
HAL Id: tel-01623443
https://theses.hal.science/tel-01623443

Submitted on 25 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximate string matching distance for image
classification

Hong-Thinh Nguyen

To cite this version:
Hong-Thinh Nguyen. Approximate string matching distance for image classification. Computer Vision
and Pattern Recognition [cs.CV]. Université Jean Monnet - Saint-Etienne, 2014. English. �NNT :
2014STET4029�. �tel-01623443�

https://theses.hal.science/tel-01623443
https://hal.archives-ouvertes.fr

Ecole Doctorale ED488 Sciences, Ingenierie, Sante

Approximate String Matching

Distance for Image Classification
by

Hong-Thinh NGUYEN
A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the
Image processing and Computer Vision

 JURY 2014/08/29:

Patrick Lambert Professeur Rapporteur

Université de Savoie

Johel Mitéran Professeur Rapporteur

Université de Bourgogne

Christian Wolf Mâıtre de Conférences HDR Examinateur

Université de Lyon

Amaury Habrard Professeur Examinateur

Université Jean Monnet, Saint-Étienne

Christophe Ducottet Professeur Directeur

Université Jean Monnet, Saint-Étienne

Cecile Barat Mâıtre de Conférences Co-directeur

Université Jean Monnet, Saint-Étienne

http://edsis.univ-st-etienne.fr
mailto:hong.thinh.nguyen@univ-st-etienne.fr

ABSTRACT

The exponential increasing of the number of images requires e�cient ways to

classify them based on their visual content. The most successful and popular

approach is the Bag of visual Word (BoW) representation due to its simplicity

and robustness. Unfortunately, this approach fails to capture the spatial image

layout, which plays an important roles in modeling image categories.

Recently, Lazebnik et al (2006) introduced the Spatial Pyramid Representation

(SPR) which successfully incorporated spatial information into the BoW model.

The idea of their approach is to split the image into a pyramidal grid and to

represent each grid cell as a BoW. Assuming that images belonging to the same

class have similar spatial distributions, it is possible to use a pairwise matching

as similarity measurement. However, this rigid matching scheme prevents SPR to

cope with image variations and transformations.

The main objective of this dissertation is to study a more flexible string match-

ing model. Keeping the idea of local BoW histograms, we introduce a new class

of edit distance to compare strings of local histograms.

Our first contribution is a string based image representation model and a new

edit distance (called SMD for String Matching Distance) well suited for strings

composed of symbols which are local BoWs. The new distance benefits from an

e�cient Dynamic Programming algorithm. A corresponding edit kernel including

both a weighting and a pyramidal scheme is also derived. The performance is

evaluated on classification tasks and compared to the standard method and several

related methods. The new method outperforms other methods thanks to its ability

to detect and ignore identical successive regions inside images.

Our second contribution is to propose an extended version of SMD replacing inser-

tion and deletion operations by merging operations between successive symbols. In

this approach, the number of sub regions ie. the grid divisions may vary according

to the visual content. We describe two algorithms to compute this merge-based

distance. The first one is a greedy version which is e�cient but can produce a

non optimal edit script. The other one is an optimal version but it requires a 4th

degree polynomial complexity. All the proposed distances are evaluated on several

datasets and are shown to outperform comparable existing methods.

Keywords: Edit distance, Bag of visual words, Spatial matching, Image clas-

sification.

ii

Acknowledgements

First of all I would like to thank my supervisors, Prof. Chirstophe Ducottet and

Cecile Barat. Ever since they recruited me in Octobre 2010 to do research under

their guidance, they o↵ered me excellent work environment as well as various

kinds of general support and advices. I am grateful that they gave me time, ideas,

suggestions, corrections, comments and a lot of help. I could not have succeeded

without the invaluable support of them. Without them I may not have gotten to

where I am today.

My sincere thanks to the rapporteurs and examiners in my jury, Prof. Patrick

Lambert and Prof. Johel Mitéran, Prof. Christian Wolf and Prof. Amaury

Habrard, for their valuable questions, insightful comments and constructive sug-

gestions which can guide me for my future research.

This thesis would not have started without the financial support by Vietnam

government, project 322. I am also thankful for the support by the Laboratoire

Hubert Curien for supporting me a nice and friendly research environment.

Many thanks to my colleagues in the laboratoire, my Vietnamese friends for for

making my PhD student life an enjoyable and memorable one. Special thank to

Amany and Coco who stayed in same o�ce with me for nearly one year. Ill never

forget the many wonderful lunches and fun activities we have done together. I also

would like to thank Luu Manh Ha, my close friend from my bachelor, who always

gave me help and comments when I need.

Above all, I thank my family for being the pillars of my life. I thank my parents

for guiding me through life and encouraging me to pursuit my dreams. To Tung,

my husband, thanks for showing your patience and giving me moral support. To

Chom Chom, my little girl, thanks for giving me your unconditional love and every

sweet moment.

iii

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Background and Objectives . 1
1.2 Contributions . 4
1.3 Thesis outline . 5

2 Related Work 7

2.1 Introduction . 7
2.2 Image representation . 8
2.3 The Bag of Word representation . 9

2.3.1 Feature detection . 11
2.3.2 Feature description . 13
2.3.3 Coding . 14
2.3.4 Pooling . 17
2.3.5 Discussion . 18

2.4 Spatial Pyramid Representation . 18
2.4.1 Principle . 18
2.4.2 Extensions of SPR . 20

2.5 Image comparison . 22
2.6 Image classification and kernels . 25

2.6.1 SVM classification . 25
2.6.2 Mercer’s theorem and kernel function 27
2.6.3 Multiclass SVM . 28

2.7 Summary . 28

3 Approximate matching for image classification 29

3.1 Introduction . 29
3.2 Related works . 31
3.3 Image representation . 34
3.4 A new edit-distance for strings of histograms 38

3.4.1 The standard edit-distance 38
3.4.2 A new string matching distance 41

iv

CONTENTS v

3.4.3 Examples . 42
3.4.4 Weighted edit operations . 45
3.4.5 Image comparison kernel . 46
3.4.6 Computational complexity 47

3.5 Experiments . 47
3.5.1 Datasets . 48
3.5.2 Experimental Settings . 50
3.5.3 Results . 51

3.5.3.1 Influence of the string parameters 51
3.5.3.2 String matching vs pairwise matching 56
3.5.3.3 Comparison with existing methods 57

3.6 Conclusion . 61

4 Merge-based edit-distance for strings of histograms 62

4.1 Motivation . 62
4.2 Related work . 63
4.3 Adding new merge operation into SMD 65

4.3.1 Principle . 66
4.3.2 Merge operation . 67

4.4 New merge-based edit distance . 69
4.4.1 Greedy merge-based SMD algorithm 69
4.4.2 Recursive merge-based SMD 74

4.5 Experiments . 77
4.6 Conclusion . 82

5 Conclusions 84

Bibliography 87

List of Figures

1.1 Examples of images containing instances of the same object class
(horses) that look very di↵erent because of di↵erent factors. Visual
content based recognition/classification approaches need to be very
robust to these variations. 2

1.2 Examples of inter-class variations: images containing instances of
di↵erent object class (lobster and crayfish, ibis and flamingo) can
be incorrectly classified because of their very similar shape or color 2

1.3 Examples of intra-class variations: the chairs are in various shapes
and colors. It is not easy for a machine to learn and classify them. . 3

2.1 The Bag of Word image representation baseline: First, local fea-
tures are extracted from the image either by interest point detector
or dense sampling detector. These local features are then encoded
as descriptors (e.g SIFT). At the coding step: first, a clustering
approach such as k-means is applied on a random subset of descrip-
tors taking from all images to generate the visual vocabulary. Then,
each descriptor is allocated to one (hard strategy) or a set of visual
words (soft strategy). Finally, a vector histogram is computed at
pooling step . 10

2.2 Example about interest point detector (LoG detector) and dense
sampling detector . 11

2.3 Computation of SIFT descriptor: At each interesting region of im-
age, image gradient is computed for 4 ⇥ 4 grid. Then at each cell,
the histogram of magnitude and orientation of gradient are used to
obtain final key point descriptor. Image from [Marszalek, 2008] . . 14

2.4 A toy example about Spatial Pyramid Representation proposed by
[Lazebnik et al., 2006]: First, the image is divided into multiple
regions at multiple scales, e.g. 1⇥ 1, 2⇥ 2, 4⇥ 4 regions. The local
histogram is calculated at each cell and at each resolution. Finally,
all local histograms are multiplied with corresponding weights for
each level before concatenating into single histogram-the final image
representation. 19

2.5 Spatial Bag of Features (SBoF) approach of [Cao et al., 2010]. The
authors try to partition an image either with a predefined direction
to deal with translation or into multiple circular sections to cope
with rotation. 20

vi

LIST OF FIGURES vii

2.6 Pyramid rings approach of [Li et al., 2011]. The authors suggest to
use a set of rings whose centers are the center of the image to locate
the image layout. 20

2.7 Learning adaptive partition grid of [Sharma et al., 2011] which for
each image class, tries to find the optimal way to split the images
recursively . 20

2.8 Randomized partition of [Jiang et al., 2012] where the image is
divided randomly in many possible spatial partitions. 21

2.9 Example about binary SVM classifier which tries to find optimal
hyperplane with maximum margin to classify feature data. 26

2.10 Example about using a transfer function to map data into a high-
dimensional space where a linear classifier can be used. 26

3.1 Example about SPR-rigid matching problem: region to region match-
ing does not work due to image transformations. 30

3.2 Example of an image representation as two strings of histograms. . 35
3.3 Classification accuracy (%) versus number of local regions for the 15

Scenes dataset ([Lazebnik et al., 2006]) using pairwise rigid match-
ing and di↵erent partitioning schemes: grid, vertical divisions or
horizontal ones. 36

3.4 Pyramid scheme with L=2. It is combination of using 1 Band, 2
Bands and 4 Bands for representing the image. 37

3.5 A toy example to illustrate the matching using SMD for the single
band case. 43

3.6 Real example of SMD matching. Two images are divided into two
bands of fours regions. The matching is done on each band sepa-
rately. Let denote xi, yi with i = 1, . . . , 4 are the local histograms
of regions in the first bands of the two images. The final edit script
(or strings alignment) and the corresponding distance which is the
minimum all possible edit scripts are shown on the figure. The SMD
distance between two first strings of two images are computed as
SMD = cdel(x1

)+csub(x2

, y
1

)+csub(x3

, y
2

)+cdel(y3)+csub(x4

, y
4

) =
1.15 + 1.65 + 1.54 + 0.19 + 1.85. In parallel, the Pairwise Match-
ing Distance (PMD) which uses rigid matching between local re-
gion, is computed as total distance between x

1

and y
1

, . . . ,x
4

with
y
4

. In other words, it is the total substitution cost between them.
PMD = csub(x1

, y
1

) + csub(x2

, y
2

) + csub(x3

, y
3

) + csub(x4

, y
4

) = 7.01. 45
3.7 Examples from 15 scene dataset. 49
3.8 Examples from Pascal 2007 dataset. 49
3.9 Examples of Corel10 dataset [Lu and Ip, 2009]. 50
3.10 Classification accuracy (%) obtained by SMD distance with di↵erent

choices of the ground distance (i.e. l
1

, l
2

,�
2

) on 15 Scene dataset.
The number of regions N is varied from 1 to 16. Number of bands
and codebook size are fixed to B = 1 and K = 100. 52

LIST OF FIGURES viii

3.11 Classification accuracy (%) obtained by SMD distance on 15 Scene
and Caltech 101 datasets using vertical scanning direction (solid
lines) and horizontal scanning direction (dash lines). The number
of bands B is varied in 1,2 or 4. The codebook size K is fixed to
100 words. 53

3.12 Classification accuracy (%) obtained by SMD with variations of
number of bands B and with pyramidal strategy. The codebook
size is K = 100 for both datasets. 53

3.13 Classification accuracy (%) obtained by SMD distance on 15 Scene
and Caltech 101 datasets using di↵erent vocabulary sizes (i.e. 100,
200, 400). The number of bands B is fixed B = 1 for 15 Scene and
B = 4 for Caltech 101. 55

3.14 Influence of weighting parameter on classification performance of
SMD. We fix B = 1 and N = 16 for 15 Scene dataset and B = 4
and N = 10 for Caltech 101. The codebook size is fixed to K = 100
for both two datasets. 56

3.15 Comparing the classification performance of SMD (solid line) ver-
sus PMD (dash line) with di↵erent values of B. The codebook size
is fixed K = 100 for two datasets. 56

4.1 Example about SMD-matching and merge region based matching. . 64
4.2 Example about using merge operation with normalization. 68
4.3 Example about using merge operation in computation of the distance. 69
4.4 An example shows the greedy method is not optimal/true edit dis-

tance, since it does not produce a minimum edit script to convert
one string to the another string. 73

4.5 The matching scenarios: After matching two symbols or sequence
of symbols (blue parts), we have to recompute the distance for two
sub-strings (red parts). 76

4.6 Implementation times (s) to compute 1000 SMD or greedy m-SMD
distances versus square of Number of regions. The images are taken
from 15 Scene dataset. Here, B = 1, K = 100. 81

4.7 Implementation times (s) to compute 1000 recursive m-SMD dis-
tances versus the power four of the number of regions. Images are
taken from the 15 Scene dataset. Here, B = 1, K = 100. 82

4.8 Implementation times (s) to compute 1000 SMD, greedy m-SMD or
recursive m-SMD distances versus the number of regions. 82

List of Tables

3.1 Example of edit cost matrix C. ⌃ = (a, b), � is Null histogram. . . . 39
3.2 Example of computation the distance matrix D between two text

strings Saturday and Sunday. 40
3.3 Example of computation of SMD between two strings aab and abb.

The first table is the distance matrix D which is computed by dy-
namic programming. Each value of D,D

(i,j) is minimum edit cost to
convert sub string X (i) into Y(j). The second table is edit scripts
matrix, which has same size as D. It is used to point out which
previous edit operation has been applied to obtain the value of the
corresponding cell in D. We use the notation: for a Deletion on
string Y , " for a Deletion on string X and - for a Substitution. . . 43

3.4 Classification accuracy on the 15 Scene dataset using di↵erent ap-
proaches and coding methods. Results of SMD are obtained with
codebook size K = 100, pyramid scheme L = 2, N = 16 and edit
operation weight w = 0.8 for both hard coding and sparse coding.
For other methods, the results are obtained with the codebook size
given in brackets. 57

3.5 Classification accuracy on Caltech 101 dataset using di↵erent ap-
proaches and coding methods. The result of SMD are obtained with
codebook size K = 100, pyramid scheme L = 2, N = 13 and edit
operation weight w = 0.8 for both hard coding and sparse coding.
For other methods, the results are obtained with the codebook size
(if available) given in bracket. 59

3.6 The comparison about classification performance (Average of equal
error rate) of our proposed with SPR and SPR+co-occurence on
Graz-01 dataset. All methods use hard coding 59

3.7 Classification accuracy on Corel10 dataset using di↵erent approaches
and coding methods. The result of SMD are obtained with hard-
coding, codebook size K = 100, B = 1, N = 9 and weight w = 0.8.
. 60

3.8 Image classification results (AP) on Pascal 2007 dataset. The code-
book size is fixed to K = 100 for all approaches. The results of
SMD is obtained with N = 16; pyramid with L = 2 and w = 0.8. . . 61

4.1 The computation of m-SMD using dynamic programming as de-
scribed in Algorithm 2. 70

ix

LIST OF TABLES x

4.2 Classification accuracy for the 15 Scene dataset using di↵erent ap-
proaches and coding methods. The results of SMD, greedy m-SMD,
recursive m-SMD are obtained with N = 16, B = 1 for single level,
L=2 for pyramid, K=100 and w=0.8 78

4.3 Classification accuracy for Caltech 101 dataset using di↵erent ap-
proaches and coding methods. The results of SMD, greedy m-SMD,
recursive m-SMD are obtained with N = 13; B = 4 for single level;
L=2 for pyramid, K=100 and w=0.8 79

4.4 Image classification results (AP) on Pascal 2007 dataset using dif-
ferent frameworks. The codebook size is fixed to K = 100 for all
approaches. The results of SMD, greedy m-SMD, recursive m-SMD
are obtained with N = 16; pyramid with L = 2 and w = 0.8. 80

Chapter 1

Introduction

1.1 Background and Objectives

We are living in a digital era, where data are saved, accessed and shared e�ciently

on digital format. Particularly, digital images are more and more present in our

daily life since image capture devices have become more cheaper and popular,

image sharing sites o↵er almost unlimited storage and finally high speed internet

access enables to manipulate and exchange images easily. An obvious consequence

is the exponential growth of the number of images along with an increase of the

number of databases and the number of categories within those databases. The

tasks of classifying, organizing and accessing these huge image databases become

very challenging.

Initially, some proposed solutions to solve these tasks were based on the use of

text meta data. However, using text captions, tags or descriptions available with

images is not always a good option because this information is not always avail-

able, not always relevant, or can strongly depends on a personal point of view. Of

course, manual indexing of images is just not possible, especially in case of very

huge databases.

Following the old saying a picture is worth a thousand words , a new trend is

to use directly the image visual content with the help of computer vision tech-

niques. It seems to be a feasible solution, although several factors make this task

very challenging. These factors include as scale, viewpoint, illumination changes,

occlusion, background clutter, deformation (Figure 1.1), but also inter-class vari-

ations (Figure 1.2) or intra-class variations (Figure 1.3).

1

Chapter 1 Introduction 2

(a). Horses are captured at di↵erent scales and poses.

(b). Light conditions change. (c). Deformation

(d). Occlusion (e). Background clutter

Figure 1.1: Examples of images containing instances of the same object class
(horses) that look very di↵erent because of di↵erent factors. Visual content
based recognition/classification approaches need to be very robust to these vari-

ations.

Lobster Crayfish Ibis Flamingo

Figure 1.2: Examples of inter-class variations: images containing instances of
di↵erent object class (lobster and crayfish, ibis and flamingo) can be incorrectly

classified because of their very similar shape or color

Chapter 1 Introduction 3

Figure 1.3: Examples of intra-class variations: the chairs are in various shapes
and colors. It is not easy for a machine to learn and classify them.

Since the 2000s, thousands of publications have focused on finding a good solution

for visual content classification and retrieval. One of the most successful approach

is the Bag of visual Words (BoW) representation [Sivic and Zisserman, 2003;

Csurka et al., 2004]. The idea of this method is to use a set of image local features,

to quantize them and finally present an image as a histogram of its quantized

local features. The strengths of the method are its simplicity, its computational

e�ciency and its invariance to a�ne transformations, as well as occlusion and

lighting variations. This representation led to many state of the art results in

di↵erent vision tasks, especially in object and scene classification.

One of the main drawbacks of the Bag of Word approach is that it does not use

any spatial information. An image is represented as a occurrence histogram of its

visual words regardless of their position. Thus, two images having the same visual

words but located at di↵erent positions will be considered as similar whereas their

visual content may be totally di↵erent.

To overcome this problem, spatial matching based approaches such as [Lazebnik

et al., 2006; Cao et al., 2010; Li et al., 2011] have successfully incorporated some

spatial information into the matching scheme. The idea of such approaches is

to divide images into sub-regions and to compute a region to region matching

between local sets of features. Each sub-image is described by a local BoW and

the matching is done between the corresponding local BoWs.

Local Bag of Word approaches have also some drawbacks. Firstly, the image

decomposition scheme must be predefined and applied identically on all images,

without taking into account their visual content. Although the rigid partitioning

Chapter 1 Introduction 4

of an image into rectangular blocks preserves certain spatial information, it often

breaks objects into several blocks or puts several parts of di↵erent objects into a

single block. Thus, visual information about objects, which could be useful for

image categorization, may be destroyed by this rigid partitioning.

Moreover, when comparing two images, the region by region matching is sensitive

to spatial translation of objects. Indeed, in the case of two images depicting the

same object but at di↵erent positions, the matching could fail while the content

is similar.

In addition, several works of [Smith and Li, 1999; Li et al., 2000; Gokalp and Aksoy,

2007] have shown that regions relationships can considerably improve classification

performance.

Motivated by those results, we consider the problem of improving the standard

local Bag of Word model. Our objective is to create a new image representation

and a new matching strategy which takes regions relationship into account.

1.2 Contributions

The main contribution is to improve the matching scheme in local BoW approaches

by incorporating neighboring information between regions. For that purpose, we

propose to represent images as sets of strings of local BoW and to use string

matching tools to compare them.

In this dissertation, we first investigate limitations of rigid Local Bag of Word

matching and advantages of using strings to capture the order of regions inside an

image. From this analysis, we propose to represent an image as a set of strings of

histograms. We carefully analyze several string-based approaches and introduce a

pyramidal strategy to get an improved representation.

Second, we introduce an approximate String Matching Distance (SMD), specif-

ically adapted to our strings of histograms in the context of image comparison.

After reviewing several string comparison approaches as Levenshtein edit-distance

[Levenshtein, 1966], sequence matching [Yeh and Cheng, 2008], video matching

[Ballan et al., 2010], we propose a new definition of edit operation costs more

suitable for string of histograms representing images. The new distance can be

computed e�ciently by Dynamic Programming. Its performance is evaluated on

classification tasks and compared to the standard method and several related

Chapter 1 Introduction 5

methods. The new method outperforms other methods thanks to its ability to

detect and ignore identical successive regions inside images.

Motived by the very promising performance of SMD, we then propose to extend

it by introducing a new edit operation called merging, which allows to combine

successive symbols to create a new one. In this approach, the number of sub-

regions i.e. the grid divisions may vary according to the visual content. More

precisely, although we first use a fix grid to decompose the image into regions, this

grid is automatically modified during the string matching phase since successive

regions from both strings can be merged together. The new distance then brings

more flexibility and precision to the matching process.

In addition, we describe two algorithms to compute this merge-based distance. The

first one is a greedy approach which can be computed e�ciently by Dynamic Pro-

graming but can produce a non optimal edit script. To get the optimal matching,

we propose a recursive approach. However, this new algorithm has an exponential

complexity which is not suitable for practical purpose. We then present a new

optimal recursive version which requires only a 4th degree polynomial complexity.

All the proposed distances are evaluated on several datasets and are shown to

outperform comparable existing methods. It confirms the advantage of our idea

of using merge operation in string-based edit distance for image comparison.

1.3 Thesis outline

The dissertation is organized as follows:

Chapter 2 reviews important works related to the thesis. First, we discuss about

the image representation and advantages of using local based representations.

