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Abstract

In order to study the rigid isotopy classes of nodal rational curves of degree 5 in RP2, we
associate to every real rational quintic curve with a marked real nodal point a trigonal curve
in the Hirzebruch surface Σ3 and the corresponding nodal real dessin on CP1/(z 7→ z̄).
The dessins are real versions, proposed by S. Orevkov [10], of Grothendieck’s dessins
d’enfants. The dessins are graphs embedded in a topological surface and endowed with a
certain additional structure. We study the combinatorial properties and decompositions
of dessins corresponding to real nodal trigonal curves C ⊂ Σ in real ruled surfaces Σ.
Uninodal dessins in any surface with non-empty boundary and nodal dessins in the disk
can be decomposed in blocks corresponding to cubic dessins in the disk D2, which produces
a classification of these dessins. The classification of dessins under consideration leads to
a rigid isotopy classification of real rational quintics in RP2.
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Résumé

Afin d’étudier les classes d’isotopie rigide des courbes rationnelles nodales de degré 5
dans RP2, nous associons à chaque quintique avec un point double réel marqué une
courbe trigonale dans la surface de Hirzebruch Σ3 et le dessin réel nodal correspon-
dant dans CP1/(z 7→ z̄). Les dessins sont des versions réelles, proposées par S. Orevkov
dans [10], des dessins d’enfants de Grothendieck. Un dessin est un graphe contenu dans
une surface topologique, muni d’une certaine structure supplémentaire. Dans cette thèse,
nous étudions les propriétés combinatoires et les décompositions des dessins correspon-
dants aux courbes trigonales nodales C ⊂ Σ dans les surfaces réglées réelles Σ. Les dessins
uninodaux sur une surface à bord quelconque et les dessins nodaux sur le disque peu-
vent être décomposés en blocs correspondant aux dessins cubiques sur le disque D2, ce
qui conduit à une classification de ces dessins. La classification des dessins considédérés
mène à une classification à isotopie rigide près des courbes rationnelles nodales de degré
5 dans RP2.
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Introduction

You do not have to be good.
You do not have to walk on your knees
for a hundred miles through the
desert, repenting.
You only have to let the soft animal of
your body love what it loves.

Mary Oliver, Wild Geese

The first part of Hilbert’s 16th problem [7] asks for a topological classification of all
possible pairs (RP2,RA), where RA is the real point set of a non-singular curve A of
fixed degree d in the real projective plane RP2. The fact that any homeomorphism of
RP2 is isotopic to the identity implies that two topological pairs (RP2,RA) and (RP2,RB)
are homeomorphic if and only if RA is isotopic to RB as subsets of RP2. The moduli
space RP

d(d+3)
2 of real homogeneous polynomials of degree d in three variables (up to

multiplication by a non-zero real number) has open strata formed by the non-singular
curves (defined by polynomials with non-zero gradient in C3 \ {0̄}) and a codimension
one subset formed by the singular curves; the latter subset is an algebraic hypersurface
called the discriminant. The discriminant divides RP

d(d+3)
2 into connected components,

called chambers. Two curves in the same chamber can be connected by a path that does
not cross the discriminant, and therefore every point of the path corresponds to a non-
singular curve. Such a path is called a rigid isotopy. A version of Hilbert’s 16th problem
asks for a description of the set of chambers of the moduli space RP

d(d+3)
2 , equivalently, for

a classification up to rigid isotopy of non-singular curves of degree d in RP2. Nowadays,
the rigid isotopy classification of non-singular curves in RP2 is known up to degree 6.
More generally, given a class of complex algebraic varieties, one can ask for a description
of open strata of the set of real varieties in this class. Classical examples are provided by
non-singular algebraic surfaces in RP3 and non-singular real algebraic curves in various
algebraic surfaces (for example, in RP1 × RP1). In the case of rational curves of degree
d in RP2, the open strata correspond to the rational curves having only nodal points. A
rigid isotopy classification of real rational curves of degree 4 in RP2 can be found in [6].

In the case of curves of degree 5 in RP2, the rigid isotopy classification of non-singular
curves and curves with one non-degenerate double point can be found in [9]. The purpose
of this thesis is a rigid isotopy classification of real nodal rational curves of degree 5 in
RP2. (The isotopy classification of nodal rational curves of degree 5 in RP2 was obtained
in [8].) In the case where the studied curves have at least one real nodal point, we use a
correspondence between real nodal rational curves of degree 5 with a marked real nodal
point and toiles endowed with some extra information.

The above correspondence makes use of trigonal curves on the Hirzebruch surface Σ3.
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In this text, a trigonal curve is a complex curve C lying in a ruled surface such that the
restriction to C of the projection provided by the ruling is a morphism of degree 3. We
consider an auxiliary morphism of j-invariant type in order to associate to the curve C a
dessin, a real version, proposed by S. Orevkov, of the dessins d’enfants introduced by A.
Grothendieck. A toile is a particular type of dessin corresponding the to the curves under
consideration.

In Chapter 1, we introduce the basic notions and discuss some properties of trigonal
curves and the associated dessins in the complex and real case. We explain how the study
of equivalence classes of dessins allows us to obtain information about the equivariant
deformation classes of real trigonal curves.

In Chapter 2, we state combinatorial properties of nodal dessins. These combinatorial
properties are valid in a more general setting than the one needed for the case of rational
curves of degree 5. We present a systematical treatment of dessins in two cases, namely,
dessins lying on an arbitrary compact surface with boundary and having only one nodal
point, and dessins lying on the disk D2 and having an arbitrary number of nodal points.

In Chapter 3, we deal with a relation between plane curves and trigonal curves on the
Hirzebruch surfaces and detail the case of plane cubic curves, which leads to the dessins
that serve as building blocks for our constructions.

Chapter 4 contains an application to the case of real pointed quartic curves and explicits
their rigid isotopy classification via dessins. Such classification was first obtained in [11].

Finally, in Chapter 5 we present a rigid isotopy classification of nodal rational curves
of degree 5 in RP2.



Chapter 1

Trigonal curves and dessins

In this chapter we introduce trigonal curves and dessins, which are the principal tool we
use in order to study the rigid isotopy classification of degree 5 real rational curves. The
content of this chapter is based on the book [2] and the article [4].

1.1 Ruled surfaces and trigonal curves

1.1.1 Basic definitions

A compact complex surface Σ is a (geometrically) ruled surface over a curve B if Σ is
endowed with a projection π : Σ −→ B of fiber CP1 as well as a special section E of
non-positive self-intersection.

Definition 1.1.1. A trigonal curve is a reduced curve C lying in a ruled surface Σ such
that C contains neither the exceptional section E nor a fiber as component, and the
restriction π|C : C −→ B is a degree 3 map.

A trigonal curve C ⊂ Σ is proper if it does not intersect the exceptional section E.
A singular fiber of a trigonal curve C ⊂ Σ is a fiber F of Σ intersecting C ∪ E

geometrically in less than 4 points.

A fiber F is singular if C passes through E ∩ F , or if C is tangent to F or if C has a
singular point belonging to F (those cases are not exclusive). A singular fiber F is proper
if C does not pass through E ∩ F . Then, C is proper if and only if all its singular fibers
are. We call a singular fiber F simple if either C is tangent to F or F contains a node, a
cusp or an inflection point. The set {b ∈ B | Fb is a singular fiber } of points in the base
having singular fibers is a discrete subset of the base B. We denote its complement by
B# = B#(C); it is a curve with punctures.

Certain trigonal curves can be seen as pullbacks of more simple ones using the following
construction. If ϕ : B′ −→ B is a non-constant morphism between two compact curves
and C ⊂ Σ is a trigonal curve, then Σ′ = Σ ×

B
B′ is a ruled surface over B′, E′ = ϕ∗E ⊂ Σ′

is the exceptional section of Σ′, C ′ = ϕ∗C is the trigonal curve induced of C by ϕ.

1.1.2 Deformations

We are interested in the study of trigonal curves up to deformation. In the real case,
we consider the curves up to equivariant deformation (with respect to the action of the
complex conjugation, cf. 1.1.7).

15



16 CHAPTER 1. TRIGONAL CURVES AND DESSINS

In the Kodaira-Spencer sense, a deformation of the quintuple (π : Σ −→ B,E,C)
refers to an analytic space X −→ S fibered over an marked open disk S 3 o endowed with
analytic subspaces B, E , C ⊂ X such that for every s ∈ S, the fiber Xs is diffeomorphic to
Σ and the intersections Bs := Xs∩B, Es := Xs∩E and Cs := Xs∩C are diffeomorphic to B,
E and C, respectively, and there exists a map πs : Xs −→ Bs making Xs a geometrically
ruled surface over Bs with exceptional section Es, such that the diagram in Figure 1.1
commutes and (πo : Xo −→ Bo, Eo, Co) = (π : Σ −→ B,E,C).

Es E

Cs Xs Σ C

Bs B

diff.

πs|Cs

diff.

πs π
π|C

diff.

Figure 1.1: Commuting diagram of isomorphisms and diffeomorphisms of the fibers of a
deformation.

Definition 1.1.2. An elementary deformation of a trigonal curve C ⊂ Σ −→ B is a
deformation of the quintuple (π : Σ −→ B,E,C) in the Kodaira-Spencer sense.

An elementary deformation X −→ S is equisingular if for every s ∈ S there exists
a neighborhood Us ⊂ S of s such that for every singular fiber F of C, there exists a
neighborhood Vπ(F ) ⊂ B of π(F ), where π(F ) is the only point with a singular fiber for
every t ∈ Us. An elementary deformation over D2 is a degeneration or perturbation if
the restriction to D2 \ {0} is equisingular and for a set of singular fibers Fi there exists a
neighborhood Vπ(Fi) ⊂ B where there are no points with a singular fiber for every t 6= 0.
In this case we say that Ct degenerates to C0 or C0 is perturbed to Ct, for t 6= 0.

1.1.3 Nagata transformations

One of our principal tools in this paper are the dessins, which we are going to associate
to proper trigonal curves. A trigonal curve C intersects the exceptional section E in a
finite number of points, since C does not contain E as component. We use the Nagata
transformations in order to construct a proper trigonal curve out of a non-proper one.

Definition 1.1.3. A Nagata transformation is a fiberwise birational transformation Σ −→
Σ′ consisting of blowing up a point p ∈ Σ and contracting the strict transform of the
fiber Fπ(p) containing p. The transformation is called positive if p ∈ E, and negative
otherwise.

The result of a positive Nagata transformation is a ruled surface Σ′, with an exceptional
divisor E′ such that −E′2 = −E2 − 1. The trigonal curves C1 and C2 over the same base
B are Nagata equivalent if there exists a sequence of Nagata transformations mapping one
curve to the other by strict transforms. Since all the points at the intersection C ∩E can
be resolved, every trigonal curve C is Nagata equivalent to a proper trigonal curve C ′ over
the same base, called a proper model of C.
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1.1.4 Weierstraß equations

For a trigonal curve, the Weierstraß equations are an algebraic tool which allows us to
study the behavior of the trigonal curve with respect to the zero section and the excep-
tional one. They give rise to an auxiliary morphism of j-invariant type, which plays an
intermediary role between trigonal curves and dessins. Let C ⊂ Σ −→ B be a proper
trigonal curve. Mapping a point b ∈ B of the base to the barycenter of the points in
C ∩ F 0

B (weighted according to their multiplicity) defines a section B −→ Z ⊂ Σ called
the zero section; it is disjoint from the exceptional section E.

The surface Σ can be seen as the projectivization of a rank 2 vector bundle, which
splits as a direct sum of two line bundles such that the zero section Z corresponds to the
projectivization of Y, one of the terms of this decomposition. In this context, the trigonal
curve C can be described by a Weierstraß equation, which in suitable affine charts has the
form

x3 + g2x+ g3 = 0, (1.1)
where g2, g3 are sections of Y2, Y3 respectively, and x is an affine coordinate such that
Z = {x = 0} and E = {x = ∞}. For this construction, we can identify Σ \ B with
the total space of Y and take x as a local trivialization of this bundle. Nonetheless, the
sections g2, g3 are globally defined. The line bundle Y is determined by C. The sections
g2, g3 are determined up to change of variable defined by

(g2, g3) −→ (s2g2, s
3g3), s ∈ H0(B,O∗B).

Hence, the singular fibers of the trigonal curve C correspond to the points where the
equation (1.1) has multiple root, i.e., the zeros of the discriminant section

∆ := −4g3
2 − 27g2

3 ∈ H0(B,OB(Y6)). (1.2)

Therefore, C being reduced is equivalent to ∆ being identically zero. A Nagata transfor-
mation over a point b ∈ B changes the line bundle Y to Y ⊗ OB(b) and the sections g2
and g3 to s2g2 and s3g3, where s ∈ H0(B,OB) is any holomorphic function having a zero
at b.
Definition 1.1.4. Let C be a non-singular trigonal curve with Weierstraß model deter-
mined by the sections g2 and g3 as in (1.1). The trigonal curve C is almost generic if every
singular fiber corresponds to a simple root of the determinant section ∆ = −4g3

2 − 27g2
3

which is not a root of g2 nor of g3. The trigonal curve C is generic if it is almost generic
and the sections g2 and g3 have only simple roots.

1.1.5 The j-invariant

The j-invariant describes the relative position of four points in the complex projective line
CP1. We describe some properties of the j-invariant in order to use them in the description
of the dessins.
Definition 1.1.5. Let z1, z2, z3, z4 ∈ CP1. The j-invariant of a set {z1, z2, z3, z4} is given
by

j(z1, z2, z3, z4) = 4(λ2 − λ+ 1)3

27λ2(λ− 1)2 , (1.3)

where λ is the cross-ratio of the quadruple (z1, z2, z3, z4) defined as

λ(z1, z2, z3, z4) = z1 − z3
z2 − z3

: z1 − z4
z2 − z4

.
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The cross-ratio depends on the order of the points while the j-invariant does not. Since
the cross-ratio λ is invariant under Möbius transformations, so is the j-invariant. When
two points zi, zj coincide, the cross-ratio λ equals either 0, 1 or ∞, and the j-invariant
equals ∞.

Let us consider a polynomial z3 + g2z + g3. We define the j-invariant j(z1, z2, z3)
of its roots z1, z2, z3 as j(z1, z2, z3,∞). If ∆ = −4g3

2 − 27g2
3 is the discriminant of the

polynomial, then

j(z1, z2, z3,∞) = −4g3
2

∆ .

A subset A of CP1 is real if A is invariant under the complex conjugation. We say
that A has a nontrivial symmetry if there is a nontrivial permutation of its elements which
extends to a linear map z 7−→ az + b, a ∈ C∗, b ∈ C.

Lemma 1.1.6 ([2]). The set {z1, z2, z3} of roots of the polynomial z3 + g2z + g3 has a
nontrivial symmetry if and only if its j-invariant equals 0 (for an order 3 symmetry) or 1
(for an order 2 symmetry).

Proposition 1.1.7 ([2]). Assume that j(z1, z2, z3) ∈ R. Then, the following holds

• The j-invariant j(z1, z2, z3) < 1 if and only if the points z1, z2, z3 form an isosceles
triangle. The special angle seen as a function of the j-invariant is a increasing
monotone function. This angle tends to 0 when j tends to −∞, equals π

3 at j = 0
and tends to π

2 when j approaches 1.

• The j-invariant j(z1, z2, z3) ≥ 1 if and only if the points z1, z2, z3 are collinear.The
ratio between the lengths of the smallest segment and the longest segment zlzk seen
as a function of the j-invariant is a decreasing monotone function. This ratio equals
1 when j equals 1, and 0 when j approaches ∞.

As a corollary, if the j-invariant of {z1, z2, z3} is not real, then the points form a triangle
having side lengths pairwise different. Therefore, in this case, the points z1, z2, z3 can be
ordered according to the decreasing order of side lengths of the opposite edges. E.g., for
{z1, z2, z3} = { i2 , 0, 1} the order is 0, i

2 and 1.

Proposition 1.1.8 ([2]). If j(z1, z2, z3) /∈ R, then the above order on the points z1, z2, z3
is clockwise if Im (j(z1, z2, z3)) > 0 and anti-clockwise if Im (j(z1, z2, z3)) < 0.

1.1.6 The j-invariant of a trigonal curve

Let C be a proper trigonal curve. We use the j-invariant defined for triples of complex
numbers in order to define a meromorphic map jC on the base curve B. The map jC
encodes the topology of the trigonal curve C. The map jC is called the j-invariant of the
curve C and provides a correspondence between trigonal curves and dessins.

Definition 1.1.9. For a proper trigonal curve C, we define its j-invariant jC as the
analytic continuation of the map

B# −→ C
b 7−→ j-invariant of C ∩ F 0

b ⊂ F 0
b
∼= C.

We call the trigonal curve C isotrivial if its j-invariant is constant.
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If a proper trigonal curve C is given by a Weierstraß equation of the form (1.1), then

jC = −4g3
2

∆ , where ∆ = −4g3
2 − 27g2

3. (1.4)

For a sufficiently generic trigonal curve (i.e., if g2 and g3 have no common zeros) jC is a
degree 6d map, where d = −E2. If C = ϕ∗C ′ is the pullback by a morphism ϕ : B −→ B′

of another trigonal curve, then we have jC = jC′ ◦ ϕ.
The surface Σ1 can be defined as the surface obtained by blowing up a point of the

complex projective plane. Choose affine coordinates (t̄, x̄) in CP2 such that the blown-up
point is (0,∞). The projection to the first coordinate (t̄, x̄)) 7−→ t̄ defines a ruling of Σ1
over CP1 with the exceptional section given by the exceptional divisor of the blow-up.

Definition 1.1.10. The universal cubic is the trigonal curve C ⊂ Σ1 given by the Weier-
straß equation

x̄3 − 3t̄(t̄− 1)x̄+ 2t̄(t̄− 1)2 = 0. (1.5)

The j-invariant of the universal curve is the identity map of CP1.

Theorem 1.1.11 ([2]). Up to Nagata equivalence, every non-isotrivial curve C is equiv-
alent to j∗CC, i.e., C is induced from the universal curve C by its j-invariant jC .

Theorem 1.1.12 ([2]). Let B be a compact curve and j : B −→ CP1 a non-constant
meromorphic map. Up to Nagata equivalence, there exists a unique trigonal curve C ⊂
Σ −→ B such that jC = j.

Following the proof of the theorem, jB −→ CP1 leads to a unique minimal proper
trigonal curve Cj , in the sense that any other trigonal curve with the same j-invariant can
be obtained by positive Nagata transformations from Cj .

An equisingular deformation Cs, s ∈ S, of C leads to an analytic deformation of the
couple (Bs, jCs).

Corollary 1.1.13 ([2]). Let (B, j) be a couple, where B is a compact curve and j : B −→
CP1 is a non-constant meromorphic map. Then, any deformation of (B, j) results in a
deformation of the minimal curve Cj ⊂ Σ −→ B associated to j.

The j-invariant of a generic trigonal curve C ⊂ Σ −→ B has degree deg(jC) = 6d,
where d = −E2. A positive Nagata transformation increases d by one while leaving jC
invariant. The j-invariant of a generic trigonal curve C has a ramification index equal to
3, 2 or 1 at every point b ∈ B such that jC(b) equals 0, 1 or ∞, respectively. We can
assume, up to perturbation, that every critical value of jC is simple. In this case we say
that jC has a generic branching behavior.

1.1.7 Real structures

We are mostly interested in real trigonal curves. A real structure on a complex variety X
is an anti-holomorphic involution c : X −→ X. We define a real variety as a couple (X, c),
where c is a real structure on a complex variety X. We denote by XR the fixed point set
of the involution c and we call XR the set of real points of c.

Theorem 1.1.14 (Smith-Thom inequality [5]). If (X, c) is a compact real variety, then

b∗(XR;Z/2Z) ≤ b∗(X;Z/2Z), (1.6)

where b∗ denotes the total Betti number with coefficients in Z/2Z.
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Theorem 1.1.15 (Smith congruence [5]). If (X, c) is a compact real variety, then

b∗(XR;Z/2Z) ≡ b∗(X;Z/2Z) mod 2. (1.7)

Definition 1.1.16. A real variety (X, c) is an (M − a)-variety if

b∗(X;Z/2Z)− b∗(XR;Z/2Z) = 2a.

We say that a real curve (X, c) is of type I if X̃ \ X̃R is disconnected, where X̃ is the
normalization of X.

1.1.8 Real trigonal curves

A geometrically ruled surface π : Σ −→ B is real if there exist real structures cΣ : Σ −→ Σ
and cB : B −→ B compatible with the projection π, i.e., such that π ◦ cΣ = cB ◦ π. We
assume the exceptional section is real in the sense that it is invariant by conjugation,
i.e., cΣ(E) = E. Put πR := π|ΣR : ΣR −→ BR. Since the exceptional section is real, the
fixed point set of every fiber is not empty, implying that the real structure on the fiber
is isomorphic to the standard complex conjugation on CP1. Hence all the fibers of πR
are isomorphic to RP1. Thus, the map πR establishes a bijection between the connected
components of the real part ΣR of the surface Σ and the connected components of the real
part BR of the curve B. Every connected component of ΣR is homeomorphic either to a
torus or to a Klein bottle.

If Σ = P(1⊕Y), with Y ∈ Pic(B), we put Yi := YR|Bi for every connected component
Bi of BR. Hence Σi := ΣR|Bi is orientable if and only if Yi is topologically trivial, i.e., its
first Stiefel-Whitney class w1(Yi) is zero.

Definition 1.1.17. A real trigonal curve C is a trigonal curve contained in a real ruled
surface (Σ, cΣ) −→ (B, cB) such that C is cΣ-invariant, i.e., cΣ(C) = C.

If a real trigonal curve is proper, then Y is real as well as its j-invariant, seen as a
morphism jC : (B, cB) −→ (CP1, z 7−→ z̄), where z 7−→ z̄ denotes the standard complex
conjugation on CP1. In addition, the sections g2 and g3 can be chosen real.

Let us consider the restriction π|CR : CR −→ BR. We put Ci := π|−1
CR

(Bi) for every
connected component Bi of BR. We say that Bi is hyperbolic if π|Ci : Ci −→ Bi has
generically a fiber with three elements. The trigonal curve C is hyperbolic if its real part
is non-empty and all the connected components of BR are hyperbolic.

Definition 1.1.18. Let C be a non-singular generic real trigonal curve. A connected
component of the set {b ∈ B | Card(π|−1

CR
(b)) ≥ 2} is an oval if it is not a hyperbolic

component and its preimage by π|CR is disconnected. Otherwise, the connected component
is called a zigzag.

1.2 Dessins

The dessins d’enfants were introduced by A. Grothendieck (cf. [13]) in order to study the
action of the absolute Galois group. We use a modified version of dessins d’enfants which
was proposed by S. Orevkov [10].
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1.2.1 Trichotomic graphs

Let S be a compact connected topological surface. A graph D on the surface S is a graph
embedded into the surface and considered as a subset D ⊂ S. We denote by Cut(D) the
cut of S along D, i.e., the disjoint union of the closure of connected components of S \D.

Definition 1.2.1. A trichotomic graph on a compact surface S is an embedded finite
directed graph D ⊂ S decorated with the following additional structures (referred to as
colorings of the edges and vertices of D, respectively):

• every edge of D is color solid, bold or dotted,

• every vertex of D is black (•), white (◦), cross (×) or monochrome (the vertices of
the first three types are called essential),

and satisfying the following conditions:

1. ∂S ⊂ D,

2. every essential vertex is incident to at least 2 edges,

3. every monochrome vertex is incident to at least 3 edges,

4. the orientations of the edges of D form an orientation of the boundary ∂ Cut(D)
which is compatible with an orientation on Cut(D),

5. all edges incident to a monochrome vertex are of the same color,

6. ×-vertices are incident to incoming dotted edges and outgoing solid edges,

7. •-vertices are incident to incoming solid edges and outgoing bold edges,

8. ◦-vertices are incident to incoming bold edges and outgoing dotted edges.

Let D ⊂ S a trichotomic graph. A region R is an element of of Cut(D). The boundary
∂R of R contains n = 3k essential vertices. A region with n vertices on its boundary is
called an n-gonal region. We denote by Dsolid, Dbold, Ddotted the monochrome parts of D,
i.e., the sets of vertices and edges of the specific color. On the set of vertices of a specific
color, we define the relation u � v if there is a monochrome path from u to v, i.e., a path
form entirely of edge of the same color. We call the graph D admissible if the relation �
is a partial order, equivalently if there are no directed monochrome cycles.

Definition 1.2.2. A trichotomic graph D is a dessin if

1. D is admissible;

2. every trigonal region of D is homeomorphic to a disk.

The orientation of the graph D is determined by the pattern of colors of the vertices
on the boundary of every region.
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1.2.2 Complex and real dessins

Let S be an orientable surface. Every orientation of S induces a chessboard coloring of
Cut(D), i.e., a function on Cut(D) determining if a region R endowed with the orientation
set by D coincides with the orientation of S.

Definition 1.2.3. A real trichotomic graph on a real compact surface (S, c) is a tri-
chotomic graph D on S which is invariant under the action of c. Explicitly, every vertex
v of D has as image c(v) a vertex of the same color; every edge e of D has as image c(e)
an edge of the same color.

Let D be a real trichotomic graph on (S, c). Put S := S/c as the quotient surface and
put D ⊂ S as the image of D by the quotient map S −→ S/c. The graph D is a well
defined graph on the surface S/c.

In the inverse sense, let S be a compact surface, which can be non-orientable or can
have non-empty boundary. Let D ⊂ S be a trichotomic graph on S. Consider its complex
double covering S̃ −→ S (cf. [1] for details), which has a real structure given by the deck
transformation, and put D̃ ⊂ S̃ the inverse image of D. The graph D̃ is a graph on S̃
invariant by the deck transformation. We use these constructions in order to identify real
trichotomic graphs on real surfaces with their images on the quotient surface.

