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1 GENERAL INTRODUCTION 

This chapter provides an overview of the general research topics addressed in the course of my doctoral 

study. Specifically, I give a concise justification of the impetus for scientific research on tropical forest 

carbon and stress the crucial role of remote-sensing in this dynamic. The focus is then put on two 

important aspects of the remote sensing-based carbon mapping chain that I present in separate 

sections: (1) the actual remote sensing of forest carbon and (2) field estimations of forest carbon, which 

constitute the ‘ground truth’ of the mapping chain. Each section leads to broad methodological 

orientations that have been taken in this thesis and identifies key problems. In the end, I present the 

research objectives, the pantropical scope of this work and the organization of the thesis chapters.   

1.1 Context and challenges 

1.1.1 Tropical forests and climate change 

International concerns about climate change have fostered research on the global carbon cycle, as 

carbon dioxide (CO2) is the largest contributor to anthropogenically enhanced greenhouse effect 

(Houghton, 2007). Together with the soil, terrestrial vegetation composes the “terrestrial ecosystems 

carbon reservoir” (Houghton et al., 2009) and interacts with the carbon cycle by fixing atmospheric 

CO2 (photosynthesis) and sequestrating it in plant’s material. Plants carbon is quantified through 

biomass (as dry weight is c. 50 % carbon), often distinguishing live biomass (above and below ground) 

from dead material. Among terrestrial biomes, the focus is usually put on forest ecosystems which 

store the vast majority of biomass stocks (c. 70-90 %) (Houghton et al., 2009), and within forest biomes, 

tropical forests are the largest ones in surface with about c. 1949 Mha (i.e. c. 50 % of total forested 

lands) and store approximately c. 55 % of the global forest carbon, against c. 32 % in boreal and c. 14 

% in temperate forests (Pan et al., 2011). Perhaps more important to the global carbon cycle than 

forest carbon stocks themselves is how these stocks change in time. Forests are dynamical ecosystems 

presenting continuous change in forest age structure and community composition. A broadly accepted 

pattern of forest biomass dynamics in undisturbed systems is a fast increase early in forest succession 

(‘forest aggradation’ phase) followed by a gradual decrease of biomass growth rate with forest age 

(e.g. Ryan et al., 1997). Associated changes in stand structure properties, such as tree dimensions and 

spatial organization, can partly be observed from above the forest, for instance from a satellite sensor, 

and can be used to monitor forest biomass (as we will see in section 1.1.3.2). Growing (or re-growing) 

forests thus behave as carbon sinks, trapping atmospheric CO2 at different rates. On the other hand, 

forest carbon can be released back into the atmosphere through combustion and decomposition of 

forest biomass. Change in land use (i.e. deforestation) and forest degradation (e.g. logging) are the 

principal drivers of forest-related carbon emissions, transforming forested lands from carbon sinks into 

carbon sources. The tropical forest biome is the most threatened by deforestation and degradations 

(e.g. Pan et al., 2011). Over the 1990 - 2007 period, Pan and colleagues (2011) estimated that gross 

carbon emissions from tropical deforestation represented as much as c. 40 % of carbon emissions from 

fossil fuel combustion. This massive carbon release was however largely offset by a massive carbon 

uptake in this biome (representing c. 70 % of world’s forests sink), yielding a net carbon emission 

commonly reported around c. 12 % of total anthropogenic emissions for the first decade of the century 

(Houghton, 2012; Van der Werf et al., 2009), i.e. the second largest source of CO2 emissions after fossil 

fuel combustion. Reducing CO2 emissions from tropical deforestation and forest degradation is 

considered a cost-effective way to mitigate the rise of atmospheric CO2 concentration (Gullison et al., 
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2007) and in turn global climate change. Based on this observation, the REDD (“Reducing Emissions 

from Deforestation and forest Degradation”) program was launched in Bali under the United Nations 

Framework Convention on Climate Change (UNFCCC, 2007), with at its core the idea that developed 

countries would compensate developing countries for avoided forest carbon emissions. Payments 

would, however, be conditional to a verified monitoring of avoided carbon emissions. Beside 

sociopolitical challenges that REDD poses, it also constitutes a formidable scientific challenge, as its 

success partly lies on our ability to accurately monitor forest carbon variation in space and time.  

1.1.2 REDD monitoring frame of tropical forest biomass: basics and challenges 

The methodological approach for monitoring forest carbon emissions as defined in the IPCC Good 

Practice Guidelines  (e.g. Eggleston et al., 2006) is fairly simple in its design. It consists in combining 

estimations of forest area change (i.e. activity data) with coefficients which quantify the carbon stock 

change per unit area (i.e. emission factors).   

Estimating forests area at one point in time and its dynamics during a time period (i.e. forest area 

change, driven by deforestation or forest regrowth) can be achieved with remote-sensing (RS) or 

census data (i.e. from national forest inventories or global Forest Resources Assessments, e.g. FAO, 

2010). Remote-sensing presents interesting characteristics for forest area change monitoring: it allows 

repeated, wall-to-wall coverage of the Earth surface and provides spatially explicit products, allowing 

one to accurately locate spots of deforestation and forest regrowth. Since forest inventories in tropical 

countries may be out of date, non-representative or even entirely lacking (Houghton, 2005), RS is 

thought as providing more reliable, consistent and accurate estimates of forests area and forests area 

change (Houghton, 2012). Technically, the forest detection (thus its gains and losses in time-series 

data) is nowadays reliably achieved with medium resolution (10 – 30 m) optical images. A typical 

example of sensor that can be used to perform national-scale forest area change monitoring is Landsat 

(TM and ETM+), which offers more than three decades of free, open-access archives (De Sy et al., 2012; 

Morton, 2016). Important efforts are being made to facilitate the access and analysis of NASA-

sponsored imagery (including Landsat) and derived products (e.g. NDVI, forest gain/loss) through web-

based platforms such as the Google Earth Engine (GEE) or Global Forest Watch (GFW). For instance, 

GWF has published every year (for the past 10 years) a 30 m global map of tree cover loss (annually) 

and gain (from year 2000), which undoubtedly represents a major step toward operational and 

transparent frame for forest area change reporting.  

Attributing a carbon stock to a given forested area (or carbon density), let alone a carbon density 

change (that is, the amount of carbon before and after a time period that may or may not include a 

disturbance such as deforestation), is much more challenging and represents more than half of the 

uncertainty on large scale forest carbon emissions estimates (Houghton, 2005). The difficulty stems 

from the multiple spatial scales at which forest carbon or biomass density varies. At a scale < 1 ha, 

biomass density varies with the position of the largest canopy trees and mortality (creating canopy 

gaps). At the level of a forest stand (homogeneous in age and species composition) (e.g. 1-10 ha), 

biomass density varies with time as a result of disturbances and recovery. At the landscape level (e.g. 

> 100 ha), stands mosaics present spatial variations in biomass density resulting from differences in 

species composition and time since last disturbances (Houghton et al., 2009). Besides biomass density 

variations that can be attributed to intrinsic dynamics of forest ecosystems, environmental (e.g., soil 

type, topography) and bioclimatic (e.g. temperature, precipitation, length of dry season) drivers also 

influence forest biomass and vary in space at different scales, adding complexity to the accurate 
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estimation of biomass density for a given area. From a practical point of view, methods used to 

estimate biomass density can broadly be categorized into non-spatial and spatial methods. Non-spatial 

methods are based on a predefined classification of forest types (“land cover map”) and consist in 

attributing to each type an average biomass density derived from forest inventory data or from the 

literature. This is the simplest approach that the IPCC declined in its guidelines in two different tiers of 

quality: Tier 1 when broad continental forest types are used (i.e. default forest strata and associated 

biomass densities) and Tier 2 when country-specific data are used (i.e. refined forest strata and 

biomass densities derived from national forest inventories). With such methods, the question of 

representativity of average biomass density estimates is indeed central and constitutes an obvious 

source of error in carbon stock and carbon stock change estimations, especially in the tropics given the 

paucity of forest inventories (e.g. Mattsson et al., 2016). Spatial methods produce biomass density 

maps based on a relationship between in situ biomass estimations and bioclimatic and environmental 

data, RS data, or both. When spatially explicit models are sufficiently accurate and precise (which is 

commonly interpreted as “when estimation uncertainty is no more than 20 % of the mean”, Zolkos et 

al., 2013), this approach would correspond to the highest quality tier of the IPCC (Tier 3). Biomass 

density maps can be used to improve the representativity of average biomass density estimates used 

in non-spatial methods (e.g. Langner et al., 2014) or replace them altogether. Indeed, using biomass 

densities that are co-located with areas undergoing changes (e.g. deforestation) should yield more 

accurate estimates of emissions (Houghton, 2012).  

The REDD methodological framework requires monitoring forest carbon stock changes at large spatial 

scale (regional, national) to limit the so-called leakage phenomenon, whereby deforestation and 

degradations would simply be displaced from a protected area to elsewhere. At such a large scale, the 

carbon estimation methods presented above lead to very different results. In 2001, Houghton et al. 

showed that seven estimates of total forest biomass over the Brazilian Amazon from different methods 

varied by a factor greater than two and did not agree on where the highest and lowest biomass 

densities where found. At the global scale, forest biomass estimates from the same year presented 

approximately the same variation factor (Houghton, 2012). Over the past decade, the two firsts maps 

depicting the variation of forest biomass at medium resolution (500 and 1000 m) over the entire tropics 

have been published (Baccini et al., 2012; Saatchi et al., 2011). The authors essentially used forest 

inventories to calibrate GLAS data (i.e. satellite-LiDAR) available under the form of isolated footprints 

across the tropics, and extrapolated the information on low-resolution RS (MODIS, notably), 

environmental and climatic data, so to obtain continuous predictions of forests AGB. If the two maps 

present some extent of agreement when predictions are aggregated at very large spatial scale (i.e. 

regional-, national-level), biomass variation patterns within countries do not converge, especially in 

areas where forest biomass is high or where field inventories are scarce (Mitchard et al., 2013). This 

suggests that the sensitivity of models’ predictors to forest AGB variation is extremely weak. To date, 

uncertainties on large scale estimates of forest CO2 emissions remain high, of the order of c. 50 % 

(IPCC, 2014). Reducing those uncertainties is critically important for the implementation of climate 

policies such as REDD (Mitchard et al., 2014; Ometto et al., 2014). Remote sensing could be a key tool 

for this purpose, but RS methods capable of detecting local variations of tropical forest AGB, and that 

over large spatial scales, need to be developed. In the next section, I give a brief presentation of the 

forest biomass mapping chain from RS data. Given the diversity of RS data types, associated 

methodological approaches and the various uncertainty sources along the biomass mapping chain, the 
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following presentation is by no mean exhaustive but rather provides a broad, somewhat caricatural 

picture, allowing the reader to apprehend the contribution of this thesis.  

1.1.3 Remote sensing-based modelling of tropical forest biomass  

1.1.3.1 General workflow 

The estimation of forest biomass is most often restricted to the aboveground component (hereafter 

denoted AGB) which represents more than c. 70 % of total forest biomass (Houghton et al., 2009) and 

is easier to characterize, notably from remote sensing. An important remark is that no RS technology 

is capable of directly measuring forest AGB (e.g. Woodhouse et al., 2012). Instead, indirect 

relationships are established between RS indices that vary with forest AGB and estimations of AGB in 

forest sample plots (the ‘ground truth’) (Figure 1-1). Errors in biomass maps can therefore be 

decomposed into (1) errors stemming from field plots AGB estimation (hindering models calibration, 

propagating throughout carbon mapping chains, etc.) and (2) errors stemming from RS indices (e.g. 

insufficient predictive ability), notably. For the sake of clarity, I conserve this dichotomy in the rest of 

this introductory chapter (i.e. field vs RS estimations of AGB, Figure 1-1B).    

 

 

Figure 1-1. General workflow of remote sensing-based AGB mapping methods. Regardless of the remote sensing 
data type, remote sensing indice(s) are extracted over forest sample plots (A) and used a predictor(s) of in situ 
AGB estimations (B). Once calibrated, the model can be used to predict forest AGB over the entire study area (C). 

 

1.1.3.2 Estimating forest sample plots AGB from remote sensing data  

The advent of metric and submetric resolution RS data types  

A major difficulty when it comes to mapping forest biomass in the tropics is due to the loss of sensitivity 

of traditional RS sensors at high AGB values. Decades of research have indeed shown that satellite-

borne passive optical signals with coarse to medium resolution (e.g. MODIS, Landsat), but also active 

(radar) signals (e.g. L-band SAR), fail to characterize the entire range of forest structural attributes in 

spatially complex, high-biomass tropical forests. Signal saturation is typically observed around 100-200 

Mg.ha-1 (Foody, 2003; Huete et al., 2002; Imhoff, 1995; Mougin et al., 1999), when tropical forests AGB 

frequently exceeds 400 Mg.ha-1 (Slik et al., 2013). Therefore, despite very attractive features, in 

particular the possibility to acquire continuous RS data coverage over extensive area extents at low 

cost (allowing producing biomass maps at the pantropical scale, as in Baccini et al. (2012) and Saatchi 

et al. (2011)), such signals cannot be expected to accurately capture AGB variations on the better half 
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of the tropical forest AGB gradient. The development of reliable, non-saturating AGB mapping 

methods in the tropical context remains an active field of research.  

Since the early 2000s, Light Detection And Ranging (LiDAR) technology has become increasingly 

popular in this regard. Aircraft-based LiDAR systems provide information on forest structure with a 

ground resolution of 5 m to 50 cm (or less), depending on system characteristics. Importantly, LiDAR 

is an active signal that penetrates forest canopy down to the ground surface, generating a detailed 

description of forest three-dimensional (3D) structure. From this extremely rich data type (which often 

allows identifying individual trees and large branches with the naked eye), a common approach is to 

aggregate the information into one or several forest height indices that can be related to plot level 

AGB estimates (e.g. Asner et al., 2011; Véga et al., 2015). A growing body of literature suggests that 

aerial LiDAR indices allow detecting the full gradient of tropical forest AGB (no saturation) with a 

relatively high precision (10-20 % error, Zolkos et al., 2013). However, airborne data acquisition 

campaigns are costly and sometimes unfeasible in certain tropical countries for logistical and political 

reasons, hampering the use of aerial LiDAR for routine, large scale monitoring of forest AGB.  

Another type of RS data that could prove useful in the carbon monitoring context and yet has largely 

been under-exploited is satellite-borne Very High Spatial Resolution (VHSR, with pixel size ≤ 1 m²) 

optical images. Much like LiDAR (although in two dimensions), the spatial resolution of these optical 

images allows one to visually identify individual (canopy) trees in the image. In contrast with LiDAR 

however, the optical signal is passive, therefore forests AGB retrieval cannot be based on forest height 

proxies. Instead, the two-dimensional information on canopy structure may be exploited using an 

analysis of canopy texture properties. The Fourier Texture Ordination (FOTO) method for instance 

(which rationale and previous case studies are presented in chapter 4) have shown promising results 

for the retrieval of classical stand structure parameters (e.g. basal area, mean tree diameter) and AGB 

in high-biomass tropical forests (Couteron et al., 2005; Proisy et al., 2007). Biophysical mechanisms 

governing relationships between canopy texture features and forest structure are, however, not fully 

understood. This is an important knowledge gap as it prevents to move from local applications (i.e. 

statistical relationships established on a single forest type, over a few hundred km²) to larger scales 

(i.e. several forest types, over several thousands km²).         

The prospects of coupling 3D plant models and radiative transfer models 

Deepening our understanding of how forest 3D structure controls canopy texture properties, how 

texture-based indices translate back into standard stand structure parameters (including AGB) and 

how those relations vary across forest ecosystems and spatial scales is made difficult by the absence 

of a sufficiently large dataset featuring both field inventories and VHSR data. Besides, sun-sensor 

geometry (e.g. sun elevation angle) at the time of satellite image acquisition influences canopy texture 

properties (e.g. by modifying the amount and spatial distribution of shadows on the canopy) (Barbier 

et al., 2011), any empirical approach of the problem must therefore account for this phenomenon by 

disentangling instrumental perturbation from the effect of forest stand structure on canopy texture. 

On a small set of VHSR images, this issue is typically bypassed by inter-calibrating texture-based indices 

when images partly overlap (as in Bastin et al., 2014) or analyzing images acquired in similar acquisition 

angles, but restricting image acquisition angles to relatively narrow range of values is an important 

constraint for image providers and can hardly be envisaged, in practice, for large images sets. A 

potential workaround is to use a simulation approach (Figure 1-2) coupling (i) a 3D forest simulation 
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model, based on information commonly available in forest inventories and a few allometry rules and 

(ii) a radiative transfer model (e.g. Discrete Anistropic Radiative Transfer (DART) model, Gastellu-

Etchegorry et al., 2015), allowing to generate virtual canopy scenes with controlled sun-sensor 

geometry. This approach already permitted quantifying the impact of the sun-sensor geometry on 

canopy texture (Barbier et al., 2011). In the scope of this thesis, we highlighted the potential of 

simulated experiments to explore and tune texture-based RS indices for AGB carbon retrieval.    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2. Schematic illustration of virtual canopy scenes simulation procedure. Field inventory data are used in 
a forest model to generate 3D mockups of the sample plots. A radiative transfer model simulates a satellite view 
of the mockups, for instance a VHSR 1-m IKONOS panchromatic channel.    

 

1.1.3.2 Estimating forest sample plots AGB from inventory data 

An uncertain “ground truth” 

The gold-standard method for estimating the AGB of a forest plot consists in harvesting and weighting 

all trees in the plot. This method is, however, labor intensive, costly and destructive. It follows that in 

practice, an indirect approach is preferred whereby the AGB of individual trees is estimated using a 

mathematical model based on one or several biometric parameters that can be easily measured in 

large field inventories. An important step in this process is to select an appropriate AGB model. Over 

the years, countless models contrasting in their form (linear, power, exponential), biometric predictors 

(including polynomial and interaction terms), target species and sites have been published (Sileshi, 

2014). The selection of a particular AGB model has an important impact on field plot AGB estimation 

(Molto et al., 2013; Picard et al., 2014; van Breugel et al., 2011). For example, Picard and colleagues 

3D MOCKUPS 

CANOPY SCENES 

3D FOREST MODEL 

RADIATIVE TRANSFER MODEL 
                               (DART) 

FIELD INVENTORY 



 

7 
 

(2015) obtained AGB estimations varying by a factor of nearly two when comparing seven seemingly 

appropriate AGB models on a 9-ha forest plot of Democratic Republic of Congo. Disagreements of AGB 

models on levels and variation pattern of AGB across forest plots naturally limits the accuracy with 

which RS methods can predict spatial variations of AGB (Ahmed et al., 2013; Mitchard et al., 2013). 

The pantropical biomass model 

Following the seminal study of Brown (1997), J. Chave made important contributions toward 

standardizing the way we estimate trees AGB across the tropics by developing a pantropical approach 

(Chave et al., 2014, 2005). This approach has major premises that are worth being mentioned. First, 

pantropical AGB models are mixed-species models. Because tree species diversity in tropical forests is 

generally comprised between 100 and 300 species per ha (De Oliveira and Mori, 1999; Turner, 2001), 

developing species-specific equations as it is done in temperate forests (e.g. Brown and Schroeder, 

1999) is currently unrealistic. Second, the geographical span of models validity englobes the entire 

tropics. This feature is particularly attractive because in most instances, as in the study of Picard and 

colleagues (2015), one does not have a priori knowledge on the relevance of a particular AGB model. 

Provided that AGB predictions from a pantropical model do not present systematic bias pattern at the 

local level (e.g. associated to specific stand species composition or environmental characteristics), 

using a single AGB model for all plots in large scale RS studies would provide a more consistent and 

transparent synthesis of spatial AGB variations derived from field data. Making accurate predictions of 

tree AGB regardless of species and geographic locations requires accounting for biometric predictors 

that reflect inter- tree AGB variation with sufficient generality and yet capture systematic trends on 

how tree AGB varies with tree size along ontogeny, across species and in space. Among the models 

proposed by Chave et al. (2014), the most powerful one (hereafter referred to as the pantropical AGB 

model) combines trunk diameter at breast height (D in cm), tree height (H in m) and wood specific 

gravity (ρ in g.cm-3) in a compound variable related to AGB (in kg) through a power law of parameters 

α and β (eq. 1).  

𝐴𝐺𝐵 = α ∗ (𝐷2 ∗ 𝐻 ∗ 𝜌)β        (eq. 1) 

Equation 1 was calibrated on a destructive dataset containing more than 4000 trees from 58 sampling 

sites distributed across the pantropical belt. Chave and colleagues conducted a nested analysis of 

variance on model residuals (i.e. sampling site within forest type). The forest type factor (i.e. dry, moist, 

wet) accounted for less than 1 % of residuals variability, indicating that the AGB - D2 ∗ H ∗ ρ 

relationship holds well across broad environmental conditions. Sampling sites accounted for only c. 20 

% of residuals variability, and adjusting equation 1 on data subsets from each site led to an average 

uncertainty on tree level predictions only slightly lower than with the pantropical model (i.e. c. 47 % 

vs c. 56 %, respectively) (Chave et al., 2014). These results provide a strong support for a pantropical 

approach of tree AGB modelling.   

The pantropical model error on individual tree AGB prediction is huge (about 50 %), but this error 

levels-off when randomly accumulating trees, because positive and negative individual errors 

compensate (Chave et al., 2004; Picard et al., 2014). Assuming 50 % random prediction error on each 

tree, the prediction error on the AGB of a typical 1 ha forest plot should range between 5 and 10 % of 

the mean (Chave et al., 2014). High individual error stems from important AGB variations between 

trees of similar DBH, H and ρ (Molto et al., 2013) and could be reduced by including additional 

predictors in the model (e.g. crown diameter, Goodman et al., 2014), notably to increase the precision 
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of AGB predictions on plots of small size (e.g. < 1 ha). A more important issue is that the pantropical 

model systematically underestimates the AGB of large trees (c. 30 Mg) by c. 20 %. Given the 

importance of large trees for forest AGB stock (Bastin et al., 2015; Slik et al., 2013) and stock change 

(Stephenson et al., 2014), understanding the origin and consequences of this bias is of utmost concern.  

Allometric theory of tree branching networks 

Tree AGB models lie on the concept of ‘allometry’. The term allometry was coined by Huxley and 

Teissier (1936) ‘‘to denote growth of a part [of an organism] at a different rate from that of [the 

organism] body as a whole’’. The simplest and most widespread type of tree AGB allometric model is 

a simple, bivariate relationship based on D. In such a model, the growth of whole tree AGB (“the body”) 

is assessed through the growth of D (“the part”). Because growth data often fit particularly well to a 

straight line when plotted in logarithmic units (Stevens, 2009), the dominating mathematical function 

used to model allometries is a power function (as in equation 1). Perhaps the most important feature 

of the power model form in the context of allometry, and in our case AGB allometry, is that it implies 

a constant scaling (β) of AGB and D (or 𝐷2 ∗ 𝐻 ∗ 𝜌 in the pantropical model) across the whole ontogenic 

development of the organism.  

On the one hand, scale-invariance (or self-similarity) properties has been documented for many 

animals and plants traits (e.g. West et al., 1997) and is thought to reflect universal principles governing 

biological systems (e.g. Marquet, 2005). Several allometric theories, such as the Metabolic Theory of 

Ecology (MTE, West et al., 1999, 1997), derive universal scaling laws (i.e. simple power model 

allometries) between plants dimensions from lower-level assumptions on plants branching structure, 

and thus support simple power-law allometries. 

On the other hand, this scale-invariance hypothesis in the relative growth of organisms’ parts (or 

between a part and the body as a whole) has been intensely criticized (e.g. Nijhout and German, 2012). 

Some consider that the power model form is fundamentally empirical and lacks biological foundations. 

For example, Nijhout and German (2012) pointed out that an implicit assumption in the power model 

form is that all body parts begin and end their growth at the same time during ontogeny. In the case 

of trees, it is commonly accepted that the growth in H slows down and eventually stops long before 

the growth in D. Empirically, several tree dimensions such as tree height or tree crown diameter show 

a constant scaling (β) with D only on a finite D range (Antin et al., 2013; Blanchard et al., 2016), leading 

Picard et al. (2015) to stress that since “many non-power models can bring nearly constant scaling 

across a wide range of scale, simple allometry may be confused with complex allometry” (“complex 

allometry” in this statement refers to a model with multiple predictors that does not necessarily take 

the form of a power function). Whether relationships between tree AGB and D or 𝐷2 ∗ 𝐻 ∗ 𝜌 conform 

to power function remains a pending question.    

1.2 Research objectives 

The general objective of this thesis is to use information on the structure and spatial organization of 

canopy trees to improve our ability to model forest AGB from field and RS data.  

Our analyses are restricted to two approaches that were deemed promising: the pantropical approach 

for the estimation of AGB at the tree and plot level (i.e. from field data) and the canopy texture 

approach for the detection and extrapolation of field-derived AGB estimations via RS data. 
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A first part of this work seeks to increase our understanding of the pantropical model error and 

propose ways to mitigate this error. In particular, the compound predictor variable of the pantropical 

model (𝐷2 ∗ 𝐻 ∗ 𝜌) does not allow capturing between-tree variations in relative crown dimensions, 

while crown allometries varies between species, along tree ontogeny and environmental gradients 

(e.g. Banin et al., 2012; Cannell, 1984; Poorter et al., 2006). We thus:      

(i) Assess the contribution of crown mass variation to the pantropical model error, either at the tree 

level or when propagated to the plot level; 

(ii) Propose a new operational strategy to explicitly take crown mass variation into account in 

pantropical AGB models. 

We further used the predictions of the MTE on branch scaling properties as a point-of-entry to 

investigate the relevance of the power model form in AGB allometries. Specifically, we: 

(iii) Test whether large trees branching structure conform to the predictions of the MTE.  

A second part of the thesis focuses on assessing and improving the potential of a canopy texture-based 

RS method (FOTO) to retrieve tropical forest AGB. Here, a major objective was to:  

(iv) Stabilize the texture-structure relationship across contrasted forest types from different regions of 

the world. 

 

1.3 A pantropical approach 

This thesis is based on two types of field data: (i) destructive measurements at the tree level and (ii) 

forest inventories at plot level. In this section, I briefly explain where the data I assembled came from 

and what the datasets are composed of.   

1.3.1 Study areas and datasets 

Central Africa 

Core datasets of this work (at both tree- and plot-level) come from about five years of field data 

collection campaigns in central Africa (Cameroon, Gabon, Democratic Republic of Congo) carried out 

by the Institut de Recherche pour le Développement (IRD) in collaboration with the Ecole Normale 

Supérieure of Yaoundé I (LaBosystE, ENS, Université de Yaoundé I), the Missouri Botanical Garden 

(MBG) and the Université Libre de Kisangani (UniKis). During the two years preceding my thesis and 

during the thesis itself, I participated to the establishment of nearly 80 1-ha forest inventory plots, the 

bulk of which being located in south-eastern Cameroon (c. 50 %, left panel in Figure 1-3). Forests in 

this region have been described as a transitional type between evergreen and deciduous forests 

(Letouzey, 1985) and expand across the borders of neighboring countries. From a structural point of 

view, these forests can be described as forests mosaics that notably include patches of mixed, closed-

canopy, semi-deciduous stands, open-canopy Marantaceae stands and monodominant 

Gilbertiodendron dewevrei stands. The diversity of stands structural profiles, from which contrasted 

canopy textures emerge (illustrated in Figure 1-3), justifies our interest in this region. Forests of south-

eastern Cameroon  are also particularly rich in tall trees and stock relatively high biomass densities 
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(Fayolle et al., 2016), and several logging companies are established in the region. Through a 

collaboration with the Alpicam company, we assembled a large destructive dataset on trees 

dimensions and AGB (77 trees). 

Additional study areas      

In the scope of this thesis, I investigate broad biophysical relationships, be it at the tree level in biomass 

allometry models or at the stand levels in canopy texture-based AGB models. In order to increase the 

robustness of the results, I compiled additional data from the literature, collaborating institutions or 

peer researchers (right panel on Figure 1-3).    

The sets of 1 ha forest inventories from IRD and collaborators field work in central Africa were 

complemented with 28 1-ha plots from a forest-savanna mosaic in Republic Democratic of Congo (from 

Bastin et al., 2014), a 50 ha plots located in the Atlantic evergreen forests of western Cameroon (from 

Chuyong et al., 2004), 15 and 22 1-ha plots in evergreen and semi-deciduous forests of the Western 

Ghats of India (from Ploton et al., 2011 and Pargal et al., submitted) and 16 plots covering  85 ha of 

evergreen forests at Paracou, French Guiana  (from Vincent et al., 2012). In total, texture analyses were 

based on 279 ha of forest inventory distributed on 3 continents. 

To the 77 trees destructively sampled in south-eastern Cameroon, I added 132 trees from a semi-

deciduous forest of the same region (from Fayolle et al., 2013), 99 trees sampled in a semi-deciduous 

forest of Gabon (from Ngomanda et al., 2014), 29 trees sampled in an evergreen forest of Ghana (from 

Henry et al., 2010), 285 trees sampled in a dry-to-wet forest types gradient in Madagascar (from 

Vieilledent et al., 2012) and 51 trees sampled in an evergreen forest of Peru (from Goodman et al., 

2014). The total destructive dataset (n=673) thus comprises trees from 6 sites distributed in five 

tropical countries (right panel in Figure 1-3). 

 

 

 

 

 

 

 

Figure 1-3. Distribution of datasets across the tropics. Dots and triangles represent tree-level destructive datasets 
and field plot inventories, respectively. Red color indicates that data have been collected by IRD. Blue color 
indicates that data were compiled from literature, collaborating institutions or shared by the peer researchers.    
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Figure 1-4. VHSR satellite image (GeoEye sensor) covering a typical forest mosaic from semi-deciduous forests of 
south-eastern Cameroon. Patches of Gilbertiodendron dewevrei (black square), mixed closed-canopy stands (red 
square) and open-canopy Marantaceae stands closely co-occur. 

1.3.2 Sampling strategy and data description 

Tree-level destructive data 

Large trees exhibits the largest AGB variability at a given D and H while being insufficiently represented 

in biomass destructive datasets (Chave et al., 2005), probably because of the disproportionate amount 

of work that the biomass estimation of a large tropical canopy tree represents. To fill this gap, we 

exclusively targeted very large canopy trees in our field work protocol. This unique dataset, which was 

incorporated in the latest pantropical database (Chave et al. 2014), contains 17 out of the 30 world’s 

heaviest sampled tropical trees. For a typical tree, we measured the trunk diameter D, the tree height 

H and two perpendicular crown diameters before the tree was felled. After felling, tree biomass was 

estimated by combining direct measurements, indirect measurements and allometries. Direct 

measurements (i.e. weightings) were made on branches of varying sizes, to build an allometry relating 

branch diameter to biomass. We estimated the volume of the largest tree components (i.e. trunk and 

branches with diameter > 20 cm) by measuring diameters and lengths of approximately 2-m and 1-m 

long subsections along the trunk and branches, respectively. Biomass values were obtained by 

multiplying volumes by wood density estimates, derived from wood samples. The biomass of branches 

with D ≤ 20 cm was obtained with species-specific biomass allometries. A detailed description of the 

field protocol is provided in the supplementary material of chapter 2. An important feature of this 

dataset is that it contains a description of the crown geometry (from diameter and length 

measurements) and topology (from the identification of branching points), allowing to reconstruct the 

tree branching network (up to a branch diameter of c. 20 cm) in 3D and explore allometries and scaling 

properties at the branch level.    

Destructive data compiled from other studies were obtained by direct biomass measurement, I refer 

the reader to the publications associated to each dataset for more details. Importantly, I only 

considered datasets providing enough information to distinguish trunk from crown biomass (rather 

than ones providing a single total tree biomass estimate). 

0
 

1
0

0
 

2
0

0
 m

 



 

12 
 

Plot level data 

Apart for plots at Paracou (85 ha) and Korup (50 ha), the sampling strategy at all sites was designed to 

optimize canopy texture analyses from VHSR optical images. In essence, 1 ha plots were distributed 

over a few hundred square kilometers (the typical footprint of a VHSR image) so to capture local 

diversity of forest stand types and ages. Measurement protocols deployed in central Africa, India and 

French Guiana were similar and consisted in describing the structure and composition of forest stands 

for all trees with D ≥ 10 cm. In addition to tree diameter at breast height (D), the description of stands 

structure included measurements of total tree height (H), trunk height (Ht) and crown diameter (Cd) 

on a subset of trees per plot (typically c. 50), to document local trees allometries. The identification of 

tree species allows retrieving species-level wood density estimates (ρ) from global databases (e.g. 

Zanne et al., 2009) and compute plots AGB with the reference pantropical biomass model (Chave et 

al., 2014). 

1.4 Thesis outline  

The thesis is structured into six chapters. The current chapter briefly depicts the scientific context and 

motivations of my doctoral study. It also includes the thesis research objectives, a description of the 

datasets and the thesis structure. A last section lists the publications I authored or co-authored on 

research topics related to the thesis subject.  

In Chapter 2, I investigate how variations in tree form, with a particular focus on crown dimensions, 

influence the predictions (and error) of the pantropical biomass model. The analyses are based on the 

largest destructive dataset available to date that features information on tropical tree crown mass. 

After pinpointing the source of bias in the pantropical model, I propose an alternative model functional 

form. An original method for propagating tree biomass estimation error at the plot level is developed 

and highlights an interaction between forest structure and biomass model error, a source of 

uncertainty largely overlooked. This study was partly published in the journal Biogeosciences.   