Then, we present in details the Bag of Word framework. The main limitation of

the BoW, which is that it ignores spatial information of local features, is pointed

out. We pay special attention on Spatial Pyramid Representation (SPR) and its

alternative representations which successfully incorporate spatial information into

the BoW. Then, SPR drawbacks about spatial matching are discussed.

Chapter 3 introduces the new image representation as strings of region his-

tograms. In parallel, we present the approximate String Matching Distance to

Chapter 1 Introduction 6

compare such string-based representations. Then, we explain carefully the com-

putation algorithm based on dynamic programming. The new approach is vali-

dated on several well-known datasets, in order to study the impact of image string

parameters and demonstrate advantages of the proposed distance.

Chapter 4 discusses about a new merge-based String Matching Distance. It is

an edit distance which supports merge-operation allowing to group similar regions

into a new one. To compute this distance, we describe two di↵erent algorithms.

We compare all versions of String Matching Distance in terms of classification

performance and in execution time. Then, we discuss about the pros and cons of

each approach.

Chapter 5 summarizes the main ideas and suggests several directions of future

work.

Chapter 2

Related Work

Abstract:

This chapter reviews relevant background knowledge and related works in the lit-

erature. The image classification problem is first discussed in section 2.1. Then,

the next section 2.2 studies the image representation and gives details about the

Bag of Word model in section 2.3. The Spatial Pyramid Representation and its

alternative extensions are presented in section 2.4. Section 2.5 reviews approaches

proposed for computing similarity between such representations and recalls notably

the definition of several metrics for image classification. Section 2.7 sums up the

chapter.

2.1 Introduction

Assuming we have a collection of already categorized images (training set) and a

set of unknown ones (test set), the objective of content-based image classification

is to assign unknown images to one or more semantic categories based on their

content. Since we have no information about a given unknown image, the simplest

way is to compare it to images from the training set and then assign it the label

of the closest-one. This is the 1-nearest neighbor approach. In a more accurate

way, we can use some learning approaches (e.g SVM). The distances between

images are used as input of a learning classifier and the final class model is used to

categorize unknown images. However, even with the help of a very strong machine

learning technique such as a SVM classifier, image classification is still a very

challenging problem as described in Chapter 1 since we need to consider various

7

Chapter 2 Related Work 8

image transformations, viewpoints, scales and also inter/intra class diversity. The

question is: How to compare two images e�ciently and correctly based on their

contents? To answer this question, there are two points to tackle: first, the image

representation, i.e. how to encode an image content into a robust and compact

form; second, the image matching, i.e. how to compare two images with such image

representation. In this chapter, we review relative issues on these questions.

2.2 Image representation

The purpose of image representation is to convert an image content into a com-

pact and comparable form. A good image representation approach should encode

all the related information about the visual content of the image. What infor-

mation in the image is considered relevant depends on the task and dataset. For

instance, to classify two scene images, color and texture are two visible features

which can be used; but for two object images, shape information may be more

suitable. Furthermore, depending on the information used, the image can be rep-

resented globally (using the whole image information, e.g color histogram...) or

locally (using set of image regions). Each representation type has advantages and

limitations.

The first image representations were global such as color histogram [Swain and

Ballard, 1991], combination of color and shape [Jain and Vailaya, 1996], texture

[Manjunath and Ma, 1996]. The advantages of global representations are that

they are compact, fast to compute and invariant to layout of image parts [Krapac,

2011]. However, since they are constructed from all image pixels, any variation

in the image content may probably a↵ect the final image representation. This

makes it di�cult to obtain invariance to transformations, light changes or noise.

When object are involved, as in object detection and recognition tasks, global

representations are not robust to background cluster, occlusions and deformations.

Therefore, global representations are used most of the time for scene classification

purpose like indoor/outdoor or landscape/city classification. These approaches

have more di�culties to handle a large number of classes.

To overcome the limitations of global image representations, the image is repre-

sented in a discriminative way, by a collection of local features. The successful

development of local feature detectors and descriptors has had a tremendous im-

pact on research in object recognition and image classification. Those features

have made possible to develop robust and e�cient recognition approaches that can

Chapter 2 Related Work 9

operate under a wide variety of viewing conditions and under partial occlusions

[Grauman and Leibe, 2011]. The most well known local features based represen-

tation is the Bag of Word model. More details about this model will be discussed

below.

2.3 The Bag of Word representation

The Bag of Word representation is one of the most famous techniques in computer

vision. The method was first applied in the text domain [Harris, 1954]. For

text document classification task, a document is represented as a set of single

words. This representation is done without taking into account the grammar and

even the word’s order. Fundamentally, the document is categorized by using only

information of the words’s appearance and their frequency.

The Bag of Word model was further adapted to computer vision applications by

treating each image as a document of visual words. The principle key of the model

is the use of local features to generate the image visual words. In recent years,

the approach has drawn a lot of researchers’s attention due to its e↵ective perfor-

mance, computational e�ciency, and simplicity. There is an increasing number of

publications using the Bag of Word model everyday. This confirms that the Bag

of Word representation is the most successful and suitable approach for object and

scene classification.

The Bag of Word approach contains several steps. Figure 2.1 summaries its frame-

work. According to the figure, the approach can be divided into four main steps:

• Local feature detection: Extracting interesting regions or points from image.

• Local feature description: Computing descriptors over these regions/points.

• Coding: Representing the distribution of local descriptors in a compact way.

This step is usually based on vector quantization and consists in two phases:

(i) Building a visual vocabulary from a random set of feature descriptors, (ii)

Assigning the descriptors to the di↵erent visual words using a soft or hard

strategy.

• Pooling: Constructing the final vector by either sum or max pooling.

C
h
ap

ter
2
R
elated

W
ork

10

Figure 2.1: The Bag of Word image representation baseline: First, local features are extracted from the image either by interest
point detector or dense sampling detector. These local features are then encoded as descriptors (e.g SIFT). At the coding step: first,
a clustering approach such as k-means is applied on a random subset of descriptors taking from all images to generate the visual
vocabulary. Then, each descriptor is allocated to one (hard strategy) or a set of visual words (soft strategy). Finally, a vector histogram

is computed at pooling step

Chapter 2 Related Work 11

At each step, many alternative improvements on the standard Bag of Word have

been proposed. In following next subsections, we will review them in detail.

2.3.1 Feature detection

The goal of feature detection is to identify some parts of an image that are inter-

esting for a given application. These parts are called local features and correspond

to specific structures in the image itself, ranging from simple structures such as

points or edges to more complex structures such as objects. They are interest-

ing because they can capture information about local neighborhood of interest

points in an image and allow to cope with large changes in illumination condition

and with image transformations, such as translation, rotation, scaling, and a�ne

deformation [Tuytelaars and Mikolajczyk, 2008]. For that reason, a set of local

features are usually used as a robust image representation or to compare two or

more images. Generally, local features can be detected and extracted from the

image by using feature detector. In the literature, we can separate two kinds of

feature detectors: (i) Interest point detector and (ii) Dense sampling detector.

Figure 2.2 illustrates two kinds of detector on a sunflower image.

Figure 2.2: Example about interest point detector (LoG detector) and dense
sampling detector

Interest point detector

Interest point detectors focus on interesting locations in images which can be

points, corners, edges, blobs and regions. The earliest interest point detectors

are Harris detector [Harris and Stephens, 1988] and Hessian detector [Lindeberg,

Chapter 2 Related Work 12

1998]. While Harris detector tries to detect corner-like structures, the Hessian

detector intends to detect blobs or regions with strong texture variation. [Lin-

deberg, 1998] introduced the Laplacian of Gaussian LoG detector - a blob-like

features detector which can cope with di↵erent scale invariant regions. [Lowe,

1999] had approximate Laplacian function by a derivation Gaussian function and

proposed Di↵erence of Gaussian (DoG) detector whose performance is same as

LoG. In the work of [Schmid et al., 2000], the authors noticed that although those

two Harris and Hessian detectors are very robust to image rotations, illuminations

changes and noise, they can not cope with scale variations. Then in their later

work [Mikolajczyk and Schmid, 2004], they proposed to combine the Laplacian of

Gaussian detector with Harris and Hessian detectors and created Harris-Laplace

detector and Hessian-Laplace detector which are scale invariant region detectors.

Moreover, they extended those two detectors to yield a�ne invariant properties

(Harris-A�ne, Hessian-A�ne) [Mikolajczyk et al., 2005]. Those detectors can

detect the features under large viewpoint changes.

All previous detectors have been used in many computer vision applications spe-

cially in image matching and retrieval. More details about experimentation and

comparison of those feature detectors can be found in [Mikolajczyk et al., 2005;

Tuytelaars and Mikolajczyk, 2008].

Dense sampling detector

While an interest point detector considers only special locations in an image, the

dense sampling detector, on the other hand, extracts local features at every point

on a regular grid. It allows to detect features on contours, corners as well as in

uniform regions. The dense sampling detector is believed to be well adapted for a

classification task where the image background contains important information.

The most disadvantage of dense sampling approach is that it uses a fix image

patch size which causes the inaccuracy of sampling scales and locations. In order

to reduce impacts of these problems, multi scales dense sampling and overlapping

between image patches are frequently applied. Consequently, having more image

patches means paying more computational cost for following steps. Nevertheless,

due to the computational constraint, it is suggested to use a small random selection

of image patches [Nowak et al., 2006]. Recently, [Tuytelaars, 2010] proposed Dense

Interest point, a hybrid technique and showed that the new detector improves both

performance and computation.

Chapter 2 Related Work 13

2.3.2 Feature description

Once a set of local features has been detected from an image, some encoding

algorithms are applied on these local image regions to convert them into local

descriptors. The purpose of this step is to make local features robust against scale

changes, a�ne transformations and partially invariant to illumination variations.

This means, the descriptors of two local features with the same visual content

should be identical even if they appear under di↵erent viewpoints and scales.

Several feature descriptions have been invented such as SIFT [Lowe, 2004], SURF

[Bay et al., 2006], HOG [Dalal and Triggs, 2005])... Among them, the SIFT

descriptor is the most widely used one in computer vision, and the one we use in

the following.

SIFT

Basically, the SIFT (Scale Invariant Feature Transform) descriptor is a spatial

orientation histogram of the image gradient. In the original formulation proposed

by Lowe [Lowe, 2004], the SIFT descriptor is a combination of DoG based detector

and its corresponding features encoder (based on orientation normalization). In

fact, the study of [Mikolajczyk et al., 2005] has confirmed that the SIFT descriptor

can work with any kind of interest point detectors and also dense sampling method.

In recent publications [Lazebnik et al., 2006; Yang et al., 2009; Wang et al., 2010;

Boureau et al., 2011], the dense-SIFT approach has been showed to better perform

on object and scene classification.

To compute the SIFT descriptor, first a grid 4 ⇥ 4 is applied around an interest

point (e.g. one image patch). Each window is divided again into 4 ⇥ 4 cells and

the gradient of magnitude and gradient of orientation are computed in each cell.

A histogram of 8-bin gradient orientation is computed which leads to 4 ⇥ 4 ⇥ 8

or 128 dimensions. By using the intensity gradient (magnitude and orientation)

in the computation, the SIFT descriptor becomes invariant to image rotation and

illumination change.

Extensions of SIFT

Several extensions of SIFT have been introduced in literature. The PCA-SIFT

[Ke and Sukthankar, 2004] applied Principal Component Analysis (PCA) to re-

duce the dimension of normalized local gradient maps, thus, made new descriptor

both faster and more distinctive than the regular SIFT descriptor. GLOH [Miko-

lajczyk and Schmid, 2005] extended SIFT by using a log-polar grid as opposed to

Chapter 2 Related Work 14

Figure 2.3: Computation of SIFT descriptor: At each interesting region of
image, image gradient is computed for 4 ⇥ 4 grid. Then at each cell, the his-
togram of magnitude and orientation of gradient are used to obtain final key

point descriptor. Image from [Marszalek, 2008]

a rectangular 4 ⇥ 4 grid and 16-bin orientation against 8-bin. The PCA method

is then used to reduce the dimension of the descriptor. From their experimental

results, the authors showed that the new descriptor, GLOH, well performed with

structured scenes. The SURF descriptor (Speeded Up Robust Features) proposed

by [Bay et al., 2006] is not an extended version of SIFT but is very closely related

to SIFT descriptor. It uses an integer approximation to the determinant of Hes-

sian blob detector instead of the Laplacian operator, and Haar wavelets instead of

Di↵erent of Gaussian in an image pyramid.

2.3.3 Coding

Visual codebooks are proposed to represent an image in a compact way. The idea

of a visual codebook is motivated by using a dictionary to represent the document

in text categorization. But unlike the text domain, where the codebook is already

given, in the computer vision system, the vocabulary is not yet available and

need to be created from training data. Once the dictionary is created, each local

descriptor is assigned to visual words and each image is represented as a Bag of

visual Word (BoW). This process is called coding. It is an important step which

has strong e↵ect on classification performance.

We detail its two phases: Codebook generation and Codeword assignment.

Codebook generation:

At this phase, a large set of image descriptors is randomly selected from all training

images. A clustering method is applied on this set in order to group similar

image descriptors into a same cluster. Many clustering methods have been used

Chapter 2 Related Work 15

to construct a visual codebook such as K-means [Csurka et al., 2004; Sivic and

Zisserman, 2003], Gaussian Mixture Models (GMM) [Dorkó and Schmid, 2005], on-

line clustering with mean-shift [Jurie and Triggs, 2005], and hierarchical clustering

[Nister and Stewenius, 2006]. Once the clustering is done, each center of cluster

becomes a codeword.

All approaches mentioned above are un-supervised learning techniques. Their

advantages are simplicity, lower risk of overfitting and computational e�ciency.

Nonetheless, the visual dictionary can be generated by supervised learning ap-

proaches [Moosmann et al., 2006; Perronnin, 2008; Lazebnik and Raginsky, 2009].

These approaches employ the class labels during the construction of codewords.

They usually generate a more discriminative codebook which adapts to real-world

applications. However, in the other hand, these approaches introduce more com-

plexity. Typically, in the basic Bag of Word pipeline, authors prefer to use un-

supervised approaches, like the K-means clustering method.

One more thing to discuss in the codebook generation phase is the codebook size or

the number of clusters. This number defines the diversity of the visual dictionary

and consequently the quality of our image representation. If it is too small, it is

highly probable that quite di↵erent descriptors belong to the same cluster making

the image representation less specific. In contrast, if the codebook size is too

big, we can obtain a more precise representation. However, if this size grows too

much, the overfitting phenomenon might occur and similar image patches might

be described by di↵erent codewords. Typically, the codebook size is selected as

the best one after several tests.

Codeword assignment:

Let denote B = (b
1

, b
2

, ..., bK) as the codebook obtained after the previous code-

book generation step. bi denotes its i-th visual codeword and K is the vocabulary

size. In the codeword assignment phase, each feature descriptor x is assigned to

one or several visual words. There are several assignment methods used in the

literature.

Hard Assignment Coding or Hard Coding or Vector quantization: is the easiest way

to assign codewords to local descriptors. Each local descriptor is assigned only one

visual word which is the closest nearest neighbor in the feature space. Normally,

the Euclidean distance is used to compute distances between the descriptor and

the centers of the cluster. Let ↵ be the coding coe�cient vector of x with ↵i being

Chapter 2 Related Work 16

the coe�cient with respect to visual word bi. Each coe�cient ↵i is computed as:

↵i =

8
<

:
1 if i = argmin kx� bik2
0 otherwise

In spite of its simplicity, hard assignment approach su↵ers from large quantization

errors.

Soft Assignment Coding: The biggest problem of hard assignment coding is the

use of only one visual word to code each descriptor, ignoring the relevance of

other candidates. This problem can be solved using Soft Assignment Coding [van

Gemert et al., 2010]. The main idea of soft assignment is that each local descriptor

is described by all codewords with corresponding weights. The weight are the cod-

ing coe�cients and are computed as a Gaussian function of the distance between

the descriptor and the visual codebook:

↵i =
exp(��kx� bik2)PK
i=1

exp(��kx� bik2)

Lately, [Liu et al., 2011] noticed that assigning a local descriptor to all visual words

is non-reasonable (even if coding coe�cients of non relevant candidates are small).

As a consequence, this soft coding scheme degrades the classification performance.

The authors proposed a Semi-Soft Assignment Coding which each local feature is

presented by only its top k nearest cluster centers in the feature space.

Sparse Coding: The sparse coding method also intends to improve hard coding by

using more than one visual words to represent a local descriptor. The main idea

of sparse coding is to find the codebook from which a training set of descriptors

can be represented as a linear combination having the lowest number of non-zeros

coe�cients. In other words, this sparse coding tries to minimize the number of

visual words assigned to each feature.

[Yang et al., 2009] are the first authors to propose this sparsity constraint in the

BoW framework. The sparse vector ↵ coding a given descriptor x according to

codebook B is determined using the constrain:

↵i = argmin kx�B↵k
2

+ �k↵k
1

where the sparsity regularization term k↵k
1

is selected as the l
1

norm. Here, the

codebook B can be obtained by k-means, or for better performance, trained by

Chapter 2 Related Work 17

minimizing the average of kx�B↵k over all samples [Boureau et al., 2011]. The

main drawback of sparse coding is that two similar features can be encoded by

two very di↵erent coe�cients.

Locality constrained Linear Coding (LLC): introduced by [Wang et al., 2010], is

an adaptation of sparse coding with locality constraints. Instead of using sparsity

constraint (which tries to represent an input vector x using as least non-zeros

basic vectors as possible), LLC approach employs a locality constraint (the features

located nearby should be represented by the same basic vectors):

↵i = argmin kxi �B↵k
2

+ �kd.↵k
1

where d = (d
1

, d
2

, ..., dK) is a penalty weight. Each element di is computed as

a function of the distance between the local feature x and centre of clusters (i.e.

visual codewords) in the feature space: di = exp(kx�bik
�

)

In addition, the authors also introduced a fast approximated LLC using only the

top k nearest codewords of x in the feature space in order to reduces computation

time such that the approach can be compatible with real applications. Because

of the locality constraint, LLC can capture the correlations between similar de-

scriptors. It means that similar image patches, whose descriptors are closed in the

feature space, will be represented by similar coding coe�cients.

2.3.4 Pooling

After the coding step is the pooling step which aims to convert a set of visual

words of an image into a single vector. The illustration of the pooling step is

shown on Figure 2.1. The earliest pooling approach is sum pooling [Sivic and

Zisserman, 2003; Csurka et al., 2004] where we count the number of occurrences

of visual words in the image. In this case, an image is represented as a histogram

of codewords. If we normalize this histogram to the total number of visual words

in the image, sum pooling becomes average pooling.

Lately, [Yang et al., 2009] introduced max pooling with sparse coding. The fi-

nal vector is computed as the maximum value of each dimension over the set of

coding vectors. The max pooling method has been showed well suited to other

sparse-based representations, e.g semi-Soft assignment, LLC... and regularly used

together with a linear classifier to get better performances.

Chapter 2 Related Work 18

2.3.5 Discussion

The Bag of Word model is the state of the art approach for image classification be-

cause of its simplicity and robustness. With this representation, we can e�ciently

and easily apply a classification technique like Nearest Neighbors, SVM, random

forest, etc...to classify an image. The Bag of Word model has been improved in

several ways by enhancing each of its steps. For instance, in the coding step, a

lot of approaches have been proposed to create an e�cient vocabulary. In the

assignment step vector quantization has been replaced by Soft assignment and

recently by Sparse Coding or LLC coding. Single image features (e.g texture) have

been replaced by multiple features (color, texture, shape) [Gehler and Nowozin,

2009].

Another research direction investigated in recent years is to overcome its orderless

limitation. Indeed, the main drawback of the Bag of Word model is that it ignores

the spatial layout of local features. Such spatial information is thought to play

a vital role in modeling object categories. In this context, the Spatial Pyramid

Representation [Lazebnik et al., 2006] is probably the most notable work.

2.4 Spatial Pyramid Representation

2.4.1 Principle

The basic assumption of Spatial Pyramid Representation (SPR) is that certain

features tend to appear in certain spatial areas in images belonging to the same

class. Therefore, the authors suggest to use a regular grid to locate image layout.

Consequently, if two images are similar, it is highly probable to find the same

local features at the same locations. A histogram of visual words is computed for

each image sub-region at each resolution level. The spatial pyramid representation

is a collection of local Bag of Word computed over cells defined by a multi-level

recursive image decomposition. The authors used the number of matches over

di↵erent image resolutions as a measure to compare two images. This idea is

an extension of Pyramid Matching kernel [Grauman and Darrell, 2005], where

the histogram intersection kernel is computed between two corresponding regions

to count the number of matches. With a penalty weight, the matching at finer

level of resolution has more e↵ect compared with the matching at coarser level.

The higher the total number of matches the more similar the distribution of local

Chapter 2 Related Work 19

(a) Tiling image into regions

(b) Computing local histogram for each region

(c) Concatenating all local histograms into single one

Figure 2.4: A toy example about Spatial Pyramid Representation proposed
by [Lazebnik et al., 2006]: First, the image is divided into multiple regions
at multiple scales, e.g. 1⇥ 1, 2⇥ 2, 4⇥ 4 regions. The local histogram is cal-
culated at each cell and at each resolution. Finally, all local histograms are
multiplied with corresponding weights for each level before concatenating into

single histogram-the final image representation.

features is. For that reason, in case of objects and scenes which are well aligned

in their images, the SPR is a good choice. The approach has several advantages:

• The image is partitioned into regions according to a predefined grid and thus

no segmentation is required.

• Information about the location of local features is e�ciently used in the

pyramid matching step.

• Thanks to the weighting scheme a finer level have a higher weight. Indeed

the matching computed at coarser level still contains the matching at a finer

level.

Figure 2.4 illustrates in detail the implementation of SPR approach.

Chapter 2 Related Work 20

2.4.2 Extensions of SPR

By successfully incorporating spatial information into the Bag of Word model, the

SPR achieved a significantly better performance over BoW and became the state

of the art. Despite previous successes, the Spatial Pyramid Representation still

has several limitations which come from the partitioning, the weighting scheme

and the features matching.

Recently, several alternative approaches trying to improve the Spatial Pyramid

Representation were proposed.

Figure 2.5: Spatial Bag of Features (SBoF) approach of [Cao et al., 2010].
The authors try to partition an image either with a predefined direction to deal

with translation or into multiple circular sections to cope with rotation.

Figure 2.6: Pyramid rings approach of [Li et al., 2011]. The authors suggest
to use a set of rings whose centers are the center of the image to locate the

image layout.

