Keywords: Edit distance, Bag of visual words, Spatial matching, Image classification

The exponential increasing of the number of images requires e cient ways to classify them based on their visual content. The most successful and popular approach is the Bag of visual Word (BoW) representation due to its simplicity and robustness. Unfortunately, this approach fails to capture the spatial image layout, which plays an important roles in modeling image categories.

 introduced the Spatial Pyramid Representation (SPR) which successfully incorporated spatial information into the BoW model.

The idea of their approach is to split the image into a pyramidal grid and to represent each grid cell as a BoW. Assuming that images belonging to the same class have similar spatial distributions, it is possible to use a pairwise matching as similarity measurement. However, this rigid matching scheme prevents SPR to cope with image variations and transformations.

The main objective of this dissertation is to study a more flexible string matching model. Keeping the idea of local BoW histograms, we introduce a new class of edit distance to compare strings of local histograms.

Our first contribution is a string based image representation model and a new edit distance (called SMD for String Matching Distance) well suited for strings composed of symbols which are local BoWs. The new distance benefits from an e cient Dynamic Programming algorithm. A corresponding edit kernel including both a weighting and a pyramidal scheme is also derived. The performance is evaluated on classification tasks and compared to the standard method and several related methods. The new method outperforms other methods thanks to its ability to detect and ignore identical successive regions inside images.

Our second contribution is to propose an extended version of SMD replacing insertion and deletion operations by merging operations between successive symbols. In this approach, the number of sub regions ie. the grid divisions may vary according to the visual content. We describe two algorithms to compute this merge-based distance. The first one is a greedy version which is e cient but can produce a non optimal edit script. The other one is an optimal version but it requires a 4th degree polynomial complexity. All the proposed distances are evaluated on several datasets and are shown to outperform comparable existing methods.

List of Figures

age, image gradient is computed for 4 ⇥ 4 grid. Then at each cell, the histogram of magnitude and orientation of gradient are used to obtain final key point descriptor. Image from [START_REF] Marszalek | Past the limits of bag-of-features[END_REF] . . 2.4 A toy example about Spatial Pyramid Representation proposed by [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF]: First, the image is divided into multiple regions at multiple scales, e.g. 1 ⇥ 1, 2 ⇥ 2, 4 ⇥ 4 regions. The local histogram is calculated at each cell and at each resolution. Finally, all local histograms are multiplied with corresponding weights for each level before concatenating into single histogram-the final image representation. 2.5 Spatial Bag of Features (SBoF) approach of [START_REF] Cao | Spatial-bag-of-features[END_REF]. The authors try to partition an image either with a predefined direction to deal with translation or into multiple circular sections to cope with rotation. .

vi

LIST OF FIGURES vii 2.6 Pyramid rings approach of [START_REF] Li | Spatial pooling for transformation invariant image representation[END_REF]. The authors suggest to use a set of rings whose centers are the center of the image to locate the image layout. 2.7 Learning adaptive partition grid of [START_REF] Sharma | Learning discriminative spatial representation for image classification[END_REF] which for each image class, tries to find the optimal way to split the images recursively . 2.8 Randomized partition of [START_REF] Jiang | Randomized spatial partition for scene recognition[END_REF] where the image is divided randomly in many possible spatial partitions. 2.9 Example about binary SVM classifier which tries to find optimal hyperplane with maximum margin to classify feature data. 2.10 Example about using a transfer function to map data into a highdimensional space where a linear classifier can be used. bands of fours regions. The matching is done on each band separately. Let denote x i , y i with i = 1, . . . , 4 are the local histograms of regions in the first bands of the two images. The final edit script (or strings alignment) and the corresponding distance which is the minimum all possible edit scripts are shown on the figure. The SMD distance between two first strings of two images are computed as SM D = c del (x 1) + c sub (x 2 , y 1) + c sub (x 3 , y 2) + c del (y 3) + c sub (x 4 , y 4) = 1.15 + 1.65 + 1.54 + 0.19 + 1.85. In parallel, the Pairwise Matching Distance (PMD) which uses rigid matching between local region, is computed as total distance between x 1 and y 1 , . . . ,x 4 with y 4 . In other words, it is the total substitution cost between them. P MD = c sub (x 1 , y 1) + c sub (x 2 , y 2) + c sub (x 3 , y 3) + c sub (x 4 , y 4) = 7.01. The first table is the distance matrix D which is computed by dynamic programming. Each value of D, D (i,j) is minimum edit cost to convert sub string X (i) into Y(j). The second table is edit scripts matrix, which has same size as D. It is used to point out which previous edit operation has been applied to obtain the value of the corresponding cell in D. We use the notation:

for a Deletion on string Y, " for a Deletion on string X andfor a Substitution. . . We are living in a digital era, where data are saved, accessed and shared e ciently on digital format. Particularly, digital images are more and more present in our daily life since image capture devices have become more cheaper and popular, image sharing sites o↵er almost unlimited storage and finally high speed internet access enables to manipulate and exchange images easily. An obvious consequence is the exponential growth of the number of images along with an increase of the number of databases and the number of categories within those databases. The tasks of classifying, organizing and accessing these huge image databases become very challenging.

Initially, some proposed solutions to solve these tasks were based on the use of text meta data. However, using text captions, tags or descriptions available with images is not always a good option because this information is not always available, not always relevant, or can strongly depends on a personal point of view. Of course, manual indexing of images is just not possible, especially in case of very huge databases.

Following the old saying a picture is worth a thousand words , a new trend is to use directly the image visual content with the help of computer vision techniques. It seems to be a feasible solution, although several factors make this task very challenging. These factors include as scale, viewpoint, illumination changes, occlusion, background clutter, deformation (Figure 1.1), but also inter-class variations (Figure 1.2) or intra-class variations (Figure 1.3). Lobster Crayfish Ibis Flamingo Since the 2000s, thousands of publications have focused on finding a good solution for visual content classification and retrieval. One of the most successful approach is the Bag of visual Words (BoW) representation [START_REF] Sivic | Video google: A text retrieval approach to object matching in videos[END_REF][START_REF] Csurka | Visual categorization with bags of keypoints[END_REF]. The idea of this method is to use a set of image local features, to quantize them and finally present an image as a histogram of its quantized local features. The strengths of the method are its simplicity, its computational e ciency and its invariance to a ne transformations, as well as occlusion and lighting variations. This representation led to many state of the art results in di↵erent vision tasks, especially in object and scene classification.

One of the main drawbacks of the Bag of Word approach is that it does not use any spatial information. An image is represented as a occurrence histogram of its visual words regardless of their position. Thus, two images having the same visual words but located at di↵erent positions will be considered as similar whereas their visual content may be totally di↵erent.

To overcome this problem, spatial matching based approaches such as [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF][START_REF] Cao | Spatial-bag-of-features[END_REF][START_REF] Li | Spatial pooling for transformation invariant image representation[END_REF] have successfully incorporated some spatial information into the matching scheme. The idea of such approaches is to divide images into sub-regions and to compute a region to region matching between local sets of features. Each sub-image is described by a local BoW and the matching is done between the corresponding local BoWs.

Local Bag of Word approaches have also some drawbacks. Firstly, the image decomposition scheme must be predefined and applied identically on all images, without taking into account their visual content. Although the rigid partitioning of an image into rectangular blocks preserves certain spatial information, it often breaks objects into several blocks or puts several parts of di↵erent objects into a single block. Thus, visual information about objects, which could be useful for image categorization, may be destroyed by this rigid partitioning.

Moreover, when comparing two images, the region by region matching is sensitive to spatial translation of objects. Indeed, in the case of two images depicting the same object but at di↵erent positions, the matching could fail while the content is similar.

In addition, several works of [START_REF] Smith | Image classification and querying using composite region templates[END_REF][START_REF] Li | Irm: integrated region matching for image retrieval[END_REF][START_REF] Gokalp | Scene classification using bag-of-regions representations[END_REF] have shown that regions relationships can considerably improve classification performance.

Motivated by those results, we consider the problem of improving the standard local Bag of Word model. Our objective is to create a new image representation and a new matching strategy which takes regions relationship into account.

Contributions

The main contribution is to improve the matching scheme in local BoW approaches by incorporating neighboring information between regions. For that purpose, we propose to represent images as sets of strings of local BoW and to use string matching tools to compare them.

In this dissertation, we first investigate limitations of rigid Local Bag of Word matching and advantages of using strings to capture the order of regions inside an image. From this analysis, we propose to represent an image as a set of strings of histograms. We carefully analyze several string-based approaches and introduce a pyramidal strategy to get an improved representation.

Second, we introduce an approximate String Matching Distance (SMD), specifically adapted to our strings of histograms in the context of image comparison.

After reviewing several string comparison approaches as Levenshtein edit-distance [START_REF] Levenshtein | Binary codes capable of correcting deletions, insertions and reversals[END_REF], sequence matching [START_REF] Yeh | A string matching approach for visual retrieval and classification[END_REF], video matching [START_REF] Ballan | Video event classification using string kernels[END_REF], we propose a new definition of edit operation costs more suitable for string of histograms representing images. The new distance can be computed e ciently by Dynamic Programming. Its performance is evaluated on classification tasks and compared to the standard method and several related methods. The new method outperforms other methods thanks to its ability to detect and ignore identical successive regions inside images.

Motived by the very promising performance of SMD, we then propose to extend it by introducing a new edit operation called merging, which allows to combine successive symbols to create a new one. In this approach, the number of subregions i.e. the grid divisions may vary according to the visual content. More precisely, although we first use a fix grid to decompose the image into regions, this grid is automatically modified during the string matching phase since successive regions from both strings can be merged together. The new distance then brings more flexibility and precision to the matching process.

In addition, we describe two algorithms to compute this merge-based distance. The first one is a greedy approach which can be computed e ciently by Dynamic Programing but can produce a non optimal edit script. To get the optimal matching, we propose a recursive approach. However, this new algorithm has an exponential complexity which is not suitable for practical purpose. We then present a new optimal recursive version which requires only a 4 th degree polynomial complexity.

All the proposed distances are evaluated on several datasets and are shown to outperform comparable existing methods. It confirms the advantage of our idea of using merge operation in string-based edit distance for image comparison.

Thesis outline

The dissertation is organized as follows:

Chapter 2 reviews important works related to the thesis. First, we discuss about the image representation and advantages of using local based representations. Then, we present in details the Bag of Word framework. The main limitation of the BoW, which is that it ignores spatial information of local features, is pointed out. We pay special attention on Spatial Pyramid Representation (SPR) and its alternative representations which successfully incorporate spatial information into the BoW. Then, SPR drawbacks about spatial matching are discussed.

Chapter 3 introduces the new image representation as strings of region histograms. In parallel, we present the approximate String Matching Distance to

Introduction

Assuming we have a collection of already categorized images (training set) and a set of unknown ones (test set), the objective of content-based image classification is to assign unknown images to one or more semantic categories based on their content. Since we have no information about a given unknown image, the simplest way is to compare it to images from the training set and then assign it the label of the closest-one. This is the 1-nearest neighbor approach. In a more accurate way, we can use some learning approaches (e.g SVM). The distances between images are used as input of a learning classifier and the final class model is used to categorize unknown images. However, even with the help of a very strong machine learning technique such as a SVM classifier, image classification is still a very challenging problem as described in Chapter 1 since we need to consider various image transformations, viewpoints, scales and also inter/intra class diversity. The question is: How to compare two images e ciently and correctly based on their contents? To answer this question, there are two points to tackle: first, the image representation, i.e. how to encode an image content into a robust and compact form; second, the image matching, i.e. how to compare two images with such image representation. In this chapter, we review relative issues on these questions.

Image representation

The purpose of image representation is to convert an image content into a compact and comparable form. A good image representation approach should encode all the related information about the visual content of the image. What information in the image is considered relevant depends on the task and dataset. For instance, to classify two scene images, color and texture are two visible features which can be used; but for two object images, shape information may be more suitable. Furthermore, depending on the information used, the image can be represented globally (using the whole image information, e.g color histogram...) or locally (using set of image regions). Each representation type has advantages and limitations.

The first image representations were global such as color histogram [START_REF] Swain | Color indexing[END_REF], combination of color and shape [START_REF] Jain | Image retrieval using color and shape[END_REF], texture [START_REF] Manjunath | Texture features for browsing and retrieval of image data[END_REF]. The advantages of global representations are that they are compact, fast to compute and invariant to layout of image parts [START_REF] Krapac | Image Representations for Ranking and Classification[END_REF]. However, since they are constructed from all image pixels, any variation in the image content may probably a↵ect the final image representation. This makes it di cult to obtain invariance to transformations, light changes or noise.

When object are involved, as in object detection and recognition tasks, global representations are not robust to background cluster, occlusions and deformations.

Therefore, global representations are used most of the time for scene classification purpose like indoor/outdoor or landscape/city classification. These approaches have more di culties to handle a large number of classes.

To overcome the limitations of global image representations, the image is represented in a discriminative way, by a collection of local features. The successful development of local feature detectors and descriptors has had a tremendous impact on research in object recognition and image classification. Those features have made possible to develop robust and e cient recognition approaches that can operate under a wide variety of viewing conditions and under partial occlusions [START_REF] Grauman | Visual object recognition[END_REF]. The most well known local features based representation is the Bag of Word model. More details about this model will be discussed below.

The Bag of Word representation

The Bag of Word representation is one of the most famous techniques in computer vision. The method was first applied in the text domain [START_REF] Harris | Distributional structure[END_REF]. For text document classification task, a document is represented as a set of single words. This representation is done without taking into account the grammar and even the word's order. Fundamentally, the document is categorized by using only information of the words's appearance and their frequency.

The Bag of Word model was further adapted to computer vision applications by treating each image as a document of visual words. The principle key of the model is the use of local features to generate the image visual words. In recent years, the approach has drawn a lot of researchers's attention due to its e↵ective performance, computational e ciency, and simplicity. There is an increasing number of publications using the Bag of Word model everyday. This confirms that the Bag of Word representation is the most successful and suitable approach for object and scene classification. The Bag of Word approach contains several steps. Figure 2.1 summaries its framework. According to the figure, the approach can be divided into four main steps:

• Local feature detection: Extracting interesting regions or points from image.

• Local feature description: Computing descriptors over these regions/points.

• Coding: Representing the distribution of local descriptors in a compact way.

This step is usually based on vector quantization and consists in two phases: (i) Building a visual vocabulary from a random set of feature descriptors, (ii)

Assigning the descriptors to the di↵erent visual words using a soft or hard strategy.

• Pooling: Constructing the final vector by either sum or max pooling. At the coding step: first, a clustering approach such as k-means is applied on a random subset of descriptors taking from all images to generate the visual vocabulary. Then, each descriptor is allocated to one (hard strategy) or a set of visual words (soft strategy). Finally, a vector histogram is computed at pooling step At each step, many alternative improvements on the standard Bag of Word have been proposed. In following next subsections, we will review them in detail.

Feature detection

The goal of feature detection is to identify some parts of an image that are interesting for a given application. These parts are called local features and correspond to specific structures in the image itself, ranging from simple structures such as points or edges to more complex structures such as objects. They are interesting because they can capture information about local neighborhood of interest points in an image and allow to cope with large changes in illumination condition and with image transformations, such as translation, rotation, scaling, and a ne deformation [START_REF] Tuytelaars | Local invariant feature detectors: a survey[END_REF]. For that reason, a set of local features are usually used as a robust image representation or to compare two or more images. Generally, local features can be detected and extracted from the image by using feature detector. In the literature, we can separate two kinds of feature detectors: (i) Interest point detector and (ii) Dense sampling detector.

Interest point detector

Interest point detectors focus on interesting locations in images which can be points, corners, edges, blobs and regions. The earliest interest point detectors are Harris detector [START_REF] Harris | A combined corner and edge detector[END_REF] and Hessian detector [START_REF] Lindeberg | Feature detection with automatic scale selection[END_REF]. While Harris detector tries to detect corner-like structures, the Hessian detector intends to detect blobs or regions with strong texture variation. [START_REF] Lindeberg | Feature detection with automatic scale selection[END_REF]] introduced the Laplacian of Gaussian LoG detector -a blob-like features detector which can cope with di↵erent scale invariant regions. [START_REF] Lowe | Object recognition from local scale-invariant features[END_REF] had approximate Laplacian function by a derivation Gaussian function and proposed Di↵erence of Gaussian (DoG) detector whose performance is same as LoG. In the work of [START_REF] Schmid | Evaluation of interest point detectors[END_REF], the authors noticed that although those two Harris and Hessian detectors are very robust to image rotations, illuminations changes and noise, they can not cope with scale variations. Then in their later work [START_REF] Mikolajczyk | Scale & a ne invariant interest point detectors[END_REF], they proposed to combine the Laplacian of Gaussian detector with Harris and Hessian detectors and created Harris-Laplace detector and Hessian-Laplace detector which are scale invariant region detectors.

Moreover, they extended those two detectors to yield a ne invariant properties (Harris-A ne, Hessian-A ne) [Mikolajczyk et al., 2005]. Those detectors can detect the features under large viewpoint changes. All previous detectors have been used in many computer vision applications specially in image matching and retrieval. More details about experimentation and comparison of those feature detectors can be found in [Mikolajczyk et al., 2005;[START_REF] Tuytelaars | Local invariant feature detectors: a survey[END_REF].

Dense sampling detector

While an interest point detector considers only special locations in an image, the dense sampling detector, on the other hand, extracts local features at every point on a regular grid. It allows to detect features on contours, corners as well as in uniform regions. The dense sampling detector is believed to be well adapted for a classification task where the image background contains important information.

