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mes travaux de recherche.
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Abstract

With the increasing use of smart-phones, connected objects or automated vehicles,
embedded systems have become ubiquitous in our living environment. These systems
are often highly constrained in terms of power consumption and size. They are
more and more implemented with multi- or many-core processor arrays that allow,
through massive parallelism, rapid design to meet stringent real-time constraints
while operating at relatively low frequency, with reduced power consumption.

Running an application on a processor array requires dispatching its tasks on the
processors in order to meet capacity and performance constraints. This mapping
problem is known to be NP-complete.

The contributions of this thesis are threefold:

First we extend the notions of consistency, precedence constraint and useful tokens
to the Phased Computation Graph model. Two equivalent sufficient conditions
of liveness, used for dataflow graph generation and mapping evaluation, are also
extended to this model.

Second, we present a random dataflow graph generator able to generate Synchonous
Dataflow Graphs, Cyclo-Static Dataflow Graphs and Phased Computation Graphs.
The Generator, called Turbine, is able to generate live dataflow graphs of up to
10,000 tasks in less than 30 seconds. It is illustrated through several experiments
and compared to SDF3 and PREESM. It is available on github https://github.

com/bbodin/turbine.

Third and most important, we propose a new method of evaluation of a mapping
using the Synchonous Dataflow Graph and the Cyclo-Static Dataflow Graph models.
The method evaluates efficiently the memory footprint of the communications of a
dataflow graph mapped on a distributed architecture. The evaluation is declined
in two versions, the first guarantees a live mapping while the second accounts for a
constraint on throughput.

The evaluation method is illustrated through experiments on dataflow graphs gen-
erated with Turbine and on several real-life applications.
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Résumé en français

1 Introduction

Le domaine de l’embarqué et des systèmes sur puce est en plein essor. Avec l’avè-
nement des smartphones, des véhicules automatiques et des objets connectés la
demande en puissance de calcul avec une faible consommation énergétique ne cesse
d’augmenter.

A cause des limites de fréquence atteintes ces dernières années, le nombre de cœurs au
sein des architectures a été multiplié. La multiplication des cœurs pose de nouveaux
problèmes lors de la conception et de l’exécution d’une application.

Le problème de mapping (distribuer une application sur un multi-cœurs) est, pour
le domaine de l’embarqué, considéré comme un des problèmes les plus urgents de
cette décennie [Marwedel et al., 2011]. Cette thèse propose une méthode efficace
pour évaluer un mapping sur une architecture multi-cœurs à mémoire distribuée. La
méthode cible des applications de flux de données modélisées par plusieurs milliers
de tâches.

Les applications de flux de données font partie des plus demandeuse en ressources.
Il est possible de représenter ces applications par des modèles dataflow.

La Section 2 présente les modèles dataflow étudiés durant cette thèse. La Section
3 introduit des propriétés importantes pour le modèle Synchronous Dataflow. Ces
propriétés ont ensuite étés étendues aux modèles Cyclo-Static Dataflow et Phased
Computation Graph. La Section 4 décrit brièvement les travaux effectués sur ces
deux derniers modèles. La Section 5 présente un générateur de graphe dataflow
implémenté durant cette thèse. La Section 6 explique la méthode d’évaluation d’un
mapping. La Section 7 propose de résoudre un problème de mapping en utilisant la
méthode d’évaluation expliquée Section 6. Enfin, la Section 8 conclut ce résumé.

2 Les modèles dataflow

Cette section présente les trois modèles dataflow utilisés dans cette thèse : le mo-
dèle Synchronous Dataflow, le modèle Cyclo-Static Dataflow et le modèle Phased
Computation Graph.

2.1 Le modèle Synchronous Dataflow

Le modèle Synchronous Dataflow Graph (SDFG) introduit dans [Lee and Messer-
schmitt, 1987] est le premier modèle dataflow à avoir vu le jour en 1987. Il modélise
les tâches d’une application et leurs communications par un graphe orienté. Les
nœuds du graphe correspondent aux tâches (ou acteurs) de l’application et les arcs
correspondent aux communications entre les tâches. Un arc (ou buffer) fonctionne
comme une mémoire First in First out (FIFO). Chaque arc du graphe est composé
de trois poids, un poids en entrée qui symbolise la production de données lorsque la
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2. Les modèles dataflow

tâche en amont est exécutée, un poids en sortie qui symbolise la consommation de
données de la tâche en aval, et un marquage initial qui correspond à la quantité de
données présentes dans l’arc au démarrage de l’application.

Plus formellement on a un SDFG G = (T , A) avec T l’ensemble des tâches et A
l’ensemble des arcs. La quantité de données écrites dans l’arc a = (ti, tj) par la tâche
ti à la fin de son exécution est définie par pa. La quantité de donnée consommées
de l’arc a = (ti, tj) par la tâche tj au début de son exécution définie par ca. Le
marquage initial de l’arc a est noté M0(a). Enfin, la durée d’exécution d’une tâche
ti est notée ℓi.

La Figure 1 représente un SDFG avec deux tâches reliées par un arc.

t1 t2
a

2 3

. . . . . . . .3

Figure 1 – Un SDFG composé de deux tâches t1 et t2 et d’un arc a = (t1, t2) avec
pa = 2, ca = 3 et M0(a) = 3.

2.2 Le modèle Cyclo Static Dataflow

Le modèle Cyclo-Static Dataflow Graph (CSDFG) [Bilsen et al., 1995] est une évo-
lution du modèle SDFG. Les consommation et production de données ne sont plus
symbolisées par un entier comme pour le modèle SDFG mais par un vecteurs d’en-
tiers dont l’exécution est cyclique. L’exécution d’une tâche est donc divisée en phases.

Plus formellement on a ϕi le nombre de phases de la tâche ti. ti(k) désigne la kième

phase de ti avec k ∈ {1, · · · , ϕi}. La durée d’une phase est notée ℓi(k). On note
pa(k) la quantité de données produite par la phase k et ca(k) la quantité de données
consommées par la phase k.

Un CSDFG est illustré sur la Figure 2. La tâche t1 est composée d’une phase alors
que la tâche t2 est composée de 2 phases.

t1 t2
a

[2] [1, 2]

. . . . . . . .3

Figure 2 – Un graphe CSDFG composé d’un arc a = (t1, t2) avec [pa(1)] = [2],
[ca(1), ca(2)] = [1, 2] et M0(a) = 3. On a ϕ1 = 1 et ϕ2 = 2.

2.3 Le modèle Phased computation graph

Le modèle Phased Computation Graph (PCG) [Thies et al., 2002] étend le modèle
CSDFG afin d’augmenter son expressivité. Le modèle reprend les caractéristiques
du modèle CSDFG et y ajoute des phases initiales et des seuils. Les phase initiales
ne sont exécutées qu’une seule fois au démarrage de l’application. Les seuil forcent
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la présence d’une certaine quantité de données dans l’arc avant qu’une partie de
celles-ci puisse être consommée.

Plus formellement on a ϕi le nombre de phases cycliques de la tâche ti et σi le nombre
de phases initiales. La production et la consommation d’une tâche dans un arc sont
notés pa(k) et ca(k) avec k ∈ {1 − σi, · · · , 0} ∪ {1, · · · , ϕi}. Le seuil d’une phase de
consommation est noté θa(k) avec θa(k) ≥ ca(k).

Un graphe PCG est illustré sur la Figure 3. La tâche t2 est composée de deux phases
initiales affichées entre parenthèses et de deux phases cycliques. Les seuils appa-
raissent à droite des poids ca(k) et sont séparés par “:” . Ils sont affichés uniquement
lorsqu’ils sont strictement supérieurs à leur poids de consommation respectif.

t1 t2
a

[2] (3, 1 : 3)[1 : 3, 2]

. . . . . . . .3

Figure 3 – Un PCG composé d’un arc a = (t1, t2) avec θa(−1) = 3 et θa(0) = 3
pour les phases initiales et θa(1) = 3 et θa(2) = 2 pour les phases cycliques.

3 Propriétés du modèle Synchronous Dataflow

Cette section présente les principales propriétés du modèle SDFG. Ces propriétés
son nécessaires pour comprendre les résultats démontrés sur le modèle PCG.

3.1 Facteur de répétition et consistance

Le facteur de répétition d’une tâche ti est noté Ri. À l’échelle du graphe on re-
groupe les facteurs de répétition en un vecteur noté R. Ce vecteur représente le
nombre d’exécutions minimum nécessaires aux tâches avant que le graphe retrouve
son marquage initial. On a donc Ri.pa = Rj.ca avec a = (ti, tj).

Soit G = (T , A) un SDFG. Si ∀a = (ti, tj) ∈ A on a Ri.pa = Rj.ca alors le graphe est
dit consistant. La consistance est une propriété nécessaire au bon fonctionnement
de l’application. Si un SDFG n’est pas consistant, lors de son exécution, on obser-
vera soit un blocages dû à un manque de marquage initial soit une augmentation
constante du marquage initial.

Soit la matrice topologique Γ du SDFG G = (T , A). On définit cette matrice comme
suit:

Γai =





pa if a = (ti, ·)
−ca if a = (·, ti)
0 otherwise

Le SDFG est consistant si le rang de la matrice est |T | − 1. La Figure 4 montre un
SDFG avec un vecteur de répétition R = [2, 3, 4] et sa matrice topologique.

10



3. Propriétés du modèle Synchronous Dataflow

t1 t2

t3

a1

a2a3

3 2

. . . . . . . .4

4

3

. . . . . . . .

0

1

2

. .
. .
. .
. .

0

(a)







3 0 −2
Γ = −2 4 0

0 −3 1

(b)

Figure 4 – La Figure (a) représente un SDFG consistant avec un vecteur de répé-
tition R = [2, 3, 4]. Figure (b) montre la matrice topologique du SDFG.

3.2 Marquage utile

Cette section présente la notion de marquage utile. Cette notion a été introduite dans
[Marchetti and Munier-Kordon, 2009] pour le modèle SDFG. Soit gcda = gcd(ca, pa)
le plus grand diviseur commun entre pa et ca. Un marquage est utile s’il est multiple
de gcda. Les auteurs démontrent qu’un marquage initial, s’il n’est pas multiple de
gcda, peut être arrondi au gcda inférieur sans interférer sur les contraintes de précé-
dence ou l’ordonnançabilité du graphe. La notion de marquage utile est formellement
décrite par le Lemme 1.

Lemme 1. [Marchetti and Munier-Kordon, 2009] Soit G = (T , A) un SDFG.

∀a ∈ A, M0(a) = ⌊M0(a)⌋gcda

avec gcda = gcd(ca, pa) et ⌊x⌋gcda
= ⌊ x

gcda
⌋ × gcda, ne modifie pas les contraintes de

précédence ou l’ordonnançabilité du graphe.

La Figure 5 représente un SDFG avec un marquage initial M0(a) = 7. D’après la
notion de marquage utile la production et la consommation de données est toujours
multiple de gcda. Le marquage initial peut donc être arrondi au gcda inférieur sans
interférer avec le fonctionnement du graphe.

t1 t2
a

3 6

. . . . . . . .7

Figure 5 – Un graphe SDFG avec M0(a) = 7. Si l’on applique la notion de marquage
utile le marquage est arrondi au gcda = 3 inférieur, on obtient alors M0(a1) = 6.

3.3 Normalisation et notation Zi

La normalisation est une transformation introduite dans [Marchetti and Munier-
Kordon, 2009]. Cette transformation est utilisée pour simplifier les notations et les
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formules lors de démonstrations sur les graphes dataflow. Un graphe ayant subi une
normalisation est dit normalisé. La transformation modifie les poids de consomma-
tion et de production des arcs afin que, pour une tâche donnée, ses poids soient tous
égaux.

La transformation consiste à multiplier les poids (pa, ca et M0(a)) de chaque arc
par un entier noté Na ∈ N − {0}. L’entier Na est déduit par la formule Na = lcmR

Ri.pa

avec a = (ti, ·) et lcmR = lcm(R1, · · · , R|T |) le plus petit multiple commun parmi
les éléments du vecteur de répétition R.

Les entiers Na peuvent être regroupés dans un vecteur noté N = [Na1
, · · · , N|A|]

appelé le vecteur de normalisation. La transformation nécessite un graphe consistant.
Elle est calculée en temps polynomiale.

Soit G = (T , A) un SDFG. Le poids normalisé d’une tâche avec un arc sortant
(réciproquement entrant) a = (ti, tj) est Zi = pa.Na (réciproquement Zj = ca.Na).
La normalisation est illustrée sur la Figure 6.
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Figure 6 – En Figure (a), un SDFG avec un vecteur de répétition R = [2, 3, 4], en
Figure (b) le même graphe normalisé. Le vecteur de normalisation est N = [2, 1, 3].

La normalisation est une transformation réversible. Un graphe dataflow peut être
normalisé et dé-normalisé sans modifier son fonctionnement.

3.4 Vivacité

La vivacité est un problème difficile très étudié dans la communauté des dataflows.
Cette propriété garantit que l’exécution des tâches d’un graphe dataflow ne rencon-
trera aucun blocage. À ce jour, la complexité du problème de vivacité est toujours
inconnue pour le modèle SDFG et ses modèles dérivés.

Pour contourner cette complexité nous utilisons une condition suffisante de vivacité.
Dans [Marchetti and Munier-Kordon, 2009] les auteurs proposent une méthode pour
vérifier si un SDFG est vivant. Cette condition suffisante de vivacité est présentée
dans le Théorème 1. Comme la condition est suffisante (mais pas nécessaire) un
marquage qui ne respecte pas la condition suffisante de vivacité peut tout de même
être vivant.
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4. Propriétés du modèle Cyclo-Static Dataflow et Extension vers le modèle Phased

Computation Graph

Théorème 1 (SCL). [Marchetti and Munier-Kordon, 2009] Soit G = (T , A) un
SDFG normalisé. G est vivant si pour chaque cycle µ dans G on a:

∑

a∈µ

M0(a) >
∑

a∈µ

pa − gcda,

avec gcda le plus grand diviseur commun entre ca et pa.

La Figure 7(a) illustre un SDFG avec un marquage initial selon SCL. On a
∑

a∈µ M0(a) =
8 et

∑
a∈µ pa − gcda = 7. A contrario, le SDFG de la Figure 7(b) ne respecte pas la

condition suffisante de vivacité puisque
∑

a∈µ M0(a) = 20 et
∑

a∈µ pa − gcda = 21.
Le graphe est pourtant vivant puisque la séquence d’exécution t2t2t3t3t3t1t2t3t3t1

ramène le marquage à son état initial.
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Figure 7 – La Figure (a) montre un SDFG vivant d’après la condition suffisante de
vivacité du Théorème 1. La Figure (b) démontre que la condition n’est pas nécessaire.

4 Propriétés du modèle Cyclo-Static Dataflow et

Extension vers le modèle Phased Computation Graph

Les propriétés introduites avec le modèle SDFG on toutes été étendues au modèle
CSDFG. Dans [Bilsen et al., 1995], les auteurs étendent la consistance. La notion
de marquage utile est étendue dans [Marchetti and Munier-Kordon, 2009; Stuijk
et al., 2008]. La normalisation et la condition suffisante de vivacité sont étenduent
dans [Benazouz et al., 2013]. Cette thèse étend ces quatre notions au modèle PCG.

5 Générateur de Dataflow : Turbine

Durant le première année de la thèse un générateur aléatoire de dataflow a été
implémenté. Le générateur est appelé Turbine et est disponible à l’adresse https://
github.com/bbodin/turbine. Son objectif est de générer, en un temps raisonnable,
des graphes dataflow de grande taille (plusieurs milliers de tâches) avec un marquage
initial vivant. Turbine est capable de générer des SDFG, CSDFG et PCG.
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5.1 Génération de graphe dataflow

La génération d’un graphe dataflow est divisée en quatre étapes:

• la génération des nœuds et des arcs,

• la génération des poids de production et de consommation,

• le calcul d’un marquage initial vivant.

Lors de la première étape, l’utilisateur devra renseigner le nombre de tâches, le
degré min/max des nœuds, si le graphe doit être cyclique, et si la génération d’arc
ré-entrant (ayant la même tâche en entrée et en sortie) et de multi-arcs (deux arcs
avec les même tâches en entrée et en sortie) est autorisé.

Pour garantir la consistance, le facteur de répétition est préalablement généré à
partir d’un facteur de répétition moyen. Les poids de production/consommation sont
ensuite déduits à partir des facteurs de répétition. Le graphe est généré normalisé
ou non selon le choix de l’utilisateur. Pour les modèles CSDFG et PCG, les tailles
des vecteurs est définie aléatoirement à partir d’un paramètre min/max.

L’étape de calcul d’un marquage initial vivant utilise la condition suffisante de vi-
vacité décrite par le Théorème 1 et des versions étendues aux modèles CSDFG et
PCG. Les conditions suffisantes de vivacité sont résolues à l’aide de la programma-
tion linéaire.

5.2 Expérimentations

Il existe deux autres générateurs de dataflow aléatoire :SDFG3 et PREESM, ces
deux générateurs sont présentés puis comparés à Turbine. Les expérimentations sont
faites sur quatre tailles de graphe, avec respectivement, 10, 100, 1000 et 10000 tâches.
Les graphes dataflow respectent les paramètres suivants : un facteur de répétition
moyen Ri = 5 et un degré moyen de 3. Les graphes sont générés cycliques, sans arcs
ré-entrants et sans multi-arcs.

Les Tableaux 1(a) et 1(b) présentent une comparaison du temps moyen de génération
sur 100 instances entre Turbine, SDF For Free (SDF3) et PREESM pour les modèles
SDFG et CSDFG. Les graphes ont été générés sur une simple machine de bureau
excepté avec PREESM pour les graphes de 10000 tâches ou un serveur avec 32Go
de RAM a été nécessaire. PREESM génère uniquement des graphes SDFG.

|T | Turbine SDF3 PREESM
10 5ms 19ms 9ms
100 44ms 313ms 58ms
1000 592ms 1h24min 7,2s
10000 20,7s - 1h39min⋆

(a)

|T | Turbine SDF3
Tiny 7ms 23ms
Small 62ms 315ms
Medium 806ms 1h27min
Large 20,4s -

(b)

Tableau 1 – Figure (a), le temps moyen de génération pour le modèle SDFG entre
Turbine, SDF3 et PREESM. Figure (b), le temps moyen de génération pour le
modèle CSDFG entre Turbine etSDF3.
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6. Méthode polynomial d’évaluation de la consomation mémoire d’un mapping

6 Méthode polynomial d’évaluation de la conso-

mation mémoire d’un mapping

Cette section décrit une nouvelle approche afin d’évaluer en temps polynomial le
mapping d’un application. Cette nouvelle approche a pour but d’évaluer la mémoire
consommée par une application sur une architecture multi-cœurs à mémoire distri-
buée. La méthode est appliquée sur les modèles SDFG, et est ensuite étendue au
modèle CSDFG.

Le problème est décliné en deux versions, la première a pour objectif la minimisation
de la mémoire, et la seconde ajoute une contrainte de débit.

6.1 Description du problème

Étant donné un mapping sur une architecture composée d’un certain nombre de clus-
ters reliés par un NoC (Network on Chip ou réseau sur puce), l’objectif est de trouver
la consommation mémoire des communications entre les tâches de l’application.

Cette nouvelle approche propose de mesurer la consommation mémoire des commu-
nications entre les tâches et l’impact des affectations sur cette consommation. Du
fait de l’architecture distribuée, une communication entre deux tâches affectées dans
deux clusters différents nécessitera une copie des données entre les deux clusters et
ajoutera un temps de latence entre la production et la consommation des données.

6.2 Évaluation de la mémoire à partir du modèleSDFG

L’évaluation du mapping proposée dans cette thèse utilise des arcs retours pour
borner le marquage d’un buffer. Soit un graphe SDFG G, (T , A) et a = (ti, tj) ∈ A.
On note a = (tj, ti) l’arc retour de a avec pa = ca et ca = pa. La quantité de données
consommée par le buffer borné est notée σa = M0(a) + M0(a). La Figure 8 illustre
un buffer (a gauche) et sa version bornée (à droite).

t1 t2
a

3 2

. . . . . . . .1

(a)

t1 t2

a

a

. . . . . . . .1

. . . . . . . .4

3 2

(b)

Figure 8 – Figure (a) illustre un buffer a = (t1, t2) avec pa = 3, ca = 2 et M0(a) = 1.
Figure (b) représente la version bornée du buffer a avec σa = 5.

Lorsque deux tâches reliées par un arc sont affectées dans un même cluster leur
consommation mémoire est σa. Si ces deux tâches sont affectées sur deux clusters
différents les données transitent par le NoC. Pour modéliser ce NoC une nouvelle
tâche appelée tc (c pour communication) est ajoutée entre les deux tâches.
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La Figure 9 illustre un buffer borné et un buffer borné partagé entre deux clusters.
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Figure 9 – Figure (a) illustre un buffer borné a = (t1, t2). Figure (b) représente le
même buffer borné partagé entre deux clusters. La tâche tc représente le transfèrt
de données entre deux clusters.

La consommation mémoire du buffer partagé entre deux clusters, illustré Figure 9(b),
est de σa1

= M0(a1)+M0(a1) pour le cluster de la tâche t1 et σa2
= M0(a2)+M0(a2)

pour le cluster de la tâche t2.

Cette thèse démontre que pour minimiser le marquage initial d’un buffer partagé
entre deux clusters le taux de transfert noté Zc sur la Figure 9(b) doit être fixé à
Zc = gcda. Un marquage initial minimal vivant est ensuite démontré avec et sans
contrainte de débit. Ces résultats sont ensuite étendus au modèle CSDFG.

7 Résolution du problème de mapping

Afin de mettre en pratique la méthode d’évaluation présentée section précédente,
plusieurs algorithmes ont été implémentés afin de résoudre un problem de mapping
dont le but est de minimiser le nombre de clusters consommés. Ces algorithmes ont
étés testés sur des applications réelles et aléatoires.

7.1 Présentation du problème de mapping

Le problème de mapping choisi à pour objectif l’affectation d’une application sur
une architecture composée de clusters (eux même composés de processeurs) avec
pour but, la minimisation du nombre de clusters utilisés. Chaque cluster est doté
d’une certaine quantité de mémoire ce qui limite le nombre de tâche au sein d’un
même cluster.

7.2 Représentation de la mémoire par un graphe multivalué

Cette section présente un graphe non-orienté et multivalué qui simplifie la représen-
tation mémoire d’un dataflow. Le graphe est noté U = (T , E) avec T l’ensemble des
tâches correspondant aux tâches du dataflow et E l’ensemble des arêtes correspon-
dantes au buffer borné du dataflow. A chaque arête e = (ti, tj) on associe trois poids
notés we, wei et wej.
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7. Résolution du problème de mapping

1. we est la taille en mémoire si ti et tj sont affectées dans le même buffer. On a
donc we = σa.

2. wei et wej représentent les quantités de mémoire des tâches ti et tj lorsque celles-
ci sont affectées dans deux clusters différents. On a donc wei = M0(ai)+M0(ai)
et wej = M0(aj) + M0(aj).

La Figure 10 illustre un graphe U et son SDFG associé.
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Figure 10 – Un graphe U à droite déduit du SDFG à gauche.

7.3 Formalisation du problème de mapping à l’aide de la
programmation linéaire en nombre entier

Le problème de mapping a été formalisé en un Programme Linéaire en Nombre
Entier (PLNE) décrit dans cette section. Soit U = (T , E) un graphe non-orienté
multi-valué, et Sc un ensemble de clusters.

On définit :

xtic =

{
1 si la tâche ti ∈ T est affectée au cluster c ∈ Sc,
0 sinon.

yec =

{
1 si xtic = 1 et xtjc = 1 avec e = (ti, tj) ∈ E , c ∈ Sc,
0 sinon.

zc =

{
1 si le cluster c ∈ Sc est utilisé,
0 sinon.

17



min
∑

c∈Sc

zc

∑

e∈E

(
yec.we +

∑

t∈e

(xtic − yec).wei

)
≤ Mmax ∀c ∈ Sc

yec ≥ xtic + xtjc − 1 ∀e = (ti, tj) ∈ E , ∀c ∈ Sc

yec ≤ xtic ∀e = (ti, ·) ∈ E , ∀c ∈ Sc

zc ≥ xtic ∀ti ∈ T , ∀c ∈ Sc∑

c∈Sc

xtic = 1 ∀ti ∈ T

xtic ∈ {0, 1} ∀ti ∈ T , ∀c ∈ Sc

yec ∈ {0, 1} ∀e ∈ E , ∀c ∈ Sc

zc ∈ {0, 1} ∀c ∈ Sc

La fonction objective du PLNE minimise le nombre de clusters utilisés. La première
contrainte modélise la contrainte de mémoire pour chaque cluster avec Mmax la
mémoire disponible dans un cluster. Les deux contraintes suivantes forcent la variable
yec à respecter sa définition. La quatrième contrainte force zc = 1 si le cluster c est
utilisé. La dernière contrainte impose qu’une tâche ne soit affectée que dans un seul
cluster.

Le problème de mapping peut être réduit à un problème de bin-packing si on a
we = wei + wej, ∀e ∈ E . Grâce à cette réduction, nous avons démontré que le
problème de mapping est NP-complet.

7.4 Algorithmes

Sept algorithmes sont proposés. Quatre d’entre eux sont inspirés d’algorithmes du
bin-packing et trois autres ont été conçus et implémentés par Ahlam Mouaci durant
son stage de fin d’étude. Les algorithmes ont été implémentés et testés sur des
instances générées par Turbine et cinq instances réelles.

Le Tableau 2 présente les cinq applications réelles testées. Toutes les applications
sont des CSDFG. La colonne“Size”indique la taille de l’application, la colonne“||R||”
la somme de son vecteur de répétition, la colonne “|ϕ|” la somme des phases sur
l’ensemble des tâches, enfin, “Cycles” indique si le graphe de l’application comporte
des cycles.

Name |T | |A| Size ||R|| |ϕ| Cycles
BlackScholes 41 40 16KB 923 261 No

Echo 38 82 28KB 35003 45 Yes
H264 666 3128 1368KB 762 1375 Yes

JPEG2000 240 703 3807KB 24676 639 No
Pdetect 58 76 3859KB 58 4045 No

Table 2 – Caractéristiques des applications réelles mappées sous contrainte de débit.
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8. Conclusion

Les applications réelles sont mappées avec un algorithme utilisant un système de
matching pour fusionner les clusters. Les testes sont fait sur la version CSDFG et
la version SDFG fonctionnellement équivalente. Le Tableau 3 récapitule les résul-
tats. La colonne “Model” indique quel modèle est testé. La colonne “Time” le temps
nécessaire pour effectuer le mapping en utilisant la méthode d’évaluation définie
précédemment. La colonne “|S|” donne le nombre de clusters utilisé par la solution
du mapping, la colonne “Mmax” la quantité de mémoire présente dans chaque clus-
ter, la colonne “Mem” donne la quantité de mémoire utilisée par l’application sur le
multi-cœurs, enfin, la colonne “Λ” indique si le mapping respecte la contrainte de
débit imposée par l’application.

Model Time |S| Mmax Mem Λ

BlackScholes
SDFG 0.3s 3 23KB 48KB Non
CSDFG 0.6s 3 8KB 17KB Oui

Echo
SDFG 0.3s 4 10KB 30KB Oui
CSDFG 0.3s 3 10KB 29KB Oui

H264
SDFG 1mn3s 18 90KB 1328KB Oui
CSDFG 1mn1s 18 90KB 1372KB Oui

JPEG2000
SDFG 3.8s 2 3532KB 6168KB Oui
CSDFG 5.6s 3 1695KB 3807KB Oui

Pdetect
SDFG 3mn31s 4 928KB 3643KB Non
CSDFG 5mn11s 4 928KB 3859KB Oui

Table 3 – Résultats du mapping sur des applications réelles.

Comme on peut le remarquer sur le Tableau 3, le temps de calcul du mapping, in-
cluant l’évaluation du mapping, est plus restreint sur le modèle SDFG que le modèle
CSDFG. Cependant, le modèle CSDFG donne de meilleurs résultats concernant la
mémoire consommée par l’application et le respect de la contrainte de débit. Cer-
taines applications n’ont pas de solution qui respecte la contrainte de débit, cela est
dû à l’architecture et aux communications entre clusters.

8 Conclusion

Cette thèse apporte deux principales contributions, elle présente un générateur de
graphes dataflow appelé Turbine et propose une nouvelle méthode d’évaluation d’un
mapping sur une architecture à mémoire distribuée.

Le générateur de graphes dataflow appelé Turbine est capable de générer des SDFG,
des CSDFG et des PCG jusqu’à 10000 tâches. Turbine propose aussi de nombreuses
fonctionnalités pour analyser des graphes dataflow :

• calcul du débit;

• calcul d’un ordonnancement 1-periodic;

• calcul d’un ordonnancement au plus tôt;
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• calcul du marquage initial;

• calcul des facteurs de répétition;

• normalisation/dé-normalisation;

• dessiner un dataflow (sortie PDF).

En seconde partie, une méthode d’évaluation d’un mapping est proposée. D’abord
appliquée au modèle SDFG, elle est ensuite étendue au modèle CSDFG. Le but
de cette méthode est d’évaluer la consommation mémoire pour des applications de
grandes tailles (plusieurs milliers de tâches) en un temps raisonnable. La méthode
d’évaluation est testée avec sept algorithmes sur des instances générées aléatoirement
par Turbine et sur une sélection de cinq applications réelles.
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Chapter 1. Introduction

Unlike a general-purpose computer, an embedded system is dedicated to partic-
ular tasks, often with real-time constraints. Embedded systems are ubiquitous and
can be found in home appliances, vehicles, communication and multimedia equip-
ment or medical equipment. Typical requirements for embedded systems are low
power consumption, high reliability and small size.

Dedicated processors fulfill all the criteria required for embedded systems. Since
they focus on only one application, their design can be greatly optimized which
makes their design long and expensive. The opposite solution consists in using a
general purpose processor. These processors are a good answer in a context of a
rapid design. Development of the applications on those processors is fast and they
offer flexibility since one processor could run many different applications.

High performance low power general-purpose processors should not run at high
frequency, instead, designers tend to multiplicate processing elements. There pro-
cessors are called multi-core or many-core and are composed of dozens to thousands
of cores linked with a Network on Chip (NoC).

Even with high potential performance a multi-core or many-core architecture
requires special care in decomposing an application into computational tasks and
dispatching them among the processing elements in order to meet the performance
requirements. This dispatching is called a mapping and is considered as one of the
most urgent problems of this decade [Marwedel et al., 2011].

A Model of Computation (MoC) is a set of definition used to represent algo-
rithms, it provides tools to evaluate the performance of applications. A dataflow
MoC is a representation of the application using weighted graphs. Among the
dataflow MoC the Synchronous Dataflow Graph (SDFG) model is very popular.
The SDFG is a static MoC used to detect deadlock or to evaluate the performance
of the application especially its throughput, latency or memory consumption.

1.1 Contributions

This thesis is based on the SDFG MoC and two of its extensions, the Cyclo-Static
Dataflow Graph (CSDFG) and the Phased Computation Graph (PCG).