In Chapter 3, I further explore the structural properties of large trees crowns that could explain the 

deviation between large trees biomass and the mathematical power form of the pantropical biomass 

model. An empirical assessment of MTE’s theoretical branch allometry is provided. A manuscript is in 

preparation from these results for the journal Trees – Structure and Function.    

Chapter 4 presents the FOTO method, i.e. a remote sensing approach to retrieve forest structure and 

biomass gradients from canopy texture features. I give a concise description of how the method works 

and the basic rationale behind it. Further, I provide a synthetic overview of the results obtained in 

separate empirical FOTO case studies on diverse forest ecosystems and from various remote sensing 

data types. This synthesis highlights methodological limits hindering the development of FOTO as a 

broad-scale, operational forest biomass monitoring method. This chapter was partly published in a 

book entitled Treetops at Risk (Springer).       

Chapter 5 builds upon the synthesis in chapter 4. A simulation procedure is used, which includes the 

representation of forest sample plots as three-dimensional mockups and the generation of virtual 

mockup canopy scenes. Simulated canopy scenes allow testing how the relation between texture 

features and stand biomass varies across forest types in a single, unified analysis frame (as opposed to 

previous empirical studies). The major limits identified in chapter 4 are addressed by complementing 
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FOTO texture with additional descriptors of forest stand structure, notably derived from lacunarity 

analysis. A ‘generalized’ biomass prediction model based on a combination of texture metrics is 

proposed, opening new perspectives for biomass retrieval from canopy texture at large scale.  Part of 

these results was submitted for publication in Remote Sensing of Environment. 

Finally, Chapter 6 presents the overall thesis discussion, focusing on the main contributions, limits and 

perspectives of this work.  
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Abstract 

Accurately monitoring tropical forest carbon stocks is an outstanding challenge. Allometric models that 

consider tree diameter, height and wood density as predictors are currently used in most tropical 

forest carbon studies. In particular, a pantropical biomass model has been widely used for 

approximately a decade, and its most recent version will certainly constitute a reference in the coming 

years. However, this reference model shows a systematic bias for the largest trees. Because large trees 

are key drivers of forest carbon stocks and dynamics, understanding the origin and the consequences 

of this bias is of utmost concern. In this study, we compiled a unique tree mass dataset on 673 trees 

measured in five tropical countries (101 trees > 100 cm in diameter) and an original dataset of 130 

forest plots (1 ha) from central Africa to quantify the error of biomass allometric models at the 

individual and plot levels when explicitly accounting or not accounting for crown mass variations. We 

first showed that the proportion of crown to total tree aboveground biomass is highly variable among 

trees, ranging from 3 to 88 %. This proportion was constant on average for trees < 10 Mg (mean of 34 
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%) but, above this threshold, increased sharply with tree mass and exceeded 50 % on average for trees 

≥ 45 Mg. This increase coincided with a progressive deviation between the pantropical biomass model 

estimations and actual tree mass. Accounting for a crown mass proxy in a newly developed model 

consistently removed the bias observed for large trees (> 1 Mg) and reduced the range of plot-level 

error from -23–16 % to 0–10 %. The disproportionally higher allocation of large trees to crown mass 

may thus explain the bias observed recently in the reference pantropical model. This bias leads to far-

from-negligible, but often overlooked, systematic errors at the plot level and may be easily corrected 

by accounting for a crown mass proxy for the largest trees in a stand, thus suggesting that the accuracy 

of forest carbon estimates can be significantly improved at a minimal cost. 

 

2.1 Introduction 

Monitoring forest carbon variation in space and time is both a sociopolitical challenge for climate 

change mitigation and a scientific challenge, especially in tropical forests, which play a major role in 

the world carbon balance (Hansen et al., 2013; Harris et al., 2012; Saatchi et al., 2011). Significant 

milestones have been reached in the last decade thanks to the development of broad-scale remote 

sensing approaches (Baccini et al., 2012; Malhi et al., 2006; Mitchard et al., 2013; Saatchi et al., 2011). 

However, local forest biomass estimations are still the bedrock of most (if not all) of these approaches 

for the calibration and validation of remote sensing models. As a consequence, uncertainties and 

errors in local biomass estimations may propagate dramatically to broad-scale forest carbon stock 

assessment (Avitabile et al., 2011; Pelletier et al., 2011; Réjou-Méchain et al., 2014). Aboveground 

biomass (AGB) is the major pool of biomass in tropical forests (Eggleston et al., 2006). The AGB of a 

tree (or TAGB) is generally predicted by empirically derived allometric equations that use 

measurements of the size of an individual tree as predictors of its mass (Clark and Kellner, 2012). 

Among these predictors, diameter at breast height (D) and total tree height (H) are often used to 

capture volume variations between trees, whereas wood density (ρ) is used to convert volume to dry 

mass (Brown et al., 1989). The most currently used allometric equations for tropical forests (Chave et 

al., 2005, 2014) have the following form: 𝑇𝐴𝐺𝐵 =  𝛼 ∗ (𝐷² 𝐻 )
𝛽

, where diameter, height and wood 

density are combined into a single compound variable related to dry mass through a power law of 

parameters  and . This model form, referred to hereafter as our reference allometric model form, 

performs well when  = 1 or close to 1 (Chave et al., 2005, 2014), meaning that trees can roughly be 

viewed as a standard geometric solid for which the parameter determines the shape (or form factor) 

of the geometric approximation. However, the uncertainty associated with this model is still very high, 

with an average error of 50 % at the tree level, illustrating the high natural variability of mass between 

trees with similar D, H and ρ values. More importantly, this reference allometric model shows a 

systematic underestimation of TAGB of approximately 20 % in average for the heaviest trees (> 30 Mg) 

(Fig. 2 in Chave et al. 2014), which may contribute strongly to uncertainty in biomass estimates at the 

plot level. It is often argued that, by definition, the least-squares regression model implies that tree-

level errors are globally centered on 0, thus limiting the plot-level prediction error to approximately 5-

10 % for a standard 1-ha forest plot (Chave et al., 2014; Moundounga Mavouroulou et al., 2014). 

However, systematic errors associated with large trees are expected to disproportionally propagate to 

plot-level predictions because of their prominent contribution to plot AGB (Bastin et al., 2015; Clark 

and Clark, 1996; Sist et al., 2014; Slik et al., 2013; Stephenson et al., 2014). Thus, identifying the origin 


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of systematic errors in such biomass allometric models is a prerequisite for improving local biomass 

estimations and thus limiting the risk of uncontrolled error propagation to broad-scale extrapolations. 

As foresters have known for decades, it is reasonable to approximate stem volume using a geometric 

shape. Such an approximation, however, is questionable for assessing the total tree volume, including 

the crown. Because  is generally close to 1 in the reference allometric model, the relative proportion 

of crown to total tree mass (or crown mass ratio) directly affects the adjustment of the tree form factor 

  (e.g., Cannell 1984). Moreover, the crown mass ratio is known to vary greatly between species, 

reflecting different strategies of carbon allocation. For instance, Cannell (1984) observed that 

coniferous species have a lower proportion of crown mass (10-20 %) than tropical broadleaved species 

(over 35 %), whereas temperate softwood species were found to have a lower and less variable crown 

mass ratio (20-30 %) than temperate hardwood species (20-70 %; Freedman et al., 1982; Jenkins et al., 

2003). In the tropics, distinct crown size allometries have been documented among species functional 

groups (Poorter et.al. 2003; Poorter, Bongers, et Bongers 2006; Van Gelder, Poorter, et Sterck 2006). 

For instance, at comparable stem diameters, pioneer species tend to be taller and to have shorter and 

narrower crowns than understory species (Poorter et al., 2006). These differences reflect strategies of 

energy investment (tree height vs. crown development) that are likely to result in different crown mass 

ratios among trees with similar D² ∗ H ∗ 𝜌 values. Indeed, Goodman et al. (2014) obtained a 

substantially improved biomass allometric model when crown diameter was incorporated into the 

equation to account for individual variation in crown size. 

Destructive data on tropical trees featuring information on both crown mass and classical biometric 

measurements (D, H, ρ) are scarce and theoretical work on crown properties largely remains to be 

validated with field data. In most empirical studies published to date, crown mass models use trunk 

diameter as a single predictor (e.g., Nogueira et al. 2008; Chambers et al. 2001). Such models often 

provide good results (R² ≥ 0.9), which reflect the strong biophysical constraints exerted by the diameter 

of the first pipe (the trunk) on the volume of the branching network (Shinozaki et al., 1964). However, 

theoretical results suggest that several crown metrics would scale with crown mass. For instance, 

Mäkelä et Valentine (2006) modified the allometric scaling theory (Enquist, 2002; West et al., 1999) by 

incorporating self-pruning processes into the crown. The authors showed that crown mass is expected 

to be a power function of the total length of the branching network, which they approximated by 

crown depth (i.e., total tree height minus trunk height). The construction of the crown and its structural 

properties have also largely been studied in the light of the mechanical stresses faced by trees (such 

as gravity and wind; e.g., McMahon et Kronauer 1976; Eloy 2011). Within this theoretical frame, crown 

mass can also be expressed as a power function of crown diameter (King and Loucks, 1978). 

In the present study, we used a unique tree mass dataset containing crown mass information on 673 

trees from five tropical countries and a network of forest plots covering 130 ha in central Africa to (i) 

quantify the variation in crown mass ratio in tropical trees; (ii) assess the contribution of crown mass 

variation to the reference pantropical model error, either at the tree level or when propagated at the 

plot level; and (iii) propose a new operational strategy to explicitly account for crown mass variation 

in biomass allometric equations. We hypothesize that the variation in crown mass ratio in tropical trees 

is a major source of error in current biomass allometric models and that accounting for this variation 

would significantly reduce uncertainty associated with plot-level biomass predictions.  
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2.2 Materials and Methods 

2.2.1 Biomass data  

We compiled tree AGB data from published and unpublished sources providing information on crown 

mass for 673 tropical trees belonging to 132 genera (144 identified species), with a wide tree size range 

(i.e., diameter at breast height, D: 10-212 cm) and aboveground tree masses of up to 76 Mg. An 

unpublished dataset for 77 large trees (with D ≥ 67 cm) was obtained from the fieldwork of PP, NB and 

SM in semi-deciduous forests of Eastern Cameroon (site characteristics and field protocol in 

Supplement S1.1 and S1.2.1). The remaining datasets were gathered from relevant published studies: 

29 trees from Ghana (Henry et al., 2010), 285 trees from Madagascar (Vieilledent et al., 2011), and 51 

trees from Peru (Goodman et al., 2014, 2013, Fayolle et al., 2013, and Ngomanda et al., 2014). The 

whole dataset is available from the Dryad Data Repository (http://dx.doi.org/10.5061/dryad.f2b52), 

with details about the protocol used to integrate data from published studies presented in the 

Supplementary Information (2.8.2.2). For the purpose of some analyses, we extracted from this crown 

mass database (hereafter referred to as DataCM1) a subset of 541 trees for which total tree height was 

available (DataCM2; all but Fayolle et al. 2013) and another subset of 119 trees for which crown diameter 

was also available (DataCD; all but Vieilledent et.al. 2011, Fayolle et.al. 2013, Ngomanda et.al. 2014 and 

38 trees from our unpublished dataset). Finally, we used as a reference the data from Chave et al. 

(2014) on the total mass (but not crown mass) of 4,004 destructively sampled trees of many different 

species from all around the tropical world (DataREF). 

2.2.2 Forest inventory data  

We used a set of 81 large forest plots (> 1 ha), covering a total area of 130 ha, to propagate TAGB 

estimation errors to plot-level predictions. The forest inventory data contained the taxonomic 

identification of all trees with a diameter at breast height (D) ≥ 10 cm, as well as total tree height 

measurements (H) for a subset of trees, from which we established plot-level H vs. D relationships to 

predict the tree height of the remaining trees. Details about the inventory protocol along with 

statistical procedures used to compute plot AGB (or PAGB) from field measurements are provided in 

the Supplementary Information (2.8.3). Among these plots, 80 were from a network of 1 ha plots 

established in humid evergreen to semi-deciduous forests belonging to 13 sites in Cameroon, Gabon 

and the Democratic Republic of Congo (unpublished data1). In addition, we included a 50 ha permanent 

plot from Korup National Park, in the evergreen Atlantic forest of western Cameroon (Chuyong et al., 

2004), which we subdivided into 1 ha subplots. Overall, the inventory data encompassed a high 

diversity of stand structural profiles ranging from open-canopy Marantaceae forests to old-growth 

monodominant Gilbertiodendron dewevrei stands and including mixed terra firme forests with various 

levels of degradation. 

2.2.3 Allometric model fitting 

We fitted the pantropical allometric model of Chave et al. (2014) to log-transformed data using 

ordinary least-squares regression: 

ln(𝑇𝐴𝐺𝐵) = 𝛼 + 𝛽 ∗ ln(𝐷2 ∗ 𝐻 ∗ 𝜌) + 𝜀      (eq. 1) 

                                                             
1metadata available at http://vmamapgn-test.mpl.ird.fr:8080/geonetwork/srv/eng/search#|7dd46c7d-db2f-
4bb0-920a-8afe4832f1b3 
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with TAGB (in kg) representing the aboveground tree mass, D (in cm) the tree stem diameter, H (in m) 

the total tree height, ρ (in g.cm-3) the wood density and  the error term, which is assumed to follow 

a normal distribution N ~ (0, RSE²), where RSE is the residual standard error of the model. This model, 

denoted m0, was considered as the reference model.  

To assess the sensitivity of m0 to crown mass variations, we built a model (m1) that restricted the 

volume approximation to the trunk compartment and included actual crown mass as an additional 

covariate: 

ln(TAGB) = α + β* ln(D2*Ht*ρ) +  γ* ln(Cm) + ε     (eq. 2) 

with Cm representing the crown mass (in kg) and Ht the trunk height (i.e., height to the first living 

branch, in m). Note that model m1 cannot be operationally implemented (which would require 

destructive measurements of crowns) but quantifies the maximal improvement that can be made 

through the inclusion of crown mass proxies in a biomass allometric model.  

2.2.4 Development of crown mass proxies  

We further developed crown mass proxies to be incorporated in place of the real crown mass (Cm) in 

the allometric model m1. From preliminary tests of various model forms (see Appendix A), we selected 

a crown mass sub-model based on a volume approximation similar to that made for the trunk 

component (sm1):  

ln(Cm) = a + b* ln(D2*Hc*ρ) + ε       (eq. 3) 

where D is the trunk diameter at breast height (in cm) and Hc the crown depth (that is H – Ht, in m), 

available in our dataset DataCM2 (n=541). 

In this sub-model, tree crowns of short stature but large width are assigned a small Hc, thus a small 

mass, whereas the volume they occupy is more horizontal than vertical. We thus tested in sub-model 

sm2 (eq. 4) whether using the mean crown size (eq. 5), which accounts for whether Hc and Cd (the 

crown diameter in m available in our dataset DataCD (n=119)) reduces the error associated with sm1: 

ln(Cm) = a + b* ln(D2*Cs*ρ) + ε       (eq. 4) 

𝐶𝑠 =  
(𝐻𝑐+𝐶𝑑)

2
          (eq. 5) 

Finally, Sillett et al. (2010) showed that for large, old trees, a temporal increment of D and H poorly 

reflects the high rate of mass accumulation within crowns. We thus hypothesized that the relationship 

between Cm and 𝐷2 ∗ 𝐻𝑐 ∗ 𝜌 (or 𝐷2 ∗ 𝐶𝑠 ∗ 𝜌) depends on tree size and fitted a quadratic (second-

order) polynomial model to account for this phenomenon (Niklas, 1995), if any: 

ln(Cm) = a + b* ln(D2*Hc*ρ) + c* ln(D2*Hc*ρ) ² + ε      (eq. 6) 

ln(Cm) = a + b* ln(D2*Cs*ρ) + c* ln(D2*Cs*ρ) ² + ε      (eq. 7) 

where eqs. 6 and 7 are referred to as sub-models 3 and 4, respectively.  


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2.2.5 Model error evaluation  

2.2.5.1 Tree-level 

From biomass allometric equations, we estimated crown mass (denoted Cmest) or total tree 

aboveground mass (denoted 𝑇𝐴𝐺𝐵𝑒𝑠𝑡) including (Baskerville, 1972) bias correction during back-

transformation from the logarithmic scale to the original mass unit (i.e., kg). In addition to classical 

criteria of model fit assessment (adjusted R², Residual Standard Error, Akaike Information Criterion), 

we quantified model uncertainty based on the distribution of individual relative residuals (in %), which 

is defined as follows: 

𝑠𝑖 = (
𝑌𝑒𝑠𝑡,𝑖  − 𝑌𝑜𝑏𝑠,𝑖

𝑌𝑜𝑏𝑠,𝑖
) ∗ 100        (eq. 8) 

where Yobs,i and Yest,i are the crown or tree biomass values in the calibration dataset (i.e., measured in 

the field) and those allometrically estimated for tree i, respectively. We reported the median of |si| 

values, hereafter referred to as “S”, as an indicator of model precision. For a tree biomass allometric 

model to be unbiased, we expect si to be locally centered on zero for any given small range of the tree 

mass gradient. We thus investigated the distribution of si values with respect to tree mass using local 

regression (loess method; Cleveland, Grosse & Shyu 1992). 

2.2.5.2 Plot level 

Allometric models are mostly used to make plot-level AGB predictions from non-destructive forest 

inventory data. Such plot-level predictions are obtained by simply summing individual predictions over 

all trees in a plot (𝑃𝐴𝐺𝐵𝑝𝑟𝑒𝑑 = ∑ 𝑇𝐴𝐺𝐵𝑝𝑟𝑒𝑑𝑖 ). Prediction errors at the tree level are thus expected to 

yield an error at the plot level, which may depend on the actual tree mass distribution in the sample 

plot when the model is locally biased. To account for this effect, we developed a simulation procedure, 

implemented in two steps, that propagated TAGBpred errors to PAGBpred. The first step consists in 

attributing to each tree i in a given plot a value of TAGBsim corresponding to the actual AGB of a similar 

felled tree selected in DataREF based on its nearest neighbor in the space of the centered-reduced 

variables D, H and ρ (here taken as species average from Dryad Global Wood Density Database, Chave 

et al., 2009; Zanne et al., 2009). In a second step, the simulation propagates individual errors of a given 

allometric model using the local distribution of si values as predicted by the loess regression: For each 

TAGBsim, we drew a ssim value from a local normal distribution fitted with the loess parameters (i.e., 

local mean and standard deviation) predicted for that particular TAGBsim. Thus, we generated for each 

1-ha plot a realistic PAGBsim (i.e., based on observed felled trees) with repeated realizations of a plot-

level prediction error (in %) computed for n trees as follows: 

 Splot =
∑ (ssim(i)*TAGBsim(i))n

i=1

∑ TAGBsim(i)n
i=1

.         (eq. 9) 

For each of the simulated plots, we provided the mean and standard deviation of 1000 realizations of 

the plot-level prediction error. 

All analyses were performed with R statistical software 2.15.2 (R Core Team, 2015), using packages 

lmodel2 (Legendre, 2011), segmented (Muggeo, 2003), FNN (Beygelzimer et al., 2013) and msir 

(Scrucca, 2011). 
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2.3 Results 

2.3.1 Contribution of crown to tree mass  

Our crown mass database (DataCM1; 673 trees, including 128 trees > 10 Mg) revealed a huge variation 

in the contribution of crown to total tree mass, ranging from 2.5 to 87.5 % of total aboveground 

biomass, with a mean of 35.6 % (± 16.2 %). Despite this variation, a linear regression (model II) revealed 

a significant increase in the crown mass ratio with tree mass of approximately 3.7 % per 10 Mg (Figure 

2-1 A). A similar trend was observed at every site, except for the Ghana dataset (Henry et al. 2010), for 

which the largest sampled tree (72 Mg) had a rather low crown mass ratio (46 %). Overall, this trend 

appeared to have been driven by the largest trees in the database (Figure 2-1 B). Indeed, the crown 

mass ratio appeared to be nearly constant for trees ≤ 10 Mg with an average of 34.0 % (± 16.9 %), and 

then to increase progressively with tree mass, exceeding 50 % on average for trees ≥ 45 Mg.  

2.3.2 Crown mass sub-models  

All crown mass sub-models provided good fits to our data (R² ≥ 0.9, see Table 2-1). However, when 

information on crown diameter was available (DataCD), models that included mean crown size in the 

compound variable (i.e., Cs, a combination of crown depth and diameter, in sm2 and sm4) gave lower 

AICs and errors (RSE and S) than models that included the simpler crown depth metric (i.e., Hc in sm1 

and sm3). The quadratic model form provided a better fit than the linear model form (e.g., sm3 vs. sm1 

fitted on DataCM2), which can be explained by the non-linear increase in crown mass with either of the 

two proxy variables (𝐷2 ∗ 𝐻𝑐 ∗ 𝜌 or 𝐷2 ∗ 𝐶𝑠 ∗ 𝜌). The slope of the relationship between crown mass 

and, for example, 𝐷2 ∗ 𝐻𝑐 ∗ 𝜌 presented a breaking point at approximately 7.5 Mg (Davies’ test P < 

0.001) that was not captured by sub-model sm1 (Figure 2-2 A, full line), leading to a substantial bias in 

back-transformed crown mass estimations (approximately 50 % of observed crown mass for Cmobs ≥ 

10 Mg, Figure 2-2 B). The quadratic sub-model sm3 provided fairly unbiased crown mass estimations 

(Figure 2-2 C). Because the first-order term was never significant in the quadratic sub-models, we 

retained only the second-order term as a crown mass proxy in the biomass allometric models (i.e., 

(𝐷2 ∗ 𝐻𝑐 ∗ 𝜌)2for model m2 or (𝐷2 ∗ 𝐶𝑠 ∗ 𝜌)2or model m3). 
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Figure 2-1. (A) Distribution of crown mass ratio (in %) along the range of tree mass (TAGBobs, in Mg) for 673 trees. 
Dashed lines represent the fit of robust regressions (model II linear regression fitted using ordinary least square) 
performed on the full crown mass dataset (thick line; one-tailed permutation test on slope: p-value < 0.001) and 
on each separate source (thin lines), with symbols indicating the source: empty circles from Vieilledent et.al. 
(2011; regression line not represented since the largest tree is 3.7 Mg only); solid circles from Fayolle et.al. 
(2013); squares from Goodman et al. (2013, 2014); diamonds from Henry et.al. (2010); head-up triangles from 
Ngomanda et.al. (2014); and head-down triangles from the un-published data set from Cameroon. (B) Boxplot 
representing the variation in crown mass ratio (in %) across tree mass bins of equal width (2.5 Mg). The last bin 
contains all trees ≥ 20 Mg. The number of individuals per bin and the results of non-parametric pairwise 
comparisons are represented below and above the median lines, respectively.  
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Table 2-1. Crown mas sub-models. Model variables are Cm (crown mass, Mg), D (diameter at breast height, cm), Hc (crown depth, m), Cs (average of Hc and crown diameter, 
m) and ρ (wood density, g.cm-3). The general form of the models is ln(Y) ~a+ b* ln(X) + c*ln(X)². Model coefficient estimates are provided along with the associated standard 
error denoted SEi, with i as the coefficient. Coefficients’ probability value (pv) is not reported when pv ≤ 10-4 and otherwise coded as follows: pv ≤ 10-3 : '**', pv ≤ 10-2 : '*', 
pv ≤ 0.05 : '.' and pv ≥ 0.05 : 'ns'. Models’ performance parameters are R² (adjusted R square), RSE (residual standard error), S (median of unsigned relative individual errors, 
in %), AIC (Akaike Information Criterion), dF (degree of freedom).    

 

model Dataset 
Model input Model parameters Model performance 

 Y X X² a b c SEa SEb SEc R² RSE S AIC dF 

sm1 
DataCM2 
(n=541) 

Cm  

D²Hc ρ -  -2.6345 0.9368  0.1145 0.0125  0.91 0.615 36.0 1012.6 539 

sm3 D²Hc ρ (D²Hc ρ)² 0.9017. 0.1143ns 0.0452 0.5049 0.1153 0.0063 0.92 0.588 35.2 965.2 538 

- (D²Hc ρ)² 1.3990  0.0514 0.0605  0.0007 0.92 0.588 35.5 964.2 539 

sm1 

DataCD 
(n=119) 

Cm  

D²Hc ρ -  -2.9115 0.9843  0.3139 0.0289  0.91 0.516 31.8 184.1 117 

sm2 D²Cs ρ - -3.0716 0.9958  0.2514 0.0231  0.94 0.414 21.8 131.9 117 

sm3 D²Hc ρ (D²Hc ρ)² -0.2682ns 0.4272ns 0.0283. 1.4077 0.2908 0.0147 0.91 0.510 29.7 182.3 116 

- (D²Hc ρ)² 1.7830  0.0498 0.1774  0.0015 0.91 0.512 32.2 182.5 117 

sm4 D²Cs ρ (D²Cs ρ)² -0.5265ns 0.4617. 0.0270* 1.1443 0.2356 0.0119 0.94 0.407 128.7 25.9 116 

- (D²Cs ρ)² 1.6994  0.0502 0.1421  0.0012 0.94 0.412 130.5 25.8 117 

 

 



 

 28 

 

Figure 2-2. (A) Observed crown mass versus the compound variable D²Hcρ (in log scale), displaying a slightly 
concave relationship. The crown mass sub-model 1 does not capture this effect (model fit represented with a full 
line in caption A), resulting in biased model predictions (caption B), whereas sub-model 3 does not present this 
error pattern (model fit represented as a dashed line in caption A, observed crown mass against model 
predictions in caption C). Models were fitted on DataCM2.  

2.3.3 Accounting for crown mass in biomass allometric models   

The reference model (m0) proposed by Chave et al. (2014) presented, when fitted to DATAREF, a bias 

that was a function of tree mass, with a systematic AGB over-estimation for trees < approximately 10 

Mg and an under-estimation for larger trees, reaching approximately 25 % for trees greater than 30 

Mg (Figure 2-3 A). This bias pattern reflected a breaking point in the relationship between 𝐷2 ∗ 𝐻 ∗ 𝜌 

and TAGBobs (Davies’ test P < 0.001) located at approximately 10 Mg (Figure 2-3 B). Accounting for 

actual crown mass (Cm) in the biomass allometric model (i.e., model m1) corrected for a similar bias 

pattern observed when m0 was fitted to DATACM2 (Figure 2-4 A). This result shows that variation in 

crown mass among trees is a major source of bias in the reference biomass allometric model, m0. 

Using our simulation procedure, we propagated individual prediction errors of m0 and m1 to the 130 

1-ha field plots from central Africa (Figure 2-4 B). This process revealed that the reference pantropical 

model (m0) led to an average plot-level relative prediction error (Splot) ranging from -23 % to +16 % 

(mean = +6.8 %) on PAGBpred, which dropped to +1 to +4 % (mean = +2.6 %) when the model accounted 

for crown mass (m1).  
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Figure 2-3. (A) Relative individual residuals (si in %) of the reference pantropical model of Chave et.al. (2014) 
against the tree AGB gradient. The thick dashed line represents the fit of a local regression (loess function, span 
= 0.5) bounded by standard errors. (B) Observed tree AGB (TAGBobs) versus the compound variable 𝐷2 ∗ 𝐻 ∗ 𝜌 
with D and H being the tree stem diameter and height, respectively, and ρ the wood density. A segmented 
regression revealed a significant break point (thin vertical dashed line) at approximately 10 Mg of TAGBobs (Davies 
test p-value < 2.2e-16).  

 

Figure 2-4. (A) Relative residuals (si, in %) of the reference pantropical model m0 (grey background) and our model 
m1 including crown mass (white background). Thick dashed lines represent fits of local regressions (loess 
function, span = 1) bounded by standard errors. (B) Propagation of individual estimation errors of m0 (solid grey 
circles) and m1 (empty circles) to the plot level.  

 

Because in practice crown mass cannot be routinely measured in the field, we tested the potential of 

crown mass proxies to improve biomass allometric models. Model m2, which used a compound 

variable integrating crown depth i.e., (𝐷2 ∗ 𝐻𝑐 ∗ 𝜌)² as a proxy of crown mass outperformed m0 (Table 

2-2). Although the gain in precision (RSE and S) over m0 was rather low, the model provided the striking 

advantage of being free of significant local bias on large trees (> 1 Mg; Figure 2-5 A). At the plot level, 

 

𝑚2.    𝐴𝐺𝐵𝑇𝑟𝑒𝑒  ~  𝐷2𝐻𝑇𝑟𝑢𝑛𝑘 + Cm 
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this model provided a much higher precision (0 to 10 % on PAGBpred) and a lower bias (average error 

of 5 %) than the reference pantropical model m0 (Figure 2-5 B). Using a compound variable integrating 

crown size i.e., (𝐷2 ∗ 𝐶𝑠 ∗ 𝜌)² as a crown mass proxy (model m3), thus requiring both crown depth and 

diameter measurements, significantly improved model precision (m3 vs. m2, Table 2-2) while 

preserving the relatively unbiased distribution of relative residuals (results not shown).  

 

 

Figure 2-5. (A) Relative individual residuals (si, in %) obtained with the reference pantropical model m0 (grey 
background) and with our model including a crown mass proxy, m2 (white background). Thick dashed lines 
represent fits of local regressions (loess function, span = 1) bounded by standard errors. (B) Propagation of 
individual residual errors of m0 (solid grey circles) and m2 (empty circles) to the plot level. 

 

 

 

𝑚2.    𝐴𝐺𝐵𝑇𝑟𝑒𝑒  ~  𝐷2𝐻𝑇𝑟𝑒𝑒 + 𝐶𝑚 

𝑚3.    𝐴𝐺𝐵𝑇𝑟𝑒𝑒  ~  𝐷2𝐻𝑇𝑟𝑒𝑒 + 𝐶𝑑 
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Table 2-2. Models used to estimate tree AGB. Model parameters are D (diameter at breast height, cm), H (total height, m), Ht (trunk height, m), Hc (crown depth, m), Cm 
(crown mass, Mg), Cs (average of Hc and crown diameter, m) and ρ (wood density, g.cm-3). The general form of the models is ln(Y) ~a+ b* ln(X1) + c*ln(X2). Model coefficient 
estimates are provided along with the associated standard error denoted SEi, with i as the coefficient. Coefficients’ probability value (pv) is not reported when pv ≤ 10-4 and 
otherwise coded as follows: pv ≤ 10-3 : '**', pv ≤ 10-2 : '*', pv ≤ 0.05 : '.' and pv ≥ 0.05 : 'ns'. Models’ performance parameters are R² (adjusted R square), RSE (residual standard 
error), S (median of unsigned relative individual errors, in %), AIC (Akaike Information Criterion), dF (degree of freedom).  

 

 

model Dataset 
Model input Model parameters Model performance 

 Y X1 X2 a b c SEa SEb SEc R² RSE S AIC dF 

m0 
DataREF 
(n=4004) 

AGB  D²*H*ρ  -2.7628 0.9759  
0.0211 0.0026  

0.97 0.358 22.1 3130.7 4002 

m0 
DataCM2 

(n=541) 
AGB  

D²*H*ρ   -2.5860 0.9603  0.0659 0.0066  0.98 0.314 18.9 284.8 539 

m1 D²*Ht*ρ Cm -0.5619 0.5049 0.4816 0.0469 0.0098 0.0096 0.99 0.199 9.8 -205.7 538 

m2 D²*Ht*ρ (D²*Hc*ρ)² 0.3757 0.4451 0.0281 0.0974 0.0186 0.0010 0.98 0.298 17.8 231.5 538 

m0 

DataCD 
(n=119) 

AGB  

D²*H*ρ  -3.1105 1.0119  0.1866 0.0160  0.97 0.268 15.0 28.1 117 

m1 D²*Ht*ρ Cm -0.5851 0.4784 0.5172 0.1117 0.0203 0.0185 0.99 0.142 7.0 -121.2 116 

m2 D²*Ht*ρ (D²*Hc*ρ)² -0.2853ns 0.5804 0.0216 0.2499 0.0397 0.0019 0.97 0.272 14.5 32.5 116 

m3 D²*Ht*ρ (D²*Cs*ρ)² 0.5800* 0.4263 0.0283 0.2662 0.0444 0.0021 0.98 0.246 12.3 9.3 116 
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2.4 Discussion 

Using a dataset of 673 individuals including most of the largest trees that have been destructively 

sampled to date, we discovered tremendous variation in the crown mass ratio among tropical trees, 

ranging from 3 to 88 %, with an average of 36 %. This variation was not independent of tree size, as 

indicated by a marked increase in the crown mass ratio with tree mass for trees ≥ 10 Mg. This threshold 

echoed a breaking point in the relationship between total tree mass and the compound predictor 

variable used in the reference allometric model of Chave et al. (2014). When the compound variable 

is limited to trunk mass prediction, and a crown mass predictor is added to the model, the bias towards 

large trees is significantly reduced. As a consequence, error propagation to plot-level AGB estimations 

is largely reduced. In the following section, we discuss the significance and implication of these results 

from both an ecological and a practical point of view with respect to resource allocation to the tree 

compartments and to carbon storage in forest aboveground biomass. 