The most disadvantage of dense sampling approach is that it uses a fix image patch size which causes the inaccuracy of sampling scales and locations. In order to reduce impacts of these problems, multi scales dense sampling and overlapping between image patches are frequently applied. Consequently, having more image patches means paying more computational cost for following steps. Nevertheless, due to the computational constraint, it is suggested to use a small random selection of image patches [START_REF] Nowak | Sampling strategies for bag-of-features image classification[END_REF]. Recently, [START_REF] Tuytelaars | Dense interest points[END_REF] proposed Dense Interest point, a hybrid technique and showed that the new detector improves both performance and computation.

Feature description

Once a set of local features has been detected from an image, some encoding algorithms are applied on these local image regions to convert them into local descriptors. The purpose of this step is to make local features robust against scale changes, a ne transformations and partially invariant to illumination variations.

This means, the descriptors of two local features with the same visual content should be identical even if they appear under di↵erent viewpoints and scales.

Several feature descriptions have been invented such as SIFT [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], SURF [START_REF] Bay | Surf: Speeded up robust features[END_REF], HOG [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF])... Among them, the SIFT descriptor is the most widely used one in computer vision, and the one we use in the following.

SIFT

Basically, the SIFT (Scale Invariant Feature Transform) descriptor is a spatial orientation histogram of the image gradient. In the original formulation proposed by Lowe [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], the SIFT descriptor is a combination of DoG based detector and its corresponding features encoder (based on orientation normalization). In fact, the study of [Mikolajczyk et al., 2005] has confirmed that the SIFT descriptor can work with any kind of interest point detectors and also dense sampling method.

In recent publications [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF][START_REF] Yang | Linear spatial pyramid matching using sparse coding for image classification[END_REF][START_REF] Wang | Localityconstrained linear coding for image classification[END_REF][START_REF] Boureau | Ask the locals: multi-way local pooling for image recognition[END_REF], the dense-SIFT approach has been showed to better perform on object and scene classification.

To compute the SIFT descriptor, first a grid 4 ⇥ 4 is applied around an interest point (e.g. one image patch). Each window is divided again into 4 ⇥ 4 cells and the gradient of magnitude and gradient of orientation are computed in each cell.

A histogram of 8-bin gradient orientation is computed which leads to 4 ⇥ 4 ⇥ 8 or 128 dimensions. By using the intensity gradient (magnitude and orientation) in the computation, the SIFT descriptor becomes invariant to image rotation and illumination change.

Extensions of SIFT

Several extensions of SIFT have been introduced in literature. The PCA-SIFT [START_REF] Ke | Pca-sift: A more distinctive representation for local image descriptors[END_REF] applied Principal Component Analysis (PCA) to reduce the dimension of normalized local gradient maps, thus, made new descriptor both faster and more distinctive than the regular SIFT descriptor. GLOH [Mikolajczyk and Schmid, 2005] extended SIFT by using a log-polar grid as opposed to Image from [START_REF] Marszalek | Past the limits of bag-of-features[END_REF] a rectangular 4 ⇥ 4 grid and 16-bin orientation against 8-bin. The PCA method is then used to reduce the dimension of the descriptor. From their experimental results, the authors showed that the new descriptor, GLOH, well performed with structured scenes. The SURF descriptor (Speeded Up Robust Features) proposed by [START_REF] Bay | Surf: Speeded up robust features[END_REF] is not an extended version of SIFT but is very closely related to SIFT descriptor. It uses an integer approximation to the determinant of Hessian blob detector instead of the Laplacian operator, and Haar wavelets instead of Di↵erent of Gaussian in an image pyramid.

Coding

Visual codebooks are proposed to represent an image in a compact way. The idea of a visual codebook is motivated by using a dictionary to represent the document in text categorization. But unlike the text domain, where the codebook is already given, in the computer vision system, the vocabulary is not yet available and need to be created from training data. Once the dictionary is created, each local descriptor is assigned to visual words and each image is represented as a Bag of visual Word (BoW). This process is called coding. It is an important step which has strong e↵ect on classification performance.

We detail its two phases: Codebook generation and Codeword assignment.

Codebook generation:

At this phase, a large set of image descriptors is randomly selected from all training images. A clustering method is applied on this set in order to group similar image descriptors into a same cluster. Many clustering methods have been used

to construct a visual codebook such as K-means [START_REF] Csurka | Visual categorization with bags of keypoints[END_REF][START_REF] Sivic | Video google: A text retrieval approach to object matching in videos[END_REF], Gaussian Mixture Models (GMM) [START_REF] Dorkó | Object Class Recognition Using Discriminative Local Features[END_REF], online clustering with mean-shift [START_REF] Jurie | Creating e cient codebooks for visual recognition[END_REF], and hierarchical clustering [START_REF] Nister | Scalable recognition with a vocabulary tree[END_REF]. Once the clustering is done, each center of cluster becomes a codeword.

All approaches mentioned above are un-supervised learning techniques. Their advantages are simplicity, lower risk of overfitting and computational e ciency.

Nonetheless, the visual dictionary can be generated by supervised learning approaches [START_REF] Moosmann | Fast discriminative visual codebooks using randomized clustering forests[END_REF][START_REF] Perronnin | Universal and adapted vocabularies for generic visual categorization[END_REF][START_REF] Lazebnik | Supervised learning of quantizer codebooks by information loss minimization[END_REF].

These approaches employ the class labels during the construction of codewords.

They usually generate a more discriminative codebook which adapts to real-world applications. However, in the other hand, these approaches introduce more complexity. Typically, in the basic Bag of Word pipeline, authors prefer to use unsupervised approaches, like the K-means clustering method.

One more thing to discuss in the codebook generation phase is the codebook size or the number of clusters. This number defines the diversity of the visual dictionary and consequently the quality of our image representation. If it is too small, it is highly probable that quite di↵erent descriptors belong to the same cluster making the image representation less specific. In contrast, if the codebook size is too big, we can obtain a more precise representation. However, if this size grows too much, the overfitting phenomenon might occur and similar image patches might be described by di↵erent codewords. Typically, the codebook size is selected as the best one after several tests.

Codeword assignment:

Let denote B = (b 1 , b 2 , ..., b K) as the codebook obtained after the previous codebook generation step. b i denotes its i-th visual codeword and K is the vocabulary size. In the codeword assignment phase, each feature descriptor x is assigned to one or several visual words. There are several assignment methods used in the literature.

Hard Assignment Coding or Hard Coding or Vector quantization: is the easiest way to assign codewords to local descriptors. Each local descriptor is assigned only one visual word which is the closest nearest neighbor in the feature space. Normally, the Euclidean distance is used to compute distances between the descriptor and the centers of the cluster. Let ↵ be the coding coe cient vector of x with ↵ i being the coe cient with respect to visual word b i . Each coe cient ↵ i is computed as:

↵ i = 8 < : 1 if i = arg min kx b i k 2 0 otherwise
In spite of its simplicity, hard assignment approach su↵ers from large quantization errors.

Soft Assignment Coding:

The biggest problem of hard assignment coding is the use of only one visual word to code each descriptor, ignoring the relevance of other candidates. This problem can be solved using Soft Assignment Coding [van Gemert et al., 2010]. The main idea of soft assignment is that each local descriptor is described by all codewords with corresponding weights. The weight are the coding coe cients and are computed as a Gaussian function of the distance between the descriptor and the visual codebook:

↵ i = exp(kx b i k 2) P K i=1 exp(kx b i k 2)
Lately, [START_REF] Liu | In defense of soft-assignment coding[END_REF] noticed that assigning a local descriptor to all visual words is non-reasonable (even if coding coe cients of non relevant candidates are small).

As a consequence, this soft coding scheme degrades the classification performance.

The authors proposed a Semi-Soft Assignment Coding which each local feature is presented by only its top k nearest cluster centers in the feature space.

Sparse Coding: The sparse coding method also intends to improve hard coding by using more than one visual words to represent a local descriptor. The main idea of sparse coding is to find the codebook from which a training set of descriptors can be represented as a linear combination having the lowest number of non-zeros coe cients. In other words, this sparse coding tries to minimize the number of visual words assigned to each feature.

[[START_REF] Yang | Linear spatial pyramid matching using sparse coding for image classification[END_REF] are the first authors to propose this sparsity constraint in the BoW framework. The sparse vector ↵ coding a given descriptor x according to codebook B is determined using the constrain:

↵ i = arg min kx B↵k 2 + k↵k 1
where the sparsity regularization term k↵k 1 is selected as the l 1 norm. Here, the codebook B can be obtained by k-means, or for better performance, trained by minimizing the average of kx B↵k over all samples [START_REF] Boureau | Ask the locals: multi-way local pooling for image recognition[END_REF]. The main drawback of sparse coding is that two similar features can be encoded by two very di↵erent coe cients.

Locality constrained Linear Coding (LLC): introduced by [START_REF] Wang | Localityconstrained linear coding for image classification[END_REF], is an adaptation of sparse coding with locality constraints. Instead of using sparsity constraint (which tries to represent an input vector x using as least non-zeros basic vectors as possible), LLC approach employs a locality constraint (the features located nearby should be represented by the same basic vectors):

↵ i = arg min kx i B↵k 2 + kd.↵k 1 where d = (d 1 , d 2 , ..., d K
) is a penalty weight. Each element d i is computed as a function of the distance between the local feature x and centre of clusters (i.e. visual codewords) in the feature space:

d i = exp(kx b i k)
In addition, the authors also introduced a fast approximated LLC using only the top k nearest codewords of x in the feature space in order to reduces computation time such that the approach can be compatible with real applications. Because of the locality constraint, LLC can capture the correlations between similar descriptors. It means that similar image patches, whose descriptors are closed in the feature space, will be represented by similar coding coe cients.

Pooling

After the coding step is the pooling step which aims to convert a set of visual words of an image into a single vector. The illustration of the pooling step is shown on Figure 2.1. The earliest pooling approach is sum pooling [START_REF] Sivic | Video google: A text retrieval approach to object matching in videos[END_REF][START_REF] Csurka | Visual categorization with bags of keypoints[END_REF] where we count the number of occurrences of visual words in the image. In this case, an image is represented as a histogram of codewords. If we normalize this histogram to the total number of visual words in the image, sum pooling becomes average pooling.

Lately, [START_REF] Yang | Linear spatial pyramid matching using sparse coding for image classification[END_REF] introduced max pooling with sparse coding. The final vector is computed as the maximum value of each dimension over the set of coding vectors. The max pooling method has been showed well suited to other sparse-based representations, e.g semi-Soft assignment, LLC... and regularly used together with a linear classifier to get better performances.

Discussion

The Bag of Word model is the state of the art approach for image classification because of its simplicity and robustness. With this representation, we can e ciently and easily apply a classification technique like Nearest Neighbors, SVM, random forest, etc...to classify an image. The Bag of Word model has been improved in several ways by enhancing each of its steps. For instance, in the coding step, a lot of approaches have been proposed to create an e cient vocabulary. In the assignment step vector quantization has been replaced by Soft assignment and recently by Sparse Coding or LLC coding. Single image features (e.g texture) have been replaced by multiple features (color, texture, shape) [START_REF] Gehler | On feature combination for multiclass object classification[END_REF].

Another research direction investigated in recent years is to overcome its orderless limitation. Indeed, the main drawback of the Bag of Word model is that it ignores the spatial layout of local features. Such spatial information is thought to play a vital role in modeling object categories. In this context, the Spatial Pyramid Representation [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF] is probably the most notable work.

Spatial Pyramid Representation

Principle

The basic assumption of Spatial Pyramid Representation (SPR) is that certain features tend to appear in certain spatial areas in images belonging to the same class. Therefore, the authors suggest to use a regular grid to locate image layout.

Consequently, if two images are similar, it is highly probable to find the same local features at the same locations. A histogram of visual words is computed for each image sub-region at each resolution level. The spatial pyramid representation is a collection of local Bag of Word computed over cells defined by a multi-level recursive image decomposition. The authors used the number of matches over di↵erent image resolutions as a measure to compare two images. This idea is an extension of Pyramid Matching kernel [START_REF] Grauman | The pyramid match kernel: Discriminative classification with sets of image features[END_REF], where the histogram intersection kernel is computed between two corresponding regions to count the number of matches. With a penalty weight, the matching at finer level of resolution has more e↵ect compared with the matching at coarser level.

The higher the total number of matches the more similar the distribution of local features is. For that reason, in case of objects and scenes which are well aligned in their images, the SPR is a good choice. The approach has several advantages:

• The image is partitioned into regions according to a predefined grid and thus no segmentation is required.

• Information about the location of local features is e ciently used in the pyramid matching step.

• Thanks to the weighting scheme a finer level have a higher weight. Indeed the matching computed at coarser level still contains the matching at a finer level.

Figure 2.4 illustrates in detail the implementation of SPR approach.

Extensions of SPR

By successfully incorporating spatial information into the Bag of Word model, the SPR achieved a significantly better performance over BoW and became the state of the art. Despite previous successes, the Spatial Pyramid Representation still has several limitations which come from the partitioning, the weighting scheme and the features matching.

Recently, several alternative approaches trying to improve the Spatial Pyramid Representation were proposed. [START_REF] Sharma | Learning discriminative spatial representation for image classification[END_REF] which for each image class, tries to find the optimal way to split the images recursively [START_REF] Marszaek | Spatial weighting for bag-of-features[END_REF] noticed that, SPR uses three layers of grids 1⇥1, 2⇥2, [START_REF] Jiang | Randomized spatial partition for scene recognition[END_REF] where the image is divided randomly in many possible spatial partitions.

longer than the original Bag of Word. It is not convenient when increasing the number of training images or with a large dataset. The authors also remarked that in the general case, the visual image content has vertical distribution. Therefore, they suggested to use a 3 ⇥ 1 grid to replace a 4 ⇥ 4 one in order to reduce the final vector dimension while still capturing the visual information of the image plane.

[[START_REF] Cao | Spatial-bag-of-features[END_REF] noted that the uniform partitioning is not invariant to scale, translation and rotation. Thus, they introduced a new framework, called Spatial Bag of Features (SBoF) (Figure 2.5) which either partitions the image recursively with a predefined direction or divides an image into multiple circular sections to cope with rotation problem. The drawback of this method is that it heavily depends on the choice of direction plane and centre location. Using all possible lines angle and center locations leads to an extremely high dimensional histogram representation for an image, which causes high computational cost. Motivated by this, [START_REF] Li | Spatial pooling for transformation invariant image representation[END_REF] suggested to replace the grid partitioning and circular sectors by a set of rings whose centers are the center of the image (see Figure 2.6). The approach is then less complicated compared with SBoF.

[[START_REF] Sharma | Learning discriminative spatial representation for image classification[END_REF] noticed that using an unique and uniform partition grid for all classes clearly reduces the classification performance. They proposed to learn the partition grid which adapts to di↵erent classes to obtain optimal way to split images so we can obtain a higher classification performance. They fixed the number of tilling then divided images recursively in each direction. For example in Figure 2.7, first, it tries to find the best way to divide the image into two regions. Then, from this two-regions grid, it finds the best ways to divide the image into 3 regions, and so on. For each image class, all patterns are tested to find the best, the most suitable one which is used as a final spatial layout to partition images of this class. However, it is not guarantee that the matching between local regions as used in SPR is still working.

Recently, [START_REF] Jiang | Randomized spatial partition for scene recognition[END_REF] proposed Randomized Spatial Partition (RSP) to characterize the image layout by randomizing partitions (Figure 2.8). The image is divided randomly in many possible spatial partitions (either rotation) so that it can discover the descriptive partition patterns that better represents the spatial configuration of the category. Moreover, di↵erent from [START_REF] Sharma | Learning discriminative spatial representation for image classification[END_REF] approach where one grid per class is used, the RSP-based method combines several suitable partition patterns. This makes the image representation more robust as it is less sensitive to the spatial quantization error. However, since they use a lot of partition patterns per class to divide images (either rotation), the matching process and image comparison in this method is not clear and very questionable. Also, both methods have the main drawback that they are computationally expensive.

Although successful incorporating spatial information into BoW, those approaches still use region to region matching. Two regions of two images are matched because they are situated at the same location in image layout, not because they have the same visual content. So, this matching scheme introduces a lot of mismatches due to image transformations such that rotation, translation and scaling. We will discuss more about spatial matching in the next section.

Image comparison

Once an image is represented as a Bag of Word or a set of Local Bag of Words, the question that arises is how to compare two images.

Bag of Word matching:

While the image is represented as a vector of visual words, the matching between two images can be computed directly as the ground distance between their two histograms. The reason is, since we assign the visual words for the local features, we already assumed that: the local features are represented by the same words means they have same visual contents. Therefore, they can be matched. The bin-to-bin distance is the easiest way to measure this match.

The formulas of several frequently used bin-to-bin ground distance can be found bellow. Here, we keep the same notation in all formulas, where x = (x 1 , x 2 , ..., x n) and y = (y 1 , y 2 , ..., y n) are two feature vectors in R n space.

• l d l 1 = n X i=1 |x i y i | • L 2 or Euclidean distance d l 2 = v u u t n X i=1 |x i y i | 2 ! = n X i=1 |x i y i | 2 ! 1/2 • 2 Distance The distance is computed on normalized vectors. Let us note x = x P n i=1 x i
and ȳ = y P n i=1 y i the normalized vectors of x and y. The 2 distance is:

d 2 = 1 2 P n i=1 (xi ȳi) 2 xi + ȳi • Histogram Intersection Distance d inter = n X i=1 min(x i , y i)
Recently, several authors proposed to use cross-bin distances, such as Earth Mover's Distance [START_REF] Rubner | The earth mover's distance as a metric for image retrieval[END_REF] to compare such visual feature histograms. Applying EMD, the images similarity is computed as the amount of changes necessary to transform one image feature into another.

