the Oxford-Flower17 one. These final patterns are called

FLH (Frequent Local Histograms).

We evaluate the accuracy of our method using a simple 1-Nearest-Neighbor (1-

NN) algorithm with a L1 distance function over the proposed feature vectors (local

histograms and FLH). Other distances were also tried and discussed later on. As it

was reported to be successful for those two datasets, we also used a SVM with an

intersection kernel to assess the results of the KNN classifier.

Table 2.1 reports the mean accuracy over all images in the 2 datasets using the

L1 distance function. It shows that our simple setting is competitive with the SVM

classifier for both datasets (better for GRAZ and a little bit worse for the Oxford-

Flower17 dataset). The Local BOW and FLH seems to bring different information

since the accuracy is sometimes better with the FLH (88 vs 79.7 for the GRAZ-Person

dataset) and sometimes worse (82.0 vs 80.5 for the GRAZ-Bike dataset). This confirms

that the frequent patterns (here FLH) can be interesting features compared to simple

bag-of-words if they are carefully chosen. Also the overall good results compared to

the SVM classifier confirm the relevance of our features and distance choices. Note

that this supervised post-processing step is crucial to select patterns of high quality

but it cannot be used in our video tag-correction problem since such class information

is not available. In the following, we will thus show unsupervised processing methods

to reduce the number of patterns.

2.2.3 Unsupervised Mined Patterns of Oxford-Flower17

Inspired by these positive results, we decided to perform more experiments with the

Oxford-Flower17 dataset only using SIFT features since we also plan to use them as

a baseline for our experiments on the video datasets. In these experiments, we did

not use a SVM classifier nor the FLH patterns to be as close as possible to our video

44



setting. Instead, we used a 1NN approach with a L1 distance function to evaluate the

performance of the closed patterns computed directly by the LCM algorithm from both

global and local histograms obtained using different binarization techniques. We started

by densely sampling points over all images with overlapping patches of 16x16 pixels, and

using a step size of 8 pixels (the distance between the centers of two successive patches

is 8 pixels). Standard SIFT descriptors are calculated for each patch. A dictionary of

200 visual words is then constructed.

2.2.3.1 Global Histogram

At global scale, one image is a histogram of 200 visual words. The first step before

finding frequent patterns consists in transforming the image histograms into transac-

tions.

Because the value at each bin of each histogram is often significantly larger than

0, using the Simple-Binarization (0 becomes 0, larger than 0 becomes 1) is not rec-

ommended. Consequently, we decided to use the B2S and Sparse-B2S binarization

approaches detailed in Section 1.2.3. However, we simplified this process by discretiz-

ing the histogram values for each visual word into 10 evenly distributed bins to make

those values more homogeneous. One image is then transformed from a 200-D vector

(a histogram of 200 visual words) into a 2000-D binary vector.

To compute the patterns, we first set the lower support of the LCM algorithm to

10 (patterns that appear in less than 10 images out of 1360 images of Oxford-Flower17

might not contain enough information to be considered “good”) and the upper support

at half the number of images. The intuitive explanation is that if a pattern appears in

more than 50% of the images, it is too frequent and thus too general to be a “good”

candidate. Using the B2S binarization technique, LCM did not return any frequent

patterns after one week running. On the other hand, with the Sparse-B2S binarization

technique it returned too many patterns (billions). We try unsuccessfully to lower the

upper frequency from 50% to less than 10% but LCM still returned millions of closed

frequent patterns after several hours of running. Without any supervised information

to post-process the patterns, these numbers were deemed unreasonable to describe an

image.

2.2.3.2 Local Histograms

We then created local histograms as described in Section 1.1.1.4 using 5 nearest neigh-

bors (the patch itself and 4 neighbors). On average, each image is represented using
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Discretization No of patterns

Simple-Binarization 133233

Sparse-B2S 141022

B2S 160180

Table 2.2: Number of closed frequent patterns found with the support thresholds [80−
80000] for the Oxford-Flower17 dataset using local BoW and different discretization
techniques.

about 5000 local histograms (images have different resolutions, thus consist of different

numbers of local histograms). These histograms were also converted into transactions

(binary formats) using the three techniques explained in Section 1.2.3 The Oxford-

Flower17 dataset of 1360 images is converted into 6507035 transactions.

Using only LCM, we expectedly encountered the same problem as with the global

histograms. We arbitrary set the threshold for the upper support to 80000, which

means that any selected patterns must appear in less than 80000 transactions (out of

about 6 millions). If a pattern appears in more than 80000 transactions and if, on

average, it appears 100 times in any images, 800 images would contain that pattern.

Since the dataset has 1360 images in total with 80 images per class, a pattern that

is available in 800 images is not a good candidate for discriminate features. We also

chose to set the lower threshold to 80 for the same reasons. With these two bounds,

LCM returns less patterns than the above global case (there were millions), but these

numbers are still too big to be effectively dealt with (see Table 2.2): encoding an image

with hundred of thousands patterns leads to extremely sparse representations.

2.2.4 Pattern Reduction Techniques

2.2.4.1 PCA (for supervised case)

To overcome this pattern explosion problem, we first decided to use a Principal Com-

ponent Analysis (PCA) [1]. Our aim is to reduce the number of patterns as well as

(hopefully) the redundancy among them. PCA involves a mathematical procedure that

converts a number of possibly correlated variables into a smaller number of uncorrelated

variables called principal components. The first principal component explains as much

of the variability in the data as possible, and each other component explains as much

of the remaining variability as possible. The mathematical technique used in PCA is

called eigen analysis: it finds eigenvalues and eigenvectors of a square covariance ma-
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trix. The eigenvector which has the largest eigenvalue has the same direction as the first

principal component. The eigenvector having the second largest eigenvalue determines

the direction of the second principal component. This mathematically costly operation

prevents us to use the method when the number of patterns is too important. We thus

only use it in the supervised case.
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Figure 2.5: Explained Variance according to the number of Principal Components

The original size of the feature vectors is reduced to a given number of Principal

Components (PC). Different number of PC were tried: from 2 to 10, 15, 20, 50, 100, 200,

500,1000, 2000, 5000 when applicable. The number of chosen PC is usually correlated

with the explained variance of the dataset which thus can be used to set a reasonable

number of PC without using a validation set. When 90% of the variance is explained by

the components, one can stop adding new components. Figures 2.5 and 2.6 describe the

evolution of the explained variance and of the accuracy with various number of PC. We

can see that 100 PC seems a reasonable value to chose. It corresponds approximately

to the number of original visual words. In Table 2.1, we chose this particular number

of PC value to reduce the number of frequent patterns.