Figure 2.7: Learning adaptive partition grid of [Sharma et al., 2011] which for
each image class, tries to find the optimal way to split the images recursively

[Marszaek and Schmid, 2006] noticed that, SPR uses three layers of grids 1⇥1, 2⇥2,
4 ⇥ 4 which makes the total length of the final concatenated histogram 21 times

Chapter 2 Related Work 21

Figure 2.8: Randomized partition of [Jiang et al., 2012] where the image is
divided randomly in many possible spatial partitions.

longer than the original Bag of Word. It is not convenient when increasing the

number of training images or with a large dataset. The authors also remarked that

in the general case, the visual image content has vertical distribution. Therefore,

they suggested to use a 3⇥ 1 grid to replace a 4⇥ 4 one in order to reduce the

final vector dimension while still capturing the visual information of the image

plane.

[Cao et al., 2010] noted that the uniform partitioning is not invariant to scale,

translation and rotation. Thus, they introduced a new framework, called Spatial

Bag of Features (SBoF) (Figure 2.5) which either partitions the image recursively

with a predefined direction or divides an image into multiple circular sections

to cope with rotation problem. The drawback of this method is that it heavily

depends on the choice of direction plane and centre location. Using all possible

lines angle and center locations leads to an extremely high dimensional histogram

representation for an image, which causes high computational cost. Motivated by

this, [Li et al., 2011] suggested to replace the grid partitioning and circular sectors

by a set of rings whose centers are the center of the image (see Figure 2.6). The

approach is then less complicated compared with SBoF.

[Sharma et al., 2011] noticed that using an unique and uniform partition grid

for all classes clearly reduces the classification performance. They proposed to

learn the partition grid which adapts to di↵erent classes to obtain optimal way to

split images so we can obtain a higher classification performance. They fixed the

number of tilling then divided images recursively in each direction. For example in

Figure 2.7, first, it tries to find the best way to divide the image into two regions.

Then, from this two-regions grid, it finds the best ways to divide the image into 3

regions, and so on. For each image class, all patterns are tested to find the best,

the most suitable one which is used as a final spatial layout to partition images of

this class. However, it is not guarantee that the matching between local regions

as used in SPR is still working.

Chapter 2 Related Work 22

Recently, [Jiang et al., 2012] proposed Randomized Spatial Partition (RSP) to

characterize the image layout by randomizing partitions (Figure 2.8). The image

is divided randomly in many possible spatial partitions (either rotation) so that it

can discover the descriptive partition patterns that better represents the spatial

configuration of the category. Moreover, di↵erent from [Sharma et al., 2011] ap-

proach where one grid per class is used, the RSP-based method combines several

suitable partition patterns. This makes the image representation more robust as it

is less sensitive to the spatial quantization error. However, since they use a lot of

partition patterns per class to divide images (either rotation), the matching pro-

cess and image comparison in this method is not clear and very questionable. Also,

both methods have the main drawback that they are computationally expensive.

Although successful incorporating spatial information into BoW, those approaches

still use region to region matching. Two regions of two images are matched because

they are situated at the same location in image layout, not because they have the

same visual content. So, this matching scheme introduces a lot of mismatches

due to image transformations such that rotation, translation and scaling. We will

discuss more about spatial matching in the next section.

2.5 Image comparison

Once an image is represented as a Bag of Word or a set of Local Bag of Words,

the question that arises is how to compare two images.

Bag of Word matching:

While the image is represented as a vector of visual words, the matching between

two images can be computed directly as the ground distance between their two

histograms. The reason is, since we assign the visual words for the local features,

we already assumed that: the local features are represented by the same words

means they have same visual contents. Therefore, they can be matched. The

bin-to-bin distance is the easiest way to measure this match.

The formulas of several frequently used bin-to-bin ground distance can be found

bellow. Here, we keep the same notation in all formulas, where x = (x
1

, x
2

, ..., xn)

and y = (y
1

, y
2

, ..., yn) are two feature vectors in Rn space.

• l
1

or Manhattan distance

Chapter 2 Related Work 23

dl1 =
nX

i=1

|xi � yi|

• L
2

or Euclidean distance

dl2 =

vuut

nX

i=1

|xi � yi|2
!

=

nX

i=1

|xi � yi|2
!

1/2

• �
2

Distance

The distance is computed on normalized vectors. Let us note x̄ = xPn
i=1 xi

and ȳ = yPn
i=1 yi

the normalized vectors of x and y. The �
2

distance is:

d�2 =
1

2

Pn
i=1

(x̄i � ȳi)2

x̄i + ȳi

• Histogram Intersection Distance

dinter =
nX

i=1

min(xi, yi)

Recently, several authors proposed to use cross-bin distances, such as Earth Mover’s

Distance [Rubner et al., 2000] to compare such visual feature histograms. Apply-

ing EMD, the images similarity is computed as the amount of changes necessary

to transform one image feature into another.

• Earth Mover’s Distance

The idea of EMD is based on a solution to the well-known transportation

problem. Suppose that the suppliers P = {(p
1

, wp1), . . . , (pm, wpm)}, each
supplier pi having a given amount of goods wpi , are required to supply the

consumers Q = {(q
1

, wq1), . . . , (qn, wqn)}, each consumer qi having a given

limited capacity wqj . For each supplier-consumer pair, the cost of transport-

ing a single unit of goods is given by dij (d is called ground distance). The

transportation problem is then to find a least-expensive flow of goods F from

the suppliers to the consumers that satisfies the consumers’ demand. Be-

cause all customers can receive goods from all suppliers, the Earth Mover’s

Distance is a cross-bin distance. Let fij being the flows between pi and qj,

that minimizes the overall cost. The EMD is:

EMD(P,Q) = (
X

i,j

fijdij)/(
X

i,j

fij)

Chapter 2 Related Work 24

with some constraints: X

j

fij pi

X

i

fij qj

X

i,j

fij = min(
X

i

pi,
X

j

qj)

Set of local Bag of Words matching:

The Bag of Word matching procedure does not use any spatial information there-

fore it may introduce some bad-matches between local features of two images.

The reason is that local features corresponding to di↵erent semantic regions can

be assigned to the same codeword and be matched. For instance, the sky feature

and the sea feature can be described by the same visual word and are matched

but this match is wrong. Since the patches from di↵erent categories may have

di↵erent spatial distributions, such as the sky feature is usually on the upper part,

the sea feature is normally on the bottom of the images, it suggests to use location

information of image features to correct the matching process.

Spatial Pyramid Representation based approaches such as [Lazebnik et al., 2006;

Cao et al., 2010; Li et al., 2011] have successfully employed features location into

the matching scheme. The idea of those approaches are: two features of two

images are matched if they are located at same position in the image. When

considering SPR based representation, we have to deal with the computation of

distances between sets of local BoWs. Generally, the matching is done between

features at the same cell-location in the image. In other words, it is a cell to cell

matching. So although these methods performs better than BoW matching, they

are very sensitive to image deformations.

Structure matching:

An image is not only represented by its local BoW but also by the relations among

them. There is another direction which tries to model image as structured models

of regions like strings [Smith and Li, 1999; Yeh and Cheng, 2008; Lu and Ip, 2009;

Kim and Grauman, 2010; Hong-Thinh et al., 2014] or graph [Duchenne et al., 2011;

Wu et al., 2013]. The matching problem then becomes a string matching (or graph

matching) problem. For instance, in a string based representation, the image is

divided into regions and each region is represented as a symbol of a string. [Yeh

and Cheng, 2008] used a raster scanning to construct a 1-D string and used the edit

Chapter 2 Related Work 25

distance to compare two image strings. [Lu and Ip, 2009] represented each image

as 2-D string and proposed Spatial Mismatch Kernel to compare those strings. In

graph based approach, [Duchenne et al., 2011] described an image as a graph of

nodes and edges are image regions and their relationships. They formulated the

image graph matching as the optimization of an energy problem. Recently, [Wu

et al., 2013] presented a Spatial Graph which attempts to use region relationships

to improve the matching scheme. The advantage of these approaches is a flexible

matching. With string matching, the matching can be done at any position on

the string. Moreover, with the properties of edit distance, this matching scheme

can also take into account location information of regions/symbol in strings. The

graph matching can be seen as an extension of string matching. We will discuss

this type of matching for images in more details in the next chapter.

2.6 Image classification and kernels

2.6.1 SVM classification

With the development of digital technology, number of images and number of

classes increase significantly. As a consequence, using supervised learning tech-

niques has been a recent trend in image classification due to its better performance

compared to the K-NN approaches. The role of a supervised classifier is to learn

how to separate the known label images in feature space then reliably predict the

classes for unknown ones. A Support Vector Machine [Cortes and Vapnik, 1995]

is one of the successful supervised learning approach for visual classification. It

typically involves two steps. First, in the training step, a class model has to be

chosen which can well separate training images in the feature space. In this step,

all model parameters are tuned to minimize the error criterion using small subset

of training data. When the classifier model is available, it is ready to classify new

test images.

The classic classifier is the binary classifier as it works with only two classes (Figure

2.9) It is proposed to construct the maximized margin hyperplane separating the

training examples into their two classes. In general, the training examples that

are closest to the hyperplane are called support vectors. In case of linear classifier,

the function to predict the output is:

Chapter 2 Related Work 26

Figure 2.9: Example about binary SVM classifier which tries to find optimal
hyperplane with maximum margin to classify feature data.

Figure 2.10: Example about using a transfer function to map data into a
high-dimensional space where a linear classifier can be used.

f(x) =
nX

i=1

↵iyi < xi, x > +b (2.1)

where {xi, yi}n
1

are training samples with yi = {+1,�1} is the label of xi, ↵i are

non-zeros, b is bias and < ., . > denotes the dot product.

However, the data does not always have a linear distribution. In case of non linear,

a non-linear classifier can be obtained from a linear classifier by using a non-linear

map transform function into a high-dimensional space (see Figure 2.10). The

decision function will be:

f(x) =
nX

i=1

↵iyi < (xi), (x) > +b (2.2)

Furthermore, the above equation only needs to know the dot product< (xi), (x) >.

The explicit representation for is not involved. The expensive computation of

Chapter 2 Related Work 27

 (xi), (xj) and < (xi), (xj) > in the transformed space are reduced signifi-

cantly by defining a suitable kernel function k: k(xi, xj) =< (xi), (xj) >. It is

called the kernel trick [Aizerman et al., 1964].

2.6.2 Mercer’s theorem and kernel function

Mercer’s theorem: For a training set S = {xi}n
1

and a function k(u, v).

The kernel matrix (also called the Gram matrix) KS is the matrix dimension

|S|⇥ |S| where (KS)ij = k(xi, xj).

k(u, v) is a valid kernel if and only if the corresponding kernel matrix is Positive

Semi Definite for all training sets S:

nX

i=1

nX

j=1

K(xi, xj)cicj � 0

for all choices of real numbers c
1

. . . cn.

Using a valid kernel function k, the decision function is rewritten as:

f(x) =
nX

i=1

↵iyik(xi, x) > +b (2.3)

Some common valid kernels used for computer vision tasks are given below:

• Linear kernel:

k(x, y) =< x, y >

• �
2

kernel:

k(x, y) = 2
X

i

xiyi
xi + yi

• Intersection kernel:

k(x, y) =
X

i

min(xi, yi)

• Gaussian kernel: k(x,y) = exp(��kx� yk2), for � > 0.

• Edit kernel: ([Li and Jiang, 2005])

k(x,y) = exp(��Ded(x, y))

whereDed(x, y) is the edit distance between the two sequences x and y, � > 0

Chapter 2 Related Work 28

2.6.3 Multiclass SVM

Multiclass problems can be solved by dividing them into multiple binary clas-

sification problems. The common technique is to build binary classifiers which

distinguish between (i) one class against the rest (so called one vs all) and chooses

the class for which the corresponding classifier reports the highest confidence score;

or (ii) between every pair of classes (it refers to one vs one) and chooses the class

that is selected by most classifiers.

In the following, we will use the one vs all approach since it is reported as a simple

yet e↵ective approach in image processing.

2.7 Summary

In this chapter, we have reviewed the Bag of Word model and its main limitation

which is the lack of spatial information. We have payed attention on the Spatial

Pyramid Representation and its extensions which are very successful to incorpo-

rate spatial layout into the BoW. In spite of the fact that these methods have

become the state of the art due to their simplicity, several limitations have been

discused. Beside, we have also introduced the spatial matching problem for image

comparison. Three types of matching has been discussed: the BoW matching,

the local BoW matching and the matching using structured data such as string or

graph to represent image content. Those methods introduce a flexible matching

scheme, and for that reason our motivation in this thesis is to use a string model

to incorporate region relationships and approximate region matching. The string

edit distance is an e↵ective tool to compare two strings and particularly strings

representing image regions. Thus, in this dissertation we aim at combining ad-

vantages of using local BoW and string matching to improve image classification.

More details about our propositions will be explained in the next chapters.

Chapter 3

Approximate matching for image

classification

Abstract: The state of the art representation model for image classification is

based on the spatial pyramid representation (SPR). Its principle is to make a spatial

partition of the image at di↵erent scales and to represent each region as a local Bag

of Words (BoW). It assumes that images of the same class have a similar visual

content across the spatial partition providing a region by region matching between

images. However, this rigid matching is one of the main drawbacks of SPR which

prevents this approach to cope with image transformations.

We propose a new string based image representation together with a new edit-

distance. Our goal is to introduce some flexibility in the matching and to integrate

some neighborhood relationships between regions. Experiments on several datasets

show that our approach outperforms the classical spatial pyramid representation

and most existing concurrent methods for classification presented in recent years.

3.1 Introduction

Local feature histograms are widely employed to represent visual contents in var-

ious areas of computer vision. In particular, histograms of visual words based on

SIFT features, in the well-known Bag of Words model, have proven to be very

powerful for image and video classification or retrieval tasks [Sivic and Zisserman,

2003; Csurka et al., 2004]. However, this histogram representation is based on

occurrences of image features, completely ignoring the spatial image layout.

29

Chapter 3 Approximate matching for image classification 30

In recent years, the significant work Spatial Pyramid Representation (SPR) [Lazeb-

nik et al., 2006] was shown to be successful for classification of objects and scene

images (as seen in Chapter 2). In SPR, an image is divided into regions by using

predefined regular grids of di↵erent scales and by computing a BoW histogram for

each region. The image matching is calculated region by region, form coarser to

finer grids. Since this approach is very simple and e↵ective, it has received great

attention from researchers.

Di↵erent aspects of this model have been investigated for the purpose of improving

performance leading to systems that reach state-of-the-art results in the domain

[Bosch et al., 2007; Yang et al., 2009; Boureau et al., 2011]. Most of SPR-based

methods perform well despite the fact that they still keep SPR-rigid matching

between corresponding regions. In other words, two regions are matched even

if their content is dissimilar, just because they are situated at the same location.

Consequently, these approaches are sensitive to geometric transformations. Figure

3.1 shows a car at di↵erent viewpoints and scales. It can be noticed that, the SPR-

rigid matching is not e�cient while considering the matching between image pairs

in this example.

(a) (b) (c)

Figure 3.1: Example about SPR-rigid matching problem: region to region
matching does not work due to image transformations.

Our contribution is to propose a new approach to provide approximate matching

between regions by means of : (i) a new image representation as strings of BoW and

(ii) a new edit-distance to compare such strings. For each given pair of images, our

distance not only takes into account the similarity between pairwise regions as in

the standard SPR model, but also integrates information about similarity between

neighboring regions. It allows to identify local alignments between subregions or

groups of similar subregions in images. In our proposed approach, the number

of subregions for di↵erent images may vary and is considered according to the

visual content, which brings flexibility to the matching process. We validate our

approach on several datasets.

Chapter 3 Approximate matching for image classification 31

The outline of this chapter is organized as follows. We start in Section 3.2 by

reviewing several related works on spatial matching. In section 3.3, we describe

our representation of an image as strings of histogram. Section 3.4 introduces

the edit-distance adapted to strings of histograms and derive an edit kernel. The

experiments and results of our edit-distance on image classification tasks are pre-

sented on Section 3.5. Finally, we give some conclusions in Section 3.6.

3.2 Related works

Several works have tried to solve this rigid matching problem in the context of

image classification or retrieval.

• Spatial Bag of Features [Cao et al., 2010]: In this approach, the authors

located features position by projecting the descriptors along either lines or

circles (see Figure 2.5). Each time, a local histogram is computed for each

cell and a final long concatenated histogram is generated. In order to cope

with image translation and rotation, a re-arranged procedure is done on ev-

ery bin of the concatenated histogram by starting from the position with

the maximum frequency. The matching is then applied on two re-arranged

concatenated histograms. However, this rearrangement scheme may not cor-

respond to the true image transformation and the approach is complex be-

cause it requires to consider all directions, spatial bins and center points of

circular sectors.

• Reordered Spatial Pyramid Matching [Li et al., 2011]: The authors use

the local histogram representation: an image is divided into sub regions

by a regular grid and a local BoW is computed for each region. Those

histograms are then set together in a matrix form, which each row of matrix

is one local histogram. After that, this matrix is sorted (by columns) for

every bins based on their frequencies. The matching between two images is

done on their sorted matrix of histograms. However, this sorted procedure

destroys location information of visual words, therefore the matching may

be irrelevant.

• Finding optimal alignment [Van Kaick and Mori, 2006; Xu et al., 2008; Vi-

itaniemi and Laaksonen, 2010; Yan et al., 2013]: After dividing the images

into regions, several authors suggested to relax the rigid matching between

two images by using all pairwise regions matching .

Chapter 3 Approximate matching for image classification 32

[Van Kaick and Mori, 2006] used Hungarian algorithms to compute optimal

alignment between two images. Each match between two regions of the two

images is penalized by a weight (e.g distance between two regions); and the

algorithm finds the minimum total weight to match all the regions of the

first image to all the regions of the second one. This total weight is used as

a similarity measure between two images. The method has the drawback to

require the calculation of all pairwise region distances before searching for

the best alignment.

[Viitaniemi and Laaksonen, 2010] proposed to use Integrated Region Match-

ing [Li et al., 2000] to loosen the constraint of geometrical rigid matching.

In this approach, one region of the first image can match several regions in

the second image. The distance of two images are the total matching cost

between each region pairs. This matching cost is computed by a distance be-

tween two regions. Moreover, they proposed two weight parameters, one to

decide the reliability of the matching, one to decide the e↵ect of this match-

ing on computing the similarity of two images. Finding the values of these

parameters should depend on content of regions and it is not an easy task.

[Viitaniemi and Laaksonen, 2010] fixed both parameters as 1. However, this

approach performs slightly worse than using rigid matching.

[Xu et al., 2008] introduced Partially Aligned Pyramid Matching using the

Earth Mover Distance to compare two sets of concatenated local histograms

representing two images. This approach can only detect near duplicate im-

ages.

Later, [Yan et al., 2013] proposed Semantic Spatial Matching approach which

assigns each region to one semantic label. The authors kept the SPR image

partition scheme, dividing an image into 4⇥ 4 identical cells and computing

local BoW for each cell. All local histograms from the training images were

collected and clustered to create semantic labels. This process is similar to a

visual codebook generation. The image was then represented as a histogram

of semantic labels. Two regions are matched if they have the same semantic

labels and this match does not depend on the regions location. This ap-

proach therefore relax the problem of rigid matching, but still has problems

with image transformations. Since a fixed grid is used for partitioning, the

rotation or the translation of an image will result in a change of the seman-

tic labels of its regions. Moreover, the semantic label generation step can

introduce quantization errors.

Chapter 3 Approximate matching for image classification 33

• String representations: Several approaches try to relax rigid matching by

approximate matching using string representations [Smith and Li, 1999; Ros

et al., 2005; Yeh and Cheng, 2008; Lu and Ip, 2009; Kim and Grauman, 2010].

Compared to other approaches, the string-based approach has advantages

of providing the matching of symbols at di↵erent positions, keeping into

account the order of these symbols. It also enables to work with sequence of

regions of di↵erent lengths.

In the early work of [Smith and Li, 1999], the authors proposed to use strings

to capture the relative locations of color regions. Their system generated

strings of regions by using series of vertical scans on a segmented image.

A string of regions is then converted into a Composite Region Template

descriptor which allows classification using region order information.

[Ros et al., 2005] proposed to represent each image as a string of interest

regions or salient regions and to use string-based edit-distance to compare

the content of two images. However, in this system, the string is created

from a graph of descriptor points, so it is not robust to image variations and

requires expensive computation.

In the work of [Yeh and Cheng, 2008], the image is first divided into 4 ⇥ 4

regions and each region is described by a local BoW. A raster scan is applied

to create a 1-D string of regions where each symbol is one local BoW. The

Levenshtein distance [Levenshtein, 1966] is used to measure the similarity

between two images. However, in this method, two successive symbols in

the string may not correspond to neighboring regions of the image due to

the raster scan and the 1-D string representation.

[Lu and Ip, 2009] proposed a Spatial Mismatch Kernel in order to compare

two images. In this approach, each image is represented as a combination

of two 1-D strings (based on row-wise and column-wise scans) of visual key-

words. The distance between two images is defined as a total mismatch

string distance [Leslie et al., 2002] (i.e. number of similar sub-strings within

m mismatch) between two strings (row based or column based) of the two

images.

Lately, [Kim and Grauman, 2010] introduced an Assymetric Region Matching

approach, computing image similarity between a segmented image and a non-

segmented one. The first image is decomposed into regions using a given

segmentation method. Each region is mapped to a set of local multi scale

dense SIFT descriptors. The authors used two 1-D strings of SIFT-blocks to

represent a region (based on row-wise and column-wise scans). In this string

Chapter 3 Approximate matching for image classification 34

based approach, the string is only used to represent segmented regions and

each symbol of the string is a multi-scale SIFT-block. At the matching step,

each symbol in the string is matched to several candidates of non segmented

image by using the distance of two SIFT-blocks at multiple scales. Given

the candidate matches for all symbols, the optimal correspondence between

regions and image is computed by dynamic programming. The limitations of

the approach are first the requirement of a segmentation process and second

the lack of symmetry of the distance between two images (since it depends

on the selection of a segmented image and a non-segmented one).

In this chapter, we combine the advantage of string and local histograms represen-

tations to propose a new method to represent an image as strings of histograms.

In order to measure the similarity of two images, we introduce a new string edit-

distance called String Matching Distance (SMD) which is adapted to the context

of string of regions comparison .

3.3 Image representation

In this section, we discuss how to represent an image as ordered strings of regions

preserving spatial relationships of those regions. We focus on the local histogram

based representation where an image is first tiled into regions and each local region

is described as a histogram of visual words.