• Earth Mover's Distance

The idea of EMD is based on a solution to the well-known transportation problem. Suppose that the suppliers P = {(p 1 , w p 1), . . . , (p m , w pm)}, each supplier p i having a given amount of goods w p i , are required to supply the consumers Q = {(q 1 , w q 1), . . . , (q n , w qn)}, each consumer q i having a given limited capacity w q j . For each supplier-consumer pair, the cost of transporting a single unit of goods is given by d ij (d is called ground distance). The transportation problem is then to find a least-expensive flow of goods F from the suppliers to the consumers that satisfies the consumers' demand. Because all customers can receive goods from all suppliers, the Earth Mover's Distance is a cross-bin distance. Let f ij being the flows between p i and q j , that minimizes the overall cost. The EMD is:

EMD(P, Q) = (X i,j f ij d ij)/(X i,j f ij)
with some constraints:

X j f ij  p i X i f ij  q j X i,j f ij = min(X i p i , X j q j)
Set of local Bag of Words matching:

The Bag of Word matching procedure does not use any spatial information therefore it may introduce some bad-matches between local features of two images.

The reason is that local features corresponding to di↵erent semantic regions can be assigned to the same codeword and be matched. For instance, the sky feature and the sea feature can be described by the same visual word and are matched but this match is wrong. Since the patches from di↵erent categories may have di↵erent spatial distributions, such as the sky feature is usually on the upper part, the sea feature is normally on the bottom of the images, it suggests to use location information of image features to correct the matching process.

Spatial Pyramid Representation based approaches such as [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF][START_REF] Cao | Spatial-bag-of-features[END_REF][START_REF] Li | Spatial pooling for transformation invariant image representation[END_REF] have successfully employed features location into the matching scheme. The idea of those approaches are: two features of two images are matched if they are located at same position in the image. When considering SPR based representation, we have to deal with the computation of distances between sets of local BoWs. Generally, the matching is done between features at the same cell-location in the image. In other words, it is a cell to cell matching. So although these methods performs better than BoW matching, they are very sensitive to image deformations.

Structure matching:

An image is not only represented by its local BoW but also by the relations among them. There is another direction which tries to model image as structured models of regions like strings [START_REF] Smith | Image classification and querying using composite region templates[END_REF][START_REF] Yeh | A string matching approach for visual retrieval and classification[END_REF][START_REF] Lu | Image categorization with spatial mismatch kernels[END_REF][START_REF] Kim | Asymmetric region-to-image matching for comparing images with generic object categories[END_REF][START_REF] Hong-Thinh | Approximate image matching using strings of bag of visual words representation[END_REF] or graph [START_REF] Duchenne | A graph-matching kernel for object categorization[END_REF][START_REF] Wu | Spatial graph for image classification[END_REF]. The matching problem then becomes a string matching (or graph matching) problem. For instance, in a string based representation, the image is divided into regions and each region is represented as a symbol of a string. [START_REF] Yeh | A string matching approach for visual retrieval and classification[END_REF]] used a raster scanning to construct a 1-D string and used the edit distance to compare two image strings. [START_REF] Lu | Image categorization with spatial mismatch kernels[END_REF] represented each image as 2-D string and proposed Spatial Mismatch Kernel to compare those strings. In graph based approach, [START_REF] Duchenne | A graph-matching kernel for object categorization[END_REF] described an image as a graph of nodes and edges are image regions and their relationships. They formulated the image graph matching as the optimization of an energy problem. Recently, [START_REF] Wu | Spatial graph for image classification[END_REF] presented a Spatial Graph which attempts to use region relationships to improve the matching scheme. The advantage of these approaches is a flexible matching. With string matching, the matching can be done at any position on the string. Moreover, with the properties of edit distance, this matching scheme can also take into account location information of regions/symbol in strings. The graph matching can be seen as an extension of string matching. We will discuss this type of matching for images in more details in the next chapter.

Image classification and kernels

SVM classification

With the development of digital technology, number of images and number of classes increase significantly. As a consequence, using supervised learning techniques has been a recent trend in image classification due to its better performance compared to the K-NN approaches. The role of a supervised classifier is to learn how to separate the known label images in feature space then reliably predict the classes for unknown ones. A Support Vector Machine [START_REF] Cortes | Support-vector networks[END_REF] is one of the successful supervised learning approach for visual classification. It typically involves two steps.

f (x) = n X i=1 ↵ i y i < x i , x > +b (2.1)
where {x i , y i } n 1 are training samples with y i = {+1, 1} is the label of x i , ↵ i are non-zeros, b is bias and < ., . > denotes the dot product.

However, the data does not always have a linear distribution. In case of non linear, a non-linear classifier can be obtained from a linear classifier by using a non-linear map transform function into a high-dimensional space (see Figure 2.10). The decision function will be:

f (x) = n X i=1 ↵ i y i < (x i), (x) > +b (2.2)
Furthermore, the above equation only needs to know the dot product < (x i), (x) >.

The explicit representation for is not involved. The expensive computation of (x i), (x j) and < (x i), (x j) > in the transformed space are reduced significantly by defining a suitable kernel function k: k(x i , x j) =< (x i), (x j) >. It is called the kernel trick [START_REF] Aizerman | Theoretical foundations of the potential function method in pattern recognition learning[END_REF].

Mercer's theorem and kernel function

Mercer's theorem: For a training set S = {x i } n 1 and a function k(u, v). The kernel matrix (also called the Gram matrix) K S is the matrix dimension

|S| ⇥ |S| where (K S) ij = k(x i , x j). k(u, v) is a

valid kernel if and only if the corresponding kernel matrix is Positive

Semi Definite for all training sets S:

n X i=1 n X j=1 K(x i , x j)c i c j 0
for all choices of real numbers c 1 . . . c n . Using a valid kernel function k, the decision function is rewritten as:

f (x) = n X i=1 ↵ i y i k(x i , x) > +b (2.3)
Some common valid kernels used for computer vision tasks are given below:

• Linear kernel:

k(x, y) =< x, y > • 2 kernel: k(x, y) = 2 X i x i y i x i + y i • Intersection kernel: k(x, y) = X i min(x i , y i)
• Gaussian kernel: k(x, y) = exp(kx yk 2), for > 0.

• Edit kernel: ([START_REF] Li | A class of edit kernels for svms to predict translation initiation sites in eukaryotic mrnas[END_REF])

k(x, y) = exp(D ed (x, y))
where D ed (x, y) is the edit distance between the two sequences x and y, > 0

Multiclass SVM

Multiclass problems can be solved by dividing them into multiple binary classification problems. The common technique is to build binary classifiers which distinguish between (i) one class against the rest (so called one vs all) and chooses the class for which the corresponding classifier reports the highest confidence score;

or (ii) between every pair of classes (it refers to one vs one) and chooses the class that is selected by most classifiers.

In the following, we will use the one vs all approach since it is reported as a simple yet e↵ective approach in image processing.

Summary

In this chapter, we have reviewed the Bag of Word model and its main limitation which is the lack of spatial information. We have payed attention on the Spatial Pyramid Representation and its extensions which are very successful to incorporate spatial layout into the BoW. In spite of the fact that these methods have become the state of the art due to their simplicity, several limitations have been discused. Beside, we have also introduced the spatial matching problem for image comparison. Three types of matching has been discussed: the BoW matching, the local BoW matching and the matching using structured data such as string or graph to represent image content. Those methods introduce a flexible matching scheme, and for that reason our motivation in this thesis is to use a string model to incorporate region relationships and approximate region matching. The string edit distance is an e↵ective tool to compare two strings and particularly strings representing image regions. Thus, in this dissertation we aim at combining advantages of using local BoW and string matching to improve image classification.

More details about our propositions will be explained in the next chapters.

Chapter 3

Approximate matching for image classification

Abstract: The state of the art representation model for image classification is based on the spatial pyramid representation (SPR). Its principle is to make a spatial partition of the image at di↵erent scales and to represent each region as a local Bag of Words (BoW). It assumes that images of the same class have a similar visual content across the spatial partition providing a region by region matching between images. However, this rigid matching is one of the main drawbacks of SPR which prevents this approach to cope with image transformations. We propose a new string based image representation together with a new editdistance. Our goal is to introduce some flexibility in the matching and to integrate some neighborhood relationships between regions. Experiments on several datasets show that our approach outperforms the classical spatial pyramid representation and most existing concurrent methods for classification presented in recent years.

Introduction

Local feature histograms are widely employed to represent visual contents in various areas of computer vision. In particular, histograms of visual words based on SIFT features, in the well-known Bag of Words model, have proven to be very powerful for image and video classification or retrieval tasks [START_REF] Sivic | Video google: A text retrieval approach to object matching in videos[END_REF][START_REF] Csurka | Visual categorization with bags of keypoints[END_REF]. However, this histogram representation is based on occurrences of image features, completely ignoring the spatial image layout.

In recent years, the significant work Spatial Pyramid Representation (SPR) [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF]] was shown to be successful for classification of objects and scene images (as seen in Chapter 2). In SPR, an image is divided into regions by using predefined regular grids of di↵erent scales and by computing a BoW histogram for each region. The image matching is calculated region by region, form coarser to finer grids. Since this approach is very simple and e↵ective, it has received great attention from researchers.

Di↵erent aspects of this model have been investigated for the purpose of improving performance leading to systems that reach state-of-the-art results in the domain [START_REF] Bosch | Representing shape with a spatial pyramid kernel[END_REF][START_REF] Yang | Linear spatial pyramid matching using sparse coding for image classification[END_REF][START_REF] Boureau | Ask the locals: multi-way local pooling for image recognition[END_REF]. Most of SPR-based methods perform well despite the fact that they still keep SPR-rigid matching between corresponding regions. In other words, two regions are matched even if their content is dissimilar, just because they are situated at the same location.

Consequently, these approaches are sensitive to geometric transformations. Figure 3.1 shows a car at di↵erent viewpoints and scales. It can be noticed that, the SPRrigid matching is not e cient while considering the matching between image pairs in this example. Our contribution is to propose a new approach to provide approximate matching between regions by means of : (i) a new image representation as strings of BoW and

(ii) a new edit-distance to compare such strings. For each given pair of images, our distance not only takes into account the similarity between pairwise regions as in the standard SPR model, but also integrates information about similarity between neighboring regions. It allows to identify local alignments between subregions or groups of similar subregions in images. In our proposed approach, the number of subregions for di↵erent images may vary and is considered according to the visual content, which brings flexibility to the matching process. We validate our approach on several datasets.

The outline of this chapter is organized as follows. We start in Section 3.2 by reviewing several related works on spatial matching. In section 3.3, we describe our representation of an image as strings of histogram. Section 3.4 introduces the edit-distance adapted to strings of histograms and derive an edit kernel. The experiments and results of our edit-distance on image classification tasks are presented on Section 3.5. Finally, we give some conclusions in Section 3.6.

Related works

Several works have tried to solve this rigid matching problem in the context of image classification or retrieval.

• Spatial Bag of Features [START_REF] Cao | Spatial-bag-of-features[END_REF]: In this approach, the authors located features position by projecting the descriptors along either lines or circles (see Figure 2.5). Each time, a local histogram is computed for each cell and a final long concatenated histogram is generated. In order to cope with image translation and rotation, a re-arranged procedure is done on every bin of the concatenated histogram by starting from the position with the maximum frequency. The matching is then applied on two re-arranged concatenated histograms. However, this rearrangement scheme may not correspond to the true image transformation and the approach is complex because it requires to consider all directions, spatial bins and center points of circular sectors.

• Reordered Spatial Pyramid Matching [START_REF] Li | Spatial pooling for transformation invariant image representation[END_REF]: The authors use the local histogram representation: an image is divided into sub regions by a regular grid and a local BoW is computed for each region. Those histograms are then set together in a matrix form, which each row of matrix is one local histogram. After that, this matrix is sorted (by columns) for every bins based on their frequencies. The matching between two images is done on their sorted matrix of histograms. However, this sorted procedure destroys location information of visual words, therefore the matching may be irrelevant.

• Finding optimal alignment [Van [START_REF] Van Kaick | Automatic classification of outdoor images by region matching[END_REF][START_REF] Xu | Near duplicate image identification with patially aligned pyramid matching[END_REF][START_REF] Viitaniemi | Region matching techniques for spatial bag of visual words based image category recognition[END_REF][START_REF] Yan | Semantic-spatial matching for image classification[END_REF]: After dividing the images into regions, several authors suggested to relax the rigid matching between two images by using all pairwise regions matching .

[[START_REF] Van Kaick | Automatic classification of outdoor images by region matching[END_REF] used Hungarian algorithms to compute optimal alignment between two images. Each match between two regions of the two images is penalized by a weight (e.g distance between two regions); and the algorithm finds the minimum total weight to match all the regions of the first image to all the regions of the second one. This total weight is used as a similarity measure between two images. The method has the drawback to require the calculation of all pairwise region distances before searching for the best alignment.

[[START_REF] Viitaniemi | Region matching techniques for spatial bag of visual words based image category recognition[END_REF] proposed to use Integrated Region Matching [START_REF] Li | Irm: integrated region matching for image retrieval[END_REF] to loosen the constraint of geometrical rigid matching.

In this approach, one region of the first image can match several regions in the second image. The distance of two images are the total matching cost between each region pairs. This matching cost is computed by a distance between two regions. Moreover, they proposed two weight parameters, one to decide the reliability of the matching, one to decide the e↵ect of this matching on computing the similarity of two images. Finding the values of these parameters should depend on content of regions and it is not an easy task. [START_REF] Viitaniemi | Region matching techniques for spatial bag of visual words based image category recognition[END_REF] fixed both parameters as 1. However, this approach performs slightly worse than using rigid matching.

[[START_REF] Xu | Near duplicate image identification with patially aligned pyramid matching[END_REF] introduced Partially Aligned Pyramid Matching using the Earth Mover Distance to compare two sets of concatenated local histograms representing two images. This approach can only detect near duplicate images.

Later, [START_REF] Yan | Semantic-spatial matching for image classification[END_REF] proposed Semantic Spatial Matching approach which assigns each region to one semantic label. The authors kept the SPR image partition scheme, dividing an image into 4 ⇥ 4 identical cells and computing local BoW for each cell. All local histograms from the training images were collected and clustered to create semantic labels. This process is similar to a visual codebook generation. The image was then represented as a histogram of semantic labels. Two regions are matched if they have the same semantic labels and this match does not depend on the regions location. This approach therefore relax the problem of rigid matching, but still has problems with image transformations. Since a fixed grid is used for partitioning, the rotation or the translation of an image will result in a change of the semantic labels of its regions. Moreover, the semantic label generation step can introduce quantization errors.

• String representations: Several approaches try to relax rigid matching by approximate matching using string representations [START_REF] Smith | Image classification and querying using composite region templates[END_REF][START_REF] Ros | Comparing string representations and distances in a natural images classification task[END_REF][START_REF] Yeh | A string matching approach for visual retrieval and classification[END_REF][START_REF] Lu | Image categorization with spatial mismatch kernels[END_REF][START_REF] Kim | Asymmetric region-to-image matching for comparing images with generic object categories[END_REF].

Compared to other approaches, the string-based approach has advantages of providing the matching of symbols at di↵erent positions, keeping into account the order of these symbols. It also enables to work with sequence of regions of di↵erent lengths.

In the early work of [START_REF] Smith | Image classification and querying using composite region templates[END_REF], the authors proposed to use strings to capture the relative locations of color regions. Their system generated strings of regions by using series of vertical scans on a segmented image.

A string of regions is then converted into a Composite Region Template descriptor which allows classification using region order information.

[[START_REF] Ros | Comparing string representations and distances in a natural images classification task[END_REF] proposed to represent each image as a string of interest regions or salient regions and to use string-based edit-distance to compare the content of two images. However, in this system, the string is created from a graph of descriptor points, so it is not robust to image variations and requires expensive computation.

In the work of [START_REF] Yeh | A string matching approach for visual retrieval and classification[END_REF], the image is first divided into 4 ⇥ 4 regions and each region is described by a local BoW. A raster scan is applied to create a 1-D string of regions where each symbol is one local BoW. The Levenshtein distance [START_REF] Levenshtein | Binary codes capable of correcting deletions, insertions and reversals[END_REF] is used to measure the similarity between two images. However, in this method, two successive symbols in the string may not correspond to neighboring regions of the image due to the raster scan and the 1-D string representation.

[[START_REF] Lu | Image categorization with spatial mismatch kernels[END_REF] proposed a Spatial Mismatch Kernel in order to compare two images. In this approach, each image is represented as a combination of two 1-D strings (based on row-wise and column-wise scans) of visual keywords. The distance between two images is defined as a total mismatch string distance [START_REF] Leslie | Mismatch string kernels for svm protein classification[END_REF] (i.e. number of similar sub-strings within m mismatch) between two strings (row based or column based) of the two images.

Lately, [START_REF] Kim | Asymmetric region-to-image matching for comparing images with generic object categories[END_REF] introduced an Assymetric Region Matching approach, computing image similarity between a segmented image and a nonsegmented one. The first image is decomposed into regions using a given segmentation method. Each region is mapped to a set of local multi scale dense SIFT descriptors. The authors used two 1-D strings of SIFT-blocks to represent a region (based on row-wise and column-wise scans). In this string based approach, the string is only used to represent segmented regions and each symbol of the string is a multi-scale SIFT-block. At the matching step, each symbol in the string is matched to several candidates of non segmented image by using the distance of two SIFT-blocks at multiple scales. Given the candidate matches for all symbols, the optimal correspondence between regions and image is computed by dynamic programming. The limitations of the approach are first the requirement of a segmentation process and second the lack of symmetry of the distance between two images (since it depends on the selection of a segmented image and a non-segmented one).

