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Résumé

Cette thèse traite de deux problèmes dans le cadre du programme de
Langlands. Pour le premier problème, dans la situation de GL2 et un coca-
ractère non minuscule, nous fournissons un contre-exemple (sous certaines
hypothèses naturelles) à la conjecture de Rapoport-Zink, communiquée
par Laurent Fargues.

Le deuxième problème concerne un résultat dans le programme de Lan-
glands p-adique. Soit A une algèbre Qp-affinoïde, au sens de Tate. Nous
développons une théorie d’un espace localement convexe en A-modules
parallèle au traitement dans le cas d’un corps par Schneider et Teitel-
baum. Nous montrons qu’il existe une application d’intégration liant une
catégorie de représentations localement analytiques en A -modules et des
modules de distribution séparés relatif. Il existe une théorie de cohomo-
logie localement analytique pour ces objets et une version du Lemme de
Shapiro. Dans le cas d’un corps, ceci a été substantiellement développé par
Kohlhaase. Comme une application, nous proposons une correspondance
de Langlands p-adique en families : Pour un (ϕ, Γ)-module trianguline et
régulière de dimension 2 sur l’anneau de Robba relatif RA nous construi-
sons une GL2(Qp)-représentation localement analytique en A-modules. Il
s’agit d’un travail en commun avec Joaquin Rodrigues.
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Abstract

This thesis deals with two problems within the Langlands program.
For the first problem, in the situation of GL2 and a non-minuscule cochar-
acter, we provide a counter-example (under some natural assumptions) to
the Rapoport-Zink conjecture, communicated to us by Laurent Fargues.

The second problem deals with a result in the p-adic Langlands pro-
gram. Let A be a Qp-affinoid algebra, in the sense of Tate. We develop a
theory of locally convex A-modules parallel to the treatment in the case of
a field by Schneider and Teitelbaum. We prove that there is an integration
map linking a category of locally analytic representations in A-modules
and separately continuous relative distribution modules. There is a suit-
able theory of locally analytic cohomology for these objects and a version
of Shapiro’s Lemma. In the case of a field this has been substantially de-
veloped by Kohlhaase. As an application we propose a p-adic Langlands
correspondence in families: For a regular trianguline (ϕ, Γ)-module of di-
mension 2 over the relative Robba ring RA we construct a locally analytic
GL2(Qp)-representation in A-modules. This is joint work with Joaquin
Rodrigues.
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1 Introduction
1.1 Un contre-exemple à la conjecture de Rapoport-Zink

Dans la première partie de cette thèse, nous fournissons un contre-exemple
à la conjecture de Rapoport-Zink, cf. [49, §1.37] dans la situation suivante:

G = GL2, b =
(

1 0
0 p2

)
, µ =

(
t2 0
0 1

)
.

Bien que la conjecture en loc.cit. est énoncée dans le cadre analytique rigide,
nous adopterons le langage des espaces de Berkovich. Ici b est associé à l’isocristal
Qp ⊕Qp(2) et µ est un co-caractère non minuscule (défini sur Q̆p) qui contrôle
la filtration. Soit A1

Q̆p
la ligne droite affine de Berkovich sur la completion de

l’extension maximale non-ramifiée deQp, Q̆p. Pour chaque extension finie L/Q̆p,
A1

Q̆p
(L) correspond à la classe d’équivalence des filtrations µ′ défini sur L (dans

la classe de conjugaison de {µ}) telle que (b, µ′) est admissible 1. Dans ce cadre,
la conjecture annonce grossiement (pour un énoncé précis, nous renvoyons le
lecteur à la Conjecture 4.3).

Conjecture 1.1 (Rapoport-Zink). Il existe un Qp-système local E sur A1
Q̆p

qui
satisfait la propriété suivante: Pour tout point µ′ ∈ A1

Q̆p
(L) la représentation

galoisienne p-adique

Gal(L/L) πdJ
1 (µ′)−−−−−→ πdJ

1 (A1
Q̆p

)→ GL(Qp),

où le 2ème morphisme vient de E, est isomorphe à la représentation cristalline
déterminée par (b, µ′) 2.

Donnons une esquisse pour savoir pourquoi la Conjecture 1.1 est fausse. On
commence par définir un espace de modules (analogue à un espace de Rapoport-
Zink) associé à E qui paramétrise les Zp-réseaux dans E .

Definition 1.2. Définir un espace de modules M (E) → A1
Q̆p
, dont les valeurs

à un S → A1
Q̆p

point étale sont donnés par

M (E)(S) := {F/S | F ⊗Qp ∼= E|S} ,

où F est un Zp-système local (un système local de Zp-réseaux dans la termi-
nologie utilisée par de Jong, cf. [18, §4]).

1. De manière équivalente par le travail de Colmez-Fontaine, cf. [12], la paire (b, µ′) donne
naissance à une représentation cristalline.

2. Ici πdJ
1 (A1

Q̆p
) est le (gros) groupe fondamental étale de recouvrements étales de A1

Q̆p
comme défini dans [18, §2]. Dans loc.cit. il est noté par π1.
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Nous appelons le morphisme structurel

πdR : M (E)→ A1
Q̆p

le morphisme de périodes de de-Rham. On démontre facilement que M (E) est
représentable comme un Q̆p-espace analytique et πdR un recouvrement étale. Il
est naturel de s’attendre à ce que M (E) a une structure de groupe, mais pour
prouver cela, nous devons supposer que E ∈ Ext1(Qp,Qp(2)) et aussi pour tout
sous-groupe ouvert U ⊂ A1

Q̆p
,

m∗ η|U = pr∗1 E|U + pr∗2 E|U , (1)

où m : U × U → U est la loi de groupe de U et pr1,2 : U × U → U sont les
première et seconde projections, respectivement 3.

Cela nous permet ensuite de travailler avec M (E)(0,0), la composante con-
nexe de M (E) autour de l’élément d’identité. Il se trouve que M (E)(0,0) est un
Q̆p-groupe analytique de type p-divisible dans le sens de [26]. En utilisant un
théorème de classification de Cp-groupes analytiques de type p-divisible établi
par Fargues, on peut montrer que ECp ∼= E ′Cp , où E

′ est un certain Qp-système lo-
cal sur A1

Q̆p
qui est une extension de Qp par Qp(1). Le Qp-système local E ′ vient

d’un espace de Rapoport-Zink honnête (l’espace de déformation d’une courbe
elliptique ordinaire sur Fp pour être precis).

En effet l’isomorphisme ECp ∼= E ′Cp semble étrange. Rappelons que E se
trouve dans une suite exacte

0→ Qp(2)→ E → Qp → 0

et E ′ dans
0→ Qp(1)→ E ′ → Qp → 0.

Soient ρ1, ρ2 : πdJ
1 (A1

Q̆p
) → GL2(Qp) les représentations correspondantes à E ′

and E , respectivement. On munit GL2(Qp) avec une action de πdJ
1 (A1

Q̆p
) via la

conjugaison de ρ2, la clé étant de considérer l’ensemble pointu

H1(πdJ
1 (A1

Q̆p
), GL2(Qp))

et en particulier le 1-cocycle donné par

c : πdJ
1 (A1

Q̆p
)→ GL2(Qp)

σ 7→ ρ1(σ)ρ2(σ)−1.

Une analyse de c obtient une contradiction pour l’existence de E .
Donnons un bref aperçu du contenu de la première partie de cette thèse.

3. L’addition dans (2) est considérée comme une somme de Baer dans le groupe abélien
des extensions de Qp par Qp(2) sur U × U .
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Dans §4 nous rappelons la conjecture de Rapoport-Zink. Nous avons mis en
place la situation qui mène à un contre-exemple et prouvons que M (E)(0,0) est
un objet en groupe dans la catégorie des Q̆p-espaces analytiques. Par ailleurs
πdR est un morphisme de groupes.

Dans §5 nous montrons que M (E)(0,0) est de type p-divisible.
Dans §6 nous rappelons l’espace de Rapoport-Zink qui déforme une courbe

elliptique ordinaire sur Fp.
Dans §7 nous prouvons qu’il est impossible d’avoir deux Qp-représentations

de πdJ
1 (A1

Q̆p
), dont l’une est une extension de Qp par Qp(1) et l’autre est une

extension de Qp par Qp(2) qui sont isomorphes lorsqu’elles sont tirées vers
πdJ

1 (A1
Cp).

L’auteur remercie vivement Laurent Fargues de nous avoir proposé ce prob-
lème. En effet beaucoup d’idées lui sont dues sous une forme ou une autre. Il
remercie également Jean-François Dat pour de nombreuses conversations utiles.

1.2 Une extension de la correspondance de Langlands p-
adique

Dans la deuxième partie de cette thèse on étudie la correspondance de Lang-
lands p-adique pour GL2(Qp) en familles arithmétiques. Pour donner le con-
texte, rappelons les lignes générales de cette correspondance. Dans [9], [48] et
[16], une bijection V 7→ Π(V ) est établie entre les L-représentations 4 contin-
ues de dimension 2 absolument irreductibles du groupe de Galois absolu GQp

de Qp est les L-représentations Banach admissibles unitaires non-ordinaires de
GL2(Qp) qui sont topologiquement absolument irréductibles. Le foncteur in-
verse Π 7→ V (Π) est parfois appelé le foncteur Montréal, cf. [9, §IV].

La stratégie de base de la construction du foncteur V 7→ Π(V ) est la suivante:
par l’équivalence de Fontaine, la catégorie des représentations galoisienne en L-
espaces vectoriels est équivalente à celui de (ϕ,Γ)-modules étales sur le corps
de Fontaine EL 5. Cette dernière catégorie (-linéarisée) est considérée comme
une mise à niveau parce que l’on peut souvent effectuer des calculs explicites.
Un tel (ϕ,Γ)-module D peut être naturellement considéré comme un faisceau
P+-equivariant 6 sur Zp, où P+ =

( Zp−{0} Zp
0 1

)
est un sous-semi-groupe du sous-

groupe mirabolique (=
(Q×p Qp

0 1

)
) de GL2(Qp). Si U est un sous-ensemble ouvert

compact de Zp, on note par D�U les sections locales sur U de ce faisceau. Dans
[9], une involution magique wD agissant sur D � Z×p est définie ce qui permet
(on note que P1(Qp) est construit en collant deux copies de Zp au long de

4. À partir de maintenant, L sera le corps de coefficient, une extension fini de Qp.
5. Le corps EL est défini comme des séries de Laurent

∑
n∈Z anT

n telles que an ∈ L

sont bornés et limn→−∞ an = 0. E est muni d’actions continues de Γ = Z×p (on note σa,
a ∈ Z×p , ses éléments) et un opérateur ϕ défini par les formules σa(T ) = (1 + T )a − 1 et
ϕ(T ) = (1 + T )p − 1. Rappelons qu’un (ϕ,Γ)-module est un E -module libre muni d’actions
continus semi-linéaires de Γ est ϕ.

6. La matrice
(
p 0
0 1

)
codifie l’action de ϕ,

(
a 0
0 1
)
l’action de σa ∈ Γ et

(
1 b
0 1

)
la multiplica-

tion par (1 + T )b.
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Z×p ) d’étendre D à un faisceau GL2(Qp)-équivariant sur 7 P1, qui est noté par
D�ωP1, où ω = (detD)χ−1 8. On récupère la représentation de Banach désirée
Π(V ) (et sa duale) des constituants de D �ω P1. Plus précisément, nous avons
une suite exacte courte de GL2(Qp)-modules topologiques

0→ Π(V )∗ ⊗ ω → D �ω P1 → Π(V )→ 0.

Soit RL l’anneau de Robba 9 avec des coefficients dans L. Par une combi-
naison de résultats de Cherbonnier-Colmez ([5]) et Kedlaya ([38]), les catégories
de (ϕ,Γ)-modules étale sur EL et RL sont équivalentes. Notons D 7→ Drig cette
correspondance. On a des constructions analogues comme ci-dessus pour Drig
et, en particulier, on a un faisceau GL2(Qp)-equivariant U 7→ Drig � U sur P1.
Si on note Π(V )an les vecteurs localement analytiques de Π(V ), on obtient une
suite exacte

0 7→ (Π(V )an)∗ ⊗ ω → Drig �ω P1 → Π(V )an → 0.

Néanmoins, la construction de Drig �ω P1 n’est pas une conséquence directe de
D �ω P1. C’est principalement parce que la formule définissant l’involution ne
converge pas pour un (ϕ,Γ)-module sur RL

10.
Inspiré par les calculs da la correspondance p-adique locale pour les (ϕ,Γ)-

modules étale trianguline 11, Colmez ([11]) a récemment donné une construction
directe, pour un (pas nécessairement étale) (ϕ,Γ)-module ∆ (de rang 2) sur
RL, d’une L-representation localement analytique Π(∆) de GL2(Qp). Plus
précisément, on a le théorème suivant:

Théorème 1.3 ([11], Théorème 0.1). Il existe une extension unique de ∆ à un
faisceau GL2(Qp)-équivariant de type Qp-analytique 12 ∆ �ω P1 sur P1 muni
d’un caractère central ω. De plus, il existe une L-représentation unique admis-
sible localement analytique Π(∆), munie d’un caractère central ω, de GL2(Qp),
telle que

0→ Π(∆)∗ ⊗ ω → ∆ �ω P1 → Π(∆)→ 0.

7. À partir de maintenant, P1 signifiera P1(Qp).
8. Le caractère detD est le caractère de Q×p défini par les actions de ϕ et Γ sur ∧2D. Si

D est étale, il peut également être vu comme un caractère du groupe de Galois via la théorie
de corps de classe locale. Le caractère χ : x 7→ x|x| dénote le caractère cyclotomic. On voit
les deux caractères commes des caractères de GL2(Qp) en composant avec le déterminant.

9. Il est défini comme l’anneau des séries de Laurent
∑

n
anTn, an ∈ L, qui convergent

sur une couronne 0 < vp(T ) ≤ r pour un r > 0.
10. Pour construire l’involution sur Drig dans le cas étale, on montre que wD stabilise D†�

Z×p , où D† est le (ϕ,Γ)-module sur les éléments surconvergents E †L de EL qui correspondent
à D par la correspondance de Cherbonnier-Colmez , et qu’elle définit par continuité une
involution sur Drig � Z×p .
11. Un (ϕ,Γ)-module de rang 2 est trianguline si c’est une extension de (ϕ,Γ)-modules de

rang 1.
12. Un faisceau U 7→M�U est de type Qp-analytique si, pour tout ouvert compact U ⊆ P1

et pour tout compact K ⊆ GL2(Qp) qui stabilise U , l’espace M � U est de type-LF et un
D(K)-module continu, où D(K) est l’algèbre de distribution sur K.
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Le but de ce travail est d’étudier cette correspondance dans le contexte des
familles arithmétiques de (ϕ,Γ)-modules. Des résultats dans cette direction sur
le côté `-adique (i.e. la correspondance de Langlands locale classique, cf. [31])
ont été atteints par Emerton-Helm [24]. Les arguments dans [11] reposent forte-
ment sur la théorie de cohomologie des représentations localement analytiques
[43], et plus précisément sur le lemme de Shapiro. Puisque les auteurs ne sont
pas au courant d’une référence pour ces résultats dans le contexte relatif, nous
développons, dans un appendice (cf. §A), les définitions et propriétés nécessaires
de GL2(Qp)-représentations localement analytiques en A-modules. Vu que ce
point pourrait porter un intérêt particulier, nous le décrivons plus en détail dans
§1.4 ci-dessous. Nous travaillerons exclusivement avec des espaces affinoïdes au
sens de Tate, plutôt que de Berkovich ou Huber. Soit A une algèbre Qp-affinoïde
et soit RA l’anneau relatif de Robba sur A. Notre résultat principal peut être
énoncé comme suit:
Théorème 1.4. Soit A une algèbre Qp-affinoïde et soit ∆ un (ϕ,Γ)-module
trianguline sur RA de rang 2 qui est une extension de RA(δ2) par RA(δ1),
où δ1, δ2 : Q×p → A× sont des caractères localement analytiques satisfaisant
certaines hypothèses de régularité 13. Alors, il existe une extension de ∆ à un
faisceau GL2(Qp)-équivariant de type Qp-analytique ∆�ωP1 sur P1 muni d’un
caractère central ω = δ1δ2χ

−1 et une GL2(Qp)-représentation (pas nécessaire-
ment unique) localement analytique 14 Π(∆) en A-modules munie d’un caractère
central ω, vivant dans une suite exacte

0→ Π(∆)∗ ⊗ ω → ∆ �ω P1 → Π(∆)→ 0.

On s’attend à ce que ce résultat ait des applications à l’étude de variétés de
Hecke, cependant dans cette thèse nous ne faisons aucune tentative dans cette
direction.

1.3 La construction de la correspondance
La construction de la correspondance suit les lignes générales de [11], mais

plusieurs difficultés techniques apparaissent en chemin. Décrivons brièvement
comment construire la correspondance ∆ 7→ Π(∆) et les problèmes supplémen-
taires qui se posent dans le cadre relatif (affinoïde).

À partir du calcul des vecteurs localement analytiques des séries principales
unitaires ([8, Théorème 0.7]), on sait que, si D est un (ϕ,Γ)-module trianguline
étale sur EL de rang 2, alors (Π(D))an est une extension des séries principales.
L’idée de [11] est d’inverser intelligemment ce dévissage de Drig �ω P1 afin de
le construire à partir de ces pièces.

Pour le reste de cette introduction, soit G = GL2(Qp) et B son sous-groupe
inférieur de Borel et soient δ1, δ2 et ω comme dans le Théorème 1.4. En util-
isant une version relative du dictionnaire p-adique analyse fonctionnelle, nous
13. Précisément, on suppose que δ1δ−1

2 est point par point jamais de la forme χxi ou x−i
pour un i ≥ 0.
14. Voir la Définition A.24 pour la définition d’une G-représentation localement analytique

en A-modules.
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construisons, pour ? ∈ {+,−, ∅}, des faisceaux G-équivariants R?
A(δ1) �ω P1

(munis d’un caracère central ω) de type Qp-analytique vivant dans une suite
exacte

0→ R+
A (δ1) �ω P1 → RA(δ1) �ω P1 → R−A (δ1) �ω P1 → 0.

De plus, on peut obtenir des identifications BA(δ2, δ1)∗ ⊗ ω ∼= R+
A (δ1) �ω P1

et BA(δ1, δ2) ∼= R−A (δ1) �ω P1, où BA(δ1, δ2) = IndG
B

(δ1χ−1 ⊗ δ2) désigne la
série principale localement analytique. Ces identifications nous permettent de
considérer les séries principales localement analytiques (et ses duaux) comme
(les sections globales) des faisceaux G-équivariants sur P1 d’intérêt.

Nous construisons ensuite le faisceau G-équivariant ∆�ω P1 sur P1 comme
une extension de RA(δ2) �ω P1 par RA(δ1) �ω P1. Cela se fait, comme dans
[11], en montrant que les extensions de RA(δ2) par RA(δ1) correspondent aux
extensions de R+

A (δ2) �ω P1 par RA(δ1) �ω P1. On montre alors qu’une ex-
tension de R+

A (δ2) �ω P1 par RA(δ1) �ω P1 s’étend à une extension unique de
RA(δ2)�ω P1 par RA(δ1)�ω P1. Dès que le faisceau ∆�ω P1 est construit, on
montre que l’extension intermédiaire de R+

A (δ2) �ω P1 par R−A (δ1) �ω P1 est
scindée. Ainsi, on peut séparer les espaces qui sont Fréchets de ceux qui sont une
limite inductive des espaces de Banach de manière à découper la représentation
souhaitée Π(∆).

Le fait que, pour ? ∈ {+,−, ∅}, le P+-module R?
A(δ1) peut être vu comme

des sections sur Zp d’un faisceau G-équivariant sur P1, et que le semi-groupe
P

+ =
( Zp−{0} 0

pZp 1
)
stabilise Zp, montre que R?

A(δ1) = R?
A(δ1)�ω Zp est automa-

tiquement muni d’une action supplémentaire de la matrice
( 1 0
p 1
)
. On note

R?
A(δ1, δ2) := (R?

A(δ1) �ω Zp)⊗ δ−1
2

le P+-module ainsi défini. Le cœur technique pour prouver le Théorème 1.4
est un résultat de comparaison entre la cohomologie des semi-groupes A+ =( Zp−{0} 0

0 1

)
et P+ aux valeurs dans RA(δ1δ−1

2 ) et RA(δ1, δ2), respectivement.

Théorème 1.5. Le morphisme de restriction de P+ à A+ induit un isomor-
phisme

H1(P+
,RA(δ1, δ2))→ H1(A+,RA(δ1δ−1

2 )).

Le semi-groupe A+ devrait être considéré comme codant l’action de ϕ et
Γ. La difficulté, bien sûr, est de capturer l’action de l’involution et c’est l’idée
sous-jacente pour considérer le semi-groupe P+. En effet P+ est plus proche
de capturer l’action de l’involution par rapport à A+. Le Théorème 1.5 est
(essentiellement) en train de dire qu’un (ϕ,Γ)-module trianguline comme dans
le Théorème 1.4 admet une extension à un faisceau G-équivariant sur P1.

Décrivons brièvement la démonstration du Théorème 1.5. L’idée principale
est de réduire cette bijection au cas d’un point (i.e au cas où A = L est une
extension finie de Qp). La première étape consiste à construire un complexe de
Koszul qui calcule la cohomologie de P+.
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Proposition 1.6. Soit M un A[P+]-module tel que l’action de P+ s’étend à
une action de l’algèbre d’Iwasawa Zp[[P

+]]. Alors le complexe

Cτ,ϕ,γ(M) : 0→M
X−→M ⊕M ⊕M Y−→M ⊕M ⊕M Z−→M → 0

où 15

X(x) = ((1− τ)x, (1− ϕ)x, (γ − 1)x)
Y (x, y, z) = ((1− ϕδp)x+ (τ − 1)y, (γδa − 1)x+ (τ − 1)z, (γ − 1)y + (ϕ− 1)z)
Z(x, y, z) = (γδa − 1)x+ (ϕδp − 1)y + (1− τ)z

calcule la cohomologie de P+. C’est-à-dire Hi(Cτ,ϕ,γ(M)) = Hi(P+
,M).

La nature asymétrique de Cτ,ϕ,γ(M) est due à la non-commutativité de P+.
Une estimation brute des morphisms X, Y et Z conduit au corollaire suivant:

Corollaire 1.7. Le complexe Cτ,ϕ,γ(RA(δ1, δ2)) est un complexe pseudo-cohérent
concentré en degrés [0, 3]. Dans la terminologie du corps du papier, Cτ,ϕ,γ(RA(δ1, δ2)) ∈
D[0,3]

pc (A) 16. En particulier, les groupes de cohomologie Hi(P+
,RA(δ1, δ2)) sont

les A-modules finis.

Plus précisément, la preuve du Corollaire 1.7 est réduite à prouver la finitude
d’un (ϕ,Γ)-cohomologie twisté de RA(δ1, δ2), cf. Lemma 12.11.

Le problème avec Cτ,ϕ,γ(M) est que les opérateurs δx sont difficiles à com-
prendre, rendant le complexe presque impraticable pour des calculs explicites.
On peut cependant linéariser la situation et passer à l’algèbre de Lie, où les
calculs sont souvent réalisables.

Proposition 1.8. Pour M ∈
{
R+
L (δ1, δ2),R−L (δ1, δ2),RL(δ1, δ2)

}
, le complexe

Cu−,ϕ,a+(M) : 0→M
X′−−→M ⊕M ⊕M Y ′−→M ⊕M ⊕M Z′−→M → 0,

où 17

X ′(x) = ((ϕ− 1)x, a+x, u−x)
Y ′(x, y, z) = (a+x− (ϕ− 1)y, u−y − (a+ + 1)z, (pϕ− 1)z − u−x)
Z ′(x, y, z) = u−x+ (pϕ− 1)y + (a+ + 1)z

calcule la cohomologie d’algèbre de Lie de P+. En particulier, H0(P̃ ,Hi(Cu−,ϕ,a+(M))) =
Hi(P+

,M) 18.

15. Ici τ =
(

1 0
p 1
)
et δx = τx−1

τ−1 pour tout x ∈ Z×p .
16. Nous renvoyons le lecteur à §12.1 Pour la notion d’un complexe pseudo-cohérent et la

définition de D−pc(A).
17. Ici a+ =

(
1 0
0 0
)
et u− =

(
0 0
1 0
)
sont les éléments habituels de l’algèbre de Lie gl2 de

GL2.
18. Ici P̃ =

( Z×p 0
pZp 1

)
, est le sous-groupe non-discret de P+.
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Un calcul long et fastidieux mais direct conduit alors au corollaire suivant.

Corollaire 1.9. Le L-espace vectoriel H2(P+
,RL(δ1, δ2)) est de dimension 1.

Les Corollaires 1.7 et 1.9 permettent d’analyser une suite spectrale et de
prouver le Théorème 1.5 dans le cas où A est réduit. On conclut alors par
un argument d’induction sur l’indice de nilpotence du nilradical de A. Via le
complexe Cu−,ϕ,a+(M) nous obtenons également une preuve alternative de [11,
Proposition 5.18] dans le cas d’un (ϕ,Γ)-module cyclotomic. En chemin, nous
montrons également un isomorphisme de comparaison entre la cohomologie con-
tinue et la cohomologie analytique pour certains (ϕ,Γ)-modules (cf. Proposition
11.4 pour un énoncé précis).

Cependant, armé avec le Théorème 1.5, le lecteur peut noter à ce stade qu’il
y a une absence de théorie nécessaire pour conclure (ou même donner un sens)
le Théorème 1.4. Les questions suivantes sont donc inévitables:
Q1 Qu’est-ce qu’un A-module localement convexe?
Q2 Qu’est-ce qu’une G-représentation localement analytique en A-modules?
Q3 Quelle est la relation entre les G-représentations localement analytique en

A-modules et les modules munis d’une action (séparément) continue de
l’algèbre de distribution relative D(G,A)?

Nous fournissons un ensemble de réponses à ces questions (A1-A3) et prou-
vons certaines propriétés fondamentales concernant la théorie de la cohomologie
localement analytique de D(G,A)-modules, que nous décrivons dans la section
suivante.

1.4 Familles analytiques de représentations localement an-
alytiques

Rappelons que pour un Qp-groupe localement analytique H, une théorie des
représentations localement analytiques du groupe H en L-espaces vectoriels a
été développée par Schneider et Teitelbaum (cf. [53], [52], [54]). Afin de con-
struire le A-module Π(∆) du Théorème 1.4, muni d’une action de G localement
analytique, on est forcé de développer un cadre raisonnable pour donner un
sens à un tel objet. Il s’avère que, avec un certain soin, une grande partie de la
théorie existante peut être étendue sans difficultés sérieuses au contexte relatif.

Definition 1.10 (A1). Un A-module localement convexe est un A-module
topologique dont la topologie sous-jacente est un localement convexe Qp-espace
vectoriel. On note LCSA la catégorie des A-modules localement convexes. Ses
morphismes sont tous des morphismes A-linaires continus.

Il existe une notion de dualité forte dans la catégorie LCSA, cependant en
dehors de nos applications, elle est mal-comportée (dans le sens où il y a peu
d’objets réflexifs qui ne sont pas des A-modules libres). Soit H un Qp-groupe
localement analytique.
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Definition 1.11 (A2). Nous définissons la catégorie Repla
A(H) dont les objets

sont tonnelés, Hausdorff, localement convexes A-modules M munis d’une action
A-linéaire topologique de H tel que, pour tout m ∈ M , le morphisme d’orbite
h 7→ h ·m est une fonction localement analytique de H à valeur dans M .

On note LA(H,A) l’espace des fonctions localement analytiques de H à
valeur dans A et D(H,A) = HomA,cont(LA(H,A), A) (muni d’une topologie
forte) son A-dual fort, l’espace des distributions de H à valeur dans A. Tous
les deux LA(H,A) et D(H,A) sont des A-modules localement convexes. Afin
d’algebriser la situation, on procède comme dans [53] et montre qu’une représen-
tation localement analytique de H est naturellement un module sur l’algèbre de
distribution relative. Plus précisément, soit Repla,LB

A (H) ⊆ Repla
A(H) la sous-

catégorie pleine se compose d’espaces qui sont de type A-LB et complets (i.e une
limite inductive des espaces de Banach dont les morphismes de transition sont
A-linéaires). Notre résultat principal dans §A peut être énoncé comme suit:

Théorème 1.12 (A3). Chaque représentation localement analytique de H est
munie d’une structure séparément continue A-linéaire d’un D(H,A)-module 19.
De plus, la catégorie Repla,LB

A (H) est équivalente à la catégorie des modules
A-modules localement convexes Hausdorff qui sont de type A-LB munis d’une
action D(H,A) séparément continue avec des morphismes continu D(H,A)-
linéaires.

L’idée de prouver le Théorème 1.12 est bien sûr de se réduire au résultat bien
connu de Schneider-Teitelbaum, cf. [53, Theorem 2.2]. Pour cela, le résultat
intermédiaire principal requis est la proposition suivante.

Proposition 1.13. Il existe un isomorphisme de A-modules localement con-
vexes

D(H,A) = D(H,Qp)⊗̂Qp,ιA.

Dans le cas où H est compact nous montrons que LA(H,A) satisfait à une
propriété bornée que nous appelons A-régulière (Nous renvoyons le lecteur à
la Definition A.20 et Lemma A.22 pour les énoncés precis). Cela suffit pour
prouver la Proposition 1.13.
Remarque 1.14. La Proposition 1.13 suivrait immédiatement si LA(H,A) est
complet (pour H compact). Au mieux de nos connaissances, il semble que cette
question soit ouverte si la dimension de H ≥ 2. Si H ∼= Zp, on peut identifier
LA(Zp, A) avec les puissances négatives (de T ) dans RA et conclure le résultat,
cf. Lemma A.14. En particulier LA(Zp, A) est un exemple d’objet A-reflexif,
qui n’est pas libre.

Finalement, avec l’équivalence de Théorème 1.12 en tête, nous passons notre
attention aux questions cohomologiques concernant la catégorie Repla

A(H).

Definition 1.15. Soit GH,A la catégorie des A-modules localement convexes
complet Hausorff munis d’une structure d’un D(H,A)-module A-linéaire sé-
parément continu, prenant comme morphismes tous les morphismes continus
19. Plus précisément, un morphisme A -bilineaire séparément continu D(H,A)×M →M .
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D(H,A)-linéaires. Plus précisément, nous demandons que le morphisme

D(H,A)×M →M

soit A-bilinéaire est séparément continu.

En suivant Kohlhaase ([43], [63]), on peut développer une théorie de co-
homologie localement analytique pour la catégorie GH,A. On peut définir les
groupes Hi

an(H,M) et ExtiGH,A(M,N) pour i ≥ 0 et les objets M et N dans
GH,A. Si H2 est un sous-Qp-groupe fermé localement analytique de H1, nous
avons aussi un foncteur d’induction 20 indH1

H2
: GH2,A → GH1,A. Notre but princi-

pal, en considérant une telle théorie, est de montrer la version relative suivante
du lemme de Shapiro, qui est crucialement utilisé dans la construction de la
correspondance ∆ 7→ Π(∆) du Théorème 1.4:

Proposition 1.16 (Relative Shapiro’s Lemma). Soit H1 un Qp-groupe locale-
ment analytique et soit H2 un sous-Qp-groupe fermé localement analytique de
H1. Si M et N sont des objets de GH2,A et GH1,A, respectivement , alors il y a
des bijections A-linéaires

ExtqGH1,A
(indH1

H2
(M), N)→ ExtqGH2,A

(M,N)

pour tout q ≥ 0.

Donnons un bref aperçu du contenu de la deuxième partie de cette thèse.
Dans §10, nous étendons le dictionnaire de l’analyse fonctionnelle p-adique au
cadre relatif. Une question clé est d’établir que le faisceau RA(δ1) �ω P1 est
G-équivariant sur P1 et de type Qp-analytique.

Dans §11, on utilse la (ϕ,Γ)-cohomologie pour recalculer certains résultats
de [4] (dans loc.cit. la (ψ,Γ)-cohomologie a été utilisée). Un résultat clé pour
le chapitre suivant est la nullité de H2(A+,RA(δ1δ−1

2 ) si et seulment si δ1δ−1
2

est (point par point) jamais de la forme χxi ou x−i pour un i ≥ 0 (i.e. δ1δ−1
2

est régulière).
Dans §12 et 13, le cœur technique du papier est réalisé. Nous commençons

par prouver la finitude de la P
+-cohomologie pour RA(δ1, δ2). En utilisant

le complexe d’algèbre de Lie nous fournissons une preuve alternative de [11,
Proposition 5.18] (dans le cadre cyclotomic). Nous montrons que la dimen-
sion du groupe de cohomologie supérieure H2(P+

,RL(δ1, δ2)) est constant (de
dimension 1) quand δ1δ−1

2 est régulière.
Dans §14, le Théorème 1.5 peut alors être établi.
Dans §15, le mécanisme général développé dans [11, §6] est utilisé pour

construire Π(∆) d’un (ϕ,Γ)-module régulière trianguline de rang 2 ∆, sur RA.
Dans l’appendice (§A) Nous établissons un cadre formel pour le résultat

principal. Nous introduisons la catégorie de G-représentations localement an-
alytiques en A-modules. Nous démontrons qu’il existe une relation entre cette

20. C’est le dual du foncteur d’Induction standard, typiquement noté IndH1
H2

, cf. Lemma
A.55.
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catégorie et une catégorie de modules sur l’algèbre de distribution relative dans
le même esprit de [53]. Il existe une théorie de cohomologie localement an-
alytique qui étend [43] et nous établissons une version relative du lemme de
Shapiro. Ces résultats sont utilisés dans §15.

La dette que ce problème doit à Pierre Colmez sera évidente pour le lecteur.
Les auteurs lui sont reconnaissants pour avoir suggéré ce problème et le re-
mercient pour de nombreuses discussions sur ces différents aspects. Le premier
auteur tient à remercier Jean-François Dat pour son encouragement continu
au cours de cette étude. Ensuite, nous voulons remercier Kiran Kedlaya pour
avoir passé d’innombrables heures à répondre à nos questions sur les anneaux de
Robba et à suggérer un argument d’induction crucial. Nous tenons également à
remercier Jean-François Dat, Jan Kohlhaase et Peter Schneider pour plusieurs
discussions utiles sur ce que devrait être la catégorie des G-représentations
localement analytiques en A-modules. Merci encore à Gabriel Dospinescu et
Arthur-César Le Bras pour des conversations fructueuses sur divers sujets.
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2 Part I: A counter-example to the
Rapoport-Zink conjecture
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3 Introduction
In this paper we provide a counter-example to the Rapoport-Zink conjec-

ture 21, cf. [49, §1.37] in the situation

G = GL2, b =
(

1 0
0 p2

)
, µ =

(
t2 0
0 1

)
.

Although the conjecture in loc.cit. is stated in the rigid analytic setting, we will
adopt the language of Berkovich spaces. Here b is associated to the isocrystal
Qp ⊕Qp(2) and µ is a non-minuscule cocharacter (defined over Q̆p) controlling
the filtration. Consider the Berkovich affine line A1

Q̆p
over the completion of

the maximal unramified extension of Qp, Q̆p. For every finite extension L/Q̆p,
A1

Q̆p
(L) corresponds to the equivalence class of filtrations µ′ defined over L (in

the conjugacy class of {µ}) such that (b, µ′) is admissible 22. In this setup the
conjecture roughly states the following (for a precise statement we refer the
reader to Conjecture 4.3).

Conjecture 3.1 (Rapoport-Zink). There exists a Qp-local system E over A1
Q̆p

satisfying the following property: For any point µ′ ∈ A1
Q̆p

(L) the p-adic Galois
representation

Gal(L/L) πdJ
1 (µ′)−−−−−→ πdJ

1 (A1
Q̆p

)→ GL(Qp),

where the 2nd map is coming from E, is isomorphic to the crystalline represen-
tation determined by (b, µ′) 23.

Let us provide a sketch for why Conjecture 3.1 is false. One begins by
defining a moduli space (akin to a Rapoport-Zink space) associated to E which
parametrizes the Zp-lattices in E .

Definition 3.2. Define a moduli-space M (E)→ A1
Q̆p
, whose values at an S →

A1
Q̆p

étale point are given by

M (E)(S) := {F/S | F ⊗Qp ∼= E|S} ,

where F is a Zp-local system (a local system of Zp-lattices in the terminology
used by de Jong, cf. [18, §4]).

We call the structural map

πdR : M (E)→ A1
Q̆p

21. Kedlaya announced a proof of a modified Rapoport-Zink conjecture in [41].
22. Equivalently by the work of Colmez-Fontaine, cf. [12], the pair (b, µ′) gives rise to a

crystalline representation.
23. Here πdJ

1 (A1
Q̆p

) is the étale fundamental group of étale covering spaces of A1
Q̆p

as defined
in [18, §2]. In loc.cit. it is denoted by π1.
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the de-Rham period map. It is not difficult to prove that M (E) is representable
as a Q̆p-analytic space and πdR is an étale covering map. It is natural to expect
that M (E) has a group structure, but to prove this we need to assume that
E ∈ Ext1(Qp,Qp(2)) and also for any open subgroup U ⊂ A1

Q̆p
,

m∗ η|U = pr∗1 E|U + pr∗2 E|U , (2)

where m : U × U → U is the group law of U and pr1,2 : U × U → U are the first
and second projections, respectively 24.

We are then able to work with M (E)(0,0), the connected component of M (E)
around the identity element. It turns out that M (E)(0,0) is an analytic Q̆p-group
of p-divisible type in the sense of [26]. Using a classification theorem of analytic
Cp-groups of p-divisible type established by Fargues, one is able to show that
ECp ∼= E ′Cp , where E

′ is a certain Qp-local system over A1
Q̆p

which is an extension
of Qp by Qp(1). The Qp-local system E ′ is coming from an honest Rapoport-
Zink space (the deformation space of an ordinary elliptic curve over Fp to be
precise).

Indeed the isomorphism ECp ∼= E ′Cp looks strange. Recall that E sits in an
exact sequence

0→ Qp(2)→ E → Qp → 0

and E ′ in
0→ Qp(1)→ E ′ → Qp → 0.

Let ρ1, ρ2 : πdJ
1 (A1

Q̆p
)→ GL2(Qp) be the representations corresponding to E ′ and

E , respectively. Equipping GL2(Qp) with an action of πdJ
1 (A1

Q̆p
) via conjugation

of ρ2, the key is to consider the pointed set

H1(πdJ
1 (A1

Q̆p
), GL2(Qp))

and in particular the 1-cocycle given by

c : πdJ
1 (A1

Q̆p
)→ GL2(Qp)

σ 7→ ρ1(σ)ρ2(σ)−1.

An analysis of c obtains a contradiction for the existence of E .
Finally we should note that in literature, there is enough to show that the

Rapoport-Zink conjecture is false in our situation (without even assuming the
assumptions we make in this paper). Indeed the existence of such a local system
implies by [45, Theorem 1.5(iii)] that the associated filtered module with inte-
grable connection must satisfy Griffith’s transversality. But by repeating the
proof as in the complex case [19, Proposition 1.1.14], this contradicts that µ is
not minuscule, cf. [55, pg. 3]. The interest in the present case is the method of
proof.

24. The addition in (2) is viewed as a Baer sum in the abelian group of extensions of Qp by
Qp(2) over U × U .
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Let us give a brief overview of the structure of the paper.
In §2 we recall the Rapoport-Zink conjecture. We set up the situation which

leads to a counter-example and prove that M (E)(0,0) is a group object in the
category of Q̆p-analytic spaces. Furthermore πdR is a group homomorphism.

In §3 we show that M (E)(0,0) is of p-divisible type.
In §4 we recall the Rapoport-Zink space deforming an ordinary elliptic curve

over Fp.
In §5 we prove that it is impossible to have two Qp-representations of

πdJ
1 (A1

Q̆p
), one of which is an extension of Qp by Qp(1) and the other an ex-

tension of Qp by Qp(2) which are isomorphic when pulled back to πdJ
1 (A1

Cp).
Acknowledgements. The author would deeply like to thank Laurent Far-

gues for proposing this problem to us. Indeed many of the ideas are due to him
in one form or another. He would also like to thank Jean-François Dat for many
helpful conversations.

4 The Rapoport-Zink conjecture
We provide a counter-example to the Rapoport-Zink conjecture when the

cocharacter µ is not minuscule. Let us recall the conjecture, as established for
example in their book, cf. [49, §1.37]. We follow closely the recount given by
Urs Hartl, cf. [32, Chapter 2].

Let us first recall the definition of filtered isocystals. We denote by K0 :=
W (Fp)[ 1

p ], the fraction field of the ring of Witt vectors over Fp. Let ϕ =
W (Frobp) be the Frobenius lift on K0.

Definition 4.1. An F-isocrystal over Fp is a finite dimensional K0-vector space
D equipped with a ϕ-linear automorphism ϕD. If L is a finite field extension of
K0 and Fil•DL is an exhaustive separated decreasing filtration of DL := D⊗K0L
by L-subspaces we say that D := (D,ϕD,Fil•DL) is a filtered isocrystal over L.
We let tN (D) be the p-adic valuation of detϕD and we let

tH(D) =
∑
i∈Z

i · dimL griFil•(DL)

We now need the notion of weak admissibility, which we just call admissi-
ble, after the work of Colmez-Fontaine showed that weakly admissible implies
admissible, cf. [12].

Definition 4.2. The filtered isocrystal D is called admissible if

tH(D) = tN (D) and tH(D′) ≤ tN (D′)

for any subobject D′ = (D′, ϕD|D′ ,Fil•D′L) of D, where D′ is any ϕD-stable K0-
subspace of D which is equipped with the induced filtration FiliD′L = D′L∩FiliDL

on D′L := D′ ⊗K0 L.
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To construct the first ingredient in the Rapoport-Zink conjecture, namely
period spaces, let G be a reductive linear algebraic group over Qp. Fix a conju-
gacy class {µ} of cocharacters

µ : Gm → G

defined over subfields of Cp. Let E be the field of definition of the conjugacy
class. Then E is a finite extension of Qp. Two cocharacters in this conjugacy
class are called equivalent if they induce the same weight filtration on the cat-
egory RepQp G of finite dimensional Qp-rational representations of G. There
is a projective variety F over E whose Cp-valued points are in bijection with
the equivalence classes of cocharacters (from the fixed conjugacy class of {µ}).
Namely for V ∈ RepQp G and a cocharacter µ defined over L, one associates a
filtration

Filiµ VL :=
⊕
j≥i

VL,j

of VL := V ⊗Qp L given by the weight spaces

VL,j :=
{
v ∈ VL| µ(z) · v = zjv for all z ∈ Gm(L)

}
.

This defined a closed embedding of F into a partial flag variety of V

F ↪→ Flag(V )⊗Qp E,

where the points of Flag(V ) evaluated at a Qp-algebra R are the filtrations F i
of V ⊗Qp R by R-submodules which are direct summands such that rkR grrF• is
the multiplicity of the weight i of the conjugacy class {µ} on V .