The first contribution is the extension of important notions from the SDFGmodel
to the PCG model: consistency, useful tokens, normalization, precedence constraints
and liveness. Since the PCG is an extension of the CSDFG model, itself an extension
of the SDFG model, these notions are first presented on the SDFG model, then on
the CSDFG model, to be extended finally to the PCG model.

The second contribution of this thesis is the implementation of Turbine, a
dataflow generator, which handles the SDFG, CSDFG and the PCG models.

The third and main contribution is an evaluation method for an arbitrary map-
ping of one such model of an application on an architecture with distributed memory.
This method is presented for the SDFG and CSDFG models. The method is then
applied to a mapping problem where the main objective is to minimize the number
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1.2. Thesis Organization

of processing elements (with their own memory) employed for the application while
satisfying the memory constraints.

1.2 Thesis Organization

Chapter 2 presents the following MoCs: Kahn Process Network (KPN), Homoge-
neous Synchronous Dataflow Graph (HSDFG), Synchronous Dataflow Graph (SDFG),
Cyclo-Static Dataflow Graph (CSDFG), Computation Graph (CG), CSDFG with
initial phases and Phased Computation Graph (PCG). Then, the SDFG model is
used to introduce the notions of repetition vector, consistency, useful tokens, nor-
malization and liveness. A sufficient condition of liveness with a low computational
complexity is described. Finally, three types of scheduling are presented, As Soon
As Possible (ASAP), one-periodic and K-periodic.

Chapter 3 extends the notions of repetition vector, consistency, useful tokens,
normalization and liveness to the CSDFG and PCG models. The sufficient condition
of liveness is extended to both models. The three scheduling methods are then
presented for the CSDFG model.

Chapter 4 presents the dataflow generator Turbine. The generator is compared
with two of its competitors, SDF For Free (SDF3) and PREESM. The experiments
compare generation times and numbers of tokens for the generated dataflow graphs.
They demonstrate the improvement between consecutive versions of Turbine and
the quality of the approximation provided by the sufficient condition of liveness.

Chapter 5 presents our method for the evaluation of a memory allocated to a
mapping on a distributed memory architecture. The method is introduced on the
SDFG model. Two versions of memory evaluation are proposed: under liveness or
throughput constraint. The first uses the sufficient condition of liveness presented
earlier. The second introduces a throughput constraint where the throughput is
evaluated using a one-periodic schedule, where each task is executed with its own
period. The two versions of the evaluation method are then extended to the CSDFG
model.

Chapter 6 illustrates the use of our memory evaluation method when mapping
a dataflow application on a distributed memory architecture. The targeted archi-
tecture is composed of clusters. An un-directed tri-valuated graph is proposed to
characterize the memory consumption of an application modeled by an SDFG or a
CSDFG. An H263 encoder is used for illustration. The evaluation method is then
employed in conjunction with mapping heuristics to minimize the number of clus-
ters used by the application. Several heuristics, some inspired by bin-packing, are
compared on random and real applications.

Chapter 7 concludes the thesis and presents some perspectives opened by our
work.
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Chapter 1. Introduction

1.3 Mathematical Notation

We denote by N
∗ the set of strictly positive integer, R+ the set of positive reals and

R
∗+ the set of strictly positive reals. The number of elements of in set E is denoted

|E|. Let x ∈ R, the operations ⌈x⌉ and ⌊x⌋ denote respectively the smallest integer
greater than x and the largest integer smaller than x. Similarly, ⌈x⌉z and ⌊x⌋z are
respectively the smallest multiple of z greater than x and the largest multiple of z
smaller than x. For instance ⌈5⌉3 = 6 and ⌊5⌋3 = 3. We use the notations gcd and
lcm for the greatest common divisor and the least common multiple of elements of
N

∗.
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Chapter 2. Dataflow Models

2.1 Introduction

Among the many Models of Computation (MoCs), the Kahn Process Network
(KPN), one of the first attempts to model the dataflow of an application using
First in First out (FIFO) queues between tasks, is too expressive to allow the anal-
ysis tools needed by the dataflow community. The Synchronous Dataflow Graph
(SDFG) model is now the most widely used in the dataflow community as it pro-
vides a good compromise between expressiveness and analysis complexity. Other
models have emerged after the SDFG model that are more expressive yet amenable
to automated analysis.

This chapter provides an overview of dataflow models considered in this thesis
while introducing important notions concerning them.

Section 2.2 presents the dataflow models. Section 2.3 illustrates the gain in
expressiveness afforded by the Cyclo-Static Dataflow Graph (CSDFG) and Phased
Computation Graph (PCG) models through two examples. In Section 2.4, the SDFG
behavior is discussed and basic notions are explained. Execution schedules are de-
scribed in Section 2.5. Section 2.6 concludes the chapter.

2.2 Dataflow Models of Computation

Dataflow modeling is a widely used method for specifying the functionality of embed-
ded systems. It first appears in the context of parallel computation in the 60’s [Karp
and Miller, 1966]. Dataflow modeling is used in the design process of embedded sys-
tems, real time systems, Digital Signal Processing (DSP) systems and parallel com-
puting systems. Computations and communications are modeled by actors (nodes)
and communication channels (arcs). A communication channel is unidirectional be-
tween two tasks and behaves as a FIFO buffer. Dataflow MoCs are tokens stream
models [Davis and Keller, 1982], in which data are seen as discrete streams of tokens,
the data values being abstracted out.

This section presents the most common dataflow models:

• Khan Process Network in Section 2.2.1

• Homogeneous Synchronous Dataflow Graph in Section 2.2.2

• Synchronous Dataflow Graph in Section 2.2.3

• Cyclo Static Dataflow Graph in Section 2.2.4

• Computation Graph in Section 2.2.5

• Cyclo Static Dataflow Graph with initial phases in Section 2.2.6

• Phased Computation Graph in Section 2.2.7.
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2.2. Dataflow Models of Computation

2.2.1 Kahn Process Network model

The Kahn Process Network (KPN) model [Kahn, 1974] was introduced in 1974 by
Kahn as a parallel programming model. In [Buck and Lee, 1993] the authors proved
that the Boolean Dataflow Graph model, a subclass of the KPN is Turing complete,
making the KPN himself Turing complete.

A KPN is composed of computing stations (nodes) linked by communication
lines (arcs) which behave as FIFOs with infinite memory. A computing station has
a sequential behavior, thus it cannot output data on more than one communication
line at a given time. A communication line has only one input and one output. If
there is not enough data on the communication line toward a computing station, the
station waits until enough data is available to perform a computation. The amount
of data produced or consumed by a computing station is fixed.

t1 t2. . . . . . . .

Figure 2.1 – Kahn Process Network with two computing stations linked by a
communication line.

The KPN model has a high expressiveness but does not allow for deadlock anal-
ysis nor evaluation of bounds on capacity (maximum amount of data that can be
reached on channels).

Models presented below are all static subclasses of the KPN model. In constrast
with the KPN model, static dataflow models are not Turing complete. These mod-
els consider data as simple tokens, meaning that data values have no impact on
the system’s behavior. Static models are non-reconfigurable and do not to express
conditional state, data dependent iteration or recursion. A considerable benefit
from these restrictions is that they are decidable, fairly easy to analyze, and can be
scheduled at compile time [Lee and Parks, 1995].

2.2.2 Homogeneous Synchronous Dataflow model

The Homogeneous Synchronous Dataflow Graph (HSDFG) model [Moreira et al.,
2010], also known as Single Rate Dataflow model, is composed of actors (or tasks)
and arcs (equivalent to communication links). An arc symbolizes a FIFO queue.
This MoC existed before the apparition of the SDFG model (discussed in the next
section) under the name of Event Graph in the Petri net community.

A Homogeneous Synchronous Dataflow Graph (HSDFG) is a directed graph
Ghsdf = (T , A, M, L)

• T is the set of actors,

• A is the set of arcs,
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• M is the set of initial markings: M = {M0(a)|a ∈ A} is the set of values
taken by the function M0 : A → N which associates to each arc a ∈ A an
initial number of tokens.

• L is the set of execution times: L = {ℓ(ti)|ti ∈ T } is the set of values taken by
the function ℓ : T → R

+ which associates to each actor ti ∈ T an execution
time ℓ(ti) = ℓi.

The initial marking gives the number of tokens present on each arc at the beginning
of the application, where the tokens represent the data items manipulated by the
application.

Figure 2.4 shows an HSDFG with two tasks t1 and t2 linked by an arc a. The
rectangle on the arc represents the FIFO queue, with the initial marking shown
inside.

t1 t2
a

. . . . . . . .1

Figure 2.2 – An HSDFG graph composed of an arc a = (t1, t2) with M0(a) = 1.

The execution times of the actors do not yet appear in the figure. They will be
shown when scheduling and performance are discussed. This remark also applies to
the models described below.

2.2.3 Synchronous Dataflow model

The Synchronous Dataflow Graph (SDFG) model has been introduced in [Lee and
Messerschmitt, 1987]. This model is also known as Multi-Rate Dataflow model in
the signal processing community or Weighted Event Graph model in the Petri net
community.

An SDFG is a directed weighted graph Gsdf = (T , A, P , C, M, L) where:

• T is the set of actors,

• A is the set of arcs,

• P is the set of production weights: P = {p(a)|a ∈ A} is the set of values taken
by the function p : A → N

∗ which associates to each arc a ∈ A a production
weight p(a) = pa.

• C is the set of production weights: C = {c(a)|a ∈ A} is the set of values taken
by the function c : A → N

∗ which associates to each arc a ∈ A a consumption
weight c(a) = ca.

• M is the set of initial markings: M = {M0(a)|a ∈ A} is the set of values
taken by the function M0 : A → N which associates to each arc a ∈ A an
initial number of tokens M0(a).

• L is the set of execution times: L = {ℓ(ti)|ti ∈ T } is the set of values taken by

28



2.2. Dataflow Models of Computation

the function ℓ : T → R
+ which associates to each actor ti ∈ T an execution

time ℓ(ti) = ℓi.

Three weights are associated to each arc: the production rate, the consumption
rate and the initial marking. The production rate pa is the number of data items
produced by ti on the arc a = (ti, tj) at the end of each computation and the
consumption rate ca is the number of items consumed by tj from a at the beginning
of each computation. Note that tj is not executed if the number of items in the FIFO
queue is insufficient. The initial marking of the arc a is denoted M0(a) and indicates
the number of items present at the beginning of the execution of the application.
The computation of a task ti requires ℓi time units.

Figure 2.3 shows an SDFG composed of two tasks t1 and t2 linked by an arc
a. Production and consumption weights (or rates) are indicated respectively at the
origin and the end of the arc.

t1 t2
a

2 3

. . . . . . . .3

Figure 2.3 – An SDFG graph with two tasks t1 and t2 and an arc a = (t1, t2) with
pa = 2, ca = 3 and M0(a) = 3.

The expansion is a technique which consists in converting an SDFG into an
HSDFG. This transformation is done at the expense of a possibly exponential growth
of the size of the graph. A first version of the expansion is presented in [Lee and
Messerschmitt, 1987]. The transformation is based on token ordering. If an actor t
of an SDFG graph produces p tokens, the expanded HSDFG graph has p outgoing
arcs connected to the consumer. Also, each actor is duplicated as many times as it
is executed in one iteration, where an iteration consists in executing each actor just
as many times as necessary to bring the system back to its initial marking.

t1

t1

t1

t2

t2

. . . . . . . .1

. . . . . . . .1

. . .
. . .

. .1

. . . . . . . .1

. . .
. . .

. .1
. . .

. . .
. .1

Figure 2.4 – An HSDFG equivalent to the SDFG in Figure 2.3 obtained by expan-
sion. Example from [Lee and Messerschmitt, 1987].

Several other versions of the expansion have been proposed [Marchetti and
Munier-Kordon, 2009a; de Groote et al., 2012; Sriram and Bhattacharyya,
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2009; Geilen and Stuijk, 2010; Saha et al., 2006]. For instance, in [Ito and Parhi,
1994] a version is presented which focuses of the conservation of the precedence con-
straints. Compared to the original version of the expansion this results in an HSDFG
with fewer arcs and speeds up the algorithms working on the HSDFG model.

The HSDFG obtained by expanding an SDFG is potentially of exponential size
compared to the SDFG. This implies that polynomial time algorithms on HSDFG
models obtained by expansion are not necessarily polynomial with respect to the
underlying SDFG models.

2.2.4 Cyclo-Static Dataflow model

The Cyclo-Static Dataflow Graph (CSDFG) model [Bilsen et al., 1995] is an exten-
sion of the SDFG model with consumption and production of actors decomposed
into phases executed cyclically. Each actor has a fixed number of phases and each
phase produces or consumes a specific number of items.

A CSDFG is a directed weighted graph Gcsdf = (T , A, P , C, M, L) where:

• T is the set of actors,

• A is the set of arcs,

• P is the set of production vectors: P = {p(a)|a ∈ A} is the set of values taken
by the function p which associates to each arc a = (ti, ·) ∈ A a production
vector p(a) = [pa(1), · · · , pa(ϕi)] ∈ (N)ϕi where ϕi is the number of phases
associated to the actor ti and with

∑ϕi

k=1 pa(k) = pa > 0.

• C is the set of consumption vectors: C = {c(a)|a ∈ A} is the set of values taken
by the function c which associates to each arc a = (·, ti) ∈ A a consumption
vector c(a) = [ca(1), · · · , ca(ϕi)] ∈ (N)ϕi where ϕi is the number of phases
associated to the actor ti and with

∑ϕi

k=1 ca(k) = ca > 0.

• M is the set of initial markings: M = {M0(a)|a ∈ A} is the set of values
taken by the function M0 : A → N which associates to each arc a ∈ A an
initial number of tokens.

• L is the set of vectors of execution times: L = {ℓ(ti)|ti ∈ T } is the set of
values taken by the function ℓ which associates to each actor ti ∈ T a vector
of execution times ℓ(ti) = [ℓi(1), · · · , ℓi(ϕi)] ∈ (R+)ϕi where ϕi is the number
of phases associated to the actor ti.

The kth phase of task ti is denoted ti(k), k ∈ {1, · · · , ϕi}, and its execution
time ℓi(k). The cyclic execution of actors is expressed as follows: the kth firing of
actor ti executes phase k mod ϕi. The number of data items produced on (resp.
consumed from) arc a = (ti, tj) during phase k is denoted pa(k) (resp. ca(k)). The
total production (resp. consumption) over all the phases is denoted pa =

∑ϕi

k=1 pa(k)
(resp. ca =

∑ϕj

k=1 ca(k)).

Figure 2.5 shows an example of CSDFG graph with one phase for task t1 and two
phases for task t2. Production and consumption vectors are shown between square
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brackets.

t1 t2
a

[2] [1, 2]

. . . . . . . .3

Figure 2.5 – A CSDFG graph with a single arc a = (t1, t2) and weights [pa(1)] = [2],
[ca(1), ca(2)] = [1, 2] and M0(a) = 3. Thus ϕ1 = 1, ϕ2 = 2, pa = 2 and ca = 3.

2.2.5 Computation Graph model

The Computation Graph (CG) model [Karp and Miller, 1966] is another extension
of the SDFG model, with a threshold associated to a consumption. The threshold
indicates when the number of data items on arc a = (·, t) is sufficient to execute
actor t. At the beginning of a computation the actor peeks, that is reads from
the FIFO queue, as many data items as indicated by a threshold, denoted θa, and
consumes ca of these items. The consumption rate ca must clearly be smaller than
the threshold on consumption, ca ≤ θa. Note that if the number of items in the
FIFO queue is less than θa the actor cannot be executed.

Figure 2.6 shows an example of CG with a threshold on consumption. The
consumption weight and the threshold appear separated by a colon, ca : θa.

t1 t2
a

2 3 : 6

. . . . . . . .3

Figure 2.6 – A CG with a single arc a = (t1, t2) and a threshold θa = 6. Task t2

requires 6 data items in the FIFO queue to be executed and, when it is executed, it
consumes only ca = 3 data items.

2.2.6 Cyclo-Static Dataflow model with initial phases

Expressing the way an actor ti is initialized can be done with initial phases. The
initialization is decomposed into σi initial phases executed once, at the start of
the application. The σi + ϕi phases of ti are numbered from 1 − σi to ϕi, with
{1 − σi, · · · , 0} the set of initial phases and {1, · · · , ϕi} the set of cyclic execution
phases.

Figure 2.7 shows a CSDFG with two initial phases and two cyclic phases for actor
t2. The initial phases are indicated between parentheses before the cyclic phases.
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t1 t2
a

[2] (3, 1)[1, 2]

. . . . . . . .3

Figure 2.7 – A CSDFG with initial phases. The graph consists in a single arc
a = (t1, t2) with [pa(1)] = [2], (ca(−1), ca(0)) = (3, 1), and [ca(1), ca(2)] = [1, 2], thus
ϕ1 = 1, σ1 = 0, ϕ2 = 2 and σ2 = 2.

Note that the CSDFG with initial phases is an intermediate model introduced for
the purpose of the presentation of the initialization steps for static dataflow graphs.

2.2.7 Phased Computation Graph model

The Phased Computation Graph (PCG) [Thies et al., 2002] extends the CSDFG
model with initial phases by associating to each consumption phase a threshold as
in the CG model. Every actor’s execution is divided into initial phases followed
by cyclic execution phases. As explained in the previous section, initial phases are
executed once at the start of the application.

An PCG graph is a directed weighted graph G = (T , A, P , C, Θ, M, L) where:

• T is the set of actors,

• A is the set of arcs,

• P is the set of production vectors: P = {p(a)|a ∈ A} is the set of values taken
by the function p which associates to each arc a = (ti, ·) ∈ A a production
vector p(a) = (pa(1 − σi), · · · , pa(0)) [pa(1), · · · , pa(ϕi)] ∈ (N)σi × (N)ϕi where
σi is the number of initial phases and ϕi the number of cyclic phases associated
to the actor ti, with

∑ϕi

k=1 pa(k) = pa > 0. The initial production rates appear
between the parentheses and the cyclic production rates appear between the
square brackets.

• C is the set of consumption vectors: C = {c(a)|a ∈ A} is the set of values taken
by the function c which associates to each arc a = (·, ti) ∈ A a consumption
vector c(a) = (ca(1−σi), · · · , ca(0)) [ca(1), · · · , ca(ϕi)] ∈ (N)σi ×(N)ϕi where σi

is the number of initial phases and ϕi the number of cyclic phases associated to
the actor ti, with

∑ϕi

k=1 ca(k) = ca > 0. The initial consumption rates appear
between the parentheses and the cyclic consumption rates appear between the
square brackets.

• Θ is the set of threshold vectors: Θ = {θ(a)|a ∈ A} is the set of values taken
by the function θ which associates to each arc a = (·, ti) ∈ A a threshold vector
θ(a) = (θa(1 − σi), · · · , θa(0)) [θa(1), · · · , θa(ϕi)] ∈ (N)σi × (N)ϕi where σi is
the number of initial phases and ϕi the number of cyclic phases associated to
the actor ti, with ca(k) ≤ θa(k), ∀k ∈ {1 − σi, · · · , ϕi}. The initial thresholds
appear between the parentheses and the cyclic thresholds appear between the
square brackets.

• M is the set of initial markings: M = {M0(a)|a ∈ A} is the set of values
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taken by the function M0 : A → N which associates to each arc a ∈ A an
initial number of tokens.

• L is the set of vector of execution times: L = {ℓ(ti)|ti ∈ T } is the set of
values taken by the function ℓ(ti) which associates to each actor ti ∈ T a
vector of execution times ℓ(ti) = (ℓi(1 − σi), · · · , ℓi(0)) [ℓi(1), · · · , ℓi(ϕi)] ∈
(R+)σi × (R+)ϕi where σi is the number of initial phases and ϕi the number
of cyclic phases associated to the actor ti. The initial execution times appear
between the parentheses and the cyclic execution times appear between the
square brackets.

Every consumption phase of a task ti on arc a = (·, ti) has a threshold θa(k),
such that ca(k) ≤ θa(k), where k ∈ {1 − σi, · · · , 0} ∪ {1, · · · , ϕi} is the set of phases
of task ti.

Figure 2.8 pictures a PCG graph where task t2 has two initial phases and two
cyclic phases. A threshold appears only when strictly superior to the associated
consumption rate.

t1 t2
a

[2] (3, 1 : 3)[1 : 3, 2]

. . . . . . . .3

Figure 2.8 – A PCG with a single arc a = (t1, t2) and thresholds θa(−1) = 3 and
θa(0) = 3 for the σ2 = 2 initial phases and θa(1) = 3 and θa(2) = 2 for the ϕ2 = 2
cyclic execution phases.

2.3 Comparison between MoCs

The remainder of the thesis exploits the SDFG, CSDFG and PCG models. This
section illustrates the benefit of the CSDFG and PCG models. Section 2.3.1 com-
pares an SDFG and a CSDFG version of an H263 encoder. Section 2.3.2 illustrates
the PCG behavior with a three-tap filter. Finally, Section 2.3.3 explains the notion
of reentrance.

2.3.1 SDFG and CSDFG

The CSDFG model is an extension of the SDFG model, it refines actor execution
into phases. This change allows a better representation of a dataflow application and
a finer analysis. We illustrate the benefit of a CSDFG compared to an SDFG model
with Figure 2.9 from [Oh and Ha, 2002], showing an CSDFG and a SDFG version of
the H263 encoder. The encoder is composed of 8 actors: Read From Device (RFD),
Motion Estimation (ME), Distributor (Dist), Motion Block Encoding (MBE), Mo-
tion Block Decoding (MBD), Motion Compensation (MC), Variable Length Coding
(VLC) and Write To Device (WTD).
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(b)

Figure 2.9 – (a) The H263 encoder modeled by an SDFG; (b) the same application
modeled by a CSDFG, where the vectors [1, 0, · · · , 0] and [1, · · · , 1] have 99 elements.

The H263 encoder partitions images into blocks which are treated individually
and also recombined for motion estimation to give a better compression of the next
image. With the SDFG model, the motion block encoding (MBE) has to wait until
the distributor (Dist) has finished to decompose the image into blocks. With the
CSDFG model, motion block encoding can start immediately after the first block is
stored into the FIFO queue by the distributor.

Using an As Soon As Possible (ASAP) schedule (formally described later), if one
block takes one time unit to be produced by actor Dist, motion block encoding will
start after 1 time unit with the CSDFG model while it will wait 99 time units with
the SDFG model. Thus latency is significantly reduced with the CSDFG.

2.3.2 PCG expressiveness

The expressiveness of the PCG may be demonstrated by showing that it allows a
more compact representation of the same applications than other static dataflow
graph models. This section illustrates this improvement with the example shown in
Figure 2.10.

Figure 2.10 is a three-tap filter from [Parhi, 1995]. The input stream is decom-
posed in even and odd samples, x(2k) and x(2k + 1), similarly the output stream
is decomposed into streams of even and odd samples, y(2k) and y(2k + 1). Values
a0, a1 and a2 are coefficients. Block D performs a one-sample delay operation on its
input sequence. Nodes marked × and + represent arithmetic operations.

To compute y(2k) the filter combines x(2k), x(2k − 1) and x(2k − 2) while
y(2k + 1) is a combination of x(2k + 1), x(2k) and x(2k − 1). This representation
allows parallel computation of y(2k) and y(2k + 1)
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D

D

x(2k + 1) x(2k)

x(2k − 2)

x(2k − 1)

× a0 × a1 × a2

+ + y(2k)

× a0 × a1 × a2

+ + y(2k + 1)

Figure 2.10 – Three-tap filter from [Parhi, 1995].

Figure 2.11 illustrates the three-tap filter modeled by a SDFG (Figure 2.11(a))
and a PCG (Figure 2.11(b)). The presence of initial tokens in the SDFG symbolizes
the necessary delay to feed y2k and y2k+1 with the previous values of x2k and x2k+1.
Omitted weights are equal to 1. The initial tokens represent initial data. The
behavior is represented in the PCG by using a threshold to peek at the last three
items but consume only the oldest one. Note that we consider x0 to be the first
entry value.

xk

x2k+1
x2k

y2k

y2k+1

Join

yk

2

..
..
..
..0

. .
. .
. .
. .1

2

. . . . .
. . . 0

. . . . . . . .
0

. . . . .
. . .1

. . . . . . . .0

. . .
. . .

. .1

. . . . . . . .

1

. . . . . . . .0

. .
. .
. .
. .0

2

........0

(a)

xk

y2k

y2k+1

yk

[1]

[1,1:3]

. .
. .
. .
. .0

[1]

[1:3,1]

. . . . . . . .0

[0,1]

[1]

. . . . . . . .0

[1,0]

[1]

. .
. .
. .
. .0

(b)

Figure 2.11 – (a) An SDFG representing the three tap filter of Figure 2.10; (b)
the same application modeled with a PCG.

As illustrated with Figure 2.11(a) an initial token could also be considered as a
delay. In this thesis, tokens will always be considered as data items.
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2.3.3 Reentrance

The reentrance behavior (opposed to sequential behavior), also called overlapping
behavior allows a task of a MoC to start a new execution without necessarily waiting
for the end of its previous execution.

Originally the authors of [Lee and Messerschmitt, 1987] were considering sequen-
tial behavior. To improve the concurrency in a schedule the behavior of a MoC may
be reentrant. For instance, in [Desnos et al., 2016] the authors propose a technique
to reduce the memory footprint of a SDFG with a reentrant behavior.

Modeling reentrant behavior is a great improvement on the SDFG model since
introduction of self-concurrency for the actor increase does not necessarily demand
many modifications on existing techniques and gives additional freedom to the
scheduling.

The work of this thesis has been made with non-reentrance constraints, as as-
sumed in previous works. However, reentrancy can be exploited in a future work and
will be discussed later. The non-reentrant behavior can be expressed by adding a
self-loop to each task of a MoC with pa = ca = 1 and M0(a) = 1 as illustrated in Fig-
ure 2.12. Adding self-loops could also be used to control of the reentrant behavior,
for instance, a self-loop with an initial marking equal to 2 allows two simultaneous
executions of the task. This technique is easily extended to the CSDFG and PCG
models. For better readability figures in the sequel are shown without self-loops.

t

. . . . . . . .1

11

Figure 2.12 – A SDFG with task t and its self-loop.

2.4 Synchronous Dataflow behavior

This section focuses on the SDFG model. It presents basic SDFG model properties
and recalls important results. The notions of consistency, useful tokens, normaliza-
tion and liveness are introduced and explained. These notions will be extended to
the CSDFG and the PCG model in the next chapter.

Section 2.4.1 recalls the notion of consistency and indicates how repetition factors
are computed. Section 2.4.2 explains the notion of useful tokens. Normalization is
described in Section 2.4.3. Section 2.4.4 recalls the notion of liveness; a sufficient
condition of liveness and an algorithm to compute a live initial marking are also
given.
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2.4. Synchronous Dataflow behavior

2.4.1 Repetition vector and consistency

Consistency has been introduced in the original paper on the SDFG model [Lee and
Messerschmitt, 1987]. Recall that pa (resp. ca) is the production (resp. consump-
tion) rate on an arc a of an SDFG. Considering an SDFG Gsdf = (T , A, P , C, M, L)
its topology matrix Γ, of size |A| × |T |, is defined by:

Γai =





pa if a = (ti, ·)
−ca if a = (·, ti)
0 otherwise

.

A connected SDFG is consistent if Γ has rank |T | − 1. Then there exists a
non-zero vector R = [R1, · · · , R|T |] ∈ (N∗)|T | with coprime components such that
Γ.RT = 0. The vector R is called the repetition vector.

The repetition factor Ri of a task ti ∈ T gives the minimal number of times task
ti must be executed for the initial marking of the graph to be reached again. A
sequence of task executions where each task is executed Ri times is called a system
iteration or simply, an iteration. Figure 2.13(a) depicts an SDFG with repetition
vector R = [2, 3, 4].

Consistency ensures the existence of the repetition vector. The repetition factors
must respect the following balance equations: ∀a = (ti, tj) ∈ A, pa.Ri = ca.Rj.

t1 t2

t3

a1

a2a3

3 2

. . . . . . . .4

4

3

. . . . . . . .

0

1

2

. .
. .
. .
. .

0 





3 0 −2
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Figure 2.13 – The SDFG on the left has for topology matrix the matrix Γ on the
right. The SDFG is consistent and its repetition vector is R = [2, 3, 4]

Consistency guarantees that if the initial marking is sufficient for a complete
iteration to be feasible then the number of times the tasks can be executed may
grow unbounded while keeping the number of tokens bounded.

2.4.2 Useful tokens

The notion of useful tokens has been introduced in [Marchetti and Munier-Kordon,
2009a] for the SDFG model. Let gcda = gcd(pa, ca) be the greatest common divisor
of pa and ca. During the execution the number of tokens on arc a cannot go below
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M0(a) mod gcda. The idea of useful tokens is that any arc a in the SDFG model
could have its initial marking M0(a) rounded to the largest multiple of gcda smaller
than itself without changing precedence constraints or schedulability of the SDFG.
The useful tokens property is formally described in Lemma 1.

Lemma 1. [Marchetti and Munier-Kordon, 2009a] Let Gsdf = (T , A, P , C, M, L)
be an SDFG. Replacing, for every arc a ∈ A, M0(a) by ⌊M0(a)⌋gcda

, where gcda =
gcd(pa, ca) and ⌊x⌋gcda

= ⌊ x
gcda

⌋ × gcda, does not change precedence constraints nor
schedulability of the SDFG.

Figure 2.14 illustrates an SDFG with M0(a) = 7. Since the numbers of data
items produced or consumed are multiples of gcda = 3, the initial marking can be
rounded down to 6 without affecting the dataflow behavior.

t1 t2
a

3 6

. . . . . . . .7

Figure 2.14 – An SDFG with M0(a) = 7. By applying the useful tokens property,
the initial marking of a can be reduced to ⌊M0(a)⌋3 = 6 without effect on the
precedence constraints.

2.4.3 Normalization and Zi notation

Normalization is a transformation introduced in [Marchetti and Munier-Kordon,
2009a] to simplify the analysis of SDFG models. This transformation yields a nor-
malized SDFG such that all consumption and production weights associated to a
task are identical. As a result, the total number of tokens on each circuit of the
normalized graph is invariant.

Consider a consistent SDFG and let lcmR = lcm(R1, · · · , R|T |) be the least
common multiple of the components of its repetition vector R. For each arc a =
(ti, tj), let Na = lcmR

Ri.pa
(or equivalently Na = lcmR

Rj .ca
). Upon multiplying the weights

(pa, ca and M0(a)) of each arc a by Na, the weights adjacent to each task are
made equal and the graph is normalized. This transformation does not modify the
precedence constraints.

The values Na make up a vector N = [Na1
, · · · , Na|A|

] called the normalization
vector. The transformation is applicable only on consistent graphs and calls for
simple computations. Note however that the components Ri of the repetition vector
and their least common multiple may in some cases be large integers.