In this chapter, we combine the advantage of string and local histograms representations to propose a new method to represent an image as strings of histograms.

In order to measure the similarity of two images, we introduce a new string editdistance called String Matching Distance (SMD) which is adapted to the context of string of regions comparison .

Image representation

In this section, we discuss how to represent an image as ordered strings of regions preserving spatial relationships of those regions. We focus on the local histogram based representation where an image is first tiled into regions and each local region is described as a histogram of visual words.

Image Partition

There are several ways to decompose an image into regions. Some authors used image segmentation as for example: [START_REF] Smith | Image classification and querying using composite region templates[END_REF][START_REF] Van Kaick | Automatic classification of outdoor images by region matching[END_REF][START_REF] Kim | Asymmetric region-to-image matching for comparing images with generic object categories[END_REF]. Since, image segmentation is still a di cult task, which introduces errors and needs expensive computation, it is reasonable to replace this step by the division of the image into regions by using a tilling grid.

Our grid is defined from an orthogonal basis (v 1 , v 2) aligned in the directions that may best represent the image content. An image is split into B bands having the same width along direction v 2 . Then, each band is subdivided into N subregions of same size, along direction v 1 . Consequently, the image is divided into B ⇥ N regions. Figure 3.2 illustrates the division of an image into 2 Bands of 3 regions. In this work, we only consider the case of vertical and horizontal axes, which is the most simple way to partition an image, since our objective here is to point out the advantages of string representation. However, the method can be generalized to any other basis. Note that, the two directions v 1 and v 2 do not play the same role: v 1 is chosen to be the direction that best represents to the image content.

Actually, in images, there exists a natural sequencing of objects or entities within objects. It is possible to find a principal direction along which the projection of local features may convey information about the image content or capture the essence of the form of an object. Intuitively, as suggested in [START_REF] Cao | Spatial-bag-of-features[END_REF], in natural scenes, vertical or horizontal directions can plausibly describe relationships among local features. For instance, the sky is above trees, and trees are above grass. For urban scenes, in [START_REF] Iovan | Classification of urban scenes from geo-referenced images in urban street-view context[END_REF], the authors propose similarly to replace the SPR grid with divisions along the vertical axis to better take into account the composition of this kind of images. For object images, as proposed in [START_REF] Tirilly | Language modeling for bag-of-visual words image categorization[END_REF], the major axis of an object can be obtained from the first principal component in a principal component analysis. Distribution of local features along this major axis is similar whatever the orientation or scale of the object is. In the string based approach, [START_REF] Smith | Image classification and querying using composite region templates[END_REF] accuracy is plotted with respect to the number of local regions, using either a grid partitioning (i.e. 1 ⇥ 1, 2 ⇥ 2,. . . ,8 ⇥ 8) or divisions along one axis, vertical or horizontal (for each direction: first the image is divided into 1 band, 2 bands or 4 bands; and then tiling each band from 1 to 16 small regions). Each region is described with a SIFT-BoW obtained following the protocol of [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF]] and a vocabulary of 100 words. The classification accuracy was computed with intersection kernel SVM and 10-fold cross-validation.

For the grid division case, we observe that increasing the number of regions (from 4 to 8) first improves the classification accuracy, but when the number of regions is higher, the accuracy decreases. For the vertical division or horizontal division, the accuracy slightly decrease with repeat to the number of regions. It may be explained by the fact that the number of mismatches is all the greater that the number of regions increases. Moreover, using a vertical directional partitioning gives higher results than a grid partitioning for this dataset composed mainly of natural scenes. In the experimental section, we will further study the influence of the scanning direction and the e↵ect of the two parameters number of bands and number of regions.

Scanning

Once the image has been divided into regions, our next task is to represent it as strings. In the work of [START_REF] Yeh | A string matching approach for visual retrieval and classification[END_REF], they used a row-wise raster scan to construct a string of regions. However, this approach has a major drawback:

two successive symbols in the sequence may correspond to non adjacent regions in the image when a new scan line is starting. Even in a zig-zag scan, the spatial relationship type is changing along the string sequence. Therefore, we decide to use not only one but several strings of regions to represent an image. Our proposal is to build a new string for each band of our partition in order to create a set of strings having N symbols each. An image is then described as a set of B strings (for example in Figure 3.2).

Pyramidal strategy

The pyramid matching scheme which is proposed by [START_REF] Grauman | The pyramid match kernel: Discriminative classification with sets of image features[END_REF][START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF] has shown excellent performance on classification tasks. Motivated by this, we intend to apply multi-resolution regions in our representation.

It can be noticed that changing the number of bands will change the size of regions but not the length of the strings (i.e. number of symbols). Therefore, we follow the setup of Spatial Pyramid Representation using L levels of resolutions. We keep the number of regions fixed and vary the number of bands as a power of 2, e.g B = 2 0 , 2 1 . . . 2 L .

The matching is done between strings in each level separately. Moreover, di↵erent weights are applied for di↵erent resolution levels as proposed in SPR so that the matching at finer level has stronger e↵ect than the matching at coarser level. For instance, when we use the pyramid with L = 2 levels; level l = 0 has a weight 1/2 L = 1/4, level l = 1 has weight 1/2 L l = 1/4 We also can employ several learning techniques which are proposed to acquire optimal weighting, e.g Global Level Weights of [START_REF] Bosch | Scene classification using a hybrid generative/discriminative approach[END_REF], weight map of [START_REF] Harada | Discriminative spatial pyramid[END_REF], to have better image classification performance.

A new edit-distance for strings of histograms

In this section, we present our String Matching Distance -a string distance suitable with our local histogram string based representation. This distance is an edit-distance tailored to compensate mismatches limiting performances of rigid matching approaches, as explained previously. We first look back on the standard edit-distance and then introduce the new distance.

The standard edit-distance

The standard edit-distance or Levenshtein distance [START_REF] Levenshtein | Binary codes capable of correcting deletions, insertions and reversals[END_REF] is a distance between two strings of symbols taken from the same alphabet ⌃. It is classically used to measure the similarity between two textual words not necessarily having the same size. It is based on three elementary edit operations: insertion, deletion and substitution of a symbol. A sequence of edit operations transforming string X into string Y is called an edit script. The edit-distance between two strings X and Y is defined as the minimum edit script cost which transforms X into Y. The permitted edit operations with their associated cost functions are as follows:

• insertion of a symbol y j of Y into X with a cost c ins (y j)

• deletion of a symbol x i of X with a cost c del (x i)

• substitution of a symbol x i of X with the symbol y j of Y with a cost c sub (x i , y j). If x i = y j , no substitution is needed; so c sub (x i , x i) = 0

In its simple form, it uses a unit cost for all edit operations thus corresponds to the minimum number of operations turning one string into another. For instance, the edit-distance between abb and aa is 2 since we need two operations in order to convert abb to aa: substitution of b into a, and deletion of b. In the same way, to convert Sunday into Saturday, we need two insertions a and t and one substitution n to r. So the edit-distance between the two strings Sunday and Saturday is 3 which is the minimum number of edit operations needed.

More generally, each operation can have a specific non-negative cost. These costs are defined by a cost matrix C, for example as in Table 3.1. In this case, the cost for deleting/inserting a symbol a is 2, the cost for deleting/inserting a symbol b is 10 and the cost for substituting a symbol a with a symbol b is 4. The edit-distance between abb and aa is 10, which is the cost for the deletion of a and two times the substitution of b into a.

It can be noticed that, this time we have used a di↵erent scenario when converting abb into aa because of a di↵erent cost matrix. It suggests that, we can learn the cost matrix from the input data to obtain the optimal performance.

Computing this distance can be formulated as an optimization problem and can be carried out with dynamic programming. To compute the edit-distance between string X (M) = {x 1 x 2 . . . x M } and string Y(N) = {y 1 y 2 . . . y N }, the algorithm consists in computing a distance matrix D (M,N) , where D (i,j) represents the minimum cost of transforming the first i symbols of string X into the first j symbols of string Y. In other words, D (i,j) is the edit-distance between two sub-strings X (i) and Y(j), with allowable edit operations mentioned above.

The algorithm 1 describes the dynamic programming based algorithm to compute the standard edit-distance given the cost matrix and the two text strings, X of length M and string Y of length N . At each step, the computation of one cell uses only the information of its three previous neighboring cells. For example, to compute cell D (i,j) we need the value of cells D (i 1,j) , D (i,j 1) and D (i 1,j 1) . Depending on the costs of deletion, insertion and substitution, we can decide which edit operation will be used by choosing D(i, j) as min(D (i 1,j) + c del (x i), D (i,j 1) + c ins (y j), D (i 1,j 1) + c sub (x i , y j)). After computing the edit-distance, we can also obtain the edit script which is the best way to convert the first string into the second one. Table 3.2 shows an example of distance computation and the corresponding edit script. 0 1 2 3 4 5 6 7 8 S 1 0 1 2 3 4 5 6 7 u 2 1 1 2 2 3 4 5 6 n 3 2 2 2 3 3 4 5 6 d 4 3 3 3 3 4 3 4 5 a 5 4 3 4 4 4 4 3 4 y 6 5 4 4 5 5 5 4 3 Table 3.2

S a t u r d a y

D

(0,j) = D (0,j 1) + c ins (y j) 8: end for 9: for i = 1 to M do 10:

for j = 1 to N do 11:

D

(i,j) = min(D (i 1,j) + c del (x i), D (i,j 1) + c ins (y j), D (i 1,j 1) + c sub (x i , y j))

12:

end for 13: end for 14: return D (M,N)

Table 3.2 is an example of using Algorithm 1 to compute the D matrix between the two text strings Sunday and Saturday. With c del = c ins = 1 , c sub (x, y) = 1 and c sub (x, x) = 0.

A new string matching distance

In the previous section, we already presented our string-based representation where each symbol is a histogram of visual words. Our purpose is to use approximate matching between strings in order to correct mismatches of rigid matching. By definition, the edit-distance aims to find the optimal alignment between two strings, and thus allows to correct local or global misalignments due to translation of viewpoint or modifications between two images. The only question is how to adapt this edit-distance to the proposed string representation.

In fact, when computing the edit-distance on the text domain, the alphabet ⌃ is limited, hence it is possible to define a cost matrix between characters. In our case, each symbol is one finite histogram of visual words. Even with small codebooks, our string alphabet ⌃ is infinite. It is impossible to define a cost matrix C for the edit operations. Thus, in order to apply the edit-distance with our stringbased image representation, we have to find a new way to compute the cost of edit operations.

A possible method is to setup a pre-defined cost and to choose a distance to compare histograms qualified as ground distance [START_REF] Yeh | A string matching approach for visual retrieval and classification[END_REF][START_REF] Ballan | Video event classification using string kernels[END_REF][START_REF] Ros | Comparing string representations and distances in a natural images classification task[END_REF]. In order to measure the similarity of two video sequences, [START_REF] Ballan | Video event classification using string kernels[END_REF] proposed to represent them as strings where each symbol is one histogram of keyframe and to use the edit-distance to compare those strings. The authors used an unit cost 1 for all edit operations. To decide which operations to use, a ground distance between two symbols is compared to a threshold to judge whether two frames are similar enough to apply a substitution.

If not, a deletion or insertion is employed.In their experiments, they found that the best metric is 2 distance with the corresponding threshold of 0.13. In the work of [START_REF] Ros | Comparing string representations and distances in a natural images classification task[END_REF], an image is represented as a string of salient regions. They used l 2 distance between two signatures of salient regions to compute the substitution cost. The cost for deletion or insertion of a symbol is the l 2 distance between this symbol signature and a Null vector. Having a similar idea as [START_REF] Ros | Comparing string representations and distances in a natural images classification task[END_REF], however [START_REF] Yeh | A string matching approach for visual retrieval and classification[END_REF]] used 2 as ground distance. In this case, the insertion/deletion cost turned to be 1/2 which is the 2 distance between any histogram and a Null histogram.

To go further, we propose to adapt insertion and deletion costs to the local context of symbols. Our goal is to virtually adjust the grid partitioning during the image comparison and compensate for mismatches that occur with homogeneous parts of a scene or object split in di↵erent regions. We plan to use deletion and insertion to detect the repetition of regions inside one image. More precisely, during the alignment of the two strings, if one symbol is more similar to its following than to the corresponding one in the other string, it will be removed. Formally, this rule comes to define costs functions as:

8 > > > < > > > : c sub (x i , y j) = d(x i , y j) c del (x i) =d(x i , x i+1) c ins (y j) =d(y j , y j+1) (3.1)
where d is the ground distance. It can be the Euclidean distance, 2 distance or any vector distance.

Let us remark that, to ensure the symmetry of the edit distance, we must have c ins (x) = c del (x). Then, for a given symbol x both insertion and deletion operations can be seen as a single edit operation, i.e. the deletion operation but applied either in the first or in the second string. In other words, the insertion of symbol x of string Y into string X , can be seen as the deletion of symbol x in string Y.

We call our proposed distance String Matching Distance (SMD). The string distance SM D(X , Y) between two strings of histogram X and Y can be computed by dynamic programming based on Algorithm 1 and with the edit costs defined in Equation 3.1.

Examples

In this part, we present several examples to illustrate our proposed string-based distance. The computation of distance matrix D is shown on Table 3.3. In parallel, we also present the edit script matrix, which is same size as D. Each cell of the edit script matrix contains the pointer to point out the cell where its value come from or which the previous edit operation has been applied. Following the script, we can explain step by step the computation of SMD: first, there are two successive identical symbols a in in the first string aab, so we delete the first symbol a in aab. The cost is c del (a) = d(a, a) = 0. After that, we need to compute the distance between ab and abb. Since, there is a symbol a in both two strings, one substitution is enough, which costs c sub (a, a) = d(a, a) = 0. After this step, the two new strings are b and bb. There are two identical symbols b in the second string; so a deletion of the first symbol b in the second string is applied, which costs c del (b) = d(b, b) = 0. The remaining two new strings b and b are the same, so a substitution is used which costs c sub (b, b) = 0. Consequently, the distance between aab and abb is 0. A basic property of our distance is to remove sequences of identical (or similar) symbols. (i,j) is minimum edit cost to convert sub string X (i) into Y(j). The second table is edit scripts matrix, which has same size as D. It is used to point out which previous edit operation has been applied to obtain the value of the corresponding cell in D. We use the notation: for a Deletion on string Y, " for a Deletion on string X andfor a Substitution. Example 2: We illustrate our SMD on a real histogram-based string with a toy example (Figure 3.5). In the two toy images, the descriptors are computed on 5 ⇥ 8 grids. There visual words (e.g circle, square, star) are utilized to represent the images. Each image is described as one image strings of 1 Band and 4 regions.

a b b 0 1 1 2 a 0 0 0 1 a 1 0 0 1 b 2 1 0 0 a b b 0 a " - a " - - b " - -
In the left-side of each toy image, we show the local histograms. We use l 1 as ground distance. All local histograms need to be normalized with the l 1 -Norm. However, in this example, all the local histograms have the same l 1 -Norm of 10, so no additional normalization is required. Each local histogram is notated as a triplet of three numbers separated by '|'. The SMD distance of two toy images is the distance between two strings of histogram: {4|6|0, 8|0|2, 8|0|2, 7|0|3} and {7|3|0, 6|3|1, 8|0|2, 7|0|3}. The distance matrix gives the minimum distances D (i,j) and arrows show the sequence with the minimum cost, detailed on the right.

To well understand the values, we detail the calculations of three cells. First, cell D (0,1) equal to 2 gives the insertion cost of symbol 7|3|0, i.e. d(7|3|0, 6|3|1), while cell D

(1,0) is the deletion cost of symbol 4|6|0, i.e. d(4|6|0, 8|0|2). The value of D

(1,1) is the minimum of D (0,1) + d(4|6|0, 8|0|2), D

(1,0) + d(7|3|0, 6|3|1) and D (0,0) + d(4|6|0, 7|3|0), i.e. min{14, 14, 6} = 6. So D (1,1) = 6 and a substitution is needed. As for the computation of D

(1,1) , each minimum distance takes into account the similarity between neighboring regions and direct pairwise similarity between corresponding regions, allowing to remove repetitions of symbols when necessary to adapt to the other string. In our toy example, the resulting edit sequence comes to consider the two similar regions 8|0|2 as a unique one that matches the similar one in the second image.

Example 3: A real-case example is given in Figure 3.6. Two images are from Caltech101 dataset [START_REF] Fei-Fei | Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories[END_REF][START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF]. We use SIFT descriptor on a densely sampled grid with a patch size of 16 ⇥ 16 and a period of 8 pixels. The vocabulary K = 100 words is build by K-means clustering on a random subset of 100000 descriptors taken from all training images. The hard assignment is used in coding step. We use l 1 as ground distance and each histogram is normalized according to l 1 -Norm. In this example, the two images are divided into two bands of four regions. We show the local histogram matchings between two first bands of the two images: the SMD matching and the pairwise regions matching (PMD). The string matching script obtained for the first band (x 2 with y 1 , x 3 with y 2 , x 4 with y 4) shows a better alignment than direct pairwise region matching. Insertions and deletions enable to deal with a change of position of the head of the bird. In both cases of SMD and PMD, we have drawn the final string alignment correspond to the real computed edit scripts. Value of SMD is smaller than of PMD which confirms that the two images are more similar due to better alignment between regions of SMD matching.