2.4.1 Crown mass ratio and the reference biomass model error 

We observed an overall systematic increase in the crown mass ratio with tree mass. This ontogenetic 

trend has already been reported for some tropical canopy species (O’Brien et al., 1995) and likely 

reflects changes in the pattern of resource allocation underlying crown edification in most forest 

canopy trees (Barthélémy and Caraglio, 2007; Hasenauer and Monserud, 1996; Holdaway, 1986; 

Moorby and Wareing, 1963; Perry, 1985). The overall increase in the carbon accumulation rate with 

tree size is a well-established trend (Stephenson et al., 2014), but the relative contribution of the trunk 

and the crown to that pattern has rarely been investigated, particularly on large trees for which branch 

growth monitoring involves a tremendous amount of work. Sillett et al. (2010) collected a unique 

dataset in this regard, with detailed growth measurements on very old (up to 1850 years) and large 

(up to 648 cm D) individuals of Eucalyptus regnans and Sequoia sempervirens species. For these two 

species, the contribution of crown to AGB growth increased linearly with tree size and thus the crown 

mass ratio. We observed the same tendency in our data for trees ≥ 10 Mg (typically with D > 100 cm). 

This result thus suggests that biomass allometric relationships may differ among small and large trees, 

thus explaining the systematic underestimation of AGB for large trees observed by Chave et al. (2014). 

The latter authors suggested that this model underestimation was due to a potential “majestic tree” 

sampling bias, in which scientists would have more systematically sampled trees with well-formed 

boles and healthy crowns. We agree that such an effect cannot be completely ruled out, and it is 

probably all the more significant that trees ≥ 10 Mg represent only 3 % of the reference dataset of 

Chave et al. (DataREF). Collecting more field data on the largest tree size classes should therefore 

constitute a priority if we are to improve multi-specific, broad-scale allometric models, and the recent 

development of non-destructive AGB estimation methods based on terrestrial LiDAR data should help 

in this regard (e.g., Calder et al., 2014). However, regardless of whether the non-linear increase in 

crown mass ratio with tree mass held to a sampling artifact, we have shown that it was the source of 

systematic error in the reference model that used a unique geometric approximation with an average 

form factor for all trees. This finding agrees with the results of Goodman et al. (2014) in Peru, who 

found significant improvements in biomass estimates of large trees when biomass models included 

tree crown radius, thus partially accounting for crown ratio variations. Identifying predictable patterns 

of crown mass ratio variation, as performed for crown size allometries specific to some functional 

groups (Poorter et.al. 2003; Poorter, Bongers, et Bongers 2006; Van Gelder, Poorter, et Sterck 2006), 

therefore appears to be a potential way to improve allometric models performance. 
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2.4.2 Model error propagation depends on targeted plot structure 

The reference pantropical model provided by Chave et al. (2014) presents a bias pattern that is a 

function of tree size (i.e., average over-estimation of small tree AGB and average underestimation of 

large tree AGB). Propagation of individual errors to the plot level therefore depends on tree size 

distribution in the sample plot, with over- or under-estimations depending on the relative importance 

of small or large trees in the stand (e.g., young secondary forests vs. old-growth forests; see Appendix 

B for more information on the interaction between model error, plot structure and plot size). This 

effect is not consistent with the general assumption that individual errors should compensate at the 

plot level. Although the dependence of error propagation on tree size distribution has already been 

raised (Marra et al., 2015; Mascaro et al., 2011), it is generally omitted from error propagation 

procedures (e.g., Picard, Bosela, et Rossi 2014; Moundounga Mavouroulou et al. 2014; Chen, Vaglio 

Laurin, et Valentini 2015). At a larger scale, such as the landscape or regional scale, plot-level errors 

may average out if the study area is a mosaic of forests with varying tree size distributions. However, 

if plot estimations are used to calibrate remote sensing products, individual plot errors may propagate 

as a systematic bias in the final extrapolation (Réjou-Méchain et al. 2014). 

2.4.3 Accounting for crown mass variation in allometric models 

We propose a modeling strategy that decomposes total tree mass into trunk and crown masses. A 

direct benefit of addressing these two components separately is that it should reduce the error in trunk 

mass estimation because the trunk form factor is less variable across species than the whole-tree form 

factor (Cannell, 1984). We modeled tree crown using a geometric solid whose basal diameter and 

height were the trunk diameter and crown depth, respectively. Crown volume was thus considered 

the volume occupied by branches if they were squeezed onto the main stem (“as if a ring were passed 

up the stem”; Cannell 1984). Using a simple linear model to relate crown mass to the geometric 

approximation (sm1, sm2) led to an under-estimation bias that gradually increased with crown mass 

(Figure 2-2 B). A similar pattern was observed on all crown mass models based on trunk diameter 

(Appendix A) and reflected a significant change in the relationship between the two variables with 

crown size. Consistently, a second-order polynomial model better captured such a non-linear increase 

in crown mass with trunk diameter-based proxies and thus provided unbiased crown mass estimates 

(Figure 2-2 C). Our results agree with those of Sillett et al. (2010), who showed that ground-based 

measurements such as trunk diameter do not properly render the high rate of mass accumulation in 

large trees, notably in tree crowns, and may also explain why the dynamics of forest biomass are 

inferred differently from top-down (e.g., airborne LiDAR) or bottom-up views (e.g., field measurement; 

Réjou-Méchain et al., 2015).  

From a practical point of view, our tree biomass model m2, which requires only extra information on 

trunk height (if total height is already measured) provides a better fit than the reference pantropical 

model and removes estimation bias on large trees. In scientific forest inventories, total tree height is 

often measured on a sub-sample of trees, including most of the largest trees in each plot, to calibrate 

local allometries between H and D. We believe that measuring trunk height on those trees does not 

represent a cumbersome amount of additional effort because trunk height is much more easily 

measured than total tree height. We thus recommend using model m2 —at least for the largest trees, 

i.e., those with D ≥ 100 cm — and encourage future studies to assess its performance from 

independent datasets.  
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2.5 Appendix A: Crown mass sub-models 

2.5.1 Method 

Several tree metrics are expected to scale with crown mass, particularly crown height (Mäkelä and 

Valentine, 2006), crown diameter (King and Loucks, 1978) or trunk diameter (e.g., Nogueira et al. 2008; 

Chambers et al. 2001). In this study, we tested whether any of these variables (i.e., trunk diameter, 

crown height and crown diameter) prevailed over the others in explaining crown mass variations. 

Power functions were fitted in log-transformed form using ordinary least-squares regression 

techniques (models sm1-X):  

ln(Cm) ~ a+ b*ln(X) +          (eq. A1) 

where Cm is the crown mass (in Mg); X is the structural variable of interest, namely D for trunk 

diameter at breast height (in cm), Hc for crown depth (in m), or Cd for crown diameter (in m); a and b 

are the model coefficients and is the error term assumed to follow a normal distribution.  

We also assessed the predictive power of the three structural variables on crown mass while 

controlling for variations in wood density (ρ, in g.cm-3), leading to models sm2-X: 

ln(Cm) ~ a+ b*ln(X) + c*ln(ρ) +         (eq. A2) 

where c is the model coefficient of ρ. 

Similarly to the cylindrical approximation of a tree trunk, we further established a compound variable 

for tree crown based on D and Hc, leading to model sm3: 

ln(Cm) ~ a+ b*ln(D²Hc ρ) +          (eq. A3) 

where crown height is a proxy for the length of the branching network. Results obtained using sm3 are 

presented in the manuscript as well as in this appendix for comparison with those obtained using sm1-

x and sm2-x.  

2.5.2 Results & Discussion 

Among the three structural variables tested as proxies for crown mass, trunk diameter provided the 

best results. Model 1-D presented a high R² (0.88), but its precision was low, with an S (i.e., the median 

of unsigned si values) of 43 % (Table 2-3). Moreover, model error increased appreciably with crown 

mass (Figure 2-6 A). For instance, model estimations for an observed crown mass of approximately 20 

Mg ranged between 5 and 55 Mg. Nevertheless, sm1-D outperformed sm1-Hc (DataCM2, AIC of 1182 vs. 

1603, respectively) and was slightly better than sm1-Cd (DataCD, AIC of 257 vs. 263, respectively), 

suggesting that the width of the first branching network pipe is a stronger constraint on branches' 

mass than the external dimensions of the network (i.e., Hc, Cd).  

The model based on crown depth (sm1-Hc) was subjected to a large error (S of c. 80 %; Table 2-3) and 

clearly saturated for a crown mass ≥ 10 Mg (Figure 2-6 B). Because crown depth does not account for 

branch angle, it does not properly render the length of the branching network. The saturation 

threshold observed on large crowns supports the observations of Sillett et al. (2010): Tree height, from 

which crown depth directly derives, levels off in large/adult trees, but mass accumulation—notably 

within the crowns—continues far beyond this point. It follows that crown depth alone does not allow 

for the detection of the highest mass levels in large/old tree crowns. 
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Figure 2-6. Observed against estimated crown mass (in Mg) for models 1-D (caption A), 1-Hc (caption B), 2-D 
(caption C), 3 (caption D). Models were calibrated on DataCM2. Tree wood density was standardized to range 
between 0 and 1 and represented as a grayscale (with black the lowest values and white the highest values).
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Table 2-3. Sub-models used to estimate crown AGB. Model parameters are D (diameter at breast height, cm), Hc (crown depth, m), Cm (crown mass, Mg), Cd (crown diameter, 
in m), Cs (average of Hc and Cd, m) and ρ (wood density, g.cm-3). The general form of the models is ln(Y) ~ a + b*ln(X) + c*ln(Y). Model coefficients’ estimates are provided 
along with the associated standard error denoted SEi, with i as the coefficient. Coefficients’ probability value (pv) is not reported when pv ≤ 10-4 and otherwise coded as 
follows: pv ≤ 10-3 : '**', pv ≤ 10-2 : '*', pv ≤ 0.05 : '.' and pv ≥ 0.05 : 'ns'. Models’ performance parameters are R² (adjusted R square), RSE (residual standard error), S (median 
of unsigned relative individual errors, in %), AIC (Akaike Information Criterion), dF (degree of freedom).   

 

 

 

model Dataset 
Model input Model parameters Model performance 

Y  X1 X2 a b C SEa SEb SEc R² RSE S AIC dF 

1-D 

DataCM2 
(n=541) 

Cm ~ 

D   -3.6163 2,5786   0.1514 0.0409   0.88 0.719 42.8 1181.6 539 

1-Hc Hc  -0.1711ns 2.6387  0.1574 0.0673   0.74 1.060 82.2 1602.8 539 

2-D D ρ -3.0876 2.6048 1.1202 0.1462 0.0372 0.1048 0.90 0.653 36.7 1079.4 538 

2-Hc Hc ρ -0.3952* 2.6574 -0.3274. 0.1959 0.0679 0.1712 0.74 1.058 80.6 1601.1 538 

3 D²Hc ρ  -2.6345 0.9368   0.1145 0.0125   0.91 0.615 36.0 1012.6 539 

1-D 

DataCD 
(n=119) 

Cm ~ 

D   -3.4603 2.5684  0.4692 0.1075   0.83 0.702 39.8 257.4 117 

1-Hc Hc  1.3923* 2.2907  0.5392 0.1938  0.54 1.149 77.4 374.7 117 

1-Cd Cd  -0.1181ns 2.8298  0.3403 0.1218  0.82 0.718 52.7 262.8 117 

2-D D ρ -2.7296 2.6293 1.5243 0.3528 0.0793 0.1523 0.91 0.516 30.5 185.3 116 

2-Hc Hc ρ 1.1181ns 2.3356 -0.2326ns 0.6869 0.2063 0.3596 0.54 1.152 82.9 376.3 116 

2-Cd Cd ρ 0.4677ns 2.7954 0.7538 0.3585 0.1158 0.2009 0.84 0.681 44.5 251.2 116 
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The model based on crown diameter presented a weaker fit than sm1-D, with a higher AIC (DataCD, 263 

vs. 257) and an individual relative error approximately 10 % higher (S of approximately 50 % and 40 %, 

respectively; Table 2-3). However, crown diameter appeared more informative regarding the mass of 

the largest crowns than trunk diameter (Figure 2-7 A-B). In fact, the individual relative error of sm1-Cd 

on crowns ≥ 10 Mg was only 26 %, versus 47 % for sm1-D. 

 

 

Figure 2-7. Observed versus estimated crown mass (in Mg) for models 1-D (caption A), 1-Cd (caption B), 2-D 
(caption C), 2-Cd (caption D). Models were calibrated on DataCD. Tree wood density was standardized to range 
between 0 and 1 and is represented as a grayscale (with black the lowest values and white the highest values).  

 

Accounting for variations in wood density improved the model based on trunk diameter. As shown in 

Figure 2-6, using a color code for wood density highlighted a predictable error pattern in model 

estimations: Trunk diameter tends to over- or under-estimate the crown mass of trees with high or 

low wood density, respectively. This pattern is corrected for in sm2-D, which presents a lower AIC than 

sm1-D (i.e., 1079) and an individual relative error approximately 15 % lower (i.e., 37 %; Table 2-3). 

Interestingly, whereas sm2-D appeared to be more accurate than sm1-D in its estimations of large crown 

mass (Figure 2-6 C), it also presented an under-estimation bias that gradually increased with crown 

mass. Including ρ in the model based on Cd improved the model fit (AIC of 251 vs. 262 for sm2-Cd and 

sm1-Cd, respectively) and decreased the individual relative error by approximately 15 %. Similarly to 

sm1-Cd, sm2-Cd was outperformed by its counterpart based on D (AIC of 185). Moreover, the gain in 

precision in sm2-Cd was localized on small crowns, whereas estimations on large crowns were fairly 
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equivalent (Figure 2-7 C-D). Model 2-D was more precise on crowns ≥ 10 Mg, with an individual relative 

error of 23 % versus 32 % for sm2-Cd. 

The strongest crown mass predictor, D, was used as the basis of a geometric solid approximating crown 

volume (𝐷² ∗ 𝐻𝑐) and, in turn, mass (𝐷² ∗ 𝐻𝑐 ∗ ρ in model sm3). With one less parameter than sm2-D, 

sm3 presented a lower AIC than the former model (i.e., 1012), but the two models provided a fairly 

similar fit to the observations (RSE of 0.65 vs. 0.61 and S of 37 % vs. 36 % for sm2-D and sm3, 

respectively). This result indicates that when D and ρ are known, information on crown depth is of 

minor importance for predicting crown mass. However, this conclusion applies to our dataset only 

because Hc might be more informative regarding crown mass variations when considering 

sites/species with more highly contrasting D-H or D-Hc relationships.  

Similarly to sm2-D, sm3 presented an under-estimation bias that increased gradually with crown mass 

(illustrated in Figure 2-6 D).  

2.6 Appendix B: Plot-level error propagation 

We used the error propagation procedure described in the Methods section of the manuscript to 

estimate the mean plot-level AGB prediction error that could be expected from m0 calibrated on 

DATAREF (i.e., the pantropical model proposed in Chave et al. 2014). Model error was propagated on 

130 1-ha sample plots of tropical forest in central Africa, a network of 80 1-ha plots (field inventory 

protocol in Supplement Information S1.3) to which we added 50 1-ha plots from Korup 50-ha 

permanent plot (Chuyong et al., 2004). We further sub-sampled Korup 50-ha permanent plot in sub-

plots of varying sizes (from 25 ha to 0.1 ha) to evaluate the effect of plot size on plot-level AGB 

prediction error.    

From the simulated PAGBsim for the 130 1-ha plots, we estimated that the reference pantropical model, 

m0, propagated to PAGBpred a mean prediction error (over 1000 realizations of Splot) that ranged 

between -15 % and +7.7 % (Figure 2-8 A), mostly caused by trees with mass ≥ 20 Mg (Figure 2-8 B). 

This trend was particularly evident in the undisturbed evergreen stands of Korup (triangles in Figure 

2-8 A-B), where patches of Lecomtedoxa klaineana (Pierre ex Engl) individuals largely drove the PAGB 

predictions (R²= 0.87, model II OLS method). This species generates high-statured individuals of high 

wood density, which frequently exceed 20 Mg and result in underestimates of plot-level biomass. 

Interestingly, some high-biomass plots could still be over-estimated when PAGBpred was concentrated 

in trees weighting less than 20 Mg. 
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Figure 2-8. Plot-level propagation of individual-level model error. (A) Mean relative error (Splot, in %) and standard 
deviation of 1000 random error sampling against simulated plot AGB and (B) against the fraction (%) of simulated 
plot AGB accounted for by trees > 20 Mg. Plots from Korup permanent plot are represented by triangles. 

As a consequence of m0 bias concentration in large trees, plot-level prediction errors for the 50 ha in 

Korup tended to stabilize near 0 for subplots ≥ 5 ha only. Below this threshold (i.e., for subplots ≤ 1 

ha), the median error is positive but negative outliers are more frequent (Figure 2-9). Indeed, on the 

one hand, small plots are less likely to encompass large trees and have a positive prediction error of 

up to approximately +7.5 %. On the other hand, a single large tree can strongly affect PAGBpred, 

occasionally leading to a large underestimation of small plots AGB that can exceed -15 % for a 0.25-ha 

and -20 % for a 0.1-ha subplot.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2-9. Plot-level relative error (Splot, in %) as a function of plot size (in ha) in Korup permanent plot. Individual 
plot values are represented by grey dots.   
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2.8 Supplement: Field data protocols 

2.8.1 Unpublished dataset: site characteristics 

Field work was conducted close to the city of Mindourou-2 (4°7’N, 14°32’E) in the logging concessions 

of Alpicam-Grumcam Company (67 trees) and approximately 150 km southwest of this location, in 

community forests (10 trees) surrounding the city of Lomie (3°9’ N, 13°37’E). In both locations, the 

vegetation type can be classified as semi-deciduous Celtis forest (sensu Fayolle et al. 2014). The 

average annual rainfall of the area is 1500-2000 mm with two marked dry seasons, from mid-

November to mid-March (long dry season) and from June to mid-August (small dry season). The 

average annual temperature is approximately 24 °C. The elevation ranges between 600 and 700 m 

a.s.l.   

2.8.2 Biomass data 

2.8.2.1 Unpublished dataset 

A first set of 67 trees were felled as part of the routine activities of a logging company. Tree sampling 

targeted large individuals of 10 abundant species. For a second set of 10 trees, we used a less 

destructive protocol consisting in volume measurements on standing trees by expert tree climbers.  

In both felled and standing trees, the volume of the largest components of tree structure (i.e., 

buttresses, stumps, trunk and large branches, namely those with a sectional diameter – or Db for 

branch diameter – greater than 20 cm) was estimated following Henry et al. (2009). For the trunk, we 

measured the proximal and distal diameters of approximately 2-m long conical sections and applied 

Smalian’s formula to compute the volume of each section. A similar procedure was used for large 

branches, with the exception that conical sections were approximately 1 m long. Buttress volumes 

were estimated using the dedicated formula reported by Henry et al. (2009). On felled trees, 5-cm-

thick wood slices were collected at the top of stumps and trunks and in large branches. Three 

parallelepipeds of approximately 5 * 5 *2.5 cm were then sampled radially from each slice at the 

sawmill. The wood density (ρ) of each parallelepiped sample was determined from its green volume 

(waster displacement method) and oven-dried mass (Williamson et Wiemann 2010). Analyses of wood 

density variations revealed significant species, individual and vertical (i.e., stump, buttresses and trunk 

vs large branches) effects (result not shown). We therefore converted the volume of stumps, 

buttresses and trunks to dry mass using an individual average of ρ estimates in these components. The 

volumes of large branches were converted to dry mass using individual averages of ρ estimates in large 

branches. For standing trees, volume estimates of all components were converted to mass using 

individual ρ values obtained from a single pruned branch (10 ≤ Db ≤ 20 cm). 

The dry mass of small branches (Db ≤ 20 cm) was estimated using a different protocol. On each tree, 

the total fresh mass and the leaf fresh mass of one to three damage-free branches were weighted, and 

their proximal diameter measured. From the resulting database, we built a mixed-species linear model 

relating branch diameter to total fresh mass (in logarithmic units). For some species presenting a 

significant main species effect, a species-specific model was developed (results not shown). These 

models were used to compute the total fresh mass of small branches (Db ≤ 20) that were not directly 

weighted in the field. We then established linear models relating small branch total fresh mass to leaf 

fresh mass with a similar procedure. The latter models were used to decompose small branch total 

fresh mass predictions into leaf and wood fresh masses. Approximately 200 g of leaves per sample 
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branch were oven-dried to determine a species-specific fresh to dry leaf mass conversion ratio. For 

each tree, a wood slice was collected from a sampled small branch and ρ was determined as previously 

described, allowing the conversion of small branch wood fresh mass to dry mass.  

The total AGB of a tree (TAGB) was obtained by summing the dry masses of the stump, buttresses, 

trunk, large branches, woody parts of small branches and leaves.  

In addition to basic dendrometric measurements (D, H) and full crown structure description (branch 

diameters, lengths and topology), two perpendicular crown diameters were measured using a Laser 

Ranger-finder device (TruPulse 360R, Laser Technology Inc., Centennial, Colorado) for 39 individuals.  

      

2.8.2.2 Other datasets 

We additionally compiled destructive datasets providing information on crown mass for 29 trees from 

Ghana (Henry et al. 2010), 285 trees from Madagascar (Vieilledent et al. 2011), 51 trees from Peru 

(Goodman, Phillips & Baker 2014, 2013), 132 trees from Cameroon (Fayolle et al. 2013), and 99 trees 

from Gabon (Ngomanda et al. 2014). In the dataset from Ghana, we used raw field data made available 

by the author on 32 trees to estimate the mass of tree components using the same algorithm applied 

to our data, thus resulting in slight differences with respect to the TAGB values published by Henry et 

al. (2010). Three small trees presenting anomalous relative crown mass (≥ 100%) were excluded from 

the analysis. In data from Madagascar, we left out trees sampled in dry forests because they may 

exhibit peculiar allometries. In the data from Gabon, we excluded two trees lacking information on 

crown depth. Finally, we excluded trees with D < 10 cm or crown mass < 5 kg because they exhibited 

very large variations in crown mass ratio while being of limited interest in AGB studies.  

The resulting database features information on crown mass for 673 trees (referred to as DataCM1 in the 

manuscript, available at http://dx.doi.org/10.5061/dryad.f2b52), 541 for which there is tree height 

information (referred to as DataCM2 in the manuscript) and 119 for which there is crown diameter 

(referred to as DataCD in the manuscript), as described in Table 2-4.  

Table 2-4. Six destructive datasets providing information on tree crown were combined into three working 
datasets with increasing level of information. DataCM1 possess information on crown mass. DataCM2 add 
information on trunk height. DataCD add information on crown diameter.   

Source Country DataCM1 DataCM2 DataCD 

P. Ploton Cameroon 77 77 39 

Henry et al. (2010) Ghana 29 29 29 

Goodman et al. (2013)   Peru 51 51 51 

Fayolle et al. (2013) Cameroon 132 
 

 

Ngomanda et al. (2014) Gabon 99 99  

Vieilledent et al. (2012) Madagascar 285 285  

  673 541 119 
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2.8.3 Inventory data 

In all plots, we considered all trees with a diameter at breast height (i.e., 1.3 m or above buttresses if 

present) ≥ 10 cm. In the 80 1-ha plots, tree height was measured with a Laser Ranger-finder device 

(TruPulse 360R, Laser Technology Inc., Centennial, Colorado) on approximately 50 trees per plot, 

homogenously distributed across diameter classes. Following Feldpausch et al. (2012), a three-

parameter Weibull function was fitted at the site level to predict height of the remaining trees: 𝐻 =

𝑎(1 − exp(−𝑏𝐷𝑐)). We used a relationship calibrated over two 1-ha plots near Korup to predict tree 

heights in the 50-ha permanent plot. Trees were identified in the field by expert botanists, and 

herbarium specimens were collected on each species per site for cross-identification at the herbarium 

of Université Libre de Bruxelles (BRLU), except for Korup, where the taxonomy was confirmed at the 

Missouri Botanical Garden (MO). Of 48,155 measured trees, 88.4% were identified at the species level, 

4.9% at the genus level, and 0.1% at the family level, and 6.4% were left unidentified. We used the 

Dryad Global Wood Density Database (Chave et al. 2009; Zanne et al. 2009) to attribute to each 

individual tree a wood density value. For species known only at the genus or family level, the average 

ρ value at that taxonomic level was used (Chave et al. 2006).  
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3.1 Introduction  

Allometric scaling relationships between tree dimensions reflect biological and physical constrains that 

any tree must comply with to prevent malfunction (e.g., cavitation, buckling) as it grows in size. 

Understanding the general principles that drive tree form and functions is a fascinating and vast 

research topic that has been addressed from different perspectives. Given the fundamental role of 

water use in trees, the focus has oftentimes been put on water transport and vascular anatomy (Tyree, 

1988; Zimmermann, 1978). A renowned whole-plant model somewhat related to this theme is the Pipe 

model (Shinozaki et al., 1964). The latter fundamentally stems from an observation made some 500 

years ago by Leonardo da Vinci, which states that “all the branches of a tree at every stage of its height 

when put together are equal in thickness to the trunk". In other words, when a parent branch splits in 

i daughters, equation 1, known as area-preservation or Da Vinci’s rule, should hold on average: 

𝑅 = (∑ 𝐴𝑟𝑒𝑎𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟𝑠
𝑖
2 ) 𝐴𝑟𝑒𝑎𝑝𝑎𝑟𝑒𝑛𝑡 = 1⁄       (eq. 1) 

In the Pipe model, Da Vinci’s rule describes tree external architecture, which is assumed to reflect tree 

hydraulic architecture. It is further posited that a unit of leaf area is supplied by a unit of conducting 

tissue area, which provides a basis to study relationships between carbon allocation, photosynthetic 

production and tree structural design under different conditions of stand structure or climate forcing 

(Berninger and Nikinmaa, 1997; Mäkelä, 1986; Nikinmaa, 1992).  Another major perspective from 

which whole-plant allometric scaling have been studied is biomechanics. As every physical structure, 

trees must obey some elementary physical laws, such as sustain static (self) and dynamic (wind) 

loadings (Eloy, 2011; McMahon and Kronauer, 1976; Niklas, 2016). A typical example is the elastic 

similarity model which considers a tree as a vertical tapering column that, in order to avoid buckling 

under its own weight, must follow a number of scaling rules between column diameter, height and 

mass (Niklas, 1995).     

About two decades ago, the Metabolic Theory of Ecology (MTE) proposed a modelling framework 

unifying hydrodynamics and biomechanics hypotheses to account for allometric scaling phenomena in 
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biological organisms (West et al., 1999, 1997).  MTE posited that allometries arise from structure and 

hydrodynamics properties of the vascular network distributing resources in the organism. More 

specifically, the central assumption of the theory is that evolution led to the selection of near-optimal 

fractal-like vascular networks maximizing the scaling of resource uptake (e.g., CO2, water, and light 

and minimizing the required energy for cells’ delivery. West and colleagues derived a “zeroth-order” 

model from the theory, which relies on a small set of assumptions regarding the geometry of tree 

branching network to predict a myriad of ‘universal’ scaling exponents between plant size and 

geometrical, physiological and anatomical plant characteristics (see West et al. 1999) and their 

influence on forest stands structure and dynamics (Enquist et al., 2009). While the mathematical and 

biological relevance of this model as well as the very existence of ‘universal’ scaling laws across species 

have been intensely debated (e.g., Kozlowski and Konarzewski, 2004; Muller-Landau et al., 2006), 

relatively few studies focused on testing MTE’s assumptions on tree branching networks (but see 

Bentley et al., 2013).  

The MTE model divides tree structure into external and internal components. The external structure 

is simplified to a hierarchical, symmetric and self-similar (i.e. fractal) branching network (Figure 3-1 A), 

which is convenient to derive scaling properties. Additionally, the model assumes that the external 

structure conforms to the mechanical principle of safety from gravitational buckling (i.e., elastic 

similarity hypothesis; Niklas, 1995), which induces area-preservation (i.e. da Vinci’s rule), given the 

simplified properties of the fractal network. The internal branching structure is composed of a network 

of xylem conduits which number and sizes are related to the external branching structure via simple 

rules (Sperry et al., 2012).  

Although the Da Vinci’s rule is an important parameter in the two prevailing contemporary plant 

models (i.e. the Pipe model of Shinozaki et al., 1964 and the MTE model), actual empirical assessments 

of this rule are rare (Eloy, 2011) and have mostly been made on small-sized trees (Aratsu, 1998; Bentley 

et al., 2013; Sone et al., 2009; von Allmen et al., 2012), generally in temperate regions. Yet, we know 

that tree crowns undergo major structural changes along ontogeny, notably a phase of lateral 

expansion through reiteration known as crown metamorphosis (Hallé et al., 1978; Shukla and 

Ramakrishnan, 1986). Besides, empirical evidences suggest that tree crown represents an increasing 

proportion of tree biomass (Ploton et al., 2016) and biomass growth (Sillett et al., 2010) as trees grow 

in size, which could indicate a deviation from the area-preservation hypothesis, notably at branching 

points bearing the largest (reiterated) branches.  

In the present paper, we used a unique dataset describing the branching network geometry and 

topology of 72 very large tropical trees from 9 different species to assess Da Vinci’s rule validity. We 

actually tested several assumptions of the MTE model, in particular on branch length and radii scaling 

exponents (which together entail Da Vinci’s rule in the average MTE tree) and self-similarity. Given the 

inherent variability in biological entities (such as between diameters and lengths of branches growing 

from a given node), MTE’s assumptions are assumed to hold on an average branching network (Savage 

et al., 2008). However, systematic deviations from MTE’s average tree may occur at the species-level 

from variation in species architecture (Hallé et al., 1978). For instance, deviations from simple fractal-

like architectures can be observed on species with high apical dominance i.e., when the terminal bud 

inhibits the growth of lateral buds (Horn, 2000). At adult stature and in the most extreme case of 

dominance, the apical bud creates a large, central axis within the crown (i.e. a continuation of the trunk 

within the crown) bearing more or less horizontal branches, which violates MTE’s assumption of 
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symmetric branching (see Figure 3-1). Biomechanical models suggest that variations in branching 

patterns (e.g., number and asymmetry of branches at a node) lead to systematic deviations from area-

preservation (Minamino and Tateno, 2014). We thus explored whether the study of contrasted 

architectural types allowed evidencing systematic deviations of MTE’s theoretical expectations in 

terms of branching structure.  

3.2 Methods 

3.2.1 Sampled trees and field protocol 

We sampled 72 large tropical canopy trees from the mixed forest of southeast Cameroon, central 

Africa, spanning 67 to 212 cm in diameter at breast height (DBH), 31 to 57 m in height. These trees 

have been harvested as part of commercial logging activities, and their aboveground dry biomass 

estimated to 5.4 to 75.4 Mg (see Ploton et al. 2016). Trees were distributed in 9 species (hereafter 

referred to by their common names; Table 3-1) presenting highly contrasted architectures. 

Table 3-1. Number of trees sampled (ntree) among species, ranges of diameter at breast height (DBH, in cm) and 
apical dominance (from A low dominance to C highly dominant; see Figure 3-1 for illustration).  

Species Common name ntree DBH (min-max) Apic. dom. 

Milicia excelsa (Welw.) C.C.Berg Iroko 9 88.4 - 126 B 

Entandrophragma cylindricum (Sprague) Sprague Sapelli 9 100.5 - 178 B 

Triplochiton scleroxylon K.Schum. Ayous 22 88.4 - 212 B 

Erythrophleum suaveolens (Guill. & Perr.) Brenan Tali 7 67.5 - 112.8 B 

Cylicodiscus gabunensis Harms Okan 5 103 - 136 A 

Amphimas ferrugineus Pellegr. Lati 3 92.5 - 113 B 

Terminalia superba Engl. & Diels Frake 7 97 - 114 C 

Pycnanthus angolensis (Welw.) Warb. Ilomba 8 88.5 - 124.2 C 

Mansonia altissima (A.Chev.) A.Chev. Bete 2 67 - 86.5 B 

 

Harvesting such large trees resulted in substantial damages to the crowns with small branches 

disconnected from their branching nodes and scattered around the felled tree. We thus focused on 

the largest intact structures within the crowns and described their topology and geometry from the 

trunk to nodes bearing at least one branch with a basal diameter greater than 20 cm. For each 

internode segment we measured the basal diameter, the distal diameter and the internode length. 

Internode order was set to 1 for the trunk and incremented by 1 after each branching node, which 

corresponds to the centrifugal labelling system used to describe the structure of an idealized tree in 

the MTE (Savage et al., 2008). We noted down when internodes clearly emerged from the apical bud 

(i.e., vertical internode above the trunk axis), which allowed us creating a second labeling scheme 

opposing internodes emerging from the principal axis (hereafter referred to as PA of order 1), their 

siblings (order 2), and internodes of order ≥ 3 (see Figure 3-1). The full database contained a total of 

3730 internodes distributed on 1682 nodes (Figure 3-2).    
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Figure 3-1. Schematic representation of different levels of asymmetry in species’ architecture, from the optimal 
MTE tree (A) to moderately (B) and highly (C) dominant apex. O1 to O4 represent the labeling scheme of the 
MTE. In panel C, Om1 to Om2 illustrate a modified labeling scheme accounting for the presence of a principal axis 
in tree crown structure (see text). The right column gives illustrations of the three types of architectures based 
on large canopy tree species from central Africa, from top to bottom: Okan, Ayous and Ilomba (see Table 3-1 for 
more information on these species).      