The normalized weight of task ti (resp. tj) with outgoing (resp. incoming) arc
a = (ti, tj) is Zi = pa.Na (resp. Zj = ca.Na). Normalization is illustrated in Figure
2.15.
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Figure 2.15 – (a) An SDFG with repetition vector R = [2, 3, 4]. (b) The equivalent
normalized graph obtained with the normalization vector N = [2, 1, 3].

Normalization is a reversible transformation; it is easily seen that dividing for
each arc a each weight by Na gives back the initial non-normalized graph. This
implies that a consistent SDFG can be normalized without any loss of information.
Normalization will be used to simplify multiple proofs and will also be applied in
conjunction with a sufficient condition of liveness to compute a live initial marking.

2.4.4 Liveness

Checking liveness is a difficult problem widely studied in the dataflow community.
The liveness property guarantees proper execution of the application modeled by a
dataflow graph: a live marking ensures that each actor may be fired infinitely often
hence as many times as required during a dataflow execution.

After recalling different techniques to check liveness for the SDFG model, a
sufficient condition of liveness is presented in this section that will be exploited later
on because of its low time complexity. At the end of the section an algorithm is
given to compute a live marking for an SDFG model.

State of the art of the liveness problem for SDFG models

The complexity of liveness checking is still unknown for SDFG and more expressive
models. However, checking liveness on an HSDFG model is done in polynomial time:
remove every arc with non-zero initial marking, if the resulting graph is acyclic the
HSDFG is live [Commoner et al., 1971].

For consistent SDFGmodels two equivalent techniques—in terms of complexity—
exist to check liveness. A first technique consists in expanding the SDFG into an
HSDFG and then applying the algorithm described in [Commoner et al., 1971]. A
second technique consists in executing symbolically the SDFG until it reaches a
cyclic pattern. Symbolic execution techniques are presented for the SDFG model
in [Ghamarian et al., 2006a; Khasawneh, 2007]. The technique consists in attempt-
ing to execute all the tasks exactly as many times as indicated by their repetition
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factor (to perform a system iteration). If it is possible to perform an iteration then
it is possible to perform an infinite number of iterations and the SDFG is live.

Both expansion and symbolic execution techniques have exponential complexity;
the expansion may give exponential size graphs while symbolic execution could imply
an exponential number of computations.

Sufficient condition of liveness for SDFG models

One technique to get arround the complexity issue is to use a sufficient condition
of liveness. A technique is proposed in [Marchetti and Munier-Kordon, 2009a] to
identify a live marking in polynomial time. This sufficient condition of liveness
(SCL) is given in Theorem 1. Since the condition is sufficient but not necessary, an
initial marking may not respect the condition and yet be live.

Theorem 1 (SCL). [Marchetti and Munier-Kordon, 2009a] Let Gsdf = (T , A, P ,
C, M, L) be a normalized SDFG with only useful tokens. Gsdf is live if for every
cycle µ in Gsdf the initial marking satisfies:

∑

a∈µ

M0(a) >
∑

a∈µ

(ca − gcda),

with gcda the greatest common divisor of pa and ca.
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Figure 2.16 – (a) Normalized SDFG with an initial marking that is live according
to Theorem 1. (b) Counter example showing that the sufficient condition of liveness
of Theorem 1 is not necessary.

Figure 2.16(a) shows an SDFG with a cycle µ = (t1, t2, t3) and with an initial
marking live according to SCL since

∑
a∈µ M0(a) = 8 and

∑
a∈µ(ca − gcda) = 7.

The SDFG of Figure 2.16(b), which does not respect the sufficient condition since∑
a∈µ M0(a) = 20 and

∑
a∈µ(ca − gcda) = 21 is live since the execution sequence

t2t2t3t3t3t1t2t3t3t1 bringing the system back to its initial state is feasible.
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Liveness computation

This section presents a linear program deduced from Theorem 1 to compute a live
marking on a normalized SDFG.

Let Gsdf = (T , A, P , C, M, L) be a normalized SDFG. The mixed integer linear
program 1 [Benabid-Najjar et al., 2012] expresses the condition SCL:

Mixed-Integer Linear Program 1: live SDFG (SCL)
minimize

∑

a∈A

M0(a)





subject to γtj
− γti

+ M0(a) − ε ≥ ca − gcda ∀a = (ti, tj) ∈ A
M0(a) = gcda · m0(a) ∀a ∈ A
M0(a) ∈ N, m0(a) ∈ N ∀a ∈ A

γti
∈ R ∀ti ∈ T

ε ∈ R
∗+ very small.

There cannot be constraints with strict inequalities in a linear program. The intro-
duction of the value ε transforms constraints with a strict inequality into non-strict
inequality constraints. The value ε ∈ R

∗+ is chosen very small in order to have
a minimal impact on the result. The first constraint thus differs slightly from the
inequality of SCL.

The mixed-integer program 1 is not scalable since the integer part makes the
problem require non polynomial-time solution techniques such as branch-and-bound.
However, the problem can be solved approximately by relaxing the constraint that
variables be integer and rounding the result up to the closest integer. Using this
approximation technique gives a polynomial-time algorithm.

As the solution obtained by rounding to the closest integer is not compatible
with the useful tokens assumption (see Section 2.4.2), resulting initial markings are
rounded to the first larger multiple of gcda.

2.5 SDFG scheduling and throughput computa-

tion

Dataflow scheduling analysis has been the object of many studies. Scheduling an
SDFG requires that it be consistent and its initial marking be live. These two
conditions ensure that the marking will be bounded and deadlock will be avoided
during an execution. Different performance issues can be analyzed in relation with
scheduling: latency, throughput, memory consumption, Network on Chip (NoC)
bottlenecks, etc.

There are three main types of static dataflow graph schedules: the ASAP sched-
ule, the K-periodic schedule and the one-periodic schedule. The ASAP schedule
has been introduced in Section 2.4.4 with the symbolic execution to verify live-
ness [Ghamarian et al., 2006b]. The K-periodic schedule introduced in [Bodin et al.,
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2012] allows to compute a periodic-constrained optimal schedule with a better time
complexity (still exponential). The one-periodic schedule (also called strictly pe-
riodic schedule) is a particular case of the K-periodic schedule and the minimum
period one-periodic schedule can be computed with a polynomial time complex-
ity [Benabid-Najjar et al., 2012].

This section recalls necessary notions for the scheduling problem and details the
three types of dataflow scheduling methods: ASAP, one-periodic and K-periodic. It
is divided into six subsections. The first explains the boundedness property. Sec-
tion 2.5.2 defines a feasible schedule and formally describes precedence constraints.
Section 2.5.3 defines the throughput and period associated to a schedule and the
relation between them. Section 2.5.4 defines and characterizes the ASAP schedule.
Section 2.5.5 details the one-periodic schedule. Section 2.5.6 defines the K-periodic
schedule.

2.5.1 Boundedness

A dataflow graph is said to be bounded if, during its execution, its marking remains
bounded. This property depends on the schedule employed.

Consider the single rate application of Figure 2.17 composed of two strongly
connected components and an arc from the first to the second. If the schedule, for
instance ASAP, gives the first strongly connected component a higher throughput
than the second, the number of tokens on arc a will grow unbounded during the
execution.
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Figure 2.17 – A dataflow graph composed of two strongly connected components
linked by arc a = (t2, t10).

One way to ensure boundedness, is to restrict scheduling to strongly connected
graphs. This assumption is very restrictive since many applications modeled by
dataflow graphs, for instance acyclic, do not respect it. This thesis proposes schedul-
ing methods that ensure boundedness without this restriction.
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2.5. SDFG scheduling and throughput computation

2.5.2 Schedule and precedence constraints

Scheduling a dataflow graph consists in finding the starting time of each task ac-
cording to a given strategy (ASAP, one-periodic, ...). All schedules must satisfy
the precedence constraints imposed by the model, such that a task cannot begin to
be executed before its inputs are available. Precedence constraints were formally
described in terms of the consumption/production rates and the initial marking
in [Marchetti and Munier-Kordon, 2009a] for the SDFG model. The first part of
this section introduces the notion of feasible schedule, the second part formally de-
scribes precedence constraints.

Feasible schedule definition

For an SDFG, a schedule s is characterized by the starting times s〈t, n〉 of the
executions 〈t, n〉, with t a task of the SDFG and n the nth execution of t. Note that
n is unbounded.

A schedule s is feasible if all its executions fulfill the precedence constraints.
Satisfaction of precedence constraints ensures that the computation of a task ti

cannot start before all the data items it requires are available.

The characterization of the precedence constraints between tasks for SDFG mod-
els can be expressed formally in terms of the positiveness of the markings as we shall
see now.

SDFG precedence constraints

Consider an SDFG Gsdf = (T , A, P , C, M, L). M0(a) is the initial marking of arc
a = (ti, tj) ∈ A and M(a) is the marking after several executions have occurred.
After ni executions of ti and nj executions of tj,

M(a) = M0(a) + ni.pa − nj.ca.

There is a precedence constraint between the executions 〈ti, ni〉 and 〈tj, nj〉 when
the nth

j execution of tj cannot begin before the nth
i execution of ti. This may be

expressed by writing that the marking M(a) cannot be negative:

1. After the execution of 〈ti, ni〉, there are enough data items on arc a to execute
〈tj, nj〉 if:

M0(a) + ni.pa − nj.ca ≥ 0. (2.1)

Redundant constraints do not need to be taken into account. This may be expressed
in terms of the marking on arc a as follows:

2. Before the execution 〈ti, ni〉, there are enough data items to execute 〈tj, nj −1〉
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but not enough for the execution 〈tj, nj〉 if:

ca > M0(a) + pa.(ni − 1) − ca.(nj − 1) ≥ 0. (2.2)

Combining equations 2.1 and 2.2 gives the following lemma:

Lemma 2. [Marchetti and Munier-Kordon, 2009a] Consider an arc a = (ti, tj) of
an SDFG Gsdf = (T , A, P , C, M, L). There is a direct precedence constraint between
executions 〈ti, ni〉 and 〈tj, nj〉 if:

pa > M0(a) + pa.ni − ca.nj ≥ max(pa − ca, 0).

As in the sequel we shall only consider direct, or non-redundant, precedence
constraints, we shall drop the qualificatives direct and non-redundant.

For the SDFG depicted in Figure 2.18 there is a precedence constraint between
〈t1, 1〉 and 〈t2, 2〉. Indeed, the first execution of t2 can be executed before the first
execution of t1 while the second execution of t2 has to wait until the first execution
of t1 occurred. We check that the formula of Lemma 2 gives 3 > 2 + 3 − 4 ≥ 1,
meaning that a precedence constraint exists between executions 〈t1, 1〉 and 〈t2, 2〉.

t1 t2
a

3 2

. . . . . . . .2

Figure 2.18 – An SDFG with a precedence constraint between the second execution
of t2 and the first execution of t1.

Lemma 2 covers precedence constraints between tasks. It leaves the choice of
following of imposing or not the constraint that the actors be sequential. Following
[Lee and Messerschmitt, 1987; Marchetti and Munier-Kordon, 2009a] we impose
that the actors be sequential, hence 〈ti, n〉 directly precedes 〈ti, n + 1〉, without
overlapping. Note that Lemma 2 is still valid with ti = tj, allowing sequential
behavior of a task of an SDFG to be expressed with a self-loop.

2.5.3 Throughput and iteration period

The throughput of a task is the number of times the task is executed during a time
unit. More precisely, the throughput of a task is defined in terms of a schedule as:

λ(t) = lim
n→∞

n

s〈t, n〉
.

For consistent live SDFG models, we define an iteration as an execution of the
tasks as many times as indicated by the repetition vector. The iteration period T is
the time interval between (the beginnings of) two consecutive iterations. The SDFG
system throughput Λ is measured as the inverse of the iteration period Λ = 1

T
. Task
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throughput is the product of the system throughput by the number of executions of
the task in one iteration.

Worst case execution time

Schedules such as the one-periodic or the K-periodic schedule are computed at com-
pile time. This means that the task execution times are evaluated before the appli-
cation is executed. The dataflow community tends to use the Worst Case Execution
Time (WCET) possible for each task. The main reason is that WCET gives func-
tional guarantees.

Task execution time may be data dependent. By running tasks on representative
data sets, their average and worst computation times as well as other statistics may
be evaluated. Following a schedule obtained using the average computation time
may prove unfeasible on specific data sets.

The only way to have a functional guarantee is to construct schedules based on
WCET. Constructing a schedule using the WCETs gives a lower bound on through-
put.

Throughput analysis

SDFG throughput analysis techniques are divided in two categories: they use either
an expansion into an HSDFG, or the construction of a schedule with particular struc-
ture. Max-Plus algebra is used in [de Groote et al., 2012] to compute an expansion.
This approach is similar to computing the expansion into an HSDFG, however the
graph obtained is smaller and thus throughput analysis is faster. The throughput
analysis presented in [Ghamarian et al., 2006b; Stuijk et al., 2006] avoids a trans-
formation of the SDFG into a larger graph. The throughput is determined directly
from the ASAP schedule. All the techniques described above are optimal in the
sense that they give the maximal throughput reachable by the application assuming
the task computation times are exactly known. Unfortunately, these techniques also
have exponential complexity.

No polynomial technique has been found to evaluate maximum throughput for
the SDFG model. One of the most powerful techniques is the K-periodic schedule
which gives an optimal throughput evaluation in a reasonable time on instances up
to thousand tasks if the components of the repetition vector are not too large [Bodin
et al., 2012]. To reduce the time complexity, lower bound approximation techniques
have been developed such as one-periodic analysis [Marchetti and Munier-Kordon,
2009b; Benabid-Najjar et al., 2012]. They allow throughput evaluation on graphs of
up to ten thousand tasks.
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2.5.4 ASAP scheduling

The ASAP schedule, which schedules a computation as soon as the necessary data is
available, is the simplest way—from a conceptual point of view—to define a schedule
for a dataflow graph. Moreover it has the advantage of being the fastest possible
schedule. Functional simulation or symbolic execution provide ways of computing
such a schedule. A self-timed implementation [Sriram and Bhattacharyya, 2009]
follows the ASAP schedule, up to transfer delays between data production and
consumption.

The formal characterization of the ASAP schedule is deduced from the prece-
dence constraints described in subsection 2.5.2. The SDFG model definition and
equation 2.1 give the following definition of the ASAP schedule:

Definition 1. Let Gsdf = (T , A, P , C, M, L) be a SDFG and s〈t, n〉 be the start time
of the nth execution of the task t according to schedule s. The schedule s is ASAP if

• ∀ti ∈ T , s〈ti, ni〉 is minimum with
s〈ti, 1〉 ≥ 0

and for every ni ∈ N
∗,

s〈ti, ni + 1〉 ≥ s〈ti, ni〉 + ℓi

• and, ∀a = (ti, tj) ∈ A,
s〈tj, nj〉 ≥ s〈ti, ni〉 + ℓi,

for all precedence constraints between 〈ti, ni〉 and 〈tj, nj〉, where nj ∈ N
∗.

The ASAP schedule exhibits two phases, a transient phase followed by a phase
where the start times have a periodic behavior [Chrétienne, 1985; Cohen et al., 1985].
The transient phase is proven to be bounded in [Baccelli et al., 1992].

Figure 2.19 illustrates the ASAP schedule associated to a simple SDFG. The
transient phase of the schedule reduces to one execution of t3. The periodic phase
follows, of which two periods are shown.
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Figure 2.19 – (a) A live SDFG graph. (b) ASAP schedule of the SDFG graph.
The transient phase of the ASAP schedule reduce to one execution of t3 with start
time s〈t3, 1〉 = 0. The sequences repeated periodically are delimited by the red lines.
Two periods are shown. The period is T = 12 and the system throughput is Λ = 1

12
.

Note that ASAP scheduling does not guarantee that the marking will be bounded
in general, although guarantee is provided for strongly connected graphs or acyclic
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graphs. Beside this restriction the drawback of this scheduling strategy is that
techniques to compute a schedule, such as the functional simulation or symbolic
execution, are done in exponential time.

2.5.5 One-periodic scheduling

The one-periodic schedule was introduced in [Marchetti and Munier-Kordon, 2009b]
and [Benabid-Najjar et al., 2012] for the SDFG model. This section recalls the
definition of a one-periodic schedule and presents a theorem to characterize it.

A one-periodic schedule is defined by its iteration period T and a first start time
s〈ti, 1〉 for each task ti ∈ T . Each task ti is executed at regular intervals. This time
interval is the task’s period and is denoted by wi. It satisfies wi = T

Ri
.

More formally the definition of a one-periodic schedule for the SDFG model is:

Definition 2. Let Gsdf = (T , A, P , C, M, L) be an SDFG and s〈t, n〉 be the start
time of the nth execution of task t according to schedule s. The schedule s is one-
periodic of iteration period T if for every task ti ∈ T ,

s〈ti, n〉 = s〈ti, 1〉 + (n − 1).wi

where wi = T
Ri

≥ ℓi is the period of ti and Ri is its repetition factor.

The following theorem [Benabid-Najjar et al., 2012] characterizes the existence
of a one-periodic schedule for the SDFG model.

Theorem 2. [Benabid-Najjar et al., 2012] Let Gsdf = (T , A, P , C, M, L) be a nor-
malized SDFG with an initial marking satisfying the useful tokens assumption. A
schedule s is a feasible one-periodic schedule of iteration period T iff,

• for every task ti ∈ T , the initial starting time satisfies
s〈ti, 1〉 ≥ 0

and the period wi = T
Ri
, where Ri is the repetition factor of ti, verifies

wi ≥ ℓi,

• and, for every arc a = (ti, tj), the inequality
s〈tj, 1〉 − s〈ti, 1〉 ≥ ℓi + T

Zj .Rj
(Zj − M0(a) − gcda)

where gcda = gcd(Zi, Zj), holds.

The value T
Zj .Rj

is independent of the task since Zi.Ri = Zj.Rj, ∀ti, tj ∈ T 2.

Figure 2.20 illustrates a one-periodic schedule with iteration period T = 18,
start times s〈t1, 1〉 = 7, s〈t2, 1〉 = 0, s〈t3, 1〉 = 1.5 and task periods w1 = 9, w2 = 6,
w3 = 4.5.
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Figure 2.20 – One-periodic schedule for the SDFG of Figure 2.19(a), with repeti-
tion vector R = [2, 3, 4]. The iteration period is T = 18 and task periods are w1 = 9,
w2 = 6 and w3 = 4.5. Two iterations are shown

The one-periodic schedule executes each task ti of the graph exactly Ri times
during the iteration period T . The one-periodic schedule of G guarantees a bounded
marking for any consistent SDFG G, in contrast with the ASAP schedule, which re-
quires additional assumptions such as strong connectivity or acyclic topology. Also,
this schedule can be computed or verified in polynomial time by using linear pro-
gramming.

2.5.6 K-Periodic scheduling

The K-periodic schedule is a generalization of the one-periodic schedule. Each task
ti has a Ki-periodic schedule, with time interval between the kth execution of ti and
its (k +Ki)

th execution equal to the time period wi. The formula for the task period
with the one-periodic schedule, wi = T

Ri
, where T is the iteration period, is now

replaced by wi

Ki
= T

Ri
, where Ki is the periodicity factor of task ti.

K-periodic scheduling is formally defined in [Bodin et al., 2012] for the SDFG
model. It is extended to the CSDFG model in [Bodin et al., 2016] and maximal
throughput is shown to be attained when for every task ti the periodicity factor Ki

is a multiple of the repetition factor Ri. This result is also valid for SDFGs since an
SDFG is a CSDFG with only one phase.

The characterization of a K-periodic schedule uses the precedence constraints
from Lemma 2:

Definition 3. [Bodin et al., 2012] Let Gsdf = (T , A, P , C, M, L) be an SDFG with
repetition vector R = [R1, · · · , R|T |] and a fixed periodicity vector K = [K1, · · · , K|T |].
A schedule s is K-periodic of iteration period T if the start times of the tasks ti ∈ T
satisfy

s〈ti, ni.Ki + mi〉 = s〈ti, mi〉 + ni.wi,

for all ni ∈ N
∗ and all mi ∈ {1, · · · , Ki}, where wi = Ki.

T

Ri

≥ Ki.ℓi is the period of

ti.

A necessary and sufficient condition of existence of a K-periodic schedule follows.
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Denote for each arc a = (ti, tj) ∈ A,

πmax
a (mi, mj) = ⌊M0(a) − Zi + gcda + Zi.mi − Zj.mj⌋gcdKa

,

πmin
a (mi, mj) = ⌈M0(a) − max{Zi − Zj, 0} + Zi.mi − Zj.mj⌉gcdKa

,

with gcdKa = gcd(Ki.Zi, Kj.Zj), mi ∈ {1, · · · , Ki}, mj ∈ {1, · · · , Kj}.

Theorem 3. [Bodin et al., 2012] Let Gsdf = (T , A, P , C, M, L) be a normalized
SDFG. A K-periodic schedule of iteration period T and periodicity vector K =
[K1, · · · , K|T |] is feasible iff:

• for every task ti ∈ T , the initial starting time satisfies
s〈ti, 1〉 ≥ 0

and the period wi = Ki.
T
Ri
, where Ri is the repetition factor of ti, verifies

wi ≥ Ki.ℓi,

• and, for every arc a = (ti, tj), the inequality

s〈tj, mj〉 − s〈ti, mi〉 = ℓi −
T

Zj.Rj

.πmax
a (mi, mj)

∀(mi, mj) ∈ {1, · · · , Ki} × {1, · · · , Kj} such as πmax
a (mi, mj) ≥ πmin

a (mi, mj),
holds.

The relation between start times s〈ti, n.Ki + mi〉 = s〈t, mi〉 + n.wi in Definition
3 expresses the fact that executions of task ti separated by Ki in the sequence of
task executions are separated in time by the period wi. Figure 2.21 illustrates the
K-periodic schedule of the SDFG pictured in Figure 2.19(a) with a periodicity vector
K = [2, 3, 4]. The schedule satisfies the conditions s〈ti, n.Ki +mi〉 = s〈ti, mi〉+n.wi

of Definition 3. The task periods are w1 = w2 = w3 = 12. For task t1 and n = 1,
we have s〈t1, 3〉 = s〈t1, 1〉 + 12 = 16 for m1 = 1 and s〈t1, 4〉 = s〈t1, 2〉 + 12 = 22 for
m1 = 2. For task t2 and n = 1, we have s〈t2, 5〉 = s〈t2, 2〉 + 12 = 15 for m2 = 2.

0 2 4 6 8 10 12 14 16 18 20 22 24

t1 t1 t1

t2 t2 t2 t2

t3 t3 t3 t3 t3

t1 t1

t2 t2 t2

t3 t3 t3 t3

Figure 2.21 – The K-periodic schedule of the SDFG of Figure 2.19(a) with K =
[R1, R2, R3] = [2, 3, 4], iteration period T = 12 and task periods w1 = w2 = w3 = 12.
K-periodic sequences are highlighted between the red lines; two system periods are
shown.

The scheduling method is restricted to strongly connected SDFGs in [Bodin
et al., 2012]. However, with Ki = Ri for all tasks ti of the graph, boundedness of
the marking is ensured as for the one-periodic schedule. The time complexity of
the proposed algorithms to find K-periodic schedules depends polynomially on the
values of the vector K.
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Chapter 2. Dataflow Models

2.6 Conclusion

This chapter has introduced static dataflow models, with increasing expressiveness
from the HSDFG to the PCG. Important notions were introduced in the context of
the SDFG model: consistency, repetition vector, useful tokens, normalization and
liveness. The remainder of the thesis will only address the SDFG, the CSDFG and
the PCG models. All the notions introduced in this chapter will be extended to
the CSDFG and PCG models. Three types of schedule were also introduced, ASAP,
one-periodic and K-periodic. These schedules will be extended to the CSDFG model
and the one-periodic schedule will be used for the mapping problem addressed in
Chapter 5.

The next chapter presents the extension of these notions to the CSDFG and the
PCG models. Extensions to the PCG model are a contribution of this thesis.
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Chapter 3. CSDFG behavior and extension to the PCG model

3.1 Introduction

This chapter extends the notions presented for the SDFG model to the CSDFG
and PCG models. The theoretical results thus obtained are used for the dataflow
generator presented in Chapter 4.

Consistency, useful tokens, normalization and liveness for the CSDFG model are
presented in Section 3.2. Section 3.3 details the ASAP, one-periodic and K-periodic
schedule for the CSDFG model. Section 3.4 extends notions from Section 3.3 to the
PCG model. Section 3.5 is the conclusion.

3.2 Cyclo-Static Dataflow Graph behavior

The CSDFG model, introduced in Section 2.2.4, is an extension of the SDFG model
and many notions from the SDFG model carry over to this model.

Section 3.2.1 explains the notion of functional equivalence between the SDFG
and the CSDFG model. Section 3.2.2 discusses the consistency of CSDFG models.
Section 3.2.3 extends the notion of useful tokens to the CSDFG model. Section
3.2.4 extends normalization to the CSDFG model. Section 3.2.5 introduces some
new notations for the CSDFG model. Finally, Section 3.2.6 extends the notion of
liveness to the CSDFG model.

3.2.1 The functionally equivalent SDFG of a CSDFG

The notion of functionally equivalent SDFG has been introduced in [Bhattacharyya
et al., 2000]. Let Gs = (T s, As, Ps, Cs, Ms, Ls) be an SDFG and Gc = (T c, Ac, Pc, Cc,
Mc, Lc) be a CSDFG with T s = T c and As = Ac. Two tasks, tc ∈ T c and the
corresponding task ts ∈ T s, are functionally equivalent if each consumption weight
associated to an input arc as = (·, ts) is the sum of the components of the consump-
tion vector of the corresponding arc ac = (·, tc), each production weight associated
to an output arc as = (ts, ·) is the sum of the components of the production vector
of the corresponding arc ac = (tc, ·) and the execution time of the task ts is the sum
of the components of the vector of execution times of tc.

To start a task computation, the functionally equivalent SDFG must wait for all
the data items needed for the computation phases of the corresponding CSDFG’s
task to be available. Similarly, the result of an SDFG’s task computation are made
available all at once at the end of the computation, instead of at the end of each
phase computation as soon as the phase results are obtained. Figure 3.1 illustrates
a CSDFG task and its functionally equivalent SDFG task.
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t

[1, 1] [3, 1]

(a)

t
2 4

(b)

Figure 3.1 – (a) A CSDFG task; (b) its functionally equivalent SDFG task.

If every task of Gs is functionally equivalent to the corresponding task of Gc

and if the initial markings of the two graphs are identical, then the SDFG Gs is
functionally equivalent to the CSDFG Gc.

We recall that pas and cas are the production and the consumption weights of
arc as ∈ As. Let ac = (tc

i , tc
j) ∈ Ac, pac and cac are defined for the CSDFG model

such that pac =
∑ϕi

k=1 pac(k) and cac =
∑ϕj

k=1 cac(k).

If, for each arc as ∈ As and its topological equivalent arc ac ∈ Ac, pas = pac ,
cas = cac and M0(a

s) = M0(a
c) and, for each task ts

i and its topological equivalent tc
i ,

ℓs
i =

∑ϕi

k=1 ℓc
i(k), then Gs is functionally equivalent to Gc. Note that if its functionally

equivalent SDFG is live, then a CSDFG is live, however, the converse is not true.
Functional equivalence is illustrated in Figure 3.2.

3.2.2 Consistency and repetition vector

The SDFG notion of consistency is extended to the CSDFG model in [Bilsen et al.,
1995]. If its functionally equivalent SDFG is consistent, then a CSDFG is consistent.

Let Gcsdf = (T , A, Pc, Cc, M, Lc) be a CSDFG and Gsdf = (T , A, Ps, Cs, M, Ls)
be its functionally equivalent SDFG. The topology matrix Γ of the CSDFG is identi-
cal to the topology matrix of its functionally equivalent SDFG, presented the Section
2.4.1. The matrix Γ, of size |A| × |T |, has elements:

Γa,i =





pa if a = (ti, ·)
−ca if a = (·, ti)
0 otherwise

.

The repetition vector R of a consistent CSDFG is computed using the calues pa

and ca, a ∈ A, thus, the repetition vectors associated to Gsdf and Gcsdf are identical.
Like the SDFG model, the CSDFG model verifies ∀a = (ti, tj) ∈ A, pa.Ri = ca.Rj.

Figure 3.2 shows a CSDFG and its functionally equivalent SDFG. As determined
for the SDFG in Section 2.4.1, their repetition vector is R = [2, 3, 4].
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Figure 3.2 – (a) A CSDFG, (b) the functionally equivalent SDFG, and (c) their
topology matrix, with associated repetition vector R = [2, 3, 4].

3.2.3 Useful tokens

The notion of useful tokens introduced in Section 2.4.2 for the SDFG model is
extended here to the CSDFG model. The notion must be adapted to the CSDFG
model since it expresses data transfers with a finer granularity than the SDFG model.
This has been done in [Benazouz et al., 2010; Stuijk et al., 2008].

Lemma 3. [Benazouz et al., 2010] Let Gcsdf = (T , A, P , C, M, L) be a CSDFG.
Replacing M0(a) by ⌊M0(a)⌋stepa

for every arc a = (ti, tj) ∈ A, with stepa =
gcd(pa(1), · · · , pa(ϕi), ca(1), · · · , ca(ϕj)) and ⌊x⌋stepa

= ⌊ x
stepa

⌋ × stepa, does not
change the precedence constraints of the CSDFG.

While for the SDFG model the useful tokens where obtained by rounding down to
a multiple of gcda (Section 2.4.2), they are obtained by rounding down to a multiple
of stepa for the CSDFG model. Figure 3.3 illustrates the notion of useful tokens for
the CSDFG model.

Computation of the number of useful tokens for the CSDFG of Figure 3.3(a)
using Lemma 3 gives the same result as for its functionally equivalent SDFG since
stepa = gcda = 3. In contrast, for the CSDFG of figure 3.3(b), all tokens are useful
since stepa = 1.

t1 t2
a

[3] [3,3]

. . . . . . . .7

(a)

t1 t2
a

[1,2] [3,3]

. . . . . . . .7

(b)

t1 t2
a

3 6

. . . . . . . .7

(c)

Figure 3.3 – Two CSDFGs with the same functionally equivalent SDFG. (a) CS-
DFG with 6 useful tokens; (b) CSDFG with 7 useful tokens; (c) functionally equiv-
alent SDFG with 6 useful tokens.
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3.2. Cyclo-Static Dataflow Graph behavior

3.2.4 Normalization

The normalization procedure introduced for the SDFG model in Section 2.4.3 and
extended to the CSDFG model in [Benazouz et al., 2013] is now detailed. The nor-
malization of a CSDFG is performed by multiplying the consumption and production
vectors by the same scalars as the corresponding consumption and production rates
in the functionally equivalent SDFG. Let Gcsdf = (T , A, Pc, Cc, M, Lc) be a CSDFG
and Gsdf = (T , A, Ps, Cs, M, Ls) be its functionally equivalent SDFG. The normal-
ization vector N ∈ (N∗)|A| introduced for the SDFG in Section 2.4.3 is the same for
Gcsdf . The value Na is thus obtained by using the same formula for both models

Na =
lcm(R1,··· ,R|T |)

Ri.pa
with a = (ti, ·) or Na =

lcm(R1,··· ,R|T |)

Ri.ca
with a = (·, ti).

