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Abstract

In the subsurface geology, characterization of geological beds by well-logs is an uncertain task. The thesis mainly concerns studying vertical resolution of well-logs (question 1). In addition, fuzzy arithmetic is applied to experimental petrophysical relations to project the uncertainty range of the inputs to the outputs, here irreducible water saturation and permeability (question 2). Regarding the first question, the logging mechanism is modelled by fuzzy membership functions. Vertical resolution of membership function (VRmf) is larger than spacing and sampling rate. Due to volumetric mechanism of logging, volumetric Nyquist frequency is proposed.

Developing a geometric simulator for generating synthetic-logs of a single thin-bed enabled us analysing sensitivity of the well-logs to the presence of a thin-bed. Regression-based relations between ideal-logs (simulator inputs) and synthetic-logs (simulator outputs) are used as deconvolution relations for removing shoulder-bed effect of thin-beds from GR, RHOB and NPHI well-logs. NPHI deconvolution relation is applied to a real case where the core porosity of a thin-bed is 8.4%. The NPHI well-log is 3.8%, and the deconvolved NPHI is 11.7%. Since it is not reasonable that the core porosity (effective porosity) be higher than the NPHI (total porosity), the deconvolved NPHI is more accurate than the NPHI well-log. It reveals that the shoulder-bed effect is reduced in this case. The thickness of the same thin-bed was also estimated to be 13±7.5 cm, which is compatible with the thickness of the thin-bed in the core box (<25 cm). Usually, in situ thickness is less than the thickness of the core boxes, since at the earth surface, there is no overburden pressure, also the cores are crushed.

Dempster-Shafer Theory (DST) was used to create well-log uncertainty range. While the VRmf of the well-logs is more than 60 cm, the VRmf of the belief and plausibility functions (boundaries of the uncertainty range) would be about 15 cm. So, the VRmf is improved, while the certainty of the well-log value is reduced. In comparison with geometric method, DSTbased algorithm resulted in a smaller uncertainty range of GR, RHOB and NPHI logs by 100%, 71% and 66%, respectively.

2

In the next step, cluster analysis is applied to NPHI, RHOB and DT for the purpose of providing cluster-based uncertainty range. Then, NPHI is calibrated by core porosity value in each cluster, showing low RMSE compared to the five conventional porosity estimation models (at least 33% of improvement in RMSE). Then, fuzzy arithmetic is applied to calculate fuzzy numbers of irreducible water saturation and permeability. Fuzzy number of irreducible water saturation provides better (less overestimation) results than the crisp estimation. It is found that when the cluster interval of porosity is not compatible with the core porosity, the permeability fuzzy numbers are not valid, e.g. in well#4. Finally, in the possibilistic approach (the fuzzy theory), by calibrating α-cut, the right uncertainty interval could be achieved, concerning the scale of the study. Par exemple, pour caractériser une couche mince poreuse, on a eu recours aux données de carottage qui étaient disponibles pour la vérification : NPHI mesuré (3.8%) a été remplacé (corrigé) par 11.7%. NPHI corrigé semble être plus précis que NPHI mesuré, car la diagraphie a une valeur plus grande que la porosité de carottage (8.4%). Il convient de rappeler que la porosité totale (NPHI) ne doit pas être inférieure à la porosité effective (carottage). En plus, l'épaisseur de la couche mince a été estimée à 13±7.5 cm, compatible avec l'épaisseur de la couche mince dans la boite de carottage (<25 cm). Normalement, l'épaisseur in situ est inférieure à l'épaisseur de la boite de carottage, parce que les carottes obtenues ne sont plus soumises à la pression lithostatique, et s'érodent à la surface du sol.

Keywords

La Théorie de l'évidence de Dempster-Shafer (DST) est appliquée aux diagraphies. Le Corps Des Evidences (BOE) est défini à partir du mécanisme de diagraphie : si la diagraphie est considérée comme la fonction de masse, les éléments de références (focal elements) seraient les volumes d'investigation. Ensuite, les fonctions de croyance (belief ou probabilité inférieure) et de plausibilité (probabilité supérieure) sont calculées pour l'intersection de quatre ou cinq enregistrements adjacents de diagraphie. Par conséquent, l'intervalle d'incertitude de DST sera entre les fonctions de croyance et de plausibilité. Tandis que la VRmf des diagraphies GR, RHOB, NPHI et DT est ~60 cm, la VRmf des fonctions de croyance et de plausibilité est ~15 cm. Or, on a perdu l'incertitude de la valeur de diagraphie, alors que la VRmf est devenue plus précise.

Les diagraphies ont été ensuite corrigées entre l'intervalle d'incertitude de DST avec quatre simulateurs. Les hautes fréquences sont amplifiées dans les diagraphies corrigées, et l'effet des épaules de couche est réduit. La méthode proposée est vérifiée dans les cas synthétiques, la boite de carottage et la porosité de carotte. Les incertitudes de DST sur les diagraphies GR, RHOB et NPHI sont respectivement de 100%, 71% et 66%, donc inférieures à celles calculées par la méthode géométrique. L'analyse de partitionnement (cluster analyses) est appliquée aux diagraphies NPHI, RHOB et DT en vue de trouver l'intervalle d'incertitude, basé sur les grappes. Puis, le NPHI est calibré par la porosité de carottes dans chaque grappe. Le RMSE de NPHI calibré est plus bas par rapport aux cinq modèles conventionnels d'estimation de la porosité (au minimum 33% d'amélioration du RMSE). Le RMSE de généralisation de la méthode proposée entre les puits voisins est augmenté de 42%. L'intervalle d'incertitude de la porosité est exprimé par les nombres flous (fuzzy numbers).

L'arithmétique floue (fuzzy arithmetic) est ensuite appliquée dans le but de calculer les nombres flous de la saturation irréductible en eau et de la perméabilité. Le nombre flou de la saturation irréductible en eau apporte de meilleurs résultats en termes de moindre sous-estimation par rapport à l'estimation nette (crisp). Il est constaté que lorsque les intervalles de grappes de porosité ne sont pas compatibles avec la porosité de carotte, les nombres flous de la perméabilité ne sont pas valables, ex. du puits#4.

Enfin, pour les études géologiques, il est suggéré de considérer « l'échelle de l'étude » à côté d'autres conditions préalables de l'évaluation de l'incertitude, c'est-à-dire le but de l'étude et les sources de l'incertitude. Etant donné les trois conditions préalables, on peut choisir notre approche de l'évaluation de l'incertitude, puis choisir une théorie, donc une méthodologie. Un avantage qu'apporte la théorie possibiliste est que la coupure α (α-cut) peut être calibrée pour atteindre un intervalle de l'incertitude approprié, correspondant à l'échelle de l'étude.  The first objective of the thesis is to model the vertical resolution of well-logs.

Mots

 The second objective is to calculate a possibilistic uncertainty range of petrophysical interpretations, derived from well-logs.

 Due to the literature, the goal of the study and the sources of uncertainty have to be addressed for all the uncertainty assessment studies.

Uncertainty resources in well-logging

Well-log is a digital signal, acquired through a drilled well. It represents some properties (petrophysical, geometrical and sometimes geochemical) of the wellbore. Comparing to the other subsurface data, i.e. cores and well-tests, well-logs are more available, denser and more continuous. The sampling rate in well-logs is about 15 cm, however each sample belongs to a volume of investigation with the dimension of about 7-160 cm [START_REF] Schlumberger | Wireline services catalog[END_REF]. The larger the dimension of the volume of investigation, the less precise the acquired data. Thinbed problem arises when the beds are thinner than the vertical dimension of volume of investigation of the tool.

Resolution of well-logs could be discussed vertically or horizontally. Horizontal resolution is equivalent to the depth of investigation, and vertical resolution can be defined by: (i) sampling rate, (ii) Vertical Resolution of Tool (VRT) or spacing between transmitter and transducer, and (iii) domain of Vertical Resolution of membership function (VRmf) (Figure 1-1).

VRmf shows the degree of membership of the volume of investigation to each property value (Masoudi et al., 2017). When the sample under study is completely homogeneous, VRmf could be replaced by a single value. However when the heterogeneity rises, wider windows have to be used (Figure 12). In addition to the resolution problem, like all the sensory data, well-logs are noise contaminated: white and coloured noises. White noise is a part of a signal (in frequency domain) that is weakly stationary, zero mean and uncorrelated [START_REF] Gray | An introduction to statistical signal processing[END_REF]. It contains usually high-frequencies, so resembles random behaviour. The associated white noise of each instrument is provided within the catalogues of the logging tools, like in [START_REF] Schlumberger | Wireline services catalog[END_REF].

Coloured noise is biased, low-frequency, and is related to the environmental changes, like temperature and pressure. Since the coloured noise is not random and its source is known, it is possible to remove (or to reduce) the effect of coloured noises, e.g. correcting gamma well-log by removing the effect of mud-weight on the measurements. All the explained sources of uncertainty in well-logs, are summarized in Table 1-1. 

The thesis questions and objectives

Question I: vertical resolution of well-logs

In conventional well-log interpretations (Figure 1-3), each depth is interpreted according to the nearest well-log record, could be named distance-based interpretation. The mechanism of well-logging is not taken into account, and we think that this approach is not the most precise way of interpreting well-logs. Instead of assigning each depth to the nearest well-log record, we try to assign each well-log record to the domain of VRmf (Figure 1234). Regarding this general idea, two questions are introduced to be discussed within the thesis. The sources of uncertainty in well-log data is introduced in the previous part. Each source, Table 1-1, adds its specific uncertainty range to the well-log value. The first question, going to be addressed, is assessing VRmf. The absolute resolution of well-logs is a function of specific tool's intrinsic resolution, sampling rate, logging speed and processing method [START_REF] Passey | Petrophysical evaluation of hydrocarbon pore-thickness in thinly bedded clastic reservoirs[END_REF]. However in this thesis, this question primarily concerns the uncertainty of unprocessed data. Consider that a porosity well-log, e.g. neutron porosity (NPHI), is acquired over a range of real porosities (Figure 1-5a). The well-log shows 10% porosity, however the acquisition is taken place over a volume of investigation with the porosity range of [0%, 50%]. Even the height of the membership function is not necessarily equal to the well-log value. In this example, membership degree of the well-log value is higher than 0.9 (Figure 1-5b). The first objective is thus "to approximate VRmf of well-logs." 

Question II: possibilistic uncertainty range of petrophysical parameters

The uncertainty range of acquired data should be propagated to the output of processed data and interpretations. So, the output (porosity, permeability, etc.) will have an uncertainty range, originated from the input well-logs. Therefore, the second objective of the thesis is "to calculate possibilistic uncertainty range of petrophysical parameters, derived from well-logs." The uncertainty range is called "possibilistic" not to be confused with the uncertainty range of Monte-Carlo simulation, which is a "probabilistic" method. Also, from mathematical point of view, the possibilistic uncertainty range is a fuzzy measure, like in the Theory of Possibility, and not a Probability Distribution Function (PDF).

The well-logs gamma ray (GR), bulk density (RHOB), neutron porosity (NPHI) and sonic (DT) are chosen to apply the first objective on. For the second objective, porosity is studied comprehensively, permeability and water saturation are checked as well.

The importance of the thesis

Fundamental and scientific importance

Well-logs are subsurface data, acquired from hundreds of meters up to about four kilometres.

Therefore, precision and accuracy of the data is under doubt, and it is basically necessary to investigate the uncertainty of these data.

In addition, the volume of investigation is overwhelmed in the common well-log interpretations (Figure 1234). In the proposed methodologies, the role of depth uncertainty is also considered in the interpretations.

The proposed methods are based on the theories of Dempster-Shafer, clustering and fuzzy logic, which are specialized for data processing in uncertain situation. Developing these utilities in a new domain, here petroleum geology, is another scientific contribution of the thesis.

Application importance

The first necessity of studying uncertainty is in identifying the main uncertainty sources, and quantifying their relative importance [START_REF] Dromgoole | Geoscore; a method for quantifying uncertainty in field reserve estimates[END_REF]. As an example, in [START_REF] Lia | Uncertainties in reservoir production forecasts[END_REF], two uncertainty sources associated in modelling reservoir production forecast are introduced: (i) heterogeneity uncertainty, caused by geometrical arrangement; (ii) model parameter uncertainty because of incomplete knowledge of the whole reservoir properties. In this study, it is shown that heterogeneity uncertainty causes 25% of the total uncertainty, while model parameter uncertainty causes 75% of the whole uncertainty.

The importance of this thesis for the petroleum industry is to improve the vertical resolution of well-logs. The improved well-logs could be used for better characterization of the thin-beds.

Economic and management importance

The term "exploration" is defined idealistically as "a series of investment decisions made with decreasing uncertainty" [START_REF] Rose | Dealing with risk and uncertainty in exploration: how can we improve[END_REF]. It shows the close relation of both concepts of "uncertainty" and "decision-making". Based on [START_REF] Megill | An introduction to exploration economics[END_REF], the "Risk" is "an opportunity for loss", and the "uncertainty" is defined as "the range of probabilities that some condition may exist or occur" [START_REF] Rose | Dealing with risk and uncertainty in exploration: how can we improve[END_REF]. [START_REF] Rose | Dealing with risk and uncertainty in exploration: how can we improve[END_REF] also introduced two criteria for continuing an exploration activity: (i) consistency with the strategy of investor in dealing with risk and uncertainty; (ii) understanding uncertainty accurately, and reducing it if possible. Meanwhile investors must cope with the issue of "risk" to come to reasonable decisions, engineers have to solve the problem of "uncertainty" to provide as clear illustration from the prospect as they can. In an uncertain situation (related to the exploratory activities), there are several biasedness: (i) prospect target size, (ii) discovery probability, and (iii) cost of finding.

From the economical viewpoint, the uncertainty is divided into two parts: risk and immaterial. Immaterial refers to those uncertainties, unimportant to business, whereas risk refers to the uncertainty of which is critical for business. Again, risk is classified into two types: opportunity and threat. The threat reflects risky uncertainties, threatening the enterprise, while the opportunity risk is a risky uncertainty, which might cause opportunities to the business [START_REF] Smalley | Handling risk and uncertainty in petroleum exploration and asset management: An overview[END_REF].

"Uncertainty is the only certainty in oil exploration." It is a famous cliché in oil business [START_REF] Fang | Uncertainties are better handled by fuzzy arithmetic[END_REF]). Lack of certainty in exploratory activities associates risk in investments. The terminology of "Responsible Reporting" is discussed in [START_REF] Mclane | Responsible reporting of uncertain petroleum reserves[END_REF], comprehensively. It discusses that an understanding of uncertainty is necessary for responsible reporting.

Literature review

Uncertainty in sciences

Philosophical debate on the concept of "uncertainty" backs to "skepticism". Pyrrho (270-360 BC), who is rendered as being the first skeptic philosopher, reached to this idea that nothing is certain. So, his students and followers did not cry on his death because they did not believe his death [START_REF] Durant | The pleasures of philosophy: a survey of human life and destiny[END_REF]. Empiricism (observation) and rationalism (skepticism included) are two complementary or competing views in the epistemology. The former emphasizes on the importance of sensory data, while the latter concerns reasoning and certainty of human's knowledge.

The debate on certainty of sensory data is not restricted to schools of philosophy. Maybe Thomas Bayes (mathematician and philosopher, lived between 1701 and 1761) is the first scientist who entered the concept of uncertainty in statistics and mathematics by his famous theory of probability. Another historic and well-known measure of uncertainty in mathematics and statistics is "variance", which shows how data (or simulations) are distributed around a center. Also, error bar is a conventional tool for expressing uncertainty range as in [START_REF] Wong | A novel technique for modeling fracture intensity: A case study from the Pinedale anticline in Wyoming[END_REF].

Since then, the concept of uncertainty gradually entered in different applications, amongst electronics and telecommunication have benefited the most, by the development of "Information Theory" [START_REF] Shannon | A mathematical theory of communication[END_REF]. Shannon relation of uncertainty is the development of works of Harry Nyquist and Ralph Hartley in the Bell System Company, with the aim of development of communicating systems. Shannon's formula is so fundamental that nowadays it is a famous measure of uncertainty in different domains of science as geosciences.

Scientists of electronics were pioneer in development of another theory in assessing uncertainty: Theory of Fuzzy, which was a paradigm shift in electronics. Generalizing the Set Theory, [START_REF] Zadeh | Fuzzy sets[END_REF] introduced a new language for expressing membership of an element to a definite set. Instead of using two values (0 or 1) for indicating membership of an element, he used a membership function that its output could be within the interval of [0, 1] [START_REF] Zadeh | Fuzzy sets[END_REF]. These days, fuzzy logic is used vastly in various fields of science and engineering, and in geology as well [START_REF] Demicco | Fuzzy logic in geology[END_REF]. Based on the concept of fuzziness, clustering algorithms were modified to develop fuzzy clustering tools, in order to use membership functions in stating degree of membership of data to clusters. Review of fuzzy clustering methods could be found in [START_REF] Baraldi | A survey of fuzzy clustering algorithms for pattern recognition[END_REF], [START_REF] Krishnapuram | A possibilistic approach to clustering[END_REF] and [START_REF] Pal | A possibilistic fuzzy c-means clustering algorithm[END_REF]. A review of possibilistic, fuzzy and neural models is also presented in [START_REF] Bezdek | A review of probabilistic, fuzzy, and neural models for pattern recognition[END_REF].

Researchers of statistics and artificial intelligent were able in developing a rival for fuzzy logic. Dempster-Shafer Theory (DST) of evidences is another methodology in evaluating data within uncertain situation. By means of defining "mass function", researchers were able in further developing Bayes rule to Dempster rule of combination to fuse output of multi-sensory detections under uncertain condition [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF][START_REF] Dempster | A Generalization of Bayesian Inference[END_REF][START_REF] Shafer | A mathematical theory of evidence[END_REF][START_REF] Shafer | Perspectives on the theory and practice of belief functions[END_REF].

Uncertainty in geosciences and petroleum exploration

Intrinsic randomness of nature is perhaps the first source of uncertainty that is mentioned in geological texts. However, retrodiction is never as uncertain as prediction [START_REF] Kitts | Certainty and uncertainty in geology[END_REF]. The word "retrodiction" could be of interest of geologists since it is composed of the word "prediction" when the prefix "pre" is replaced by "retro".

Another pioneer work on uncertainty assessment in core orientation could be found in [START_REF] Nelson | Oriented core: its use, error, and uncertainty[END_REF]. In quantifying uncertainty in petroleum volume estimation, fuzzy arithmetic (Theory of Possibility) is declared to provide better results, comparing to Monte-Carlo method (Theory of Probability) [START_REF] Fang | Uncertainties are better handled by fuzzy arithmetic[END_REF]). Monte-Carlo simulation is a traditional technique for calculating uncertainty of estimated hydrocarbon volume. For further study about probabilistic Monte-Carlo method, refer to [START_REF] Hurst | Swanson's 30-40-30 rule[END_REF] and Masoudi et al. (2011).

The uncertainty is categorized into two types: vagueness (equivalent to fuzziness, haziness, cloudiness, unclearness and sharplessness) and ambiguity (non-specificity, diversity, divergence, generality, variety and one-to-many). Three sources of uncertainty are introduced: lack of information, intrinsic nature and ignorance [START_REF] Fang | Uncertainties are better handled by fuzzy arithmetic[END_REF].

In a comprehensive study, fuzzy aggregation is used for reservoir appraisal [START_REF] Chen | A new method for prospect appraisal[END_REF]. In this work, four trap properties (type, size, closure and timing), five reservoir properties (porosity, permeability, net thickness, depth and saturation), five source rock properties (richness, organic matter, maturity, thickness and area), migration distance and seal integrity, i.e. 16 geologic variables in overall, are fused to assess prospects. In brief, an appraisal method is introduced in this paper, which uses fuzzy aggregation methodology to easily integrate different reservoir properties. The key achievement of this study is: the higher the geoscore, the less hydrocarbon recovery and the more overestimation of reservoir volume. It was also advised at the end of the paper that for accurate reserve estimation during appraisal, we need to: (i) recognize the key uncertainties; (ii) quantify the relative importance of uncertainties; and (iii) collecting data to reduce uncertainties or being prepared to handle potential problems may arise during development or production. This paper [START_REF] Dromgoole | Geoscore; a method for quantifying uncertainty in field reserve estimates[END_REF], and the paper of [START_REF] Yeh | Reservoir uncertainty quantification using probabilistic history matching workflow[END_REF] have well presented the importance of uncertainty assessment in economic evaluation and production forecast, respectively. [START_REF] Hurst | Sand-rich fairways in deep-water clastic reservoirs: genetic units, capturing uncertainty, and a new approach to reservoir modeling[END_REF] tried to link between the concepts of sequence stratigraphy and the concept of uncertainty. In their paper, there is a discussion about characterizing sandy pinchout genesis, i.e. infill or onlap types, and correlating sand bodies between wells. Although mathematical basis of this paper is not in-detail, there is a robust geological debate on how to differentiate infill and onlap pinch-outs based on petrophysical and rock sedimentary properties.

Application of probabilistic and fuzzy partitioning on interpreting satellite images is addressed successfully by [START_REF] Matsakis | Evaluation of fuzzy partitions[END_REF]. In this paper, image classification is distributed into classes of lagoon, conglomerate, vegetation, coral rubble, deep water, etc. with the precisions higher than 75%. For mathematical comparison between fuzzy, probabilistic and possibilistic partitioning, refer to [START_REF] Anderson | Comparing fuzzy, probabilistic, and possibilistic partitions[END_REF].

Another application of the concept of uncertainty in production problems is presented in [START_REF] Zheng | Uncertainty in well test and core permeability analysis: a case study in fluvial channel reservoirs, northern North Sea, Norway[END_REF]. In this paper, the uncertainty of permeability estimation is lowered by combining results of two measurements of permeability: well tests (meso-scale) and core tests (micro-scale). Calibrating both types of data has confined estimation of permeability to smaller range. It seems that this methodology is more certain comparing to conventional approach, since (i) training is constrained to well-test, and (ii) well-test is a measure of permeability of the reservoir, whereas, core permeability is only indicator of permeability of intact rock.

Fuzzy logic is inherently a suitable tool to characterize vague and imperfectly defined situations, like in geological datasets. Therefore, [START_REF] Saggaf | A fuzzy logic approach for the estimation of facies from wire-line logs[END_REF] proposed using fuzzy logic in lithological and depositional facies predictions. In their work, accuracy of fuzzy logic in facies prediction is stated to be more than 90% in every run.

For probabilistic hydrocarbon pore-thickness evaluation in intervals (47.6 ft = 14.5 m) with beds thinner than 1 ft (30 cm), Volumetric Laminated Sand Analysis (VLSA) method is developed. The method uses Monte-Carlo simulation for generating realizations, and providing PDF of output, i.e. petrophysical parameters. 400% improvement in accuracy of hydrocarbon pore-thickness estimation is reported by this method [START_REF] Passey | Petrophysical evaluation of hydrocarbon pore-thickness in thinly bedded clastic reservoirs[END_REF]. In this thesis, VLSA is used as a base method for comparing the outputs with.

Geological risk mapping in play level is produced by multivariate and Bayesian methodology [START_REF] Chen | Geological risk mapping and prospect evaluation using multivariate and Bayesian statistical methods, western Sverdrup Basin of Canada[END_REF]. In this work, risk analysis problem is defined as "equivalent to classification with uncertainty in a multivariate space".

Determination and geostatistical inversion are compared with each other for the purpose of net-pay determination through seismic data [START_REF] Sams | Comparison of uncertainty estimates from deterministic and geostatistical inversion[END_REF]. Determination method provides higher uncertainties, comparing to geostatistics method. For reservoirs with thinner stratigraphic layers, the magnitude of this difference rises, especially when the beds become thinner than vertical resolution of seismic data. logic in slope stability, hydrogeology and geo-engineering. Their papers present a systematic algorithm for implementing a fuzzy inference system to fuse multi-source geo-data. The systematic algorithm they used contains four stages: (i) preparing geo-dataset; (ii) creating possibility function (membership function), regarding the purpose; (iii) providing technical hypothesis for fusing variables; and (iv) checking or discussing hypothesis or outputs of fusion [START_REF] Grandjean | Geophysical data fusion by fuzzy logic for imaging the mechanical behaviour of mudslides[END_REF](Grandjean et al., , 2009a,b;,b;[START_REF] Hibert | Characterizing landslides through geophysical data fusion: example of the La Valette landslide (France)[END_REF].

In order to handle structural uncertainty in petroleum reserves, [START_REF] Thore | Structural uncertainties: determination, management, and applications[END_REF] considered aggregation of side-effects of all processing and interpreting stages on the final results. Preparation of structural model by seismic studies generally consists of six stages, each one is a source of uncertainty in constructing structural model: acquisition, pre-processing, stacking, migration, time-to-depth conversion and interpretation. In this paper, migration, picking and time-to-depth conversion are introduced as dominant uncertainty resources; and amplitude, direction and correlation length of each are incorporated in calculations. In the article, it is also specified that computation of structural uncertainties has several benefits: (i) providing a distribution of gross rock volume; (ii) defining optimal well trajectories; and (iii) reservoir history matching.

In a recent paper about assessing structural uncertainty, [START_REF] Seiler | Structural uncertainty modelling and updating by production data integration[END_REF] proposed an elastic grid to be adjustable and trainable due to history of reservoir production. The methodology is approved by synthetic dataset, and is potentially a new frontier for structural uncertainty handling in petroleum appraisal for the next years.

The most comprehensive text book about uncertainty in geosciences is composed by [START_REF] Caers | Modeling uncertainty in earth sciences[END_REF]. Five different sources of uncertainty in earth sciences are introduced in the book: (i) measurement and processing errors; (ii) multiple ways of interpreting processed data; (iii) type of geological setting; (iv) spatial uncertainty, which is related to heterogeneity and scale of the study; and (v) response uncertainty, e.g. solving partial differential equations needs initial and boundary conditions that is sometimes uncertain.

The most important prerequisite to uncertainty assessment is stated to be "purpose of the study"; therefore, fit-for-purpose approach is suggested for quantifying uncertainty in each study [START_REF] Caers | Modeling uncertainty in earth sciences[END_REF]. The majority of the book is concerned with geostatistical methodologies, and how to assess uncertainty besides geostatistical modelling. However some simpler uncertainty tools as tornado chart is introduced likewise.

