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Chapter 1

Introduction

1.1 Background

The first idea of intelligent vehicle was born in 1960s [1]. However, the level of tech-

nique at that time didn’t allow people to make that dream come true. But, during the

past two decades, intelligent vehicle has achieved great growth with the improvement

of sensor techniques. In 1990s, Bundeswehr University Munich tested a vehicle with

a 1758 km trip from Munich to Copenhagen in Denmark and back. In 95% of the

trip, the vehicle was in a autonomously running state. In the early of this century,

the research in intelligent vehicle is gradually developed into the test of performance

in realistic scenarios. The ideal of advanced driving assistance systems (ADAS) is

proposed by many researchers. It means that intelligent vehicle is still controlled

by the driver, but there exists a monitoring system that detect possible dangerous

situations to provide warning to the driver or take in charge the vehicle in emergency

case. In 2003, the Defense Advanced Research Projects Agency (DARPA) launched a

race named by Grand Challenge for autonomous vehicles. All the participants are de-

manded to autonomously run more than 200 km in unstructured environments. This

challenge attracted many top-level research institutes (See Fig.1-1). Recently, several

important achievements have taken in the intelligent vehicle community. In August of

2012, google company announced that its self-driving cars had completed over 300,000

miles with no accidents. And, in the same year, the states of Nevada, Florida and
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(a) Carnegie Mellon University 1 (b) The Stanford Racing Team 2

Figure 1-1: Example of participants in 2003 Grand Challenge

California in USA passed the law permitting driverless cars. In 2014, google released

the new version self-driving of its cars. Fig.1-2 shows the new prototype of google’s

driverless cars.

Figure 1-2: Google new prototype driverless car 3

1http://archive.darpa.mil/grandchallenge/images/Team_Pics/TartanRacing_3.jpg
2http://archive.darpa.mil/grandchallenge/Teams/stanfordracing.html
3http://www.dotwnews.com/focus/connected-cars-the-latest-motoring-innovations#

close_subscription
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1.2 Problem Statements and Objectives

Sensing the environment around a vehicle is a crucial ability for intelligent vehicle

application. The most important work is to understand road scene. The common-

ly used sensors to scan the environment are 2D/3D Laser Ranger Finders (LRFs),

RADARs, cameras (monocular, stereo vision, fisheye and omnidirectional) and GPS.

Both LRFs and RADARs are active sensors. Compared to optical sensors, they have

the advantages of long distance detection ability, wide sensing range, and robust per-

formance in evening, and in foggy or rainy day. However, they usually lack of high

spatial resolution. Cameras are passive sensors. Cameras can provide high spatial

resolution information and visual feature. In certain road scene such as road signs and

traffic lights, cameras can work merely. GPS can be used for the drawing map and

giving location information. To obtain robust and good performance, as described in

[2], sensor fusion is commonly used by researcher for intelligent vehicle. In this thesis,

we focus on the usage of LRF, camera (fisheye) and GPS.

Our research is part of the project CPER "Intelligence du Véhicule Terrestre",

conducted within IRTES-SET Lab of UTBM. It aims to develop a multisensors system

to robustly and precisely analyze and represent the road scene. The followings are

the main objectives and contributions in our works:

1.The first objective is to fuse sensors data. Our perception system is composed

of a LRF and a fisheye camera. Determining the position relation between between

LRF and camera is an important work for further research. Extrinsic parameters

calibration between LRF and fisheye camera refers to calculate the rigid transforma-

tion between their coordinate systems. In this work, a new calibration method is

proposed. Meanwhile, three known fisheye model are tested and evaluated.

2.The second objective is to detect road in outdoor scenarios. Perceiving the pres-

ence of road is a crucial ability for intelligent vehicle. This task is mainly conducted

by camera sensor because the equipped LRF is 2D. In this thesis, a road detection

method based on illuminance invariant space and HSI space is proposed. This method
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mainly addresses over-saturated or under saturated issues that occur in cloudy days.

3.The third objective is to detect obstacles in front of running vehicle. Security

issues for intelligent vehicle always can attract the attention from most of people. De-

tecting robustly obstacles around the vehicle can effectively prevent us from collisions.

We propose a new method based on LRF, GPS and camera for obstacle detection in

the thesis. Our contribution consist in using features obtained from map to overcome

the difficulty related to visual features which is invalid in motion blur case.

4.The final objective is to track objects. Tracking objects can give us prior knowl-

edge regarding objects movements. This knowledge is a favor to prejudge the motion

of objects in following time. We combine image space and LRF space to conduct

object tracking. Our contribution consists in using weak visual features to perform

tracking without losing objects in a long-term test.

1.3 Thesis Organization

The rest of the thesis is divided into five chapters:

Chapter2: In this chapter, we present a method for extrinsic calibration between

fisheye camera and LRF. It is mainly based on the LRF scan plane and several LRF

measurements. The method is tested and evaluated by simulated data and tested by

real data.

Chapter3: In this chapter, a camera and LRF based road detection approach is

presented. It conducts a preliminary road detection in illuminance invariant image

and then refines the results in HSI space.

Chapter4: In this chapter, we proposed a method based on GPS, LRF and camera

for obstacle detection. It mainly copes with the problems caused by motion blur which

stems from object and camera movements. The method is evaluated by the ground

truth data.

Chapter5: In this chapter, we propose an approach for object tracking. It is

mainly composed of two steps: the extraction of small region in image and the small

8



region growth in LRF space.

Chapter6: In this chapter, conclusions and some research perspectives for this

thesis are presented.
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Chapter 2

Extrinsic calibration between fisheye

camera and laser range finder

2.1 Introduction

This chapter deals with the issue of extrinsic calibration between fisheye camera

and laser range finder. The aim of extrinsic calibration is to determine the rigid

transformation between LRF and fisheye camera. In the field of intelligent vehicle,

the road environment is often perceived by various sensors, such as video cameras,

laser rang finder. However, each sensor has some weaknesses. In a complex traffic

environment, using only a single sensor to perceive and analyze the environment could

limit the accuracy and robustness. Recently, LRF and camera mounted together on

a car have become very common for perceiving the environment. On the one hand,

LRF measure distances between itself and the detected objects with high accuracy

within wide-area view but with low resolution. On the other hand, camera provides

visual information around itself. These visual information provide many important

clues for applications such as object recognition, obstacle detection. However, a

conventional camera suffers from narrow field of view. Multiple conventional cameras

can be employed to expand the perception area, but it will make extra expense and

cause some real-time processing problems when the vehicle is traveling with high

speed. Compared with conventional camera, camera with fisheye lens is then an
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attractive choice in many applications, as it provides a large field of view (FOV) with

a single sensor. Due to these reasons, fisheye camera and 2D LRF are combined in

our research. The used experimental platform is shown in Fig.2-1. Before performing

road scene understanding, the rigid transformation between LRF and fisheye camera

has to be known.

The rest of this chapter is organized as follows. Section 2.2 introduces the state of

the art. Section 2.3 describes three different kinds of fisheye camera models. Section

2.4 presents LRF plane based extrinsic calibration between LRF and fisheye camera.

Section 2.5 deals with results and evaluation of the simulation tests and real data

based experiments. Finally, a conclusion ends the chapter.

Figure 2-1: The experimental platform. The fisheye camera is on the top bracket and
the LRF is fixed in front of the vehicle

2.2 State of the Art

Most of state of the art works about calibration between LRF and camera fall into

two categories depending on the type of LRF: 2D LRF or 3D LRF. Paper [3] suggests

a new method for calibration between 3D LRF and a stereo camera. The considered

3D LRF is built by moving a 2D LRF along one of its axes. By rotating the 2D

scanner around its radial axes , it is possible to obtain the spherical coordinates of

the points measured. The method firstly computes the three transformation matrices
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from LRF reference frame to stereo camera reference frame when the LRF is placed

in three different specified orientations around its rotation axis. Then, based on the

obtained three transformation matrices, the rigid transformation matrix between the

LRF and the center of rotation of LRF is determined. Finally, the transformation

matrix between LRF in any arbitrary angle and the stereo-camera is computed. This

method needs to put pattern into several different poses. In paper [4], the authors

propose a self calibration method between a 3D LRF and an omnidirectional camera.

Based on the 3D LRF measurements, a depth image named bearing angle (BA) image

is constructed. Several corresponding points between BA image and intensity image

are selected manually. With these points, the extrinsic parameters between the two

sensors frames are estimated. However, the accuracy of this method is depending on

the resolution of the 3D LRF. High resolution of 3D LRF often means a high cost.

In paper [5], a visible LRF is used to estimate transformation between both LRF

and camera. However, in many applications, laser spots emitted by LRF are often

invisible for camera.

Paper [6] introduces a method based on distance constraints from camera to 2D

LRF system. A chessboard is placed in the common field of view (FOV) of the two

sensors. A set of geometrical constraints on rigid transformation between LRF and

camera can be defined by changing the chessboard location in the common FOV.

Based on this set of geometrical constraints, the extrinsic parameters can be deter-

mined. This method needs to change the chessboard location and is affected by the

orientation between the chessboard and LRF. In paper [7], the authors provide an

approach based on 2D LRF with both visible and invisible trace. This method is

an extended version of the approach in paper [6]. It also needs to put a chessboard

placed in the FOV of the two sensors. The constraint conditions are not based on

the laser points directly but the straight lines consisting of them. In paper [8], the

authors present an approach for the calibration between a fisheye camera and laser

range finder. The main idea is to justly use regular lens to get extrinsic parameters

and then to replace it with fisheye lens. In paper [9], the authors propose a minimal

approach to determine the extrinsic parameters between a 2D laser scanner and a

13



camera, using only six measurements of a planar calibration board.

The work in this chapter also focuses on extrinsic calibration between 2D LRF

and fisheye camera. There are two contributions in this research. The first one is the

evaluation and comparison between three different models that have been proposed

to fisheye camera modeling. The second one is the proposition of a novel approach of

extrinsic calibration between the two sensors. The proposed method requires LRF and

camera to observe a chessboard moved in their common field of view. By analyzing

successive LRF measurements, a set of points located in the laser beams plane can

be detected. These detected points are then used to estimate the equation of the

plane of the laser beams in the camera coordinate system. Finally, two geometrical

constraints based on the equation of this plane and this set of points are constructed

to estimate the extrinsic parameters between the fisheye camera and the LRF. The

performance of the approach is evaluated through experiments on both simulated and

real data.

2.3 Fisheye Camera Modeling

Camera with fisheye lens provides a wide angle vision, but cause great distortions

in the image. It makes then the conventional camera model invalid. Up to now,

there is no unified projection model for fisheye camera. In this chapter, three models

proposed by Scaramuzza [10], Kannala [11] and Mei [12], are studied.

2.3.1 Scaramuzza’s representation for fisheye camera

The fisheye model proposed in paper [10] is illustrated in Fig.2-2. It consists of fisheye

lens surface, image plane and sensor plane. The sensor plane is a hypothetical plane

orthogonal to the mirror axis, with the origin lying on the plane-axis intersection. In

practice, the sensor plane corresponds to the camera CCD plane, where the pixels are

stated in physical size. The image plane corresponds to the image, where the pixels

are expressed in pixel coordinates. The image point 𝑀 corresponding to the scene

point 𝑃0 is produced by three steps. Firstly, 𝑃0 is mapped onto fisheye lens surface

14



Figure 2-2: Fisheye model

as point Ps. Then, Ps is mapped onto sensor plane as the point m. Finally, the point

m is mapped onto image plane as the point M . From the mapping procedure, we can

see that each point in image plane has one unique corresponding point on fisheye lens

surface. In other words, any point in image can be represented by a unique vector

from the center of sensor plane to fisheye lens surface. Let Ps denote (see Fig.2-2)

the vector corresponding to the image point M , so we have:

Ps = f(m) =


 m

g(||m||)


 =




u

v

g(||m||)


 (2.1)

where g(||m||) represents the corresponding point of M on fisheye lens surface, ||m||

is the module of point m on sensor plane. In paper [10], the authors consider that

the function g represent the curve line of fisheye lens surface and obeys the following

polynomial form:

g(||m||) = a0||m||1 + a1||m||2 + · · ·+ aN ||m||N (2.2)

where ai, i = 0, 1, 2, · · · , N are coefficients estimated by calibration.

Equation 2.1 refers to the sensor plane. It needs to be transformed to image plane.
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Figure 2-3: Affine transformation between the sensor plane and the image plane

The image plane and the sensor plane are linked by an affine transformation shown

in Fig.2-3. Given m = [u, v] and M = [u′, v′] , the affine transformation between the

two points is as follows:

m =


 u

v


 = A


 u′

v′


+T

= AM +T (2.3)

where A ∈ R2×2 and T ∈ R2. A is a stretch matrix and T is a translation vector.

Based on g(||m||), A and T, the complete model of fish-eye camera is represented as

follows:

λ ·Ps = λ · f(m) = λ · f(AM +T)

= λ ·


 AM +T

g(||AM + T ||)


 , λ > 0 (2.4)

Fisheye camera calibration corresponds to the estimation of A, T and ai, i = 0, 1, 2, · · ·N .

Although these intrinsic parameters are not determined directly, they can be estimat-

ed with the help of a calibration pattern. There are three steps for estimating these

intrinsic parameters. Firstly, assuming A = I (unit matrix) and T = 0, the extrinsic

parameters between the calibration pattern and the camera are estimated. Secondly,

the coefficients of the function g are calculated by incorporating several observations
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of the calibration pattern. Finally, non-linear refinement is used for all parameters to

obtain more accurate results. For more details, the reader can refer to paper [10].

2.3.2 Kannala’s representation for fisheye camera

In paper [11], the authors propose to divide the full fisheye camera projection model

into two parts: the radially symmetric part and the asymmetric part.

Radially symmetric part

The radially symmetric part of fisheye camera projection model is illustrated in Fig.2-

4. 𝑃 is a scene point, 𝑝 is the image of 𝑃 in fisheye image, 𝑝′ is the image of 𝑃 in pinhole

Figure 2-4: Fisheye camera projection model in paper [11]. The image of the point
P is p whereas it would be p’ by a pinhole camera

image, 𝜃 is the angle between principal axis and the incoming ray, 𝑟 is the distance

between the fisheye image point 𝑝 and the principal point and f is the focal length. As

illustrated in Fig.2-4, the radially symmetric part of fisheye camera projection model
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is different from the pinhole camera model. In Generally, it is designed to obey one

of the following projections:

𝑟 =2𝑓𝑡𝑎𝑛(𝜃/2) (𝑠𝑡𝑒𝑟𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛)

𝑟 =𝑓𝜃 (𝑒𝑞𝑢𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛)

𝑟 =2𝑓𝑠𝑖𝑛(𝜃/2) (𝑒𝑞𝑢𝑖𝑠𝑜𝑙𝑖𝑑 𝑎𝑛𝑔𝑙𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛)

𝑟 =𝑓𝑠𝑖𝑛(𝜃) (𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛 𝑎𝑙𝑎𝑛𝑔𝑙𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛) (2.5)

To facilitate the calibration work, the authors of paper [11] propose to use a general

model suitable for different types of lens. The proposed general form is:

𝑟(𝜃) = 𝑘1𝜃 + 𝑘2𝜃
3 + 𝑘3𝜃

5 + 𝑘4𝜃
7 + 𝑘5𝜃

9 + · · · (2.6)

where 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, · · · are the model parameters. For computation consideration,

the authors assume that the first five terms have enough degrees of freedom for good

approximation of different projection curves. Thus, the radially symmetric part of the

projection model is defined by the five parameters 𝑘1, 𝑘2, 𝑘3, 𝑘4, and 𝑘5, that should

be estimated.

Asymmetric part

In practice, real lens may deviate from precise radial symmetry and therefore an

asymmetric part is added to obtain a full projection model. For wide application, the

authors propose a flexible mathematical distortion model to represent the asymmetric

part. This flexible distortion model consists of two terms. One term acts in the radial

direction and has the following form:

∆𝑟(𝜃, 𝜙) = (𝑙1𝜃 + 𝑙2𝜃
3 + 𝑙3𝜃

5)(𝑖1𝑐𝑜𝑠𝜙 + 𝑖2𝑠𝑖𝑛𝜙 + 𝑖3𝑐𝑜𝑠2𝜙 + 𝑖4𝑠𝑖𝑛2𝜙) (2.7)

and the other term is concerned with the tangential direction:

∆𝑡(𝜃, 𝜙) = (𝑚1𝜃 + 𝑚2𝜃
3 + 𝑚3𝜃

5)(𝑗1𝑐𝑜𝑠𝜙 + 𝑗2𝑠𝑖𝑛𝜙 + 𝑗3𝑐𝑜𝑠2𝜙 + 𝑗4𝑠𝑖𝑛2𝜙) (2.8)
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Full model

The full fisheye camera projection model is made up of radially symmetric part and

asymmetric part. By combing 2.8, 2.7 and 2.6, an image point Xd = (𝑥𝑑, 𝑦𝑑) in

millimeter coordinate system of an image point can be represented as follows:

Xd = 𝑟(𝜃)er(𝜙) + ∆𝑟(𝜃, 𝜙)er(𝜙) + ∆𝑡(𝜃, 𝜙)e𝜙(𝜙) (2.9)

where er and e𝜙 are the unit vectors in radial and tangential directions. To get

the full projection model, millimeter coordinate system is needed for transformation

into image pixel coordinate system. Let (𝑢, 𝑣) be the pixel coordinate, (𝑢0, 𝑣0) is

the principal point, and 𝑛𝑢 and 𝑛𝑣 represent the number of pixels unit distance in

horizontal and vertical directions respectively. Finally, the full model is written as

follows: ⎛⎝ 𝑢

𝑣

⎞⎠ =

⎡⎣ 𝑛𝑢 0

0 𝑛𝑣

⎤⎦⎛⎝ 𝑥𝑑

𝑦𝑑

⎞⎠ +

⎛⎝ 𝑢0

𝑣0

⎞⎠ (2.10)

This full model is defined by 23 parameters. To facilitate computation, the asymmet-

ric part is often ignored. In this case, the full model has only 9 parameters and is

denoted by 𝑝9 in the following. To solve these parameters, several observation points

on a calibration pattern are used. For more details, reader can refer to paper [11].