A pair (b, µ) with an element b ∈ G(K0) and a cocharacter µ : Gm → G
defined over L/K0 is called admissible if for some faithful representation ρ :
G ↪→ GL(V ) in RepQp G the filtered isocrystal

Db,µ(V ) := (V ⊗Qp L, ρ(b) · ϕ,Fil•µ VL)

is admissible (we denote by Db(V ) the isocrystal (V ⊗Qp L, ρ(b) · ϕ)). In fact
this holds for any V ∈ RepQp G, cf. [49, Definition 1.18]. By the work of
Colmez-Fontaine, the filtered isocrystal Db,µ(V ) is admissible iff it arises from
a crystalline Galois representation Gal(L/L)→ GL(U) via Fontaine’s covariant
functor

Db,µ(V ) ∼= Dcris(U) := (U ⊗Qp Bcris)Gal(L/L).

This is an equivalence of categories from crystalline representations of Gal(L/L)
to admissible filtered isocrystals over L. We denote Vcris(Db,µ(V )) := U for
Fontaine’s covariant inverse functor. The assignment

RepQp G→ RepQp(L/L), V 7→ Vcris(Db,µ(V ))

defines a tensor functor from RepQp G to the category of continuous Gal(L/L)-
representations in finite dimensional Qp-vector spaces.
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Let Ĕ = EK0 be the completion of the maximal unramified extension of E.
In what follows we consider cocharacters µ defined over complete extensions L
of Ĕ. Let F̆an be the Ĕ-analytic space associated with the variety F̆ := F⊗E Ĕ.
Rapoport and Zink define the p-adic period space associated with (G, b, {µ}) as

F̆wa
b := {µ ∈ F̆an| (b, µ) is admissible}

We are now ready to state the Rapoport-Zink conjecture in the form that
we are interested in.

Conjecture 4.3. There exists a unique largest arcwise connected dense open
Ĕ-analytic subspace F̆a

b ⊂ F̆wa
b invariant under J(Qp) with F̆a

b (L) = F̆wa
b (L)

for all finite extensions L/Ĕ and a tensor functor

V : RepQp G→ Qp − LocF̆a
b

(where Qp − LocF̆a
b
is the category of local systems of Qp-vector spaces on F̆a

b )
with the following property: For any point µ ∈ F̆a

b (L) with L/Ĕ finite, the tensor
functor

RepQp G→ RepQp(L/L), V 7→ Vcris(Db,µ(V ))
is isomorphic to the tensor functor

V 7→ V (V )µ

which associates to a representation V ∈ RepQp G the geometric fiber at µ of
the corresponding local system V(V).

There has been some evidence to suggest that the conjecture is false when
µ is not minuscule. Indeed for what follows we fix

G = GL2, b =
(

1 0
0 p2

)
, µ =

(
t2 0
0 1

)
.

Now RepQp GL2 is a tannakian category with tensor generator the standard
representation. This means that any tensor functor V : RepQp GL2 → Qp −
LocF̆a

b
is determined by its value on the standard representation.

We want to show first that F̆wa
b = A1,an. We take as the model filtration:

(0) = Fil3µ ⊂ Fil2µ = Fil1µ ⊂ Fil0µ = Q̆2
p

and the isocrystal corresponding to b (associated to the standard representation)
is Qp ⊕Qp(2). We denote the canonical basis for Q2

p by e1, e2 and let

V− =< e1 >, V+ =< e2 >,

so that b = p2 · idV− ⊕ idV+ . Then the slope decomposition of the isocrystal,
Db(Q2

p), associated to the standard representation has the form Db(Q2
p) = N0⊕

N1 with
N0 = V+ ⊗K0, N1 = V− ⊗K0.
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We consider the space F := Grass1(Q2
p) of subspaces F of dimension 1 (keeping

track of Fil2µ = Fil1µ). It is the easy to see that F (considered as an L-point of
F ) is admissible iff

F ∩ (V+ ⊗ L) = (0).

That is it may be identified with an affine space of dimension 1, i.e. F̆wa
b = A1,an,

as promised.
Since the isocrystal corresponding to b is an extension of Qp by Qp(2), it is

natural to assume the same for E , that is there is an exact sequence:

Additional assumption 1.

η : 0→ Qp(2)→ E → Qp → 0,

where η ∈ Ext1(Qp,Qp(2)).

Next we show that we don’t lose generality if we suppose that F̆ab = A1,an,
given the following additional assumption on E := V (standard representation):

Additional assumption 2. For any open subgroup U ⊂ F̆ab ,

m∗ η|U = pr∗1 η|U + pr∗2 η|U ,

where m : U × U → U is the group law of U and pr1,2 : U × U → U are the first
and second projections respectively. The addition is viewed as a Baer sum in
the abelian group of extensions of Qp by Qp(2)

Remark 4.4. The above identity in Ext1(Qp,Qp(2)), where Qp and Qp(2) are
viewed as Qp-local systems over U × U , implies that there is an isomorphism

m∗ E|U ∼= pr∗1 E|U ⊕ pr∗2 E|U

and the fact that Hom(Qp,Qp(2)) = 0, implies that this isomorphism is unique.
Indeed given the above assumption on E , we can take in particular U =

B(0, ε) for some ε > 0 small enough, where B(0, ε) is the open ball around 0 of
radius ε. We consider the multiplication by p map:

p : B(0, pε)→ B(0, ε).

We see that if E is defined on B(0, ε) satisfying Conjecture 4.3 and Additional
assumption 2 then so does p∗E defined over B(0, pε). Repeating gives a Qp-local
system, lim←−

n

pn∗E defined over lim←−
n

B(0, pnε) = A1,an. Thus we may suppose that

F̆ab = A1,an.
We now define a moduli-space which parametrizes the Zp-lattices in E .

Definition 4.5. Define a moduli-space M → A1,an, whose values at an S →
A1,an étale point are given by

M (S) := {F/S | F ⊗Qp ∼= E|S} ,
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where F is a Zp-local system (a local system of Zp-lattices in the terminology
used by de Jong, cf. [18, §4]). We call the structural map

πdR : M → A1,an

the de-Rham period map, in analogy with the classical Gross-Hopkins period
map, πGH : MLT → P1,an.

The following proposition shows that M is representable by an analytic
space.

Proposition 4.6. The space M (which we denote by M (E) if necessary) as
defined above is representable by an étale covering space over A1,an. In particular
the period morphism πdR : M → A1,an is étale and surjective.

Proof. We note that Zp − Loc is a stack over the category of k-analytic spaces
with the étale topology (here we can take k = Q̆p). This shows that M is at
least a sheaf. Also E is given by the triple

E =
({
Ui → A1,an} ,Fi, φij)

where
1.
{
Ui → A1,an} is an étale covering of A1,an,

2. for each i there is given an object Fi ∈ Zp − LocUi ,
3. for each pair i, j there is given an isomorphism φij : Fi|Ui×A1,anUj →
Fj |Ui×A1,anUj in the fibre category of Zp − Loc⊗Qp over Ui ×A1,an Uj .

These data are subject to the cocycle condition pr∗ij(φij)◦pr∗jk(φjk) = pr∗ik(φik)
on the triple product Ui ×A1,an Uj ×A1,an Uk. It follows immediately that M |Ui
is representable by a disjoint union of spaces finite étale over Ui. Hence [18,
Lemma 2.3], implies that M is representable by an étale covering space (which
we also denote by M ) over A1,an.

For what follows we surpress ‘an’ from the notation (for example A1 will
mean A1,an). We note that there is a morphism

M (E)→
∐
Z2

Sp(Q̆p).

The construction of this morphism is simple. Denote by u the morphism E → Qp
coming from the extension defining E . If S → A1 and F ∈ M (E)(S), then
F ∩Qp(2) is a lattice in Qp(2) and u(F) is a lattice in Qp. Denote the index of
F ∩Qp(2) relative to Zp(2) by a and the index of u(F) relative to Zp by b. The
pair (a, b) then define the morphism. We can therefore rewrite

M (E) =
∐

(a,b)∈Z2

M (E)(a,b),

where M (E)(a,b) is defined as the fiber of (a, b) under the above morphism.
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Proposition 4.7. M (E)(0,0) is connected and is a group in the category of
Sp(Q̆p)-Berkovich spaces. Furthermore the period morphism

πdR
∣∣
M (E)(0,0) : M (E)(0,0) → Ga,

where A1 is identified with group structure Ga, is a morphism of groups.

Proof. We denote by πdJ
1 (A1) the étale fundamental group due to de Jong

(pointed above 0 ∈ A1), cf. [18] (there he simply denotes it by π1). Recall
that πdJ

1 (A1) calculates all étale covers of the base space A1. The structure
morphism A1 → Sp(Q̆p), defines a morphism

πdJ
1 (A1)→ Gal(Qp/Q̆p),

which when composed with the cyclotomic character gives a character χ of
πdJ

1 (A1). The character χ corresponds to the Qp-local system Qp(1) over A1.
Thus E is given by a morphism

ρ : πdJ
1 (A1)→

(
χ2 α
0 1

)
,

where α ∈ Z1(πdJ
1 (A1),Qp(2)) is a continuous 1-cocycle (to see this, the fact

that ρ is a homomorphism implies α is a 1-cocycle with values in Qp(2) and
together with ρ being continuous forces α to be a continuous 1-cocycle). We
therefore have

π0(M (E)) = Im(ρ)\GL2(Qp)/GL2(Zp).

This follows from the fact that the number of orbits of the action of πdJ
1 (A1)

on M (E)0 is equal to the number of connected components of M (E), cf. [18,
Theorem 2.10]. We first prove that M (E)(0,0) is connected. It suffices to show
that Im(α) = Qp. Recall that for each finite extension K/Q̆p, the fiber of E
at x ∈ A1(K) is given by the crystalline galois representation fabricated by the
Colmez-Fontaine functor. For example at x = 0, this is just Qp ⊕ Qp(2). The
point x ∈ A1(K) gives a section

sx : Gal(K/K)→ πdJ
1 (A1).

For x 6= 0, we claim that the image of α ◦ sx is an open subgroup of Qp. Indeed
ρ ◦ sx is a group homomorphism from a compact group (namely Gal(K/K))
to the standard Borel subgroup B(Qp). The image is thus a closed subgroup
of B(Qp) and hence a Lie subgroup. The unipotent part corresponds to α ◦ sx
(which is non-trivial as x 6= 0) and thus has image, an open subgroup of Qp. To
finish the proof of connectedness, we make use of the morphism

×p : A1 → A1.

This corresponds to an action of multiplying the image of α ◦ sx by p. This is
enough to conclude that Im(α) = Qp.
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We will now show that M (E)(0,0) is a group object and the period morphism
πdR is a morphism of groups with A1 identified with Ga. It is important to note
that we are working in the category of Sp(Q̆p)-Berkovich spaces (in particular
our morphisms to A1 are not fixed). We first describe the group law. Fix two
morphisms u : S → A1 and v : S → A1. Given two points

F1 ∈M (E)(0,0)(u : S → A1) and F2 ∈M (E)(0,0)(v : S → A1)

we note that both F1 and F2 are extensions of Zp by Zp(2). We can thus
produce their Baer sum F := F1 + F2. Explicitly, if we have

0→ Zp(2) h→ F1
g→ Zp → 0

0→ Zp(2) h′→ F2
g′→ Zp → 0,

then F is given by

F := {(f, f ′) ∈ F ⊕ F ′| g(f) = g′(f ′)} / {(h(b), 0)− (0, h′(b))| b ∈ Zp(2)} .

Now we have
F1

[
1
p

]
∼= u∗E and F2

[
1
p

]
∼= v∗E

Denote by m : Ga×Ga → Ga the addition law on Ga and pr1,2 : Ga×Ga → Ga
the two projections. We see that

F
[

1
p

]
= F1

[
1
p

]
+ F2

[
1
p

]
= u∗E + v∗E
= (pr1 ◦ u× v)∗E + (pr2 ◦ u× v)∗E
= (u× v)∗(pr∗1 E + pr∗2 E)
= (u× v)∗m∗E
= (u+ v)∗E ,

where u+v is the addition law under m : Ga×Ga → Ga. The above calculation
shows that

F ∈M (E)(0,0)(u+ v : S → A1). (3)
This gives us the required group law. The existence of an inverse follows from
Ext1(Zp,Zp(2)) being a group. The canonical section 0 : Sp(Q̆p) → A1 forces
the crystalline galois representation of E0 to be precisely Qp⊕Qp(2). This has a
canonical lattice Zp⊕Zp(2) providing the identity section for M (E)(0,0). Finally
πdR is a morphism of groups follows from (3).

5 Analytic groups of p-divisible type
In this section we recall Fargue’s notion of analytic groups of p-divisible

type and prove that M (E)(0,0) is such an object. For brevity we abuse notation
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slightly and write πdR for πdR
∣∣
M (E)(0,0) . For an extensive study, we refer the

reader to [26]. Fix a field K of complete valuation of rank 1, an extension of Qp
(e.g. Q̆p).

Definition 5.1. An analytic K-group of p-divisible type is an analytic K-group
commutative G such that

1. The multiplication by p, G ×p−→ G, is a surjective and finite morphism.
2. If |G| denotes the underlying topological space, then for all x ∈ |G|,

lim
n→+∞

pnx = 0.

Remark 5.2. Fargues’s original definition is in the rigid-analytic setting. Here
we work directly in the Berkovich setting. In our particular case, this creates
no problems. We also have an equivalence of categoies:

{paracompact hausdorff strictly K − analytic Berkovich spaces}
∼= {quasi-paracompact qs rigid-analytic varieties/K} .

such that if X is a quasi-paracompact qs rigid-analytic variety/K and Xan is
its associated Berkovich space, then the underlying set of X is the set of points
x ∈ Xan such that [H (x) : K] <∞.

We show that M (E)(0,0) is an analytic Q̆p-group of p-divisible type. The
last section shows that is an analytic Q̆p-group. Moreover by construction of
the group law it is clearly also commutative.

Remark 5.3. The multiplication by p map, p : M (E)(0,0)(Q̆p)→M (E)(0,0)(Q̆p)
is easily seen have closed image on the (classical) Tate points. That is those
points whose residue field is a finite extension of Q̆p. Indeed suppose that we
have a sequence pxi

i→∞−−−→ x where xi and x are such points. It suffices to show
that x = pz for some z. Now since πdR is an étale covering map, it follows
that it is an isomorphism around the identity element. That is there exists
V ⊂M (E)(0,0) an analytic subgroup containing the identity element such that
πdR|V : V → (B◦(0, ε),+). Thus for i, j > N for some N > 0, we have that
p(xi − xj) ∈ V rig and hence xi − xj ∈ V rig. It follows that xi

i→∞−−−→ z for some
z and hence x = pz.

We begin by showing that kerπdR is a p-divisible group. Note first that
kerπdR is a Q̆p-analytic group étale over Q̆p. Thus it is of dimension 0 and is
determined by its classical points. Now kerπdR is a p-divisible group iff it is
p∞-torsion (i.e. kerπdR = kerπdR[p∞]), kerπdR[p] is finite (cf. Lemma 5.6) and
the multiplication by p on kerπdR is surjective (cf. Lemma 5.9). Note however
for K a finite extension of Q̆p

kerπdR(K) = ker(H1(Gal(K/K),Zp(2))→ H1(Gal(K/K),Qp(2))),
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where the map on the RHS is the obvious one, sending a representation V to
V ⊗Qp. Finally since

H1(Gal(K/K),Zp(2))
[

1
p

]
= H1(Gal(K/K),Qp(2)),

it follows that kerπdR(K) = kerπdR[p∞](K) for every finite extension K/Q̆p
and so kerπdR = kerπdR[p∞], as desired. Together with Lemmas 5.6 and 5.9
we have proved the following theorem:

Theorem 5.4. We have the following exact sequence:

O −→ Γ −→M (E)(0,0) πdR−−→ A1
Q̆p
−→ 0,

where Γ is a p-divisible group over Q̆p, πdR is an étale surjection such that
kerπdR identifies with Γ.

Proof. See the above paragraph

Corollary 5.5. M (E)(0,0) is an analytic Q̆p-group of p-divisible type.

Proof. This follows from Theorem 5.4 and [26, Proposition 18].

It remains to prove kerπdR[p∞] is a p-divisible group. We have the following
commutative diagram,

0 0 0

0 kerπdR[p] M (E)(0,0)[p] 0

0 kerπdR M (E)(0,0) A1

0 kerπdR M (E)(0,0) A1

×p

πdR

×p ×p

πdR

where all columns are left exact and the two bottom rows are left exact. Thus
by a version of the nine-lemma, the top row is also left exact giving:

kerπdR[p] ∼= M (E)(0,0)[p].

Now for [K : Q̆p] < ∞, it is clear that kerπdR(K) denotes the group of
Gal(K/K)-crystalline representations which are extensions of Zp by Zp(2), whose
associated Qp-representation is Qp ⊕Qp(2) (the group law is given by the Baer
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sum on Ext1(Zp,Zp(2)), induced by the group law on M (E)(0,0)(K)). Thus we
have an isomorphism of groups

kerπdR[p](K) ∼= H1(Gal(K/K),Zp(2))[p].

We now give two proofs of the following lemma. The first is an indirect
calculation on (ϕ,Γ)-modules. The second is more direct.

Lemma 5.6. Given K as above and a p-adic Gal(K/K)-representation V , in
Zp-modules, the p-torsion of H1(Gal(K/K), V ) is finite and bounded as [K : Q̆p]
increases. Thus in particular

kerπdR[p](Q̆p) = lim−→
K

kerπdR[p](K)

is finite.

Proof. Let D := D(V ) be the (ϕ,Γ)-module associated to V . By the thesis of
Laurent Herr, cf. [34], we can commute the Galois cohomology of V directly
in terms of D using the Herr complex (Cψ,γK (K,V ) concentrated in degrees
[−1, 3]):

0 −→ D
(ψ−1,γK−1)−−−−−−−−→ D ⊕D (γK−1) pr1−(ψ−1) pr2−−−−−−−−−−−−−−−→ D −→ 0,

where γK is a generator of ΓK := Gal(K(µp∞)/K).

Theorem 5.7. Hi(Cψ,γK (K,V )) ∼= Hi(Gal(K/K), V ) for all i ∈ N

Proof. This is proven in [34, Théorème 2.1 and Proposition 4.1].

We get the induced exact sequence (cf. [25, Lemme I.5.5]):

0 −→ Dψ=1

γK − 1 −→ H1(Gal(K/K), V ) −→
(

D

ψ − 1

)ΓK
−→ 0.

The interest in this exact sequence is that the modules Dψ=1 and D
ψ−1 have a

natural interpretation in Iwasawa theory.

Proposition 5.8. D
ψ−1 is a Zp-module of finte rank and no p-torsion.

Proof. This is proven in [25, Proposition I.5.6 and Lemme I.7.1].

Thus regarding the question of p-torsion, we are reduced to the study of
Dψ=1

γK−1 . We have the exact sequence:

0 −→ Dϕ=1 −→ Dψ=1 1−ϕ−−−→ C −→ 0,

where the module C := (1−ϕ)Dψ=1 is free of rank 2[K : Q̆p] over Zp[[ΓK ]], cf.
[6, Proposition 6.3.2]. This induces an exact sequence

0 −→ Dϕ=1

γK − 1 −→
Dψ=1

γK − 1 −→
C

γK − 1 −→ 0,
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coming from taking the long exact sequence of ΓK-cohomology and noting that
ΓK is pro-cyclic. Now Zp[[ΓK ]] = Zp[∆] ⊗ Zp[[T ]], where ∆ is the torsion
submodule of ΓK . Note also that the action of γK on C corresponds to multi-
plication by T+1. Thus the module C

γK−1 has no p-torsion. Finally, using freely
the notation of Fontaine (cf. [25, §I]), we compute: Dϕ=1 = (A⊗Zp V )HK ,ϕ=1 =
(Aϕ=1 ⊗Zp V )HK = V HK . Thus all the p-torsion in H1(Gal(K/K), V ) comes
from V HK

ΓK−1 which is a finite Zp-module. Further as K increases, we will have at
most

V

γK − 1 [p]

p-torsion.

We now give a more direct proof of Lemma 5.6 in the case V = Zp(2) and
even calculate the order of kerπdR[pn].

Lemma 5.9. The group kerπdR[pn] is of order pn.

Proof. We follow the notation of Lemma 5.6. We have an exact sequence of
Gal(K/K)-modules

0→ Zp(2) ×p
n

−−−→ Zp(2)→ (Z/pnZ)(2)→ 0.

Taking the long exact sequence of cohomology we obtain thatH1(Gal(K/K),Zp(2))[pn]
identifies with

coker
(
H0(Gal(K/K),Zp(2))→ H0(Gal(K/K), (Z/pnZ)(2))

)
.

As [K : Q̆p] increases, we see that

H0(Gal(K/K),Zp(2)) = 0 and H0(Gal(K/K), (Z/pnZ)(2)) = (Z/pnZ)(2).

This completes the proof.

6 Rapoport-Zink spaces and Qp-local systems
This section is an application of [18, §6], applied to an ordinary elliptic curve

over Fp. The deformation space of an ordinary abelian variety was studied by
Serre-Tate and a summary is given in [36, §2]. Let us recall the definition of
a Rapoport-Zink space (without EL or PEL-structure). Let H be a p-divisible
group over a perfect field k of characteristic p, of height h and dimension d.
Consider the category ArtW (k) of Artinian local algebras overW (k) with residue
field k. An object of ArtW (k) is a pair (R, j), where R is an Artinian local algebra
with residue field k and j : W (k)→ R is a local homomorphism of local rings.
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Definition 6.1. Let R ∈ ArtW (k). A deformation of H to R is a pair (G, ρ),
where G is a p-divisible group over R and

ρ : H → G⊗R k

is an isomorphism locally for the fppf topology. Let DefH be the associated
functor on ArtW (k), taking R to the set of isomorphism classes of deformations
(G, ρ) of H to R.

Recall the following theorem of Rapoport-Zink, cf. [49, Theorem 2.16].

Theorem 6.2. The functor DefH is representable by a formal schemeM over
Spf W (k), which locally admits a finitely generated ideal of definition. Ev-
ery irreducible component of the reduced subscheme is proper and M is non-
canonically isomorphic to the functor represented by the formal spectrum

Spf W (k)[[T1, . . . , Td(h−d)]].

Now let H be the p-divisible group over Fp, associated to an ordinary elliptic
curve over Fp,

H = µp∞ ×Qp/Zp.

To describe its isocrystal, let e1, e2 be the canonical basis for Q2
p and let

V− =< e1 >, V+ =< e2 > .

As the element b ∈ GL2(K0) we take b = p · idV− ⊕ idV+ . Then the isocrystal
associated to H is Qp ⊕ Qp(1). The slope decomposition has the form N =
N0 ⊕N1 with

N0 = V+ ⊗K0, N1 = V− ⊗K0.

We consider the space F := Grass1(Q2
p) of subspaces F of dimension 1. It is

the easy to see that F (considered as an L-point of F ) is admissible iff

F ∩ (V+ ⊗ L) = (0).

That is the admissible locus may be identified with an affine space of dimension
1.

We now return to study the functor DefH , with H as above.

Definition 6.3. Let S be a scheme such that p is locally nilpotent in OS. A
p-divisible group X → S is said to be ordinary if X sits in a short exact sequence

0→ T → X → E → 0

where T is a multiplicative p-divisible group (i.e. locally T [pn] is diagonalizable)
and E is an étale p-divisible group. Such an exact sequence is unique up to
unique isomorphism.

Remark 6.4. Suppose that X is an ordinary p-divisible group over S = Spec(K),
where K ⊃ Fp is a perfect field. Then there exists a unique splitting of the short
exact sequence 0→ T → X → E → 0 over K.
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Proposition 6.5. Suppose that S is a scheme over W (k) and p is locally nilpo-
tent in OS. Let S0 = S × OS/pOS, the closed subscheme defined by the ideal
pOS of the structure sheaf OS. If X → S is a p-divisible group such that X×SS0
is ordinary, then X → S is ordinary.

Proof. This is a consequence of the rigidity of finite étale group schemes and
commutative finite group schemes of multiplicative type, cf. [20, Exposé X].

Now H is an ordinary p-divisible group over Fp. It sits in a canonical split
short exact sequence

0→ µp∞ → H → Qp/Zp → 0.

Let Ti → Spec(W (Fp)/piW (Fp)) and Ei → Spec(W (Fp)/piW (Fp)) be the
multiplicative, respectively étale p-divisible group over Spec(W (Fp)/piW (Fp))
which lifts µp∞ , respectively Qp/Zp, for each i ≥ 1. Both Ti and Ei are
unique up to unique isomorphism. Taking the limit of Ti[pn], respectively
Ei[pn] as i → ∞, we get a multiplicative, respectively étale p-divisible group
T → Spec(W (Fp)), respectively E → Spec(W (Fp)). Let Ĝm be the completion
of Gm along its unit section. The theorem below shows that the deformation
space of H has a natural structure as a group object isomorphic to Ĝm, of
dimension 1.

Theorem 6.6. 1. Every deformation X → Spec(R) of H over an Artinian
local W (Fp)-algebra R is an ordinary p-divisible group over R. Therefore
X sits in an exact sequence

0→ T ×W (Fp) R→ X → E ×W (Fp) R→ 0.

2. The deformation functor DefH has a natural structure via the Baer sum
construction, as a functor from ArtW (Fp) to the category of Abelian groups.
In particular the unit element in DefH(R) corresponds to the split p-
divisible group

(T ×W (Fp) E)×W (Fp) R.

3. There is a natural isomorphism of functors

Ĝm
∼−→ DefH .

Proof. Statements 1 and 2 follow from Proposition 6.5. It remains to prove
statement 3. By 1, over any Artinian local W (Fp)-algebra R, we see that
DefH(R) is the set of isomorphism classes of extensions of E ×W (Fp) R by
T ×W (Fp) R. We have also seen that DefH(R) is naturally isomorphic to the
inverse limit

lim←−
n

Ext1
Z/pnZ((Z/pnZ)R, µpn,R),

where the Ext group is computed in the category of fppf-sheaves of Z/pnZ-
modules over Spec(R). This makes sense because the category of finite flat
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R-group schemes in the category of fppf-sheaves is closed under extensions.
Now in the fppf-topology, the Kummer sequence

1→ µn → Gm
z 7→zn−−−−→ Gm → 1

is always exact even if n is not invertible in the underlying scheme. So we can
apply Kummer theory directly to compute H1

fppf(Spec(R), µn) for any n, cf. [47,
§4, pg. 125], for an explicit computation. By Kummer theory, we have

Ext1
Z/pnZ((Z/pnZ)R, µpn,R) = R∗/(R∗)p

n

.

Since mR is nilpotent and R/mR = Fp is perfect, it is easy to compute

lim←−
n

R∗/(R∗)p
n

= 1 + mR,

where the transition morphisms are given by restriction and are compatible with
the transition morphisms in lim←−n Ext1

Z/pnZ((Z/pnZ)R, µpn,R). Finally note that
Ĝm(R) = 1 + mR.

Remark 6.7. The above theorem holds (with the same proof) for the category C
of complete local noetherian W (Fp)-algebras with residue field Fp. That is we
can define DefH as a functor on C and we would have Ĝm

∼−→ DefH as functors
on C. Hence there is a universal p-divisible group Huniv over DefH .

Let R be a ring and Nilpop
R denote the category opposite of the category

of R-algebras on which p is nilpotent. We now define the Tate module of a
p-divisible group G over R. We follow closely [57, §3.3].

Definition 6.8. The Tate module of G is defined as a sheaf

T (G)(S) := lim←−
n

G[pn](S)

on Nilpop
R . Clearly T (G) is a locally constant sheaf of Zp-modules.

The next result says that the Tate-module commutes with analytification.

Proposition 6.9. We have that

T (G)an ∼= lim←−
n

G[pn]an

as analytic sheaves on Spec(R)an.

Proof. This follows from the proof of [57, Proposition 3.3.2].

Definition 6.10. We define the rational Tate module of G as

V (G)an := lim−→
p

T (G)an

where the transition morphisms are multiplication by p
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Remark 6.11. [57, Proposition 3.3.1] says that T (G) is representable as a scheme
over Spec(W (Fp)) and since p : T (G)an → T (G)an is an open immersion, it
follows that V (G)an is representable by an analytic space over Spec(R)an.

Fix a scheme X such that Xan is reduced and BTX the stack of p-divisible
groups over X equipped with the fppf topology. Consider the functors between
stacks

Tp : BTX → Zp − LocXan

G 7→ T (G)an

and

Vp : BTX → Qp − LocXan

G 7→ V (G)an.

Proposition 6.12. The functors Tp and Vp are fully faithful and exact.

Proof. The fully faithful part is [18, Proposition 6.2(ii)]. Exactness is obvious.

Take the p-adic period morphism associated to DefH , π : Defan
H → A1,an and

let E ′ denote V (Huniv)an, a Qp-local system on Defan
H .

Proposition 6.13. The rational Tate-module E ′ descends to a local system,
which we denote again by E ′, of Qp-vector spaces on A1,an.

Proof. In order for E ′ to define a local system on A1,an it suffices to show that
– π : Defan

H → A1,an is a covering for the étale topology.
– There is descent datum ψ̃ : pr∗1 E ′

∼−→ pr∗2 E ′ over Defan
H ×A1,an Defan

H where
pri : Defan

H ×A1,an Defan
H → Defan

H is projection onto the ith factor, such
that ψ̃ satisfies the cocycle condition on Defan

H ×A1,an Defan
H ×A1,an Defan

H .
The first point is well known and goes back to the work of Dwork. For the second
point, let D be the constant filtered isocrystal over A1,an given by (D(H), ωH∗ ↪→
D(H)). We have canonical descent datum

id : pr∗1 π∗D = pr∗2 π∗D

over Defan
H ×A1,an Defan

H . We have the object pr∗i Huniv,an as an object of the
stack BTDefan

H
×A1,an Defan

H
⊗ Qp. Note that BTDefan

H
×A1,an Defan

H
is stack on the

quasi-étale topology of formal models of Defan
H ×A1,an Defan

H
, whose values on a

given formal model X are p-divisible groups over X. Finally BTDefan
H
×A1,an Defan

H
⊗

Qp is the stack associated to BTDefan
H
×A1,an Defan

H
whose pre-stack were mor-

phisms up to quasi-isogeny. The functor from this stack to filtered isocrystals is
fully faithful by [18, Proposition 6.6] and sends pr∗i Huniv,an to pr∗i π∗D. Thus
one obtains descent datum

ψ : pr∗1 Huniv,an ∼−→ pr∗2 Huniv,an
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in BTDefan
H
×A1,an Defan

H
⊗ Qp. One applies the rational Tate module functor Vp

together with Proposition 6.9 and takes

ψ̃ := Vp(ψ) : pr∗1 E ′
∼−→ pr∗2 E ′,

as required. This yields the local system E ′ on A1,an.

Note that E ′ sits in an exact sequence 0 → Qp(1) → E ′ → Qp → 0. The
next proposition summarizes the work done in this section.

Proposition 6.14. There is an isomorphism of Q̆p-analytic groups

Ĝm ∼= M (E ′)(0,0).

Proof. This follows from Theorem 6.6 and Proposition 6.13.

7 Final Calculations
In this section we begin by showing that M (E)(0,0)

Cp is the analytification of an
actual p-divisible group. First of all note that the property of being an analytic
p-divisible group is stable by base change and so M (E)(0,0)

Cp is a Cp-analytic
group of p-divisible type. We have the following lemma giving the height and
dimension of M (E)(0,0)

Cp .

Lemma 7.1. M (E)(0,0)
Cp has dimension 1 and height 1.

Proof. First note that dimension and height are invariant by base change. Thus
it suffices to show that M (E)(0,0) has the specified dimension and height. We
have that πdR : M (E)(0,0) → A1 is an étale surjection. Since A1 has dimension 1,
it follows that M (E)(0,0) has dimension 1. By definition the height of M (E)(0,0)

is the height of its associated p-divisible group, M (E)(0,0)[p∞]. As remarked
earlier, for K a finite extension of Q̆p, we have

M (E)(0,0)[p∞](K) = H1(Gal(K/K),Zp(2))[p∞]
= ker(H1(Gal(K/K),Zp(2))→ H1(Gal(K/K),Qp(2))).

Following the proof of Lemma 5.6, we see that p-torsion inH1(Gal(K/K),Zp(2))
comes from Zp(2)HK

ΓK−1 . The latter is of the form Zp/pnZp for n > 0 (since the
action of γ ∈ ΓK is non-trivial in Zp(2)HK ), which has exactly p, p-torsion.
Hence the p-divisible group M (E)(0,0)[p∞] must have height 1.

The previous lemma together with a classification result of Fargues in [26],
allows us to deduce the precise form of M (E)(0,0)

Cp .

Proposition 7.2. As Cp-analytic p-divisible groups, we have M (E)(0,0)
Cp

∼=
Ĝan
m,Cp , where Ĝm,Q̆p is the completion of Gm,Q̆p along its unit section. This

implies that the analytification, Ĝan
m,Q̆p

, is the open unit ball, with center 1,
equipped with its natural multiplicative structure.
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Proof. By [26, Théorème 3.2] and Lemma 7.1, it follows that either M (E)(0,0)
Cp
∼=

Ĝan
m,Cp or M (E)(0,0)

Cp
∼= Qp/Zp × Gan

a . Since M (E)(0,0) is connected, by [26,
Proposition 6] M (E)(0,0)

Cp has finitely many connected components. Thus M (E)(0,0)
Cp

is connected and this rules out M (E)(0,0)
Cp

∼= Qp/Zp ×Gan
a . Hence M (E)(0,0)

Cp
∼=

Ĝan
m,Cp , as claimed.

We claim that we have ECp ∼= E ′Cp . Indeed by Proposition 6.14 we have
that M (E)(0,0)

Cp
∼= M (E ′)(0,0)

Cp
∼= Ĝan

m,Cp as analytic groups. Now the logarithm
Ĝan
m,Cp → A1

Cp is a Qp/Zp-torsor (it is an étale covering with kernel Qp/Zp). Let
H := lim←−×p Ĝ

an
m,Cp (viewed as a projective system, or a perfectoid space for the

associated adic space). Then H → Ĝan
m,Cp is a Zp-torsor and H → A1

Cp is a
Qp-torsor which is pro-étale. Now as Ĝan

m,Cp is an analytic group of p-divisible
type, it is naturally equipped with an action of Zp. This induces an action of
QpoZ∗p on H (the first component acts via the torsor structure H → A1

Cp and
the second component is induced from Z∗p → Aut(Ĝan

m,Cp). Now let

B1 :=
(
Z∗p Qp

Z∗p

)

and note that B1 acts on H via
(
λ1 µ
0 λ2

)
7→ µ o λ1λ

−1
2 ∈ Qp o Z∗p. Now

consider
IndGL2(Qp)

B1 H := H ×B1 GL2(Qp).

We claim that IndGL2(Qp)
B1 H corresponds to the infinite level Rapoport-Zink

space associated to Ĝan
m,Cp (recall that we are deforming H, the ordinary p-

divisible group). Indeed this follows from results of [29]. Taking b′ = 1, b =(
1 0
0 p

)
, G = GL2, µ minuscule in Proposition 4.21 in loc.cit. gives (after

taking connected components and noting J̃Ub = Spd Fp[[t1/p
∞ ]], cf. [56, Remark

18.2.5(3)]) H � ∼= Pµb,b′,C[p . The claim now follows from [29, Corollary 4.14].

Repeating the construction for M (E)(0,0)
Cp and M (E ′)(0,0)

Cp , we see that

IndGL2(Qp)
B1 lim←−

×p
M (E)(0,0)

Cp
∼= IndGL2(Qp)

B1 lim←−
×p

M (E ′)(0,0)
Cp (4)

Now
IndGL2(Qp)

B1 lim←−
×p

M (E)(0,0)
Cp ×GL2(Qp) Q2

p
∼= ECp

and similarly

IndGL2(Qp)
B1 lim←−

×p
M (E ′)(0,0)

Cp ×GL2(Qp) Q2
p
∼= E ′Cp .
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By (4), this implies ECp ∼= E ′Cp , as promised.
We now rephrase this condition in terms of fundamental groups. First we

need a lemma relating the geometric étale fundamental group πdJ
1 (A1

Cp) and the
étale fundamental group πdJ

1 (A1
Q̆p

).

Lemma 7.3. There is an exact sequence of prodiscrete groups

1→ H → πdJ
1 (A1

Q̆p
)→ Gal(Q̆p/Q̆p)→ 1,

where H is the closure of the image of πdJ
1 (A1

Cp)→ πdJ
1 (A1

Q̆p
).

Proof. Exactness on the right follows from [18, Proposition 2.12]. Exactness
on the left is by definition of H. Let’s prove exactness in the middle. It is
clear that the composition is trivial. This is because for every finite étale cover
X → Sp(Q̆p), the base change X ×Sp(Q̆p) A

1
Cp → A1

Cp is a trivial cover. Let U ⊂
πdJ

1 (A1
Q̆p

) be an open subgroup and let X → A1
Q̆p

be the connected étale cover
corresponding to U . Then U contains the image (:= I) of πdJ

1 (A1
Cp)→ πdJ

1 (A1
Q̆p

)
iff XCp

∼= A1
Cp , cf. [60, Proposition 5.5.5]. Note also that the intersection of

all open subgroups containing I is the closure H of I in πdJ
1 (A1

Q̆p
), cf. Lemma

5.5.7(1) in loc.cit 25. Finally [18, Lemma 2.14] gives that kernel of πdJ
1 (A1

Q̆p
)→

Gal(Q̆p/Q̆p) coincides with H. This completes the proof.

Remark 7.4. Armed with Lemma 7.3 it is natural to proceed as follows. The
inflation-restriction exact sequence applied to

1→ H → πdJ
1 (A1

Q̆p
)→ Gal(Q̆p/Q̆p)→ 1,

gives a diagram

0 H1(Gal(Q̆p/Q̆p),Qp(1)) H1(πdJ
1 (A1

Q̆p
),Qp(1))

H1(H,Qp)

0 H1(Gal(Q̆p/Q̆p),Qp(2)) H1(πdJ
1 (A1

Q̆p
),Qp(2))

γ1

γ2

where we have identified H1(H,Qp(1)) and H1(H,Qp(2)) via a choice of ba-
sis for Qp(1) as a Qp-vector space. Now the condition ECp ∼= E ′Cp means

25. Technically Lemma 5.5.7(1) in loc.cit is for profinite groups but the same proof works
in our situation.
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γ1([f1]) = γ2([f2]) (here [−] denotes the class of the relevant 1-cocycle in the
cohomology group, f1 is a 1-cocycle corresponding to E ′ and f2 is a 1-cocycle
corresponding to E). To obtain a contradiction we need to compare the images
of γ1 and γ2. Unfortunately this is difficult to do (in this setup) due to a lack
of morphism between H1(πdJ

1 (A1
Q̆p

),Qp(1)) and H1(πdJ
1 (A1

Q̆p
),Qp(2)) which is

compatible with γ1 and γ2. To overcome this difficulty, the key is to keep track of
E and E ′ via one cohomology group, albeit we will need to consider non-abelian
cohomology of groups, so this will be a pointed set.

7.1 Non-abelian cohomology of groups
In this section we provide the set-up of non-abelian cohomology that is

required. Consider the following situation: LetG be any profinite group andH a
normal subgroup (we will apply what follows to our situation withG = πdJ

1 (A1
Q̆p

)
and H as in Lemma 7.3). Suppose

ρ1, ρ2 : G→ GL(V )

are two Qp-representations of G, of the same dimension (later we will set ρ1 and
ρ2 to be the stalk at a geometric point of E ′ and E , respectively). Define the
following action of G on GL(V )

∀σ ∈ G, ∀g ∈ GL(V ), σg = ρ2(σ)gρ2(σ)−1.

The key to comparing ρ1 and ρ2 is to consider the following function

c : G→ GL(V )
σ 7→ cσ = ρ1(σ)ρ2(σ)−1.

Lemma 7.5. The function c as defined above is a 1-cocycle, that is c ∈ Z1(G,GL(V )).
Moreover c ∼ 1 iff ρ1 ∼= ρ2.

Proof. For any α, β ∈ G,

cαβ = ρ1(αβ)ρ2(αβ)−1

= ρ1(α)ρ2(α)−1[ρ2(α)ρ1(β)ρ2(β)−1ρ2(α)−1]
= cα ·α cβ .

This proves c is indeed a 1-cocycle. For the last part note that c ∼ 1 iff there
exists b ∈ GL(V ) such that cσ = b−1 ·σ b = b−1ρ2(σ)bρ2(σ)−1. Plugging cσ =
ρ1(σ)ρ2(σ)−1 gives precisely ρ1 ∼= ρ2. This completes the proof.

Suppose now that ρ1|H∼= ρ2|H (this will be the condition that ECp ∼= E ′Cp)
and so by Lemma 7.5, c|H∼ 1. In this case it is natural to start analysing the
inflation-restriction exact sequence (of pointed sets)

1→ H1(G/H,GL(V )H)→ H1(G,GL(V ))→ H1(H,GL(V )).
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We now specialize to our situation. By Lemma 7.3, G/H = Gal(Q̆p/Q̆p).
We will also replace GL(V ) by the upper Borel subgroup B whose lower-right
entries are 1. We begin by computing BH .

Lemma 7.6. As a Gal(Q̆p/Q̆p)-module, BH ∼= Qp(2).

Proof. Suppose g =
(
a b

1

)
∈ BH . This means that for all σ ∈ H

g = ρ2(σ)gρ2(σ)−1 (5)

Computing the RHS of (5) gives

ρ2(σ)gρ2(σ)−1 =
(

1 α2(σ)
1

)(
a b

1

)(
1 −α2(σ)

1

)
=
(
a b+ (1− a)α2(σ)

1

)
where α2 : G → Qp is determined by the class of E in H1(πdJ

1 (A1
Q̆p

),Qp(2)).
Since α2|H is certainly non-trivial, we must have that a = 1. Finally to deter-

mine the action of σ ∈ G on
(

1 b
1

)
∈ BH , we compute

σ

(
1 b

1

)
= ρ2(σ)

(
1 b

1

)
ρ2(σ)−1

=
(
χ2(σ) α2(σ)

1

)(
1 b

1

)(
χ−2(σ) −χ−2(σ)α2(σ)

1

)
=
(

1 bχ2(σ)
1

)
.

Thus it follows that the action of G on BH is given by χ2. This completes the
proof.

We following lemma says that H1(Gal(Q̆p/Q̆p),Qp(2)) is enormous and it is
therefore hopeless to study the cocycle c in H1(Gal(Q̆p/Q̆p),Qp(2)).

Lemma 7.7. We have that H1(Gal(Q̆p/Q̆p),Qp(2)) is of dimension 1 over Q̆p.

