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Résumé

Dans le présent travail de thèse, nous souhaitons approfondir l’étude des systèmes
dynamiques à commande par commutation au moyen de méthodes dites “correct-
by-design”. Nous nous intéressons plus particulièrement à la synthèse de contrôleurs
pour de tels systèmes, et souhaitons étendre le champ d’application des algorithmes
existants, notamment pour des problèmes décrits par des équations aux dérivées par-
tielles. En effet, les algorithmes existants reposent essentiellement sur une décom-
position ou discrétisation de l’espace des états, associée à des méthodes de calcul
ensembliste permettant de calculer les ensembles atteignables, et leur complexité
est exponentielle en la dimension de l’espace des états, ce qui limite fortement la
complexité des systèmes étudiés. Une première étape est l’amélioration du cal-
cul des ensembles atteignables, en l’étendant aux systèmes non-linéaires grâce à des
schémas numériques garantis. Nous proposons également une approche extrêmement
rapide basée sur le schéma d’Euler associé à une hypothèse proche de la stabilité
incrémentale. D’autre part, afin d’augmenter la dimension des systèmes que nous
étudions, nous proposons des versions distribuées (compositionnelles) des algorithmes
de synthèse, permettant de casser la complexité exponentielle en synthétisant des
contrôleurs sur des sous-parties du système, mais impliquant des contraintes sup-
plémentaires pouvant être gérées par des approches du type hypothèse/garantie.
Enfin, pour l’application aux problèmes aux dérivées partielles, dont les versions
discrétisées sont toujours inatteignables pour de tels algorithmes, nous proposons
des approches utilisant des méthodes de réduction de modèle, permettant de dimin-
uer la complexité du système étudié en l’approchant par un système de faible di-
mension, mais nécessitant la prise en compte des différentes sources d’erreur. Si les
premières applications des méthodes “correct-by-design” ont permis de synthétiser
des contrôleurs robustes pour des systèmes tels que des convertisseurs de puissance
modélisés par des systèmes à commande par commutation de dimension 2, nous
avons appliqué nos méthodes sur des cas tests tels que le chauffage d’une maison
onze pièces (cas test concret proposé par l’entreprise danoise Seluxit), le contrôle au
bord de l’équation de la chaleur, ou encore le contrôle de vibration sur des pièces
métalliques.
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Summary

In this thesis, we focus on switched control systems and investigate the issue of
guaranteed (correct- by-design) control of such systems. More specifically, we focus
on control synthesis, and wish to extend the field of application of the existing al-
gorithms, notably for problems described by partial differential equations. Indeed,
the existing algorithms mainly rely on a state-space decomposition or discretiza-
tion, associated to reachable set computations, and their computational complexity
is exponential with respect to the dimension of the system, which strongly restricts
the complexity of the systems one can study. A first issue tackled in this thesis
is the improvement of the reachable set computations, by extending them to non-
linear systems with the use of guaranteed numerical schemes. We also propose an
extremely fast approach based on the Euler method associated to a hypothesis close
to incremental stability. Secondly, in order to increase the dimension of the systems
handled by such methods, we propose distributed (compositional) versions of the
synthesis algorithms, allowing to break the exponential complexity by synthesizing
controllers on sub-parts of the system, but implying additional constraints which can
be handled by approaches such as assume/guarantee reasoning. Lastly, the direct
application to partial differential equations, even in their discretized form, is still
intractable for such algorithms. To reach this goal, we propose approaches based on
model order reduction methods, allowing to decrease the complexity of the studied
system by approaching it with a low dimensional system, but which require taking
the different sources of error into account. While the first applications of correct-
by-design methods successfully synthesized robust controllers for systems such as
power converters modeled switched control systems of dimension 2, we applied our
methods to case studies such as the floor heating of an eleven room house (concrete
case study proposed by the Danish company Seluxit), boundary control of the heat
equation, or vibration control of metal plates.
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Élise, pour son soutien inconditionnel et sa présence à mes côtés, qui m’a permis de
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1.3.1 Les schémas de Runge-Kutta garantis . . . . . . . . . . . . . . 7
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Chapter 1

Introduction en français
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Ces dernières années, l’étude des systèmes hybrides a été l’objet d’un intérêt

croissant car ils permettent de modéliser un grand nombre de systèmes cyber-

physiques. Le modèle des système hybrides a été appliqué avec succès dans de

nombreux domaines tels que l’industrie automobile, l’électronique de puissance, les

maisons intelligentes, la médecine assistée par ordinateur ou encore les systèmes

robotiques. Les systèmes à commande par commutation (systèmes à commutation)

sont une sous-classe de systèmes hybrides qui se sont considérablement développés

en raison de la facilité d’implémentation permettant de contrôler des systèmes cyber-

physiques.

L’une des principales problématiques soulevées par l’étude des systèmes à com-

mutation est l’amélioration de la robustesse et de la flexibilité des méthodes de

commande augmentant ainsi la fiabilité et la sûreté de fonctionnement. Un système

à commutation est constitué de deux parties: une famille de systèmes continus ap-

pelés modes, ayant chacun une dynamique propre; et un signal de commande qui

sélectionne le mode actif. Nous supposons qu’un et un seul mode est actif à un temps

donné. Le signal de commande peut être dépendant de l’état et/ou du temps. Ainsi,

les systèmes à commutation sont essentiellement décrits par une dynamique définie

par morceaux.

La dynamique des modes d’un système à commutation est généralement décrite

par des équations différentielles ordinaires (EDOs) et de nombreux outils existent

pour contrôler (commander) de tels systèmes. Cependant la complexité des systèmes

décrivant les problèmes d’aujourd’hui est de plus en plus grande, et des modes com-

mutés décrits par des équations à dérivées partielles (EDPs) reçoivent une attention

accrue. Il est important de souligner ici que l’une des principales difficultés découlant

du modèle des systèmes à commutation par rapport aux systèmes classiques est que

l’état du système ne peut pas être stabilisé asymptotiquement par une loi de com-

mande par retour d’état continue [38]. Cela vaut pour des dynamiques décrites par

des EDOs aussi bien que pour des EDPs. Ainsi, la notion de stabilité que nous

définissons dans cette thèse est plus proche de la notion d’invariance que de stabilité

au sens classique.

1.1 Contrôle des systèmes dynamiques

Bien qu’il existe de nombreux outils et méthodes permettant d’obtenir avec

succès des lois de commande qui garantissent certaines propriétés pour les systèmes

contrôlés, telles que la stabilité ou l’atteignabilité, le choix de l’approche dépend sou-

vent de l’application visée par le modèle. Par exemple, les approches type contrôle

optimal visant à minimiser une fonction coût et à atteindre un état cible tout en sat-

isfaisant des contraintes données sont très utilisés dans l’ingénierie aérospatiale [113,

171]. Elles ont également été utilisées sur des systèmes de dimension infinie pour des

EDPs [62, 90,91, 158]. Elles sont cependant souvent très chères en coût de calcul et
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exigent des méthodes numériques sophistiquées pour être appliquées en ligne. D’un

autre côté, les approches issues de la théorie de Lyapunov permettent d’analyser

et de stabiliser des systèmes contrôlés. Elles reposent principalement sur des fonc-

tions d’énergie (de Lyapunov) caractérisant l’état du système et assurant la sta-

bilité quand leur niveau atteint 0. Ce type d’approche a été appliqué aux systèmes

non-linéaires [104, 174], aux systèmes hybrides [79] et aux systèmes de dimension

infinie [25, 49, 87, 131]. Nous soulignons ici que les EDPs continuent à présenter un

défi majeur étant donné qu’il faut systématiquement adapter la méthode au type

d’équation. Dans le cas des systèmes à commutation, l’utilisation des fonctions com-

munes de Lyapunnov fournit également des lois de contrôle efficaces [124,170]. Des

travaux récents proposent des résultats de stabilité et stabilisation pour des systèmes

à commutation décrits par des EDPs [111, 128, 150]. Il faut cependant noter qu’il

n’y a pas de méthode générale permettant de déterminer une fonction Lyapunov

appropriée, que ce soit pour les EDOs ou les EDPs, ce qui rend ce type d’approche

encore plus dépendant de l’étude de cas considérée et plus dure à appliquer dans

le cas général. De plus, même si toutes ces méthodes donnent des résultats forts

pour les systèmes contrôlés, leur application en ligne est très souvent effectuée avec

des dispositifs digitaux (numériques) impliquant une discrétisation de l’état et/ou

de l’entrée de contrôle. Des schémas numériques peuvent alors être utilisés et ces

outils supplémentaires impliquent inévitablement des erreurs numériques non prises

en compte. Cela pourrait ainsi conduire à des problèmes de sûreté, particulièrement

pour les systèmes où la sécurité est cruciale. Pour toutes ces raisons, nous nous con-

centrons ici sur les méthodes dites garanties ou ”correct-by-design” (correctes par

construction). Les méthodes symboliques semblent être l’outil le plus approprié pour

atteindre ce but: elles contrôlent exhaustivement tous les états possibles du système

et peuvent être associées à des schémas numériques garantis, c’est-à-dire prenant en

compte toutes les erreurs numériques. Elles présentent également l’avantage d’être

entièrement automatisées et ne requièrent pas, par exemple, l’estimation d’une fonc-

tion de Lyapunov.

1.2 Les méthodes symboliques et les systèmes à

commutation

Dans cette thèse, nous nous concentrons sur la sous-classe des systèmes à com-

mutation périodique (“sampled switched systems”), pour lesquels la commutation ne

peut avoir lieu que périodiquement. Nous dénotons cette période par τ . Etant donné

qu’un actionneur physique ne peut pas changer d’état à une vitesse infinie, il est

également réaliste de considérer une période donnée à laquelle l’actionneur peut en

effet changer d’état. Cette sous-catégorie est particulièrement adaptée à l’utilisation

de schémas numériques et, plus généralement, aux méthodes de synthèse hors ligne.
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Notons cependant que [2] présente une méthode symbolique permettant d’avoir des

périodes de temps variables.

1.2.1 État de l’art

Il existe un grand nombre de méthodes symboliques servant à contrôler les

systèmes à commutation périodique. Elles reposent sur de nombreux outils et

nécessitent souvent des hypothèses fortes sur la dynamique du système. On peut

souligner que les méthodes symboliques s’appliquent également aux systèmes de

contrôle classiques (de dimension finie), mais discrétisent généralement l’entrée de

contrôle, ce qui revient en réalité à considérer un modèle de système à commu-

tation. La plupart de ces méthodes reposent sur des abstractions de dimension

finie, qui consistent à discrétiser (abstraire) l’espace d’état du système en vue de

les transformer en un automate à état fini, pour lequel de nombreux outils perme-

ttent d’effectuer une synthèse de contrôle (par exemple, BDDs ou diagrammes de

décision binaires). Les états de l’automate sont alors appelés symboles et l’automate

à état fini est dit symbolique ou abstrait. Néanmoins, la dimension garantie dépend

tout de même de la méthode d’abstraction. Par exemple, l’outil PESSOA [132]

synthétise un automate à état fini qui est approximativement bisimilaire au modèle

original. Pour faire simple, cela permet de garantir que les trajectoires du système

réel restent proches du système symbolique à une précision donnée. Cet outil est

opérationnel pour les systèmes linéaires; des extensions non linéaires sont disponibles

mais nécessitent des hypothèses supplémentaires telles que la stabilité incrémentale

asymptotique globale ou la stabilité entrée-sortie incrémentale [149]. En résumé,

la stabilité incrémentale est une hypothèse forte qui, pour chaque mode, suppose

que deux trajectoires se rapprochent exponentiellement au cours du temps. Pour

plus d’information sur la stabilité incrémentale, voir par exemple les travaux de [13].

L’outil CoSyMA [142] utilise lui aussi la bisimulation approchée et présuppose que

le système est incrémentalement stable, mais inclut des abstractions à échelle multi-

ple: la discrétisation est adaptée au système et permet d’utiliser plus d’états discrets

lorsque c’est nécessaire. Les travaux de [75, 77] donnent plus d’informations sur

l’utilisation d’abstraction utilisant des simulations approchées. L’outil SCOTS [159]

repose également sur des abstractions à état fini mais utilise un autre concept appelé

”feedback refinement relations” décrit par [154]. A ces différents outils s’ajoute une

autre classe reposant sur des pavages de l’espace d’état. Associée à l’hypothèse de

monotonicité, qui suppose que les trajectoires restent ordonnées, il est possible de

calculer l’image d’un ensemble en calculant simplement l’image des points extrémaux

d’un pavé. Des abstractions à état fini peuvent alors êtres construites à des fins de

synthèse de contrôle. Ce type d’approche est utilisé dans [103, 136]. Une méthode

d’abstraction relativement différente est utilisée dans [122], où les états symboliques

sont des séquences de modes, mais cette approche nécessite également l’hypothèse
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de stabilité incrémentale. Une méthode d’abstraction développée récemment [153]

utilise des fonctions de Lyapunov robustes (”robust control Lyapunov-like func-

tions”), qui sont calculées automatiquement en utilisant une synthèse inductive

par contre-exemple, au moyen de solveurs SMT (qui résolvent des problèmes de

décision).

1.2.2 Motivations

Bien que toutes ces approches soient efficaces et appliquées en pratique sur de

nombreuses études de cas, la plupart d’entre elles reposent sur des hypothèses fortes

sur la dynamique du système (telles que les stabilité incrémentale ou la mono-

tonicité). Dans cette thèse, nous développons des méthodes qui ne nécessitent pas de

telles hypothèses. Dans un premier temps, nous introduisons des méthodes pour des

systèmes linéaires. L’application aux systèmes non linéaires est ensuite rendue pos-

sible grâce à des schémas numériques garantis, qui utilisent des hypothèses les plus

faibles possibles, telles que des dynamiques localement Lipschitziennes. Nous basons

nos développements sur l’outil MINIMATOR [106] qui synthétise des contrôleurs

grâce à un pavage adaptatif de l’espace d’état, associé à une recherche exhaustive

des séquences de contrôle possible (jusqu’à une certaine longueur). Cette recherche

peut soit terminer avec succès si chaque pavé est associé à une séquences de contrôle,

soit échouer, et les pavés non contrôlés sont alors décomposés en sous-pavés et une

nouvelle recherche de séquences est effectuée. Cette procédure développée par Ro-

main Soulat, appelée ”state-space decomposition”, est présentée pour les systèmes

linéaire de dimension finie dans [66, 68]. Elle donne en fait un moyen efficace de

synthétiser des contrôleurs dépendant de l’état et permettant d’assurer des pro-

priétés en temps discret, valables aux instants de commutation τ , 2τ ... Notons que

l’utilisation d’états symboliques polyédriques, tel qu’ici, est largement utilisée dans

la littérature [17,72], et l’utilisation de pavage ou partitionnement de l’espace d’état

en utilisant des bissections est également classique (voir par exemple [76,94]). L’un

des objectifs de cette thèse est d’étendre cette procédure aux systèmes non linéaires,

tout en assurant des propriétés en temps continu. Afin d’appliquer cette approche

pour assurer des propriétés de sûreté valables à tout instant, nous devons maintenant

calculer un tube d’atteignabilité, et non plus seulement des images à des instants

discrets d’un ensemble initial (facilement calculables pour des systèmes linéaires).

En d’autres termes, nous devons calculer la solution d’un système d’EDOs avec

une condition initiale donnée sous forme d’un ensemble. L’extension aux systèmes

non linéaires nécessite ainsi de nouveaux outils permettant de calculer les ensembles

atteignables: les schémas numériques garantis.

Un défaut inhérent aux méthodes symboliques est leur complexité algorithmique,

sujette à la ”malédiction de la dimension”. En effet, la plupart des méthodes symbol-

iques sont basées sur des abstractions à état fini, et la taille des modèles symboliques
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grandit exponentiellement avec la dimension du système. Bien que notre méthode

de pavage adaptatif parvienne à maintenir le nombre de symboles relativement bas,

elle peine à synthétiser des contrôleurs pour des systèmes de dimension supérieure

à 8 dans des temps raisonnables. Afin de contourner ce défaut, nous proposons

d’appliquer des principes de composition, et développons des versions distribuées de

ces algorithmes.

Pour finir, les approches symboliques n’ont encore jamais été appliquées aux

systèmes à commutation décrits par des équations aux dérivées partielles. Nous

avons pour but d’assurer des garanties formelles de sûreté ou atteignabilité pour de

tels systèmes, en utilisant des méthodes symboliques. Dans leur forme discrétisée

(par exemple par la méthode des éléments finis), les EDPs conduisent à des systèmes

d’EDOs de grande dimension, et l’application directe de méthodes symboliques n’est

pas pertinente. Cependant, réduire la dimension d’une EDP est une problématique

importante dans le domaine de la mécanique numérique et de la mécanique des

structures, et les applications sont nombreuses (optimisation d’un procédé, stockage

de données, abaques virtuels...). Nous proposons donc d’utiliser ces techniques en

les associant à des méthodes de contrôle symbolique pour atteindre cet objectif.

1.3 Calcul de l’ensemble atteignable

Le calcul de la solution d’un système d’EDOs linéaires quand la condition initiale

est donnée sous forme de bôıte (produit d’intervalles) peut être effectué facilement

en utilisant des zonotopes [10, 73, 105, 109]. Mais ceci n’est possible que parce que

l’on connait la solution exacte du système d’EDOs, et le calcul de l’image de la

bôıte peut ainsi être reformulé comme une transformation affine. Cependant, dans

le cas général, la solution exacte d’une EDO non linéaire ne peut être obtenue, et

un schéma d’intégration numérique est utilisé pour approcher cette solution. Pour

atteindre l’objectif de calculer un contrôleur garanti, qui assure des propriétés en

temps continu, le calcul d’un tube d’atteignabilité est obligatoire.

Etant donné une EDO de la forme 9xptq “ fpt, xptqq, et un ensemble de conditions

initiales X0, une méthode d’intégration symbolique (ou ”ensembliste”) consiste en

calculer une suite d’approximations ptn, x̃nq de la solution xpt; x0q de l’EDO avec

x0 P X0 et telle que x̃n « xptn; xn´1q. Les méthodes d’intégration symboliques

étendent les méthodes d’intégration numérique classiques, qui correspondent au cas

où X0 est un singleton tx0u. La plus simple de ces méthodes est la méthode d’Euler,

pour laquelle tn`1 “ tn ` h, avec h le pas de temps, et x̃n`1 “ x̃n ` hfptn, x̃nq; de
cette façon, la dérivée de x au temps tn, fptn, xnq, est utilisée comme une approx-

imation de la dérivée sur l’intervalle rtn, tn`1s. Cette méthode est très simple et

rapide, mais nécessite de petits pas de temps h. Des méthodes plus avancées, dont

celles de type Runge-Kutta, utilisent quelques calculs intermédiaires pour améliorer

l’approximation de la dérivée. La forme générale d’une formule de Runge-Kutta
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de rang s est x̃n`1 “ x̃n ` hΣs
i“1biki, où ki “ fptn ` cih, x̃n ` hΣi´1

j“1aijkjq pour

i “ 2, 3, ..., s. Une question importante est alors de calculer une borne sur la dis-

tance entre la solution exacte et la solution numérique, c’est-à-dire }xptn; xn´1q´xn}.
Cette distance est communément appelée erreur locale de troncature de la solution

numérique.

Nous développons deux approches repposant sur ce type de schémas. La première

repose les schémas de Runge-Kutta et les méthodes par intervalle. La seconde est

un renouvellement de la méthode d’Euler, pour laquelle nous donnons une nouvelle

borne d’erreur en calculant des tubes d’atteignabilité avec des boules.

1.3.1 Les schémas de Runge-Kutta garantis

La plupart des travaux récents sur les méthodes d’intégration symbolique (ou

ensembliste) pour les EDOs non linéaires repose sur la majoration des restes de

Lagrange soit dans le cadre des séries de Taylor, soit dans les schémas de Runge-

Kutta [6,8,35,37,42,43,56,130]. Les ensembles d’états sont généralement représentés

comme des vecteurs d’intervalles (”boites” ou ”rectangles”) et sont manipulés au

moyens de l’arithmétique d’intervalles [141], ou l’arithmétique affine [54]. Les for-

mules de Taylor avec reste de Lagrange sont également utilisées dans les travaux

de [8], qui utilisent des ”zonotopes polynomiaux” pour représenter des ensembles

d’états en plus des vecteurs d’intervalle.

La solution garantie ou validée d’EDOs en utilisant l’arithmétique d’intervalles

est étudiée dans le carde des séries de Taylor dans [59, 125, 141, 144], et pour les

schémas de Runge-Kutta dans [6, 35, 36, 71]. Les séries de Taylor constituent la

méthode la plus ancienne utilisée dans l’analyse par intervalles, car l’expression

des restes de Taylor est simple à obtenir. Néanmoins, la famille des méthodes de

Runge-Kutta est très importante dans le domaine de l’analyse numérique. En effet,

les méthodes de Runge-Kutta présentent plusieurs propriétés intéressantes telles

que la stabilité, ce qui répond à une classe importante de problèmes. Les travaux

récents [5] implémentent des méthodes de Runge-Kutta et ont prouvé leur efficacité

à des dimensions modérées et pour des simulations courtes (fixées par la période

d’échantillonnage du contrôleur).

Dans les méthodes d’analyse symbolique et de contrôle des systèmes hybrides, la

façon de représenter les ensembles d’états et de calculer les ensembles atteignables

pour des systèmes décrits par des EDOs est fondamentale (voir par exemple [9,

74]). De nombreux outils utilisant, parmi d’autres techniques, la linéarisation ou

l’hybridisation de la dynamique sont maintenant disponibles (voir par exemple

SpaceEx [64], Flow* [43], iSAT-ODE [61]). Une approche récente se base sur la

propagation des ensembles atteignables en utilisant des schémas de Runge-Kutta

garantis avec pas de temps adaptatif (voir [35, 92]). L’originalité de nos travaux

est d’utiliser de telles méthodes dans le cadre des systèmes à commutations. Cette
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notion de garantie des résultats nous permet en effet d’envisager des applications

dont la sûreté est critique, telles que dans les domaines aéronautiques, militaires ou

médicaux.

1.3.2 La méthode d’Euler

Toutefois, les méthodes de Runge-Kutta de [5] restent complexes et requièrent

l’utilisation de l’arithmétique affine, l’application du théorème du point fixe de Ba-

nach et de l’opérateur de picard-Lindelöf (voir [144]). Malgré son efficacité et sa

précision, elle nécessite un nombre non négligeable de calculs pour chaque pas de

temps. En revanche, notre deuxième approche utilise une arithmétique classique

(au lieu de l’arithmétique affine) et un schéma d’Euler basique (au lieu de schémas

de Runge-Kutta). Nous n’avons besoin d’aucune estimation de restes de Lagrange,

ni d’effectuer d’itérations de Picard avec des séries de Taylor. Notre approche est

rendue possible grâce la notion de fonction Lipschitz unilatérale [57] (“one-sided

Lipschitz”, que nous abrégeons par OSL). Cela nous permet de borner directement

l’erreur globale, c’est-à-dire la distance entre le point approché x̃ptq calculé par le

schéma d’Euler et la solution exacte xptq, pour tout t ě 0. Notons que la borne

que nous donnons est plus précise que la borne classique que l’on retrouve dans [20],

et qui est également utilisée dans les méthodes d’hybridisation dans [18, 44]. Afin

d’exploiter au mieux cette borne nous utilisons des boules, et la formule établie

est valable à tout instant dans la période de commutation. Cela nous permet de

calculer des tubes d’atteignabilité de façon extrêmement rapide par rapport aux

méthodes de Runge-Kutta, bien que la précision soit limitée pour certaines valeurs

de la constante OSL.

Aucun des travaux sur l’intégration garantie mentionnés ci-dessus n’utilise le

schéma d’Euler, ni la notion de constante OSL. Dans la littérature sur l’intégration

symbolique, le schéma d’Euler avec conditions OSL est envisagé dans [57,123]. Notre

approche est similaire mais nous établissons un résultat analytique pour l’erreur

globale du schéma d’Euler, et non pas une analyse, en termes de complexité, de la

vitesse de convergence, de la consistance ou de la stabilité de la méthode d’Euler.

Dans la communauté de l’automatique et du contrôle, les conditions OSL ont été

récemment appliquées au contrôle et à la stabilisation [1, 39], mais sans utiliser de

schéma d’Euler. À notre connaissance, c’est la première fois qu’un schéma d’Euler

est utilisé avec des conditions OSL pour le contrôle symbolique de systèmes hybrides.

1.4 Les approches compositionnelles

Comme précisé plus haut, les complexité des abstractions de systèmes à commu-

tation par des méthodes symboliques est sujette à la malédiction de la dimension-

nalité. Plus précisément, ce coût exponentiel est double. Premièrement, la taille
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des abstractions crôıt exponentiellement avec la dimension du système, du fait de la

discrétisation de l’espace d’état. Deuxièmement, le nombre de séquences de contrôle

à explorer est exponentiel avec la taille des séquences, et le nombre de modes com-

mutés. Si l’on appelle N le nombre de modes commutés, le nombre de séquences de

contrôle de longueur inférieure ou égale à k est en OpNkq.

L’application de principes de composition est donc essentielle afin d’obtenir des

méthodes de contrôle garanti si l’on souhaite induire des garanties formelles de cor-

rection. L’objectif de telles méthodes est de découper le système en sous-systèmes

(composants) de dimension inférieure, et de synthétiser des contrôleurs pour ces

sous-systèmes. Avec de simples techniques de sur-approximation, nous pouvons es-

timer l’état symbolique des autres sous-systèmes en présence d’observation partielle.

Cette approche est similaire, dans l’esprit, aux raisonnements de type hypothèse-

garantie (“assume-guarantee”) ou basés sur des contrats (“contract-based”). Ces

méthodes supposent, lors de la synthèse de contrôle d’un des sous-systèmes, que

tous les autres sous-systèmes vérifient des propriétés de sûreté données [11, 34, 53,

65, 100, 135, 161, 167]. Notre approche est une continuation de [65]. Contrairement

à [65], nous n’avons pas besoin, lors de la recherche d’un mode d’un sous-système,

d’explorer aveuglément tous les modes possibles des autres sous-systèmes. Cela con-

duit à une réduction drastique de la complexité. Cette approche a rendu possible

la synthèse d’un contrôle pour un cas test concret, impossible à traiter dans le cas

centralisé. Cette étude de cas, proposée par l’entreprise danoise Seluxit est pro-

posée dans [112], elle modélise une maison onze chambres chauffée par géothermie.

Contrairement aux travaux de [112], qui utilisent une approche en ligne associée à

une heuristique ne donnant aucune garantie formelle, nous utilisons une méthode de

synthèse hors ligne assurant des garanties formelles d’atteignabilité et de stabilité.

Cette approche compositionnelle est appliquée dans le cas linéaire en utilisant des

zonotopes, et dans le cas non linéaire en utilisant les approches basées sur Runge-

Kutta et Euler. Bien que l’extension aux systèmes non linéaires reposant sur les

schémas de Runge-Kutta soit quasiment directe puisque qu’elle permet de gérer

des perturbations, l’approche Euler nécessite des développements supplémentaires.

Nous expliquons donc comment un simple schéma d’Euler peut être appliqué à

la synthèse de contrôleurs de sûreté de façon distribuée. Pour effectuer une telle

synthèse distribuée, nous voyons les composants du système global comme intercon-

nectés (voir par exemple [173]), ce qui permet d’utiliser une version moins restric-

tive de la notion de stabilité entrée-sortie incrémentale (“incremental input-to-state

stability”, souvent abrégée δ-ISS) et des fonctions de Lyapunov incrémentalement

stables [96] (ISS Lyapunov functions). Cette notion remplace alors le caractère

Lipschitzien unilatéral du cadre centralisé.
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1.5 Les méthodes de réduction de modèle

Les méthodes de réduction de modèle ont pour objectif de représenter les so-

lutions d’équations aux dérivées partielles avec un faible nombre de fonctions de

base. Elles sont largement utilisées dans le domaine de la mécanique des struc-

tures et de la mécanique numérique. Bien sûr, de telles méthodes impliquent une

perte d’information par rapport à la solution exacte, et l’encadrement des erreurs

entre les modèles d’ordre élevé et d’ordre faible est obligatoire si l’on veut as-

surer des garanties formelles pour les lois de commande. L’une des plus anciennes

méthodes de réduction de modèle est sans doute la décomposition spectrale [40],

consistant simplement en une décomposition en série de Fourier tronquée, et qui

permet d’ores et déjà de représenter les solutions d’une large classe d’EDP avec

un nombre raisonnable de fonctions de base. Elles présentent l’avantage d’être ap-

plicables a priori, c’est-à-dire sans calculer au préalable une quelconque solution

de l’EDP. Par ailleurs, il existe de nombreuses bornes d’erreur pour ces méthodes.

Des techniques plus sophistiquées et précises reposent sur la réduction a posteriori,

elles extraient l’information pertinente d’un ensemble de solutions pré-calculées (ap-

pelées snapshots). L’idée générale est l’application d’une décomposition en valeurs

singulières sur la matrice des snapshots, associée à une normalisation adaptée. La

décomposition orthogonale aux valeurs propres [48,98] (“Proper Orthogonal Decom-

position”, ou POD), entre généralement dans ce type de méthodes. Même si la

construction des fonctions de base peut nécessiter un certain temps puisqu’il faut

au préalable calculer un grand nombre de snapshots, ce type d’approche n’est pas

rédhibitoire puisque nous avons pour but d’utiliser des méthode de synthèse hors

ligne. Un classe importante de méthodes de réduction de modèles en mécanique des

structures utilise les projections de Galerkin [28, 157], qui permettent d’établir des

bornes d’erreur L2 de façon très naturelle. Les méthodes de type POD sont souvent

appliquées dans ce cadre [107]. Toutes ces approches sont applicables sur une large

gamme d’EDPs (mais excluant par exemple les équations de transport, encore très

difficiles à réduire aujourd’hui), et de nombreuses extensions non linéaires ont été

proposées [23, 81, 162].

Même si l’utilisation de méthodes de réduction de modèles n’est pas courante

dans le domaines de l’automatique et du contrôle de systèmes, il existe plusieurs

travaux sur le sujet. Une approche basée sur les Gramiens est par exemple utilisée

dans [165]. Pour faire court, les Gramiens sont des fonctions qui caractérisent

l’énergie de l’état et de la sortie du système, leur calcul nécessite en général de trou-

ver la solution d’équations de Lyapunov. La troncature équilibrée [15, 29, 30, 140]

(balanced truncation), basée sur les Gramiens et assez proche de la POD dans

l’esprit, permet réduire la dimension de systèmes linéaires de grande dimension.

Nous proposons ici d’appliquer cette méthode pour des EDPs discrétisées. La tron-

cature équilibrée existe en version non linéaire [31, 110], mais son application est
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souvent difficile sur des cas concrets. Dans [31], il faut par exemple calculer une

sur-approximation des Gramiens généralisés, qui ne sont pas calculables dans le cas

général. Notons enfin qu’il existe des approches intéressantes mêlant mécanique des

structures et systèmes de contrôle. Les travaux de [21] montrent par exemple une

application de la POD pour induire des contrôleurs réduits, ou encore [172] mêlant

POD et Gramiens.

Notre objectif est finalement d’utiliser de telles techniques afin d’appliquer des

méthodes symboliques pour le contrôle d’EDPs, le problème principal étant de prou-

ver que les contrôleurs calculés sont garantis. Nous proposons ici de majorer les

erreurs de trajectoire entre les systèmes d’ordre élevé et d’ordre faible, afin de pren-

dre cette majoration en compte dans le calcul de synthèse. Bien sûr, le choix de

la méthode de réduction n’est pas anodine, et doit être adaptée à l’équation visée.

La construction de bornes d’erreur dépend en effet très fortement de la méthode de

réduction utilisée.

1.6 Contributions

Dans le chapitre 3, nous définissons formellement la classe de systèmes considérés,

puis nous introduisons les algorithmes utilisés dans le reste de cette thèse. Ces algo-

rithmes sont très inspirés des travaux de [66,68,106], et nous les étendons simplement

aux propriétés en temps continu. Nous proposons également une amélioration non

négligeable de la recherche des séquences de contrôle, diminuant ainsi très fortement

les temps de calcul.

Dans le chapitre 4, nous considérons le problème de calcul d’atteignabilité. Nous

présentons d’abord les méthodes utilisées pour les systèmes linéaires dans [68],

puis nous introduisons la méthode utilisée dans [5, 6, 56], qui est essentiellement

due à Alexandre Chapoutot et Julien Alexandre dit Sandretto. L’application de

cette méthode à la synthèse de contrôleurs de systèmes non linéaires est cepen-

dant entièrement nouvelle et donne des résultats compétitifs par rapport aux outils

de l’état de l’art. Ces travaux ont donné lieu à un article de conférence [115],

ainsi qu’une extension journal [116]. Nous présentons enfin la méthode basée sur le

schéma d’Euler, entièrement nouvelle, et qui donne des résultats très prometteurs.

Cette méthode a été publiée dans l’article de conférence [118].

Dans le chapitre 5, nous proposons des versions compositionnelles des algo-

rithmes introduits aux chapitres 3 et 4. La procédure de synthèse présentée pour

les systèmes linéaires à temps discret est une extension de [66, 68], elle donne une

nouvelle méthode remplissant l’espace d’état de façon itérative. Elle est ensuite

appliquée avec une technique de sur-approximation permettant la synthèse dis-

tribuée qui a permis de synthétiser un contrôleur pour un système de dimension

onze. C’est à notre connaissance la première fois qu’une méthode formelle est ap-

pliquée à un système d’une telle dimension. Ces travaux ont été publiés dans l’article
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de conférence [120], et ont été soumis en version étendue dans [121]. L’extension

aux systèmes non linéaires est rendue possible grâce à l’utilisation de la simulation

validée. Nous présentons enfin une version distribuée de l’approche basée sur Euler,

reposant sur une version plus faible de la notion de δ-ISS. Ces travaux ont donné

lieu à un article de conférence [114].

Dans le chapitre 6, nous présentons une approche symbolique pour le contrôle

d’EDPs discrétisées, reposant sur la troncature équilibrée. Nous donnons deux

procédures pour l’application du contrôle. Nous proposons également quelques

résultats amorçant l’observation partielle, avec l’utilisation d’observateurs d’états

réduits. Cette approche a été publiée dans [117], et appliquée dans une cadre plus

spécifique aux systèmes mécaniques dans [119].

Dans le chapitre 7, nous introduisons une première approche possible pour le

contrôle d’EDP non discrétisées, reposant sur une décomposition spectrale et une

méthode d’interpolation particulièrement efficace pour représenter une fonction con-

tinue avec un faible nombre de fonctions de base, provenant de [129]. Nous don-

nons une deuxième approche visant l’utilisation de projections de Galerkin pour la

réduction, associée à la méthode d’Euler. Elle a permis de synthétiser des contrôleurs

garantis en norme L2 pour un système d’EDO-EDP couplé grâce à la majoration

de l’erreur de réduction et à une décomposition appropriée des différents termes

impliqués dans la solution. Cette approche est très prometteuse mais nécessiterait

des développements supplémentaires afin d’être appliquée sur une plus large gamme

de systèmes.
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Chapter 2

Introduction
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In recent years, there has been an increasing interest in studying hybrid systems,

which allow to model a wide range of cyber-physical systems. These models have

been applied with success in various domains such as automotive industry, power

electronics, smart houses, medical monitoring, robotic systems... Switched control

systems (switched systems for short) are a sub-class of hybrid systems, and their

importance has grown considerably over the last years because of their ease of im-

plementation for controlling cyber-physical systems. One of the main issues raised

in the study of switched systems is the improvement of robust and flexible control

techniques in order to increase reliability and safety of operation. A switched sys-

tem is constituted of two parts: a family of continuous systems called modes, each

having its own dynamics; and a switching signal that selects which mode is active.

We suppose that only one mode is active at a given time. The switching signal

can be state dependent and/or time dependent. Switched systems are thus merely

described by piecewise dynamics.

The dynamics of the modes of switched systems is usually described by ordi-

nary differential equations (ODEs), and many tools exist to control such systems.

But the complexity of the systems describing nowadays problems grows more and

more, and switching modes described by partial differential equations (PDEs) are

being paid more attention. We should point out that one of the main difficulties

arising in switched systems with respect to classical systems is that the state of the

system cannot usually by asymptotically stabilized by a continuous feedback con-

trol law [38], whether the dynamics is described by ODEs or PDEs. Therefore, the

stability notions that we define in this thesis are closer to invariance than classical

stability.

2.1 Control of dynamical systems

While many tools and methods successfully manage to provide control laws en-

suring some properties for the controlled systems, such as stability or reachability,

the approach to be used often depends on the particular application aimed by the

model. For example, optimal control approaches, basically aimed at minimizing a

cost function and permitting to reach a target state under given constraints, are of-

ten used in aerospace engineering [113,171]. They have also been applied on infinite

dimensional cases for PDEs [62,90,91,158]. They are however often computationally

expensive and require sophisticated numerical methods to be applied online. Lya-

punov theory approaches provide ways to analyze and stabilize controlled systems.

They merely rely on energy (Lyapunov) functions, characterizing the state of the

system, and ensure stability when they reach a 0 level. These type of approaches

have been applied to nonlinear control systems [104, 174], hybrid systems [79], and

for infinite dimensional systems [25, 49, 87, 131]. Note that the case of PDEs is still

an actual challenge since every method is different depending on the type of equa-

14



tion. For the case of switched systems, the use of common Lyapunov functions also

provides efficient control laws [124, 170]. Some recent works also give stability and

stabilization results for switched partial differential equations [111, 128, 150]. We

should however point out that there is no general method for determining a suit-

able Lyapunov function, whether it is for ODEs or PDEs, which makes these types

of approaches more tied to given case studies, and harder to apply in a general

case. Furthermore, even though all these methods provide strong results for the

controlled systems, the online application is often performed with digital devices,

involving a discretization of the state and/or control input. Numerical schemes can

also be used, and these additional tools inevitably imply numerical errors that are

not taken into account, and could thus lead to safety problems, particularly in safety

critical systems. This is why we focus here on guaranteed, or “correct-by-design”

methods. A correct-by-design method ensures that, with respect to a mathematical

model, every possible working case or behavior of a system is taken into account and

made safe. It should include all the possible perturbations induced by the external

environment. The appropriate tool for this purpose is symbolic methods, which

exhaustively control all the possible states of the system, and can be associated to

guaranteed numerical schemes, i.e., which take all the numerical errors into account.

They also provide the advantage of being fully automated, and do not require, for

example, the estimation of a Lyapunov function.

2.2 Symbolic methods and switched systems

In this thesis, we focus on the subclass of sampled switched systems, for which

switches occur periodically at a fixed switched period denoted by τ . These switch-

ing signals are very common because of their ease of implementation. Given that a

physical actuator cannot change its state infinitely fast, it is also realistic to consider

a fixed period at which the actuator can change its state. This sub-class is partic-

ularly adapted to the use of numerical schemes, and in general, numerical methods

allowing to synthesize controllers offline. Note however that [2] provides a symbolic

method allowing to have variable time periods.

2.2.1 State of the art

Symbolic methods for controlling sampled switched systems are numerous, rely

on different tools, and often require some hypotheses on the dynamics of the sys-

tem. Note that symbolic methods also apply to classical (finite dimensional) control

systems, but generally discretize the control input, which finally comes back to

switched system models. Most methods rely on finite state abstractions, which ba-

sically discretize (abstract) the state space of the system in order to transform it

into a finite state automaton, for which multiple tools exist for performing control
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synthesis (e.g. BDDs: binary decision diagrams). The states of the automaton are

then called symbols, and the finite state automaton is a symbolic, or abstract model

of the system. However, the guaranteed aspect still depends on the abstraction

method. For example, the tool PESSOA [132] synthesizes a finite state abstraction

which is (alternatingly) approximately bisimilar to the original model. It basically

ensures that the trajectories of the real system stay close to those of the symbolic

model with a given precision. This tool is available for linear systems, but nonlin-

ear extensions are available with additional hypotheses such as incremental global

asymptotic stability or incremental input-to-state stability [149]. Roughly speaking,

incremental stability is quite a strong hypothesis which assumes, for each mode, that

two trajectories always get exponentially closer within time. More information on

the incremental stability property is detailed in [13]. The tool CoSyMA [142] uses

approximate bisimulation as well and assumes that the system is incrementally sta-

ble, but includes multi scale abstractions, which means that the discretization adapts

to the system and uses more discrete states where needed. More information on ab-

stractions using approximate simulations is given in [75,77]. The tool SCOTS [159]

also relies on finite state abstractions but uses a different concept named feedback

refinement relations developed in [154]. Another class of finite state abstractions

relies on tilings of the state space. Associated to the hypothesis of monotonicity,

which assumes that the trajectories of the system stay ordered, it is possible to

simply compute the image of a set by computing the images of the extreme points

of the tiles. Finite state abstractions can then be constructed for control synthesis.

These approaches are used in [103, 136]. A quite different type of abstraction is

used in [122], where the symbolic states are mode sequences, but this method also

requires the hypothesis of incremental stability. A recent abstraction approach [153]

uses robust control Lyapunov-like functions, which are automatically computed us-

ing a counter-example inductive synthesis by means of an SMT solver (which solves

a decision problem).