2.3.3 Mei’s representation for fisheye camera

In paper [12], the authors use an unified projection model representing omnidirectional

camera to approximate fisheye camera. It is based on the model proposed by Geyer

and Barreto in papers [13] and [14], and is illustrated in Fig.2-5. This model contains

three parts: a unit sphere, a sensor plane and an image plane. Let 𝐹𝑚 represents

the coordinate system centered at 𝐶𝑚 (centre of the sphere) and 𝐹𝑝 is the coordinate

system centered at 𝐶𝑝.

A world point 𝜒𝐹𝑚 = (𝑋, 𝑌, 𝑍) is projected onto the image plane p using the
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Figure 2-5: Unified projection model in paper [12]

following steps:

1. The world point χ is projected onto the unit sphere to obtain the point χs,

(χ)Fm −→ (χs)Fm = χ
||χ|| = (Xs, Ys, Zs)

2. χsFm
is then converted to Fp system Cp = (0, 0, ξ), (χs)Fm −→ (χs)Fp = (Xs, Ys, Zs+

ξ). ξ is a parameter depending on the mirror type located at Cm

3. Then, the point (χs) is projected onto the sensor plane πmu point χd, (χs)Fp −→

(χd)Fp = ( Xs

Zs+ξ
, Ys

Zs+ξ
, 1)
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4. The final projection involves the camera intrinsic matrix K

𝜒d −→ p = K𝜒d =

⎡⎢⎢⎢⎣
𝑎𝑥 𝑎𝑥𝛼 𝑢0

0 𝑎𝑦 𝑣0

0 0 1

⎤⎥⎥⎥⎦𝜒d (2.11)

where (𝑢0, 𝑣0) the principal point, 𝛼 the skew, 𝑎𝑥 and 𝑎𝑦 the focal length of the camera

in terms of pixel dimensions in the x and y direction respectively.

Approximation of fisheye lens

The great distinction between fisheye image and classic image is that there is great

distortion along radial direction in fisheye image. In paper [15], the authors show that

the great radial distortion in image can be approximated as a division model. In paper

[16], the fisheye image can be considered as a conventional image but with great radial

distortion. In other words, the point in fisheye image can be obtained by following

two step. Firstly, a 3D point is mapped onto image plane (pinhole model). Then,

a division model function is applied to this projected point to solve the distorted

image point. Let Pu = [𝑥𝑢, 𝑦𝑢] be a point before distortion and Pd = [𝑥𝑑, 𝑦𝑑] the

corresponding point after distortion. With 𝑝𝑢 =
√︀

𝑥2
𝑢 + 𝑦2𝑢 and 𝑝𝑑 =

√︀
𝑥2
𝑑 + 𝑦2𝑑, the

division model is expressed as follows:

𝑝𝑢 = 𝑘1
𝑝𝑑

1 − 𝑘2𝑝2𝑑
; (2.12)

where 𝑘1 and 𝑘2 are two scalar parameters depending on the fisheye lens type. Given

the focal length 𝑓 = 1, the projected point 𝜒 of a word point on sensor plane under

pinhole model can be written as:

𝜒 = (𝑥𝜒, 𝑦𝜒, 1) = (𝑋/𝑍, 𝑌/𝑍, 1) (2.13)
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where (𝑥, 𝑦, 1) are the homogeneous coordinates of the word point on the sensor plane.

In C.Mei’s representation, with 𝜉 = 1, the projected point 𝜒𝑑 of this word point is:

𝜒d = (𝑥𝜒𝑑
, 𝑦𝜒𝑑

, 1) = (
𝑋𝑠

𝑍𝑠 + 1
,

𝑌𝑠

𝑍𝑠 + 1
, 1) = (

𝑋

𝑍 + ||𝜒||
,

𝑌

𝑍 + ||𝜒||
, 1) (2.14)

By algebraic manipulation, we obtain the following relation from equations 2.13 and

2.14:

𝑝𝜒 =
2𝑝𝜒𝑑

1 − 𝑝2𝜒𝑑

(2.15)

where 𝑝𝜒 =
√︀

𝑥2
𝜒 + 𝑦2𝜒 and 𝑝𝜒𝑑

=
√︀

𝑥2
𝜒𝑑

+ 𝑦2𝜒𝑑
. Equation 2.15 has the same form as

equation 2.12. (The influence of the mentioned three models on the calibration will

be discussed in experiment section of this chapter.)

2.4 Proposed Method for Extrinsic Calibration Be-

tween Fisheye Camera and LRF

The objective of extrinsic calibration between fisheye camera and LRF is to determine

the geometric transformation between the two sensor systems.

As illustrated in Fig.2-6, given a point 𝑃 , this transformation is expressed by:

𝑃𝑐 = 𝑅 * 𝑃𝐿 + 𝑇 (2.16)

where 𝑃𝑐 represents the coordinates of 𝑃 in the camera system, 𝑃𝐿 represents the

coordinates of 𝑃 in the LRF system, 𝑅 and 𝑇 are the rotation matrix and translation

vector between the camera system and LRF system respectively. The elements of R

and T have to be estimated by calibration.

The framework of the proposed approach is shown in Fig.2-7. Firstly, sever-

al known points (defined in the following section) are determined (section 2.4.1).

Then, the normal vector of laser plane is estimated (section 2.4.2). Two geometrical
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Figure 2-6: Extrinsic calibration between the two sensors

constraints are constructed based on this computed normal vector,and the extrinsic

parameters between the two sensors are estimated using the Levenberg-Marquardt

algorithm. (section 2.4.3)

2.4.1 Known points estimation

A known point in our method is a point for which its coordinates in LRF coordinate

systems and camera coordinate systems are determined. In paper [3], a laser pointer

is used to determine the known points for a system of a stereo camera and LRF.

Spurring by this idea, a method based on the corner point of a chessboard is proposed

to find out known points for our system composed of a fisheye camera and LRF. The

procedure is illustrated in Fig.2-8. A chessboard is moved down slowly from a position

above the plane of the laser beams in the field of view of the LRF. During the way

down, the LRF measurements are checked continuously. When the chessboard is

above the laser beams plane, the LRF measurements remain almost constant can be

considered as the background measurements, as we consider that there is no other

moving object in the scene. When the chessboard intersects with the laser beams
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Figure 2-7: Framework of the proposed extrinsic calibration approach

plane, the LRF measurements become different from the background measurements.

So when the first difference between the LRF measurements and the background

measurements is detected during the way down, the corner point (red point in Fig.2-

8) of the chessboard is believed to be intersecting with the laser beams plane, that

is, being on the laser beams plane. The corner point at this position can then be

considered as a known point. Its coordinates in LRF system can obtained directly

from LRF measurements and the coordinate in camera system can be calculated using

the calibration toolbox introduced in [10]. This procedure is repeated until several

known points are obtained.

2.4.2 Normal vector of laser plane estimation

It is known that three points which don’t stand on a line can define a plane uniquely in

space. To find out the coordinates of normal vector of laser plane in camera coordinate

system, it is then necessary to know the coordinates of three points at least on laser

plane in camera coordinate system. Fortunately, based on the method described in
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Figure 2-8: Corresponding points determination methodology

the previous step, the obtained known points are the proper ones for estimating the

coordinate of normal vector of laser plane in camera coordinate system. However,

there may exist several outliers in obtained known points. These outliers may cause

error estimations when using linear regression method to calculate the normal vector

of laser plane. So, the first job to us is to remove the outliers before solving laser

plane.

Random sample and consensus

RANSAC (Random Sample and Consensus) algorithm was first introduced by [17].

It’s a method to estimate parameter for a specific model with several outliers in input

data. In paper [18], a datum is considered to be an outlier if it will not fit the "true"

model instantiated by the "true" set of parameters within some error threshold that

defines the maximum deviation attributable to the effect of noise. Generally, despite

many improvement versions, the RANSAC algorithm is essentially composed of two

steps that are repeated in an iterative fashion:

1) Hypothesize: First minimal sample sets (MSSs) are randomly selected from the

input dataset and the model parameters are computed using only the elements of the

MSSs.

2) Test: In the second step, RANSAC checks which elements of the entire dataset

are consistent with the model instantiated with the parameters estimated in the first

step. The set of such elements is called consensus set (CS). RANSAC terminates
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when the probability of finding a better ranked CS drops below a certain threshold.

In our method, RANSAC is used to eliminate the outliers from known points set.

Let denote x𝑖 = (𝑥𝑖
1, 𝑥

𝑖
2, 𝑥

𝑖
3)

𝑇 , (𝑖 = 1, 2, ...𝑁) the i-th point set on plane. The used

mathematical model is as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜏1𝑥

1
1 + 𝜏2𝑥

1
2 + 𝜏3𝑥

1
3 + 𝜏4 = 0

...
...

𝜏1𝑥
𝑁
1 + 𝜏2𝑥

𝑁
2 + 𝜏3𝑥

𝑁
3 + 𝜏4 = 0

(2.17)

where 𝜏1, 𝜏2, 𝜏3, 𝜏4 are the model parameters. To group these equations in matrix

form, we can get: ⎡⎢⎢⎢⎣
(x1)𝑇 1

...
...

(xN)𝑇 1

⎤⎥⎥⎥⎦ 𝜏 = X𝜏 = 0 (2.18)

So the estimation of the parameters vector which instantiates the plane can be trans-

formed as:

𝜏 * = 𝑎𝑟𝑔𝑚𝑖𝑛
||𝜏=1||

||X𝜏 ||2 (2.19)

For each data point x, with above equation, the fitting algebraic error is defined as

follows:

𝑒x =
([x𝑇1]𝜏 *)2

||𝜏 *1:3||
(2.20)

After obtaining of least three "true" known points, a least-square regression based

approach is used to estimate the normal vector of laser plane in camera coordinate

systems.
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Multiple linear regression

Regression analysis is one of useful statistical tools for analyzing multifactor data. Its

broad appeal and usefulness results from the conceptually logical process of using an

equation to reveal the inherent relationship between variables. Similarly, it also can

be regard as an interesting theory duo to elegant underlying mathematics and a well

developed statistical theory. Successful use of regression requires an appreciation of

both the theory and the practical problems that typically arise when the technique

is employed with real-world data [19].

The simplest regression model is unary linear model, that is, a model with a single

regressor x that has a relationship with a response y that is a straight line. Multiple

linear regression which involves more than one regressor variable is the extension

of the unary linear model. Plane normal vector estimation belongs to this case.

However, the linear regression is not robust to noise. This is the reason why we have

to use RANSAC algorithm to remove outliers firstly. In camera coordinate system,

the plane equation can be expressed as follows:

𝑁𝑥(𝑋𝑖 −𝑋0) + 𝑁𝑦(𝑌𝑖 − 𝑌0) + 𝑁𝑧(𝑍𝑖 − 𝑍0) = 0 (2.21)

where 𝑁𝑣 = [𝑁𝑥, 𝑁𝑦, 𝑁𝑧] is the plane normal vector, 𝑃𝑖 = [𝑋𝑖, 𝑌𝑖, 𝑍𝑖]
𝑇 is any point on

the plane and 𝑃0 = [𝑋0, 𝑌0, 𝑍0]
𝑇 a fixed point on the plane. In our case, the fixed

point is regarded as the centroid point 𝑃𝐶 = [𝑋,𝑌 , 𝑍]𝑇 of the known points set. For

convenience, the equation 2.21 is rewritten as:

(𝑃𝑖 − 𝑃𝐶)𝑁𝑣 = 0 (2.22)

The normal vector estimation problem can be converted the following minimization

problem:

𝑎𝑟𝑔𝑚𝑖𝑛
𝑁∑︁
𝑖=1

𝑑𝑖 (𝑑𝑖 = ||𝑁𝑣(𝑃𝑖 − 𝑃𝐶)||2) (2.23)
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Under normalization constraints of 𝑁𝑣 (𝑁2
𝑥+𝑁2

𝑦 +𝑁2
𝑧 = 1), to use lagrange multipliers,

the above equation is transformed to:

𝑑 =
𝑁∑︁
𝑖=1

𝑑𝑖 − 𝜆𝑣(𝑁
2
𝑥 + 𝑁2

𝑦 + 𝑁2
𝑧 − 1) (2.24)

(2.25)

Given ∆𝑋𝑖 = 𝑋𝑖 −𝑋,∆𝑌𝑖 = 𝑌𝑖 − 𝑌 ,∆𝑍𝑖 = 𝑍𝑖 −𝑍, we can get the partial derivative

of 𝑑:

𝜕𝑑

𝜕𝑁𝑥

= 2
𝑁∑︁
𝑖=1

(𝑁𝑥∆𝑋𝑖 + 𝑁𝑦∆𝑌𝑖 + 𝑁𝑧∆𝑍𝑖)∆𝑋𝑖 − 2𝜆𝑣𝑁𝑥 = 0

𝜕𝑑

𝜕𝑁𝑦

= 2
𝑁∑︁
𝑖=1

(𝑁𝑥∆𝑋𝑖 + 𝑁𝑦∆𝑌𝑖 + 𝑁𝑧∆𝑍𝑖)∆𝑌𝑖 − 2𝜆𝑣𝑁𝑦 = 0

𝜕𝑑

𝜕𝑁𝑧

= 2
𝑁∑︁
𝑖=1

(𝑁𝑥∆𝑋𝑖 + 𝑁𝑦∆𝑌𝑖 + 𝑁𝑧∆𝑍𝑖)∆𝑍𝑖 − 2𝜆𝑣𝑁𝑧 = 0 (2.26)

By grouping these equations into matrix form, we have:⎡⎢⎢⎢⎣
∑︀

∆𝑋𝑖∆𝑋𝑖

∑︀
∆𝑋𝑖∆𝑌𝑖

∑︀
∆𝑋𝑖∆𝑍𝑖∑︀

∆𝑋𝑖∆𝑌𝑖

∑︀
∆𝑌𝑖∆𝑌𝑖

∑︀
∆𝑌𝑖∆𝑍𝑖∑︀

∆𝑋𝑖∆𝑍𝑖

∑︀
∆𝑌𝑖∆𝑍𝑖

∑︀
∆𝑍𝑖∆𝑍𝑖

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

𝑁𝑥

𝑁𝑦

𝑁𝑧

⎤⎥⎥⎥⎦ = 𝜆𝑣

⎡⎢⎢⎢⎣
𝑁𝑥

𝑁𝑦

𝑁𝑧

⎤⎥⎥⎥⎦ (2.27)

Given the assumption ||𝑁𝑣|| = 1, that is the inner product (𝑁𝑣, 𝑁𝑣) = 1. Let

𝐸 =

⎡⎢⎢⎢⎣
∑︀

∆𝑋𝑖∆𝑋𝑖

∑︀
∆𝑋𝑖∆𝑌𝑖

∑︀
∆𝑋𝑖∆𝑍𝑖∑︀

∆𝑋𝑖∆𝑌𝑖

∑︀
∆𝑌𝑖∆𝑌𝑖

∑︀
∆𝑌𝑖∆𝑍𝑖∑︀

∆𝑋𝑖∆𝑍𝑖

∑︀
∆𝑌𝑖∆𝑍𝑖

∑︀
∆𝑍𝑖∆𝑍𝑖

⎤⎥⎥⎥⎦ (2.28)
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We have:

ENv = λvNv

⇒(E − λv)Nv = 0 (2.29)

(2.30)

Nv is the eigenvector corresponding to the minimum eigenvalue of the following equa-

tion:

|(E − λv)I| = 0 (2.31)

where I is identity matrix.

2.4.3 Geometrical constraints construction

Figure 2-9: First constraint. The laser beams plane is colored by blue. In camera
coordinate system, any vector on this plane is perpendicular to the vector Nv

The geometrical constraints reveal the LRF measurements relationship equations

in 3D space. Based on previously obtained the known points set and normal vector,

two geometrical constraints can be constructed. For one single-planar LRF, it is

known that all laser beams lay on one plane. This characteristic is used to build
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the first constraint condition. Let 𝑆𝑙 denote the set of LRF measurements, the first

constraint is:

𝑁𝑣(𝑅 * 𝑃 𝑗
𝑙 + 𝑇 − 𝑃 𝑖

𝑘𝑐) = 0 (𝑃 𝑗
𝑙 ∈ 𝑆𝑙) (2.32)

where 𝑃 𝑗
𝑙 is the coordinates of the j-th laser point of 𝑆𝑙 in LRF coordinate system, 𝑃 𝑖

𝑘𝑐

is the coordinates of the i-th known point in fisheye camera system. The geometrical

interpretation is illustrated in Fig.2-9. In camera coordinate system, the vectors

belonging to the laser beams plane are perpendicular to 𝑁𝑣.

The second constraint is based on the known points. From the previous state-

ments, the coordinates of the "known points" are known in the two sensor coordinate

systems. Let 𝑃 𝑖
𝑘𝑙 denote the coordinates of the i-th known point in LRF coordinate

system. By taking 𝑃 𝑖
𝑘𝑙 and 𝑃 𝑖

𝑘𝑐 into equation 2.16, the second constraint is given as

follows:

𝑅 * 𝑃 𝑖
𝑘𝑙 + 𝑇 − 𝑃 𝑖

𝑘𝑐 = 0 (2.33)

To summarize the above description, the two geometrical constraints are:⎧⎨⎩ 𝑁𝑣(𝑅 * 𝑃 𝑗
𝑙 + 𝑇 − 𝑃 𝑖

𝑘𝑐) = 0

𝑅 * 𝑃 𝑖
𝑘𝑙 + 𝑇 − 𝑃 𝑖

𝑘𝑐 = 0
(2.34)

To solve this equation, the following equations are proposed:

𝑀𝑖𝑛

⎧⎨⎩ 𝑊1

∑︀𝑁
𝑖=1

∑︀𝑀𝑝

𝑗=1𝑁𝑣(𝑅 * 𝑃 𝑗
𝑙 + 𝑇 − 𝑃 𝑖

𝑘𝑐) = 0

𝑊2

∑︀𝑁𝑝

𝑖=1 𝑅 * 𝑃 𝑖
𝑘𝑙 + 𝑇 − 𝑃 𝑖

𝑘𝑐 = 0
(2.35)

where 𝑀𝑝 and 𝑁𝑝 are the number of laser points and known points respectively.