Lemma 1.2.4 ([2]). Let D be a c-invariant trichotomic graph on a real surface (S̃, c).
Then, every region R of D is disjoint from its image c(R).

Proposition 1.2.5 ([2]). Let S be a compact surface. Given a trichotomic graph D ⊂ S,
then its oriented double covering D̃ ⊂ S̃ is a real trichotomic graph. Moreover, D̃ ⊂ S̃ is
a dessin if and only if so is D ⊂ S. Conversely, if (S, c) is a real compact surface and
D ⊂ S is a real trichotomic graph, then its image D in the quotient S := S −→ S/c is a
trichotomic graph. Moreover, D ⊂ S is a dessin if and only if so is D ⊂ S.

Definition 1.2.6. Let D be a dessin on a compact surface S. Let us denote by Ver(D)
the set of vertices of D. For a vertex v ∈ Ver(D), we define the index Ind(v) of v as half
of the number of incident edges of ṽ, where ṽ is a preimage of v by the double complex
cover of S as in Proposition 1.2.5.

A vertex v ∈ Ver(D) is singular if

• v is black and Ind(v) 6≡ 0 mod 3,

• or v is white and Ind(v) 6≡ 0 mod 2,

• or v has color × and Ind(v) ≥ 2.

We denote by Sing(D) the set of singular vertices of D. A dessin is non-singular if none
of its vertices is singular.

Definition 1.2.7. Let B be a complex curve and let j : B −→ CP1 a non-constant mero-
morphic function, in other words, a ramified covering of the complex projective line. The
dessin D := Dssn(j) associated to j is the graph given by the following construction:

• as a set, the dessin D coincides with j−1(RP1), where RP1 is the fixed point set of
the standard complex conjugation in CP1;

• black vertices (•) are the inverse images of 0;

• white vertices (◦) are the inverse images of 1;
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• vertices of color × are the inverse images of ∞;

• monochrome vertices are the critical points of j with critical value in CP1\{0, 1,∞};

• solid edges are the inverse images of the interval [∞, 0];

• bold edges are the inverse images of the interval [0, 1];

• dotted edges are the inverse images of the interval [1,∞];

• orientation on edges is induced from an orientation of RP1.

Lemma 1.2.8 ([2]). Let S be an oriented connected closed surface. Let j : S −→ CP1 a
ramified covering map. The trichotomic graph D = Dssn(j) ⊂ S is a dessin. Moreover,
if j is real with respect to an orientation-reversing involution c : S −→ S, then D is c-
invariant.

Let (S, c) be a compact real surface. If j : (S, c) −→ (CP1, z −→ z̄) is a real map, we
define Dssnc(j) := Dssn(j)/c ⊂ S/c.

Theorem 1.2.9 ([2]). Let S be an oriented connected closed surface (and let c : S −→ S
a orientation-reversing involution). A (real) trichotomic graph D ⊂ S is a (real) dessin if
and only if D = Dssn(j) for a (real) ramified covering j : S −→ CP1.

Moreover, j is unique up to homotopy in the class of (real) ramified coverings with
dessin D.

The last theorem together with the Riemann existence theorem provides the next
corollaries, for the complex and real settings.

Corollary 1.2.10 ([2]). Let D ⊂ S be a dessin on a compact close orientable surface S.
Then there exists a complex structure on S and a holomorphic map j : S −→ CP1 such
that Dssn(j) = D. Moreover, this structure is unique up to deformation of the complex
structure on S and the map j in the Kodaira-Spencer sense.

Corollary 1.2.11 ([2]). Let D ⊂ S be a dessin on a compact surface S. Then there exists
a complex structure on its double cover S̃ and a holomorphic map j : S̃ −→ CP1 such
that j is real with respect to the real structure c of S̃ and Dssnc(j) = D. Moreover, this
structure is unique up to equivariant deformation of the complex structure on S and the
map j in the Kodaira-Spencer sense.

1.2.3 Deformations of dessins

In this section we describe the notions of deformations which allow us to associate classes
of non-isotrivial trigonal curves and classes of dessins, up to deformations and equivalences
that we explicit.

Definition 1.2.12. A deformation of coverings is a homotopy S × [0, 1] −→ CP1 within
the class of (equivariant) ramified coverings. The deformation is simple if it preserves the
multiplicity of the inverse images of 0, 1, ∞ and of the other real critical values.

Any deformation is locally simple except for a finite number of values t ∈ I = [0, 1].

Proposition 1.2.13 ([2]). Let j0, j1 : S −→ CP1 be (c-equivariant) ramified coverings.
They can be connected by a simple (equivariant) deformation if and only their dessins
D(j0) and D(j1) are isotopic (respectively, Dc(j0) and Dc(j1)).
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Definition 1.2.14. A deformation jt : S −→ CP1 of ramified coverings is equisingular if
the union of the supports

⋃
t∈[0,1]

supp {(j∗t (0) mod 3) + (j∗t (1) mod 2) + j∗t (∞)}

considered as a subset of S × [0, 1] is an isotopy. Here ∗ denotes the divisorial pullback of
a map ϕ : S −→ S′ at a point s′ ∈ S′:

ϕ∗(s′) =
∑

s∈ϕ−1(s′)
rss,

where rs if the ramification index of ϕ at s ∈ S.

A dessin D1 ⊂ S is called a perturbation of a dessin D0 ⊂ S, and D0 is called a
degeneration of D1, if for every vertex v ∈ Ver(D0) there exists a small neighboring disk
Uv ⊂ S such that D0 ∩ Uv only has edges incident to v and D1 ∩ Uv contains essential
vertices of at most one color.

Theorem 1.2.15 ([2]). Let D0 ⊂ S be a dessin, and let D1 be an admissible perturbation.
Then there exists a map jt : S −→ CP1 such that

1. D0 = Dssn(j0) and D1 = Dssn(j1);

2. jt|S\⋃
v
Uv

= jt′ |S\⋃
v
Uv

for every t, t′;

3. the deformation restricted to S × (0, 1] is simple.

Corollary 1.2.16 ([2]). Let S be a complex compact curve, j : S −→ CP1 a non-constant
holomorphic map, and let Dssnc(j) = D0, D1, . . . , Dn be a chain of dessins in S such that
for i = 1, . . . , n either Di is a perturbation of Di−1, or Di is a degeneration of Di−1, or
Di is isotopic to Di−1. Then there exists a piecewise-analytic deformation jt : St −→ CP1,
t ∈ [0, 1], of j0 = j such that Dssn(j1) = Dn.

Corollary 1.2.17 ([2]). Let (S, c) be a real compact curve, j : (S, c) −→ (CP1, z 7−→ z̄)
be a real non-constant holomorphic map, and let Dssnc(j) = D0, D1, . . . , Dn be a chain of
real dessins in (S, c) such that for i = 1, . . . , n either Di is a equivariant perturbation of
Di−1, or Di is a equivariant degeneration of Di−1, or Di is equivariantly isotopic to Di−1.
Then there is a piecewise-analytic real deformation jt : (St, ct) −→ (CP1, ·̄), t ∈ [0, 1], of
j0 = j such that Dssnc(j1) = Dn.

Due to Theorem 1.2.15, the deformation jt given by Corollaries 1.2.16 and 1.2.17 is eq-
uisingular in the sense of Definition 1.2.14 if and only if all perturbations and degenerations
of the dessins on the chain D0, D1, . . . , Dn are equisingular.

1.3 Trigonal curves and their dessins

In this section we describe an equivalence between dessins.
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1.3.1 Correspondence theorems

Let C ⊂ Σ −→ B be a non-isotrivial proper trigonal curve. We associate to C the
dessin corresponding to its j-invariant Dssn(C) := Dssn(jC) ⊂ B. In the case when C
is a real trigonal curve we associate to C the real dessin corresponding to its j-invariant,
Dssnc(C) := Dssn(jC) ⊂ B/cB, where cB is the real structure of the base curve B.

So far, we have focused on one direction of the correspondences: we start with a
trigonal curve C, consider its j-invariant and construct the dessin associated to it. Now,
we study the opposite direction. Let us consider a dessin D on a topological orientable
closed surface S. By Corollary 1.2.10, there exist a complex structure B on S and a
holomorphic map jD : B −→ CP1 such that Dssn(jD) = D. By Theorem 1.1.12 and
Corollary 1.1.13 there exists a trigonal curve C having jD as j-invariant; such a curve is
unique up to deformation in the class of trigonal curves with fixed dessin. Moreover, due
to Corollary 1.2.16, any sequence of isotopies, perturbations and degenerations of dessins
gives rise to a piecewise-analytic deformation of trigonal curves, which is singular if and
only if all perturbations and degenerations are.

In the real framework, let (S, c) a compact close oriented topological surface endowed
with a orientation-reversing involution. Let D be a real dessin on (S, c). By Corol-
lary 1.2.11, there exists a real structure (B, cB) on (S, c) and a real map jD : (B, cB) −→
(CP1, z 7−→ z̄) such that Dssnc(jD) = D. By Theorem 1.1.12, Corollary 1.1.13 and
the remarks made in Section 1.1.8, there exists a real trigonal curve C having jD as j-
invariant; such a curve is unique up to equivariant deformation in the class of real trigonal
curves with fixed dessin. Furthermore, due to Corollary 1.2.17, any sequence of isotopies,
perturbations and degenerations of dessins gives rise to a piecewise-analytic equivariant
deformation of real trigonal curves, which is equisingular if and only if all perturbations
and degenerations are.

Definition 1.3.1. A dessin is reduced if

• for every v •-vertex one has Ind v ≤ 3,

• for every v ◦-vertex one has Ind v ≤ 2,

• every monochrome vertex is real and has index 2.

A reduced dessin is generic if all its •-vertices and ◦-vertices are non-singular and all its
×-vertices have index 1.

Any dessin admits an equisingular perturbation to a reduced dessin. The vertices with
excessive index (i.e., index greater than 3 for •-vertices or than 2 for ◦-vertices) can be
reduced by introducing new vertices of the same color.

In order to define an equivalence relation of dessins, we introduce elementary moves.
Consider two reduced dessins D, D′ ⊂ S such that they coincide outside a closed disk
V ⊂ S. If V does not intersect ∂S and the graphs D ∩ V and D′ ∩ V are as shown
in Figure 1.2(a), then we say that performing a monochrome modification on the edges
intersecting V produces D′ from D, or vice versa. This is the first type of elementary
moves. Otherwise, the boundary component inside V is shown in light gray. In this
setting, if the graphs D∩V and D′∩V are as shown in one of the subfigures in Figure 1.2,
we say that performing an elementary move of the corresponding type on D∩V produces
D′ from D, or vice versa.



26 CHAPTER 1. TRIGONAL CURVES AND DESSINS
Section 4.2 Trigonal curves via dessins 119

 !  !

(a) Monochrome modification (b) Creating/destroying a bridge

 !  !

(c) •-in/•-out (d) •-in/•-out

 !  !

(e) �-in/�-out (f) �-in/�-out

 !  !

(g) •-through (h) •-through

 !  !

(i) •-through (j) �-through

Figure 4.1. Elementary moves of dessins

Any dessin admits an equisingular perturbation to a reduced one. In the complex
case, this statement is obvious. In the real case, perturbations of a real •-vertex of
full index four to six and those of a real �-vertex of full index three to four are shown
in Figure 4.1(c)–(j). (In each case, up to isotopy, there are two perturbations, which
are both shown in the figures.) Vertices of larger full index are reduced to these cases
(0 < ind v 6 6 for •-vertices or 0 < ind v 6 4 for �-vertices) by introducing an
appropriate number of inner vertices of index three or two, respectively.

Definition 4.23. Two reduced dessins are equivalent if, after a homeomorphism of the
underlying surfaces (orientation preserving in the complex case) they are connected
by a sequence of isotopies and elementary moves shown in Figure 4.1.

Analyzing ‘events of codimension one’, one can see that, after a homeomorphism,
two reduced dessins can be connected by a sequence of isotopies and/or equisingular
perturbations and degenerations if and only if they are equivalent in the sense of the
above definition. In the complex case, the only move required is the monochrome
modification, Figure 4.1(a). For generic real dessins, the set of moves is restricted
to Figure 4.1(a)–(f). The remaining four moves, Figure 4.1(g)–(j), deal with singular
real curves; they do not appear in [60].

Figure 1.2: Elementary moves.

Definition 1.3.2. Two reduced dessins D, D′ ⊂ S are elementary equivalent if, after a
(preserving orientation, in the complex case) homeomorphism of the underlying surface S
they can be connected by a sequence of isotopies and elementary moves between dessins,
as described in Figure 1.2.

This definition is meant so that two reduced dessins are elementary equivalent if and
only if they can be connected up to homeomorphism by a sequence of isotopies, equisingular
perturbations and degenerations.

The following theorems establish the equivalences between the deformation classes of
trigonal curves we are interested in and elementary equivalence classes of certain dessins.
We use these links to obtain different classifications of curves via the combinatorial study
of dessins.

Theorem 1.3.3 ([2]). There is a one-to-one correspondence between the set of equisingular
deformation classes of non-isotrivial proper trigonal curves C ⊂ Σ −→ B with Ã type
singular fibers only and the set of elementary equivalence classes of reduced dessins D ⊂ B.

Theorem 1.3.4 ([2]). There is a one-to-one correspondence between the set of equivariant
equisingular deformation classes of non-isotrivial proper real trigonal curves C ⊂ Σ −→
(B, c) with Ã type singular fibers only and the set of elementary equivalence classes of
reduced real dessins D ⊂ B/c.

Theorem 1.3.5 ([2]). There is a one-to-one correspondence between the set of equivariant
equisingular deformation classes of almost generic real trigonal curves C ⊂ Σ −→ (B, c)
and the set of elementary equivalence classes of generic real dessins D ⊂ B/c.

This correspondences can be extended to trigonal curves with more general singular
fibers (see [2]).

Definition 1.3.6. Let C ⊂ Σ −→ B be a proper trigonal curve. We define the degree of
the curve C as deg(C) := −3E2 where E is the exceptional section of Σ. For a dessin D,
we define its degree as deg(D) = deg(C) where C is a minimal proper trigonal curve such
that Dssn(C) = D.
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Figure 1.3: Straightening/creating a zigzag.

1.3.2 Real generic curves

Let C be a generic real trigonal curve and let D := Dssnc(C) be a generic dessin. The real
part of D ⊂ S is the intersection D ∩ ∂S. For a specific color ∗ ∈ {solid,bold, dotted}, D∗
is the subgraph of the corresponding color and its adjacent vertices. The components of
D∗ ∩ ∂S are either components of ∂S, called monochrome components of D, or segments,
called maximal monochrome segments of D. We call these monochrome components or
segments even or odd according to the parity of the number of ◦-vertices they contain.

Moreover, we refer to the dotted monochrome components as hyperbolic components.
A dotted segment without ×-vertices of even index is referred to as an oval if it is even,
or as a zigzag if it is odd.

Definition 1.3.7. Let D ⊂ S be a real dessin. Let us assume there is a subset of S
in which D has a configuration of vertices and edges as in Figure 1.3. Replacing the
corresponding configuration with the alternative one defines another dessin D′ ⊂ S. We
say that D′ is obtained from D by straightening/creating a zigzag.

Two dessins D,D′ are weakly equivalent if there exists a finite sequence of dessins
D = D0, D1, . . . , Dn = D′ such that Di+1 is either elementary equivalent to Di, or Di+1
is obtained from Di by straightening/creating a zigzag.

Let us remark that if D′ is obtained from D by straightening/creating a zigzag and
D̃, D̃′ ⊂ S̃ are the liftings of D and D′ in S̃, the double complex of S, then D̃ and D̃′

are elementary equivalent as complex dessins. However, D and D′ are not elementary
equivalent, since the number of zigzags of a real dessin is an invariant on the equivalence
class of real dessins.

1.3.3 Type of a dessin

Let C ⊂ Σ −→ B be a real trigonal curve over a base curve of type 1. We define CIm
as the closure of the set π−1|C(BR) \ CR and let BIm = π(CIm ). By definition CIm is
invariant with respect to the real structure of C. Moreover, CIm = ∅ if and only if C is a
hyperbolic trigonal curve.

Lemma 1.3.8 ([4]). A trigonal curve is of type I if and only if the homology class [CIm] ∈
H1(C;Z/2Z) is zero.

In view of the last lemma, we can represent a trigonal curve of type I as the union of two
orientable surfaces C+ and C−, intersecting at their boundaries C+ ∩ C− = ∂C+ = ∂C−.
Both surfaces, C+ and C−, are invariant under the real structure of C. We define

m± : B −→ Z
b 7−→ Card(p|−1

C (b) ∩ C±)− χBIm(b),

where χBIm is the characteristic function of the set BIm. These maps are locally constant
overB#, and sinceB# is connected, the maps are actually constant. Moreover,m++m− =
3, so we choose the surfaces C± such that m+|B# ≡ 1 and m−|B# ≡ 2.
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We can label each region R ∈ Cut(D) where D = Dssn(C) according to the label on
C+. Given any point b ∈ R on the interior, the vertices of the triangle π|−1

C (b) ⊂ Fb are
labeled by 1, 2, 3, according to the increasing of the opposite side of the triangle. We label
the region R by the label of the point π|−1

C (b) ∩ C+.
We can also label the interior edges according to the adjacent regions in the following

way:

• every solid edge can be of type 1 (i.e., both adjacent regions are of type 1) or type 1
(i.e., one region of type 2 and one of type 3);

• every bold edge can be of type 3 or type 3;

• every dotted edge can be of type 1, 2 or 3.

We use the same rule for the real edges of D. Note that there are no real solid edges of
type 1 nor real bold edges of type 3 (otherwise the morphism C+ −→ B would have two
layers over the regions of D adjacent to the edge).

Theorem 1.3.9 ([4]). A generic non-hyperbolic curve C is of type I if and only if the
regions of D admit a labeling which satisfies the conditions described above.

As a consequence, we can assign to every non-singular vertex of a dessin associated to
a type I trigonal curve a label according to its incident edges.

• The interior ×-vertices are of type (1, 1).

• The interior •-vertices are of type (1, 3, 1, 3, 1, 3).

• The interior ◦-vertices can be of type (3, 3, 3, 3) or type (3, 1, 3, 2).

• The real ×-vertices are of type (2, 2) or (3, 3).

• The real •-vertices are of type (2, 3, 1, 1) or (3, 3, 1, 2).

• The real ◦-vertices can be of type (3, 3, 3) or (1, 3, 2) in case of dotted real incident
edges, or can be of type (1, 1, 1) or (2, 2, 2) in case of bold real incident edges.

Corollary 1.3.10 ([4]). Let D be a dessin associated to a type I trigonal curve. Then,
the real ×-vertices of D limiting an oval can be of type 3 (i.e., of type (3, 3)) and so all
the edges of the oval are of type 3, or they can be of type 2 (i.e., of type (2, 2)) and the
edges in between alternate on type 1 and 2.

Similarly, the real ×-vertices limiting a zigzag are of type 3 as well as the edges in
between. A hyperbolic component is of type 3, 2, 1 if all its edges are of type 3, 2, 1,
respectively, or of type 3̄ if the type of its edges alternates between 1 and 2.

Lemma 1.3.11 ([4]). Let D be a dessin associated to a type I trigonal curve. The odd
hyperbolic components of D are of type 3. The even hyperbolic components can be of type 3,
2, 1 or 3̄.

The even hyperbolic components of type 1 and 2 are the ones without essential vertices.

Definition 1.3.12 ([4]). A real dessin is unramified if all its ×-vertices are real.

Lemma 1.3.13 ([4]). Let D be an unramified dessin of type I. Then D does not have
solid nor dotted edges of type 1.



1.3. TRIGONAL CURVES AND THEIR DESSINS 29

Proof. Since solid or dotted edges must finish (after passing by monochrome vertices) in
a ×-vertex, which can not have type 1 since D is of type I and does not have solid edges
of type 1.

Lemma 1.3.14 ([4]). Let D be an unramified dessin of type I. Every •-vertex v ∈ Vert(D)
is real. Moreover, the incident edges of v are of type (3, 3, 1̄, 2). Its essential neighbor
vertices are either ◦ or ×-vertices.

Proof. If the dessin D has an interior •-vertex, it must have type (1, 3̄, 1, 3̄, 1, 3̄) having a
solid edge of type 1, contradicting the previous lemma. Moreover, if it has a •-vertex as
neighbor, after an elementary move of type •-in (up to destruction of bridges, cf 1.2) in
order to obtain an interior •-vertex.

In the following corollaries we consider D as an unramified dessin of type I.

Corollary 1.3.15 ([4]). The dessin D does not have interior bold edges of type 3̄ (i.e., all
the interior bold edges are of type 3).

Corollary 1.3.16 ([4]). Every real ◦-vertex with real bold edges is of type (2, 2, 2). All
the other ◦-vertex are of type 3 (i.e., either it is real of type (3, 3, 3) or interior of
type (3, 3, 3, 3)).

Corollary 1.3.17 ([4]). The dessin D does not have ovals of type 3 (i.e., every oval is of
type 2).

Lemma 1.3.18 ([4]). Let v be a ◦-vertex of type 2. Then v is real with •-vertices as
essential neighbors.

Proof. According to Corollary 1.3.16, the vertex v is real and its adjacent real edges
are bold. If one of those connects v to a ◦-vertex (possibly, with v itself), then this
segment has a monochrome vertex having an interior bold edge of type 3̄, contradicting
Corollary 1.3.15.
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Chapter 2

Nodal trigonal curves and their
dessins

Within the moduli space of trigonal curves of fixed degree, generic trigonal curves are
smooth and the discriminant (i.e., the set of singular trigonal curves, cf. [5]) has a strati-
fication which we can describe by means of dessins. Singular proper trigonal curves have
singular dessins and the singular points are represented by singular vertices. A generic
singular trigonal curve C has exactly one singular point, which is a non-degenerate double
point (node). Moreover, if C is a proper trigonal curve, then the double point on it is rep-
resented by a ×-vertex of index 2 on its dessin. In addition, if C has a real structure, the
double point is real and so is its corresponding vertex, leading to the cases where the ×-
vertex of index 2 has dotted real edges (representing the intersection of two real branches)
or has solid real edges (representing one isolated real point, which is the intersection of
two complex conjugated branches).

Definition 2.0.1. Let D ⊂ S be a dessin on a compact surface S. A nodal vertex (node)
of D is a ×-vertex of index 2. The dessin D is called nodal if all its singular vertices are
nodal vertices; it is called uninodal if it has exactly one singular vertex which is a node.
We call a toile a non-hyperbolic real nodal dessin on (CP1, z 7−→ z̄).

Since a real dessin on (CP1, z 7−→ z̄) descends to the quotient, we represent toiles on
the disk.

In a real dessin, there are two types of real nodal vertices, namely, vertices having
either real solid edges and interior dotted edges, or dotted real edges and interior solid
edges. We call isolated nodes of a dessin D thoses ×-vertices of index 2 corresponding to
the former case and non-isolated nodes those corresponding to the latter.

Definition 2.0.2. Let D ⊂ S be a real dessin. A bridge of D is an edge e contained in
a connected component of the boundary ∂S having more than two vertices, such that e
connects two monochrome vertices. The dessin D is called bridge-free if it has no bridges.
The dessin D is called peripheral if it has no inner vertices other than ×-vertices.

For non-singular dessins, combinatorial statements analogous to Lemma 2.0.3 and
Proposition 2.1.1 are proved in [3].

Lemma 2.0.3. A nodal dessin D is elementary equivalent to a bridge-free dessin D′

having the same number of inner essential vertices and real essential vertices.

Proof. Let D be a dessin on S. Let e be a bridge of D lying on a connected component
of ∂S. Let u and v be the endpoints of e. Since e is a bridge, there exists at least one
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⨉⨉

⨉⨉

Figure 2.1: Perturbations of a real ×-vertex of index 2.

real vertex w 6= u of D adjacent to v. If w is an essential vertex, destroying the bridge is
an admissible elementary move. Otherwise, w is monochrome of the same type as u and
v and the edge connecting v and w is another bridge e′ of D. The fact that every region
of the dessin contains on its boundary essential vertices implies that after destroying the
bridge e the regions of the new graph have an oriented boundary with essential vertices.
Therefore the resulting graph is a dessin and destroying that bridge is admissible. All
the elementary moves used to construct the elementary equivalent dessin D′ from D are
destructions of bridges. Since destroying bridges does not change the nature of essential
vertices, D and D′ have the same amount of inner essential vertices and real essential
vertices.

A real singular×-vertex v of index 2 in a dessin can be perturbed within the class of real
dessins on the same surface in two different ways. Locally, when v is isolated, the real part
of the corresponding real trigonal curve has an isolated point as connected component of
its real part, which can be perturbed to a topological circle or disappears, when v becomes
two real ×-vertices of index 1 or one pair of complex conjugated interior ×-vertices of index
1, respectively. When v is non-isolated, the real part of the corresponding real trigonal
curve has a double point, which can be perturbed to two real branches without ramification
or leaving a segment of the third branch being one-to-one with respect to the projection
π while being three-to-one after two vertical tangents (see Figure 2.1).

Definition 2.0.4. Given a dessin D, a subgraph Γ ⊂ D is a cut if it consists of a single
interior edge connecting two real monochrome vertices. An axe is an interior edge of a
dessin connecting a ×-vertex of index 2 and a real monochrome vertex.

Let us consider the image of an axe T under the perturbation of the ×-vertex v of
index 2 into ×-vertices of index 1. If v becomes a pair of interior conjugated vertices
having an interior solid edge e, the axe T becomes an interior edge, which together with e
form a cut of the new dessin. If v becomes two real ×, the image of T has a monochrome
vertex of the color of T which determines a cut.