 

 

 

 

 

 

 

 

Figure 3-2. Distribution of sampled nodes along node parent diameters (in cm) in each of the 9 sampled species.  
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3.2.2 MTE model assumptions and predictions of branch scaling exponents  

The MTE model assumes an idealized tree with a hierarchical, symmetrical and self-similar external 

branching network as in Figure 3-1 A (refer to Savage et al., 2008 for an exhaustive description of MTE 

model assumptions). The term hierarchical implies a consistent labelling scheme for branch orders (k) 

from the trunk (order 1) to leaf petioles (order N). Branch order k represents the number of branching 

nodes separating a given internode from the order of the trunk. The branching network is also assumed 

to be symmetric, implying that branches radii (rk) and lengths (lk) are approximately similar within a 

given order k (or that their variance is small compared to the variance across orders). Finally, the 

branching ratio (n) i.e., the number of internodes emerging from each node, is assumed to be constant 

across orders, leading to branches lengths and radii scaling ratios 𝛾𝑘  (eq. 2) and 𝛽𝑘 (eq. 3) (West et al., 

1999), respectively. 

𝛾𝑘 =
𝑙𝑘+1

𝑙𝑘
= 𝑛𝑘

−𝑏𝑘 =  𝑛−𝑏𝑘                (eq. 2)  

𝛽𝑘 =
𝑟𝑘+1

𝑟𝑘
= 𝑛𝑘

−𝑎𝑘 =  𝑛−𝑎𝑘         (eq. 3) 

The MTE model further evokes two secondary assumptions determining how branches radii and 

lengths at one order relate to those at the next order, and thus sets scaling exponents ak and bk in the 

above equations. First, the network is assumed to be space-filling (i.e., roots or leaves try to fill-in a 

tree-dimensional space to harvest water or light), leading to the derivation that branch scaling 

exponents for length is b=1/3 (West et al., 1999, 1997), independent of branch order k. Second, the 

model adopts the elastic similarity hypothesis, which predicts 𝑙𝑇𝑂𝑇  ∝  𝑟
2

3⁄  (with r a branch basal 

radius and lTOT the length to the tip of the most distant twig; Greenhill, 1881; McMahon and Kronauer, 

1976). This last assumption, together with b=1/3, allows the derivation of a = 0.5 for the radii scaling 

exponent (independent of k) from eq. 2 and 3. With a and b independent of k, the network is self-

similar at all scales (i.e., fractal). From eq. 3, it can also be shown that ratios of daughter branches over 

parent branches cross-sectional areas across orders follow eq. 4 (modified from the original 

demonstration of West et al. (1999) so to account for a simplification in eq. 3). 

𝑛∗𝐴𝑘+1

𝐴𝑘
= 𝑛 ∗ 𝛽𝑘

2 = 𝑛1−2𝑎         (eq. 4) 

with A the sum of branches cross-sections at a given order. When a = 0.5 as expected from the above 

assumptions, eq. 4 reduces to unity and 𝑛 ∗ 𝐴𝑘+1 =  𝐴𝑘, i.e. the branching network is area preserving 

and complies with Da Vinci’s rule. Therefore, area preservation is not directly assumed in the MTE, but 

rather results from a set of lower level simplifying assumptions on the topology and geometry of the 

tree branching network.     

We used our field data to assess area ratio (R from eq. 1) and branch scaling exponents at each node 

of the sampled branches. Contrary to theoretical MTE assumptions, real trees exhibit some variability 

between nodes in daughters number and symmetry, so that we estimated the branch length and radius 

scaling exponents aD and bD for each daughter (that is, a node with 3 daughters had 3 sets of scaling 

exponents) following eq. 5 and 6 derived from eq. 2 and 3 (Bentley et al., 2013). 

𝑏𝐷 = −𝑙𝑜𝑔 (
𝑙𝑑𝑎𝑢𝑔𝑡ℎ𝑒𝑟

𝑙𝑝𝑎𝑟𝑒𝑛𝑡
) 𝑙𝑜𝑔 (𝑛𝐷)⁄        (eq. 5) 
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𝑎𝐷 = −𝑙𝑜𝑔 (
𝑟𝑑𝑎𝑢𝑔𝑡ℎ𝑒𝑟

𝑟𝑝𝑎𝑟𝑒𝑛𝑡
) 𝑙𝑜𝑔(𝑛𝐷)⁄        (eq. 6) 

with nD the number of daughters at the node. 

Since distributions of bD and aD may not be unimodal or symmetric (Bentley et al., 2013), we used the 

medians instead of the means as empirical estimates of scaling exponents at the node, branching order 

or species level. We further extracted 104 random samples from each distribution (of similar size as 

the original distribution) and used the 2.5 and 97.5 percentiles of resampled medians for comparison 

with MTE predictions (i.e., 1/3 for b and 1/2 for a). We assumed the distribution of R to be symmetric 

and used the resampled mean to obtain empirical estimates to be compared with the expected value 

of 1 under the area-preserving hypothesis. It is noteworthy that in the latter case, our test 

asymptotically converges to a t-test.   

3.2.3 Assessing the effect of asymmetry and node morphology on species area 

ratio 

We investigated the influence of architectural asymmetry (resulting from apical dominance) on 

species-level branch scaling exponents and area ratio on a subset of 3 illustrative species (Okan, Ayous 

and Ilomba) selected to maximize differences in the frequency of PA internodes in their respective 

crowns (Figure 3-3). The frequency of PA internodes correlated (r=-0.76) with the architectural 

asymmetry parameter (pF; Smith et al. 2014) while being more straightforward to compute. Species-

specific scaling exponents and area ratios were pairwise-compared using two-sample Kolmogorov-

Smirnov tests (including Bonferroni correction). In order to help interpreting between species 

differences, we also split the internode dataset into PA, PA siblings and other branch segments (i.e. 

with order ≥ 3) and looked at the specific distributions of bb, ab and R in each of those groups.   

 

Figure 3-3. Frequency of PA internodes per species. Ilomba (35.7% : highly 
asymmetric), Ayous (9.4% : moderately asymmetric) and Okan (1.3%: 
symmetric) were selected as illustrative species in results sections 3.3 and 
3.4.  

 

Last, we tested whether other architectural parameters had a 

systematic influence on area ratio at node and species levels. 

Besides the presence of PA at a node (encoded as a 

presence/absence binary variable), node morphology was characterized by the number of daughters 

(nD) and an index of daughters’ asymmetry (q, eq. 7) inspired from Minamino and Tateno (2014): 

 𝑞 =
(max (𝐴𝑟𝑒𝑎𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟𝑠) (∑ 𝐴𝑟𝑒𝑎𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟𝑠)⁄ )− 𝑛𝐷

−1

((𝑛𝐷−1) 𝑛𝐷⁄ )
      (eq. 7) 

The q index ranges from 0 (perfect symmetry between nD daughters) to 1 (one daughter is much larger 

than its nD - 1 sibling(s)). We also used a simple linear model relating log (∑ 𝐴𝑟𝑒𝑎𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟𝑠) to 

log (∑ 𝐴𝑟𝑒𝑎𝑝𝑎𝑟𝑒𝑛𝑡) and included species and morphological parameters as covariate to detect 

systematic influences on area ratio.  
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3.3 Results 

3.3.1 Does the average tree conform to branch scaling exponents and area ratio 

predictions? 

Pooling all 9 species together, we assessed whether the average branching network complied with 

MTE predictions. Across the 1682 nodes, the branching ratio was close to 2 (i.e., 2.2±0.6) and did not 

change across branching orders (supplementary Figure 3-8 E). The distribution of length scaling 

exponents (bD) was much wider than the distribution of radii scaling exponents (aD)  (Figure 3-4 A-B). 

Plotting daughter length (lk+1) against parent length (lk) indeed showed that branch length is much 

more plastic than branch diameter across orders (supplementary Figure 3-8 B-C). The median of bD = 

0.20 [0.1, 0.30] was close to, but excluded, the expected value of 1/3. The distribution of aD presented 

two apparent modes and was skewed toward positive values, corresponding to small-diameter 

branches found on much larger parents. Similarly to the bD distribution, the median of aD = 0.43 [0.42, 

0.45] was close to, but excluded, the expected value of 1/2.  

At the node level, area ratio estimates (R) were highly variable, with a minimum and a maximum of 

0.15 and 4.96, respectively. The mean of R was 1.17 [1.15, 1.18] (Figure 3-4 C), significantly higher than 

the expected value of 1.  

 

Figure 3-4. Density distributions (standardized to 1) of internodes length scaling exponents (A), radii scaling 
exponents (B) and nodes area ratios (C) at the inter-specific level. Dash lines represent the expected values under 
the Metabolic Theory of Ecology, while grey bars represent the 95% confidence interval of resampled medians 
(A, B) and mean (C).   

3.3.2 Is the average tree self-similar? 

Tree branching network is assumed to be self-similar i.e., branches scaling properties (thus area ratio) 

are expected to be constant across branching orders throughout the branching network. When 

labelling the branching orders following a centrifugal scheme (which amounts of forcing symmetry in 

tree crown topology), we did not observe obvious deviations in aD, bD or R among orders from the 

trends established at the interspecific-level (Figure 3-5 A-B-C). For each parameter (aD, bD and R), 

pairwise KS comparison tests across orders indicated that distributions were not significantly different, 

at the exception of aD distributions for orders 2 and ≥4 (p-v < 0.05). The distribution of aD at order 2 

was indeed particularly large, indicating a greater variability in branch diameter relative to the 

diameter of the parent when the latter is the trunk (order 1), but the median value of the distribution 

did not substantially deviate from the ones of the two other distributions (i.e., order 3 and ≥4). 

Similarly, plotting aD, bD or R against parent diameter did not reveal any particular trend (Figure 3-5 D-
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E-F), thus offering strong support to the assumption of self-similarity of the average hierarchical 

branching network on large trees.    

Figure 3-5. Density distributions (standardized to 1) of internodes length scaling exponents (A), radii scaling 
exponents (B) and nodes area ratios (C) across the first orders  (i.e. 2, 3, ≥ 4) of the centrifugal labeling scheme. 
We excluded internodes of parent order 1 (i.e., the trunk) from analysis of length scaling exponents (in panel A). 
Dash black lines represent the expected values for hierarchical, symmetric, self-similar trees. Color bars represent 
the 2.5-97.5% interval of resampled medians per group. Branch scaling exponents and area ratios are also 
represented against parent diameter (D, E, F).    

3.3.3 What is the effect of species asymmetry on branch scaling exponents and 

area ratio? 

We investigated the effect of species architecture asymmetry (resulting from apical dominance) on 

species-level branch scaling exponents and node area ratios. The distribution of bD exponents within 

species were as large as at the interspecific level (Figure 3-6 A), suggesting that the variance in daughter 

to parent lengths was not strongly structured per species. The distribution of bD exponents for the 

highly asymmetric species (Ilomba) was significantly different from the ones of the two other species 

(KS tests, p-v < 0.05) and characterized by a lower median value (-0.14 [-0.40;-0.11]). This deviation 

reflects the architecture of asymmetric species: PA siblings tend to be much longer than their parent 

PA internode (Figure 3-6 B), steering species-level bD distribution toward a lower median value when 

the frequency of PA increases in species crown structure. Interestingly, the median bD for PA 

internodes (0.14 [0.00;0.23]) did not differ from the one of other daughters (0.18 [0.09;0.26]) (Figure 

3-6 B), indicating that unlike PA siblings, lengths scaling among PA internodes conform to the daughter-

parent scaling observed on nodes with more symmetric daughters. 

Although all three species presented similar aD exponents medians (i.e. overlapping confidence 

intervals on median estimates, Figure 3-6 C), aD distributions of Ilomba and Ayous species were 

statistically different from the one of Okan species (KS tests, p-v < 0.05). These differences emerge 
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from the level of asymmetry in crown structure which broadens aD distributions when small (high aD) 

and large (low aD) daughters are found on the same nodes. At nodes bearing PA (Figure 3-6 D), the 

asymmetry is at its maximum with the entire parent area transferred to the PA (i.e. median aD for PA 

internodes of 0 [0.00;0.01]) and PA siblings having higher aD than the expected value in case of 

symmetry (0.75 [0.69;0.79]). 

At the species-level, Ilomba had a greater R than Ayous and Okan (KS tests, p-v < 0.05), owing to the 

much higher frequency of PA internodes found in the crowns of this species. At PA nodes, the mean 

area ratio, R,  was 1.24 [1.20;1.29], higher than on nodes that did not bear PA internodes (1.16 

[1.14;1.17]) (Figure 3-6 F), both distributions being statistically different (KS test, p-v < 0.05).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6. Density distributions (standardized to 1) of internode length scaling exponents (A, B), internodes radii 
scaling exponents (C, D) and node area ratios (E,F). In plots A, C and E, parameters are given for 3 illustrative 
species (i.e., Ayous, Ilomba and Okan) with contrasted frequency of PA internodes (cf. fig 3). Distributions are 
based on all internodes and nodes from those species, regardless of node morphology. In plots B, D and F, 
distributions are based on all data (inter-specific) split by node morphology i.e., internodes and nodes were 
grouped according to the presence of a PA, thus differentiating PA branches, their sibling(s) and branches from 
nodes w/o PA branch (noted “Other”). Dash black lines represent the expected values for hierarchical, symmetric, 
self-similar trees. Color bars represent the 2.5-97.5% interval of resampled medians per group.   
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3.3.4 Does node morphology induce systematic differences of area ratio at the 

species level? 

Besides the binary variable indicating the presence or absence of PA, we used two simple descriptors 

of node morphology to explore systematic sources of variations on node area ratios, namely the 

number of daughters (nD) and an index of daughter asymmetry (q). The number of daughters had the 

strongest effect on node area ratio and induced an increase of R from 1.13 [1.12; 1.15] when nD = 2 to 

1.39 [1.34; 1.45] for when nD > 2 (Figure 3-7 A). Although the mean nD was c. 2 across species, Ilomba 

had significantly more daughters (2.78±1.24) than Ayous (2.17±0.46) and Okan (2.06±0.26) (Dunn 

pairwise multiple comparisons test, p-values < 0.05 in both cases), and these daughters were 

principally located on PA nodes (supplementary Figure 3-8 F). Yet, this significant difference among 

species held when removing all PA nodes from the multiple comparisons test.   

Node area ratios were more variable when daughters were relatively symmetric (e.g. for q < 0.4 in 

Figure 3-7 B) and converged toward 1 in situations of high asymmetry. The parameter q was indeed 

very highly significant as a linear predictor of log-transformed area ratio (coefficient estimate: -0.12, 

p-v < 0.001). It is noteworthy that introducing the binary variable of PA presence/absence in the model 

led to a significant main effect (parameter estimate: +0.20; p-v < 0.001) and interaction with q 

(coefficient for nodes bearing PA: -0.17, p-v: 0.040), indicating a faster decrease in area ratio as 

asymmetry increases for PA nodes (Figure 3-7 B, dark grey).   

We built a log-log linear model between cumulated daughter areas and parent area and included the 

species factor as a covariate (incl. Ilomba, Ayous and Okan). Ayous and Ilomba were grouped into a 

single species category, since they were not statistically different in both slopes and intercepts. The 

two species groups had significantly different slopes (coefficient estimate of -0.06 for Okan, p-v: 0.036), 

reflecting a higher scaling of daughters area against parent area for Ilomba and Ayous (Figure 3-7 C-D). 

Although all three morphological parameters (i.e. N, q and the binary PA variable) only explained c. 

7.6% of the variance in node area ratios, including them in the model removed the species effect.    
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Figure 3-7. (A) Density distribution of nodes area ratio for nodes with 2 (light grey) and >2 daughters (dark grey). 
(B) Nodes area ratio against daughters asymmetry (‘q’). Thick and thin dashed lines represent fits of linear models 
on nodes bearing (dark grey) or not bearing (light grey) PA branches, respectively. (C, D) Daughters cumulated 
area against parent area (in true unit). The upper limits of plots axes were set to 1.5 m² to ease species 
comparison, as branch cross-sectional areas for the Ayous species extend above c. 2.5 m². Dashed lines represent 
the fits of linear models on both Ayous and Ilomba (black line) and Okan (grey line). Linear models were adjusted 
on log-transformed data.      

 

3.4 Discussion  

We used a unique dataset describing crown geometry and topology on 72 very large tropical trees to 

compare empirical branching network properties to the assumptions (branch scaling exponents, self-

similarity) and predictions (Da Vinci’s rule) of the MTE theoretical model. Trees in our dataset showed 

self-similar properties, but deviations were observed from the simplified geometry of the average MTE 

tree. Importantly, we found an average area ratio greater than 1, thus questioning the generality of Da 

Vinci’s rule.  

3.4.1 Evidence of area increasing branching (R > 1) 

From our direct measurements of branch diameters, we found that node area ratios were on average 

greater than one at the interspecific level (c. 1.15, Figure 3-4 C) and at the species level (i.e. for our 

three illustrative species of contrasted crown architectures, Figure 3-6 E), indicating that branching in 

our trees was area-increasing rather than area-preserving. Given the size of our dataset (> 1500 nodes), 

obtaining an average deviation from area-preservation was surprising. Indeed, Da Vinci’s rule is 

presented as a well-established principle in theoretical modelling of plant vascular network, notably in 
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the MTE model (Enquist, 2002; West et al., 1999) and, as far as we know, it has never been questioned 

in MTE’s model extensions (e.g. Smith et al., 2014; Sperry et al., 2012; von Allmen et al., 2012) and 

MTE-like models (e.g. Savage et al., 2010). The majority of empirical assessments of this rule have 

indeed reported  area ratios varying around a situation of area-preservation (e.g. Bentley et al., 2013; 

MacFarlane et al., 2014). Yet, a survey of the literature shows that the Da Vinci’s rule has not been 

extensively assessed (Eloy, 2011) and that in most cases, empirical studies were based on few 

individuals (typically less than 5) of small size (typically less than c. 15 cm D) (e.g. Bentley et al., 2013; 

Bertram, 1989; McMahon and Kronauer, 1976; Tredennick et al., 2013). Besides, empirical 

assessments are not univocal (Aratsu, 1998; Minamino and Tateno, 2014; Yamamoto and Kobayashi, 

1993). Aratsu (1998) for instance, whose dataset stands out by its unusual number of large branches 

(> 20 cm of basal diameter), found that 9 out of 10 temperate tree species actually showed area 

increasing branching. The results of the present study further question the generality of Da Vinci’s rule 

and clearly show that more research efforts should be made to assess R on trees of different sizes, 

species and regions of the world. 

An important issue when sampling area ratio is the location at which branch diameter is measured, 

which is not defined in the Da Vinci’s rule. Minamino and Tateno (2014) indeed showed that if the 

branching network maintains elastic similarity, branch taper should be smooth away from 

ramifications but change markedly before and after a branching point, leading to R > 1 when the 

distance from the point of measurement of branches diameter and the branching point is virtually null. 

Although we measured branch diameters at reasonable distances from branching points so to avoid 

the obvious swelling occurring bellow and above large branches ramification, our results (R > 1) could 

reflect this asymmetry in parent and daughters local tapers. More generally, disagreements between 

empirical assessments of Da Vinci’s rule may come from differences in field protocols (i.e. use of distal 

parent diameter and basal daughters’ diameter vs use of mid-branch diameters).      

3.4.2 Sources of variation of the node area ratio 

Regardless of the organization of branches in a tree, if branch scaling properties are homogeneous (i.e. 

regular allometry between branch diameter and length) and if the tree conforms to Da Vinci’s rule, 

then whole-tree volume (or biomass, assuming homogeneous wood density) may be roughly 

approximated by the volume of a cylinder (Horn, 2000). Under the assumption of homogeneous 

branch scaling properties, the average area ratio thus has direct consequence on whole-tree volume 

and biomass scaling. Identifying systematic sources of variation of R associated to particular node 

morphologies would give us a point of departure for further analyses, such as the covariation between 

daughters dimensions (length, taper) and R in particular nodes configuration, and may provide 

valuable insights into how tree species could be grouped to improve allometric scaling predictions, 

notably on tree biomass.  

Because empirical studies suggest an increase of crown mass relative to total tree mass on large 

tropical canopy trees (Ploton et al., 2016), an intuitive hypothesis was that R may increase on those 

trees, notably on the largest branches in tree crowns following structural changes associated to crown 

metamorphosis. Our data does not support this hypothesis. On the full dataset (interspecific level), R 

was higher than one on the entire range of branch size and did not show marked variation pattern on 

large-diameter branches (Figure 3-5 E).Species and individual-tree factors also weakly explain R 

variability (c. 2% and c. 7%, respectively), which illustrate the convergence of species (and trees) 

vascular networks to similar structural properties (from the view point of R frequency distributions) as 
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they share the same purposes (e.g. water transport) and constraints (hydraulic, mechanical). Most of 

R variability occurred at the node level, and a similar pattern of variance partitioning can be expected 

for branch scaling exponents (i.e. among different species and trees, most of the variability in diameter 

– length or diameter –mass scaling exponents is found at the branch level, Tredennick et al., 2013). We 

emphasize that even if two trees present similar frequency distributions of R (or branch scaling 

exponents), between-trees variation in branching pattern (architecture) may have important impact 

on the overall tree volume and mass, because e.g. deviation from R = 1 on a large or a small branch 

have a very different impact on whole-tree volume. Our analyses showed that node morphology (as 

described by nD, q and the PA binary variable) have a systematic influence on node level R. The different 

trends that we uncovered all fall in line with the predictions of Minamino and Tateno (2014) based on 

mechanical calculations, suggesting that the maintenance of mechanical stability could be at the origin 

of our observations. It should be noted, however, that the three morphological parameters together 

explained less than 10% of node level R variation. Hereafter, we provide tentative interpretations of 

our findings.     

First, we found that the average R increased substantially with the number of daughters ND (Figure 3-7 

A). Among the three species illustrating contrasting levels of apical dominance (hence architectural 

asymmetry), ND was higher on average (c. 2.5-3) and more variable on the Ilomba species (highly 

asymmetric architecture) and appeared to converge toward nD = 2 as the symmetry of crown 

architecture increased (fig S1 F). This structural trend could reflect species growth strategies. The high 

apical dominance is usually interpreted as a trait favoring faster height growth, a competitive 

advantage typically associated to pioneer species. Apical dominance also creates multi-layered crowns 

that are more efficient in harvesting light in bright (top-of-the-canopy) conditions. In contrast, low 

apical dominance (symmetric architecture) creates a mono-layered crown that minimizes self-shading, 

a characteristic deemed more efficient in shaded conditions (Horn, 2000, 1971). Following this trait, 

our three illustrative species could be ranked from pioneer-like (Ilomba) to shade tolerant-like (Okan) 

species (Figure 3-3 3). It is commonly acknowledge that fast growing pioneer species tend to have 

lighter wood (c. 0.41 g.cm3 for Ilomba) than slow-growing shade tolerant species (c. 0.79 g.cm3 for 

Okan). Hence, we hypothesize that the higher and more variable nD observed on Ilomba than Okan 

could reflect a more opportunistic strategy of light harvesting, as the cost associated to growing (and 

shedding) daughters is lower on this species.  

Second, we found that PA nodes (which compose the vertical, central axis of the crown) had a higher 

R on average (Figure 3-6 F). Conversely, R decreased with increasing asymmetry between daughters 

(parameter q, Figure 3-7 B). These two results may appear contradictory, because PA daughters are 

instinctively thought as being highly dominant over their siblings (i.e. leading to a high q). Figure 3-7 B 

shows that this is not necessarily the case: a PA daughter can have a diameter relatively close to that 

of its siblings (low q), in which case nodes reached particularly high R values. For those nodes (bearing 

a PA daughter), R converged faster toward 1 with increasing asymmetry (i.e. steeper decreasing slope 

in Figure 3-7 B). The overall variation pattern of R with nD, PA and q may be interpreted as an ageing 

process. Sone et al. (2009, 2005) have shown that the sum of growth areas of daughter branches was 

higher than parent growth area on two Acer species, so that nodes that did not experience shedding 

had R > 1 and shedding was necessary to conform to Da Vinci’s rule. Variability of R values within a 

crown may thus represent diverse states of modification of nodes morphology that temporarily 

conform to Da Vinci’s rule (Minamino and Tateno, 2014). On species that present a principal axis (PA) 

up to the top of the crown such as Ilomba, relatively young nodes found at the crown-top bear 
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numerous daughters (not sampled in our field protocol) and must have R higher than one. As node 

ages, preferential allocation of carbon to the PA increases daughter’s asymmetry and shedding must 

occur to lower R and maintain mechanical safety. This was particularly obvious on the upper part of 

Ilombas’ crown (when PA diameter < 50 cm), where the increase of PA diameter (from crown top 

toward bottom) was associated to an increase of q (r = 0.77) and a decrease of nD (r = -0.62).  

Interestingly, the importance of shedding in R dynamics is likely to vary with species architecture. In 

species with “bike wheel” architecture such as Ilomba (i.e. a vertical PA with plagiotropic, lateral 

branches), even the largest-diameter branches are “sun-branches” (light-gathering function) that do 

not evolve into structural-branches (support function) as they age, and in this sense are “expendable 

organs”. In contrast, first-orders branches of large Ayous or Okan individuals fulfill a support function 

(i.e. bear the load of tree crown) and cannot be shed without profoundly altering crown structure. 

Figure 3-7 C indeed shows that sum of daughter cross-sectional areas over parent cross-sectional area 

(i.e. R) increases as branch size increases in the Ayous species, but this was not the case on the Okan 

species (Figure 3-7 D). This difference could indicate that the ratios of daughter cumulated area 

growths over parent area growth differ among those two species. 

At the species level, we found a weak, yet significant species effect on the scaling of cumulated 

daughter areas to parent area (Figure 3-7 C-D), with a lower growth of cumulated daughter areas (per 

unit of parent area growth) when the tree crown was symmetric (i.e. Okan species). Besides differences 

in cumulated daughter growths over parent growth as hypothesized above, this results could also be 

the reflect of the abundance of node morphologies favoring higher R on species with asymmetric 

crowns (higher nD, presence of PA) and indicates that grouping species based on crown asymmetry (or 

growth strategies along the sun-shade gradient) may improve whole-tree volume and biomass scaling. 

Further analyses are in progress on the covariation between branch morphology at a node (i.e. length, 

taper) and R, since the former may compensate for the effect of the latter on the volume (or mass) 

that a node bears.   

3.4.3 Optimal tree of the MTE model vs average real trees  

The MTE model posits that tree branching network is volume-filling and conforms to the elastic 

similarity model. These assumptions, commonly referred to as “secondary assumptions”, provide 

theoretical values for branch length and radii scaling exponents (i.e. b=1/3 and a=1/2, respectively) 

that are derived analytically from the simplified, symmetric MTE tree (i.e. a branching network 

complying with MTE’s “core” assumptions). Under this set of assumptions, the branching network is 

area-preserving (R = 1). Deviation from b = 1/3 or a = 1/2 (or both) can indicate violations of secondary 

assumption(s) (hence help us identify mechanisms behind R ≠ 1), but can also result from a departure 

of the average branching network from the assumption of symmetry (in which case a needs not to be 

1/2 to maintain R = 1, Bentley et al., 2013). Unlike the MTE tree, real trees are not strictly symmetric 

and, as far as we know, whether an average empirical branching network is symmetric is a subjective 

call, making interpretation of deviations from b = 1/3 and a = 1/2 difficult.  

Elastic similarity (a = 1/2) 

At the inter-specific level, distributions of bD and aD largely overlap theoretical expectations although 

distribution medians did not coincide with 1/3 and 1/2, respectively. The effect of asymmetry was 

particularly problematic for the empirical assessment of a (hence to determine whether the average 

tree structure may conform to elastic similarity). At a node with two daughters, aD for the larger 
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daughter ranged from 0.5 (symmetry) to c. 0 (rdaughter = rparent) while aD of the smaller daughter could 

be higher than 3 (rdaughter << rparent), yielding asymmetric aD distributions (fig 6 C). Testing whether an 

asymmetric distribution conforms to a single theoretical value (with no underlying distribution) is 

somewhat problematic and using means instead of medians would have led to different trends. For 

example, while the interspecific aD median was significantly smaller than 1/2 (i.e. 0.43 [0.42, 0.45], 

Figure 3-4 B), the mean was significantly higher (i.e. 0.52 [0.51, 0.54]). Distributions of aD with similar 

skewness were reported in Bentley et al. (2013) for smaller trees of various species. In the latter study, 

the authors used credible intervals from a Bayesian statistical approach to confront empirical aD 

distributions to 1/2. Credible intervals were extremely large (e.g. 0.56 [-0.08, 2.42] for Ponderosa pine 

trees) and rejected neither the MTE assumption (i.e. elastic similarity hypothesis) nor competing 

hypotheses (e.g. a = 2/3 and a = 1/3 for the stress and geometric similarity hypotheses, respectively). 

Directly assessing the validity of elastic similarity via measurements of total branch length against basal 

branch diameter within crown networks is likely to provide more informative results on real trees 

biomechanical behavior than internode-level aD exponents, but this could not be done in this study as 

we did not describe crown structure beyond a branch diameter threshold of c. 20 cm (thus branches 

lTOT were unknown).  

Volume filling (b = 1/3) 

Our results on branch length ratios across nodes and on length scaling exponents (bB) are consistent 

with previous studies and reject the existence of an overarching volume-filling behavior of tree 

branching networks (Bentley et al., 2013; Duursma et al., 2010; Price et al., 2015; Tredennick et al., 

2013). We found that relationships between branch segment lengths from one order to the next were 

extremely weak (supplementary Figure 3-8 D), leading to a wide distribution of bB. The greater 

variability in length ratios over diameter ratios has been observed elsewhere (Bentley et al., 2013; 

Price et al., 2007) and suggests that selection primarily acts on hydrodynamics resistance (Price et al., 

2007), because “resistance depends on radius to the 4th power but only linearly on length, [therefore] 

changes in radius lead to much greater changes and penalties in energy minimisation, in turn leading 

to much stronger stabilising selection on radii than on lengths” (Bentley et al., 2013). Distributions of 

bB peaked at lower values than 1/3 and distribution medians differed among species (Ilomba vs Ayous 

and Okan, Figure 3-6 A), suggesting that the way tree crowns fill-in space (with leaves) is neither strictly 

volume filling nor, on average, similar among studied species. Following similar observations, Bentley 

et. al (2013) hypothesized that, as aD and R were approximately 1/2 and 1 in their study, a modified 

form of volume filling may occur in their relatively young trees and bB = 1/3 might be reached in larger 

trees (as hypothesized by West et al., 1999a). Our results on large trees do not support this hypothesis. 

Instead, we hypothesize that deviation from b = 1/3 is related to variation in crowns fractal dimension 

among studied species (Zeide, 1998). In a self-similar branching network, the fractal dimension (z) 

summarizes the distribution of foliage within the crown. Assuming that the branching network is 

volume filling is equivalent of assuming a constant foliage density within crown volume, so that foliage 

area scales with crown volume to the power (z) of 3. Yet, studies of real tree crown fractal dimensions 

have shown that z is not restricted to 3, but rather distributed along a continuum between 2 and 3, 

and varies among individual trees and species (e.g. Pretzsch and Dieler, 2012), possibly as a function 

of self-shading (Duursma et al., 2010).   
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3.4.4 Implications of the results 

The systematic variations evidenced above in the relationships between branching characteristics at 

the node level in function of node morphology, axis type and species suggest that the assumptions of 

symmetry and self-similarity, which in a way are meant to be null hypotheses, are in fact rejected by 

biological observations. Plant axes, as they develop, add up to be eventually shed throughout plant 

ontogeny, are indeed known to show important differences in their function, structure and growth 

dynamics. The very concept of tree architectural types aims at summarizing the existing patterns of 

plant growth strategies (Hallé et al., 1978), and is largely based on the observed combinations in the 

succession of the various axis types (orthotropous, plagiotropous, monopodial, sympodial) 

(Barthélémy and Caraglio, 2007). As trees reiterate, possibly several times throughout their lifespan, 

as is the case for the large trees studied here, these successions are partly or totally reproduced. 

Branching order as codified by the centrifugal labeling scheme has little biological meaning in front of 

this reality, although this may be less apparent when pooling large datasets of species and axes types. 

Zeroth-order theories like the MTE model may therefore remain valid macroscopically, and explain 

useful overall trends, but will likely fail at explaining crucial tradeoffs in plant form and function that 

depend on the very organization of the plant in metamers of differentiated natures.  

Identifying axes types in the field when confronted with a felled tree from a random species may prove 

difficult, and indeed was not properly done in this study. But plant architects have long shown that for 

many species, it is possible to identify simple morphological markers, such as the arrangement of leaf 

scars, insertion angles, etc.) allowing to retrace the whole growth history of a given trees. A new field 

of dendrochronological science is even developing, analogous to tree ring chronology, via the careful 

reconstitution of tree life through the succession of growth units and axes (Heuret et al., 2016; Morel 

et al., 2016). 