Levenberg-Marquardt [20] algorithm is applied to find the optimal solution to equa-

tion 2.35. However, in practice, the solution of 𝑅 and 𝑇 may not make the two

equations to reach their minimum values simultaneously. For example, if 𝑀𝑝 is far

greater than 𝑁𝑝, the minimization process will mainly focus on the first equation. To
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make a balance between the two constraints, two parameters 𝑊1 and 𝑊2 are used to

adjust the influence of 𝑀𝑝 and 𝑁𝑝 on the minimization process.

2.5 Experiments

This section describes results obtained with simulated and real data. The program is

implemented in Matlab. With real data experiment, it is hard to give performance

estimation due to lack of ground-truth data. Therefore, simulated data are used

firstly to estimate the performance of our method.

2.5.1 Simulation tests

The relative position and orientation of the LRF and fisheye camera are randomly set

to [10; 300; 200](𝑚𝑚) and [75𝑜,−5𝑜, 5𝑜] respectively. The coordinates of the known

points are calculated based on relative pose of the camera with respect to the LRF.

Influence of the known points number in ideal case (without noise)

Figure 2-10: Performance w.r.t the number of known points in ideal case

This simulation evaluates the influence of the number of known points in ideal

case (without noise). The number of known points varies from 2 to 10. For each
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experiment, 100 independent trials have been carried out. The results are shown

in Fig.2-10. When the number of known points increases to 3, the rotation matrix

and translation matrix errors drop rapidly. With more than 3 known points, the

error approximates zero and almost remains the same. From this simulation, we can

conclude that at least 3 points are needed for applying the proposed approach.

Influence of known points number in noisy case

Figure 2-11: Performance w.r.t the number of known points in noisy case

This simulation aims at evaluating the performance of the proposed method with

respect to the number of known points in noisy case. Gaussian noise with zero mean

and 5cm standard deviation is added to all laser points (including known points and

unknown points). The number of known points varies from 3 to 20. For each number,

150 independent random trials are carried out. The estimated 𝑅 and 𝑇 results are

compared with ground truth. The average errors are shown in Fig.2-11. With the

number of known points increasing, both 𝑇 and 𝑅 errors curve decline.

Comparison of calibration results

This experiment evaluates how the noise on laser data affects the performance and

compares these results with the result obtained using the approach proposed in paper

[7]. Gaussian noise with zero mean and standard deviation (from 1 cm to 10 cm)

is added to all laser points. For each noise level, 150 independent random trials are
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R T(mm)
0;−𝑝𝑖/4;−𝑝𝑖/36 0; 120;−1200

𝑝𝑖/30;−3 * 𝑝𝑖/4; 𝑝𝑖/36 0; 120;−1200
𝑝𝑖/18;−𝑝𝑖/3; 𝑝𝑖/25 500; 170;−1500

−𝑝𝑖/18;−5 * 𝑝𝑖/6; 𝑝𝑖/30 500; 170;−1500
𝑝𝑖/25;−8 * 𝑝𝑖/9; 𝑝𝑖/36 −300; 210;−600

𝑝𝑖/20;−𝑝𝑖/12; 0 −300; 210;−600
𝑝𝑖/15;−3 * 𝑝𝑖/4;−𝑝𝑖/32 350; 255;−900

0;−2 * 𝑝𝑖/9; 𝑝𝑖/30 350; 255;−900

Table 2.1: The configuration of the 8 poses used for applying the approach proposed
in paper [7]

Figure 2-12: Comparison of calibration results under different noise levels

carried out. For our approach, 8 known points are used. For the approach proposed

in [7], 8 poses are used to get stable outputs, whose parameters are shown in Table2.1.

The reason

The average calibration error is shown in Fig.2-12. The proposed approach is

better than the approach in paper [7] with respect to the estimation of the rotation

matrix. For the translation matrix, the two approaches get almost the same results

for noise level from 1cm to 5cm. With noise level over 5 cm, the proposed method

performs better.
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2.5.2 Real data experiments

In real experiments, the used fisheye lens is a Fujinon FE185C057HA1 which pro-

vides up to 185 degrees wide angle. The used camera is a pixellink PL-B742 with

1.3 megapixels (1280x1024). The used mono-layer LRF is a LMS221 with 1 degree

resolution, 180 degrees field of view and up to 80m measurement range. The used

computer is a normal laptop with intel core i5. All devices are mounted on the front

of the vehicle (as already illustrated in fig.2-1).

Analysis of fisheye model choice

Figure 2-13: Two patterns used in convergence rate test

In this section, we carry out three trials to determine which model presented in

section 2.3 should be adopted in our approach. The selective criterion is based on

the calibration performance of the three models described in section 2.3. For the first

trial, all three models are compared. The used patterns are shown in Fig.2-13. The

Model Kannala [11] Scaramuzza [10] Mei [12]
Convergence rate 3–4 hours 2–3 minute 2–3 minute

Table 2.2: The convergence time of three methods in solution optimization procedure

pattern (See Fig2-13(a)) proposed in paper [11] is combined with the 9 parameters
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model (𝑀𝑃9) and the pattern (See Fig2-13(b)) is adopted by method proposed in

papers [10][12]. The results of the convergence time rate of intrinsic and extrinsic

parameters optimization procedure are shown in Table 2.2. The computation cost of

the method proposed by Kannala is more expensive than the other two methods.

(a) Approach in paper [12]

(b) Approach in paper [10]

Figure 2-14: Point reprojection using the calibration results of the approaches pro-
posed in [12] and [10]

For the second trial, Scaramuzza’s approach and Mei’s method are compared with

respect to the ability of the extraction of chessboard corners for fisheye camera cali-

bration. For the two approaches, the reprojection errors of corner point positions are

used as key parameters to evaluate the approaches performance. Therefore, the abil-

ity to extract corner points is regarded as an important indicator. The experimental

results are shown in Fig.2-14. As illustrated in Fig.2-14, the extraction of chessboard
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corners are better for the approach proposed by Scaramuzza (Fig.2-14.(b)) than for

approach proposed by Mei (Fig.2-14.(a)). In great distortion case, all corner points

are extracted correctly for Scaramuzza’s approach.

For the last trial, the three approaches are compared with respect to the average

reprojection errors. The results are shown in Table 2.3. As illustrated in Table 2.3,

the performance of the Scaramuzza’s approach is better than the performance of the

other two method.

Approach Average reprojection errors (unit:pixel)
Scaramuzza’s approach 0.55

C.Mei’s approach 0.66
Kannala’s approach 1.2

Table 2.3: Average reprojection errors

Based on these experiments, we find that the model proposed by Mei haven’t a

good ability to deal very well with corner extraction in great distortion case. The

computation cost regarding intrinsic and extrinsic parameters optimization for the

method proposed by Kannala is too expensive. The method proposed by Scaramuzza

is a good option according to the test results with respect to convergence time, corner

extraction and reprojection errors. Therefore, the model proposed by Scaramuzza is

chosen in our approach.

Extrinsic calibration between LRF and fisheye camera

In this experiment, real data are used to evaluate the performance of the proposed

approach. As explained in section 2.4, the method requires to determine the coor-

dinates of at least three points (known points) on the laser beams plane in camera

coordinate system. In order to locate these points conveniently, two rectangle boards

are used. Firstly, one is fixed in the view of the LRF and camera. And, another one

is drew close to the fixed board until there is only one laser beam to pass through

the gap between the two boards. Finally, the chessboard is slowly moved down along

with the gap.

36



(a) Laser points reprojection into fisheye image using 3 known
points

(b) Laser points reprojection into fisheye image using 8 known
points

Figure 2-15: Calibration results for real data considering 3 known points(a) or 8
known points (b)

The performance of the proposed approach under different number of known points

is evaluated. 3 known points and 8 known points are used respectively. The view (a)

and view (b) in Fig.2-15 are the zoom parts of LIDAR reprojection into fisheye image

using 3 known points and 8 known points respectively. We find that the location of

laser points in view (b) is more reasonable than in view (a), especially near the edges

of desk and chair.

Comparison of calibration results

In this experiment, we compare our approach with the method proposed in paper

[7]. 8 known points and 8 poses are used respectively. The calibration results are

shown in Table 2.4. From these results, we can see that the two methods give almost
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the same results. According to LMS211 technique manual, the average measurement

error of LRF is about 2𝑐𝑚. From the simulation results, within this range, there are

no big differences between the two outcomes.

Approach R T(m)
Approach proposed 0.034 − 0.135 − 0.990 1.413

in this paper 0.999 0.019 0.032 0.309
0.014 − 0.991 0.135 −0.929

Approach proposed 0.031 − 0.140 − 0.990 1.402
in paper [7] 0.999 0.025 0.028 0.314

0.020 − 0.990 0.140 −0.921

Table 2.4: Calibration results obtained by the two approaches

2.5.3 Application in ICP algorithm

In order to illustrate the interest of extrinsic calibration between LRF and fisheye

camera, we use the calibration result to integrate both LRF measurements and color

information in ICP algorithm (Iterative Closet Points). ICP algorithm was introduced

in the early 1900s [21] and was further developed by various researchers. The most

cited version is the one proposed in [22]. Since it was born, ICP algorithm is widely

used in many research areas, especially in geometric alignment of 3D models.

Basic ICP algorithm

Given two roughly aligned shaped represented by point clouds, the ICP algorithm

will implement the following tasks:

1) Generate temporary correspondences from the two clouds of points.

2) Estimate the relative rigid body transformation between the two clouds.

The first step is the key factor to the final estimation for rigid body transformation. In

order to get a relatively good correspondence for a point, the ICP algorithm iteratively

perform the following steps:

◇ Matching: the nearest neighbor of each data point in the points clouds is found.

◇ Minimization: the error metric for whole data set is minimized.
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◇ Transformation: data points are transformed using minimization result.

The algorithm is terminated based on the number of iterations or the relative change

in the error metric.

Closet point with color information

Generally, ICP algorithm converges very quickly, however several problems may occur:

1) Local minima: Instead of the global minimum, the algorithm may converge

towards one of multiple local minima in the error metric

2) Noise and outliers: Outliers and noise may play a great side effect on the

minimization process of the error metric, which leads to faulty results.

3) Partial overlap: the point clouds may lose partial information regarding the

object due to the partial overlap.

To solve these problems, many variants have been introduced based on the basic ICP

concept. In a review paper [23], the authors classified the proposed variants of the

algorithm as affecting one of the six subtasks:

◇ Selection (Choosing subsets of input point sets).

◇ Matching.

◇ Weighting (correspondences).

◇ Outlier removal.

◇ Error metric.

◇ Minimization.

Our work belongs to matching part. In the original ICP algorithm, the euclidean

distance was used as the criterion to determine the closet point. Let 𝑆𝑣 and 𝑆 ′
𝑣

denote the two points sets observed by a sensor from two different viewpoints. The

problem to find the closet point of the point 𝑑𝑖 in 𝑆𝑣 can be converted to the following

question:

𝑎𝑟𝑔 min
𝑑𝑖∈𝑆𝑣 ,𝑑′𝑖∈𝑆′

𝑣

‖𝑑𝑖 − 𝑑′𝑖‖ (2.36)

where 𝑑′𝑖 is a point in 𝑆 ′
𝑣. Euclidean distance is useful in many cases. However, it may
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become invalid if the partial overlap case happens. To handle this situation, many

additional features are proposed. The color information is one of them. To obtain the

corresponding color value, the extrinsic parameters between vision sensor and range

sensor are needed. As done in paper [24], the modified version of euclidean distance

is:

𝑎𝑟𝑔 min
𝑑𝑖∈𝑆𝑣 ,𝑑′𝑖∈𝑆′

𝑣

‖𝑑𝑖 − 𝑑′𝑖‖ +
√︀

𝛼1(𝑎1 − 𝑎2)2 + 𝛼2(𝑏1 − 𝑏2)2 + 𝛼3(𝑐1 − 𝑐2)2 (2.37)

where 𝛼1, 𝛼2, 𝛼3 are weight coefficients and 𝑎𝑥, 𝑏𝑥, 𝑐𝑥 (x=1,2,3) are respectively R,G

and B values in RGB model.

Real data experiment

Figure 2-16: Projection of LRF measurements in the fisheye image

Our experiment is conducted in a parking. The environment and projection of

LRF measurements in the fisheye image are shown in Fig.2-16. Fig.2-17 shows the

result of the estimation of motion trajectory. The red and blue curves are the results

obtained by the ICP algorithm and GPS respectively. GPS results are used as ground

truth data to evaluate the ICP performance. As illustrated in Fig.2-17(a), only with

LRF measurements, we can see that localization error happens while the vehicle

turns toward left in the range [−10,−15]. Nevertheless, in Fig.2-17(b), with LRF

measurements and color information, this error is more controlled.
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(a) With LRF measurements only (b) With LRF measurements and color infor-
mation obtained from fisheye image

Figure 2-17: Estimation of motion trajectory under two different case

2.6 Conclusion and Future Works

In this chapter, we firstly give a brief review about the state of the art of extrinsic

calibration between LRF and camera. Extrinsic calibration is used to determine

the rigid transformation between LRF and fisheye camera. It can help researcher to

overcome a single vision sensor drawbacks for perceiving the environment. Three sorts

of fisheye model are introduced. Unlike classic vision camera, fisheye camera provides

a wide angle vision but delivers images with great distortions. It makes the traditional

pinhole model invalid. However, a unified fisheye model doesn’t exist. To find out

a relatively good fisheye model is important to the extrinsic calibration work. After

that, we introduce our extrinsic calibration method in detail. Generally speaking, it

is based on the laser scanning plane equation and some known points on it. In the

experiment section, we used simulated and real data to show the effectiveness of our

method. At last, an interesting application of extrinsic calibration is presented.

The drawback of our method is that it takes some time to determine the known

points. As future works, to improve the accuracy and to save user time, the following

works could be attempted:

1) Infrared detection card (IR card) could be used to save the time required to
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locate the laser beams. IR card emits clearly visible light when illuminated by laser

diode. This allows to locate easily.

2) Some special plane information could be considered to improve the accuracy. In

the proposed method, only laser beam plane is employed to construct the geometrical

constraints. However, in fact, some other special planes can be explored to develop

the geometrical constrains (e.g., the plane formed by the view point and the LRF

scanning line on the pattern).
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Chapter 3

Road Detection Based on Fisheye

Camera and Laser Range Finder

3.1 Introduction

For autonomous vehicles and Advanced Driver Assistance Systems (ADAS), an im-

portant task is to keep the vehicle traveling in a safe region and prevent collisions. To

meet that requirement, the vehicle has to perceive the structure of the environment

around itself. The free road surface ahead of the vehicle has then to be detected.

In addition, a robust effective road detection system also plays an important role in

higher other tasks such as vehicle and pedestrian detection (see chapter 4). The de-

rived free road space can indeed provide a significant contextual information to reduce

the region-of-interest for searching targets (cars, pedestrians,...), which contributes to

reach a reasonable computational cost and to remove false detections.

In our work, we aim at performing road detection using a monocular camera with

fisheye lens and a 2D LRF. An example of expected result is illustrated in Fig.3-1.

Compared to classic lens, fisheye lens has greater FOV providing more information

about the scene. But the disadvantage is the great distortion appearing in the im-

ages. Therefore, we propose to use the color space as feature space. In paper [25],

the authors prove that the log-chromaticity based illumination invariant grayscale

image is more suitable than HSI (as done in paper [26]) for road detection. Howev-
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er, in our research, we notice that using only illumination invariant image can cause

over saturation problem or under saturation problem in some cases such as cloudy

situation. So, in this chapter, a novel approach combining log-chromaticity space (as

in paper [25]), HSI space [27] and LRF information is proposed. It firstly derives

the coarse road binary image by histogram based classification of the illumination

invariant grayscale image. Then, a validation step is applied to check the coarse road

binary image. Finally, a refined process based on HSI space is carried out.

The rest of the chapter is organized as follows: Section 3.2 introduces the state of

the art. Section 3.3 presents the general framework overview. Section 3.4 describes

the coarse road detection based on log-chromaticity space. Section 3.5 introduces

how HSI color feature and LRF are used to refine the coarse road detection results.

Section 3.6 shows real data experimental results and compares results of the proposed

approach against illuminant-invariance based algorithm [25]. Conclusions are given

in section 3.7.

3.2 State of the Art

Road detection has been widely studied for past several years and many approaches

have been proposed. According to the used equipments, methods can be categorized

into three types: approach based on LRF only, approach based on camera only,

approach based on both LRF and camera.

In papers [28] and [29], the authors proposed approaches based on 3D LRF data.

The road information is segmented from points cloud. The advantage of LRF is

that it can provide reliable range measurements that are not likely affected by the

illumination. In certain cases, LRF-based methods can perform very well. However,

a limitation of these methods is that LRF can’t offer visual information, for example,

traffic signals and object appearance. Yet, in many applications, such as object

recognition and tracking, visual information is crucial for autonomous vehicle. Besides

that, the cost of 3D LRF sensor is still very high.

Compared to LRF, camera can offer substantive visual information in favor to
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the recognition of on-road objects and traffic signals. Moreover, such passive sensor

is not affected by the interference problem between the same type of devices. Gen-

erally, road detection based on vision is a challenging work for autonomous vehicle

in outdoor scenario due to the background changement with vehicle traveling and

the presence of many moving objects on the road whose movement is hard to pre-

dict. Furthermore, the structure of road is not fixed and the materials, illumination

and weather conditions have effects on the road appearances. Therefore, a variety of

vision-based approaches have been developed by researchers.

Generally, camera based approach is divided into monocular based and stereo

based. In paper [30], stereo camera is used for urban scene reconstruction. Firstly,

the depthmap of stereo camera is utilized to estimate a set of piecewise planes in

image. These piecewise planes belonging to the same one are then linked as one

complete planar. These different completed planes are labelled as different classes.