However, using PCA does not improve the final outcome, the only benefit is reducing

the computational expense. Thus, if the original sets of frequent patterns are not good

enough, applying PCA is an unnecessary step.
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Figure 2.6: Accuracy given by the 1-NN algorithm according to the number of Principal
Components

2.2.4.2 MDL-based Reduction (for unsupervised cases)

Global encoding for the Oxford-Flower17 dataset As discussed in the first

chapter, MDL-based algorithms such as SLIM can help to reduce the number of output

patterns without supervised information. When used directly on our histogram-based

transactional databases, SLIM returns a manageable number of patterns: 2513 patterns

with the B2S binarization technique and 5770 with the Sparse-B2S one (see Table 2.3).

Even if these values are larger than the original 200-D BOWs, they are much smaller

than when using only the LCM algorithm. Although the SLIM algorithm is designed to

keep improving the set of patterns over time, we observed that after running 2 hours,

the number of output patterns changes at a slow speed. We thus stop SLIM after three

days (one day might be already enough) to have enough relevant patterns.

We further tried to improve the quality of the SLIM output by removing all patterns

that are too frequent or too infrequent. The lower threshold is arbitrary selected

at one-hundredth, and the upper bound at one-third of the images in the dataset.

Applying these two bounds, the number of SLIM patterns obtained with the Sparse-

B2S binarization process is reduced from 5770 to 1651. With the B2S binarization

process, it is reduced from 2513 to 415.

As explained before, we encode each image with a binary vector of patterns and

evaluate the quality of our pattern encoding using a L1 based 1-Nearest-Neighbor al-
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Visual Features Size Accuracy of 1NN with L1

SLIM patterns using SB2S 5770 23.8± 11.4

filtered SLIM patterns using SB2S 1651 25.7± 12.7

SLIM patterns using B2S 2513 32.8± 15.9

filtered SLIM patterns using B2S 415 33.2± 15.9

global SIFT-BOW 200 36.4± 18.0

Table 2.3: Different features at global scale of Oxford-Flower17 dataset. The filtered
rows correspond to the number of pattern remaining after removing the too frequent
or infrequent ones.

Visual Features Size Accuracy of 1NN with L1

SLIM patterns using SBin 3206 40.5± 17.6

SLIM patterns using SB2S 2734 40.9± 18.2

SLIM patterns using B2S 2837 39.5± 18.3

Local SIFT-BOW 200 36.5± 18.0

Table 2.4: Different features at local scale of Oxford-Flower17 dataset.

gorithm. Notice that we did not try to obtain the best possible classification results or

we would had use a SVN classifier. Instead, we were trying to compare different image

encodings so a simple 1NN model is enough for the proof of concept. All results are

shown in Table 2.3. This table shows that it is better using SLIM patterns to set a

frequency interval for all the patterns: it helps reducing the number of patterns greatly

(around 4 times), and it improves the final performance. It also demonstrates that the

redundancy between the SLIM patterns is still important.That might explain the fact

that, unfortunately, the baseline performance with SIFT-BOW is still better than the

SLIM patterns for this global encoding.

Local encoding for the Oxford-Flower17 dataset Using the SLIM algorithm

on the 6 millions local histograms returns about 3000 patterns after 2 days with each

binarization technique as shown in table 2.4. Again as explained before, we encode

the entire image with a non-binary vector of patterns and evaluate their quality in

classification using a 1NN algorithm with a L1 distance function. All results are shown

in table 2.4. The table shows that, in this case, the results are better using the patterns

than using only the SIFT-BOW baseline. We also performed experiments using multiple
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K SBin Sparse B2S B2S SIFT-BOW

1 40.5± 17.6 40.1± 18.2 39.5± 18.3 36.5± 18.0

3 36.5± 18.1 35.6± 18.1 31.8± 18.3 32.1± 18.6

5 36.4± 20.7 36.0± 20.2 32.9± 17.6 31.3± 18.6

10 36.0± 21.6 36.8± 22.3 32.9± 19.9 33.6± 20.1

30 36.8± 23.8 35.7± 24.1 33.9± 20.5 33.4± 22.6

50 35.4± 24.1 34.9± 23.6 32.6± 20.1 32.6± 21.7

100 34.6± 24.4 33.2± 24.5 32.9± 21.0 30.4± 21.8

Table 2.5: Accuracy results for the KNN algorithm using different values of K (near-
est neighbors) and with a L1 distance function at local scale on the Oxford-Flower17
dataset.

neighbors and show the results in Table 2.5. The results show better performance for

this image dataset using only one neighbor. These encouraging results demonstrate the

relevance of the patterns obtained with the SLIM algorithm from local histograms as

new mid-level features to describe an image.

2.2.5 Distance Functions

We evaluated the quality of our patterns using a KNN algorithm with a L1 (Manhattan)

distance function. In this section, we question this distance function and compare this

distance in classification with the Euclidean distance and the Square root intersection

similarity measure between histograms. Various other similarity measures such as the

χ2, L1
2 and L2

3 were also tried but the performance were not satisfactory and are not

reported here.

The Manhattan distance between two vectors p = [p1, p2, . . . pn]T and q = [q1, q2, . . . qn]T

is defined as

d(p,q) = d(q,p) = |q1 − p1|+ |q2 − p2|+ · · ·+ |qn − pn| =
n∑
i=1

|qi − pi|

• The Euclidean distance function (or L2 distance) between two vectors p =

[p1, p2, . . . pn]T and q = [q1, q2, . . . qn]T is defined as

d(p,q) = d(q,p) =
√

(q1 − p1)2 + (q2 − p2)2 + · · ·+ (qn − pn)2 =

√√√√ n∑
i=1

(qi − pi)2
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Dist. Function SBin Sparse B2S B2S SIFT-BOW

L1 40.5± 17.6 40.1± 18.2 39.5± 18.3 36.5± 18.0

L2 35.9± 19.1 37.6± 18.6 33.2± 18.0 32.2± 17.3

Intersection 24.9± 20.0 25.5± 19.5 29.7± 19.7 24.3± 13.8

Table 2.6: Different distance functions with 1-NN at local scale of Oxford-Flower17
dataset.

• The square root intersection between two histograms is a disimilarity measure.

The disimilarity between two vectors p = [p1, p2, . . . pn]T and q = [q1, q2, . . . qn]T

is defined as

d(p,q) = d(q,p) =
1√

min(q1, p1) +
√

min(q2, p2) + · · ·+
√

min(qn, pn)

=
1∑n

i=1

√
min(qi, pi)

The results are shown in Table 2.6. They show that with a KNN algorithm, the

L1 distance seems to be the best strategy to compare vectors of patterns whatever the

encoding. This is thus the strategy chosen in the next chapter.