Image Partition

There are several ways to decompose an image into regions. Some authors used

image segmentation as for example: [Smith and Li, 1999; Van Kaick and Mori,

2006; Kim and Grauman, 2010]. Since, image segmentation is still a di�cult

task, which introduces errors and needs expensive computation, it is reasonable to

replace this step by the division of the image into regions by using a tilling grid.

Our grid is defined from an orthogonal basis (v1,v2) aligned in the directions that

may best represent the image content. An image is split into B bands having the

same width along direction v2. Then, each band is subdivided into N subregions

of same size, along direction v1. Consequently, the image is divided into B ⇥ N

regions. Figure 3.2 illustrates the division of an image into 2 Bands of 3 regions.

Chapter 3 Approximate matching for image classification 35

First band Second bandv
1

v
2

First string

symbol

Second string

Figure 3.2: Example of an image representation as two strings of histograms.

In this work, we only consider the case of vertical and horizontal axes, which is

the most simple way to partition an image, since our objective here is to point out

the advantages of string representation. However, the method can be generalized

to any other basis. Note that, the two directions v1 and v2 do not play the same

role: v1 is chosen to be the direction that best represents to the image content.

Actually, in images, there exists a natural sequencing of objects or entities within

objects. It is possible to find a principal direction along which the projection of

local features may convey information about the image content or capture the

essence of the form of an object. Intuitively, as suggested in [Cao et al., 2010], in

natural scenes, vertical or horizontal directions can plausibly describe relationships

among local features. For instance, the sky is above trees, and trees are above

grass. For urban scenes, in [Iovan et al., 2012], the authors propose similarly to

replace the SPR grid with divisions along the vertical axis to better take into

account the composition of this kind of images. For object images, as proposed

in [Tirilly et al., 2008], the major axis of an object can be obtained from the

first principal component in a principal component analysis. Distribution of local

features along this major axis is similar whatever the orientation or scale of the

object is. In the string based approach, [Smith and Li, 1999] suggested to use

series of vertical scans along the image to create region strings since in many

photographs, the vertical order provides a better characterization of the content.

The graphs of Figure 3.4 highlight the influence of bad matching and direction on

partitioning images in classification task on 15 Scenes dataset. The classification

Chapter 3 Approximate matching for image classification 36

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
73

74

75

76

77

78

79

80

81

Number of regions (N)

C
la

ss
ifi

ca
tio

n
 A

cc
u

ra
cy

 (
%

)

Vertical division

Horizontal division

Grid

Figure 3.3: Classification accuracy (%) versus number of local regions for the
15 Scenes dataset ([Lazebnik et al., 2006]) using pairwise rigid matching and

di↵erent partitioning schemes: grid, vertical divisions or horizontal ones.

accuracy is plotted with respect to the number of local regions, using either a grid

partitioning (i.e. 1 ⇥ 1, 2 ⇥ 2,. . . ,8 ⇥ 8) or divisions along one axis, vertical or

horizontal (for each direction: first the image is divided into 1 band, 2 bands or

4 bands; and then tiling each band from 1 to 16 small regions). Each region is

described with a SIFT-BoW obtained following the protocol of [Lazebnik et al.,

2006] and a vocabulary of 100 words. The classification accuracy was computed

with intersection kernel SVM and 10-fold cross-validation.

For the grid division case, we observe that increasing the number of regions (from

4 to 8) first improves the classification accuracy, but when the number of regions

is higher, the accuracy decreases. For the vertical division or horizontal division,

the accuracy slightly decrease with repeat to the number of regions. It may be

explained by the fact that the number of mismatches is all the greater that the

number of regions increases. Moreover, using a vertical directional partitioning

gives higher results than a grid partitioning for this dataset composed mainly of

natural scenes. In the experimental section, we will further study the influence of

the scanning direction and the e↵ect of the two parameters number of bands and

number of regions.

Scanning

Once the image has been divided into regions, our next task is to represent it as

Chapter 3 Approximate matching for image classification 37

Figure 3.4: Pyramid scheme with L=2. It is combination of using 1 Band, 2
Bands and 4 Bands for representing the image.

strings. In the work of [Yeh and Cheng, 2008], they used a row-wise raster scan

to construct a string of regions. However, this approach has a major drawback:

two successive symbols in the sequence may correspond to non adjacent regions

in the image when a new scan line is starting. Even in a zig-zag scan, the spatial

relationship type is changing along the string sequence. Therefore, we decide to

use not only one but several strings of regions to represent an image. Our proposal

is to build a new string for each band of our partition in order to create a set of

strings having N symbols each. An image is then described as a set of B strings

(for example in Figure 3.2).

Pyramidal strategy

The pyramid matching scheme which is proposed by [Grauman and Darrell, 2005;

Lazebnik et al., 2006] has shown excellent performance on classification tasks. Mo-

tivated by this, we intend to apply multi-resolution regions in our representation.

It can be noticed that changing the number of bands will change the size of regions

but not the length of the strings (i.e. number of symbols). Therefore, we follow

the setup of Spatial Pyramid Representation using L levels of resolutions. We

keep the number of regions fixed and vary the number of bands as a power of 2,

e.g B = 20, 21 . . . 2L.

The matching is done between strings in each level separately. Moreover, di↵erent

weights are applied for di↵erent resolution levels as proposed in SPR so that the

matching at finer level has stronger e↵ect than the matching at coarser level. For

Chapter 3 Approximate matching for image classification 38

instance, when we use the pyramid with L = 2 levels; level l = 0 has a weight

1/2L = 1/4, level l = 1 has weight 1/2L�l = 1/4 We also can employ several

learning techniques which are proposed to acquire optimal weighting, e.g Global

Level Weights of [Bosch et al., 2008], weight map of [Harada et al., 2011], to have

better image classification performance.

3.4 A new edit-distance for strings of histograms

In this section, we present our String Matching Distance - a string distance suit-

able with our local histogram string based representation. This distance is an

edit-distance tailored to compensate mismatches limiting performances of rigid

matching approaches, as explained previously. We first look back on the standard

edit-distance and then introduce the new distance.

3.4.1 The standard edit-distance

The standard edit-distance or Levenshtein distance [Levenshtein, 1966] is a dis-

tance between two strings of symbols taken from the same alphabet ⌃. It is

classically used to measure the similarity between two textual words not necessar-

ily having the same size. It is based on three elementary edit operations : insertion,

deletion and substitution of a symbol. A sequence of edit operations transforming

string X into string Y is called an edit script. The edit-distance between two

strings X and Y is defined as the minimum edit script cost which transforms X
into Y . The permitted edit operations with their associated cost functions are as

follows:

• insertion of a symbol yj of Y into X with a cost cins(yj)

• deletion of a symbol xi of X with a cost cdel(xi)

• substitution of a symbol xi of X with the symbol yj of Y with a cost

csub(xi, yj). If xi = yj, no substitution is needed; so csub(xi, xi) = 0

In its simple form, it uses a unit cost for all edit operations thus corresponds to

the minimum number of operations turning one string into another. For instance,

the edit-distance between abb and aa is 2 since we need two operations in order to

convert abb to aa: substitution of b into a, and deletion of b. In the same way, to

Chapter 3 Approximate matching for image classification 39

C � a b
� 0 2 10
a 2 0 4
b 10 4 0

Table 3.1: Example of edit cost matrix C. ⌃ = (a, b), � is Null histogram.

convert Sunday into Saturday, we need two insertions a and t and one substitution

n to r. So the edit-distance between the two strings Sunday and Saturday is 3

which is the minimum number of edit operations needed.

More generally, each operation can have a specific non-negative cost. These costs

are defined by a cost matrix C, for example as in Table 3.1. In this case, the cost

for deleting/inserting a symbol a is 2, the cost for deleting/inserting a symbol b is

10 and the cost for substituting a symbol a with a symbol b is 4. The edit-distance

between abb and aa is 10, which is the cost for the deletion of a and two times the

substitution of b into a.

It can be noticed that, this time we have used a di↵erent scenario when converting

abb into aa because of a di↵erent cost matrix. It suggests that, we can learn the

cost matrix from the input data to obtain the optimal performance.

Computing this distance can be formulated as an optimization problem and can

be carried out with dynamic programming. To compute the edit-distance between

string X (M) = {x
1

x
2

. . . xM} and string Y(N) = {y
1

y
2

. . . yN}, the algorithm con-

sists in computing a distance matrix D
(M,N)

, where D
(i,j) represents the minimum

cost of transforming the first i symbols of string X into the first j symbols of string

Y . In other words, D
(i,j) is the edit-distance between two sub-strings X (i) and

Y(j), with allowable edit operations mentioned above.

The algorithm 1 describes the dynamic programming based algorithm to compute

the standard edit-distance given the cost matrix and the two text strings, X of

length M and string Y of length N . At each step, the computation of one cell

uses only the information of its three previous neighboring cells. For example, to

compute cell D
(i,j) we need the value of cells D

(i�1,j), D(i,j�1)

and D
(i�1,j�1)

. De-

pending on the costs of deletion, insertion and substitution, we can decide which

edit operation will be used by choosing D(i, j) as min(D
(i�1,j)+ cdel(xi), D(i,j�1)

+

cins(yj), D(i�1,j�1)

+ csub(xi, yj)). After computing the edit-distance, we can also

obtain the edit script which is the best way to convert the first string into the

second one. Table 3.2 shows an example of distance computation and the corre-

sponding edit script.

Chapter 3 Approximate matching for image classification 40

S a t u r d a y
0 1 2 3 4 5 6 7 8

S 1 0 1 2 3 4 5 6 7
u 2 1 1 2 2 3 4 5 6
n 3 2 2 2 3 3 4 5 6
d 4 3 3 3 3 4 3 4 5
a 5 4 3 4 4 4 4 3 4
y 6 5 4 4 5 5 5 4 3

Table 3.2: Example of computation the distance matrix D between two text
strings Saturday and Sunday.

The computational complexity is proportional to the product of the length of the

two strings, i.e. O(N ⇥M). The value D
(M,N)

of the last cell of matrix D is the

edit-distance between the two strings. It is the minimum cost of all possible edit

scripts to convert string X into Y .

Algorithm 1 Standard Edit-distance Algorithm
Require: Two strings X (M) and Y(N)

1: Initial:

2: D(0, 0) 0

3: for i = 1 to M do

4: D
(i,0) = D

(i�1,0) + cdel(xi)

5: end for

6: for j = 1 to N do

7: D
(0,j) = D

(0,j�1)

+ cins(yj)

8: end for

9: for i = 1 to M do

10: for j = 1 to N do

11: D
(i,j) = min(D

(i�1,j) + cdel(xi), D(i,j�1)

+ cins(yj), D(i�1,j�1)

+ csub(xi, yj))

12: end for

13: end for

14: return D
(M,N)

Table 3.2 is an example of using Algorithm 1 to compute the D matrix between

the two text strings Sunday and Saturday. With cdel = cins = 1 , csub(x, y) = 1

and csub(x, x) = 0.

Chapter 3 Approximate matching for image classification 41

3.4.2 A new string matching distance

In the previous section, we already presented our string-based representation where

each symbol is a histogram of visual words. Our purpose is to use approximate

matching between strings in order to correct mismatches of rigid matching. By def-

inition, the edit-distance aims to find the optimal alignment between two strings,

and thus allows to correct local or global misalignments due to translation of view-

point or modifications between two images. The only question is how to adapt

this edit-distance to the proposed string representation.

In fact, when computing the edit-distance on the text domain, the alphabet ⌃ is

limited, hence it is possible to define a cost matrix between characters. In our case,

each symbol is one finite histogram of visual words. Even with small codebooks,

our string alphabet ⌃ is infinite. It is impossible to define a cost matrix C for

the edit operations. Thus, in order to apply the edit-distance with our string-

based image representation, we have to find a new way to compute the cost of edit

operations.

A possible method is to setup a pre-defined cost and to choose a distance to

compare histograms qualified as ground distance [Yeh and Cheng, 2008; Ballan

et al., 2010; Ros et al., 2005]. In order to measure the similarity of two video

sequences, [Ballan et al., 2010] proposed to represent them as strings where each

symbol is one histogram of keyframe and to use the edit-distance to compare

those strings. The authors used an unit cost 1 for all edit operations. To decide

which operations to use, a ground distance between two symbols is compared to a

threshold to judge whether two frames are similar enough to apply a substitution.

If not, a deletion or insertion is employed.In their experiments, they found that

the best metric is �
2

distance with the corresponding threshold of 0.13.

In the work of [Ros et al., 2005], an image is represented as a string of salient

regions. They used l
2

distance between two signatures of salient regions to compute

the substitution cost. The cost for deletion or insertion of a symbol is the l
2

distance between this symbol signature and a Null vector.

Having a similar idea as [Ros et al., 2005], however [Yeh and Cheng, 2008] used

�
2

as ground distance. In this case, the insertion/deletion cost turned to be 1/2

which is the �
2

distance between any histogram and a Null histogram.

To go further, we propose to adapt insertion and deletion costs to the local context

of symbols. Our goal is to virtually adjust the grid partitioning during the image

comparison and compensate for mismatches that occur with homogeneous parts

Chapter 3 Approximate matching for image classification 42

of a scene or object split in di↵erent regions. We plan to use deletion and insertion

to detect the repetition of regions inside one image. More precisely, during the

alignment of the two strings, if one symbol is more similar to its following than to

the corresponding one in the other string, it will be removed. Formally, this rule

comes to define costs functions as:

8
>>><

>>>:

csub(xi, yj) = d(xi, yj)

cdel(xi) = d(xi, xi+1

)

cins(yj) = d(yj, yj+1

)

(3.1)

where d is the ground distance. It can be the Euclidean distance, �
2

distance or

any vector distance.

Let us remark that, to ensure the symmetry of the edit distance, we must have

cins(x) = cdel(x). Then, for a given symbol x both insertion and deletion operations

can be seen as a single edit operation, i.e. the deletion operation but applied either

in the first or in the second string. In other words, the insertion of symbol x of

string Y into string X , can be seen as the deletion of symbol x in string Y .

We call our proposed distance String Matching Distance (SMD). The string dis-

tance SMD(X ,Y) between two strings of histogram X and Y can be computed

by dynamic programming based on Algorithm 1 and with the edit costs defined

in Equation 3.1.

3.4.3 Examples

In this part, we present several examples to illustrate our proposed string-based

distance.

Example 1: Let’s compute the String Matching Distance between 2 text strings

aab and abb with ⌃ = {a, b}. The edit operation costs are defined as in Equation

3.1; with d(a, b) = d(b, a) = 1, d(a,�) = d(b,�) = 1 and d(a, a) = d(b, b) = 0.

The computation of distance matrix D is shown on Table 3.3. In parallel, we

also present the edit script matrix, which is same size as D. Each cell of the edit

script matrix contains the pointer to point out the cell where its value come from

or which the previous edit operation has been applied. Following the script, we

can explain step by step the computation of SMD: first, there are two successive

identical symbols a in in the first string aab, so we delete the first symbol a in

Chapter 3 Approximate matching for image classification 43

aab. The cost is cdel(a) = d(a, a) = 0. After that, we need to compute the

distance between ab and abb. Since, there is a symbol a in both two strings, one

substitution is enough, which costs csub(a, a) = d(a, a) = 0. After this step, the

two new strings are b and bb. There are two identical symbols b in the second

string; so a deletion of the first symbol b in the second string is applied, which

costs cdel(b) = d(b, b) = 0. The remaining two new strings b and b are the same,

so a substitution is used which costs csub(b, b) = 0. Consequently, the distance

between aab and abb is 0. A basic property of our distance is to remove sequences

of identical (or similar) symbols.

a b b
0 1 1 2

a 0 0 0 1
a 1 0 0 1
b 2 1 0 0

a b b
0

a " -
a " - -
b " - -

Table 3.3: Example of computation of SMD between two strings aab and
abb. The first table is the distance matrix D which is computed by dynamic
programming. Each value of D, D

(i,j) is minimum edit cost to convert sub string
X (i) into Y(j). The second table is edit scripts matrix, which has same size
as D. It is used to point out which previous edit operation has been applied to
obtain the value of the corresponding cell in D. We use the notation: for a
Deletion on string Y, " for a Deletion on string X and - for a Substitution.

4 6 0

8 0 2

8 0 2

7 0 3

7 3 0

6 3 1

8 0 2

7 0 3

0|0|0 7|3|0 6|3|1 8|0|2 7|0|3

0|0|0 0 2 8 10 20

4|6|0 12 6 8 10 20

8|0|2 12 6 8 8 12

8|0|2 14 8 10 8 10

7|0|3 24 18 14 12 8

ins

subst

del

subst

subst

String alignment

4 6 0

8 0 2

8 0 2

7 0 3

x

7 3 0

6 3 1

8 0 2

7 0 3

y

Repetitions of symbols are removed to match the strings

Figure 3.5: A toy example to illustrate the matching using SMD for the single
band case.

Example 2: We illustrate our SMD on a real histogram-based string with a toy

example (Figure 3.5). In the two toy images, the descriptors are computed on

5 ⇥ 8 grids. There visual words (e.g circle, square, star) are utilized to represent

the images. Each image is described as one image strings of 1 Band and 4 regions.

In the left-side of each toy image, we show the local histograms. We use l
1

as

ground distance. All local histograms need to be normalized with the l
1

-Norm.

However, in this example, all the local histograms have the same l
1

-Norm of 10,

so no additional normalization is required. Each local histogram is notated as a

triplet of three numbers separated by ’|’. The SMD distance of two toy images

Chapter 3 Approximate matching for image classification 44

is the distance between two strings of histogram: {4|6|0, 8|0|2, 8|0|2, 7|0|3} and

{7|3|0, 6|3|1, 8|0|2, 7|0|3}. The distance matrix gives the minimum distances D
(i,j)

and arrows show the sequence with the minimum cost, detailed on the right.

To well understand the values, we detail the calculations of three cells. First,

cell D
(0,1) equal to 2 gives the insertion cost of symbol 7|3|0, i.e. d(7|3|0, 6|3|1),

while cell D
(1,0) is the deletion cost of symbol 4|6|0, i.e. d(4|6|0, 8|0|2). The

value of D
(1,1) is the minimum of D

(0,1)+d(4|6|0, 8|0|2), D
(1,0)+d(7|3|0, 6|3|1) and

D
(0,0) + d(4|6|0, 7|3|0), i.e. min{14, 14, 6} = 6. So D

(1,1) = 6 and a substitution

is needed. As for the computation of D
(1,1), each minimum distance takes into

account the similarity between neighboring regions and direct pairwise similarity

between corresponding regions, allowing to remove repetitions of symbols when

necessary to adapt to the other string. In our toy example, the resulting edit

sequence comes to consider the two similar regions 8|0|2 as a unique one that

matches the similar one in the second image.

Example 3: A real-case example is given in Figure 3.6. Two images are from

Caltech101 dataset [Fei-Fei et al., 2004; Lazebnik et al., 2006]. We use SIFT

descriptor on a densely sampled grid with a patch size of 16 ⇥ 16 and a period

of 8 pixels. The vocabulary K = 100 words is build by K-means clustering on

a random subset of 100000 descriptors taken from all training images. The hard

assignment is used in coding step. We use l
1

as ground distance and each histogram

is normalized according to l
1

-Norm. In this example, the two images are divided

into two bands of four regions. We show the local histogram matchings between

two first bands of the two images: the SMD matching and the pairwise regions

matching (PMD). The string matching script obtained for the first band (x
2

with

y
1

, x
3

with y
2

, x
4

with y
4

) shows a better alignment than direct pairwise region

matching. Insertions and deletions enable to deal with a change of position of the

head of the bird. In both cases of SMD and PMD, we have drawn the final string

alignment correspond to the real computed edit scripts. Value of SMD is smaller

than of PMD which confirms that the two images are more similar due to better

alignment between regions of SMD matching.

These examples prove the interest of our approach to better deal with possible

changes in object size, position or shape in the direction of the string.

Chapter 3 Approximate matching for image classification 45

First band Second band First band Second band

x1

x2

x3

x4

y1

y2

y3

y4

del (1.15)
sub (1.65)

ins (0.19)

sub (1.85)

SMD = 6.38

 sub (1.91)

sub (1.85)

PMD = 7.01

sub (1.64)

sub (1.66)
x1
x2
x3
x4

y1
y2

y3
y4

x1
x2
x3
x4

y1

y3
y4

y2
sub (1.54)

Figure 3.6: Real example of SMD matching. Two images are divided into two
bands of fours regions. The matching is done on each band separately. Let de-
note xi, yi with i = 1, . . . , 4 are the local histograms of regions in the first bands
of the two images. The final edit script (or strings alignment) and the corre-
sponding distance which is the minimum all possible edit scripts are shown on
the figure. The SMD distance between two first strings of two images are com-
puted as SMD = cdel(x1) + csub(x2, y1) + csub(x3, y2) + cdel(y3) + csub(x4, y4) =
1.15 + 1.65 + 1.54 + 0.19 + 1.85. In parallel, the Pairwise Matching Distance
(PMD) which uses rigid matching between local region, is computed as total
distance between x

1

and y

1

, . . . ,x
4

with y

4

. In other words, it is the total sub-
stitution cost between them. PMD = csub(x1, y1) + csub(x2, y2) + csub(x3, y3) +

csub(x4, y4) = 7.01.

3.4.4 Weighted edit operations

One advantage of our SMD is that edit costs are automatically determined during

the string matching. Contrary to other methods, no threshold or fixed cost have

to be fixed. However, it is interesting to provide a way to adapt the distance with

respect to the dataset. If we try to interpret the computation according to our

cost functions and Algorithm 1, we notice that:

• The substitution operation is applied when csub is small enough compared to

cdel and cins. It means that the two regions are very similar. In other words,

there is a matching between the two regions in the two images.

Chapter 3 Approximate matching for image classification 46

• Deletion operations and insertion operations are used when the next neigh-

boring region is very similar to the current one. So we can ignore or delete

this region without losing information.

Then, a way to control edit operations is to try to control the balance between sub-

stitutions and insertion/deletion operations. Thus, we propose to add a weighting

coe�cient w controlling the ratio between substitutions and insertion/deletion.

The corresponding cost functions are then rewritten as:

8
>>><

>>>:

csub(xi, yj) = d(xi, yj)

cdel(xi) = w.d(xi, xi+1

)

cins(yj) = w.d(yj, yj+1

)

(3.2)

A high w value penalizes insertion and deletion operations and thus allows more

pairwise matchings between two images. In this case, our distance becomes close to

rigid matching pairwise distance. Conversely, a low w value enables more insertion

and deletion operations which means there is more intra image matching. In the

Section 3.5 dedicated to experiments we will study the influence of this parameter.