A bootstrap-based methodology for uncertainty analysis when predicting effective porosity by seismic attributes is presented by [START_REF] Ortet | Estimation of uncertainties associated to porosity prediction from inversion[END_REF]. The authors have introduced this novel methodology as an alternative to standard geostatistical simulation. They have also stated that in cases the main source of uncertainty is related to the calibration set, bootstrap-based method is well adapted.

For assessing uncertainty of seismic interpretations, picking, four constraints are introduced [START_REF] Yang | Quantifying uncertainty in seismic interpretation[END_REF]: (i) best estimate control point; (ii) best estimate surface; (iii) uncertainty envelope; and (iv) uncertainty envelop surface. Based on this method, more than one realization would be generated that helps interpreters to calculate the probability of each realization.

Uncertainty assessment in pore pressure prediction is carried out by [START_REF] Wessling | Quantification of uncertainty in a multistage/multiparameter modeling workflow: Pore pressure from geophysical well logs[END_REF].

The paper discusses that the uncertainty, which is associated with the pore pressure, is contributed by geophysical measurements, geological model and manual processing steps.

Measurement-related uncertainties could be quantified (and maybe compensated); whereas, it is difficult to handle the uncertainty of descriptive geologic models or manual processing stages.

It is suggested in [START_REF] Wessling | Quantification of uncertainty in a multistage/multiparameter modeling workflow: Pore pressure from geophysical well logs[END_REF] that, in order to quantify and control uncertainty of a manual processing, we can substitute this part with an automation. This change will result in a more transparent output for interpreters, hence, easier to quantify and assess the uncertainty.

Within a recently defended PhD thesis, the uncertainty of static models is projected to dynamic models. So, the quantiles (P10, P50 and P90) of production prediction curve were calculated, considering a set of geostatistical realizations [START_REF] Bardy | Intégration de modèles approchés pour mieux transmettre l'impact des incertitudes statiques sur les courbes de réponse des simulateurs d'écoulements[END_REF].

Application points

Though there are many publications about the concept, definition and categorization of uncertainty in earth-related studies, the application of uncertainty assessment in exploration activities is not well-developed. Two common pragmatic points could be derived from the literature for all the uncertainty assessment applications: (i) what is the aim from uncertainty assessment [START_REF] Caers | Modeling uncertainty in earth sciences[END_REF]? (ii) What are the sources of uncertainty in the dataset [START_REF] Chen | A new method for prospect appraisal[END_REF][START_REF] Dromgoole | Geoscore; a method for quantifying uncertainty in field reserve estimates[END_REF][START_REF] Lia | Uncertainties in reservoir production forecasts[END_REF][START_REF] Thore | Structural uncertainties: determination, management, and applications[END_REF][START_REF] Wessling | Quantification of uncertainty in a multistage/multiparameter modeling workflow: Pore pressure from geophysical well logs[END_REF]?

To rebuild uncertainty bounds of well-logs and propagate it to the petrophysical outputs, Monte-Carlo simulation is used in industrial software applications Techlog-Schlumberger [START_REF] Gimbe | Formation evaluation and uncertainty analysis of the Ormen Lange Field[END_REF] and Geolog Datamin Uncertainty Module Paradigm. The algorithm is the same as VLSA, presented for thin-bed studies by researchers of ExxonMobil [START_REF] Passey | Petrophysical evaluation of hydrocarbon pore-thickness in thinly bedded clastic reservoirs[END_REF].

Introducing datasets

Basic definitions

We used four key terms to introduce the datasets: "Well-log", "real-log", "synthetic-log" and "ideal-log". The first two terms describe real data, while the last ones are related to synthetic data.

-A well-log records intrinsic or induced properties of the rocks and their fluids [START_REF] Gluyas | Petroleum geoscience[END_REF]. Such records, acquired through a well, are either one dimensional, like gamma ray log, or two dimensional as image logs. Well-log is also known as borehole log since the data are captured through the wellbore.

-A real-log reflects real properties of the well-bore. Well-logs are imprecise (apparent values) in reflecting real properties, especially in thin-bed conditions because well-logs are convolved data [START_REF] Gartner | A new resolution enhancement method for neutron porosity tools[END_REF]. The convolution is applied over an interval of vertical resolution of the logging tool. When this interval approaches zero, the well-log converges to the real-log.

-An ideal-log is equivalent to "real-log" in synthetic datasets. It is defined by the user, while real-log represents rock properties in the nature. Finding the real-log is an open problem, while the ideal-log is definite, so useful in validation.

-A synthetic-log is convolution of an ideal-log over a vertical resolution. It resembles welllog in real data.

Synthetic data

The first stage in generating a synthetic-log is defining specifications of its ideal-log (Table 12. Ideal-logs (real-logs) are not volumetric signals, i.e. no depth uncertainty.

In Table 1-2, each case represents a petrophysical change in presence of a thin-bed (cases 1-5 and 7) or a single fracture (case 6). Synthetic-log generator for thin-beds (cases 1-5 and 7) convolves the ideal-log (for more details see Chapter 5). For the case 6, simulator generates a synthetic-log based on geological specifications of a single fracture. It calculates the effect of a predetermined fracture on the well-log [START_REF] Mazaheri | Developing fracture measure as an index of fracture impact on well-logs[END_REF].

Real data

Well-log data of five exploratory wells were used to check the developed methodology. The wells are located on the axis of an anticlinal oil-field in the Abadan Plain, SW Iran (Figure 123456). The subsurface data are limited to the Sarvak Formation. Summary of available data and specifications of some well-logs are provided in Table 1-3 and1-4, respectively. 

W1 W2 W3 W4 W5 W6 Well- logs Calliper       GR       CGR       DT       NPHI       RHOB       DRHO       LLD       LLS       MSFL       PEF       Core tests # of

Geology of the Sarvak Formation

The type section of the Sarvak Formation (thickness of 832 m) is in the Bangestan Mountain, Khuzestan Province, Iran. It is a hydrocarbon producing formation in many oil fields in the Zagros. The Sarvak Formation is mostly overlaying the Kazhdumi Formation and is overlaid by the Ilam Formation [START_REF] Ghazban | Petroleum geology of the Persian Gulf, 1 edn[END_REF]. However, in the study area, there is the eight metersthick Laffan Formation between the Ilam and Sarvak formations (Figure 1234567).

Sarvak Formation is a homoclinical carbonate ramp, deposited during Albian to Turonian [START_REF] Mehrabi | Controls on depositional facies in Upper Cretaceous carbonate reservoirs in the Zagros area and the Persian Gulf, Iran[END_REF]. In homoclinical carbonate ramps, there is a slight seabed dip toward the sea. This term belongs to a topological classification of carbonate ramps [START_REF] Read | Carbonate platform facies models[END_REF]. The lithology of Sarvak Formation is wackestone-packstone. The upper Sarvak Formation belongs to a shallower environment, comparing to the pelagic facies of the middle and lower Sarvak Formation [START_REF] James | Stratigraphic nomenclature of Iranian Oil Consortium Agreement Area[END_REF][START_REF] Ghabeishavi | Microfacies and depositional environment of the Cenomanian of the Bangestan anticline, SW Iran[END_REF].

From the viewpoint of sequence stratigraphy, four sequences of the third-order (duration of 1.5-3 Ma and thickness of 50-150 m) are distinguished in the Sarvak Formation. Several sequences of the fourth-and fifth-order are also reported [START_REF] Razin | Sequence stratigraphy of Cenomanian-Turonian carbonate platform margins (Sarvak Formation) in the High Zagros, SW Iran: an outcrop reference model for the Arabian Plate[END_REF][START_REF] Vincent | Depositional sequences, diagenesis and structural control of the Albian to Turonian carbonate platform systems in coastal Fars (SW Iran)[END_REF].

There is a depositional gap at the top of the Sarvak Formation (Cenomanian unconformity), which has improved reservoir quality of the upper Sarvak Formation (Figure 1  The other utilized theories, techniques and concepts; e.g. Nyquist frequency, Bayesian Theory and Monte-Carlo simulation, are also addressed in the thesis.

Dempster-Shafer Theory of evidences

This theory is developed in the domain of subjective probability, useful in evaluating uncertain phenomena. The most basic difference between the Theory of Probability (Bayesian) and DST is that no distribution (PDF or membership function) is considered in DST. So, the mass function (equivalent to PDF) could freely move within its focal element, while satisfying imposed limitations of Body Of Evidence (BOE). In Figure 2-1b, the mass of A can move freely within the set A; while in Figure 2-1a, the probability of A is distributed according to a predefined triangular PDF.

The result of removing the PDF constraint is providing a range of uncertainty for outputs. So, belief function is defined as the least possible (necessity) mass value of a focal element, and plausibility is defined as the highest possible mass value (capacity) of the focal element. Belief and plausibility values have to satisfy the predefined mass functions of each basic focal element. For studying DST in detail, refer to [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF][START_REF] Dempster | A Generalization of Bayesian Inference[END_REF], [START_REF] Klir | Fuzzy sets and fuzzy logic, theory and applications[END_REF], [START_REF] Liu | Classic works of the Dempster-Shafer Theory of belief functions[END_REF] and [START_REF] Shafer | Perspectives on the theory and practice of belief functions[END_REF]. The first stage in applying DST is constructing a BOE. 

As an example, in

Body Of Evidences

For constructing a BOE, focal element and corresponding mass function have to be defined.

Focal element is a set of elements that a mass function is attributed. The theory does not apply any specific rule on the structure of focal elements, and they are only defined due to the mechanism of data acquisition or gathering. Here, we considered each well-log record as a mass value, corresponding to its volume of investigation, i.e. focal element.

Mass function

Lack of restrictions on the mass function makes it move freely within its focal element. Mass function is always non-negative, and the summation of mass values over all the focal elements (FE) should be one [START_REF] Liu | Classic works of the Dempster-Shafer Theory of belief functions[END_REF]. The symbol "≜" in Relation 2-1 means that this equation is defined by user, and is not derived from calculations. This normalization is essential for combining the results in multisensory situations, as utilized e.g. in Masoudi et al. (2014).

In DST, null set (𝜙) represents unpredicted situations. If it is not important to model the unpredicted situations: 𝑚(𝜙) = 0. And if it is important to model the unpredicted situations, the mass function of null set has to be higher than zero.

∑ 𝑚(𝐹𝐸 𝑖 ) 𝑛 𝑖=1 ≜ 1 (2-1)

Belief and plausibility functions

Based on BOE, lower (belief) and upper (plausibility) probabilities are defined for each focal element of target. The focal elements of belief and plausibility are not necessarily the same as the focal elements of mass function. They could be defined by the user. Belief (plausibility) function shows the least necessary (most possible) mass value within the focal element of target [START_REF] Liu | Classic works of the Dempster-Shafer Theory of belief functions[END_REF].

𝑃𝑙𝑠(𝐹𝐸 𝑖 ) ≜ ∑ 𝑚(𝐹𝐸 𝑗 ) 𝐹𝐸 𝑗 ∩𝐹𝐸 𝑖 ≠𝜙 (2-2)
𝐵𝑒𝑙(𝐹𝐸 𝑖 ) ≜ ∑ 𝑚(𝐹𝐸 𝑗 )

𝐹𝐸 𝑗 ⊆𝐹𝐸 𝑖

(2-3)

Consistency of uncertainty assessment theories

Before applying each uncertainty assessment theory on a defined BOE, we have to analyse whether the theory is compatible with the BOE or not. The analysis of a dice game, using the Probability Theory, leads to a PDF with the probability of

1 6
for each of the six sides. In this example, the BOE consists of six focal elements, each containing only one number (one to six).

The focal elements do not have any intersection with each other, e.g. when the dice shows number four, it cannot hold any other value simultaneously. So, the Theory of Probability is compatible with dice game.

In the other example, consider a person who may eat some eggs (e.g. one to six eggs) at breakfast. The Probability Theory could be used to predict how many eggs he eats every day.

So, due to statistics (a priori knowledge), he mostly eats two or three eggs per day, rarely zero, one or four, and never five or six eggs. Thus, the PDF has zero value for cases five and six, and a height at two and three eggs.

Approaching this problem by the possibility theory means that possibility of eating four eggs has the possibility of eating three, two or one egg(s). In the language of the set theory, from each pair of focal elements, one is subset of the other. So, the focal elements are eccentric and the result will be cumulative (a property of fuzzy measure) with the highest possibility for eating one egg, and the lowest possibility for eating five eggs.

Therefore, the Probability Theory is applicable in completely separated focal elements and the Possibility Theory is applicable in eccentric focal elements ( For checking the consistency, we either can analyse the focal elements or the consistency conditions. The simplest consistency condition is that the probability value, be between the values of belief and plausibility [START_REF] Klir | Fuzzy sets and fuzzy logic, theory and applications[END_REF]:

Schema of focal elements

Property of focal elements

Theory of probability

𝐵𝑒𝑙(𝐹𝐸 𝑖 ) ≤ 𝑃𝑟(𝐹𝐸 𝑖 ) ≤ 𝑃𝑙𝑠(𝐹𝐸 𝑖 ) (2-4)

Fuzzy arithmetic

Common arithmetic, applied on the crisp numbers, is still the dominant arithmetic, being used in the science. However, it is some decades that interval arithmetic and fuzzy arithmetic are playing role of complementary tools, when there are uncertainties or impreciseness about the numbers. Interval arithmetic is applied on the intervals, instead of numbers; and fuzzy arithmetic is a generalization of the interval arithmetic when a fuzzy membership, called fuzzy number, is defined on the intervals.

The first time, fuzzy arithmetic was developed for calculating linguistic variables. For example, "age" is a linguistic variable that can obtain different values: child, teenager, young and old. The basics of a fuzzy variable, fuzzy operations (complement, union, intersection, product, convex combination, Cartesian product and fuzzification) and relations between the variables are discussed in Zadeh (1975a). Successively, mathematical introduction of a fuzzy variable and Boolean operators for applying on the fuzzy variables are extended (Zadeh, 1975b). In the next step, the Theory of Probability and approximate reasoning for fusing multiple fuzzy variables are developed (Zadeh, 1975c). Later, the concept of fuzzy variable is called fuzzy number, and is used for two major imperatives: (i) the available information is too imprecise to justify the use of the common numbers, and (ii) there is a tolerance for imprecision [START_REF] Zadeh | Fuzzy logic = computing with words[END_REF].

Fuzzy number

We use fuzzy number when ordinary number is not justifiable in representing the data. Fuzzy 

Arithmetic operations on intervals

Based on Relation 2-5, arithmetic operators on intervals (Relations 2-6 to 2-8) are derived.

Considering four intervals A, B, C and D, seven famous arithmetic axioms are valid for the defined operators, Table 2-2 (2-7) 

[𝑎, 𝑏]/ [𝑐, 𝑑] = [𝑎, 𝑏]. [ 1 𝑐 , 1 𝑑 ] (2-8)

Arithmetic operations on fuzzy numbers

There are two approaches in developing arithmetic operations on fuzzy numbers: based on (2-10)

where A and B are two fuzzy numbers, and * represents a fuzzy operator, going to be applied on them. An example of applying fuzzy operators on two fuzzy numbers is given in Figure 234. Extension of operations on real numbers to fuzzy numbers could be defined by applying an axiomatic structure. The axioms indicate our expectations from fuzzy operators, inspired from common operators [START_REF] Klir | Fuzzy sets and fuzzy logic, theory and applications[END_REF]. Some researchers believe that current standard fuzzy operators need to be revised. The reason is that the output of standard operators does not resemble the output of operators of real numbers in some cases; e.g. 𝐴 -𝐴 ≠ 0 [START_REF] Klir | Fuzzy arithmetic with requisite constraints[END_REF].

Cluster analysis

Cluster analysis is an unsupervised learning method to decompose a dataset into some sets of objects, i.e. clusters, based on a similarity index. Labelling data by clustering methods helps primarily in understanding the structure of data, in data reduction as well (De Oliveira and Pedrycz, 2007).

Among different domains in the earth sciences, geochemistry benefitted the most from clustering in separating the anomalous area from the background [START_REF] Templ | Cluster analysis applied to regional geochemical data: problems and possibilities[END_REF][START_REF] Meshkani | The application of geochemical pattern recognition to regional prospecting: A case study of the Sanandaj-Sirjan metallogenic zone, Iran[END_REF]. In lithofacies prediction by fuzzy partitioning, clustering is used to detect structure of multidimensional well-log data. Each cluster is considered as a potential fuzzy classification rule, i.e. a fuzzy if-then rule [START_REF] Finol | Fuzzy partitioning systems for electrofacies classification: a case study from the Maracaibo basin[END_REF]. Similarly in reservoir zonation, statistical and intelligent clustering methods are tested. Self-organizing map neural network is the most successful clustering tool for lithofacies categorization [START_REF] Sfidari | A hybrid approach for litho-facies characterization in the framework of sequence stratigraphy: a case study from the South Pars gas field, the Persian Gulf basin[END_REF]. In reservoir characterization, clustering is used for studying productive zones, saturation or permeability variations (Moradi et al., 2015;Masoudi et al., 2016).

For a finite dataset, clustering algorithm searches for c prototypes, cluster centers, representative of c clusters. The data points are grouped with the nearest prototype, based on a measure of distance [START_REF] Klir | Fuzzy sets and fuzzy logic, theory and applications[END_REF]. Four clustering algorithms are used in this thesis:

k-means (KM), Fuzzy C-Means (FCM), Gustafson-Kessel (GK) and Gath-Geva (GG) algorithms.

k-means and fuzzy c-means algorithms

"The aim of the k-means algorithm is to divide m points in n dimensions into k clusters so that the within-cluster sum of squares is minimized" [START_REF] Hartigan | Algorithm AS 136: a k-means clustering algorithm[END_REF]. In a simple language, the algorithm of k-means starts with selecting k data points randomly (primary clusters) from the dataset. In the next step, each point will be added to its nearest cluster, and the means of clusters should be readjusted (the reason why this method is called k-means) [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF].

Using fuzzy partitioning (Relation 2-11) instead of crisp cluster labels, resulted in fuzzy cmeans (FCM) algorithm. It means that summation of degrees of membership (𝐴 𝑖 ) of each data point 𝑥 𝑘 to each of c clusters is one.

∑ 𝐴 𝑖 (𝑥 𝑘 ) 𝑐 𝑖=1 = 1 (2-11)
The algorithm of FCM consists of four steps below, illustrated in Figure 2-5 [START_REF] Klir | Fuzzy sets and fuzzy logic, theory and applications[END_REF]:

(i) Primary definitions:

(i-i) Put the counter of iteration: t=0

(i-ii) Define number of clusters, c.

(i-iii) Randomize an initial fuzzy partition: 𝒫 (0) = {𝐴 1 , 𝐴 2 , … , 𝐴 𝑐 } (i-iv) Choose a fuzzifier: 𝑚 ∈ (1, +∞). Actually, there is no theoretical way for optimizing m but trial and error by Relation 2-16. We suggest an easy number of 2.

(i-v) Define the convergence limit: 𝜀 (ii) Calculate the cluster centres 𝑣 𝑖 (𝑡) in Relation 2-12: It is a weighted average of data points.

The weights are due to the defined membership function 𝐴 𝑖 (𝑡) . This relation is driven from descent-based optimization of Relation 2-16, i.e.

𝜕𝐽 𝜕𝑣 = 0 [START_REF] Gustafson | Fuzzy clustering with a fuzzy covariance matrix, Decision and Control including the 17th Symposium on Adaptive Processes[END_REF].

𝑣 𝑖 (𝑡) = ∑ [𝐴 𝑖 (𝑡) (𝑥 𝑘 )] 𝑚 . 𝑥 𝑘 𝑛 𝑘=1 ∑ [𝐴 𝑖 (𝑡) (𝑥 𝑘 )] 𝑚 𝑛 𝑘=1
(2-12) (iii) Update the fuzzy pseudopartition 𝒫 (𝑡+1) by Relation 2-13. This relation is also driven from descent-based optimization of Relations 2-16 and 2-11 [START_REF] Gustafson | Fuzzy clustering with a fuzzy covariance matrix, Decision and Control including the 17th Symposium on Adaptive Processes[END_REF].

𝐴 𝑖 (𝑡+1) (𝑥 𝑘 ) = [ ∑ ( ‖𝑥 𝑘 -𝑣 𝑖 (𝑡) ‖ 2 ‖𝑥 𝑘 -𝑣 𝑗 (𝑡) ‖ 2 ) 1 𝑚-1 𝑐 𝑗=1 ] -1 (2-13)
The term ‖𝑥 𝑘 -𝑣 𝑖 (𝑡) ‖ is Euclidian distance between the data point 𝑥 𝑘 and the cluster center 𝑣 𝑖 (𝑡) . If for some clusters (𝑖 ∈ 𝐼 ⊆ ℕ 𝑐 ): ‖𝑥 𝑘 -𝑣 𝑖 (𝑡) ‖ = 0; then define 𝐴 𝑖 (𝑡+1) (𝑥 𝑘 ) for 𝑖 ∈ 𝐼 by any non-negative real numbers that satisfies Relation 2-14, and zero for the other membership functions:

𝐴 𝑖 (𝑡+1) (𝑥 𝑘 ) = 0; 𝑖 ∈ ℕ 𝑐 -𝐼. ∑ 𝐴 𝑖 (𝑡+1) (𝑥 𝑘 ) 𝑖∈𝐼 = 1 (2-14)
(iv) Check the stopping condition: |𝒫 (𝑡) -𝒫 (𝑡+1) | ≤ 𝜀; otherwise increase t and return to step (ii).

The distance could be defined by the user, e.g. the maximum change of membership function in Relation 2-15. Performance index, 𝐽 𝑚 (𝒫 (𝑡) ), could be used also as a cluster validity. The lower 𝐽 𝑚 (𝒫 (𝑡) ) is the more acceptable (Relation 2-16).

|𝒫 (𝑡) -𝒫 (𝑡+1) | = max 𝑖∈ℕ 𝑐 ,𝑘∈ℕ 𝑛 |𝐴 𝑖 (𝑡+1) (𝑥 𝑘 ) -𝐴 𝑖 (𝑡) (𝑥 𝑘 )| (2-15) 𝐽 𝑚 (𝒫 (𝑡) ) = ∑ ∑[𝐴 𝑖 (𝑡) (𝑥 𝑘 )] 𝑚 . ‖𝑥 𝑘 -𝑣 𝑖 (𝑡) ‖ 2 𝑐 𝑖=1 𝑛 𝑘=1 (2-16)
Where ℕ 𝑐 and ℕ 𝑛 are sets of cluster numbers and numbers of data points, respectively. 

Gustafson-Kessel clustering technique

Neither KM nor FCM are suitable algorithms for oriented or multi-sized clusters. In the FCM algorithm, if the Euclidian distance (Relation 2-17) is replaced by the Mahalanobis distance (Relation 2-18) the new algorithm, Gustafson-Kessel (GK), would be capable of detecting unisized (in terms of number of data) but oriented (linear at extreme mode) clusters too [START_REF] Gustafson | Fuzzy clustering with a fuzzy covariance matrix, Decision and Control including the 17th Symposium on Adaptive Processes[END_REF][START_REF] Babuka | Improved covariance estimation for Gustafson-Kessel clustering, Fuzzy Systems[END_REF].

‖𝑥 𝑘 -𝑣 𝑖 ‖ 2 = (𝑥 𝑘 -𝑣 𝑖 )(𝑥 𝑘 -𝑣 𝑖 ) = ∑(𝑥 𝑘,𝑗 -𝑣 𝑖,𝑗 ) 2 𝑓 𝑗=1 Euclidian distance (2-17) ‖𝑥 𝑘 -𝑣 𝑖 ‖ 2 = (𝑥 𝑘 -𝑣 𝑖 ) 𝑇 𝐶 𝑖 (𝑥 𝑘 -𝑣 𝑖 )
Mahalanobis distance (2)(3)[START_REF]Multi-well-log thin-bed characterization The well-logs of the thinnest characterized bed, observation#7 of Table 4-3, are provided and interpreted ([END_REF](5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)[START_REF] Nyquist | Certain factors affecting telegraph speed[END_REF] where:

𝑥 𝑘 = {𝑥 𝑘,1 , 𝑥 𝑘,2 , … , 𝑥 𝑘,𝑓 }: Vector of kth data point.
𝑣 𝑖 = {𝑣 𝑖,1 , 𝑣 𝑖,2 , … , 𝑣 𝑖,𝑓 }: Vector of center of ith cluster.

𝐶 𝑖 : Covariance matrix of ith cluster. A square matrix with the size of number of clusters.

Gath-Geva clustering technique

Gath-Geva (GG) algorithm solved clustering problems of (i) multi-sized clusters, and (ii) number of clusters. Fuzzy Maximum Likelihood Estimation (FMLE) or GG is a development on the FCM algorithm [START_REF] Gath | Unsupervised optimal fuzzy clustering[END_REF]):

(i) Primary definitions and cluster centers calculation (𝑣 𝑖 (𝑡) in Relation 2-12): the same as steps (i) and (ii) in FCM but c is the maximum number of clusters.

(ii) Cluster with the fuzzy modification of the maximum likelihood estimation:

(ii-i) Calculating fuzzy covariance matrix for ith cluster:

𝐹 𝑖 = ∑ 𝐴 𝑖 (𝑥 𝑘 )(𝑥 𝑘 -𝑣 𝑖 )(𝑥 𝑘 -𝑣 𝑖 ) 𝑇 𝑛 𝑘=1 ∑ 𝐴 𝑖 (𝑥 𝑘 ) 𝑛 𝑘=1
(2-19)

(ii-ii) Calculating exponential distance measure:

‖𝑥 𝑘 -𝑣 𝑖 ‖ 2 = √det(𝐹 𝑖 ) 1 𝑛 ∑ 𝐴 𝑖 (𝑥 𝑘 ) 𝑛 𝑘=1 exp [ 1 2 (𝑥 𝑘 -𝑣 𝑖 )𝐹 𝑖 -1 (𝑥 𝑘 -𝑣 𝑖 )]
(2-20)

(ii-iii) Updating fuzzy partitioning: (2-23)

𝐴 𝑖 (𝑥 𝑘 ) = 1 ‖𝑥 𝑘 -𝑣 𝑖 ‖ 2 ∑ 1 ‖𝑥 𝑘 -𝑣 𝑖 ‖ 2 𝑐 𝑖=1 (2-21) (iii)
𝑃 𝐷 = ∑ ∑ 𝑢 𝑖,𝑘 𝑛 𝑘=1 𝑐 𝑖=1 𝐹 𝐻𝑉 (2-24)
If the kth data point is within a hyperellipsoid, centered at the cluster prototype of the ith cluster with radii of one standard deviation of each feature, then 𝑢 𝑖,𝑘 is the distance between the kth data point and the ith cluster. Otherwise, it is zero to exclude far data points from calculations of (average) density partition.

