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Abstract 

In the subsurface geology, characterization of geological beds by well-logs is an uncertain 

task. The thesis mainly concerns studying vertical resolution of well-logs (question 1). In 

addition, fuzzy arithmetic is applied to experimental petrophysical relations to project the 

uncertainty range of the inputs to the outputs, here irreducible water saturation and permeability 

(question 2). Regarding the first question, the logging mechanism is modelled by fuzzy 

membership functions. Vertical resolution of membership function (VRmf) is larger than 

spacing and sampling rate. Due to volumetric mechanism of logging, volumetric Nyquist 

frequency is proposed. 

Developing a geometric simulator for generating synthetic-logs of a single thin-bed enabled 

us analysing sensitivity of the well-logs to the presence of a thin-bed. Regression-based 

relations between ideal-logs (simulator inputs) and synthetic-logs (simulator outputs) are used 

as deconvolution relations for removing shoulder-bed effect of thin-beds from GR, RHOB and 

NPHI well-logs. NPHI deconvolution relation is applied to a real case where the core porosity 

of a thin-bed is 8.4%. The NPHI well-log is 3.8%, and the deconvolved NPHI is 11.7%. Since 

it is not reasonable that the core porosity (effective porosity) be higher than the NPHI (total 

porosity), the deconvolved NPHI is more accurate than the NPHI well-log. It reveals that the 

shoulder-bed effect is reduced in this case. The thickness of the same thin-bed was also 

estimated to be 13±7.5 cm, which is compatible with the thickness of the thin-bed in the core 

box (<25 cm). Usually, in situ thickness is less than the thickness of the core boxes, since at the 

earth surface, there is no overburden pressure, also the cores are crushed. 

Dempster-Shafer Theory (DST) was used to create well-log uncertainty range. While the 

VRmf of the well-logs is more than 60 cm, the VRmf of the belief and plausibility functions 

(boundaries of the uncertainty range) would be about 15 cm. So, the VRmf is improved, while 

the certainty of the well-log value is reduced. In comparison with geometric method, DST-

based algorithm resulted in a smaller uncertainty range of GR, RHOB and NPHI logs by 100%, 

71% and 66%, respectively. 
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In the next step, cluster analysis is applied to NPHI, RHOB and DT for the purpose of 

providing cluster-based uncertainty range. Then, NPHI is calibrated by core porosity value in 

each cluster, showing low RMSE compared to the five conventional porosity estimation models 

(at least 33% of improvement in RMSE). Then, fuzzy arithmetic is applied to calculate fuzzy 

numbers of irreducible water saturation and permeability. Fuzzy number of irreducible water 

saturation provides better (less overestimation) results than the crisp estimation. It is found that 

when the cluster interval of porosity is not compatible with the core porosity, the permeability 

fuzzy numbers are not valid, e.g. in well#4. Finally, in the possibilistic approach (the fuzzy 

theory), by calibrating α-cut, the right uncertainty interval could be achieved, concerning the 

scale of the study. 

Keywords: well-log uncertainty, vertical resolution, volumetric Nyquist frequency, thin-bed 

characterization, Dempster-Shafer, fuzzy arithmetic 
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Résumé étendu 

Application de l'approche hybride incertitude-partitionnement pour le prétraitement 

des données de diagraphie 

Dans la géologie de subsurface, la caractérisation des couches minces par les diagraphies est 

accompagnée d’incertitudes. Les sources de ces incertitudes proviennent des enregistrements 

discontinus (échantillonnage numérique), de l’acquisition volumétrique des données, des 

aspects techniques, etc. La thèse est principalement centrée sur l’étude de la résolution verticale 

des diagraphies (question 1). Dans la deuxième étape, l’arithmétique floue est appliquée aux 

modèles expérimentaux pétrophysiques en vue de transmettre l’incertitude des données 

d’entrée aux données de sortie, ici la saturation irréductible en eau et la perméabilité (question 

2). Afin de résoudre les questions sus-jacentes, on a appliqué les théories de Dempster-Shafer 

(DST), d’arithmétique floue, d’analyse de regroupement des données et les expressions 

empiriques pétrophysiques. 

Les diagraphies sont des signaux digitaux dont les données sont des mesures volumétriques. 

Le mécanisme d’enregistrement de ces données est modélisé par des fonctions d’appartenance 

floues (fuzzy membership functions). On a montré qu’il y avait trois types de résolution verticale 

pour les diagraphies : (i) le taux d’échantillonnage, (ii) l’espacement et (ii) la Résolution 

Verticale de la Fonction d’Appartenance (VRmf). Ils sont toujours en ordre descendant : 

VRmf>espacement>taux d’échantillonnage. Dans l’étape suivante, la fréquence de Nyquist est 

revue en fonction du mécanisme volumétrique de diagraphie ; de ce fait, la fréquence 

volumétrique de Nyquist est proposée afin d’analyser la précision des diagraphies. 

Basé sur le modèle de résolution verticale développée, un simulateur géométrique est conçu 

pour générer les registres synthétiques d’une seule couche mince. Le simulateur nous permet 

d’analyser la sensibilité des diagraphies en présence d’une couche mince. Les relations de 

régression entre les registres idéaux (données d’entrée de ce simulateur) et les registres 

synthétiques (données de sortie de ce simulateur) sont utilisées comme relations de 

déconvolution en vue d’enlever l’effet des épaules de couche (shoulder-bed effect ou l’effet des 

couches voisines) d’une couche mince sur les diagraphies GR, RHOB et NPHI. Les relations 
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de déconvolution ont bien été appliquées aux diagraphies pour caractériser les couches minces. 

Par exemple, pour caractériser une couche mince poreuse, on a eu recours aux données de 

carottage qui étaient disponibles pour la vérification : NPHI mesuré (3.8%) a été remplacé 

(corrigé) par 11.7%. NPHI corrigé semble être plus précis que NPHI mesuré, car la diagraphie 

a une valeur plus grande que la porosité de carottage (8.4%). Il convient de rappeler que la 

porosité totale (NPHI) ne doit pas être inférieure à la porosité effective (carottage). En plus, 

l’épaisseur de la couche mince a été estimée à 13±7.5 cm, compatible avec l’épaisseur de la 

couche mince dans la boite de carottage (<25 cm). Normalement, l’épaisseur in situ est 

inférieure à l’épaisseur de la boite de carottage, parce que les carottes obtenues ne sont plus 

soumises à la pression lithostatique, et s’érodent à la surface du sol. 

La Théorie de l’évidence de Dempster-Shafer (DST) est appliquée aux diagraphies. Le Corps 

Des Evidences (BOE) est défini à partir du mécanisme de diagraphie : si la diagraphie est 

considérée comme la fonction de masse, les éléments de références (focal elements) seraient les 

volumes d’investigation. Ensuite, les fonctions de croyance (belief ou probabilité inférieure) et 

de plausibilité (probabilité supérieure) sont calculées pour l’intersection de quatre ou cinq 

enregistrements adjacents de diagraphie. Par conséquent, l’intervalle d’incertitude de DST sera 

entre les fonctions de croyance et de plausibilité. Tandis que la VRmf des diagraphies GR, 

RHOB, NPHI et DT est ~60 cm, la VRmf des fonctions de croyance et de plausibilité est ~15 

cm. Or, on a perdu l’incertitude de la valeur de diagraphie, alors que la VRmf est devenue plus 

précise. 

Les diagraphies ont été ensuite corrigées entre l’intervalle d’incertitude de DST avec quatre 

simulateurs. Les hautes fréquences sont amplifiées dans les diagraphies corrigées, et l’effet des 

épaules de couche est réduit. La méthode proposée est vérifiée dans les cas synthétiques, la 

boite de carottage et la porosité de carotte. Les incertitudes de DST sur les diagraphies GR, 

RHOB et NPHI sont respectivement de 100%, 71% et 66%, donc inférieures à celles calculées 

par la méthode géométrique. 

L’analyse de partitionnement (cluster analyses) est appliquée aux diagraphies NPHI, RHOB 

et DT en vue de trouver l’intervalle d’incertitude, basé sur les grappes. Puis, le NPHI est calibré 

par la porosité de carottes dans chaque grappe. Le RMSE de NPHI calibré est plus bas par 
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rapport aux cinq modèles conventionnels d’estimation de la porosité (au minimum 33% 

d’amélioration du RMSE). Le RMSE de généralisation de la méthode proposée entre les puits 

voisins est augmenté de 42%. 

L’intervalle d’incertitude de la porosité est exprimé par les nombres flous (fuzzy numbers). 

L’arithmétique floue (fuzzy arithmetic) est ensuite appliquée dans le but de calculer les nombres 

flous de la saturation irréductible en eau et de la perméabilité. Le nombre flou de la saturation 

irréductible en eau apporte de meilleurs résultats en termes de moindre sous-estimation par 

rapport à l’estimation nette (crisp). Il est constaté que lorsque les intervalles de grappes de 

porosité ne sont pas compatibles avec la porosité de carotte, les nombres flous de la perméabilité 

ne sont pas valables, ex. du puits#4. 

Enfin, pour les études géologiques, il est suggéré de considérer « l’échelle de l’étude » à côté 

d’autres conditions préalables de l’évaluation de l’incertitude, c’est-à-dire le but de l’étude et 

les sources de l’incertitude. Etant donné les trois conditions préalables, on peut choisir notre 

approche de l’évaluation de l’incertitude, puis choisir une théorie, donc une méthodologie. Un 

avantage qu’apporte la théorie possibiliste est que la coupure α (α-cut) peut être calibrée pour 

atteindre un intervalle de l’incertitude approprié, correspondant à l’échelle de l’étude. 

Mots-clés : incertitude de diagraphie, résolution verticale, fréquence volumétrique de 

Nyquist, caractérisation de couche mince, Dempster-Shafer, arithmétique floue 
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1 Introduction 

 

Highlights of the Chapter 1 

 Volumetric mechanism of well-logging is one of the uncertainty sources of vertical resolution. 

 The first objective of the thesis is to model the vertical resolution of well-logs. 

 The second objective is to calculate a possibilistic uncertainty range of petrophysical 

interpretations, derived from well-logs. 

 Due to the literature, the goal of the study and the sources of uncertainty have to be addressed 

for all the uncertainty assessment studies. 

1.1 Uncertainty resources in well-logging 

Well-log is a digital signal, acquired through a drilled well. It represents some properties 

(petrophysical, geometrical and sometimes geochemical) of the wellbore. Comparing to the 

other subsurface data, i.e. cores and well-tests, well-logs are more available, denser and more 

continuous. The sampling rate in well-logs is about 15 cm, however each sample belongs to a 

volume of investigation with the dimension of about 7- 160 cm (Schlumberger, 2015). The 

larger the dimension of the volume of investigation, the less precise the acquired data. Thin-

bed problem arises when the beds are thinner than the vertical dimension of volume of 

investigation of the tool. 

Resolution of well-logs could be discussed vertically or horizontally. Horizontal resolution 

is equivalent to the depth of investigation, and vertical resolution can be defined by: (i) sampling 

rate, (ii) Vertical Resolution of Tool (VRT) or spacing between transmitter and transducer, and 

(iii) domain of Vertical Resolution of membership function (VRmf) (Figure 1-1). 

VRmf shows the degree of membership of the volume of investigation to each property value 

(Masoudi et al., 2017). When the sample under study is completely homogeneous, VRmf could 
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be replaced by a single value. However when the heterogeneity rises, wider windows have to 

be used (Figure 1-2). 

 
(a) 

 
(b) 

Figure 1-1. Schematic of basic concepts of logging: a) Vertical resolution of tool, membership function, depth of 
investigation and assigning horizon. b) Overlap of adjacent records and sampling rate. 

In addition to the resolution problem, like all the sensory data, well-logs are noise 

contaminated: white and coloured noises. White noise is a part of a signal (in frequency domain) 

that is weakly stationary, zero mean and uncorrelated (Gray and Lee, 2007). It contains usually 

high-frequencies, so resembles random behaviour. The associated white noise of each 

instrument is provided within the catalogues of the logging tools, like in Schlumberger (2015). 

Coloured noise is biased, low-frequency, and is related to the environmental changes, like 

temperature and pressure. Since the coloured noise is not random and its source is known, it is 

possible to remove (or to reduce) the effect of coloured noises, e.g. correcting gamma well-log 
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by removing the effect of mud-weight on the measurements. All the explained sources of 

uncertainty in well-logs, are summarized in Table 1-1. 

  
Figure 1-2. Using membership functions (right column) in representing a range of heterogeneity (lithology, porosity, etc.) of 
thin sections. 

1.2 The thesis questions and objectives 

1.2.1 Question I: vertical resolution of well-logs 

In conventional well-log interpretations (Figure 1-3), each depth is interpreted according to 

the nearest well-log record, could be named distance-based interpretation. The mechanism of 

well-logging is not taken into account, and we think that this approach is not the most precise 

way of interpreting well-logs. Instead of assigning each depth to the nearest well-log record, 
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we try to assign each well-log record to the domain of VRmf (Figure 1-4). Regarding this 

general idea, two questions are introduced to be discussed within the thesis. 

Table 1-1. Sources of uncertainty in well-logs.  

Measurement aspect Source of uncertainty Studies 

Intrinsic randomness of nature - High complexities and 
heterogeneities in the nature 

Kitts (1976) 

Depth of measurement - Cable stretch 
- Logging while moving the 
instrument 
- Speed of logging 

Passey et al. (2006) 

Depth of investigation Volumetric measurement  
Vertical Resolution of Tool 
(VRT) 

Volumetric measurement Flaum et al. (1989) 
Galford et al. (1989) 
Gartner (1989) 
Flaum (1990) 

Vertical Resolution of 
membership function (VRmf) 

Volumetric measurement Masoudi et al. (2017) 
Passey et al. (2006): under the 
name of absolute resolution 

Sampling rate Digital recording Passey et al. (2006) 

Error of measurement, 
precision and white noise 

Sensors and tools Gimbe (2015) 
Bardy (2015) 

Coloured noise: environmental 
effects 

- Temperature 
- Pressure 
- Mud weight 
- Borehole breakout 
- etc. 

 

Processing, calibration and 
interpretation 

- Imprecise concepts 
- Incomplete subsurface information,  
- Human error 
- etc. 

Moore et al. (2011) 
Passey et al. (2006) 
Bardy (2015) 

 

 
Figure 1-3. Conventional well-log interpretation. An example of rock typing (NikTab, 2003). 
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Figure 1-4. Comparing proposed and conventional interpretation approaches. Example of GR well-log. 

The sources of uncertainty in well-log data is introduced in the previous part. Each source, 

Table 1-1, adds its specific uncertainty range to the well-log value. The first question, going to 

be addressed, is assessing VRmf. The absolute resolution of well-logs is a function of specific 

tool’s intrinsic resolution, sampling rate, logging speed and processing method (Passey et al., 

2006). However in this thesis, this question primarily concerns the uncertainty of unprocessed 

data. Consider that a porosity well-log, e.g. neutron porosity (NPHI), is acquired over a range 

of real porosities (Figure 1-5a). The well-log shows 10% porosity, however the acquisition is 

taken place over a volume of investigation with the porosity range of [0%, 50%]. Even the 

height of the membership function is not necessarily equal to the well-log value. In this 

example, membership degree of the well-log value is higher than 0.9 (Figure 1-5b). The first 

objective is thus “to approximate VRmf of well-logs.”  
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(a) 

 
(b) 

Figure 1-5. The importance of fuzzy evaluation of well-logs in porosity evaluation. a) Porosity, based on well-log (left) and 
real values (right). b) VRmf, which is here proposed to be used instead of single value. The height is at 15% and its domain 
consists of all the possible porosity values. 

1.2.2 Question II: possibilistic uncertainty range of petrophysical parameters 

The uncertainty range of acquired data should be propagated to the output of processed data 

and interpretations. So, the output (porosity, permeability, etc.) will have an uncertainty range, 

originated from the input well-logs. Therefore, the second objective of the thesis is “to calculate 

possibilistic uncertainty range of petrophysical parameters, derived from well-logs.” The 

uncertainty range is called “possibilistic” not to be confused with the uncertainty range of 

Monte-Carlo simulation, which is a “probabilistic” method. Also, from mathematical point of 

view, the possibilistic uncertainty range is a fuzzy measure, like in the Theory of Possibility, 

and not a Probability Distribution Function (PDF). 

The well-logs gamma ray (GR), bulk density (RHOB), neutron porosity (NPHI) and sonic 

(DT) are chosen to apply the first objective on. For the second objective, porosity is studied 

comprehensively, permeability and water saturation are checked as well. 
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1.3 The importance of the thesis 

1.3.1 Fundamental and scientific importance 

Well-logs are subsurface data, acquired from hundreds of meters up to about four kilometres. 

Therefore, precision and accuracy of the data is under doubt, and it is basically necessary to 

investigate the uncertainty of these data.  

In addition, the volume of investigation is overwhelmed in the common well-log 

interpretations (Figure 1-4). In the proposed methodologies, the role of depth uncertainty is 

also considered in the interpretations. 

The proposed methods are based on the theories of Dempster-Shafer, clustering and fuzzy 

logic, which are specialized for data processing in uncertain situation. Developing these utilities 

in a new domain, here petroleum geology, is another scientific contribution of the thesis. 

1.3.2 Application importance 

The first necessity of studying uncertainty is in identifying the main uncertainty sources, and 

quantifying their relative importance (Dromgoole and Speers, 1997). As an example, in Lia 

et al. (1997), two uncertainty sources associated in modelling reservoir production forecast are 

introduced: (i) heterogeneity uncertainty, caused by geometrical arrangement; (ii) model 

parameter uncertainty because of incomplete knowledge of the whole reservoir properties. In 

this study, it is shown that heterogeneity uncertainty causes 25% of the total uncertainty, while 

model parameter uncertainty causes 75% of the whole uncertainty. 

The importance of this thesis for the petroleum industry is to improve the vertical resolution 

of well-logs. The improved well-logs could be used for better characterization of the thin-beds. 

1.3.3 Economic and management importance 

The term “exploration” is defined idealistically as “a series of investment decisions made 

with decreasing uncertainty” (Rose, 1987). It shows the close relation of both concepts of 
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“uncertainty” and “decision-making”. Based on Megill (1979), the “Risk” is “an opportunity 

for loss”, and the “uncertainty” is defined as “the range of probabilities that some condition 

may exist or occur” (Rose, 1987). 

Rose (1987) also introduced two criteria for continuing an exploration activity: (i) 

consistency with the strategy of investor in dealing with risk and uncertainty; (ii) understanding 

uncertainty accurately, and reducing it if possible. Meanwhile investors must cope with the 

issue of “risk” to come to reasonable decisions, engineers have to solve the problem of 

“uncertainty” to provide as clear illustration from the prospect as they can. In an uncertain 

situation (related to the exploratory activities), there are several biasedness: (i) prospect target 

size, (ii) discovery probability, and (iii) cost of finding. 

From the economical viewpoint, the uncertainty is divided into two parts: risk and 

immaterial. Immaterial refers to those uncertainties, unimportant to business, whereas risk 

refers to the uncertainty of which is critical for business. Again, risk is classified into two types: 

opportunity and threat. The threat reflects risky uncertainties, threatening the enterprise, while 

the opportunity risk is a risky uncertainty, which might cause opportunities to the business 

(Smalley et al., 2008). 

“Uncertainty is the only certainty in oil exploration.” It is a famous cliché in oil business 

(Fang and Chen, 1990). Lack of certainty in exploratory activities associates risk in 

investments. The terminology of “Responsible Reporting” is discussed in McLane et al. 

(2008), comprehensively. It discusses that an understanding of uncertainty is necessary for 

responsible reporting. 

1.4 Literature review 

1.4.1 Uncertainty in sciences 

Philosophical debate on the concept of “uncertainty” backs to “skepticism”. Pyrrho (270-

360 BC), who is rendered as being the first skeptic philosopher, reached to this idea that nothing 

is certain. So, his students and followers did not cry on his death because they did not believe 
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his death (Durant, 1953). Empiricism (observation) and rationalism (skepticism included) are 

two complementary or competing views in the epistemology. The former emphasizes on the 

importance of sensory data, while the latter concerns reasoning and certainty of human’s 

knowledge. 

The debate on certainty of sensory data is not restricted to schools of philosophy. Maybe 

Thomas Bayes (mathematician and philosopher, lived between 1701 and 1761) is the first 

scientist who entered the concept of uncertainty in statistics and mathematics by his famous 

theory of probability. Another historic and well-known measure of uncertainty in mathematics 

and statistics is “variance”, which shows how data (or simulations) are distributed around a 

center. Also, error bar is a conventional tool for expressing uncertainty range as in Wong 

(2003). 

Since then, the concept of uncertainty gradually entered in different applications, amongst 

electronics and telecommunication have benefited the most, by the development of 

“Information Theory” (Shannon, 1948). Shannon relation of uncertainty is the development of 

works of Harry Nyquist and Ralph Hartley in the Bell System Company, with the aim of 

development of communicating systems. Shannon’s formula is so fundamental that nowadays 

it is a famous measure of uncertainty in different domains of science as geosciences. 

Scientists of electronics were pioneer in development of another theory in assessing 

uncertainty: Theory of Fuzzy, which was a paradigm shift in electronics. Generalizing the Set 

Theory, Zadeh (1965) introduced a new language for expressing membership of an element to 

a definite set. Instead of using two values (0 or 1) for indicating membership of an element, he 

used a membership function that its output could be within the interval of [0, 1] (Zadeh, 1965). 

These days, fuzzy logic is used vastly in various fields of science and engineering, and in 

geology as well (Demicco and Klir, 2004). Based on the concept of fuzziness, clustering 

algorithms were modified to develop fuzzy clustering tools, in order to use membership 

functions in stating degree of membership of data to clusters. Review of fuzzy clustering 

methods could be found in Baraldi and Blonda (1999), Krishnapuram and Keller (1993) and 

Pal et al. (2005). A review of possibilistic, fuzzy and neural models is also presented in Bezdek 

(1993). 
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Researchers of statistics and artificial intelligent were able in developing a rival for fuzzy 

logic. Dempster-Shafer Theory (DST) of evidences is another methodology in evaluating data 

within uncertain situation. By means of defining “mass function”, researchers were able in 

further developing Bayes rule to Dempster rule of combination to fuse output of multi-sensory 

detections under uncertain condition (Dempster, 1967, 1968; Shafer, 1976, 1990). 

1.4.2 Uncertainty in geosciences and petroleum exploration 

Intrinsic randomness of nature is perhaps the first source of uncertainty that is mentioned in 

geological texts. However, retrodiction is never as uncertain as prediction (Kitts, 1976). The 

word “retrodiction” could be of interest of geologists since it is composed of the word 

“prediction” when the prefix “pre” is replaced by “retro”. 

Another pioneer work on uncertainty assessment in core orientation could be found in 

Nelson et al. (1987). In quantifying uncertainty in petroleum volume estimation, fuzzy 

arithmetic (Theory of Possibility) is declared to provide better results, comparing to Monte-

Carlo method (Theory of Probability) (Fang and Chen, 1990). Monte-Carlo simulation is a 

traditional technique for calculating uncertainty of estimated hydrocarbon volume. For further 

study about probabilistic Monte-Carlo method, refer to Hurst et al. (2000) and Masoudi et al. 

(2011). 

The uncertainty is categorized into two types: vagueness (equivalent to fuzziness, haziness, 

cloudiness, unclearness and sharplessness) and ambiguity (non-specificity, diversity, 

divergence, generality, variety and one-to-many). Three sources of uncertainty are introduced: 

lack of information, intrinsic nature and ignorance (Fang and Chen, 1990).  

In a comprehensive study, fuzzy aggregation is used for reservoir appraisal (Chen and Fang, 

1993). In this work, four trap properties (type, size, closure and timing), five reservoir 

properties (porosity, permeability, net thickness, depth and saturation), five source rock 

properties (richness, organic matter, maturity, thickness and area), migration distance and seal 

integrity, i.e. 16 geologic variables in overall, are fused to assess prospects. In brief, an appraisal 

method is introduced in this paper, which uses fuzzy aggregation methodology to easily 

integrate different reservoir properties. 
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Foley et al. (1997) classified uncertainty into three categories: fuzziness, randomness and 

incompleteness. Incompleteness is equivalent to ignorance, which is one of the sources of 

uncertainty, introduced in the work. Some authors also classified incompleteness into four 

categories: (i) what we know but have not included in the model; (ii) what we know that we do 

not know; (iii) what we do not know that we are unaware of it; and finally (iv) what is difficult 

to understand. 

The concept “geoscore” was introduced by Dromgoole and Speers (1997) to measure the 

complexity of petroleum reserves by quantifying nine categories: 

 Structural complexity: (i) overburden complexity; (ii) fault complexity; 

 Reservoir quality and architecture: (iii) reservoir layering; (iv) reservoir continuity; (v) 

permeability channels; (vi) barrier continuity; (vii) fault transmissibility; (viii) fractures and 

(ix) diagenesis. 

The key achievement of this study is: the higher the geoscore, the less hydrocarbon recovery 

and the more overestimation of reservoir volume. It was also advised at the end of the paper 

that for accurate reserve estimation during appraisal, we need to: (i) recognize the key 

uncertainties; (ii) quantify the relative importance of uncertainties; and (iii) collecting data to 

reduce uncertainties or being prepared to handle potential problems may arise during 

development or production. This paper (Dromgoole and Speers, 1997), and the paper of Yeh 

et al. (2014) have well presented the importance of uncertainty assessment in economic 

evaluation and production forecast, respectively. 

Hurst et al. (1999) tried to link between the concepts of sequence stratigraphy and the 

concept of uncertainty. In their paper, there is a discussion about characterizing sandy pinch-

out genesis, i.e. infill or onlap types, and correlating sand bodies between wells. Although 

mathematical basis of this paper is not in-detail, there is a robust geological debate on how to 

differentiate infill and onlap pinch-outs based on petrophysical and rock sedimentary 

properties. 

Application of probabilistic and fuzzy partitioning on interpreting satellite images is 

addressed successfully by Matsakis et al. (2000). In this paper, image classification is 
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distributed into classes of lagoon, conglomerate, vegetation, coral rubble, deep water, etc. with 

the precisions higher than 75%. For mathematical comparison between fuzzy, probabilistic and 

possibilistic partitioning, refer to Anderson et al. (2010). 

Another application of the concept of uncertainty in production problems is presented in 

Zheng et al. (2000). In this paper, the uncertainty of permeability estimation is lowered by 

combining results of two measurements of permeability: well tests (meso-scale) and core tests 

(micro-scale). Calibrating both types of data has confined estimation of permeability to smaller 

range. It seems that this methodology is more certain comparing to conventional approach, 

since (i) training is constrained to well-test, and (ii) well-test is a measure of permeability of 

the reservoir, whereas, core permeability is only indicator of permeability of intact rock. 

Fuzzy logic is inherently a suitable tool to characterize vague and imperfectly defined 

situations, like in geological datasets. Therefore, Saggaf and Nebrija (2003) proposed using 

fuzzy logic in lithological and depositional facies predictions. In their work, accuracy of fuzzy 

logic in facies prediction is stated to be more than 90% in every run. 

For probabilistic hydrocarbon pore-thickness evaluation in intervals (47.6 ft = 14.5 m) with 

beds thinner than 1 ft (30 cm), Volumetric Laminated Sand Analysis (VLSA) method is 

developed. The method uses Monte-Carlo simulation for generating realizations, and providing 

PDF of output, i.e. petrophysical parameters. 400% improvement in accuracy of hydrocarbon 

pore-thickness estimation is reported by this method (Passey et al., 2004). In this thesis, VLSA 

is used as a base method for comparing the outputs with. 

Geological risk mapping in play level is produced by multivariate and Bayesian 

methodology (Chen and Osadetz, 2006). In this work, risk analysis problem is defined as 

“equivalent to classification with uncertainty in a multivariate space”.  

Determination and geostatistical inversion are compared with each other for the purpose of 

net-pay determination through seismic data (Sams and Saussus, 2008). Determination method 

provides higher uncertainties, comparing to geostatistics method. For reservoirs with thinner 

stratigraphic layers, the magnitude of this difference rises, especially when the beds become 

thinner than vertical resolution of seismic data. 
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Grandjean et al. (2007, 2009a,b) performed some researches on the application of fuzzy 

logic in slope stability, hydrogeology and geo-engineering. Their papers present a systematic 

algorithm for implementing a fuzzy inference system to fuse multi-source geo-data. The 

systematic algorithm they used contains four stages: (i) preparing geo-dataset; (ii) creating 

possibility function (membership function), regarding the purpose; (iii) providing technical 

hypothesis for fusing variables; and (iv) checking or discussing hypothesis or outputs of fusion 

(Grandjean et al., 2007, 2009a,b; Hibert et al., 2012). 

In order to handle structural uncertainty in petroleum reserves, Thore et al. (2002) 

considered aggregation of side-effects of all processing and interpreting stages on the final 

results. Preparation of structural model by seismic studies generally consists of six stages, each 

one is a source of uncertainty in constructing structural model: acquisition, pre-processing, 

stacking, migration, time-to-depth conversion and interpretation. In this paper, migration, 

picking and time-to-depth conversion are introduced as dominant uncertainty resources; and 

amplitude, direction and correlation length of each are incorporated in calculations. In the 

article, it is also specified that computation of structural uncertainties has several benefits: (i) 

providing a distribution of gross rock volume; (ii) defining optimal well trajectories; and (iii) 

reservoir history matching. 

In a recent paper about assessing structural uncertainty, Seiler et al. (2009) proposed an 

elastic grid to be adjustable and trainable due to history of reservoir production. The 

methodology is approved by synthetic dataset, and is potentially a new frontier for structural 

uncertainty handling in petroleum appraisal for the next years. 

The most comprehensive text book about uncertainty in geosciences is composed by Caers 

(2011). Five different sources of uncertainty in earth sciences are introduced in the book: (i) 

measurement and processing errors; (ii) multiple ways of interpreting processed data; (iii) type 

of geological setting; (iv) spatial uncertainty, which is related to heterogeneity and scale of the 

study; and (v) response uncertainty, e.g. solving partial differential equations needs initial and 

boundary conditions that is sometimes uncertain. 

The most important prerequisite to uncertainty assessment is stated to be “purpose of the 

study”; therefore, fit-for-purpose approach is suggested for quantifying uncertainty in each 
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study (Caers, 2011). The majority of the book is concerned with geostatistical methodologies, 

and how to assess uncertainty besides geostatistical modelling. However some simpler 

uncertainty tools as tornado chart is introduced likewise. 

A bootstrap-based methodology for uncertainty analysis when predicting effective porosity 

by seismic attributes is presented by Ortet et al. (2012). The authors have introduced this novel 

methodology as an alternative to standard geostatistical simulation. They have also stated that 

in cases the main source of uncertainty is related to the calibration set, bootstrap-based method 

is well adapted.  

