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Résumé

Dans le présent travail de these, nous souhaitons approfondir I’'étude des systemes
dynamiques a commande par commutation au moyen de méthodes dites “correct-
by-design”. Nous nous intéressons plus particulierement a la synthese de controleurs
pour de tels systemes, et souhaitons étendre le champ d’application des algorithmes
existants, notamment pour des problemes décrits par des équations aux dérivées par-
tielles. En effet, les algorithmes existants reposent essentiellement sur une décom-
position ou discrétisation de 'espace des états, associée a des méthodes de calcul
ensembliste permettant de calculer les ensembles atteignables, et leur complexité
est exponentielle en la dimension de 'espace des états, ce qui limite fortement la
complexité des systemes étudiés. Une premiere étape est 'amélioration du cal-
cul des ensembles atteignables, en 1’étendant aux systemes non-linéaires grace a des
schémas numériques garantis. Nous proposons également une approche extrémement
rapide basée sur le schéma d’Euler associé a une hypothese proche de la stabilité
incrémentale. D’autre part, afin d’augmenter la dimension des systemes que nous
étudions, nous proposons des versions distribuées (compositionnelles) des algorithmes
de synthese, permettant de casser la complexité exponentielle en synthétisant des
controleurs sur des sous-parties du systeme, mais impliquant des contraintes sup-
plémentaires pouvant étre gérées par des approches du type hypothese/garantie.
Enfin, pour I'application aux problemes aux dérivées partielles, dont les versions
discrétisées sont toujours inatteignables pour de tels algorithmes, nous proposons
des approches utilisant des méthodes de réduction de modele, permettant de dimin-
uer la complexité du systeme étudié en 'approchant par un systeme de faible di-
mension, mais nécessitant la prise en compte des différentes sources d’erreur. Si les
premieres applications des méthodes “correct-by-design” ont permis de synthétiser
des controleurs robustes pour des systemes tels que des convertisseurs de puissance
modélisés par des systemes a commande par commutation de dimension 2, nous
avons appliqué nos méthodes sur des cas tests tels que le chauffage d’'une maison
onze pieces (cas test concret proposé par l'entreprise danoise Seluxit), le controle au
bord de I’équation de la chaleur, ou encore le controle de vibration sur des pieces
métalliques.
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Summary

In this thesis, we focus on switched control systems and investigate the issue of
guaranteed (correct- by-design) control of such systems. More specifically, we focus
on control synthesis, and wish to extend the field of application of the existing al-
gorithms, notably for problems described by partial differential equations. Indeed,
the existing algorithms mainly rely on a state-space decomposition or discretiza-
tion, associated to reachable set computations, and their computational complexity
is exponential with respect to the dimension of the system, which strongly restricts
the complexity of the systems one can study. A first issue tackled in this thesis
is the improvement of the reachable set computations, by extending them to non-
linear systems with the use of guaranteed numerical schemes. We also propose an
extremely fast approach based on the Euler method associated to a hypothesis close
to incremental stability. Secondly, in order to increase the dimension of the systems
handled by such methods, we propose distributed (compositional) versions of the
synthesis algorithms, allowing to break the exponential complexity by synthesizing
controllers on sub-parts of the system, but implying additional constraints which can
be handled by approaches such as assume/guarantee reasoning. Lastly, the direct
application to partial differential equations, even in their discretized form, is still
intractable for such algorithms. To reach this goal, we propose approaches based on
model order reduction methods, allowing to decrease the complexity of the studied
system by approaching it with a low dimensional system, but which require taking
the different sources of error into account. While the first applications of correct-
by-design methods successfully synthesized robust controllers for systems such as
power converters modeled switched control systems of dimension 2, we applied our
methods to case studies such as the floor heating of an eleven room house (concrete
case study proposed by the Danish company Seluxit), boundary control of the heat
equation, or vibration control of metal plates.
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Chapter 1

Introduction en francais



Ces dernieres années, ’étude des systemes hybrides a été I'objet d’un intérét
croissant car ils permettent de modéliser un grand nombre de systemes cyber-
physiques. Le modele des systeme hybrides a été appliqué avec succes dans de
nombreux domaines tels que I'industrie automobile, 1’électronique de puissance, les
maisons intelligentes, la médecine assistée par ordinateur ou encore les systemes
robotiques. Les systémes a commande par commutation (systémes a commutation)
sont une sous-classe de systemes hybrides qui se sont considérablement développés
en raison de la facilité d’'implémentation permettant de controler des systemes cyber-
physiques.

L’une des principales problématiques soulevées par I’étude des systemes a com-
mutation est 'amélioration de la robustesse et de la flexibilité des méthodes de
commande augmentant ainsi la fiabilité et la stireté de fonctionnement. Un systeme
a commutation est constitué de deux parties: une famille de systemes continus ap-
pelés modes, ayant chacun une dynamique propre; et un signal de commande qui
sélectionne le mode actif. Nous supposons qu'un et un seul mode est actif & un temps
donné. Le signal de commande peut étre dépendant de 1’état et /ou du temps. Ainsi,
les systemes a commutation sont essentiellement décrits par une dynamique définie
par morceaux.

La dynamique des modes d’'un systéeme a commutation est généralement décrite
par des équations différentielles ordinaires (EDOs) et de nombreux outils existent
pour controler (commander) de tels systemes. Cependant la complexité des systemes
décrivant les problemes d’aujourd’hui est de plus en plus grande, et des modes com-
mutés décrits par des équations a dérivées partielles (EDPs) recoivent une attention
accrue. Il est important de souligner ici que I'une des principales difficultés découlant
du modele des systemes a commutation par rapport aux systemes classiques est que
I’état du systeme ne peut pas étre stabilisé asymptotiquement par une loi de com-
mande par retour d’état continue [38]. Cela vaut pour des dynamiques décrites par
des EDOs aussi bien que pour des EDPs. Ainsi, la notion de stabilité que nous
définissons dans cette these est plus proche de la notion d’invariance que de stabilité

au sens classique.

1.1 Controle des systemes dynamiques

Bien qu’il existe de nombreux outils et méthodes permettant d’obtenir avec
succes des lois de commande qui garantissent certaines propriétés pour les systemes
controlés, telles que la stabilité ou I'atteignabilité, le choix de ’approche dépend sou-
vent de 'application visée par le modele. Par exemple, les approches type controle
optimal visant & minimiser une fonction cout et a atteindre un état cible tout en sat-
isfaisant des contraintes données sont tres utilisés dans I'ingénierie aérospatiale [113,
171]. Elles ont également été utilisées sur des systémes de dimension infinie pour des

EDPs [62,90,91,158]. Elles sont cependant souvent tres cheres en cott de calcul et
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exigent des méthodes numériques sophistiquées pour étre appliquées en ligne. D'un
autre coté, les approches issues de la théorie de Lyapunov permettent d’analyser
et de stabiliser des systemes controlés. Elles reposent principalement sur des fonc-
tions d’énergie (de Lyapunov) caractérisant 1’état du systeme et assurant la sta-
bilité quand leur niveau atteint 0. Ce type d’approche a été appliqué aux systemes
non-linéaires [104, 174], aux systémes hybrides [79] et aux systémes de dimension
infinie [25,49,87,131]. Nous soulignons ici que les EDPs continuent a présenter un
défi majeur étant donné qu’il faut systématiquement adapter la méthode au type
d’équation. Dans le cas des systemes a commutation, 'utilisation des fonctions com-
munes de Lyapunnov fournit également des lois de controle efficaces [124,170]. Des
travaux récents proposent des résultats de stabilité et stabilisation pour des systemes
a commutation décrits par des EDPs [111,128,150]. Il faut cependant noter qu’il
n’y a pas de méthode générale permettant de déterminer une fonction Lyapunov
appropriée, que ce soit pour les EDOs ou les EDPs, ce qui rend ce type d’approche
encore plus dépendant de I'étude de cas considérée et plus dure a appliquer dans
le cas général. De plus, méme si toutes ces méthodes donnent des résultats forts
pour les systemes controlés, leur application en ligne est tres souvent effectuée avec
des dispositifs digitaux (numériques) impliquant une discrétisation de I’état et/ou
de l'entrée de controle. Des schémas numériques peuvent alors étre utilisés et ces
outils supplémentaires impliquent inévitablement des erreurs numériques non prises
en compte. Cela pourrait ainsi conduire a des problemes de streté, particulierement
pour les systemes ou la sécurité est cruciale. Pour toutes ces raisons, nous nous con-
centrons ici sur les méthodes dites garanties ou ”correct-by-design” (correctes par
construction). Les méthodes symboliques semblent étre 1'outil le plus approprié pour
atteindre ce but: elles controlent exhaustivement tous les états possibles du systeme
et peuvent étre associées a des schémas numériques garantis, ¢’est-a-dire prenant en
compte toutes les erreurs numériques. Elles présentent également 'avantage d’étre
entierement automatisées et ne requierent pas, par exemple, ’estimation d’une fonc-

tion de Lyapunov.

1.2 Les méthodes symboliques et les systemes a

commutation

Dans cette these, nous nous concentrons sur la sous-classe des systemes a com-
mutation périodique (“sampled switched systems”), pour lesquels la commutation ne
peut avoir lieu que périodiquement. Nous dénotons cette période par 7. Etant donné
qu'un actionneur physique ne peut pas changer d’état a une vitesse infinie, il est
également réaliste de considérer une période donnée a laquelle ’actionneur peut en
effet changer d’état. Cette sous-catégorie est particulierement adaptée a 'utilisation

de schémas numériques et, plus généralement, aux méthodes de synthese hors ligne.



Notons cependant que [2] présente une méthode symbolique permettant d’avoir des

périodes de temps variables.

1.2.1 Etat de l’art

Il existe un grand nombre de méthodes symboliques servant a controler les
systemes a commutation périodique. Elles reposent sur de nombreux outils et
nécessitent souvent des hypotheses fortes sur la dynamique du systeme. On peut
souligner que les méthodes symboliques s’appliquent également aux systemes de
controle classiques (de dimension finie), mais discrétisent généralement 'entrée de
controle, ce qui revient en réalité a considérer un modele de systeme a commu-
tation. La plupart de ces méthodes reposent sur des abstractions de dimension
finie, qui consistent & discrétiser (abstraire) 'espace d’état du systéme en vue de
les transformer en un automate a état fini, pour lequel de nombreux outils perme-
ttent d’effectuer une synthese de controle (par exemple, BDDs ou diagrammes de
décision binaires). Les états de 'automate sont alors appelés symboles et 'automate
a état fini est dit symbolique ou abstrait. Néanmoins, la dimension garantie dépend
tout de méme de la méthode d’abstraction. Par exemple, l'outil PESSOA [132]
synthétise un automate a état fini qui est approximativement bisimilaire au modele
original. Pour faire simple, cela permet de garantir que les trajectoires du systeme
réel restent proches du systeme symbolique a une précision donnée. Cet outil est
opérationnel pour les systemes linéaires; des extensions non linéaires sont disponibles
mais nécessitent des hypotheses supplémentaires telles que la stabilité incrémentale
asymptotique globale ou la stabilité entrée-sortie incrémentale [149]. En résumé,
la stabilité incrémentale est une hypothese forte qui, pour chaque mode, suppose
que deux trajectoires se rapprochent exponentiellement au cours du temps. Pour
plus d’information sur la stabilité incrémentale, voir par exemple les travaux de [13].
L’outil CoSyMA [142] utilise lui aussi la bisimulation approchée et présuppose que
le systeme est incrémentalement stable, mais inclut des abstractions a échelle multi-
ple: la discrétisation est adaptée au systeme et permet d’'utiliser plus d’états discrets
lorsque c’est nécessaire. Les travaux de [75,77] donnent plus d’informations sur
l'utilisation d’abstraction utilisant des simulations approchées. L’outil SCOTS [159]
repose également sur des abstractions a état fini mais utilise un autre concept appelé
”feedback refinement relations” décrit par [154]. A ces différents outils s’ajoute une
autre classe reposant sur des pavages de 'espace d’état. Associée a 'hypothese de
monotonicité, qui suppose que les trajectoires restent ordonnées, il est possible de
calculer I'image d’un ensemble en calculant simplement I'image des points extrémaux
d’un pavé. Des abstractions a état fini peuvent alors étres construites a des fins de
synthese de controle. Ce type d’approche est utilisé dans [103,136]. Une méthode
d’abstraction relativement différente est utilisée dans [122], ou les états symboliques

sont des séquences de modes, mais cette approche nécessite également 1’hypothese
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de stabilité incrémentale. Une méthode d’abstraction développée récemment [153]
utilise des fonctions de Lyapunov robustes ("robust control Lyapunov-like func-
tions”), qui sont calculées automatiquement en utilisant une synthese inductive
par contre-exemple, au moyen de solveurs SMT (qui résolvent des problemes de

décision).

1.2.2 Motivations

Bien que toutes ces approches soient efficaces et appliquées en pratique sur de
nombreuses études de cas, la plupart d’entre elles reposent sur des hypotheses fortes
sur la dynamique du systeme (telles que les stabilité incrémentale ou la mono-
tonicité). Dans cette these, nous développons des méthodes qui ne nécessitent pas de
telles hypotheses. Dans un premier temps, nous introduisons des méthodes pour des
systemes linéaires. L’application aux systemes non linéaires est ensuite rendue pos-
sible grace a des schémas numériques garantis, qui utilisent des hypotheses les plus
faibles possibles, telles que des dynamiques localement Lipschitziennes. Nous basons
nos développements sur 1'outil MINIMATOR [106] qui synthétise des controleurs
grace a un pavage adaptatif de I'espace d’état, associé a une recherche exhaustive
des séquences de controle possible (jusqu’a une certaine longueur). Cette recherche
peut soit terminer avec succes si chaque pavé est associé a une séquences de controle,
soit échouer, et les pavés non controlés sont alors décomposés en sous-pavés et une
nouvelle recherche de séquences est effectuée. Cette procédure développée par Ro-
main Soulat, appelée "state-space decomposition”, est présentée pour les systemes
linéaire de dimension finie dans [66,68]. Elle donne en fait un moyen efficace de
synthétiser des controleurs dépendant de 1'état et permettant d’assurer des pro-
priétés en temps discret, valables aux instants de commutation 7, 27... Notons que
I'utilisation d’états symboliques polyédriques, tel qu’ici, est largement utilisée dans
la littérature [17,72], et I'utilisation de pavage ou partitionnement de I'espace d’état
en utilisant des bissections est également classique (voir par exemple [76,94]). L'un
des objectifs de cette these est d’étendre cette procédure aux systemes non linéaires,
tout en assurant des propriétés en temps continu. Afin d’appliquer cette approche
pour assurer des propriétés de stireté valables a tout instant, nous devons maintenant
calculer un tube d’atteignabilité, et non plus seulement des images a des instants
discrets d’un ensemble initial (facilement calculables pour des systemes linéaires).
En d’autres termes, nous devons calculer la solution d'un systeme d’EDOs avec
une condition initiale donnée sous forme d’un ensemble. L’extension aux systemes
non linéaires nécessite ainsi de nouveaux outils permettant de calculer les ensembles
atteignables: les schémas numériques garantis.

Un défaut inhérent aux méthodes symboliques est leur complexité algorithmique,
sujette a la "malédiction de la dimension”. En effet, la plupart des méthodes symbol-

iques sont basées sur des abstractions a état fini, et la taille des modeles symboliques



grandit exponentiellement avec la dimension du systeme. Bien que notre méthode
de pavage adaptatif parvienne a maintenir le nombre de symboles relativement bas,
elle peine a synthétiser des controleurs pour des systemes de dimension supérieure
a 8 dans des temps raisonnables. Afin de contourner ce défaut, nous proposons
d’appliquer des principes de composition, et développons des versions distribuées de
ces algorithmes.

Pour finir, les approches symboliques n’ont encore jamais été appliquées aux
systemes a commutation décrits par des équations aux dérivées partielles. Nous
avons pour but d’assurer des garanties formelles de stireté ou atteignabilité pour de
tels systemes, en utilisant des méthodes symboliques. Dans leur forme discrétisée
(par exemple par la méthode des éléments finis), les EDPs conduisent & des systemes
d’EDOs de grande dimension, et ’application directe de méthodes symboliques n’est
pas pertinente. Cependant, réduire la dimension d’'une EDP est une problématique
importante dans le domaine de la mécanique numérique et de la mécanique des
structures, et les applications sont nombreuses (optimisation d’un procédé, stockage
de données, abaques virtuels...). Nous proposons donc d’utiliser ces techniques en

les associant a des méthodes de controle symbolique pour atteindre cet objectif.

1.3 Calcul de I’ensemble atteignable

Le calcul de la solution d’un systeme d’EDOs linéaires quand la condition initiale
est donnée sous forme de boite (produit d’intervalles) peut étre effectué facilement
en utilisant des zonotopes [10,73,105,109]. Mais ceci n’est possible que parce que
I'on connait la solution exacte du systeme d’EDOs, et le calcul de 'image de la
boite peut ainsi étre reformulé comme une transformation affine. Cependant, dans
le cas général, la solution exacte d'une EDO non linéaire ne peut étre obtenue, et
un schéma d’intégration numérique est utilisé pour approcher cette solution. Pour
atteindre 'objectif de calculer un controleur garanti, qui assure des propriétés en
temps continu, le calcul d’un tube d’atteignabilité est obligatoire.

Etant donné une EDO de la forme z(t) = f(¢,z(t)), et un ensemble de conditions
initiales Xj, une méthode d’intégration symbolique (ou ”ensembliste”) consiste en
calculer une suite d’approximations (t,,Z,) de la solution z(t;zo) de 'EDO avec
xg € Xo et telle que Z,, ~ x(tn;x,_1). Les méthodes d’intégration symboliques
étendent les méthodes d’intégration numérique classiques, qui correspondent au cas
ou Xy est un singleton {zy}. La plus simple de ces méthodes est la méthode d’Euler,
pour laquelle t,,,1 = t, + h, avec h le pas de temps, et T,41 = T, + hf(t,, T,); de
cette fagon, la dérivée de x au temps t,, f(t,,x,), est utilisée comme une approx-
imation de la dérivée sur Uintervalle [t,,t,.1]. Cette méthode est tres simple et
rapide, mais nécessite de petits pas de temps h. Des méthodes plus avancées, dont
celles de type Runge-Kutta, utilisent quelques calculs intermédiaires pour améliorer

I’approximation de la dérivée. La forme générale d'une formule de Runge-Kutta



de rang s est Tpy1 = T, + hX_ bk, ou k; = f(t, + ¢;h, T, + hZ;;llaijkj) pour
1 = 2,3,....,s. Une question importante est alors de calculer une borne sur la dis-
tance entre la solution exacte et la solution numérique, c’est-a-dire |z(t,; x,—1) —x, |-
Cette distance est communément appelée erreur locale de troncature de la solution
numérique.

Nous développons deux approches repposant sur ce type de schémas. La premiere
repose les schémas de Runge-Kutta et les méthodes par intervalle. La seconde est
un renouvellement de la méthode d’Euler, pour laquelle nous donnons une nouvelle

borne d’erreur en calculant des tubes d’atteignabilité avec des boules.

1.3.1 Les schémas de Runge-Kutta garantis

La plupart des travaux récents sur les méthodes d’intégration symbolique (ou
ensembliste) pour les EDOs non linéaires repose sur la majoration des restes de
Lagrange soit dans le cadre des séries de Taylor, soit dans les schémas de Runge-
Kutta [6,8,35,37,42,43,56,130]. Les ensembles d’états sont généralement représentés
comme des vecteurs d’intervalles (”boites” ou "rectangles”) et sont manipulés au
moyens de 'arithmétique d’intervalles [141], ou l'arithmétique affine [54]. Les for-
mules de Taylor avec reste de Lagrange sont également utilisées dans les travaux
de [8], qui utilisent des ”zonotopes polynomiaux” pour représenter des ensembles
d’états en plus des vecteurs d’intervalle.

La solution garantie ou validée d’EDOs en utilisant 1’arithmétique d’intervalles
est étudiée dans le carde des séries de Taylor dans [59, 125,141, 144], et pour les
schémas de Runge-Kutta dans [6, 35,36, 71]. Les séries de Taylor constituent la
méthode la plus ancienne utilisée dans ’analyse par intervalles, car 'expression
des restes de Taylor est simple a obtenir. Néanmoins, la famille des méthodes de
Runge-Kutta est tres importante dans le domaine de I’analyse numérique. En effet,
les méthodes de Runge-Kutta présentent plusieurs propriétés intéressantes telles
que la stabilité, ce qui répond a une classe importante de problemes. Les travaux
récents [5] implémentent des méthodes de Runge-Kutta et ont prouvé leur efficacité
a des dimensions modérées et pour des simulations courtes (fixées par la période
d’échantillonnage du controleur).

Dans les méthodes d’analyse symbolique et de controle des systemes hybrides, la
facon de représenter les ensembles d’états et de calculer les ensembles atteignables
pour des systemes décrits par des EDOs est fondamentale (voir par exemple [9,
74]). De nombreux outils utilisant, parmi d’autres techniques, la linéarisation ou
I'hybridisation de la dynamique sont maintenant disponibles (voir par exemple
SpaceEx [64], Flow* [43], iISAT-ODE [61]). Une approche récente se base sur la
propagation des ensembles atteignables en utilisant des schémas de Runge-Kutta
garantis avec pas de temps adaptatif (voir [35,92]). L’originalité de nos travaux

est d’utiliser de telles méthodes dans le cadre des systemes a commutations. Cette
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notion de garantie des résultats nous permet en effet d’envisager des applications
dont la stireté est critique, telles que dans les domaines aéronautiques, militaires ou

médicaux.

1.3.2 La méthode d’Euler

Toutefois, les méthodes de Runge-Kutta de [5] restent complexes et requiérent
I'utilisation de I'arithmétique affine, I’application du théoréeme du point fixe de Ba-
nach et de l'opérateur de picard-Lindel6f (voir [144]). Malgré son efficacité et sa
précision, elle nécessite un nombre non négligeable de calculs pour chaque pas de
temps. En revanche, notre deuxieme approche utilise une arithmétique classique
(au lieu de l'arithmétique affine) et un schéma d’Euler basique (au lieu de schémas
de Runge-Kutta). Nous n’avons besoin d’aucune estimation de restes de Lagrange,
ni d’effectuer d’itérations de Picard avec des séries de Taylor. Notre approche est
rendue possible grace la notion de fonction Lipschitz unilatérale [57] ( “one-sided
Lipschitz”, que nous abrégeons par OSL). Cela nous permet de borner directement
Uerreur globale, c’est-a-dire la distance entre le point approché Z(t) calculé par le
schéma d’Euler et la solution exacte z(t), pour tout ¢ > 0. Notons que la borne
que nous donnons est plus précise que la borne classique que 'on retrouve dans [20],
et qui est également utilisée dans les méthodes d’hybridisation dans [18,44]. Afin
d’exploiter au mieux cette borne nous utilisons des boules, et la formule établie
est valable a tout instant dans la période de commutation. Cela nous permet de
calculer des tubes d’atteignabilité de fagon extrémement rapide par rapport aux
méthodes de Runge-Kutta, bien que la précision soit limitée pour certaines valeurs
de la constante OSL.

Aucun des travaux sur l'intégration garantie mentionnés ci-dessus n’utilise le
schéma d’Euler, ni la notion de constante OSL. Dans la littérature sur 'intégration
symbolique, le schéma d’Euler avec conditions OSL est envisagé dans [57,123]. Notre
approche est similaire mais nous établissons un résultat analytique pour l'erreur
globale du schéma d’Euler, et non pas une analyse, en termes de complexité, de la
vitesse de convergence, de la consistance ou de la stabilité de la méthode d’Euler.
Dans la communauté de 'automatique et du controle, les conditions OSL ont été
récemment appliquées au controle et & la stabilisation [1,39], mais sans utiliser de
schéma d’Euler. A notre connaissance, c’est la premiere fois qu’'un schéma d’Euler

est utilisé avec des conditions OSL pour le contrdle symbolique de systemes hybrides.

1.4 Les approches compositionnelles

Comme précisé plus haut, les complexité des abstractions de systemes a commu-
tation par des méthodes symboliques est sujette a la malédiction de la dimension-

nalité. Plus précisément, ce cout exponentiel est double. Premierement, la taille



des abstractions croit exponentiellement avec la dimension du systeme, du fait de la
discrétisation de ’espace d’état. Deuxiemement, le nombre de séquences de controle
a explorer est exponentiel avec la taille des séquences, et le nombre de modes com-
mutés. Sil'on appelle N le nombre de modes commutés, le nombre de séquences de

controle de longueur inférieure ou égale & k est en O(N¥).

L’application de principes de composition est donc essentielle afin d’obtenir des
méthodes de controle garanti si I’on souhaite induire des garanties formelles de cor-
rection. L’objectif de telles méthodes est de découper le systeme en sous-systemes
(composants) de dimension inférieure, et de synthétiser des controleurs pour ces
sous-systemes. Avec de simples techniques de sur-approximation, nous pouvons es-
timer 1’état symbolique des autres sous-systemes en présence d’observation partielle.
Cette approche est similaire, dans 'esprit, aux raisonnements de type hypothese-
garantie (“assume-guarantee”) ou basés sur des contrats (“contract-based”). Ces
méthodes supposent, lors de la synthese de controle d’un des sous-systemes, que
tous les autres sous-systémes vérifient des propriétés de streté données [11,34, 53,
65,100, 135,161, 167]. Notre approche est une continuation de [65]. Contrairement
a [65], nous n’avons pas besoin, lors de la recherche d’'un mode d’un sous-systeme,
d’explorer aveuglément tous les modes possibles des autres sous-systemes. Cela con-
duit a une réduction drastique de la complexité. Cette approche a rendu possible
la synthese d’un controle pour un cas test concret, impossible a traiter dans le cas
centralisé. Cette étude de cas, proposée par 'entreprise danoise Seluxit est pro-
posée dans [112], elle modélise une maison onze chambres chauffée par géothermie.
Contrairement aux travaux de [112], qui utilisent une approche en ligne associée a
une heuristique ne donnant aucune garantie formelle, nous utilisons une méthode de

synthese hors ligne assurant des garanties formelles d’atteignabilité et de stabilité.

Cette approche compositionnelle est appliquée dans le cas linéaire en utilisant des
zonotopes, et dans le cas non linéaire en utilisant les approches basées sur Runge-
Kutta et Euler. Bien que 'extension aux systeémes non linéaires reposant sur les
schémas de Runge-Kutta soit quasiment directe puisque qu’elle permet de gérer
des perturbations, ’approche Euler nécessite des développements supplémentaires.
Nous expliquons donc comment un simple schéma d’Euler peut étre appliqué a
la synthese de controleurs de stureté de fagon distribuée. Pour effectuer une telle
synthese distribuée, nous voyons les composants du systeme global comme intercon-
nectés (voir par exemple [173]), ce qui permet d’utiliser une version moins restric-
tive de la notion de stabilité entrée-sortie incrémentale (“incremental input-to-state
stability”, souvent abrégée 9-1SS) et des fonctions de Lyapunov incrémentalement
stables [96] (1SS Lyapunov functions). Cette notion remplace alors le caractere

Lipschitzien unilatéral du cadre centralisé.



1.5 Les méthodes de réduction de modele

Les méthodes de réduction de modele ont pour objectif de représenter les so-
lutions d’équations aux dérivées partielles avec un faible nombre de fonctions de
base. Elles sont largement utilisées dans le domaine de la mécanique des struc-
tures et de la mécanique numérique. Bien str, de telles méthodes impliquent une
perte d’information par rapport a la solution exacte, et ’encadrement des erreurs
entre les modeles d’ordre élevé et d’ordre faible est obligatoire si I'on veut as-
surer des garanties formelles pour les lois de commande. L’une des plus anciennes
méthodes de réduction de modele est sans doute la décomposition spectrale [40],
consistant simplement en une décomposition en série de Fourier tronquée, et qui
permet d’ores et déja de représenter les solutions d’une large classe d’EDP avec
un nombre raisonnable de fonctions de base. Elles présentent ’avantage d’étre ap-
plicables a priori, c¢’est-a-dire sans calculer au préalable une quelconque solution
de 'EDP. Par ailleurs, il existe de nombreuses bornes d’erreur pour ces méthodes.
Des techniques plus sophistiquées et précises reposent sur la réduction a posteriori,
elles extraient I'information pertinente d’un ensemble de solutions pré-calculées (ap-
pelées snapshots). L’idée générale est 'application d’une décomposition en valeurs
singulieres sur la matrice des snapshots, associée a une normalisation adaptée. La
décomposition orthogonale aux valeurs propres [48,98] (“Proper Orthogonal Decom-
position”, ou POD), entre généralement dans ce type de méthodes. Méme si la
construction des fonctions de base peut nécessiter un certain temps puisqu’il faut
au préalable calculer un grand nombre de snapshots, ce type d’approche n’est pas
rédhibitoire puisque nous avons pour but d’utiliser des méthode de synthese hors
ligne. Un classe importante de méthodes de réduction de modeles en mécanique des
structures utilise les projections de Galerkin [28,157], qui permettent d’établir des
bornes d’erreur L? de facon trés naturelle. Les méthodes de type POD sont souvent
appliquées dans ce cadre [107]. Toutes ces approches sont applicables sur une large
gamme d’EDPs (mais excluant par exemple les équations de transport, encore tres
difficiles & réduire aujourd’hui), et de nombreuses extensions non linéaires ont été
proposées [23,81,162].

Meéme si l'utilisation de méthodes de réduction de modeles n’est pas courante
dans le domaines de l'automatique et du controle de systemes, il existe plusieurs
travaux sur le sujet. Une approche basée sur les Gramiens est par exemple utilisée
dans [165]. Pour faire court, les Gramiens sont des fonctions qui caractérisent
I’énergie de I'état et de la sortie du systeme, leur calcul nécessite en général de trou-
ver la solution d’équations de Lyapunov. La troncature équilibrée [15,29, 30, 140]
(balanced truncation), basée sur les Gramiens et assez proche de la POD dans
I'esprit, permet réduire la dimension de systemes linéaires de grande dimension.
Nous proposons ici d’appliquer cette méthode pour des EDPs discrétisées. La tron-

cature équilibrée existe en version non linéaire [31,110], mais son application est
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souvent difficile sur des cas concrets. Dans [31], il faut par exemple calculer une
sur-approximation des Gramiens généralisés, qui ne sont pas calculables dans le cas
général. Notons enfin qu’il existe des approches intéressantes mélant mécanique des
structures et systemes de controle. Les travaux de [21] montrent par exemple une
application de la POD pour induire des controleurs réduits, ou encore [172] mélant
POD et Gramiens.

Notre objectif est finalement d’utiliser de telles techniques afin d’appliquer des
méthodes symboliques pour le controle d’EDPs, le probleme principal étant de prou-
ver que les controleurs calculés sont garantis. Nous proposons ici de majorer les
erreurs de trajectoire entre les systemes d’ordre élevé et d’ordre faible, afin de pren-
dre cette majoration en compte dans le calcul de synthese. Bien siir, le choix de
la méthode de réduction n’est pas anodine, et doit étre adaptée a 1’équation visée.
La construction de bornes d’erreur dépend en effet tres fortement de la méthode de

réduction utilisée.

1.6 Contributions

Dans le chapitre 3, nous définissons formellement la classe de systemes considérés,
puis nous introduisons les algorithmes utilisés dans le reste de cette these. Ces algo-
rithmes sont tres inspirés des travaux de [66,68,106], et nous les étendons simplement
aux propriétés en temps continu. Nous proposons également une amélioration non
négligeable de la recherche des séquences de controle, diminuant ainsi tres fortement
les temps de calcul.

Dans le chapitre 4, nous considérons le probleme de calcul d’atteignabilité. Nous
présentons d’abord les méthodes utilisées pour les systemes linéaires dans [68],
puis nous introduisons la méthode utilisée dans [5, 6, 56], qui est essentiellement
due a Alexandre Chapoutot et Julien Alexandre dit Sandretto. L’application de
cette méthode a la synthese de controleurs de systemes non linéaires est cepen-
dant entierement nouvelle et donne des résultats compétitifs par rapport aux outils
de I'état de l'art. Ces travaux ont donné lieu a un article de conférence [115],
ainsi qu’une extension journal [116]. Nous présentons enfin la méthode basée sur le
schéma d’Euler, entierement nouvelle, et qui donne des résultats tres prometteurs.
Cette méthode a été publiée dans l'article de conférence [118].

Dans le chapitre 5, nous proposons des versions compositionnelles des algo-
rithmes introduits aux chapitres 3 et 4. La procédure de synthese présentée pour
les systemes linéaires a temps discret est une extension de [66,68], elle donne une
nouvelle méthode remplissant ’espace d’état de fagon itérative. Elle est ensuite
appliquée avec une technique de sur-approximation permettant la synthese dis-
tribuée qui a permis de synthétiser un controleur pour un systeme de dimension
onze. C’est a notre connaissance la premiere fois qu'une méthode formelle est ap-

pliquée a un systeme d’une telle dimension. Ces travaux ont été publiés dans I'article
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de conférence [120], et ont été soumis en version étendue dans [121]. L’extension
aux systemes non linéaires est rendue possible grace a I'utilisation de la simulation
validée. Nous présentons enfin une version distribuée de I’approche basée sur Euler,
reposant sur une version plus faible de la notion de -ISS. Ces travaux ont donné
lieu & un article de conférence [114].

Dans le chapitre 6, nous présentons une approche symbolique pour le controle
d’EDPs discrétisées, reposant sur la troncature équilibrée. Nous donnons deux
procédures pour l'application du controle. Nous proposons également quelques
résultats amorcant 'observation partielle, avec 'utilisation d’observateurs d’états
réduits. Cette approche a été publiée dans [117], et appliquée dans une cadre plus
spécifique aux systémes mécaniques dans [119].

Dans le chapitre 7, nous introduisons une premiere approche possible pour le
controle d’EDP non discrétisées, reposant sur une décomposition spectrale et une
méthode d’interpolation particulierement efficace pour représenter une fonction con-
tinue avec un faible nombre de fonctions de base, provenant de [129]. Nous don-
nons une deuxieme approche visant 1'utilisation de projections de Galerkin pour la
réduction, associée a la méthode d’Euler. Elle a permis de synthétiser des controleurs
garantis en norme L? pour un systétme d’EDO-EDP couplé grace a la majoration
de l'erreur de réduction et a une décomposition appropriée des différents termes
impliqués dans la solution. Cette approche est tres prometteuse mais nécessiterait
des développements supplémentaires afin d’étre appliquée sur une plus large gamme

de systemes.
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Chapter 2

Introduction
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In recent years, there has been an increasing interest in studying hybrid systems,
which allow to model a wide range of cyber-physical systems. These models have
been applied with success in various domains such as automotive industry, power
electronics, smart houses, medical monitoring, robotic systems... Switched control
systems (switched systems for short) are a sub-class of hybrid systems, and their
importance has grown considerably over the last years because of their ease of im-
plementation for controlling cyber-physical systems. One of the main issues raised
in the study of switched systems is the improvement of robust and flexible control
techniques in order to increase reliability and safety of operation. A switched sys-
tem is constituted of two parts: a family of continuous systems called modes, each
having its own dynamics; and a switching signal that selects which mode is active.
We suppose that only one mode is active at a given time. The switching signal
can be state dependent and/or time dependent. Switched systems are thus merely
described by piecewise dynamics.

The dynamics of the modes of switched systems is usually described by ordi-
nary differential equations (ODEs), and many tools exist to control such systems.
But the complexity of the systems describing nowadays problems grows more and
more, and switching modes described by partial differential equations (PDEs) are
being paid more attention. We should point out that one of the main difficulties
arising in switched systems with respect to classical systems is that the state of the
system cannot usually by asymptotically stabilized by a continuous feedback con-
trol law [38], whether the dynamics is described by ODEs or PDEs. Therefore, the
stability notions that we define in this thesis are closer to invariance than classical
stability.