Although depthmap is a useful tool for estimating the vertical plane, it can’t work

well for horizontal plane. In general, the road plane is a horizontal plane. In paper

[31], authors propose to use V-disparity map to detect the road area in the image.

The V-disparity map is the image which counts the number of consistent points with

same disparity value along vertical direction in disparity image. In V-disparity map,

the road surface, in ideal case, is an oblique line from upper left to right down, and

the obstacles, in general, are vertical lines. These lines in V-disparity map are then

detected by hough transformation. However, for hough transformation, it is hard to

decide the proper number of the lines.

In paper [32], Conditional Random Fields (CRF) based monocular classification

is used to segment multiple scene objects in the field of view (FOV) of a single

camera. Using conventional CRF based methods for segmentation generally makes

the assumption that all pixels in any small segmentation belong to the same object.

However, the pixels on the boundary of an object can be shared by multiple object

classes. The authors propose a high order potential function as soft constraint to deal

with the problem. Nevertheless, the accuracy of detection is still not very high and

the problem formulated as an energy minimization task is a NP-hard problem. In
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paper [33], a mixture of Gaussians in RGB color space and a Gaussian distribution are

used to model the road. The pixels can be classified by the property of corresponding

gaussian model. But the drawback of this sort of method is hard to decide the proper

number of Gaussians. In paper [34], the texture orientation of pixels and a soft voting

scheme are employed to seek the vanishing point of road. Firstly, several vanishing

points are picked out as candidates. For each candidate, it is estimated by a soft

scheme voting strategy based on a local region defined by the authors. The voting

strategy is based on texture orientation of the pixels in the local region and ratio

coefficient decided by the diagonal length of the image and the distance between

the pixels in the region and vanishing point. Each candidate has a confidence as

estimation results. The candidate with the highest confidence is considered as the

real vanishing point. And, finally, this vanishing point will work with the texture

orientation to determine the road region in the image. However, this approach is

not suitable for urban case because the boundary of road is often covered by parked

or moving car. In paper [35], Structure-From-Motion (SFM) is used to estimate a

map-based road boundary model.

Figure 3-1: The left image is original fisheye image, the right image is the road image
which we aim to obtain.

3.3 Framework Overview

The general framework diagram of the proposed approach is shown in Fig.3-2. The

input is a fisheye camera image. In a fisheye image, the middle part is the context of
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the captured traffic scene, and the remaining part is useless black area (see Fig. 3-3).

The useless area, having side effect on solving illumination invariant grayscale image,

is firstly removed.

Figure 3-2: Road detection framework diagram

After context extraction, the coarse road detection algorithm is carried out. It

is based on the illumination invariant grayscale image. The illumination invariant

grayscale image is computed from the mapping of the image from RGB space to
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log-chromaticity space where the illumination invariant angle is obtained. Then, a

classification step based on the histogram of this image (as in paper [36]) is imple-

mented. If a pixel is classified as road, its value is set to 1. Otherwise, its value

is set to 0. The scattered road pieces are connected to form road binary image by

connected-component and fill-in hole algorithm. However, there may exist error clas-

sification due to over saturation or under saturation problem. A validation step based

on LRF data is used to check and correct these errors using a refined procedure based

on HSI color space information.

Figure 3-3: The context of the captured traffic scene is extracted from the original
fisheye image.

3.4 Coarse Road Detection Based on Illumination

Invariant Image

Coarse road detection step is based on log-chromaticity space in paper [37]. It is

introduced by Finlayson in paper [38] and used to find the illumination invariant

feature.

3.4.1 1 dimensional illumination invariant images

The 1 dimensional illumination invariant image is based on the Lambertian model

introduced in paper [39]. In this model, RGB color of a pixel is represented by a

spectral power distribution and surface reflectance function. Let E(ζ, x, y) denote
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the spectral power distribution, 𝑆(𝜁, 𝑥, 𝑦) the surface reflectance function, the RGB

color formed at a pixel (𝑥, 𝑦) can be described as follows:

𝜌(𝑥, 𝑦)𝑘 =

∫︁
𝐸(𝜁𝑘, 𝑥, 𝑦)𝑆(𝜁, 𝑥, 𝑦)𝑄𝑘(𝜁), 𝑘 = 𝑅,𝐺,𝐵 (3.1)

where 𝑄𝑘(𝜁) denotes the spectral sensitivity of the 𝑘 channel camera sensor, 𝜁 the

wavelength of light. The integral usually occupies the range of the visible light. Based

on the assumption that the camera sensor obeys to Dirac delta functions (𝑄(𝜁) =

𝑞𝑘𝛿(𝜁 − 𝜁𝑘)), Equation 3.1 can be simplified as:

𝜌𝑘 = 𝐸(𝜁𝑘, 𝑥, 𝑦)𝑆(𝜁𝑘, 𝑥, 𝑦)𝑞𝑘 (3.2)

If the illumination follows the Planckian’s laws described in paper [40], a light with

a spectral power distribution can be parameterised by its colour temperature 𝑇 :

𝐸(𝜁) = 𝐹𝑐1𝜁
−5𝑒

−𝑇𝜁
𝑐2 (3.3)

where 𝑐1 and 𝑐2 are constants, and 𝐹 is a variable adjusting the overall intensity of

the light. Taking equation 3.3 into 3.2, it becomes:

𝜌𝑘 = 𝐹𝑐1𝜁
−5𝑒

−𝑇𝜁
𝑐2 𝑆(𝜁𝑘)𝑞𝑘, 𝑘 = 𝑅,𝐺,𝐵 (3.4)

By dividing 𝜌𝑅 and 𝜌𝐵 by 𝜌𝐺, then we have the log-chromaticity coordinate as follows:

𝜔𝑗 = 𝑙𝑜𝑔
𝜌𝑗
𝜌𝐺

= 𝑙𝑜𝑔
𝑠𝑗
𝑠𝐺

+
1

𝑇
(𝑒𝑗 − 𝑒𝐺), 𝑗 = 𝑅,𝐵 (3.5)

where 𝑠𝑘 = 𝑐1𝜁
−5
𝑘 𝑆(𝜁𝑘)𝑞𝑘 depends on the surface and camera. 𝑒𝑘 = −𝑐2/𝜁𝑘 depends on

camera. With temperature T change, for a given surface, 𝜔 will move along a straight

line in log-chromaticity space. The direction of this line is determined by (𝑒𝑘 − 𝑒𝐺)

which depends on camera, but is independent of the surface and illumination. It

means that the surface color under different illumination lies on a straight line in the

log-chromaticity space and all those lines are parallel each other for different surface
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colors with slope (ek − eG) (See Fig.3-4). The 1-d illumination invariant image can

be determined by projecting log-chromaticity of pixels into the direction orthogonal

to the vector (ek − eG).

Figure 3-4: Left image is a color checker, right grahp represents the color in color
checker under different illumination maps to log-chromaticity space. A set of different
color surfaces under different illuminations form several parallel lines. lRθ

is a line
perpendicular to these parallel lines. The projection of log-chromaticity of pixels into
lRθ

form a 1-d illumination invariant image.

Illumination invariant direction estimation

According to the above description, it is known that the direction (ek− eG) is the key

point for deriving the 1 dimensional illumination invariant images. In log-chromaticity

space, the direction of the line perpendicular to parallel lines formed by different color

surfaces under different illuminations is defined as illumination invariant direction

Di. This direction can be expressed angle (Rθ) of its slope (See Fig.3-4) and can be

determined by its entropy energy. Let Igi denote the grayscale image derived from

projecting the log-chromaticity coordinate of a given color image onto a line lRθ
with

slope Rθ. The entropy energy ER of Igi based on its histogram HR is defined as
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follows:

ER = −
Nb∑
i=1

HR(i)log(HR(i)) (3.6)

where Nb is the number of bins of the histogram HR. The entropy value depends on

the value of Rθ. If Rθ is consistent with Di, the log-chromaticity values of pixels will

scatter in same bin of HR. Thus, it leads to a low value of the entropy energy ER.

Conversely, if Rθ deviates from Di, a high value of ER will be expected. Hence, the

illumination invariant direction can be determined as long as the minima of ER is

solved. In paper [41], the authors propose to determine Rθ based on a single image

content. This approach is not robust for many different images. Effectively, the

Figure 3-5: Average entropy minimization for different values of the angle Rθ

quality of one single image content can be affected by many factors and it is not
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sufficient for estimating 𝐷𝑖. In paper [25], a method based on a set of images content

is proposed and is proved to be more robust than the approach proposed in paper

[41]. In our research, we adopt this method. Firstly, a set of color images under

different illuminations is chosen, and each of them is mapped into log-chromaticity

space. And then, the points of the image in this space are projected onto the line

with 𝑅𝜃 initialized to 0 to form a new grayscale image. For the new grayscale image,

Chebyshev’s theorem proposed in paper [42] is then applied to reject outlier points.

Among the remaining points, the middle 90% points are picked out to computer the

histogram of the image. The bin width of the histogram is fixed by Scott’s rule [43].

The Scott’s rule is defined as :

𝐵𝑖𝑛𝑤𝑖𝑑𝑡ℎ = 3.5𝑁
−1/3
𝐼 𝑠𝑡𝑑(𝐼𝑖) (3.7)

where 𝑠𝑡𝑑 stands for stand deviation, and 𝑁𝐼 is the number of pixels of image 𝐼𝑖. After

obtaining the histogram, the entropy energy 𝐸𝑅 of the image can be calculated using

equation 3.6. However, the derived energy is only for 𝑅𝜃 = 0. To get full results, 𝑅𝜃 is

varied from 0 to 360 by a fixed step, and the entropy is also estimated again for each

value of 𝑅𝜃. Finally, the average entropy energy of the set of images for each angle

is obtained (See Fig.3-5). The angle corresponding to the minima average entropy is

the expected illumination invariant direction. Fig.3-6 shows the transformation from

RGB image to illumination invariant grayscale image.

3.4.2 Classification based on illumination invariant image his-

togram

After the illumination invariant grayscale image computation, a classification based on

normalized histogram of road model is applied. The aim is to classify the illumination

invariant grayscale image into two classes "road" and "non-road". As in paper [44],

the road model is a fixed small field in front of vehicle in each image (that is reasonable
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Figure 3-6: The context of the captured traffic scene in RGB space is converted to
illumination invariant grayscale image

in most of cases ). Let Sr denote the fixed small region (represented as a blue rectangle

in Fig.3-7), Grmin and Grmax are respectively the minimum and maximum gray level

of illumination invariant image in Sr, Gi the gray level of i-th pixel in illumination

Figure 3-7: The illumination invariant grayscale image is classified as road and not
road. For convenience, the front part of the vehicle is covered by a dark rectangle.

invariant image and λi the probability of the i-th pixel provided by the normalized

histogram of illumination invariant grayscale image. If the two following conditions

are satisfied, the pixel in illumination invariant grayscale image is identified as road:




Grmin < Gi < Grmax(i = 1, 2, ..., N)

λi > λf (λf > 0)
(3.8)

where λf is a threshold which is set to 0.25 (empirical value) and N is the number

of pixels in the image. The result of classification is illustrated in Fig.3-7. The white
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pixels are labeled as "road" and the black pixels are "non-road".

However, as shown in fig.3-7, many scattered pieces of road pixels are presented in

the derived result. To form a more complete road image, further processing is need-

ed. Firstly, a connected-component algorithm is applied to the binary image obtained

by the previous classification algorithm to form a connected groups. Then, flood-fill

operation based on morphology is used to fill holes in each connected group. In fact,

flood-fill operation brings the intensity values of dark areas that are surrounded by

lighter areas up to the same intensity level as surrounding pixels. These connected

groups, which are not connected to the predefined road region Sr, are removed. Fi-

nally, a relatively more complete road binary image is formed as illustrated in Fig.3-8.

Figure 3-8: Scattered pieces of road pixels are connected to form the so called road
binary image.

3.5 Road Detection Refinement Using LRF Measure-

ments

3.5.1 Coherence checking between coarse road image and LRF

measurements

However, some pixels are possibly falsely classified as road or non-road in Idr. To

detect and correct such errors, a checking procedure based on LRF measurements and
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amount of road pixels is proposed. For the convenience of statement, the binary road

image obtained from above describe step is called as 𝐼𝑑𝑟. A 2D-LRF is mounted on

the front of the vehicle (see Fig.3-15) and there exist an upwards pitch angle for laser

scanning plane. In this configuration, roads often lay below the laser scanning plane.

Given the extrinsic parameters between the LRF and the fisheye camera known, the

laser scanning plane corresponds to a line in image. In this paper, this line is called

as dividing line. So if the pixels above dividing line in the image 𝐼𝑑𝑟 are labeled as

"road", the validation step should consider that an error occurs. Obviously, merely

this condition is not sufficient if we consider the pixels below dividing line are falsely

classified. To address this issue, the information of the amount of road pixels are used.

Suppose 𝐼𝑑𝑟𝑛 is the current road image, and 𝐼𝑑𝑟𝑛−1 is the previous one. By observation,

we find that the amount of road pixels is a useful tracking information for checking if

there exists errors in the image 𝐼𝑑𝑟. Because it remains relatively stable between two

consecutive frames if there is no error occurs due to over or under saturation. So, if

there exists dramatic change in the amount of road pixels between two consecutive

frames, it have a high probability that the errors have happened. In summary about

the above two cases, the conflict checking condition is:⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑃𝑢𝑝𝑛 ∈ 𝑃𝑟𝑛

𝑀𝐹𝑛 > (1 + 𝛽)𝑀𝐹𝑛−1

𝑀𝐹𝑛 < (1 − 𝛽)𝑀𝐹𝑛−1

(3.9)

where 𝑃𝑢𝑝𝑛 denotes a pixel above the dividing line in the image 𝐼𝑑𝑟𝑛 , 𝑃𝑟𝑛 represents

the set of road pixels in the image 𝐼𝑑𝑟𝑛 , 𝑀𝐹𝑛 and 𝑀𝐹𝑛−1 are the amounts of road

pixels in the image 𝐼𝑑𝑟𝑛−1 and 𝐼𝑑𝑟𝑛 respectively. 𝛽 is a threshold set manually. In

experiments, it is set to 0.1 (experience value).

3.5.2 Refined road detection procedure

The framework of the refining procedure is shown in Fig.3-9. It firstly adopts two

consecutive frames (𝐼𝑑𝑟𝑛 , 𝐼𝑑𝑟𝑛−1) as inputs to find out two fields: discrepancy field
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Figure 3-9: Framework of refined procedure

and sharing field. The sharing field is the field that contains the overlapping road

area of two consecutive coarse road image. Similarly, discrepancy field is the one

that contains the different road area between the image Idrn and the image Idrn−1 .

In our observation, false road pixels are usually within the discrepancy field in the

image Idrn . So we mainly focus to correct the errors in discrepancy field in the image

Idrn . Firstly, in current fisheye image, the content in discrepancy field and in region

Sr (already defined in detection step) are extracted as region of interest (ROI) (See

Fig.3-10). Then, the ROI is converted to HSI space to solve a distance image where

a threshold value is calculated to rule out the falsely classified pixels. At last, the

outcome after false road pixels removing procedure, the content in sharing field in

the image Idrn and the image Idrn are combined to form a refined road binary image.
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Figure 3-10: ROI extraction

Distance image computation

The distance image is based on Euclidean metric adopted in HSI space. Compared

with RGB model, HSI model is compatible with the vision psychology of human eyes

[45]. It is defined as :

I =
R +G+ B

3

S = 1− 3

R +G+ B
×min(R,G,B)

H = arccos(
0.5× [(R−G) + (R− B)]√
(R−G)2 + (R− B)(G− B)

)

(3.10)

Fig.3-11 shows an example of the content of a RGB image in the H,S and I chan-

nels. As illustrated in this figure, it is known that: I (intensity) component has the

most useful information, S (saturation) component has a few available information,

H (Hue) component hardly provides useful information. Hue component represents

color properties and only the content with great color change can be discriminated in

this channel. This characteristic in H channel also can explain why color processing

method can’t perform more better than grayscale processing approach. In paper [26],

the authors analyze the role of the histogram of the two components S and I in image

segmentation procedure. They consider that intensity values alone (without position
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Figure 3-11: The content of the image in H,S,I channels.

information) hardly get better segmentation results for road detection because there

exist great difference between road pixels and lane marker pixels. Only with S com-

ponent, the road boundary is hard to be detected. So, the feasibility of detecting the

road in SI plane is studied. To analyze the histogram of SI plane, the authors find

that there always exist two major peaks corresponding to the road and the sky. In

high contrast image, the two major peaks are far in SI plane. Otherwise, in low con-

trast image, the two major peaks are close. And the rest of small peaks correspond

to other objects in the image (See Fig.3-12). According to the authors view, a pixel

can be well classified as ’road’ if the average S and I values of road are known. Thus,

choosing the road reference area is one of the key aspect when classifying the pixels.