2.2.2 Motivations

While all these approaches are efficient on practical case studies, most of them

make strong assumptions on the dynamics of the system (such as incremental sta-

bility or monotonicity). In this thesis, we develop methods that do not require such

strong assumptions. While we first introduce methods for linear systems, the ap-

plication to nonlinear systems is made possible with guaranteed numerical schemes

that require the weakest hypotheses possible, such as locally Lipschitz dynamics.

We will base our developments on the tool MINIMATOR [106], which synthesizes

controllers with an adaptive tiling of the state space, associated to an exhaustive

research of possible control sequences (up to a given length) which either succeeds

to find an admissible control sequence, or fails and decomposes further the state
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space (adaptation). This procedure developed by Romain Soulat, called state-space

decomposition, is presented for linear finite dimensional systems in [66, 68]. It ac-

tually provides for an efficient way to compute state-dependent controllers ensuring

discrete-time properties, i.e. ensured at the switching instants τ , 2τ ... Note that

the use of polyhedral symbolic states, as used here, is classical (see e.g. [17,72]), and

the use of tiling or partitioning of the state-space using bisection is also classical

(see e.g. [76, 94]). One of the objectives of this thesis is to apply this procedure to

nonlinear systems, while also ensuring continuous time properties. In order to apply

this approach with safety properties ensured for all time, one first needs to compute

a tube of reachability, and no longer just an image at discrete instants of an initial

set (easily computable for linear systems). In other words, we have to compute a

solution of a nonlinear ODE with an initial condition given as a set. The extension

to nonlinear systems thus requires new tools for the computation of the reachable

sets, namely, guaranteed numerical schemes.

An inevitable drawback of symbolic methods is their computational complexity,

subject to the so-called “curse of dimensionality”. Indeed, most of them are based on

finite state abstractions, and the resulting size of the symbolic models is exponential

with respect to the dimension of the system. While our method of adaptive tiling

manages to keep the number of symbols quite low, it still struggles to synthesize

controllers for systems of dimensions larger than 8 in reasonable amounts of time.

In order to overcome this issue, we propose to apply compositional principles, and

develop distributed versions of these algorithms.

Finally, symbolic approaches have never been applied to switched systems de-

scribed by PDES. We aim at providing formal safety or reachability guarantees

for such systems by using symbolic methods. In their discretized forms (using for

example finite element methods), PDEs lead to high dimensional ODEs, and the

straightforward application of a symbolic method is irrelevant. Fortunately, reduc-

ing the dimension of a PDE model is an important issue in the field of computational

mechanics, with many applications (optimization of a process, storage reduction, vir-

tual abacus...). We thus propose to use such techniques in association to symbolic

methods to reach this goal.

2.3 The reachable set computation

Computing the solution at discrete times of a linear ODE when the initial condi-

tion is given as a box can be easily done using zonotopes [10, 73, 105,109], and this,

because we know exactly the solution of the ODE, and can be written as an affine

transformation. Yet, generally, the exact solution of nonlinear differential equations

cannot be obtained, and a numerical integration scheme is used to approximate

the state of the system. With the objective of computing a guaranteed control,

which ensures continuous time properties, the computation of a reachability tube is
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mandatory.

Given an ODE of the form 9xptq “ fpt, xptqq, and a set of initial values X0, a

symbolic (or “set-valued” since the symbols used here are sets) integration method

consists in computing a sequence of approximations ptn, x̃nq of the solution xpt; x0q
of the ODE with x0 P X0 such that x̃n « xptn; xn´1q. Symbolic integration methods

extend classical numerical integration methods which correspond to the case where

X0 is just a singleton tx0u. The simplest numerical method is Euler’s method in

which tn`1 “ tn`h for some step-size h and x̃n`1 “ x̃n`hfptn, x̃nq; so the derivative
of x at time tn, fptn, xnq, is used as an approximation of the derivative on the whole

time interval. This method is very simple and fast, but requires small step-sizes h.

More advanced methods coming from the Runge-Kutta family use a few intermediate

computations to improve the approximation of the derivative. The general form of

an explicit s-stage Runge-Kutta formula of the form x̃n`1 “ x̃n ` hΣs
i“1biki where

ki “ fptn ` cih, x̃n ` hΣi´1

j“1aijkjq for i “ 2, 3, ..., s. A challenging question is then

to compute a bound on the distance between the true solution and the numerical

solution, i.e.: }xptn; xn´1q ´ xn}. This distance is associated to the local truncation

error of the numerical method.

We develop two approaches relying on this type of numerical schemes. The first

one makes use of Runge-Kutta type schemes and interval methods. The second

one is a renewal of the Euler method, with a new error bound allowing to compute

reachability tubes using balls.

2.3.1 Guaranteed Runge-Kutta schemes

Most of the recent work on the symbolic (or set-valued) integration of nonlin-

ear ODEs is based on the upper bounding of the Lagrange remainders either in

the framework of Taylor series or Runge-Kutta schemes [6, 8, 35, 37, 42, 43, 56, 130].

Sets of states are generally represented as vectors of intervals (or “rectangles”) and

are manipulated through interval arithmetic [141] or affine arithmetic [54]. Taylor

expansions with Lagrange remainders are also used in the work of [8], which uses

“polynomial zonotopes” for representing sets of states in addition to interval vectors.

The guaranteed or validated solution of ODEs using interval arithmetic is stud-

ied in the framework of Taylor series in [59,125,141,144], and Runge-Kutta schemes

in [6, 35, 36, 71]. The former is the oldest method used in interval analysis commu-

nity because the expression of the remainder of Taylor series is simple to obtain.

Nevertheless, the family of Runge-Kutta methods is very important in the field of

numerical analysis. Indeed, Runge-Kutta methods have several interesting stability

properties which make them suitable for an important class of problems. The recent

work [5] implements Runge-Kutta based methods which prove their efficiency at low

orders and for short simulations (fixed by the sampling period of the controller).

In the methods of symbolic analysis and control of hybrid systems, the way
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of representing sets of state values and computing reachable sets for systems de-

fined by autonomous ordinary differential equations (ODEs) is fundamental (see

for example [9, 74]). Many tools using, among other techniques, linearization or

hybridization of these dynamics are now available (e.g., SpaceEx [64], Flow* [43],

iSAT-ODE [61]). An interesting approach appeared recently, based on the prop-

agation of reachable sets using guaranteed Runge-Kutta methods with adaptive

step-size control (see [35, 92]). An originality of our work is to use such guaranteed

integration methods in the framework of switched systems. This notion of guarantee

of the results is very interesting, because it allows applications in critical domains,

such as aeronautical, military and medical ones.

2.3.2 The Euler method

In the end, the Runge-Kutta based method of [5] remains an elaborated method

that requires the use of affine arithmetic, application of the Banach’s fixpoint the-

orem and Picard-Lindelöf operator, see [144]. Despite being very efficient and ac-

curate, it still requires a lot of computations for every time step. In contrast, our

second approach uses ordinary arithmetic (instead of affine arithmetic) and a basic

Euler scheme (instead of Runge-Kutta schemes). We neither need to estimate La-

grange remainders nor perform Picard iteration in combination with Taylor series.

Our simple Euler-based approach is made possible by resorting to the notion of

one-sided Lipschitz (OSL) function [57]. This allows us to bound directly the global

error, i.e. the distance between the approximate point x̃ptq computed by the Euler

scheme and the exact solution xptq for all t ě 0. Note that the bound we establish is

more precise than the classical one found in [20], which is also used in hybridization

methods in [18,44]. An appropriate way to exploit this new bound is balls, and the

formula established is available for all time in the switching period. It allows us

to compute reachability tubes in an extremely fast way compared to Runge-Kutta

methods, although it can lack accuracy for certain values of OSL constant.

None of the works of guaranteed integration above mentioned uses the Euler

scheme nor the notion of one-sided Lipschitz constant. In the literature on symbolic

integration, the Euler scheme with OSL conditions is explored in [57, 123]. Our

approach is similar but establishes an analytical result for the global error of Euler’s

estimate rather than analyzing, in terms of complexity, the speed of convergence

to zero, the accuracy and the stability of Euler’s method. In the control literature,

OSL conditions have been recently applied to control and stabilization [1, 39], but

do not make use of Euler’s method. To our knowledge, our work applies for the first

time Euler’s scheme with OSL conditions to the symbolic control of hybrid systems.

19



2.4 Compositional approaches

As mentioned earlier, the complexity of abstractions of switched systems by sym-

bolic methods are subject to the curse of dimensionality. Actually, this exponential

cost is twofold. On the first hand, the size of the abstractions grows exponentially

with the dimension of the system. Indeed, most symmbolic control methods rely on

discretizations or tilings of the state-space. If we consider a system of dimension n,

and if each dimension is discretized withm points or tiles, then the resulting number

of symbols is in Opmnq. On the other hand, the number of control sequences to be

explored is exponential with the size of the sequences and depends on the number

of switched modes. Actually, if N is the number of switched modes, the number of

control sequences of length up to k is in OpNkq.

It is therefore essential to design compositional analysis techniques in order to

obtain control methods for switching systems with formal correctness guarantees.

The aim is to split the system in smaller systems (components), and synthesize

controllers for these sub-systems of smaller dimension. With simple techniques of

over-approximation, it allows one component to estimate the symbolic states of the

other components, in presence of partial information. This is similar in spirit to

an assume-guarantee (or contract-based) reasoning, where the controller synthesis

for each sub-system assumes that some safety properties are satisfied by the other

sub-systems [11,34,53,65,100,135,161,167]. This approach is a continuation of [65].

In contrast to [65], we do not need, for the mode selection of a sub-system, to blindly

explore all the possible modes selected by the other sub-system. This yields a drastic

reduction of the complexity. This approach allows us to treat a real case study,

which is intractable using a centralized approach. This case study proposed by the

Danish company Seluxit comes from [112], it models an eleven room house heated

by geothermal energy. In contrast to the work of [112] which uses an on-line and

heuristic approach with no formal guarantees, we use here an off-line formal method

which guarantees reachability and stability properties.

This compositional approach is applied for linear systems using zonotopes, and

for nonlinear systems using the Runge-Kutta and Euler based approaches. While the

extension to nonlinear systems using the Runge-Kutta approach is nearly straight-

forward thanks to its handling of perturbations, the Euler based approach requires

further developments. We explain how such an Euler-based method can be extended

to synthesize safety controllers in a distributed manner. In order to perform such

a distributed synthesis, we will see the components of the global systems as being

interconnected (see, e.g., [173]), and use (a less restrictive variant of) the notions of

incremental input-to-state stability (δ-ISS) and ISS Lyapunov functions [96] instead

of the notion of OSL used in the centralized framework.
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2.5 Model order reduction methods

Model order reduction methods are aimed at representing the solutions of par-

tial differential equations with few basis functions. They are extensively used in the

field of structural and computational mechanics. Of course, with such methods, one

looses a part of the information contained in the exact solution, and bounding the

error between the reduced and full order models is mandatory to induce guaranteed

control laws. One of the oldest methods might be the spectral decomposition [40],

basically based on truncated Fourier decompositions, and which already allows to

accurately represent solutions of a wide range of PDEs with reasonable amounts

of basis functions. They present the advantage of being applicable a priori, i.e.,

without having to compute solutions of the PDE, and also come with various error

bounds. More elaborated and accurate methods can rely on a posteriori model re-

duction, by extracting relevant information out of solution samples (snapshots). The

idea is to perform a singular value decomposition on a matrix of snapshots, associ-

ated with a relevant normalization. The Proper Orthogonal Decomposition (POD)

methods [48,98] generally fit this type of methods. Although the construction of the

basis functions can require a lot of time because of the need to compute snapshots,

this type of approach is not prohibitive when using offline control syntheses. An im-

portant type of model reductions in structural mechanics is the one associated with

Galerkin projections [28,157], which allow to establish L2 error bounds in a natural

manner, and POD methods are often applied in this framework [107]. While all

these approaches are applicable on a wide range of PDEs (excluding e.g. transport

equations, which are still highly difficult to reduce), many nonlinear extensions of

these methods have been proposed [23,81,162].

Even though the use of model reduction techniques is not classical when it comes

to control systems, there are many works on the subject. The Gramian based

approach (Gramians are, roughly speaking, functions that characterize energy of

the state and output of the system, their computation generally requires finding

solutions of Lyapunov equations) is for example used for switched systems in [165].

The balanced truncation [15, 29, 30, 140], a Gramian based approach quite close to

the POD in spirit, allows to reduce linear high dimensional systems with outputs,

and this technique is applied here to the case of discretized PDEs. There exist

nonlinear versions [31, 110], but their application is often difficult on concrete case

studies. For example [31] requires the computation of over-approximations of the

generalized Gramians which are not computable in the general case. Note that

interesting combinations of computational mechanics and control based approaches

have been proposed, see for example [21] which proposes an application of the POD

to infer reduced order controllers, or the works of [172] mixing Gramians and POD.

Our objective is to use such techniques to apply symbolic methods to PDEs, and

the main issue to be dealt with is providing guaranteed controllers. This can be done
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by appropriately bounding the error between the trajectories of the full and reduced

order systems, and taking this bound into account in the synthesis. Of course, the

choice of the reduction technique is not trivial and should be adapted to the PDE.

The construction of a proper error bound highly depends on this previous choice.

2.6 Contributions

In Chapter 3, we first formally define the class of systems considered before

introducing the algorithms used in the remainder of the thesis. These algorithms

are highly inspired by those of [66, 68, 106], and simply extend them to continuous

time properties. We however provide a non negligible improvement for the research

of control sequences which highly reduces the computation times.

In Chapter 4, we consider the problem of reachability analysis. We first present

the method used for linear systems in [68], and then introduce the method used

in [5, 6, 56], which is mainly due to Julien Alexandre dit Sandretto and Alexandre

Chapoutot. The application to nonlinear systems is however entirely new and pro-

vides competitive results with respect to the state-of-the-art tools. These works

led to a conference paper [115] and an extended journal paper [116]. We finally

present the Euler based method, which is an entirely novel approach and gives very

promising results. It led to the conference paper [118].

In Chapter 5, we propose the compositional versions of the algorithms of Chap-

ters 3 and 4. The synthesis procedure presented for linear discrete-time systems is

an extension of [66,68], which provides a new iterative backward filling of the state

space. It is then applied with an over-approximation method allowing distributed

computations, which allowed to synthesize a controller for a system of dimension

eleven. This is, to our knowledge, the first time that a system of such dimension

is handled with formal methods. These works have been published in a conference

paper [120] and submitted in an extended version [121]. The extension to nonlinear

systems with continuous time properties is made possible with the use of validated

simulation. We then present a distributed version of the Euler method approach,

relying on weaker variants of δ-ISS properties. These works led to the conference

paper [114].

In Chapter 6, we present a symbolic approach for the control of discretized PDEs,

relying on the balanced truncation. We give two possible procedures for application

of the control, and propose some initiating works towards partial observation with

the use of reduced order observers. This approach has been published in [117] and

applied more generally to mechanical systems in [119].

In Chapter 7, we introduce a first possible approach for the control of undis-

cretized PDEs, relying on a spectral decomposition and an interpolation method

particularly efficient for representing continuous functions with few basis functions

due to [129]. We give a second approach aimed at using Galerkin projections for
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the reduction and the Euler based method. It provides a guaranteed L2 control

for a coupled ODE-PDE system, thanks to an appropriate error bounding and de-

composition of the terms involved in the solution. This approach is very promising

but might require further developments in order to be applied to a wider range of

systems.
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Chapter 3

Switched systems

25



3.1 Introduction

In this chapter, we introduce the class of systems we are interested in, and present

the principles of the algorithms we use, as well as some results on the computational

costs, highlighting the need of further developments for widening the types of sys-

tems supported by the method. Most of the algorithms presented here are based

on the works of Romain Soulat and Laurent Fribourg [67–69, 169]. They provide

algorithms allowing to synthesize state-dependent controllers ensuring discrete time

properties, they are based on an adaptive tiling of the state-space. We extend this

approach to ensuring continuous time properties, and present the different types of

heuristics and sets which can be used with this method. We also give a new algo-

rithm for the research of admissible control sequences. Although being theoretically

of the same complexity, it drastically lowers the computation times in practice. The

class of systems considered is presented in Section 3.2, and we give the adaptations

of the algorithms of [68] in Section 3.3. We then present the improved research of

admissible controls in Section 3.4, and conclude with the computational cost of the

method in Section 3.5.

3.2 Switched systems

We are interested in continuous-time switched systems subject to disturbances,

described by the set of nonlinear ordinary differential equation:

9x “ fjpx, dq, (3.1)

where x P R
n is the state of the system, j P U is the mode of the system, and

d P R
m is a bounded perturbation. The finite set U “ t1, . . . , Nu is the set of

switching modes of the system. The functions fj : R
n ˆR

m ÝÑ R
n, with j P U , are

the vector fields describing the dynamics of each mode j of the system. The system

can be in only one mode at a time. Such systems can be schemed as in Figure 3.1,

where we have several working modes for a system, and one has to choose which

working mode j is active within time, in order to ensure some properties for the

state x. A supervisor applies a switching rule deciding when to change the working

mode, which one should be applied next.

We focus on sampled switched systems: given a sampling period τ ą 0, switch-

ings will occur periodically at times τ , 2τ , . . . A switching rule σp¨q : R` ÝÑ U

associates to each time t ą 0 the active mode j P U . A switched system is thus

a dynamical system with piecewise dynamics, and the switching rule selects which

mode is active. The switching rule is thus piecewise constant. Given a switching

rule σp¨q : R` ÝÑ U , and a perturbation wp¨q : R` ÝÑ R
m, we will denote by

φpt; t0, x0, σ, wq the state reached by the system at time t ą t0, from the initial

state x0 P R
n at time t0 ě 0, and under control input and perturbation σ and
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Figure 3.1: Scheme of a switched system.

w respectively. For a given control σp¨q and perturbation wp¨q, we will often refer

to function φ as the solution of equation (3.1). Note that for a given wp¨q such

that fjp¨, wp¨qq is continuous with respect to both variables and locally Lipschitz

with respect to the first variable, the existence and uniqueness of φ is given by the

Cauchy-Lipschitz theorem. In a more general case, we will just suppose that σ and w

are such that φ exists and is continuous with respect to time. One can note that this

notion of solution differs from the classical (mathematical) definition of the solution

of a differential equation.

Often, we will consider φpt; t0, x0, σ, wq on the interval 0 ď t ă τ for which σptq
is equal to a constant, say j P U . In this case, we will abbreviate φpt; t0, x0, σ, wq
as φjpt; t0, x0, wq. We will also consider φpt; t0, x0, σ, wq on the interval 0 ď t ă kτ

where k is a positive integer, and σptq is equal to a constant, say jk1 , on each interval

rpk1 ´ 1qτ, k1τq with 1 ď k1 ď k; in this case, we will abbreviate φpt; t0, x0, σ, wq as

φπpt; t0, x0, wq, where π is a sequence of k modes, also denoted as a control pattern

(pattern for short), of the form π “ j1 ¨ j2 ¨ ¨ ¨ ¨ ¨ jk P Uk.

We will assume that φp¨; 0, x0, σ, wq is continuous at time kτ for all positive

integer k (assuming that t0 “ 0 for the sake of simplicity). This means that there is

no “reset” at time k1τ (1 ď k1 ď k); the value of φpt; t0, x0, σ, wq for t P rpk1 ´1qτ, k1τ s
corresponds to the solution of 9xpuq “ fσppk1´1qτ`uqpxpuq, wpuqq for u P r0, τ s with

initial value φppk1 ´ 1qτ ; t0, x0, σ, wq.
Given a “recurrence set” R Ă R

n and a “safety set” S Ă R
n which contains R

(R Ď S), we are interested in the synthesis of a control such that: starting from

any initial point x P R, the controlled trajectory always returns to R within a

bounded time while never leaving S. We suppose that sets R and S are compact.

Furthermore, we suppose that S is convex.

This is formalized as follows, note that Problem 1 is the continuous time version

of the control problem considered in [67]:

Problem 1 (pR, Sq-Stability problem). Given a switched system of the form (3.1),

a recurrence set R Ă R
n and a safety set S Ă R

n, find a control rule σ : R` ÝÑ U
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such that, for any initial condition x0 P R and any perturbation w : R` ÝÑ U , the

following holds:

— Recurrence in R: there exists a monotonically strictly increasing sequence of

(positive) integers tklulPN such that for all l P N, φpklτ ; t0, x0, σ, wq P R
— Stability in S: for all t P R

`, φpt; t0, x0, σ, wq P S

We also define a similar problem for reachability from a set R1 Ă R
n to a set

R2 Ă R
n, where both R1 and R2 are subsets of S Ď R

n.

Problem 2 (pR1, R2, Sq-Reachability problem). Given a switched system of the

form (3.1), two sets R1 Ă R
n, and R2 Ă R

n, and a safety set S Ă R
n, find a control

rule σ : R` ÝÑ U such that, for any initial condition x0 P R1 and any perturbation

w : R` ÝÑ U , the following holds:

— Reachability from R1 to R2: there exists an integer k P Ną0 such that we have

φpkτ ; t0, x0, σ, wq P R2

— Stability in S: for all t P R
`, φpt; t0, x0, σ, wq P S

Another interesting problem is the avoid problem, where one has to ensure pR, Sq-
stability while avoiding an obstacle, given as a set B.

Problem 3 (pR,B, Sq-Avoid problem). Given a switched system of the form (3.1),

and given three sets R Ă R
n, S Ă R

n, and B Ă R
n, with RYB Ă S and RXB “ H,

find a rule σ : R
` ÝÑ U such that, for any initial condition x0 P R and any

perturbation w : R` ÝÑ U , the following holds:

— Recurrence in R: there exists a monotonically strictly increasing sequence of

(positive) integers tklulPN such that for all l P N, φpklτ ; t0, x0, σ, wq P R
— Stability in S: for all t P R

`, φpt; t0, x0, σ, wq P S
— Avoid B: for all t P R

`, φpt; t0, x0, σ, wq R B.

In the rest of this chapter, we focus on solving Problem 1 of synthesizing con-

trollers for pR, Sq-stability for systems of the form (3.1). Note that solving Problem 2

can be done in a very similar manner (see for example Chapter 4). As a matter of

fact, we will not look for time dependent switching rules σ : R` ÝÑ U returning the

mode to be applied for a given time, but rather look for state-dependent switching

rules which, for every state x of the system, return a pattern π P Uk to be applied

in the next time interval rt, t ` kτq. The set of admissible state-dependent control

laws is thus tσ̃ : Rn Ñ Uk for k P Nu. Such laws can be computed offline.

Under the above-mentioned notation, we propose the main procedure of our

approach which solves this problem by constructing a state-dependent law σ̃p¨q,
such that for all x0 P R, and under the unknown bounded perturbation w, there

exists π “ σ̃px0q P Uk for some k such that:

#
φπpt0 ` kτ ; t0, x0, wq P R,

@t P rt0, t0 ` kτ s, φπpt; t0, x0, wq P S.
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Such a law permits to perform an infinite-time state-dependent control. The

synthesis algorithm is described in Section 3.3.1 and involves guaranteed set-based

integration presented in the next chapter. Before presenting the algorithms, we

introduce some definitions abstracting the set-based integration.

Definition 1 (Post operator). Let X Ă R
n be a box of the state space. Suppose

perturbation w lies in a compact D Ă R
m. Let π “ pi1, i2, . . . , ikq P Uk. The

successor set of X via π, denoted by PostπpXq, is the (over-approximation of the)

image of X induced by application of the pattern π, i.e., the solution at time t “ kτ

of

9xptq “ fσptqpxptq, wptqq,
xp0q “ x0 P X,

@t ě 0, wptq P D,
@j P t1, . . . , ku, σptq “ ij P U for t P rpj ´ 1qτ, jτq.

(3.2)

Note that D is absent from the notation PostπpXq. When it is relevant, we will

rather use the notation PostDπ pXq to clarify where the perturbation lies. The Post

operator can also be defined, when the perturbation is omitted, as

PostπpXq “
ď

x0PX

φπpt; t0, x0q.

With a bounded perturbation w : R` ÝÑ D, it can be defined as:

PostDπ pXq “
ď

x0PX

ď

wPDR`

φπpt; t0, x0, wq.

In a set-based computation application, the perturbation is just defined by the whole

set D at every time t P R
`.

Definition 2 (Tube operator). Let X Ă R
n be a box of the state space. Suppose

perturbation w lies in a compact D Ă R
m. Let π “ pi1, i2, . . . , ikq P Uk. We denote

by TubeπpXq the union of the trajectories of IVP (3.2), i.e.:

TubeπpXq “
ď

tPr0,kτ s

ď

x0PX

ď

wPDR`

φπpt; t0, x0, wq.

In the same manner as the Post operator, we will use the notation TubeDπ pXq
when it is relevant. An illustration of these definitions is shown in Figure 3.2, the

Post and Tube operators are computed numerically on a case-study described in

Chapter 4. It is applied to the synthesis of an pR1, R2, Sq-reachability controller.
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Tubeπ(X )

Post π(X )

X

Figure 3.2: Functions PostπpXq and TubeπpXq for the initial box X “
r´0.69,´0.64s ˆ r1, 1.06s, with a pattern π “ p1, 3, 0q.

3.3 General principle

We introduce a first basic procedure permitting to perform pR, Sq-stability, and
omit the perturbation in a first time. Given a set R, let tWiuiPI be a family of sets

such that R Ď Ť
iPI Wi Ď S as illustrated in Figure 3.3 (a). If one can find, for

each Wi for i P I, a pattern πi such that Postπi
pWiq Ď R, then we can induce an

infinite-time switching rule permitting to return infinitely often in R (such a pattern

is illustrated for W1 in Figure 3.3 (b)).

S

R

W
1 W

2

W
3W

4

S

R

W
1

Post π
1

(W
1
)

(a) (b)

Figure 3.3: (a): A family of sets tWiui“1,...,4 covering R; (b): a pattern π1 such that

Postπ1
pW1q Ă R.

Theorem 1. Let R Ď R
n, suppose we are given a switched system satisfying (3.1).

A family of sets tWiuiPI associated to patterns tπiuiPI such that

— R Ď Ť
iPI Wi Ď S

— for all i P I, Postπi
pWiq Ď R

induces an infinite-time control ensuring recurrence in R.

Proof. Let x0 P R, there exists i0 P I such that x0 P Wi0 since R Ď Ť
iPI Wi.

Application of pattern πi0 leads to a state x1 “ φpτ ; 0, x0, πi0q also belonging to
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R since Postπi0
pWi0q Ď R. State x1 thus belongs to Wi1 for some i1 P I, and by

recurrence, one can obtain a sequence of points x0, x1, . . . all belonging to R. The

induced trajectory thus returns infinitely often in R.

A simple extension of this procedure, relying on the computation of reachability

tubes, allows to ensure safety in S Ď R
n as follows.

Theorem 2. Let R Ď R
n, S Ď R

n, suppose we are given a switched system satisfying

(3.1). A family of sets tWiuiPI associated to patterns tπiuiPI such that

— R Ď Ť
iPI Wi Ď S

— for all i P I, Postπi
pWiq Ď R

— for all i P I, Tubeπi
pWiq Ď S

induces an infinite-time control ensuring recurrence in R and safety in S.

Proof. The recurrence in R is proved with the same arguments as the proof of

Theorem 1. The safety in S is ensured by the definition of Tubeπi
pWiq, with permits

to ensure that for all x0 P R, i P I, t P kiτ , where ki is the length of pattern πi, we

have φpt; 0, x0, πiq P S.

Having defined the principle of the procedure, we now present how controllers

can be numerically computed using Theorem 1 and 2. At this point, two main

problems arise. The first is the construction of a family tWiuiPI covering R, the

second is ensuring that for all i P I, Postπi
pWiq Ď R and Tubeπi

pWiq Ď S. The first

problem can be solved using heuristics, but depends of the type of sets one uses,

the second is actually impossible to ensure exactly, in the sense that solutions of

ODEs are not known in general (particularly when the initial condition is a set).

Supposing that one can compute reachability sets and tubes, the procedure works as

follows in practice. First, we generate a coarse covering of R (starting for example

by considering the whole set R), we then try to compute patterns associated to each

set of the covering. If this last step fails, we generate another finer tiling, performing

for example a bisection of each dimension of R, and one now has to control each

bisected part of R. This is a simple heuristics, but which works well in practice

(as seen in the following Chapters). In the following, we use a uniform covering

of R with boxes and balls of Rn. If each box or ball is controlled, the problem is

solved, otherwise, we use a finer covering. We address the problem of computing

reachability sets and tubes in the following chapters. We now present in details the

possible heuristics and associated algorithms for control synthesis, supposing that

one can compute the Post and Tube operators.

3.3.1 The state-space bisection algorithm

We describe the algorithm solving the control synthesis problem for nonlinear

switched systems (see Problem 3, Section 3.2). Given the input boxes R, S, B, and
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given two positive integers K and D, the algorithm provides, when it succeeds, a

decomposition ∆ of R of the form tVi, πiuiPI , with the properties:

—
Ť

iPI Vi “ R,

— @i P I, Postπi
pViq Ď R,

— @i P I, Tubeπi
pViq Ď S,

— @i P I, Tubeπi
pViq

Ş
B “ H.

The sub-boxes tViuiPI are obtained by repeated bisection. At first, function

Decomposition calls sub-function Find Pattern which looks for a pattern π of

length at most K such that PostπpRq Ď R, TubeπpRq Ď S and TubeπpRqŞB “ H.

If such a pattern π is found, then a uniform control over R is found (see Fig-

ure 3.4(a)). Otherwise, R is divided into two sub-boxes V1, V2, by bisecting R

w.r.t. its longest dimension. Patterns are then searched to control these sub-

boxes (see Figure 3.4(b)). If for each Vi, function Find Pattern manages to get

a pattern πi of length at most K verifying Postπi
pViq Ď R, Tubeπi

pViq Ď S and

Tubeπi
pViq

Ş
B “ H, then it is a success and algorithm stops. If, for some Vj, no

such pattern is found, the procedure is recursively applied to Vj. It ends with suc-

cess when every sub-box of R has a pattern verifying the latter conditions, or fails

when the maximal degree of decomposition D is reached. The algorithmic form of

functions Decomposition and Find Pattern, adapted form [68], are given in Algo-

rithm 1 and Algorithm 2 respectively. Note that a special form of Algorithm 2 for

linear ODEs can be found in [67].

(a) (b)

R

π

R

π1

Post π(R)

Post π
1

(V
1
)

V
2

V
1

Figure 3.4: Principle of the bisection method.

Our control synthesis method being well defined, we introduce the main result

of this section (initially formalized in [67]), stated as follows:

Proposition 1. Algorithm 1 with input pR,R, S,B,D,Kq returns, when it success-

fully terminates, a decomposition tVi, πiuiPI of R which solves Problem 3.

Proof. Let x0 “ xpt0 “ 0q be an initial condition belonging to R. If the decompo-

sition has terminated successfully, we have
Ť

iPI Vi “ R, and x0 thus belongs to Vi0
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Algorithm 1 Algorithmic form of Function Decomposition.

Function: DecompositionpW,R, S,B,D,Kq

Input: A box W , a box R, a box S, a box B, a degree D of bisection, a length

K of input pattern

Output:xtpVi, πiqui, T ruey or x , Falsey

pπ, bq :“ Find PatternpW,R, S,B,Kq
if b “ True then

return xtpW,Patqu, T ruey
else

if D “ 0 then

return x , Falsey
else

Divide equally W into pW1,W2q
for i “ 1, 2 do

p∆i, biq := DecompositionpWi, R, S,B,D ´ 1,Kq

end for

return pŤi“1,2 ∆i,
Ź

i“1,2 biq
end if

end if

for some i0 P I. We can thus apply the pattern πi0 associated to Vi0 . Let us denote

by k0 the length of πi0 . We have:

— φπi0
pk0τ ; 0, x0, dq P R

— @t P r0, k0τ s, φπi0
pt; 0, x0, dq P S

— @t P r0, k0τ s, φπi0
pt; 0, x0, dq R B

Let x1 “ φπi0
pk0τ ; 0, x0, dq P R be the state reached after application of πi0 and let

t1 “ k0τ . State x1 belongs to R, it thus belongs to Vi1 for some i1 P I, and we can

apply the associated pattern πi1 of length k1, leading to:

— φπi1
pt1 ` k1τ ; t1, x1, dq P R

— @t P rt1, t1 ` k1τ s, φπi1
pt; t1, x1, dq P S

— @t P rt1, t1 ` k1τ s, φπi1
pt; t1, x1, dq R B

We can then iterate this procedure from the new state

x2 “ φπi1
pt1 ` k1τ ; t1, x1, dq P R.

This can be repeated infinitely, yielding a sequence of points belonging to R x0, x1,

x2,. . . attained at times t0, t1, t2, . . . , when the patterns πi0 , πi1 , πi2 , . . . are applied.

We furthermore have that all the trajectories stay in S and never cross B:

@t P R
`, Dk ě 0, t P rtk, tk`1s
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and

@t P rtk, tk`1s, φπik
pt; tk, xk, dq P S, φπik

pt; tk, xk, dq R B.

The trajectories thus return infinitely often in R, while always staying in S and

never crossing B.

Remark 1. Note that it is possible to perform reachability from a set R1 to another

set R2 by computing DecompositionpR1, R2, S, B,D,Kq. The set R1 is thus decom-

posed with the objective to send its sub-boxes into R2, i.e., for a sub-box V of R1,

patterns π are searched with the objective PostπpV q Ď R2 (see Example 4.2.2).

Algorithm 2 Algorithmic form of Function Find Pattern.

Function: Find PatternpW,R, S,B,Kq

Input:A box W , a box R, a box S, a box B, a length K of input pattern

Output:xπ, Truey or x , Falsey

for i “ 1 . . . K do

Π :“ set of input patterns of length i

while Π is non empty do

Select π in Π

Π :“ Πztπu
if PostπpW q Ď R and TubeπpW q Ď S and TubeπpW qŞB “ H then

return xπ, Truey
end if

end while

end for

return x , Falsey

In Algorithms 1 and 2, we use a bisection of uncontrolled tiles into two parts

(by bisecting the greatest dimension). But another possible heuristics is to di-

vide uncontrolled parts into 2n parts, by bisecting each dimension (i.e. replacing

“Divide equally W into pW1,W2q” by “Divide equally W into pW1, . . . ,W2nq” in

Algorithm 1). This leads to a faster growing of the number of tiles to be controlled,

but can sometimes lead to lower computation times, when the system requires a fine

tiling. The two possible heuristics are schemed in Figure 3.5.

3.3.2 A covering of balls

So far, we used boxes of Rn to represent sets of states. Balls of Rn are actually

another useful way of representing it, since we provide an efficient way of perform-

ing reachability analysis with such sets (see Chapter 4). A covering of R can be
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Figure 3.5: Scheme of the two possible heuristics: green tiles have been controlled

(associated to a pattern), and red tiles have yet to be controlled and bisected. Left:

bisection of all the dimensions; right: bisection of the largest dimension

performed as schemed in Figure 3.6. Let δ be a radius, each set Wi “ Bpx̃i, δq
has to be controlled, otherwise, a finer covering (using more balls) should be used.

Actually, the same heuristics as boxes could be used, since these balls can be built

as circumscribed balls of the boxes.
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Figure 3.6: Scheme of a covering of R Ă R
2 with balls.

3.4 Improving the research of patterns

We propose in this section an improvement of the function Find Pattern given

in [67], which is a naive testing of all the patterns of growing length (up to K).

The improved function, denoted here by Find Pattern2, exploits heuristics to

prune the search tree of patterns. We present it with boxes of Rn, but can also be

used with balls. The algorithmic form of Find Pattern2 is given in Algorithm 3. It

relies on a new data structure consisting of a list of triplets containing:

— An initial box V Ă R
n,

— A current box PostπpV q, image of V by the pattern π,

— The associated pattern π.

For any element e of a list of this type, we denote by e.Yinit the initial box, e.Ycurrent

the current box, and by e.Π the associated pattern. We denote by ecurrent “
takeHeadpLq the element on top of a list L (this element is removed from list

L). The function putTailp¨,Lq adds an element at the end of the list L.

Let us suppose one wants to control a box X Ď R. The list L of Algorithm 3 is

used to store the intermediate computations leading to possible solutions (patterns

sendingX in R while never crossing B or RnzS). It is initialized as L “ tpX,X,Hqu.
First, a testing of all the control modes is performed (a set simulation starting from

X during time τ is computed for all the modes in U). The first level of branches is

thus tested exhaustively. If a branch leads to crossing B or RnzS, the branch is cut.

Indeed, no following branch can be accepted if a previous one crosses B. Otherwise,

either a solution is found or an intermediate state is added to L. The next level

of branches (patterns of length 2) is then explored from branches that are not cut.

And so on iteratively. At the end, either the tree is explored up to level K (avoiding

the cut branches), or all the branches have been cut at lower levels. List L is thus
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of the form tpX,Postπi
pXq, πiquiPIX , where for each i P IX we have Postπi

pXq Ď S

and Tubeπi
pXqŞB “ H. Here, IX is the set of indices associated to the stored

intermediate solutions, |IX | is thus the number of stored intermediate solutions for

the initial box X. The number of stored intermediate solutions grows as the search

tree of patterns is explored, then decreases as solutions are validated, branches are

cut, or the maximal level K is reached.

The storage of the intermediate solutions Postπi
pXq allows to reuse the com-

putations already performed. Even if the search tree of patterns is visited exhaus-

tively, it already allows to obtain much better computation times than with Function

Find Pattern.

A second list, denoted by Sol in Algorithm 3, is used to store the validated

patterns associated to X, i.e., a list of patterns of the form tπjujPI 1
X
, where for each

j P I 1
X we have Postπj

pXq Ď R, Tubeπj
pXqŞB “ H and Tubeπj

pXq Ď S. Here,

I 1
X is the set of indices associated the the stored validated solutions, |I 1

X | is thus the
number of stored validated solutions for the initial box X. The number of stored

validated solutions can only increase, and we hope that at least one solution is found,

otherwise, the initial box X is split in two sub-boxes.

Remark that several solutions can be returned by Find Pattern2, so further

optimizations could be performed, such as returning the pattern minimizing a given

cost function. In practice, and in the examples given below, we return the first

validated pattern and stop the computation as soon as it is obtained (see commented

line in Algorithm 3). Compared to [67], this new function highly improves the

computation times, even though the complexity of the two functions is theoretically

the same, at most in OpNKq. A comparison between functions Find Pattern and

Find Pattern2 is given in Section 4.2.3.

3.5 Computational cost

The computational cost of the synthesis method depends on the heuristics, but

in every case, if M is the number of sets used to cover R, N is the number of

switched modes, and k is the maximal length of explored control patterns, then the

computational complexity is in OpMNkq (see [68]). Note that in practice, M grows

exponentially with the dimension n of the system. Indeed, using the adaptive box

bisection heuristics, if D is the maximal depth of bisection, using the bisection of

each dimension, we have a complexity in Op2nDqNk. Using a uniform tiling, by

dividing each dimension in p, we get a complexity in OppnNkq. We thus see that

the computation cost is exponential with the dimension, but also with the length

of the patterns and number of modes, and this has to be multiplied by the cost of

reachability computations. We thus see two aspects have to be dealt with to improve

the efficiency of the method: the dimension, and the reachability computations. We

will thus present in Chapter 4 methods to perform reachability analysis in the most
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accurate and fast possible ways (note that there is a tradeoff to make between

accuracy and speed). In the following chapters, we propose methods to extend the

approach to systems of greater dimensions, by using

— compositional approaches: dividing a system into several sub-systems of lower

dimension (see Chapter 5)

— model order reduction: approximating a high dimensional system with a

lower dimensional one (see Chapter 6 and 7)

Of course, these two last approaches introduce new issues: accuracy of the models,

efficiency of the induced control laws for the original system...

3.6 Final remarks

We have now introduced the class of systems considered in this thesis and the

main ideas of the control synthesis method for switched systems represented by

ODEs. In order to complete the method, what remains to be studied first is the

computation of the Post and Tube operators, this is tackled in Chapter 4. However,

as mentioned above, the computational complexity is still a very limiting factor for

the application to systems of greater dimensions, and we thus propose distributed

versions of the algorithms presented here in Chapter 5, and reduced order approaches

in Chapters 6 and 7.
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Algorithm 3 Algorithmic form of Function Find Pattern2.

Function: Find Pattern2pW,R, S,B,Kq

Input:A box W , a box R, a box S, a box B, a length K of input pattern

Output:xπ, Truey or x , Falsey

Sol “ tHu
L “ tpW,W,Hqu
while L ‰ H do

ecurrent = takeHead(L)

for i P U do

if Postipecurrent.Ycurrentq Ď R and Tubeipecurrent.Ycurrentq
Ş
B “ H and

Tubeipecurrent.Ycurrentq Ď S then

putTailpSol, ecurrent.Π ` iq /* or also “return xecurrent.Π ` i, T ruey” */

else

if Tubeipecurrent.Ycurrentq
Ş
B ‰ H or Tubeipecurrent.Ycurrentq Ę S then

discard ecurrent

end if

else

if Tubeipecurrent.Ycurrentq
Ş
B “ H and Tubeipecurrent.Ycurrentq Ď S then

if LengthpΠq ` 1 ă K then

putTailpL, pecurrent.Yinit, Postipecurrent.Ycurrentq, ecurrent.Π ` iqq
end if

end if

end if

end for

end while

return x , Falsey if no solution is found, or xπ, Truey, π being any pattern

validated in Solution.
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Chapter 4

Reachable set computation
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In this chapter, we present practical ways to compute the Post and Tube op-

erators when sets are represented with boxes or balls. We first give some results

for linear systems. We then present approaches relying on Runge-Kutta schemes,

allowing to compute accurately images of box sets for nonlinear ODEs. We then

introduce some hypotheses to use a simple Euler scheme, associated to a new error

bound, permitting to compute the Post and Tube operators for balls in a very fast

way, even though the accuracy can fall down in some cases. We present the approach

for linear systems in Section 4.1, we then introduce the Runge-Kutta approach in

Section 4.2, and we finally present the Euler scheme for balls in Section 4.3.