3.4.5 Image comparison kernel

In recent years, Support Vector Machines (SVM) and related kernel methods have

become very popular tools for solving classification problems. For this reason, it

is better to define a kernel from our distance. The classical edit-distance kernel

proposed by [Li and Jiang, 2005] has the following form:

k(X ,Y) = e��ded(X ,Y) (3.3)

where ded(x, y) denotes the edit-distance between two strings X and Y . � > 0 is a

coe�cient to scale the kernel value for numerical stability. In fact, � plays a very

important role in making the kernel matrix positive definite. Applying with our

proposed SMD, Equation 3.3 becomes:

KSMD(I,J) = e��dSMD(I,J) (3.4)

where dSMD(I,J) is the String Matching Distance between two images I and J .

The computation of dSMD(I,J) depends on the number of bands and number of

pyramid levels.

Chapter 3 Approximate matching for image classification 47

If the images are divided into B bands:

dSMD(I,J) =
BX

b=1

dSMD(Ib,Jb) (3.5)

where Ib,Jb are histogram strings of band b of images I and J .

In case of using a pyramid scheme of L levels:

dSMD(I,J) =
LX

l=1

BX

b=1

dSMD(Ib,l,Jb,l) (3.6)

Ib,l denotes the string of level l and band b.

In order to be a valid kernel: this edit kernel must fulfill the Mercer conditions.

To do so, for all image pairs I and J , the Gram matrix KSMD(I,J) is positive

semidefinite. In the experiment part, we have performed some tuning on � to en-

sure that the Gram matrix between each random set of training images is positive

definite.

3.4.6 Computational complexity

To compute the distance between two image-strings of length N , we need to fill

out the D(N ⇥N) matrix. Each value of this matrix is determined by computing

insertion, deletion and substitution costs. These costs are calculated by the ground

distance between two histograms of length K (K is the vocabulary size). There-

fore, to compute the three edit costs, it requires 3⇥K operations. However, the

complexity of computation at each iteration is still O(K). Hence, the complexity

of computing SMD is O(K⇥N⇥N). If the images are represented as B strings of

N regions. The similarity between them is done by summing the distance between

the corresponding bands of the two images. In other words, we need to compute

B times the SMD distances. Therefore, the complexity of comparing two images

becomes O(B ⇥K ⇥N2)

3.5 Experiments

This section reports experimental results. The motivation of these experiments

is twofold. First we aim to study the influence of the parameters of our image

Chapter 3 Approximate matching for image classification 48

representation model on the classification accuracy. We validate this part on two

popular datasets: 15 Scenes and Caltech 101. Second our goal is to compare

the classification performance of our String Matching Distance (SMD) against the

rigid Pairwise Matching Distance (PMD) , Spatial Pyramid Representation (SPR)

approach and several concurrent methods. This last part is completed with three

other datasets: Pascal2007, Graz-01 and Corel10.

We begin this section by describing the datasets used in the experiments. Then

we show experimental settings and finally the results.

3.5.1 Datasets

In this work, we use 15 Scenes, Caltech 101, Pascal2007, Graz-01 and Corel10

datasets for experiments.

Caltech101 [Fei-Fei et al., 2004; Lazebnik et al., 2006]: This is a well-known ob-

ject dataset, consisting of 9144 images from 101 object classes and one background

class. The number of images in each category varies from 31 (inline-skate) to 800

(airplanes). This dataset has been used by a lot of researchers in order to evaluate

the classification performance of their proposed systems.

15 Scenes: This dataset is a scene dataset, first introduced in [Lazebnik et al.,

2006]. The dataset contains 4485 images of 15 classes, from both outdoor scenes

(coast, suburb, forest, mountain, open country, street, highway, tall building, inside

city, industrial) and indoor scenes (bedroom, store, living room, kitchen, o�ce).

The number of images in each category varies from 200 to 400 images. Examples

about this dataset are shown on Figure 3.7.

Pascal2007: [Everingham et al., 2007] The dataset consists of 9963 images from

20 di↵erent object classes. Those object classes are categorized as person (person),

vehicle (aeroplane, bicycle, boat, bus, car, motorbike, train), animal (bird, cat,

cow, dog, horse, sheep) and indoor objects (bottle, chair, dinning-table, potted-

plant, sofa, tv/monitor). It is an extremely challenging dataset since the images

contain objects of di↵erent scales, view points, illuminations and poses. Moreover,

an image may belong to more than one class. Some example images are shown in

Figure 3.8.

Corel10: This dataset is used in [Lu and Ip, 2009] with 10 selected classes: skiing,

beach, buildings, tigers, owls, elephants, flowers, horses, mountains and food from

the Corel dataset. Each class has 100 images which have sizes equal to 384⇥ 256

or 256⇥ 384. Examples of this dataset is shown on Figure 3.9

Chapter 3 Approximate matching for image classification 49

Figure 3.7: Examples from 15 scene dataset.

Figure 3.8: Examples from Pascal 2007 dataset.

Graz-01: This dataset is a small dataset, which contains 1103 images of only

3 classes: People(460 images), Bike(373 images) and Background (270 images).

However, it is also a very challenging dataset due to high intra- and inter- class

variations and objects with di↵erent scales or poses.

Chapter 3 Approximate matching for image classification 50

Figure 3.9: Examples of Corel10 dataset [Lu and Ip, 2009].

3.5.2 Experimental Settings

For all datasets, we use dense sampling SIFT descriptor calculated on 16 ⇥ 16

image blocks which overlap every 8 pixels. To create the vocabulary, the K-means

clustering is applied on a subset of the descriptors. For Caltech 101 and 15 Scene,

three codebook sizes are chosen: K = 100, 200 and 400. For other datasets,

only K = 100 vocabulary is used. In the coding step, both hard assignment with

sum pooling and sparse coding with max pooling are employed. However, only

hard coding is used in the first part in order to evaluate the impact of the string

parameters.

For classification, we apply a SVM classifier using the libSVM toolbox [Chang and

Lin, 2011]. We first calculate the distances and then compute the corresponding

kernel matrices using the formulas of edit kernels presented in Section 3.4.5. We do

a 10-fold cross validations on random train/test subsets. For fair comparison with

other approaches, we keep the same train/test setup as reported in the original

papers. For Caltech 101, 15 Scene and Graz 01 dataset, we follow the setting of

[Lazebnik et al., 2006]. That is:

• With Caltech 101: we randomly select 30 images per class for training and

maximum 50 images per class for testing.

• With 15 Scene: we randomly select 100 images per class for training and

test on the rest.

Chapter 3 Approximate matching for image classification 51

• With Graz-01: we train on 100 positive images (bike or person) and 100

negative images (where 50 images is from background, 50 images from the

other class).

For Pascal 2007 dataset, we keep the training/test sets given in VOC2007 challenge

[Everingham et al., 2007]: we train on 5011 images and test on 4952 images.

We also use the development kit 1 of VOC-challenge in order to evaluate the

classification performance.

For Corel10 dataset, following [Lu and Ip, 2009], we randomly select 50 images

per class for training and the rest images are used for testing.

An other problem is the tuning of SVM parameters � and c. Note that, the value

of � is chosen to ensure the kernel matrix (i.e Gram matrix) to be semidefinite

positive and in the mean time, to obtain the best classification performance. The

tuning is done on a subset of training images. We divide the training set into five

parts. Each time, we train on one part and test on the rest. We apply a grid search

to find the best value of �. We compute the Gram matrix with the so-obtained

value of �, and verify that all of its eigenvalues are positive. If yes, we keep this

� for classification. If no, we redo the previous work. This way provides the best

� but requires computation time. There is another possible way, which is to set

� to the inverse of the pairwise mean distances as in [Avila et al., 2013]. Since

we already have the matrix of distances between all pairs of training images, it is

easy to calculate � according to this approach. Following this procedure generally

leads to a near optimal classification performance.

We also varied the values of c from 1 to 10, and found that values of c equal 3,

4 or 5 almost led to the same best performance. As a result, we fixed c = 4 for

further computations.

3.5.3 Results

3.5.3.1 Influence of the string parameters

In our string based representation model, several parameters have to be set to

compute classification results: the ground distance, the scanning direction, the

number of bands B, the number of regions N and the codebook size K, the

weighting parameter for edit operation w and the number of pyramid levels L.

1http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/devkit

Chapter 3 Approximate matching for image classification 52

In this section, we study the influence of these parameters. The experiments are

validated on two datasets: 15 Scenes and Caltech 101.

Choosing the ground distance:

We study the e↵ect of the ground distance on SMD classification performance.

Number of bands and codebook size are fixed respectively to B = 1 and K = 100.

The l
1

, l
2

and �
2

are considered as ground distances. The classification accuracies

are shown on Figure 3.10, where the accuracies obtained by l
1

and �
2

distances

are nearly equivalent; and are much higher than the results obtained with l
2

.

Compared with �
2

, l
1

can be computed more simply. Therefore, we chose l
1

as

the ground distance and used it for all following experiments.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
66

68

70

72

74

76

78

80

82

84

Number of regions (N)

C
la

ss
ifi

ca
ito

n
 A

cc
u

ra
cy

 (
%

)

l1
l2
x2

Figure 3.10: Classification accuracy (%) obtained by SMD distance with

di↵erent choices of the ground distance (i.e. l
1

, l

2

,�

2

) on 15 Scene dataset. The

number of regions N is varied from 1 to 16. Number of bands and codebook

size are fixed to B = 1 and K = 100.

Scanning direction:

The objective of this experiment is to examine the impact of the scanning direction

(i.e. vertical or horizontal) on SMD implementation. The tests are evaluated on

15 Scene and Caltech 101 datasets with respect to the number of regions N varying

from 1 to 16. The number of bands is set to B = 1, B = 2 and B = 4. We fix the

codebook size to K = 100 words. The classification accuracy for the two datasets

are shown on Figure 3.11.

For the two datasets, the obtained results showed di↵erent trends but the vertical

direction normally provides a better characterization of the image structure than

the horizontal one. For the 15 Scenes dataset, all vertical-cases graphs are above

horizontal cases ones. For the Caltech 101 dataset, the di↵erences between the

Chapter 3 Approximate matching for image classification 53

horizontal and the vertical cases are not that significant. It can be explained

by the specificity of this collection where the objects of interest take up most of

the image and are approximately centered. Comparing objects along one or the

other direction does not really matter. Since on the overall the vertical direction

performs better, we keep this direction in all subsequent experiments.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
73

74

75

76

77

78

79

80

81

82

83

Number of regions (N)

C
la

ss
ifi

ca
tio

n
 A

cc
u

ra
cy

 (
%

)

B=1,Horizontal

B=2,Horizontal

B=4,Horizontal

B=1,Vertical

B=2,Vertical

B=4,Vertical

(a) 15 Scene

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
40

45

50

55

60

65

70

Number of regions (N)

C
la

ss
ifi

ca
tio

n
 A

cc
u

ra
cy

 (
%

)

B=1,Horizontal

B=2,Horizontal

B=4,Horizontal

B=1,Vertical

B=2,Vertical

B=4,Vertical

(b) Caltech101

Figure 3.11: Classification accuracy (%) obtained by SMD distance on 15

Scene and Caltech 101 datasets using vertical scanning direction (solid lines)

and horizontal scanning direction (dash lines). The number of bands B is varied

in 1,2 or 4. The codebook size K is fixed to 100 words.

Number of bands and pyramidal strategy:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
72

74

76

78

80

82

84

Number of regions (N)

C
la

ss
ifi

ca
tio

n
 A

cc
u

ra
cy

 (
%

)

B=1
B=2
B=4
Pyramidal

(a) 15 Scene

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
40

45

50

55

60

65

70

Number of regions (N)

C
la

ss
ifi

ca
tio

n
 A

cc
u

ra
cy

 (
%

)

B=1
B=2
B=4
Pyramidal

(b) Caltech101

Figure 3.12: Classification accuracy (%) obtained by SMD with variations of

number of bands B and with pyramidal strategy. The codebook size is K = 100

for both datasets.

Chapter 3 Approximate matching for image classification 54

The purposes of this experiment are to investigate influence of the parameter (B)-

number of bands and to prove advantages of using pyramid scheme into SMD

classification performance. We keep the same setup as previous tests: K = 100,

N = 1, . . . , 16, and we scan the image vertically to create the strings. The number

of bands B is set to 1,2 and 4. We also evaluate the pyramidal strategy with

L = 2, which means the combination of one band, two bands and four bands.

Figure 3.12 indicates the classification performance of SMD on the two datasets.

Again, the results depend on the collection. Indeed, considering the 1, 2 and 4

bands cases, the results behave inversely. For 15 Scenes, results decrease as the

number of bands increases, i.e. one band is enough to get the best result, while

for Caltech 101, it is preferable to use four bands. As previously, it is inherent to

the type of images. Observing a natural scene from the top to the bottom allows

to identify the content. Using two parallel vertical bands does not convey much

information. It even introduces confusion because of redundancy between bands,

leading to worst results. For objects, a finer look at the di↵erent parts is necessary

to identify them correctly.

It is worth noticing that for both datasets, a 2-level pyramid approach clearly

outperforms single level split cases. This strategy is suitable to get the best results.

Vocabulary size:

To investigate the e↵ect of the vocabulary size, we fix the number of bands to the

optimal values obtained previously, i.e. B = 4 for Caltech 101 and B = 1 for 15

Scenes. Figure 3.13 shows the classification results for three vocabulary sizes 100,

200 and 400 as a function of N . For Caltech 101, the best results are obtained with

the smallest vocabulary (K = 100) and we note that the accuracy is decreasing

over N for K = 200 or K = 400. For 15 Scenes, the influence of the vocabulary

size is low and the results are slightly better for K = 200, but they are very close

to K = 100 for a large N .

Obtaining the best results for small vocabularies is unusual in the BoW context.

We think that this e↵ect is due to a too low number of descriptors. Histograms

are not computed accurately when the size of the vocabulary increases and as

the number of regions grows. However, with small vocabularies, increasing the

number of regions increases significantly the accuracy. This is clear advantage

of our string-based approach to provide high accuracy with compact vocabularies

and the compact representation.

Chapter 3 Approximate matching for image classification 55

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
73

74

75

76

77

78

79

80

81

82

83

Number of regions (N)

C
la

ss
ifi

ca
tio

n
 A

cc
u

ra
cy

 (
%

)

K=100
K=200
K=400

(a) 15 Scene

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
52

54

56

58

60

62

64

66

Number of regions (N)

C
la

ss
ifi

ca
tio

n
 A

cc
u

ra
cy

 (
%

)

K=100
K=200
K=400

(b) Caltech101

Figure 3.13: Classification accuracy (%) obtained by SMD distance on 15

Scene and Caltech 101 datasets using di↵erent vocabulary sizes (i.e. 100, 200,

400). The number of bands B is fixed B = 1 for 15 Scene and B = 4 for Caltech

101.

Number of regions:

The e↵ect of number of regions N on the distance implementation can be seen

in Figures 3.10, 3.11, 3.12 and 3.13. Considering the influence of the number

of regions N , the global evolution of all curves is similar: the accuracy is almost

monotonically increasing with a stabilization forN = 8 for Caltech 101 andN = 10

for 15 Scenes. From this value, the results remain roughly constant or slightly

better. The highest accuracy is 66.53% achieved with N = 13 for Caltech 101,

and 83.14% with N = 16 for 15 Scenes. Since performances were quite similar

with lower number of regions, it is preferable to use N = 9 to N = 12 to reduce

the computation time.

Weight parameter:

In the section 3.4.4, we have already discussed about weighted edit operations. In

this experiment, we aim to estimate the influence of the weight parameter and to

find its optimal value. The weight is varied from 0.5 to 1.3. SMD is computed

with K = 100 for both datasets. With the 15 Scene dataset, we use B = 1 and

N = 16. In case of Caltech 101 dataset, B is fixed to 4 and N = 10 for saving

computation time. The results are shown on Figure 3.14. It can be noticed that:

the weight parameter has e↵ect on the performance of SMD, and for both 15

Scenes and Caltech 101 datasets, the best weighting value is around 0.8. It means

our proposed distance performs better with more substitutions.

Chapter 3 Approximate matching for image classification 56

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
55

60

65

70

75

80

85

Weight (w)

C
la

ss
ifi

ca
tio

n
 A

cc
u

ra
cy

 (
%

)

Caltech 101
15 Scene

Figure 3.14: Influence of weighting parameter on classification performance
of SMD. We fix B = 1 and N = 16 for 15 Scene dataset and B = 4 and N = 10
for Caltech 101. The codebook size is fixed to K = 100 for both two datasets.

3.5.3.2 String matching vs pairwise matching

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
73

74

75

76

77

78

79

80

81

82

83

Number of regions (N)

C
la

ss
ifi

ca
tio

n
 A

cc
u

ra
cy

 (
%

)

SMD, B=1

SMD, B=2

SMD, B=4

PMD, B=1

PMD, B=2

PMD, B=4

(a) 15 Scene

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
40

45

50

55

60

65

70

Number of regions (N)

C
la

ss
ifi

ca
tio

n
 A

cc
u

ra
cy

 (
%

)

SMD, B=1

SMD, B=2

SMD, B=4

PMD, B=1

PMD, B=2

PMD, B=4

(b) Caltech 101

Figure 3.15: Comparing the classification performance of SMD (solid line)

versus PMD (dash line) with di↵erent values of B. The codebook size is fixed

K = 100 for two datasets.

These experiments are to verify the performance improvement of our string match-

ing approach (SMD) over a rigid Pairwise Matching Distance (PMD). Figure

3.15 presents the results. First, it is obvious that for both datasets, SMD is always

better than PMD from N > 5 and any given splitting. As seen in Section 3.3, the

greater the number of regions, the greater the number of local mismatches, leading

to a decrease of performance of a pairwise matching approach. With SMD, for

large N , the accuracy stabilizes (Caltech 101) or slightly increases (15 Scenes). It

proves that SMD naturally compensates local mismatches.

Chapter 3 Approximate matching for image classification 57

3.5.3.3 Comparison with existing methods

Results on 15 Scene dataset:

In Table 3.4, the proposed method is first compared with the concurrent techniques

that use the same setup which is: a single SIFT descriptor, dense sampling on

16 ⇥ 16 image blocks and at every 8 pixels. The results of SMD performance

on both hard coding (with sum pooling) and sparse coding (with max pooling)

are reported. In both cases, the SMD is computed with pyramid scheme L = 2,

number of regions N = 16, codebook size K = 100 and weight w = 0.8.

We first compare our method with the BoW baseline (K=100, intersection kernel)

and with the original Spatial Pyramid Representation (pyramid with L = 2) of

[Lazebnik et al., 2006].

Coding Approaches Accuracy (%)

Hard-coding

BoW baseline 73.28 [100]

SPR [Lazebnik et al., 2006] 81.40 ± 0.50 [200]

Sequence string matching [Yeh and Cheng, 2008] 80.93 ± 0.64 [200]

Bipartite graph matching [Belongie et al., 2002] 78.17 ± 0.47 [200]

SPR+co-occurence [Yang and Newsam, 2011] 82.51 ± 0.43 [200]

Learning optimal spatial partition 80.10 ± 0.60 [100]

[Sharma et al., 2011]

SMD 83.14 ± 0.67 [100]

Sparse-coding

BoW baseline 63.48 ± 0.79 [100]

ScSPM [Yang et al., 2009] 80.28 ± 0.93 [1024]

ScSPM [Boureau et al., 2010] 83.10 ± 0.60 [1024]

KSR-SPM [Gao et al., 2010] 83.68 ± 0.61 [1024]

SMD 84.59 ± 0.7 [100]

Table 3.4: Classification accuracy on the 15 Scene dataset using di↵erent

approaches and coding methods. Results of SMD are obtained with codebook

size K = 100, pyramid scheme L = 2, N = 16 and edit operation weight

w = 0.8 for both hard coding and sparse coding. For other methods, the results

are obtained with the codebook size given in brackets.

We are also interested in the sequence string matching proposed by [Yeh and

Cheng, 2008]. They used a raster scan to represent the image as one string, and a

fixed cost for deletion/insertion operations. Furthermore, we compare our match-

ing with the bipartite graph matching of [Belongie et al., 2002] which finds the

Chapter 3 Approximate matching for image classification 58

best alignment (minimizing the cost matching) between all pairs of regions of two

images but subject to the constraint that the matching is one-to-one (this result

is from [Yeh and Cheng, 2008]).

In addition, we report the results of two other approaches which successfully in-

corporate spatial information into BoW: a combination of SPR with information

about the co-occurence visual words proposed by [Yang and Newsam, 2011] and

an adaptive spatial partitioning proposed by [Sharma et al., 2011] which try to

learn the best way to divide images into sub-regions. All the approaches above

are computed with hard coding.

The second part of the Table 3.4 shows the results on sparse coding. Our results

is compared to Sc-SPM and Kernel Sparse Representation (KSR-SPM) methods.

The Sc-SPM approach is a Spatial Pyramid Representation using sparse coding.

We show on here the results of Sc-SPM performed by both [Yang et al., 2009] and

[Boureau et al., 2010]. The KSR-SPM approach [Gao et al., 2010] is the combina-

tion of SPR with a sparse kernel representation technique. The results in Table 3.4

shows that our method definitely outperforms all other approaches for both hard

coding and sparse coding. It is important to note that the best result is obtained

with the smallest vocabulary of 100 words.

Results of Caltech 101 dataset

The classification performance of SMD on Caltech 101 dataset with both hard

coding and sparse coding are shown on Table 3.5. Again, we compare our approach

with SPR of [Lazebnik et al., 2006] for both hard coding and sparse coding. In

addition, we pay attention on SVM-KNN of [Zhang et al., 2006]. In this method,

authors used a hybrid classifier which is a combination of SVM and KNN to

improve the final classification performance. For each test image, first the KNN

classifier applies to find the K-closest images from the training set. If all these K

images have the same label, this label is assigned to the test image. If not, then a

SVM classifier is applied but only on these K training images. Moreover, in case of

using hard coding, we also compare our method with SPR+ Global Level Weight

(GLW) optimization [Bosch et al., 2008]. In this method, the weight for each level

pyramid is learned to get the optimal classification accuracy. Let us notice that

this approach used multi-scale dense SIFT descriptor compared to our single scale

dense SIFT descriptor.