2.3 Step 3: Video Comparison

As explained in Section 1.3.1, there are two popular approaches for comparing videos:

either taking the average between all the keyframes or doing a pairwise comparison

between all the keyframes of the two videos. In this section, we propose an asymmetrical

similarity comparison inspired by the video pairwise comparison techniques to increase

the relevance of the video comparison. The first step consists in calculating all the

pairwise similarities between all the keyframes of two videos. After that, instead of

taking the optimum value of all the pairwise similarity scores, we propose to take the

average of all maximum similarities corresponding to one video. In other words, for

each keyframe of a video A, we search in all the keyframes of video B for the highest

pairwise matching score and we keep this value. Then, we take the average of all the

computed values for all the keyframes of the video A to return the similarity score of

video A towards video B. If we denote A(i) the ith keyframe of A and |A| the number
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of keyframes in A, then

sim(A,B) =
1

|A|
∑
i

max
j
sim(A(i), B(j)).

The similarity sim(A(i), B(j)) between frames is just the inverse of a distance between

the vectors representing the frames. When the two frames are identical, this asymmet-

rical similarity is set to a maximal value.

Figure 2.7: A dense line is a distance from the one keyframe on the left to the most
similar keyframe of the right video. The distance from the left video to the right video
is the average of three dense lines.

The relevance of this asymmetrical similarity measure compared to the two baseline

proposed in the literature will be assessed in the next chapter together with the tag-

propagation process.

2.4 Step 4: Tag Propagation

For each video V , a list of possible-relevant tags is obtained from the k most similar

videos. After that, a score function is applied for each tag to estimate the relevance

of that tag according to the query video V . This score function depends on the tag

frequency (the higher the frequency, the higher the score), the number of tags associated

to a video (the higher the number, the smaller the score), and the video similarity (the

higher the similarity, the higher the score). Finally, all scores that are larger than a
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Figure 2.8: An example of tag propagation: tag Harry Potter should be removed
because it does not appear in the neighborhood, and tag football should be propagated
because it appears in 5 over 6 neighbors.

predefined threshold will be considered as suitable tags for the video V . Others tags

(with smaller scores) will be deleted if they are available in the original tag list.

For instance, given an arbitrary video and an arbitrary number of neighbors set

to 30, we first compute the similarities between this videos and all the videos in the

dataset and keep only the 30 most similar ones. If most of these 30 neighbor videos

contain a tag that is not present in the original video, then the tag should be added

in the video (as it might, with high probability, describe the same content as in the

video). On the other hand, if that video includes a tag that does not appear in any

of the 30 videos, then that tag might have been intentionally mis-added and should be

deleted.

To tag a given video v ∈ V , we rely on the tags t ∈ T of the k most similar videos

in its neighborhood. To propagate a given tag t to v, one need to set a threshold on the

number of times t should appear in the neighbors. However, given the very different

distribution of each tag, we decided to use two comparison statistical tests between the

distribution of a tag in the entire dataset and its distribution in the k nearest neighbors.

The first one states that the probability of a given tag should be significantly greater

53



than 0 in the entire dataset to be propagated and the second one states that it should

be significantly more present in the neighbors than in the entire dataset. Formally:

• (Global scale) A tag can be propagated if:

p̂ ≥ uα
2

√
p̂(1− p̂)
N

where p̂ is the proportion of a tag over the whole dataset, N is the total number

of videos, uα/2 is 1−α
2 percentile of a standard normal distribution.

• (Local scale) A tag is propagated if:

p̂1 ≥ p̂+ uα
2

√
p̂1(1− p̂1)

k
+
p̂(1− p̂)
N

where p̂1 is the proportion of a tag in the k neighbors.

We arbitrarily decide to remove a tag from a video if it is never present in its

neighbors. Note that the central limit theorem applies whenever k ≥ 30 so without any

background information on a dataset, this is the value used in most of the experiments.

2.5 Conclusion

In this chapter we presented the framework we use to tackle our video tag-correction

problem. To set this framework, we made a number of hypotheses that were validated.

In particular, we showed that frequent patterns are good mid-level features to describe

images (and hopefully frames of videos). We also show that a simple vector comparison

using a L1 distance function can give good results in image classification and thus

hopefully to compute a visual similarity between two videos. We have proposed an

asymmetrical similarity measure and two tag propagation criteria. These two last

contributions will be evaluated in the next chapter after defining our experimental set

up on videos.
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Chapter 3

Datasets and Tag Propagation

Experiment Designs

Our framework is described in details in the previous chapter with some justifications

about the parameters we use. In this chapter, we apply this framework to three different

datasets with different characteristics. Note that, as explained in the first chapter, there

are no dataset with a ground truth available for tag propagation problems (contrarily

to classification problems) so, we had to create them manually and design our own

evaluation procedure. This chapter presents our attempts in chronological order. The

first dataset is a small dataset with 51 videos with few tags. The first idea was to

assess if videos sharing the same topic would be visually close to each other and if

the tag propagation would be beneficial in this case. However the results were not

entirely satisfactory in both cases probably due to the small size of the dataset and the

subjectiveness of the tags that were selected. We thus introduced a second 182-videos

synthetic dataset created from cutting parts of 7 original videos (with one explicit tag

per part) to ensure a strong correlation between the tags and the visual content of

the videos. The experiments with this second dataset confirmed the validity of our

framework but also showed that global SIFT-BoW features alone do not yield the best

results as also confirmed in the previous chapter. The experiments on these first two

datasets were carried out before trying the local SIFT-BoW features, therefore, all the

results are reported using global features for these datasets. The third dataset is a real

and significantly larger dataset with 668 videos and 150 tags. Many strategies with

different settings were applied to evaluate our framework on this dataset.
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3.1 A First Real Dataset (51 videos)

In the following experiments we use a 51-videos dataset taken from a benchmark dataset

including 80, 031 of the most viewed videos for every month from Dec. 2008 to Feb.

2009 on YouTube [12]. We kept this dataset reasonably small to manually assess the

relevance of the original tags and of the corrected ones for each video. We are interested

in evaluating the interest of the frequent pattern-based features compared to the BOW-

based features.

3.1.1 Dataset Description

Each of the 51 videos in our dataset is decomposed into key-frames based on [115]. An

example of the keyframes for some of the videos are given in Figure 3.1. There are

about 18 shots per video and 1.5 key-frames per shot, i.e. about 27 key-frames for one

video. A visual vocabulary of 1000 words built from SIFT features is used to describe

the video. A video is thus represented by a matrix which contains for all key-frames

of the video the visual word histogram which describe the frame. The dataset contains

1895 keyframes in total.