4.1 Zonotopes and linear systems

Let us first introduce zonotopes, a type of symmetrical polytopes, allowing to

represent efficiently boxes of Rn, and thus very useful for performing tilings of the

state-space. Furthermore, there exist multiple ways to compute images of zonotopes

by linear or nonlinear transformations.

Definition 3. A zonotope is a set:

Z “ tx P R
n : x “ c `

pÿ

i“1

βpiqgpiq, ´1 ď βpiq ď 1u

with c, gp1q,. . . ,gppq P R
n.

The vectors gp1q,. . . ,gppq are referred to as the generators and c as the center of a

zonotope. A zonotope is thus a symmetric polytope in dimension n. It is convenient

to represent the set of generators as an n ˆ p matrix G, of columns gp1q,. . . ,gppq.

The notation is Z “ă c, G ą. Note that if G is an n ˆ n diagonal matrix, then the

zonotope Z is a box of Rn.

Given a zonotope ă c, G ą, the transformation of Z via an affine function

x ÝÑ Cx ` d is a zonotope of the form ă Cc ` d, CG ą. More information and

properties on zonotopes can be found in [10, 73, 105]. Besides, being given a linear

switched system satisfying

9x “ Ajx ` bj,

and an initial condition x0 P R
n at time t “ 0, if mode j P U is applied on r0, τ s,

then the solution at time t “ τ is given by

φpt; 0, x0, jq “ eAjτx0 `
ż τ

0

eAjpt´sqbjds. (4.1)

In the case where Aj is invertible, we furthermore have

φpt; 0, x0, jq “ eAjτx0 ` peAjτ ´ InqA´1

j bj
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where In is the identity matrix of size n. In both cases we have an affine transfor-

mation. One can thus compute exactly the image of a set using zonotopes. Take an

initial set given at time t “ 0 as a zonotope Z “ă c, G ą, its image (successor set) at

time t “ τ is (for Aj invertible) Z
1 “ PostjpZq “ă eAjτc`peAjτ ´InqA´1

j bj, e
AjτG ą.

This formula can be iterated to obtain the successor set at time t “ kτ of Z via a

pattern π “ pj1, . . . , jkq for k P Ną0: PostπpZq “ PostjkpPostjk´1
p. . . Postj1pZqqq.

While computing the Tube operator is still a difficult task for linear systems,

computing the Post operator in this way, associated to Algorithm 1 and 3 (without

the safety property relying on the Tube), we can compute controllers permitting

to return infinitely often in a set R thanks to Theorem 1. This approach can

also be used to ensure discrete-time properties, i.e., which are not ensured between

switchings but at discrete times τ , 2τ ... This approach is efficient and useful in

practice, all the more so as the Post operator is computed exactly.

4.2 Validated simulation and state-space bisec-

tion

4.2.1 Validated simulation

In this subsection, we describe our approach for validated simulation based on

Runge-Kutta methods [6, 35]. The goal is obviously to obtain a solution of the

differential equations describing the modes of the nonlinear switched systems. Before

presenting the method, we introduce some definitions.

In the following, we will often use the notation rxs P IR (the set of intervals with

real bounds) where

rxs “ rx, xs “ tx P R | x ď x ď xu
denotes an interval. By an abuse of notation rxs will also denote a vector of intervals,
i.e., a Cartesian product of intervals, also known as a box. In the following, the sets

R, S and B are given under the form of boxes. With interval values, it comes an

associated interval arithmetic.

Interval arithmetic extends to IR elementary functions over R. For instance, the

interval sum, i.e., rx1s ` rx2s “ rx1 ` x2, x1 ` x2s, encloses the image of the sum

function over its arguments. The enclosing property basically defines what is called

an interval extension or an inclusion function.

Definition 4 (Inclusion function). Consider a function f : Rn Ñ R
m, then rf s :

IR
n Ñ IR

m is said to be an extension of f to intervals if

@rxs P IR
n, rf sprxsq Ě tfpxq, x P rxsu .

It is possible to define inclusion functions for all elementary functions such as ˆ,

˜, sin, cos, exp, and so on. The natural inclusion function is the simplest to obtain:
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all occurrences of the real variables are replaced by their interval counterpart and all

arithmetic operations are evaluated using interval arithmetic. More sophisticated

inclusion functions such as the centered form, or the Taylor inclusion function may

also be used (see [93] for more details).

We now introduce the Initial Value Problem, which is one of main ingredients of

our approach.

Definition 5 (Initial Value Problem (IVP)). Consider an ODE with a given initial

condition

9xptq “ fpt, xptq, dptqq with xp0q P X0, dptq P rds, (4.2)

with f : R` ˆ R
n ˆ R

m Ñ R
n assumed to be continuous in t and d and globally

Lipschitz in x. We assume that parameters d are bounded (used to represent a per-

turbation, a modeling error, an uncertainty on measurement, . . . ). An IVP consists

in finding a set-valued function Xptq which contains any trajectory of the ODE (4.2),

for any dptq lying in rds and for any initial condition in X0.

A numerical integration method computes a sequence of values ptn, xnq ap-

proximating the solution xpt; x0q of the IVP defined in Equation (4.2) such that

xn « xptn; xn´1q. The simplest method is Euler’s method in which tn`1 “ tn ` h

for some step-size h and xn`1 “ xn ` hˆ fptn, xn, dq; so the derivative of x at time

tn, fptn, xn, dq, is used as an approximation of the derivative on the whole time

interval to perform a linear interpolation. This method is very simple and fast, but

requires small step-sizes. More advanced methods, coming from the Runge-Kutta

family, use a few intermediate computations to improve the approximation of the

derivative. The general form of an explicit s-stage Runge-Kutta formula, that is

using s evaluations of f , is

xn`1 “ xn ` h

sÿ

i“1

biki ,

k1 “ f
`
tn, xn, d

˘
,

ki “ f
´
tn ` cih, xn ` h

i´1ÿ

j“1

aijkj, d
¯
, i “ 2, 3, . . . , s .

(4.3)

The coefficients ci, aij and bi fully characterize the method. To make Runge-

Kutta validated, the challenging question is how to compute guaranteed bounds

of the distance between the true solution and the numerical solution, defined by

xptn; xn´1q ´ xn. This distance is associated to the local truncation error (LTE) of

the numerical method.

To bound the LTE, we rely on order condition [84] respected by all Runge-Kutta

methods. This condition states that a method of this family is of order p iff the p`1

first coefficients of the Taylor expansion of the solution and the Taylor expansion
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Tubeπ(X )

Post π(X )

X

Figure 4.1: Functions PostπpXq and TubeπpXq for the initial box X “
r´0.69,´0.64s ˆ r1, 1.06s, with a pattern π “ p1, 3, 0q.

of the numerical methods are equal. In consequence, LTE is proportional to the

Lagrange remainders of Taylor expansions. Formally, LTE is defined by (see [35]):

xptn; xn´1q ´ xn “
hp`1

pp ` 1q!

ˆ
f ppq pξ, xpξ; xn´1q, dq ´ dp`1ϕ

dtp`1
pηq

˙

ξ Pstn, tn`1r and η Pstn, tn`1r . (4.4)

The function f pnq stands for the n-th derivative of function f w.r.t. time t that is
dnf

dtn
and h “ tn`1 ´ tn is the step-size. The function ϕ : R Ñ R

n is defined by

ϕptq “ xn ` h
řs

i“1
bikiptq where kiptq are defined as in Equation (4.3).

The challenge to make Runge-Kutta integration schemes safe w.r.t. the true

solution of IVP is then to compute a bound of the result of Equation (4.4). In

other words, we do have to bound the value of f ppq pξ, xpξ; xn´1q, dq and the value of
dp`1ϕ

dtp`1 pηq with numerical guarantee. The latter expression is straightforward to bound

because the function ϕ only depends on the value of the step-size h, and so does its

pp` 1q-th derivative. The bound is then obtained using the affine arithmetic [7,54].

However, the expression f ppq pξ, xpξ; xn´1q, dq is not so easy to bound as it requires

to evaluate f for a particular value of the IVP solution xpξ; xn´1q at an unknown

time ξ Pstn, tn`1r. The solution used is the same as the one found in [36,144] and it

requires to bound the solution of IVP on the interval rtn, tn`1s. This bound is usually

computed using the Banach’s fixpoint theorem applied with the Picard-Lindelöf

operator, see [144]. This operator is used to compute an enclosure of the solution

rx̃s of IVP over a time interval rtn, tn`1s, that is for all t P rtn, tn`1s, xpt; xn´1q P rx̃s.
We can hence bound f ppq substituting xpξ; xn´1q by rx̃s. This general approach used

to solve IVPs in a validated way is called Lohner two step approach [127].

For a given pattern of switched modes π “ pi1, . . . , ikq P Uk of length k, we are

able to compute, for j P t1, .., ku, the enclosures:

— rxjs Q xpjτq;
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— rx̃js Q xptq, for t P rpj ´ 1qτ, jτ s.
with respect to the system of IVPs:

$
’’’’’’’’’’’&
’’’’’’’’’’’%

9xptq “ fσptqpt, xptq, dptqq,
xpt0 “ 0q P rx0s, dptq P rds,
σptq “ i1, @t P r0, t1s, t1 “ τ

...

9xptq “ fσptqpt, xptq, dptqq,
xptk´1q P rxk´1s, dptq P rds,

σptq “ ik, @t P rtk´1, tks, tk “ kτ

Thereby, the enclosure Postπprx0sq is included in rxks and Tubeπprx0sq is included inŤ
j“1,..,krx̃js. This applies for all initial states in rx0s and all disturbances dptq P rds.

A view of enclosures computed by the validated simulation for one solution obtained

for Example 4.2.2 is shown in Figure 4.1.

Control synthesis

If we now associate computation of the Post and Tube operators to Algorithm 1

and 3, and using Theorem 2, we can now perform control synthesis ensuring pR, Sq-
stability, as well as pR1, R2, Sq-reachability and pR,B, Sq-avoidance.

4.2.2 Experimentations

In this subsection, we apply our approach to different case studies taken from the

literature. In every case study, a second order Runge-Kutta method is applied. Our

solver prototype is written in C++ and based on DynIBEX [5]. The computations

times given in the following have been performed on a 2.80 GHz Intel Core i7-

4810MQ CPU with 8 GB of memory. Note that our algorithm is mono-threaded

so all the experimentation only uses one core to perform the computations. The

results given in this subsection have been obtained with Function Find Pattern2 of

Chapter 3.

A linear example: boost DC-DC converter

This linear example is taken from [27] and has already been treated with the

state-space bisection method in a linear framework in [67]. This running example is

used to verify that our approach is still valid for linear case, and also to show the

strong improvement in term of computation time.

The system is a boost DC-DC converter with one switching cell. There are two

switching modes depending on the position of the switching cell. The dynamics is

given by the equation 9xptq “ Aσptqxptq ` Bσptq with σptq P U “ t1, 2u. The two

modes are given by the matrices:
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Figure 4.2: Simulation from the initial condition p1.55, 1.4q. The box R is in plain

black. The trajectory is plotted within time for the two state variables on the left,

and in the state-space plane on the right.

A1 “
˜

´ rl
xl

0

0 ´ 1

xc

1

r0`rc

¸
B1 “

˜
vs
xl

0

¸

A2 “
˜

´ 1

xl
prl ` r0.rc

r0`rc
q ´ 1

xl

r0
r0`rc

1

xc

r0
r0`rc

´ 1

xc

r0
r0`rc

¸
B2 “

˜
vs
xl

0

¸

with xc “ 70, xl “ 3, rc “ 0.005, rl “ 0.05, r0 “ 1, vs “ 1. The sampling period

is τ “ 0.5. The parameters are exact and there is no perturbation. We want the

state to return infinitely often to the region R, set here to r1.55, 2.15s ˆ r1.0, 1.4s,
while never going out of the safety set S “ r1.54, 2.16s ˆ r0.99, 1.41s. The goal of

this example is then to synthesize a controller with intrinsic stability. The dynamics

of the system is recalled in Appendix A.1.

The decomposition was obtained in less than one second with a maximum length

of pattern set to K “ 6 and a maximum bisection depth of D “ 3. A simulation is

given in Figure 4.2.

A polynomial example

We consider the polynomial system taken from [126], presented as a difficult

example: «
9x1

9x2

ff
“
«

´x2 ´ 1.5x1 ´ 0.5x31 ` u1 ` d1

x1 ` u2 ` d2

ff
. (4.5)

The control inputs are given by u “ pu1, u2q “ Kσptqpx1, x2q, σptq P U “ t1, 2, 3, 4u,
which correspond to four different state feedback controllers K1pxq “ p0,´x22 ` 2q,
K2pxq “ p0,´x2q, K3pxq “ p2, 10q, K4pxq “ p´1.5, 10q. We thus have four switching

modes. The disturbance d “ pd1, d2q lies in r´0.005, 0.005s ˆ r´0.005, 0.005s. The
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Figure 4.3: Simulation from the initial condition p0.5,´0.75q. The trajectory is

plotted within time on the left, and in the state space plane on the right. In the

sate space plane, the set R1 is in plain green, R2 in plain blue, and B in plain black.

dynamics of the system is recalled in Appendix A.3. The objective is to visit in-

finitely often two zones R1 and R2, without going out of a safety zone S, and while

never crossing a forbidden zone B. Two decompositions are performed:

— a decomposition of R1 which returns tpVi, πiquiPI1 with:

—
Ť

iPI1
Vi “ R1,

— @i P I1, Postπi
pViq Ď R2,

— @i P I1, Tubeπi
pViq Ď S,

— @i P I1, Tubeπi
pViq

Ş
B “ H.

— a decomposition of R2 which returns tpVi, πiquiPI2 with:

—
Ť

iPI2
Vi “ R2,

— @i P I2, Postπi
pViq Ď R1,

— @i P I2, Tubeπi
pViq Ď S,

— @i P I2, Tubeπi
pViq

Ş
B “ H.

The input boxes are the following:

— R1 “ r´0.5, 0.5s ˆ r´0.75, 0.0s,
— R2 “ r´1.0, 0.65s ˆ r0.75, 1.75s,
— S “ r´2.0, 2.0s ˆ r´1.5, 3.0s,
— B “ r0.1, 1.0s ˆ r0.15, 0.5s.

The sampling period is set to τ “ 0.15. The decompositions were obtained in 2

minutes and 30 seconds with a maximum length of pattern set to K “ 12 and a

maximum bisection depth of D “ 5. A simulation is given in Figure 4.3 in which

the disturbance d is chosen randomly in r´0.005, 0.005s ˆ r´0.005, 0.005s at every

time step. We see that the trajectories do visit alternately R1 and R2 while staying

in S and avoiding B.
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Figure 4.4: Perturbation (presence of humans) imposed within time in the different

rooms.

Four-room apartment

We consider a building ventilation application adapted from [134]. The system

is a four room apartment subject to heat transfer between the rooms, with the

external environment, with the underfloor, and with human beings. The dynamics

of the system is given by the following equation:

dTi

dt
“

ÿ

jPN *ztiu

aijpTj ´ Tiq ` δsibipT 4

si
´ T 4

i q ` ci max

ˆ
0,
Vi ´ V *

i

V̄i ´ V *
i

˙
pTu ´ Tiq.

The state of the system is given by the temperatures in the rooms Ti, for i P
N “ t1, . . . , 4u. Room i is subject to heat exchange with different entities stated by

the indexes N * “ t1, 2, 3, 4, u, o, cu.
The heat transfer between the rooms is given by the coefficients aij for i, j P N 2,

and the different perturbations are the following:

— The convective heat transfer with the external environment: it has an effect

on room i with the coefficient aio and the outside temperature To, varying

between 27˝C and 30˝C.

— The convective heat transfer through the ceiling: it has an effect on room i

with the coefficient aic and the ceiling temperature Tc, varying between 27˝C

and 30˝C.

— The convective heat transfer with the underfloor: it is given by the coefficient

aiu and the underfloor temperature Tu, set to 17˝C (Tu is constant, regulated

by a PID controller).

— The perturbation induced by the presence of humans, modeled by a radiation

term: it is given in room i by the term δsibipT 4
si

´ T 4
i q, the parameter δsi is

equal to 1 when someone is present in room i, 0 otherwise, and Tsi is a given

identified parameter.

49



Figure 4.5: Simulation from the initial condition p22, 22, 22, 22q. The objective set

R is in plain black and the safety set S is in dotted black.

The control Vi, i P N , is applied through the term ci maxp0, Vi´V *
i

V̄i´V *
i

qpTu ´ Tiq.
A voltage Vi is applied to force ventilation from the underfloor to room i, and the

command of an underfloor fan is subject to a dry friction. Because we work in

a switched control framework, Vi can take only discrete values, which removes the

problem of dealing with a “max” function in interval analysis. In the experiment, V1

and V4 can take the values 0V or 3.5V, and V2 and V3 can take the values 0V or 3V.

This leads to a system of the form of Equation (3.1) with σptq P U “ t1, . . . , 16u, the
16 switching modes corresponding to the different possible combinations of voltages

Vi. The sampling period is τ “ 30s. The dynamics of the system is recalled in

Appendix A.4.

The parameters Tsi , V
*
i , V̄i, aij, bi, ci are given in [134] and have been identified

with a proper identification procedure detailed in [137]. Note that here we have

neglected the term
ř

jPN δdijci,j ˚ hpTj ´ Tiq of [134], representing the perturbation

induced by the open or closed state of the doors between the rooms. Taking a

“max” function into account with interval analysis is actually still a difficult task.

However, this term could have been taken into account with a proper regularization

(smoothing).

The main difficulty of this example is the large number of modes in the switched

system, which induces a combinatorial issue.

The decomposition was obtained in 4 minutes with a maximum length of pattern

set to K “ 2 and a maximum bisection depth of D “ 4. The perturbation due to

human beings has been taken into account by setting the parameters δsi equal to

the whole interval r0, 1s for the decomposition, and the imposed perturbation for

the simulation is given Figure 4.4. The temperatures To and Tc have been set to

the interval r27, 30s for the decomposition, and are set to 30˝C for the simulation.

A simulation of the controller obtained with the state-space bisection procedure is

given in Figure 4.5, where the control objective is to stabilize the temperature in
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r20, 22s4 while never going out of r19, 23s4.

A path planning problem

This last case study is based on a model of a vehicle initially introduced in [19]

and successfully controlled in [154,175] with the tools PESSOA and SCOTS. In this

model, the motion of the front and rear pairs of wheels are approximated by a single

front wheel and a single rear wheel. The dynamics of the vehicle is given by:

9x “ v0
cospα`θq
cospαq

9y “ v0
sinpα`θq
cospαq

9θ “ v0
b
tanpδq

(4.6)

where α “ arctanpa tanpδq{bq. The system is thus of dimension 3, px, yq is the

position of the vehicle, while θ is the orientation of the vehicle. The control inputs

are v0, an input velocity, and δ, the steering angle of the rear wheel. The parameters

are: a “ 0.5, b “ 1. Just as in [154, 175], we suppose that the control inputs are

piecewise constant, which leads to a switched system of the form of Equation (3.1)

with no perturbation. The objective is to send the vehicle into an objective region

R2 “ r9, 9.5sˆr0, 0.5sˆs´8,`8r from an initial region R1 “ r0, 0.5sˆr0, 0.5sˆr0, 0s.
The safety set is S “ r0, 10s ˆ r0, 10sˆs ´ 8,`8r. There is in fact no particular

constraint on the orientation of the vehicle, but multiple obstacles are imposed for

the two first dimensions, they are represented in Figure 4.6. The input velocity

v0 can take the values in t´0.5, 0.5, 1.0u. The rear wheel orientation δ can take

the values in t0.9, 0.6, 0.5, 0.3, 0.0,´0.3,´0.5,´0.6,´0.9u. The sampling period is

τ “ 0.3. The dynamics of the system is recalled in Appendix A.6.

Note that for this case study we used an automated pre-tiling of the state-

space permitting to decompose the reachability problem in a sequence of reachability

problems. Using patterns of length up toK “ 10, we managed to successfully control

the system in 3619 seconds. In this case, the pattern is computed until almost the

end without bisection as shown in Figure 4.6. To obtain the last steps, the box is

bissected in four ones by Algorithm 1. After that, patterns are found for the four

boxes:

— r8.43, 8.69s; r2.52, 2.78s : t7000166u
— r8.43, 8.69s; r2.78, 3.03s : t7000256u
— r8.69, 8.94s; r2.52, 2.78s : t00055u
— r8.69, 8.94s; r2.78, 3.03s : t000265u
The four set simulations obtained for the last steps are given in Figure 4.7.

4.2.3 Performance tests

We present a comparison of functions Find Pattern, Find Pattern2 w.r.t. the

computation times obtained, and with the state-of-the-art tools PESSOA [132] and
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Figure 4.6: Set simulation of the path planning example. The green box is the initial

region R1, the blue box is the target region R2. The union of the red boxes is the

reachability tube. In this case, the target region is not attained without bisection.

Table 4.1: Comparison of Find Pattern and Find Pattern2.

Example Computation time

Find Pattern F ind Pattern2

DC-DC Converter 1609 s ă 1 s

Polynomial example Time Out 150 s

Building ventilation 272 s 228 s

Path planning Time Out 3619 s

SCOTS [159].

Table 4.1 shows a comparison of functions Find Pattern and Find Pattern2,

which shows that the new version highly improves computation time (Time Outs

refer to computation times exceeding 10 hours). We can note that the new version

is all the more efficient as the length of the patterns increases, and as obstacles cut

the research tree of patterns. This is why we observe significant improvements on

the examples of the DC-DC converter and the polynomial example, and not on the

building ventilation example, which only requires patterns of length 2, and presents

no obstacle.

Table 4.2 shows of comparison of function Find Pattern2 with state-of-the-art

tools SCOTS and PESSOA. On the example of the DC-DC converter, our algorithm

manages to control the whole state-space R “ r1.55, 2.15s ˆ r1.0, 1.4s in less than

one second, while SCOTS and PESSOA only control a part of R, and with greater

computation times. Note that these computation times vary with the number of

discretization points used in both, but even with a very fine discretization, we never

managed to control the whole box R. For the polynomial example, we manage to
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Figure 4.7: Set simulation of the path planning example after bisection. The green

boxes are the initial regions obtained by bisection, the blue box is the target region

R2. The union of the red boxes is the reachability tube.

Table 4.2: Comparison with state-of-the-art tools.

Example Computation time

FP2 SCOTS PESSOA

DC-DC Converter ă 1 s 43 s 760 s

Polynomial example 150 s 131 s

Path planning 3619 s 492 s 516 s

control the whole boxes R1 and R2, such as SCOTS and in a comparable amount of

time. However, PESSOA does not support natively this kind of nonlinear systems.

For path planning case study, on which PESSOA and SCOTS perform well, we have

not obtained as good computations times as [132,159]. This comes from the fact that

this example requires a high number of switched modes, long patterns, as well as a

high number of boxes to tile the state-space. This is in fact the most difficult case

of application of our method. This reveals that our method is more adapted when

either the number of switched modes of the length of patterns is not high (though it

can be handled at the cost of high computation times). Another advantage is that

we do not require a homogeneous discretization of the state space. We can thus

tile large parts of the state-space using only few boxes, and this often permits to

consider much less symbolic states than with discretization methods, especially in

higher dimensions.
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4.2.4 Final remarks

We presented a method of control synthesis for nonlinear switched systems, based

on a simple state-space bisection algorithm, and on validated simulation. The ap-

proach permits to deal with stability, reachability, safety and forbidden region con-

straints. Varying parameters and perturbations can be easily taken into account

with interval analysis. The approach has been numerically validated on several ex-

amples taken from the literature, a linear one with constant parameters, and two

nonlinear ones with varying perturbations. Our approach compares well with the

state-of-the art tools SCOTS and PESSOA.

We would like to point out that the exponential complexity of the algorithms

presented here, which is inherent to guaranteed methods, is not prohibitive. Two

approaches have indeed been developed to overcome this exponential complexity. A

first approach is the use of compositionality, presented in Chapter 5, which permits

to split the system in two (or more) sub-systems, and to perform control synthesis on

these sub-systems of lower dimensions. This approach has been successfully applied

in [120] to a system of dimension 11, and we are currently working on applying

this approach to the more general context of contract-based design [161]. A second

approach, developed in Chapters 6 and 7, is the use of Model Order Reduction, which

allows to approximate the full-order system (3.1) with a reduced-order system, of

lower dimension, on which it is possible to perform control synthesis.

4.3 Sampled switched systems with one-sided Lip-

schitz conditions

4.3.1 Lipschitz and one-sided Lipschitz condition

Let us consider a nonlinear switched system of the form (3.1). We make the

following hypothesis:

pH0q For all j P U , fj is a locally Lipschitz continuous map.

We recall the definition of locally Lipschitz:

Definition 6. A function f : A Ă R
n ÝÑ R

m is locally Lipschitz at x0 P A if there

exist constants η ą 0 and M ą 0 such that

}x ´ x0} ă η Ñ }fpxq ´ fpx0q} ď M}x ´ x0}

As in [78], we make the assumption that the vector field fj is such that the

solutions of the differential equation (3.1) are defined, e.g. by assuming that the

support of the vector field fj is compact.
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We denote by T a compact overapproximation of the image by φj of S for 0 ď
t ď τ and j P U , i.e. T is such that

T Ě tφjpt; x0q | j P U, 0 ď t ď τ, x0 P Su.

The existence of T is guaranteed by assumption pH0q. We know furthermore by

pH0q, Definition 6 and the compactness of the support of fj that, for all j P U , there
exists a constant Lj ą 0 such that:

}fjpyq ´ fjpxq} ď Lj }y ´ x} @x, y P S. (4.7)

Let us define Cj for all j P U :

Cj “ sup
xPS

Lj}fjpxq} for all j P U. (4.8)

We make the additional hypothesis that the mappings fj are one-sided Lipschitz

(OSL) [57].

Formally:

pH1q For all j P U , there exists a constant λj P R such that

xfjpyq ´ fjpxq, y ´ xy ď λj }y ´ x}2 @x, y P T, (4.9)

where x¨, ¨y denotes the scalar product of two vectors of Rn. Constant λj P R is

called one-sided Lipschitz (OSL) constant, and can also be found in the literature

as Dahlquist’s constant [168]. Note that in practice, hypotheses H0 and H1 are

not strong. Hypothesis H0 just ensures the existence of solutions for the system,

and constants Lj and λj can always be found if the state of the system stays in a

compact set (e.g. the set T ).

Computation of constants λj, Lj and Cj The computation of constants Lj,

Cj, λj (j P U) are realized with a constrained optimization algorithm. They are

performed using the “sqp” function of Octave, applied on the following optimization

problems:

— Constant Lj:

Lj “ max
x,yPS, x‰y

}fjpyq ´ fjpxq}
}y ´ x}

— Constant Cj:

Cj “ max
xPS

Lj}fjpxq}

— Constant λj:

λj “ max
x,yPT, x‰y

xfjpyq ´ fjpxq, y ´ xy
}y ´ x}2
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We could point out that the computation of the constants is not guaranteed, in the

sense that the results given by optimization algorithms do not provide a guarantee

that an underapproximation of the constants is computed. However, some works

have been done for computing over and under approximation of Lipschitz constants

in [148], and could be used here. This approach can be extended to the OSL constant.

In the following, we consider that we can compute these constants exactly.

Origin of the OSL property This notion has been used for the first time by [58]

in order to treat “stiff” systems of differential equations for which the explicit Euler

method is numerically “unstable” (unless the step size is taken to be extremely

small). Unlike Lipschitz constants, OSL constants can be negative. In the case

where an OSL constant λj is negative, it is said that the vector field fj is strongly

monotone [166], which expresses a form of contractivity of the system dynamics: a

strongly monotone system presents trajectories getting exponentially closer together

within time. Even if the OSL constant is positive, it is in practice much lower than

the Lipschitz constant [52]. The use of OSL thus allows us to obtain a much more

precise upper bound for the global error. We believe that this notion is also closely

related to the notion of incremental stability [13, 77]. We think that it could be

shown that any system presenting a negative OSL constant is incrementally stable,

since it is already the case for linear systems. Indeed, a system presenting a negative

OSL constant actually admits } ¨ }2 as a stable Lyapunov function [13]. However,

this OSL Lipschitz property has never been used in the context of switched systems

and symbolic control.

4.3.2 A note on the OSL constant for linear systems

We show here a result giving an exact expression for the OSL constant for linear

vector fields.

Proposition 2. Let X Ă R
n be a (non trivial) compact set. Let A P MnpRq, b P R

n

and fpxq “ Ax ` b. The OSL constant of f is equal to the greatest eigenvalue of
A`AJ

2
.

Proof. First

Dλ P R s.t. xfpyq ´ fpxq, y ´ xy ď λ }y ´ x}2 @x, y P X,

is equivalent to

Dλ P R s.t. xApy ´ xq, y ´ xy ď λ }y ´ x}2 @x, y P X,

and is equivalent to (the case x “ y being trivial)

Dλ P R s.t. xA y ´ x

}y ´ x} ,
y ´ x

}y ´ x}y ď λ @x, y P X, x ‰ y, (4.10)
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and it is thus equivalent to

Dλ P R s.t. xAz, zy ď λ @z P Sp0, 1q, (4.11)

where Sp0, 1q is the sphere of center 0 and radius 1 in R
n, and because X is non

trivial.

Let us then remark that we have

xAz, zy “ xA ` AJ

2
z, zy (4.12)

Indeed, if A “ paijqij and z “ pziqi:

xAz, zy “
nÿ

i“1

nÿ

j“1

ziaijzj “
nÿ

i“1

nÿ

j“1

aijzizj

xA ` AJ

2
z, zy “ 1

2

˜
nÿ

i“1

nÿ

j“1

aijzizj `
nÿ

i“1

nÿ

j“1

ajizizj

¸

The sums on the last term can be exchanged, it yields

xA ` AJ

2
z, zy “ 1

2

˜
nÿ

i“1

nÿ

j“1

aijzizj `
nÿ

j“1

nÿ

i“1

ajizizj

¸

“ 1

2

˜
nÿ

i“1

nÿ

j“1

aijzizj `
nÿ

i“1

nÿ

j“1

aijzizj

¸

“ xAz, zy

We thus have equivalence of (4.11) and

Dλ P R s.t. xA ` AJ

2
z, zy ď λ @z P Sp0, 1q, (4.13)

Now, A`AJ

2
is a symmetric matrix, let us denote by λs1,. . . ,λ

s
n its (real) eigenval-

ues. Let us denote by λsmin the minimum one, and by λsmax the maximum one. We

can apply the known result (using for example Rayleigh quotient’s properties [147]):

@z P Sp0, 1q, λsmin ď xA ` AJ

2
z, zy ď λsmax

and equality is attained in both sides for z (normalized) eigenvector of A`AJ

2
corre-

sponding to eigenvalues λsmin and λsmax, which proves the result.

Remark 2. Function φ : z ÝÑ xAz, zy is a quadratic form. There is thus a unique

symmetric matrix M such that φpzq “ xMz, zy, this unique symmetric matrix is
A`AJ

2
.
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4.3.3 Euler approximate solutions

Having defined OSL conditions, we now present an original method allowing to

compute reachability sets and tubes, relying on the Euler method. The introduction

of OSL conditions actually allows to establish a new global error bound, permitting

the computation of overapproximation of reachability sets and tubes, precise enough

to be used for control synthesis. In the remainder of this chapter, we consider,

without loss of generality, that t0 “ 0, and omit its notation in the trajectory φj.

Given an initial point x̃0 P S and a mode j P U , we define the following “linear

approximate solution” φ̃jpt; x̃0q for t on r0, τ s by:

φ̃jpt; x̃0q “ x̃0 ` tfjpx̃0q. (4.14)

Note that formula (4.14) is nothing else but the explicit forward Euler scheme with

“time step” t. It is thus a consistent approximation of order 1 in t of the exact

trajectory of (3.1) under the hypothesis x̃0 “ x0.

More generally, given an initial point x̃0 P S and pattern π of Uk, we can define

a “(piecewise linear) approximate solution” φ̃πpt; x̃0q of φπ at time t P r0, kτ s as

follows:

— φ̃πpt; x̃0q “ tfjpx̃0q ` x̃0 if π “ j P U , k “ 1 and t P r0, τ s, and
— φ̃πpkτ ` t; x̃0q “ tfjpz̃q ` z̃ with z̃ “ φ̃π1ppk ´ 1qτ ; x̃0q, if k ě 2, t P r0, τ s,

π “ j ¨ π1 for some j P U and π1 P Uk´1.

We wish to synthesize a guaranteed control σ for φσ using the approximate

functions φ̃π.We define the closed ball of center x P R
n and radius r ą 0, denoted

Bpx, rq, as the set tx1 P R
n | }x1 ´ x} ď ru.

Given a positive real δ, we now define the expression δjptq which, as we will see

in Theorem 3, represents (an upper bound on) the error associated to φ̃jpt; x̃0q (i.e.

}φ̃jpt; x̃0q ´ φjpt; x0q}).

Definition 7. Let us consider a switched system verifying hypotheses (H0) and

(H1), associated to constants λj, Lj and Cj for each mode j P U , such that equa-

tions (4.7), (4.8) and (4.9) hold. Let δ be a positive constant. We define, for all

0 ď t ď τ , function δjptq as follows:

— if λj ă 0:

δjptq “
ˆ
δ2eλjt `

C2
j

λ2j

ˆ
t2 ` 2t

λj
` 2

λ2j

`
1 ´ eλjt

˘˙˙
1

2

— if λj “ 0 :

δjptq “
`
δ2et ` C2

j p´t2 ´ 2t ` 2pet ´ 1qq
˘ 1

2

58



— if λj ą 0 :

δjptq “
ˆ
δ2e3λjt `

C2
j

3λ2j

ˆ
´t2 ´ 2t

3λj
` 2

9λ2j

`
e3λjt ´ 1

˘˙˙
1

2

Note that δjptq “ δ for t “ 0. The function δjp¨q depends implicitly on two

parameters: δ P R and j P U . In Section 4.3.4, we will use the notation δ1
jp¨q where

the parameters are denoted by δ1 and j.

Theorem 3. Given a sampled switched system satisfying (H0-H1), consider a point

x̃0 and a positive real δ. We have, for all x0 P Bpx̃0, δq, t P r0, τ s and j P U :
φjpt; x0q P Bpφ̃jpt; x̃0q, δjptqq.

Proof. Consider on t P r0, τ s the differential equations

dxptq
dt

“ fjpxptqq

and
dx̃ptq
dt

“ fjpx̃0q.

with initial points x0 P S, x̃0 P S respectively. We will abbreviate φjpt; x0q (resp.

φ̃jpt; x̃0q) as xptq (resp. x̃ptq). We have

d

dt
pxptq ´ x̃ptqq “

`
fjpxptqq ´ fjpx̃0q

˘
,

then

1

2

d

dt
p}xptq ´ x̃ptq}2q “

@
fjpxptqq ´ fjpx̃0q, xptq ´ x̃ptq

D

“
@
fjpxptqq ´ fjpx̃ptqq ` fjpx̃ptqq ´ fjpx̃0q, xptq ´ x̃ptq

D

“ xfjpxptqq ´ fjpx̃ptqq, xptq ´ x̃ptqy
`
@
fjpx̃ptqq ´ fjpx̃0q, xptq ´ x̃ptq

D

ď xfjpxptqq ´ fjpx̃ptqq, xptq ´ x̃ptqy
`}fjpx̃ptqq ´ fjpx̃0q}}xptq ´ x̃ptq}.

The last expression has been obtained using the Cauchy-Schwarz inequality. Using

pH1q and (4.7), we have

1

2

d

dt
p}xptq ´ x̃ptq}2q ď λj}xptq ´ x̃ptq}2 ` }fjpx̃ptqq ´ fjpx̃0q} }xptq ´ x̃ptq}

ď λj}xptq ´ x̃ptq}2 ` Lj }x̃ptq ´ x̃0} }xptq ´ x̃ptq}
ď λj}xptq ´ x̃ptq}2 ` Ljt }fjpx̃0q} }xptq ´ x̃ptq}.

Using (4.8) and a Young inequality, we then have

1

2

d

dt
p}xptq ´ x̃ptq}2q ď λj}xptq ´ x̃ptq}2 ` Cj t }xptq ´ x̃ptq}

ď λj}xptq ´ x̃ptq}2 ` Cj t
1

2

ˆ
α}xptq ´ x̃ptq}2 ` 1

α

˙

for all α ą 0.
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— In the case λj ă 0:

For t ą 0, we choose α ą 0 such that Cjtα “ ´λj, i.e. α “ ´ λj

Cj t
. It follows,

for all t P r0, τ s:

1

2

d

dt
p}xptq ´ x̃ptq}2q ď λj

2
}xptq ´ x̃ptq}2 ´ Cjt

2α
“ λj

2
}xptq ´ x̃ptq}2 ´ pCjtq2

2λj
.

We thus get:

}xptq ´ x̃ptq}2 ď }x0 ´ x̃0}2 eλjt `
C2

j

λ2j

ˆ
t2 ` 2t

λj
` 2

λ2j

`
1 ´ eλjt

˘˙
.

— In the case λj ą 0:

For t ą 0, we choose α ą 0 such that Cjtα “ λj, i.e. α “ λj

Cj t
. It follows, for

all t P r0, τ s:

1

2

d

dt
p}xptq ´ x̃ptq}2q ď 3λj

2
}xptq ´ x̃ptq}2 ` Cjt

2α
“ 3λj

2
}xptq ´ x̃ptq}2 ` pCjtq2

2λj
.

We thus get:

}xptq ´ x̃ptq}2 ď }x0 ´ x̃0}2 e3λjt `
C2

j

3λ2j

ˆ
´t2 ´ 2t

3λj
` 2

9λ2j

`
e3λjt ´ 1

˘˙

— In the case λj “ 0:

For t ą 0, we choose α “ 1

Cjt
. It follows:

d

dt
p}xptq ´ x̃ptq}2q ď }xptq ´ x̃ptq}2 ` Cjt

2

We thus get:

}xptq ´ x̃ptq}2 ď }x0 ´ x̃0}2et ` C2

j p´t2 ´ 2t ` 2pet ´ 1qq

In every case, since by hypothesis x0 P Bpx̃0, δq (i.e. }x0 ´ x̃0}2 ď δ2), we

have, for all t P r0, τ s:
}xptq ´ x̃ptq} ď δjptq.

It follows: φjpt; x0q P Bpφ̃jpt; x̃0q, δq for t P r0, τ s.

Remark 3. In Theorem 3, we have supposed that the step size h used in Euler’s

method was equal to the sampling period τ of the switching system. Actually, in order

to have better approximations, it is sometimes convenient to consider a uniform

subdivision of r0, τ s and apply the Euler’s method for a time step h equal to e.g.

h “ τ
10
. Such a splitting is called “sub-sampling” in numerical methods. See Section

4.3.5 for details.
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Corollary 1. Given a sampled switched system satisfying (H0-H1), consider a point

x̃0 P S, a real δ ą 0 and a mode j P U such that:

1. Bpx̃0, δq Ď S,

2. Bpφ̃jpτ ; x̃0q, δjpτqq Ď S, and

3.
d2pδjptqq

dt2
ą 0 for all t P r0, τ s.

Then we have, for all x0 P Bpx̃0, δq and t P r0, τ s: φjpt; x0q P S.

Proof. By items 1 and 2, Bpφ̃jpt; x̃0q, δjptqq Ď S for t “ 0 and t “ τ . Since δjp¨q is

convex on r0, τ s by item 3, and S is convex, we have Bpφ̃jpt; x̃0q, δjptqq Ď S for all

t P r0, τ s. It follows from Theorem 3 that φjpt; x0q P Bpφ̃jpt; x̃0q, δjptqq Ď S for all

1 ď t ď τ .

Remark 4. Condition 3 of Corollary 1 on the convexity of δjp¨q on r0, τ s can be

established again using an optimization function. Since we have an exact expression

for δjp¨q, its second derivative (w.r.t. time) can be computed using a computer algebra

software. Using an optimization algorithm then allows to verify that its minimum

is positive.

4.3.4 Application to control synthesis

Consider a point x̃0 P S, a positive real δ and a pattern π of length k. Let

πpk1q denote the k1-th element (mode) of π for 1 ď k1 ď k. Let us abbreviate the

k1-th approximate point φ̃πpk1τ ; x̃0q as x̃k
1

π for k1 “ 1, ..., k, and let x̃k
1

π “ x̃0 for

k1 “ 0. It is easy to show that x̃k
1

π can be defined recursively for k1 “ 1, ..., k, by:

x̃k
1

π “ x̃k
1´1

π ` τfjpx̃k1´1
π q with j “ πpk1q.

Let us now denote by δk
1

π (an upper bound on) the error associated to x̃k
1

π , i.e.