2.1 Control of dynamical systems

While many tools and methods successfully manage to provide control laws en-
suring some properties for the controlled systems, such as stability or reachability,
the approach to be used often depends on the particular application aimed by the
model. For example, optimal control approaches, basically aimed at minimizing a
cost function and permitting to reach a target state under given constraints, are of-
ten used in aerospace engineering [113,171]. They have also been applied on infinite
dimensional cases for PDEs [62,90,91,158]. They are however often computationally
expensive and require sophisticated numerical methods to be applied online. Lya-
punov theory approaches provide ways to analyze and stabilize controlled systems.
They merely rely on energy (Lyapunov) functions, characterizing the state of the
system, and ensure stability when they reach a 0 level. These type of approaches
have been applied to nonlinear control systems [104,174], hybrid systems [79], and
for infinite dimensional systems [25,49,87,131]. Note that the case of PDEs is still

an actual challenge since every method is different depending on the type of equa-
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tion. For the case of switched systems, the use of common Lyapunov functions also
provides efficient control laws [124,170]. Some recent works also give stability and
stabilization results for switched partial differential equations [111,128,150]. We
should however point out that there is no general method for determining a suit-
able Lyapunov function, whether it is for ODEs or PDEs, which makes these types
of approaches more tied to given case studies, and harder to apply in a general
case. Furthermore, even though all these methods provide strong results for the
controlled systems, the online application is often performed with digital devices,
involving a discretization of the state and/or control input. Numerical schemes can
also be used, and these additional tools inevitably imply numerical errors that are
not taken into account, and could thus lead to safety problems, particularly in safety
critical systems. This is why we focus here on guaranteed, or “correct-by-design”
methods. A correct-by-design method ensures that, with respect to a mathematical
model, every possible working case or behavior of a system is taken into account and
made safe. It should include all the possible perturbations induced by the external
environment. The appropriate tool for this purpose is symbolic methods, which
exhaustively control all the possible states of the system, and can be associated to
guaranteed numerical schemes, i.e., which take all the numerical errors into account.
They also provide the advantage of being fully automated, and do not require, for

example, the estimation of a Lyapunov function.

2.2 Symbolic methods and switched systems

In this thesis, we focus on the subclass of sampled switched systems, for which
switches occur periodically at a fixed switched period denoted by 7. These switch-
ing signals are very common because of their ease of implementation. Given that a
physical actuator cannot change its state infinitely fast, it is also realistic to consider
a fixed period at which the actuator can change its state. This sub-class is partic-
ularly adapted to the use of numerical schemes, and in general, numerical methods
allowing to synthesize controllers offline. Note however that [2] provides a symbolic

method allowing to have variable time periods.

2.2.1 State of the art

Symbolic methods for controlling sampled switched systems are numerous, rely
on different tools, and often require some hypotheses on the dynamics of the sys-
tem. Note that symbolic methods also apply to classical (finite dimensional) control
systems, but generally discretize the control input, which finally comes back to
switched system models. Most methods rely on finite state abstractions, which ba-
sically discretize (abstract) the state space of the system in order to transform it

into a finite state automaton, for which multiple tools exist for performing control
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synthesis (e.g. BDDs: binary decision diagrams). The states of the automaton are
then called symbols, and the finite state automaton is a symbolic, or abstract model
of the system. However, the guaranteed aspect still depends on the abstraction
method. For example, the tool PESSOA [132] synthesizes a finite state abstraction
which is (alternatingly) approximately bisimilar to the original model. It basically
ensures that the trajectories of the real system stay close to those of the symbolic
model with a given precision. This tool is available for linear systems, but nonlin-
ear extensions are available with additional hypotheses such as incremental global
asymptotic stability or incremental input-to-state stability [149]. Roughly speaking,
incremental stability is quite a strong hypothesis which assumes, for each mode, that
two trajectories always get exponentially closer within time. More information on
the incremental stability property is detailed in [13]. The tool CoSyMA [142] uses
approximate bisimulation as well and assumes that the system is incrementally sta-
ble, but includes multi scale abstractions, which means that the discretization adapts
to the system and uses more discrete states where needed. More information on ab-
stractions using approximate simulations is given in [75,77]. The tool SCOTS [159]
also relies on finite state abstractions but uses a different concept named feedback
refinement relations developed in [154]. Another class of finite state abstractions
relies on tilings of the state space. Associated to the hypothesis of monotonicity,
which assumes that the trajectories of the system stay ordered, it is possible to
simply compute the image of a set by computing the images of the extreme points
of the tiles. Finite state abstractions can then be constructed for control synthesis.
These approaches are used in [103,136]. A quite different type of abstraction is
used in [122], where the symbolic states are mode sequences, but this method also
requires the hypothesis of incremental stability. A recent abstraction approach [153]
uses robust control Lyapunov-like functions, which are automatically computed us-
ing a counter-example inductive synthesis by means of an SMT solver (which solves

a decision problem).

2.2.2 Motivations

While all these approaches are efficient on practical case studies, most of them
make strong assumptions on the dynamics of the system (such as incremental sta-
bility or monotonicity). In this thesis, we develop methods that do not require such
strong assumptions. While we first introduce methods for linear systems, the ap-
plication to nonlinear systems is made possible with guaranteed numerical schemes
that require the weakest hypotheses possible, such as locally Lipschitz dynamics.
We will base our developments on the tool MINIMATOR [106], which synthesizes
controllers with an adaptive tiling of the state space, associated to an exhaustive
research of possible control sequences (up to a given length) which either succeeds

to find an admissible control sequence, or fails and decomposes further the state
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space (adaptation). This procedure developed by Romain Soulat, called state-space
decomposition, is presented for linear finite dimensional systems in [66,68]. It ac-
tually provides for an efficient way to compute state-dependent controllers ensuring
discrete-time properties, i.e. ensured at the switching instants 7, 27... Note that
the use of polyhedral symbolic states, as used here, is classical (see e.g. [17,72]), and
the use of tiling or partitioning of the state-space using bisection is also classical
(see e.g. [76,94]). One of the objectives of this thesis is to apply this procedure to
nonlinear systems, while also ensuring continuous time properties. In order to apply
this approach with safety properties ensured for all time, one first needs to compute
a tube of reachability, and no longer just an image at discrete instants of an initial
set (easily computable for linear systems). In other words, we have to compute a
solution of a nonlinear ODE with an initial condition given as a set. The extension
to nonlinear systems thus requires new tools for the computation of the reachable
sets, namely, guaranteed numerical schemes.

An inevitable drawback of symbolic methods is their computational complexity,
subject to the so-called “curse of dimensionality”. Indeed, most of them are based on
finite state abstractions, and the resulting size of the symbolic models is exponential
with respect to the dimension of the system. While our method of adaptive tiling
manages to keep the number of symbols quite low, it still struggles to synthesize
controllers for systems of dimensions larger than 8 in reasonable amounts of time.
In order to overcome this issue, we propose to apply compositional principles, and
develop distributed versions of these algorithms.

Finally, symbolic approaches have never been applied to switched systems de-
scribed by PDES. We aim at providing formal safety or reachability guarantees
for such systems by using symbolic methods. In their discretized forms (using for
example finite element methods), PDEs lead to high dimensional ODEs, and the
straightforward application of a symbolic method is irrelevant. Fortunately, reduc-
ing the dimension of a PDE model is an important issue in the field of computational
mechanics, with many applications (optimization of a process, storage reduction, vir-
tual abacus...). We thus propose to use such techniques in association to symbolic

methods to reach this goal.

2.3 The reachable set computation

Computing the solution at discrete times of a linear ODE when the initial condi-
tion is given as a box can be easily done using zonotopes [10,73,105,109], and this,
because we know exactly the solution of the ODE, and can be written as an affine
transformation. Yet, generally, the exact solution of nonlinear differential equations
cannot be obtained, and a numerical integration scheme is used to approximate
the state of the system. With the objective of computing a guaranteed control,

which ensures continuous time properties, the computation of a reachability tube is
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mandatory.

Given an ODE of the form z(t) = f(¢,z(t)), and a set of initial values Xy, a
symbolic (or “set-valued” since the symbols used here are sets) integration method
consists in computing a sequence of approximations (,,Z,) of the solution z(t; o)
of the ODE with ¢ € X such that Z,, ~ z(t,; x,_1). Symbolic integration methods
extend classical numerical integration methods which correspond to the case where
Xy is just a singleton {xo}. The simplest numerical method is Euler’s method in
which ¢,,,1 = t,,+ h for some step-size h and Z,,.1 = T, + hf(tn, T,); so the derivative
of x at time t,,, f(t,,z,), is used as an approximation of the derivative on the whole
time interval. This method is very simple and fast, but requires small step-sizes h.
More advanced methods coming from the Runge-Kutta family use a few intermediate
computations to improve the approximation of the derivative. The general form of
an explicit s-stage Runge-Kutta formula of the form 7,41 = 7, + h¥;_,b;k; where
ki = f(t, + cih, T, + hZé;llaijk’j) for i = 2,3,...,s. A challenging question is then
to compute a bound on the distance between the true solution and the numerical
solution, i.e.: |z(t,;xn_1) — x,|. This distance is associated to the local truncation
error of the numerical method.

We develop two approaches relying on this type of numerical schemes. The first
one makes use of Runge-Kutta type schemes and interval methods. The second
one is a renewal of the Euler method, with a new error bound allowing to compute

reachability tubes using balls.

2.3.1 Guaranteed Runge-Kutta schemes

Most of the recent work on the symbolic (or set-valued) integration of nonlin-
ear ODEs is based on the upper bounding of the Lagrange remainders either in
the framework of Taylor series or Runge-Kutta schemes [6,8, 35,37, 42,43, 56, 130].
Sets of states are generally represented as vectors of intervals (or “rectangles”) and
are manipulated through interval arithmetic [141] or affine arithmetic [54]. Taylor
expansions with Lagrange remainders are also used in the work of [8], which uses
“polynomial zonotopes” for representing sets of states in addition to interval vectors.

The guaranteed or validated solution of ODEs using interval arithmetic is stud-
ied in the framework of Taylor series in [59,125,141,144], and Runge-Kutta schemes
in [6,35,36,71]. The former is the oldest method used in interval analysis commu-
nity because the expression of the remainder of Taylor series is simple to obtain.
Nevertheless, the family of Runge-Kutta methods is very important in the field of
numerical analysis. Indeed, Runge-Kutta methods have several interesting stability
properties which make them suitable for an important class of problems. The recent
work [5] implements Runge-Kutta based methods which prove their efficiency at low
orders and for short simulations (fixed by the sampling period of the controller).

In the methods of symbolic analysis and control of hybrid systems, the way
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of representing sets of state values and computing reachable sets for systems de-
fined by autonomous ordinary differential equations (ODEs) is fundamental (see
for example [9,74]). Many tools using, among other techniques, linearization or
hybridization of these dynamics are now available (e.g., SpaceEx [64], Flow™ [43],
iSAT-ODE [61]). An interesting approach appeared recently, based on the prop-
agation of reachable sets using guaranteed Runge-Kutta methods with adaptive
step-size control (see [35,92]). An originality of our work is to use such guaranteed
integration methods in the framework of switched systems. This notion of guarantee
of the results is very interesting, because it allows applications in critical domains,

such as aeronautical, military and medical ones.

2.3.2 The Euler method

In the end, the Runge-Kutta based method of [5] remains an elaborated method
that requires the use of affine arithmetic, application of the Banach’s fixpoint the-
orem and Picard-Lindelof operator, see [144]. Despite being very efficient and ac-
curate, it still requires a lot of computations for every time step. In contrast, our
second approach uses ordinary arithmetic (instead of affine arithmetic) and a basic
Euler scheme (instead of Runge-Kutta schemes). We neither need to estimate La-
grange remainders nor perform Picard iteration in combination with Taylor series.
Our simple Euler-based approach is made possible by resorting to the notion of
one-sided Lipschitz (OSL) function [57]. This allows us to bound directly the global
error, i.e. the distance between the approximate point Z(¢) computed by the Euler
scheme and the exact solution z(t) for all ¢ > 0. Note that the bound we establish is
more precise than the classical one found in [20], which is also used in hybridization
methods in [18,44]. An appropriate way to exploit this new bound is balls, and the
formula established is available for all time in the switching period. It allows us
to compute reachability tubes in an extremely fast way compared to Runge-Kutta

methods, although it can lack accuracy for certain values of OSL constant.

None of the works of guaranteed integration above mentioned uses the Euler
scheme nor the notion of one-sided Lipschitz constant. In the literature on symbolic
integration, the Euler scheme with OSL conditions is explored in [57,123]. Our
approach is similar but establishes an analytical result for the global error of Euler’s
estimate rather than analyzing, in terms of complexity, the speed of convergence
to zero, the accuracy and the stability of Euler’s method. In the control literature,
OSL conditions have been recently applied to control and stabilization [1,39], but
do not make use of Fuler’s method. To our knowledge, our work applies for the first

time Euler’s scheme with OSL conditions to the symbolic control of hybrid systems.
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2.4 Compositional approaches

As mentioned earlier, the complexity of abstractions of switched systems by sym-
bolic methods are subject to the curse of dimensionality. Actually, this exponential
cost is twofold. On the first hand, the size of the abstractions grows exponentially
with the dimension of the system. Indeed, most symmbolic control methods rely on
discretizations or tilings of the state-space. If we consider a system of dimension n,
and if each dimension is discretized with m points or tiles, then the resulting number
of symbols is in O(m™). On the other hand, the number of control sequences to be
explored is exponential with the size of the sequences and depends on the number
of switched modes. Actually, if N is the number of switched modes, the number of

control sequences of length up to k is in O(N*¥).

It is therefore essential to design compositional analysis techniques in order to
obtain control methods for switching systems with formal correctness guarantees.
The aim is to split the system in smaller systems (components), and synthesize
controllers for these sub-systems of smaller dimension. With simple techniques of
over-approximation, it allows one component to estimate the symbolic states of the
other components, in presence of partial information. This is similar in spirit to
an assume-guarantee (or contract-based) reasoning, where the controller synthesis
for each sub-system assumes that some safety properties are satisfied by the other
sub-systems [11,34,53,65,100,135,161,167]. This approach is a continuation of [65].
In contrast to [65], we do not need, for the mode selection of a sub-system, to blindly
explore all the possible modes selected by the other sub-system. This yields a drastic
reduction of the complexity. This approach allows us to treat a real case study,
which is intractable using a centralized approach. This case study proposed by the
Danish company Seluxit comes from [112], it models an eleven room house heated
by geothermal energy. In contrast to the work of [112] which uses an on-line and
heuristic approach with no formal guarantees, we use here an off-line formal method

which guarantees reachability and stability properties.

This compositional approach is applied for linear systems using zonotopes, and
for nonlinear systems using the Runge-Kutta and Euler based approaches. While the
extension to nonlinear systems using the Runge-Kutta approach is nearly straight-
forward thanks to its handling of perturbations, the Euler based approach requires
further developments. We explain how such an Euler-based method can be extended
to synthesize safety controllers in a distributed manner. In order to perform such
a distributed synthesis, we will see the components of the global systems as being
interconnected (see, e.g., [173]), and use (a less restrictive variant of) the notions of
incremental input-to-state stability (9-1SS) and 1SS Lyapunov functions [96] instead

of the notion of OSL used in the centralized framework.
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2.5 Model order reduction methods

Model order reduction methods are aimed at representing the solutions of par-
tial differential equations with few basis functions. They are extensively used in the
field of structural and computational mechanics. Of course, with such methods, one
looses a part of the information contained in the exact solution, and bounding the
error between the reduced and full order models is mandatory to induce guaranteed
control laws. One of the oldest methods might be the spectral decomposition [40],
basically based on truncated Fourier decompositions, and which already allows to
accurately represent solutions of a wide range of PDEs with reasonable amounts
of basis functions. They present the advantage of being applicable a priori, i.e.,
without having to compute solutions of the PDE, and also come with various error
bounds. More elaborated and accurate methods can rely on a posteriori model re-
duction, by extracting relevant information out of solution samples (snapshots). The
idea is to perform a singular value decomposition on a matrix of snapshots, associ-
ated with a relevant normalization. The Proper Orthogonal Decomposition (POD)
methods [48,98] generally fit this type of methods. Although the construction of the
basis functions can require a lot of time because of the need to compute snapshots,
this type of approach is not prohibitive when using offline control syntheses. An im-
portant type of model reductions in structural mechanics is the one associated with
Galerkin projections [28,157], which allow to establish L? error bounds in a natural
manner, and POD methods are often applied in this framework [107]. While all
these approaches are applicable on a wide range of PDEs (excluding e.g. transport
equations, which are still highly difficult to reduce), many nonlinear extensions of
these methods have been proposed [23,81,162].

Even though the use of model reduction techniques is not classical when it comes
to control systems, there are many works on the subject. The Gramian based
approach (Gramians are, roughly speaking, functions that characterize energy of
the state and output of the system, their computation generally requires finding
solutions of Lyapunov equations) is for example used for switched systems in [165].
The balanced truncation [15,29, 30, 140], a Gramian based approach quite close to
the POD in spirit, allows to reduce linear high dimensional systems with outputs,
and this technique is applied here to the case of discretized PDEs. There exist
nonlinear versions [31,110], but their application is often difficult on concrete case
studies. For example [31] requires the computation of over-approximations of the
generalized Gramians which are not computable in the general case. Note that
interesting combinations of computational mechanics and control based approaches
have been proposed, see for example [21] which proposes an application of the POD

to infer reduced order controllers, or the works of [172] mixing Gramians and POD.

Our objective is to use such techniques to apply symbolic methods to PDEs, and

the main issue to be dealt with is providing guaranteed controllers. This can be done
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by appropriately bounding the error between the trajectories of the full and reduced
order systems, and taking this bound into account in the synthesis. Of course, the
choice of the reduction technique is not trivial and should be adapted to the PDE.

The construction of a proper error bound highly depends on this previous choice.

2.6 Contributions

In Chapter 3, we first formally define the class of systems considered before
introducing the algorithms used in the remainder of the thesis. These algorithms
are highly inspired by those of [66,68, 106], and simply extend them to continuous
time properties. We however provide a non negligible improvement for the research
of control sequences which highly reduces the computation times.

In Chapter 4, we consider the problem of reachability analysis. We first present
the method used for linear systems in [68], and then introduce the method used
in [5,6,56], which is mainly due to Julien Alexandre dit Sandretto and Alexandre
Chapoutot. The application to nonlinear systems is however entirely new and pro-
vides competitive results with respect to the state-of-the-art tools. These works
led to a conference paper [115] and an extended journal paper [116]. We finally
present the Fuler based method, which is an entirely novel approach and gives very
promising results. It led to the conference paper [118].

In Chapter 5, we propose the compositional versions of the algorithms of Chap-
ters 3 and 4. The synthesis procedure presented for linear discrete-time systems is
an extension of [66,68], which provides a new iterative backward filling of the state
space. It is then applied with an over-approximation method allowing distributed
computations, which allowed to synthesize a controller for a system of dimension
eleven. This is, to our knowledge, the first time that a system of such dimension
is handled with formal methods. These works have been published in a conference
paper [120] and submitted in an extended version [121]. The extension to nonlinear
systems with continuous time properties is made possible with the use of validated
simulation. We then present a distributed version of the Euler method approach,
relying on weaker variants of §-ISS properties. These works led to the conference
paper [114].

In Chapter 6, we present a symbolic approach for the control of discretized PDEs,
relying on the balanced truncation. We give two possible procedures for application
of the control, and propose some initiating works towards partial observation with
the use of reduced order observers. This approach has been published in [117] and
applied more generally to mechanical systems in [119].

In Chapter 7, we introduce a first possible approach for the control of undis-
cretized PDEs, relying on a spectral decomposition and an interpolation method
particularly efficient for representing continuous functions with few basis functions

due to [129]. We give a second approach aimed at using Galerkin projections for
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the reduction and the Euler based method. It provides a guaranteed L? control
for a coupled ODE-PDE system, thanks to an appropriate error bounding and de-
composition of the terms involved in the solution. This approach is very promising
but might require further developments in order to be applied to a wider range of

systems.
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Chapter 3

Switched systems

25



3.1 Introduction

In this chapter, we introduce the class of systems we are interested in, and present
the principles of the algorithms we use, as well as some results on the computational
costs, highlighting the need of further developments for widening the types of sys-
tems supported by the method. Most of the algorithms presented here are based
on the works of Romain Soulat and Laurent Fribourg [67—69, 169]. They provide
algorithms allowing to synthesize state-dependent controllers ensuring discrete time
properties, they are based on an adaptive tiling of the state-space. We extend this
approach to ensuring continuous time properties, and present the different types of
heuristics and sets which can be used with this method. We also give a new algo-
rithm for the research of admissible control sequences. Although being theoretically
of the same complexity, it drastically lowers the computation times in practice. The
class of systems considered is presented in Section 3.2, and we give the adaptations
of the algorithms of [68] in Section 3.3. We then present the improved research of
admissible controls in Section 3.4, and conclude with the computational cost of the
method in Section 3.5.

3.2 Switched systems

We are interested in continuous-time switched systems subject to disturbances,

described by the set of nonlinear ordinary differential equation:

T = fj(x>d)7 (3'1)

where x € R” is the state of the system, j € U is the mode of the system, and
d € R™ is a bounded perturbation. The finite set U = {1,..., N} is the set of
switching modes of the system. The functions f; : R" x R™ — R", with j € U, are
the vector fields describing the dynamics of each mode j of the system. The system
can be in only one mode at a time. Such systems can be schemed as in Figure 3.1,
where we have several working modes for a system, and one has to choose which
working mode j is active within time, in order to ensure some properties for the
state x. A supervisor applies a switching rule deciding when to change the working
mode, which one should be applied next.

We focus on sampled switched systems: given a sampling period 7 > 0, switch-
ings will occur periodically at times 7, 27, ... A switching rule o(-) : Rt — U
associates to each time ¢t > 0 the active mode j € U. A switched system is thus
a dynamical system with piecewise dynamics, and the switching rule selects which
mode is active. The switching rule is thus piecewise constant. Given a switching
rule o(-) : R* — U, and a perturbation w(:) : R¥ — R™ we will denote by
o(t;to, vo, 0, w) the state reached by the system at time ¢ > ¢y, from the initial

state o € R™ at time ¢y > 0, and under control input and perturbation ¢ and

26



5 i
Switching signal

—{ Controller 1
]

Controller N

Figure 3.1: Scheme of a switched system.

w respectively. For a given control o(-) and perturbation w(-), we will often refer
to function ¢ as the solution of equation (3.1). Note that for a given w(-) such
that f;(-,w(-)) is continuous with respect to both variables and locally Lipschitz
with respect to the first variable, the existence and uniqueness of ¢ is given by the
Cauchy-Lipschitz theorem. In a more general case, we will just suppose that o and w
are such that ¢ exists and is continuous with respect to time. One can note that this
notion of solution differs from the classical (mathematical) definition of the solution
of a differential equation.

Often, we will consider ¢(¢;tg,2° o, w) on the interval 0 < ¢t < 7 for which o(t)
is equal to a constant, say j € U. In this case, we will abbreviate ¢(t;tg, 2%, o, w)
as ¢;j(t;to, 2%, w). We will also consider ¢(t;tg, 2%, 0, w) on the interval 0 < ¢t < k7
where k is a positive integer, and o(t) is equal to a constant, say jj/, on each interval
[(K" — 1)7,k'T) with 1 < k' < k; in this case, we will abbreviate ¢(t;tg, 2", 0, w) as
¢ (t;to, 2°, w), where 7 is a sequence of & modes, also denoted as a control pattern
(pattern for short), of the form 7 = j; - jp - -« - - g, € UF.

We will assume that ¢(-;0,x0,0,w) is continuous at time k7 for all positive
integer k (assuming that ¢, = 0 for the sake of simplicity). This means that there is
no “reset” at time &'7 (1 < k' < k); the value of ¢(t; ¢y, 2°, o, w) for t € [(K'— 1)1, k'T]
corresponds to the solution of &(u) = fo(w—1)r+u)(@(u), w(u)) for u € [0, 7] with
initial value ¢((k' — 1)7; 9, 2%, o, w).

Given a “recurrence set” R < R™ and a “safety set” S < R™ which contains R
(R < S), we are interested in the synthesis of a control such that: starting from
any initial point x € R, the controlled trajectory always returns to R within a
bounded time while never leaving S. We suppose that sets R and S are compact.
Furthermore, we suppose that S is convex.

This is formalized as follows, note that Problem 1 is the continuous time version

of the control problem considered in [67]:

Problem 1 ((R, S)-Stability problem). Given a switched system of the form (3.1),

a recurrence set R < R™ and a safety set S < R™, find a control rule o : Rt — U
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such that, for any initial condition xy € R and any perturbation w : R™ — U, the
following holds:
— Recurrence in R: there exists a monotonically strictly increasing sequence of
(positive) integers {ki}ien such that for all l € N, ¢(ki7;to,2° 0,w) € R
— Stability in S: for all t € RY, ¢(t;t,2°, 0,w) € S

We also define a similar problem for reachability from a set Ry < R" to a set
Ry < R™, where both Ry and R, are subsets of S < R".

Problem 2 ((Ri, Ry, S)-Reachability problem). Given a switched system of the
form (3.1), two sets Ry < R™, and Ry < R", and a safety set S < R™, find a control
rule o : Rt — U such that, for any initial condition xq € Ry and any perturbation
w: Rt — U, the following holds:
— Reachability from Ry to Ry: there exists an integer k € Nog such that we have
d(kT;ty, 2%, 0,w) € Ry
— Stability in S: for all t € RY, ¢(t;tg,2°, 0,w) € S

Another interesting problem is the avoid problem, where one has to ensure (R, S)-

stability while avoiding an obstacle, given as a set B.

Problem 3 ((R, B, S)-Avoid problem). Given a switched system of the form (3.1),
and given three sets R < R", S < R"”, and B < R", with RuB < S and RnB = (J,
find a rule o : Rt — U such that, for any initial condition vy € R and any
perturbation w : Rt — U, the following holds:

— Recurrence in R: there exists a monotonically strictly increasing sequence of

(positive) integers {ki}ien such that for all l € N, ¢(ki7;tg,2° 0,w) € R
— Stability in S: for all t € RY, ¢(t;t,2°, 0,w) € S
— Awoid B: for all t € RY ¢(t;tg,2°, 0,w) ¢ B.

In the rest of this chapter, we focus on solving Problem 1 of synthesizing con-
trollers for (R, S)-stability for systems of the form (3.1). Note that solving Problem 2
can be done in a very similar manner (see for example Chapter 4). As a matter of
fact, we will not look for time dependent switching rules o : R™ — U returning the
mode to be applied for a given time, but rather look for state-dependent switching
rules which, for every state = of the system, return a pattern 7 € U* to be applied
in the next time interval [¢,¢ + k7). The set of admissible state-dependent control
laws is thus {7 : R® — U* for k € N}. Such laws can be computed offfine.

Under the above-mentioned notation, we propose the main procedure of our
approach which solves this problem by constructing a state-dependent law &(-),
such that for all xg € R, and under the unknown bounded perturbation w, there

exists ™ = (o) € U* for some k such that:

Or(to + kT3 to, 0, w) € R,
Vit e [to,to + ]{]T], qu(t, to,&?o,’w) € S.
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Such a law permits to perform an infinite-time state-dependent control. The
synthesis algorithm is described in Section 3.3.1 and involves guaranteed set-based
integration presented in the next chapter. Before presenting the algorithms, we

introduce some definitions abstracting the set-based integration.

Definition 1 (Post operator). Let X < R™ be a box of the state space. Suppose
perturbation w lies in a compact D < R™. Let m = (iy,ia,...,43x) € U*. The
successor set of X wvia 7, denoted by Post.(X), is the (over-approzimation of the)

image of X induced by application of the pattern w, i.e., the solution at time t = kTt
of
2(t) = forn (x(t), w(t)),
x(0) = xg € X,
Vt=0, w(t)eD,
Vie{l,....k}, o(t)=1;€U forte[(j— 1)1, j7).

(3.2)

Note that D is absent from the notation Post,(X). When it is relevant, we will
rather use the notation Post?(X) to clarify where the perturbation lies. The Post

operator can also be defined, when the perturbation is omitted, as

Post.(X) = U Ox(t; to, x0).

I()EX

With a bounded perturbation w : R™ — D), it can be defined as:

Post?(X) = | ] | &=(t;to, mo,w).

T0€X e DRT

In a set-based computation application, the perturbation is just defined by the whole

set D at every time t € R™.

Definition 2 (Tube operator). Let X < R"™ be a box of the state space. Suppose
perturbation w lies in a compact D = R™. Let m = (i1, 1o, ...,i) € U*. We denote
by Tube,(X) the union of the trajectories of IVP (3.2), i.e

Tube, (X U U U O (t;to, o, w).

te 0 kT] roeX weDRT

In the same manner as the Post operator, we will use the notation Tube?(X)
when it is relevant. An illustration of these definitions is shown in Figure 3.2, the
Post and Tube operators are computed numerically on a case-study described in

Chapter 4. It is applied to the synthesis of an (Ry, Ry, S)-reachability controller.
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Figure 3.2: Functions Post,(X) and Tube (X) for the initial box X

— R1
R2
B

Tube,(X)

Post,(X)

[—0.69, —0.64] x [1,1.06], with a pattern 7 = (1, 3,0).

3.3 (General principle

We introduce a first basic procedure permitting to perform (R, S)-stability, and
omit the perturbation in a first time. Given a set R, let {W;},c; be a family of sets
such that R < J,.;, W; < S as illustrated in Figure 3.3 (a).
each W, for i € I, a pattern m; such that Post,,(W;) € R, then we can induce an

infinite-time switching rule permitting to return infinitely often in R (such a pattern

is illustrated for W) in Figure 3.3 (b)).

S W,

W,

R

Figure 3.3: (a): A family of sets {W;};—1, 4 covering R; (b): a pattern m such that

Post,, (W;) € R.

Theorem 1. Let R € R", suppose we are given a switched system satisfying (3.1).

W,

Post, (W)

(b)

A family of sets {W}ier associated to patterns {m;}ic; such that
— Rc Uie[ W;< S
— for allie I, Post,,(W;) € R

induces an infinite-time control ensuring recurrence in R.

Proof. Let zp € R, there exists iy € I such that zo € W, since R < UieIVVi'

Application of pattern m;, leads to a state z

= ¢(7;0, 20, 7;,) also belonging to

If one can find, for




R since Postmo(Wi ) € R. State x; thus belongs to W;, for some i; € I, and by
recurrence, one can obtain a sequence of points g, x1,... all belonging to R. The

induced trajectory thus returns infinitely often in R. [

A simple extension of this procedure, relying on the computation of reachability

tubes, allows to ensure safety in S € R" as follows.

Theorem 2. Let R < R", S < R", suppose we are given a switched system satisfying
(3.1). A family of sets {W;}icr associated to patterns {m;}icr such that

— RelUWics

— for allie I, Post,,(W;) € R

— for allie I, Tube,,(W;) < S

induces an infinite-time control ensuring recurrence in R and safety in S.

Proof. The recurrence in R is proved with the same arguments as the proof of
Theorem 1. The safety in S is ensured by the definition of T'ube,, (W;), with permits
to ensure that for all xg € R, i € I, t € k;7, where k; is the length of pattern m;, we
have ¢(t;0,zo,m;) € S. a

Having defined the principle of the procedure, we now present how controllers
can be numerically computed using Theorem 1 and 2. At this point, two main
problems arise. The first is the construction of a family {W;},c; covering R, the
second is ensuring that for all ¢ € I, Post.,(W;) < R and Tube,,(W;) < S. The first
problem can be solved using heuristics, but depends of the type of sets one uses,
the second is actually impossible to ensure exactly, in the sense that solutions of
ODEs are not known in general (particularly when the initial condition is a set).
Supposing that one can compute reachability sets and tubes, the procedure works as
follows in practice. First, we generate a coarse covering of R (starting for example
by considering the whole set R), we then try to compute patterns associated to each
set of the covering. If this last step fails, we generate another finer tiling, performing
for example a bisection of each dimension of R, and one now has to control each
bisected part of R. This is a simple heuristics, but which works well in practice
(as seen in the following Chapters). In the following, we use a uniform covering
of R with boxes and balls of R". If each box or ball is controlled, the problem is
solved, otherwise, we use a finer covering. We address the problem of computing
reachability sets and tubes in the following chapters. We now present in details the
possible heuristics and associated algorithms for control synthesis, supposing that

one can compute the Post and Tube operators.

3.3.1 The state-space bisection algorithm

We describe the algorithm solving the control synthesis problem for nonlinear

switched systems (see Problem 3, Section 3.2). Given the input boxes R, S, B, and
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given two positive integers K and D, the algorithm provides, when it succeeds, a
decomposition A of R of the form {V, m;},c;, with the properties:

— Uit Vi= R,

— Viel, Post, (Vi) € R,

— Viel, Tube,, (Vi) €S,

— Viel, Tube,,(V;)(\B=J.

The sub-boxes {V;},c; are obtained by repeated bisection. At first, function
Decomposition calls sub-function Find_Pattern which looks for a pattern 7 of
length at most K such that Post.(R) € R, Tube,(R) < S and Tube,(R)(\B = &.
If such a pattern 7 is found, then a uniform control over R is found (see Fig-
ure 3.4(a)). Otherwise, R is divided into two sub-boxes Vj, V5, by bisecting R
w.r.t. its longest dimension. Patterns are then searched to control these sub-
boxes (see Figure 3.4(b)). If for each V;, function Find_Pattern manages to get
a pattern m; of length at most K verifying Post,,(V;) € R, Tube,,(V;) < S and
Tuber, (V;) (1B = &, then it is a success and algorithm stops. If, for some Vj, no
such pattern is found, the procedure is recursively applied to V;. It ends with suc-
cess when every sub-box of R has a pattern verifying the latter conditions, or fails
when the maximal degree of decomposition D is reached. The algorithmic form of
functions Decomposition and Find_Pattern, adapted form [68], are given in Algo-
rithm 1 and Algorithm 2 respectively. Note that a special form of Algorithm 2 for
linear ODEs can be found in [67].

T T,

Z

Post (V)

Post (R)

(a) (b) ViV,

Figure 3.4: Principle of the bisection method.

Our control synthesis method being well defined, we introduce the main result

of this section (initially formalized in [67]), stated as follows:

Proposition 1. Algorithm 1 with input (R, R, S, B, D, K) returns, when it success-

fully terminates, a decomposition {V;, m;}icr of R which solves Problem 3.

Proof. Let o = z(ty = 0) be an initial condition belonging to R. If the decompo-

sition has terminated successfully, we have | J,_; V; = R, and x, thus belongs to V;,

el

32



Algorithm 1 Algorithmic form of Function Decomposition.
Function: Decomposition(W, R, S, B, D, K)

Input: A box W, abox R, abox S, a box B, a degree D of bisection, a length
K of input pattern
Output:({(V;, m;)}i, True)y or {_, False)

(7, b) := Find_Pattern(W, R, S, B, K)
if b = True then
return ({(W, Pat)}, True)

else
if D =0 then
return (_, False)
else
Divide equally W into (Wi, Ws)
fori=1,2do
(A, b;) :== Decomposition(W;, R, S,B,D — 1, K)
end for
return (Ui=1,2 A, /\¢=1,2 bi)
end if
end if

for some 7y € I. We can thus apply the pattern m;, associated to V;,. Let us denote
by ko the length of m;,. We have:

— On,, (koT;0,70,d) € R

— Vte [0,kot], ¢, (t;0,20,d) € S

— Vte [0,kot], &, (t;0,20,d) ¢ B
Let 21 = ¢, (ko7;0,x0,d) € R be the state reached after application of m;, and let
t1 = koT. State x; belongs to R, it thus belongs to V;, for some i; € I, and we can
apply the associated pattern m;, of length k;, leading to:

— Omy, (t1 + k173 ty,21,d) € R

— Yt e [t ty + k7], P, (t;ty,21,d) € S

— Vte [ttt + ki), én (Gt,71,d) ¢ B

We can then iterate this procedure from the new state
Ty = gbﬂ—il (tl + le;tl,[Ehd) € R.

This can be repeated infinitely, yielding a sequence of points belonging to R xg, x1,
Zg,... attained at times ¢y, ?1,?9,. .., when the patterns m;,, m;,, m,,... are applied.

We furthermore have that all the trajectories stay in S and never cross B:
Vit e R+, dk = O, te [tk, tk+1]
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and
Vt € [t tir1]s Omy, (Litk, 2 d) €S, b, (L ty, 2k, d) ¢ B.