Proof. Probably the quickest way to see this is via the exponential map of Bloch-
Kato. The point is that if V is a semi-stable representation of Gal(Q̆p/Q̆p),
whose Hodge-Tate weights are ≥ 2, then the Bloch-Kato exponential map

expV : DdR(V )→ H1(Gal(Q̆p/Q̆p), V )

is an isomorphism, cf. [1, Théorème 6.8]. Applying this to V = Qp(2) gives the
result.
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To obtain a contradiction for the existence of E consider the following com-
position of maps

H1(Gal(Q̆p/Q̆p),Qp(2)) α−→ H1(G,B) β−→ H1(Gal(Q̆p/Q̆p), B), (6)

where the first map is inflation and the second morphism is coming from the
section Sp(Q̆p) → A1

Q̆p
defined by the origin point. Explicitly this composition

sends a cocycle (class)
d : Gal(Q̆p/Q̆p)→ Qp(2)

to the cocycle

Gal(Q̆p/Q̆p)→ G� Gal(Q̆p/Q̆p)
d−→ Qp(2) ↪→ B, (7)

where the first map is induced by the section Sp(Q̆p)→ A1
Q̆p

. Since the compo-
sition of the first two maps in (7) is the identity, the composition of α and β is
given by the map on cohomology induced by the morphism

Qp(2) ↪→ B.

We now compute β([c]) in two ways. First of all, we know that there exists
c′ : Gal(Q̆p/Q̆p)→ Qp(2) a 1-cocycle such that α([c′]) = [c]. On the other hand
at the origin both representations ρ1 and ρ2 are split and so the cocycle c gets
sent to a 1-cocycle (via the second map β) of the form

c′′ : Gal(Q̆p/Q̆p)→ B

σ 7→
(
χ−1(σ)

1

)
.

But β ◦ α([c′]) is a 1-cocycle of the form (which we continue to denote by c′)

c′ : Gal(Q̆p/Q̆p)→ B

σ 7→
(

1 c′(σ)
1

)
.

By construction the two 1-cocycles are c′ ∼ c′′ in H1(Gal(Q̆p/Q̆p), B). This
means that there exists b ∈ B such that

b

(
1 c′(σ)

1

)
=
(
χ−1(σ)

1

)
ρ2(σ)bρ2(σ)−1. (8)

Rearranging (8) gives 26

b

(
χ2(σ) α2(σ) + c′(σ)

1

)
b−1 =

(
χ(σ) χ−1(σ)α2(σ)

1

)
. (9)

26. Recall that ρ2(σ) =
(
χ2(σ) α2(σ)

1

)
.
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Comparing the determinants of both sides of (9) gives a contradiction. This
means that the Qp-local system E does not exist, giving a counter-example to
Conjecture 4.3.

As a corollary of the previous sections, we conjecture the following result:

Conjecture 7.8. For the datum

G = GL2, b =
(

1 0
0 p2

)
, µ =

(
t2 0
0 1

)
there does not exist an adic space X over Spa(Q̆p) such that

X� ∼= Sht(G,b,µ) .

Remark 7.9. Conjecture 7.8 is interesting because it advocates the importance
of diamonds which are not coming from classical adic spaces. One could attempt
to prove Conjecture 7.8 as follows (we will freely employ the notation of [56]):
There is a period map πGM : Sht(G,b,µ) → B+

dR/Fil2×Spd(Qp) Spd(Q̆p) and there
is a natural morphism ν : B+

dR/Fil2×Spd(Qp) Spd(Q̆p) → A1
Q̆p

. One can show
that there is a Qp-local system F over B+

dR/Fil2×Spd(Qp) Spd(Q̆p) such that
Sht(G,b,µ) ∼= M (F). The fact that there is a counterexample to the Rapoport-
Zink conjecture means that F does not descend to a Qp-local system over A1

Q̆p
via ν. One would expect that this implies M (F) does not come from an adic
space.
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8 Part II: Arithmetic families of (ϕ,Γ)-modules
and locally analytic representations of

GL2(Qp)
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9 Introduction
9.1 An extension of the p-adic Langlands correspondence

The aim of this article is to study the p-adic Langlands correspondence for
GL2(Qp) in arithmetic families. To put things into context, let us recall the
general lines of this correspondence. In [9], [48] and [16], a bijection V 7→ Π(V )
between absolutely irreducible 2-dimensional continuous L-representations 27

of the absolute Galois group GQp
of Qp and admissible unitary non-ordinary

Banach L-representations of GL2(Qp) which are topologically absolutely irre-
ducible is established. The inverse functor Π 7→ V (Π) is sometimes referred to
as the Montréal functor, cf. [9, §IV].

The basic strategy of the construction of the functor V 7→ Π(V ) is the
following: by Fontaine’s equivalence, the category of local Galois representations
in L-vector spaces is equivalent to that of étale (ϕ,Γ)-modules over Fontaine’s
field EL 28. The latter (linearized-) category is considered to be an upgrade as
one can often perform explicit computations. Any such (ϕ,Γ)-module D can be
naturally seen as a P+-equivariant sheaf 29 over Zp, where P+ =

( Zp−{0} Zp
0 1

)
is a sub-semi-group of the mirabolic subgroup (=

(Q×p Qp

0 1

)
) of GL2(Qp). If U

is a compact open subset of Zp, we denote by D�U the sections over U of this
sheaf. In [9], a magical involution wD acting on D�Z×p is defined, allowing one
(noting tht P1(Qp) is built by glueing two copies of Zp along Z×p ) to extend D
to a GL2(Qp)-equivariant sheaf over 30 P1, which is denoted D �ω P1, where
ω = (detD)χ−1 31. One then cuts out the desired Banach representation Π(V )
(and its dual) from the constituents of D�ωP1. More precisely, we have a short
exact sequence of topological GL2(Qp)-modules

0→ Π(V )∗ ⊗ ω → D �ω P1 → Π(V )→ 0.

Let RL denote the Robba ring 32 with coefficients in L. By a combination of
results of Cherbonnier-Colmez ([5]) and Kedlaya ([38]), the categories of étale
(ϕ,Γ)-modules over EL and RL are equivalent. Call D 7→ Drig this correspon-
dence. We have analogous constructions as above for Drig and, in particular,

27. During all this text, L will denote the coefficient field, which is a finite extension of Qp.
28. The field EL is defined as the Laurent series

∑
n∈Z anT

n such that an ∈ L are bounded
and limn→−∞ an = 0. E is equipped with continuous actions of Γ = Z×p (we note σa,
a ∈ Z×p , its elements) and an operator ϕ defined by the formulas σa(T ) = (1 + T )a − 1 and
ϕ(T ) = (1+T )p−1. Recall that a (ϕ,Γ)-module is a free E -module equipped with semi-linear
continuous actions of Γ and ϕ.
29. The matrix

(
p 0
0 1

)
codifies the action of ϕ,

(
a 0
0 1
)
the action of σa ∈ Γ and

(
1 b
0 1

)
the

multiplication by (1 + T )b.
30. From now on, P1 will always mean P1(Qp).
31. The character detD is the character of Q×p defined by the actions of ϕ and Γ on ∧2D.

If D is étale, it can also be seen as a Galois character via local class field theory. The
character χ : x 7→ x|x| denotes the cyclotomic character. We see both characters as characters
of GL2(Qp) by composing with the determinant.
32. It is defined as the ring of Laurent series

∑
n
anTn, an ∈ L, converging on some annulus

0 < vp(T ) ≤ r for some r > 0.
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we have a GL2(Qp)-equivariant sheaf U 7→ Drig �U over P1. If we note Π(V )an

the locally analytic vectors of Π(V ), we get an exact sequence

0 7→ (Π(V )an)∗ ⊗ ω → Drig �ω P1 → Π(V )an → 0.

The construction however of Drig �ω P1 is not a straightforward consequence of
D �ω P1. This is mainly because the formula defining the involution does not
converge for a (ϕ,Γ)-module over RL

33.
Inspired by the calculations of the p-adic local correspondence for triangu-

line 34 étale (ϕ,Γ)-modules, Colmez ([11]) has recently given a direct construc-
tion, for a (not necessarily étale) (ϕ,Γ)-module ∆ (of rank 2) over RL, of a
locally analytic L-representation Π(∆) of GL2(Qp). More precisely, we have
the following theorem:

Theorem 9.1 ([11], Théorème 0.1). There exists a unique extension of ∆ to
a GL2(Qp)-equivariant sheaf of Qp-analytic type 35 ∆ �ω P1 over P1 with cen-
tral character ω. Moreover, there exists a unique admissible locally analytic
L-representation Π(∆), with central character ω, of GL2(Qp), such that

0→ Π(∆)∗ ⊗ ω → ∆ �ω P1 → Π(∆)→ 0.

The purpose of the present work is to study this correspondence in the con-
text of arithmetic families of (ϕ,Γ)-modules 36. The arguments in [11] strongly
rely on the cohomology theory of locally analytic representations developed in
[43], and specifically on Shapiro’s lemma. Since the authors are not aware of
any reference for these results in the relative setting, we develop, in an appendix
(cf. §A), the necessary definitions and properties of locally analytic GL2(Qp)-
representations in A-modules. Since this point might carry some interest on its
own, we describe it in more detail in §9.3 below. We will exclusively work with
affinoid spaces in the sense of Tate, rather than Berkovich or Huber. Let A be
a Qp-affinoid algebra and let RA be the relative Robba ring over A. Our main
result can be stated as follows:

Theorem 9.2. Let A be a Qp-affinoid algebra and let ∆ be a trianguline (ϕ,Γ)-
module over RA of rank 2 which is an extension of RA(δ2) by RA(δ1), where
δ1, δ2 : Q×p → A× are locally analytic characters satisfying some regularity
assumptions 37. Then there exists a unique extension of ∆ to a GL2(Qp)-

33. To construct the involution on Drig in the étale case, one shows that wD stabilises D†�
Z×p , whereD† is the (ϕ,Γ)-module over the overconvergent elements E †L of EL corresponding to
D by the Cherbonnier-Colmez correspondence, and that it defines by continuity an involution
on Drig � Z×p .
34. A rank 2 (ϕ,Γ)-module is trianguline if it is an extension of rank 1 (ϕ,Γ)-modules.
35. A sheaf U 7→ M � U is of Qp-analytic type if, for every open compact U ⊆ P1 and

every compact K ⊆ GL2(Qp) stabilizing U , the space M � U is of LF-type and a continuous
D(K)-module, where D(K) is the distribution algebra over K.
36. Results concerning representations in famillies on the `-adic side (i.e. the classical local

Langlands correspondence, cf. [31]) have been achieved by Emerton-Helm in [24].
37. Precisely, we suppose that δ1δ−1

2 is pointwise never of the form χxi or x−i for some
i ≥ 0.
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equivariant sheaf of Qp-analytic type ∆ �ω P1 over P1 with central charac-
ter ω = δ1δ2χ

−1 and a (not necessarily unique) locally analytic GL2(Qp)-
representation 38 Π(∆) in A-modules with central character ω, living in an exact
sequence

0→ Π(∆)∗ ⊗ ω → ∆ �ω P1 → Π(∆)→ 0.

This result is expected to have applications to the study of eigenvarieties,
however in this paper we make no attempt to say anything in this direction.

9.2 The construction of the correspondence
The construction of the correspondence follows the general lines of [11], but

several technical difficulties appear along the way. Let’s briefly describe how
to construct the correspondence ∆ 7→ Π(∆) and the additional problems that
arise in the relative (affinoid) setting.

From the calculation of the locally analytic vectors of the unitary principal
series ([8, Théorème 0.7]), one knows that, if D is an étale trianguline (ϕ,Γ)-
module over EL of dimension 2, then (Π(D))an is an extension of locally analytic
principal series. The idea of [11] is to intelligently reverse this dévissage of
Drig �ω P1 in order to actually construct it from these pieces.

For the rest of this introduction let G = GL2(Qp) and B be its lower Borel
subgroup and let δ1, δ2 and ω be as in Theorem 9.2. Using a relative version
of the dictionary of p-adic functional analysis, we construct, for ? ∈ {+,−, ∅},
G-equivariant sheaves R?

A(δ1) �ω P1 (with central character ω) of Qp-analytic
type living in an exact sequence

0→ R+
A (δ1) �ω P1 → RA(δ1) �ω P1 → R−A (δ1) �ω P1 → 0.

Moreover, one can get identifications BA(δ2, δ1)∗ ⊗ ω ∼= R+
A (δ1) �ω P1 and

BA(δ1, δ2) ∼= R−A (δ1) �ω P1, where BA(δ1, δ2) = IndG
B

(δ1χ−1 ⊗ δ2) denotes the
locally analytic principal series. These identifications allow us to consider the
locally analytic principal series (and their duals) as (the global sections of) G-
equivariant sheaves over P1 of interest.

We then construct the G-equivariant sheaf ∆�ω P1 over P1 as an extension
of RA(δ2) �ω P1 by RA(δ1) �ω P1. This is done, as in [11], by showing that
extensions of RA(δ2) by RA(δ1) correspond to extensions of R+

A (δ2) �ω P1 by
RA(δ1)�ωP1. One then shows that an extension of R+

A (δ2)�ωP1 by RA(δ1)�ω
P1 uniquely extends to an extension of RA(δ2) �ω P1 by RA(δ1) �ω P1. Once
the sheaf ∆ �ω P1 is constructed, one shows that the intermediate extension
of R+

A (δ2) �ω P1 by R−A (δ1) �ω P1 splits and thus one can separate the spaces
that are Fréchets from those that are an inductive limit of Banach spaces so as
to cut out the desired representation Π(∆).

The fact that, for ? ∈ {+,−, ∅}, the P+-module R?
A(δ1) can be seen as

sections over Zp of a G-equivariant sheaf over P1, and that the semi-group P+ =

38. See Definition A.24 for the definition of a locally analytic G-representation in A-modules.
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( Zp−{0} 0
pZp 1

)
stabilizes Zp, show that R?

A(δ1) = R?
A(δ1) �ω Zp is automatically

equipped with an extra action of the matrix
( 1 0
p 1
)
. We call

R?
A(δ1, δ2) := (R?

A(δ1) �ω Zp)⊗ δ−1
2

the P+-module thus defined. The technical heart for proving Theorem 9.2 is a
comparison result between the cohomology of the semi-groups A+ =

( Zp−{0} 0
0 1

)
and P+ with values in RA(δ1δ−1

2 ) and RA(δ1, δ2), respectively.

Theorem 9.3. The restriction morphism from P
+ to A+ induces an isomor-

phism
H1(P+

,RA(δ1, δ2))→ H1(A+,RA(δ1δ−1
2 )).

The semi-group A+ should be thought of as encoding the action of ϕ and
Γ. The difficulty of course is to codify the action of the involution and this
is the underlying idea for considering the semi-group P

+. Indeed P
+ should

be thought of as getting closer to tracking the involution. Theorem 9.3 is (es-
sentially) saying that a trianguline (ϕ,Γ)-module as in Theorem 9.2 admits an
extension to a G-equivariant sheaf over P1.

Let us briefly describe the proof of Theorem 9.3. The main idea is to reduce
this bijection to the case of a point (i.e to the case where A = L is a finite
extension of Qp). The first step is to build a Koszul complex which calculates
P

+-cohomology.

Proposition 9.4. Let M be an A[P+]-module such that the action of P+ ex-
tends to an action of the Iwasawa algebra Zp[[P

+]]. Then the complex

Cτ,ϕ,γ(M) : 0→M
X−→M ⊕M ⊕M Y−→M ⊕M ⊕M Z−→M → 0

where 39

X(x) = ((1− τ)x, (1− ϕ)x, (γ − 1)x)
Y (x, y, z) = ((1− ϕδp)x+ (τ − 1)y, (γδa − 1)x+ (τ − 1)z, (γ − 1)y + (ϕ− 1)z)
Z(x, y, z) = (γδa − 1)x+ (ϕδp − 1)y + (1− τ)z

calculates P+-cohomology. That is Hi(Cτ,ϕ,γ(M)) = Hi(P+
,M).

The asymmetric nature of Cτ,ϕ,γ(M) is due to the non-commutativity of P+.
A crude estimation of the maps X, Y and Z leads to the following corollary.

Corollary 9.5. The complex Cτ,ϕ,γ(RA(δ1, δ2)) is a pseudo-coherent complex
concentrated in degrees [0, 3]. In the terminology of the body of the paper,
Cτ,ϕ,γ(RA(δ1, δ2)) ∈ D[0,3]

pc (A) 40. In particular the cohomology groups Hi(P+
,RA(δ1, δ2))

are finite A-modules.

39. Here τ =
(

1 0
p 1
)
and δx = τx−1

τ−1 for all x ∈ Z×p .
40. We refer the reader to §12.1 for the notion of a pseudo-coherent complex and the defi-

nition of D−pc(A).
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More precisely the proof of Corollary 9.5 is reduced to proving finiteness of
a twisted (ϕ,Γ)-cohomology of RA(δ1, δ2), cf. Lemma 12.11.

The issue with Cτ,ϕ,γ(M) is that the operators δx are difficult to comprehend,
rendering the complex almost impractical for explicit computations. One can
however linearize the situation and pass to the Lie algebra, where calculations
are often feasible.

Proposition 9.6. If M ∈
{
R+
L (δ1, δ2),R−L (δ1, δ2),RL(δ1, δ2)

}
then the com-

plex

Cu−,ϕ,a+(M) : 0→M
X′−−→M ⊕M ⊕M Y ′−→M ⊕M ⊕M Z′−→M → 0,

where 41

X ′(x) = ((ϕ− 1)x, a+x, u−x)
Y ′(x, y, z) = (a+x− (ϕ− 1)y, u−y − (a+ + 1)z, (pϕ− 1)z − u−x)
Z ′(x, y, z) = u−x+ (pϕ− 1)y + (a+ + 1)z

calculates the Lie-algebra cohomology of P+. In particular, H0(P̃ ,Hi(Cu−,ϕ,a+(M))) =
Hi(P+

,M) 42.

A long, tedious but direct calculation then leads to the following corollary.

Corollary 9.7. The L-vector space H2(P+
,RL(δ1, δ2)) is of dimension 1.

Corollaries 9.5 and 9.7 allow for an analysis of a spectral sequence to take
place and prove Theorem 9.3 in the case where A is reduced. One then concludes
via an induction argument on the index of nilpotence of the nilradical of A. Via
the complex Cu−,ϕ,a+(M) we also obtain an alternative proof of [11, Proposition
5.18] in the case of a cyclotomic (ϕ,Γ)-module. Along the way we show a com-
parison isomorphism relating continuous cohomology and analytic cohomology
for certain (ϕ,Γ)-modules (cf. Proposition 11.4 for a precise statemtent).

Armed with Theorem 9.3, the reader may notice at this point however, that
there is an absence of theory required to conclude (or even make sense of)
Theorem 9.2. The following questions are therefore unavoidable:
Q1 What is a locally convex A-module?
Q2 What is a locally analytic G-representation in A-modules?
Q3 What is the relation between locally analyticG-representations inA-modules

and modules equipped with a (separately) continuous action of the relative
distribution algebra D(G,A)?

We provide a set of answers to these questions (A1-A3) and prove some
fundamental properties regarding the locally analytic cohomology theory of
D(G,A)-modules, which we describe in the following section.

41. Here a+ =
(

1 0
0 0
)
and u− =

(
0 0
1 0
)
are the usual elements of the Lie algebra gl2 of GL2.

42. Here P̃ =
( Z×p 0
pZp 1

)
, is the non-discrete subgroup of P+.
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9.3 Analytic families of locally analytic representations
Recall that for a locally Qp-analytic group H, a theory of locally analytic

representations of the group H in L-vector spaces has been developed by Schnei-
der and Teitelbaum (cf. [53], [52], [54]). In order to construct the A-module
Π(∆) of Theorem 9.2, with a locally analytic action of G, we need to develop
a reasonable framework to make sense of such an object. It turns out that,
with some care, much of the existent theory can be extended without serious
difficulties to the relative context.

Definition 9.8 (A1). A locally convex A-module is a topological A-module
whose underlying topology is a locally convex Qp-vector space. We let LCSA
be the category of locally convex A-modules. Its morphisms are all continuous
A-linear maps.

There is a notion of a strong dual in the category LCSA, however outside
of our applications, it is ill-behaved (in the sense that there are few reflexive
objects which are not free A-modules). Let H be a locally Qp-analytic group.

Definition 9.9 (A2). We define the category Repla
A(H) whose objects are bar-

relled, Hausdorff, locally convex A-modules M equipped with a topological A-
linear action of H such that, for every m ∈ M , the orbit map h 7→ h ·m is a
locally analytic function on H with values in M .

Denote LA(H,A) the space of locally analytic functions on H with values in
A and D(H,A) = HomA,cont(LA(H,A), A) (equipped with the strong topology)
its strong A-dual, the space of A-valued distributions on H. Both LA(H,A)
and D(H,A) are locally convex A-modules. In order to algebrize the situation,
one proceeds as in [53] and shows that a locally analytic representation of H
is naturally a module over the relative distribution algebra. More precisely
let Repla,LB

A (H) ⊆ Repla
A(H) denote the full subcategory consisting of spaces

which are of A-LB-type (i.e inductive limit of Banach spaces whose transition
morphism are A-linear) and complete. Then our main result in §A can be stated
as follows:

Theorem 9.10 (A3). Every locally analytic representation of H carries a sep-
arably continuous A-linear structure of D(H,A)-module 43. Moreover, the cat-
egory Repla,LB

A (H) is isomorphic to the category of complete, Hausdorff locally
convex A-modules which are of A-LB-type equipped with a separately continuous
D(H,A)-action with morphisms all continuous D(H,A)-linear maps.

The idea to prove Theorem 9.10 is of course to reduce to the well known
result of Schneider-Teitelbaum, cf. [53, Theorem 2.2]. To achieve this, the main
intermediary result required is the following proposition.

Proposition 9.11. There is an isomorphism of locally convex A-modules

D(H,A) = D(H,Qp)⊗̂Qp,ιA.

43. More precisely, a separately continuous A-bilinear map D(H,A)×M →M .
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In the case where H is compact we show that LA(H,A) satisfies a bounded-
ness property which we call A-regular (we refer the reader to Definition A.20 and
Lemma A.22 for the precise statements). This is enough to prove Proposition
9.11.
Remark 9.12. Proposition 9.11 would also follow immediately if LA(H,A) is
complete (for H compact). To the best of our knowledge this seems to be an
open question if the dimension of H ≥ 2. If H ∼= Zp, one can identity LA(Zp, A)
with the negative powers of RA and conclude the result, cf. Lemma A.14. In
particular LA(Zp, A) is an example of an A-reflexive object, which is not free
as an A-module.

Finally with the equivalence of Theorem 9.10 in mind, we switch our atten-
tion to cohomological questions concerning the category Repla

A(H).

Definition 9.13. Let GH,A denote the category of complete Hausdorff locally
convex A-modules with the structure of a separately continuous A-linear D(H,A)-
module, taking as morphisms all continuous D(H,A)-linear maps. More pre-
cisely we demand that the module structure morphism

D(H,A)×M →M

is A-bilinear and separately continuous.

Following Kohlhaase ([43], [63]), one can develop a locally analytic coho-
mology theory for the category GH,A. One can define groups Hi

an(H,M) and
ExtiGH,A(M,N) for i ≥ 0 and objects M and N in GH,A 44. If H2 is a closed lo-
cally Qp-analytic subgroup ofH1, we also have an induction functor 45 indH1

H2
: GH2,A →

GH1,A. Our main purpose in considering such a theory is to show the following
relative version of Shapiro’s lemma, which is crucially used in the construction
of the correspondence ∆ 7→ Π(∆) of Theorem 9.2:

Proposition 9.14 (Relative Shapiro’s Lemma). Let H1 be a locally Qp-analytic
group and let H2 be a closed locally Qp-analytic subgroup. If M and N are
objects of GH2,A and GH1,A, respectively, then there are A-linear bijections

ExtqGH1,A
(indH1

H2
(M), N)→ ExtqGH2,A

(M,N)

for all q ≥ 0.

Structure of the paper. In §10, we extend the dictionary of p-adic funca-
tional analysis to the relative setting. A key issue is to establish that the sheaf
RA(δ1) �ω P1 is G-equivariant over P1 and is Qp-analytic.

In §11, we use (ϕ,Γ)-cohomology to recalculate some results from [4] (in
loc.cit. (ψ,Γ)-cohomology was used). A key result for the subsequent chapter is

44. For example Ext1
GH,A

(M,N) classifies extensions of topological A-modules which are
split.
45. This is the dual of the standard Induction functor, typically denoted IndH1

H2
, cf. Lemma

A.55.
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the nullity of H2(A+,RA(δ1δ−1
2 ) iff δ1δ−1

2 is (pointwise) never of the form χxi

or x−i for some i ≥ 0 (i.e. δ1δ−1
2 is regular).

In §12 and 13, the technical heart of the paper is carried out. We begin by
proving the finiteness of P+-cohomology for RA(δ1, δ2). Using the Lie-algebra
complex we provide a different proof of [11, Proposition 5.18] (in the cyclo-
tomic setting). We show that the dimension of the higher cohomology group
H2(P+

,RL(δ1, δ2)) is constant (of dimension 1) when δ1δ−1
2 is regular.

In §14, Theorem 9.3 is then established.
In §15, the general machinary developed in [11, §6] is used to construct Π(∆)

from a regular trianguline (ϕ,Γ)-module of rank 2 ∆, over RA.
In the appendix (§A) we establish a formal framework for the main result.

We introduce the category of locally analytic G-representations in A-modules.
We prove that there is a relationship between this category and a category of
modules over the relative distribution algebra in the same spirit of [53]. There
is a locally analytic cohomology theory extending that of [43] and we establish
a relative version of Shapiro’s Lemma. These results are used in §15.
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9.4 Notations
Let A be a Qp-affinoid algebra equipped with its Gauss-norm topology (mak-

ing it a Banach space with norm | · |A and vA = − logp | · |A a fixed valuation).
We will denote

G = GL2(Qp), A+ =
(

Zp\{0} 0
0 1

)
, P+ =

(
Zp\{0} Zp

0 1

)
, P

+ =
(

Zp\{0} 0
pZp 1

)
.

As usual we note Γ = Z×p , P1 = P1(Qp) and we assume p > 2 throughout.

For n ≥ 1 we set rn := 1
(p−1)pn−1 and denote the element

(
1 0
p 1

)
by τ . For

two continuous characters δ1, δ2 : Q×p → A× we will denote δ = δ1δ
−1
2 χ−1 and

ω = δ1δ2χ
−1 where χ(x) = x|x| corresponds to the cyclotomic character via

local class field theory. We denote by κ(δ1) := δ′1(1), the weight of δ1.
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10 Preliminaries
We start by recalling, in the relative case, some well-known constructions

that will play a key role in our construction.

10.1 Dictionary of relative functional analysis
Let us first set up some notation and definitions.

10.1.1 Relative Laurent series rings

The theory of relative Robba rings has been expounded by Kedlaya-Liu in
[40]. For 0 < r < s ≤ ∞ (with r and s rational, except possibly s = ∞), the
relative Robba ring RA is defined by setting,

R
[r,s]
A = R

[r,s]
Qp
⊗̂Qp

A; R
]0,s]
A = lim←−

0<r<s
R

[r,s]
A ; RA = lim−→

s>0
R

]0,s]
A ,

where R
[r,s]
Qp

is the usual Banach ring of analytic functions on the rigid analytic
annulus in the variable T with radii r ≤ vp(T ) ≤ s with coefficients in Qp. The
Banach ring R

[r,s]
A is equipped with valuation v[r,s] defined by:

v[r,s] = inf
r≤vA(z)≤s

vA(f(z)) = min
(

inf
k∈Z

(vA(ak) + rk), inf
k∈Z

(vA(ak) + sk)
)

for f =
∑
k∈Z akT

k ∈ R
[r,s]
A .

This definition admits an interpretation in terms of rings of analytic func-
tions over a rigid space: if I = [r, s] and if A1,rig

Qp
= Sp(Qp〈T 〉) denotes the affine

rigid line with parameter T , then noting BI the admissible open subset of A1,rig
Qp

defined by vp(T ) ∈ I, we have a natural isomorphism

RI
A
∼= O(Sp(A)×BI).

We can also interpret these rings in terms of Laurent series (power series∞ ∈ I)
with coefficients in A in the usual way. For s < r1 we have an A-linear ring
endomorphism ϕ : R

[r,s]
A → R

[r/p,s/p]
A , sending T to (1 + T )p − 1, inducing

an action of the operator ϕ over RA and we also have a continuous action of
the group Γ, commuting with that of ϕ, whose action is given by the formula
σa(T ) = (1 + T )a − 1, a ∈ Z×p , over all rings defined above.

Lemma 10.1 (Lemme 1.3 (v) [4]). For every interval I ⊆]0,∞], the ring RI
A

is a flat A-module. In particular, RA is flat over A.

10.1.2 Locally analytic functions and distributions

The Robba ring RA is well interpreted in terms of distributions and locally
analytic functions. Define R+

A := R
]0,∞]
A which is stable under the action of
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ϕ and Γ (equipped with the subspace topology), and note R−A := RA/R
+
A

(with the induced action of ϕ and Γ equipped with the quoitent topology). The
algebra of distributions with values in A is defined as 46

D(Zp, A) := D(Zp,Qp)⊗̂QpA, (10)

where the tensor product in (10) is independent of the choice of injective or
projective tensor product (as D(Zp,Qp) is Fréchet and A is Banach). Let
LA(Zp, A) be the space of locally analytic functions on Zp with values in A.
If µ ∈ D(Zp, A), it’s Amice transform is defined as

Aµ =
∑
n∈N

∫
Zp

(
x

n

)
Tnµ(x) ∈ R+

A .

Finally, for f ∈ RA, we define its Colmez transform as (for all x ∈ Zp)

φf (x) = res0((1 + T )−xf(T ) dT

1 + T
) = res0((1 + T )−xfdt),

where for f =
∑
n∈Z anT

n, we put res0(fdT ) = a−1 (as usual we set t := log(1+
T )). We then have the following result due to Chenevier, cf. [4, Proposition 2.8]
(cf. also [37, Lemma 2.1.19]), generalizing those of Colmez, cf. [11, Théorème
2.3] (cf. also [51]):
Proposition 10.2.

– The Amice transform µ 7→ Aµ induces a topological isomorphism D(Zp, A) ∼=
R+
A .

– The Colmez transform f 7→ φf (x) induces a topological isomorphism R−A
∼=

LA(Zp, A)⊗ χ−1.
– If µ ∈ D(Zp, A) and f ∈ RA, then

∫
Zp φf · µ = res0(σ−1(Aµ)f dT

1+T ).
– We have a (ϕ,Γ)-equivariant short exact sequence

0→ D(Zp, A)→ RA → LA(Zp, A)⊗ χ−1 → 0.

The Robba ring RA is equipped with a left inverse of ϕ constructed as
follows: For s < r1 the map ⊕p−1

i=0 R
[r,s]
A → R

[r/p,s/p]
A given by (fi)i=0,...,p−1 7→∑p−1

i=0 (1 + T )iϕ(fi) is a topological isomorphism and allows us to define ψ :
R

[r/p,s/p]
A → R

[r,s]
A by ϕ ◦ ψ = p−1Tr

R
[r/p,s/p]
A

/ϕ(R[r,s]
A

). We also note ψ : RA →
RA the induced operator, which is continuous, surjective and is a left inverse of
ϕ.

10.1.3 Multiplication by a function

If µ ∈ D(Zp, A) and α ∈ LA(Zp, A), we define the distribution αµ by the
formula ∫

Zp
φ · αµ :=

∫
Zp
αφ · µ.

46. A priori this is different to DefinitionA.29 where the relative distribution algebra for
a general locally Qp-analytic group is defined. Lemma A.31 says that these definitions are
equivalent.
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If a ∈ Zp, n ∈ N and if we take α = 1a+pnZp the characteristic function of the
compact open a+ pnZp ⊆ Zp, then we note Resa+pnZp the multiplication by α.
Via the Amice transform this translates to

AResa+pnZp (µ) = Resa+pnZpAµ,

where the restriction map on the RHS translates to Resa+pnZp = (1 + T )aϕn ◦
ψn(1 + T )−a, cf. [11, §2.1.1].

Since ψ is surjective, we have a Γ-equivariant exact sequence

0→ D(Z×p , A)→ Rψ=0
A → LA(Z×p , A)⊗ χ−1 → 0.

Lemma 10.3. If µ ∈ D(Zp, A) and f ∈ RA then we have

ψ(Aµ) = Aψ(µ) and φψ(f) = ψ(φf ),

where ψ(µ) is given by
∫

Zp φ·ψ(µ) :=
∫
pZp φ(x/p)·µ, and for any φ ∈ LA(Zp, A),

we set ψ(φ)(x) := φ(px)

Proof. In the case where A is a finite extension of Qp, this is [11, Proposition
2.2]. In our setup the same proof carries over. For the first equality we have that
(ϕ ◦ψ)(µ) = RespZpµ by construction and so ϕ(Aψ(µ)) = RespZpAµ = ϕ ◦ψAµ,
from which we deduce the result.

For the second equality note that

φψ(f)(x) = res0((1 + T )−xψ(f)dt)
(i)= res0(ψ((1 + T )−pxf)dt)
(ii)= res0((1 + T )−pxfdt)
= φf (px)
= ψ(φf )(x)

where (i) follows from the identity ψ((1 + T )−px) = (1 + T )−x and (ii) follows
from the identity res0 ◦ ψ = res0.

The following corollary is now immediate.

Corollary 10.4. If µ ∈ D(Zp, A) (resp. φ ∈ LA(Zp, A)), the condition ψ(µ) =
0 (resp. ψ(φ) = 0) translates into µ (resp. φ) being supported on Z×p .

10.1.4 The differential operator ∂

We define an A-linear differential operator ∂ : RA → RA by the formula

∂f := (1 + T )df(T )
dT

.

This operator plays an important role in the subsequent constructions that we
will consider.

55



Lemma 10.5.
– If f ∈ RA then φ∂f (x) = xφf (x).
– If µ ∈ D(Zp, A), then ∂Aµ = Axµ.
– ∂ is bijective on Rψ=0

A .
Proof. In the case when A is a finite extension of Qp, this is [11, Proposition 2.6
and Lemme 2.7]. In our setup the same proof carries over. For the first point,
we have

φ∂f (x) = res0((1+T )−x∂f dT

1 + T
) = res0((∂((1+T )−xf)+x(1+T )−xf) dT

1 + T
) = xφf (x),

where for the last equality, we have used the fact that res0(∂RA
dT

1+T ) = 0. For
the second point, we have

Axµ =
∫

Zp
x(1 + T )x · µ =

∫
Zp
∂(1 + T )x · µ = ∂Aµ.

Finally, the last point follows from the fact that ∂ is bijective on D(Z×p , A) and
LA(Z×p , A) (the first two points show that it is just multiplication by x) and the
short exact sequence 0→ D(Z×p , A)→ Rψ=0

A → LA(Z×p , A)⊗ χ−1 → 0.

10.1.5 Qp-Analytic sheaves and relative (ϕ,Γ)-modules

A crucial notion developed by Colmez is that of an analytic sheaf. This
plays a greater role in the study of (ϕ,Γ)-modules for Lubin-Tate extensions (in
the sense of [42]) associated to a finite extension F 6= Qp. In analogy with[11,
Defintion 1.6], we define:
Definition 10.6. Let H be a locally Qp-analytic semi-group and X an H-space
(totally disconnected, compact space on which H acts by continuous endomor-
phisms). An H-sheaf M over X is the datum:

1. For every compact open U ⊂ X, a topological A-module M � U , with
M � ∅ = 0

2. For each U ⊂ V of compact opens, there are continuous A-linear restric-
tion maps:

ResVU : M � V →M � U,

such that if U = ∪ni=1Ui and si ∈M � Ui for 1 ≤ i ≤ n, such that

ResUiUi∩Uj si = ResUjUi∩Uj sj ,

then there exists a unique s ∈M � U , such that ResUUi s = si for all i.
3. There are continuous A-linear isomorphisms:

gU : M � U ∼= M � gU

for every g ∈ H and U compact open, satisfying the cocycle condition,
ghU ◦ hU = (gh)U for every g, h ∈ H and U compact open. Moreover for
every compact open U , the morphism g 7→ gU is a continuous morphism
of the stabiliser HU (of U) to HomA,cont(M � U).
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Since we will be primarily interested in attachingH-sheaves to (ϕ,Γ)-modules,
we have the following definition, cf. [37, Definition 2.2.12].

Definition 10.7. Let r ∈ (0, r1). A ϕ-module over R
]0,r]
A is a finite projective

R
]0,r]
A -module M ]0,r] equipped with an isomorphism

M ]0,r] ⊗
R

]0,r]
A

,ϕ
R

]0,r/p]
A

∼= M ]0,r] ⊗
R

]0,r]
A

R
]0,r/p]
A

A (ϕ,Γ)-module over R
]0,r]
A is ϕ-module M ]0,r] over R

]0,r]
A equipped with a com-

muting semilinear continuous action of Γ. A (ϕ,Γ)-module over RA is the base
change to RA of a (ϕ,Γ)-module over R

]0,r]
A for some r. Let ΦΓ(RA) denote

the category of (ϕ,Γ)-modules over RA. Morphisms are RA-linear morphisms
commuting with the actions of ϕ and Γ.

In order to equip an H-sheaf with an action of a Lie algebra (so that one
can perform explicit calculations), the following definition beckons.

Definition 10.8. For (H,X) ∈ {(P+,Zp), (G,P1)}, we say that an H-sheaf M
over X is Qp-analytic if for all open compact U ⊂ X, M �U is a locally convex
A-module of A-LF-type (cf. Definition A.13) and a continuous D(K,A)-module
for all open compact subgroups K ⊂ H, stabilizing U .

The point of Definition 10.8 is that a (ϕ,Γ)-module ∆ over RA naturally
provides a Qp-analytic P+-sheaf over Zp, which codifies its (ϕ,Γ)-structure, cf.
[11, §1.3.3]. For z ∈ ∆ one sets(

pka b
0 1

)
· z := (1 + T )bϕk ◦ σa(z) if k ∈ N, a ∈ Z×p , b ∈ Zp.

If U is an open compact of Zp, we can write U as a finite disjoint union∐
i∈I

i+ pnZp

and we define ResU by the formula

ResU =
∑
i∈I

Resi+pnZp

where we set
Resi+pnZp =

(
1 i
0 1

)
◦ ϕn ◦ ψn ◦

(
1 −i
0 1

)
.

This turns out to be independent of choice as

z =
∑

i mod p
Resi+pZpz.

One then sets ∆ � U to be the image of ResU . The aim is to show that for a
trianguline (ϕ,Γ)-module over RA, we can extend the corresponding P+-sheaf
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over Zp to a G-sheaf over P1. Moreover the global sections of the latter will cut
out the locally analytic G-representation in A-modules that we are attempting
to attach to ∆.

We have the associated definition for (ϕ,Γ)-module over RA.

Definition 10.9. A (ϕ,Γ)-module over RA is said to be analytic if its associated
P+-sheaf over Zp is analytic.

Remark 10.10. Every (ϕ,Γ)-module over RA is Qp-analytic (as the base field
is Qp), cf. [2, Lemme 4.1] or [37, Lemma 2.2.14(3)], for why the action of Γ is
locally analytic.

10.1.6 Multiplication by a character on RA

Let L be a finite extension of Qp. Let N ≥ 0. For f ∈ RL � Z×p = Rψ=0
L

and i ∈ (Z/pNZ)×, we write fi = ψN (1 + T )−if so that

f =
∑

i∈(Z/pNZ)×
(1 + T )iϕN (fi).

If k ≥ 0, by the Leibnitz rule we can write

∂kf = ∂k

 ∑
i∈(Z/pNZ)×

(1 + T )iϕN (fi)

 =
∑

i∈(Z/pNZ)×

k∑
j=0

(
k

j

)
ik−j(1+T )ipNjϕN (∂jfi).

This formula suggests the following proposition:

Proposition 10.11 (Proposition 2.9, [11]). 1. If δ : Z×p → L× is a locally
analytic character and f ∈ Rψ=0

L , the expression

∑
i∈Z×p (mod pN )

+∞∑
j=0

(
κ(δ)
j

)
δ(i)i−j(1 + T )ipNjϕN (∂jfi),

where κ(δ) = δ′(1) is the weight of δ, converges in Rψ=0 for N ≥ N(κ) to
an element mδ(f) that does not depend on N ≥ N(κ) or on the choice of
representatives of Z×p (mod pN ). Here N(κ) is an integer depending on κ.

2. The map mδ : RL � Z×p → RL � Z×p thus defined, is continuous and sta-
bilizes R+

L �Z×p . Furthermore it induces multiplication by δ on D(Z×p , L)
and LA(Z×p , L).

Let N ≥ 0. For f ∈ RA � Z×p = Rψ=0
A and i ∈ Z×p , we write fi =

ψn(1 + T )−if so that

f =
∑

i∈(Z/pNZ)×
(1 + T )iϕnfi.

We have the following relative version of Proposition 10.11:
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Proposition 10.12. If δ : Z×p → A× is a locally analytic character and f ∈
Rψ=0
A , the expression

∑
i∈Z×p (mod pN )

+∞∑
j=0

(
κ(δ)
j

)
δ(i)i−j(1 + T )ipNjϕN (∂jfi),

where κ(δ) = δ′(1) is the weight of δ, converges in Rψ=0
A for N big enough

(depending only on δ) to an element mδ(f) that does not depend on N or on
the choice of representatives of Z×p (mod pN ).

Moreover, the map mδ : RA � Z×p → RA � Z×p thus defined, is continu-
ous, stabilizes R+

A � Z×p and induces the multiplication by δ on D(Z×p , A) and
LA(Z×p , A).

Proof. For A = L a finite extension of Qp, this is [11, Proposition 2.9] (cf. also
[28, §3.2]). Since a similar argument works for the general case, we only provide
a sketch here. We start by recalling some easy and standard estimations. For
0 < r < s < r2 and g ∈ R

[r,s]
A we have

– v[r/p,s/p](ϕ(g)) = v[r,s](g).
– v[pr,ps](ψ(g)) ≥ v[r,s](g)− 1.
– v[r,s](σa(g)) = v[r,s](g) for all a ∈ Z×p .
– v[r,s](∂kg) ≥ v[r,s](g)− ks.

By definition of the topology of the LF -space RA, we need to show that there
exists an s > 0 such that, for all 0 < r < s, the general term

fj(δ) =
(
κ(δ)
j

)
δ(i)i−j(1 + T )ipNjϕN (∂jfi)

of the series defining mδ(f) goes to zero (in R
[r,s]
A ) as j goes to +∞.

Observe that fj(δ) ∈ R
]0,s]
A whenever s < rN and f ∈ R

]0,s]
A . We continue

estimating the valuation of the terms appearing in the expression for fj(δ). For
any 0 < r < s < rN we have

– v[r,s]((1 + T )i) = v[r,s](i−j) = v[r,s](δ(i)) = 0.
– v[r,s](

(
κ(δ)
j

)
) = vA(

(
κ(δ)
j

)
) ≥ j(min(vA(κ(δ)), 0) − 1

p−1 ). Note by Cδ =
min(vA(κ(δ)), 0)− 1

p−1 .
– v[r,s](ϕN (∂jfi)) ≥ v[r,s](f) − N − jpNs (as is shown by an immediate
calculation using all the estimations made in the last paragraph).

Putting all this together, we get

v[r,s](fj(δ)) ≥ v[r,s](f) + j(Cδ +N −N/j − pNs).