Figure 3.4 illustrates the normalization of a CSDFG.
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Figure 3.4 – (a) A CSDFG; (b) the equivalent normalized CSDFG. The normal-
ization vector is N = [2, 1, 3].

3.2.5 Notations Pa and Ca

This section introduces new notations for the CSDFG model required for the liveness
notion. Consider a CSDFG Gcsdf = (T , A, P , C, M, L). The nth execution of the
kth phase of task ti is denoted by 〈ti(k), n〉, with n ∈ N

∗. If n = 1, k belongs to
{1, · · · , ϕi}. 〈ti(k), n〉−1 is the phase execution preceding 〈ti(k), n〉. It is formally
defined as:

〈ti(k), n〉−1 =





〈ti(k − 1), n〉 if k > 1 and n > 1
〈ti(ϕi), n − 1〉 if k = 1 and n > 1
〈ti(0), 1〉 if k = 1 and n = 1

Execution 〈t(0), 1〉 is fictitious and precedes 〈t(1), 1〉.

Consider an execution 〈ti(k), n〉 of task ti, Pa(k, n) denotes the total number of
data items produced by ti on a = (ti, ·) from its first phase to the end of 〈ti(k), n〉.
The cumulative production Pa(k, n) satisfies the recurrence equation

Pa(k, n) = P −1
a (k, n) + pa(k) with Pa(0, 1) = 0,
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where P −1
a (k, n) denotes the cumulative production of ti on a from the first phase

to the end of 〈ti(k), n〉−1.

Consider for instance arc a = (t2, t3) in Figure 3.5: ϕ1 = 2, Pa(1, 1) = 3,
Pa(2, 2) = 8 and P −1

a (2, 2) = 7. For any positive integer n, Pa(2, n) = 4n. Thus, for
any execution 〈ti(k), n〉 of t, Pa(k, n) = Pa(k, 1) + 4(n − 1).

Now consider an execution 〈ti(k), n〉 of task ti. Denote by Ca(k, n) (resp. C−1
a (k, n))

the total number of data items consumed by ti from a = (·, ti) until the end of
〈ti(k), n〉 (resp. 〈ti(k), n〉−1). The cumulative consumption Ca(k, n) satisfies the
recurrence equation

Ca(k, n) = C−1
a (k, n) + ca(k) with Ca(0, 1) = 0.

Pursuing with the example of Figure 3.5, ϕ2 = 3, Ca(1, 1) = 1, Ca(3, 2) = 6 and
C−1

a (3, 2) = 5. For any positive integer n, Ca(3, n) = 3n. Thus, for any execution
〈t2(k), n〉 of t2, Ca(k, n) = Ca(k, 1) + 3(n − 1).

t1 t2
a

[3,1] [1,1,1]

. . . . . . . .

Figure 3.5 – A CSDFG with Pa(1, 1) = 3, Pa(2, 2) = 8, P −1
a (2, 2) = 7, Ca(1, 1) = 1,

Ca(3, 2) = 6 and C−1
a (3, 2) = 5.

3.2.6 Liveness

In this section, the notion of liveness and the sufficient condition of liveness intro-
duced for the SDFG model in Section 2.4.4 are extended to the CSDFG model.

Like for an SDFG, a live marking for a CSDFG ensures that each task may
be executed infinitely often, hence as many times as required by the application
modeled by the CSDFG.

Many notions and analysis methods introduced for the SDFG model have been
extended to the CSDFG model. A symbolic execution technique for the CSDFG
model is presented in [Chakilam and O’Neil, 2009]. Expansion techniques are also
extended in [Bilsen et al., 1995] and [Sriram and Bhattacharyya, 2009].

The first part of this section is dedicated to the extension of the sufficient condi-
tion of liveness of Section 2.4.4 to the CSDFG model. The second part of the section
presents algorithms to compute a live marking on a normalized CSDFG.

Sufficient condition of liveness

The sufficient condition of liveness has been extended to the CSDFG model in [Be-
nazouz et al., 2013]. Two equivalent versions have been proposed, called suffi-
cient condition of liveness 1 (SCL1) and sufficient condition of liveness 2 (SCL2).
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3.2. Cyclo-Static Dataflow Graph behavior

SCL1 is given in Theorem 4 while SCL2 is given in Theorem 5. Let stepa =
gcd(pa(1), · · · , pa(ϕi), ca(1), · · · , ca(ϕj)) for a = (ti, tj).

Theorem 4 (SCL1). [Benazouz et al., 2013] Let Gcsdf = (T , A, P , C, M, L) be a
normalized CSDFG. Gcsdf is live if for every cycle µ = (t1, a1, · · · , tm, am) in Gcsdf

and for all ki ∈ {1, · · · ϕi} and ki+1 ∈ {1, · · · ϕi+1},

m∑

i=1

M0(ai) >
m∑

i=1

[
Cai

(ki+1, 1) − P −1
ai

(ki, 1)
]

−
m∑

i=1

stepai
,

with km+1 = k1.

Theorem 5 (SCL2). [Benazouz et al., 2013] Let Gcsdf = (T , A, P , C, M, L) be a
normalized CSDFG. Gcsdf is live if for every cycle µ = (t1, a1, · · · , tm, am) in Gcsdf ,

m∑

i=1

M0(ai) >
m∑

i=1

max
ki∈{1,··· ,ϕi}

[
Cai−1

(ki, 1) − P −1
ai

(ki, 1)
]

−
m∑

i=1

stepai

with a0 = am.

SCL1 and SCL2 are shown to be equivalent in [Benazouz et al., 2013]. Despite
their similarity, SCL1 and SCL2 are used in different contexts. SCL1 requires
to test for each arc all phase combinations between its two tasks, this condition is
appropriate for CSDFGs composed of tasks with few phases. SCL2 calls for testing,
for each task, every combination between input and output arcs within a cycle while
avoiding to test every phase of each task. This can be problematic for graphs with
a high average degree but is appropriate for graphs with few cycles.

To illustrate SCL2 consider the CSDFG of Figure 3.6. Since

max
ki∈{1,···ϕi}

[Cai−1
(ki, 1) − P −1

ai
(ki, 1)] − stepai

= 1 between arc a1 and a2

= −1 between arc a2 and a3

= 4 between arc a3 and a1

the right-hand side in SCL2 is

m∑

i=1

max
ki∈{1,···ϕi}

[Cai−1
(ki, 1) − P −1

ai
(ki, 1)] −

m∑

i=1

stepai
= 4,

and the initial marking, such that
∑m

i=1 M0(ai) = 5, is live.
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Figure 3.6 – Normalized CSDFG with a live initial marking according to theorems
SCL1 and SCL2

Liveness computation

Let Gcsdf = (T , A, P , C, M, L) be a normalized CSDFG model. We now describe
two algorithms derived from SCL1 and SCL2. Let W csdf

a (ki, kj) = Ca(kj, 1) −
P −1

a (ki, 1) − stepa. The Mixed-Integer Linear Program 2 expresses the sufficient
condition of liveness of Theorem 4:

Mixed-Integer Linear Program 2: liveness of CSDFG (SCL1)
minimize

∑

a∈A

M0(a)





subject to γtj ,kj
− γti,ki

+ M0(a) − ε ≥ W csdf
a (ki, kj) ∀a = (ti, tj) ∈ A,

∀ki ∈ {1, · · · ϕi},
∀kj ∈ {1, · · · ϕj}

M0(a) = stepa · m0(a) ∀a ∈ A
γti

∈ R ∀ti ∈ T
M0(a) ∈ N, m0(a) ∈ N ∀a ∈ A

ε ∈ R
∗+ very small.

Introduction of ε is used to make a strict inequality non-strict, so that the program
be linear.

We denote by D the set of pairs of arcs ai = (·, te) and aj = (te, ·) where te ∈ T .

Let W csdf
ai,aj

= maxk∈{1,···ϕe}

[
Cai

(k, 1) − P −1
aj

(k, 1) − stepaj

]
with (ai, aj) ∈ D and te

the task between ai and aj. The Mixed-Integer Linear Program 3 expresses the
sufficient condition of liveness of Theorem 5:

Mixed-Integer Linear Program 3: liveness of CSDFG (SCL2)
minimize

∑

a∈A

M0(a)





subject to γaj
− γai

+ M0(aj) − ε ≥ W csdf
ai,aj

∀(ai, aj) ∈ D

M0(a) = stepa · m0(a) ∀a ∈ A
M0(a) ∈ N, m0(a) ∈ N, γa ∈ R ∀a ∈ A
ε ∈ R

∗+ very small.
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3.3 CSDFG scheduling and throughput computa-

tion

This section extends to the CSDFG model the characterization of precedence con-
straints, the notion of throughput and the three schedules introduced in Section 2.5
for the SDFG model. Section 3.3.1 extends the characterization of the precedence
constraints to the CSDFG model. Throughput is discussed in Section 3.3.2. Sec-
tions 3.3.3, 3.3.4 and 3.3.5 extend respectively the ASAP, the one-periodic and the
K-periodic schedule to the CSDFG model.

3.3.1 Precedence constraints

The characterisation of a set of non-redundant precedence constraints for the SDFG
model has been extended to the CSDFG model in [Benazouz et al., 2010]. Consider
a CSDFG model Gcsdf = (T , A, P , C, M, L). Let M(a) be the marking of arc a =
(ti, tj) ∈ A after task ti was executed ni.ϕi + ki times (ni full cyclic phases followed
by ki phases) and after task tj was executed nj.ϕj + kj times. More formally:

M(a) = M0(a) + Pa(ki, ni) − Ca(kj, nj)

The extension of the characterization of the precedence constraints to the CS-
DFG model gives:

1. After execution 〈ti(ki), ni〉 the marking allows execution 〈tj(kj), nj〉:

M0(a) + Pa(ki, ni) − Ca(kj, nj) ≥ 0. (3.1)

2. Before execution 〈ti(ki), ni〉, the marking allows execution 〈tj(kj), nj〉
−1 but

not execution 〈tj(kj), nj〉:

ca(kj) > M0(a) + P −1
a (ki, ni) − C−1

a (kj, nj) ≥ 0. (3.2)

Combining equations 3.1 and 3.2 gives the following lemma:

Lemma 4. [Benazouz et al., 2010] Consider the CSDFG Gcsdf = (T , A, P , C, M, L)
and an arbitrary arc a = (ti, tj) ∈ A. There is a precedence constraint between
execution 〈ti(ki), ni〉 and 〈tj(kj), nj〉 if:

pa(ki) > M0(a) + Pa(ki, ni) − Ca(kj, nj) ≥ max(0, pa(ki) − ca(kj))

Figure 3.7 depicts a CSDFG model with a precedence constraint between execu-
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tions 〈t2(2), 1〉 and 〈t1(1), 1〉. Indeed, application of Lemma 4 yields:

pa(1) = 1

M0(a) + Pa(1, 1) − Ca(2, 1) = 1 + 1 − 2 = 0

max(pa(1) − ca(2), 0) = max(1 − 1, 0) = 0

and since the values satisfy 1 > 0 ≥ 0, the model does have that precedence con-
straint.

t1 t2
a

[1,2] [1,1]

. . . . . . . .1

Figure 3.7 – A CSDFG with a precedence constraint between executions 〈t2(2), 1〉
and 〈t1(1), 1〉.

3.3.2 Throughput and iteration period

Throughput is a measure of performance of a schedule. The formal definition of task
throughput naturally extends the definition introduced for the SDFG model:

λ(ti) = lim
n→∞

n

s〈ti(ϕi), n〉
.

The execution of a CSDFG task amounts to executing all its phases once. As
for a SDFG, we define an iteration of a CSDFG as an execution of its tasks as many
times as indicated by the repetition vector. The iteration period of a consistent live
CSDFG is the interval of time between the beginnings of two consecutive iterations.

To compute the maximum throughput of a CSDFG a common technique con-
sists in performing a symbolic execution, a technique that has been extended to the
CSDFG model in [Stuijk et al., 2008]. Expansion techniques, based on the trans-
formation of an SDFG into the equivalent HSDFG followed by the computation of
its maximum mean cycle time, are extended to CSDFG by using the functionally
equivalent SDFG. As for the SDFG model, both techniques are exact but inefficient,
with non-polynomial computation time.

3.3.3 ASAP scheduling

We now describe the ASAP schedule for a CSDFG. The definition formally expresses
the property that each task is executed as soon as possible, as permitted by the
precedence constraints and task execution times:

Definition 4. Let Gcsdf = (T , A, P , C, M, L) be a CSDFG and s〈t(k), n〉 be the
start time of the nth execution of the kth phase of the task t according to schedule s.
The schedule s is ASAP if
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3.3. CSDFG scheduling and throughput computation

• ∀ti ∈ T , ∀ki ∈ {1, · · · , ϕi}, s〈ti(ki), ni〉 is minimum with
s〈ti(1), 1〉 ≥ 0,

for every ki ∈ {1, · · · , ϕi − 1},
s〈ti(ki + 1), ni〉 ≥ s〈ti(ki), ni〉 + ℓi(ki)

and, for every ni ∈ N
∗,

s〈ti(1), ni + 1〉 ≥ s〈ti(ϕi), ni〉 + ℓi(ϕi)

• and, ∀a = (ti, tj) ∈ A,
s〈tj(kj), nj〉 ≥ s〈ti(ki), ni〉 + ℓi(ki),

for all precedence constraints between 〈ti(ki), ni〉 and 〈tj(kj), nj〉, where nj ∈
N

∗.

Figure 3.8 shows the ASAP schedule for a simple CSDFG. The transient phase
of the schedule is composed of the executions 〈t3(1), 1〉, 〈t3(2), 1〉 and 〈t3(3), 1〉,
starting at times 0, 0.33 and 2, respectively. The periodic phase of the schedule
follows; two system iterations are shown. The iteration period is 9, the maximum
system throughput is therefore Λ = 1

9
.

t1 t2

t3

a1

a2a3

[3] [1,1]

. . . . . . . .4

[3,1]

[1,1,1]

. . . . . . . .

3

[0,1,0]

[2]

. .
. .
. .
. .

0

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

t1 1 1 1 1

t2 1 1 1 1 1 1 12 2 2 2 2 2 2

t3
1 1 1 1 1 1 1 1 1 12 2 2 2 2 2 2 2 2 23 3 3 3 3 3 3 3 3

(b)

Figure 3.8 – (a) Live CSDFG with R = [2, 3, 4]. (b) Associated ASAP schedule for
ℓ1(1) = 2, ℓ2(1) = 2, ℓ2(2) = 1 and ℓ3(1) = ℓ3(2) = ℓ3(3) = 0.33. The transient phase
of the schedule is composed of three executions of t3 with start times s〈t3(1), 1〉 = 0,
s〈t3(2), 1〉 = 0.33 and s〈t3(3), 1〉 = 2. System iterations are delimited by the red
lines; two periods are shown.

3.3.4 One-Periodic scheduling

The one-periodic schedule has been extended to the CSDFG model in [Bodin et al.,
2013]. The formal definition of the one-periodic schedule for the CSDFG model
closely resembles that of the SDFG model:

Definition 5. Let Gcsdf = (T , A, P , C, M, L) be a CSDFG model, s a schedule and
〈ti(k), n〉 the nth execution of phase k ∈ {1, · · · , ϕi} of task ti. The schedule s is
one-periodic if for every phase k of every task ti ∈ T the start time of the execution
ti(k) satisfies

s〈ti(k), n〉 = s〈ti(k), 1〉 + (n − 1).wi

with wi =
T

Ri

≥
ϕi∑

k=1

ℓi(k) the period of task ti.
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Chapter 3. CSDFG behavior and extension to the PCG model

Theorem 2 recalled in Section 2.5.5 has been extended in [Bodin et al., 2013]
under the form of Theorem 6. Theorem 6 is a necessary and sufficient condition
of existence of a one-periodic schedule for a CSDFG. We denote gcda = gcd(pa, ca)
and:

αmax
a (ki, kj) = ⌈M0(a) + Pa(ki, 1) − Ca(kj, 1) − max{0, pa(ki) − ca(kj)}⌉gcda

,

αmin
a (ki, kj) = ⌊M0(a) + P −1

a (ki, 1) − Ca(kj, 1) + 1⌋gcda
.

Theorem 6. [Bodin et al., 2013] Let Gcsdf = (T , A, P , C, M, L) be a normalized
CSDFG with an initial marking satisfying the useful tokens assumption. A schedule
s is a feasible one-periodic schedule of iteration period T iff,

• for every task ti ∈ T , the initial starting time satisfies
s〈ti(1), 1〉 ≥ 0

and the period wi =
T

Ri

, where Ri is the repetition factor of ti, verifies

wi ≥
ϕi∑

k=1

ℓi(k)

• and, for every arc a = (ti, tj) and every phase ki and kj, the inequality

s〈tj(kj), 1〉 − s〈ti(ki), 1〉 ≥ ℓi(ki) −
T

Zj.Rj

.αmax
a (ki, kj)

with αmin
a (ki, kj) ≤ αmax

a (ki, kj) holds.

Figure 3.9 illustrates a one-periodic schedule with iteration period T = 9 and
start times s〈t1(1), 1〉 = 3.5, s〈t2(1), 1〉 = 0, s〈t2(2), 1〉 = 2, s〈t1(1), 1〉 = 1.5,
s〈t1(2), 1〉 = 2.25, s〈t1(3), 1〉 = 2. The task periods are w1 = 9, w2 = 6, w3 = 4.5.
The system throughput is Λ = 1

9
. Note that this is the same throughput as for the

ASAP schedule illustrated in Figure 3.8, however, generally, the best one-periodic
schedule does not guarantee a maximum throughput.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

t1 1 1 1

t2 1 1 1 1 12 2 2 2

t3 1 1 1 1 1 12 2 2 2 2 23 3 3 3 3

Figure 3.9 – One-periodic schedule for the CSDFG of Figure 3.8(a). Since the
repetition vector of the graph is R = [2, 3, 4] and the iteration period is T = 9, the
tasks have periods w1 = 4.5, w2 = 3 and w3 = 2.25. The red lines delimit the first
iteration.

3.3.5 K-Periodic scheduling

The K-periodic schedule was presented for the SDFG model in Section 2.5.6. It
has been extended to the CSDFG model in [Bodin et al., 2016]. In this paper, a
K-periodic schedule with periodicity vector K = [R1, · · · , R|T |] was proven to give
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3.3. CSDFG scheduling and throughput computation

a schedule with optimal throughput.

We recall that the number of interleaved one-periodic sequences of a task ti is
called its periodicity factor and is denoted Ki. The period of task ti, denoted wi, is
the time interval between its nth and (n + Ki)

th execution. Thus wi = T.Ki

Ri
.

We now define a K-periodic schedule for the CSDFG model:

Definition 6. [Bodin et al., 2016] Let Gcsdf = (T , A, P , C, M, L) be a CSDFG
model and K = [K1, · · · , K|T |] with Ki ∈ N

∗ be a periodicity vector . A schedule s
is K-periodic of iteration period T if periods wi = T.Ki

Ri
≥
∑ϕi

k=1 ℓi(k) exist for all
ti ∈ T , such that

s〈ti(k), n.Ki + mi〉 = s〈ti(k), mi〉 + n.wi

for every k ∈ {1, · · · , ϕi}, every mi ∈ {1, · · · , Ki}, and every n ∈ N
∗.

To present the theorem allowing to verify the feasibility of a K-periodic schedule,
we need some additional notations. Let Gcsdf = (T , A, P , C, M, L) be a CSDFG,
K = [K1, · · · , K|T |] be a periodicity vector and G ′

csdf = (T , A, P ′, C ′, M, L′) be
the CSDFG equivalent to Gcsdf , with the same structure and with production and
consumption vectors duplicated Ki times for every ti ∈ T . G ′

csdf is said to be K-
equivalent CSDFG to Gcsdf .

For example for a = (t1, t2) ∈ A, K1 = 2 and K2 = 3, the vectors [pa(1), · · · , pa(ϕ1)],
[ca(1), · · · , ca(ϕ2)] become in model G ′

csdf [pa(1), · · · , pa(ϕ1), pa(1), · · · , pa(ϕ1)] and
[ca(1), · · · , ca(ϕ2), ca(1), · · · , ca(ϕ2), ca(1), · · · , ca(ϕ2)]. This duplication is also ap-
plied to the vectors of execution times.

Figure 3.10 depicts a CSDFG and its K-equivalent for K = R. The notation [x]y

represents a vector with x repeated y times. For instance [1]6 = [1, 1, 1, 1, 1, 1].

t1 t2

t3

a1

a2a3

[3] [1, 1]

. . . . . . . .4

[3, 1]

[1, 1, 1]

. . . . . . . .

3

[0, 1, 0]

[2]

. .
. .
. .
. .

0

(a)

t1 t2

t3

a1

a2a3

[3, 3] [1]6
. . . . . . . .4

[3, 1]3

[1, 1, 1]4

. . . . . . . .

3

[0, 1, 0]4

[2, 2]

. .
. .
. .
. .

0

(b)

Figure 3.10 – (a) CSDFG with R = [2, 3, 4]; (b) K-equivalent CSDFG for K =
[R1, R2, R3] = [2, 3, 4].

The notation αmin
a (ki, kj) and αmax

a (ki, kj) introduced in the previous section is
used for the next theorem. The idea behind this theorem is to exploit Theorem 6
and characterize a K-periodic schedule of a CSDFG in terms of the one-periodic
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Chapter 3. CSDFG behavior and extension to the PCG model

schedule of the K-equivalent CSDFG:

Theorem 7. [Bodin et al., 2016] Let Gcsdf = (T , A, P , C, M, L) be a normalized
CSDFG with a periodicity vector K = [K1, · · · , K|T |] and G ′

csdf = (T , A, P ′, C ′,
M, L′) be the K-equivalent CSDFG. A feasible K-periodic schedule s for Gcsdf of
iteration period T is the same as a one-periodic schedule of iteration period T for
its K-equivalent G ′

csdf satisfying the conditions expressed in Theorem 6

Figure 3.11 illustrates the K-periodic schedule of the CSDFG of Figure 3.10(a)
with K = [2, 3, 4] and with an iteration period T = 9. The K-periodic schedule is
identical to the one-periodic schedule of the K-equivalent CSDFG model of Figure
3.10(b). The task periods wi, ti ∈ T , are all equal to the iteration period T since
K = [R1, R2, R3]. This schedule also gives the maximum system throughput Λ = 1

9
,

and thus attains the throughput of the ASAP schedule.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

t1 1 11 1

t2 1 12 21 12 21 12 2 1 2

t3
1 12 23 31 12 23 31 12 23 31 12 23 312 312

Figure 3.11 – K-periodic schedule for the CSDFG model of Figure 3.10(a) with
iteration period T = 9. The task periods are w1 = w2 = w3 = 9, since K =
[R1, R2, R3] = [2, 3, 4]. The first two iterations are delimited by the red lines.

3.4 Extension to the Phased Computation Graph

model

This section presents a contribution of this thesis. It extends many notions from the
CSDFG model to the PCG model. While the PCG model is not as commonly used
as the SDFG or the CSDFG model, it is being used by the company Kalray to test
their Massively Parallel Processor Array (MPPA).

Consistency and normalization are discussed in the next section. Section 3.4.2
extends to the PCG model the notation Pa, Ca from Section 3.2.5. The character-
ization of non-redundant precedence constraints is extended to the PCG model in
Section 3.4.3. The useful tokens property is extended to the PCG model in Section
3.4.4 and is justified by proving that leaving out non-useful tokens does not impact
the precedence constraints. Finally, the sufficient conditions SCL1 and SCL2 of
Section 3.2.6 are extended to the PCG model in Section 3.4.5.

3.4.1 Consistency and normalization

This section extends consistency and normalization to the PCG model. We first
recall some notations previously defined for the PCG in Section 2.2.7. Let Gpcg =
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3.4. Extension to the Phased Computation Graph model

(T , A, P , C, Θ, M, L) be a PCG model, and pa(k) and ca(k) the production and
consumption weights of the phase k on arc a. A task ti has σi +ϕi phases numbered
from 1−σi to ϕi. Phases numbered from 1−σi to 0 are the initial phases while phases
numbered from 1 to ϕi are the cyclical phases. The threshold of a consumption phase
k, denoted θa(k), satisfies θa(k) ≥ ca(k).

Consistency and normalization are easily extended to the PCG model, with-
out considering initial phases nor thresholds. Denoting pa =

∑ϕi

k=1 pa(k) and ca =∑ϕi

k=1 ca(k), the topology matrix and the computation of the normalization vector
N ∈ (N∗)|A| for the PCG model are the same as for the CSDFG model.

Figure 3.12 illustrates the normalization of a PCG model. All weights associated
to an arc a are multiplied by Na during normalization, including thresholds and
initial phase weights.

t1 t2

t3

a1

a2a3

(1)[3] (3)[1:2,1]

. . . . . . . .4

(1)[3,1]

[1,1:2,1]

. . . . . . . .
0

[0,1,0:1]

(2)[2:3]

. .
. .
. .
. .

0

(a)

t1 t2

t3

a1

a2a3

(2)[6] (6)[2:4,2]

. . . . . . . .8

(1)[3,1]

[1,1:2,1]

. . . . . . . .

0

[0,3,0:3]

(6)[6:9]

. .
. .
. .
. .

0

(b)

Figure 3.12 – (a) PCG model; (b) equivalent normalized PCG model. The nor-
malization vector is N = [2, 1, 3].

3.4.2 Notation extensions

The notations introduced in Section 3.2.5 for the CSDFG model are now extended
to the PCG model.

Execution and predecessor notations

Consider a PCG Gpcg = (T , A, P , C, Θ, M, L). A task ti ∈ T has σi initial phases
and ϕi cyclic phases. The nth execution of phase k of task ti is denoted by 〈ti(k), n〉,
where n is a positive integer. If n = 1, k belongs to δt = {1−σi, · · · , 0}∪{1, · · · , ϕi}
and the non-positive values of k relate to the initial phases of ti. Otherwise, n > 1
and k ∈ {1, · · · , ϕi} relate to its cyclical normal phases.

The phase execution preceding 〈ti(k), n〉, denoted 〈ti(k), n〉−1 is formally defined
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as:

〈ti(k), n〉−1 =





〈ti(k − 1), n〉 if k > 1 and n > 1
〈ti(ϕi), n − 1〉 if k = 1 and n > 1
〈ti(k − 1), 1〉 if k ≥ 1 − σi and n = 1

(3.3)

Execution 〈t(−σi), 1〉 is fictitious and precedes 〈t(1 − σi), 1〉.

The phase execution preceding 〈ti(k), n〉−1 is denoted 〈ti(k), n〉−2 and is deter-
mined by applying 3.3 recursively and noting that executions 〈ti(k), 1〉 with k ≤ −σi

are fictitious.

Notations ca, pa and θa

The execution notation is carried over to the notations ca, pa and θa. To the ex-
ecution 〈t(k), n〉 are associated the weights ca(k, n) = ca(k), pa(k, n) = pa(k) and
the threshold θa(k, n) = θa(k). The weights and threshold associated to the execu-
tion 〈t(k), n〉−1 preceding 〈t(k), n〉 are accordingly denoted c−1

a (k, n), p−1
a (k, n) and

θ−1
a (k, n).

To illustrate the notation, consider the PCG model of Figure 3.13. The produc-
tion rates pa satisfy:

• pa(0, 0) = 1, pa(1, 0) = 3 and pa(1, 2) = 3,

• p−1
a (0, 0) = 0 as it is fictitious, p−1

a (1, 0) = pa(0, 0) = 1 and p−1
a (1, 2) = pa1

(1, 1) =
3,

• p−2
a (0, 0) = 0 and p−2

a (1, 0) = 0 as they are fictitious, and p−2
a (1, 2) = pa1

(1, 0) = 3.

Similarly, the consumption rates ca satisfy:

• ca(0, 0) = 3, ca(1, 0) = 1 and ca(2, 2) = 1,

• c−1
a (0, 0) = 0 as it is fictitious, c−1

a (1, 0) = ca(0, 0) = 3 and c−1
a (2, 2) = ca(1, 2) = 1,

• c−2
a (0, 0) = 0 and c−2

a (1, 0) = 0 as they are fictitious, and c−2
a (2, 2) = ca(2, 1) = 1.

Finally we consider the thresholds θa. Remember that θa(k) ≥ ca(k), ∀k ∈ δ(t) and
that θa(k) = ca(k) when θa(k) is not explicitly defined:

• θa(0, 0) = 3, θa(1, 0) = 2 and θa(2, 2) = 1,

• θ−1
a (0, 0) = 0 as it is fictitious, θ−1

a (1, 0) = θa(0, 0) = 3 and θ−1
a (2, 2) = θa(1, 2) = 2,

• θ−2
a (0, 0) = 0 and θ−2

a (1, 0) = 0 as they are fictitious, and θ−2
a (2, 2) = θa(2, 1) = 1.

t1 t2
a

(1)[3] (3)[1:2,1]

. . . . . . . .4

Figure 3.13 – PCG model with a producer and a consumer task.
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Notation Pa

Consider execution 〈ti(k), n〉 of phase k in the nth execution of task ti and denote
by Pa(k, n) the total number of data items produced by ti on a from phase 1 − σi of
its nth execution to the end of phase k.

The cumulative production Pa(k, n) satisfies the recurrence equation

Pa(k, n) = P −1
a (k, n) + pa(k)

with Pa(−σi, 1) = 0.

Denoting by pa the cumulative production pa(ϕi) of one execution of the cyclic
phases for any execution 〈ti(k), n〉 with k ∈ δi, the cumulative production Pa(k, n)
may be expressed as

Pa(k, n) = Pa(k, 1) + pa.(n − 1). (3.4)

For instance, for a = (t1, t2) in Figure 3.14, ϕ1 = 2, σ1 = 1, pa = 4, Pa(0, 1) = 1,
Pa(1, 1) = 4 and Pa(2, 1) = 5. For any positive integer n and any execution 〈t1(k), n〉
of t1, Pa(k, n) = Pa(k, 1) + 4(n − 1).

t1 t2
a

(1)[3,1] [1,1:2,1]

. . . . . . . .4

Figure 3.14 – Example producer-consumer PCG model.

Lemma 5 is a technical result about the total number of data items produced on
an arc.

Lemma 5. The cumulated production Pa on an arc a = (ti, ·) ∈ A satisfies, for any
execution 〈ti(k), n〉 of ti, with n a positive integer,

P −1
a (k, n) = P −1

a (k, 1) + pa.(n − 1).

Proof. Three cases must be considered:

• If k > 1 and n > 1, then according to equation 3.3 〈ti(k), 1〉−1 = 〈ti(k − 1), 1〉
and 〈ti(k), n〉−1 = 〈ti(k − 1), n〉. The expression follows from equation 3.4.

• If k = 1 and n > 1, equation 3.3 implies 〈ti(1), 1〉−1 = 〈ti(0), 1〉 and 〈ti(1), n〉−1 =
〈ti(ϕi), n − 1〉.