This study is not meant to be the invalidation of –useful– universal models, but rather to remind that 

if we are to account for some important phenomena in real trees, such as branch mechanical stability, 

biomass allocation in tree crowns, variations in plant growth and resource acquisition strategies, 

plasticity, or bias in allometric predictions, plant architecture will need to be accounted for. 
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3.6. Supplementary figure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-8. Histograms of log-transformed abundance against log-transform branch diameter (panel A) 
and branch length (panel B) for all nine species. Daughters dimensions (diameter, length) against 
parents dimensions (diameter length) are represented in panel C and D, with a color code 
differentiating PA daughters (solid black circles) from other daughters (solid grey circles). In panel E 
and F, the number of daughters (nD) is represented against parent order and per illustrative species, 
respectively. In panel E, the labelling scheme used to defined parent order is either the centrifugal 
scheme of the MTE (solid black circles) or the modified labelling scheme distinguishing PA daughters 
(order 1), their siblings (order 2) and other daughters (order ≥ 3) (empty circles). In panel F, a distinction 
is made between nodes bearing PA daughters (solid black circles) and others nodes (empty circles). 
Letters represent the result of Dunn pairwise multiple comparisons tests.
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Abstract 

The structural organization of a forest canopy is an important descriptor that may provide information 

for vegetation mapping and management planning. We present a new approach of canopy texture 

analysis from diverse very-high remotely sensed optical image types, such as digitized aerial 

photographs, very-high resolution satellite scenes or Google Earth extractions. Based on the 

multivariate ordination of Fourier spectra, the FOTO method allows us to ordinate canopy images with 

respect to canopy grain, i.e. a combination of mean size and density of tree crowns per sampling 

window. Confronted to field data in different contexts across the tropics, in mangroves, evergreen to 

semi-evergreen lowland and mountain forests, FOTO-derived indices proved powerful for consistently 

retrieving certain stand structure parameters, notably aboveground biomass up to the highest levels 

observed. We illustrate the potential of the texture-structure model inversion for predicting stand 

structure parameters over vast poorly documented forest areas in India, Amazonia and central Africa. 

We lastly draw research perspectives to overcome current limits of the method, such as instrumental 

and topography-induced biases. 
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4.1 Introduction 

The structural organization of a forest canopy is an important descriptor that may provide spatial 

information for vegetation mapping and management planning, such as attributes of plant species 

distributions, intensity of disturbances, aboveground biomass or carbon stock. A variety of airborne 

and satellite images have long been used to characterize forest stands from above the canopy, 

providing the advantage of a rapid exploration of extensive and sometimes difficultly accessible zones. 

Unfortunately this approach proved to be of limited applicability in wet tropical regions, notably 

because most optical and radar signals that deliver medium to high spatial resolution data have shown 

to saturate at intermediate levels of biomass ranges (ca. 150-200 Mg.ha-1) or leaf area index values 

(Gibbs et al., 2007). As a consequence, while forest vs. non-forest classifications are nowadays 

routinely performed from such data, variations in stand structure and biomass within forests of fairly 

closed canopy remain almost undetectable with classical techniques and the forest treetops seen from 

above appear generally as a homogeneously undulating green carpet. There is however a lot of 

ecological evidence that rainforest structure substantially varies from place to place either naturally 

(as the soil, composition or forest dynamics vary) or resulting from anthropogenic degradations. 

Detecting, characterizing and mapping these variations over vast areas become particularly challenging 

within the perspective of the REDD+ agenda (Maniatis and Mollicone, 2010), which requests 

participating countries to periodically monitor their carbon stock variation. While promising 

developing instruments such as LiDAR (Light Detection and Ranging) are potentially powerful in this 

perspective, they remain very expensive to systematically operate for large-scale forest assessments 

in the tropics (but see Asner et al., 2010). We recently developed as a cost-effective alternative, a 

method of canopy grain texture analysis from very-high resolution air- or space-borne images, which 

proved efficient for retrieving and mapping stand structure parameters including abovegound biomass 

over vast poorly documented areas of tropical forest.   

4.2 Methodological background and rationale  

Given allometric relationships that exist between individual tree dimensions (such as trunk diameter, 

height and crown size), our approach stems from the idea that the number and size of tree crowns 

visible from above the canopy should inform on some other forest structural parameters. The 

reasoning is straightforward when considering for instance stand basal area (G) or aboveground 

biomass (AGB) in closed forest conditions since in this case the largest trees that reach the canopy can 

account for up to 70-80% of stand level values. However the renewed interest for allometric scaling in 

ecology (Enquist et al., 2009), suggests that tree dimensions and their size frequency distribution, may 

be relevant to infer stand properties, such as spacing relations, mortality rates or stand dynamics, from 

canopy characteristics. While most previous attempts were based on visual or automated delineations 

of individual tree crowns from very-high resolution (VHR) canopy images, we present hereafter a more 

holistic characterization of canopy geometrical properties through canopy grain texture analysis by 

two-dimensional Fourier power spectrum. The main outlines of the method that we named FOurier 

Textural Ordination (FOTO) are illustrated in Figure 4-1. From a digital VHR panchromatic canopy 

image, optionally masked for non-forested areas (clouds, water bodies, bare soils, etc.), a set of square 

windows with size set to include several repetitions of the largest textural pattern that compose 

canopy grain is first extracted (Figure 4-1 a). For closed-canopy scenes, canopy grain results from the 

shape, size and spatial arrangement of dominant tree crowns, so that square windows of about 1 ha 

proved to be a good option. A Fourier radial power spectrum (or r-spectrum) is then computed for 
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each window, which features how image grey levels' variance partitions into increasing spatial 

frequency bins (in cycles.km-1
 i.e. the number of repetitions over 1 km) or equivalently into 

wavelengths (pattern sizes in m) (see Couteron, 2002 for further details). In other words, a r-spectrum 

represents the frequency distribution of pattern sizes in the canopy grain: while coarse canopy grain 

yields r-spectra significantly skewed towards small frequencies (large wavelengths), fine canopy grain 

yields r-spectra significantly skewed towards large frequencies (small wavelengths;Figure 4-1 b). All 

windows' r-spectra computed from a VHR canopy image can then be stacked into a single matrix with 

the canopy windows (observations) as rows and the spatial frequencies (variables) as columns (Figure 

4-1 c). Such a matrix may be submitted to a standardized-PCA that systematically compares the canopy 

windows with respect to the relative importance of spatial frequencies in their respective spectra. The 

typical clockwise distribution of the spatial frequency variables in the first PCA plane straightforwardly 

creates a canopy texture gradient which ordinates canopy windows, from coarse- to fine-grained 

patterns (Figure 4-1 d). Windows' scores against the main PCA axes thus represent canopy texture 

indices (so-called FOTO indices), which can be related to control plots data using multivariate linear 

models, to calibrate and assess the indices’ ability to infer stand structure parameters (Figure 4-1 e). 

Once calibrated, texture-structure relationships can be inverted for predicting and mapping stand 

structure parameters over the whole area covered by the initial VHR image (Figure 4-1 f).  
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Figure 4-1. Flow of operations of the FOurier Textural Ordination (FOTO) method.  

4.3 Results from some case studies 

The method has been tested on a variety of tropical forest types (evergreen, semi-evergreen and 

mangrove forests) in various regions (Amazonia, India and central Africa) using different VHR image 

data (digitized aerial photographs, commercial and freely-accessible satellite images). We also used 

virtual closed-forest canopy scenes simulated using allometric 3D forest mock-ups and a discrete 

anisotropic radiative transfert model to benchmark FOTO indices against controlled stand structures 

(Barbier et al., 2012). Such virtual scenes were for instance used by Barbier et al. (2010) as a preliminary 

step to a basin-wide analysis of Amazonian terra firme lowland forest canopy images, to evidence a 

strong relationship between FOTO indices and stand mean apparent crown sizes in simulated images 

(R² = 0.96). These results illustrate the theoretical backbone underlying the allometric assumption on 

which the approach relies: canopy grain information as captured by FOTO indices mostly pertains to 

pseudo-periodic patterns of crown diameters’ repetitions within the scene. Though pseudo-periodic 
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canopy patterns are generally noisy in real forest types as a result of interacting endogenous (stand 

composition and dynamics) and exogenous (e.g. topography, degradation intensity, etc.) factors, we 

were able to consistently discriminate observed forest scenes on the basis of their canopy grain 

features and to reveal in a number of situations strong correlations with structural parameters 

measured in ground-truth field plots (Table 4-1). In even-aged mangrove stands where most trees 

occupy the canopy layer, FOTO indeed yielded very good predictions on AGB (R² = 0.92; Proisy et al., 

2007) with no apparent maximal biomass limitation. As expected, weaker though strong relationships 

were obtained on uneven, hyper-diverse forests displaying more complex canopy patterns such as 

lowland evergreen forests of French Guiana, India and Cameroon (see Table 4-1). While some structure 

parameters showed fairly stable relationships with canopy texture, such as the mean quadratic 

diameter (Dg) in Indian and Guianan terra firme forests (R²= 0.68 and 0.71, respectively) or AGB in 

Indian forests and Guianan mangroves (R² = 0.78 and 0.92, respectively), other parameters showed 

contrasted relationships that reveal differences in the local variation of stand structural characteristics. 

For instance, the gradient of sampled forest structures in French Guiana terra firme plots relates to 

old-growth forests on contrasted soil conditions, which yields a strong correlation between canopy 

grain and tree density (N) or mean quadratic diameter (Dg), but no relationship with basal area (G) 

because the denser stands are located on poor soils that do not support many large trees (Couteron 

et al., 2005). Conversely, in India the area studied encompasses a gradient of forest succession stages 

from highly degraded secondary formations recovering from burning to old-growth undisturbed 

forests. In this case, FOTO clearly detected the gradual increase in density of the largest trees (N30), G 

and AGB throughout forest successions, while total tree density (N) did not lead to a predictable 

relationship (Ploton et al., 2012). In a different context, in Southeastern Cameroon forests that mix 

mono-dominant Gilbertiodendron dewevrei forests, along with degraded Maranthaceae facies and 

old-growth mixed-forest patches, canopy texture mostly correlates with maximum tree diameter 

(Dmax) and density of very large trees (N100), while overall stand structure parameters exhibit only weak 

relationships with FOTO indices (see Table 4-1). On the one hand, high-biomass G. dewevrei stands 

display a very fine canopy grain, possibly because of the high evenness of tree heights and strong 

imbrications of their crowns. On the other hand, the varying degree of canopy closeness in 

Maranthaceae forests, which may contain very few emergent trees dominating a low understorey, 

results in bimodal r-spectrum dominated by both large and fine textural patterns. Interestingly, canopy 

texture allows the segmentation of these different forest types, therefore potentially permitting 

separate, type-wise inversions. The FOTO method thus not only offer good prospects for saturation-

free tropical forest biomass assessments but appears also valuable to draw ecological insights into 

forest stand structure variation.  

It has also to been noticed that our case studies were conducted from image types as different as 

digitized panchromatic aerial photographs (French Guiana terra firme), panchromatic IKONOS or 

GeoEye satellite data (India, Cameroon and French Guiana mangroves), or RGB true color bands 

average of Google Earth (GE) extractions (Amazonian terra firme and India), however providing 

consistent results as long as images are in the optical domain with a spatial resolution of metric order 

(i.e. VHR). This underlines a promising feature of FOTO with respect to inter-operating image data 

types and providing a cost-free alternative to commercial data (GE) for large-scale assessments (for 

instance within the REDD+ framework), or retrospective analyses from old aerial photographs in the 

pre-satellite period.  
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Table 4-1. FOTO explanatory power on several common forest stand attributes over a variety of tropical forest types. Quality of the relationships is characterized by the 
coefficient of determination (R²), the associated P-value (ns: > 0.05) and the relative root mean square error Rrmse (in %). Forest attributes: N = density of trees more than 
10 cm dbh (trees.ha-1), N30 = density of trees more than 30 cm dbh (trees.ha-1), N100 = density of trees more than 100 cm dbh (trees.ha-1), Dmax = maximum tree dbh (cm), 
Dg = quadratic mean dbh (cm), G = basal area (m².ha-1), AGB = aboveground biomass (Mg.ha-1 dry matter), Cd = mean crown diameter (m), H = dominant tree height (m).  

Study site Data type Forest attribute Texture - Structure  
Sources 

Area Forest type Image Control plot Parameter Range R² Rrmse (%) 

French 
Guiana 

Evergreen (terra firme)  Aerial photographs 
Field plots  
(12 1-ha) 

N 455 - 861 0.8 - 

Couteron et al. 2005 
G 28.41 - 42.38 0.007 ns - 

Dg  20.6 - 34.2 0.71 - 

H  21.1 - 30.4 0.57 - 

Mangroves Ikonos 
Field plots  

(26 1-ha) 
AGB 80 - 436 0.92 17.3 Proisy et al. 2007 

Amazonia terra firme Google Earth 
Simulations  

(330 2.25-ha) 
Cd 7 – 25 0.96 - Barbier et al. 2010 

India Evergreen 
Ikonos / Google 

Earth 

Field plots  
(15 1-ha) 

N 371 - 733 0.109 ns / 0.132 ns 14.4 / 13.8 

Ploton et al. 2011 

N30   0.773 / 0.770 14.6 / 14.3 

G 10.3 - 54.4 0.779 / 0.741 13.1 / 13.5 

Dg 17.9 - 36.4 0.657 / 0.687 7.4 / 7.9 

AGB 124.1 - 683.6 0.779 / 0.741 13.1 / 13.5 

Simulations  
(10 1-ha) 

Cd 7 - 25 0.96 / 0.93 1.17 / 1.64 

Cameroon 
 Evergreen to semi-

evergreen  
GeoEye  

Field plots  
(10 1-ha) 

Dmax 89 - 144 0.93     

N100 0 - 10 0.64     

N 225 - 525 0.34   Unpublished results 

G 13 – 43 0.38     

Dg 22 – 33 0.30     
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4.4 Limits and perspectives   

Further case studies and simulation works are going on to validate the FOTO method in various tropical 

forest contexts. One of the limits of the canopy grain approach arises when canopy texture properties 

deviate too much from a pseudo-periodicity so that the main canopy pattern does not result from 

repetitions of crown diameters. Such heterogeneity may result from the presence of canopy gaps or 

treefalls of varying sizes, or of contrasted illumination patterns due to abrupt relief variations (e.g. two 

sides of a ridge line or a deep thalweg). Typically, r-spectra of windows displaying a high degree of 

spatial heterogeneity are skewed towards low frequencies due to the contribution of heterogeneity to 

the largest size patterns. It follows that such windows can be erroneously interpreted as containing 

large tree crowns and must be removed from the analysis so not to bias the texture-structure 

relationship (Ploton et al., 2012). Similarly, when shifting from pure evergreen to semi-evergreen or 

mixed deciduous tropical forest types, textural information may be influenced by seasonal changes in 

the canopy that still require to be investigated.   

Though the FOTO method offers good prospects for large-scale implementation, further difficulties 

arise when several canopy images with different acquisition parameters have to be mosaicked. Indeed, 

the sun-scene-sensor geometry influences the size and proportion of tree shadows in the canopy 

scene, and thus modifies the textural properties as detected by Fourier r-spectrum. To ensure a 

consistent comparison between different canopy scenes, one must either use images with similar 

acquisition conditions, or correct for the influences of changing acquisition conditions on canopy 

textural properties. To this end, Barbier et al. (2011) introduced a Bidirectional Texture Function (BTF) 

that allows correcting for instrumental bias based on a partitioned standardization of the r-spectrum 

prior to PCA. A very similar problem arises with relief variations, which modify the proportion of sun-

lighted vs. shadowed crowns. In mountainous regions, this effect has the potential to make FOTO 

detecting a finer grain on illuminated hillsides and coarser grain on shaded ones regardless of forest 

structure. A partitioned standardization of the r-spectrum according to hillshade classes may also 

provide a solution to correct for such a bias (Ploton, 2010). 
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ABSTRACT 

Very high spatial resolution (VHSR) optical data have shown a good potential to provide non-saturating 

proxies of tropical forest aboveground biomass (AGB), notably from canopy texture features extracted 

with Fourier transform. However, the relationships between Fourier texture features and forest AGB 

varies among forest types and regions of the world, hampering the deployment of a broad scale forest 

carbon monitoring method based on these sole texture metrics. Our aim here was to complement 

Fourier texture features with additional information on forest structure to generalize the texture-

based approach. We explored how canopy texture properties related to forest AGB estimation using 

279 1-ha tropical forest inventory plots distributed across the tropics for which we simulated VHSR 

optical canopy scenes. This allowed controlling for instrumental effects and focusing on the sole 

canopy texture features – forest AGB relations. Globally, Fourier texture of simulated canopies 

significantly explained AGB variations (R²=0.46), with an uncertainty of c. 30%. The strength of this 

relationship varied among sites with higher accuracy found on forests with close, fairly periodic 
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canopies (reflecting a self-thinning process) while heterogeneity in stand and canopy structure 

(reflecting gap phase dynamics) was detrimental. We found that including a gradient of canopy 

heterogeneity from a lacunarity analysis largely improved AGB model performances (R²=0.76, 

rRMSE=20%). As texture analysis of two-dimensional images cannot retrieve large-scale variations in 

forest height, a bioclimatic proxy of tree slenderness further improved model goodness-of-fit at the 

global level (R²=0.88) and reduced model error at the local level (reduction of site-level prediction 

biases). The final texture-based approach was tested on a set of 3 Pleiades images covering a complex 

mosaic of forest types in the Congo basin and led to uncertainty levels (RMSE = 62 Mg.ha-1, 

rRMSE=21%) comparable to those obtained from airborne LiDAR-based models. The increasing 

availability of VHSR optical sensors (such as from constellations of small satellite platforms) raises the 

possibility of routine repeated imaging of the world’s tropical forests and suggests that texture-based 

analyses could become an essential tool in international efforts to monitor carbon emissions from 

deforestation and forest degradations (REDD+ program). 

 

5.1 Introduction 

Concerns about the effects of increasing atmospheric carbon on climate have led to an international 

program aiming at reducing emissions of greenhouse gases from deforestation and forest 

degradations (UN-REDD+ program), notably in the tropics where the bulk of global deforestation 

occurs (Pan et al., 2011). REDD+ implementation fundamentally relies on our capacity to monitor forest 

carbon stock and dynamics at multiple spatial scales, from entire countries down to scales at which 

deforestation and degradation processes occur. In this context, remote sensing naturally becomes an 

essential tool (Baccini et al., 2012; DeFries et al., 2007; Saatchi et al., 2011). However, remote sensing 

of forest carbon stocks (often through forest aboveground biomass, hereafter denoted AGB) is 

challenging in the tropics because most satellite sensors are not sensitive to AGB variation above c. 

150 Mg.ha-1, while tropical forests AGB often exceeds 400 Mg.ha-1 (Slik et al., 2013). This saturation is 

well documented for passive optical sensors of coarse to intermediate spatial resolution such as the 

Moderate Resolution Imaging Spectroradiometer (MODIS) or Landsat Thematic Mapper (e.g. Lu, 2006; 

Lu et al., 2012; Zhao et al., 2016) but also for radar signals (notably L-band SAR, Mermoz et al., 2015), 

and thus constitutes a crippling limit for those data types. Aircraft-based light detection and ranging 

(A-LiDAR) systems have become vastly popular for about a decade in tropical forest studies, as they 

appear to be free of saturation. Small-footprint A-LiDAR data provide a detailed description of forest 

three-dimensional (3D) structure from which forest AGB can be estimated with reasonable confidence 

(c. 15% relative error on 1-ha plots, e.g. Réjou-Méchain et al., 2015; Zolkos et al., 2013). Unfortunately 

this information comes at a cost rendering the wall-to-wall and regular coverage of large territories 

uneconomical (Erdody and Moskal, 2010; Messinger et al., 2016). A potentially interesting alternative 

to A-LiDAR for large-scale monitoring of tropical forests may be found in very high spatial resolution 

(VHSR) optical images, as they are routinely captured by a range of satellite platforms and, therefore, 

does not involve costly airborne data acquisition campaigns. The improvement brought by the 

increased spatial resolution over coarser, widely-used optical data (e.g. Landsat), lies on a fundamental 

change in the analysis: at metric to sub-metric resolutions, individual trees are now discernable in the 

image, allowing one to exploit the geometric properties of tree crowns (i.e. crown delineation 

algorithms, e.g. Broadbent et al., 2008; Zhou et al., 2013) or forest canopies (i.e. texture analysis, e.g. 
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Couteron et al., 2005) that conceptually more directly relate to stand biomass than spectral greenness 

indices.  

Texture analysis of panchromatic VHSR canopy images (e.g. Couteron et al., 2005; Frazer et al., 2005) 

have shown promising results to retrieve stand and canopy forest attributes, including tropical forest 

AGB with no sign of saturation (e.g. Bastin et al., 2014; Ploton et al., 2012). Generally speaking, texture 

analysis (sensu Haralick, 1979) gives us a measure of the spatial arrangement of grey levels within a 

canopy image by directly reflecting the contrasts between sunlit and shadowed surfaces, thus 

providing information on the size and distribution of crowns of canopy trees and inter-crowns canopy 

gaps. Texture is scale-dependent, so that meaningful texture metrics have to be multi-scale by nature 

(e.g. Fourier r-spectra; Couteron, 2002) or measurable at multiple scales (e.g. lacunarity; Frazer et al., 

2005). Those analyses are often carried out on image excerpts over scales related to local variations in 

crown and gap sizes (e.g. canopy window of c. 1-ha) while comparing texture features, whatever their 

source, over very large forest tracts (e.g. hundreds of square kilometers). A systematic comparison 

between canopy windows texture features can be performed through standard multivariate 

ordination technics (e.g. Principal Component Analysis). Principal axes thus display canopy windows 

along uncorrelated texture and spatial heterogeneity gradients that facilitate their separation and 

interpretation. Window scores on the principal axes are then used as dependent variables (texture 

indices) in regression analyses in order to examine the statistical relationship between canopy texture 

and stand structure parameters, for instance AGB, as measured from field plots data (e.g. Couteron et 

al., 2005; Proisy et al., 2007). The basic idea is that once calibrated such relationships can be inverted 

to predict and map stand structure parameters outside the sampling plots from texture analysis of 

VHSR panchromatic images. 

To date, the FOurier Textural Ordination (or FOTO method; Couteron, 2002; Proisy et al., 2007) has 

been applied in a number of tropical forest case studies to derive plot-level AGB estimates from 

panchromatic canopy images (e.g. Ploton et al., 2012; Proisy et al., 2007; Singh et al., 2014) or LiDAR 

Canopy Height Models (e.g. Véga et al., 2015). Study footprint is generally a few hundreds of square 

kilometers covered by one or two VHSR images. At this scale, the texture gradient provides good 

relationships with forest stand structure parameters, with a relative error on 1-ha plot AGB 

estimations, generally below 20%. It has indeed been demonstrated from simulations that in closed-

forest canopies, FOTO-texture indices characterize the size distribution of canopy crowns (Barbier et 

al., 2012), which are allometrically linked to tree size and AGB (Jucker et al., 2016; Ploton et al., 2016). 

It is increasingly evident, however, that the texture-structure relationship is forest type- and/or site-

dependent (Bastin et al., 2014), thus limiting broad-scale applications. As a consequence, texture 

analysis of large mixed-forest landscapes currently requires a stratification into homogeneous texture-

AGB strata as in the forest mosaics of the Congo basin (Bastin et al., 2014). It is worth mentioning that 

similar limitations have been encountered for LiDAR-based studies, requiring complementary 

information layers to allow multi-site comparisons (e.g. Asner et al., 2011; Vincent et al., 2014, 2012). 

Generalizing the texture-structure relationship across contrasted forest types from different regions 

of the world would therefore be a major step towards an operational method to monitor forest 

structure and AGB from VHSR optical data.  

Here, our hypothesis is that canopy heterogeneity created by different environmental conditions and 

canopy gap dynamics may influence the texture-structure relationship derived from the FOTO method. 

In a VHSR canopy image, tree crowns and gaps are visible to the naked-eye from local brightness 
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variations, but texture patterns captured by FOTO cannot discriminate large tree crowns from canopy 

gaps as they both appear as aggregates of bright or dark pixels of similar size in the image. Coarse 

texture thus indistinctively results from closed canopies comprised of large tree crowns and from open 

canopies where aggregates of tree crowns alternate with canopy openings. Thus, a same texture may 

represent high or low AGB values, respectively. To overcome this drawback, FOTO texture can be 

complemented by other textural features characterizing canopy heterogeneity at multiple scales, such 

as lacunarity, which proved to correlate well with canopy cover and gap volume on simulated forest 

stands (Frazer et al., 2005).  

Another constraint limiting the empirical exploration of the link between canopy texture and the 

underlying forest stand structure over large regions covered by several VHSR images is of instrumental 

nature. Forest texture indices are indeed sensitive to sensor optical properties and spatial resolution 

(Ploton et al., 2012; Proisy et al., 2007), but also to sun-sensor geometry (Barbier et al., 2011; Barbier 

and Couteron, 2015). Disentangling the effect of forest structure on canopy texture from instrumental 

effects thus requires having a sufficiently large set of VHSR images acquired in homogeneous sun-

sensor configurations and covering an extensive field plot network. An efficient workaround is to adopt 

a modelling approach coupling the simulation of 3D forest stand mockups and the generation of virtual 

canopy images by applying a radiative transfer model onto the 3D mockups (Barbier et al., 2012). By 

controlling parameters of the radiative transfer model, canopy images in identical acquisition 

configurations can be generated for a variety of 3D stand mockups. Forest mockups built from simple 

tree shapes derived from field data (tree location, height, diameter and crown dimensions) allow 

bridging the gap between ground observations and remote sensing data (e.g. Frazer et al. 2005, 

Schneider et al., 2014). They ultimately help us to translate signal information into biophysical 

parameters. Modeling trees with simple geometrical shapes and homogeneous optical properties may 

appear as a coarse representation of reality, but it led to valuable insights into how the 3D arrangement 

of stems and leaves is linked to important processes of the forest dynamics (Stark et al., 2015; Taubert 

et al., 2015). 

In this study, we compiled data from 279 1-ha forest inventory plots from several tropical regions on 

three continents to test whether a generalized canopy texture model could provide consistent 

estimates of AGB in structurally contrasted forest types. The analysis was based on simulated canopy 

scenes so to specifically address the link between canopy texture and stand structure, notably AGB. 

We first investigated the respective merits of the FOTO method (Couteron, 2002) and the lacunarity 

analysis (Frazer et al., 2005) in predicting stand AGB both locally (within sites) and globally (across 

sites). Second, we explored whether combining the two methods improved AGB prediction models. 

Third, we built a final ‘generalized’ model also accounting for the variation in potential canopy height 

related to regional bioclimatic stress on forest growth, as it has been shown to be a determining factor 

of pantropical variation in forest AGB (Chave et al., 2014). Finally, we tested our generalized texture-

structure regression framework on three real Pleiades images acquired in comparable configurations 

over 49 1-ha field plots from a complex mosaic of forest types in Central Africa.  

5.2 Material and Methods  

5.2.1 Forest inventory data 

We used a set of 279 1-ha forest sample plots in tropical Africa (157 ha), India (37 ha), and French 

Guiana (85 ha). Forest inventory data contained tree diameter at breast height (D) for all trees with D 
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≥ 10 cm, representing 142,791 trees in total. Tree taxonomic identification was available at the species 

level for 78% of the trees, at the genus level for 6%, at the family level for 5% and 11% of the trees 

were left unidentified. We used the Dryad Global Wood Density Database (Chave et al., 2009; Zanne 

et al., 2009) and the World Agroforestry Center's Wood Density Database (ICRAF, 2007) to attribute to 

each individual tree the mean wood density value of the species it belongs to. For those known only 

to the genus or family level, the average wood density at that taxonomic level was used (Chave et al., 

2006). Unidentified individuals were attributed the average wood density of the 1-ha plot. Beside D, 

other tree dimensions were recorded on a subset of trees per plot, namely total tree height (H, 

n=23,237), trunk height defined as the height to the lowest main branch (Ht, n=6,502) and tree crown 

diameter (Cd, n = 4,438). The distribution of field inventory data among sampling sites is provided in 

supplementary Table 5-3. We established allometric models for tree H, Ht and Cd in order to predict 

the dimensions of unmeasured trees. Because calibration data for allometric models were missing for 

some plots, models were established at the plot-, site- and regional-levels (i.e. Africa, India and French 

Guiana) and the most local one was selected. 

Following Feldpausch et al. (2012), we used a three-parameter Weibull function to predict tree H from 

D: 𝐻 = 𝑎(1 − exp(−𝑏𝐷𝑐)). Trunk height was modeled as a power function of H: 𝐻𝑡 = 𝑎 ∗ 𝐻𝑏 , fitted 

in logarithmic units and accounting for Baskerville correction (Baskerville, 1972) . The same model and 

transformation were applied to fit the crown diameter, Cd, to D, at the exception that a 2-segments 

model was used when a significant breaking point was found in the relationship (following the 

procedure described in Antin et al., 2013). Finally, we used the pantropical model of Chave et al. (2014), 

including D, H and wood density to compute tree AGB estimates. 

Overall, the sample plots spanned wide gradients of tree density (139 to 848 trees.ha-1), stand basal 

area (10.3 to 57.7 m².ha-1) and dominant height (17.8 to 50.5 m) and thus captured a large array of 

forest age and 3D organizations.  

5.2.2 Generation of 3D forest mockups 

We constructed a 3D representation of the 279 1-ha sample plots using local tree allometries and tree 

location data (either exact coordinates or by quadrats of 20-m side). The 3D modelling process of a 

sample plot can be summarized as follows: (1) we built a simplified representation of each tree in the 

plot with the crown modelled as an ellipsoid of diameter Cd and depth Hc (i.e. H – Ht, in m) using field 

measurements if available or local allometric models otherwise; (2) if tree relative coordinates within 

the plot were known (i.e. for 135 of the 279 1-ha plots), we generated a single plot mockup by placing 

trees at their actual position; if trees position were only known at the quadrat-level (i.e. for the 

remaining 144 plots): (i) trees were sorted from the tallest to the smallest; (ii) tentatively located at 

random in their respective quadrats starting from the tallest tree downward; (iii) retained if their 

crown volume did not overlap crowns of already placed trees by more than 25% of tree crown volume. 

If the algorithm failed to place a tree after 50 iterations (in 5.3% of the cases), its crown diameter was 

reduced by randomly sampling a value in the distribution of the crown diameter allometric model 

residuals. For those 144 plots, we generated 3 mockups per plot so as to capture some variability in 

canopy texture emerging from the random component of the mockup generation algorithm.   
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5.2.3 Simulation of canopy images 

We simulated very-high spatial resolution optical images of the 567 forest mockups using the Discrete 

Anisotropic Transfer model (DART, version 5.5.3, Gastellu-Etchegorry et al., 2015). DART is able to 

handle the forest mockups as a 3D array of cells (voxels) of different sizes. We used 1-m3 voxels so to 

match with the metric resolution on which FOTO analyses are typically performed. Voxels contain a 

mixture of air and vegetation elements, either as solid facets or as turbid medium with a predefined 

distribution of leaf volume density. Given that optical properties have little influence on canopy 

texture, we used leaf and bark optical properties of an African canopy tree species (Terminalia superba 

Engl. & Diels) as input parameters for all the trees in DART. Tree trunks were represented as solid 

cylinders and crowns as turbid ellipsoids with a spherical distribution of leaf angles. Volume density 

within tree crown cells was adjusted to represent a Leaf Area Index of 5 at the plot scale (Asner and 

Martin, 2008), independently of plot biophysical structure. We thus assumed a limited influence of LAI 

on canopy texture properties but also acknowledge the difficulty of accurately measuring such 

integrative parameter in tropical forests (Jonckheere et al., 2004; Olivas et al., 2013). To represent a 

vegetated understory, we additionally attributed to the lowest 1-m layer above the ground the optical 

properties of a pioneer tree species (Musanga cecropioides R.Br. ex Tedlie) with a spherical distribution 

of leaf angles and leaf area density of 0.3 m².m-3.  

We used DART in ray tracing, reflectance mode with the sun and the atmosphere as the only radiation 

sources. We simulated top of atmosphere (TOA) panchromatic reflectance images (see Gastellu-

Etchegorry et al., 2015 for further details) in the 0.35 µm - 1.1 µm domain that we decomposed into 

75 spectral bands of 0.01 µm each. The radiative transfer calculations were conducted to represent 

observation and solar illumination zenith angles set to 6.3° and 40.4°, respectively, and a sun-viewing 

azimuth difference set to 200.5°. For each DART image pixel, the reflectance channel of any VHSR 

sensor can then be obtained from the summation of reflectance values provided in the 75 bands in 

proportion to the panchromatic sensor response level within each of the 0.01 µm bands. Computation 

time was about 40 minutes per image with about 12 GB of RAM on 64-bit Windows with an Intel Core 

i7 GHz processor.  

5.2.4 Real satellite images  

We used a set of three real VHSR optical images from the Pleiades sensor acquired over a network of 

49 1-ha sample plots in the transition area between evergreen and semi-deciduous forests of Eastern 

Cameroon, in central Africa. Images were taken approximately two years after the establishment of 

the sample plots. Since the three images were in backward configuration (i.e. with sun behind the 

sensor) with relatively homogeneous elevation angles (Table 5-1), textural bias induced by image 

acquisition configurations is expected to be low (Barbier and Couteron, 2015). Following previous 

applications, texture analysis was based on panchromatic bands resampled from 0.5 m to 1 m per 

pixel.    
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Table 5-1. Date and acquisition parameters of Pleiades panchromatic satellite images over Eastern Cameroon, central Africa 

Date Sensor Sun 

month year azimuth elevation azimuth elevation 

12 2014 227.6 64.5 145.3 57.0 

12 2014 248.5 79.7 146.4 55.3 

1 2015 229.6 65.7 138.3 57.3 
#1 catalog ID: DS_PHR1A_201412210944201_FR1_PX_E013N03_0909_01764 
#2 catalog ID: DS_PHR1A_201412210943258_FR1_PX_E013N05_0606_01395 
#3 catalog ID: DS_PHR1A_201501160944349_FR1_PX_E013N03_0702_00899 

 

5.2.5 Canopy texture analysis 

We performed texture analysis of panchromatic VHSR canopy images using both FOTO (Couteron, 

2002) and lacunarity (Frazer et al., 2005) analysis as they are expected to provide complementary 

information on stand structure attributes. FOTO method has been extensively described elsewhere 

(e.g. Couteron, 2002; Couteron et al., 2005) and we only give a brief outline of the procedure hereafter. 