}x̃k1

π ´ φπpk1τ ; x0q}. Using repeatedly Theorem 3, δk
1

π can be defined recursively as

follows:

For k1 “ 0: δk
1

π “ δ, and for 1 ď k1 ď k: δk
1

π “ δ1
jpτq where δ1 denotes δk

1´1
π , and

j denotes πpk1q.
Likewise, for 0 ď t ď kτ , let us denote by δπptq (an upper bound on) the global error

associated to φ̃πpt; x̃0q (i.e. }φ̃πpt; x̃0q ´ φπpt; x0q}). Using Theorem 3, δπptq can be

defined itself as follows:

— for t “ 0: δπptq “ δ,

— for 0 ă t ď kτ : δπptq “ δ1
jpt1q with δ1 “ δℓ´1

π , j “ πpℓq, t1 “ t ´ pℓ ´ 1qτ and

ℓ “ r t
τ
s.

Note that, for 0 ď k1 ď k, we have: δπpk1τq “ δk
1

π . We have:

Theorem 4. Given a sampled switched system satisfying (H0-H1), consider an

initial point x̃0 P S, a positive real δ and a pattern π of length k such that, for all

1 ď k1 ď k:
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1. Bpx̃k1

π , δ
k1

π q Ď S and

2.
d2pδ1

jptqq

dt2
ą 0 for all t P r0, τ s, with j “ πpk1q and δ1 “ δk

1´1
π .

Then we have, for all x0 P Bpx̃0, δq and t P r0, kτ s: φπpt; x0q P S.

Proof. By induction on k using Corollary 1.

The statement of Theorem 4 is illustrated in Figure 4.8 for k “ 2. From Theorem

4, it easily follows:
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Figure 4.8: Illustration of Theorem 4.

Corollary 2. Given a switched system satisfying (H0-H1), consider a positive real

δ and a finite set of points x̃1, . . . x̃m of S such that all the balls Bpx̃i, δq cover R and

are included into S (i.e. R Ď Ťm

i“1
Bpx̃i, δq Ď S). Suppose furthermore that, for all

1 ď i ď m, there exists a pattern πi of length ki such that:

1. Bppx̃iqk1

πi
, δk

1

πi
q Ď S, for all k1 “ 1, . . . , ki ´ 1

2. Bppx̃iqkiπi
, δkiπi

q Ď R.

3.
d2pδ1

jptqq

dt2
ą 0 with j “ πipk1q and δ1 “ δk

1´1
πi

, for all k1 P t1, ..., kiu and t P r0, τ s.
These properties induce a control σ 1 which guarantees

— (safety): if x P R, then φσpt; xq P S for all t ě 0, and

— (recurrence): if x P R then φσpkτ ; xq P R for some k P tk1, . . . , kmu.

Corollary 2 gives the theoretical foundations of the following method for synthe-

sizing σ ensuring recurrence in R and safety in S:

— we (pre-)compute λj, Lj, Cj for all j P U ;
— we find m points x̃1, . . . x̃m of S and δ ą 0 such that R Ď Ťm

i“1
Bpx̃i, δq Ď S;

1. Given an initial point x P R, the induced control σ corresponds to a sequence of patterns

πi1 , πi2 , . . . defined as follows: Since x P R, there exists a point x̃i1 with 1 ď i1 ď m such that

x P Bpx̃i1 , δq; then using pattern πi1 , one has: φπi1
pki1τ ;xq P R. Let x1 “ φπi1

pki1τ ;xq; there

exists a point x̃i2 with 1 ď i2 ď m such that x1 P Bpx̃i2 , δq, etc.
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— we find m patterns πi (i “ 1, ...,m) such that conditions 1-2-3 of Corollary 2

are satisfied.

A covering of R with balls as stated in Corollary 2 is illustrated in Figure 4.9. The

control synthesis method based on Corollary 2 is illustrated in Figure 4.10 (left)

together with an illustration of the validated simulation approach of Section 4.2

(right).
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Figure 4.9: A set of balls covering R and contained in S.
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Figure 4.10: Control of ball Bpx̃3, δq with our method (left); control of tile Z2 with

the method of Section 4.2(right).

This theorem is actually an equivalent of Theorem 2 using balls, it thus solves

Problem 1.

4.3.5 Numerical experiments and results

This method has been implemented in the interpreted language Octave, and the

experiments performed on a 2.80 GHz Intel Core i7-4810MQ CPU with 8 GB of
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memory.

Note that in some cases, it is advantageous to use a time sub-sampling to compute

the image of a ball. Indeed, because of the exponential growth of the radius δjptq
within time, computing a sequence of balls can lead to smaller ball images. It is

particularly advantageous when a constant λj is negative. We illustrate this with

the example of the DC-DC converter. It has two switched modes, for which we have

λ1 “ ´0.014215 and λ2 “ 0.142474. In the case λj ă 0, the associated formula δjptq
has the behavior of Figure 4.11 (a). In the case λj ą 0, the associated formula δjptq
has the behavior of Figure 4.11 (b). In the case λj ă 0, if the time sub-sampling

is small enough, one can compute a sequence of balls with reducing radius, which

makes the synthesis easier.

(a) (b)

Figure 4.11: Behavior of δjptq for the DC-DC converter with δjp0q “ 0.045. (a)

Evolution of δ1ptq (with λ1 ă 0); (b) Evolution of δ2ptq (with λ2 ą 0).

In the following, we give the results obtained with our Octave implementation

of this Euler-based method on 5 examples, and compare them with those given by

the C++ implementation DynIBEX [5] of the Runge-Kutta based method used in

Section 4.2.

Four-room apartment

We describe a first application on the 4-room 16-switch building ventilation case

study adapted from [134], recalled in Appendix A.4. The model has been simplified

in order to get constant parameters. To get constant parameters, we took To “ 30,

Tc “ 30, Tu “ 17, δsi “ 1 for i P N . Compared simulations are given in Figure 4.12.

On this example, the Euler-based method works better than DynIBEX in terms of

CPU time.

DC-DC converter

This linear example is recalled in Appendix A.1.
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Euler DynIBEX

R r20, 22s2 ˆ r22, 24s2
S r19, 23s2 ˆ r21, 25s2
τ 30

Time subsampling No

Complete control Yes Yes

maxj“1,...,16 λj ´6.30 ˆ 10´3

maxj“1,...,16Cj 4.18 ˆ 10´6

Number of balls/tiles 4096 252

Pattern length 1 1

CPU time 63 seconds 249 seconds

Table 4.3: Numerical results for the four-room example.

Figure 4.12: Simulation of the four-room case study with our synthesis method (left)

and with the synthesis method of Section 4.2 (right).

On this example, the Euler-based method fails while DynIBEX succeeds rapidly.

Polynomial example

We consider the polynomial system taken from [126], recalled in Appendix A.3.

The disturbances are not taken into account. The objective is to visit infinitely often

two zones R1 and R2, without going out of a safety zone S.

For Euler and DynIBEX, the table indicates two CPU times corresponding to

the reachability from R1 to R2 and vice versa. On this example, the Euler-based

method is much slower than DynIBEX.

Two-tank system

The two-tank system is a linear example taken from [89]. The system consists of

two tanks and two valves. The first valve adds to the inflow of tank 1 and the second

valve is a drain valve for tank 2. There is also a constant outflow from tank 2 caused

by a pump. The system is linearized at a desired operating point. The objective
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Euler DynIBEX

R r1.55, 2.15s ˆ r1.0, 1.4s
S r1.54, 2.16s ˆ r0.99, 1.41s
τ 0.5

Complete control No Yes

λ1 ´0.014215

λ2 0.142474

C1 6.7126 ˆ 10´5

C2 2.6229 ˆ 10´2

Number of balls/tiles x 48

Pattern length x 6

CPU time x ¡ 1 second

Table 4.4: Numerical results for the DC-DC converter example.

is to keep the water level in both tanks within limits using a discrete open/close

switching strategy for the valves. Let the water level of tanks 1 and 2 be given by

x1 and x2 respectively. The behavior of x1 is given by 9x1 “ ´x1 ´2 when the tank 1

valve is closed, and 9x1 “ ´x1 ` 3 when it is open. Likewise, x2 is driven by 9x2 “ x1

when the tank 2 valve is closed and 9x2 “ x1 ´x2 ´ 5 when it is open. The dynamics

of the system is recalled in Appendix A.7 On this example, the Euler-based method

works better than DynIBEX in terms of CPU time.

Helicopter

The helicopter is a linear example taken from [55]. The problem is to control

a quadrotor helicopter toward a particular position on top of a stationary ground

vehicle, while satisfying constraints on the relative velocity. Let g be the gravita-

tional constant, x (reps. y) the position according to x-axis (resp. y-axis), 9x (resp.

9y) the velocity according to x-axis (resp. y-axis), φ the pitch command and ψ the

roll command. The possible commands for the pitch and the roll are the following:

φ, ψ P t´10, 0, 10u. Since each mode corresponds to a pair pφ, ψq, there are nine

switched modes. The dynamics of the system is given by the equation:

9X “

¨
˚̊
˚̋

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

˛
‹‹‹‚X `

¨
˚̊
˚̋

0

g sinp´φq
0

g sinpψq

˛
‹‹‹‚

where X “ px 9x y 9yqJ. Since the variables x and y are decoupled in the equations

and follow the same equations (up to the sign of the command), it suffices to study

the control for x (the control for y is the opposite). The dynamics of the system is

recalled in Appendix A.8. On this example again, the Euler-based method works
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Euler DynIBEX

R1 r´1, 0.65s ˆ r0.75, 1.75s
R2 r´0.5, 0.5s ˆ r´0.75, 0.0s
S r´2.0, 2.0s ˆ r´1.5, 3.0s
τ 0.15

Time subsampling τ{20
Complete control Yes Yes

λ1 ´1.5

λ2 ´1.0

λ3 ´1.1992 ˆ 10´8

λ4 ´5.7336 ˆ 10´6

C1 641.37

C2 138.49

C3 204.50

C4 198.64

Number of balls/tiles 16 & 16 1 & 1

Pattern length 8 7

CPU time 29 & 4203 seconds ¡0.1 & 329 seconds

Table 4.5: Numerical results for the polynomial example.

better than DynIBEX in terms of CPU time.

Analysis and comparison of results

This method presents a great advantage over the recent work [119]: no numerical

integration is required for the control synthesis. The computations just require the

evaluation of given functions fj and (global error) functions δj at sampling times.

The synthesis is thus a priori cheap compared to the use of numerical integration

schemes (and even compared to exact integration for linear systems). However, most

of the computation time is actually taken by the search for an appropriate radius δ

of the balls Bi (1 ď i ď m) that cover R, and the search for appropriate patterns πi

that make the trajectories issued from Bi return to R.

Furthermore, the method lacks accuracy when the error bound δjptq grows fast,

this is particularly the case when λj ą 0. A high number of balls may be required to

counteract this drawback, as well as using time sub-sampling, and both increase the

computational cost, but as seen on the helicopter example, it can still be cheaper

than classical methods. Moreover, we can use the fact that some modes make the

error grow, while others make it decrease, like in the two tank example. On systems

for which the error does not grow fast, we perform very well as the computation

of the image of a ball is very inexpensive. This is very often the case on thermal

heating applications, for which the system usually has λj ă 0 (see for example the
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Euler DynIBEX

R r´1.5, 2.5s ˆ r´0.5, 1.5s
S r´3, 3s ˆ r´3, 3s
τ 0.2

Time subsampling τ{10
Complete control Yes Yes

λ1 0.20711

λ2 -0.50000

λ3 0.20711

λ4 -0.50000

C1 11.662

C2 28.917

C3 13.416

C4 32.804

Number of balls/tiles 64 10

Pattern length 6 6

CPU time 58 seconds 246 seconds

Table 4.6: Numerical results for the two-tank example.

four room case study).

Note that for systems presenting negative λj, if the sampling time is not imposed

by the system, it is possible to choose an optimal sampling time minimizing the

radius of the ball images (see Figure 4.11 (a)), and thus maximizing the chance of

finding controllers fast.

The method presents a specific fault for synthesizing a controller for the DC-DC

converter. Because we use balls to tile a box R, parts of some balls (crescent-shaped)

are not included in the initial box, and these parts are particularly hard to steer

inside R, because the dynamics of the system generates trajectories which are nearly

horizontal. The fact that λ2 is strictly positive makes it even harder to control these

balls. This explains why we obtain controllable regions which look like Figure 4.13.

Note that the same kind of results are obtained with state-of-the-art tools such as

SCOTS [159] and PESSOA [132]. The use of zonotopes which perfectly tile the

region R does not present this fault for this particular system.

We observe on the examples that the resulting control strategies synthesized by

our method are quite different from those obtained by the Runge-Kutta method of

Section 4.2 (which uses in particular rectangular tiles instead of balls). This may

explain why the experimental results are here contrasted: Euler’s method works

better on 3 examples and worse on the 2 others. Besides the Euler method fails

on one example (DC-DC converter) while DynIBEX succeeds on all of them. Note

however that our Euler-based implementation is made of a few hundreds lines of in-
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Euler DynIBEX

R r´0.3, 0.3s ˆ r´0.5, 0.5s
S r´0.4, 0.4s ˆ r´0.7, 0.7s
τ 0.1

Time subsampling τ{10
Complete control Yes Yes

λ1 0.5

λ2 0.5

λ3 0.5

C1 1.77535

C2 0.5

C3 1.77535

Number of balls/tiles 256 35

Pattern length 7 7

CPU time 539 seconds 1412 seconds

Table 4.7: Numerical results for the helicopter motion example.

terpreted code Octave while DynIBEX is made of around five thousands of compiled

code C++.

4.3.6 Final remarks

We have given a new Euler-based method for controlling sampled switched sys-

tems, and compared it with the Runge-Kutta method of [115]. The method is

remarkably simple and gives already promising results. In future work, we plan to

explore the use of the backward Euler method instead of the forward Euler method

used here (cf [32]). We plan also to give general sufficient conditions ensuring the

convexity of the error function δjp¨q; this would allow us to get rid of the convexity

tests that we perform so far numerically for each pattern.
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Figure 4.13: Controlled region ofR using the Euler method for the DC-DC converter.
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Chapter 5

Disturbances and distributed

control
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In this chapter, we extend the results of the previous chapter to systems subject

to disturbances and varying parameters. We present how disturbances can be used

to perform distributed (also called compositional) control synthesis, allowing to

overcome the exponential complexity of the algorithms of Chapter 3. Provided

that the modes do not affect each dimension of the system, system (3.1) can be

rewritten as two sub-systems with independent control modes, but sharing some

state variables. Those shared state variables can be viewed as disturbances, and

using a method close to assume-guarantee reasoning [12, 34, 41, 108], we synthesize

two controllers, much cheaper to compute than a centralized one. This distributed

approach is applied with sets represented by zonotopes and balls, and made available

for nonlinear systems using Runge-Kutta and Euler schemes.

This chapter is divided as follows. We present some results for linear systems

subject to disturbances using zonotopes in Section 5.1. We introduce a backward

reachability procedure relying on zonotopes and apply it in a centralized and dis-

tributed manner in Section 5.2. We then present in Section 5.3 an approach relying

on a notion close to incremental input-to-state stability [13] which, associated to an

Euler scheme and balls of Rn, allows to handle perturbations and varying parame-

ters, and can thus be applied to distributed synthesis.

5.1 Linear systems and disturbances

Let us consider an affine system satisfying

9x “ Ax ` b (5.1)

where x P R
n, A P R

nˆn, and b P R
n. As seen in the previous chapter, one can

compute the solution at time t ą 0 of (5.1) using equation (4.1). Being given a

sampling time τ (taken equal to 1 for the sake of simplicity), system (5.1) can be

turned into a discrete time system

xpt ` 1q “ Cxptq ` d (5.2)

with C “ eA and d “
ş
1

0
eApt´1qdt. System (5.2) can be decomposed in blocks as

follows:
9˜
x1

x2

¸
“
˜
C11 C12

C21 C22

¸˜
x1

x2

¸
`
˜
d1

d2

¸
. (5.3)

where x1, d1 P R
n1 and x2, d2 P R

n2 with n “ n1`n2, and C11, C12, C21, C22 matrices

of appropriate dimensions. Let us now consider an initial set given as a zonotope

Z “ă
˜
c1

c2

¸
,

˜
G1

G2

¸
ą,
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with c1 P R
n1 , c2 P R

n2 , G1 P R
n1ˆn and G2 P R

n2ˆn. We know that the image at

time t ` 1 of Z is the zonotope

Z 1 “ă
˜
C11c1 ` C12c2 ` d1

C21c1 ` C22c2 ` d2

¸
,

˜
C11G1 ` C12G2

C21G1 ` C22G2

¸
ą .

We thus have x1pt` 1q P Z 1
1 “ă C11c1 `C12c2 ` d1, C11G1 `C12G2 ą. Now, assume

that x2 stays in a safety zone S2 given as a zonotope ă s2, F2 ą, we have

x1pt ` 1q P Z 1
1 “ă C11c1 ` C12s2 ` d1, C11G1 ` C12F2 ą . (5.4)

We can then compute a bounding box of the latter, such as in [68], given as a

zonotope Z`
1 “ ˝pZ 1

1q of the form ă c1
1, G

1
1 ą with G1

1 P R
n1ˆn1 . The same can

be done for component two, a bounding zonotope Z`
2 “ ˝pZ 1

2q of Z 1
2 of the form

ă c1
2, G

1
2 ą with G1

2 P R
n2ˆn2 can be inferred, assuming that component 1 stays in a

safety zone S1. This now gives an overapproximation Z`
1 ˆ Z`

2 of zonotope Z 1.

We can then iterate this, by computing Z``
1 “ ˝ppZ`

1 q1q as an overapproximation

of the image of Z`
1 , assuming that component 2 stays in the safety zone S2, and

reciprocally for component 2, we obtain Z``
2 “ ˝ppZ`

2 q1q. We thus have Z``
1 ˆZ``

2

as an overapproximation of Z2, and we now see the main interest: each component

only has to know its state. When computing images Z`
1 , Z

``
1 , the state of compo-

nent 2 is overapproximated by S2, and reciprocally. Assuming that x1 forever stays

in S1, and x2 forever stays in S2, the successive images can be computed separately

for each component.

Assuming that x1 and x2 forever stay in their respective safety zones S1 and S2,

this actually gives a way to successively compute over-approximations Z`
1 ˆ Z`

2 ,

Z``
1 ˆ Z``

2 , . . . of the images Z 1, Z2, . . . , of the zonotope Z, by only looking at

component 1 and component 2 separately.

If we now take a switched version of (5.2) (by adding an index j P U to matrix A

and vector b), the previous approach allows to separately compute two controllers for

both components. This however requires that both components stay in a given safety

zone. In other words, one has to successfully compute two safety controllers, for both

components, for this method to work. Actually, safety properties are mandatory to

apply such distributed methods, we find them in several compositional or assume-

guarantee based methods [53, 101,135].

Using this distributed method, component 2 can actually be seen as a bounded

perturbation for component 1, where the perturbation is bounded in S2. We could

in fact extend this method to more general perturbations, for systems of the form

9x “ Ax ` Bw ` b (5.5)

where w is the bounded perturbation (varying in a given set within time). Note

that [109] proposes a subtle approach to extend this type of calculations to a wider

range of perturbations, notably including varying parameters.
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In the following, we apply this method in an iterated manner, first in a discrete-

time framework, before applying it to continuous-time systems.

5.2 Distributed control using zonotopes

In this section, we first focus on discrete-time systems and present an approach

mainly aimed at controlling building heating applications. We introduce an ex-

tension of the algorithm of Chapter 3 allowing to perform iterated (backward)

reachability. We then extend it to distributed synthesis, by introducing a state

over-approximation technique which avoids the use of non-local information by the

subsystem controllers. This procedure allowed to synthesize a controller for a real

case study of temperature control in a building with 11 rooms and 211 “ 2048 switch-

ing modes of control. This approach is then extended to continuous-time systems

using Runge-Kutta schemes and the DynIBEX library.

5.2.1 State-dependent Switching Control

We first consider the discrete-time setting. The time t then takes its values in N.

Control modes

Consider the following discrete-time system with finite control :

x1pt ` 1q “ f1px1ptq, x2ptq, u1q x2pt ` 1q “ f2px1ptq, x2ptq, u2q

where x1 (resp. x2) is the first (resp. second) component of the state vector, and

takes its values in R
n1 (resp. Rn2), and where u1 (resp. u2) is the first (resp. second)

component of the control mode, and takes its values in the finite set U1 (resp. U2).

We will often write x for px1, x2q, u for pu1, u2q, and n for n1 ` n2. We will also

abbreviate the set U1ˆU2 as U . Let N1 (resp. N2) by the cardinality of U1 (resp. U2),

and N “ N1 ¨ N2 be the cardinality of U .

More generally, we abbreviate the discrete-time system under the form:

xpt ` 1q “ fpxptq, uq

where x is a vector state variable, taking its values in R
n “ R

n1 ˆR
n2 , and where u

is of the form pu1, u2q, where u1 takes its values in U1 and u2 in U2.

In this context, we are interested by the following centralized control-synthesis

problem: at each discrete-time t, select some appropriate mode u P U in order

to satisfy a given property. In a distributed setting, the control-synthesis problem

consists in selecting the value of u1 in U1 according to the value of x1ptq only, and

the value of u2 in U2 according to the value of x2ptq only.

The properties that we consider are reachability properties: given a set S and

a set R, we look for a control which steers any element of S into R in a bounded
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number of steps. We also consider stability properties, requiring that once the

state x of the system is in R at time t, the control will maintain it in R indefinitely.

Actually, given a state set R, we will present a method that does not start from a

given set S, but constructs it, together with a control that steers all the elements

of S to R within a bounded number of steps (S can be seen as a “capture set” of R).

In this section, we consider that R and S are “rectangles” of the state space.

More precisely, R “ R1 ˆ R2 is a rectangle of reals, i.e., R is a product of n closed

intervals of reals, and R1 (resp. R2) is a product of n1 (resp. n2) closed intervals of

reals. Likewise, we assume that S “ S1 ˆ S2 is a rectangular sub-area of the state

space.

Example 1. The centralized and distributed approaches will be illustrated by the

example of a two-room apartment, heated by one heater in each room (adapted

from [76]). In this example, the objective is to control the temperature of both

rooms. There is heat exchange between the two rooms and with the environment.

The continuous dynamics of the system is given by the equation:

9˜
T1

T2

¸
“
˜

´α21 ´ αe1 ´ αfu1 α21

α12 ´α12 ´ αe2 ´ αfu2

¸˜
T1

T2

¸
`
˜
αe1Te ` αfTfu1

αe2Te ` αfTfu2

¸
.

Here T1 and T2 are the temperatures of the two rooms, and the state of the system

corresponds to T “ pT1, T2q. The control mode variable u1 (respectively u2) can take

the values 0 or 1, depending on whether the heater in room 1 (respectively room 2) is

switched off or on (hence U1 “ U2 “ t0, 1u). Hence, here n1 “ n2 “ 1, N1 “ N2 “ 2,

and n “ 2 and N “ 4.

Temperature Te corresponds to the temperature of the environment, and Tf to the

temperature of the heaters. The values of the different parameters are as follows:

α12 “ 5 ˆ 10´2, α21 “ 5 ˆ 10´2, αe1 “ 5 ˆ 10´3, αe2 “ 5 ˆ 10´3, αf “ 8.3 ˆ 10´3,

Te “ 10 and Tf “ 35. The dynamics of the system is recalled in Appendix A.2.

We suppose that the heaters can be switched periodically at sampling instants τ ,

2τ , ... (here, τ “ 5s). By integration of the continuous dynamics between t and t`τ ,
the system can be easily put under the desired discrete-time form:

T1pt ` 1q “ f1pT1ptq, T2ptq, u1q T2pt ` 1q “ f2pT1ptq, T2ptq, u2q

where f1 and f2 are affine functions.

Given an objective rectangle for T “ pT1, T2q of the form R “ r18.5, 22s ˆ
r18.5, 22s, the control synthesis problem is to find a rectangular capture set S (as

large as possible) from which one can steer the state T to R (“reachability”), and

then maintain T within R for ever (“stability”).

Control patterns

It is often easier to design a control of the system using several applications

of f in a row rather than using just a single application of f at each time. We are
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thus led to the notion of “macro-step”, and “control pattern”. A (control) pattern

π “ pπ1, π2q of length k is a sequence of modes defined recursively by:

1. π is of the form pu1, u2q P U1 ˆ U2 if k “ 1,

2. π is of the form pu1 ¨ π1
1, u2 ¨ π1

2q, where u1 (resp. u2) is in U1 (resp. U2), and

pπ1
1, π

1
2q is a (control) pattern of length k ´ 1 if k ě 2.

The set of patterns of length k is denoted by Πk (for length k “ 1, we have

Π1 “ U). Likewise, for k ě 1, we denote by Πk
1 (resp. Πk

2) the set of sequences of k

elements of U1 (resp. U2).

For a system defined by xpt` 1q “ fpxptq, pu1, u2qq and a pattern π “ pπ1, π2q of
length k, one can recursively define xpt`kq “ fpxptq, pπ1, π2qq with pπ1, π2q P Πk, by:

1. fpxptq, pπ1, π2qq “ fpxptq, pu1, u2qq, if pπ1, π2q is a pattern of length k “ 1 of

the form pu1, u2q P U ,

2. fpxptq, pπ1, π2qq “ fpfpxptq, pπ1
1, π

1
2qq, pu1, u2qq, if pπ1, π2q is a pattern of length

k ě 2 of the form pu1 ¨ π1
1, u2 ¨ π1

2q with pu1, u2q P U and pπ1
1, π

1
2q P Πk´1.

One defines pfpx, πqq1 P R
n1 and pfpx, πqq2 P R

n2 to be the first and second compo-

nents of fpx, πq P R
n1 ˆ R

n2 “ R
n, i.e: fpx, πq “ ppfpx, πqq1, fpx, πq2q.

In the following, we fix an upper bound K P N on the length of patterns.

The value of K can be seen as a maximum number of time steps, for which we com-

pute the future behaviour of the system (“horizon”). We denote by ΠďK
1 (resp. ΠďK

2 )

the expression
Ť

1ďkďK Πk
1 (resp.

Ť
1ďkďK Πk

2). Likewise, we denote by ΠďK the ex-

pression
Ť

1ďkďK Πk.

5.2.2 Control synthesis using tiling

Tiling

Let R “ R1 ˆ R2 be a rectangle. We say that R is a (finite rectangular) tiling

of R if R is of the form tri1,i2ui1PI1,i2PI2 , where I1 and I2 are given finite sets of

positive integers, each ri1,i2 is a sub-rectangle of R of the form ri1 ˆ ri2 , and ri1 , ri2
are closed sub-intervals of R1 and R2 respectively. Besides, we have

Ť
i1PI1

ri1 “ R1

and
Ť

i2PI2
ri2 “ R2 (Hence R “ Ť

i1PI1,i2PI2
ri1,i2).

We will refer to ri1 , ri2 and ri1,i2 as “tiles” of R1, R2 and R respectively. The

same notions hold for rectangle S.

In the centralized context, given a rectangle R, the macro-step (backward reach-

ability) control synthesis problem with horizon K consists in finding a rectangle S

and a tiling S “ tsi1,i2ui1PI1,i2PI2 of S such that, for each pi1, i2q P I1 ˆ I2, there exists

π P ΠďK such that:

fpsi1,i2 , πq Ď R

(i.e., for all x P si1,i2 : fpx, πq P R). This is illustrated in Figure 5.1.
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Figure 5.1: Mapping of tile s2,3 to R via pattern π2,3, and mapping of tile s3,1 via

π3,1.

Parametric extension of tiling

In the following, we assume that the set S we are looking for is a parametric

extension of R, denoted by R ` pa, aq, which is defined in the following.

Suppose that R “ R1 ˆ R2 is given as well as a tiling R “ R1 ˆ R2 “ tri1 ˆ
ri2ui1PI1,i2PI2 “ tri1,i2ui1PI1,i2PI2 . Then R1 can be seen as a product of n1 closed

intervals of the form rℓ,ms. Consider a nonnegative real parameter a. Let pR1 ` aq
denote the corresponding product of n1 intervals of the form rℓ ´ a,m ` as. 1 We

define pR2 ` aq similarly. Finally, we define R ` pa, aq as pR1 ` aq ˆ pR2 ` aq.
We now consider that S is a (parametric) superset of R of the form R ` pa, aq.

We define a tiling S “ S1 ˆS2 of S of the form tsi1 ˆsi2ui1PI1,i2PI2 , which is obtained

from R “ R1 ˆ R2 “ tri1 ˆ ri2ui1PI1,i2PI2 by a simple extension, as follows: A tile

ri1 (resp. ri2) of R1 (resp. R2) in “contact” with BR1 (resp. BR2) is extended as a

tile si1 (resp. si2) in order to be in contact with BpR1 ` aq (resp. BpR2 ` aq); a tile

“interior” to R1 (i.e., with no contact with BR1) is kept unchanged, and coincides

with si1 , and similarly for R2.

We denote the resulting tiling S by R ` pa, aq. We also denote si1 (resp. si2)

by ri1 `a (resp. ri2 `a), even if ri1 (resp. ri2) is “interior” to R1 (resp. R2). Likewise,

we denote si,j by ri,j ` pa, aq. Note that a tiling of R of index set I1 ˆ I2 induces

a tiling of R ` pa, aq with the same index set I1 ˆ I2, hence the same number of

tiles as R, for any a ě 0. This is illustrated in Figure 5.2, where the tiling of R is

represented with black continuous lines, and the extended tiling of R ` pa, aq with

red dashed lines.

Generate-and-test tilings

By replacing S with R`pa, aq in the notions defined in Section 5.2.2 the problem

of macro-step control synthesis can now be reformulated as: “find a tiling R of R

that induces a macro-step control of R ` pa, aq towards R, for some a ě 0 (as large

1. Actually, we will consider in the examples that pR1 ` aq is a product of intervals of the form

rℓ´a,ms where the interval is extended only at its lower end, but the method is strictly identical.
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Figure 5.2: Tiling of R ` pa, aq induced by tiling R of R.

as possible)”.

This problem can be solved by a simple “generate-and-test” procedure: we gen-

erate a candidate tiling, and then test if it satisfies the control property (the control

test procedure is explained in Section 5.2.3); if the test fails, we generate another

candidate, and so on iteratively.

In practice, the generation of a candidate R is performed by starting from the

trivial tiling (made of one tile equal to R), and using successive bisections of R

until, either the control test succeeds (“success”), or the depth of bisection of the

new candidate is greater than a given upper bound D (“failure”). See more details

in [67].

Tiling refinement

Let us now explain how we find a tiling R of R such that Πi1,i2 ‰ H. We focus

on the centralized case, but the distributed case is similar. We start from the trivial

tiling R0 “ tRu, which only contains tile R. If fpR, πq Ď R for some π P ΠďK ,

then R0 is the desired tiling. Otherwise, we refine R0 by bisection, which gives a

tiling R1 of the form trpi,1q,pj,2qu1ďi,jďn. If, for all 1 ď i, j ď n there exists some

π P ΠďK such that fprpi,1q,pj,2q, uq Ď R, then R1 is the desired tiling. Otherwise,

there exist some “bad” tiles of the form rpi,1q,pj,2q with 1 ď i, j ď n such that

@π P ΠďK fprpi,1q,pj,2q, πq Ę R; we then transform R1 into R2 by bisecting all those

bad tiles. By iterating this procedure, we produce tilings R1,R2, ¨ ¨ ¨ ,Rd, until

either no bad tiles remain in Rd (success), or the bisection depth d is greater than

the given upper bound D (failure).

Iterated macro-step control synthesis

Suppose that we are given an objective rectangle R “ R1 ˆ R2. If the one-step

control synthesis described in Section 5.2.2 succeeds, then there is a nonnegative

real ap1q “ A and a tiling R of R that induces a control steering all the points of

Rp1q “ R` pap1q, ap1qq to R in one step. Now the macro-step control synthesis can be

reapplied to Rp1q. If it succeeds again, then it produces a tiling Rp1q of Rp1q which

induces a control that steers Rp2q “ Rp1q ` pap2q, ap2qq to Rp1q for some ap2q ě 0. The
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Figure 5.3: Iterated control of Rp1q “ R ` pap1q, ap1qq towards R, and Rp2q “ Rp1q `
pap2q, ap2qq towards Rp1q.

iterated application of macro-step control synthesis outputs a sequence of tilingsRpiq,

each of which induces a control that steers Rpi`1q “ R` pΣi`1

j“1a
pjq,Σi`1

j“1a
pjqq to Rpiq.

In the end, this synthesizes a control that steers Rpi`1q to R in at most i` 1 macro-

steps (i ě 0), using an increasing sequence of nested rectangles around R. This is

illustrated in Figure 5.3, for i “ 1.

The iteration process halts at some step, saym, when the last macro-step control

synthesis fails because the maximum bisection depth D is reached while “bad” tiles

still remain (see Section 5.2.2). We also stop the process when the last macro-step

control synthesis outputs a real apmq which is smaller than a given bound: this is

because the sequence of controllable rectangles around R seems to approach a limit.

Remark 5. Note that, if the generate-and-test process stops with “success” for a

tiling R, then the tiling RD,uniform also solves the problem, where RD,uniform is

the “finest” tiling obtained by bisecting D times all the n components of R. Since

RD,uniform has exactly 2nD tiles, it is in general impractical to perform directly the

control test on it. From a theoretical point of view however, it is convenient to sup-

pose that R “ RD,uniform for reducing the worst case time complexity of the control

synthesis procedure to the complexity of the control test part only (see Section 5.2.3).

5.2.3 Centralized control

Tiling test procedure

As seen in Section 5.2.2, the (macro-step) control synthesis problem with hori-

zon K consists in finding a ě 0 (as big as possible), and a tiling R “ tri1,i2ui1PI1,i2PI2

of R such that, for each pi1, i2q P I1 ˆ I2, there exists some π P ΠďK with

fpri1,i2 ` pa, aq, πq Ď R. (5.6)

It is easy to see that if (5.6) holds for some a ě 0, then it also holds for all a1 ď a.

In order to test if a tiling candidate R “ tri1,i2ui1PI1,i2PI2 of R satisfies the desired
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property, we define, for each pi1, i2q P I1 ˆ I2:

ΠďK
i1,i2

“ tπ P ΠďK | fpri1,i2 , πq Ď Ru. (5.7)

Suppose that ΠďK
i1,i2

‰ H. Then we know that Formula (5.6) is satisfied for a “ 0.

In order to find a “as large as possible”, we look for the existence of a pattern π

such that Formula (5.6) holds also for a “ |R|
100

and a “ |R|
10
, where |R| denotes the

length of the smallest side of rectangle R. Numerous variants of such tests are of

course possible, but such a simple test works well in practice, and we keep it here

for the sake of simplicity. When ΠďK
i1,i2

‰ H, we thus define:

ai1,i2 “ maxta P t0, |R|
100

,
|R|
10

u | Dπ P ΠďK fpri1,i2 ` pa, aq, πq Ď Ru.

Suppose that, for all pi1, i2q P I1 ˆ I2: Π
ďK
i1,i2

‰ H, and let A “ minpi1,i2qPI1ˆI2tai1,i2u.
It is easy to see that, for all pi1, i2q P I1 ˆI2, there exists a pattern, denoted by πi1,i2 ,

such that: fpri1,i2 ` pA,Aq, πi1,i2q Ď R.

Proposition 3. Suppose that there exists a tiling R “ tri1,i2ui1PI1,i2PI2 of R such

that:

@pi1, i2q P I1 ˆ I2 ΠďK
i1,i2

‰ H.

Then R induces a macro-step control of horizon K of R ` pA,Aq towards R with:

@pi1, i2q P I1 ˆ I2 : fpri1,i2 ` pA,Aq, πi1,i2q Ď R

where A and πi1,i2 are defined as above.

For each tile ri1,i2 of R and each π P ΠďK , the test of inclusion fpri1,i2 , πq Ď R can

be achieved in time polynomial in n when f is affine. Hence the test ΠďK
i1,i2

‰ H can

be done in OpNK ¨nαq since ΠďK containsOpNKq elements. The computation time of

tai1,i2ui1PI,i2PI2 , πi1,i2 , and A is thus in OpNK ¨2nDq, where D is the maximal bisection

depth. Hence the complexity of testing a candidate tiling R is in OpNK ¨ 2nDq.
By Remark 5 above, the running time of the control synthesis by the generate-and-

test procedure is also in OpNK ¨ 2nDq.
Once a candidate tiling R satisfying the control test property is found, the

generate-and-test procedure ends with success (see Section 5.2.2), and a set S “
R ` pap1q, ap1qq with ap1q “ A has been found. One can then iterate the “generate-

and-test” procedure in order to construct an increasing sequence of nested rectangles

of the form R ` pap1q, ap1qq, R ` pap1q ` ap2q, ap1q ` ap2qq, . . . , which can all be driven

to R. The process ends at the first step i ě 1 for which apiq “ 0 (no proper extension

of the current rectangle has been found).

Example 2. Consider the specification of a two-room apartment given in Example

1 and Appendix A.2. Set R “ r18.5, 22s ˆ r18.5, 22s. Let D “ 1 (the depth of

bisection is at most 1), and K “ 4 (the maximum length of patterns is 4). We
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Figure 5.4: Simulations of the centralized reachability controller for three different

initial conditions plotted in the state space plane (left); simulation of the centralized

reachability controller for the initial condition p12, 12q plotted within time (right).

look for a centralized controller which will steer the rectangle S “ r18.5 ´ a, 22s ˆ
r18.5 ´ a, 22s to R with a as large as possible, and stay in R indefinitely. Using our

implementation, the computation of the control synthesis takes 4.14s of CPU time.

The method iterates successfully 15 times the macro-step control synthesis pro-

cedure. We find S “ R ` pa, aq with a “ 53.5, i.e. S “ r´35, 22s ˆ r´35, 22s. This

means that any element of S can be driven to R within 15 macro-steps of length (at

most) 4, i.e., within 15ˆ4 “ 60 units of time. Since each unit of time is of duration

τ “ 5s, any trajectory starting from S reaches R within 60 ˆ 5 “ 300s. Once the

trajectory xptq is in R, it returns in R every macro-step of length (at most) 4, i.e.,

every 4 ˆ 5 “ 20s.

These results are consistent with the simulation given in Figure 5.4 for the time

evolution of pT1, T2q starting from p12, 12q. Simulations of the control, starting from

pT1, T2q “ p12, 12q, pT1, T2q “ p12, 19q and pT1, T2q “ p22, 12q are also given in the

state space plane in Figure 5.4.

Stability as a special case of reachability

Instead of looking for a set of the form S “ R` pa, aq from which R is reachable

via a macro-step, let us consider the particular case where S “ R (i.e., a “ 0).

The problem now consists in constructing a tiling R “ tri1,i2ui1PI1,i2PI2 of R

such that, for all pi1, i2q P I1 ˆ I2, there exists a pattern πi1,i2 P ΠďK ensuring

fpri1,i2 , πi1,i2q Ď R. If such a tiling R exists, then 2 xptq P R implies xpt` kq P R for

some k ď K. Actually, we can slightly modify the procedure in order to additionally

impose that for some ε ą 0, it holds xpt ` k1q P R ` pε, εq for any k1 “ 1, . . . , k ´ 1

(see Section 5.2.4). It follows that R is “stable” (with tolerance ε) under the control

induced by R. We can thus treat the stability control of R as a special case of

reachability control.

2. If xptq P R, then xptq P ri,j for some pi, jq P I1 ˆ I2, hence xpt ` kq “ fpx, πi,jq P R for some

k ď K.
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5.2.4 Distributed control

Background

In the distributed context, given a set R “ R1 ˆR2, the (macro-step) distributed

control synthesis problem with horizon K consists in finding a ě 0, and a tiling

R1 “ tri1ui1PI1 of R1 which induces a (macro-step) control on R1 ` a, a tiling

R2 “ tri2ui2PI2 which induces a (macro-step) control on R2 ` a.

More precisely, we seek tilings R1 and R2 such that: there exists ℓ P N such

that, for each i1 P I1 there exists a pattern π1 of ℓ modes in U1, and for each i2 P I2,
a pattern π2 of ℓ modes in U2 such that:

fppri1 ` aq ˆ pR2 ` aq, pπ1, π2qq|1 Ď R1 ^ fppR1 ` aq ˆ pri2 ` aq, pπ1, π2qq|2 Ď R2.

In order to synthesize a distributed strategy where the control pattern π1 is

determined only by i1 (regardless of the value of i2), and the control pattern π2 only

by i2 (regardless of the value of i1), we now define an over-approximation Xi1pa, π1q
for fppri1 `aqˆpR2`aq, pπ1, π2qq|1, and an over-approximation Xi2pa, π2q for fppR1`
aq ˆ pri2 ` aq, pπ1, π2qq|2. The correctness of these over-approximations relies on the

existence of a fixed positive value for parameter ε. Intuitively, ε represents the width

of the additional margin (around R`pa, aq) within which all the intermediate states

lie when a macro-step is applied to a point of R ` pa, aq.

Tiling test procedure

Let πk
1 (resp.πk

2) denote the prefix of length k of π1 (resp.π2), and π1pkq (resp.

π2pkq) the k-th element of pattern π1 (resp. π2).