Observe that this estimation does not depend on r. So for any N > 0 large
enough (and s < rN ) such that Cδ +N −N/j − pNs > 0 47 and any 0 < r < s,
the general term fj(δ) tends to zero in R

[r,s]
A as j → +∞ and thus the series

converges. This completes the proof of the existence and continuity of mδ(f).

47. Take, for instance, any N > −Cδ + 1.
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A small calculation shows that the value Cδ can be bounded only in terms
of the valuation of δ(1 + 2p) and that, for f fixed, the formula defines a rigid
analytic function on the A-points of the rigid analytic space X whose A points
parametrize continuous characters Homcont(Z×p , A×) 48 with values in R

[r,s]
A .

Using the Zariski density of the points x 7→ xk in X 49, one shows, on the one
hand the independence of mδ(f) on the choice of a system of representatives
of Z×p (mod pN ), and on the other hand, using the fact that, if δ(x) = xk, then
mδ(f) = ∂kf and that ∂ extends to RA the multiplication by x on D(Zp, A) and
on LA(Zp, A), that mδ(f) extends also the multiplication by δ for any locally
analytic character δ. This completes the proof.

10.2 Duality
Let ΦΓ(RA) denote the category of (ϕ,Γ)-modules over RA, cf. Definition

10.7. In the process of constructing Π(∆) we will need the notion of duality. If
∆ ∈ ΦΓ(RA), we set ∆̌ = HomRA

(∆,RA(χ)) and denote by

〈 , 〉 : ∆̌×∆→ RA(χ)

the induced pairing. We impose a (ϕ,Γ)-structure on ∆̌ by setting

〈g · ž, g · z〉 := g · 〈ž, z〉

for all ž ∈ ∆̌, z ∈ ∆ and g ∈ {σa, ϕ}. Note that ∆̌ ∈ ΦΓ(RA).
The pairing 〈 , 〉 defines a new pairing

{ , } : ∆̌×∆→ A

(ž, z) 7→ res0(〈σ−1(ž), z〉),

where res0
(∑

k∈Z akT
kdT

)
= a−1. Assuming that ∆ is free over RA, the point

is that the pairing { , } identifies ∆̌ and ∆ as topological duals of ∆ and ∆̌
respectively, cf. [14, Proposition III.2.3].

10.3 Principal series
Let δ1, δ2 : Q×p → A× be two continuous characters. We define BA(δ1, δ2)

to be the space of locally analytic functions φ : Qp → A, such that δ(x)φ
( 1
x

)
extends to an analytic function on a neighbourhood of 0. We equip BA(δ1, δ2)
with an action of G defined by((

a b
c d

)
· φ
)

(x) = δ2(ad− bc)δ(a− cx)φ
(
dx− b
a− cx

)
.

48. For the existence of X, cf. [37, Proposition 6.1.1].
49. i.e that any rigid analytic function on X vanishing at those points vanish.
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One can show that BA(δ1, δ2) = IndG
B

(δ1χ−1⊗δ2) (where B is the lower-half

Borel subgroup of G). Here δ1χ−1 ⊗ δ2 is viewed as the character
(
a 0
c d

)
7→

δ1χ
−1(a)δ2(d). For the definition of IndG

B
(δ1χ−1 ⊗ δ2), cf. Remark A.25. The

topology of BA(δ1, δ2) is by definition the topology coming from LA(G/B,A),
cf. Definition A.15. This makes BA(δ1, δ2) into a Hausdorff, complete, locally
convex A-module, cf. Definition A.4 and Lemma A.14.

The strong topological dual of BA(δ1, δ2), cf. Definition A.8, identifies with
a space of distributions on P1 equipped with an action of G defined by∫

P1
φ

(
a b
c d

)
· µ = δ−1

1 χ(ad− bc)
∫

P1
δ(cx+ d)φ

(
ax+ b

cx+ d

)
µ(x).

10.4 The G-module RA(δ) �ω P1

Suppose ∆ ∈ ΦΓ(RA) is of rank 2 and trianguline. In this section, we
follow [11, §4.3], to construct the G-modules RA(δ) �ω P1 which will be the
constituents of the G-module ∆�ωP1. Once ∆�ωP1 is constructed, we will see
that one of its constituents is the representation Π(∆), which we are searching
for. Since we are only interested in constructing representations of GL2(Qp),
the constructions from [11] (where representations of GL2(F ), for F/Qp a finite
extension, are constructed) simplify considerably.

We start by recalling a structure result for arithmetic families of (ϕ,Γ)-
modules.

Proposition 10.13 (Theorem 3.1.1,[37]). Let A be a Qp-affinoid algebra and let
∆ ∈ ΦΓ(RA). There exists r(∆) such that, for any 0 < r < r(∆), γ−1 is invert-
ible on (∆]0,r])ψ=0, and the A[Γ, (γ − 1)−1]-module structure on (∆]0,r])ψ=0 ex-
tends uniquely by continuity to a R

]0,r]
A (Γ)-module structure for which (∆]0,r])ψ=0

is finite projective of rank d = rankRA
∆. Moreover, if ∆ is free over RA, then

(∆]0,r])ψ=0 admits a set of d generators over R
]0,r]
A (Γ).

Remark 10.14.
– The proof of the last statement of Proposition 10.13 can be found in the
the proof [37, Theorem 3.1.1]. In general there exists a finite projective
RA-module N such that ∆⊕N is free of rank m over RA and the proof in
loc.cit. shows that (∆]0,rn])ψ=0 admits a set of m generators over RA(Γ).

– Taking direct limits we also get that ∆ψ=0 is a finite projective module
over R(Γ) of rank d, admitting a set of m generators (m = d if ∆ is free).

– In the case when ∆ = RA, one can show that ∆ψ=0 is a free module of
rank one over RA(Γ) generated by (1 + T ), cf. [4, Proposition 2.14 and
Remarque 2.15].

If ∆ = RA we have a short exact sequence of Γ-modules

0→ (R+
A )ψ=0 → Rψ=0

A → (R−A )ψ=0 → 0.
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Recall that (R+
A )ψ=0 = R+

A � Z×p ∼= D(Z×p , A) via the Amice transform, and
that we have an involution w∗ on it given by∫

Z×p
φ(x) · w∗µ =

∫
Z×p

φ(x−1) · µ.

The involution is Γ-anti-linear in the sense that we have w∗ ◦ σa = σ−1
a ◦ w∗

for all a ∈ Z×p . We denote by ι : RA(Γ) → RA(Γ) the involution defined by
σa 7→ σ−1

a on Γ.

Lemma 10.15. There exists a unique RA(Γ)-anti-linear involution w∗ with
respect to ι 50 on RA � Z×p extending that on R+

A � Z×p . Moreover, w∗ satisfies
– w∗ = ∂w∗∂.
– ∇ ◦ w∗ = −w∗ ◦ ∇.
– w∗ ◦ Resa+pnZp = Resa−1+pnZp ◦ w∗, for all a ∈ Z×p , n ≥ 1.

Proof. Take a generator e of the free RA(Γ)-module RA�Z×p of rank one such
that e ∈ R+

A � Z×p (e.g (1 + T ), cf. Remark 10.14). This forces

w∗(λ · e) = ι(λ) · w∗(e)

for every λ ∈ R(Γ), where w∗(e) ∈ R+
A �Z×p is well defined since e ∈ R+

A �Z×p .
For the rest of the properties we can use [11, Lemme 2.14] which shows that

they hold for w∗ acting on R+
A�Z×p (the same proof carries over for any A). We

only show the first one, the other two being immediate. Let z = λ ·e ∈ RA�Z×p
for some λ ∈ RA(Γ). We have

∂◦w∗◦∂(λ·e) = χ(λ) ∂◦w∗(λ·∂e) = χ(λ) ∂(ι(λ)·w∗(∂e)) = ι(λ)·∂◦w∗◦∂(e) = ι(λ)·w∗(e) = w∗(z).

The following gives a relation between mδ and w∗.

Lemma 10.16. If δ : Z×p → A× is a continuous character, then

mδ ◦ w∗ = w∗ ◦mδ−1 .

Proof. By Lemma 10.15, the identity is true for δ = xk for all k ∈ Z (this is
because ∂k = mxk). Now the functions δ 7→ mδ ◦w∗ and δ 7→ w∗◦mδ−1 are rigid
functions and coincide on xk for all k ∈ Z. Thus they coincide for all δ.

If ∆ ∈ ΦΓ(RA), ω : Q×p → A× (for applications ω will be δ1δ2χ−1 for any
two continuous characters δ1, δ2 : Q×p → A×) is a locally analytic character and
ι is an involution on ∆�Z×p , we can define a module ∆�ω,ι P1 (cf. [11, §3.1.1]
for details) equipped with an action of a group G̃ generated freely by a group Z̃
isomorphic to the torus {

(
a 0
0 a
)
, a ∈ Q×p } (acting on ∆�ω,ιP1 via multiplication

by ω), a group Ã0 ∼= Z×p (encoding the action of σa), a group Ũ ∼= pZp (encoding

50. i.e satisfying w∗ ◦ λ = ι(λ) ◦ w∗ for all λ ∈ RA(Γ).
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the multiplication by (1 + T )b, b ∈ pZp) and the elements
(
p 0
0 1
)
(encoding the

action of ϕ) and w =
(

0 1
1 0
)
. Precisely, the G̃-module ∆ �ω,ι P1 is defined as

∆ �ω,ι P1 = {(z1, z2) ∈ ∆×∆ : ResZ×p (z1) = ι(ResZ×p (z2))}

and the action of G̃ on an element z = (z1, z2) ∈ ∆ �ω,ι P1 is described by the
following formulae:

–
(

0 1
1 0
)
· z = (z2, z1).

–
(
a 0
0 a
)
· z = (ω(a)z1, ω(a)z2), a ∈ Q×p .

–
(
a 0
0 1
)
· z = (

(
a 0
0 1
)
z1, ω(a)

(
a−1 0

0 1
)
z2), a ∈ Z×p .

– If z′ =
(
p 0
0 1
)
z, then RespZpz

′ =
(
p 0
0 1
)
z1 and ResZpwz

′ = ω(p)ψ(z2).
– If b ∈ pZp and z′ =

(
1 b
0 1
)
· z then ResZpz

′ =
(

1 b
0 1
)
· z1 and RespZpwz

′ =
ub(RespZp(z2)), where

ub = ω(1 + b)
( 1 −1

0 1
)
◦ ι ◦

(
(1+b)−2 b(1+b)−1

0 1

)
◦ ι ◦

(
1 (1+b)−1

0 1

)
on ∆+ � pZp.

Lemma 10.17. The functor M 7→ M �ω,ι P1 is an exact functor from P+-
modules living on Zp to G̃-modules living on P1(Qp).

Proof. Let 0→M ′ →M →M ′′ → 0 be a short exact sequence of P+-modules.
We claim that we have an exact sequence 0 → M ′ �ω,ι P1 → M �ω,ι P1 →
M ′′ �ω,ι P1. Let’s show that the last arrow is surjective (for exactness in the
middle and injectivity, the proof is similar). Let (c, d) ∈M ′′�ω,ιP1 and (a, b) ∈
M ×M be any lifting. The element ResZ×p a − ι(ResZ×p b) maps to zero in M ′′

and so there exists an element x ∈M ′ such that ResZ×p a− ι(ResZ×p b) = x. The
element (a− x, b) ∈M �ω,ι P1 maps then to (c, d).

For δ1, δ2 : Q×p → A× continuous characters, recall that we have set δ =
δ1δ
−1
2 χ−1, ω = δ1δ2χ

−1. We will soon be working with ∆ ∈ ΦΓ(RA) which is
an extension of RA(δ2) by RA(δ1). Thus we need to twist appropriately the
current involution w∗, cf. Lemma 10.15, on RA � Z×p . We define an involution
ιδ1,δ2

51 acting on the module RA(δ1) � Z×p by the formula 52

ιδ1,δ2(f ⊗ δ1) = (δ1(−1)w∗ ◦mδ−1(z))⊗ δ1.

We get in this way a module RA(δ1) �ω,ιδ1,δ2
P1, that we simply note

RA(δ1) �ω P1, equipped with an action of G̃. We show in what follows that
this action of G̃ factorises through G.

Recall that, for a finite extension L of Qp and ∆ ∈ ΦΓ(R) of rank 1 or 2
(if it is of rank 2, assume it is also trianguline), ω : Q×p → L× locally analytic
and ι an involution on ∆ � Z×p , we have (cf. [11]) a G-module ∆ �ω P1. the
following lemma shows that, for ∆ = RA(δ1), our construction specializes to
that of Colmez.
51. The fact that iδ1,δ2 is an involution follows from Lemma 10.16.
52. By Proposition 10.12, this formula is well defined.
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Lemma 10.18. Let m ⊆ A be a maximal ideal of A, L = A/m, ∆ ∈ ΦΓ(RA).
Assume that ∆ is either of rank 1 or 2 (if it is of rank 2, assume it is also
trianguline) and ω, ι be as above. Then the G̃-module (∆ �ω P1) ⊗A L is
canonically isomorphic to (∆⊗A L) �ω⊗L P1.

Proof. This is immediate. The uniqueness of both involutions w∗ defined in
Lemma 10.15 above and in [11, Proposition 2.19] shows that they both coincide
(since they do on R+ � P1).

The following result provides a link between the −�ω P1 construction and
principal series, cf. §10.3

Lemma 10.19. We have 53

– R+
A (δ1) �ω P1 ∼= BA(δ2, δ1)∗ ⊗ ω

– R−A (δ1) �ω P1 ∼= BA(δ1, δ2).
Moreover R+

A (δ1) �ω P1 and R−A (δ1) �ω P1 are Qp-analytic sheaves.

Proof. This is essentially [11, Corollaire 4.11]. The same proof carries over with
A in place of L (since one only checks that both actions of G coincide and the
coefficient ring plays no role). The last part follows from Lemma A.55.

For the rest of this paper we note RA(δ1, δ2) to be the P+-module 54

RA(δ1, δ2) := (RA(δ1) �ω Zp)⊗ δ−1
2 .

We set R+
A (δ1, δ2) the sub-P+-module of RA(δ1, δ2) corresponding to R+

A , and
R−A (δ1, δ2) to be the quotient of RA(δ1, δ2) by R+

A (δ1, δ2).
Remark 10.20. As A+-modules, RA(δ1, δ2), R+

A (δ1, δ2) and R−A (δ1, δ2) are re-
spectively isomorphic to RA(δ1δ−1

2 ), R+
A (δ1δ−1

2 ) and LA(Zp, A)⊗ δ. The tech-
nical heart of this paper is to compare the P+-cohomology of RA(δ1, δ2) and
the A+-cohomology of RA(δ1δ−1

2 ), cf. §14.
The following is the main result of this section, which is a relative version of

[11, Proposition 4.12].

Proposition 10.21. The action of G̃ on RA(δ1) �ω P1 factorises through G
and we have an exact sequence of G-modules

0→ BA(δ2, δ1)∗ ⊗ ω → RA(δ1) �ω P1 → BA(δ1, δ2)→ 0.

Moreover RA(δ1) �ω P1 is a Qp-analytic sheaf.

53. By BA(δ1, δ2)∗ we mean HomA,cont(BA(δ1, δ2), A) equipped with the strong dual topol-
ogy, cf. Defintition A.8, where (−)∗ is denoted by (−)′b there.
54. We warn the reader that the module we call RA(δ1, δ2) is not the one noted in the same

way in [11, §4.3.2]. In our notation, RA(δ1, δ2) corresponds to the module RA(δ1, δ2, η) for
η = 1 as defined in [11, §5.6].
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Proof. We reduce the result to the case of a point, cf. [11, Proposition 4.12],
using an inductive argument on the index i ≥ 0 of nilpotence of A.

Suppose first that i = 0, i.e that A is reduced. Take z ∈ RA(δ1)�ωP1 and g
in the kernel of G̃→ G. We need to show that (g−1)z = (z1, z2) = 0. Let m ⊆ A
be any maximal ideal of A and note L = A/m. Since (RA(δ1) �ω P1) ⊗A L =
RL(δ1)�ω P1, then we know by [11, Proposition 4.12] that zi = 0 mod m. If we
write zi =

∑
n∈Z an,iT

n, i = 1, 2, this means that an,i = 0 mod m and hence,
since this holds for every maximal ideal m and since A is reduced, we deduce
that an,i = 0 for every n and hence zi = 0 as desired.

Suppose now the result is true for every affinoid algebra of index of nilpotence
≤ j and let A be an affinoid algebra whose nilradical N satisfies N j+1 = 0 and
g be in the kernel of G̃→ G. We have the following short exact sequence

0→ (RA/N �ω P1)⊗A/N N j → RA �ω P1 → RA/Nj �ω P1 → 0.

By the base case of a reduced affinoid algebra and by the inductive hypothesis,
the element g − 1 induces a linear endomorphism of the short exact sequence
above which vanishes on (RA/N�ωP1)⊗A/NN j and RA/Nj �ωP1 respectively.
Therefore it vanishes on RA � P1, which shows the desired result.

For the second part, we first observe that, if we call Km =
( 1+pmZp pmZp

pmZp 1+pmZp

)
,

then the decomposition Km =
( 1 0
pmZp 1+pmZp

)( 1+pmZp pmZp
0 1

) 55 shows that it is
enough to show the existence of an action of the distribution algebra of Um =( 1 0
pmZp 1

)
for some m ≥ 0.

We claim that, as a consequence of the identity H1
an(U1

,RA(δ1, δ2)) ∼=
H1(U1

,RA(δ1, δ2)) of Proposition 11.4, the action of U1 on RA(δ) is locally
analytic and hence extends to a separately continuous action of D(U1

, A) (since
RA is barrelled it will also be jointly continuous, cf. [23, §0.3.11]). Indeed,
calling M = RA(δ1, δ2), which is an LF -space, we need to show that, for any
m ∈ M , the orbit map om : U1 → M is locally analytic. By the definition of a
locally analytic function, one reduces to the case where M is Banach.

Consider now any continuous 1-coycle c : U1 →M such that c(τ) = m. Then
c defines a function (which we continue to denote by c)

c : Zp →M : a 7→ c(τa) = τa − 1
τ − 1 c(τ)

which is, by Proposition 11.4, cohomologous to a locally analytic 1-cocycle.
Since 1-coboundaries are trivially locally analytic, it follows that c is locally
analytic. By expanding τa =

∑
n≥0

(
a
n

)
(τ − 1)n one gets that

c(a) =
∑
n≥1

(
a

n

)
(τ − 1)n−1m,

55. This decomposition follows by noting that
(
a b
c d

)
=
( 1 0
ca−1 d−bca−1

)(
a b
0 1

)
, for

(
a b
c d

)
∈

Km.
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which shows that the Mahler coefficients of the function c are given by an(c) =
(τ − 1)n−1m. But the Mahler coefficients of the orbit map are nothing but
an(om) = (τ − 1)nm, thus showing that om is a locally analytic function, com-
pleting the proof.

11 Cohomology of (ϕ,Γ)-modules
In this section we recalculate some results of [4] using (ϕ,Γ)-cohomology.

We calculate higher cohomology groups studied in [11, §5], in preparation to
extend the results in loc.cit. to the affinoid setting. Let us begin by recalling
the definition of analytic cohomology. Let H be a Qp-analytic semi-group (e.g.
A+, P+, G). Let M be a complete, Hausdorff locally convex A-module (cf.
Definition A.4) with the structure of a seperately continuous A-linear D(H,A)-
module (i.e. M is an object of the category GH,A, cf. Definition A.39). We note
LA•(H,M) to be the complex

0→ LA0(H,M) d1−→ LA1(H,M) d2−→ · · · ,
where LAn(H,M) := LA(Hn,M) and dn+1 is the differential

dn+1c(g0, . . . , gn) = g0·c(g1, . . . , gn)+
n−1∑
i=0

(−1)i+1c(g0, . . . , gigi+1, . . . gn)+(−1)n+1c(g0, . . . , gn−1).

Throughout Hi
an(H,M) will denote the ith cohomology group of this complex.

For a detailed introduction to H∗an (although in a slightly different setting) we
refer the reader to the paper of Kohlhasse, cf. [43]. Finally Hi(H,M) will
denote continuous (semi-)group cohomology.

For n ∈ N, denote by Un =
(

1 pnZp
0 1

)
Lemma 11.1. If ∆ ∈ ΦΓ(RA), then Hi

an(Un,∆) = 0 ∀n ∈ N, if i = 0, 1.

Proof. For i = 0, we note that H0
an(Un,∆) = ∆(1+T )p

n
=1. For i = 1, we have a

map
H1

an(Un,∆) ↪→ H1(Un,∆),
since the continuous 1-coboundaries are in correspondence with the locally an-
alytic 1-coboundaries. Finally Un is procyclic and so

H1(Un,∆) = ∆/
(

(1 + T )p
n

− 1
)

= 0,

as (1 + T )pn − 1 is invertible in RA.

Denote by A0 =
(

Z×p 0
0 1

)
. and let ∆ be a (ϕ,Γ)-module over RA. We

construct a natural map

Θ∆ : Ext1(RA,∆)→ H1
an(A+,∆).
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Let ∆̃ be an extension of RA by ∆ and let e ∈ ∆̃ be a lifting of 1 ∈ RA.
Then g 7→ (g − 1)e, g ∈ A+, is an analytic 1-cocycle and induces an element of
H1

an(A+,∆) independent of the choice of e. Thus we obtain the desired map.

Proposition 11.2. For any (ϕ,Γ)-module ∆ over RA, Θ∆ is an isomorphism.

Proof. For injectivity of Θ∆, let ∆̃ be an extension of RA by ∆ in the category
of (ϕ,Γ)-modules whose image under Θ∆ is zero. Let e ∈ ∆̃ be a lifting of
1 ∈ RA. Then there exists d ∈ ∆, such that (g − 1)e = (g − 1)d for all g ∈ A+.
Then g(e − d) = e − d for all g ∈ A+ and thus ∆̃ = ∆ ⊕ RA as a (ϕ,Γ)-
module. For surjectivty of Θ∆, given a 1-cocycle g 7→ c(g) ∈ ∆, we can extend
the (ϕ,Γ)-module structure on ∆ to the RA-module ∆̃ = ∆ ⊕RAe, such that
ϕ(e) = e+ c(ϕ) and γ(e) = e+ c(γ) for γ ∈ Γ.

Next we relate Hi
an(A+,∆) to a Lie-algebra cohomology, where calculations

can be made explicit. We denote by Φ+ the semi-group
(
pN 0
0 1

)
, where ϕ =(

p 0
0 1

)
. We have that A+ = Φ+ × A0 (this decomposition breaks up the

ϕ-action and the Γ-action). For ∆ a (ϕ,Γ)-module over RA, we denote by
Hi

Lie(A+,∆) to be the cohomology groups of the complex:

0 −→ ∆ x 7→(∇x,(ϕ−1)x)−−−−−−−−−−→ ∆⊕∆ (a,b)7→(ϕ−1)a−∇b−−−−−−−−−−−−→ ∆ −→ 0.

We will be interested in the A0-invariants, Hi
Lie(∆) := H0(A0, Hi

Lie(A+,∆)).
By a simple calculation we see that:

H0
an(A+,∆) = H0

Lie(∆) = ∆ϕ=1,Γ=1.

Now let ∆̃ be an extension of RA by ∆ and let e ∈ ∆̃be a lifting of 1 ∈ RA.
Then (∇∆̃e, (ϕ− 1)e) is a 1-cocycle in the above complex which is Γ-invariant,
whose class does not depend on e. Thus we obtain a map:

Θ∆
Lie : H1

an(A+,∆)→ H1
Lie(∆).

Lemma 11.3. For any (ϕ,Γ)-module over RA, Θ∆
Lie is an isomorphism.

Proof. Copy the proof of [11, Lemme 5.6].

11.1 Continuous vs. analytic cohomology
In this section we show the following comparison between locally analytic

cohomology defined by Lazard, cf. [44, Chapitre V, §2.3] and continuous group
cohomology.

Proposition 11.4. Let δ1, δ2 : Q×p → A× be continuous characters. If

M ∈
{
R+
A (δ1, δ2),R−A (δ1, δ2),RA(δ1, δ2)

}
,
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then the natural application

Hi
an(P+

,M)→ Hi(P+
,M)

is an isomorphism for all i ≥ 0 (here Hi(P+
,M) denotes continuous cohomol-

ogy).

Proof. From the exact sequence of P+-modules

0→ R+
A (δ1, δ2)→ RA(δ1, δ2)→ R−A (δ1, δ2)→ 0,

it suffices to prove the result for R+
A (δ1, δ2) and R−A (δ1, δ2). So suppose M ∈

R+
A (δ1, δ2),R−A (δ1, δ2). Indeed for ? ∈ {an, ∅} we have spectral sequences

Hi
?(A+, Hj

? (U1
,M)) =⇒ Hi+j

? (P+
,M) (11)

and for j ≥ 0 fixed

Hi
?(A0, Hk

? (Φ+, Hj
? (U1

,M))) =⇒ Hi+k
? (A+, Hj

? (U1
,M)), (12)

where U1 =
(

1 0
pZp 1

)
. We claim that

Hj
an(U1

,M)→ Hj(U1
,M). (13)

is an isomorphism. Indeed this is true for j = 0 and for j = 1 it is enough to
prove that a continuous 1-cocycle c : U1 →M satisfying

c(τa) = τa − 1
τ − 1 c(τ)

for all a ∈ Zp is locally analytic. Indeed this follows from the fact thatM�ωP1 is
a Qp-analytic sheaf, cf. Lemma 10.19 (note that c(τa) =

∑
n≥1

(
a
n

)
(τ−1)n−1c(τ)

and (τ − 1)nc(τ) are the Mahler coefficients of the locally analytic function
U

1 →M given by g 7→ g · c(τ), cf. [15, §IV.2]). Since Φ+ is discrete we have an
isomorphism

Hk
an(Φ+, Hj

an(U1
,M))→ Hk(Φ+, Hj(U1

,M)).

The same argument (for proving (13) is an isomorphism) gives an isomorphism

Hi
an(A0, Hk

an(Φ+, Hj
an(U1

,M)))→ Hi(A0, Hk(Φ+, Hj(U1
,M))).

Spectral sequences (11) and (12) now give the result.

Remark 11.5. In the setting of Proposition 11.4, one cannot apply Lazard’s
classical result [44, Théorème 2.3.10] because M is not of finite type over A.
Note also that a similar proof yields isomorphisms Hi

an(A+,M) ∼−→ Hi(A+,M)
for all i ≥ 0.
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11.2 The cohomology of Φ+

Let δ : Q×p → A× be a continuous character. We next compute explicitly
some Φ+-cohomology. Note that as Φ+ is discrete, analytic cohomology coin-
cides with standard (continuous) cohomology. In particular we will be interested
in the groups Hi(Φ+,R−A⊗δ) and Hi(Φ+,R+

A⊗δ) viewed as A0-modules. Since
Φ+ is infinite cyclic, these cohomology groups vanish for i ≥ 2.

11.2.1 The case of R−A

We begin with some notation. If N ≥ 0, we set Pol≤N (Zp, A) ⊂ LA(Z×p , A)
to be the free sub A-module of rank N + 1 consisting of polynomial func-
tions of degree at most N with coefficients in A. Observing that LA(Z×p , A) ∩
Pol≤N (Zp, A) = ∅ we set

TN := LA(Z×p , A)⊕ Pol≤N (Zp, A).

Here is a lemma describing the kernel and cokernel of 1 − αϕ on the locally
analytic functions:

Lemma 11.6. Let α ∈ A×. Then
1. 1− αϕ : R−A → R−A is injective.
2. If N ≥ 0 is large enough, then TN + (1 − αϕ)R−A = R−A and TN ∩ (1 −

αϕ)R−A = (1− αϕ)Pol≤N (Zp, A).

Proof. We first prove injectivity. Note that this is already proved in [4, Lemme
2.9(ii)]. We repeat the argument here. If φ ∈ R−A is in the kernel of 1 − αϕ,
then φ = αnϕn(φ) ∀ n ∈ N. Recall the action of ϕ on R−A :

(ϕ · φ)(x) =
{
φ
(
x
p

)
if x ∈ pZp

0 if x 6∈ pZp

Thus φ is zero on pnZ×p and hence φ = 0, as desired.
We next prove the second assertion. Let N ≥ 0 be such that |α−1pN+1| < 1,

so that in particular 1 − αp−j = −αp−j(1 − α−1pj) ∈ A× for all j > N . Let
φ ∈ LA(Zp, A) and n be such that φ is analytic on every ball i+pnZp (i ∈ Z×p ),
then we can write 1pnZpφ =

∑+∞
j=0 aj1pnZpx

j and so the function

φ− (1− αϕ)

 +∞∑
j=N+1

aj
1− αp−j 1pn−1Zpx

j

 ,

which is well defined since the elements 1 − αp−j ∈ A×, can be expressed as
the sum of a polynomial of degree N and a locally analytic function vanishing
on pnZp. Hence every φ ∈ R−A is of the form φ1 + Pφ + (1− αϕ)φ2, with Pφ ∈
Pol≤N (Zp, A) and φ1, φ2 ∈ LA(Zp, A) such that φ1 vanishes in a neighbourhood
of 0. In particular φ1 is of the form

∑n−1
i=0 φ1,i, with φ1,i ∈ LA(piZ×p , A). Writing
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ϕiψi(φ1,i) = (1 − (1 − αϕ))iψi(α−iφ1,i) and upon expanding (1 − (1 − αϕ))i
expresses φ1,i as a sum of elements in (1−αϕ)R−A and ψi(α−iφ1,i) ∈ LA(Z×p , A).

We calculate next the intersection TN ∩ (1−αϕ)R−A . If (1−αϕ)φ = φ′ +P
for some φ ∈ LA(Zp, A), φ′ ∈ LA(Z×p , A) and P ∈ Pol≤N (Zp, A), then we have
ψ((1−αϕ)φ) = ψ(P ) (as LA(Z×p , A) = LA(Zp, A)ψ=0). Thus (ψ−α) ·φ = ψ(P )
and hence φ(x) = α−1(φ(px) − P (px)) for all x (recalling that (ψ · φ)(x) =
φ(px)). Repeating gives φ(x) = α−nφ(pnx) − α−nP (pnx) − αn−1P (pn−1x) −
. . .−α−1P (px), which shows that φ is analytic on Zp. Writing φ(x) =

∑
i≥0 aix

i,
P (x) =

∑N
i=0 bnx

n on Zp with ai, bi ∈ A, the equality φ(px) − αφ(x) = P (px)
gives

+∞∑
i=0

(pn − α)aixi =
N∑
i=0

bnx
n

on Zp. This gives (pn − α)ai = 0 for i > N and thus ai = 0 (since (pn −
α) = pn(1 − αp−n) ∈ A×), which implies that φ ∈ Pol≤N (Zp, A) and hence
TN ∩ (1− αϕ)R−A ⊆ (1− αϕ)Pol≤N (Zp, A). To prove the reverse inclusion, we
note that, if P (x) =

∑N
i=0 aix

i ∈ Pol≤N (Zp, A), then

(1− αϕ)P = 1Z×p · P + 1pZp ·
N∑
i=0

(1− αp−i)aixi

= α1Z×p ·
N∑
i=0

p−iaix
i +

N∑
i=0

(1− αp−i)aixi ∈ TN

The following three statements are now immediate from the above lemma,
the identity Hi

an(Φ+,M) = Hi(Φ+,M) and the description of the continuous
cohomology of a cyclic group.

Corollary 11.7. H0(Φ+,R−A ⊗ δ) = 0.

Corollary 11.8. For N large enough, we have a short exact sequence (of A0-
modules)

0→ (1− αϕ)Pol≤N (Zp, A)⊗ δ → TN ⊗ δ → H1(Φ+,R−A ⊗ δ)→ 0.

11.2.2 The case of R+
A .

As in the preceding section, the calculation of the cohomology of the group
Φ+ acting on R+

A will reduce to the following lemma

Lemma 11.9. Let α ∈ A×, consider 1 − αϕ : R+
A → R+

A and let N be large
enough. Then

ker(1− αϕ) = ker(1− αϕ : Pol≤N (Zp, A)∗),

coker(1− αϕ) = coker(1− αϕ : Pol≤N (Zp, A)∗).
In particular:
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1. ker(1 − αϕ) =
⊕N

i=0 Ann(1 − αpi)ti and 1 − αϕ is injective if α is such
that (1− αpi) is not a zero divisor for any i.

2. 1− αϕ is surjective if 1− αpi ∈ A× for all i ∈ N.

Proof. This is essentially [4, Lemme 2.9 (ii)], of which the idea of proof comes
from [7, Lemme A.1]. We provide a sketch here. Choose N ≥ 0 an integer
large enough so that |αpN+1| < 1. Then 1 − αϕ is invertible on TN+1R+

A . To
conclude, it suffices to remark that there is a ϕ-stable decomposition:

R+
A = (

N⊕
i=0

Ati)⊕ TN+1R+
A

and that (1−αϕ)(tj) = (1−αpj)tj . We get then the desired result for the kernel
and cokernel of 1 − αϕ observing that Amice transform identifies

⊕
0≤i≤N At

i

with the dual of Pol≤N (Zp, A).

Remark 11.10. Observe that if α = p−i for some i ∈ N, then the kernel of
1−αϕ : R+

A → R+
A contains A · ti, which is identified with the free A-module of

rank one generated by the distribution sending a function f to f (i)(0) via the
Amice transformation.

Corollary 11.11. Let j ∈ {0, 1} and N be large enough. We have

Hj(Φ+,R+
A ⊗ δ) ∼= Hj(Φ+,Pol≤N (Zp, A)∗ ⊗ δ).

In particular
– H0(Φ+,R+

A ⊗ δ) 6= 0 if and only if 1− δ(p)pi divides zero for some i ∈ N.
– H1(Φ+,R+

A⊗δ) 6= 0 if and only if there exists an i ∈ N such that 1−δ(p)pi
vanishes at some point of Sp(A).

11.3 The A0-cohomology
We next compute some A0-cohomology, for which we use the description of

analytic cohomology in terms of the action of the Lie algebra. Fix a continuous
character η : Z×p → A×, viewing it naturally as a character of A0.

11.3.1 The case of LA(Z×p , A)⊗ η.

Lemma 11.12. ∇+κ(η) is surjective on LA(Z×p , A) and its kernel is generated
by the set of φη, with φ locally constant.

Proof. We compute for φ ∈ LA(Z×p , A),

∇φ(x) = lim
a→1

φ(x/a)− φ(x)
a− 1 = −xφ′(x)

and thus

(∇+ κ(η))(φη) = −x(φ′η + κ(η)x−1φη) + κ(η)φη = ∇(φ) · η,
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where the first equality follows from the relation η′(x) = η′(1)η(x)x−1. We see
that to show (1), multiplying by η if necessary (recall that η takes values in A×
so multiplication by η is invertible), we can assume κ(η) = 0. The description
of the kernel is clear and surjectivity follows from surjectivity of φ 7→ φ′ (as we
can easily see integrating a power series).

Proposition 11.13.
1. H0

an(A0,LA(Z×p , A)⊗ η) is a free A-module of rank 1 generated by 1Z×p η.

2. H1
an(A0,LA(Z×p , A)⊗ η) = 0.

Proof. Note that for i ∈ {0, 1} and M ∈ ΦΓ(RA), Hi
an(A0,M) is computed by

the A0-invariants of the cohomology of the complex

0→M
∇−→M → 0.

To see this, it suffices to repeat Lemma 11.3, ignoring the action of Φ+. As
∇(φ⊗ η) = ((∇+ κ(η))φ)⊗ η, the two assertions follow from lemma 11.12: the
first cohomology group is trivial since (∇+ κ(η)) is surjective, and if φη ⊗ η is
killed by ∇ and fixed by A0, then φ(ax)η(x) = φ(x)η(x) for every a ∈ A0 and
so φ is constant on Z×p , hence the result.

11.4 The A+-cohomology
In this section we denote δ : Q×p → A× a continuous character, α = δ(p)

and β = δ(a). Let N be large enough and set Pol≤N = Pol≤N (Zp, A). We next
calculate the A+-cohomology of R−A ⊗ δ, R+

A ⊗ δ and hence that of RA ⊗ δ.

11.4.1 The case of R−A ⊗ δ.

Lemma 11.14. We have H0(A+,R−A ⊗ δ) = 0.

Proof. This follows from Corollary 11.7.

Lemma 11.15. The groups Hi(A+,R−A ⊗δ), i = 1, 2, live in an exact sequence
of A-modules

0 → ((1− αϕ)Pol≤N ⊗ δ)Γ f−→ (TN ⊗ δ)Γ → H1(A+,R−A ⊗ δ)
→ H1(A0, (1− αϕ)Pol≤N ⊗ δ)

g−→ H1(A0, TN ⊗ δ)→ H2(A+,R−A ⊗ δ)→ 0

Proof. Inflation-restriction and Corollary 11.7 give

H1(A+,R−A ⊗ δ) = H0(A0, H1(Φ+,R−A ⊗ δ)).

The result follows then by taking the long exact sequence of A0-cohomology
associated to the short exact sequence of A0-modules of Corollary 11.8.

In order to calculate Hi(A+,R− ⊗ δ), we need to examine the cokernel of
f and the kernel of g. We first begin with a lemma stating some preliminary
reductions.
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Lemma 11.16.
1. (TN ⊗ δ)Γ = A · 〈1Z×p δ〉 ⊕

⊕N
i=0 Ann(1− βa−i) · xi.

2. ((1− αϕ)Pol≤N ⊗ δ)Γ = (1− αϕ)
⊕N

i=0 Ann(1− βa−i) · xi

3. H1(A0, TN ⊗ δ) = H1(A0,Pol≤N ⊗ δ).

Proof. Since TN = LA(Z×p , A)⊕Pol≤N (as A0-modules), the first point follows
from Proposition 11.13(1) and the fact that (1− βγ)(aixi) = ai(1− βa−i)xi.

The second point follows from the same calculation, the fact that γ commutes
with ϕ and Lemma 11.6(1).

The third point is a consequence of Proposition 11.13(2).

Lemma 11.17. H2(A+,R−A ⊗ δ) = ⊕Ni=0A/(1− αp−i, 1− βa−i).

Proof. As calculated in the proof of Lemma 11.6, if Q(x) = a0 + a1x + . . . +
aNx

N ∈ Pol≤N , then (1− αϕ)Q ∈ TN = LA(Z×p , A)⊕ Pol≤N is given by

(1− αϕ)Q = α1Z×p ·
N∑
i=0

aip
−ixi ⊕

N∑
i=0

ai(1− αp−i)xi. (14)

Using Lemma 11.16(3), we need to calculate the cokernel of the following com-
position:

H1(A0, (1− αϕ)Pol≤N ⊗ δ)→ H1(A0, TN ⊗ δ)
∼−→ H1(A0,Pol≤N ⊗ δ)).

By equation (14) above, this map sends the class of (1− αϕ)Q in H1(A0, (1−
αϕ)Pol≤N ⊗ δ) to the class of

∑N
i=0 ai(1−αp−i)xi in H1(A0, (1−Pol≤N ⊗ δ)).

Since Pol≤N = ⊕Ni=0A · xi and since the action of ϕ and γ commute, we easily
see that this cokernel is given by ⊕Ni=0A/(1− αp−i, 1− βa−i) as claimed.

Corollary 11.18. H2(A+,R−A ⊗ δ) = 0 if and only if δ is pointwise never of
the form xi for any i ≥ 0.

Proof. This follows immediately from the last lemma, observing that, if δ is
pointwise never of the form xi if and only (1 − αp−i, 1 − βa−i) = A for all
i ∈ N.

An explicit description of the cokernel of f and the kernel of g seems a
difficult task, but we can describe them in a particular case that will be of
interest to us.

Proposition 11.19. Let δ : Q×p → A× be such that δ is pointwise never of the
form xi for any i ≥ 0. Then H1(A+,R−A ⊗ δ) is a free A-module of rank 1.

Proof. First note that as δ is pointwise never of the form xi for any i ≥ 0,
(1−αp−i, 1−βa−i) = A. The key observation, which appears in the proof of [4,
Théorème 2.29], is that, if a, b ∈ A are such that (a, b) = A, then multiplication
by a is bijective on A/bA and on Ann(b). Indeed, if u, v ∈ A are such that
au+ bv = 1, then multiplication by u provides an inverse for this map.
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We first show that ker(g) = 0. As in the proof of Lemma 11.17, we consider
the following composition

H1(A0, (1− αϕ)Pol≤N ⊗ δ)→ H1(A0, TN ⊗ δ)
∼−→ H1(A0,Pol≤N ⊗ δ))

and we show in this case that it is injective. It is easy to see, from the formulas
describing the action of ϕ and Γ, that the problem reduces to showing that, for
every i = 0, . . . , N , if bi ∈ A is such that ai(1 − αp−i) = (1 − βa−i)bi, then
bi ∈ (1 − αp−i)A, which is a consequence of the fact that multiplication by
1− βa−i is bijective on A/(1− αp−i)A.

In a similar way, one can show that coker(f) is a free A-module of rank one
using Lemma 11.16(1) and (2), and the fact that multiplication by (1−αp−i) is
bijective on Ann(1−βa−i). This shows that H1(A+,RA⊗δ) is a free A-module
of rank one and completes the proof.

11.4.2 The case of R+
A ⊗ δ.

Lemma 11.20. Let N be large enough. Then
1. H0(A0, H0(Φ+,R+

A ⊗ δ)) =
⊕N

i=0 Ann(1− αpi, 1− βai) · ti.

2. H1(A0, H0(Φ+,R+
A ⊗ δ)) =

⊕N
i=0 Ann(1− αpi)/(1− βai) · ti.

3. H0(A0, H1(Φ+,R+
A ⊗ δ)) =

⊕N
i=0 Ann(1− βai : A/(1− αpi)) · ti.

4. H1(A0, H1(Φ+,R+
A ⊗ δ)) =

⊕N
i=0A/(1− αpi, 1− βai) · ti.

Proof. This follows easily from Lemma 11.9 and Corollary 11.11, observing that
(1− βσa)(ti) = (1− βai)ti.

Proposition 11.21. Let δ : Q×p → A× be such that δ is pointwise never of the
form x−i for any i ≥ 0. Then Hi(A+,R+

A ⊗ δ) = 0 for i ∈ {0, 1, 2}.

Proof. First note that as δ is pointwise never of the form x−i for any i ≥ 0,
(1− αpi, 1− βai) = A. This implies, as in the proof of Proposition 11.19, that
multiplication by 1− βai is bijective on Ann(1− αpi) and on A/(1− αpi).

The vanishing of H0(A+,R+
A ⊗δ) follows from Lemma 11.20(1) and the fact

that multiplication by 1− βai on Ann(1− αpi) is injective.
The vanishing of H2(A+,R+

A ⊗δ) follows from Lemma 11.20(4) and the fact
that multiplication by 1− βai on A/(1− αpi) is surjective.

In what concerns the vanishing of H1(A+,R+
A ⊗ δ), the inflation-restriction

sequence gives

0→ H1(A0, H0(Φ+,R+
A⊗δ))→ H1(A+,R+

A⊗δ)→ H0(A0, H1(Φ+,R+
A⊗δ))→ 0.