These examples prove the interest of our approach to better deal with possible changes in object size, position or shape in the direction of the string.

Weighted edit operations

One advantage of our SMD is that edit costs are automatically determined during the string matching. Contrary to other methods, no threshold or fixed cost have to be fixed. However, it is interesting to provide a way to adapt the distance with respect to the dataset. If we try to interpret the computation according to our cost functions and Algorithm 1, we notice that:

• The substitution operation is applied when c sub is small enough compared to c del and c ins . It means that the two regions are very similar. In other words, there is a matching between the two regions in the two images.

• Deletion operations and insertion operations are used when the next neighboring region is very similar to the current one. So we can ignore or delete this region without losing information.

Then, a way to control edit operations is to try to control the balance between substitutions and insertion/deletion operations. Thus, we propose to add a weighting coe cient w controlling the ratio between substitutions and insertion/deletion.

The corresponding cost functions are then rewritten as:

8 > > > < > > > : c sub (x i , y j) = d(x i , y j) c del (x i) =w.d(x i , x i+1) c ins (y j) =w.d(y j , y j+1) (3.2)
A high w value penalizes insertion and deletion operations and thus allows more pairwise matchings between two images. In this case, our distance becomes close to rigid matching pairwise distance. Conversely, a low w value enables more insertion and deletion operations which means there is more intra image matching. In the Section 3.5 dedicated to experiments we will study the influence of this parameter.

Image comparison kernel

In recent years, Support Vector Machines (SVM) and related kernel methods have become very popular tools for solving classification problems. For this reason, it is better to define a kernel from our distance. The classical edit-distance kernel

proposed by [START_REF] Li | A class of edit kernels for svms to predict translation initiation sites in eukaryotic mrnas[END_REF] has the following form:

k(X , Y) = e d ed (X ,Y) (3.3)
where d ed (x, y) denotes the edit-distance between two strings X and Y. > 0 is a coe cient to scale the kernel value for numerical stability. In fact, plays a very important role in making the kernel matrix positive definite. Applying with our proposed SMD, Equation 3.3 becomes:

K SMD (I, J) = e d SMD (I,J) (3.4)
where d SMD (I, J) is the String Matching Distance between two images I and J . The computation of d SMD (I, J) depends on the number of bands and number of pyramid levels.

If the images are divided into B bands:

d SMD (I, J) = B X b=1 d SMD (I b , J b) (3 . 5)
where I b ,J b are histogram strings of band b of images I and J .

In case of using a pyramid scheme of L levels:

d SMD (I, J) = L X l=1 B X b=1 d SMD (I b,l , J b,l) (3 . 6)
I b,l denotes the string of level l and band b.

In order to be a valid kernel: this edit kernel must fulfill the Mercer conditions. To do so, for all image pairs I and J , the Gram matrix K SMD (I, J) is positive semidefinite. In the experiment part, we have performed some tuning on to ensure that the Gram matrix between each random set of training images is positive definite.

Computational complexity

To compute the distance between two image-strings of length N , we need to fill out the D(N ⇥ N) matrix. Each value of this matrix is determined by computing insertion, deletion and substitution costs. These costs are calculated by the ground distance between two histograms of length K (K is the vocabulary size). Therefore, to compute the three edit costs, it requires 3 ⇥ K operations. However, the complexity of computation at each iteration is still O(K). Hence, the complexity of computing SMD is approach and several concurrent methods. This last part is completed with three other datasets: Pascal2007, Graz-01 and Corel10.

O(K ⇥ N ⇥ N). If
We begin this section by describing the datasets used in the experiments. Then we show experimental settings and finally the results.

Datasets

In this work, we use 15 Scenes, Caltech 101, Pascal2007, Graz-01 and Corel10

datasets for experiments.

Caltech101 [START_REF] Fei-Fei | Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories[END_REF][START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF]: This is a well-known object dataset, consisting of 9144 images from 101 object classes and one background class. The number of images in each category varies from 31 (inline-skate) to 800 (airplanes). This dataset has been used by a lot of researchers in order to evaluate the classification performance of their proposed systems.

15 Scenes: This dataset is a scene dataset, first introduced in [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF]. However, it is also a very challenging dataset due to high intra-and inter-class variations and objects with di↵erent scales or poses.

Experimental Settings

For all datasets, we use dense sampling SIFT descriptor calculated on 16 ⇥ 16 image blocks which overlap every 8 pixels. To create the vocabulary, the K-means clustering is applied on a subset of the descriptors. For Caltech 101 and 15 Scene, three codebook sizes are chosen: K = 100, 200 and 400. For other datasets, only K = 100 vocabulary is used. In the coding step, both hard assignment with sum pooling and sparse coding with max pooling are employed. However, only hard coding is used in the first part in order to evaluate the impact of the string parameters.

For classification, we apply a SVM classifier using the libSVM toolbox [START_REF] Chang | Libsvm: a library for support vector machines[END_REF]. We first calculate the distances and then compute the corresponding kernel matrices using the formulas of edit kernels presented in Section 3.4.5. We do a 10-fold cross validations on random train/test subsets. For fair comparison with other approaches, we keep the same train/test setup as reported in the original papers. For Caltech 101, 15 Scene and Graz 01 dataset, we follow the setting of [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF]. That is:

• With Caltech 101: we randomly select 30 images per class for training and maximum 50 images per class for testing.

• With 15 Scene: we randomly select 100 images per class for training and test on the rest.

• With Graz-01: we train on 100 positive images (bike or person) and 100 negative images (where 50 images is from background, 50 images from the other class).

For Pascal 2007 dataset, we keep the training/test sets given in VOC2007 challenge [START_REF] Everingham | The PASCAL Visual Object Classes Challenge 2007[END_REF]: we train on 5011 images and test on 4952 images. We also use the development kit1 of VOC-challenge in order to evaluate the classification performance. For Corel10 dataset, following [START_REF] Lu | Image categorization with spatial mismatch kernels[END_REF], we randomly select 50 images per class for training and the rest images are used for testing.

An other problem is the tuning of SVM parameters and c. Note that, the value of is chosen to ensure the kernel matrix (i.e Gram matrix) to be semidefinite positive and in the mean time, to obtain the best classification performance. The tuning is done on a subset of training images. We divide the training set into five parts. Each time, we train on one part and test on the rest. We apply a grid search to find the best value of . We compute the Gram matrix with the so-obtained value of , and verify that all of its eigenvalues are positive. If yes, we keep this for classification. If no, we redo the previous work. This way provides the best but requires computation time. There is another possible way, which is to set to the inverse of the pairwise mean distances as in [START_REF] Avila | Pooling in image representation: The visual codeword point of view[END_REF]. Since we already have the matrix of distances between all pairs of training images, it is easy to calculate according to this approach. Following this procedure generally leads to a near optimal classification performance. We also varied the values of c from 1 to 10, and found that values of c equal 3, 4 or 5 almost led to the same best performance. As a result, we fixed c = 4 for further computations.

Results

Influence of the string parameters

In our string based representation model, several parameters have to be set to compute classification results: the ground distance, the scanning direction, the number of bands B, the number of regions N and the codebook size K, the weighting parameter for edit operation w and the number of pyramid levels L.

In this section, we study the influence of these parameters. The experiments are validated on two datasets: 15 Scenes and Caltech 101.

Choosing the ground distance:

We study the e↵ect of the ground distance on SMD classification performance.

Number of bands and codebook size are fixed respectively to B = 1 and K = 100. The l 1 , l 2 and 2 are considered as ground distances. The classification accuracies are shown on Figure 3.10, where the accuracies obtained by l 1 and 2 distances are nearly equivalent; and are much higher than the results obtained with l 2 . Compared with 2 , l 1 can be computed more simply. Therefore, we chose l 1 as the ground distance and used it for all following experiments.

Scanning direction:

The objective of this experiment is to examine the impact of the scanning direction For the two datasets, the obtained results showed di↵erent trends but the vertical direction normally provides a better characterization of the image structure than the horizontal one. For the 15 Scenes dataset, all vertical-cases graphs are above horizontal cases ones. For the Caltech 101 dataset, the di↵erences between the horizontal and the vertical cases are not that significant. It can be explained by the specificity of this collection where the objects of interest take up most of the image and are approximately centered. Comparing objects along one or the other direction does not really matter. Since on the overall the vertical direction performs better, we keep this direction in all subsequent experiments. Scene and Caltech 101 datasets using vertical scanning direction (solid lines) and horizontal scanning direction (dash lines). The number of bands B is varied in 1,2 or 4. The codebook size K is fixed to 100 words. The purposes of this experiment are to investigate influence of the parameter (B)number of bands and to prove advantages of using pyramid scheme into SMD classification performance. We keep the same setup as previous tests: K = 100, N = 1, . . . , 16, and we scan the image vertically to create the strings. The number of bands B is set to 1,2 and 4. We also evaluate the pyramidal strategy with L = 2, which means the combination of one band, two bands and four bands. Figure 3.12 indicates the classification performance of SMD on the two datasets. Again, the results depend on the collection. Indeed, considering the 1, 2 and 4 bands cases, the results behave inversely. For 15 Scenes, results decrease as the number of bands increases, i.e. one band is enough to get the best result, while for Caltech 101, it is preferable to use four bands. As previously, it is inherent to the type of images. Observing a natural scene from the top to the bottom allows to identify the content. Using two parallel vertical bands does not convey much information. It even introduces confusion because of redundancy between bands, leading to worst results. For objects, a finer look at the di↵erent parts is necessary to identify them correctly. It is worth noticing that for both datasets, a 2-level pyramid approach clearly outperforms single level split cases. This strategy is suitable to get the best results.

Number of bands and pyramidal strategy:

Vocabulary size:

To investigate the e↵ect of the vocabulary size, we fix the number of bands to the optimal values obtained previously, i.e. B = 4 for Caltech 101 and B = 1 for 15 Scenes. Figure 3.13 shows the classification results for three vocabulary sizes 100, 200 and 400 as a function of N . For Caltech 101, the best results are obtained with the smallest vocabulary (K = 100) and we note that the accuracy is decreasing over N for K = 200 or K = 400. For 15 Scenes, the influence of the vocabulary size is low and the results are slightly better for K = 200, but they are very close to K = 100 for a large N .

Obtaining the best results for small vocabularies is unusual in the BoW context. We think that this e↵ect is due to a too low number of descriptors. Histograms are not computed accurately when the size of the vocabulary increases and as the number of regions grows. However, with small vocabularies, increasing the number of regions increases significantly the accuracy. This is clear advantage of our string-based approach to provide high accuracy with compact vocabularies and the compact representation.

Number of regions:

The e↵ect of number of regions N on the distance implementation can be seen in Figures 3.10, 3.11, 3.12 and 3.13. Considering the influence of the number of regions N , the global evolution of all curves is similar: the accuracy is almost monotonically increasing with a stabilization for N = 8 for Caltech 101 and N = 10 for 15 Scenes. From this value, the results remain roughly constant or slightly better. The highest accuracy is 66.53% achieved with N = 13 for Caltech 101, and 83.14% with N = 16 for 15 Scenes. Since performances were quite similar with lower number of regions, it is preferable to use N = 9 to N = 12 to reduce the computation time.

Weight parameter:

In the section 3.4.4, we have already discussed about weighted edit operations. In this experiment, we aim to estimate the influence of the weight parameter and to find its optimal value. The weight is varied from 0.5 to 1. These experiments are to verify the performance improvement of our string matching approach (SM D) over a rigid Pairwise Matching Distance (P MD). Figure 3.15 presents the results. First, it is obvious that for both datasets, SM D is always better than P MD from N > 5 and any given splitting. As seen in Section 3.3, the greater the number of regions, the greater the number of local mismatches, leading to a decrease of performance of a pairwise matching approach. With SM D, for large N , the accuracy stabilizes (Caltech 101) or slightly increases (15 Scenes). It proves that SM D naturally compensates local mismatches. best alignment (minimizing the cost matching) between all pairs of regions of two images but subject to the constraint that the matching is one-to-one (this result is from [START_REF] Yeh | A string matching approach for visual retrieval and classification[END_REF]).

In addition, we report the results of two other approaches which successfully incorporate spatial information into BoW: a combination of SPR with information about the co-occurence visual words proposed by [START_REF] Yang | Spatial pyramid co-occurrence for image classification[END_REF] and an adaptive spatial partitioning proposed by [START_REF] Sharma | Learning discriminative spatial representation for image classification[END_REF] which try to learn the best way to divide images into sub-regions. All the approaches above are computed with hard coding.

The second part of the Table 3.4 shows the results on sparse coding. Our results is compared to Sc-SPM and Kernel Sparse Representation (KSR-SPM) methods. The Sc-SPM approach is a Spatial Pyramid Representation using sparse coding.

We show on here the results of Sc-SPM performed by both [START_REF] Yang | Linear spatial pyramid matching using sparse coding for image classification[END_REF] and [START_REF] Boureau | Learning mid-level features for recognition[END_REF]. The KSR-SPM approach [START_REF] Gao | Kernel sparse representation for image classification and face recognition[END_REF] is the combination of SPR with a sparse kernel representation technique. The results in Table 3.4 shows that our method definitely outperforms all other approaches for both hard coding and sparse coding. It is important to note that the best result is obtained with the smallest vocabulary of 100 words.

Results of Caltech 101 dataset

The classification performance of SMD on Caltech 101 dataset with both hard coding and sparse coding are shown on Table 3.5. Again, we compare our approach with SPR of [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF] for both hard coding and sparse coding. In addition, we pay attention on SVM-KNN of [START_REF] Zhang | Svm-knn: Discriminative nearest neighbor classification for visual category recognition[END_REF]. In this method, authors used a hybrid classifier which is a combination of SVM and KNN to improve the final classification performance. For each test image, first the KNN classifier applies to find the K-closest images from the training set. If all these K images have the same label, this label is assigned to the test image. If not, then a SVM classifier is applied but only on these K training images. Moreover, in case of using hard coding, we also compare our method with SPR+ Global Level Weight (GLW) optimization [START_REF] Bosch | Scene classification using a hybrid generative/discriminative approach[END_REF]. In this method, the weight for each level pyramid is learned to get the optimal classification accuracy. Let us notice that this approach used multi-scale dense SIFT descriptor compared to our single scale dense SIFT descriptor.

From the Table 3.5, we see clearly that our method is compatible with SPR+GLW but we use fixed weights for the pyramid levels. Also, in our method, we use only single scale for SIFT, with smaller vocabulary. In comparison with other

Results on Corel10 dataset

Our purpose of this experiment is to compare our string-based distance with Spatial Mismatch Kernel of [START_REF] Lu | Image categorization with spatial mismatch kernels[END_REF]. We keep the same setup as the authors, that is we randomly select 50 images as training data and use the rest as test data.

We show in the Table 3.7, the results obtained with SVM one vs all 2 and 10 fold cross validation on hard coding. Moreover, our results with hard coding are shown compatible with the results of KSR-SPR of [START_REF] Gao | Kernel sparse representation for image classification and face recognition[END_REF] using sparse coding.

Our method outperforms Spatial Mismatch kernel by about 6.4 % and SPR in both cases of using hard coding (3.1 %) and sparse coding (2.9 %). We believe that, the performance of SMD can be improved by using sparse coding (as seen with Caltech 101 and 15 Scene datasets.)

Coding

Approaches Accuracy (%)

Hard-coding

BoW baseline 80.20 ± 3.3 SPR [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF] 8 5 . 9 8 ± 1.4 Spatial Mismatch Kernel [START_REF] Lu | Image categorization with spatial mismatch kernels[END_REF]

Results on Pascal2007 dataset

With Pascal 2007 dataset, we report the Average Precision (AP) values.We compare our result with SPR approach which is computed by ourself. However, for fair comparison, we do not report the results of other approaches since we use a very naive configuration, that is: single SIFT descriptor on single scale (16x16 pixels, overlap 8); small codebook size K = 100 and only edit kernel with SVM. Almost all other approaches use multi-scale descriptors with multiple image features (texture, color, shape), with multiple kernels learning, and typically the codebook size is larger, about 1000 words in order to obtain an optimal performance.

2 [START_REF] Lu | Image categorization with spatial mismatch kernels[END_REF] Our approach has very successful performance compared with the standard SPR.

SMD shows better classification for 18/20 classes. With several classes, the difference is significant such as Bicycle 16.5 %, Bus 13.5 %, Cow 10.3%, Sofa 9%, Train 12.7 % and TV 11 %. In average, our SMD is superior to SPR by about (6.7 %).

Conclusion

In this chapter, we first described a novel image representation as strings of histograms which encode spatial information, each histogram being a BoW model of a subregion. Then, we introduced a new edit-distance able to automatically identify local alignments between subregions and sequences of similar subregions. This characteristic makes our method more robust to translation or scale variations of objects in images than SPR-based approaches that compare rigidly corresponding parts of images. The experiments confirm that our model is able to take into account spatial relationships between local BoW and leads to a clear improvement of performance in the context of scene and image classification compared to the classical spatial pyramid representation. It is worth noticing that to the best of our knowledge, it is the first time that results better than SPR are reported with the standard BoW coding and a lower dimension for the representation. Moreover, the proposed approach obtain similar or better accuracies than other recent methods trying to infuse spatial relationships into the original BoW model with the great advantage of using a small codebook and a compact representation.