The first step consists in dividing a panchromatic satellite image into square 1-ha (N = 100 m) canopy 

unit-windows, a size which proved suitable from previous studies to capture several repetitions of the 

largest tree crowns in closed forest stands. On each window, the two-dimensional Fast Fourier 

Transform (fft2) function is applied to transpose the spectral radiance from the spatial domain to the 

frequency domain, using sine-cosine functions at integer frequencies (i.e. wavenumbers, 1, 2, …, N/2) 

along the X and Y directions of the plane. The squared amplitude of the fft2 yields a 2D periodogram, 

which represents an apportionment of the variance in spectral radiance among spatial frequency bins 

in all possible planar directions within the window. The orientation information was here neglected by 

averaging the periodogram across all directions, which provided the one-dimensional so-called radial- 

or r-spectrum. Knowing image spatial resolution, wavenumbers can equivalently be expressed in 

wavelengths (λ, in m) so that a r-spectrum gives the frequency distribution of the number of times a 

pattern of size λ repeats itself in a unit canopy window of side N = 100 m. An issue with the method is 

that sampling according to harmonic Fourier frequencies (stemming from fft2) results in denser 

spectrum values as λ decreases, so that intermediate scales of patterns relevant for canopy 

characterization may be badly sampled. To overcome this we used the modified algorithm presented 

in Barbier and Couteron (2015), in which, after signal centering, unit-window size is doubled in each 

direction using zero-padding, which allows increasing intermediate λ sampling. The resulting list of λ is 

pruned to conserve a sampling of λ values as regular as possible, thus decreasing information 

redundancy at small wavelengths. Finally, a set of 26 λ values was retained from 2 up to 99 m. All r-

spectra for a given satellite image were assembled into a single matrix, F, with the individual canopy 

windows as rows and Fourier spatial frequencies as columns. Canopy windows with r-spectra 

dominated by high Fourier frequencies (low λ) are expected to display fine grain canopy textures due 

to the succession of small tree crowns, while coarse grain canopy textures correspond to r-spectra 

dominated by low Fourier frequencies expected to reflect the repetition of large canopy trees (see e.g. 

Barbier et al., 2012). 

Lacunarity was formally defined by Mandelbrot (1983) as the deviation of a fractal pattern from 

translational invariance, a concept further expanded to non-fractal patterns (Allain and Cloitre, 1991). 

It basically measures how patterns fill space, those having more or larger gaps having generally a higher 

lacunarity or gapiness. It is a scale dependent descriptor of an image texture that showed an interesting 
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potential in forest studies to describe spatial variation in stand structure heterogeneity, notably related 

to canopy openness (Frazer et al., 2005). In the present paper, we computed lacunarity following 

Frazer et al. (2005) to which the reader should refer for more details. Lacunarity was computed in 

canopy windows of size N = 100 m as Fourier r-spectra. On each unit-window, a moving square box of 

size s (in pixels) is glided by one pixel at a time along all rows and columns. For each box of size s, the 

mass, M, is computed as the sum of all pixels’ spectral radiance (previously normed per unit-window), 

so that the probability distribution function Q(M,s) represents the frequency distribution of M divided 

by the number of boxes at size s. The lacunarity statistic is then computed as ∆(s) =

𝑍𝑄
(2)

(𝑠) (𝑍𝑄
(1)

(𝑠))
2

⁄ , where 𝑍𝑄
(1)

(𝑠) and 𝑍𝑄
(2)

(𝑠) are the mean and mean of squared values of Q(M, s), 

respectively. In our study we used 10 discrete box sizes, s, from 1 to 99 m, and normalized all lacunarity 

values by dividing them by ∆(1). We then denote as a window lacunarity spectrum the series of 

normalized lacunarity statistics computed at each box size for a given canopy window. All normalized 

lacunarity spectra for a given satellite image were assembled into a single matrix, L, with the unit 

canopy windows as rows and the box sizes as columns. The decreasing pattern of lacunarity with 

increasing box size reflects the rate of increase in canopy heterogeneity from the finer to the coarser 

scale patterns, which in the context of forest canopies is related to the degree of inter-crowns canopy 

openness (see Frazer et al., 2005). 

5.2.6 Statistical analyses 

In order to systematically compare the canopy windows from a given satellite image, both the F table 

of Fourier r-spectra, and the L table of lacunarity spectra were submitted independently to Principal 

Component Analyses (PCA) as in Couteron et al. (2005) and Frazer et al. (2005). Columns’ normalization 

prior to PCA (normed-PCA) allows uncovering texture gradients even when the absolute variation 

between unit-windows is small. This led to independently synthetize the FOTO- and Lacunarity-texture 

gradients present in the satellite images. From the 3D forest mockups, we extracted simple parameters 

of stand structure and heterogeneity (listed in Table 2) in order to help the interpretation of texture 

gradients produced by the two PCA. We then investigated the agreement between these two analyses 

using a co-inertia analysis (COIA; Dolédec and Chessel, 1994, Dray et al. 2003). COIA is a simple and 

robust method for the simultaneous analysis of two data tables matching by observations (here, 

windows). Between two PCA, COIA is mathematically equivalent to the Inter-battery analysis of Tucker 

(1958). The method maximizes the square covariance between the projected coordinates of the unit-

windows on the PCA axes of F and L. It thus simultaneously maximizes the variance in F and L separately 

(the two PCA) and the correlation between the two sets of principal components. The texture gradients 

captured by FOTO and by the lacunarity analysis can thus be projected on common orthogonal 

components.  

We then used window scores on the PCA or COIA analysis as independent texture indices in AGB 

regression models. We used the Random Forest (RF) algorithm as implemented in the package 

“randomForest” version 4.6.12 for R statistical software (R Core Team, 2016). RF is an ensemble of 

learning methods for classification and regression based on decision trees (Breiman, 2001) increasingly 

used in remote-sensing studies, notably for carbon mapping (Baccini et al., 2012; Mascaro et al., 2014; 

Vieilledent et al., 2016). The aim is to overcome over-fitting problems that can occur using individual 

decision trees. The algorithm builds a large number of decision trees that are trained on random 

samples of both the training set (i.e. the observations) and the predictor variables, and outputs the 

average of individual trees predictions. An interesting feature of such learning machine technics is that 
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it allows integrating a large number of variables of potentially different statistical distributions (Marvin 

et al., 2016) and does not request specifying an explicit model form.  

We evaluated regression model errors using the internal validation scheme of RF. At each run (n = 

500), RF training set is by default composed of two thirds of the total number of observations, leaving 

one third of the data to compute an independent estimate of model error, so-called “out-of-bag” 

(OOB) error. A mean OOB model error over the 500 runs (±sd) is provided as pseudo R-squared (R2), 

root-mean-square error (RMSE) and relative RMSE (rRMSE in %), along with the mean signed deviation 

(MSD), used to compare local (i.e. per site) prediction bias in global (i.e. multi-site) models (Xu et al., 

2016). 

Although RF have been developed to avoid overfitting (Breiman, 2001) it is not completely immune to 

this problem (e.g. Mascaro et al., 2014). We thus assessed predictors’ importance using a built-in 

metric denoted IncMSE (in %), which quantifies the percent increase in the mean MSE when predictors 

are randomly permuted. We then applied a variable selection procedure using the VSURF package 

(Genuer et al., 2015), which builds several RF models with increasing number of predictors, starting 

with the most important ones (based on IncMSE) and retains the smallest significant model (see VSURF 

description for computational details). 

In this paper RF models were built to evaluate the potential of canopy texture to discriminate variations 

in stand AGB among the full set of simulated canopy scenes. FOTO- and Lacunarity-texture indices 

were first evaluated separately using windows scores from the two independent PCA (leading to the 

F- and L-models, respectively). Both sources of texture information were then combined in a single RF 

model using windows coordinates on the COIA axes (FL-model). Last, we added to the predictors a 

bioclimatic proxy accounting for the regional variation in potential canopy height, as environmental 

stress on forest growth has been shown to be a determining factor of pantropical variation in forest 

AGB (Chave et al., 2014). This environmental stress variable E, a compound variable based on water 

deficit, temperature seasonality and precipitation seasonality,  is available as a global gridded layer at 

2.5 arc sec resolution at http://chave.ups-tlse.fr/pantropical_allometry.htm (Chave et al., 2014) and 

was used here as a proxy for forest potential height in a global model based on FOTO- and lacunarity-

textures (called FLE-model). 

5.3 Results 

5.3.1 Texture analysis of virtual canopy images  

We applied both the FOTO method and the lacunarity analysis on all simulated canopy windows 

generated from the 279 1-ha plots of tropical forest inventory. The plan 1-2 of the FOTO-PCA explained 

53.5% (37% and 16.5% for axes 1 and 2, respectively) of the total textural variability among windows 

r-spectra (F-table) and produced a typical correlation circle with spatial patterns sorted from short to 

long wavelengths (or from high to low frequency wavenumbers) (Figure 5-1 A). Wavelengths (λ) of 

about 5 to 10 m (visually relating to small crown sizes) were found on the positive side of the first PCA 

axis (F-PCA1), intermediate λ (25 to 35 m) on the positive side of F-PCA2 and λ of 25 to 35 m (largest 

crown sizes) on the negative side of F-PCA1. The ordination gradient on the first FOTO-PCA plan thus 

corresponded to a fineness-coarseness canopy texture gradient, with aperiodic canopies found close 

to the origin and heterogeneous ones (i.e. mixing small and large crown patches) found on the lower-

left part of the plan. The general decrease of canopy grain size along F-PCA1 negatively correlated with 
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stand maximum tree size (Pearson’s r ≥ -0.67 with DBHm, Hm and Cdm in Table 5-2) as well as stand 

basal area and canopy roughness (r ≥ -0.57 with G and Hv10 in Table 5-2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1. Canopy texture ordinations based on (A) the FOTO method and (B) the lacunarity analysis. In both 
cases, scatter plots of PCA scores along the first two principal axes are shown, with 3 example sites highlighted 
with particular symbols (Paracou, Uppangala and Yellapur). Correlation circles are given with wavelength, λ (A) 
or box size, s (B) in meter. Histograms of eigenvalues in % of total variance. 

The first Lacunarity-PCA plan explained 95.7% (82.6% and 13.1% for axes 1 and 2, respectively) of the 

variance among normalized lacunarity spectra (L-table). The first PCA axis (L-PCA1) sorted windows 

according to their degree of gapiness (Figure 5-1 B) as shown by a negative correlation with stand gap 

fraction (r=-0.63 with GF in Table 5-2), which coincided with a positive correlation with stand basal 

area (r=0.59) and mean tree crown diameter (r=0.53). L-PCA1 thus sorted windows from fairly open 

stands (featuring frequent patches of small trees, less than 2 m in height) to fully-stocked stands having 
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a canopy made of larger trees. L-PCA2 captured variations in the rate of decrease in lacunarity with 

box size, which reflected a gradient in canopy grain and heterogeneity. Fairly homogeneous canopy 

(smooth canopy grain) characterized by a low rate of decrease in lacunarity with box size were found 

on the negative side of L-PCA2, while heterogeneous canopy were found on the positive side of L-

PCA2. As a matter of fact, L-PCA2 was positively correlated with the canopy roughness index, Hv10 

(r=0.7) and with maximum tree size (r=0.72 and 0.7 with Hm and DBHm, respectively). F-PCA1 and L-

PCA2 displayed a very high correlation of 0.93 (axes orientations are not informative in PCA) and 

fundamentally depicted the same coarseness – fineness gradient of canopy aspect. On the other hand, 

correlations between F-PCA2 and both Lacunarity-based PCA axes were weak, suggesting 

complementarity. 
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Table 5-2. Correlation between stand structure parameters extracted from three-dimensional mockups and canopy window scores on the texture ordination axes based on 
the FOTO method (F-PCA1 and F-PCA2) and the lacunarity analysis (L-PCA1 and L-PCA2). Probability value of Pearson correlation test are provided between brackets and 
coded following standard notation (*** P ≤ 0.01, ** P ≤ 0.01, * P ≤ 0.05, ns = non-significant).   

 

  Stand structure parameters F-PCA1 F-PCA2 L-PCA1 L-PCA2 

GF Gap fraction (cumulated area of pixels < 2 m in height) 0.04 (ns) -0.18 (***) -0.63 (***) 0.12 (**) 

Hv10 Standard deviation of maximum tree height among 10 m quadrats -0.6 (***) -0.26 (***) -0.27 (***) 0.7 (***) 

DBHm Stand maximum tree DBH -0.74 (***) -0.21 (***) 0.17 (***) 0.7 (***) 

Hm Stand maximum tree height -0.69 (***) 0.17 (***) -0.1 (**) 0.72 (***) 

Cdm Stand maximum crown diameter -0.67 (***) -0.3 (***) 0.17 (***) 0.64 (***) 

N Stand tree density 0.08 (*) 0.15 (***) -0.01 (ns) -0.07 (.) 

G Stand basal area  -0.57 (***) 0.17 (***) 0.59 (***) 0.43 (***) 

DBHmean Quadratic mean of tree DBH -0.46 (***) 0.06 (.) 0.48 (***) 0.35 (***) 

CDmean Quadratic mean of tree crowns diameter  -0.19 (***) 0.16 (***) 0.53 (***) 0.09 (*) 
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Combining the two texture analyses in a common co-inertia analysis (Figure 5-2) revealed a slight but 

significant co-structure between the two PCA (RV = 0.24, P < 0.001). This indicates that while both 

analyses are partly redundant in describing canopy texture, they also provide complementary 

information. The first COIA plan captured 97.1% of the co-inertia, which was mostly one-dimensional 

(88.3% on COIA-1). The inertia projected on F-PCA1 was almost entirely found on COIA-1 (i.e. 96.2%, 

against 68.1% for L-PCA1), and 85.7% of the cumulated inertia projected on F-PCA 1 and 2 was captured 

on COIA-1 and 2 (against 90.3% for L-PCA1 and 2). Figure 2 illustrates that while the co-inertia analysis 

preserves the structure of each separate PCA, i.e. the canopy texture gradients described by the FOTO 

(Figure 5-2 A) and lacunarity analyses (Figure 5-2 D), some disagreements between the two methods 

appeared at both the site and window level. For instance, while Yellapur site was close to Paracou site 

in terms of FOTO-texture properties, it was more similar to Uppangala in terms of lacunarity-texture 

properties (Figure 5-2 C). In Paracou, canopy texture described by FOTO and lacunarity provided very 

similar information for all the sampled canopy windows (short arrows in Figure 5-2 F), while for 

Yellapur and Uppangala, some canopy windows that exhibited very different FOTO textures (i.e. found 

at the opposite on COIA-1) showed a convergence towards similar lacunarity-derived textures (long 

convergent arrows in Figure 5-2 F).  

 

 

 

 

 

 

 

 

 

 

Figure 5-2. Co-inertia analysis. Position on the first co-inertia plane of the FOTO r-spectra wavelengths, λ (A) and 
the lacunarity box size, s (D). Components of the F-PCA (B) and the L-PCA (E) projected onto the co-inertia axes. 
Ordination of windows from the 3 example sites (Paracou, Uppangala and Yellapur) on COIA-1 (C) with large 
empty and full circles representing the average site-level score for FOTO and Lacunarity features, respectively. 
Normed scores of 10 randomly sampled canopy windows from the 3 example sites on the first co-inertia plane 
(F), with each arrow linking a canopy window position for FOTO and Lacunarity characteristics, respectively.  

5.3.2 Canopy texture - AGB models 

Global Random Forest prediction models of stand AGB based either on FOTO texture (F-model) and on 

lacunarity texture indices (L-model) derived from the virtual canopy images, led to retain the two first 

axes for both F and L analyses  (Figure 5-3 top), but provided quite low goodness of fit (R2 = 0.46 and 

0.31, with rRMSE = 31 and 38%, respectively). In both cases model predictions showed a systematic 

pattern of errors with respect to the 1:1 line, which led to underestimations at high biomass levels, 
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reaching -32.7% (MSD) in average with the L-model for forest plots from Paracou. Conversely, a RF 

model based on both FOTO and lacunarity scores on the two first co-inertia axes (FL-model in Figure 

5-3) largely increased the prediction power on stand AGB estimations (R² = 0.76 with a rRMSE = 20%). 

This global model also improved the local predictions at our three example sites, with a substantial 

reduction in MSD as compared to previous models, except for the F-model at Yellapur. It is also 

noteworthy that site-level MSD seemed to decrease with the range of biomass encompassed across 

plots in a site: while plots in Yellapur (MSD = 5.2%) and Paracou (MSD = -8%) are restricted to low and 

high biomass levels, respectively, in Uppangala (MSD = 2.4 %) plots have been sampled along a biomass 

gradient spanning from c. 150 up to > 600 Mg.ha-1. This indicates that the underlying texture-AGB 

relationship may vary between sites as a function of samplings, but also with respect to local site 

characteristics. For instance, while tree density in Paracou correlated well with FOTO and lacunarity 

scores on COIA-1 (r = 0.75 and 0.52, respectively), it did not in Yellapur (r < 0.15). Similar observations 

can be made for maximum tree slenderness (i.e. Hmax/Dmax) which correlated well with scores in 

Uppangala (r = 0.88 and 0.82, respectively) but not so clearly in Yellapur (r = 0.38 and 0.66, 

respectively). 

To account for this between-sites variation in the texture-structure relationship, we finally added to 

our global model the bioclimatic stress variable E implemented by Chave et al. (2014), with the aim to 

capture variations in height-diameter relationships (i.e. tree slenderness).The FLE-model which 

incorporates E along with FOTO and lacunarity texture indices indeed improved goodness of fit (R2 = 

0.88, with rRMSE = 14%) and reduced local prediction errors of the 3 example sites (MSD < 5%). The 

variable selection procedure retained only 3 predictor variables in this model, which are in order of 

importance: L-COIA1, E and F-COIA2 (see supplementary Table 5-4).  

Figure 5-3. Multi-site AGB prediction models based on FOTO texture (F-model), Lacunarity texture (L-model), the 
two sources of texture information (FL-model) to which we also added a forest canopy height proxy E (FLE-
model). Texture features were extracted from virtual canopy scenes. Goodness of fit statistics are defined in 
Methods section.  
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5.3.3 Application to real satellite images 

We tested the approach developed above on a set of three real VHSR optical images. FOTO and 

lacunarity analysis were conducted in similar conditions than with the virtual canopy images and 

Random Forest AGB models were developed based on window scores on F-PCA axes (i.e. F-model), L-

PCA axes (i.e. L-model) and co-inertia axes and the bioclimatic stress variable E (FLE-model). The F- and 

L-model did not, or weakly discriminate AGB variations (R² = 0.03 and R² = 0.18, respectively). The 

variable selection procedure on the FLE model (m4 in supplementary Table 5-5) retained the following 

variables ranked by order of importance: F-COIA2 (IncMSE: 26.2%), E (25.6%) and L-COIA2 (24.8%). The 

final AGB prediction model (m4* in supplementary Table 5-5) led to an R² = 0.59 with a rRMSE of about 

21% and site level errors (MSD) below 2% (Figure 5-4).  

 

 

 

 

 

 

 

 

Figure 5-4. Multi-site AGB prediction model over 49 1-ha plots in central Africa, based on both FOTO-texture and 
Lacunarity-texture indices to which we added the bioclimatic stress variable E as a proxy of potential canopy 
height (FLE-model). 

 

5.4 Discussion 

Over the past decade, about two dozen studies successfully used canopy texture analysis applied on 

VHSR optical or LiDAR CHM data to uncover spatial gradients in forest structure and AGB, including in 

high-biomass tropical forests (e.g. Couteron et al., 2005; Frazer et al., 2005; Malhi and Román-Cuesta, 

2008; Proisy et al., 2007). These studies were however limited to relatively small geographical areas 

and often retrieved structure gradients within a single, homogeneous forest type. The few attempts 

made in mosaics of heterogeneous forest patches (e.g. Bastin et al., 2014; Singh et al., 2014) have 

shown that the information carried by canopy texture depends on forest type, hindering broad-scale 

applications of texture-based methods. Using 279 1-ha plots distributed among different forest types 

across the tropics, we evaluated whether a generalized biomass prediction model based on canopy 

texture indices could provide consistent predictions at both local and global scales. The results 

presented here based on virtual canopy images show that it is worth complementing FOTO with 

lacunarity texture indices capturing canopy features related to canopy openness. Introducing a 

bioclimatic stress variable that captured regional variation in potential canopy height also substantially 

improved the accuracy and precision of forest AGB retrievals among forest sites. A practical application 
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of the method to a mosaic of real canopy images in the Congo basin showed that forest AGB inferences 

could be made with high precision (i.e. c. 20% of error) up to 600 Mg.ha-1, i.e. without saturation. 

5.4.1 Contrasted canopy texture - stand AGB relationships among sites 

Global models based only on FOTO or lacunarity texture indices (F- and L-model, respectively) 

significantly explained AGB variations but presented a relatively high uncertainty (rRMSE = 30-40%), 

consistent with what other studies have reported for heterogeneous forest landscapes (e.g. Bastin et 

al. 2014). To circumvent the problem and improve AGB inferences, previous empirical studies typically 

used a forest type stratification step prior to the calibration of within-class texture–AGB models, 

suggesting that the relationship is dependent on forest type (Bastin et al., 2014; Singh et al., 2014). We 

indeed found that forest plots from different geographical sites were often clustered along the texture 

gradients, generating systematic biases, and that texture indices did not always correlate with the 

same stand structure parameters in different sites. 

The relationship between FOTO-texture indices and forest AGB is expected to hold well for periodic 

canopy patterns with homogeneous grain size (Proisy et al., 2007). In this ideal case, Fourier r-spectra 

peak at the scale of the mean crown size of canopy trees (Barbier et al., 2010). Because crown size is 

allometrically related to tree AGB (Jucker et al., 2016; Ploton et al., 2016) and that the 20 biggest trees 

in 1-ha stands capture c. 85% of whole stands AGB variability in tropical forests (Bastin et al., 2015), 

FOTO texture accurately predicts forest stand AGB. This is for instance the case along the successional 

development pathway of mangrove tree cohorts (Proisy et al., 2007) but can also apply to mixed-

forests where the coarseness-fineness canopy texture gradient reflects difference in mature tree 

statures (e.g. due to contrasting soil fertility, Couteron et al., 2005) or forest biomass gradients. At 

Paracou study site for instance, a good linear correlation (r = -0.88) exists between tree density (N) and 

the mean quadratic diameter (DBHmean) suggesting that sample plots align along a self-thinning 

trajectory (see also Vincent et al., 2012). Our simulation procedure based on simple allometric 

relationships thus produced fully-stocked virtual canopy images often displaying a periodic aspect (see 

Figure 5-1) and for which a local F-model (i.e. based on FOTO texture only) provided very accurate AGB 

predictions (rRMSE = c. 10%, results not shown). However, when the forest enters the gap phase 

dynamics (Withmore, 1975), stand structure becomes heterogeneous in both the horizontal and 

vertical dimensions, leading to higher canopy roughness, more frequent canopy gaps alternating with 

clusters of large trees (e.g. Franklin et al., 2002; Guariguata and Ostertag, 2001; Spies, 1998). In 

Uppangala for instance, where N and DBHmean did not correlate over the sampling plots (r = -0.09), 

simulated canopy images were highly heterogeneous (see Figure 5-1), and a local L-model (i.e. based 

on lacunarity texture only) produced more accurate AGB predictions (rRMSE< 10% vs. c. 20% with a 

local F-model, results not shown). Other studies confirmed that lacunarity is an efficient method to 

reveal canopy openness and heterogeneity gradients (e.g. Frazer et al., 2005; Malhi and Román-

Cuesta, 2008). It is therefore easy to understand that combining both types of texture indices largely 

improved our multi-site prediction model (FL-model) at both the local and multi-site levels.   

At the global scale however, variation in canopy height (Fayad et al., 2016; Saatchi et al., 2011) and 

tree slenderness (Feldpausch et al., 2012), which proved critical for accurate AGB estimations (Chave 

et al., 2014), cannot be directly  accounted for by a 2D analysis of canopy texture, whatever the 

method. Along a local forest successional gradient, canopy height variations follow increment in tree 

size visible from above through the mean crown sizes. But, the maximal height reachable by dominant 

trees is known to generally reveal the  growth potential of a forest in relation to soil and regional 
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bioclimatic constraints, in particular with regard to water stress (Chave et al., 2014). Introducing the E 

bioclimatic variable, which combines water deficit with temperature and precipitation seasonality (see 

Chave et al., 2014) improved goodness of fit of our global regression model (FLE-model) and 

significantly reduced local prediction errors.  

On the set of real images from the Congo basin forest mosaic, the generalized texture-based model 

was able to detect spatial variations in AGB within a tropical forest mosaic characterized by both high 

AGB levels and forest types showing important variations in stand 3D structure, from closed-canopy 

mixed-species mature stands to open-canopy Marantaceae forests. We have also shown here that the 

multi-site FLE-model was the most robust with uncertainty of about 62 Mg.ha-1 at 1-ha scale (RMSE) 

corresponding to a relative error of 21% (rRMSE). For such high-biomass forests, where the averaged 

sampled plots AGB exceeds 350 Mg.ha-1 (i.e. 359±98), error levels reported here are only slightly higher 

than those obtained from small-footprint airborne LiDAR (Zolkos et al., 2013). This result confirms and 

expands the results previously obtained with a variety of satellite sensors (Quickbird, GeoEye, IKONOS, 

SPOT-5), aerial images and even images freely available from the Google Earth engine (Bastin et al., 

2014; Meng et al., 2016; Ploton et al., 2012; Proisy et al., 2007; Singh et al., 2015, 2014) in temperate 

or tropical forests. This represents an important step toward using VHSR optical imagery for broad-

scale assessments of forest AGB, as it eliminates the need of a preliminary forest classification (see for 

instance Pargal et al., submitted). Recent progress also opened the perspective to perform texture 

analysis on inter-calibrated satellite images from various sensors and/or in various configurations, 

provided they partly overlap (Barbier and Couteron, 2015). 

5.4.2 On 3D stand mockups and virtual canopy images for model calibration 

Our stand modelling approach follows previously published studies on image texture simulations, 

notably Barbier et al. (2012, 2010), Barbier and Couteron (2015) and Proisy et al. (2016). At the scale 

of 1-ha forest plots, the size distribution of large objects within the scene (individual and aggregated 

tree crowns) and their spatial arrangements (e.g. inter-crown gaps and associated shadows, variations 

in tree density and size between subplots, etc.) are crucial determinants of spatial variations of the 

apparent reflectance. Using a unique, simplified tree shape representation (i.e. cylindrical trunks and 

non-plastic, ellipsoid crowns) allows generating sufficiently realistic brightness variation patterns at 

those coarse scales for the interpretation of canopy texture gradients. For instance, Proisy et al. (2016) 

showed that this approach allows producing texture r-spectra that have similar frequency peaks than 

real ones over a wide range of mangrove successional stages. In the present study, a particular care 

was taken to develop local tree size allometries and integrate field information on the spatial positions 

of trees within stands, to mimic as well as possible the coarse-scale heterogeneity observed in real 

field plots. This proved to be efficient to add consistent texture information related to the alternation 

between patches of tree crowns and canopy gaps captured in high lacunarity values. However, our 

stand simulation procedure could still be improved by accounting for crown plasticity (like for instance 

in Boudon and Le Moguédec, 2007) or for between-species variations in trees inner-crown properties, 

either geometric (e.g. foliage clumping and porosity, leaf angle distribution) or optical (Schneider et 

al., 2014) that may influence grayscale variations at very small spatial scale. Considering these different 

aspects is a long term research effort, and will likely benefit from technological advances in LiDAR 

scanning and unmanned aerial vehicles (e.g. Morton and Cook, 2016). We suspect lacunarity analysis 

to be more sensitive than FOTO to these geometric and optical parameters, making lacunarity a more 

relevant complement to FOTO when analyzing simulated images than when analyzing real images. 
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An invaluable advantage of virtual canopy images is that they can be simulated in homogeneous 

acquisition configurations on the basis of field data from different sites and regions. Texture indeed 

quantifies pattern characteristics related to the contrasts between sunlit and shadowed surfaces and 

is thus highly sensitive to the sun to sensor and scene angles (Barbier et al. 2011). Even if inter-

calibration procedures can help, particular configurations (e.g. backward scattering modes, near 

hotspot directions) are intrinsically detrimental to canopy texture analysis and fatal to large-scale 

applications over a mosaic of several images (Barbier and Couteron, 2015). On another hand, 

programming image acquisition in controlled configurations, though possible, remains difficult, 

sometimes costly and often very long, particularly over tropical zones where optical images frequently 

suffer atmospheric pollutions related to dense cloud cover or persistent nebulosity. Another pitfall of 

the detection of texture gradients through ordination is that the principal axes extracted from the data 

are highly dependent on available samples and particular image sets may not reflect the entire possible 

gradients of forest structure and canopy texture variations. In our example sites for instance, it clearly 

appears that when the texture gradient is short, as was the case in Paracou, the texture-structure 

relationship (as measured by R²) was not as strong as it was in areas covering a more extended gradient 

(as in Uppangala). Simulated images thus allowed us to place all plots and sites along a large gradient 

of canopy texture in order to stabilize the PCA axes and thus to increase robustness of the texture-

structure relationship, making it more universal than when fitted within sites. We therefore call for the 

collaborative construction of a pantropical database of 3D forest mockups, that could be incremented 

from plot data and local allometries in order to document all the particular situations encountered in 

tropical forests. These mockups could then be processed with DART in homogeneous acquisition 

conditions to produce arrays of canopy images of sufficient generality. The relevant simulated spectral 

bands could finally be assembled according to the specific characteristics of any of the VHSR sensor 

from which it could appear realistic to gather a very large array of real world, homogeneous images as 

to perform global scale canopy texture analysis. This would be a way to consolidate the reference 

gradients in canopy texture that emerged from our simulation results as to benchmark real 

observations, i.e. for canopy texture analyses performed from real canopy images. This perspective is 

a straightforward extension of the approach we introduced in the present paper, that would lead us 

towards a tentative robust operational texture-structure relationship from which accurate 

assessments of tropical forests AGB and carbon stocks could be produced.  
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5.6 Appendix 

 

Table 5-3. Distribution of forest inventory data among sampling sites. Tree dimensions collected in field plots include the diameter at breast height (D), tree height (H), trunk 
height (Ht) and crown diameter (Cd). 

Source Country Site Plot (ha) 
Tree dimensions Taxonomic  identification (in %) 

D  H Ht Cd Species Genus Family unidentified 

Bastin et al. (2014) Congo Malebo 28 10092 10092 0 0 96,5 3,5 0 0 

Unpublished (IRD-AMAP/ENS) Cameroon Deng-Deng 15 7847 343 342 42 62,1 17 17 3,9 

Unpublished (CIRAD) French Guyana Paracou 85 53685 2191 1667 1740 85,3 0 0 14,7 

CTFS - Chuyong et al. (2004) Cameroon Korup 50 24590 0 0 0 95,8 4 0,2 0 

Unpublished (IRD-AMAP/ENS) Cameroon Djomedjo 10 4959 505 504 186 65,4 14,4 17,7 2,5 

Unpublished (IRD-AMAP/ENS) Cameroon Lomié  8 3571 539 128 0 75,5 7,7 11,1 5,7 

Unpublished (IRD-AMAP/ENS) Cameroon Mabounié 12 4475 592 525 113 53,4 19,2 24,4 3 

Unpublished (IRD-AMAP/ENS) Cameroon Mindourou I 11 5163 908 559 306 61,6 16,8 15,1 6,5 

Unpublished (IRD-AMAP/ENS) Cameroon Mindourou II  12 5598 920 667 233 56,4 26,2 11,7 5,7 

Unpublished (IRD-AMAP/ENS) Cameroon Ngoila 6 2611 126 161 0 69,6 18,5 6,1 5,8 

Unpublished (IRD-AMAP/ENS) Cameroon Nemeyong 5 2824 260 227 90 65,6 17,2 14,6 2,7 

Ploton et al. (2012) India Uppangala 15 8220 1729 1722 1728 0 0 0 1001 

Pargal et al. (submitted) India Yellapur 22 9156 5032 0 0 97,8 0,4 0 1,8 
 

1 AGB values at Uppangala were computed using the average wood density of four 1-ha plots in the area (from Jeyakumar et al., in press) 
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Table 5-4. Importance of predictors (ie. IncMSE, in %) in RF regression models calibrated on simulated canopy 
scenes. Model m1 is based on FOTO-texture, m2 on Lacunarity-texture, m3 on FOTO- and Lacunarity-texture, m4 
all textural indices and the bioclimatic variable E. F-PCA1 and F-PCA2 represent the 2 FOTO-texture indices. L-
PCA1 and L-PCA2 represent the 2 Lacunarity-texture indices.  