For assessing uncertainty of seismic interpretations, picking, four constraints are introduced 

(Yang et al., 2013): (i) best estimate control point; (ii) best estimate surface; (iii) uncertainty 

envelope; and (iv) uncertainty envelop surface. Based on this method, more than one realization 

would be generated that helps interpreters to calculate the probability of each realization. 

Uncertainty assessment in pore pressure prediction is carried out by Wessling et al. (2013). 

The paper discusses that the uncertainty, which is associated with the pore pressure, is 

contributed by geophysical measurements, geological model and manual processing steps. 

Measurement-related uncertainties could be quantified (and maybe compensated); whereas, it 

is difficult to handle the uncertainty of descriptive geologic models or manual processing stages. 

It is suggested in Wessling et al. (2013) that, in order to quantify and control uncertainty of a 

manual processing, we can substitute this part with an automation. This change will result in a 

more transparent output for interpreters, hence, easier to quantify and assess the uncertainty. 

Within a recently defended PhD thesis, the uncertainty of static models is projected to 

dynamic models. So, the quantiles (P10, P50 and P90) of production prediction curve were 

calculated, considering a set of geostatistical realizations (Bardy, 2015). 

1.4.2.1 Application points 

Though there are many publications about the concept, definition and categorization of 

uncertainty in earth-related studies, the application of uncertainty assessment in exploration 

activities is not well-developed. Two common pragmatic points could be derived from the 
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literature for all the uncertainty assessment applications: (i) what is the aim from uncertainty 

assessment (Caers, 2011)? (ii) What are the sources of uncertainty in the dataset (Chen and 

Fang, 1993; Dromgoole and Speers, 1997; Lia et al., 1997; Thore et al., 2002; Wessling et 

al., 2013)? 

To rebuild uncertainty bounds of well-logs and propagate it to the petrophysical outputs, 

Monte-Carlo simulation is used in industrial software applications Techlog- Schlumberger 

(Gimbe, 2015) and Geolog Datamin Uncertainty Module Paradigm. The algorithm is the same 

as VLSA, presented for thin-bed studies by researchers of ExxonMobil (Passey et al., 2004). 

1.5 Introducing datasets 

1.5.1 Basic definitions 

We used four key terms to introduce the datasets: “Well-log”, “real-log”, “synthetic-log” 

and “ideal-log”. The first two terms describe real data, while the last ones are related to synthetic 

data. 

- A well-log records intrinsic or induced properties of the rocks and their fluids (Gluyas and 

Swarbrick, 2009). Such records, acquired through a well, are either one dimensional, like 

gamma ray log, or two dimensional as image logs. Well-log is also known as borehole log since 

the data are captured through the wellbore. 

- A real-log reflects real properties of the well-bore. Well-logs are imprecise (apparent 

values) in reflecting real properties, especially in thin-bed conditions because well-logs are 

convolved data (Gartner, 1989). The convolution is applied over an interval of vertical 

resolution of the logging tool. When this interval approaches zero, the well-log converges to 

the real-log. 

- An ideal-log is equivalent to “real-log” in synthetic datasets. It is defined by the user, while 

real-log represents rock properties in the nature. Finding the real-log is an open problem, while 

the ideal-log is definite, so useful in validation. 
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- A synthetic-log is convolution of an ideal-log over a vertical resolution. It resembles well-

log in real data. 

1.5.2 Synthetic data 

The first stage in generating a synthetic-log is defining specifications of its ideal-log (Table 

1-2). Ideal-logs (real-logs) are not volumetric signals, i.e. no depth uncertainty.  

In Table 1-2, each case represents a petrophysical change in presence of a thin-bed (cases 

1-5 and 7) or a single fracture (case 6). Synthetic-log generator for thin-beds (cases 1-5 and 7) 

convolves the ideal-log (for more details see Chapter 5). For the case 6, simulator generates a 

synthetic-log based on geological specifications of a single fracture. It calculates the effect of a 

predetermined fracture on the well-log (Mazaheri et al., 2015). 

1.5.3 Real data 

Well-log data of five exploratory wells were used to check the developed methodology. The 

wells are located on the axis of an anticlinal oil-field in the Abadan Plain, SW Iran (Figure 

1-6). The subsurface data are limited to the Sarvak Formation. Summary of available data and 

specifications of some well-logs are provided in Table 1-3 and 1-4, respectively. 

Table 1-2. Specifications of the ideal-logs to generate the synthetic logs.  

Case Well-log Description 
Lower 
bed 

Thin-bed 
or 
fracture 

Upper 
bed 

Bed 
thickness 
(cm) 

Vertical 
resolution 
(cm) 

1 GR (API) 
There is a peak at the horizon of the 
thin-bed. 

20 50 30 30 61 

2 GR (API) Deepening (finning) upward 20 100 120 30 61 

3 
RHOB 
(g.cm-3) 

There is a trough at the horizon of the 
thin-bed. 

2.8 2.4 2.6 15 76 

4 NPHI (%) Increasing upward 5 10 15 30 76 

5 NPHI (%) 
There is a peak at the horizon of the 
thin-bed. 

5 15 10 30 76 

6 
DT 
(µs.m-1) 

A single fracture with a dip of 60°, 
aperture of 1 mm, filled up with oil (281 
µs/m), within a carbonate formation. 

160 281 160 0.1 61 

7 
DT 
(µs.m-1) 

A 1 cm horizontal fractured zone (50% 
fractured) with a DT of 220 µs/m, within 
a carbonate formation. 

160 220 160 1 61 
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Figure 1-6. Location of the field under study within the Abadan Plain, SW Iran. Modified after Sherkati and Letouzey 

(2004) and Rajabi et al. (2010). 

 

Table 1-3. Available data within the Sarvak interval. #: number. GR: gamma ray, CGR: gamma ray of potassium, DT: sonic 
transfer time, NPHI: neutron porosity, RHOB: bulk density, DRHO: density correction, LLD: deep laterolog, LLS: shallow 
laterolog, MSFL: microspherically focused log, PEF: photoelectric effect. 

  W1 W2 W3 W4 W5 W6 

 
Well-
logs 

Calliper       

GR       

CGR       

DT       

NPHI       

RHOB       

DRHO       

LLD       

LLS       

MSFL       

PEF       

Core 
tests 

# of plugs 2 8 5 4 6 0 

# of helium porosity 
records 

38 41 416 228 258 0 

# of gas permeability 
records 

38 41 418 228 250 0 

# of grain density 
records 

0 34 0 244 258 0 

# of irreducible water 
records 

0 0 3 0 9 0 

Well tests 6 3 6 3 0 2 
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Table 1-4. Details of the available well-logs in the field due to Schlumberger (2015). 

Well-log Accuracy 
Depth of 

Investigation (cm) 
Vertical Resolution of 
Tool (spacing) (cm) 

GR ±5% 60.96 30.48 

RHOB ±0.01 g.cm-3 12.70 45.72 

NPHI 
0-20: ±1% 

20-30: ±2% 
30-45%: ±6% 

~23 30.48 

DT ±6.6 μs.m-1 7.62 
91 
152 

1.5.3.1 Geology of the Sarvak Formation 

The type section of the Sarvak Formation (thickness of 832 m) is in the Bangestan Mountain, 

Khuzestan Province, Iran. It is a hydrocarbon producing formation in many oil fields in the 

Zagros. The Sarvak Formation is mostly overlaying the Kazhdumi Formation and is overlaid 

by the Ilam Formation (Ghazban, 2009). However, in the study area, there is the eight meters-

thick Laffan Formation between the Ilam and Sarvak formations (Figure 1-7). 

Sarvak Formation is a homoclinical carbonate ramp, deposited during Albian to Turonian 

(Mehrabi et al., 2015). In homoclinical carbonate ramps, there is a slight seabed dip toward 

the sea. This term belongs to a topological classification of carbonate ramps (Read, 1985). The 

lithology of Sarvak Formation is wackestone-packstone. The upper Sarvak Formation belongs 

to a shallower environment, comparing to the pelagic facies of the middle and lower Sarvak 

Formation (James and Wynd, 1965; Ghabeishavi et al., 2010). 

From the viewpoint of sequence stratigraphy, four sequences of the third-order (duration of 

1.5-3 Ma and thickness of 50-150 m) are distinguished in the Sarvak Formation. Several 

sequences of the fourth- and fifth-order are also reported (Razin et al., 2010; Vincent et al., 

2015). 

There is a depositional gap at the top of the Sarvak Formation (Cenomanian unconformity), 

which has improved reservoir quality of the upper Sarvak Formation (Figure 1-8). In most 
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regions, vuggy porosity, karstification and bauxite mineralization are consequences of the 

depositional gap of the top Sarvak (Zarasvandi et al., 2008) (Figure 1-9). 

Figure 1-7. Lithostratigraphy of the Sarvak Formation and its 
neighbours (Dashtban, 2002). 
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(a) 

 
(b) 

 

 
(c) 

Figure 1-8. a) Underground contour (UGC) map of the top Sarvak Formation in the study area. b) AA’ seismic section and 
its interpretation. c) Root mean square volumetric seismic amplitude attribute map, within 30 ms of the upper Turonian 
(the top Sarvak Formation, time slice of BCDE). The channelling of the top Sarvak Formation is shown on the FF’ seismic 
section (circle) (Abdollahie Fard et al., 2006). 
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 (a) 

 (b) 
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Figure 1-9. Photos of the Sarvak Form
ation. a) V

ugs on the top of Sarvak Form
ation, Siah-K

uh anticline, near D
ehloran city, Ilam

 province (M
asoudi et al. 2017). 

b) W
eathering of the top Sarvak Form

ation, betw
een M

arv-D
asht (plain) and Takht-e Jam

shid, Shiraz province. c) The unconform
ity: contact of the Sarvak and 

Ilam
 form

ations, Siah-K
uh anticline, near D

ehloran city, Ilam
 province. 

 (c)  
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2 Theories 

Highlights of Chapter 2 

 For the purpose of uncertainty assessment of well-logs, three theories are used, essentially 

Dempster-Shafer Theory (DST), fuzzy arithmetic and cluster analysis. 

 The main theories, in addition to empirical petrophysical relations, are introduced in the 

chapter. 

 The other utilized theories, techniques and concepts; e.g. Nyquist frequency, Bayesian Theory 

and Monte-Carlo simulation, are also addressed in the thesis. 

2.1 Dempster-Shafer Theory of evidences 

This theory is developed in the domain of subjective probability, useful in evaluating 

uncertain phenomena. The most basic difference between the Theory of Probability (Bayesian) 

and DST is that no distribution (PDF or membership function) is considered in DST. So, the 

mass function (equivalent to PDF) could freely move within its focal element, while satisfying 

imposed limitations of Body Of Evidence (BOE). In Figure 2-1b, the mass of A can move 

freely within the set A; while in Figure 2-1a, the probability of A is distributed according to a 

predefined triangular PDF. 

The result of removing the PDF constraint is providing a range of uncertainty for outputs. 

So, belief function is defined as the least possible (necessity) mass value of a focal element, and 

plausibility is defined as the highest possible mass value (capacity) of the focal element. Belief 

and plausibility values have to satisfy the predefined mass functions of each basic focal element. 

As an example, in Figure 2-1b plausibility does not exceed mass function within 𝐴 ∪ 𝐵, 

especially in 𝐴 ∩ 𝐵 that honours both focal elements. Belief function within 𝐴 ∩ 𝐵′ is also 

expected to compensate some part of the required mass function of focal element of A, when 

𝐴 ∩ 𝐵 is completely full. 
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For studying DST in detail, refer to Dempster (1967, 1968), Klir and Yuan (1995), Liu 

and Yager (2008) and Shafer (1990). The first stage in applying DST is constructing a BOE. 

 
Figure 2-1. Comparing uncertainty assessment theories: probability (a) and DST (b). 

2.1.1 Body Of Evidences 

For constructing a BOE, focal element and corresponding mass function have to be defined. 

Focal element is a set of elements that a mass function is attributed. The theory does not apply 

any specific rule on the structure of focal elements, and they are only defined due to the 

mechanism of data acquisition or gathering. Here, we considered each well-log record as a mass 

value, corresponding to its volume of investigation, i.e. focal element. 

2.1.1.1 Mass function 

Lack of restrictions on the mass function makes it move freely within its focal element. Mass 

function is always non-negative, and the summation of mass values over all the focal elements 

(FE) should be one (Liu and Yager, 2008). The symbol “≜” in Relation 2-1 means that this 

equation is defined by user, and is not derived from calculations. This normalization is essential 
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for combining the results in multisensory situations, as utilized e.g. in Masoudi et al. (2014). 

In DST, null set (𝜙) represents unpredicted situations. If it is not important to model the 

unpredicted situations: 𝑚(𝜙) = 0. And if it is important to model the unpredicted situations, 

the mass function of null set has to be higher than zero. 

∑𝑚(𝐹𝐸𝑖)

𝑛

𝑖=1

≜ 1 (2-1) 

2.1.2  Belief and plausibility functions 

Based on BOE, lower (belief) and upper (plausibility) probabilities are defined for each focal 

element of target. The focal elements of belief and plausibility are not necessarily the same as 

the focal elements of mass function. They could be defined by the user. Belief (plausibility) 

function shows the least necessary (most possible) mass value within the focal element of target 

(Liu and Yager, 2008). 

𝑃𝑙𝑠(𝐹𝐸𝑖) ≜ ∑ 𝑚(𝐹𝐸𝑗)

𝐹𝐸𝑗∩𝐹𝐸𝑖≠𝜙

 (2-2) 

𝐵𝑒𝑙(𝐹𝐸𝑖) ≜ ∑ 𝑚(𝐹𝐸𝑗)

𝐹𝐸𝑗⊆𝐹𝐸𝑖

 (2-3) 

2.1.3 Consistency of uncertainty assessment theories 

Before applying each uncertainty assessment theory on a defined BOE, we have to analyse 

whether the theory is compatible with the BOE or not. The analysis of a dice game, using the 

Probability Theory, leads to a PDF with the probability of 1
6
 for each of the six sides. In this 

example, the BOE consists of six focal elements, each containing only one number (one to six). 

The focal elements do not have any intersection with each other, e.g. when the dice shows 

number four, it cannot hold any other value simultaneously. So, the Theory of Probability is 

compatible with dice game. 

In the other example, consider a person who may eat some eggs (e.g. one to six eggs) at 

breakfast. The Probability Theory could be used to predict how many eggs he eats every day. 



  

32 

 

So, due to statistics (a priori knowledge), he mostly eats two or three eggs per day, rarely zero, 

one or four, and never five or six eggs. Thus, the PDF has zero value for cases five and six, and 

a height at two and three eggs. 

Approaching this problem by the possibility theory means that possibility of eating four eggs 

has the possibility of eating three, two or one egg(s). In the language of the set theory, from 

each pair of focal elements, one is subset of the other. So, the focal elements are eccentric and 

the result will be cumulative (a property of fuzzy measure) with the highest possibility for eating 

one egg, and the lowest possibility for eating five eggs. 

Therefore, the Probability Theory is applicable in completely separated focal elements and 

the Possibility Theory is applicable in eccentric focal elements (Table 2-1). The ability of free 

movement of the mass function in the DST, has made it powerful in assessing all BOEs 

(separated, eccentric, etc.). So, wherever the Possibility (or Probability) theory works, DST 

works too. When theories of Probability (Possibility) and DST are valid, we call that DST and 

Probability (Possibility) are consistent (Table 2-1). 

Table 2-1. Consistency of BOEs with uncertainty assessment methodologies. 

Schema of 
focal 

elements 

Property of 
focal 

elements 

Theory of 
probability 

Theory of 
possibility 

DST Consistency 

 

separated compatible incompatible compatible 
consistency of 

DST and 
probability 

 

eccentric incompatible compatible compatible 
consistency of 

DST and 
possibility 

 

intersected 
and not 

eccentric 
incompatible incompatible compatible inconsistency 

For checking the consistency, we either can analyse the focal elements or the consistency 

conditions. The simplest consistency condition is that the probability value, be between the 

values of belief and plausibility (Klir and Yuan, 1995): 
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𝐵𝑒𝑙(𝐹𝐸𝑖) ≤ 𝑃𝑟(𝐹𝐸𝑖) ≤ 𝑃𝑙𝑠(𝐹𝐸𝑖) (2-4) 

2.2 Fuzzy arithmetic 

Common arithmetic, applied on the crisp numbers, is still the dominant arithmetic, being 

used in the science. However, it is some decades that interval arithmetic and fuzzy arithmetic 

are playing role of complementary tools, when there are uncertainties or impreciseness about 

the numbers. Interval arithmetic is applied on the intervals, instead of numbers; and fuzzy 

arithmetic is a generalization of the interval arithmetic when a fuzzy membership, called fuzzy 

number, is defined on the intervals. 

The first time, fuzzy arithmetic was developed for calculating linguistic variables. For 

example, “age” is a linguistic variable that can obtain different values: child, teenager, young 

and old. The basics of a fuzzy variable, fuzzy operations (complement, union, intersection, 

product, convex combination, Cartesian product and fuzzification) and relations between the 

variables are discussed in Zadeh (1975a). Successively, mathematical introduction of a fuzzy 

variable and Boolean operators for applying on the fuzzy variables are extended (Zadeh, 

1975b). In the next step, the Theory of Probability and approximate reasoning for fusing 

multiple fuzzy variables are developed (Zadeh, 1975c). Later, the concept of fuzzy variable is 

called fuzzy number, and is used for two major imperatives: (i) the available information is too 

imprecise to justify the use of the common numbers, and (ii) there is a tolerance for imprecision 

(Zadeh, 1996). 

2.2.1 Fuzzy number 

We use fuzzy number when ordinary number is not justifiable in representing the data. Fuzzy 

number is a fuzzy membership function possessing three properties: (i) It should be a normal 

(unimodal) fuzzy number. (ii) Each 𝛼-cut of the fuzzy number should be a closed interval for 

every 𝛼 ∈ (0,1]. The consequence is that the height of the fuzzy number have to be one. (iii) 

The support of the fuzzy number should be bounded, i.e. does not support ∞ (Klir and Yuan, 

1995). 
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As examples, extensions of ordinary numbers a, b, c and d to fuzzy numbers are presented 

in Figure 2-2 to show different possibilities of fuzzy numbers. In the domain of sedimentology, 

trapezoidal fuzzy numbers are used for representing tidal ranges by mean sea-level (Figure 

2-3). 

 
Figure 2-2. Schematic examples of fuzzy numbers. 

 

 
Figure 2-3. Fuzzy numbers for tidal ranges due to mean sea-level (Demicco and Klir, 2004). 
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2.2.2 Arithmetic operations on intervals 

Based on Relation 2-5, arithmetic operators on intervals (Relations 2-6 to 2-8) are derived. 

Considering four intervals A, B, C and D, seven famous arithmetic axioms are valid for the 

defined operators, Table 2-2. 

[𝑎, 𝑏] ∗ [𝑐, 𝑑] = {𝑓 ∗ 𝑔 | 𝑎 ≤ 𝑓 ≤ 𝑏; 𝑐 ≤ 𝑔 ≤ 𝑑} (2-5) 

[𝑎, 𝑏] ± [𝑐, 𝑑] = [𝑎 ± 𝑐, 𝑏 ± 𝑑] (2-6) 

[𝑎, 𝑏]. [𝑐, 𝑑] = [min(𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑) ,max(𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑)] (2-7) 

[𝑎, 𝑏]/ [𝑐, 𝑑] = [𝑎, 𝑏]. [
1

𝑐
,
1

𝑑
] (2-8) 

 

Table 2-2. Available axioms for the defined interval operators. Summarized from Klir and Yuan (1995). 

 Axiom Definition 

1 Community 
𝐴 + 𝐵 = 𝐵 + 𝐴 
𝐴.𝐵 = 𝐵.𝐴 

2 Associativity 
𝐴 + (𝐵 + 𝐶) = (𝐴 + 𝐵) + 𝐴 

𝐴. (𝐵. 𝐶) = (𝐴. 𝐵). 𝐴 

3 Identity 
𝐴 = 𝐴 + 0 
𝐴 = 𝐴. 1 

4 Subdistributivity 𝐴. (𝐵 + 𝐶) ⊆ 𝐴. 𝐵 + 𝐴.𝐶 

5 Distributivity 
If: 𝑏. 𝑐 > 0, for every 𝑏 ∈ 𝐵 and 𝑐 ∈ 𝐶, 

then: 𝐴. (𝐵 + 𝐶) = 𝐴. 𝐵 + 𝐴.𝐶 
So if 𝐴 = [𝑎, 𝑎], then 𝑎. (𝐵 + 𝐶) = 𝑎.𝐵 + 𝑎. 𝐶 

6 Inverse of identity 
0 ∈ 𝐴 − 𝐴 
1 ∈ 𝐴/𝐴 

7 Inclusion monotonicity 
If: 𝐴 ⊆ 𝐶  and 𝐵 ⊆ 𝐷, 
then: 𝐴 ∗ 𝐵 ⊆ 𝐶 ∗ 𝐷 

2.2.3 Arithmetic operations on fuzzy numbers 

There are two approaches in developing arithmetic operations on fuzzy numbers: based on 

(i) interval arithmetic or (ii) extension of operations on real numbers. The interval operators 

could be extended to fuzzy operators, using the theorem of resolution identity, Relations 2-9 

and 2-10 (Zadeh, 1971). The other name of this relation is first decomposition theorem. 

𝐴 = ⋃ 𝛼. 𝐴𝛼

𝛼∈[0,1]

 
(2-9) 
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𝐴 ∗ 𝐵 = ⋃ 𝛼. (𝐴 ∗ 𝐵)𝛼

𝛼∈[0,1]

= ⋃ 𝛼. ( 𝐴𝛼 ∗ 𝐵𝛼 )

𝛼∈[0,1]

 (2-10) 

where A and B are two fuzzy numbers, and * represents a fuzzy operator, going to be applied 

on them. An example of applying fuzzy operators on two fuzzy numbers is given in Figure 2-4. 

 

Figure 2-4. Example of applying fuzzy operators on fuzzy numbers, integrated from Klir and Yuan (1995). 

Extension of operations on real numbers to fuzzy numbers could be defined by applying an 

axiomatic structure. The axioms indicate our expectations from fuzzy operators, inspired from 

common operators (Klir and Yuan, 1995). Some researchers believe that current standard 

fuzzy operators need to be revised. The reason is that the output of standard operators does not 

resemble the output of operators of real numbers in some cases; e.g. 𝐴 − 𝐴 ≠ 0 (Klir, 1997). 

2.3 Cluster analysis 

Cluster analysis is an unsupervised learning method to decompose a dataset into some sets 

of objects, i.e. clusters, based on a similarity index. Labelling data by clustering methods helps 

primarily in understanding the structure of data, in data reduction as well (De Oliveira and 

Pedrycz, 2007). 

Among different domains in the earth sciences, geochemistry benefitted the most from 

clustering in separating the anomalous area from the background (Templ et al., 2008; 

Meshkani et al., 2011). In lithofacies prediction by fuzzy partitioning, clustering is used to 

detect structure of multidimensional well-log data. Each cluster is considered as a potential 
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fuzzy classification rule, i.e. a fuzzy if-then rule (Finol et al., 2001). Similarly in reservoir 

zonation, statistical and intelligent clustering methods are tested. Self-organizing map neural 

network is the most successful clustering tool for lithofacies categorization (Sfidari et al., 

2014). In reservoir characterization, clustering is used for studying productive zones, saturation 

or permeability variations (Moradi et al., 2015; Masoudi et al., 2016). 

For a finite dataset, clustering algorithm searches for c prototypes, cluster centers, 

representative of c clusters. The data points are grouped with the nearest prototype, based on a 

measure of distance (Klir and Yuan, 1995). Four clustering algorithms are used in this thesis: 

k-means (KM), Fuzzy C-Means (FCM), Gustafson-Kessel (GK) and Gath-Geva (GG) 

algorithms. 

2.3.1 k-means and fuzzy c-means algorithms 

“The aim of the k-means algorithm is to divide m points in n dimensions into k clusters so 

that the within-cluster sum of squares is minimized” (Hartigan and Wong, 1979). In a simple 

language, the algorithm of k-means starts with selecting k data points randomly (primary 

clusters) from the dataset. In the next step, each point will be added to its nearest cluster, and 

the means of clusters should be readjusted (the reason why this method is called k-means) 

(MacQueen, 1967). 

Using fuzzy partitioning (Relation 2-11) instead of crisp cluster labels, resulted in fuzzy c-

means (FCM) algorithm. It means that summation of degrees of membership (𝐴𝑖) of each data 

point 𝑥𝑘 to each of c clusters is one. 

∑𝐴𝑖(𝑥𝑘)

𝑐

𝑖=1

= 1 (2-11) 

The algorithm of FCM consists of four steps below, illustrated in Figure 2-5 (Klir and Yuan, 

1995): 

(i) Primary definitions: 

(i-i) Put the counter of iteration: t=0 
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(i-ii) Define number of clusters, c. 

(i-iii) Randomize an initial fuzzy partition: 𝒫(0) = {𝐴1, 𝐴2, … , 𝐴𝑐} 

(i-iv) Choose a fuzzifier: 𝑚 ∈ (1,+∞). Actually, there is no theoretical way for 

optimizing m but trial and error by Relation 2-16. We suggest an easy number of 2. 

(i-v) Define the convergence limit: 𝜀 

(ii) Calculate the cluster centres 𝑣𝑖
(𝑡) in Relation 2-12: It is a weighted average of data points. 

The weights are due to the defined membership function 𝐴𝑖
(𝑡). This relation is driven from 

descent-based optimization of Relation 2-16, i.e. 𝜕𝐽
𝜕𝑣
= 0 (Gustafson and Kessel, 1978). 

𝑣𝑖
(𝑡) =

∑ [𝐴𝑖
(𝑡)(𝑥𝑘)]

𝑚

. 𝑥𝑘
𝑛
𝑘=1

∑ [𝐴𝑖
(𝑡)(𝑥𝑘)]

𝑚
𝑛
𝑘=1

 (2-12) 

(iii) Update the fuzzy pseudopartition 𝒫(𝑡+1) by Relation 2-13. This relation is also driven 

from descent-based optimization of Relations 2-16 and 2-11 (Gustafson and Kessel, 1978). 

𝐴𝑖
(𝑡+1)(𝑥𝑘) =

[
 
 
 
 

∑(
‖𝑥𝑘 − 𝑣𝑖

(𝑡)‖
2

‖𝑥𝑘 − 𝑣𝑗
(𝑡)‖

2)

1
𝑚−1𝑐

𝑗=1

]
 
 
 
 
−1

 (2-13) 

The term ‖𝑥𝑘 − 𝑣𝑖
(𝑡)‖ is Euclidian distance between the data point 𝑥𝑘 and the cluster center 

𝑣𝑖
(𝑡). If for some clusters (𝑖 ∈ 𝐼 ⊆ ℕ𝑐): ‖𝑥𝑘 − 𝑣𝑖

(𝑡)‖ = 0; then define 𝐴𝑖
(𝑡+1)(𝑥𝑘) for 𝑖 ∈ 𝐼 by 

any non-negative real numbers that satisfies Relation 2-14, and zero for the other membership 

functions: 𝐴𝑖
(𝑡+1)(𝑥𝑘) = 0; 𝑖 ∈ ℕ𝑐 − 𝐼. 

∑𝐴𝑖
(𝑡+1)(𝑥𝑘)

𝑖∈𝐼

= 1 
(2-14) 
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(iv) Check the stopping condition: |𝒫(𝑡) −𝒫(𝑡+1)| ≤ 𝜀; otherwise increase t and return to 

step (ii). 

The distance could be defined by the user, e.g. the maximum change of membership function 

in Relation 2-15. Performance index, 𝐽𝑚(𝒫(𝑡)), could be used also as a cluster validity. The 

lower 𝐽𝑚(𝒫(𝑡)) is the more acceptable (Relation 2-16). 

|𝒫(𝑡) −𝒫(𝑡+1)| = max
𝑖∈ℕ𝑐 ,𝑘∈ℕ𝑛

|𝐴𝑖
(𝑡+1)(𝑥𝑘) − 𝐴𝑖

(𝑡)(𝑥𝑘)| (2-15) 

𝐽𝑚(𝒫
(𝑡)) = ∑∑[𝐴𝑖

(𝑡)(𝑥𝑘)]
𝑚

. ‖𝑥𝑘 − 𝑣𝑖
(𝑡)‖

2
𝑐

𝑖=1

𝑛

𝑘=1

 (2-16) 

Where ℕ𝑐 and ℕ𝑛 are sets of cluster numbers and numbers of data points, respectively. 

 Figure 2-5. Flowchart of the FCM algorithm. 
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2.3.2 Gustafson-Kessel clustering technique 

Neither KM nor FCM are suitable algorithms for oriented or multi-sized clusters. In the FCM 

algorithm, if the Euclidian distance (Relation 2-17) is replaced by the Mahalanobis distance 

(Relation 2-18) the new algorithm, Gustafson-Kessel (GK), would be capable of detecting uni-

sized (in terms of number of data) but oriented (linear at extreme mode) clusters too (Gustafson 

and Kessel, 1978; Babuka et al., 2002). 

‖𝑥𝑘 − 𝑣𝑖‖
2 = (𝑥𝑘 − 𝑣𝑖)(𝑥𝑘 − 𝑣𝑖) = ∑(𝑥𝑘,𝑗 − 𝑣𝑖,𝑗)

2

𝑓

𝑗=1

 Euclidian distance (2-17) 

‖𝑥𝑘 − 𝑣𝑖‖
2 = (𝑥𝑘 − 𝑣𝑖)

𝑇𝐶𝑖(𝑥𝑘 − 𝑣𝑖) Mahalanobis distance (2-18) 

where: 

𝑥𝑘 = {𝑥𝑘,1, 𝑥𝑘,2, … , 𝑥𝑘,𝑓}: Vector of kth data point. 

𝑣𝑖 = {𝑣𝑖,1, 𝑣𝑖,2, … , 𝑣𝑖,𝑓}: Vector of center of ith cluster. 

𝐶𝑖: Covariance matrix of ith cluster. A square matrix with the size of number of clusters. 

2.3.3 Gath-Geva clustering technique 

Gath-Geva (GG) algorithm solved clustering problems of (i) multi-sized clusters, and (ii) 

number of clusters. Fuzzy Maximum Likelihood Estimation (FMLE) or GG is a development 

on the FCM algorithm (Gath and Geva, 1989): 

(i) Primary definitions and cluster centers calculation (𝑣𝑖
(𝑡) in Relation 2-12): the same as 

steps (i) and (ii) in FCM but c is the maximum number of clusters. 