The 51 videos were chosen such that they belong to 4 topics to ensure that this

dataset contains pairs of similar videos and pairs of dissimilar videos. The topics are

anime (10 videos), football (17 videos), news (12 videos) and racing (12 videos). We

chose the top-35 most frequent tags from all tags that were used for these videos in the

original YouTube dataset. The 51 videos were then re-tagged using only these 35 tags

to create a ground truth. The final tags associated to the videos are shown in Table

3.1.

3.1.2 Encoding Procedure

We first tried to find frequent sequential patterns in these videos. Note that in our

cases, the original sequences are itemsets which limit the number of algorithms we can

use to tackle the problem. We used the SPAM algorithm presented in the first chapter.

Even if SPAM is able to produce frequent sequential patterns, it has several drawbacks:

the software limits the number of keyframes in each video to 64 and, it cannot generate

closed patterns (thus the number of sequence patterns created by SPAM is extremely

large). When applying it to this small dataset with a support threshold of 30% (which

means that the frequent sequences should appear in at least 15 videos which is roughly

equal to the size of each class), SPAM generates 1 242 660 frequent sequence patterns.
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Video IDs Tags

3107012 anime one sword people lying down outside

3107013 anime sword people discussing fighting blue outside

3107085 anime people fighting discussing nature tree green blue outside inside

3188073 anime people discussing city outside inside

3188083 anime people dark discussing inside outside nature

3286509 anime one people fighting tree blue green outside nature sword discussing

3107846 football people playing running green red penalty area goal outside

3107915 football people playing running ball green black red penalty area outside

3139445 football people playing walking goal green white black outside

3149093 football people playing walking talking running green red blue outside lying down

3282258 football video game people playing walking red green outside

3283038 football people green outside

3283053 football people lying down penalty area outside

3283054 football people playing green red penalty area outside

3283068 football people running green blue penalty area outside

3249151 news people discussing talking city black inside outside

3249191 news red eye people discussing fox inside

3249309 news people talking discussing city red eye inside

3249636 news presenter inside outside

3281891 news people presenter talking blue inside

3282532 news fox presenter talking red inside outside

3282535 news fox city people presenter talking car inside outside

3287317 news people discussing inside

3147888 racing race car outside

3195813 racing formula one motor outside

3249014 racing formula one presenter talking outside inside

3280533 racing car race motor

3286194 racing race formula one

Table 3.1: List of tags corresponding to some of the 51 videos.
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Some keyframes of an anime video.

Some keyframes of a football video.

Some keyframes of a racing video.

Figure 3.1: Several example keyframes of the 51-videos dataset.

We also tried the CloSpan algorithm which eliminates the two above drawbacks of

SPAM. With the same threshold, CloSpan extracts 613 150 closed frequent sequences.

This number of patterns is still too large to encode videos without any post-processing

step we just decided to abandon this strategy.

We then computed frequent itemsets from the global histograms associated to the

1895 keyframes using the LCM and the KRIMP algorithms as explained in the previous

chapter. In both cases, the support threshold is set to 80 frames (over 1895 frames, it

means about 4%). The size and the number of returned patterns for both algorithms

are shown in Figure 3.2.

First we focused on long patterns: LCM returns 4682 closed frequent patterns of

a size larger or equal to 8 items. To estimate the relevance of these patterns, we

compute the number of visual words in the visual vocabulary that is included in a set

of patterns. Surprisingly, this substantial amount of patterns (equal to five times the

number of original visual words) contained only 54 visual words (from the 1000 possible

ones). This seems to indicate that closed frequent patterns are too specific and using

these patterns to represent the data might not be more useful than using the original

visual words. With KRIMP, with a size threshold of 4 items, we obtained only 82
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Size of patterns Number of closed frequent Number of

(no of items) patterns (from LCM) KRIMP patterns

1-item ... 1 000

2-item ... 4 266

3-item ... 7 257

4-item 1 431 976 71

5-item 146 649 6

6-item 59 313 2

7-item 20 139 2

8-item 4 114 0

9-item 457 0

10-item 17 1

Table 3.2: Number of frequent patterns from LCM and KRIMP

patterns which covered 110 visual words. This seemed much already better than in the

previous case. To increase the coverage, we could have lowered the size threshold to,

e.g, 3 ending up with a total number of 7339 patterns which would have covered 911

visual words.

3.1.3 Evaluation Procedure

To evaluate the relevance of our itemsets, we recoded the video using the 82 KRIMP

patterns. A video is represented by a histogram of KRIMP patterns where each his-

togram bin gives the number of keyframes containing a given pattern (as explained in

the previous chapter, each pattern is only counted once per frame). To assess if videos

sharing the same topic would be visually close to each other, we first did not used

the tag and measured the distances between all possible pairs of the 51 videos. We

calculated the distance within a class and outside a class. Table 3.3 shows the final

result. The values in the diagonal are the within-class distances and are expected to

be the smallest value in the table (videos within the same class should be closer).

These results are good for the anime class and quite good for the racing class,

but they are not for the news and for the football classes. This phenomenon can be

explained by the big difference between the anime videos (a kind of cartoon) and the

rest of the videos (which are real life videos). The racing score is good probably because

this class contains some video games, which should be also be different from the real
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Classes Anime Football News Racing

Anime 0.15 0.18 0.30 0.15

Football 0.18 0.21 0.32 0.18

News 0.30 0.32 0.40 0.30

Racing 0.15 0.18 0.30 0.15

Mean over all dataset 0.24

Table 3.3: Mean of differences between videos of each class. In ideal case, bold num-
bers are the minimum values over column and row.

life scenes.

We then evaluate our tag propagation procedure by including the tags for each video

as shown in Figure 3.1. To do so, we consider a video dataset as a triplet (V, T, tag)

where V is the set of videos V = {v1, ..., vn}, the set of possible tags is T = {t1, ...tm}
and tag is a relation on V × T such that tag(v, t) is true if and only if the video v has

the tag t.