(iv) If number of clusters is lower than the predefined maximum, increase the number of clusters, and go to (iii). Otherwise stop the algorithm, then choose the best cluster number due to performance measures.

Empirical relations in petrophysics

Using empirical relations in reservoir characterization is very common. All the well-log interpretation software applications contain some of these relations for estimating reservoir properties: porosity, permeability, saturation, rock typing, etc. The focus of the thesis is on the porosity, then permeability. In the next step, results of irreducible water are provided in some cases. Since there is not a measurement for evaluating saturation results, it is not discussed as porosity and permeability properties.

Porosity study by well-logs

Porosity could be studied by three well-logs: neutron porosity (NPHI), bulk density (RHOB) and sonic (DT). NPHI is a measure of hydrogen content. Since this element exists in the water and hydrocarbons (not in solid phase of formations), so NPHI is a measure of whole the porous media, i.e. total porosity either effective or non-effective [START_REF] Johnson | Well logging In nontechnical language[END_REF]. RHOB has negative correlation with NPHI since higher the porosity, lower the density. Despite the former logs, DT represents only secondary porosity, like fractures or vuggy porosity. In fact, DT is sensitive to the discontinuities that result in dispersion of sonic waves [START_REF] Johnson | Well logging In nontechnical language[END_REF]. Therefore peaks in DT could be interpreted as fractured or porous zones.

One-log porosity methods: neutron-or density-based

The response of NPHI and RHOB could be modelled by Relation 2-25. The acquired log value is summation of matrix, shale, hydrocarbon and water parts. where 𝜑 𝑒 and 𝑉 𝑠ℎ are effective porosity and volume of shale, both in fraction. 𝑙𝑜𝑔 𝑤 , 𝑙𝑜𝑔 ℎ , 𝑙𝑜𝑔 𝑠ℎ and 𝑙𝑜𝑔 𝑖 are log readings (either NPHI or RHOB) in 100% water, hydrocarbon, shale and the ith component of matrix rock, respectively. 𝑆 𝑋𝑂 is water saturation in invaded zone (fractional). Finally, 𝑣 𝑖 is the volume of ith component of matrix rock.

In this thesis, since the dataset belongs to a gas-free reservoir, the difference between the log reading in water and hydrocarbon horizons is neglected, 𝑙𝑜𝑔 𝑤 = 𝑙𝑜𝑔 ℎ . Also, the invaded zone is considered completely full of drilling water 𝑆 𝑋𝑂 = 1 [START_REF] Crain | Crain's petrophysical handbook[END_REF]. It means that water and hydrocarbon terms are integrated into a single term.

𝑙𝑜𝑔 (𝑠) = 𝑙𝑜𝑔 -𝑙𝑜𝑔 𝑚𝑎 𝑙𝑜𝑔 𝑤 -𝑙𝑜𝑔 𝑚𝑎 Lithology correction (2-26) 𝜑 𝑙𝑜𝑔 = 𝑙𝑜𝑔 (𝑠) -𝑉 𝑠ℎ . 𝑙𝑜𝑔 𝑠ℎ Shale correction (2-27)
where 𝑙𝑜𝑔 (𝑠) is scaled log value. 𝑙𝑜𝑔 𝑤 and 𝑙𝑜𝑔 𝑚𝑎 are log responses in 100% water saturation and rock matrix, respectively (lithology correction). 𝜑 𝑙𝑜𝑔 is the final porosity value from NPHI or RHOB logs. In case of occurrence of gas, applying neutron gas correction factor is necessary [START_REF] Crain | Crain's petrophysical handbook[END_REF].

Two-log porosity methods

Density-neutron (shaly sand) cross-plot

Although this method is widely used, it is not recommended. It is used here since still is found in log analysis software applications. Complex lithology models are recommended instead of shaly sand models, because most of sandy reservoirs contain other minerals than quartz and clay minerals. The output of Relation 2-26 for the logs NPHI and RHOB, i.e.

𝑁𝑃𝐻𝐼 (𝑠) and 𝑅𝐻𝑂𝐵 (𝑠) , are inputs of this method. The shale correction will be applied through the algorithm [START_REF] Crain | Crain's petrophysical handbook[END_REF]:

If 𝑁𝑃𝐻𝐼 (𝑠) ≥ 𝑅𝐻𝑂𝐵 (𝑠) , i.e. there is no gas crossover, so:

𝜑 𝐷𝑁 = 𝑅𝐻𝑂𝐵 (𝑠) . 𝑁𝑃𝐻𝐼 𝑠ℎ (𝑠) -𝑁𝑃𝐻𝐼 (𝑠) . 𝑅𝐻𝑂𝐵 𝑠ℎ (𝑠)

𝑁𝑃𝐻𝐼 𝑠ℎ (𝑠) -𝑅𝐻𝑂𝐵 𝑠ℎ (𝑠)

(2-28)

Otherwise:

𝜑 𝐷𝑁 = √ 1 2 (𝑅𝐻𝑂𝐵 (𝑠) 2 -𝑁𝑃𝐻𝐼 (𝑠) 2 ) (2-29)
There is a quick-look (Relation 2-30) for density-neutron porosity method which uses the output of Relation 2-27. In the version of quick-look, the gas crossover is not accounted since shale corrections result in apparent gas crossover, which is an artifact. In addition, in the shale zones, there are some recommendations: (i) for 𝑅𝐻𝑂𝐵 𝑠ℎ (𝑠) , replace zero for the range of -0.03 to 0.12; and (ii) for 𝑁𝑃𝐻𝐼 𝑠ℎ (𝑠) , replace 0.30 for the range of 0.10 to 0.40 [START_REF] Crain | Crain's petrophysical handbook[END_REF].

𝜑 𝐷𝑁 (𝑞) = 𝜑 𝑁𝑃𝐻𝐼 + 1 3 (𝜑 𝑁𝑃𝐻𝐼 -𝜑 𝑅𝐻𝑂𝐵 )
(2-30)

Complex lithology

This model is developed to be used in complex lithological situations, and it is the best available empirical relation for the porosity estimation. If 𝜑 𝑁𝑃𝐻𝐼 ≥ 𝜑 𝑅𝐻𝑂𝐵 , i.e. no gas crossover, and really the gas does not exist [START_REF] Crain | Crain's petrophysical handbook[END_REF]:

𝜑 𝐿𝐶 = 1 2 (𝜑 𝑁𝑃𝐻𝐼 + 𝜑 𝑅𝐻𝑂𝐵𝐼 ) (2-31)
But if there is gas crossover after shale correction and we are sure that gas is present:

𝜑 𝐿𝐶 = √ 1 2 (𝜑 𝑁𝑃𝐻𝐼 2 + 𝜑 𝑅𝐻𝑂𝐵 2 ) (2-32)
Finally, if there is no gas crossover after shale correction but we are sure about the presence of gas, a correction based on the photoelectric log is necessary [START_REF] Crain | Crain's petrophysical handbook[END_REF], which is out of the scope here. All the above-mentioned relations are applied through a spreadsheet (Figure 23456) to the five wells, under study.

Irreducible water saturation

Calculating irreducible water is a prerequisite for permeability modelling by well-logs and estimating water-cut. In core testing, it is measurable by increasing capillary pressure. Before perturbing the initial equilibrium of the reservoir fluids by production, above the water contact, the irreducible water is equal to the actual (initial) water saturation (𝑆 𝑤𝑖𝑟 = 𝑆 𝑤 ). But in transition, water and depleted zones, it is not: 𝑆 𝑤𝑖𝑟 ≤ 𝑆 𝑤 . So we need to calculate it. The difference between 𝑆 𝑤 and 𝑆 𝑤𝑖𝑟 , and relative permeability are controlling factors of water-cut.

The used algorithm for irreducible water calculation has two steps [START_REF] Crain | Crain's petrophysical handbook[END_REF]:

(i) Finding Buckles number in a clean pay zone, where there is no water-cut (𝑆 𝑤𝑖𝑟 = 𝑆 𝑤 ), using Relation 2-33 [START_REF] Buckles | Correlating and averaging connate water saturation data[END_REF]:

𝑘 𝐵𝑢𝑐𝑘𝑙𝑒𝑠 = min(𝜑 𝑒 . 𝑆 𝑤 )
(2-33)

(ii) If the zone is hydrocarbon bearing: 𝑆 𝑤𝑖𝑟 = 𝑆 𝑤 otherwise:

𝑆 𝑤𝑖𝑟 = min ( 𝑘 𝐵𝑢𝑐𝑘𝑙𝑒𝑠 𝜑 𝑒 . (1 -𝑉 𝑠ℎ 𝑚 ) , 1, 𝑆 𝑤 ) (2-34)
The component m is defined by the user. It is usually set as 1, however other values, like 2, are possible for being sure that 𝑆 𝑤𝑖𝑟 ≤ 𝑆 𝑤 . The effective porosity, 𝜑 𝑒 , could be either measured or estimated by one of porosity modelling methods. 

Wylie-Rose permeability relation

Wylie and [START_REF] Wyllie | Some Theoretical Considerations Related to the Quantitative Evaluation of the Physical Characteristics of Reservoir Rocks from Electrical Log Data[END_REF] where 𝐶 𝑘 , m and n are constants to be chosen (Table 2-3). Effective porosity and irreducible water saturation are in fraction. Other empirical relations for permeability modelling were also checked, however they were not used since:

-Permeability from porosity (power of ten): at the moment, fuzzy arithmetic is not practical on the power of ten because of (i) RAM limitation, and (ii) too wide domains of resulting fuzzy memberships. A possible solution is to define a suitable power fuzzy operator.

-Permeability from formation factor: needs at least five stages of fuzzy calculations for achieving the final result. So, not practical at the moment.

- [START_REF] Coates | A new approach to improved log derived permeability[END_REF]: completely impractical due to several fuzzy calculations, containing logarithmic calculations. By the progress of calculators and toolboxes, it would be applicable later.

- [START_REF] Lucia | Petrophysical parameters estimated from visual descriptions of carbonate rocks: a field classification of carbonate pore space[END_REF][START_REF] Lucia | Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization[END_REF]: impractical at the moment because of several fuzzy power calculations and hardware limitation.

-Kozeny-Carman relation [START_REF] Tiab | Petrophysics: theory and practice of measuring reservoir rock and fluid transport properties[END_REF]: needs pore radii evaluation, unavailable here.  The vertical resolution of DT is modelled by a complex fuzzy membership function.

Modelling vertical resolution

 Volumetric Nyquist frequency is developed. It is suitable for the volumetric recordings like well-logs.

Volumetric nature of well-log recordings

Conventionally, petrophysicists assign the depth of recorded well-log value to a single horizon; i.e. at the depth of recorder or exactly in the middle of transmitter and recorder.

Although a volumetric response is acquired (Figure 3 Figure 3-2. Depth of investigation and spacing of each well-log [START_REF] Crain | Crain's petrophysical handbook[END_REF].

Due to Figure 3-2, no guarantee to identify geologic phenomena (mostly sedimentary beds) smaller than 30 cm by gamma log. As an example, if a porous bed with the thickness of 10 cm is surrounded by thick beds of marl, never the influence of this porous bed exceeds 33%, while marls have an effect of 67% on the recording. It is called shoulder-bed effect or the effect of neighbouring beds.

Another limitation on vertical resolution is imposed by the sampling rate. After data acquisition, all sampling rates are up-scaled on about 15 cm. Application of Nyquist frequency in well-logging says: no guarantee to detect a bed thinner than sampling rate. We believe, applying Nyquist frequency in the geophysical domains is not precise; since, it is primarily developed and suitable in the domain of telecommunication, where the data (pulses) are not volumetric.

In summary, there are two limitations in studying thin-beds: tools configuration (spacing and VRmf) and sampling rate. In this chapter, we are going to modify the conventional Nyquist frequency to be more effective in petrophysical investigations. As a prerequisite, we need to have a more comprehensive understanding of the mechanisms and principles of logging, which are addressed in this chapter.

VRmf > spacing > sampling rate

Among the three introduced types of vertical resolution, sampling rate is usually the most precise resolution (resistivity logs are exceptions). It could be set by the logger through the speed of logging. So, the sampling rate does not impose an important resolution limitation on the readings.

It is declared here that VRmf is larger than the spacing (compare the oval of volume of investigation with the spacing in Figure 3-1). It means that the effective interval on the welllog recordings is not limited to the spacing. There are four reasons for this phenomenon. The two first reasons concern recording stage, and the two last concern preprocessing algorithms.

(i) The recording is taking place while the recording tool is moving upward.

(ii) The effect of geological phenomena, which are out of the spacing, on the formation factor, is presented in Figure 3-3.

(iii) Up-scaling the acquired data to the standard sampling rate of 15.24 cm.

(iv) Other noise reduction algorithms, applied in the stage of pre-processing. 

Modelling logging mechanism by fuzzy memberships

Well-logs could be categorized into two types: passive and active. Passive logs are simple recordings of a physical property (formation radiation) or a geometric property (diameter) within the wellbore, and could be registered only by a recorder. However, active logs require a transmitter or source, for transmitting energy (electro-magnetic, sonic, beam, etc.) towards the wellbore, and recording the response of the stimulated formation by a recorder (Figure 34).

In the passive logs, the closer distances to the recorder are more effective on the sensor.

Therefore, a membership function has to have two properties: (i) being symmetric and (ii) the height is exactly at the horizon of detector. In Figure 3-4a, the simplest possible fuzzy membership function, triangular, is presented; however, the function could be non-linear.

Membership function is more complex in the active logs. 

Recording configuration and well-log

In detecting a specific thin-bed, the well-log shape is controlled by volume of investigation, sampling rate and coordination (depths) of recording points, relative to the thin-bed position.

The effect of misplacement of recordings, aliasing, is shown by configuration B (Figure 345).

In this figure, two different configurations have resulted in two different well-log shapes. In configuration A, only one point has detected the thin-bed, however the thin-bed contributes effectively in this record. In configuration B, dashed line, there is no detection within the thinbed, and the bed has only minor contributions in the volumes of investigation of two adjacent recording points. 

Approximating VRmf

Variography analysis

VRmf is tried to be approximated practically. In fact, sometimes VRmf varies through the same reservoir. "The net result is that one can visualize at any instant a neutron cloud surrounding the source, extending a maximum of about 2 ft [~67 cm]. As the hydrogen content of the formation varies, the size of the cloud expands and shrinks. The greater the hydrogen content, the smaller the cloud and vice versa [START_REF] Dewan | Essentials of modern open-hole log interpretation[END_REF]." These lines show that VRmf of NPHI could vary about 67 cm, depending on formation conditions.

To gain a primary guess about VRmf, the well-logs were observed precisely. It was found that in a homogeneous environment, the thinnest bell-shape trace consists of 5, 8 or 12 data points on the well-logs GR, RHOB and NPHI. It means that the beds thinner than five records, i.e. 4×15cm=60cm, are not detectable by the well-logs. So: VRmf>60 cm.

Larger the intersection of volume of investigation, higher the similarity of neighbouring records. When the similarity increases, the well-log becomes smoother and more continuous.

To study the similarity of neighbouring records, correlation coefficient is firstly checked between pairs of neighbouring records (𝑅 𝑖 , 𝑅 𝑖+𝑗 ). 𝑅 𝑖 is the ith record, and 𝑅 𝑖+𝑗 is the jth neighbour of 𝑅 𝑖 . As an example, for GR log in well#2, the correlation coefficients between the neighbours (j=0, 1, 2, 3, 4 and 5) were 1, 0.93, 0.81, 0.70, 0.62 and 0.57, respectively (Figure 3456). So, due to statistics, similarity between the neighbouring records reduces as the distance increases between the pairs of records. Correlation coefficient of more than 0.9 could be considered as very high and 0.70-0.90 as high [START_REF] Mukaka | A guide to appropriate use of Correlation coefficient in medical research[END_REF]. Considering cut-off of high correlation (>0.7), corresponding to high similarity, three neighbours (j=3) will be highly similar to each other. So, for GR in well#2, VRmf contains three adjacent records (j=1, 2 and 3), but not the fourth, i.e. 3×15.24 cm<VRmf<4×15.24 cm or 46 cm<VRmf<61 cm. Even though correlation coefficient provides an approximation for VRmf, variography analysis is preferred.

In fact, variography is a specialized tool to quantify variability (including continuity) of spatial data [START_REF] Gringarten | Teacher's aide variogram interpretation and modeling[END_REF]) (Figure 34567).

Experimental variographs of well-logs were checked within Sarvak reservoir of the five available wells, SW Iran. There is an exact linear relation at small lags in all the wells, but the continuity of the data exists up to about six meters (Figure 345678). There is no nugget effect, i.e.

all the variographs start from about the centre of coordination (0,0). Nugget effect and initiation of variographs are measures of discontinuity [START_REF] Gringarten | Teacher's aide variogram interpretation and modeling[END_REF].

The gradient of variographs at the linear part is higher than the nonlinear part. It shows that the continuity of the data decreases more rapidly at the linear part. The decrease of the continuity of the data has two reasons: (i) geological continuity, which lasts up to 6 meters (linear and nonlinear parts), and (ii) the intersection of volumes of investigation of adjacent data (only in the linear part). So the decrease of continuity has two reasons in the linear part, but in the nonlinear part, there is only one reason: geological continuity. 

Analytics

When the adjacent records have a common volume of investigation, a linear relation exists between recorded values. To proof this hypothesis, recorded well-log value at the depth of 𝑑 𝑖 , i.e. R(𝑑 𝑖 ), is expressed as a weighted average of petrophysical value (𝑣) over a VRmf. The weights are provided by membership function 𝑓 𝑑 (Relation 3-1). By this relation, recorded

well-log of one depth (𝑑 𝑖 ) is expressed by an adjacent recording (𝑑 𝑖+1 ) (Relation 3-2). Its discrete form is given by Relation 3-3. Here, 𝑓 𝑑 is defined to be linear (triangular membership functions). So, if 𝑣(𝑧) is a linear or constant variable, the relation between the two adjacent records would be linear. The assumption of 𝑣(𝑧̅ ) ≅ 𝑣(𝑧) is true in homogeneous conditions. In heterogeneous conditions, like when there is a thin-bed between shoulder-beds, the assumption is true if and only if the volumes of investigations are well intervened. Therefore, 𝑣(𝑧) could be considered as a constant value. So, Relation 3-3 could be rewritten by Relation 3-4:

R(𝑑 𝑖+1 ) = R(𝑑 𝑖 ) + 𝑣(𝑧̅ ) × ∑ [𝑓 𝑑 𝑖 (𝑧) -𝑓 𝑑 𝑖+1 (𝑧)] 𝑔𝑟𝑜𝑠𝑠 (3-4)
So, when the ratio of the thickness of sandwiched bed to the vertical resolution is small enough, R(𝑑 𝑖+1 ) has a linear relation with R(𝑑 𝑖 ). As a result of accepting linearity of Relation 3-4, variograph of recordings has to show a linear behaviour for small lags without a nugget effect in ideal situation. This behaviour could be seen on Figure 3-8. Linear behaviour of variographs shows linear relationship between records, i.e. validity of 𝑣(𝑧̅ ) ≅ 𝑣(𝑧), subsequently commonness of volume of investigations during the first lags. Hence, it is mathematically acceptable to use the linear part of variographs for estimating VRmf.

Passive log of GR

Detector of Gamma Ray (GR) log belongs to the category of passive logs, since it only records emitting energy of radioactive elements uranium, thorium and potassium. Though previous tools could not distinguish such elements, newer instruments can distinguish level of energy of each of mentioned elements individually. Therefore, triangular membership function of Figure 3-4a is selected for showing the contribution of each horizon to the recorded value.

Vertical resolution of tool is 30.48 cm, while VRmf is 61 cm (Table 3-2).

Active logs of RHOB and NPHI

Bulk density log (RHOB) is of active logs, having transmitter and receiver simultaneously.

It transmits gamma ray toward the wellbore, and records its attenuation: difference of energy of transmitted and recorded gamma ray [START_REF] Dewan | Essentials of modern open-hole log interpretation[END_REF]. Therefore, membership function of Vertical resolution of tool is 45.72 cm, and VRmf is 76 cm (Table 3-2).

Like RHOB, neutron porosity log (NPHI) is of active logs. It transmits fast neutrons (~5 MeV) toward the wellbore in all directions, and records very low, thermal energies (~0.025 ev) [START_REF] Dewan | Essentials of modern open-hole log interpretation[END_REF]. Therefore, membership function of Figure 3-4b is suitable for showing contribution of each horizon to the recorded value. Spacing of transmitter and receiver is 30.48 cm, and VRmf is 76 cm (Table 3-2).

Complex membership function of compensated sonic log

Defined membership function of compensated sonic log (DT) is not as simple as previous logs. Since Borehole Compensated (BHC) sonic tool has two transmitters on each ending part and four detectors. BHC measures transmitting time twice. One is related to the top transmitter, the other to the bottom transmitter. Each transmitter is linked to a pair of detectors, for removing the effect of mud filtrate. Finally, the two transmitting times are aggregated by an averaging operator. It helps increasing the signal to noise ratio, and making the final log less asymmetric when the tool is not well-aligned (Figure 3-10). 

Volumetric Nyquist frequency

In digital recordings, like well-logs, the relationship between Sampling Rate (SR) and VRmf could be categorized into three types: (i) VRmf=0, (ii) 0<VRmf<SR and (iii) VRmf>SR. The concept of Nyquist frequency is developed in telecommunication systems [START_REF] Nyquist | Certain factors affecting telegraph speed[END_REF], When VRmf is not zero, the thickness of bed must be thicker than VRmf and SR simultaneously to be detectable at least by one record. Its thickness must be larger than the summation of SR+VRmf to be sure that volume of investigation of at least one record be 

Conclusions of Chapter 3

The Vertical Resolution of membership function (VRmf), introduced here, is a useful parameter for well-log simulation and modelling. It could be estimated using variography analysis. In five wells, VRmf of well-logs GR, RHOB, NPHI and DT were estimated to be 61, 76, 76 and 61 cm, respectively. Following the development of membership functions to study the volume of investigation of each well-log, it was found that the triangular function is suitable for studying GR, RHOB and NPHI well-logs, while a trapezoidal shape function is more suitable for studying DT.

Considering the relative values of Sampling Rate (SR) and VRmf, the application of Nyquist frequency in well-logs is reviewed, and volumetric Nyquist frequency is developed for volumetric recordings (VRmf>0). It was shown that when VRmf>0, the minimum identifiable thin-bed should be thicker than SR+VRmf.

Thin-bed characterization, geometric method

Highlights of Chapter 4

 A literature review is presented on the thin-bed study by well-logs.

 Based on the developed model of vertical resolution, introduced in Chapter 3, a geometric simulator is developed for generating synthetic-logs of a single thin-bed.

 A probabilistic method of thin-bed study, VLSA, is extracted from the literature and introduced.

 This chapter provides a better understanding toward thin-bed study by well-logs, which is a foundation for Chapter 5.

 Geometric simulator enables us analysing the sensitivity of well-logs to a thin-bed.

 Deconvolution relations for removing shoulder-bed effect of thin-beds are developed for GR, RHOB and NPHI well-logs.

 Deconvolution relations are successfully applied to well-logs to characterize thin-beds.

Review of thin-bed studies

The importance of studying thin-bed reservoirs is two-fold and could be summarized as: (i)

"future exploration targets are likely to be thinner" in petroleum discoveries [START_REF] Sengupta | Time-offset-frequency-amplitude panels for seismic identification of hydrocarbons[END_REF][START_REF] Sengupta | Lithology discrimination for thin layers using wavelet signal parameters; discussion and reply[END_REF]. (ii) A near wellbore thin-bed could be pinch out of larger sandy lenses, or related to other stratigraphic traps, e.g. channel filling, lateral variation, etc. [START_REF] Qi | Neural network prediction of carbonate lithofacies from well logs, Big Bow and Sand Arroyo Creek fields, southwest Kansas[END_REF]. Vertical resolution of logging tools varies from 2 to 10 inches (5.08-25.4 cm), so characterizing geological beds thinner than the vertical resolution is imprecise even if the sampling rate is precise enough [START_REF] Mccall | High-resolution logging: the key to accurate formation evaluation[END_REF].

In the first publications, only signal-processing theories, Weiner and Kalman filter, were developed for the purpose of increasing frequency of well-logs [START_REF] Foster | Optimum inverse filters which shorten the spacing of velocity logs[END_REF][START_REF] Bayless | Application of the Kalman filter to continuous signal restoration[END_REF]. The other practical issue of signal processing algorithms is the lack of knowledge about the theoretical parameters since there was no confidence about the used parameters [START_REF] Lyle | Deconvolution of well log data -an innovations approach[END_REF].

Until 1987, the studies were totally theoretical. Practical improvement of vertical resolution of well-logs was basically accomplished within the years 1989-1990, when industrial researchers of Schlumberger, Halliburton and British Petroleum played part. They used geometrical and numerical analysis for developing easy-to-apply procedures to improve welllog resolution.