The trajectories thus return infinitely often in R, while always staying in S and

never crossing B. O]

Remark 1. Note that it is possible to perform reachability from a set Ry to another
set Ry by computing Decomposition(Ry, R, S, B, D, K). The set Ry is thus decom-
posed with the objective to send its sub-boxes into Ry, i.e., for a sub-box V of Ry,
patterns m are searched with the objective Post, (V) € Ry (see Example 4.2.2).

Algorithm 2 Algorithmic form of Function Find_Pattern.
Function: Find_Pattern(W,R, S, B, K)

Input:A box W, a box R, a box S, a box B, a length K of input pattern
Output:(m, Truey or {_, False)

fori=1...K do
IT := set of input patterns of length ¢
while II is non empty do
Select 7 in IT
IT:=II\{7}
if Post,(W) < R and Tube,(W) < S and Tube,(W)(\B =& then
return {(m,True)
end if
end while
end for

return {_, False)

In Algorithms 1 and 2, we use a bisection of uncontrolled tiles into two parts
(by bisecting the greatest dimension). But another possible heuristics is to di-
vide uncontrolled parts into 2" parts, by bisecting each dimension (i.e. replacing
“Divide equally W into (W3, W3)” by “Divide equally W into (W7,...,Wan)” in
Algorithm 1). This leads to a faster growing of the number of tiles to be controlled,
but can sometimes lead to lower computation times, when the system requires a fine

tiling. The two possible heuristics are schemed in Figure 3.5.

3.3.2 A covering of balls

So far, we used boxes of R™ to represent sets of states. Balls of R™ are actually
another useful way of representing it, since we provide an efficient way of perform-

ing reachability analysis with such sets (see Chapter 4). A covering of R can be
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Figure 3.5: Scheme of the two possible heuristics: green tiles have been controlled
(associated to a pattern), and red tiles have yet to be controlled and bisected. Left:
bisection of all the dimensions; right: bisection of the largest dimension

performed as schemed in Figure 3.6. Let 0 be a radius, each set W; = B(Z;,J)
has to be controlled, otherwise, a finer covering (using more balls) should be used.
Actually, the same heuristics as boxes could be used, since these balls can be built

as circumscribed balls of the boxes.

35



.......................

X X X,
4 & 5o
(N T A, gt
\\ ,'\\ [
_________________________
X7 s X9

Figure 3.6: Scheme of a covering of R = R? with balls.

3.4 Improving the research of patterns

We propose in this section an improvement of the function Find_Pattern given
in [67], which is a naive testing of all the patterns of growing length (up to K).

The improved function, denoted here by Find_Pattern2, exploits heuristics to
prune the search tree of patterns. We present it with boxes of R"™, but can also be
used with balls. The algorithmic form of Find_Pattern2 is given in Algorithm 3. It
relies on a new data structure consisting of a list of triplets containing;:

— An initial box V < R",

— A current box Post.(V'), image of V' by the pattern ,

— The associated pattern .

For any element e of a list of this type, we denote by e.Y,;; the initial box, e.Yeurent
the current box, and by e.Il the associated pattern. We denote by ecurrent =
takeHead(L) the element on top of a list £ (this element is removed from list
L). The function putT'ail(-, L) adds an element at the end of the list L.

Let us suppose one wants to control a box X < R. The list £ of Algorithm 3 is
used to store the intermediate computations leading to possible solutions (patterns
sending X in R while never crossing B or R™\S). It is initialized as £ = {(X, X, &)}.
First, a testing of all the control modes is performed (a set simulation starting from
X during time 7 is computed for all the modes in U). The first level of branches is
thus tested exhaustively. If a branch leads to crossing B or R™\S, the branch is cut.
Indeed, no following branch can be accepted if a previous one crosses B. Otherwise,
either a solution is found or an intermediate state is added to £. The next level
of branches (patterns of length 2) is then explored from branches that are not cut.
And so on iteratively. At the end, either the tree is explored up to level K (avoiding

the cut branches), or all the branches have been cut at lower levels. List £ is thus
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of the form {(X, Post.,(X), ;) }icr,, where for each i € Iy we have Post,, (X) € S
and Tube,,(X)(\B = &. Here, Iy is the set of indices associated to the stored
intermediate solutions, |Ix| is thus the number of stored intermediate solutions for
the initial box X. The number of stored intermediate solutions grows as the search
tree of patterns is explored, then decreases as solutions are validated, branches are
cut, or the maximal level K is reached.

The storage of the intermediate solutions Post,. (X) allows to reuse the com-
putations already performed. Even if the search tree of patterns is visited exhaus-
tively, it already allows to obtain much better computation times than with Function
Find_Pattern.

A second list, denoted by Sol in Algorithm 3, is used to store the validated
patterns associated to X, i.e., a list of patterns of the form {r; }J'GIS(’ where for each
j € Iy we have Post, (X) € R, Tube,(X)(B = & and Tube,,(X) < S. Here,
I’ is the set of indices associated the the stored validated solutions, || is thus the
number of stored validated solutions for the initial box X. The number of stored
validated solutions can only increase, and we hope that at least one solution is found,
otherwise, the initial box X is split in two sub-boxes.

Remark that several solutions can be returned by Find_Pattern2, so further
optimizations could be performed, such as returning the pattern minimizing a given
cost function. In practice, and in the examples given below, we return the first
validated pattern and stop the computation as soon as it is obtained (see commented
line in Algorithm 3). Compared to [67], this new function highly improves the
computation times, even though the complexity of the two functions is theoretically
the same, at most in O(N*). A comparison between functions Find_Pattern and

Find_Pattern2 is given in Section 4.2.3.

3.5 Computational cost

The computational cost of the synthesis method depends on the heuristics, but
in every case, if M is the number of sets used to cover R, N is the number of
switched modes, and k is the maximal length of explored control patterns, then the
computational complexity is in O(M N¥) (see [68]). Note that in practice, M grows
exponentially with the dimension n of the system. Indeed, using the adaptive box
bisection heuristics, if D is the maximal depth of bisection, using the bisection of
each dimension, we have a complexity in O(2"P)N*. Using a uniform tiling, by
dividing each dimension in p, we get a complexity in O(p"N*). We thus see that
the computation cost is exponential with the dimension, but also with the length
of the patterns and number of modes, and this has to be multiplied by the cost of
reachability computations. We thus see two aspects have to be dealt with to improve
the efficiency of the method: the dimension, and the reachability computations. We

will thus present in Chapter 4 methods to perform reachability analysis in the most
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accurate and fast possible ways (note that there is a tradeoff to make between
accuracy and speed). In the following chapters, we propose methods to extend the
approach to systems of greater dimensions, by using
— compositional approaches: dividing a system into several sub-systems of lower
dimension (see Chapter 5)
— model order reduction: approximating a high dimensional system with a
lower dimensional one (see Chapter 6 and 7)
Of course, these two last approaches introduce new issues: accuracy of the models,

efficiency of the induced control laws for the original system...

3.6 Final remarks

We have now introduced the class of systems considered in this thesis and the
main ideas of the control synthesis method for switched systems represented by
ODEs. In order to complete the method, what remains to be studied first is the
computation of the Post and Tube operators, this is tackled in Chapter 4. However,
as mentioned above, the computational complexity is still a very limiting factor for
the application to systems of greater dimensions, and we thus propose distributed
versions of the algorithms presented here in Chapter 5, and reduced order approaches
in Chapters 6 and 7.
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Algorithm 3 Algorithmic form of Function Find_Pattern2.

Function: Find_Pattern2(W,R,S, B, K)

Input:A box W, a box R, a box S, a box B, a length K of input pattern
Output:(m, Truey or {_, False)

Sol = (2}
L={W,W,.2)}
while £ # ¢ do
Ccurrens = takeHead (L)
for 1 € U do
if Post;(ecurrent-Yeurrent) S R and Tube;(ecurrent-Yeurrent) [ 1B = & and
Tube;(€ecurrent- Yeurrent) S S then
putTail(Sol, ecyrrens. 11 + ) /* or also “return (ecyprent- 11 + 7, True)” */
else
if Tube;(ecurrent-Yeurrent) (| B # & or Tube;(€current-Yeurrens) € S then
discard €cyrrent
end if
else
if Tube;(ecurrent-Yeurrent) (1 B = & and Tube;(ecurrent- Yeurrens) S S then

if Length(Il) + 1 < K then
putTail(L, (ecurrent- Yinit, P0sti(€current-Yeurrent )s €current-I1 + 7))
end if
end if
end if
end for
end while
return (_, False)y if no solution is found, or {(m, True), m being any pattern

validated in Solution.
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Chapter 4

Reachable set computation
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In this chapter, we present practical ways to compute the Post and Tube op-
erators when sets are represented with boxes or balls. We first give some results
for linear systems. We then present approaches relying on Runge-Kutta schemes,
allowing to compute accurately images of box sets for nonlinear ODEs. We then
introduce some hypotheses to use a simple FEuler scheme, associated to a new error
bound, permitting to compute the Post and Tube operators for balls in a very fast
way, even though the accuracy can fall down in some cases. We present the approach
for linear systems in Section 4.1, we then introduce the Runge-Kutta approach in

Section 4.2, and we finally present the Euler scheme for balls in Section 4.3.

4.1 Zonotopes and linear systems

Let us first introduce zonotopes, a type of symmetrical polytopes, allowing to
represent efficiently boxes of R™, and thus very useful for performing tilings of the
state-space. Furthermore, there exist multiple ways to compute images of zonotopes

by linear or nonlinear transformations.

Definition 3. A zonotope is a set:

p

Z={zeR":x= c+26(i)g(i), -1<89 <1}
i=1
with ¢, ¢,... ,¢g» e R".
The vectors gV ,...,g® are referred to as the generators and ¢ as the center of a

zonotope. A zonotope is thus a symmetric polytope in dimension n. It is convenient
to represent the set of generators as an n x p matrix G, of columns g(l),. .. ,g(p).
The notation is Z =< ¢, G >. Note that if G is an n x n diagonal matrix, then the
zonotope Z is a box of R™.

Given a zonotope < ¢,G >, the transformation of Z via an affine function
xr — (Cx + d is a zonotope of the form < Cc + d,CG >. More information and
properties on zonotopes can be found in [10,73,105]. Besides, being given a linear
switched system satisfying

il'i':AjLE‘f—bj,

and an initial condition zy € R™ at time ¢t = 0, if mode j € U is applied on [0, 7],

then the solution at time ¢ = 7 is given by

o(t;0,20,7) = M7 xy + J eAj(t’S)bjds. (4.1)
0

In the case where A; is invertible, we furthermore have
O(t;0,20,5) = €7 + (€M7 — L) A;'b;
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where [, is the identity matrix of size n. In both cases we have an affine transfor-
mation. One can thus compute exactly the image of a set using zonotopes. Take an
initial set given at time ¢t = 0 as a zonotope Z =< ¢, G >, its image (successor set) at
time ¢t = 7 is (for A, invertible) Z’ = Post;(Z) =< eAJ'Tc—k(eAJ'T—]n)Aj_lbj, TG >,
This formula can be iterated to obtain the successor set at time ¢t = k7 of Z via a
pattern ™ = (j1,...,Jx) for k € Nog: Post.(Z) = Post;, (Post;, (... Post;(Z))).
While computing the Tube operator is still a difficult task for linear systems,
computing the Post operator in this way, associated to Algorithm 1 and 3 (without
the safety property relying on the Tube), we can compute controllers permitting
to return infinitely often in a set R thanks to Theorem 1. This approach can
also be used to ensure discrete-time properties, i.e., which are not ensured between
switchings but at discrete times 7, 27... This approach is efficient and useful in

practice, all the more so as the Post operator is computed exactly.

4.2 Validated simulation and state-space bisec-

tion

4.2.1 Validated simulation

In this subsection, we describe our approach for validated simulation based on
Runge-Kutta methods [6,35]. The goal is obviously to obtain a solution of the
differential equations describing the modes of the nonlinear switched systems. Before
presenting the method, we introduce some definitions.

In the following, we will often use the notation [z] € IR (the set of intervals with
real bounds) where

[2] = [z, 7] ={reR |z <z <7}

denotes an interval. By an abuse of notation [z] will also denote a vector of intervals,
i.e., a Cartesian product of intervals, also known as a boz. In the following, the sets
R, S and B are given under the form of boxes. With interval values, it comes an
associated interval arithmetic.

Interval arithmetic extends to IR elementary functions over R. For instance, the
interval sum, i.e., [21] + [22] = [21 + 22,71 + 73], encloses the image of the sum
function over its arguments. The enclosing property basically defines what is called

an interval extension or an inclusion function.

Definition 4 (Inclusion function). Consider a function f : R" — R™, then [f]:

IR™ — IR™ is said to be an extension of f to intervals if

V[e] € IR",  [f]([z]) 2 {f(z),2 € [=]} .

It is possible to define inclusion functions for all elementary functions such as x,

—, sin, cos, exp, and so on. The natural inclusion function is the simplest to obtain:
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all occurrences of the real variables are replaced by their interval counterpart and all
arithmetic operations are evaluated using interval arithmetic. More sophisticated
inclusion functions such as the centered form, or the Taylor inclusion function may
also be used (see [93] for more details).

We now introduce the Initial Value Problem, which is one of main ingredients of

our approach.

Definition 5 (Initial Value Problem (IVP)). Consider an ODE with a given initial

condition

#(t) = f(t,x(t),d(t)) with 2(0) € Xo, d(t) € [d], (4.2)

with f : RT x R® x R™ — R" assumed to be continuous in t and d and globally
Lipschitz in x. We assume that parameters d are bounded (used to represent a per-
turbation, a modeling error, an uncertainty on measurement, ... ). An IVP consists
in finding a set-valued function X (t) which contains any trajectory of the ODE (4.2),
for any d(t) lying in [d] and for any initial condition in Xj.

A numerical integration method computes a sequence of values (t,,x,) ap-
proximating the solution z(¢;zg) of the IVP defined in Equation (4.2) such that
Zp ~ (tp;xn—1). The simplest method is Euler’s method in which t,,1 = ¢, + h
for some step-size h and x, 1 = z,, + h X f(ty, Tn,d); so the derivative of z at time
tn, f(tn,xn,d), is used as an approximation of the derivative on the whole time
interval to perform a linear interpolation. This method is very simple and fast, but
requires small step-sizes. More advanced methods, coming from the Runge-Kutta
family, use a few intermediate computations to improve the approximation of the
derivative. The general form of an explicit s-stage Runge-Kutta formula, that is

using s evaluations of f, is

Tpt1 = Tp + hibiki )

i=1

kl = f(tna Ty d) ) (43)
i—1
ki:f<tn+cih7$n+hj;aijk‘j,d>,i=2,3,...,8.

The coefficients ¢;, a;; and b; fully characterize the method. To make Runge-
Kutta validated, the challenging question is how to compute guaranteed bounds
of the distance between the true solution and the numerical solution, defined by
x(tn; Tpn_1) — x,. This distance is associated to the local truncation error (LTE) of
the numerical method.

To bound the LTE, we rely on order condition [84] respected by all Runge-Kutta
methods. This condition states that a method of this family is of order p iff the p+1

first coefficients of the Taylor expansion of the solution and the Taylor expansion
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Figure 4.1: Functions Post,(X) and Tube,(X) for the initial box X =
[—0.69, —0.64] x [1,1.06], with a pattern 7 = (1, 3,0).

of the numerical methods are equal. In consequence, LTE is proportional to the

Lagrange remainders of Taylor expansions. Formally, LTE is defined by (see [35]):

x(trw xn—l) — Tp =
hp+1

(p+1)!

(79 €t ) - G2

s
5 E]tn, tn+1[ and n E]tm tn+1[ . (44)

The function f stands for the n-th derivative of function f w.r.t. time t that is
C(Z—,{ and h = t,,1 — t, is the step-size. The function ¢ : R — R" is defined by
o(t) = xp + h Y, biki(t) where k;(t) are defined as in Equation (4.3).

The challenge to make Runge-Kutta integration schemes safe w.r.t. the true
solution of IVP is then to compute a bound of the result of Equation (4.4). In
other words, we do have to bound the value of f® (¢, z(&;2,_1),d) and the value of
% (n) with numerical guarantee. The latter expression is straightforward to bound
because the function ¢ only depends on the value of the step-size h, and so does its
(p + 1)-th derivative. The bound is then obtained using the affine arithmetic [7,54].

However, the expression f®) (¢, 2(¢; x,_1),d) is not so easy to bound as it requires
to evaluate f for a particular value of the IVP solution z(§;z,_1) at an unknown
time £ €]t,,, t,+1[. The solution used is the same as the one found in [36,144] and it
requires to bound the solution of IVP on the interval [t,, t,,+1]. This bound is usually
computed using the Banach’s fixpoint theorem applied with the Picard-Lindelof
operator, see [144]. This operator is used to compute an enclosure of the solution
[Z] of IVP over a time interval [, t,+1], that is for all t € [t,, t,1], 2(t; 20-1) € [Z].
We can hence bound f® substituting x(£; 2,,_1) by [#]. This general approach used
to solve IVPs in a validated way is called Lohner two step approach [127].

For a given pattern of switched modes m = (iy, ..., i) € U* of length k, we are

able to compute, for j € {1, .., k}, the enclosures:

— [z;] 2 2(j7);
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— [&;] 2 x(t), for te [(j — 1)T,j7].
with respect to the system of IVPs:

(i) = Lot a(t),d(t)),
z(tg = 0) € [z0],d(t) € [d],

O'(t) = il,Vt € [07t1],t1 =T

l‘(t) = fa(t)(t7$< ),d(t)),
T(tp-1) € [wp-1],d(t) € [d,
L U(t) Zk,Vt € [tk 1,tk],tk

Thereby, the enclosure Post,([zo]) is included in [zx] and Tube, ([zo]) is included in
U,—1..x[%;]. This applies for all initial states in [xo] and all disturbances d(t) € [d].
A view of enclosures computed by the validated simulation for one solution obtained

for Example 4.2.2 is shown in Figure 4.1.

Control synthesis

If we now associate computation of the Post and Tube operators to Algorithm 1
and 3, and using Theorem 2, we can now perform control synthesis ensuring (R, S)-
stability, as well as (Ry, Ra, S)-reachability and (R, B, S)-avoidance.

4.2.2 Experimentations

In this subsection, we apply our approach to different case studies taken from the
literature. In every case study, a second order Runge-Kutta method is applied. Our
solver prototype is written in C++ and based on DynIBEX [5]. The computations
times given in the following have been performed on a 2.80 GHz Intel Core i7-
4810MQ CPU with 8 GB of memory. Note that our algorithm is mono-threaded
so all the experimentation only uses one core to perform the computations. The
results given in this subsection have been obtained with Function Find_Pattern2 of
Chapter 3.

A linear example: boost DC-DC converter

This linear example is taken from [27] and has already been treated with the
state-space bisection method in a linear framework in [67]. This running example is
used to verify that our approach is still valid for linear case, and also to show the
strong improvement in term of computation time.

The system is a boost DC-DC converter with one switching cell. There are two
switching modes depending on the position of the switching cell. The dynamics is
given by the equation #(t) = A,ux(t) + Bow with o(t) € U = {1,2}. The two

modes are given by the matrices:
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Figure 4.2: Simulation from the initial condition (1.55,1.4). The box R is in plain
black. The trajectory is plotted within time for the two state variables on the left,

and in the state-space plane on the right.
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with z. = 70, x; = 3, r. = 0.005, r; = 0.05, 7o = 1, vy = 1. The sampling period
is 7 = 0.5. The parameters are exact and there is no perturbation. We want the
state to return infinitely often to the region R, set here to [1.55,2.15] x [1.0,1.4],
while never going out of the safety set S = [1.54,2.16] x [0.99,1.41]. The goal of
this example is then to synthesize a controller with intrinsic stability. The dynamics
of the system is recalled in Appendix A.1.

The decomposition was obtained in less than one second with a maximum length
of pattern set to K = 6 and a maximum bisection depth of D = 3. A simulation is

given in Figure 4.2.

A polynomial example

We consider the polynomial system taken from [126], presented as a difficult
example:
[l'l] _ [—.1'2 — 15£C1 — 051’? + up + dl (45)

X1+ U + dg

The control inputs are given by u = (u1,u2) = Ky (21,22), 0(t) € U = {1,2,3,4},
which correspond to four different state feedback controllers Ky(z) = (0, —x3 + 2),
Ky(z) = (0, —x9), K3(x) = (2,10), Ky(x) = (—1.5,10). We thus have four switching
modes. The disturbance d = (d;, ds) lies in [—0.005,0.005] x [—0.005,0.005]. The
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Figure 4.3: Simulation from the initial condition (0.5,—0.75). The trajectory is
plotted within time on the left, and in the state space plane on the right. In the

sate space plane, the set R, is in plain green, Rs in plain blue, and B in plain black.

dynamics of the system is recalled in Appendix A.3. The objective is to visit in-
finitely often two zones Ry and R, without going out of a safety zone S, and while

never crossing a forbidden zone B. Two decompositions are performed:

— a decomposition of Ry which returns {(V;, m;)}ier, with:
- Uie[l Vi= I,
— Viel, Post,,(V;) € Rs,
— Vie L, Tube, (Vi) < S,
— Viel,, Tube,,(V)(\B = @.
— a decomposition of Ry which returns {(V;, m;)}icr, with:
* Uz’elg Vi= Ry,
— VYie Iy, Post,,(V;) € Ry,
— Yie I, Tube,,(V;) < S,
— Vie I, Tube,(V)(\B = @.

The input boxes are the following:

— Ry =[-0.5,0.5] x [—0.75,0.0],
— Ry =[-1.0,0.65] x [0.75,1.75],
— 8 =[-2.0,2.0] x [~1.5,3.0],
— B =1[0.1,1.0] x [0.15,0.5].

The sampling period is set to 7 = 0.15. The decompositions were obtained in 2
minutes and 30 seconds with a maximum length of pattern set to K = 12 and a
maximum bisection depth of D = 5. A simulation is given in Figure 4.3 in which
the disturbance d is chosen randomly in [—0.005,0.005] x [—0.005,0.005] at every
time step. We see that the trajectories do visit alternately R; and R, while staying
in S and avoiding B.
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Figure 4.4: Perturbation (presence of humans) imposed within time in the different

rooms.

Four-room apartment

We consider a building ventilation application adapted from [134]. The system
is a four room apartment subject to heat transfer between the rooms, with the
external environment, with the underfloor, and with human beings. The dynamics

of the system is given by the following equation:

dT; A v
; Vim Vi ) (T, —T).
V-V,

)

JENT\{i}

The state of the system is given by the temperatures in the rooms T;, for i €
N ={1,...,4}. Room i is subject to heat exchange with different entities stated by
the indexes N = {1,2,3,4,u, 0, c}.

The heat transfer between the rooms is given by the coefficients a;; for i, j € N2,

and the different perturbations are the following:

— The convective heat transfer with the external environment: it has an effect
on room ¢ with the coefficient a;, and the outside temperature 7,, varying
between 27°C' and 30°C.

— The convective heat transfer through the ceiling: it has an effect on room ¢
with the coefficient a;. and the ceiling temperature 7T, varying between 27°C
and 30°C.

— The convective heat transfer with the underfloor: it is given by the coefficient
a;,, and the underfloor temperature T, set to 17°C' (T, is constant, regulated
by a PID controller).

— The perturbation induced by the presence of humans, modeled by a radiation
term: it is given in room ¢ by the term d,,b;(T; — T}'), the parameter J,, is
equal to 1 when someone is present in room %, 0 otherwise, and T, is a given

identified parameter.
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Figure 4.5: Simulation from the initial condition (22,22,22,22). The objective set
R is in plain black and the safety set S is in dotted black.

The control V;, i € N, is applied through the term ¢; max(0, “;::“;)(Tu —T;).

A voltage V; is applied to force ventilation from the underfloor to room i, and the

command of an underfloor fan is subject to a dry friction. Because we work in
a switched control framework, V; can take only discrete values, which removes the
problem of dealing with a “max” function in interval analysis. In the experiment, V;
and V} can take the values 0V or 3.5V, and V5, and V3 can take the values OV or 3V.
This leads to a system of the form of Equation (3.1) with o(t) €e U = {1,..., 16}, the
16 switching modes corresponding to the different possible combinations of voltages
V;. The sampling period is 7 = 30s. The dynamics of the system is recalled in
Appendix A 4.

The parameters T, V,', Vi, a;;, b;, ¢; are given in [134] and have been identified
with a proper identification procedure detailed in [137]. Note that here we have
neglected the term ;. da;;cij * h(Tj — T;) of [134], representing the perturbation
induced by the open or closed state of the doors between the rooms. Taking a
“max” function into account with interval analysis is actually still a difficult task.
However, this term could have been taken into account with a proper regularization
(smoothing).

The main difficulty of this example is the large number of modes in the switched
system, which induces a combinatorial issue.

The decomposition was obtained in 4 minutes with a maximum length of pattern
set to K = 2 and a maximum bisection depth of D = 4. The perturbation due to
human beings has been taken into account by setting the parameters d,, equal to
the whole interval [0, 1] for the decomposition, and the imposed perturbation for
the simulation is given Figure 4.4. The temperatures 7T, and 7, have been set to
the interval [27,30] for the decomposition, and are set to 30°C' for the simulation.
A simulation of the controller obtained with the state-space bisection procedure is

given in Figure 4.5, where the control objective is to stabilize the temperature in
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[20,22]* while never going out of [19, 23]*.

A path planning problem

This last case study is based on a model of a vehicle initially introduced in [19]
and successfully controlled in [154,175] with the tools PESSOA and SCOTS. In this
model, the motion of the front and rear pairs of wheels are approximated by a single

front wheel and a single rear wheel. The dynamics of the vehicle is given by:

. cos(a+0)

ro = o cos(a)

. sin(a+60

y = Yo co(s(ic_) : (46)

0 = %tan()

where a = arctan(atan(d)/b). The system is thus of dimension 3, (z,y) is the
position of the vehicle, while 6 is the orientation of the vehicle. The control inputs
are vg, an input velocity, and 9, the steering angle of the rear wheel. The parameters
are: a = 0.5, b = 1. Just as in [154,175], we suppose that the control inputs are
piecewise constant, which leads to a switched system of the form of Equation (3.1)
with no perturbation. The objective is to send the vehicle into an objective region
Ry =[9,9.5] %[0, 0.5]x]—00, +00[ from an initial region R; = [0, 0.5] x[0, 0.5] x[0, 0].
The safety set is S = [0,10] x [0,10]x] — oo, +o0[. There is in fact no particular
constraint on the orientation of the vehicle, but multiple obstacles are imposed for
the two first dimensions, they are represented in Figure 4.6. The input velocity
vy can take the values in {—0.5,0.5,1.0}. The rear wheel orientation § can take
the values in {0.9,0.6,0.5,0.3,0.0, —0.3, —0.5, 0.6, —0.9}. The sampling period is
7 = 0.3. The dynamics of the system is recalled in Appendix A.6.

Note that for this case study we used an automated pre-tiling of the state-
space permitting to decompose the reachability problem in a sequence of reachability
problems. Using patterns of length up to K = 10, we managed to successfully control
the system in 3619 seconds. In this case, the pattern is computed until almost the
end without bisection as shown in Figure 4.6. To obtain the last steps, the box is
bissected in four ones by Algorithm 1. After that, patterns are found for the four
boxes:

— [8.43,8.69]; [2.52,2.78] : {7000166}

— [8.43,8.69]; [2.78,3.03] : {7000256}

— [8.69,8.94]; [2.52,2.78] : {00055}

— [8.69,8.94]; [2.78, 3.03] : {000265}

The four set simulations obtained for the last steps are given in Figure 4.7.

)

4.2.3 Performance tests

We present a comparison of functions Find_Pattern, Find_Pattern2 w.r.t. the
computation times obtained, and with the state-of-the-art tools PESSOA [132] and
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Figure 4.6: Set simulation of the path planning example. The green box is the initial
region Ry, the blue box is the target region Ry. The union of the red boxes is the

reachability tube. In this case, the target region is not attained without bisection.

Table 4.1: Comparison of Find_Pattern and Find_Pattern?2.

Example Computation time
Find_Pattern | Find_Pattern2
DC-DC Converter 1609 s <l1s
Polynomial example Time Out 150 s
Building ventilation 272's 228 s
Path planning Time Out 3619 s

SCOTS [159].

Table 4.1 shows a comparison of functions Find_Pattern and Find_Pattern2,
which shows that the new version highly improves computation time (Time Outs
refer to computation times exceeding 10 hours). We can note that the new version
is all the more efficient as the length of the patterns increases, and as obstacles cut
the research tree of patterns. This is why we observe significant improvements on
the examples of the DC-DC converter and the polynomial example, and not on the
building ventilation example, which only requires patterns of length 2, and presents
no obstacle.

Table 4.2 shows of comparison of function Find_Pattern2 with state-of-the-art
tools SCOTS and PESSOA. On the example of the DC-DC converter, our algorithm
manages to control the whole state-space R = [1.55,2.15] x [1.0,1.4] in less than
one second, while SCOTS and PESSOA only control a part of R, and with greater
computation times. Note that these computation times vary with the number of
discretization points used in both, but even with a very fine discretization, we never

managed to control the whole box R. For the polynomial example, we manage to
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Figure 4.7: Set simulation of the path planning example after bisection. The green
boxes are the initial regions obtained by bisection, the blue box is the target region

Rs. The union of the red boxes is the reachability tube.

Table 4.2: Comparison with state-of-the-art tools.

Example Computation time
FP2 | SCOTS | PESSOA
DC-DC Converter | <1 43 s 760 s
Polynomial example | 150 s 131 s —
Path planning 3619 s 492 s 516 s

control the whole boxes R; and R», such as SCOTS and in a comparable amount of
time. However, PESSOA does not support natively this kind of nonlinear systems.
For path planning case study, on which PESSOA and SCOTS perform well, we have
not obtained as good computations times as [132,159]. This comes from the fact that
this example requires a high number of switched modes, long patterns, as well as a
high number of boxes to tile the state-space. This is in fact the most difficult case
of application of our method. This reveals that our method is more adapted when
either the number of switched modes of the length of patterns is not high (though it
can be handled at the cost of high computation times). Another advantage is that
we do not require a homogeneous discretization of the state space. We can thus
tile large parts of the state-space using only few boxes, and this often permits to
consider much less symbolic states than with discretization methods, especially in

higher dimensions.
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4.2.4 Final remarks

We presented a method of control synthesis for nonlinear switched systems, based
on a simple state-space bisection algorithm, and on validated simulation. The ap-
proach permits to deal with stability, reachability, safety and forbidden region con-
straints. Varying parameters and perturbations can be easily taken into account
with interval analysis. The approach has been numerically validated on several ex-
amples taken from the literature, a linear one with constant parameters, and two
nonlinear ones with varying perturbations. Our approach compares well with the
state-of-the art tools SCOTS and PESSOA.

We would like to point out that the exponential complexity of the algorithms
presented here, which is inherent to guaranteed methods, is not prohibitive. Two
approaches have indeed been developed to overcome this exponential complexity. A
first approach is the use of compositionality, presented in Chapter 5, which permits
to split the system in two (or more) sub-systems, and to perform control synthesis on
these sub-systems of lower dimensions. This approach has been successfully applied
in [120] to a system of dimension 11, and we are currently working on applying
this approach to the more general context of contract-based design [161]. A second
approach, developed in Chapters 6 and 7, is the use of Model Order Reduction, which
allows to approximate the full-order system (3.1) with a reduced-order system, of

lower dimension, on which it is possible to perform control synthesis.

4.3 Sampled switched systems with one-sided Lip-

schitz conditions

4.3.1 Lipschitz and one-sided Lipschitz condition

Let us consider a nonlinear switched system of the form (3.1). We make the

following hypothesis:
(HO) For all jeU, f;is a locally Lipschitz continuous map.

We recall the definition of locally Lipschitz:

Definition 6. A function f: A < R® — R™ is locally Lipschitz at xo € A if there
exist constants n > 0 and M > 0 such that

|z =@l < — [[f(2) = flxo)| < M|z — o]

As in [78], we make the assumption that the vector field f; is such that the
solutions of the differential equation (3.1) are defined, e.g. by assuming that the

support of the vector field f; is compact.
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We denote by T' a compact overapproximation of the image by ¢; of S for 0 <
t<71andjeU,ie. T issuch that

T2{¢;(t;2°) | jeU0<t<72°€S}

The existence of T is guaranteed by assumption (H0). We know furthermore by
(HO), Definition 6 and the compactness of the support of f; that, for all j € U, there

exists a constant L; > 0 such that:
1£i(y) = fi@)| < Ljlly — =] Va,yeS. (4.7)
Let us define C; for all j € U:
C; = sgg L;|fi(x)] forall jeUl. (4.8)

We make the additional hypothesis that the mappings f; are one-sided Lipschitz
(OSL) [57].
Formally:

(H1) For all j e U, there exists a constant A; € R such that

i) = filz),y —2) < Njlly — x> Va,yeT, (4.9)

where (-,-) denotes the scalar product of two vectors of R". Constant \; € R is
called one-sided Lipschitz (OSL) constant, and can also be found in the literature
as Dahlquist’s constant [168]. Note that in practice, hypotheses HO and H1 are
not strong. Hypothesis HO just ensures the existence of solutions for the system,
and constants L; and A; can always be found if the state of the system stays in a

compact set (e.g. the set T').

Computation of constants \;, L; and C; The computation of constants L;,
Cj, Aj (j € U) are realized with a constrained optimization algorithm. They are
performed using the “sqp” function of Octave, applied on the following optimization
problems:

— Constant L;:

Lo e W)= @)
T P
— Constant Cj:
C; = max L | ()]

— Constant \;:
N=  max (ily) = fi(x),y —x)

z,yel, x#y Hy - :L‘||2
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We could point out that the computation of the constants is not guaranteed, in the
sense that the results given by optimization algorithms do not provide a guarantee
that an underapproximation of the constants is computed. However, some works
have been done for computing over and under approximation of Lipschitz constants
in [148], and could be used here. This approach can be extended to the OSL constant.

In the following, we consider that we can compute these constants exactly.

Origin of the OSL property This notion has been used for the first time by [58]
in order to treat “stiff” systems of differential equations for which the explicit Euler
method is numerically “unstable” (unless the step size is taken to be extremely
small). Unlike Lipschitz constants, OSL constants can be negative. In the case
where an OSL constant ); is negative, it is said that the vector field f; is strongly
monotone [166], which expresses a form of contractivity of the system dynamics: a
strongly monotone system presents trajectories getting exponentially closer together
within time. Even if the OSL constant is positive, it is in practice much lower than
the Lipschitz constant [52]. The use of OSL thus allows us to obtain a much more
precise upper bound for the global error. We believe that this notion is also closely
related to the notion of incremental stability [13,77]. We think that it could be
shown that any system presenting a negative OSL constant is incrementally stable,
since it is already the case for linear systems. Indeed, a system presenting a negative

2

OSL constant actually admits | - [|* as a stable Lyapunov function [13]. However,

this OSL Lipschitz property has never been used in the context of switched systems

and symbolic control.

4.3.2 A note on the OSL constant for linear systems

We show here a result giving an exact expression for the OSL constant for linear

vector fields.

Proposition 2. Let X < R™ be a (non trivial) compact set. Let A e M, (R), be R"

and f(x) = Ax +b. The OSL constant of f is equal to the greatest eigenvalue of

A+AT
=

Proof. First
NeRst (fly) = flz)y—2) <Ay -z Va,yeX,
is equivalent to
NeRst. (Aly—z),y— 2y < Ay —z|* Vr,yeX,
and is equivalent to (the case x = y being trivial)
—r y—=x

MeRst AL
ly —z[" |y — =

‘><>\ Ve,ye X,z #y, (4.10)
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and it is thus equivalent to
JAeRst. (Az,2) < A Vze S(0,1), (4.11)

where S(0,1) is the sphere of center 0 and radius 1 in R"”, and because X is non

trivial.