Our evaluation procedure is then:

• add some noise on the tags, i.e, we choose a noise proportion 0 < p < 1 and we

compute a noisy tag function tagnoisy such that, for each t ∈ T and v ∈ V , with

probability p we have: tagnoisy(v, t) = ¬tag(v, t) (it means that we flip the value

of a given tag with probability p);

• apply our tag correction technique, the output of the tag correction step is tagcorr;

• compute the proportion of the incorrect tags after the correction step as:

err(tag, tagcorr) = ‖{(v, t) ∈ V × T | tag(v, t) 6= tagcorr(v, t)}‖/(‖V ‖.‖T‖)

The ideal case is of course when err(tag, tagcorr) = 0. Notice that err(tag, tagnoisy) ≈
p. This means that as soon as err(tag, tagcorr) < p, there is less incorrect tags after the

tag propagation step than before on the noisy set. Therefore it means that our algorithm

has decreased the number of incorrect tags. On the contrary, if err(tag, tagcorr) > p, it

means that our algorithm has actually increased the number of incorrect tags. In the

following figures, we plot the error err(tag, tagcorr) against the value of p. If this curve

is below the diagonal line, it means that our algorithm has decreased the number of

incorrect tags.
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3.1.4 Results

The results on the first 51 videos dataset are presented in Figure 3.2. They are averaged

over 100 runs for each noise level.
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Figure 3.2: Result of our tag correction algorithm on the small real video dataset. Our
algorithm uses only bag of word features (solid line) or histograms of both words and
frequent patterns (dotted line).

Our algorithm does not improve the original tagging for almost all the noise levels:

the number of incorrect tags is higher after our correction algorithm than before. These

errors can be the result of the correction algorithm or the fact that the computed

distance between videos does not reflect the real similarity of the videos. The number

of videos that we use is quite small. In a dataset of millions of videos (as the complete

YouTube repository), the k nearest neighbors of a given video should be much more

similar than in our small dataset (and thus have very similar tags).

Another problem lies in the tags themselves: our algorithm uses the visual similarity

between videos to correct the tags. Thus, it can be efficient only on tags that are

correlated with the visual content. For instance, tags such as “forest” or “sea” can

be corrected because they are correlated with the visual content (green). A tag which

describes a higher level concept (such as the name of a person in a video or the date

when the video was shot) is probably not correlated enough with the visual content.

3.2 Synthetic 182 Videos Dataset

Since the results on the above small dataset were not satisfactory because of its too

limited size and because of the quality of the tags, we proposed another synthetic

dataset of 182 videos build from 7 very different videos from the previous dataset.
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Some keyframes of a synthetic video with 3 tags: cat, football, news

Some keyframes of a synthetic video with 2 tags: news, crowd

Some keyframes of a synthetic video with 3 tags: moon, cat, anime

Figure 3.3: Several examples of keyframes of the synthetic 182 video dataset along with
the tags associated with the video the keyframe belongs to.

3.2.1 Dataset Design

To better control the similarity or dissimilarity of the videos and the tags, we build a

synthetic dataset made of 182 videos. To construct this dataset, we first select 7 real

videos A,B, . . . , G belonging respectively to the classes “moon”, “crowd”, “anime”,

“racing”, “cat”, “news” and “football”. Note that if each synthetic video was given

one of the tags, the total number of tags would be 182 ∗ 7 = 1274. This means that

when adding 5% of noise in the dataset, 63 (≈ 1274∗5
100 ) tag values would be flipped

(added or removed) in the dataset.

Then, to build each synthetic video we:

• choose randomly between 2 and 4 of the real videos;

• choose randomly frames from each of the chosen real videos. The set of frames

thus obtained is concatenated to become the new synthetic video;

• tag this synthetic video with A if it contains frames from video A, with B if
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it contains frames from video B and so on. Each synthetic video has therefore

between 2 and 4 tags out of the 7 possible tags.

Examples of some frames used for this dataset are shown in Figure 3.3. By con-

struction, if two synthetic videos share for instance the tag A, it means that they both

contain some frames (possibly the same ones) extracted from the real video A. Thus,

we ensure that they contain similar frames. Moreover, by construction, each tag is

correlated with the visual content of the video. We therefore avoid the last problem

encountered with the previous small dataset.

3.2.2 Evaluation Procedure
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Figure 3.4: Percentage of wrong tags in the videos after one propagation step according
to the percentage of noise introduced. The blue and green lines give the results of our
method which compare histograms of SIFT-BOW using a L1 distance function. The red
line gives the result of the propagation step starting from an ideal visual comparison.

The design of this dataset allows us to build a perfect measure to assess the visual

similarities between the videos. Suppose that a first video contains 3 tags A,B and C and

a second video contains 4 tags A,D,E and F. The similarity between these two videos is

defined as the number of common tags divided by the largest number of tags in the two

videos i.e. similarity(ABC,ADEF) = |A|
|ADEF | = 1/4. Intuitively, it means that ABC

and ADEF have at least 1/4 of their keyframes that are similar (here with tag A). The

distance between the two videos is the inverse of this similarity. This “ideal” distance

function will be used as our baseline in the following experiments when computing the
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KNN matrix. Apart from this baseline, we use the same evaluation procedure as in

Section 3.1.3.

3.2.3 Results

Figure 3.4 shows the tag propagation performance using the SIFT-BoW features and

the L1 distance function between the histograms of patterns. In Figure 3.4, the lower

the lines are, the more labels are corrected during the tag propagation process. We

use two vocabulary size for the BoW: 400 and 2000 but obtain almost the same results

(blue and green lines). The ideal case line is lower than our L1 distance function using

the SIFT-BOW features. This means that these features or this distance function can

still be improved to obtain a better tag propagation system.

Figure 3.5 shows that the results for this dataset are however a lot better than with

the simpler dataset presented in the previous section. For a noise level between 0 and

30%, we see on Figure 3.5 that the proportion of incorrect tags significantly decreases.

For instance, at a noise level of 20%, the error proportion after the tag correction

is around 16%. This means that the algorithm has removed about one quarter of

the errors introduced by the noise. Note that for a higher noise level, the number of

incorrect tags is too important to hope improving the results by tag propagation.
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Figure 3.5: Percentage of wrong tags in the videos after one propagation step according
to the percentage of noise introduced computed on a synthetic video dataset. Our
algorithm uses only SIFT-BOW features, frequent patterns or both.
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3.3 A second real dataset (668 videos)

3.3.1 Building Dataset

To illustrate our method, we pre-processed a Youtube dataset [12] with more than

10, 000 videos already decomposed into shots and keyframes. There are about 18 shots

per video and 1.5 keyframes per shot, i.e. about 27 keyframes for one video. We first

decided to focus on videos with some common tags to obtain an interesting sample of

the original dataset. For that, we focused on the 500 most frequent tags in the original

set. Table 3.4 shows some tags from this list from various locations. We can notice the

tags frequency highly varies at the beginning of the list and becomes more stable when

reaching a frequency under 100. Besides, the most frequent tags are mainly meaningless

(e.g. “the”, “of”, “full”, “lol” . . . ). We removed from this list of 500 frequent tags the

articles, pronouns, prepositions, words with less than two letters and also the 100 most

common tags in the remainder list (those, such as the word “video” who were considered

too frequent to be informative). Finally, top-150 tags were selected. This 150-tags are

meaningful and with a frequency still large enough to be able to select similar videos in

the original corpus. We then kept the videos that contain at least 5 of those 150 tags

and more than 1 keyframes. This process gave us a corpus of 668 videos with at least

5 meaningful tags per video. The global distribution of the 150 tags is given in Figure

3.6 (top).