In our research, we also adopt this research line and choose road area Sr (already

defined in coarse road detection step) as reference road area. Based on the chosen

reference road area and relevant components of HSI model, distance image of ROI in

HSI space is built. In HSI space, a distance image indicates the difference between

the pixel and the average value of the reference road area. Let ROIHSI represent the
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Figure 3-12: The histograms for S,I and SI plane shown in [26]

ROI image in HSI space and (ISI , ISS) denote the average value of the region Sr in I

and S channels respectively. The distance image is defined as follows:

dSI =

√
(II − ISI)

2 + (IS − ISS)
2

df
(3.11)

where II and IS are the pixel values in I and S channels respectively, the denominator

df is a dynamical factor based on the content of ROIHSI . In HSI space, ROIHSI is

divided into two areas: inside area and outside area. The inside area is Sr and the

outside area is the rest part of ROI. Factor df represents the difference between inside

area and outside area. Let (ISO, IIO) denote the average values of outside area in S

and I channels. The factor df is defined as follows:

df = (ISI − IIO)
2 + (ISS − ISO)

2 (3.12)
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False road pixels removing in distance image

In the distance image, a deciding threshold is calculated to rule out the false road

pixels. Generally, this threshold is associated with the prior knowledge of road. In

our case, we have LRF measurements and image information. Combining the two

types of information can make the threshold more robust. Let 𝐿𝑑 denote dividing

line (already define in conflict checking) in fisheye image, 𝐿𝑏 the estimation of road

boundary. In our case, 𝐿𝑏 has two options. One depends on the road boundary of

previous image. Generally, there is no drastic change of road boundary between two

consecutive frames. The road boundary of previous image can be used to approximate

the road boundary of the current frame. Another option is to estimate road boundary

by LRF measurements. In practice, we predefine a line parallel to 𝐿𝑑 and below it, 𝑑𝜆

the distance between the two lines in vertical direction. This predefined line can be

treated as an estimation of road boundary. The way to choose 𝐿𝑏 obey the following

principle: 𝐿𝑏 is the road boundary of previous image if the position of road boundary

of previous image is blow 𝐿𝑑 in vertical direction; Otherwise, 𝐿𝑏 is the predefined

line. In our experiments, 𝑑𝜆 is set to 30. In the distance image, one road pixel is

considered as false road pixel if it is above 𝐿𝑑 in vertical direction. If one pixel is

located in the field between 𝐿𝑑 and 𝐿𝑏 and its value is less than a predetermined upper

limit threshold 𝑇2, it is reserved as road. Similarly, if one pixel is below 𝐿𝑏 and its

value is less than a predetermined upper limit threshold 𝑇1, it is also reserved as road.

The thresholds 𝑇1 and 𝑇2 are based on the average value and standard deviation of

𝑆𝑟 area in the distance image, and they are defined as follows:⎧⎨⎩ 𝑇1 = 𝑀𝑠𝑟 +
√
𝑓𝑑 * 𝑠𝑡𝑑𝑠𝑟

𝑇2 = 𝑀𝑠𝑟 −
√
𝑓𝑑 * 𝑠𝑡𝑑𝑠𝑟

(3.13)

where 𝑀𝑠𝑟 is the average value of 𝑆𝑟 area in the distance image and 𝑠𝑡𝑑𝑠𝑟 the stan-

dard deviation. Fig.3-13 shows the result of removing false road pixels in the distance

image. For the convenience of statement, the outcome of this procedure is called as

𝐼𝑓 .
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Figure 3-13: Process of removing the false road parts in distance image

Combination

Through above classification algorithm, most of incorrect road pixels can be ruled

out. However, there still exist some incorrect parts in the image 𝐼𝑓 , like Fig.3-13

upper-left part. But fortunately, some key points are discarded. Key point is the

intersection point of non road part and road part in the image 𝐼𝑑𝑟. If the key points

are classified to road, the non road part will be connected with road part by the

connect-component algorithm. As long as these key points are abandoned, it will be

easy to remove the non road parts. Firstly, the content in sharing field in the image

𝐼𝑑𝑟 is added to the image 𝐼𝑓 to form a improvement road image 𝐼𝑖𝑟. And then the

connect-component algorithm is applied to the image 𝐼𝑖𝑟. In the image 𝐼𝑖𝑟, the pixels

which are not connected to the road region 𝑆𝑟 are treated as errors road pixels and

are discarded. So far, a refined road image 𝐼𝑟𝑟 is obtained. However, the above refined

approach often take the distant road pixels in ROI as error road pixels. Although

the amount of the distant road pixel is few, we still try to get them back. Let 𝐼𝑟𝑟 be

divided into several equal intervals (See.Fig3-14) according to the height of road area,

and 𝐹𝑖𝑛𝑡 represent the first interval. ℎ1 is the row which corresponds to the lower

limit of road area in 𝐹𝑖𝑛𝑡, 𝑉1 and 𝑉2 are the columns which correspond to the left and

right limits of road area in 𝐹𝑖𝑛𝑡 respectively. The three lines ℎ1, 𝑉1 and 𝑉2 can form

a closed field (red field in Fig.3-14). The road pixels in this closed field in the image

𝐼𝑑𝑟 are picked out to add to the image 𝐼𝑟𝑟 to fill the miss distant road information.
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Figure 3-14: Image is divided into equal intervals

3.6 Experiment

3.6.1 Setup

Figure 3-15: The configuration of the used experimental platform

The layout of LRF and fisheye camera is shown in Fig.3-15. The fisheye camera

is put on the top of vehicle, and LRF is at bottom.
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3.6.2 Experimental results

The experimental data are composed of 336 images from four different sequences.

To reduce the computational time, all images are down sampled to 640 × 512 pixels

resolution. The ground truth is labelled manually.

In first experiment, the algorithm is tested in HSI and RGB space. For each frame,

we record the accuracy of detection result. The accuracy is defined as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐵𝑡 + 𝑅𝑡

𝑀𝐼

. (3.14)

where 𝐵𝑡 and 𝑅𝑡 are the amount of correct background pixels and correct road pixels

respectively, 𝑀𝐼 is total pixel number. The average accuracy for each sequence is

resumed in Table3.1. We can see that the proposed approach performs better in HSI

than in RGB.

Proposed approach
Sequence RGB(Average Accuracy) HSI(Average Accuracy)
(number of images)
1 (56) 0.9715 0.9908
2 (128) 0.9371 0.9469
3 (111) 0.9640 0.9688
4 (41) 0.9543 0.9766

Table 3.1: Comparison of the proposed method performance in RGB nd HSI color
space

In second experiment, the proposed algorithm is evaluated in detail. For quanti-

tative evaluation, three indicators (as in paper [46]) are calculated: 1) Accuracy; 2)

Type I error rate; 3) Type II error rate. The accuracy is defined in the same way in

first experiment. The type I error evaluates the cases: when road pixel is falsely clas-

sified as road pixels. Let 𝐵𝑠 denote the amount of background pixel, 𝐵𝑒 the amount

of error background pixel. The type I error is defined as:

𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟 =
𝐵𝑒

𝐵𝑠

. (3.15)
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The type II error evaluates the cases: when background pixel is falsely classified as

road pixel. Let 𝑅𝑠 denote the amount of road pixel, 𝑅𝑒 the amount of error road

pixel. The type II error is defined as:

𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟 =
𝑅𝑒

𝑅𝑠

. (3.16)

The average of these three indicators on the 336 images are resumed in Table 3.2.

𝑁𝑖𝑚𝑎𝑔𝑒 denotes the number of images refined in the sequence. As shown, we that the

amount of refined image in sequence 2 is more than the others. That is because there

exist many buildings around the road. It makes the work to distinguish the sidewalk

from road get harder.

Propose approach
Sequence Acc Type I Type II 𝑁𝑖𝑚𝑎𝑔𝑒

(number of images)
1 (56) 0.9908 0.0057 0.0228 28
2 (128) 0.9469 0.0122 0.1583 87
3 (111) 0.9688 0.0252 0.0500 53
4 (41) 0.9766 0.0180 0.0466 23

Table 3.2: Performance of road detection considering the proposed approach

In last experiment, the proposed algorithm is compared with the approach pro-

posed in [25] based only on illumination invariant. To compare the results, the same

indicators are adopted. The results are shown in Table 3.3. We notice that the most

significant improvement is obtained for the sequence 2, for which the percentage of

refined images is the greater. Finally, it is to notice that the proposed approach

outperforms the only illumination-invariant based algorithm for each indicator.

Fig.3-16 shows some experimental results obtained by the proposed approach. As

shown, we can see that the proposed algorithm can detect road pixels well. Never-

theless, the first and third images illustrate that some patterns (as white line in road

centre) on the road can affect the performance of the proposed algorithm.

Fig.3-17 compares some experimental results obtained by the proposed approach
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Approach proposed in [25]
Sequence Acc Type I Type II
(number of images)
1 (56) 0.9582 0.0080 0.1383
2 (128) 0.8930 0.0227 0.3347
3 (111) 0.9283 0.0188 0.2148
4 (41) 0.9437 0.0180 0.0466

Table 3.3: The performance of road detection considering the method proposed in
paper [25]

Figure 3-16: Experimental results. (Top row) Original image; (Middle row) Detection
result; (Last Row) Ground truth.

and the method proposed in paper [25]. The lost road part in the second image of

middle row (method in paper [25]) is filled as it can be seen in the second image of

the last row (our method). The redundant road part in the first image of middle row

is removed with our method. All above results prove that the combination of various

information of image can permit to improve road detection.
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Figure 3-17: Experimental results. The images of the first row are original images,
the second row are results obtained using the approach proposed in paper [25], the
third are the results obtained by the proposed method in this paper

3.7 Conclusion and Future Works

In this chapter, we presented an efficient algorithm for road detection in outdoor sce-

narios. The proposed method combines HSI color information, illumination invariant

image and LRF measurements to extract road area from the fisheye image. It firstly

conducts preliminary road detection in illumination invariant image. A coherence

checking based on LRF measurements and the amount of road pixels is then applied

to derive the road image. Unqualified images are finally refined in HSI color space.

Compared to the road detection method only based on illumination invariant image,

the experiment results have shown that the proposed approach can permit to achieve

some improvements for road detection. For future work, we can attempt the combi-

nation of different sorts of color space. We constated that illumination invariant may

also lose the color or intensity information of objects when it reduces the effect of

shadow. Searching for a proper color descriptor should bring some improvement.
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Chapter 4

Multisensor Based Obstacles

Detection in Challenging Scenes

4.1 Introduction

Obstacles detection is a broad research field and plays an important role in industry.

For autonomous vehicles, it aims at making the passenger to stay in a safe situation.

To achieve that goal, the vehicle has to perceive the obstacles around itself. In outdoor

scenarios, obstacles detection is a tough work because the background is varying with

the traveling of the vehicle and the appearance of obstacles is not predictable. For

the past decade, many researchers put great efforts into settling these problems in the

intelligent vehicle research community. Some researchers pay their attentions to the

obstacles detection in daylight time, and others focus on nightly obstacles detection.

In this chapter, multi sensors ( fisheye camera, 2D LRF and GPS receiver) based

obstacle detection method is proposed to handle a challenging case like in Fig.4-1. In

this case, the obstacles to detect have serious motion blur problem.

The rest of this chapter is organized as follows: Section 4.2 introduces the state

of the art. Section 4.3 presents the framework overview of the proposed approach.

Section 4.4 describes in details how to extract potential obstacle areas. Section 4.5

shows how to locate the real obstacle position from these potential obstacles areas.

Section 4.6 gives the real data experimental results. Conclusions are presented in
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Section 4.7.

4.2 State of the Art

According to the used equipments, most of the proposed approaches for obstacle

detection can be divided into three types: passive sensors based, active sensors based

and both of them based.

Generally, camera based approaches are in common use for obstacles detection.

Among these approaches, some of them employ a priori knowledge of obstacles such

as color [47], vertical and horizontal edges [48], texture [49], and symmetry of objects

[50] to separate the obstacles from the background. These methods often have the

benefit to be simple and efficient, but they are not robust to illuminance and weather

changes. Some methods are based on the estimation of ego-motion [51][52][53]. In

paper [52], the authors propose a method based on the motion trace of feature points

to detect and track target vehicles ahead with the same running direction as the

observer vehicle. Low level features such as corner, intensity and horizontal line are

extracted firstly. Then, these features in each frame are projected vertically to form

a 1-D profile. All consecutive 1D profiles along the time axis are linked to generate

features motion trace image. In this image, a motion model based on hidden Markov

model(HMM) is used to separate the background and target vehicle. This method is

restricted to detect vehicles ahead with the same running direction as the observer

vehicle. Besides, a proper motion probability model of target vehicle in HMM is hard

to decide and the threshold for the separation of the line of background and target

vehicle in 1-D profile is based on a experiential value. In paper [53], a method based

on optical flow residual is used to detect the obstacle rear to the vehicle. It firstly find

feature correspondence in consecutive frames. Then, these features are transformed

to bird eye view (BEV). In the BEV image, they are classified into ground/non-

ground plane, and the features belonging to ground plane are used to estimate the

ground plane ego-motion. Finally, based on the estimation of ground ego-motion, a

residual motion map with respect to the ground is calculated. Using this map, the
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moving obstacles around vehicle can be identified. Generally, road plane has very few

texture features and is difficult to extract many saliency features. If feature points

are not sufficient, it is hard to estimate precisely the entire road ego-motion. Other

researchers utilize stereo vision [54] [55] [56] to estimate the position of obstacles. In

paper [55], the authors construct a V-disparity image based on stereo image pair to

detect obstacles on the road. The drawback of this method is that it assumes road is

dominant along the image rows and it can be sensitive to roll angle changes. In paper

[56], the authors suggest to detect obstacles based on the density of digital elevation

map. But this method can’t discriminate the sidewalk around free road area. In

practice, it is a dangerous case.

In paper [57], a LRF is utilized for obstacles detection task. LRF is independent

to illumination change. It is an active sensor which can provide reliable and high

accuracy range measurements. The geometrical figures consisting of LRF measure-

ments are employed to represent vehicles, and predict their location using an extended

Kalman filter (EKF). However, in fact, it’s hard to describe all kind of objects around

the vehicle merely using a few simple geometrical shapes. In paper [58], obstacles are

detected using an occupancy grid map which is transformed into regularly spaced

grid of cells. Nevertheless, the resolution of obstacles depends on the grid map. The

higher resolution grid map is, the more memory it takes.

In paper [59], both LRF and camera are used to detect and recognize objects in

front of a vehicle. The LRF measurements provide the regions of interest (ROI),

and a classifier based on support vector machine (SVM) is applied to recognize the

content in ROI. Our research is belonging to this line.

Nevertheless, all of the methods described above don’t consider the motion blur

case. If motion blur emerges in image, many salient features (corner, SURF, FAST)

will become invalid, and put the relevant methods in failure. Most of motion blur

stems from objects movement in a scene during a long time exposure. In weak lighting

scene, the long time exposure of camera often occurs. It means motion blur has a

high probability to appear in this case.

69



Figure 4-1: The challenging case: motion blur effect for the red vehicle in the image

4.3 Overview of the Proposed Algorithm

The obstacle detection algorithm proposed in this thesis is shown in Fig.4-2. It firstly

copes with the fisheye image. There exist two parallel flows for the fisheye image. In

the right one, the road detection method described in chapter 3 is firstly applied. To

facilitate the work, the distortion in road detection result is then removed. After that,

a geometrical transformation named inverse perspective mapping (IPM) is applied to

the undistorted road image to remove the perspective effect and to form a new image

𝐼𝑟. In the left flow, distortion in the fisheye image is firstly removed. And then, the

same geometrical transformation as the right flow is applied to the undistorted image

to form a new image 𝐼𝑜. In the image 𝐼𝑜, the central lane marker is then detected. The

derived central lane marker is used as base line to map the road model into 𝐼𝑜. Road

model is built using Geographic Information System (GIS) information obtained from

GPS and Openstreet map. This road model can determine the road boundary in the

image 𝐼𝑜. The derived road boundary is then mapped into the image 𝐼𝑟 to extract

several possible regions of obstacle presence. In the last step, the real obstacle field

is determined from these candidate regions using LRF measurements.
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Figure 4-2: Processing flow chart for obstacle detection

4.4 Possible Region of Obstacle Presence Extraction

As illustrated in Fig.4-2, there are several procedures before the possible obstacle

region extraction step. We introduce some important steps in the following sections.
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Figure 4-3: IPM coordinate system

4.4.1 Inverse perspective mapping

Inverse Perspective Mapping (IPM) is often used in many literatures to remove the

perspective effect. In low lever, the perspective effect associates different meanings

to different image pixels. But for the entire image, it gives rise to the geometrical

distortion of an object in the image. IPM technique resamples each pixel in original

image and maps it in a different position to create a new image (IPM image). As done

in [60][61], given an assumption of a flat road, this transformation can be expressed

through the camera intrinsic and extrinsic parameters. Let Cw(Xw, Yw, Zw) denote

the world frame, Cc(Xc, Yc, Zc) the camera frame and Ci(u, v) the image plane. The

relationship between Cw and Cc are shown in Fig.4-3. The origin points of Cw and Cc

overlap. XwYw plane is parallel to ground plane. of Camera frame Xc lays on XwYw

plane, and optical axis Zc is allowed for α and β the pitch and yaw angle but no

roll. h is the height between viewpoint and ground plane. Any point Pi(ux, vy, 1, 1)

in image plane, it can be mapped to the ground plane point Pg by the following
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transformation:

𝑃𝑔 = ℎ

⎡⎢⎢⎢⎢⎢⎢⎣
−𝑐𝑜𝑠𝛽
𝑓𝑢

𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛽
𝑓𝑣

𝑝𝑢𝑐𝑜𝑠𝛽
𝑓𝑢

− 𝑝𝑣𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛽
𝑓𝑣

− 𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽 0

𝑠𝑖𝑛𝛽
𝑓𝑢

𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛼
𝑓𝑣

−𝑝𝑢𝑠𝑖𝑛𝛽
𝑓𝑢

− 𝑝𝑣𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛽
𝑓𝑣

− 𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛽 0

0 𝑐𝑜𝑠𝛼
𝑓𝑣

−𝑝𝑣𝑐𝑜𝑠𝛼
𝑓𝑣

+ 𝑠𝑖𝑛𝛼 0

0 − 𝑐𝑜𝑠𝛼
ℎ𝑓𝑣

𝑝𝑣𝑐𝑜𝑠𝛼
ℎ𝑓𝑣

− 𝑠𝑖𝑛𝛼
ℎ

0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑢𝑥

𝑣𝑦

1

1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.1)

where 𝑓𝑢, 𝑓𝑣 are the horizontal and vertical focal lengths, 𝑝𝑢, 𝑝𝑣 are the optical center

coordinates. Similarly, to convert any point 𝑃𝑔(𝑔𝑥, 𝑔𝑦,−ℎ, 1) in IPM image to normal

view image, the following transformation can be applied:

𝑃𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑓𝑢𝑐𝑜𝑠𝛽 + 𝑝𝑢𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽 𝑝𝑢𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛽 − 𝑠𝑖𝑛𝛽𝑓𝑢 −𝑝𝑢𝑠𝑖𝑛𝛼 0

𝑠𝑖𝑛𝛽(𝑝𝑣𝑐𝑜𝑠𝛼− 𝑓𝑣𝑠𝑖𝑛𝛼) 𝑐𝑜𝑠𝛽(𝑝𝑣𝑐𝑜𝑠𝛼− 𝑓𝑣𝑠𝑖𝑛𝛼) −𝑓𝑣𝑐𝑜𝑠𝛼− 𝑝𝑣𝑠𝑖𝑛𝛼 0

𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛽 −𝑠𝑖𝑛𝛼 0

𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛽 −𝑠𝑖𝑛𝛼 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑔𝑥

𝑔𝑦

−ℎ

1

⎤⎥⎥⎥⎥⎥⎥⎦(4.2)

Fig.4-4 shows an IPM example. The left image is the undistorted image of an original

fisheye image, and the right image is the corresponding IPM image. As illustrated in

Fig.4-4(b), the lane width is fixed and appears horizontal.