Now, let us consider a dessin D lying on a surface S having a cut or an axe T . Assume
that T divides S and consider the connected components S1 and S2 of S \ T . Then, we
can define two dessins D1, D2, each lying on the compact surface Si ⊂ S, respectively for
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i = 1, 2, and determined by Di := (D ∩ Si) ∪ {T}. If S \ T is connected, we define the
surface S′ = (S \ T ) t T1 t T2/ϕ1, ϕ2, where ϕi : Ti −→ S is the inclusion of one copy Ti
of T into S, and the dessin D′ := (D \ T ) t T1 t T2/ϕ1, ϕ2.

By these means, a dessin having a cut or an axe determines either two other dessins of
smaller degree or a dessin lying on a surface with a smaller fundamental group. Moreover,
in the case of an axe, the resulting dessins have one singular vertex less. Considering the
inverse process, we call D the gluing of D1 and D2 along T or the gluing of D′ with itself
along T1 and T2.

Definition 2.0.5. Let C ⊂ Σ be a nodal proper trigonal curve with nodes n1, n2, . . . nl.
Consider a Weierstraß model of C determined by sections g2 and g3. We say that the
trigonal curve C is almost generic if every singular fiber different from the fiber at π(ni)
corresponds to a simple root of the determinant section ∆ = −4g3

2 − 27g2
3 which is not a

root of g2 nor of g3. The nodal trigonal curve C is generic if it is almost generic and the
sections g2 and g3 only have simple roots.

2.1 Uninodal dessins

Proposition 2.1.1. A non-hyperbolic uninodal dessin is elementary equivalent to a pe-
ripheral one.

Proof. We proceed by contradiction: let us assume that D is a non-hyperbolic uninodal
dessin, which is not elementary equivalent to a peripheral one. Let us choose a dessin D′
within the class of elementary equivalence of D having a minimal number of inner essential
vertices. By Corollary 2.0.3, we can assume that D′ is a bridge-free dessin.

We call an inner chain a chain of vertices v0, v1, . . . , vk within D′ such that every edge
[vi, vi+1], 0 ≤ i < k and every vertex vi, 0 ≤ i < k are inner. Let us assume that there
is an inner chain v0, v1, . . . , vk of minimal length starting at a vertex v0, which is either
white or black, arriving to a non-hyperbolic real component.

We pick the inner chain in a way that either the ending vertex vk is monochrome or
every other inner chain of minimal length from a black or white vertex to the boundary
ends in an essential vertex. This assumption and the fact that D′ is a bridge-free dessin
assure the monochrome modifications we make are admissible. We study the possible
configurations of the chosen inner chain in order to do elementary modifications decreasing
the number of inner essential vertices.

Case 0: vk is a monochrome vertex and vk−1 is either black or white. Thus, the number
of inner essential vertices is reduced after an elementary move of type •-out or ◦-out.

Case 1.1: vk is a black vertex and vk−1 is a ×-vertex. Then k ≥ 2 and vk−2 is white.
Up to symmetry, the configuration corresponds to Figure 2.2a. Hence, the creation of a
bold bridge brings us to Case 0.

Case 1.2.1: vk is black and vk−1 is white. We consider the region R such that its
boundary contains the edge [vk−1, vk] and the other inner edge of vk. After one mono-
chrome modification R can be reduced to a triangle. If the region R contains an inner
×-vertex (see Figure 2.2b), the creation of a bold bridge brings us to Case 0.

Case 1.2.2: vk is black and vk−1 is white, and the above-mentioned region R contains
the nodal vertex n. By the minimality condition of the chain, the vertex n is an elliptic
nodal vertex (since R is a triangle, and vk−1 is not connected to a monochrome vertex)
and the inner solid edge of vk connects it to a vertex u, at the boundary beside n. We look
at the solid real edge of vk, which connects vk with a vertex v, either an index 1 ×-vertex
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(a) (b)

(c) (d)

Figure 2.2

(since D′ is a uninodal dessin) or a monochrome vertex. When the vertex v is a ×-vertex,
there is a real dotted edge incident to v where the construction of a dotted bridge brings
us to Case 0.

When the vertex v is a monochrome vertex, let e be its inner solid edge. This edge
connects the boundary with either another monochrome vertex or with an inner ×-vertex.
If e is adjacent to another monochrome vertex w, since D′ is a uninodal bridge-free dessin,
the vertex w belongs to a solid segment ending in two real ×-vertices, each defining a real
dotted edge. Thus, creating a bridge with one of the inner dotted edge of vk−1 at the
real dotted edge in the same region brings us to Case 0. Otherwise, the edge e connects
v to an inner ×-vertex w. A monochrome modification defines an edge connecting w to
vk−1. Since D′ is a bridge-free dessin, v has two black neighbors. An elementary move of
type •-in at v, followed by an elementary move of type ◦-out at u, connects vk−1 to the
boundary at a monochrome vertex as in Case 0.

Case 2.1: vk is white and vk−1 is a×-vertex. Hence, k ≥ 2 and vk−2 is black. Therefore,
creating a bold bridge brings us to Case 0 (see Figure 2.2c).

Case 2.2: vk is white and vk−1 is black. We look at the neighboring vertices of vk.
If there is a ×-vertex of index 1, creating a solid bridge at the incident solid edge brings
us to Case 0 (see Figure 2.2d). Otherwise, let a be one of its monochrome neighbor such
that the region R containing the edges [vk, vk−1] and [vk, v], as in the left part of Figure
2.3a, does not contain the nodal vertex. Let w be the white neighboring vertex of a other
than vk. We replace the original chain by the chain v0, v1, . . . , vk−1, w. Since the real
component is non-hyperbolic, after a finite number of iterations, the vertex vk will have a
×-vertex of index 1 as neighbor.

Case 3: vk is monochrome and vk−1 is a ×-vertex. Then k ≥ 2 and vk−2 is either white
or black. We can perform a monochrome modification in order to connect vk−2 with one
of the real neighbors of vk and bring us to Case 1.2 (see Figure 2.3b) or to Case 2.2 (see
Figure 2.3c).

Case 4: vk is the nodal vertex. Let R be one of the regions containing the edge
[vk−1, vk]. Let e be the edge in the boundary of R, incident to vk−1 and different from
[vk−1, vk]. If vk−1 is black, the edge e is bold and connects vk−1 with a white vertex v. If v
is an inner white vertex, the creation of a dotted bridge, followed by an elementary move
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(a) (b)

(c)

Figure 2.3

of type ◦-out reduces the number of inner essential vertices (see Figure 2.4a). Otherwise,
v is a real white vertex. We consider instead the chain v0, v1, . . . , vk−1, v as in Case 2.

Finally, if vk−1 is a white vertex, the edge e must connect vk−1 to a black vertex v. If
v is an inner black vertex, the creation of a solid bridge, followed by an elementary move
of type •-out reduces the number of inner essential vertices (see Figure 2.4b). Otherwise,
v is a real black vertex. We consider instead the chain v0, v1, . . . , vk−1, v as in Case 1.

In the case when all black or white inner vertices have no inner chain to a non-
hyperbolic component, let us consider a black or white inner vertex v0, and let v0, v1, . . . , vk
be a minimal inner chain connecting v0 to a hyperbolic component. By the aforementioned
considerations, the vertex v0 must be black. In this setting, every hyperbolic component
is connected to a non-hyperbolic component through a chain C = {u0, u1, . . . , u} free of
inner black or white vertices. Up to monochrome modifications, the vertex v0 belongs to
a region whose boundary contains the inner chain C. Thus, the vertices v0 and u belong
to the same region R.

Case 5.1: the vertex u is monochrome. If it is solid or bold, the creation of a bridge
on the real solid edge incident to u in the region R with an inner solid edge incident to
v0 brings us to Case 0. If the vertex u is dotted, it has a real neighboring ×-vertex in the
region R determining a solid segment where the creation of a solid bridge with an inner
solid edge incident to v0 brings us to Case 0.

Case 5.2: the vertex u is nodal. Since the chain C has no inner black vertices, u has
real solid edges. Thus, the creation of a solid bridge on the real solid edge incident to u
in the region R with an inner solid edge incident to v0 brings us to Case 0.

Case 5.3: the vertex u is white or black. If the vertex u is white, it has real bold
edges. Thus, the creation of a bold bridge on the real bold edge incident to u in the region
R with an inner bold edge incident to v0 brings us to Case 0. Otherwise, the vertex u is
black. If in the region R a bold real edge is incident to u, the creation of a bold bridge
with an inner bold edge incident to v0 brings us to Case 0. Otherwise, a solid monochrome
modification between the inner solid edges incident to u and v0 in the region R brings us
to a configuration where the creation of a bold bridge on the real bold edge incident to u
with an inner bold edge incident to v0 brings us to Case 0.

Proposition 2.1.2. A hyperbolic uninodal dessin is elementary equivalent to a dessin
without inner white vertices.
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Proof. By Corollary 2.0.3, we can suppose that the dessin is bridge-free. Let v0, . . . , vk be
a minimal length chain from an inner white vertex v0 to a real vertex vk. The vertex v0 is
the only white inner vertex in the chain. Since every inner black or ×-vertex is connected
to a white vertex, the length k is at most three.

Since the dessin is hyperbolic, if k = 1, then vk is a monochrome vertex. An elementary
move of type ◦-out reduces the number of inner white vertices.

If k = 2, then v1 is black and v2 is white or a nodal vertex. In the case when v2 is
white, we consider the solid edge e incident to v1 between the edges [v0, v1] and [v1, v2].

Let v be the ×-vertex of the edge e. If v is an inner ×-vertex, a monochrome modifi-
cation and the creation of a dotted bridge followed by an elementary move of type ◦-out
reduces the number of inner white vertices (see Figure 2.5a). Otherwise, the vertex v is a
nodal vertex and the creation of a dotted bridge followed by an elementary move of type
◦-out reduces the number of inner white vertices (see Figure 2.4a). When the vertex v2 is
nodal, we look at the white vertices connected to v1. If the black vertex v1 is connected
to a real white vertex v, we consider the chain v0, v1, v instead.

If k = 3, the colors of the vertices v1, v2, v3 are either ×, black and white, or black, ×
and monochrome, respectively. Due to the length minimality of the chain, in the former
case every white vertex connected to v2 is real, and the number of inner white vertices
can be reduced by the creation of a dotted bridge followed by an elementary move of type
◦-out (see Figure 2.5b); in the latter case every white vertex connected to v1 is inner,
thus any of the white vertices connected to v1 within the region containing the edge v2, v3
becomes real after the creation of a dotted bridge and an elementary move of type ◦-out
(see Figure 2.5c), reducing the number of inner white vertices.

(a) (b)

(c)

Figure 2.5
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Proposition 2.1.3. A non-hyperbolic uninodal real dessin D on a surface S of degree
higher than 3 is weakly equivalent either to the gluing of dessins of smaller degree, or to
the gluing of two real edges of a dessin D′. In both cases, the gluing corresponds to either
a dotted cut or an axe.

Proof. Let D1 be a dessin within the weak equivalence class of D, maximal with respect
to the number of zigzags (equivalently, minimal with respect to the number of inner ×-
vertices). The dessin D1 is non-hyperbolic; therefore, by Proposition 2.1.1, the dessin D1
is elementary equivalent to a peripheral dessin D0, which we can assume bridge-free, by
Corollary 2.0.3.

A dotted cut is an inner dotted edge c connecting two monochrome vertices. If the
dessin D0 has a cut or an axe c, then cutting through the edge c either defines two dessins
D1 and D2 (in the case when S \ c is disconnected), or it defines one dessin D′ on a
surface S′ (then D0 is the image by the gluing of two different edges in S′). Let us assume
D0 has no dotted cut nor an axe. Let T be the nodal vertex of D0, let e be the inner edge
incident to T and let S be the monochrome segment containing T . The edge e connects
T with a real vertex v, which is either black (if e is solid) or white (if e is dotted).

Case 1: the edge e is dotted and the vertex v is white. Let us consider one region R
adjacent to e. In the case when the edge e divides the surface S, let us assume that R is
on the connected component with a maximal number of black vertices. Let u be the real
neighbor vertex of v in R.

Case 1.1: the vertex u is monochrome. Let us assume that u has a real white neighbor
vertex v′ different than v. The vertex v′ has an inner dotted edge e′. If the edge e′
connects v′ with a monochrome vertex w, an elementary move of type ◦-in at u followed
by an elementary move of type ◦-out at w produces a dotted axe. Otherwise, the edge e
connects v′ with an inner ×-vertex w.

If the vertex u defines a bold cut, since the dessin is bridge-free, an elementary move
of type ◦-in at u followed by an elementary move of type ◦-out along the cut brings us
to a configuration where, up to monochrome modifications, the vertex w can be set up in
order to create a zigzag, contradicting the maximality of the number of zigzags of D0.

Otherwise, the vertex u is connected to a real black vertex w′. If the vertex w′ has a
real neighbor ×-vertex w′′, we can create a dotted axe, either by creating a dotted bridge
with the edge e if w′′ belongs to R or by creating a dotted bridge with the edge e′ beside
w′′ and proceeding as v′ is connected to a monochrome vertex, if the vertex e′ is contained
on the region containing w′′. If the vertex w′ is neighbor to a monochrome vertex w′′, an
elementary move of type •-in at w′′ followed by an elementary move of type •-out at u
bring us to a setting around w where we can create a zigzag.

If the vertex w′ is connected to the nodal vertex T , up to a solid monochrome mod-
ification, the vertices w and w′ are connected. In this case, an elementary move of type
◦-in, followed by the creation of a bold bridge beside v′ and an elementary move of type
◦-out bring us to a setting around w where we can create a zigzag.

One special case is when v belongs to a monochrome boundary component, having a
bold monochrome vertex u with inner edge e′. If the vertex u is connected by e′ to a black
vertex w neighbor to a real ×-vertex determining a dotted segment where the creation
of a bridge with e produces an axe. If the vertex u is connected by e′ to a monochrome
vertex w or to a black vertex neighbor to a solid monochrome vertex w′, then an elementary
of type •-in at w or w′ followed by an elementary move of type •-out at u brings us to
the configuration where v has to black real neighbors u1, u2, they three being the only
essential vertices of that connected component of the boundary.
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If one of the black vertices u1 or u2 is connected to an inner ×-vertex w, a dotted
monochrome modification connects w with v and the creation of a bold bridge brings us
to a setting around w where we can create a zigzag.

If one of the black vertices u1 or u2 is connected to a solid monochrome vertex w
not in the segment S, its real neighbor on the region R is a ×-vertex since the dessin is
bridge-free, determining a dotted segment where the creation of a bridge with e produces
an axe.

In the remaining case, both black vertices u1 and u2 are connected to solid monochrome
vertices w1 and w2, respectively, neighbors of the nodal vertex T . Since the dessin is
bridge-free, each wi (i = 1, 2) is neighbor to a non-singular ×-vertex w′i, respectively. If
a vertex ui (i = 1, 2) is connected to a bold monochrome vertex, an elementary move of
type ◦-in at it followed by the creation of a dotted bridge beside w′i (if needed) and an
elementary move of type •-out set the vertex ui connecting to a white vertex w′′i neighbor
to w′i, respectively. If a vertex ui (i = 1, 2) is connected to a white vertex and the vertex
w′i is connected to a dotted monochrome vertex, the creation of a dotted bridge after a
bold monochrome modification produces a cut. In any case, up to a bold monochrome
modification, we can assume each vertex ui connected to a white vertex w′′i neighbor to w′i,
respectively.

Let u′ be the solid monochrome vertex neighbor to u1 and u2. If the vertex u′ is
connected to an inner ×-vertex, then the creation of dotted bridges (if needed) at the
dotted segments determined by w′′i produces a cut. Otherwise, the vertex u′ determined
a solid cut, with monochrome vertex u′′ having as neighbor ×-vertices w′′′i . If one of the
×-vertices w′′′1 or w′′′2 is neighbor to a monochrome vertex, the creation of a dotted bridge
beside w′′i produces a cut. Otherwise, each w′′′i is neighbor to a white vertex vi. It can
happen that vi = w′′i for one i = 1, 2 but not for both since the degree is greater than
3. Let i1 be an index for which vi1 6= w′′i1 and let i0 ∈ {1, 2} \ {i1}. If the vertex vi0 is
neighbor to a dotted monochrome vertex, the creation of a bridge beside w′′i0 produces
a cut. Otherwise, vi0 is neighbor to a ×-vertex determining a zigzag. We do a bold
monochrome modification so ui0 is connected to vi0 . Then, an elementary move of type
•-in at u′ followed by an elementary move of type •-out through the solid cut and the
creation of a bridge bring us to a setting around vi0 where we destroy the zigzag and the
remaining bridge. The resulting configuration has an inner ×-vertex having a dotted edge.
The creation of a dotted bridge beside vi1 followed by the creation of a bridge beside w′′i1
produces a cut.

Otherwise, the vertex u is connected by e′ to a black vertex w neighbor of T . In
this setting, we look at the inner solid edge f of w. If the edge f connects w with a
monochrome vertex w′, which has a ×-vertex w′′ neighbor in the region determined by e
and f since the dessin is bridge-free, then the creation of a bridge with e on the dotted
segment determined by w′′ produces an axe. If the edge f connects w with an inner ×-
vertex w′, we look at the real neighbor vertex w′′ of w. If the vertex w′′ is white, up to
a monochrome modification it is connected to w′ and the creation of a bold bridge bring
us to a setting around w′ where we can create a zigzag. If the vertex w′′ is monochrome,
then an elementary move of type •-in at w′′, followed by an elementary move of type •-out
and a dotted monochrome modification to connect v with w′ bring us to a setting around
w′ where we can create a zigzag.

Case 1.2: the vertex u is black. Let f to be the inner solid edge of u and let w to be
the vertex connected to u by f . If the vertex w is monochrome and neighbor to an index
1 ×-vertex on the region R, it determines a dotted segment in which the creation of a
bridge with e produces an axe. If the vertex w is monochrome and neighbor to the nodal
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vertex T , it has a real neighbor ×-vertex w′. Then, we ask for the real neighbor vertex w′′
of u. If the vertex w′′ is monochrome, an elementary move of type •-in at w′′ followed by
an elementary move of type •-out at w and the destruction of a possible bridge, repeated
a finite number of times, bring us to Case 1.1 or a considered case.

If the vertices w′ and w′′ are index 1 ×-vertices, we consider the bold inner edge f ′
of u. If the edge f ′ connects u to a monochrome vertex within a monochrome component
with on essential vertex u′, then the creation dotted bridges with the inner edge of u
beside w′ and w′′ produces a dotted cut. It can not happen that the vertices w′ and w′′
are real neighbors of the same dotted monochrome vertex since the degree of the dessin
is greater than 3. If the edge f ′ connects u to a monochrome vertex w′′′ having two real
neighbors, then an elementary move of type ◦-in at w′′′ followed by the creation of a dotted
bridge beside w′, an elementary move of type ◦-out and the creation of a bridge beside w′′
produce a dotted cut.

If the edge f ′ connects u to a white vertex u′, then the vertex u′ cannot be a real
neighbor of w′ and w′′ since the degree is greater than 3. If the vertex w′′ has a real neighbor
monochrome vertex, then the creation of a dotted bridge beside u′ produces a dotted cut.
Otherwise we can assume the vertex u′ is a real neighbor of w′′, up to a monochrome
modification. If one of the vertices u′ and w′ has a real neighbor monochrome vertex, then
the creation of a dotted bridge produces a dotted cut. If in the region determined by the
edges f and f ′ there is a dotted inner edge, up to the creation of bridges beside the vertices
u′ and w′ there exists a dotted cut. If the vertex u′ has a real neighbor ×-vertex connected
to a solid cut, an elementary move of type •-in followed by an elementary move of type
•-out bring us to the case where the vertex u′ has a real neighbor ×-vertex connected to a
real black vertex b. Constructing a solid bridge with the edge f beside the vertex b results
in a solid cut and allows us to destroy the zigzag determined by u′. An elementary move
of type •-in followed by an elementary move of type •-out along the cut, elementary moves
of type ◦-in and ◦-out and the creation of a zigzag bring us to a configuration where we
can restart the algorithm. Since the degree is greater than 3 and the dotted edge of the
nodal vertex T is dividing, we do not obtain a cyclic argument.

If the vertex w′ is equal to the nodal vertex, then the creation of a dotted bridge with
the edge e beside the vertex u′ results in the creation of a dotted axe.

If the vertex w′′ is equal to the nodal vertex, we look at the inner bold edge f ′ of u.
If the edge f ′ connects the vertex u to a white vertex belonging to a dotted segment
where the creation of a dotted bridge with the edge e creates an axe. If the edge f ′ has a
monochrome vertex, then there is a white vertex b in the region determined by the edges
f and f ′. If the inner dotted edge of the vertex b connects it to a monochrome vertex,
then we can create an axe by constructing a bridge with the edge e by either eluding
the monochrome boundary component containing b or by performing elementary moves
of type ◦-in and ◦-out on the dotted segment. If the inner dotted edge of the vertex b
connects it to a ×-vertex vertex, monochrome modifications to join it to the vertices u
and v and the creation of a bold bridge allow us to create a zigzag, which implies that the
dessin D0 has not a maximal number of zigzags.

Case 2: the edge e is solid and the vertex v is black.

Case 2.1: the vertex v has a real bold edge connecting to a white vertex u, having an
inner dotted edge f . The edge f cannot connect u to an inner ×-vertex, since a monochro-
matic modification would allows us to create a zigzag. Since the dessin is peripheral, the
edge f connects u to a monochrome vertex w. If the vertex w is not a real neighbor of
the nodal vertex T , the creation of a bridge with the edge f beside T produces a dotted
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cut. Otherwise, the vertex w is a real neighbor of the vertex T . The vertex u has a real
neighbor vertex v′. If the vertex v′ is black, its inner solid edge e′ must be incident to a
monochrome vertex neighbor to two real ×-vertices w′ and w′′. Let us assume the vertex
w′ belongs to the region R′ containing the edges f and e′. Since the dessin is uninodal,
the ×-vertex w′ determines a dotted segment, at which the creation of a bridge produces
a dotted cut unless the vertices w and w′ are connected.

In the case where the vertices w and w′ are real neighbors, let f ′ be the inner bold
edge incident to v′, connecting it to a real vertex u′. Let us assume the vertex u′ is white.
If the region determined by the edges e′ and f ′ contains an inner dotted edge, up to the
creation of bridges beside the vertices w′′ and u′ we can obtain a dotted cut. Otherwise,
up to a monochrome modification the region R′ is triangular. Let w′′′ be the real neighbor
vertex of v′. If the vertex w′′′ is a ×-vertex followed by a dotted monochrome vertex, the
creation of a bridge beside the vertex u′ produces a dotted cut.

It can occur the vertex u′ is neighbor to the vertices w′′ and w′′′. We will analyze this
configuration as Case 2.3.

If the case when the vertex w′′′ is a ×-vertex followed by a white vertex, we can assume
that w′′′ and u′ are connected. If the region determined by the edges e′ and f ′ contains
an inner dotted edge, up to the creation of bridges beside the vertices w′′ and u′ we can
obtain a dotted cut. Otherwise, we look at the sequence of vertices on the boundary after
w′′′ and u′. If the vertex u′ is followed by a ×-vertex and a solid monochrome vertex, it
must be followed by a ×-vertex b since the dessin is bridge-free and uninodal. Up to a
monochrome modification, we can construct a bridge with the edge f beside the vertex b
producing a cut. If the vertex u is followed by a ×-vertex and a black vertex b, having an
inner solid edge connecting to a monochrome vertex m. The destruction of the zigzag at u,
elementary moves of type •-in and •-out, and the construction of a bridge bring us to a
configuration where the creation of a bridge beside m with the edge e produces an axe. If
the vertex b is connected by its inner solid edge to an inner ×-vertex m, after monochrome
modifications we can construct bridges with the inner dotted edge of m beside w′′′ and
the real white neighbor of w′′′ in order to obtain a cut.

In the case when the vertex w′′′ is monochrome, we perform elementary moves of type
•-in at w′′′ and •-out along e′, destroying the possible residual bridge. This corresponds
to a configuration already considered.

We proceed in the same way if the edge f ′ connects the vertex v′ to a monochrome
vertex m and v′ has a monochrome solid neighbor.

Otherwise v′ has a real ×-vertex neighbor w′′′ determining a dotted segment. Then,
either the vertex m has two real white vertices as neighbors, an elementary move of type
◦-in at m followed by an elementary move of type ◦-out (up to the creation of a bridge
beside w′′′) and the creation of a bridge beside w′′ produces a dotted cut; or the vertex m
belongs to a monochrome component, having a white vertex with inner dotted edge, with
which the creation of two dotted bridges beside w′′ and w′′′ produces a cut.

Finally, when the vertex v′ is monochrome, an elementary move of type ◦-in at v′
followed by an elementary move of type ◦-out at w and the destruction of a possible
residual bold bridge bring us to a configuration to which we iterate this process. Due to
the finite number of vertices this process must stop.

Case 2.2: the vertex v has a real bold edge connecting to a monochrome vertex u,
having an inner bold edge f connecting u to a vertex w. When the vertex w is monochrome,
an elementary move of type •-in at u followed by an elementary move of type •-out at w
bring us to Case 2.1.

If the vertex w is white and it is neighbor to a monochrome or simple ×-vertex in
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the region determined by the edges e and f , then the creation of a dotted bridge beside
T produces a cut or a solid bridge beside the ×-vertex produces an axe, respectively.
Otherwise, w is a real neighbor of T . Since the dessin is bridge-free, the vertex u has
a real neighbor v′ 6= v having an inner bold edge f ′. If the edge f ′ connects v′ to a
monochrome vertex, an elementary move of type •-in at u followed by an elementary
move of type •-out along f ′ produces a solid axe.

Let us assume the edge f ′ connects v′ to a white vertex w′. Let e′ be the solid inner
edge incident to v′. If the edge e′ connects v′ to an inner ×-vertex w′′ having an inner
dotted edge g, then the creation of dotted bridges (if needed) beside them with g produces
a dotted cut, unless the vertices w and w′ are real neighbors to a monochrome vertex
incident to g, at which an elementary move of type ◦-in followed by an elementary move of
type ◦-out at u brings us to a configuration where we can construct a zigzag determined
by w′′.