Let us then remark that we have

A+ AT
2

(Az,z) ={

Indeed, if A = (a;;);; and z = (2;);:

n o n n o n
<AZ, Z> = Z Z Ziij25 = Z Z Ai52i 25

Z,2) (4.12)

i=1j=1 i=1j=1
A+ AT | R LA
< 5 Z, Z> = 5 <Z Z Qij2i25 + Z Z CljiZiZj>
i=1j=1 i=1j=1
The sums on the last term can be exchanged, it yields
< 5 Z, Z> = 5 <Z Z Q225 + Z Z CLjZ'ZiZj)
i=1j=1 j=li=1

= % (Z Z Aij2i%5 + Z Z aijzizj)

i=1j=1 i=1j=1
= <AZ> Z>

We thus have equivalence of (4.11) and

A+ AT
I eR st ¢ *‘2 52 <A VzeS(0,1), (4.13)
Now, A+TAT is a symmetric matrix, let us denote by Aj,... \? its (real) eigenval-

ues. Let us denote by A\’ . the minimum one, and by A®  the maximum one. We

min max

can apply the known result (using for example Rayleigh quotient’s properties [147]):

A+ AT
V€ S(0,1), Ny < (5252) < N
and equality is attained in both sides for z (normalized) eigenvector of A+2AT corre-
sponding to eigenvalues A; . and AJ . which proves the result.
m

Remark 2. Function ¢ : z —> (Az, z) is a quadratic form. There is thus a unique
symmetric matriz M such that ¢(z) = (Mz,z), this unique symmetric matriz is

A+ AT
=5
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4.3.3 Euler approximate solutions

Having defined OSL conditions, we now present an original method allowing to
compute reachability sets and tubes, relying on the Euler method. The introduction
of OSL conditions actually allows to establish a new global error bound, permitting
the computation of overapproximation of reachability sets and tubes, precise enough
to be used for control synthesis. In the remainder of this chapter, we consider,
without loss of generality, that ¢y = 0, and omit its notation in the trajectory ¢;.

Given an initial point 2° € S and a mode j € U, we define the following “linear

approximate solution” ¢;(t; #°) for t on [0, 7] by:

0;(t;3°) = 7° + tf;(2°). (4.14)

Note that formula (4.14) is nothing else but the explicit forward Euler scheme with

“time step” t. It is thus a consistent approximation of order 1 in ¢ of the exact
trajectory of (3.1) under the hypothesis 7° = 2°.

More generally, given an initial point 2° € S and pattern 7 of U*, we can define
a “(piecewise linear) approximate solution” ¢, (t;2°) of ¢, at time t € [0, k7] as
follows:

— Ge(t;3%) = tf;(i°) + 2 if r =je U, k=1and t € [0,7], and

— On(kT + 1,7°) = tf;(2) + 2 with 2 = ¢u((k — 1)7;2°), if k = 2, t € [0,7],

7 =4 - for some j € U and 7’ € UFL.

We wish to synthesize a guaranteed control ¢ for ¢, using the approximate
functions ggw.We define the closed ball of center x € R™ and radius r» > 0, denoted
B(x,r), as the set {#' e R™ | |2/ — x| < r}.

Given a positive real J, we now define the expression §;(¢) which, as we will see

in Theorem 3, represents (an upper bound on) the error associated to qgj (t;2%) (i.e.

|6(t;3%) — ¢;(t; 2°)])).

Definition 7. Let us consider a switched system wverifying hypotheses (HO) and
(H1), associated to constants \;, L; and C; for each mode j € U, such that equa-
tions (4.7), (4.8) and (4.9) hold. Let 6 be a positive constant. We define, for all
0 <t <, function 6;(t) as follows:

—if A < 0:

L7 2t 2 _ ’
§;(t) = (5%“ + )\—g <t2 + X 2 (1- e%t)))

J J

—Zf)\JZO

D=

5;(t) = (0%€' + C3(—t* — 2t + 2(e' — 1))
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—Zf)\]>0

1

C? o2t 2 2
5. t) = 62 3>\jt J —t2 o 3)\jt _ 1
i) (6 +3A§< 3, o (€ )

j
Note that §;(t) = ¢ for t = 0. The function §;(-) depends implicitly on two
parameters: § € R and j € U. In Section 4.3.4, we will use the notation §}(-) where

the parameters are denoted by 0" and j.

Theorem 3. Given a sampled switched system satisfying (H0-H1), consider a point
z° and a positive real 6. We have, for all 2° € B(2°,8), t € [0,7] and j € U:
¢;(t:2°) € B(o;(t; %), 0;(1)).

Proof. Consider on t € [0, 7] the differential equations

dx(t)

"= )
and JE (1)

o = (@),

with initial points 2° € S,2° € S respectively. We will abbreviate ¢;(t;z°) (resp.
¢;(t; %)) as (t) (vesp. #(t)). We have
d - -
—(x(t) = 2(0) = (f;(x(1) = ;@)
then
1d

St = 501D = (i)

< i) = f;(@@), 2(t) - 2(1))
I £5(@ () = £@) () — (@)

The last expression has been obtained using the Cauchy-Schwarz inequality. Using

(H1) and (4.7), we have
% %(!x(t) =2 < Ajllz@) — 2@ + [£@0) — £HE@E)] =) - 2(0)]
< Aglle@) = 2O + L [2() — 2°) () — 2(2)]
< Aglle(®) = 2O + Lit [ £E)] () — 2(1)].

Using (4.8) and a Young inequality, we then have

d

5 (lat) = # W) < Alle(t) — FO + C;tlat) — #(0)]

N 1 . 1
< Nl 30 + €yt (alote) - 30 + )
for all a > 0.
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— In the case \; < 0:

For ¢ > 0, we choose o > 0 such that Cjta = =), i.e. a = _ﬂ It follows,
for all t € [0, 7]:
. Cit ) 3 (C;t)?
-7 _ t 2 _ ) — I t — t 2 _ AT .
5 10— 2O1%) < Fa() — 2O - G2 = Fle(t) ~ 200 G
We thus get:

Jo(t) - #(0)| < o G

J

In the case A\; > 0:

C? 2t
|2° — 202 et + L (t2 +—+ =

For t > 0, we choose o > 0 such that Cjta = \;, ie. a =
all t € [0, 7]:

5 2 (lz(0) = #O1) < 2eJat) ~ 21 + T = 2]
We thus get:

—3(t)]* < [ -

| (t)

In the case A\; = 0:

For t > 0, we choose o = CL It follows:
! —(l=(t) = 2(1)[*) < |=(t)
dt N

We thus get:
Jz(t) = 2(t)]* < [2° -

In every case, since by hypothesis 2° € B(z"
have, for all ¢t € [0, 7]:

2! + CH (12
9) (i

() = z(t)] < 0;(t).

It follows: ¢;(t; 2°) € B(¢,;(t;2°),0) for t € [0,7].

02 2t
0 2 3)\ 2
it 4+ —= - — +

- =

(1- eAJ't)> .

2
N2

—Z(t)|* + Cyt?

% It follows, for

(Cit)?

z(t) —z(t)|* + QJT

(@ - 1)

— 2t +2(et — 1))

) < 6?), we

Remark 3. In Theorem 3, we have supposed that the step size h used in Fuler’s
method was equal to the sampling period T of the switching system. Actually, in order
to have better approrimations, it is sometimes convenient to consider a uniform

subdivision of [0, 7] and apply the Euler’s method for a time step h equal to e.q.

15+ Such a splitting is called “sub-sampling” in numerical methods. See Section

4.3.5 for details.
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Corollary 1. Given a sampled switched system satisfying (H0-H1), consider a point
2°€ S, areal 6 > 0 and a mode j € U such that:

1. B(z°,4§) c S,

2. B(ggj(T;:fO),(Sj(T)) c S, and

3. dz(jZQ(t)) > 0 for all t € [0,7].

Then we have, for all 2° € B(z°,6) and t € [0,7]: ¢;(t;2°) € S.

Proof. By items 1 and 2, B(éj(t;a?o),éj(t)) c Sfort=0andt=r7. Since ,(-) is
convex on [0, 7] by item 3, and S is convex, we have B(¢;(t;3°),d;(t)) < S for all
t € [0,7]. Tt follows from Theorem 3 that ¢;(t;2°) € B(¢;(t;i°),0;(t)) < S for all
1<t<T. O]

Remark 4. Condition 3 of Corollary 1 on the convexity of 6;(-) on [0,7] can be
established again using an optimization function. Since we have an exact expression
ford;(+), its second derivative (w.r.t. time) can be computed using a computer algebra
software. Using an optimization algorithm then allows to verify that its minimum

18 positive.

4.3.4 Application to control synthesis

Consider a point 2° € S, a positive real § and a pattern 7 of length k. Let
(k") denote the k’-th element (mode) of 7 for 1 < &k’ < k. Let us abbreviate the
k'-th approximate point ¢ (k'm; %) as @ for k' = 1,...,k, and let #¥ = Z° for
k' = 0. Tt is easy to show that #¥ can be defined recursively for &' = 1,....k, by:
= 7 f (251 with § = w (k).

Let us now denote by 6 (an upper bound on) the error associated to ¥, i.e.
&% — ¢ (K'T;2°)||. Using repeatedly Theorem 3, 6¥ can be defined recursively as
follows:

For k' = 0: 0¥ =4, and for 1 < k' < k: 6 = d%(7) where ¢’ denotes 6F=1 and
J denotes m(k').

Likewise, for 0 < ¢ < k7, let us denote by d,(¢) (an upper bound on) the global error
associated to ¢ (t;2°) (i.e. | dp(t; 2°) — pr(t; 2°)||). Using Theorem 3, 0,(t) can be
defined itself as follows:

— for t = 0: 0,(t) = 0,

— for 0 <t < kr: 0(t) = 04(t') with & = 6571, j = w(€), ¥ =t — ({ —1)7 and

-1
Note that, for 0 < &' < k, we have: d,(k't) = 6. We have:

Theorem 4. Given a sampled switched system satisfying (HO-HI1), consider an
initial point 2° € S, a positive real § and a pattern m of length k such that, for all
1<K <k:
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1. B(z¥ 65y < S and

2057 /
9. LW for all t € [0, 7], with j = w(K') and &' = 6% ~1.

dt?

Then we have, for all z° € B(z°,6) and t € [0,k7]: ¢.(t;2°) € S.

Proof. By induction on k using Corollary 1. ]

The statement of Theorem 4 is illustrated in Figure 4.8 for £ = 2. From Theorem

4, it easily follows:

Figure 4.8: Ilustration of Theorem 4.

Corollary 2. Given a switched system satisfying (HO-H1), consider a positive real
d and a finite set of points Ty, ... Ty, of S such that all the balls B(Z;,d) cover R and
are included into S (i.e. R < |J*, B(Z;,0) < S). Suppose furthermore that, for all
1 <1 < m, there exists a pattern m; of length k; such that:

1. B((#)F 6Ky S, forallk' =1,... k — 1

;0 7T

2. B((Z;)},05) < R.
d?(55(¢))

8. —g— > 0 with j = m(k') and &' = (57’:’1, forall k" € {1,...,k;} andt € [0, 7].

These properties induce a control o' which gquarantees

— (safety): if v € R, then ¢,(t;x) € S for all t =0, and
— (recurrence): if v € R then ¢, (kT;x) € R for some k € {ky,... kn}.

Corollary 2 gives the theoretical foundations of the following method for synthe-
sizing o ensuring recurrence in R and safety in S:

— we (pre-)compute A;, L;, C; for all j € U,

— we find m points 1, ... &, of S and ¢ > 0 such that R < | ", B(%;,9) < S;

1. Given an initial point x € R, the induced control ¢ corresponds to a sequence of patterns
Ty, Ty, - - . defined as follows: Since x € R, there exists a point ;, with 1 < ¢; < m such that
r € B(&;,,0); then using pattern m;,, one has: ¢, (ki 7;7) € R. Let 2’ = ¢r, (ki,7;2); there
exists a point Z;, with 1 < is < m such that =’ € B(Z;,, ), etc.
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— we find m patterns 7; (i = 1,...,m) such that conditions 1-2-3 of Corollary 2
are satisfied.
A covering of R with balls as stated in Corollary 2 is illustrated in Figure 4.9. The
control synthesis method based on Corollary 2 is illustrated in Figure 4.10 (left)
together with an illustration of the validated simulation approach of Section 4.2
(right).

Figure 4.9: A set of balls covering R and contained in S.

Tube, (Z,)

R zj. .

TubeiJ(Zz') Z,'= Pos‘i,(zz)

Figure 4.10: Control of ball B(Z3,d) with our method (left); control of tile Z; with
the method of Section 4.2(right).

This theorem is actually an equivalent of Theorem 2 using balls, it thus solves
Problem 1.

4.3.5 Numerical experiments and results

This method has been implemented in the interpreted language Octave, and the
experiments performed on a 2.80 GHz Intel Core i7-4810MQ CPU with 8 GB of
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memory.

Note that in some cases, it is advantageous to use a time sub-sampling to compute
the image of a ball. Indeed, because of the exponential growth of the radius J;(¢)
within time, computing a sequence of balls can lead to smaller ball images. It is
particularly advantageous when a constant \; is negative. We illustrate this with
the example of the DC-DC converter. It has two switched modes, for which we have
A1 = —0.014215 and Ay = 0.142474. In the case A\; < 0, the associated formula §;(t)
has the behavior of Figure 4.11 (a). In the case A\; > 0, the associated formula §; (%)
has the behavior of Figure 4.11 (b). In the case A; < 0, if the time sub-sampling
is small enough, one can compute a sequence of balls with reducing radius, which

makes the synthesis easier.

0.065 25

delta(t
delta(t)

0.045 0.5

time t time t

(a) (b)

Figure 4.11: Behavior of ¢,(¢) for the DC-DC converter with §;(0) = 0.045. (a)
Evolution of 6;(t) (with A; < 0); (b) Evolution of d5(¢) (with Ay > 0).

In the following, we give the results obtained with our Octave implementation
of this Euler-based method on 5 examples, and compare them with those given by
the C++ implementation DynIBEX [5] of the Runge-Kutta based method used in
Section 4.2.

Four-room apartment

We describe a first application on the 4-room 16-switch building ventilation case
study adapted from [134], recalled in Appendix A.4. The model has been simplified
in order to get constant parameters. To get constant parameters, we took T, = 30,
T.=30,T, =17, =1 for i e N. Compared simulations are given in Figure 4.12.
On this example, the Euler-based method works better than DynIBEX in terms of
CPU time.

DC-DC converter

This linear example is recalled in Appendix A.1.
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Fuler | DynIBEX
R [20,22]% x [22,24]?
S [19,23]2 x [21, 25]?
T 30
Time subsampling No
Complete control Yes Yes
max;—1i,..16 \j —6.30 x 1073
max;_1,. 16 Cj 4.18 x 1076
Number of balls/tiles 4096 252
Pattern length 1 1
CPU time 63 seconds | 249 seconds

Table 4.3: Numerical results for the four-room example.

23 23

—room 1 —room 1
——room 2 ——room 2
—room 3 —room 3
2 __room4 2 __room4
o) o)
e e
2 2
© 21 © 21
3 3
Q Q
£ £
O O
= =
20 20
19 19
0 100 200 300 400 0 100 200 300 400
Time(s) Time(s)

Figure 4.12: Simulation of the four-room case study with our synthesis method (left)
and with the synthesis method of Section 4.2 (right).

On this example, the Euler-based method fails while DynIBEX succeeds rapidly.

Polynomial example

We consider the polynomial system taken from [126], recalled in Appendix A.3.
The disturbances are not taken into account. The objective is to visit infinitely often
two zones R; and Ry, without going out of a safety zone S.

For Euler and DynIBEX, the table indicates two CPU times corresponding to
the reachability from R; to Ry and vice versa. On this example, the Euler-based
method is much slower than DynIBEX.

Two-tank system

The two-tank system is a linear example taken from [89]. The system consists of
two tanks and two valves. The first valve adds to the inflow of tank 1 and the second
valve is a drain valve for tank 2. There is also a constant outflow from tank 2 caused

by a pump. The system is linearized at a desired operating point. The objective
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Euler | DynIBEX
R [1.55,2.15] x [1.0,1.4]
S [1.54,2.16] x [0.99, 1.41]
T 0.5
Complete control No Yes
A1 —0.014215
A2 0.142474
C 6.7126 x 10~°
Oy 2.6229 x 1072
Number of balls/tiles X 48
Pattern length X 6
CPU time X i 1 second

Table 4.4: Numerical results for the DC-DC converter example.

is to keep the water level in both tanks within limits using a discrete open/close
switching strategy for the valves. Let the water level of tanks 1 and 2 be given by
1 and x, respectively. The behavior of x7 is given by 21 = —x1 — 2 when the tank 1
valve is closed, and 1 = —x; + 3 when it is open. Likewise, x5 is driven by x5 = 1
when the tank 2 valve is closed and x5 = 1 — x5 — 5 when it is open. The dynamics
of the system is recalled in Appendix A.7 On this example, the Euler-based method
works better than Dyn/BEX in terms of CPU time.

Helicopter

The helicopter is a linear example taken from [55]. The problem is to control
a quadrotor helicopter toward a particular position on top of a stationary ground
vehicle, while satisfying constraints on the relative velocity. Let g be the gravita-
tional constant, = (reps. y) the position according to z-axis (resp. y-axis), & (resp.
y) the velocity according to z-axis (resp. y-axis), ¢ the pitch command and v the
roll command. The possible commands for the pitch and the roll are the following:
¢, € {—10,0,10}. Since each mode corresponds to a pair (¢,1), there are nine

switched modes. The dynamics of the system is given by the equation:

0100 0
= 0000 X4 gsin(—o¢)

0 001 0

0000 gsin(1)

where X = (z & y y)". Since the variables x and y are decoupled in the equations
and follow the same equations (up to the sign of the command), it suffices to study
the control for x (the control for y is the opposite). The dynamics of the system is
recalled in Appendix A.8. On this example again, the Euler-based method works
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Euler | DynIBEX
Ry [—1,0.65] x [0.75,1.75]
Ry [—0.5,0.5] x [—0.75,0.0]
S [~2.0,2.0] x [~1.5,3.0]
T 0.15
Time subsampling 7/20
Complete control Yes Yes
A1 —1.5
A2 —-1.0
A3 ~1.1992 x 108
Ay —5.7336 x 1076
Cy 641.37
Cy 138.49
Cs 204.50
o 198.64
Number of balls/tiles 16 & 16 1&1
Pattern length 8 7
CPU time 29 & 4203 seconds | j0.1 & 329 seconds

Table 4.5: Numerical results for the polynomial example.
better than Dyn/BEX in terms of CPU time.

Analysis and comparison of results

This method presents a great advantage over the recent work [119]: no numerical
integration is required for the control synthesis. The computations just require the
evaluation of given functions f; and (global error) functions ¢; at sampling times.
The synthesis is thus a priori cheap compared to the use of numerical integration
schemes (and even compared to exact integration for linear systems). However, most
of the computation time is actually taken by the search for an appropriate radius o
of the balls B; (1 < i < m) that cover R, and the search for appropriate patterns m;
that make the trajectories issued from B; return to R.

Furthermore, the method lacks accuracy when the error bound §;(t) grows fast,
this is particularly the case when A; > 0. A high number of balls may be required to
counteract this drawback, as well as using time sub-sampling, and both increase the
computational cost, but as seen on the helicopter example, it can still be cheaper
than classical methods. Moreover, we can use the fact that some modes make the
error grow, while others make it decrease, like in the two tank example. On systems
for which the error does not grow fast, we perform very well as the computation
of the image of a ball is very inexpensive. This is very often the case on thermal

heating applications, for which the system usually has A\; < 0 (see for example the
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Fuler | DynIBEX
R [—1.5,2.5] x [—0.5,1.5]
S [—3,3] x [-3,3]
T 0.2
Time subsampling 7/10
Complete control Yes Yes
A1 0.20711
A2 -0.50000
A3 0.20711
A4 -0.50000
C 11.662
Cy 28.917
Oy 13.416
Cy 32.804
Number of balls/tiles 64 10
Pattern length 6 6
CPU time 58 seconds | 246 seconds

Table 4.6: Numerical results for the two-tank example.

four room case study).

Note that for systems presenting negative J;, if the sampling time is not imposed
by the system, it is possible to choose an optimal sampling time minimizing the
radius of the ball images (see Figure 4.11 (a)), and thus maximizing the chance of
finding controllers fast.

The method presents a specific fault for synthesizing a controller for the DC-DC
converter. Because we use balls to tile a box R, parts of some balls (crescent-shaped)
are not included in the initial box, and these parts are particularly hard to steer
inside R, because the dynamics of the system generates trajectories which are nearly
horizontal. The fact that A, is strictly positive makes it even harder to control these
balls. This explains why we obtain controllable regions which look like Figure 4.13.
Note that the same kind of results are obtained with state-of-the-art tools such as
SCOTS [159] and PESSOA [132]. The use of zonotopes which perfectly tile the

region R does not present this fault for this particular system.

We observe on the examples that the resulting control strategies synthesized by
our method are quite different from those obtained by the Runge-Kutta method of
Section 4.2 (which uses in particular rectangular tiles instead of balls). This may
explain why the experimental results are here contrasted: Euler’s method works
better on 3 examples and worse on the 2 others. Besides the Euler method fails
on one example (DC-DC converter) while DynIBEX succeeds on all of them. Note

however that our Euler-based implementation is made of a few hundreds lines of in-
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Euler | DynIBEX

R [-0.3,0.3] x [—0.5,0.5]
S [—0.4,0.4] x [-0.7,0.7]
T 0.1

Time subsampling 7/10

Complete control Yes Yes
A1 0.5
Ao 0.5
A3 0.5
Ch 1.77535
Cs 0.5
Cs 1.77535

Number of balls/tiles 256 35
Pattern length 7 7
CPU time 539 seconds | 1412 seconds

Table 4.7: Numerical results for the helicopter motion example.

terpreted code Octave while DynIBEX is made of around five thousands of compiled

code C++.

4.3.6 Final remarks

We have given a new Euler-based method for controlling sampled switched sys-
tems, and compared it with the Runge-Kutta method of [115]. The method is
remarkably simple and gives already promising results. In future work, we plan to
explore the use of the backward Euler method instead of the forward Euler method
used here (cf [32]). We plan also to give general sufficient conditions ensuring the

convexity of the error function ¢,(-); this would allow us to get rid of the convexity

tests that we perform so far numerically for each pattern.
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Figure 4.13: Controlled region of R using the Euler method for the DC-DC converter.
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Chapter 5

Disturbances and distributed

control
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In this chapter, we extend the results of the previous chapter to systems subject
to disturbances and varying parameters. We present how disturbances can be used
to perform distributed (also called compositional) control synthesis, allowing to
overcome the exponential complexity of the algorithms of Chapter 3. Provided
that the modes do not affect each dimension of the system, system (3.1) can be
rewritten as two sub-systems with independent control modes, but sharing some
state variables. Those shared state variables can be viewed as disturbances, and
using a method close to assume-guarantee reasoning [12, 34,41, 108], we synthesize
two controllers, much cheaper to compute than a centralized one. This distributed
approach is applied with sets represented by zonotopes and balls, and made available
for nonlinear systems using Runge-Kutta and Euler schemes.

This chapter is divided as follows. We present some results for linear systems
subject to disturbances using zonotopes in Section 5.1. We introduce a backward
reachability procedure relying on zonotopes and apply it in a centralized and dis-
tributed manner in Section 5.2. We then present in Section 5.3 an approach relying
on a notion close to incremental input-to-state stability [13] which, associated to an
Euler scheme and balls of R", allows to handle perturbations and varying parame-
ters, and can thus be applied to distributed synthesis.

5.1 Linear systems and disturbances
Let us consider an affine system satisfying
r=Ax+b (5.1)

where z € R", A € R™" and b € R". As seen in the previous chapter, one can
compute the solution at time ¢ > 0 of (5.1) using equation (4.1). Being given a
sampling time 7 (taken equal to 1 for the sake of simplicity), system (5.1) can be

turned into a discrete time system
z(t+1)=Cx(t)+d (5.2)
with ' = e and d = Scl) eAt=Ddt. System (5.2) can be decomposed in blocks as

follows: .
g _ Ci1 Cho X1 n dy ‘ (5‘3)
X2 Ca1 Cx X2 dy

where z1,d; € R™ and x5, dy € R™ with n = ny+ns, and Cyq, C1a, Cy1, Coy matrices

of appropriate dimensions. Let us now consider an initial set given as a zonotope
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with ¢; € R™ ¢y € R™, G; € R™*" and G5 € R™*"™. We know that the image at
time ¢t + 1 of Z is the zonotope

g Chicr + Chrace + dy C11G1 + Ch2Gy -
Caicr + Caacg + do ’ Ca1G1 + UGy

We thus have z1(t + 1) € Z] =< Ci1¢1 + Chace + dy, C11G1 + C12Go >. Now, assume
that xo stays in a safety zone Sy given as a zonotope < so, F» >, we have

l‘l(t + 1) € Zi =< Ci1¢1 + Cla89 + dl, C11G1 + CaFy > . (54)

We can then compute a bounding box of the latter, such as in [68], given as a
zonotope Z;+ = o(Z]) of the form < ¢|,G} > with G} € R™*™ . The same can
be done for component two, a bounding zonotope Z5 = o(Z}) of Zj of the form
< cy, G% > with G € R"*" can be inferred, assuming that component 1 stays in a
safety zone S;. This now gives an overapproximation Z;” x Z5 of zonotope Z’.

We can then iterate this, by computing Z;"" = o((Z;")’) as an overapproximation
of the image of Z;", assuming that component 2 stays in the safety zone Sy, and
reciprocally for component 2, we obtain Z; " = o((Z))’). We thus have Z;" x Z; "
as an overapproximation of Z”, and we now see the main interest: each component
only has to know its state. When computing images Z;", Z;"", the state of compo-
nent 2 is overapproximated by Ss, and reciprocally. Assuming that x; forever stays
in S7, and x5 forever stays in S,, the successive images can be computed separately
for each component.

Assuming that x; and x5 forever stay in their respective safety zones S; and Sy,
this actually gives a way to successively compute over-approximations Z;" x 7,
ZFT x Z5*, ... of the images Z', Z”, ..., of the zonotope Z, by only looking at
component 1 and component 2 separately.

If we now take a switched version of (5.2) (by adding an index j € U to matrix A
and vector b), the previous approach allows to separately compute two controllers for
both components. This however requires that both components stay in a given safety
zone. In other words, one has to successfully compute two safety controllers, for both
components, for this method to work. Actually, safety properties are mandatory to
apply such distributed methods, we find them in several compositional or assume-
guarantee based methods [53,101,135].

Using this distributed method, component 2 can actually be seen as a bounded
perturbation for component 1, where the perturbation is bounded in S;. We could

in fact extend this method to more general perturbations, for systems of the form
t=Axr+ Bw+b (5.5)

where w is the bounded perturbation (varying in a given set within time). Note
that [109] proposes a subtle approach to extend this type of calculations to a wider

range of perturbations, notably including varying parameters.
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In the following, we apply this method in an iterated manner, first in a discrete-

time framework, before applying it to continuous-time systems.

5.2 Distributed control using zonotopes

In this section, we first focus on discrete-time systems and present an approach
mainly aimed at controlling building heating applications. We introduce an ex-
tension of the algorithm of Chapter 3 allowing to perform iterated (backward)
reachability. We then extend it to distributed synthesis, by introducing a state
over-approximation technique which avoids the use of non-local information by the
subsystem controllers. This procedure allowed to synthesize a controller for a real
case study of temperature control in a building with 11 rooms and 2'* = 2048 switch-
ing modes of control. This approach is then extended to continuous-time systems
using Runge-Kutta schemes and the DynIBEX library.

5.2.1 State-dependent Switching Control

We first consider the discrete-time setting. The time t then takes its values in N.

Control modes

Consider the following discrete-time system with finite control:

ri(t+1) = fi(wi(t), 22(t), ur) To(t + 1) = fo(wi(t), 22(t), us)

where x; (resp. xq) is the first (resp. second) component of the state vector, and
takes its values in R™ (resp. R"), and where u; (resp. uz) is the first (resp. second)
component of the control mode, and takes its values in the finite set Uy (resp. Us).
We will often write = for (xy,z5), u for (uj,us), and n for ny + ny. We will also
abbreviate the set U; x Uy as U. Let N (resp. Ny) by the cardinality of U; (resp. Us),
and N = Ny - Ny be the cardinality of U.

More generally, we abbreviate the discrete-time system under the form:

z(t+1) = f(x(t),u)

where x is a vector state variable, taking its values in R” = R™ x R™? and where u
is of the form (uy,us), where u; takes its values in U; and uy in Us.

In this context, we are interested by the following centralized control-synthesis
problem: at each discrete-time ¢, select some appropriate mode u € U in order
to satisfy a given property. In a distributed setting, the control-synthesis problem
consists in selecting the value of u; in U; according to the value of x(t) only, and
the value of us in Us according to the value of xo(t) only.

The properties that we consider are reachability properties: given a set S and

a set R, we look for a control which steers any element of S into R in a bounded
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number of steps. We also consider stability properties, requiring that once the
state x of the system is in R at time ¢, the control will maintain it in R indefinitely.
Actually, given a state set R, we will present a method that does not start from a
given set S, but constructs it, together with a control that steers all the elements
of S to R within a bounded number of steps (S can be seen as a “capture set” of R).

In this section, we consider that R and S are “rectangles” of the state space.
More precisely, R = Ry x Rs is a rectangle of reals, i.e., R is a product of n closed
intervals of reals, and R; (resp. R») is a product of n; (resp. ny) closed intervals of
reals. Likewise, we assume that S = S; x Sy is a rectangular sub-area of the state
space.

Example 1. The centralized and distributed approaches will be illustrated by the
example of a two-room apartment, heated by one heater in each room (adapted
from [76]). In this example, the objective is to control the temperature of both
rooms. There is heat exchange between the two rooms and with the environment.

The continuous dynamics of the system is given by the equation:

T _ [ 721 — el — Q5 Q21 T + e Te + apTruy
15 (0%P) —Q19 — Qleg — QUL 15 e T + afTrug

Here Ty and Ty are the temperatures of the two rooms, and the state of the system
corresponds to T = (11, Ty). The control mode variable uy (respectively us) can take
the values 0 or 1, depending on whether the heater in room 1 (respectively room 2) is
switched off or on (hence Uy = Uy = {0,1}). Hence, heren; = ng =1, Ny = Ny = 2,
andn =2 and N = 4.

Temperature T, corresponds to the temperature of the environment, and Ty to the
temperature of the heaters. The values of the different parameters are as follows:
a2 =5%x107% ag =5 x 1072, e =5 x 1073, e = 5 x 1072, ay = 8.3 x 1073,
T. = 10 and Ty = 35. The dynamics of the system is recalled in Appendiz A.2.

We suppose that the heaters can be switched periodically at sampling instants T,
27, ... (here, T = bs). By integration of the continuous dynamics betweent and t+T,

the system can be easily put under the desired discrete-time form.:
Ti(t+1) = fi(T1(t), To(t), us) Tr(t +1) = fo(T1(t), To(t), uz)

where f1 and fy are affine functions.

Given an objective rectangle for T = (T1,T3) of the form R = [18.5,22] x
[18.5,22], the control synthesis problem is to find a rectangular capture set S (as
large as possible) from which one can steer the state T to R (“reachability”), and

then maintain T within R for ever (“stability”).

Control patterns

It is often easier to design a control of the system using several applications

of f in a row rather than using just a single application of f at each time. We are
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thus led to the notion of “macro-step”, and “control pattern”. A (control) pattern

m = (m,me) of length k is a sequence of modes defined recursively by:
1. 7 is of the form (uy,us) € Uy x Us if k =1,

2. 7 is of the form (uy - 7], us - ), where uy (resp. ug) is in U; (resp. Us), and

(7}, ) is a (control) pattern of length k£ — 1 if k > 2.

The set of patterns of length k is denoted by II* (for length k = 1, we have
1! = U). Likewise, for k > 1, we denote by II} (resp. II§) the set of sequences of k
elements of U; (resp. Us).

For a system defined by z(t + 1) = f(z(t), (u1,u2)) and a pattern m = (my, ma) of
length k, one can recursively define x(t+k) = f(x(t), (m1, 72)) with (7, m) € II*, by:

L. f(z(t), (m,m)) = f(x(t), (ur,us)), if (71, 7o) is a pattern of length k = 1 of
the form (uy,us) € U,

2. fx(t), (m,m)) = f(f(x(t), (7], 7)), (u1,us)), if (11, m2) is a pattern of length
k = 2 of the form (uy - 7}, uy - 74) with (uy,up) € U and (7}, 75) € IIF~1,

One defines (f(z,7)); € R™ and (f(z,7))2 € R™ to be the first and second compo-
nents of f(x,m) e R™ x R"™ =R" ie: f(x,m) = ((f(z, 7)), f(z,7)2).

In the following, we fix an upper bound K € N on the length of patterns.
The value of K can be seen as a maximum number of time steps, for which we com-
pute the future behaviour of the system (“horizon”). We denote by ITF¥ (resp. TI5%)
the expression | J; ycxc HY (vesp. (J;<pepe I15). Likewise, we denote by ITS¥ the ex-

pression |, II".

5.2.2 Control synthesis using tiling
Tiling

Let R = Ry x Ry be a rectangle. We say that R is a (finite rectangular) tiling
of R if R is of the form {7, ,}irer, iver,, Where I; and I, are given finite sets of
positive integers, each r;, ;, is a sub-rectangle of R of the form r;, x r;,, and r;,,7;,
are closed sub-intervals of R; and Ry respectively. Besides, we have Uile 5T = Ry
and UZQE]2 ri, = Ry (Hence R = Uilehﬂéel2 Titiia)-

We will refer to r;,,7;, and r;, ;, as “tiles” of Ry, Ry and R respectively. The
same notions hold for rectangle S.

In the centralized context, given a rectangle R, the macro-step (backward reach-
ability) control synthesis problem with horizon K consists in finding a rectangle S
and a tiling S = {si, i, }iren isen, Of S such that, for each (i1,42) € I; x I, there exists

7 e IISK such that:

f(sil,i2> 7T) R

(i.e., for all z € s;, 4,0 f(x,m) € R). This is illustrated in Figure 5.1.
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Figure 5.1: Mapping of tile sy 3 to R via pattern w3, and mapping of tile s3; via

7T3’1.

Parametric extension of tiling

In the following, we assume that the set S we are looking for is a parametric
extension of R, denoted by R + (a,a), which is defined in the following.

Suppose that R = Ry x Ry is given as well as a tiling R = Ry x Ry = {r;, %
TiyYireliisels = {Ti1is}tirelisel,- Lhen Ry can be seen as a product of n; closed
intervals of the form [¢,m]. Consider a nonnegative real parameter a. Let (Ry + a)
denote the corresponding product of n; intervals of the form [¢ —a,m + a].! We
define (Ry + a) similarly. Finally, we define R + (a,a) as (R; + a) x (R + a).

We now consider that S is a (parametric) superset of R of the form R + (a,a).
We define a tiling S = Sy x Sy of S of the form {s;, x s, }iser, irer,, Which is obtained
from R = Ry x Ry = {ri; X 7i,}ien . iser, by a simple extension, as follows: A tile
i, (resp. r;,) of Ry (resp. Rso) in “contact” with dR; (resp. 0Rs) is extended as a
tile s;, (resp. s;,) in order to be in contact with d(R; + a) (resp. d(Ry + a)); a tile
“Interior” to Ry (i.e., with no contact with dR;) is kept unchanged, and coincides
with s;,, and similarly for Rj.

We denote the resulting tiling S by R + (a,a). We also denote s;, (resp. s;,)
by r;, +a (resp. r;, +a), even if r;, (resp. 1;,) is “interior” to Ry (resp. Ry). Likewise,
we denote s; ; by r;; + (a,a). Note that a tiling of R of index set I; x I, induces
a tiling of R + (a,a) with the same index set I} x I, hence the same number of
tiles as R, for any a > 0. This is illustrated in Figure 5.2, where the tiling of R is
represented with black continuous lines, and the extended tiling of R + (a,a) with
red dashed lines.