(a) Undistorted image (b) Corresponding IPM image

Figure 4-4: IPM example: In IPM image, the borders of road appears parallel.
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4.4.2 Central line marker detection

The lane central marker is used as a reference line in later road model mapping

section. In paper [62], the authors propose to map the road shape model to driver’s

view. However, it involves a transformation in four different kinds of coordinate

systems. Such transformation often brings many errors, and meanwhile, it is hard

to determine all of transformational parameters. To avoid this problem, we propose

to map road shape model to the image Io (IPM image after distortion removal).

However, this mapping requires some marks on the road. Road boundary and lane

central marker are the two choices. In our method, the lane central marker is the

favorable one because it is not often covered by other objects in the traveling journey.

Given two-lane straight street, the lane marker detection flow chart is shown in Fig.4-

5.

Figure 4-5: Lane marker detection flow chart
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Filter

The image Io is firstly sent to a filter that aims at getting a high response to the

lane markers and removing irrelevant pixels. Two separable Gaussian kernels as in

paper [61] are used to compose the filter. One for vertical direction, and another for

in horizontal direction. The horizontal direction is a smoothing Gaussian kernel with

expected width of lane segment. The filter for vertical direction is a second derivative

of Gaussian kernel with the height of the lanes. One example of the performance of

the proposed filter is shown in Fig.4-6. As seen, the lane marker have higher response

(a) Image Io (b) Proposed filter (c) Sobel filter

Figure 4-6: Filter performance

in Fig.4-6(a) than in Fig.4-6(b). After that, the remaining pixels are sorted in descent

order by their responses. The top Tthr% (empirical value:5%) pixel are binarized to

1, and the rest of pixels is set to 0. The new obtained image is defined as If .

Line detection

This step is referred to detect the lines in If . The standard Hough line detection tech-

nique is applied. For Hough transformation, a line is expressed in the corresponding

Polar system. It means a point (x, y) in Cartesian coordinate system corresponds to

a pair (r, θ) in Polar coordinate system. So, for any point in image, a sinusoid curve

corresponds. A line can be detected by finding the number of intersections between

these sinusoid curves. Hight the number of intersections is, high the number of points
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the line has. A minimum number of intersections is set to rule out the unqualified

line.

Candidate lines refinement

Figure 4-7: The red area in the image is the predefined fix area. The yellow line
expresses the center of this area

The proposed approach requires to detect the central line markers. In the image

𝐼𝑜, the road often occupies the nearby area of the center of the image. According

to this property, two conditions are exploited to search the central line marker. The

first one is a fixed predefined area nearby the center of the image 𝐼𝑜 which is used

to screen the candidate lines. If the position of the detected line is within this area,

it is reserved. Otherwise, it is discarded. For the reserved lines, we just keep the

lines nearest to the center of the defined area. If there is only one line to fit above

condition, this line will be treated as the central line marker candidate. If there are

more than one line are possible, the average line between these lines is calculated as

central line marker candidate.

The second condition is a line tracking model. In practice, some parts of a road

may haven’t obvious markers or have other similar figures (zebra stripes). It brings

the difficulties to detect central line marker. To make the approach get more robust, a

tracking model is explored. In fact, the tracking model is a cache which conserves the

central line marker positions of the latest five frames. Given 𝑙𝑎𝑣𝑒 the average position

of central line marker positions of the latest five frames, a candidate is accepted if it
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fits the the following condition:

0.9 ∗ lave < lc < 1.1 ∗ lave (4.3)

where lc is the position of the central line marker candidate. Otherwise, lave is con-

sidered as the central line marker. However, if five successive central line marker

candidates are outside this range, the cache will be cleaned and updated.

4.4.3 Road shape model computation

Road shape model reflects the geometry of the road such as left turn, right run,

or cross-like junction. This contextual information is a very useful clue in many

applications. To acquire ahead road shape model, driving direction information is

necessary. To obtain this information effectively, it needs to transform GPS coordinate

from 3D world geodetic system to 2D local surface system.

Figure 4-8: WGS84 coordinate system

Transformation of GPS coordinates

GPS is a fully operational optimum positioning system and provides accurate, con-

tinuous position and velocity information to the users equipped with GPS receiver. It
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uses world geodetic system (WGS84) as reference coordinate system. As illustrated in

Figure 4-9: ECEF coordinate system

Fig.4-8, WGS84 is based on an ellipsoid with minor radius at poles and major radius

at equator. Its datum is described by the longitude, latitude and elevation. The data

Figure 4-10: Local surface plane

in this form is not convenient for our use. The data in local 2D surface form is our

desired target. To achieve this goal, the original GPS data are preprocessed by the
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following steps:

1.Transformation from WGS84 to a 3D cartesian coordinate (𝑋, 𝑌, 𝑍) in an earth

centered and earth-fixed (ECEF) system as shown in Fig.4-9.

2.Converting the 3D cartesian coordinate into a local 2D surface plane (See Fig.4-

10) by extended Lambert II projection model.

The details for these coordinate conversion algorithms are given in appendix A.

Openstreetmap

GIS is the most important factor for building the road shape model. It is extracted

from OpenstreetMap database. OpenstreetMap is a project to build a free geographic

database of the world. It gathers all sorts of information including building, road,

waterways and so on. There are three primitive type data combined with free form

tagging scheme in OpenstreetMap to describe geographic feature: nodes, ways and

relations. The first two types play an important role in the proposed approach and

are introduced in details.

Nodes are fundamental elements. They are points in space and the only primitive

to have position information [63]. The other two primitives are based on the nodes.

Each node has its latitude and longitude stored in decimal format up to 7 decimal

places. This guarantees the latitude and longitude resolution can reach round 1𝑐𝑚 at

the equator or 0.6𝑐𝑚 at Greenwich. This accuracy is enough for most applications.

Fig.4-11 shows several nodes in OpenstreetMaps.

Ways are lists of nodes arranged in order. They can be used to describe something

with linear features, such as roads and paths. In the map, a way must have at least

two nodes and a maximum of 2000 nodes. The ordering of these nodes in a way is

preserved, so the way often has direction. The direction is from the first node to the

last one. If the first and last nodes of a way are the same, the way forms a closed

area. For a more complex shape than a simple polygon, this can be done using several

ways and a relation to link them. Additionally, for a road, the way is usually placed

down the center line of the physical feature.

79



Figure 4-11: OpenstreetMap. (a) The map under editor view. The red circle points
are nodes. (b) The map in normal view

Road shape model construction

Figure 4-12: Road skeleton extraction

The road shape model contains the road skeleton model and road delimiter model.

The road skeleton model is a link which concatenates the road nodes within a map

database one by one (See Fig.4-12). However, great gap between two adjacent road

nodes often appears in map database. Before concatenating the road nodes, it needs

to operate a linear interpolation. Firstly, the GPS data are used to pick out which road
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the target vehicle is traveling within the map and to identify traveling direction on

this road. Then, the corresponding road nodes are extracted from the map database

(OpenStreetMap [64]). Let Rc denote the road where the vehicle is traveling, Ri(i =

1, 2..., N) the i-th road node of Rc in the map database. The linear interpolation

operation is implemented between two adjacent road nodes if the following condition

is satisfied.

dRiRi+1
< mλ (i = 1, 2, ..., N − 1) (4.4)

where dRiRi+1
is the distance between Ri and Ri+1 nodes, mλ is a threshold set

manually. In our approach, it is set to 2 (unit meter). After that, the closest node

to the vehicle location is chosen from the road nodes and interpolation nodes and is

used as the starting point for the road skeleton construction. From this point, the

interpolation nodes and road nodes are concatenated one by one along the traveling

orientation to constitute the skeleton of the road ahead the vehicle (See Fig.4-12).

The road delimiter model consists of a set of lines piecewise parallel to the road

skeleton. The width of these piecewise parallel lines depends on the road width

information estimated according to the road attributes in the database and additional

countries national road legislation. The road model is shown in Fig.4-13.

Figure 4-13: Road model
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4.4.4 Road model mapping

Road model mapping means to map road geometry into the image Io. Based on the

derived central lane marker, the mapping procedure is actually an aligning procedure

that it just needs to rotate the road skeleton for an angle. The above mapping process

is illustrated in Fig.4-14.

Figure 4-14: Road model mapping

4.4.5 Potential obstacle detection

Potential obstacle detection is based on the image Io image with previously described

road geometry and the image Ir obtained by applying IPM transformation to the

undistorted road detection results. Because Ir is actually the road detection result of

Io, they share the same road geometrical information. So, the road boundary in Ir can

be found out. The road pixels within the boundary are discarded, and the non-road

pixels are conserved (Fig.4-15(a)). The conserved non-road pixels are then grouped

by using a connect-component algorithm. Polar histogram (Fig.4-15(b)), similarly to

paper [65], is used to filter these groups by the following two conditions:




Gp > Kgp

Gg > Kgg

(4.5)
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where Gp is the peak number of a group in polar histogram, Gg is the pixels number

of the group, Kgp and Kgg are rough thresholds to eliminate the small groups. In our

application, these two parameters are set to 25 and 75 (empirical value). A group is

conserved if the above two conditions are satisfied. As a result, the remaining group

fields represent the possible regions of obstacles presence.

Figure 4-15: (a) Red lines in the image Ir shows the boundary of the road. Non-road
pixels within the road boundary are conserved (b) Corresponding polar histogram

4.5 LRF based Obstacles Confirmation

Figure 4-16: The searching windows in normal view image

Obstacle confirmation refers to cut the "tail" pixels which don’t belong to ob-
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stacles (ie. belonging to the road)(See Fig.4-16). LRF measurements are used to

implement this task. Firstly, we suppose that the extrinsic parameters between the

fisheye camera and LRF are known and the IPM image containing the derived po-

tential area of obstacles is converted to normal view. Let denote 𝐼𝑛𝑣 this normal

view image and 𝐿𝑖(𝑖 = 1, 2..., 𝐾) the corresponding reprojection pixel of the i-th LRF

measurement. In our work, we find that the 8-neighbor of 𝐿𝑖 often belongs to a same

object. To extend the useful information, the 8-neighbor are treated as the corre-

spondence, and they share the LRF measurement of 𝐿𝑖. The correspondences lying

beyond the boundary of the road are ruled out by using the acquired road geome-

try information. For the remaining correspondences, a cluster algorithm is applied to

cluster. Let denote 𝐿𝑗 the j-th correspondences, 𝐿𝑗+1 the adjacent correspondences of

𝑗− 𝑡ℎ correspondences. If the following two conditions are satisfied, the two adjacent

correspondences are put in the same class:⎧⎨⎩ |𝜃𝐿𝑗+1
− 𝜃𝐿𝑗

| < 𝜃𝐿

|𝑀𝐿𝑗+1
−𝑀𝐿𝑗

| < 𝑀𝐿

(4.6)

where 𝑀𝐿𝑗+1
and 𝑀𝐿𝑗

are the LRF distance of the two adjacent correspondences

respectively, 𝜃𝐿𝑗+1 and 𝜃𝐿𝑗 are the corresponding LRF angle of them respectively, 𝜃𝐿

and 𝑀𝐿 are empirical thresholds. In experiment, 𝜃𝐿 and 𝑀𝐿 are set to 4 and 0.5

meter respectively. As a result, these different correspondences gather into several

different classes. For each class, a rectangle filter window (See Fig4-16) is assigned

to each of them. The center of this window is located at the centroid of this class.

The width and height of the window are based on the minimum bounding box of the

class. They are determined by following equations:⎧⎨⎩ 𝑊𝑤𝑖 = 1.2 *𝑊𝑐𝑖;

𝐻𝑤𝑖 = 1.2 *𝑊𝑐𝑖 + 𝐻𝑐𝑖;
(4.7)

where 𝑊𝑤𝑖 and 𝐻𝑤𝑖 are the width and height of the window of the i-th class respec-

tively, 𝑊𝑐𝑖 and 𝐻𝑐𝑖 are the width and height of the minimum bounding box of i-th
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class. A pixel in the normal view image 𝐼𝑛𝑣 belongs to an obstacle if it is within

the corresponding filter window. Otherwise, the pixel is discarded. The minimum

bounding box which contains remaining pixels and the corresponding class are the

final output.

4.6 Experiments

The experimental data consist of a road database obtained from openstreetmap and

two sequences (sequence1: 231 frames, sequence2: 171 frames) with the corresponding

LRF measurements and GPS data captured by our experimental vehicle. The ground

truth is labelled manually. For the sequence 1, the results obtained using our method

are compared with the results obtained with two other methods proposed in [66]

and [67]. Public codes for the two methods are available on the internet. Some

results of these three approaches are shown in Fig.4-17. We can notice that the

appearance of the vehicle in Fig.4-17(a) is blur, especially for the front part of the

vehicle. Meanwhile, we can see that all the outcomes of the method in paper [66]

are incorrect and the method proposed in paper [67] detect nothing. The reason that

make the two methods invalid is the loss of visual feature. Fig.4-17(d) shows that, to

an extent, our method can overcome this issue and give more reasonable results.
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Figure 4-17: (a) Original image (b) Results obtained with the approach of paper [66]
(c) Results obtained with the approach of paper [67]. (d) Results obtained with our
approach.
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For the sequence 2, the results obtained using our method are compared with the

results obtained with the method proposed in [66]. Some results of the two approaches

are shown in Fig.4-18. As illustrated in Fig.4-18(a), the appearance of the pedestrian

is not very clear, especially for the leg. Meanwhile, in Fig.4-18(b), similar with the

experiment results in sequence 1, the method proposed in paper [67] still can’t detect

the object. From the Fig.4-18(c), we can see that our method can output more

reasonable results. It is noticeable that, in Fig.4-18(c), the right detection result

lose partial leg information of the pedestrian. That is because, in road detection

procedure, the lost leg part are treated as road. We also evaluate the influence of

LRF measurements based confirmation on the performance of the proposed approach.

The results are shown in Table 4.1. For sequence 1, one can notice that the LRF

measurements based confirmation improve the correct rate greatly. However, the

hit rate declines sightly due to the shift of LRF measurements of obstacles. For

sequence 2, we can see that the two criteria are higher with LRF measurements based

confirmation case than without LRF measurements based confirmation case. The

reason which makes hit rate better is that the super correspondence can provide

additional object information when the motion blur happens at leg of pedestrians

and super correspondence lay on the leg. In other words, without LRF measurements

based confirmation, the leg part in the image is often treated as road making the hit

rate worse.

Condition Hit Rate Correct Rate
Without LRF measurements based confirmation 1 0.8076 0.5297
Without LRF measurements based confirmation 2 0.6076 0.4297
With LRF measurements based confirmation sequence 1 0.7255 0.8716
With LRF measurements based confirmation sequence 2 0.7518 0.7762

Table 4.1: The performance of the proposed approach with and without LRF
measurements. 𝐻𝑖𝑡𝑅𝑎𝑡𝑒 = 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠

𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑅𝑎𝑡𝑒 =

𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠
𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠

Fig.4-19 shows some examples of such failure case. As illustrated in the first row

of Fig.4-19, the pedestrians around the road boundary, the proposed method can’t
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Figure 4-18: (a) Original image (b)Results obtained with the approach of paper [66]
(c)Results obtained with our approach.

detect the part out of the boundary. From the second row in Fig.4-19, we notice that,

for the multi obstacles detection, the algorithm can’t separate them when the two

objects overlap. As shown in the last row of Fig.4-19, if we lose the LRF measurements
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on obstacles, the proposed method becomes invalid.

Figure 4-19: (a) error case (b)correct case
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4.7 Conclusion and Future Works

In this paper, we presented a novel method to detect obstacles with motion blur case.

The obstacle visual features are usually useless. This is a big challenge for many

object detection methods. To handle this issue, GIS, road information and LRF

measurements are combined with image information. The GIS and road information

are applied to extract possible regions of obstacle presence and the LRF measurements

are used to filter these regions.

In the possible regions of obstacle presence extraction procedure, the IPM tech-

nique is firstly used to remove the perspective effect to the undistorted road image

and undistorted fisheye image. Then, a road model ahead of the vehicle is constructed

by using GPS data and Openstreet map. After that, this model is mapped into IPM

image by aligning the road skeleton with the central line marker in that image. The

road boundary can be determined during the mapping procedure. Potential obsta-

cles area can be found out using the road information and relative road boundary

information.

In obstacle confirmation step, LRF measurements are used. LRF measurements

can provide the width information of target obstacles which can help us to eliminate

the disturbance of "tail" pixels such as shown in Fig.4-16. The LRF measurements

are firstly screened by the road boundary. And , the remaining data are then grouped

into several classes. In each class, a filter window based on the bounding boxes of

this class is built. This window is then applied to filter the "non-obstacle" pixels.

For future works, the following aspects could be expected to get improvements:

1.Currently, all the road nodes in the vehicle running road are gathered manu-

ally. For future works, we would like to develop a method to extract these nodes

automatically.

2.For the LRF measurements classification, the geometrical shape which is made

up of LRF measurements on the objects can be exploited to help grouping these

measurements. For most of the cars, their geometrical shapes consisting of LRF

measurements on them are similar. This property is useful to us to classify the LRF
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measurements.