Model F-PCA1 F-PCA2 L-PCA1 L-PCA2 E 

m1 111.99 106.32    
m2     86.71 78.58   

m3 46.19 95.04  61.17 42.68   

m4 45.17 45.82 52.40 36.67 73.43 

m4*   65.77 151.83  103.88 
  

“*” indicates that the model went through the variables selection procedure 

 

 

Table 5-5. Importance of predictors (ie. IncMSE, in %) in RF regression models calibrated on real satellite images. 
Model m1 is based on FOTO-texture, m2 on Lacunarity-texture, m3 on FOTO- and Lacunarity-texture, m4 all 
textural indices and the bioclimatic variable E. F-PCA1 and F-PCA2 represent the 2 FOTO-texture indices. L-PCA1 
and L-PCA2 represent the 2 Lacunarity-texture indices.  

Model F-PCA1 F-PCA2 L-PCA1 L-PCA2 E 

m4 10.45 20.32 10.38 21.22 17.69 

m4*   26.23  24.77 25.75 
 

 “*” indicates that the model went through the variables selection procedure
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6 GENERAL DISCUSSION 
In this chapter, I discuss the main findings, limits and perspectives of this thesis with respect to the 

general thesis objective, which was to improve AGB estimations from field data (tree- and plot-level) 

and RS data (landscape-level) using information on large trees structure, distribution and spatial 

organization.  

6.1 Estimation of forest AGB from field data 

Field-derived estimations of AGB in forest sample plots constitute the bed rock of all forest AGB 

monitoring methods (both non-spatial and spatial). Identifying the different sources of error associated 

to those estimations, understanding the mechanisms behind those error sources and attempting to 

mitigate them is of obvious relevance in the frame of the REDD program. In the current thesis, we 

focused on the pantropical AGB model recently published in Chave et al. (2014) (of the form 𝐴𝐺𝐵 =

 𝛼 ∗ (𝜌 ∗ 𝐷2 ∗ 𝐻)𝛽) since this model, as its predecessor (Chave et al., 2005), is being widely employed 

by international carbon scientists and managers. Chave et al. (2014) observed a systematic under-

estimation of AGB for large trees (≥ 30 Mg) with this model, which is an important drawback since 

large trees compose most of stand-level AGB stocks (Bastin et al., 2015), drive spatial AGB variations 

(Slik et al., 2013) and dominate stand-level AGB growth (Stephenson et al., 2014). A central objective 

of the current work was to better understand the origin of this error, its consequences on forest stand 

AGB estimations, and to propose a way to mitigate this error. To that end, we assembled a large set of 

destructive data (i.e. measurements of trees dimensions and destructive estimates of trees AGB), in 

which most of the largest trees came from our own field work, and studied whether the error pattern 

of the pantropical model was related to variation in tree structure / morphology (i.e., with respect to 

crown dimensions and crown contribution to tree AGB).  Current allometric theories, in particular the 

Metabolic Theory of Ecology (MTE), derive constant scaling exponent (𝛽) of tree AGB with D and H 

(hence D²H), at the cost of several simplifying assumptions made on the structure and topology of 

trees branching network. Attempting to get further insights into what might cause the systematic error 

on large trees in the pantropical model, we empirically assessed MTE’s set of simplifying assumptions, 

which has not been done so far on large tropical trees and therefore constitute an original contribution 

of this thesis. Last, the pantropical model error was propagated at the plot-level in tropical forests of 

contrasted structure and composition, providing practical insights for model users. Overall, chapters 2 

and 3 shed some light on the limits of the current pantropical model (and model form) and identify 

potential improvement avenues.  

6.1.1 Driver(s) of pantropical model bias on large trees 

The pantropical model form is based on simple geometric arguments: tree mass is wood density (ρ) 

multiplied by tree volume, and tree volume can be approximated by the volume of a simple geometric 

solid i.e. D²H (Chave et al., 2005), leading to eq. 1. In equation 1, F is the whole-tree “form factor” 

(Cannel et al. 1984) which defines the taper of the geometric shape (e.g. from a cylinder to a cone). 

When equation 1 is adjusted to the data, we set a constant form factor to all trees. In practice, equation 

2 is preferred (with ≠ 1) because it provides a better statistical fit (Chave et al., 2005).   

𝐴𝐺𝐵 =  𝐹 ∗ 𝜌 ∗ (𝐷² ∗ 𝐻)        (eq. 1) 
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𝐴𝐺𝐵 =  𝛼 ∗ (𝜌 ∗ 𝐷2 ∗ 𝐻)𝛽         (eq. 2) 

In equation 2, the relationship between tree mass and the compound predictor variable is not 

proportional i.e. we set a 𝛽% increase of tree mass per 1% increase of 𝜌 ∗ 𝐷2 ∗ 𝐻, which can be 

interpreted as a monotonic change of tree form as the tree change in mass. An important finding of 

this thesis (chapter 2) is that the distribution of tree mass between trunk and crown is neither constant, 

nor does it show a monotonic change along the tree mass gradient. This is particularly important 

because the crown mass ratio (i.e. the proportion of tree aboveground mass in the crown) influences 

the whole-tree form factor (Cannel et al. 1984). In our dataset (which includes most of the largest trees 

used in Chave et al. 2014), the crown mass ratio was nearly constant up to a tree mass threshold of 10 

Mg, then sharply increased with tree mass. Analyses in chapter 2 demonstrated that this non-linear 

change in tree structure (i.e. shift in crown mass proportion after 10 Mg) is not capture by the 

pantropical model and is responsible for the prediction bias observed on large trees. This finding 

therefore leads us to a new question: is the observed change in tree structure a systematic, 

biologically meaningful pattern, or is it a sampling artifact? In the former case, improving AGB 

predictions accuracy on large trees would require modifying the form of the pantropical model. We 

investigated alternative model forms and made a proposition along this line in chapter 2. In the latter 

case, the prediction bias that we observe on large trees holds to a peculiarity in the structure of those 

(sampled) trees and would decrease or disappear when the model is applied to a larger (more 

representative) set of large trees.   

The hypothesis of a sampling bias has been mentioned by Chave et al. (2014), whom rightfully argued 

that a “majestic tree sampling bias” may occur, where scientists would preferentially select well-

conformed trees. The authors further noticed that most of the largest trees in their dataset were 

selected in the frame of commercial logging activities (referring to the field work of this thesis), hence 

those trees must have been particularly well-conformed. I would like to point out that the trees 

collected in this thesis follow, but do not particularly steer the bias pattern observed in the pantropical 

model (Figure 6-1). In our analyses, the increase of crown mass proportion among large trees was 

indeed observed in all sampling sites (Figure 2-1) and was not a peculiarity of our Cameroonian dataset. 

Confirming or ruling out the sampling bias hypothesis requires sampling more large trees (≥ 10 Mg), 

which remain dramatically under-represented in the pantropical destructive dataset (c. 3%). 

Ultimately, this would improve our knowledge of and ability to model pantropical trees biomass 

allometry, and should therefore be a priority of future field campaigns. In this regard, methods to 

extract tree volume and biomass from non-destructive terrestrial LiDAR scans are rapidly developing 

(e.g. Calders et al., 2015; Hackenberg et al., 2014; Raumonen et al., 2013) and may soon revolutionize 

tree AGB modelling strategies by considerably increasing the size and spatial representativity of tree 

biomass reference datasets.        

In thesis chapter 2, we hypothesized that the greater proportion of crown mass in large trees could 

reflect an ontogenetic pattern associated to the process of tree crown metamorphosis. This 

hypothesis goes against the MTE which, at the exception of size-dependent scaling between tree 

diameter and length from seedling to sapling stages, predicts constant scaling exponents between tree 

dimensions (and biomass) along tree ontogeny (Enquist et al., 2007; Niklas and Spatz, 2004). Yet, 

several studies have documented changes in crown shape and allometric scaling with tree size among 

trees > 10 cm D (e.g. Antin et al., 2013; Poorter et al., 2003; Smith et al., 2014). A well-documented 

size-dependent change in crown allometric scaling is known as “crown liberation” (Cusset, 1980): upon 
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attaining the canopy, a typical tree decreases resources investment in height growth at the benefit of 

lateral crown expansion, which can be interpreted as a strategy to enhance light capture (hence 

maximize growth, Poorter et al., 2006) and/or shade and out-competed smaller neighbors (Sterck and 

Bongers, 2001). Although ontogenetic shifts in allometric scaling of external crown dimensions (i.e. 

crown diameter, depth) cannot be directly interpreted in terms of biomass, it is reasonable to think 

that associated changes in inner crown structure (crown “metamorphosis” or “edification” through 

reiteration, Hallé et al., 1978; Oldeman, 1974), changes in biomechanical constraints once the tree 

reaches the upper canopy (notably due to wind exposure) and increased carbon allocation to 

supporting tissues (Loehle, 2016) may modify whole-tree biomass scaling. None of these parameters 

are included in the MTE, which – for example – implicitly assumes a constant access to light throughout 

tree ontogeny. 

Another hypothesis that has not been evocated in chapter 2 is that the crown mass ratio is dependent 

of species traits, notably adult stature. Variation in tree allometric relationships with adult stature have 

been widely documented (e.g. Antin et al., 2013; Bohlman and O’Brien, 2006; King, 1996; Sterck and 

Bongers, 2001; Yang et al., 2015). In the destructive dataset, the increase of crown mass ratio above 

10 Mg is driven by a few canopy and emergent tree species (i.e. capable of producing individuals > 10 

Mg). Destructive data recently made available on the tallest African tree species (Entandrophragma 

excelsum) confirm this trend with large E. excelsum individuals having high crown mass ratio (c. 80 % 

for the largest sampled tree, Hemp et al., 2016) and following the bias pattern of the pantropical model 

(star symbol in Figure 6-1). However, whether there is a non-linear, ontogenic increase of crown mass 

ratio among large-stature species remain unclear. On Triplochiton scleroxylon for instance, a canopy 

tree species for which enough individuals have been sampled so to look at species-specific trend in the 

destructive database (i.e. 22 individuals from c. 6 to c. 47 Mg), we did not find any significant breaking-

point of crown mass ratio along tree mass. This could indicate that the non-linear increase of crown 

mass ratio with tree mass applies when all species are pooled, but pooling species may mask species-

level patterns that are not necessarily non-linear. Under this hypothesis, it might be more efficient to 

calibrate the pantropical model per group of species (e.g. based on adult stature) rather than changing 

the model form.  

Besides adult stature, considering species branching patterns might also be relevant to improve 

pantropical biomass scaling relationships. In chapter 3, we found different scaling relationships 

between daughter branches cross sections and parent branch cross-section (i.e. area ratio) among 

species exhibiting different level of apical dominance (or frequency of branch segments along a central, 

“principal” axis within the crown). Systematic differences in area ratio would, all else being equal, 

impact species biomass scaling. Apical dominance is usually associated to species growth strategy (fast 

growing pioneer-like vs slow-growing shade-tolerant species), as it favor faster height growth, 

influence the overall crown shape (multi-layered vs mono-layered, respectively) and its efficiency at 

gathering light in different conditions (bright vs shaded environments, respectively) (Horn, 2000, 

1971). Among tree species studied in chapter 3, the pioneer to shade tolerant-like gradient that could 

be established from species apical dominance was well supported by species-level wood density, with 

a decreasing trend of wood density with increasing apical dominance (i.e. toward fast-growing, cheap-

wooded species). It is therefore possible that a species classification based on growth strategies along 

the sun-shade gradient would capture different patterns of branch organization and associated 

biomass scaling relationships. Documenting tropical tree species growth strategies and structural 

development patterns represents a considerable amount of field work, but methodological 
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development on terrestrial LiDAR technology should soon allow to automatically extract and analyze 

detailed tree-level information from entire forest stands. It should therefore be possible to document 

standardized branching pattern-traits for a large number of species and build a global, operational 

database, much like what have been done with species wood density (Zanne et al., 2009) and multiple 

other plant morphological characteristics (such as TRY or Cofortraits databases, Bénédet et al., 2014; 

Kattge et al., 2011). In contrast, it should already be possible to attribute an adult stature group to 

most tropical tree species based on maximum species D or H observed in forest inventory datasets.   

 

 

  

 

 

 

 

 

 

 

 

Figure 6-1. Field-derived AGB vs AGB predicted from the pantropical model of Chave et. al (2014). Circles 
represent the trees of Chave et al. (2014) destructive database, with the red color highlighting the trees sampled 
in the frame of this thesis. Stars represent Entandrophragma excelsum individuals sampled by Hemp et al. (2016).  

 

6.1.2 The influence of forest structure on plot-level AGB modelling error  

The interaction between forest structure and AGB model error may influence the estimation of 

average forest stratum carbon density. If forests in a given stratum are essentially composed of small 

trees and that the AGB model over-estimate the biomass of those trees (as it is the case with the 

pantropical model), the average carbon density assigned to the stratum may be biased upward. 

Inversely, a stratum of old growth, undisturbed forest dominated by large trees may be attributed a 

carbon density that is biased downward. We investigated this issue in chapter 2, by propagating the 

pantropical model bias on forest plots established in diverse forest types in the Congo basin. Across all 

plots (which could correspond to the broad “African tropical rainforest” stratum of the Tier 1 IPCC 

approach), the median bias was low, of the order of c. +5%. Using a more refined forest stratification 

(as recommended in the Tier 2 approach), biases on average forest strata estimates are likely to remain 

low for at least two reasons. First, in absence of very large trees (such as in regrowth forests, degraded 

forests, or mature forests with light-wooded canopy species), the upward bias limit does not depart 

much from c. +5% at 1 ha scale (i.e. c. +7.5%, Figure 2-8 B). Second, in forest types containing very 
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large trees (such as the Atlantic evergreen forests of western Cameroon), forest patches that are 

mostly composed of very large trees are quiet rare (only 2 out of 130 1-ha plots in our dataset 

underwent an under-estimation bias higher than -10%, Figure 2-8 B) and, therefore, should not have 

much influence on average forest stratum carbon density. Our analyses therefore suggested that the 

pantropical model bias should have relatively little impact on the estimation of forests carbon stock 

(and stock change) derived from non-spatial monitoring methods (i.e. based on average carbon density 

per forest strata). While non-spatial methods may provide an accurate estimation of forests carbon 

stock at relatively large scales (e.g. national, regional), it is likely that spatially-explicit methods will 

play a prominent role for forest monitoring in the near future, because of the much greater potential 

of such methods to lower estimations uncertainties (and that at all spatial scales). Contrary to non-

spatial methods, spatially explicit carbon mapping methods (e.g. based on remote-sensing data) rely 

on individual plot-level AGB estimations for signal calibration and should therefore be impacted by 

plot-level bias. It is easily conceivable that a structure-dependent bias in calibration data would have 

deleterious effects on our appraisal of a remote-sensing signal ability to discriminate AGB variations 

(notably when the signal is directly linked to forest structure characteristics, such as crown size 

repetitions or forest height), and eventually lead to an underestimation of remote-sensing signal error 

and to a loss of prediction accuracy. On our dataset, the spread of biases at 1 ha scale was far from 

being negligible (i.e. -15% to +7.7%) and increase when plot sized decreased (e.g. c. -20% to +10% at 

0.25 ha scale), indicating that aerial LiDAR studies (which often use field plots ≤ 0.3 ha, e.g. Asner and 

Mascaro, 2014) might be particularly sensitive to this issue. If the bias of the pantropical model does 

not emerge from a sampling artifact (as discussed in the previous section), it should be included in 

error propagation procedures and, given its impact of plot-level AGB estimations, efforts should be 

made to mitigate it, for instance from complementary field measurements as proposed in chapter 2.  

6.2 The influence of forest structure on the canopy texture – AGB 

relationship 

Part of this thesis dealt with the extrapolation of field-plot AGB via canopy texture features from very 

high spatial resolution optical images. In chapter 4, I presented the Fourier Transform Ordination 

(FOTO) method and gave a brief synthesis of empirical applications that have been made at local scale 

(i.e. over a few hundreds square km) on diverse forest types and regions of the world. A major pitfall 

of the method that emerged from chapter 4 is that the nature and strength of the information carried 

by FOTO texture features on forest stand structure varies across forest types and sites. In other words, 

the structure and spatial organization of trees in a forested area influence the relationship between 

the emerging canopy texture (as described by FOTO) and forest stand structure parameters. In order 

for canopy texture to be a useful source of information on forest carbon content at larger scale than 

that of local case studies, it was necessary to identify and integrate the different factors influencing 

the canopy texture – AGB relationship in the AGB regression model, so to stabilize model predictions 

(i.e. across forest types and sites).  

To that end, I adopted a simulation approach in chapter 5 and investigated how (simulated) canopy 

texture features translated back into stand structure parameters in forests of contrasted structure and 

dynamics across the tropics. Given the purpose of this analysis, using simulated forests and canopy 

scenes was unavoidable, because acquiring real satellite images over multiple sites with a constraint 

on acquisition angles is costly and, in some areas, simply unfeasible due to persistent clouds cover. 

Despite the simplicity of trees 3D geometry in our simulations (symmetric, rounded crowns, notably), 
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this coarse level of realism proved sufficient to reconstruct FOTO canopy texture spectra in mangrove 

forests (Proisy et al., 2016) and get consistent insights into instrumental effects on canopy texture 

(Barbier et al., 2011; Barbier and Couteron, 2015). Among the different sampling sites that we studied 

here, simulated Fourier texture features did not always correlate with the same structure parameters: 

we often observed a good correlation with the mean tree diameter (Dg), but texture features 

correlated with tree density (N) at some sites and with stand basal area (G) at others (results not shown 

in chapter 5), which had consequences for AGB predictions. This instability between FOTO texture 

metrics and stand structure parameters is consistent with past empirical case studies (chapter 4) and 

confirms that the assemblage of simple lollipop-like trees is sufficient to study, at least to some extent, 

the performance and limits of canopy texture-based indices in different ecological contexts, even in 

terra firme forests which are more diverse and structurally complex than mangroves. The “lollipop-

tree” approach however reached its limits at some sites where we observed blatant deviations 

between simulated texture and actual canopy texture in real satellite images. This was particularly the 

case of Paracou’s forests, where individual trees in the highly packed canopy layer were easily 

discernable in simulated canopies but much less so in real images (as canopy volume was entirely filled 

with crowns). Using a rigid, simplified (ellipsoidal) crown representation leads to spatial distributions 

of plant material that are unrealistically clustered (within crowns) and enhances the contrast between 

shadowed and sunlit parts of tree crowns (Schneider et al., 2014), which artificially increases the 

performance of texture-based indices in characterizing tree size distribution. FOTO texture on real 

canopy images of Paracou’s forest is, for instance, much less informative on AGB variations that what 

simulated canopy scenes suggested. Although several simplifying assumptions on tree geometry and 

optical properties will require further attention in our simulation process (such as leaf area density and 

its spatial distribution within stands and tree crowns, leaves angles, etc.), incorporating some plasticity 

in crown shape stood out as the most important step to improve scenes realism.  

When pooling all sites together, our analyses nonetheless showed that even with simplified tree 

crowns shape, FOTO texture indices alone did not accurately capture forest AGB variations (Figure 5-3, 

F-model).  In closed-canopy conditions and when apparent crowns are of fairly homogeneous sizes 

within unit canopy windows, FOTO texture characterizes the “mean” or “dominant” crown size, which 

allometrically relates to Dg (e.g. Blanchard et al., 2016). FOTO texture indeed correlated well with Dg 

variations in past case studies (e.g. Couteron et al., 2005; Ploton et al., 2012) as well as in most sites 

studied in chapter 5. Dynamics of N, Dg and G (which is a strong predictor of AGB) along forest 

development have been generalized in the well-known self-thinning theory (Reineke, 1933), which 

predicts a gradual decrease of N and a concomitant increase of Dg and G as forest ages. The parameters 

of self-thinning trajectories (intercept and slope) vary with tree crown and height allometric 

relationships (Gül et al., 2005; Sterba and Monserud, 1993) which constrain the number of “average 

trees” that can fit into a given area. If multi-specific canopy tree crown allometric relationships are 

relatively stable across tropical forest sites (Blanchard et al., 2016), total forest height and tree height 

allometry show important spatial variation driven by climate and soil (Banin et al., 2012; Chave et al., 

2014; Feldpausch et al., 2012; Ouédraogo et al., 2016), local topography (Yang et al., 2016) and stand 

structure (Molto et al., 2014), notably. It is therefore not surprising that relationships between texture 

features and stand structure varies across sites with local forest dynamics, local allometries and 
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perhaps sampling intensity. At some sites, the slope of the self-thinning trajectory did not deviate 

much from G isoline (see Paracou vs Deng-Deng in Figure 6-2), so FOTO texture correlated well with N 

gradients but variation of G might be more elusive to capture (as in Couteron et al., 2005). In other 

sites, sample plots captured large forest aggradation gradients, even at local scale (as in Deng-Deng, 

Figure 6-2), with little or inconsistent N variation 

with increasing Dg, hence FOTO texture correlated 

well with G and AGB (as in Ploton et al., 2012). It 

follows that FOTO texture alone (or Dg itself) is not 

sufficient to consistently capture the dynamic of 

forest structure when several sites are pulled 

together, and complementary structural predictors 

must be accounted for. A very similar issue occurs 

with LiDAR data as LiDAR-derived forest height is 

only one piece of the AGB puzzle and cannot 

consistently depict AGB variation at large scale, 

unless it is associated to an additional layer of 

information on forest structure, notably on forest G 

(as in Asner et al., 2011). In chapter 5, we associated 

to FOTO texture a bioclimatic stress proxy (E, Chave 

et al., 2014) so to capture inter-site variation in tree 

height allometry in the AGB regression model 

(hence, to some extent, self-thinning lines 

parameters). The E variable largely improve model 

fit at the pantropical scale (i.e. on simulated scenes) but its contribution to the AGB regression model 

naturally decreased at the local scale of our final case study, since the control of climate on tree 

allometry occurs at a macro-scale. Refining the stratification of forest potential height (or site carrying 

capacity) and tree slenderness so to detect variations at smaller spatial scales that what can be 

obtained from climate-related variables is a key research perspective to improve texture-based forest 

AGB mapping. The recent study of Yang et al. (2016) suggested that together with climate and soil, 

topography heterogeneity (at 50-100 km² scale) conveys a large share of information on macro-scale 

variation of tropical forests dominant height. At much smaller spatial scales (over a few tens or 

hundreds of ha), several studies have also shown that terrain heterogeneity increases spatial variability 

of forest AGB (e.g. Réjou-Méchain et al., 2014; Véga et al., 2015), and spatial autocorrelation typically 

found in LiDAR-AGB model residuals is often though to derive from small-scale variation in trees height 

allometry (e.g. Réjou-Méchain et al., 2015), which possibly reflect local terrain conditions (at least to 

some extent). Since topography-related parameters can be computed at 30- or 90-m resolutions from 

a freely available data sources (i.e. SRTM, available from NASA), and that over national, regional or 

even global scale given current computational means, future researches should test whether including 

such type of covariates improves texture-based forest AGB predictions.  

Besides variation in canopy trees allometry, canopy openness / gaps also influence the interplay 

between N, Dg, G and AGB across forest stands (as described in the self-thinning theory when stands 

deviate from asymptotic density). The gap fraction (or proportion of gaps per unit area) have indeed 

shown to be an important parameter to account for when developing  “generalized” (i.e. multi-site) 

forest AGB model form based on aerial LiDAR data (Bouvier et al., 2015). An important pitfall of FOTO 
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texture is that it cannot discriminate between tree crowns and gaps. Besides, forests canopies that are 

too open (such as Maranthaceae forests) and/or heterogeneous in vertical and horizontal structure 

usually display aperiodic canopy grains that are not properly characterized and discriminated by FOTO. 

An important finding of our simulated experiment is that lacunarity analysis of canopy texture, which 

have shown in our study and elsewhere to correlate with canopy openness and heterogeneity (Frazer 

et al., 2005; Malhi and Román-Cuesta, 2008), provides an information that is complementary to FOTO 

texture. Combining FOTO texture and lacunarity texture features indeed largely improved AGB model 

fit across sites (Figure 5-3, FL-model), but also among some sites where FOTO alone led to poor results 

(which was typically the case of aperiodic canopies from Yellapur, results not shown). This last result 

is very encouraging. In some of the forest sites considered in chapter 5, structure parameters of sample 

plots did not clearly represent self-thinning trajectories (as Deng-Deng in Figure 6-2) but rather 

suggested forest landscapes composed of complex mosaics of patches undergoing different dynamics, 

perhaps due to different times since last disturbance, variation in local species composition and/or 

local abiotic conditions. These strong, local variations in forest structural profile (and emerging canopy 

texture) go hand in hand with a high local variability in forest AGB, as observed in other mature tropical 

forests (see for instance Guitet et al., 2015; Réjou-Méchain et al., 2014). When spatial changes in 

canopy texture are not gradual in the landscape (contrary to mangrove forests, Proisy et al., 2007) but 

rather a “salt-and-paper” mosaic of small patches, chances are that canopy texture  intercepted by 1 

ha unit windows display some level of heterogeneity. At the Uppangala site for example, Ploton et al. 

(2012) reported a strong relationship between FOTO texture and AGB (R² of c. 0.78), but we specifically 

targeted the few large forest patches (≥ 4-ha) displaying homogeneous grain size in the area to 

establish calibration plots. This sampling strategy was motivated, at the time, by the will to mitigate 

the effect plots geolocation error on texture-AGB relationship. I suspect however that it hided the 

spurious effect of canopy heterogeneity on FOTO texture-AGB, and that the actual predictive accuracy 

of the published model over the (heterogeneous) local forest mosaic is substantially lower than what 

calibration fit metrics indicated. A similar issue occurs at several locations of south-eastern Cameroon 

where the high heterogeneity of forests structure and texture at small spatial scales did not enable us 

so far to find a significant relationship between FOTO texture features and stand AGB (pers. com. with 

Dr. N. Barbier), which is in line with our final case studies of chapter 5 (i.e. when FOTO texture alone 

was used). Although validating the added-value of the FOTO-lacunarity combination over the 

traditional FOTO method will require multiple empirical assessments, the case study that we 

performed confirmed the potential of the approach, as field plots AGB estimates were inferred with 

reasonable accuracy and precision. If the approach proves relevant, an obvious step to take on would 

be to propagate field plots AGB error into the texture-based model. 

Over the past 15 years, canopy texture analysis from very high resolution (VHR) optical data have 

demonstrated its ability to retrieve quantitative information on forest structure and AGB at local scale, 

from various satellite sensors (Quickbird, GeoEye, IKONOS, SPOT-5) and aerial images (e.g. Bastin et 

al., 2014; Ploton et al., 2012; Singh et al., 2015, 2014). In the study undertook in chapter 5, we clarified 

some of the discrepancies observed between texture features and stand structure in past case studies, 

and showed that it should be possible to develop a sounded, steady AGB inversion frame for broad 

scale forest assessments. The recent launch of SPOT 6 and 7 (providing images up to 60 * 600 km in 

stable configuration), the rapid deployment of cubesat constellations (suggesting that near-real time 

VHR monitoring of Earth is not too far off, Marvin et al., 2016), the progress being made on 

simultaneous texture analysis of multiple images (Barbier et al., 2011; Barbier and Couteron, 2015), 
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indicate that texture features from VHR imagery could play a key role in the REDD monitoring program. 

Beyond the refinement of forest emission factors, producing fine resolution biomass maps at large 

scale would help us improve our understanding of topical forest biomass variation and the relative 

contribution of climate, soil, topography and disturbances at various scales.  

 

6.3 Key thesis findings 

The main results obtained in the present thesis are the following: 

• The negative prediction bias of the pantropical tree biomass model on large trees pertains to 

a systematic change in tree form with tree size: the contribution of crown to total tree mass 

sharply increased on sampled trees ≥ 10 Mg (chapter 2) ; 

• Accounting for proxies of crown dimensions (diameter, depth) allowed building an unbiased 

generic tree biomass model, but it did not substantially increase model precision (chapter 2). 

• Species with contrasted patterns of branch organization exhibited different scaling ; 

relationships in crown structure (paper 3) ; this suggests that a classification based on how 

species fill-in the 3D crown volume – in light of species growth strategies for example – may 

be used to improve the precision of tree generic biomass models ;   

• The bias of the pantropical tree biomass model propagates a systematic error at the plot level 

that varies with stand structure (from c. -15 % to c. +8 % of mean plot biomass on our network 

of 1-ha plots in central Africa) and increases as plot size decreases (up to c. -25 % for 0.1 

subplots) (chapter 2) ; this error source (i.e. interaction between model error and stand 

structure) is overlooked in published error propagation procedures ; 

• Canopy textural properties from very high resolution optical images can be used to extrapolate 

forest plot biomass estimations, but a simple simulation procedure showed that the nature 

and strength of texture – biomass relationship varies between forest sites, in agreement with 

previous empirical findings (chapter 4) ; 

• Based on simulations of a large set of tropical forest plots, our analyses showed that (chapter 

5) : 

o While Fourier analysis of forest canopy images do not capture canopy openness, 

lacunarity analysis does. Combining both types of analyses provided a more 

comprehensive picture of forest structure, hence improved biomass predictions ; 

o Accounting for a bioclimatic proxy of forest height, which cannot be retrieved from 2D 

analyses of forest canopy images, further improved biomass model predictions ; 

• While the classical Fourier-based analysis failed to predict forest biomass variations on a 

mosaic of high-biomass forests in central Africa, our generalized biomass model gave an R² of 

c. 0.6 and a RMSE of c. 62 Mg.ha-1 (chapter 5), suggesting that broad-scale monitoring of 

tropical forests biomass from very-high resolution images may not be too far off.      
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Introduction 
 

L’inquiétude grandissante autour des effets du changement climatique global a mené à l’émergence de 

politiques internationales visant à suivre et à gérer durablement les stocks de carbone séquestrés par la 

végétation terrestre, et en particulier par les forêts tropicales (REDD+). La déforestation et la dégradation 

de ces forêts associées au développement économique des pays sont en effet considérées comme étant 

la deuxième source la plus importante d’émission de dioxyde de carbone d’origine anthropique de ces 

dernières décennies. L’initiative REDD+ repose en partie sur notre capacité à quantifier avec exactitude 

et précision les stocks de carbone forestier à diverses échelles spatiales (ex. province, pays, bassin 

forestier), et ce de façon répétée (suivi temporel), ce qui constitue un chalenge scientifique et technique 

majeur. Une approche classique consiste à cartographier le carbone forestier, ou la biomasse forestière 

épigée (AGB, un proxy fréquemment utilisé), en extrapolant des estimations d’AGB locales (i.e. réalisées 

au sein de parcelles d’inventaire, étape 1) au moyen de données de télédétection (étape 2). Ces deux 

étapes impliquent l’utilisation de modèles biophysiques plus ou moins performants dont les erreurs, qui 

ne sont pas totalement connues et maitrisées, se propagent jusqu’aux estimations finales. L’amélioration 

des ces modèles soulève un certain nombre de questions à l’interface entre la biomécanique, 

l’architecture et l’écologie des espèces d’arbre, l’organisation des peuplements forestiers et le traitement 

du signal, notamment.  Dans cette thèse, nous nous sommes intéressés aux deux étapes de la chaine de 

traitement en focalisant notre attention sur les grands arbres de canopée. Cette attention particulière 

nous est apparue pertinente à la fois parce que les grands arbres représentent la majeure partie de la 

biomasse d’un peuplement forestier mais également parce que ces arbres sont visibles sur les images 

satellitaires optiques utilisées dans ce travail.       

Deux objectifs principaux ont guidé notre étude. Le premier était de mieux comprendre la contribution 

des grands arbres à l’erreur d’un modèle pantropical de biomasse populaire au sein de la communauté 

scientifique internationale et de mieux intégrer leurs particularités structurelles dans un nouveau modèle. 

Le deuxième objectif visait à améliorer une méthode d’extrapolation de la biomasse basée sur les 
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propriétés de texture d’images satellites optiques à très haute résolution spatiale par une meilleure prise 

en compte des variations de l’organisation des grands arbres de canopée entre types de forêt.         

L’une des originalités de ce travail tient sans aucun doute au travail de terrain qui a été réalisé. Couper et 

peser des arbres pour développer des modèles de biomasse est un travail notoirement difficile, a fortiori 

quand les arbres sont de grande taille. Dans le cadre de cette thèse, 77 grands arbres de canopée ont été 

pesés, parmi lesquels 17 des 30 plus grands arbres de la base de données pantropicale. J’ai également 

participé à l’établissement de près de 80 parcelles d’inventaire de 1-ha en Afrique centrale au cours des 

années précédent ma thèse et durant ma thèse (Figure 1). Ce travail d’échantillonnage important m’a 

permis d’asseoir mes analyses sur tout un panel de peuplements aux structures et organisations spatiales 

contrastées, que ce soit pour étudier la propagation de l’erreur des modèles allométriques à l’échelle des 

parcelles, ou le potentiel des indices de texture de canopée pour caractériser la biomasse des 

peuplements.   

Une seconde originalité de ce travail vient probablement aussi de l’ancrage des analyses et réflexions dans 

des approches théoriques. Au-delà de l’établissement de modèles de biomasse empiriques, les données 

destructives ont par exemple été utilisées pour tester des hypothèses fondamentales de la Théorie 

Métabolique de l’Ecologie. Le modèle de télédétection visant à inverser la biomasse des peuplements à 

partir des propriétés de texture des canopées a, quant à lui, été développé via une approche de 

représentation simplifiée des arbres et des peuplements, de façon à conduire les analyses dans un cadre 

maitrisé et donner aux résultats une portée assez générale.   