Generate-and-test tilings

By replacing S with R+ (a, a) in the notions defined in Section 5.2.2 the problem
of macro-step control synthesis can now be reformulated as: “find a tiling R of R

that induces a macro-step control of R + (a,a) towards R, for some a = 0 (as large

1. Actually, we will consider in the examples that (R; + a) is a product of intervals of the form

[£ — a,m] where the interval is extended only at its lower end, but the method is strictly identical.
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Figure 5.2: Tiling of R + (a,a) induced by tiling R of R.

as possible)”.

This problem can be solved by a simple “generate-and-test” procedure: we gen-
erate a candidate tiling, and then test if it satisfies the control property (the control
test procedure is explained in Section 5.2.3); if the test fails, we generate another
candidate, and so on iteratively.

In practice, the generation of a candidate R is performed by starting from the
trivial tiling (made of one tile equal to R), and using successive bisections of R
until, either the control test succeeds (“success”), or the depth of bisection of the
new candidate is greater than a given upper bound D (“failure”). See more details
in [67].

Tiling refinement

Let us now explain how we find a tiling R of R such that II; ;, # &. We focus
on the centralized case, but the distributed case is similar. We start from the trivial
tiling RY = {R}, which only contains tile R. If f(R,7) < R for some 7 € IIS¥]
then R is the desired tiling. Otherwise, we refine R° by bisection, which gives a
tiling R' of the form {r¢1) 2 }i<ij<n- If, for all 1 < 4,5 < n there exists some
7 € IIK such that f(r(1)2),u) S R, then R! is the desired tiling. Otherwise,
there exist some “bad” tiles of the form 7(;1) 2 with 1 < ¢,7 < n such that
Vi e IISE f(rga), 2, T™) € R; we then transform R' into R? by bisecting all those
bad tiles. By iterating this procedure, we produce tilings R!,R?,---,R% until
either no bad tiles remain in R¢ (success), or the bisection depth d is greater than

the given upper bound D (failure).

Iterated macro-step control synthesis

Suppose that we are given an objective rectangle R = Ry x Ry. If the one-step
control synthesis described in Section 5.2.2 succeeds, then there is a nonnegative
real ) = A and a tiling R of R that induces a control steering all the points of
RY = R+ (a™,a™M) to R in one step. Now the macro-step control synthesis can be
reapplied to RMW. If it succeeds again, then it produces a tiling R™ of R™ which
induces a control that steers R? = RM + (a®,a®) to RM for some a® > 0. The
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1) (1)

R"=R+(a",a")

R(Z):Rfll_'_(a\z"a‘ﬂ)

Figure 5.3: Iterated control of RM = R + (a™,aV) towards R, and R® = RM +
(a®,a@) towards RW.

iterated application of macro-step control synthesis outputs a sequence of tilings R,
each of which induces a control that steers R0+ = R + (X£1a0), £1t1a@) to RO,
In the end, this synthesizes a control that steers R+ to R in at most i + 1 macro-
steps (¢ = 0), using an increasing sequence of nested rectangles around R. This is
illustrated in Figure 5.3, for i = 1.

The iteration process halts at some step, say m, when the last macro-step control
synthesis fails because the maximum bisection depth D is reached while “bad” tiles
still remain (see Section 5.2.2). We also stop the process when the last macro-step
control synthesis outputs a real ™ which is smaller than a given bound: this is

because the sequence of controllable rectangles around R seems to approach a limit.

Remark 5. Note that, if the generate-and-test process stops with “success” for a
tiling 'R, then the tiling Rp uniform also solves the problem, where Rp uniform 15
the “finest” tiling obtained by bisecting D times all the n components of R. Since
Rpuniform has exactly 2"P tiles, it is in general impractical to perform directly the
control test on it. From a theoretical point of view however, it is convenient to sup-
pose that R = Rp uniform for reducing the worst case time complexity of the control

synthesis procedure to the complexity of the control test part only (see Section 5.2.3).

5.2.3 Centralized control
Tiling test procedure

As seen in Section 5.2.2; the (macro-step) control synthesis problem with hori-
zon K consists in finding a > 0 (as big as possible), and a tiling R = {74, i, }irer ivels

of R such that, for each (iy,is) € I} x I, there exists some 7 € IIS¥ with
f(riy s + (a,a), ) < R. (5.6)

It is easy to see that if (5.6) holds for some a > 0, then it also holds for all ¢’ < a.

In order to test if a tiling candidate R = {7, i, }iren.iser, Of R satisfies the desired
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property, we define, for each (i1,i5) € I x Io:

IS8 = {7 e USY | f(ri i, ™) € R} (5.7)

11,22

Suppose that IS4 # ¢5. Then we know that Formula (5.6) is satisfied for a = 0.

11,12
In order to find a “as large as possible”, we look for the existence of a pattern m
such that Formula (5.6) holds also for a = % and a = %l, where |R| denotes the
length of the smallest side of rectangle R. Numerous variants of such tests are of
course possible, but such a simple test works well in practice, and we keep it here

for the sake of simplicity. When IIS% +# ¢, we thus define:

11,12

B[ |B]

o 100 | 3T e =8 [, + (a,0),m) < R},

a;, i, = max{a € {0,

Suppose that, for all (il, 22) € Il X 12 HSK #* @, and let A = min(il,ig)ehxlg{ail,i2}~

11,02
It is easy to see that, for all (i1,i2) € I} x I, there exists a pattern, denoted by m;, ;,,

such that: f(r, ., + (A, A), mi,5,) € R.

Proposition 3. Suppose that there ezists a tiling R = {7, i, }isen,iser, 0f R such
that:
V(il,lg) € Il X [2 HgK # @

11,12

Then R induces a macro-step control of horizon K of R+ (A, A) towards R with:
V(iv,i2) € I x I+ f(rig, + (A, A), M 4) S R
where A and m;, ;, are defined as above.

For each tile r;, ;, of R and each m € TIS¥ | the test of inclusion f(r;, ;,,7) S R can
be achieved in time polynomial in n when f is affine. Hence the test Hff; & can
be done in O(NX-n®) since [IS¥ contains O(N*) elements. The computation time of
{@iy in birelivels Tiyin, and A is thus in O(NK-27P) where D is the maximal bisection
depth. Hence the complexity of testing a candidate tiling R is in O(N¥ - 2nP).
By Remark 5 above, the running time of the control synthesis by the generate-and-
test procedure is also in O(N¥ . 27D).

Once a candidate tiling R satisfying the control test property is found, the
generate-and-test procedure ends with success (see Section 5.2.2), and a set S =
R+ (aM,a®M) with a() = A has been found. One can then iterate the “generate-
and-test” procedure in order to construct an increasing sequence of nested rectangles
of the form R + (aV,aM), R + (aV +a® aM + a®), ..., which can all be driven
to R. The process ends at the first step i > 1 for which a”) = 0 (no proper extension

of the current rectangle has been found).

Example 2. Consider the specification of a two-room apartment given in Example
1 and Appendiz A.2. Set R = [18.5,22] x [18.5,22]. Let D = 1 (the depth of
bisection is at most 1), and K = 4 (the mazimum length of patterns is 4). We
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Figure 5.4: Simulations of the centralized reachability controller for three different
initial conditions plotted in the state space plane (left); simulation of the centralized

reachability controller for the initial condition (12,12) plotted within time (right).

look for a centralized controller which will steer the rectangle S = [18.5 — a,22] x
[18.5 — a,22] to R with a as large as possible, and stay in R indefinitely. Using our
implementation, the computation of the control synthesis takes 4.14s of CPU time.

The method iterates successfully 15 times the macro-step control synthesis pro-
cedure. We find S = R+ (a,a) with a = 53.5, i.e. S = [—35,22] x [—35,22]. This
means that any element of S can be driven to R within 15 macro-steps of length (at
most) 4, i.e., within 15 x 4 = 60 units of time. Since each unit of time is of duration
T = bs, any trajectory starting from S reaches R within 60 x 5 = 300s. Once the
trajectory z(t) is in R, it returns in R every macro-step of length (at most) 4, i.e.,
every 4 x 5 = 20s.

These results are consistent with the simulation given in Figure 5.4 for the time
evolution of (T1,T3) starting from (12,12). Simulations of the control, starting from
(T, Ty) = (12,12), (T1,T) = (12,19) and (T1,T3) = (22,12) are also given in the

state space plane in Figure 5.4.

Stability as a special case of reachability

Instead of looking for a set of the form S = R+ (a,a) from which R is reachable
via a macro-step, let us consider the particular case where S = R (i.e., a = 0).

The problem now consists in constructing a tiling R = {7, i, }irer ier, of R
such that, for all (iy,iy) € I} x Iy, there exists a pattern 7, ;, € IIS¥ ensuring
f(Piyin, Tiyiy) © R. If such a tiling R exists, then? z(t) € R implies z(t + k) € R for
some k < K. Actually, we can slightly modify the procedure in order to additionally
impose that for some € > 0, it holds z(t + k') € R+ (e,¢e) forany ¥ =1,..., k— 1
(see Section 5.2.4). It follows that R is “stable” (with tolerance €) under the control
induced by R. We can thus treat the stability control of R as a special case of

reachability control.

2. If 2(t) € R, then z(t) € r; j for some (i,7) € Iy x I, hence z(t + k) = f(x,m; ;) € R for some
k< K.
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5.2.4 Distributed control

Background

In the distributed context, given a set R = Ry x Ry, the (macro-step) distributed
control synthesis problem with horizon K consists in finding a > 0, and a tiling
R1 = {ri}ier, of Ry which induces a (macro-step) control on R; + a, a tiling
Ry = {ri, }iser, which induces a (macro-step) control on Ry + a.

More precisely, we seek tilings Ry and Rs such that: there exists ¢ € N such
that, for each 7; € I there exists a pattern m; of £ modes in Uy, and for each iy € I,

a pattern my of ¢ modes in U, such that:
f((ri, +a) x (Ry +a),(m1,m))p € R A f((R1 +a) x (ri, +a),(m1,m2)))2 S Ro.

In order to synthesize a distributed strategy where the control pattern m is
determined only by i; (regardless of the value of i5), and the control pattern 7y only
by iy (regardless of the value of i;), we now define an over-approximation X;, (a,m;)
for f((ri, +a)x (Ry+a), (71, m2));, and an over-approzimation X, (a, ms) for f((Ri+
a) x (ri, + a), (m,m2))]2. The correctness of these over-approximations relies on the
existence of a fixed positive value for parameter €. Intuitively, € represents the width
of the additional margin (around R+ (a,a)) within which all the intermediate states

lie when a macro-step is applied to a point of R + (a, a).

Tiling test procedure

Let 7} (resp.7%) denote the prefix of length k of m; (resp.my), and (k) (resp.
mo(k)) the k-th element of pattern 7 (resp. m2).

Definition 8. Consider an element r;, (resp. 1i,) of a tiling Ry (resp. Ra) of Ry
(resp. Ry), and a pattern m, € IS (resp. my € TIS™) of length €1 (resp. {5). The
approximate first-component (resp. second-component) sequence {XF (a, 71)}o<k<s,
(resp. {XF (a,72)}o<kzs,) is defined as follows:
— X (a,m) =ri, +a (resp. X)(a,m) =1y, +a) and
— Xl (a,m) = fl(Xikl’l(a,m),Rg +a+¢e,m(k)) for 1 <
XE(a,m) = fo(Ri + a+e, X (a,m), ma(k)) for 1 <k

k < 01 (respectively
< ly).

We define the property Prop,(a, i, m1) of {XF (a,m1)}o<k<e, by
Xikl(a,ﬁl) CRi+ta+eforl<k</{ —1,and Xfll(a,m) C Ry
Likewise, we define the property Prop,(a,is, m2) of {XF (a,72)}o<k<s, by:
XF(a,m) S Ro+a+efor1 <k</{;—1, and Xf;(a,m) C Rs.

Figure 5.5 illustrates property Prop,(a,iy, ) for my = (u1 - v1), 1 = 2 and a given
tile r;, with 4, € I;: Prop,(a, iy, ) is satisfied because X{(a,m) € R + a + € and

X?%(a,m) € Ry are true.

Suppose now that there exist ¢; and ¢ (1 < ¢4,y < K) such that:
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I

Figure 5.5: Ilustration of Prop,(a,ii,m) with iy € Iy, |m| = ¢ = 2. The dark
blue squares represent the centralized case, where both dimensions are controlled.
The pale blue ribbons represent the distributed case, where we control only the first

dimension, and over-approximate the behavior of the centralized case.

Hl(fl) Vll € Il E|7T1 € H?l PTOpl(O,il,Wl).
H2(£2)Z VZQ € .[2 E|7T2 € ng PTOpl(O,il,T2>.

Then we define:

a(f1) = max{a € {0, ﬂ, @} |Viye I 3m € H? Prop,(a,iy,m)}.
100" 10
a(ly) = max{a € {0, %, %} | Viy € I, 3my € TIZ Propy(a,is, m)}.

Let A = min{a(¢y),a(l2)}. From H1(¢,)-H2(ls), it follows that, for all i; € I; there
exists a pattern of Hfl, denoted by m;,, such that Prop;(A, iy, m;,), and there exists
a pattern of 1T, denoted by 7;, such that Props(A, iy, ).

Remark 6. Given a tiling R = Ry x Ra, H1(¢1) means that the points of Ry + A
can be (macro-step) controlled to Ry using patterns which all have the same length
l1; in other terms, all the macro-steps controlling Ry + A contain the same number
Uy of elementary steps, and symmetrically for H2({s).

Remark 7. The selection of an appropriate value for € is for the moment performed
by hand, and is the result of a compromise: if € is too small, then fi(r;,, Ra,m (1)) <
Ry + ¢ for no m € 11, if € is too large, then fl(Xfll,Rg +e,m(l1)) € Ry for no
1 € Hzl .
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Using the same kinds of calculation as in the centralized case (see Section 5.2.3),
one can see that finding ¢;, /5 such that Hfll # (4 and Hf; # (J, generating A and
{mi, Yiver,, and {7y, Yiser,, can be performed in time O((max(Ny, Ny))K . 2max(rin2)D)

Hence the running time of the control test procedure is also in O((max(Ny, Ny))¥ -
Qmax(nl,ng)D)'

Lemma 1. Consider a tiling R = R1 xRy of the form {ri, X i, } i, in)er x1,- Suppose
that H1(¢1) and H2(ls) hold for some {1,0s < K. Then we have:

— in case b1 < ly: for alll < k < {y and all iy € Iy,

f((T'Z'l + A) X <R2 + A), (7Tk 7Tk))|1 - Xikl(A,T('il) - R1 + A+¢

FURy+ A) x (ryy + A), (nf 70 ) € XE (A, m,) S Ro+ At e
f((ril + A) X (RQ + A)7 (7{'511771'5;))'1 = Xiell (A77Ti1) = Rl

— in case by < U1: for all1 < k < ly and all iy € Iy,

F((riy + A) x (Re+ A), (7} mi)p € XE(Am) S Ri+ A+e

FU(Ry+ A) x (riy + A), (7f 7))o € X[ (A, m,) S Ro+ A+ e

117 g

FU(Ry+ A) x (1, + A), (712, 72))j2 € X;2(A, m3,) S R

717 12

The proof is given in Appendix B.

At t = 0, consider a point z(0) = (21(0),22(0)) of R + (A, A), and let us apply
concurrently the strategy induced by R; on zy, and Ry on z,. After ¢; steps, by
Lemma 1, we obtain a point x(¢1) = (x1(f1),22(¢1)) € Ry x (Ry+ A+¢). Then, after
¢y steps, we obtain again a point x(2¢1) € Ry x (Ra + A + ), and so on iteratively.
Likewise, we obtain points x(fs), x(2¢3), ... which all belong to (R; + A + &) x Ra.
It follows that, after £ = lem(¢y, {3) steps, we obtain a point z(¢) which belongs to

Ry x Ry = R, where lem({y, (5) denotes the least common multiple of ¢; and /5.

Theorem 5. Suppose that there is a tiling R1 = {ry }ier, of R1, a tiling Ry =
{ri,}irer, of Ro, a positive real €, and two positive integers {1, ly < K such that H1(¢(;)
and H2(03) hold. Let ¢ = lem(ly,{y) with £ = a1l = asly for some aq, g € N.
Then R1 induces a sequence of c; macro-steps on Ry + A, and Ry a sequence of
g macro-steps on Ry + A, such that, applied concurrently, we have, for all i, € Iy
and 19 € I5:
f((riy + A) x (Re+ A),m)p € R A f(Ri+ A) x (riy, + A),7)j2 S Ry,
for some © = (m,m) € I° where m (resp. ) is of the form i .- 7" (resp.
T m$2) with w e TI for all 1 <i < oy (resp. b e I for all 1 <i < ay).
Hence:

f(ris, + (A A), 1) € R.

Besides, for all prefix @’ of 7, we have:

f((riy+ A) x (Ro+A), 7)1 € Ri+A+e A f((Ri+A)x(ri,+A), 7)) € Ro+ A+e.
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Hence:

f(ril,iz + (AaA),']T,) c R+ (A + €,A + 5).

If H1(¢1)-H2(¢2) hold, there exists a control that steers R + (A, A) to R in ¢
steps. Letting R = R + (A, A), it is then possible to iterate the process on R
and, in case of success, to generate a rectangle R? = RM 4 (AW AM) from which
RM would be reachable in ¢ steps, for some A > 0 and ¢ € N. And so on,
iteratively, one generates an increasing sequence of nested control rectangles, as in
Section 5.2.3, until a step 4 for which A® = 0.

Theorem 5 allows us to implement the method as far as we are able to compute
the results of applying mappings f; and fs to symbolic states represented by rect-
angles. When f; and f, are affine, the results can be easily computed using the
data structure of “zonotopes” [73]. The method has been implemented in the case
of affine mappings, using the system MINIMATOR [67,106].

Example 3. Consider again the specification of a two-room apartment given in
Example 1 and Appendiz A.2. We consider the distributed control synthesis problem
where the first (resp. second) state component corresponds to the temperature of the
first (resp. second) room Ty (resp. Ty), and the first (resp. second) control mode
component corresponds to the heater uy (resp. us) of the first (resp. second) room.

Set R = Ry x Ry = [18.5,22] x [18.5,22]. Let D = 3 (the depth of bisection is at
most 3), and K = 10 (the mazimum length of patterns is 10). The parameter ¢ is
set to value 1.5°C'. We look for a distributed controller which steers any temperature
state in S = Sy x Sy = [18.5 —a,22] x [18.5 — a, 22] to R with a as large as possible,
then maintain it in R indefinitely.

Using our implementation, the computation of the control synthesis takes 220s of
CPU time. The method iterates 8 times the macro-step control synthesis procedure.
We find S = [18.5 — a,22] x [18.5 — a,22] with a = 6.5, i.e. S = [12,22] x [12,22].
This means that any element of S can be driven to R within 8 macro-steps of length
(at most) 10, i.e., within 8 x 10 = 80 units of time. Since each unit of time is of
duration T = bs, any trajectory starting from S reaches R within 80 x5 = 400s. The
trajectory is then quaranteed to always stay (at each discrete timet) in R+ (g,¢) =
[17,23.5] x [17,23.5].

These results are consistent with the simulation given in Figure 5.6 showing the
time evolution of (T1,Ts) starting from (12,12). Simulations of the control are also
given in the state space plane, in Figure 5.0, for initial states (T1,Ty) = (12,12),
(T1,T3) = (12,19) and (1T1,T,) = (22,12).

Not surprisingly, the performance quaranteed by the distributed approach (a =
6.5, reachability of R in 400s) are worse than those guaranteed by the centralized
approach of Example 2 (a = 53.5, reachability of R in 300s). However, unexpectedly,
the CPU computation time in the distributed approach (220s) is here worse than the
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Figure 5.6: Simulations of the distributed reachability controller for three different
initial conditions plotted in the state space plane (left); simulation of the distributed

reachability controller for the initial condition (12,12) plotted within time (right).

CPU time of the centralized approach (4.14s). This relative inefficiency is due to

the small size of the example.

5.2.5 Case study

This case study, proposed by the Danish company Seluxit, aims at controlling the
temperature of an eleven rooms house, heated by geothermal energy. The continuous

dynamics of the system is the following:
d - v
5 Lit) = DAL () = Ti#) + Bi(Tena(t) = Tilt)) + HYj v, (5.8)
j=1

The temperatures of the rooms are the 7;. The matrix A¢ contains the heat
transfer coefficients between the rooms, matrix B contains the heat transfer coef-
ficients betweens the rooms and the external temperature, set to 7., = 10°C for
the computations. The control matrix H" contains the effects of the control on the
room temperatures, and the control variable is here denoted by v;. We have v; =1
(resp. v; = 0) if the heater in room j is turned on (resp. turned off). We thus
have n = 11 and N = 21 = 2048 switching modes. The dynamics of the system is
recalled in Appendix A.9.

Note that the matrix A¢ is parametrized by the open of closed state of the doors
in the house. In our case, the average between closed and open matrices was taken
for the computations. The exact values of the coefficients are given in [112]. The
controller has to select which heater to turn on in the eleven rooms. Due to a
limitation of the capacity supplied by the geothermal device, the 11 heaters cannot
be turned on at the same time. In our case, we limit to 4 the number of heaters
that can be on at the same time.

We consider the distributed control synthesis problem where the first (resp. sec-
ond) state component corresponds to the temperatures of rooms 1 to 5 (resp. 6
to 11), and the first (resp. second) control mode component corresponds to the
heaters of rooms 1 to 5 (resp. 6 to 11). Hence n; = 5,ny = 6, N; = 2° Ny = 26.
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Evolution of room and outside temperature
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Figure 5.7: Simulation of the Seluxit case study plotted with time (in min) for
T, = 10°C.

We impose that at most two heaters are switched on at the same time in the first

sub-system, and at most two in the second sub-system.

Let D =1 (the bisection depth is at most 1), and K = 4 (the maximum length
of patterns is 4). The parameter ¢ is set to value 0.5°C'. The sampling time is 7 = 15

minutes.

We look for a distributed controller which steers any temperature state in the
rectangle S = [18 — a, 22]'! to R = [18,22]'! with a as large as possible, then main-
tain the temperatures in R indefinitely. Using our implementation, the computation
of the control synthesis takes around 20 hours of CPU time. The method iterates
the macro-step control synthesis procedure 15 times. We find S = [18 — q,22]"!
with @ = 4.2, i.e. S = [13.8,22]'". This means that any element of S can be driven
into R within 15 macro-steps of length (at most) 4, i.e., within 15 x 4 = 60 units of
time. Since each time unit is of duration 7 = 15 min, any trajectory starting from S
reaches R within 60 x 15 = 900 min. The trajectory is then guaranteed to stay in
R + (g,e) = [17.5,22.5]"". These results are consistent with the simulation given

in Figure 5.7 showing the time evolution of the temperature of the rooms, starting

from 141,

Robustness Experiments

We now perform the same simulations as in Figure 5.7, except that the environ-
ment temperature is not fixed at 10°C but follows scenarios of soft winter (Figure 5.8)
and spring (Figure 5.9). The environment temperature is plotted in green in the
figures. The spring scenario is taken from [112], and the soft winter scenario is the
winter scenario of [112] with 5 additional degrees. We see that our controller, which
is designed for T.,, = 10°C still satisfies the properties of reachability and stability.

These simulations are very close to those obtained in [112].
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Evolution of room and outside temperature
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Figure 5.8: Simulation of the Seluxit case study in the soft winter scenario.
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Figure 5.9: Simulation of the Seluxit case study in the spring scenario.

5.2.6 Continuous-time case

In this section, we consider the case of continuous-time differential equations.
The time ¢ now takes its values in R.

5.2.7 Reachability in continuous time

Consider the continuous-time system with finite control:

1 (t)
To(t)

fi(@i(t), w2(t), u1) (5.9)
Ja(@1(t), 22(t), u2) (5.10)

where 1 (resp. ) is the first (resp. second) component of the state vector variable,
taking its values in R™ (resp. R"?), and where u; (resp. us) is the first (resp. second)
component of the control mode, taking its values in the finite set Uy (resp. Us). We
will often write x for (1, xs), u for (uq, us), and n for ny +ny. We will also abbreviate

the set U; x Uy as U. We abbreviate the continuous-time system under the form:

i(t) = f(x(t)u) (5.11)



where z is a vector state variable taking its values in R” = R™ x R™  and where
w is of the form (uy,us), with u; taking its values in U; and usy in Us. We assume
that, given an initial value xo, Equation (5.11) has a solution (e.g., assuming that
the vector field f (resp. fi, f2) is Lipschtiz).

We define the reachable set of (5.11) from a set of initial states Xy, at time ¢

(0 <t < 7) under control mode u:
Reachs(t, Xo,u) = {®(t, z0,u) | xo € Xo}.

where ® (¢, x,u) denotes the state z(t) reached at time t (0 < ¢t < 7) starting from
the initial state x, under control mode u € U.
We define the reachable set of (5.9) from a set of initial states X; < R™, at time

t (0 <t < 7) under control mode u; € U; and perturbation X, ¢ R™2:
Reachﬁ (t, Xl, XQ, ul) = {(I)l(t, Jfl,Xg,Ul) | Il € Xl}

where @4 (t,x1, Xo,uq) is the set of states x;(t) reached at time ¢ (¢ = 0) from the
initial state x1, under control mode u; and perturbation X.

Symmetrically, we define the reachable set of (5.10) from a set of initial states
Xy © R™ at time ¢t (0 < ¢t < 7) under control mode uy € Us and perturbation
X, < R™:

Reachy, (t, X1, X2, us) = {®o(t, X1, x2,u2) | 2 € Xo}.

where ®q(t, X1, 9, us) is the set of states xq(t) reached at time ¢ = 0 from the initial
state x9, under control mode us and perturbation X;.

All the notions of reachable sets for modes are extended in the natural manner
to the notions of reachable sets for patterns. For example, for the pattern 7 = u - v
of length 2, and for 0 < ¢t < 7, we define:

Reachs(t, Xo, m) = Reachy(t, Xo, u)
Reachs(T + t, Xo, ™) = Reachs(t, X1,v) with X; = Reachy(1, Xo, u).

Distributed control

Recall that 7 (resp. 75) denotes the prefix of length k of 7 (resp.ms), and
m1(k) (resp. ma(k)) the k-th element of sequence m; (resp. m). We now give the

counterpart of Definition 8.

Definition 9. Consider an element r;, (resp. r;,) of a tiling Ry (resp. Ra) of Ry
(resp. Ry), and a sequence m € IIT™ (resp. my € IIS™) of length €1 (resp. €). The
approximate first-component sequence {Y;*(a, m)}o<r<e, is defined as follows:

— Y%a,m) =r;y +a and

— YF(a,m) = Upeye, Reachy, (6,Y (a,m1), Ry + a + e, m(k)) for 1 <k <.
Similarly, the approximate second-component sequence {Y;¥(a, m2)}o<r<e, is defined

by
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— Y2a,m) =riy, +a and
— Y¥(a,m) = Upeser Reachy, (t, Ry + a +2,Y a, ), ma(k)) for 1 <k < 0.

) 12

We define the property Prop,(a, iy, m) by:

Y;]f(@ﬂﬁ) CR +at+eforl<k<t
and Reachy, ((17,7;, +a, Ry + a+ £,m) € Ry.

Likewise, we define the property Prop,(a,is, m2) by:

Yif(aaﬁ) CRy+a+eforl<k</
and Reachy,((aT, Ry + a + &,7;, + a,m) S Ro.

Assumptions H1(¢;), Ho(¢5) and expressions A, m;,, m;, are defined exactly as in

Section 5.2.4. We now give the counterpart of Lemma 1 (the proof is similar).

Lemma 2. Consider a tiling R = R1 xRy of the form {ri, X i, } (i, in)en x1,- Suppose
that H1(¢1) and H2(¢3) hold, for some positive real €, and some positive integers
l1,05. Then we have

— in case b1 < Uy, for allt e [(k— 1)1, k7] (1 <k <{y):

Reachy(t, (ri, + A) x (Ry + A), (7} ,7E ) € Yii(a, 7)) S R+ A+e
Reachg(t, (Ry + A) x (ry, + A), (75,75 )2 € Vi (a,m;,) S Ry + A+ e

Reachf(élr, (Til + A) X (RQ + A) ( T 12))‘1 C R;.
— in case by < Uy, for allte [(k— 1)1, k7] (1 < k < {y):

Reachy(t, (r, + A) x (Ro + A), (7}, 75 )p € Yii(a, ) S R+ A+ e
Reachy(t, (R + A) x (ri, + A), (7F,78))|s € Yi¥(a,m,) S Ry + A+ e

117 "1 2

Reachy(lyr, (R + A) x (1, + A), (7T 7t )2 € Ro.

i1 g
We now give the counterpart of Theorem 5 (the proof is similar).

Theorem 6. Suppose that there is a tiling R1 = {r;, }i,er, of R1 and a tiling Ry =
{ri,}irer, of Ra, such that H1({y) and H2(ls) hold for some l1,0; < K. Let { =
lem(€y,03) with £ = a1l = agly for some oy, g € N.

Then Ry induces a sequence of ay macro-steps on Ry + A, and Ry a sequence
of as macro-steps on Ry + A, such that, when applied concurrently, we have for all
i1 €11 and iy € I5:

Reachy(t, (r;; + A) x (Ry + A), 7)1 S Ry A
Reachs ({1, (Ry + A) x (ri, + A),m)]2 € Ry,

for some © = (m,m) € II° where m (resp. m3) is of the form i -- 7" (resp.

mh o mS?) with w e T8 for all 1 < i < ay (resp. wh € I for all 1 < i < ay).
Hence:
Reachy(¢1,7;, 4, + (A, A), ) < R.
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Besides, for all 0 <t < {1, we have:

Reachg(t, (1, + A) x (Re + A),m)p S R+ A+¢
A Reachf(t, (Rl + A) X (7’2'2 + A),ﬂ')p CRy+A+e.

Hence, for all 0 <t < U7
Reachg(t, 1,4, + (A, A),T) S R+ (A+e,A+¢).

Theorem 6 allows us to implement the method along the same lines as in the
discrete-time case, except that we apply the operator Reachy, and Reachy, on con-
tinuous time intervals of the form [k, (k + 1)7] instead of the mappings f; and f,
at times k7. We have implemented the method using the system DynI BEX [5,56]
which makes use of interval arithmetic [141] and Runge-Kutta methods to compute

(an overapproximation of) the application results of Reachy, and Reachy,.

Application

We demonstrate the feasibility of our approach on the 4-room building ventilation
application adapted from [134], and recalled in Appendix A.4. The centralized
controller was obtained with 704 tiles in 29 minutes, the distributed controller was
obtained with 16 + 16 tiles in 20 seconds. In both cases, patterns of length 1 are
used. The perturbation due to human beings has been taken into account by setting
the parameters d, equal to the whole interval [0, 1] for the decomposition, and the
imposed perturbation for the simulation is given Figure 5.10. The temperatures T,
and T, have been set to the interval [27,30] for the decomposition, and are set to
30°C" for the simulation. A simulation of the controller obtained with the state-space
bisection procedure is given in Figure 5.11, where the control objective is to stabilize
the temperature in [20, 22]? x [22, 24]? while never going out of [19,23]* x [21, 25]*.

. :
0.8 [ —
ogs p room 1 [

. .

0 100 200 300 400
1 r .

ool room 2

0 100 200 300 400

0.8 [ ——
ool p room 3 [

0 100 200 300 400

p room 4 I

0 100 200 300 400
Time(s)

Figure 5.10: Perturbation (presence of humans) imposed within time in the different

rooms.
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Figure 5.11: Simulation of the centralized (left) and distributed (right) controllers
from the initial condition (22,22, 22,22).

5.2.8 Final remarks

In this chapter, we have proposed a distributed approach for control synthesis
of sampled switching systems in the discrete-time framework and applied it to a
real floor heating system. To our knowledge, this is the first time that reachability
and stability properties are guaranteed for a case study of this size. We have also
explained how the method extends to the continuous-time framework. The method
can be extended to take into account obstacles and safety constraints.

Note that it is essential in our method that the components are sampled with the
same sampling period 7, and that their clocks are synchronized. It would be inter-
esting to investigate how the approach behaves when clocks are badly synchronized
or when they have different periods (see, e.g., [99]).

5.3 Perturbed and distributed Euler scheme

We consider the perturbed control system
i = filx,d), (5.12)

where d is assumed to belong to a given set D. In the following, we denote by d™
the center (centroid or center of gravity) of set D. In practice, the set D is given as
a box, a we thus take d" the center of the box.

In the same manner as the previous chapter, we introduce some additional hy-
potheses allowing us to use an Euler’s scheme with precise error bounds. We suppose
that the system is Lipschitz in the following sense:

For all j € U, there exists a constant L; > 0 such that:

x y
d e
We then introduce the constant:

C; = sup Ly f;(x,d™)]
xeS

1£5(2,d) = f3(y, e)| < Lj , Va,yeSVdeeD
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where d™ denotes the center of box D.

We now introduce a hypothesis similar to (H1) made in Chapter 5 (2), with
additional disturbance.

(Hy,p) For every mode j € U, there exists constants A\; € R and v, € R. such

that Vx, 2’ € S and Yy, vy’ € D, the following expression holds
iz, y) = fi(@ ), 2 = af) < Njllo = 2P + 5 = 2lly = /|-

While the OSL condition is related to incremental stability, hypothesis (Hy p)
seems related to the notion of incremental input-to-state stability [13,14,138] (some-
times denoted §-ISS in the literature). Indeed, an incrementally input-to-state sys-
tem verifies a relation close to (Hy,p), with a positive constant \; (or more generally
a r function). Here, we thus generalize this notion with negative constants \;, mak-
ing the hypothesis much weaker. Because the system lies in a compact set (provided

that a controller is found), constants A; and ; can always be found.

Computation of constants \; and v;, L; and C; The computation of constants
L;, C;, \j (j € U) are realized with a constrained optimization algorithm. They are
performed using the “sqp” function of Octave, applied on the following optimization
problems:

— Constant L; is computed exactly as in the unperturbed case:

. - 15, d) = fi(y.©)|

j = ax
(z,d),(y,e)eSxD, (x,d)#(y,e) T Yy
o) - ()
€

— Constant C; is computed with the following optimization problem:

Cj = max Ly f;(z, d™)]
Knowing that:
<fj<xvy> - fj(x/7 y/)> L= .T/> =
iw,y) = f3(@' y) 2 — ') + {fi(a,y) — f;(2,y), @ — 2")
— Constant ) is first computed as follows:

A = max (fi(w,y) = fi(2',y), 2 —2')
z,2'€T, yeD, x#x’ H;L' — gj’Hz

— Constant 7; is then computed:

v = max Silwy) = [ y) 2 — o) = Ml — 2
val€Tyy/eD, shalyf [z =y v
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Perturbed Euler’s scheme We now define a perturbed Euler’s scheme as follows:

z(r) = 2(0) + 7£;(2(0),d™) (5.13)

We define the approximate trajectory computed with the distributed Euler’s
scheme by ¢;(t;7°) = #° + tf;(i° d™) for t € [0,7], when the system is in mode j
and with an initial condition z°.

We now give a perturbed version of Theorem 3.

Theorem 7. Given a distributed sampled switched system, suppose that the system
satisfies (Hyp), and consider a point & and a positive real 6. We have, for all
2°e B(2%0), w: Rt — D, te[0,7], je U:

o, (t; 2 w) e B(<;~§j(t; 7%, 3;(t)).

with, denoting by |D| the diameter of D:
— Zf )\j <0,

§;(t) = < (C,)° (=)t = 25t + 2eM" — 2)

—(A)*
1 C.v:|D
BOWE ( J_%)L- | (At +e¥'=1)
(1,)%(|D|/2)? v
oo (B @ ) )) e
AV
— Zf )\j > 0,
1 02 2,92 3\t
] ]
D
+ 3\, (CWA”A | (=3t + eV — 1)
]
2 9 1/2
+ 3)\] ((7]) <)|\D|/2) (€3Ajt _ 1) + 3)\j6263)\jt>>) (515)
J
— if A =0,

8;(t) = ((C)? (—t* — 2t + 2¢" — 2)
+ (Cy|D| (—t + ¢ —1)
+ ((3)2(ID1/2)% (e = 1) + 6%)))* (5.16)

A similar result can be established for sub-system 2, permitting to perform a

distributed control synthesis.
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Proof. We have, for all z,% € S%:

Ld(z —z[*) ~ ooy m -
ST = () - E0), 47w~ )
d" )+fj(j>dm)_fj<i'(0)7dm)ax_i'>

d" )7x_j>+<fj(‘%7dm) fj(jo ’dm)’;p—j>
am

(

)sx = &) + | f5(%,d™) = £
t\ _ (#(0)
am am

< Az = 2* +lw — d™| |z — & + Lt [ £(2(0),d™)| |= — 2|

- D -
<o -3+ (!5 + i) o - 3

&z

=
(il w) = f5(z,
< (il w) = f5(z,
(il w) = f5(z,

< (fi(z,w) — fj(@,d™),x —Z)+ L

|z — 7

where |D| denotes the diameter of D. Using the fact that |z —Z| < 1 (a|z—Z|*+ 1)

for any o > 0, we can write three formulas following the sign of A;.