3. For roads without lane marker, it is hard to map the road model shape into the

image. To deal with this case, it is a considerable choice to detect the road boundary.
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Chapter 5

Objects tracking based on

small-region growth

5.1 Introduction

In this chapter we will present a novel object tracking algorithm. Because of the

constant fluctuation of the outside world, it often brings many difficulties for outdoor

object tracking. One of problems is hard to get high quality images. For low quality

images, many visual based methods may become invalid due to the missing of fea-

tures information of tracked objects. To address this sort of issue, a method based on

LRF measurements and raw pixel information is proposed. It makes use of raw pixel

information to locate interesting small regions firstly. And then these small regions

are mapped to LRF space. In this space, each small region will growth to a complete

region which covers most part of the corresponding target through some growth de-

cision factors. The proposed method is tested in two long-term video which contains

1000 frames. The rest of the chapter is organized as follows: Section 5.2 introduces

the state of the art. Section 5.3 presents the framework of the proposed method. Sec-

tion 5.4 describes in details the initialization step for the method in details. Section

5.5 introduces the frame buffer information function. Section 5.6 presents the way

to encode the tracked objects. Section 5.7 describes how to locate interesting small

regions. Section 5.8 introduces how to expand an interesting small region to become
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a complete region representing a tracked object. Real date experiments are shown in

Section 5.9. Finally, a conclusion is presented to end this chapter.

5.2 State of the Art

Although there are many methods regarding objects tracking, most of them can be

categorized by their appearance descriptors. In this chapter, we group them into

four classes: raw pixel descriptor based, local feature descriptor based, statistical

descriptor based and online self-learning descriptor based.

Raw pixel descriptor reflects the basic statical property of object appearance such

as color distribution, pixel displacements, correlation information of object pixels and

so on. In paper [68], target objects are encoded by their color or intensity values in

image. In paper [69], local binary pattern (LBP) technique is used to represent ob-

ject appearance. However, this sort of approaches is not robust enough due to the

accumulation errors during the tracking process. To address this problem, other in-

formation are explored. In paper [70][71], optical flow is used to represent targets.

Although optical flow information can help to locate moving object in the image, it

doesn’t work very well in the presence of motion blur and illumination fluctuation.

Other researchers [72][73] propose covariance representation based on affine-invariant

metric or log-euclidian metric to capture the targets in image. This sort of approach-

es is computational efficient and robust to illumination changes and occlusion due to

seizing the intrinsic correlation properties of tracking object. Nevertheless, because of

using pixel-wise statistics, it is also easily affected by image noise. In papers[74][75],

histogram of target object is adopted by researcher. Color histogram based on HSV

[74] is applied in object representation. In paper [75], a rg-histogram based on nor-

malized RGB color mode is proposed to represent aim object. However, the methods

will gradually drift from targets during the tracking procedure. To improve the ro-

bustness of color or intensity histogram based methods, many researchers suggest to

embody other information into it. In paper [76], a color-spatial joint model is used

to describe the color distribution in spatial space. In paper [77], tracked region is
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divided into several patches. By the spatial layout information of these patches and

their intensity histograms, the final tracking location can be determined. In paper

[78], texture information is integrated into color histogram. In paper [79], gradient

orientation histogram [80] and color histogram are utilized to determine the tracking

position.

Local feature descriptor means to represent targets based on several local interest-

ing points or their combination. In paper[81], a SIFT together with color invariants

based descriptor is applied in object tracking. In paper [82], 3D SIFT based on bag

of words descriptor is proposed. In paper [83], an extended SURF visual features

are proposed for object tracking. In paper [84], corner features are considered for

the construction of appearance model. Recently, learning based methods are often

proposed in several literatures. Different sort of visual features are packed to train

a set of weaker learners. These weaker learning classifiers are then sent to construct

a composed classifier which is applied in object tracking. In paper [85], Harr-like

features [86] are used to construct weak classifiers. Generally, local feature descrip-

tor is robust to shape deformation and rotation. However, feature point detection is

often disturbed by image noise and background changes. For feature set based weak

learners, the computational cost is expensive.

Statistical descriptor use different kinds of statistical models to fit tracked objects.

These models could be Gaussian model, kernel model and template in subspace. In

paper [87], gaussian model is introduced into object tracking field. The authors use

a set of gaussian models to define a density function to approximate target appear-

ance. Although the gaussian model based method can get reliable results, it is hard

to determine the number of gaussian function. In paper [88], a kernel-based model is

introduced to represent target object. The authors use spatially isotropic kernel to

regularize target color histogram and mean shift based on Bhattacharyya metric to

locate target position. In paper [89], edge information is integrated into kernel func-

tion. Other researchers focus on subspace for object tracking. In paper [90], target

object is considered as linear combination of several basis templates in subspace. In

paper [91], the authors propose a tracking method based on sparse representation.

95



Online self-learning descriptor is based on online self learning classifier. It firstly

trains the classifier by several previous frame samples, after which it estimates the

target position in image. Using the new estimated sample in current frame, the

classifier is updataed. The method in paper [92] is based on this technique. However,

this method often suffers from drift problem due to accumulation errors in the tracking

procedure. In paper [93], the authors use multi instances to address this problem.

The conventional self-learning usually only uses positive samples. Multi-instances

based self-learning proposed by the authors also adopt negative samples around the

positive ones. This method can help classifier discriminating non-targets around a

target.

All above mentioned methods are based on a relatively high quality image. How-

ever, in our case, motion blur of tracked objects may emerge in image. Only visual

based method may not lead to a robust result. To cope with this problem, a LRF

space and image based method is proposed in our work.

5.3 Overview of the Proposed Algorithm

5.4 Framework overview

The framework of the proposed tracking algorithm is shown in Fig.5-1. It takes

previous tracked target’s LRF measurements and previous image with annotated

targets by tracking boxes as starting point. For the first frame, target is annotated

with a tracking box manually, and its LRF measurements are picked out by the same

way. In the initialization step, the image content in the tracking box is regularized

into standard size and the tracked target’s LRF measurements are used to calculate

key information which are sent to frame information buffer. After that, in object

representation step, the standard size image content is encoded by a method based

on weighted RGB values. By this sort of code, in the current undistorted fisheye

image, a list of patches is launched to determine an interesting small region that

partially contains the target object. And then, a growth strategy based on current
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Figure 5-1: Processing flow chart for object tracking

LRF measurements together with frame buffer information are applied to help the

small region to grow to cover the most part of the target. The area spanned by

the final region and the LRF measurements in this region are considered as the final

outputs.

5.5 Initialization

The input for the initialization step is the previous image with annotated tracked

target by a tracking box and the tracked object’s LRF measurements. The target in

the tracking box in the previous image is regularized into 24x24 size (Fig.5-2). The

tracked object’s LRF measurements are used to obtain object information. Explicitly,

object information contains: the positions of the projected points of the tracked

object’s LRF measurements in the image, the distances of the tracked object’s LRF

, the angles of the tracked object’s LRF . The distances and angles of the tracked

object’s LRF are used to calculate the average distance, average angle, the maximum

distance residual and the maximum degree residual. For statement convenience, we
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(a) Image with annotated tracked target (b) The
tracked
target

(c) The
regularized
tracked
target

Figure 5-2: Regularize procedure

use 𝐴𝑑𝑖, 𝐴𝑎𝑛, 𝑀𝑑𝑖 and 𝑀𝑎𝑛 to denote the average distance, average angle, maximum

distance residual and maximum angle residual respectively. The positions of the

projected points of LRF measurements in the image are combined with the position

of the tracking box in the image to compute low part proportion (𝑅𝑙𝑝𝑝). Actually,

𝑅𝑙𝑝𝑝 is a ratio of the distance between the average row of the projected points of the

tracked object’s LRF in the image and the row of the bottom of the tracking box in

the image to the height of the tracking box. Let 𝑃 𝑖
𝑟(𝑃

𝑖
𝑟𝑥, 𝑃

𝑖
𝑟𝑦) denote the i-th projected

point of the tracked object’s LRF measurements in image, 𝑃𝑏𝑟(𝑃𝑏𝑟𝑥, 𝑃𝑏𝑟𝑦) the lower

right point of the tracking box in image, 𝑃𝑏𝑙(𝑃𝑏𝑙𝑥, 𝑃𝑏𝑙𝑦) the upper left point of the

tracking box in image. 𝑅𝑙𝑝𝑝 is defined as:

𝑅𝑙𝑝𝑝 =
𝑃𝑏𝑟𝑦 −

∑︀𝑁
𝑖=1 𝑃

𝑖
𝑟𝑦

𝑁

𝑃𝑏𝑟𝑦 − 𝑃𝑏𝑙𝑦

(5.1)

where 𝑁 is the amount of the tracked object’s LRF measurements. The obtained 𝐴𝑑𝑖,

𝐴𝑎𝑛, 𝑀𝑑𝑖, 𝑀𝑎𝑛 and 𝑅𝑙𝑝𝑝 are packed as key information to send to frame information

buffer.
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5.6 Frame Information Buffer

The frame information buffer stores key information of three previous frames. These

key information in the buffer are used to calculate three types of decision factors:

distance, angle and low part proportion. The distance decision factor is a range

decided by the average distance and average maximum distance residual of the three

previous frames. Let 𝐷𝑑𝑖 denote the distance decision range factor, 𝐹𝑎𝑑𝑖 and 𝐹𝑚𝑑𝑖

the average distance and average maximum distance residual of the three pervious

frames, 𝑘 the current frame, then we have:

𝐷𝑑𝑖 =[𝐹𝑎𝑑𝑖 − 𝐹𝑚𝑑𝑖, 𝐹𝑎𝑑𝑖 + 𝐹𝑚𝑑𝑖] (5.2)⎧⎨⎩ 𝐹𝑎𝑑𝑖 =
𝐴𝑘−3

𝑑𝑖 +𝐴𝑘−2
𝑑𝑖 +𝐴𝑘−1

𝑑𝑖

3

𝐹𝑚𝑑𝑖 =
𝑀𝑘−3

𝑑𝑖 +𝑀𝑘−2
𝑑𝑖 +𝑀𝑘−1

𝑑𝑖

3

where 𝐴𝑘
𝑑𝑖 and 𝑀𝑘

𝑑𝑖 are the average distance and maximum distance residual in the

frame k. The angle decision factor (𝐷𝑎𝑛) is also a range and can be calculated by

the same way. The LPP decision factor, which is also range , is determined by the

following expression:

𝐷𝑙𝑝𝑝 =[0.95 * 𝐹𝑙𝑝𝑝, 1.05 * 𝐹𝑙𝑝𝑝] (5.3)

𝑤𝑖𝑡ℎ 𝐹𝑙𝑝𝑝 =
𝑅𝑘−3

𝑙𝑝𝑝 +𝑅𝑘−2
𝑙𝑝𝑝 +𝑅𝑘−1

𝑙𝑝𝑝

3

where 𝑅𝑘
𝑙𝑝𝑝 is the LPP in the frame k. The above decision factors are used in region

growth in the following step.

5.7 Object Representation

Taking into account motion blur case, we tend to adopt raw pixel information based

descriptor to encode tracked objects. The frequently used method is to encode object

using color or intensity value directly. As edge visual features of objects are not very

clear in motion blur case, we mainly focus to encode their central field. The proposed
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object descriptor is divided into two directions: vertical and horizontal directions.

As the encoding way in both directions is the same, in the following we will only

introduce how to encode the object in the vertical direction. The regularized tracked

target patch obtained from initialization is encoded by its weight color. Let denote 𝑚

and 𝑛 the standard size patch height and width respectively, 𝐷𝑘𝑖 the k-th row code

in 𝑖 (R,G,B) channel. The way to model the regularized tracked target patch is as

follows:

𝐷𝑘𝑖 = 𝑃𝑘𝐶𝑘𝑖 = 𝑃𝑘

𝑛∑︁
𝑗

𝐼𝑖𝑗𝑘 (𝑘 = 1, 2, ...,𝑚) (5.4)

where 𝐼𝑖𝑗 (𝑗 = 1, 2, ..., 𝑛) is the j-th column intensity in 𝑖(𝑅,𝐺,𝐵) channel, 𝐶𝑘𝑖

denotes the sum of the k-th row’s intensity in 𝑖 (R,G,B) channel and 𝑃𝑘 is the proba-

bility density of the k-th row. In practice, taking the computation cost and resolution

of tracked object, 𝑚 and 𝑛 are set 24. To promote the central field of image, 1-D

Gaussian model is used to estimate 𝑃𝑘. The above procedure is shown in Fig.5-3

Figure 5-3: Encoding procedure in one color channel

5.8 Estimation of Small Region

Interesting small region (ISR) is a field that partially covers a target object. To

determine ISR, we firstly define a searching area as a rectangular field, which has the

same center of the tracking box in the previous frame, its width and height are three

times larger than the tracking box’s width and height respectively. An example of
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searching area is shown in Fig.5-4. In the searching area, a group of scanning grids

Figure 5-4: Example of searching area: the red rectangle is the tracking box, the
green rectangle is the searching area

[93] is set up, as shown in Fig.5-5. The content in each scanning grid is an image

patch. The patches in these scanning grids are used to constitute a list. In the list,

all the patches are sorted according to a cost function. In our case, for each patch,

this function is the sum of squared difference (SSD) of the code of the patch and the

code of the content in the tracking box in the previous frame. The method to encode

these patches is the approach described in object representation step. The top seven

patches in the list are picked out and their common field corresponds to the required

ISR.

5.9 Growth Strategy

ISR is the field merely containing a small part of the tracked object. To get a relative

complete field of the tracked object, this region is expanded. Generally, there exist

three region growth strategies: single direction, bidirectional and mixture way. For

single direction and mixture way strategies, the key point is to know where is the

brink of the object. However, in practice, it is hard to find out this information. For
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Figure 5-5: Group of scanning grids

bidirectional strategy, we just need to catch the partial location information of the

tracked object in the image and know where it should stop. It is more convenient and

easy to find out these two information than to determine the brink. In the proposed

approach, the bidirectional growth strategy is adopted. This strategy is performed

in the horizontal and vertical directions. We will firstly introduce the horizontal

direction based growth, and then the vertical direction based one.

As described above, to perform bidirectional strategy we need to know the partial

location information of the tracked object in the image and where it should stop. The

first information is derived from the previous section (estimation of small region).

The second information can be obtained in LRF space, which is defined as a 2D

reprojection space of LRF measurements and it completely overlaps with the image.

Each element in the space is characterized by three attributes: distance, position and

angle. Fig.5-6 shows an example of LRF space. The growth of ISR in the horizontal

direction is implemented in LRF space. Let’s define the region corresponding to ISR

in LRF space as LISR. It means that the growth of LISR is equivalent to the growth

of ISR. Taking the middle point in LISR as the center, the horizontal brink of LISR

is firstly expanded until the point (in LRF space), which is not within the range

𝐷𝑑𝑖. Then, a shrink operation is applied to the horizontal brink if the angle of the

points in the expanded LISR is beyond the range 𝐷𝑎𝑛. Through the expansion and

shrink procedures, the target object LRF measurements and its horizontal brink can
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Figure 5-6: LRF space. The intensity denotes the degree of corresponding measure-
ment.

be determined.

Because of the lack of the upper and lower limits of the tracked object in LRF

space, it is hard to use the same way to expand the LISR in vertical direction. To

address this problem, an alternative way is proposed. We firstly expand the LISR in

vertical direction to a predefined height, which is calculated by multiplying the width

of LISR and the ratio of the tracking box’s height to its width in the first frame.

However, this may lead to drifting gradually from the target during the tracking

procedure (Fig.5-7). To tackle this issue, the position of spanned region has to be

Figure 5-7: Tracking box drifting from the target

translated properly in vertical direction. In practice, we can note that the scanning

position from LRF gradually moves from top to bottom when an object gets close to

the LRF because there exists an upwards pitch angle between LRF and ground plane.
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According to this principle, if 𝑅𝑙𝑝𝑝 of that region is higher than the upper limit of

the range 𝐷𝑙𝑝𝑝 and the average distance in that region is less than 𝐹𝑎𝑑𝑖, that region

is translated upwards until its LPP fall into 𝐷𝑙𝑝𝑝. In other words, when the vehicle

is approaching to tracked objects, their 𝑅𝑙𝑝𝑝 should get small. Conversely, if 𝑅𝑙𝑝𝑝 of

that region is smaller than the lower limit of the range 𝐷𝑙𝑝𝑝 and the average distance

in that region is more than 𝐹𝑎𝑑𝑖, that region is translated downwards until its LPP

fall into 𝐷𝑙𝑝𝑝. The above conditions can be summarized as follows:

⎧⎨⎩ 𝐷𝑎𝑠 < 𝐹𝑎𝑑𝑖 :↓ (𝑅𝑙𝑝𝑝 > 1.05𝐹𝑙𝑝𝑝)

𝐷𝑎𝑠 < 𝐹𝑎𝑑𝑖 :↑ (𝑅𝑙𝑝𝑝 > 0.95𝐹𝑙𝑝𝑝)
(5.5)

where 𝐷𝑎𝑠 denotes average distance of spanned region.

5.10 Experiment

5.10.1 Test results in real scenarios

In the first experiment, the proposed algorithm is tested in two long term videos

captured by our experimental car moving in outdoor scene. There are totally 1000

frames in each video and several different cases (normal, presence of motion blur,

background change, scale and appearance changes, over exposure and shadow). A

man riding a bike is our target. The proposed method is firstly tested on the first

video.

(a) 5 (b) 6 (c) 7

Figure 5-8: Test results in normal case
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Fig.5-8 shows several test results in normal case. The number denote the index

of frame. The proposed method can track the object accurately. Fig.5-9 shows

(a) 71 (b) 77 (c) 80

Figure 5-9: Test results in motion blur case

several test results in motion blur case. Compared with the normal case, we can note

that the presence of motion blur in the image. This phenomenon is caused by the

shaking of the car due to non flat ground. From frame 77 and 78, we can see that

the vibration makes the tracking box a bit shift from target. Fig.5-10 shows test

(a) 371 (b) 411 (c) 454

Figure 5-10: Test results in background change case

results in background change case. In frame 371, the background around the target

is the road. In frame 411, the pedestrian crossing the road occupies the most part

of the scene background. From the results, we can see that the background change

don’t affect the robustness of the proposed method. Fig.5-11 shows test results in

appearance and scale changes case. In this test, we track two objects simultaneously.