Chapter 4

Merge-based edit-distance for strings of histograms

Motivation

The previous chapter has focused on the String Matching Distance algorithm which uses string-based representation and string matching approaches to measure image similarity. In SMD algorithm, two new definitions of deletion and insertion operations were provided. In main idea of the approach is to delete a region when its content is almost identical to its next neighboring one.The deletion/insertion of a region is therefore applied when the content of this region is more similar to its successive region than the corresponding one in the other image. In the first image, the first region (sky) has similar visual content to the second region, then it is deleted. The second one also looks like the third one therefore it is removed. In the second image, the first region has the same visual content as the second region thus it can be ignored. Likewise, the third region is removed because it is very similar to the fourth region. Finally, the image matching results associating in the third region of the first image and the second region of the second image, as well as the fourth region of the first image and the fourth region of the second one.

These definitions have the advantage to detect and set aside identical regions inside an image. Hence, the matching between regions of two images is more robust than the rigid matching. However, it also introduces several disadvantages. If a deletion/insertion of a region is applied, this region is totally ignored in all future computations of edit distance and only its next region is kept in the string for remaining calculations. Because two consecutive regions may not be completely identical, using the second region instead of the first one in future computation of the distance is arbitrary. Moreover, ignoring the deleted region leads to loss of information.

To deal with these problems, we think it is better to keep both regions and use their information for future computation. Inspired by this motivation, we replace the deletion operation by a new edit operation, merge operation, which combines two or more regions inside an image to create a new one.

An example of this merge operation is demonstrated in Figure 4.1(b). Here, the three first regions of the first image are combined to create a single one due to the similar visual content. In the same way, the first and second regions, the third and the fourth regions of the second image are grouped together. The matching of two images is then between these combined-regions. It is more precise approach compared to SMD (Figure 4.1(a)) because it keeps all the image content information.

Related work

The merge operation has been introduced with string distance on several applications. [START_REF] Khurshid | A novel approach for word spotting using merge-split edit distance[END_REF] introduced the merge-split operations in order to detect/recognize words in scanned document retrieval applications. Typically, the low quality scanning of documents may introduce some noise which causes diculty to detect or to recognize the characters. For this reason, the author proposed the merge operation which allows the combination of two symbols to make a new one, and the split operation which allows a symbol to be divided into two symbols.

videos always contain temporal information (such as order of frames), repetitions, several video edit operations (such as special e↵ect transitions), video functionalities (such as fast-forward, slow motion, frame skipping) edit-distance with only three basic edit operations (insertion, deletion, substitution) is not robust enough to compute distance between two video sequences. The authors then introduced the v-string edit-distance with merge operation (i.e combination of two or several similar frames to a single frame) and fission operation (i.e separation of one frame into two or more similar frames). These two operations are performed o✏ine before computing the video sequence distance.

In our case, we define the merge operation as a combination of two or more similar regions from one image. With the new operation, we propose a merge-based string matching approach, called m-SMD, which allows regions to be grouped together, separately in each image, depending on the image visual content. This distance automatically identifies local alignments between sub-regions or groups of similar sub-regions in the images. With the proposed operation, the number of sub-regions for di↵erent images may vary and is adjusted according to the visual content, which brings more flexibility to the matching process.

Compared to partition learning approach ([START_REF] Sharma | Learning discriminative spatial representation for image classification[END_REF]) and randomized partition ([START_REF] Jiang | Randomized spatial partition for scene recognition[END_REF]) our approach presents the advantage to get a partition grid for each pair of images in order to have a better matching. Also, no learning process is needed. The image division grid is obtained along with the distance computation.

The rest of this chapter is organized as follows: Section 4.3 explains how to compute the new edit-distance with the merge operation. We introduce two frameworks to compute the merge-based approach in Section 4.4: a greedy m-SMD algorithm and a recursive m-SMD algorithm in the sub sections 4.4.1 and 4.4.2.

Section 4.5 describes the experiments and discusses about results obtained with scene and object datasets. Finally, we sum up the chapter in Section 4.6.

Adding new merge operation into SMD

The underlying idea of this section is to define a new edit-distance, m-SMD, which supports a merge operation between regions and which is adapted to our string of local histograms image representation.

Principle

The principle of m-SMD is to allow regions to be merged depending of their visual content. When two regions are merged, the resulting histogram is the combination of the two initial ones. Then, depending on merge operations made within each string, one single region of one image may be matched to a set of merged regions in the other image, resulting in a better matching between the two images.

In order to determine which regions to merge, we formulate it as a problem of deleting a region in string matching. For example, two strings X = {x 1 , x 2 , . . . x M } and Y = {y 1 , y 2 , . . . y N } have M and N symbols. To delete symbol x i , we combine this symbol with its next symbol x i+1 . The cost of this operation is computed as the ground distance d(x i , x i+1) between the two histograms symbols . One new symbol is then generated, as the combination of the two symbols x i and x i+1 . This new symbol is denoted as xi!i+1 . So xi!i+1 = merge(x i , x i+1).

With this definition, there is neither deletion nor insertion operation in the new distance. However, we can also remark that the merge operation of symbols x i and x i+1 can be seen as the deletion of symbol x i followed by a modification of symbol x i+1 which is assigned to the result of the merge operation. Then, two successive symbols x i and x i+1 are likely to be merged if their distance is lower than the distance between the first symbol x i and the symbol y j in the other string. In summary, the costs functions and symbol updating are defined as:

8 > > > < > > > : c sub (x i , y j) =d(x i , y j) c merge (x i ! x i+1) = d(x i , x i+1); Update: xi!i+1 = merge(x i , x i+1)
c merge (y j ! y j+1) = d(y j , y j+1); Update: ȳj!j+1 = merge(y j , y j+1) (4.1)

We also can define the weighting scheme for the edit operations similar to that of SMD as described in Chapter 3:

8 > > > < > > > : c sub (x i , y j) =d(x i , y j) c merge (x i ! x i+1) = w.d(x i , x i+1); Update: xi!i+1 = merge(x i , x i+1) c merge (y j ! y j+1) = w.d(y j , y j+1); Update: ȳj!j+1 = merge(y j , y j+1) (4.2)
where w is a weight parameter which controls the ratio between substitutions and insertion/deletion operations.

Merge operation

Merge operation of sequence of symbols:

In the definition, the merge operation is done on two successive symbols. However, when successive merge operations occurs, symbol x i+k can be merged with sequence of k symbols x i , x i+1 , . . . , x i+k 1 . The result of the merging of the k + 1 symbols x i , x i+1 , . . . , x i+k is denoted as xi!i+k and we have: xi!i+k = merge(x i!i+k 1 , x i+k).

The total cost for merging can be computed as the cost to merge first (k 1) symbols with x i+k . So:

c merge (x i ! x i+k) = c merge (x i ! x i+k 1) + d(x i!i+k 1 , x i+k) = c merge (x i ! x i+k 2) + d(x i!i+k 2 , x i+k 1) + d(x i!i+k 1 , x i+k) = k X l=1 d(x i!i+l 1 , x i+l)
where c merge (x i ! x i+k) is the cost to merge k successive symbols x i , x i+1 , . . . , x i+k .

We discuss about how to determine this new merged symbol in below.

Merge operation with normalization:

Since the merge operation means combination of two successive regions, merge operation of two symbols returns a new symbol as the averaged of the two histograms. The question that arises is what is the result of merging a sequence regions?

Because all original regions in an image string have the same role, a combination of a N merged regions with a new region should be considered as the merge of N + 1 regions. Therefore, it is necessary to perform normalization of the regions before and after combining together. Each region is represented as (H n) where H is its histogram and n is the number of merging (i.e. number of regions used to compute H). The original regions have n = 1. Each time two symbols are merged, it is necessary to save both the sum of their two histograms and sum of number merging. The normalized histogram of a

New merge-based edit distance

The previous section has discussed the principle of the proposed merge-based String Matching Distance, m-SMD. In this part, we present in details the algorithm to compute this distance.

Greedy merge-based SMD algorithm

Compared to SMD, m-SMD requires to modify the symbols each time the merge operation is applied. More precisely, each merge operation generates a new symbol obtained by combining the histogram of the current symbol with the next one. As a consequence, the original strings are modified. If we use dynamic programming, as presented in Algorithm 1, to compute this distance; at the step (i, j), the update equation must revise as:

D (i,j) = min 8 > > > < > > > : D (i 1,j 1) + c sub (x i , ȳj) D (i 1,j) + c merge (x i ! xi+1) D (i,j 1) + c merge (ȳ j ! ȳj+1) (4.3)
where X = {x i } and Ȳ = {ȳ j } are strings obtained after the previous iteration. They can be the original strings (if only substitution is used) or modified ones (if any merge operations has been used).

D (i,0) = D (i 1,0) + c merge (S x (i 1, 0) ! x i+1) 8:
mergeUpdate (S x , S y , i, 0, 1)

9: end for 10: for j = 1 to N do 11:

D

(0,j) = D (0,j 1) + c merge (S y (0, y j) ! y j+1)

12:

mergeUpdate (S x , S y , 0, j, 2)

13: end for 14: Loop: 15: for i = 1 to M do 16:

for j = 1 to N do 17: S y (i, j) y j+1 S x (2, 3)

d 1 = D (i 1,j) + c merge (S x (i 1, j) ! x i+1) 18: d 2 = D (i,
x 3 = (4|1|1) 1 S y (2, 3) y 4 = (4|0|2) 1
The information of D (2,3) , S x (2, 3) and S y (2, 3) are then saved into this cell. Continuing the computation, we obtain the distance of the two image strings X and Y is 10, which is the value of the last cell of the table. We also obtain the edit script, in this case, is highlighted on the Table 4.1. Following the edit script, it can be plotted the matching alignment between two image strings as in Figure 4.4(a). Note that in some cases, we can have several possibilities to choose among d

1 , d 2 , d 3
(line 20 in Algorithm 2). For example, to fill in cell D (2,2) , we can equally choose a merging from cell D

(2,1) or a substitution from cell D (1,1) . The choice of keeping the merging or the substitution could a↵ect subsequent computation leading to a non optimal edit script as shown in Figure 4.4. This is why this algorithm is qualified as greedy. An example shows the greedy method is not optimal/true edit distance, since it does not produce a minimum edit script to convert one string to the another string.

Computational complexity:

The calculation of m-SMD between two image strings of length M and N is described in Algorithm 2. Like the computation of SMD, it is required to fill out the matrix D(M ⇥ N). At each step, we have to determine not only three edit operations cost (as SMD) but also need to compute the mergeUpdate new symbol. With the local histogram of size K and a l 1 as ground distance, it requires O(K) operations for computing each edit cost or update symbol. However, using algorithm theory, the complexity of each step is still O(K). So finally, it needs O(K ⇥M ⇥N) operations to compute m-SMD between two image strings of length M and N. If the images are divided into B bands and N regions, the computation must be repeated B times. Compared to SMD, m-SMD needs more computation time because of the merge update step. However, both algorithms have the same complexity, which is O(K ⇥ B ⇥ N 2).

Discussion:

The edit-distance between two strings has been defined as the minimum edit script cost to convert one string into the other one. However, in Algorithm 2, due to the changes of the symbols during the computation and as a consequence, multiple possibilities to update symbols, there is no guarantee that the final distance is the minimum edit script cost. For instance, in the example above, we can have an other edit-script which introduces a smaller edit cost, as shown on Figure 4.4(b).

Recursive merge-based SMD

To obtain the optimal distance (i.e. the minimum cost of edit scrip), it is necessary to check all the possible edit scripts to convert the first string into the second one. In this case, the recursive solution is a good choice since it basically checks all the possibilities and computes the minimum edit script cost to convert one string into the other. The recursive algorithm is described as below:

Algorithm 3 m-SMD : Recursive merge-based String Matching Distance Algo- rithm 1: Input: Two strings X (M) = {x 1 , x 2 , ..., x M } and Y(N) = {y 1 , y 2 , ..., y N } 2: if M = 0 then 3: return cost-to-Delete Y(N) 4: end if 5: if N = 0 then 6: return cost-to-Delete X (M) 7: end if 8: d 1 = c merge (x 1 , x 2) + m-SMD(X (M 1), Y(N)) 9: d 2 = c merge (y 1 , y 2) + m-SMD(X (M), Ȳ(N 1)) 10: d 3 = c sub (x 1 , y 1) + m-SMD(X (M 1), Y(M 1)) 11: return min(d 1 , d 2 , d 3)
where X is the updated-string after doing a merge operation on the two first symbols x 1 , x 2 of string X ; Ȳ is the updated-string after doing a merge operation on the two first symbols y 1 , y 2 of string Y. It can be noticed that, after each recursive call, the total length of strings is reduced. Depending on the edit operation, merging on string X , merging on string Y or substitution, we call the function again but with smaller strings. If a merge operation is used, it is necessary to update the strings into X or Ȳ and to employ the function on these new smaller updated strings. The recursive call stops till the two strings are empty. However, the main drawback of this algorithm is its high complexity -which is O(3 max(N,M)). For practical purpose, it is essential to reduce the computation time. Since the method may repeatedly calculate several times the distance between sub strings, the possible solution is to re-use this information.

We notice that:

• Successive merge operations on the first and the second string can be done in any order leading to identical merged symbols and identical total merge cost.

• After a substitution, the two remaining strings do not contain any merged symbols. It means, that the two remaining strings are identical to the original sub-strings. Thus, the general scenario for matching two strings X and Y is:

• Merging the first i symbols of X , which costs c merge (x 1 ! x i). i = 1 means that no merge operations are employed on string X . The resulting combined symbol is x1!i .

• Merging the first j symbols of Y, which costs c merge (y 1 ! y j). j = 1 means that no merge operations are employed on string Y. The resulting combined symbol is ȳ1!j .

• Substituting x1!i with ȳ1!j , which costs c sub (x 1!i , ȳ1!j) • Re-computing the matching distance between the two sub-strings of X , Y: The total edit script cost for this scenario is:

a) i = 1, j = 1 (b) i = 2, j = 1 (c) i = 3, j = 2 (d) i = 1, j = 3 (e) i = M, j = 1 (f) i = M, j = N
Total-cost =c merge (x 1 ! x i) + c merge (y 1 ! y j) + c sub (x 1!i , ȳ1!j)+ + m-SMD({x i+1 , . . . x M }, {y j+1 , . . . y N }) Since, the edit distance is the minimum cost of all possible edit scripts, we have the equation: Using this formula, it is clear that we can re-use the information about the distance of the sub-strings; so it can reduce a lot the computation time. The results of SMD, greedy m-SMD, recursive m-SMD are obtained with N = 16; pyramid with L = 2 and w = 0.8.

The string based approaches have shown significant improvement over the SPR baseline (from +6.7 % in case of SMD to 8.23 % in case of recursive m-SMD). The recursive merged-based framework is the winner since it has the best performance for 17 classes out of 20. The merged regions idea seems very well suited to the Plant class, since it improves by about 5.5 % the classification performance. Also with the Aeroplane, Bottle, Bus, Horse, Motorbike, Person and Sofa classes, the gap between the two methods is more than 2 %. Again, the performance of the greedy framework is still very confusing. For several classes, it works equally or slightly better than SMD but for some classes, for example Bird, Sheep, Dog it fails to handle the classification. However, in average, it produces lightly the same performance as SMD. The best AP is 48.13 % obtained with recursive m-SMD, which is higher than the results obtained with SMD or greedy m-SMD by about 1.5 %.

Complexity:

The purpose of the following experiments is to examine the computation time of the three string of histogram distances with respect to di↵erent parameters. We take randomly 1000 pairs of images from the 15 Scene dataset and calculate the execution time needed to compute the 1000 distances. The implementation is in C++ and the experiments are run on a 2700MHz PC under Linux operating system. Experiments are repeated 10 times and we report the average value. varying the number of regions N from 1 to 16. Note that the x-axis is N 2 . Here, the codebook size is fixed to K = 100 and the number of bands to B = 1. From this figure, we notice that, when the number of regions is small (N < 9), the time to compute either SMD or greedy m-SMD is nearly the same. However, when N is high, more time is needed to compute the greedy distance. However, the gap between the two lines is still small. In addition, both curves are almost linear functions of the square of the number of regions. It confirms that the complexity of SMD and greedy m-SMD is O(N 2). In Figure 4.8, we notice that: when N is small, the gap between recursive m-SMD and the two other lines is not too significant. Nevertheless, it dramatically increases when N becomes higher.

Conclusion

This chapter has presented a new merge-based string matching edit-distance, along with two algorithms to compute it: a greedy one which uses Dynamic Programming and an optimal one which is recursive. Thanks to the new merge edit operation, the recursive merge-based distance has shown improvement over SMD distance discussed in the previous chapter. The results on Pascal 2007 dataset show that for several object classes, the idea of merging regions can improve significantly the image classification. However, the computational cost of the exact version is still high (O(N 4)). As explained in section 4.4.2, this complexity can be reduced to O(N 2) by constraining the total number of merging operations but further experiments must be done to analyze the impact of the constraint on classification accuracy. Without considering this constraint, the complexity of the recursive version is still too high against the positive gain obtained over SMD (about 0.6 % for 15 Scene, 0.44 % for Caltech 101, 1.5 % for Pascal 2007). If we want to employ the recursive merge-based SMD framework for practical purpose, such as classifying a large dataset, it would be necessary to find a solution to reduce the computation time. This problem has not been solved in this thesis yet.

Hopefully, it could be solved using GPU in the near future. • In order to take into account the sequential aspect of strings of local histograms, our second contribution was to propose a new edit distance, denoted String Matching Distance (SMD). Unlike previous works of [START_REF] Yeh | A string matching approach for visual retrieval and classification[END_REF]; [START_REF] Ballan | Video event classification using string kernels[END_REF] which use fix edit operation costs, we went a step further with our SMD by proposing a new definition for deletion and insertion costs. The image matching problem was formulated as finding the optimal edit script to align two given image strings. This new definition helps to detect and set aside identical successive regions within images and therefore improves the quality of the image matching. In addition, a substitution weight was incorporated into the cost definition to control the balance between substitutions and insertion/deletion operations. Moreover, the new distance can be e ciently calculated using Dynamic Programming.