If the edge e′ connects v′ to a monochrome vertex w′′, an elementary move of type
◦-in at u followed by an elementary move of type ◦-out at w′′ brings us to a configuration
where we can iterate the process. If it cycles to this configuration, we look at the sequence
of real neighbor vertices of w′′ in the region determined by the edges f ′ and e′. If the
vertex w′′ if followed by a ×-vertex and a monochrome vertex, or by a ×-vertex, a white
vertex w′′′ and a monochrome vertex, then the creation of a dotted bridge beside w′ or the
monochrome modification to connect the vertices v′ and w′′′ followed by the creation of a
dotted bridge produce a cut. This move is admissible since otherwise w′′ and w′′′ would
be the same and the degree of the dessin would be 3. If the vertex w′′ is followed by a
zigzag, we do the same consideration in this paragraph with respect to the vertex v′.

Finally, in the case where the vertices v′ and w′′ are followed by zigzags with white
vertices w1 and w2, let us assume v′ to be connected to w1, the white vertex determining
its adjacent zigzag. Let g be the inner bold edge incident to w2 and let m be its other
vertex. If the vertex m is monochrome, the creation of bold bridge with the edge f ′ beside
m allows us to proceed as when the edge f ′ connected v′ to a monochrome vertex. If the
vertex m is black, being connected to an inner solid edge incident to an inner ×-vertex
m′, then up to a monochrome modification between f ′ and g, the vertex m′ belongs to
the same region that w1 and w2. Thus, the creation of dotted bridges with the inner edge
incident to m′ beside w1 and w2 produces a cut.

If the vertex m is black being connected to a monochrome solid vertex m′, which up
to a monochrome modification between f ′ and g belongs to the same region as w1 and w2,
then a monochrome modification between the solid inner edges of v′ and m brings us to a
configuration already considered.

Case 2.3: the edge e does not divide the dessin into two parts, one of these consisting
of two triangles.

Case 2.3.1: the vertex v has a bold inner incident edge e′ connecting v to a white
vertex v′. If within the region determined by the edges e and e′ the vertex T has a
monochrome real neighbor, having an inner dotted edge f , we can create a bridge beside
v′ in order to obtain a cut. Otherwise, the vertex T has a white real neighbor, which up
to a monochrome modification is the vertex v′. Let us assume the vertex v′ has a real
neighbor vertex u which is monochrome.

We ask for the color of the real neighbor vertex w of v. If w is a ×-vertex, then
the creation of a dotted bridge with the inner edge f of u beside w forms a cut, as in
Figure 2.6a. Otherwise w is a solid monochrome vertex, either defining a solid cut where
w is connected to a segment bounded by ×-vertices, which allows us to create a bridge
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with f producing a cut, or w is connected to an inner ×-vertex, and after a triangulation,
the configuration of the dessin is as in Figure 2.6b.

The vertex w has a black neighbor v′′ with an inner solid edge g incident to a vertex w′.
If the vertex w′ is monochrome then an elementary move of type •-in on w followed by an
elementary move of type •-out set us as in Figure 2.6c. In this case, an elementary move
of type ◦-in followed by an elementary move of type ◦-out allows us to create a zigzag as
in Figure 2.6d.

Otherwise, the vertex w′ is an inner ×-vertex connected to a monochrome vertex w′′,
which can be on the segment S or on a different segment. In the former case, the creation
of a dotted bridge on S with the inner dotted edge of w′ produces a dotted cut. In the
latter case, w′′ has two white real neighbor vertices and, up to the creation of a bold
bridge, an elementary move of type ◦-in on w′′ followed by an elementary move of type
◦-out on the bold segment of v′ allow us to create a zigzag, contradicting the maximality
of the number of zigzag of the dessin (see Figure 2.6e).

In the case where the vertex w′ is an inner ×-vertex connected to a white vertex, up to
the creation of a bold bridge, an elementary move of type •-in, followed by an elementary
move of type •-out produces a solid axe, as in Figure 2.6f.

Finally, the vertex w′ can be a solid monochrome vertex. Since the dessin is bridge-
free, the vertex w′ has two real neighboring ×-vertices. The creation of a dotted bridge
with the edge f beside the ×-vertex in its region produces a dotted cut.

Let us assume now that the vertex u is a ×-vertex. By the assumption on the present
Case, it cannot be connected to the vertex v. Let w be the real neighbor vertex of v on
the region containing e′. If the vertex w is monochrome, having an inner solid edge f , the
creation of a bridge with f beside u, followed by elementary moves of type •-in at w, •-out
along f and the destruction of a possible residual bold bridge bring us to a configuration
where we can iterate this process, considering that the new edge e does divide the dessin,
with one connected component being formed by two triangles.

In the case when the vertex w is a ×-vertex, neighbor of a dotted monochrome vertex,
this one has an inner dotted edge, with which the creation of a bridge beside u produces a
cut. Instead, if the vertex w is a ×-vertex, neighbor of a white vertex w′, then the vertex
w′ has an inner bold edge f connecting it to a black vertex w′′. If the inner solid edge
f ′ of w′′ belong to the same region of e′, a bold monochromatic modification between e′
and f changes the region so the creation of a solid bridge with e beside w′′ produces an
axe. Otherwise, let w′′′ be the incident vertex of f ′ other than w′′. If the vertex w′′′ is a
×-vertex, it has an inner dotted edge, with which the the creation of bridges beside the
vertices u and w′′ after the bold monochrome modification between the edges e′ and f
produces a cut. If the vertex w′′′ is monochrome, the creation of a solid bridge with the
edge e beside w′′′ produces a cut.

Case 2.3.2: the vertex v has a bold inner incident edge e′ connecting v to a monochrome
vertex v′. Assume that the vertex v′ has two real neighboring white vertices. Then, the
region containing the edges e and e′ has an inner dotted edge f which, up to the creation
of a bridge, is incident to a monochrome vertex neighbor to the nodal vertex T . An
elementary move of type ◦-in on v′ followed by an elementary move of type ◦-out on the
monochrome of the edge f brings us to Case 2.3.1, as seen in the see Figure 2.6a.

If the vertex v has a bold inner incident edge e′ connecting v to a monochrome vertex
v′ belonging to a bold monochrome component with only one white vertex b having an
inner dotted edge f . Then we look at the real neighbor w of v by a solid edge. Either
the vertex w is a ×-vertex and the construction of bridges (if necessary) with the edge f
beside w and T produces a cut, or the vertex w is monochrome and an elementary move of
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type •-in at w followed by an elementary move of type •-out at v′ bring us to Case 2.1.

Proposition 2.1.4. A hyperbolic uninodal real dessin D of degree higher than 3 is weakly
equivalent either to the gluing of dessins of smaller degree, or to the gluing of two real
edges of a dessin D′. In both cases, the gluing corresponds to a dotted cut.

Proof. Let D be a hyperbolic uninodal dessin and let T be the nodal vertex of D. Due to
Corollary 2.0.3 and Proposition 2.1.2 we can assume that the dessin D is bridge-free and
has no inner white vertex. The vertex T is connected to an inner black vertex b, which is
connected to inner ×-vertices v1 and v2, each connected to a monochrome vertex u1 and
u2, respectively.

Case 1: the vertices u1 and u2 have a common real neighboring white vertex. Since
the degree is greater than 3 at least one of the vertices u1 or u2 has no common real
neighboring vertex with T . Let us assume u1 has no common real neighboring vertex with
T . An elementary move of type ◦-in at u1 produces an inner white vertex w which up to
a monochrome modification is connected via two different inner bold edges to b. In this
setting, the creation of a dotted bridge near T with an inner dotted edge of w followed by
an elementary move of type ◦-out sending w next to the vertex T produces a dotted cut
in a dessin without inner white vertices.
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Case 2: the vertices u1 and u2 have no common real neighboring vertex.
Case 2.1: at least one of the vertices u1 or u2 has two real white neighboring vertices.

Let us assume that u1 has two real white neighboring vertices. An elementary move of
type ◦-in at u1 produces an inner white vertex w which up to a monochrome modification
is connected via two different inner bold edges to b. In this setting, the creation of a dotted
bridge near u2 with an inner dotted edge of w followed by an elementary move of type
◦-out sending w next to the vertex u2 produces a dotted cut in a dessin without inner
white vertices.

Case 2.2: every vertex ui, i = 1, 2, belongs to a component with only one essential
vertex. Let w be the white vertex in the real component of u1. Up to a monochrome
modification the vertex w is connected to b such that b, v1, w form a triangle. In this
setting, the vertices v1 and u2 belong to the same region. Creating a dotted bridge near
u2 with the inner dotted edge of v1 produces a dotted cut.

2.2 Toiles
Definition 2.2.1. Given a real dessin D and a vertex v ∈ Ver(D), we call the depth of v
the minimal number n such that there exists an undirected inner chain v0, . . . , vn in D
from v0 = v to a real vertex vn and we denote the depth of v by dp(v). The depth of a
dessin D is defined as the maximum of the depth of the black and white vertices of D and
it is denoted by dp(D).

Definition 2.2.2. A generalized cut of a dessin D is an inner undirected chain formed
entirely of inner edges of the same color, either dotted or solid, connecting two distinct
real nodal or monochrome vertices.

Analogously to a cut, cutting a dessin D ⊂ S by a generalized cut produces two
dessins of lower degree or a dessin of the same degree in a surface with a simpler topology,
depending on whether the inner chain divides or not the surface S.

Proposition 2.2.3. Let D ⊂ D2 be a toile of degree greater than 3. Then, there exists
a toile D′ weakly equivalent to D such that either D′ has depth 1 or D′ has a generalized
cut.

Proof. Within the class of elementary equivalence of our initial toile D, let us choose a
toile D0 having minimal depth. Due to Corollary 2.0.3 we can choose D0 bridge-free. If
dp(D0) ≥ 2, then there is a vertex v0 ∈ Ver(D0) having dp(v0) ≥ 2, hence there exists an
undirected inner chain v0, v1, . . . , vn, with n = dp(v0), of minimal size connecting v0 to
the boundary of D2. By definition, dp(vn−2) = 2. Put u = vn−2, v = vn−1, w = vn, e =
[u, v], f = [v, w]. We study the possible configurations of the chain u, v, w in order to show
that, unless there exists a generalized cut, we can decreases the depth of every vertex
having depth at least 2, contradicting minimality assumption. We assume that the toile
D0 does not have dotted cuts, since otherwise the Proposition follows trivially.

Case 0: whenever v is black or white and connected to a monochrome vertex, an
elementary move of type •-out or ◦-out, respectively, reduces the depth of u. For simplicity,
from now on we assume that v is only connected to essential vertices.

Case 1.1: the vertex u is white and the vertex v is black.
Case 1.1.1: the vertex w is white. Let g be the solid edge adjacent to v sharing a

region with the edges e and f . Let w1 be the real neighbor vertex to w in the region R
determined by f and g. If w1 is a simple ×-vertex, it determines a solid segment where
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the construction of a bridge with the edge g bring us to Case 0. If w1 is a nodal ×-vertex,
up to a monochrome modification it is connected to v, and then the creation of a bridge
with the inner dotted edge of u beside w1 decreases the depth of u. Otherwise, w1 is
monochrome. If it is connected to an inner simple ×-vertex w2, up to a monochrome
modification the vertex w2 is connected to v, and as before, the creation of a bridge with
the inner dotted edge of u beside w1 decreases the depth of u. If w1 is connected to an
inner nodal ×-vertex w2, up to a monochrome modifications the vertex w2 is connected
to u and v. Since the dessin is a bridge-free toile, w1 has a white real neighbor vertex
w3 6= w.

If w3 is connected to a monochrome vertex by an inner edge, then in the region de-
termined by the vertices w1 and w3 there is a black vertex w4 and up to monochrome
modifications the vertices u and w2 are connected to w4, reducing the depth of u. If w3 is
connected to a real black vertex w4, then there are two cases: in the region determined by
the vertices w1 and w3, the vertex w4 is adjacent to a inner or real solid edge h. When the
edge h is inner, up to a monochrome modification, the vertices v and w4 are connected,
then the creation of a bridge with a inner bold edge of u beside w4 bring us to Case 0.

When the edge h is real, connecting w4 with a×-vertex w5, then the creation of a dotted
bridge with the edge adjacent to w1 beside w5 or a monochrome modification connecting
w1 and w5, respectively if it is a simple or nodal ×-vertex, produces a generalized cut.
When the edge h connects w4 with a monochrome vertexw5, sine the toile is bridge free,
there exist a real black vertex w6 6= w4 connected to w5. Monochrome modifications
connect w2 with w5 and u with w6 reducing the depth of u. Finally, if the vertex w3 is
connected to an inner black vertex w4, which up to monochrome modifications is connected
to u and w2, we consider the real neighbor vertex w5 6= w1. If w5 is a simple ×-vertex, it
determines a solid segment where the creation of a bridge with the inner solid edge of v in
the region bring us to Case 0. If w5 is a nodal ×-vertex, up to a monochrome modification
it is connected to v. Let w6 6= u,w be the vertex connected to v by a bold edge. If w6 is
an inner white vertex, the creation of a dotted bridge followed by an elementary move of
type ◦-out lead us to the next consideration. When the vertex w6 is a real white vertex, let
us defined w′ := w6 and consider instead the chain u, v, w′ and the considerations made
in this algorithm. If the algorithm cycles back to this configuration and we denote by
w′i the vertices on the second iteration, the edges [w1, w2], [w2, u], [u,w′2], [w′2, w′1] form a
generalized cut.

Case 1.1.2: the vertex w is nodal. If w has a real white neighboring vertex w′,
we consider the chain u, v, w′ as in Case 1.1.1. Otherwise w has a real monochrome
neighboring vertex w1. If w1 is connected to an inner white vertex w2, an elementary move
of type ◦-out with it at w2 creates real white neighboring vertex of w and we consider the
previous case. If w1 is connected real white vertex w2, then the creation of a bold bridge
with an inner bold edge of v beside w2 followed by an elementary move of type •-out bring
us to a configuration in which u is connected to a real vertex, so its depth is reduced.

Case 1.2: the vertex u is white and the vertex v is a simple ×-vertex.
Case 1.2.1: the vertex w is black. The vertex w has a real solid bold edge in the

same region as u. Then, the creation of a bridge with an inner bold edge of u beside w
followed by an elementary move of type ◦-out transfers the vertex u to the boundary in a
bridge-free toile.

Case 1.2.2: the vertex w is monochrome. Since the toile is bridge-free, w has a
real black neighboring vertex which is connected to u after a monochrome modification
reducing the depth of u.
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Case 1.3: the vertex u is white and the vertex v is a nodal ×-vertex.
Case 1.3.1: the vertex w is a monochrome dotted vertex. Let w1 be a vertex connected

to v by a solid edge. If w1 is real, then either its bold inner edge can be connected to u after
a monochrome modification or its bold real edge allows us to create a bridge with the inner
bold edge of u and then an elementary move of type ◦-out transfers the vertex u to the
boundary in a bridge-free toile. If w1 is a monochrome vertex, since the toile is bridge-free,
then it has has a real black neighboring vertex w2. A monochrome modification connects
u to w2 decreasing the depth of u in a bridge-free toile. Otherwise, the vertex w1 is an
inner black vertex. Since the the toile is bridge-free, there exist a white vertex w2 real
neighbor of w in the same region as w1. A monochrome modification connects w1 to w2.
We consider instead the chain u,w1, w2 as in Case 1.1.1.

Case 1.3.2: the vertex w is a monochrome solid vertex. This configuration was con-
sidered in Case 1.3.1.

Case 1.3.3: the vertex w is white. Let w1 be a vertex connected to v by a solid edge.
If w1 is a real vertex, the considerations made on the Case 1.3.1 apply. Otherwise, w1
is an inner black vertex. Up to monochrome modifications The creation of a bold bridge
beside w with an inner bold edge adjacent to w1 followed by an elementary move of type
•-out decreases the depth of u in a bridge-free toile.

Case 1.3.4: the vertex w is black. This case correspond to the configuration in
Case 1.3.1 when w1 is a real vertex.

Case 2.1: the vertex u is black and the vertex v is white.
Case 2.1.1: the vertex w is black. Let w1 be a vertex connected to v by a dotted

edge. If w1 is a real nodal ×-vertex, then the creation of a bridge beside w1 with an inner
solid edge of u in the region followed by an elementary move of type •-out transfers the
vertex u to the boundary in a bridge-free toile. If w1 is an inner simple ×-vertex, then we
consider the inner solid edge g adjacent to w. If g and w1 belong to the same region, then
we can assume g is adjacent to w1 up to a monochrome modification. In this setting, the
creation of a bridge with the edge e beside w followed by an elementary move of type •-out
transfers the vertex u to the boundary in a bridge-free toile. If g and w1 do not share any
region, then we can assume w1 is connected to u up to a monochrome modification. In
this setting the creation of a bridge with the inner solid edge connecting w1 and u beside
w followed by an elementary move of type •-out transfers the vertex u to the boundary in
a bridge-free toile. Lastly, if w1 is a nodal ×-vertex, up to monochrome modifications it
is connected to u and w. Let w2 6= v be the vertex connected to w2 by a dotted edge. If
w2 is a real white vertex, then the creation of a bridge with an inner bold edge adjacent
to u beside w2 followed by an elementary move of type ◦-out transfers the vertex u to
the boundary in a bridge-free toile. If w2 is an inner white vertex, up to a monochrome
modification it is connected to u, then the creation of a bridge with an inner bold edge
adjacent to w2 beside w followed by elementary moves of type ◦-out at w2 and •-out at
u transfers the vertex u to the boundary in a bridge-free toile. If w2 is a monochrome
vertex, it has two real white neighboring vertices, then an elementary move of type ◦-in
at w2 brings us to the previous consideration.

Case 2.1.2: the vertex w is a nodal ×-vertex. This case corresponds to the configura-
tion in Case 2.1.1 when w1 is a real nodal ×-vertex.

Case 2.2: the vertex u is black and the vertex v is a simple ×-vertex.
Case 2.2.1: the vertex w is monochrome. Since the toile is bridge-free, the vertex w

has two different real white neighboring vertices. A monochrome modification connects u
to one of those vertices decreasing the depth of u.
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Case 2.2.2: the vertex w is white. In this setting, the creation of a bold bridge beside
w with an inner bold edge adjacent to v followed by an elementary move of type •-out
transfers the vertex u to the boundary in a bridge-free toile.

Case 2.3: the vertex u is black and the vertex v is a nodal ×-vertex.
Case 2.3.1: the vertex w is monochrome dotted. The vertex u is connected to an

inner white vertex w1 on the same region as the edge f . The creation of a dotted bridge
beside w with an inner dotted edge of w1 followed by an elementary move of type ◦-out
decreasing the depth of u.

Case 2.3.2: the vertex w is white. In this setting, the creation of a bold bridge beside w
with an inner bold edge adjacent to v follow by an elementary move of type •-out transfers
the vertex u to the boundary in a bridge-free toile.

Case 2.3.3: the vertex w is monochrome solid. Let w1 be a vertex connected to v by
a dotted edge. If w1 is a real monochrome vertex or a white vertex, we consider instead
the chain u, v, w1 as in Case 2.3.1 and Case 2.3.2, respectively. If w1 is an inner white
vertex, let w2 be a real black vertex neighbor of w sharing a region with w1. Up to a
monochrome modification w1 is connected to w2. We consider instead the chain u,w1, w2
as in Case 2.1.1.

Case 2.3.4: the vertex w is black. Let w1 be a vertex connected to v by a dotted edge.
If w1 is a real monochrome vertex or a white vertex, we consider instead the chain u, v, w1
as in Case 2.3.1 and Case 2.3.2, respectively. If w1 is an inner white vertex, then up to a
monochrome modification w1 is connected to w. We consider instead the chain u,w1, w
as in Case 2.1.1.

Case 3.1: the vertex u is a simple ×-vertex and the vertex v is white.
Case 3.1.1: the vertex w is black. Let g be the solid edge adjacent to w sharing a

region with the vertex u. If g is an inner edge, up to monochrome modification between
g and the solid edge adjacent to u decreases the depth of u. If g is a real edge, let w1 be
the vertex connected to u by a solid edge. Since the depth of u is two, the vertex w1 is
an inner black vertex. The creation of a bridge on g with the edge [u,w1] followed by an
elementary move of type •-out at w1 decreases the depth of u in a bridge-free toile.

Case 3.1.2: the vertex w is a nodal ×-vertex. Let w1 be a real neighbor vertex of w.
If w1 is a monochrome vertex determining a solid cut, let w2 be the monochrome vertex
connected to w1 through the cut and let w3 be the black vertex neighbor to w2 sharing a
region with u. A monochrome modification between the inner solid edges adjacent to u
and w2 connects these two vertices, reducing the depth of u. If w1 is a monochrome vertex
connected to a real black vertex w2, then in the region determined by v and w2 the vertex
w2 either has an inner bold edge and a monochrome modification allows us to consider
instead the chain u, v, w2 as in Case 3.1.1 or it has a real bold edge where the creation of
a bridge with the inner bold edge adjacent to v in the region followed by an elementary
move of type ◦-out at v decreases the depth of u in a bridge-free toile. If w1 is black, up
to a monochrome modification v and w1 are connected and we consider instead the chain
u, v, w1 as in Case 3.1.1. Lastly, if w1 is a monochrome vertex connected to an inner black
vertex w2, an elementary move of type •-out at w2 bring us to the previous consideration.

Case 3.2: the vertex u is a simple ×-vertex and the vertex v is black.
Case 3.2.1: the vertex w is white. Since dp(u) = 2, the vertex u is connected to an

inner white vertex w1. If the vertices u and w share a region, the creation of a dotted
bridge beside w with the dotted edge adjacent to u followed by an elementary move of
type ◦-out at w2 decreases the depth of u in a bridge-free toile. If the vertices u and
w do not share a region, let w2, w

′
2 6= u be the vertices connected to v by a solid edge.
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We can assume up to monochrome modifications that v and w1 are connected by two
different bold edges. If one of the vertices w2 or w′2 is an inner simple ×-vertex, up to a
monochrome modifications it is connected to w1, and then the creation of a bridge beside
w with the inner dotted edge adjacent to w1 followed by an elementary move of type ◦-out
at w1 decreases the depth of u in a bridge-free toile. Otherwise, the vertices w2 and w′2
are nodal ×-vertices. We can assume up to one monochrome modification that w2 and
w1 are connected. If both w2 and w′2 are real, the creation of two bridges with an inner
dotted edge adjacent to w1, one beside w2 and one beside w′2, produces a dotted cut. If
both w2 and w′2 are inner, the creation of two bridges beside w, one in every side, with
inner dotted edges adjacent to w2 and w′2 respectively, followed by the creation of an inner
monochrome vertex between the inner dotted edges of w2 and w′2 sharing a region with
w1, create a generalized cut. It between the vertices w2 and w′2 one is real and one is inner,
then the creation of dotted bridges and an inner monochrome vertex as in the previous
considerations allow us to create a generalized cut.

Case 3.2.2: the vertex w is a nodal ×-vertex. Since dp(u) = 2, the vertex u it is
connected to an inner white vertex w1, which we can assume connected to v by two
different bold edges up to monochrome modification. In this setting, the creation of a
bridge beside w with the inner dotted edge adjacent to w1 followed by an elementary
move of type ◦-out decreases the depth of u in a bridge-free toile.

Case 4.1: the vertex u is a nodal ×-vertex and the vertex v is white.
Case 4.1.1: the vertex w is black. If it was an inner solid edge g sharing a region with u,

then the vertices u and w can be connected by a monochrome modification between the
edges e and g decreasing the depth of u. Otherwise, the vertex w has a real solid edge
sharing a region with u. Since dp(u) = 2, the vertex u is connected to an inner black vertex
w1. In this setting, the creation of a bridge beside w with a solid inner edge adjacent to
w1 followed by an elementary move of type •-out at w1 decreases the depth of u in a
bridge-free toile.

Case 4.1.2: the vertex w is a nodal×-vertex. Since dp(u) = 2, the vertex u is connected
to an inner black vertex w1, which up to a monochrome modification it is connected to v.
Then, the creation of a bridge beside w with a solid inner edge adjacent to w1 followed by
an elementary move of type •-out at w1 decreases the depth of u in a bridge-free toile.

Case 4.2: the vertex u is a nodal ×-vertex and the vertex v is black.
Case 4.2.1: the vertex w is a nodal×-vertex. Since dp(u) = 2, the vertex u is connected

to an inner white vertex w1 sharing a region with w, which we can assume connected to v
up to a monochrome modification. In this setting, the creation of a bridge beside w with
an inner dotted edge adjacent to w1 followed by an elementary move of type ◦-out at w1
decreases the depth of u in a bridge-free toile.

Case 4.2.2: the vertex w is white. Since dp(u) = 2, the vertex u is connected to an
inner white vertex w1. Then, if the vertices u and w belong to the same region, we can
choose w1 belonging to the same region as them. Then, the creation of a bridge beside w
with an inner dotted edge adjacent to w1 followed by an elementary move of type ◦-out
at w1 decreases the depth of u in a bridge-free toile. Otherwise, let w2 6= u be a vertex
connected to v by a solid edge sharing a region with w1. If w2 is a real nodal ×-vertex,
we consider instead the chain u, v, w2 as in Case 4.2.1. If w2 is an inner simple ×-vertex,
up to monochrome modification it is connected to w1, and then, the creation of a bridge
beside w with an inner dotted edge adjacent to w1 followed by an elementary move of
type ◦-out at w1 decreases the depth of u in a bridge-free toile. Finally, if w2 is an inner
nodal ×-vertex, we consider instead the white vertex w′1 6= w1 connected to u and the
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×-vertex w′2 6= u,w2 connected to v. If the aforementioned consideration cycle to this
configuration, then the creation of two bridges beside w, one at every side, with inner
dotted edges adjacent to w2 and w′2, respectively, produces a generalized cut.