The result is now an easy consequence of Lemma 11.20(2) and (3) and the fact
that multiplication by 1 − βai is surjective on Ann(1 − αpi) and injective on
A/(1− αpi), respectively.
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11.4.3 The case of RA ⊗ δ

The calculation of Hi(A+,RA ⊗ δ) is now formal using the (long exact se-
quence of A+-cohomology associated to the) short exact sequence ofA+-modules

0→ R+
A ⊗ δ → RA → R−A ⊗ δχ

−1 → 0.

Moreover in the so-called regular case, we are able to compute it explicitly. 56.

Proposition 11.22. Let δ : Q×p → A× be such that δ is pointwise never of
the form χxi nor of the form x−i for any i ≥ 0. Then H0(A+,RA ⊗ δ) =
H2(A+,RA ⊗ δ) = 0 and H1(A+,RA ⊗ δ) is a free A-module of rank 1.

Proof. The long exact sequence of A+-cohomology associated to the short exact
sequence of A+-modules

0→ R+
A ⊗ δ → RA → R−A ⊗ δχ

−1 → 0

and the fact that H0(A+,R−A ⊗δχ−1) = H2(A+,R+
A ⊗δ) = 0, cf. Lemma 11.14

and Proposition 11.21 yields

0→ H1(A+,R+
A ⊗ δ)→ H1(A+,RA ⊗ δ)→ H1(A+,R−A ⊗ δχ

−1)→ 0,

and so
H2(A+,RA ⊗ δ) ∼= H2(R−A ⊗ δχ

−1).

The result follows then from Proposition 11.19 and Proposition 11.21.

Remark 11.23.
– The calculations of this section show that, for M ∈ {R+

A ,R
−
A ,RA}, the

A-modules Hi(A+,M ⊗ δ) are finite (as also proved in [4]).
– H2(A+,RA ⊗ δ) = 0 if and only if δ is pointwise never of the form χxi,
i ∈ N. Indeed, this is a necessary condition by Corollary 11.18. For the
converse first note that if δ is never of the form χxi nor x−i for any i ∈ N,
then H2(A+,RA ⊗ δ) = 0 by Proposition 11.22. On the other hand,
if δ reduces to x−i for some i ≥ 0 at some point of Sp(A), we use the
following argument to reduce to the case of a point (A a finite extension
of Qp). The finiteness of the A-module H2(A+,RA ⊗ δ), the vanishing of
H3(A+,RA ⊗ δ), the fact that RA is a flat A-module (cf. Lemma 10.1)
and the Tor-spectral sequence

Tor−p(Hq(A+,RA ⊗ δ), A/m)⇒ Hp+q(A+,RA/m ⊗ δ)

show that H2(A+,RA⊗δ)⊗A/m = H2(A+,RA/m⊗δ) for every maximal
ideal m ⊆ A. Since H2(A+,RA/m ⊗ δ) = 0 (cf. [11, Théorème 5.16]), we
can conclude that H2(A+,RA ⊗ δ) = 0 by Nakayama’s lemma.

56. This result is already proved by similar methods in [4, Théorème 2.29].

75



12 Relative cohomology

Over the next few sections we prove an isomorphism between the P
+-

cohomology and the A+-cohomology with coefficients in RA(δ1, δ2) assuming
δ1δ
−1
2 is regular. This is a generalization of a result of Colmez, who proves it for

the case where A is a finite extension of Qp and we indeed reduce the general
result to that case using some arguments on derived categories inspired by [37].

12.1 Formalism of derived categories
In this section we fix a noetherian ring A. Let D−(A) denote the derived

category of A-modules bounded above. We begin by recalling the notion of a
pseudo-coherent complex. For a detailed explanation we refer the reader to [58,
Tag 064N]

Definition 12.1.
1. An object K• of D−(A) is pseudo-coherent if it is quasi-isomorphic to a

bounded above complex of finite free A-modules. We denote by D−pc(A) ⊆
D−(A) the full subcategory of pseudo-coherent objects of D−(A).

2. An A-module M is called pseudo-coherent if M [0] ∈ D−pc(A).

We have the following simple Lemma detecting when a module is pseudo-
coherent.

Lemma 12.2. An A-module M is pseudo-coherent iff there exists an infinite
resolution

· · · → A⊕n1 → A⊕n0 →M → 0

Proof. This is just rephrasing part (2) of Definition 12.1.

Since A is noetherian, Lemma 12.2 can be further strenghened to the fol-
lowing.

Lemma 12.3. An A-module M is pseudo-coherent iff it is finite.

Proof. We first show that a finite A-moduleM is pseudo-coherent. Indeed since
M is finite, one may choose a surjection A⊕n0 →M . Then having constructed
an exact complex of finite free A-modules of length t, we can extend by choosing
a surjection

A⊕nt+1 → ker(A⊕nt → A⊕nt−1).

Here we have implicitly used that a submodule of a finite A-module is finite.
Conversely, a pseudo-coherent module is finite by Lemma 12.2.

The following Lemma allows us to use induction-type arguments when trying
to prove results concerning pseudo-coherent complexes.

Lemma 12.4. Let K• ∈ D−(A). The following are equivalent
1. K• ∈ D−pc(A).
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2. For every integer m, there exists a bounded complex E• (depending on m)
of finite free A-modules and a morphism α : E• → K• such that Hi(α) is
an isomorphism for i > m and Hm(α) is surjective.

Proof. Suppose (1) holds. Let E• be a bounded above complex of finite free
A-modules and let E• → K• be a quasi-isomorphism. Consider the naive
truncation at place m

F •m : · · · → 0→ Em → Em+1 → · · · .

Then the induced maps F •m → K• satisfy condition (2).
Suppose (2) holds. We are going to construct our bounded above complex E•

of finite free A-modules (which will be quasi-isomorphic to K•) by descending
induction. Since K• is bounded above, there is an integer a, such that Kn = 0,
∀n ≥ a. By descending induction on n ∈ Z, we are going to construct a complex

F •n : · · · → 0→ Fn → Fn+1 → · · · → F a−1 → 0→ · · ·

and a morphism αn : F •n → K•, such that Hi(αn) is an isomorphism for i > n
and a surjection for i = n. For the base case n = a, we can take F i = 0 ∀i.
Now consider the induction step. Let C• = cone(F •n

αn−−→ K•). The long exact
sequence of cohomology coming from the triangle

F •n → K• → C• → F •n [1]

gives Hi(C•) = 0 for i ≥ n. It is easy to see that condition (2) is stable by exten-
sions and so in particular C• satisfies condition (2). We claim that Hn−1(C•)
is a finite A-module. Indeed choose a bounded complex D• of finite free A-
modules and a morphism β : D• → C• inducing isomorphism on cohomology in
degrees ≥ n and a surjection in degree n− 1. It suffices to show Hn−1(D•) is a
finite A-module. Let t be the largest integer such that Et 6= 0. If t = n−1, then
the result is clear. If t > n − 1, then Dt−1 → Dt is surjective as Ht(D•) = 0.
As Dt is free, we see that Dt−1 = D′⊕Dt. It suffices to prove the result for the
complex (D′)•, which is the same as D• except has D′ in degree t− 1 and 0 in
degree t. The result follows by induction. Hence Hn−1(C•) is a finite A-module
as claimed.

Choose a finite free A-module Fn−1 and a map p : Fn−1 → Cn−1 such that
the composition Fn−1 → Cn−1 → Cn is zero and such that Fn−1 surjects onto
Hn−1(C•). Since Cn−1 = Kn−1 ⊕ Fn (by definition of the cone), we can write
p = (αn−1,−dn−1). The vanishing of the composition Fn−1 → Cn−1 → Cn,
implies these maps fit into a morphism of complexes:

· · · 0 Fn−1 Fn Fn+1 · · ·

· · · Kn−2 Kn−1 Kn Kn+1 · · ·

αn−1

dn−1

αnn αn+1
n
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Moreover we obtain a morphism of triangles

(Fn → · · · ) (Fn−1 → · · · ) Fn−1

(Fn → · · · ) K• C•

p

By the octaeder axiom for triangulated categories, our choice of p implies that
the map of complexes

(Fn−1 → · · · )→ K•

induces an isomorphism in degrees ≥ n and a surjection in degree n− 1.

Remark 12.5. The above proof also shows the following useful fact. If a complex
in D−pc(A) has trivial cohomology in degrees strictly greater than b, then it is
quasi-isomorphic to a complex P • ∈ D−pc(A) with P i = 0 ∀i ≥ b+1 and each P j
is finite free ∀j ∈ Z. The proof also shows that D−pc(A) is stable by extensions.

Since A is noetherian, we have the following simple criterion for detecting
whether an object in D−(A) is pseudo-coherent.

Proposition 12.6. An object K• ∈ D−(A) is pseudo-coherent iff Hi(K•) is a
finite A-module for all i.

Proof. If K• ∈ D−(A) is pseudo-coherent then every cohomology Hi(K•), is
a finite A-module. For the converse suppose that Hi(K•) is a finite A-module
for all i. By Lemmas 12.3 and 12.4, Hi(K•)[0] satisfies condition (2) of Lemma
12.4. Let n be the largest integer such that Hn(K•) is non-zero. We will prove
the Proposition by induction on n. We have the distinguished triangle

τ≤n−1K
• → K• → Hn(K•)[−n].

Fix an integer k. Now Hn(K•)[−n] satisfies condition (2) of Lemma 12.4 for
m = k. Since condition (2) for m = k is stable under extensions, K• satisfies
condition (2) for m = k if τ≤n−1K

• satisfies condition (2) for m = k. The result
follows by induction.

12.2 The Koszul complex
Let a be a generator of Z×p and note

γ =
(
a 0
0 1
)
, ϕ =

(
p 0
0 1
)
, τ =

( 1 0
p 1
)

which are generators of the group P+ satisfying the following relations:

ϕγ = γϕ,

γτ = τa
−1
γ,
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ϕτp = τϕ,

giving a finite presentation of the group generated by those elements (proof:
using those relations we can write any other relation as ϕxτyγz = 1 which in
turn implies x = y = z = 0) We thus have the following result. We need a
lemma describing the nilpotent nature of τ − 1

In this subsection we compute a complex that computes P+-cohomology, cf.
Lemma 12.8. This is an analogue of the Koszul complex in a non-commutative
setting. The reader can compare this with the complex constructed in [62,
§1.5.1] which calculates Galois cohomology. In loc.cit. the construction is some-
what simpler because of the non-triviality of the center (of the group under
consideration). Let M be a P+-module such that the action of P+ extends to
an action of the Iwasawa algebra Zp[[P

+]] and define

Cτ,ϕ,γ : 0→M
X−→M ⊕M ⊕M Y−→M ⊕M ⊕M Z−→M → 0 (15)

where

X(x) = ((1− τ)x, (1− ϕ)x, (γ − 1)x)
Y (x, y, z) = ((1− ϕδp)x+ (τ − 1)y, (γδa − 1)x+ (τ − 1)z, (γ − 1)y + (ϕ− 1)z)
Z(x, y, z) = (γδa − 1)x+ (ϕδp − 1)y + (1− τ)z

where,
δp = 1− τp

1− τ = 1 + τ + . . .+ τp−1,

for a ∈ Z×p , b ∈ Zp

τ ba − 1
τa − 1 =

∑
n≥1

(
ba

n

)
(τa − 1)n−1 ∈ Zp[[τ − 1]],

δa = τa − 1
τ − 1

which is a well defined element since, as τpn → 1 as n tends to +∞, τ − 1 is
topologically nilpotent in the Iwasawa algebra Zp[[τ − 1]] = Zp[[U ]] ⊆ Zp[[P

+]].
The construction of Cτ,ϕ,γ is obtained from taking successive fibers of smaller

complexes. Define

Cτ : 0→M
D−→M → 0 (16)

where
D(x) := (τ − 1)x

and

Cτ,ϕ : 0→M
E−→M ⊕M F−→M → 0 (17)
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where

E(x) = ((τ − 1)x, (ϕ− 1)x)
F (x, y) = (ϕδp − 1)x+ (1− τ)y

We now define morphisms between the complexes. We note by [ϕ − 1] :
Cτ → Cτ the morphism:

Cτ : 0 M M 0

Cτ : 0 M M 0

ϕ−1 ϕδp−1

and [γ − 1] : Cτ,ϕ → Cτ,ϕ the morphism:

Cτ,ϕ : 0 M M ⊕M M 0

Cu−,ϕ : 0 M M ⊕M M 0

γ−1 s γδa−1

where s(x, y) = ((γδa − 1)x, (γ − 1)y)

Lemma 12.7. There are distinguised triangles

Cτ,ϕ → Cτ
[ϕ−1]−−−→ Cτ

and
Cτ,ϕ,γ → Cτ,ϕ

[γ−1]−−−→ Cτ,ϕ

in D−(A).

Proof. This is evident from the definition of the cone of a morphism in D−(A)
and the relations ϕδp · γδa = γδa · ϕδp, (γδa − 1)(τ − 1) = (τ − 1)(γ − 1) and
(ϕδp − 1)(τ − 1) = (τ − 1)(ϕ− 1).

We now show that Cτ,ϕ,γ computes P+-cohomology. Recall the complex

Cϕ,γ : 0→M
E′−→M ⊕M F ′−→M → 0

where

E′(x) = ((1− ϕ)x, (γ − 1)x)
F ′(x, y) = (γ − 1)x+ (ϕ− 1)y

calculates the A+-cohomology of M . There is an obvious restriction mor-
phism Cτ,ϕ,γ → Cϕ,γ whose kernel (as a morphism in the abelian category of
chain complexes) is
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C twist
ϕ,γ : 0→M

E′′−−→M ⊕M F ′′−−→M → 0

where

E′′(x) = ((1− ϕδp)x, (γδa − 1)x)
F ′′(x, y) = ((γδa − 1)x+ (ϕδp − 1)y

Lemma 12.8. The complex Cτ,ϕ,γ calculates the P+-cohomology groups. That
is Hi(Cτ,ϕ,γ) = Hi(P+

,M).

Proof. This is just a reinterpretation of the Hochschild-Serre spectral sequence.
We have a distinguished triangle

Cτ,ϕ,γ → Cϕ,γ
1−τ−−→ C twist

ϕ,γ (18)

in the derived category D−(A), where the morphism

1− τ : Cϕ,γ → C twist
ϕ,γ

is component-wise just 1 − τ . Let U =
(

1 0
pZp 1

)
so that P+ = U o A+. For

a semi-group G we denote by RG denote the derived functor of (−)G. For M a
P

+-module, we claim that 57

RU (M) = (0→M
1−τ−−→M∗ → 0)

where M∗ is isomorphic to M as U -modules, but is equipped with a twisted
(ϕ, γ)-action (which we denote by (ϕ̃, γ̃)):

ϕ̃ ·m := ϕδp ·m and γ̃ ·m := γδa ·m.

First note that 1−τ : M →M∗ is indeed a morphism of P+-modules (this follows
from the relations (γδa − 1)(τ − 1) = (τ − 1)(γ − 1) and (ϕδp − 1)(τ − 1) =
(τ − 1)(ϕ− 1)). Now H1(U,M) is equipped with a natural (ϕ, γ)-action (which
we denote by (ϕ′, γ′)):

ϕ′ · cτ := ϕ · cτp and γ′ · cτ := γ · cτa ,

where cτ is the value of the 1-cocycle c with [c] ∈ H1(U,M), at τ . To prove the
claim it suffices to show that ϕ · cτp = ϕδp · cτ and γ · cτa = γδa · cτ . However
these follow from the fact that c is a 1-cocycle. Thus by the Hochschild-Serre
spectral sequence we have

RP
+

(M) = RA
+

(0→M
1−τ−−→M∗ → 0).

57. Here RU is viewed as a function from D+(P+ −Mod) to D+(A+ −Mod).
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Therefore applying RA+ to the distinguished triangle

(0→M
1−τ−−→M∗ → 0)→M

1−τ−−→M∗

gives the distinguished triangle

RP
+

(M)→ RA
+

(M) 1−τ−−→ RA
+

(M∗) (19)

and it is easy to see that RA+(M) = Cϕ,γ and RA+(M∗) = C twist
ϕ,γ . The result

now follows from comparing the triangles (18) and (19).

12.3 Finiteness of cohomology
In this subsection we show that the cohomology groups

Hi(P+
,RA(δ1, δ2))

are finite-type A-modules. The idea is to reduce the problem to finiteness of
A+-cohomology, cf. [4], [37] and finiteness of twisted A+-cohomology.

The first thing to note is that the complexes Cτ,ϕ,γ are well defined for
M ∈ {R+

A (δ),RA(δ),R−A (δ)}, which is a consequence of the following lemma.

Lemma 12.9. Let M ∈ {R−A (δ1, δ2),RA(δ1, δ2),R+
A (δ1, δ2)}. The action of

P
+ extends by continuity to an action of the distribution algebra D(P+

, A). In
particular, M is equipped with an action of the Iwasawa algebra Zp[[P

+]].

Proof. For the proof of this lemma, we use some facts of §10.4 (which is inde-
pendent of the present section). For M ∈ {R+

A (δ1, δ2),R−A (δ1, δ2)}, the result
is a consequence of the isomorphisms R+

A (δ1) �ω P1 ∼= BA(δ2, δ1)∗ ⊗ ω and
R−A (δ1) �ω P1 ∼= BA(δ1, δ2) of Lemma 10.19, the fact that the locally analytic
principal series are equipped with an action of the distribution algebra D(G,A)
and the fact that, since P+ stabilizes Zp, then R

(±)
A (δ1, δ2) = (R(±)

A (δ1) �ω
Zp) ⊗ δ−1

2 inherits an action of the distribution algebra D(P+
, A), and in par-

ticular an action of the Iwasawa algebra Zp[[P
+]]. For M = RA(δ1, δ2), the

result follows by the same arguments noting that, since R(δ1) �ω P1 is an ex-
tension of R−A (δ)�ωP1 by R+

A (δ)�ωP1 in the category of separately continuous
D(G,A)-modules, it is also equipped with an action of D(G,A).

The main theorem of this subsection is the following.

Theorem 12.10. If M = RA(δ1, δ2) then Cτ,ϕ,γ ∈ D−pc(A). In particular, the
A-modules Hi(P+

,R(δ1, δ2)) are finite.

Proof. Recall that we have the distinguished triangle

Cτ,ϕ,γ → Cϕ,γ → C twist
ϕ,γ

in the derived category D−(A). By Theorem 4.4.2, [37], Cϕ,γ ∈ D−pc(A). Thus
by Lemma 12.8, to prove the result it is enough to show C twist

ϕ,γ ∈ D−pc(A). This
now follows from Lemma 12.11
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Lemma 12.11. For M = R(δ1, δ2), the A-modules Hi(C twist
ϕ,γ ) are finite.

Proof. To prove this lemma, we still proceed by a dévissage argument. We
define a complex

Cϕδp : 0 M M 01−ϕδp

and we observe that we have a distinguished triangle

C twist
ϕ,γ → Cϕδp

1−γδa−−−−→ Cϕδp .

Moreover, by taking long exact sequences associated to the short exact se-
quence 0 → R+

A (δ1, δ2) → RA(δ1, δ2) → R−A (δ1, δ2) → 0, it is enough to show
finiteness for R+

A (δ1, δ2) and R−A (δ1, δ2). The lemma follows from 12.12.

Lemma 12.12. For M ∈ {R+(δ1, δ2),R−(δ1, δ2)}, the A-modules Hi(C twist
ϕ,γ )

are finite.

Proof. The case of R+(δ1, δ2) follows directly from lemma 12.13 below, which
shows that the cohomology of the complex Cϕδp is already of finite type.

For R−(δ1, δ2), the long exact sequence associated to the triangle C twist
ϕ,γ →

Cϕδp
1−γδa−−−−→ Cϕδp yields

0→ H0(C twist
ϕ,γ )→ H0(Cϕδp) 1−γδa−−−−→ H0(Cϕδp)→ H1(C twist

ϕ,γ )→ H1(Cϕδp) 1−γδa−−−−→ H0(Cϕδp)
→ H2(C twist

ϕ,γ )→ 0,

and the result follows then from lemmas 12.14 and 12.15

Lemma 12.13. The operator 1 − ϕδp : R+
A (δ1, δ2) → R+

A (δ1, δ2) has finite
kernel and cokernel.

Proof. The proof of this lemma is an adaptation of lemma 11.9. Let N be
big enough such that |δ(p)pN | < 1. We show that 1 − ϕδp : TNR+

A (δ1, δ2) →
TNR+

A (δ1, δ2) is bijective. For that, we construct an inverse of this operator by
proving that

∑
k≥0(ϕδp)k converges. Observe that (ϕδp)k = ϕkδpk and that the

operator δpk = 1 + τ + . . .+ τp
k−1 = pk + (τ − 1) + . . .+ (τpk−1− 1) is bounded

(independently of k) by a constant C.
By identifying R+

A (δ1, δ2) with the space of analytic functions on the open
unit ball equipped with the Fréchet topology given by the family of norms
(| · |[0,r])0<r<1 and the action of ϕ twisted by δ(p), we have (cf. lemme 2.9.(ii),
[4]) |ϕk(TN )|[0,r] ≤ Crp

−Nk for some constant Cr > 0 and hence, for f ∈
TNR+(δ1, δ2) and any 0 < r < 1,

|(ϕδp)k(f)|[0,r] = |ϕkδpk(f)|[0,r] ≤ CCr|f |[0,r]
(
λ

pN

)k
,

which shows that the expression
∑
k≥0(ϕδp)k converges. We deduce that the

kernel and cokernel are, respectively, a submodule and a quotient of Pol≤N (Zp, A).
This concludes the proof.
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Lemma 12.14.
– The operator 1− ϕδp : R−A (δ1, δ2)→ R−A (δ1, δ2) is injective.
– If N ≥ 0 is big enough, then R−A (δ1, δ2) = (1−ϕδp)R−A (δ1, δ2)+LA(Z×p , A)+

Pol≤N (Zp, A).

Proof. For the first point, exactly as in the proof of lemma 11.6, if (1−ϕδp)f = 0
then ϕδpf = f and, applying this and the identity (ϕδp)n = ϕnδpn succes-
sively 58, we get ϕnδpnf = f and so f is supported on pnZp for all n ≥ 0 and
hence vanishes everywhere.

We now prove the second assertion. By a direct calculation solving a differ-
ential equation locally, we can show that every φ ∈ R−A (δ1, δ2) is of the form φ1+
Pφ+(1−αϕ)φ2, with Pφ ∈ Pol≤N (Zp, A), φ2 ∈ R−A and φ1 who is zero in a neigh-
bourhood of 0, and thus of the form

∑n−1
i=0 φ1,i, with φ1,i ∈ LA(piZ×p , A). Writ-

ing ϕiψi(φ1,i) = ϕiδpi ·δ−1
pi ψ

i = (ϕδp)i(δ−1
p ψ)i = (1−(1−ϕδp))i(δ−1

p ψ)i(α−iφ1,i)
and upon expanding (1 − (1 − ϕδp))i expresses φ1,i as a sum of elements in
(1− ϕδp)R−A (δ1, δ2) and ψi(α−iφ1,i) ∈ LA(Z×p , A).

Lemma 12.15. The operator 1 − γδa : LA(Z×p , A) → LA(Z×p , A) has finite
kernel and cokernel (as A-modules)

Proof. For the sake of brevity write M = LA(Z×p , A). We have a morphism of
complexes (in the abelian category of chain complexes)

0 M M 0

0 M M 0

1−γ

1−τ 1−τ

1−γδa

Note that the cokernel of this morphism of complexes vanishes by Lemma 13.10
(the same proof carries over with L replaced by A). Thus by Proposition 11.13,
it suffices to show that Mτ=1 is a finite A-module. Take f ∈ Mτ=1. Then by
definition of the action of τ on R−A (δ1, δ2) we have

f(x) = δ(1− px)f
(

x

1− px

)
.

Repeating this procedure we see that the value of f(x) determines the value of
f
(

x
1−kpx

)
for all k ∈ Z. Now 1 − pZ is dense in 1 − pZp and so (1 − pZ)−1 is

dense in 1 − pZp. By continuity of f , this implies that the values f(1), f(2),
. . ., f(p− 1) determine f completely. This proves the result.

58. We denote δpn = 1−τp
n

1−τ .
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13 The P+-cohomology
In this section we fix a finite extension L of Qp, two continuous charac-

ters δ1, δ2 : Z×p → L× and we consider the modules R+
L (δ1, δ2),RL(δ1, δ2) and

R−L (δ1, δ2) (for brevity we will omit the subscript L). We systematically cal-
culate all P+-cohomology groups of these modules, which will be essential in
comparing them to their A+-cohomology. This section is inspired by combining
two observations. The first is that if M is equipped with a continuous action of
P

+ such that this action induces an action of the Lie algebra of P+, then we can
simplify cohomological calculations by passing to the Lie algebra. The second
is that we have a good enough understanding of the infinitesimal action of the
Lie algebra on a (ϕ,Γ)-module so as to be able to make explicit computations
(cf. [2], [22]). For the commodity of the reader, the main results of this section
can be summarized as follows:

Proposition 13.1.
– Let M+ = R+(δ1, δ2).

1. If δ1δ−1
2 /∈ {x−i, i ∈ N}, then Hj(P+

,M+) = 0 for all j.

2. If δ1δ−1
2 = 1Q×p , then dimLH

j(P+
,M+) = 1, 1, 1, 0 for j = 0, 1, 2, 3.

3. If δ1δ−1
2 = x−i, i ≥ 1, then dimLH

j(P+
,M+) = 1, 3, 3, 1 for j =

0, 1, 2, 3.
– Let M− = R−(δ1, δ2).

1. If δ1δ−1
2 /∈ {χxi, i ∈ N}, then dimLH

j(P+
,M−) = 0, 1, 1, 0 for j =

0, 1, 2, 3.
2. If δ1δ−1

2 = χxi, i ∈ N, then dimLH
j(P+

,M−) = 0, 2, 2, 1 for j =
0, 1, 2, 3.

– Let M = R(δ1, δ2).

1. If δ1δ−1
2 /∈ {x−i, i ∈ N} ∪ {χxi, i ∈ N}, then dimLH

j(P+
,M) =

0, 1, 1, 0, for j = 0, 1, 2, 3.
2. If δ1δ−1

2 = 1Q×p , then dimLH
j(P+

,M) = 1, 2, 2, 0, for j = 0, 1, 2, 3.

3. If δ1δ−1
2 = x−i, i ≥ 1, then dimLH

j(P+
,M) = 1, 3, 2, 0, for j =

0, 1, 2, 3.
4. If δ1δ−1

2 = χxi, i ∈ N, then dimLH
j(P+

,M) = 0, 2, 2, 1, for j =
0, 1, 2, 3.

Remark 13.2. Observe that the result about H1(P+
,R+(δ1, δ2)) when δ1δ−1

2 =
x−i, i ≥ 1, is in contradiction with [11, Lemme 5.21]. There seems to be a
mistake in loc.cit., where the twisted action of A+ on H1(U,M) is not taken
into account. This changes slightly the results of [11], getting unicity of the
correspondence only for the non-pathological case δ1δ−1

2 /∈ {x−i, i ≥ 1} (indeed,
the restriction H1(P+

,R(δ1, δ2)) → H1(A+,R(δ1, δ2)) turns out to be only
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surjective, but not injective). The authors plan to study this supplementary
extensions in more detail in the near future.

13.1 The Lie algebra complex
We note

a+ =
(

1 0
0 0

)
, a− =

(
0 0
0 1

)
, u+ =

(
0 1
0 0

)
, u− =

(
0 0
1 0

)
the usual generators of the Lie algebra gl2 of GL2. We note that [a+, u−] = −u−
and pϕu− = u−ϕ.

Denote by Hi
Lie(P+

,M) the cohomology groups of the complex

Cu−,ϕ,a+ : 0→M
X′−−→M ⊕M ⊕M Y ′−→M ⊕M ⊕M Z′−→M → 0 (20)

where
X ′(x) = ((ϕ− 1)x, a+x, u−x)

Y ′(x, y, z) = (a+x− (ϕ− 1)y, u−y − (a+ + 1)z, (pϕ− 1)z − u−x)

Z ′(x, y, z) = u−x+ (pϕ− 1)y + (a+ + 1)z

Let P̃ :=
(

Z×p 0
pZp 1

)
. Note that P̃ is a p-pro-subgroup of P+.

Lemma 13.3. If M ∈ {R+(δ1, δ2),R−(δ1, δ2),R(δ1, δ2)}, the natural applica-
tion

Hi(P+
,M)→ H0(P̃ ,Hi

Lie(P+
,M))

is an isomorphism.

Proof. The same proof as Lemma 12.8 shows that there is a spectral sequence

Hi
Lie(A+, Hj

Lie(U,M))⇒ Hi+j
Lie (P+

,M)

where Hi
Lie(U,M) is defined to be the cohomology of the complex

0→M
u−−−→M → 0.

For the definition of Hj
Lie(A+,−), cf. [11, §5.2]. The result now follows from

[61, Corollary 21] by taking P̃ -invariants on both sides.

Remark 13.4. For future calculations, we need to explicit the action of P̃ on the
different Lie algebra cohomology groups. Recall that this group acts naturally
on the module and by its adjoint action on the Lie algebra. Take for instance
(x, y, z) ∈ M⊕3 a 1-cocycle on the Lie algebra complex Cu−,ϕ,a+ representing
some cohomology class. An easy calculation shows that, if σa ∈ A0, then, as
cohomology classes

σa · (x, y, z) = (σax, σay, aσaz).
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If we want to calculate the action of τ , say, on 1-coycles, in the same way, we
get

τ(x, y, z) = (τx+ τϕ
τ1−p − 1

log(τ) z, τ y − pτ z, τz).

The formula for the first coordinate is obtained by using the fact that Lie alge-
bra cohomology is calculated by ‘differentiating locally analytic cocycles at the
identity’ (cf. [61]), and it can be taken as a formal formula (since there might
be some convergence problems) but it will be enough for us (in general, one
should replace τ by τn for some n big enough).

13.2 Deconstructing cohomology
In order to compute cohomology we build the complex Cu−,ϕ,a+ from smaller

complexes. Define

Cu− : 0→M
D−→M → 0,

where
D(x) := u−x

and

Cu−,ϕ : 0→M
E−→M ⊕M F−→M → 0,

where

E(x) = (u−x, (ϕ− 1)x)
F (x, y) = (pϕ− 1)x− u−y.

We now define morphisms between the complexes. We note by [ϕ − 1] :
Cu− → Cu− the morphism:

Cu− : 0 M M 0

Cu− : 0 M M 0

ϕ−1 pϕ−1

and [a+] : Cu−,ϕ → Cu−,ϕ the morphism:

Cu−,ϕ : 0 M M ⊕M M 0

Cu−,ϕ : 0 M M ⊕M M 0

a+ s a++1

where s(x, y) = ((a+ + 1)x, a+y)
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Lemma 13.5. We have the following distinguished triangles in D−(L):

Cu−,ϕ → Cu−
[ϕ−1]−−−→ Cu− ,

Cu−,ϕ,a+ → Cu−,ϕ
[a+]−−→ Cu−,ϕ.

Proof. This is evident from the definition of the cone of a morphism in D−(L).

The following lemma will be the cornerstone of our cohomology calculations.

Lemma 13.6.
1. H0(Cu−,ϕ,a+) = H0([a+] : H0(Cu−,ϕ)).
2. We have the following exact sequences in cohomology:

0→ H1([a+] : H0(Cu−,ϕ))→ H1(Cu−,ϕ,a+)→ H0([a+] : H1(Cu−,ϕ))→ 0,
(21)

0→ H1([ϕ− 1] : H0(Cu−))→ H1(Cu−,ϕ)→ H0([ϕ− 1] : H1(Cu−))→ 0.
(22)

3. We have the following exact sequences in cohomology:

0→ H1([a+] : H1(Cu−,ϕ))→ H2(Cu−,ϕ,a+)→ H0([a+] : H2(Cu−,ϕ))→ 0,
(23)

H2(Cu−,ϕ) ∼= H1([ϕ− 1] : H1(Cu−)). (24)

4. H3(Cu−,ϕ,a+) = H1([a+] : H2(Cu−,ϕ)).

Proof. This follows from taking long exact sequences in cohomology from the
triangles in Lemma 13.5.

The module from which we are taking cohomology should be clear from con-
text, and whenever it is not specified, it means that the result holds for any such
module. Notations should be clear, for instance, we haveH0([a+] : H0(Cu−,ϕ)) =
Mu−=0,ϕ=1,a+=0,H1([a+] : H0(Cu−,ϕ)) = coker([a+] : H0(Cu−,ϕ)) = coker(a+ : Mu−=0,ϕ=1 →
Mu−=0,ϕ=1), et cetera desunt.
Remark 13.7. From the definition of the action of the group on the different
terms of the Hochschild-Serre spectral sequence, or on the Lie algebra coho-
mology, as the composition of the natural action on the module with inner
automorphisms on the group or on the Lie algebra, we can calculate the explicit
action of P̃ on each constituent component of the exact sequences appearing in
Lemma 13.6 and Lemma 13.6. For instance, the action of A0 on the third term
of Equation (22), on the terms of Equation (24) and on those of Lemma 13.6(4)
is twisted by χ (this comes from the identity σ−1

a u−σ = au−), while it acts as
usual on the other terms (since A0 commutes with itself and with ϕ). We can
check that τ acts as usual on each separate term (but the sequences do not split
as a sequence of U -modules).

88



13.3 The Lie algebra cohomology of R−(δ1, δ2)
The following conglomerate of technical lemmas on the action of the Lie al-

gebra on R−(δ1, δ2) will culminate in the main Proposition 13.24 of this section,
calculating the P+-cohomology on this module, following the strategy suggested
by Lemma 13.6.

Lemma 13.8. Call M = R−(δ1, δ2) and let f ∈ M . Under the identification
(as modules) M = LA(Zp, L), the infinitesimal actions of a+, u− and ϕ are
given by 59

(a+f)(x) = κ(δ)f(x)− xf ′(x),

(u−f)(x) = κ(δ)xf(x)− x2f ′(x),

(ϕf)(x) = δ(p)f
(
x

p

)
.

Proof. First note tat, for
(
a 0
b 1

)
∈ P+ and f ∈ R−(δ1, δ2), the action of P+

on R−(δ1, δ2) is given by((
a 0
b 1

)
· f
)

(x) = δ(a− bx)f
(

x

a− bx

)
.

The action of ϕ is now evident and that of a+ follows from a direct calculation.
Viewing R−(δ1, δ2) as the module R− equipped with action of P+, we have,

by [22, Théorème 1.1],

u− = −t−1∇(∇+ κ(δ2δ−1
1 )),

where here ∇ = t ddt . Recall that, by the dictionary of functional analysis,
multiplication by t and d

dt become, respectively, the operations of derivation
and multiplication by x on LA(Zp, L). In particular we have ∇(f) = f + xf ′.
The description of the action of u− follows now from a direct computation.

By an inoffensive abuse of language, we will talk in the sequel about the
action of the elements a+ and u− on LA(Zp, L) (resp. LA(Z×p , L)), by which we
mean their action on R−(δ1, δ2) under the identification R−(δ1, δ2) = LA(Zp, L)
(resp. R−(δ1, δ2) � Z×p = LA(Z×p , L)).

13.3.1 Calculation of H0(Cu−,ϕ,a+):

Proposition 13.9. Let M = R−(δ1, δ2). We have H0(Cu−,ϕ,a+) = 0.

Proof. This follows immediately from the injectivity of 1− δ(p)ϕ on LA(Zp, L).

59. Observe that, in the formula for ϕ below, f
(
x
p

)
is taken to be zero whenever z ∈ Z×p ,

so the precise formula should be (ϕf)(x) = 1pZp (x)δ(p)f
(
x
p

)
.
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13.3.2 Calculation of H2(Cu−,ϕ):

Lemma 13.10. The operator u− restricted to LA(Z×p , L) is surjective on LA(Z×p , L).

Proof. This is an easy exercise on power series that we leave to the reader.

Lemma 13.11. If M = R−(δ1, δ2) then:
1. If δ(p) 6∈

{
pi| i ≥ −1

}
, or if δ(p) = pi for some i ≥ 0 and κ(δ) 6= i, then

H2(Cu−,ϕ) = 0.
2. Otherwise 60 H2(Cu−,ϕ) is of dimension 1 naturally generated by [xi+1].

Proof. Suppose first δ(p) 6∈
{
pi| i ≥ −1

}
. Note that, by [11, Lemme 5.9],

M = LA(Z×p )⊕ (pϕ− 1)M.

By Lemma 13.6,

H2(Cu−,ϕ) = coker([ϕ− 1] : M/u−M).

Thus it suffices to show that the map pϕ−1 : M/u−M →M/u−M is surjective.
This follows from the fact that

M
pϕ−1−−−→M →M/u−M

is surjective (where the second map is the natural quotient map) since u− is
surjective on LA(Z×p , L) by Lemma 13.10.

Suppose now δ(p) ∈
{
pi| i ≥ −1

}
. In this case, by [11, Lemme 5.9], we have

M =
(
LA(Z×p ) + (pϕ− 1)M

)
⊕ L · xi+1, (25)

where LA(Z×p ) ∩ (pϕ− 1)M = L · 1Z×p x
i+1.

Suppose first i ≥ 0. If κ(δ) 6= i then (κ(δ)− i)−1u−xi = xi+1. Thus in this
case the map M pϕ−1−−−→ M → M/u−M is surjective and the result follows. On
the other hand if κ(δ) = i then xi+1 is not in the image of u− and in this case
H2(Cu−,ϕ) = L · xi+1.

Finally consider the case i = −1. In this case, as 1Zp is never in the image
of u− the result follows.

13.3.3 Calculation of H3(Cu−,ϕ,a+):

At this stage, we can already deduce the following.

Proposition 13.12. Let M = R−(δ1, δ2).
– If δ(p) = pi, i ≥ −1, and κ(δ) = i, then H3(Cu−,ϕ,a+) is of dimension 1
naturally generated by [xi+1].

– Otherwise H3(Cu−,ϕ,a+) = 0.

Proof. This follows from Lemma 13.6(4) and Lemma 13.11, by observing that
the action of [a+] on H2(Cu−,ϕ) = M/(u−, pϕ−1) is given by a+ +1, and using
the formula (a+ + 1)[xi+1] = (κ(δ)− i)[xi+1].
60. i.e if δ(p) = p−1, or if δ(p) = pi for some i ≥ 0 and κ(δ) = i.
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13.3.4 Calculation of H1(Cu−,ϕ):

The following lemma describes the kernel of u− acting on R−(δ1, δ2) in the
appropriate way so as to calculate (cf. Corollary 13.14) the left term of Equation
(22) of Lemma 13.6. Define 61

Xκ(δ) :=
{
f ∈ LA(Z×p )| f(x) =

∑
i∈(Z/pnZ)×

ci

(x
i

)κ(δ)
1i+pnZp for some n > 0

}
.

Lemma 13.13. If M = R−(δ1, δ2) = LA(Zp, L). Then
1. If δ(p) 6∈

{
pi| i ≥ 0

}
, or if δ(p) = pi for some i ≥ 0 and κ(δ) 6= i, then

Mu−=0 = Xκ(δ) ⊕ (1− ϕ)Mu−=0.

2. Otherwise
Mu−=0 =

(
Xκ(δ) + (1− ϕ)Mu−=0)⊕ L · xi,

Furthermore Xκ(δ) ∩ (1− ϕ)Mu−=0 is the line L · 1Z×p x
i.

Proof. (1): First suppose that δ(p) 6= p−1. Take f ∈ Mu−=0. Since δ(p) 6∈{
pi| i ≥ −1

}
, by [11, Lemme 5.9], we can uniquely write f = f1 + (1 − ϕ)f2

where f1 is supported on Z×p and f2 ∈ M . Thus 0 = u−f = u−f1 + u−(1 −
ϕ)f2 = u−f1 + (1 − pϕ)u−f2. We deduce, again using [11, Lemme 5.9], that
u−f1 = u−f2 = 0. Solving the differential equation u−f1 = 0 gives precisely
f1 ∈ Xκ(δ).

Suppose now δ(p) = p−1. Repeating the same procedure as above, since
pδ(p) = 1, in this case [11, Lemme 5.9] gives u−f1 = b1Z×p and (1− pϕ)u−f2 =
−b1Z×p for some b ∈ L. This implies u−f2 = −b1Zp . This equation has no
solution unless b = 0 (as can be easily seen upon expanding in power series
around zero), in which case we obtain again u−f1 = u−f2 = 0.

Suppose finally that δ(p) = pi for some i ≥ 0 and κ(δ) 6= i. By [11, Lemme
5.9], we can write f = f1 + (1 − ϕ)f2 + axi, where f1 is supported on Z×p ,
f2 ∈ M and a ∈ L. Thus 0 = u−f = u−f1 + u−(1 − ϕ)f2 + au−xi = u−f1 +
(1− pϕ)u−f2 + a(κ(δ)− i)xi+1. The latter implies

0 = u−f1 + (1− pϕ)u−f2 (26)
0 = a(κ(δ)− i)xi+1 (27)

Again by [11, Lemme 5.9] (this time with α = pδ(p) = pi+1), the first equation
implies u−f1 = b1Z×p x

i+1 and (1− pϕ)u−f2 = −b1Z×p x
i+1 for some b ∈ L. This

implies u−f2 = −bxi+1. But all the solutions to the equation u−f2 = −bxi+1

61. Observe that, upon developing (x/i)κ(δ) =
∑

k≥0

(
κ(δ)
k

)
(x/i − 1)n and observing that

vp(
(
κ(δ)
k

)
) ≥ k(min(κ(δ), 0) − 1

p−1 ), we see that (x/i)κ(δ) is a well defined analytic function
on i+ pnZp for n big enough.
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are of the form f2 = −b xi

κ(δ)−i + f ′2 where f ′2 ∈Mu−=0 is any element. Observe
finally that the set

{b ·
(
f1 − (1− ϕ) xi

κ(δ)− i
)
| b ∈ L, f1 ∈ LA(Z×p , L), u−f1 = 1Z×p x

i+1}
is exactly Xκ(δ). On the other hand, since κ(δ) 6= i, equation (27) forces a = 0.
This shows that Mu−=0 is the sum of Xκ(δ) and (1− ϕ)Mu−=0.

We now show that it is indeed a direct sum: if δ(p) is not equal to pi for
some i ≥ 0 then this is immediate. Suppose then that δ(p) = pi, i ≥ 0 and
κ(δ) 6= i and suppose that f1 = (1−ϕ)g for some g ∈Mu−=0, f1 ∈ Xκ(δ). Then
by the same lemma [11, Lemme 5.9] we get

f1 = b′1Z×p x
i = (1− ϕ)g (28)

for some b′ ∈ L. Then 0 = u−f1 = b′(κ(δ)−1)1Z×p x
i+1 so that b′ = 0 and hence

g = 0 and f1 = 0 as well.
(2): This follows from the same arguments as last two paragraphs, noting

the following differences. On the one hand, if κ(δ) = i, then the value a in
equation (27) is free to take any value in L. On the other hand, if κ(δ) = i,
then there is no solution to the equation u−f2 = −bxi+1 unless b = 0 (expand
around zero). In that case equation (26) gives u−f1 = u−f2 = 0. Finally, note
that L · 1Z×p x

i ∈ (1− ϕ)Mu−=0, whence the result.