From the Table 3.5, we see clearly that our method is compatible with SPR+GLW

but we use fixed weights for the pyramid levels. Also, in our method, we use

only single scale for SIFT, with smaller vocabulary. In comparison with other

Chapter 3 Approximate matching for image classification 59

approaches, our method outperforms all of them for both hard coding and sparse

coding. The best performance is obtained when using SMD with sparse coding

and the average classification accuracy is 73.48%.

Coding Approaches Accuracy (%)

Hard-coding

BoW baseline 40.12 ± 0.5 [100]

SPR [Lazebnik et al., 2006] 64.40 ± 0.8 [200]

SVM-KNN [Zhang et al., 2006] 66.23 ± 0.48 [-]

SPR+GLW [Bosch et al., 2008] 66.5 ± 0.70 [1500]

SMD 66.52 ± 0.51 [100]

Sparse-coding

BoW baseline 55.48 ± 1.30 [100]

ScSPM [Yang et al., 2009] 73.20 ± 0.50 [1024]

ScSPM [Boureau et al., 2010] 71.50 ± 1.1 [1024]

SMD 73.48 ± 1.2 [100]

Table 3.5: Classification accuracy on Caltech 101 dataset using di↵erent ap-

proaches and coding methods. The result of SMD are obtained with codebook

size K = 100, pyramid scheme L = 2, N = 13 and edit operation weight

w = 0.8 for both hard coding and sparse coding. For other methods, the results

are obtained with the codebook size (if available) given in bracket.

Results on Graz-01 dataset

We also applied our approach to Graz-01dataset. For evaluation, we keep the same

setup as [Lazebnik et al., 2006] with dense-SIFT and hard-assignment coding. We

chose to train on 100 positive images (bike or person) and 100 negative images

(where 50 images are from the background class) and test on the rest. We reports

the average of equal error rates over ten runs. As can be seen from the Table

3.6, the results are very impressive: our SMD outperforms SPR by 6%, and the

combination of SPR+co-occurence of visual words [Yang and Newsam, 2011] by

about 1 % for both two classes.

Class SPR
SPR+

SMD
co-cocurrence

Bike 86.5 ± 2.5 91.0 ± 4.8 92.1 ±2.2
Person 82.3 ± 3.1 87.2 ± 3.8 88.2 ±3.5

Table 3.6: The comparison about classification performance (Average of
equal error rate) of our proposed with SPR and SPR+co-occurence on Graz-01

dataset. All methods use hard coding

Chapter 3 Approximate matching for image classification 60

Results on Corel10 dataset

Our purpose of this experiment is to compare our string-based distance with Spa-

tial Mismatch Kernel of [Lu and Ip, 2009]. We keep the same setup as the authors,

that is we randomly select 50 images as training data and use the rest as test data.

We show in the Table 3.7, the results obtained with SVM one vs all 2 and 10 fold

cross validation on hard coding. Moreover, our results with hard coding are shown

compatible with the results of KSR-SPR of [Gao et al., 2010] using sparse coding.

Our method outperforms Spatial Mismatch kernel by about 6.4 % and SPR in

both cases of using hard coding (3.1 %) and sparse coding (2.9 %). We believe

that, the performance of SMD can be improved by using sparse coding (as seen

with Caltech 101 and 15 Scene datasets.)

Coding Approaches Accuracy (%)

Hard-coding

BoW baseline 80.20 ± 3.3

SPR [Lazebnik et al., 2006] 85.98 ± 1.4

Spatial Mismatch Kernel [Lu and Ip, 2009] 82.7 ± 3.0

SMD 89.1 ± 0.88

Sparse-coding
Sc-SPR 86.20 ± 1.01

KSR-SPR [Gao et al., 2010] 89.43 ± 1.27

Table 3.7: Classification accuracy on Corel10 dataset using di↵erent ap-

proaches and coding methods. The result of SMD are obtained with hardcoding,

codebook size K = 100, B = 1, N = 9 and weight w = 0.8.

Results on Pascal2007 dataset

With Pascal 2007 dataset, we report the Average Precision (AP) values.We com-

pare our result with SPR approach which is computed by ourself. However, for fair

comparison, we do not report the results of other approaches since we use a very

naive configuration, that is: single SIFT descriptor on single scale (16x16 pixels,

overlap 8); small codebook size K = 100 and only edit kernel with SVM. Almost

all other approaches use multi-scale descriptors with multiple image features (tex-

ture, color, shape), with multiple kernels learning, and typically the codebook size

is larger, about 1000 words in order to obtain an optimal performance.

2[Lu and Ip, 2009] reported results with SVM one vs one

Chapter 3 Approximate matching for image classification 61

Method Aero Bicyc Bird Boat Bottle Bus Car Cat Chair Cow

SPR 58.16 30.55 29.14 51.10 20.79 39.36 63.35 29.83 41.25 23.41

SMD 60.33 46.99 29.52 58.98 16.39 52.84 68.68 39.59 48.05 33.73

Method Table Dog Horse Mbike Person Plant Sheep Sofa Train TV Mean

SPR 36.80 31.72 65.96 41.73 72.44 18.12 26.85 33.39 55.01 29.04 39.90

SMD 44.11 35.51 70.60 50.98 75.79 17.56 32.51 42.46 67.72 39.95 46.62

Table 3.8: Image classification results (AP) on Pascal 2007 dataset. The

codebook size is fixed to K = 100 for all approaches. The results of SMD is

obtained with N = 16; pyramid with L = 2 and w = 0.8.

Our approach has very successful performance compared with the standard SPR.

SMD shows better classification for 18/20 classes. With several classes, the dif-

ference is significant such as Bicycle 16.5 %, Bus 13.5 %, Cow 10.3%, Sofa 9%,

Train 12.7 % and TV 11 %. In average, our SMD is superior to SPR by about

(6.7 %).

3.6 Conclusion

In this chapter, we first described a novel image representation as strings of his-

tograms which encode spatial information, each histogram being a BoW model of

a subregion. Then, we introduced a new edit-distance able to automatically iden-

tify local alignments between subregions and sequences of similar subregions. This

characteristic makes our method more robust to translation or scale variations of

objects in images than SPR-based approaches that compare rigidly corresponding

parts of images. The experiments confirm that our model is able to take into

account spatial relationships between local BoW and leads to a clear improvement

of performance in the context of scene and image classification compared to the

classical spatial pyramid representation. It is worth noticing that to the best of

our knowledge, it is the first time that results better than SPR are reported with

the standard BoW coding and a lower dimension for the representation. More-

over, the proposed approach obtain similar or better accuracies than other recent

methods trying to infuse spatial relationships into the original BoW model with

the great advantage of using a small codebook and a compact representation.

Chapter 4

Merge-based edit-distance for

strings of histograms

Abstract: The previous chapter described the String Matching Distance which

uses string-based representation and string matching to compare two images. In

this chapter, we propose two extensions of SMD to further improve the recognition

performance. Our motivation is to study other possible options of extended edit-

distance and to find better ways to compare our image string of histograms. We

extend the edit-distance by using merge operations. The performance of these ex-

tended distances are evaluated on 15 Scene, Caltech 101 and Pascal 2007 datasets.

4.1 Motivation

The previous chapter has focused on the String Matching Distance algorithm which

uses string-based representation and string matching approaches to measure im-

age similarity. In SMD algorithm, two new definitions of deletion and insertion

operations were provided. In main idea of the approach is to delete a region when

its content is almost identical to its next neighboring one.The deletion/insertion

of a region is therefore applied when the content of this region is more similar to

its successive region than the corresponding one in the other image.

Figure 4.1(a) illustrates this procedure: the two images are divided into 4 regions.

In the first image, the first region (sky) has similar visual content to the second

region, then it is deleted. The second one also looks like the third one therefore

it is removed. In the second image, the first region has the same visual content

62

Chapter 4 Merge-based edit-distance for strings of histograms 63

as the second region thus it can be ignored. Likewise, the third region is removed

because it is very similar to the fourth region. Finally, the image matching results

associating in the third region of the first image and the second region of the

second image, as well as the fourth region of the first image and the fourth region

of the second one.

These definitions have the advantage to detect and set aside identical regions inside

an image. Hence, the matching between regions of two images is more robust

than the rigid matching. However, it also introduces several disadvantages. If a

deletion/insertion of a region is applied, this region is totally ignored in all future

computations of edit distance and only its next region is kept in the string for

remaining calculations. Because two consecutive regions may not be completely

identical, using the second region instead of the first one in future computation

of the distance is arbitrary. Moreover, ignoring the deleted region leads to loss of

information.

To deal with these problems, we think it is better to keep both regions and use

their information for future computation. Inspired by this motivation, we replace

the deletion operation by a new edit operation, merge operation, which combines

two or more regions inside an image to create a new one.

An example of this merge operation is demonstrated in Figure 4.1(b). Here, the

three first regions of the first image are combined to create a single one due to the

similar visual content. In the same way, the first and second regions, the third

and the fourth regions of the second image are grouped together. The matching

of two images is then between these combined-regions. It is more precise ap-

proach compared to SMD (Figure 4.1(a)) because it keeps all the image content

information.

4.2 Related work

The merge operation has been introduced with string distance on several appli-

cations. [Khurshid et al., 2009] introduced the merge-split operations in order to

detect/recognize words in scanned document retrieval applications. Typically, the

low quality scanning of documents may introduce some noise which causes di�-

culty to detect or to recognize the characters. For this reason, the author proposed

the merge operation which allows the combination of two symbols to make a new

one, and the split operation which allows a symbol to be divided into two symbols.

Chapter 4 Merge-based edit-distance for strings of histograms 64

(a) Matching of regions in SMD algorithm

(b) Matching of regions with new merge operation

Figure 4.1: Example about SMD-matching and merge region based matching.

[Christodoulakis and Brey, 2009] also introduced combination-split edit-distance

in OCR pattern matching. In order to cope with inexactness pattern matching,

the authors introduced two more edit operations: the combination operation that

combines two or more symbols from the first string to match with a single symbol

from the second string. Equivalently, a single symbol of one string can be split

and matched with a sequence of symbols in the other. The decision of which com-

bination will match to which symbol depends on applications. For example in this

paper, the authors group a sequence of symbols that look similar to one symbol

and treat it as this symbol (likes rn = m, ii = n, . . .).

The merge operation was also introduced in computer vision applications. [Tsai

and Yu, 1985] presented a merge operation with Attribute String Distance for

Shape recognition task. A new operation can be used to combine a number of

consecutive boundary primitives in one shape and to match with those in another

shape.

In applications of content based video retrieval, [Adjeroh et al., 1999] proposed

v-string to measure similarity of two video sequences. The distance between two

video sequences is described as a problem of sequence to sequence matching. Since

Chapter 4 Merge-based edit-distance for strings of histograms 65

videos always contain temporal information (such as order of frames), repetitions,

several video edit operations (such as special e↵ect transitions), video functional-

ities (such as fast-forward, slow motion, frame skipping) edit-distance with only

three basic edit operations (insertion, deletion, substitution) is not robust enough

to compute distance between two video sequences. The authors then introduced

the v-string edit-distance with merge operation (i.e combination of two or several

similar frames to a single frame) and fission operation (i.e separation of one frame

into two or more similar frames). These two operations are performed o✏ine before

computing the video sequence distance.

In our case, we define the merge operation as a combination of two or more sim-

ilar regions from one image. With the new operation, we propose a merge-based

string matching approach, called m-SMD, which allows regions to be grouped to-

gether, separately in each image, depending on the image visual content. This

distance automatically identifies local alignments between sub-regions or groups

of similar sub-regions in the images. With the proposed operation, the number of

sub-regions for di↵erent images may vary and is adjusted according to the visual

content, which brings more flexibility to the matching process.

Compared to partition learning approach ([Sharma et al., 2011]) and randomized

partition ([Jiang et al., 2012]) our approach presents the advantage to get a par-

tition grid for each pair of images in order to have a better matching. Also, no

learning process is needed. The image division grid is obtained along with the

distance computation.

The rest of this chapter is organized as follows: Section 4.3 explains how to com-

pute the new edit-distance with the merge operation. We introduce two frame-

works to compute the merge-based approach in Section 4.4: a greedy m-SMD

algorithm and a recursive m-SMD algorithm in the sub sections 4.4.1 and 4.4.2.

Section 4.5 describes the experiments and discusses about results obtained with

scene and object datasets. Finally, we sum up the chapter in Section 4.6.

4.3 Adding new merge operation into SMD

The underlying idea of this section is to define a new edit-distance, m-SMD, which

supports a merge operation between regions and which is adapted to our string of

local histograms image representation.

Chapter 4 Merge-based edit-distance for strings of histograms 66

4.3.1 Principle

The principle of m-SMD is to allow regions to be merged depending of their visual

content. When two regions are merged, the resulting histogram is the combination

of the two initial ones. Then, depending on merge operations made within each

string, one single region of one image may be matched to a set of merged regions

in the other image, resulting in a better matching between the two images.

In order to determine which regions to merge, we formulate it as a problem of

deleting a region in string matching. For example, two strings X = {x
1

, x
2

, . . . xM}
and Y = {y

1

, y
2

, . . . yN} have M and N symbols. To delete symbol xi, we combine

this symbol with its next symbol xi+1

. The cost of this operation is computed as

the ground distance d(xi, xi+1

) between the two histograms symbols . One new

symbol is then generated, as the combination of the two symbols xi and xi+1

. This

new symbol is denoted as x̄i!i+1

. So x̄i!i+1

= merge(xi, xi+1

).

With this definition, there is neither deletion nor insertion operation in the new

distance. However, we can also remark that the merge operation of symbols xi and

xi+1

can be seen as the deletion of symbol xi followed by a modification of symbol

xi+1

which is assigned to the result of the merge operation. Then, two successive

symbols xi and xi+1

are likely to be merged if their distance is lower than the

distance between the first symbol xi and the symbol yj in the other string. In

summary, the costs functions and symbol updating are defined as:

8
>>><

>>>:

csub(xi, yj) = d(xi, yj)

cmerge(xi ! xi+1

) = d(xi, xi+1

);Update: x̄i!i+1

= merge(xi, xi+1

)

cmerge(yj ! yj+1

) = d(yj, yj+1

);Update: ȳj!j+1

= merge(yj, yj+1

)

(4.1)

We also can define the weighting scheme for the edit operations similar to that of

SMD as described in Chapter 3:

8
>>><

>>>:

csub(xi, yj) = d(xi, yj)

cmerge(xi ! xi+1

) = w.d(xi, xi+1

);Update: x̄i!i+1

= merge(xi, xi+1

)

cmerge(yj ! yj+1

) = w.d(yj, yj+1

);Update: ȳj!j+1

= merge(yj, yj+1

)

(4.2)

where w is a weight parameter which controls the ratio between substitutions and

insertion/deletion operations.

Chapter 4 Merge-based edit-distance for strings of histograms 67

4.3.2 Merge operation

Merge operation of sequence of symbols:

In the definition, the merge operation is done on two successive symbols. How-

ever, when successive merge operations occurs, symbol xi+k can be merged with

sequence of k symbols xi, xi+1

, . . . , xi+k�1

. The result of the merging of the

k + 1 symbols xi, xi+1

, . . . , xi+k is denoted as x̄i!i+k and we have: x̄i!i+k =

merge(x̄i!i+k�1

, xi+k).

The total cost for merging can be computed as the cost to merge first (k � 1)

symbols with xi+k. So:

cmerge(xi ! xi+k) = cmerge(xi ! xi+k�1

) + d(x̄i!i+k�1

, xi+k)

= cmerge(xi ! xi+k�2

) + d(x̄i!i+k�2

, xi+k�1

) + d(x̄i!i+k�1

, xi+k)

=
kX

l=1

d(x̄i!i+l�1

, xi+l)

where cmerge(xi ! xi+k) is the cost to merge k successive symbols xi, xi+1

, . . . , xi+k.

We discuss about how to determine this new merged symbol in below.

Merge operation with normalization:

Since the merge operation means combination of two successive regions, merge

operation of two symbols returns a new symbol as the averaged of the two his-

tograms. The question that arises is what is the result of merging a sequence

regions?

Because all original regions in an image string have the same role, a combination

of a N merged regions with a new region should be considered as the merge of

N + 1 regions. Therefore, it is necessary to perform normalization of the regions

before and after combining together.

Each region is represented as (Hn) where H is its histogram and n is the number

of merging (i.e. number of regions used to compute H). The original regions have

n = 1. Each time two symbols are merged, it is necessary to save both the sum of

their two histograms and sum of number merging. The normalized histogram of a

Chapter 4 Merge-based edit-distance for strings of histograms 68

new symbol is the result of the division the sum of the histograms with the total

number of merging the original regions. For instance, the normalized histogram

of the merged region (Hn) is
H
n
.

Figure 4.2: Example about using merge operation with normalization.

Example 1: A simple toy example of using the merge operation with normalization

is illustrated on Figure 4.2, where the toy image is divided into three regions. This

image is represented as local BoWs, using three visual codewords (star, triangle

and circle). Image string X = {x
1

, x
2

, x
3

} is described by the symbols histograms

which are shown beside regions. A histogram is denoted as a triplet of three

values separated by character ”|”. We choose l
1

as ground distance. The merging

of region 1 and region 2 returns a new region (2|4|5)
2

. The normalized histogram

of the new symbol is (2|4|5)
2

= (1|2|2.5). The subsequent merging of region 3 returns

a new region which is the sum of (2|4|5)
2

with (1|1|1)
1

and equals (3|5|6)
3

. The

normalized histogram of this new symbol is (3|5|6)
3

= (1|5
3

|2)

Example 2: In this example, we plan to illustrate the use of the merge operation

in computation of the distance. The two toys images of Figure 4.3, are divided

into three regions. These images are represented as strings of local BoWs with

three visual codewords. We still choose l
1

as ground distance. To fill the cell D
(1,1)

of the distance matrix, we compute three di↵erent costs:

8
>>><

>>>:

Merge(x
1

, x
2

) : cmerge(x1

! x
2

) = d(x1, x2) = dl1((1|2|3)/1, (1|2|2)/1) = 1

Merge(y
1

, y
2

) : cmerge(y1 ! y
2

) = d(y1, y2) = dl1((2|1|1)/1, (0|2|1)/1) = 3

Substitution(x
1

, y
1

) : csub(x1, y1) = d(x1, y1) = dl1((1|2|3)/1, (2|1|1)/1) = 4

so a merge operation is applied on string X and after merging, a new symbol x̄
1!2

is generated, as the average of the combined region (1|2|3)
1

+ (1|2|2)
1

= (2|2|5)
2

.

The normalized histogram of new symbol is x̄
1!2

= (2|2|5)
2

= (1|2|5
2

).

Chapter 4 Merge-based edit-distance for strings of histograms 69

Figure 4.3: Example about using merge operation in computation of the dis-
tance.

4.4 New merge-based edit distance

The previous section has discussed the principle of the proposed merge-based

String Matching Distance, m-SMD. In this part, we present in details the al-

gorithm to compute this distance.

4.4.1 Greedy merge-based SMD algorithm

Compared to SMD, m-SMD requires to modify the symbols each time the merge

operation is applied. More precisely, each merge operation generates a new symbol

obtained by combining the histogram of the current symbol with the next one. As

a consequence, the original strings are modified. If we use dynamic programming,

as presented in Algorithm 1, to compute this distance; at the step (i, j), the update

equation must revise as:

D
(i,j) = min

8
>>><

>>>:

D
(i�1,j�1)

+ csub(x̄i, ȳj)

D
(i�1,j) + cmerge(x̄i ! x̄i+1

)

D
(i,j�1)

+ cmerge(ȳj ! ȳj+1

)

(4.3)

where X̄ = {x̄i} and Ȳ = {ȳj} are strings obtained after the previous iteration.

They can be the original strings (if only substitution is used) or modified ones (if

any merge operations has been used).

Chapter 4 Merge-based edit-distance for strings of histograms 70

To compute the distance, it is necessary to update these strings at each step. Note

that it should not change the initial strings because other edit scripts not using

this merge operation may be obtained in the dynamic programming algorithm. It

is, therefore, essential to store two new matrices Sx and Sy respectively containing,

for each cell (i, j), the next symbol of string X (M) and string Y(N) after applying

each edit operation (See the example shows in Table 4.1 below).

Algorithm 2 describes in pseudo code how to compute m-SMD by dynamic pro-

gramming. At each iteration, depending on which edit operation is employed, the

following symbols are updated in MergeUpdate function.

Example :

An example of computation of the m-SMD using dynamic programming between

two strings of histograms of three words X = {(1|2|3), (1|2|3), (4|1|1), (4|2|0)} and

Y = {(3|1|2), (3|1|2), (3|1|2), (4|0|2)} is shown on Table 4.1.

D Y (0|0|0) (3|1|2) (3|1|2) (3|1|2) (4|0|2)
X

Sy (3|1|2)
1

(6|2|4)
2

(9|3|6)
3

(13|3|8)
4

(13|3|8)
4

(0|0|0) 0 0 0 2 8

Sx (1|2|3)
1

(1|2|3)
1

(1|2|3)
1

(1|2|3)
1

(1|2|3)
1

(3|1|2)
1

(6|2|4)
2

(9|3|6)
3

(13|3|8)
4

(0|0|0)
1

(1|2|3) 0 0 0 2 6.5

(2|4|6)
2

(2|4|6)
2

(2|4|6)
2

(2|4|6)
2

(1|2|3)
1

(3|1|2)
1

(3|1|2)
1

(3|1|2)
1

(4|0|2)
1

(0|0|0)
1

(1|2|3) 6 4 4 4 6.5

(6|5|7)
3

(4|1|1)
1

(4|1|1)
1

(4|1|1)
1

(4|1|1)
1

(3|1|2)
1

(3|1|2)
1

(3|1|2)
1

(4|0|2)
1

(0|0|0)
1

(4|1|1) 32/3 6 6 6 6

(10|7|7)
4

(8|3|1)
2

(4|2|0)
1

(4|2|0)
1

(4|2|0)
1

(3|1|2)
1

(3|1|2)
1

(3|1|2)
1

(4|0|2)
1

(0|0|0)
1

(4|2|0) 50/3 12 9 10 10

(10|7|7)
4

(8|3|1)
2

(0|0|0)
1

(0|0|0)
1

(0|0|0)
1

Table 4.1: The computation of m-SMD using dynamic programming as de-

scribed in Algorithm 2.