The beds thinner than 2 feet (60.96 cm) cannot be properly evaluated by density log. Based on geometry, a wise correction to enhance density log for characterizing thin-beds (less than 6 inches or 15.24 cm) is developed. The main idea was inferring the high-frequencies from shortinterval density measurements (applying a low-cut filter), and adding the remained highfrequencies to the long-interval density measurements [START_REF] Flaum | Enhanced vertical resolution processing of dual detector gamma-gamma density logs[END_REF]. This methodology was used in Schlumberger's 'alpha' processing for resolution improvement of density and neutron well-logs [START_REF] Passey | Petrophysical evaluation of hydrocarbon pore-thickness in thinly bedded clastic reservoirs[END_REF].

Inspired from the former work, resolution of compensated neutron log is enhanced too [START_REF] Galford | Enhanced resolution processing of compensated neutron logs[END_REF]. In addition, the contact of two beds with different porosities is identified with less uncertainty: ±2 inches (5.08 cm) rather than ±6 inches (15.24 cm) [START_REF] Gartner | A new resolution enhancement method for neutron porosity tools[END_REF]. In another similar work, it is assumed that the attenuation log of Electromagnetic Propagation Tool (EPT) and clay volume (derived from geochemical logging) are strongly correlated linearly.

Hence, high-frequencies are inferred from high-resolution EPT log, and coherent small changes are recreated for geochemical logs [START_REF] Flaum | Enhancing geochemical interpretation using high vertical resolution data[END_REF].

True understanding of mechanism and spatial response of well-logs is important in a successful well-log interpretation. This necessity becomes more rigorous in heterogeneous media. Monte-Carlo simulation is used to study spatial response (mostly horizontal resolution) of density log. It is found that in carbonate formations, 75% of density log response captures the distance of 8 cm from the borehole wall and 90% captures till 12 cm [START_REF] Petler | Modelling the spatial response of a compensated density tool[END_REF].

Based on the previously developed logical relation for vertical resolution correction [START_REF] Flaum | Enhanced vertical resolution processing of dual detector gamma-gamma density logs[END_REF], a three dimensional sensitivity analysis is addressed by Monte-Carlo simulation.

Using density and neutron logs in high-angle (near horizontal) wells, the uncertainty of identifying depth of bed boundaries is about ±2.5 inches (6.35 cm). This uncertainty rises under shoulder-bed effect to about ±10 inches (25.4 cm) and ±15 inches (38.1 cm) by density and neutron logs, respectively. This uncertainty in highly deviated wells is justifiable by the fact that neutron and density tools are designed and calibrated for vertical wells. So, standard interpretations will result in incorrect results [START_REF] Mendoza | Environmental and petrophysical effects on density and neutron porosity logs acquired in highly deviated wells[END_REF].

Depending on bed thickness average, geoscientists in ExxonMobil Upstream Research

Company proposed two methodologies for hydrocarbon evaluation in thin-bed condition. When the average thickness of beds is thinner than 1 ft (30 cm), the individual beds are no more detectable directly by the well-logs (aliasing effect). So, high-frequency geological features, like thin-beds, will not be tractable on well-logs, and the resulting well-log will contain lower frequencies. Therefore, the method for studying beds, thinner (thicker) than 30 cm is called low-resolution (high-resolution) method. In high-resolution modelling, well-known iterative inverse solution is introduced, and in low-resolution modelling, Volumetric Laminated Sand Analysis (VLSA) is developed (Figure 4-1) [START_REF] Passey | Petrophysical evaluation of hydrocarbon pore-thickness in thinly bedded clastic reservoirs[END_REF].

VLSA modelling is a probabilistic approach, based on the volumetric recording mechanism of well-logs. It is considered that each record is an average of petrophysical parameters of thinbeds, weighted by corresponding thicknesses. Then, the evaluation is realized by Monte-Carlo (MC) simulation on the intervals of 47.6 ft (14.5 m). Compared to conventional method, estimation of hydrocarbon pore-thickness in thin-bed condition is improved by 400%, using VLSA method. In the current thesis, VLSA is a base for comparing the proposed methodology with.

Researchers of ExxonMobil further published their thin-bed evaluation experiences in a comprehensive book [START_REF] Passey | Petrophysical evaluation of hydrocarbon pore-thickness in thinly bedded clastic reservoirs[END_REF]:

 Conventional well-log analysis methods underestimate hydrocarbon pore-thickness in shaly sand thin-beds: in tidal and submarine environments, respectively 80% and 30% of reservoir volume occurs in beds, below standard core-plug diameter (1 inch = 2.5 cm). In most of the time, errors of hydrocarbon pore-thickness evaluation is more than 20%. When net to gross ratio exceeds 90%, the error of conventional method becomes acceptable.

 Resistivity is a key log for reservoir characterization, therefore vertical resolution of LLD (2 ft = 60 cm) is suggested as thickness limit of thin-bed characterization.

Figure 4-1. Flowchart for hydrocarbon pore-thickness evaluation in thin-bed condition [START_REF] Passey | Petrophysical evaluation of hydrocarbon pore-thickness in thinly bedded clastic reservoirs[END_REF]. LCM stands for Log Convolution Modelling. Volumetric Laminated Sand Analysis (VLSA) is a probabilistic method, developed particularly to petrophysical evaluation of beds thinner than 1 ft (30 cm).

VLSA Method

Since this method is a reference for comparing the results of the proposed thin-bed methods in coming chapters, the algorithm is introduced briefly. For detailed studies, refer to [START_REF] Passey | Petrophysical evaluation of hydrocarbon pore-thickness in thinly bedded clastic reservoirs[END_REF].

(i) For each well-log, a parametric PDF is created. The PDF could have rectangular, normal, or other distribution. The average and standard deviation of the PDF are driven from well-log data, and the uncertainty of each well-log is defined as the ratio of standard deviation to the average data.

(ii) For estimating each petrophysical parameter, porosity, permeability, hydrocarbon content, etc., the input parameters, from well-logs, are generated randomly from the corresponding PDF.

(iii) After each random generation, the output is calculated and saved.

(iv) PDF of the output is updated and plotted.

(v)

The second stage is iterated for several times to reach a convergence condition.

Theory of geometric thin-bed simulator

A simulator is designed here to better understand the mechanism of logging in presence of a single thin-bed. The simulator generates synthetic-logs, which are developed for GR, RHOB and NPHI. A more complex simulator, with much more rules (configurations), is required for DT. The reason is that the membership function of GR, RHOB and NPHI is triangular, but it is trapezoidal for DT. In order to have only seven configurations (Figure 4-2a), the thin-bed is considered thinner than the half of VRmf (Relation 4-1).

𝑏𝑒𝑑 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 ≤ 1 2 𝑉𝑅𝑚𝑓 (4-1) 𝑠𝑙𝑜𝑔 = ∑ 𝑞 𝑖 × 𝑆 𝑖 𝑛 𝑖=1 ∑ 𝑆 𝑖 𝑛 𝑖=1 (4-3)
The limiting conditions for geometric thin-bed simulator are: (i) the existence of a thin-bed between two thick beds; (ii) the wellbore is drilled perpendicular to the geological beds; 

𝑎𝑡 = 𝐷𝐼 - 2 × ℎ𝑡 × 𝐷𝐼 𝑉𝑅𝑚𝑓 (4-4) 𝑎𝑏 = 𝐷𝐼 - 2 × ℎ𝑏 × 𝐷𝐼 𝑉𝑅𝑚𝑓 (4-5) 𝑠𝑙𝑜𝑔 𝐼 = 𝑞 1 Configuration I 𝑠𝑙𝑜𝑔 𝐼𝐼 = 𝑆 1 × 𝑞 1 + 𝑆 2 × 𝑞 1 + 𝑆 3 × 𝑞 2 𝑆 1 + 𝑆 2 + 𝑆 3 𝑆 1 = 1 2 × 𝑉𝑅𝑚𝑓 2 × 𝐷𝐼 𝑆 2 = 1 2 × ℎ𝑏 × (𝑎𝑏 + 𝐷𝐼) 𝑆 3 = 1 2 × 𝑎𝑡 × ( 𝑉𝑅𝑚𝑓 2 -ℎ𝑏) Configuration II 𝑠𝑙𝑜𝑔 𝐼𝐼𝐼 = 𝑆 1 × 𝑞 1 + 𝑆 2 × 𝑞 1 + 𝑆 3 × 𝑞 2 + 𝑆 4 × 𝑞 3 𝑆 1 + 𝑆 2 + 𝑆 3 + 𝑆 4 𝑆 1 = × 𝑉𝑅𝑚𝑓 2 × 𝐷𝐼 𝑆 2 = × ℎ𝑏 × (𝑎𝑏 + 𝐷𝐼) 𝑆 3 = ℎ𝑎 -ℎ𝑏 2 × (𝑎𝑡 + 𝑎𝑏) 𝑆 4 = × ( 𝑉𝑅𝑚𝑓 2 -ℎ𝑡) × 𝑎𝑡 Configuration III 𝑠𝑙𝑜𝑔 𝐼𝑉 = 𝑆 1 × 𝑞 1 + 𝑆 2 × 𝑞 2 + 𝑆 3 × 𝑞 2 + 𝑆 4 × 𝑞 3 𝑆 1 + 𝑆 2 + 𝑆 3 + 𝑆 4 𝑆 1 = × 𝑎𝑏 × ( 𝑉𝑅𝑚𝑓 2 + ℎ𝑏 -) 𝑆 2 = × (-ℎ𝑏 -) × (𝑎𝑏 + 𝐷𝐼) 𝑆 3 = × ℎ𝑡 × (𝑎𝑡 + 𝐷𝐼) 𝑆 4 = × ( 𝑉𝑅𝑚𝑓 2 -ℎ𝑡) × 𝑎𝑡 Configuration IV 𝑠𝑙𝑜𝑔 𝑉 = 𝑆 1 × 𝑞 1 + 𝑆 2 × 𝑞 2 + 𝑆 3 × 𝑞 3 + 𝑆 4 × 𝑞 3 𝑆 1 + 𝑆 2 + 𝑆 3 + 𝑆 4 𝑆 1 = × 𝑎𝑏 × ( 𝑉𝑅𝑚𝑓 2 + ℎ𝑏 -) 𝑆 2 = × (ℎ𝑡 --ℎ𝑏 -) × (𝑎𝑏 + 𝑎𝑡) 𝑆 3 = × (-ℎ𝑡 -) × (𝑎𝑡 + 𝐷𝐼) 𝑆 4 = × 𝐷𝐼 × 𝑉𝑅𝑚𝑓 2 Configuration V 𝑠𝑙𝑜𝑔 𝑉𝐼 = 𝑆 1 × 𝑞 2 + 𝑆 2 × 𝑞 3 + 𝑆 3 × 𝑞 3 𝑆 1 + 𝑆 2 + 𝑆 3 𝑆 1 = 1 2 × 𝑎𝑡 × ( 𝑉𝑅𝑚𝑓 2 + ℎ𝑡 -) 𝑆 2 = 1 2 × (-ℎ𝑡 -) × (𝐷𝐼 + 𝑎𝑡) 𝑆 3 = 1 2 × 𝐷𝐼 × 𝑉𝑅𝑚𝑓 2 Configuration VI 𝑠𝑙𝑜𝑔 𝑉𝐼𝐼 = 𝑞 3 Configuration VII
In the all above calculations, the height of the membership function, i.e. the centre of VRfm, is considered as the zero point of one-dimensional (vertical) coordinate system, positive upward. Therefore, when the top (bottom) bed line is located above the zero point, the value of ℎ𝑡 (ℎ𝑏) is positive. And when the top (bottom) bed is below the zero point, the value of ℎ𝑡 - (ℎ𝑏 -) is negative. The negative superscript indicates the relative location to the zero point, and the sign of ℎ𝑡.

Sensitivity analysis of well-logs to a 30 cm thin-bed

The geometric simulator regenerates several realizations of well-logs, detecting a single thinbed. It provides us the opportunity of analysing the sensitivity of well-logs in thin-bed detection.

The presumed geological conditions for the sensitivity analysis are: (i) Thin-bed thickness of 30 cm; (ii) GR, RHOB and NPHI of host rock 200 API, 2.5 g.cm -3 and 10%, respectively; (iii) GR, RHOB and NPHI of the thin-bed is 215 API, 3 g.cm -3 and 15%, respectively; (iv) VRmf is considered 70 cm; (v) SR is 15.24 cm.

By increasing noise contamination, thin-bed trace (peak) is going to be diminished (Figure 4-3). Noise contamination is a random variable, between zero and one, with the uniform distribution. The index of the sensitivity analysis is considered as the ratio of the destruction at the depth of the thin-bed to the highest generated peak at the other depths, Relation 4-6. If the destructive effect of noise covers the thin-bed trace, so SA<1. In Figure 4-3a,c,e, dots around the line y=1 are risky points, and above (below) the line y=1 is (un)reliable window. Comparing this categorization with reported noise of well-logs (Table 1-4) provides us reliability of well-log detection for thin-beds (30 cm). Therefore, GR well-log is not a reliable well-log for thin-beds thinner than 30 cm and 15 API difference in GR. This problem could be solved either by increasing thickness of the target for GR or increasing GR difference of the bed and the neighbouring beds. 

𝑆𝐴 = 𝑝𝑒𝑎𝑘 -𝑝𝑒𝑎𝑘 × 𝑛𝑜𝑖𝑠𝑒 ℎ𝑜𝑠𝑡 + ℎ𝑜𝑠𝑡 × 𝑛𝑜𝑖𝑠𝑒

Deconvolution relations for thin-bed characterization

Deconvolving well-logs (here GR, RHOB and NPHI) is necessary to characterize a thin-bed accurately, i.e. decreasing the shoulder-bed effect to approximate the real thickness and the real petrophysical value of a thin-bed. Here, thin-bed deconvolution is based on the balance between amplitude and apparent thickness of well-log (Figure 345). Thus a statistical analysis is used to find a relation between synthetic-and ideal-logs.

For developing deconvolution relations, a set of ideal-logs is first generated. That means petrophysical specifications of thin-beds (thickness of the thin-bed and values of 𝑞 1 , 𝑞 2 and 𝑞 3 )

have to be defined. Five thicknesses are assumed: 5, 10, 15, 20 and 30 cm. Due to limitation of the simulator, it is assumed to have the same petrophysical values above and below the thinbed, i.e. 𝑞 1 = 𝑞 3 . Without loss of generality, assume 𝑞 1 = 𝑞 3 = 0, because the goal is rescaling or deconvolving the shape of the well-log, i.e. reducing the shoulder-bed effect. Therefore, only the difference of the 𝑞 2 to 𝑞 1 (or 𝑞 3 ), before and after adding shoulder effect are important. The petrophysical value of 𝑞 2 is set to be 1, 3,5,7,10,12,15,17,20,22,25,27 or 30 for GR (API)

and NPHI (%), whereas it is considered to be 0.01, 0.02, 0.05, 0.07, 0.10, 0.12, 0.13 or 0.15 for RHOB (g.cm -3 ). Reminding that these values are not absolute petrophysical values. They are relative differences of thin-bed petrophysical values, according to the surrounding beds.

Combining the thickness and petrophysical values of synthetic thin-beds, 65 ideal-logs for GR and NPHI, and 40 ideal-logs for RHOB were generated.

In the second stage, synthetic-log simulator is run over the ideal-logs. Synthetic-logs are the outputs of convolution (Relation 4-3) hence contaminated by shoulder-bed effect (Figure 4-4). 𝑇𝐻 𝑟𝑒𝑔 = 0.7417 ∆𝑁𝑃𝐻𝐼 𝑙𝑜𝑔 + 0.1499 𝑇𝐻 log 𝑁𝑃𝐻𝐼 [START_REF]Multi-well-log thin-bed characterization The well-logs of the thinnest characterized bed, observation#7 of Table 4-3, are provided and interpreted ([END_REF](5)(6)(7)(8)(9)(10)(11)(12) where 𝑇𝐻 stands for thickness. For GR model, the thickness, read from the well-log has to be thinner than 100 cm, and the difference of well-log value of thin-bed, relative to upper and lower beds, should be lower than 30 API. The acceptable domain of thickness for RHOB is up to 110 cm, and the maximum relative well-log value is 0.15 g.cm -3 . NPHI of thin-bed could vary as much as 30% (Figure 4-4a) and its well-log-based thickness should be thinner than 110 cm (Figure 4-4b).

The crosses on

Finally, the developed relations are applied on the outputs of simulators (i.e. synthetic-logs)

to move the crosses closer to y=x, i.e. for better matching the ideal-logs (dots on b).

Based on MSE of synthetic data, the error is reduced two to three times in characterizing petrophysical values, and from 40 to about 80 times in thickness estimation (Table 4-2). 

Thin-bed characterization, the Sarvak Formation case-study

In order to characterize thin-beds within Sarvak Formation, deconvolution relations (4-7 to 4-12) are applied to the well-logs. Ten depths are selected, which show thin-bed behaviour, i.e.

there are small peaks in two or three of well-logs: GR, RHOB and NPHI (Table 4-3).

It is worthy to mention why the observations of Table 4-3 and Figure 4-5 are interpreted as thin-beds. The very thin-beds that do not have any effect on the well-logs are of course undetectable in the well-scale. When the beds have some effects on two or three well-logs, there are two possibilities: either the bed is (i) thick enough to let the receivers detect its real petrophysical value, i.e. the shape of the well-log is stable, not a peak or a through; or (ii) too thin that only a few records could reflect it (configurations A or B, Figure 345). In this case, the well-log shows a peak or a through shape, and cannot fully represent the real petrophysical value. So, when there are peaks or troughs at the same depth within well-logs, it is interpreted as thin-beds. They could also be interpreted as a thin phenomenon, like vuggy or fractured interval. The former interpretation is true since in the petroleum geology, well-logs are acquired through sedimentary layers, and geological phenomena are often related to these strata. Then, the apparent thicknesses and apparent variation of petrophysical values are read through the well-logs, and added to the table. These values are not the real thickness and real petrophysical values. The petrophysical value is affected by the neighbouring beds, and the well-log thickness is an overestimation of real thickness due to shoulder-bed effect. Now, using the deconvolution relations, shoulder-bed effect is reduced to get closer to the real values, and the outputs are added to Table 4-3.

In practice, thin-beds have to be studied by different logs individually; then, comparing multiple results (approaches) to come to the final decision. The main reason is that a thin-bed might inherently show a specific change in a petrophysical feature; e.g. GR, while not a clear trace on other well-logs. Therefore, using various well-logs simultaneously will not necessarily end-up to a successful thin-bed characterization. The second reason for studying thin-beds separately is that well-logs have different volume of investigation and sampling rate. So, some logs might not detect some thicknesses, while others may detect. The third reason is designing thin-bed characterization algorithms by individual well-logs, mentioned in the literature [START_REF] Gallet | Modeling magnetostratigraphy in a borehole[END_REF][START_REF] Desvignes | Direct determination of the natural remanent magnetization effect in a hole drilled in layered ground from magnetic field and susceptibility logs[END_REF][START_REF] Heidari | Improved estimation of mineral and fluid volumetric concentrations from well logs in thinly bedded and invaded formations[END_REF].

The application of deconvolution relations amplifies all petrophysical values. In eight observations (#1-4, #6-8 and #10), three thickness models can be given, and in two observations (#5 and #9), only two thickness models can be obtained. The final thickness is calculated by a weighted average of thickness models, regarding RMSE of each model (Table 4-2). Low standard deviation of the thickness estimations show high confidence-level and similarity of the thickness models.

In observation#3, e.g. the thickness according to GR model is 22.48±7.12 cm (Table 4-3).

The thickness derived from RHOB model is 25.10±8.20 cm, which is just a little thicker, however GR model is more precise. The third thickness estimation (16.67±7.30 cm), given by NPHI model, is lower than the others. The final thickness value is a weighted average of the three values provided from thickness models. The final thickness for observation#3 is 21.42±7.57 cm. White noise could be reduced through fusing multiple outputs. The standard deviation of the three thickness values (22.48, 25.10 and 16.67 cm) is small (3.52 cm), compared to the final error of estimation deduced from RMSE (7.57 cm) (Table 4-3).

Based on the concept of volumetric Nyquist frequency, there is no guarantee to have a direct measurement of a geologic bed thinner than SR+VRmf (Relation 3-5). But the deconvolution procedure estimates petrophysical and thickness values of a bed thinner than SR+VRmf, after reducing the shoulder-bed effect. The thin-bed characterization after deconvolution is much more accurate (Table 4-2). The characterization results of ten thin-beds (thickness values from 14 to 30 cm, Table 4-3) are promising for developing the methodology on the well-logs.

effective porosity (core porosity) is never higher than the total porosity (NPHI). While noncorrected NPHI (3.8%) is lower than the core porosity, which is clearly far from the reality.

Conclusions of Chapter 4

A thin-bed simulator was designed using geometric relations. The simulator was used to generate numerous synthetic-logs for different geological situations. Ideal-logs (without shoulder-bed effect) and synthetic-logs (contaminated by shoulder-bed effect) were compared to build regression models to deconvolve well-logs GR, RHOB and NPHI. They estimate the thickness of thin-beds, 40 to 80 times more accurately, compared to the apparent thickness, read from the well-logs. Petrophysical characterization could be carried out more precisely: RMSE of GR, RHOB and NPHI values were reduced from 42.25 to 20.20, 0.003 to 0.001 and 139.61 to 39.99, respectively. Such methodology could be developed for all well-log data in various conditions.

Finally, the application of deconvolution relations was checked in characterizing ten real thin-beds within the Sarvak Formation. All petrophysical values (GR, RHOB and NPHI) were increased and all the thickness values were reduced due to the decrease of shoulder-bed effect.

The resulting thickness values of observations were calculated by an averaging (weighted by RMSE) over thickness values of the individual well-logs. The average of standard deviation of the thickness values was 4.4 cm, which is a precise value, considering the vertical resolution of more than 60 cm.

In well#3 (Figure 4-5b), NPHI and thickness of a porous thin-bed were estimated (corrected) by the proposed method, and the results were compared to the core data. The measured NPHI was 3.8%. The proposed method corrected the NPHI value to 11.7%. The corrected NPHI seems to be more accurate than the measured NPHI, since it is higher than the core porosity (8.4%). Reminding that the total porosity (NPHI) should not be less than the effective porosity (core). The thickness of the thin-bed was estimated to be 13±7.5 cm, which is compatible with the thickness of the thin-bed in the core box (<25 cm). Usually the in situ thickness is less than the thickness of the core boxes, since the lithostatic pressure is removed at the surface, and the cores are crushed.

Enhancing vertical resolution of well-logs

Highlights of Chapter 5

 Bayes Theorem and Dempster-Shafer Theory (DST) of evidences are used to combine adjacent well-log records.

 The importance of volumetric Nyquist frequency in up-scaling is shown.

 Application of DST is developed for assessing intersections of well-log recordings.

 Vertical resolutions of GR, RHOB, NPHI and DT are improved from ~60 cm to the sampling rate (~15 cm).

 The well-logs are corrected by amplifying the attenuated high frequencies.

 Shoulder-bed effect, i.e. effect of neighbouring beds, is reduced.

 The proposed method is verified by synthetic cases, core box and core porosity.

 The depth uncertainty of well-logs is converted into the value uncertainty of well-logs.

Combining adjacent well-log records by Bayesian Theorem

Bayesian Theorem is the oldest mathematical tool for uncertainty assessment (Figure 2-1a).

The newer tools are developed within the domain of subjective probability: Fuzzy Theory and Dempster-Shafer Theory (DST) of evidences (Figure 2-1b). The basic concepts for each of these theories are: PDF, membership function and mass function for Bayesian, fuzzy and DST, respectively.

By the means of Bayes rule, the uncertainty of intersections (Figure 2-1a) are going to be assessed. So, previously defined membership functions (Table 3-2) are converted into PDFs.

VRmf remaining constant (61 and 76 cm), only the height of membership functions are reduced so that the surface area becomes 1 (PDFs, Figure 5-1) to satisfy the famous law of probability within the universal set (Relation 5-1). When VRmf is 61cm (76 cm), a maximum of four (five) adjacent distribution functions can have a non-empty intersection (Figure 5-1). As n increases, the entropy and VRmf of PDFXn increases too. Table 5-1 provides us the opportunity of choosing our PDF, regarding the thickness of the prospect under study. It means that when our target is exploring reservoir beds thicker than 150 cm, it is reasonable to use PDFX6 (or PDFX5), instead of PDF1. The other advantage of this table is in suggesting a sequential well-log interpretation, i.e. as a quick-log interpretation we can do the interpretations by PDFX6, which overwhelms beds thinner than about 150 cm. In the next stage, detailed interpretation could be given by PDF1.

Based on Table 5-1, the most important fact is that conventional thin-bed studies does not characterize the beds, thinner than 76 cm, even if SR is much less, i.e. 15.24 cm. This deficiency of well-logs is addressed in this chapter by DST.

The importance of volumetric Nyquist frequency in up-scaling

The other important inference is regarding up-scaling issue. The goal in the up-scaling is to reduce the data volume, i.e. increase of SR while integrating the adjacent data. Due to the volumetric Nyquist frequency, if we increase the SR while averaging the adjacent recordings, considerable amount of data would be lost. As an example, by up-scaling five neighbouring data, corresponding VRmf would be 137 cm (61cm for PDF1). Now, if the SR be kept at 15.24 cm, i.e. the fused data are not deleted, the thinnest detectable bed would be VRmf+SR=152 cm (Table 5-1). But if the SR is increased five times (by deleting the fused data) from 15.24 to 76.20, so the thinnest identifiable bed would be 213.2 cm! Deleting the fused data while upscaling is usual in the petroleum industry, since the goal of upscaling is to decrease the volume of data.

Body Of Evidences (BOE) for well-logs

Focal elements of well-logs

In a series of observations (measurements, tests, etc.), each evidence is assigned to a space, named focal element. Here, focal elements are defined as depth intervals, i.e. focal elements are one-dimensional. We have defined two types of focal elements: (i) recording (r) that represents vertical resolution of the logging tool, and (ii) target (t) which is the target resolution, defined by the user. Figure 5-3. Example of a well-log with vertical resolution of 91 cm (thick line), its average on five adjacent points (dashed line) and the range between belief and plausibility (dotted lines). ɛ: compensating shoulder-bed effect at peaks and troughs only.