(ii) Cluster with the fuzzy modification of the maximum likelihood estimation: 

 (ii-i) Calculating fuzzy covariance matrix for ith cluster: 
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𝐹𝑖 =
∑ 𝐴𝑖(𝑥𝑘)(𝑥𝑘 − 𝑣𝑖)(𝑥𝑘 − 𝑣𝑖)

𝑇𝑛
𝑘=1

∑ 𝐴𝑖(𝑥𝑘)
𝑛
𝑘=1

 (2-19) 

 (ii-ii) Calculating exponential distance measure: 

‖𝑥𝑘 − 𝑣𝑖‖
2 =

√det(𝐹𝑖)

1
𝑛
∑ 𝐴𝑖(𝑥𝑘)
𝑛
𝑘=1

exp [
1

2
(𝑥𝑘 − 𝑣𝑖)𝐹𝑖

−1(𝑥𝑘 − 𝑣𝑖)] (2-20) 

(ii-iii) Updating fuzzy partitioning: 

𝐴𝑖(𝑥𝑘) =

1
‖𝑥𝑘 − 𝑣𝑖‖2

∑
1

‖𝑥𝑘 − 𝑣𝑖‖2
𝑐
𝑖=1

 (2-21) 

(iii) Compute performance measures that is based on three criteria: (iii-i) Separation of 

clusters (low fuzzy hypervolume, Relation 2-22), (iii-ii) Minimal volume of the clusters, but 

(iii-iii) Maximal number of data points, concentrated in the vicinity of the cluster centroid (high 

average density partition, Relation 2-23 or high density partition, Relation 2-24). 

𝐹𝐻𝑉 =∑√det(𝐹𝑖)

𝑐

𝑖=1

 (2-22) 

𝐷𝑃𝐴 =
1

𝑐
∑

∑ 𝑢𝑖,𝑘
𝑛
𝑘=1

√det(𝐹𝑖)

𝑐

𝑖=1

 (2-23) 

𝑃𝐷 =
∑ ∑ 𝑢𝑖,𝑘

𝑛
𝑘=1

𝑐
𝑖=1

𝐹𝐻𝑉
 (2-24) 

If the kth data point is within a hyperellipsoid, centered at the cluster prototype of the ith 

cluster with radii of one standard deviation of each feature, then 𝑢𝑖,𝑘 is the distance between the 

kth data point and the ith cluster. Otherwise, it is zero to exclude far data points from 

calculations of (average) density partition. 

(iv) If number of clusters is lower than the predefined maximum, increase the number of 

clusters, and go to (iii). Otherwise stop the algorithm, then choose the best cluster number due 

to performance measures. 
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2.4 Empirical relations in petrophysics 

Using empirical relations in reservoir characterization is very common. All the well-log 

interpretation software applications contain some of these relations for estimating reservoir 

properties: porosity, permeability, saturation, rock typing, etc. The focus of the thesis is on the 

porosity, then permeability. In the next step, results of irreducible water are provided in some 

cases. Since there is not a measurement for evaluating saturation results, it is not discussed as 

porosity and permeability properties. 

2.4.1 Porosity study by well-logs 

Porosity could be studied by three well-logs: neutron porosity (NPHI), bulk density (RHOB) 

and sonic (DT). NPHI is a measure of hydrogen content. Since this element exists in the water 

and hydrocarbons (not in solid phase of formations), so NPHI is a measure of whole the porous 

media, i.e. total porosity either effective or non-effective (Johnson and Pile, 2002). RHOB has 

negative correlation with NPHI since higher the porosity, lower the density. Despite the former 

logs, DT represents only secondary porosity, like fractures or vuggy porosity. In fact, DT is 

sensitive to the discontinuities that result in dispersion of sonic waves (Johnson and Pile, 

2002). Therefore peaks in DT could be interpreted as fractured or porous zones. 

2.4.1.1 One-log porosity methods: neutron- or density-based 

The response of NPHI and RHOB could be modelled by Relation 2-25. The acquired log 

value is summation of matrix, shale, hydrocarbon and water parts. 

𝑙𝑜𝑔 = 𝜑𝑒. 𝑆𝑋𝑂 . 𝑙𝑜𝑔𝑤 + 

𝜑𝑒. (1 − 𝑆𝑋𝑂). 𝑙𝑜𝑔ℎ + 

𝑉𝑠ℎ . 𝑙𝑜𝑔𝑠ℎ + 

(1 − 𝑉𝑠ℎ −𝜑𝑒).∑𝑣𝑖. 𝑙𝑜𝑔𝑖 

Water term 
 
Hydrocarbon term 
 
Shale term 
 
Matrix term 

(2-25) 

where 𝜑𝑒 and 𝑉𝑠ℎ  are effective porosity and volume of shale, both in fraction. 𝑙𝑜𝑔𝑤, 𝑙𝑜𝑔ℎ, 

𝑙𝑜𝑔𝑠ℎ and 𝑙𝑜𝑔𝑖 are log readings (either NPHI or RHOB) in 100% water, hydrocarbon, shale and 
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the ith component of matrix rock, respectively. 𝑆𝑋𝑂 is water saturation in invaded zone 

(fractional). Finally, 𝑣𝑖 is the volume of ith component of matrix rock. 

In this thesis, since the dataset belongs to a gas-free reservoir, the difference between the log 

reading in water and hydrocarbon horizons is neglected, 𝑙𝑜𝑔𝑤 = 𝑙𝑜𝑔ℎ. Also, the invaded zone 

is considered completely full of drilling water 𝑆𝑋𝑂 = 1 (Crain, 2000). It means that water and 

hydrocarbon terms are integrated into a single term. 

𝑙𝑜𝑔(𝑠) =
𝑙𝑜𝑔 − 𝑙𝑜𝑔𝑚𝑎
𝑙𝑜𝑔𝑤 − 𝑙𝑜𝑔𝑚𝑎

 Lithology correction (2-26) 

𝜑𝑙𝑜𝑔 = 𝑙𝑜𝑔
(𝑠) − 𝑉𝑠ℎ . 𝑙𝑜𝑔𝑠ℎ Shale correction (2-27) 

where 𝑙𝑜𝑔(𝑠) is scaled log value. 𝑙𝑜𝑔𝑤 and 𝑙𝑜𝑔𝑚𝑎 are log responses in 100% water saturation 

and rock matrix, respectively (lithology correction). 𝜑𝑙𝑜𝑔 is the final porosity value from NPHI 

or RHOB logs. In case of occurrence of gas, applying neutron gas correction factor is necessary 

(Crain, 2000). 

2.4.1.2 Two-log porosity methods 

2.4.1.2.1 Density-neutron (shaly sand) cross-plot 

Although this method is widely used, it is not recommended. It is used here since still is 

found in log analysis software applications. Complex lithology models are recommended 

instead of shaly sand models, because most of sandy reservoirs contain other minerals than 

quartz and clay minerals. The output of Relation 2-26 for the logs NPHI and RHOB, i.e. 

𝑁𝑃𝐻𝐼(𝑠) and 𝑅𝐻𝑂𝐵(𝑠), are inputs of this method. The shale correction will be applied through 

the algorithm (Crain, 2000): 

If 𝑁𝑃𝐻𝐼(𝑠) ≥ 𝑅𝐻𝑂𝐵(𝑠), i.e. there is no gas crossover, so: 

𝜑𝐷𝑁 =
𝑅𝐻𝑂𝐵(𝑠). 𝑁𝑃𝐻𝐼𝑠ℎ

(𝑠) − 𝑁𝑃𝐻𝐼(𝑠). 𝑅𝐻𝑂𝐵𝑠ℎ
(𝑠)

𝑁𝑃𝐻𝐼𝑠ℎ
(𝑠) − 𝑅𝐻𝑂𝐵𝑠ℎ

(𝑠)
 (2-28) 

Otherwise: 
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𝜑𝐷𝑁 = √
1

2
(𝑅𝐻𝑂𝐵(𝑠)

2
−𝑁𝑃𝐻𝐼(𝑠)

2
) (2-29) 

There is a quick-look (Relation 2-30) for density-neutron porosity method which uses the 

output of Relation 2-27. In the version of quick-look, the gas crossover is not accounted since 

shale corrections result in apparent gas crossover, which is an artifact. In addition, in the shale 

zones, there are some recommendations: (i) for 𝑅𝐻𝑂𝐵𝑠ℎ
(𝑠), replace zero for the range of -0.03 to 

0.12; and (ii) for 𝑁𝑃𝐻𝐼𝑠ℎ
(𝑠), replace 0.30 for the range of 0.10 to 0.40 (Crain, 2000). 

𝜑𝐷𝑁
(𝑞)
= 𝜑𝑁𝑃𝐻𝐼 +

1

3
(𝜑𝑁𝑃𝐻𝐼 − 𝜑𝑅𝐻𝑂𝐵) (2-30) 

2.4.1.2.2 Complex lithology 

This model is developed to be used in complex lithological situations, and it is the best 

available empirical relation for the porosity estimation. If 𝜑𝑁𝑃𝐻𝐼 ≥ 𝜑𝑅𝐻𝑂𝐵 , i.e. no gas 

crossover, and really the gas does not exist (Crain, 2000): 

𝜑𝐿𝐶 =
1

2
(𝜑𝑁𝑃𝐻𝐼 +𝜑𝑅𝐻𝑂𝐵𝐼) (2-31) 

But if there is gas crossover after shale correction and we are sure that gas is present: 

𝜑𝐿𝐶 = √
1

2
(𝜑𝑁𝑃𝐻𝐼

2 +𝜑𝑅𝐻𝑂𝐵
2 ) (2-32) 

Finally, if there is no gas crossover after shale correction but we are sure about the presence 

of gas, a correction based on the photoelectric log is necessary (Crain, 2000), which is out of 

the scope here. All the above-mentioned relations are applied through a spreadsheet (Figure 

2-6) to the five wells, under study. 

2.4.2 Irreducible water saturation 

Calculating irreducible water is a prerequisite for permeability modelling by well-logs and 

estimating water-cut. In core testing, it is measurable by increasing capillary pressure. Before 

perturbing the initial equilibrium of the reservoir fluids by production, above the water contact, 
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the irreducible water is equal to the actual (initial) water saturation (𝑆𝑤𝑖𝑟 = 𝑆𝑤). But in 

transition, water and depleted zones, it is not: 𝑆𝑤𝑖𝑟 ≤ 𝑆𝑤. So we need to calculate it. The 

difference between 𝑆𝑤 and 𝑆𝑤𝑖𝑟 , and relative permeability are controlling factors of water-cut. 

The used algorithm for irreducible water calculation has two steps (Crain, 2000): 

(i) Finding Buckles number in a clean pay zone, where there is no water-cut (𝑆𝑤𝑖𝑟 = 𝑆𝑤), 

using Relation 2-33 (Buckles, 1965): 

𝑘𝐵𝑢𝑐𝑘𝑙𝑒𝑠 = min(𝜑𝑒. 𝑆𝑤) (2-33) 

(ii) If the zone is hydrocarbon bearing: 𝑆𝑤𝑖𝑟 = 𝑆𝑤 otherwise: 

𝑆𝑤𝑖𝑟 = min(
𝑘𝐵𝑢𝑐𝑘𝑙𝑒𝑠

𝜑𝑒. (1 − 𝑉𝑠ℎ
𝑚)
, 1, 𝑆𝑤)  (2-34) 

The component m is defined by the user. It is usually set as 1, however other values, like 2, 

are possible for being sure that 𝑆𝑤𝑖𝑟 ≤ 𝑆𝑤 . The effective porosity, 𝜑𝑒, could be either measured 

or estimated by one of porosity modelling methods. 

 
Figure 2-6. A snapshot of the spreadsheet for porosity estimation by the presented empirical relations. Vsh: shale volume, 
NPHIw, NPHIh, NPHIma and NPHIsh: NPHI in water, hydrocarbon, matrix and shale, respectively. NPHIm and PHInc are 
outputs (for NPHI) of Relations 2-26 and 2-27, respectively. RHOBw, RHOBh, RHOBma and RHOBsh: RHOB in water, 
hydrocarbon, matrix (2.65 g.cm-3 for calcite) and shale, respectively. PHId and PHIdc: are outputs (for RHOB) of Relations 
2-26 and 2-27, respectively. PHIxdn, PHIxdn_Q and PHIxdn_CL are outputs of the methods density-neutron, quick-look and 
complex lithology, respectively. 

2.4.3 Wylie-Rose permeability relation 

Wylie and Rose (1950) proposed a well-known empirical relation for permeability 

estimation (Relation 2-35). It is reliable when we have core tests for calibration. 
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𝑘𝑊𝑅 = 𝐶𝑘  
𝜑𝑒
𝑚

𝑆𝑤𝑖𝑟
𝑛  (2-35) 

where 𝐶𝑘, m and n are constants to be chosen (Table 2-3). Effective porosity and irreducible 

water saturation are in fraction. 

Table 2-3. Suggested constants for Wylie and Rose (1950) permeability relation. 

Reference 𝑪𝒌 m n 

Morris and Biggs (1967) 
Oil: 65000 
Gas: 6500 

6.0 2.0 

Timur (1968) 
Oil: 3400 
Gas: 340 

4.4 2.2 

Other empirical relations for permeability modelling were also checked, however they were 

not used since: 

- Permeability from porosity (power of ten): at the moment, fuzzy arithmetic is not practical 

on the power of ten because of (i) RAM limitation, and (ii) too wide domains of resulting fuzzy 

memberships. A possible solution is to define a suitable power fuzzy operator. 

- Permeability from formation factor: needs at least five stages of fuzzy calculations for 

achieving the final result. So, not practical at the moment. 

- Coates and Dumanoir (1974): completely impractical due to several fuzzy calculations, 

containing logarithmic calculations. By the progress of calculators and toolboxes, it would be 

applicable later. 

- Lucia (1983 and 1995): impractical at the moment because of several fuzzy power 

calculations and hardware limitation. 

- Kozeny-Carman relation (Tiab and Donaldson, 2004): needs pore radii evaluation, 

unavailable here. 
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3 Modelling vertical resolution 

Highlights of Chapter 3 

 Well-log data are volumetric records. 

 Three types of vertical resolution are introduced for the well-logs: (i) vertical resolution of 

sampling rate, (ii) vertical resolution of tool (VRT) or spacing, and (iii) vertical resolution of 

membership function (VRmf). 

 VRmf > spacing > sampling rate 

 The vertical resolutions of GR, RHOB and NPHI are modelled by triangular fuzzy 

memberships. 

 The vertical resolution of DT is modelled by a complex fuzzy membership function. 

 Volumetric Nyquist frequency is developed. It is suitable for the volumetric recordings like 

well-logs. 

3.1 Volumetric nature of well-log recordings 

Conventionally, petrophysicists assign the depth of recorded well-log value to a single 

horizon; i.e. at the depth of recorder or exactly in the middle of transmitter and recorder. 

Although a volumetric response is acquired (Figure 3-1), the recorded value is only assigned 

to the centre of volume of investigation. Therefore the volumetric nature of recording is 

ignored! Here, the goal is to model the vertical dimension of volume of investigation using 

fuzzy membership function. The function shows the contribution of each horizon in the 

recorded value. Designing the membership function should be based on the structure of each 

instrument, individually. 

3.1.1 Different types of resolution 

Resolution of well-logs could be discussed vertically and horizontally. Horizontal resolution 

is equivalent to the “depth of investigation”, while vertical resolution can be categorized into 

three types: (i) vertical resolution of sampling rate, (ii) vertical resolution of tool (VRT) or 
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spacing, and (iii) vertical resolution of membership function (VRmf) which is introduced in this 

work for the first time. VRmf is representative of whole the effective depth interval on the 

recording. Inherit of the logging measurement and geological conditions control VRmf. The 

smaller VRmf, the more concentrated (or focused) measurement. 

 
Figure 3-1. Schematic representation of volume of investigation around a sensor in a logging tool. 

Combination of these three vertical resolutions defines the overall precision of acquired logs 

in characterizing the reservoirs. Depth of investigation and vertical resolution of some tools are 

presented on Figure 3-2 and Table 3-2. 

 
Figure 3-2. Depth of investigation and spacing of each well-log (Crain, 2000). 
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Due to Figure 3-2, no guarantee to identify geologic phenomena (mostly sedimentary beds) 

smaller than 30 cm by gamma log. As an example, if a porous bed with the thickness of 10 cm 

is surrounded by thick beds of marl, never the influence of this porous bed exceeds 33%, while 

marls have an effect of 67% on the recording. It is called shoulder-bed effect or the effect of 

neighbouring beds. 

Another limitation on vertical resolution is imposed by the sampling rate. After data 

acquisition, all sampling rates are up-scaled on about 15 cm. Application of Nyquist frequency 

in well-logging says: no guarantee to detect a bed thinner than sampling rate. We believe, 

applying Nyquist frequency in the geophysical domains is not precise; since, it is primarily 

developed and suitable in the domain of telecommunication, where the data (pulses) are not 

volumetric. 

In summary, there are two limitations in studying thin-beds: tools configuration (spacing and 

VRmf) and sampling rate. In this chapter, we are going to modify the conventional Nyquist 

frequency to be more effective in petrophysical investigations. As a prerequisite, we need to 

have a more comprehensive understanding of the mechanisms and principles of logging, which 

are addressed in this chapter. 

3.1.2 VRmf > spacing > sampling rate 

Among the three introduced types of vertical resolution, sampling rate is usually the most 

precise resolution (resistivity logs are exceptions). It could be set by the logger through the 

speed of logging. So, the sampling rate does not impose an important resolution limitation on 

the readings. 

It is declared here that VRmf is larger than the spacing (compare the oval of volume of 

investigation with the spacing in Figure 3-1). It means that the effective interval on the well-

log recordings is not limited to the spacing. There are four reasons for this phenomenon. The 

two first reasons concern recording stage, and the two last concern preprocessing algorithms. 

(i) The recording is taking place while the recording tool is moving upward. 
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(ii) The effect of geological phenomena, which are out of the spacing, on the formation 

factor, is presented in Figure 3-3. 

(iii) Up-scaling the acquired data to the standard sampling rate of 15.24 cm. 

(iv) Other noise reduction algorithms, applied in the stage of pre-processing. 

 
Figure 3-3. The effect of an environment, out of the spacing, on the electrical logging. a) R1<R2: electric flow is getting 
away from the resistant environment (R2). b) R1=R2: electric flow is symmetrical. c) R1>R2: electric flow is getting closer 
to the conducting environment (R2). 

3.2 Modelling logging mechanism by fuzzy memberships 

Well-logs could be categorized into two types: passive and active. Passive logs are simple 

recordings of a physical property (formation radiation) or a geometric property (diameter) 

within the wellbore, and could be registered only by a recorder. However, active logs require a 

transmitter or source, for transmitting energy (electro-magnetic, sonic, beam, etc.) towards the 

wellbore, and recording the response of the stimulated formation by a recorder (Figure 3-4). 

In the passive logs, the closer distances to the recorder are more effective on the sensor. 

Therefore, a membership function has to have two properties: (i) being symmetric and (ii) the 

height is exactly at the horizon of detector. In Figure 3-4a, the simplest possible fuzzy 

membership function, triangular, is presented; however, the function could be non-linear. 

Membership function is more complex in the active logs. Figure 3-4b shows two triangular 

membership functions. Height of one of them is at the horizon of transmitter (mfT) and the 
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other is at the horizon of receiver (mfR). The act of recording takes place at receiver but both 

mfT and mfR are required for the logging. Therefore, an intersection operator, “and” or 

“minimum”, is necessary for fusing mfT and mfR to reach the final membership. The only 

unknown parameter of triangular membership functions (Figure 3-4) is the domain of triangles 

(or VRmf), because the height is one, and the functions are symmetric. 

(a)    (b)  

Figure 3-4. Fuzzy membership function of contribution of each horizon in recording a passive (a) and an active (b) log. 

3.2.1 Recording configuration and well-log 

In detecting a specific thin-bed, the well-log shape is controlled by volume of investigation, 

sampling rate and coordination (depths) of recording points, relative to the thin-bed position. 

The effect of misplacement of recordings, aliasing, is shown by configuration B (Figure 3-5). 

In this figure, two different configurations have resulted in two different well-log shapes. In 

configuration A, only one point has detected the thin-bed, however the thin-bed contributes 

effectively in this record. In configuration B, dashed line, there is no detection within the thin-

bed, and the bed has only minor contributions in the volumes of investigation of two adjacent 

recording points. 
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Figure 3-5. Two possible configurations for detecting a thin-bed. Configuration B results in aliasing. In the well-logging, this 
phenomenon is called shoulder-bed effect, i.e. the effect of neighbouring beds. 

3.2.2 Approximating VRmf 

3.2.2.1 Variography analysis 

VRmf is tried to be approximated practically. In fact, sometimes VRmf varies through the 

same reservoir. “The net result is that one can visualize at any instant a neutron cloud 

surrounding the source, extending a maximum of about 2 ft [~67 cm]. As the hydrogen content 

of the formation varies, the size of the cloud expands and shrinks. The greater the hydrogen 

content, the smaller the cloud and vice versa (Dewan, 1983).” These lines show that VRmf of 

NPHI could vary about 67 cm, depending on formation conditions. 

To gain a primary guess about VRmf, the well-logs were observed precisely. It was found 

that in a homogeneous environment, the thinnest bell-shape trace consists of 5, 8 or 12 data 
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points on the well-logs GR, RHOB and NPHI. It means that the beds thinner than five records, 

i.e. 4×15cm=60cm, are not detectable by the well-logs. So: VRmf>60 cm. 

Larger the intersection of volume of investigation, higher the similarity of neighbouring 

records. When the similarity increases, the well-log becomes smoother and more continuous. 

To study the similarity of neighbouring records, correlation coefficient is firstly checked 

between pairs of neighbouring records (𝑅𝑖, 𝑅𝑖+𝑗). 𝑅𝑖 is the ith record, and 𝑅𝑖+𝑗 is the jth 

neighbour of 𝑅𝑖. As an example, for GR log in well#2, the correlation coefficients between the 

neighbours (j=0, 1, 2, 3, 4 and 5) were 1, 0.93, 0.81, 0.70, 0.62 and 0.57, respectively (Figure 

3-6). So, due to statistics, similarity between the neighbouring records reduces as the distance 

increases between the pairs of records. Correlation coefficient of more than 0.9 could be 

considered as very high and 0.70-0.90 as high (Mukaka, 2012). Considering cut-off of high 

correlation (>0.7), corresponding to high similarity, three neighbours (j=3) will be highly 

similar to each other. So, for GR in well#2, VRmf contains three adjacent records (j=1, 2 and 

3), but not the fourth, i.e. 3×15.24 cm<VRmf<4×15.24 cm or 46 cm<VRmf<61 cm. Even though 

correlation coefficient provides an approximation for VRmf, variography analysis is preferred. 

In fact, variography is a specialized tool to quantify variability (including continuity) of spatial 

data (Gringarten and Deutsch, 2001) (Figure 3-7). 

Experimental variographs of well-logs were checked within Sarvak reservoir of the five 

available wells, SW Iran. There is an exact linear relation at small lags in all the wells, but the 

continuity of the data exists up to about six meters (Figure 3-8). There is no nugget effect, i.e. 

all the variographs start from about the centre of coordination (0,0). Nugget effect and initiation 

of variographs are measures of discontinuity (Gringarten and Deutsch, 2001). 

The gradient of variographs at the linear part is higher than the nonlinear part. It shows that 

the continuity of the data decreases more rapidly at the linear part. The decrease of the 

continuity of the data has two reasons: (i) geological continuity, which lasts up to 6 meters 

(linear and nonlinear parts), and (ii) the intersection of volumes of investigation of adjacent data 

(only in the linear part). So the decrease of continuity has two reasons in the linear part, but in 

the nonlinear part, there is only one reason: geological continuity. 
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Figure 3-6. Cross-plots of adjacent recordings of GR (well#2). 

 

 
Figure 3-7. Measures of similarity (correlation and covariance) and dissimilarity (variance and semivariance) for adjacent 
recordings of GR in well#2. 

So, the second structure, i.e. linear part of variography, is considered as cut-off of high 

similarity between neighbouring records. Interpreting the variograph of GR in well#2 (Figure 
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3-8) reveals that four adjacent records are very similar to each other, leading to VRmf=61 cm, 

which is about the approximation of correlation coefficient. VRmf for the well-logs under study 

in all the wells is presented in Table 3-1 and 3-2, and it is compared to the geological bed 

classifications (Figure 3-9). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3-8. Experimental variographs showing linear relation at the first lags. An open-source computer package, named The 
Stanford Geostatistical Modelling Software (SGeMS) is used to generate variographs. a) GR in well#2, b) RHOB in well#2, 
c) NPHI in well#3 and d) DT in well#5. 

 

Table 3-1. Finding VRmf for each well-log, in each well by variography. VRmf is selected as minimum value of all the wells, 
larger values might be because of homogeneity of rocks. Units are in cm. 

Well-log Well #1 Well #2 Well #3 Well #4 Well #5 VRmf 

GR 61 61 61 61 61 61 

RHOB 76 76 91 76 76 76 

NPHI 76 76 91 76 76 76 

DT 61 61 61 61 61 61 

3.2.2.2 Analytics 

When the adjacent records have a common volume of investigation, a linear relation exists 

between recorded values. To proof this hypothesis, recorded well-log value at the depth of 𝑑𝑖, 
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i.e. R(𝑑𝑖), is expressed as a weighted average of petrophysical value (𝑣) over a VRmf. The 

weights are provided by membership function 𝑓𝑑  (Relation 3-1). By this relation, recorded 

well-log of one depth (𝑑𝑖) is expressed by an adjacent recording (𝑑𝑖+1) (Relation 3-2). Its 

discrete form is given by Relation 3-3. 

 
Figure 3-9. Comparison of VRmf with geological beds (Campbell, 1967), log-scale beds (Majid and Worthington, 2012), 
petrophysical beds (Passey et al., 2006). Modified after Passey et al. (2006). 

R(𝑑) = ∫ 𝑓𝑑(𝑧) × 𝑣(𝑧) × 𝑑𝑧

𝑉𝑅𝑚𝑓

 (3-1) 

R(𝑑𝑖+1) − R(𝑑𝑖) = ∫ 𝑓𝑑𝑖+1(𝑧)𝑣(𝑧)𝑑𝑧

𝑉𝑅𝑚𝑓

− ∫ 𝑓𝑑𝑖(𝑧)𝑣(𝑧)𝑑𝑧

𝑉𝑅𝑚𝑓

= ∫ ([𝑓𝑑𝑖+1(𝑧) − 𝑓𝑑𝑖(𝑧)]𝑣(𝑧)𝑑𝑧)

𝑉𝑅𝑚𝑓

 

(3-2) 

R(𝑑𝑖+1) = R(𝑑𝑖) + ∑ ([𝑓𝑑𝑖+1(𝑧) − 𝑓𝑑𝑖(𝑧)]𝑣(𝑧))

𝑉𝑅𝑚𝑓

 (3-3) 
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Here, 𝑓𝑑  is defined to be linear (triangular membership functions). So, if 𝑣(𝑧) is a linear or 

constant variable, the relation between the two adjacent records would be linear. The 

assumption of 𝑣(𝑧̅) ≅ 𝑣(𝑧) is true in homogeneous conditions. In heterogeneous conditions, 

like when there is a thin-bed between shoulder-beds, the assumption is true if and only if the 

volumes of investigations are well intervened. Therefore, 𝑣(𝑧) could be considered as a 

constant value. So, Relation 3-3 could be rewritten by Relation 3-4: 

R(𝑑𝑖+1) = R(𝑑𝑖) + 𝑣(𝑧̅) × ∑ [𝑓𝑑𝑖(𝑧) − 𝑓𝑑𝑖+1(𝑧)]

𝑔𝑟𝑜𝑠𝑠

 
(3-4) 

So, when the ratio of the thickness of sandwiched bed to the vertical resolution is small 

enough, R(𝑑𝑖+1) has a linear relation with R(𝑑𝑖). As a result of accepting linearity of Relation 

3-4, variograph of recordings has to show a linear behaviour for small lags without a nugget 

effect in ideal situation. This behaviour could be seen on Figure 3-8. Linear behaviour of 

variographs shows linear relationship between records, i.e. validity of 𝑣(𝑧̅) ≅ 𝑣(𝑧), 

subsequently commonness of volume of investigations during the first lags. Hence, it is 

mathematically acceptable to use the linear part of variographs for estimating VRmf. 

3.2.3 Passive log of GR 

Detector of Gamma Ray (GR) log belongs to the category of passive logs, since it only 

records emitting energy of radioactive elements uranium, thorium and potassium. Though 

previous tools could not distinguish such elements, newer instruments can distinguish level of 

energy of each of mentioned elements individually. Therefore, triangular membership function 

of Figure 3-4a is selected for showing the contribution of each horizon to the recorded value. 

Vertical resolution of tool is 30.48 cm, while VRmf is 61 cm (Table 3-2). 

3.2.4 Active logs of RHOB and NPHI 

Bulk density log (RHOB) is of active logs, having transmitter and receiver simultaneously. 

It transmits gamma ray toward the wellbore, and records its attenuation: difference of energy 

of transmitted and recorded gamma ray (Dewan, 1983). Therefore, membership function of 
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Figure 3-4b is selected for showing the contribution of each horizon to the recorded value. 

Vertical resolution of tool is 45.72 cm, and VRmf is 76 cm (Table 3-2). 

Like RHOB, neutron porosity log (NPHI) is of active logs. It transmits fast neutrons (~5 

MeV) toward the wellbore in all directions, and records very low, thermal energies (~0.025 ev) 

(Dewan, 1983). Therefore, membership function of Figure 3-4b is suitable for showing 

contribution of each horizon to the recorded value. Spacing of transmitter and receiver is 30.48 

cm, and VRmf is 76 cm (Table 3-2). 

3.2.5 Complex membership function of compensated sonic log 

Defined membership function of compensated sonic log (DT) is not as simple as previous 

logs. Since Borehole Compensated (BHC) sonic tool has two transmitters on each ending part 

and four detectors. BHC measures transmitting time twice. One is related to the top transmitter, 

the other to the bottom transmitter. Each transmitter is linked to a pair of detectors, for removing 

the effect of mud filtrate. Finally, the two transmitting times are aggregated by an averaging 

operator. It helps increasing the signal to noise ratio, and making the final log less asymmetric 

when the tool is not well-aligned (Figure 3-10). 