Definition 8. Consider an element ri1 (resp. ri2) of a tiling R1 (resp. R2) of R1

(resp. R2), and a pattern π1 P ΠďK
1 (resp. π2 P ΠďK

2 ) of length ℓ1 (resp. ℓ2). The

approximate first-component (resp. second-component) sequence tXk
i1

pa, π1qu0ďkďℓ1

(resp. tXk
i2

pa, π2qu0ďkďℓ2) is defined as follows:

— X0
i1

pa, π1q “ ri1 ` a (resp. X0
i2

pa, π2q “ ri2 ` a) and

— Xk
i1

pa, π1q “ f1pXk´1

i1
pa, π1q, R2 ` a ` ε, π1pkqq for 1 ď k ď ℓ1 (respectively

Xk
i2

pa, π2q “ f2pR1 ` a ` ε,Xk´1

i2
pa, π2q, π2pkqq for 1 ď k ď ℓ2).

We define the property Prop1pa, i1, π1q of tXk
i1

pa, π1qu0ďkďℓ1 by:

Xk
i1

pa, π1q Ď R1 ` a ` ε for 1 ď k ď ℓ1 ´ 1, and Xℓ1
i1

pa, π1q Ď R1.

Likewise, we define the property Prop2pa, i2, π2q of tXk
i2

pa, π2qu0ďkďℓ2 by:

Xk
i2

pa, π2q Ď R2 ` a ` ε for 1 ď k ď ℓ2 ´ 1, and Xℓ2
i2

pa, π2q Ď R2.

Figure 5.5 illustrates property Prop1pa, i1, π1q for π1 “ pu1 ¨ v1q, ℓ1 “ 2 and a given

tile ri1 with i1 P I1: Prop1pa, i1, π1q is satisfied because X1
1 pa, π1q Ď R1 ` a ` ε and

X2
1 pa, π1q Ď R1 are true.

Suppose now that there exist ℓ1 and ℓ2 (1 ď ℓ1, ℓ2 ď K) such that:
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Figure 5.5: Illustration of Prop1pa, i1, π1q with i1 P I1, |π1| “ ℓ1 “ 2. The dark

blue squares represent the centralized case, where both dimensions are controlled.

The pale blue ribbons represent the distributed case, where we control only the first

dimension, and over-approximate the behavior of the centralized case.

H1pℓ1q: @i1 P I1 Dπ1 P Πℓ1
1 Prop1p0, i1, π1q.

H2pℓ2q: @i2 P I2 Dπ2 P Πℓ2
2 Prop1p0, i1, π2q.

Then we define:

apℓ1q “ maxta P t0, |R|
100

,
|R|
10

u | @i1 P I1 Dπ1 P Πℓ1
1 Prop1pa, i1, π1qu.

apℓ2q “ maxta P t0, |R|
100

,
|R|
10

u | @i2 P I2 Dπ2 P Πℓ2
2 Prop2pa, i2, π2qu.

Let A “ mintapℓ1q, apℓ2qu. From H1pℓ1q-H2pℓ2q, it follows that, for all i1 P I1 there

exists a pattern of Πℓ1
1 , denoted by πi1 , such that Prop1pA, i1, πi1q, and there exists

a pattern of Πℓ2
2 , denoted by πi2 such that Prop2pA, i2, πi2q.

Remark 6. Given a tiling R “ R1 ˆ R2, H1pℓ1q means that the points of R1 ` A

can be (macro-step) controlled to R1 using patterns which all have the same length

ℓ1; in other terms, all the macro-steps controlling R1 `A contain the same number

ℓ1 of elementary steps, and symmetrically for H2pℓ2q.

Remark 7. The selection of an appropriate value for ε is for the moment performed

by hand, and is the result of a compromise: if ε is too small, then f1pri1 , R2, π1p1qq Ď
R1 ` ε for no π1 P Πℓ1; if ε is too large, then f1pXℓ1

i1
, R2 ` ε, π1pℓ1qq Ď R1 for no

π1 P Πℓ1.
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Using the same kinds of calculation as in the centralized case (see Section 5.2.3),

one can see that finding ℓ1, ℓ2 such that Πℓ1
i1

‰ H and Πℓ2
i2

‰ H, generating A and

tπi1ui1PI1 , and tπi2ui2PI2 , can be performed in time OppmaxpN1, N2qqK ¨ 2maxpn1,n2qDq.
Hence the running time of the control test procedure is also in OppmaxpN1, N2qqK ¨
2maxpn1,n2qDq.

Lemma 1. Consider a tiling R “ R1ˆR2 of the form tri1 ˆri2upi1,i2qPI1ˆI2. Suppose

that H1pℓ1q and H2pℓ2q hold for some ℓ1, ℓ2 ď K. Then we have:

— in case ℓ1 ď ℓ2: for all 1 ď k ď ℓ1 and all i1 P I1,

fppri1 ` Aq ˆ pR2 ` Aq, pπk
i1
, πk

i2
qq|1 Ď Xk

i1
pA, πi1q Ď R1 ` A ` ε

fppR1 ` Aq ˆ pri2 ` Aq, pπk
i1
, πk

i2
qq|2 Ď Xk

i2
pA, πi2q Ď R2 ` A ` ε

fppri1 ` Aq ˆ pR2 ` Aq, pπℓ1
i1
, πℓ1

i2
qq|1 Ď Xℓ1

i1
pA, πi1q Ď R1

— in case ℓ2 ď ℓ1: for all 1 ď k ď ℓ2 and all i2 P I2,

fppri1 ` Aq ˆ pR2 ` Aq, pπk
i1
, πk

i2
qq|1 Ď Xk

i1
pA, πi1q Ď R1 ` A ` ε

fppR1 ` Aq ˆ pri2 ` Aq, pπk
i1
, πk

i2
qq|2 Ď Xk

i2
pA, πi2q Ď R2 ` A ` ε

fppR1 ` Aq ˆ pri2 ` Aq, pπℓ2
i1
, πℓ2

i2
qq|2 Ď Xℓ2

i2
pA, πi2q Ď R2.

The proof is given in Appendix B.

At t “ 0, consider a point xp0q “ px1p0q, x2p0qq of R ` pA,Aq, and let us apply

concurrently the strategy induced by R1 on x1, and R2 on x2. After ℓ1 steps, by

Lemma 1, we obtain a point xpℓ1q “ px1pℓ1q, x2pℓ1qq P R1 ˆpR2 `A`εq. Then, after
ℓ1 steps, we obtain again a point xp2ℓ1q P R1 ˆ pR2 ` A ` εq, and so on iteratively.

Likewise, we obtain points xpℓ2q, xp2ℓ2q, . . . which all belong to pR1 ` A ` εq ˆ R2.

It follows that, after ℓ “ lcmpℓ1, ℓ2q steps, we obtain a point xpℓq which belongs to

R1 ˆ R2 “ R, where lcmpℓ1, ℓ2q denotes the least common multiple of ℓ1 and ℓ2.

Theorem 5. Suppose that there is a tiling R1 “ tri1ui1PI1 of R1, a tiling R2 “
tri2ui2PI2 of R2, a positive real ε, and two positive integers ℓ1, ℓ2 ď K such that H1pℓ1q
and H2pℓ2q hold. Let ℓ “ lcmpℓ1, ℓ2q with ℓ “ α1ℓ1 “ α2ℓ2 for some α1, α2 P N.

Then R1 induces a sequence of α1 macro-steps on R1 `A, and R2 a sequence of

α2 macro-steps on R2 ` A, such that, applied concurrently, we have, for all i1 P I1
and i2 P I2:

fppri1 ` Aq ˆ pR2 ` Aq, πq|1 Ď R1 ^ fppR1 ` Aq ˆ pri2 ` Aq, πq|2 Ď R2,

for some π “ pπ1, π2q P Πℓ where π1 (resp. π2) is of the form π1
1 ¨ ¨ ¨ πα1

1 (resp.

π1
2 ¨ ¨ ¨ πα2

2 ) with πi
1 P Πℓ1

1 for all 1 ď i ď α1 (resp. πi
2 P Πℓ2

2 for all 1 ď i ď α2).

Hence:

fpri1,i2 ` pA,Aq, πq Ď R.

Besides, for all prefix π1 of π, we have:

fppri1 `AqˆpR2`Aq, π1q|1 Ď R1`A`ε ^ fppR1`Aqˆpri2 `Aq, π1q|2 Ď R2`A`ε.
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Hence:

fpri1,i2 ` pA,Aq, π1q Ď R ` pA ` ε, A ` εq.

If H1pℓ1q-H2pℓ2q hold, there exists a control that steers R ` pA,Aq to R in ℓ

steps. Letting Rp1q “ R ` pA,Aq, it is then possible to iterate the process on Rp1q

and, in case of success, to generate a rectangle Rp2q “ Rp1q ` pAp1q, Ap1qq from which

Rp1q would be reachable in ℓ1 steps, for some Ap1q ě 0 and ℓ1 P N. And so on,

iteratively, one generates an increasing sequence of nested control rectangles, as in

Section 5.2.3, until a step i for which Apiq “ 0.

Theorem 5 allows us to implement the method as far as we are able to compute

the results of applying mappings f1 and f2 to symbolic states represented by rect-

angles. When f1 and f2 are affine, the results can be easily computed using the

data structure of “zonotopes” [73]. The method has been implemented in the case

of affine mappings, using the system MINIMATOR [67,106].

Example 3. Consider again the specification of a two-room apartment given in

Example 1 and Appendix A.2. We consider the distributed control synthesis problem

where the first (resp. second) state component corresponds to the temperature of the

first (resp. second) room T1 (resp. T2), and the first (resp. second) control mode

component corresponds to the heater u1 (resp. u2) of the first (resp. second) room.

Set R “ R1 ˆR2 “ r18.5, 22s ˆ r18.5, 22s. Let D “ 3 (the depth of bisection is at

most 3), and K “ 10 (the maximum length of patterns is 10). The parameter ε is

set to value 1.5˝C. We look for a distributed controller which steers any temperature

state in S “ S1 ˆS2 “ r18.5´ a, 22s ˆ r18.5´ a, 22s to R with a as large as possible,

then maintain it in R indefinitely.

Using our implementation, the computation of the control synthesis takes 220s of

CPU time. The method iterates 8 times the macro-step control synthesis procedure.

We find S “ r18.5 ´ a, 22s ˆ r18.5 ´ a, 22s with a “ 6.5, i.e. S “ r12, 22s ˆ r12, 22s.
This means that any element of S can be driven to R within 8 macro-steps of length

(at most) 10, i.e., within 8 ˆ 10 “ 80 units of time. Since each unit of time is of

duration τ “ 5s, any trajectory starting from S reaches R within 80ˆ5 “ 400s. The

trajectory is then guaranteed to always stay (at each discrete time t) in R` pε, εq “
r17, 23.5s ˆ r17, 23.5s.

These results are consistent with the simulation given in Figure 5.6 showing the

time evolution of pT1, T2q starting from p12, 12q. Simulations of the control are also

given in the state space plane, in Figure 5.6, for initial states pT1, T2q “ p12, 12q,
pT1, T2q “ p12, 19q and pT1, T2q “ p22, 12q.

Not surprisingly, the performance guaranteed by the distributed approach (a “
6.5, reachability of R in 400s) are worse than those guaranteed by the centralized

approach of Example 2 (a “ 53.5, reachability of R in 300s). However, unexpectedly,

the CPU computation time in the distributed approach (220s) is here worse than the
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Figure 5.6: Simulations of the distributed reachability controller for three different

initial conditions plotted in the state space plane (left); simulation of the distributed

reachability controller for the initial condition p12, 12q plotted within time (right).

CPU time of the centralized approach (4.14s). This relative inefficiency is due to

the small size of the example.

5.2.5 Case study

This case study, proposed by the Danish company Seluxit, aims at controlling the

temperature of an eleven rooms house, heated by geothermal energy. The continuous

dynamics of the system is the following:

d

dt
Tiptq “

nÿ

j“1

Ad
i,jpTjptq ´ Tiptqq ` BipTenvptq ´ Tiptqq ` Hv

i,j.vj (5.8)

The temperatures of the rooms are the Ti. The matrix Ad contains the heat

transfer coefficients between the rooms, matrix B contains the heat transfer coef-

ficients betweens the rooms and the external temperature, set to Tenv “ 10˝C for

the computations. The control matrix Hv contains the effects of the control on the

room temperatures, and the control variable is here denoted by vj. We have vj “ 1

(resp. vj “ 0) if the heater in room j is turned on (resp. turned off). We thus

have n “ 11 and N “ 211 “ 2048 switching modes. The dynamics of the system is

recalled in Appendix A.9.

Note that the matrix Ad is parametrized by the open of closed state of the doors

in the house. In our case, the average between closed and open matrices was taken

for the computations. The exact values of the coefficients are given in [112]. The

controller has to select which heater to turn on in the eleven rooms. Due to a

limitation of the capacity supplied by the geothermal device, the 11 heaters cannot

be turned on at the same time. In our case, we limit to 4 the number of heaters

that can be on at the same time.

We consider the distributed control synthesis problem where the first (resp. sec-

ond) state component corresponds to the temperatures of rooms 1 to 5 (resp. 6

to 11), and the first (resp. second) control mode component corresponds to the

heaters of rooms 1 to 5 (resp. 6 to 11). Hence n1 “ 5, n2 “ 6, N1 “ 25, N2 “ 26.
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Figure 5.7: Simulation of the Seluxit case study plotted with time (in min) for

Tenv “ 10˝C.

We impose that at most two heaters are switched on at the same time in the first

sub-system, and at most two in the second sub-system.

Let D “ 1 (the bisection depth is at most 1), and K “ 4 (the maximum length

of patterns is 4). The parameter ε is set to value 0.5˝C. The sampling time is τ “ 15

minutes.

We look for a distributed controller which steers any temperature state in the

rectangle S “ r18´ a, 22s11 to R “ r18, 22s11 with a as large as possible, then main-

tain the temperatures in R indefinitely. Using our implementation, the computation

of the control synthesis takes around 20 hours of CPU time. The method iterates

the macro-step control synthesis procedure 15 times. We find S “ r18 ´ a, 22s11
with a “ 4.2, i.e. S “ r13.8, 22s11. This means that any element of S can be driven

into R within 15 macro-steps of length (at most) 4, i.e., within 15 ˆ 4 “ 60 units of

time. Since each time unit is of duration τ “ 15 min, any trajectory starting from S

reaches R within 60 ˆ 15 “ 900 min. The trajectory is then guaranteed to stay in

R ` pε, εq “ r17.5, 22.5s11. These results are consistent with the simulation given

in Figure 5.7 showing the time evolution of the temperature of the rooms, starting

from 1411.

Robustness Experiments

We now perform the same simulations as in Figure 5.7, except that the environ-

ment temperature is not fixed at 10˝C but follows scenarios of soft winter (Figure 5.8)

and spring (Figure 5.9). The environment temperature is plotted in green in the

figures. The spring scenario is taken from [112], and the soft winter scenario is the

winter scenario of [112] with 5 additional degrees. We see that our controller, which

is designed for Tenv “ 10˝C still satisfies the properties of reachability and stability.

These simulations are very close to those obtained in [112].

87



Figure 5.8: Simulation of the Seluxit case study in the soft winter scenario.

Figure 5.9: Simulation of the Seluxit case study in the spring scenario.

5.2.6 Continuous-time case

In this section, we consider the case of continuous-time differential equations.

The time t now takes its values in Rě0.

5.2.7 Reachability in continuous time

Consider the continuous-time system with finite control :

9x1ptq “ f1px1ptq, x2ptq, u1q (5.9)

9x2ptq “ f2px1ptq, x2ptq, u2q (5.10)

where x1 (resp. x2) is the first (resp. second) component of the state vector variable,

taking its values in R
n1 (resp. Rn2), and where u1 (resp. u2) is the first (resp. second)

component of the control mode, taking its values in the finite set U1 (resp. U2). We

will often write x for px1, x2q, u for pu1, u2q, and n for n1`n2. We will also abbreviate

the set U1 ˆ U2 as U . We abbreviate the continuous-time system under the form:

9xptq “ fpxptq, uq (5.11)
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where x is a vector state variable taking its values in R
n “ R

n1 ˆ R
n2 , and where

u is of the form pu1, u2q, with u1 taking its values in U1 and u2 in U2. We assume

that, given an initial value x0, Equation (5.11) has a solution (e.g., assuming that

the vector field f (resp. f1, f2) is Lipschtiz).

We define the reachable set of (5.11) from a set of initial states X0, at time t

p0 ď t ď τq under control mode u:

Reachf pt,X0, uq “ tΦpt, x0, uq | x0 P X0u.

where Φpt, x, uq denotes the state xptq reached at time t p0 ď t ď τq starting from

the initial state x, under control mode u P U .
We define the reachable set of (5.9) from a set of initial states X1 Ă R

n1 , at time

t p0 ď t ď τq under control mode u1 P U1 and perturbation X2 Ă R
n2 :

Reachf1pt,X1, X2, u1q “ tΦ1pt, x1, X2, u1q | x1 P X1u.

where Φ1pt, x1, X2, u1q is the set of states x1ptq reached at time t pt ě 0q from the

initial state x1, under control mode u1 and perturbation X2.

Symmetrically, we define the reachable set of (5.10) from a set of initial states

X2 Ă R
n2 , at time t p0 ď t ď τq under control mode u2 P U2 and perturbation

X1 Ă R
n1 :

Reachf2pt,X1, X2, u2q “ tΦ2pt,X1, x2, u2q | x2 P X2u.

where Φ2pt,X1, x2, u2q is the set of states x2ptq reached at time t ě 0 from the initial

state x2, under control mode u2 and perturbation X1.

All the notions of reachable sets for modes are extended in the natural manner

to the notions of reachable sets for patterns. For example, for the pattern π “ u ¨ v
of length 2, and for 0 ď t ď τ , we define:

Reachf pt,X0, πq “ Reachf pt,X0, uq
Reachf pτ ` t,X0, πq “ Reachf pt,X1, vq with X1 “ Reachf pτ,X0, uq.

Distributed control

Recall that πk
1 (resp. πk

2) denotes the prefix of length k of π1 (resp.π2), and

π1pkq (resp. π2pkq) the k-th element of sequence π1 (resp. π2). We now give the

counterpart of Definition 8.

Definition 9. Consider an element ri1 (resp. ri2) of a tiling R1 (resp. R2) of R1

(resp. R2), and a sequence π1 P ΠďK
1 (resp. π2 P ΠďK

2 ) of length ℓ1 (resp. ℓ2). The

approximate first-component sequence tY k
i1

pa, π1qu0ďkďℓ1 is defined as follows:

— Y 0
i1

pa, π1q “ ri1 ` a and

— Y k
i1

pa, π1q “ Ť
0ďtďτ Reachf1pt, Y k´1

i1
pa, π1q, R2 ` a ` ε, π1pkqq for 1 ď k ď ℓ1.

Similarly, the approximate second-component sequence tY k
i2

pa, π2qu0ďkďℓ2 is defined

by
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— Y 0
i2

pa, π2q “ ri2 ` a and

— Y k
i2

pa, π2q “ Ť
0ďtďτ Reachf2pt, R1 ` a ` ε, Y k´1

i2
pa, π2q, π2pkqq for 1 ď k ď ℓ2.

We define the property Prop1pa, i1, π1q by:

Y k
i1

pa, π1q Ď R1 ` a ` ε for 1 ď k ď ℓ1

and Reachf1pℓ1τ, ri1 ` a,R2 ` a ` ε, π1q Ď R1.

Likewise, we define the property Prop2pa, i2, π2q by:

Y k
i2

pa, π2q Ď R2 ` a ` ε for 1 ď k ď ℓ2

and Reachf2pℓ2τ, R1 ` a ` ε, ri2 ` a, π2q Ď R2.

Assumptions H1pℓ1q, H2pℓ2q and expressions A, πi1 , πi2 are defined exactly as in

Section 5.2.4. We now give the counterpart of Lemma 1 (the proof is similar).

Lemma 2. Consider a tiling R “ R1ˆR2 of the form tri1 ˆri2upi1,i2qPI1ˆI2. Suppose

that H1pℓ1q and H2pℓ2q hold, for some positive real ε, and some positive integers

ℓ1, ℓ2. Then we have

— in case ℓ1 ď ℓ2, for all t P rpk ´ 1qτ, kτ s (1 ď k ď ℓ1):

Reachf pt, pri1 ` Aq ˆ pR2 ` Aq, pπk
i1
, πk

i2
qq|1 Ď Y k

i1
pa, πi1q Ď R1 ` A ` ε

Reachf pt, pR1 ` Aq ˆ pri2 ` Aq, pπk
i1
, πk

i2
qq|2 Ď Y k

i2
pa, πi2q Ď R2 ` A ` ε

Reachf pℓ1τ, pri1 ` Aq ˆ pR2 ` Aq, pπℓ1
i1
, πℓ1

i2
qq|1 Ď R1.

— in case ℓ2 ď ℓ1, for all t P rpk ´ 1qτ, kτ s p1 ď k ď ℓ2q:

Reachf pt, pri1 ` Aq ˆ pR2 ` Aq, pπk
i1
, πk

i2
qq|1 Ď Y k

i1
pa, πi1q Ď R1 ` A ` ε

Reachf pt, pR1 ` Aq ˆ pri2 ` Aq, pπk
i1
, πk

i2
qq|2 Ď Y k

i2
pa, πi2q Ď R2 ` A ` ε

Reachf pℓ2τ, pR1 ` Aq ˆ pri2 ` Aq, pπℓ2
i1
, πℓ2

i2
qq|2 Ď R2.

We now give the counterpart of Theorem 5 (the proof is similar).

Theorem 6. Suppose that there is a tiling R1 “ tri1ui1PI1 of R1 and a tiling R2 “
tri2ui2PI2 of R2, such that H1pℓ1q and H2pℓ2q hold for some ℓ1, ℓ2 ď K. Let ℓ “
lcmpℓ1, ℓ2q with ℓ “ α1ℓ1 “ α2ℓ2 for some α1, α2 P N.

Then R1 induces a sequence of α1 macro-steps on R1 ` A, and R2 a sequence

of α2 macro-steps on R2 ` A, such that, when applied concurrently, we have for all

i1 P I1 and i2 P I2:

Reachf pℓτ, pri1 ` Aq ˆ pR2 ` Aq, πq|1 Ď R1 ^
Reachf pℓτ, pR1 ` Aq ˆ pri2 ` Aq, πq|2 Ď R2,

for some π “ pπ1, π2q P Πℓ where π1 (resp. π2) is of the form π1
1 ¨ ¨ ¨ πα1

1 (resp.

π1
2 ¨ ¨ ¨ πα2

2 ) with πi
1 P Πℓ1

1 for all 1 ď i ď α1 (resp. πi
2 P Πℓ2

2 for all 1 ď i ď α2).

Hence:

Reachf pℓτ, ri1,i2 ` pA,Aq, πq Ď R.
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Besides, for all 0 ď t ď ℓτ , we have:

Reachf pt, pri1 ` Aq ˆ pR2 ` Aq, πq|1 Ď R1 ` A ` ε

^ Reachf pt, pR1 ` Aq ˆ pri2 ` Aq, πq|2 Ď R2 ` A ` ε.

Hence, for all 0 ď t ď ℓτ :

Reachf pt, ri1,i2 ` pA,Aq, πq Ď R ` pA ` ε, A ` εq.

Theorem 6 allows us to implement the method along the same lines as in the

discrete-time case, except that we apply the operator Reachf1 and Reachf2 on con-

tinuous time intervals of the form rk, pk ` 1qτ s instead of the mappings f1 and f2

at times kτ . We have implemented the method using the system DynIBEX [5,56]

which makes use of interval arithmetic [141] and Runge-Kutta methods to compute

(an overapproximation of) the application results of Reachf1 and Reachf2 .

Application

We demonstrate the feasibility of our approach on the 4-room building ventilation

application adapted from [134], and recalled in Appendix A.4. The centralized

controller was obtained with 704 tiles in 29 minutes, the distributed controller was

obtained with 16 ` 16 tiles in 20 seconds. In both cases, patterns of length 1 are

used. The perturbation due to human beings has been taken into account by setting

the parameters δsi equal to the whole interval r0, 1s for the decomposition, and the

imposed perturbation for the simulation is given Figure 5.10. The temperatures To

and Tc have been set to the interval r27, 30s for the decomposition, and are set to

30˝C for the simulation. A simulation of the controller obtained with the state-space

bisection procedure is given in Figure 5.11, where the control objective is to stabilize

the temperature in r20, 22s2 ˆ r22, 24s2 while never going out of r19, 23s4 ˆ r21, 25s4.

Figure 5.10: Perturbation (presence of humans) imposed within time in the different

rooms.
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Figure 5.11: Simulation of the centralized (left) and distributed (right) controllers

from the initial condition p22, 22, 22, 22q.

5.2.8 Final remarks

In this chapter, we have proposed a distributed approach for control synthesis

of sampled switching systems in the discrete-time framework and applied it to a

real floor heating system. To our knowledge, this is the first time that reachability

and stability properties are guaranteed for a case study of this size. We have also

explained how the method extends to the continuous-time framework. The method

can be extended to take into account obstacles and safety constraints.

Note that it is essential in our method that the components are sampled with the

same sampling period τ , and that their clocks are synchronized. It would be inter-

esting to investigate how the approach behaves when clocks are badly synchronized

or when they have different periods (see, e.g., [99]).

5.3 Perturbed and distributed Euler scheme

We consider the perturbed control system

9x “ fjpx, dq, (5.12)

where d is assumed to belong to a given set D. In the following, we denote by dm

the center (centroid or center of gravity) of set D. In practice, the set D is given as

a box, a we thus take dm the center of the box.

In the same manner as the previous chapter, we introduce some additional hy-

potheses allowing us to use an Euler’s scheme with precise error bounds. We suppose

that the system is Lipschitz in the following sense:

For all j P U , there exists a constant Lj ą 0 such that:

}fjpx, dq ´ fjpy, eq} ď Lj

›››››

˜
x

d

¸
´
˜
y

e

¸››››› , @x, y P S, @d, e P D

We then introduce the constant:

Cj “ sup
xPS

Lj}fjpx, dmq}
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where dm denotes the center of box D.

We now introduce a hypothesis similar to (H1) made in Chapter 5 (2), with

additional disturbance.

(HU,D) For every mode j P U , there exists constants λj P R and γj P Rą0 such

that @x, x1 P S and @y, y1 P D, the following expression holds

xfjpx, yq ´ fjpx1, y1q, x ´ x1y ď λj}x ´ x1}2 ` γj}x ´ x1}}y ´ y1}.

While the OSL condition is related to incremental stability, hypothesis (HU,D)

seems related to the notion of incremental input-to-state stability [13,14,138] (some-

times denoted δ-ISS in the literature). Indeed, an incrementally input-to-state sys-

tem verifies a relation close to (HU,D), with a positive constant λj (or more generally

a κ function). Here, we thus generalize this notion with negative constants λj, mak-

ing the hypothesis much weaker. Because the system lies in a compact set (provided

that a controller is found), constants λj and γj can always be found.

Computation of constants λj and γj, Lj and Cj The computation of constants

Lj, Cj, λj (j P U) are realized with a constrained optimization algorithm. They are

performed using the “sqp” function of Octave, applied on the following optimization

problems:

— Constant Lj is computed exactly as in the unperturbed case:

Lj “ max
px,dq,py,eqPSˆD, px,dq‰py,eq

}fjpx, dq ´ fjpy, eq}

}
˜
x

d

¸
´
˜
y

e

¸
}

— Constant Cj is computed with the following optimization problem:

Cj “ max
xPS

Lj}fjpx, dmq}

Knowing that:

xfjpx, yq ´ fjpx1, y1q, x ´ x1y “
xfjpx, yq ´ fjpx1, yq, x ´ x1y ` xfjpx1, yq ´ fjpx1, y1q, x ´ x1y

— Constant λj is first computed as follows:

λj “ max
x,x1PT, yPD, x‰x1

xfjpx, yq ´ fjpx1, yq, x ´ x1y
}x ´ x1}2

— Constant γj is then computed:

γj “ max
x,x1PT,y,y1PD, x‰x1,y‰y1

xfjpx, yq ´ fjpx1, y1q, x ´ x1y ´ λj}x ´ x1}2
}x ´ x1}}y ´ y1}
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Perturbed Euler’s scheme We now define a perturbed Euler’s scheme as follows:

x̃pτq “ x̃p0q ` τfjpx̃p0q, dmq (5.13)

We define the approximate trajectory computed with the distributed Euler’s

scheme by φ̃jpt; x̃0q “ x̃0 ` tfjpx̃0, dmq for t P r0, τ s, when the system is in mode j

and with an initial condition x̃0.

We now give a perturbed version of Theorem 3.

Theorem 7. Given a distributed sampled switched system, suppose that the system

satisfies (HU,D), and consider a point x̃0 and a positive real δ. We have, for all

x0 P Bpx̃0, δq, w : R` ÝÑ D, t P r0, τ s, j P U :

φjpt; x0, wq P Bpφ̃jpt; x̃0q, δjptqq.

with, denoting by |D| the diameter of D:

— if λj ă 0,

δjptq “
ˆ pCjq2

´pλjq4
`
´pλjq2t2 ´ 2λjt ` 2eλjt ´ 2

˘

` 1

pλjq2
ˆ
Cjγj|D|

´λj
`
´λjt ` eλjt ´ 1

˘

` λj

ˆpγjq2p|D|{2q2
´λj

peλjt ´ 1q ` λjδ
2eλjt

˙˙˙1{2

(5.14)

— if λj ą 0,

δjptq “ 1

p3λjq3{2

ˆ
C2

λj

`
´9pλjq2t2 ´ 6λjt ` 2e3λjt ´ 2

˘

` 3λj

ˆ
Cγj|D|
λj

`
´3λjt ` e3λjt ´ 1

˘

` 3λj

ˆpγjq2p|D|{2q2
λj

pe3λjt ´ 1q ` 3λjδ
2e3λjt

˙˙˙1{2

(5.15)

— if λj “ 0,

δjptq “
`
pCjq2

`
´t2 ´ 2t ` 2et ´ 2

˘

`
`
Cjγj|D|

`
´t ` et ´ 1

˘

`
`
pγjq2p|D|{2q2pet ´ 1q ` δ2et

˘˘˘1{2
(5.16)

A similar result can be established for sub-system 2, permitting to perform a

distributed control synthesis.
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Proof. We have, for all x, x̃ P S2:

1

2

dp}x ´ x̃}2q
dt

“ xfjpx, wq ´ fjpx̃p0q, dmq, x ´ x̃y

“ xfjpx, wq ´ fjpx̃, dmq ` fjpx̃, dmq ´ fjpx̃p0q, dmq, x ´ x̃y
ď xfjpx, wq ´ fjpx̃, dmq, x ´ x̃y ` xfjpx̃, dmq ´ fjpx̃p0q, dmq, x ´ x̃y
ď xfjpx, wq ´ fjpx̃, dmq, x ´ x̃y ` }fjpx̃, dmq ´ fjpx̃p0q, dmq}}x ´ x̃}

ď xfjpx, wq ´ fjpx̃, dmq, x ´ x̃y ` L

›››››

˜
x̃

dm

¸
´
˜
x̃p0q
dm

¸››››› }x ´ x̃}

ď λ}x ´ x̃}2 ` γ}w ´ dm}}x ´ x̃} ` Lt }fpx̃p0q, dmq} }x ´ x̃}

ď λj}x ´ x̃}2 `
ˆ
γj

|D|
2

` Cjt

˙
}x ´ x̃}

where |D| denotes the diameter of D. Using the fact that }x´ x̃} ď 1

2
pα}x´ x̃}2 ` 1

α
q

for any α ą 0, we can write three formulas following the sign of λj.

— if λj ă 0, we can choose α “ ´λj

Cjt`γj |D|{2
, and we get the differential inequality:

dp}x ´ x̃}2q
dt

ď λj}x ´ x̃}2 `
C2

j

´λj
t2 ` Cjγj|D|

´λj
t `

γ2j p|D|{2q2
´λj

— if λj ą 0, we can choose α “ λj

Cjt`γj |D|{2
, and we get the differential inequality:

dp}x ´ x̃}2q
dt

ď 3λj}x ´ x̃}2 `
C2

j

λj
t2 ` Cjγj|D|

λj
t `

γ2j p|D|{2q2
λj

— if λ1 “ 0, we can choose α “ 1

Cjt`γj |D|{2
, and we get the differential inequality:

dp}x ´ x̃}2q
dt

ď }x ´ x̃}2 ` C2

j t
2 ` Cjγj|D|t ` γ2j p|D|{2q2

In every case, the differential inequalities can be integrated to obtain the formulas

of the theorem.

Remark 8. One can note that for linear systems of the form

9x “ Ajx ` Bjw ` Cj,

constants λj and γj can be replaced in the proof of Theorem 7 by the largest eigenvalue

of
Aj`AJ

j

2
and ~Bj~ respectively, and are thus not needed to be pre-computed with

optimization algorithms.

We then establish a perturbed version of Corollary 2, using the same notations

for the sequences δkπ.

Corollary 3. Given a switched system satisfying (HU,D), consider a positive real δ

and a set of points x̃1, . . . , x̃m such that all the balls Bpx̃i, δq for 1 ď i ď m cover R.

Suppose that there exists patterns πi of length ki such that :
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1. Bppx̃iqk1

πi
, δk

1

πi
q Ď S, for all k1 “ 1, . . . , ki ´ 1

2. Bppx̃iqkiπi
, δkiπi

q Ď R.

3.
d2pδ1

jptqq

dt2
ą 0 with j “ πipk1q and δ1 “ δk

1´1
πi

, for all k1 P t1, ..., kiu and t P r0, τ s.

The above properties induce a control guaranteeing recurrence in R and safety in

S, thus solving Problem 1. I.e., for any perturbation w : R` ÝÑ D: if x P R, then
φσpt; x, wq P S for all t ě 0, and any trajectory starting from R returns infinitely

often in R.

The above corollary actually solves Problem 1 in presence of perturbations. Let

us now explain how a system can be split in two sub-systems, and considering the

state of the other sub-system as a disturbance allows us to build a compositional

synthesis, drastically lowering the computational cost of the method.

5.3.1 Distributed synthesis

The goal is to split the system into two (or more) sub-systems and synthesize

controllers for the sub-systems independently.

We consider the distributed control system

9x1 “ f 1

σ1
px1, x2q (5.17)

9x2 “ f 2

σ2
px1, x2q (5.18)

where x1 P R
n1 and x2 P R

n2 , with n1 ` n2 “ n. Furthermore, σ1 P U1 and σ2 P U2

and U “ U1 ˆ U2.

Note that the system (5.17-5.18) can be seen as the interconnection of sub-

system (5.17) where x2 plays the role of an “input” given by (5.18), with sub-

system (5.18) where x1 is an “input” given by (5.17).

Let R “ R1 ˆ R2, S “ S1 ˆ S2, T “ T1 ˆ T2 and xm1 (resp. xm2 ) be the center

of R1 (resp. R2). We denote by L1
σ1

the Lipschitz constant for sub-system 1 under

mode σ1:

}f 1

σ1
px1, x2q ´ f 1

σ1
py1, y2q} ď L1

σ1

›››››

˜
x1

x2

¸
´
˜
y1

y2

¸›››››

We then introduce the constant:

C1

σ1
“ sup

x1PS1

L1

σ1
}f 1

σ1
px1, xm2 q}

Similarly, we define the constants for sub-system 2:

}f 2

σ2
px1, x2q ´ f 2

σ2
py1, y2q} ď L2

σ2

›››››

˜
x1

x2

¸
´
˜
y1

y2

¸›››››

and

C2

σ2
“ sup

x2PS2

L2

σ2
}f 2

σ2
pxm1 , x2q}
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Let us now make additional assumptions on the coupled sub-systems, closely

related to the notion of (incremental) input-to-state stability.

(HU1,T2
) For every mode σ1 P U1, there exists constants λ1σ1

P R and γ1σ1
P Rą0

such that @x, x1 P S2
1 and @y, y1 P T 2

2 , the following expression holds

xf 1

σ1
px, yq ´ f 1

σ1
px1, y1q, x ´ x1y ď λ1σ1

}x ´ x1}2 ` γ1σ1
}x ´ x1}}y ´ y1}.

(HU2,T1
) For every mode σ2 P U2, there exists constants λ2σ2

P R and γ2σ2
P Rą0

such that @x, x1 P T 2
1 and @y, y1 P S2

2 , the following expression holds

xf 2

σ2
px, yq ´ f 2

σ2
px1, y1q, y ´ y1y ď λ2σ2

}y ´ y1}2 ` γ2σ2
}x ´ x1}}y ´ y1}.

These assumptions express (a variant of) the fact that the function V px, x1q “
}x ´ x1}2 is an ISS-Lyapunov function (see, e.g., [13, 88]). Note that all the con-

stants defined above can be numerically computed using constrained optimization

algorithms.

Let us define the distributed Euler scheme:

x̃1pτq “ x̃1p0q ` τf 1

σ1
px̃1p0q, xm2 q (5.19)

x̃2pτq “ x̃2p0q ` τf 2

σ2
pxm1 , x̃2p0qq (5.20)

The exact trajectory is now denoted, for all t P r0, τ s, by φpj1,j2qpt; x0q for an

initial condition x0 “
´
x01 x02

¯T

, and when sub-system 1 is in mode j1 P U1, and

sub-system 2 is in mode j2 P U2.

We define the approximate trajectory computed with the distributed Euler’s

scheme by φ̃1
j1

pt; x̃01q “ x̃01 ` tf 1
σ1

px̃01, xm2 q for t P r0, τ s, when sub-system 1 is in

mode j1 and with an initial condition x̃01. Similarly, for sub-system 2, φ̃2
j2

pt; x̃02q “
x̃02 ` tf 2

σ2
pxm1 , x̃02q when sub-system 2 is in mode j2 and with an initial condition x̃02.

We now give a distributed version of Theorem 3.

Theorem 8. Given a distributed sampled switched system, suppose that sub-system 1

satisfies (H2), and consider a point x̃01 and a positive real δ. We have, for all

x01 P Bpx̃01, δq, x02 P S2, t P r0, τ s, j1 P U1 and any σ2 P U2:

φpj1,σ2qpt; x0q|1 P Bpφ̃1

j1
pt; x̃01q, δj1ptqq.

with x0 “
´
x01 x02

¯T

and

— if λ1j1 ă 0,

δj1ptq “
ˆ pC1

j1
q2

´pλ1j1q4
´

´pλ1j1q2t2 ´ 2λ1j1t ` 2eλ
1
j1
t ´ 2

¯

` 1

pλ1j1q2
ˆ
C1

j1
γ1j1 |T2|

´λ1j1

´
´λ1j1t ` e

λ1
j1
t ´ 1

¯

` λ1j1

ˆpγ1j1q2p|T2|{2q2
´λ1j1

peλ1
j1
t ´ 1q ` λ1j1δ

2e
λ1
j1
t

˙˙˙1{2

(5.21)
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— if λ1j1 ą 0,

δj1ptq “ 1

p3λ1j1q3{2

ˆ
C2

1

λ1j1

´
´9pλ1j1q2t2 ´ 6λ1j1t ` 2e3λ

1
j1
t ´ 2

¯

` 3λ1j1

ˆ
C1γ

1
j1

|T2|
λ1j1

´
´3λ1j1t ` e

3λ1
j1
t ´ 1

¯

` 3λ1j1

ˆpγ1j1q2p|T2|{2q2
λ1j1

pe3λ1
j1
t ´ 1q ` 3λ1j1δ

2e
3λ1

j1
t

˙˙˙1{2

(5.22)

— if λ1j1 “ 0,

δj1ptq “
`
pC1

j1
q2
`
´t2 ´ 2t ` 2et ´ 2

˘

`
`
C1

j1
γ1j1 |T2|

`
´t ` et ´ 1

˘

`
`
pγ1j1q2p|T2|{2q2pet ´ 1q ` δ2et

˘˘˘1{2
(5.23)

A similar result can be established for sub-system 2, permitting to perform a

distributed control synthesis.

Proof. In order to simplify the reading, we omit the mode j1 (which does not inter-

vene in the proof as long as t P r0, τ s) and write the proof for f 1
j1

“ f1, L
1
j1

“ L1,

C1
j1

“ C1, λ
1
j1

“ λ1. We have, for all x1, x̃1 P S2
1 :

1

2

dp}x1 ´ x̃1}2q
dt

“ xf1px1, x2q ´ f1px̃1p0q, xm2 q, x1 ´ x̃1y

“ xf1px1, x2q ´ f1px̃1, xm2 q ` f1px̃1, xm2 q ´ f1px̃1p0q, xm2 q, x1 ´ x̃1y
ď xf1px1, x2q ´ f1px̃1, xm2 q, x1 ´ x̃1y ` xf1px̃1, xm2 q ´ f1px̃1p0q, xm2 q, x1 ´ x̃1y
ď xf1px1, x2q ´ f1px̃1, xm2 q, x1 ´ x̃1y ` }f1px̃1, xm2 q ´ f1px̃1p0q, xm2 q}}x1 ´ x̃1}

ď xf1px1, x2q ´ f1px̃1, xm2 q, x1 ´ x̃1y ` L1

›››››

˜
x̃1

xm2

¸
´
˜
x̃1p0q
xm2

¸››››› }x1 ´ x̃1}

ď λ1}x1 ´ x̃1}2 ` γ1}x2 ´ xm2 }}x1 ´ x̃1} ` L1t }f1px̃1p0q, xm2 q} }x1 ´ x̃1}

ď λ1}x1 ´ x̃1}2 `
ˆ
γ1

|T2|
2

` C1t

˙
}x1 ´ x̃1}

where |T2| denotes the diameter of T2. Using the fact that }x1 ´ x̃1} ď 1

2
pα}x1 ´

x̃1}2 ` 1

α
q for any α ą 0, we can write three formulas following the sign of λ1.