3.3.2 Evaluation Procedure

To assess the accuracy of our system we need to manually check the 668 videos to

remove all noisy (incorrect and incomplete) tags. Since this is not doable in practice,

we randomly chose 50 videos from the original set, and tagged them by hand using the

150 pre-processed tags to obtain a reliable ground truth. We ran our tag propagation

method on the 668 videos and reported the accuracy results for these particular 50

videos. This accuracy is measured in terms of “percentage of good corrections” (PGC).

Let Tadd,correct be the correctly added tags out of Tadd,total added tags and Tremove,correct

be the correctly removed tags out of Tremove,total removed tags.

PGC =
Tadd,correct + Tremove,correct
Tadd,total + Tremove,total

If PGC is larger than 0.5, our system improves the tags in the videos. Note that

since most existing tag correction systems use some supervised information, we do not
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top-10 “top” 111 → 120 “top” 241 → 250

frequency tag frequency tag frequency tag

1288 the 140 pet 85 kristen

1072 video 139 james 84 nick

927 of 138 york 84 mobile

912 funny 138 taylor 84 fun

816 2009 138 part 84 family

730 new 137 white 84 cosmetics

508 to 137 full 84 channel

486 music 137 episode 83 young

464 world 136 your 83 ufo

418 in 135 lol 83 piers

Table 3.4: Examples of the top-500 most frequent tags present in a 10000 video-dataset
extracted from the Youtube dataset.

compare our system to them. The following experiments stand for a proof of concept

of our system.

The number of neighbors considered for the tag propagation and the statistical

tests are directly responsible for the propagation (or the removal) of a tag. To evaluate

our choices experimentally, we selected a frequent tag (“amanda”) in our video and 4

videos that should not be tagged with this particular tag1. Fig. 3.8 shows the number

of nearest neighbor videos that contain the tag “amanda” for the 4 different videos

(plain lines). It also shows how many nearest neighbor videos should contain the tag

“amanda” to trigger the propagation step (dashed line). Since the tag should not be

propagated to these videos, the plain lines should stay below their corresponding dashed

line. This is correct for all 4 out of 4 videos for 30 nearest neighbors. It is not correct

anymore when increasing the number of neighbors. This means that for this particular

tag, increasing the number of neighbors will actually degrade the propagating system.

Other similar experiments tend to confirm the relevance of choosing 30 neighbors.

Figure 3.6 (bottom) shows the distribution of the tags around the neighbors of a

each video in the dataset. From both histograms in Figure 3.6, we can conclude that

there is no direct correlation between the global and the local distributions of the tags

which justifies the use of the propagation criteria presented in Section 2.4 which takes

1Amanda Holden is a TV show presenter that is often present in our video samples.
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Figure 3.6: Distribution of the 150 kept tags over the 668 video dataset (top), and, for
each video in the dataset, over all its 30 nearest neighbors videos (bottom). The nearest
neighbors are computed using the SIFT-BOW baseline and the L1 distance function.

both the local and global information into account.

3.3.3 Experiment Settings

As shown in the experiments using the image datasets (see Section 2.2.4.2), the global

visual features (one histogram per image) do not provide enough information to obtain

discriminant patterns after the mining phase. Therefore, we only implemented the

local visual features (as explained in Section 1.1.1.4) with this real video dataset. Each

keyframe is represented as multiple local histograms, and we constructed a dictionary

of 1000 visual words. We choose this value which is significantly larger than the 200

visual words vocabulary that was used for the image datasets because of the larger

number of keyframes (around 14000).

From this 668 videos and from the local SIFT-BOW feature vectors computed from

the keyframes we created a dataset of about 6, 000, 000 local histograms. To reduce the

computational load, we use the Simple Binarization strategy introduced in Section 1.2.3.
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Original tags: Adam Lambert Born to be Wild Idol. . . (40 more tags)

Authorized tags: britains susan series cowell simon boyle humor

Propagated tags: britains susan series boyle humor

Groundtruth tags: fun humor boyle interview blue face susan people

Original tags: joe jonas nick kevin brothers mike. . . (25 more tags)

Authorized tags: awards nick kevin pattinson jonas robert brothers miley twilight fox cyrus

Propagated tags: nick jonas robert pattinson fox cyrus

Groundtruth tags: fun interview media brothers jonas face young people

Original tags: lady gaga telephone interview comedy. . . (55 more tags)

Authorized tags: awards lyrics phone american interview gaga

Propagated tags: american awesome cars gear motor review

Groundtruth tags: accident race cars street motor

Figure 3.7: Several examples of keyframes of the real 668 videos dataset along with
parts of the original tags and the complete pre-processed tags associated with the video
the keyframe belongs to. The result of the tag propagation using our system and the
tag ground truth is also given for these keyframes.
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Figure 3.8: Number of nearest neighbor videos that contain (plain line) or should
contain the tag “amanda” to trigger the propagation step (dashed line) according to
the number of nearest neighbors for 4 different videos. A video is described using an
average of the histograms representing all its keyframes. The keyframes are described
using one global SIFT bag-of-words. The videos are compared using a L1 distance
function.

Consequently, the input data used for the data mining algorithms consists of 6, 000, 000

transactions where each transaction is a binary 1000-D vector. Different strategies were

implemented to try to extract the most valuable frequent patterns and shown in Figure

3.9. In fact, a fifth strategy which consists in applying the SLIM algorithm directly

from the 6 millions transactions (running for two weeks) was tried but the final results

presented in Figure 3.10 were not better than the baseline. This strategy was thus

abandoned.

As in Figure 3.9, we separate all experiments into two parts: one where do not use

the tag information and another where we do.

3.3.3.1 Finding Patterns Without Tag Information

We run the LCM algorithm using the protocol described in Chapter 2 without any

supervised information. The minimum frequency threshold used is 500 which is the

lowest value we can set to be able to post-process the results in a reasonable amount

of time and within a reasonable amount of memory (lower than 20 GB).