Corollary 2.2.4. Let D be as in Proposition 2.2.3. If there exists a toile D′ weakly
equivalent to D with depth 1, then D′ can be chosen bridge-free.

Proposition 2.2.5. Let D be a toile of degree at least 6 and depth at most 1. Then, there
exists a toile D′ weakly equivalent to D such that D′ has a generalized cut. Moreover, if
D has isolated real nodal ×-vertices, the generalized cut is dotted or a solid axe.

Proof. Let D0 be a dessin within the weak equivalence class of D, maximal with respect
to the number of zigzags. Due to Proposition 2.2.3 and Corollary 2.2.4, we can choose
D0 within the weak equivalence class of D0 such that dp(D0) ≤ 1 and D0 is bridge-
free. For simplicity we assume that there are no black or white inner vertices connected
to monochrome vertices. We assume that there are no dotted cuts, since otherwise the
Proposition follows trivially. If there is a bold cut [w,w′] in a bridge-free toile, assuming
the vertex w has black neighbor real vertices, then an elementary move of type •-in followed
by an elementary move of type •-out at the vertices w and w′, respectively, eliminates the
bold cut. This way we can assume there are no bold cuts on the dessin without breaking
the bridge-free property nor changing its depth. Let us start by the case when D0 has
singular vertices on the boundary of the disk D2. Let v be a real nodal ×-vertex.

Case 1: the vertex v is isolated, being connected to a white vertex u. If the vertex u
is real, the edge e := [v, u] is dividing. Let R be the region containing e on the connected
component of D0 \ e with a maximal number of white vertices. Let w be the real neighbor
vertex of u in the region R. Let S be the bold segment containing u.

Case 1.1: the vertex w is monochrome. If w is connected to a real black vertex w1,
then there are two cases: in the region R, the vertex w1 is adjacent to an inner or real
solid edge f .

If the edge f is inner, let w2 be the real vertex connected to w1 by a solid real edge
(see Figure 2.7a). If w2 is a ×-vertex, let w3 6= u be a white real vertex connected to
w. If w2 is a simple ×-vertex, then, the creation of a bridge with the inner dotted edge
adjacent to w3 beside w2, followed by elementary moves of type ◦-in at w and ◦-out at the
bridge, produces a dotted axe in a bridge-free dessin (see Figure 2.7b). If w2 is a nodal
×-vertex, up to a monochrome modification it is connected to w3. An elementary move
of type ◦-out at w produces a generalized cut (see Figure 2.7c). If w2 is a monochrome
vertex, then an elementary move of type •-in at w2 followed by an elementary move of
type •-out at w bring us to a configuration we study within the Case 1.2.
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Figure 2.7
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If the edge f is real, let w2 be the real vertex connected to w1 by the edge f (see
Figure 2.8a). If w2 is a simple ×-vertex, it determines a real dotted segment where the
creation of a bridge with the edge e produces a dotted axe (see Figure 2.8b). If w2 is a
monochrome vertex, then an elementary move of type •-in at w2 followed by an elementary
move of type •-out at w bring us to a configuration we study within the Case 1.2. In the
case when w2 is a nodal ×-vertex different from v, and in this case the creation of an inner
monochrome vertex with the edge e and the inner dotted edge adjacent to w2 produces a
generalized cut (see Figure 2.8c).
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Figure 2.8

A special case is when w2 = v. Let w3 6= u be a white real vertex connected to w and
let w4 be the vertex connected to w3 by an inner dotted edge. If w4 is a monochrome
vertex or a real nodal ×-vertex, an elementary move of type ◦-in produces a generalized
cut (see Figure 2.9a and Figure 2.9b). If w4 is an inner simple ×-vertex, it is connected
to w1 up to a monochrome modification. An elementary move of type ◦-in at w followed
by the creation of a bold bridge beside w1 and an elementary move of type ◦-out bring us
to a configuration where we can create a zigzag, contradicting the maximality assumption
(see Figure 2.9c).
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Figure 2.9

If w4 is an inner nodal ×-vertex, up to a monochrome modification it is connected to
w1. Let w5 6= w3 be a vertex connected to w4 by a dotted edge. If w5 is a monochrome
vertex, then an elementary move of type ◦-in at w creates an inner white vertex w′ such
that the chain v, w′, w4, w5 is a generalized cut (see Figure 2.10a).

If w5 is a white inner vertex, the creation of a bold bridge beside w1 with a bold edge
of w5 followed by an elementary move of type ◦-out allows us to consider w5 as a real
white vertex.

If w5 is a white real vertex, let w6 6= w1 be a vertex connected to w4 by a solid edge.
When w6 is a real black vertex, there are two cases: in the region R′ determined by
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w4, w5 and w6 the bold edge g adjacent to w6 is either real or inner. We perform an
elementary move of type ◦-in at w producing a white inner vertex w′, and destroy the
potential residual bold bridge.

If g is a real bold edge, let w7 be the vertex connected to w6 by a real solid edge. Up to
a monochrome modification the vertex w′ is connected to w6. If w7 is a simple ×-vertex,
the creation of a bridge beside w7 with an inner dotted edge incident to w′ produces a
generalized cut (see Figure 2.10b). If w7 is a nodal ×-vertex, the creation of an inner
monochrome vertex with the edge e and the inner dotted edge adjacent to w7 produces
a generalized cut (see Figure 2.10c). If w7 is a monochrome vertex, let w8 be the vertex
connected to w7 by an inner solid edge.
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Figure 2.10

If w8 is a monochrome vertex, let w9 be the vertex connected to w8 in the region
determined by w6, w7 and w8. If w9 is a simple ×-vertex, the creation of a bridge beside
w9 with the edge e produces an axe (see Figure 2.11a). Otherwise w9 is a nodal ×-vertex,
the creation of an inner monochrome vertex with the edge e and the inner dotted edge
adjacent to w9 produces a generalized cut (see Figure 2.11b). If w8 is a real nodal ×-vertex,
the creation of a bridge beside it with the edge e produces an axe (see Figure 2.11c).
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Figure 2.11

If w8 is an inner nodal ×-vertex, we make monochrome modification in order to connect
w8 to w′. Then, the creation of a bride h beside w1 with an inner solid edge adjacent to
w8 produces a solid generalized cut and cutting by it produces two different toiles (see
Figure 2.12a). Let D′0 be the resulting toile containing v. The toile D′0 is a toile of degree
strictly greater than 3 since there are no nodal cubic toiles having two isolated nodes (cf.
Section 3.3). Since dp(D′0) ≤ 1, we can restart the algorithm with the toile D′0 and it does
not cycle back to this consideration. A dotted generalized cut in D′ having w8 as an end
can be extended to a generalized cut in D0 by deleting the solid bridge h and creating
an inner monochrome dotted vertex with the edge e and the inner dotted edge of w8 (see
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Figure 2.12b).
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If w8 is a simple ×-vertex, let w9 be the vertex connected to it by a dotted edge. If
w9 is a monochrome vertex, a monochrome modification between the inner dotted edge
adjacent to w9 and the edge e produces an axe (see Figure 2.13a). If w9 is a real white
vertex, then an elementary move of type •-in at w7 followed by an elementary move of
type •-out beside w9 allows us to create a zigzag with w8, contradicting the maximality
assumption (see Figure 2.13b). Lastly, if w9 is an inner white vertex, the creation of a
bridge in the segment S followed by an elementary move of type ◦-out allows us to consider
w9 as a real white vertex.
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Figure 2.13

If g is an inner bold edge, let w7 be the vertex connected to w6 by an inner bold
edge. If w7 is a real white vertex, the creation of a bridge beside it with an inner dotted
edge adjacent to w4 produces a generalized cut (see Figure 2.14a). If w7 is a monochrome
vertex, an elementary move of type ◦-in allows us to consider it as an inner white vertex.
If w7 is an inner white vertex, up to a monochrome modification it is connected to w4.
Let w8 be the vertex connected to w6 by a real solid edge. If w8 is a simple ×-vertex, the
creation of a dotted bridge beside it with an inner dotted edge adjacent to w4 produces
a generalized cut (see Figure 2.14b). If w8 is a nodal ×-vertex, up to a monochrome
modification it is connected to w7 determining a generalized cut (see Figure 2.14c). If w8
is a monochrome vertex, the creation of a bold bridge beside w1 with an inner bold edge
adjacent to w7 followed by an elementary move of type ◦-out at w7, an elementary move
of type •-in at w8 and an elementary move of type •-out at the bridge bring us to the
configuration when the edge g was a real bold edge.

In the case when w6 is a monochrome vertex, an elementary move of type •-in at w6
produces an inner black vertex w′6. We destroy any possible remaining bridge. Then,
the creation of a bridge beside w5 with an inner bold edge adjacent to w′6 followed by an
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elementary move of type •-out at w′6 bring us to the previous consideration when w6 was
a black vertex. The same applies to the case when w6 is an inner black vertex.
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Case 1.2: the vertex w is black. Let w1 be the vertex connected to w by an inner solid
edge. If w1 is a monochrome vertex in a different solid segment that the one containing
v, let w2 be the vertex connected to w1 on the region R. If w2 is a simple ×-vertex, the
creation of a bridge beside it with the edge e produces a generalized cut (see Figure 2.15a).
Otherwise, the vertex w2 is a nodal ×-vertex and the creation of an inner dotted mono-
chrome vertex with the inner edge of w2 and the edge e produces a generalized cut (see
Figure 2.15b). If w1 is a monochrome vertex connected to v, let w2 be the vertex connected
to w by a real solid edge. If w2 is a monochrome vertex, we do an elementary move of
type •-in at w2 followed by an elementary move •-out at w1. In the case when there is no
resulting bold bridge, this configuration has been consider in the Case 1.1. Otherwise, we
destroy the bold bridge and let w′2 be the real black vertex connected to v and let w3 be the
vertex connected to it by an inner bold edge. If w3 is an inner white vertex, the creation
of a bridge beside u followed by an elementary move of type ◦-out sets the configuration
as when there was no bold bridge. If w3 is a monochrome vertex, an elementary move of
type ◦-in allows us to consider it as an inner white vertex. If w3 is a real white vertex, the
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creation of a bridge beside it with the edge e produces an axe (see Figure 2.16a).
In the case when the vertex w2 is a simple ×-vertex, let w3 be the vertex connected to

w2 by a dotted real edge. If w3 is a white vertex, it is connected to w up to a monochrome
modification. Let w4 6= v be the real neighbor vertex of w1.

When the vertex w4 is a simple ×-vertex, if it is connected to w3, then the toile would
be a cubic. Hence the vertices w3 and w4 are not neighbors. Let w5 6= w2 be the real
neighbor vertex of w3.
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Figure 2.16

When w5 is a monochrome vertex, the creation of a bridge with its inner dotted edge
beside w4 produces a cut (see Figure 2.16b). If w5 is a simple ×-vertex having a black
neighboring vertex, then we create a bridge beside w5 with the inner solid edge adjacent
to w creating a solid cut, we destroy the correspondent zigzag, make an elementary move
of type •-it followed by an elementary move of type •-out, make an elementary move of
type ◦-in with u and w5 in order to create a bold bridge and perform an elementary move
of type ◦-out. Then, the creation of a zigzag brings us to a configuration considered in
Case 1.1 without breaking the maximality assumption (see Figure 2.17).
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Figure 2.17

If w5 is a simple ×-vertex having a solid neighboring monochrome vertex w6, we
perform a monochrome modification to connect w6 with w. Let w7 6= w5 be the real
neighboring vertex of w6. If w7 is a simple ×-vertex, the creation of a dotted bridge beside
with the edge e produces an axe (see Figure 2.18a). If w7 is a nodal ×-vertex, the creation
of an inner monochrome vertex between the edge e and the inner dotted edge adjacent to
w7 produces a generalized cut (see Figure 2.18b).

If w5 is a nodal ×-vertex, a monochrome modification connect it to w and then, the
creation of a bridge beside w5 with the edge e produces an axe (see Figure 2.18c).

If w4 is a nodal ×-vertex, the creation of a dotted bridge beside w3 with the inner edge
adjacent to w4 produces an axe (see Figure 2.19a).

If w3 is a monochrome vertex, let w4 be the vertex connected to w by an inner bold
edge. If w4 is a real white vertex, then the creation of a bridge beside it with the inner
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dotted edge adjacent to w3 produces a cut (see Figure 2.19b). If w4 is a monochrome
vertex, an elementary move of type ◦-in allows us to consider it as an inner white vertex.
If w4 is an inner white vertex, up to a monochrome modification it is connected to w3 and
then an elementary move of type ◦-out bring us to the configuration where w3 was a white
vertex.
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Figure 2.19

Otherwise w2 is a nodal ×-vertex. Let w3 be the vertex connected to w by an inner
bold edge. If w3 is a real white vertex, the creation of a bridge with the inner dotted
edge adjacent to w2 beside w3 produces an axe (see Figure 2.19c). If w3 is a monochrome
vertex, an elementary move of type ◦-in allows us to consider it as an inner white vertex.
Lastly, if w3 is an inner white vertex, up to a monochrome modification it is connected to
w2. Let w4 6= v be the vertex connected to w1 by a real edge. If w4 is a simple ×-vertex,
up to the creation of a dotted bridge beside it with an inner dotted edge of w3, we can
perform an elementary move of type ◦-out producing an axe (see Figure 2.20a). If w4 is
a nodal ×-vertex, up to a monochrome modification it is connected to w3 producing a
generalized cut (see Figure 2.20b).

If w1 is an inner simple ×-vertex, we can performs a monochrome modification so it is
connected to u in order to create a zigzag, but this contradicts the maximality assumption.

Otherwise, the vertex w1 is an inner nodal ×-vertex. Let w2 /∈ R be the vertex
connected to w1 by a dotted edge. If w2 is an inner white vertex, it is connected to w
up to a monochrome modification. Let w3 be the vertex connected to w by a real solid
edge. If w3 is a simple ×-vertex, the creation of a bridge beside w3 with an inner dotted
edge adjacent to w2 and a monochrome vertex with the edges e and an inner dotted edge
adjacent to w1 produce a generalized cut (see Figure 2.21a). If w3 is a nodal ×-vertex,
up to a monochrome modification it is connected to w2. Then, the creation of an inner
monochrome vertex with the edges e and an inner dotted edge adjacent to w1 produce
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a generalized cut (see Figure 2.21b). Lastly, if w3 is a monochrome vertex, we create a
bridge beside v with the edge [w,w1] and we perform an elementary move of type •-in at w3
followed by an elementary move of type •-out at the bridge, bringing us to a configuration
considered in Case 1.1.

4

3u
(a)

3u
(b)

Figure 2.21

If w2 is a real white vertex, let w3 be the vertex connected to w by a bold inner edge.
If w3 is a monochrome vertex, an elementary move of type ◦-in allows us to consider it as
an inner white vertex. If w3 is an inner white vertex, a monochrome modification connects
it to w1 and that corresponds to the configuration where w2 was an inner white vertex.
Finally, if w3 is a real white vertex, the creation of a bridge beside it with an inner dotted
edge adjacent to w1 and a monochrome vertex with the edges e and an inner dotted edge
adjacent to w1 produce a generalized cut (see Figure 2.22a).
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Case 1.3: the vertex u is an inner white vertex. If u is connected to another nodal
×-vertex or a monochrome dotted vertex, it determines a generalized cut. Otherwise u is
connected to an inner ×-vertex w. Let us assume that u is an inner simple ×-vertex.
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If u is connected to a monochrome bold vertex, an elementary move of type ◦-out bring
us to the previous cases. If u is connected to an inner black vertex, the creation of a bridge
beside v with an inner solid edge adjacent to the black vertex and an elementary move
of type •-out allow us to consider u connected to a real black vertex. Thus, the vertex u
must be connected to a black real vertex b. Let R to be the region determined by u, v
and b, and let f 6= [u, b] be the edge adjacent to b in R. If f is a real edge, then up to a
monochrome modification the vertex b and w are connected by an inner solid edge, and
then, the creation of a bold bridge beside b with an inner edge adjacent to u followed by an
elementary move of type ◦-out allows us to create a zigzag, contradicting the maximality
assumption (see Figure 2.22b).

If f is an inner edge, let m be the vertex connected to b by a real solid edge. If
m is a ×-vertex, then either the creation of a bridge beside m with the edge [u,w] or
a monochrome modification connecting u and m, if m is simple or nodal, respectively,
produces a generalized cut. If m is a monochrome vertex, it is connected to w and then,
an elementary move of type •-in at m followed by the creation of a solid bridge beside v
with the edge f and an elementary move of type •-out at the bridge allows us to create a
zigzag, contradicting the maximality assumption (see Figure 2.23a).
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The missing case is when the vertex u is connected to an inner nodal ×-vertex w. Due
to the aforementioned considerations, if any of the vertices u or w share a region with a
real ×-vertex, the creation of a dotted bridge or an inner monochrome vertex produce a
generalized cut. If the vertex u is connected to black vertices having neighboring real solid
monochrome vertices, then the creation of solid bridges beside v followed by a elementary
moves of type •-in and •-out bring us to the configuration where the vertex v has two
neighboring black vertices b1 and b2, which are connected to u and w up to monochrome
modifications. Let S be the bold segments containing b1. If the segment S has no white
vertices, it does have a monochrome vertex connected to a real white vertex determining
a dotted segment where the construction of a bridge with the edge [u,w] produces a
generalized cut (see Figure 2.24a). If the segment S has exactly one white vertex w1,
it has two neighboring black vertices b1 and b′1. Up to monochrome modifications, the
vertices b1 and b′1 are connected to w and u. Then, if b′1 has a neighboring real ×-vertex,
then either the creation of a bridge beside it with the edge [v, u] or the creation of an
inner monochrome vertex with the edge [v, u] and the inner dotted edge adjacent to the
nodal ×-vertex produces a generalized cut (see Figures 2.24b and 2.24c). Otherwise, the
vertex b′1 is connected to a solid monochrome vertex m, in which case, the creation of a
bridge beside v with the inner solid edge adjacent to m produces a solid cut where one of
the resulting dessins is a cubic of type I∗∗∗ (a cubic with an inner nodal ×-vertex and an
isolated real nodal ×-vertex) (see Figure 2.24d). If the segment S has at least two white
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vertices, by means of elementary moves of type ◦-in and ◦-out, we can transfer pairs of
white vertices from the segment S to the bold segment containing the vertex b2 bring us
to the case when S has none or one white vertex.

b 1
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b 1 b 11
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b 1 b 11 m
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Figure 2.24

Case 2: the vertex v is non-isolated, being connected to a black vertex u. Due to
Case 1, we can assume that there are no isolated real nodal ×-vertices. If the vertex u is
real, the edge e := [v, u] is dividing. Let w be vertex connected to u by a bold real edge.
Let R be the region determined by v, u and w.

1u

2

(a)

1u

2

3

4

(b)

4

(c)

Figure 2.25

Case 2.1: the vertex w is a monochrome vertex. Since the toile is bridge-free, the
vertex w is connected to a real black vertex w1 6= u. Let w2 be the vertex connected to
w by an inner bold edge. If w2 is a monochrome vertex, an elementary move of type ◦-in
followed by the possible creation of a bridge beside v and an elementary move of type
◦-out allows us to consider w2 as a real white vertex. In the case when the vertex w2 is a
real white vertex, if it is not a neighboring vertex of v and the region R contains an inner
dotted edge, up to the creation of bridges beside v and w2 we can produce a dotted cut
(see Figure 2.25a).

Otherwise, we can assume the vertices w2 and v to be real neighboring vertices. Let
w3 be the vertex connected to w1 by an inner solid edge. If w3 is a monochrome vertex,
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it has two real simple ×-vertices since the toile is bridge-free and there are no isolated
nodal ×-vertices. Let w4 be the simple ×-vertex connected to w3 sharing a region with
the vertices w and w1. Let w′4 6= w4 be the other simple ×-vertex connected to w3. All
the following considerations apply to the case when w3 is a nodal ×-vertex, in that case,
the calls to w4 and w′4 all refer to w3. If w4 is connected to a dotted monochrome vertex
w5, then, the creation of a dotted bridge beside w2 with the inner edge adjacent to w5
produces a cut (see Figure 2.25b).

If w4 is connected to a real white vertex w5 having a real neighboring monochrome
vertex w6, by applying a monochrome modification we can connect w5 to w and then
create a bridge beside v with the inner edge adjacent to w6 in order to produce a dotted
cut (see Figure 2.25c).

Otherwise, the vertex w4 is connected to a real white vertex w5 having a real neighbor-
ing ×-vertex w6 6= w4. If w6 is a simple ×-vertex, a monochrome modification connecting
w5 to w and the creation of a bridge beside w6 with the edge e produces a solid axe (see
Figure 2.26a).

If w6 is a nodal ×-vertex, monochrome modifications connecting w5 to w and w6 to u
bring us to a configuration equivalent to consider the vertices w4 and w2 as real neighbors.
In the case where the vertices w4 and w2 are real neighbors, let us consider w5 the vertex
connected to w1 by an inner bold edge. If w5 is a monochrome vertex, an elementary
move of type ◦-in at w5 followed by the creation of a bridge beside w′4 and an elementary
move of type ◦-out allows to consider the vertex w5 as a white real vertex. The same
applies if w5 is an inner white vertex. Let us assume the vertex w5 is a white real vertex.
If w′4 has a monochrome dotted neighboring vertex, then the creation of a bridge with the
corresponding inner edge beside w5 produces a dotted cut (see Figure 2.26b). Otherwise,
up to a monochrome modification the vertices w′4 and w5 are neighbors.
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Figure 2.26

Let w6 be the vertex connected to w1 by a real solid edge. If w6 is monochrome, it is
connected to a real black vertex w′1 6= w1. Let w7 be the vertex connected to w6 by an
inner solid edge. If w7 is a monochrome vertex, it determines a solid cut.

If w7 is a real nodal ×-vertex, it determines an axe. If w7 is an inner ×-vertex, let
w8 be the vertex connected to u by an inner bold edge. If w8 is a monochrome vertex,
an elementary move of type ◦-in at it allows us to consider w8 as an inner white vertex.
If w8 is an inner white vertex, up to the creation of a dotted bridge is it connected to
a monochrome vertex beside v and then an elementary move of type ◦-out bring us to
the case when w8 is a real white vertex. If w8 is a real white vertex, we perform an
elementary move of type •-in at w and the destruction of the resulting solid bridge. If w7
is a simple ×-vertex, up to the creation of bridges beside the vertices w5 and w8 with the
inner dotted edge adjacent to w7 we construct a cut (see Figure 2.27a). In the case when
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w7 is an inner nodal ×-vertex, up to the construction of bridges beside the vertices w5
and w8 with the inner dotted edges adjacent to w7, respectively, produces a generalized
cut (see Figure 2.27b).
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If w6 is a real simple ×-vertex, let w7 6= w′4 be the vertex connected to w5. If w7 is
a monochrome vertex, the creation of a bridge with the inner dotted edge adjacent to it
beside w6 produces a cut (see Figure 2.28a). If w7 is a nodal ×-vertex, the the creation of a
bridge with the inner solid edge adjacent to it beside w6 produces an axe (see Figure 2.28b).
In the case when w7 6= w6 is a simple ×-vertex, let w8 be the vertex connected to w6 by
a real dotted edge. If w8 is a monochrome vertex, the creation of a bridge with the inner
dotted edge adjacent to it beside w5 produces a cut (see Figure 2.28c).
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Figure 2.28

If w8 is a real white vertex, it is connected to w1 after a monochrome modification.
Let w9 6= w6 be the vertex connected to w8 by a real dotted edge. If w9 is a monochrome
vertex, the creation of a bridge with the inner dotted edge adjacent to w9 beside w5
produce a cut (see Figure 2.29a). If w9 is a nodal ×-vertex, the creation of an inner solid
monochrome vertex with the inner edge adjacent to w9 and the edge [w1, w3] produces
a solid generalized cut (see Figure 2.29b). If w9 is a simple ×-vertex, the creation of a
bridge beside w9 with the edge [w1, w3] produces a cut (see Figure 2.29c).

A special case is when the vertices w7 and w6 are equal. In this setting, we can consider
the vertex w3 as a nodal ×-vertex and made the aforementioned considerations applied
to the vertices w3 and w1 as v and u, respectively. Since the degree of the toile is greater
than 3, the process cannot cycle back to this case (see Figure 2.30a).

Case 2.2: the vertex w is a white vertex. Let w1 be the vertex connected to w by an
inner dotted edge and let w2 6= u be the vertex connected to w by a real bold edge. If
w1 is a monochrome vertex and it is not a real neighboring vertex of v, then the creation
of a dotted bridge beside the vertex v produces a cut (see Figure 2.30b). Otherwise, let
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us assume the vertex w1 to be monochrome and a real neighboring vertex of v. If w2 is
a monochrome vertex, an elementary move of type ◦-in at it followed by an elementary
move of type ◦-out at w1 and the destruction of a possible resulting bold bridge brings
us either to Case 2.1 or to a different configuration within this case. From now on, we
assume the vertex w2 to be black. Let w3 6= v be the vertex connected to w1 by a real
dotted edge.

If w3 is a simple ×-vertex followed by a monochrome vertex w4, which up to a mono-
chrome modification is connected to w2, let w′3 6= w3 be the simple ×-vertex connected to
w4 by a real solid edge. The following considerations apply when the vertex w3 is a nodal
×-vertex, in which case we treat the vertices w′3 and w4 equal to w3. By symmetry of
this configuration and since the degree is greater than 3, we can assume the dividing edge
[w2, w4] does not divide the toile resulting in a graph with only two triangular regions. Let
w5 be the vertex connected to w2 by an inner bold edge. If w5 is a monochrome vertex
or an inner white vertex, up to an elementary move of type ◦-out at it, the creation of a
dotted bridge beside w′3 and an elementary move of type ◦-out allow us to consider it as
a real white vertex. If w5 is a real white vertex and the vertex w′3 has a real neighboring
dotted monochrome vertex, the creation of a bridge with its inner dotted edge beside
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Figure 2.30
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w5 produces a cut (see Figure 2.31a). Otherwise, up to a monochrome modification the
vertices w′3 and w5 are neighbors. Let w6 be the vertex connected to w2 by a solid real
edge.