If we focus on the vehicle, in frame 245, only its left side appears in the image and
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its size is small. In frame 259, the front part of the vehicle occupies the most of the

appearance and its size is larger than the one in frame 245. In frame 270, the size of

the front part and left side part are almost the same and the scale of the object in this

frame changed significantly when compared with the one in frame 245. Meanwhile,

we note the presence of motion blur in these frame.

(a) 245 (b) 259 (c) 270

Figure 5-11: Test results in the appearance and scale changes case.

The following experiment results are obtained from the processing of the second

video. Fig.5-12 show the test results in a normal case. Similar with the results in

video 1, the proposed method can work normally. Fig.5-13 shows test results in

illuminance change case. In frame 94, the target object is in shadow. In frame 117,

the target is exposed to the light. From these frame, we can see that the intensity of

tracked object varies greatly. Fig.5-14 shows test results in motion blur, appearance

change and scale change case. From the 606 and 706 frames, it is noticeable that

great appearance and scale change has taken place. From frame 706 and 712 frame,

appearance change and motion blur occur simultaneously. This is a great challenge

to some object tracking methods. In this challenge case, the proposed method also

can work normally. Fig.5-15 shows test results in over exposure case. From frame

835 and 845, most part of the back of tracked object lose its original color and turn

into white. In this case, the performance of some vision based tracking approaches is

not very well duo to the loss of intensity.
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(a) 7 (b) 8 (c) 9

Figure 5-12: Test results in normal case

(a) 94 (b) 111 (c) 117

Figure 5-13: Test results from shadow scene to light scene

(a) 606 (b) 706 (c) 712

Figure 5-14: Test results in motion blur, appearance change and scale change case
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(a) 825 (b) 835 (c) 845

Figure 5-15: Test results in over exposure case

5.10.2 Comparison results

In the second experiment, the proposed method is compared with the method pre-

sented in paper [93]. To get ground truth, we manually annotate the tracked objects

with a minimun bounding box. The criteria indicator is the overlapping rate (OR).

Let 𝑆𝑏 denote the area of minimum bounding box in the image, 𝑆𝑡 the area of the

tracking box in the image. OR is defined as follows:

𝑂𝑅 =
𝑆𝑏 ∩ 𝑆𝑡

𝑀𝑎𝑥(𝑆𝑏, 𝑆𝑡)
. (5.6)

The comparison results are shown in Fig.5-16 and Fig.5-17. The red line represents

the results obtained from the proposed approach. The blue one is the results derived

from the approach presented in paper [93]. In Fig.5-16, the method proposed in

paper [93] missed the target from frame 100 to frame 600. After frame 600, it gets

back the target. The reason is that the method in [93] has a big buffer which stores

the descriptors of the tracked object in the past frames. This buffer can help the

method to get back the target when it is lost. However, in certain cases, it also

does harm to track the object without other judgment conditions because it may

reserve the inaccurate object descriptor. In Fig.5-17, from frame 1 to frame 600, the

proposed method performs a little better than the approach in [93] overall. From

frame 630 to frame 670, the outcomes of the proposed approach get worse than the

method proposed in paper [93]. The reason is that the performance is affected by
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LRF measurements. In deed, if the LRF measurements get worse, the outcome of

our approach will go bad. After frame 700, our method outperforms the approach

proposed in paper [93]. The reason that the performance of the approach proposed

in paper [93] decrease rapidly is that the variation of the appearance of target object

and motion blur occur simultaneously from frame 705 to frame 715.

Figure 5-16: Comparison results between the proposed method and the approach
presented in paper[93] for first video

Fig.5-18 and Fig.5-19 show some examples of visual comparison results. Above

is the examples from the method in paper [93]. Below is the results of the proposed

method. From Fig.5-18, after vibration of vehicle, the method proposed in paper [93]

gradually lost the target. The same things also happens in Fig.5-19. The presence of

motion blur does very harm to the approach proposed in paper [93]. To an extent,

the proposed approach can handle this issue.

5.11 Conclusion and Future Works

This chapter presented a method for tracking objects. It establishes a list of samples

in a searching area to determine the interesting small region. This region is mapped

to LRF space. In this space, a bidirectional growth strategy is applied to the small
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Figure 5-17: Comparison results between the proposed method and the approach
presented in paper[93] in second video

(a) 7 (b) 73 (c) 128

(d) 7 (e) 73 (f) 128

Figure 5-18: Examples of comparison experiment in first video
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(a) 711 (b) 713 (c) 715

(d) 711 (e) 713 (f) 715

Figure 5-19: Examples of visual comparison results (second video)

region. The growth strategy is controlled by three decision factors which are calculat-

ed by previous frame information. A long-term real data test shows the efficiency of

the proposed method even in presence of motion blur, background and scale changes.

However, the occlusion problem is not tackled by the proposed method. Considering

the low quality of the images, it is a challenge to find a proper descriptor to deal with

the problem. This work can be treated as a direction of future research. Besides that,

the case of objects leaving and reappearings is not tackled in our method.
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Chapter 6

Conclusion and Future Works

6.1 Conclusion

The issues addressed in this thesis refer to several basic aspects of road scene under-

standing in perception systems of intelligent vehicle. A complete and precise descrip-

tion of road scene state will pave a smooth way for intelligent vehicle applications.

The following paragraphs provide a general conclusion for the methods proposed in

the thesis.

In the first, a method regarding extrinsic calibration between fisheye camera and

Laser Ranger Finder is presented in chapter2. The extrinsic calibration is based on

the intrinsic parameters estimation of fisheye camera. Three indicators are proposed

to compare three type models of fisheye camera introduced in literature. Based on the

selected fisheye model, a chessboard pattern is applied to locate several points on the

LRF scanning plane. The scanning plane is then estimated by these points. Based

on the obtained scanning plane and several points on this plane, two geometrical

constraints are built. Simulation and real experiments show the effectiveness of the

proposed method. Finally, we applied it for motion trajectory estimation.

In the second, fisheye camera and LRF based road detection method is introduced

in chapter3. It firstly uses histogram based classification method to implements a

preliminary road detection in illuminance invariant image. The derived result is then

checked by a coherence principal based on the LRF measurements and the amount of
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road pixels. The unqualified road detection result is refined by a distance image based

classification method in HSI space. The real experiment results show the effectiveness

of the proposed approach in reducing the "over saturated" or "under saturated" errors

caused by the method merely based on illuminance invariant image in cloudy day.

In the third, a LRF, GPS and fisheye camera based obstacle detection approach

is proposed in chapter4. Firstly, a distortion removal operation is applied to both the

fisheye image and the road image (chapter3). Then, the perspective effect is removed

from the undistorted fisheye image and the undistorted road image by inverse per-

spective mapping algorithm. After that, the center lane marker in undistorted fisheye

image is detected. Meanwhile, a road model is built by the GIS information obtained

by GPS data and Openstreetmap. This model is mapped into the undistorted fisheye

image by aligning the road skeleton to the center lane marker, in order to determine

the complete road boundary information. The potential obstacle regions can be found

out by combining the road boundary information and road image without perspective

effect. Finally, LRF measurements are used to pick out the real obstacle regions from

these candidate regions. The real experiments show the effectiveness of the proposed

method in coping with obstacle detection in presence of motion blur.

In the fourth, we present a method for object tracking in chapter 5. It encodes

target objects by weighted colors. Based on the derived code, a list of samples in

searching area is sorted to determine the interesting small region. This small region is

expanded in LRF space according to three decision factors obtained from the position

of tracking box and the LRF measurements of target objects in previous images. The

long term real experiment results show the effectiveness of the proposed tracking

algorithm.

6.2 Future Works

In the author’s point of view, some recommendations are given to improve the work.

For extrinsic calibration between camera and LRF, different sensors could be at-

tempted such as 3D LRF and stereo vision. Meanwhile, extrinsic calibration between
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the combination of several kinds of cameras (fisheye, stereo, omnidirectional) and

LRF is also an interesting work. The property of straight line in fisheye image is

another important research direction.

For road detection, a robust color descriptor for road deserves researching. Besides

that, GIS features in map could be an available information to improve the results.

Combination of several cameras is also a considerable option. Segmentation technique

based on condition random field (CRF) also deserves attempting.

For obstacle detection, optical flow with fisheye camera should be interesting to

improve detection results. To build more kinds of road model, it can make the

proposed method more generalized.

For object tracking, the mixture of gaussian models can be used to represent

target objects to deal with the occlusion problem. Multi-instances based self-learning

techniques could be attempted for shortly object disappearance.
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Appendix A

Transformation from WGS84 to

Extended Lambert II

Given (𝛼𝑔0, 𝛽𝑔0) the latitude and longitude from GPS receiver, the coordinate (𝑥𝑙, 𝑦𝑙)

in extended Lamber II system can be calculated by the following steps:

1) Transform (𝛼𝑔0, 𝛽𝑔0) from decimal degree format to degree/radians format

(𝛼𝑔, 𝛽𝑔).

2) Convert (𝛼𝑔, 𝛽𝑔) to cartesian coordinate (𝑥𝑤, 𝑦𝑤, 𝑧𝑤)

Given: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑎0 = 6378137

𝑏0 = 6356752.314

𝑒0 =
𝑎20 − 𝑏20

𝑎20

𝑁 =
𝑎0√︀

1 − 𝑒0𝑠𝑖𝑛2(𝛼𝑔)

(A.1)

we have the following equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑥𝑤 = 𝑁𝑐𝑜𝑠𝛼𝑔𝑐𝑜𝑠𝛽𝑔

𝑦𝑤 = 𝑁𝑐𝑜𝑠𝛼𝑔𝑠𝑖𝑛𝛽𝑔

𝑧𝑤 = 𝑁(1 − 𝑒0)𝑠𝑖𝑛𝛼𝑔

(A.2)

3) Translate (𝑥𝑤, 𝑦𝑤, 𝑧𝑤) to Cartesian coordinate NTF (Novelle Triangulation de la
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France)(𝑥𝑛, 𝑦𝑛, 𝑧𝑛) ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑥𝑛 = 𝑥𝑤 + 168

𝑦𝑛 = 𝑦𝑤 + 60

𝑧𝑛 = 𝑧𝑤 − 320

(A.3)

.

4) Calculate geographic coordinate NTF (𝛼𝑛, 𝛽𝑛) from (𝑥𝑛, 𝑦𝑛, 𝑧𝑛).

Given: ⎧⎪⎪⎨⎪⎪⎩
𝑒𝑛 =

𝑎2𝑛 − 𝑏2𝑛
𝑎2𝑛

𝜆0 = 𝑎𝑡𝑎𝑛(𝑑𝑛𝑧𝑛(1 − 𝑎𝑛𝑒𝑛√︀
𝑥2
𝑛 + 𝑦2𝑛 + 𝑧2𝑛

))
(A.4)

𝜆1 = 𝑎𝑡𝑎𝑛(
𝑑𝑛𝑧𝑛

1 − 𝑎𝑛𝑒𝑛𝑐𝑜𝑠(𝜆0)√
(𝑥2

𝑛+𝑦2)(1−𝑒𝑛𝑠𝑖𝑛2(𝜆0))

) (A.5)

where 𝑎𝑛 = 6378249.2, 𝑏𝑛 = 6356515 and 𝑑𝑛 = 1√
𝑥2
𝑛+𝑦2𝑛

.

(𝛼𝑛, 𝛽𝑛) can be derived by the following algortihm:

Algorithm for calculating (𝛼𝑛, 𝛽𝑛)

While |𝜆1 − 𝜆0| > 𝑒−10, do

𝜆0 = 𝜆1;

Calculate 𝜆1 with Eq.A.5.

End

Then, 𝛼𝑛 = 𝜆1 and 𝛽𝑛 = 𝑎𝑡𝑎𝑛( 𝑦𝑛
𝑥𝑛

)

5) Calculate (𝑥𝑙, 𝑦𝑙) through (𝛼𝑛, 𝛽𝑛)
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Given: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑠 = 0.7289686274

𝑛 = 11745793.39

𝑥𝑓 = 600000

𝑦𝑓 = 8199695.768

𝜎0 = 0.04079234433198

𝐿 = 𝑙𝑜𝑔(𝑡𝑎𝑛(
𝑝𝑖

4
+

𝛼𝑛

2
))(

1 −√
𝑒𝑛𝑠𝑖𝑛𝛼𝑛

1 +
√
𝑒𝑛𝑠𝑖𝑛𝛼𝑛

)
√
𝑒𝑛/2

(A.6)

(𝑥𝑙, 𝑦𝑙) will be derived by the following equations:

⎧⎨⎩𝑥𝑙 = 𝑥𝑓 + 𝑛𝑒−𝑠𝐿𝑠𝑖𝑛(𝑠(𝛽𝑛 − 𝜎0))

𝑦𝑙 = 𝑦𝑓 − 𝑛𝑒−𝑠𝐿𝑐𝑜𝑠(𝑠(𝛽𝑛 − 𝜎0))
(A.7)

.
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Appendix B

Abstract

Road scene understanding is one of key research topics of intelligent vehicles. This

thesis focuses on detection and tracking of obstacles by multisensors data fusion and

analysis. The considered system is composed of a lidar, a fisheye camera and a

global positioning system (GPS). Several steps of the perception scheme are studied:

extrinsic calibration between fisheye camera and lidar, road detection and obstacles

detection and tracking.

Firstly, a new method for extinsic calibration between fisheye camera and lidar is

proposed. For intrinsic modeling of the fisheye camera, three models of the literature

are studied and compared. For extrinsic calibration between the two sensors, the

normal to the lidar plane is firstly estimated based on the determination of ń known

ż points. The extrinsic parameters are then computed using a least square approach

based on geometrical constraints, the lidar plane normal and the lidar measurements.

The second part of this thesis is dedicated to road detection exploiting both fisheye

camera and lidar data. The road is firstly coarse detected considering the illumination

invariant image. Then the normalised histogram based classification is validated using

the lidar data. The road segmentation is finally refined exploiting two successive road

detection results and distance map computed in HSI color space.

The third step focuses on obstacles detection, especially in case of motion blur.

The proposed method combines previously detected road, map, GPS and lidar in-

formation. Regions of interest are extracted from previously road detection. Then
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road central lines are extracted from the image and matched with road shape model

extracted from 2DŋSIG map. Lidar measurements are used to validated the results.

The final step is object tracking still using fisheye camera and lidar. The pro-

posed method is based on previously detected obstacles and a region growth ap-

proach.All the methods proposed in this thesis are tested, evaluated and compared

to stateŋofŋtheŋart approaches using real data acquired with the IRTESŋSET labo-

ratory experimental platform.

Keywords: fisheye camera, laser ranger finder, GPS, extrinsic calibrationn, road

detection, obstacle detection, object tracking.
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Résumé :

La perception de scènes routières est un domaine de recherche très actif. Cette thèse se focalise
sur la détection et le suivi d’objets par fusion de données d’un système multi-capteurs composé
d’un télémètre laser, une caméra fisheye et un système de positionnement global (GPS). Plusieurs
étapes de la chaı̂ne de perception sont étudiées : le calibrage extrinsèque du couple caméra
fisheye/télémètre laser, la détection de la route et enfin la détection et le suivi d’obstacles sur la
route.
Afin de traiter les informations géométriques du télémètre laser et de la caméra fisheye dans
un repère commun, une nouvelle approche de calibrage extrinsèque entre les deux capteurs est
proposée. La caméra fisheye est d’abord calibrée intrinsèquement. Pour cela, trois modèles de
la littérature sont étudiés et comparés. Ensuite, pour le calibrage extrinsèque entre les capteurs,
la normale au plan du télémètre laser est estimée par une approche de RANSAC couplée à une
régression linéaire à partir de points connus dans le repère des deux capteurs. Enfin une méthode
des moindres carrés basée sur des contraintes géométriques entre les points connus, la normale au
plan et les données du télémètre laser permet de calculer les paramètres extrinsèques. La méthode
proposée est testée et évaluée en simulation et sur des données réelles.
On s’intéresse ensuite à la détection de la route à partir des données issues de la caméra fisheye
et du télémètre laser. La détection de la route est initialisée à partir du calcul de l’image invariante
aux conditions d’illumination basée sur l’espace log-chromatique. Un seuillage sur l’histogramme
normalisé est appliqué pour classifier les pixels de la route. Ensuite, la cohérence de la détection
de la route est vérifiée en utilisant les mesures du télémètre laser. La segmentation de la route est
enfin affinée en exploitant deux détections de la route successives. Pour cela, une carte de distance
est calculée dans l’espace couleur HSI (Hue,Saturation, Intensity). La méthode est expérimentée sur
des données réelles.
Une méthode de détection d’obstacles basée sur les données de la caméra fisheye, du télémètre
laser, d’un GPS et d’une cartographie routière est ensuite proposée. On s’intéresse notamment
aux objets mobiles apparaissant flous dans l’image fisheye. Les régions d’intérêts de l’image
sont extraites à partir de la méthode de détection de la route proposée précédemment. Puis, la
détection dans l’image du marquage de la ligne centrale de la route est mise en correspondance
avec un modèle de route reconstruit à partir des données GPS et cartographiques. Pour cela, la
transformation IPM (Inverse Perspective Mapping) est appliquée à l’image. Les régions contenant
potentiellement des obstacles sont alors extraites puis confirmées à l’aide du télémètre laser.
L’approche est testée sur des données réelles et comparée à deux méthodes de la littérature.
Enfin, la dernière problématique étudiée est le suivi temporel des obstacles détectés à l’aide de
l’utilisation conjointe des données de la caméra fisheye et du télémètre laser. Pour cela, les résultats
de détection d’obstacles précédemment obtenus sont exploités ainsi qu’une approche de croissance
de région. La méthode proposée est également testée sur des données réelles.

Mots-clés : caméra fish-eye, télémètre laser, GPS, calibrage, détection de route, détection d’obstacle, suivi
d’objet.