— if λ1 ă 0, we can choose α “ ´λ1

C1t`γ1|T2|{2
, and we get the differential inequality:

dp}x1 ´ x̃1}2q
dt

ď λ1}x1 ´ x̃1}2 ` C2
1

´λ1
t2 ` C1γ1|T2|

´λ1
t ` γ21p|T2|{2q2

´λ1

— if λ1 ą 0, we can choose α “ λ1

C1t`γ1|T2|{2
, and we get the differential inequality:

dp}x1 ´ x̃1}2q
dt

ď 3λ1}x1 ´ x̃1}2 ` C2
1

λ1
t2 ` C1γ1|T2|

λ1
t ` γ21p|T2|{2q2

λ1
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— if λ1 “ 0, we can choose α “ 1

C1t`γ1|T2|{2
, and we get the differential inequality:

dp}x1 ´ x̃1}2q
dt

ď }x1 ´ x̃1}2 ` C2

1 t
2 ` C1γ1|T2|t ` γ21p|T2|{2q2

In every case, the differential inequalities can be integrated to obtain the formulas

of the theorem.

It then follows a distributed version of Corollary 2.

Corollary 4. Given a positive real δ, consider two sets of points x̃11, . . . , x̃
1
m1

and

x̃21, . . . , x̃
2
m2

such that all the balls Bpx̃1i1 , δq and Bpx̃2i2 , δq, for 1 ď i1 ď m1 and

1 ď i2 ď m2, cover R1 and R2. Suppose that there exists patterns π1
i1

and π2
i2

of

length ki1 and ki2 such that :

1. Bppx̃1i1qk1

π1
i1

, δk
1

π1
i1

q Ď S1, for all k1 “ 1, . . . , ki1 ´ 1

2. Bppx̃1i1qki1
π1
i1

, δ
ki1
π1
i1

q Ď R1.

3.
d2pδ1

j1
ptqq

dt2
ą 0 with j1 “ π1

i1
pk1q and δ1 “ δk

1´1

π1
i1

, for all k1 P t1, ..., ki1u and

t P r0, τ s.
1. Bppx̃2i2qk1

π2
i2

, δk
1

π2
i2

q Ď S2, for all k1 “ 1, . . . , ki2 ´ 1

2. Bppx̃2i2qki2
π2
i2

, δ
ki2
π2
i2

q Ď R2.

3.
d2pδ1

j2
ptqq

dt2
ą 0 with j2 “ π2

i2
pk1q and δ1 “ δk

1´1

π2
i2

, for all k1 P t1, ..., ki2u and

t P r0, τ s.
The above properties induce a distributed control σ “ pσ1, σ2q guaranteeing (non

simultaneous) recurrence in R and safety in S. I.e.

— if x P R, then φσpt; xq P S for all t ě 0

— if x P R, then φσpk1τ ; xq|1 P R1 for some k1 P tki1 , . . . , kim1
u, and symmetri-

cally φσpk2τ ; xq|2 P R2 for some k2 P tki2 , . . . , kim2
u

5.3.2 Application

We demonstrate the feasibility of our approach on the (linearized) building ven-

tilation application adapted from [134], given in Appendix A.5, with constant pa-

rameters To “ 30, Tc “ 30, Tu “ 17, δsi “ 1 for i P N . The centralized controller

was obtained with 256 balls in 48 seconds, the distributed controller was obtained

with 16`16 balls in less than a second. In both cases, patterns of length 2 are used.

A sub-sampling of h “ τ{20 is required to obtain a controller with the centralized

approach. For the distributed approach, no sub-sampling is required for the first

sub-system, while the second one requires a sub-sampling of h “ τ{10. Simulations

of the centralized and distributed controllers are given in Figure 5.12, where the

control objective is to stabilize the temperature in r20, 22s4 while never going out of

r19, 23s4.
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Table 5.1: Numerical results for centralized four-room example.

Centralized

R r20, 22s4
S r19, 23s4
τ 30

Time subsampling τ{20
Complete control Yes

Error parameters max
j“1,...,16

λj “ ´6.30 ˆ 10´3

max
j“1,...,16

Cj “ 4.18 ˆ 10´6

Number of balls/tiles 256

Pattern length 2

CPU time 48 seconds

Table 5.2: Numerical results for the distributed four-room example.

Sub-system 1 Sub-system 2

R r20, 22s2 ˆ r20, 22s2
S r19, 23s2 ˆ r19, 23s2
τ 30

Time subsampling No τ{10
Complete control Yes Yes

Error parameters max
j1“1,...,4

λ1j1 “ ´1.39 ˆ 10´3 max
j2“1,...,4

λ2j2 “ ´1.42 ˆ 10´3

max
j1“1,...,4

γ1j1 “ 1.79 ˆ 10´4 max
j2“1,...,4

γ2j2 “ 2.47 ˆ 10´4

max
j1“1,...,4

C1

j1
“ 4.15 ˆ 10´4 max

j2“1,...,4
C2

j2
“ 5.75 ˆ 10´4

Number of balls/tiles 16 16

Pattern length 2 2

CPU time ă 1 second ă 1 second

5.3.3 Final remarks and future work

We have given a new distributed control synthesis method based on Euler’s

method. The method makes use of the notions of δ-ISS-stability and ISS Lyapunov

functions. From a certain point of view, this method is along the lines of [53]

and [101] which are inspired by small-gain theorems of control theory (see, e.g., [97]).

In the future, we plan to apply our distributed Euler-based method to significant

examples such as the 11-room example of Appendix A.9.
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Figure 5.12: Simulation of the centralized (left) and distributed (right) controllers

from the initial condition p22, 22, 22, 22q.
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Chapter 6

Control of high dimensional ODEs
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In this chapter, we aim at extending the previous works to the control synthesis

of partial differential equations, mainly used to model mechanical systems. While

the models of switched systems are usually used for (low dimensional) ordinary dif-

ferential equations controlled with a piecewise constant function, it is also possible

to use these models for the control of mechanical systems. Indeed, the dynamics of

most mechanical systems can be modeled by partial differential equations, and the

spacial discretization of such systems leads to high dimensional ODEs. Controlled

with a piecewise constant function on the boundary, and written in a proper way

(the state space representation), one obtains high dimensional switched control sys-

tems. As stated in Chapter 4, the computational cost of the synthesis algorithms

is exponential in the dimension of the system. Whether a finite element, a finite

difference, or any discretization method is used, an accurate discretized model of a

mechanical system leads to ODEs of dimension larger than 1000. The dimension of

real case studies used in industry often exceeds 106. It is thus irrelevant to directly

use the algorithms of Chapter 4 to discretized PDEs. A model order reduction

is required in order to synthesize a controller at the reduced-order level. In this

chapter, linear systems are considered, and we use the reachability computations of

Chapter 4.1 since they provide the most accurate results. Two methods are pro-

posed: a fully offline procedure, and a semi-online procedure requiring online state

estimation. The state is first supposed known at each time point, we then provide

a first step to the use of state observers (i.e. partial observation). Note that the

synthesis is always performed offline, we refer to semi-online because the application

of the induced controller requires online state estimation.

Comparison with related work.

Model order reduction techniques for hybrid or switched systems are classically

used in numerical simulation in order to construct, at the reduced level, trajectories

which cannot be computed directly at the original level due to complexity and

large size dimension [16, 46]. Model reduction is used in order to perform set-based

reachability analysis in [85]. Isolated trajectories issued from isolated points are not

constructed, instead, (an over-approximation of) the infinite set of trajectories is

derived from a dense set of initial points. This allows to perform formal verification

of properties such as safety. In both approaches, the control is given as an input of

the problem. In contrast here, the control is synthesized using set-based methods in

order to achieve by construction properties such as convergence and stability.

While symbolic approaches are mostly used for the control of low order ODEs,

the control of mechanical systems can be realized using the control theory approach,

where a continuous control law is guessed and proved to be efficient on the continuous

PDE model [22, 111, 164]. The damping of vibrations with piezoelectric devices

is in particular a widely developed branch of the control of mechanical systems.

The shunting of piezoelectric devices with electric circuits permits to convert the
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vibration energy into electrical energy, which is then dissipated in the electric circuits

[83]. Note that this approach can be active or passive, depending on the electric

energy furnished to the electric circuit. A switched control approach is developed

in [47, 152], the piezoelectric device is shunted on several electric circuits, but only

one is selected at a time depending on the state of the mechanical system. This

approach is called semi-active since the electric circuits are passive but the switching

requires energy. In the present chapter, the approach is fully active.

Plan.

In Section 6.1, we give some preliminaries on switched control systems and their

link with PDEs and mechanical systems. In Section 6.2, we introduce some elements

of control theory and the state-space bisection method. In Section 6.3, we explain

how to construct a reduced model, apply the state-space bisection method at this

level, and compute upper bounds to the error induced at the original level. In

Section 6.4, we propose two methods of control synthesis allowing to synthesize

(either offline or online) a controller at the reduced-order level and apply it to the

full-order system. In Section 6.5, we apply our approach to several examples of

the literature. In section 6.6, we extend our method to the use of observers. We

conclude in Section 6.7.

6.1 Background

We consider systems governed by Partial Differential Equations (PDEs) having

actuators allowing to impose forces on the boundary; these systems can represent

transient thermal problems, vibration problems... By applying the right external

force at the right time, one can drive the system to a desired operating mode. Our

goal here is to synthesize a law which, given the state of the system, computes the

boundary force to apply.

In order to illustrate our approach, we use the example of the heat equation:
$
’’’’’&
’’’’’%

BT
Bt px, tq ´ α∆T px, tq “ 0 @pt, xq P r0, T s ˆ Ω

T px, ¨q “ T dpx, ¨q @x P BΩT

BT
Bx px, ¨q.n “ ϕdpx, ¨q @x P BΩϕ

T px, 0q “ T0pxq

(6.1)

Discretized by finite elements, the nodal temperatures tT u are computed with

respect to time, and the system becomes:
#
CFE

9tT u ` KFEtT u “ tF du
tT p0qu “ tT0u

(6.2)

The purpose is then to compute the forces tF du with respect to time such that the

temperature field verifies some desired properties.
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For example, one may want to impose that the temperature in a particular

node remains within a given temperature range. Usually, the quantities of interest

one wants to control are given in discrete points, which are for example sensor

measurements, or they are given as local averaging. Here, we consider the case

where the quantities of interest can be directly extracted from the nodal values with

a matrix called output matrix (see equation (6.3)).

We consider a particular kind of actuators; the force applied only takes a finite

number N of values. For example, in (6.1) for the case of a room heated with a

heater, the flux ϕd is equal to 0 when the heater is turned off and equal to a positive

value when it is turned on. The control systems associated to such behaviors are

naturally written under the form of switched systems (3.1). Focusing on linear

PDEs, the addition of an output leads leads to a system of the form:

Σ :

#
9xptq “ Axptq ` Buptq,
yptq “ Cxptq,

(6.3)

The n-vector x is called the state of the system, the p-vector u is the control input,

the m-vector y is the output of the system, A is an nˆn-matrix, B an nˆp-matrix,

and C an m ˆ n matrix. Writing the discretized equation (6.2) under this form is

straightforward by multiplying the first line by C´1

FE (which is invertible), and the

state vector is then tT u. In the case of higher order PDEs (for example in the case

of the wave equation), we merely need to enlarge the state vector to take the first

derivative of the nodal values in it.

6.2 Problem setting

We will synthesize controllers using adaptations of Algorithms 1 and 2 by adding

constraints on the outputs of the system.

The entries of the problem are the following:

1. a subset Rx Ă R
n of the state space, called interest set,

2. a subset Ry Ă R
m of the output space, called objective set.

The objective is to find a law up¨q which, for any initial state x0 P Rx, stabilizes

the output y in the set Ry. The set Rx is in fact the set of all initial conditions

considered, and the set Ry is a target set, where we want the output to stabilize.

The sets Rx and Ry are given under the form of boxes, i.e. interval products of Rn

and R
m respectively.

In the remainder of this chapter, we will denote control patterns by Pat P Uk

for some k ě 1 in order to avoid confusion with projectors, classically denoted by

π. We extend the definition of the Post operator for outputs as follows: the output

successor set of a set X Ă R
n of states under switching mode u is:

Postu,CpXq “
ď

x0PX

Cφupt; t0, x0q.
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We similarly extend this definition for sequences of inputs (patterns) Pat P Uk for

some k ě 1:

PostPat,CpXq “
ď

x0PX

CφPatpt; t0, x0q.

With these definitions and notations, we are now able to present the adaptations

of the algorithm presented in Chapter 3. It relies on the decomposition of the set

Rx. Given the sets Rx and Ry, and a maximum length of input pattern K, it returns

a set ∆ of the form tpVi, PatiquiPI where I is a finite set of indices. Each Vi is a

subset of Rx and each Pati is a pattern of length at most K, such that:

(a)
Ť

iPI Vi “ Rx,

(b) for all i P I: PostPatipViq Ď Rx,

(c) for all i P I: PostPati,CpViq Ď Ry.

The algorithm thus returns several sets Vi that cover Rx, and each Vi is as-

sociated to a pattern Pati that sends Vi in Rx, and the output in Ry. The set

Rx is thus decomposed in several sets, and for each one, we have one control law:

@x P Vi, upxq “ Pati. Therefore, for two initial conditions in a set Vi, we apply the

same input pattern. The fact that we use set based operations has a key role which

allows us to consider sets of initial conditions, and this is how we manage to obtain

a law upxq. In the following, when a decomposition ∆ is successfully obtained, we

denote by u∆ the induced control law.

Algorithms 4 and 5 show the main functions used by the state-space decomposi-

tion algorithm. Note that function “Decomposition” now takes an additional input

Ry. When looking for stabilizing patterns, we add the more restrictive constraint

that the output of the system is sent in Ry.

At the beginning, the function “Decomposition” calls sub-function “Find Patt-

ern” in order to get a k-pattern (a pattern of length up to k) Pat such that

PostPatpRxq Ď Rx and PostPat,CpRxq Ď Ry. If it succeeds, then it is done. Other-

wise, it divides Rx into 2n sub-boxes V1, . . . , V2n of equal size. If for each Vi, Find -

Pattern gets a k-pattern Pati such that PostPatipViq Ď Rx and PostPati,CpViq Ď Ry,

it is done. If, for some Vj, no such input pattern exists, the function is recursively

applied to Vj. It ends with success when a successful decomposition of pRx, Ry, kq
is found, or failure when the maximal degree d of bisection is reached. The main

function Bisection(W,Rx, Ry, D,K) is called with Rx as input value for W , d for

input value for D, and k as input value for K; it returns either xtpVi, Patiqui, T ruey
with ď

i

Vi “ W,

ď

i

PostPatipViq Ď Rx,

ď

i

PostPati,CpViq Ď Ry

when it succeeds, or x , Falsey when it fails. Function Find Pattern(W ,Rx,Ry,K)
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looks for a K-pattern Pat for which PostPatpW q Ď Rx and PostPat,CpW q Ď Ry :

it selects all the K-patterns by increasing length order until either it finds such an

input pattern Pat (output: xPat, T ruey), or none exists (output: x , Falsey).

Algorithm 4 Decomposition(W,Rx, Ry, D,K)

Input: A box W , a box Rx, a box Ry, a degree D of bisection, a length K of

input pattern

Output: xtpVi, Patiqui, T ruey with
Ť

i Vi “ W ,
Ť

i PostPatipViq Ď Rx andŤ
i PostPati,CpViq Ď Ry, or x , Falsey

pPat, bq :“ Find PatternpW,Rx, Ry, Kq
if b “ True then

returnxtpW,Patqu, T ruey
else

if D “ 0 then

return x , Falsey
else

Divide equally W into pW1, . . . ,W2nq
for i “ 1 . . . 2n do

p∆i, biq := Decomposition(Wi,Rx,Ry,D ´ 1,K)

end for

return pŤi“1...2n ∆i,
Ź

i“1...2n biq
end if

end if

6.3 Model order reduction

As seen in Chapter 3, the main drawback of the previous state-space decompo-

sition algorithm is the computational cost, with a complexity in Op2ndNkq, with n
the state-space dimension, d the maximum degree of decomposition, N the number

of modes and k the maximum length of researched patterns. It is thus subject to

the curse of dimensionality. In practice, the dimension n must be lower than 10 for

acceptable computation times. Thus, by directly applying the bisection algorithm to

a discretized PDE, the number of degrees of freedom is limited to 10 for a first order

PDE, and even less for a higher order PDE written in state-space representation.

The use of a Model Order Reduction (MOR) is thus unavoidable.

We choose here to use projection-based model order reduction methods [16].

Given a full-order system Σ, an interest set Rx Ă R
n and an objective set Ry Ă R

m,

we construct a reduced-order system Σ̂ using a projection π of Rn to Rnr . If π P R
nˆn

is a projection, it verifies π2 “ π, and π can be written as π “ πLπR, where

πL P R
nˆnr , πR P R

nrˆn and nr “ rankpπq. The reduced-order system σ̂ is then
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Algorithm 5 Find Pattern(W,Rx, Ry,K)

Input: A box W , a box Rx, a box Ry, a length K of input pattern

Output: xPat, T ruey with ,PostPatpW q Ď Rx,PostPat,CpW q Ď Ry and

UnfPatpW q Ď S, or x , Falsey when no input pattern maps W into Rx and CW

into Ry

for i “ 1 . . . K do

Π :“ set of input patterns of length i

while Π is non empty do

Select Pat in Π

Π :“ ΠztPatu
if PostPatpW q Ď Rx and PostPat,CpW q Ď Ry then

return xPat, T ruey
end if

end while

end for

return x , Falsey

obtained by the change of variable x̂ “ πRx:

Σ̂ :

#
9̂xptq “ Âx̂ptq ` B̂uptq,
yrptq “ Ĉx̂ptq,

with

Â “ πRAπL, B̂ “ πRB, Ĉ “ CπL.

The projection π can be constructed by multiple methods: Proper Orthogonal

Decomposition [48, 98], balanced truncation [15, 29, 30, 140], balanced POD [172]...

We use here the balanced truncation method, widely used in the control commu-

nity and particularly adapted to the models used here, written under state-space

representation.

The objective is now to compute a decomposition at the low order level, and

apply the induced reduced control to the full order system. In order to ensure that

the reduced control is effective, we introduce the following notations, simplifying the

reading of the remainder of this chapter:

— xpt, x, uq denotes the point reached by Σ at time t under mode u P U from

the initial condition x.

— x̂pt, x̂, uq denotes the point reached by Σ̂ at time t under mode u P U from

the initial condition x̂.

— ypt, x, uq denotes the output point reached by Σ at time t under mode u P U
from the initial condition x.

— yrpt, x̂, uq denotes the output point reached by Σ̂ at time t under mode u P U
from the initial condition x̂.
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When a control u is applied to both full-order and reduced-order systems, an er-

ror between the output trajectories ypt, x, uq and yrpt, πRx, uq is unavoidable, and

we denote it by eypt, x, uq. A first tool to ensure the effectiveness of the reduced-

order control is to compute a bound on }eypt, x, uq}. A second source of error is the

deviation between πRxpt, x, uq and x̂pt, πRx, uq, which we denote by expt, x, uq. Com-

puting a bound on }expt, x, uq} will also be necessary. Before establishing these error

bounds, we first briefly describe the balanced truncation method. We then present

how we compute a reduced-order control and apply it to the full-order system.

6.3.1 The balanced truncation

Applying the balanced truncation consists in balancing then truncating the sys-

tem. Balancing the system requires finding balancing transformations which di-

agonalize the controllability and observability gramians of the system in the same

basis.

The controllability and observability gramians Wc and Wo of the system Σ are

respectively the solutions of the dual (infinite-time horizon) Lyapunov equations

AWc ` WcA
J ` BBJ “ 0 (6.4)

and

AJWo ` WoA ` CJC “ 0 (6.5)

The balancing transformations πR and πL are then computed as follows [30]:

1. Compute the Cholesky factorization Wc “ UUJ

2. Compute the eigenvalue decomposition of UJWoU

UJWoU “ Kσ2KJ

where the entries in σ are ordered by decreasing order

3. Compute the transformations

πR “ σ´ 1

2KJU´1

πL “ UKσ´ 1

2

One can then verify that

πRWcπ
J
R “ πJ

LWoπL “ σ

and σ contains the Hankel singular values of the system.

Computing the balancing transformations for large scale systems derived for

example from discretized partial differential equations is usually very expensive -

even sometimes irrelevant - and many advances have been carried out in order to

solve the Lyapunov equations and compute the transformations with approximate

methods, often based on Krylov subspace methods (see for example [15, 29, 146]).
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6.3.2 Error bounding

Error bounding for the output trajectory

Here, a scalar a posteriori error bound for ey is given (mainly inspired from [85]).

The error bound εy can be computed from simulations of the full and reduced-order

systems. The computation time for simulations is negligible compared with that of

the bisection method to generate the decompositions.

Computing an upper bound of }eypt, x, uq} is equivalent to seeking the solution

of the following (optimal control) problem:

εyptq “ sup
uPU,x0PRx

}ept, x0, uq}

“ sup
uPU,x0PRx

}ypt, x0, uq ´ yrpt, πRx0, uq}.

Since the full-order and reduced-order systems are linear, one can use a superposition

principle and the error bound can be estimated as εyptq ď εx0“0ptq ` εu“0ptq where

εx0“0
y is the error of the zero-state response, given by (see [85])

εx0“0

y ptq “ max
uPU

}u} ¨ }eypt, x0 “ 0, uq}

“ max
uPU

}u} ¨ }ypt, 0, uq ´ yrpt, 0, uq},

and εu“0
y is the error of the zero-input response, given by

εu“0

y ptq “ sup
x0PRx

}eypt, x0, u “ 0q}

“ sup
xPRx

}ypt, x0, 0q ´ yrpt, πRx0, 0q}.

Using some algebraic manipulations (see [85]), one can find a precise bound for

εx0“0
y and εu“0

y :

εx0“0
y ptq ď }up¨q}

r0,ts
8

ż t

0

}
”
C ´Ĉ

ı « etA

etÂ

ff«
B

B̂

ff
}dt, (6.6)

εu“0
y ptq ď sup

x0PRx

}
”
C ´Ĉ

ı « etA

etÂ

ff«
x0

πRx0

ff
}. (6.7)

The first error bound (6.6) always increases with time whereas the second bound

(6.7) can either increase or decrease. These properties are used to compute a guar-

anteed bound. For all j P N (j corresponds to the length of the pattern applied),

we have:

εypjτq ď εjy

with

εjy “ }up¨q}
r0,jτ s
8

ż jτ

0

}
”
C ´Ĉ

ı « etA

etÂ

ff«
B

B̂

ff
}dt

` sup
x0PRx

}
”
C ´Ĉ

ı « ejτA

ejτÂ

ff«
x0

πRx0

ff
}. (6.8)
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Furthermore, we have:

@t ě 0, εyptq ď ε8
y

with

ε8
y “ sup

tě0

εyptq. (6.9)

This bound exists when the modulus of the eigenvalues of eτA and eτÂ is strictly

inferior to one, which we suppose here.

Error bounding for the state trajectory

Denoting by j P N the length of the pattern applied, the following results holds:

xpt “ jτ, x, uq “ ejτAx `
ż jτ

0

eApjτ´tqBuptqdt,

x̂pt “ jτ, πRx, uq “ ejτÂπRx `
ż jτ

0

eÂpjτ´tqB̂uptqdt,

Using an approach similar to the construction of the bounds (6.6) and (6.7), we

obtain the following bound, which depends on the length j of the pattern applied:

}πRxpt “ jτ, x, uq ´ x̂pt “ jτ, πRx, uq} ď εjx, (6.10)

with

εjx “ }up¨q}
r0,jτ s
8

ż jτ

0

}
”
πR ´Inr

ı « etA

etÂ

ff«
B

B̂

ff
}dt

` sup
x0PRx

}
”
πR ´Inr

ı « ejτA

ejτÂ

ff«
x0

πRx0

ff
}. (6.11)

Remark: in order to simplify the reading, the notation |Pat| will often be used in

the following to denote the length of the pattern Pat.

6.4 Reduced order control

Two procedures are proposed for synthesizing reduced-order controllers: (i) an

offline procedure, consisting in computing a complete sequence of control inputs for a

given initial condition; (ii) a semi-online procedure, where the patterns are computed

through online projection of the full-order state. We describe these approaches in

the following subsections.
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6.4.1 Offline procedure

Suppose that we are given a system Σ, an interest set Rx, and an objective set

Ry. The reduced-order system Σ̂ of order nr, obtained by balanced truncation, is

written under the form of equation (6.3):

Σ̂ :

#
9̂xptq “ Âx̂ptq ` B̂uptq,
yrptq “ Ĉx̂ptq,

where Â “ πRAπL P R
nrˆnr , B̂ “ πRB P R

nrˆp, Ĉ “ CπL P R
mˆnr .

We denote by R̂x the projection of Rx. Given the interest set R̂x, the objective

set Ry and a maximal length of researched pattern K, the application of the state-

space decomposition algorithm to the reduced system returns, when it succeeds, a

decomposition ∆̂ of the form tV̂i, PatiuiPI , with I a finite set of indices, such that:

1.
Ť

iPI V̂i “ R̂x,

2. for all i P I: PostPatipV̂iq Ď R̂x,

3. for all i P I: PostPati,Ĉ
pV̂iq Ď Ry.

The decomposition ∆̂ induces a control u
∆̂
on R̂x. Applied on the reduced-order

system Σ̂, the control u
∆̂

keeps x̂ in R̂x and sends yr in Ry. This control can be

applied to the full-order system in two steps: a sequence of patterns is computed on

the reduced-order system, and it is then applied to the full order system:

(a) Let x0 be an initial condition in Rx. Let x̂0 “ πRx0 be its projection belong-

ing to R̂x, x̂0 “ πRx0 is the initial condition for the reduced system Σ̂: x̂0

belongs to V̂i0 for some i0 P I; thus, after applying Pati0 , the system is led to

a state x̂1; x̂1 belongs to V̂i1 for some i1 P I; and iteratively, we build, from

an initial state x̂0, a sequence of states x̂1, x̂2, . . . obtained by application of

the sequence of k-patterns Pati0 , Pati1 , . . . (steps (1), (2) and (3) of Figure

6.1).

(b) The sequence of k-patterns is computed for the reduced system Σ̂, but it can

be applied to the full-order system Σ: we build, from an initial point x0, a

sequence of points x1, x2,. . . by application of the k-patterns Pati0 ,Pati1 ,. . .

(steps (4), (5) and (6) of Figure 6.1). Moreover, for all x0 P Rx and for all

t ě 0, the error }ypt, x0, uq ´ yrpt, πRx0, uq} is bounded by ε8
y , as defined in

equation(6.9).

This procedure thus allows, for any system Σ of the form (6.3), and given an

interest set Rx and an objective set Ry, to send the output of the full-order system

in the set Ry ` ε8
y . More precisely, if Σ̂ is the projection by balanced truncation

of Σ, let ∆̂ be a decomposition for (R̂x,Ry,kq w.r.t. Σ̂. Then, for all x0 P Rx, the

induced control u
∆̂
applied to the full-order system Σ in x0 is such that for all j ą 0,

the output of the full-order system yptq returns to Ry ` ε8
y after at most k τ -steps.
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Figure 6.1: Diagram of the offline procedure for a simulation of length 3.

Here, Ry ` ε8
y denotes the set containing Ry with a margin of ε8

y . If Ry is an

interval product of the form ra1, b1s ˆ ¨ ¨ ¨ ˆ ram, bms, then Ry ` ε8
y is defined by

ra1 ´ ε8
y , b1 ` ε8

y s ˆ ¨ ¨ ¨ ˆ ram ´ ε8
y , bm ` ε8

y s.

Remark: Here, we ensure that ypt, x0, uq is in Ry`ε8
y at the end of each pattern,

but an easy improvement is to ensure that ypt, x0, uq stays in a safety set Sy Ą Ry at

each step of time kτ . Indeed, as explained in [67], we can ensure that the unfolding

of the output trajectory stays in a given safety set Sy. The unfolding of the output

of a set is defined as follows: given a pattern Pat of the form pu1 ¨ ¨ ¨umq, and a set

X Ă R
n, the unfolding of the output of X via Pat, denoted by Unf Pat,CpXq, is the

set
Ťm

i“0
Xi with:

— X0 “ tCx|x P Xu,
— Xi`1 “ Postui`1,CpXiq, for all 0 ď i ď m ´ 1.

The unfolding thus corresponds to the set of all the intermediate outputs produced

when applying pattern Pat to the states of X. In order to guarantee that ypt, x0, uq
stays in Sy, we just have to make sure that yrpt, πRx0, uq stays in the reduced safety

set Sy ´ ε8
y . We thus have to add, in the line 6 of Algorithm 5, the condition: “and

Unf Pat,CpW q Ă Sy ´ ε8
y ”.

6.4.2 Semi-online procedure

Up to this point, the procedure of control synthesis consists in computing a com-

plete sequence of patterns on the reduced order model Σ̂ for a given initial state x0,

and applying the pattern sequence to the full-order model Σ. The entire control law

is thus computed offline. While the decomposition is always performed offline, one

can however use the decomposition ∆̂ online as follows: let x0 be the initial state in

Rx and x̂0 “ πRx0 (step (1) of Figure 6.2) its projection belonging to R̂x, x̂0 belongs

to V̂i0 for some i0 P I; we can thus apply the associated pattern Pati0 to the full-order
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system Σ, which yields a state x1 “ xp|Pati0 |τ, x0, Pati0q (step (2) of Figure 6.2), the

corresponding output is sent to y1 “ yp|Pati0 |τ, x0, Pati0q P Ry ` ε
|Pati0 |
y ; in order to

continue to step (3), we have to guarantee that πRxp|Pati|τ, x, Patiqq belongs to R̂x

for all x P Rx and for all i P I. As explained below, this is possible using the compu-

tation of an upper bound to the error }πRxp|Pati|τ, x, Patiq ´ x̂p|Pati|τ, πRx, Patiq}
and a reinforcement of the procedure for taking into account this error.

Let ε
|Pat|
x be the upper bound to

}πRxp|Pat|τ, x, Patq ´ x̂p|Pat|τ, πRx, Patq},

as defined in equation (6.11). We modify the Algorithms 4 and 5, which become

“Bisection Dyn” and “Find Pattern Dyn” (Algorithms 6 and 7), they are computed

with an additional input εx “ pε1x, . . . , εkxq, k being the maximal length of the pat-

terns. With such an additional input, we perform an ε-decomposition. Given a

system Σ, two sets Rx and Ry respectively subsets of Rn and R
m, a positive inte-

ger k, and a vector of errors εx “ pε1x, . . . , εkxq, application of the ε-decomposition

returns a set ∆ of the form tVi, PatiuiPI , where I is a finite set of indexes, every Vi

is a subset of Rx, and every Pati is a k-pattern such that:

(a’)
Ť

iPI Vi “ Rx,

(b’) for all i P I: PostPatipViq Ď Rx ´ ε
|Pati|
x ,

(c’) for all i P I: PostPati,CpViq Ď Ry.

Note that condition (b’) is a strengthening of condition (b) in subsection 6.2.

Accordingly, line 6 of Algorithm 5 becomes in Algorithm 7:

6 if PostPatpW q Ď Rx ´ εix and PostPat,CpW q Ď Ry then

The new algorithms enable to guarantee that the projection of the full-order system

state πRx always stays in R̂x, we can thus perform the online control as follows:

Since PostPati0
pV̂i0q Ď R̂x ´ ε

|Pati0 |
x and πRx0 P V̂i0 , we have PostPati0

pπRx0q P
R̂x ´ ε

|Pati0 |
x ; thus πRx1 “ πRxp|Pati0 |τ, x0, Pati0q belongs to R̂x, because ε

|Pati0 |
x is a

bound of the maximal distance between the trajectories x̂p|Pati0 |τ, πRx0, Pati0q and
πRxp|Pati0 |τ, x0, Pati0q;
since πRx1 belongs to R̂x, it belongs to Vi1 for some i1 P I; we can thus compute

the input pattern Pati1 , and therefore, we can reapply the procedure and compute

an input pattern sequence Pati0 ,Pati1 ,. . . As for the output, the yielded points

y1 “ yp|Pati0 |τ, x0, Pati0q, y2 “ yp|Pati1 |τ, x1, Pati1q, . . . belong respectively to the

sets Ry ` ε
|Pati0 |
y ,Ry ` ε

|Pati1 |
y ,. . .

The main advantage of such an online control is that the estimated errors

ε
|Pati0 |
y ,ε

|Pati1 |
y ,. . . are dynamically computed, and are smaller than the static bound

ε8
y used in the offline control. The price to be paid is the strengthening of condition

(b’). In the best case, i.e. if the errors are low and the system is very contractive,

this can result in the same decomposition and computation time as in the offline
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Figure 6.2: Diagram of the online procedure for a simulation of length 3.

procedure. But if the system is not contractive enough or if the errors are too large,

this can lead to a more complicated decomposition, and thus higher computation

times, and in the worst case, no successful decomposition at all.

6.5 Numerical results

6.5.1 Thermal problem on a metal plate

Figure 6.3: Geometry of the square plate.

We consider here the problem of controlling the central node temperature of a

square metal plate, discretized by finite elements; this example is taken from [86].

The square plate is subject to the heat equation:
BT
Bt px, tq ´ α∆T px, tq “ 0. After

discretization, the system is written under its state-space representation (6.3). The

plate is insulated along three edges, while the right edge is open. The left half of the

bottom edge is connected to a heat source. The exterior temperature is set to 0˝C,

the temperature of the heat source is either 0˝C (mode 0) or 1˝C (mode 1). The

heat transfers with the exterior and the heat source are modeled by a convective

transfer. The full-order system state corresponds to the nodal temperatures. The

output is the temperature of the central node. The system is reduced from n “ 897
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Algorithm 6 Decomposition Dyn(W,Rx, Ry, D,K, εx)

Input: A box W , a box Rx, a box Ry, a length K of pattern, a vector of errors

εx, a degree D of bisection

Output: xtpVi, Patiqui, T ruey with
Ť

i Vi “ W ,
Ť

i PostPatipViq Ď Rx andŤ
i PostPati,CpViq Ď Ry, or x , Falsey

pPat, bq :“Find Pattern DynpW,Rx, Ry, K, εxq
if b “ True then

return xtpW,Patqu, T ruey
else

if D “ 0 then

return x , Falsey
else

Divide equally W into pW1, . . . ,W2nq
for i “ 1 . . . 2n do

p∆i, biq := Decomposition Dyn(Wi,Rx,Ry,K,εx,D ´ 1)

end for

return pŤi“1...2n ∆i,
Ź

i“1...2n biq
end if

end if

to nr “ 2 (Figure 6.5) and nr “ 3 (Figure 6.6). The interest set is Rx “ r0, 0.15s897
and the objective set Ry “ r0.06, 0.09s. The sampling time is set to τ “ 8 s. The

geometry of the system is given in Figure 6.3. The decomposition obtained with the

offline procedure is given in Figure 6.4.

The decompositions and simulations have been performed with MINIMATOR

(an Octave code available at https://bitbucket.org/alecoent/minimator red) on a

2.80 GHz Intel Core i7-4810MQ CPU with 8 GB of memory. The decompositions

were obtained in 5 seconds for the case nr “ 2 and in 2 minutes for the case nr “ 3.

Figure 6.4: Decomposition of R̂x “ πRRx in the plane px̂1, x̂2q (for nr “ 2) with the

offline procedure.

Simulations of the offline and online methods are given in Figures 6.5 and 6.6.

We notice in Figure 6.5 that the trajectory y (resp. yr) exceeds the objective set

Ry (resp. Ry ` ε
|Pati|
y ) during the application of the second pattern, yet the markers
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Algorithm 7 Find Pattern Dyn(W,Rx, Ry,K, εx)

Input: A box W , a box Rx, a box Ry, a length K of pattern, a vector of errors

εx

Output: xPat, T ruey with ,PostPatpW q Ď Rx,PostPat,CpW q Ď Ry and

UnfPatpW q Ď S, or x , Falsey when no pattern maps W into Rx and CW into

Ry

for i “ 1 . . . K do

Π :“ set of patterns of length i

while Π is non empty do

Select Pat in Π

Π :“ ΠztPatu
if PostPatpW q Ď Rx ´ εix and PostPat,CpW q Ď Ry then

return xPat, T ruey
end if

end while

end for

return x , Falsey

corresponding to the end of input patterns do belong to objective sets. Comparing

the cases nr “ 2 and nr “ 3, we finally observe that a less reduced model causes

lower error bounds, and thus a more precise control, at the expense of a higher

computation time.

Figure 6.5: For nr “ 2, simulation of yptq “ Cxptq and yrptq “ Ĉx̂ptq from the

initial condition x0 “ p0q897. (a): guaranteed offline control; (b): guaranteed online

control.

6.5.2 Vibrating beam

In this case study, which comes from a practical work designed by Fabien Formosa

[63], we apply our method to vibration control of a cantilever beam. The objective
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Figure 6.6: For nr “ 3, simulation of yptq “ Cxptq and yrptq “ Ĉx̂ptq from the

initial condition x0 “ p0q897. (a): guaranteed offline control; (b): guaranteed online

control.

Figure 6.7: Scheme of the vibrating beam.

is to keep the tip displacement of the beam as close as possible to zero. To stabilize

the beam, a piezoelectric patch applies a torque with the mechanism schemed in

Figure 6.7 at a distance xM from the blocked side of the beam. The model retained

is a finite element model with classical beam elements. The beam equation is the

following:

m :wpx, tq ` EI
B4wpx, tq

Bx4 “ BMu

Bx δpx ´ xMq (6.12)

The torque Mu is chosen with the control variable u. By applying the right torque

at the right time, we hope to stabilize the beam. In its finite element writing, the

system is:

M :W ` KW “ Fu (6.13)

Using a modal decomposition

W px, tq “
ÿ

iďnmodes

aiptqϕipxq,

we can write a reduced system of the form:

Mr:aiptq ` 2ζi 9aiptq ` Kraiptq “ Fr,u. (6.14)
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Note that a modal damping is added in this step, it permits to have a realistic

behaviour of the beam since it is subject to loss of energy. By rearranging the

terms of equation (6.14) into a first order ODE, we can write the system under a

state-space representation:

Σ :

#
9xptq “ Axptq ` Buptq,
yptq “ Cxptq,

(6.15)

where the output y is the tip displacement of the beam. Henceforth, the state

variable contains the variables ai and 9ai. The dimension of the state-space is thus

twice the number of retained modes. In this way, the system can be treated with

the method developed here, applying a balanced truncation to the system (6.15)

and building a reduced-order control.

Note that the intermediate model order reduction by modal decomposition can-

not actually be avoided, because the direct rearrangement of system (6.13) into its

state-space representation leads to a matrix A possessing some positive eigenvalues

(instead of only negative ones), and the calculation of balancing transformations is

then much more complicated, or even impossible.

The finite element model is composed of 60 elements (thus 120 degrees of freedom

to take the rotation into account), we retain 20 modes for the modal decomposition,

and the system is reduced to nr “ 4. Nine control modes are chosen to control

the beam, including the mode corresponding to a null torque. Two simulations for

different initial conditions and objective sets are given in Figure 6.8. In the first

one, several modes are initially excited, whereas only the first mode is excited in

the second one. In both cases, the online procedure is applied, and we manage to

stabilize the tip displacement relatively fast. The output of the full-order system is

stabilized in Ry ` ε
|Pati|
y with ε

|Pati|
y ⋍ 0.2. The errors ε

|Pati|
y can seem quite high

compared to the tip displacement, this comes from the hyperbolic nature of the

equations which rule this example. However, in a practical point of view, this is

clear that the reduced-order output fits well the behavior of the full-order system.

6.5.3 Vibrating aircraft panel

In order to verify the handling of higher dimensional systems, we apply our

method to the vibration control of an aircraft panel. This example, taken from

[95], consists in stabilizing the panel as close as possible to the equilibrium, which

corresponds to a null displacement inside the whole panel. In this purpose, seven

piezoelectric patches are glued on the panel, one is used for exciting the panel

(patch 1 of Figure 6.9), one is used as a sensor to evaluate the performance of the

control (patch 2), one is used for the observation of modal states (patch 6), and

three are used for vibration control (patches 3 to 5), the last patch being used to

validate the reconstruction (patch 7). For the numerical simulations, we choose the

measurements of the sensor patch as the output of the system.
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Figure 6.8: Simulations of vibration control of the cantilever beam for two different

initial conditions and objective boxes. (a): several modes excited; (b): first mode

excited.

Figure 6.9: Scheme of the vibrating aircraft panel.

Just as the cantilever beam, we use a finite element model reduced by modal

decomposition then balanced truncation. The system is written exactly in the same

way, but with shell elements, and thus six degrees of freedom per node. The finite

shell element model consists of 57000 degrees of freedom. We retain 50 modes for

the modal decomposition, and the model is reduced down to nr “ 5 by balanced

truncation. Seven control modes are used for vibration control, it corresponds to a

null voltage applied on all the control patches, a positive constant voltage applied

on each control patch (one patch is subject to a voltage at a time), and a negative

constant voltage applied on each control patch. The reader is referred to [95] for

more information on the exact functioning of the piezoelectric patches used in this

case study, and see for example [83,139] for more general information on piezoelectric

patches and their use for structural damping. With the same hardware configuration

as in the previous example, the computation of a decomposition took nearly a week.