– if σi = 0 (no initial phase) then Pa(0, 1) = 0,

– if σi > 0 (σi initial phase) then Pa(0, 1) =
0∑

k=1−σi

pa(k).

Thus, using equation 3.4,

P −1
a (1, n) = Pa(ϕi, n − 1) = Pa(0, 1) + pa.(n − 1).
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• Lastly, if k ≥ 1 − σi and n = 1, then 〈ti(k), 1〉−1 = 〈ti(k − 1), 1〉 and the
equation is true.

Notation Ca

Consider execution 〈ti(k), n〉 of task ti and denote by Ca(k, n) the total number of
data items consumed by t from a from phase 1 − σi of its nth execution to the end
of phase k. The cumulative consumption Ca(k, n) satisfies the recurrence equation

Ca(k, n) = C−1
a (k, n) + ca(k) (3.5)

with Ca(−σi, 1) = 0.

Denoting by ca the cumulative consumption ca(ϕi) of one execution of the cyclic
phases, for any execution 〈ti(k), n〉 with k ∈ δi the cumulative consumption Ca(k, n)
may be expressed as

Ca(k, n) = Ca(k, 1) + ca.(n − 1). (3.6)

Continuing with the example of Figure 3.14, ϕ2 = 3, σ2 = 0, ca = 3, Ca(1, 1) = 1,
Ca(2, 1) = 2 and Ca(3, 1) = 3. For any positive integer n and any execution 〈t2(k), n〉
of t2, Ca(k, n) = Ca(k, 1) + 3(n − 1).

Lemma 6 is the analogue for consumption weights of Lemma 5. Its proof is
therefore omitted.

Lemma 6. The cumulative consumption Ca from arc a = (·, ti) ∈ A satisfies, for
any execution 〈ti(k), n〉 of ti with n a positive integer,

C−1
a (k, n) = C−1

a (k, 1) + ca.(n − 1).

3.4.3 Precedence constraints

Consider a PCG Gpcg = (T , A, P , C, Θ, M, L). The marking M(a) on arc a = (ti, tj)
after the execution of ni cycles followed by ki phases of ti and nj cycles followed by
kj phases of tj satisfies:

M(a) = M0(a) + Pa(ki, ni) − Ca(kj, nj).

Extending the characterization of the precedence constraints from the CSDFG
model to the PCG model we can state that execution 〈ti(ki), ni〉 (directly) precedes
execution 〈tj(kj), nj〉 if the following two conditions are met:

1. After execution 〈ti(ki), ni〉 the marking is sufficient for execution 〈tj(kj), nj〉:

M0(a) + Pa(ki, ni) − C−1
a (kj, nj) ≥ θa(kj). (3.7)

2. Before execution 〈ti(ki), ni〉 the marking is insufficient for execution 〈tj(kj), nj〉
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but sufficient for the execution of the phase before that of 〈tj(kj), nj〉:

θa(kj) > M0(a) + P −1
a (ki, ni) − C−2

a (kj, nj) − θ−1
a (kj, nj) ≥ 0. (3.8)

Combining these inequalities gives the following lemma:

Lemma 7. Consider a PCG model Gpcg = (T , A, P , C, Θ, M, L) and an arc a =
(ti, tj) ∈ A. There is a precedence constraint between execution 〈ti(ki), ni〉 and
〈tj(kj), nj〉 if:

θa(kj) + θ−1
a (kj, nj) > M0(a) + P −1

a (ki, ni) − C−2
a (kj, nj)

≥ max(θ−1
a (kj, nj), θa(kj) − pa(ki) + c−1

a (kj, nj))

Proof. On one hand equation 3.7 is equivalent to:

M0(a) + P −1
a (ki, ni) − C−1

a (kj, nj) ≥ θa(kj) − pa(ki)

which can be rewritten as

M0(a) + P −1
a (ki, ni) − C−2

a (kj, nj) ≥ θa(kj) − pa(ki) + c−1
a (kj, nj).

On the other hand equation 3.8 is equivalent to

θa(kj) + θ−1
a (kj, nj) > M0(a) + P −1

a (ki, ni) − C−2
a (kj, nj) ≥ θ−1

a (kj, nj).

Combining these rewritings of equations 3.7 and 3.8 gives the lemma.

Figure 3.15 illustrates a precedence constraint between executions 〈t1(1), 1〉 and
〈t2(2), 1〉 as the execution 〈t2(2), 1〉 requires two items because of the threshold and
the availability of just one item. Applying the formula of Lemma 7:

θa(2) + θ−1
a (2, 1) = 2 + 1 = 3

M0(a) + P −1
a (1, 1) − C−2

a (2, 1) = 1 + 1 − 0 = 2

max(θ−1
a (2, 1), θa(2) − pa(1) + c−1

a (2, 1)) = max(1, 2 − 3 + 1) = 1

and, since 3 > 2 ≥ 1, the existence of the precedence constraint is confirmed.

t1 t2
a

(1)[3,1] [1,1:2]

. . . . . . . .1

Figure 3.15 – PCG with a precedence constraint between executions 〈t1(1), 1〉 and
〈t2(2), 1〉.

3.4.4 Useful tokens

We now extend the useful tokens property to the PCG model. As seen in Section
2.4.2 this property, introduced in [Marchetti and Munier-Kordon, 2009a] for the
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SDFG model, was extended to the CSDFG model in [Benazouz et al., 2010] (Section
3.3.1).

The property states that the residual number of tokens, which cannot be further
reduced on each arc, does not affect the precedence constraints. For the CSDFG
model this meant that the initial marking M0(a) of an arc a = (ti, tj) could be
rounded down to ⌊M0(a)⌋stepa

with stepa = gcd(pa(1), · · · , pa(ϕi), ca(1), · · · , ca(ϕj)).
The formula for the PCG model is the same except that stepa now takes also the ini-
tial phases and thresholds into account. Thus stepa = gcd(pa(1−σi), · · · , pa(ϕi), ca(1−
σj), · · · , ca(ϕj), θa(1 − σj), · · · , θa(ϕj)).

Lemma 8 formalizes the useful tokens property for the PCG model:

Lemma 8. Let Gpcg = (T , A, P , C, Θ, M, L) be a PCG model and G⋆
pcg = (T , A, P , C,

Θ, M, L) be the PCG model obtained by replacing, for every arc a = (ti, tj) ∈ A,
the initial marking M0(a) by

M⋆
0 (a) = ⌊M0(a)⌋stepa

with stepa = gcd(pa(1−σi), · · · , pa(ϕi), ca(1−σj), · · · , ca(ϕj), θa(1−σj), · · · , θa(ϕj)).
The models Gpcg and G⋆

pcg have the same set of precedence constraints.

Proof. According to the definition of stepa,

ca(kj) + pa(ki) − C−1
a (kj, nj),

Pa(ki, ni) − C−1
a (kj, nj) and

max
(
θ(kj), θ−1(kj, nj) + pa(ki) − C−1

a (kj, nj)
)

are multiples of stepa. The operation ⌊M0(a)⌋stepa
reduces the initial marking to

M⋆
0 (a) = M0(a) − ∆ with ∆ < stepa, in other words M0(a) = M⋆

0 (a) + ∆ with
M⋆

0 (a) = q.stepa where q is the quotient in the euclidean division of M0(a) by stepa

and ∆ is the remainder.

Thus, the equation for precedence constraints has the form a.stepa > b.step.a +
q.stepa + ∆ ≥ c.stepa with a, b, c integers and ∆ < stepa. When replacing M0(a)
by M⋆

0 (a) we still have a.stepa > b.step.a + q.stepa ≥ c.stepa, thus showing that the
precedence constraints of Gpcg and G⋆

pcg are identical.

Figure 3.16 illustrates the useful tokens property on a PCG. We have stepa = 3,
thus the initial marking can be rounded down to M0(a) = 3 without interfering on
the precedence constraints of the model.

t1 t2
a

(3)[3] (3)[3:6,9]

. . . . . . . .4

Figure 3.16 – A PCG with stepa = 3. The useful tokens property implies that
M0(a) = 4 may be replaced by M0(a)⋆ = ⌊4⌋3 = 3, with no effect on the precedence
constraints.
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3.4.5 Extension of the sufficient condition of liveness

This section extends to the PCG model the two sufficient conditions of liveness of
the CSDFG model, SCL1 and SCL2, expressed by Theorems 4 and 5 in Section
3.2.6.

The first part extends the sufficient condition SCL1. The second part extends
the sufficient condition SCL2. The third part proves the equivalence between SCL1
and SCL2.

Sufficient Condition 1 for the PCG model

At the core of the proof is the characterization of a deadlock. A cycle µ = (t1, a1, · · · ,
tm, am, t1) of a PCG Gpcg = (T , A, P , C, Θ, M, L) is said to be blocked if there exists
a set of executions E = {〈ti(ki), ni〉, ti ∈ µ} and a sequence of task executions
allowing all the executions 〈ti(ki), ni〉

−1, ti ∈ µ, such that no execution from E can
be fired. The initial marking of Gpcg is live if no cycle may be blocked.

Since Gpcg is normalized, the total number of tokens remains constant in every
cycle. The following lemma provides an upper bound on the total number of tokens
in a blocked cycle. We recall that δi = {1 − σi, · · · , 0} ∪ {1, · · · , ϕi}.

Lemma 9. Let Gpcg = (T , A, P , C, Θ, M, L) be a normalized PCG. If a cycle µ =
(t1, a1, · · · , tm, am, t1) is blocked, then there exists (k1, · · · , km) ∈ δ1 × · · · × δm such
that

m∑

i=1

M0(ai) +
m∑

i=1

[
P −1

ai
(ki, 1) − C−1

ai−1
(ki, 1) − θai−1

(ki)
]

≤ −
m∑

i=1

stepai

where the index values are taken modulo m (if i = 1, i − 1 = m).

Proof. Suppose that cycle µ is blocked, then there exists a sequence of task execu-
tions such that each actor ti, i ∈ {1, · · · , m}, has reached execution 〈ti(ki), ni〉

−1 but
cannot execute 〈ti(ki), ni〉. Thus, according to equation 3.7, for any arc ai = (ti, ti+1)
of µ, with tm+1 = t1,

M0(ai) + P −1
ai

(ki, ni) − C−1
ai

(ki+1, ni+1) − θai
(ki+1) < 0.

Now it follows from Lemmas 5 and 6 that

P −1
ai

(ki, ni) = P −1
ai

(ki, 1) + pa.(ni − 1) and

C−1
ai

(ki+1, ni+1) = C−1
ai

(ki+1, 1) + ca.(ni+1 − 1)

so that the above inequality may be rewritten as

M0(ai) + P −1
ai

(ki, 1) + pa.(ni − 1) − C−1
ai

(ki+1, 1) − ca.(ni+1 − 1) − θai
(ki+1) < 0.

By Lemma 8, the initial marking is supposed to be divisible by stepa, and so are all
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the terms of the last inequality. This inequality may be rewritten as

M0(ai)+P −1
ai

(ki, 1)+pa.(ni −1)−C−1
ai

(ki+1, 1)−ca.(ni+1 −1)−θai
(ki+1) ≤ −stepai

.

As Gpcg is normalized, pa.(ni −1) = ca.(ni+1 −1). Summing the previous inequalities
yields

m∑

i=1

M0(ai) +
m∑

i=1

[
P −1

ai
(ki, 1) − C−1

ai−1
(ki, 1) − θai−1

(ki)
]

≤ −
m∑

i=1

stepai
,

the result which was to be proven.

The next theorem is based on Lemma 9 and expresses a first general sufficient
condition of liveness of a PCG.

Theorem 8 (SCL1). A normalized PCG Gpcg = (T , A, P , C, Θ, M, L) is live if for
every cycle µ = (t1, a1, · · · , tm, am, t1) and for every m-uple (k1, · · · , km) ∈ δ1 ×· · ·×
δm:

m∑

i=1

M0(ai) >
m∑

i=1

W pcg
ai

(ki, ki+1),

where indexes are taken modulo m and W pcg
ai

(ki, ki+1) = C−1
ai

(ki+1, 1) + θai
(ki+1) −

P −1
ai

(ki, 1) − stepai
.

Proof. By taking the contraposition of Lemma 9, if we suppose that for any m-
uple (k1, · · · , km) ∈ δ1 × · · · × δm of any cycle µ = (t1, a1, · · · , tm, am, t1) of Gpcg, the
following inequality is true :

m∑

i=1

M0(ai) >
m∑

i=1

[
C−1

ai−1
(ki, 1) + θai−1

(ki) − P −1
ai

(ki, 1)
]

−
m∑

i=1

stepai
,

then Gpcg is live. Since:

m∑

i=1

[
C−1

ai−1
(ki, 1) + θai−1

(ki) − P −1
ai

(ki, 1)
]

=

m∑

i=1

[
C−1

ai
(ki+1, 1) + θai

(ki+1) − P −1
ai

(ki, 1)
]

the previous inequality is equivalent to

m∑

i=1

M0(ai) >
m∑

i=1

[
C−1

ai
(ki+1, 1) + θai

(ki+1) − P −1
ai

(ki, 1)
]

−
m∑

i=1

stepai

and the theorem follows.

We illustrate SCL1 with Figure 3.17. As the theorem states, for each arc, we
need to test all phase combinations. We have

∑m
i=1 M0(ai) = 15 and

∑m
i=1 stepai

= 3.
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We need to test the following set of phases ([k1, k2, k3]): [0, 1, 1], [1, 1, 1], [0, 1, 2] and
[1, 1, 2].

• [0, 1, 1] gives 15 > 13 − 3 with:

– C−1
a1

(1, 1) + θa1
(1) − P −1

a1
(0, 1) = 0 + 5 − 0 = 5

– C−1
a2

(1, 1) + θa2
(1) − P −1

a2
(1, 1) = 0 + 2 − 0 = 2

– C−1
a3

(0, 1) + θa3
(0) − P −1

a3
(1, 1) = 0 + 6 − 0 = 6

• [1, 1, 1] gives 15 > 17 − 3 with:

– C−1
a1

(1, 1) + θa1
(1) − P −1

a1
(1, 1) = 0 + 5 − 2 = 3

– C−1
a2

(1, 1) + θa2
(1) − P −1

a2
(1, 1) = 0 + 2 − 0 = 2

– C−1
a3

(1, 1) + θa3
(1) − P −1

a3
(1, 1) = 6 + 6 − 0 = 12

• [0, 1, 2] gives 15 > 13 − 3 with:

– C−1
a1

(1, 1) + θa1
(1) − P −1

a1
(0, 1) = 0 + 5 − 0 = 5

– C−1
a2

(2, 1) + θa2
(2) − P −1

a2
(1, 1) = 2 + 1 − 0 = 3

– C−1
a3

(0, 1) + θa3
(0) − P −1

a3
(2, 1) = 0 + 6 − 1 = 5

• [1, 1, 2] gives 15 > 17 − 3 with:

– C−1
a1

(1, 1) + θa1
(1) − P −1

a1
(1, 1) = 0 + 5 − 2 = 3

– C−1
a2

(2, 1) + θa2
(2) − P −1

a2
(1, 1) = 2 + 1 − 0 = 3

– C−1
a3

(1, 1) + θa3
(1) − P −1

a3
(2, 1) = 6 + 6 − 1 = 11

Thus, the sufficient condition of liveness is fulfilled for any m-uple (k1, · · · , km) ∈
δ1 × · · · × δm of Gpcg.

t1 t2

t3

a1

a2a3

(2)[6] [4:5]

. . . . . . . .15

[4]

[2,1]

. . . . . . . .

0

[1,2]

(6)[6]

. .
. .
. .
. .

0

Figure 3.17 – A normalized PCG model live according to SCL1.

Sufficient Condition 2 for the PCG model

We now extend the second sufficient condition of liveness of Theorem 5. This con-
dition does not call for an enumeration of the phases:

Theorem 9 (SCL2). A normalized PCG Gpcg = (T , A, P , C, Θ, M, L) is live if for
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every cycle µ = (t1, a1, · · · , tm, am, t1) of G

m∑

i=1

M0(ai) >
m∑

i=1

W pcg
ai−1,ai

,

where W pcg
ai−1,ai

= maxk∈δ(ti)[C
−1
ai−1

(k, 1) + θai−1
(k) − P −1

ai
(k, 1)] − stepai

and indexes
are taken modulo m.

Proof. Suppose that the condition expressed by Theorem 8 is true for any cycle
µ = (t1, a1, · · · , tm, am, t1) and m-uple (k1, · · · , km) ∈ δ1 × · · · × δm, then we have :

m∑

i=1

M0(ai) >
m∑

i=1

W pcg
ai

(ki, ki+1)

>
m∑

i=1

(
C−1

ai
(ki+1, 1) + θai

(ki+1) − P −1
ai

(ki, 1) − stepai

)

>
m∑

i=1

(
C−1

ai−1
(ki, 1) + θai−1

(ki) − P −1
ai

(ki, 1) − stepai

)
.

Since

m∑

i=1

W pcg
ai−1,ai

≥
m∑

i=1

(
C−1

ai
(ki+1, 1) + θai

(ki+1) − P −1
ai

(ki, 1) − stepai

)

≥
m∑

i=1

W pcg
ai

(ki, ki+1),

if
m∑

i=1

M0(ai) >
m∑

i=1

W pcg
ai

(ki, ki+1) is satisfied then
m∑

i=1

M0(ai) >
m∑

i=1

W pcg
ai−1,ai

is satisfied.

Therefore SCL1 =⇒ SCL2 and Gpcg is live.

Pursuing with the example of Figure 3.17. As the theorem states, we need to
test each phase of each task of the graph. The formula

max
k∈δi

[C−1
ai−1

(k, 1) + θai−1
(k) − P −1

ai
(k, 1)]

gives:

• for t1, take the maximum of:

– for k1 = 0: C−1
a3

(0, 1) + θa3
(0) − P −1

a1
(0, 1) = 0 + 6 − 0 = 6

– for k1 = 1: C−1
a3

(1, 1) + θa3
(1) − P −1

a1
(1, 1) = 6 + 6 − 2 = 10

• for t2, take the maximum of:

– for k2 = 1: C−1
a1

(1, 1) + θa1
(1) − P −1

a2
(1, 1) = 0 + 5 − 0 = 5

• for t3, take the maximum of:

– for k3 = 1: C−1
a2

(1, 1) + θa2
(1) − P −1

a3
(1, 1) = 0 + 2 − 0 = 2

– for k3 = 2: C−1
a2

(2, 1) + θa2
(2) − P −1

a3
(2, 1) = 2 + 1 − 1 = 2

The condition gives 15 > 17 − 3 and the PCG is checked to be live.
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Proof of equivalence between SCL1 and SCL2

The next theorem shows the equivalence between Theorem 8 and Theorem 9.

Theorem 10. Conditions SCL1 and SCL2 are equivalent.

Proof. As Theorem 9 already shows that SCL1 =⇒ SCL2 we only need to show
that SCL2 =⇒ SCL1.

Suppose that the PCG Gpcg verifies SCL1 and let µ = (t1, a1, · · · , tm, am, t1) be
a cycle of Gpcg, we have:

m∑

i=1

M0(ai) >
m∑

i=1

W pcg
ai

(ki, ki+1),

for any m-uple (k1, · · · , km) ∈ δ1 ×· · ·× δm. Then, denoting by E the set of m-uples
(k1, · · · , km), the previous inequality is equivalent to:

m∑

i=1

M0(ai) > max
E

(
m∑

i=1

W pcg
ai

(ki, ki+1)

)
,

and, since

max
E

(
m∑

i=1

W pcg
ai

(ki, ki+1)

)
=

m∑

i=1

W pcg
ai−1,ai

,

SCL2 =⇒ SCL1 and the sufficient conditions are equivalent.

3.5 Conclusion

In this chapter important notions for the SDFG model have been extended to the
CSDFG model. These notions, namely consistency, normalization, precedence con-
straints, useful tokens and two equivalent sufficient conditions of liveness have been
further extended to the PCG model. The extensions to the PCG model are one
of the contributions of this thesis. All notions presented on SDFG, CSDFG and
PCG models have been implemented and experimented in a random graph dataflow
generator named Turbine. The generator is presented in the next chapter.
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4.1 Introduction

The first year of the thesis was dedicated to establishing the state of the art and
developing the implementation of a dataflow graph generator called Turbine avail-
able at https://github.com/bbodin/turbine. One purpose of this dataflow graph
generator was to overcome the lack of publicly available instances of large dataflow
graphs. At the end of the thesis Turbine has become a multi-functional tool and
provides fast generation of dataflow graphs and multiple tools to manipulate them.

Section 4.2 introduces Turbine and its two competitors. Section 4.3 illustrates
the three generators through several experiments. Section 4.4 is the conclusion.

4.2 Dataflow graph generators

Before presenting Turbine, we first introduce two other dataflow graph generators,
SDF3 and PREESM. Section 4.2.1 introduces these dataflow graph generators and
Section 4.2.2 is dedicated to Turbine.

4.2.1 SDF3 and PREESM

This section presents SDF3 [Stuijk et al., 2006] and the DFtool part of the PREESM
framework [Pelcat et al., 2014].

SDF For Free

SDF3 is an open source popular software written in C++ and available at http:

//www.es.ele.tue.nl/sdf3/. It provides a random dataflow generator and handles
SDFG and CSDFG models. SDF3 also includes extensive libraries to analyze and
transform SDFGs and CSDFGs. The library includes, among other things, tools to
evaluate consistency, compute repetition vectors and compute all possible optimal
trade-offs between the storage-space allocated to the channels of an SDFG and the
maximal throughput.

SDF3 handles sdf3 (xml) files format. This format is commonly used by the
dataflow community.

PREESM

PREESM is an open source rapid prototyping tool written in Java and available at
http://preesm.sourceforge.net/website/. Given an architecture and an appli-
cation it simulates DSP applications and generates source-code to execute them on
heterogeneous multi/many-core embedded systems.

The software allows the parallelization on a multicore system. It proposes, among
other things, throughput optimization using software pipelining, evaluation and op-
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timization of the memory footprint, evaluation of actors execution time, and also
allows SDFG generation. PREESM further provides an sdf3 parser.

4.2.2 Turbine

Turbine is the generator implemented during this thesis. The generator is imple-
mented in Python and uses NetworkX (https://networkx.github.io) to handle
the graph data structure. It manipulates simple files (non-xml) in order to facilitate
self-made instances, however the xml format of sdf3 is also supported.

Turbine generates live SDFGs, CSDFGs and PCGs up to 10,000 tasks in less
than 30 seconds. Random generation is divided in three steps described in the
following section. The first step generates a random graph with nodes and arcs, the
second step computes consumption and production weights on the graph. The last
step computes a live initial marking.

The rest of the section describes the three steps of the random dataflow graph
generation.

Graph generation

The graph generator can generate general or acyclic graphs. The user decides the
number of tasks and a min/max interval for the task degree. The generator respects
this unless it is not possible.

Both general and acyclic graph are generated in two steps. The first step gen-
erates a random connected graph (with the acyclic restriction for the acyclic case).
Then, arcs are added until the average degree, (min + max)/2, is reached. To sim-
plify the acyclic graph generation, the graph is first seen as a path and arcs are
added in the same direction as the path. The user can decide if the generation
can generates self-loops (only for general graphs) and multi-arcs. If the multi-arc
parameter is set, multiple arcs between the same source and destination may be
generated.

Graph generation operates similarly in SDF3 and PREESM.

Rate Generation

In the rate generation phase, Turbine generates the production and consumption
weights for each arc of the graph and returns a normalized graph. To guarantee
consistency, the repetition factor of each task is decided first. The repetition vector
is computed by first setting its sum and then using a combination of an exponential
and a multinomial distribution to create its components.

Rate generation depends on the model (SDFG, CSDFG, PCG). For the CSDFG
and PCG models, the size of the consumption and production vectors is decided ran-
domly using a uniform distribution with min/max parameters. Then, for each task ti
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of the graph, Zi is deduced from the repetition factor according to Zi =
lcm(R1,··· ,R|T |)

Ri
.

For the CSDFG and PCG models, cyclic phase production and consumption vec-
tors are deduced from Zi. In the case of a PCG, initial phases and thresholds are
generated uniformly on an interval with a min/max parameters.

SDF3 considers two cases for rate generation. If the repetition factor parameters
are set, the components of R are computed randomly according to the parameters.
Rates are then derived from the components of R. If the parameters R are not set,
weights are selected randomly and a depth-first search algorithm is used to modify
some of the weights in order to make the graph consistent. PREESM generates
repetition factors randomly on an interval, defined by min/max parameters and
deduces weights from the repetition vector.

Initial marking computation

The computation of the initial marking is the most critical step since no exact
polynomial-time condition of liveness exists. The computation of the initial marking
in Turbine is based on the sufficient conditions SCL1 and SCL2 expressed before.
These sufficient conditions of liveness were expressed in Section 2.4.4 for the SDFG
model, in Section 3.2.6 for the CSDFG model and in Section 3.4.5 for the PCG
model.

The sufficient conditions for the three dataflow models are grouped in two linear
programs, SCL1 and SCL2:

Mixed-Integer Linear Program 4: liveness (SCL1)
minimize

∑

a∈A

M0(a)





subject to γtj
− γti

+ M0(aj) − ε ≥ W sc1
a (ki, kj) ∀a = (ti, tj) ∈ A,

∀ki ∈ {1, · · · ϕi}, ∀kj ∈ {1, · · · ϕj}
M0(a) = stepa · m0(a) ∀a ∈ A

γti
∈ R ∀ti ∈ T

M0(a) ∈ N, m0(a) ∈ N ∀a ∈ A
ε ∈ R

∗+ very small

with

W sc1
a (ki, kj) =





ca − gcda if G is an SDFG
W csdf

a (ki, kj) if G is a CSDFG
W pcg

a (ki, kj) if G is a PCG
.

Note that for the SDFG model ki and kj do not appear in the formula. In fact the
program for the SDFG is that of a CSDFG with only one phase per task (ϕi = 1)
and ki = kj = 1.

Let G = (T , A) be a dataflow model. We define Γ+(t) (resp. Γ−(t)) the set of
input (resp. output) arcs of the task t ∈ T . Let D the set of pairs of arcs (ai, aj)
such that ai ∈ Γ+(t) and aj ∈ Γ−(t), for t ∈ T .
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4.2. Dataflow graph generators

Mixed-Integer Linear Program 5: liveness (SCL2)
minimize

∑

a∈A

M0(a)





subject to γaj
− γai

+ M0(aj) − ε ≥ W sc2
ai,aj

∀(ai, aj) ∈ D

M0(a) = stepa · m0(a) ∀a ∈ A
M0(a) ∈ N, m0(a) ∈ N, γa ∈ R ∀a ∈ A
ε ∈ R

∗+ very small

with

W sc2
ai,aj

=





caj
− gcdaj

if G is an SDFG
W csdf

ai,aj
if G is a CSDFG

W pcg
aj ,aj

if G is a PCG
.

Turbine solves the linear program either by using a linear approximation or by
calling the mixed integer program solver of Gurobi. The linear approximation is
rounded up according to the useful tokens assumption. By default Turbine uses
the linear approximation. Among SCL1 and SCL2 it chooses the program with
smallest number of constraints.

Live markings are generated in SDF3 and PREESM using a simple sufficient
condition of liveness:

Theorem 11. Let Gsdf = (T , A, P , C, M, L) be a consistent SDFG. Gsdf is live if
there is in every cycle µ = (t1, a1, · · · , tm, am, t1) of Gsdf at least one arc a = (ti, ·)
with M0(a) = Ri.pa.

The computation of a live initial marking consists in selecting a subset of arcs
A′ ∈ A such that the subgraph G ′ = (T , A − A′) has no cycle and, then, setting the
initial marking to:

M0(a) =

{
Ri.pa if a = (ti, ·) ∈ A′

0 otherwise

SDF3 computes the initial marking by selecting arcs in A′ using a depth-first
algorithm. PREESM first selects a set of tasks T ′ ∈ T such that the subgraph
G ′′ = (T − T ′, A) is acyclic, then sets A′ = {a = (ti, tj) ∈ A, ti = T ′}. In both
cases, the procedure does not attempt to minimize the initial marking. Theorem 11
is easily extended to the CSDFG model using the corresponding definition of pa and
is therefore not repeated for that model.

Other features offered by Turbine

Besides being a graph generator, Turbine offers multiple tools to manipulate and
perform computation on dataflow graphs such as normalization/de-normalization or
live initial marking computation. The initial marking computation is implemented
in both linear and mixed-integer versions. The linear implementation is used by
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default and employs the solver GLPK. The mixed-integer version results in a smaller
total number of tokens, but is not scalable since it uses the mixed-integer solver of
the Gurobi solver. Initial marking computation under throughput constraint is also
available in both linear approximation and mixed-integer version. Finally, repetition
factor computation is possible.

Many other features have been implemented, such as consistency tests and a
necessary and sufficient condition of liveness using the native symbolic execution.

Turbine handles two file formats. Its own, the .tur format and the .sdf3 format.
The .tur file format is simple and easy to write in, giving files 10 times smaller than
the .sdf3 files.

Technical details on Turbine

The installation of Turbine requires NetworkX, GLPK and swiglpk. NetworkX is
a Python library in open source license and proposes many features about graphs.
Turbine uses it to handle the graph data structure. GLPK is a solver for linear
programs or mixed-integer programs released under GNU license. It is written in
C and is interfaced with Turbine by Swiglpk. Swiglpk allows flexible usage of
GLPK and handles many different versions. The solver Gurobi was added only for
the purpose of experiment since the GLPK mixed-integer solver cannot compete—in
terms of computation time—with industrial quality software like Gurobi or CPLEX.
Gurobi requires a license (free for academic purpose).

4.3 Experimentation

In this section we provide experimental results to compare Turbine with SDF3 and
PREESM. The next section describes the experimental conditions. Section 4.3.2
compares generating times. In Section 4.3.3 we compare the number of tokens of
the initial markings computed by the three generators.

4.3.1 Experimental conditions

Most experiments were performed on graphs with four different sizes: tiny, small,
medium and large, having respectively 10, 100, 1,000 and 10,000 tasks.

The experiments were executed on a four-core Intel Core I5 660 at 3.33 Ghz
with 6GB of RAM running under Linux and with Python 2.7. Generated dataflow
graphs have the same parameters: average repetition factor Ri = 5 and average
degree of 3. They are generated with cycles and with no multi-arc or self-loop.
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4.3.2 Comparison of generation times

To compare performance of PREESM, SDF3 and Turbine, 100 instances of each
size were generated by each generator. The last versions of SDF3, PREESM and
Turbine were used (24 July 2014 for SDF3 and v2.2.3 for PREESM). Note that
PREESM only generates SDFGs and SDF3 does not handle the PCG model.