If w6 is a monochrome vertex, let w7 6= w′3 be the vertex connected to w5 by a real dot-
ted edge. If w7 is a real nodal ×-vertex, up to a monochrome modification it is connected
to w6 defining an axe (see Figure 2.31b). If w7 is a real simple ×-vertex, the creation of
a solid bridge beside w7 with the inner solid edge adjacent to w6 defines a solid cut (see
Figure 2.31c).

Otherwise, the vertex w7 is monochrome. Let w′5 6= w5 be the vertex connected to
w7 by a real dotted edge and let w′2 6= w2 be the vertex connected to w6 by a real solid
edge. Let w8 be the vertex connected to w6 by an inner solid edge, let w9 be the vertex
connected to w′2 by a real bold edge and let w10 be the vertex connected to w′2 by an inner
solid edge (see Figure 2.32a).
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If the vertex w8 is monochrome, it determines a cut.
If the vertex w8 is an inner simple ×-vertex, it is connected to w7 up to a monochrome

modification. In this setting, the vertices w′5 and w′2 are connected up to a monochrome
modification. If w10 is a monochrome vertex, an elementary move of type •-in at w6
followed by an elementary move of type •-out at w10 and an elementary move of type
◦-in at w7 followed by an elementary move of type ◦-out allow us to create a zigzag,
contradicting the maximality assumption (see Figure 2.32b). If w10 is an inner simple
×-vertex, an elementary move of type ◦-in at w7 produces an inner white vertex w′ which
is connected to w10 up to a monochrome modification. Then, up to the creation of a bold
bridge beside w′2 with an inner bold edge adjacent to w′, an elementary move of type ◦-out
allows us to create a zigzag, contradicting the maximality assumption (see Figure 2.33a).
If w10 is a real nodal ×-vertex, we consider the vertex w9. If w9 is a monochrome vertex,
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the edge [w10, w
′
2] corresponds to the configuration in the Case 2.1. Otherwise, the vertex

w9 is a real white vertex, then, up to the creation of a dotted bridge beside w10 with the
inner dotted edge adjacent to w9, an elementary move of type •-in at w6 followed by an
elementary move of type ◦-in produces a generalized cut (see Figure 2.33b).
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Figure 2.33

Otherwise w10 is an inner nodal ×-vertex. If w9 is a real white vertex, up to a mo-
nochrome modification it is connected to w10. Up to the creation of a bridge beside w′5
with an inner dotted edge adjacent to w10, an elementary move of type •-in at w6 followed
by an elementary move of type ◦-in at the resulting bold monochrome vertex produces a
generalized cut (see Figure 2.34a).

If w9 is a monochrome vertex, it is connected to a real white vertex w11. Then, the
creation of bridges beside the vertices w′5 and w11 with the corresponding inner dotted
edges adjacent to w10 produces a generalized cut (see Figure 2.34b).
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If w8 is an inner nodal ×-vertex, up to a monochrome modification it is connected
to w7. Let w11 6= w7 be the vertex connected to w8 by an inner dotted edge. If w11 is
a monochrome vertex, it determines a generalized cut. If w11 is a real white vertex, up
to the creation of a bold bridge beside w11 with the inner bold edge adjacent to w′2 an
elementary move of type •-in at w6 followed by an elementary move of type •-out at the
bridge and the destruction of a possible resulting bridge produce a generalized cut (see
Figure 2.35a).

If w11 is an inner white vertex, it is connected to w′2 up to a monochrome modification.
Let w12 6= w8 be the vertex connected to w11 by an inner dotted edge. If w12 is a
monochrome vertex, it determines a generalized cut. If w12 is an inner simple ×-vertex,
up to a monochrome modification it is connected to w′2 and up to the creation of a bold
bride beside w′2 and an elementary move of type ◦-out at the vertex w11 we can create a
zigzag, contradicting the maximality assumption. If w12 is an inner nodal ×-vertex, up to
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a monochrome modification is it connected to w′2.
If w9 is a monochrome vertex, it is connected to a real white vertex w11. Then, the

creation of a bridge beside w11 with an inner dotted edge adjacent to w10 produces a
generalized cut (see Figure 2.35b).
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If w9 is a real white vertex, up to a monochrome modification it is connected to w10.
Then, an elementary move of type •-in at w6 followed by an elementary move of type ◦-in
at the resulting bold monochrome vertex produces a generalized cut (see Figure 2.35c).

If w6 is a simple ×-vertex, let w7 6= w′3 be the vertex connected to w5 by a real dotted
edge. If w7 is a monochrome vertex or a real nodal ×-vertex, the creation of a bridge
beside w6 with the inner edge adjacent to w7 produces a cut or an axe, respectively. If w7
is a simple ×-vertex, let w8 be the vertex connected to w6 by a real dotted edge. If w8 is
a monochrome vertex, the creation of a bridge beside w7 with the inner edge adjacent to
w8 produces a cut. If w8 is a real white vertex, let w9 be the vertex connected to w8 by a
real dotted edge. We perform a monochrome modification connecting w2 to w8. If w9 is
a monochrome vertex or a nodal ×-vertex, then either the creation of a bridge beside w5
with the inner edge adjacent to w9 or the creation of an inner solid monochrome vertex
with the edge [w2, w4] and the inner edge adjacent to w9 produces a generalized cut. If
w9 is a simple ×-vertex, the creation of a bridge beside it with the edge [w2, w4] produces
a generalized cut.

In the case when w3 is a simple ×-vertex followed by a black vertex w4, let w5 be
the vertex connected to w4 by an inner bold edge. If w5 is a monochrome vertex, an
elementary move of type ◦-in at it allows us to consider w5 as an inner white vertex. If
w5 is a real white vertex, the creation of a bridge beside it with the edge [w,w1] produces
a cut. If w5 is an inner white vertex, the creation of a bridge beside w3 with an inner
dotted edge adjacent to w3 followed by an elementary move of type ◦-out brings us to a
configuration already considered.

If w1 is an inner simple ×-vertex, a monochrome modification connecting it to the
vertex u allows us to create a zigzag, contradicting the maximality assumption.

In the case when the vertex w1 is an inner nodal ×-vertex, it is connected to w2 up
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to a monochrome modification. Let w3 6= w be the vertex connected to w1 by an inner
dotted edge. If w3 is a monochrome vertex, an elementary move of type ◦-in allows us to
consider it as an inner white vertex. If w3 is an inner white vertex, it is connected to w2
up to a monochrome modification. Let w4 be the vertex connected to w2 by a real solid
edge. If w4 is a simple ×-vertex, the creation of a dotted bridge beside it with an inner
dotted edge adjacent to w3 produces a generalized cut. If w4 is a monochrome vertex, let
w5 be the vertex connected to it by an inner solid edge. If w5 is a real vertex, it determines
a cut or an axe. If w5 is an inner ×-vertex, it is connected to w3 up to a monochrome
modification. Then, we perform monochrome modifications connecting u to the vertices
w1 and w3. In this setting, the creation of a bridge beside u with an inner solid edge
adjacent to w5 produces a generalized cut (see Figures 2.36a and 2.36b for when w5 is
simple or nodal, respectively). Otherwise, the vertex w3 is a real white vertex. Let w4
be the vertex connected to w2 by an inner bold edge. If w4 is a real white vertex, the
creation of bridge beside it with the edge [w1, w3] and a bridge beside v with the edge
[w,w1] produces a generalized cut. If w4 is a monochrome vertex, an elementary move
of type ◦-in allows us to consider it as an inner white vertex. Lastly, if w4 is an inner
white vertex, a monochrome modification connecting it to w2 brings us to a configuration
already considered.

Case 2.3: the vertex u is an inner black vertex. If it is connected to a real monochrome
vertex, an elementary move of type •-out either produces an axe or bring us to a considered
case. Let w1, w′1 be the vertices connected to u by an inner bold edge sharing a region
with v. If w1 or w′1 is an inner white vertex, the creation of a bridge beside v with the
inner dotted edge adjacent to it followed by an elementary move allows us to consider it
as a real white vertex. Let w2, w′2 6= v be the ×-vertices connected to u by an inner solid
edge. Let w 6= w1, w

′
1 be the white vertex connected to u (see Figure 2.37a).
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In the case when every vertex connected to u is a real vertex, since we assumed the
dessin do not have cuts and do have degree greater than 3, it is not possible that every
region containing u is triangular. Let R be one region containing u which is not triangular.
Put v′ and w′ the ×-vertex and white vertex connected to u in R, respectively. Let w3 be
the neighboring vertex to w′ in R. If w3 is a monochrome vertex, the creation of a bridge
beside v′ with the inner edge adjacent to w3 produces a cut. If w3 is a nodal ×-vertex,
the creation of an inner solid monochrome vertex with the inner edge adjacent to it and
the edge [v′, u] produces a generalized cut. If w3 is a simple ×-vertex, the creation of a
bridge beside it with the edge [v′, u] produces an axe. Due to these considerations, we can
assume the regions determined by v, u, w1 and v, u, w′1 are triangular.

In the case when the vertex w is a real white vertex and w2 is an inner ×-vertex, we
have two different cases. If w2 is an inner nodal ×-vertex, the creation of bridges beside
w1 and w with the inner dotted edges adjacent to w2 produces a generalized cut (see
Figure 2.37b). If w2 is a simple ×-vertex, the creation of bridges beside w1 and w with
the inner dotted edge adjacent to w2 produces a cut (see Figure 2.37c), unless this is an
inadmissible elementary move, i.e., unless the vertices w1, w and w2 are connected to the
same monochrome vertex.

In this setting, if w′2 it a real nodal ×-vertex, one of the regions determined by w′1, u,
w′2 or w, u, w′2 is not triangular and the aforementioned considerations apply. Otherwise,
the vertex w′2 is an inner ×-vertex. If w′2 is a nodal ×-vertex, the creation of bridges beside
w′1 and w with the inner dotted edges adjacent to w2 produces a generalized cut. If w′2
is a simple ×-vertex, the creation of bridges beside w′1 and w with the inner dotted edge
adjacent to w′2 produces a cut, and since the degree is greater than 3, this is an admissible
elementary move.

If w is an inner white vertex and at least one the vertices w2 and w′2 is a real nodal
×-vertex, the creation of a bridge beside the real ×-vertex with an inner dotted edge
adjacent to w and an elementary move of type ◦-out bring us to the configuration where
w is a real vertex.

If w is an inner white vertex and at least one the vertices w2 and w′2 is an inner simple
×-vertex, up to monochrome modification we can assume the vertex w is connected to
the ×-vertex in which case, the creation of a bridge beside w1 or w′1 with the inner dotted
edge adjacent to the simple ×-vertex and an elementary move of type ◦-out bring us to
the configuration where w is a real vertex.

Finally, if the vertex w is an inner white vertex and the vertices w2 and w′2 are inner
nodal ×-vertices, which up to monochrome modifications are connected to w, then the
creation of dotted bridges beside w1 and w′1 produces a cut (see Figure 2.38a).

2

2

(a)

4

u
(b)

Figure 2.38

Case 3: let v be an inner nodal×-vertex. Due to previous considerations we can assume
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there are no real nodal ×-vertices. If v is connected to two different dotted monochrome
vertices or solid vertices, it defines a generalized cut. Since dp(D) ≤ 1, the vertex v is
connected to a real vertex u. Let us assume that u is a white vertex. If v is connected
to inner black vertices, up to the creation of bold bridges beside u and elementary moves
of type •-out we can assume v is not connected to inner black vertices. Let w be a real
vertex connected to u.

Case 3.1: the vertex w is a black vertex. Up to a monochrome modification it is
connected to the vertex v. Let w1 be the vertex connected to w by an inner bold edge. If
w1 is a monochrome vertex, let w2 be the vertex connected to w by a real solid edge. If w2
is a monochrome vertex, let w3 be the vertex connected to w2 by an inner solid edge. If
w3 is a monochrome vertex, it determines a cut. If w3 is an inner simple ×-vertex, up to
a monochrome modification it is connected to a real white vertex neighboring w1. Then,
an elementary move of type •-in at w2 followed by an elementary move of type •-out at
w1 allows us to construct a zigzag, contradicting the maximality assumption.

If w3 is an inner nodal ×-vertex, let w4 6= w be the vertex connected to the vertex
u by a real bold edge. If w4 is a black vertex, up to a monochrome modification it is
connected to v. We perform an elementary move of type ◦-in at w1 producing an inner
white vertex w′ which up to monochrome modifications is connected to the vertices v, w3
and w4. Then, the creation of a bridge beside w4 with an inner solid edge adjacent to w3
produces a generalized cut (see Figure 2.38b).

If w4 is a monochrome vertex, it is connected to a real black vertex w5 by an inner
bold edge and to a white vertex u′ 6= u by a real bold edge. If w5 is connected to a solid
monochrome vertex, an elementary move of type •-in at it followed by an elementary move
of type •-out at w4 bring us to the consideration where w4 was a black vertex. Otherwise,
the vertex w5 is connected to a simple ×-vertex w6. We perform an elementary move of
type ◦-in at w1. If w6 shares a region with the vertex v, the creation of a bridge beside it
with the edge [v, u] connects v to a monochrome vertex by a chain of inner dotted edges
(see Figure 2.39a). If w6 does not share a region with the vertex v, the creation of a bridge
beside it with the inner dotted edge adjacent to u′, and elementary moves of type ◦-in
at w4 and w1 connects v to a monochrome vertex by a chain of inner dotted edges (see
Figure 2.39b).
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Let w′ 6= w be the vertex connected to w2 by a real solid edge and let w7 be the vertex
connected to w′ by an inner bold edge. If w7 is a real white vertex, the creation of a
bridge beside it with an inner dotted edge adjacent to w3 produces a generalized cut. If
w7 is a monochrome vertex, an elementary move of type ◦-in allows us to consider it as
an inner white vertex. If w7 is an inner white vertex, up to a monochrome modification
it is connected to w3. Let w8 be the vertex connected to w′ by an inner solid edge. If w8
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is an inner simple ×-vertex, it is connected to w7 up to a monochrome modification, then
the creation of a bridge beside u′ with an inner bold edge adjacent to w7 followed by an
elementary move of type ◦-out allows us to create a zigzag, contradicting the maximality
assumption. If w8 is a monochrome vertex, it is connected to a simple ×-vertex sharing a
region with w7. Then, the creation of a bridge beside this simple ×-vertex with a dotted
edge adjacent to w7 produces a generalized cut (see Figure 2.40a). If w8 is a real nodal
×-vertex, the creation of a bridge beside it with a dotted edge adjacent to w7 produces a
generalized cut (see Figure 2.40b). If w8 is an inner nodal ×-vertex, it is connected to w7
up to a monochrome modification. Let w9 be the vertex connected to w′ by a real bold
edge. If w9 is a monochrome vertex, it is connected to a real white vertex determining a
dotted segment, where the creation of a bridge with an inner dotted edge adjacent to w8
produces a generalized cut (see Figure 2.40c). If w9 is a white vertex, it is connected to
w8 up to a monochrome modification. We iterate the considerations starting with w8 as
the vertex v, producing a generalized cut.

8

(a)

8

(b)

8

9

(c)

Figure 2.40

If w2 is a simple ×-vertex, up to the creation of a bridge beside it with the inner
dotted edge of a real white vertex connected to w1, an elementary move of type ◦-in at
w1 followed by an elementary move of type ◦-out beside w2 allow as to consider w1 as a
real white vertex. If w1 is a real white vertex, up to a monochrome modification or the
creation of a dotted bridge, the vertex v is connected to a monochrome vertex beside w1.
Then, we consider the other real vertex connected to u. If w1 is an inner white vertex,
it is connected to v up to a monochrome modification. Let w2 the vertex connected to
w by a real solid edge. If w2 is a simple ×-vertex, the creation of a bridge beside it with
an inner dotted edge adjacent to w1 followed by an elementary move of type ◦-out at the
bridge bring us to the configuration when w1 is a real white vertex. If w2 is a monochrome
vertex, let w′ 6= w the black vertex connected to w2 by a solid real edge and let w3 be the
vertex connected to w2 by an inner solid edge. If w3 is a monochrome vertex, it determines
a cut. If w3 is an inner nodal ×-vertex, up to a monochrome modification it is connected
to w1, corresponding to a previous configuration already considered.

If w3 is an inner simple ×-vertex, up to monochrome modifications it is connected
to w1 and the vertex u′ is connected to the vertices w1 and v. Let S be the bold segment
containing w′. If the segment S contains no white vertices, an elementary move of type
•-in followed by the creation of a bold bridge beside u and an elementary move of type
•-out produces a generalized cut (see Figure 2.41a). If the segment S containing exactly
one white vertex w4, which is connected to a black vertex u′′ 6= u′. Up to monochrome
modification the vertex w4 is connected to the vertex v and the vertex u′′ is connected to
v and w1 corresponding to a configuration already considered. Up to elementary moves of
type ◦-in at monochrome vertex in the bold segment S containing u′ followed by elementary
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moves of type ◦-out at the bold segment containing u we reduce to the case when the
segment S contains one or none white vertices.

3

(a)

2

(b)

Figure 2.41

Case 3.2: the vertex w is a monochrome vertex. Let w1 be the real black vertex
connected to w by an inner bold edge. Let f be the solid real edge adjacent to w1 and
let w2 be the vertex connected to w1 by f . If f does not share a region with the vertex
v, up to a monochrome modification v and w1 are connected. If w2 is a monochrome
vertex, an elementary move of type •-in at w2 followed by an elementary move of type
•-out at w brings us to the previous case. If w2 is a simple ×-vertex, up to the creation
of a bridge beside it with the inner dotted edge adjacent to a neighboring white vertex of
w, an elementary move of type ◦-in at w followed by an elementary move of type ◦-out
beside w2 connects the vertex v to a monochrome vertex (see Figure 2.41a). Then, we
consider the other vertex connected to v by an inner dotted edge.

Otherwise, the edge f shares a region with the vertex v. If w2 is a monochrome vertex,
up to a monochrome modification it is connected to v. Then, an elementary move of type
•-in at w2 followed by an elementary move of type •-out at w brings us to Case 3.1. Lastly,
if w2 is a simple ×-vertex, the creation of a bridge beside it with the edge [v, u] connects
v with a monochrome vertex (see Figure 2.41b). Then, we consider the other real vertex
connected to u.

Case 3.3: the vertex u is a real black vertex. Let f be the inner bold edge adjacent
to u. Let w be an inner white vertex connected to v. If the edge f does not share a
region with the vertex w, up to the creation of a bridge beside u with an inner bold edge
adjacent to w, an elementary move of type ◦-out bring us to the previous case. If the edge
f shares a region with the vertex w, up to a monochrome modification it does connects
the vertex w to the vertex u. Let w1 be the vertex connected to u by a real solid edge. If
w1 is a monochrome vertex, it is connected to a black vertex u′ 6= u. Let w2 be the vertex
connected to w1 by an inner solid edge. If w2 is a monochrome vertex, it defines a solid
cut. If w2 is an inner simple ×-vertex, up to monochrome modifications the vertex w2 is
connected to w and the vertex u′ is connected to the vertices w and v, bringing us to a
configuration already considered. If w2 is an inner nodal ×-vertex, up to a monochrome
modification it is connected to the vertex w corresponding to a configuration considered
in Case 3.1. If w1 is a simple ×-vertex, up to the creation of a bridge beside w1 with
an inner dotted edge adjacent to w, an elementary move of type ◦-out connects v to a
monochrome vertex.



70 CHAPTER 2. NODAL TRIGONAL CURVES AND THEIR DESSINS



Chapter 3

Real plane curves and Hirzebruch
surfaces

3.1 Hirzebruch surfaces

From now on we consider ruled surfaces with the Riemann sphere B ∼= CP1 as base curve.
The Hirzebruch surfaces Σn are toric surfaces geometrically ruled over the Riemann sphere,
determined up to isomorphism of complex surfaces by a parameter n ∈ N. They are
minimal except for Σ1, which is isomorphic to CP2 blown up in a point. The surface Σn is
defined by the local charts U0 ×CP1 and U1 ×CP1 where U0 = {[z0 : z1] ∈ CP1 | z0 6= 0},
U1 = {[z0 : z1] ∈ CP1 | z1 6= 0} glued along C∗ via the map

C∗ × CP1 −→ C∗ × CP1

(z, w) 7−→
(

1
z ,

w
zn

) .

The exceptional section is the section at infinity S∞ such that S2
∞ = −n (n ≥ 0). We

denote its homology class by [E]. The second homology group of the Hirzebruch surfaces
H2(Σn,Z/2Z) is generated by the homology classes [Z] and [f ] of the null section S0,
denoted by Z, and of a generic fiber f , respectively. The intersection form is determined
by the Gram matrix (

n 1
1 0

)
with respect to the base {[Z], [f ]}. The homology class of the exceptional section is given
by

[E] = [Z]− n[f ].

Performing a positive Nagata transformation on Σn results in a geometrically ruled surface
isomorphic to Σn+1 (since the exceptional divisor decreases its self-intersection by one).
Likewise, a negative Nagata transformation on Σn (n > 0) results in a geometrically ruled
surface isomorphic to Σn−1.

Setting (C)2 ⊂ Σ, the trigonal curve C can be described by a polynomial in two vari-
ables f(z, w) = q0(z)w3 + q1(z)w2 + q2(z)w+ q3(z) in which q0 determines the intersection
with the exceptional fiber. If the trigonal curve C is proper, then q0 must be constant.
We can suppose q0 equal to 1. Up to affine transformations of C, we can set the sum of
the roots of f(z, ·) equal to 0, resulting in the Weiertraß equation

w3 + q2(z)w + q3(z).
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P

Σ1

Figure 3.1: A real plane cubic with two zigzags and one oval, and its pencil of lines seen
in Σ1.

Since C is a trigonal curve, then [C] = 3[Z] + 0[f ]. Therefore, the intersection product
[C] · [Z] = 3n equals the degree of q3(z). Since this explicit description must be invariant
by the coordinate change (z, w) 7−→ (1

z ,
w
zn ), the degree of q2 must be 2n. Hence, the

j-invariant

j = −4q3
2

∆ , ∆ = −4q3
2 − 27q2

3

is a rational function of degree 6n if the curve is generic (i.e., the polynomials q2 and q3
have no zeros in common).

3.2 Relation with plane curves

Let A ⊂ CP2 be a reduced algebraic curve with a distinguished point of multiplicity
deg(A)− 3 such that A does not have linear components passing through P . The blow-up
of CP2 at P is isomorphic to Σ1. The strict transform of A is a trigonal curve CA := Ã ⊂
Σ1, called the trigonal model of the curve A. A minimal proper model of A consists of a
proper model of CA and markings corresponding to the images of the improper fibers of
CA by the Nagata transformations.

3.3 Real algebraic plane curves of degree 3

Let A ⊂ CP2 be a real smooth cubic. Let p ∈ CP2 a real point which does not belong
to A and let B ∼= CP1 ⊂ CP2 be a real line which does not pass through p. The pencil
of lines passing through p can be parametrized by B, mapping every line L 3 p to L ∩B.
The blow-up of CP2 at p is isomorphic to a real geometrically ruled surface over B.
The strict transform of A is a real proper trigonal curve C ⊂ Σ1 (since it is proper,
it is already a minimal proper model for A). Since the real structures are naturally
compatible, we associate to C its real dessin Dssn(C)c on the quotient of B ∼= CP1 by the
complex conjugation. Up to elementary equivalence, all the possible dessins are shown on
Figure 3.2. They are named by either their type (cf. Definition 1.3.9) and the number
of zigzags they possess (in the non-hyperbolic case, cf. Definition 1.1.18) or by H in the
case of the hyperbolic cubic. Up to weak equivalence there are only three classes of cubics,
namely the ones of type I, type II and the hyperbolic one, corresponding to the rigid
isotopy classification of couples (A, p) of real cubic curves and one additional point of the
plane outside A.
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1

2

3

I2

21

I1 I0

II3

1

2

II2 II1

II0 H

Figure 3.2: Classes of cubic dessins up to elementary equivalence.
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3.3.1 Positive and negative inner nodal ×-vertices

Motivated by Proposition 5.1.10 we make the following definition.

Definition 3.3.1. Let v be an inner nodal ×-vertex of a type I dessin. We say that v is
positive if all the regions containing v are labeled 1. Otherwise, we say that v is negative.

Given a real nodal curve X, we denote by c the number of nodal points in CX \ RX.
If X is a plane or trigonal curve, let X̂ be the normalization of a type I perturbation of X
and let X̂+ and X̂− the connected components of CX̂ \RX̂. We put σ(X) = #(X+∩X−),
where X± ⊂ CX is the image of X̂± under the normalization map CX̂ −→ CX.

Let X be a type I curve in RP2 of odd degree. We denote by Λ+(X) (resp., Λ−(X))
the number of positive (resp., negative) oval and by Π+(X) (resp., Π−(X)) the number of
positive (resp., negative) injective pair of a type I perturbation of X.

Theorem 3.3.2 (Rokhlin’s complex orientation formula for nodal plane curves in RP2 of
odd degree [8]). Let X be a nodal type I plane curve of degree d = 2k + 1. Then

Λ+(X)− Λ−(X) + 2(Π+(X)−Π−(X)) = l − k(k + 1) + σ(X),

where l is the number of ovals in a type I perturbation of X.

We say that an elliptic nodal point of a type I plane curve X is positive (resp., negative)
if its corresponding oval in the type I perturbation of X is positive (respectively, negative).
In the same manner, we say that an isolated nodal ×-vertex of a type I dessin D is positive
(resp., negative) if its corresponding oval in the type I perturbation of D is positive (resp.,
negative).