A simulation of the online procedure is given in Figure 6.10 and 6.11.
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Figure 6.10: Simulation of vibration control of the aircraft panel.

We observe that the response of the controlled full-order system is better than

the non-controlled one, the main peaks observed in the non-controlled response are

avoided. Nevertheless, the stabilization is not as efficient as one may expect. One

can see that the reduced-order system is however well stabilized. This points out

that the model reduction does not catch, in this case, all the information needed

for control purposes. While we are currently investigating new model reduction

techniques, adapted to hyperbolic and non-linear systems, we also think that in

practice, the stabilization would be better because of the smoothness appearing in

the applied torques in a real application.

6.6 Extension to output feedback control

So far, we designed reduced state-dependent controllers for switched control sys-

tems, permitting to stabilize the output of the system in a given objective set Ry.

During a real online use, one is only supposed to know a part of the state of the

system, such as measurements of sensors. We now want to take these partial mea-

surements into account, by adding an intermediate step in the online use, namely,

observation. We suppose that only the output of the system is known online. In the

next sub-section, we introduce the principle of observation and give some prelimi-

nary results justifying the use of observers for switched control systems, allowing us

to adapt our algorithms to the use of observers. We then present some numerical

results of the use of observers with model order reduction. The whole approach

with model order reduction is schemed in Figure 6.12, but as we do not have any

proof for the efficiency of the use of observers with model order reduction, we only

provide some numerical simulations. We are currently working on the establishment

an error bound taking into account the projection error and the observation error,

that will permit to construct a guaranteed reduced observer based control.
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Figure 6.11: Enlargement of Figure 6.11 on the time interval r0, 0.2s.

6.6.1 Partial observation

Having defined the state-space bisection algorithm for switched control systems

with output, we now add the constraint that the system is partially observed. The

objective is to design an output feedback controller using the state-space bisection

algorithm introduced above.

We recall that the switched system Σ is written under the following form:

Σ :

#
9xptq “ Axptq ` Buptq,
yptq “ Cxptq.

We suppose that during an online use, one is only supposed to know yptq (we

suppose that y can be measured in real time, that is at every time t). If just

this partial information of the state is known, we cannot directly apply our state-

dependent controller synthesis method. An intermediate step must be introduced:

the reconstruction of the state. The reconstruction is made with the help of an

observer: it is an intermediate system that provides an estimate of the state of the

system Σ from the measurements of the output y and the input u of the system Σ. In

fact, this means that we want to design an output feedback law for the system Σ with

the help of an observer. In this chapter, we retain the Luenberger observer [3,4,176]
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Figure 6.12: Principle of the output feedback control

to reconstruct the state of Σ, it is subject to the following equation:

9̃x “ Ax̃ ´ LpuqpCx̃ ´ yq ` Bu, Lpuq P R
nˆm (6.16)

Obviously, the observer does not reconstruct exactly the state x of the system

Σ, we thus introduce the reconstruction error ηptq “ }xptq ´ x̃ptq}. Our goal is to

control the system Σ with this estimate x̃: we apply a law upx̃q. One can note that

the method relies on the convergence of the observer x̃ to the state x, this aspect is

developed in the following section.

The entries of the control problem we retain are then the following:

— an interest set Rx Ă R
n,

— an objective set Ry Ă R
m,

— an initial, a priori known, reconstruction error η0.

With the method given below, the outputs of the problem are the following:

— a decomposition of Rx w.r.t. η0 and the dynamics of Σ,

— a procedure to choose u knowing x̃,

— and the guarantee that, for any pattern Pat, if x0 P Rx and ηp0q ď η0, then

xp|Pat|τ, x0, Patq P Rx and yp|Pat|τ, x0, Patq P Ry.

Let us now introduce some hypotheses and important results to ensure the effi-

ciency of the method.

6.6.2 Convergence of the observer

The properties of the Luenberger observer depend on the choice of the matrices

Lpuq appearing in (6.16). A crucial assumption in what follows is that it is possible to

choose Lp¨q in such a way that the modes of the Luenberger observer share a common

non-strict quadratic Lyapunov functions, i.e., there exists a positive definite matrix
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P such that:

@u, P pA ` LpuqCq ` pA ` LpuqCqJP ď 0. (6.17)

The dynamics of the original switched system and of the Luenberger switch

observer can be grouped in the augmented system

˜
9̃x

9x

¸
“
˜
A ´ LpuqC LpuqC

0 A

¸˜
x̃

x

¸
`
˜
Bu

Bu

¸
.

Define eptq “ xptq ´ x̃ptq and ηptq “ eptqTPeptq. By definition ep¨q satisfies

9e “ pA ´ LpuqCqe (6.18)

and assumption (6.17) implies that η is non-increasing along all trajectories. The

patterns in up¨q will be chosen in order to guarantee that not only η decreases, but

actually converges to zero.

An assumption which may be motivated by the technical constraints of the sys-

tem under consideration is the existence of a dwell-time, that is, a positive constant

τ such that two subsequent discontinuities of up¨q have a distance of at least τ (re-

call that up¨q is assumed to be piecewise constant). The dwell-time condition not

only reflects technological constraints, but is also useful in the asymptotic analy-

sis of the switched system (6.3). The basic result that we will use is a simplified

version of [163, Theorem II.5], which states that under the dwell-time hypothesis,

and by choosing properly the patterns, one can manage to make ηptq converge to 0.

(For further asymptotic results of linear switched systems with a common non-strict

quadratic Lyapunov function, see [24, 155].)

The strategy suggested by the previous theorem is the following:

— identify u˚,1, . . . , u˚,m such that

Xm
j“1KerpA ´ Lpu˚,jqCq “ p0q;

— impose that each pattern takes all values u˚,1, . . . , u˚,m.

Under these constraints the solution e of (6.18) is guaranteed to converge to the

origin (monotonically with respect to the norm induced by the positive matrix P ).

In the case of the metal plate we will see that it is sufficient to take m “ 2 and

that the constraint that each pattern passes trough the two values u˚,1, u˚,2 is not a

heavy obstacle in the implementation of the proposed algorithm. As a result, we will

obtain a strategy upx̃q that, under the assumption that the initial state xp0q and the

initial estimation x̃p0q are in Rx and satisfy ηp0q ă η0, the trajectory xpt, xp0q, uq
and the estimated trajectory, denoted by x̃pt, x̃p0q, uq, are such that the evaluation

of xp¨q after each pattern is again in Rx and xpt, xp0q, uq ´ x̃pt, xp0q, uq Ñ 0 as

t Ñ `8.
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6.6.3 Observer based decomposition

We present here the adaptations of the algorithms taking the observation into

account. The observer based decomposition algorithm takes η0 as a new input. Given

a system Σ, two sets Rx Ă R
n and Ry Ă R

m, a positive integer k, and an initial

reconstruction error η0, a successful observer based decomposition returns a set ∆̃

of the form tVi, PatiuiPI , where I is a finite set of indices, every Vi is a subset of Rx,

and every Pati is a k-pattern such that:

(a)
Ť

iPI Vi “ Rx,

(b) for all i P I: PostPatipVi ` η0q Ď Rx ´ η0,

(c) for all i P I: PostPati,CpVi ` η0q Ď Ry.

Such a decomposition allows to perform an output feedback control on Σ as

stated in the following. The algorithm relies on two functions given in Algorithms 8

and 9. If a successful observer based decomposition is obtained, it naturally induces

an estimate-dependent control, which we denote by u
∆̃
. By looking for patterns

mapping Rx ` η0 into Rx, we guarantee that xpt, x, uq is stabilized in Rx. Indeed, if

xp0q is the initial state, and x̃p0q the initial estimation (supposed belonging to Rx),

we know that x̃p0q belongs to Vi0 for some i0 P I, and that xp0q belongs to Vi0 `η0, so
the application of the pattern Pati0 yields xp|Pati0 |τ, xp0q, Pati0q P Rx´η0 (because
PostPati0

pVi0 ` η0q Ď Rx ´ η0) and x̃p|Pati0 |τ, x̃p0q, Pati0q P Rx because

}xp|Pati0 |τ, xp0q, Pati0q ´ x̃p|Pati0 |τ, x̃p0q, Pati0q}
ă η0.

Note that we plan to improve these algorithms by taking the decrease of ηptq into

account, so that the decomposition is less restrictive when ηptq is small.

6.6.4 Reduced output feedback control

Algorithms 8 and 9 allow to synthesize guaranteed output feedback controllers for

switched control systems without model order reduction. However, the use of model

order reduction and observation for the thermal problem of section 6.5.1 is indeed

possible, this is partly enabled thanks to the elliptic nature and highly contractive

behavior of the system.

The online simulations are performed just as sated in Figure 6.12. From the

full-order system Σ, we build a reduced-order system Σ̂ by balanced truncation. An

ε-decomposition is then performed on Σ̂, yielding a x̂-dependent controller (the de-

composition was obtained in about two minutes). The control up˜̂xq is then computed

online with the reconstructed variable ˜̂x, which dynamics is the following:

9̂̃
x “ Â˜̂x ´ LpuqpĈ ˜̂x ´ Cxq ` B̂u, Lpuq P R

nrˆm (6.19)

As the ε-decomposition is already quite restrictive (i.e. the error bound over-

estimates the real projection error) and because the Luenberger observer converges
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Algorithm 8 Decomposition Obs(W,Rx, Ry, D,K, η0)

Input: A box W , a box Rx, a box Ry, a degree D of bisection, a length K of

input pattern, an initial reconstruction error η0

Output: xtpVi, Patiqui, T ruey with
Ť

i Vi “ W ,
Ť

i PostPatipVi ` η0q Ď Rx andŤ
i PostPati,CpVi ` η0q Ď Ry , or x , Falsey

pPat, bq :“ Find PatternpW,Rx, Ry, K, η0q
if b “ True then

return xtpW,Patqu, T ruey
else

if D “ 0 then

return x , Falsey
else

Divide equally W into pW1, . . . ,W2nq
for i “ 1 . . . 2n do

p∆i, biq := Decomposition Obs(Wi,Rx,Ry,D ´ 1,K,η0)

end for

return pŤi“1...2n ∆i,
Ź

i“1...2n biq
end if

end if

Algorithm 9 Find Pattern Obs(W,Rx, Ry,K, η0)

Input: A box W , a box Rx, a box Ry, a length K of input pattern, an initial

reconstruction error η0

Output: xPat, T ruey with PostPatpW ` η0q Ď Rx,PostPat,CpW ` η0q Ď Ry, or

x , Falsey when no input pattern maps W ` η0 into Rx

for i “ 1 . . . K do

Π :“ set of input patterns of length i

while Π is non empty do

Select Pat in Π

Π :“ ΠztPatu
if PostPatpW ` η0q Ď Rx ´ η0 and PostPat,cpW ` η0q Ď Ry then

return xPat, T ruey
end if

end while

end for

return x , Falsey

fast, we observe that the induced control already works, even if we do not have any

justification of the efficiency yet. The proof should be established by evaluating, for

any pattern Pat, a bound of the following error:

}πRxp|Pat|τ, xp0q, Patq ´ ˜̂xp|Pat|τ, ˜̂xp0q, Patq} (6.20)
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Figure 6.13: Simulation of the thermal problem with observation: projected vari-

ables. x r1 and x r2 are the two variables πRx plotted within time (plain lines), it

corresponds to the projection of the full-order system state. x t1 and x t2 are the

two variables ˜̂x plotted within time (dotted lines), it corresponds to the state of the

reduced observer.

In the simulations Figures 6.13 and 6.14, the full-order system is of order n “ 897,

the reduced order system of order nr “ 2. The full-order system is initialized with

a uniform temperature field of xp0q “ 0.06n. The reduced observer is initialized at

x̃p0q “ 02. The two projected variables πRx cannot be reconstructed exactly because

of (at least) the projection error, but the output is still very well reconstructed.

Both the observer and the full-order outputs are sent in the objective set Ry, which

means that we should manage to control a thermal problem just with the information

obtained with few sensors.

6.7 Final remarks

Two methods have been proposed to synthesize controllers for switched control

systems using model order reduction and the state-space bisection procedure. An

offline and an online use are enabled, both uses are efficient but they present different

advantages. The offline method allows to obtain the same behavior as the reduced-

order model, but the associated bound is more pessimistic, and the controller has

to be computed before the use of the real system. The online method leads to less

pessimistic bounds but implies a behavior slightly different from the reduced-order

model, and the limit cycles may be different from those computed on the reduced

system. The behavior of the full-order system is thus less known, but its use can be

performed in real time.

A first step to the online reconstruction of the state of the system has been done

with the help of Luenberger observers. Numerical simulations seem to show a good

behavior with reconstruction and model reduction but the efficiency must still be
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Figure 6.14: Simulation of the thermal problem with observation: output variables.

The output of the full-order system (plain red) coincides with the output recon-

structed by the observer (plain blue), both are sent in the objective set at the end

of patterns (red circles).

proved. The use of Kalman filters is however not dismissed.

We are still investigating new model order reductions, more adapted to hyper-

bolic systems, and with the aim of controlling non linear PDEs. A recent trail which

we also want to develop is the dimensionality reduction [82,156,160]. Less restrictive

than model order reduction, it should permit to use a fine solver and post-processing

techniques to use bisection on a reduced space more representative of the system

behavior.
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Chapter 7

Control of PDEs
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Terminology

CΩ Poincaré’s constant (depending on Ω)

f Source heat term of the heat equation

g “ ´Buq

Bt
p.; ξptqq Source term of the equation in ψ

K Reduced-order truncation rank (low-order dimension)

κp.q (space-varying) conductivity coefficient

κm Minimal conductivity coefficient

K Truncation rank for the reduced-order space

L Length of the spatial interval

M Number of control modes

ψ “ ψp., tq such that up., tq “ u8p.q ` uqp., tq ` ψp., tq
ψ̃ reduced-order model for ψ

rξpvq Residual of the approximate solution ψ̃ against v

Ω “ p0, Lq Spatial domain

ρ Tolerance radius for the distance between u and u8

Rξ Recurrence set for the ξ variable

Στ Space of admissible switch control sequences

U Set of switched modes

τ Switching sampling time

t Time variable

u “ upx, tq Solution of the controlled heat problem

ũ “ ũpx, tq Reduced-order solution of the heat problem

u8p.q “Objective” heat function

uqp., tq Solution of the quasistatic heat problem at time t

V “ H1
0 pΩq Sobolev space

x Space variable

ξptq “ pξ1ptq, ξ2ptqqT Vector of boundary control values

ξ8
1 “ u8p0q
ξ8
2 =u8pLq
ξ8 “ pξ8

1 , ξ
8
2 qT

WK “ spanpϕ1, ..., ϕKq Reduced-order linear space, WK Ă V

7.1 Introduction

In the previous chapter, we managed to synthesize reduced order controllers for

high dimensional ODEs, obtained from the discretization of PDEs. We now want

to use this kind of techniques for results on the PDE problem. A first possibility

would have been to use error estimations of the discretization techniques employed,

such as the ZZ estimators [178] for finite element methods. However, such estima-

tors are quite pessimistic and imply large errors, preventing us from synthesizing
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guaranteed controllers in practice. In this chapter, we aim at keeping a PDE for-

mulation undiscretized, and by properly transforming the problem, synthesizing low

order controllers. We first provide some of the developments made to obtain such

results, and show the underlying difficulties. We first tried to use simple projec-

tion methods, such as spectral methods, associated to the Empirical Interpolation

Method (EIM) [129]. The EIM is a recent algorithm which provides the best sets of

points for Lagrangian interpolation, which permits to efficiently represent complex

functions with few generating functions. It has been derived for many efficient re-

duced basis methods. The EIM was one of our first choices for guaranteed control

of PDEs since it comes with an L8 error bound, and it seemed to be a natural

way of obtaining continuous equivalents of Chapter 6. It revealed more complicated

than expected to derive an L8 guaranteed control, but we hope that these results

might be of interest for future works. After a long time struggling on L8 bounds,

we finally came to a change of topology for our reduced models, in order to develop

L2 guaranteed controls. As a matter of fact, L2 error bounds are actually much

more classical in the field of structural mechanics, particularly when it comes to

reduced order modeling. We thus present a second approach, aimed at synthesizing

L2 guaranteed controls. The goal is now to use Galerkin methods for model order

reduction, which is much more general than the balanced truncation or spectral

methods, and allows to adapt the reduction technique to PDE problem. A second

objective is to get an L2 error estimation directly for the PDE problem, and not a

discretized version. In the following, we present our approaches on a given coupled

ODE-PDE problem, for which the ODE is controlled.

7.2 Setting of the problem

Let L ą 0, let Ω “ p0, Lq be the domain of definition of the PDE. Let κ P

L8p0, Lq, and suppose there exist two constants κm and κM , 0 ă κm ď κM such

that

κm ď κpxq ď κM for a.e. x in r0, Ls.

The space of admissible switch control sequences is

Στ “
 
σ : r0,`8rÑ t1, ...,Mu, σ|rqτ,pq`1qτ rptq P U @q P N

(
. (7.1)

In this chapter, we consider the one-dimensional boundary switched control heat

problem: find a piecewise constant sequence σp.q P Σr, such that the vector-valued

state ξp.q P rC 0
b p0,8qs2 and the function u P L2p0,8;H1pΩqq solutions of the prob-

133



lem

dξ

dt
“ Aσξ ` bσ, t ą 0, (7.2)

ξp0q “ ξ0, (7.3)

Bu
Bt ´ ∇ ¨ pκp.q∇uq “ f in Ω ˆ p0,`8q, (7.4)

up0, tq “ ξ1ptq, for all t ą 0, (7.5)

upL, tq “ ξ2ptq, for all t ą 0, (7.6)

up., t “ 0q “ u0 (7.7)

verify, for any initial conditions ξ0 and u0, the stability constraints
$
&
%

ξptq P Rξ for all t ą 0,

}up., tq ´ u8p.q}L2pΩq ď ρ for all t ą 0.
(7.8)

Thus the expected recurrence set for the global state pξptq, up., tqq is the product set
Rξ ˆ Bpu8, ρ; L2pΩqq Ă R

2 ˆ L2pΩq. The sequence σp.q will depend on the state

of the system itself in order to enforce stability in the product recurrence set. The

control problem is formalized as follows:

Problem 4 (ODE-PDE stability control problem). Let us consider the equation

system (7.2)-(7.7). Given a set Rξ, a tolerance ρ and an objective state u8p¨q,
find a rule σppξ, uqq P Στ such that, for all t ą 0 and for all pξp0q, vpx, 0qq P
Rξ ˆ Bpu8, ρ; L2pΩqq, we have pξptq, up., tqq P Rξ ˆ Bpu8, ρ; L2pΩqq.

We can also consider the reachability problem:

Problem 5 (ODE-PDE reachability control problem). Let us consider the equation

system (7.2)-(7.7). Given two set Rξ and R1
ξ with R1

ξ Ă Rξ, two tolerances ρ and ρ1

with ρ1 ă ρ, and an objective state u8p¨q, find a rule σppξ, uqq P Στ such that, for

all pξp0q, vpx, 0qq P Rξ ˆBpu8, ρ; L2pΩqq, there exists a time t1 ą 0 such that for all

t ą t1 we have pξptq, up., tqq P R1
ξ ˆ Bpu8, ρ1; L2pΩqq.

7.3 Spectral decomposition and EIM

We now present our first approach, based on a spectral decomposition associated

to the EIM [129].

7.3.1 Problem statement

Let us first consider a slightly simpler (linear) problem, on which we already see

the complexity of the problem.
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We wish to consider the equation system (7.9)-(7.12) given by:

dξ

dt
“ Aσξ ` bσ, t ą 0, (7.9)

Bu
Bt ´ 1

α
∇ ¨ p∇uq “ f in Ω ˆ p0,`8q, (7.10)

up0, tq “ ξ1ptq, for all t ą 0, (7.11)

upL, tq “ ξ2ptq, for all t ą 0, (7.12)

We suppose that we have four switched modes:

b1 “
˜

1

1

¸
, b2 “

˜
´1

´1

¸
, b3 “

˜
´1

1

¸
, b4 “

˜
1

´1

¸

In order to apply a symbolic (guaranteed) control synthesis method, we need to

rewrite the system under the form of an ODE of lowest possible dimension m:

9y “ Ay ` dσ (7.13)

where y P R
m, A P R

mˆm, dσ P R
m.

For this purpose, we will first write a low dimensional equation with a spectral

model reduction.

7.3.2 Spectral Model Reduction

We wish to approximate the state upx, tq of the PDE by a state ũpx, tq as close

as possible to upx, tq, but which can be computed much more easily than by solving

the PDE (e.g. with a finite element method). A natural way of computing an

approximate solution of (7.10) is using a modal (spectral) decomposition [40]. An

accurate approximate solution of (7.10) can be obtained with few eigen modes when

the boundary conditions are homogeneous. This is why we use here a reduced model

made of a modal decomposition with a lifting:

ũpx, tq “ ξ1ptqp1 ´ xq ` ξ2ptqx `
Nÿ

i“1

βiptqϕipxq (7.14)

where the βi are the time coefficients associated to the space functions ϕi, which are

precomputed (the computation of the ϕi is detailed in the following).

Let us explain why the lifting is interesting. If we write ũpx, tq “ ξ1ptqp1 ´ xq `
ξ2ptqx ` wpx, tq and inject it in (7.10,7.11,7.12), we have:

α
Bũ
Bt ´ B2ũ

Bx2 “ 0 in Ω

ũp0, tq “ ξ1ptq
ũp1, tq “ ξ2ptq
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α

ˆ
9ξ1ptqp1 ´ xq ` 9ξ2ptqx ` Bw

Bt

˙
´ B2w

Bx2 “ 0 in Ω

wp0, tq ` ξ1ptq “ ξ1ptq
wp1, tq ` ξ2ptq “ ξ2ptq

α
Bw
Bt ´ B2w

Bx2 “ ´αp 9ξ1ptqp1 ´ xq ` 9ξ2ptqxq in Ω

wp0, tq “ 0

wp1, tq “ 0

The lifting ξ1ptqp1´xq ` ξ2ptqx permits to obtain homogeneous boundary condi-

tions for w. The associated eigenvalue problem φ2 “ µφ with homogeneous boundary

conditions leads to eigenmodes (see [40]):

ϕipxq “
?
2 sin piπxq (7.15)

Note that the eigenmodes ϕi have been normalized w.r.t. the scalar product x¨, ¨yΩ.
A solution for w can then be decomposed on the basis of the eigenmodes wpx, tq “ř8

i“1
βiptqϕipxq. Having written w under this last form, an exact solution for equa-

tions (7.10,7.11,7.12) can be found as

α
Bw
Bt ´ B2w

Bx2 “
8ÿ

i“0

x´αp 9ξ1ptqp1 ´ xq ` 9ξ2ptqxq, ϕiyΩϕi (7.16)

Instead, we will look for an approximate solution by truncating the sum at an

order N . Let us now find ũpx, tq of the form (7.14), solution of the equation system

(7.10) with boundary conditions (7.11-7.12). We have:

α
Bũ
Bt ´ B2ũ

Bx2 “ 0 in Ω

α
Bũ
Bt w ´ B2ũ

Bx2w “ 0 in Ω @w P H1

0 pΩq

Writing the weak form formulation and using an integration by parts, we obtain:

α
d

dt

ż

Ω

ũwdx `
ż

Ω

Bũ
Bx

Bw
Bx dx “ 0 @w P H1

0 pΩq

This is true for all w P H1
0 pΩq, we can thus write:

α
d

dt

ż

Ω

ũwdx `
ż

Ω

Bũ
Bx

Bw
Bx dx “ 0, @w P W k “ Vectpϕkq

This leads to:
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α

ż

Ω

pp1 ´ xq 9ξ1 ` x 9ξ2qϕkdx `
ż

Ω

pp1 ´ xqξ1 ` xξ2q
Bϕk

Bx dx

`α
Nÿ

i“1

9βi

ż

Ω

ϕiϕkdx `
Nÿ

i“1

βi

ż

Ω

Bϕi

Bx
Bϕk

Bx dx “ 0, @k “ 1, . . . , N

The second term being equal to zero, we then have a low dimensional equation:

αCr
9β ` Krβ “ ´αFrp 9ξ, tq (7.17)

with β the vector composed of the βi, which we call the reduced state, Cr,ij “
ş
Ω
ϕiϕjdx, Kr,ij “

ş
Ω

Bϕi

Bx
Bϕj

Bx dx and Fr,ip 9ξ, tq “
ş
Ω

pp1 ´ xq 9ξ1 ` x 9ξ2qϕidx. Note here

that matrices Cr and Kr are diagonal, because functions ϕi are orthogonal. This

is one of the main advantages in using such a modal decomposition: an accurate

approximate solution can be computed in a very cheap way.

Solving the equation system (7.9-7.10-7.11-7.12) with the reduced order solution

(7.14) then leads to solving the reduced system:

˜
9ξptq
9βptq

¸
“
˜
0 0

0 1{αC´1
r Kr

¸˜
ξptq
βptq

¸
`
˜

buptq
´C´1

r Frpbuptq, tq

¸
(7.18)

However, although the lifting ξ1ptqp1´xq`ξ2ptqx permits to construct an accurate

reduced model with few functions ϕi, it raises a new problem: the coefficients βi

have no physical meaning. It is thus not trivial to infer a reduced objective (a box,

or an objective set) for the reduced state β. In other words, we do not know where

the βi should stabilize to obtain a PDE state as close to zero as we want.

In order to give a physical meaning to the reduced state, and infer an initial and

objective box the reduced state variable, we build a reduced model with slightly

different basis functions:

ũpx, tq “ ξ1ptqp1 ´ xq ` ξ2ptqx `
Nÿ

i“1

γiptqψipxq (7.19)

where functions ψi interpolate N points x1, . . . , xN of the PDE domain, i.e.:

ψipxjq “ δij @i P t1, . . . , Nu. (7.20)

Here, δij denotes the Kronecker symbol. The functions ψi, as well as the interpolated

points xi, are computed with the EIM [129]. The use of the EIM is particularly

opportune since it permits to establish an L8 error bound which allows to compute

a guaranteed control (see Section 7.3.3). Furthermore, the interpolated points are

optimal and lead to the lowest possible error bound.

The algorithm for computing the interpolation points is the following:
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Let x1 “ argmaxxPΩ |ϕ1pxq|.
Interpolation points tx1, . . . xNu are then constructed by induction on M ď

N as follows. For all i, 1 ď i ď M ´ 1, look for hM´1

ij such that ϕMpxiq “řM´1

j“1
hM´1

ij ϕjpxiq, and set xM “ argmaxxPΩ |ϕMpxq ´ řM´1

j“1
hM´1

ij ϕjpxq|. In the

EIM terminology,
řM´1

j“1
hM´1

ij ϕjp¨q is denoted as the interpolant IM´1rϕMp¨qs since
it interpolates exactly ϕMp¨q in x1, . . . , xM´1.

Functions ψi are then computed as linear combinations of the functions ϕi as

follows. For all 1 ď i ď N , solve
řN

j“1
ϕjpxiqhNij “ δij for hNij . Then set ψi “řN

j“1
hNijϕj so that functions ψi do verify (7.20). In the following, for any u P H1pΩq,

we will denote by IN rup¨qs the interpolation of order N of up¨q, i.e. IN rup¨qs “řN

i“1
upxiq

řN

j“1
hNijϕjp¨q.

The reduced system is then computed just as system (7.18) but with functions

ψi instead of ϕi, this leads to:

˜
9ξptq
9γptq

¸
“
˜
0 0

0 1{αC 1´1
r K 1

r

¸˜
ξptq
γptq

¸
`
˜

buptq
´C´1

r F 1
rpbuptq, tq

¸
(7.21)

with γ the vector composed of the γi, which we call the reduced state, C 1
r,ij “

ş
Ω
ψiψjdx, K

1
r,ij “

ş
Ω

Bψi

Bx
Bψj

Bx dx and F 1
r,ip 9ξ, tq “

ş
Ω

pp1 ´ xq 9ξ1 ` x 9ξ2qψidx. Note that

here, matrices C 1
r and K 1

r are no longer diagonal, which results in slightly higher

computation costs, but since the dimension of those matrices must be low, this is

not prohibitive.

The main interest in using interpolating functions is that the variables γi have

now a physical meaning: γiptq is equal to the value the temperature field (without

lifting) in xi at time t.

We have:

ũpxi, tq “ ξ1ptqp1 ´ xiq ` ξ2ptqxi ` γiptq, @i P t1, . . . , Nu (7.22)

If we want upxi, tq to stay in a box rumin
i , umax

i s, then we have to ensure that

ξ1, ξ2 P rumin
i {2, umax

i {2s, and γi P rumin
i {2, umax

i {2s (note that other combinations

are possible).

7.3.3 Error bounding

With the above developments, we can ensure that ũpxi, tq reaches infinitely often

the box rumin, umaxs with symbolic methods thanks to equation (7.21). In order

to provide a guaranteed controller, we still need to bound the error between the

reduced order and the full order system. The minimal result required to ensure

recurrence is to bound: |ũpxi, tq ´ upxi, tq| for all t ą 0. Or, more precisely, for a

pattern of length k, compute a bound ε1pkq such that:

|upxi, t0 ` kτq ´ γipt0 ` kτq| ď ε1pkq @i “ 1, . . . , N (7.23)
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But in order to ensure that the whole state upx, tq stays in rumin, umaxs, we also

need to bound |ũpx, tq ´ upx, tq| for all x P Ω and t ě 0. We thus need to obtain an

L8 bound. I.e., for all k ě 0, compute a bound ε2pkq such that:

}up¨, t0 ` kτq ´ ũp¨, t0 ` kτq}L8pΩq ď ε2pkq (7.24)

As mentioned above, the EIM provides an L8 error bound. For all M ě 0 and

for all v P H1pΩq, let tφkuk“1,...,M`1 be the first M ` 1 basis functions returned by

the EIM for v, we have the following error bound for the EIM interpolant of v:

}vp¨q ´ IM rvp¨qs}L8pΩq ď }φM`1p¨q ´ IM rφM`1p¨qs}L8pΩq (7.25)

Let us suppose IN has been computed as in Section 7.3.2. We have, for all x P Ω

and for all t ą 0:

|vpx, tq ´ vNpx, tq| ď |vpx, tq ´ IN rvp¨, tqspx, tq| ` |IN rvp¨, tqspx, tq ´ vNpx, tq| (7.26)

The first right-hand term |vpx, tq ´ IN rvp¨, tqspx, tq| can be bounded by the EIM

bound (7.25). The second right-hand term |IN rvp¨, tqspx, tq ´ vNpx, tq| being con-

structed with functions ϕ1, . . . , ϕN , it is equal, for all t ě 0 and x P Ω, to the

analytical solution of the truncated projected solution:

IN rvp¨, tqspx, tq ´ vNpx, tq “ IN rvp¨, tqspx, tq ´
Nÿ

i“1

βiptqϕipxq

IN rvp¨, tqspx, tq ´ vNpx, tq “ IN rvp¨, tqspx, tq ´
Nÿ

i“1

γiptqψipxq

We hoped to bound this term in the same fashion as [60], but it revealed more

difficult than expected. The interpolation IN rvp¨, tqspx, tq should in fact be computed

for every time t, and bounding this for every time would be numerically irrelevant.

As explained in [60], it is possible to bound such a term when the state v depends

explicitly on a parameter, and for which the derivatives w.r.t the parameter can

be computed. We hoped to evaluate this term by taking time as a parameter, but

this is actually not possible straightforwardly. We however think that this term can

be evaluated with further developments, using for example an EIM coupled with

another model reduction such as the Proper Generalized Decomposition [45,46].

7.4 L2 guaranteed control

Having introduced our attempt of L8 guaranteed control, we now present an

L2 approach closer to classical techniques used in the field of structural mechanics.

The reduced state we build will now be associated with an L2 distance instead of an

Euclidean one, so that the sets (balls) defined on the reduced space have a meaning

directly on the PDE state. We now consider the original problem (7.2)-(7.7).
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7.4.1 Transformation of the problem

Denoting by uq “ uqp., tq the solution of the quasi-static problem at each time t:

´∇ ¨ pκp.q∇uqq “ f ` ∇ ¨ pκp.q∇u8q in Ω, (7.27)

uqp0, tq “ ξ1ptq ´ ξ8
1 , (7.28)

uqpL, tq “ ξ2ptq ´ ξ8
2 , (7.29)

one can express the solution u as the sum of u8, uq and a function ψ, i.e.

up., tq “ u8p.q ` uqp., tq ` ψp., tq (7.30)

where ψp., tq is solution of the heat problem with homogeneous Dirichlet boundary

conditions

Bψ
Bt ´ ∇ ¨ pκp.q∇ψq “ gp.; ξptqq in Ω ˆ p0,`8q (7.31)

ψp0, tq “ ψpL, tq “ 0, t ą 0, (7.32)

ψp., t “ 0q “ ψ0, (7.33)

with

gp.; ξptqq “ ´Buq
Bt p.; ξptqq, ψ0 “ u0 ´ u8 ´ uqp., 0q.

We thus consider the functional Sobolev space V “ H1
0 pΩq. The weak variational

formulation of the problem (7.31)-(7.33) is to find ψ P L2p0,8;V q, ψp., t “ 0q “ ψ0,

solution of

pBψ
Bt , vq ` pκp.q∇ψ,∇vq “ pgp.; ξptqq, vq @v P V. (7.34)

The decomposition (7.30) actually lets us study the different behaviors we observe

in the equation: the quasi-static behavior, which is attained when the time step gets

large; and the dynamic behavior, being observed mainly at the beginning of a switch.

We also exhibit the objective state, and it will reveal the possible (attainable) target

states.

7.4.2 Stability requirements

Let us first show the following proposition:

Proposition 4. There exist constants C ą 0 and L ą 0, such that a sufficient

condition to satisfy the stability constraint

}up., tq ´ u8p.q}L2pΩq ď ρ for all t ą 0 (7.35)

is to fulfill

C}f ` ∇ ¨ pκp.q∇u8q}L2pΩq ` L }ξptq ´ ξ8}8 ` }ψp., tq}L2pΩq ď ρ. (7.36)

where ψp¨, tq is solution of (7.31)-(7.33).
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Proof. Because of (7.30), the stability requirement

}up., tq ´ u8p.q}L2pΩq ď ρ for all t ą 0

in (7.8) can be equivalently expressed as

}uqp., tq ` ψp., tq}L2pΩq ď ρ for all t ą 0.

The solution uq itself can be decomposed as

uqp., tq “ ūp.q ` wqp., tq,

where ū is solution of the steady elliptic problem with homogeneous Dirichlet bound-

ary conditions

´∇ ¨ pκp.qūq “ f ` ∇ ¨ pκp.q∇u8q in Ω, (7.37)

ūp0q “ ūpLq “ 0, (7.38)

and wq is solution of the quasi-static problem at each time t:

´∇ ¨ pκp.q∇wqq “ 0 in Ω, (7.39)

wqp0, tq “ ξ1ptq ´ ξ8
1 , for all t ą 0, (7.40)

wqpL, tq “ ξ2ptq ´ ξ8
2 , for all t ą 0. (7.41)

The solution ū is continuous with respect to the source term in (7.37) [70], i.e. there

exists C ą 0 such that:

}ū}V ď C }f ` ∇ ¨ pκp.q∇u8q}L2pΩq. (7.42)

For the solution wq of (7.39)-(7.41), because of the maximum principle [133], we

have

}wqp., tq}L8pΩq “ maxp|ξ1ptq ´ ξ8
1 |, |ξ2ptq ´ ξ8

2 |q “ }ξptq ´ ξ8}8. (7.43)

Thus,

}uqp., tq ` ψp., tq}L2pΩq ď }ū}L2pΩq ` }wq}L2pΩq ` }ψp., tq}L2pΩq

ď }ū}L2pΩq ` L}wq}L8 ` }ψp., tq}L2pΩq,

and finally

}uqp., tq ` ψp., tq}L2pΩq ď C}f ` ∇ ¨ pκp.q∇u8q}L2pΩq

` L }ξptq ´ ξ8}8 ` }ψp., tq}L2pΩq

A sufficient condition to satisfy the stability constraint (7.35) is then to fulfill

(7.36).
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The solution ψ lives in an infinite-dimensional space, so that it is hard or im-

possible to build a control synthesis based on a state-space decomposition. In the

sequel of the chapter, we will rather use a low-dimensional approximation ψ̃ (the

reduced-order model of ψ) in the form

ψ̃px, tq “
Kÿ

k“1

β̃kptqϕkpxq (7.44)

with a reduced basis tϕkuk“1,...,K assumed to be orthonormal in L2pΩq. In the sequel

we will denote byWK the linear vector space of dimensionK spanned by the reduced

basis tϕkuk:
WK “ span

`
ϕ1, ..., ϕK

˘
.

Denoting by β̃ptq “ pβ̃1ptq, ..., β̃KptqqT the vector of coefficients, we then have

}ψ̃p., tq}L2pΩq “ }β̃ptq}2,RK .

By the triangular inequality we can write

}ψp., tq}L2pΩq ď }ψp., tq ´ ψ̃p., tq}L2pΩq ` }ψ̃p., tq}L2pΩq (7.45)

ď }ψp., tq ´ ψ̃p., tq}L2pΩq ` }β̃ptq}2. (7.46)

Let us assume that we have the stability estimate for the reduced-order approxima-

tion: there exists a constant µ ą 0 such that

}ψp., tq ´ ψ̃p., tq}L2pΩq ď µ }ψ0 ´ ψ̃0}L2pΩq @t P r0, τ s (7.47)

for any constant control mode σ P t1, ...,Mu (uniform stability with respect to the

controls). This hypothesis can actually be verified with a proper construction of the

reduced basis. Then, a more restrictive sufficient condition to fulfill the stability

constraint (7.35) is to verify

C}f ` ∇ ¨ pκp.q∇u8q}L2pΩq ` L }ξptq ´ ξ8}8

` }β̃ptq}2 ` µ }ψ0 ´ ψ̃0}L2pΩq ď ρ. (7.48)

This equation is interesting since it enlightens the different controllable and uncon-

trollable terms.

Let us denote by πK : V Ñ WK the continuous linear orthogonal projection

operator over the low-order space WK . Still by a triangular inequality, we have

}ψ0 ´ ψ̃0}L2pΩq ď }ψ0 ´ πKψ0}L2pΩq ` }πKψ0 ´ ψ̃0}L2pΩq,

The projection πKψ0 is given by

πKψ0 “
Kÿ

k“1

β0

k ϕ
k,

142



with β0
k “ pψ0, ϕkqL2pΩq, k “ 1, ..., K. By denoting β0 “ pβ0

1 , ..., β
0
Kq, we then have

}ψ0 ´ ψ̃0}L2pΩq ď }ψ0 ´ πKψ0}L2pΩq ` }β0 ´ β̃0}2,

We thus have a reduced-order version of Proposition 4:

Proposition 5. Under the above-mentioned notations, let us suppose that there

exists µ ą 0 such that (7.47) holds. There exist constants C ą 0 and L ą 0 such

that a sufficient condition to satisfy the stability constraint (7.35) is to fulfill

C }f ` ∇ ¨ pκp.q∇u8q}L2pΩq ` L }ξptq ´ ξ8}8 ` }β̃ptq}2
` µ }ψ0 ´ πKψ0}L2pΩq ` µ }β0 ´ β̃0}2 ď ρ. (7.49)

Let us interpret equation (7.49). If we want to fulfill the inequality (7.49), all

the terms in the left-hand side have to be “small enough”. In particular, this means

that u8 should be compatible with the source term in the sense that

´∇ ¨ pκp.q∇u8q « f in Ω.

Moreover, the vector state ξptq should stay close to ξ8 for any time, the coefficient

vector β̃ptq in the reduced-space has to stay rather small in norm. The terms

L }ξptq ´ ξ8}8 and }β̃ptq}2 are actually controlled terms, these are the ones we

have to synthesize a controller with our symbolic approach. Note that L }ξptq ´
ξ8}8 actually justifies that we stabilize ξ in a box. We should also have }β0 ´
β̃0} small enough for any initial data subject to any admissible control, as well as

}ψ0 ´ πKψ0}L2pΩq, meaning that the reduced basis is able to correctly reproduce

any admissible initial data. In a nutshell, we have to synthesize a controller for

the reduced state pξ, β̃q using symbolic methods, and the other terms are fulfilled

as long as the objective state is compatible with the source term, and the reduced

basis represents accurately the initial conditions.

7.4.3 Strategy for stability control

At a switch time (reset to time zero for the sake of simplicity), consider the

approximate heat solution

ũ0 “ u8 ` uqp.; ξ0q ` ψ̃0

and the exact solution written as

u0 “ u8 ` uqp.; ξ0q ` ψ0.
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Considering Problem 4, we assume the following initial properties: there exist con-

stants δξ, ρβ, δ ą 0 such that

L}ξ0 ´ ξ8}8 ď δξ, (7.50)

}β̃0}2 ď ρβ, (7.51)

}ψ0 ´ ψ̃0}L2pΩq ď δ. (7.52)

It will be assumed that, δξ, ρβ and δ are such that

c1 ` δξ ` ρβ ` δ ď ρ (7.53)

where c1 “ C }f ` ∇ ¨ pκp.q∇u8q}L2pΩq. We look for controls that preserve these

properties (ans solve Problem 4). I.e., we look for control modes such that, for all

time t P r0, τ s (before the next switch), we have:

L}ξptq ´ ξ8}8 ď δξ, (7.54)

}β̃ptq}2 ď ρβ, (7.55)

}ψptq ´ ψ̃pτq}L2pΩq ď δ. (7.56)

Then by construction we will automatically fulfill the stability requirement (7.35)

on the heat solution for a given control mode σ, i.e.