— if )‘] < 0, we can choose a = W,

d(Jlz — #]*)
dt

and we get the differential inequality:

C? Vi yD| 72(|D|/2)2
<\lz— 72+ =L + Ci; ]
! Y Y Y

— if A; > 0, we can choose a =

d(Jlz — #]*)
dt

and we get the differential inequality:

C? C.~:|D 2(1D1/2)2
<z —FP + L2 4 G [, 5(D1/2)
Aj Aj \;

Aj
Cjt+v;|Dl/2°

— if Ay = 0, we can choose o =

d(Jlz — #]*)
dt

In every case, the differential inequalities can be integrated to obtain the formulas

WWI/W and we get the differential inequality:
J J

<[le = 2[* + C7t* + Cjy| DIt +~;(|D1/2)*

of the theorem.
O

Remark 8. One can note that for linear systems of the form
T = Ajxz + Bjw + Cj,

constants \; and y; can be replaced in the proof of Theorem 7 by the largest eigenvalue
AT
of A]J;AJ and ||Bj|| respectively, and are thus not needed to be pre-computed with

optimization algorithms.

We then establish a perturbed version of Corollary 2, using the same notations

for the sequences 0%,

Corollary 3. Given a switched system satisfying (Hy,p), consider a positive real 0
and a set of points Ty, ..., T, such that all the balls B(Z;,6) for 1 <i < m cover R.

Suppose that there exists patterns m; of length k; such that :
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. B )CSforallk’—l ki — 1

i)
i)m Omt) S
%0 with j = m;(k') and §' = (5’“/ L forallk € {1,...k;} and t € [0,7].

dt?

((@:)7,, 07,
B((Z:)z:, fi
&

3.

The above properties induce a control guaranteeing recurrence in R and safety in
S, thus solving Problem 1. ILe., for any perturbation w : Rt — D: if v € R, then
Oo(t;z,w) € S for all t = 0, and any trajectory starting from R returns infinitely
often in R.

The above corollary actually solves Problem 1 in presence of perturbations. Let
us now explain how a system can be split in two sub-systems, and considering the
state of the other sub-system as a disturbance allows us to build a compositional

synthesis, drastically lowering the computational cost of the method.

5.3.1 Distributed synthesis

The goal is to split the system into two (or more) sub-systems and synthesize
controllers for the sub-systems independently.

We consider the distributed control system

.7‘:31 = f0'11 (xl,l’g) (517)
ig = f022 (33'1, 1'2) (518)

where x; € R™ and x5 € R™, with ny + ny = n. Furthermore, o4 € U; and o5 € U,
and U = U; x Us,.

Note that the system (5.17-5.18) can be seen as the interconnection of sub-
system (5.17) where xs plays the role of an “input” given by (5.18), with sub-
system (5.18) where z; is an “input” given by (5.17).

Let R = Ry X Ry, S =51 x Sy, T =T, x Ty and 27" (resp. z3') be the center
of Ry (resp. Ry). We denote by L the Lipschitz constant for sub-system 1 under

(=) G

Co, = sup Ly, | f;, (z1,23")]

I1€51

mode o7y:

| fo, (1 22) = fo, (1, m2)| < L

We then introduce the constant:

Similarly, we define the constants for sub-system 2:
Ty (W
T2 Y2

Cg, = sup Lo [ fo, (27, 2)]

$2€52

| /o (1 22) = fo, (1, m2)| < L

and
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Let us now make additional assumptions on the coupled sub-systems, closely
related to the notion of (incremental) input-to-state stability.
(Hy,,1,) For every mode oy € Uy, there exists constants A, € R and 7, € R

such that Vz, 2’ € S? and Vy,y' € T%, the following expression holds

fo(@,y) = £, ), 2 —a') < g o = 2" + 35, |2 = 2y — v/

(Hy, 1,) For every mode oy € Us, there exists constants )\32 € R and 732 € R

such that Va, 2’ € T? and Vy,y' € S2, the following expression holds

2 (xy) = f20 ),y =) < A2 ly —v|P + 2, |z — 2|y — /|-

These assumptions express (a variant of) the fact that the function V(x,a’) =
|z — 2'|* is an ISS-Lyapunov function (see, e.g., [13,88]). Note that all the con-
stants defined above can be numerically computed using constrained optimization
algorithms.

Let us define the distributed Euler scheme:

B1(7) = £1(0) + 71, (£1(0), 25") (5.19)
To(T) = 2(0) + 72 (27", 72(0)) (5.20)

The exact trajectory is now denoted, for all ¢ € [0,7], by ¢, ;,)(t;2°) for an

initial condition z° = <m(1) x3>T, and when sub-system 1 is in mode j; € Uy, and
sub-system 2 is in mode j; € Us.

We define the approximate trajectory computed with the distributed Euler’s
scheme by ¢! (£39) = &9 + tfL (20, 2%") for ¢ € [0,7], when sub-system 1 is in
mode j; and with an initial condition 9. Similarly, for sub-system 2, qﬁ?g (t;29) =
9+ tf2 («7", 29) when sub-system 2 is in mode j, and with an initial condition Z9.

We now give a distributed version of Theorem 3.

Theorem 8. Given a distributed sampled switched system, suppose that sub-system 1
satisfies (H2), and consider a point 79 and a positive real 5. We have, for all
2% € B(7Y,0), 25 € Sy, t € [0, 7], 41 € Uy and any o9 € Us:

gb(h,az)(t l‘0>|1 € B(Q;L (t; j(l))’ 5j (t))
T
0 0

with 20 = <:1:1 :C2> and

— if A}, <0,

L) 1
(t) = ( () (—A)22 = 20, ¢+ 2N — 2)

1 (C} 75, || ( . At
I 1 /51 _)\41t_|_ey1 —1)
oy
12| T3]/2)% 2
+ A} ((7]1>(|>\12|—/ ) (Mt —1) + A}1526A;It>>) (5.21)
J1
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— if A}, >0,

1 C? 3AL ¢
00 = xpyen (3 (FO00) — o 267 —2)
g1 71
01711|T2| 3AL ¢
+ 3/\}1 (—;1 <—3/\]1-1t + et — 1)
J1
\2(170]/2)2 1/2
n 3)\]11 ((%1) §\|1 2|/ ) <€3)\]1.1t . 1) + 3)\;1(5263)\;1t>>) (5.22)
J1

—if AL =0,

8;,(t) = ((C})? (—t? — 2t + 2¢' — 2)
+ (Cy|T] (—t+ € —1)
+ ((L)2(Tl/2)% (e — 1) + 6%))) 7 (5.23)

A similar result can be established for sub-system 2, permitting to perform a

distributed control synthesis.

Proof. In order to simplify the reading, we omit the mode j; (which does not inter-
vene in the proof as long as ¢ € [0,7]) and write the proof for fj = fi, L}, = L1,
Cj = Cy, A}, = A\1. We have, for all xy,7; € SF:

Ld([lrr — 24]?)
2 dt

)

~ m ~ T z1(0
< (filzr, @2) = fi@r, 25"), 21 — 1) + Ly ( “11> N 15”))
< M2 — Z1)? + l2e — 23|21 — Z1]) + Lat || f1(21(0), 23| |21 — 4]

8 T s
S R s D T

where |T5| denotes the diameter of 7. Using the fact that |z — Z1]| < 3(allz1 —
Z1|* + 1) for any a > 0, we can write three formulas following the sign of A;.

— if \; < 0, we can choose o = and we get the differential inequality:

N\
Crt+m|Te|/2

C? o, ConlTal, | (T2
-\ -\ -\

d(|lx1 — %:?)
dt

< Mz — &P +

— if Ay > 0, we can choose a = and we get the differential inequality:

AL
Crt+m|T2|/2°

d(|zy — 241]?)
dt

C? Cin |T: 201751 /2)2
<l — 2+ S Gl i (T)/2)

At At A
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— if Ay = 0, we can choose a = and we get the differential inequality:

d(||zy — 34]?)
dt
In every case, the differential inequalities can be integrated to obtain the formulas

1
Chit+m|Te|/2°

< oy — &4|? + CT2 + Cin|Tolt + 71 (|T2]/2)?

of the theorem.

O

It then follows a distributed version of Corollary 2.
Corollary 4. Given a positive real §, consider two sets of points T1,. .. ,5:,17“ and
I, ..., 22, such that all the balls B(Z},0) and B(Z},96), for 1 < iy < my and

1 < 19 < mo, cover Ry and Ry. Suppose that there exists patterns 771‘11 and 7r2-22 of
length k;, and k;, such that :

1. B((&})k 0K ) = Sy, for all K =1, k;y — 1

2. B((#)5,65) < R
d2(6;1(t)) : s 1t . sk—1 /

8. —k— > 0 with j, = m; (k) and &' = 07,7, for all k" € {1,....k;,} and
te[0,7].

1. B((ii)fr; ,(57'?/_2 ) S Sy, forall k' =1,... ky, — 1

2

2 (50 !
9. T 0 with jy — 72(K) and & — 5%;1, for all k' € {1,....k;,} and

te0,7].

2. B((32)"2,6") < R,.
12 ’L2

The above properties induce a distributed control o = (01, 09) guaranteeing (non
simultaneous) recurrence in R and safety in S. Le.
— ifx € R, then ¢,(t;x) € S for allt =0
— if v € R, then ¢o(k1T;2)1 € Ry for some ky € {k;,, ... ,kiml}, and symmetri-
cally o (kaT; )12 € Ry for some ky € {kiy, ..., ki, }

5.3.2 Application

We demonstrate the feasibility of our approach on the (linearized) building ven-
tilation application adapted from [134], given in Appendix A.5, with constant pa-
rameters T, = 30, T. = 30, T, = 17, s, = 1 for i € N. The centralized controller
was obtained with 256 balls in 48 seconds, the distributed controller was obtained
with 16 + 16 balls in less than a second. In both cases, patterns of length 2 are used.
A sub-sampling of h = 7/20 is required to obtain a controller with the centralized
approach. For the distributed approach, no sub-sampling is required for the first
sub-system, while the second one requires a sub-sampling of A = 7/10. Simulations
of the centralized and distributed controllers are given in Figure 5.12, where the

control objective is to stabilize the temperature in [20, 22]* while never going out of
[19,23]%.
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Table 5.1: Numerical results for centralized four-room example.

Centralized
R [20,22]*
S [19,23]*
T 30
Time subsampling 7/20
Complete control Yes
Error parameters j:ﬁi{w Aj = —6.30 x 1073
jmax C; =4.18 x 107°
Number of balls/tiles 256
Pattern length 2
CPU time 48 seconds

Table 5.2: Numerical results for the distributed four-room example.

Sub-system 1 Sub-system 2
R [20, 22]* x [20, 22]?
S [19, 23] x [19,23]?
T 30
Time subsampling No 7/10
Complete control Yes Yes
Error parameters “max )\Jl-l =—-1.39x107% | max /\§2 = —142x1073
Ji=TLyed ja=1,.d
max vj, = 1.79 x 107 jzzf?_’f,ﬂ?z =247 x 107"
jmax Cj =4.15x 107" max C3 =5.75x 107"
Number of balls/tiles 16 16
Pattern length 2 2
CPU time < 1 second < 1 second

5.3.3 Final remarks and future work

We have given a new distributed control synthesis method based on Euler’s
method. The method makes use of the notions of 4-ISS-stability and ISS Lyapunov

functions. From a certain point of view, this method is along the lines of [53]

and [101] which are inspired by small-gain theorems of control theory (see, e.g., [97]).
In the future, we plan to apply our distributed Euler-based method to significant
examples such as the 11-room example of Appendix A.9.
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Temperature (C)
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—room 1 —room 1
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Figure 5.12: Simulation of the centralized (left) and distributed (right) controllers
from the initial condition (22,22, 22,22).
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Chapter 6

Control of high dimensional ODEs
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In this chapter, we aim at extending the previous works to the control synthesis
of partial differential equations, mainly used to model mechanical systems. While
the models of switched systems are usually used for (low dimensional) ordinary dif-
ferential equations controlled with a piecewise constant function, it is also possible
to use these models for the control of mechanical systems. Indeed, the dynamics of
most mechanical systems can be modeled by partial differential equations, and the
spacial discretization of such systems leads to high dimensional ODEs. Controlled
with a piecewise constant function on the boundary, and written in a proper way
(the state space representation), one obtains high dimensional switched control sys-
tems. As stated in Chapter 4, the computational cost of the synthesis algorithms
is exponential in the dimension of the system. Whether a finite element, a finite
difference, or any discretization method is used, an accurate discretized model of a
mechanical system leads to ODEs of dimension larger than 1000. The dimension of
real case studies used in industry often exceeds 10°. It is thus irrelevant to directly
use the algorithms of Chapter 4 to discretized PDEs. A model order reduction
is required in order to synthesize a controller at the reduced-order level. In this
chapter, linear systems are considered, and we use the reachability computations of
Chapter 4.1 since they provide the most accurate results. Two methods are pro-
posed: a fully offline procedure, and a semi-online procedure requiring online state
estimation. The state is first supposed known at each time point, we then provide
a first step to the use of state observers (i.e. partial observation). Note that the
synthesis is always performed offline, we refer to semi-online because the application

of the induced controller requires online state estimation.

Comparison with related work.

Model order reduction techniques for hybrid or switched systems are classically
used in numerical simulation in order to construct, at the reduced level, trajectories
which cannot be computed directly at the original level due to complexity and
large size dimension [16,46]. Model reduction is used in order to perform set-based
reachability analysis in [85]. Isolated trajectories issued from isolated points are not
constructed, instead, (an over-approximation of) the infinite set of trajectories is
derived from a dense set of initial points. This allows to perform formal verification
of properties such as safety. In both approaches, the control is given as an input of
the problem. In contrast here, the control is synthesized using set-based methods in

order to achieve by construction properties such as convergence and stability.

While symbolic approaches are mostly used for the control of low order ODEs,
the control of mechanical systems can be realized using the control theory approach,
where a continuous control law is guessed and proved to be efficient on the continuous
PDE model [22,111,164]. The damping of vibrations with piezoelectric devices
is in particular a widely developed branch of the control of mechanical systems.

The shunting of piezoelectric devices with electric circuits permits to convert the
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vibration energy into electrical energy, which is then dissipated in the electric circuits
[83]. Note that this approach can be active or passive, depending on the electric
energy furnished to the electric circuit. A switched control approach is developed
in [47,152], the piezoelectric device is shunted on several electric circuits, but only
one is selected at a time depending on the state of the mechanical system. This
approach is called semi-active since the electric circuits are passive but the switching

requires energy. In the present chapter, the approach is fully active.

Plan.

In Section 6.1, we give some preliminaries on switched control systems and their
link with PDEs and mechanical systems. In Section 6.2, we introduce some elements
of control theory and the state-space bisection method. In Section 6.3, we explain
how to construct a reduced model, apply the state-space bisection method at this
level, and compute upper bounds to the error induced at the original level. In
Section 6.4, we propose two methods of control synthesis allowing to synthesize
(either offline or online) a controller at the reduced-order level and apply it to the
full-order system. In Section 6.5, we apply our approach to several examples of
the literature. In section 6.6, we extend our method to the use of observers. We

conclude in Section 6.7.

6.1 Background

We consider systems governed by Partial Differential Equations (PDEs) having
actuators allowing to impose forces on the boundary; these systems can represent
transient thermal problems, vibration problems... By applying the right external
force at the right time, one can drive the system to a desired operating mode. Our
goal here is to synthesize a law which, given the state of the system, computes the
boundary force to apply.

In order to illustrate our approach, we use the example of the heat equation:
r oT

o (@ 1) = aAT(z,t) =0 ¥(t,z) € [0,T] x Q
T(x,-)=Tx,) Vr e o0t

) (6.1)
‘2_3% Y = @iz, ) Va € 00¢

[ T(x,0) = Ty(z)

Discretized by finite elements, the nodal temperatures {1’} are computed with

respect to time, and the system becomes:

{ Crp{T} + Kpp{T} = {F%)
{T(0)} = {Tv}

The purpose is then to compute the forces {F¢} with respect to time such that the

(6.2)

temperature field verifies some desired properties.
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For example, one may want to impose that the temperature in a particular
node remains within a given temperature range. Usually, the quantities of interest
one wants to control are given in discrete points, which are for example sensor
measurements, or they are given as local averaging. Here, we consider the case
where the quantities of interest can be directly extracted from the nodal values with
a matrix called output matriz (see equation (6.3)).

We consider a particular kind of actuators; the force applied only takes a finite
number N of values. For example, in (6.1) for the case of a room heated with a
heater, the flux ¢? is equal to 0 when the heater is turned off and equal to a positive
value when it is turned on. The control systems associated to such behaviors are
naturally written under the form of switched systems (3.1). Focusing on linear

PDEs, the addition of an output leads leads to a system of the form:

- { #(t) = Az(t) + Bu(t),
| yt) = Ca(t),

The n-vector x is called the state of the system, the p-vector u is the control input,

(6.3)

the m-vector y is the output of the system, A is an n x n-matrix, B an n X p-matrix,
and C' an m x n matrix. Writing the discretized equation (6.2) under this form is
straightforward by multiplying the first line by Cnf, (which is invertible), and the
state vector is then {T'}. In the case of higher order PDEs (for example in the case
of the wave equation), we merely need to enlarge the state vector to take the first

derivative of the nodal values in it.

6.2 Problem setting

We will synthesize controllers using adaptations of Algorithms 1 and 2 by adding
constraints on the outputs of the system.

The entries of the problem are the following:
1. a subset R, < R" of the state space, called interest set,
2. asubset R, < R™ of the output space, called objective set.

The objective is to find a law wu(-) which, for any initial state zo € R,, stabilizes
the output y in the set R,. The set R, is in fact the set of all initial conditions
considered, and the set R, is a target set, where we want the output to stabilize.
The sets R, and R, are given under the form of boxes, i.e. interval products of R"
and R™ respectively.

In the remainder of this chapter, we will denote control patterns by Pat € U*
for some k > 1 in order to avoid confusion with projectors, classically denoted by
7. We extend the definition of the Post operator for outputs as follows: the output
successor set of a set X < R™ of states under switching mode w is:

Post,o(X) = U Coy(t;to, xo).

$0€X
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We similarly extend this definition for sequences of inputs (patterns) Pat € U* for

some k > 1:
Postpac(X) = | ] Copalt;to, xo).

xoeX

With these definitions and notations, we are now able to present the adaptations
of the algorithm presented in Chapter 3. It relies on the decomposition of the set
R,. Given the sets R, and I, and a maximum length of input pattern K, it returns
a set A of the form {(V;, Pat;)};c; where I is a finite set of indices. Each V; is a
subset of R, and each Pat; is a pattern of length at most K, such that:

(a) User Vi = Be,

(b) for all i € I: Postpa, (Vi) € R,

(c) for all i € I: Postpa, (Vi) € R,.

The algorithm thus returns several sets V; that cover R,, and each V; is as-
sociated to a pattern Pat; that sends V; in R,, and the output in R,. The set
R, is thus decomposed in several sets, and for each one, we have one control law:
Va € V;,u(x) = Pat;. Therefore, for two initial conditions in a set V;, we apply the
same input pattern. The fact that we use set based operations has a key role which
allows us to consider sets of initial conditions, and this is how we manage to obtain
a law u(z). In the following, when a decomposition A is successfully obtained, we
denote by ua the induced control law.

Algorithms 4 and 5 show the main functions used by the state-space decomposi-
tion algorithm. Note that function “Decomposition” now takes an additional input
R,. When looking for stabilizing patterns, we add the more restrictive constraint
that the output of the system is sent in R,.

At the beginning, the function “Decomposition” calls sub-function “Find_Patt-
ern” in order to get a k-pattern (a pattern of length up to k) Pat such that
Postpg(Ry) © R, and Postpgc(R,) < R,. If it succeeds, then it is done. Other-
wise, it divides R, into 2" sub-boxes Vi, ..., Von of equal size. If for each V;, Find_-
Pattern gets a k-pattern Pat; such that Postpa, (Vi) € R, and Postpg, (Vi) S Ry,
it is done. If, for some Vj, no such input pattern exists, the function is recursively
applied to V. It ends with success when a successful decomposition of (R,, R,, k)
is found, or failure when the maximal degree d of bisection is reached. The main
function Bisection(W, R, R,, D, K) is called with R, as input value for W, d for
input value for D, and k as input value for K; it returns either ({(V;, Pat;)};, True)

with
Jvi=w,

|J Postpat, (Vi) < Ra,
U Postpa, (Vi) € R,
when it succeeds, or (_, False) when it fails. Function Find _Pattern(W,R,,R,,K)
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looks for a K-pattern Pat for which Postpy (W) < R, and Postpg.c(W) < R, :
it selects all the K-patterns by increasing length order until either it finds such an

input pattern Pat (output: (Pat, True)), or none exists (output: {_, False)).

Algorithm 4 Decomposition(W, R, Ry, D, K)
Input: A box W, a box R,, a box R,, a degree D of bisection, a length K of
input pattern
Output: {({(V;, Pat;)};, Truey with (J,V; = W, U, Postpa, (Vi) < R, and
\U; Postpa,c(Vi) € Ry, or {_, False)
(Pat,b) := Find_Pattern(W, R,, R,, K)
if b = True then
return{{(W, Pat)}, True)
else
if D =0 then

return (_, False)

else
Divide equally W into (W7, ..., Wan)
for:=1...2" do

(A;,b;) := Decomposition(W;,R,,R,,D — 1,K)

end for
return ({J,_; o A, /\izl...Z” b;)

end if

end if

6.3 Model order reduction

As seen in Chapter 3, the main drawback of the previous state-space decompo-
sition algorithm is the computational cost, with a complexity in O(2"N*), with n
the state-space dimension, d the maximum degree of decomposition, N the number
of modes and k the maximum length of researched patterns. It is thus subject to
the curse of dimensionality. In practice, the dimension n must be lower than 10 for
acceptable computation times. Thus, by directly applying the bisection algorithm to
a discretized PDE, the number of degrees of freedom is limited to 10 for a first order
PDE, and even less for a higher order PDE written in state-space representation.
The use of a Model Order Reduction (MOR) is thus unavoidable.

We choose here to use projection-based model order reduction methods [16].
Given a full-order system >, an interest set R, < R™ and an objective set R, < R™,
we construct a reduced-order system )y using a projection m of R™ to R"™". If 7 € R™*"
is a projection, it verifies 72 = 7, and 7 can be written as m = wwR, where

7w € R g € R ™ and n, = rank(w). The reduced-order system ¢ is then
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Algorithm 5 Find_Pattern(W, R,, Ry, K)
Input: A box W, a box R,, a box R,, a length K of input pattern
Output: (Pat,Truey with ,Postpu(W) < R, Postpuc(W) < R, and
Unfpa(W) < S, or {_, False) when no input pattern maps W into R, and CW
into R,
fort=1... K do
IT := set of input patterns of length ¢

while II is non empty do
Select Pat in I1
IT := II\{ Pat}
if Postp,(W) < R, and Postpe.o(W) < R, then

return (Pat, True)

end if

end while

end for

return (_, False)

obtained by the change of variable z = mrx:

with
A =rmrAr;,, B=mgB, C=Cny.

The projection 7 can be constructed by multiple methods: Proper Orthogonal
Decomposition [48,98], balanced truncation [15,29, 30, 140], balanced POD [172]...
We use here the balanced truncation method, widely used in the control commu-
nity and particularly adapted to the models used here, written under state-space
representation.
The objective is now to compute a decomposition at the low order level, and
apply the induced reduced control to the full order system. In order to ensure that
the reduced control is effective, we introduce the following notations, simplifying the
reading of the remainder of this chapter:
— x(t, z,u) denotes the point reached by ¥ at time ¢ under mode u € U from
the initial condition .

— x(t,Z,u) denotes the point reached by 3 at time ¢ under mode u € U from
the initial condition 2.

— y(t, z,u) denotes the output point reached by ¥ at time ¢ under mode u € U
from the initial condition x.

— y:(t,Z,u) denotes the output point reached by S at time ¢ under mode u € U

from the initial condition Z.
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When a control u is applied to both full-order and reduced-order systems, an er-
ror between the output trajectories y(¢,z,u) and y,(t, 7gx, u) is unavoidable, and
we denote it by e,(t,z,u). A first tool to ensure the effectiveness of the reduced-
order control is to compute a bound on |e, (¢, z,u)|. A second source of error is the
deviation between mgx(t, x,u) and x(¢, mrx, u), which we denote by e, (¢, z,u). Com-
puting a bound on |e,(t, z, u)| will also be necessary. Before establishing these error
bounds, we first briefly describe the balanced truncation method. We then present

how we compute a reduced-order control and apply it to the full-order system.

6.3.1 The balanced truncation

Applying the balanced truncation consists in balancing then truncating the sys-
tem. Balancing the system requires finding balancing transformations which di-
agonalize the controllability and observability gramians of the system in the same
basis.

The controllability and observability gramians W, and W, of the system X are

respectively the solutions of the dual (infinite-time horizon) Lyapunov equations
AW, + W, A" + BB =0 (6.4)
and
AW, + W,A+C"C =0 (6.5)
The balancing transformations 7z and 7, are then computed as follows [30]:
1. Compute the Cholesky factorization W, = UU"
2. Compute the eigenvalue decomposition of UTW,U
U'W,U = KoK '
where the entries in ¢ are ordered by decreasing order
3. Compute the transformations
TR = o KU
m, =UK o3
One can then verify that
WRWCW]—; = W—LFWOWL =0

and o contains the Hankel singular values of the system.

Computing the balancing transformations for large scale systems derived for
example from discretized partial differential equations is usually very expensive -
even sometimes irrelevant - and many advances have been carried out in order to
solve the Lyapunov equations and compute the transformations with approximate

methods, often based on Krylov subspace methods (see for example [15,29, 146]).
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6.3.2 Error bounding
Error bounding for the output trajectory

Here, a scalar a posteriori error bound for e, is given (mainly inspired from [85]).
The error bound ¢, can be computed from simulations of the full and reduced-order
systems. The computation time for simulations is negligible compared with that of
the bisection method to generate the decompositions.

Computing an upper bound of |le,(t,z,u)| is equivalent to seeking the solution

of the following (optimal control) problem:

Ey(t) = sSup ||e(t,a:0,u)\|

uelU,xp€ER,

= sup Hy(t,l'o,U) - Yr<ta7TR$0>U)H-

uelU,xpER,
Since the full-order and reduced-order systems are linear, one can use a superposition
principle and the error bound can be estimated as ,(t) < ™=%(t) + “=%(¢) where

5$0=0 is the error of the zero-state response, given by (see [85])

xo=0

Sy

(t) = max Ju] - e, (t, 2 = 0,u)]
= max [[u] - [y(t,0,u) — y«(t, 0, )],
uelU
and SZ:O is the error of the zero-input response, given by

ey~ (1) = sup [e,(t, zo,u = 0)]
ToER:

= sup [y (¢, xo,0) — yr(t, TR0, 0)]-

TER,

Using some algebraic manipulations (see [85]), one can find a precise bound for
epo=" and ="

t tA
xo=0 [Ovt] ~ € B
e20=0(1) < u()]12 Ly[c ¢ | e ][B]dt, (6.6)
tA
u=0(¢) < c ¢l 1" 6.7
5700 < sup || [|° || o | (6.7)

The first error bound (6.6) always increases with time whereas the second bound
(6.7) can either increase or decrease. These properties are used to compute a guar-

anteed bound. For all j € N (j corresponds to the length of the pattern applied),

we have:
Ey(j7'><€i
with
] 0.jr G R etA B
R0l N N | I | e

N eITA To
+ C —-C LA . 6.8
EAIE | Ry | P [
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Furthermore, we have:

with
g, = supegy(t). (6.9)

t=0

This bound exists when the modulus of the eigenvalues of €™ and e is strictly

inferior to one, which we suppose here.

Error bounding for the state trajectory

Denoting by j € N the length of the pattern applied, the following results holds:

, o
x(t = jr,@,u) = /e + f AU Bu(t)dt,
0

o T
X(t = jr,mpx,u) = e rpa + J AU Bu(t)dt,
0

Using an approach similar to the construction of the bounds (6.6) and (6.7), we

obtain the following bound, which depends on the length j of the pattern applied:

|mrx(t = j7,m,u) — X(t = j7, 7T, u)| < €, (6.10)
with
tA

e = OIS [ [ —Im][ i

+osup | [ mn 1, |

ro€ER,

B
> |t

ejTA o
i ] [ ] | (6.11)
(& TRX(

Remark: in order to simplify the reading, the notation |Pat| will often be used in

the following to denote the length of the pattern Pat.

6.4 Reduced order control

Two procedures are proposed for synthesizing reduced-order controllers: (i) an
offline procedure, consisting in computing a complete sequence of control inputs for a
given initial condition; (ii) a semi-online procedure, where the patterns are computed
through online projection of the full-order state. We describe these approaches in

the following subsections.
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6.4.1 OffHine procedure

Suppose that we are given a system 3, an interest set R,, and an objective set
R,. The reduced-order system S of order n,, obtained by balanced truncation, is

written under the form of equation (6.3):

‘. { i(t) = Az(t) + Bu(t),

where A = mpAn, €e R B = gpB e R*? (' = Cry € Rm*ne,

We denote by R, the projection of R,. Given the interest set Rp, the objective
set R, and a maximal length of researched pattern K, the application of the state-
space decomposition algorithm to the reduced system returns, when it succeeds, a

decomposition A of the form {Vl, Pat;}icr, with I a finite set of indices, such that:
L. Uie] VZ = Rxa
2. forallie I: Postpati(f/i) c R,,
3. forallie I Postpathé(f/i) c R,.

The decomposition A induces a control u A on R,. Applied on the reduced-order
system 3, the control u A keeps Z in R, and sends y, in R,. This control can be
applied to the full-order system in two steps: a sequence of patterns is computed on
the reduced-order system, and it is then applied to the full order system:

(a) Let x¢ be an initial condition in R,. Let &y = mrx( be its projection belong-
ing to R,E, To = mRrxo is the initial condition for the reduced system > Zo
belongs to XA/Z-O for some iy € I; thus, after applying Pat;,, the system is led to
a state Z1; 21 belongs to f/il for some i; € I; and iteratively, we build, from
an initial state gy, a sequence of states Z1, Zs,... obtained by application of
the sequence of k-patterns Pat,,, Pat;,, ... (steps (1), (2) and (3) of Figure

6.1).

(b) The sequence of k-patterns is computed for the reduced system 3, but it can
be applied to the full-order system ¥: we build, from an initial point zq, a
sequence of points x1, xa,... by application of the k-patterns Pat;,,Pat;,,. ..
(steps (4), (5) and (6) of Figure 6.1). Moreover, for all xy € R, and for all

0

o » as defined in

t = 0, the error |y(t,zo,u) — yr(t, TrTo, u)| is bounded by &
equation(6.9).

This procedure thus allows, for any system 3 of the form (6.3), and given an
interest set R, and an objective set R,, to send the output of the full-order system
in the set R, + ¢;7. More precisely, if 3 is the projection by balanced truncation
of ¥, let A be a decomposition for (R,,R,,k) w.r.t. ¥. Then, for all 2o € R,, the
induced control u applied to the full-order system ¥ in z is such that for all j > 0,

the output of the full-order system y(t) returns to R, + &, after at most k 7-steps.
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Figure 6.1: Diagram of the offline procedure for a simulation of length 3.

Here, R, + ¢, denotes the set containing R, with a margin of £°. If R, is an
interval product of the form [a;,bi] x -+ X [am,bn], then R, + ¢ is defined by

lar — &), br + ] < X [am — &), b + £7].

Remark: Here, we ensure that y (¢, zo, u) is in R, +e; at the end of each pattern,
but an easy improvement is to ensure that y(¢, zo, u) stays in a safety set S, o R, at
each step of time k7. Indeed, as explained in [67], we can ensure that the unfolding
of the output trajectory stays in a given safety set S,. The unfolding of the output
of a set is defined as follows: given a pattern Pat of the form (u;---u,,), and a set
X < R", the unfolding of the output of X via Pat, denoted by Unf p,; ~(X), is the
set UZO X, with:

— Xo = {Czx|z € X},

— Xi41 = Posty,, o(X;), forall 0 <i<m —1.

The unfolding thus corresponds to the set of all the intermediate outputs produced
when applying pattern Pat to the states of X. In order to guarantee that y(¢, zo, u)
stays in \S,, we just have to make sure that y, (¢, Trzo, u) stays in the reduced safety
set S, —e,’. We thus have to add, in the line 6 of Algorithm 5, the condition: “and
Unf pagc(W) < S, — 2.

6.4.2 Semi-online procedure

Up to this point, the procedure of control synthesis consists in computing a com-
plete sequence of patterns on the reduced order model 3 for a given initial state z,
and applying the pattern sequence to the full-order model ¥. The entire control law
is thus computed offline. While the decomposition is always performed offline, one
can however use the decomposition A online as follows: let xo be the initial state in
R, and &y = mrzy (step (1) of Figure 6.2) its projection belonging to R, & belongs

to Vio for some 7y € I; we can thus apply the associated pattern Pat;, to the full-order

114



system X, which yields a state 1 = x(| Pat;,|, xo, Pat;,) (step (2) of Figure 6.2), the
corresponding output is sent to y; = y(|Pat;,|T, zo, Pat;)) € R, + ELPati‘)'; in order to
continue to step (3), we have to guarantee that 7zx(|Pat;|7, x, Pat;)) belongs to R,
for all z € R, and for all 7 € I. As explained below, this is possible using the compu-
tation of an upper bound to the error |7mrx(|Pat;|T, x, Pat;) — Xx(| Pat;|T, mrx, Pat;)|
and a reinforcement of the procedure for taking into account this error.

Let 5'5“' be the upper bound to

|mrx(|Pat|T, x, Pat) — x(|Pat|T, mgx, Pat)||,

as defined in equation (6.11). We modify the Algorithms 4 and 5, which become

“Bisection_Dyn” and “Find_Pattern_Dyn” (Algorithms 6 and 7), they are computed

1
z -

with an additional input e, = (e .,€¥), k being the maximal length of the pat-
terns. With such an additional input, we perform an e-decomposition. Given a

system X, two sets IR, and R, respectively subsets of R" and R™, a positive inte-
1

o

ger k, and a vector of errors £, = (& .,€), application of the e-decomposition
returns a set A of the form {V;, Pat;},c;, where [ is a finite set of indexes, every V;
is a subset of R,, and every Pat; is a k-pattern such that:

(@7) User Vi = Ra,

(b)) for all i € I: Postpa, (Vi) S Ry — b ™

(c’) for all i € I: Postpa, c(Vi) € R,.

Note that condition (b’) is a strengthening of condition (b) in subsection 6.2.

Accordingly, line 6 of Algorithm 5 becomes in Algorithm 7:
6 if Postp,(W) S R, — €. and Postpac(W) < R, then

The new algorithms enable to guarantee that the projection of the full-order system

state mrx always stays in R,, we can thus perform the online control as follows:

: ¥ A Pat; ~
Since POStPatiO(V;O) c R, — EL; ol and TrTo € Viy, we have Postpqt, (TRrTo) €
A Pat; R Pat.. | .
R, — Ex ZO|; thus gz = mrx(|Pat,|T, xo, Pat;,) belongs to R,., because elfetiol 15 o

bound of the maximal distance between the trajectories X(|Pat;, |7, mrzo, Pat;,) and
wrX(|Pat,| T, xo, Pat;,);

since mrr1 belongs to Rx, it belongs to V;, for some ¢; € I; we can thus compute
the input pattern Pat;,, and therefore, we can reapply the procedure and compute

an input pattern sequence Pat;,,Pat; ,... As for the output, the yielded points

109

y1 = y(|Pat,|T, xo, Paty,), yo = y(|Pat, |7, x1, Pat;,), ... belong respectively to the
|Pat1'0| |Pati1|

sets Ry +¢&y "R, +ey ...