Table 4.1(a) presents the average generation time of SDFGs for each graph size
and for each generator. SDF3 was not able to generate large graphs (the generator
was stopped after 24h). The generation of large graphs with PREESM is very
memory consuming (up to 32GB), the ⋆ indicates that time was measured on a
two-Xeon server with 48GB of RAM. Table 4.1(b) presents the average generation
time of CSDFGs of each size for Turbine and SDF3. SDF3 was not able to generate
large graphs.

|T | Turbine SDF3 PREESM
Tiny 5ms 19ms 9ms
Small 44ms 313ms 58ms
Medium 592ms 1h24mn 7.2s
Large 20.7s - 1h39mn⋆

(a) SDFG

|T | Turbine SDF3
Tiny 7ms 23ms
Small 62ms 315ms
Medium 806ms 1h27mn
Large 20.4s -

(b) CSDFG

Table 4.1 – (a) SDFG generation time with Turbine, SDF3 and PREESM.
(b) CSDFG generation time with Turbine and SDF3.

Since the first release, the generation time of Turbine was greatly improved.
For example, the generation time for large SDFGs which took an average of 10
minutes, now takes about 20 seconds, hence is 30 times shorter. This is due to
several improvements in the graph generation, especially for the arcs and the use
of a more recent version of GLPK. The solver outperforms the other generators for
both SDFGs and CSDFGs.

4.3.3 Comparison of the initial markings

The computed initial marking must ensure liveness and also be minimal such that
the total number of tokens be close to what happens in real applications and leaves
room for the user to add tokens. In this section we present experiments to compare
the initial marking computed by each generator.

Initial marking computation is part of dataflow graph generation. It calls for
modifying the code of SDF3 and PREESM in order to test the algorithm on pre-
generated graphs. The total number of tokens is compared among 100 instances of
tiny, small and medium-size graphs pre-generated with Turbine. Large instances
were not tested since PREESM gives an error because of a restriction on integer size.
Figure 4.1 shows the average number of tokens obtained for SDFGs and CSDFGs
using Turbine as reference.
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Figure 4.1 – Total number of tokens for the initial markings computed for (a)
SDFGs and (b) CSDFGs of tiny, small and medium size. The number of tokens is
scaled to 100 for Turbine, which is used as reference.

The number of tokens is smaller for Turbine on tiny and small instances. How-
ever, PREESM gives a smaller number on medium graphs. For acyclic graphs, the
initial markings generated by Turbine do not contain any token, in contrast with
those of SDF3 and PREESM. None of the graphs generated in the experiments
whose results are shown in Figure 4.1 is acyclic.

4.3.4 Performance of Turbine

This section presents various experiments on Turbine to illustrate its scalability.
They cover PCG generation time, comparison of SCL1 and SCL2 computation
times, and comparison of initial markings generated using optimal mixed-integer
programming and a linear approximation.

PCG generation time

Table 4.2 shows average generation times for PCGs of size defined previously.

|T | Turbine

Tiny 10ms
Small 99ms
Medium 1.1s
Large 24.7s

Table 4.2 – PCG generation times using Turbine.

The generation times are close to those for CSDFGs of the same size and have
been greatly improved since the first release: at first the generation of a PCG of
large size took two hours, it now takes less than 25 seconds.

84



4.3. Experimentation

Comparison between computation times using liveness conditions SCL1
and SCL2

In this section performance of SCL1 and SCL2 with two versions of Turbine is
discussed. We compare the first version of Turbine, released in 2013, and the last
version, released in 2016. The 2013 version uses GLPK v4.48 while the last release
uses GLPK v4.58. Experiments have been performed on SDFGs, CSDFGs and
PCGs. Although v4.58 was already available in 2013, the interface Python-glpk in
use at the time restricted us to v4.48. Version v4.58 is now used, as we switched to
swiglpk.

The graphs are pre-generated, so that the generation time measured in the ex-
periments is restricted to the initial marking computation. The experiments include
100 graphs of each size. The presolver in ON for both version of GLPK in order
to improve the linear program by removing unused variables and redundant con-
straints. The presolver has been significantly improved between version v4.48 and
v4.58.

Table 4.3 shows average computation times for the initial markings using SCL1
and SCL2 with GLPK v4.48.

SDF CSDF PCG
|T | SCL1 SCL2 SCL1 SCL2 SCL1 SCL2
Tiny 0.004s 0.007s 0.01s 0.007s 0.05s 0.01s
Small 0.06s 0.2s 0.3s 0.2s 1.7s 0.2s
Medium 2.3s 15.4s 59.4s 14.7s 1h10mn 15.2s

Table 4.3 – Initial marking computation times averaged on 100 instances using
SCL1 and SCL2 on SDFGs, CSDFGs and PCGs with the 2013 Turbine release.
The experiments, made in 2013, did not test large graphs.

Table 4.4 gives the results of the same experiments using now version v4.58 of
GLPK.

SDF CSDF PCG
|T | SCL1 SCL2 SCL1 SCL2 SCL1 SCL2
Tiny 0.004s 0.003s 0.005s 0.003s 0.006s 0.003s
Small 0.014s 0.018s 0.047s 0.018s 0.084s 0.02s
Medium 0.214s 0.225s 1.99s 0.233s 4.301s 0.255s
Large 12.72s 8.182s 6mn5s 8.334s 14mn3s 8.677s

Table 4.4 – Initial marking computation times averaged on 100 instances using
SCL1 and SCL2 on SDFGs, CSDFGs and PCGs with the 2016 Turbine release.

Tables 4.3 and 4.4 show how initial marking computation time improved between
the first and the last release of Turbine. The usefulness of the SCL2 implementation
for large graphs appears clearly in Table 4.4. SCL2’s performance is very close to
SCL1’s on SDFGs of tiny, small and medium size and is better in every other case.
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This higher efficiency is largely due to the pre-solver improvement. Despite that,
the implementation of SCL1 is still of interest for SDFGs with high average degree.

Comparison between SCL2 and SCL2 MIP

Figure 4.2 illustrates the difference between the number of tokens of the initial mark-
ings obtained using the linear approximation version of SCL2—rounding up to the
next useful token—and its mixed-integer linear version denoted SCL2 MIP, which
finds an optimal solution. The linear approximation is solved with GLPK while the
mixed-integer linear version is solved by Gurobi. Figure 4.2 shows the number of
tokens of initial markings computed with SCL2 MIP compared to SCL2. The
results are averages on 100 instances generated with Turbine.

During the experiment the computation time of SCL2 MIP is limited to 5 min-
utes; the instances requiring more time are ignored. Except for 100-task CSDFGs,
for which only 46 instances were solved, all other graphs required less than 5 minutes.
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Figure 4.2 – Initial marking computation times using SCL2 and SCL2 MIP on
(a) SDFGs and (b) CSDFGs with 10 to 100 tasks.

The initial markings obtained using the linear approximation are closer to the
optimum for CSDFGs than SDFGs. Also, the difference appears to decrease with
the size of the CSDFGs.

4.4 Conclusion

This chapter presented the dataflow graph generator Turbine and two of its com-
petitors, SDF3 and PREESM. The dataflow generators have been compared in terms
of computation time and number of tokens of the initial marking for both SDFGs
and CSDFGs. The improvement in performance between releases of Turbine has
also been illustrated. Finally, an experiment compared the linear approximation to
the exact solution for the initial marking in terms of the total number of tokens.
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4.4. Conclusion

This chapter concludes the work done on the PCG model and the related imple-
mentation. The next chapters are dedicated to the second part of the thesis, on a
dataflow graph mapping problem on distributed architectures.
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Chapter 5. Mapping problem with memory constraints

5.1 Introduction

Due to the multiplication of processing elements on a single chip, the mapping
problem is considered one the most urgent problems for implementing embedded
systems [Marwedel et al., 2011]. The new approach proposed in this thesis offers a
fast evaluation of the memory consumption of mappings that guarantee liveness or
satisfy a constraint on throughput .

Our work on the mapping problem is presented in two chapters. This chapter
considers theoretical aspects of the problem and elaborates techniques of evaluation
of the memory footprint of a Synchronous Dataflow Graph (SDFG) or a Cyclo-Static
Dataflow Graph (CSDFG) buffer. Two versions of the evaluation are considered, one
assuming a bounded buffer and another with the addition of a throughput constraint.

The following chapter considers practical aspects of the problem and proposes
algorithms and experiments using a new model to evaluate the memory footprint of
an application.

Section 5.2 presents the mapping problem. Section 5.3 demonstrates a technique
to evaluate memory consumption of an application with live or throughput con-
straints using the SDFG model. Section 5.4 extends the technique to the CSDFG
model. Section 6.10 concluded.

5.2 Mapping Problem

The mapping problem is known to be NP-hard [Singh et al., 2013]. It consists in
assigning functions of an application to the processing elements of a specific archi-
tecture to optimize performance. Many mapping problem variants exist depending
on the target architecture and the selected performance objective.

Section 5.2.1 describes the mapping problem studied in this thesis. Section 5.2.2
presents the target architecture. Finally, Section 5.2.3 describes the state of the art
for liveness and throughput evaluation.

5.2.1 Problem description

The mapping problem studied in this thesis consists in finding an allocation for the
tasks of a dataflow graph on a distributed architecture. The architecture is composed
of many clusters linked by means of a Network on Chip (NoC). Each cluster contains
processing elements and a memory shared between these processing elements. The
goal of task allocation is to minimize the number of clusters used while respecting
the memory constraint.

The affectation problem under memory constraint is approached with a new in-
sight. The memory consumption other than program and data storage comes from
buffer communication between actors and this consumption depends on the affec-
tation. Indeed, due to the distributed architecture, if two communicating tasks are
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affected to different clusters, a copy is performed from one cluster to another result-
ing in a delay during the communication and an increase in memory consumption.

The evaluation comes in two versions, one with liveness guarantee, the other
with throughput constraint. The liveness guarantee ensures that the application will
function without dead-lock. The throughput constraint imposes that the throughput
be the same as if there were no communication delays. The goal of this work is to
find an efficient evaluation of the mapping while reaching high scalability: thousands
of tasks mapped on an architecture composed of many clusters.

5.2.2 Targeted architecture

The targeted architecture is inspired from the Massively Parallel Processor Array
(MPPA) developed by Kalray [Aubry et al., 2013]. An MPPA chip is an array of 16
homogeneous clusters connected by a high-speed NoC (up to 12 GB/s). A cluster
is composed of 16 processing cores and 2MB of shared memory.

The targeted architecture for the mapping problem illustrated in Figure 5.1 is a
simplification of the MPPA. We define a set of clusters S with a limited amount of
memory Mmax. The NoC has a latency depending on the size of the data packets
and a constant bandwidth. Every cluster is supposed to communicate with any
other with the same latency and the load of the NoC does not affect the bandwidth.
To simplify the approach, the routing part is abstracted.

We assume wormhole routing so that network latency comprises two parts [Nikitin
and Cortadella, 2009]: a constant term d, accounting for header propagation time
and contention delay, and a term proportional to packet size, accounting for data
transmission time in a pipelined manner.
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Figure 5.1 – The targeted architecture for the mapping problem.

5.2.3 State of the art

The mapping problem, which consists in assigning functions of an application on
a minimal number of processing elements of an architecture (shared by several ap-
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plications) while satisfying budget (such as memory or power) and performance
(such as throughput or latency) constraints, is known to be NP-hard [Singh et al.,
2013]. Its solution requires evaluations of the budget and performance characteris-
tics of many candidate mappings. When an application is modeled by an SDFG, no
polynomial—in terms of that weighted-graph description—algorithm has been found
for throughput evaluation, making the mapping problem even more challenging.

Symbolic execution is used in [Stuijk et al., 2007] to evaluate SDFG liveness
and throughput. Tasks are executed as many times as necessary, leading to an
exponential—in terms of the SDFG parameters—number of executions. Integer
Linear Programming and Constraint Programming are used respectively in [Lin
et al., 2012] and [Zhu et al., 2010] to model an SDFG mapping problem and obtain
feasible schedules with a time complexity comparable to the symbolic execution. The
mapping problem for a Homogeneous Synchronous Dataflow Graph (HSDFG), for
which polynomial evaluations exist is considered in [Bonfietti et al., 2010] and [Zhou
et al., 2013]. An SDFG may be transformed into an HSDFG at the expense of
a possibly exponential growth of the size of the description, making polynomial
techniques on HSDFGs exponential for the underlying SDFGs.

All the previous methods are not scalable and cannot handle large industrial in-
stances. By using sufficient conditions—hence conservative to some extent—liveness
and throughput of a mapping may be evaluated polynomially. Bekooij et al. [Bekooij
et al., 2006] use periodic evaluation to obtain throughput guarantees for applications
modeled by acyclic SDFGs. Turbine, presented in [Bodin et al., 2014], develops and
tests a more general approach introduced in [Benabid-Najjar et al., 2012] to generate
random live SDFGs with cycles.

5.3 Memory evaluation with an SDFG model

This section presents a technique to evaluate the memory consumption of an ap-
plication modeled by an SDFG and assigned to a distributed architecture. The
results focus on a single buffer and provide a minimum live initial marking for a
buffer shared between two clusters and a sufficient initial marking which guarantees
a given throughput.

The next section introduces the boundedness property used to evaluate the mem-
ory consumption of a buffer. Section 5.3.2 describes how the memory footprint is
evaluated if a buffer is shared between two clusters. Section 5.3.4 addresses the
liveness problem in the case of a buffer between two clusters. Section 5.3.6 presents
a solution for a live initial marking of a buffer between two clusters. Section 5.3.7
addresses the liveness problem with throughput constraint in the case of a buffer
between two clusters. Finally, Section 5.3.8 presents a solution with a throughput
constraint.
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5.3.1 Boundedness: a property of the dataflow models

A dataflow graph is bounded if its marking is bounded when it is executed. We
identify two levels of evaluation of boundedness for dataflow graphs, the exact eval-
uation which gives an exact marking at a specific time for a given schedule, and a
global evaluation which supposes that the capacity of the buffers is bounded. Exact
evaluation requires the execution of the schedule hence is not scalable. As this work
focuses on scalability the evaluation is performed globally—resulting in a global up-
per bound on the marking instead of a local upper bound for each buffer—and gives
guarantee instead of an exact evaluation.

The bounded buffer assumption is modeled by adding to each arc a = (ti, tj) ∈ A
a backward arc (also called back-pressure arc [Bekooij et al., 2006]) a = (tj, ti) with
ca = pa and pa = ca as illustrated in Figure 5.2. The size of the buffer a is then
σa = M0(a) + M0(a). In the sequel a bounded arc a implies the presence of a
backward arc a.

t1 t2
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3 2

. . . . . . . .1

(a)

t1 t2
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. . . . . . . .1

. . . . . . . .4

3 2

(b)

Figure 5.2 – (a) A buffer a = (t1, t2) with pa = 3, ca = 2 and M0(a) = 1; (b) the
bounded version of buffer a with σa = 5.

5.3.2 Communication memory footprint

This section explains how the memory footprint of a communication is evaluated.
The explanation uses the SDFG model but is easily extended to the CSDFG model.
We define Gsdf = (T , A, P , C, M, L) an application modeled by a SDFG and Sc a
set of clusters with Mmax the amount of memory for a cluster c ∈ S.

Let a = (ti, tj) ∈ A be a bounded buffer. If ti and tj are allocated in the same
cluster, the memory footprint is σa in this cluster. If ti and tj are in two different
clusters, a new task tc (c for communication) is added between ti and tj to model
the communication through the NoC. The execution time of tc is ℓc = d + Zc

B
with d

a constant latency, Zc the data packet size and B the bandwith of a NoC channel.
Thus, the bounded buffer a = (ti, tj) is composed of two bounded buffers ai = (ti, tc)
and aj = (tc, tj). The memory footprint of the communication between ti and tj is
then σai

in ti’s cluster and σaj
in tj’s cluster.

Figure 5.3 illustrates a bounded buffer with the two tasks is connects on (a) the
same cluster and (b) two different clusters. Note that the graph is normalized thus,
instead of a production and a consumption weight for each arc, only one weight per
task is pictured.
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Figure 5.3 – (a) A bounded buffer a = (t1, t2); (b) the same bounded buffer a
between two clusters with task tc (c for communication) representing data transfers
through the NoC and Zc the transfer rate.

Figure 5.3 could have shown a CSDFG since this does not change the communi-
cation model, the memory footprint depends on the initial marking and not on the
production and consumption rates.

Figure 5.4 depicts two different mappings for an application composed of four
tasks.
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Figure 5.4 – (a) A mapping with t1 and t4 on one cluster and t2 and t3 on another.
(b) The same application with t1 and t4 mapped on one cluster, t2 on a second
cluster and t3 on a third.

Note that the communication tasks in Figure 5.4 have distinct consumption and
production rates since they are independent from each other.

5.3.3 Height of an SDFG

The notion of height of an arc will be useful for the analysis that follows. Let
Gsdf = (T , A, P , C, M, L) be a normalized SDFG with a = (ti, tj) ∈ A. The height
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of the arc a is denoted H(a) = M0(a) + gcda − Zj and the height of a cycle µ is
H(µ) =

∑

a∈µ

H(a).

Note that the sufficient condition of liveness for an SDFG, SCL, expressed by
Theorem 1 in Section 2.4.4 is equivalent to H(µ) > 0, ∀µ ∈ Gsdf .

5.3.4 Liveness guarantee for an inter-cluster buffer

Let Gsdf = (T , A, P , C, M, L) be a bounded SDFG that satisfies the sufficient condi-
tion of liveness SCL. Suppose that a = (ti, tj) is a bounded buffer such that ti and
tj are in different clusters. We model the communication through the NoC by split-
ting the buffer in two and inserting an additional task denoted tc, which performs
(virtually) the transfer of the data. This new task is linked to ti and tj using two
bounded buffers, ai and aj, as pictured in Figure 5.5. Zc is the normalized weight
of task tc and its value will be set later.

Our aim is to determine Zc and the initial markings of the couple of bounded
buffers, ai and aj illustrated in Figure 5.5, so that the memory be minimized. The
memory corresponding to σai

(resp. σaj
) is associated to the bounded buffer ai (resp.

aj) and is located in the cluster of ti (resp. tj).

ti tc tj

ai

ai

aj

aj

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

Zi ZjZcZc

Figure 5.5 – Model of communication between two clusters via a bounded buffer.
Task tc models data transfers through the NoC.

Let G ′
sdf be the graph Gsdf with the bounded buffer a = (ti, tj) from Gsdf replaced

by the two bounded buffers ai = (ti, tc) and aj = (tc, tj). We denote ai, aj the
backward arcs of ai and aj, respectively.

Lemma 10. Let G ′
sdf be the SDFG obtained by replacing a and a in Gsdf by a

communication task and its four associated arcs according to Figure 5.5. If Gsdf

verifies SCL and the following four conditions





H(ai) + H(ai) > 0
H(aj) + H(aj) > 0
H(ai) + H(aj) ≥ H(a)
H(ai) + H(aj) ≥ H(a) ,

then G ′
sdf verifies SCL.

Proof. If Gsdf verifies SCL, a sufficient condition of liveness of G ′
sdf is that the

following four additional conditions be met:
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• Cycles (ti, tc, ti) and (tj, tc, tj) of G ′
sdf must verify SCL, thus H(ai)+H(ai) > 0

and H(aj) + H(aj) > 0.

• To every cycle µ of G passing through a (resp. a) is associated a unique cycle
of G ′

sdf passing through ai and aj (resp. ai and aj). SCL is then ensured by
imposing H(ai) + H(aj) ≥ H(a) and H(ai) + H(aj) ≥ H(a).

Figure 5.6 illustrates a live marking according to Lemma 10 since we have:

H(a) = 2 − 2 + 1 = 1
H(a) = 3 − 3 + 1 = 1

H(a1) = 4 − 1 + 1 = 5
H(a1) = 30 − 3 + 1 = −2
H(a2) = 0 − 2 + 1 = −1
H(a2) = 3 − 1 + 1 = 3.

t1 t2

a

a

. . . . . . . .2

. . . . . . . .3
3 2

(a)

t1 tc t2

a1

a1

. . . . . . . .4

. . . . . . . .0

a2

a2

. . . . . . . .0

. . . . . . . .3
3 211

(b)

Figure 5.6 – (a) A bounded buffer a = (t1, t2); (b) the same bounded buffer a
betwen two clusters with a live initial marking according to Lemma 10.

5.3.5 Optimal transfer rate for live minimum memory foot-
print

This section shows that the value Zc = gcda yields the smallest value for the total
initial marking satisfying the sufficient condition of liveness SCL.

Lemma 11. Consider a couple (a, b) ∈ N
∗ × N

∗. The function f : N∗ → Z defined
as

fa,b(x) = x − gcd(x, a) − gcd(x, b)

is minimum for x = gcd(a, b).

Proof. We shall substitute f for fa,b in the proof.

If x divides neither a nor b, then f(x) ≥ 0 since gcd(x, a) ≤ x
2
and gcd(x, b) ≤ x

2
.

Otherwise:

• if x divides a, then gcd(x, a) = x and
f(x) = − gcd(x, b) = − gcd(x, a, b) ≥ − gcd(a, b),

• if x divides b, then f(x) = − gcd(x, a, b) ≥ − gcd(a, b).

Thus if x divides either a or b, f(x) = − gcd(x, a, b), and the minimum f(x) =
− gcd(a, b) is attained if x is a multiple of gcd(a, b). Moreover the smallest value of
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x is obtained for x = gcd(a, b).

Theorem 12. For any bounded buffer a = (ti, tj) between two clusters, the value
Zc = gcda minimizes the total memory required for the buffer according to the suf-
ficient condition of liveness SCL. The conditions expressed by Lemma 10 become
then





M0(ai) + M0(ai) ≥ Zi

M0(aj) + M0(aj) ≥ Zj

M0(ai) + M0(aj) ≥ M0(a)
M0(ai) + M0(aj) ≥ M0(a) .

Proof. Replacing H by its definition, the first two inequalities of Lemma 10 become:

M0(ai) + M0(ai) > Zi + fZi,Zi
(Zc),

M0(aj) + M0(aj) > Zj + fZj ,Zj
(Zc).

Similarly, the last two inequalities become

M0(ai) + M0(aj) ≥ M0(a) + gcda + fZi,Zj
(Zc),

M0(ai) + M0(aj) ≥ M0(a) + gcda + fZi,Zj
(Zc).

Since fZi,Zi
(Zc) + fZj ,Zj

(Zc) = 2fZi,Zj
(Zc), we obtain when adding up these four

inequalities the following condition on the total memory required for buffer a:

2(M0(ai) + M0(ai) + M0(aj) + M0(aj)) >

Zi + Zj + M0(a) + M0(a) + 2gcda + 4fZi,Zj
(Zc).

By Lemma 11, the right hand side of this inequality is minimum for fZi,Zj
(Zc) =

− gcd(Zi, Zj) = −gcda. By selecting Zc = gcda, we have moreover fZi,Zi
(Zc) =

fZj ,Zj
(Zc) = −gcda.

The first two inequalities become then M0(ai)+M0(ai) > Zi −gcda and M0(aj)+
M0(aj) > Zj − gcda, giving the first two conditions of the theorem. The last two
conditions follow directly from the other pair of inequalities by substituting −gcda

for fZi,Zi
(Zc), thus concluding the proof of the theorem.

5.3.6 Live minimum memory footprint computation

The following theorem presents a solution satisfying the conditions from Theorem
12 that minimizes the overall memory needed for the communication of a bounded
buffer between two clusters.

Theorem 13. Let G ′
sdf be the SDFG obtained by replacing a and a in Gsdf by a

communication task and its four associated arcs according to Figure 5.5. Let also
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Zc = gcda. Setting δ = min(M0(a), Zj), the values





M0(ai) = M0(a) − δ
M0(ai) = δ + max(M0(a) − Zj, Zi − M0(a))
M0(aj) = δ
M0(aj) = Zj − δ

constitute a feasible solution minimizing the total memory required for communica-
tion.

Proof. We denote σa = M0(a) + M0(a), σai
= M0(ai) + M0(ai) and σaj

= M0(aj) +
M0(aj). We easily check that M0 satisfies the inequalities from Theorem 12. Two
cases must be considered to minimize σai

+ σaj
:

1. If M0(a) − Zj ≥ Zi − M0(a), then σai
+ σaj

= σa and the last two inequalities
are tight.

2. Otherwise, σai
+ σaj

= Zi + Zj and the first two inequalities are tight.

The consequence is that σai
+σaj

is minimum.

Figure 5.7 illustrates a bounded buffer between two clusters with a minimum
live marking according to Theorem 13. We have:

Z1 = 3, Z2 = 2
M0(a) = 2, M0(a) = 3
δ = min(M0(a), Z2) = 2
max(M0(a) − Z2, Z1 − M0(a)) = 1

thus





M0(a1) = 0
M0(a1) = 3
M0(a2) = 2
M0(a2) = 0

t1 t2

a

a

. . . . . . . .2

. . . . . . . .3
3 2

(a)

t1 tc t2

a1

a1

. . . . . . . .0

. . . . . . . .3

a2

a2

. . . . . . . .2

. . . . . . . .0
3 211

(b)

Figure 5.7 – (a) A bounded buffer a = (t1, t2); (b) the same bounded buffer a
between two clusters with a minimum live initial marking according to Theorem 13.

5.3.7 Throughput guarantee for an inter-cluster buffer

This section deals with the minimization of the memory footprint of an inter-cluster
buffer with a throughput constraint. The throughput constraint uses a sufficient
condition which comes from the one-periodic schedule characterization of Theorem
2 in Section 2.5.5. The one-periodic schedule is preferred over the K-periodic or the
As Soon As Possible (ASAP) schedule as it can be computed efficiently and hence
evaluated in a reasonable amount of time for the large dataflow graphs considered
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in this thesis. We now refer to this theorem as a sufficient condition of throughput
(SCT).

Assuming that Gsdf = (T , A, P , C, M, L) is an SDFG with an initial marking
sufficient to admit a one-periodic schedule of fixed period T , let G ′

sdf be the graph
Gsdf with the bounded buffer (a, a) replaced by two bounded buffers (ai, ai) and
(aj, aj). Let ℓc be the time needed to transfer Zc data items between the two
clusters.

We show that the initial marking of the SDFG obtained by adding a task tc

of weight Zc = gcda can be computed optimally to reach a one-periodic feasible
schedule of period T . Theorem 14 presents a set of sufficient conditions ensuring
that conditions SCT are fulfilled for a fixed period. We denote the reduced period
T̃ = T

Zi.Ri
, ∀ti ∈ T .

Theorem 14. Let a = (ti, tj) and a = (tj, ti) be a bounded buffer in Gsdf and let
G ′

sdf be the SDFG obtained by replacing a and a in Gsdf by a communication task,
tc, with Zc = gcda. Letting

ri = Zi − Zc +

⌈
ℓi + ℓc

T̃

⌉

gcda

,

ua = M0(a) +

⌈
ℓc

T̃

⌉

gcda

,

where ⌈x⌉z denotes the smallest multiple of z greater than x, and assuming that the
initial marking of G ′

sdf satisfies the following inequalities





M0(ai) + M0(ai) ≥ ri

M0(aj) + M0(aj) ≥ rj

M0(ai) + M0(aj) ≥ ua

M0(ai) + M0(aj) ≥ ua ,

then, the initial marking is feasible for a one-periodic schedule of reduced period T̃
for G ′

sdf .

Proof. The four inequalities are proven separately.

• Cycle (ti, tc, ti) must verify condition SCT, which is equivalent to ℓi + ℓc −

T̃ .(H(ai) + H(ai)) ≤ 0 that is H(ai) + H(ai) ≥
ℓi + ℓc

T̃
.

Now H(ai) + H(ai) = M0(ai) + M0(ai) − Zi + gcda so that, as M0(ai) and
M0(ai) are multiples of gcda, the first inequality holds. The second inequality
can be proved similarly.

• Now, to every cycle µ of G passing through a is associated a unique cycle of
G ′ passing through ai and aj. A sufficient condition to ensure SCT is then

ℓi − T̃ .H(a) ≥ ℓi + ℓc − T̃ .(H(ai) + H(aj)),
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that is H(ai) + H(aj) ≥ H(a) +
ℓc

T̃
. Now, as H(a) = M0(a) − Zj + gcda and

H(ai) + H(aj) = M0(ai) + M0(aj) − Zc − Zj + 2.gcda

= M0(ai) + M0(aj) − Zj + gcda,

we get

M0(ai) + M0(aj) ≥ M0(a) +
ℓc

T̃
.

Since all these markings are multiples of Zc = gcda, the third inequality holds.
The last inequality is proved using the same arguments.

Theorem 14 formalizes the guarantee of a throughput for a bounded buffer be-
tween two clusters. Note that the throughput guarantee ensures liveness; since
ri > Zi and ua > M0(a). If the conditions of Theorem 14 are satisfied then the con-
ditions of Theorem 12 are satisfied however large is the period T . The next section
presents a solution for a minimum initial marking while ensuring a given throughput
for a bounded buffer between two clusters.

5.3.8 Minimummemory footprint computation under through-
put constraint

The following theorem is a characterization of a locally optimal initial marking
ensuring the existence of a periodic schedule of period T for G ′

sdf .

Theorem 15. Consider a bounded buffer of Gsdf with arc a = (ti, tj) and backward
arc a = (tj, ti). Let G ′

sdf be the SDFG obtained by replacing a and a in Gsdf by a
communication task tc with Zc = gcda. Setting δ = min(ua, rj), the values





M0(ai) = ua − δ
M0(ai) = δ + max(ua − rj, ri − ua)
M0(aj) = δ
M0(aj) = rj − δ

are a solution ensuring the existence of a periodic schedule of period T minimizing
the total memory σai

+ σaj
required for the communication.

Proof. The proof uses Theorem 14. As it is similar to that of Theorem 13 it is
omitted.

We now illustrate the throughput constraint property with the example of Figure
5.8 where ℓ1 = ℓ2 = 1. Without considering the rest of the SDFG this bounded buffer
is able to comply with a one-periodic schedule with period T = 6.
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t1 t2
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. . . . . . . .2

. . . . . . . .3
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t1 t1 t1 t1

t2 t2 t2 t2 t2

(b)

Figure 5.8 – (a) A bounded buffer; (b) One-periodic schedule for the bounded
buffer with period T = 6.

Assume that ℓc = 1. We have T = 6 and Z1.R1 = Z2.R2 = 6 thus T̃ = 1. For
the bounded buffer between two clusters, Theorem 15 gives:

r1 = 3 − 1 + 2 = 4
r2 = 2 − 1 + 2 = 3
ua = 2 + 1 = 3
ua = 3 + 1 = 4
δ = min(3, 3) = 3

yielding to:





M0(a1) = 0
M0(a1) = 4
M0(a2) = 3
M0(a2) = 0

t1 tc t2

a1

a1

. . . . . . . .0

. . . . . . . .4

a2

a2

. . . . . . . .3

. . . . . . . .0
3 211

(a)

0 1 2 3 4 5 6 7

t1 t1 t1 t1

tc tc tc tc tc tc tc

t2 t2 t2 t2 t2

(b)

Figure 5.9 – (a) The bounded buffer a = (t1, t2) of Figure 5.8(a) when distributed
between two clusters. (b) One-periodic schedule for the bounded buffer between two
clusters with period T = 6.

Figures 5.8 and 5.9 show how to compute an initial marking while ensuring
liveness and throughput for a bounded buffer between two clusters. As pictured in
Figure 5.8(b) and 5.9(b) the throughput is maintained.