}up., tq ´ u8}L2pΩq ď ρ for all t P p0, τ s. (7.57)

These properties can also be ensured for control sequences π “ pσ1, . . . , σkq, and
have to be verified for all t P r0, kτ s.

Remark 9. From (7.50) and (7.54), it is appropriate to choose the recurrence set

Rξ for the ξp.q variable as the ball of center ξ8 and radius δξ for the topology induced

by the norm }.}8, i.e. a box centered around ξ8.

The synthesis can now be performed, provided that the reduced basis ensures

for all t P r0, kτ s, }ψptq ´ ψ̃pτq}L2pΩq ď δ (this point is addressed in the following).

The state ξ is subject to an ODE (of dimension 2 in our case), and it can thus be

controlled easily with the methods described in the previous chapters. Besides, the

reduced state β̃ verifies a nonlinear ODE. Indeed, the reduced-order approximation

ψ̃ P WK is chosen in such a way that it verifies the equation:

pB rψ
Bt , wq ` pκp.q∇ rψ,∇wq “ pgp.; ξptqq, wq @w P WK , (7.58)

ψ̃p., t “ 0q “ ψ̃0. (7.59)

The basis functions
`
ϕ1, ..., ϕK

˘
being chosen orthonormal in L2pΩq, it leads to a

system of differential equations, for all 1 ď i ď K:

9̃
βi ` βipκp.q∇ϕi,∇ϕjq “ pgp.; ξptqq, ϕjq 1 ď j ď K, (7.60)
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which is a system of nonlinear differential equations, that can be handled by the

synthesis algorithm presented in Chapter 4.3. This algorithm is particularly adapted

to this purpose since }ψ̃p., tq}L2pΩq “ }β̃ptq}2,RK . By covering the ball Bp0, ρβ; L2pΩqq
with smaller balls, we ensure (7.55). Exactly as in Chapter 4.3, we just have to verify

that the images of the ball after one (or several) time steps are included in the

objective (the objective being convex, we do not need to verify the property for the

whole tube). Furthermore, verifying the inclusion of a ball in a ball is numerically

very cheap.

7.4.4 Certified reduced basis for control

Let us now present the construction of a proper reduced basis, allowing to ver-

ify (7.49). Considering the space of all possible sequences of switched controls of

lengths less than M , we have to derive a reduced-order model which guarantees a

prescribed accuracy for any switched control sequence.

For that purpose, it seems appropriate to build a reduced-order model using a

posteriori error estimates within an iterative greedy approach.

Let us consider a low-dimensional vector space W Ă V and a Galerkin approach

with a reduced-order approximation ψ̃ solution of the finite dimensional variational

problem

pB rψ
Bt , wq ` pκp.q∇ rψ,∇wq “ pgp.; ξptqq, wq @w P W, (7.61)

ψ̃p., t “ 0q “ ψ̃0. (7.62)

A posteriori error estimation

From (7.34), one can directly derive a variational problem for the error function

e :“ ψ ´ rψ: @v P V ,

pBe
Bt , vq ` pκp.q∇e,∇vq “ pgp.; ξptq, vq ´ pB rψ

Bt , vq ´ pκp.q∇ rψ,∇vq, (7.63)

ep., t “ 0q “ ψ0 ´ rψ0 :“ e0. (7.64)

The right hand side defines a residual linear form rξ depending on ξptq:

rξpvq “ pgp.; ξptq, vq ´ pB rψ
Bt , vq ´ pκp.q∇ rψ,∇vq, @v P V. (7.65)

By construction of the approximate solution rψ, from (7.58) we clearly have

rξpwq “ 0 @w P W.

One can define a norm for rξ in the dual space V 1 of V :

}rξ}V 1 “ sup
}v}V ď1

|rξpvq|.
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Considering the particular test function v “ e, we have

1

2

d

dt
}e}2L2 ` }κp.q∇e}2L2 “ rξpeq.

From Poincaré’s inequality

}v}L2 ď CΩ}∇v} @v P V

and the lower bound κm of κ, we have also

1

2

d

dt
}e}2L2 ď ´κm

C2
Ω

}e}2L2 ` }rξ}V 1ptq }e}L2 .

Let us denote the constant

η̃ “ sup
ξp.q

sup
tě0

}rξ}V 1ptq (7.66)

with σp.q P Στ such that ξptq P Rξ for all t ě 0, ξp.q subject to

9ξ “ Aσξ ` Bwσ, ξp0q “ ξ0.

So we have the estimation

1

2

d

dt
}e}2L2 ď ´κm

C2
Ω

}e}2V ` η̃ }e}L2 . (7.67)

By using the Young inequality

η̃ }eptq}L2 ď κm

2C2
Ω

}eptq}2L2 ` C2
Ω

2κm
η̃2

and Gronwall’s lemma to the resulting estimate, we get the error estimate in L2-

norm

}eptq}2L2 ď expp´κm

C2
Ω

tq}e0}2L2 ` η̃2C4
Ω

κ2m

ˆ
1 ´ expp´κm

C2
Ω

tq
˙
. (7.68)

From (7.68), we have the straightforward property:

Proposition 6. A sufficient condition to guarantee

}eptq}L2 ď }ep0q}L2 @t ą 0

is to fulfill the inequality
η̃ C2

Ω

κm
ď }e0}. (7.69)

Remark 10. Because the approximate problem is built from a Galerkin projection

method, it is expected that the constant η̃ becomes small for a “good” finite discrete

space W . So for an accuracy level }e0}L2 ď δ on the initial state, the goal is to find a

discrete reduced-order space W such that the inequality η̃ ď κm δ
C2

Ω

holds. The constant

η̃ defined in (7.66) is a uniform upper bound of the residual quantity, meaning that η̃

should be rather small for any switched control sequence σp.q for practical use. This

remark leads us to the following greedy algorithm for the construction of the reduced

order basis (RB).
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Greedy algorithm and reduced bases

The greedy algorithm also to compute a reduced basis that spans the discrete

space W̃ in an iterative and greedy manner.

— First iterate k “ 1. Define δ ą 0 and a residual threshold

rM “ κmδ

C2
Ω

.

Let us assume that ψ P V and ψ0 ‰ 0. Let us consider first

ϕ1 “ ψ0

}ψ0}

and W p1q “ spanpϕ1q. Define a random sequence of control sequences σp.q P
Στ , i.e. control sequences of length less than K. As soon as

}rξ}V 1ptq ă rM ,

solve the reduced-order model

pB rψp1q

Bt , wq ` pκp.q∇ rψp1q,∇wq “ pgp.; ξptq, wq @w P W p1q, (7.70)

ψ̃p1qp., t “ 0q “ ψ̃0. (7.71)

— If there is a time tp1q ą 0 such that }rξ}V 1ptp1qq “ rM , then compute

vp2q “ arg max
}v}“1

|rξptp1qqpvq|

and define

ϕ2 “ vp2q

}vp2q} , W p2q “ spanpϕ1, ϕ2q.

— The reduced-order model at iterate pkq is

pB rψpkq

Bt , wq ` pκp.q∇ rψpkq,∇wq “ pgp.; ξptq, wq @w P W pkq, (7.72)

ψ̃pkqp., t “ 0q “ ψ̃0. (7.73)

— Repeat until }rξ}V 1 ă rM for all time t ą 0. Let us denote by K the final

rank and W pKq “ spanpϕ1, ϕ2, ..., ϕKq the associated discrete space.

For performance and complexity aspects, the rank K is expected to be not too large.

For that, the initial accuracy radius δ should be chosen not to small.

7.4.5 Numerical experiment for the L2 guaranteed control

synthesis by stability of error balls

As a proof of concept, we apply the strategy described in Section 7.4.3, on the

case study (7.9-7.12) with a time step τ “ 0.05. The reduced basis used is a simple
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Figure 7.1: Simulation of the controller.

spectral decomposition, as constructed in Section 7.3. The spectral decomposition

allows to fulfill (7.47) with µ “ 1, and thus to apply Proposition 5. The reduced basis

is truncated at K “ 4 eigenmodes. Associated to the ODE, we thus get a reduced

system of dimension 6. Using control sequences of length 8, and a decomposition

of the reduced state-space in 46 “ 4096 balls, we manage to synthesize a controller

in approximately 20 minutes, with an objective state pξ8, u8q “ p0R2 , 0L2pΩqq and

guaranteed L2 error of ρ “ 0.5. A simulation of the controller is given in Figure 7.1,

where the initial condition is set as a random combination of the first ten eigenmodes

and a lifting, such that (7.50-7.52) holds with δξ “ 0.2, ρβ “ 0.2 and δ “ 0.1.

7.5 Reliable measurements, online control, and

other applications

A first challenge for the future is to handle other types of PDEs (e.g. hyperbolic)

with such methods, as well as different types of controls and coupling. A first

application that could be interesting in the continuation of this work would be

to apply such an approach to synthesizing a guaranteed controller for the SCOLE

(Spacecraft COntrol Laboratory Experiment) model. It is described by the following
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equations, for all t ą 0:

ρvttpx, tq ` EIvxxxxpx, tq ` ρBvtpx, tq “ ρω2vpx, tq, @x P r0, Ls (7.74)

vp0, tq “ vxp0, tq “ vxxpL, tq “ vxxxpL, tq “ 0, (7.75)

ωtptq “ Γptq ´ 2ωptq
şL
0
ρvpx, tqvtpx, tqdx

Id `
şL
0
ρv2px, tqdx

. (7.76)

It actually models a metal beam fixed on a rotating rigid body, which rotation is

controlled by the input torque Γ. We thus have a hyperbolic PDE coupled to an

ODE, but in this case, the coupling goes through a Dirichlet boundary condition.

Many theoretical approaches have been developed for this case study and its multiple

variations: [22, 33, 50, 51]. We believe that a symbolic approach could be used to

handle this case study.

While we gave some possible directions for the use of symbolic control applied

to PDEs, some aspects are still not taken into account. One of which is partial

observation, which was partly tackled in Chapter 6. In a general case, this should

be taken into account by considering a system of the form

9x “ fpxptqq ` εpt;xptq;µq

yptq “ L pxptqq ` wptq.

for high dimensional ODEs. A general case is however more difficult to establish for

PDEs since the observation can be performed locally (in a point) or in a distributed

manner on a portion of the boundary, or on a portion of the domain of the PDE.

Nevertheless, the possible objectives aimed by considering partial observation are

numerous:

— taking state estimation errors into account

— evaluating the OSL/Lipschitz constants and parameters of the system

— use of Kalman filter-like state estimators

— partial observation and much more...
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Chapter 8

Conclusions and perspectives
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Summary

In this thesis, we proposed symbolic methods to synthesize “correct-by-design”

state-dependent controllers for sampled switched systems, aimed at extending the

field of application of former methods. A first step, introduced in Chapter 4, was the

handling of nonlinear dynamics, made possible with appropriate reachability com-

putation methods, using guaranteed numerical schemes. We presented an approach

based on guaranteed Runge-Kutta schemes and interval analysis, accurate and fast

enough to compete with state-of-the-art tools. We then presented a novel approach

renewing the Euler method, thanks to the use of the OSL property, which is a much

weaker hypothesis than those used in various symbolic tools such as incremental

stability or monotonicity. The Euler approach led to impressive computation times

compared to other symbolic tools, even if it failed on some systems presenting large

positive OSL constants.

On account of the inherent exponential complexity of symbolic methods, we

proposed in Chapter 5 compositional approaches for the synthesis of controllers,

made possible with over-approximation techniques which allow us to synthesize local

controllers, on sub-parts of the system. We provided three procedures:

— The first is available for linear systems and ensures discrete-time properties

and relies on zonotopes, it is associated to an iterative backward reachability

procedure extending the basic decomposition method.

— The second is available for nonlinear systems and ensures continuous-time

properties thanks to the use of guaranteed Runge-Kutta schemes.

— The third one is available for nonlinear systems and relies on the Euler method

introduced in Chapter 4. It can be used in a compositional way with the use

of a weaker variant of the incremental input-to-state stability.

In Chapter 6, we laid out an approach allowing to control high dimensional ODEs

obtained from the discretization of PDEs. We proposed to use approximate models

obtained by balanced truncation in order to synthesize controllers at the reduced-

order level, and by appropriately bounding the trajectory errors between the high

and low dimensional systems, infer guaranteed controllers. We also gave initiating

works to the use of state observers in the case of partial observation.

In Chapter 7, we gave two approaches relying on reduced-order modeling with

the aim of obtaining guaranteed controllers for non discretized PDEs. Our first ap-

proach made use of the EIM and a spectral model reduction. These works are a first

step to the synthesis of L8 guaranteed controllers, but the bounding of the reduction

error revealed more complicated than expected, and we hope that further collabora-

tions with researchers from the field of computational mechanics can complete this

approach. We finally gave an operational procedure for obtaining L2 guaranteed

controllers, using Galerkin based reduced-order models, a proper decomposition of

the terms of the solution, and an L2 topology for the reduced-order level. This
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allowed to synthesize a guaranteed controller for a coupled ODE-PDE system.

As a summary of this summary, the main contributions of this thesis are the

following:

— improvements of the synthesis algorithms allowing better performances;

— innovative numerical schemes for the handling of nonlinear systems;

— compositional methods to break the complexity of the algorithms;

— reduced-order modeling for the handling of PDEs.

Perspectives and future research

The Euler method proposed in Chapter 4, even though very efficient on systems

presenting negative OSL constants, can still be improved. A possible line of research

for its development is the use of a posteriori error estimation, such as in [145],

possibly improving the current results for negative OSL constants. The use of dual

methods seems to be an appropriate way [80].

In the compositional reachability procedure proposed in Chapter 5.2, the choice

of the safety parameter ε is left to the user. An interesting continuation of this

work would be to automatically synthesize this parameter. This could be performed

using approaches used in contract based design [26, 161]. More precisely, the use of

parametric contracts allows to determine admissible parameters [102], in the same

vein as [2, 99], and could be applied in our context. Furthermore, in this thesis, we

do not discuss the choice of the decomposition in sub-systems. Certain automatic

methods provide the best decompositions [143,177]. This kind of techniques could be

extended to our methods, with the objective of obtaining the least complex symbolic

model.

The research of patterns is still one of the most cost consuming tasks in our algo-

rithms. The recent development of learning algorithms might be a way of drastically

lowering the number of tests performed when the length of patterns considered is

long (such as in the path planning problem A.6). Furthermore, it could bring op-

timality in the method. The patterns we select here are the shortest ones, but

optimizing the energy consumption of a system is a very topical issue, and learning

algorithms can steer us to this objective.

As for PDEs, we would like to point out that compositional approaches can

actually be compared to domain decomposition methods used in computational me-

chanics [151]. It could be interesting to study the compatibility of both methods.

In the case where multiple actuators are applied, for example, on a flexible beam, a

domain decomposition method can be used to compute a solution for the displace-

ment in the beam. If a compositional synthesis sharing this domain decomposition

were possible, we could contemplate applying our methods on much more complex

and realistic case studies. However, this kind of models being usually used in pri-

vate companies, further collaborations with the latter might be needed to see the
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applicability of such methods.

More generally, regarding PDEs and Chapter 7, we only applied our method

to a single case study. It seems mandatory to test our method on other types of

equations and case studies, and the SCOLE model might be a start. All in all, it is

only by continuing this line of research that we may see if a generic symbolic method

can be inferred for PDEs with our approach.
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Appendix A

Case studies modeled by ODEs

A.1 Boost DC-DC converter

This linear example is taken from [27]. The system is a boost DC-DC converter

with one switching cell. There are two switching modes depending on the position

of the switching cell. The dynamics is given by the equation 9xptq “ Aσptqxptq `Bσptq

with σptq P U “ t1, 2u. The two modes are given by the matrices:

A1 “
˜

´ rl
xl

0

0 ´ 1

xc

1

r0`rc

¸
B1 “

˜
vs
xl

0

¸

A2 “
˜

´ 1

xl
prl ` r0.rc

r0`rc
q ´ 1

xl

r0
r0`rc

1

xc

r0
r0`rc

´ 1

xc

r0
r0`rc

¸
B2 “

˜
vs
xl

0

¸

with xc “ 70, xl “ 3, rc “ 0.005, rl “ 0.05, r0 “ 1, vs “ 1. The sampling period is

τ “ 0.5. The parameters are exact and there is no perturbation.

A.2 Two-room apartment

This case study is based a simple model of a two-room apartment, heated by

one heater in each room (adapted from [76]). In this example, the objective is to

control the temperature of both rooms. There is heat exchange between the two

rooms and with the environment. The continuous dynamics of the system is given

by the equation:

9˜
T1

T2

¸
“
˜

´α21 ´ αe1 ´ αfu1 α21

α12 ´α12 ´ αe2 ´ αfu2

¸˜
T1

T2

¸
`
˜
αe1Te ` αfTfu1

αe2Te ` αfTfu2

¸
.

Here T1 and T2 are the temperatures of the two rooms, and the state of the system

corresponds to T “ pT1, T2q. The control mode variable u1 (respectively u2) can

take the values 0 or 1, depending on whether the heater in room 1 (respectively

room 2) is switched off or on (hence U1 “ U2 “ t0, 1u). Hence, here n1 “ n2 “ 1,

N1 “ N2 “ 2, and n “ 2 and N “ 4.
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Temperature Te corresponds to the temperature of the environment, and Tf to

the temperature of the heaters. The values of the different parameters are as follows:

α12 “ 5 ˆ 10´2, α21 “ 5 ˆ 10´2, αe1 “ 5 ˆ 10´3, αe2 “ 5 ˆ 10´3, αf “ 8.3 ˆ 10´3,

Te “ 10 and Tf “ 35.

A.3 A polynomial example

In this case study, we consider the polynomial system taken from [126], presented

as a difficult example:

«
9x1

9x2

ff
“
«

´x2 ´ 1.5x1 ´ 0.5x31 ` u1 ` d1

x1 ` u2 ` d2

ff
. (A.1)

The control inputs are given by u “ pu1, u2q “ Kσptqpx1, x2q, σptq P U “ t1, 2, 3, 4u,
which correspond to four different state feedback controllers K1pxq “ p0,´x22 ` 2q,
K2pxq “ p0,´x2q, K3pxq “ p2, 10q, K4pxq “ p´1.5, 10q. We thus have four switching

modes. The disturbance d “ pd1, d2q lies in r´0.005, 0.005s ˆ r´0.005, 0.005s. The

objective is to visit infinitely often two zones R1 and R2, without going out of a

safety zone S, and while never crossing a forbidden zone B. The sampling period is

set to τ “ 0.15.

A.4 Four room apartment

We consider a building ventilation application adapted from [134]. The system

is a four room apartment subject to heat transfer between the rooms, with the

external environment, with the underfloor, and with human beings. The dynamics

of the system is given by the following equation:

dTi

dt
“

ÿ

jPN *ztiu

aijpTj ´ Tiq ` δsibipT 4

si
´ T 4

i q ` ci max

ˆ
0,
Vi ´ V *

i

V̄i ´ V *
i

˙
pTu ´ Tiq. (A.2)

The state of the system is given by the temperatures in the rooms Ti, for i P
N “ t1, . . . , 4u. Room i is subject to heat exchange with different entities stated by

the indexes N * “ t1, 2, 3, 4, u, o, cu.
The heat transfer between the rooms is given by the coefficients aij for i, j P N 2,

and the different perturbations are the following:

— The convective heat transfer with the external environment: it has an effect

on room i with the coefficient aio and the outside temperature To, varying

between 27˝C and 30˝C.

— The convective heat transfer through the ceiling: it has an effect on room i

with the coefficient aic and the ceiling temperature Tc, varying between 27˝C

and 30˝C.
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Room i 1 2 3 4

ai,1 7.60 ˆ 10´5 1.09 ˆ 10´4

ai,2 2.85 ˆ 10´4 1.79 ˆ 10´4

ai,3 1.89 ˆ 10´4 1.07 ˆ 10´4

ai,4 2.47 ˆ 10´4 3.81 ˆ 10´4

ai,u 7.36 ˆ 10´5 7.02 ˆ 10´5 3.45 ˆ 10´5 3.26 ˆ 10´5

ai,o 9.27 ˆ 10´5 2.42 ˆ 10´4 3.21 ˆ 10´8 1.73 ˆ 10´4

ai,c 5.78 ˆ 10´4 6.21 ˆ 10´4 5.64 ˆ 10´4 5.99 ˆ 10´4

bi 3.12 ˆ 10´17 2.55 ˆ 10´16 8.57 ˆ 10´13 3.57 ˆ 10´17

Tsi 3.73 ˆ 103 1.78 ˆ 103 3.80 ˆ 102 3.93 ˆ 103

ci 2.12 ˆ 10´3 1.88 ˆ 10´3 3.05 ˆ 10´3 1.40 ˆ 10´3

Table A.1: Identified parameters for the four room apartment model (A.2).

— The convective heat transfer with the underfloor: it is given by the coefficient

aiu and the underfloor temperature Tu, set to 17˝C (Tu is constant, regulated

by a PID controller).

— The perturbation induced by the presence of humans, modeled by a radiation

term: it is given in room i by the term δsibipT 4
si

´ T 4
i q, the parameter δsi is

equal to 1 when someone is present in room i, 0 otherwise, and Tsi is a given

identified parameter.

The control Vi, i P N , is applied through the term ci maxp0, Vi´V *
i

V̄i´V *
i

qpTu ´ Tiq.
A voltage Vi is applied to force ventilation from the underfloor to room i, and the

command of an underfloor fan is subject to a dry friction. Because we work in

a switched control framework, Vi can take only discrete values, which removes the

problem of dealing with a “max” function in interval analysis. In the experiment, V1

and V4 can take the values 0V or 3.5V, and V2 and V3 can take the values 0V or 3V.

This leads to a system of the form of Equation (3.1) with σptq P U “ t1, . . . , 16u, the
16 switching modes corresponding to the different possible combinations of voltages

Vi. The sampling period is τ “ 10s.

The parameters Tsi , V
*
i , V̄i, aij, bi, ci are given in Table A.1 and have been

identified with a proper identification procedure detailed in [137]. Note that here we

have neglected the term
ř

jPN δdijci,j ˚hpTj ´Tiq of [134], representing the perturba-

tion induced by the open or closed state of the doors between the rooms. Taking a

“max” function into account with set based methods is actually still a difficult task.

However, this term could have been taken into account with a proper regularization

(smoothing).
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A.5 Linearized four room apartment

This case study is a linearized version of A.4. The dynamics of the system is given

by the same equation, except that the nonlinear term δsibipT 4
si

´ T 4
i q is neglected.

The system is thus ruled by the equation:

dTi

dt
“

ÿ

jPN *ztiu

aijpTj ´ Tiq ` ci max

ˆ
0,
Vi ´ V *

i

V̄i ´ V *
i

˙
pTu ´ Tiq. (A.3)

The behavior of the system is exactly the same as case study A.4, except that

the perturbation induced by the presence of humans is neglected. The parameters

of the model are the same and are given in Table A.1.

A.6 A path planning problem

This case study is based on a model of a vehicle initially introduced in [19] and

successfully controlled in [154, 175] with the tools PESSOA and SCOTS. In this

model, the motion of the front and rear pairs of wheels are approximated by a single

front wheel and a single rear wheel. The dynamics of the vehicle is given by:

9x “ v0
cospα`θq
cospαq

9y “ v0
sinpα`θq
cospαq

9θ “ v0
b
tanpδq

(A.4)

where α “ arctanpa tanpδq{bq. The system is thus of dimension 3, px, yq is the

position of the vehicle, while θ is the orientation of the vehicle. The control inputs

are v0, an input velocity, and δ, the steering angle of the rear wheel. The parameters

are: a “ 0.5, b “ 1. Just as in [154, 175], we suppose that the control inputs are

piecewise constant, which leads to a switched system of the form of Equation (3.1)

with no perturbation. The objective is to send the vehicle into an objective region

R2 “ r9, 9.5sˆr0, 0.5sˆs´8,`8r from an initial region R1 “ r0, 0.5sˆr0, 0.5sˆr0, 0s.
The safety set is S “ r0, 10s ˆ r0, 10sˆs ´ 8,`8r. There is in fact no particular

constraint on the orientation of the vehicle, but multiple obstacles are imposed for

the two first dimensions, they are represented in Figure 4.6 of Chapter 4. The input

velocity v0 can take the values in t´0.5, 0.5, 1.0u. The rear wheel orientation δ can

take the values in t0.9, 0.6, 0.5, 0.3, 0.0,´0.3,´0.5,´0.6,´0.9u. The sampling period

is τ “ 0.3.

A.7 Two-tank system

The two-tank system is a linear example taken from [89]. The system consists

of two tanks and two valves. The first valve adds to the inflow of tank 1 and the

second valve is a drain valve for tank 2. There is also a constant outflow from
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tank 2 caused by a pump. The system is linearized at a desired operating point.

The objective is to keep the water level in both tanks within limits using a discrete

open/close switching strategy for the valves. Let the water level of tanks 1 and 2 be

given by x1 and x2 respectively. The behavior of x1 is given by 9x1 “ ´x1 ´ 2 when

the tank 1 valve is closed, and 9x1 “ ´x1 ` 3 when it is open. Likewise, x2 is driven

by 9x2 “ x1 when the tank 2 valve is closed and 9x2 “ x1 ´ x2 ´ 5 when it is open.

On this example, the Euler-based method works better than DynIBEX in terms of

CPU time.

A.8 Helicopter

The helicopter is a linear example taken from [55]. The problem is to control

a quadrotor helicopter toward a particular position on top of a stationary ground

vehicle, while satisfying constraints on the relative velocity. Let g be the gravita-

tional constant, x (reps. y) the position according to x-axis (resp. y-axis), 9x (resp.

9y) the velocity according to x-axis (resp. y-axis), φ the pitch command and ψ the

roll command. The possible commands for the pitch and the roll are the following:

φ, ψ P t´10, 0, 10u. Since each mode corresponds to a pair pφ, ψq, there are nine

switched modes. The dynamics of the system is given by the equation:

9X “

¨
˚̊
˚̋

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

˛
‹‹‹‚X `

¨
˚̊
˚̋

0

g sinp´φq
0

g sinpψq

˛
‹‹‹‚

where X “ px 9x y 9yqJ. Since the variables x and y are decoupled in the equations

and follow the same equations (up to the sign of the command), it suffices to study

the control for x (the control for y is the opposite).

A.9 Eleven room house

This case study, proposed by the Danish company Seluxit, aims at controlling the

temperature of an eleven rooms house, heated by geothermal energy. The continuous

dynamics of the system is the following:

d

dt
Tiptq “

nÿ

j“1

Ad
i,jpTjptq ´ Tiptqq ` BipTenvptq ´ Tiptqq ` Hv

i,j.vj (A.5)

The temperatures of the rooms are the Ti. The matrix Ad contains the heat

transfer coefficients between the rooms, matrix B contains the heat transfer coef-

ficients betweens the rooms and the external temperature, set to Tenv “ 10˝C for

the computations. The control matrix Hv contains the effects of the control on the
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room temperatures, and the control variable is here denoted by vj. We have vj “ 1

(resp. vj “ 0) if the heater in room j is turned on (resp. turned off). We thus have

n “ 11 and N “ 211 “ 2048 switching modes.

Note that the matrix Ad is parametrized by the open of closed state of the doors

in the house. In our case, the average between closed and open matrices was taken

for the computations. The exact values of the coefficients are given in [112]. The

controller has to select which heater to turn on in the eleven rooms. Due to a

limitation of the capacity supplied by the geothermal device, the 11 heaters cannot

be turned on at the same time. In our case, we limit to 4 the number of heaters

that can be on at the same time.
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Appendix B

Proof of Lemma 1

Proof. Suppose ℓ1 ď ℓ2, and denote by P 1
i1

pkq the property

pfppri1 ` A,R2 ` Aq, pπk
i1
, πk

i2
qqq1 Ď Xk

i1

and by P 2
i1

pkq
Xk

i1
Ď R1 ` A ` ε

and similarly for P 1
i2

pkq and P 2
i2

pkq.
We show by induction on k the following property P pkq:

@i1 P I1, P 1

i1
pkq ^ P 2

i1
pkq and @i2 P I2, P 1

i2
pkq ^ P 2

i2
pkq.

Let us first consider the case k “ 1. Let us prove @i1 P I1, P
1
i1

pkq ^ P 2
i1

pkq
(the proof is similar for @i2 P I2, P 1

i2
pkq^P 2

i2
pkq). Let us show that pfppri1 `A,R2 `

Aq, pπk
i1
, πk

i2
qqq1 Ď Xk

i1
and Xk

i1
Ď R1 ` A ` ε.

For k “ 1, πk
i1
and πk

i2
are of the form u1 and u2. We have:

1. pfppri1 ` A,R2 ` Aq, pπk
i1
, πk

i2
qqq1 “ f1pri1 ` a,R2 ` a, u1q

2. X1
i1

“ f1pX0
i1
, R2 ` A ` ε, u1q “ f1pri1 ` a,R2 ` A ` ε, u1q

Hence pfppri1 ` A,R2 ` Aq, pπk
i1
, πk

i2
qqq1 Ď Xk

i1
holds for k “ 1. And Xk

i1
Ď

R1 ` A ` ε because of Prop1pA, i1, πi1q.
Let us now suppose that k ą 1 and that P pk ´ 1q holds. We prove P pkq.

Properties P 2
i1

pkq and P 2
i2

pkq are true for all i1, i2 because, by construction, the

sequence Xk
i1

(resp. Xk
i2
) satisfies Prop1pa, i1, πi1q (resp. Prop2pa, i2, πi2q). Let us

prove P 1
i1

pkq and P 1
i2

pkq:

pfpri1 ` A,R2 ` A, pπk
i1
, πk

i2
qqq1 “ pfpfppri1 ` A,R2 ` Aq, pπk´1

i1
, πk´1

i2
qq,

pπi1pkq, πi2pkqqqq1
“ f1prfppri1 ` A,R2 ` Aq, pπk´1

i1
, πk´1

i2
qqs,

rfppri1 ` A,R2 ` Aq, pπk´1

i1
, πk´1

i2
qqs, πi1pkqq.
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Note that the first argument of f1 in the last expression satisfies rfppri1 `A,R2`
Aq, pπk´1

i1
, πk´1

i2
qqs Ď Xk

i1
by P 1

i1
pk ´ 1q. Besides, the second argument satisfies

rfppri1 ` A,R2 ` Aq, pπk´1

i1
, πk´1

i2
qqs Ď Ť

j2PI2
Xk´1

j2
Ď R2 ` A ` ε, because

1. ri1 ` A Ď R1 ` A

2.
Ť

j2PI2
Xk´1

j2
Ď R2 ` A ` ε since Xk´1

j2
Ď R2 ` A ` ε (by P 2

j2
pk ´ 1q which

holds for all j2)

3. rfppR1 ` A, rj2 ` Aq, pπk´1

i1
, πk´1

i2
qqs Ď Xk´1

j2
(by P 1

j2
pk ´ 1q).

Hence

f1prfppri1 ` A,R2 ` Aq, pπk´1

i1
, πk´1

i2
qqs, rfppri1 ` A,R2 ` Aq, pπk´1

i1
, πk´1

i2
qqs, πpkq

i1
q

Ď f1pXk´1

i1
, R2 ` A ` ε, πi1pkqq “ Xk

i1

We have thus proved P 1
i1

pkq:

pfpri1 ` A,R2 ` A, pπk
i1
, πk

i2
qqq1 Ď Xk

i1

This completes the proof of @i1 P I1, P 1
i1

pkq ^P 2
i1

pkq We prove P 1
i2

pkq ^P 2
i2

pkq for all
i2 P I2 similarly, which concludes the proof of P pkq. The proof of pfppri1 ` A,R2 `
Aq, pπℓ1

i1
, πℓ1

i2
qqq1 Ď Xℓ1

i1
pa, πi1q Ď R1 is similar.

164



Bibliography

[1] M. Abbaszadeh and H. Marquez. Nonlinear observer design for one-sided

lipschitz systems. In Proceedings of the American Control Conference (ACC),

pages 799–806. IEEE, 2010.

[2] M. Al Khatib, A. Girard, and T. Dang. Scheduling of embedded controllers

under timing contracts. In Proceedings of the 20th International Conference

on Hybrid Systems: Computation and Control, pages 131–140. ACM, 2017.

[3] A. Alessandri, M. Baglietto, and G. Battistelli. Luenberger observers for

switching discrete-time linear systems. International Journal of Control,

80(12):1931–1943, 2007.

[4] A. Alessandri and P. Coletta. Design of luenberger observers for a class of

hybrid linear systems. In Hybrid systems: computation and control, pages

7–18. Springer, 2001.

[5] J. Alexandre dit Sandretto and A. Chapoutot. Dynibex library.

http://perso.ensta-paristech.fr/ chapoutot/dynibex/, 2015.

[6] J. Alexandre dit Sandretto and A. Chapoutot. Validated Solution of Initial

Value Problem for Ordinary Differential Equations based on Explicit and Im-

plicit Runge-Kutta Schemes. Research report, ENSTA ParisTech, 2015.

[7] J. Alexandre dit Sandretto and A. Chapoutot. Validated explicit and implicit

runge-kutta methods. Reliable Computing, 22:79–103, 2016.

[8] M. Althoff. Reachability analysis of nonlinear systems using conservative poly-

nomialization and non-convex sets. In Hybrid Systems: Computation and

Control, pages 173–182, 2013.

[9] M. Althoff. Reachability analysis of nonlinear systems using conservative poly-

nomialization and non-convex sets. In Proceedings of the 16th international

conference on Hybrid systems: computation and control, pages 173–182. ACM,

2013.

[10] M. Althoff, O. Stursberg, and M. Buss. Verification of uncertain embedded

systems by computing reachable sets based on zonotopes.

[11] R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in System

Design, 15(1):7–48, 1999.

165



[12] R. Alur, S. Moarref, and U. Topcu. Pattern-based refinement of assume-

guarantee specifications in reactive synthesis. In Tools and Algorithms for the

Construction and Analysis of Systems, pages 501–516. Springer, 2015.

[13] D. Angeli. A Lyapunov approach to incremental stability. In Proc. of IEEE

Conference on Decision and Control,, volume 3, pages 2947–2952, 2000.

[14] D. Angeli. Further results on incremental input-to-state stability. IEEE Trans-

actions on Automatic Control, 54(6):1386–1391, 2009.

[15] A. Antoulas and D. C. Sorensen. Approximation of large-scale dynamical sys-

tems: an overview. International Journal of Applied Mathematics and Com-

puter Science, 11(5):1093–1121, 2001.

[16] A. Antoulas, D. C. Sorensen, and S. Gugercin. A survey of model reduction

methods for large-scale systems. Contemporary Mathematics, 280:193–219,

2000.

[17] E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli. Effective synthesis of

switching controllers for linear systems. Proceedings of the IEEE, 88(7):1011–

1025, 2000.

[18] E. Asarin, T. Dang, and A. Girard. Hybridization methods for the analysis of

nonlinear systems. Acta Informatica, 43(7):451–476, 2007.

[19] K. J. Aström and R. M. Murray. Feedback systems: an introduction for sci-

entists and engineers. Princeton university press, 2010.

[20] K. E. Atkinson. An introduction to numerical analysis. John Wiley & Sons,

2008.

[21] J. A. Atwell and B. B. King. Reduced order controllers for spatially distributed

systems via proper orthogonal decomposition. SIAM Journal on Scientific

Computing, 26(1):128–151, 2004.

[22] M. Azam, S. N. Singh, A. Iyer, and Y. Kakad. Nonlinear rotational maneuver

and vibration damping of nasa scole system. Acta Astronautica, 32(3):211–220,

1994.

[23] Z. Bai. Krylov subspace techniques for reduced-order modeling of large-scale

dynamical systems. Applied numerical mathematics, 43(1-2):9–44, 2002.

[24] M. Balde and P. Jouan. Geometry of the limit sets of linear switched systems.

SIAM J. Control Optim., 49(3):1048–1063, 2011.

[25] G. Bastin and J.-M. Coron. Stability and boundary stabilization of 1-d hyper-

bolic systems, volume 88. Springer.

[26] S. S. Bauer, A. David, R. Hennicker, K. G. Larsen, A. Legay, U. Nyman, and

A. Wasowski. Moving from specifications to contracts in component-based

design. In Fase, volume 7212, pages 43–58. Springer, 2012.

166



[27] A. G. Beccuti, G. Papafotiou, and M. Morari. Optimal control of the boost

DC-DC converter. In Decision and Control, 2005 and 2005 European Control

Conference. CDC-ECC’05. 44th IEEE Conference on, pages 4457–4462. IEEE,

2005.

[28] T. Belytschko, Y. Y. Lu, and L. Gu. Element-free galerkin methods. Interna-

tional journal for numerical methods in engineering, 37(2):229–256, 1994.

[29] P. Benner, J.-R. Li, and T. Penzl. Numerical solution of large-scale lyapunov

equations, riccati equations, and linear-quadratic optimal control problems.

Numerical Linear Algebra with Applications, 15(9):755–777, 2008.

[30] P. Benner and A. Schneider. Balanced truncation model order reduction for lti

systems with many inputs or outputs. In Proceedings of the 19th international

symposium on mathematical theory of networks and systems–MTNS, volume 5,

2010.

[31] B. Besselink, N. van de Wouw, J. M. Scherpen, and H. Nijmeijer. Model

reduction for nonlinear systems by incremental balanced truncation. IEEE

Transactions on Automatic Control, 59(10):2739–2753, 2014.

[32] W.-J. Beyn and J. Rieger. The implicit euler scheme for one-sided lipschitz

differential inclusions. Discr. and Cont. Dynamical Systems, B(14):409–428,

1998.

[33] S. K. Biswas and N. Ahmed. Optimal control of large space structures governed

by a coupled system of ordinary and partial differential equations. Mathematics

of Control, Signals, and Systems (MCSS), 2(1):1–18, 1989.

[34] S. Bogomolov, G. Frehse, M. Greitschus, R. Grosu, C. Pasareanu, A. Podel-

ski, and T. Strump. Assume-guarantee abstraction refinement meets hybrid

systems. In Haifa verification conference, pages 116–131. Springer, 2014.

[35] O. Bouissou, A. Chapoutot, and A. Djoudi. Enclosing temporal evolution

of dynamical systems using numerical methods. In NASA Formal Methods,

number 7871 in LNCS, pages 108–123. Springer, 2013.

[36] O. Bouissou and M. Martel. GRKLib: a Guaranteed Runge Kutta Library.

In Scientific Computing, Computer Arithmetic and Validated Numerics, 2006.

[37] O. Bouissou, S. Mimram, and A. Chapoutot. HySon: Set-based simulation of

hybrid systems. In Rapid System Prototyping. IEEE, 2012.

[38] R. W. Brockett et al. Asymptotic stability and feedback stabilization. Differ-

ential geometric control theory, 27(1):181–191, 1983.

[39] X. Cai, Z. Wang, and L. Liu. Control design for one-side lipschitz nonlinear

differential inclusion systems with time-delay. Neurocomput., 165(C):182–189,

Oct. 2015.

[40] G. Cain and G. H. Meyer. Separation of variables for partial differential equa-

tions: an eigenfunction approach. CRC Press, 2005.

167



[41] K. Chatterjee and T. Henzinger. Assume-guarantee synthesis. Tools and

Algorithms for the Construction and Analysis of Systems, pages 261–275, 2007.

[42] X. Chen, E. Abraham, and S. Sankaranarayanan. Taylor model flowpipe con-

struction for non-linear hybrid systems. In IEEE 33rd Real-Time Systems

Symposium, pages 183–192. IEEE Computer Society, 2012.
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Titre : Synthèse de contrôle garanti pour des systèmes dynamiques spatio-

temporels à commutation

Mots Clefs : Synthése de contrôle, Réduction de modèle, Commande par com-

mutation, Synthése compositionnelle, Équations aux dérivées partielles

Résumé : Dans le présent travail de thèse, nous souhaitons approfondir l’étude

des systèmes à commutation pour des problèmes aux dérivées partielles en explorant

de nouvelles pistes d’investigation, incluant notamment la question de la synthèse

de contrôle garanti par décomposition de l’espace des états, la synthèse de contrôle

nécessitant la réduction de modèle, le contrôle des différentes sources d’erreur sur des

quantités d’intérêt, et la mesure des incertitudes sur les états et les paramètres du

modèle. Nous envisageons l’utilisation de méthodes de calcul ensemblistes associées

à des méthodes de réduction de modèle, ainsi que l’utilisation d’observateurs d’état

pour l’estimation en ligne du système.

Title : Guaranteed control synthesis for switched space-time dynamical systems

Keys words : Control synthesis, Model reduction, Switched control systems,

Compositional synthesis, Partial differential equations

Abstract : In this thesis, we focus on switched control systems described by par-

tial differential equations, and investigate the issues of guaranteed control of such

systems using state-space decomposition methods. The use of state-space decom-

position methods requires model order reduction, control of the different sources

of error for quantities of interest, and measure of uncertainties on the states and

parameters of the system. We are considering using set-based computation meth-

ods, in association with model order reduction techniques, along with the use of

state-observers for on-line estimation of the system.
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