The main advantage of such an online control is that the estimated errors
aLPa“O',gLP“t“',. .. are dynamically computed, and are smaller than the static bound
g, used in the offline control. The price to be paid is the strengthening of condition
(b”). In the best case, i.e. if the errors are low and the system is very contractive,

this can result in the same decomposition and computation time as in the offline
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Figure 6.2: Diagram of the online procedure for a simulation of length 3.
procedure. But if the system is not contractive enough or if the errors are too large,

this can lead to a more complicated decomposition, and thus higher computation

times, and in the worst case, no successful decomposition at all.

6.5 Numerical results

6.5.1 Thermal problem on a metal plate

Insulation

A
-« 1.0 >

Heat
diffusion
>

1.0

R

<T0.4 4>‘

Heated edge

Figure 6.3: Geometry of the square plate.

We consider here the problem of controlling the central node temperature of a

square metal plate, discretized by finite elements; this example is taken from [86].

The square plate is subject to the heat equation: g—f(x, t) — aAT(z,t) = 0. After
discretization, the system is written under its state-space representation (6.3). The
plate is insulated along three edges, while the right edge is open. The left half of the
bottom edge is connected to a heat source. The exterior temperature is set to 0°C,
the temperature of the heat source is either 0°C (mode 0) or 1°C (mode 1). The
heat transfers with the exterior and the heat source are modeled by a convective
transfer. The full-order system state corresponds to the nodal temperatures. The

output is the temperature of the central node. The system is reduced from n = 897
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Algorithm 6 Decomposition Dyn(W, R,, Ry, D, K, &)
Input: A box W, a box R,, a box R,, a length K of pattern, a vector of errors

£, a degree D of bisection
Output: {({(V;, Pat;)};, Truey with (J,V; = W, U, Postpa, (Vi) < R, and
\U; Postpa,c(Vi) € Ry, or {_, False)
(Pat,b) :=Find_Pattern_Dyn(W, R,, R, K, ;)
if b = True then
return ({(W, Pat)}, True)
else
if D =0 then
return (_ False)
else
Divide equally W into (W7, ..., Wan)
for:=1...2" do
(A;,b;) := Decomposition Dyn(W;,R,,R,,K &,,D — 1)
end for
return ({J,_; on A, /\izl...Z” b;)
end if
end if

to n, = 2 (Figure 6.5) and n, = 3 (Figure 6.6). The interest set is R, = [0,0.15]%7
and the objective set R, = [0.06,0.09]. The sampling time is set to 7 = 8 s. The
geometry of the system is given in Figure 6.3. The decomposition obtained with the
offline procedure is given in Figure 6.4.

The decompositions and simulations have been performed with MINIMATOR
(an Octave code available at https://bitbucket.org/alecoent/minimator_red) on a
2.80 GHz Intel Core i7-4810MQ CPU with 8 GB of memory. The decompositions

were obtained in 5 seconds for the case n, = 2 and in 2 minutes for the case n, = 3.

_pt T T T T T
00 056 10 15 20 25 3.0
X

Figure 6.4: Decomposition of R, = 7rR, in the plane (%1, Z2) (for n, = 2) with the
offline procedure.

Simulations of the offline and online methods are given in Figures 6.5 and 6.6.
We notice in Figure 6.5 that the trajectory y (resp. u,) exceeds the objective set
R, (resp. R, + 553““') during the application of the second pattern, yet the markers
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Algorithm 7 Find_Pattern Dyn(W, R,, Ry, K, ¢5)
Input: A box W, a box R,, a box R,, a length K of pattern, a vector of errors

€z
Output: (Pat,Truey with ,Postpu(W) < R,,Postpuc(W) < R, and
Unfpa(W) < S, or {_, False) when no pattern maps W into R, and CW into
Ry
fori=1...K do
IT := set of patterns of length ¢
while II is non empty do
Select Pat in II
IT := II\{ Pat}
if Postpy (W) € R, — &', and Postpg,.c(W) € R, then
return (Pat, True)
end if
end while
end for
return (_, False)

corresponding to the end of input patterns do belong to objective sets. Comparing
the cases n, = 2 and n, = 3, we finally observe that a less reduced model causes

lower error bounds, and thus a more precise control, at the expense of a higher

computation time.

0.1

Output trajectory
Output trajectory

0 y 0 y

(a) Ry (b) — Ry

— Ry + gys—y»inf — Ry + eJJs-v»Ii
400 500 600

: 0 100 200 300 400 500 600 0 100 200 300
Time (s) Time (s)

Figure 6.5: For n, = 2, simulation of y(t) = Cz(t) and y,(t) = CZ(t) from the
initial condition zg = (0)%7. (a): guaranteed offline control; (b): guaranteed online

control.

6.5.2 Vibrating beam

In this case study, which comes from a practical work designed by Fabien Formosa

[63], we apply our method to vibration control of a cantilever beam. The objective

118



Output trajectory
Output trajectory

0 Y 0 Y

(@) Ry A (b) Ry _
Ry + eﬁ-y»mf Ry + egs-x»ll

0 100 200 300 400 500 600 o 100 200 300 400 500 600
Time (s) Time (s)

Figure 6.6: For n, = 3, simulation of y(t) = Cz(t) and y,(t) = CZ(t) from the
initial condition 2o = (0)%7. (a): guaranteed offline control; (b): guaranteed online

control.

Steel beam

APA actuator

Figure 6.7: Scheme of the vibrating beam.

is to keep the tip displacement of the beam as close as possible to zero. To stabilize
the beam, a piezoelectric patch applies a torque with the mechanism schemed in
Figure 6.7 at a distance x,; from the blocked side of the beam. The model retained
is a finite element model with classical beam elements. The beam equation is the
following: \

mw@¢)+Efag$”>:ég?&x—xM) (6.12)
The torque M, is chosen with the control variable u. By applying the right torque
at the right time, we hope to stabilize the beam. In its finite element writing, the

system is:
MW + KW = F, (6.13)

Using a modal decomposition

Wz,t)= >, at)ei(@),

1S<Nmodes

we can write a reduced system of the form:

)

119



Note that a modal damping is added in this step, it permits to have a realistic
behaviour of the beam since it is subject to loss of energy. By rearranging the
terms of equation (6.14) into a first order ODE, we can write the system under a

state-space representation:

5. (t) = Ax(t) + Bu(t),
|yt = Cu(),

where the output y is the tip displacement of the beam. Henceforth, the state

(6.15)

variable contains the variables a; and a;. The dimension of the state-space is thus
twice the number of retained modes. In this way, the system can be treated with
the method developed here, applying a balanced truncation to the system (6.15)
and building a reduced-order control.

Note that the intermediate model order reduction by modal decomposition can-
not actually be avoided, because the direct rearrangement of system (6.13) into its
state-space representation leads to a matrix A possessing some positive eigenvalues
(instead of only negative ones), and the calculation of balancing transformations is
then much more complicated, or even impossible.

The finite element model is composed of 60 elements (thus 120 degrees of freedom
to take the rotation into account), we retain 20 modes for the modal decomposition,
and the system is reduced to n, = 4. Nine control modes are chosen to control
the beam, including the mode corresponding to a null torque. Two simulations for
different initial conditions and objective sets are given in Figure 6.8. In the first
one, several modes are initially excited, whereas only the first mode is excited in
the second one. In both cases, the online procedure is applied, and we manage to
stabilize the tip displacement relatively fast. The output of the full-order system is
stabilized in R, + 553““‘ with 5LPati| « 0.2. The errors 553““‘ can seem quite high
compared to the tip displacement, this comes from the hyperbolic nature of the
equations which rule this example. However, in a practical point of view, this is

clear that the reduced-order output fits well the behavior of the full-order system.

6.5.3 Vibrating aircraft panel

In order to verify the handling of higher dimensional systems, we apply our
method to the vibration control of an aircraft panel. This example, taken from
[95], consists in stabilizing the panel as close as possible to the equilibrium, which
corresponds to a null displacement inside the whole panel. In this purpose, seven
piezoelectric patches are glued on the panel, one is used for exciting the panel
(patch 1 of Figure 6.9), one is used as a sensor to evaluate the performance of the
control (patch 2), one is used for the observation of modal states (patch 6), and
three are used for vibration control (patches 3 to 5), the last patch being used to
validate the reconstruction (patch 7). For the numerical simulations, we choose the

measurements of the sensor patch as the output of the system.
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Figure 6.8: Simulations of vibration control of the cantilever beam for two different
initial conditions and objective boxes. (a): several modes excited; (b): first mode

excited.
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Figure 6.9: Scheme of the vibrating aircraft panel.

Just as the cantilever beam, we use a finite element model reduced by modal
decomposition then balanced truncation. The system is written exactly in the same
way, but with shell elements, and thus six degrees of freedom per node. The finite
shell element model consists of 57000 degrees of freedom. We retain 50 modes for
the modal decomposition, and the model is reduced down to n, = 5 by balanced
truncation. Seven control modes are used for vibration control, it corresponds to a
null voltage applied on all the control patches, a positive constant voltage applied
on each control patch (one patch is subject to a voltage at a time), and a negative
constant voltage applied on each control patch. The reader is referred to [95] for
more information on the exact functioning of the piezoelectric patches used in this
case study, and see for example [83,139] for more general information on piezoelectric
patches and their use for structural damping. With the same hardware configuration
as in the previous example, the computation of a decomposition took nearly a week.

A simulation of the online procedure is given in Figure 6.10 and 6.11.
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Figure 6.10: Simulation of vibration control of the aircraft panel.

We observe that the response of the controlled full-order system is better than
the non-controlled one, the main peaks observed in the non-controlled response are
avoided. Nevertheless, the stabilization is not as efficient as one may expect. One
can see that the reduced-order system is however well stabilized. This points out
that the model reduction does not catch, in this case, all the information needed
for control purposes. While we are currently investigating new model reduction
techniques, adapted to hyperbolic and non-linear systems, we also think that in
practice, the stabilization would be better because of the smoothness appearing in
the applied torques in a real application.

6.6 Extension to output feedback control

So far, we designed reduced state-dependent controllers for switched control sys-
tems, permitting to stabilize the output of the system in a given objective set R,,.
During a real online use, one is only supposed to know a part of the state of the
system, such as measurements of sensors. We now want to take these partial mea-
surements into account, by adding an intermediate step in the online use, namely,
observation. We suppose that only the output of the system is known online. In the
next sub-section, we introduce the principle of observation and give some prelimi-
nary results justifying the use of observers for switched control systems, allowing us
to adapt our algorithms to the use of observers. We then present some numerical
results of the use of observers with model order reduction. The whole approach
with model order reduction is schemed in Figure 6.12, but as we do not have any
proof for the efficiency of the use of observers with model order reduction, we only
provide some numerical simulations. We are currently working on the establishment
an error bound taking into account the projection error and the observation error,

that will permit to construct a guaranteed reduced observer based control.
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Figure 6.11: Enlargement of Figure 6.11 on the time interval [0, 0.2].

6.6.1 Partial observation

Having defined the state-space bisection algorithm for switched control systems
with output, we now add the constraint that the system is partially observed. The
objective is to design an output feedback controller using the state-space bisection

algorithm introduced above.

We recall that the switched system 3. is written under the following form:

5. z(t) = Ax(t) + Bu(t),
| y(t) = Cux(t).

We suppose that during an online use, one is only supposed to know y(t) (we
suppose that y can be measured in real time, that is at every time t). If just
this partial information of the state is known, we cannot directly apply our state-
dependent controller synthesis method. An intermediate step must be introduced:
the reconstruction of the state. The reconstruction is made with the help of an
observer: it is an intermediate system that provides an estimate of the state of the
system Y from the measurements of the output y and the input v of the system . In
fact, this means that we want to design an output feedback law for the system > with

the help of an observer. In this chapter, we retain the Luenberger observer [3,4,176]
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Figure 6.12: Principle of the output feedback control

to reconstruct the state of ¥, it is subject to the following equation:
i = Af — L(u)(Ci — y) + Bu, L(u) e R™™ (6.16)

Obviously, the observer does not reconstruct exactly the state x of the system
¥, we thus introduce the reconstruction error n(t) = ||z(t) — Z(¢)|. Our goal is to
control the system ¥ with this estimate Z: we apply a law u(Z). One can note that
the method relies on the convergence of the observer x to the state x, this aspect is
developed in the following section.

The entries of the control problem we retain are then the following:

— an interest set R, < R",

— an objective set R, < R™,

— an initial, a priori known, reconstruction error 7.

With the method given below, the outputs of the problem are the following:

— a decomposition of R, w.r.t. ny and the dynamics of ¥,

— a procedure to choose u knowing 7,

— and the guarantee that, for any pattern Pat, if zo € R, and n(0) < 1o, then

x(|Pat|t, zo, Pat) € R, and y(|Pat|t, xo, Pat) € R,,.
Let us now introduce some hypotheses and important results to ensure the effi-

ciency of the method.

6.6.2 Convergence of the observer

The properties of the Luenberger observer depend on the choice of the matrices
L(u) appearing in (6.16). A crucial assumption in what follows is that it is possible to
choose L(-) in such a way that the modes of the Luenberger observer share a common

non-strict quadratic Lyapunov functions, i.e., there exists a positive definite matrix
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P such that:
Yu, P(A+ L(u)C)+ (A+ L(u)C)'P <0, (6.17)

The dynamics of the original switched system and of the Luenberger switch

observer can be grouped in the augmented system

z (A= L(w)C L(u)C z Bu
i) 0 A v )\ Bu )
Define e(t) = x(t) — z(t) and n(t) = e(t)” Pe(t). By definition e(-) satisfies

é=(A—Lu)C)e (6.18)

and assumption (6.17) implies that 7 is non-increasing along all trajectories. The
patterns in u(-) will be chosen in order to guarantee that not only 7 decreases, but
actually converges to zero.

An assumption which may be motivated by the technical constraints of the sys-
tem under consideration is the existence of a dwell-time, that is, a positive constant
7 such that two subsequent discontinuities of u(-) have a distance of at least 7 (re-
call that u(-) is assumed to be piecewise constant). The dwell-time condition not
only reflects technological constraints, but is also useful in the asymptotic analy-
sis of the switched system (6.3). The basic result that we will use is a simplified
version of [163, Theorem I1.5], which states that under the dwell-time hypothesis,
and by choosing properly the patterns, one can manage to make 7n(t) converge to 0.
(For further asymptotic results of linear switched systems with a common non-strict
quadratic Lyapunov function, see [24,155].)

The strategy suggested by the previous theorem is the following:

— identify uy 1, ..., Usn such that
Nj":lKer(A — L(uy;)C) = (0);

— impose that each pattern takes all values w1, ..., Usm.

Under these constraints the solution e of (6.18) is guaranteed to converge to the
origin (monotonically with respect to the norm induced by the positive matrix P).

In the case of the metal plate we will see that it is sufficient to take m = 2 and
that the constraint that each pattern passes trough the two values u. 1, ux 2 is not a
heavy obstacle in the implementation of the proposed algorithm. As a result, we will
obtain a strategy u(z) that, under the assumption that the initial state x(0) and the
initial estimation Z(0) are in R, and satisfy 7(0) < 19, the trajectory x(¢, z(0), u)
and the estimated trajectory, denoted by X(t,Z(0),u), are such that the evaluation
of x(-) after each pattern is again in R, and x(t,z(0),u) — X(t,2(0),u) — 0 as
t — +00.
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6.6.3 Observer based decomposition

We present here the adaptations of the algorithms taking the observation into
account. The observer based decomposition algorithm takes ny as a new input. Given
a system X, two sets R, < R" and R, < R™, a positive integer k£, and an initial
reconstruction error 7y, a successful observer based decomposition returns a set A
of the form {V;, Pat;},c;, where I is a finite set of indices, every V; is a subset of R,,
and every Pat; is a k-pattern such that:

(@) User Vi = Ba,

(b) for all i € I: Postpa, (Vi + n0) S Re — Mo,

(c) for all i € I: Postpa,c(Vi+ ) S R,.

Such a decomposition allows to perform an output feedback control on ¥ as
stated in the following. The algorithm relies on two functions given in Algorithms 8
and 9. If a successful observer based decomposition is obtained, it naturally induces
an estimate-dependent control, which we denote by uz. By looking for patterns
mapping R, + 1o into R,, we guarantee that x(¢, z,u) is stabilized in R,. Indeed, if
x(0) is the initial state, and Z(0) the initial estimation (supposed belonging to R,),
we know that z(0) belongs to V;, for some iy € I, and that x(0) belongs to V;, 41, so
the application of the pattern Pat;, yields x(|Pat;,|T,z(0), Pat;,) € R, —mno (because
Postpar, (Viy +n0) € Re — o) and X(|Pat;, |7, 2(0), Pat;,) € R, because

|x(|Pat;,|T,z(0), Pat;,) — X(|Pat;,|7, 2(0), Pat;, )|
< To.

Note that we plan to improve these algorithms by taking the decrease of n(t) into

account, so that the decomposition is less restrictive when n(t) is small.

6.6.4 Reduced output feedback control

Algorithms 8 and 9 allow to synthesize guaranteed output feedback controllers for
switched control systems without model order reduction. However, the use of model
order reduction and observation for the thermal problem of section 6.5.1 is indeed
possible, this is partly enabled thanks to the elliptic nature and highly contractive
behavior of the system.

The online simulations are performed just as sated in Figure 6.12. From the
full-order system X, we build a reduced-order system ) by balanced truncation. An
e-decomposition is then performed on f], yielding a Z-dependent controller (the de-
composition was obtained in about two minutes). The control u(z) is then computed

online with the reconstructed variable Z, which dynamics is the following:

— Az — L(u)(C& — Cx) + Bu, L(u) e R"*™ (6.19)

e

As the e-decomposition is already quite restrictive (i.e. the error bound over-

estimates the real projection error) and because the Luenberger observer converges
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Algorithm 8 Decomposition_Obs(W, Ry, R, D, K, 1)
Input: A box W, a box R,, a box R,, a degree D of bisection, a length K of
input pattern, an initial reconstruction error 7y
Output: {{(V;, Pat;)};, Truey with | J, Vi = W, |, Postpa, (Vi + no) < R, and
\U; Postpa,c(Vi+m0) € R, , or {, False)
(Pat,b) := Find_Pattern(W, R,, R,, K, 1)
if b = True then
return ({(W, Pat)}, True)
else
if D =0 then

return (_, False)

else
Divide equally W into (W7, ..., Wan)
for:=1...2" do

(A;,b;) := Decomposition_-Obs(W;,R,,R,,,D — 1,K no)

end for
return (U;_; o Ai Aiy o bi)

end if

end if

Algorithm 9 Find_Pattern_Obs(W, R, Ry, K, o)
Input: A box W, a box R,, a box R,, a length K of input pattern, an initial

reconstruction error 7
Output: (Pat,Truey with Postpu(W + 19) S Ry,Postpa.c(W +1m9) < Ry, or
{_, False) when no input pattern maps W + nq into R,
fori=1...K do
IT := set of input patterns of length i
while II is non empty do
Select Pat in I1
II := II\{Pat}
if Postpet(W + no) € Ry — no and Postpat (W +1m9) € R, then
return (Pat, True)
end if
end while
end for

return (_ False)

fast, we observe that the induced control already works, even if we do not have any
justification of the efficiency yet. The proof should be established by evaluating, for

any pattern Pat, a bound of the following error:
|mrx(|Pat|T, x(0), Pat) — ):c(\Pat\T, %(0), Pat)| (6.20)
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Figure 6.13: Simulation of the thermal problem with observation: projected vari-
ables. z_rl and x_r2 are the two variables mgx plotted within time (plain lines), it
corresponds to the projection of the full-order system state. x_t1 and x_t2 are the
two variables 7 plotted within time (dotted lines), it corresponds to the state of the

reduced observer.

In the simulations Figures 6.13 and 6.14, the full-order system is of order n = 897,
the reduced order system of order n, = 2. The full-order system is initialized with
a uniform temperature field of z(0) = 0.06". The reduced observer is initialized at
2(0) = 0%. The two projected variables Trx cannot be reconstructed exactly because
of (at least) the projection error, but the output is still very well reconstructed.
Both the observer and the full-order outputs are sent in the objective set R,, which
means that we should manage to control a thermal problem just with the information

obtained with few sensors.

6.7 Final remarks

Two methods have been proposed to synthesize controllers for switched control
systems using model order reduction and the state-space bisection procedure. An
offline and an online use are enabled, both uses are efficient but they present different
advantages. The offline method allows to obtain the same behavior as the reduced-
order model, but the associated bound is more pessimistic, and the controller has
to be computed before the use of the real system. The online method leads to less
pessimistic bounds but implies a behavior slightly different from the reduced-order
model, and the limit cycles may be different from those computed on the reduced
system. The behavior of the full-order system is thus less known, but its use can be
performed in real time.

A first step to the online reconstruction of the state of the system has been done
with the help of Luenberger observers. Numerical simulations seem to show a good

behavior with reconstruction and model reduction but the efficiency must still be
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Figure 6.14: Simulation of the thermal problem with observation: output variables.
The output of the full-order system (plain red) coincides with the output recon-
structed by the observer (plain blue), both are sent in the objective set at the end

of patterns (red circles).

proved. The use of Kalman filters is however not dismissed.

We are still investigating new model order reductions, more adapted to hyper-
bolic systems, and with the aim of controlling non linear PDEs. A recent trail which
we also want to develop is the dimensionality reduction [82,156,160]. Less restrictive
than model order reduction, it should permit to use a fine solver and post-processing
techniques to use bisection on a reduced space more representative of the system

behavior.
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Chapter 7

Control of PDEs

131



Terminology

Coq Poincaré’s constant (depending on €2)
f Source heat term of the heat equation
g= —%(.; £(t)) Source term of the equation in
K Reduced-order truncation rank (low-order dimension)
K(.) (space-varying) conductivity coefficient
Km Minimal conductivity coefficient
K Truncation rank for the reduced-order space
L Length of the spatial interval
M Number of control modes
P =(., 1) such that u(.,t) = u®(.) + uy(., 1) + (., 1)
¥ reduced-order model for
re(v) Residual of the approximate solution 1 against v
Q=(0,L) Spatial domain
P Tolerance radius for the distance between u and u®
R Recurrence set for the & variable
7 Space of admissible switch control sequences
U Set of switched modes
T Switching sampling time
t Time variable
u=u(x,t Solution of the controlled heat problem
= u(x,t) Reduced-order solution of the heat problem
u®(.) “Objective” heat function
ug(., 1) Solution of the quasistatic heat problem at time ¢
V =H}(Q) Sobolev space
x Space variable
() = (&), & ()T Vector of boundary control values
r = u”(0)
: —u*(L)
3 = (&)

&) Reduced-order linear space, W& < V/

WE = span(p!, ..., o

7.1 Introduction

In the previous chapter, we managed to synthesize reduced order controllers for
high dimensional ODEs, obtained from the discretization of PDEs. We now want
to use this kind of techniques for results on the PDE problem. A first possibility
would have been to use error estimations of the discretization techniques employed,
such as the ZZ estimators [178] for finite element methods. However, such estima-

tors are quite pessimistic and imply large errors, preventing us from synthesizing
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guaranteed controllers in practice. In this chapter, we aim at keeping a PDE for-
mulation undiscretized, and by properly transforming the problem, synthesizing low
order controllers. We first provide some of the developments made to obtain such
results, and show the underlying difficulties. We first tried to use simple projec-
tion methods, such as spectral methods, associated to the Empirical Interpolation
Method (EIM) [129]. The EIM is a recent algorithm which provides the best sets of
points for Lagrangian interpolation, which permits to efficiently represent complex
functions with few generating functions. It has been derived for many efficient re-
duced basis methods. The EIM was one of our first choices for guaranteed control
of PDEs since it comes with an L* error bound, and it seemed to be a natural
way of obtaining continuous equivalents of Chapter 6. It revealed more complicated
than expected to derive an L® guaranteed control, but we hope that these results
might be of interest for future works. After a long time struggling on L* bounds,
we finally came to a change of topology for our reduced models, in order to develop
L? guaranteed controls. As a matter of fact, L? error bounds are actually much
more classical in the field of structural mechanics, particularly when it comes to
reduced order modeling. We thus present a second approach, aimed at synthesizing
L? guaranteed controls. The goal is now to use Galerkin methods for model order
reduction, which is much more general than the balanced truncation or spectral
methods, and allows to adapt the reduction technique to PDE problem. A second
objective is to get an L? error estimation directly for the PDE problem, and not a

discretized version. In the following, we present our approaches on a given coupled
ODE-PDE problem, for which the ODE is controlled.

7.2 Setting of the problem

Let L > 0, let Q = (0,L) be the domain of definition of the PDE. Let x €

L*(0, L), and suppose there exist two constants ,, and Ky, 0 < kK, < Kp such
that

Fm < k(x) < Ky for ae. z in [0, L].

The space of admissible switch control sequences is
X7 = {U : [O, +OO[—> {1, v M}, 0'|[q7-7(q+1).,-[(t) eUVqe N} . (71)

In this chapter, we consider the one-dimensional boundary switched control heat
problem: find a piecewise constant sequence o(.) € ¥, such that the vector-valued
state £(.) € [€(0,90)]? and the function u € L*(0, c0; H'(£2)) solutions of the prob-
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lem

% = A€ +b,, >0, (7.2)
£(0) = ¢, (7.3)
‘2—1: — V- (k(.)Vu) = f inQx (0,+), (7.4)
u(0,t) = &(t), forall ¢ > 0, (7.5)
w(L,t) = &(t), forall ¢t >0, (7.6)
u(.,t=0) =u’ (7.7)

verify, for any initial conditions &y and ug, the stability constraints

£(t)e Re  forallt >0,
¢ (7.8)
lu(.,t) = u”()| 2 <p forallt>0.

Thus the expected recurrence set for the global state (&(t), u(.,t)) is the product set
Re x B(u®, p; L*(Q2)) < R?* x L*(Q). The sequence o(.) will depend on the state
of the system itself in order to enforce stability in the product recurrence set. The

control problem is formalized as follows:

Problem 4 (ODE-PDE stability control problem). Let us consider the equation

system (7.2)-(7.7). Given a set Re, a tolerance p and an objective state u™(-),
find a rule o((€,u)) € X7 such that, for all t > 0 and for all (£(0),v(x,0)) €
Re x B(u™, p; L*(Q)), we have (§(¢),u(.,t)) € Re x B(u”, p; L*(2)).

We can also consider the reachability problem:

Problem 5 (ODE-PDE reachability control problem). Let us consider the equation
system (7.2)-(7.7). Given two set R and R; with R; < R, two tolerances p and p'
with p' < p, and an objective state u™(-), find a rule o((&§,u)) € X7 such that, for
all (£(0),v(x,0)) € Re x B(u™, p; L*(Y)), there exists a time t' > 0 such that for all
t >t we have (§(t),u(., 1)) € Ry x B(u®, p'; L*(Q)).

7.3 Spectral decomposition and EIM

We now present our first approach, based on a spectral decomposition associated
to the EIM [129].

7.3.1 Problem statement

Let us first consider a slightly simpler (linear) problem, on which we already see
the complexity of the problem.
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We wish to consider the equation system (7.9)-(7.12) given by:

dg§

= A +by, >0, (7.9)
Wl (Vu = f i Qx (0, 4) (7.10)
Er u) = in , : :
u(0,t) = & (t), forallt >0, (7.11)
u(L,t) = &(t), forallt >0, (7.12)

We suppose that we have four switched modes:

e (1) e () () ()

In order to apply a symbolic (guaranteed) control synthesis method, we need to

rewrite the system under the form of an ODE of lowest possible dimension m:
y= Ay +d, (7.13)

where y e R™, A e R™™ d, € R™.
For this purpose, we will first write a low dimensional equation with a spectral

model reduction.

7.3.2 Spectral Model Reduction

We wish to approximate the state u(z,t) of the PDE by a state @(z,t) as close
as possible to u(z,t), but which can be computed much more easily than by solving
the PDE (e.g. with a finite element method). A natural way of computing an
approximate solution of (7.10) is using a modal (spectral) decomposition [40]. An
accurate approximate solution of (7.10) can be obtained with few eigen modes when
the boundary conditions are homogeneous. This is why we use here a reduced model

made of a modal decomposition with a lifting:

a(z,t) = &1 — @) + &) + Z Pi(t)pi(x) (7.14)

where the (; are the time coefficients associated to the space functions ¢;, which are
precomputed (the computation of the ¢; is detailed in the following).

Let us explain why the lifting is interesting. If we write u(z,t) = & (¢)(1 — z) +
&(t)x + w(x,t) and inject it in (7.10,7.11,7.12), we have:

a&t pro 0 in®



ow %w :
a(1 (1—x) + &)z + 615) 6952:0 in

The lifting & (¢)(1 — ) + & (t)z permits to obtain homogeneous boundary condi-
tions for w. The associated eigenvalue problem ¢” = u¢ with homogeneous boundary

conditions leads to eigenmodes (see [40]):
©i(x) = V/2sin (i) (7.15)

Note that the eigenmodes ¢; have been normalized w.r.t. the scalar product (-, -)q.
A solution for w can then be decomposed on the basis of the eigenmodes w(z,t) =

Yoy Bi(t)pi(x). Having written w under this last form, an exact solution for equa-
tions (7.10,7.11,7.12) can be found as

a% — a—w Z (1 — 2) + &(t)2), pdap: (7.16)

Instead, we will look for an approximate solution by truncating the sum at an
order N. Let us now find @(z,t) of the form (7.14), solution of the equation system
(7.10) with boundary conditions (7.11-7.12). We have:

ou  0%u .
Ckg - @ =0 in
aa—uw — fw 0 inQ VYwe Hy(Q)
ot ox? 0

Writing the weak form formulation and using an integration by parts, we obtain:

ot ow
04— uwdx+J%%d =0 VYwe Hy(Q)

This is true for all w € H} (), we can thus write:

d (. ot ow &
a L twdzx + J %%d 0, Ywe W" = Vect(py)

This leads to:
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&JQ((l B x)fl + l‘éz)gokdx + J (1 =2)& + x§2)%d:€

Q

+ai6- - dx+iﬁ CPi 0Pk — 0 Wh—1.... N
~ 7 Q@z%pk o 7 an 8x — Y, — Ly ey

The second term being equal to zero, we then have a low dimensional equation:
aC,.B + K, = —aF,.(§,1) (7.17)

with B the vector composed of the 3;, which we call the reduced state, C,;; =

0p; 0
$ovipide, K, ; = SQ g Hp]d and F,;( (€,1) = §,((1 2)€1 + 26)pidz. Note here
that matrices C, and K are diagonal, because functions ¢, are orthogonal. This

is one of the main advantages in using such a modal decomposition: an accurate
approximate solution can be computed in a very cheap way.

Solving the equation system (7.9-7.10-7.11-7.12) with the reduced order solution
(7.14) then leads to solving the reduced system:

Et)\ (o 0 £(t) bu(t)
(B(t) ) - (o 1/ac;1f<r) (ﬂ(t) ) * ( CLF (ba(1). ¢ >) (7.18)

However, although the lifting & (¢)(1—x)+&2(t)z permits to construct an accurate
reduced model with few functions ¢;, it raises a new problem: the coefficients [;
have no physical meaning. It is thus not trivial to infer a reduced objective (a box,
or an objective set) for the reduced state 3. In other words, we do not know where
the (; should stabilize to obtain a PDE state as close to zero as we want.

In order to give a physical meaning to the reduced state, and infer an initial and
objective box the reduced state variable, we build a reduced model with slightly

different basis functions:

N
i(x,t) = & (61— 2) + &)z + > vi(t)i(x) (7.19)
i=1
where functions v; interpolate N points z1,...,xy of the PDE domain, i.e.:

Here, 6;; denotes the Kronecker symbol. The functions 1;, as well as the interpolated
points z;, are computed with the EIM [129]. The use of the EIM is particularly
opportune since it permits to establish an L* error bound which allows to compute
a guaranteed control (see Section 7.3.3). Furthermore, the interpolated points are
optimal and lead to the lowest possible error bound.

The algorithm for computing the interpolation points is the following:
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Let 1 = arg max,cq |p1(x)].

Interpolation points {x1,...xy} are then constructed by induction on M <
N as follows. For all 3, 1 < ¢+ < M — 1, look for hM_1 such that ¢y (z;) =
ijlth Yoi(z;), and set Ty = argmaxgeq |pa(r) — Zj\/llth Yoi(z)]. In the
EIM terminology, ZM ! hM Yp;(-) is denoted as the interpolant Zy;_;[¢as(+)] since
it interpolates exactly <pM( )in @y, ..., T

Functions 1); are then computed as linear combinations of the functions ¢; as
follows. For all 1 < i < N, solve Zjvzl @j(xi)hiy = 0;; for hjy. Then set b =
Z L hiypj so that functlons ¥; do verify (7.20). In the following, for any u € HY(Q),
we will denote by Zy[u(-)] the interpolation of order N of u(-), i.e. Zy[u(-)] =
Zf\; u(;) Z hz] ;).

The reduced system is then computed just as system (7.18) but with functions
1; instead of ¢;, this leads to:

(8)-6 o) (8)-( ) o
0 0 1/aC k) \ vty ) T\~ EL b0, 1)

with « the vector composed of the ;, which we call the reduced state, C”,

rij
$oabdr, K 5 = §, a—%%dm and FT’Z(E, t) = §o (1 — 2)€ + 2&)Ydx. Note that
here, matrices C|. and K| are no longer diagonal, which results in slightly higher
computation costs, but since the dimension of those matrices must be low, this is
not prohibitive.

The main interest in using interpolating functions is that the variables ~; have
now a physical meaning: ;(¢) is equal to the value the temperature field (without
lifting) in x; at time t.

We have:

i(wint) = )1 — ;) + &)z + 7(t), Vie{l,... N} (7.22)

If we want u(z;,t) to stay in a box [u™ u%*], then we have to ensure that
&,& € [uMm/2 e /2], and v; € [uf"/2,uT* /2] (note that other combinations

are possible).

7.3.3 Error bounding

With the above developments, we can ensure that @(z;, t) reaches infinitely often
the box [Umin, Umaz] With symbolic methods thanks to equation (7.21). In order
to provide a guaranteed controller, we still need to bound the error between the
reduced order and the full order system. The minimal result required to ensure
recurrence is to bound: |u(z;,t) — u(zy,t)| for all ¢ > 0. Or, more precisely, for a

pattern of length k, compute a bound & (k) such that:
’u(l‘i,to + kT) — "}/l(to + kT)‘ < 81(k) Vi = 1, ey N (723)
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But in order to ensure that the whole state u(z,t) stays in [Umin, Umaz], We also
need to bound |u(x,t) — u(x,t)| for all z € Q and ¢t = 0. We thus need to obtain an
L* bound. lLe., for all £ > 0, compute a bound e,(k) such that:

HU(, to + k”/') - 11(~,t0 + kT)HLoo(Q) < 52(]{) (724)

As mentioned above, the EIM provides an L* error bound. For all M > 0 and
for all v e HY(Q), let {¢r}r=1
the EIM for v, we have the following error bound for the EIM interpolant of v:

m+1 be the first M + 1 basis functions returned by

-----

[v() = Zar[v()]lz=(@) < IPari1 () — Zarldarr1 ()] oy (7.25)

Let us suppose Zy has been computed as in Section 7.3.2. We have, for all x €
and for all £ > 0:

oz, 1) = on (@, )] < fo(z, 1) = Ino(, O]z, O] + [Zn[o(, )] (@, 1) — on(z, )] (7.26)

The first right-hand term |v(z,t) — Zy[v(-,t)](x,t)| can be bounded by the EIM
bound (7.25). The second right-hand term |Zy[v(-,t)](x,t) — vn(x,t)| being con-
structed with functions ¢q,..., @y, it is equal, for all £ > 0 and x € €2, to the

analytical solution of the truncated projected solution:

AMQMQﬂ—ww®=%®hmmﬂ—Z@®%@

A@mmmw—wmwzawmmww—wawm

We hoped to bound this term in the same fashion as [60], but it revealed more
difficult than expected. The interpolation Zy[v(,t)](x,t) should in fact be computed
for every time ¢, and bounding this for every time would be numerically irrelevant.
As explained in [60], it is possible to bound such a term when the state v depends
explicitly on a parameter, and for which the derivatives w.r.t the parameter can
be computed. We hoped to evaluate this term by taking time as a parameter, but
this is actually not possible straightforwardly. We however think that this term can
be evaluated with further developments, using for example an EIM coupled with

another model reduction such as the Proper Generalized Decomposition [45,46].