• The SMD distance was shown to outperform rigid pairwise region matching.

It is because of its ability to detect and ignore identical successive regions within images. We explored this idea and proposed to replace insertions and deletions by region merging. Our third contribution was then to introduce an extended version of SMD distance, called merge-based SMD, which indeed supports a merge operation. Thanks to this new operation, the number of sub regions and the grid divisions are adapted during the matching according to the visual content of images. This brings more flexibility in the image matching process.

• In the merge-based SMD distance, a new symbol is generated after each merging and, as a consequence, the symbols are modified during the string alignment. Then, the direct extension of SMD algorithm with merge operations does not produce the optimal edit script. The corresponding dynamic programming based algorithm is thus qualified as a greedy version. Our fourth contribution was to introduce a new version which evaluates all the possible edit scripts and returns the optimal one. An e cient recursive algorithm was proposed to compute the result in a 4th order polynomial complexity. The experimental evaluation demonstrated that the optimal merge-based approach is more e cient than both the greedy version and the insertion/deletion based approaches.

• In the context of image classification, all the versions of the proposed stringbased distances showed significant improvements over classical methods.

They were evaluated using both hard and sparse coding. We believe that these distances can be integrated in any other coding methods (as LLC [START_REF] Wang | Localityconstrained linear coding for image classification[END_REF], semi soft coding [START_REF] Liu | In defense of soft-assignment coding[END_REF]) or with several higherorder statistics models such as Fisher Vectors (FV) [START_REF] Perronnin | Improving the fisher kernel for large-scale image classification[END_REF],

Vectors of Locally Aggregated Descriptors (VLAD) [START_REF] Jégou | Aggregating local descriptors into a compact image representation[END_REF] or Super-Vector Coding (SVC) [START_REF] Zhou | Image classification using super-vector coding of local image descriptors[END_REF] to get better classification performances.

Furthermore, there are still several open questions which can be studied in future research.

• Improve the complexity: One of the main drawbacks of the merge-based edit distance is its computational complexity. We can remark that the O(n 4) complexity can be reduced to O(n 2) if we limit the number of successive symbol merging. A possible extension of the recursive algorithm could then be to fix the maximum number of successive merge operations and to consider the corresponding optimal edit script. An evaluation of this approach must be done to see if it is relevant and to determine the optimal number of maximum successive merge operations.

• Tree or graph based edit distances: As discussed in section 3.3 a promising approach is to provide a 2D extension of our work to better account for the 2D nature of images. Although some 2D-string extensions or tree-based approaches have been proposed, the direct adaptation of our work to these extensions is still an open question.

• Using multi image features and multi kernel learning: Due to time limitation, we just tested our algorithms on very simple features (dense SIFT feature) to evaluate our new propositions. It is possible to extend the methods with denser features or multiple image features (such as color and shape) with multiple kernel learning ([START_REF] Vedaldi | Multiple kernels for object detection[END_REF]) in order to obtain better image classification accuracy.

• Applications to other domains: On the other hand, it is very promising to evaluate the proposed distances in other domains such as video classification [START_REF] Adjeroh | A distance measure for video sequences[END_REF][START_REF] Ballan | Video event classification using string kernels[END_REF], pattern recognition in document scanning and text retrieval [START_REF] Christodoulakis | Edit distance with combinations and splits and its applications in ocr name matching[END_REF] or shape recognition [START_REF] Tsai | Attributed string matching with merging for shape recognition[END_REF][START_REF] Yeh | A string matching approach for visual retrieval and classification[END_REF].

• Validation on large datasets: The last but not the least, it is of practical importance to evaluate the proposed approaches on large scales datasets such as Image Net ([START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF]).

3. 1

 1 Example about SPR-rigid matching problem: region to region matching does not work due to image transformations. 3.2 Example of an image representation as two strings of histograms. . 3.3 Classification accuracy (%) versus number of local regions for the 15 Scenes dataset ([Lazebnik et al., 2006]) using pairwise rigid matching and di↵erent partitioning schemes: grid, vertical divisions or horizontal ones. 3.4 Pyramid scheme with L=2. It is combination of using 1 Band, 2 Bands and 4 Bands for representing the image. 3.5 A toy example to illustrate the matching using SM D for the single band case. 3.6 Real example of SM D matching. Two images are divided into two

 3.7 Examples from 15 scene dataset. 3.8 Examples from Pascal 2007 dataset. 3.9 Examples of Corel10 dataset [Lu and Ip, 2009]. 3.10 Classification accuracy (%) obtained by SMD distance with di↵erent choices of the ground distance (i.e. l 1 , l 2 , 2) on 15 Scene dataset. The number of regions N is varied from 1 to 16. Number of bands and codebook size are fixed to B = 1 and K = 100. 3.11 Classification accuracy (%) obtained by SMD distance on 15 Scene and Caltech 101 datasets using vertical scanning direction (solid lines) and horizontal scanning direction (dash lines). The number of bands B is varied in 1,2 or 4. The codebook size K is fixed to 100 words. 3.12 Classification accuracy (%) obtained by SMD with variations of number of bands B and with pyramidal strategy. The codebook size is K = 100 for both datasets. 3.13 Classification accuracy (%) obtained by SMD distance on 15 Scene and Caltech 101 datasets using di↵erent vocabulary sizes (i.e. 100, 200, 400). The number of bands B is fixed B = 1 for 15 Scene and B = 4 for Caltech 101. 3.14 Influence of weighting parameter on classification performance of SMD. We fix B = 1 and N = 16 for 15 Scene dataset and B = 4 and N = 10 for Caltech 101. The codebook size is fixed to K = 100 for both two datasets. 3.15 Comparing the classification performance of SM D (solid line) versus P MD (dash line) with di↵erent values of B. The codebook size is fixed K = 100 for two datasets. 4.1 Example about SMD-matching and merge region based matching. . 4.2 Example about using merge operation with normalization. 4.3 Example about using merge operation in computation of the distance. 4.4 An example shows the greedy method is not optimal/true edit distance, since it does not produce a minimum edit script to convert one string to the another string. 4.5 The matching scenarios: After matching two symbols or sequence of symbols (blue parts), we have to recompute the distance for two sub-strings (red parts). 4.6 Implementation times (s) to compute 1000 SMD or greedy m-SMD distances versus square of Number of regions. The images are taken from 15 Scene dataset. Here, B = 1, K = 100. 4.7 Implementation times (s) to compute 1000 recursive m-SMD distances versus the power four of the number of regions. Images are taken from the 15 Scene dataset. Here, B = 1, K = 100. 4.8 Implementation times (s) to compute 1000 SMD, greedy m-SMD or recursive m-SMD distances versus the number of regions. List of Tables 3.1 Example of edit cost matrix C. ⌃ = (a, b), is Null histogram. . . . 3.2 Example of computation the distance matrix D between two text strings Saturday and Sunday. 3.3 Example of computation of SMD between two strings aab and abb.

 3.4 Classification accuracy on the 15 Scene dataset using di↵erent approaches and coding methods. Results of SMD are obtained with codebook size K = 100, pyramid scheme L = 2, N = 16 and edit operation weight w = 0.8 for both hard coding and sparse coding. For other methods, the results are obtained with the codebook size given in brackets. 3.5 Classification accuracy on Caltech 101 dataset using di↵erent approaches and coding methods. The result of SMD are obtained with codebook size K = 100, pyramid scheme L = 2, N = 13 and edit operation weight w = 0.8 for both hard coding and sparse coding. For other methods, the results are obtained with the codebook size (if available) given in bracket. 3.6 The comparison about classification performance (Average of equal error rate) of our proposed with SPR and SPR+co-occurence on Graz-01 dataset. All methods use hard coding 3.7 Classification accuracy on Corel10 dataset using di↵erent approaches and coding methods. The result of SMD are obtained with hardcoding, codebook size K = 100, B = 1, N = 9 and weight w = 0.8. 3.8 Image classification results (AP) on Pascal 2007 dataset. The codebook size is fixed to K = 100 for all approaches. The results of SMD is obtained with N = 16; pyramid with L = 2 and w = 0.8. . . 4.1 The computation of m-SMD using dynamic programming as described in Algorithm 2. .

 Figure 1.1: Examples of images containing instances of the same object class (horses) that look very di↵erent because of di↵erent factors. Visual content based recognition/classification approaches need to be very robust to these variations.

Figure 1 . 2 :

 12 Figure 1.2: Examples of inter-class variations: images containing instances of di↵erent object class (lobster and crayfish, ibis and flamingo) can be incorrectly classified because of their very similar shape or color

Figure 2 . 1 :

 21 Figure 2.1: The Bag of Word image representation baseline: First, local features are extracted from the image either by interest point detector or dense sampling detector. These local features are then encoded as descriptors (e.g SIFT).At the coding step: first, a clustering approach such as k-means is applied on a random subset of descriptors taking from all images to generate the visual vocabulary. Then, each descriptor is allocated to one (hard strategy) or a set of visual words (soft strategy). Finally, a vector histogram is computed at pooling step

Figure 2 .

 2 Figure 2.2 illustrates two kinds of detector on a sunflower image.

Figure 2 . 2 :

 22 Figure 2.2: Example about interest point detector (LoG detector) and dense sampling detector

Figure 2 . 3 :

 23 Figure 2.3: Computation of SIFT descriptor: At each interesting region of image, image gradient is computed for 4 ⇥ 4 grid. Then at each cell, the histogram of magnitude and orientation of gradient are used to obtain final key point descriptor.Image from[START_REF] Marszalek | Past the limits of bag-of-features[END_REF]

 (a) Tiling image into regions (b) Computing local histogram for each region (c) Concatenating all local histograms into single one

Figure 2

 2 Figure 2.4:A toy example about Spatial Pyramid Representation proposed by[START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF]: First, the image is divided into multiple regions at multiple scales, e.g. 1 ⇥ 1, 2 ⇥ 2, 4 ⇥ 4 regions. The local histogram is calculated at each cell and at each resolution. Finally, all local histograms are multiplied with corresponding weights for each level before concatenating into single histogram-the final image representation.

Figure 2 . 5 :

 25 Figure2.5: Spatial Bag of Features (SBoF) approach of[START_REF] Cao | Spatial-bag-of-features[END_REF]. The authors try to partition an image either with a predefined direction to deal with translation or into multiple circular sections to cope with rotation.

Figure 2 . 6 :

 26 Figure2.6: Pyramid rings approach of[START_REF] Li | Spatial pooling for transformation invariant image representation[END_REF]. The authors suggest to use a set of rings whose centers are the center of the image to locate the image layout.

Figure 2 . 7 :

 27 Figure 2.7: Learning adaptive partition grid of[START_REF] Sharma | Learning discriminative spatial representation for image classification[END_REF] which for each image class, tries to find the optimal way to split the images recursively

Figure 2 . 8 :

 28 Figure 2.8: Randomized partition of[START_REF] Jiang | Randomized spatial partition for scene recognition[END_REF] where the image is divided randomly in many possible spatial partitions.

 First, in the training step, a class model has to be chosen which can well separate training images in the feature space. In this step, all model parameters are tuned to minimize the error criterion using small subset of training data. When the classifier model is available, it is ready to classify new test images. The classic classifier is the binary classifier as it works with only two classes (Figure 2.9) It is proposed to construct the maximized margin hyperplane separating the training examples into their two classes. In general, the training examples that are closest to the hyperplane are called support vectors. In case of linear classifier, the function to predict the output is:

Figure 2 . 9 :

 29 Figure 2.9: Example about binary SVM classifier which tries to find optimal hyperplane with maximum margin to classify feature data.

Figure 2 .

 2 Figure 2.10: Example about using a transfer function to map data into a high-dimensional space where a linear classifier can be used.

Figure 3

 3 Figure 3.1: Example about SPR-rigid matching problem: region to region matching does not work due to image transformations.

 Figure 3.2: Example of an image representation as two strings of histograms.

 photographs, the vertical order provides a better characterization of the content.

Figure 3 . 4 :

 34 Figure 3.4: Pyramid scheme with L=2. It is combination of using 1 Band, 2 Bands and 4 Bands for representing the image.

 Example of edit cost matrix C. ⌃ = (a, b), is Null histogram.

:

 Example of computation the distance matrix D between two text strings Saturday and Sunday. The computational complexity is proportional to the product of the length of the two strings, i.e. O(N ⇥ M). The value D (M,N) of the last cell of matrix D is the edit-distance between the two strings. It is the minimum cost of all possible edit scripts to convert string X into Y. Algorithm 1 Standard Edit-distance Algorithm Require: Two strings X (M) and Y(N) + c del (x i) 5: end for 6: for j = 1 to N do 7:

Example 1 :

 1 Let's compute the String Matching Distance between 2 text strings aab and abb with ⌃ = {a, b}. The edit operation costs are defined as in Equation 3.1; with d(a, b) = d(b, a) = 1, d(a,) = d(b,) = 1 and d(a, a) = d(b, b) = 0.

y

 Figure 3.5: A toy example to illustrate the matching using SM D for the single band case.

Figure 3 . 6 :

 36 Figure 3.6: Real example of SM D matching. Two images are divided into two bands of fours regions. The matching is done on each band separately. Let denote x i , y i with i = 1, . . . , 4 are the local histograms of regions in the first bands of the two images. The final edit script (or strings alignment) and the corresponding distance which is the minimum all possible edit scripts are shown on the figure. The SMD distance between two first strings of two images are computed as SM D = c del (x 1) + c sub (x 2 , y 1) + c sub (x 3 , y 2) + c del (y 3) + c sub (x 4 , y 4) = 1.15 + 1.65 + 1.54 + 0.19 + 1.85. In parallel, the Pairwise Matching Distance (PMD) which uses rigid matching between local region, is computed as total distance between x 1 and y 1 , . . . ,x 4 with y 4 . In other words, it is the total substitution cost between them. P MD = c sub (x 1 , y 1) + c sub (x 2 , y 2) + c sub (x 3 , y 3) + c sub (x 4 , y 4) = 7.01.

 the images are represented as B strings of N regions. The similarity between them is done by summing the distance between the corresponding bands of the two images. In other words, we need to compute B times the SMD distances. Therefore, the complexity of comparing two images becomes O(B ⇥ K ⇥ N 2) 3.5 Experiments This section reports experimental results. The motivation of these experiments is twofold. First we aim to study the influence of the parameters of our image representation model on the classification accuracy. We validate this part on two popular datasets: 15 Scenes and Caltech 101. Second our goal is to compare the classification performance of our String Matching Distance (SMD) against the rigid Pairwise Matching Distance (PMD) , Spatial Pyramid Representation (SPR)

Figure 3 . 7 :

 37 Figure 3.7: Examples from 15 scene dataset.

Figure 3 . 8 :

 38 Figure 3.8: Examples from Pascal 2007 dataset.

Figure 3 . 9 :

 39 Figure 3.9: Examples of Corel10 dataset [Lu and Ip, 2009].

Figure 3 . 10 :

 310 Figure 3.10: Classification accuracy (%) obtained by SMD distance with di↵erent choices of the ground distance (i.e. l 1 , l 2 , 2) on 15 Scene dataset. The number of regions N is varied from 1 to 16. Number of bands and codebook size are fixed to B = 1 and K = 100.

 (i.e. vertical or horizontal) on SMD implementation. The tests are evaluated on 15 Scene and Caltech 101 datasets with respect to the number of regions N varying from 1 to 16. The number of bands is set to B = 1, B = 2 and B = 4. We fix the codebook size to K = 100 words. The classification accuracy for the two datasets are shown on Figure 3.11.

Figure 3 . 11 :

 311 Figure 3.11: Classification accuracy (%) obtained by SMD distance on 15

Figure 3

 3 Figure 3.12: Classification accuracy (%) obtained by SMD with variations of number of bands B and with pyramidal strategy. The codebook size is K = 100 for both datasets.

Figure 3 .

 3 Figure 3.13: Classification accuracy (%) obtained by SMD distance on 15 Scene and Caltech 101 datasets using di↵erent vocabulary sizes (i.e. 100, 200, 400). The number of bands B is fixed B = 1 for 15 Scene and B = 4 for Caltech 101.

 3. SMD is computed with K = 100 for both datasets. With the 15 Scene dataset, we use B = 1 and N = 16. In case of Caltech 101 dataset, B is fixed to 4 and N = 10 for saving computation time. The results are shown on Figure 3.14. It can be noticed that: the weight parameter has e↵ect on the performance of SMD, and for both 15 Scenes and Caltech 101 datasets, the best weighting value is around 0.8. It means our proposed distance performs better with more substitutions.

Figure 3

 3 Figure 3.14: Influence of weighting parameter on classification performance of SMD. We fix B = 1 and N = 16 for 15 Scene dataset and B = 4 and N = 10 for Caltech 101. The codebook size is fixed to K = 100 for both two datasets.

 proaches and coding methods. The result of SMD are obtained with hardcoding, codebook size K = 100, B = 1, N = 9 and weight w = 0.8.

Abstract:

 The previous chapter described the String Matching Distance which uses string-based representation and string matching to compare two images. In this chapter, we propose two extensions of SMD to further improve the recognition performance. Our motivation is to study other possible options of extended editdistance and to find better ways to compare our image string of histograms. We extend the edit-distance by using merge operations. The performance of these extended distances are evaluated on 15 Scene, Caltech 101 and Pascal 2007 datasets.