Chapter 4 Merge-based edit-distance for strings of histograms 71

Algorithm 2 m-SMD: merge-based String Matching Distance Algorithm using

Dynamic Programming
1: Input: Two strings X (M) and Y(N)

2: Initial:

3: D(0, 0) 0

4: Sx(0, 0) x
1

5: Sy(0, 0) y
1

6: for i = 1 to M do

7: D
(i,0) = D

(i�1,0) + cmerge(Sx(i� 1, 0)! xi+1

)

8: mergeUpdate (Sx, Sy, i, 0, 1)

9: end for

10: for j = 1 to N do

11: D
(0,j) = D

(0,j�1)

+ cmerge(Sy(0, yj)! yj+1

)

12: mergeUpdate (Sx, Sy, 0, j, 2)

13: end for

14: Loop:

15: for i = 1 to M do

16: for j = 1 to N do

17: d
1

= D
(i�1,j) + cmerge(Sx(i� 1, j)! xi+1

)

18: d
2

= D
(i,j�1)

+ cmerge(Sy(i, j � 1)! yj+1

)

19: d
3

= D
(i�1,j�1)

+ csub(Sx(i� 1, j � 1), Sy(i� 1, j � 1)

20: Index k argk=(1,2,3) min dk

21: D
(i,j) = dk

22: mergeUpdate (Sx, Sy, i, j, k)

23: end for

24: end for

25: return D(M,N)

26:

27: mergeUpdate Algorithm:

28: Input: Sx, Sy, i, j, k

29: if k = 1 then

30: Sx(i, j) Sx(i� 1) + xi+1

31: Sy(i, j) yj+1

32: else if k = 2 then

33: Sx(i, j) xi+1

34: Sy(i, j) Sy(j � 1) + yj+1

35: else {k = 3}
36: Sx(i, j) xi+1

37: Sy(i, j) yj+1

38: end if

Chapter 4 Merge-based edit-distance for strings of histograms 72

The first column and the first row of the table are the original strings X and Y .

We use a blue color for the matrix Sx and a red color for Sy. The values which

are saved in Sx and Sy are (Hn) where H is the combination histograms, n is the

total number of merging. Note that, the computation of the edit operation cost

needs to use the normalized histogram, which is H
n
.

In the middle of each cell is the value of distance matrix D.

To fill out the matrix, we start with initial values: D
(0,0) = 0, Sx(0, 0) = x

1

=

(1|2|3)
1

and Sy(0, 0) = y
1

= (3|1|2)
1

. The value of D
(1,0) is obtained by merging

x
1

with x
2

and is computed as:

D
(1,0) = D

(0,0) + cmerge(Sx(0, 0), x2

)

= 0 + dl1((1|2|3)/1, (1|2|3)) = 0(line 7 in Algorithm 2).

After merging, we have to update the symbols and save them to the matrices

Sx, Sy (line 8),

Sx(1, 0) Sx(0, 0) + x
2

= (1|2|3)
1

, (1|2|3)
1

= (2|4|6)
2

Sy(1, 0) y
1

= (3|1|2)
1

The information of D
(1,0), Sx(1, 0) and Sy(1, 0) are saved into the cell. This infor-

mation will be used in future computations with edit scripts related to this cell.

Using the loop from line 6 to line 9 we can fill the second column of the table.

In the same way, we can fill the second row by applying the loop from line 10 to

line 13. Now, to fill the rest of the table, we apply the loop from line 15 to line

24. For instance, we can calculate the values of D(2, 3) (cell (4,5)) of the table)

by using the information of the cells D(1, 2), D(1, 3) and D(2, 2):

8
>>><

>>>:

d
1

= D
(1,3) + cmerge(Sx(1, 3)! x

3

) = 2 + dl1(
(2|4|6)

2

, (4|1|1)
1

) = 8

d
2

= D
(2,2) + cmerge(Sy(2, 2)! y

4

) = 4 + dl1(
(3|1|2)

1

, (4|0|2)
1

) = 6

d
3

= D
(1,2) + csub(Sx(1, 2), Sy(1, 2)) = 0 + dl1(

(2|4|6)
2

, (9|3|6)
3

) = 4

min(d
1

, d
2

, d
3

) is d
3

so D
(2,3) = d

3

= 4 and k = 3 such that mergeUpdate will be:

Chapter 4 Merge-based edit-distance for strings of histograms 73

Sx(2, 3) x
3

= (4|1|1)
1

Sy(2, 3) y
4

= (4|0|2)
1

The information of D
(2,3), Sx(2, 3) and Sy(2, 3) are then saved into this cell. Con-

tinuing the computation, we obtain the distance of the two image strings X and

Y is 10, which is the value of the last cell of the table. We also obtain the edit

script, in this case, is highlighted on the Table 4.1. Following the edit script, it can

be plotted the matching alignment between two image strings as in Figure 4.4(a).

Note that in some cases, we can have several possibilities to choose among d
1

, d
2

, d
3

(line 20 in Algorithm 2). For example, to fill in cell D
(2,2), we can equally choose

a merging from cell D
(2,1) or a substitution from cell D

(1,1). The choice of keeping

the merging or the substitution could a↵ect subsequent computation leading to

a non optimal edit script as shown in Figure 4.4. This is why this algorithm is

qualified as greedy.

(a) String alignment and final cost which obtained

by greedy method.

(b) A better edit script

Figure 4.4: An example shows the greedy method is not optimal/true edit
distance, since it does not produce a minimum edit script to convert one string

to the another string.

Computational complexity:

The calculation of m-SMD between two image strings of length M and N is de-

scribed in Algorithm 2. Like the computation of SMD, it is required to fill out

the matrix D(M ⇥ N). At each step, we have to determine not only three edit

operations cost (as SMD) but also need to compute the mergeUpdate new sym-

bol. With the local histogram of size K and a l
1

as ground distance, it requires

O(K) operations for computing each edit cost or update symbol. However, using

algorithm theory, the complexity of each step is still O(K). So finally, it needs

Chapter 4 Merge-based edit-distance for strings of histograms 74

O(K⇥M⇥N) operations to compute m-SMD between two image strings of length

M and N.

If the images are divided into B bands and N regions, the computation must

be repeated B times. Compared to SMD, m-SMD needs more computation time

because of the merge update step. However, both algorithms have the same com-

plexity, which is O(K ⇥ B ⇥N2).

Discussion:

The edit-distance between two strings has been defined as the minimum edit script

cost to convert one string into the other one. However, in Algorithm 2, due to the

changes of the symbols during the computation and as a consequence, multiple

possibilities to update symbols, there is no guarantee that the final distance is the

minimum edit script cost. For instance, in the example above, we can have an

other edit-script which introduces a smaller edit cost, as shown on Figure 4.4(b).

4.4.2 Recursive merge-based SMD

To obtain the optimal distance (i.e. the minimum cost of edit scrip), it is necessary

to check all the possible edit scripts to convert the first string into the second one.

In this case, the recursive solution is a good choice since it basically checks all the

possibilities and computes the minimum edit script cost to convert one string into

the other. The recursive algorithm is described as below:

Algorithm 3 m-SMD : Recursive merge-based String Matching Distance Algo-

rithm
1: Input: Two strings X (M) = {x

1

, x
2

, ..., xM} and Y(N) = {y
1

, y
2

, ..., yN}
2: if M = 0 then

3: return cost-to-Delete Y(N)

4: end if

5: if N = 0 then

6: return cost-to-Delete X (M)

7: end if

8: d
1

= cmerge(x1

, x
2

) +m-SMD(X̄ (M � 1),Y(N))

9: d
2

= cmerge(y1, y2) +m-SMD(X (M), Ȳ(N � 1))

10: d
3

= csub(x1

, y
1

) +m-SMD(X (M � 1),Y(M � 1))

11: return min(d
1

, d
2

, d
3

)

Chapter 4 Merge-based edit-distance for strings of histograms 75

where X̄ is the updated-string after doing a merge operation on the two first

symbols x
1

, x
2

of string X ; Ȳ is the updated-string after doing a merge operation

on the two first symbols y
1

, y
2

of string Y .

It can be noticed that, after each recursive call, the total length of strings is

reduced. Depending on the edit operation, merging on string X , merging on string

Y or substitution, we call the function again but with smaller strings. If a merge

operation is used, it is necessary to update the strings into X̄ or Ȳ and to employ

the function on these new smaller updated strings. The recursive call stops till the

two strings are empty. However, the main drawback of this algorithm is its high

complexity - which is O(3max(N,M)). For practical purpose, it is essential to reduce

the computation time. Since the method may repeatedly calculate several times

the distance between sub strings, the possible solution is to re-use this information.

We notice that:

• Successive merge operations on the first and the second string can be done

in any order leading to identical merged symbols and identical total merge

cost.

• After a substitution, the two remaining strings do not contain any merged

symbols. It means, that the two remaining strings are identical to the original

sub-strings.

Thus, the general scenario for matching two strings X and Y is:

• Merging the first i symbols of X , which costs cmerge(x1

! xi). i = 1 means

that no merge operations are employed on string X . The resulting combined

symbol is x̄
1!i.

• Merging the first j symbols of Y , which costs cmerge(y1 ! yj). j = 1 means

that no merge operations are employed on string Y . The resulting combined

symbol is ȳ
1!j.

• Substituting x̄
1!i with ȳ

1!j, which costs csub(x̄1!i, ȳ1!j)

• Re-computing the matching distance between the two sub-strings of X , Y :

{xi+1

, . . . xM} and {yj+1

, . . . yN}

Several examples of the matching scenario are illustrated on Figure 4.5.

Chapter 4 Merge-based edit-distance for strings of histograms 76

(a) i = 1, j = 1 (b) i = 2, j = 1 (c) i = 3, j = 2

(d) i = 1, j = 3 (e) i = M, j = 1 (f) i = M, j = N

Figure 4.5: The matching scenarios: After matching two symbols or sequence
of symbols (blue parts), we have to recompute the distance for two sub-strings

(red parts).

The total edit script cost for this scenario is:

Total-cost =cmerge(x1

! xi) + cmerge(y1 ! yj) + csub(x̄1!i, ȳ1!j)+

+m-SMD({xi+1

, . . . xM}, {yj+1

, . . . yN})

Since, the edit distance is the minimum cost of all possible edit scripts, we have

the equation:

m-SMD(X
(1!M)

,Y
(1!N)

) = min
i=1,Mj=1,N

(cmerge(x1

! xi) + cmerge(y1 ! yj)+

+csub(x̄1!i, ȳ1!j)+ m-SMD(X
(i+1!M)

,Y
(j+1!N)

)

Using this formula, it is clear that we can re-use the information about the distance

of the sub-strings; so it can reduce a lot the computation time.

Chapter 4 Merge-based edit-distance for strings of histograms 77

Computation complexity:

The evaluation of the algorithm complexity requires to count the total number

of possible merge operations on strings X and Y , as well as the total number of

possible substitutions.

For string X
(1!N)

= {x
1

, x
2

, . . . xN} of length N , we count N � 1 possible merge

operations involving x
1

: merge(x
1

, x
2

), merge(x
1

, x
2

, x
3

), . . . , merge(x
1

, . . . , xN).

In the same way, for sub-string X
(2!M)

= {x
2

, . . . xN}, there are N � 2 possible

merge operations involving x
2

.

Therefore, the total number of possible merge operations on the string X
(1!N)

is

(N � 1) + (N � 2) + (N � 3) + · · ·+ 0 and is therefore equal to N ⇥ (N � 1)/2.

With N ⇥ (N � 1)/2 possible symbols, there are N2 ⇥ (N � 1)2/4 possible ways

to match symbols at most.

In fact, the number of matches is smaller than this. We have indeed to take into

account an ordering constraint: a match always takes place from the beginning of

the string, and when one match is done, the next match will concern a smaller sub-

string. Therefore, the complexity to compute all possible substitutions is O(N4)

and to compute all possible merge symbols is O(N2).

At the end, the new method has only a polynomial complexity of order 4.

We could also think about reducing the total number of operations by applying

a merging constraint. In this case, we limit the maximum number of possible

combined symbols (i.e. maximum length of sequence of merging symbols). For

instance, if we fix the number of possible matches on a string of length N to a,

a ⌧ N , then the maximum total possible number of merge operations on this

string is only N ⇥ a. As a consequence, the maximum number of possible substi-

tutions is N2 ⇥ a2. Thus, the algorithm complexity is reduced to O(N2).

4.5 Experiments

In these experiments, we aim to compare the performance of SMD, greedy m-SMD

and recursive m-SMD with respect to accuracy and e�ciency. Three datasets, 15

Scene, Caltech 101 and Pascal 2007 are used for evaluation. Local features of all

the images are extracted by using a dense SIFT descriptor on a regular grid 16x16

pixels and with a step size of 8 pixels. The k-means clustering approach is applied

on a subset of descriptors to create the visual codebook. The codebook size is set

to K = 100. We report the classification accuracy using both hard coding and

Chapter 4 Merge-based edit-distance for strings of histograms 78

sparse coding for Caltech 101 and 15 Scene dataset. For Pascal 2007, only results

using hard coding are shown.

Classification performance on 15 Scene dataset:

The SMD, greedy m-SMD and recursive m-SMD distances are computed with

N = 16 and the weight is fixed to w = 0.8. We report both cases: using single

level (B = 1) and pyramid case with two levels (L = 2). In order to evaluate

the classification performance, we use the same train/test setup and kernel edit

distance as described in Chapter 3 which are: 100 images per class for training

and the rest for testing . We also recompute the baseline. In the single level case,

the baseline corresponds to the BoW performance and in the pyramid case, it

corresponds to the SPR framework. The results are shown on Table 4.2.

As shown, the recursive merge-based m-SMD approach outperforms both the orig-

inal SMD and greedy m-SMD approaches in all cases. It confirms the e↵ectiveness

of the combination of similar regions within images. However, the di↵erence of

classification performance between SMD and recursive m-SMD is small (from 0.02

% to 0.6%).

Coding Approaches Single level Pyramid

Hard-coding
baseline 73.28 ± 0.55 75.48 ± 0.58
SMD 82.36 ± 0.48 83.14 ± 0.67
greedy m-SMD 82.49 ± 0.68 83.07 ± 0.66
recursive m-SMD 82.65 ± 0.65 83.16 ± 0.77

Sparse-coding
baseline 63.49 ± 0.78 78.79 ± 0.59
SMD 83.36 ± 0.64 84.59 ± 0.70
greedy m-SMD 83.21 ± 0.39 85.16 ± 0.59
recursive m-SMD 83.84 ± 0.47 85.33 ± 0.76

Table 4.2: Classification accuracy for the 15 Scene dataset using di↵erent
approaches and coding methods. The results of SMD, greedy m-SMD, recursive
m-SMD are obtained with N = 16, B = 1 for single level, L=2 for pyramid,

K=100 and w=0.8

The behavior of greedy m-SMD is not so clear. In some cases, as the single level

case with hard coding or the pyramid with sparse coding, it seems to work better

than SMD. But in other cases, as pyramid with hard coding or single level with

sparse coding, the greedy version is slightly lower than SMD. All string-based

distances, SMD, greedy m-SMD and recursive m-SMD outperform the baseline.

The best performance, 85.33 %, is obtained with recursive version with sparse

coding and pyramid scheme.

Classification performance on Caltech 101 dataset:

Chapter 4 Merge-based edit-distance for strings of histograms 79

Coding Approaches Single level Pyramid

Hard-coding

baseline 52.39 ± 0.34 58.66 ± 0.42

SMD 65.46 ± 0.56 66.52 ± 0.51

greedy m-SMD 64.71 ± 0.68 66.12 ± 1.07

recursive m-SMD 65.78 ± 0.98 66.90 ± 0.86

Sparse-coding

baseline 55.05 ± 0.71 57.10 ± 0.93

SMD 73.05 ± 0.64 73.48 ± 1.2

greedy m-SMD 71.75 ± 0.97 73.37 ± 0.92

recursive m-SMD 73.24 ± 1.09 73.92 ± 0.91

Table 4.3: Classification accuracy for Caltech 101 dataset using di↵erent ap-

proaches and coding methods. The results of SMD, greedy m-SMD, recursive

m-SMD are obtained with N = 13; B = 4 for single level; L=2 for pyramid,

K=100 and w=0.8

Table 4.3 shows results on Caltech 101 dataset with hard assignment coding and

sparse coding methods. The distances are computed with N = 16, K = 100 and

weight w=0.8. In the single level case, B is fixed to 4. We use L = 2 for pyramid

scheme. We evaluate the classification performance using SVM one vs all, with

the edit kernel discussed in Chapter 3. We randomly select 30 images per class for

training and maximum 50 images per class for testing. The experiment is repeated

10 times and we report the average accuracy.

From this table we can see that: (i) The string-based approaches improve the base-

line for all cases. (ii) The recursive merge-based distance is the best one. (iii) The

greedy framework sometimes produces lower results than SMD. (iv) Again, the

best classification accuracy (73.92 %) is obtained with recursive framework using

the pyramid scheme and sparse coding.

Classification performance on Pascal 2007 dataset:

The Pascal 2007 dataset [Everingham et al., 2007] consists of 9963 images of

20 classes. It is an extremely challenging one due to variation of object scales

and poses. The classification performance is evaluated using Average Precision

(AP), following the setup for training/testing set of the VOC 2007 challenge. The

training set is composed of 5011 images and the test set contains 4952 images.

The classification performance of the three distances and the baseline (SPR) are

shown on Table 4.4

Chapter 4 Merge-based edit-distance for strings of histograms 80

Object class SPR SMD
greedy recursive

m-SMD m-SMD

Aeroplane 58.16 60.33 62.58 62.62

Bicycle 30.55 46.99 47.13 48.31

Bird 29.14 29.52 19.41 26.67

Boat 51.10 58.98 57.97 60.50

Bottle 20.79 16.39 19.03 18.48

Bus 39.36 52.84 54.34 55.13

Car 63.35 68.68 69.94 70.42

Cat 29.83 39.59 39.36 40.29

Chair 41.25 48.05 48.05 48.90

Cow 23.41 33.73 33.78 34.38

Table 36.80 44.11 45.00 45.80

Dog 31.72 35.51 33.23 35.36

Horse 65.96 70.60 71.59 72.83

Motorbike 41.73 50.98 53.29 53.64

Person 72.44 75.79 76.46 77.97

Plant 18.12 17.56 23.26 23.13

Sheep 26.85 32.51 25.99 33.08

Sofa 33.39 42.47 44.00 44.73

Train 55.01 67.72 67.94 69.07

TV 29.04 39.95 40.17 41.29

Mean 39.90 46.62 46.63 48.13

Table 4.4: Image classification results (AP) on Pascal 2007 dataset using

di↵erent frameworks. The codebook size is fixed to K = 100 for all approaches.

The results of SMD, greedy m-SMD, recursive m-SMD are obtained with N =

16; pyramid with L = 2 and w = 0.8.

The string based approaches have shown significant improvement over the SPR

baseline (from +6.7 % in case of SMD to 8.23 % in case of recursive m-SMD). The

recursive merged-based framework is the winner since it has the best performance

for 17 classes out of 20. The merged regions idea seems very well suited to the

Plant class, since it improves by about 5.5 % the classification performance. Also

with the Aeroplane, Bottle, Bus, Horse, Motorbike, Person and Sofa classes, the

gap between the two methods is more than 2 %. Again, the performance of the

greedy framework is still very confusing. For several classes, it works equally or

slightly better than SMD but for some classes, for example Bird, Sheep, Dog it

Chapter 4 Merge-based edit-distance for strings of histograms 81

fails to handle the classification. However, in average, it produces lightly the same

performance as SMD. The best AP is 48.13 % obtained with recursive m-SMD,

which is higher than the results obtained with SMD or greedy m-SMD by about

1.5 %.

Complexity:

The purpose of the following experiments is to examine the computation time of

the three string of histogram distances with respect to di↵erent parameters. We

take randomly 1000 pairs of images from the 15 Scene dataset and calculate the

execution time needed to compute the 1000 distances. The implementation is in

C++ and the experiments are run on a 2700MHz PC under Linux operating

system. Experiments are repeated 10 times and we report the average value.

Figure 4.6 illustrates the execution times obtained with SMD and greedy m-SMD

varying the number of regions N from 1 to 16. Note that the x-axis is N2. Here,

the codebook size is fixed to K = 100 and the number of bands to B = 1. From

this figure, we notice that, when the number of regions is small (N < 9), the time

to compute either SMD or greedy m-SMD is nearly the same. However, when N

is high, more time is needed to compute the greedy distance. However, the gap

between the two lines is still small. In addition, both curves are almost linear

functions of the square of the number of regions. It confirms that the complexity

of SMD and greedy m-SMD is O(N2).

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of regions2

E
xe

cu
tio

n
 t
im

e
 (

s)

SMD
greedy m−SMD

Figure 4.6: Implementation times (s) to compute 1000 SMD or greedy m-SMD
distances versus square of Number of regions. The images are taken from 15

Scene dataset. Here, B = 1, K = 100.

We also study the complexity of recursive m-SMD in Figure 4.7 and Figure 4.8

compares the computation time of the three proposed string distances. The code-

book size is fixed to K = 100 words and the number of bands is fixed to B = 1.

First, to verify that the complexity of recursive m-SMD is O(N4), we plot the

Chapter 4 Merge-based edit-distance for strings of histograms 82

computation time versus the power four of N in Figure 4.7. We obtain a linear

curve, which provides an experimental proof of the algorithm complexity given in

section 4.4.2.

In Figure 4.8, we notice that: when N is small, the gap between recursive m-

SMD and the two other lines is not too significant. Nevertheless, it dramatically

increases when N becomes higher.

0 1 2 3 4 5 6 7

x 10
4

0

2

4

6

8

10

12

14

16

18

Number of regions4

E
xe

cu
tio

n
 t

im
e
 (

s)

recursive m−SMD

Figure 4.7: Implementation times (s) to compute 1000 recursive m-SMD dis-
tances versus the power four of the number of regions. Images are taken from

the 15 Scene dataset. Here, B = 1, K = 100.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

18

Number of regions (N)

E
xe

cu
tio

n
 t

im
e

 (
s)

SMD
greedy m−SMD
recursive m−SMD

Figure 4.8: Implementation times (s) to compute 1000 SMD, greedy m-SMD
or recursive m-SMD distances versus the number of regions.