Practical functions of belief and plausibility

Based on the axiomatic structure and defined mass function on the 𝐹𝐸 𝑟 , belief and plausibility for 𝐹𝐸 𝑡 is formulated: (5-4)

𝑃𝑙𝑠(𝐹𝐸 𝑖 𝑡 ) = { max
If 𝑚(𝐹𝐸 𝑖 𝑟 ) is neither at peak nor at trough, then the minimum (maximum) of mass functions of intersecting 𝐹𝐸 𝑗 𝑟 is defined as the belief (plausibility) value. If 𝑚(𝐹𝐸 𝑖 𝑟 ) is at the peak (trough), the belief (plausibility) is defined to be the exact amount of the well-log value, and the plausibility (belief) will be the maximum (minimum) of intersecting 𝐹𝐸 𝑗 𝑟 plus (minus) an epsilon. The epsilon is a positive value to compensate the shoulder-bed effect, and will be optimized in the next section. Finally, both belief and plausibility values are rescaled to welllog range. From the application viewpoint, normalization (Relation 2-1) and rescaling could be ignored, since here we do not fuse multi-sensory data.

Compensating shoulder-bed effect by epsilon

For compensating shoulder-bed effect, epsilon (𝜀) is defined by comparing the well-log to its weighted averaging filter. Reminding that a well-log is a weighted averaging of real-log, over a VRmf. So, we applied another smoothing (averaging) on the well-log. Then, the distance between the well-log and its smoothed curve, 𝜀, is used to compensate the shoulder-bed effect at peaks and troughs (Figure 5-4). In the validation part, the well-log is known to be too much smoothed that 𝜀 could not fully compensate the shoulder effect. A multiplier, named factor of Shoulder-bed Effect (SE), is necessary to amplify 𝜀. The concept of 𝜀 is comparable with the resolution enhancement relation of [START_REF] Flaum | Enhanced vertical resolution processing of dual detector gamma-gamma density logs[END_REF]. Note that the methodology could be applied to all the possible combinations of sampling rate and vertical resolution if an appropriate 𝑛 𝑓𝑢𝑠𝑒 is found. 𝑤 is a linear weight for prioritizing closer simulations to recording depth. To calculate the weights, the natural values 1, 2, 3, etc.

are primarily attributed to the parameter 𝑤, in function of distance. Then, the weights are normalized by the summation of 𝑤.

After a random generation, the corresponding distance of the first 𝑛 𝑓𝑢𝑠𝑒 simulations is calculated (Relation 5-6). For simplicity, and to avoid re-modification of the former optimized points, the distance is compensated only by one simulation point, which is the closest to the well-log record, e.g. S3 in Figure 5-4. The optimization continues through the well till the end.

After each round of simulation, the summation of new distances is stored as the error of the modified simulated-log. Modification could be iterated up to convergence of the error. The convergence cut-off is a stop condition of the optimization process. It is recommended to set the convergence cut-off at 0.001 for the summation of all distances. The stages of the optimization algorithm are introduced in section "5.5 The algorithm/v-ii".

Recursive simulator

This simulator consists of two stages. In the first stage, uniform random values between belief and plausibility values will be generated for the first (𝑛 𝑓𝑢𝑠𝑒 -1) value. In the second stage, simulated-log for the remaining depths will be calculated recursively. The recursive Relation 5-7 is derived from the volumetric constraint of well-logs.

sim (𝑖 + ⌊ 𝑛 𝑓𝑢𝑠𝑒 2 ⌋) = 1 𝑤 (𝑖 + ⌊ 𝑛 𝑓𝑢𝑠𝑒 2 ⌋) ∑ [wl(𝑖) -sim(𝑗) × w (𝑗 -𝑖 + ⌊ 𝑛 𝑓𝑢𝑠𝑒 2 ⌋ + 1)] 𝑖+⌊ 𝑛 𝑓𝑢𝑠𝑒 2 ⌋-1 𝑗=𝑖-⌊ 𝑛 𝑓𝑢𝑠𝑒 2 ⌋
(5-7)

Recursive-optimization simulator

The final simulator consists of three stages. The two first stages of recursive simulator are followed by the optimization process of random-optimization simulator. The interrelations and brief of the stages of the four developed simulators are provided in Figure 5-5a. Two of the simulators (random and random-optimization) start with free random generation, and two others (recursive and recursive-optimization) start with constraint-based random generation.

Validation criteria

Different realizations could be generated by the introduced simulators. It is necessary to have a measure to validate and prioritize realizations, and finally choose the most accurate realization. An ideal criterion is to compare the simulated-log with the ideal-log (Relation 5-8).

𝑒 𝑡_𝑖𝑑 = ∑|𝑤𝑙 𝑖𝑑 (𝑖) -𝑠𝑖𝑚 𝑖𝑛𝑡 (𝑖)|

∀𝑖

(5-8)

where 𝑤𝑙 𝑖𝑑 (𝑖) and 𝑠𝑖𝑚 𝑖𝑛𝑡 (𝑖) are ideal-and simulated-log, respectively. The subscript "int"

shows that the simulated-log is interpolated at the depths of the ideal-log. Both are functions of depth but due to possible depth mismatch between the simulated-and ideal-log, the simulations have to be interpolated to the exact depths of the ideal-log. 𝑒 𝑡_𝑖𝑑 stands for total ideal-based error.

(ii-iii) Considering vertical resolution as its length.

(iii) Mass function: vertical dimension of volume of investigation of each well-log record is considered as a linear focal element (𝐹𝐸 𝑟 ). The recorded well-log value is considered as the mass value within its corresponding 𝐹𝐸 𝑟 . The 𝐹𝐸 𝑟 and its mass function construct a BOE, which should be honoured in the next step. (iv-ii) Calculating belief and plausibility functions.

(v) Simulation: simulation could be realized using one of the four designed simulators . The simulator could be chosen according to a validation criterion (Relation 5-6

or 5-8). All the simulators start by a random generation stage. In recursive simulator, the random generation is limited to a few numbers of focal elements. However, in random simulator, all the elements are guessed randomly. If the designed optimization process is applied to the outputs of random or recursive simulators, the outputs might converge.

(v-i) If recursive simulator is used, Relation 5-7 will be used to calculate the simulatedlog for the rest of the depths.

(v-ii) If the optimization process is used:

(v-ii-i)
The distance (Relation 5-6) is computed for the ith well-log data.

(v-ii-ii) The distance is compensated by the ith simulated-log data.

(v-ii-iii) i=i+1, then go to line (v-ii-i).

(vi) Validation: the validation is implemented either regarding ideal-log (ideal-based error,

Relation 5-8) or well-log (constraint-based error, Relation 5-6). Ideal-based error is only applicable in synthetic cases, and constraint-based error could be calculated for both synthetic and real data. In a homogenous formation, the order of the errors is indicated in Figure 5-6c.

This general order could be violated in heterogeneous formations. So, precision of all the simulators have to be always checked to find the most accurate simulated-log.

(vii) Simulated-log: the simulated-log with the least error is selected as an alternative for the original well-log. The advantage of the simulated-log is that its vertical resolution is equal to the 𝐹𝐸 𝑡 which is more accurate than the original well-log resolution.

Application check on synthetic cases

Worthy to remind that the aim of the developed methodology is to correct the well-log (synthetic-log) to get closer to its real-log (ideal-log). Four simulated-logs can be generated by the designed simulators. All the simulators are applied on all the cases of Table 1- Then, the mismatch of the realization with the ideal-log is calculated for each depth, called error profile . Successively, the summation of the error profile through the well-log is named total ideal-error (Figure 5-6c).

Random simulator never satisfies the goal. In this case, it has neither recreated the shape of the ideal-log, nor its real value. Compared to other simulators, it has the highest profile and total errors ( Convergence is reached at 6 and 12 epochs for random-optimization and recursive-optimization simulators, respectively. The term "epoch" refers to the number of iterations during the optimization process. To avoid confusion, the word "iteration" is specifically used for the number of random generation.

Discussion on results of synthetic cases

Since none of the simulators were able to detect a single fracture in case 6, further evaluation is thus exempted for this case. In cases 1, 3 and 5 (Table 5-2), both ideal-and constraint-based errors have the least values in recursive-optimization simulator. In case 2, random-optimization simulator is the best. However, recursive-optimization simulator is a competing simulator, and it is only 0.6% less accurate than random-optimization simulator. The same for case 7. As for case 4, constraint-based error votes for recursive-optimization simulator; though ideal-based error selects random simulator. The descriptions are summarized in Figure 5-8. From viewpoint of ideal-based error, in 50% (8%+42%) of the cases, the recursive-optimization simulator provides the best output. The random-optimization simulator is the most accurate simulator only in 33% (8%+25%) of the cases. On the other hand, from the standpoint of constraint-based error, recursive-optimization simulator is also the best, since it is valid in 67% (8%+42%+17%) of the cases.

There is another advantage for recursive-optimization simulator: the optimization starts from a lower error value, compared to random-optimization simulator, subsequently, convergence is synthetic data are used. The 24 pairs of errors (Table 5-2) are plotted . Cross plot of errors shows high positive correlation (R 2 =0.89) between the two errors, however constraintbased error is an overestimation of ideal-based error. Therefore, the behaviours of both the errors are similar, and constraint-based error could be used as a validation criterion in real datasets.

Application to real data

Simulator selection

The four developed simulators are applied on four well-logs of the five wells under study.

Due to total constraint-based error, random-optimization simulator is the most accurate simulator in all the situations (Table 5-3). However, the error of recursive-optimization simulator is not much higher than that of random-optimization simulator. This may be interpreted such as random-optimization simulator searches the minimum points more effectively, hence it can get closer to the global optimum point. However, the recursiveoptimization method does not check the variety of possibilities for each depth. Further studies are applied using random-optimization simulator. 

Optimizing factor of shoulder-bed effect

The factor of Shoulder-bed Effect (SE) is the only parameter in the simulators that requires manual optimization. Using random-optimization simulator, SE is checked from 2 to 7 (Table 5-4). The optimum SE for GR and DT is 3 (exception: the optimum SE for GR in well#2 is 4).

For RHOB and NPHI, the optimum SE varies between 5 and 7.

Results of resolution improvement of real well-logs

To apply random-optimization simulator on real well-logs, the optimized parameters (Table 5- 
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The uncertainty range honours the predefined axiomatic structure (Relations 5-3 and 5-4). All the well-logs show less uncertainty range in the half top metre (3157-3157.5 m, Figure 5-10a), compared to the other parts. It means that the top part is more homogeneous, while the heterogeneity arises downward. Therefore, any interpretation (estimation of porosity, permeability, etc.) within the homogeneous part is more certain than the heterogeneous part. In fact, heterogeneity of rocks is quantified by DST-uncertainty range.

In Figure 5-10b, the available core box is provided to evaluate core porosity vs. NPHI and thin-bed thickness. The target is here to characterize a black porous thin-bed, ~2802.9 m. GR shows a finning (deepening) upward pattern, and there is no sign of a thin-bed. RHOB shows a trough, however there is a depth mismatch. NPHI shows a peak, with the plausibility of just below 8%, which is comparable with the core porosity, 8.4%, of the black thin-bed. However, the best simulated NPHI (dashed-line) is about 5%. Hence, NPHI is corrected from 3.8% to about 5%, even if the plausibility is very close to the core porosity. At about the same depth, DT shows a positive anomaly too.

Therefore, if a thin-bed (>15 cm) shows a petrophysical anomaly, DST-based method identifies it. When comparing NPHI and core porosity (Figure 5-10b), the vertical resolution is improved in the corrected well-log (dashed-line). However, depth mismatch (half of SR: ~7.5 cm) and lack of thickness estimation are its weaknesses. For the depth mismatch, an error bar of ±7.5cm should be considered. depth, the uncertainty ranges of the other well-logs are relatively narrow too, so the interpretations in this interval, which is homogeneous, are relatively certain.

Another advantage is the reduction of the focal element (𝐹𝐸 𝑟 > 𝐹𝐸 𝑡 ). It means that an alternative log with a smaller vertical resolution can be regenerated: the dashed-line (Figure 5-10) is the correction of well-logs after scanning within DST uncertainty range, i.e. simulation.

By scanning, different petrophysical values are checked and the best one, according to the volumetric constraint of well-logs, is selected. The corrected well-log contains higher frequencies. The regenerated frequencies are one realization of many possible high-frequency variations which honour the volumetric nature of well-logs.

In addition, the proposed algorithm is automated and applicable by usual computers, i.e. it does not require specific hardware or facilities. RMSE of DST-based algorithm could be considered a little higher than the RMSE of geometry-based algorithms ( 

Uncertainty conversion using DST

In this chapter, we were able to reduce the vertical resolution of well-logs from SR+VRmf to SR. But, simultaneous with the depth uncertainty reduction, we have an increase of the welllog uncertainty value: from zero to the interval between belief and plausibility. In fact, the DST does not provide any uncertainty removal methodology. Instead, it converts the state of uncertainty, i.e. from depth uncertainty to value uncertainty.

Figure 5-11 shows how the DST converts depth uncertainty (point I) to value uncertainty (point II). At (I), there is no value uncertainty, while depth uncertainty is maximum, i.e.

SR+VRmf. But at (II), depth uncertainty is reduced to SR, while value uncertainty is maximized to the interval between belief and plausibility.

Porosity analysis by cluster-based method

Methodology of cluster-based porosity analysis

There are three common well-logs for porosity studies: (i) NPHI measures hydrogen content, which is present in the water and hydrocarbon molecules. It represents the total porosity. The effective porosity represents the situation where the pores are connected to each other, leading to stored fluids flow through the formation, so the porosity can be effective for production. In none-effective porosity, e.g. in shaly formations, reservoir fluid is captured in unconnected pores or trapped by pore pressure in the pore throats. (ii) RHOB: The density of the solid phase of the formations is always much higher than the liquid or gas phase occurring within the pores.

Therefore, higher the porosity, lower the RHOB. (iii) DT log is sensitive to dispersions of sonic waves at the place of discontinuities, fractures, vuggy zones, etc. So, it is used for studying secondary porosity [START_REF] Dewan | Essentials of modern open-hole log interpretation[END_REF].

There is a negative correlation in the cross-plots of RHOB-DT and NPHI-RHOB (Figure 6-1). But, between NPHI and DT, positive correlation is observed. In the first step of the developed method, cluster-based porosity analysis, a clustering algorithm is going to be applied on the well-logs (NPHI, RHOB and DT) of the Sarvak Formation, within a selected well (Figure 6-2). Each well-log value would be associated with a cluster label, representative of a porosity range. This range is chosen from NPHI, and it depends on the inputs (NPHI, RHOB and DT), number of clusters and clustering algorithm. As an example, larger the number of clusters, larger the uncertainty range. The input is chosen based on the literature (Masoudi et al., 2015). For the number of clusters and clustering algorithm, the criterion of Precision Measure (PM) is used (Relation 6-1).

Clustering algorithm, compatible with cluster shapes

The clustering algorithm has to be chosen regarding the desired cluster shape: mass type, shell type, linear, same-size, multi-size, etc. For instance, if we are searching for a road in an aerial photo, the pixels of the road create a curve line. So, the clustering algorithm have to be capable in finding the curves on the photo.

The shape of the clusters is highly dependent on the combination of distance and objective functions of the clustering algorithm. In KM and FCM algorithms, the clusters are spherical with the same size. While in GK, they are elongated, still with the same size. The clusters of GG vary in size, besides being elongated.

Figure 6-2. Workflow of the algorithm of cluster-based porosity analysis.

Precision measure for choosing the algorithm and optimizing cluster number

The Precision Measure (PM) is the ratio of Consistency Measure (CM) to the average of cluster intervals (𝐼𝑛𝑡 𝑎𝑣𝑒 ) (Relation 6-1). Consistency between porosity intervals (derived from well-logs) and core porosity is represented by CM. When core porosity is within NPHI-range of each cluster, it is counted as a correct case. In each cluster, the ratio of the number of correct cases to cluster size, i.e. number of data within the cluster, is calculated. The average of the ratios in all the clusters is named CM. A good cluster analysis has high CM with a narrow interval of clusters. CM and 𝐼𝑛𝑡 𝑎𝑣𝑒 are both in percentage, so they are comparable and their ratio, PM, is taken as the choice criterion of the cluster algorithm and the number of clusters for porosity analysis.

𝑃𝑀 = 𝐶𝑀 𝐼𝑛𝑡 𝑎𝑣𝑒 Different algorithms and cluster numbers are checked in each well. Then, based on the PM, the best-fit algorithm for porosity analysis is selected, and the cluster number is optimized (Table 6-1). For instance, in well#3, the FCM with six clusters (FCM6) has the highest PM, whereas in well#4, the FCM with five clusters (FCM5) is the best choice.

Applying FCM6 on well#3 results in six same-size mass-type clusters (Figure 6-3a). The data of the cross-plot of NPHI and core porosity are coloured according to the cluster labels.

The histograms of clusters on NPHI and core porosity axis show that the core porosity is discriminated too, however not as well as NPHI (Figure 6-3b). The porosity range of each data point is assigned by core porosity range of its cluster, e.g. the porosity range of all red data varies from about 5% to about 25%. 

Calibrating NPHI in each cluster

The core porosity is estimated by calibrating NPHI individually in each cluster. The clusters are narrower on the NPHI axis, compared to the axis of core porosity (Figure 6-3b). NPHI is an average over the formation porosity (Relation 3-1) so it cannot present the extreme core porosity values. For example, the lowest core porosity within the green cluster is about 7%, while its NPHI is more than 18%. The calibration is done in two stages. Since the majority of the data are located near the centre of each cluster, the extremes (outliers) are removed firstly . Then, the remained data are scaled to the range of core porosity in each cluster, individually. The percentages of removed extremes are found by the trial-and-error process. For instance, the lowest RMSE in rescaling NPHI of core porosity is associated with removing 30% of extreme core porosity values of each cluster (Table 6-2). In Table 6-2, the extreme removal is applied in batch for all the clusters, i.e. the percentage of the extreme removal is constant within all the clusters. In the next step, extreme removal is addressed sequentially, i.e. within each cluster (Table 6-3 and 6-4). 

W5-KM6

5.45 5.24 5.32 5.09 5.05 5.12 5.40

Results of cluster-based porosity analysis

In well#1, there is a limited number of core data with only two clusters, and the core porosity is always consistent with the clustering ranges (Figure 6-5a). In well#2, only two core porosities are not consistent, however very close to the minimum of clusters (Figure 6-5b).

Whereas there is a high CM (82%) in well#3 (Table 6-1).

In well#4, the core porosity is not as compatible with uncertainty range as in the other wells.

The frequency of variation of core data is higher than the well-logs (Figure 6-5d). Noteworthy that well#4 is drilled in a complex tectonic location, where the trend of the anticline changes from NS (Arabian trend) to NW-SE (Zagros trend). The most probable interpretation is that there is high tectonic activity due to dual stress regime, hence resulting in faults and fractures.

So, the core porosity is lower than the overall formation porosity. The NPHI (total porosity) which is higher than core porosity, i.e. effective porosity, is an evidence for this interpretation (Figure 6-5d). Therefore, in the intervals where core porosity is lower than the minimum of cluster, e.g. in the interval of 2665-2680 m of well#4 (Figure 6-5d), a fracture study could be applied. In the mentioned interval, the GR value reaches the clean reservoir line, about 10 API, so the shale content is negligible, which makes the formation elastic and easy to be fractured.

In contrast to well#4, core and well-log data are compatible in well#5 for which high porosity variation, with a CM of 89% higher than in wells#3 and #4 (Figure 6-5e). In wells #1, #2, #3 and #5, the calibrated NPHI is very close to the core porosity (Figure 6-5a,b,e). 

Discussion of cluster-based porosity analysis

Comparing the results with conventional methods

The clustering-based porosity analysis estimates the core porosity and is more precise than nearly all conventional methods. It is only NPHI that is more precise than clustering-based method in wells #1, #3 and #5. However the difference of RMSE is less than 0.1%, i.e.

negligible . for other values of the domain. In the second step, irreducible water is calculated by a fuzzy division (Relation 6-3 and Figure 6-12).

𝑎 = 𝑘 𝐵𝑢𝑐𝑘𝑙𝑒𝑠 1 -𝑉 𝑠ℎ

Normal operators 𝐴 1 = 𝜑 𝑒 𝑆 𝑤𝑖𝑟 Fuzzy operator of division 𝐴 2 = 𝐴 1 𝑛 Fuzzy operator of power 𝐵 = 𝜑 𝑒 𝑚-𝑛 Fuzzy operator of power 𝐴 3 = 𝐶 𝑘 . 𝐴 2 Fuzzy operator of product (6)(7) 𝑘 𝑊𝑅 = 𝐴 3 . B Fuzzy operator of product (6)(7)(8) In the ordinary arithmetic, firstly powers of 𝜑 𝑒 𝑚 and 𝑆 𝑤𝑖𝑟 𝑛 are calculated, then their ratio, i.e.

𝜑 𝑒 𝑚 𝑆 𝑤𝑖𝑟 𝑛 . The above order (Relations 6-4 to 6-8) is designed in a way not to produce fuzzy numbers out of the range of [0.01, 1000], since the precision and domain of permeability are set to be 0.01 mD and 1000 mD, respectively. In addition, before calculating Relation 6-4, porosity and irreducible water are converted into the unit of ten%, e.g. the porosity value of 32% is converted to 3.2 ten%. The unit of ten% helps not to produce too small numbers. The conversion is realized by fuzzy product operator of the variables using a triangular fuzzy number of ten, i.e. its domain is [9.99, 10.01] and its height is at 10. Successively, the constant 𝐶 𝑘 , is updated to 6.5 and 21.45 for Morris-Biggs and Timur formulas, respectively.

Validation with core data

The core porosity values, irreducible water and permeability have to be within the domains of their corresponding fuzzy numbers. For example, the core porosity is 7.5%; and for α=25%, and 50%, α-cuts are [6.5%, 8%] and [6.7%, 7%], respectively. Therefore, the core porosity is compatible with the α-cut of 25% but incompatible with the α-cut of 50% (Figure 6-9). Two validation criteria are designed for compatibility check of the fuzzy numbers with core data.

The first one is the average of n core α values (Relation 6-9). Closer the core value to the height of the fuzzy number, higher the value of Crit1. Crit1 is a positive criterion lower than one. The second criterion, Crit2, is defined on reference α-cuts, 𝛼 𝑟𝑒𝑓 : 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 0.95 (Relation 6-10). where 𝛼 𝑐 (𝑖) is the α value, corresponding to the ith core value.

𝐹𝑁(𝑖)

𝛼 𝑟𝑒𝑓 is the α-cut of fuzzy number (FN) for the ith core according to 𝛼 𝑟𝑒𝑓 .

𝐹𝑁(𝑖)

𝛼 𝑟𝑒𝑓 is a domain of uncertainty, so it is desired to be minimum. But higher 𝛼 𝑟𝑒𝑓 and ∑ [𝛼 𝑐 (𝑖) -𝛼 𝑟𝑒𝑓 ] 𝑛 𝑖=1

are desired.

Results and discussions of analysis by fuzzy arithmetic

The advantage of a fuzzy number to an interval is in providing membership degrees to the interval domain. The fuzzy numbers of porosity (Figure 6-10), irreducible water saturation (Figure 6-12) and permeability (Figure 6-14) are shown. The α-cuts of 0.7, 0.9 and 0.95 are marked by blue colour tones.

Porosity fuzzy numbers

In well#4, the porosity fuzzy number is not well-supported by core porosity (Figure 6-10d, same as in Figure 6-5d). However, for the other wells, the core data is compatible with the porosity fuzzy number.

Fuzzy number of porosity value is compared with the output of the porosity evaluation by the VLSA method. The Monte-Carlo simulation is applied on two porosity estimators: NPHI and output of complex lithology. For each estimator, the simulation is run twice (two different PDFs). The PDF for simulation is first created by 95 adjacent data, i.e. equal to the interval of 14.5 m [START_REF] Passey | Petrophysical evaluation of hydrocarbon pore-thickness in thinly bedded clastic reservoirs[END_REF]. Then, the interval is reduced to about the VRmf (~76 cm), i.e. 5

adjacent data are considered. The VLSA method with the input of NPHI and the interval of VRmf provides the best porosity analyses among the VLSA outputs, red line in Figure 6-11.

However, the proposed method is the most accurate (dotted-line). 

Irreducible water fuzzy numbers

The irreducible water saturation values of cores are available only in wells #3 and #5. In both cases, crisp evaluation of irreducible water saturation is overestimated. The advantage of fuzzy number of irreducible water is in extending the uncertainty range toward the core values.

Especially in well#3, even the height of the fuzzy number is closer to the core values, compared to the crisp evaluation of the irreducible water (Figure 6-12c). The evaluation criteria also show that the proposed method is more successful in well#3 than in well#5 (Figure 6-13). 

135

By the means of α-cut, the uncertainty range could be optimized. Due to Crit2, the α-cut of >0.90 is proposed for porperm assessment . Porosity fuzzy number is more compatible with core tests than porosity PDF (VLSA method).

Applying fuzzy arithmetic to the fuzzy numbers enabled converting porosity uncertainty to the outputs, here irreducible water saturation and permeability. Fuzzy numbers of irreducible water saturation are less overestimated, compared to the crisp calculations.

Checking generalization ability of porosity estimators resulted in a zonation of the anticline: wells #1, #3 and #5 are in the same homogeneous porosity zone. But the porosity of well#4 is not predictable by the estimators of the other wells. Well#2 is drilled in a transition zone between the homogeneous porosity zone and well#4.

However, for permeability, fuzzy numbers were not fully successful but only in well#5. The basic permeability formula, i.e. Wylie-Rose formula, is basically inaccurate in the available data. So, to improve accuracy, it is recommended to further apply fuzzy arithmetic to the other experimental permeability models. The second question of the thesis is to find a possibilistic uncertainty boundary of petrophysical interpretations: fuzzy arithmetic was applied to project the uncertainty interval of inputs to the estimations of porosity, irreducible water saturation and permeability (Chapter 6).

The developed methodologies are applied to the well-logs (meso-scale), and the outputs were verified by core data (micro-scale), which are direct measurements. In fact, some micro-scale characteristics were inferred from the available meso-scale information. The scale change results in the change of data uncertainty. The concept of the scale has always been considered and reviewed in geosciences [START_REF] Masoudi | Scale-based categorization of geoscience projects in Iran[END_REF](Masoudi et al., , 2014)).