7.4 L? guaranteed control

Having introduced our attempt of L® guaranteed control, we now present an
L? approach closer to classical techniques used in the field of structural mechanics.
The reduced state we build will now be associated with an L? distance instead of an
Euclidean one, so that the sets (balls) defined on the reduced space have a meaning
directly on the PDE state. We now consider the original problem (7.2)-(7.7).
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7.4.1 Transformation of the problem

Denoting by u, = u,(.,t) the solution of the quasi-static problem at each time ¢:

—V - (k()Vuy) = f+ V- (k(.)Vu™) in Q, (7.27)
ug(0,) = & (t) — &7, (7.28)
ug(L, ) = &a(t) — &, (7.29)

one can express the solution u as the sum of u™, u, and a function v, i.e.

u(.,t) = u () +ug(.,t) + (., t) (7.30)
where (., t) is solution of the heat problem with homogeneous Dirichlet boundary
conditions

oY :
LV (6()VY) = g £(®)  in Qx (0, +0) (7.31)
»(0,t) =(L,t) =0, t>0, (7.32)
with
Ouq 0 0 e
g(ag(t)) = __(';é(t))a l/f =u U _UQ<'aO)'

ot
We thus consider the functional Sobolev space V = H}(Q). The weak variational

formulation of the problem (7.31)-(7.33) is to find ¢ € L?(0,00; V'), ¥(.,t = 0) = ¢°,
solution of

(g—f,v) + (k()V, V) = (g(.;€(1)),v) YveV. (7.34)

The decomposition (7.30) actually lets us study the different behaviors we observe
in the equation: the quasi-static behavior, which is attained when the time step gets
large; and the dynamic behavior, being observed mainly at the beginning of a switch.
We also exhibit the objective state, and it will reveal the possible (attainable) target
states.

7.4.2 Stability requirements
Let us first show the following proposition:

Proposition 4. There exist constants C > 0 and L > 0, such that a sufficient

condition to satisfy the stability constraint
[u(.,t) —=u™ ()2 < p  forallt>0 (7.35)
is to fulfill
Clf + V- (6()Vu™) |2 + LI&#) = €7l + [0(- D2 @) < p- (7.36)

where V(- t) is solution of (7.31)-(7.33).
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Proof. Because of (7.30), the stability requirement
Ju(.,t) = u™ ()| 2@ < p foralt>0
in (7.8) can be equivalently expressed as
lug(,t) + (., )| 2@ < p  forallt > 0.
The solution u, itself can be decomposed as
ug(.,t) = a(.) +w,(., 1),

where u is solution of the steady elliptic problem with homogeneous Dirichlet bound-

ary conditions

u(0) = a(L) = 0, (7.38)

and w, is solution of the quasi-static problem at each time ¢:

—V - (k(.)Vw,) = 0in Q, (7.39)
wy(0,t) = & (t) —&°, forallt >0, (7.40)
wy(L,t) = &(t) —&°, forallt>0. (7.41)

The solution @ is continuous with respect to the source term in (7.37) [70], i.e. there
exists C' > 0 such that:

lalv < CIF + V- (5()Vu") |2 (7.42)
For the solution w, of (7.39)-(7.41), because of the maximum principle [133], we
have
[ (s ) Lo () = max([€(8) = &7, 1€2(2) — &) = [€(8) — €. (7.43)
Thus,
lug(- 1) + (D) < lullze) + lwolzz@) + 190 D2
< lalea@ + Liwg| e + 90 D)2,
and finally

lug(-,t) + U (D)2 < ClIfF + V- (6() V™) |2
+ L&) = &7 + [0( )| 2o

A sufficient condition to satisfy the stability constraint (7.35) is then to fulfill
(7.36). O
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The solution 9 lives in an infinite-dimensional space, so that it is hard or im-
possible to build a control synthesis based on a state-space decomposition. In the
sequel of the chapter, we will rather use a low-dimensional approximation @Z) (the

reduced-order model of ) in the form

Dla,t) = ) Bul(t)ek(x) (7.44)

with a reduced basis {p*};—1 . assumed to be orthonormal in L*(Q). In the sequel
we will denote by W the linear vector space of dimension K spanned by the reduced
basis {¢©*}:

W = span (gpl, vy goK) )

Denoting by B(t) = (B1(t), ..., Bx(t))T the vector of coefficients, we then have

|9, 0)z2@) = 1B(#) |2z
By the triangular inequality we can write
[0 Oz < (1) = b)) + 100 B 220 (7.45)
< [0l t) =D )z + 1B (7.46)

Let us assume that we have the stability estimate for the reduced-order approxima-

tion: there exists a constant p > 0 such that

100, 1) =9t 2y < wlW° — 00 r2) Ve [0,7] (7.47)

for any constant control mode o € {1, ..., M} (uniform stability with respect to the
controls). This hypothesis can actually be verified with a proper construction of the
reduced basis. Then, a more restrictive sufficient condition to fulfill the stability

constraint (7.35) is to verify
Clf +V - (k()Vu™) |2 + L&) — €7
+ B2 + p " — 012 < p. (7.48)

This equation is interesting since it enlightens the different controllable and uncon-
trollable terms.
Let us denote by 7% : V' — WX the continuous linear orthogonal projection

operator over the low-order space W, Still by a triangular inequality, we have

19° — 40|20y < [¥° — 759 20 + 75" — 90 2,

The projection 7% is given by
K
iy = > Bk,
k=1
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with 8) = (V°, ¢*)12(0), k = 1,..., K. By denoting 8° = (87, ..., 8% ), we then have
[9° = 90l L2y < 10 = 7590 20y + 18° — B,
We thus have a reduced-order version of Proposition 4:

Proposition 5. Under the above-mentioned notations, let us suppose that there
exists pr > 0 such that (7.47) holds. There exist constants C' > 0 and L > 0 such
that a sufficient condition to satisfy the stability constraint (7.35) is to fulfill

Clf + V- (R()VUP)|r20) + LIE(1) = €] + B2
+ [0 = 750 2 + 1 B0 = B2 < p. (7.49)

Let us interpret equation (7.49). If we want to fulfill the inequality (7.49), all
the terms in the left-hand side have to be “small enough”. In particular, this means

that u® should be compatible with the source term in the sense that
—V - (k()Vu*)~ f in Q.

Moreover, the vector state &(t) should stay close to €% for any time, the coefficient
vector 3(t) in the reduced-space has to stay rather small in norm. The terms
L|&(t) — €| and |B(t)], are actually controlled terms, these are the ones we
have to synthesize a controller with our symbolic approach. Note that L |&(t) —
€%, actually justifies that we stabilize £ in a box. We should also have |3° —
BOH small enough for any initial data subject to any admissible control, as well as
[0 — 759 12(), meaning that the reduced basis is able to correctly reproduce
any admissible initial data. In a nutshell, we have to synthesize a controller for
the reduced state (&, B) using symbolic methods, and the other terms are fulfilled
as long as the objective state is compatible with the source term, and the reduced

basis represents accurately the initial conditions.

7.4.3 Strategy for stability control

At a switch time (reset to time zero for the sake of simplicity), consider the

approximate heat solution

and the exact solution written as
u’ = u® + u,(; €%) + .
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Considering Problem 4, we assume the following initial properties: there exist con-
stants ¢, pg, 0 > 0 such that

L[&® = €% < O, (7.50)
18°l2 < pg, (7.51)
19 = 40 12(@) < 0. (7.52)

It will be assumed that, d¢, pg and 0 are such that
c1+0e+pst+d<p (7.53)

where ¢; = C'|f + V- (k(.)Vu®)|2(0)- We look for controls that preserve these
properties (ans solve Problem 4). Le., we look for control modes such that, for all

time t € [0, 7] (before the next switch), we have:

LIE®) — &7 < ¢, (7.54)
18(t)]2 < ps, (7.55)
[ (t) = () |12() < 6. (7.56)

Then by construction we will automatically fulfill the stability requirement (7.35)

on the heat solution for a given control mode o, i.e.
|u(.,t) = u™| 2@ < p forallte(0,7]. (7.57)

These properties can also be ensured for control sequences © = (oy,...,0%), and
have to be verified for all ¢ € [0, k].

Remark 9. From (7.50) and (7.54), it is appropriate to choose the recurrence set
R¢ for the &(.) variable as the ball of center € and radius d¢ for the topology induced

by the norm ||.||w, i-e. a box centered around &*.

The synthesis can now be performed, provided that the reduced basis ensures
for all ¢t € [0, k7], |[(t) — zZ(T)HLz(Q) < § (this point is addressed in the following).
The state & is subject to an ODE (of dimension 2 in our case), and it can thus be
controlled easily with the methods described in the previous chapters. Besides, the
reduced state 3 verifies a nonlinear ODE. Indeed, the reduced-order approximation

12 e W is chosen in such a way that it verifies the equation:

(aa—lf,w) + (H(.)VVZ, Vw) = (g(.;€(t)),w) Ywe WX, (7.58)
(.t =0) =1 (7.59)

The basis functions (¢, ..., *) being chosen orthonormal in L*(Q), it leads to a

system of differential equations, for all 1 <i < K:
B+ Bi(k( )V, Vioy) = (9(5€(1), ;) 1<i<K, (7.60)
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which is a system of nonlinear differential equations, that can be handled by the
synthesis algorithm presented in Chapter 4.3. This algorithm is particularly adapted
to this purpose since [4(., t) lr2@) = |B(t)|2.rx. By covering the ball B(0, ps; L*(Q))
with smaller balls, we ensure (7.55). Exactly as in Chapter 4.3, we just have to verify
that the images of the ball after one (or several) time steps are included in the
objective (the objective being convex, we do not need to verify the property for the
whole tube). Furthermore, verifying the inclusion of a ball in a ball is numerically

very cheap.

7.4.4 Certified reduced basis for control

Let us now present the construction of a proper reduced basis, allowing to ver-
ify (7.49). Considering the space of all possible sequences of switched controls of
lengths less than M, we have to derive a reduced-order model which guarantees a

prescribed accuracy for any switched control sequence.

For that purpose, it seems appropriate to build a reduced-order model using a

posteriori error estimates within an iterative greedy approach.

Let us consider a low-dimensional vector space W < V and a Galerkin approach

with a reduced-order approximation zﬁ solution of the finite dimensional variational

problem
ov ~
(5 w) + (k(OVY, V) = (9(;€(1),w) Vwe W, (7.61)
(.t =0) =" (7.62)

A posteriori error estimation

From (7.34), one can directly derive a variational problem for the error function
ezzv,b—@zz YvoeV,

0 o N
(520) + (()Ve, Vo) = (91 £(0),0) — (5-0) = (()VE, Vo), (7:63)
e(,t=0)=¢"— 0 := ¢ (7.64)
The right hand side defines a residual linear form r¢ depending on &(¢):
re(v) = (g(;€(t),v) — (%—f,v) — (k()VY, V), YveV. (7.65)

By construction of the approximate solution 7:&, from (7.58) we clearly have
re(w) =0 YweW.

One can define a norm for ¢ in the dual space V' of V' :

ey = sup  |re(v)].

[vllv<1
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Considering the particular test function v = e, we have

1d
—lelZz + [5()Veli: = re(e).
2 dt

From Poincaré’s inequality
[v|r2 < Cq|Vv| YveV

and the lower bound k,, of k, we have also
1d
g gilelle < — g el + Irdlve(t) el

Let us denote the constant

i =sup sup |refve(t) (7.66)
() 0

with o(.) € £7 such that £(t) € Re for all ¢ > 0, £(.) subject to

£ = A, + Bw,, £(0)=¢"

So we have the estimation
1d
5@!\6!\%2 < - Cg el + 7 el 2. (7.67)

By using the Young inequality
" & 72
lelt)les < 5o lelEs + 5

m

and Gronwall’s lemma to the resulting estimate, we get the error estimate in L*-

norm 2
1
el < exp(- 0l + T58 (1-e(-220) . (ros)
From (7.68), we have the straightforward property:

Proposition 6. A sufficient condition to guarantee

le(®)lz2 < lle(0)]z2 V& >0

15 to fulfill the inequality
02
2 < leo|- (7.69)

m

331

Remark 10. Because the approximate problem is built from a Galerkin projection
method, it is expected that the constant 1 becomes small for a “good” finite discrete

space W. So for an accuracy level |eo] 2 < 0 on the initial state, the goal is to find a

discrete reduced-order space W such that the inequality n < "gg‘s holds. The constant
Q

7 defined in (7.66) is a uniform upper bound of the residual quantity, meaning that 7

should be rather small for any switched control sequence o(.) for practical use. This

remark leads us to the following greedy algorithm for the construction of the reduced

order basis (RB).
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Greedy algorithm and reduced bases

The greedy algorithm also to compute a reduced basis that spans the discrete
space W in an iterative and greedy manner.
— First iterate k£ = 1. Define 0 > 0 and a residual threshold

Km0

v = —5-
2
Co

Let us assume that 1 € V and ¢° # 0. Let us consider first

N
4

and W = span(p'). Define a random sequence of control sequences o(.) €

'

37, i.e. control sequences of length less than K. As soon as

Irelv(t) < rar,

solve the reduced-order model

o) ~
W,w) + (k(OVYWY, V) = (g(.; €(t),w) Ywe WD (7.70)
PV (.t =0) =" (7.71)

— If there is a time ¢ > 0 such that [r¢|y(t(Y)) = ry, then compute

e

= arg ﬁffi |7y (V)]
and define
p° = e span(e', @)
0@ o

— The reduced-order model at iterate (k) is

og® k) (k)
T,M) + (k( VYW Vw) = (g(;€(t),w) Ywe WW  (7.72)
S0t =0) = . (7.73)

— Repeat until |r¢lly < ra for all time ¢ > 0. Let us denote by K the final
rank and W) = span(¢!, ¢?, ..., ') the associated discrete space.
For performance and complexity aspects, the rank K is expected to be not too large.

For that, the initial accuracy radius ¢ should be chosen not to small.

7.4.5 Numerical experiment for the L? guaranteed control

synthesis by stability of error balls

As a proof of concept, we apply the strategy described in Section 7.4.3, on the
case study (7.9-7.12) with a time step 7 = 0.05. The reduced basis used is a simple
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Figure 7.1: Simulation of the controller.

spectral decomposition, as constructed in Section 7.3. The spectral decomposition
allows to fulfill (7.47) with p = 1, and thus to apply Proposition 5. The reduced basis
is truncated at K = 4 eigenmodes. Associated to the ODE, we thus get a reduced
system of dimension 6. Using control sequences of length 8, and a decomposition
of the reduced state-space in 45 = 4096 balls, we manage to synthesize a controller
in approximately 20 minutes, with an objective state (£*,u*) = (Ogz,072(q)) and
guaranteed L? error of p = 0.5. A simulation of the controller is given in Figure 7.1,
where the initial condition is set as a random combination of the first ten eigenmodes
and a lifting, such that (7.50-7.52) holds with ¢ = 0.2, pg = 0.2 and § = 0.1.

7.5 Reliable measurements, online control, and

other applications

A first challenge for the future is to handle other types of PDEs (e.g. hyperbolic)
with such methods, as well as different types of controls and coupling. A first
application that could be interesting in the continuation of this work would be
to apply such an approach to synthesizing a guaranteed controller for the SCOLE
(Spacecraft COntrol Laboratory Experiment) model. It is described by the following
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equations, for all ¢ > O:

U (2, 1) + ElVypee(2,t) + pBuy(z,t) = pw?o(x,t), Vrel[0,L] (7.74)
v(0,1) = v2(0,1) = Vo (L, ) = Vauu(L,t) = 0, (7.75)
wn(t) = ['(t) — 2w(t) Sé pv(x, t)vy(x, t)dx
: I+ Sé pv?(x,t)dx .

(7.76)

It actually models a metal beam fixed on a rotating rigid body, which rotation is
controlled by the input torque I'. We thus have a hyperbolic PDE coupled to an
ODE, but in this case, the coupling goes through a Dirichlet boundary condition.
Many theoretical approaches have been developed for this case study and its multiple
variations: [22,33,50,51]. We believe that a symbolic approach could be used to
handle this case study.

While we gave some possible directions for the use of symbolic control applied
to PDEs, some aspects are still not taken into account. Omne of which is partial
observation, which was partly tackled in Chapter 6. In a general case, this should

be taken into account by considering a system of the form

x = f(z(t)) +e(t;z(t); 1)

y(t) = Z(z(t)) + w(t).

for high dimensional ODEs. A general case is however more difficult to establish for
PDEs since the observation can be performed locally (in a point) or in a distributed
manner on a portion of the boundary, or on a portion of the domain of the PDE.
Nevertheless, the possible objectives aimed by considering partial observation are
NUMerous:

— taking state estimation errors into account

— evaluating the OSL/Lipschitz constants and parameters of the system

— use of Kalman filter-like state estimators

— partial observation and much more...
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Chapter 8

Conclusions and perspectives
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Summary

In this thesis, we proposed symbolic methods to synthesize “correct-by-design”
state-dependent controllers for sampled switched systems, aimed at extending the
field of application of former methods. A first step, introduced in Chapter 4, was the
handling of nonlinear dynamics, made possible with appropriate reachability com-
putation methods, using guaranteed numerical schemes. We presented an approach
based on guaranteed Runge-Kutta schemes and interval analysis, accurate and fast
enough to compete with state-of-the-art tools. We then presented a novel approach
renewing the Euler method, thanks to the use of the OSL property, which is a much
weaker hypothesis than those used in various symbolic tools such as incremental
stability or monotonicity. The Euler approach led to impressive computation times
compared to other symbolic tools, even if it failed on some systems presenting large
positive OSL constants.

On account of the inherent exponential complexity of symbolic methods, we
proposed in Chapter 5 compositional approaches for the synthesis of controllers,
made possible with over-approximation techniques which allow us to synthesize local
controllers, on sub-parts of the system. We provided three procedures:

— The first is available for linear systems and ensures discrete-time properties
and relies on zonotopes, it is associated to an iterative backward reachability
procedure extending the basic decomposition method.

— The second is available for nonlinear systems and ensures continuous-time
properties thanks to the use of guaranteed Runge-Kutta schemes.

— The third one is available for nonlinear systems and relies on the Euler method
introduced in Chapter 4. It can be used in a compositional way with the use
of a weaker variant of the incremental input-to-state stability.

In Chapter 6, we laid out an approach allowing to control high dimensional ODEs
obtained from the discretization of PDEs. We proposed to use approximate models
obtained by balanced truncation in order to synthesize controllers at the reduced-
order level, and by appropriately bounding the trajectory errors between the high
and low dimensional systems, infer guaranteed controllers. We also gave initiating
works to the use of state observers in the case of partial observation.

In Chapter 7, we gave two approaches relying on reduced-order modeling with
the aim of obtaining guaranteed controllers for non discretized PDEs. Our first ap-
proach made use of the EIM and a spectral model reduction. These works are a first
step to the synthesis of L™ guaranteed controllers, but the bounding of the reduction
error revealed more complicated than expected, and we hope that further collabora-
tions with researchers from the field of computational mechanics can complete this
approach. We finally gave an operational procedure for obtaining L? guaranteed
controllers, using Galerkin based reduced-order models, a proper decomposition of

the terms of the solution, and an L? topology for the reduced-order level. This
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allowed to synthesize a guaranteed controller for a coupled ODE-PDE system.

As a summary of this summary, the main contributions of this thesis are the
following;:

— improvements of the synthesis algorithms allowing better performances;

— innovative numerical schemes for the handling of nonlinear systems;

— compositional methods to break the complexity of the algorithms;

— reduced-order modeling for the handling of PDEs.

Perspectives and future research

The Euler method proposed in Chapter 4, even though very efficient on systems
presenting negative OSL constants, can still be improved. A possible line of research
for its development is the use of a posteriori error estimation, such as in [145],
possibly improving the current results for negative OSL constants. The use of dual
methods seems to be an appropriate way [80].

In the compositional reachability procedure proposed in Chapter 5.2, the choice
of the safety parameter e is left to the user. An interesting continuation of this
work would be to automatically synthesize this parameter. This could be performed
using approaches used in contract based design [26,161]. More precisely, the use of
parametric contracts allows to determine admissible parameters [102], in the same
vein as [2,99], and could be applied in our context. Furthermore, in this thesis, we
do not discuss the choice of the decomposition in sub-systems. Certain automatic
methods provide the best decompositions [143,177]. This kind of techniques could be
extended to our methods, with the objective of obtaining the least complex symbolic
model.

The research of patterns is still one of the most cost consuming tasks in our algo-
rithms. The recent development of learning algorithms might be a way of drastically
lowering the number of tests performed when the length of patterns considered is
long (such as in the path planning problem A.6). Furthermore, it could bring op-
timality in the method. The patterns we select here are the shortest ones, but
optimizing the energy consumption of a system is a very topical issue, and learning
algorithms can steer us to this objective.

As for PDEs, we would like to point out that compositional approaches can
actually be compared to domain decomposition methods used in computational me-
chanics [151]. Tt could be interesting to study the compatibility of both methods.
In the case where multiple actuators are applied, for example, on a flexible beam, a
domain decomposition method can be used to compute a solution for the displace-
ment in the beam. If a compositional synthesis sharing this domain decomposition
were possible, we could contemplate applying our methods on much more complex
and realistic case studies. However, this kind of models being usually used in pri-

vate companies, further collaborations with the latter might be needed to see the
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applicability of such methods.

More generally, regarding PDEs and Chapter 7, we only applied our method
to a single case study. It seems mandatory to test our method on other types of
equations and case studies, and the SCOLE model might be a start. All in all, it is
only by continuing this line of research that we may see if a generic symbolic method

can be inferred for PDEs with our approach.
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Appendix A

Case studies modeled by ODEs

A.1 Boost DC-DC converter

This linear example is taken from [27]. The system is a boost DC-DC converter
with one switching cell. There are two switching modes depending on the position
of the switching cell. The dynamics is given by the equation &(t) = A,z (t) + Bo)
with o(t) € U = {1,2}. The two modes are given by the matrices:

_n 0 Vs
Al — ( Ty ) ) ) Bl — (xl)
0 _Qf_c7'0+"'c O

_1 To.Te _1_7mo Vs
A, = Ty (Tl - 7’0+7”c) Ty To+Te By, = T
2= 1 7 1 2=
1 0 _ 1L 7 O
ZTe TO+Te Te TO+Te

with z. = 70, ; = 3, r. = 0.005, r; = 0.05, rg = 1, vs = 1. The sampling period is

7 = 0.5. The parameters are exact and there is no perturbation.

A.2 Two-room apartment

This case study is based a simple model of a two-room apartment, heated by
one heater in each room (adapted from [76]). In this example, the objective is to
control the temperature of both rooms. There is heat exchange between the two
rooms and with the environment. The continuous dynamics of the system is given

by the equation:

Tl _ —021 — Ol — Oyl 21 Tl n OéelTe + OéfoUl
TQ Q12 —Qg — Qleg — QflUg T2 CkegTe + afou2

Here T} and T5 are the temperatures of the two rooms, and the state of the system
corresponds to T' = (T1,T3). The control mode variable u; (respectively us) can
take the values 0 or 1, depending on whether the heater in room 1 (respectively
room 2) is switched off or on (hence Uy = Uy = {0,1}). Hence, here n; = ny = 1,
Ny =Ny =2 andn=2and N =4.
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Temperature 7T corresponds to the temperature of the environment, and 7% to
the temperature of the heaters. The values of the different parameters are as follows:
g =5 x 1072 g =5 x 1072, aeg = 5 x 1073, g = 5 x 1073, oy = 8.3 x 1073,
T. = 10 and Ty = 35.

A.3 A polynomial example

In this case study, we consider the polynomial system taken from [126], presented

as a difficult example:

[J/’l] _ [—ZEQ — 15ZE1 — 051'? + up + d1 (A]_)

T9 Ty + ug + dy

The control inputs are given by u = (u1,u2) = K@) (21, 22), 0(t) € U = {1,2,3,4},
which correspond to four different state feedback controllers K;(x) = (0, —23 + 2),
Ky(z) = (0, —x9), K3(x) = (2,10), K4(x) = (—1.5,10). We thus have four switching
modes. The disturbance d = (d;, ds) lies in [—0.005,0.005] x [—0.005,0.005]. The
objective is to visit infinitely often two zones R; and R,, without going out of a
safety zone S, and while never crossing a forbidden zone B. The sampling period is
set to 7 = 0.15.

A.4 Four room apartment

We consider a building ventilation application adapted from [134]. The system
is a four room apartment subject to heat transfer between the rooms, with the
external environment, with the underfloor, and with human beings. The dynamics

of the system is given by the following equation:

dT;

Z ai;(Ty — T;) + 05,b;(T, — T}') + ¢; max <O, ‘é _ V;*) (T, —T;). (A.2)
JEN"\(i} iV

The state of the system is given by the temperatures in the rooms Tj;, for i €
N ={1,...,4}. Room i is subject to heat exchange with different entities stated by
the indexes N = {1,2,3,4,u, 0, c}.

The heat transfer between the rooms is given by the coefficients a;; for 4, j € N2,

and the different perturbations are the following:

— The convective heat transfer with the external environment: it has an effect
on room ¢ with the coefficient a;, and the outside temperature T,, varying
between 27°C" and 30°C'.

— The convective heat transfer through the ceiling: it has an effect on room ¢

with the coefficient a;. and the ceiling temperature 7T, varying between 27°C

and 30°C.
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Room 1 1 2 3 4

ai1 7.60 x 107° 1.09 x 10~*
o 2.85 x 107* 1.79 x 10~*

i3 1.89 x 104 1.07 x 104
4 2.47 x 1074 3.81 x 10~

Wi 7.36 x 107° | 7.02 x 107° | 3.45 x 107° | 3.26 x 107°
io 9.27 x107° | 242 x107* | 3.21 x107% | 1.73 x 10~*
aie | 578x107* | 6.21 x107* | 5.64 x 107* | 5.99 x 10~*
b; 3.12 x 10717 | 2.55 x 10716 | 8.57 x 10713 | 3.57 x 10717
T, 3.73 x 103 1.78 x 10 | 3.80 x 102 3.93 x 103

¢ 2.12x 1073 | 1.88 x 1073 | 3.05 x 1073 | 1.40 x 1073

Table A.1: Identified parameters for the four room apartment model (A.2).

— The convective heat transfer with the underfloor: it is given by the coefficient
a;, and the underfloor temperature T, set to 17°C' (T}, is constant, regulated
by a PID controller).

— The perturbation induced by the presence of humans, modeled by a radiation
term: it is given in room ¢ by the term d,,b;(T2 — T}'), the parameter J,, is
equal to 1 when someone is present in room ¢, 0 otherwise, and 7§, is a given
identified parameter.

Vi—V;

i
E2

A voltage V; is applied to force ventilation from the underfloor to room 4, and the

The control V;, i € N, is applied through the term ¢; max(0

command of an underfloor fan is subject to a dry friction. Because we work in
a switched control framework, V; can take only discrete values, which removes the
problem of dealing with a “max” function in interval analysis. In the experiment, V;
and Vj can take the values 0V or 3.5V, and V5 and V3 can take the values OV or 3V.
This leads to a system of the form of Equation (3.1) with o(t) €e U = {1,..., 16}, the
16 switching modes corresponding to the different possible combinations of voltages
V;. The sampling period is 7 = 10s.

v,

1

The parameters Tj,, Vi, a;j, b, ¢; are given in Table A.1 and have been
identified with a proper identification procedure detailed in [137]. Note that here we
have neglected the term ;- 4,;¢;5* h(T; —T;) of [134], representing the perturba-
tion induced by the open or closed state of the doors between the rooms. Taking a
“max” function into account with set based methods is actually still a difficult task.
However, this term could have been taken into account with a proper regularization

(smoothing).
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A.5 Linearized four room apartment

This case study is a linearized version of A.4. The dynamics of the system is given
by the same equation, except that the nonlinear term 55ibi(T$ — T is neglected.

The system is thus ruled by the equation:
dl;

Vi— V)
Z a;;(T; — T;) + ¢; max (0, I_/—Vik> (T, —T3). (A.3)
JEN\G) o

The behavior of the system is exactly the same as case study A.4, except that
the perturbation induced by the presence of humans is neglected. The parameters

of the model are the same and are given in Table A.1.

A.6 A path planning problem

This case study is based on a model of a vehicle initially introduced in [19] and
successfully controlled in [154, 175] with the tools PESSOA and SCOTS. In this
model, the motion of the front and rear pairs of wheels are approximated by a single

front wheel and a single rear wheel. The dynamics of the vehicle is given by:

b= et
j o= e (A4)

§ = % tan(d)

where o = arctan(atan(d)/b). The system is thus of dimension 3, (z,y) is the
position of the vehicle, while 6 is the orientation of the vehicle. The control inputs
are vy, an input velocity, and 9§, the steering angle of the rear wheel. The parameters
are: a = 0.5, b = 1. Just as in [154,175], we suppose that the control inputs are
piecewise constant, which leads to a switched system of the form of Equation (3.1)
with no perturbation. The objective is to send the vehicle into an objective region
Ry =1[9,9.5] %[0, 0.5]x]—00, +00[ from an initial region Ry = [0,0.5] %[0, 0.5] %[0, 0].
The safety set is S = [0,10] x [0,10]x] — oo, +oo[. There is in fact no particular
constraint on the orientation of the vehicle, but multiple obstacles are imposed for
the two first dimensions, they are represented in Figure 4.6 of Chapter 4. The input
velocity vg can take the values in {—0.5,0.5,1.0}. The rear wheel orientation ¢ can
take the values in {0.9,0.6,0.5,0.3,0.0, —0.3, —0.5, —=0.6, —0.9}. The sampling period
is 7 =0.3.

A.7 Two-tank system

The two-tank system is a linear example taken from [89]. The system consists
of two tanks and two valves. The first valve adds to the inflow of tank 1 and the

second valve is a drain valve for tank 2. There is also a constant outflow from
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tank 2 caused by a pump. The system is linearized at a desired operating point.
The objective is to keep the water level in both tanks within limits using a discrete
open/close switching strategy for the valves. Let the water level of tanks 1 and 2 be
given by z; and x5 respectively. The behavior of x; is given by z; = —x; — 2 when
the tank 1 valve is closed, and 1 = —x; + 3 when it is open. Likewise, x5 is driven
by x5 = x1 when the tank 2 valve is closed and 9 = 1 — z9 — 5 when it is open.
On this example, the Euler-based method works better than DynIBEX in terms of
CPU time.

A.8 Helicopter

The helicopter is a linear example taken from [55]. The problem is to control
a quadrotor helicopter toward a particular position on top of a stationary ground
vehicle, while satisfying constraints on the relative velocity. Let g be the gravita-
tional constant, = (reps. y) the position according to z-axis (resp. y-axis), & (resp.
y) the velocity according to z-axis (resp. y-axis), ¢ the pitch command and v the
roll command. The possible commands for the pitch and the roll are the following:
¢, € {—10,0,10}. Since each mode corresponds to a pair (¢,1), there are nine

switched modes. The dynamics of the system is given by the equation:

0100 0
% 0000 X4 gsin(—o)

0001 0

0000 gsin(v)

where X = (z & y y)". Since the variables z and y are decoupled in the equations
and follow the same equations (up to the sign of the command), it suffices to study

the control for x (the control for y is the opposite).

A.9 Eleven room house

This case study, proposed by the Danish company Seluxit, aims at controlling the
temperature of an eleven rooms house, heated by geothermal energy. The continuous

dynamics of the system is the following:
d = v
L) = DVALT () = T(1)) + Bi(Teno(t) — To(t)) + HYj 05 (A.5)
j=1

The temperatures of the rooms are the 7;. The matrix A% contains the heat
transfer coefficients between the rooms, matrix B contains the heat transfer coef-
ficients betweens the rooms and the external temperature, set to T,,, = 10°C for

the computations. The control matrix H" contains the effects of the control on the
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room temperatures, and the control variable is here denoted by v;. We have v; =1
(resp. v; = 0) if the heater in room j is turned on (resp. turned off). We thus have
n =11 and N = 2! = 2048 switching modes.

Note that the matrix A¢ is parametrized by the open of closed state of the doors
in the house. In our case, the average between closed and open matrices was taken
for the computations. The exact values of the coefficients are given in [112]. The
controller has to select which heater to turn on in the eleven rooms. Due to a
limitation of the capacity supplied by the geothermal device, the 11 heaters cannot
be turned on at the same time. In our case, we limit to 4 the number of heaters

that can be on at the same time.
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Appendix B

Proof of Lemma 1

Proof. Suppose 1 < {5, and denote by P} (k) the property

(f((riy + A, Ry + A), (wf 7)) = X[

117 12

and by P7 (k)
X SR +A+e

and similarly for P.(k) and P2 (k).
We show by induction on & the following property P(k):
Viy € I, PL(k) A P} (k) and Vis € I, PL(k) A P.(k).

21 12

Let us first consider the case k = 1. Let us prove Vi; € I, P'(k) n P?(k)

21 1

(the proof is similar for Yiy € I, PL(k) A P2(k)). Let us show that (f((r;, + A, Ro+

12
A), (rf i) = XE and XF < Ry + A +e.

117 12
For k =1, Wfl and WfQ are of the form u; and us. We have:

L (f((ri, + A, Ry + A), (zf,m5)1 = fi(ri, + a, Ry + a,uy)

117 "2

2. Xill = fl(XZ'OlaR2 + A + €,U1> = fl(ril + a, R2 + A + €,u1)
Hence (f((r;, + A, Ry + A), (xf, 7)1 < XF holds for k = 1. And X} <

117 712

Ry + A + ¢ because of Prop,(A, iy, m;,).
Let us now suppose that & > 1 and that P(k — 1) holds. We prove P(k).
Properties P2 (k) and P2 (k) are true for all iy,iy because, by construction, the
sequence X[ (resp. X[) satisfies Prop,(a,i,m;,) (vesp. Propy(a,is, m;,)). Let us

prove P! (k) and P} (k):

(f(rh + Av Ry + A’ (ny sz)))l = (f(f((rll + A: Ry + A)’ (71-?1_17 WZ_I))’
(i, (K), i, (k)
= fl([f((rn + A, Ry + A)? (WZ_I’ 71—@{62—1))]7

[f((rh + A? Ry + A)7 (77-571_1 Wk_l))]: Ty (k))

) Mg
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Note that the first argument of f; in the last expression satisfies [ f((r;, + A4, Ry +
A), (it 7)) < XF by PL(k — 1). Besides, the second argument satisfies

11?2

Lf((riy + A, Ry + A), (5] k La )l e Usser X’C ' < Ry + A + ¢, because
lL.ry, +ASC R +A

2. Uper, X' S Ro+ A+ esince X' S Ry+ A+e  (by P(k— 1) which
holds for all js)

3. [f(R+ A,rjy + A), (757 7)) € XETU (by PL(E— 1))

7 e J2
Hence

AL iy + A Ry A), (7wl )L (i + A Ry + A), (a7 wl )] m)

? 9 D) ) g

C Fi(XE Ry + A+ 2w, () = X

71

We have thus proved P} (k):

(f(ri, + A, Ry + A, (7, 7)1 € X[

11’ 12

This completes the proof of Vi, € Iy, P! (k) n P? (k) We prove P} (k) A P2 (k) for all

71

iy € Iy similarly, which concludes the proof of P(k). The proof of (f((r;, + A, Ry +
A), (7)), < Xfll(a, mi,) € Ry is similar. O

117 12
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