Observing that coker([ϕ− 1] : H0(Cu−) = coker(ϕ− 1: Mu−=0), we get the
following:

Corollary 13.14. If M = R−(δ1, δ2) then
1. If δ(p) 6∈

{
pi| i ≥ 0

}
, or if δ(p) = pi for some i ≥ 0 and κ(δ) 6= i, then

H1([ϕ− 1] : H0(Cu−)) = Xκ(δ).

2. Otherwise

H1([ϕ− 1] : H0(Cu−)) =
(
Xκ(δ)/L · 1Z×p x

i
)
⊕ L · [xi].

Proof. This is an immediate consequence of Lemma 13.13.

We now proceed to calculate the right side term of Equation (22) of Lemma
13.6. Note that the action of [ϕ−1] on H1(Cu−) = M/u−M is given by pϕ−1.

Lemma 13.15. If M = R−(δ1, δ2) then
1. If δ(p) 6∈

{
pi| i ≥ −1

}
, or if δ(p) = pi, i ≥ 0, and κ(δ) 6= i, then H0([ϕ−

1] : H1(Cu−)) = 0.
2. Otherwise H0([ϕ− 1] : H1(Cu−)) = L · [xi+1].
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Proof. (1): Suppose first that δ(p) 6∈
{
pi| i ≥ −1

}
. Take f ∈ M and suppose

that (1 − pϕ)f = u−h for some h ∈ M . We write h = h1 + (1 − ϕ)h2 with
h1 supported on Z×p . Then (1 − pϕ)f = u−h = u−h1 + (1 − pϕ)u−h2. By
uniqueness and by injectivity of (1− pϕ) we obtain f = u−h2.

Now suppose δ(p) = pi for some i ≥ 0 and κ(δ) 6= i. Take f ∈M and suppose
that (1− pϕ)f = u−h for some h ∈M . We write h = h1 + (1−ϕ)h2 + axi with
h1 supported on Z×p and a ∈ L. Then (1−pϕ)f = u−h = u−h1+(1−pϕ)u−h2+
a(κ(δ)− i)xi+1. This forces a = 0 and (1− pϕ)(f −u−h2) = b1Z×p x

i+1 for some

b ∈ L. Hence f − u−h2 = bxi+1 and thus f = u−
(
h2 + b

κ(δ)−ix
i
)
.

(2): Suppose first δ(p) = p−1. Take f ∈ M and suppose that (1 − pϕ)f =
u−h for some h ∈ M . We write h = h1 + (1 − ϕ)h2 with h1 supported on
Z×p . Then (1 − pϕ)f = u−h = u−h1 + (1 − pϕ)u−h2. Then u−h1 = b1Z×p =
(1− pϕ)(f − u−h2). The last equality implies that f − u−h2 = b1Zp and hence
f = b1Zp modulo u−. In this case, if b 6= 0, then b1Zp is not in the image of
u−. Hence

ker(pϕ− 1 : M/u−M) = L · [1Zp ].

Finally if δ(p) = pi for some i ≥ 0 and κ(δ) = i, then the question is whether
xi+1 is in the image of u−. Indeed taking f(x) ∈ LA(Zp, L) and expanding u−f
in a small ball around x = 0, we see that the coefficient of xi+1 is 0. Hence xi+1

is not in the image of u−, as we have already pointed out. This completes the
proof.

We can at this stage easily deduce the following corollary, which gives a
complete description of H1(Cu−,ϕ):

Proposition 13.16. Let M = R−(δ1, δ2). Then
1. If δ(p) 6∈

{
pi| i ≥ −1

}
, or if δ(p) = pi, i ≥ 0, and κ(δ) 6= i, then

H1(Cu−,ϕ) = Xκ(δ).
2. If δ(p) = p−1, then H1(Cu−,ϕ) lives in an exact sequence

0→ Xκ(δ) → H1(Cu−,ϕ)→ L · [1Zp ]→ 0.

3. If δ(p) = pi, i ≥ 0, and κ(δ) = i then H1(Cu−,ϕ) lives in an exact sequence

0→
(
Xκ(δ)/L · 1Z×p x

i
)
⊕ L · [xi]→ H1(Cu−,ϕ)→ L · [xi+1]→ 0.

Proof. This is an immediate consequence of Lemmas 13.6, 13.15 and Corollary
13.14.

13.3.5 Calculation of H1(Cu−,ϕ,γ).

We have already explicitly calculated the second exact sequence (22) of
Lemma 13.6 in Proposition 13.16. The left hand side term of Equation (21)
is easy to deal with:

Lemma 13.17. If M = R−(δ1, δ2) then H0(Cu−,ϕ) = 0.
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Proof. This follows immediately from the injectivity of δ(p)ϕ− 1 on LA(Zp, L),
cf. Lemma 11.6(1).

We calculate the kernel of [a+] on ker([ϕ− 1] : H1(Cu−)):

Lemma 13.18. If M = R−(δ1, δ2) then
1. If δ(p) 6∈

{
pi| i ≥ −1

}
, or if δ(p) = pi for some i ≥ −1 and κ(δ) 6= i, then

[a+] on H0([ϕ− 1] : H1(Cu−)) is injective.
2. Otherwise the kernel of [a+] on H0([ϕ − 1] : H1(Cu−)) is (naturally iso-

morphic to) L · [xi+1].

Proof. We use Lemma 13.15. If δ(p) 6∈
{
pi| i ≥ 0

}
or if δ(p) = pi for some

i ≥ 0 and κ(δ) 6= i, then ker(pϕ− 1: M/u−M) = 0 and the result is obvious. If
κ(δ) = i then

ker(pϕ− 1: M/u−M) = L · [xi+1].
In this case (a+ + 1)[xi+1] = 0.

Suppose now δ(p) = p−1. In this case

ker(pϕ− 1: M/u−M) = L · [1Zp ]

and, since (a+ + 1)1Zp = (κ(δ) + 1)1Zp , the result now follows depending on
whether κ(δ) = −1 or not.

The last needed ingredient is the kernel of [a+] on H1([ϕ− 1] : H0(Cu−)).

Lemma 13.19. If M = R−(δ1, δ2) then
1. If δ(p) 6∈

{
pi| i ≥ 0

}
, or if δ(p) = pi for some i ≥ 0 and κ(δ) 6= i, then

ker([a+] : H1([ϕ− 1] : H0(Cu−))) = Xκ(δ).

2. Otherwise

ker([a+] : H1([ϕ− 1] : H0(Cu−))) =
(
Xκ(δ)/L · 1Z×p x

i
)
⊕ L · [xi].

Proof. This is an immediate consequence of Lemma 13.14, noting that a+Xκ(δ) =
0 and that a+xi = 0 whenever κ(δ) = i.

Now we can calculate the first Lie algebra cohomology group with values in
R−(δ1, δ2).

Proposition 13.20. Let M = R−(δ1, δ2). Then
1. If δ(p) 6∈

{
pi| i ≥ −1

}
, or if δ(p) = pi for some i ≥ −1 and κ(δ) 6= i, then

H1(Cu−,ϕ,a+) = Xκ(δ).

2. If δ(p) = pi for some i ≥ 0 and κ(δ) = i, then H1(Cu−,ϕ,a+) lives in an
exact sequence

0→ Xκ(δ)/L · 1Z×p x
i ⊕ L · [xi]→ H1(Cu−,ϕ,a+)→ L · [xi+1]→ 0
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3. If δ(p) = p−1 and κ(δ) = −1 then H1(Cu−,ϕ,a+) lives in an exact sequence

0→ Xκ(δ) → H1(Cu−,ϕ,a+)→ L · [1Zp ]→ 0.

Proof. By Lemma 13.17 and the short exact sequence (21) of Lemma 13.6 we
have

H1(Cu−,ϕ,a+) ∼= ker([a+] : H1(Cu−,ϕ)).

Since the short exact sequence (22) splits as a sequence of a+-modules, we
have

0→ ker(a+ : Mu−=0/(ϕ−1))→ ker([a+] : H1(Cu−,ϕ))→ ker(a++1: (M/u−M)pϕ=1)→ 0.

Now (1) (resp. (2), resp. (3)) follows from (1) (resp. (2), resp. (1)) of
Lemma 13.19 and (1) (resp. (2), resp. (2)) of Lemma 13.18.

13.3.6 Calculation of H2(Cu−,ϕ,γ):

We start by calculating the left side term of equation (23) of Lemma 13.6:

Lemma 13.21. If M = R−(δ1, δ2) then
1. If δ(p) 6∈

{
pi| i ≥ −1

}
, or if δ(p) = pi for some i ≥ −1 and κ(δ) 6= i, then

coker([a+] : H1(Cu−,ϕ)) = Xκ(δ).

2. If δ(p) = pi for some i ≥ 0 and κ(δ) = i, we have a short exact sequence

0→ Xκ(δ)/L ·1Z×p x
i⊕L · [xi]→ coker([a+] : H1(Cu−,ϕ))→ L · [xi+1]→ 0.

3. If δ(p) = p−1 and κ(δ) = −1 then we have a short exact sequence

0→ Xκ(δ) → coker([a+] : H1(Cu−,ϕ))→ L · [1Zp ]→ 0.

Proof.
1. Suppose first that δ(p) 6∈

{
pi| i ≥ −1

}
, or that δ(p) = pi for some i ≥ 0

and κ(δ) 6= i. By Proposition 13.16(1), we have H1(Cu−,ϕ) = Xκ(δ). The
result follows then by noting that the action of [a+] on this space is given
by a+, and that a+Xκ(δ) = 0 (since xa+f = u−f).
We now deal with the case where δ(p) = p−1 and κ(δ) 6= −1. In this case
H1(Cu−,ϕ) is described by (2) of Proposition 13.16 and the result follows
from Lemma 13.22(1) below.

2. If δ(p) = pi for some i ≥ 0 and κ(δ) = i, then H1(Cu−,ϕ) is described by
(3) of Proposition 13.16. Note that [a+] acts as a+ on the left term of the
exact sequence, and as a+ + 1 on the right hand side term. The result
follows then by Lemma 13.22(2) and by noting that a+xi = 0.

3. This case follows in the same way, using Proposition 13.16(2) and Lemma
13.22(2).
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The next lemma describes the cokernel of [a+] on H0([ϕ− 1] : H1(Cu−)).

Lemma 13.22. If M = R−(δ1, δ2) and δ(p) = pi for some i ≥ −1 then
1. If κ(δ) 6= i then coker([a+] : H0([ϕ− 1] : H1(Cu−))) = 0.
2. If κ(δ) = i then coker([a+] : H0([ϕ− 1] : H1(Cu−))) is (naturally isomor-

phic to) L · [xi+1].

Proof. We use Lemma 13.15. Suppose first i ≥ 0. If κ(δ) 6= i then ker(pϕ− 1 :
M/u−M) = 0 and the result is obvious. If κ(δ) = i then

ker(pϕ− 1 : M/u−M) = L · [1Zpx
i+1].

In this case (a+ + 1)xi+1 = 0.
Suppose now i = −1. In this case

ker(pϕ− 1 : M/u−M) = L · [1Zp ]

and so (a+ + 1)1Zp = (κ(δ) + 1)1Zp . The result now follows depending on
whether κ(δ) = −1 or not.

We finally calculate the right hand side term ker([a+] : H2(Cu−,ϕ)) of equa-
tion (23) of Proposition 13.6.

Lemma 13.23. If M = R−(δ1, δ2). Then
1. If δ(p) 6∈

{
pi| i ≥ −1

}
, or if δ(p) = pi for some i ≥ −1 and κ(δ) 6= i, then

ker([a+] : H2(Cu−,ϕ)) = 0.
2. Otherwise ker([a+] : H2(Cu−,ϕ)) = L · [xi+1].

Proof.
1. If δ(p) 6= p−1 the result follows since, by Lemma 13.11, we know that
H2(Cu−,ϕ) = 0. If δ(p) = p−1 (and hence κ(δ) 6= −1) then H2(Cu−,ϕ) =
L · 1Zp and, since (a+ + 1)1Zp = (κ(δ) + 1)1Zp , it is injective.

2. Note first that [a+] acts on H2(Cu−,ϕ) as a+ + 1. By (2) of Lemma 13.11,
H2(Cu−,ϕ) = L · xi+1 and the result follows since (a+ + 1)xi+1 = 0.

We are now ready to compute H2(Cu−,ϕ,a+):

Proposition 13.24. If M = R−(δ1, δ2) then
1. If δ(p) 6∈

{
pi| i ≥ −1

}
, or if δ(p) = pi for some i ≥ −1 and κ(δ) 6= i, then

H2(Cu−,ϕ,a+) = Xκ(δ).
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2. If δ(p) = pi for some i ≥ 0 and κ(δ) = i, then H2(Cu−,ϕ,a+) lives in an
exact sequence

0→ Yi → H2(Cu−,ϕ,a+)→ L · [xi+1]→ 0,

where

0→ Xκ(δ)/L · 1Z×p x
i ⊕ L · [xi]→ Yi → L · [xi+1]→ 0.

3. If δ(p) = p−1 and κ(δ) = −1 then H2(Cu−,ϕ,a+) lives in an exact sequence

0→ Y−1 → H2(Cu−,ϕ,a+)→ L · [1Zp ]→ 0,

where
0→ Xκ(δ) → Y−1 → L · [1Zp ]→ 0.

Proof. (1) (resp. (2), resp. (3)) follows from (1) (resp. (2), resp (3)) of Lemma
13.21 and (1) (resp. (2), resp. (2)) of Lemma 13.23.

13.4 The P+-cohomology of R−(δ1, δ2)
We can now just calculate the P̃ -invariants of the Lie algebra cohomology

to calculate the P+-cohomology of R−(δ1, δ2).

13.4.1 Calculation of H0(P+
,R−(δ1, δ2)):

Lemma 13.25. Let M = R−(δ1, δ2). Then H0(P+
,M) = 0.

Proof. Obvious from Proposition 13.9.

13.4.2 Calculation of H1(P+
,R−(δ1, δ2)):

Lemma 13.26. If M = R−(δ1, δ2) then

1. If δ(x) 6= xi for any i ≥ 0 then H1(P+
,M) is of dimension 1 and generated

by 1Z×p δ ⊗ δ.

2. If δ(x) = xi for some i ≥ 0 then H1(P+
,M) is of dimension 2.

Proof. Start observing that the action of P̃ on the Lie algebra cohomology is
explicitly given in Remark 13.4 (cf. also Remark 13.7): the action of τ on each of
the extremities of the exact sequences of Lemma 13.6 is the usual one, while the
action of A0 is given by the usual one, except for the term ker([ϕ−1] : H1(Cu−)),
on which its action is given by the usual action twisted by χ.

- Suppose we are under the hypothesis of Proposition 13.20(1). Then

H1(Cu−,ϕ,a+) = Xκ(δ).
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Note γ = σa ∈ A0 a topological generator. Let f ∈ H0(A0, Xκ(δ)) and write

f(x) =
∑

i∈(Z/pnZ)×
ci

(x
i

)κ(δ)
1i+pnZp , n ≥ 0.

Since γf = f , we have∑
i∈(Z/pnZ)×

ci

(x
i

)κ(δ)
1i+pnZp = δ(a)

∑
i∈(Z/pnZ)×

ci

( x
ia

)κ(δ)
1ia+pnZp

= δ(a)
∑

i∈(Z/pnZ)×
cia−1

(x
i

)κ(δ)
1i+pnZp .

Thus δ(a)cia−1 = ci which implies ca = c1δ(a), for any a ∈ Z×p . This implies

f(x) = c1δ(x)1Z×p .

Since δ1Z×p is fixed by τ , the result follows from Lemma 13.3.
- We now place ourselves under the hypothesis of Proposition 13.20(2). We

have

0→ Xκ(δ)/L · 1Z×p x
i ⊕ L · [xi]→ H1(Cu−,ϕ,a+)→ L · [xi+1]→ 0. (29)

To calculate the A0-invariants of X := Xκ(δ)/L · 1Z×p x
i, we just consider the

short exact sequence of Γ-modules

0→ L · 1Z×p x
i → Xκ(δ) → X → 0

and take the associated long exact sequence. One easily sees that
– if δ(x) 6= xi, then H0(A0, L · 1Z×p x

i) = H1(A0, L · 1Z×p x
i) = 0 so that

H0(A0, X) = H0(A0, Xκ(δ)) = L · 1Z×p δ.
– If δ(x) = xi, then A0 fixes 1Z×p x

i, so we get a long exact sequence

0→ L·1Z×p δ → L·1Z×p δ → H0(A0, X)→ L·1Z×p δ
α−→ H1(A0, Xκ(δ))→ H1(A0, X)→ 0.

Now H1
Lie(A0, Xκ(δ)) = Xκ(δ) and so H1(A0, Xκ(δ)) = H0(A0, Xκ(δ)) =

L ·1Z×p δ. It follows that α is an isomorphism and so H0(A0, X) = 0. Note
also that this implies H1(A0, X) = 0.

Thus, if δ(x) 6= xi, H1(Cu−,ϕ,a+)P̃ = L · 1Z×p δ. Suppose now δ(x) = xi.
Since the action of A0 on each of the terms of Equation (29) is locally constant,
taking invariants is exact and we obtain

0→ L · [xi]→ H1(Cu−,ϕ,a+)A
0
→ L · [xi+1]→ 0.

taking U -invariants of this exact sequence (note that τ([xi+1]) = [ x
i+1

1−px ] =
[xi+1] + p[xi+2] + p[xi+3] + . . . = [xi+1] mod u− if δ(x) = xi), we obtain the
desired result.
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- Finally, suppose that hypothesis of Proposition 13.20(3) hold. We have

0→ Xκ(δ) → H1(Cu−,ϕ,a+)→ L · 1Zp → 0,

and the result follows similarly.

13.4.3 Calculation of H2(P+
,R−(δ1, δ2)):

Lemma 13.27. If M = R−(δ1, δ2) then

1. If δ 6= xi for any i ≥ 0, then H2(P+
,M) is of dimension 1 and generated

by 1Z×p δ ⊗ δ.

2. If i ≥ 0 and δ(x) = xi then H2(P+
,M) is of dimension 3.

Proof. - Suppose first that we are in the case of Proposition 13.24(1). Then
H2(Cu−,ϕ,a+) = Xκ(δ), and the result follows as in Lemma 13.26 above.

- We now deal with the case of Proposition 13.24(2). We have

0→ Yi → H2(Cu−,ϕ,a+)→ L · [xi+1]→ 0, (30)

0→ Xκ(δ)/L · 1Z×p x
i ⊕ L · xi → Yi → L · [xi+1]→ 0.

Again, the action of P̃ on each component is described in Remark 13.7. As
before, since the action of P̃ is locally constant, taking P̃ -invariants of the short
exact sequence (30) gives

0→ (Yi)P̃ → H2(Cu−,ϕ,a+)P̃ → (L · [xi+1])P̃ → 0.

Now, [xi+1] is invariant under the action of A0 and τ if and only if δ(x) = xi for
some i ≥ 0, and the P̃ -invariants of Yi were calculated in Lemma 13.26. This
allows us to conclude.

- The case of Proposition 13.24(3) is treated similarly.

13.4.4 Calculation of H3(P+
,R−(δ1, δ2)):

Lemma 13.28. Let M = R−(δ1, δ2).
– If δ = xi, i ≥ 0, then H3(P+

,R−(δ1, δ2)) is of dimension 1 naturally
generated by [xi+1].

– Otherwise H3(P+
,R−(δ1, δ2)) = 0.

Proof. This follows by taking P̃ -invariants to the results of Proposition 13.12,
by observing that the action of τ is the natural one, and that of A0 is twisted
by χ.
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13.5 The P+-cohomology of R+(δ1, δ2): a first reduction

In this section we calculate all P+-cohomology groups of R+(δ1, δ2) as de-
scribed in Proposition 13.1.

We first start with a lemma that allows us to reduce, as we have already done
before for theA+-cohomology (cf. §11.2.2), the calculation ofHi(P+

,R+(δ1, δ2))
to that ofHi(P+

,Pol≤N (Zp, L)∗(δ1, δ2)) forN ≥ 0 big enough, where Pol≤N (Zp, L)∗(δ1, δ2)
denotes the sub-module of R+(δ1, δ2) corresponding to Pol≤N (Zp, L)∗ under
the identification (as L-vector spaces) R+(δ1, δ2) = R+. We also recall that,
under the Amice transform, we have an identification Pol≤N (Zp, L)∗(δ1, δ2) =
⊕Ni=0L · ti. This module is stable under the action of P+ by [11, Lemme 5.20] 62,
and the action of P+ is explicitly given by

σa(tj) = δ1δ
−1
2 (a)ajtj , ϕ(tj) = δ1δ

−1
2 (p)pjtj , τ(tj) =

j∑
h=0

(
κ− h
j − h

)
pj−h th,

where we have set κ = −κ(δ1δ−1
2 ) − 1. Observe that, if κ ∈ {0, 1, . . . , N − 1}

and j = κ+ 1, then τtj = tj .

Lemma 13.29. We have, for every i and for N big enough,

Hi(P+
,R+(δ1, δ2)) = Hi(P+

,Pol≤N (Zp, L)∗(δ1, δ2)).

Proof. This follows from the Hochschild-Serre spectral sequence and the same
arguments of Lemma 11.9. Observe that it suffices to take N such that |δ(p)| <
pN .

13.6 The Lie algebra cohomology of Pol≤N(Zp, L)∗(δ1, δ2)
From now on until the end of this section, call M = Pol≤N (Zp, L)∗(δ1, δ2),

which we identify with ⊕Ni=0L ·ti equipped with the corresponding action of P+.
Let us now calculate the Lie algebra action on the module M .

Lemma 13.30. For f ∈ M , the infinitesimal actions of a+ and u− and the
action of ϕ are given by

(a+f)(t) = (κ(δ1)− κ(δ2))f(t) + tf ′(t),

(u−f)(t) = (κ(δ2)− κ(δ1)− 1)f ′(t)− tf ′′(t),

(ϕf)(t) = δ1δ
−1
2 (p)f(pt).

62. The first P+-cohomology group of this module is calculated in [11, Lemme 5.21] but, as
we mentioned earlier, there are some small mistakes there, whence the incompatibility with
our results.
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Proof. First note that as a A+-module, R+(δ1, δ2) is identified with R+(δ1δ−1
2 ).

The action of ϕ is now evident. For the action of a+ note that (σaf)(t) =
δ1δ
−1
2 (a)f(at) for any a ∈ Z×p . The derivative of the function g(a) := δ1δ

−1
2 (a)f(at)

evaluated at a = 1 is precisely (κ(δ1)− κ(δ2))f(t) + tf ′(t).
Finally viewing R−(δ1, δ2) as the module R− equipped with action of P+,

we have by, [22, Théorème 1.1],

u− = −t−1∇(∇− κ(δ2δ−1
1 )),

where here ∇ = t ddt . Thus

(u−f)(t) = − d

dt
(∇− κ(δ2δ−1

1 ))(f)(t)

= − d

dt
(tf ′(t)− κ(δ2δ−1

1 )f(t))

= (κ(δ2)− κ(δ1)− 1)f ′(t)− tf ′′(t)

13.6.1 Calculation of H0(Cu−,ϕ,a+):

Call κ = κ(δ1δ−1
2 ).

Lemma 13.31.
1. If δ1δ−1

2 (p) = p−i, i ≥ 0, and κ = −i, then H0(Cu−,ϕ,a+) = L · ti.
2. Otherwise H0(Cu−,ϕ,a+) = 0.

Proof. The formula u−tj = j(−κ − j)tj−1 shows that Mu−=0 = L · t0 if κ /∈
{−i,N ≥ i ≥ 1}, and Mu−=0 = L · t0 ⊕ L · ti if κ = −i,N ≥ i ≥ 1.

Suppose κ = −i, i ≥ 1. In this case, t0 is not killed by a+ and,since we have
a+tj = (κ + j)tj and ϕ(tj) = δ1δ

−1
2 (p)pjtj , we see that the term ti is in the

kernel of a+ and ϕ− 1 if and only if δ1δ−1
2 (p) = p−i.

On the other cases, the term t0 is in the kernel of a+ and ϕ− 1 if and only
if κ = 0 and δ1δ−1

2 (p) = 1. This completes the proof.

13.6.2 Calculation of H1(Cu−,ϕ,a+):

In the following we note κ = κ(δ1δ−1
2 ). Observe also, for the following

statements, that δ1δ−1
2 (p) = δ(p) (since χ(p) = 1).

Lemma 13.32.
1. If δ(p) /∈

{
p−i, i ≥ 0

}
, or if δ(p) = p−i for some N ≥ i ≥ 1 and κ 6= −i,

then H1(Cu−,ϕ) = 0.
2. If δ(p) = 1 then H1(Cu−,ϕ) = L · [t0].
3. If δ(p) = p−i for some i ≥ 1 and κ = −i then H1(Cu−,ϕ) lives in an exact

sequence
0→ L · [ti]→ H1(Cu−,ϕ)→ L · [ti−1]→ 0.
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Proof. We use equation (21) of Lemma 13.6 to calculate this group. First ob-
serve that, if κ /∈ {−i,N ≥ i ≥ 1}, then H1(Cu−) = L · [tN ] and H1(Cu−) =
L·[ti−1]⊕L·[tN ] if κ = −i, N ≥ i ≥ 1. The result now follows by considering the
kernel of [ϕ− 1] on H1(Cu−) and the cokernel of [ϕ− 1] on H0(Cu−). Observe
that N being chosen big enough, the term [tN ] ends up always being killed.

We now calculate the extremities of the short exact sequence of (21) of
Lemma 13.6.

Lemma 13.33.
1. If δ(p) /∈ {p−i, i ≥ 0}, or if δ(p) = p−i, i ≥ 0, and κ 6= −i, then

H1([a+] : H0(Cu−,ϕ)) = 0.
2. Otherwise H1([a+] : H0(Cu−,ϕ)) = L · [ti].

Proof. Observe first he formula

a+ti = (κ+ i)ti.

1. In the first case we haveH0(Cu−,ϕ) so in particularH1([a+] : H0(Cu−,ϕ)) =
0.

2. If δ(p) = p−i for some i ≥ 0 and κ = −i, then H0(Cu−,ϕ) = L · ti and
a+ti = 0 giving the result.

Lemma 13.34.
1. If δ(p) /∈

{
p−i | i ≥ 0

}
, or if δ(p) = p−i, i ≥ 0, and κ 6= −i, then

H0([a+] : H1(Cu−,ϕ)) = 0.
2. If δ(p) = 1 and κ = 0, then H0([a+] : H1(Cu−,ϕ)) = L · [t0].
3. Otherwise we have an exact sequence

0→ L · [ti]→ H0([a+] : H1(Cu−,ϕ))→ L · [ti−1]→ 0.

Proof.
1. If δ(p) /∈

{
p−i | i ≥ 0

}
, or if δ(p) = p−i for some i ≥ 1 and κ 6= −i,

the group H1(Cu−,ϕ) is already zero by Lemma 13.32(i). If δ(p) = 1 and
κ 6= 0, then, by Lemma 13.32(ii), H1(Cu−,ϕ) = L · [t0] and a+ acts via
multiplication by κ, so it is injective.

2. This follows easily from Lemma 13.32(ii).
3. If δ(p) = p−i for some i ≥ 1 and κ = −i, then by Lemma 13.32(3) we have

an exact sequence

0→ L · [ti]→ H1(Cu−,ϕ)→ L · [ti−1]→ 0,

where [a+] acts as a+ on the LHS term and as a+ + 1 on the RHS term.
We deduce the result since a+ti = (a+ + 1)ti−1 = 0.
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We can now put everything together to calculate the Lie algebra cohomology.

Proposition 13.35. Let M = Pol≤N (Zp, L)∗(δ1, δ2). Then
1. If δ(p) /∈ {p−i, i ≥ 0}, or if δ(p) = p−i, i ≥ 0, and κ 6= −i, then

H1(Cu−,ϕ,a+) = 0.
2. If δ(p) = 1 and κ = 0, then H1(Cu−,ϕ,a+) lives in a short exact sequence

0→ L · [t0]→ H1(Cu−,ϕ,a+)→ L · [t0]→ 0.

3. Otherwise we have short exact sequences

0→ L · [ti]→ H1(Cu−,ϕ,a+)→ Zi → 0,

0→ L · [ti]→ Zi → L · [ti−1]→ 0.

Proof. This is an immediate consequence of Lemma 13.33 and Lemma 13.34.

13.6.3 Calculation of H2(Cu−,ϕ,a+):

Using the same methods based on Lemma 13.6, we calculate H2(Cu−,ϕ,a+)
for the module M = Pol≤N (Zp, L)∗(δ1, δ2). The following series of lemmas
systematically calculate each term appearing on Lemma 13.6. Since the cal-
culations are in the same spirit, we leave the easy proofs to the reader. Call
κ = κ(δ1δ−1

2 ) as before.
The following two lemmas calculate H2(Cu−,ϕ) and the kernel of [a+] acting

on it.

Lemma 13.36.
1. If κ = −i, i ≥ 1, and δ(p) = p−i, then H2(Cu+,ϕ) = L · [ti−1].
2. Otherwise H2(Cu+,ϕ) = 0.

Lemma 13.37.
1. If κ = −i, i ≥ 1, and δ(p) = p−i, then H0([a+] : H2(Cu−,ϕ)) = L · [ti−1].
2. Otherwise H0([a+] : H2(Cu−,ϕ)) = 0.

We calculate now the cokernel of [a+] on H1(Cu−,ϕ).

Lemma 13.38.
1. If δ(p) /∈

{
p−i, i ≥ 0

}
, or if δ(p) = p−i for some N ≥ i ≥ 0 and κ 6= −i,

then H1([a+] : H1(Cu−,ϕ)) = 0.
2. If δ(p) = 1 and κ = 0, then H1([a+] : H1(Cu−,ϕ)) = L · [t0].
3. If δ(p) = p−i for some i ≥ 1 and κ = −i then H1([a+] : H1(Cu−,ϕ)) lives

in an exact sequence

0→ L · [ti]→ H1([a+] : H1(Cu−,ϕ))→ L · [ti−1]→ 0.
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We conclude

Proposition 13.39.
1. If δ(p) /∈

{
p−i, i ≥ 0

}
, or if δ(p) = p−i for some N ≥ i ≥ 0 and κ 6= −i,

then H2(Cu−,ϕ,a+) = 0.
2. If δ(p) = 1 and κ = 0, then H2(Cu−,ϕ,a+) = L · [t0].
3. If δ(p) = p−i for some i ≥ 1 and κ = −i then H2(Cu−,ϕ,a+) lives in an

exact sequence

0→ Z → H2(Cu−,ϕ,a+)→ L · [ti−1],

0→ L · [ti]→ Z → L · [ti−1]→ 0.

13.6.4 Calculation of H3(Cu−,ϕ,a+):

Proposition 13.40.
1. If κ = −i, i ≥ 1, and δ(p) = p−i, then H3(Cu+,ϕ,a+) = L · [ti−1].
2. Otherwise H3(Cu+,ϕ,a+) = 0.

Proof. Immediate from Lemma 13.36.

13.7 The P+-cohomology of R+(δ1, δ2)
We take P̃ -invariants to calculate group cohomology from the Lie algebra

cohomology.

13.7.1 Calculation of H0(P+
,R+(δ1, δ2))

Lemma 13.41.
1. If δ1δ−1

2 = x−i, i ≥ 0, then H0(Cu−,ϕ,a+) = L · ti.
2. Otherwise H0(Cu−,ϕ,a+) = 0.

Proof. This follows by taking P̃ -invariants on Lemma 13.31 and observing that
τ fixes ti.

13.7.2 Calculation of H1(P+
,R+(δ1, δ2))

Lemma 13.42. If M = R+(δ1, δ2) then

1. If δ1δ−1
2 /∈

{
x−i | i ≥ 0

}
then H1(P+

,M) = 0.

2. If δ1δ−1
2 = x−i for some i ≥ 0 then H1(P+

,M) is of dimension 2.

Proof. To calculate the fixed points by P̃ on the Lie algebra cohomology after
all the identifications we have made, recall that we have rendered these actions
explicit in Remark 13.4.
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1. Suppose first that we are in the situation of Proposition 13.35(1). In this
case H1(Cu−,ϕ,a+) = 0 and the result is immediate.
Now assume we are in the case of Proposition 13.35(2), then we have

0→ L · [t0]→ H1(Cu−,ϕ,a+)→ L · [t0]→ 0.

Note also that, by Remark 13.4, A0 acts on each term on the extremi-
ties via multiplication by δ1δ−1

2 (which is not trivial by hypothesis). We
conclude by taking A0 invariants of this sequence.
Finally, suppose that the hypothesis of Proposition 13.35(3) are satisfied.
Then we have exact sequences

0→ L · [ti]→ H1(Cu−,ϕ,a+)→ Zi → 0,

0→ L · [ti]→ Zi → L · [ti−1]→ 0.
Again, by Remark 13.4, A0 acts on the first term of the two SES’s as
multiplication by δ1δ−1

2 |Z×p 6= χ−i and on the second term of the second
SES via multiplication by χδ1δ−1

2 |Z×p 6= χ−i+1. The result also follows by
taking A0-invariants.

2. If δ1δ−1
2 = 1Q×p , then we are in the situation of Proposition 13.35(2), and

the result follows since everything is P̃ -invariant.
If δ1δ−1

2 = x−i for some i ≥ 1, we are in the situation of Proposition
13.35(3). Note that, by Remark 13.4, τ acts on each of the extremities
of the long exact sequences of 13.35(3) just as τ . In this case, the term
ti−1 of the second short exact sequence is not fixed by the action of τ , so
taking P̃ -invariants in the short exact sequences gives the result.

13.7.3 Calculation of H2(P+
,R+(δ1, δ2))

Lemma 13.43.
1. If δ1δ−1

2 /∈ {x−i, i ≥ 0}, then H2(P+
,M) = 0.

2. If δ1δ−1
2 = 1Q×p then H2(P+

,M) is of dimension one naturally isomorphic
to L · [t0].

3. If δ1δ−1
2 = x−i, i ≥ 1, then H2(P+

,M) is of dimension 3.

Proof. This follows by taking P+-invariants in Lemma 13.39.

13.7.4 Calculation of H3(P+
,R+(δ1, δ2))

Lemma 13.44.
1. If δ1δ−1

2 = x−i, i ≥ 1, then H3(P+
,M) is of dimension 1 naturally gen-

erated by [ti−1].
2. Otherwise H3(P+

,M) = 0.
Proof. Immediate from Lemma 13.40.
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13.8 The P+-cohomology of R(δ1, δ2)
Call, for ∗ ∈ {+,−, ∅}, M∗ the module R∗(δ1, δ2). We use the short exact

sequence
0→M+ →M →M− → 0 (31)

in order to calculate the P+-cohomology of M . We restate one of the proposi-
tions announced at the beginning of this section.

Proposition 13.45. Let M = R(δ1, δ2). Then
1. If δ1δ−1

2 /∈ {x−i, i ∈ N} ∪ {χxi, i ∈ N}, then dimLH
j(P+

,M) = 0, 1, 1, 0,
for j = 0, 1, 2, 3.

2. If δ1δ−1
2 = 1Q×p , then dimLH

j(P+
,M) = 1, 2, 2, 0, for j = 0, 1, 2, 3.

3. If δ1δ−1
2 = x−i, i ∈ N, then dimLH

j(P+
,M) = 1, 3, 2, 0, for j = 0, 1, 2, 3.

4. If δ1δ−1
2 = χxi, i ∈ N, then dimLH

j(P+
,M) = 0, 2, 2, 1, for j = 0, 1, 2, 3.

Proof. For a P+-module N we note, for simplicity Hi(N) = Hi(P+
, N). Con-

sider the long exact sequence on cohomology associated to the sequence of Equa-
tion 31

0→ H0(M+)→ H0(M)→ H0(M−)→ H1(M+)→ H1(M)→ H1(M−)
→ H2(M+)→ H2(M)→ H2(M−)→ H3(M+)→ H3(M)→ H3(M−)→ 0.

Recall that we have already calculated (cf. Lemmas 13.25, 13.26, 13.27, 13.28,
13.41, , 13.42, 13.43, 13.44)all of the Hj(M±).

If δ1δ−1
2 /∈ {x−i, i ∈ N}, then Hj(M+) for all j, which implies that Hj(M) =

Hj(M−).
If δ1δ−1

2 = x−i, i ∈ N, thenH0(M−) = H3(M−) = 0 and the mapH1(M)→
H1(M−) is the zero map (cf. [11, Corollaire 5.23(ii)], which is independent of
[11, Lemme 5.21]). We hence have H1(M) = H1(M+), and an exact sequence

0→ H1(M−)→ H2(M+)→ H2(M)→ H2(M−)→ H3(M+)→ H3(M)→ 0.

By the same arguments as the ones in the proof of [11, Théorème 5.16], we can
show that in this case the map H3(M+) → H3(M) is the zero map, hence we
deduce H3(M) = 0 and dimLH

2(M) = 2, which completes the proof.

14 A relative cohomology isomorphism
Definition 14.1. We call a character δ : Q×p → A× regular if pointwise (mean-
ing the reduction for each maximal ideal m ⊂ A) it is never of the form χxi or
x−i for some i ≥ 0.

Remark 14.2. By [4, Corollaire 2.11], if δ is regular then H2(A+,RA(δ)) = 0.
Moreover in the setting of a point (A is a finite extension of Qp), δ1δ−1

2 : Q×p →
L× is regular implies the pair (δ1, δ2) is generic in the sense of [11].
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The following is a relative version of [11, Proposition 5.18].

Proposition 14.3. Suppose A is reduced. Let δ1, δ2 : Q×p → A× such that
δ1δ
−1
2 is regular. Then the restriction morphism from P

+ to A+, induces a
surjection:

H1(P+
,RA(δ1, δ2))→ H1(A+,RA(δ1δ−1

2 )).

Proof. We work at the derived level. For the sake of brevity let C•
P

+ denote the
Koszul complex Cτ,ϕ,γ of §12.2. Similarly let C•A+ denote the complex Cϕ,γ . We
have a canonical morphism:

C•
P

+(RA(δ1, δ2))→ C•A+(RA(δ1δ−1
2 ))

in D−pc(A). Let

C• := Cone(C•
P

+(RA(δ1, δ2))→ C•A+(RA(δ1δ−1
2 )))

and note that C• ∈ D−pc(A) by Remark 12.5. The distinguished triangle

C•
P

+(RA(δ1, δ2))→ C•A+(RA(δ1δ−1
2 ))→ C•

induces a long exact sequence in cohomology

· · · → H1(C•
P

+(RA(δ1, δ2)))→ H1(C•A+(RA(δ1δ−1
2 )))→ H1(C•)→ · · ·

Moreover since RA(δ1, δ2) is a flatA-module and RA(δ1, δ2)⊗AA/m ∼= RA/m(δ1, δ2)
for any maximal ideal m ⊂ A, it follows that

C•
P

+(RA(δ1, δ2))⊗L A/m ∼= C•
P

+(RA/m(δ1, δ2)).

Similarly we have

C•A+(RA(δ1δ−1
2 ))⊗L A/m ∼= C•A+(RA/m(δ1δ−1

2 )).

Hence the morphism A → A/m induces a morphism of distinguished triangles
which by the functoriality of the truncation operators gives a morphism of long
exact sequences

· · · H1(C•
P

+(RA(δ1, δ2))) H1(C•A+(RA(δ1δ−1
2 ))) H1(C•) · · ·

· · · H1(C•
P

+(RA/m(δ1, δ2))) H1(C•A+(RA/m(δ1δ−1
2 ))) H1(C• ⊗L A/m) · · ·

γ γ1

α β β1

By [11, Proposition 5.18] (see also Proposition 13.1), α is an isomorphism
and so β is the zero morphism. We claim that γ is the zero morphism as well.
To do this, we take advantage of the spectral sequence:

Tor−p(Hq(C•), A/m) =⇒ Hp+q(C• ⊗L A/m),
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whose 2nd page takes the form

0 0 0

Tor2(H2(C•), A/m) Tor1(H2(C•), A/m) H2(C•)⊗A A/m

Tor2(H1(C•), A/m) Tor1(H1(C•), A/m) H1(C•)⊗A A/m

Tor2(H0(C•), A/m) Tor1(H0(C•), A/m) H0(C•)⊗A A/m

The long exact sequence in cohomology

· · · → H3(C•
P

+(RA(δ1, δ2)))→ H3(C•A+(RA(δ1δ−1
2 ))) = 0→ H3(C•)→ 0→ · · ·

implies that H3(C•) = 0 hence explaining the top row. Moreover since δ1δ−1
2

is regular, H2(C•A+(RA(δ1δ−1
2 ))) = 0 by [4, Corollaire 2.11] (see also Remark

11.23). By Proposition 13.1, H3(C•
P

+(RA(δ1, δ2))) = 0 and thus from the long
exact sequence

· · · → 0→ H2(C•)→ H3(C•
P

+(RA(δ1, δ2))) = 0→ 0→ · · ·

we deduce that H2(C•) = 0. Hence the spectral sequence degenerates at the
2nd page in degree 1 cohomology and so H1(C• ⊗L A/m) = H1(C•) ⊗A A/m.
Similarly the spectral sequence

Tor−p(Hq(C•
P

+(RA(δ1δ−1
2 ))), A/m) =⇒ Hp+q(C•

P
+(RA/m(δ1δ−1

2 )))

implies H2(C•
P

+(RA/m(δ1δ−1
2 ))) = H2(C•

P
+(RA(δ1δ−1

2 )))⊗A A/m. Thus in the
diagram

· · · H1(C•A+(RA(δ1δ−1
2 ))) H1(C•) H2(C•

P
+(RA(δ1, δ2))) 0

· · · H1(C•A+(RA/m(δ1δ−1
2 ))) H1(C• ⊗L A/m) H2(C•

P
+(RA/m(δ1, δ2))) 0

γ γ1

β β1

we have β1 = γ1⊗A/m. By Proposition 13.1, β1 is an isomorphism of dimension
1 vector spaces over A/m for every m ⊂ A. Thus γ1 is a surjective morphism of
locally free A-modules, cf. [37, Lemma 2.1.8(1)], which are locally of dimension
1. Hence it is an isomorphism and so γ is the zero morphism, as desired. This
completes the proof.
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Proposition 14.4. Suppose A is reduced. Let δ1, δ2 : Q×p → A× such that
δ1δ
−1
2 is regular. Then the restriction morphism from P

+ to A+, induces an
injection:

H1(P+
,RA(δ1, δ2))→ H1(A+,RA(δ1δ−1

2 )).

Proof. Keeping the notation used in the proof of Proposition 14.3, since H1(C•)
is locally free, Tor1(H1(C•), A/m) = 0. But the spectral sequence

Tor−p(Hq(C•), A/m) =⇒ Hp+q(C• ⊗L A/m)

abuts to 0 in degree 0 as α is an isomorphism. This implies thatH0(C•)⊗A/m =
0 for every maximal idealm ⊂ A. By Nakayama’s Lemma it follows thatH0(C•)
is 0 and we deduce the result.

Theorem 14.5. Suppose A is reduced. Let δ1, δ2 : Q×p → A× such that δ1δ−1
2

is regular. Then the restriction morphism from P
+ to A+, induces an isomor-

phism:
H1(P+

,RA(δ1, δ2))→ H1(A+,RA(δ1δ−1
2 )).