For the petrophysical variables, when the scale of the study increases (smaller dimensions), the standard deviation of measurements increases; so, higher heterogeneity and uncertainty occur (Figure 7-1). In the possibilistic approach, α-cut could be calibrated to achieve the right uncertainty interval, corresponding to the scale of study.

The scale of study determines the specifications and expectations of the project. Therefore, the approach of uncertainty assessment could be selected (Table 7-1). In the next stage, the uncertainty theory and methodology (Bayesian, DST, fuzzy, Shannon, etc.) should be selected based on our approach.

In addition to both the before-mentioned necessities of uncertainty assessment, "the scale of study" has to be taken into consideration in geosciences. So, the items to be addressed in be reasonable, because the cores at the surface become expanded (removing overburden and crushing).

 The advantages of geometric method: (i) estimation of the thin-bed thickness, (ii) correction Characterization of a thin-bed in well#1 is improved by 100%, 71% and 66% for GR, RHOB and NPHI well-logs, respectively. But DST-based algorithm does not provide thin-bed estimation.

 Clustering-based porosity estimation was at least 33% more accurate than the common porosity estimation methods. In addition, it provides an uncertainty range for each cluster.

 By checking the generalization ability of porosity estimation method, homogeneous zone of porosity is identified, consisting of wells #1, #3 and #5. Generalization of porosity estimators is possible in this zone.

 Using fuzzy arithmetic, the input uncertainty (well-logs) is projected into the output uncertainty (irreducible water saturation and permeability). Comparing to the probabilistic method of VLSA for evaluating the porosity, the proposed method, based on the possibilistic approach, is about 200% (in average) more accurate. In addition, the fuzzy uncertainty range of irreducible water saturation is closer to the core values, compared to the crisp evaluation.

For studying permeability, the fuzzy results of well#5 were promising.

Recommendations

Recommendations for industrial applications

 Applying DST-based algorithm for improving the vertical resolution of well-logs.

 Using volumetric Nyquist frequency in identifying the least thickness that could be characterized by well-logs or other geophysical data. In addition, the up-scaled well-logs must have relatively the same accuracy as the seismic data. For checking the compatibility of the accuracies, volumetric Nyquist frequency could be used as well.

 It is suggested to carry out fracture study in the intervals that NPHI is higher than core porosity, while the gamma ray (shale content) is low. So, in the development phases of the oil field, it is necessary to do fracture studies within the Sarvak interval of well#4, by running image logs.

 In addition, drilling new exploratory wells is necessary in the heterogeneous (around wells #4 and #6) and transmission (around well#2) zones.

 Developing the software of "Characterizing Thin-beds", using geometry-and DST-based algorithm.

Recommendations for further researches (perspectives)

 In order to further verify the proposed algorithms, they should be (a) applied to the surface logging data, (b) used in other formations and other oil fields.

 Geometric thin-bed simulator could be developed on non-triangular membership functions.

Thin-bed thickness could also pass 1 2 𝑉𝑅𝑚𝑓. So, two (out of five) limiting conditions of geometric thin-bed simulator could be removed.

 A geometric simulator is developed for a situation with a single thin-bed. The next steps in improving it are (i) to develop it on two close thin-beds, which are not adjacent; (ii) to lift off the limitation of q1=q3, i.e. three adjacent thin-beds. Therefore, we will have different realizations for thin-bed conditions, and will be able in doing risk assessment.

 The geometric thin-bed simulator could be developed on the other well-log data to further study the behaviour of fluids, pore pressure, etc.

 The epsilon in DST-based algorithm is found by trial-and-error. It could be replaced by an automated function, e.g. using the theoretical functions of belief (very small) and plausibility (very large), or the uncertainty interval of the adjacent data.

 The development of an evidence-based software seems necessary for applying DST algorithm.

The software should be able in defining focal elements and related properties. It should also have graphical facilities for demonstrating outputs.

 The clustering methods could be further applied to saturation analysis, permeability analysis, net pay studies, etc. A similar study has also been recently applied (Masoudi et al., 2016).

 Fuzzy arithmetic should be applied to other experimental permeability models.

 The developed methodologies should be verified in other formations and oil-fields to be sure about the generalization ability of methods.
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  : well-log uncertainty, vertical resolution, volumetric Nyquist frequency, thin-bed characterization, Dempster-Shafer, fuzzy arithmetic Résumé étendu Application de l'approche hybride incertitude-partitionnement pour le prétraitement des données de diagraphie Dans la géologie de subsurface, la caractérisation des couches minces par les diagraphies est accompagnée d'incertitudes. Les sources de ces incertitudes proviennent des enregistrements discontinus (échantillonnage numérique), de l'acquisition volumétrique des données, des aspects techniques, etc. La thèse est principalement centrée sur l'étude de la résolution verticale des diagraphies (question 1). Dans la deuxième étape, l'arithmétique floue est appliquée aux modèles expérimentaux pétrophysiques en vue de transmettre l'incertitude des données d'entrée aux données de sortie, ici la saturation irréductible en eau et la perméabilité (question 2). Afin de résoudre les questions sus-jacentes, on a appliqué les théories de Dempster-Shafer (DST), d'arithmétique floue, d'analyse de regroupement des données et les expressions empiriques pétrophysiques. Les diagraphies sont des signaux digitaux dont les données sont des mesures volumétriques. Le mécanisme d'enregistrement de ces données est modélisé par des fonctions d'appartenance floues (fuzzy membership functions). On a montré qu'il y avait trois types de résolution verticale pour les diagraphies : (i) le taux d'échantillonnage, (ii) l'espacement et (ii) la Résolution Verticale de la Fonction d'Appartenance (VRmf). Ils sont toujours en ordre descendant : VRmf>espacement>taux d'échantillonnage. Dans l'étape suivante, la fréquence de Nyquist est revue en fonction du mécanisme volumétrique de diagraphie ; de ce fait, la fréquence volumétrique de Nyquist est proposée afin d'analyser la précision des diagraphies. Basé sur le modèle de résolution verticale développée, un simulateur géométrique est conçu pour générer les registres synthétiques d'une seule couche mince. Le simulateur nous permet d'analyser la sensibilité des diagraphies en présence d'une couche mince. Les relations de régression entre les registres idéaux (données d'entrée de ce simulateur) et les registres synthétiques (données de sortie de ce simulateur) sont utilisées comme relations de déconvolution en vue d'enlever l'effet des épaules de couche (shoulder-bed effect ou l'effet des couches voisines) d'une couche mince sur les diagraphies GR, RHOB et NPHI. Les relations de déconvolution ont bien été appliquées aux diagraphies pour caractériser les couches minces.



  -clés : incertitude de diagraphie, résolution verticale, fréquence volumétrique de Nyquist, caractérisation de couche mince, Dempster-Shafer, arithmétique floue Volumetric mechanism of well-logging is one of the uncertainty sources of vertical resolution.

  1. Schematic of basic concepts of logging: a) Vertical resolution of tool, membership function, depth of investigation and assigning horizon. b) Overlap of adjacent records and sampling rate.

Figure 1

 1 Figure 1-2. Using membership functions (right column) in representing a range of heterogeneity (lithology, porosity, etc.) of thin sections.

Figure 1

 1 Figure 1-3. Conventional well-log interpretation. An example of rock typing (NikTab, 2003).
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 14 Figure 1-4. Comparing proposed and conventional interpretation approaches. Example of GR well-log.

  5. The importance of fuzzy evaluation of well-logs in porosity evaluation. a) Porosity, based on well-log (left) and real values (right). b) VRmf, which is here proposed to be used instead of single value. The height is at 15% and its domain consists of all the possible porosity values.

Foley

  et al. (1997) classified uncertainty into three categories: fuzziness, randomness and incompleteness. Incompleteness is equivalent to ignorance, which is one of the sources of uncertainty, introduced in the work. Some authors also classified incompleteness into four categories: (i) what we know but have not included in the model; (ii) what we know that we do not know; (iii) what we do not know that we are unaware of it; and finally (iv) what is difficult to understand. The concept "geoscore" was introduced by Dromgoole and Speers (1997) to measure the complexity of petroleum reserves by quantifying nine categories:  Structural complexity: (i) overburden complexity; (ii) fault complexity;  Reservoir quality and architecture: (iii) reservoir layering; (iv) reservoir continuity; (v) permeability channels; (vi) barrier continuity; (vii) fault transmissibility; (viii) fractures and (ix) diagenesis.
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 16 Figure 1-6. Location of the field under study within the Abadan Plain, SW Iran. Modified after Sherkati and Letouzey (2004) and Rajabi et al. (2010).

  -8). In most regions, vuggy porosity, karstification and bauxite mineralization are consequences of the depositional gap of the top Sarvak[START_REF] Zarasvandi | Karst bauxite deposits in the Zagros Mountain Belt, Iran[END_REF] (Figure1-9).

Figure

  Figure 1-7. Lithostratigraphy of the Sarvak Formation and its neighbours[START_REF] Dashtban | Complementary geology report of the well#3. Exploration Directorate of NIOC[END_REF].



  For the purpose of uncertainty assessment of well-logs, three theories are used, essentially Dempster-Shafer Theory (DST), fuzzy arithmetic and cluster analysis. The main theories, in addition to empirical petrophysical relations, are introduced in the chapter.

  Figure 2-1b plausibility does not exceed mass function within 𝐴 ∪ 𝐵, especially in 𝐴 ∩ 𝐵 that honours both focal elements. Belief function within 𝐴 ∩ 𝐵 ′ is also expected to compensate some part of the required mass function of focal element of A, when 𝐴 ∩ 𝐵 is completely full.

Figure 2

 2 Figure 2-1. Comparing uncertainty assessment theories: probability (a) and DST (b).

  number is a fuzzy membership function possessing three properties: (i) It should be a normal (unimodal) fuzzy number. (ii) Each 𝛼-cut of the fuzzy number should be a closed interval for every 𝛼 ∈ (0,1]. The consequence is that the height of the fuzzy number have to be one. (iii) The support of the fuzzy number should be bounded, i.e. does not support ∞ (Klir and Yuan, 1995). As examples, extensions of ordinary numbers a, b, c and d to fuzzy numbers are presented in Figure 2-2 to show different possibilities of fuzzy numbers. In the domain of sedimentology, trapezoidal fuzzy numbers are used for representing tidal ranges by mean sea-level (Figure 2-3).

Figure 2

 2 Figure 2-2. Schematic examples of fuzzy numbers.

Figure 2

 2 Figure 2-3. Fuzzy numbers for tidal ranges due to mean sea-level[START_REF] Demicco | Fuzzy logic in geology[END_REF].

  . [𝑎, 𝑏] * [𝑐, 𝑑] = {𝑓 * 𝑔 | 𝑎 ≤ 𝑓 ≤ 𝑏; 𝑐 ≤ 𝑔 ≤ 𝑑} (2-5) [𝑎, 𝑏] ± [𝑐, 𝑑] = [𝑎 ± 𝑐, 𝑏 ± 𝑑] (2-6) [𝑎, 𝑏]. [𝑐, 𝑑] = [min(𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑) , max(𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑)]

( i )

 i interval arithmetic or (ii) extension of operations on real numbers. The interval operators could be extended to fuzzy operators, using the theorem of resolution identity, Relations 2-9 and 2-10[START_REF] Zadeh | Similarity relations and fuzzy orderings[END_REF]. The other name of this relation is first decomposition theorem. 𝐴 = ⋃ 𝛼. 𝐴 𝛼 𝛼∈[0,1] 
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 24 Figure 2-4. Example of applying fuzzy operators on fuzzy numbers, integrated from Klir and Yuan (1995).

Figure 2

 2 Figure 2-5. Flowchart of the FCM algorithm.

  Compute performance measures that is based on three criteria: (iii-i) Separation of clusters (low fuzzy hypervolume, Relation 2-22), (iii-ii) Minimal volume of the clusters, but (iii-iii) Maximal number of data points, concentrated in the vicinity of the cluster centroid (high average density partition, Relation 2-23 or high density partition, Relation 2-24).𝐹 𝐻𝑉 = ∑ √det(𝐹 𝑖 )

  𝑙𝑜𝑔 = 𝜑 𝑒 . 𝑆 𝑋𝑂 . 𝑙𝑜𝑔 𝑤 + 𝜑 𝑒 . (1 -𝑆 𝑋𝑂 ). 𝑙𝑜𝑔 ℎ + 𝑉 𝑠ℎ . 𝑙𝑜𝑔 𝑠ℎ + (1 -𝑉 𝑠ℎ -𝜑 𝑒 ). ∑ 𝑣 𝑖 . 𝑙𝑜𝑔 𝑖
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 26 Figure 2-6. A snapshot of the spreadsheet for porosity estimation by the presented empirical relations. Vsh: shale volume, NPHIw, NPHIh, NPHIma and NPHIsh: NPHI in water, hydrocarbon, matrix and shale, respectively. NPHIm and PHInc are outputs (for NPHI) of Relations 2-26 and 2-27, respectively. RHOBw, RHOBh, RHOBma and RHOBsh: RHOB in water, hydrocarbon, matrix (2.65 g.cm -3 for calcite) and shale, respectively. PHId and PHIdc: are outputs (for RHOB) of Relations 2-26 and 2-27, respectively. PHIxdn, PHIxdn_Q and PHIxdn_CL are outputs of the methods density-neutron, quick-look and complex lithology, respectively.

Highlights of Chapter 3 

 3 Well-log data are volumetric records.  Three types of vertical resolution are introduced for the well-logs: (i) vertical resolution of sampling rate, (ii) vertical resolution of tool (VRT) or spacing, and (iii) vertical resolution of membership function (VRmf).  VRmf > spacing > sampling rate  The vertical resolutions of GR, RHOB and NPHI are modelled by triangular fuzzy memberships.

  -1), the recorded value is only assigned to the centre of volume of investigation. Therefore the volumetric nature of recording is ignored! Here, the goal is to model the vertical dimension of volume of investigation using fuzzy membership function. The function shows the contribution of each horizon in the recorded value. Designing the membership function should be based on the structure of each instrument, individually.3.1.1 Different types of resolutionResolution of well-logs could be discussed vertically and horizontally. Horizontal resolution is equivalent to the "depth of investigation", while vertical resolution can be categorized into three types: (i) vertical resolution of sampling rate, (ii) vertical resolution of tool (VRT) or spacing, and (iii) vertical resolution of membership function (VRmf) which is introduced in this work for the first time. VRmf is representative of whole the effective depth interval on the recording. Inherit of the logging measurement and geological conditions control VRmf. The smaller VRmf, the more concentrated (or focused) measurement.

Figure 3

 3 Figure 3-1. Schematic representation of volume of investigation around a sensor in a logging tool. Combination of these three vertical resolutions defines the overall precision of acquired logs in characterizing the reservoirs. Depth of investigation and vertical resolution of some tools are presented on Figure 3-2 andTable 3-2.

Figure 3

 3 Figure 3-3. The effect of an environment, out of the spacing, on the electrical logging. a) R1<R2: electric flow is getting away from the resistant environment (R2). b) R1=R2: electric flow is symmetrical. c) R1>R2: electric flow is getting closer to the conducting environment (R2).
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 334 Figure 3-4. Fuzzy membership function of contribution of each horizon in recording a passive (a) and an active (b) log.
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 35 Figure 3-5. Two possible configurations for detecting a thin-bed. Configuration B results in aliasing. In the well-logging, this phenomenon is called shoulder-bed effect, i.e. the effect of neighbouring beds.
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 36 Figure 3-6. Cross-plots of adjacent recordings of GR (well#2).
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 37 Figure 3-7. Measures of similarity (correlation and covariance) and dissimilarity (variance and semivariance) for adjacent recordings of GR in well#2.So, the second structure, i.e. linear part of variography, is considered as cut-off of high similarity between neighbouring records. Interpreting the variograph of GR in well#2 (Figure

  Figure 3-8. Experimental variographs showing linear relation at the first lags. An open-source computer package, named The Stanford Geostatistical Modelling Software (SGeMS) is used to generate variographs. a) GR in well#2, b) RHOB in well#2, c) NPHI in well#3 and d) DT in well#5.
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 39 Figure 3-9. Comparison of VRmf with geological beds[START_REF] Campbell | Lamina, lamina set, bed, and bedset[END_REF], log-scale beds[START_REF] Majid | Definitive petrophysical evaluation of thin hydrocarbon reservoir sequences[END_REF], petrophysical beds[START_REF] Passey | Petrophysical evaluation of hydrocarbon pore-thickness in thinly bedded clastic reservoirs[END_REF]. Modified after[START_REF] Passey | Petrophysical evaluation of hydrocarbon pore-thickness in thinly bedded clastic reservoirs[END_REF].

Figure 3 -

 3 Figure 3-4b is selected for showing the contribution of each horizon to the recorded value.

Figure 3 -

 3 Figure 3-10. Mechanism of measurement of sonic transfer time by Borehole Compensated (BHC) sonic tool. Two transmitters and four receivers, finally fusing them by averaging[START_REF] Close | The sound of sonic: a historical perspective and introduction to acoustic logging[END_REF]. Slowness=DT

Figure 3 -

 3 Figure 3-11. Defined membership function for each half part of compensated sonic tool due to Figure 3-4b andTable 1-4.

  12. Calculated complex membership function for compensated sonic tool, by averaging membership function of each half: a) theoretical and b) practical.

Figure 3 -

 3 Figure 3-13a, where the Nyquist frequency and related inferences are effective. Well-log recordings have volumetric nature (Figure 3-13b and c). Here, we present a modification on the common concept of the Nyquist frequency, which is more adequate for being used in interpreting well-log data.

  2b, 𝑆 1 and 𝑆 4 are triangles, and 𝑆 2 and 𝑆 3 are trapezoids. ℎ𝑏 (ℎ𝑡) is the distance from the centre of 𝑉𝑅𝑚𝑓 to the bottom (top) of the thin-bed. Because all the depths are known, ℎ𝑏 and ℎ𝑡 are known variables too. 𝑎𝑡 and 𝑎𝑏, introduced in Figure 4-2b, could be calculated by ℎ𝑏, ℎ𝑡 and 𝐷𝐼, using the Intercept Theorem of Thales. So, the weights are calculated for all the configurations.

Figure 4

 4 Figure 4-3. Sensitivity analysis and log response of random noise contamination: a) Sensitivity analysis of noisy GR and b)synthetic GR with 0.5, 1, 1.5 and 2% noise. c) Sensitivity analysis of noisy RHOB and d) synthetic RHOB with 1%, 2%, 3% and 4% noise. e) Sensitivity analysis of noisy NPHI and f) synthetic NPHI with 1%, 2%, 5% and 10% noise.

Figure 4 -

 4 4a are synthetic-log values, plotted against ideal-log values. All the values are below the line y=x, i.e. underestimated by synthetic-log. The thickness of the thinbed read from the synthetic-log is plotted against the thickness read from the ideal-log, crosses on Figure 4-4b. The crosses above the line y=x are thickness overestimations. Underestimation of petrophysical value and overestimation of thickness were expected because of the nature of shoulder-bed effect.For Figure4-4a,b, the regression lines are calculated for GR, RHOB and NPHI for correlating synthetic-logs to ideal-logs (Relations 4-7 to 4-12). The inputs of regression models are thickness and relative synthetic-log (or well-log) values of thin-bed, and the outputs are regression models, representing ideal thickness (or real thickness) and relative ideal-log (or real-log).∆𝐺𝑅 𝑟𝑒𝑔 = 1.0356 ∆𝐺𝑅 𝑙𝑜𝑔 + 0.0669 𝑇𝐻 log 𝐺𝑅 ∆𝑁𝑃𝐻𝐼 𝑟𝑒𝑔 = 1.0262 ∆𝑁𝑃𝐻𝐼 𝑙𝑜𝑔 + 0.1124 𝑇𝐻 log 𝑁𝑃𝐻𝐼[START_REF]Multi-well-log thin-bed characterization The well-logs of the thinnest characterized bed, observation#7 of Table 4-3, are provided and interpreted ([END_REF](5)(6)(7)(8)(9)(10)(11) 
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 44 Figure 4-4. Deconvolution results on synthetic data. a) Petrophysical values (NPHI) of thin-beds before (x) and after (dot) reducing shoulder-bed effect. b) Thickness of thin-beds before (x) and after (dot) reducing shoulder effect.

  Figure 5-2 shows focal elements of recording and target when vertical resolution is four times larger than sampling rate. In fact, the aim is to improve the vertical resolution of well-logs from the focal element of recording (𝐹𝐸 𝑟 ) to a smaller focal element, named target (𝐹𝐸 𝑡 ).
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 52 Figure 5-2. Defined focal elements of recording (𝐹𝐸 𝑟 ) and target (𝐹𝐸 𝑡 ) for a well-log with VRmf=4×SR.
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 54 Figure 5-4. Scheme of the original well-log (solid line) and simulated-log (dashed line) within the uncertainty range (grey). ɛ is multiplied by 5 (SE). The R3 should be a weighted average of S1 to S5 (white square) because they are within the 𝐹𝐸 3 𝑟 (hatched area). Due to assumptions of the algorithm, the distance should be compensated by S3.

(

  iv) Belief and plausibility functions: goal of DST part of the algorithm is to provide an evidence-based reasoning for intersection of the adjacent 𝐹𝐸 𝑟 . Based on the ratio of vertical resolution to sampling rate, the number of adjacent intersecting records (Figure 5-2) is calculated. The intersecting interval is called focal element of target (𝐹𝐸 𝑡 ). The mass function, which moves within different 𝐹𝐸 𝑟 , provides a range of mass values for 𝐹𝐸 𝑡 . Mass value of 𝐹𝐸 𝑡cannot exceed the maximum mass value of intersecting 𝐹𝐸 𝑟 (Figure5-2). Therefore, to honour the records, which are our evidences, the belief (plausibility) is limited to the minimum (maximum) of intersecting mass functions (Relations 5-3 and 5-4). Belief and plausibility functions are the limits of the created uncertainty range. This process contains two steps:

  2. The predefined ideal-log (stars) and corresponding synthetic-log (black dots) of case 1 are presented in Figure 5-6a, and the other cases are interpreted in Appendix B. To calculate ideal-based error, the realizations are first interpolated to the depths of the predefined ideal-log, if necessary.

  Figure 5-7. Total constraint-based error during optimization in case 1.Convergence is reached at 6 and 12 epochs for random-optimization and recursive-optimization simulators, respectively. The term "epoch" refers to the number of iterations during the optimization process. To avoid confusion, the word "iteration" is specifically used for the number of random generation.

Figure 5

 5 Figure 5-9. Ideal-based vs. constraint-based error giving a significant correlation coefficient (R 2 ).

  5) are used. Here, the results of resolution improvement are illustrated for the intervals of 3157-3159 m (well#1) and 2801.65-2803.45 m (well#3) (Figure 5-10). The outputs of the other intervals are provided in the Appendix C. Each well-log track in Figure 5-10a,b contains: (i) the original well-log (solid black line) with the vertical resolution of 61-91 cm (Table 3-1); (ii) the uncertainty range (blue zone) which is between the belief and plausibility; (iii) ten realizations from random-optimization simulator (dots), and (iv) the best one is marked by dashed line (simulated-log). The vertical resolution of the realizations is 15 cm (𝐹𝐸 𝑡 in Figure 5-2). In the rightmost tracks, geometry-based thin-bed characterizations are provided. The results of core porosity test are also shown in Figure 5-10b.

( i )

 i The lower (upper) bound is the minimum (maximum) value over the 𝑛 𝑓𝑢𝑠𝑒 neighbouring values. (ii) The uncertainty in the top half metre (3157-3157.5 m) is about the zero due to the constant value of the original well-log for some neighbouring records. (iii) The SE is compensated (to some degree) by the sparks at peaks and troughs; i.e. high-frequency variations are amplified (Figure 5-10a).

  Figure 5-10. Well-log (solid black line) data for the four tools (GR, RHOB, NPHI and DT), uncertainty range (blue zone), ten realizations (dots) and the best realization (dashed line) as the simulated-log, within the interval a) 3157-3159 m (well#1) and b) 2801.65-2803.45 m (well#3).
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 6 Figure 6-3. FCM6 is trained on well-logs NPHI, RHOB and DT of well#3 (a). NPHI and core porosity of each cluster are compared through the cross-plot and histograms (b).
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 64 Figure 6-4. NPHI calibration for porosity estimation: removing the extremes of core porosity, then scaling PDF of NPHI to the new core porosity interval.
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 65 Figure 6-5. Results of cluster-based porosity analysis. When the core porosity is between the limits of clusters, the consistency mark is shown on the plot. Cluster limits in noncored intervals are interpolated by the adjacent data. a) well#1, b) well#2, c) well#3, d) well#4 and e) well#5. fr: fraction.
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 66 Figure 6-6. Comparison of the RMSE of porosity estimation methods.There are two reasons why conventional methods are less precise than NPHI in estimating core porosity. (i) Conventional methods are developed in the clastic rocks, while the Sarvak Formation consists of carbonate, contaminated by shale (increasing downward). (ii) An important functionality of conventional methods is to correct the shale effect, so in clean formations, like the upper Sarvak Formation, they lose this functionality. Therefore, in the upper Sarvak Formation, NPHI is closer to core porosity, comparing to the conventional methods. The cored intervals are from the cleanest parts of the reservoirs, here the upper Sarvak Formation, where the total porosity (NPHI) is close to the effective porosity (core porosity).

  permeability (Relation 2-35) is realized in five steps: (i) the ratio of porosity to irreducible water is calculated (Relation 6-4). (ii) This ratio, 𝐴 1 , to the power of n is calculated (Relation 6-5). (iii) The effective porosity to the power of 𝑚 -𝑛 is calculated (Relation 6-6). (iv) Fuzzy multiplication of the fuzzy number of constant 𝐶 𝑘 , and 𝐴 2 (Relation 6-7). (v) Finally, fuzzy number of permeability is calculated (Relation 6-8 and Figure 6-14).
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 6 Figure 6-9. Compatibility of core porosity with α-cuts (alfa-cuts). 𝐶𝑟𝑖𝑡1 = 1 𝑛 ∑ 𝛼 𝑐 (𝑖) 𝑛
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 6 Figure 6-11. Comparison of results of clustering-fuzzy arithmetic porosity analyses with VLSA method (based on Monte-Carlo simulation) by criterion 1 (a) and criterion 2 within well#1 (b), well#2 (c), well#3 (d), well#4 (e) and well#5 (f).