We compute both closed and maximal frequent patterns. The LCM algorithm

returns about 700, 000 closed and 550, 000 maximal frequent patterns (these numbers

are rounded for the sake of readability). These values are, not surprisingly, too large
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Figure 3.9: Four different strategies to obtain a discriminant set of frequent patterns.
The two first ones use first the LCM algorithm on the dataset and compute the maximal
or the closed patterns. Then the patterns are post-processed to keep the emerging ones
(using the tag information) and further post-processed using the SLIM algorithm. In
the third and fourth strategies, the tag information is not used.

to be used directly for image encoding and thus, a post-processing step is needed to

significantly reduce them.

Without any supervised information, we rely on SLIM MDL-based optimization

criterion to find a reduced interesting set of patterns from the set of frequent patterns

output by LCM. This means that the output from SLIM is a set of higher order patterns

not a set of patterns build directly from the visual words. There is no straightforward
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Figure 3.10: Percentage of good corrections according to the number of neighbors after
one propagation step using a SIFT-BOW video encoding (baseline) and an encod-
ing based on SLIM patterns derived directly from SIFT-BOW. The dataset is the 50
ground-truth sample taken from the 668 real video preprocessed dataset.

connections between these “new” patterns and the original transactions. However, since

the “new” patterns are the set that compresses the classic frequent patterns well, and

since the classic frequent patterns are all extracted from the original transactions, the

“new” patterns might contain some useful information of the original transactions.

Applying SLIM greatly reduce the number of patterns of two order of magnitude:

from 700, 000 to 5, 500 for the closed and from 550, 000 to 5, 000 for the maximal ones.

These values can be used directly to re-encode our videos and then perform the tag

propagation.

3.3.3.2 Finding Patterns With Tag Information

Even if the tags (that don’t belong to the 50 ground truth videos) cannot be entirely

trusted, they are still one important source of information. In fact, they are used in

the tag propagation step to transfer tags to videos. Thus they could also be used as a

measurement to choose the good patterns.

In addition to the 1000-D binary input vector, we add another 150 dimensions for

the tag information. Each position in the last 150 dimensions symbolize one tag, and

its value is 1 if that video contains the tag and 0 if otherwise. LCM is used first to find

all closed and maximal frequent patterns from the set of 6 millions larger transactions.

It returns a very large number of patterns: 5 millions closed and 1.2 millions maximal

frequent patterns. Note that this is not surprising since each video is described by
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Figure 3.11: Percentage of good corrections according to the number of neighbors
in 50 videos represented with SIFT-BOW (baseline) and frequent patterns obtained
LCM(closed and max)+SLIM and LCM(closed and max)+ SLIM+ tag information.

around 10, 000 (6M/668) local histograms so each tag belonging to a video will appear

in at least 10, 000 transactions.

We then use the tag information integrated into these classic frequent patterns to

keep only the discriminant patterns. We use a method very similar to the one used

for emerging patterns in a classification problem [23]. We call Freqin the frequency of

a pattern FP only considering the transactions containing the tag T, and Freqout the

frequency of the pattern FP in all transactions that don’t contain the tag T. We define

a pattern FP as relevant for a certain tag T if Freqin is 5 times larger than Freqout.

This simple strategy reduces the number of patterns significantly: there remains

34, 000 closed and 90, 000 maximal patterns. We then remove the tag information out

of all patterns and apply the SLIM algorithm to post-process them further. SLIM

returns 500 closed and 700 maximal patterns. Finally, we perform the tag propagation

using these patterns as the main visual features for representing our videos.

3.3.4 Results

Figure 3.11 shows the results for the 5 experimental settings described above. Note

that using less than 30 neighbors questions our statistical tests. On the contrary, using

100 videos out of 668 clearly introduces a lot of noise. The best results are obtained

using the combination of LCM (closed), SLIM and the tag information (output 1 of

Fig. 3.9). In this case for 30 neighbors, the system is able to produce around 65% of

good corrections which means that 54 correct tags were added or deleted in the process
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Figure 3.12: Percentage of good corrections according to the number of neighbors for a
video dataset represented with 3 different features: SIFT-BOW (baseline) and frequent
patterns obtained with LCM(closed) + SLIM + tag info, and the concatenation of both
feature vectors.

(28 were wrong propagations). For the same setting, the baseline only allows us to

produce 57% good corrections. Figure 3.12 and 3.13 focus on the baseline and the best

case. It also shows the results when both vectors are concatenated. The concatenation

produces worse results than the best case which means that the information given by

the baseline is not complementary to the information given by the frequent patterns.

Figure 3.14 shows a comparison between our proposed asymmetrical similarity mea-

sure and the basic method which consists in simply averaging for one video all the

keyframe features and computing an histogram intersection between the feature vec-

tors representing two videos. Our proposed method does give better results but the

difference is not significant using 30 neighbors. The frame average method may thus

be preferred for efficiency reasons.

3.4 Conclusion

We have presented the design of 3 datasets and the experiments conducted with the

system described in the previous chapter to automatically correct and complete tags in

a video dataset. The experiments show that the size of the dataset should be important

enough for the system to be accurate. The experiments also show that the whole system

greatly depends on the choice of the original features and on the encoding of the videos.

However, the experiments on the last bigger dataset showed that relying on good visual
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Figure 3.13: Percentage of good corrections when counting only the addition (dashed
line with +), the deletion (dashed line with ◦) and both according to the number
of neighbors for a SIFT-BOW (baseline), LCM(closed) + SLIM + tag info and the
concatenation of both feature vectors.
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Figure 3.14: Percentage of good corrections to the number of neighbors for a video
dataset represented by frequent patterns obtained with LCM(closed) + SLIM +
tag information using the asymmetrical similarity measure and simply averaging the
keyframes features and computing an histogram intersection.

features and some partial information about the tags could lead to interesting results

and an effective end-to-end system.
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Chapter 4

Conclusions and Future Works

This dissertation has presented new visual mining-based features, and evaluated their

effectiveness when integrated in an auto tagging framework for video datasets. We

conclude our work by summarizing our main contributions and drawing conclusions in

Section 4.1. We then suggest several interesting directions for future research in Section

4.2.

4.1 Contributions & Conclusions

A simple but effective framework. Our first contribution is a general framework

for unsupervised tag propagation in video datasets. This framework is modular and

contains four independent blocks. Different visual features, distance functions, video

comparison methods and propagation techniques can be used.