5.4 Memory evaluation for a CSDFG model

This section extends the liveness guarantee and the minimal throughput guarantee
for a bounded buffer to the CSDFG model. The extension of the memory evaluation
to the CSDFG model uses the same technique as for the SDFG model.

Section 5.4.1 extends the notion of height to the CSDFG model. Section 5.4.2
formalizes the liveness problem for a single bounded buffer in a CSDFG. Section
5.4.3 determines the optimal transfer rate for the communication task to minimize
the live marking of the bounded buffer. Section 5.4.4 determines the minimum live
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initial marking for a throughput guarantee of a CSDFG bounded buffer. Section
5.4.5 formalizes the throughput guarantee problem for a bounded buffer and, finally,
Section 5.4.6 determines an initial marking with a throughput guarantee.

5.4.1 Height of a CSDFG

The height notation is extended to the CSDFGmodel. Let Gcsdf = (T , A, P , C, M, L)
be a normalized CSDFG. There are ϕi × ϕj heights for an arc a = (ti, tj), de-
noted Hki,kj

(a) = M0(a) + P −1
a (ki, 1) − Ca(kj, 1) + stepa with ki ∈ {1, · · · ϕi} and

kj ∈ {1, · · · ϕj}.

The sufficient condition of liveness (SCL1) expressed by Theorem 4 in Section
3.2.6 is equivalent to

∑
a∈µ Hki,kj

(a) > 0, ∀ki ∈ {1, · · · ϕi}, ∀kj ∈ {1, · · · ϕj}, ∀a =
(ti, tj) ∈ µ for every cycle µ.

5.4.2 Liveness guarantee for an inter-cluster buffer

This section extends the liveness guarantee for an inter-cluster buffer to the CSDFG
model. Let Gcsdf be a bounded CSDFG that satisfies the sufficient condition of
liveness SCL1. Suppose that a = (ti, tj) is a bounded buffer such that ti and tj are
in different clusters.

Lemma 12. Let G ′
csdf be the CSDFG obtained by replacing an arc a and the as-

sociated backward a in Gcsdf by a communication task and its four associated arcs
according to Figure 5.5. If Gcsdf verifies SCL1 and the following conditions





Hki,kc
(ai) + Hkc,ki

(ai) > 0

Hkc,kj
(aj) + Hkj ,kc

(aj) > 0

Hki,kc
(ai) + Hkc,kj

(aj) ≥ Hki,kj
(a)

Hkc,ki
(ai) + Hkj ,kc

(aj) ≥ Hkj ,ki
(a)

∀ki ∈ {1, · · · , ϕi}, ∀kj ∈ {1, · · · , ϕj} and ∀kc ∈ {1, · · · , ϕc}, then G ′
csdf verifies

SCL1.

Proof. If Gcsdf verifies SCL1, a sufficient condition of liveness of G ′
csdf is that the

following four additional conditions be met ∀ki ∈ {1, · · · , ϕi}, ∀kj ∈ {1, · · · , ϕj}
and ∀kc ∈ {1, · · · , ϕc}:

• Cycles (ti, tc, ti) and (tj, tc, tj) of G ′
csdf must verify SCL1, thus Hki,kc

(ai) +
Hkc,ki

(ai) and Hkc,kj
(aj) + Hkj ,kc

(aj) > 0.

• To every cycle µ of Gcsdf passing through a (resp. a) is associated a unique cycle
of G ′

csdf passing through ai and aj (resp. ai and aj). SCL1 is then ensured
by imposing Hki,kc

(ai) + Hkc,kj
(aj) ≥ Hki,kj

(a) and Hkc,ki
(ai) + Hkj ,kc

(aj) ≥
Hkj ,ki

(a).
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5.4.3 Optimal transfer rate for a live minimum memory
footprint

The next theorem shows that the transfer rate rc = stepa with ϕc = 1 is optimal in
order to minimize the live marking of the shared bounded buffer. Note that task tc

models the data transfer through the NoC, therefore consumption and production
vectors on each arc are identical.

Theorem 16. For any bounded buffer a = (ti, tj) between two clusters, the value
rc = stepa minimizes the total memory required for the buffer according to the suf-
ficient condition of liveness SCL1. The conditions expressed by Lemma 12 become
then





M0(ai) + M0(ai) ≥ maxk∈{1,··· ,ϕi}(cai
(k))

M0(aj) + M0(aj) ≥ maxk∈{1,··· ,ϕj}(caj
(k))

M0(ai) + M0(aj) ≥ M0(a)
M0(ai) + M0(aj) ≥ M0(a) .

Proof. Replacing H by its definition, the first two inequalities of Lemma 12 give:

M0(ai) + M0(ai) + P −1
ai

(ki, 1) + P −1
ai

(kc, 1) − Cai
(kc, 1) − Cai

(ki, 1) + 2stepai
> 0

M0(aj) + M0(aj) + P −1
aj

(kc, 1) + P −1
aj

(kj, 1) − Caj
(kj, 1) − Caj

(kc, 1) + 2stepaj
> 0.

Since Pai
(ki, 1) = Cai

(ki, 1), P −1
ai

(ki, 1) − Cai
(ki, 1) = −cai

(ki)and,
since Pai

(kc, 1) = Cai
(kc, 1), P −1

ai
(kc, 1) − Cai

(kc, 1) = −cai
(kc).

Similarly

Caj
(kj, 1) = Paj

(kj, 1) implies P −1
aj

(kj, 1) − Caj
(kj, 1) = −caj

(kj) and,

Paj
(kc, 1) = Caj

(kc, 1) implies P −1
aj

(kc, 1) − Caj
(kc, 1) = −caj

(kc).

Using these relations the first two inequalities of Lemma 12 become:

M0(ai) + M0(ai) > cai
(ki) + cai

(kc) − 2stepai
,

M0(aj) + M0(aj) > caj
(kj) + caj

(kc) − 2stepaj
.

Now, replacing H by its definition, the last two inequalities of Lemma 12 become:

M0(ai) + M0(aj)+ P −1
ai

(ki, 1) + P −1
aj

(kc, 1) − Cai
(kc, 1) − Caj

(kj, 1)

+stepai
+ stepaj

≥ M0(a) + P −1
a (ki, 1) − Ca(kj, 1) + stepa

M0(ai) + M0(aj)+ P −1
aj

(kj, 1) + P −1
ai

(kc, 1) − Caj
(kc, 1) − Cai

(ki, 1)

+stepai
+ stepaj

≥ M0(a) + P −1
a (kj, 1) − Ca(ki, 1) + stepa.

Since Cai
(kc, 1) = Paj

(kc, 1), P −1
aj

(kc, 1) − Cai
(kc, 1) = −cai

(kc) and,

since Pai
(kc, 1) = Caj

(kc, 1), P −1
ai

(kc, 1) − Caj
(kc, 1) = −caj

(kc).
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Since moreover

P −1
a (ki, 1) = P −1

ai
(ki, 1), Ca(kj, 1) = Caj

(kj, 1) and,
P −1

a (kj, 1) = P −1
aj

(kj, 1), Ca(ki, 1) = Cai
(ki, 1),

the last two inequalities of Lemma 12 become:

M0(ai) + M0(aj) ≥ M0(a) + stepa + cai
(kc) − stepai

− stepaj
and,

M0(ai) + M0(aj) ≥ M0(a) + stepa + caj
(kc) − stepai

− stepaj
.

Denoting gi = gcd(pai
(1), · · · , pai

(ϕi)) and gj = gcd(caj
(1), · · · , caj

(ϕj)), by applying
Lemma 11 we obtain:





M0(ai) + M0(ai) > cai
(ki) + fgi,gi

(cai
(kc))

M0(aj) + M0(aj) > caj
(kj) + fgj ,gj

(caj
(kc))

M0(ai) + M0(aj) ≥ M0(a) + stepa + fgi,gj
(cai

(kc))
M0(ai) + M0(aj) ≥ M0(a) + stepa + fgi,gj

(caj
(kc)).

Following the same logic as for Theorem 12 we find that cai
(kc) = caj

(kc) = stepa

with ϕc = 1 is the optimal solution for minimizing the initial marking of the bounded
buffer, which gives the theorem.

5.4.4 Minimum live memory footprint evaluation

This section extends the live minimal memory footprint results of the SDFG model
to the CSDFG model. The proof is omitted since it is similar to the one for the
SDFG model.

Theorem 17. Let G ′
csdf be the CSDFG obtained by replacing a and a in Gcsdf by

a communication task and its four associated arcs according to Figure 5.5. The
transfer rate of task tc is [stepa]. Denoting maxai

= maxk∈{1,··· ,ϕi}(cai
(k)) and setting

δ = min(M0(a), maxaj
), the values





M0(ai) = M0(a) − δ
M0(ai) = δ + max(M0(a) − maxaj

, maxai
− M0(a))

M0(aj) = δ
M0(aj) = maxaj

− δ

constitute a feasible solution minimizing the total memory required for communica-
tion.

Figure 5.10 illustrates a bounded buffer between two clusters with a minimum
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live marking according to Theorem 17. We have:

M0(a) = 3
maxa1

= 2
maxa2

= 2
δ = min(M0(a), maxa2

) = 2
max(M0(a) − maxa2

, maxa1
− M0(a)) = −1

which gives:





M0(a1) = 1
M0(a1) = 1
M0(a2) = 2
M0(a2) = 0

t1 t2

a

a

. . . . . . . .3

. . . . . . . .0
[2,1] [2,0]

(a)

t1 tc t2

a1

a1

. . . . . . . .1

. . . . . . . .1

a2

a2

. . . . . . . .2

. . . . . . . .0
[2,1] [2,0][1][1]

(b)

Figure 5.10 – (a) A bounded buffer a = (t1, t2); (b) the same bounded buffer a
distributed between two clusters with a minimum live initial marking according to
Theorem 17.

5.4.5 Throughput guarantee for an inter-cluster buffer

This section extends the throughput guarantee for an inter-cluster buffer to the
CSDFG model. The throughput guarantee uses the one-periodic schedule already
defined in Theorem 6 of Section 3.3.4. We now refer to this theorem as SCT.

Theorem 18 presents a set of sufficient conditions ensuring that conditions SCT
are fulfilled for the fixed period. We denote the reduced period T̃ = T

pa.Ri
with

a = (ti, ·). We recall that T
pa.Ri

= T
ca.Rj

, ∀a = (i, j) ∈ A.

Assuming that Gcsdf = (T , A, P , C, M, L) is a CSDFG with an initial marking
sufficient to build a one-periodic schedule of fixed period T , let G ′

csdf be the graph
with the bounded buffer (a, a) in Gcsdf replaced by two bounded buffers (ai, ai) and
(aj, aj). Let ℓc be the time needed to transfer stepa data items between the two
clusters.

Lemma 13. Let G ′
csdf be the CSDFG obtained by replacing a and a in Gcsdf by a

communication task and its four associated arcs according to Figure 5.5. If Gcsdf
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verifies SCT and the following conditions





Hki,kc
(ai) + Hkc,ki

(ai) ≥

⌈
ℓi(ki) + ℓc(kc)

T̃

⌉

stepa

Hkc,kj
(aj) + Hkj ,kc

(aj) ≥

⌈
ℓj(kj) + ℓc(kc)

T̃

⌉

stepa

Hki,kc
(ai) + Hkc,kj

(aj) ≥ Hki,kj
(a) +

⌈
ℓc(kc)

T̃

⌉

stepa

Hkc,ki
(ai) + Hkj ,kc

(aj) ≥ Hkj ,ki
(a) +

⌈
ℓc(kc)

T̃

⌉

stepa

(5.1)

(5.2)

(5.3)

(5.4)

∀ki ∈ {1, · · · , ϕi}, ∀kj ∈ {1, · · · , ϕj} and ∀kc ∈ {1, · · · , ϕc}, then G ′
csdf verifies

SCT.

Proof. The conditions are derived separately. We recall the notation

αmax
a (ki, kj) = ⌊M0(a) + P −1

a (ki, 1) − Ca(kj, 1) + 1⌋gcda
.

• By applying SCT on cycle (ti, tc, ti) we obtain:

αmax
ai

(ki, kc) + αmax
ai

(kc, ki) ≥
ℓi(ki) + ℓc(kc)

T̃
.

The first condition follows since Hki,kj
(a) ≥ αmax

a (ki, kj), ∀a = (ti, tj) ∈ A,
and since the initial marking is assumed to be composed only of useful tokens
so that the right hand side of the inequality can be rounded up to the closest
multiple of stepa.

The second condition is obtained similarly.

• To every cycle µ passing through a is associated a unique cycle of G ′
csdf passing

through ai and aj. A sufficient condition to ensure SCT is:

ℓi(ki) − T̃ .αmax
a (ki, kj) ≥ ℓi(ki) + ℓc(kc) − T̃ (αmax

ai
(ki, kc) + αmax

aj
(kc, kj)),

which is equivalent to αmax
ai

(ki, kc) + αmax
aj

(kc, kj) ≥ αmax
a (ki, kj) + ℓc(kc)

T̃
.

The third condition follows since Hki,kj
(a) ≥ αmax

a (ki, kj), ∀a = (i, j) ∈ A,
and since the initial marking is assumed to be composed only of useful tokens
so that the right hand side of the inequality can be rounded up to the closest
multiple of stepa.

The fourth inequality is proved similarly.

The following theorem builds upon Lemma 13 to provide conditions on the initial
markings.

Theorem 18. Let G ′
csdf be the CSDFG obtained by replacing a and a in Gcsdf by a

106



5.4. Memory evaluation for a CSDFG model

communication task and its four associated arcs according to Figure 5.5. We denote

ri(ki) = pa(ki) + stepa +

⌈
ℓi(ki) + ℓc(kc)

T̃

⌉

stepa

ua(ki) = M0(a) +

⌈
ℓc(kc)

T̃

⌉

stepa

and

rm
i = maxki∈{1,··· ,ϕi} ri(ki)

um
a = maxki∈{1,··· ,ϕi} ua(ki).

If Gcsdf verifies SCT and the following four conditions





M0(ai) + M0(ai) ≥ rm
i

M0(aj) + M0(aj) ≥ rm
j

M0(ai) + M0(aj) ≥ um
a

M0(ai) + M0(aj) ≥ um
a ,

(5.5)

(5.6)

(5.7)

(5.8)

then G ′
csdf verifies SCT.

Proof. The conditions are derived separately.

• Since P −1
ai

(ki, 1) − Cai
(ki, 1) = −pai

(ki), P −1
ai

(kc, 1) = 0 and Cai
(kc, 1) = stepa,

condition (5.1) may be rewritten as

M0(ai) + M0(ai) − pai
(k1) + stepa ≥

⌈ℓi(ki) + ℓc(kc)

T̃

⌉

stepa

,

which gives the expression (5.5). Expression 5.6 is obtained similarly.

• Since P −1
ai

(ki, 1) = P −1
a (ki, 1) and Caj

(kj, 1) = Ca(kj, 1), condition (5.7) may
be rewritten as

M0(ai) + M0(aj) + stepa ≥ M0(a) + stepa +
⌈ℓc(kc)

T̃

⌉

stepa

,

which gives the expression (5.7). Expression (5.8) is obtained similarly.

5.4.6 Minimummemory footprint computation under a through-
put constraint

We now compute an initial marking to ensure the throughput of a CSDFG when
mapped on a distributed architecture.

Theorem 19. Consider a bounded buffer of a CSDFG Gcsdf = (T , A, P , C, M, L)
with arc a = (ti, tj) and backward arc a = (tj, ti). Let G ′

csdf be the CSDFG obtained
by replacing a and a in Gcsdf by a communication task tc with rc = [stepa].
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Setting δ = min(um
a , rm

j ), the values





M0(ai) = um
a − δ

M0(ai) = δ + max(um
a − rm

j , rm
i − um

a )
M0(aj) = δ
M0(aj) = rm

j − δ

are a solution ensuring the existence of a periodic schedule of period T minimizing
the total memory σai

+ σaj
required for the communication.

Proof. The proof uses Theorem 18. As it is similar to that of Theorem 17 it is
omitted.

We now illustrate the throughput constraint property on the example of Figure
5.11 with ℓ1 = ℓ2 = [1, 1]. Without considering the rest of the SDFG this bounded
buffer is able to reach a one-periodic schedule with a period T = 12 as illustrated in
Figure 5.8(b).

t1 t2

a

a

. . . . . . . .3

. . . . . . . .0
[2,1] [2,0]

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12

t1 1 12 2

t2 1 1 12 2 2

(b)

Figure 5.11 – (a) A bounder buffer; (b) the one-periodic schedule of the bounded
buffer with a period T = 12.

We assume ℓc = [1]. Since T = 12 and pa.R1 = ca.R2 = 6, we have T̃ = 2. For
the bounded buffer between two clusters Theorem 15 gives:

rm
1 = 4

rm
2 = 4

um
a = 4

um
a = 2

δ = min(4, 4) = 4

the initial marking:





M0(a1) = 0
M0(a1) = 2
M0(a2) = 4
M0(a2) = 0

.
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t1 tc t2

a1

a1

. . . . . . . .0

. . . . . . . .2

a2

a2

. . . . . . . .4

. . . . . . . .0
[2,1] [2,0][1][1]

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12

t1 1 12 2

t2 1 1 1 1 1 1

t3 1 1 12 2 2

(b)

Figure 5.12 – (a) The bounded buffer a = (t1, t2) of Figure 5.11(a) when distributed
between two clusters; (b) the one-periodic schedule of the bounded buffer between
the two clusters with a period T = 12.

Figures 5.11 and 5.12 illustrate the computation of an initial marking while
ensuring liveness and maintaining a throughput for a bounded buffer between two
clusters. As shown in Figures 5.11(b) and 5.12(b) the throughput is maintained.

5.5 Conclusion

This chapter introduced a new method to evaluate the memory consumption of a
communication between two tasks. One token of the initial marking on an arc or
the associated backward arc represents a data item or a memory space of the same
size dedicated to a communication. The targeted architecture is composed of many
processing elements grouped in clusters with shared memory linked by a NoC. On
this architecture, two types of communications can be distinguished whether two
tasks are located in the same cluster or not.

To evaluate communicating memory a backward arc is introduced for each arc of
the application to bound the memory consumption of a communication. A commu-
nication task is explicitly inserted between two tasks to model the communication
through the NoC. This insertion requires a re-evaluation of the initial marking be-
tween the two tasks. A sufficient condition of liveness is used to ensure liveness
while the one-periodic schedule is used to guarantee satisfaction of a throughput
constraint.

All these techniques have been detailed on both SDFG and CSDFG models.
The next chapter applies these techniques to quickly evaluate memory usage while
ensuring liveness or satisfaction of a throughput constraint with different mapping
algorithms and evaluates the performance and the scalability of the approach with
experiments.
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Chapter 6. Algorithms for the mapping problem

6.1 Introduction

This chapter concludes the contributions of this thesis and presents an approach to
solve the mapping problem described in Section 5.2.1. The approach builds upon the
buffer memory footprint evaluation method for SDFGs and CSDFGs presented in
Section 5.3 and 5.4. It uses an undirected multivalued graph to model the memory
consumption of every buffer in an application graph. This multivalued graph lets
make allocations of tasks using a fast memory footprint evaluation method. Liveness
and throughput constrained problems are both tackled with the same techniques.

In Section 6.2 the problem of preserving the functional behavior when perform-
ing memory footprint evaluation is discussed. Section 6.3 introduces the undirected
multivalued graph used to evaluate the memory consumption associated to a map-
ping. Section 6.4 illustrates memory evaluation using the multivalued graph on the
H263 encoder application. The NP-completeness of the problem is proven in Section
6.6. A brief state of the art on mapping resolution techniques is exposed in Section
6.7. Section 6.7 introduces several algorithms to solve the mapping problem. Sec-
tion 6.9 experiments the mapping algorithms on real life and randomly generated
applications.

6.2 Functionality preservation

In order for the implementation of the application to work as specified, functionality
must be preserved when refining and mapping dataflow system models.

Normalization, replacing one token by Na (virtual) tokens manipulated as a
block for the purpose of analysis, does not affect system functionality. The addition
of the communication task tc and the backward arcs with the markings selected
according to Theorem 13 in Section 5.3.6 preserves functionality as the precedence
constraints are preserved and the initial marking M0(a) is merely decomposed into
M0(a1) + M0(a2) = M0(a).

In the mapping problem where the memory required is evaluated under a through-
put constraint, the initial marking will not be preserved when two tasks belonging
to a cycle are mapped on two different clusters, as M0(a1)+M0(a2) > M0(a). While
tokens (items) will just have to be added on the paths incident to t1 or t2 that do
not belong to any cycle to preserve functionality, preserving (global) functionality
will require extra work for the tasks in a cycle containing a, typically the (local)
modification of the function of one of these tasks. For a signal processing appli-
cation, the function modification may be to employ look-ahead computation (for
recursive filtering) [Parhi, 1995]; for a control application, the function modification
may amount to modifying some of its parameters (for a controller). Also note that
if latency matters between some tasks, one may impose that these tasks be on the
same cluster and evaluate memory under that constraint.
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6.3. Multivalued undirected graph representation

6.3 Multivalued undirected graph representation

The multivalued undirected graph is deduced from an SDFG or a CSDFG G as
follows. The set of tasks T remains the same for both graphs and the set of arcs A
is simplified into a set of edges where each edge corresponds to a bounded buffer.
The graph is denoted U = (T , E). To any edge e = {ti, tj} ∈ E are associated three
weights we, wei and wej.

1. we is the size of the corresponding buffer if ti and tj are in the same cluster,
thus we = σa;

2. wei and wej are the amounts of memory in each cluster for the communication
between ti and tj when the two tasks are on different clusters. We set wei = σai

and wej = σaj
following Theorem 13 of Section 5.3.6 or Theorem 15 of Section

5.3.8 for the SDFG model, or Theorem 17 of Section 5.4.4 or Theorem 19 of
Section 5.4.6 for the CSDFG model, depending on the optimization problem
considered.

The transformation implies that, for every bounded buffer of G, an equivalent
bounded buffer between two clusters is evaluated and the associated initial marking
is computed.

Let m be a mapping of T to the set of clusters Sc. Setting Ec = {e = {ti, tj} ∈
E , m(ti) = m(tj) = c} and E ′

c = {e = {ti, tj} ∈ E , m(ti) = c, m(tj) 6= c}, the total
memory needed for storage in any cluster c ∈ Sc is

g(m, c) =
∑

e∈Ec

we +
∑

e=(ti,·)∈E ′
c

wei.

The total memory for the mapping is then
∑

s∈Sc
g(m, c).

t1 t2

t3

. . . . . . . .1

. . . . . . . .5

3 2

. . . . . . . .

7

. . . . . . . .

1
4

3

. .
. .
. .
. .

1

. .
. .
. .
. .1

1

2

(a)

t1 t2

t3

64 2

8

5

3

2

1

2

(b)

Figure 6.1 – (a) A bounded SDFG; (b) the associated graph U .

Figure 6.1 gives an example of a graph U obtained from a bounded SDFG for
the liveness problem SCL. The weights at the extremities of an edge e = (ti, tj)
correspond to wei and wej, the weight in the center is we. Note that values on the
edge of graph U come from unnormalized values computed from the bounded and
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normalized version of the graph of Figure 6.1(a).

Consider a mapping on two clusters c1 and c2 such as m(t1) = m(t2) = c1 and
m(t3) = c2. The amounts of memory consumed are g(m, c1) = 13 in cluster c1 and
g(m, c2) = 4 in cluster c2. The total memory used by the mapping is g(m, c1) +
g(m, c2) = 17.

6.4 Illustration with an H263 encoder

This section illustrates the computation of the memory footprint using the multival-
ued undirected graph U . We choose a simple application: an H263 video encoder [Oh
and Ha, 2002]. The encoder is modeled by the CSDFG of Figure 6.2, already encoun-
tered in Section 2.3.1, which comprises 8 tasks: Read From Device (RFD), Motion
Estimation (ME), Distributor (Dist), Motion Block Encoding (MBE), Motion Block
Decoding (MBD), Motion Compensation (MC), Variable Length Coding (VLC) and
Write To Device (WTD), respectively numbered from 1 to 8. The graph repetition
vector is R = [1, 1, 1, 99, 99, 1, 1, 1].

RFD ME Dist

MC MBD

MBEWTD VLC

[1] [1]
. . . . . . . .

[1] [1, 0, · · · , 0]
. . . . . . . .1

[1, · · · , 1]

[1]

..
..
..
..

[1]

[1]

. . . . . . . .

[1][1, · · · , 1]

. . . . . . . .

[1, 0, · · · , 0]

[1]

. . .
. . .

. .

[1][1, · · · , 1]

. . . . . . . .

[1, 0, · · · , 0][1]

. . . . . . . .

Figure 6.2 – 8-node CSDFG modeling the H263 encoder where the vectors
[1, 0, · · · , 0] and [1, · · · , 1] have 99 elements.

In Figure 6.3 the CSDFG from Figure 6.2 is bounded and its initial marking
ensures liveness.
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RFD ME Dist

MC MBD

MBEWTD VLC

[1] [1] [1]

[1]

[1, 0, · · · , 0]

[1
,·

··
,1

]
[1

]

[1]

[1]

[1]

[1][1, · · · , 1]

[1,
0, ·

· ·
, 0]

[1, · · · , 1][1, 0, · · · , 0][1]

. . . . . . . .1

. . . . . . . .0

. . . . . . . .0

. . . . . . . .1

........
1 ..

..
..
..1

. . . . . . . .

2
. . . . . . . .0

. . . . . . . .2

. . . . . . . .0

. . .
. . .

. .0
. . .

. . .
. .

1

. . . . . . . .0

. . . . . . . .2

. . . . . . . .1

. . . . . . . .0

Figure 6.3 – Bounded CSDFG model of the H263 encoder where the vectors
[1, 0, · · · , 0] and [1, · · · , 1] have 99 elements.

Figure 6.4 is the graph U deduced from the bounded CSDFG of Figure 6.3 by
using Theorem 17 to compute the edge weights. As explained in Section 6.3, for
an edge e = (ti, tj), the weight next to ti is M0(ati

) + M0(ati
), the one next to tj

is M0(atj
) + M0(atj

), and the one in-between is M0(a) + M0(a), from the original
bounded arc in Figure 6.3.

RFD ME Dist

MC MBD

MBEWTD VLC

1 11 1 11

1

1

2

11 2

1

1
211 2

1

11

11 1

Figure 6.4 – Graph U deduced from Figure 6.3.

The memory consumption associated to mapping can be evaluated easily using
graph U . Figure 6.5 shows a mapping of tasks RFD, ME and Dist on cluster 1,
MBD and MC on cluster 2 and MBE, VLC and WTD on cluster 3. The memory
consumption in each cluster is the sum of the values in bold of the corresponding
color: green for cluster 1, blue for cluster 2 and red for cluster 3.
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RFD ME Dist

MC MBD

MBEWTD VLC

1 11 1 11

1

1

2

11 2

1

1

2
11 2

1

1
1

11 1

cluster 1

cluster 2

cluster 3

Figure 6.5 – Mapping using U of the H263 encoder.

The mapping memory consumption is thus: 4 for cluster 1, 4 for cluster 2 and 5
for cluster 3, giving a total memory consumption of 13. Using U , any other mapping
can be evaluated in a very short amount of time.

6.5 Formalization of the mapping problem

This section proposes a formal definition of the mapping problem using integer-linear
programming. Let U = (T , E) be a multivalued undirected graph and S be the set
of clusters. The mapping problem may be expressed as the following optimization
problem:

min
∑

c∈Sc

zc

such that

∑

e∈E


yec.we +

∑

ti∈e

(xtic − yec).wei


 ≤ Mmax ∀c ∈ Sc

yec ≥ xtic + xtjc − 1 ∀e = (ti, tj) ∈ E , ∀c ∈ Sc,

yec ≤ xtic ∀e ∈ E , ∀ti ∈ T , ∀c ∈ Sc,

zc ≥ xtic ∀ti ∈ T , ∀c ∈ Sc,∑

c∈Sc

xtic = 1 ∀ti ∈ T ,

xtic ∈ {0, 1} ∀ti ∈ T , ∀c ∈ Sc,

yec ∈ {0, 1} ∀e ∈ E , ∀c ∈ Sc,

zc ∈ {0, 1} ∀c ∈ Sc,

116



6.6. NP-completeness of the mapping problem

where

xtic =

{
1 if the task ti ∈ T is assigned to cluster c ∈ Sc,
0 otherwise,

yec =

{
1 if xtic = 1 and xtjc = 1 with e = (ti, tj) ∈ E , c ∈ Sc,
0 otherwise,

zc =

{
1 if the cluster c ∈ Sc is used,
0 otherwise.

The objective function to minimize is the number of clusters. The first constraint
formalizes the memory constraint on clusters, with Mmax the memory available in
each cluster. The second and the third constraints impose the proper value for the
variable yec. The fourth constraint forces a cluster with at least one task mapped
on it to be counted as used. The last constraint forces only one cluster assignment
per task.

6.6 NP-completeness of the mapping problem

The mapping problem is proved to be NP-complete. The proof uses a reduction
to the problem of bin-packing. We explain the bin-packing problem first and the
NP-completeness proof follows.

6.6.1 The bin-packing problem

Bin-packing is an NP-complete problem [Karp, 1972]. It consists in finding the
optimal assignment of n elements of varying sizes into bins such that the number of
bins be minimized. All the bins have the same size.

More formally we have a set O of n objects, each object i ∈ O is characterized
by its size pi. Bins have capacity Cmax. The bin-packing problem is expressed as
the following optimization problem:
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min
n∑

j=1

yj

such that

n∑

i=1

pixij ≤ Cmax.yj ∀j ∈ {1, . . . , n},

n∑

j=1

xij = 1 ∀i ∈ {1, . . . , n},

xij ∈ {0, 1} ∀i ∈ {1 . . . n}∀j ∈ {1 . . . n},

yj ∈ {0, 1} ∀j ∈ {1 . . . n},

where

xij =

{
1 if the object i ∈ O is assigned to bin j,
0 otherwise

and

yj =

{
1 if bin j is used,
0 otherwise.

6.6.2 NP-completeness of the mapping problem

Now we can prove that our mapping problem is NP-complete:

Theorem 20. The mapping problem formalized in Section 6.5 is NP-complete.

Proof. We use the reduction to the bin-packing problem. Let U = (T , E) be the
multivalued undirected graph. Let Γi be the set of edges adjacent to the task ti. We
assume that ∀e = (ti, tj) ∈ E , we = wei + wej. This assumption associates to a task
a unique weight denoted wi =

∑
e∈Γi

wei.

Now we have pi equivalent to wi, Cmax equivalent to Mmax, xij equivalent to
xtis and yi equivalent to zs and, since each task ti ∈ T has a unique weight wi

the mapping problem is equivalent to the bin-packing problem. Thus, the set T is
equivalent to the set O of the bin-packing problem and clusters are equivalent to
bins.