  12. Irreducible water analysis of fuzzy number. a) well#1, b) well#2, c) well#3, d) well#4 and e) well#5. fr: fraction.
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 6 Figure 6-13. Comparison of results of fuzzy arithmetic irreducible water analysis (wells #3 and #5) by criterion 1 (a) and criterion 2 (b).

Figure 6 -

 6 Figure 6-14. Permeability analysis by fuzzy number: Morris-Biggs (left) and Timur (right) for Well#1 (a,b), well#2 (c,d), well#3 (e,f), well#4 (g,h), well#5 (i,j).
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  Figure 5-9).  DST-based algorithm is automated, and provides a continuous corrected-log. Compared to geometry-based algorithm, DST-based algorithm characterizes the thin-bed more accurately.
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Table 1 -

 1 1. Sources of uncertainty in well-logs.

	Measurement aspect	Source of uncertainty	Studies
	Intrinsic randomness of nature	-High complexities and	Kitts (1976)
		heterogeneities in the nature	
	Depth of measurement	-Cable stretch	Passey et al. (2006)
		-Logging while moving the	
		instrument	
		-Speed of logging	
	Depth of investigation	Volumetric measurement	
	Vertical Resolution of Tool	Volumetric measurement	Flaum et al. (1989)
	(VRT)		Galford et al. (1989)
			Gartner (1989)
			Flaum (1990)
	Vertical Resolution of	Volumetric measurement	Masoudi et al. (2017)
	membership function (VRmf)		Passey et al. (2006): under the
			name of absolute resolution
	Sampling rate	Digital recording	Passey et al. (2006)
	Error of measurement,		
	precision and white noise		
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 1 2. Specifications of the ideal-logs to generate the synthetic logs.

Case Well-log Description Lower bed Thin-bed or fracture Upper bed Bed thickness (cm)

  

								Vertical
								resolution
								(cm)
	1	GR (API)	There is a peak at the horizon of the thin-bed.	20	50	30	30	61
	2	GR (API) Deepening (finning) upward	20	100	120	30	61
	3	RHOB (g.cm -3 )	There is a trough at the horizon of the thin-bed.	2.8	2.4	2.6	15	76
	4	NPHI (%) Increasing upward	5	10	15	30	76
	5	NPHI (%)	There is a peak at the horizon of the thin-bed.	5	15	10	30	76
	6	DT (µs.m -1 )	A single fracture with a dip of 60°, µs/m), within a carbonate formation. aperture of 1 mm, filled up with oil (281	160	281	160	0.1	61
	7	DT (µs.m -1 )	A 1 cm horizontal fractured zone (50% a carbonate formation. fractured) with a DT of 220 µs/m, within	160	220	160	1	61
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 1 

3. Available data within the Sarvak interval. #: number. GR: gamma ray, CGR: gamma ray of potassium, DT: sonic transfer time, NPHI: neutron porosity, RHOB: bulk density, DRHO: density correction, LLD: deep laterolog, LLS: shallow laterolog, MSFL: microspherically focused log, PEF: photoelectric effect.
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 1 [START_REF]Multi-well-log thin-bed characterization The well-logs of the thinnest characterized bed, observation#7 of Table 4-3, are provided and interpreted ([END_REF]. Details of the available well-logs in the field due to[START_REF] Schlumberger | Wireline services catalog[END_REF].

	plugs	2	8	5	4	6	0
	# of helium porosity records	38	41	416	228	258	0
	# of gas permeability records	38	41	418	228	250	0
	# of grain density records	0	34	0	244	258	0
	# of irreducible water records	0	0	3	0	9	0
	Well tests	6	3	6	3	0	2

Table 2

 2 

-1). The ability of free movement of the mass function in the DST, has made it powerful in assessing all BOEs (separated, eccentric, etc.). So, wherever the Possibility (or Probability) theory works, DST works too. When theories of Probability (Possibility) and DST are valid, we call that DST and Probability (Possibility) are consistent (Table

2-1

).
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1. Consistency of BOEs with uncertainty assessment methodologies.

Table 2 -

 2 2. Available axioms for the defined interval operators. Summarized from[START_REF] Klir | Fuzzy sets and fuzzy logic, theory and applications[END_REF].

		Axiom	Definition
	1	Community	𝐴 + 𝐵 = 𝐵 + 𝐴 𝐴. 𝐵 = 𝐵. 𝐴
	2	Associativity	𝐴 + (𝐵 + 𝐶) = (𝐴 + 𝐵) + 𝐴 𝐴. (𝐵. 𝐶) = (𝐴. 𝐵). 𝐴
	3	Identity	𝐴 = 𝐴 + 0 𝐴 = 𝐴. 1
	4	Subdistributivity	𝐴. (𝐵 + 𝐶) ⊆ 𝐴. 𝐵 + 𝐴. 𝐶
	5	Distributivity	
	6	Inverse of identity	0 ∈ 𝐴 -𝐴 1 ∈ 𝐴/𝐴
	7 Inclusion monotonicity	

If: 𝑏. 𝑐 > 0, for every 𝑏 ∈ 𝐵 and 𝑐 ∈ 𝐶, then: 𝐴. (𝐵 + 𝐶) = 𝐴. 𝐵 + 𝐴. 𝐶 So if 𝐴 = [𝑎, 𝑎], then 𝑎. (𝐵 + 𝐶) = 𝑎. 𝐵 + 𝑎. 𝐶 If: 𝐴 ⊆ 𝐶 and 𝐵 ⊆ 𝐷, then: 𝐴 * 𝐵 ⊆ 𝐶 * 𝐷

  proposed a well-known empirical relation for permeability estimation. It is reliable when we have core tests for calibration.

	𝑘 𝑊𝑅 = 𝐶 𝑘	𝑚 𝜑 𝑒 𝑆 𝑤𝑖𝑟 𝑛	(2-35)
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 2 3. Suggested constants for Wylie and[START_REF] Wyllie | Some Theoretical Considerations Related to the Quantitative Evaluation of the Physical Characteristics of Reservoir Rocks from Electrical Log Data[END_REF] permeability relation.

	Reference	𝑪 𝒌	m	n
	Morris and Biggs (1967)	Oil: 65000 Gas: 6500	6.0	2.0
	Timur (1968)	Oil: 3400 Gas: 340	4.4	2.2

Table 3 -

 3 

	Well-log	Well #1	Well #2	Well #3	Well #4	Well #5	VRmf
	GR	61	61	61	61	61	61
	RHOB	76	76	91	76	76	76
	NPHI	76	76	91	76	76	76
	DT	61	61	61	61	61	61

1. Finding VRmf for each well-log, in each well by variography. VRmf is selected as minimum value of all the wells, larger values might be because of homogeneity of rocks. Units are in cm.

Table 3 -

 3 2. Summary of designed membership functions of each log.

	Well

-log Vertical resolution of tool Depth of investigation Type of membership function Vertical Resolution of Membership Function (VRmf) Height of membership function

  

	GR	30.48 cm	60.96 cm	triangular	61 cm	middle
	RHOB	45.72 cm	12.7 cm	triangular	76 cm	middle
	NPHI	30.48 cm	23 cm	triangular	76 cm	middle
	DT	152.00 cm	7.62 cm	trapezoidal	61 cm	25 cm in the middle
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 3 3. Minimum thickness of beds to be characterized probably or surely. The uncertain interval showing an interval where probability is neither zero nor one.

	VRmf=0 0<VRmf<SR VRmf>SR

Table 4 -

 4 1. Defining reliable and risky windows for interpreting noisy well-logs, the case of 30 cm thin-bed.

	Well-log	GR	RHOB	NPHI
	Reported Noise (see Table 1-4)	±5%	±0.01 g.cm -3 ≅ ±0.33%	0-20: ±1% 20-30: ±2% 30-45%: ±6%
	Reliable	<1.5%	<4%	<10%
	Risky	1.5-2%	4-5%	10-20%
	Unreliable	>2%	>5%	>20%

Table 4 -

 4 2. Comparing MSE of thin-bed characterization. Interpretations are based on synthetic-logs versus regression models (deconvolved) (Figure4-4).

		MSE of synthetic-logs	MSE of deconvolved synthetic-log
		GR	RHOB	NPHI	GR	RHOB	NPHI
	Petrophysical value	42.25	0.003	139.61	20.20	0.001	39.99
	Thickness	2249.41	3202.01	4134.78	50.75	67.31	53.29
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 4 3. Thin-bed characterizations of 10 real cases within Sarvak Formation, well#1. The apparent thickness values of the thin-beds are scaled to be closer to real thickness values by the deconvolution models. NAN: thin-bed curve not observed.

		RMSE	1	2	3	4	5	6	7	8	9	10
	depth (m)		2727.96	2803.40	2831.13	2850.49	3150.87	3156.00	3158.19	3165.20	3184.55	3186.38
	∆GR log (API)	6.50	22.10	10.17	25.72	12.79	10.40	30.67	23.00	41.32	7.41	8.80
	∆GR model (API)	4.49	32.06	17.67	32.75	19.36	14.85	34.82	27.90	47.89	12.77	14.21
	GR log thickness (cm)	47.43 137.16 106.68 91.44	91.44	60.96	45.72	60.96	76.20	76.20	76.20
	GR model thickness (cm)	7.12	36.46	29.52	22.48	24.63	16.11	8.28	14.01	15.42	21.06	20.83
	∆RHOB log (g.cm -3 )	0.06	0.07	0.09	0.07	0.03	NAN	0.07	0.04	0.15	NAN	0.06
	∆RHOB model (g.cm -3 )	0.03	0.10	0.17	0.13	0.08	NAN	0.13	0.09	0.18	NAN	0.14
	RHOB log thickness (cm)	56.59	45.72 121.92 91.44	76.20	NAN	91.44	76.20	60.96	NAN	121.92
	RHOB model thickness (cm)	8.20	16.60	33.08	25.10	17.64	NAN	25.10	18.80	28.68	NAN	29.42
	∆NPHI log (%)	11.82	9.00	14.00	4.00	5.00	9.00	14.00	4.00	11.00	4.00	1.00
	∆NPHI model (%)	6.32	24.16	29.29	15.30	14.46	20.43	29.29	11.57	22.48	17.16	12.22
	NPHI log thickness (cm)	64.30 121.92 121.92 91.44	76.20	91.44 121.92 60.96	91.44 106.68 91.44
	NPHI model thickness (cm)	7.30	24.95	28.66	16.67	15.13	20.38	28.66	12.10	21.87	18.96	14.45
	Final Thickness (cm)		26.05	30.42	21.42	19.16	18.23	20.62	14.97	21.96	20.02	21.57
	Standard deviation of thickness (cm)		8.14	1.91	3.52	4.02	2.14	8.89	2.81	5.41	1.05	6.13

Table 5 -

 5 1. Properties of constructed PDFs in Figure 5-1.

	VRmf of PDF	PDF(Xn)	Shannon entropy	VRmf (cm)	SR+ VRmf (cm)
		PDF1	6.22	61	76
		PDFX2	6.39	76	91
	61 cm	PDFX3 PDFX4	6.58 6.75	91 107	106 122
		PDFX5	6.91	122	137
		PDFX6	7.04	137	152
		PDF1	6.44	76	91
		PDFX2	6.56	91	106
	76 cm	PDFX3 PDFX4	6.70 6.85	106 122	121 137
		PDFX5	6.98	137	152
		PDFX6	7.11	152	167
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 5 3. Constraint-based total errors for the four simulators. SE=5 and iteration number=200. The reference for nfuse is the vertical resolution (Table3-1). The parameters of simulation, including nfuse, are summarized in Table5-5.

	Well#	Well-log	Random simulator	Random-optimization simulator	Recursive simulator	Recursive-optimization simulator
		GR	20'750	9'495	18'527	11'479
	1	RHOB NPHI	261'880 156	79'619 41	215'370 110	107'450 51
		DT	42'008	20'155	28'653	23'160
		GR	14'237	6'773	9'932	7'538
	2	RHOB NPHI	305'260 228	89'164 65	222'610 162	109'250 79
		DT	37'223	15'548	22'689	17'696
		GR	16'522	9'259	12'493	10'221
	3	RHOB NPHI	194'260 133	64'285 44	142'460 102	85'612 60
		DT	42'448	22'140	29'704	24'463
		GR	14'789	8'137	11'109	9'052
	4	RHOB NPHI	300'230 173	84'143 45	208'900 120	103'490 55
		DT	45'304	20'958	30'256	24'423
		GR	9'273	3'802	6'012	4'245
	5	RHOB NPHI	199'110 109	50'851 28	146'620 75	68'958 35
		DT	38'457	17'246	23'444	18'865
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 5 4. Optimizing SE by comparing constraint-based total errors, iteration number=50. Larger iteration numbers are also tested, however the outputs were rubost. The parameters of the simulation (including SE) are mentioned in Table5-5.

	Well#	Well-log	SE=2	SE=3	SE=4	SE=5	SE=6	SE=7
		GR	8'231	8'161	8'170	8'304	8'496	8'762
	1	RHOB NPHI	104'350 51	88'664 45	82'795 42	79'619 41	79'079 40	79'864 41
		DT	19'617	19'504	19'509	20'199	20'923	21'281
		GR	6'650	6'624	6'558	6'789	68'921	7'164
	2	RHOB NPHI	107'100 77.0	95'427 69.0	90'604 66.0	89'164 65.1	87'467 65.0	87'346 64.8
		DT	15'338	15'237	15'376	15'548	16'117	16'735
		GR	9'069	8'955	9'030	9'259	9'385	9'659
	3	RHOB NPHI	73'707 50.0	68'040 48.0	65'537 45.0	64'285 44.0	64'650 44.3	64'196 43.0
		DT	21'809	21'376	21'658	22'140	22'868	23'730
		GR	7'998	7'894	7'978	8'137	8'296	8'482
	4	RHOB NPHI	106'380 55.0	91'714 48.0	85'826 44.6	84'143 44.4	84'258 43.2	83'560 43.3
		DT	20'255	20'237	20'609	20'958	21'928	22'507
		GR	3'934	3'773	3'786	3'802	3'968	4'096
	5	RHOB NPHI	67'105 34.0	57'344 30.0	52'542 28.1	50'851 27.6	51'133 28.2	51'953 28.0
		DT	16'870	16'649	16'941	17'246	17'708	19'181
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 5 5. Optimized parameters for random-optimization simulator. Summary of Table5-3 and 5-4.

	Well#	Interval	Well-log	nfuse	SE	Well#	Interval	Well-log	nfuse	SE
			GR	4	3			GR	4	4
	W1	3157 -3159 m lower Sarvak	RHOB NPHI	5 5	6 6	W2	2766 -2770 m upper Sarvak	RHOB NPHI	5 5	7 7
			DT	4	3			DT	4	3
	W3	2802 -2804 m 2809 -2813 m upper Sarvak	GR RHOB NPHI DT	4 6 6 4	3 7 7 3	W4	2662 -2666 m upper Sarvak	GR RHOB NPHI DT	4 5 5 4	3 7 6 2
			GR	4	3					
	W5	2840 -2844 m upper Sarvak	RHOB NPHI	5 5	5 5					
			DT	4	3					

Table 5

 5 

-6)

. For thinbed characterization (well#1): RMSE of GR in geometry-based algorithm, i.e. ±6.50, is reduced to ±0 (column of simulator uncertainty), i.e. 100% error reduction. RMSE of RHOB, ±0.031, is reduced to ±0.028, i.e. 71% reduction in the uncertainty of the output. Similarly, error of NPHI is reduced by 66%. For well#3, RMSE of RHOB is increased in DST-based algorithm by 65%, while its NPHI is reduced by 56%. But DST-based algorithm does not estimate the thickness of thin-beds.

Table 6 -

 6 1. Comparing different algorithms and cluster numbers. The clustering algorithms are: k-means (KM), Fuzzy cmeans (FCM), Gustafson-Kessel (GK) and Gath-Geva (GG). *Only one cluster is detected. **Only two clusters are detected. ^The clusters are intervened completely (due to the histogram) so the PM is unreliable.

		Algorithm	3 clusters	4 clusters	5 clusters	6 clusters
			CM=100%	CM=100%	CM=95%	CM=95%
		KM	𝐼𝑛𝑡 𝑎𝑣𝑒 =23%	𝐼𝑛𝑡 𝑎𝑣𝑒 =19%	𝐼𝑛𝑡 𝑎𝑣𝑒 =17%	𝐼𝑛𝑡 𝑎𝑣𝑒 =15%
			PM=4.4**^	PM=5.3**^	PM=5.7**	PM=6.4**
			CM=100%	CM=100%	CM=100%	CM=100%
	Well 1	FCM	𝐼𝑛𝑡 𝑎𝑣𝑒 =23% PM=4.4**^ CM=100%	𝐼𝑛𝑡 𝑎𝑣𝑒 =20% PM=5.0** CM=100%	𝐼𝑛𝑡 𝑎𝑣𝑒 =19% PM=5.3** CM=100%	𝐼𝑛𝑡 𝑎𝑣𝑒 =16% PM=6.1 CM=100%
		GK	𝐼𝑛𝑡 𝑎𝑣𝑒 =30%	𝐼𝑛𝑡 𝑎𝑣𝑒 =24%	𝐼𝑛𝑡 𝑎𝑣𝑒 =25%	𝐼𝑛𝑡 𝑎𝑣𝑒 =21%
			PM=3.3**^	PM=4.2**^	PM=4.0**	PM=4.8**
			CM=100%	CM=100%	CM=100%	
		GG	𝐼𝑛𝑡 𝑎𝑣𝑒 =19%	𝐼𝑛𝑡 𝑎𝑣𝑒 =27%	𝐼𝑛𝑡 𝑎𝑣𝑒 =22%	Nan
			PM=5.1*	PM=3.7*^	PM=4.5*	
			CM=96%	CM=97%	CM=97%	CM=86%
		KM	𝐼𝑛𝑡 𝑎𝑣𝑒 =29%	𝐼𝑛𝑡 𝑎𝑣𝑒 =28%	𝐼𝑛𝑡 𝑎𝑣𝑒 =27%	𝐼𝑛𝑡 𝑎𝑣𝑒 =25%
			PM=3.4	PM=3.5	PM=3.6	PM=3.5
			CM=96%	CM=98%	CM=97%	CM=97%
	Well 2	FCM	𝐼𝑛𝑡 𝑎𝑣𝑒 =29% PM=3.4 CM=100%	𝐼𝑛𝑡 𝑎𝑣𝑒 =26% PM=3.7 CM=87%	𝐼𝑛𝑡 𝑎𝑣𝑒 =26% PM=3.7 CM=97%	𝐼𝑛𝑡 𝑎𝑣𝑒 =24% PM=4.1 CM=73%
		GK	𝐼𝑛𝑡 𝑎𝑣𝑒 =41%	𝐼𝑛𝑡 𝑎𝑣𝑒 =36%	𝐼𝑛𝑡 𝑎𝑣𝑒 =27%	𝐼𝑛𝑡 𝑎𝑣𝑒 =23%
			PM=2.5	PM=2.4	PM=3.6	PM=3.1
			CM=100%	CM=100%	CM=100%	CM=100%
		GG	𝐼𝑛𝑡 𝑎𝑣𝑒 =29%	𝐼𝑛𝑡 𝑎𝑣𝑒 =31%	𝐼𝑛𝑡 𝑎𝑣𝑒 =21%	𝐼𝑛𝑡 𝑎𝑣𝑒 =31%
			PM=3.4*	PM=3.2*	PM=4.9**	PM=3.2*
			CM=93%	CM=87%	CM=84%	CM=78%
		KM	𝐼𝑛𝑡 𝑎𝑣𝑒 =19%	𝐼𝑛𝑡 𝑎𝑣𝑒 =16%	𝐼𝑛𝑡 𝑎𝑣𝑒 =15%	𝐼𝑛𝑡 𝑎𝑣𝑒 =14%
			PM=4.9	PM=5.4	PM=5.6	PM=5.6
			CM=92%	CM=86%	CM=79%	CM=82%
	Well 3	FCM	𝐼𝑛𝑡 𝑎𝑣𝑒 =19% PM=4.8 CM=89%	𝐼𝑛𝑡 𝑎𝑣𝑒 =16% PM=5.3 CM=89%	𝐼𝑛𝑡 𝑎𝑣𝑒 =15% PM=5.4 CM=91%	𝐼𝑛𝑡 𝑎𝑣𝑒 =14% PM=5.8 CM=91%
		GK	𝐼𝑛𝑡 𝑎𝑣𝑒 =24%	𝐼𝑛𝑡 𝑎𝑣𝑒 =23%	𝐼𝑛𝑡 𝑎𝑣𝑒 =23%	𝐼𝑛𝑡 𝑎𝑣𝑒 =22%
			PM=3.7	PM=3.8	PM=3.9	PM=4.2
			CM=92%	CM=70%	CM=84%	CM=89%
		GG	𝐼𝑛𝑡 𝑎𝑣𝑒 =25%	𝐼𝑛𝑡 𝑎𝑣𝑒 =19%	𝐼𝑛𝑡 𝑎𝑣𝑒 =16%	𝐼𝑛𝑡 𝑎𝑣𝑒 =21%
			PM=3.7	PM=3.7	PM=5.2	PM=4.2

Table 6 -

 6 2. Batch optimization of removing core porosity extremes. The optimization is achieved on the best cases of Table6-1. The calculated values are RMSE.

	Extreme removal (%)  Estimator 	10	20	30	40	50	60	70
	W1-FCM6	6.12 5.07 5.22 5.37 5.47 5.35 5.45
	W2-FCM6	3.75 3.72 3.79 3.46 3.37 3.32 3.52
	W3-FCM6	6.79 6.75 6.17 6.19 6.34 6.27 6.27
	W4-FCM5	6.87 6.79 6.73 6.70 6.85 6.78 6.77

Table 6 -

 6 3. Sequential optimization of removing core porosity extremes. The calculated numbers are RMSE. In each row, while the percentage of each cluster is changing, the other percentages are fixed. For the first row of each well, all the percentages are chosen based on the best optimization process of Table6-2, then modified based on the best results of the previous row.

		Extreme removal (%)  Cluster number 	10	20	30	40	50	60	70
		1	6.12	5.07	5.52	5.35	5.44	5.32	5.46
	W1-FCM6	2 3 4 5	5.07 5.07 5.07 5.07	5.07 5.07 5.07 5.07	5.07 5.07 5.07 5.07	5.07 5.07 5.07 5.09	5.07 5.07 5.07 5.09	5.07 5.07 5.07 5.09	5.07 5.07 5.07 5.06
		6	5.06	5.06	5.06	5.06	5.06	5.06	5.06
		1	3.36	3.36	3.37	3.37	3.46	3.35	3.35
	W2-FCM6	2 3 4 5	3.76 3.26 3.23 3.23	3.71 3.26 3.25 3.23	3.79 3.26 3.24 3.23	3.44 3.26 3.26 3.23	3.26 3.26 3.26 3.23	3.35 3.26 3.26 3.23	3.55 3.26 3.23 3.23
		6	3.23	3.23	3.23	3.23	3.23	3.23	3.23
		1	6.31	6.32	6.17	6.20	6.34	6.28	6.27
	W3-FCM6	2 3 4 5	6.24 6.18 6.11 6.55	6.16 6.18 6.15 6.49	6.17 6.16 6.15 6.09	6.19 6.17 6.11 6.10	6.22 6.15 6.09 6.09	6.19 6.16 6.10 6.09	6.16 6.15 6.10 6.09
		6	6.08	6.14	6.09	6.10	6.11	6.12	6.17
	W4-FCM5	1 2 3 4	6.67 6.69 6.74 6.72	6.72 6.69 6.71 6.65	6.75 6.67 6.67 6.64	6.70 6.67 6.67 6.67	6.87 6.67 6.68 6.66	6.81 6.67 6.68 6.67	6.93 6.67 6.69 6.59
		5	6.66	6.64	6.61	6.59	6.58	6.57	6.50
		1	5.16	5.14	5.15	5.09	5.05	5.08	5.12
	W5-KM6	2 3 4 5	5.09 5.03 5.29 5.02	5.03 5.03 5.20 4.99	5.03 5.03 5.25 5.00	5.04 5.03 5.06 5.02	5.05 5.03 5.03 5.03	5.05 5.03 5.07 5.04	5.05 5.03 5.30 5.05
		6	4.99	4.99	4.99	4.99	4.99	4.99	4.99

Table 6 -

 6 4. Final removal percentages of each cluster for different estimators.

	Cluster number  Estimator 	1	2	3	4	5	6
	W1-FCM6	20	10	10	10	70	10
	W2-FCM6	60	50	10	10	10	10
	W3-FCM6	30	20	50	50	30	10
	W4-FCM5	10	30	30	70	70	-
	W5-KM6	50	20	10	50	20	10

Figure 5-6. a) Ideal-log, synthetic-log, uncertainty range and realizations of case 1. b) Error profiles: Comparison of constraint-based errors vs. depth between the simulators in case 1. c) Total error for 50 iterations.

Figure A 7. Well#3. Same descriptions as in Figure A 6.

Figure A 8. Well#4. Same descriptions as in Figure A 6.Figure A 9. Well#5. Same descriptions as in Figure A 6.
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completely occupied by the thin-bed (probability of 1 in dotted and dashed lines, Figure 34567891011121314).