 

 

 

 

 

 

 

Figure 1. Distribution spatiale des jeux de données utilisés. Les points et les triangles représentent les sites 

où des arbres ont été coupés/pesés et les sites où des parcelles d’inventaire ont été établies, 

respectivement. La couleur rouge indique que les données ont été collectées par l’IRD. La couleur bleue 

indique que les données proviennent de la littérature, d’institutions ou de chercheurs partenaires.   

Le manuscrit de thèse est structuré en 6 chapitres incluant : 

1. Une introduction décrivant le contexte général et les enjeux scientifiques. Les objectifs de 

recherche y sont détaillés, ainsi que les jeux de données utilisés et l’organisation du manuscrit.   

2. Une étude de l’influence de la forme des grands arbres, en particulier des dimensions des 

couronnes, sur l’erreur du modèle de biomasse pantropical. Nous quantifions également la 

propagation de l’erreur de ce modèle à l’échelle des parcelles forestières, et proposons un modèle 

alternatif prenant mieux en compte les variations physionomiques des arbres. Ce travail a été 

publié dans le journal Biogeosciences.  
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3. Une étude exploratoire sur les propriétés de structure des couronnes des grands arbres pouvant 

expliquer l’écart entre la biomasse de ces arbres et les prédictions du modèle pantropicale évoqué 

en 2. Une évaluation empirique d’hypothèses de la Théorie Métabolique de l’Ecologie sur la 

structure des couronnes est fournie.  

4. Une synthèse sur les fondements de la méthode FOTO i.e. une méthode visant à décrire les 

gradients de structure et de biomasse des peuplements forestiers sur base des propriétés de 

texture d’images optiques à très haute résolution spatiale. Une synthèse des résultats de cas 

d’étude sur différents types de forêts est donnée et met en exergue le potentiel de l’approche 

mais également ses limites pour la caractérisation de la biomasse à large échelle. Ce chapitre a 

été publié dans le livre Treetops at Risk (Springer).       

5. Une étude présentant un modèle d’inversion de biomasse à large échelle basée sur les propriétés 

de texture des canopées. Une approche par simulation, incluant la production de maquettes 

forestières tridimensionnelles et l’utilisation d’un modèle de transfert radiatif, est utilisée pour 

investiguer le potentiel de métriques de texture complémentaires à celles de FOTO pour palier 

aux limites identifiées en 4. Un modèle de biomasse « généralisé » est proposé. Cette étude est 

en cours de révision dans le journal Remote Sensing of Environment.  

 

Voici un résumé étendu des 5 derniers chapitres. 

 

Chapitre 2. Modèle allométrique pantropical  de biomasse: vers une 

prise en compte des variations de masse dans les couronnes 
 

Dans la mesure où les estimations de biomasses faites dans les parcelles d’inventaires sont à la base des 

chaines de modélisation/cartographie du carbone forestier, il est particulièrement important de bien 

connaitre les erreurs associées à ces estimations et, autant que possible, de les réduire. La biomasse d’une 

parcelle forestière est obtenue en sommant la biomasse des arbres qui la compose. A l’échelle de l’arbre, 

les modèles de biomasses les plus performants combinent le diamètre du tronc, la hauteur de l’arbre et 

la densité du bois. Un modèle de biomasse pantropical, qui combine ces trois prédicteurs, a les faveurs 

des scientifiques et gestionnaires des forêts tropicales depuis plus d’une dizaine d’années, et restera sans 

doute une référence pour les années à venir. Néanmoins, ce modèle présente une sous-estimation 

systématique de la biomasse des grands arbres. Etant donné l’importance des grands arbres dans la 

biomasse d’un peuplement, et leur rôle prépondérant dans les variations spatiales de la biomasse, il est 

crucial de mieux comprendre l’origine et les conséquences du biais du modèle pantropical.  

Dans cette étude, nous avons assemblé des données sur les dimensions et masses de plus de 650 arbres 

provenant de 5 pays tropicaux. Ce jeu de données contient plus de 100 arbres de diamètre à hauteur de 

poitrine supérieur à 100 cm, ce qui est remarquable. Ce jeu de données dit « destructif » a été utilisé pour 

étudier le mécanisme sous-jacent au biais du modèle pantropical, en mettant l’accent sur les variations 

de dimensions et de masses des couronnes le long du gradient de taille d’arbre, ce que le modèle 

pantropical ne prend pas en compte. Nous avons également utilisé 130 parcelles d’inventaires de 1-ha 

distribuées dans des types de forêts contrastées en Afrique centrale pour quantifier l’erreur associée au 
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biais du modèle un fois propagée à l’échelle de la parcelle, ainsi que l’influence de la structure de la forêt 

sur cette erreur.  

Notre analyse montre tout d’abord que la contribution de la couronne à la masse totale de l’arbre varie 

considérablement, de 3 à 88%, chez les arbres étudiés. Cette contribution est constante en moyenne pour 

les arbres de moins de 10 Mg (c. 34% de la masse de l’arbre), mais au-delà de ce seuil, elle augmente 

fortement avec la masse de l’arbre pour atteindre plus de 50% en moyenne chez les arbres ≥ 45 Mg (Figure 

2, haut-gauche).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. (Haut-gauche) Variation du ratio de masse de couronne avec la biomasse totale de 

l’arbre (TAGBobs). (Haut-droit) Erreur relative moyenne sur l’estimation de la biomasse de l’arbre 

(s, en %) du modèle pantropical de référence (gris) et du modèle alternatif développé dans la 

présente étude (blanc). (Bas-gauche) Erreur relative moyenne sur l’estimation de la biomasse 

de parcelles de 1-ha (Splot, en %) du modèle pantropical de référence (points gris) et du modèle 

alternatif développé dans la présente étude (points blancs). (Bas-droit) Evolution de l’erreur 

relative à l’échelle de la parcelle (Splot, en %) avec la taille de la parcelle.  
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Cette augmentation progressive de la proportion de masse de couronne après 10 Mg coïncide avec la 

déviation progressive entre la masse de l’arbre et la prédiction de cette masse par le modèle pantropical 

de référence (Figure 1, haut-droit). Forts de cette observation, nous avons développé un ensemble de 

proxy de masse de couronne sur la base de paramètres dendrométriques disponibles (diamètre du tronc, 

hauteur de l’arbre, densité du bois) ou facilement mesurables sur le terrain (hauteur du tronc). L’inclusion 

du proxy de masse de couronne le plus performant dans un modèle de biomasse décomposant l’arbre en 

deux parties (tronc et couronne) a permis d’obtenir des estimations de masse non-biaisées pour les arbres 

> 1 Mg (Figure 1, haut-droit).  

Nous avons également développé une méthode de propagation d’erreur de l’arbre à la parcelle prenant 

explicitement en compte le biais des modèles de biomasse. Nous montrons que la dépendance entre le 

biais du modèle de référence et la masse des arbres crée une interaction entre la structure du peuplement 

dans la parcelle et l’erreur associée à l’estimation de biomasse de la parcelle. En essence, la biomasse des 

parcelles tend à être sur- ou sous-estimée quand celles-ci sont dominées pars des petits (≤ 10 mg) ou gros 

(> 10 Mg) arbres, respectivement. Nous montrons que la forme du modèle de référence génère un biais 

sur les estimations de biomasse à l’échelle de parcelles de 1-ha variant de -23 à +16% (figure 1, bas-

gauche). Ce biais est largement réduit (0 à 10%) avec le modèle alternatif que nous proposons. 

L’amplitude du biais est également dépendante de la taille de la parcelle, avec des erreurs moyennes plus 

importantes observées dans les parcelles de petites tailles (Figure 1, bas-droit) où un biais d’estimation 

sur quelques gros arbres a relativement plus d’importance sur la biomasse de la parcelle. 

Cette étude met en évidence une source d’erreur systématique sur la biomasse des parcelles qui est loin 

d’être négligeable, et qui n’est généralement pas prise en compte dans la littérature. L’utilisation d’un 

modèle incluant des dimensions de couronne, au moins pour les plus gros arbres au sein des parcelles, 

permet de réduire fortement cette erreur et suggère qu’une amélioration substantielle des estimations 

de biomasse peut être obtenue à coût minimal.   

      

Chapitre 3. Evaluation de la loi de conservation des aires sur de grands 

arbres tropicaux et pistes de regroupement d’espèce pour l’estimation 

de la biomasse  
 

Les allométries observables entre les dimensions des arbres reflètent des contraintes biologiques et 

physiques respectées par tout arbre afin d’éviter la mort (ex. par cavitation, par effondrement) au cours 

de sa croissance. La compréhension des principes généraux qui régissent les formes et fonctions des 

arbres est une thématique de recherche fascinante qui a traditionnellement été abordée par 

l’hydrodynamique et la biomécanique. Il y a une vingtaine d’années, la Théorie Métabolique de l’Ecologie 

(MTE) unifiait ces différentes perspectives et postulait que les allométries émergent d’une optimisation 

évolutive des propriétés de structure et d’hydrodynamique du réseau vasculaire de distribution des 

ressources des organismes biologiques. Cette théorie, comme certaines de ces prédécesseurs (la théorie 

‘Pipe model’, notamment), repose sur un ensemble d’hypothèses décrivant la structure de l’arbre de 

façon simplifiée. Si les fondements et prédictions de la MTE ont été et sont toujours activement débattus, 

relativement peu d’études ont testé les hypothèses faites dans la MTE sur la structure du réseau de 

branches que constitue un arbre. Dans ce chapitre, nous avons testé un ensemble d’hypothèses de la 
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MTE, focalisant notre attention sur la loi de conservation des aires. Cette loi, qui dérive d’observations 

faites par Leonardo Da Vinci il y a plus de 500 ans, postule que la somme des surfaces des sections des 

branches « filles » à un nœud donné est égale à la surface de la section de la branche « mère ». Toutes 

choses égales par ailleurs, cette loi a des conséquences directes sur l’allométrie de biomasse des arbres, 

ce qui justifie en partie notre attention.       

Mettant à profit le jeu de données destructif regroupant 77 grands arbres de canopée au Cameroun, nous 

avons testé la loi de conservation des aires sur des espèces aux architectures contrastées (notamment en 

termes de symétrie du houppier, Figure 3). L’influence de la structure des branches au niveau du nœud 

(nombre et symétrie des branches filles, notamment) a été étudiée.  
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Figure 3. Représentation schématique de différents niveaux d’asymétrie du houppier (colonne 

de gauche), de l’arbre optimal de la MTE (A) à une asymétrie modérée (B) et importante (C). Ces 

niveaux d’asymétrie sont illustrés par des espèces abondantes en Afrique centrale (colonne de 

droite), de haut en bas : l’Okan, l’Ayous et l’Ilomba. 
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Notre analyse montre que contrairement à la prédiction de la loi de conservation des aires, le ratio des 

surfaces des sections des branches filles sur celui de la mère (noté R) est supérieur à 1 en moyenne chez 

les grands arbres tropicaux (c. 1.17). Nous avons mis en évidence l’influence systématique de certains 

paramètres de structure des couronnes sur R, notamment le nombre de branches filles à un nœud donné 

(Figure 4, haut-gauche) et leur symétrie (Figure 4, haut-gauche). 

Ces paramètres de structure étant caractéristiques de l’organisation générale des couronnes de certaines 

espèces, nous mettons en évidence des variations systématiques de R entre espèces (Figure 4, bas).  

   

 

 

 

 

 

 

 

 

 

 

 

Figure 4. (Haut-gauche) Distribution de fréquence des ratios des surfaces des sections des branches filles 

sur celles des mères (R) pour des nœuds à 2 filles (gris clair) et pour ceux à plus de 2 filles (gris foncé). 

(Haut-droite) Effet de l’asymétrie des filles (noté q) sur R. Les nœuds portant une fille dominante, 

verticale, centrale au houppier (notée PA) sont distingués des autres. (Bas-gauche) Somme cumulée des 

surfaces des sections des branches filles en fonction de celle de la mère pour l’Ayous et l’Ilomba. La droite 

d’ajustement du modèle est représentée en gris foncé. (Bas-droit) Somme cumulée des surfaces des 

sections des branches filles en fonction de celle de la mère pour l’Okan. La droite d’ajustement du modèle 

est représentée en gris foncé.         

L’organisation générale des couronnes reflétant, dans une certaine mesure, la stratégie de vie des 

essences (ex. pionnière à croissance rapide vs tolérante à l’ombre à croissance lente), les résultats 

donnent lieu à une discussion sur les possibilités de regroupement des espèces dans les modèles de 

biomasse.   
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Chapitre 4. Analyse des propriétés de texture des canopées sur images à 

très haute résolution spatiale pour la cartographie de la biomasse 

forestière  
 

L’organisation structurelle de la canopée d’une forêt est un descripteur important de la dynamique du 

peuplement et peut fournir des informations pour la cartographie des végétations et la gestion des forêts. 

Dans ce chapitre, je présente une approche relativement nouvelle d’analyse de texture de canopées sur 

images optiques très haute résolution spatiale (THRS). Basée sur une ordination multivariée des spectres 

de Fourier, la méthode FOTO permet de classer les imagettes de canopée (extraites de photographies 

aériennes ou d’image satellitaires à THRS) selon la taille du grain de canopée i.e., une combinaison de la 

taille moyenne et de la densité des couronnes apparentes sur les imagettes. Durant la dernière décennie, 

la méthode a été appliquée à plusieurs types d’écosystèmes forestiers (des mangroves aux forêts denses 

humides de terre ferme), avec plusieurs types d’images (THRS commerciales des satellites IKONOS, 

GeoEye ou Quickbird, images fausses couleurs extraites de la plateforme Google Earth, photographies 

aériennes). Les indices de texture FOTO ont montré un potentiel intéressant pour caractériser certains 

paramètres de structure des peuplements, notamment la biomasse épigée et ce sans saturation évidente 

jusqu’à des niveaux de biomasse élevés (c. 500 Mg.ha-1). La revue des cas d’études laisse également 

apparaitre les limites de l’approche pour son application à large échelle (au-delà de quelques centaines 

de km²), notamment la sensibilité des indices de texture aux conditions d’acquisition des images (ex. angle 

du soleil), aux variations de topographie, ou encore le manque de stabilité des relations entre paramètres 

de structure du peuplement et indices de texture entre types de forêts. Les perspectives de 

développement méthodologique, dont certaines ont donné lieu à plusieurs publications au cours des 

dernières années, sont présentées. L’une d’entre elle est abordée dans le chapitre suivant.  

 

Chapitre 5. Combinaisons d’indices de texture de canopées forestières: 

vers un modèle d’inversion robuste 
 

Afin d’exploiter le plein potentiel des images THSR pour la cartographie à large échelle du carbone des 

forêts tropicales, un enjeu crucial est de stabiliser la relation entre la biomasse des peuplements et les 

métriques extraites des images. Si les indices de texture FOTO ont montré un bon potentiel à échelle 

locale (quelques dizaines à quelques centaines de km²) pour caractériser les variations spatiales de la 

biomasse épigée, les relations AGB – texture diffèrent entre types forestiers. L’analyse conduite dans ce 

chapitre vise à développer un modèle d’inversion générique de l’AGB des forêts tropicales i.e., qui puisse 

être appliqué simultanément à plusieurs types forestiers. Cet enjeu est particulièrement important pour 

pouvoir utiliser la texture de canopée pour décrire les variations de biomasse des forêts d’Afrique 

centrale, en particulier celles des forêts semi-décidues de l’Est Cameroun où le paysage forestier 

s’apparente souvent à une mosaïques de types de forêts aux structures contrastées, enchevêtrées à petite 

échelle spatiale (Figure 5). 
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Figure 5. Image THRS (Geoeye) d’une mosaïque forestière typique des forêts semi-décidues de l’Est 

Cameroun. Sur quelques km², des peuplements monodominants de Gilbertiodendron dewevrei (A) se 

mêlent à des forêts mixtes aux canopées fermées (B) et à des forêts ouvertes à Marantaceae (C). 

L’analyse a reposé sur deux hypothèses principales : 

(1) les indices de texture FOTO ne permettant pas de 

discriminer les trouées (agrégats de pixel sombres) 

des couronnes (agrégats de pixel claires), les 

différences d’abondances et de dynamiques de 

trouées entre sites et types forestiers contribuent à 

l’instabilité de la relation AGB – indices de texture ; 

(2) l’importance de la hauteur de la forêt comme 

prédicteur de la biomasse épigée est bien connue. 

L’information contenue dans les images optiques 2D 

ne permettant pas de caractériser les variations de 

hauteur à moyenne et large échelle (entre sites 

forestiers), l’inclusion d’un proxy pour prendre en 

compte ses variations dans un modèle générique / 

régionale devrait permettre de réduire les biais de 

prédiction entre sites.  

Pour investiguer ces hypothèses, nous avons 

assemblé une base de données de 279 parcelles 

d’inventaires de 1-ha réparties sur trois continents, 

généré des maquettes tridimensionnelles des 

parcelles en utilisant une représentation simplifiée 

des arbres (modèle Allostand) et simulé une image 

optique THRS de chaque maquette à l’aide d’un 

modèle de transfert radiatif (Discrete Anisotropic 

Radiative Transfer model, DART). Cette approche 

0
 

1
0

0
 

2
0

0
 m

 

A B C 

3D MOCKUPS 

CANOPY SCENES 

3D FOREST MODEL 

RADIATIVE TRANSFER MODEL 
                               (DART) 

FIELD INVENTORY 

Figure 6. Chaine de simulation des imagettes 

scènes THSR simulée à partir des données 

d’inventaire.  
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par simulation (illustrée en Figure 6) nous a permis de contrôler l’influence des paramètres d’acquisition 

des images sur la texture de canopée, et ainsi de se focaliser sur l’effet des variations de structure des 

peuplements sur la relation AGB – indices de texture.    

Nos résultats montrent qu’un modèle global (i.e. inter-site) d’inversion de la biomasse  basé sur les seuls 

indices de texture FOTO (noté « F-model » en Figure 7) explique modérément les variations de biomasse 

entre scènes simulées (R²=0.46, erreur relative de c. 30%). Un second modèle basé sur des indices de 

lacunarité (noté « L-model »), une autre forme d’analyse de texture ayant montré une bonne sensibilité 

aux trouées et à l’hétérogénéité verticale de la canopée, explique faiblement les variations de biomasse 

entre scènes (R²=0.31, erreur relative de c. 38%). Néanmoins, la combinaison des deux types d’indices 

(« FL-model ») permet d’améliorer substantiellement l’ajustement du modèle (R²=0.76, erreur relative de 

c. 20%). Ce résultat, en ligne avec la première hypothèse de cette étude, indique que des gradients de 

structure distincts et complémentaires pour la description de la biomasse des forêts peuvent être extraits 

des images THSR en combinant différents types d’analyses de texture. 

Une seconde partie des résultats s’articule autour de l’inclusion d’une variable publiée, notée E, dans le 

modèle FL (menant au modèle « FLE »). Cette variable, construite pour capturer l’effet de diverses 

paramètres bioclimatiques sur l’allométrie hauteur-diamètre des arbres, permet de réaliser un gain 

supplémentaire dans l’ajustement du modèle de texture (R²= 0.88, erreur relative de c. 14%) en 

diminuant, notamment, l’erreur moyenne des prédictions entre sites (Figure 7).     

 

Figure 7. Résultats des modèles d’inversion de biomasse basés sur les indices de texture FOTO (haut-

gauche), les indices de lacunarité (haut-droit), la combinaison des deux types d’indices (bas-droit) 

auxquels nous avons aussi ajouté un proxy de hauteur de canopée E (bas-droit).  
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Enfin, le modèle final (FLE) a été testé sur des données « réelles » : 49 parcelles de 1-ha distribuées sur 

trois images Pléiades couvrant une mosaïque forestière dans l’Est Cameroun. Le modèle a mené à un 

niveau d’erreur (RMSE = 62 Mg.ha-1, erreur relative de c. 21%, Figure 8) seulement légèrement supérieur 

à ceux reportés dans la littérature sur la base de données LiDAR aériennes, en particulier sur les forêts à 

fortes biomasses telles que rencontrées dans la zone d’étude (jusqu’à 600 Mg.ha-1). 

 

 

 

 

 

 

 

 

 

 

Figure 8. Résultats du modèle d’inversion de biomasse (FLE) basé sur 49 parcelles de 1-ha dans l’Est 

Cameroun.  

 

La disponibilité grandissante des images optiques THSR (e.g. issues de constellation de microsatellites) 

suggèrent que des couvertures complètes et fréquentes des forêts tropicales pourraient être disponibles 

dans un futur proche. Cette étude montre que les analyses de texture des canopées pourraient devenir 

un outil essentiel des efforts internationaux pour suivre les émissions de carbone liées à la déforestation 

et à la dégradation des forêts.  

 

6 Synthèse générale  
 

Cette thèse a donné lieu aux études publiées, soumises ou en cours de soumission suivantes : 

Estimation de la biomasse des parcelles forestières 

 Ploton, P., Barbier, N., Takoudjou Momo, S., Réjou-Méchain, M., Boyemba Bosela, F., Chuyong, G., Dauby, G., 

Droissart, V., Fayolle, A., Goodman, R.C., Henry, M., Kamdem, N.G., Mukirania, J.K., Kenfack, D., Libalah, M., 

Ngomanda, A., Rossi, V., Sonké, B., Texier, N., Thomas, D., Zebaze, D., Couteron, P., Berger, U., Pélissier, R., 

2016. Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in 

pantropical allometries. Biogeosciences 13, 1571–1585. doi:10.5194/bg-13-1571-2016 



XII 
 

 Ploton, P., Barbier, N., Couteron, P., Momo, S.T., Griffon, S., Bonaventure, S., Uta, B., Pélissie,r R. Assessing 

Leonardo’s rule on large tropical trees of contrasted architectures. En preparation pour Trees – Structure and 

Function. 

 Picard, N., Rutishauser, E., Ploton, P., Ngomanda, A., Henry, M., 2015. Should tree biomass allometry be 

restricted to power models? For. Ecol. Manag. 353, 156–163. doi:10.1016/j.foreco.2015.05.035 

 Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B.C., Duque, A., Eid, T., 

Fearnside, P.M., Goodman, R.C., Henry, M., Martínez-Yrízar, A., Mugasha, W.A., Muller-Landau, H.C., 

Mencuccini, M., Nelson, B.W., Ngomanda, A., Nogueira, E.M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, 

C.M., Saldarriaga, J.G., Vieilledent, G., 2014. Improved allometric models to estimate the aboveground 

biomass of tropical trees. Glob. Change Biol. 20, 3177–3190. doi:10.1111/gcb.12629 

Lien entre arbres de canopée visibles sur images THRS et biomasse de la forêt 

 Bastin, J.-F., Barbier, N., Réjou-Méchain, M., Fayolle, A., Gourlet-Fleury, S., Maniatis, D., de Haulleville, T., Baya, 

F., Beeckman, H., Beina, D., Couteron, P., Chuyong, G., Dauby, G., Doucet, J.-L., Droissart, V., Dufrêne, M., 

Ewango, C., Gillet, J.F., Gonmadje, C.H., Hart, T., Kavali, T., Kenfack, D., Libalah, M., Malhi, Y., Makana, J.-R., 

Pélissier, R., Ploton, P., Serckx, A., Sonké, B., Stevart, T., Thomas, D.W., De Cannière, C., Bogaert, J., 2015c. 

Seeing Central African forests through their largest trees. Sci. Rep. 5, 13156. doi:10.1038/srep13156 

 Blanchard, E., Birnbaum, P., Ibanez, T., Boutreux, T., Antin, C., Ploton, P., Vincent, G., Pouteau, R., Vandrot, H., 

Hequet, V., 2016. Contrasted allometries between stem diameter, crown area, and tree height in five tropical 

biogeographic areas. Trees 1–16. 

 Jucker, T., Caspersen, J., Chave, J., Antin, C., Barbier, N., Bongers, F., Dalponte, M., van Ewijk, K.Y., Forrester, 

D.I., Haeni, M., Higgins, S.I., Holdaway, R.J., Iida, Y., Lorimer, C., Marshall, P.L., Momo, S., Moncrieff, G.R., 

Ploton, P., Poorter, L., Rahman, K.A., Schlund, M., Sonké, B., Sterck, F.J., Trugman, A.T., Usoltsev, V.A., 

Vanderwel, M.C., Waldner, P., Wedeux, B.M.M., Wirth, C., Wöll, H., Woods, M., Xiang, W., Zimmermann, N.E., 

Coomes, D.A., 2016. Allometric equations for integrating remote sensing imagery into forest monitoring 

programmes. Glob. Change Biol. doi:10.1111/gcb.13388 

Estimation de la biomasse sur base des propriétés de texture des canopées  

 Ploton, P., Pélissier, R., Barbier, N., Proisy, C., Ramesh, B.R., Couteron, P., 2013. Canopy texture analysis for 

large-scale assessments of tropical forest stand structure and biomass, in: Treetops at Risk. Springer, pp. 237–

245. 

 Ploton, P., Barbier, N., Couteron, P., Ayyappan, N., Antin, C.M., Bastin, J.-F., Chuyong, G., Dauby, G., Droissart, 

V., Gastellu-Etchegorry, J.-P., Kamdem, N.G., Kenfack, D., Libalah, M., Momo, S., Pargal, S., Proisy, C., Sonké, 

B., Texier, N., Thomas, D., Zebaze, D., Verley, P., Vincent, G., Berger, U., Pélissier, R. Combining canopy texture 

metrics from optical data to retrieve tropical forest aboveground biomass in complex forest mosaics. En 

révision dans Remote Sensing of Environment.    

 Ploton, P., Pélissier, R., Proisy, C., Flavenot, T., Barbier, N., Rai, S.N., Couteron, P., 2012. Assessing aboveground 

tropical forest biomass using Google Earth canopy images. Ecol. Appl. 22, 993–1003. doi:10.1890/11-1606.1 

 Couteron, P., Barbier, N., Deblauwe, V., Pélissier, R., Ploton, P., 2015. Texture Analysis of Very High Spatial 

Resolution Optical Images as a Way to Monitor Vegetation and Forest Biomass in the Tropics. Multi-Scale For. 

Biomass Assess. Monit. Hindu Kush Himal. Reg. Geospatial Perspect. 157. 

 



 



 
Title : Improving tropical forest aboveground biomass estimations : insights from canopy trees structure 

and spatial organization  
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Abstract : Tropical forests store more than half of the world’s forest carbon and are particularly threatened 

by deforestation and degradation processes, which together represent the second largest source of 

anthropogenic CO2 emissions. Consequently, tropical forests are the focus of international climate policies 

(i.e. Reducing emissions from deforestation and forest degradation, REDD) aiming at reducing forest-

related CO2 emissions. The REDD initiative lies on our ability to map forest carbon stocks (i.e. spatial 

dynamics) and to detect deforestation and degradations (i.e. temporal dynamics) at large spatial scales (e.g. 

national, forested basin), with accuracy and precision. Remote-sensing is as a key tool for this purpose, but 

numerous sources of error along the carbon mapping chain makes meeting REDD criteria an outstanding 

challenge. In the present thesis, we assessed carbon (quantified through aboveground biomass, AGB) 

estimation error at the tree- and plot-level using a widely used pantropical AGB model, and at the 

landscape-level using a remote sensing method based on canopy texture features from very high resolution 

(VHR) optical data. Our objective was to better understand and reduce AGB estimation error at each level 

using information on large canopy tree structure, distribution and spatial organization.  

Although large trees disproportionally contributed to forest carbon stock, they are under-represented in 

destructive datasets and subject to an under-estimation bias with the pantropical AGB model. We 

destructively sampled 77 very large tropical trees and assembled a large (pantropical) dataset to study how 

variation in tree form (through crown sizes and crown mass ratio) contributed to this error pattern. We 

showed that the source of bias in the pantropical model was a systematic increase in the proportion of tree 

mass allocated to the crown in canopy trees. An alternative AGB model accounting for this phenomenon 

was proposed. We also propagated the AGB model bias at the plot-level and showed that the interaction 

between forest structure and model bias, although often overlooked, might in fact be substantial. We 

further analyzed the structural properties of crown branching networks in light of the assumptions and 

predictions of the Metabolic Theory of Ecology, which supports the power-form of the pantropical AGB 

model. Important deviations were observed, notably from Leonardo’s rule (i.e. the principle of area 

conservation), which, all else being equal, could support the higher proportion of mass in large tree crowns. 

A second part of the thesis dealt with the extrapolation of field-plot AGB via canopy texture features of VHR 

optical data. A major barrier for the development of a broad-scale forest carbon monitoring method based 

on canopy texture is that relationships between canopy texture and stand structure parameters (including 

AGB) vary among forest types and regions of the world. We investigated this discrepancy using a simulation 

approach: virtual canopy scenes were generated for 279 1-ha plots distributed on contrasted forest types 

across the tropics. We showed that complementing FOTO texture with additional descriptors of forest 

structure, notably on canopy openness (from a lacunarity analysis) and tree slenderness (from a bioclimatic 

proxy) allows developing a stable inversion frame for forest AGB at large scale. Although the approach we 

proposed requires further empirical validation, a first case study on a forests mosaic in the Congo basin 

gave promising results.    

Overall, this work increased our understanding of mechanisms behind AGB estimation errors at the tree-, 

plot- and landscape-level. It stresses the need to better account for variation patterns in tree structure (e.g. 

ontogenetic pattern of carbon allocation) and forest structural organization (across forest types, under 

different environmental conditions) to improve general AGB models, and in fine our ability to accurately 

map forest AGB at large scale. 



 
Titre : Amélioration des estimations de biomasse en forêt tropicale : apport de la structure et de 

l’organisation spatiale des arbres de canopée 

 

Mots clés : carbone forestier, REDD, modèle de biomasse pantropical, structure de canopée, texture de 

canopée, imagerie optique passive, transformée de Fourier, lacunarité  

 

Résumé : Les forêts tropicales séquestrent plus de la moitié du carbone forestier mondial et sont 

particulièrement menacées par les processus de déforestation et de dégradation, qui représentent la 

deuxième source d’émissions anthropogéniques de CO2. De fait, les forêts tropicales sont au centre de 

politiques climatiques internationales (i.e. Reducing emissions from deforestation and forest degradation, 

REDD) visant à réduire ces émissions. L’initiative REDD repose sur notre capacité à cartographier les stocks 

de carbone forestier (dynamique spatiale) et à détecter la déforestation et la dégradation (dynamique 

temporelle) à large échelle spatiale (e.g. nationale, bassin forestier), avec exactitude et précision. Dans ce 

cadre, la télédétection apparait comme un outil crucial, mais les nombreuses sources d’erreur dans la 

chaîne de cartographie du carbone font des objectifs du REDD un challenge ambitieux. Dans cette thèse, 

nous avons évalué les erreurs associées aux estimations de carbone forestier (quantifié au travers de la 

biomasse épigée, AGB) (1) aux échelles de l’arbre et du peuplement en utilisant un modèle pantropical 

largement employé et (2) à l’échelle du paysage en utilisant une méthode de télédétection basée sur les 

caractéristiques texturales d’images optiques à très haute résolution spatiale. Notre objectif général était 

de mieux comprendre et de réduire l’erreur d’estimation de l’AGB à chaque échelle par une meilleure prise 

en compte de la structure, de la distribution et de l’organisation spatiale des arbres de canopée.  

Malgré l’importance des grands arbres dans la dynamique du carbone forestier, ils sont sous-représentés 

dans les jeux de données destructifs et soumis à un biais de sous-estimation dans le modèle d’AGB 

pantropical. Nous avons assemblé une base de données pantropicale et étudié l’influence de la forme de 

l’arbre sur le patron d’erreur du modèle. Nos résultats montrent que la source de biais du modèle est une 

augmentation de la masse de l’arbre dans la couronne chez les arbres de canopée. Un modèle d’AGB 

prenant ce phénomène en compte a été proposé. Nous avons aussi propagé le biais du modèle à l’échelle 

du peuplement et montré que l’interaction entre la structure du peuplement et l’erreur du modèle, qui est 

souvent négligée, peut en fait être substantielle. Une analyse des propriétés structurelles des couronnes a 

également été menée au regard des hypothèses de la Théorie Métabolique de l’Ecologie Des déviations ont 

été observées, notamment à la loi de Léonardo (i.e. principe de conservation des aires), qui, toutes choses 

égales par ailleurs, pourraient justifier la grande proportion de masse trouvée dans les couronnes des 

arbres de canopée.  

Une seconde partie de la thèse porte sur l’extrapolation des estimations d’AGB des parcelles de terrain via 

les caractéristiques de texture des canopées extraites par transformée de Fourier (i.e. méthode FOTO). Un 

obstacle majeur au développement d’une méthode d’estimation de l’AGB à large échelle basée sur la 

texture tient au fait que la relation texture – paramètres de structure du peuplement varie entre types de 

forêt et régions du monde. Nous avons investigué cette question en simulant des scènes de canopées 

virtuelles pour 279 parcelles de 1 ha établies dans des types de forêts tropicales contrastés. Nous montrons 

qu’en complémentant les indices de texture FOTO avec d’autres descripteurs structuraux, notamment sur 

l’ouverture de la canopée (via une analyse de lacunarité) et l’élancement des arbres (via un proxy 

bioclimatique), il devrait être possible de développer un cadre d’inversion stable de l’AGB à large échelle. 

Un premier cas d’étude empirique dans une mosaïque forestière du bassin du Congo a donné des résultats 

prometteurs.  

Globalement, ce travail met en évidence le besoin de mieux prendre en compte les patrons de variation de 

structure de l’arbre (e.g. ontogénétique) et de la forêt afin d’améliorer les modèles génériques d’AGB.  