Figure 4

 4 Figure 4.1(a) illustrates this procedure: the two images are divided into 4 regions.

Figure 4 . 3 :

 43 Figure 4.3: Example about using merge operation in computation of the distance.

 Algorithm 2 m-SMD: merge-based String Matching Distance Algorithm using Dynamic Programming 1: Input: Two strings X (M) and Y(N)

 (a) String alignment and final cost which obtained by greedy method. (b) A better edit script

Figure

 Figure 4.4: An example shows the greedy method is not optimal/true edit distance, since it does not produce a minimum edit script to convert one string to the another string.

 {x i+1 , . . . x M } and {y j+1 , . . . y N } Several examples of the matching scenario are illustrated on Figure 4.5.

(

Figure 4 . 5 :

 45 Figure 4.5: The matching scenarios: After matching two symbols or sequence of symbols (blue parts), we have to recompute the distance for two sub-strings (red parts).

 (x 1 ! x i) + c merge (y 1 ! y j)+ +c sub (x 1!i , ȳ1!j)+ m-SMD(X (i+1!M) , Y (j+1!N))

Figure 4 .

 4 Figure 4.6 illustrates the execution times obtained with SMD and greedy m-SMD

Figure 4 . 6 :

 46 Figure 4.6: Implementation times (s) to compute 1000 SMD or greedy m-SMD distances versus square of Number of regions. The images are taken from 15 Scene dataset. Here, B = 1, K = 100.

Figure 4 . 7 :

 47 Figure 4.7: Implementation times (s) to compute 1000 recursive m-SMD distances versus the power four of the number of regions. Images are taken from the 15 Scene dataset. Here, B = 1, K = 100.

Figure 4 . 8 :

 48 Figure 4.8: Implementation times (s) to compute 1000 SMD, greedy m-SMD or recursive m-SMD distances versus the number of regions.

 addressed the problem of rigid matching in Spatial Pyramid Matching based approaches. Our objective was to introduce a string matching model in order to improve image representation and comparison in the context of image classification. We have proposed to transform the local BoW representation into strings of local BoW and to introduce a new class of string of local histogram edit distances to measure image similarity. Below the summary of the key contributions of our work.• Our first contribution was to introduce a new string-based image representation model. In this model, the image is divided into regions, each region is represented as a local histogram and treated as a symbol of a string. In addition, we proposed a Pyramid like strategy which includes a multi-resolution scheme into our string representation. Our string model has the advantage of incorporating order information between regions which can be further used during image matching. The new representation was shown to be more e↵ective than the classical Pyramid matching representation when using region by region matching.

 1.1 Examples of images containing instances of the same object class (horses) that look very di↵erent because of di↵erent factors. Visual content based recognition/classification approaches need to be very robust to these variations. 1.2 Examples of inter-class variations: images containing instances of di↵erent object class (lobster and crayfish, ibis and flamingo) can be incorrectly classified because of their very similar shape or color 1.3 Examples of intra-class variations: the chairs are in various shapes and colors. It is not easy for a machine to learn and classify them. .

2.1 The Bag of Word image representation baseline: First, local features are extracted from the image either by interest point detector or dense sampling detector. These local features are then encoded as descriptors (e.g SIFT). At the coding step: first, a clustering approach such as k-means is applied on a random subset of descriptors taking from all images to generate the visual vocabulary. Then, each descriptor is allocated to one (hard strategy) or a set of visual words (soft strategy). Finally, a vector histogram is computed at pooling step . 2.2 Example about interest point detector (LoG detector) and dense sampling detector . 2.3 Computation of SIFT descriptor: At each interesting region of im-

Table 3

 3

.3: Example of computation of SMD between two strings aab and abb. The first table is the distance matrix D which is computed by dynamic programming. Each value of D, D

Table 3 . 7 :

 37 Classification accuracy on Corel10 dataset using di↵erent ap-

 reported results with SVM one vs one

	Method Aero	Bicyc Bird	Boat	Bottle Bus	Car	Cat	Chair Cow
	SPR	58.16 30.55 29.14 51.10 20.79 39.36 63.35 29.83 41.25 23.41
	SMD	60.33 46.99 29.52 58.98 16.39 52.84 68.68 39.59 48.05 33.73
	Method Table Dog	Horse Mbike Person Plant Sheep Sofa	Train TV	Mean
	SPR	36.80 31.72 65.96 41.73 72.44	18.12 26.85 33.39 55.01 29.04	39.90
	SMD	44.11 35.51 70.60 50.98 75.79 17.56 32.51 42.46 67.72 39.95 46.62
	Table 3.8: Image classification results (AP) on Pascal 2007 dataset. The
	codebook size is fixed to K = 100 for all approaches. The results of SMD is
			obtained with N = 16; pyramid with L = 2 and w = 0.8.

 Table 4.4: Image classification results (AP) on Pascal 2007 dataset using di↵erent frameworks. The codebook size is fixed to K = 100 for all approaches.

	Object class SPR	SMD	greedy recursive m-SMD m-SMD
	Aeroplane	58.16	60.33	62.58	62.62
	Bicycle	30.55	46.99	47.13	48.31
	Bird	29.14 29.52	19.41	26.67
	Boat	51.10	58.98	57.97	60.50
	Bottle	20.79 16.39	19.03	18.48
	Bus	39.36	52.84	54.34	55.13
	Car	63.35	68.68	69.94	70.42
	Cat	29.83	39.59	39.36	40.29
	Chair	41.25	48.05	48.05	48.90
	Cow	23.41	33.73	33.78	34.38
	Table	36.80	44.11	45.00	45.80
	Dog	31.72 35.51	33.23	35.36
	Horse	65.96	70.60	71.59	72.83
	Motorbike	41.73	50.98	53.29	53.64
	Person	72.44	75.79	76.46	77.97
	Plant	18.12	17.56	23.26	23.13
	Sheep	26.85	32.51	25.99	33.08
	Sofa	33.39	42.47	44.00	44.73
	Train	55.01	67.72	67.94	69.07
	TV	29.04	39.95	40.17	41.29
	Mean	39.90	46.62	46.63	48.13

http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/devkit

Acknowledgements

Acknowledgements iii

by Vietnam government, project 322. I am also thankful for the support by the Laboratoire Hubert Curien for supporting me a nice and friendly research environment.

Comparison with existing methods

Results on 15 Scene dataset:

In Table 3.4, the proposed method is first compared with the concurrent techniques that use the same setup which is: a single SIFT descriptor, dense sampling on 16 ⇥ 16 image blocks and at every 8 pixels. The results of SMD performance on both hard coding (with sum pooling) and sparse coding (with max pooling) are reported. In both cases, the SMD is computed with pyramid scheme L = 2, number of regions N = 16, codebook size K = 100 and weight w = 0.8. We first compare our method with the BoW baseline (K=100, intersection kernel) and with the original Spatial Pyramid Representation (pyramid with L = 2) of [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF].

Coding

Approaches Accuracy (%)

Hard-coding BoW baseline 73.28 [100] SPR [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF] 8 1 . 4 0 ± 0.50 [200] Sequence string matching [START_REF] Yeh | A string matching approach for visual retrieval and classification[END_REF] 80.93 ± 0.64 [200] Bipartite graph matching [START_REF] Belongie | Shape matching and object recognition using shape contexts[END_REF] 78.17 ± 0.47 [200] SPR+co-occurence [START_REF] Yang | Spatial pyramid co-occurrence for image classification[END_REF] 82.51 ± 0.43 [200] Learning optimal spatial partition 80.10 ± 0.60 [100] [START_REF] Sharma | Learning discriminative spatial representation for image classification[END_REF]] SMD 83.14 ± 0.67 [100] Sparse-coding BoW baseline 63.48 ± 0.79 [100] ScSPM [START_REF] Yang | Linear spatial pyramid matching using sparse coding for image classification[END_REF] 8 0 . 2 8 ± 0.93 [1024] ScSPM [START_REF] Boureau | Learning mid-level features for recognition[END_REF] 8 3 . 1 0 ± 0.60 [1024] KSR-SPM [START_REF] Gao | Kernel sparse representation for image classification and face recognition[END_REF] 8 3 . 6 8 ± 0.61 [1024] SMD 84.59 ± 0.7 [100] Table 3.4: Classification accuracy on the 15 Scene dataset using di↵erent approaches and coding methods. Results of SMD are obtained with codebook size K = 100, pyramid scheme L = 2, N = 16 and edit operation weight w = 0.8 for both hard coding and sparse coding. For other methods, the results are obtained with the codebook size given in brackets.

We are also interested in the sequence string matching proposed by [START_REF] Yeh | A string matching approach for visual retrieval and classification[END_REF]. They used a raster scan to represent the image as one string, and a fixed cost for deletion/insertion operations. Furthermore, we compare our matching with the bipartite graph matching of [START_REF] Belongie | Shape matching and object recognition using shape contexts[END_REF] which finds the approaches, our method outperforms all of them for both hard coding and sparse coding. The best performance is obtained when using SMD with sparse coding and the average classification accuracy is 73.48%.

Coding

Approaches Accuracy (%)

Hard-coding BoW baseline 40.12 ± 0.5 [100] SPR [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF] 64.40± 0.8 [200] SVM-KNN [START_REF] Zhang | Svm-knn: Discriminative nearest neighbor classification for visual category recognition[END_REF] 66.23 ± 0.48 [-] SPR+GLW [START_REF] Bosch | Scene classification using a hybrid generative/discriminative approach[END_REF] [START_REF] Yang | Linear spatial pyramid matching using sparse coding for image classification[END_REF] 73.20± 0.50 [1024] ScSPM [START_REF] Boureau | Learning mid-level features for recognition[END_REF] 71.50 ± 1.

Results on Graz-01 dataset

We also applied our approach to Graz-01dataset. For evaluation, we keep the same setup as [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF] with dense-SIFT and hard-assignment coding. We chose to train on 100 positive images (bike or person) and 100 negative images (where 50 images are from the background class) and test on the rest. We reports the average of equal error rates over ten runs. As can be seen from the Table 3.6, the results are very impressive: our SMD outperforms SPR by 6%, and the combination of SPR+co-occurence of visual words [START_REF] Yang | Spatial pyramid co-occurrence for image classification[END_REF] [[START_REF] Christodoulakis | Edit distance with combinations and splits and its applications in ocr name matching[END_REF]] also introduced combination-split edit-distance in OCR pattern matching. In order to cope with inexactness pattern matching, the authors introduced two more edit operations: the combination operation that combines two or more symbols from the first string to match with a single symbol from the second string. Equivalently, a single symbol of one string can be split and matched with a sequence of symbols in the other. The decision of which combination will match to which symbol depends on applications. For example in this paper, the authors group a sequence of symbols that look similar to one symbol and treat it as this symbol (likes rn = m, ii = n, . . .).

The merge operation was also introduced in computer vision applications. [START_REF] Tsai | Attributed string matching with merging for shape recognition[END_REF] presented a merge operation with Attribute String Distance for Shape recognition task. A new operation can be used to combine a number of consecutive boundary primitives in one shape and to match with those in another shape.

In applications of content based video retrieval, [START_REF] Adjeroh | A distance measure for video sequences[END_REF] proposed v-string to measure similarity of two video sequences. The distance between two video sequences is described as a problem of sequence to sequence matching. Since new symbol is the result of the division the sum of the histograms with the total number of merging the original regions. For instance, the normalized histogram of the merged region (H n) is H n . of the distance matrix, we compute three di↵erent costs:

so a merge operation is applied on string X and after merging, a new symbol x1!2 is generated, as the average of the combined region (1|2|3)

2).

To compute the distance, it is necessary to update these strings at each step. Note that it should not change the initial strings because other edit scripts not using this merge operation may be obtained in the dynamic programming algorithm. It is, therefore, essential to store two new matrices S x and S y respectively containing, for each cell (i, j), the next symbol of string X (M) and string Y(N) after applying each edit operation (See the example shows in Table 4.1 below).

Algorithm 2 describes in pseudo code how to compute m-SMD by dynamic programming. At each iteration, depending on which edit operation is employed, the following symbols are updated in MergeUpdate function.

Example :

An example of computation of the m-SMD using dynamic programming between two strings of histograms of three words X = {(1|2|3), (1|2|3), (4|1|1), (4|2|0)} and

The computation of m-SMD using dynamic programming as described in Algorithm 2.

The first column and the first row of the table are the original strings X and Y.

We use a blue color for the matrix S x and a red color for S y . The values which are saved in S x and S y are (H n) where H is the combination histograms, n is the total number of merging. Note that, the computation of the edit operation cost needs to use the normalized histogram, which is H n . In the middle of each cell is the value of distance matrix D.

To fill out the matrix, we start with initial values: D (0,0) = 0, S x (0, 0) = x 1 = (1|2|3)

1 and S y (0, 0) = y 1 = (3|1|2) 1 . The value of D (1,0) is obtained by merging x 1 with x 2 and is computed as:

After merging, we have to update the symbols and save them to the matrices S x , S y (line 8),

The information of D (1,0) , S x (1, 0) and S y (1, 0) are saved into the cell. This information will be used in future computations with edit scripts related to this cell. Using the loop from line 6 to line 9 we can fill the second column of the table.

In the same way, we can fill the second row by applying the loop from line 10 to line 13. Now, to fill the rest of the table, we apply the loop from line 15 to line 24. For instance, we can calculate the values of D(2, 3) (cell (4,5)) of the table) by using the information of the cells D(1, 2), D(1, 3) and D(2, 2):

4 and k = 3 such that mergeUpdate will be:

Computation complexity:

The evaluation of the algorithm complexity requires to count the total number of possible merge operations on strings X and Y, as well as the total number of possible substitutions.

For string X (1!N) = {x 1 , x 2 , . . . x N } of length N , we count N 1 possible merge operations involving x 1 : merge(x 1 , x 2), merge(x 1 , x 2 , x 3), . . . , merge(x 1 , . . . , x N). In the same way, for sub-string X

(2!M) = {x 2 , . . . x N }, there are N 2 possible merge operations involving x 2 . Therefore, the total number of possible merge operations on the string

With N ⇥ (N 1)/2 possible symbols, there are N 2 ⇥ (N 1) 2 /4 possible ways to match symbols at most. In fact, the number of matches is smaller than this. We have indeed to take into account an ordering constraint: a match always takes place from the beginning of the string, and when one match is done, the next match will concern a smaller substring. Therefore, the complexity to compute all possible substitutions is O(N 4) and to compute all possible merge symbols is O(N 2). At the end, the new method has only a polynomial complexity of order 4. We could also think about reducing the total number of operations by applying a merging constraint. In this case, we limit the maximum number of possible combined symbols (i.e. maximum length of sequence of merging symbols). For instance, if we fix the number of possible matches on a string of length N to a, a ⌧ N , then the maximum total possible number of merge operations on this string is only N ⇥ a. As a consequence, the maximum number of possible substitutions is N 2 ⇥ a 2 . Thus, the algorithm complexity is reduced to O(N 2).

Experiments

In these experiments, we aim to compare the performance of SMD, greedy m-SMD and recursive m-SMD with respect to accuracy and e ciency. Three datasets, 15 Scene, Caltech 101 and Pascal 2007 are used for evaluation. Local features of all the images are extracted by using a dense SIFT descriptor on a regular grid 16x16 pixels and with a step size of 8 pixels. The k-means clustering approach is applied on a subset of descriptors to create the visual codebook. The codebook size is set to K = 100. We report the classification accuracy using both hard coding and sparse coding for Caltech 101 and 15 Scene dataset. For Pascal 2007, only results using hard coding are shown.

Classification performance on 15 Scene dataset:

The SMD, greedy m-SMD and recursive m-SMD distances are computed with N = 16 and the weight is fixed to w = 0.8. We report both cases: using single level (B = 1) and pyramid case with two levels (L = 2). In order to evaluate the classification performance, we use the same train/test setup and kernel edit distance as described in Chapter 3 which are: 100 images per class for training and the rest for testing . We also recompute the baseline. In the single level case, the baseline corresponds to the BoW performance and in the pyramid case, it corresponds to the SPR framework. The results are shown on Table 4.2.

As shown, the recursive merge-based m-SMD approach outperforms both the original SMD and greedy m-SMD approaches in all cases. It confirms the e↵ectiveness of the combination of similar regions within images. However, the di↵erence of classification performance between SMD and recursive m-SMD is small (from 0.02 % to 0.6%). The behavior of greedy m-SMD is not so clear. In some cases, as the single level case with hard coding or the pyramid with sparse coding, it seems to work better than SMD. But in other cases, as pyramid with hard coding or single level with sparse coding, the greedy version is slightly lower than SMD. All string-based distances, SMD, greedy m-SMD and recursive m-SMD outperform the baseline.

Coding

The best performance, 85.33 %, is obtained with recursive version with sparse coding and pyramid scheme. Table 4.3 shows results on Caltech 101 dataset with hard assignment coding and sparse coding methods. The distances are computed with N = 16, K = 100 and weight w=0.8. In the single level case, B is fixed to 4. We use L = 2 for pyramid scheme. We evaluate the classification performance using SVM one vs all, with the edit kernel discussed in Chapter 3. We randomly select 30 images per class for training and maximum 50 images per class for testing. The experiment is repeated 10 times and we report the average accuracy.

From this table we can see that: (i) The string-based approaches improve the baseline for all cases. (ii) The recursive merge-based distance is the best one. (iii) The greedy framework sometimes produces lower results than SMD. (iv) Again, the best classification accuracy (73.92 %) is obtained with recursive framework using the pyramid scheme and sparse coding.

Classification performance on Pascal 2007 dataset:

The Pascal 2007 dataset [START_REF] Everingham | The PASCAL Visual Object Classes Challenge 2007[END_REF]