Since the bin-packing problem is NP-complete, by reduction, the mapping prob-
lem considered in this thesis is also NP-complete.
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6.7 State of the art for the mapping algorithms

The mapping problem using dataflow models is widely studied. In [Mirza et al., 2014]
the authors identify 65 papers published between 1975 and 2014 on this problem.
The two most common optimization criteria are data memory size and throughput.
To the best of our knowledge, this thesis is the first which proposes a highly scalable
approach to minimize the memory size under a throughput constraint. This short
state of the art surveys several mapping approaches for dataflow models.

As far as we know, the mapping problem with the most scalable algorithm is
proposed by [Berger et al., 2016]. The dataflow model used is equivalent to a HS-
DFG. The solution provided solves instances of more than 200,000 tasks, however,
it does not take a throughput evaluation.

A mapping approach that also tackles scheduling is proposed in [Liu and Xiao,
2016]. The goal is, given a mapping, to find a schedule which respects non-overlapping
constraints for tasks assigned to the same processor while ensuring maximum through-
put. The model is an HSDFG. A re-timing phase to redistribute the initial marking
is performed before determining the periodic schedule that maximizes the through-
put. The solution is computed with a branch-and-bound technique which solves
applications with up to 70 tasks in 30 minutes.

In [Ahn et al., 2008] the authors present a System-on-Chip Design AcceLerator
(SocDAL) which uses the SDFG model to analyze and simulate the execution of an
application on the designed system. The mapping is performed using an evolutionary
algorithm and is computed in less than 0.1 second for graphs with 60 nodes or less.

A constraint programming methods is presented in [Bonfietti et al., 2013] to
allocate and schedule an SDFG onto a multi-core architecture. The schedule is
self-timed hence, ASAP. Graphs of up to 15 nodes are handled in 5 minutes.

6.8 Algorithms

We present several algorithms to solve the mapping problem. Most of them are
inspired from the bin-packing problem. The algorithms were tested and implemented
during the 5-month internship of Ahlam Mouaci at LIP6 as part of her M2.

We chose four algorithms used for bin-packing: First-Fit (FF) and Best-Fit (BF)
and their decreasing versions. Two other algorithms have also been implemented:
Sort and Matching.

To ease the resolution of the mapping problem and to avoid any unfeasible so-
lution, when a task ti is assigned to a cluster c, its footprint in c is always taken to
be the worst case. This means that for any unassigned adjacent task tj of ti, the
memory footprint is increased by wei even if tj is not yet assigned to a cluster.

Note that the following descriptions of the algorithms consider an assignment of
a task in a cluster to be valid simply if it satisfies the memory constraint.
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6.8.1 First-Fit and First-Fit decreasing

The FF algorithm works as follows: for every task, the algorithm iterates on non-
empty clusters until the task can be assigned. If the task cannot be assigned in a
non-empty cluster, it is assigned to an empty cluster. The decreasing version works
similarly except that tasks are sorted in decreasing order of their weight

∑
e∈Γi

wei.

More formally:

input: list L of all tasks (sorted by decreasing
∑

e∈Γi
wei for the decreasing

version).
Su = [ ] (set of used clusters)
for ti ∈ L do

is assigned = False
for c ∈ Su do

if ti can be assigned in c then
assign ti to c
is assigned = True

end

end
if not is assigned then

assign ti to a new cluster c.
Su = Su + c

end

end

6.8.2 Best-Fit and Best-Fit decreasing

The BF algorithm assigns the task in the cluster which is the fullest, if possible, or
in the next fullest cluster otherwise. If no cluster can be found, the task is assigned
to a new cluster. The decreasing version uses the same sorted list as FF decreasing.

Denoting the function which gives the memory utilization of a cluster g(c) with
g(null) = 0, the algorithm is described more formally:
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input: list L of all tasks (sorted by their decreasing
∑

e∈Γi
wei for the decreasing

version).
Su = [ ] (set of used clusters)
for ti ∈ L do

best fit cluster = null
for c ∈ Sc do

if ti can be assigned in c then
if g(c) > g(best fit cluster) then

best fit cluster = c
end

end

end
if best fit cluster is null then

best fit cluster = an empty cluster.
end
assign ti to best fit cluster.
Su = Su + best fit cluster

end

6.8.3 Sorting heuristic

The sorting heuristic was proposed by Ahlam Mouaci during her internship. Let Lt

be the list of all tasks sorted in decreasing order of the
∑

e∈Γi
wei. The goal of the

algorithm is to affect the first task of Lt and its neighbors, and the neighbors of its
neighbors, and so on, on the same cluster c until an affectation in c is not possible.
Each task added is removed from Lt, the algorithm stops when Lt is empty. This
gives more formally:
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input: list Lt of all tasks sorted according to the
∑

e∈Γi
wei in decreasing order.

while Lt is not empty do
ti = Lt.pop
assign ti to an empty cluster c
continue = True
while continue do

Ln = Γi

Ln is sorted according to the
∑

e∈Γ(ti) wei in decreasing order

for tj ∈ Ln do
if tj can be assigned to c and tj is not already assigned then

assign tj to c
remove tj from Lt

end
else

continue = False
end

end
ti = Ln[0]

end

end

The function pop returns the first task of a list and removes it from the list.

6.8.4 Matching heuristic

The matching heuristic was also proposed by Ahlam Mouaci. It uses a maximum
weighted matching, which consists in finding a matching—a subset of edges in which
no node occurs more than once—such that the total weight of the matching is
maximal.

The matching algorithm builds a graph H = (N , E) as follows. The nodes ni ∈ N
are the non-empty clusters of the mapping. Two nodes are linked by an edge when
they can be merged without violating the memory constraint. The weight of an edge
is the memory footprint of the two merged clusters.

The heuristic is initialized with the allocation of every task to a different cluster.
Then, while a matching is not empty (meaning that a merge between two clusters is
possible), the algorithm successively computes a matching and merges the matched
clusters.

Maximum weighted matching is an algorithm with a time complexity of |T |3

[Galil, 1986], thus its execution time is not reasonable on large instances. To over-
come the time complexity, an alternative consists in initializing the heuristic with a
better solution than one task per cluster. Note that the maximum weight matching
algorithm [Galil, 1986] is implemented in the library NetworkX already presented in
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the Chapter 4. The algorithm is described more formally as:

input: A solution mapping m (by default each task is in a different cluster).
Build the graph H from m
match = Maximum Weighted Matching(H)
while match is not empty do

for e ∈ E do
m = merge the corresponding clusters of e

end
build the graph H from m
match = Maximum Weighted Matching(H)

end

6.9 Experiments

This section illustrates the relevance in terms of performance and scalability of the
mapping algorithms described in the previous section. First we describe the ex-
perimental conditions. Next we examine the computation times of the preparatory
steps required before executing the algorithms. The computation times of the algo-
rithms are measured in the following part and the solutions are compared in terms
of quality. Finally, the algorithms are tested on real applications.

6.9.1 Experimental conditions

The following algorithms are tested:

• the First-Fit heuristic and its decreasing order version

• the Best-Fit heuristic and its decreasing order version

• the sorting heuristic

• the matching heuristic

• the matching heuristic starting from the sort solution

The experiments were executed on a four-core Intel Core I5 660 at 3.33 Ghz
with 6 GB of RAM under Linux and with Python 2.7. We use the same example
dataflow graphs as in Chapter 4, of size 10, 100, 1,000 and 10,000. Each experiment
is performed on 100 graphs, the average computation times are shown in the tables.

The memory size Mmax of the clusters depends on the instances and is fixed
equal to maxti∈T

∑
e∈Γi

we.

Four preparatory steps precede the execution proper of a mapping algorithm.
First the dataflow graph is read from a .tur file, then it is bounded by adding back-
ward arcs, the initial marking is computed and finally the graph U is constructed.
These steps are the same for all the mapping algorithms and their computation time
is counted separately.
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6.9.2 Computation time of the preparatory steps

The computation time to prepare the dataflow graph and construct the graph U in
order to execute a mapping algorithm is shown in Table 6.1. The “read” column is
the time to read a .tur file, “buffer” column is the buffer bounding time, “marking” is
the initial marking computation time and “U” is the computation time of the graph
U .

Preparation Steps
|T | read buffer marking U
10 0.00s 0.00s 0.00s 0.00s
100 0.02s 0.01s 0.06s 0.01s

1,000 0.14s 0.11s 2.08s 0.04s
10,000 1.42s 1.09s 13mn39s 0.45s

(a) SDFG

Preparation Steps
|T | read buffer marking U
10 0.01s 0.00s 0.01s 0.00s
100 0.02s 0.01s 0.11s 0.00s

1,000 0.19s 0.12s 9.13s 0.04s
10,000 2.77s 1.60s 56mn37s 0.58s

(b) CSDFG

Table 6.1 – Computation times of the preparatory steps for (a) the SDFG model
and (b) the CSDFG model.

The preparatory steps are effected once for each instance, after that, the obtained
graph U is saved into a text file. The computation time is reasonable up to graphs
of 1,000 tasks. In comparison with the original unbounded dataflow graphs, the
addition of backward arcs multiplies by two the number of constraints of SCL1 and
by four the number of constraints of SCL2. It gives a computation time of nearly
an hour for CSDFG instances of 10,000 tasks with an average degree of 2.5.

6.9.3 Computation time of the mapping algorithms

This section compares the computation times of the algorithms presented in Section
6.8. The computation times are presented in two tables, Table 6.2 for the SDFG
model, and Table 6.3 for the CSDFG model.

Tasks FF FFD BF BFD Sort Match M+S
10 0.00s 0.00s 0.00s 0.00s 0.00s 0.02s 0.00s
100 0.01s 0.01s 0.04s 0.06s 0.03s 4.83s 0.17s

1,000 0.10s 0.12s 3.68s 4.87s 0.31s 23mn5s 20.21s
10,000 1.67s 1.94s 5mn28s 7m8s 3.22s X 58mn19s

Table 6.2 – Computation time of the mapping algorithms for SDFGs having from
10 to 10,000 tasks. FFD and BFD are the decreasing versions of FF and BF.
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Tasks FF FFD BF BFD Sort Match M+S
10 0.00s 0.00s 0.00s 0.00s 0.00s 0.02s 0.00s
100 0.01s 0.01s 0.04s 0.05s 0.03s 9.89s 0.16s

1,000 0.10s 0.12s 2.25s 3.12s 0.30s 1h26mn23s 12.59s
10,000 1.07s 1.19s 2mn16s 3mn9s 1.87s X 48mn17s

Table 6.3 – Computation time of the mapping algorithms for CSDFGs having from
10 to 10,000 tasks.

Except when using the matching algorithm, mappings are obtained faster for
CSDFGs than for SDFGs. This is due to the larger gap between the weights of the
tasks of the CSDFGs, leading to mappings with fewer clusters than for SDFGs. In
a way consistent with the preparatory steps, instances with fewer than 10,000 tasks
have a reasonable computation time.

6.9.4 Quality of the mappings

This section compares the solutions uncover by the mapping algorithms in terms of
quality, as measured by achived number of clusters. As usual, the algorithms are
tested on graphs from 10 to 10,000 tasks. The FF algorithm is used as a general
reference. The result shown is the average number of clusters in percentage compared
to the FF algorithm. Figures 6.6 and 6.7 present this measure of quality of the
algorithms for the SDFG and the CSDFG model.

Tiny Small Medium Large
0

50

100

150
100

100

100

100

100

97 94 94

96 91 91 91

96 91 90 90

108

127

124

126

101

101 93

95

84 79

83

Size of graph

S
ca
le
d
av
er
ag
e
n
u
m
b
er

of
cl
u
st
er
s

FF FFD BF BFD Sort Matching Sort+Matching

Figure 6.6 – Scaled number of clusters (set to 100 for the FF algorithm) for SDFGs
of 10 to 10,000 tasks.

Without surprise the algorithms of bin-packing type give better results with their
decreasing order version and BF is better than FF. The matching algorithm gives
solutions close to the bin-packing algorithms, but, when combined with the sorting
algorithm, gives mapping of better quality.
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Figure 6.7 – Scaled number of clusters (set to 100 for the FF algorithm) for
CSDFGs of 10 to 10,000 tasks.

Figure 6.7 shows that for CSDFGs the combined sort-matching algorithm also
gives mappings with better average quality than the best bin-packing algorithm,
however, this improvement is not as significant as for SDFGs.

6.9.5 Integer Linear Programming

In this section, we compare the results obtained when the mapping problem is solved
using the integer linear program solver Gurobi and when it is solved using the three
best algorithms: FF decreasing, BF decreasing and Sorting followed by Matching.
The solver is tested on 100 instances of 10, 25, 50, 75 and 100 tasks. Both SDFGs
and CSDFGs are tested. The Integer Linear Program (ILP) solver is limited to 10
minutes. Figure 6.8 presents the number of instances solved within the time limit.
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Figure 6.8 – The number of solved instances with the ILP solver for the SDFG
and CSDFG model (the time limit is 10mn).

The mapping problem appears easier to solve for CSDFGs than for the SDFGs.
For 100-task graphs, the solver solved only 5 SDFG instances while it solved more
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than 80 CSDFG instances within the time limit.

Figures 6.9 and 6.10 compare the quality of the solutions obtained with the FF
decreasing, the BF decreasing and the Sorting followed by Matching algorithms to
the optimal solution from Gurobi. Figure 6.9 gives the average percentage above
the optimal solution. Figure 6.10 gives the percentage of solutions that are optimal.
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Figure 6.9 – Percentage above the optimum for (a) the SDFG and (b) the CSDFG
models.
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Figure 6.10 – Percentage of mappings that are optimal for (a) the SDFG and (b)
the CSDFG models.

As already seen, the Sort+Matching algorithm gives better result for SDFGs
than for CSDFGs. BF decreasing gives same quality results than Sort+Matching
on CSDFGs while being eight times faster.
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6.9.6 Experiments on real applications

The throughput constrained version of the mapping problem is illustrated in this
section on a selection of real applications. We first present the applications and then
illustrate the mapping problem with throughput constraint with experiments. All
the applications are described by CSDFGs.

BlackScholes is a financial tool which solves differential equations. This is our
smallest instance.

Echo is an audio filter that cancels echoes from an audio source. It is used in
cell phones.

H264 is a well known standard dedicated to video encoding/decoding. The
application tested is the encoder. The application graph exhibits a high number of
cycles and is also the largest.

JPEG2000 is a video encoder according to the JPEG2000 standard, more pow-
erful and more flexible than the JPEG standard.

Pdetect is a an application dedicated to pedestrian detection.

Table 6.4 summarizes the characteristics of the applications described above. The
column“Size”is the memory footprint of the application (without the communication
buffers), column ||R|| is the sum of the components of the repetition vector of the
application, column |ϕ| is the sum of the number of phases of all the tasks, the
presence/absence of cycles in the application graph is given in the last column.

Name |T | |A| Size ||R|| |ϕ| Cycles
BlackScholes 41 40 16KB 923 261 No

Echo 38 82 28KB 35003 45 Yes
H264 666 3128 1368KB 762 1375 Yes

JPEG2000 240 703 3807KB 24676 639 No
Pdetect 58 76 3859KB 58 4045 No

Table 6.4 – Characteristics of the real applications mapped with constrained
throughput.

All the applications were tested in their CSDFG version and in their function-
ally equivalent SDFG version (see Section 3.2.1). Table 6.5 presents the impact
of the mapping on the application. The column “Model” indicates which model is
used. Column “Time” is the computation time of the entire process, which includes
the initial marking computation of the original application, the computation of the
throughput before and after the mapping, the preparatory steps and the mapping
itself. Note that verification of the throughput is done on the dataflow graph built
as if the application were mapped: with the tc tasks and their related arcs with the
initial marking evaluated by our method. Column “|S|” is the number of clusters
used by the mapping, column“Mmax” is the memory size per cluster, column“Mem”
is the total memory footprint of the application, finally, column “Λ” informs if the
original throughput constraint is met. The parameters of the communication task
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com are set to d = 5 and B = 1
2
. The memory per cluster has been changed for the

SDFG version of BlackScholes and JPEG2000 in order to provide feasible solutions
(in terms of memory constraints).

Model Time |S| Mmax Mem Λ

BlackScholes
SDFG 0.3s 3 23KB 48KB No
CSDFG 0.6s 3 8KB 17KB Yes

Echo
SDFG 0.3s 4 10KB 30KB Yes
CSDFG 0.3s 3 10KB 29KB Yes

H264
SDFG 1mn3s 18 90KB 1328KB Yes
CSDFG 1mn1s 18 90KB 1372KB Yes

JPEG2000
SDFG 3.8s 2 3532KB 6168KB Yes
CSDFG 5.6s 3 1695KB 3807KB Yes

Pdetect
SDFG 3mn31s 4 928KB 3643KB No
CSDFG 5mn11s 4 928KB 3859KB Yes

Table 6.5 – Results of the mapping using real applications.

As illustrated by Table 6.4 the mapping is more satisfactory for the CSDFG
model than the SDFG model. For instance, the memory footprint of the SDFG is
twice the size of that of the CSDFG for the application JPEG2000. The throughput
constraint is not met for BlackScholes and Pdetect with the SDFG model while
every mapping with the CSDFG model provides a feasible solution. Finally, the
computation time appears closely related with the number of phases for the CSDFGs.
Some solutions with the SDFG model does not respect the throughput constraint,
this is due to the slow down cause by the communications between clusters. Due
to the linear approximation of the (non-mapped) applications memory size given by
their number of tokens, and because the mapping gives an exact evaluation for each
buffer between clusters, the memory footprint is sometimes smaller when mapped.

6.10 Conclusion

In this chapter, first the multivalued undirected graph U was introduced. Then
several algorithms, most of them inspired from the bin-packing, were described.
Finally, the algorithms were run on random applications to map them on multi-
cluster processor arrays under liveness constraint, and with real applications, to
map them under throughput constraint.

The first part also exemplified the use of the graph U on the H263 application.
It also discussed the preservation of functional behavior. The proof of functional
behavior preservation for the mapping under liveness constraint has been presented.
However, functionality is not guaranteed to be preserved when mapping under a
throughput constraint.

The second part proposed four mapping algorithms inspired by the bin-packing
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problem, First-Fit, First-Fit Decreasing, Best-Fit and Best-Fit Decreasing. Two
other algorithm were also presented, a simple algorithm based on sorting and a
more elaborate matching algorithm.

The last part presented multiple experiments to evaluate the computation time
of the mapping using the proposed algorithms. The solutions were compared to
optimal solutions. Finally, the mapping problem with throughput constraint was
tested with a set of five real applications.

The mapping evaluations methods used to find a mapping which minimizes the
number of clusters used proved to be efficient and fast. Applied with a CSDFG, the
mapping, in most cases, required less memory. Between the SDFG and the CSDFG
model, the computation time is quite similar, but often in favor of the SDFG model.

The flexibility of the methods also allows a finer evaluation of the mapping, for
instance with a more complex model of the NoC or with a K-periodic schedule.
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Conclusion

This thesis proposes two contributions to the dataflow community. The first is the
software package Turbine, a generator of live dataflow graphs (SDFG, CSDFG and
Phased Computation Graph (PCG)) of up to 10,000 tasks in less than 30 seconds.
This fast generation is performed by using classic methods of graph generation and
an implementation of a sufficient condition of liveness as a linear program to com-
pute a live marking. The objective of Turbine was to provide instances of several
thousands of tasks in a reasonable time. During the thesis, the generator has evolved
to become a powerful tool to study dataflow graphs. It is now available on github.

The second contribution is an evaluation method of a mapping on a distributed
architecture. The method consists in evaluating the memory consumption of com-
munications between the tasks of a dataflow graph. The method was first developed
on the SDFG model and then extended to the CSDFG model. A declination of the
problem with a throughput constraint was also studied on both dataflow models.
The goal was to perform a memory footprint evaluation of instances of several thou-
sand of tasks while keeping the computation time low. The evaluation method has
been tested on a mapping problem which minimizes the number of clusters used.
With the best algorithm implemented, memory footprint evaluation takes several
seconds on instances of 1,000 tasks for both models.

Chapter 2 is an introduction to dataflow model. It presents three static dataflow
models used in the thesis and their context. The SDFG is the simplest among
the three, the CSDFG model is an extension of the SDFG where task execution
is decomposed into phases, the PCG model is an extension of the CSDFG model,
including initialization phases and thresholds for the consumption phases. The three
models are compared in terms of expressiveness. Finally, the basic properties of the
models are introduced using the SDFG: consistency, useful tokens, normalization,
liveness and scheduling.

Chapter 3 extends the basic properties introduced using the SDFG model in the
previous chapter to the CSDFG and the PCG model. One contribution of the thesis
is to extend these properties to the PCG model.

Chapter 4 is dedicated to the dataflow generator Turbine implemented during
the thesis. The chapter presents Turbine and its competitors. The dataflow graph
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generators are compared experimentally in terms of computation time and number
of tokens of the computed initial marking.

Chapter 5 introduces a new evaluation method for the memory footprint on
distributed memory architectures. The method is declined in two versions, the
first guarantees a live marking and the second adds a throughput constraint. The
technique uses backward arc to bound the initial marking and a simple modification
of the graph to simulate the functioning of a NoC. The modification of the graph
implies local re-computation of the initial marking. The liveness is ensured using a
sufficient condition of liveness while the throughput constraint is guaranteed using a
one-periodic schedule. The chapter demonstrates the methods using the SDFG and
CSDFG models.

Chapter 6 proposes a proof of concept for the evaluation method. The method is
tested on a mapping problem which objective is to minimize the number of clusters
used by the application. The evaluation method is used to create a multivalued
undirected graph which summarizes the distribution of the buffer memory of a map-
ping. The multivalued undirected graph is illustrated with the H263 application.
Finally, algorithms to solve the mapping problem are presented and evaluated ex-
perimentally using randomly generated and real applications for both declinations
of the problem.

7.1 Perspectives

This section presents perspectives and potential future work in the continuation of
this thesis.

Extension of the K-periodic schedule for the PCG model

The PCG model is currently used with the ΣC compiler of Kalray to model a
dataflow applications. The one-periodic and the ASAP schedule are easily extended
to the PCG graph. As shown in [Bodin et al., 2016] the K-periodic schedule provides
a maximal throughput under certain conditions and is computed much faster than
the ASAP schedule. Thus, an extension to the PCG of K-periodic scheduling appears
worth exploring.

Characterization of schedule with overlapping

Reentrant execution allows to express parallelism without duplicating tasks in dataflow
graphs. The characterization of the ASAP, one-periodic and K-periodic schedule in
Section 2.5 and 3.3 for the SDFG and CSDFG, expressed the non-reentrant behavior
of tasks by adding a sequential execution constraint for each task when determining
the schedule. The suppression of this constraint makes the schedule reentrant. In-
termediate levels of parallelism may be obtained by adding a system to control the
number of simultaneous executions of each task.
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Dataflow mapping under throughput constraint

As presented in this thesis, the mapping under throughput constraint may introduce
tokens such that the system’s behavior does not respect the functionality of the
application. Several approaches can be used in conjunction to satisfy the throughput
constraint while preserving functionality, a sine qua non property for a mapping. The
simplest is to place tasks whose communication is critical for the throughput in the
same cluster.

Mapping on an architecture with RAM or with heterogeneous cluster

The mapping problem was studied using a specific architecture. However the mul-
tivalued undirected graph could be an efficient tool for other architectures. For
instance an architecture with a shared fast memory in complement of the small
amount of memory in the clusters. Heterogeneous cluster architectures could also
be considered.

The mapping problem with routing latency depending on the NoC topol-
ogy

The solution proposed to take into account the NoC latency for the mapping problem
has been presented in a simple fashion. The markings of the normalized graph used
for memory and communication delay evaluation must be divided by the normaliza-
tion factor Na to get corresponding numbers of data items, which, when multiplied
by their size in bits allows to better account for contention. Many different topologies
of NoC exist with latency depending on the hop number and the use of through-
silicon via. If those different topologies were reunited into a single mathematical
formalism our approach to computing throughput could be extended to these NoC
topologies.
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First appearance
General notation
⌈x⌉z : smallest integer larger x multiple of z 24
⌈x⌉ : smallest integer larger than x 24
⌊x⌋z : largest integer smaller than x multiple of z 24
⌊x⌋ : largest integer smaller than x 24
gcd : greatest common divisor 24
lcm : least common multiple 24
|E| : size of the set E 24

First appearance
Dataflow
T : set of tasks (or actors) 27
A : set of arcs (or channels) 27
M : set of initial markings 28
M0(a) : initial marking on arc a = (ti, tj) 28
Ri : repetition factor of task ti 37
R : repetition vector R = [R1, · · · , R|T |] 37

Na : normalization factor of arc a = (ti, tj), Na = lcm(R)
Rti

.pa
(or Na = lcm(R)

Rtj
.ca

) 38

N : normalization vector N = [Na1
, · · · , Na|A|

] 38

Γ+(t) : set of input arcs of task t 80
Γ−(t) : set of output arcs of task t 80
s : schedule 43
T : period 47

λ(t) : throughput of task t, limn→∞
n

s〈t,n〉
44

Λ : global throughput of a graph Λ = 1
T

44
wi : period of the task ti 47
Ki : periodicity factor of task ti for K-periodic schedule 48
K : periodicity vector, K = [K1, · · · , K|T |] 48

First appearance
SDF
Gsdf = (T , A, P , C, M, L) : Synchronous Dataflow Graph 28
ℓi : execution time of task ti 28, 29
ca : consumption rate of task t′ from arc a = (t, t′) 28
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pa : production rate of task t on arc a = (t, t′) 28
P : set of production weights 28
C : set of consumption weights 28
L : set of execution times 28
gcda : gcd(ca, pa) 38
Zi : normalized weight of task ti, Zi = pa.Na where a = (ti, ·) 38
SCL : sufficient condition of liveness 40
s〈t, n〉 : start time of execution 〈t, n〉 (nth execution of task t) 43
gcdKa : gcd(Ki.Zi, Kj.Zj) for arc a = (ti, tj) 49
πmax

a (mi, mj) : ⌊M0(a) − Zi + gcda + Zi.mi − Zj.mj⌋
gcdKa 49

πmin
a (mi, mj) : ⌈M0(a) − max{Zi − Zj, 0} + Zi.mi − Zj.mj⌉

gcdKa 49

First appearance
CSDF
Gcsdf = (T , A, P , C, M, L) : Cyclo-Static Dataflow Graph 30
ϕi : number of phases of task ti 30
pa(k) : production rate of phase k of task t on arc a = (t, ·) 30
ca(k) : consumption rate of phase k of task t from arc a = (·, t) 30
ca : sum of the components of consumption vector of arc a 30
pa : sum of the components of production vector of arc a 30
ℓi(k) : execution time of phase k of task ti 30
P : set of production vectors 30
C : set of consumption vectors 30
L : set of vectors of execution times 30
〈ti(k), n〉 : nth execution of the kth phase of task ti 55
〈ti(k), n〉−1 : phase execution preceding 〈ti(k), n〉 55

Pa(k, n) : total number of data items produced by ti on a = (ti, ·) from
its first phase to the end of 〈ti(k), n〉, Pa(k, n) =

∑k
k′=1 pa(k′) +

pa.(n − 1)

55

P −1
a (k, n) : total number of data items produced by ti on a = (ti, ·) from its

first phase to the end of 〈ti(k), n〉−1

55

Ca(k, n) : total number of data items consumed by ti from the buffer a =
(·, ti) until the end of 〈ti(k), n〉, Ca(k, n) =

∑k
k′=1 ca(k′)+ca.(n−1)

56

C−1
a (k, n) : total number of data items consumed by ti from the buffer a =

(·, ti) until the end of 〈ti(k), n〉−1

56

SCL1 : sufficient condition of liveness 1 56
SCL2 : sufficient condition of liveness 2 56
stepa : gcd(pa(i), · · · , pa(ϕi), ca(j), · · · , ca(ϕj)) where a = (ti, tj) 54
W csdf

a (ki, kj) : Ca(kj, 1) − P −1
a (ki, 1) − stepa with a = (ti, tj) 58

W csdf
ai,aj

: maxk∈{1,···ϕe}

[
Cai

(k, 1) − P −1
aj

(k, 1) − stepaj

]
with ai = (·, te) and

aj = (te, ·)

58

αmax
a (ki, kj) : ⌈M0(a) + Pa(ki, 1) − Ca(kj, 1) − max{0, pa(ki) − ca(kj)}⌉gcda

with a = (ti, tj)
62

αmin
a (ki, kj) : ⌊M0(a) + P −1

a (ki, 1) − Ca(kj, 1) + 1⌋gcda with a = (ti, tj) 62
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First appearance
PCG
G = (T , A, P , C, Θ, M, L) : Phased Computation Graph 32
σi : number of initial phases of the task ti 31

δt : set of initial phases and cyclic phases of the task ti, δi = {1−σi, · · · , 0}∪
{1, · · · , ϕi}

65

θa(k) : threshold of consumption phase k on arc a 33
ca : sum of the rates of the cyclical consumption phases from arc a 65
pa : sum of the rates of the cyclical production phases on arc a 65
〈ti(k), n〉−2 : phase execution two executions before 〈ti(k), n〉 66

Pa(k, n) : total number of data items produced by ti on a = (ti, ·) from its
first phase to the end of 〈t(k), n〉, Pa(k, n) =

∑k
k′=1−σt

pa(k′) +
pa.(n − 1)

67

P −1
a (k, n) : total number of data items produced by ti on a = (ti, ·) from its

first phase to the end of 〈t(k), n〉−1

67

Ca(k, n) : total number of data items consumed by ti from the buffer a until
the end of 〈t(k), n〉, Ca(k, n) =

∑k
k′=1−σt

ca(k′) + ca.(n − 1)
68

C−1
a (k, n) : total number of data items consumed by ti from the buffer a

until the end of 〈t(k), n〉−1

68

W pcg
ai

(ki, ki+1) : C−1
ai

(ki+1, 1) + θai
(ki+1) − P −1

ai
(ki, 1) − stepai

72

W pcg
ai−1,ai

: maxk∈δi
[C−1

ai−1
(k, 1) + θai−1

(k) − P −1
ai

(k, 1)] − stepai
74

First appearance
Mapping problem
a : backward arc associated to arc a 93
σa : sum of the initial markings on arc a and backward arc a 93
Sc : set of clusters 93
Mmax : size of cluster memory 93

tc : communication task modeling communication between tasks through
the NoC

93

H(a) : (SDF) height of an arc, H(a) = M0(a) + gcda − Zj with a = (ti, tj) 95

T̃ : (SDF) reduced system period, T̃ = T
Zi.Ri

with a = (ti, ·) 99

Hki,kj
(a) : (CSDF) height of an arc, Hki,kj

(a) = M0(a) + P −1
a (ki, 1) −

Ca(kj, 1) + stepa

102

T̃ : (CSDF) reduced system period, T̃ = T
pa.Ri

with a = (ti, ·) 105

U = (T , E) : undirected multivalued graph, with T the set of tasks and E
the set of edges

113

we : memory consumption of buffer e = (ti, tj) if ti and tj are in the same
cluster

113

wei : memory consumption of task ti for buffer e = (ti, tj) if ti and tj are
in different clusters

113

g(m, c) : total memory needed for communication buffers in cluster c for
a mapping m, g(m, c) =

∑
e∈Ec

we +
∑

e∈E ′
c
we,ti

113
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