Proof. This is a consequence of Propositions 14.3 and 14.4.

We are now ready to handle the case when A is non-reduced. We begin by
proving a slightly enhanced version of Theorem 14.5.

Proposition 14.6. Suppose A is reduced and M a finite A-module (equipped
with trivial P+-action). Let δ1, δ2 : Q×p → A× such that δ1δ−1

2 is regular. Then
the restriction morphism from P

+ to A+, induces an isomorphism:

H1(P+
,RA(δ1, δ2)⊗AM)→ H1(A+,RA(δ1δ−1

2 )⊗AM).

Proof. To prove surjectivity, we follow the proof of Proposition 14.3. In fact the
only thing that needs to be checked is that

H1(P+
,RA/m(δ1, δ2)⊗AM)→ H1(A+,RA/m(δ1δ−1

2 )⊗AM)

is an isomorphism. Denote byM ′ := M⊗AA/m, so that the above is equivalent
to showing

H1(P+
,RA/m(δ1, δ2)⊗A/m M ′)→ H1(A+,RA/m(δ1δ−1

2 )⊗A/m M ′), (32)

is an isomorphism. NowM ′ is flat over A/m and so by the Tor-spectral sequence

H1(P+
,RA/m(δ1, δ2)⊗A/m M ′) ∼= H1(P+

,RA/m(δ1, δ2))⊗A/m M ′

and similarly

H1(A+,RA/m(δ1, δ2)⊗A/m M ′) ∼= H1(A+,RA/m(δ1, δ2))⊗A/m M ′.

Thus the morphism 32 is an isomorphism by [11, Proposition 5.18]. The rest
of the proof of Proposition 14.3 goes through with C• replaced by C• ⊗L M .
For injectivity the proof of Proposition 14.4 remains unchanged except with C•
replaced by C• ⊗L M . This completes the proof.
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We now need a lemma that guarantees the connection morphisms are 0 in a
certain long exact sequence.

Lemma 14.7. Let A be an Qp-affinoid algebra and I ⊂ A an ideal of A. Let
δ1, δ2 : Q×p → A× such that δ1δ−1

2 is regular. The short exact sequence

0→ I → A→ A/I → 0

induces an injective morphism

H2(P+
,RA(δ1, δ2)⊗A I)→ H2(P+

,RA(δ1, δ2)).

Proof. By Lemma 13.3, it suffices to show that the morphism

H2
Lie(P+

,RA(δ1, δ2)⊗A I)→ H2
Lie(P+

,RA(δ1, δ2))

coming from the long exact sequence in Lie algebra cohomology of P+ is injec-
tive. Recall the Lie algebra complex from §13.1:

Cu−,ϕ,a+ : 0→M
A−→M ⊕M ⊕M B−→M ⊕M ⊕M C−→M → 0

where

A(x) = ((ϕ− 1)x, a+x, u−x)
B(x, y, z) = (a+x− (ϕ− 1)y, u−y − (a+ + 1)z, (pϕ− 1)z − u−x)
C(x, y, z) = u−x+ (pϕ− 1)y + (a+ + 1)z.

It suffices to show that if (x, y, z) ∈ R⊕3
A such that B(x, y, z) ∈ R⊕3

A ⊗A I, then
(x, y, z) ∈ R⊕3

A ⊗A I. Since

H2
Lie(A+,RA(δ1, δ2)⊗A I)→ H2

Lie(A+,RA(δ1, δ2))

is injective (this follows from the fact that H2
Lie(A+,RL(δ1, δ2)) = 0 for every

finite extension L of Qp), it follows that (x, y) ∈ R⊕2
A ⊗A I. Thus the problem

is the following: f ∈ RA such that

(a+ + 1)f ∈ RA ⊗A I and (pϕ− 1)f ∈ RA ⊗A I

and one must show that f ∈ RA ⊗A I.
Call F = pδ(p)ϕ − 1 and denote by RI := RA ⊗A I. We will show that,

if f ∈ RA is such that F (f) ∈ RI , then f ∈ RI . We first observe that this
statement is true for R±A . Indeed:

– If φ ∈ LA(Zp, A) is such that F (φ) ∈ LA(Zp, I), then call φ ∈ LA(Zp, A/I)
the reduction of φ modulo I. We have then F (φ) = 0, but F is injective
on LA(Zp, A/I), so φ = 0, which translates into φ ∈ LA(Zp, I).

– The claim that, for µ ∈ R+
A , then F (µ) ∈ R+

I implies µ ∈ R+
I follows

from a direct calculation by looking at the coefficients of the power series
expression of µ.
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Consider now the following commutative diagram given by the residue map
f =

∑
n∈Z anT

n 7→ [x 7→ φf (x) = res0((1+T )−xf(T ) dT
1+T ) =

∑
n≥0 a−n−1

(−x−1
n

)
]:

0 R+
A RA LA(Zp, A) 0

0 R+
A RA LA(Zp, A) 0

F F F

Let f =
∑
n∈Z anT

n ∈ RA be such that F (f) ∈ RI . Then we have F (φf ) ∈
LA(Zp, I) and this implies by the first point of the last paragraph that φf ∈
LA(Zp, I) and hence an ∈ I for all n < 0. Hence, if we write f = f−+f+, where
f− =

∑
n<0 anT

n and f+ =
∑
n≥0 anT

n, we get that F (f−) ∈ RI (because
f− ∈ RI !) and hence F (f+) = F (f)−F (f−) ∈ RI , which implies that f+ ∈ RI

and allows us to conclude that f ∈ RI . This completes the proof.

Remark 14.8. The statement of Lemma 14.7 is not surprising as P+ acts trivially
on the coefficient algebra A in RA(δ1, δ2).

Theorem 14.9. Let δ1, δ2 : Q×p → A× such that δ1δ−1
2 is regular. Then the

restriction morphism from P
+ to A+, induces an isomorphism:

H1(P+
,RA(δ1, δ2))→ H1(A+,RA(δ1δ−1

2 )).

Proof. Since A is in particular noetherian its nilradical is nilpotent. Thus it is
natural to proceed via induction on the index of nilpotence i ≥ 0. The base case
i = 0 (meaning A is reduced) is Theorem 14.5. Suppose by induction the result
is true for index i and suppose now N i+1 = 0. For the sake of brevity denote
XNi := RA(δ1, δ2)⊗AN i, XA := RA(δ1, δ2) and XA/Ni := RA(δ1, δ2)⊗AA/N i.
The short exact sequence

0→ XNi → XA → XA/Ni → 0

gives a commutative diagram

H0(P+
, XA/Ni) H1(P+

, XNi) H1(P+
, XA) H1(P+

, XA/Ni) H2(P+
, XNi)

H0(A+, XA/Ni) H1(A+, XNi) H1(A+, XA) H1(A+, XA/Ni) 0.

β′

α1 α2

ρ

α3

β

The two rows come from long exact sequences in cohomology and commutativity
comes from functoriality of the restriction morphism Hi(P+

,−)→ Hi(A+,−).
By Lemma 14.7, the connecting morphism ρ is the zero morphism. Identifying
XA/Ni with RA/Ni(δ1, δ2) and XNi with RA/N (δ1, δ2) ⊗A/N N i; we see that
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α1 is an isomorphism by Proposition 14.6 and α3 is an isomorphism by the
inductive step. On the other hand by [4, Proposition 2.10] the morphism

H0(A+, XA)→ H0(A+, XA/Ni)

is surjective. Thus β is the zero morphism. By the commutativity of the first
square, this implies that β′ is the zero morphism. Thus by the 5-Lemma, α2 is
an isomorphism and this proves the result.

15 Construction of the correspondence
In this section we construct, following [11, Chapter 6], the correspondence

∆ 7→ Π(∆) for a regular (ϕ,Γ)-module ∆ over the relative Robba ring RA,
interpolating the analogous construction of loc. cit. at the level of points. The
construction is inspired from the calculation of the locally analytic vectors in the
unitary principal series case (corresponding to the case when ∆ is trianguline
and étale), cf. [7], [8], [10] and involves a detailed study of the Jordan-Hölder
components of the G-module ∆�ω P1. We will see that the sought-after repre-
sentation Π(∆) is cut out from these constituents.

There are a couple of differences between the approach taken in [11] and the
one taken in the present paper that merits to be pointed out. On the one hand,
in constrast to loc. cit. where the construction is carried out more generally for
the case of a Lubin-Tate (ϕ,Γ)-module, we work in the usual cyclotomic con-
text, which simplifies many of the proofs and steps. This is mainly due to the
rich structure of the RA(Γ)-module ∆ψ=0 for ∆ ∈ ΦΓ(RA). Secondly, we are
only able to carry out the construction for regular trianguline (ϕ,Γ)-modules
(cf. Definition 15.1). Indeed it is only for those objects that our cohomology
comparison theorem of the last chapter works. The last modification between
our approach and the one taken in loc. cit. is found in the argument show-
ing that the middle extension of BA(δ1, δ2)∗ ⊗ ω by BA(δ1, δ2) in the proof of
Theorem 15.2 splits, where we give a more direct method.

15.1 The main result
We begin with a definition.

Definition 15.1. Let ∆ be a trianguline (ϕ,Γ)-module over RA, which is an
extension of RA(δ2) by RA(δ1). We say that ∆ is regular if δ1δ−1

2 : Q×p → A×

is regular in the sense of Definition 14.1.

The following theorem is a relative version of [11, Theorem 6.11] in the case
when the pair (δ1, δ2) is generic and also pointwise not of the form x−i for some
i ≥ 0, cf. Remark 14.2.

Theorem 15.2. Suppose ∆ is a regular (ϕ,Γ)-module over RA such that

0→ RA(δ1)→ ∆→ RA(δ2)→ 0.
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Then there exists a locally analytic A-representation Π(∆) 63 of GL2(Qp), with
central character ω, such that we have an exact sequence

0→ Π(∆)∗ ⊗ ω → ∆ �ω P1 → Π(∆)→ 0.

Moreover Π(∆) is an extension of BA(δ2, δ1) by BA(δ1, δ2). Furthermore if
∆ is a non-trivial extension of RA(δ2) by RA(δ1) then Π(∆) is a non-trivial
extension of BA(δ2, δ1) by BA(δ1, δ2).

Remark 15.3. Contrary to [11, Theorem 6.11], unless A is a finite extension
of Qp, then Π(∆) will not be of compact type (this is because A is not of
compact type as a locally convex Qp-vector space). Thus Π(∆) is almost never
an admissible G-representation in the sense of [54]. It is however of A-LB-type,
cf. Definition A.13.

Before we begin to prove Theorem 15.2 we need to define and construct the
G-module ∆ �ω P1.

15.2 Notations
We let Ext1(RA(δ2),RA(δ1)) denote the group of extensions of RA(δ2) by

RA(δ1) in the category of (ϕ,Γ)-modules over RA. Note that, since every (ϕ,Γ)-
module over RA is analytic (cf. Remark 10.10), this last group coincides with
the extension group Ext1

an(RA(δ2),RA(δ1)) in the category of analytic (ϕ,Γ)-
modules over RA

64.
Let H be a finite dimensional locally Qp-analytic group. We refer the reader

to the appendix for the necessary definitions and properties of the theory of lo-
cally analytic H-representations in A-modules. We just recall that GH,A (cf.
Definition A.39) denotes the category of complete Hausdorff locally convex A-
modules equipped with a separately continuous A-linear D(H,A)-module struc-
ture and we let Ext1

H(M,N) 65 denote the group of extensions of M by N in
the category GH,A.
Example 15.4. From Lemma 10.19 and Proposition 10.21, it follows that, if
? ∈ {+,−, ∅}, then the spaces R?

A(δi) �ω P1 are objects of the category GG,A.
If H2 is a closed locally Qp-analytic subgroup of a locally Qp-analytic group

H1, we have an induction functor indH2
H1

: GH2,A → GH1,A, cf. Lemma A.52. We
cite the following fact from the appendix that will be of much use to us, cf.
Proposition A.54.

63. It is probably unique but we are unable to show this. This comes down to knowing that
the Ext1 of certain principal series is a free A-module of rank 1.
64. This fact can also be seen by using the bijections Ext1(RA(δ2),RA(δ1)) =

H1(A+,RA(δ1δ−1
2 )) = H1

an(A+,RA(δ1δ−1
2 )) = Ext1

an(RA(δ2),RA(δ1)) where the equalities
follow from [4, Lemme 2.2], Proposition 11.4 and Proposition 11.2, respectively.
65. Note that this is called Ext1

GH,A
(M,N) in the appendix. We warn the reader that GH,A

is not an abelian category and so one needs to define precisely what the group of extensions
means, cf. Definition A.47.
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Proposition 15.5 (Relative Shapiro’s Lemma). Let H1 be a locally Qp-analytic
group and let H2 be a closed locally Qp-analytic subgroup. If M and N are
objects of GH2,A and GH1,A, respectively, then there are A-linear bijections

ExtqH1
(indH1

H2
(M), N)→ ExtqH2

(M,N)

for all q ≥ 0.

15.3 Extensions of R+
A (δ2) �ω P1 by RA(δ1) �ω P1

Denote by P =
(

Q×p 0
Qp 1

)
the lower-half mirabolic subgroup of the lower-

half Borel B =
(

Q×p 0
Qp Q×p

)
and U1 =

(
1 0
pZp 1

)
. We are now ready to state

the first result toward a proof of Theorem 15.2, which is essentially a formal
consequence of Theorem 14.9.

Theorem 15.6. Let δ1, δ2 : Q×p → A× such that δ1δ−1
2 is regular. Then there

is a natural isomorphism

Ext1
G(R+

A (δ2) �ω P1,RA(δ1) �ω P1) ∼= Ext1(RA(δ2),RA(δ1)).

Proof. Denote by RA(δ1, δ2) � P1 the P -module 66 (RA(δ1) �ω P1) ⊗ δ−1
2 , so

that RA(δ1, δ2) is identified with the sub-P+-module (R(δ1) �ω Zp) ⊗ δ−1
2 of

RA(δ1, δ2)�P1. The proof is done in several steps and follows the proof of [11,
Théorème 6.1] in the case where A is a finite extension of Qp.

(Step 1) We first descend from G to P using Shapiro’s Lemma. Since
R+
A (δ2) �ω P1 ∼= IndG

B
(δ1χ−1 ⊗ δ2)∗ ⊗ ω, cf. Lemma 10.19, using Lemma

A.55 we get that

R+
A (δ2) �ω P1 ∼= IndG

B
(δ−1

2 ⊗ δ−1
1 χ)∗ ∼= indG

B
(δ2 ⊗ χ−1δ1).

So by Proposition 15.5 (for q = 1) we get

Ext1
G(R+

A (δ2) �ω P1,RA(δ1) �ω P1) ∼= Ext1
B

(δ2 ⊗ χ−1δ1,RA(δ1) �ω P1).

Since we are only interested in locally analytic representations with a
central character ω, we don’t loose any information by passing from B
to P (since both δ2 ⊗ χ−1δ1 and RA(δ1) �ω P1 have the same central
character, namely ω) and thus we have

Ext1
B

(δ2 ⊗ χ−1δ1,RA(δ1) �ω P1) ∼= Ext1
P

(δ2 ⊗ χ−1δ1,RA(δ1) �ω P1).

Then, since (as P -modules) RA(δ1, δ2) � P1 ∼= (RA(δ1) �ω P1)⊗ (δ−1
2 ⊗

χδ−1
1 ), the RHS in the above equality is also equal to

H1
an(P ,RA(δ1, δ2) � P1).

66. Here δ2 is seen as a character of P , by setting δ2
(
a 0
b 1

)
= δ2(a).
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(Step 2) We now descend from P to P+. That is the restriction of RA(δ1, δ2)�
P1 to a P+-module induces an isomorphism

H1
an(P ,RA(δ1, δ2) � P1) = H1

an(P+
,RA(δ1, δ2) � P1).

This is shown in the exact same way as in [11, Lemme 6.4].
(Step 3) Finally we descend from RA(δ1, δ2) � P1 to RA(δ1, δ2). More pre-
cisely we show that the inclusion RA(δ1, δ2) ⊂ RA(δ1, δ2) � P1 (as P+-
modules) induces an isomorphism

H1
an(P+

,RA(δ1, δ2)) ∼= H1
an(P+

,RA(δ1, δ2) � P1).

Indeed by the long exact sequence in cohomology associated to the short
exact sequence

0→ RA(δ1, δ2)→ RA(δ1, δ2) � P1 → Q→ 0, (33)

where we define Q := (RA(δ1, δ2)�P1)/RA(δ1, δ2)�Zp) as a P
+-module,

it suffices to show that H0
an(P+

, Q) = H1
an(P+

, Q) = 0.
First observe that Q = RA(δ1, δ2) � (P1 − Zp) as U1-modules and that

H1
an(U1

, Q) = 0. Indeed, since U1 =
(

0 1
p 0

)
U0
(

0 p−1

1 0

)
, it is enough

to show that H1
an(U0,RA) = 0, which follows from Lemma 11.1. For the

same reason H0
an(U1

, Q) = 0 and so H0
an(P+

, Q) = 0.
Finally, let c 7→ cg be a locally analytic 1-cocycle over P+ with values in
Q. By adding a coboundary we can assume that cg = 0 for every g ∈ U1.
For a ∈ Zp\{0}, let α(a) =

(
a 0
0 1
)
. By the relation α(a)

( 1 0
ap 1

)
=
( 1 0
p 1
)
α(a)

we get cα(a) =
( 1 0
p 1
)
cα(a) and thus cα(a) = 0 for every a ∈ Zp\{0} since( 1 0

p 1
)
− 1 is injective on Q (since w

(( 1 0
p 1
)
− 1
)
w =

( 1 p
0 1
)
− 1 is injective

on R(δ1, δ2) �ω pZp ). Thus cg = 0 for all g ∈ P+.
Steps 1-3 show that

Ext1
G(R+

A (δ2) �ω P1,RA(δ1) �ω P1) ∼= H1
an(P+

,RA(δ1, δ2)).

The result now follows from Theorem 14.9 and Proposition 11.4.

15.4 The G-module ∆ �ω P1

In this section we show, following [11, §6.3], the existence of an unique
extension ∆�ωP1 extending that of R+

A (δ2)�ω by RA(δ1)�ωP1 associated to a
trianguline (ϕ,Γ)-module ∆ ∈ Ext1(RA(δ2),RA(δ1)) over RA by Theorem 15.6.
As in the introduction, we observe that working in the context of cyclotomic
(ϕ,Γ) simplifies considerably several proofs and constructions.

We begin by a lemma permitting to extend the involution.
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Proposition 15.7. Let ∆,∆1 ∈ ΦΓ(RA) be in an exact sequence 0 → ∆1 →
∆ α−→ RA(δ)→ 0, for δ : Q×p → A× locally analytic, and let ∆+ = α−1(R+

A (δ)) ⊆
∆. Let j+ : R+

A (Γ)→ R+
A (Γ) and j : RA(Γ)→ RA(Γ) be the involutions defined

by σa 7→ δ(a)σ−1
a . The any R+

A (Γ)-anti-linear involution ι : ∆+�Z×p → ∆+�Z×p
with respect to j+ 67 stabilizing ∆1�Z×p extends uniquely to an RA(Γ)-anti-linear
involution with respect to j on ∆ � Z×p .

Proof. As R+
A (Γ)-modules we have

∆+ � Z×p ∼= (∆1 � Z×p )⊕R+
A (Γ) · e2,

for some e2 ∈ ∆+ � Z×p , with σa(e2) = δ(a)e2, a ∈ Z×p ; and similarly, as
RA(Γ)-modules we have

∆ � Z×p ∼= (∆1 � Z×p )⊕RA(Γ) · e2,

so that, in particular, the module ∆+ � Z×p contains a basis of ∆ � Z×p as a
RA(Γ)-module. Since the involution ι′ we are looking for (on ∆ � Z×p ) extends
ι and is RA(Γ)-anti-linear, we are forced to set, for any z = z1 + λe2, z1 ∈ ∆1,
λ ∈ RA(Γ),

ι′(z) = ι(z1) + j(λ)ι(e2).

Since every element of ∆ can be uniquely written in this way, we deduce the
result.

Denote by G+ =
(

Zp Zp
pZp Z×p

)
∩ G, B+ =

(
Zp\{0} 0
pZp Z×p

)
and note that

P+ ⊂ G+, B+ ⊂ G+ and that G+ stabilizes Zp so that, if M is a G-equivariant
sheaf over P1, then M �Zp inherits an action of G+. The next result explicitly
describes the isomorphism of Theorem 15.6 and gives the construction of the
G-module ∆ �ω P1 for a regular (ϕ,Γ)-module ∆ over RA.

Proposition 15.8. Let M be a non-trivial extension of R+
A (δ2) �ω P1 by

RA(δ1) �ω P1. Then:
1. M constains a unique G+-submodule ∆+ which is an extension of R+

A (δ2)�ω
Zp by RA(δ1) �ω Zp.

2. There exists a unique ∆ ∈ ΦΓ(RA) which is an extension of RA(δ2) by
RA(δ1) such that ∆+ is identified with the inverse image of R+

A (δ2) in ∆.
3. ∆+�Z×p is stable under w and, if we denote by ι the involution of ∆+�Z×p

induced by w, then M = ∆+ �ω,ι P1.
4. The involution ι extends uniquely to a RA(Γ)-anti-linear involution (with

respect to j defined above) on ∆�Z×p and ∆�w,ιP1 is a G-module which
is an extension of RA(δ2) �ω P1 by RA(δ1) �ω P1.

Proof. We follow the proof of [11, Proposition 6.7,].

67. i.e. satisfying ι ◦ λ = j+(λ) ◦ ι
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1. Note that G+ stablizes Zp and so R+
A (δ2) �ω Zp is a G+-module. Step 1

of Theorem 15.6 shows that

R+
A (δ2) �ω Zp ∼= IndG

+

B
+(δ−1

2 ⊗ δ−1
1 χ)∗ = indG

+

B
+(δ2 ⊗ χ−1δ1).

We have an exact sequence of G+-modules

0→ RA(δ1) �ω Zp → RA(δ1) �ω P1 → Q′ → 0,

where we define Q′ := (RA(δ1) �ω P1)/(RA(δ1) �ω Zp) as a G+-module.
Proposition 15.5 gives

Ext1
G+(R+

A (δ2) �ω Zp, Q′) = Ext1
B

+(δ2 ⊗ χ−1δ1, Q
′)

(i)= Ext1
P

+(δ2 ⊗ χ−1δ1, Q
′)

(ii)= 0

where (i) follows from the fact that δ2 ⊗ χ−1δ1 and RA(δ1) �ω (P1 −Zp)
have the same central character ω, and (ii) follows from Step 3 of the
proof of Theorem 15.6. This proves the existence of a G+-submodule
∆+ ⊂ M . We now prove uniqueness. If X ⊂ M is a G+-extension of
R+
A (δ2) �ω Zp by RA(δ1) �ω Zp and e ∈ X is a lift of 1 ⊗ δ2 ∈ R+(δ2),

then
(( 1 0

p 1
)
− 1
)
· e ∈ RA(δ1)�ω Zp. Writing e = e′ + z for some e′ ∈ ∆+

and z ∈ Q′, we see that
(( 1 0

p 1
)
− 1
)
· z ∈ RA(δ1) �ω Zp. Thus z = 0 as(( 1 0

p 1
)
− 1
)
is injective on Q′ (noting that Q′ = RA(δ1) �ω (P1 − Zp) as

U
1-modules).

2. This follows from the fact that extensions (as A+-modules) of R+
A (δ2) by

RA(δ1) are in correspondence with extensions of RA(δ2) by RA(δ1).
3. Since ∆+ is a G+-module, by restricting to P+, we can think of it as a
P+-module living on Zp. Thus the notation ∆+ � Z×p makes sense.
For i ∈ Z×p the identity

w

(
p i
0 1

)
=
(
p i−1

0 1

)(
−i−1 0
p i

)

and the fact that
(
−i−1 0
p i

)
∈ G+ implies that

w(∆+ � (i+ pZp)) ⊂ ∆+ � (i−1 + pZp) (34)

The inclusion in (34) is in fact an equality since w is an involution. This
shows the stability of ∆+ � Z×p by w.
To show the equality of the statement, it suffices to show that the sequence

0→ ∆+ � Z×p
x 7→(x,−wx)−−−−−−−→ ∆+ ⊕∆+

(y,z)7→y+w·z−−−−−−−−→M → 0 (35)
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is exact. The exactness on the middle is clear since any section sup-
ported on Zp such that it’s involution is also supported on Zp is neces-
sarily supported on Z×p . Finally, to prove surjectivity of ∆+ ⊕∆+ → M
in (35), it suffices to note that induced applications RA(δ1) ⊕RA(δ1) →
RA(δ1) �ω P1 and R+

A (δ2)⊕R+
A (δ2)→ R+

A (δ2) �ω P1 are surjective.
4. The existence and uniqueness of ι follows from Proposition 15.7. For the

last part it suffices to show that the action of G̃ on ∆ �ω,ι P1 factorizes
via G. First note that if A is a finite extension of Qp the result follows
from [11, Proposition 6.7(iv)].
We now proceed by induction on the index i ≥ 0 of nilpotence of A.
Suppose first that A is reduced. Take (z1, z2) ∈ ∆ �ω,ι P1 and g in
the kernel of G̃ → G. It suffices to show that y = (g − 1)z = 0. Call
y = (y1, y2). Let m ⊂ A be a maximal ideal. By Lemma 10.18 and
by the result for the case of a point, yi = 0 mod m. If we write yi =∑
n∈Z an,iT

n ⊕
∑
n∈Z an,iT

n for i = 1, 2 we see that an,i = 0 mod m and
hence yi = 0 so that y = 0, as desired.
Suppose now the result is true for every affinoid algebra of index of nilpo-
tence ≤ j and let A be an affinoid algebra whose nilradical N satisfies
N j+1 = 0 and g be in the kernel of G̃ → G. We have the following short
exact sequence (note that ∆ is a flat A-module because it is an extension
of flat A-modules and so is ∆ �ω,ι P1 who is topologically isomorphic to
two copies of ∆)

0→ (∆ �ω,ι P1)⊗A N j → ∆ �ω,ι P1 → (∆ �ω,ι P1)⊗A A/N j → 0.

We can identify (∆ �ω,ι P1) ⊗A A/N j with (∆ ⊗A A/N j) �ω,ι P1 and
(∆ �ω,ι P1) ⊗A N j with (∆ ⊗A A/N) �ω,ι P1 ⊗A/N N j . The result now
follows by the inductive hypothesis and the base case.

From now on we denote by ∆ �ω P1 the module ∆ �ω,ι P1 constructed in
Proposition 15.8.

15.5 The representation Π(∆)
We are now almost ready to construct the representation Π(∆) and prove

Theorem 15.2. We will need some preparation results. We start by showing
that H1(P+

,R−A (δ1, δ2)) is a free A-module in the quasi-regular case 68.

Proposition 15.9. Let δ1, δ2 : Q×p → A× be locally analytic characters such
that δ1δ−1

2 is quasi-regular. Then there is an isomorphism

H1(P+
,R−A (δ1, δ2)) ∼= A.

68. Here quasi-regular means that pointwise δ1δ−1
2 is never of the form χxi for some i ≥ 0.

Clearly regular implies quasi-regular.
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Proof. This will follow from Proposition 11.19 and Lemma 15.11 below.

Lemma 15.10. R−A is a flat A-module.

Proof. For 0 < r ≤ s ≤ ∞ rings R
[r,s]
A are Banach A-algebras of countable type.

Thus by [39, Lemma 1.3.8], we can identify R
[r,s]
A /R

[r,∞]
A with the completed

direct sum ⊕̂i∈IAei where (ei)i∈I form a potentially orthonormal basis. We note
in the following (R[r,s]

A )− the module R
[r,s]
A /R

[r,∞]
A . Under this identification, if

I ⊆ A′ is a finitely generated ideal of A, then

I ⊗A (R[r,s]
A )− ∼= ⊕̂i∈IIei.

This implies that the morphism I ⊗A (R[r,s]
A )− → (R[r,s]

A )− is injective. Thus
(R[r,s]

A )− is a flat A-module. Observe that, in fact, the quotient R
[r,s]
A /R

[r,∞]
A

does not depend on r and coincides with R
]0,s]
A /R

]0,∞]
A so that this last module

is flat. Finally, since filtered colimits are exact, this implies that

lim−→
s>0

R
]0,s]
A /R

]0,∞]
A = RA/R

+
A = R−A

is a flat A-module.

Lemma 15.11. Let δ1, δ2 : Q×p → A× such that δ1δ−1
2 is quasi-regular. The

restriction morphism

H1(P+
,R−A (δ1, δ2))→ H1(A+,R−A (δ))

is an isomorphism.

Proof. This is precisely the same proof as Theorem 14.9 with R−A replacing RA.
The key points are the following

– The morphism
C•
P

+(R−A (δ1, δ2))→ C•A+(R−A (δ))

is in D−pc(A) by Lemmas 11.14 and 12.12 and Proposition 11.19.
– R−A is flat A-module, cf. Lemma 15.10. This means that for any maximal

ideal m ⊂ A we have

C•
P

+(R−A (δ1, δ2))⊗L A/m ∼= C•
P

+(R−A/m(δ1, δ2))

and
C•A+(R−A (δ))⊗L A/m ∼= C•A+(R−A/m(δ)).

– Since δ1δ−1
2 is quasi-regular, H2(C•A+(R−A (δ))) = 0 by Corollary 11.18.

– The result is true when A is a finite extension of Qp, cf. [11, Lemme 5.24].
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This completes the proof of Proposition 15.9. Finally we need a lemma
which identifies ∆̌ �ω−1 P1 as the topological dual of ∆ �ω P1 (equipped with
the strong topology).

Lemma 15.12. If ∆ is an extension of RA(δ2) by RA(δ1) and if the G-module
∆ �ω P1 exists, then its dual is ∆̌ �ω−1 P1.

Proof. This is the same proof as [11, Proposition 3.2], so we just provide a
sketch. It suffices to construct a perfect pairing which identifies ∆ �ω P1 and
∆̌�ω−1 P1 as the topological duals of one another (as topological A[G]-modules).
To construct this pairing first note that if (∆, ω, ι) is compatible, then so is
(∆̌, ω−1, ι∗), where

ι∗ : ∆̌ � Z×p → ∆̌ � Z×p
is the involution of ∆̌�Z×p adjoint to that of ι with respect to the pairing { , }
(cf. §10.2 for the definition of { , }). To see this one first defines a pairing

{ , }P1 : (∆̌ �ω−1,ι∗ P1)× (∆ �ω,ι P1)→ A

by the formula

{ž, z}P1 := {ResZp ž,ResZp z}+ {RespZp w · ž,RespZp w · z}.

One then proceeds to check that {g · ž, g · z}P1 = {ž, z}P1 for all g ∈ G̃. Finally
one notes that since { , } is perfect, so is { , }P1 .

Proof of Theorem 15.2. By Proposition 10.21, Theorem 15.6 and Proposition
15.8 we have that 69

∆ �ω P1 = [BA(δ2, δ1)∗ ⊗ ω −BA(δ1, δ2)−BA(δ1, δ2)∗ ⊗ ω −BA(δ2, δ1)].

We begin by showing that the middle extension [BA(δ1, δ2) − BA(δ1, δ2)∗ ⊗ ω]
is split in the category GG,A. We compute

Ext1
G(B(δ1, δ2)∗ ⊗ ω,R−A (δ1) �ω P1)

(i)∼= Ext1
B

(δ2 ⊗ χ−1δ1,R
−
A (δ1) �ω P1)

(ii)∼= Ext1
P

(δ2 ⊗ χ−1δ1,R
−
A (δ1) �ω P1)

where (i) follows from Proposition 15.5 and (ii) follows from the fact that both
(δ2 ⊗ χ−1δ1) and R−A (δ1) �ω P1 have the same central character. Then as
P -modules

(R−A (δ1) �ω P1)⊗ (δ−1
2 ⊗ χδ−1

1 ) ∼= (R−A (δ1) �ω P1)⊗ δ−1
2 .

Let us denote by R−A (δ1, δ2)�P1 the P -module (R−A (δ1)�ω P1)⊗ δ−1
2 , so that

we get

Ext1
P

(δ2 ⊗ χ−1δ1,R
−
A (δ1) �ω P1) = H1

an(P ,R−A (δ1, δ2) � P1).

69. The notation M = [M1 −M2 − . . .−Mn] means that M admits an increasing filtration
0 ⊆ F1 ⊆ . . . ⊆ Fn = M by sub-objects such that Mi = Fi/Fi−1 for i = 1, . . . , n.
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Finally, by [11, Lemme 6.4]

H1
an(P ,R−A (δ1, δ2) � P1) = H1

an(P+
,R−A (δ1, δ2) � P1).

Putting this calculations together, we conclude that

Ext1
G(B(δ1, δ2)∗ ⊗ ω,R−A (δ1) �ω P1) = H1

an(P+
,R−A (δ1, δ2) � P1).

Consider the commutative diagram:

H1
an(P+

,RA(δ1, δ2)) H1
an(P+

,RA(δ1, δ2) � P1)

H1
an(P+

,R−A (δ1, δ2)) H1
an(P+

,R−A (δ1, δ2) � P1),

∼

where the top horizontal arrow is an isomorphism by Theorems 14.9 and 15.6.
By reinterpreting the extensions in terms of cohomology classes, we see that
showing that the middle extension [BA(δ1, δ2)−BA(δ1, δ2)∗⊗ω] splits is equiv-
alent to showing that the right vertical arrow is the zero morphism. Now, by
Proposition 15.9, H1

an(P+
,R−A (δ1, δ2)) is a free A-module of rank 1 and the

same proof as the first point in [11, Remarque 5.26] now shows that the bottom
horizontal arrow

H1
an(P+

,R−A (δ1, δ2))→ H1
an(P+

,R−A (δ1, δ2) � P1)

is the zero morphism and so is the right vertical arrow, proving the claim.
It follows that ∆ �ω P1 is an extension of Π1 by Π∗2 ⊗ ω, where Π1 and

Π2 are extensions of BA(δ2, δ1) by BA(δ1, δ2). By Lemma 15.12, it follows that
Π1 = Π2. We now define Π(∆) := Π2.

Furthermore if ∆ is a non-trivial extension of RA(δ2) by RA(δ1), then so is
the extension of BA(δ1, δ2)∗ ⊗ ω by RA(δ1) �ω P1 (recalling that

Ext1
G(R+

A (δ2) �ω P1,RA(δ1) �ω P1) ∼= Ext1(RA(δ2),RA(δ1)),

cf. Theorem 15.6). This implies that Π(∆) is a non-trivial extension ofBA(δ2, δ2)
by BA(δ1, δ2) and finishes the proof.

A The category of locally analytic G-representations
in A-modules

Let A be an affinoid Qp-algebra (in the sense of Tate). Unless otherwise
stated H will be a locally Qp-analytic group (for applications H will be a closed
locally Qp-analytic subgroup of GL2(Qp)). We attempt to generalise some defi-
nitions from [50] in the case where the base coefficient is an Qp-affinoid algebra.
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There are some results in this direction in [35, §3] although our approach is dif-
ferent. In particular, our aim is to give a reasonable definition of the category
of locally analytic H-representations in A-modules, Repla

A(H), analogous to the
definition in [53, §3] (in the case where A is a finite extension of Qp), and to
study the (locally analytic) cohomology of such a representation.

A.1 Preliminaries and definitions
In what follows if V and W are two locally convex Qp-vector spaces and in

the situation that the bijection

V ⊗Qp,ιW → V ⊗Qp,π W

is a topological isomorphism, we write simply V ⊗QpW and V ⊗̂QpW to denote
the topological tensor product and its completion, respectively. Note that H is
strictly paracompact (this means that every open covering of H admits a locally
finite refinement of pairwise disjoint open subsets) and so it admits a covering
of pairwise disjoint open compact subsets.

We need to define a notion of a locally convex A-module. First we recall the
definition of a topological A-module.

Definition A.1. A topological A-module is an A-module endowed with a topol-
ogy such that module addition +: M × M → M and scalar multiplication
· : A × M → M are continuous functions (where the domains of these func-
tions are endowed with product topologies).

Definition A.2. Let M be an A-module. A seminorm q on M is a function
q : M → R such that

– q(am) = |a|q(m) for all a ∈ A and m ∈ M , where |·| is some non-zero
multiplicative seminorm on A.

– q(m+ n) ≤ max{q(m), q(n)} for any m,n ∈M .

Let (qi)i∈I be a family of seminorms on an A-module M . We define a
topology on M to be the coarsest topology on M such that

1. All qi : M → R, for i ∈ I, are continuous.
2. All translation maps m+− : M →M , for m ∈M , are continuous.

Remark A.3. One would at a first glance be tempted to define a locally convex
A-module as a topological A-module whose underlying topology is given by
a family of seminorms in the above sense. The problem with this definition
is twofold. The Qp-affinoid algebra A equipped with the topology defined by
the Gauss norm say, will not necessarily be a locally convex A-module (unless
A is reduced). This is essentially due to the fact that the Gauss norm is not
necessarily multiplicative on A. On the other hand the topology on A defined by
the seminorms coming from the Berkovich spectrum M(A) coincides with the
topology induced by the spectral seminorm (f ∈ A 7→ maxx∈M(A)|f(x)|). Under
this topology A will indeed be a locally convex A-module but not necessarily
Hausdorff.
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Due to Remark A.3 we define a locally convex A-module in the following
way.

Definition A.4. A locally convex A-module is a topological A-module whose
underlying topology is a locally convex Qp-vector space. We let LCSA be the
category of locally convex A-modules. Its morphisms are all continuous A-linear
maps.

Remark A.5. Let us show that this definition is coherent in the case when
A = L is a finite extension of Qp. That is, that a locally convex Qp-vector
space equipped with a continuous multiplication by L is also an L-locally convex
vector space.

We employ the notion of [50, §4]. Let L be a finite extension of Qp. It
is clear that any locally convex L-vector space in the sense of loc.cit. satisfies
the conditions of Definition A.4. On the other hand, let M be a locally convex
Qp-vector space (whose topology is defined by a family of lattices B) equipped
with a continuous multiplication by L. We show that we can equip M with
a system of lattices B′ satisfying conditions (lc1) and (lc2) of [50, §4] with K
there replaced by L defining the same topology as B. Let xi be a Zp-basis of
OL. For U ∈ B, set U ′ =

∑
i xiU and denote B′ = {U ′ : U ∈ B}. It is easy to

see that this family of OL-lattices satisfies conditions (lc1) and (lc2). We show
that the topology defined by B′ coincides with that defined by B.

- Let U ∈ B. Since multiplication by xi is an homeomorphism (multiplica-
tion by x−1

i being a continuous inverse) xiU for all i is open (in the topology
defined by B). Thus so is

∑
xiU = U ′, which shows that the topology defined

by B is finer than that defined by B′.
- On the otherhand, let U ∈ B. We show now that there exists V ′ ∈ B′

such that V ′ ⊆ U . Let V be such that V ⊆ x−1
i U for all i (again we use the fact

that multiplication by x−1
i is open and (lc2)). Then

∑
xiV ⊆

∑
i xix

−1
i U ⊆ U .

This completes the proof of the claim.

Lemma A.6. A equipped with its norm topology is a barrelled, complete Haus-
dorff locally convex A-module.

Proof. Consider the induced Gauss norm on A, |·|. By [3, §3.1, Proposition 5(i)],
|·| is a Qp-algebra norm. Thus A equipped with its norm topology is a locally
convex Qp-vector space. Moreover since |·| is sub-multiplicative (|ab|≤ |a|·|b|),
multiplication by A is continuous. Finally since the topology is defined by a
norm, it is Hausdorff and A is a Qp-Banach algebra for this norm. Note that
all Banach spaces are barrelled, cf. [50, page 40].

We now prove that there is a well defined Hausdorff completion for a locally
convex A-module.

Lemma A.7. For any locally convex A-module M there exists an up to unique
topological isomorphism unique complete Hausdorff topological A-module M̂ to-
gether with a continuous A-linear map

cM : M → M̂
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such that the following universal property holds: For any continuous A-linear
map f : M → N into a complete Hausdorff locally convex A-module N there is
a unique continuous A-linear map f̂ : M̂ → N such that

f = f̂ ◦ cM .

Proof. Uniqueness follows from the universal property. For the existence, replac-
ingM byM/{0} if necessary, we may assume thatM is Hausdorff (note that {0}
is a locally convex A-module and thus so isM/{0}). We considerM as a locally
convex Qp-vector space and let M̂ be as in [50, Proposition 7.5]. We show that
M̂ is a topological A-module. It is easy to see that Â×M = A× M̂ (as locally
convex Qp-vector spaces). By the universal property in loc.cit. the A-module
structure A ×M → M extends to a continuous morphism α : A × M̂ → M̂ .
Since M → M̂ is an injection and M is dense in M̂ , it follows that α exhibits
M̂ as a topological A-module. Finally since cM is an injection it is A-linear.

From now on when A is considered as a locally convex A-module, we will
assume it is equipped with its Gauss-norm topology, (A, | · |A).

We need the notion of the strong dual of a locally convex A-module. This
will be much less well behaved compared to the classical situation when A is
a finite extension of Qp. For example if the dimension of H is greater than 1
then we do not even know if LA(H,A) is A-reflexive, cf. Conjecture A.18 and
Remark A.32.

Definition A.8. LetM be a locally convex A-module. As an abstract A-module,
we define the

M ′b := HomA,cont(M,A)
Now equip HomQp,cont(M,A) with the strong Qp-locally convex topology and
give

M ′b ⊆ HomQp,cont(M,A)
the induced subspace topology. We callM ′b equipped with this topology, the strong
dual of M . We say M is A-reflexive if the canonical morphism M → (M ′b)′b is
a topological isomorphism.

Remark A.9. Let M be a locally convex A-module. The strong dual M ′b can
equivalently be defined with the topology obtained by taking the sets {f : M →
A|f(B) ⊆ U} for B ⊆ M a bounded set and U ⊆ A open, as a system of
neighbourhoods of 0.

Let R ∈ {Qp, A}. ForM andN locally convex R-modules, we will sometimes
write LR,b(M,N) := HomR,cont(M,N) equipped with the strong topology. If
M is a locally convex Qp-vector space, then we will denote the classical strong
dual of M , cf. [50, Chapter 1, §9], by M ′Qp,b

.
We now prove that M ′b as given by Definition A.8 is indeed a locally convex

A-module.

Lemma A.10. If M is a locally convex A-module, then so is its strong dual
M ′b.
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Proof. By [50, §5],M ′b is a locally convex Qp-vector space. So it suffices to show
that multiplication by A is continuous. This comes down to chasing definitions.
Let |·| be the Gauss norm on A. For any bounded set B of M (viewing M as a
locally convex Qp-vector space), we have the seminorm (on HomQp,cont(M,A))

pB(f) := supv∈B |f(v)|.