 

Figure 3-10. Mechanism of measurement of sonic transfer 
time by Borehole Compensated (BHC) sonic tool. Two 
transmitters and four receivers, finally fusing them by 
averaging (Close et al., 2009). Slowness=DT 

Membership function of each transmitter/ detector is set to be linear. Minimum operator is 

used for creating four membership functions (two for each half) between each transmitter and 

linked detectors (mfDT1 and mfDT2 in Figure 3-11). Each pair of membership functions, 
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related to the single transmitter, are aggregated by averaging, resulting in the final membership 

function (mfDT in Figure 3-12a). Finally, the domain of the membership function is scaled to 

the estimated VRmf (Table 3-1), which is 61 cm for DT (Figure 3-12b). Noteworthy that VRT 

of DT is 152 cm. 

 

Figure 3-11. Defined membership 
function for each half part of 
compensated sonic tool due to 
Figure 3-4b and Table 1-4. 
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Following defining membership functions, properties of membership functions of well-logs 

GR, RHOB, NPHI and DT are specified and presented in Table 3-2. This table is set as the 

basis of creating synthetic well-logs for thin-bed characterization in Chapter 4. 

 
(a) 

 
(b) 

Figure 3-12. Calculated complex membership function for compensated sonic tool, by averaging membership function of 
each half: a) theoretical and b) practical. 

 

Table 3-2. Summary of designed membership functions of each log. 

Well-log 
Vertical resolution 

of tool 
Depth of 

investigation 

Type of 
membership 

function 

Vertical Resolution of 
Membership Function 

(VRmf) 

Height of membership 
function 

GR 30.48 cm 60.96 cm triangular 61 cm middle 

RHOB 45.72 cm 12.7 cm triangular 76 cm middle 

NPHI 30.48 cm 23 cm triangular 76 cm middle 
DT 152.00 cm 7.62 cm trapezoidal 61 cm 25 cm in the middle 

3.3 Volumetric Nyquist frequency 

In digital recordings, like well-logs, the relationship between Sampling Rate (SR) and VRmf 

could be categorized into three types: (i) VRmf=0, (ii) 0<VRmf<SR and (iii) VRmf>SR. The 

concept of Nyquist frequency is developed in telecommunication systems (Nyquist, 1924), 



  

61 

 

Figure 3-13a, where the Nyquist frequency and related inferences are effective. Well-log 

recordings have volumetric nature (Figure 3-13b and c). Here, we present a modification on 

the common concept of the Nyquist frequency, which is more adequate for being used in 

interpreting well-log data. 

 
(a) 

 
(b) 

 
(c) 

Figure 3-13. Nyquist frequency in three categories. Small balls are centre of recordings. a) Pulse-shapes (VRmf=0) like in 
telecommunications, domain of time. Volumetric detection b) When 0<VRmf<SR or c) VRmf>SR. 

It is obvious that in the category of VRmf=0, when thickness of a geologic bed is thicker 

than SR, we are sure that at least one record will detect it completely (probability of 1 in solid-

lines, Figure 3-14). The chance of detecting this bed decreases linearly as its thickness 

decreases down to zero (linear part in solid-line, Figure 3-14). 

When VRmf is not zero, the thickness of bed must be thicker than VRmf and SR 

simultaneously to be detectable at least by one record. Its thickness must be larger than the 

summation of SR+VRmf to be sure that volume of investigation of at least one record be 



  

62 

 

completely occupied by the thin-bed (probability of 1 in dotted and dashed lines, Figure 3-14). 

As before, the thinner the bed, the less probability of detection (linear parts in dotted and dashed 

lines, Figure 3-14). The probability in Figure 3-14, is very the same as Cumulative Distribution 

Function (CDF), since a thick bed has a cumulative behaviour of thinner beds. 

(a)  

(b)  

Figure 3-14. Comparing probability of detecting a thin-bed without shoulder-bed effect, in three different sensor types. In 
pulse-shape detections, VRmf=0, common Nyquist frequency is effective, i.e. the minimum thickness of a surely detectable 
thin-bed is SR. Volumetric detection when a) 0<VRmf<SR, dotted line or b) when VRmf>SR, dashed line. 

“Belief function” has the meaning of “lower probability” in the literature. It is a fuzzy 

measure, which is less than probability measure, and presents a pessimistic view towards the 

chance of happening (Dempster, 1967, 1968). In non-volumetric recordings (VRmf=0), 

probability of detecting a bed, thinner than SR is linear (Figure 3-14), while this part is 

absolutely zero due to belief function (solid-line in Figure 3-15). In volumetric recordings with 

0<VRmf<SR, when the bed is thicker than the summation of SR+VRmf, we are sure that at 

least one record will be fully affected from the bed. Finally, it is obvious that when the bed is 
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thinner than VRmf, volume of investigation of no detection is completely occupied by the bed. 

The mentioned interpretations could be adjusted using Figure 3-13. 

(a)  

(b)  

Figure 3-15. Comparing belief function (pessimistic view) of detecting thin-beds without shoulder-bed effect, in three 
different sensor types. In pulse-shape detections, VRmf=0, common Nyquist frequency is effective, i.e. the minimum 
thickness of a surely detectable thin-bed is SR. Volumetric detection when a) 0<VRmf<SR, dotted line or b) VRmf>SR, 
dashed line. 

 

Volumetric Nyquist frequency is defined in Relation 3-5. The minimum thickness of beds 

to be detected (probably or surely) are presented in Table 3-3. The difference between these 

two thicknesses is an uncertain interval, i.e. the thin-bed will probably be detected but no 

guarantee to be characterized. Interestingly, the uncertain interval remains constant for all the 

three categories (Table 3-3). 

𝑓𝑟
𝑁𝑞,𝑣𝑜𝑙

=
1

𝑆𝑅+𝑉𝑅𝑚𝑓
 

(3-5) 
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Table 3-3. Minimum thickness of beds to be characterized probably or surely. The uncertain interval showing an interval where 
probability is neither zero nor one. 

 VRmf=0 0<VRmf<SR VRmf>SR 

Minimum required thickness of a bed, to be probably characterized without 
shoulder-bed effect 

0 VRmf VRmf 

Minimum required thickness of a bed to be surely characterized without 
shoulder-bed effect 

SR SR+VRmf SR+VRmf 

Uncertain interval SR SR SR 
 

3.4 Conclusions of Chapter 3 

The Vertical Resolution of membership function (VRmf), introduced here, is a useful 

parameter for well-log simulation and modelling. It could be estimated using variography 

analysis. In five wells, VRmf of well-logs GR, RHOB, NPHI and DT were estimated to be 61, 

76, 76 and 61 cm, respectively. Following the development of membership functions to study 

the volume of investigation of each well-log, it was found that the triangular function is suitable 

for studying GR, RHOB and NPHI well-logs, while a trapezoidal shape function is more 

suitable for studying DT. 

Considering the relative values of Sampling Rate (SR) and VRmf, the application of Nyquist 

frequency in well-logs is reviewed, and volumetric Nyquist frequency is developed for 

volumetric recordings (VRmf>0). It was shown that when VRmf>0, the minimum identifiable 

thin-bed should be thicker than SR+VRmf. 
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4 Thin-bed characterization, geometric method 

Highlights of Chapter 4 

 A literature review is presented on the thin-bed study by well-logs. 

 Based on the developed model of vertical resolution, introduced in Chapter 3, a geometric 

simulator is developed for generating synthetic-logs of a single thin-bed. 

 A probabilistic method of thin-bed study, VLSA, is extracted from the literature and 

introduced. 

 This chapter provides a better understanding toward thin-bed study by well-logs, which is a 

foundation for Chapter 5. 

 Geometric simulator enables us analysing the sensitivity of well-logs to a thin-bed. 

 Deconvolution relations for removing shoulder-bed effect of thin-beds are developed for GR, 

RHOB and NPHI well-logs. 

 Deconvolution relations are successfully applied to well-logs to characterize thin-beds. 

4.1 Review of thin-bed studies 

The importance of studying thin-bed reservoirs is two-fold and could be summarized as: (i) 

“future exploration targets are likely to be thinner” in petroleum discoveries (Sengupta, 1987; 

Sengupta et al., 1989). (ii) A near wellbore thin-bed could be pinch out of larger sandy lenses, 

or related to other stratigraphic traps, e.g. channel filling, lateral variation, etc. (Qi and Carr, 

2006). Vertical resolution of logging tools varies from 2 to 10 inches (5.08-25.4 cm), so 

characterizing geological beds thinner than the vertical resolution is imprecise even if the 

sampling rate is precise enough (McCall et al., 1987). 

In the first publications, only signal-processing theories, Weiner and Kalman filter, were 

developed for the purpose of increasing frequency of well-logs (Foster et al., 1962; Bayless 

and Brigham, 1970). The other practical issue of signal processing algorithms is the lack of 

knowledge about the theoretical parameters since there was no confidence about the used 

parameters (Lyle and Williams, 1987). 
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Until 1987, the studies were totally theoretical. Practical improvement of vertical resolution 

of well-logs was basically accomplished within the years 1989-1990, when industrial 

researchers of Schlumberger, Halliburton and British Petroleum played part. They used 

geometrical and numerical analysis for developing easy-to-apply procedures to improve well-

log resolution.  

The beds thinner than 2 feet (60.96 cm) cannot be properly evaluated by density log. Based 

on geometry, a wise correction to enhance density log for characterizing thin-beds (less than 6 

inches or 15.24 cm) is developed. The main idea was inferring the high-frequencies from short-

interval density measurements (applying a low-cut filter), and adding the remained high-

frequencies to the long-interval density measurements (Flaum et al., 1989). This methodology 

was used in Schlumberger’s ‘alpha’ processing for resolution improvement of density and 

neutron well-logs (Passey et al., 2006). 

Inspired from the former work, resolution of compensated neutron log is enhanced too 

(Galford et al., 1989). In addition, the contact of two beds with different porosities is identified 

with less uncertainty: ±2 inches (5.08 cm) rather than ±6 inches (15.24 cm) (Gartner, 1989). In 

another similar work, it is assumed that the attenuation log of Electromagnetic Propagation Tool 

(EPT) and clay volume (derived from geochemical logging) are strongly correlated linearly. 

Hence, high-frequencies are inferred from high-resolution EPT log, and coherent small changes 

are recreated for geochemical logs (Flaum, 1990). 

True understanding of mechanism and spatial response of well-logs is important in a 

successful well-log interpretation. This necessity becomes more rigorous in heterogeneous 

media. Monte-Carlo simulation is used to study spatial response (mostly horizontal resolution) 

of density log. It is found that in carbonate formations, 75% of density log response captures 

the distance of 8 cm from the borehole wall and 90% captures till 12 cm (Petler, 1990). 

Based on the previously developed logical relation for vertical resolution correction (Flaum 

et al., 1989), a three dimensional sensitivity analysis is addressed by Monte-Carlo simulation. 

Using density and neutron logs in high-angle (near horizontal) wells, the uncertainty of 

identifying depth of bed boundaries is about ±2.5 inches (6.35 cm). This uncertainty rises under 

shoulder-bed effect to about ±10 inches (25.4 cm) and ±15 inches (38.1 cm) by density and 
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neutron logs, respectively. This uncertainty in highly deviated wells is justifiable by the fact 

that neutron and density tools are designed and calibrated for vertical wells. So, standard 

interpretations will result in incorrect results (Mendoza et al., 2006). 

Depending on bed thickness average, geoscientists in ExxonMobil Upstream Research 

Company proposed two methodologies for hydrocarbon evaluation in thin-bed condition. When 

the average thickness of beds is thinner than 1 ft (30 cm), the individual beds are no more 

detectable directly by the well-logs (aliasing effect). So, high-frequency geological features, 

like thin-beds, will not be tractable on well-logs, and the resulting well-log will contain lower 

frequencies. Therefore, the method for studying beds, thinner (thicker) than 30 cm is called 

low-resolution (high-resolution) method. In high-resolution modelling, well-known iterative 

inverse solution is introduced, and in low-resolution modelling, Volumetric Laminated Sand 

Analysis (VLSA) is developed (Figure 4-1) (Passey et al., 2004). 

VLSA modelling is a probabilistic approach, based on the volumetric recording mechanism 

of well-logs. It is considered that each record is an average of petrophysical parameters of thin-

beds, weighted by corresponding thicknesses. Then, the evaluation is realized by Monte-Carlo 

(MC) simulation on the intervals of 47.6 ft (14.5 m). Compared to conventional method, 

estimation of hydrocarbon pore-thickness in thin-bed condition is improved by 400%, using 

VLSA method. In the current thesis, VLSA is a base for comparing the proposed methodology 

with. 

Researchers of ExxonMobil further published their thin-bed evaluation experiences in a 

comprehensive book (Passey et al., 2006): 

 Conventional well-log analysis methods underestimate hydrocarbon pore-thickness in shaly 

sand thin-beds: in tidal and submarine environments, respectively 80% and 30% of reservoir 

volume occurs in beds, below standard core-plug diameter (1 inch = 2.5 cm). In most of the 

time, errors of hydrocarbon pore-thickness evaluation is more than 20%. When net to gross 

ratio exceeds 90%, the error of conventional method becomes acceptable. 

 Resistivity is a key log for reservoir characterization, therefore vertical resolution of LLD (2 

ft = 60 cm) is suggested as thickness limit of thin-bed characterization. 
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Figure 4-1. Flowchart for hydrocarbon pore-thickness evaluation in thin-bed condition (Passey et al., 2006). LCM stands for 
Log Convolution Modelling. Volumetric Laminated Sand Analysis (VLSA) is a probabilistic method, developed particularly 
to petrophysical evaluation of beds thinner than 1 ft (30 cm). 
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4.1.1 VLSA Method 

Since this method is a reference for comparing the results of the proposed thin-bed methods 

in coming chapters, the algorithm is introduced briefly. For detailed studies, refer to Passey et 

al. (2004). 

(i) For each well-log, a parametric PDF is created. The PDF could have rectangular, normal, 

or other distribution. The average and standard deviation of the PDF are driven from well-log 

data, and the uncertainty of each well-log is defined as the ratio of standard deviation to the 

average data. 

(ii) For estimating each petrophysical parameter, porosity, permeability, hydrocarbon 

content, etc., the input parameters, from well-logs, are generated randomly from the 

corresponding PDF. 

(iii) After each random generation, the output is calculated and saved. 

(iv) PDF of the output is updated and plotted. 

(v) The second stage is iterated for several times to reach a convergence condition. 

4.2 Theory of geometric thin-bed simulator 

A simulator is designed here to better understand the mechanism of logging in presence of a 

single thin-bed. The simulator generates synthetic-logs, which are developed for GR, RHOB 

and NPHI. A more complex simulator, with much more rules (configurations), is required for 

DT. The reason is that the membership function of GR, RHOB and NPHI is triangular, but it is 

trapezoidal for DT. In order to have only seven configurations (Figure 4-2a), the thin-bed is 

considered thinner than the half of VRmf (Relation 4-1). 

𝑏𝑒𝑑 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 ≤
1

2
𝑉𝑅𝑚𝑓 (4-1) 
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Consider a thin-bed with petrophysical value of 𝑞2, between two thick beds (Figure 4-2a). 

The synthetic-log would be an average of 𝑞1, 𝑞2 and 𝑞3, weighted by the membership function, 

over a VRmf (Relation 4-2). Reminding that the membership function shows contribution of 

each horizon to the recording. For example, in the configuration III, Figure 4-2b, it is expected 

to have a larger weight for 𝑞1 because it occupies larger volume of investigation. The 

convolution form of Relation 4-2 is previously developed for calculating susceptibility log 

(Desvignes et al., 1992) (Appendix A). 

The synthetic-log could be solved in a discrete space. The volume of investigation in Figure 

4-2b is subdivided into four parts: 𝑆1, 𝑆2, 𝑆3 and 𝑆4, and simply the ratio of 𝑆𝑖 to ∑𝑆𝑖  is defined 

as the weight of each n parts in the averaging (Relation 4-3). 

 
(a) 

 
(b) 

Figure 4-2. a) Seven configurations in detecting a thin-bed when membership function is triangular. b) Details of 
configuration III for calculating synthetic-log. 

𝑠𝑙𝑜𝑔 = ∫ 𝑞(𝑥) × 𝑀𝐹(𝑥) × 𝑑𝑥

𝑉𝑅𝑚𝑓

𝑥=0

 (4-2) 
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𝑠𝑙𝑜𝑔 =
∑ 𝑞𝑖 × 𝑆𝑖
𝑛
𝑖=1

∑ 𝑆𝑖
𝑛
𝑖=1

 (4-3) 

The limiting conditions for geometric thin-bed simulator are: (i) the existence of a thin-bed 

between two thick beds; (ii) the wellbore is drilled perpendicular to the geological beds; (iii) 

𝑞1 = 𝑞3; (iv) triangular membership function; (v) thin-bed thickness≤ 1

2
𝑉𝑅𝑚𝑓. 

In Figure 4-2b, 𝑆1 and 𝑆4 are triangles, and 𝑆2 and 𝑆3 are trapezoids. ℎ𝑏 (ℎ𝑡) is the distance 

from the centre of 𝑉𝑅𝑚𝑓 to the bottom (top) of the thin-bed. Because all the depths are known, 

ℎ𝑏 and ℎ𝑡 are known variables too. 𝑎𝑡 and 𝑎𝑏, introduced in Figure 4-2b, could be calculated 

by ℎ𝑏, ℎ𝑡 and 𝐷𝐼, using the Intercept Theorem of Thales. So, the weights are calculated for all 

the configurations. 

𝑎𝑡 = 𝐷𝐼 −
2 × ℎ𝑡 × 𝐷𝐼

𝑉𝑅𝑚𝑓
 (4-4) 

𝑎𝑏 = 𝐷𝐼 −
2 × ℎ𝑏 × 𝐷𝐼

𝑉𝑅𝑚𝑓
 (4-5) 

 

𝑠𝑙𝑜𝑔𝐼 = 𝑞1 
Configuration I 

 

𝑠𝑙𝑜𝑔𝐼𝐼 =
𝑆1 × 𝑞1 + 𝑆2 × 𝑞1 + 𝑆3 × 𝑞2

𝑆1 + 𝑆2 + 𝑆3
 

𝑆1 =
1

2
×
𝑉𝑅𝑚𝑓

2
× 𝐷𝐼 

𝑆2 =
1

2
× ℎ𝑏 × (𝑎𝑏 + 𝐷𝐼) 

𝑆3 =
1

2
× 𝑎𝑡 × (

𝑉𝑅𝑚𝑓

2
− ℎ𝑏) 

Configuration II 
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𝑠𝑙𝑜𝑔𝐼𝐼𝐼 =
𝑆1 × 𝑞1 + 𝑆2 × 𝑞1 + 𝑆3 × 𝑞2 + 𝑆4 × 𝑞3

𝑆1 + 𝑆2 + 𝑆3 + 𝑆4
 

𝑆1 =
1

2
×
𝑉𝑅𝑚𝑓

2
× 𝐷𝐼 

𝑆2 =
1

2
× ℎ𝑏 × (𝑎𝑏 + 𝐷𝐼) 

𝑆3 =
ℎ𝑎 − ℎ𝑏

2
× (𝑎𝑡 + 𝑎𝑏) 

𝑆4 =
1

2
× (

𝑉𝑅𝑚𝑓

2
− ℎ𝑡) × 𝑎𝑡 

Configuration III 

 

𝑠𝑙𝑜𝑔𝐼𝑉 =
𝑆1 × 𝑞1 + 𝑆2 × 𝑞2 + 𝑆3 × 𝑞2 + 𝑆4 × 𝑞3

𝑆1 + 𝑆2 + 𝑆3 + 𝑆4
 

𝑆1 =
1

2
× 𝑎𝑏 × (

𝑉𝑅𝑚𝑓

2
+ ℎ𝑏−) 

𝑆2 =
1

2
× (−ℎ𝑏−) × (𝑎𝑏 + 𝐷𝐼) 

𝑆3 =
1

2
× ℎ𝑡 × (𝑎𝑡 + 𝐷𝐼) 

𝑆4 =
1

2
× (

𝑉𝑅𝑚𝑓

2
− ℎ𝑡) × 𝑎𝑡 

Configuration IV 

 

𝑠𝑙𝑜𝑔𝑉 =
𝑆1 × 𝑞1 + 𝑆2 × 𝑞2 + 𝑆3 × 𝑞3 + 𝑆4 × 𝑞3

𝑆1 + 𝑆2 + 𝑆3 + 𝑆4
 

𝑆1 =
1

2
× 𝑎𝑏 × (

𝑉𝑅𝑚𝑓

2
+ ℎ𝑏−) 

𝑆2 =
1

2
× (ℎ𝑡−−ℎ𝑏−) × (𝑎𝑏 + 𝑎𝑡) 

𝑆3 =
1

2
× (−ℎ𝑡−) × (𝑎𝑡 + 𝐷𝐼) 

𝑆4 =
1

2
× 𝐷𝐼 ×

𝑉𝑅𝑚𝑓

2
 

Configuration V 
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𝑠𝑙𝑜𝑔𝑉𝐼 =
𝑆1 × 𝑞2 + 𝑆2 × 𝑞3 + 𝑆3 × 𝑞3

𝑆1 + 𝑆2 + 𝑆3
 

𝑆1 =
1

2
× 𝑎𝑡 × (

𝑉𝑅𝑚𝑓

2
+ ℎ𝑡−) 

𝑆2 =
1

2
× (−ℎ𝑡−) × (𝐷𝐼 + 𝑎𝑡) 

𝑆3 =
1

2
× 𝐷𝐼 ×

𝑉𝑅𝑚𝑓

2
 

Configuration VI 

 

𝑠𝑙𝑜𝑔𝑉𝐼𝐼 = 𝑞3 
Configuration VII 

In the all above calculations, the height of the membership function, i.e. the centre of VRfm, 

is considered as the zero point of one-dimensional (vertical) coordinate system, positive 

upward. Therefore, when the top (bottom) bed line is located above the zero point, the value of 

ℎ𝑡 (ℎ𝑏) is positive. And when the top (bottom) bed is below the zero point, the value of ℎ𝑡− 

(ℎ𝑏−) is negative. The negative superscript indicates the relative location to the zero point, and 

the sign of ℎ𝑡. 

4.3 Sensitivity analysis of well-logs to a 30 cm thin-bed 

The geometric simulator regenerates several realizations of well-logs, detecting a single thin-

bed. It provides us the opportunity of analysing the sensitivity of well-logs in thin-bed detection. 

The presumed geological conditions for the sensitivity analysis are: (i) Thin-bed thickness of 

30 cm; (ii) GR, RHOB and NPHI of host rock 200 API, 2.5 g.cm-3 and 10%, respectively; (iii) 

GR, RHOB and NPHI of the thin-bed is 215 API, 3 g.cm-3 and 15%, respectively; (iv) VRmf 

is considered 70 cm; (v) SR is 15.24 cm. 

By increasing noise contamination, thin-bed trace (peak) is going to be diminished (Figure 

4-3). Noise contamination is a random variable, between zero and one, with the uniform 

distribution. The index of the sensitivity analysis is considered as the ratio of the destruction at 
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the depth of the thin-bed to the highest generated peak at the other depths, Relation 4-6. If the 

destructive effect of noise covers the thin-bed trace, so SA<1. 

𝑆𝐴 =
𝑝𝑒𝑎𝑘 − 𝑝𝑒𝑎𝑘 × 𝑛𝑜𝑖𝑠𝑒

ℎ𝑜𝑠𝑡 + ℎ𝑜𝑠𝑡 × 𝑛𝑜𝑖𝑠𝑒
 (4-6) 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

 

(f) 

Figure 4-3. Sensitivity analysis and log response of random noise contamination: a) Sensitivity analysis of noisy GR and b) 
synthetic GR with 0.5, 1, 1.5 and 2% noise. c) Sensitivity analysis of noisy RHOB and d) synthetic RHOB with 1%, 2%, 3% 
and 4% noise. e) Sensitivity analysis of noisy NPHI and f) synthetic NPHI with 1%, 2%, 5% and 10% noise. 

In Figure 4-3a,c,e, dots around the line y=1 are risky points, and above (below) the line y=1 

is (un)reliable window. Comparing this categorization with reported noise of well-logs (Table 

1-4) provides us reliability of well-log detection for thin-beds (30 cm). Therefore, GR well-log 

is not a reliable well-log for thin-beds thinner than 30 cm and 15 API difference in GR. This 

problem could be solved either by increasing thickness of the target for GR or increasing GR 

difference of the bed and the neighbouring beds. 

Table 4-1. Defining reliable and risky windows for interpreting noisy well-logs, the case of 30 cm thin-bed. 

Well-log GR RHOB NPHI 

Reported Noise 
(see Table 1-4) 

±5% 
±0.01 g.cm-3 

≅ 
±0.33% 

0-20: ±1% 

20-30: ±2% 

30-45%: ±6% 

Reliable <1.5% <4% <10% 

Risky 1.5-2% 4-5% 10-20% 

Unreliable >2% >5% >20% 
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4.4 Deconvolution relations for thin-bed characterization 

Deconvolving well-logs (here GR, RHOB and NPHI) is necessary to characterize a thin-bed 

accurately, i.e. decreasing the shoulder-bed effect to approximate the real thickness and the real 

petrophysical value of a thin-bed. Here, thin-bed deconvolution is based on the balance between 

amplitude and apparent thickness of well-log (Figure 3-5). Thus a statistical analysis is used to 

find a relation between synthetic- and ideal-logs. 

For developing deconvolution relations, a set of ideal-logs is first generated. That means 

petrophysical specifications of thin-beds (thickness of the thin-bed and values of 𝑞1, 𝑞2 and 𝑞3) 

have to be defined. Five thicknesses are assumed: 5, 10, 15, 20 and 30 cm. Due to limitation of 

the simulator, it is assumed to have the same petrophysical values above and below the thin-

bed, i.e. 𝑞1 = 𝑞3. Without loss of generality, assume 𝑞1 = 𝑞3 = 0, because the goal is rescaling 

or deconvolving the shape of the well-log, i.e. reducing the shoulder-bed effect. Therefore, only 

the difference of the 𝑞2 to 𝑞1 (or 𝑞3), before and after adding shoulder effect are important. The 

petrophysical value of 𝑞2 is set to be 1, 3, 5, 7, 10, 12, 15, 17, 20, 22, 25, 27 or 30 for GR (API) 

and NPHI (%), whereas it is considered to be 0.01, 0.02, 0.05, 0.07, 0.10, 0.12, 0.13 or 0.15 for 

RHOB (g.cm-3). Reminding that these values are not absolute petrophysical values. They are 

relative differences of thin-bed petrophysical values, according to the surrounding beds. 

Combining the thickness and petrophysical values of synthetic thin-beds, 65 ideal-logs for GR 

and NPHI, and 40 ideal-logs for RHOB were generated. 

In the second stage, synthetic-log simulator is run over the ideal-logs. Synthetic-logs are the 

outputs of convolution (Relation 4-3) hence contaminated by shoulder-bed effect (Figure 4-4). 

The crosses on Figure 4-4a are synthetic-log values, plotted against ideal-log values. All the 

values are below the line y=x, i.e. underestimated by synthetic-log. The thickness of the thin-

bed read from the synthetic-log is plotted against the thickness read from the ideal-log, crosses 

on Figure 4-4b. The crosses above the line y=x are thickness overestimations. Underestimation 

of petrophysical value and overestimation of thickness were expected because of the nature of 

shoulder-bed effect. 

For Figure 4-4a,b, the regression lines are calculated for GR, RHOB and NPHI for 

correlating synthetic-logs to ideal-logs (Relations 4-7 to 4-12). The inputs of regression models 
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are thickness and relative synthetic-log (or well-log) values of thin-bed, and the outputs are 

regression models, representing ideal thickness (or real thickness) and relative ideal-log (or 

real-log). 

∆𝐺𝑅𝑟𝑒𝑔 = 1.0356 ∆𝐺𝑅𝑙𝑜𝑔 + 0.0669 𝑇𝐻log𝐺𝑅  (4-7) 

𝑇𝐻𝑟𝑒𝑔 = −0.1663 ∆𝐺𝑅𝑙𝑜𝑔 + 0.2926 𝑇𝐻log 𝐺𝑅 (4-8) 

∆𝑅𝐻𝑂𝐵𝑟𝑒𝑔 = 0.9127 ∆𝑅𝐻𝑂𝐵𝑙𝑜𝑔 + 0.0007 𝑇𝐻log 𝑅𝐻𝑂𝐵  (4-9) 

𝑇𝐻𝑟𝑒𝑔 = 115.591 ∆𝑅𝐻𝑂𝐵𝑙𝑜𝑔 + 0.1860 𝑇𝐻log𝑅𝐻𝑂𝐵  (4-10) 

∆𝑁𝑃𝐻𝐼𝑟𝑒𝑔 = 1.0262 ∆𝑁𝑃𝐻𝐼𝑙𝑜𝑔 + 0.1124 𝑇𝐻log𝑁𝑃𝐻𝐼  (4-11) 

𝑇𝐻𝑟𝑒𝑔 = 0.7417 ∆𝑁𝑃𝐻𝐼𝑙𝑜𝑔 + 0.1499 𝑇𝐻log𝑁𝑃𝐻𝐼  (4-12) 

where 𝑇𝐻 stands for thickness. For GR model, the thickness, read from the well-log has to 

be thinner than 100 cm, and the difference of well-log value of thin-bed, relative to upper and 

lower beds, should be lower than 30 API. The acceptable domain of thickness for RHOB is up 

to 110 cm, and the maximum relative well-log value is 0.15 g.cm-3. NPHI of thin-bed could 

vary as much as 30% (Figure 4-4a) and its well-log-based thickness should be thinner than 110 

cm (Figure 4-4b). 

Finally, the developed relations are applied on the outputs of simulators (i.e. synthetic-logs) 

to move the crosses closer to y=x, i.e. for better matching the ideal-logs (dots on Figure 4-4a,b). 

Based on MSE of synthetic data, the error is reduced two to three times in characterizing 

petrophysical values, and from 40 to about 80 times in thickness estimation (Table 4-2). 

Table 4-2. Comparing MSE of thin-bed characterization. Interpretations are based on synthetic-logs versus regression models 
(deconvolved) (Figure 4-4). 

 MSE of synthetic-logs MSE of deconvolved synthetic-log 

 GR RHOB NPHI GR RHOB NPHI 

Petrophysical value 42.25 0.003 139.61 20.20 0.001 39.99 

Thickness 2249.41 3202.01 4134.78 50.75 67.31 53.29 
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(a) 

 
(b) 

Figure 4-4. Deconvolution results on synthetic data. a) Petrophysical values (NPHI) of thin-beds before (x) and after (dot) 
reducing shoulder-bed effect. b) Thickness of thin-beds before (x) and after (dot) reducing shoulder effect. 