As before, the thinner the bed, the less probability of detection (linear parts in dotted and dashed lines, Figure 3 -14). The probability in Figure 3-14, is very the same as Cumulative Distribution Function (CDF), since a thick bed has a cumulative behaviour of thinner beds. "Belief function" has the meaning of "lower probability" in the literature. It is a fuzzy measure, which is less than probability measure, and presents a pessimistic view towards the chance of happening [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF][START_REF] Dempster | A Generalization of Bayesian Inference[END_REF]. In non-volumetric recordings (VRmf=0), probability of detecting a bed, thinner than SR is linear , while this part is absolutely zero due to belief function . In volumetric recordings with 0<VRmf<SR, when the bed is thicker than the summation of SR+VRmf, we are sure that at least one record will be fully affected from the bed. Finally, it is obvious that when the bed is thinner than VRmf, volume of investigation of no detection is completely occupied by the bed.

The mentioned interpretations could be adjusted using Figure 3 Volumetric Nyquist frequency is defined in Relation 3-5. The minimum thickness of beds to be detected (probably or surely) are presented in Table 3-3. The difference between these two thicknesses is an uncertain interval, i.e. the thin-bed will probably be detected but no guarantee to be characterized. Interestingly, the uncertain interval remains constant for all the three categories (Table 3-3).

𝑓𝑟 𝑁𝑞,𝑣𝑜𝑙 = 1 𝑆𝑅 + 𝑉𝑅𝑚𝑓 (3)[START_REF]Multi-well-log thin-bed characterization The well-logs of the thinnest characterized bed, observation#7 of Table 4-3, are provided and interpreted ([END_REF](5) Consider a thin-bed with petrophysical value of 𝑞 2 , between two thick beds .

The synthetic-log would be an average of 𝑞 1 , 𝑞 2 and 𝑞 3 , weighted by the membership function, over a VRmf . Reminding that the membership function shows contribution of each horizon to the recording. For example, in the configuration III, Figure 4-2b, it is expected to have a larger weight for 𝑞 1 because it occupies larger volume of investigation. The convolution form of Relation 4-2 is previously developed for calculating susceptibility log [START_REF] Desvignes | Direct determination of the natural remanent magnetization effect in a hole drilled in layered ground from magnetic field and susceptibility logs[END_REF] (Appendix A).

The synthetic-log could be solved in a discrete space. The volume of investigation in Figure 4-2b is subdivided into four parts: 𝑆 1 , 𝑆 2 , 𝑆 3 and 𝑆 4 , and simply the ratio of 𝑆 𝑖 to ∑ 𝑆 𝑖 is defined as the weight of each n parts in the averaging (Relation 4-3). 4-3). b) A case-study in well#3, verified with the core box (yellow circles). The thin-bed interpretation is inclined upward since the well-logs have an upward skewness.

Geometry-based algorithm has the following advantages: it (i) estimates the thickness of thin-bed, (ii) corrects (deconvolves) the petrophysical value of a well-log at the depth of thinbed, (iii) is easy to understand the methodology basis. Whereas the disadvantages are: the algorithm (i) does not provide a complete curve, i.e. the estimation belongs only to a single point, and (ii) is time consuming and not automated.

∫ 𝑃(𝐴 𝑖 ) × 𝑑𝐴 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑠𝑒𝑡 = 1; 𝐴 𝑖 ∩ 𝐴 𝑗 = ∅; 𝑖 ≠ 𝑗

(5-1)

Considering 𝑃𝐷𝐹 𝑖 as distribution function of the ith recording point, therefore 𝑃𝐷𝐹 𝑖-1 and 𝑃𝐷𝐹 𝑖+1 will be adjacent distribution functions, having an intersection with 𝑃𝐷𝐹 𝑖 . So, Relation 5-2 would be valid.

(5-2)

For satisfying Relation 5-1, the left-hand side of Relation 5-2 is divided by the number of PDFs, i.e. averaging PDFs. The result is a new probability function, PDFX, are given in Figure 5-1. For each of new PDFs, Shannon entropy and VRmf are calculated, and due to 

Mass function of focal element of recording

Corresponding to each 𝐹𝐸 𝑟 , a mass value is defined, which is free to move inside it. In addition to the BOE, redistribution of the mass has to obey the constraints of the problem, here geological and technical conditions. Mass function is always non-negative, and the summation of mass values over all the focal elements should be one (Relation 2-1).

Petrophysical well-logging is a volumetric measurement, i.e. assigns a single value to a volume of investigation. So, these recordings satisfy the requirements of designing a BOE:

well-log as mass function, corresponding to the volume of investigation (focal element). Hence, uncertainty of well-logs could be modelled by DST, and the ignored geological heterogeneity could be rebuilt. In order to satisfy Relation 2-1, mass function is defined as normalized value of well-log. Modelling unpredicted situations is not the concern of this study, therefore the mass function of null set (𝜙), does not take part in the calculations, i.e. 𝑚(𝜙) = 0. The null function in DST corresponds to a situation that the defined BOE is not valid, e.g. well-logging under abnormal situations: high-noise, logging tool not working properly, turbulences, etc.

Belief and plausibility functions for focal element of target

Theoretical functions of belief and plausibility

Due to Figure 5-2, the recorded well-log consists of four subset focal elements of target.

The petrophysical value of each focal element of target affects the four adjacent well-log recordings. In the language of BOE, mass values of the four adjacent focal elements of recording could freely pass through a common focal element of target (𝐹𝐸 23 𝑡 , Figure 5-2). DSTbased structure helps us to find lower (belief) and upper (plausibility) probabilities for each focal element of target (Relations 2-2 and 2-3).

Geological constraints as an axiomatic structure

Whereas Relations 2-2 and 2-3 are valuable theoretically for defining belief and plausibility, they are not practically useful because the uncertainty range will be too large due to: (i) belief

Log simulators

The uncertainty range provides an interval in which the real-log probably occurs. In this section, four DST-based simulators are developed in order to modify the well-log to a simulated-log with improved vertical resolution.

Random simulator

This is the simplest designed simulator that only produces uniform random values between belief and plausibility values. Heterogeneity is the highest in the uniform distribution, so the simulator generates the most heterogeneous realizations, which is usually desired in unknown geological conditions. In fact, this is a base simulator, and it is expected that other simulators provide more accurate results in general.

Random-optimization simulator

Second simulator starts by random simulation again, followed by a sequential optimization process, based on the volumetric constraint of well-logs. It means that each record should be a weighted average of simulated values within an interval of a vertical resolution (Relation 5-5

and Figure 5-4). Within the interval, the distance is defined as an extraction of well-log from the weighted average of the corresponding simulations (Relation 5-6 and Figure 5-4).

(5-5)

𝑑𝑖𝑠𝑡(𝑖) ≜ |𝑤𝑙(𝑖) -𝑤𝑙 𝑠 (𝑖)|

( [5][6] where 𝑤𝑙 𝑠 (𝑖) is the weighted average of simulated-log, 𝑠𝑖𝑚(𝑗), over a vertical resolution.

Vertical resolutions of 𝑤𝑙 𝑠 (𝑖) and 𝑠𝑖𝑚(𝑗) correspond to 𝐹𝐸 𝑖 𝑟 and 𝐹𝐸 𝑖 𝑡 , respectively. 𝑑𝑖𝑠𝑡(𝑖) is distance of the well-log, 𝑤𝑙(𝑖), from 𝑤𝑙 𝑠 (𝑖), both have the same vertical resolution, so they are comparable. 𝑤𝑙 𝑠 (𝑖), 𝑠𝑖𝑚(𝑗) and 𝑑𝑖𝑠𝑡(𝑖) are functions of depth. 𝑛 𝑓𝑢𝑠𝑒 is the number of adjacent simulations, within a vertical resolution, e.g. 𝑛 𝑓𝑢𝑠𝑒 = 5 in Figure 5-4.

Evidently in subsurface geology, we do not have ideal-logs, so Relation 5-8 is practical only in synthetic cases. In real data, instead of ideal error, summation of distances (Relation 5-6) is used as a validation criterion. Since the distance is based on the volumetric constraint of welllogs, the criterion is named "constraint-based error". Both ideal-and constraint-based errors are applied on synthetic data, showing a high correlation coefficient (R 2 =0.89, Figure 56789). The advantages of using constraint-based error is fourfold: it (i) provides an error for each horizon (error profile), (ii) calculates the total error (integral of error profile), (iii) validates the welllog, such as other measurements like core, well-tests or ideal-log are not needed, and (iv)

correlates highly with ideal-based error.

The algorithm

The algorithm consists of two parts: (i) DST uncertainty assessment and (ii) simulation (dashed rectangles, Figure 5-5b). In the first part, the uncertainty range of each record is defined and in the second part, the simulation is applied within the uncertainty range. The details of stages of the algorithm are provided below, and the background of each part was previously discussed.

(i) Input: the algorithm assesses well-logs individually, i.e. the algorithm has to be applied on a single selected well-log. The well-logs without volume of investigation, like geochemical logs or calliper log, could not be chosen. Both synthetic-and real well-logs could be used in the algorithm.

(ii) Vertical resolution: corresponding to the vertical dimension of volume of investigation of the selected well-log, the vertical resolution should be defined. The catalogue of the logging instrument could be used for this purpose. In case no catalogue is available, vertical resolution could be approximated by a measure of continuity, like variograph. To find out the number of adjacent records correlated with each other, three steps are addressed (3.2.2.1 Variography analysis):

(ii-i) Experimental variography analysis.

(ii-ii) Selection of its linear part.

the same optimization procedure (Figure 567); so convergence of the realizations is anticipated.

The same reasoning is valid for the other cases (Appendix B). reached within only 6 epochs (Figure 567). Therefore, less time is required for recursiveoptimization simulator to reach a local optimum point (a terminology in machine learning that means a local minimum error of a complex objective function). In the synthetic cases, recursiveoptimization simulator is the best. Recursive simulator is never successful, compared to the others, but random simulator provides the best result only in case 4 whereas the other simulators are not satisfactory (Table 5-2 andFigure 5-8). 

Validating constraint-based error by synthetic cases

It is impossible to calculate ideal-based error in the real well-log data, because it needs an ideal-log that does not exist in real cases. Instead, it is suggested to use developed constraintbased error, i.e. summation of distances in Relation 5-6. To verify constraint-based error, the 5.9 Discussions

Comparing DST and geometry-based results in thin-bed characterization

A thin-bed at the depth of 3158.19 m (2802.9 m) within well#1 (well#3) is characterized by both the developed thin-bed characterization algorithms (Table 56). Noteworthy that DSTbased algorithm is more precise than geometry-based algorithm when the uncertainty measures (column of DST-based algorithm) are smaller than the Root Mean Square Error (RMSE)

(column of geometry-based algorithm) (Table 56). On the other hand, if the RMSE is smaller than the uncertainty measures, it does not necessarily mean that geometry-based algorithm is more precise than DST-based algorithm. 

Final thickness (cm) 13.17 ±7.5

The process of Relations 5-9 to 5-12 proves mathematically that RMSE is smaller than the |𝑥 𝑖 -𝑧 𝑖 | ≤ 𝑃𝑙𝑠 -𝐵𝑒𝑙

(5-9)

⟹ { (𝑥 𝑖 -𝑧 𝑖 ) 2 ≤ (𝑃𝑙𝑠 -𝐵𝑒𝑙) 2 ; 𝑖𝑓 𝑃𝑙𝑠 -𝐵𝑒𝑙 ≥ 1 (𝑥 𝑖 -𝑧 𝑖 ) 2 > (𝑃𝑙𝑠 -𝐵𝑒𝑙) 2 ; 𝑖𝑓 𝑃𝑙𝑠 -𝐵𝑒𝑙 < 1

(5-10)

> (𝑃𝑙𝑠 -𝐵𝑒𝑙) 2 ; 𝑖𝑓 𝑃𝑙𝑠 -𝐵𝑒𝑙 < 1

(5-11)

< 𝑃𝑙𝑠 -𝐵𝑒𝑙; 𝑖𝑓 𝑃𝑙𝑠 -𝐵𝑒𝑙 < 1

(5-12)

Advantages of DST-based algorithm

The principle goal of DST-based algorithm is "uncertainty assessment of the well-logs". By means of the DST, the overall uncertainty is not reduced. In fact, the depth uncertainty (𝑈𝑁𝐶 𝑑 ) is converted to the value uncertainty (𝑈𝑁𝐶 𝑣 ). Heisenberg's uncertainty principle [START_REF] Busch | Heisenberg's uncertainty principle[END_REF] is still valid in this context. So, multiplication of value uncertainty by depth uncertainty is always higher than a certain value of delta (Relation 5-13).

𝑈𝑁𝐶 𝑑 × 𝑈𝑁𝐶 𝑣 ≥ 𝛿

(5-13)

Conclusions of Chapter 5

The very first application of volumetric Nyquist frequency is in the up-scaling. The goal in the up-scaling is to reduce the data volume, i.e. increase of SR while integrating the adjacent data. Hence, the destructive effects of VRmf and SR have to be considered simultaneously in the final resolution of up-scaling.

Volumetric nature of the well-logs imposes resolution limitation on the recordings, i.e. the measurements are not well-representative of high-frequency petrophysical variations, and only provide an average value over the interval of measurement (between the transmitter and the receivers). For coping with this resolution problem, a DST-based algorithm using four simulators is devised to modify well-logs and improve the vertical resolution (Figure 5-5b).

Comparing the consistency of the theories of probability, possibility and DST analytically proved that the DST is capable in uncertainty assessment of well-logs.

The application of the proposed DST-based algorithm was checked on synthetic and real data. Recursive-optimization simulator was the best simulator for uncertainty assessment in the synthetic cases, and random-optimization simulator provided the most precise realizations in the real well-logs. The reason is that getting close to the global optimum point is much more difficult in the well-log data, because of heterogeneity, and the vast random generation process helps more effectively in searching for the optimum point in real data.

Realization selection is achieved through two errors: constraint-and ideal-based errors.

Ideal-based error is only practical in synthetic cases, where ideal-log is predefined. While constraint-based error does not need any reference, i.e. ideal-log, for assessing simulated-log. 

Constraint

Uncertainty projection on reservoir parameters

Highlights of Chapter 6

 Cluster analysis on NPHI, RHOB and DT well-logs is used for the purpose of porosity analysis.

 Fuzzy numbers are used to interpret porosity value, and providing uncertainty range.

 Fuzzy arithmetic is applied to calculate fuzzy numbers of irreducible water saturation and permeability.

 Fuzzy number of irreducible water saturation provides better (less overestimation) results than crisp assessment.

 Fuzzy number of permeability was very much successful in well#5, not successful in wells #1 and #4.

 When the porosity interval (clusters) is incompatible with the core porosity, the permeability fuzzy numbers are not valid, e.g. in well#4.

Importance of cluster analysis in well-log interpretation

Red circle on the cross-plot of NPHI-RHOB contains several neighbouring data (Figure 6-1a). How much these neighbouring data points vary from each other? If we reacquire RHOB or NPHI well-logs, will the data remain exactly at their current coordinates? Of course there is a big possibility of displacement of data points in the second run of logging instruments. The coordinate's variation results in an uncertainty for each data, sourced from the measurement.

So, we propose to group (cluster) the neighbouring data for which their coordinates differences is meaningless.

In the clustering of Figure 6-1b, the data are not correlated within each cluster, while the whole data is highly correlated. It means that the logging instruments are unable to regenerate the general correlation, i.e. the correlation of the whole data, within each cluster. Cluster analysis is used in this chapter to reconstruct the uncertainty range of the well-logs. The uncertainty range of the data within each cluster is the same. Idealistically, this range should contain all the well-log values of all the geological formations, within the volume of investigation.

Cluster analysis does unsupervised grouping of data, based on a measure of similarity.

Unsupervised categorization means no predefined label is available for each group. Therefore the algorithm has to find the number of clusters and the cluster limits. As an example in Figure 6-1b, the dataset is clustered into five clusters due to the distance in a three-dimensional space for NPHI, RHOB and DT. The other advantage of clustering is that further processing steps could be addressed for each cluster, individually. For instance, in the porosity estimation, the calibration of results will be checked in each cluster, individually. Furthermore, cluster-based manipulation of data helps modelling the local variations.

Generalization ability and homogeneous zone of porosity

The estimators W1-FCM6, W3-FCM6 and W5-KM6 have about the same RMSE in wells #1, #3 and #5 (Figure 67). Well#4 (the southernmost) is incompatible with the other wells, i.e. the other estimators do not estimate porosity precisely in well#4. In addition, the estimator, trained and calibrated in well#4, i.e. W4-FCM5, is neither accurate in the other wells. To check the reason of isolation of well#4, all the wells were ordered due to the RMSE of each estimator (Table 6-5). The estimator W1-FCM6 is more accurate in wells #2 and #5 than in well#1 (Table 6-5).

So, the generalization ability of this estimator is about 10 km from the north (distance between wells #1 and #5) and 10 km from the south (distance between wells #1 and #2) (Figure 678).

Based on the same logic, the estimators W3-FCM6 and W5-KM5 could be generalized up-to about 30 km (toward south) and 20 km (toward south and north), respectively (Table 6-5). The estimators W2-FCM6 and W4-FCM5 are the best local estimators, while they show high errors in the other wells. Hence, they could be interpreted, especially in well#4, as located within another porosity zones. Finally, a homogeneous porosity zone is considered for wells #1, #3 

Methodology of permeability analysis by fuzzy arithmetic

We applied fuzzy arithmetic on empirical relations of irreducible water (Relation 2-34) and Wylie-Rose . For the relation of irreducible water, shale percentage is estimated by normalizing GR, and its power is set to be one, m=1. Buckles number is calculated from the core data in each well (Table 6-6). The porosity is included in the calculations as a triangular fuzzy number. The fuzzy number is defined by clustering-based method of porosity analysis. Its minimum and maximum are derived from the cluster limits of NPHI, and its height is the calibrated NPHI value. When the calibrated NPHI is out of range of the NPHI cluster, a rectangular fuzzy number is defined between the limits of the cluster.

In the next step, permeability (Relation 2-35) is calculated twice with the constants of Morris-Biggs and Timur (Table 23). The precision of domain of digitized fuzzy numbers of porosity, irreducible water saturation and permeability are 1%, 1% and 0.01 mD, respectively.

The domains of permeability fuzzy numbers could vary from zero to 1000 mD. The precisions of domains and the size of domains of fuzzy numbers are effective factors to save calculation time and memory. The proposed values are optimum for a computer with a RAM of 16

gigabytes. If we decrease the precisions, the small permeability values could not be calculated.

On the other hand, if we decrease the domain, large fuzzy numbers could not be completely created.

Calculations in fuzzy arithmetic should be done in separate steps. In each step, only one fuzzy operator could be applied. Calculating irreducible water (Relation 2-34) is addressed in two steps. In the first step, the ratio of buckles number to the 1 -𝑉 𝑠ℎ is computed with normal operators (Relation 6-2). Then, a is converted to a fuzzy number, A, with height at a and zero

In well#4, the crisp and fuzzy evaluation of irreducible water saturation values are not compatible. The reason is that the porosity clusters (and fuzzy numbers of porosity) are not compatible with NPHI, so the input porosity for the fuzzy irreducible water is lower than in the crisp value, resulting in lower irreducible water in the fuzzy state (Figure 6-12d).

Permeability fuzzy numbers

In well#1, fuzzy numbers do not match core permeability (Figure 6-14a,b). In wells #2 and #3, both the fuzzy and crisp approaches have well identified a very low permeability (~0 mD), however a big overestimation occurred in the nonzero values (Figure 6-14c-f). In well#4, the incompatibility of the porosity clusters resulted in big uncertainty intervals (α-cuts), Figure 6-14g,h, so the method is unsuccessful when there is incompatibility of core porosity and corresponding fuzzy number. In well#5, the permeability fuzzy number matches very well with the core permeability (Figure 6-14i,j).

The outputs of Morris-Biggs and Timur methods are very close to each other, however Timur method could be a little prioritized . Wylie-Rose model for permeability estimation (Morris-Biggs and Timur) is not an accurate model in the current oil-field (Figure 6-14). The uncertainty interval, produced by fuzzy arithmetic, is not capable in containing the core permeability values. So, it is suggested to apply fuzzy arithmetic to more complicated permeability models, which are more accurate in the available dataset.

Conclusions of Chapter 6

Cluster-based calibration of NPHI provides accurate estimation of core porosity. The average RMSE of the proposed porosity estimation method is 5.15, which at is less than the conventional methods (at least 33%, Figure 6-6). The generalization of the proposed method is 42% less accurate, i.e. RMSE=7.3 .In addition, the NPHI range in each cluster provides an uncertainty interval for the porosity. Fuzzy number of porosity is defined within the interval of uncertainty.

uncertainty assessment of the geological projects are summarized by (i) clear definition of the aim of study, (ii) distinguished uncertainty sources and (iii) definition of the scale(s) of study.

Figure 7-1. Larger the dimension, smaller the uncertainty range of measurements in petrophysical variables (here porosity). From this viewpoint, the uncertainty (also heterogeneity) has a statistical aspect. 
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Outlined achievements of the thesis

 Despite of the commonly accepted belief, the vertical dimension of volume of investigation of well-logs is larger than the tool spacing (distance between the transmitter and receiver). By the aides of variographs, the vertical dimensions of volume of investigation of GR, RHOB, NPHI and DT are approximated to be 61, 76, 76 and 61 cm, respectively.

 For analysing the volumetric signals, like well-logs, volumetric Nyquist frequency is proposed. Hence, in order to characterize a geologic bed, its thickness have to be more than the summation of sampling rate and vertical dimension of volume of investigation. The application of volumetric Nyquist frequency is useful in determining the precision and the value of data, after upscaling. The goal of upscaling is to reduce the volume of data by fusing the adjacent well-log records. So, the destructive effects of both vertical resolution and sampling rate have to be considered simultaneously.

 The regression-based deconvolution relations are developed for GR, RHOB and NPHI welllogs (based on geometric method). These relations are effective when the thickness of the bed is less than 30 cm, and underlying and overlying beds have relatively the same petrophysical properties. The difference of the petrophysical values of the thin-bed and the surrounding beds have to be less than 30 API, 0.15 g.cm -3 and 30% for GR, RHOB and NPHI, respectively.

 The thickness estimation after applying deconvolution relations is from 40 to 80 times more accurate than before deconvolution. The standard deviation of thickness estimation is 4.4 cm, which is a very small error, when comparing with the vertical dimension of volume of investigation, which is more than 60 cm. In addition, petrophysical characterization of thinbed is now more accurate. RMSE of GR, RHOB and NPHI of thin-bed is reduced from 42.25 to 20.20, from 0.003 to 0.001 and from 139.61 to 39.99, respectively.

 The corrected NPHI (after deconvolution) is compared to the core porosity. NPHI before deconvolution was 3.8%, and after being deconvolved, it became 11.7%. Core porosity, representing the effective porosity, was 8.4%. So, the deconvolved NPHI is higher than the core porosity. It is thus more accurate than the original NPHI, since the total porosity (NPHI)

have to be more than the effective porosity (core porosity).

 The estimated thickness of the same thin-bed by geometric method is 13±7.5 cm, which is smaller than thickness of thin-bed in the core box (<25cm). The estimated thickness seems to So, the developed methodology is more accurate in symmetric cases.  Other publications:
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Masoudi P., Aïfa T., Memarian H., Tokhmechi B., (ready for submission). Uncertainty assessment of porperm by clustering algorithm and fuzzy arithmetic. Moradi M., Tokhmechi B., Masoudi P., (minor revision). Inversion of well logs into rock types, lithofacies and environmental facies, using pattern recognition, a case-study of carbonate Sarvak Formation. Carbonates & Evaporates

Abstract

In the subsurface geology, characterization of geological beds by well-logs is an uncertain task. The thesis mainly concerns studying vertical resolution of well-logs (question 1). In addition, fuzzy arithmetic is applied to experimental petrophysical relations to project the uncertainty range of the inputs to the outputs, here irreducible water saturation and permeability (question 2). Regarding the first question, the logging mechanism is modelled by fuzzy membership functions. Vertical resolution of membership function (VRmf) is larger than spacing and sampling rate. Due to volumetric mechanism of logging, volumetric Nyquist frequency is proposed.

Developing a geometric simulator for generating synthetic-logs of a single thin-bed enabled us analysing sensitivity of the well-logs to the presence of a thin-bed. Regression-based relations between ideal-logs (simulator inputs) and synthetic-logs (simulator outputs) are used as deconvolution relations for removing shoulder-bed effect of thin-beds from GR, RHOB and NPHI well-logs. NPHI deconvolution relation is applied to a real case where the core porosity of a thin-bed is 8.4%. The NPHI well-log is 3.8%, and the deconvolved NPHI is 11.7%. Since it is not reasonable that the core porosity (effective porosity) be higher than the NPHI (total porosity), the deconvolved NPHI is more accurate than the NPHI well-log. It reveals that the shoulder-bed effect is reduced in this case. The thickness of the same thin-bed was also estimated to be 13±7.5 cm, which is compatible with the thickness of the thin-bed in the core box (<25 cm). Usually, in situ thickness is less than the thickness of the core boxes, since at the earth surface, there is no overburden pressure, also the cores are crushed.

Dempster-Shafer Theory (DST) was used to create well-log uncertainty range. While the VRmf of the well-logs is more than 60 cm, the VRmf of the belief and plausibility functions (boundaries of the uncertainty range) would be about 15 cm. So, the VRmf is improved, while the certainty of the well-log value is reduced. In comparison with geometric method, DSTbased algorithm resulted in a smaller uncertainty range of GR, RHOB and NPHI logs by 100%, 71% and 66%, respectively.

In the next step, cluster analysis is applied to NPHI, RHOB and DT for the purpose of providing cluster-based uncertainty range. Then, NPHI is calibrated by core porosity value in each cluster, showing low RMSE compared to the five conventional porosity estimation models (at least 33% of improvement in RMSE). Then, fuzzy arithmetic is applied to calculate fuzzy numbers of irreducible water saturation and permeability. Fuzzy number of irreducible water saturation provides better (less overestimation) results than the crisp estimation. It is found that when the cluster interval of porosity is not compatible with the core porosity, the permeability fuzzy numbers are not valid, e.g. in well#4. Finally, in the possibilistic approach (the fuzzy theory), by calibrating α-cut, the right uncertainty interval could be achieved, concerning the scale of the study. Keywords: well-log uncertainty, vertical resolution, volumetric Nyquist frequency, thin-bed characterization, Dempster-Shafer, fuzzy arithmetic