The locally convex topology on HomQp,cont(M,A) is then defined by the family
of seminorms {pB}B∈B where B is the set of all bounded subsets of M . For
any finitely many seminorms pB1 , pB2 , . . . , pBr in the given family and any real
number ε > 0 the open sets

{f ∈ HomQp,cont(M,A)| pB1 , pB2 , . . . , pBr (f) ≤ ε}

form a basis around 0 of HomQp,cont(M,A). For any a ∈ A we have pB(af) ≤
|a|pB(f) and now it is easy to see that multiplication by A is continuous on
HomQp,cont(M,A). Thus it is also continuous on HomA,cont(M,A).

Example A.11. By [37, Lemma 2.1.19] (cf. also [17, 5.5 Proposition]), we have
topological isomorphisms 70

LA,b(R−A , A) = R+
A , LA,b(RA, A) = RA.

Note that, if we denote by R∼A the sub-A-module of RA given by Laurent series
whose non-negative powers of T vanish, equipped with it’s induced topology,
then we have (R+

A )⊥ = R+
A and (R∼A )⊥ = R∼A (the orthogonal is taken with

respect to the natural separately continuous pairing RA × RA → A, (f, g) 7→
rés0(f(T )g(T )dT )). This shows that R+

A and R∼A are closed sub-A-modules of
RA and that we have a topological decomposition RA = R+

A ⊕ R∼A (cf. [50,
Proposition 8.8(ii)]). We can conclude, by using [50, Lemma 5.3(ii)], that we
have a topological isomorphism of locally convex A-modules R−A

∼= R∼A and
R+
A
∼= RA/R∼A . On the other hand, the same argument of [37, Lemma 2.1.19]

shows that
LA,b(R+

A , A) = R−A .

Indeed, as in loc. cit., the inverse to the natural map RA → HomA,cont(RA, A)
induced by the pairing rés0 is given by associating, to any µ ∈ HomA,cont(RA, A),
the power series

∑
n∈Z µ(T−1−n)Tn. This series lies in R∼A if and only if

µ(T−1−n) = 0 for all n ≥ 0, or equivalently µ(R∼A ) = 0. This shows in particular
that the spaces R+

A and R−A are A-reflexive.
We need to recall some classical definitions adapted to our context:

70. Note that, identifying R−A = lim−→s
R

]0,s]
A /R

]0,+∞]
A , one can see (cf. Lemma A.22 and

Lemma A.30 below) that LA,b(R−A , A) = lim←−s LA,b(R
]0,s]
A /R]0,+∞], A) is Fréchet (observe

that the space R
]0,s]
A /R

]0,+∞]
A with its topology defined by v]0,s], where v]0,s] is the valuation

induced by v[r,s] for any r < s, is a Banach space).
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Definition A.12. A Cauchy net in a locally convex A-module M is a net
(mi)i∈I in M (a family of vectors mi in M where the index set I is directed)
such that for every ε > 0 and every seminorm qα (defining the topology on M),
∃κ such that for all λ, µ > κ, qα(mλ −mµ) < ε. M is complete if and only if
every Cauchy net converges.

Definition A.13. Let R ∈ {Qp, A} and let M be a locally convex R-module.
We say M is a Fréchet space if it is metrizable and complete. We say M is R-
LB-type if it can be written as a countable increasing union of R-Banach spaces
with R-linear injective transition morphisms. We say M is R-LF-type if it can
be written as a countable increasing union of locally convex R-modules which
are Fréchet spaces with R-linear injective transition morphisms.

A.2 Relative non-archimedean functional analysis
Here are our first (and main) examples of locally convex A-modules:

Lemma A.14. R+
A , R+

A � P1, R−A , R−A � P1, RA and RA � P1 are complete
Hausdorff locally convex A-modules. Moreover R+

A and R+
A � P1 are Fréchet

spaces, R−A and R−A �P1 are of A-LB-type and RA and RA�P1 are of A-LF-
type. For ? ∈ {+,−, ∅} we have that

R?
A = R?

Qp
⊗̂QpA,

R?
A � P1 = (R?

Qp
� P1)⊗̂Qp

A.

Proof. We first prove the statement for R?
A, ? ∈ {+,−, ∅}. By [4, lemme 1.3(i)]

we have an isomorphism as Fréchet spaces (in the category of locally convex
Qp-vector spaces) R+

A = R+
Qp
⊗̂Qp

A. Thus R+
A is a locally convex Qp-vector

space. Multiplication by A is clearly continuous on R+
Qp
⊗Qp

A (the latter is
also a locally convex Qp-vector space) and so by Lemma A.7, the completion
R+
A is a locally convex A-module.
By example A.11, R−A is A-reflexive and so by Remark A.32 we have an

isomorphism R−A = R−Qp
⊗̂Qp

A. Moreover R−A = lim−→s
R

]0,s]
A /R

]0,+∞]
A is A-LB-

type.
Finally by definition RA is A-LF-type and since RA = R+

A ⊕R−A (as topo-
logical A-modules), it is also Hausdorff and complete. We compute

RA = R+
A ⊕R−A

= (R+
Qp
⊗̂QpA)⊕ (R−Qp

⊗̂QpA)

= (R+
Qp
⊕R−Qp

)⊗̂Qp
A

= RQp
⊗̂Qp

A.

We finally observe that, if M ∈ {R+
A ,R

−
A ,RA}, then M � P1 (with its

topology induced by the inclusionM�P1 ⊆M×M) is topologically isomorphic
toM×M , the isomorphism given by z 7→ (ResZp(z), ψ(ResZp(wz))) with inverse
(z1, z2) 7→ (z1, ϕ(z2) + w(ResZ×p (z1))).
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Let M be a Hausdorff locally convex A-module. We define a locally convex
A-module LA(H,M) of all M -valued locally analytic functions on H.

Definition A.15. An M -index I on H is a family of triples

{(Hi, φi,Mi)}i∈I

where the Hi are pairwise disjoint open subsets of H which cover H, each
φi : Hi → Qd

p is chart 71 for the manifold H whose image is an affinoid ball
and Mi ↪→M is a continuous linear injection from an A-Banach space Mi into
M . Let Fφi(Mi) be the set of all functions f : Hi →Mi such that f ◦ φ−1

i is an
Mi-valued holomorphic function on the affinoid ball φi(Hi). Note that Fφi(Mi)
is an A-Banach space. We set

FI(M) :=
∏
i∈I
Fφi(Mi),

where FI(M) is equipped with the direct product topology (in particular it is a
locally convex A-module). We then define 72

LA(H,M) := lim−→
I
FI(M)

equipped with the Qp-locally convex inductive limit topology.

Remark A.16. In Definition A.15, in order to see that LA(H,M) is a locally
convex A-module, one needs to check that multiplication by A on LA(H,M) is
continuous. Indeed since, · : A×M →M is continuous, then so is A×Fφi(Mi)→
Fφi(Mi). This implies that multiplication BI : A×FI(M)→ FI(M) is contin-
uous. Denote by B : A × LA(H,M) → LA(H,M), the multiplication by A on
LA(H,M). The continuity of B follows from the continuity of the BI (cf. the
3rd paragraph of the proof of Lemma A.22 where a similar problem is proved).

Lemma A.17. Let (V, || · ||) be a Qp-Banach space and let V ′0 ⊂ V ′Qp,b
be the

unit ball. Given a constant C and a vector v ∈ V , if |l(v)|p ≤ C for all l ∈ V ′0
then ||v|| ≤ C.

Proof. This is a direct consequence of the Hahn-Banach theorem. Applying [50,
Proposition 9.2] with U := V , q := || · ||, Uo := Qpv and |lo(v)|p ≥ ||v|| for all
a ∈ Qp we obtain a linear form l ∈ V ′0 and |l(v)|p ≥ ||v||.

To kick-start our study of locally convex A-modules and their relationship to
Repla

A(H) (cf. Definition A.24) we need to know that LA(H,A) is well-behaved.
Féaux states explicitly in his thesis (cf. [27]) that he does not know if LA(H,A)
is complete. The completeness of LA(H,A) has since become somewhat of a
folklore conjecture:

71. To be more precise one takes Hi an affinoid rigid analytic space over Qp isomorphic to
a closed ball, so that φi induces an isomorphism φ′i : Hi

∼−→ Hi(Qp).
72. This colimit is taking place in the category of Qp-locally convex vector spaces.
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Conjecture A.18. If H is a compact locally Qp-analytic group then LA(H,A)
is complete.

Remark A.19. If Conjecture A.18 is true then one can show that LA(H,A) ∼=
LA(H,Qp)⊗̂Qp,πA

∼= LA(H,Qp)⊗̂Qp,ιA, cf. Remark A.32. If H is of dimension
1 then Conjecture A.18 is true, cf. lemma A.14.

Although we are unable to prove Conjecture A.18 we show that LA(H,A)
is sufficiently well-behaved for applications.

Definition A.20. Let R ∈ {Qp, A}. We call a Hausdorff R-LB-type V =
lim−→n

Vn, R-regular if, for every bounded subset B of V , there exists an n such
that Vn contains B and B is bounded in Vn.

Remark A.21. Let R ∈ {Qp, A}. By [23, Proposition 1.1.10 and 1.1.11], a
Hausdorff semi-complete R-LB-type is R-regular.

Before we state our next result we need some notation. Via Mahler expan-
sions (cf. [44, III. Théorème 1.2.4]), the set of continuous functions from Zdp to
Qp can be viewed as the space of all series

∑
α∈Nd

cα

(
x

α

)

with cα ∈ Qp such that |cα|→ 0 as |α|→ 0. Here as usual(
x

α

)
:=
(
x1

α1

)
· · ·
(
xd
αd

)
and

|α|:=
d∑
i=1

αi

for x = (x1, . . . , xd) ∈ Zdp and multi-indices α = (α1, . . . , αd) ∈ Nd. We are
grateful for G. Dospinescu for supplying us with the idea for the following lemma.

Lemma A.22. If H is a compact locally Qp-analytic group then LA(H,A) is
A-regular.

Proof. By choosing a covering of H by a finite number of open subsets isomor-
phic (as locally Qp-analytic manifolds) to Zdp for some d ∈ N, we suppose that
H = Zdp, cf. [21, Corollary 8.34]. For each h ∈ N and f ∈ LA(H,A), write
f =

∑
n∈Nd an(f)

(
x
α

)
, an(f) ∈ A, the Mahler expansion of the continuous func-

tion f . By Amice’s theorem (cf. [44, III. Théorème 1.3.8] or [13, Théorème
I.4.7]), we have

LAh(Zdp,Qp) =
⊕̂
n∈Nd

Qp · kn,h
(
x

n

)
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where kn,h := bp−hn1c! . . . bp−hndc!, and where LAh(Zdp,Qp) denotes the space
of functions which are analytic on every ball of poly-radius (h, . . . , h). One also
obtains

LAh(Zdp, A) =
⊕̂
n∈Nd

A · kn,h
(
x

n

)
,

which shows in particular that each LAh(Zdp, A) is complete. By definition, we
also have

LA(Zdp, A) = lim−→
h∈N

LAh(Zdp, A).

We denote the norms on LAh(H,Qp) and LAh(H,A) by | · |h,Qp and | · |h,A,
respectively and vh,Qp

and vh,A their respective valuations.
Consider the Qp-bilinear application

B : A′Qp,b × LA(H,A)→ LA(H,Qp)
(l, f) 7→ l ◦ f.

Note that the Mahler coefficients of l ◦ f are then just given by an(l ◦ f) =
l(an(f)).

We show that the map B above is continuous. Note (as is easily seen by
looking at Mahler expansions) that restriction gives, for every h ∈ N, Qp-
bilinear forms

Bh : A′Qp,b × LAh(H,A)→ LAh(H,Qp)
(l, f) 7→ l ◦ f.

We claim that B is continuous if and only if Bh is continuous for every h ∈ N.
Indeed, by the definition of the locally convex final topology, the topology of
LA(H,Qp) is defined by the family of all lattices L ⊆ LA(H,Qp) such that
L∩LAh(H,Qp) is open (in LAh(H,Qp)) for all h ∈ N. So let L be such a lattice.
We want to show that L′ := B−1(L) is open (in A′Qp,b

× LA(H,A)). Note first
that L′ is a lattice: if a ∈ Zp and if (x, y) ∈ L′ then B(a(x, y)) = a2B(x, y) ∈ L
so that a(x, y) ∈ L′ and, if (x, y) ∈ A′Qp,b

× LA(H,A), then there exists an
a ∈ Q×p such that aB(x, y) ∈ L and, writing a = a′/pk, a′ ∈ Zp, we also
have that (a′)2B(x, y) ∈ L, whence a′(x, y) ∈ L′, which proves that L′ is a
lattice. So (again by definition of the locally convex final topology), L′ is open
if and only if L′ ∩ (A′Qp,b

× LAh(H,A)) is open for every h ∈ N. Noting
Bh,n : A′Qp,b

×LAh(H,A)→ LAn(H,Qp) for n ≥ h the composition of Bh with
the natural continuous inclusion LAh(H,Qp)→ LAn(H,Qp), we have that

L′ ∩ (A′Qp,b × LAh(H,A)) = B−1(L) ∩ (A′Qp,b × LAh(H,A))
= B−1(L ∩ ∪n≥hLAn(H,Qp)) ∩ (A′Qp,b × LAh(H,A))
= ∪n≥h[B−1(L ∩ LAn(H,Qp)) ∩ (A′Qp,b × LAh(H,A))]

= ∪n≥hB−1
h,n(L ∩ LAn(H,Qp)),
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which is open if each Bh (and hence Bh,n) is continuous. This proves the claim.
We finally prove that each map Bh is continuous. Indeed |Bh(l, f)|h,Qp =
|l◦f |h,Qp

≤ ||l|||f |h,A (where || · || is the norm on A′Qp,b
) and so B is continuous.

Let T ⊂ LA(H,A) be a bounded subset and consider

S := A′0 × T ⊂ A′Qp,b × LA(H,A)

where A′0 ⊂ A′Qp,b
is the unit ball. Then S is bounded and so is B(S), since B

is continuous. By [23, Proposition 1.1.11], LA(H,Qp) is Qp-regular and so for
some h ≥ 1, B(S) is contained in LAh(H,Qp) and there exists a constant C
such that

vh,Qp
(l ◦ f) = inf

n∈Nd
vp(l(an(f)))− vp(kn,h) ≥ C

for all l ∈ A′0. Lemma A.17 now implies that vA(an(f)) − vp(kn,h) ≥ C for all
n ∈ Nd. Now

vA(an(f))− vp(kn,h+1) = vA(an(f))− vp(kn,h) + vp(kn,h)− vp(kn,h+1)

≥ C + vp(kn,h)− vp(kn,h+1) |n|→+∞−−−−−−→ +∞.

This implies that f ∈ LAh+1(Zdp, A) for all f ∈ T . We now compute

vh+1,A(f) = inf
n∈Nd

vA(an(f))− vp(kn,h+1)

= inf
n∈Nd

vA(an(f))− vp(kn,f ) + vp(kn,h)− vp(kn,h+1)

≥ C

since vp(kn,h) − vp(kn,h+1) ≥ 0. This shows that T is contained and bounded
in LAh+1(Zdp, A). Thus LA(H,A) is A-regular.

Remark A.23. For an alternative proof of the fact that the Qp-bilinear map B
in the proof of Lemma A.22 is continuous, note that B is the composition of
the morphisms

B : A′Qp,b × LA(H,A) id×α−−−→ A′Qp,b × (A⊗̂Qp,πLA(H,Qp))
→ A′Qp,b⊗̂Qp,π(A⊗̂Qp,πLA(H,Qp))
= (A′Qp,b⊗̂Qp,πA)⊗̂Qp,πLA(H,Qp)
β−→ LA(H,Qp),

where α is the morphism of [23, Proposition 2.2.10] (cf. the discussion imme-
diately after loc.cit.) which is a continuous bijection. The last morphism β is
induced from the pairing of A and A′Qp,b

.
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A.3 Relative locally analytic representations
In this section we define the category Repla

A(H) and we study the structure
of a locally analytic representation over the relative distribution algebras, gen-
eralizing some fundamental work of Schneider and Teitelbaum to our relative
setting.

The following definition is similar to [33, Définition 3.2].

Definition A.24. An object M in Repla
A(H) is a barrelled, Hausdorff, locally

convex A-module equipped with a topological 73 A-linear action of H, such that,
for each m ∈ M , the orbit map h 7→ h ·m is an element in LA(H,M). Mor-
phisms are given by continuous A-linear H-maps.

Remark A.25 (locally analytic induced representation). Let G be a locally Qp-
analytic group, H a closed locally Qp-analytic subgroup and suppose that G/H
is compact. Let M be an object of Repla

A(H), which is Banach. Then

IndGH(M) :=
{
f ∈ LA(G,M) | ∀hi ∈ Hi : f(h1h2) = h−1

2 · f(h1)
}

identifies (as topological A-modules) with LA(G/H,M), cf. [27, Satz 4.3.1].
Moreover IndGH(M) (equipped with the natural action of G: (g · f)(x) :=
f(g−1x)) is an object of Repla

A(G), cf. Satz 4.1.5 in loc.cit.
To track the action of D(G) 74 on LA(G/H,M) induced by the above iso-

morphism, we need to explicit this isomorphism. Any choice of a section
G/H → G gives an isomorphism of locally Qp analytic manifolds G ∼= G/H×H.
This gives an isomorphism LA(G,M) ∼= LA(G/H × H,M) and the space
IndGH(M) ⊆ LA(G,M) is identified with the sub-module {f : f(g, h) =
h−1 · f(g, 1), g ∈ G/H, h ∈ H} of LA(G/H × H,M). On the other hand,
the composition 75

LA(G/H,M)→ LA(H,End(M))× LA(G/H,M)→ LA(G/H ×H,M)

f̃ 7→ (ρ−1, f̃) 7→ [(g, h) 7→ ρ(h)−1 · f̃(g)],

where we have noted ρ−1 : H → GL(M) the representation of H on M , induces
an isomorphism between LA(G/H,M) and the image of IndGH(M) in LA(G,M).

It will turn out that every complete object of Repla
A(H) carries a structure of

a D(H,A) 76-module. The following lemma is essentially [63, Proposition 1.3].

Lemma A.26. Let M be a locally convex Qp-module and let N be a locally
convex A-module. Then f̃(a⊗x) = af(x) defines a topological A-linear isomor-
phism

LQp,b(M,N) ∼−→ LA,b(M ⊗Qp,π A,N)

73. We say that the H-action on M is topological if H induces continuous endomorphisms
of M .
74. This is the distribution algebra with coefficients in Qp, cf. Definition A.29.
75. we refer the reader to the proof of [27, Satz 4.3.1].
76. cf. Definition A.29.
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Proof. For f ∈ LQp,b(M,N), the map f̃ is given by the composition of the
continuous map M ⊗Qp,π A → N ⊗Qp,π A induced by a ⊗ x 7→ a ⊗ f(x) and
the (continuous) map N ⊗Qp,π A → N induced by the A-module structure on
N , so it is well defined. The inverse of f 7→ f̃ is given by g 7→ g0, where
g0(x) = g(x⊗1). This shows that the map of the statement induces an A-linear
bijection.

The fact that it’s a topological isomorphism follows from [50, Corollary
17.5(iii)]: the map α : M → M ⊗Qp,π A defined by m 7→ m ⊗ 1 induces an
homeomorphism between M and it’s image, and so the image of any bounded
subset of M is bounded in M ⊗Qp,π A and, conversely, the inverse image (i.e
its intersection with M ⊆ M ⊗Qp,π A) of any bounded subset of M ⊗Qp,π A is
bounded in M . To show that f 7→ f̃ is continuous, it is enough to show that,
if B ⊆ M ⊗Qp,π A is bounded and if U ⊆ N is an open set 77, then the inverse
image of the set {f : M ⊗Qp,π A → N | f(B) ⊆ U} is open in LQp,b(M,N),
but this inverse image is nothing but 78 {f : M → N | f(α−1(B)) ⊆ U)}, which
is open since α−1(B) is bounded in M . Conversely, if B ⊆ M is bounded and
U ⊆ N is open, then the inverse image of {f : M → N | f(B) ⊆ U} by the
map g 7→ g0 is {g : M ⊗Qp,π A→ N | g(α(B)) ⊆ U}, which is open since α(B)
is bounded in M ⊗Qp,π A, and shows that the inverse map is continuous. This
completes the proof.

Corollary A.27. In the setting of Lemma A.26, if in addition N is Hausdorff
and complete, then

LQp,b(M,N) ∼−→ LA,b(M⊗̂Qp,πA,N)

Proof. This is an immediate consequence of Lemma A.26 above and the univer-
sal property of Hausdorff completion, cf. [50, Corollary 7.7].

Remark A.28. Since [50, Corollary 17.5(iii)] holds for projective as well as induc-
tive tensor product, both Lemma A.26 and Corollary A.27 hold with inductive
tensor product replacing the projective one.

Definition A.29. We define the space of distributions on H with values in A
as the strong dual of LA(H,A)′b (cf. Definition A.8)

D(H,A) := LA(H,A)′b.

Lemma A.30. Let R ∈ {Qp, A}. If V = lim−→n
Vn is R-regular (cf. Definition

A.20) then for any locally convex R-module, the natural map LR,b(V,W ) →
lim←−n LR,b(Vn,W ) is a topological isomorphism which is R-linear.

Proof. This is the same proof as [23, Proposition 1.1.22]. The crucial point in
loc.cit. is that a Hausdorff semi-complete R-LB-type is R-regular.

77. One can assume U is an A0-module where A0 is the subset of A whose norm is less
than 1. Indeed by choosing a presentation of A = Qp〈T1, T2, . . . , Tn〉/I, one can consider
U ′ =

∑
T i · U . One then repeats the argument of Remark A.5.

78. It is enough to suppose B = BM ⊗Qp A
0 where BM is a bounded lattice in M .
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Lemma A.31. Let H be a compact locally Qp-analytic group. We have an
isomorphism of locally convex A-modules

D(H,A) = D(H,Qp)⊗̂Qp,πA.

In particular, D(H,A) is an A-Fréchet space.
Proof. By [50, Proposition 20.9] we have

D(H,Qp)⊗̂Qp,πA = LQp,b(D(H,Qp)′Qp,b, A).

We conclude by observing that (we use the notation from the proof of Lemma
A.22)

LQp,b(D(H,Qp)′Qp,b, A) (i)= LQp,b(LA(H,Qp), A)
(ii)= lim←−

n

LQp,b(LAn(H,Qp), A)

(iii)= lim←−
n

LA,b(LAn(H,Qp)⊗̂Qp,πA,A)

(iv)= lim←−
n

LA,b(LAn(H,A), A)

(v)= LA,b(LA(H,A), A)
(vi)= D(H,A),

where (i) follows by reflexivity of LA(H,Qp) (cf. [53, Lemma 2.1 and Theorem
1.1]), (ii) follows from Lemma A.30, (iii) follows from Corollary A.27, (iv) is
an immediate consequence of the definition of LAn(H,A), (v) is a consequence
of Lemmas A.22 and A.30 and (vi) is by definition. The last assertion follows
since D(H,Qp) is Fréchet and A is Banach so their completed projective tensor
product is Fréchet. This completes the proof.

Remark A.32. For H a compact locally Qp-analytic group, the natural mor-
phism

α : LA(H,A)→ LA(H,Qp)⊗̂Qp,πA

is (cf. the discussion immediately after [23, Proposition 2.2.10]) a continuous
bijection. We do not know whether it is actually a topological isomorphism, cf.
Conjecture A.18. By [46, Theorem 2], this is the case if LA(H,A) is complete
(note that LAh(H,A) has a Schauder basis, by Amice’s theorem, so it has the
approximation property). We claim that α is a topological isomorphism if and
only if LA(H,A) is a reflexive A-module. Indeed, this follows from the following
equalities:

LA,b(D(H,A), A) = LA,b(D(H,Qp)⊗̂Qp,πA,A)
= LQp,b(D(H,Qp), A)
= LQp,b(D(H,Qp),Qp)⊗̂Qp,πA

= LA(H,Qp)⊗̂Qp,πA.
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The aim is now to obtain a version of Lemma A.31 without the assumption
that H is compact.

Lemma A.33. Let {Hi}i∈I be pairwise disjoint compact open subsets which
cover H. Then there is a (A-linear) topological isomorphism

D(H,A) =
⊕
i

D(Hi, A).

Moreover D(H,A) is complete and Hausdorff.

Proof. We have a topological isomorphism

LA(H,A) =
∏
i

LA(Hi, A).

The claim now follows from the fact that there is a topological isomorphism

(
∏
i

LA(Hi, A))′b =
⊕
i

LA(Hi, A)′b

To see this last fact, one repeats the same proof for [50, Proposition 9.11].
Finally D(H,A) is complete and Hausdorff follows from [50, Corollary 5.4 and
Lemma 7.8].

Lemma A.34. Let H be a locally Qp-analytic group. We have an isomorphism
of locally convex A-modules

D(H,A) = D(H,Qp)⊗̂Qp,ιA.

Proof. This is an immediate consequence of Lemmas A.31 and A.33. Let {Hi}i∈I
be pairwise disjoint compact open subsets which cover H.⊕

i

[
D(Hi,Qp)⊗Qp,ι A

]
D(H,Qp)⊗Qp,ι A

⊕
i

[
D(Hi,Qp)⊗̂Qp,ιA

]
D(H,Qp)⊗̂Qp,ιA.

∼

Now [23, Lemma 1.1.30] implies that the top horizontal arrow is a topological
isomorphism. By definition the right vertical arrow is a topological embedding
(since D(H,Qp) is Hausdorff, so is D(H,Qp)⊗Qp A, cf. [50, Corollary 17.5(i)])
that identifies its target with the completion of its source. We will show that
the same is true for the left vertical arrow which will imply that the bottom
horizontal arrow is a topological isomorphism, as required. Since the composite
of the top horizontal arrow and the right vertical arrow is a topological embed-
ding, the same is true for the left vertical arrow. It clearly has dense image and
the target (= D(H,A)) is complete. This completes the proof.
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Remark A.35. In the setting of Lemma A.34, [30, I.1.3 Proposition 6] 79 shows
that

D(H,A) = D(H,Qp)⊗̂Qp,πA

is a topological isomorphism.
The following is a relative version of the integration map constructed in [53,

Theorem 2.2].

Lemma A.36. Let H be a locally Qp-analytic group and let M be a complete
Hausdorff locally convex A-module. There is a unique A-linear map

I : LA(H,M)→ HomA,cont(D(H,A),M),

satisfying I(φ)(δh ⊗ 1) = φ(h) for all φ ∈ LA(H,M) and all h ∈ H. Here
δh ∈ D(H,Qp) such that δh(f) := f(h) for all f ∈ LA(H,Qp).

Moreover, if M is A-LB-type (cf. Definition A.13) then this map is a bijec-
tion.

Proof. By [53, Theorem 2.2] (cf. also the comment immediately after its proof),
one has a unique map

IQp
: LA(H,M)→ HomQp,cont(D(H,Qp),M),

satisfying IQp
(φ)(δh ⊗ 1) = φ(h), h ∈ H, and which is bijective if M is of

Qp-LB-type. Note that this map is clearly A-linear.
By Lemma A.33, one reduces to show the result for H compact. So assume

H is compact. By Corollary A.27 (where we forget the topologies), since M is
Hausdorff and complete, there is an A-linear bijection

r : HomQp,cont(D(H,Qp),M) ∼−→ HomA,cont(D(H,Qp)⊗̂Qp,πA,M).

Moreover, Lemma A.31 gives an isomorphism

s : HomA,cont(D(H,Qp)⊗̂Qp,πA,M) ∼−→ HomA,cont(D(H,A),M).

The composition of all these maps (s ◦ r ◦ IQp
) gives the desired map

I : LA(H,M)→ HomA,cont(D(H,A),M).

The result follows.

Before we state the main result of this section we need to equip D(H,A)
with a ring structure (in particular a convolution product). We show that the
convolution product on (D(H,Qp), ∗), cf. [53, §2], extends to D(H,A). Indeed
by Lemma A.34 we have an isomorphism of locally convex A-modules

D(H,A) = D(H,Qp)⊗̂Qp,ιA.

79. The proposition essentially states that direct sums commute with (completion) of pro-
jective tensor product.
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We define for h1, h2 ∈ H an A-bilinear, separately continuous map

∗A : (D(H,Qp)⊗Qp,ι A)× (D(H,Qp)⊗Qp,ι A)→ (D(H,Qp)⊗Qp,ι A)
(δh1 ⊗ 1)× (δh2 ⊗ 1) 7→ (δh1 ∗ δh2 ⊗ 1).

Since the Dirac distributions δh for h ∈ H are dense in D(H,Qp), cf. [53,
Lemma 3.1], ∗A is well defined. Note that ∗A is separately continuous since ∗
is separately continuous, cf. [53, Proposition 2.3]. It is clear that ∗A extends
uniquely to an A-bilinear, separately continuous map (which we denote by ∗,
abusing notation)

∗ : D(H,A)×D(H,A)→ D(H,A).

The following lemma summarizes the above discussion.

Lemma A.37. (D(H,A), ∗) is an associative A-algebra with δ1 ⊗ 1 (1 ∈ H is
the unit element) as the unit element. Futhermore the convolution ∗ is separately
continuous and A-bilinear.

Let Repla,LB
A (H) ⊆ Repla

A(H) be the full subcategory consisting of spaces
which are A-LB-type and complete. As a result we obtain the following corollary.

Corollary A.38. The category of Repla,LB
A (H) is isomorphic to the category of

complete, Hausdorff locally convex A-modules which are of A-LB-type equipped
with a separately continuous D(H,A)-action (more precisely the module struc-
ture morphism D(H,A)×M →M is A-bilinear and separately continuous) with
morphisms all continuous D(H,A)-linear maps.

Proof. This is an immediate consequence of Lemma A.36.

A.4 Locally analytic cohomology and Shapiro’s lemma
In this section we prove Shapiro’s Lemma for a relative version of the co-

homology theory developed by Kohlhaase in [43]. We should warn the reader
that Lazard’s definition of locally analytic cohomology of a locally Qp-analytic
group via analytic cochains, cf. [44, Chapitre V, §2.3] (or [59] for a modern
treatment), does not always coincide with the cohomology groups defined in
[43]. Futhermore the cohomology groups defined by Kohlhasse are finer than
that of Lazard, in the sense that they themeselves carry a locally convex topol-
ogy. In what follows however, we will ignore this extra structure. Let us first
explain the setup. Let H be a locally Qp-analytic group (for applications H will
be a closed locally Qp-analytic subgroup of GL2(Qp)). We will follow closely
the treatment in [43], albeit in a relative setting. In particular we are able to
reduce many of the arguments to the case considered in loc.cit. The key is
lemma A.34.
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Definition A.39. Let GH,A denote the category of complete Hausdorff locally
convex A-modules with the structure of a separately continuous A-linear D(H,A)-
module, taking as morphisms all continuous D(H,A)-linear maps. More pre-
cisely we demand that the module structure morphism

D(H,A)×M →M

is A-bilinear and separately continuous.

Remark A.40. Alternatively, one sees that GH,A can be also defined as the
category of complete Hausdorff locally convex Qp-modules with the structure
of a separately continuous D(H,A)-module, taking as morphisms all continuous
D(H,A)-linear maps.

As a consequence of Lemma A.37 and the fact that D(H,A) is complete
and Hausdorff (cf. Lemma A.33) the convolution product (D(H,A), ∗) induces
a unique continuous A-linear map 80

D(H,A)⊗̂A,ιD(H,A)→ D(H,A). (36)

We now endow GH,A (and LCSA) with the structure of an exact category.
A sequence in GH,A (or LCSA)

· · · →Mi−1
αi−1−−−→Mi

αi−→Mi+1
αi+1−−−→ · · ·

is called s-exact ifMi = Ki⊕Li (as topological A-modules) where Ki := ker(αi)
and αi induces an isomorphism (as topological A-modules) between Li and
Ki+1.
Remark A.41. A sequence in GH,A

0→M → N → P → 0

is s-exact iff it is split in the category of topological A-modules.

Definition A.42. An object P of GH,A is called s-projective if the functor
HomGH,A(P, ·) transforms all short s-exact sequences

0→M1 →M2 →M3 → 0

in GH,A into exact sequences of A-modules.

Lemma A.43. If M is any complete Hausdorff locally convex A-module, then

D(H,A)⊗̂A,ιM

is an object of GH,A.

80. The tensor product D(H,A)⊗̂A,ιD(H,A) deserves some explanation. First one forms
the abstract tensor product D(H,A) ⊗A D(H,A) and equips it with the injective tensor
product topology. This means that the topology is universal for separately continuous A-
bilinear maps β : V ×W → U where V,W and U are locally convex A-modules. Then one
takes the Hausdorff completion.
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Proof. Indeed D(H,A)⊗̂A,ιM , being Hausdorff and complete by definition, it
suffices to remark that by tensoring the identity map on M with (36) we obtain
a continuous A-linear map

D(H,A)⊗̂A,ι(D(H,A)⊗̂A,ιM) ∼= (D(H,A)⊗̂A,ιD(H,A))⊗̂A,ιM → D(H,A)⊗̂A,ιM.

We’ll call an object of the form D(H,A)⊗̂A,ιM (for M any complete Haus-
dorff locally convex A-module) in GH,A s-free. Notice that s-free does not imply
it is free as an A-module. As one expects, s-projective modules can be viewed
as direct summands of an s-free module.
Lemma A.44. An object P of GH,A is s-projective if and only if it is a direct
summand (in GH,A) of an s-free module.
Proof. First note that for any complete Hausdorff locally convex A-module M
and any object N of GH,A there is a natural continuous A-linear bijection

HomGH,A(D(H,A)⊗̂A,ιM,N)→ HomA,cont(M,N).

This is the same proof as the first paragraph of the proof of Lemma A.26 (with
A replaced by D(H,A)). The result now follows from [63, Proposition 1.4].

We will be interested in considering the cohomology of objects in GH,A and
so we need the notion of a resolution.
Definition A.45. IfM is an object of GH,A then by an s-projective s-resolution
of M we mean an s-exact sequence

· · · → X1
d1−→ X0

d0−→M

in GH,A in which all objects Xi are s-projective.
For an object M of GH,A let B−1(H,M) := M and for q ≥ 0 let

Bq(H,M) := D(H,A)⊗̂A,ιBq−1(H,M)

with its structure of an s-free module. For q ≥ 0 define

dq(δ0⊗· · ·⊗δq⊗m) :=
q−1∑
i=0

(−1)iδ0⊗. . . δiδi+1⊗· · ·⊗δq⊗m+(−1)qδ0⊗· · ·⊗δq−1⊗δqm.

Lemma A.46. For any object M of GH,A the sequence (Bq(H,M), dq)q≥0 is
an s-projective s-resolution of M in GH,A.
Proof. This is an immediate consequence of [43, Proposition 2.4]. The critical
point is that by Lemma A.34

Bq(H,M) = D(H,A)⊗̂A,ιBq−1(H,M) = D(H,Qp)⊗̂Qp,ιBq−1(H,M)

and so the Bq(H,M) defined above coincide with the ones defined in [43]. One
proves that the splitting is as A-modules and not just as Qp-vector spaces by
exhibiting a contracting homotopy consisting of continuous A-linear maps, cf.
[63, §2].
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Definition A.47. If M and N are objects of GH,A we define ExtqGH,A(M,N)
to be the qth cohomology group of the complex HomGH,A(B•(H,M), N) for any
q ≥ 0.

Remark A.48. Definition A.47 is independent of the s-projective s-resolution
one takes for M . To see this it suffices to show that if M is s-projective and N
any object of GH,A then ExtqGH,A(M,N) is trivial for all q > 0. The proof is the
same as [63, Proposition 2.2(b)].
Remark A.49. For any two objects M and N of GH,A, as usual Ext1

GH,A(M,N)
is the set of equivalence classes of s-exact sequences

0→ N → E →M → 0

with objects E of GH,A. The point is that for P an object of GH,A, there are
natural maps δ∗ : ExtqGH,A(P,M)→ Extq+1

GH,A
(P,N) such that

0→ HomGH,A(P,N)→ HomGH,A(P,E)→ HomGH,A(P,M) δ∗−→ Ext1
GH,A(P,N)→ · · ·

is exact. To construct a bijection between Ext1
GH,A(M,N) and the set of equiv-

alence classes of s-exact sequences S : 0→ N → E →M → 0, one takes P = M
and sends S to δ∗(idM ). One then checks that this gives a bijection.

As in the setting of [43], one can identify the categories of separately con-
tinuous left and right D(H,A)-modules. If M and N are objects of GH,A, M
a right module, we define M⊗̃D(H,A),ιN to be the quotient of M⊗̂A,ιN by the
image of the natural map

M⊗̂A,ιD(H,A)⊗̂A,ιN →M⊗̂A,ιN
m⊗ δ ⊗ n 7→ mδ ⊗ n−m⊗ δn,

where m ∈ M , n ∈ N and δ ∈ D(H,A). The induced topology is the quotient
topology.

Lemma A.50. For any complete Hausdorff locally convex A-module M and
any object N of GH,A there is a natural A-linear topological isomorphism

(M⊗̂A,ιD(H,A))⊗̃D(H,A),ιN ∼= M⊗̂A,ιN.

If the object P of GH,A is s-projective then the functor P ⊗̃D(H,A),ι(·) takes s-
exact sequences in GH,A to exact sequences of A-modules. If P is s-free this
functor takes s-exact sequences in GH,A to s-exact sequences in LCSA.

Proof. The first part is [63, Proposition 1.5]. The second part follows from that
fact that (−)⊗̂Qp,ιM preserves the s-exactness of sequences of locally convex
A-modules and Lemma A.44.

Let H1 be a locally Qp-analytic group and let H2 be a closed locally Qp-
analytic subgroup. For an object M of GH2,A we set
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indH1
H2

(M) := D(H1, A)⊗̃D(H2,A),ιM. (37)

For (37) to be a functor 81, we need the following lemma.

Lemma A.51. The (right) D(H2, A)-module D(H1, A) is s-free. In particular
there is an A-linear topological isomorphism

D(H1, A) ∼= D(H1/H2, A)⊗̂A,ιD(H2, A).

Proof. The proof of [43, Lemma 5.2] gives that

D(H1,Qp) ∼= D(H1/H2,Qp)⊗̂Qp,ιD(H2,Qp) (38)

We now compute

D(H1, A) (i)= D(H1,Qp)⊗̂Qp,ιA

(ii)= D(H1/H2,Qp)⊗̂Qp,ιD(H2,Qp)⊗̂Qp,ιA

(iii)= D(H1/H2,Qp)⊗̂Qp,ιD(H2, A)
= D(H1/H2,Qp)⊗̂Qp,ιA⊗̂A,ιD(H2, A)
(iv)= D(H1/H2, A)⊗̂A,ιD(H2, A)

where (i), (iii) and (iv) follows from Lemma A.34, and (ii) follows from (38).
This completes the proof.

We are now ready to prove the following lemma. The proof is similar to the
proof of [43, Proposition 5.1].

Lemma A.52. The functor

indH1
H2

: GH2,A → GH1,A

M 7→ indH1
H2

(M)

takes s-exact sequences to s-exact sequences and s-projective objects to s-projective
objects.

Proof. Lemmas A.50 and A.51 imply that there is a natural A-linear topological
isomorphism

indH1
H2

(M) = D(H1/H2, A)⊗̂A,ιM. (39)

Thus indH1
H2

(M) is Hausdorff and complete. Its structure of a separately continu-
ous D(H1, A)-module is the one induced from the s-free module D(H1, A)⊗̂A,ιM .
The final assertion follows from Lemmas A.50 and A.51, and the fact that
indH1

H2
(M) respects direct sums.

81. It is a priori not clear that indH1
H2

(M) is an object of GH1,A.
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Lemma A.53 (Relative Frobenius reciprocity). If M and N are objects of
GH2,A and GH1,A, respectively, then there is an A-linear bijection

HomGH1,A
(indH1

H2
(M), N)→ HomGH2,A

(M,N)

Proof. From the proof of Lemma A.44 we have an A-linear bijection

α : HomGH1,A
(D(H1, A)⊗̂A,ιM,N)→ HomA,cont(M,N)

g 7→ α(g)

where α(g)(m) := g(1 ⊗ m). It follows directly from the definitions that a
continuous D(H1, A)-linear map g from the left factors through indH1

H2
(M) (=

D(H1/H2, A)⊗̂A,ιM) if and only if α(g) is D(H2, A)-linear.

Proposition A.54 (Relative Shapiro’s Lemma). Let H1 be a locally Qp-analytic
group and let H2 be a closed locally Qp-analytic subgroup. If M and N are ob-
jects of GH2,A and GH1,A, respectively, then there are A-linear bijections

ExtqGH1,A
(indH1

H2
(M), N)→ ExtqGH2,A

(M,N)

for all q ≥ 0.

Proof. Choose an s-projective s-resolutionX• →M in GH2,A (e.g. (Bq(H,M), dq)q≥0).
By Lemma A.52, the complex indH1

H2
(X•) → indH1

H2
(M) is an s-projective s-

resolution of indH1
H2

(M). By Lemma A.53 there is an A-linear isomorphism of
complexes

HomGH1,A
(indH1

H2
(X•), N)→ HomGXH2 ,A

(X•, N).

The result now follows.

The next result relates locally analytic induction IndH1
H2

, cf. Remark A.25
and the functor indH1

H2
.

Lemma A.55. Let δ : H2 → A× be a locally analytic character and suppose
H1/H2 is compact and of dimension 1. Then IndH1

H2
δ and

(
IndH1

H2
δ
)′
b
are objects

of GH1,A (where
(

IndH1
H2
δ
)′
b
is equipped with H1-action: (h1 ·F )(f) := F (h−1

1 ·f)

for F ∈
(

IndH1
H2
δ
)′
b
, f ∈ IndH1

H2
δ and h1 ∈ H1) , and we have an isomorphism

(
IndH1

H2
δ
)′
b

∼= indH1
H2
δ−1

in the category GH1,A.

Proof. Indeed by Remark A.25, IndH1
H2
δ ∼= LA(H1/H2, A) as locally convex A-

modules. By Remark A.19 82 the latter is a complete locally convex A-module

82. It is important that H1/H2 is of dimension 1 here.
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of A-LB-type. Thus IndH1
H2
δ is an object of Repla,LB

A (H1). By Corollary A.38,
it follows that IndH1

H2
δ is an object of GH1,A as claimed.

Now as locally convex A-modules(
IndH1

H2
δ
)′
b

∼= LA(H1/H2, A)′b
(i)∼= D(H1/H2, A)
(ii)∼= indH1

H2
δ−1

where (i) is by definition and (ii) follows from (39). By [27, §4.3] we get a
continuous H1-equivariant A-linear composition 83

indH1
H2
δ−1 ↪→ D(H1, A) �

(
IndH1

H2
δ
)′
b
, (40)

which is an isomorphism.
Thus we get a continuous H1-equivariant A-linear topological isomorphism

α : indH1
H2
δ−1 ∼−→

(
IndH1

H2
δ
)′
b
.

Thus
(

IndH1
H2
δ
)′
b
is a locally analytic H1-representation in A-modules. By [53,

Proposition 3.2], it follows that
(

IndH1
H2
δ
)′
b
is an object of GH1,A. Since (40) is

H1-invariant, by continuity, α is D(H1, A)-linear. This completes the proof.
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