4.5 Thin-bed characterization, the Sarvak Formation case-study 

In order to characterize thin-beds within Sarvak Formation, deconvolution relations (4-7 to 

4-12) are applied to the well-logs. Ten depths are selected, which show thin-bed behaviour, i.e. 

there are small peaks in two or three of well-logs: GR, RHOB and NPHI (Table 4-3). 

It is worthy to mention why the observations of Table 4-3 and Figure 4-5 are interpreted as 

thin-beds. The very thin-beds that do not have any effect on the well-logs are of course 

undetectable in the well-scale. When the beds have some effects on two or three well-logs, there 

are two possibilities: either the bed is (i) thick enough to let the receivers detect its real 

petrophysical value, i.e. the shape of the well-log is stable, not a peak or a through; or (ii) too 

thin that only a few records could reflect it (configurations A or B, Figure 3-5). In this case, the 
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well-log shows a peak or a through shape, and cannot fully represent the real petrophysical 

value. So, when there are peaks or troughs at the same depth within well-logs, it is interpreted 

as thin-beds. They could also be interpreted as a thin phenomenon, like vuggy or fractured 

interval. The former interpretation is true since in the petroleum geology, well-logs are acquired 

through sedimentary layers, and geological phenomena are often related to these strata. 

Table 4-3. Thin-bed characterizations of 10 real cases within Sarvak Formation, well#1. The apparent thickness values of the 
thin-beds are scaled to be closer to real thickness values by the deconvolution models. NAN: thin-bed curve not observed. 

 RMSE 1 2 3 4 5 6 7 8 9 10 

depth (m)  2727.96 2803.40 2831.13 2850.49 3150.87 3156.00 3158.19 3165.20 3184.55 3186.38 

∆GR log (API) 6.50 22.10 10.17 25.72 12.79 10.40 30.67 23.00 41.32 7.41 8.80 

∆GR model (API) 4.49 32.06 17.67 32.75 19.36 14.85 34.82 27.90 47.89 12.77 14.21 

GR log thickness 
(cm) 

47.43 137.16 106.68 91.44 91.44 60.96 45.72 60.96 76.20 76.20 76.20 

GR model 
thickness (cm) 

7.12 36.46 29.52 22.48 24.63 16.11 8.28 14.01 15.42 21.06 20.83 

∆RHOB log 
(g.cm-3) 

0.06 0.07 0.09 0.07 0.03 NAN 0.07 0.04 0.15 NAN 0.06 

∆RHOB model 
(g.cm-3) 

0.03 0.10 0.17 0.13 0.08 NAN 0.13 0.09 0.18 NAN 0.14 

RHOB log 
thickness (cm) 

56.59 45.72 121.92 91.44 76.20 NAN 91.44 76.20 60.96 NAN 121.92 

RHOB model 
thickness (cm) 

8.20 16.60 33.08 25.10 17.64 NAN 25.10 18.80 28.68 NAN 29.42 

∆NPHI log (%) 11.82 9.00 14.00 4.00 5.00 9.00 14.00 4.00 11.00 4.00 1.00 

∆NPHI model (%) 6.32 24.16 29.29 15.30 14.46 20.43 29.29 11.57 22.48 17.16 12.22 

NPHI log thickness 
(cm) 

64.30 121.92 121.92 91.44 76.20 91.44 121.92 60.96 91.44 106.68 91.44 

NPHI model 
thickness (cm) 

7.30 24.95 28.66 16.67 15.13 20.38 28.66 12.10 21.87 18.96 14.45 

Final Thickness 
(cm) 

 26.05 30.42 21.42 19.16 18.23 20.62 14.97 21.96 20.02 21.57 

Standard deviation 
of thickness (cm) 

 8.14 1.91 3.52 4.02 2.14 8.89 2.81 5.41 1.05 6.13 

Then, the apparent thicknesses and apparent variation of petrophysical values are read 

through the well-logs, and added to the table. These values are not the real thickness and real 

petrophysical values. The petrophysical value is affected by the neighbouring beds, and the 

well-log thickness is an overestimation of real thickness due to shoulder-bed effect. Now, using 

the deconvolution relations, shoulder-bed effect is reduced to get closer to the real values, and 

the outputs are added to Table 4-3. 
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In practice, thin-beds have to be studied by different logs individually; then, comparing 

multiple results (approaches) to come to the final decision. The main reason is that a thin-bed 

might inherently show a specific change in a petrophysical feature; e.g. GR, while not a clear 

trace on other well-logs. Therefore, using various well-logs simultaneously will not necessarily 

end-up to a successful thin-bed characterization. The second reason for studying thin-beds 

separately is that well-logs have different volume of investigation and sampling rate. So, some 

logs might not detect some thicknesses, while others may detect. The third reason is designing 

thin-bed characterization algorithms by individual well-logs, mentioned in the literature (Gallet 

and Courtillot, 1989; Desvignes et al., 1992; Heidari et al., 2012). 

The application of deconvolution relations amplifies all petrophysical values. In eight 

observations (#1-4, #6-8 and #10), three thickness models can be given, and in two observations 

(#5 and #9), only two thickness models can be obtained. The final thickness is calculated by a 

weighted average of thickness models, regarding RMSE of each model (Table 4-2). Low 

standard deviation of the thickness estimations show high confidence-level and similarity of 

the thickness models. 

In observation#3, e.g. the thickness according to GR model is 22.48±7.12 cm (Table 4-3). 

The thickness derived from RHOB model is 25.10±8.20 cm, which is just a little thicker, 

however GR model is more precise. The third thickness estimation (16.67±7.30 cm), given by 

NPHI model, is lower than the others. The final thickness value is a weighted average of the 

three values provided from thickness models. The final thickness for observation#3 is 

21.42±7.57 cm. White noise could be reduced through fusing multiple outputs. The standard 

deviation of the three thickness values (22.48, 25.10 and 16.67 cm) is small (3.52 cm), 

compared to the final error of estimation deduced from RMSE (7.57 cm) (Table 4-3). 

Based on the concept of volumetric Nyquist frequency, there is no guarantee to have a direct 

measurement of a geologic bed thinner than SR+VRmf (Relation 3-5). But the deconvolution 

procedure estimates petrophysical and thickness values of a bed thinner than SR+VRmf, after 

reducing the shoulder-bed effect. The thin-bed characterization after deconvolution is much 

more accurate (Table 4-2). The characterization results of ten thin-beds (thickness values from 

14 to 30 cm, Table 4-3) are promising for developing the methodology on the well-logs. 
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4.5.1 Multi-well-log thin-bed characterization 

The well-logs of the thinnest characterized bed, observation#7 of Table 4-3, are provided 

and interpreted (Figure 4-5a). At a depth of about 3158.19 m, there are positive peaks in GR 

and NPHI logs and a negative peak in RHOB. The GR increase is due to shale content (GR is 

here only the response of the potassium content). The increase of NPHI at this depth is the sign 

of increase of total porosity. The decrease of RHOB could be related to increase of porosity and 

shale content, simultaneously. RHOB log around this horizon fluctuates between 2.71 and 2.65 

g.cm-3, which are equivalents to the densities of calcite and shale average, respectively (Ellis, 

2007). So, this thin-bed can be interpreted as a shale inter-layer with the thickness of 15.0±7.5 

cm (Figure 4-5a). The error (±7.5 cm) is calculated by error propagation methodology, which 

is about the expected error of ±7.75 cm, derived from RMSE (Table 4-3). 

From the viewpoint of sedimentology, the horizon at 3158.19 m depth, located at the lower 

Sarvak Formation, belongs to outer shelf sedimentary environment. Previous studies on this 

interval confirms deep water facies and marine conditions (Ghabeishavi et al., 2010). 

Stratigraphic sequences of the third, fourth and fifth order are previously reported within the 

Sarvak Formation. Its lower part consists of about three sequences of the third order (Razin et 

al., 2010; Vincent et al., 2015). It has the potential for lithological variation, especially 

increase of shale volume. Therefore, the thin-bed characterization is acceptable (Figure 4-5a). 

Thin-bed characterization method is also applied to a cored interval of the upper Sarvak 

Formation, within well#3 to verify thin-bed detection with the cores (Figure 4-5b). The 

lithology belongs to the shallow carbonates. The petrophysical behaviour of the black porous 

thin-bed differs from the neighbouring beds, since there is a core porosity anomaly (8.4% core 

porosity, Figure 4-5b). Therefore, it might be detectable by the well-logs. 

At the depth of about 2802.85 m, within well#3, the deconvolution relations are applied on 

NPHI and RHOB logs. GR does not show thin-bed behaviour. The result is a thin-bed, with a 

thickness of 13±7.5 cm, compatible with the black thin-bed thickness in the core box (<25 cm). 

Worthy to mention that the real subsurface thickness of the black thin-bed is less than the core 

box because of core crushing at the surface and the overburden removal. In addition, corrected 

NPHI (11.7%) which is higher than the core porosity (8.4%) is compatible with the fact that the 
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effective porosity (core porosity) is never higher than the total porosity (NPHI). While non-

corrected NPHI (3.8%) is lower than the core porosity, which is clearly far from the reality. 

4.6 Conclusions of Chapter 4 

A thin-bed simulator was designed using geometric relations. The simulator was used to 

generate numerous synthetic-logs for different geological situations. Ideal-logs (without 

shoulder-bed effect) and synthetic-logs (contaminated by shoulder-bed effect) were compared 

to build regression models to deconvolve well-logs GR, RHOB and NPHI. They estimate the 

thickness of thin-beds, 40 to 80 times more accurately, compared to the apparent thickness, read 

from the well-logs. Petrophysical characterization could be carried out more precisely: RMSE 

of GR, RHOB and NPHI values were reduced from 42.25 to 20.20, 0.003 to 0.001 and 139.61 

to 39.99, respectively. Such methodology could be developed for all well-log data in various 

conditions. 

Finally, the application of deconvolution relations was checked in characterizing ten real 

thin-beds within the Sarvak Formation. All petrophysical values (GR, RHOB and NPHI) were 

increased and all the thickness values were reduced due to the decrease of shoulder-bed effect. 

The resulting thickness values of observations were calculated by an averaging (weighted by 

RMSE) over thickness values of the individual well-logs. The average of standard deviation of 

the thickness values was 4.4 cm, which is a precise value, considering the vertical resolution of 

more than 60 cm. 

In well#3 (Figure 4-5b), NPHI and thickness of a porous thin-bed were estimated (corrected) 

by the proposed method, and the results were compared to the core data. The measured NPHI 

was 3.8%. The proposed method corrected the NPHI value to 11.7%. The corrected NPHI 

seems to be more accurate than the measured NPHI, since it is higher than the core porosity 

(8.4%). Reminding that the total porosity (NPHI) should not be less than the effective porosity 

(core). The thickness of the thin-bed was estimated to be 13±7.5 cm, which is compatible with 

the thickness of the thin-bed in the core box (<25 cm). Usually the in situ thickness is less than 

the thickness of the core boxes, since the lithostatic pressure is removed at the surface, and the 

cores are crushed. 
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(a)  

(b)  

Figure 4-5. Two examples of thin-bed interpretation on the real data. Thin-bed is firstly interpreted by the well-logs 
individually. The well-log values are amplified and given on the thin-bed. Final thickness interpretation and its associated 
uncertainty is provided in the rightmost track. a) Observation#7, well#1 (Table 4-3). b) A case-study in well#3, verified with 
the core box (yellow circles). The thin-bed interpretation is inclined upward since the well-logs have an upward skewness. 
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Geometry-based algorithm has the following advantages: it (i) estimates the thickness of 

thin-bed, (ii) corrects (deconvolves) the petrophysical value of a well-log at the depth of thin-

bed, (iii) is easy to understand the methodology basis. Whereas the disadvantages are: the 

algorithm (i) does not provide a complete curve, i.e. the estimation belongs only to a single 

point, and (ii) is time consuming and not automated. 
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5 Enhancing vertical resolution of well-logs 

Highlights of Chapter 5 

 Bayes Theorem and Dempster-Shafer Theory (DST) of evidences are used to combine 

adjacent well-log records. 

 The importance of volumetric Nyquist frequency in up-scaling is shown. 

 Application of DST is developed for assessing intersections of well-log recordings. 

 Vertical resolutions of GR, RHOB, NPHI and DT are improved from ~60 cm to the sampling 

rate (~15 cm). 

 The well-logs are corrected by amplifying the attenuated high frequencies. 

 Shoulder-bed effect, i.e. effect of neighbouring beds, is reduced. 

 The proposed method is verified by synthetic cases, core box and core porosity. 

 The depth uncertainty of well-logs is converted into the value uncertainty of well-logs. 

5.1 Combining adjacent well-log records by Bayesian Theorem 

Bayesian Theorem is the oldest mathematical tool for uncertainty assessment (Figure 2-1a). 

The newer tools are developed within the domain of subjective probability: Fuzzy Theory and 

Dempster-Shafer Theory (DST) of evidences (Figure 2-1b). The basic concepts for each of 

these theories are: PDF, membership function and mass function for Bayesian, fuzzy and DST, 

respectively. 

By the means of Bayes rule, the uncertainty of intersections (Figure 2-1a) are going to be 

assessed. So, previously defined membership functions (Table 3-2) are converted into PDFs. 

VRmf remaining constant (61 and 76 cm), only the height of membership functions are reduced 

so that the surface area becomes 1 (PDFs, Figure 5-1) to satisfy the famous law of probability 

within the universal set (Relation 5-1). When VRmf is 61cm (76 cm), a maximum of four (five) 

adjacent distribution functions can have a non-empty intersection (Figure 5-1). 
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∫ 𝑃(𝐴𝑖) × 𝑑𝐴

𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙
𝑠𝑒𝑡

= 1; 𝐴𝑖 ∩ 𝐴𝑗 = ∅;  𝑖 ≠ 𝑗 (5-1) 

Considering 𝑃𝐷𝐹𝑖 as distribution function of the ith recording point, therefore 𝑃𝐷𝐹𝑖−1 and 

𝑃𝐷𝐹𝑖+1  will be adjacent distribution functions, having an intersection with 𝑃𝐷𝐹𝑖. So, Relation 

5-2 would be valid.  

𝑃𝐷𝐹𝑖 + 𝑃𝐷𝐹𝑖+1 = 𝑃𝐷𝐹𝑖 ∪ 𝑃𝐷𝐹𝑖+1 + 𝑃𝐷𝐹𝑖 ∩ 𝑃𝐷𝐹𝑖+1 (5-2) 

For satisfying Relation 5-1, the left-hand side of Relation 5-2 is divided by the number of 

PDFs, i.e. averaging PDFs. The result is a new probability function, PDFX, are given in Figure 

5-1. For each of new PDFs, Shannon entropy and VRmf are calculated, and due to Table 3-3, 

the thinnest surely detectable bed is provided in Table 5-1. 

 
Figure 5-1. PDFXn is a combination of n adjacent PDFs. SR=15.24 cm. a) VRmf=61 cm and b) VRmf=76 cm. 
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Table 5-1. Properties of constructed PDFs in Figure 5-1. 

VRmf of PDF PDF(Xn) Shannon entropy VRmf (cm) SR+ VRmf (cm) 

61 cm 

PDF1 6.22 61 76 

PDFX2 6.39 76 91 

PDFX3 6.58 91 106 

PDFX4 6.75 107 122 

PDFX5 6.91 122 137 
PDFX6 7.04 137 152 

76 cm 

PDF1 6.44 76 91 

PDFX2 6.56 91 106 

PDFX3 6.70 106 121 

PDFX4 6.85 122 137 

PDFX5 6.98 137 152 

PDFX6 7.11 152 167 

As n increases, the entropy and VRmf of PDFXn increases too. Table 5-1 provides us the 

opportunity of choosing our PDF, regarding the thickness of the prospect under study. It means 

that when our target is exploring reservoir beds thicker than 150 cm, it is reasonable to use 

PDFX6 (or PDFX5), instead of PDF1. The other advantage of this table is in suggesting a 

sequential well-log interpretation, i.e. as a quick-log interpretation we can do the interpretations 

by PDFX6, which overwhelms beds thinner than about 150 cm. In the next stage, detailed 

interpretation could be given by PDF1. 

Based on Table 5-1, the most important fact is that conventional thin-bed studies does not 

characterize the beds, thinner than 76 cm, even if SR is much less, i.e. 15.24 cm. This deficiency 

of well-logs is addressed in this chapter by DST. 

5.1.1 The importance of volumetric Nyquist frequency in up-scaling 

The other important inference is regarding up-scaling issue. The goal in the up-scaling is to 

reduce the data volume, i.e. increase of SR while integrating the adjacent data. Due to the 

volumetric Nyquist frequency, if we increase the SR while averaging the adjacent recordings, 

considerable amount of data would be lost. As an example, by up-scaling five neighbouring 

data, corresponding VRmf would be 137 cm (61cm for PDF1). Now, if the SR be kept at 15.24 

cm, i.e. the fused data are not deleted, the thinnest detectable bed would be VRmf+SR=152 cm 

(Table 5-1). But if the SR is increased five times (by deleting the fused data) from 15.24 to 

76.20, so the thinnest identifiable bed would be 213.2 cm! Deleting the fused data while 
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upscaling is usual in the petroleum industry, since the goal of upscaling is to decrease the 

volume of data. 

5.2 Body Of Evidences (BOE) for well-logs 

5.2.1 Focal elements of well-logs 

In a series of observations (measurements, tests, etc.), each evidence is assigned to a space, 

named focal element. Here, focal elements are defined as depth intervals, i.e. focal elements are 

one-dimensional. We have defined two types of focal elements: (i) recording (r) that represents 

vertical resolution of the logging tool, and (ii) target (t) which is the target resolution, defined 

by the user. Figure 5-2 shows focal elements of recording and target when vertical resolution 

is four times larger than sampling rate. In fact, the aim is to improve the vertical resolution of 

well-logs from the focal element of recording (𝐹𝐸𝑟) to a smaller focal element, named target 

(𝐹𝐸𝑡). 

 
Figure 5-2. Defined focal elements of recording (𝐹𝐸𝑟) and target (𝐹𝐸𝑡) for a well-log with VRmf=4×SR. 
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5.2.2 Mass function of focal element of recording 

Corresponding to each 𝐹𝐸𝑟, a mass value is defined, which is free to move inside it. In 

addition to the BOE, redistribution of the mass has to obey the constraints of the problem, here 

geological and technical conditions. Mass function is always non-negative, and the summation 

of mass values over all the focal elements should be one (Relation 2-1). 

Petrophysical well-logging is a volumetric measurement, i.e. assigns a single value to a 

volume of investigation. So, these recordings satisfy the requirements of designing a BOE: 

well-log as mass function, corresponding to the volume of investigation (focal element). Hence, 

uncertainty of well-logs could be modelled by DST, and the ignored geological heterogeneity 

could be rebuilt. In order to satisfy Relation 2-1, mass function is defined as normalized value 

of well-log. Modelling unpredicted situations is not the concern of this study, therefore the mass 

function of null set (𝜙), does not take part in the calculations, i.e. 𝑚(𝜙) = 0. The null function 

in DST corresponds to a situation that the defined BOE is not valid, e.g. well-logging under 

abnormal situations: high-noise, logging tool not working properly, turbulences, etc. 

5.3 Belief and plausibility functions for focal element of target 

5.3.1 Theoretical functions of belief and plausibility  

Due to Figure 5-2, the recorded well-log consists of four subset focal elements of target. 

The petrophysical value of each focal element of target affects the four adjacent well-log 

recordings. In the language of BOE, mass values of the four adjacent focal elements of 

recording could freely pass through a common focal element of target (𝐹𝐸23𝑡 , Figure 5-2). DST-

based structure helps us to find lower (belief) and upper (plausibility) probabilities for each 

focal element of target (Relations 2-2 and 2-3). 

5.3.2 Geological constraints as an axiomatic structure 

Whereas Relations 2-2 and 2-3 are valuable theoretically for defining belief and plausibility, 

they are not practically useful because the uncertainty range will be too large due to: (i) belief 
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function that is absolutely zero since the condition 𝐹𝐸𝑗𝑟 ⊆ 𝐹𝐸𝑖𝑡 of Relation 2-3 is never valid in 

the defined BOE. The focal element of recording is always larger than the focal element of 

target. (ii) Plausibility value is always a too large value, i.e. a summation of adjacent recordings. 

Plausibility values, much larger than well-log values, lead to unrealistic situation since it is only 

a result of calculation. So, the uncertainty range would be too large. In addition, when an 

interval of a VRmf is homogeneous petrophysically, i.e. with constant well-log values, it is 

obvious not to have any uncertainty in the middle of the interval, while the theoretical functions 

of belief and plausibility will create an excessive uncertainty boundary. 

An axiomatic structure is then designed to impose geological facts and BOE constraints on 

belief and plausibility functions. Applying three axioms results in a reasonable uncertainty 

range: (i) volumetric nature of the well-logs (Section 3.1): for each horizon, belief (plausibility) 

is the minimum (maximum) well-log value within the interval of a vertical resolution, centred 

at the depth of recording. We cannot generate or remove the mass, but the mass can move within 

its corresponding focal element of recording. (ii) No uncertainty in homogeneous conditions: if 

the well-log values remain constant within an interval of at least one vertical resolution, i.e. a 

focal element of record, there is no uncertainty range in the middle of the horizon. Thus belief, 

plausibility and mass functions will be equal. (iii) Shoulder-bed effect: at peaks and troughs the 

destructive shoulder-bed effect occurs. It has to be compensated, i.e. at peaks (troughs), belief 

(plausibility) has to be equal to the mass function. Belief (plausibility) at troughs (peaks) should 

be compensated by ɛ as well (Figure 5-3). 

 

Figure 5-3. Example of a well-log with vertical resolution of 91 cm 
(thick line), its average on five adjacent points (dashed line) and 
the range between belief and plausibility (dotted lines). ɛ: 
compensating shoulder-bed effect at peaks and troughs only. 
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5.3.3 Practical functions of belief and plausibility  

Based on the axiomatic structure and defined mass function on the 𝐹𝐸𝑟, belief and 

plausibility for 𝐹𝐸𝑡 is formulated: 

𝑃𝑙𝑠(𝐹𝐸𝑖
𝑡) =

{
 
 

 
 max
𝐹𝑙𝑗
𝑟∩𝐹𝑙𝑖

𝑡≠𝜙
𝑚(𝐹𝐸𝑗

𝑟) + 𝜀;  𝑚(𝐹𝐸𝑖−1
𝑟 ) ≤ 𝑚(𝐹𝐸𝑖

𝑟) 𝑎𝑛𝑑 𝑚(𝐹𝐸𝑖+1
𝑟 ) ≤ 𝑚(𝐹𝐸𝑖

𝑟) (𝑝𝑒𝑎𝑘)

𝑚(𝐹𝐸𝑖
𝑟);              𝑚(𝐹𝐸𝑖

𝑟) ≤ 𝑚(𝐹𝐸𝑖−1
𝑟 ) 𝑎𝑛𝑑 𝑚(𝐹𝐸𝑖

𝑟) ≤ 𝑚(𝐹𝐸𝑖+1
𝑟 ) (𝑡𝑟𝑜𝑢𝑔ℎ)

max
𝐹𝑙𝑗
𝑟∩𝐹𝑙𝑖

𝑡≠𝜙
𝑚(𝐹𝐸𝑗

𝑟) ;                        𝑚(𝐹𝐸𝑖−1
𝑟 ) ≤ 𝑚(𝐹𝐸𝑖

𝑟) ≤ 𝑚(𝐹𝐸𝑖+1
𝑟 ) (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

 
(5-3) 

𝐵𝑒𝑙(𝐹𝐸𝑖
𝑡) =

{
 
 

 
 

𝑚(𝐹𝐸𝑖
𝑟);                        𝑚(𝐹𝐸𝑖−1

𝑟 ) ≤ 𝑚(𝐹𝐸𝑖
𝑟) 𝑎𝑛𝑑 𝑚(𝐹𝐸𝑖+1

𝑟 ) ≤ 𝑚(𝐹𝐸𝑖
𝑟) (𝑝𝑒𝑎𝑘)

min 
𝐹𝑙𝑗
𝑟∩𝐹𝑙𝑖

𝑡≠𝜙
𝑚(𝐹𝐸𝑗

𝑟) − 𝜀;  𝑚(𝐹𝐸𝑖
𝑟) ≤  𝑚(𝐹𝐸𝑖−1

𝑟 ) 𝑎𝑛𝑑 𝑚(𝐹𝐸𝑖
𝑟) ≤ 𝑚(𝐹𝐸𝑖+1

𝑟 ) (𝑡𝑟𝑜𝑢𝑔ℎ)

min
𝐹𝑙𝑗
𝑟∩𝐹𝑙𝑖

𝑡≠𝜙
𝑚(𝐹𝐸𝑗

𝑟) ;                            𝑚(𝐹𝐸𝑖−1
𝑟 ) ≤ 𝑚(𝐹𝐸𝑖

𝑟) ≤ 𝑚(𝐹𝐸𝑖+1
𝑟 ) (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

 
(5-4) 

If 𝑚(𝐹𝐸𝑖𝑟) is neither at peak nor at trough, then the minimum (maximum) of mass functions 

of intersecting 𝐹𝐸𝑗𝑟 is defined as the belief (plausibility) value. If 𝑚(𝐹𝐸𝑖𝑟) is at the peak 

(trough), the belief (plausibility) is defined to be the exact amount of the well-log value, and 

the plausibility (belief) will be the maximum (minimum) of intersecting 𝐹𝐸𝑗𝑟 plus (minus) an 

epsilon. The epsilon is a positive value to compensate the shoulder-bed effect, and will be 

optimized in the next section. Finally, both belief and plausibility values are rescaled to well-

log range. From the application viewpoint, normalization (Relation 2-1) and rescaling could be 

ignored, since here we do not fuse multi-sensory data. 

5.3.4 Compensating shoulder-bed effect by epsilon 

For compensating shoulder-bed effect, epsilon (𝜀) is defined by comparing the well-log to 

its weighted averaging filter. Reminding that a well-log is a weighted averaging of real-log, 

over a VRmf. So, we applied another smoothing (averaging) on the well-log. Then, the distance 

between the well-log and its smoothed curve, 𝜀, is used to compensate the shoulder-bed effect 

at peaks and troughs (Figure 5-4). In the validation part, the well-log is known to be too much 

smoothed that 𝜀 could not fully compensate the shoulder effect. A multiplier, named factor of 

Shoulder-bed Effect (SE), is necessary to amplify 𝜀. The concept of 𝜀 is comparable with the 

resolution enhancement relation of Flaum et al. (1989). 
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5.4 Log simulators 

The uncertainty range provides an interval in which the real-log probably occurs. In this 

section, four DST-based simulators are developed in order to modify the well-log to a 

simulated-log with improved vertical resolution. 

5.4.1 Random simulator 

This is the simplest designed simulator that only produces uniform random values between 

belief and plausibility values. Heterogeneity is the highest in the uniform distribution, so the 

simulator generates the most heterogeneous realizations, which is usually desired in unknown 

geological conditions. In fact, this is a base simulator, and it is expected that other simulators 

provide more accurate results in general. 

5.4.2 Random-optimization simulator 

Second simulator starts by random simulation again, followed by a sequential optimization 

process, based on the volumetric constraint of well-logs. It means that each record should be a 

weighted average of simulated values within an interval of a vertical resolution (Relation 5-5 

and Figure 5-4). Within the interval, the distance is defined as an extraction of well-log from 

the weighted average of the corresponding simulations (Relation 5-6 and Figure 5-4). 

𝑤𝑙𝑠(𝑖) ≜ ∑ [𝑠𝑖𝑚(𝑗) × 𝑤 (𝑗 − 𝑖 + ⌊
𝑛𝑓𝑢𝑠𝑒
2

⌋ + 1)]

𝑖+⌊
𝑛𝑓𝑢𝑠𝑒
2

⌋

𝑗=𝑖−⌊
𝑛𝑓𝑢𝑠𝑒
2

⌋

 (5-5) 

𝑑𝑖𝑠𝑡(𝑖) ≜ |𝑤𝑙(𝑖) − 𝑤𝑙𝑠(𝑖)| (5-6) 

where 𝑤𝑙𝑠(𝑖) is the weighted average of simulated-log, 𝑠𝑖𝑚(𝑗), over a vertical resolution. 

Vertical resolutions of 𝑤𝑙𝑠(𝑖) and 𝑠𝑖𝑚(𝑗) correspond to 𝐹𝐸𝑖𝑟 and 𝐹𝐸𝑖𝑡, respectively. 𝑑𝑖𝑠𝑡(𝑖) is 

distance of the well-log, 𝑤𝑙(𝑖), from 𝑤𝑙𝑠(𝑖), both have the same vertical resolution, so they are 

comparable. 𝑤𝑙𝑠(𝑖), 𝑠𝑖𝑚(𝑗) and 𝑑𝑖𝑠𝑡(𝑖) are functions of depth. 𝑛𝑓𝑢𝑠𝑒 is the number of adjacent 

simulations, within a vertical resolution, e.g. 𝑛𝑓𝑢𝑠𝑒 = 5 in Figure 5-4. 
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Figure 5-4. Scheme of the original well-log (solid line) and simulated-log (dashed line) within the uncertainty range (grey). ɛ 
is multiplied by 5 (SE). The R3 should be a weighted average of S1 to S5 (white square) because they are within the 
𝐹𝐸3

𝑟  (hatched area). Due to assumptions of the algorithm, the distance should be compensated by S3. 

Note that the methodology could be applied to all the possible combinations of sampling rate 

and vertical resolution if an appropriate 𝑛𝑓𝑢𝑠𝑒 is found. 𝑤 is a linear weight for prioritizing 

closer simulations to recording depth. To calculate the weights, the natural values 1, 2, 3, etc. 

are primarily attributed to the parameter 𝑤, in function of distance. Then, the weights are 

normalized by the summation of 𝑤. 

After a random generation, the corresponding distance of the first 𝑛𝑓𝑢𝑠𝑒 simulations is 

calculated (Relation 5-6). For simplicity, and to avoid re-modification of the former optimized 

points, the distance is compensated only by one simulation point, which is the closest to the 

well-log record, e.g. S3 in Figure 5-4. The optimization continues through the well till the end. 