Definition 3.3.3. Given a dessin D, we denote by c(D) twice the number of the inner
nodal ×-vertices of D and by σ(D) twice the number of the negative inner nodal ×-vertices
of D.

Proposition 3.3.4. If X ⊂ Σ is a type I real trigonal curve with associated real dessin D,
then

σ(X) = σ(D).

Proof. Every pair n, n̄ of complex conjugated nodal points of X corresponds to an inner
nodal ×-vertex vn, and vice versa. By definition, the number σ(X) counts the nodal points
of the curve X lying in CX \ RX such that they belong to both the images of the halves
CX̂± of the normalization of X on X, each imposing an obstruction for X to be perturbed
to a type I non-singular curve. In the case when the nodal point n does not contribute
to σ(X), it has a local type I perturbation and so does its corresponding vertex vn. Since
every inner simple ×-vertex of type I is labeled by 1, so are all the regions containing vn
and hence, it is positive.

Corollary 3.3.5. Let C be a nodal rational curve of degree 5 whose type I perturbation has
l ovals. Assume that C has an elliptic nodal point p ∈ RC. Then, the type I perturbation
of the marked toile (DC , vT1 , vT2) associated to (C, p) has l−1 ovals and c(DC) = c(C)+2.

Proof. The elliptic nodal point p is perturbed to an oval in the type I perturbation of C,
and every other oval different from the one arisen from p appears in the type I perturbation
of DC . Every inner nodal ×-vertex of DC represents either a pair of complex conjugated
nodal points of the curve C or the pair of complex conjugated tangent lines of C at p.
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Recall that for a proper non-isotrivial trigonal curve X ⊂ Σn −→ CP1, a real white
vertex v in the associated toile corresponds to an intersection of the curve X with the
zero section Z ⊂ Σn. When n is even, the real point set RΣn is homeomorphic to a torus
and the long component of X together with the exceptional divisor divide RΣn into two
connected components. When n is odd, the real point set RΣn is homeomorphic to a Klein
bottle, and the dividing property does not hold. Assume that n is odd, the curve X is of
type I, the real point set RX is non-singular and has a zigzag z delimitated by vertices u1
and u2 in DX .

Denote by s = z \ {u1, u2} the interior of the zigzag. We say that a simple ×-vertex
in DX is on the same side as the zigzag z if the number of white real vertices in the
connected components of ∂DX \ (s∪{v}) is even. We say that an oval is on the same side
as the zigzag z if its delimiting vertices are on the same side of the zigzag z. We denote
by Λ+

z (X) (resp., Λ−z (X) ) the number of positive (resp., negative) ovals on the same side
as the zigzag z.

Theorem 3.3.6. Let X be a type I nodal proper trigonal curve in the Hirzebruch surface
Σn

π−→ CP1, n = 2k+ 1, and let DX be its associated toile. Assume that the real point set
RX has a zigzag z. Then,

2(Λ−z (X)− Λ+
z (X)) + l + σ(X) = 2n+ 2,

where l is the number of connected components in the real point set of the type I perturbation
of X. Furthermore, we have

Λ−(X)− Λ+(X) + (l − 1) + σ(X) = 2n.

Proof. The proof follows the standard scheme of the proof of Rokhlin’s formulas of complex
orientations. Considering instead of the curve X its type I perturbation, we can assume
that the real point set RX of X is non-singular. Since X is a type I curve, the set CX \RX
has two connected components. Choose one of the connected components of CX \ RX
and denote by CX+ ⊂ CX its closure. The orientation of CX+ induces an orientation
of RX. Then, the long component L of RX produces via π an orientation of RP1. Let
CE+ be the closed hemisphere of the exceptional section E ' CP1 such that the induced
orientation of RE produces via π the orientation of RP1 opposite to the one produced by
the long component of RX. Pick a white vertex v belonging to the zigzag z and consider
the corresponding fiber F = π−1(v). Let CF+ be the closed hemisphere of F ' CP1 such
that L ∪ RE ∪ RF endowed with the described orientations of L and RE has a type I
perturbation with a unique connected component. Note that if we equip RF with the
opposite orientation, the set L∪RE ∪RF has a type I perturbation with three connected
components.

Let Y+ be the type I perturbation of CX+ ∪CE+ ∪CF+. Then, the boundary ∂Y+ is
a collection I of contractible circles in RΣn. Put

w+ = [Y+ ∪
⋃
i∈I

Ui] ∈ H2(Σn),

w− = [Y− ∪
⋃
i∈I

U i] ∈ H2(Σn),

where Ui ⊂ RΣn, i ∈ I, are the disks whose oriented boundaries coincide with the con-
nected components of ∂Y+, the set Y− is conj(Y+), and Ui is the disk Ui with the opposite
orientation.
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In order to calculate w+ · w−, let us notice that w+ + w− = [X] + [E] + [F ] and
conj∗(w+) = −w−. Since conj∗ acts inH2(Σn) as multiplication by −1, we have w++w− =
w+ − conj∗(w+) = 2w+. Hence, w+ = w− = 1

2([X] + [E] + [F ]).
Since X ⊂ Σn is a proper trigonal curve, we have [X] = 3[E] + 3n[F ]. Then,

w+ · w− =
( [X] + [E] + [F ]

2

)2

=
(4[E] + (3n+ 1)[F ]

2

)2

= −4n+ 2(3n+ 1)
= 2n+ 2.

On the other hand, we can calculate the product w+ · w− in a geometrical way. We
proceed using the arguments proposed in [12]. Choose a smooth tangent vector field V
on RΣn such that the vector field has only nondegenerate singular points, the singular
points are outside of ∂Y+, and on ∂Y+ the field is tangent to ∂Y+ and directed according
to the orientation induced from Y+. Extend smoothly the vector field to Y+ such that
it is supported on a tubular neighborhood of ∂Y+. Shift ∂Y+ inside Y+ along ε

√
−1V ,

where ε is a sufficiently small positive real number, and extend this shift to a shift of
the disks Di, i ∈ I, along ε

√
−1V . Denote by Ỹ the result of the shift of Y+ ∪

⋃
i∈I Di.

By continuity of the shift, we have that [Ỹ ] = w+. Then, we can calculate w+ · w−
as the intersection of the cycles Ỹ and Y− ∪

⋃
i∈I Di, which intersect at the singular

points of V and the complex nodes of X that contribute to σ(X). At a singular point x
they are smooth transversal two-dimensional submanifolds, each taken with multiplicity
−iRA(x). The local intersection number at x is equal to (iRA(x))2 multiplied by the local
intersection number of the submanifolds supporting the cycles. The latter is equal to the
index of the vector field V at x multiplied by −1 due to the fact that multiplication by√
−1 induces an isomorphism between the tangent and the normal fibrations of RA in CA

reversing orientation. Calculating the local intersection numbers we have that every disk
Ui, i ∈ I, contributes 1. For every positive (resp., negative) injective pair the contribution
is −2 (resp., 2). The cardinality of I is the number l of connected components of RX.
The number of positive (resp., negative) injective pairs in ∂Y+ correspond to the number
Λ+
z (X) (resp., Λ−z (X) ) of positive (resp., negative) ovals of X on the same side as the

zigzag z. Therefore,

2(Λ−z (X)− Λ+
z (X)) + l + σ(X) = 2n+ 2. (3.1)

Now, let us consider the other closed hemisphere CF− of F . Let Z+ be the type I per-
turbation of CX+∪CE+∪CF−. Then, the boundary ∂Z+ is a collection J of contractible
circles in RΣn. Put

u+ = [Z+ ∪
⋃
i∈J

U ′i ] ∈ H2(Σn),

u− = [J− ∪
⋃
i∈J

U
′
i] ∈ H2(Σn),

where U ′i ⊂ RΣn, i ∈ J , are the disks whose oriented boundaries coincide with the
connected components of ∂Z+, the set Z− is conj(Z+), and U ′i is the disk U ′i with the
opposite orientation.
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In order to calculate the homological product u+ · u− we proceed as before. We have
that u+ + u− = [X] + [E] + [F ] and conj∗(w+) = −w−, which lead us to the fact that
u+ = u− = 1

2([X] + [E] + [F ]). Therefore, we have u+ · u− = w+ · w− = 2n+ 2.
The product u+ ·u− can be calculated geometrically exactly in the same way as above.

The cardinality of J is l+2. The number of positive (resp., negative) injective pairs in ∂Z+
correspond to the number Λ+(X) − Λ+

z (X) (resp., Λ−(X) − Λ−z (X) ) of positive (resp.,
negative) ovals of X which are not on the same side as the zigzag z. Therefore,

2[(Λ−(X)− Λ+
z (X))− (Λ−(X)− Λ−z (X))] + l + 2 + σ(X) = 2n+ 2. (3.2)

Hence, from Equations (3.1) and (3.2) we obtain that

Λ−(X)− Λ+(X) + (l − 1) + σ(X) = 2n.
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Chapter 4

Real pointed quartic curves

Let A be a curve of degree 4 in RP2, and let p ∈ RA be a point. Consider the geometrically
ruled surface Σ1 ∼= Blp(CP2) −→ CP1 which is the blow-up at the point p of the complex
projective plane. Assume that p ∈ A is smooth. Then, the strict transform of CA ⊂ CP2

is a trigonal curve C ⊂ Σ1. The intersection of the exceptional divisor E with the strict
transform C consists of one point. Geometrically, it represents the tangent line to A
at p. Performing the Nagata transformation on the intersection point q ∈ E ∩ C ⊂ Σ1
transforms C into a proper trigonal curve C̃ ⊂ Σ2. Since the fiber of C ⊂ Σ1 −→ CP1

passing through q intersects C in two other points, the trigonal curve C̃ has a node. We
mark this node in order to obtain a minimal proper model for (A, p).

We are interested in the moduli space of real pointed quartic curves. Therefore, we
impose genericity conditions on the couple (A, p), namely we assume the curve A to be
smooth and we assume the point p to be a point of A such that the tangent line of A
at p intersects A in two other distinct points. Equivalently, the tangent line of A at p is
not a bitangent of A and p is not an inflection point of A. This condition is based on the
genericity condition for the Weierstraß coefficients sections presented in Definition 2.0.5
within trigonal curves with a fixed marked nodal point.

Proposition 4.0.1 (Classification of degree 6 uninodal toiles). The weak equivalence class
of a degree 6 uninodal toile is determined by its number of ovals, its type (w.r.t. complex
orientations) and the nature of the segment containing the only singular ×-vertex, as
shown in Tables 4.1 to 4.5.

Proof. Due to Proposition 2.1.3, a uninodal toile of degree 6 is the gluing of two cubics via
a dotted cut or an axe. Let v be the nodal ×-vertex. If v is a non-isolated nodal ×-vertex,
let S be the dotted segment containing v and let S1, S2 be the connected components
of S \ {v}. Up to weak equivalence, the set of parities of the numbers of white vertices
in S1, S2 is an invariant of the weak equivalence class. Enumerating all weak equivalence
classes we obtain that every class is determined by its number of ovals, its type (w.r.t.
complex orientations) and the set of parities of the numbers of white vertices in S1, S2 as
shown in the Tables 4.1 to 4.5.

Theorem 4.0.2 (Classification of generic real pointed quartic curves). There is a one-to-
one correspondence between the weak equivalence classes of degree 6 uninodal toiles and
the chambers of generic real pointed quartic curves in their moduli space, given by the
figures in Tables 4.1 to 4.5.

Proof. This is a consequence of Theorem 1.3.4 and the fact that creating/destroying a
zigzag are deformations that remain within the rigid isotopy class. Every weak equivalence
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class found in Proposition 4.0.1 corresponds to a rigid isotopy class of generic real pointed
quartic curves.

Table 4.1: b0(RC) = 1.

A ∶= I102 + II03

��

B ∶= 2II03

��

BH ∶= 2I102

��

C ∶= I202 + II03

��

D ∶= 2I202

��A1 ∶= I112 + II13

��

A2 ∶= 2II13

��

B0 ∶= 2I112

��

B2 ∶= I212 + II13

��

BH1 ∶= I112 + I212

��

C2 ∶= 2I212

��A1 ∶= I112 + II13

��

A2 ∶= 2II13

��

B0 ∶= 2I112

��

B2 ∶= I212 + II13

��

BH1 ∶= I112 + I212

��

C2 ∶= 2I212

��
P

P
P

Table 4.2: b0(RC) = 2, type II.

A ∶= I102 + II03

��

B ∶= 2II03

��

BH ∶= 2I102

��

C ∶= I202 + II03

��

D ∶= 2I202

��

P

��

BH2

��

H2

��

B1

��

C0

��

C1

��

D0

��

D1

��

D2

��

D′

P

A1 ∶= I112 + II13

��

A2 ∶= 2II13

��

B0 ∶= 2I112

��

B2 ∶= I212 + II13

��

BH1 ∶= I112 + I212

��

C2 ∶= 2I212

��

P

A1 ∶= I112 + II13

��

A2 ∶= 2II13

��

B0 ∶= 2I112

��

B2 ∶= I212 + II13

��

BH1 ∶= I112 + I212

��

C2 ∶= 2I212

��

P
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Table 4.3: b0(RC) = 3.

A ∶= I102 + II03

��

B ∶= 2II03

��

BH ∶= 2I102

��

C ∶= I202 + II03

��

D ∶= 2I202

��
P

��

BH2

��

H2

��

B1

��

C0

��

C1

��

D0

��

D1

��

D2

��

D′

P

A1 ∶= I112 + II13

��

A2 ∶= 2II13

��

B0 ∶= 2I112

��

B2 ∶= I212 + II13

��

BH1 ∶= I112 + I212

��

C2 ∶= 2I212

��
P

��

BH2

��

H2

��

B1

��

C0

��

C1

��

D0

��

D1

��

D2

��

D′

P

Table 4.4: b0(RC) = 2, type I.

A ∶= I102 + II03

��

B ∶= 2II03

��

BH ∶= 2I102

��

C ∶= I202 + II03

��

D ∶= 2I202

��

P

A1 ∶= I112 + II13

��

A2 ∶= 2II13

��

B0 ∶= 2I112

��

B2 ∶= I212 + II13

��

BH1 ∶= I112 + I212

��

C2 ∶= 2I212

��
P

��

BH2

��

H2

��

B1

��

C0

��

C1

��

D0

��

D1

��

D2

��

D′

P

��

BH2

��

H2

��

B1

��

C0

��

C1
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Table 4.5: b0(RC) = 4.
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Chapter 5

Real quintic rational curves

Let X be a real rational plane curve of degree 5. A generic rational plane curve has only
nodal singular points. A double point of X is called elliptic (resp., hyperbolic) if it is given
in local coordinates (x, y) by the equation x2 + y2 = 0 (resp., x2 − y2 = 0). A double
point of X is called imaginary if it belongs to CX \ RX. Since X is real, the imaginary
nodal points come in pairs of complex conjugated points. Topologically, the real point set
RX ⊂ RP 2 of a generic real rational curve X is the disjoint union of a circle generically
immersed in RP2 and a finite set of elliptic nodes (cf. [8]).

Let us denote by e the number of elliptic nodal points and by h the number of hyper-
bolic nodal points of the curve X. Then, we have b0(RX) = 1 + e and b1(RX) = 1 + h.
For the complex point set of a generic rational curve, the Betti numbers depend only on
the degree of the curve, namely b0(CX) = 1 = b2(CX) and b1(CX) = (d−1)(d−2)

2 . Since X
is of degree 5, applying the Smith-Thom theorem we obtain that b∗(RX) = 2 + e + h ≤
b∗(CX) = 2 + 6. By the Smith congruence, the number of real nodal points of the curve
X is an even number less or equal than 6.

Assume that the curve X has at least one real nodal point p ∈ RX. Such a pair is
called a marked real rational plane curve. Since the point p has multiplicity deg(X) − 3,
after blowing up the point p ∈ CP2, the pencil of lines passing through p determines a
trigonal curve C1 ⊂ Σ1. The curve C1 intersects the exceptional divisor in two different
points T1 and T2, each one corresponding to a tangent line of the curve X at the point p
in one of the crossing branches. If the curve is generic, each tangent line Ti intersects
X \ {p}, the complement of the point p, in two different points. Then, applying positive
Nagata transformations at the points Ti produce a proper trigonal curve CX ⊂ Σ3 with
two additional nodal points nT1 and nT2 .

If the nodal point p ∈ RX is hyperbolic, the tangent lines to the curve X at the point p
are real, and they transform into real nodes. Since the point p is nodal, a real tangent Ti
intersects the curve X at the point p with multiplicity 3. If the line RTi intersects RX \{p}
in two different real points, the corresponding nodal point nTi ∈ CX is a hyperbolic nodal
point. Otherwise, the line Ti intersects CX at two non-real points and the corresponding
nodal point nTi is elliptic.

If the base nodal point p ∈ RX is elliptic, the tangent lines to the curve X at the
point p are a couple of complex conjugated lines T and T , each one intersecting CX \RX
in two different points. Hence, the corresponding nodal points nT and nT are a pair of
complex conjugated nodal points and their associated vertex vT is an inner nodal ×-vertex.

Definition 5.0.1. Given a marked real rational plane curve (X, p) of degree 5, we call
the marked dessin of (X, p) the toile associated to the real proper trigonal curve CX ⊂ Σ3

83



84 CHAPTER 5. REAL QUINTIC RATIONAL CURVES
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⨉⨉

Figure 5.1: Example of a real nodal rational curve with three different markings and their
associated marked dessin.

endowed with two nodal ×-vertices vT1 , vT2 corresponding to the nodal points nT1 and
nT2 , respectively.

On the other hand, given a marked degree 9 toile (D, vT1 , vT2), performing negative
Nagata transformations of the associated trigonal curve CX ⊂ Σ3 at the nodes correspond-
ing to the vertices vT1 and vT2 followed by the blow-down of the exceptional section of Σ1,
gives rise to a real degree 5 plane curve XD endowed with a nodal point p ∈ RXD.

Definition 5.0.2. Let D ⊂ S be a real dessin. Let us assume there is a subset of S
in which D has a configuration of vertices and edges as in Figure 5.2. Replacing this
configuration with the alternative one defines another dessin D′ ⊂ S. We say that D′ is
obtained fromD by passing a nodal point through an inflexion point. Two dessinsD, D′ are
very weakly equivalent if there exists a finite sequence of dessins D = D0, D1, . . . , Dn = D′

such that Di+1 is either weakly equivalent to Di or it is obtained from Di by passing a
nodal point through an inflexion point.

Definition 5.0.3. Let D ⊂ S be a real dessin and let vT a marked nodal ×-vertex of D.
Assume there is a neighborhood of vT in which D has a configuration of vertices and edges
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Figure 5.2: Passing a nodal point through an inflexion point.

as one in Figure 5.3. Then, replacing this configuration with the corresponding alternative
one defines another dessinD′ ⊂ S. We say thatD′ is obtained fromD by passing a singular
fiber through a tangent line. Two marked dessins (D, vT1 , vT2), (D′, v′T1

, v′T2
) are equivalent

if there exists a finite sequence of dessins D = D0, D1, . . . , Dn = D′ such that Di+1 is
either very weakly equivalent to Di or it is obtained from Di by passing a singular fiber
through a tangent line.

In Figure 5.3 we have the possible equisingular deformations of the curve when the
tangent line T is a bitangent of X or when the tangent line T intersects one additional
nodal point (hyperbolic or elliptic). When the base point p ∈ X is an inflection point of one
branch of RX, passing a marked nodal point through the inflexion point p defines a relation
corresponding to the equisingular perturbations of the curve, as shown in Figure 5.4.

Theorem 5.0.4. There is a one-to-one correspondence between the set of rigid isotopy
classes of marked real nodal rational degree 5 curves and the set of equivalence classes of
rational degree 9 marked toiles.

Proof. This is a consequence of Theorem 1.3.4 and the fact that passing a nodal point
through an inflexion point and passing a singular fiber through a tangent line are equiv-
ariant equisingular deformations that do not change the rigid isotopy class.

Definition 5.0.5. Given a nodal type I dessin D, we call the type I perturbation of D the
dessin obtained by perturbing every non-marked isolated nodal ×-vertex into an oval and
every non-isolated nodal vertex either into an inner simple ×-vertex if its labeling is 1 or
into two real simple ×-vertices if its label is 1.
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⨉⨉vT ⨉⨉vT

T

p

T

p

(a) Passing a simple tangent through the tangent line T .

⨉⨉⨉⨉vT ⨉⨉vT⨉⨉

T

p

T

p

(b) Passing an elliptic nodal point of the curve through the tangent line T .

⨉⨉⨉⨉vT ⨉⨉vT⨉⨉

T

p

T

p

(c) Passing a hyperbolic nodal point of the curve through the tangent line T .

Figure 5.3: Passing a singular fiber through a tangent line.

For an irreducible type I real nodal plane curve X, its type I perturbation consists of a
curve having a non-singular real part RX where every elliptic node has been perturbed to
an oval and every hyperbolic node has been perturbed according to a complex orientation
of the crossing branches. Perturbing the real point set of the curve in any other way does
not produce a type I curve. Moreover, if the curve X is anM -curve, its type I perturbation
is non-singular.

5.1 Maximally perturbable curves
Definition 5.1.1. A real algebraic curve C in RP 2 is maximally perturbable if there is a
real perturbation C0 of C such that C0 is an M -curve.

Recall that an M -quintic has six ovals in a convex position: they form a hexagon. If
we fix a point p at the interior of an oval, the pencil of lines passing through p induces
an order on the ovals. Varying the fix point among the ovals, we can assign to every oval
two neighboring ones, defining a reversible cyclic order on them. If a type I maximally
perturbable curve C has an elliptic nodal point, the oval produced by it in a type I
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⨉⨉vT ⨉⨉vT

T p T p

Figure 5.4: Passing a marked nodal point through an inflexion point.

perturbation of C must respect its relative position with respect to its neighboring ovals,
and so does the elliptic nodal point of the original curve (see Figure 5.5).

Figure 5.5: The rigid isotopy class of non-singular M -quintic curves.

Lemma 5.1.2. If a real nodal rational plane curve is maximally perturbable, then it is
maximal.

Proof. Let C be a real nodal rational plane curve of degre d. In the type I perturbation C̃ of
the curve C every oval comes either from an elliptic nodal point or from an oval attached
by a hyperbolic nodal point to a chain of ovals, which in the case when d is odd, is
subsequently attached to the pseudoline. Therefore, the number of ovals l in C̃ is less
than of equal than the sum e+ h+ 1. Since C̃ is maximal, it has (d−1)(d−2)

2 + 1 connected
components of the real point set. Thus, the total Betti number

b∗(RC) = 2 + e+ h ≥ 2 + (d− 1)(d− 2)
2 = b∗(CC).
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By the Smith-Thom inequality these quantities are in fact equal and the curve C is max-
imal.

Corollary 5.1.3. Let C be a maximal nodal rational curve of degree 5. Assume C has a
hyperbolic nodal point p ∈ RC. Then, the corresponding proper trigonal curve C ⊂ Σ3 is
maximal.

Proof. Since C is a maximal nodal rational curve of degree 5, we have that e+h = 6. Let
e′ and h′ the numbers of elliptic and hyperbolic nodal points of the curve RC. Due to the
fact that the base point p is hyperbolic, the nodal points nT1 and nT2 corresponding to the
tangent lines of C at p are real. The base point p disappears on the strict transform, hence
e′ + h′ = e + (h − 1) + 2 = 7. Since C is obtained from C by birational transformations,
it is rational. Thus, the total Betti number of the real point set b∗(RC) = 2 + e′ + h′ = 9.
On the other hand, since a non-singular trigonal curve lying on Σ3 has genus 7, the total
Betti number of the complex point set b∗(CC) is equal to 9.

Lemma 5.1.4. Let C be a maximally perturbable real nodal rational curve of degree 5.
Assume that C has a hyperbolic nodal point p ∈ RC belonging to the pseudoline of a
type I perturbation of C. Then, the type I perturbation of the marked toile (DC , vT1 , vT2)
associated to (C, p) is a non-singular maximal toile.

Proof. Let us consider the curve C0 obtained by a type I perturbation of every nodal point
of C except for the base point p. The curve C0 has five ovals and such ovals appears in the
type I perturbation of the marked toile (DC , vT1 , vT2) associated to (C, p). If one of the
tangent Ti produces an isolated nodal ×-vertex vTi , it is perturbed to an oval. Since the
number of ovals of a type I curve has the same parity as a maximal curve, the number of
ovals of (DC , vT1 , vT2) is seven. Otherwise the tangent lines T1 and T2 produce non-isolated
nodal ×-vertices. Since the original trigonal curve C ⊂ Σ3 is rational, the hyperbolic nodes
nT1 and nT2 belong to the long component. Topologically, the long component is a circle
with two simple crossings, whose type I perturbation has 3 components. Therefore, the
type I perturbation of the marked toile (DC , vT1 , vT2) has one long component and seven
ovals. Since all singularities of the original curve C are real and the base point p is real,
the toile DC has no inner singular vertices.

Definition 5.1.5. Given a type I marked dessin (D, v1, v2), we call an oval O of its type I
perturbation a true oval if none of the vertices linking O to the pseudoline or other ovals
is marked.

Corollary 5.1.6. Let C be a nodal real rational curve of degree 5 whose type I pertur-
bation has l ovals. Assume that C has a hyperbolic nodal point p ∈ RC belonging to the
pseudoline of the type I perturbation of C. Then, the type I perturbation of the marked
toile (DC , vT1 , vT2) associated to (C, p) has l + 1 ovals, among which l − 1 are true ovals.

Proof. As in the proof of Lemma 5.1.4, there are l − 1 ovals in the type I perturbation
of the marked dessin DC arising from ovals of the the curve C0 obtained by realizing a
type I perturbation of every nodal point of C except for the base point p. The remaining
two ovals come either from an isolated nodal point vi or from a non-isolated nodal point
vi representing the self-intersection of the long component.