4.6 Conclusion

This chapter has presented a new merge-based string matching edit-distance, along

with two algorithms to compute it: a greedy one which uses Dynamic Program-

ming and an optimal one which is recursive. Thanks to the new merge edit op-

eration, the recursive merge-based distance has shown improvement over SMD

Chapter 4 Merge-based edit-distance for strings of histograms 83

distance discussed in the previous chapter. The results on Pascal 2007 dataset

show that for several object classes, the idea of merging regions can improve sig-

nificantly the image classification. However, the computational cost of the exact

version is still high (O(N4)). As explained in section 4.4.2, this complexity can

be reduced to O(N2) by constraining the total number of merging operations but

further experiments must be done to analyze the impact of the constraint on clas-

sification accuracy. Without considering this constraint, the complexity of the

recursive version is still too high against the positive gain obtained over SMD

(about 0.6 % for 15 Scene, 0.44 % for Caltech 101, 1.5 % for Pascal 2007). If we

want to employ the recursive merge-based SMD framework for practical purpose,

such as classifying a large dataset, it would be necessary to find a solution to re-

duce the computation time. This problem has not been solved in this thesis yet.

Hopefully, it could be solved using GPU in the near future.

Chapter 5

Conclusions

This thesis has addressed the problem of rigid matching in Spatial Pyramid Match-

ing based approaches. Our objective was to introduce a string matching model

in order to improve image representation and comparison in the context of image

classification. We have proposed to transform the local BoW representation into

strings of local BoW and to introduce a new class of string of local histogram edit

distances to measure image similarity. Below the summary of the key contributions

of our work.

• Our first contribution was to introduce a new string-based image represen-

tation model. In this model, the image is divided into regions, each region is

represented as a local histogram and treated as a symbol of a string. In addi-

tion, we proposed a Pyramid like strategy which includes a multi-resolution

scheme into our string representation. Our string model has the advantage of

incorporating order information between regions which can be further used

during image matching. The new representation was shown to be more e↵ec-

tive than the classical Pyramid matching representation when using region

by region matching.

• In order to take into account the sequential aspect of strings of local his-

tograms, our second contribution was to propose a new edit distance, de-

noted String Matching Distance (SMD). Unlike previous works of Yeh and

Cheng [2008]; Ballan et al. [2010] which use fix edit operation costs, we went

a step further with our SMD by proposing a new definition for deletion and

insertion costs. The image matching problem was formulated as finding the

optimal edit script to align two given image strings. This new definition

84

Chapter 5 Conclusions 85

helps to detect and set aside identical successive regions within images and

therefore improves the quality of the image matching. In addition, a substi-

tution weight was incorporated into the cost definition to control the balance

between substitutions and insertion/deletion operations. Moreover, the new

distance can be e�ciently calculated using Dynamic Programming.

• The SMD distance was shown to outperform rigid pairwise region matching.

It is because of its ability to detect and ignore identical successive regions

within images. We explored this idea and proposed to replace insertions and

deletions by region merging. Our third contribution was then to introduce an

extended version of SMD distance, called merge-based SMD, which indeed

supports a merge operation. Thanks to this new operation, the number of

sub regions and the grid divisions are adapted during the matching according

to the visual content of images. This brings more flexibility in the image

matching process.

• In the merge-based SMD distance, a new symbol is generated after each

merging and, as a consequence, the symbols are modified during the string

alignment. Then, the direct extension of SMD algorithm with merge opera-

tions does not produce the optimal edit script. The corresponding dynamic

programming based algorithm is thus qualified as a greedy version. Our

fourth contribution was to introduce a new version which evaluates all the

possible edit scripts and returns the optimal one. An e�cient recursive

algorithm was proposed to compute the result in a 4th order polynomial

complexity. The experimental evaluation demonstrated that the optimal

merge-based approach is more e�cient than both the greedy version and the

insertion/deletion based approaches.

• In the context of image classification, all the versions of the proposed string-

based distances showed significant improvements over classical methods.

They were evaluated using both hard and sparse coding. We believe that

these distances can be integrated in any other coding methods (as LLC

[Wang et al., 2010], semi soft coding [Liu et al., 2011]) or with several higher-

order statistics models such as Fisher Vectors (FV) [Perronnin et al., 2010],

Vectors of Locally Aggregated Descriptors (VLAD) [Jégou et al., 2010] or

Super-Vector Coding (SVC) [Zhou et al., 2010] to get better classification

performances.

Furthermore, there are still several open questions which can be studied in future

research.

Chapter 5 Conclusions 86

• Improve the complexity: One of the main drawbacks of the merge-based

edit distance is its computational complexity. We can remark that the O(n4)

complexity can be reduced to O(n2) if we limit the number of successive

symbol merging. A possible extension of the recursive algorithm could then

be to fix the maximum number of successive merge operations and to consider

the corresponding optimal edit script. An evaluation of this approach must

be done to see if it is relevant and to determine the optimal number of

maximum successive merge operations.

• Tree or graph based edit distances: As discussed in section 3.3 a promis-

ing approach is to provide a 2D extension of our work to better account for

the 2D nature of images. Although some 2D-string extensions or tree-based

approaches have been proposed, the direct adaptation of our work to these

extensions is still an open question.

• Using multi image features and multi kernel learning: Due to time

limitation, we just tested our algorithms on very simple features (dense SIFT

feature) to evaluate our new propositions. It is possible to extend the meth-

ods with denser features or multiple image features (such as color and shape)

with multiple kernel learning ([Vedaldi et al., 2009]) in order to obtain better

image classification accuracy.

• Applications to other domains: On the other hand, it is very promising

to evaluate the proposed distances in other domains such as video classi-

fication [Adjeroh et al., 1999; Ballan et al., 2010], pattern recognition in

document scanning and text retrieval [Christodoulakis and Brey, 2009] or

shape recognition [Tsai and Yu, 1985; Yeh and Cheng, 2008].

• Validation on large datasets: The last but not the least, it is of practical

importance to evaluate the proposed approaches on large scales datasets such

as Image Net ([Deng et al., 2009]).

Bibliography

Adjeroh, D. A., Lee, M.-C., and King, I. (1999). A distance measure for video

sequences. Computer Vision and Image Understanding, 75(1):25–45.

Aizerman, A., Braverman, E. M., and Rozoner, L. (1964). Theoretical foundations

of the potential function method in pattern recognition learning. Automation

and remote control, 25:821–837.

Avila, S., Thome, N., Cord, M., Valle, E., and De A AraúJo, A. (2013). Pooling

in image representation: The visual codeword point of view. Computer Vision

and Image Understanding, 117(5):453–465.

Ballan, L., Bertini, M., Del Bimbo, A., and Serra, G. (2010). Video event classifi-

cation using string kernels. Multimedia Tools and Applications, 48(1):69–87.

Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf: Speeded up robust features.

In Computer Vision–ECCV 2006, pages 404–417. Springer.

Belongie, S., Malik, J., and Puzicha, J. (2002). Shape matching and object recog-

nition using shape contexts. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 24(4):509–522.

Bosch, A., Zisserman, A., and Munoz, X. (2007). Representing shape with a

spatial pyramid kernel. In Proceedings of the 6th ACM international conference

on Image and video retrieval, pages 401–408. ACM.

Bosch, A., Zisserman, A., and Muoz, X. (2008). Scene classification using a hybrid

generative/discriminative approach. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 30(4):712–727.

Boureau, Y.-L., Bach, F., LeCun, Y., and Ponce, J. (2010). Learning mid-level

features for recognition. In Computer Vision and Pattern Recognition (CVPR),

2010 IEEE Conference on, pages 2559–2566. IEEE.

87

Bibliography 88

Boureau, Y.-L., Le Roux, N., Bach, F., Ponce, J., and LeCun, Y. (2011). Ask

the locals: multi-way local pooling for image recognition. In Computer Vision

(ICCV), 2011 IEEE International Conference on, pages 2651–2658. IEEE.

Cao, Y., Wang, C., Li, Z., Zhang, L., and Zhang, L. (2010). Spatial-bag-of-features.

In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference

on, pages 3352–3359. IEEE.

Chang, C.-C. and Lin, C.-J. (2011). Libsvm: a library for support vector machines.

ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27.

Christodoulakis, M. and Brey, G. (2009). Edit distance with combinations and

splits and its applications in ocr name matching. International Journal of Foun-

dations of Computer Science, 20(06):1047–1068.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning,

20(3):273–297.

Csurka, G., Dance, C., Fan, L., Willamowski, J., and Bray, C. (2004). Visual

categorization with bags of keypoints. In Workshop on statistical learning in

computer vision, ECCV, volume 1, pages 1–2.

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human

detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005.

IEEE Computer Society Conference on, volume 1, pages 886–893. IEEE.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet:

A large-scale hierarchical image database. In Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE.

Dorkó, G. and Schmid, C. (2005). Object Class Recognition Using Discriminative

Local Features. Rapport de recherche RR-5497, INRIA.

Duchenne, O., Joulin, A., and Ponce, J. (2011). A graph-matching kernel for

object categorization. In Computer Vision (ICCV), 2011 IEEE International

Conference on, pages 1792–1799. IEEE.

Everingham, M., Van Gool, L., Williams, C. K. I., Winn,

J., and Zisserman, A. (2007). The PASCAL Visual Object

Classes Challenge 2007 (VOC2007) Results. http://www.pascal-

network.org/challenges/VOC/voc2007/workshop/index.html.

Bibliography 89

Fei-Fei, L., Fergus, R., and Perona, P. (2004). Learning generative visual models

from few training examples: An incremental bayesian approach tested on 101

object categories. In Computer Vision and Pattern Recognition Workshop, 2004.

CVPRW ’04. Conference on, pages 178–178.

Gao, S., Tsang, I. W.-H., and Chia, L.-T. (2010). Kernel sparse representation

for image classification and face recognition. In Computer Vision–ECCV 2010,

pages 1–14. Springer.

Gehler, P. and Nowozin, S. (2009). On feature combination for multiclass object

classification. In Computer Vision, 2009 IEEE 12th International Conference

on, pages 221–228. IEEE.

Gokalp, D. and Aksoy, S. (2007). Scene classification using bag-of-regions rep-

resentations. In Computer Vision and Pattern Recognition, 2007. CVPR’07.

IEEE Conference on, pages 1–8. IEEE.

Grauman, K. and Darrell, T. (2005). The pyramid match kernel: Discriminative

classification with sets of image features. In Computer Vision, 2005. ICCV 2005.

Tenth IEEE International Conference on, volume 2, pages 1458–1465. IEEE.

Grauman, K. and Leibe, B. (2011). Visual object recognition. Number 11 in ISSN.

Morgan & Claypool Publishers.

Harada, T., Ushiku, Y., Yamashita, Y., and Kuniyoshi, Y. (2011). Discriminative

spatial pyramid. In Computer Vision and Pattern Recognition (CVPR), 2011

IEEE Conference on, pages 1617–1624. IEEE.

Harris, C. and Stephens, M. (1988). A combined corner and edge detector. In

Alvey vision conference, volume 15, page 50. Manchester, UK.

Harris, Z. S. (1954). Distributional structure. Word, pages 146–162.

Hong-Thinh, N., Cecile, B., and Christophe, D. (2014). Approximate image match-

ing using strings of bag of visual words representation. In 9th International Joint

Conference on Computer Vision, Imaging and Computer Graphics Theory and

Applications (VISAPP-2014). SCITEPRESS.

Iovan, C., Picard, D., Thome, N., and Cord, M. (2012). Classification of urban

scenes from geo-referenced images in urban street-view context. In Machine

Learning and Applications (ICMLA), 2012 11th International Conference on,

volume 2, pages 339–344. IEEE.

Bibliography 90

Jain, A. K. and Vailaya, A. (1996). Image retrieval using color and shape. Pattern

recognition, 29(8):1233–1244.

Jégou, H., Douze, M., Schmid, C., and Pérez, P. (2010). Aggregating local de-

scriptors into a compact image representation. In Computer Vision and Pattern

Recognition (CVPR), 2010 IEEE Conference on, pages 3304–3311. IEEE.

Jiang, Y., Yuan, J., and Yu, G. (2012). Randomized spatial partition for scene

recognition. In Computer Vision–ECCV 2012, pages 730–743. Springer.

Jurie, F. and Triggs, B. (2005). Creating e�cient codebooks for visual recognition.

In Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference

on, volume 1, pages 604–610. IEEE.

Ke, Y. and Sukthankar, R. (2004). Pca-sift: A more distinctive representation

for local image descriptors. In Computer Vision and Pattern Recognition, 2004.

CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on,

volume 2, pages II–506. IEEE.

Khurshid, K., Faure, C., and Vincent, N. (2009). A novel approach for word

spotting using merge-split edit distance. In Computer Analysis of Images and

Patterns, pages 213–220. Springer.

Kim, J. and Grauman, K. (2010). Asymmetric region-to-image matching for com-

paring images with generic object categories. In Computer Vision and Pattern

Recognition (CVPR), 2010 IEEE Conference on, pages 2344–2351. IEEE.

Krapac, J. (2011). Image Representations for Ranking and Classification. PhD

thesis, PhD thesis, Caen University. 77.

Lazebnik, S. and Raginsky, M. (2009). Supervised learning of quantizer codebooks

by information loss minimization. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 31(7):1294–1309.

Lazebnik, S., Schmid, C., and Ponce, J. (2006). Beyond bags of features: Spa-

tial pyramid matching for recognizing natural scene categories. In Computer

Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on,

volume 2, pages 2169–2178. IEEE.

Leslie, C., Eskin, E., Weston, J., and Noble, W. S. (2002). Mismatch string kernels

for svm protein classification. In NIPS, volume 15, pages 1441–1448.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions

and reversals. In Soviet physics doklady, volume 10, page 707.

Bibliography 91

Li, H. and Jiang, T. (2005). A class of edit kernels for svms to predict trans-

lation initiation sites in eukaryotic mrnas. Journal of Computational Biology,

12(6):702–718.

Li, J., Wang, J. Z., and Wiederhold, G. (2000). Irm: integrated region matching

for image retrieval. In Proceedings of the eighth ACM international conference

on Multimedia, pages 147–156. ACM.

Li, X., Song, Y., Lu, Y., and Tian, Q. (2011). Spatial pooling for transformation

invariant image representation. In Proceedings of the 19th ACM international

conference on Multimedia, pages 1509–1512. ACM.

Lindeberg, T. (1998). Feature detection with automatic scale selection. Interna-

tional journal of computer vision, 30(2):79–116.

Liu, L., Wang, L., and Liu, X. (2011). In defense of soft-assignment coding.

In Computer Vision (ICCV), 2011 IEEE International Conference on, pages

2486–2493. IEEE.

Lowe, D. G. (1999). Object recognition from local scale-invariant features. In

Computer vision, 1999. The proceedings of the seventh IEEE international con-

ference on, volume 2, pages 1150–1157. Ieee.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints.

International journal of computer vision, 60(2):91–110.

Lu, Z. and Ip, H. H.-S. (2009). Image categorization with spatial mismatch ker-

nels. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE

Conference on, pages 397–404. IEEE.

Manjunath, B. S. and Ma, W.-Y. (1996). Texture features for browsing and re-

trieval of image data. Pattern Analysis and Machine Intelligence, IEEE Trans-

actions on, 18(8):837–842.

Marszaek, M. and Schmid, C. (2006). Spatial weighting for bag-of-features. In

Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Con-

ference on, volume 2, pages 2118–2125. IEEE.

Marszalek, M. (2008). Past the limits of bag-of-features.

Mikolajczyk, K. and Schmid, C. (2004). Scale & a�ne invariant interest point

detectors. International journal of computer vision, 60(1):63–86.

Bibliography 92

Mikolajczyk, K. and Schmid, C. (2005). A performance evaluation of local de-

scriptors. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

27(10):1615–1630.

Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Scha↵al-

itzky, F., Kadir, T., and Van Gool, L. (2005). A comparison of a�ne region

detectors. International journal of computer vision, 65(1-2):43–72.

Moosmann, F., Triggs, B., Jurie, F., et al. (2006). Fast discriminative visual

codebooks using randomized clustering forests. In NIPS, volume 2, page 4.

Nister, D. and Stewenius, H. (2006). Scalable recognition with a vocabulary tree.

In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society

Conference on, volume 2, pages 2161–2168. IEEE.

Nowak, E., Jurie, F., and Triggs, B. (2006). Sampling strategies for bag-of-features

image classification. In Computer Vision–ECCV 2006, pages 490–503. Springer.

Perronnin, F. (2008). Universal and adapted vocabularies for generic visual cate-

gorization. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

30(7):1243–1256.

Perronnin, F., Sánchez, J., and Mensink, T. (2010). Improving the fisher kernel

for large-scale image classification. In Computer Vision–ECCV 2010, pages

143–156. Springer.

Ros, J., Laurent, C., Jolion, J.-M., and Simand, I. (2005). Comparing string

representations and distances in a natural images classification task. In Graph-

Based Representations in Pattern Recognition, pages 72–81. Springer.

Rubner, Y., Tomasi, C., and Guibas, L. J. (2000). The earth mover’s distance as a

metric for image retrieval. International Journal of Computer Vision, 40(2):99–

121.

Schmid, C., Mohr, R., and Bauckhage, C. (2000). Evaluation of interest point

detectors. International Journal of computer vision, 37(2):151–172.

Sharma, G., Jurie, F., et al. (2011). Learning discriminative spatial representation

for image classification. In British Machine Vision Conference (BMVC).

Sivic, J. and Zisserman, A. (2003). Video google: A text retrieval approach to

object matching in videos. In Computer Vision, 2003. Proceedings. Ninth IEEE

International Conference on, pages 1470–1477. IEEE.

Bibliography 93

Smith, J. R. and Li, C.-S. (1999). Image classification and querying using com-

posite region templates. Computer Vision and Image Understanding, 75(1):165–

174.

Swain, M. J. and Ballard, D. H. (1991). Color indexing. International journal of

computer vision, 7(1):11–32.

Tirilly, P., Claveau, V., and Gros, P. (2008). Language modeling for bag-of-visual

words image categorization. In Proceedings of the 2008 international conference

on Content-based image and video retrieval, pages 249–258. ACM.

Tsai, W.-H. and Yu, S.-S. (1985). Attributed string matching with merging for

shape recognition. Pattern Analysis and Machine Intelligence, IEEE Transac-

tions on, 7(4):453–462.

Tuytelaars, T. (2010). Dense interest points. In Computer Vision and Pattern

Recognition (CVPR), 2010 IEEE Conference on, pages 2281–2288. IEEE.

Tuytelaars, T. and Mikolajczyk, K. (2008). Local invariant feature detectors: a

survey. Foundations and Trends R� in Computer Graphics and Vision, 3(3):177–

280.

van Gemert, J. C., Veenman, C. J., Smeulders, A. W., and Geusebroek, J.-M.

(2010). Visual word ambiguity. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 32(7):1271–1283.

Van Kaick, O. and Mori, G. (2006). Automatic classification of outdoor images

by region matching. In Computer and Robot Vision, 2006. The 3rd Canadian

Conference on, pages 9–9. IEEE.

Vedaldi, A., Gulshan, V., Varma, M., and Zisserman, A. (2009). Multiple ker-

nels for object detection. In Computer Vision, 2009 IEEE 12th International

Conference on, pages 606–613. IEEE.

Viitaniemi, V. and Laaksonen, J. (2010). Region matching techniques for spa-

tial bag of visual words based image category recognition. In Artificial Neural

Networks–ICANN 2010, pages 531–540. Springer.

Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., and Gong, Y. (2010). Locality-

constrained linear coding for image classification. In Computer Vision and Pat-

tern Recognition (CVPR), 2010 IEEE Conference on, pages 3360–3367. IEEE.

Wu, Z., Huang, Y., Wang, L., and Tan, T. (2013). Spatial graph for image

classification. In Computer Vision–ACCV 2012, pages 716–729. Springer.

Bibliography 94

Xu, D., Cham, T.-J., Yan, S., and Chang, S.-F. (2008). Near duplicate image

identification with patially aligned pyramid matching. In Computer Vision and

Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–7. IEEE.

Yan, Y., Tian, X., Yang, L., Lu, Y., and Li, H. (2013). Semantic-spatial matching

for image classification. In Multimedia and Expo (ICME), 2013 IEEE Interna-

tional Conference on, pages 1–6. IEEE.

Yang, J., Yu, K., Gong, Y., and Huang, T. (2009). Linear spatial pyramid match-

ing using sparse coding for image classification. In Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on, pages 1794–1801. IEEE.

Yang, Y. and Newsam, S. (2011). Spatial pyramid co-occurrence for image classi-

fication. In Computer Vision (ICCV), 2011 IEEE International Conference on,

pages 1465–1472. IEEE.

Yeh, M.-C. and Cheng, K.-T. (2008). A string matching approach for visual re-

trieval and classification. In Proceedings of the 1st ACM international conference

on Multimedia information retrieval, pages 52–58. ACM.

Zhang, H., Berg, A. C., Maire, M., and Malik, J. (2006). Svm-knn: Discriminative

nearest neighbor classification for visual category recognition. In Computer

Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on,

volume 2, pages 2126–2136. IEEE.

Zhou, X., Yu, K., Zhang, T., and Huang, T. S. (2010). Image classification using

super-vector coding of local image descriptors. In Computer Vision–ECCV 2010,

pages 141–154. Springer.

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Background and Objectives
	1.2 Contributions
	1.3 Thesis outline

	2 Related Work
	2.1 Introduction
	2.2 Image representation
	2.3 The Bag of Word representation
	2.3.1 Feature detection
	2.3.2 Feature description
	2.3.3 Coding
	2.3.4 Pooling
	2.3.5 Discussion

	2.4 Spatial Pyramid Representation
	2.4.1 Principle
	2.4.2 Extensions of SPR

	2.5 Image comparison
	2.6 Image classification and kernels
	2.6.1 SVM classification
	2.6.2 Mercer's theorem and kernel function
	2.6.3 Multiclass SVM

	2.7 Summary

	3 Approximate matching for image classification
	3.1 Introduction
	3.2 Related works
	3.3 Image representation
	3.4 A new edit-distance for strings of histograms
	3.4.1 The standard edit-distance
	3.4.2 A new string matching distance
	3.4.3 Examples
	3.4.4 Weighted edit operations
	3.4.5 Image comparison kernel
	3.4.6 Computational complexity

	3.5 Experiments
	3.5.1 Datasets
	3.5.2 Experimental Settings
	3.5.3 Results
	3.5.3.1 Influence of the string parameters
	3.5.3.2 String matching vs pairwise matching
	3.5.3.3 Comparison with existing methods

	3.6 Conclusion

	4 Merge-based edit-distance for strings of histograms
	4.1 Motivation
	4.2 Related work
	4.3 Adding new merge operation into SMD
	4.3.1 Principle
	4.3.2 Merge operation

	4.4 New merge-based edit distance
	4.4.1 Greedy merge-based SMD algorithm
	4.4.2 Recursive merge-based SMD

	4.5 Experiments
	4.6 Conclusion

	5 Conclusions
	Bibliography