After each round of simulation, the summation of new distances is stored as the error of the 

modified simulated-log. Modification could be iterated up to convergence of the error. The 

convergence cut-off is a stop condition of the optimization process. It is recommended to set 

the convergence cut-off at 0.001 for the summation of all distances. The stages of the 

optimization algorithm are introduced in section “5.5 The algorithm/v-ii”. 
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5.4.3 Recursive simulator 

This simulator consists of two stages. In the first stage, uniform random values between 

belief and plausibility values will be generated for the first (𝑛𝑓𝑢𝑠𝑒 − 1) value. In the second 

stage, simulated-log for the remaining depths will be calculated recursively. The recursive 

Relation 5-7 is derived from the volumetric constraint of well-logs. 

sim(𝑖 + ⌊
𝑛𝑓𝑢𝑠𝑒
2

⌋) =
1

𝑤 (𝑖 + ⌊
𝑛𝑓𝑢𝑠𝑒
2

⌋)
∑ [wl(𝑖) − sim(𝑗) × w (𝑗 − 𝑖 + ⌊

𝑛𝑓𝑢𝑠𝑒
2

⌋ + 1)]

𝑖+⌊
𝑛𝑓𝑢𝑠𝑒
2

⌋−1

𝑗=𝑖−⌊
𝑛𝑓𝑢𝑠𝑒
2

⌋

 (5-7) 

5.4.4 Recursive-optimization simulator 

The final simulator consists of three stages. The two first stages of recursive simulator are 

followed by the optimization process of random-optimization simulator. The interrelations and 

brief of the stages of the four developed simulators are provided in Figure 5-5a. Two of the 

simulators (random and random-optimization) start with free random generation, and two 

others (recursive and recursive-optimization) start with constraint-based random generation. 

5.4.5 Validation criteria 

Different realizations could be generated by the introduced simulators. It is necessary to have 

a measure to validate and prioritize realizations, and finally choose the most accurate 

realization. An ideal criterion is to compare the simulated-log with the ideal-log (Relation 5-8). 

𝑒𝑡_𝑖𝑑 =∑|𝑤𝑙𝑖𝑑(𝑖) − 𝑠𝑖𝑚𝑖𝑛𝑡(𝑖)|

∀𝑖 

 (5-8) 

where 𝑤𝑙𝑖𝑑(𝑖) and 𝑠𝑖𝑚𝑖𝑛𝑡(𝑖) are ideal- and simulated-log, respectively. The subscript “int” 

shows that the simulated-log is interpolated at the depths of the ideal-log. Both are functions of 

depth but due to possible depth mismatch between the simulated- and ideal-log, the simulations 

have to be interpolated to the exact depths of the ideal-log. 𝑒𝑡_𝑖𝑑 stands for total ideal-based 

error. 
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Evidently in subsurface geology, we do not have ideal-logs, so Relation 5-8 is practical only 

in synthetic cases. In real data, instead of ideal error, summation of distances (Relation 5-6) is 

used as a validation criterion. Since the distance is based on the volumetric constraint of well-

logs, the criterion is named “constraint-based error”. Both ideal- and constraint-based errors are 

applied on synthetic data, showing a high correlation coefficient (R2=0.89, Figure 5-9). The 

advantages of using constraint-based error is fourfold: it (i) provides an error for each horizon 

(error profile), (ii) calculates the total error (integral of error profile), (iii) validates the well-

log, such as other measurements like core, well-tests or ideal-log are not needed, and (iv) 

correlates highly with ideal-based error. 

5.5 The algorithm 

The algorithm consists of two parts: (i) DST uncertainty assessment and (ii) simulation 

(dashed rectangles, Figure 5-5b). In the first part, the uncertainty range of each record is defined 

and in the second part, the simulation is applied within the uncertainty range. The details of 

stages of the algorithm are provided below, and the background of each part was previously 

discussed. 

(i) Input: the algorithm assesses well-logs individually, i.e. the algorithm has to be applied 

on a single selected well-log. The well-logs without volume of investigation, like geochemical 

logs or calliper log, could not be chosen. Both synthetic- and real well-logs could be used in the 

algorithm. 

(ii) Vertical resolution: corresponding to the vertical dimension of volume of investigation 

of the selected well-log, the vertical resolution should be defined. The catalogue of the logging 

instrument could be used for this purpose. In case no catalogue is available, vertical resolution 

could be approximated by a measure of continuity, like variograph. To find out the number of 

adjacent records correlated with each other, three steps are addressed (3.2.2.1 Variography 

analysis): 

(ii-i) Experimental variography analysis. 

(ii-ii) Selection of its linear part. 
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(ii-iii) Considering vertical resolution as its length. 

(iii) Mass function: vertical dimension of volume of investigation of each well-log record 

is considered as a linear focal element (𝐹𝐸𝑟). The recorded well-log value is considered as the 

mass value within its corresponding 𝐹𝐸𝑟. The 𝐹𝐸𝑟 and its mass function construct a BOE, 

which should be honoured in the next step. 

(iv) Belief and plausibility functions: goal of DST part of the algorithm is to provide an 

evidence-based reasoning for intersection of the adjacent 𝐹𝐸𝑟. Based on the ratio of vertical 

resolution to sampling rate, the number of adjacent intersecting records (Figure 5-2) is 

calculated. The intersecting interval is called focal element of target (𝐹𝐸𝑡). The mass function, 

which moves within different 𝐹𝐸𝑟, provides a range of mass values for 𝐹𝐸𝑡. Mass value of 𝐹𝐸𝑡 

cannot exceed the maximum mass value of intersecting 𝐹𝐸𝑟 (Figure 5-2). Therefore, to honour 

the records, which are our evidences, the belief (plausibility) is limited to the minimum 

(maximum) of intersecting mass functions (Relations 5-3 and 5-4). Belief and plausibility 

functions are the limits of the created uncertainty range. This process contains two steps: 

(iv-i) 𝑛𝑓𝑢𝑠𝑒 = ⌊
𝑉𝑅

𝑆𝑅
⌋. 

(iv-ii) Calculating belief and plausibility functions. 

(v) Simulation: simulation could be realized using one of the four designed simulators 

(Figure 5-5a). The simulator could be chosen according to a validation criterion (Relation 5-6 

or 5-8). All the simulators start by a random generation stage. In recursive simulator, the 

random generation is limited to a few numbers of focal elements. However, in random 

simulator, all the elements are guessed randomly. If the designed optimization process is 

applied to the outputs of random or recursive simulators, the outputs might converge. 

(v-i) If recursive simulator is used, Relation 5-7 will be used to calculate the simulated-

log for the rest of the depths. 

(v-ii) If the optimization process is used: 

(v-ii-i) The distance (Relation 5-6) is computed for the ith well-log data. 
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(v-ii-ii) The distance is compensated by the ith simulated-log data. 

(v-ii-iii) i=i+1, then go to line (v-ii-i). 

(vi) Validation: the validation is implemented either regarding ideal-log (ideal-based error, 

Relation 5-8) or well-log (constraint-based error, Relation 5-6). Ideal-based error is only 

applicable in synthetic cases, and constraint-based error could be calculated for both synthetic 

and real data. In a homogenous formation, the order of the errors is indicated in Figure 5-6c. 

This general order could be violated in heterogeneous formations. So, precision of all the 

simulators have to be always checked to find the most accurate simulated-log. 

(vii) Simulated-log: the simulated-log with the least error is selected as an alternative for 

the original well-log. The advantage of the simulated-log is that its vertical resolution is equal 

to the 𝐹𝐸𝑡  which is more accurate than the original well-log resolution. 

5.6 Application check on synthetic cases 

Worthy to remind that the aim of the developed methodology is to correct the well-log 

(synthetic-log) to get closer to its real-log (ideal-log). Four simulated-logs can be generated by 

the designed simulators. All the simulators are applied on all the cases of Table 1-2. The 

predefined ideal-log (stars) and corresponding synthetic-log (black dots) of case 1 are presented 

in Figure 5-6a, and the other cases are interpreted in Appendix B. To calculate ideal-based 

error, the realizations are first interpolated to the depths of the predefined ideal-log, if necessary. 

Then, the mismatch of the realization with the ideal-log is calculated for each depth, called error 

profile (Figure 5-6b). Successively, the summation of the error profile through the well-log is 

named total ideal-error (Figure 5-6c). 

Random simulator never satisfies the goal. In this case, it has neither recreated the shape of 

the ideal-log, nor its real value. Compared to other simulators, it has the highest profile and 

total errors (Figure 5-6b,c). The best realization of random-optimization simulator is exactly 

the realization of recursive-optimization simulator. Both random-optimization and recursive-

optimization simulators provided the same result for 48 iterations out of 50. They pass through 
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the same optimization procedure (Figure 5-7); so convergence of the realizations is anticipated. 

The same reasoning is valid for the other cases (Appendix B). 

 
Figure 5-5. Scheme of the processing. (a) Random-optimization and recursive-optimization simulators have to pass through 
an optimization process, while the other more basic simulators only need a free or constraint-based random generation. (b) 
Flowchart of the DST-based algorithm for resolution enhancement of well-logs. 
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Figure 5-6. a) Ideal-log, synthetic-log, uncertainty range and realizations of case 1. b) Error profiles: Comparison of 
constraint-based errors vs. depth between the simulators in case 1. c) Total error for 50 iterations. 
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Figure 5-7. Total constraint-based error during optimization in case 1. Convergence is reached at 6 and 12 epochs for 
random-optimization and recursive-optimization simulators, respectively. The term “epoch” refers to the number of iterations 
during the optimization process. To avoid confusion, the word “iteration” is specifically used for the number of random 
generation. 

5.7 Discussion on results of synthetic cases 

Since none of the simulators were able to detect a single fracture in case 6, further evaluation 

is thus exempted for this case. In cases 1, 3 and 5 (Table 5-2), both ideal- and constraint-based 

errors have the least values in recursive-optimization simulator. In case 2, random-optimization 

simulator is the best. However, recursive-optimization simulator is a competing simulator, and 

it is only 0.6% less accurate than random-optimization simulator. The same for case 7. As for 

case 4, constraint-based error votes for recursive-optimization simulator; though ideal-based 

error selects random simulator. The descriptions are summarized in Figure 5-8. From viewpoint 

of ideal-based error, in 50% (8%+42%) of the cases, the recursive-optimization simulator 

provides the best output. The random-optimization simulator is the most accurate simulator 

only in 33% (8%+25%) of the cases. On the other hand, from the standpoint of constraint-based 

error, recursive-optimization simulator is also the best, since it is valid in 67% (8%+42%+17%) 

of the cases. 

There is another advantage for recursive-optimization simulator: the optimization starts from 

a lower error value, compared to random-optimization simulator, subsequently, convergence is 
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reached within only 6 epochs (Figure 5-7). Therefore, less time is required for recursive-

optimization simulator to reach a local optimum point (a terminology in machine learning that 

means a local minimum error of a complex objective function). In the synthetic cases, recursive-

optimization simulator is the best. Recursive simulator is never successful, compared to the 

others, but random simulator provides the best result only in case 4 whereas the other simulators 

are not satisfactory (Table 5-2 and Figure 5-8). 

Table 5-2. Total errors of simulators for each synthetic case. Minimum errors are highlighted by bold characters. DST-based 
algorithm cannot detect a single fracture, case 6. 

Case Log 

Random simulator 
Random-optimization 

simulator Recursive simulator 
Recursive-optimization 

simulator 

Constraint-
based bulk 

error 
Ideal-based 
bulk error 

Constraint-
based bulk 

error 
Ideal-based 
bulk error 

Constraint-
based bulk 

error 
Ideal-based 
bulk error 

Constraint-
based bulk 

error 
Ideal-based 
bulk error 

1 GR 163.4 63.1 51.6 31.2 90.7 31.2 51.6 31.2 

2 GR 348.8 117.6 81.6 50.0 149.0 73.5 90.0 50.3 

3 RHOB 2.4 0.43 1.6 0.37 2.3 0.39 1.6 0.37 

4 NPHI 59.8 4.7 43.8 13.9 62.3 17.3 42.1 13.4 
5 NPHI 125.5 16.6 77.6 15.2 16.2 10.8 8.8 8.9 

6 DT - - - - - - - - 
7 DT 112.6 33.0 77.8 22.0 81.7 28.0 70.9 22.8 

 

 
Figure 5-8. Confusion matrix of correctness showing cases 1-5 and 7 and percentages. 

5.7.1 Validating constraint-based error by synthetic cases 

It is impossible to calculate ideal-based error in the real well-log data, because it needs an 

ideal-log that does not exist in real cases. Instead, it is suggested to use developed constraint-

based error, i.e. summation of distances in Relation 5-6. To verify constraint-based error, the 
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synthetic data are used. The 24 pairs of errors (Table 5-2) are plotted (Figure 5-9). Cross plot 

of errors shows high positive correlation (R2=0.89) between the two errors, however constraint-

based error is an overestimation of ideal-based error. Therefore, the behaviours of both the 

errors are similar, and constraint-based error could be used as a validation criterion in real 

datasets. 

5.8 Application to real data 

5.8.1 Simulator selection 

The four developed simulators are applied on four well-logs of the five wells under study. 

Due to total constraint-based error, random-optimization simulator is the most accurate 

simulator in all the situations (Table 5-3). However, the error of recursive-optimization 

simulator is not much higher than that of random-optimization simulator. This may be 

interpreted such as random-optimization simulator searches the minimum points more 

effectively, hence it can get closer to the global optimum point. However, the recursive-

optimization method does not check the variety of possibilities for each depth. Further studies 

are applied using random-optimization simulator. 

 
Figure 5-9. Ideal-based vs. constraint-based error giving a significant correlation coefficient (R2).  
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Table 5-3. Constraint-based total errors for the four simulators. SE=5 and iteration number=200. The reference for nfuse is the 
vertical resolution (Table 3-1). The parameters of simulation, including nfuse, are summarized in Table 5-5. 

Well# Well-log 
Random 
simulator 

Random-
optimization 

simulator 

Recursive 
simulator 

Recursive-
optimization 

simulator 

1 

GR 20’750 9’495 18’527 11’479 

RHOB 261’880 79’619 215’370 107’450 

NPHI 156 41 110 51 

DT 42’008 20’155 28’653 23’160 

2 

GR 14’237 6’773 9’932 7’538 

RHOB 305’260 89’164 222’610 109’250 

NPHI 228 65 162 79 

DT 37’223 15’548 22’689 17’696 

3 

GR 16’522 9’259 12’493 10’221 

RHOB 194’260 64’285 142’460 85’612 

NPHI 133 44 102 60 

DT 42’448 22’140 29’704 24’463 

4 

GR 14’789 8’137 11’109 9’052 

RHOB 300’230 84’143 208’900 103’490 

NPHI 173 45 120 55 

DT 45’304 20’958 30’256 24’423 

5 

GR 9’273 3’802 6’012 4’245 

RHOB 199’110 50’851 146’620 68’958 

NPHI 109 28 75 35 

DT 38’457 17’246 23’444 18’865 

5.8.2 Optimizing factor of shoulder-bed effect 

The factor of Shoulder-bed Effect (SE) is the only parameter in the simulators that requires 

manual optimization. Using random-optimization simulator, SE is checked from 2 to 7 (Table 

5-4). The optimum SE for GR and DT is 3 (exception: the optimum SE for GR in well#2 is 4). 

For RHOB and NPHI, the optimum SE varies between 5 and 7. 

5.8.3 Results of resolution improvement of real well-logs 

To apply random-optimization simulator on real well-logs, the optimized parameters (Table 

5-5) are used. Here, the results of resolution improvement are illustrated for the intervals of 

3157-3159 m (well#1) and 2801.65-2803.45 m (well#3) (Figure 5-10). The outputs of the other 

intervals are provided in the Appendix C. Each well-log track in Figure 5-10a,b contains: (i) 

the original well-log (solid black line) with the vertical resolution of 61-91 cm (Table 3-1); (ii) 



  

104 

 

the uncertainty range (blue zone) which is between the belief and plausibility; (iii) ten 

realizations from random-optimization simulator (dots), and (iv) the best one is marked by 

dashed line (simulated-log). The vertical resolution of the realizations is 15 cm (𝐹𝐸𝑡 in Figure 

5-2). In the rightmost tracks, geometry-based thin-bed characterizations are provided. The 

results of core porosity test are also shown in Figure 5-10b. 

Table 5-4. Optimizing SE by comparing constraint-based total errors, iteration number=50. Larger iteration numbers are also 
tested, however the outputs were rubost. The parameters of the simulation (including SE) are mentioned in Table 5-5. 

Well# Well-log SE=2 SE=3 SE=4 SE=5 SE=6 SE=7 

1 

GR 8’231 8’161 8’170 8’304 8’496 8’762 

RHOB 104’350 88’664 82’795 79’619 79’079 79’864 

NPHI 51 45 42 41 40 41 

DT 19’617 19’504 19’509 20’199 20’923 21’281 

2 

GR 6’650 6’624 6’558 6’789 68’921 7’164 
RHOB 107’100 95’427 90’604 89’164 87’467 87’346 

NPHI 77.0 69.0 66.0 65.1 65.0 64.8 

DT 15’338 15’237 15’376 15’548 16’117 16’735 

3 

GR 9’069 8’955 9’030 9’259 9’385 9’659 

RHOB 73’707 68’040 65’537 64’285 64’650 64’196 

NPHI 50.0 48.0 45.0 44.0 44.3 43.0 

DT 21’809 21’376 21’658 22’140 22’868 23’730 

4 

GR 7’998 7’894 7’978 8’137 8’296 8’482 

RHOB 106’380 91’714 85’826 84’143 84’258 83’560 

NPHI 55.0 48.0 44.6 44.4 43.2 43.3 
DT 20’255 20’237 20’609 20’958 21’928 22’507 

5 

GR 3’934 3’773 3’786 3’802 3’968 4’096 

RHOB 67’105 57’344 52’542 50’851 51’133 51’953 

NPHI 34.0 30.0 28.1 27.6 28.2 28.0 

DT 16’870 16’649 16’941 17’246 17’708 19’181 

 

Table 5-5. Optimized parameters for random-optimization simulator. Summary of Table 5-3 and 5-4. 

Well# Interval 
Well-
log 

nfuse SE Well# Interval 
Well-
log 

nfuse SE 

W1 
3157 - 3159 m 
lower Sarvak 

GR 4 3 

W2 
2766 - 2770 m 
upper Sarvak 

GR 4 4 

RHOB 5 6 RHOB 5 7 

NPHI 5 6 NPHI 5 7 

DT 4 3 DT 4 3 

W3 
2802 - 2804 m 
2809 - 2813 m 
upper Sarvak 

GR 4 3 

W4 
2662 - 2666 m 
upper Sarvak 

GR 4 3 

RHOB 6 7 RHOB 5 7 

NPHI 6 7 NPHI 5 6 
DT 4 3 DT 4 2 

W5 
2840 - 2844 m 
upper Sarvak 

GR 4 3 

 
RHOB 5 5 

NPHI 5 5 

DT 4 3 
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The uncertainty range honours the predefined axiomatic structure (Relations 5-3 and 5-4). 

(i) The lower (upper) bound is the minimum (maximum) value over the 𝑛𝑓𝑢𝑠𝑒 neighbouring 

values. (ii) The uncertainty in the top half metre (3157-3157.5 m) is about the zero due to the 

constant value of the original well-log for some neighbouring records. (iii) The SE is 

compensated (to some degree) by the sparks at peaks and troughs; i.e. high-frequency variations 

are amplified (Figure 5-10a). 

All the well-logs show less uncertainty range in the half top metre (3157-3157.5 m, Figure 

5-10a), compared to the other parts. It means that the top part is more homogeneous, while the 

heterogeneity arises downward. Therefore, any interpretation (estimation of porosity, 

permeability, etc.) within the homogeneous part is more certain than the heterogeneous part. In 

fact, heterogeneity of rocks is quantified by DST-uncertainty range. 

In Figure 5-10b, the available core box is provided to evaluate core porosity vs. NPHI and 

thin-bed thickness. The target is here to characterize a black porous thin-bed, ~2802.9 m. GR 

shows a finning (deepening) upward pattern, and there is no sign of a thin-bed. RHOB shows a 

trough, however there is a depth mismatch. NPHI shows a peak, with the plausibility of just 

below 8%, which is comparable with the core porosity, 8.4%, of the black thin-bed. However, 

the best simulated NPHI (dashed-line) is about 5%. Hence, NPHI is corrected from 3.8% to 

about 5%, even if the plausibility is very close to the core porosity. At about the same depth, 

DT shows a positive anomaly too. 

Therefore, if a thin-bed (>15 cm) shows a petrophysical anomaly, DST-based method 

identifies it. When comparing NPHI and core porosity (Figure 5-10b), the vertical resolution 

is improved in the corrected well-log (dashed-line). However, depth mismatch (half of SR: ~7.5 

cm) and lack of thickness estimation are its weaknesses. For the depth mismatch, an error bar 

of ±7.5cm should be considered. 
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 (a)  

 

(b)  

Figure 5-10. Well-log (solid black line) data for the four tools (GR, RHOB, NPHI and DT), uncertainty range (blue zone), ten 
realizations (dots) and the best realization (dashed line) as the simulated-log, within the interval a) 3157-3159 m (well#1) and 
b) 2801.65-2803.45 m (well#3). 
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5.9 Discussions 

5.9.1 Comparing DST and geometry-based results in thin-bed characterization 

A thin-bed at the depth of 3158.19 m (2802.9 m) within well#1 (well#3) is characterized by 

both the developed thin-bed characterization algorithms (Table 5-6). Noteworthy that DST-

based algorithm is more precise than geometry-based algorithm when the uncertainty measures 

(column of DST-based algorithm) are smaller than the Root Mean Square Error (RMSE) 

(column of geometry-based algorithm) (Table 5-6). On the other hand, if the RMSE is smaller 

than the uncertainty measures, it does not necessarily mean that geometry-based algorithm is 

more precise than DST-based algorithm. 

Table 5-6. Comparing the outputs of geometry- and DST-based algorithms in thin-bed characterization, the Sarvak 
Formation. The most accurate values in each row are given in bold characters. 

 Well-log 
Geometry-based 

algorithm 
DST-based algorithm 

 Thin-bed characterization RMSE Value RMSE Value 
DST 

Uncertainty 
Simulator 

uncertainty 
Value 

W
el

l#
1 

D
ep

th
 o

f 
31

58
.1

9 
m

 

GR 
Log value (API) -- 31.5 ±6.50 ≈36 ±6.02 ±0 37.52 

Thickness (cm) ±47.43 60.96 ±7.12 14.01 -- -- -- 

RHOB 
Log value (g.cm-3) ±0.06 2.677 ±0.031 ≈2.635 ±0.053 ±0.028 2.624 

Thickness (cm) ±56.59 76.20 ±8.20 18.80 -- -- -- 

NPHI 
Log value (%) ±11.82 4.00 ±6.32 ≈14 ±5.44 ±2.17 9.96 

Thickness (cm) ±64.30 60.96 ±7.30 12.10 -- -- -- 

DT 
Log value (µs/m) -- 206.5 -- -- ±10.8 ±6.4 211.1 

Thickness (cm) -- -- -- -- -- -- -- 

Final thickness (cm)    
14.97 
±7.5 

   

W
el

l#
3 

D
ep

th
 o

f 
28

02
.8

5 
m

 

GR 
Log value (API) -- -- -- -- ±3.64 ±2.70 8.70 

Thickness (cm) ±47.43 -- -- -- -- -- -- 

RHOB 
Log value (g.cm-3) ±0.06 2.62 ±0.031 ≈2.56 ±0.073 ±0.051 2.603 

Thickness (cm) ±56.59 85 ±8.20 15.74 -- -- -- 

NPHI 
Log value (%) ±11.82 3.80 ±6.32 ≈11.7 ±5.44 ±2.78 5.8 

Thickness (cm) ±64.30 70 ±7.30 10.88 -- -- -- 

DT 
Log value (µs/m) -- -- -- -- ±17 ±12 202 

Thickness (cm) -- -- -- -- -- -- -- 

Final thickness (cm)  
13.17 
±7.5 

 

The process of Relations 5-9 to 5-12 proves mathematically that RMSE is smaller than the 

uncertainty range. There are n estimations, 𝑥𝑖, corresponding to the true values, 𝑧𝑖. The 

uncertainty range (right-hand in Relation 5-9) is always larger than the error (left-hand) because 

it considers all the possible situations, i.e. the maximum possible distance (error) from the real 
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value but RMSE is the error of the most probable case. When 𝑃𝑙𝑠 − 𝐵𝑒𝑙 ≥ 1, it is evident that 

Relation 5-12 is true. But in case 𝑃𝑙𝑠 − 𝐵𝑒𝑙 < 1, the inequality changes twice. The first change 

occurs when squaring (generating Relation 5-10 from Relation 5-9), because both parts are 

considered as positive values, smaller than one. The second change happens when rooting both 

sides (Relation 5-12). The reason for the second change is that when 𝑃𝑙𝑠 − 𝐵𝑒𝑙 < 1, necessarily 

error, square of errors and MSE are smaller than one too. So, rooting results in change of 

inequality in Relation 5-12. 

|𝑥𝑖 − 𝑧𝑖| ≤ 𝑃𝑙𝑠 − 𝐵𝑒𝑙 (5-9) 

⟹ {
(𝑥𝑖 − 𝑧𝑖)

2 ≤ (𝑃𝑙𝑠 − 𝐵𝑒𝑙)2;    𝑖𝑓 𝑃𝑙𝑠 − 𝐵𝑒𝑙 ≥ 1

(𝑥𝑖 − 𝑧𝑖)
2 > (𝑃𝑙𝑠 − 𝐵𝑒𝑙)2;    𝑖𝑓 𝑃𝑙𝑠 − 𝐵𝑒𝑙 < 1

 
(5-10) 

⟹

{
 
 

 
 𝑀𝑆𝐸 =

1

𝑛
∑(𝑥𝑖 − 𝑧𝑖)

2

𝑛

𝑖=1

≤ (𝑃𝑙𝑠 − 𝐵𝑒𝑙)2;    𝑖𝑓 𝑃𝑙𝑠 − 𝐵𝑒𝑙 ≥ 1

𝑀𝑆𝐸 =
1

𝑛
∑(𝑥𝑖 − 𝑧𝑖)

2

𝑛

𝑖=1

> (𝑃𝑙𝑠 − 𝐵𝑒𝑙)2;    𝑖𝑓 𝑃𝑙𝑠 − 𝐵𝑒𝑙 < 1

 (5-11) 

⟹

{
 
 
 

 
 
 
𝑅𝑀𝑆𝐸 = √

1

𝑛
∑(𝑧𝑖 − 𝑡𝑖)

2

𝑛

𝑖=1

≤ 𝑃𝑙𝑠 − 𝐵𝑒𝑙;    𝑖𝑓 𝑃𝑙𝑠 − 𝐵𝑒𝑙 ≥ 1

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑧𝑖 − 𝑡𝑖)

2

𝑛

𝑖=1

< 𝑃𝑙𝑠 − 𝐵𝑒𝑙;    𝑖𝑓 𝑃𝑙𝑠 − 𝐵𝑒𝑙 < 1

 (5-12) 

5.9.2 Advantages of DST-based algorithm 

The principle goal of DST-based algorithm is “uncertainty assessment of the well-logs”. 

Two uncertainty boundaries are created at each depth. The broader boundary, DST uncertainty, 

is provided by belief and plausibility functions. A narrower boundary, simulator uncertainty, is 

created by realizations within the larger uncertainty range. The simulator uncertainty depends 

on the simulator mechanism. For instance, the simulator uncertainty of random simulator is 

exactly equal to DST uncertainty, but narrower for the other simulators. At depth of about 

3157.2 m in DT well-log (Figure 5-10a) both the uncertainty ranges are narrow. At the same 
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depth, the uncertainty ranges of the other well-logs are relatively narrow too, so the 

interpretations in this interval, which is homogeneous, are relatively certain. 

Another advantage is the reduction of the focal element (𝐹𝐸𝑟 > 𝐹𝐸𝑡). It means that an 

alternative log with a smaller vertical resolution can be regenerated: the dashed-line (Figure 

5-10) is the correction of well-logs after scanning within DST uncertainty range, i.e. simulation. 

By scanning, different petrophysical values are checked and the best one, according to the 

volumetric constraint of well-logs, is selected. The corrected well-log contains higher 

frequencies. The regenerated frequencies are one realization of many possible high-frequency 

variations which honour the volumetric nature of well-logs. 

In addition, the proposed algorithm is automated and applicable by usual computers, i.e. it 

does not require specific hardware or facilities. RMSE of DST-based algorithm could be 

considered a little higher than the RMSE of geometry-based algorithms (Table 5-6). For thin-

bed characterization (well#1): RMSE of GR in geometry-based algorithm, i.e. ±6.50, is reduced 

to ±0 (column of simulator uncertainty), i.e. 100% error reduction. RMSE of RHOB, ±0.031, 

is reduced to ±0.028, i.e. 71% reduction in the uncertainty of the output. Similarly, error of 

NPHI is reduced by 66%. For well#3, RMSE of RHOB is increased in DST-based algorithm 

by 65%, while its NPHI is reduced by 56%. But DST-based algorithm does not estimate the 

thickness of thin-beds. 

5.9.3 Uncertainty conversion using DST 

In this chapter, we were able to reduce the vertical resolution of well-logs from SR+VRmf 

to SR. But, simultaneous with the depth uncertainty reduction, we have an increase of the well-

log uncertainty value: from zero to the interval between belief and plausibility. In fact, the DST 

does not provide any uncertainty removal methodology. Instead, it converts the state of 

uncertainty, i.e. from depth uncertainty to value uncertainty. 

Figure 5-11 shows how the DST converts depth uncertainty (point I) to value uncertainty 

(point II). At (I), there is no value uncertainty, while depth uncertainty is maximum, i.e. 

SR+VRmf. But at (II), depth uncertainty is reduced to SR, while value uncertainty is maximized 

to the interval between belief and plausibility. 
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Figure 5-11. Uncertainty conversion by DST. The more depth uncertainty, the less value uncertainty. 

By means of the DST, the overall uncertainty is not reduced. In fact, the depth uncertainty 

(𝑈𝑁𝐶𝑑) is converted to the value uncertainty (𝑈𝑁𝐶𝑣). Heisenberg’s uncertainty principle 

(Busch et al., 2007) is still valid in this context. So, multiplication of value uncertainty by 

depth uncertainty is always higher than a certain value of delta (Relation 5-13). 

𝑈𝑁𝐶𝑑 × 𝑈𝑁𝐶𝑣 ≥ 𝛿 (5-13) 

5.10 Conclusions of Chapter 5  

The very first application of volumetric Nyquist frequency is in the up-scaling. The goal in 

the up-scaling is to reduce the data volume, i.e. increase of SR while integrating the adjacent 

data. Hence, the destructive effects of VRmf and SR have to be considered simultaneously in 

the final resolution of up-scaling. 

Volumetric nature of the well-logs imposes resolution limitation on the recordings, i.e. the 

measurements are not well-representative of high-frequency petrophysical variations, and only 

provide an average value over the interval of measurement (between the transmitter and the 

receivers). For coping with this resolution problem, a DST-based algorithm using four 

simulators is devised to modify well-logs and improve the vertical resolution (Figure 5-5b). 