Videos to transactions conversion. Video data are specific in the sense that

their structure is complex and they can be described by a large number of different vi-

sual features. Representing images and videos into a format suitable for existing pattern

mining tools is not a trivial task. We chose to use Bag-of-Visual-Word computed from

128-D SIFT descriptors to convert images or frames into histograms. These histograms

are more similar to the traditional pattern mining transactional format. Specifically,

each keyframe is densely sampled into numerous local patches which are then repre-

sented by a SIFT descriptor. Inside this 128-D space, all SIFT descriptors from all

keyframes of all videos are clustered into multiple (for example, 1000) groups. The

center of each group is called a visual word, and all SIFT descriptors belonging to the

group are associated to a unique visual word. Keyframes then become a set (bag) of

visual words which can appear multiple times. There are two popular ways to generate
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histograms from this set: one histogram per keyframe (called global histogram), or one

histogram for each local patch and thus multiple histograms for one keyframe (called

local histograms). The histograms must then be binarized. The binarization step for

the local histograms is straightforward since the variations of the bin values within the

histograms are small (and depends on the size of local patch), i.e., in general, the bin

values are already 0 or 1. For global histogram, the variability is much more important

and some more complex methods based on discretization should be used.

Local frequent patterns generation. Then, we have extracted frequent pat-

terns in the set of transactions representing the videos. We use the existing LCM

implementation to extract classic closed and maximal frequent patterns. However, the

number of patterns is often extremely large (millions of patterns), and they can not be

directly used to encode images or videos. By applying the minimum description length

principle and combine it with some heuristic approaches (as done in by the KRIMP

and SLIM algorithms), we are able to significantly reduce the number of patterns. We

also make use of tag information to keep emerging patterns (in our case, patterns that

are 5 times more frequent in the set of video having a given tag than in the set of videos

without the tag). With this process, we succeeded in finding better mid-level visual

features for a better propagation process. However, we have demonstrated that finding

good patterns without supervised information is still a challenging problem. We tried

different approaches of selecting the patterns without using the initial tag information

but all these results are only comparable with the results obtained with primitive visual

features.

Local is better than global. The experiments with the image dataset Oxford-

Flower17 show that local features have more potential than global features when ap-

plying data mining tools: all global results are worse than our baseline, while all local

results are better than the baseline (see e.g. Table 2.3 for global results, and Table 2.4

for corresponding local results). Moreover, with local histograms, the binarization is

easier to implement without losing information.

Distance functions and video comparisons. Multiple distance functions, from

simple the L1 distance to the more complex intersection kernel, are examined. With

a pre-defined distance function, comparing two keyframes is effortless since a keyframe

is often encoded as a vector. To compare two videos represented as a set of vectors we

tried multiple comparison methods: from simply taking the average of all keyframes,

to an asymmetric pairwise distance which compare all pairs of keyframes of two videos.

The simplest method is often selected for its good tradeoff performance/computation

time.
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Tag propagation procedure. We have presented an intuitive scheme to propa-

gate the tags mainly based on the neighborhood of the videos. Our method takes into

account both the global impact (the tag’s distribution at the dataset level) and the

local impact (the tag’s distribution in the video neighborhood) when making the prop-

agation decision. A tag of a video is removed if it never appears in the neighborhood

of that video.

Dataset and evaluation. Due to the lack of properly labeled datasets and eval-

uation procedure, we have created multiple datasets, each one for a different purpose.

By using a synthetic dataset in Chapter 3, we undoubtedly prove that there is room

for improvement towards primitive visual features like SIFT-BoW. With wisely chosen

visual features, it is possible to construct a better neighborhood with really similar

videos and thus obtain better propagated tags. The next video dataset of 668 videos

with 150 tags is used to demonstrate our framework’s effectiveness: considering 40

neighbors, the baseline returns 44% of good corrections while our patterns returns 64%

of good corrections (see Figure 3.12). The size of our video datasets is still not compa-

rable to, e.g. the number of Youtube videos but they are large enough to illustrate the

complexity and difficulty of our problems.

4.2 Future Works

Working with a bigger dataset. 668 videos are a large number of videos, but this

obviously does not reach the scale of video-sharing websites. Thus, using our framework

on a bigger dataset is a straightforward perspective. With a larger number of videos,

we expect to be able to find more similar videos while keeping the same number of

nearest neighbors, which in return might increase the performance of the propagation

step. However, with a larger dataset, several problems arise: visual words generation

uses a clustering algorithm that may become intractable when the number of SIFT

descriptors is too large. One way to solve this problem is to use a subset of the SIFT

descriptors in this phase. Pattern mining itself can also become problematic, even if

current mining algorithms scales well with respect to the number of transactions (and

the number of attributes does not increase). Finally, the distance function between

videos is expensive and we must compute, for each video, its nearest neighbors. In our

experiments, we used a naive quadratic procedure to compute this neighborhood and

this would not be tractable with millions of videos.

Incremental video dataset. Large video datasets are often build in an incre-
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mental fashion (In Youtube for instance, thousands of videos are added daily). Thus,

being able to correct the tags of the videos as they are added would be a significant

improvement on our framework. Given the visual features, it is easy to compute the

description of a new video using them. Then, computing the nearest neighbors would

still be a significant challenge. But how can we update the visual features that are used

to describe our videos as new videos arrive ? If the new videos are very different than

the videos already in the dataset, it would probably be interesting to update the visual

features. However, doing so would imply to recompute the descriptors of all videos

(including those already in the dataset), recompute all the neighborhoods and update

the tags. The cost of such an operation would probably makes it impossible if done in

a naive way.

Using different visual features. In this thesis, we tried with only one primitive

visual feature: SIFT-BoW. Applying the same principle with different visual features

might return better results. There is no limitation on choosing the primitive fea-

tures to represent the videos, therefore high level features, such as human faces, car’s

wheel. . . can also be good candidates.

Applying sequence pattern mining. Even if we tried several sequence mining

methods unsuccessfully (Section 3.1.3), applying sequence mining into videos feels so

natural since a video is basically a time series data. With current sequence mining

algorithm, the number of output patterns grows too fast, and they are often redundant.

By developing a SLIM-like sequence mining method, it might become possible to mine a

reasonnable number of discriminative sequence patterns in videos. These patterns could

then be used either alone, or combined with non sequencial patterns in our framework.
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[29] A Müfit Ferman and A Murat Tekalp. Two-stage hierarchical video sum-

mary extraction to match low-level user browsing preferences. Multimedia, IEEE

Transactions on, 5[2]:244–256, 2003. 15

[30] Basura Fernando, Elisa Fromont, and Tinne Tuytelaars. Effective use

of frequent itemset mining for image classification. In Europ. Conf. on Computer

Vision, pages 214–227, 2012. 31, 43, 44

[31] Colum Foley, Cathal Gurrin, Gareth JF Jones, Hyowon Lee, Sinéad
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