Due to the previous lemma, we use the classification of smooth trigonal M -curves. We
state a version of the theorem suitable for the content of this work. The theorem can be
found in full statement in [3].
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Theorem 5.1.7 ([3]). Any smooth real trigonal M -curve X ⊂ Σ3 has a corresponding
dessin D ⊂ D2 which has a canonical decomposition as the gluing of three cubic dessins of
type I along dotted generalized cuts corresponding to zigzags on the cubics.

The previous theorem states that any non-singular maximal toile D of degree 9 is
decomposed as the gluing of three type I cubics A, B and A′ along edges belonging to a
zigzag. If the decomposition takes the form A−B−A′, where D1−D2 indicates that the
dessin D1 is glued to the dessin D2, then the cubic B is the cubic I2 and the cubics A and
A′ are either I1 or I2.

Lemma 5.1.8. Let (DC , vT1 , vT2) be the marked toile associated to a maximally perturbable
nodal rational curve C of degree 5 with a hyperbolic nodal point p ∈ RC belonging to the
pseudoline. Then, the marked toile (DC , vT1 , vT2) is equivalent to a marked toile (D′, v′1, v′2)
whose type I perturbation is the gluing of cubics I1 − I2 − I1.

Proof. Due to Lemma 5.1.4, the type I perturbation of the toile DC is A− I2 −A′ where
A and A′ are either I1 or I2. If the cubic A equals I2, let Z be the zigzag other than the
one where the gluing takes place. If the zigzag Z comes from a zigzag belonging to the
toile DC , then the destruction of the zigzag Z followed by an elementary move of type
•-in produces a marked toile whose type I perturbation has a cubic I1 in the place of A. If
the zigzag Z comes from perturbing a non-isolated nodal ×-vertex v, then passing a nodal
point through an inflexion point followed by an elementary move of type •-in produces
a marked toile whose type I perturbation has a cubic I1 in the place of A. A symmetric
argument applied to the cubic A′ proves the statement.

Henceforth, let ve and vh be the numbers of isolated and non-isolated marked nodal
×-vertices of a marked dessin (D, v1, v2).

Proposition 5.1.9. Let C be a maximally perturbable nodal rational curve of degree 5 in
RP2 such that the curve C has at least one hyperbolic nodal point. Then, the rigid isotopy
class of C is determined by its isotopy class and the relative position of its elliptic nodes.
Namely, the curve C belongs to one of the rigid isotopy classes represented in Figures 5.6
to 5.11.

Proof. Since C is a maximally perturbable nodal rational curve, by Lemma 5.1.2 it is
maximal, hence e + h = 6. Since C is a rational curve with hyperbolic nodal points, we
can choose p ∈ RC a hyperbolic nodal point of C belonging to the pseudoline. Then, by
Lemma 5.1.8, the marked toile (DC , vT1 , vT2) is equivalent to a marked toile (D′, v′1, v′2)
whose type I perturbation is the gluing of cubics I1 − I2 − I1, with associated trigonal
curve CM . In the real point set of the trigonal curve RCM there is a set of ovals and
possible hyperbolic nodes that can be created indicated from the dessin. We search to
enumerate all equivalence classes of marked dessin (D′, v′1, v′2). For that, let us choose e+ve
ovals of the curve CM to contract, producing that amount of isolated nodal ×-vertices
among which ve are marked. Then, all the remaining ovals must be attached among them
or to the long component in a way that there is only one irreducible component with
a number of non-isolated ×-vertices equals to h + vh − 1, among which vh are marked.
Then, enumerating all equivalence classes of marked dessins satisfying the aforementioned
restrictions and realizing the birational transformations in order to recover the associated
curves RC ⊂ RP2 lead to the plane curves shown on Figures 5.6 to 5.11.

Proposition 5.1.10. Let C be a maximally perturbable nodal rational curve of degree 5
in RP2 such that the curve C has no hyperbolic nodal points. Then, there is only one rigid
isotopy class of such a curve, represented in Figure 5.12a.
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Figure 5.6: Rigid isotopy classes of maximally perturbable nodal rational curves of degree 5
in RP2 without isolated nodes.

Proof. Since C is a maximally perturbable nodal rational curve, by Lemma 5.1.2 it is
maximal, hence e = 6. Let p ∈ RC an elliptic nodal point of the curve C and let
(DC , v1, v2) be the marked toile associated to (C, p). Since the base point p is elliptic,
the nodes nT and nT corresponding to the tangent lines of C at p are a pair or complex
conjugated nodal points. Therefore, the markings v1 and v2 are an inner nodal×-vertices of
DC . The toileDC has 5 isolated nodal ×-vertices corresponding to the elliptic nodal points
different from p. Due to Proposition 2.2.5, since the toile DC has only isolated nodal ×-
vertices it can be decomposed as the gluing of three cubic toiles by dotted generalized cut or
by a solid axe. Since the toile DC is of type I, so are the glued cubic and the corresponding
generalized cuts must be coherent with the labeling of the regions. Then, after enumerating
the equivalence classes of marked toiles with the aforementioned restrictions, it turns out
that there are two equivalence classes having representatives D+ and D−, respectively
(see Figure 5.12a). The toile D+ has a type I perturbation having 3 negative ovals and 2
positive ovals. Moreover, the toileD+ has a type I non-singular perturbation. The toileD−
has a type I perturbation having 2 negative ovals and 3 positive ovals. Therefore, we can
conclude that the toile D+ (resp., D−) corresponds to a pair (C, p) such that the elliptic
nodal point p can be perturbed to a positive (resp., negative) oval. Hence, there is only
one class of rigid isotopy of the curve C.

Theorem 5.1.11 (Rigid isotopy classification of maximally perturbable real quintic ratio-
nal curves). If C be a maximally perturbable real nodal rational curve of degree 5 in RP2,
then the rigid isotopy class of C is determined by its isotopy class and the position of its
isolated nodes.

Proof. The case when h ≥ 1 is considered in Proposition 5.1.9 and the case when h = 0 is
considered in Proposition 5.1.10.
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Figure 5.7: Rigid isotopy classes of maximally perturbable nodal rational curves of degree 5
in RP2 with exactly one isolated node.

5.2 (M − 2)-perturbable curves
Definition 5.2.1. A real type I nodal plane curve C of degree d is (M − s)-perturbable if
its type I perturbation has (d−1)(d−2)

2 + 1− s connected components of the real point set.

Recall that an (M − 2)-quintic C0 has four ovals, which may or not be in a convex
position, depending on whether σ(C0) = 2 or σ(C0) = 0, respectively. In the case when
σ(C0) = 2, the curve C0 has four ovals forming a quadrangle. As before, if we fix a point p
at the interior of an oval, the pencil of lines passing for p induces an order on the ovals.
Varying the fix point, we can assign to every oval two neighboring ones. In the case when
σ(C0) = 0, the curve C0 has four ovals forming Dynkin diagram D4. If we fix a point p
at the interior of the central oval and an orientation of the central oval, the pencil of
lines passing through p induces a cyclic order on the three exterior ovals depending on
the orientation given to the central oval. In both cases, if a type I (M − 2)-perturbable
curve C has an elliptic nodal point, the oval produce by it in a type I perturbation of C
must respect its relative position with respect to its neighboring ovals, and so does the
elliptic nodal point of the original curve (see Figure 5.13).

Lemma 5.2.2. Let C be a nodal rational plane M -curve of degree 5. If C is (M − 2)-
perturbable, then h ≥ 3.

Proof. For a nodal rational plane M -curve of degree 5, we have that e+h = 6. Since C is
(M − 2)-perturbable, its type I perturbation has 4 ovals and a pseudoline component. If
e ≥ 4, since each elliptic nodal point gives rise to an oval, then e = 4. If h = 1 or 2, then
the real point set RC has a circle with h self-intersections and its I perturbation produces
h extra ovals, contradicting the fact that C is (M − 2)-perturbable.

Theorem 5.2.3. Let C be a nodal rational plane M -curve of degree 5. If C is (M − 2)-
perturbable, its rigid isotopy class is determined by its isotopy class.
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Figure 5.8: Rigid isotopy classes of maximally perturbable nodal rational curves of degree 5
in RP2 with exactly two isolated nodes.

Figure 5.9: Rigid isotopy classes of maximally perturbable nodal rational curves of degree 5
in RP2 with exactly three isolated nodes.

Proof. Pick a hyperbolic nodal point p ∈ RC belonging to the pseudoline. The cor-
responding marked toile (DC , v1, v2) associated to (C, p) is a type I toile with 7 real
nodal ×-vertices, among which two are markings. By Corollary 5.1.6, the marked toile
(DC , v1, v2) has a type I perturbation with 3 true ovals. Then, enumerating all equiva-
lence classes of marked toiles satisfying the aforementioned restrictions and realizing the
birational transformations in order to recover the associated curves RC ⊂ RP2 lead to the
plane curves shown on Figures 5.14 and 5.15.

Given a real type I nodal plane curve C of odd degree, denote by hp the number of
hyperbolic nodal points connecting the pseudoline to an oval in a type I perturbation of C.

Proposition 5.2.4. Let C be a nodal rational plane (M − 2)-curve of degree 5. If C is
(M−2)-perturbable and σ(C) = 2, the rigid isotopy class of C is determined by its isotopy
class and the position of its elliptic nodal points.

Proof. Since C is a nodal rational plane (M − 2)-curve of degree 5, we have h + e = 4.
Let us begin with the case when h ≥ 1. Then, the marked toile (DC , v1, v2) associated
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Figure 5.10: Rigid isotopy classes of maximally perturbable nodal rational curves of de-
gree 5 in RP2 with exactly four isolated nodes.

Figure 5.11: The rigid isotopy class of nodal rational maximally perturbable curves of
degree 5 in RP2 with exactly five isolated nodes.

to (C, p) is a type I toile with 5 real nodal ×-vertices, among which two are markings,
and a negative inner nodal ×-vertex. By Corollary 5.1.6, the marked toile (DC , v1, v2)
has a type I perturbation with 3 true ovals. Then, enumerating all equivalence classes
of marked toiles satisfying the aforementioned restrictions and realizing the birational
transformations in order to recover the associated curves RC ⊂ RP2 lead to the plane
curves shown on Figure 5.16.

Remark that in the case when hp = 2, the two negative ovals on a type I perturbation
of the curve are opposite in the quadrangle formed by the ovals. Let n1 and n2 be the
hyperbolic nodal points adding up to hp and let L be the line passing through n1 and n2.
There is a unique connected component of L\{n1, n2} that do not intersect C. Define this
connected component as the segment n1n2. Analogously, there is a unique segment S of
the pseudoline between n1 and n2 that do not intersect the line L. Then, the segments n1n2
and S bound a disk in RP2 that contains a nodal point q of C that can be distinguished.
This construction is valid for any curve in the rigid isotopy class of C.

In the case when h = 0, by Rokhlin’s complex orientation formula for nodal curves, the
curve C has exactly 2 positive elliptic nodal points and 2 negative elliptic nodal points.
Pick a negative elliptic nodal point p ∈ RC as a base point. Then, the marked toile
(DC , v1, v2) associated to (C, p) is a type I toile with 3 real isolated nodal ×-vertices,
among which exactly 1 is negative and the remaining 2 are positive, and two inner nodal
×-vertices, among which one is the nodal ×-vertex v1 = v2 and the remaining one is
a negative inner nodal ×-vertex. Then, enumerating all possible toiles satisfying these
conditions via the decompositions given in Proposition 2.2.5, there is only one equivalence
class of marked dessins satisfying these restrictions.

Proposition 5.2.5. Let C be a nodal rational plane (M − 2)-curve of degree 5. If C is
(M − 2)-perturbable, σ(C) = 0 and hp = 1, then the rigid isotopy class of C is determined
by its isotopy class.

Proof. Since C is a nodal rational plane (M − 2)-curve of degree 5, we have h + e = 4.
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(a) The rigid isotopy class of maximally perturbable nodal rational curves of degree 5 in RP2 with
exactly six isolated nodes.

⨉⨉

⨉⨉
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(b) The marked dessin D−, associated
to a negative elliptic nodal point as the
base point.

⨉⨉

⨉⨉ ⨉⨉⨉⨉ ⨉⨉vT
⨉⨉

(c) The marked dessin D+, associated
to a positive elliptic nodal point as the
base point.

Let p ∈ RC be the hyperbolic nodal point connecting the pseudoline to an oval in a
type I perturbation of C. Then, the marked toile (DC , v1, v2) associated to (C, p) is a
type I toile with 5 real nodal ×-vertices, among which two are markings, and with a
positive inner nodal ×-vertex. By Corollary 5.1.6, the marked toile (DC , v1, v2) has a
type I perturbation with 3 true ovals. Since hp = 1 for the curve C, the toile DC has
no non-marked non-isolated ×-vertices connecting the long component to an oval in the
type I perturbation of DC . Then, enumerating all equivalence classes of marked toiles
satisfying the aforementioned restrictions and realizing the birational transformations in
order to recover the associated curves RC ⊂ RP2 lead to the plane curves shown in
Figure 5.17.

Proposition 5.2.6. Let C be a nodal rational plane (M − 2)-curve of degree 5. If C is
(M − 2)-perturbable, σ(C) = 0 and hp = 2, then the rigid isotopy class of C is determined
by its isotopy class, the position of its elliptic nodal points and a cyclic order induced on
the negative ovals of its type I perturbation.

Proof. Pick a hyperbolic nodal point p ∈ RC connecting the pseudoline to an oval in
a type I perturbation of C. Then, the marked toile (DC , v1, v2) associated to (C, p) is
a type I toile with 5 real nodal ×-vertices, among which two are markings, and with a
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Figure 5.13: (M − 2)-quintic curves.

positive inner nodal ×-vertex. By Corollary 5.1.6, the marked toile (DC , v1, v2) has a
type I perturbation with 3 true ovals. Since hp = 2 for the curve C, the toile DC has
exactly one non-marked non-isolated ×-vertex connecting the long component to an oval
in the type I perturbation of DC . Then, enumerating all equivalence classes of marked
toiles satisfying the aforementioned and realizing the birational transformations in order
to recover the associated curves RC ⊂ RP2 lead to the plane curves shown in Figure 5.18.

In this setting, there are exactly two rigid isotopy classes per isotopy class. In order
to distinguish them, we use the line L passing by the complex conjugated pair of nodal
points of C. This line intersects the curve C in a unique real point p0. Let p′ 6= p be the
other hyperbolic nodal point connecting the pseudoline to an oval in a type I perturbation
of C, and let C0 be the type I perturbation of C. Then, the triple (p, p′, p0) induces an
orientation on the pseudoline of the curve C that can be extended to a complex orientation
of the whole curve, determining a cyclic order of the ovals of a type I perturbation of C.
This orientation is a rigid isotopy invariant of the marked curve (C, p). Then, every isotopy
class endowed with the orientation given by (p, p′, p0) determines a unique rigid isotopy
class.

Proposition 5.2.7. Let C be a nodal rational plane (M − 2)-curve of degree 5. If C is
(M − 2)-perturbable, σ(C) = 0 and hp = 3, then the rigid isotopy class of C is determined
by its isotopy class.

Proof. Pick a hyperbolic nodal point p ∈ RC connecting the pseudoline to an oval in
a type I perturbation of C. Then, the marked toile (DC , v1, v2) associated to (C, p) is
a type I toile with 5 real nodal ×-vertices, among which two are markings, and with a
positive inner nodal ×-vertex. By Corollary 5.1.6, the marked toile (DC , v1, v2) has a
type I perturbation with 3 true ovals. Since hp = 3 for the curve C, the toile DC has
exactly 2 non-marked non-isolated ×-vertices connecting the long component to an oval in
the type I perturbation of DC . Then, enumerating all equivalence classes of marked toiles
satisfying the aforementioned restrictions and realizing the birational transformations in
order to recover the associated curves RC ⊂ RP2 lead to the plane curves shown in
Figure 5.19.

Theorem 5.2.8. Let C be a nodal rational plane (M − 2)-curve of degree 5. If C is
(M −2)-perturbable and σ(C) = 0, its rigid isotopy class is determined by its isotopy class
and the position of its elliptic nodal points.

Proof. It remains to consider curves with h = 0, and hence e = 4. By Rokhlin’s complex
orientation formula for nodal curves, the curve C has exactly 1 positive elliptic nodal
point and 3 negative elliptic nodal points. Pick the positive elliptic nodal point p ∈ RC
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Figure 5.14: type I perturbations of rigid isotopy classes of (M − 2)-perturbable nodal
rational plane M -curves. (Part I).

of C as a base point. Then, the marked toile (DC , v1, v2) associated to (C, p) is a type I
toile with 3 real isolated nodal ×-vertices, which are all negative, and two inner nodal
×-vertices, among which one is the nodal ×-vertex v1 = v2 and the remaining one is a
positive inner nodal ×-vertex. Then, enumerating all equivalence classes of marked toiles
leads to the fact that there is only one equivalence class of marked dessins satisfying these
restrictions.

5.3 (M − 4)-perturbable curves
Lemma 5.3.1. Let C be a nodal rational plane curve of degree 5. If C is (M − 4)-
perturbable and σ(C) = 0, then h ≥ 1.

Proof. The fact that σ(C) = 0 implies that the curve C can be perturbed to a non-singular
type I curve C ′. The curve C ′ being a non-singular (M − 4) curve of type I has a nest of
two ovals. If h = 0, then every nodal point of C is elliptic, producing a simple oval in C ′
and no nest can be produced in this manner.

Theorem 5.3.2. Let C be a nodal rational plane M -curve of degree 5. If C is (M − 4)-
perturbable, its rigid isotopy class is determined by its isotopy class.

Proof. Pick a hyperbolic nodal point p ∈ RC belonging to the pseudoline. Then, the
marked toile (DC , v1, v2) associated to (C, p) is a type I toile with 7 real nodal ×-vertices.
By Corollary 5.1.6, the marked toile (DC , v1, v2) has a type I perturbation with 1 true oval.
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Figure 5.15: type I perturbations of rigid isotopy classes of (M − 2)-perturbable nodal
rational plane M -curves. (Part II).

Then, enumerating all equivalence classes of marked toiles satisfying the aforementioned
restrictions leads to the fact that every isotopy class in Figure 5.21 corresponds to exactly
one rigid isotopy class.

Lemma 5.3.3. Let C be a nodal rational plane (M−2)-curve of degree 5. If C is (M−4)-
perturbable, then h ≥ 1.

Proof. If h = 0, the type I perturbation of C has two ovals arising from elliptic nodes,
in which case h + e = 2, contradicting the fact that for a nodal rational plane curve
(M − 2)-curve of degree 5 we have h+ e = 4.

Theorem 5.3.4. Let C be a nodal rational plane (M − 2)-curve of degree 5. If C is
(M − 4)-perturbable, its rigid isotopy class is determined by its isotopy class and the
number σ(C).

Proof. Pick a hyperbolic nodal point p ∈ RC belonging to the pseudoline. Then, the
marked toile (DC , v1, v2) associated to (C, p) is a type I toile with 5 real nodal ×-vertices,
among which two are markings, and with an inner nodal ×-vertex. By Corollary 5.1.6, the
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Figure 5.16: The rigid isotopy class of (M − 2)-perturbable nodal rational plane (M − 2)-
curves with σ = 2.

Figure 5.17: Isotopy class of (M − 2)-perturbable nodal rational plane (M − 2)-curves of
degree 5 with hp = 1.

marked toile (DC , v1, v2) has a type I perturbation with 1 true oval. Then, enumerating all
equivalence classes of marked toiles satisfying the aforementioned restrictions leads leads
to the fact that every isotopy class in Figure 5.22 corresponds to exactly one rigid isotopy
class.

Theorem 5.3.5. Let C be a nodal rational plane (M − 4)-curve of degree 5. If C is
(M − 4)-perturbable, its rigid isotopy class is determined by its isotopy class and the sign
of its elliptic nodal points.

Proof. Let us consider all the possible values that σ(C) can take.
Case 1: let us start with the case when σ(C) = 0. By Lemma 5.3.1, we have h ≥ 1.

Pick a hyperbolic nodal point p ∈ RC belonging to the pseudoline. Then, the marked toile
(DC , v1, v2) associated to (C, p) is a type I toile with 3 real nodal ×-vertices, among which
two are markings, and with 2 positive inner nodal ×-vertices. By Corollary 5.1.6, the
marked toile (DC , v1, v2) has a type I perturbation with 1 true oval. Then, enumerating
all equivalence classes of marked toiles satisfying the aforementioned restrictions leads
leads to the fact that every isotopy class in Figure 5.23a corresponds to exactly one rigid
isotopy class.

Case 2: In the case when σ(C) = 2, let us suppose h ≥ 1. Pick a hyperbolic nodal point
p ∈ RC belonging to the pseudoline. Then, the marked toile (DC , v1, v2) associated to
(C, p) is a type I toile with 3 real nodal×-vertices, among which two are markings, and with
1 positive inner nodal ×-vertex and 1 negative inner nodal ×-vertex. By Corollary 5.1.6,
the marked toile (DC , v1, v2) has a type I perturbation with 1 true oval.
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Figure 5.18: Isotopy class of (M − 2)-perturbable nodal rational plane (M − 2)-curves of
degree 5 with hp = 2.

Figure 5.19: Isotopy class of (M − 2)-perturbable nodal rational plane (M − 2)-curves of
degree 5 with hp = 3.

Otherwise, we have h = 0, and consequently e = 2. By Rokhlin’s complex orientation
formula for nodal curves the curve C has exactly 2 negative elliptic nodal points. Let
us pick p ∈ RC a negative elliptic nodal point of C as a base point. Then, the marked
toile (DC , v1, v2) associated to (C, p) is a type I toile with 1 real isolated nodal ×-vertex,
which is negative, and 3 inner nodal ×-vertices, among which one is the nodal ×-vertex
v1 = v2 and the remaining two are one positive and one negative inner nodal ×-vertices.
Then, enumerating all equivalence classes of marked toiles satisfying the aforementioned
restrictions leads leads to the fact that every isotopy class in Figure 5.23b corresponds to
exactly one rigid isotopy class.

Case 3: In the case when σ(C) = 4, let us suppose h ≥ 1. Pick a hyperbolic nodal
point p ∈ RC belonging to the pseudoline. Then, the marked toile (DC , v1, v2) associated
to (C, p) is a type I toile with 3 real nodal ×-vertices, among which two are markings, and
with 2 negative inner nodal ×-vertices. By Corollary 5.1.6, the marked toile (DC , v1, v2)
has a type I perturbation with 1 true oval.

Otherwise we have that h = 0, and consequently e = 2. By Rokhlin’s complex ori-
entation formula for nodal curves the curve C has exactly 1 positive elliptic nodal point
and1 negative elliptic nodal point. Let us pick p ∈ RC the positive elliptic nodal point
of C as a base point. Then, the marked toile (DC , v1, v2) associated to (C, p) is a type I
toile with 1 real isolated nodal ×-vertex, which is negative, and 3 inner nodal ×-vertices,
among which one is the nodal ×-vertex v1 = v2 and the remaining two are negative inner
nodal ×-vertices. Then, enumerating all equivalence classes of marked toiles satisfying the
aforementioned restrictions leads leads to the fact that every isotopy class in Figure 5.23c
corresponds to exactly one rigid isotopy class.
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Figure 5.20: The isotopy class of (M −2)-perturbable nodal rational plane (M −2)-curves
of degree 5 with h = 0.

Figure 5.21: Isotopy classes of (M − 4)-perturbable nodal rational plane M -curves of
degree 5. Taken from [8].

5.4 (M − 6)-perturbable curves

Theorem 5.4.1. There is a unique rigid isotopy class of rational (M − 6)-curves of
degree 5 in RP2.

This rigid isotopy class is shown in Figure 5.24.

Proof. Let C0 be a rational (M − 6)-curve of degree 5 in RP2. We have h = e = 0,
and therefore c(C0) = 6. Up to a small perturbation of the coefficients of C0, we can
assume that the six nodal points p1, p2, . . . , p6 of C0 are in general position, i.e., they do
not belong to a conic. Let us consider the linear system formed by the curves of degree 5
with singularities at p1, p2, . . . , p6. This is a plane in the space of quintic curves, which has
dimension 20. In this linear system, the curves which are more degenerated than C0 form
a codimension 2 subset. Indeed, the condition for a curve C to belong to a codimension 1
stratum of singular curves of this linear system corresponds to the property of having a
real nodal point. In this case, such a curve C is a reducible curve whose components are
a rational cubic and a conic with empty real point set, which contradicts the fact that
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Figure 5.22: Isotopy classes of (M − 4)-perturbable nodal rational plane (M − 2)-curves
of degree 5. Taken from [8].

p1, p2, . . . , p6 do not belong to a conic. Hence, in this linear system, every degeneration is
path-connected to C0.

On the other hand, among the degenerations, there is a reducible curve C ′0 formed by a
real line and two complex conjugated conics such that the real line passes through the pair
of complex conjugated points p5 and p6, one conic passes through the points p1, . . . , p5,
and the complex conjugated conic passes through the points p1, . . . , p4, p6. Thus, the
statement of the theorem follows from the fact that any two real reducible curves of this
kind (each of the curves being formed by a real line and two complex conjugated conics
without real intersection points) can be connected within the class of such real reducible
curves.
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(a) Rigid isotopy classes of nodal rational (M−4)-perturbable curves of degree 5 in RP2 with σ = 0.

(b) Rigid isotopy classes of nodal rational (M−4)-perturbable curves of degree 5 in RP2 with σ = 2.

(c) Rigid isotopy classes of nodal rational (M−4)-perturbable curves of degree 5 in RP2 with σ = 4.

Figure 5.24: The rigid isotopy class of nodal rational (M−6)-perturbable curves of degree 5
in RP2.
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