Comparing the consistency of the theories of probability, possibility and DST analytically 

proved that the DST is capable in uncertainty assessment of well-logs. 
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The application of the proposed DST-based algorithm was checked on synthetic and real 

data. Recursive-optimization simulator was the best simulator for uncertainty assessment in the 

synthetic cases, and random-optimization simulator provided the most precise realizations in 

the real well-logs. The reason is that getting close to the global optimum point is much more 

difficult in the well-log data, because of heterogeneity, and the vast random generation process 

helps more effectively in searching for the optimum point in real data.  

Realization selection is achieved through two errors: constraint- and ideal-based errors. 

Ideal-based error is only practical in synthetic cases, where ideal-log is predefined. While 

constraint-based error does not need any reference, i.e. ideal-log, for assessing simulated-log. 

Constraint-based error validates the simulated-log by comparing it to the original well-log, 

considering its volumetric nature. Constraint-based error for selecting the best realization is 

validated by the synthetic cases, and shows high positive correlation (R2=0.89, Figure 5-9) with 

ideal-based error. So, constraint-based error is a practical measure in prioritizing and validating 

realizations, i.e. outputs of simulations. 

The advantages of developed DST-based algorithm could be summarized in: (i) providing 

uncertainty assessment measures for well-logs. (ii) Simulating an alternative well-log with the 

vertical resolution of about 15 cm, i.e. sampling rate, from the original well-log with the vertical 

resolution of 61-91 cm. (iii) Regenerating and amplifying high-frequency petrophysical 

variations, within the well-logs that were filtered during logging measurements. (iv) Using 

common processors of the market through an automated algorithm, without significant manual 

interference. (v) Providing more precise petrophysical values for thin-beds, compared to the 

previously developed geometry-based algorithm. DST-based algorithm reduced the uncertainty 

of GR, RHOB and NPHI logs by 100%, 71% and 66%, respectively. It shows a high 

performance in reducing the destructive shoulder-bed effect. However, it cannot estimate the 

thickness of thin-beds, compared to geometry-based algorithm. 
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6 Uncertainty projection on reservoir parameters 

Highlights of Chapter 6 

 Cluster analysis on NPHI, RHOB and DT well-logs is used for the purpose of porosity 

analysis. 

 Fuzzy numbers are used to interpret porosity value, and providing uncertainty range. 

 Fuzzy arithmetic is applied to calculate fuzzy numbers of irreducible water saturation and 

permeability. 

 Fuzzy number of irreducible water saturation provides better (less overestimation) results than 

crisp assessment. 

 Fuzzy number of permeability was very much successful in well#5, not successful in wells #1 

and #4. 

 When the porosity interval (clusters) is incompatible with the core porosity, the permeability 

fuzzy numbers are not valid, e.g. in well#4. 

6.1 Importance of cluster analysis in well-log interpretation 

Red circle on the cross-plot of NPHI-RHOB contains several neighbouring data (Figure 

6-1a). How much these neighbouring data points vary from each other? If we reacquire RHOB 

or NPHI well-logs, will the data remain exactly at their current coordinates? Of course there is 

a big possibility of displacement of data points in the second run of logging instruments. The 

coordinate’s variation results in an uncertainty for each data, sourced from the measurement. 

So, we propose to group (cluster) the neighbouring data for which their coordinates differences 

is meaningless. 

In the clustering of Figure 6-1b, the data are not correlated within each cluster, while the 

whole data is highly correlated. It means that the logging instruments are unable to regenerate 

the general correlation, i.e. the correlation of the whole data, within each cluster. Cluster 

analysis is used in this chapter to reconstruct the uncertainty range of the well-logs. The 

uncertainty range of the data within each cluster is the same. Idealistically, this range should 
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contain all the well-log values of all the geological formations, within the volume of 

investigation. 

Cluster analysis does unsupervised grouping of data, based on a measure of similarity. 

Unsupervised categorization means no predefined label is available for each group. Therefore 

the algorithm has to find the number of clusters and the cluster limits. As an example in Figure 

6-1b, the dataset is clustered into five clusters due to the distance in a three-dimensional space 

for NPHI, RHOB and DT. 

 
(a) 

 
(b) 

Figure 6-1. Cross-plots of NPHI-RHOB (scaled) within the Sarvak Formation in well#3. RHOB is scaled to the range of 
NPHI, providing RHOB-based porosity estimation. a) Not clustered and b) clustered into five mass type clusters by FCM 
with inputs of NPHI, RHOB and DT. 

Considering the limits of the clusters as uncertainty boundaries of NPHI and scaled RHOB 

(Figure 6-1b), there are two uncertainty boundaries for porosity. It would be ideal if the core 

porosity remains within the uncertainty boundaries of well-log porosities at the corresponding 

depth. 

The other advantage of clustering is that further processing steps could be addressed for each 

cluster, individually. For instance, in the porosity estimation, the calibration of results will be 

checked in each cluster, individually. Furthermore, cluster-based manipulation of data helps 

modelling the local variations. 



  

114 

 

6.2 Porosity analysis by cluster-based method 

6.2.1 Methodology of cluster-based porosity analysis 

There are three common well-logs for porosity studies: (i) NPHI measures hydrogen content, 

which is present in the water and hydrocarbon molecules. It represents the total porosity. The 

effective porosity represents the situation where the pores are connected to each other, leading 

to stored fluids flow through the formation, so the porosity can be effective for production. In 

none-effective porosity, e.g. in shaly formations, reservoir fluid is captured in unconnected 

pores or trapped by pore pressure in the pore throats. (ii) RHOB: The density of the solid phase 

of the formations is always much higher than the liquid or gas phase occurring within the pores. 

Therefore, higher the porosity, lower the RHOB. (iii) DT log is sensitive to dispersions of sonic 

waves at the place of discontinuities, fractures, vuggy zones, etc. So, it is used for studying 

secondary porosity (Dewan, 1983). 

There is a negative correlation in the cross-plots of RHOB-DT and NPHI-RHOB (Figure 

6-1). But, between NPHI and DT, positive correlation is observed. In the first step of the 

developed method, cluster-based porosity analysis, a clustering algorithm is going to be applied 

on the well-logs (NPHI, RHOB and DT) of the Sarvak Formation, within a selected well 

(Figure 6-2). Each well-log value would be associated with a cluster label, representative of a 

porosity range. This range is chosen from NPHI, and it depends on the inputs (NPHI, RHOB 

and DT), number of clusters and clustering algorithm. As an example, larger the number of 

clusters, larger the uncertainty range. The input is chosen based on the literature (Masoudi et 

al., 2015). For the number of clusters and clustering algorithm, the criterion of Precision 

Measure (PM) is used (Relation 6-1). 

6.2.1.1 Clustering algorithm, compatible with cluster shapes 

The clustering algorithm has to be chosen regarding the desired cluster shape: mass type, 

shell type, linear, same-size, multi-size, etc. For instance, if we are searching for a road in an 

aerial photo, the pixels of the road create a curve line. So, the clustering algorithm have to be 

capable in finding the curves on the photo. 



  

115 

 

The shape of the clusters is highly dependent on the combination of distance and objective 

functions of the clustering algorithm. In KM and FCM algorithms, the clusters are spherical 

with the same size. While in GK, they are elongated, still with the same size. The clusters of 

GG vary in size, besides being elongated. 

 
Figure 6-2. Workflow of the algorithm of cluster-based porosity analysis. 

6.2.1.2 Precision measure for choosing the algorithm and optimizing cluster number 

The Precision Measure (PM) is the ratio of Consistency Measure (CM) to the average of 

cluster intervals (𝐼𝑛𝑡𝑎𝑣𝑒) (Relation 6-1). Consistency between porosity intervals (derived from 

well-logs) and core porosity is represented by CM. When core porosity is within NPHI-range 

of each cluster, it is counted as a correct case. In each cluster, the ratio of the number of correct 

cases to cluster size, i.e. number of data within the cluster, is calculated. The average of the 

ratios in all the clusters is named CM. A good cluster analysis has high CM with a narrow 

interval of clusters. CM and 𝐼𝑛𝑡𝑎𝑣𝑒 are both in percentage, so they are comparable and their 

ratio, PM, is taken as the choice criterion of the cluster algorithm and the number of clusters 

for porosity analysis. 

𝑃𝑀 =
𝐶𝑀

𝐼𝑛𝑡𝑎𝑣𝑒
 (6-1) 

Different algorithms and cluster numbers are checked in each well. Then, based on the PM, 

the best-fit algorithm for porosity analysis is selected, and the cluster number is optimized 
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(Table 6-1). For instance, in well#3, the FCM with six clusters (FCM6) has the highest PM, 

whereas in well#4, the FCM with five clusters (FCM5) is the best choice. 

Applying FCM6 on well#3 results in six same-size mass-type clusters (Figure 6-3a). The 

data of the cross-plot of NPHI and core porosity are coloured according to the cluster labels. 

The histograms of clusters on NPHI and core porosity axis show that the core porosity is 

discriminated too, however not as well as NPHI (Figure 6-3b). The porosity range of each data 

point is assigned by core porosity range of its cluster, e.g. the porosity range of all red data 

varies from about 5% to about 25%. 
Table 6-1. Comparing different algorithms and cluster numbers. The clustering algorithms are: k-means (KM), Fuzzy c-
means (FCM), Gustafson-Kessel (GK) and Gath-Geva (GG). *Only one cluster is detected. **Only two clusters are detected. 
^The clusters are intervened completely (due to the histogram) so the PM is unreliable.  

 Algorithm 3 clusters 4 clusters 5 clusters 6 clusters 

W
el

l 
1 

KM 
CM=100% 
𝐼𝑛𝑡𝑎𝑣𝑒=23% 
PM=4.4**^ 

CM=100% 
𝐼𝑛𝑡𝑎𝑣𝑒=19% 
PM=5.3**^ 

CM=95% 
𝐼𝑛𝑡𝑎𝑣𝑒=17% 

PM=5.7** 

CM=95% 
𝐼𝑛𝑡𝑎𝑣𝑒=15% 

PM=6.4** 

FCM 
CM=100% 
𝐼𝑛𝑡𝑎𝑣𝑒=23% 
PM=4.4**^ 

CM=100% 
𝐼𝑛𝑡𝑎𝑣𝑒=20% 

PM=5.0** 

CM=100% 
𝐼𝑛𝑡𝑎𝑣𝑒=19% 

PM=5.3** 

CM=100% 
𝐼𝑛𝑡𝑎𝑣𝑒=16% 

PM=6.1 

GK 
CM=100% 
𝐼𝑛𝑡𝑎𝑣𝑒=30% 
PM=3.3**^ 

CM=100% 
𝐼𝑛𝑡𝑎𝑣𝑒=24% 
PM=4.2**^ 

CM=100% 
𝐼𝑛𝑡𝑎𝑣𝑒=25% 

PM=4.0** 

CM=100% 
𝐼𝑛𝑡𝑎𝑣𝑒=21% 

PM=4.8** 

GG 
CM=100% 
𝐼𝑛𝑡𝑎𝑣𝑒=19% 

PM=5.1* 

CM=100% 
𝐼𝑛𝑡𝑎𝑣𝑒=27% 

PM=3.7*^ 

CM=100% 
𝐼𝑛𝑡𝑎𝑣𝑒=22% 

PM=4.5* 
Nan 

W
el

l 
2 

KM 
CM=96% 
𝐼𝑛𝑡𝑎𝑣𝑒=29% 

PM=3.4 

CM=97% 
𝐼𝑛𝑡𝑎𝑣𝑒=28% 

PM=3.5 

CM=97% 
𝐼𝑛𝑡𝑎𝑣𝑒=27% 

PM=3.6 

CM=86% 
𝐼𝑛𝑡𝑎𝑣𝑒=25% 

PM=3.5 

FCM 
CM=96% 
𝐼𝑛𝑡𝑎𝑣𝑒=29% 

PM=3.4 

CM=98% 
𝐼𝑛𝑡𝑎𝑣𝑒=26% 

PM=3.7 

CM=97% 
𝐼𝑛𝑡𝑎𝑣𝑒=26% 

PM=3.7 

CM=97% 
𝐼𝑛𝑡𝑎𝑣𝑒=24% 

PM=4.1 

GK 
CM=100% 
𝐼𝑛𝑡𝑎𝑣𝑒=41% 

PM=2.5 

CM=87% 
𝐼𝑛𝑡𝑎𝑣𝑒=36% 

PM=2.4 

CM=97% 
𝐼𝑛𝑡𝑎𝑣𝑒=27% 

PM=3.6 

CM=73% 
𝐼𝑛𝑡𝑎𝑣𝑒=23% 

PM=3.1 

GG 
CM=100% 
𝐼𝑛𝑡𝑎𝑣𝑒=29% 

PM=3.4* 

CM=100% 
𝐼𝑛𝑡𝑎𝑣𝑒=31% 

PM=3.2* 

CM=100% 
𝐼𝑛𝑡𝑎𝑣𝑒=21% 

PM=4.9** 

CM=100% 
𝐼𝑛𝑡𝑎𝑣𝑒=31% 

PM=3.2* 

W
el

l 
3 

KM 
CM=93% 
𝐼𝑛𝑡𝑎𝑣𝑒=19% 

PM=4.9 

CM=87% 
𝐼𝑛𝑡𝑎𝑣𝑒=16% 

PM=5.4 

CM=84% 
𝐼𝑛𝑡𝑎𝑣𝑒=15% 

PM=5.6 

CM=78% 
𝐼𝑛𝑡𝑎𝑣𝑒=14% 

PM=5.6 

FCM 
CM=92% 
𝐼𝑛𝑡𝑎𝑣𝑒=19% 

PM=4.8 

CM=86% 
𝐼𝑛𝑡𝑎𝑣𝑒=16% 

PM=5.3 

CM=79% 
𝐼𝑛𝑡𝑎𝑣𝑒=15% 

PM=5.4 

CM=82% 
𝐼𝑛𝑡𝑎𝑣𝑒=14% 

PM=5.8 

GK 
CM=89% 
𝐼𝑛𝑡𝑎𝑣𝑒=24% 

PM=3.7 

CM=89% 
𝐼𝑛𝑡𝑎𝑣𝑒=23% 

PM=3.8 

CM=91% 
𝐼𝑛𝑡𝑎𝑣𝑒=23% 

PM=3.9 

CM=91% 
𝐼𝑛𝑡𝑎𝑣𝑒=22% 

PM=4.2 

GG 
CM=92% 
𝐼𝑛𝑡𝑎𝑣𝑒=25% 

PM=3.7 

CM=70% 
𝐼𝑛𝑡𝑎𝑣𝑒=19% 

PM=3.7 

CM=84% 
𝐼𝑛𝑡𝑎𝑣𝑒=16% 

PM=5.2 

CM=89% 
𝐼𝑛𝑡𝑎𝑣𝑒=21% 

PM=4.2 
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W
el

l 
4 

KM 
CM=75% 
𝐼𝑛𝑡𝑎𝑣𝑒=33% 

PM=2.2 

CM=59% 
𝐼𝑛𝑡𝑎𝑣𝑒=27% 

PM=2.2 

CM=51% 
𝐼𝑛𝑡𝑎𝑣𝑒=22% 

PM=2.3 

CM=48% 
𝐼𝑛𝑡𝑎𝑣𝑒=20% 

PM=2.5 

FCM 
CM=71% 
𝐼𝑛𝑡𝑎𝑣𝑒=27% 

PM=2.7 

CM=78% 
𝐼𝑛𝑡𝑎𝑣𝑒=29% 

PM=2.7 

CM=73% 
𝐼𝑛𝑡𝑎𝑣𝑒=24% 

PM=3.1 

CM=71% 
𝐼𝑛𝑡𝑎𝑣𝑒=24% 

PM=2.9 

GK 
CM=82% 
𝐼𝑛𝑡𝑎𝑣𝑒=47% 

PM=1.8 

CM=77% 
𝐼𝑛𝑡𝑎𝑣𝑒=46% 

PM=1.7 

CM=75% 
𝐼𝑛𝑡𝑎𝑣𝑒=40% 

PM=1.9 

CM=64% 
𝐼𝑛𝑡𝑎𝑣𝑒=38% 

PM=1.7 

GG 
CM=100% 
𝐼𝑛𝑡𝑎𝑣𝑒=29% 

PM=3.5^ 

CM=96% 
𝐼𝑛𝑡𝑎𝑣𝑒=31% 

PM=3.1^ 
Nan Nan 

W
el

l 
5 

KM 
CM=96% 
𝐼𝑛𝑡𝑎𝑣𝑒=25% 

PM=3.9 

CM=93% 
𝐼𝑛𝑡𝑎𝑣𝑒=21% 

PM=4.4 

CM=90% 
𝐼𝑛𝑡𝑎𝑣𝑒=16% 

PM=5.5 

CM=89% 
𝐼𝑛𝑡𝑎𝑣𝑒=15% 

PM=5.8 

FCM 
CM=91% 
𝐼𝑛𝑡𝑎𝑣𝑒=23% 

PM=4.0 

CM=94% 
𝐼𝑛𝑡𝑎𝑣𝑒=22% 

PM=4.4 

CM=92% 
𝐼𝑛𝑡𝑎𝑣𝑒=19% 

PM=4.8 

CM=92% 
𝐼𝑛𝑡𝑎𝑣𝑒=18% 

PM=5.3 

GK 
CM=100% 
𝐼𝑛𝑡𝑎𝑣𝑒=42% 

PM=2.4 

CM=93% 
𝐼𝑛𝑡𝑎𝑣𝑒=32% 

PM=2.9 

CM=93% 
𝐼𝑛𝑡𝑎𝑣𝑒=26% 

PM=3.6 

CM=86% 
𝐼𝑛𝑡𝑎𝑣𝑒=19% 

PM=4.4 

GG 
CM=99% 
𝐼𝑛𝑡𝑎𝑣𝑒=24% 

PM=4.1 

CM=100% 
𝐼𝑛𝑡𝑎𝑣𝑒=21% 

PM=4.7 

CM=84% 
𝐼𝑛𝑡𝑎𝑣𝑒=18% 

PM=4.7 

CM=81% 
𝐼𝑛𝑡𝑎𝑣𝑒=22% 

PM=3.7 

6.2.1.3 Calibrating NPHI in each cluster 

The core porosity is estimated by calibrating NPHI individually in each cluster. The clusters 

are narrower on the NPHI axis, compared to the axis of core porosity (Figure 6-3b). NPHI is 

an average over the formation porosity (Relation 3-1) so it cannot present the extreme core 

porosity values. For example, the lowest core porosity within the green cluster is about 7%, 

while its NPHI is more than 18%. The calibration is done in two stages. Since the majority of 

the data are located near the centre of each cluster, the extremes (outliers) are removed firstly 

(Figure 6-4). Then, the remained data are scaled to the range of core porosity in each cluster, 

individually. The percentages of removed extremes are found by the trial-and-error process. For 

instance, the lowest RMSE in rescaling NPHI of core porosity is associated with removing 30% 

of extreme core porosity values of each cluster (Table 6-2). 
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Figure 6-3. FCM6 is trained on well-logs NPHI, RHOB and DT of well#3 (a). NPHI and core porosity of each cluster are 
compared through the cross-plot and histograms (b). 

 

In Table 6-2, the extreme removal is applied in batch for all the clusters, i.e. the percentage 

of the extreme removal is constant within all the clusters. In the next step, extreme removal is 

addressed sequentially, i.e. within each cluster (Table 6-3 and 6-4). 

 

 
Figure 6-4. NPHI calibration for porosity estimation: removing the extremes of core porosity, then scaling PDF of NPHI to 
the new core porosity interval. 
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Table 6-2. Batch optimization of removing core porosity extremes. The optimization is achieved on the best cases of 
Table 6-1. The calculated values are RMSE. 

Extreme removal (%)  
Estimator  

10 20 30 40 50 60 70 

W1-FCM6 6.12 5.07 5.22 5.37 5.47 5.35 5.45 

W2-FCM6 3.75 3.72 3.79 3.46 3.37 3.32 3.52 

W3-FCM6 6.79 6.75 6.17 6.19 6.34 6.27 6.27 

W4-FCM5 6.87 6.79 6.73 6.70 6.85 6.78 6.77 

W5-KM6 5.45 5.24 5.32 5.09 5.05 5.12 5.40 

 

6.2.2 Results of cluster-based porosity analysis 

In well#1, there is a limited number of core data with only two clusters, and the core porosity 

is always consistent with the clustering ranges (Figure 6-5a). In well#2, only two core 

porosities are not consistent, however very close to the minimum of clusters (Figure 6-5b). 

Whereas there is a high CM (82%) in well#3 (Table 6-1). 

In well#4, the core porosity is not as compatible with uncertainty range as in the other wells. 

The frequency of variation of core data is higher than the well-logs (Figure 6-5d). Noteworthy 

that well#4 is drilled in a complex tectonic location, where the trend of the anticline changes 

from NS (Arabian trend) to NW-SE (Zagros trend). The most probable interpretation is that 

there is high tectonic activity due to dual stress regime, hence resulting in faults and fractures. 

So, the core porosity is lower than the overall formation porosity. The NPHI (total porosity) 

which is higher than core porosity, i.e. effective porosity, is an evidence for this interpretation 

(Figure 6-5d). Therefore, in the intervals where core porosity is lower than the minimum of 

cluster, e.g. in the interval of 2665- 2680 m of well#4 (Figure 6-5d), a fracture study could be 

applied. In the mentioned interval, the GR value reaches the clean reservoir line, about 10 API, 

so the shale content is negligible, which makes the formation elastic and easy to be fractured. 

In contrast to well#4, core and well-log data are compatible in well#5 for which high porosity 

variation, with a CM of 89% higher than in wells#3 and #4 (Figure 6-5e). In wells #1, #2, #3 

and #5, the calibrated NPHI is very close to the core porosity (Figure 6-5a,b,e). 
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Table 6-3. Sequential optimization of removing core porosity extremes. The calculated numbers are RMSE. In each row, 
while the percentage of each cluster is changing, the other percentages are fixed. For the first row of each well, all the 
percentages are chosen based on the best optimization process of Table 6-2, then modified based on the best results of the 
previous row. 

 
Extreme removal (%)  

Cluster number  
10 20 30 40 50 60 70 

W
1-

F
C

M
6 

1 6.12 5.07 5.52 5.35 5.44 5.32 5.46 

2 5.07 5.07 5.07 5.07 5.07 5.07 5.07 

3 5.07 5.07 5.07 5.07 5.07 5.07 5.07 

4 5.07 5.07 5.07 5.07 5.07 5.07 5.07 

5 5.07 5.07 5.07 5.09 5.09 5.09 5.06 

6 5.06 5.06 5.06 5.06 5.06 5.06 5.06 

W
2-

F
C

M
6 

1 3.36 3.36 3.37 3.37 3.46 3.35 3.35 

2 3.76 3.71 3.79 3.44 3.26 3.35 3.55 

3 3.26 3.26 3.26 3.26 3.26 3.26 3.26 

4 3.23 3.25 3.24 3.26 3.26 3.26 3.23 

5 3.23 3.23 3.23 3.23 3.23 3.23 3.23 

6 3.23 3.23 3.23 3.23 3.23 3.23 3.23 

W
3-

F
C

M
6 

1 6.31 6.32 6.17 6.20 6.34 6.28 6.27 

2 6.24 6.16 6.17 6.19 6.22 6.19 6.16 

3 6.18 6.18 6.16 6.17 6.15 6.16 6.15 

4 6.11 6.15 6.15 6.11 6.09 6.10 6.10 
5 6.55 6.49 6.09 6.10 6.09 6.09 6.09 

6 6.08 6.14 6.09 6.10 6.11 6.12 6.17 

W
4-

F
C

M
5 

1 6.67 6.72 6.75 6.70 6.87 6.81 6.93 

2 6.69 6.69 6.67 6.67 6.67 6.67 6.67 

3 6.74 6.71 6.67 6.67 6.68 6.68 6.69 

4 6.72 6.65 6.64 6.67 6.66 6.67 6.59 

5 6.66 6.64 6.61 6.59 6.58 6.57 6.50 

W
5-

K
M

6 

1 5.16 5.14 5.15 5.09 5.05 5.08 5.12 

2 5.09 5.03 5.03 5.04 5.05 5.05 5.05 
3 5.03 5.03 5.03 5.03 5.03 5.03 5.03 

4 5.29 5.20 5.25 5.06 5.03 5.07 5.30 

5 5.02 4.99 5.00 5.02 5.03 5.04 5.05 

6 4.99 4.99 4.99 4.99 4.99 4.99 4.99 

 

Table 6-4. Final removal percentages of each cluster for different estimators. 

Cluster number  

Estimator  
1 2 3 4 5 6 

W1-FCM6 20 10 10 10 70 10 

W2-FCM6 60 50 10 10 10 10 

W3-FCM6 30 20 50 50 30 10 

W4-FCM5 10 30 30 70 70 - 

W5-KM6 50 20 10 50 20 10 
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(c) 
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(e) 

Figure 6-5. Results of cluster-based porosity analysis. When 
the core porosity is between the limits of clusters, the 
consistency mark is shown on the plot. Cluster limits in non-
cored intervals are interpolated by the adjacent data. a) 
well#1, b) well#2, c) well#3, d) well#4 and e) well#5. fr: 
fraction. 
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6.2.3 Discussion of cluster-based porosity analysis 

6.2.3.1 Comparing the results with conventional methods 

The clustering-based porosity analysis estimates the core porosity and is more precise than 

nearly all conventional methods. It is only NPHI that is more precise than clustering-based 

method in wells #1, #3 and #5. However the difference of RMSE is less than 0.1%, i.e. 

negligible (Figure 6-6). 

 
Figure 6-6. Comparison of the RMSE of porosity estimation methods. 

There are two reasons why conventional methods are less precise than NPHI in estimating 

core porosity. (i) Conventional methods are developed in the clastic rocks, while the Sarvak 

Formation consists of carbonate, contaminated by shale (increasing downward). (ii) An 

important functionality of conventional methods is to correct the shale effect, so in clean 

formations, like the upper Sarvak Formation, they lose this functionality. Therefore, in the 

upper Sarvak Formation, NPHI is closer to core porosity, comparing to the conventional 

methods. The cored intervals are from the cleanest parts of the reservoirs, here the upper Sarvak 

Formation, where the total porosity (NPHI) is close to the effective porosity (core porosity). 
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6.2.3.2 Generalization ability and homogeneous zone of porosity 

The estimators W1-FCM6, W3-FCM6 and W5-KM6 have about the same RMSE in wells 

#1, #3 and #5 (Figure 6-7). Well#4 (the southernmost) is incompatible with the other wells, i.e. 

the other estimators do not estimate porosity precisely in well#4. In addition, the estimator, 

trained and calibrated in well#4, i.e. W4-FCM5, is neither accurate in the other wells. To check 

the reason of isolation of well#4, all the wells were ordered due to the RMSE of each estimator 

(Table 6-5). 

 
Figure 6-7. Generalization check of porosity estimators. 

The estimator W1-FCM6 is more accurate in wells #2 and #5 than in well#1 (Table 6-5). 

So, the generalization ability of this estimator is about 10 km from the north (distance between 

wells #1 and #5) and 10 km from the south (distance between wells #1 and #2) (Figure 6-8). 

Based on the same logic, the estimators W3-FCM6 and W5-KM5 could be generalized up-to 

about 30 km (toward south) and 20 km (toward south and north), respectively (Table 6-5). The 

estimators W2-FCM6 and W4-FCM5 are the best local estimators, while they show high errors 

in the other wells. Hence, they could be interpreted, especially in well#4, as located within 

another porosity zones. Finally, a homogeneous porosity zone is considered for wells #1, #3 

Well#1 Well#2 Well#3 Well#4 Well#5

W1-FCM6 5,06 5,06 6,44 11,12 4,89

W2-FCM6 5,67 3,23 7,14 12,26 5,65

W3-FCM6 4,75 3,64 6,08 11,3 5,14

W4-FCM5 16,92 8,74 11,69 6,5 8,94

W5-KM6 8,75 3,28 6,99 8,95 5,21
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and #5. Around well #2 a transition zone is defined, and well#4 is far from the homogeneous 

porosity zone (Figure 6-8). 

Table 6-5. Generalization ability of the estimators. 

Estimator Wells in the order of RMSE Distance of generalizability 

W1-FCM6 W5<W2<W1<W3<W4 ~10 km toward north and south 

W2-FCM6 W2<W5<W1<W3<W4 0 km 

W3-FCM6 W2<W1<W5<W3<W4 ~30 km toward south 

W4-FCM6 W4<W2<W5<W3<W1 0 km 

W5-KM5 W2<W5<W3<W1<W4 ~20 km toward south and north 

 

 
Figure 6-8. Homogeneous porosity zone within the Sarvak 
Formation. 
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6.3 Permeability analysis by fuzzy arithmetic 

6.3.1 Methodology of permeability analysis by fuzzy arithmetic 

We applied fuzzy arithmetic on empirical relations of irreducible water (Relation 2-34) and 

Wylie-Rose (Relation 2-35). For the relation of irreducible water, shale percentage is estimated 

by normalizing GR, and its power is set to be one, m=1. Buckles number is calculated from the 

core data in each well (Table 6-6). 

Table 6-6. Buckles number in each well, calculated from core data. 

 Well#1 Well#2 Well#3 Well#4 Well#5 

Buckles number (%) 1.7 1.6 2.7 1.5 4.6 

The porosity is included in the calculations as a triangular fuzzy number. The fuzzy number 

is defined by clustering-based method of porosity analysis. Its minimum and maximum are 

derived from the cluster limits of NPHI, and its height is the calibrated NPHI value. When the 

calibrated NPHI is out of range of the NPHI cluster, a rectangular fuzzy number is defined 

between the limits of the cluster. 

In the next step, permeability (Relation 2-35) is calculated twice with the constants of 

Morris-Biggs and Timur (Table 2-3). The precision of domain of digitized fuzzy numbers of 

porosity, irreducible water saturation and permeability are 1%, 1% and 0.01 mD, respectively. 

The domains of permeability fuzzy numbers could vary from zero to 1000 mD. The precisions 

of domains and the size of domains of fuzzy numbers are effective factors to save calculation 

time and memory. The proposed values are optimum for a computer with a RAM of 16 

gigabytes. If we decrease the precisions, the small permeability values could not be calculated. 

On the other hand, if we decrease the domain, large fuzzy numbers could not be completely 

created. 

Calculations in fuzzy arithmetic should be done in separate steps. In each step, only one 

fuzzy operator could be applied. Calculating irreducible water (Relation 2-34) is addressed in 

two steps. In the first step, the ratio of buckles number to the 1 − 𝑉𝑠ℎ  is computed with normal 

operators (Relation 6-2). Then, a is converted to a fuzzy number, A, with height at a and zero 
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for other values of the domain. In the second step, irreducible water is calculated by a fuzzy 

division (Relation 6-3 and Figure 6-12). 

𝑎 =
𝑘𝐵𝑢𝑐𝑘𝑙𝑒𝑠
1 − 𝑉𝑠ℎ

  Normal operators (6-2) 

𝑆𝑤𝑖𝑟 =
𝐴

𝜑𝑒
 Fuzzy operator of division (6-3) 

Calculating Wylie-Rose permeability (Relation 2-35) is realized in five steps: (i) the ratio 

of porosity to irreducible water is calculated (Relation 6-4). (ii) This ratio, 𝐴1, to the power of 

n is calculated (Relation 6-5). (iii) The effective porosity to the power of 𝑚 − 𝑛 is calculated 

(Relation 6-6). (iv) Fuzzy multiplication of the fuzzy number of constant 𝐶𝑘, and 𝐴2 (Relation 

6-7). (v) Finally, fuzzy number of permeability is calculated (Relation 6-8 and Figure 6-14). 

𝐴1 =
𝜑𝑒
𝑆𝑤𝑖𝑟

 Fuzzy operator of division (6-4) 

𝐴2 = 𝐴1
𝑛 Fuzzy operator of power (6-5) 

𝐵 = 𝜑𝑒
𝑚−𝑛 Fuzzy operator of power (6-6) 

𝐴3 = 𝐶𝑘 . 𝐴2 Fuzzy operator of product (6-7) 

𝑘𝑊𝑅 = 𝐴3. B Fuzzy operator of product (6-8) 

In the ordinary arithmetic, firstly powers of 𝜑𝑒𝑚 and 𝑆𝑤𝑖𝑟𝑛  are calculated, then their ratio, i.e. 
𝜑𝑒
𝑚

𝑆𝑤𝑖𝑟
𝑛 . The above order (Relations 6-4 to 6-8) is designed in a way not to produce fuzzy numbers 

out of the range of [0.01, 1000], since the precision and domain of permeability are set to be 

0.01 mD and 1000 mD, respectively. In addition, before calculating Relation 6-4, porosity and 

irreducible water are converted into the unit of ten%, e.g. the porosity value of 32% is converted 

to 3.2 ten%. The unit of ten% helps not to produce too small numbers. The conversion is 

realized by fuzzy product operator of the variables using a triangular fuzzy number of ten, i.e. 
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its domain is [9.99, 10.01] and its height is at 10. Successively, the constant 𝐶𝑘, is updated to 

6.5 and 21.45 for Morris-Biggs and Timur formulas, respectively. 

6.3.2 Validation with core data 

The core porosity values, irreducible water and permeability have to be within the domains 

of their corresponding fuzzy numbers. For example, the core porosity is 7.5%; and for α=25%, 

and 50%, α-cuts are [6.5%, 8%] and [6.7%, 7%], respectively. Therefore, the core porosity is 

compatible with the α-cut of 25% but incompatible with the α-cut of 50% (Figure 6-9). Two 

validation criteria are designed for compatibility check of the fuzzy numbers with core data. 

The first one is the average of n core α values (Relation 6-9). Closer the core value to the height 

of the fuzzy number, higher the value of Crit1. Crit1 is a positive criterion lower than one. The 

second criterion, Crit2, is defined on reference α-cuts, 𝛼𝑟𝑒𝑓: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

0.9 and 0.95 (Relation 6-10). 

 
Figure 6-9. Compatibility of core porosity with α-cuts (alfa-cuts). 

𝐶𝑟𝑖𝑡1 =
1

𝑛
∑𝛼𝑐(𝑖)

𝑛

𝑖=1

 (6-9) 

𝐶𝑟𝑖𝑡2𝑟𝑒𝑓 =
∑ [𝛼𝑐(𝑖) − 𝛼𝑟𝑒𝑓]
𝑛
𝑖=1

∑ 𝐹𝑁(𝑖)
𝛼𝑟𝑒𝑓𝑛

𝑖=1

𝛼𝑟𝑒𝑓 (6-10) 
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where 𝛼𝑐(𝑖) is the α value, corresponding to the ith core value. 𝐹𝑁(𝑖)
𝛼𝑟𝑒𝑓  is the α-cut of 

fuzzy number (FN) for the ith core according to 𝛼𝑟𝑒𝑓. 𝐹𝑁(𝑖)
𝛼𝑟𝑒𝑓  is a domain of uncertainty, so 

it is desired to be minimum. But higher 𝛼𝑟𝑒𝑓 and ∑ [𝛼𝑐(𝑖) − 𝛼𝑟𝑒𝑓]
𝑛
𝑖=1  are desired. 

6.3.3 Results and discussions of analysis by fuzzy arithmetic 

The advantage of a fuzzy number to an interval is in providing membership degrees to the 

interval domain. The fuzzy numbers of porosity (Figure 6-10), irreducible water saturation 

(Figure 6-12) and permeability (Figure 6-14) are shown. The α-cuts of 0.7, 0.9 and 0.95 are 

marked by blue colour tones. 

6.3.3.1 Porosity fuzzy numbers 

In well#4, the porosity fuzzy number is not well-supported by core porosity (Figure 6-10d, 

same as in Figure 6-5d). However, for the other wells, the core data is compatible with the 

porosity fuzzy number. 

Fuzzy number of porosity value is compared with the output of the porosity evaluation by 

the VLSA method. The Monte-Carlo simulation is applied on two porosity estimators: NPHI 

and output of complex lithology. For each estimator, the simulation is run twice (two different 

PDFs). The PDF for simulation is first created by 95 adjacent data, i.e. equal to the interval of 

14.5 m (Passey et al., 2004). Then, the interval is reduced to about the VRmf (~76 cm), i.e. 5 

adjacent data are considered. The VLSA method with the input of NPHI and the interval of 

VRmf provides the best porosity analyses among the VLSA outputs, red line in Figure 6-11. 

However, the proposed method is the most accurate (dotted-line). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 6-10. Porosity analysis by fuzzy number. a) well#1, b) well#2, c) well#3, d) well#4 and e) well#5. fr: fraction. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6-11. Comparison of results of clustering-fuzzy arithmetic porosity analyses with VLSA method (based on Monte-
Carlo simulation) by criterion 1 (a) and criterion 2 within well#1 (b), well#2 (c), well#3 (d), well#4 (e) and well#5 (f). 

6.3.3.2 Irreducible water fuzzy numbers 

The irreducible water saturation values of cores are available only in wells #3 and #5. In 

both cases, crisp evaluation of irreducible water saturation is overestimated. The advantage of 

fuzzy number of irreducible water is in extending the uncertainty range toward the core values. 

Especially in well#3, even the height of the fuzzy number is closer to the core values, compared 

to the crisp evaluation of the irreducible water (Figure 6-12c). The evaluation criteria also show 

that the proposed method is more successful in well#3 than in well#5 (Figure 6-13). 
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In well#4, the crisp and fuzzy evaluation of irreducible water saturation values are not 

compatible. The reason is that the porosity clusters (and fuzzy numbers of porosity) are not 

compatible with NPHI, so the input porosity for the fuzzy irreducible water is lower than in the 

crisp value, resulting in lower irreducible water in the fuzzy state (Figure 6-12d). 

6.3.3.3 Permeability fuzzy numbers 

In well#1, fuzzy numbers do not match core permeability (Figure 6-14a,b). In wells #2 and 

#3, both the fuzzy and crisp approaches have well identified a very low permeability (~0 mD), 

however a big overestimation occurred in the nonzero values (Figure 6-14c-f). In well#4, the 

incompatibility of the porosity clusters resulted in big uncertainty intervals (α-cuts), Figure 

6-14g,h, so the method is unsuccessful when there is incompatibility of core porosity and 

corresponding fuzzy number. In well#5, the permeability fuzzy number matches very well with 

the core permeability (Figure 6-14i,j). 

The outputs of Morris-Biggs and Timur methods are very close to each other, however Timur 

method could be a little prioritized (Figure 6-15). Wylie-Rose model for permeability 

estimation (Morris-Biggs and Timur) is not an accurate model in the current oil-field (Figure 

6-14). The uncertainty interval, produced by fuzzy arithmetic, is not capable in containing the 

core permeability values. So, it is suggested to apply fuzzy arithmetic to more complicated 

permeability models, which are more accurate in the available dataset. 

6.4 Conclusions of Chapter 6 

Cluster-based calibration of NPHI provides accurate estimation of core porosity. The 

average RMSE of the proposed porosity estimation method is 5.15, which at is less than the 

conventional methods (at least 33%, Figure 6-6). The generalization of the proposed method is 

42% less accurate, i.e. RMSE=7.3 .In addition, the NPHI range in each cluster provides an 

uncertainty interval for the porosity. Fuzzy number of porosity is defined within the interval of 

uncertainty. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 6-12. Irreducible water analysis of fuzzy number. a) well#1, b) well#2, c) well#3, d) well#4 and e) well#5. fr: fraction. 
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By the means of α-cut, the uncertainty range could be optimized. Due to Crit2, the α-cut of 

>0.90 is proposed for porperm assessment (Figure 6-11 and 6-15). Porosity fuzzy number is 

more compatible with core tests than porosity PDF (VLSA method). 

Applying fuzzy arithmetic to the fuzzy numbers enabled converting porosity uncertainty to 

the outputs, here irreducible water saturation and permeability. Fuzzy numbers of irreducible 

water saturation are less overestimated, compared to the crisp calculations. 

Checking generalization ability of porosity estimators resulted in a zonation of the anticline: 

wells #1, #3 and #5 are in the same homogeneous porosity zone. But the porosity of well#4 is 

not predictable by the estimators of the other wells. Well#2 is drilled in a transition zone 

between the homogeneous porosity zone and well#4. 

However, for permeability, fuzzy numbers were not fully successful but only in well#5. The 

basic permeability formula, i.e. Wylie-Rose formula, is basically inaccurate in the available 

data. So, to improve accuracy, it is recommended to further apply fuzzy arithmetic to the other 

experimental permeability models. 

 
(a) 

 
(b) 

Figure 6-13. Comparison of results of fuzzy arithmetic irreducible water analysis (wells #3 and #5) by criterion 1 (a) and 
criterion 2 (b). 
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(i) 

 
(j) 

Figure 6-14. Permeability analysis by fuzzy number: Morris-Biggs (left) and Timur (right) for Well#1 (a,b), well#2 (c,d), 
well#3 (e,f), well#4 (g,h), well#5 (i,j). 

 

 
(a) 

 
(b) 

Figure 6-15. Comparing results of fuzzy arithmetic permeability analysis. 
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7 Ending 

7.1 Pathway of the thesis 

The thesis started with two questions. The first one concerns the vertical resolution of well-

logs, which is addressed in Chapters 3 to 5: logging mechanism was modelled, synthetic-logs 

were generated (Chapter 3), and geometric-based thin-bed characterization was developed for 

thickness estimation and well-log correction (Chapter 4). Then, DST-based method is 

elaborated for well-log uncertainty assessment and automated well-log correction, i.e. to 

enhance the vertical resolution (Chapter 5). 

The second question of the thesis is to find a possibilistic uncertainty boundary of 

petrophysical interpretations: fuzzy arithmetic was applied to project the uncertainty interval of 

inputs to the estimations of porosity, irreducible water saturation and permeability (Chapter 6). 

The developed methodologies are applied to the well-logs (meso-scale), and the outputs were 

verified by core data (micro-scale), which are direct measurements. In fact, some micro-scale 

characteristics were inferred from the available meso-scale information. The scale change 

results in the change of data uncertainty. The concept of the scale has always been considered 

and reviewed in geosciences (Masoudi et al., 2013, 2014). 

For the petrophysical variables, when the scale of the study increases (smaller dimensions), 

the standard deviation of measurements increases; so, higher heterogeneity and uncertainty 

occur (Figure 7-1). In the possibilistic approach, α-cut could be calibrated to achieve the right 

uncertainty interval, corresponding to the scale of study. 

The scale of study determines the specifications and expectations of the project. Therefore, 

the approach of uncertainty assessment could be selected (Table 7-1). In the next stage, the 

uncertainty theory and methodology (Bayesian, DST, fuzzy, Shannon, etc.) should be selected 

based on our approach. 

In addition to both the before-mentioned necessities of uncertainty assessment, “the scale of 

study” has to be taken into consideration in geosciences. So, the items to be addressed in 



  

140 

 

uncertainty assessment of the geological projects are summarized by (i) clear definition of the 

aim of study, (ii) distinguished uncertainty sources and (iii) definition of the scale(s) of study. 

 

Figure 7-1. Larger the dimension, smaller the 
uncertainty range of measurements in petrophysical 
variables (here porosity). From this viewpoint, the 
uncertainty (also heterogeneity) has a statistical 
aspect. 

 

Table 7-1. Comparison of different uncertainty approaches.  

 Deterministic Probabilistic Possibilistic 

Inputs and 

outputs 
Fixed numbers 

PDF 

No constraint of fixed numbers. 

Fuzzy membership functions. 

The constraint of PDF is removed: the 

integral of PDF equal to one 

The basic of 

defining inputs 

Measurements and 

analysis 

Measurements and their 

uncertainty ranges 

Evidences: measurements and the 

mechanisms of measurement 

Considered 

scenarios 

Only the most probable 

case is taken into 

consideration 

The unnecessary (unimportant) 

values are removed 

All the possibilities are considered. 

Sometimes too much realistic to be 

applied. 

Application 
Primary reconnaissance 

stages 

An optimum approach in 

decision-making 

For precise studies and a successful 

operation 
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7.1.1 Outlined achievements of the thesis 

 Despite of the commonly accepted belief, the vertical dimension of volume of investigation 

of well-logs is larger than the tool spacing (distance between the transmitter and receiver). By 

the aides of variographs, the vertical dimensions of volume of investigation of GR, RHOB, 

NPHI and DT are approximated to be 61, 76, 76 and 61 cm, respectively. 

 For analysing the volumetric signals, like well-logs, volumetric Nyquist frequency is 

proposed. Hence, in order to characterize a geologic bed, its thickness have to be more than 

the summation of sampling rate and vertical dimension of volume of investigation. The 

application of volumetric Nyquist frequency is useful in determining the precision and the 

value of data, after upscaling. The goal of upscaling is to reduce the volume of data by fusing 

the adjacent well-log records. So, the destructive effects of both vertical resolution and 

sampling rate have to be considered simultaneously.  

 The regression-based deconvolution relations are developed for GR, RHOB and NPHI well-

logs (based on geometric method). These relations are effective when the thickness of the bed 

is less than 30 cm, and underlying and overlying beds have relatively the same petrophysical 

properties. The difference of the petrophysical values of the thin-bed and the surrounding beds 

have to be less than 30 API, 0.15 g.cm-3 and 30% for GR, RHOB and NPHI, respectively. 

 The thickness estimation after applying deconvolution relations is from 40 to 80 times more 

accurate than before deconvolution. The standard deviation of thickness estimation is 4.4 cm, 

which is a very small error, when comparing with the vertical dimension of volume of 

investigation, which is more than 60 cm. In addition, petrophysical characterization of thin-

bed is now more accurate. RMSE of GR, RHOB and NPHI of thin-bed is reduced from 42.25 

to 20.20, from 0.003 to 0.001 and from 139.61 to 39.99, respectively. 

 The corrected NPHI (after deconvolution) is compared to the core porosity. NPHI before 

deconvolution was 3.8%, and after being deconvolved, it became 11.7%. Core porosity, 

representing the effective porosity, was 8.4%. So, the deconvolved NPHI is higher than the 

core porosity. It is thus more accurate than the original NPHI, since the total porosity (NPHI) 

have to be more than the effective porosity (core porosity). 

 The estimated thickness of the same thin-bed by geometric method is 13±7.5 cm, which is 

smaller than thickness of thin-bed in the core box (<25cm). The estimated thickness seems to 
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be reasonable, because the cores at the surface become expanded (removing overburden and 

crushing). 

 The advantages of geometric method: (i) estimation of the thin-bed thickness, (ii) correction 

(deconvolution) of well-log at the depth of thin-bed, and (iii) theoretical basis of the algorithm 

is simple. The disadvantages of geometric method: (i) It does not provide a complete curve of 

corrected well-log. (ii) Applying the algorithm is time consuming and not automated. 

 The body of evidences is designed for the well-logs in order to calculate belief and plausibility 

values (vertical resolution of volume of investigation is more than 60 cm). Four simulators 

are then designed to scan the uncertainty range (between belief and plausibility) to enhance 

the vertical resolution of well-logs (15 cm) (Figure 5-5). 

 Constraint-based error is designed for selecting the best realization (output of simulator or 

corrected well-log). It is based on the volumetric nature of well-logs, and compares the 

acquired well-log (larger volume of investigation) with corrected log (smaller volume of 

investigation). Constraint-based error provides an error for each well-log record. This error is 

useful in comparing the realizations, and selecting the realization with the least error. Ideal-

based error is used to validate constraint-based error (correlation coefficient of 0.89 in 

Figure 5-9).  

 DST-based algorithm is automated, and provides a continuous corrected-log. Compared to 

geometry-based algorithm, DST-based algorithm characterizes the thin-bed more accurately. 

Characterization of a thin-bed in well#1 is improved by 100%, 71% and 66% for GR, RHOB 

and NPHI well-logs, respectively. But DST-based algorithm does not provide thin-bed 

estimation. 

 Clustering-based porosity estimation was at least 33% more accurate than the common 

porosity estimation methods. In addition, it provides an uncertainty range for each cluster. 

 By checking the generalization ability of porosity estimation method, homogeneous zone of 

porosity is identified, consisting of wells #1, #3 and #5. Generalization of porosity estimators 

is possible in this zone. 

 Using fuzzy arithmetic, the input uncertainty (well-logs) is projected into the output 

uncertainty (irreducible water saturation and permeability). Comparing to the probabilistic 

method of VLSA for evaluating the porosity, the proposed method, based on the possibilistic 

approach, is about 200% (in average) more accurate. In addition, the fuzzy uncertainty range 
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of irreducible water saturation is closer to the core values, compared to the crisp evaluation. 

For studying permeability, the fuzzy results of well#5 were promising. 

7.2 Recommendations 

7.2.1 Recommendations for industrial applications 

 Applying DST-based algorithm for improving the vertical resolution of well-logs. 

 Using volumetric Nyquist frequency in identifying the least thickness that could be 

characterized by well-logs or other geophysical data. In addition, the up-scaled well-logs must 

have relatively the same accuracy as the seismic data. For checking the compatibility of the 

accuracies, volumetric Nyquist frequency could be used as well. 

 It is suggested to carry out fracture study in the intervals that NPHI is higher than core 

porosity, while the gamma ray (shale content) is low. So, in the development phases of the oil 

field, it is necessary to do fracture studies within the Sarvak interval of well#4, by running 

image logs. 

 In addition, drilling new exploratory wells is necessary in the heterogeneous (around wells #4 

and #6) and transmission (around well#2) zones. 

 Developing the software of “Characterizing Thin-beds”, using geometry- and DST-based 

algorithm. 

7.2.2 Recommendations for further researches (perspectives) 

 In order to further verify the proposed algorithms, they should be (a) applied to the surface 

logging data, (b) used in other formations and other oil fields. 

 Geometric thin-bed simulator could be developed on non-triangular membership functions. 

Thin-bed thickness could also pass 1
2
𝑉𝑅𝑚𝑓. So, two (out of five) limiting conditions of 

geometric thin-bed simulator could be removed. 

 A geometric simulator is developed for a situation with a single thin-bed. The next steps in 

improving it are (i) to develop it on two close thin-beds, which are not adjacent; (ii) to lift off 
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the limitation of q1=q3, i.e. three adjacent thin-beds. Therefore, we will have different 

realizations for thin-bed conditions, and will be able in doing risk assessment. 

 The geometric thin-bed simulator could be developed on the other well-log data to further 

study the behaviour of fluids, pore pressure, etc. 

 The epsilon in DST-based algorithm is found by trial-and-error. It could be replaced by an 

automated function, e.g. using the theoretical functions of belief (very small) and plausibility 

(very large), or the uncertainty interval of the adjacent data.  

 The development of an evidence-based software seems necessary for applying DST algorithm. 

The software should be able in defining focal elements and related properties. It should also 

have graphical facilities for demonstrating outputs. 

 The clustering methods could be further applied to saturation analysis, permeability analysis, 

net pay studies, etc. A similar study has also been recently applied (Masoudi et al., 2016). 

 Fuzzy arithmetic should be applied to other experimental permeability models. 

 The developed methodologies should be verified in other formations and oil-fields to be sure 

about the generalization ability of methods. 
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Appendices 

Appendix A: Convolution form of Relation 4-2 

In order to reach the convolution form of Relation 4-2, the domain of functions 𝑀𝐹(𝑥) and 

𝑞(𝑥) must be extended from −∞ to +∞ (Relations A1 and A2). Considering Relation A3 the 

final convolution form could be achieved (Relation A4). 

𝑀𝐹𝑒(𝑥) = {
𝑀𝐹(𝑥);    0 ≤ 𝑥 ≤ 𝑉𝑅𝑚𝑓
0;   𝑥 < 0 𝑜𝑟 𝑉𝑅𝑚𝑓 < 𝑥

 
(A1) 

𝑞𝑒(𝑥) = {
𝑞(𝑥);    0 ≤ 𝑥 ≤ 𝑀𝑎𝑥{𝑧}

0;   𝑥 < 0 𝑜𝑟 𝑀𝑎𝑥{𝑧} < 𝑥
 (A2) 

𝑔(𝑧 − 𝑥) = 𝑀𝐹𝑒(𝑥) 
(A3) 

𝑠𝑙𝑜𝑔(𝑧) = ∫ 𝑞(𝑥).𝑀𝐹(𝑥).𝑑𝑥

𝑧+𝑉𝑅𝑚𝑓
2

𝑧−𝑉𝑅𝑚𝑓
2

= ∫ 𝑞𝑒(𝑥).𝑀𝐹𝑒(𝑥).𝑑𝑥

+∞

−∞

= ∫ 𝑞𝑒(𝑥). 𝑔(𝑧 − 𝑥).𝑑𝑥

+∞

−∞

 

(A4) 

Appendix B: Application check of DST-based simulators on synthetic-logs 

Outputs, error profiles, total errors and interpretation of DST-based simulators on cases 2-5 

and 7 (Table 1-2) are provided. 

Case 2: Deepening (fining) upward of GR 

None of simulators reproduce exact shape of the ideal-log, however they were able to 

generate very similar shapes, especially random-optimization and recursive-optimization 

simulators (Figure A 1a). The reason is the incompatibility of depths of ideal- and simulated-
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log. This deficiency exists when the 𝐹𝐸𝑡  is the integration of even number of 𝐹𝐸𝑟. Due to the 

formulas, when 𝑛𝑓𝑢𝑠𝑒 is odd, there is no problem. So, this deficiency exists in GR and DT 

(𝑛𝑓𝑢𝑠𝑒 = 4) and not in RHOB and NPHI (𝑛𝑓𝑢𝑠𝑒 = 5). 

Due to ideal-based error, recursive-optimization is the most accurate simulator, while due to 

constraint-based error, random-optimization should be used (Figure A 1b,c). Though the errors 

do not have the same decisions in this example, they are matched highly (Figure 5-9). 

 
Figure A 1. a) Ideal-log, synthetic-log, uncertainty range, simulations (realizations) and the best realization of each simulator 
in case 2. Error comparison between the simulators: b) error profiles, and c) total error of 50 iterations. 
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Case 3: Trough in RHOB 

In case 3, because of misspeak of the synthetic-log, none of the simulators were able in well-

detecting the exact place of the thin-bed. However, random-optimization, recursive and 

recursive-optimization simulators reduced shoulder-bed effect to some extent (Figure A 2). In 

brief, skewness of the measured well-log or synthetic-log will result in misplacing the anomaly. 

So, the developed methodology is more accurate in symmetric cases. 

 
Figure A 2. Same legend as in Figure A 1, case 3. 
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Case 4: Increasing upward of NPHI 

This is an exceptional case that random simulator provides the best realization (Figure A 

3a) even though the error profile supports random- and recursive-simulators (Figure A 3b). In 

this specific example, random- and recursive-optimization simulators regenerated high-

frequencies, while honouring the volumetric constraint of well-log records. However, the 

realizations are not satisfactory (Figure A 3a). It shows the importance of qualitative (visual) 

assessment to avoid quantitative mistakes. 

 
Figure A 3. Same legend as in Figure A 1, case 4. 
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Case 5: Peak in NPHI 

In this case, recursive-optimization simulator is considerably more accurate than the others. 

Although outputs of recursive and recursive-optimization simulators are the same qualitatively 

(Figure A 4a), the quantitative assessment (Figure A 4b,c) votes for the latter. 

 
Figure A 4. Same legend as in Figure A 1, case 5. 
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Case 7: Fractured horizon in DT 

This is another counterexample of application of constraint-based error as validation. Ideal-

based error selects random-optimization simulator (Figure A 5a) while constraint-based error 

chooses recursive-optimization simulator (Figure A 5b,c). 

 
Figure A 5. Same legend as in Figure A 1, case 7. 
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Appendix C: Application check of random-optimization simulator on real well-logs 

The realizations and errors of random-optimization simulator on real data (GR, RHOB, 

NPHI and DT well-logs) of wells #2 to #5 are provided here. The intervals belong to the upper 

Sarvak Formation, a well-known high-quality carbonate reservoir. The best perforation point 

within the illustrated intervals is further recommended. The perforation interval should have 

the best reservoir quality for a successful production, i.e. simultaneous with less heterogeneity 

and uncertainty to avoid decreasing the operational risk. 

Well#2: 2766 – 2770 m 

The lower part (2767.5- 2770 m) of well#2 (Figure A 6) shows higher quality, compared to 

its upper part (2766.0 - 2767.5 m). Due to DST uncertainty range, the lower part is relatively a 

certain part, however GR log shows more variations. GR records the depositional changes very 

well. Because of its sensitivity, it can provide a prioritization in homogeneous parts, like in the 

lower part of well#2 (Figure A 6). The simulation reduced shoulder-bed effect at the horizon 

of 2768.55 m, so that it is sharpened to be selected as the best pay zone for perforation and 

production within the interval of 2766 - 2770 m. 

 
Figure A 6. Well-log (solid line), uncertainty range, simulations (realizations, dots), and best realization (dashed line) in 
well#2. Correlation of well- and simulated-logs for perforation is marked by solid red and dashed green line, respectively. 
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Well#3: 2809 – 2813 m 

The depth of 2809.5 m could be recommended for perforation. A slight GR trough and an 

amplified NPHI peak were indicators for suggesting this depth. Relatively low RHOB, less than 

2.4 g.cm-3 and high DT confirm the decision made. High heterogeneities within the interval of 

2810 – 2813 m increases the operational risk (Figure A 7). 

Well#4: 2662 – 2666 m 

The peak of NPHI at 2664.1 m is an indicator of a high porous thin-bed. The shoulder-bed 

effect is removed within all the four well-logs (Figure A 8). 

Well#5: 2840 – 2844 m 

GR at about 2842 m represents low shale, which is confirmed by a peak in NPHI log, i.e. 

effective porosity. Relatively low DT confirms that the increase of porosity is only due to 

primary porosity, and is not related to fractures or vugs. RHOB reconfirms an event at about 

2842 m (Figure A 9). 

 
Figure A 7. Well#3. Same descriptions as in Figure A 6. 
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Figure A 8. Well#4. Same descriptions as in Figure A 6. 

 
Figure A 9. Well#5. Same descriptions as in Figure A 6. 
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Abstract 

In the subsurface geology, characterization of geological beds by well-logs is an uncertain 
task. The thesis mainly concerns studying vertical resolution of well-logs (question 1). In 
addition, fuzzy arithmetic is applied to experimental petrophysical relations to project the 
uncertainty range of the inputs to the outputs, here irreducible water saturation and permeability 
(question 2). Regarding the first question, the logging mechanism is modelled by fuzzy 
membership functions. Vertical resolution of membership function (VRmf) is larger than 
spacing and sampling rate. Due to volumetric mechanism of logging, volumetric Nyquist 
frequency is proposed. 

Developing a geometric simulator for generating synthetic-logs of a single thin-bed enabled 
us analysing sensitivity of the well-logs to the presence of a thin-bed. Regression-based 
relations between ideal-logs (simulator inputs) and synthetic-logs (simulator outputs) are used 
as deconvolution relations for removing shoulder-bed effect of thin-beds from GR, RHOB and 
NPHI well-logs. NPHI deconvolution relation is applied to a real case where the core porosity 
of a thin-bed is 8.4%. The NPHI well-log is 3.8%, and the deconvolved NPHI is 11.7%. Since 
it is not reasonable that the core porosity (effective porosity) be higher than the NPHI (total 
porosity), the deconvolved NPHI is more accurate than the NPHI well-log. It reveals that the 
shoulder-bed effect is reduced in this case. The thickness of the same thin-bed was also 
estimated to be 13±7.5 cm, which is compatible with the thickness of the thin-bed in the core 
box (<25 cm). Usually, in situ thickness is less than the thickness of the core boxes, since at the 
earth surface, there is no overburden pressure, also the cores are crushed. 

Dempster-Shafer Theory (DST) was used to create well-log uncertainty range. While the 
VRmf of the well-logs is more than 60 cm, the VRmf of the belief and plausibility functions 
(boundaries of the uncertainty range) would be about 15 cm. So, the VRmf is improved, while 
the certainty of the well-log value is reduced. In comparison with geometric method, DST-
based algorithm resulted in a smaller uncertainty range of GR, RHOB and NPHI logs by 100%, 
71% and 66%, respectively. 

In the next step, cluster analysis is applied to NPHI, RHOB and DT for the purpose of 
providing cluster-based uncertainty range. Then, NPHI is calibrated by core porosity value in 
each cluster, showing low RMSE compared to the five conventional porosity estimation models 
(at least 33% of improvement in RMSE). Then, fuzzy arithmetic is applied to calculate fuzzy 
numbers of irreducible water saturation and permeability. Fuzzy number of irreducible water 
saturation provides better (less overestimation) results than the crisp estimation. It is found that 
when the cluster interval of porosity is not compatible with the core porosity, the permeability 
fuzzy numbers are not valid, e.g. in well#4. Finally, in the possibilistic approach (the fuzzy 
theory), by calibrating α-cut, the right uncertainty interval could be achieved, concerning the 
scale of the study. 

Keywords: well-log uncertainty, vertical resolution, volumetric Nyquist frequency, thin-bed 
characterization, Dempster-Shafer, fuzzy arithmetic 


